£EPA
United States
Environmental Protection
Agency
Capstone Report on the
Application, Monitoring, and
Performance of Permeable
Reactive Barriers for
Ground-Water Remediation:
Volume 2
Long-Term Monitoring of PRBs:
Soil and Ground Water Sampling
-------
EPA/600/R-03/045b
August 2003
Capstone Report on the Application,
Monitoring, and Performance of Permeable
Reactive Barriers for Ground-Water
Remediation:
Volume 2 - Long-Term Monitoring of PRBs:
Soil and Ground Water Sampling
Cynthia J. Paul, Mary S. McNeil, Frank P. Beck, Jr.,
Patrick J. Clark, Richard T. Wilkin, and Robert W. Puls
U.S. Environmental Protection Agencr
Region 5, Library (PL-12J)
77 West Jackson Boulevard, 12th Ftoor
Chicago. !L 60604-3590
National Risk Management Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, OH 45268
/Y"V Recycled/Recyclable
4AA Printed wtth vegetable-based ink on
7~V \\ paper that contains a minimum of
VAi/W 50% post-consumer fiber content
V—I\-/ processed chlorine free.
-------
Notice
The U.S. Environmental Protection Agency through its Office of Research and
Development funded the research described here. Mention of trade names or
commercial products does not constitute endorsement or recommendation for use.
All research projects making conclusions or recommendations based on
environmentally related measurements and funded by the Environmental Protection
Agency are required to participate in the Agency Quality Assurance Program. This
project was conducted under an approved Quality Assurance Project Plan. The
procedures specified in this plan were used without exception. Information on the
plan and documentation of the quality assurance activities and results are available
from the Principal Investigator.
-------
Foreword
The U.S. Environmental Protection Agency (EPA) is charged by Congress with
protecting the Nation's land, air, and water resources. Under a mandate of national
environmental laws, the Agency strives to formulate and implement actions leading
to a compatible balance between human activities and the ability of natural systems
to support and nurture life. To meet this mandate, EPA's research program is
providing data and technical support for solving environmental problems today and
building a science knowledge base necessary to manage our ecological resources
wisely, understand how pollutants affect our health, and prevent or reduce
environmental risks in the future.
The National Risk Management Research Laboratory (NRMRL) is the Agency's
center for investigation of technological and management approaches for preventing
and reducing risks from pollution that threatens human health and the environment.
The focus of the Laboratory's research program is on methods and their cost-
effectiveness for prevention and control of pollution to air, land, water, and
subsurface resources; protection of water quality in public water systems; remediation
of contaminated sites, sediments, and ground water; prevention and control of
indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both
public and private sector partners to foster technologies that reduce the cost of
compliance and to anticipate emerging problems. NRMRL's research provides
solutions to environmental problems by developing and promoting technologies
that protect and improve the environment; advancing scientific and engineering
information to support regulatory and policy decisions; and providing the technical
support and information transfer to ensure implementation of environmental
regulations and strategies at the national, state, and community levels.
This publication has been produced as part of the Laboratory's strategic long-
term research plan. It is published and made available by EPA's Office of
Research and Development (ORD) to assist the user community and to link
researchers with their clients. The purpose of this document is to provide detailed
sampling methods and procedures used to collect soil and ground-water samples
in order to evaluate the long-term performance of full-scale permeable reactive
barriers (PRBs) installed to treat contaminated ground water at two different sites.
This report provides methods to obtain representative ground-water samples and
to evaluate geochemical parameters within and around a PRB. Proper analytical
and quality control procedures, both in the field and in the laboratory, are also
discussed for obtaining accurate and representative data for PRB evaluation and
site assessment. The information provided in this document will be of use to
stakeholders such as state and federal regulators, Native American tribes,
consultants, contractors, and other interested parties.
5n G. Schmelling, Director
Ground Water and Ecosystems'ffesltoration Division
National Risk Management Research Laboratory
-------
Abstract
This report discusses soil and ground-water sampling methods and procedures
used to evaluate the long-term performance of permeable reactive barriers (PRBs)
at two sites, Elizabeth City, NC, and the Denver Federal Center near Lakewood,
CO. Both PRBs were installed in 1996 and have been monitored and studied since
installation to determine their continued effectiveness for removing contaminants
from ground water. An effective monitoring program requires appropriate soil and
ground-water sampling techniques.
For ground-water sampling, water quality indicator parameters must be monitored
to determine when formation water has been accessed. Geochemical parameters
include oxidation-reduction potential (ORP), pH, specific conductance, dissolved
oxygen (DO), and turbidity. Field analytical methods are discussed along with
interferences and issues which may arise when using certain electrodes or
instruments in the field. Detailed field analytical procedures for hexavalent chromium,
ferrous iron, alkalinity, hydrogen sulfide, and dissolved oxygen are described. Also
included are laboratory methods for sample analyses for organics, cations, anions,
and carbon. Sample collection methods, sample containers, preservation methods,
and sample storage techniques are also discussed.
An effective soil sampling program also depends on methods employed to
collect, preserve, and characterize solid materials. Core samples from the PRBs
were collected to assess the distribution of mineral and biomass concentrations.
Proper use of a conductivity probe to verify the exact position of the iron/aquifer
interface prior to collecting core material is described, along with core collection
methods. Laboratory methods for core processing prior to analyses are also
detailed. Procedures for inorganic carbon, sulfur, and X-ray diffraction analyses,
electron microscropy, and microbial characterization are discussed in detail.
In order to properly evaluate PRBs for long term performance, proper sampling
methods and procedures must be employed, both in the field and in the laboratory,
to provide accurate and representative soil and ground water data. Proper
analytical and quality control (QC) procedures are also necessary to ensure
accurate and representative data for PRB evaluation and site assessment.
IV
-------
Contents
Notice ii
Foreword iii
Abstract iv
Table of Contents v
Figures vii
Tables ix
Acknowledgements x
1.0 Introduction 1
1.1 Site Description: USCG Support Center, Elizabeth City, NC 1
1.2 Site Description: Denver Federal Center, Lakewood, CO 3
2.0 Monitoring Network 5
2.1 U.S. Coast Guard Support Center, Elizabeth City, NC 5
2.1.1 Monitoring Wells 5
2.1.2 Multi-Level Samplers 5
2.2 Denver Federal Center, Lakewood, CO 5
3.0 Ground-Water Sampling 13
3.1 Monitoring Wells 13
3.2 Multi-Level Samplers 13
3.3 Geochemical Parameters 13
3.3.1 Oxidation-Reduction Potential (ORP) 16
3.3.1.1 ORP Comparison Over Time 16
3.3.2. pH 18
3.3.3. Specific Conductance 18
3.3.3.1 Specific Conductance Comparison with Total Dissolved Solids 18
3.3.4. Dissolved Oxygen 19
3.3.5. Turbidity 21
3.3.6. Temperature 21
3.4 Sample Collection 21
3.5 Quality Assurance/Quality Control Measures 22
4.0 Soil Sampling 23
4.1 Conductivity Probe 23
4.2 Core Collection 28
4.2.1 Lab Studies 30
4.3 Laboratory Methods - Soils 30
4.3.1 Core Processing 30
5.0 Analytical Methods 33
5.1 Field Analyses 33
5.1.1 Hexavalent Chromium 33
-------
5.1.1.2 Hexavalent Chromium Comparison with Total Chromium 33
5.1.2 Ferrous Iron 33
5.1.2.1 Ferrous Iron Comparison with Total Iron 36
5.1.3 Alkalinity 36
5.1.4 Dissolved Oxygen 37
5.1.5 Hydrogen Sulfide 37
5.2 Laboratory Methods - Ground Water 38
5.2.1 Organic Analyses 38
5.2.2 Cation Analyses 38
5.2.3 Anion Analysis 38
5.2.4 Carbon Analysis 39
5.3 Laboratory Methods - Soils 39
5.3.1 Inorganic Carbon Analysis 39
5.3.2 Sulfur Analysis 40
5.3.3 X-Ray Diffraction Analysis 42
5.3.4 Electron Microscopy 42
5.3.5 Microbial Characterization 42
5.4 Quality Assurance/Quality Control Measures 42
6.0 Summary 45
7.0 References 47
Appendix A: Selected parameters through time in Elizabeth City monitoring wells 49
Appendix B: Selected parameters through time in Denver Federal Center monitoring wells 59
Appendix C: Selected parameters through time in Elizabeth City multi-level samplers 73
Appendix D: Quality control data for field duplicates from monitoring wells at the
Elizabeth City site 103
Appendix E: Quality control data for field duplicates from monitoring wells at the
Denver Federal Center site 111
Appendix F: Quality control data for field duplicates from multi-level samplers at the
Elizabeth City site 119
VI
-------
Figures
Figure 1.1 Location of the U.S. Coast Guard Support Center in relation to
Elizabeth City, NC (after Puls and Paul, 1997) 2
Figure 1.2 Proximity of the U.S. Coast Guard Support Center to the Pasquotank River 2
Figure 1.3 Location of the chromium plume and permeable reactive barrier
at the Elizabeth City site (after Puls et al., 1999a) 3
Figure 1.4 Location of the Denver Federal Center site in relation to Denver, CO 4
Figure 2.1 Monitoring well and multi-level sampler locations at the
Elizabeth City site (after Wilkin et al., 2002) 6
Figure 2.2 Monitoring well locations in Gate 1 at the Denver Federal Center site 9
Figure 2.3 Monitoring well locations in Gate 2 at the Denver Federal Center site 10
Figure 2.4 Monitoring well locations in Gate 3 at the Denver Federal Center site 11
Figure 3.1 Equilibration of water quality parameters in monitoring well MW47 at the
Elizabeth City site in September 1997 14
Figure 3.2 Equilibration of water quality parameters in monitoring well C2-I1 at the
Denver Federal Center site in July 2001 15
Figure 3.3 Upgradient Eh values in ML21 from June 1997 through May 2001 at the
Elizabeth City site 16
Figure 3.4 Eh values within the barrier in ML24 from June 1997 through May 2001
at the Elizabeth City site 17
Figure 3.5 Downgradient Eh values in ML25 from June 1997 through May 2001 at the
Elizabeth City site 17
Figure 3.6 Analysis of MW13 and MW48 comparing total dissolved solids with specific
conductance values at the Elizabeth City site 18
Figure 3.7 Analysis ML21 comparing total dissolved solids with specific conductance
values at the Elizabeth City site 19
Figure 3.8 Analysis of Gate 1 comparing total dissolved solids with specific
conductance values at the Denver Federal Center site 20
Figure 3.9 Analysis of Gate 2 comparing total dissolved solids with specific
conductance values at the Denver Federal Center site 20
VII
-------
Figure 3.10 Analysis of Gate 3 comparing total dissolved solids with specific
conductance values at the Denver Federal Center site 21
Figure 4.1 Schematic diagram of angled core collection approach 24
Figure 4.2 Geoprobe® in angle-coring configuration (after Beck et al., 2002) 25
Figure 4.3 Soil conductivity trace (vertical profile) starting at the surface and
penetrating down through the wall 25
Figure 4.4 Plan view map showing compliance well, multi-level well, and conductivity
probe locations relative to zero-valent iron PRB at the Elizabeth City site 26
Figure 4.5 Contour diagram showing vertical and horizontal distribution of
soil conductivity values at Elizabeth City PRB 27
Figure 4.6 Soil conductivity log collected at 30° angle and fully penetrating the
iron wall at the Elizabeth City site (after Beck et al., 2002) 28
Figure 4.7 Soil conductivity trace used to locate position of the aquifer/iron interface 29
Figure 4.8 Soil core collected showing aquifer/iron wall interface (after Beck et al., 2002) 29
Figure 4.9 Results of conductivity measurements in model systems 30
Figure 5.1 Comparison of total chromium and Cr(VI) in monitoring well MW13
at the Elizabeth City site 34
Figure 5.2 Comparison of total chromium and Cr(VI) in monitoring well MW48
at the Elizabeth City site 34
Figure 5.3 Analysis of MW13 and MW48 comparing total chromium and
Cr(VI) at the Elizabeth City site 35
Figure 5.4 Analysis of ML21 comparing total dissolved solids with specific
conductance values at the Elizabeth City site 35
Figure 5.5 Analysis of ML21 comparing total iron and ferrous iron at the
Elizabeth City site 36
Figure 5.6 Analysis of ML25 comparing total iron and ferrous iron at the
Elizabeth City site 37
Figure 5.7 Schematic diagram of the carbon coulometer system for core
sample characterization 40
Figure 5.8 Schematic diagram of the sulfur coulometer system for core
sample characterization 41
VIII
-------
Tables
Table 2.1 Elizabeth City Site Monitoring Well Information 7
Table 2.2 Multi-level Sampler Depths (m) below Land Surface (bis) at the Elizabeth City site .... 7
Table 2.3 Denver Federal Center Site Monitoring Well Information 8
Table 5.1 Detection Limits for Cation Analyses 39
IX
-------
Acknowledgments
The authors would like to acknowledge all of the participants who have
assisted in this effort. Members of the NRMRL Permeable Reactive Barriers
Research Team who contributed to the research described in the report include K.
Jones and Chunming Su. ManTech Environmental Research Services Corp.
provided analytical support both in the field and in the laboratory. Special thanks to
J.P. Messier (U.S. Coast Guard Support Center), J. Vardy, M. Chappel, and M.
Herring (formerly with the U.S. Coast Guard Support Center) for their years of site
assistance at the Elizabeth City site. C. Eriksson and J. Jordon (Federal Highway
Administration) are thanked for their site assistance at the Denver Federal Center.
Reviews of the document were provided by Eric Reardon (University of Waterloo),
Liyuan Liang (Cardiff University), Steve Shoemaker (Dupont), Thomas Holdsworth
(U.S. EPA), and Steve Vandegrift (U.S.EPA); their thoughtful comments are
appreciated.
-------
1.0 Introduction
Permeable reactive barrier (PRB) technology is an in-situ method for remediating contaminated ground water which
combines a passive chemical treatment zone with subsurface fluid flow management (Wilkin et al., 2002). PRBs are
most often composed of granular, zero-valent iron which is emplaced in the subsurface to intercept contaminant plumes.
Contaminated water flows through the PRB and clean water emerges downgradient of the reactive treatment zone.
Analysis and discussion of monitoring data collected at two PRBs are presented in Volume 1 of this EPA Report series.
This report describes ground-water and soil core sampling, preservation, and analytical methods used in a five-year
investigation of PRB performance for ground-water remediation.
Two permeable reactive barriers (PRBs) were installed in 1996, one at the U.S. Coast Guard (USCG) Support Center
near Elizabeth City, NC and the other at the Denver Federal Center (DFC) near Lakewood, CO. Both PRBs are
composed of Peerless® granular iron; however, they differ in their installation methods and design configurations. Both
of these PRBs have been monitored and studied since installation to evaluate their continued effectiveness for removing
contaminants from ground water.
An integral part of the PRB study has been the sampling methods and procedures used to collect soil and ground-water
samples at regular intervals in order to evaluate the long term performance of PRB technology. An effective ground-
water sampling program consists of several components, all necessary to obtain representative ground-water samples
and properly evaluate geochemical parameters within and around a PRB. These components include well location and
installation, ground-water sampling techniques and sampling device used, water quality indicator parameters, and water
level monitoring for draw-down during purging. Other important factors include the type of sample containers,
preservation methods, and sample storage and shipment techniques. Similarly, an effective soil sampling program
depends on the methods employed to collect, preserve, and characterize solid materials. Proper analytical and quality
control (QC) procedures, both in the field and in the laboratory, are also necessary for obtaining accurate and
representative data for PRB evaluation and site assessment.
1.1 Site Description: USCG Support Center, Elizabeth City, North Carolina
The U.S. Coast Guard (USCG) Support Center is located near Elizabeth City, NC which is about 100 km south of
Norfolk, VA and 60 km inland from the Outer Banks region of NC. The USCG base lies on the southern end of Elizabeth
City (Figure 1.1) on the southern bank of the Pasquotank River (Figure 1.2). An old chrome-plating shop, located within
a hangar (building 79), was in use for approximately 30 years until the discovery of a hole in the plating shop floor in 1984.
Site geology is described elsewhere (Puls et al., 1999a). Chromic and sulfuric acid wastes had discharged into the soils
and ground water beneath the hangar resulting in a diffuse chromium plume that migrated north from the plating shop
toward the Pasquotank River (Paul et al., 2002). Ground-water movement at the site is generally toward the Pasquotank
River to the north and ground-water levels at the site range from 1.5-2.0 m (4.9 - 6.6 ft) below ground surface (bgs).
Ground-water flow velocity is extremely variable with depth, ranging from 0.3 to 8.6 m/day (Wilkin et al., 2002). Site
characterization studies conducted by National Risk Management Research Laboratory (NRMRL) personnel revealed
the presence of a chromium plume about 35 m wide which extends to 6.5 m below ground surface and extends laterally
about 60 m from the hangar to the Pasquotank River (Figure 1.3). An overlapping trichloroethene (TCE) plume was also
discovered. Maximum aqueous concentrations in excess of 10 mg/L Cr and 19 mg/L TCE have been detected at the site
since 1991 (Puls et al., 1999a).
Laboratory studies and a field-scale pilot study using zero-valent iron led to the installation of an in situ permeable
reactive barrier (PRB) in June 1996 at the site to remediate the chromate plume (Puls et al., 1999a; 1999b) and portions
of an overlapping TCE plume. The USCG PRB was installed in a hanging wall design where granular iron was emplaced
into the subsurface in a 46 m long, 7.3 m deep and 0.6 m wide trench perpendicular to the contaminant plume (Puls et al.,
1999b). The performance objective of the PRB was to reduce ground-water concentrations of Cr(VI), TCE, and
degradation products to levels below regulatory target limits. The PRB was installed in a continuous, hanging wall
fashion 46 m long, 7.3 m deep, and 0.6 m wide using zero-valent iron.
-------
^Elizabeth Citv
Pasquotank
River
Figure 1.1 Location of the U.S. Coast Guard Support Center site in relation to Elizabeth City, NC (after Puls and Paul,
1997).
Figure 1.2 Proximity of the U.S. Coast Guard Support Center to the Pasquotank River.
-------
Pasquotank River
MW46
Hanging Iron Wall
Full-Scale Demonstration /
MW47
1
MW35D
\
\
LEGEND
Multi-layer sampler
Compliance
monitoring well
*
MW48
® MW38
Approximate extent
of chromium contamination
in shallow groundwater,
dashed where inferred
Approximate Scale in Meters
Approximate location
" of former chromic acid tank
Figure 1.3 Location of the chromium plume and permeable reactive barrier at the Elizabeth City site (after Puls et al.,
1999a).
1.2 Site Description: Denver Federal Center, Lakewood, Colorado
The Denver Federal Center (DFC) site is located near Lakewood, CO, about 10 km west of downtown Denver, Colorado
(Figure 1.4). Site geology is described elsewhere (McMahon et al., 1999; Wilkin et al., 2002). The site is contaminated
primarily with TCE, c/s-dichloroethene (c/s-DCE), 1,1,1-trichloroethane (TCA), and 1,1-dichloroethene (1,1-DCE)from a
leaking underground storage tank used by the Federal Highway Administration (FHWA) to store waste and other
contaminant sources. Maximum concentrations for TCE, c/s-DCE, and 1,1,1-TCA were 700 ug/L, 360 ug/L, and
200 ug/L, respectively. Ground water generally moves from west to east with an average hydraulic velocity of
approximately 0.3 m/day.
A permeable reactive barrier was installed in the fall of 1996 at the eastern edge of the property by FHWA and the
General Service Administration (GSA). Unlike the continuous wall design at the USCG, a funnel and gate approach was
used at the DFC because of a long plume front that exceeds 350 m in length. This design uses metal sheet pile driven
to the bedrock or resistance in the formation. The depths of the funnel ranged from 7.0 to 10.0 m. The PRB consists of
four reactive gates, each 12.2 m long and up to 9.5 m deep. Gate widths are 1.8 m for Gate 1, 1.2 m for Gate 2, and
0.6 m for Gates 3 and 4 (Wilkin et al., 2002). Gate thickness varied due to expected differences of contaminant fluxes
at each gate location.
-------
Figure 1.4 Location of the Denver Federal Center site in relation to Denver, CO.
-------
2.0 Monitoring Network
2.1 U.S. Coast Guard Support Center, Elizabeth City, NC
2.1.1 Monitoring Weils.
At the Elizabeth City (EC) site, ten 5-cm monitoring wells were installed in the vicinity of the PRB for long-term monitoring
of ground-water quality and regulatory compliance (Figure 2.1) (Wilkin et al., 2002). The monitoring wells were
constructed of 5-cm diameter schedule 40 PVC with 0.25-mm slotted screens. Two wells (MW13, MW48) were installed
upgradient of the PRB to monitor contaminant concentrations entering the PRB. MW38 and MW18 were installed
upgradient of the PRB and on the outer perimeters of the plume to monitor background concentrations. Five wells
(MW46, MW47, MW49, MW50 and MW52) were installed downgradient of the PRB to monitor contaminant concentra-
tions as ground water passes through the PRB (see Table 2.1 for individual well details). An additional well, MW35D,
was installed downgradient of the PRB near the river to monitor contaminant concentrations in the lower portion of the
aquifer. These compliance wells were installed using a hollow stem auger (Parsons Engineering Science, 1995) and
were sampled on a quarterly basis from June 1997 through September 2001. The North Carolina Department of
Environmental and Natural Resources (NCDENR) reduced sampling requirements to a biannual basis beginning in
March 2002. Ground-water data for the monitoring wells are shown in Appendix A.
2.1.2 Multi-Level Samplers (MLS)
An additional monitoring network was installed across the PRB for monitoring the performance of the reactive barrier.
This network consists of two multi-level sampling bundles (Transects 1 and 3) and one set of well clusters (Transect 2)
(Figure 2.1). Six of the multi-level sampling bundles in Transects 1 and 3 (ML11, ML14, and ML15; ML31, ML34, and
ML35) are composed often0.32-cm i.d. Teflon® sampling tubes. Four of the multi-level sampling bundles (ML12, ML13,
ML32 and ML33) are composed of ten 0.95-cm i.d. (0.95 cm) Teflon sampling tubes. A 15-cm slotted, stainless steel
wire screen is attached at the end of each sampling tube. Transect 2 is composed of seven 1.25-cm i.d. schedule
80 PVC wells. These wells are fitted with 15-cm slotted screens over the bottom section with 0.025-cm slots (see Table
2.2 for individual MLS details). Transect 2 originally consisted of five clusters of seven 1.25-cm i.d. PVC wells; however,
it was determined by electrical conductivity surveys and core sampling that ML22 and ML23 were not located where
originally thought. Therefore, two additional clusters (ML22.5 and ML23.5) composed of tubing bundles in the manner of
Transects 1 and 3 were installed to replace ML22 and ML23. Upgradient and downgradient bundles or well clusters
(ML11, ML15, ML21, ML25, ML31, and ML35) were installed using a 7-cm i.d. hollow stem auger. Bundles located on
the fringes of the PRB (ML12, ML13, ML22, ML22.5, ML23, ML23.5, ML32, and ML33) and within the PRB (ML14, ML24,
and ML34) are located within roadboxes and were installed using 3.75-cm E/W flush joint drive casing to minimize
disturbance within the vicinity of the iron barrier.
Although the MLS clusters were primarily installed for research purposes, results have been used to monitor the
permeability of the wall. The MLS clusters ML1 and MLS were not sampled on a regular basis; therefore, only data for
ML2 are included in this report (Appendix C).
2.2 Denver Federal Center, Lakewood, CO
The funnel and gate design at the DFC is composed of 24 monitoring wells. Gate 1 consists of six 5-cm i.d. wells
(GSA21, GSA20, C1-GU1, C1-GD1, C1-I1, and C1-I2). Gate 2 consists of five 5-cm i.d. wells (GSA-26, GSA-25,
C2-GU2, C2-I1, and C2-I2) and five 2.5-cm i.d. wells (C2-USGS4, C2-USGS5, C2-USGS10, C2-USGS11, and
C2-USGS13). Gate 3 consists of six 5-cm wells (GSA-31, GSA-30, C3-GU2, C3-I1, C3-I2, and C3-GD2) and two 2.5-cm
i.d. wells (C3-USGS6 and C3-USGS9). Gate 4 never functioned properly. Therefore, it was not sampled consistently,
and no data are included in this report. All wells were constructed of schedule 40 PVC with standard 20 slot screens.
Individual well information is given in Table 2.3. Approximately 18 were sampled annually in 1999 and 2000. While wells
were sampled quarterly since installation of the PRB, the sampling methodologies discussed in this paper were only
initiated in 1999; therefore, previous data are not included but can be found in Pacific Western Technology (2000). Only
data collected by the U.S. EPA for 1999, 2000, 2001 are included in this report (Appendix B). Well locations are shown
in Figures 2.2, 2.3, and 2.4.
-------
>4t*i
r^rN
CN
O
O
CN
(D
"S
'w
L_
CD
-i-*
C
0)
O
tr
o
Q.
Q.
3
CO
"2
CD
8
o
CO
Z>
CD
.c
*-»
"CD
C/5
O
"•4-J
CD
O
O
_
Q.
E
CD
CO
"0
CD
•o
CD
1
03
O
CM
2
3
O)
-------
c
o
"CD
E
1
"55
§
D)
C
"C
0
-1— '
'c
0
•3
^
s
CO
o
£
"5
CD
N
UJ
CM
re
£
* S
= £
u.
re ^^
5 'a?
o u
£~
Q
.C
O)
0)
« ?
c i,
0)
£
o
en
i_
0)
It
Q ,«,
^
V
9
Q)
5
iOLqcv!cococococoN.Lq
CT>
COCOOCOCnOJCOCOCM-^-
LOLOOppOOpLOi-
T-i— cocococococo-i— co
OOOOCV1COOOCOOOCOOOOO
00,-jOOOOOOO
LOLOT-LO'LOLOLOLOLO'LO
coco^oocoi^-cocnocvi
iigiiSISii
2^^^^^^^
CD
-4-«
CO
o
^
1
CD
N
[0
(D
£
"co
3
^Q)
1
3
CO
c
CD
_l
"0
^
£
CO
£
"5.
CD
Q
v_
QJ
f-^
E
CD
CO
"5
(D
-4-«
3
^
oi
1
Q.
0)
10 Q
CM
5
^ Q
*0>
*;
a
Tt Q
S Q
*o>
+*
Q.
fl\
S °
CM
1
s e
0)
£
no
hJ
S Q
i
£
E
in Q
W
S Q
i
*;
0)
CM Q
CM
S 9
"53
5
^
0)
CM
j
s 9
1
0 LO 0 LO 0 LO 0
K CD cd LO LO 4 4
T- CM CO "* LO CO [^
1 1 1 1 1 1 1
LO LO LO LO LO LO LO
CVI CM CM CM CM CM CM
O LO O LO O LO O
|v. CD CO LO LO ^ •*
1- CM CO •* LO CO 1^-
i i i i i i i
^" ^1" ^ ^" ^ ^" ^"
CM CM CM CM CM CM CM
CMOLOOLOOLOLO^,
CO
tv. P** CD CO LO LO Tt" CO
p-^-ojco^tLOcoiYCp
LOLtSLOLOLOLOLOLOLO
cococococococococo
CVICMCMCMCMCMCMCMCM
^^ ^ST ^T ^T ^T ^^ ^C ^^ ^^
2^S22^SS2
O LO O LO 0 LO 0
Is- CD CD LO LO t •*
T|- CVI CO 't LO CO |v
CO CO CO CO CO CO CO
CM CM CM CM CM CM CM
CMOLOOLOOLOLO
rv!^cdcoLOLo4co
O^CMCO^tLOCOh-cO
LnLOLOLf)LOLfSLOLtSLO
cvjcvicvicvicvicvicvicvicvi
CvjCMCMCMCMCMCMINcM
^^222222^
O LO O LO O LO O
Is- CO CO LO LO TJ- rt
T- CM CO Tt LO CO |v.
1 1 1 1 1 1 1
CM CM CM CM CM CM CM
CM CM CM CM CM CM CM
5 5 5 ^ 5 S 5
O LO O LO O LO O
fs. CO CO LO LO •* •*
T- CM CO •* LO CO |v
1 I I 1 f 1 1
CM CM CM CM CM CM CM
-------
Table 2.3. Denver Federal Center Site Monitoring Well Information
Well ID
Gatel
GSA-21
GSA-20
C1-GU1
C1-GD1
C1-H
C1-I2
Gate 2
GSA-26
GSA-25
C2-GU2
C2-I1
C2-I2
C2-USGS4
C2-USGS5
C2-USGS10
C2-USGS1 1
C2-UGS13
GateS
GSA-31
GSA-30
C3-GU2
C3-I1
C3-I2
C3-GD2
C3-USGS6
C3-USGS9
Well Diameter
(cm)
5.08
5.08
5.08
5.08
5.08
5.08
5.08
5.08
5.08
5.08
5.08
2.54
2.54
2.54
2.54
2.54
5.08
5.08
5.08
5.08
5.08
5.08
2.54
2.54
Screen Length
(m)
6.10
6.10
3.05
3.05
3.05
3.05
6.10
6.10
3.05
3.05
3.05
1.54
1.54
1.54
1.54
1.54
7.62
7.62
7.62
7.01
7.01
7.01
7.01
6.71
Depth to Water
(m bis)
2.77
4.33
4.51
4.33
4.45
4.48
2.56
4.66
3.44
4.21
4.15
4.05
4.02
4.18
4.18
4.21
1.80
4.70
1.89
1.89
1.92
2.04
2.07
1.92
Well Depth
(m bis)
8.53
8.53
6.10
6.10
6.10
6.10
9.14
9.75
8.53
8.53
8.53
8.53
8.53
8.53
8.53
8.53
4.57
4.57
3.05
3.05
3.05
3.05
3.05
3.05
-------
C1-3-71701
O
Groundwater flow
e GSA-21
C1-2-71701
O Oci-1-71701
O
C1-2-71000
C1-GU1
Legend
© Monitoring well location
O Angle or vertical
coring position
GSA-20
C1-3-71100O
el-GDI01'4'71801
Figure 2.2 Monitoring well locations in Gate 1 at the Denver Federal Center site.
-------
Groundwater flow
GSA-26
USGS-10
USGS-12
C2-GU2
C2-12-71300
C2-13-71300
C2-14-71300
C2-1-71901 "
C2-2-71901
C2-3-71901
Legend
© Monitoring well location
O Angle or vertical
coring position
C2-3-71801
00
C2-4-71801
USGS-5
GSA-25
USGS-4
C2-16-71300
OC2-17-71300
O
C2-1-71801
o
CD
0
Q.
TO "O
0 (D
OC E
CD
Figure 2.3 Monitoring well locations in Gate 2 at the Denver Federal Center site.
10
-------
Groundwaterflow
GSA-31
® C3-GU2
Legend
© Monitoring well location
O Angle or vertical
coring position
o
TO
0)
(X
CD
CO
0)
0-
C3-2-71801
O
GSA-30
Figure 2.4 Monitoring well locations in Gate 3 at the Denver Federal Center site.
11
-------
3.0 Ground-Water Sampling
3.1 Monitoring Wells
Ground-water sampling criteria used at the USCG and the DFC sites were established based on equipment specifica-
tions as well as historical plots generated for all wells and sampling points at each site. Dedicated Grundfos® Redi-Flo2
submersible pumps, attached to dedicated Teflon-lined tubing, were used to sample the 5-cm diameter monitoring wells
at the USCG site. Portable Grundfos® Redi-Flo2 submersible pumps were used to sample the 5-cm wells at the DFC
site. The pumps were installed in the wells 24 hours prior to sampling to allow for equilibration of the adjacent formation
and to minimize adverse impacts on samples due to disturbance caused by pump installation. Several wells at the DFC
site are 2.5-cm i.d. Due to the small diameter and shallow water levels at the site (<9-m), a peristaltic pump was used
for sampling these wells. PharMed® pharmaceutical grade pliable tubing was used in the peristaltic pump head and
replaced prior to sampling each well. PharMed® tubing was used because it is more durable and less permeable to
gases and vapors than silicone tubing. Peristaltic pumps apply a vacuum to ground-water samples which can result in
depressurization and possible degassing of the sample during collection. Observation of air bubbles in the sample tubing
during pumping is indicative of sample degassing and adverse impacts on VOC concentrations. The use of PharMed®
tubing on the pump head and Teflon®-lined sample tubing can minimize these adverse impacts on sample quality.
The pump intake was placed at mid-screen in all monitoring wells. Low-flow purging and sampling techniques (Puls and
Barcelona, 1996; Puls and Paul, 1995) were employed at both field sites. Low-flow refers to the velocity at which water
enters the pump intake and should be the same as the recharge within the well (Puls and Barcelona, 1996), generally
<500 mL/min during both purging and sampling. Water levels were measured in the 5-cm i.d. wells prior to pumping and
periodically throughout purging and sampling to monitor draw-down for flow rate adjustment. Flow-rate generally ranged
from 240 to 420 mL/min for the 5-cm wells at the USCG site and from 80 to 140 mL/min for the 2.5-cm i.d. wells and
approximately 300 mL/min for the 5-cm i.d. wells at the Denver Federal Center site. Monitoring well data for the USCG
and DFC sites are given in Appendices A and B, respectively.
3.2 Multi-level Samplers
A peristaltic pump was used to sample the multi-level transects at the USCG site due to the small diameter of the wells
and the shallow depth to water. Pharmed® pliable tubing was used in the peristaltic pump head and replaced prior to
sampling each well. Each sampling port in ML21, ML22, ML23, ML24, and ML25 was equipped with dedicated Teflon-
lined tubing with the intake placed approximately 2.54 cm above the bottom of the well screen. Transects 1 and 3 and
ML22.5 and ML23.5 consisted of tubing bundles which were directly connected to the pump intake for purging and
sampling. Multi-level sampler data for the USCG site are given in Appendix C.
3.3 Geochemical Parameters
Water quality indicator parameters (WQPs) were monitored during purging until stabilized to determine when formation
water was accessed prior to collecting water samples (Puls and Paul, 1995). A multi-parameter instrument with a flow-
through cell (YSI® Sonde) equipped with an automated data logger was used initially to monitor WQPs for the monitoring
wells at the USCG site while a smaller volume Geotech® flow-through cell (250 mL volume), equipped with individual
electrodes and manual readings, was used for the small diameter multi-level samplers. This set-up was eventually
adopted for all of the monitoring wells at both field sites. Parameters monitored included pH, oxidation-reduction
potential (ORP), specific conductance, dissolved oxygen (DO), temperature, and turbidity. Individual electrodes for
ORP, pH, specific conductance, and DO were inserted in the flow-through cell and connected to appropriate meters for
measurements during purging. Water was allowed to flow through the cell until WQPs reached equilibration and
sampling was initiated. Initially, WQPs were recorded at three-minute intervals until equilibration was achieved
(Figures 3.1 and 3.2). Equilibration was defined as three successive readings within ±10 percent for DO and turbidity, ±3
percent for specific conductance, ±5 mV for ORP, and ±0.05 for pH (Puls and Paul, 1995). Temperature was recorded
for adjustment of specific conductance and ORP measurements. Turbidity of unfiltered ground water was measured
separately, in nephelometric turbidity units (NTUs), using a Hach® 21 OOP portable turbidimeter. Where possible, the well
was purged until turbidity was <5 NTUs, which allowed for less interference with colorimetric indicators and spectropho-
tometric determinations.
13
-------
Well MW47
1.0-j
0.8-
E 0.4-
o °-2:
Q 0.0-
(
-100^
-125-
"E -150-
-c -175-
IJJ
-200-
(
10-j
9-
8-
=n 7-
6-
5-
(
400^
§ 300-
CO
i 200-
0
CO 100-
(
. EC site, September (1 997)
\. Flow rate = 420 mUmin
Rhodazine-D DO = 0.1 mg/L »> •
1 1 ' 1 ' 1 ' 1
) 5 10 15 20
1 i • i • i • i
) 5 10 15 20
1 i • i • i • i
) 5 10 15 20
) 5 10 15 20
Time, minutes
Figure 3.1 Equilibration of water quality parameters in monitoring well MW47 at the Elizabeth City site in September
1997.
14
-------
1.0^
_j 0.8-
o> 0.6-
. 0.4-
Q °-2:
0.0-
(
-200^
> -225-
- -250-
m -275-
-300-
(
9-
I 8-
^^J "7
/ —
6-
5-
C
E 1400-
^ 1200-
i 1000-
O" 800 -
00 600-
C
wen u^-n .
XDFC, July (2001)
flow rate = 150 mL/min
Rhodazine-D DO = 0.1 mg/L — ^ •
) 5 10 15 20 25
"" ' B * • . .
) 5 10 15 20 25
^m
•^
• i . i i i i i i i i
) 5 10 15 20 25
) 5 10 15 20 25
Time, minutes
Figure 3.2 Equilibration of water quality parameters in monitoring well C2-I1 at the Denver Federal Center site in
July 2001.
15
-------
After evaluation of historical WQP data, a purge volume was calculated for each monitoring well and multi-level sampler.
Following establishment of the purging volumes, each sampling point was pumped to remove the appropriate volume of
water and then the tubing was connected to the multi-port flow cell. The cell was allowed to flow for five minutes to allow
for electrode stabilization and then WQP measurements were recorded. It should be noted that some parameters,
particularly DO, are more sensitive than others (Wilkin et al., 2001) and should be evaluated carefully with time over
several sampling events before establishing a sampling protocol.
3.3.1 Oxidation-Reduction Potential (ORP)
Oxidation-reduction potential (ORP) is an overall measure of the state of oxidation or reduction of a ground-water
sample. An Orion® 9678 BN ORP platinum electrode filled with an Ag/AgCI (Orion® #900011) reference electrode and
saturated KCI filling solution was used to determine ORP values in millivolts (mV). These measurements were then
converted to Eh values by using measured temperature values in order to establish standard hydrogen electrode (SHE)
corrections. Measured ORP values were converted to Eh values by adding the difference between the measured ORP
of the reference solution and the theoretical ORP of the reference solution. Electrode checks were performed each
morning prior to purging and periodically throughout the sampling event to ensure proper electrode performance. ORP
standard (Orion ® #967961) was used to perform ORP electrode checks where the measured value of the standard was
220 ± 3 mV at 25°C. The platinum electrode was cleaned at the end of each sampling day and stored according to
manufacturer's guidelines.
ORP electrodes can be erratic when used in ground water and often do not stabilize rapidly (U.S. EPA, 2002).
Measurements should be recorded at appropriate time intervals with the understanding that values can change by
several mV while recording a reading.
3.3.1.1 ORP comparison overtime
At the USCG site, ORP of the upgradient ground water generally ranged from 200-660 mV. The ORP decreased
sharply as ground water entered the barrier, dropping to less than -500 mV in several locations. Values in the treated
downgradient water increased, but not to upgradient levels. Figures 3.3, 3.4, and 3.5 compare ORP values over time in
ML21 (upgradient of the barrier), ML24.5 (within the barrier), and ML25 (downgradient of the barrier) multi-level samplers
in Transect 2. Only slight variation is seen over time until June 2000, where values increased by approximately 100 mV.
A sharp increase was seen in the deeper locations in May 2001. Within the barrier, values fall to almost -200 mV by
700
Figure 3.3 Upgradient Eh values in ML21 from June 1997 through May 2001 at the U.S. Coast Guard site.
16
-------
300
-500
-600
Figure 3.4 Eh values within the barrier in ML24 from June 1997 through May 2001 at the Elizabeth City site.
400
350
-100
Figure 3.5 Downgradient Eh values in ML25 from June 1997 through May 2001 at the Elizabeth City site.
17
-------
December 1998, but then show sharp increases in the more shallow depths. Lower values are generally seen at the 5-
5.5 m depths in ML25 downgradient of the barrier; however, values are significantly lower than in upgradient locations.
Values increased in both ML21 and ML25 in June 2000 and May 2001. ORP data for the monitoring wells at the USCG
site are given in Table A1. Multi-level sampler ORP data are given in Table C1.
3.3.2 pH
Values for pH tend to stabilize very quickly and this is generally one of the first parameters to reach equilibrium with the
formation water (Figures 3.1 and 3.2). pH was measured using an Orion® 9107 BN low maintenance triode or Orion
9107 WP pH electrode. A two-point calibration, using either pH 4.00, pH 7.00, or 10.00 buffer solution (VWR #34170-
127, #34170-130, or #34170-133, respectively), was performed each morning and periodically throughout the sampling
day. Buffers used for calibration were selected based on expected pH ranges in each sampling point or monitoring well.
The electrode was cleaned at the end of each sampling day and stored according to manufacturer's guidelines.
The pH of the upgradient or untreated ground water ranged from 5.6 to 6.5 with a significant increase up to 10.3 within
the barrier. Values begin to drop in the downgradient or treated water, suggesting that treated water is being neutralized
after flowing through the barrier.
3.3.3 Specific Conductance
Specific conductance is usually the first parameter to equilibrate and readings are generally stable (Figures 3.1 and 3.2).
One of two types of electrodes was used to measure specific conductance in the field, either an Orion® 013010 conduc-
tivity cell with model 1230 meter or an Orion® 011050 specific conductance cell with model 105 meter. Calibration in the
field was performed using Oakton® standard 1413 uS at 25°C. The electrode was calibrated each morning prior to
initiating purging and checked periodically throughout each sampling day. The electrode was cleaned at the end of each
sampling day and stored according to manufacturer's guidelines.
3.3.3.1 Specific conductance comparison with total dissolved solids
Total dissolved solid (TDS) values were calculated for MW13, MW48, and ML21 at the USCG site and Gates 1, 2, and
3 at the DFC site. TDS values were determined adding alkalinity, sulfate, chloride, sodium, potassium, calcium,
magnesium, and iron values. These values were then compared to specific conductance values obtained in the field
from the same locations. Figure 3.6 shows regression analysis for MW13 and MW48 comparing TDS and specific
700
600 -
500
I
2 400
300
5
I
Slope = 0 626,
TDS = Slope * Sp. Cond
200 --
100 --
0 Jf
0 100 200 300 400 500 600 700 800 900 1000
Specific Conductance ((.iS/cm)
Figure 3.6 Analysis of MW13 and MW48 comparing total dissolved solids with specific conductance values at the
Elizabeth City site.
18
-------
conductance. Excellent correlation was seen with an R2 value of 0.94 and a slope of 0.63. A similar trend was seen in
ML21 with an R2 value of 0.82 and a slope of 0.58 (Figure 3.7). TDS and specific conductance data for the DFC site are
shown in Figures 3.8, 3.9, and 3.10. The good correlation between TDS and specific conductance values indicates that
measuring specific conductance in the field is a useful indicator of TDS. Mineral precipitation reactions within iron walls
remove dissolved solutes from ground water and result in a lowering of TDS and specific conductance values.
Monitoring relative changes in specific conductance values between upgradient, iron barrier, and downgradient locations
is a reasonable indicator of potential fouling of the iron wall due to mineral precipitation. However, it should be noted that
in addition to mineral precipitation processes, corrosion of iron granules also results in the release of OH ions (pH
increase). The equivalent conductance of OH" ions is comparatively greater than other important anions such as
carbonate, bicarbonate, and sulfate. Consequently, changes in specific conductance values may not in all cases be a
reliable indicator of changes in solute loads. For example, if OH" becomes a major anion, it is possible to have a drop in
TDS accompanied by an increase in specific conductance. Nevertheless, at both the Elizabeth City and Denver Federal
Center sites, ground water within the reactive walls is characteristically lower in specific conductance compared to
ground water in upgradient locations.
3.3.4 Dissolved Oxygen
Historically, membrane-covered dissolved oxygen electrodes have been used in the field due to their ease of use and
practicality. However, membrane fouling is a common difficulty, and measurements can be inaccurate without any
indication (Wilkin et al., 2001). Therefore, several types of probes were used at both field sites for comparison purposes.
The rhodazine D (1 to 40 ppb and 0 to 1 ppm) and indigo carmine (1 to 12 ppm) colorimetric methods were used to verily
the probe results. Probes used at these field sites included an Orion® 081010 electrode with model 810 meter, Orion®
0083010 DO probe with model 1230 meter, and YSI® 95 DO electrode and meter. It is important to consider potential
interferences when using DO electrodes in the field. Several constituents in contaminated ground water may affect
electrode accuracy. These include hydrogen sulfide, thio-organic and other organic compounds (Wilkin et al., 2001).
Each probe was calibrated according to manufacturer's recommendations prior to well sampling and rechecked
#=0.823,
Slope = 0 579,
TDS = Sp.Cond * X
400 500 600 700
Specific Conductance (|jS/cm)
1000
Figure 3.7 Analysis ML21 comparing total dissolved solids with specific conductance values at the Elizabeth City
site.
19
-------
1400
1200
1000
•3 800
600
400
200
0 -I
R2 = 0713,
Slope = 0 723,
TDS = Slope * Specific Conductance
200 400 600 800 1000 1200
Specific Conductance (fiS/cm)
1400
1600
1800
2000
Figure 3.8 Analysis of Gate 1 comparing total dissolved solids with specific conductance values at the Denver
Federal Center site.
1600
1400
1200
R2 = 0 704,
Slope = 0716,
TDS = Slope * Specific Conductance
500
1000 1500
Specific Conductance (nS/cm)
2000
2500
Figure 3.9 Analysis of Gate 2 comparing total dissolved solids with specific conductance values at the Denver
Federal Center site.
20
-------
2500
2000
— 1500
5 1000
S
500
R2 = 0 674,
Slope = 0 736,
IDS = Slope * Specific Conductance
500
1000 1500
Specific Conductance (uS/cm)
2000
2500
Figure 3.10 Analysis of Gate 3 comparing total dissolved solids with specific conductance values at the Denver
Federal Center site.
throughout the sampling day. This consisted of dampening (not soaking) the water reservoir sponge and placing it in the
bottom of the autocal air calibration sleeve. The electrode was then inserted into the calibration sleeve and allowed to
equilibrate for 30 minutes to one hour until calibration was achieved. When using the YSI® 95 DO electrode and meter
at the Elizabeth City site, an altitude of 100 feet above sea level and salinity of 0 were entered prior to calibration. The
altitude for the Denver Federal Center site was 5000 feet above sea level with a salinity value of 0. Manufacturer's
recommendations for probe storage were followed at the end of each sampling day.
3.3.5 Turbidity
Turbidity was measured in nephelometric turbidity units (NTUs) using a Hach® DR2100P portable turbidimeter.
Following initial calibration with formazin standards, secondary standards were used in the field to ensure instrument
accuracy. To measure turbidity in the field, a 10 ml_ sample of ground water was collected in the appropriate turbidity cell
and placed in the turbidimeter. Manual readings were recorded until purging was complete. Manufacturer's
recommendations for turbidity calibration and measurements were followed.
3.3.6 Temperature
Temperature values were recorded during purging from either the YSI® Sonde or the specific conductance meter via the
flow-through cell. Although temperature is not a critically important water quality parameter, it was used for adjustment
of specific conductance, ORP measurements, and geochemical modeling of aqueous speciation. It is important to be
aware that temperature values obtained at the surface from a flow-through cell are not necessarily reflective of ambient
ground water temperatures. Factors such as the length of sample tubing connected to the flow-through cell and flow rate
must be considered as well as ambient air temperature. Tubing should be minimized and the flow-cell should be out of
direct sunlight where possible. Ground-water temperature values at the DFC and USCG sites generally ranged from 16 5
to 18°C.
3.4 Sample Collection
Following equilibration of the WQPs, the multi-probe cell was disconnected or bypassed from the flow path and samples
were collected for field analyses. At the DFC site only, the first 25 ml was collected for hydrogen sulfide (H2S) analysis
using the methylene blue colorimetric method. At both sites, water was allowed to flow through a CHEMets® overflow
cell for at least three minutes and sampled with CHEMets® ampoules to determine DO and ferrous iron (Fe2+). A 50 mL
aliquot was then collected for Fe2+ determination with a field spectrophotometer using the 1,10 phenanthroline method for
21
-------
comparison purposes. At the USCG site, an aliquot was also collected to determine hexavalent chromium (Cr(VI))
concentrations. A 100 mL aliquot was collected at both sites for alkalinity (as CaCO3) determination. Field analytical
methods used are discussed in section 5.0.
Samples were then collected for laboratory analyses. Unfiltered ground water was collected in two 40 mL volatile organic
analysis (VOA) vials for volatile organic contaminants (VOCs) and one 60 mL glass serum bottle was filled for dissolved
gas analyses. Samples were collected by placing the tubing in the bottom of the vial, filling the vial to overflowing, and
then slowly removing the tubing to allow for zero headspace. Each sample was acidified with one drop of concentrated
ultra-pure sulfuric acid (H2SO4) and immediately capped. Thirty mL polyethylene bottles were used to collect unfiltered
samples for major anions (no acidification) and initially used for collection of total organic carbon/dissolved organic
carbon (TOC/DOC) samples (acidified with one drop of concentrated ultrapure H2SO4). As of May 2001, samples for
carbon analyses were collected in 40 mL amber glass vials with no acidification due to an instrument change at the
analytical laboratory. Filtered samples for cation analyses were collected into 60 mL polyethylene bottles using
Gelman® high-capacity in-line 0.45-um filters for the monitoring wells after allowing 500 mL ground water to flush the
filter. Gelman® Aquaprep in-line 0.45-um filters were used for the multi-level samplers. Samples were collected after
flushing the filter with 100 mL of ground water. Cation samples were acidified with concentrated ultra-pure nitric acid
(HNO3) to pH <2 for preservation. All samples were stored at 4°C after collection and during shipment to the Robert S.
Kerr Environmental Research Center for analysis by ManTech Environmental Research Services Corporation, Ada, OK.
See section 5.2 for laboratory analytical methods.
3.5 Quality Assurance/Quality Control Measures
To ensure quality performance of the field equipment, all instruments were calibrated each morning prior to use following
manufacturer's recommendations. Electrodes were checked at midday and at the end of each sampling day to check
accuracy and proper electrode performance. The ORP electrode was calibrated and checked using ORP standard
(Orion ® #967961), where the measured value of the standard was 220 ± 3 mV at 25°C. Two-point pH calibration and
checks were performed using either pH 4.00, pH 7.00, or 10.00 buffer solution (VWR #34170-127, #34170-130, or
#34170-133, respectively). Specific conductance calibration and field checks were performed using Oakton® standard
1413 uS at 25°C. The DO electrode was calibrated and checked according to manufacturer's recommendations. Pre-
calibrated secondary gel standards were used to check turbidimeter performance while in the field. Equipment
accuracies are ± 2% for DO and turbidity, ± 3% for specific conductance, and ±0.05 standard units for pH. Determination
of pH accuracy is based on repeated measurements of buffer solutions. For each sampling event, trip blanks, field
blanks, and field duplicate samples were collected for quality control requirements.
22
-------
4.0 Soil Sampling
Continuous core samples of the iron walls and aquifer sediments from the Elizabeth City and Denver Federal Center
PRBs were collected in order to assess the distribution of mineral and biomass concentrations. Both angled and vertical
cores were collected (Beck et al., 2002). Prior to collecting core samples, an electrical conductivity profile was obtained
to verify the exact position of the iron/aquifer interface. The method described here makes use of a conductivity probe
(Christy et al., 1994; Beck et al., 2000) to locate soil conductivity changes due, for example, to the presence of a
subsurface zone of highly conductive zero-valent iron. The conductivity probe, manufactured by Kejr Incorporated
(Salina, KS), was advanced through the subsurface using a direct push (DP) device. This DP device was also equipped
with a 5-cm inner diameter core barrel with plastic sleeves. Vertical and angled cores (30°) were collected to recover iron
filings from different portions of the PRB systems investigated in this study. Angled cores were obtained to evaluate wall
thickness and evaluate geochemical and microbiological changes occurring near the upgradient and downgradient
interfaces of the wall. The conductivity probe provides real-time, specific conductance data versus depth on a portable
computer. The radius of influence of the probe is approximately 2 to 3 cm. For the application discussed here, iron metal
filings are so highly conductive that it is easy to identify precisely where the soil/iron interface is located. The distance
the probe traveled before penetrating the wall was used to identify where the piston of the core barrel should be released
in order to collect the desired sample.
4.1 Conductivity Probe
Figure 4.1 illustrates the configuration and the position of the equipment in relation to a target sample location. In order
to collect aquifer materials directly upstream of the PRB, the DP device was set some distance away from the
approximate front or back edge of the iron/aquifer interface. The depth below ground surface at which the PRB was
intercepted can be estimated using the relation:
Intercept depth = cos(30) x [push length from the surface to the high conductivity zone]
The probe was assembled to penetrate the soil at a 30° angle (relative to vertical). Due to the large differences in
conductivity between the native aquifer sediments and the granular iron (3 to 40 mS/M vs >250 mS/M), the iron wall was
easy to locate using the conductivity probe. After intercepting the iron wall the conductivity probe was then removed and
a piston core barrel was inserted into the same hole and driven to within about 0.5 m of the aquifer/iron interface. The
piston would then be released and the core barrel driven 1.25 to 1.5 m so that a core could be collected. Because the
coring was conducted at an angle, it was necessary to tighten the holding pin more than is typically done in vertical
coring, so it would not release prematurely. When the core barrel was advanced at an angle, the stop pin on the piston
core barrel had a tendency to vibrate loose as the rods and core barrel were driven.
The equipment configuration and the foot extender that was designed and built to allow the foot of the DP device to rest
on the ground surface when deployed at a 30-degree angle is illustrated in Figure 4.2. The extender was necessary to
hold the push angle steady and to permit extraction of the core barrel. The foot slides onto the normal DP device foot and
is secured by two bolts while in use.
Figure 4.3 is a real-time plot of conductivity for a vertical push with the conductivity probe as it moves through the wall
from the surface to below the wall at the Elizabeth City site. The conductivity profile in this trace suggests that the iron
may be denser near the top and near the bottom of the wall. The conductivity probe method was used at the Elizabeth
City site to attempt to map out the distribution of iron in the subsurface by analyzing conductivity data from a network of
vertical profiles. The positions of the vertical traces in relation to the locations of ground-water monitoring wells are
shown in Figure 4.4. Results of the profiling effort are shown as a contour diagram in Figure 4.5. The contour diagram
shows the vertical and horizontal distribution of soil conductivity values in a vertical plane oriented along the long-axis of
the Elizabeth City PRB or the dimension of the PRB oriented perpendicular to ground-water flow. The profiling study
generally confirms the presence of zero-valent iron over the planned depth interval from about 2 to 7.5 m below ground
surface, especially on the eastern portion of the reactive wall. Interestingly, it was more difficult to intercept the iron
media near the western edge of the PRB where trenching and installation of the wall was initiated, and the data suggest
that a continuous zone of zero-valent iron is not present along the far western portion of the PRB.
23
-------
o
CD
2
CL
O.
co
"o
"o
o
o
o
-
cn
CD
E
s
D)
co
T3
O
"CD
E
O
CO
£
3
0)
24
-------
Figure 4.2 Geoprobe® in angle coring configuration (after Beck et al., 2002).
0-
5-
10-
:. 1g-
20-
25-
30-
r
0 200 400 600 800 1000 1200
Conductivity, mS/M
Figure 4.3 Soil conductivity trace (vertical profile) starting at the surface and penetrating down through the wall.
25
-------
1 §
1 «
5 -V
^x^ ^ « goo
So
OLU
LU« •
—1 O
in .
0
o^r
Oob.
LUO
in
A o
W 0
Q LU
8 .
1 §5'
8g
O
O
LU
C0N-
® ^uSuS
J2 uSoc
2 ococr
E Soc
A OLULL
w LU»»'
& 1
^> 1 J"l I"
CO CM
0 -1
0 Sf
ii j *7 S:
SLU ZtC
"^ C
coC
S'i
in
T- CN *rt
in in s
coco**]
— °UJ ^
CN °/
O in *- • I
«tf ^Sse
"•5. !* 8 s
-2 ^ $ S •*
8
o
LU
5
^\
f
^
*^ _ C\J m
CN CO CO 00
•r ooo
«?s S§ S
•s a a a
""> • • •
0 *
o •_
LU S
00
0
,. 8
CO
8
o • • •
LU -^ in to
_ m oo co og
00 2 O O O
uS ,-,_ *t in In «
o '"'^ > o o o
CO COCN > O O O
O CNCN g LU LU LU
LU 2S n
'//
f / °
1
CO
o
LU
CD
O—
"5
^"- rri •
-o t
00 (D co
O j_ o
s ^ §
o 2 o
LU LL. LU
o
«
CN
CO
S
IO
y. CD Ct 2 (Q ^7
0 O - - ,- co
"D ^_^ _JO o ^
I=^L§|-^° SLU
2, $£=£,? ®" ^o ^oTco ?-
ffl CD^^W-i^^ O "^ OOS
1 O ^* •— •*"* • - ^ O CD CD CD
cE"5jE'>°^(D -^^ OOO
co3:O'.cop-== O.t= HjujLu
=&*? Is ^° « 8 §"0
§^ 12 ?„- M § 36
0^ ^^ 52, 0S
^ —i 4^H oo O
^*i ^ ^^^^ COCO CM
^Q» ^- O • • • COCO CO
oo o
UJL
LJ LU
CO
o
O
CO
Z)
to
LTD
o:
CO
0
N
0
CO
c
o
'^—I
8
_g
0
.a
o
o
T3
8
TD
CD
I
0
0
8
TO
"5.
I
05
O
CO
Q.
CD
0 CO
CD 3
Q.O
2
3
0)
26
-------
If)
"x
tp
en
c
_g
,
'•§
T3
g
18
O C\j
l
CD C
;
SUJ
•fo:
1
O)^
.5 CD
T3 N
O 0)
II
in
•*
£
2
O)
27
-------
Figure 4.6 is a plot of conductivity data collected along a 30° angle beginning at the ground surface and fully penetrating
the wall. From this data, the wall thickness can be approximated by using the expression:
Wall thickness = sin(30) x [thickness of high conductivity zone]
For the trace shown in Figure 4.6, the thickness of the high conductivity zone is approximately 1 m so that the horizontal
thickness of the iron wall at this location is approximately 0.5 m, which is in reasonable agreement with the planned
thickness of 0.6 m.
4.2 Core Collection
For the purpose of collecting core samples, the conductivity probe push would stop as soon as the conductivity started
to change (e.g., see Figure 4.7). After locating the front or back edge of the iron wall, the probe was retrieved and the
core barrel was driven to a depth just before the iron wall would be intercepted before releasing the piston so a core could
be collected. This method was found to be useful in collecting core samples where the target zone was small but
possessed the necessary conductivity contrast. The method also allowed the cores to be collected in such a way to
capture the entire reaction zone in addition to adjacent aquifer material. This new method allows one to not only find the
treatment zone, but also to evaluate the size and characteristics of the zones adjacent to the wall. In some cases only
cores were obtained that had soil at both ends of the sleeve. The success rate with this method for obtaining samples
was close to 90% (Beck et al., 2002).
A picture of a core collected with the DP device in an angle configuration is shown in Figure 4.8. Note that by collecting
cores at an angle, the contact between the aquifer sediments and the zero-valent iron can be captured. After being
brought to the surface, cores were capped and labeled. After the first cap was installed, the sleeve was cut off so that
the core was free of any air space before securing the second cap. Following cap installation, the cores were sealed with
plastic tape and immediately frozen on site. Cores were shipped frozen (on dry ice) back to the lab for microbiological
and geochemical testing. This sample collection and preservation method was able to preserve the redox characteristics
of the core materials. As described in Volume 1 of this EPA Report series, concentrations of total sulfur in the core
materials were in very good agreement with concentrations of acid-volatile sulfides. This result indicates that there was
very little to no oxidation of sulfide minerals that are known to be highly susceptible to oxidation and transformation.
5-
10-
15-
20-
25
» •
r'
0 500 1000 1500 2000 2500 3000
Conductivity, mS/M
Figure 4.6 Soil conductivity log collected at a 30 angle and fully penetrating the iron wall at the Elizabeth City site
(after Beck et al., 2002).
28
-------
5-
10-
.1
15-
20-
25-
L
30-
0 500 1000 1500 2000 2500 3000 3500
Conductivity, mS/M
Figure 4.7 Soil conductivity trace used to locate position of the aquifer/iron interface. In this example, the aquifer/iron
interface is present at 7.62 m along a 30 angle push; the interface is intercepted at approximately 6.61 m
below ground surface.
Figure 4.8 Soil core collected showing aquifer/iron wall interface (after Beck et al., 2002).
29
-------
4.2.1 Lab Studies
In order to better understand the factors that control the conductivity profiles in iron walls, we conducted a calibration test
using a model aquifer system. An 20-cm PVC pipe was capped on the bottom end and filled with 0.3 m of sand, starting
at the bottom followed by 0.3 m of iron. We then added 0.3 m of 1:1 iron/sand mixture and filled the last 0.6 m with sand.
After filling the PVC pipe with these materials, we conducted two series of tests in which the conductivity probe was
manually driven through the column. The first test series was conducted with dry soil, and the second with the soil under
water-saturated conditions. The results of these tests are plotted in Figure 4.9. The tests show that the conductivity
probe responds differently under the two soil moisture conditions. In dry systems, a 50-50 sand-iron mix is
indistinguishable from 100% sand, based upon conductivity trends. Maximum conductivity values near 1000 mS/M were
obtained in dry, 100% iron materials, or about 30% of the conductivity value observed under water-saturated conditions
(Figure 4.9). In water-saturated conditions, iron-sand mixtures are distinguishable from pure sand, but the conductivity
response appears to be non-linear with respect to the iron/sand ratio. Clearly, the presence of water in interstitial spaces
is essential in order to locate subsurface zones of iron using the conductivity approach.
4.3 Laboratory Methods - Soils
Immediately after collection, the cores were frozen and shipped back to the Ground Water and Ecosystem Restoration
Division in Ada, OK, for sub-sampling and analysis. The frozen cores were partially thawed and then placed in an
anaerobic chamber with a maintained H2-N2 atmosphere. Each core was logged and partitioned into 5- to 10-cm
segments. Each segment was homogenized by stirring in the glove box and then split into 4 sub-samples: (1) inorganic
carbon analyses, (2) sulfur analyses/X-ray diffraction (XRD), (3) Scanning electron microscopy (SEM), and (4) microbial
assays (phospholipid fatty acids, PLFA). All sub-samples were retained in airtight vials to prevent any air oxidation of
redox-sensitive constituents. Details of analytical methods used to characterize the core materials are presented below.
4.3.1 Core Processing
To minimize any oxidation of redox-sensitive compounds, each core was allowed to thaw approximately 30 minutes to
one hour on the bench top. Cores were then placed inside an anaerobic chamber under a H2-N2 (95:5 vol %)
atmosphere. If the core was too long to be placed directly into the chamber (generally > 41 cm), the core was cut into
Model system, saturated
Model system, unsaturated
4.0
-500 0 500 1000 1500 2000 2500 3000 3500 4000
Conductivity, mS/M
Figure 4.9 Results of conductivity measurements in model systems.
30
-------
shorter segments, immediately recapped, and taped to minimize exposure to air. The cores were measured and marked
in 5-cm increments. The upgradient aquifer core segments were labeled as +1, +2, +3, etc., and the downgradient iron
media segments were identified as -1, -2, -3, etc. The sediment/iron interface was always labeled with the
+1/-1 identifier, with the greatest positive or negative segment being farthest from the interface.
Prior to 2000, a Dremel saw was used to cut the core lengthwise within an anaerobic glove box, allowing the top portion
of the plastic sleeve to be removed. Subsamples were removed from each 5-cm segment for SEM/XRD, PLFA, carbon,
and sulfur analyses. The SEM/XRD samples were collected in 30 ml_ serum bottles and capped immediately. The PLFA
samples were collected in 40 mL conical polyethylene centrifuge tubes. The carbon and iron samples were collected in
30 mL clear and amber polyethylene bottles, respectively. The SEM/XRD, carbon, and Fe samples were stored in an
anaerobic environment prior to analyses. The PLFA samples were frozen immediately after processing.
Further processing of the samples was conducted prior to SEM/XRD analysis. Acetone (10 mL) was injected into the
sample through the septum using a syringe. After this injection, two syringe needles were placed into the septum. One
was used for an outlet and the other was used to input nitrogen gas into the bottle. N2 was flushed through the sample
to allow the iron filings to dry completely.
In 2000, the core processing method was simplified by removing each segment with a stainless steel spatula without
cutting the plastic sleeve. Pre-processing remained as previously described. Samples were collected for SEM/XRD,
sulfur, PLFA, and carbon analyses. The SEM/XRD and sulfur samples were collected in 30 mL glass serum bottles and
capped immediately. A 40 mL, clear, conical, polyethylene centrifuge tube was used for the PLFA portion of the
subsection. Carbon samples were collected in 30 mL polyethylene bottles. Notations were made describing the
percentage and material type of each segment. After each core was processed, the PLFA samples were frozen
immediately, the SEM/XRD and sulfur samples remained under anaerobic conditions, and the carbon samples were
stored in an aerobic environment. Prior to conducting XRD scans, bulk samples were sonicated in acetone to remove
and concentrate the fine-grained materials that had accumulated on the coarse iron granules.
31
-------
5.0 Analytical Methods
5.1 Field Analyses
Data for field analyses for the USCG monitoring wells and multi-level samplers are found in Appendices A and C.
Monitoring well data for the DFC site are found in Appendix B.
5.1.1 Hexavalent Chromium
At the USCG site, a 20- or 50-mL sample of unfiltered ground water was collected to determine Cr(VI) concentrations
colorimetrically with a UV/VIS spectrophotometer (Hach® DR100 or Hach® DR/2010). Cr(VI) was analyzed directly
using 1,5-diphenylcarbazide (Chroma-Ver3) as the complexing agent (American Public Health Association et al., 1992).
This reagent contains a pH buffer combined with 1,5-diphenylcarbohydrazide, which results in a light purple color which
is proportional to the amount of Cr(VI) present. Maximum detection limits for Cr(VI) using the Hach® DR/2010
spectrophotometer and the Hach® Pocket Colorimeter are 0.60 mg/L and 0.50 mg/L, respectively. Samples exceeding
these maximum detection limits were diluted in the field prior to analysis. Minimum detection limits using these methods
were 0.01 - 0.02 mg/L. Chromium was not a contaminant of concern at the DFC site and, therefore, was not analyzed.
There are very few interferences for this field test kit; however, iron and vanadium will interfere at concentrations
>1 mg/L. Generally, the presence of ferrous iron in ground waters is indicative of reducing environments; therefore,
Cr(VI) would not be expected in the ground water containing elevated concentrations of iron. Mercurous and mercuric
irons may also cause slight interferences. Vanadium interference can be eliminated by waiting 10 minutes following the
addition of the Chroma-Ver3 before analyzing the sample. Highly buffered ground water or extreme sample pH may
exceed the buffering capacity of the reagents and sample pretreatment may be required.
5.1.1.2 Hexavalent chromium comparison with total chromium
At the Elizabeth City site the chromium plume is located upgradient of the PRB between 4.5 and 5.5 m below ground
surface. Data show that most of the chromium is present as Cr(VI), which is highly mobile. The highest Cr(VI)
concentrations were seen in MW13 just downgradient of the chromium source area. Total chromium and Cr(VI) values
for monitoring wells and Transect 2 are shown in Tables A2, C9, C11, and C28, respectively. Figure 5.1 shows slight
fluctuations in total chromium and Cr(VI) in MW13 with time; however, no seasonal trends are seen. A dramatic
decrease in chromium concentration is seen in MW48 over time as treated water reaches this downgradient monitoring
well (Figure 5.2). The regression analysis shown in Figure 5.3 for two monitoring wells MW13 and MW48 indicates an
excellent correlation between total chromium and Cr(VI) values with an R2 value of 0.93 and a slope of 1.06. Regression
analysis was conducted for ML21 in Transect 2 and is shown in Figure 5.4. Where slightly higher values of total
chromium are seen, colloidal particles could have passed through the 0.45 um filter. Acidification of ground water may
have released the colloidal chromium, resulting in the measured total chromium concentrations being higher than the
actual aqueous Cr(VI) values measured in the field. Analytical variability, particularly for Cr(VI) where additional error is
introduced by dilution of some samples during field analysis, may also be responsible for some of these concentration
differences.
5.1.2 Ferrous Iron
Ferrous iron (Fe2+) was measured in the field on unfiltered samples using two methods for comparison purposes. First
Fe2+ was measured using CHEMets® colorimetric test kits. Water was allowed to flow through a CHEMets® over-flow
cell for at least three minutes and then sampled into CHEMets® ampoules containing 1,10 phenanthroline reagent
(American Public Health Association et al., 1992). Following manufacturer's recommendations, the tip of the ampoule
was placed at the bottom of the over-flow cell and then the tip was snapped off, allowing the ampoule to fill with ground
water. The contents of the ampoule form an orange color in the presence of Fe2*. Following a 30 second equilibration
period, the ampoule was visually compared with ampoules of known Fe2+ concentrations.
Fe2+ was also determined using a Hach® DR/2010 spectrophotometer using 1,10 phenanthroline (FerroVer) as a
complexing agent. Ferrous iron will oxidize rapidly to form ferric iron, especially at pH >8 which is typical in Fe° reactive
zones. In order to minimize oxidation reactions, ferrous iron analysis was conducted immediately after sample collection.
33
-------
Figure 5.1 Comparison of total chromium and Cr(VI) in monitoring well MW13 at the Elizabeth City site.
ICr(VI)
I Total Cr
Figure 5.2 Comparison of total chromium and Cr(VI) in monitoring well MW48 at the Elizabeth City site.
34
-------
R2 = 0 938,
Slope = 1 003,
Total Chromium = 01896 + Slope * Cr(VI)
3 4
Hexavalent Chromium (mg/L)
Figure 5.3 Analysis of MW13 and MW48 comparing total chromium and Cr(VI) at the Elizabeth City site.
FT = 0 902,
Slope = 1 274,
Total Chromium = 0 0452 + Slope * Cr(VI)
15 20 25
Hexavalent Chromium (mg/L)
Figure 5.4 Analysis of ML21 comparing total dissolved solids with specific conductance values at the Elizabeth
City site.
35
-------
It is important to add the FerroVer to the sample cell prior to adding the water sample in order to minimize oxidation of the
Fe2+ prior to analysis.
The maximum detection limit of the Hach® DR/2010 spectrophotometer is 3.00 mg/L. Where initial Fe2+ concentrations
using the CHEMets® kit were determined to be >3.00 mg/L, the sample was diluted prior to analysis using the Hach®
DR/2010 spectrophotometer. It is important to consider potential interferences using these field test methods which can
adversely impact Fe2+ measurements. Interferences include strong oxidizing agents, cyanide, nitrite, and phosphates.
Polyphosphates have greater impact than orthophosphates. Certain metals may also interfere with Fe2+ measurements,
including chromium, zinc, copper, nickel, and cobalt. However, chromium and zinc concentrations must be ten times
greater than the ferrous iron present. Cobalt and copper must be greater than 5 mg/L and nickel in excess of 2 mg/L.
Additionally, bismuth, cadmium, mercury, molybdate, and silver all precipitate the phenanthroline used in the analysis
(American Public Health Association et al., 1992).
5.1.2.1 Ferrous iron comparison with total iron
Comparisons were made between the field Fe(ll) values and total Fe values determined by ICP-OES in the laboratory.
Figure 5.5 shows a fairly good correlation between Fe(ll) and total Fe values for ML21 which is upgradient of the barrier
at the USCG site with a regression R2of 0.89 and a slope of 1.24. Figure 5.6 shows the downgradient total iron data in
ML25 to be somewhat higher than Fe(ll). This may be due to colloids passing through the filter and followed by Fe(OH)3
dissolution after acidification with HNO3. It is important to acidify samples to pH <2 immediately after collection to prevent
oxidation of Fe(ll) to Fe(lll) and subsequent precipitation. This would result in artificially low total Fe values compared to
dissolved Fe(ll) measure in the field.
5.1.3 Alkalinity
A Hach® digital titration kit (Method 8203) was used to determine alkalinity concentrations as CaCO3. A 100 mL
unfiltered ground-water sample was placed in a 250 mL Erlenmeyer flask and the contents of one bromocresol green-
methyl red indicator packet was added. The sample was titrated using 1.6 N sulfuric acid (H2SO4) until a purple/pink
colorimetric endpoint (pH 4.5) was reached. There are very few interferences with this method; however, highly turbid
or colored samples may mask a true visual endpoint. If this occurs, sample pH would need to be monitored to determine
when the endpoint was reached. The presence of chlorine may interfere with the indicator and impact alkalinity
measurements. However, the addition of one drop of 0.1 N sodium thiosulfate will eliminate this interference.
7 -
R2 = 0961,
Slope = 1.190,
Total Iran = 0 004 + Slope * Fe(ll)
— 5
345
Ferrous Iron (mg/L)
Figure 5.5 Analysis of ML21 comparing total iron and ferrous iron at the Elizabeth City site.
36
-------
R2 = 0 882,
Slope = 1 221,
Total Iron = 0 0347 + Slope * Fe(ll)
2 3
Ferrous Iron (mg/L)
Figure 5.6 Analysis of ML25 comparing total iron and ferrous iron at the Elizabeth City site.
5.1.4 Dissolved Oxygen
Dissolved oxygen (DO) was measured using CHEMets® colorimetric test kits. Rhodazine D method (White et al., 1990)
was used for the 0-100 ppb or 0-1 ppm range and the indigo carmine method was used for the 1-12 ppm range. Water
was allowed to flow through an overflow cell for at least three minutes, then the tip of the appropriate CHEMets® ampoule
was placed in the bottom of the overflow cell, snapped off, and allowed to fill with the ground-water sample. The
ampoules were visually compared with standards of known DO concentrations after allowing for the appropriate
equilibration times (30 seconds for the rhodazine D method and two minutes for the indigo carmine method). It is
important to note that the CHEMets® ampoules must be stored in the dark in order to prevent deterioration of the
reagent.
The most difficult problem with field measurements for DO is the introduction of oxygen to the ground-water sample prior
to measuring (Rose and Long, 1988). When using the overflow cell, the sample stream must be completely leak free.
Copper tubing, long sections of neoprene, or other polymeric tubing should not be used with the CHEMets® test kit.
Several other factors may lead to erroneously high DO values. Although using a membrane electrode is the easiest and
fastest method for determining DO in the field, electrodes lack accuracy at low levels (<1 ppm) (Wilkin et al., 2001).
Colorimetric tests will accurately measure DO concentrations <1 ppm, but interferences can adversely impact
measurements. Since colorimetric reagents involve oxidation-reduction reactions, redox species may greatly influence
results. The presence of reduced species such as Fe(lll), Cr(VI), and Cu(ll) can lead to inaccurate measurements when
using the rhodazine D method. The presence of Fe(ll), Fe(lll), and nitrite has been shown to result in false
measurements when using the indigo carmine method (Gilbert et al., 1982). Hydrogen sulfide apparently does not
interfere with either colorimetric method, and the effects from the presence of total organic carbon (TOC) are not well
understood. However, these problems can be minimized by using proper sampling techniques (Hitchman, 1978).
5.1.5 Hydrogen Sulfide
Hydrogen sulfide (H2S) was analyzed at the DFC site only. The first 25 ml of sample was collected for H2S analysis.
This analysis was conducted using the Hach® DR/2010 portable spectrophotometer using methylene blue colorimetric
indicator (American Public Health Association et al., 1992). Additionally, CHEMets® sulfide ampoules (0-1 ppm range),
which also utilize the methylene blue colorimetric method, were used to measure H2S in the field. Ground water was
37
-------
allowed to flow through an overflow cell for two to three minutes. The tip of the ampoule was placed in the bottom of the
overflow cell, snapped off, and allowed to fill with ground water. The ampoule was allowed to equilibrate for five minutes
prior to visual comparison with standards of known H2S concentrations. This measurement was carried out rapidly to
ensure that no H2S would be lost due to degassing or oxidation. In acidic waters, sulfide reacts with N,N-dimethyl-p-
phenylenadiamine and ferric chloride to produce methylene blue. The resultant color is directly proportional to the sulfide
concentration in the sample. The presence of strong reducing substances including sulfite, thiosulfate, and hydrosulfite
may interfere with the precision of the instrument. These interfere by reducing the blue color or preventing color
development. High concentrations of sulfide may also inhibit full color development. Sample dilution may be required to
reduce these effects. The detection limit for the Hach DR/2010 for S2- is 0.01 mg/L.
5.2 Laboratory Methods - Ground Water
Data quality was assessed using blanks and duplicate samples. The majority of the analytical results for blank samples
were reported as not detected (ND) or below level of quantitation (BLQ), indicating little or no contaminant effects in
nearly all cases. A few false positive results were seen for Cr and TCE at the USGS site. Cr values in the majority of
field blanks were BLQ with all field and trip blanks at <0.006 ug/L. TCE contamination was only observed in June 1997
in one field blank at 1.1 ug/L where the limit of quantitation was 1 ug/L.
Analytical results for duplicate samples are shown in Appendices D, E, and F. Statistical analyses were performed on
selected components of interest. Generally the variability of the results is low and within acceptable limits (<5%
difference). The relative percent difference (RPD) calculation shows a spread between 0% -10%, with some exceptions.
All ground-water samples collected from both sites were analyzed by ManTech Environmental Research Services
Corporation, Ada, OK, using methods developed for, or recommended by, the U.S. EPA NRMRL. All analytical results
and quality control (QC) measurements, including duplicates, known standards, spikes, and blanks, were reported to
NRMRL researchers. Data for laboratory analyses for both field sites are found in Appendices A, B, and C.
5.2.1 Organic Analyses
VOA vials were analyzed for TCE, c/s-DCE, 1,1-DCE, 1,1,1-TCA, and vinyl chloride by purge and trap method with a
Tekmar LSC 2000 sample concentrator and Hewlett-Packard model 5890 gas chromatograph (GC) equipped with a
flame ionization detector (FID). Dissolved gases including ethene, ethane, and methane were analyzed using a
Microsensor Technology Inc. (MTI) GC equipped with a thermal conductivity detector (Kampbell and Vandegrift, 1998).
Quantitation limits for organics analysis were 1 ug/L.
5.2.2 Cation Analyses
Cation samples were analyzed with a Perkin Elmer® Optima 3300 DV inductively coupled plasma spectrometer (ICP-
OES). Concentrations of silver (Ag), aluminum (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), calcium (Ca),
cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn),
molybdenum (Mo), sodium (Na), nickel (Ni), lead (Pb), antimony (Sb), selenium (Se), strontium (Sr), titanium (Ti),
thallium (TI), vanadium (V), and zinc (Zn) were determined. The analytical method involves the samples being nebulized
into a spray chamber where argon carries the sample aerosol into the plasma at high temperature (-6000 K). Sample
particles become atomized, ionized, and excited. The optical emission of each element is then detected by a charge
coupled device (CCD) detector. Elemental concentration is determined by comparing the resultant signal with standards
of known concentration. Table 5.1 shows the instrument minimum limits of detection for each element measured.
Cation analysis using this method is ideally performed on aqueous solutions ranging from acidic to nearly neutral that are
free of particles and organic substances. Total dissolved metals must be < 0.5% dissolved matter; however, <0.2% is
preferable.
5.2.3 Anion Analyses
Analyses were performed for chloride (Cl~) and sulfate (S042~) using capillary electrophoresis (Waters® Quanta 4000E)
method N-601 with Lachat® flow injection analyses and Mettler® DL21 autotitration. Nitrate (NO3~) and nitrite (NO2~)
values were determined using hydrazine reduction with flow injection analysis colorimetry (Lachat Instruments®
QuikChem Method 10-107-04-2-A) (Kamphake et al., 1967). Nitrate is reduced to nitrite with hydrazine sulfate. Nitrite
concentration is then determined by diazotizing with sulfanilamide followed by coupling with N-(1-naphthyl)-ethylenedi-
amine dihydrochloride. The resulting water soluble dye produces a magenta color. Nitrite alone can be determined by
substituting deionized water for the hydrazine reagent. Method interferences include sulfide ion concentrations of
10 mg/L, which will cause a negative 10% error in nitrate and nitrite determinations within the range of the method
(0.02 - 22.6 mg N/L as NO ).
38
-------
Table 5.1 Detection Limits (D.L.) for Cation Analyses
Element
Na
Mg
Ba
Cr
Co
Zn
Cd
Al
As
Min. D.L.
mg/L
0.03
0.07
0.002
0.005
0.006
0.001
0.002
0.02
0.02
Element
K
Ca
Ti
Mn
Ni
Mo
Hg
TI
Sb
Min. D.L.
mg/L
0.8
0.01
0.01
0.003
0.01
0.004
0.07
0.02
0.02
Element
Be
Sr
V
Fe
Cu
Ag
B
Pb
Se
Min. D.L.
mg/L
0.0005
0.0002
0.008
0.006
0.002
0.1
0.1
0.01
0.02
5.2.4 Carbon Analyses
Samples were not analyzed for total carbon (TC) and total organic carbon (TOC) concentrations for each sampling
event. However, when samples were analyzed for these constituents, TC concentrations were determined using a
Dohrmann® DC-80 instrument. TOC was determined by acidifying an aliquot of the sample with ultra-pure phosphoric
acid (H3PO4), purging with ultra high purity nitrogen for three minutes to remove the inorganic carbon prior to analysis.
The sample was injected into a reaction chamber where organic carbon was converted to CO2 followed by infrared
detection.
5.3 Laboratory Methods - Soils
5.3,1 Inorganic Carbon Analysis
Concentrations of inorganic carbon in core samples were determined with a carbon coulometer system (DIG, Inc. Model
CM5014). The carbon coulometer system measures carbon as carbon dioxide in a carrier gas (Figure 5.7). A gas
stream containing carbon dioxide is evolved from a sample by acidification and then bubbled into the coulometer titration
cell, which contains a CO2-sensitive ethanolamine solution and a platinum electrode (Huffman, 1977; Engleman et al.,
1985). Before entering the titration cell, the gas stream is passed through a silver nitrate solution to remove potentially
interfering species (e.g., hydrogen sulfide). In the titration cell, carbon dioxide reacts to form a titratable acid and causes
the ethanolamine solution colorimetric pH indicator to fade from
ethanolamine to form N-carboxy-2-amino ethanol:
blue to clear. The incoming CO reacts with the
CO2(g)
HOCH2CH2NH2 = HOCH2CH2NHCOOH.
The N-carboxy-2-amino ethanol dissociates, and the pH of the solution decreases, which causes the indicator color to
fade:
HOCH2CH2NHCOOH = HOCH2CH2NHCOQ- + H+.
A photometer in the CM5014 detects the color change and initiates a current within the cell. The reaction at the platinum
electrode produces OH-;
2H20
2e- = H2(g) + 2OH-.
The current electrochemically generates a base at a maximum rate equivalent to about 1500 micrograms of carbon per
minute. As base is produced, the pH of the cell solution gradually returns to its initial level, and the colorimetric indicator
returns to blue. The amount of current necessary to reach the endpoint is electronically integrated and converted into a
quantity of carbon present in the sample.
39
-------
CO2 gas
N2 gas flow
5% perchloric acid
5% silver nitrate
solution
Carbon
Coulometer
Acid-extractible carbon
(calcite, aragonite, siderite,
GR COS, rhodochrosite,
magnesite)
Sample vessel
Figure 5.7 Schematic diagram of the carbon coulometer system for core sample characterization.
Inorganic carbon analysis results are given in weight percent C based upon carbon that is released from a sample after
acidification with hot 5% phosphoric acid. This acid digestion procedure releases inorganic carbon present in minerals
such as calcite (trigonal CaCO3), aragonite (orthorhombic CaCO3), siderite (FeCO3), magnesite (MgCO3), rhodochrosite
(MnCO3), iron carbonate hydroxide (Fe2(OH)2CO3), and carbonate green rust (Fe6(OH)12CO3 nH2O). The sample size
used was varied so that 0.1 to 5 mg of C was titrated. In general, sample weights of 0.5 to 5 grams were used. A typical
The detection limit
Calcium carbonate (Aldrich, 99.999%) was used as a
standard reference material. In all cases analysis of the reference material resulted in values within 5% of the accepted
value for CaCO3 (12.0 wt% C). Results of the inorganic carbon measurements are presented and discussed in Volume
1 of this EPA Report series.
sample analysis required 7 to 10 minutes to completely titrate all CO2 released during acidification.
was determined to be 0.001 wt % for a 1-gram sample size. "-•-'--
5.3.2 Sulfur Analysis
Measurements of total sulfur and sulfur partitioning in the solid phase was carried out using a sulfur coulometer (UIC,
Inc.) that measures sulfur as SO2 or H2S gas (Figure 5.8). A gas stream, evolved from a sample by chemical extraction
or combustion, is bubbled into a coulometer titration cell, which contains an excess of iodide (l~) and a small
concentration of free iodine (I2). The sulfur gases are oxidized by the iodine as they are swept through the coulometer
cell. An amperometric-sensing circuit detects the loss of I2 in solution and causes more iodine to be electrochemically
generated at a rate proportional to the sensed loss of concentration (maximum titration rate is 2000 micrograms S per
minute). After all of the SO2 or H2S has been titrated, the iodine is restored to its initial concentration. The total current
used to generate the iodine is integrated by the coulometer and digitally displayed in operator-selected units, such as
micrograms of S or micrograms of SO2.
Concentrations of total sulfur in solid samples are determined by combustion at 1050 °C. Samples are weighed into a
ceramic boat, covered with vanadium pentoxide, and introduced to a combustion furnace (Atkin and Sommerfield, 1994).
The combustion products are passed over an oxidation catalyst (CuO) to ensure complete decomposition and then over
40
-------
N2 gas flow
(plus 02)
Sample + V2O,
CuO/Cu0
SO2 gas
Furnace
N2 gas flow
Step 1: 1 M HCI
Step 2: 1 M HCI + 0.5 M CrCI2
Heated
H2S gas
Sulfur
Coulometer
Combustion
(sulfate S, elemental S, sulfide S)
Sequential Extraction
(1 M HCI=FeS;
1 M HCI plus 0.5 M CrCI2=FeS2)
Sample
vessel
Figure 5.8 Schematic diagram of the sulfur coulometer system for core sample characterization.
metallic copper to convert all oxides of sulfur to SO2. The SO2 is measured coulometrically and related to the
concentration of sulfur in the sample. The instrument is most effective for samples with total sulfur values that range
between 5 and 2500 micrograms. For a 0.10 gram sample, this corresponds to a sulfur concentration range of 0.005 to
2.5 wt% S. Standard reference materials for total sulfur measurements were NIST 1646a (Estuarine sediment,
0.35 wt% S) and barium sulfate (Aldrich, 99.99%, 13.75 wt% S). This combustion method is not able to completely
release sulfur present within iron metal. Total sulfur values in Peerless iron obtained by other methods are typically near
0.1 wt%, but with this method total sulfur values in unreacted iron samples are less than 0.03 wt%. The method
described here is sensitive, for determining the concentrations of sulfur in precipitates that have formed on the iron
surfaces as a consequence of long-term ground-water exposure.
Concentrations of acid-volatile sulfide and chromium-reducible sulfur are measured either sequentially or in single-step
extractions (Zhabina and Volkov, 1978; Canfield et al., 1986; Morse and Cornwell, 1987). Sulfur associated with
monosulfide minerals is removed by treatment of the sample with hydrochloric acid in an inert atmosphere. Metal
monosulfide minerals (e.g., FeS) evolve hydrogen sulfide when treated with hydrochloric acid and are therefore referred
to as acid-volatile sulfides (AVS). In other methods for AVS determination, the evolved H2S is trapped as silver sulfide
(or some other metal sulfide) and the amount of sulfur is determined gravimetrically. Alternatively, the evolved hydrogen
sulfide can be trapped in an alkaline solution (NaOH) and the amount of sulfide (as bisulfide, HS-) determined using
colorimetric methods or by using an ion-selective electrode. In the method described here, evolved hydrogen sulfide is
measured with the sulfur coulometer. The advantage of this instrument is that the extraction endpoint is clearly known
based on a loss of current detected in the coulometer titration cell.
The chromium-reducible sulfur (CRS) extraction targets elemental sulfur and iron disulfide (pyrite, marcasite) when used
in a sequential extraction, i.e., following an AVS extraction (e.g., Canfield et al., 1986). When used in a single-step
extraction, hot CRS liberates all reduced sulfur (acid-volatile sulfide + elemental sulfur + pyrite). Like the AVS extraction,
the CRS extraction liberates H2S from a sample, which is carried to the coulometer cell using an inert gas. The extracting
solution is prepared by first dissolving into 0.5 N HCI a quantity of chromic chloride hexahydrate needed to bring a
volume of solution to 1 N CrCI3. Next the dark-green Cr(lll) solution is drawn through a column packed with granulated
Zn (a Jones Reductor). Prior to packing the column, the Zn must be amalgamated in acidic 2% mercuric chloride
41
-------
solution. As the acidic Cr(lll) solution is passed through the Jones Reductor, it is reduced to the chromous oxidation
state, Cr(ll). A pronounced color change accompanies the change in oxidation state, and the solution turns from green
to blue. The Cr(ll) solution is unstable and will oxidize in air, so precautions must be taken to minimize air oxidation.
Fresh chromous chloride solutions are preferable for CRS determinations; however, if appropriate storage methods are
used (glass-stoppered bottles, no head space), acidic Cr(ll) solutions can be stored for several months with negligible
loss of reactivity.
Results of the total sulfur measurements and sulfur partitioning measurements are presented and discussed in Volume 1
of this EPA Report Series.
5.3.3 X-ray Diffraction Analysis
Powder X-ray diffraction analysis of core samples collected from the Elizabeth City and Denver Federal Center sites in
2000 and 2001 was conducted to determine the mineralogy of precipitates formed in the iron treatment zones. Materials
for analysis were prepared by sonicating iron core samples in acetone for 10 minutes followed by filtration of the released
particulates through 47 mm diameter, 0.2-micron filter paper (polycarbonate). The separated particles were mounted on
a zero-background quartz plate and scanned with Cu K radiation from 3° to 80° 2-theta using a Rigaku Miniflex
Diffractometer (0.5° 2 per minute). Results of the X-ray diffraction studies are presented and discussed in Volume 1 of
this EPA Report series.
5.3.4 Electron Microscopy
Scanning electron microscopy (SEM) was used to evaluate the morphology and spatial relationships among mineral
precipitates on the surfaces of zero-valent iron particles collected at the Elizabeth City and Denver Federal Center sites.
In addition, energy dispersive X-ray spectroscopy (EDS) was conducted on polished samples to determine the
composition of surface precipitates on a semi-quantitative basis. Samples for SEM and EDS analysis were stored in an
anaerobic glove box and then embedded in an epoxy resin. The sample mounts (1" diameter round mounts) were
ground and polished using diamond abrasives and coated with a thin layer of carbon prior to being placed within the SEM
sample chamber.
Secondary electron and back-scattered electron images were obtained using a JEOL 5300 SEM. The instrument was
operated using a 15 to 20 kV accelerating potential and a beam current of about 10 nA. Micrographs were obtained at
a range of magnifications from 50x to 5000x. Copper grids obtained from SPI Supplies (West Chester, PA) were used
to verify quantitative length scales. EDS spectra were acquired using an Oxford Instruments Model 6587 EDS Unit.
Elemental concentrations were calculated using INCA software and cobalt metal as a standard reference material to
insure semi-quantitative accuracy. Results of the SEM/EDS studies are presented and discussed in Volume 1 of this
EPA Report series.
5.3.5 Microbial Characterization
Sample splits for microbial characterization by phospholipid fatty acid (PLFA) analysis were shipped frozen to Microbial
Insights (Rockford, TN) where all analyses were carried out. A total of 198 samples from the Elizabeth City and Denver
Federal Center sites were examined by Microbial Insights. Lipids were extracted using buffered chloroform-methanol
solvents. Analysis of PLFA was carried using gas chromatography/mass spectrometry (GC/MS). Results of the PLFA
measurements are presented and discussed in Volume 1 of this EPA Report series.
5.4 Quality Assurance/Quality Control Measures
For each type of field analysis (i.e., alkalinity, Cr(VI), Fe2+, H2S), standards of known concentration were analyzed during
each sampling event to ensure instrument accuracy and performance. For laboratory analyses, quality control (QC)
measures were performed along with the sample analyses. QC included analysis of blanks, duplicates (both field and
laboratory), second source standards, and check standards. The relative percent difference (RPD) was calculated for
selected organic and cation data for field duplicates. These RPDs are included in Appendices D, E, and F. Relative
percent difference was calculated using the following equation:
x
a)/2]
where X, is the value of the field sample and X2 is the value of the duplicate field sample.
Table D shows data for duplicate field samples obtained from the monitoring wells at the Elizabeth City site. Values are
generally <10% different for sulfate, chloride, nitrate, and nitrate. Organics, dissolved gases, and cation duplicates also
42
-------
showed fairly good agreement. Where greater differences were seen, concentrations were fairly low. Total carbon
showed the greatest difference between duplicate samples.
Duplicate data from the monitoring wells from the Denver Federal Center (Table E) show all values (except one pair) for
sulfate, chloride, nitrate/nitrite to be <5%. Organics duplicates were very comparable except for July 2001 which showed
a 58.8% difference. Duplicates for cations showed good correlation except for iron in July 2000; however, concentrations
were very low.
Table F gives duplicate field sample data for Transect 2 multi-level samplers at the Elizabeth City site. Sulfate and
chloride differences were <10%. The only significant difference in nitrate/nitrite data was found in June 2000; however,
concentrations were <1 mg/L.
Some differences were seen between duplicates for TOC values, notably September 1998 where concentrations were
13.2 and 2.20 mg/L, resulting in a 143% difference. Where large RPDs are seen for the organics and dissolved gases,
concentrations are very low. Concentrations of most cation duplicates were very comparable except where concentra-
tions were extremely low.
43
-------
6.0 Summary
One of the primary concerns of using permeable reactive barriers for treatment of contaminated sites is the potential for
plugging or fouling of the barrier. Geochemical changes in the vicinity of the PRB can result in precipitation of native
materials along the interface of the iron barrier, resulting in the loss of permeability of the iron filings. Decreased
permeability of the iron filings can result in the contaminant plume bypassing the barrier with water flowing either around
or beneath the treatment wall. Performance monitoring is crucial to evaluating the performance of permeable reactive
barriers. The sampling methods and procedures used to monitor ground water and soil within and around permeable
reactive barriers is critical for evaluating the long-term performance of these treatment technologies.
Monitoring well location and installation is a vital first step to obtaining representative ground-water samples. Monitoring
wells were installed at the U.S. Coast Guard and Denver Federal Center sites to evaluate upgradient, downgradient, and
mid-barrier contaminant concentrations. At the U.S. Coast Guard site, multi-level samplers were installed upgradient,
downgradient, and within the wall in order to evaluate vertical and lateral distribution of contaminants and degradation by-
products adjacent to the PRB.
For ground water collection, sampling devices and sampling techniques should be selected in order to meet monitoring
objectives. Low-flow purging and sampling techniques are recommended for obtaining ground-water samples. It is
essential to monitor water quality indicator parameters (WQPs) during purging in order to establish when formation water
has been accessed. WQPs include ORP, pH, DO, specific conductance, and turbidity. The electrodes and methods
used to monitor these WQPs should be carefully selected, and it is necessary to follow manufacturer's recommendations
regarding calibration, use, and storage. Potential interferences using certain field test kits and electrodes must be
considered, and proper quality control measures are necessary to ensure representative data are obtained.
Monitoring results show that pH measurements in the multi-level samplers at the U.S. Coast Guard site indicate a
significantly higher pH in the wells installed within the wall than in those located/installed immediately upgradient or
downgradient of the reactive barrier. Ground water pH in the immediate vicinity of the wall showed a significant increase,
which may result in precipitation of naturally occurring metals and carbonates. At both sites, pH returns to near neutral
values downgradient of the PRBs.
Oxidation-reduction potential (ORP) is indicative of the oxidation or reduction conditions of a subsurface environment.
Significantly decreased ORP and dissolved oxygen (DO) values and the presence of ferrous iron within the iron barrier
would be expected in a reducing environment. Monitoring results at both PRBs site show reduced ORP values
immediately downgradient of the PRB. Dissolved oxygen values were <1.0 mg/L at all locations at the Denver Federal
Center and in all downgradient monitoring wells at the U.S. Coast Guard site.
Total dissolved solids (TDS) values obtained in the laboratory were compared to specific conductance measurements in
the monitoring network. Results show good correlation of these two parameters, indicating that measuring specific
conductance in the field provides preliminary information regarding TDS values. In general, high levels of TDS
(>1,000 mg/L) are expected to result in increased rates of mineral precipitation and iron corrosion. Monitoring relative
changes in specific conductance values between upgradient, iron barrier, and downgradient locations is in most cases a
reasonable indicator for potential fouling of the iron wall due to mineral precipitation.
Soil cores obtained from within both barriers show some geochemical changes at the upgradient interface. Resultant
precipitation of secondary minerals may alter reactivity of the iron barrier by reducing surface area and/or reducing PRB
permeability. This may adversely affect ground-water flow direction and velocity, resulting in ground water flowing
around or beneath the reactive barrier and reduced effectiveness of the barrier.
Results of geochemical sampling at both PRB sites indicate that iron corrosion is proceeding within the iron barriers.
Reduced concentrations below regulatory limits for contaminants of concern indicate the PRB is an effective treatment
technology. Chromium and VOC concentrations were decreased to levels below regulatory limits at the Elizabeth City
site. Organic contaminant concentrations at the Denver Federal Center site were also significantly decreased following
installation of the PRB. Monitoring will need to continue at the U.S. Coast Guard and Denver Federal Center sites in
order to adequately evaluate this treatment technology for long term (>5 years) viability at contaminated field sites.
45
-------
7.0 References
American Public Health Association, American Water Works Association and Water Pollution Control Federation. (1992)
Standard Methods for the Examination of Water and Wastewater, 19th edition. Washington, D.C.: APHA, pp. 3-60,
3-66, and 4-126.
Atkin B.P. and Sommerfield, C. (1994). The determination of total sulphur in geological materials by coulometric titration.
Chemical Geology, v. 111, pp. 131-134.
Beck, P.P., Clark, P.J., and Puls, R.W. (2002). Direct push methods for locating and collecting cores of aquifer sediment
and zero-valent iron from a permeable reactive barrier. Ground Water Monitoring and Remediation, v. 22,
pp. 165-168.
Beck, P.P., Clark, P.J., and Puls, R.W. (2000). Location and characterization of subsurface anomalies using a soil
conductivity probe. Ground Water Monitoring and Remediation, v. 20, pp. 55-59.
Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., and Berner, R.A. (1986). The use of chromium reduction in the
analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, v. 54, pp. 149-155.
Christy, C.D., Christy, T.M., and Wittig, V. (1994). A percussion probing tool for the direct sensing of soil conductivity. In:
Proceedings of NGWA 8th National Outdoor Action Conference, Minneapolis, MN, May 1994, pp. 381-394.
Engleman, E.E., Jackson, L.L., and Norton, D.R. (1985). Determination of carbonate carbon in geological materials by
coulometric titration. Chemical Geology, v. 53, pp. 125-128.
FHWA. (1999). IM#1 Performance evaluation report.
Gilbert, T.W., Behymer, T.W., and Castaneda, H.B. (1982). Determination of dissolved oxygen in natural and
wastewaters. American Laboratory, v. 14, pp. 119-134.
Hitchman, M.L. (1978). Measurement of Dissolved Oxygen. New York: John Wiley & Sons. 211pp.
Huffman, E. (1977). Performance of a new automatic carbon dioxide coulometer. Microchemical Journal, v. 22,
pp. 567-573.
Kampbell, D. and Vandegrift, S. (1998). Analysis of dissolved methane, ethane and ethylene in ground water by a
standard gas chromatographic technique. Journal of Chromatographic Science, v. 36, pp. 253-256.
Kamphake, L, Hannah, S. and Cohen, J. (1967). Automated analysis for nitrate and nitrite by hydrazine reduction.
Water Research, v. 1, p. 205.
McMahon, P.B., Dennehy, K.F., and Sandstrom, M.W. (1999). Hydraulic and geochemical performance of a permeable
reactive barrier containing zero-valent iron, Denver Federal Center. Ground Water 37, no. 3: 396-404.
Morse, J.W. and Cornwell, J.C. (1987). Analysis and distribution of iron sulfide minerals in recent anoxic marine
sediments. Marine Chemistry, v. 22, pp. 55-69.
Pacific Western Technology, Ltd. (2000). 1999 performance evaluation of the interim groundwater remediation measure,
Denver Federal Center. Prepared for Federal Highway Administration and General Services Adiministrations,
Denver, CO.
Parsons Engineering Science. (1995). Interim Measures Baseline Report, Rev. 1.
Paul, C.J., Khan, F.A., and Puls, R.W. (2002). In situ reduction of chromium-contaminated groundwater, soils, and
sediments by sodium dithionite. In "Handbook of Groundwater Remediation Using Permeable Reactive Barriers,"
eds. D.L. Naftz, S.J. Morrison, J.A. Davis, and C.C. Fuller, Academic Press, New York, pp. 465-493.
Puls, R.W. and Paul, C.J. (1997). Multi-layer sampling in conventional monitoring wells for improved estimation of
vertical contaminant distributions and mass. Journal of Contaminant Hydrology, v. 25, pp. 85-111.
Puls, R.W. and Paul, C.J. (1997). Low-flow purging and sampling of ground water monitoring wells with dedicated
systems. Ground Water Monitoring and Remediation, Winter, pp 116-123.
Puls, R.W., Blowes, D.W., and Gillham, R.W. (1999a). Long-term performance monitoring for a permeable reactive
barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. Journal Hazardous Materials, v. 68,
pp. 109-124.
47
-------
Puls, R.W., Powell, R.M., Paul, C.J., and Blowes, D. (1999b). Groundwater remediation of chromium using zero-valent
iron in a permeable reactive barrier. In "Innovative Subsurface remediation: Field Testing of Physical, Chemical and
Characterization Technologies", eds, M.L. Brusseau, D.A. Sabatini, J.S. Gierke, and M.D. Annable. Oxford
University Press, American Chemical Society, pp. 192-194.
Puls R.W. and Barcelona, M.J. (1996). Low-flow (minimal drawdown) ground water sampling procedures. U.S. EPA,
Ground Water Iss., EPA/540/S-95/504.
Puls, R.W. and Paul, C.J. (1995). Low-flow purging and sampling of ground-water monitoring wells with dedicated
systems. Ground Water Monitoring and Remediation, no. 15 v. 1, pp. 116-123.
Rose, S., and Long, A. (1988). Monitoring dissolved oxygen in groundwater: Some basic considerations. Ground Water
Monitoring Review, v. 8, pp. 93-97.
U.S. EPA. (2002). Workshop on monitoring oxidation-reduction processes for ground-water restoration. EPA/600/R-02/002.
White, A.F., Peterson, M.L., and Solbau, R.D. (1990). Measurement and interpretation of low levels of dissolved oxygen
in ground water. Ground Water, v. 28(4), pp. 584-590.
Wilkin, R.T. and Puls, R.W. (2003). Capstone report on the application, monitoring and performance of permeable
reactive barriers for ground water remediation: Volume 1 - Performance evaluations at two sites. In publication.
Wilkin, R.T., Puls, R.W., and Sewell, G.W. (2002). Long-term performance of permeable reactive barriers using zero-
valent iron: an evaluation of two sites. U.S. Environmental Protection Agency Research Brief. EPA/600/S-02/001.
Wilkin, R.T., McNeil, M.S., Adair, C.J., and Wilson, J.T. (2001). Field measurement of dissolved oxygen: a comparison
of methods. Ground Water Monitoring and Remediation, Fall, pp. 124-132.
Zhabina, N.N. and Volkov, I.I. (1978). A method of determination of various sulfur compounds in sea sediments and
rocks. In "Environmental Biogeochemistry: Methods, Metals and Assessment", v. 3, ed. W.E. Krumbein, pp. 735-745.
48
-------
Appendix A
Selected Parameters Through Time in Elizabeth City Monitoring Wells
49
-------
c/5
"0
O>
O
'c
o
•f
-•— •
b
1
1
LU
C
0
E
\-
.c
D)
|
X
CL
o
J^>
^<
co
_0
"0
E
2
CO
D.
^^
£
CO
a
Jrr
to
5
5
£
re
CM
9
.Q
CD
LL
q
D)
D
q
CO
o
^J_
(8
O
q
6
CD
Q
o
q
Q_
CD
co
o
9
13
-3
8
.a
LL
cn
Q.
Q
w
9
C
f
co
CO
9
CD
Q
00
en
Q.
$
c
"^
00
9
CO
^
2
^
en
QL
CD
V)
K
3
r-
.Q
CD
LL
Q
1
in
cb
3
cb
CM
cb
CD
cb
a>
cb
co
CM
cb
s
cb
cb
CM
cb
in
in
CM
CM
cb
oo
CO
cb
8
in
O
CM
CD
CO
CD
CO
CM
CD
CM
CO
CD
O
cb
CO
£i
CO
CO
cb
CM
00
00
in
co
in
co
cb
N.
o
cb
oo
in
cb
oo
in
in
CO
in
8
in
f-
01
in
en
in
in
cb
co
CO
in
en
r--
in
CO
in
C\J
in
co
i
m
co
cb
CD
in
cb
CD
CM
cb
^
CO
cb
§
cb
CM
cb
CM
co
cS
cb
q
cb
r-
CM
cb
CD
cb
CO
cb
^
CO
rj
cb
CM
cb
Z
8
CD
Z
Q
1
S
cb
in
cb
in
co
in
oo
O5
in
CO
CM
cb
CO
o>
in
in
a>
in
co
cb
CD
00
in
CO
CO
in
m
o
cb
8
cb
oo
CD
in
§
cb
r-.
in
in
in
a>
co
m
^_
m
CO
CO
§
CM
cb
CM
cb
co
cb
in
CO
cb
CM
CM
cb
co
en
cb
co
CO
CD
cb
f-
CM
cb
co
CM
cb
5
cb
CO
cb
o
CD
CM
en
cb
$5
cb
o
co
h-
CM
cb
co
•si
co
en
f^
en
in
|v-
cn
CO
in
r-.'
0)
"t
N
co
in
s
o
in
i-.
0)
CO
N
q
o
in
o
r-.
co
en
cb
•*t
§
C3)
O)
in
-
cb
S
in
co
N
in
CD
in
CO
O5
in
%
in
CD
cb
in
co
in
^
T—
in
CO
CO
in
CO
en
in
CO
in
in
en
in
m
in
fv^
in
S
in
o
CM
cb
oo
1
°.
r*""
s
^
&
i-:
o
CM
S
co
CD
K
f^
05
CO
>^
CD
oo
8
[^
CO
N
cb
CM
CD
5
|sj
s
h-
Cvl
r^
q
CO
CM
CO
CM
r-
Q
°
en
TJ-
§
S
cb
8
cb
S
cb
in
CM
cb
8
cb
CM
in
cb
in
cb
o
o>
cb
S
cb
in
o
cb
CM
cb
CO
cb
5
CD
CO
cb
J
cb
CD
CM
cb
o
co
CD
^
Z
g
§
R
cb
£
cb
CM
in
CM
CO
CD
CD
cb
co
r-.
cb
$
cb
o
h-
cb
oo
CO
cb
0
N-
cb
co
in
cb
en
co
cb
P
CO
s
r-~
CO
CM
cb
CO
in
cb
<
Z
S
§
qoqqq0qoqq
OJ-i-CMCOCMiOJ'-^CM
COCOCMCOCMT--TJ- CMCN
OOOOOO
"O
Q)
.C
-*-j
I
COCOCMT-CO-CMCM-CM
CMqco^cot— N. "^m.
cMincDTj-en^cDcdcoo
TfCMt-COCMCOCO i-CM
ocococoincMO^r^cn
m CD m
CO CD m
CM i- "'
5
fe 5 g §
^^ ocMCMinoor^-ococn^-
C cor^-cxjT— T— T— ^tcMT~ ^~
O
O
£
UJ
T3
0
N
"co
CO
O
CO
|
50
-------
T3
0)
13
|
O
O
_C/5
"55
1
O>
c
S
'E
0
^J
~^
•^
b
"53
.Q
CD
LU
.£
CD
E
i-
O)
o
b:
Q.
o
ji5
"53
E
2
co
Q.
"CD
— 3
O
1_
TO
->
§
T-
V
JD
re
CM
9
0
U-
q
f
q
k
q
CO
8
o
Q
O
9
D.
0
CO
8
c
— }
0
q
1
cn
cn
Q_
Q
CO
cn
cn
c
~>
$
CO
CO
cn
8
Q
co
cn
Q
CO
CO
cn
£=
—3
CO
cn
CO
^
cn
Q.
CO
h~
C
i
o
LL
Q
"CD
t
0)
.Q
O
Q.
0)
D)
O
^
V
>
o
(fl
(0
Q
CO
d
0
oo
d
co
d
o
oo
d
8
CO
0
cn
d
CO
CO
CD
d
fe
8
c\i
CD
d
d
cn
CM
CM
in
d
d
m
CM
r--
cn
d
co
i
CO
o
CD
d
g
CD
d
r.
CM
CO
h-
d
CO
d
cn
in
d
cn
CM
™
^J
CM
d
o
d
co
d
o
CO
d
!
CO
in
d
8
CO
i
CD
T-
o
o
^
••-
8
co
d
co
d
cn
d
in
in
d
d
h-
co
d
co
d
oo
0
d
00
cci
8
d
CM
CO
d
cn
co
d
8
d
Z
MW35D
o
CO
cd
CD
in
d
o
00
CO
CD
in
d
in
Z
CO
CO
d
T—
co
d
in
CM
d
in
co
d
in
d
N
o
0
o
cn
d
S
CM
cn
d
cn
in
o
S
d
in
CO
d
co
co
5
^
c\i
co
in
d
,_
CM
CD
m
d
CD
CM
CM
d
co
in
d
CO
c\i
cn
in
d
co
in
d
,_
d
CO
d
m
o
CO
m
d
o
cn
CO
CO
CO
d
cn
d
cn
d
CO
CO
CO
in
CO
d
CO
cd
in
CO
d
CO
o
CM
CM
d
cn
o
d
^
d
Z
cn
co
d
CM
d
r--
o
d
CO
d
co
CO
d
CM
d
CO
CO
d
d
cn
d
c-
co
in
co
8
d
8
co
8
d
<
Z
d
in
d
o
o
in
d
P
CM
d
•*
q
in
CM
CO
CM
co
d
in
d
in
d
9
o
CM
CM
d
o
CM
CM
d
8
d
8
d
cn
cn
CM
d
CM
d
jj!
d
o
d
d
cn
CO
CM
CO
CM
d
d
CO
CO
d
CM
d
cn
CO
co
55
d
co
CO
S
d
s.
,j
CO
CM
O
£
d
CO
0
cn
cn
in
d
,-
d
co
d
oq
cn
CO
d
CD
CM
d
cn
in
d
d
cn
d
o
in
o
CO
cn
CM
d
0
cd
cn
CM
d
o
CD
d
m
d
o
cd
CM
CD
in
CD
d
0
d
CO
o
d
CO
cd
o
o
CD
CD
d
CO
d
d
o
CO
d
CM
1
0
co
0
CO
^
CM
<
Z
o
CD
q
<
Z
in
CO
co
CM
q
•>T
o
d
V
d
CO
d
^T S
*— ' CN
g
Ss
O
l?
la
•o
0>
_>
W co
.2 5
Q 1
0
"
0
'r~
co
CO
in
d
o
T-
00
d
t
o
o
CM
cn
d
CM
d
^
d
o
CO
d
d
CM
d
00
d
q
"A
co
d
co
i
*}•
d
^
o
CM
CO
O
d
o
q
"A
CM
o
CM
o
CO
d
1-
0
d
d
co
d
CM
d
d
CO
d
co
d
o
MW35D
0
"
0
^
CO
CO
CO
d
co
o
CO
d
^
o
00
o
CO
d
CO
d
CO
d
d
„.
d
CM
d
CM
d
q
o
CO
d
co
0
CO
o
co
CO
o
co
d
^.
o
o
'A
o
CM
.,_
A
d
r~
o
CD
d
d
CM
d
co
d
d
CD
d
cn
d
co
d
1
o
CM
0
CM
O
^
.,_
d
o
CM
d
^
o
0
T~
in
d
CM
d
CD
d
d
CO
d
CM
d
d
co
o
q
"A
d
h-
1
o
CM
O
CM
^.
O
CM
d
CO
o
q
co
o
Tf
0
d
CM
d
CO
d
o
CO
d
CM
d
CM
d
q
q
CO
d
co
q
"
O
^
o
"
,_
d
o
CM
d
CM
o
o
o
m
d
0
d
co
d
d
CM
d
CM
d
d
CO
d
oo
d
co
d
0)
O 0
CM •*
O 0
CM "fr
0 O
^~ l~~
K CM
d d
CO CM
o o
d d
CM O
O CO
CM •*
o o
h~ cn
d d
CM •*
d d
CM CO
d d
o
o o
V
CM CM
d d
CM •*
d d
T- CM
d d
o oo
•^ d
CM •*
d d
Z Z
O CM
in in
5 <:
CD
O
CD
in
CM
cn
CM
co
oo
CM
O
cn
o
*
^
co
CD
co
co
CO
^
•^
CM
CO
d
£
d
cn
d
o
cn
CO
5
cn
Z 1
**1^'
^»
•"—
|Q
i- "
|*
CO
CD
d
o
co
d
CM
co
d
CO
cd
CM
co
8
CM
[^
d
cn
CD
d
CM
CO
d
rj-
CO
co
CM
cn
o
d
CM
CO
in
CO
CM
co
h-
cd
Z
oo
S
q
••-
CD
CD
CO
d
P
d
o
d
o
CM
cn
d
cn
cn
S
J
^j
CM
CO
d
^
cn
CM
§>
CM
cn
s
z
CM
in
Z
MW35D
co
•"-
5
'-
s
o
CM
d
o
o
in
cn
o
CM
m
in
cd
CO
CM
d
cS
d
,-
^
N
d
N.
d
CM
d
CM
d
co
0
d
CO
d
Z
i
5
CO
0
^
co
T-
CM
CO
8
in
o
00
oo
co
^~
CM
co
CD
o
CO
CM
d
o
d
co
CM
d
CM
in
d
co
CO
CM
co
oq
Z
CO
CM
Z
9
CM
•"-
S
r-
cn
0
in
00
CM
co
T—
5
00
'-
•*
o
in
CM
cn
CM
cd
CM
5
^
cd
cn
CM
CM
in
o
cri
00
d
CD
cd
Z
r~-
CM
CM
S
d
o
5
d
o
O)
d
o
co
in
T-
in
CD
CD
d
CM
CO
CO
CO
q
co
CD
d
oo
CM
c\i
CO
t-.
d
o
q
£
o
$
§>
z
9
S
CO
CO
*
ff
CM
in
CM
CO
^
CM
m
CO
CM
^
CO
co
T—
CO
d
CO
^j
CM
CO
d
in
CM
<
Z
?
CM
CO
CM
CD
CM
in
Z
cn
00 CM
o co
CD ••-
9 K
CM T-1
CM o
^ "A
S P
5 S
in q
oo in
CD [v.
CM CM
in cn
CM *&
CO P3
••- m.
- 9
Tt cn
5 CD
•>- CD
O CM
co cn
••- CM
co r"
CM i^"
••" CM
CM i-
cvi ^
•* CM
co o
CO ^
T- CO
cri
-------
"a)
D)
o
o
0
.Q
CD
N
[D
c
CD
E
O5
o
e
.2
"0
E
co
to
Q.
1
E
CD
JZ
O
0
LL
oi
<
_o>
J3
re
9
0)
p
co
o
o
O
0.1
o r
CO
o
p
O
p
-Q
0)
LL
a>
Cp
CL
CD
CO
O>
01
05
05
00
cp
6
°-l
col
<<<<<<<<<<
ZZZZZZZZZZ
cooor-
-
-i-cncoo
l--a>ina)i-r-.CMKCO
cocotocoin'd-cococo
comM-cocnco
--
cocMr-.co-.-cnins.cQCO
co
co
° CD CD
cocMOi^oooocMi^cn
c-inco-^-cocM-^^rco
•3-cooocn,
«^»
cO
03
S
c
<
^
CO
0
O
52
-------
CXI
o
CD
LL
q
D)
q
CO
q
CO
o
q
Q
8
Q.
CD
W
8
c
o
9
CD
LL
cn
cn
Q.
CD
c/>
CO
cn
c
-3
co
CO
1
00
co
o
CD
Q
00
CO
Q.
CD
W
00
CO
T
CO
CO
CO
CO
Q.
CO
tv
cn
c
|v
CO
_Q
O
LL
g
"53
^J
•B)
^
(U
C
(D
+^
Q)
o
0
£
IE
IV
CO
CO
CM
in
o
CM
Q
Z
CD
8
•<*
OJ
CN
CM
^
co
CO
CM
O
si
|v
CO
CM
CM
CO
D
Z
co
CM
Si
cn
q
CM
cn
(O
CO
1
8
^-
CD
Cxi
cn
CM
CM
co
co
Eo
CO
o
q
"v
CO
in
8
^
00
CM
in
CXI
CO
OJ
Q
Z
P
O
q
~V
CD
Q
Z
O
tv
q
^_
00
i
co
1 —
q
"*"
Q
Z
Q
Z
Q
Z
Q
Z
Q
Q
Z
q
'v
o
V
o
q
"v
Q
Q
Q
O)
8
Q
Z
Q
o
O5
0
Q
8
<:
.
"^
U)
1~
Q
Q
Z
o
Cxi
'v
i
Ol
•3-
^
in
00
m
§
8
v
Q
Z
Q
Q
o
Cxi
Q
Z
§
ci
«
^— .
8
§
§
^
8
CO
00
CM
CO
o
Cxi
CD
CD
O
O
CM
CO
CXI
3
"
CO
in
CO
CO
CO
q
CD
"*
CO
CM
CM
cn
0
CO
co
CD
CO
CO
CO
CO
1
cn
CD
Cxi
£
00
CO
00
CD
CXI
Cxi
CXI
in
in
Cxi
CO
CT>
Cxi
£
.,—
CO
in
CM
CM
CM
'I~
Q
Z
in
CD
D
i?
0
CO
o
in
•^
o
q
<,—
V
§
I
s
00
s
CO
IV
s
o
CX)
O
in
OJ
CD
o
co
CM
s
CM
CO
in
£
"*
N.
co
05
CO
t
o
in
co
-
m
co
m
p;
^~
CO
1
g
0)
CO
CO
^"
CXI
00
Cxi
CD
CXI
O
q
~V
Cxi
CO
o
q
"v
o
q
"v
Q
q
~V
O
q
'v
?
8
"v
(M
0
in
m
0
CO
Cxi
CO
I
8
T"
•5
T—
CO
Cxi
CD
in
co
co
0
o
o
T—
-
8
CM
CO
8
CM
^
"*
O
0)
CM
O
%
iv"
O
CO
co
00
CD
in
l~
0
co
g
2
CO
CO
CD
OJ
8
CD
IV
CO
CD
CD
in
co
co
CO
|v
in
in
tv
CM
m
CXI
CO
in
CO
CXI
|v
CD
co
i
CXI
o
CXI
1
o
•t
CO
CO
CM
-^
4L-
<
^—
a
§
i
i
C
Q)
^
0
^_
o
U
Q
~
V V
QDQDQDQQD
-----'
QQQD
QQQQQ
zzzzz
C3)Cxl.-.OIvCM,-,CxlCOlO
V V V
V V
QQQDQQDQQQ
ZZZZZZZZZZ
QQQQCD.™PQir!
TD
CD
05
•o
0
-o
0)
N
"to
to
5
c
CO
53
-------
o>
O
O
.c
co
—
LU
CD
E
O)
o
t/5
CD
"co
g
'c
5
_o
JD
CM
O
±
CD
LL
9
D)
9
81
O
CO
O
9
o
CD
Q
O
0
Q.
CD
CO
O
9
-3
8
.a
CD
LL
03
0.
CO
03
c
-3
O)
cn
CO
co
6
CD
Q
8
O.
CD
co
co
9
c
-3
CO
cn
CO
cn
Q.
CD
CO
cn
C
—3
s.
i
o
LL
Q
1
^Y-
^^
E
"ts
H—
3
0)
0)
o
h-
CM
^.
CM
CO
CM
8
CD
CM
^
in
o
CD
CO
o
co
co
CO
~^~
co
T*
co
CO
CM
s
^*
z
CO
1—
§
CM
CM
03
0)
CO
co
CO
-
03
cn
o
CO
0
in
~r~
o
o
CO
o
[x.
^
O
CO
CO
1
CO
00
co
03
K
CM
cn
CO
i
q
V
o
v
CO
CM
q
V
-
O)
CO
o
in
°,
CO
d
in
?
T—
^
in
d
o
CO
§
in
2
m
d
in
°
MW35D
cri
CO
CM
CM
in
co
CM
co
CO
o
d
CM
CO
d
CM
i
CM
d
CM
0
cri
^
CM
CM
Tj-
iri
CM
cq
CM
cn
CO
CM
in
CO
CM
in
CM
O3
CD
CM
03
CM
o
CM
CM
i
CO
CO
in
00
oo
o
o
d
CM
CO
CM
CM
0
CO
CO
in
-z.
CM
d
•sj;
CM
^
co
CD
CD
O
CO
£
O
CD
1
q
'v
o
V
o
'v
o
'v
o
in
v
o
in
v
q
V
in
V
in
9
V
in
^
T—
^
^
T-
^
?
co
d
cn
cn
CM
o
r-
1
co
in
cn
cn
CM
CD
o
co
cn
cri
CM
r-^
CM
CM
cri
CM
o
V
CO
in
m
in
CO
CO
0
03
in
CO
oo
00
00
•*
^t
<
1
CM
CD
in
1
q
V
0
v
o
"v
•^
o
in
o
in
q
V
%
v
in
9
V
m
?
T—
^
d
CO
d
5
CM
CM
q
co
1
CO
CM
'r-
co
CM
CM
-
q
co
CM
CM
^
CO
CD
CO
CO
co
CD
oi
0
CN
^-
co
3
£
CO
CO
CD
CM
in
CD
CM
CD
co
rt
co
CO
m
?
co
in
in
^.
in
o
in
in
cri
•z.
-------
co
Q)
§
O)
c
fe
'c
o
2
>•
b
f—
.*-»
0)
.Q
CO
l^
LLJ
^
CD
P
_
D)
|
CO
0)
^
CO
c
g
-I— '
co
O
in
Q)
.a
re
CM
0
•s
LL
9
O>
0
CO
p
CO
8
6
CD
Q
o
9
a.
CD
co
o
9
13
-3
O
o
h
Q.
CD
w
8
c
Cn
cn
CO
2
co
cn
Q
O
Q
co
cn
D.
0
CO
oo
cn
c
—3
00
cn
CO
^
O.
I---
C
-3
cn
LL
a
"CD
._ QQ ^ £\J K^ £y| QQ QQ QQ ^_
i^co^i^iridcDOcdiri ^
co^i-.cqin^qcnp.t
-<°^^^cvicvj.ncMco co
CO CM fYi isj r»^ r*J |*J rn rrl ' O
cooocoinoocvir-oco-^ cn
ini-cDcocrieDcodcd-^ T
cocMOOl.cqKO^co^ in
^"" T"~ i"~ T~~ ^" CVI CVI LO CVI CO CO
"^SSooriScodcvi ^
T~ i~ T— ^ CO CVI LO CO *^ CO
?-§5S^dSS5 s
SS^§S?SIririd q
cn^-cvicvjcnco-cncvi CM
i~i~r*i-T— cvicocoioco^" cvi
cjj^-r^-cvicoi— ooojcoco o>
---^SiS^^coco
^^cooq- r-^Ncv|es co
T— -»~T^^CVIco5)LOC^CO •»-
coLooo^^^^LOtooq ^
i~'^T-^cvlcviSLococo cvi
LOl^)LOCV|-T— lOCOi— O)i— O)
T"~ i~i— T— cocviLOuocvi^1 cvi
^^sssss^ss §
1~i— 1— CVICVICDUICVICO CO
Qocooji-ih^cqco^pcp o
£co°3SdS5ctico °
^-'-•^T-cMTfcoincM'* co
co^-cocoinh-oeo ^
^"^inNi— iricricd^^ ^*^ ^?
1~T~7— ~r- CMCO^f^fCVI ^J Cvi
**** "nj
-1 C co
^S^Scn^d^cd™"5- *— ' q
1^2** ^™
E 'w
IlllllllHl ||
cn
cvi
SJ
co
•*
CVI
LO
f\i
tNJ
co
CVI
co
a>
CO
m
m
CVI
q
§
cvi
CVI
Eo
d
o
in
2
CO
CM
oo
co
0)
d
V
s
T-
o
o>
d
00
cn
d
V
oo
i
1_
cvi
T—
CVI
cq
s
s
^_
£
1—
s
r2
cn
q
^
CO
cn
o
,-
d
O)
CO
f;
^
cn
o
cvi
cn
I--
d
V
t~~
co
•r-
O3
in
,—
oo
cn
d
V
MW35D
CO
00
N
T~
8
cn
§?
^_
o
oq
^
cn
CD
8
S
T—
•Si"
CO
o
s
^
oo
o
cvi
5?
Cvi
£
CM
5
CVI
c\i
,_
o
ou
cn
CD
^
oo
00
cvi
o
CO
T—
CM
CVI
co
CO
in
CD
K
N
q
in
N
cn
^
CO
*-
S
8
co
o
cvi
in
^-i
cn
r-
d
V
S
d
in
r-.
T^
00
cn
d
V
CD
S
CD 1*-
00 f^-
oo cn
•
§"
9 CM
i- in
^ °!
-,— T—
co oo
O> O3
d d
V V
t-- oo
11
O
LO
*"
t~~
in
s
s
T—
CM
in
1—
o>
s
o
CD
^
cn
-
i
d
co
d
CD
CM
^-i
cn
^_i
<
«
°
CD
cn
^-i
co
cn
d
V
•*
O
CM
£
d
co
oq
Q
Q
q
^_
CO
oo
d
?
s
cn
CO
d
§
V
o
co
d
00
d
co
CD
^
CM
cvi
s
5
'-
N
CM
cvi
co
cn
d
V
o
in
^-
^
in
CM
T~
in
q
q
CO
-,_
oo
CM
CM
m
oq
o
in
q
CO
T—
8
in
cn
d
S
d
8
*p
*
S
CM
O)
d
V
cn
d
z
CM
1
"O
CD
O
S
0)
3
c
Q
"g
N
>s
"co
co
c
^
•z.
CO
o
1
'•G
8
55
-------
s
3
-£
c
8
co"
™**"
CD
5
_g
"t«
S
o
2
>^
O*""
Hi
m
.N
LU
0
E
I —
j=
r-v\
\J)
1
£
CO
Q)
"cc
>
o
4~«
co
O
in
l-
9
.Q
9
05
3
O
CO
CD
co
8
6
3
o
p
CL
CD
CO
8
3
-3
O
9
.a
CD
LL
9
o
CO
O5
CO
c
3
en
en
CO
2
oo
en
6
3
00
05
g.
oo
CO
3
QO
§
CO
2
cn
Q.
CO
co
CO
c
.Q
CD
(|
a
1
j*
£
E
3
'5
(0
O
T-
CM
CM
CO
in
o
cb
in
N
"^
O5
CO
T—
I"-;
in
m
cb
CO
CO
co
f-
co
co
cb
in
in
in
cb
£
in
co
oS
1—
CO
CO
i
CO
in
d
in
oo
CM
^~
£
'1~
0)
'1~
O)
O)
OH
i—
in
cb
oo
CM
CM
co
oo
CM
2
^
CO
CM
CO
co
00
CO
O5
1
co
CO
T—
oo
i
in
in
8
oo
in
cb
in
cb
cb
oq
T—
J
T—
co
cb
o
in
r--
co
^-
in
r-
iri
o
o
05
rj-
in
CM
in
en
'-
CM
T-
O
co
05
en
r--
CO
00
oo
05
S
cri
co
o
05
en
CM
cri
m
cri
d
in
cri
o
o
m
o
CO
O5
O5
in
f
en
d
en
CM
in
^
d
co
CM
CO
CO
CO
co
CM
CM
S3
cri
g
05
cri
CO
cb
O5
o
05
£
CO
CM
in
0
CM
d
CO
o
o
cb
in
8
in
O5
in
in
CO
in
in
CD
i
co
CM
CD
8?
in
*
in
8
"*
8.
^-
o
co
co
O5
CO
o
CM
en
c\i
f-^
CO
CM
co
CM
CO
CO
CO
in
cb
oo
CO
""•
jj
(*-
co
O
in
I
CD
CM
O
cri
£
05
CO
d
cq
d
m
CM
cri
CO
d
CD
CM
d
CM
••fr
m
co
co
d
CO
05
d
r^
c\i
-
•>-
CM
d
T-
00
in
c\i
O5
co
c\i
S
co
S
co
8
"*
p:
CO
CO
CO
CO
s
CO
CO
^~
3
CD
CD
"*
T—
in
CO
in
z
CO
"*
00
CO
^
o
in
1
8
cb
CO
in
CM
CO
CM
CO
O)
m
*
3
^-
o
CO
CM
in
co
•t
co
oo
CO
CM
^
S
in
•*
in
O5
•*
in
in
S
in
§
in
CD
CM
o
i
00
s
cb
S
co
CM
CO
£>
"*
in
Tf
in
oo
CO
8
S
c\i
co
oq
CM
0
p
co
h-
CM
_
8
CO
CO
oo
CO
8
8
cb
co
^
co
^
oo
in
_
R!
CM
O
CO
O5
CM
05
CM
CO
CM
CO
CO
I
8
g
CM
CO
CM
S
••"
g
1~
!n
T—
O
CD
,—
§.
5
r^
CM
CO
•
II
^~
CM
CM
CM
in
CM
co
o
co
in
oo
co
S
co
8
CM
1
CM
cri
00
cb
O5
cb
S
CO
CO
'"•
^
CO
CM
h-
00
CO
00
to
^~
O)
1—
CO
o>
CO
p
K
o
CO
CO
CM
^
in
O5
O5
r--
^
oo
cb
S
cb
CO
oo
CO
o
oq
1~
CM
co
CM
O
co
CM
i-
CM
S
CM
CM
CM
CO
CO
o
CO
^~
h*.
CM
CM
CM
!§
CM
O
in
fS
CM
Z
8
CM
in
CM
CM
fe
CM
O5
co
CM
co
in
CM
CM
O5
o
CM
r-
CM
r-
O5
CM
o
CM
in
CO
cvi
o
CO
_
fS
O5
CM
^
co
in
O5
CM
CM
CO
S
co
O5
CD
CO
o
CO
co
co
CM
s
s
in
o
*
5
CM
*
CM
in
CM
in
CM
in
CM
8
CM
CO
05
T—
oq
co
O5
®
~*~
_
CO
T-
co
CM
CM
CO
CM
z
i
CD
.C
56
-------
tJ
Q)
^
_C
8
CO
1
O)
•c
2
'c
o
^£
O
f~
ro
_N
LLJ
_c
O5
CD
CO
9
c
D
"*
f
CO
S
co
9
8
Q
?
cf
oo
c
00
CD
CO
O5
CD
CO
h-.
O5
C
-5
9
2
Q
1
I
"m
OJ
£
C
o
CO
3
2
£
Q
Z
O
z
o
z
,-
°
p
v
Q
Q
Z
O
d
Q
Z
O
o
C3
D
Z
Q
Z
O
d
Q
Z
Q
Z
O
d
CM
o
d
CO
i
o
CO
d
N
T"
CM
d
o
d
8
CO
CM
•""
S
d
o
o
d
8
co
o
o
CM
g
d
cq
in
CM
CM
••-
d
O)
CD
CM
<
^
S
d
oo
i
o
p
o
CO
CM
O
O
CO
O
d
"A
£
CM
8
co
CO
d
s
o
o
oo
in
CM
co
CM
CO
S
in
05
C\j
p
"A
Sj
T
in
o
p
MW35D
Q
Z
CM
d
8
d
o
?
p
^/
0
d
Q
Z
O
00
d
Q
Z
Q
O
d
Q
Z
<
Z
O
d
Q
Z
Q
Z
S
d
o
d
8
8
CM
co
o
d
m
CM
d
o
^
p
"v
S
d
Q
Z
g
d
Q
Z
O
co
d
-
y
0
CM
d
o
d
S
d
o
d
Z
0
d
d
1
o
CM
d
CO
co
d
*
d
CM
d
p
V
?
d
O5
d
o
d
o
CM
d
o
co
d
o
d
8
d
0
d
§
d
O
CM
d
CM
d
8
d
Z
r-
Q
Z
p
^
D
Z
O
V
p
V
T-
o
d
Q
Z
O5
d
Q
Z
O
p
C3
Q
Z
Q
Z
O
d
Q
Z
Q
Z
0
d
8
d
00
I
0
d
r-.
d
co
•>-
o
p
8
S
d
co
CM
s
d
8
o
m
8
T_
o
p
8
^
8
*-
8
o
p
CM
CO
d
d
en
8
o
CM
'I~
m
••-
o
CO
d
8
S
d
§
d
05
co
d
8
o
m
8
1—
o
00
d
o
••*
d
<
8
CO
d
en
CD
d
SB
d
o
in
8
CM
CM
CO
d
in
d
o
co
d
8
CM
d
CM
d
o
CM
d
0
CM
d
o
CM
d
o
d
o
d
o
d
in
d
o
CM
d
co
o
d
<
^
Z
CM
in
Ijp
E,
Q.
o
1
5
d
p
°
co
d
3
V
p
v
in
o
d
p
V
s
d
o
d
d
CM
O
d
o
d
p
V
o
d
1
o
d
p
>3
p
CO
i
in
CO
d
m
d
CM
d
00
d
CO
CM
co
oo
d
r-
in
d
S
d
o
CM
CO
CM
^
co
c\i
co
CM
en
d
d
5
^
"*"
in
co
d
00
i
^
oi
co
^
*""
cq
^
05
^
CM
"""
Tf
cd
CM
^
cq
•*-
-
^
Is"
CO
CD
p
V
°>
m
p
co
CO
co
CO
MW35D
in
o
d
co
o
d
S
d
S
V
p
v
CO
O
d
p
°
co
0
d
CO
o
d
o
d
o
d
0
d
p
^
8
d
S
d
S
d
§
d
d
oo
CO
S
d
co
CM
d
CO
d
S
°
p
v
p
°
CO
O
d
q
*3
^
d
d
-
d
£
d
CO
o
d
8
d
1
in
o
d
0
d
eS
d
co
en
co
d
CM
CM
d
CM
"
CO
d
in
d
S
d
CM
d
CM
d
in
d
0)
d
en
d
co
d
CO
CM
d
in
d
8
d
CM
d
p
Cp
8
d
I
CM
d
p
°
S
d
S
^
s
^
o
d
p
V
CO
p
^
0
d
o
d
o
d
S
d
o
d
0
d
8
d
CM
o
d
co
o
d
CO
o
d
co
I
CM
co
d
m
r*-
d
0
••-
8!
d
CM
"
T
cq
'*"'
§
d
CM
•^
CD
CO
^
•*
•^
CO
T~
CM
T~
Z
p
co
d
o
d
o>
I
co
d
1~
^~
cq
"
co
d
CM
T
CO
d
S
d
in
h-
d
CM
co
d
S
d
|g
d
en
CM
d
CO
T~
-
r-
d
in
CM
O
1
co
cri
in
d
CO
CD
d
in
d
O5
d
co
d
en
'I~
S
d
O5
d
in
o
d
m
o
d
8
d
S
d
S
o
8
d
o
d
Z
CM
in
J*
P^*
C
0)
(0
0)
c
(0
O)
c
(0
s
o
d
8
d
o
d
o
d
S
d
o
d
CM
o
d
0
d
CO
o
d
CO
o
d
CO
o
d
8
d
S
d
0
d
p
00
o
d
0
o
m
p
co
i
CM
d
oo
CM
d
co
in
d
m
d
S
d
co
CO
d
co
co
d
0
d
co
CO
d
00
O5
d
3
d
f^
d
CO
d
r-
m
d
co
d
£
d
in
O5
o
co
co
d
oo
i
3
d
%
d
CO
co
d
CO
d
CO
d
05
CM
d
r--
co
d
CO
d
in
CM
d
CO
d
CO
CO
d
8
d
r-
d
in
CO
d
CM
d
co
d
in
CM
o
CM
d
MW35D
^
d
m
d
o
CM
d
co
o
d
0
d
£
d
o
d
co
d
O5
o
d
05
d
N
d
m
d
co
CO
d
CM
CM
d
CD
d
co
T-
d
£
o
d
00
CO
s
d
m
CM
d
co
d
co
o
d
8
d
8
d
in
d
Si
d
CO
CO
d
CO
CO
d
S!
d
CO
d
CO
CM
d
CM
T—
d
co
d
d
£
0
S
d
CO
§
d
0
d
oo
o
d
co
o
d
8
d
in
o
d
co
o
d
8
d
in
o
d
m
o
d
0
d
8
d
0
d
o
d
co
o
d
co
CM
d
CM
o
oo
d
r--
I
N
d
S
d
co
CM
d
co
d
co
d
CO
CO
d
CM
d
0,
d
CM
d
o
d
CD
CO
d
CO
d
O5
CM
d
CO
d
d
3
d
3
o
d
co
CM
d
co
d
CO
CM
d
CM
d
CM
d
CM
d
CM
CM
d
CM
d
CO
CM
d
in
CO
d
CM
d
CO
d
co
CM
d
co
CM
d
Z
CM
d
£
o
co
d
1
8
d
&
d
j
d
^
d
CM
d
CO
CM
d
J
d
CO
d
CM
d
o
CM
d
o
d
^"
d
CO
d
CM
CM
d
CO
CO
d
l-~
CM
d
%
o
i
o
s
d
5
d
^
d
co
o
d
*
d
CO
d
o
d
§
d
8
d
in
o
d
§
d
in
o
d
S
d
in
o
d
co
o
d
8
d
<
Z
2
S
57
-------
Appendix B
Selected Parameters Through Time in
Denver Federal Center Monitoring Wells
59
-------
CD
CD
CD
CO
£
S
0)
Li_
o5
>
c
0)
Q
CD
"to
CO
8
>,
CO
c
L_
to
5
i
T3
S
O
•o
"5
CO
0
t£
,
m
rii
w
fit
OJ
b
I
i
z
CD
z
cS1
z
a!
LU
I
O
1
CO
LJ.
co
s
"5
co
'E
i
'o
•c
&
»
111
I
O
I
0
Q
.2
o
Q.
i
O
Q
^,
~
'•§
o
£
Q.
Q
15
I
CT
D)
*&
i
£,
^Y
"&
•§
"T*
cb
E,
i
_£
i
s
z
^
"r%
E
-i^
j"
^
^— *
I
A
. .
1
CO
CM
oo
CM
CO
0
^
*9
o
V
T—
o
8
o
o
CM
CO
co
T-
co
o
5-
T~
co
8
CM
CD-
CO
CO
CM
CM
^
co
O
m
CM
^
S
CO
o
""""I
°
CM
CM
1—
O
8
o
in
S
co
o
CM
O
O5
in
0
CM
[^
CM
CM
5
CD
1
O
a
^
s
CD
CO
d
o
<$
i—
o
in
o
in
CO
CM
•<*
r--
o
CM
O
8
O
o
1^
•t
CM
CO
d
CO
LL
T~
1
0
CM
^
hs!
in
oo
d
o
°
in
T-
oo
o
o
CO
5
CM
T—
O
o
o
o
CM
CM
CO
CO
CO
CO
CD
CO
D
1
0
o
o
"t
in
o
en
d
o
<$
o
CM
O
O
05
81
S
o
T—
O
co
co
o
co
o
in
co
s
T_
co
CD
CO
1
o
O)
co
CO
CD
CO
00
d
o
o
o
co
o
CM
O
0
CM
S
CM
CM
O
CM
O
0
T-
§
8
cd
Q
CD
1
O
o
CO
T-
K
C7)
O
T
*9
o
°
1—
o
CO
8
o
O5
CO
CM
O
in
o
CM
O
8
T—
co
CO
s
in
CM
CM
^»
co
CD
CM
O)
CM
^
05
CO
o
^
V
o
<3
o
0
s
o
o
o
CM
t
T-
co
o
D5
0
I
oo
co
O5
q
CM
CNJ
0
1
0
CM
t—
d
o
^
CM
O
co
o
o
m
CM
^
o
CO
o
s
o
5
oo
O5
in
o
co
05
CO
CO
CD
CO
=>
CM
0
o
co
CM
O
^
°
O
o
•r—
O
8
o
£
o
CD
O
CM
O
S
0
s
in
CO
CM
CM
o>
o
d
£
05
CO
O
co
CVJ
0
S
CM
^T
O
T
°
o
°
CM
O
|
O
z
In
i-
CM
O
00
o
co
CO
O5
CO
CM
CM
m
d
CO
1 1
CO
co
a
co
^
CM
O
s
co
^~
CM
d
o
°
1—
o
o
o
z
s
T-
co
o
CM
o
in
CM
in
o
csS
f^
co
CD
co
i)
CM
O
CM
oo
S'
oo
d
o
°
T—
O
o
o
co
05
§
o
CM
o
n
o
g
in
O5
fe
in
d
T—
co
CD
CO
=)
CM
0
in
CM
CM
CO
°
o
?
T—
o
•
co
ca
o
I
o
TJ
CO
1
60
-------
I
.c
"c
T3
0
3
C
"c
8
o>
O)
CO
„
£
0
O
"co
ir
0
-o
0
LL
L_
0
c
0
Q
0
"ro
CO
0
CO
"CD
"55
|
c
D
s
0
"S
"5
CO
0
01
^
00
0
.a
ra
co
co
CO
c
O)
CO
H-
3
ra
CD
9
—
l
i
^
5-
t
j~
-I
2"
-§
i
^
f
""""*'
^—^
_i
?
1
3~
-§
§
E
jB_^
_l
I"
""""''
z z
CM CO
in •*
o o
co co
CO O
T- CM
in in
o o
d d
co •*
CM CM
° o
T- o
O C7)
O O
V V
CM CM
0 0
? ?
S °
co i-
0 0
0 0
co in
0 0
CM D
< o
CO -A
C5 O
Z
CO
o
o
CO
CM
8
q
Q
CO
CM
0
O
o
Q
v
8
^
CO
m
CM
CO
CO
y
co
CM
O
^~
O
Z
cS
o
in
CO
d
OJ
cp
CM
o
f;
,_
0
^
CO
o
o
o
o
8
o
CD
CO
O
co
o
z
in
CO
0
i
CO
CM
d
s
OJ
?3
co
in
CO
8
"?
H
o
o
8
o
CO
O
co
O
Z
-
?
co
CO
CM
d
oo
CM
oa
C3
CO
in
CM
0
^
co
CM
o
o
8
o
o
9
o
z
oo
o
oo
8
q
^
OJ
OJ
<^
T—
8
Q
V
0
?
=
o
o
oo
OJ
o
o
OJ
^
o
z
CO
o
s
O)
o
q
^
oo
£
CM
°
O
T-
O
Q
V
CM
O
V
CO
CM
CM
O
O
oo
o
CD
OJ
^
O
z
o
o
1
O)
8
y
in
CM
o
o
o
Q
v
OJ
o
?
oo
OJ
o
o
in
CM
o
o
CO
C5
CO
13
S
Z
OJ
o
§
CM
CO
8
y
8
CM
o
8
o
CM
O
?
CO
in
in
o
o
V
CM
O
CO
co
co
§
z
o
o
OJ
o
d
CO
Q
CM
^
O
O
Q
v
OJ
o
?
CD
O
co
o
o
CM
O
en
CO
O
co
13
S
Z
8
o
CM
CO
O
d
-
CM
o
co
o
CM
O
^
5
CM
O
O
CM
O
co
CO
o
co
s
z
,-
o
CM
d
CM
s
CM
°
8
o
OJ
o
?
in
CM
CM
o
o
oo
CM
o
CO
o
CO
§
z
CO
o
o
s
CM
o
OJ
d
in
in
CM
<^
8
o
CM
o
?
CO
CM
CM
o
o
f-
OJ
o
CO
o
co
§
z
o
o
CM
d
CO
m
Q
OJ
<^
8
o
OJ
o
•?
f-.
CM
o
o
oo
CM
o
in
CO
o
CO
13
s
z
CO
OJ
o
CO
CM
o
d
o
CM
<^
8
o
CM
o
^
CO
co
CO
o
o
CO
o
in
CM
^
o
-------
05
.C
1
o
T3
0
C
•£
o
o
05"
O)
O5
^
CD
^
0
"c
0
0
2
0
T3
0
UL
0
^
0
Q
0
^_r
CD
CO
0
CO
"CD
C
0
"CD
t
T3
C
2
O
*5
CO
-t-*
CO
0
K.
T™
m
0>
.Q
ra
g
"o ^
.2 §1
-C " '
0
CD
C
CD
£
CD
O _^
5 =d
•c 9>
o =i-
Q
CM
6
CO
C
co
£
CO
2 J'
_O o)
o •— '
Q
T!
T-"
CO
C
CO
o
o f ^
O 5^
-C Q
o ^
Q
CM
|Z
CD
C
CO
-g
CD
2 2"
O O)
.c i
0 ^"
Q
•^
CD
!5
S 2"
Jl
.g
c
CO
O) ^
2 ^
>^
X
o 5"
O °)
i- _§_
Q
1
CO CM Q Q Q Q Q
mti~z--z.-z.-z.-z.
Q 9 Q Q Q Q Q
* V ^ * * ^ *
CO CO
T^ -- CO o ^ °° ° <°
O5 CO ^J CM
-------
CD
c
•"
c
o
o
o>"
05
O>
>,
CD
^
t_T
0)
"c
Q)
u
2
CD
T3
CD
1 i
LL.
1
0
D
CD
•*-•
•I-*
CO
CO
CD
CO
"CD
c
^
^_
CD
"CD
'
c
^
2
O
'o
CO
CD
o:
m
0)
J3
CD
C
CD
£
o -^
_o _=L
o
CO
1—
CD ^
§*
o3
CD
C
CD
o -3=
^
o
H
c
CO
.c
S 5
0 §
o
Q
C\J_
"*"
CD
§s
N O>
c =i
CD ^^
CD
1
c~
o '~p
st
^ -S
^^
o
^
to
o
CD
C
CD
•g
O
It
o ^
£
^"
o
1
Q 0 Q Q Q D •*
•z. -^ z z z z i-
Q D Q P Q °- Q
2 Z 2 - Z ^ Z
CO CD ^ T T ••- T
Q P Q Q Q Q Q
2 - 2 Z 2 Z Z
Q Q Q D Q Q Q
2 Z 2 Z 2 Z 2
Q Q Q Q Q Q Q
Z Z 2 Z Z Z 2
•^ co Q Q Q o P
h- in z Z 2- -
co co
^. ^ O O - o
CM D CO CO Q V V V
p p p o
V V V V
D Q Q Q
Z Z Z Z
Q Q Q Q
Z 2 Z Z
°g Q Q Q
O co
i- i- C35
CO CO CO
c\i co co co
CO Cvl C\l C\l
O O O O
Q
Z
Q
Z
Q
p
V
Q
Z
O
z
Q
CO
CO
co
C\I
0
D
Z
p
V
in
in
p
V
Q
Z
Q
p
V
f-
co
CO
§
Q
Z
o
V
CD
CD
O
v
p
v
Q
Z
CD
co
co
C\l
o
p
V
p
'v
r-
iri
p
v
p
^V
Q
Z
2
co
co
§
•*
c\i
D
Z
o>
o
v
o
z
Q
z
o
co
C\l
CO
O
T3
I
&
0)
Q"
2
co
CD
(D
63
-------
0)
O)
T~
"5
"c
CD
O
2
CD
0)
U.
0
0>
Q
CD
^
co
CO
CD
CO
"CD
<
CD
1
i
C
2
O
"o
V)
CO
CD
•
a
0)
re
0*
CO
b
I
z
0
z
-1-
1
d
z
LU
O
CO
LL
CD
T3
it
co
£>
Alkalini
£.
;g
1—
o
^
LU
X
O
2
LJ
5
O
a.
1
O
Q
.•&•
1
c
6
LU
Q.
0
"""
I
1
^)
i
B,
3"
"o>
£^
— '
s
E.
2-
J[
1
s
z
~
^j*
~^
-§
3"
£
1
£
CM
CO
LO
o
^
CM
CM
CO
^.
O
O
?
CO
d
oo
d
CM
cn
d
in
CM
^~
o
co
CM
CM
3
CM
Jf
CO
G
cn
CM
CM
CM
s
UJ
o
°
CO
r^
CM
o
o
o
3
CO
d
CM
d
co
d
cn
00
*~~
CD
1
OJ
CO
5
G
O
8
cri
LO
CO
d
o
.
?}
o
o
o
^
o
d
CO
d
co
d
00
cq
CM
CM
d
T-
^
0
cn
CM
CD
cn
8
d
o
^~.
CD
O
O
O
?
8
CM
co
•r—
d
co
CM
d
£
r-.'
1
8
d
C\J
5
CM
CO
00
cvi
CO
d
o
r~-
o
v
o
CM
d
in
CM
CO
in
T-
d
8
d
I
^
§
•
cn
f-l
5
CD
O
CO
CO
CM
co
Oi
0
^
o
.
eP
in
d
o
?
8
CM
O
CO
^p
d
oo
CO
d
CM
"r~
in
h-.'
CO
^
?
CM
^f
co
G
(M
CO
O
^
co
cn
CM
o
o
o
?
1
CO
r-.'
CM
o
co
CM
o
CO
co
CO
d
00
CM
oo
CM
CO
(M
^f
CO
G
CM
CO
g
CO
?
d
oo
CM
O
O
O
O
?
O
co1
o
co
CM
o
£
o
§
CO
i
'
O
d
o
CO
G
CO
CM
O
en
CO
g
d
CO
o
Y—
O
o
o
?
s
CO
•*
CO
T—
o
cn
o
o
co
00
1
CO
en
cri
cn
CO
G
CO
CM
O
1
p
o
d
o
co
T_
O
?
o
?
1
cn
CD
CM
CO
o
CM
in
o
cn
CM
in
co
g
en
CO
cri
in
co
G
CO
CM
O
CO
CM
CM
O
CO
o
^
(^
CM
O
O
O
O
?
CO
CM
^
0
CM
P
O
CM
8
CO
CO
1
?
s
^f
CO
G
8
CO
in
co
CO
cn
d
o
CD
CO
^
O
§
8
co
CO
CO
o
^
co
o
co
cn
00
q
c\i
1
en
en
CO
CO
^f
CO
G
CO
s
cn
oo
en
CO
d
0
CD
CO
d
8
CO
5
^>
d
CM
o
§
oo
in
•
oo
D
G
CO
O
8
o>
cn
o
^
o
CD
in
d
2
o
d
I
CO
S
CM
d
co
o
o
cn
cq
N
i
CO
cn
cri
•>~
A
o
CM
CO
8
o
d
o
CD
in
T~
d
1
CO
o
CD
O
<$
O
o
co
CM
CO
o
co
cri
en
CO
G
CO
CO
O
S
CM
CM
in
CO
d
o
CD
in
d
CM
in
d
8
in
d
T—
d
g
o
o
en
CO
cn
•
cri
CM
CO
O
cb
in
S
o
?
o
CD
O
d
^
d
OJ
CO
CM
in
d
in
o
2
p
•
CO
CO
cri
Q
G
co
O
•* m
co co
co co
CO" ^
0 0
? ?
o o
CD CD
O CM
d d
^
d z
•^ §
T- CM
CM CO
i- cn
d d
oo i-
o co
O i-
So
in
0 0
^ cn
S t"i
0 CM
' ^~
cri co
CD
W
G o
CO CO
CO CO
O G
§
0}
^
ca
co
o
T3
0)
t)
I
T3
O
C
CO
CD
64
-------
§
0
3
C
"c
o
o
o
o
"5
1_-
0
"c
0
O
E
0
•o
0
LL
0
c
0
Q
0
£
"co
CO
0
CO
"CD
c
^
"CD
i
•o
c
1
O
"5
CO
0
a:
01
00
0)
3
lloroform
O
CO
c
CD
0
.c
o
b
CM
6
CO
c
(0
£
o
g
o
.c
9
-
CO
c
CO
£
m
2
o
.c
o
9
CM
T-
h-
co
c
f£
"S
2
o
o
9
T—
T-"
CD
b
.C
O
^,
,c
>
c
CO
O)
o
e
Q
i
J
1
i
1
I
^-^
1
*•—•"'
I
i
O> O 9 Q Q Q
ci ti -^ -z. -z. -z.
^. q CJ q q Q
^ 'v 'v V 'v z
in co o> cd CM i-^
Q Q Q Q Q Q
Z Z Z Z Z Z
«P ^ «> CO CD CO
& 8 8 ^ « W
Q Q Q D Q Q
Z Z Z Z Z Z
[^ (D g ^ CM Tf
o c> 5 z o d
m o i- co o i-
CM Cvi CM CM CM CM
CM D 5 CM
< CD r CM o <
co -A -A -A -A w
CD O O O O CD
en Q q q q
^ ^ ^
^t P CM CO «?
^ V ^ ^~ CM
co °° °! t CM
co ^ ^ $2 a>
Q Q Q Q 9
Z Z Z Z -
o ^" ^" co co
co W r^i d in
T- T- CM •* CO
Q Q Q Q Q
Z Z Z Z Z
5 2 i 2 ^
O5 O> CO O> O
W CO CO CM CM
O
i- 05 in
w cn c/)
CD CD O O in
CM CO CO CO CM
CO CM CM CM CO
CD 0 O 0 CD
Q D Q Q
Z Z Z Z
^t CM Q T
1C i CM Z Ji
•* CM Q 2
CM -^ Z P
9 Q Q Q
^Z Z Z
0 - Q £
m Q Q co
CO Z Z CD
CO O) --. _,
CD CO < <
co c> ^" ^
Tt
T- ^ in co
a>
CO
T- CM CD
co 13 CO
< O = D
CO CO CO CO
CD 0 O O
a
Z
CO
Q
Z
Q
Z
O
z
Q
Z
o
s
CM
CM
f-~
CM
CO
O
Q
Q
Z
Q
Z
Q
Z
q
'v
Q
Z
8
oo
CO
CM
Q
0
co
O
Q
Z
q
CM
O
Z
CO
Q
Z
z
CM
CM
W
CD
w
co
O
Q
Z
q
'v
q
'v
Q
Z
Q
Z
O
CO
CO
d
CM
CM
co
co
CD
0
0
o
c
Q
co
0
65
-------
I
T3
0
D
C
§
o"
O
o
CM
>^
-3
jjj"
CD
O
E
CD
T3
CD
LL
^
c
,
"CD
c
L_
0}
^n
5
i
T3
C
I
0
"5
•*-*
3
CO
CD
£
•
O»
CO
0)
.Q
CD
5
£
o HT
|1
o "^
co
c T
CD =d
2-
03
Q>
L_ O)
o _i
^ "^
o
1
CD
C
a
n "p^
1 I
Q
C\l
^~
c —^
N ^)
CD 3
m
CD
3
o
2 ^
H a
§
•e
8
CD
C
CO
.c
o
li
.y 3
H
^
"
Q
i
oPQQQQ •*QQQci
•r^^ZZZZ WZZZ^
qqqQOQ pqqQq
V1v1vz'vz 'v'v'vzv
•*^QQQO ^Pgpoq
PPQQQQ pqqqq
^^ZZZZ 'vVVVV
QOPPQO OOOCTO
z'v^/^2'^ V V 'v ^~ 'v
QQQQQQ QQQQQ
zzzzzz zzzzz
•qqQQ '".qrocNih-;
o
T- en in
CO CO CO
T-T- '-o coOCDOm
CVID Qc\i c\icocococ\i
OOOOOC5 OOOOO
QQQQQQQQ
zzzzzzzz
Oqq OQO qo
V 'v V V "v ^
QPaOjQQQp
z-zco'zzz-
Q Q Q
Z Z Z
QQQQ
ZZZZ
o o o
o o
V V V
V V
QQQQQQQQ
ZZZZZZZZ
P Q f~~ Q Q Q Q
T, 2 •<- z Z Z Z
i- (N
m D
< 9 ^
O)
co
O
co Q
- ?j o
co
co
co C5
co
COCOCOCOCOCOCOCO
OOOOOOOO
CD
B
CD
Q
T3
O
C
66
-------
T3
0
3
C
§
O
8
CM
"5
"7.
0
•*-•
0
O
0
•o
0
LL
0
0
Q
0
"co
E,
Q
1
CM
CO
T-
m
in
Tf
d
CO
£
8
d
V
oci
T-
o>
CO
d
1
d
CM
8
d
V
I
CM
O
d
CM
d
CM
w
O
en co
d m.
T- O
CM CO
8 8
d d
CM CO
•* CO
l~- 00
N in
% 8
d d
h- o
CO °>
*- CO
en i-
CO CO
d d
G) C)
V V
CM CM
O O
d d
V V
§5
CM t-
O 0
d d
S co1
d d
5
O 0
CO CD
co m
d cri
O CO
d d
CO CM
CD in
in co
O CM
d d
CO •*
co en
oo r^
co oo
d d
CO m.
d w
§CM
Q
d d
V V
•i- to
•^ co
SCM
0
d d
00 T-
CM i-
d d
O
0 O
CM
in
cri
s
CO
d
CO
CO
CD
•
d
in
CM
co
d
1
0
CM
8
d
V
o
CO
en
o
d
CM
d
o
CM
CO
CD
^
CM
d
CM
£
8
d
q
CO
JM
d
q
V
I
o
V
en
co
g
d
CO
CM
o
g
ci
CD
co co
d d
^ CO
d d
in co
co •*
CM CVJ
5! 8
o o
d d
CM CO
CD T^
CO CD
f2 en
d d
8 - W T-
o T- co
d d -r-1
CD CO CO
Tt* co in
CO T— CO
CM CM ^
en co m
00^
do00
CD i- CO
T- CD 1 ^J
CM N - i- <
CO CO W
O O O
67
-------
^_
o
0
CN
-3
"c
CD
O
2
CD
U.
Jn
f—
CD
Q
CD
"m
CO
CD
CO
p-t
CO
c
32
co
^
•O
1
CD
•s
id
CO
CD
K.
co
m
_0>
w _J
co ,§,
b ^>
m o)
I E
z •=•
CO
0 _
Z IT
^ -S
o
LU
x IT
o "a,
^ ^
CD
U_
1 i
~5 p
co -£-
1 i
•& ~
T3 D
I 1
H""""" '
UJ ~T
x S.
? I
O
Q
CO
.Q
2 j
Q- f*
• e
§^
^
U
u u^
c i
o •—
O
^ 5.
I
Q.
Q
i
co
CM
cq
O
?
^
co
o
CD
§
in
CD
^~
CD
S
CD
O
in
^
CO
CD
CM
S
CO
CM
CO
G
N
in
N
O
$
CO
o
CD
|
CD
S
cn
cn
CD
T—
CD
CM
CD
cn
^~
,_
Jo
CM
CD
l~-
G
o
o
q
V
O)
0
0
?
0
CD
CO
CM
CD
S
co
in
T-
T—
O
CM
ci
$
in
m
c-
co
t
CD
O
co
cd
^
lO
o
?
o
^
0
CD
cn
CM
CD
cS
CM
R
^~
o
CD
CO
CD
CO
P:
m
CM
co
o
CM
5
CO
CM
CM
m
CD
o
°
in
CM
CD
CD
fo
CM
CO
^~
CO
CD
co
CD
§
O
^~
o
o
CO
CO
Is-
C1-GD1
CM
in
in
o
o
V
o
°
in
CD
<
O)
CO
CM
CO
cd
^f
CD
^
CD
CO
CO
T~
CO
o
CM
Is-
O
CM
G
CO
CM
00
h-'
O
i
_
^
o
CD
8
CD
O
cn
CO
S
CM
O
CD
CO
CM
CD
S
CM
?
O
CO
Is-
CD
CM
CO
G
cooco-i-comcococo o^^wS^^cj
cj>cocor^^-oinincn •cjpjr-xr^.r^-co
1-CMCM-S----1-CMCO--- ^•*tcn^'COincMO ^"T— COT— co^— CM
CM-^T-COCM'»~T~CMCM T~ CO ^~ CM i— T~ -CM
dddcDCDddcDCM dddddd°d
S^-cocOfYsrtvCMOi— ini^---.^!— cocoi^
coincoSiScncnT- I-COSKCOCOT-CMO
COCMt-CDggi-7--^ COt-goOOOCD
rot^-oscMCD'a-'-coN cncoincO'-cjj'a-co
T-:Coco'co't^CMcicOTt [x.'o^ri^^oT-'
coh^coincococor^cn ^cocor^choioiT-
COCMCOCOCMCOCOCOT^ COCMCpCMCpCOCOCO
P,°cococncMOCDin cocooocncooocnco
lx!lrr--oinco-*
co
co
0
c
<
"D
s
o
ft)
\u
^3
•g
C
Q
"Z.
o
•z.
^
.C
1
68
-------
1
.c
0)
c
o
o
^_r
0
o
CM
_>*
^
_
&
to
O
2
0)
TJ
0
LL
0)
c
Q
0
to
CO
0)
CO
"CD
<
B
"co
•6
2
0
M—
o
CO
o>
£
.
CO
00
CD
.a
E
1 i
o
co
c
0>
£
o
li
o a.
9 ~"
6
i
(8
r-
§**
_ 1
0 ^)
€^
O
••-'
c
.C
•J?
o _^
1 ^
9 ~"
CM
"^
1-
o
c
CO
£
CD
O ^j
P
O
^"
CO
6 |
c'
^
c
"§, -£'
I
O ?
° ^
Q
1
0 § Q 0 O O
g ^ Z Z Z Z
§^0000
° " z z z z
CM CM l-» in O •*
co m o) o co in
•* m r^ i^ CM T-
O O Q O O O
Z Z Z Z Z Z
co m 05 i^ m 05
CM in in oo m. ^
co m co i- in CM
O O Q O O O
Z Z Z Z Z Z
d d to Z ,_; Q
<<<<<<
Z Z Z Z Z Z
CM 13 O CM
G O O O O CD
o Q O O
^ Z Z Z
goo J
CO CO 00 i—
Q O) O4 IO
T~ O) O) O)
0000
z z z z
CM O CM CO
^2 Cvi CM CM
O O O O
z z z z
5 a < <
d d ^ ^
< < < <
z z z z
gj O T- CO
°V co co co
< O CD O
CO CO CO CO
CD 0 D D
IO
cvi
CD
in
^
O
z
T—
00
Z
^
z
C2-GU2
O
Z
3
CM
CM
O
Z
00
CD
O
z
Z
<
Z
s
o o o o
z z z z
ro r^ co ^*
S53*
^" CM T~ ^~
in CM CM °?
T- T- 1- CO
O O O O
Z Z Z Z
§O 1^ •*
T- 00 •*
^- in •* CM
O O O O
z z z z
§ | w
*• CM ^ tD
Q O O O
Z Z Z Z
Q oo 0 ^
2 3 Z 5°
o o o o
z z z z
9 S < <
d d z z
< < < <
z z z z
o>
CO
T- CM CD
CO 3 CO
< 0 r: o
CO CO CO CO
CD O O O
O
Z
in
in
CO
r-.
CO
O
Z
co
d
O
CO
oo
<
Z
CM
CO
O
0
Z
o
«
CM
O
Z
in
in
O
co
d
<
Z
C3-GD2
O
z
?
q
'*
O
Z
CO
O
Z
i
<
z
to
C3-USGS
O
z
Q
Q
o
z
§
Q
Z
1
<
Z
8
<
co
CD
co
CO
o
t5
I
TJ
O
CO
69
-------
8
1
•—
c
8
0
o
CM
.>»
— 3
1
O
S
0)
-a
CD
LL
CD
C
CD
Q
CD
£j
"co
CO
CD
CO
"CD
C
^
"(0
•6
c
1
O
CO
CD
OL
CO
CO
Si
S
0
c
CO
It
o ^^
2
CD
C ^~T"
CO <
13 O)
o ^
H
co
c
CO
.c
2 "5i
O ,3.
"0
>-
CD
C
as
£
CD
2 ST
12
o — '
Q
CM
T—
CD
S ?
gl
CD -3
m
CO
•g
_g
.c
o
£3,
CD O
|— ^.
C
$
CO
O
CD
C
CD
f-
o
o
O z±
H
^
Q
"33
Q S Q Q Q D
Z ,j Z Z Z Z
Q Q Q Q Q Q
Z Z Z Z Z Z
"? "5 Q Q Q Q
2 S z z z z
Q Q Q Q Q Q
Z Z Z Z Z Z
Q Q Q Q Q Q
Z Z Z Z Z Z
Q Q Q Q Q Q
Z Z Z Z Z Z
-------
3
C
O
O
o
o
CN
2r-
-3
fe
"c
0)
0
CD
CD
LJ_
L_
«§
CD
£
TO
00
CU
CO
"CD
c
a5
|
c
s
M —
o
CO
CD
OH
co
CO
.2
S
co
CO
ns
c
D)
^
£
O
<3
CO
g
i
_i
• — •
1
, .
E
^
—
_i
-I
ii
^
cr
-I
5
f
j~
£
1
o
o
iri
d
t-
CD
CD
oo
in
0
d
co
co
T—
in
in
d
d
in
8
d
i
CM
O
d
8
d
CM
CO
CD
CO
o
d
in
s
o
d
CM
8
d
in
CO
o
d
V
< 0.003
CD
O
d
f-
CM
d
5
CD
O
g
d
CD
8
d
V
CM
S
in
o
o
d
O)
CD
'-
< 0.035
< 0.003
0.
o
d
CD
CM
d
0
cn
CM
d
o
d
cn
in
cn
o
d
o
CO
cn
CO
d
o
8
d
§
o
d
T-
CD
CM
d
CO
d
CM
c3
d
CM
co
d
T—
in
CM
d
CO
£
*-
1
co
8
d
V
in
CM
o
d
CM
d
5
CD
0
cn
d
CO
•t
ci
o
K
CD
i
CD
d
CO
d
< 0.003
8
CM
0
d
2
d
o
CM
O
CM
in
CM
d
CD
S
in
8
o
cn
co
in
o
< 0.035
< 0.003
00
d
8
d
m
00
o
CD
CM
CD
O)
d
CD
O
O
d
V
CO
in
in
o
o
o
O5
m
o
••-
< 0.035
< 0.003
CM
co
8
d
in
CO
o
USGS10
CM
O
d
8
o
d
V
cn
5
CM
o
§
co
s
'-
< 0.035
< 0.003
8!
o
d
CO
o
USGS11
CD
d
cn
8
d
co
CM
CD
o
O
O
?
co
o
< 0.035
< 0.003
0
CM
8
d
o>
CM
o
USGS13
CM
iri
q
CD
CM
I
o
t^
CO
CD
r-.
o
in
8
d
V
< 0.003
co
in
co
o
d
CO
CO
0
CM
CD
8
CM
O
o
d
g
o
o
o
co
"
o
fc
o
d
CO
o
o
d
V
CO
CO
co
< 0.002
CM
O
CM
O
s
CO
8
d
CO
co
m
o
o
o>
co
00
S
o
0)
d
CO
o
d
CO
CT
< 0.002
cn
o
CM
CM
O
CO
CO
00
o
d
0
r-
CM
§
o
CO
CM
CO
o>
o
in
8
d
V
8
d
CO
S
d
CM
o
USGS4
CO
CM
0)
CM
O
d
00
m
T—
OO
f-
CM
O
O
CM
CO
CM
CO
O
m
CO
o
d
V
< 0.003
CO
d
CM
O
USGS5
CO
d
co
E5
T—
o
o
d
o
o>
o
o
•<*
d
co
8
d
in
o
d
cn
o
m
CM
i
CD
r-
CO
o
^
co
CM
CM
CO
§
o
cri
< 0.003
co
d
cn
d
N
o
CO
co
CD
CD
CO
CO
d
CM
r-
C7)
f-
5
d
co
in
8
co
S
d
< 0.003
CO
S
CD
O
d
co
o
C3-GU2
fe
d
0
d
in
o
S
d
co
8
00
8
o
d
< 0.003
cn
co
d
•a-
o
T—
co
0
CD
m
CM
d
m
§
i--
S
d
iri
CM
CM
CD
CM
8
o
d
V
cn
iri
S
d
co
o
o>
en
C3-USG!
r-.
O)
O)
d
o
d
CO
8
m
8
d
CM
si
^
CM
d
< 0.003
S
c\i
o
d
V
CO
o
CM
CO
0
"
co
d
in
S
CM
CD
O
d
S
CD
£
CM
< 0.035
< 0.003
co
CO
8
d
in
o
CM
D
CD
8
CO
CD
CM
d
co
a>
,_
d
co
CO
00
cn
CM
co
o
d
< 0.003
in
cri
8
d
i-
o
CD
CO
CD
CO
co
0
CO
co
S
d
cn
r-
co
^
c\i
iri
CM
co
o
CO
d
< 0.003
CD
CO
oo
s
d
00
o
o
CO
ci
CD
71
-------
Appendix C
Selected Parameters Through Time in Multi-level Samplers
73
-------
Table C1. Eh Values (mV) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97 Sep-97
Mar-98
Jun-98
Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
238.6
321.5
392.3
397.0
395.1
425.4
438.9
Dry
Dry
168.9
-486.4
22.1
34.7
359.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
133.3
-254.2
-542.3
108.2
-318.8
61.2
-189.9
NA
NA
NA
NA
NA
NA
NA
NA
NA
-498.3
-548.8
-551.2
-549.1
-324.0
-122.9
51.4
122.9
82.0
-46.3
-55.3
-31.0
60.2
67.8
233.0
294.3
425.3
416.9
398.4
394.7
352.8
154.4
134.9
384.6
-264.8
-20.8
-106.8
255.7
NA
NA
NA
NA
NA
NA
NA
NA
NA
145.2
98.2
-184.3
114.6
-25.3
29.7
95.7
NA
NA
NA
NA
NA
NA
NA
NA
NA
-348.7
-338.5
-266.8
-196.9
-77.5
40.6
-0.1
130.0
74.4
13.1
-5.9
14.7
58.5
86.5
245.4
345.8
381.4
356.8
365.1
364.7
360.6
NA
NA
NA
NA
NA
NA
NA
28.0
163.5
Dry
160.7
139.2
99.1
94.6
353.6
313.8
NA
NA
NA
NA
NA
NA
57.8
170.6
-13.8
10.8
-45.8
35.7
-60.6
-53.0
72.8
79.9
-91.8
-86.3
-63.3
50.5
-15.2
17.9
94.8
120.6
73.0
-13.8
-29.0
10.5
111.9
94.0
222.0
355.9
441.3
412.9
203.5
402.3
356.0
NA
NA
NA
NA
NA
NA
NA
-144.5
135.6
137.1
130.3
110.0
90.5
99.0
328.5
344.3
NA
NA
NA
NA
NA
NA
NA
230.2
44.0
108.7
146.4
-51.1
-47.3
-43.5
-126.8
73.5
-228.5
-236.0
-156.2
-43.6
41.6
73.0
120.2
197.1
118.1
60.5
96.3
146.1
131.8
159.9
199.5
257.7
409.1
393.6
385.1
387.3
344.3
NA
NA
NA
NA
NA
NA
NA
-4.8
116.6
96.1
74.0
49.7
30.4
48.7
90.9
327.1
NA
NA
NA
NA
NA
NA
NA
-66.4
19.5
-45.6
-67.9
127.7
-55.3
-8.5
-73.9
-56.7
-467.6
-421.0
-307.6
-206.9
-95.3
-64.0
-66.2
123.9
101.3
49.1
-63.9
-16.6
46.3
77.7
199.9
233.7
456.0
441.3
422.2
428.5
326.5
NA
NA
NA
NA
NA
NA
NA
17.6
70.9
65.8
63.0
62.2
48.1
68.2
284.0
316.0
NA
NA
NA
NA
NA
NA
NA
-81.2
-165.3
-13.5
-153.4
-159.7
-145.6
205.9
176.3
25.8
-448.6
-554.3
-538.7
-477.0
-150.0
-121.3
-109.0
148.1
96.1
-48.5
-33.5
60.7
53.6
82.8
375.7
415.6
401.5
381.4
364.2
336.4
285.9
NA
NA
NA
NA
NA
NA
NA
346.2
288.2
256.4
272.7
256.5
252.5
322.6
338.3
316.7
NA
NA
NA
NA
NA
NA
NA
297.0
278.2
218.2
233.9
-11.3
-34.1
21.2
-47.5
260.0
-221.7
-202.6
-156.6
-135.3
94.1
100.2
110.7
177.8
214.4
127.2
125.7
148.8
199.4
80.9
333.4
526.0
529.4
525.5
495.4
506.6
523.5
NA
NA
NA
NA
NA
NA
NA
220.2
125.8
116.4
105.2
86.7
78.1
102.4
315.5
326.3
NA
NA
NA
NA
NA
NA
NA
267.9
35.7
88.0
66.4
-40.9
-38.3
-90.2
-2.9
235.8
-420.3
-367.3
-254.4
-107.0
-8.4
10.3
175.1
184.7
144.1
335.8
24.2
40.4
102.8
42.9
432.1
448.6
448.7
442.2
616.2
660.2
660.2
NA
NA
NA
NA
NA
NA
NA
183.6
138.7
133.9
116.8
76.5
77.5
90.8
387.7
182.6
NA
NA
NA
NA
NA
NA
NA
307.4
NA
214.6
128.2
-28.3
4.3
-63.4
-4.9
343.9
-379.8
-271 .6
-39.0
134.3
199.6
147.2
136.6
205.5
100.4
306.0
281.6
207.6
123.4
64.5
Notes: NA, not analyzed. Dry, no water.
74
-------
Table C2. pH Values through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97
Sep-97
Mar-98
Jun-98
Sep-98
Dec-98
Jun-99
Jun-00 May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
6.15
6.09
5.76
5.82
5.77
5.95
6.08
Dry
Dry
7.08
9.23
9.76
9.76
6.02
NA
NA
NA
NA
NA
NA
NA
NA
NA
6.39
8.74
10.19
6.98
9.78
9.74
10.25
NA
NA
NA
NA
NA
NA
NA
NA
NA
9.86
9.86
9.65
9.87
10.01
10.02
9.90
6.64
7.31
8.93
9.10
9.63
7.02
6.98
6.15
6.09
5.83
5.82
5.83
5.90
5.97
6.48
8.19
6.86
9.82
10.24
10.01
5.99
NA
NA
NA
NA
NA
NA
NA
NA
NA
6.55
9.32
9.99
7.03
10.05
10.16
10.21
NA
NA
NA
NA
NA
NA
NA
NA
NA
9.96
9.97
9.83
10.16
10.70
10.65
10.65
6.65
7.32
8.80
8.73
9.30
7.34
6.99
6.24
6.15
5.89
5.83
5.88
5.92
6.02
NA
NA
NA
NA
NA
NA
NA
9.53
6.30
Dry
6.36
6.46
6.77
6.82
5.90
5.95
NA
NA
NA
NA
NA
NA
9.09
9.96
8.27
7.98
8.60
7.82
8.27
8.81
8.49
8.78
10.08
10.04
9.97
9.88
9.71
9.55
9.39
6.66
7.49
8.99
8.91
8.71
6.92
7.02
6.27
6.17
5.83
5.83
5.80
5.83
5.89
NA
NA
NA
NA
NA
NA
NA
8.44
6.44
6.46
6.56
6.67
6.81
6.75
6.00
5.94
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
9.97
9.70
9.92
9.97
9.79
9.65
9.63
6.64
7.40
8.99
9.00
9.21
7.03
7.14
6.24
6.17
5.92
5.97
5.91
5.93
5.99
NA
NA
NA
NA
NA
NA
NA
7.48
6.80
6.90
6.97
7.13
7.26
7.01
6.83
6.06
NA
NA
NA
NA
NA
NA
NA
9.81
8.49
8.49
8.76
8.10
8.14
9.04
9.16
9.85
9.71
9.51
9.73
10.06
9.97
9.78
9.84
6.52
7.03
7.66
8.91
9.31
7.58
7.06
6.36
6.25
5.96
6.06
5.99
5.98
6.04
NA
NA
NA
NA
NA
NA
NA
7.25
6.76
6.84
6.93
7.05
7.37
6.91
6.6
6.08
NA
NA
NA
NA
NA
NA
NA
9.83
8.69
8.52
9.05
8.55
8.52
9.08
9.06
9.84
9.85
9.70
9.87
10.25
9.99
9.92
9.93
6.69
7.12
8.33
9.39
9.74
7.62
7.34
6.27
6.16
5.93
5.89
5.96
5.96
6.05
NA
NA
NA
NA
NA
NA
NA
6.73
6.73
6.76
6.79
6.87
7.00
6.86
6.10
6.01
NA
NA
NA
NA
NA
NA
NA
9.23
8.19
7.34
7.65
8.19
8.31
8.90
8.64
9.60
9.73
9.55
9.71
9.51
9.79
9.62
9.51
6.63
6.42
8.60
9.00
9.20
6.77
7.14
6.05
5.96
5.86
5.90
5.40
5.84
5.88
NA
NA
NA
NA
NA
NA
NA
6.31
6.39
6.42
6.47
6.60
6.75
6.59
5.94
5.93
NA
NA
NA
NA
NA
NA
NA
9.11
7.88
8.01
8.46
7.96
7.66
8.11
7.80
9.47
9.31
9.23
9.86
9.68
9.49
9.27
9.48
6.38
7.37
9.13
9.21
9.23
6.95
7.31
6.01
5.79
5.78
5.62
5.71
5.67
5.75
NA
NA
NA
NA
NA
NA
NA
6.33
6.36
5.90
6.12
6.41
6.73
6.35
5.90
5.84
NA
NA
NA
NA
NA
NA
NA
9.66
NA
7.80
8.17
7.62
7.19
6.78
7.49
9.80
8.78
8.48
10.12
9.72
9.67
9.72
9.73
6.55
7.66
9.57
9.83
9.84
7.37
7.85
Notes: NA, not analyzed. Dry, no water.
75
-------
Table C3. Specific Conductance Values (|iS/cm) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97 Sep-97
Mar-98
Jun-98 Sep-98
Dec-98
Jun-99
Jun-00 May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
375.0
510.0
807.0
747.0
364.0
212.0
156.9
Dry
Dry
287.0
169.1
239.0
213.0
263.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
285.0
103.4
126.7
239.0
341.0
341.0
270.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
101.7
106.5
145.9
201.0
324.0
271.0
224.0
138.0
218.0
390.0
442.0
255.0
233.0
266.0
304.0
388.0
622.0
548.0
378.0
211.0
200.0
237.0
98.5
215.0
162.1
313.0
261.0
208.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
256.0
1006
105.8
208.0
306.0
320.0
327.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
97.8
99.8
139.5
163.1
312.0
243.0
303.0
110.2
132.2
154.5
242.0
221.0
221.0
231.0
378.0
103.8
104.0
93.3
46.1
42.0
42.0
NA
NA
NA
NA
NA
NA
NA
131.9
261.0
Dry
282.0
3050
380.0
464.0
346.0
241.0
NA
NA
NA
NA
NA
NA
168.6
62.0
143.5
125.7
141.8
213.0
248.0
309.0
318.0
252.0
55.8
56.4
82.8
124.5
245.0
3220
202.0
86.5
1976
2140
257.0
300.0
193.7
205.0
391.0
508.0
472.0
304.0
221.0
209.0
220.0
NA
NA
NA
NA
NA
NA
NA
291.0
249.0
250.0
286.0
330.0
378.0
433.0
373.0
268.0
NA
NA
NA
NA
NA
NA
NA
261.0
1700
170.0
175.3
227.0
254.0
309.0
314.0
278.0
64.1
64.9
95.0
139.0
313.0
342.0
255.0
98.6
208.0
249.0
271.0
346.0
228.0
196.0
320.0
405.0
420.0
293.0
201.0
191.5
207.0
NA
NA
NA
NA
NA
NA
NA
239.0
90.2
97.6
123.8
201.0
273.0
390.0
90.1
238.0
NA
NA
NA
NA
NA
NA
NA
224.0
90.8
95.5
98.8
149.9
177.5
235.0
255.0
272.0
56.0
56.2
106.9
131.1
258.0
251.0
236.0
93.6
103.4
235.0
275.0
226.0
197.1
195.2
296.0
381.0
484.0
313.0
212.0
184.2
203.0
NA
NA
NA
NA
NA
NA
NA
220.0
189.4
196.5
214.0
227.0
252.0
319.0
250.0
204.0
NA
NA
NA
NA
NA
NA
NA
213.0
90.5
91.2
85.7
143.0
162.9
216.0
267.0
226.0
70.5
69.1
94.8
135.1
277.0
284.0
265.0
146.7
79.5
215.0
222.0
274.0
204.0
223.0
344.0
429.0
379.0
337.0
187.0
187.9
213.0
NA
NA
NA
NA
NA
NA
NA
138.2
95.1
100.7
122.4
155.5
219.0
259.0
213.0
192.0
NA
NA
NA
NA
NA
NA
NA
171.9
64.7
58.9
58.9
99.0
112.8
172.3
205.0
203.0
41.0
42.1
58.3
153.8
255.0
245.0
218.0
87.6
1105
154.6
194.1
233.0
1373
139.7
659.0
616.0
363.0
240.0
191.0
225.0
242.0
NA
NA
NA
NA
NA
NA
NA
364.0
290.0
299.0
315.0
345.0
370.0
346.0
220.0
219.0
NA
NA
NA
NA
NA
NA
NA
234.0
188.0
171 0
140.0
257.0
256.0
296.0
282.0
259.0
64.0
77.0
152.0
188.0
277.0
305.0
290.0
218.0
181.0
206.0
249.0
281.0
196.0
184.0
663.0
530.0
283.0
249.0
207.0
234.0
260.0
NA
NA
NA
NA
NA
NA
NA
335.0
341.0
350.0
357.0
368.0
333.0
209.0
210.0
253.0
NA
NA
NA
NA
NA
NA
NA
259.0
NA
258.0
286.0
397.0
340.0
320.0
263.0
221.0
99.0
135.0
236.0
257.0
248.0
271.0
226.0
250.0
204.0
274.0
230.0
270.0
256.0
209.0
Notes: NA, not analyzed. Dry, no water.
76
-------
Table C4. Dissolved Oxygen (membrane probe) Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level
Wells
Well ID Jun-97 Sep-97 Mar-98 Jun-98 Sep-98 Dec-98 Jun-99 Jun-00 May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
0.79
0.34
0.26
0.50
0.20
1.19
2.92
Dry
Dry
0.83
0.85
0.65
0.63
1.43
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.13
0.63
0.78
0.82
0.99
0.87
0.30
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.63
1.60
1.48
0.89
1.20
1.46
1.43
0.45
0.38
0.56
0.50
0.57
0.46
0.38
0.37
0.36
0.24
0.40
0.64
0.57
0.36
NA
NA
NA
0.41
0.36
0.25
0.50
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.42
1.29
0.48
0.64
0.32
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.40
0.18
0.31
0.23
0.24
0.36
0.25
0.10
0.51
0.48
2.57
3.01
0.86
0.67
0.92
1.11
1.19
1.41
1.47
1.60
5.50
NA
NA
NA
NA
NA
NA
NA
7.28
5.96
Dry
2.51
5.68
2.56
2.57
3.00
2.06
NA
NA
NA
NA
NA
NA
2.38
0.85
3.65
3.87
2.01
2.76
2.85
2.48
1 87
0.90
1.87
2.11
3.06
2.04
1.50
2.11
2.69
2.78
2.03
1.48
2.15
1.83
1.89
2.80
0.62
0.45
0.56
0.20
0.16
0.21
0.32
NA
NA
NA
NA
NA
NA
NA
0.34
0.36
0.73
0.40
0.44
0.24
0.43
0.50
0.38
NA
NA
NA
NA
NA
NA
NA
0.53
1.03
1.99
2.27
1.11
0.93
1.11
1.02
0.43
1.96
1.70
2.31
2.43
4.64
2.41
3.70
1.91
2.53
1.78
1.69
1.36
2.36
1.52
0.40
2.30
0.40
0.40
0.74
0.28
0.34
NA
NA
NA
NA
NA
NA
NA
0.34
0.40
0.35
0.34
0.30
0.30
0.35
0.43
0.43
NA
NA
NA
NA
NA
NA
NA
0.32
1.46
0.48
0.48
3.85
0.39
0.36
0.34
0.33
0.32
0.27
0.27
0.32
0.28
0.82
0.35
0.94
0.36
0.29
0.32
0.32
0.41
0.53
1.22
1.04
0.99
1.11
1.03
1.12
1.05
NA
NA
NA
NA
NA
NA
NA
0.62
1.08
1.15
0.91
1.12
1.37
0.67
1.31
1.19
NA
NA
NA
NA
NA
NA
NA
1.39
1.36
1.10
1.02
0.95
0.79
1.80
1.66
1.36
1.98
0.35
0.39
0.33
0.70
0.38
0.44
0.50
0.50
0.60
5.20
0.46
0.65
1.20
0.12
0.12
0.13
0.14
0.15
0.16
0.21
NA
NA
NA
NA
NA
NA
NA
0.23
0.19
0.15
0.14
1.65
0.14
0.14
0.30
0.18
NA
NA
NA
NA
NA
NA
NA
0.63
1.64
5.36
5.15
0.20
0.20
0.23
0.26
3.83
0.10
0.10
0.12
0.13
0.16
0.15
0.16
0.14
0.21
0.12
0.11
0.11
0.12
0.15
0.35
1.84
3.55
2.20
1.57
0.91
1.22
NA
NA
NA
NA
NA
NA
NA
0.07
0.21
0.25
0.18
0.17
0.30
0.13
0.12
0.14
NA
NA
NA
NA
NA
NA
NA
1.32
NA
NA
NA
NA
NA
0.43
0.20
0.78
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.61
0.54
0.55
0.53
0.69
0.70
0.81
NA
NA
NA
NA
NA
NA
NA
1.40
1.35
1.31
1.41
0.79
0.97
1.40
1.47
1.75
NA
NA
NA
NA
NA
NA
NA
4.74
NA
3.80
3.96
0.52
0.90
1.19
1.00
2.43
1.40
1.09
1.20
2.15
5.96
0.80
0.48
0.96
0.72
1.31
1.73
1.57
1.65
1.68
Notes: NA, not analyzed. Dry, no water.
77
-------
Table C5. Dissolved Oxygen (CHEMetrics) Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID Jun-97 Sep-97 Mar-98 Jun-98 Sep-98 Dec-98 Jun-99 Jun-00 May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
0.2
0.3
0.3
0.3
0.3
NA
NA
Dry
Dry
Dry
0.2
0.2
0.3
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
Dry
Dry
Dry
0.3
0.2
0.1
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.2
0.2
0.2
0.1
0.2
0.2
<0.1
<0.1
<0.1
0.1
0.2
0.0
<0.1
<0.1
0.1
0.2
>1.0
>1.0
0.8
0.8
0.3
0.1
0.4
0.3
0.2
0.2
0.2
0.3
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.1
0.3
0.2
0.1
0.4
0.2
0.2
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.2
0.2
0.3
0.2
0.2
0.2
NA
0.1
0.3
0.3
0.3
0.2
0.2
0.2
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.3
1.0
0.8
0.6
0.4
0.8
0.3
NA
NA
NA
NA
NA
NA
NA
0.1
0.8
ND
ND
ND
ND
ND
0.8
0.8
NA
NA
NA
NA
NA
NA
NA
0.3
1.0
0.6
1.0
0.0
0.1
0.4
0.1
0.2
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.1
02
0.3
0.1
0.1
0.0
0.1
0.4
0.1
0.2
0.2
0.2
0.1
0.1
NA
NA
NA
NA
NA
NA
NA
<0.1
0.1
0.3
0.1
<0.1
<0.1
<0.1
0.3
0.3
NA
NA
NA
NA
NA
NA
NA
0.3
0.3
0.2
0.3
0.2
0.1
0.3
0.2
0.3
0.3
0.3
0.3
0.2
0.2
0.2
0.2
02
0.3
0.3
0.3
0.3
0.1
0.2
0.2
0.2
0.3
0.3
0.3
0.3
0.3
NA
NA
NA
NA
NA
NA
NA
<0.1
<0.1
0.1
0.1
<0.1
<0.1
7.7
0.2
0.3
NA
NA
NA
NA
NA
NA
NA
0.3
0.3
0.3
0.2
03
0.1
0.3
0.1
0.3
0.3
0.2
0.3
0.3
0.3
0.3
0.2
0.1
02
0.3
0.2
0.2
0.2
<0.1
0.1
1.0
0.1
0.8
0.6
0.8
0.6
NA
NA
NA
NA
NA
NA
NA
1.0
0.3
1.0
0.6
0.8
1.0
0.4
0.6
0.6
NA
NA
NA
NA
NA
NA
NA
0.6
>1.0
>1.0
>1.0
0.4
0.3
0.4
0.6
0.6
0.8
0.2
0.8
0.3
>1.0
1.0
0.8
0.6
1.0
0.8
1.0
0.8
>1.0
1.0
0.2
0.6
0.8
0.2
0.1
0.2
0.1
NA
NA
NA
NA
NA
NA
NA
<1.0
ND
ND
ND
ND
ND
ND
0.1
0.1
NA
NA
NA
NA
NA
NA
NA
0.1
1.0
1.0
1.0
ND
ND
ND
ND
0.6
0.1
0.1
0.1
0.2
0.2
0.1
0.1
ND
0.2
0.1
0.1
0.1
0.1
0.8
0.5
0.7
0.4
NA
0.2
0.3
0.2
NA
NA
NA
NA
NA
NA
NA
0.7
ND
ND
ND
ND
ND
ND
0.1
0.7
NA
NA
NA
NA
NA
NA
NA
0.3
NA
NA
NA
ND
ND
ND
0.4
0.2
<0.1
ND
0.1
<0.1
0.2
0.1
0.2
<0.1
0.1
0.2
0.1
<0. 1
<0. 1
ND
Notes: NA, not analyzed. ND, not detected. Dry, no water.
78
-------
Table C6. Turbidity Values (NTUs) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97
Sep-97
Mar-98
Jun-98 Sep-98
Dec-98
Jun-99
Jun-00 May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23 5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
2.7
1.3
0.9
0.8
1.4
12.0
14.1
Dry
Dry
Dry
1.2
0.5
0.8
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.2
NA
0.4
0.4
1.2
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.6
1.3
0.7
0.7
1.1
0.9
0.3
2.6
6.4
0.5
0.5
1.1
6.7
5.3
0.8
0.6
0.5
0.6
1.5
2.1
4.9
36.4
21.2
36.4
0.6
0.4
0.7
2.7
NA
NA
NA
NA
NA
NA
NA
NA
NA
22.4
12.6
0.5
36.8
5.2
0.8
1.5
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.7
0.8
1.8
0.4
0.8
0.6
0.8
1.5
14.4
4.9
2.7
1.7
5.1
3.5
0.4
0.5
0.5
0.9
1.4
4.1
26.3
NA
NA
NA
NA
NA
NA
NA
24.3
13.2
Dry
12.1
32.3
7.9
5.6
9.7
3.3
NA
NA
NA
NA
NA
NA
NA
0.7
5.7
5.1
4.1
2.1
2.3
21
4.0
2.4
0.7
0.6
1.0
1.1
1.1
1.6
0.6
0.8
0.5
1.5
2.1
9.8
09
2.9
0.3
0.6
0.2
4.0
14.5
6.9
2.2
NA
NA
NA
NA
NA
NA
NA
1.6
13.4
6.5
11.2
3.2
2.7
0.7
1.3
0.8
NA
NA
NA
NA
NA
NA
NA
0.3
2.2
14.3
2.4
0.9
0.9
0.7
1.8
0.5
04
0.7
0.4
0.3
0.6
0.5
0.3
0.1
0.3
0.4
0.3
0.6
0.4
1.5
0.3
1.4
0.2
0.4
0.5
1.0
1.0
NA
NA
NA
NA
NA
NA
NA
0.8
24.4
20.J
20.8
14.9
8.5
3.3
30.4
0.8
NA
NA
NA
NA
NA
NA
NA
0.6
5.4
6.0
5.5
0.9
0.9
0.4
0.5
0.3
0.3
0.4
0.5
0.4
0.3
0.2
0.2
0.6
2.1
2.2
2.6
0.7
2.4
2.1
0.5
1.7
0.9
5.8
11.2
6.4
5.7
NA
NA
NA
NA
NA
NA
NA
0.3
13.1
6.0
8.5
5.9
3.3
1.2
4.6
0.6
NA
NA
NA
NA
NA
NA
NA
0.2
11.8
12.8
5.1
0.8
0.8
0.2
2.3
0.3
0.5
0.7
0.6
0.2
1.2
0.2
0.2
0.3
2.2
6.9
3.8
2.8
1.3
0.9
0.6
0.7
0.7
1.0
10.0
4.1
5.3
NA
NA
NA
NA
NA
NA
NA
0.6
19.5
20.6
11.3
4.2
3.3
1.2
1.0
0.5
NA
NA
NA
NA
NA
NA
NA
1.6
9.7
54.1
11.4
5.8
3.6
1.5
1.9
1.3
0.9
1.4
2.5
1.0
0.8
0.9
0.8
0.2
1.3
2.0
0.5
0.9
1.8
2.6
2.5
2.2
3.5
4.6
3.9
0.5
5.9
NA
NA
NA
NA
NA
NA
NA
0.7
6.5
3.4
2.4
1.7
0.7
0.4
0.2
0.4
NA
NA
NA
NA
NA
NA
NA
2.0
2.9
7.4
3.0
1.4
0.8
1.8
1.9
1.1
1.4
1.6
0.6
0.9
1.8
0.6
0.8
23.4
10.6
0.3
0.2
0.4
0.4
0.3
50.4
12.0
6.4
4.4
9.8
21.5
18.1
NA
NA
NA
NA
NA
NA
NA
1.4
3.8
0.6
3.0
0.9
0.8
0.2
0.3
0.4
NA
NA
NA
NA
NA
NA
NA
0.8
NA
9.8
1.8
1.7
1.6
1.0
2.9
0.9
3.1
2.1
1.0
0.7
1.0
NA
0.3
27.9
2.7
1.4
0.4
1.4
1.7
2.7
Notes: NA, not analyzed. Dry, no water.
79
-------
Table C7. Alkalinity Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97
Sep-97
Mar-98
Jun-98 Sep-98
Dec-98
Jun-99
Jun-00 May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
113
99
42
47
36
NA
NA
Dry
Dry
Dry
17
50
33
Dry
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
Dry
Dry
Dry
54
45
47
NA
NA
NA
NA
NA
NA
NA
NA
NA
11
13
15
12
49
49
43
31
22
64
77
74
36
49
106
91
57
53
91
53
51
11
20
24
19
45
29
49
NA
NA
NA
NA
NA
NA
NA
NA
NA
40
10
19
35
49
41
42
NA
NA
NA
NA
NA
NA
NA
NA
NA
12
13
10
9
34
38
38
38
23
23
31
39
30
36
81
74
37
41
31
40
50
Dry
Dry
Dry
23
76
30
58
76
160
153
163
67
170
122
61
39
Dry
Dry
17
Dry
87
57
66
67
52
61
57
70
87
89
77
63
7
9
10
52
63
86
58
34
46
63
67
55
28
34
114
87
45
56
39
45
53
NA
NA
NA
NA
NA
NA
NA
50
112
119
115
111
116
128
49
48
NA
NA
NA
NA
NA
NA
NA
61
69
56
58
65
75
82
89
78
9
6
42
15
72
92
77
31
38
66
52
89
44
29
50
37
41
49
36
51
41
NA
NA
NA
NA
NA
NA
NA
64
47
38
63
62
87
107
63
47
NA
NA
NA
NA
NA
NA
NA
59
36
28
29
50
44
72
70
58
11
5
8
24
40
72
53
35
22
44
56
61
47
32
96
80
51
42
55
40
49
NA
NA
NA
NA
NA
NA
NA
93
44
54
51
56
92
117
72
41
NA
NA
NA
NA
NA
NA
NA
77
32
29
25
36
45
79
78
82
4
4
4
18
70
96
74
27
14
32
57
64
51
47
108
92
51
56
58
55
60
NA
NA
NA
NA
NA
NA
NA
66
26
47
38
38
90
100
59
60
NA
NA
NA
NA
NA
NA
NA
58
27
32
22
46
33
69
72
75
8
7
10
15
64
88
80
27
45
41
76
67
35
45
79
72
56
55
49
49
51
NA
NA
NA
NA
NA
NA
NA
71
133
101
143
139
139
111
62
55
NA
NA
NA
NA
NA
NA
NA
93
106
101
101
115
95
122
119
108
7
7
20
40
91
103
103
81
66
52
80
75
42
30
67
62
57
56
55
52
54
NA
NA
NA
NA
NA
NA
NA
82
119
124
136
130
146
137
54
54
NA
NA
NA
NA
NA
NA
NA
84
NA
132
128
156
136
149
128
78
6
4
38
75
83
85
72
97
61
78
65
75
36
28
Notes: NA, not analyzed. Dry, no water.
80
-------
Table C8. Ferrous Iron (CHEMetrics) Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23 5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
Jun-97
>1.0
0.1
<0.1
<0.1
0.1
NA
NA
Dry
Dry
Dry
0.1
0.1
0.1
Dry
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
Dry
Dry
Dry
0.2
0.1
0.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.2
0.1
ND
ND
0.1
0.1
0.1
2.0
0.9
ND
ND
ND
>1.0
>1.0
Sep-97
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Mar-98
>1.0
<0.1
ND
0.1
ND
0.1
0.1
Dry
Dry
Dry
0.8
0.3
0.0
0.2
0.1
>1.0
>1.0
>1.0
>1.0
>1.0
>1.0
0.8
0.8
Dry
Dry
Dry
Dry
Dry
0.1
0.2
0.4
0.6
0.8
0.6
>1.0
>1.0
0.6
>1.0
>1 0
0.1
ND
0.1
ND
ND
ND
0.2
>1.0
1.0
ND
ND
0.1
>1.0
>1.0
Jun-98
NA
0.1
0.0
0.1
0.1
0.1
0.1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.6
0.6
NA
NA
NA
NA
NA
NA
NA
0.1
0.6
0.8
0.3
>1 0
>1.0
0.3
0.6
0 1
0.1
03
0.1
ND
ND
>1.0
ND
1.0
>1.0
ND
ND
ND
>1 0
>1.0
Sep-98
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.6
NA
NA
NA
NA
NA
NA
NA
0.1
0.6
0.6
0.3
1.0
NA
0.3
0.4
0.1
0.3
0.2
0.1
0.1
0.2
0.2
0.2
NA
0.4
0.2
0.1
0.1
NA
NA
Dec-98
NA
0.8
0.0
0.0
0.0
0.0
0.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.1
0.3
0.3
0.2
0.8
0.8
0.3
0.8
0.2
0.2
0.2
0.1
0.1
0.2
0.1
0.1
>1.0
0.6
0.6
0.2
0.1
0.6
>1.0
Jun-99
5.0
1.0
0.1
0.1
0.1
0.1
0.1
NA
NA
NA
NA
NA
NA
NA
10.0
4.0
6.0
6.0
3.0
6.0
0.8
1.0
0.4
NA
NA
NA
NA
NA
NA
NA
0.8
0.2
0.4
0.6
0.6
0.6
0.4
0.8
0.2
0.1
0.2
0.1
0.0
0.1
0.1
0.2
1.0
ND
0.1
ND
ND
0.8
2.0
Jun-00
2.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
NA
NA
NA
NA
NA
NA
NA
7.0
>10.0
>10.0
>10.0
>10.0
>10.0
>10.0
<1.0
<1.0
NA
NA
NA
NA
NA
NA
NA
<1.0
<1.0
<1.0
<1.0
5.0
9.0
4.0
7.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
2.0
<1.0
3.0
<1.0
<1.0
<1.0
<1.0
3.0
2.0
May-01
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Notes: NA, not analyzed. ND, not detected. Dry, no water.
81
-------
Table C9. Hexavalent Chromium (Hach DR100) Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level
Wells
Well ID Jun-97 Sep-97 Mar-98 Jun-98 Sep-98 Dec-98 Jun-99 Jun-00 May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
ND
0.35
2.50
1.10
0.50
NA
NA
Dry
Dry
Dry
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
Dry
Dry
Dry
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
0.75
>1.0
0.45
0.25
0.60
ND
Dry
Dry
Dry
ND
ND
0.35
ND
NA
ND
ND
ND
ND
ND
ND
0.50
0.33
Dry
Dry
Dry
Dry
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.04
ND
ND
ND
ND
ND
ND
0.04
ND
ND
ND
NA
NA
NA
NA
NA
ND
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
0.04
0.14
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
NA
ND
0.12
0.56
0.10
0.03
0.16
0.00
NA
NA
NA
NA
NA
NA
NA
ND
ND
0.02
ND
ND
ND
ND
ND
0.06
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.02
0.02
ND
ND
ND
0.01
0.01
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Notes: NA, not analyzed. ND, not detected. Dry, no water.
82
-------
Table C10. Ferrous Iron (Hach DR2010) Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97 Sep-97
Mar-98
Jun-98 Sep-98
Dec-98
Jun-99
Jun-00 May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
6.00
0.09
0.01
<0.01
0.01
NA
NA
Dry
Dry
Dry
0.01
<0.01
<0.01
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
Dry
Dry
Dry
0.02
<0.01
0.02
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.01
<0.01
<0.01
0.01
0.01
<0.01
<0.01
1.79
0.32
<0.01
<0.01
<0.01
1.20
2.20
3.04
0.75
0.01
0.01
0.01
0.05
0.16
<0.01
0.01
<0.01
<0.01
<0.01
0.01
<0.01
NA
NA
NA
NA
NA
NA
NA
NA
NA
2.53
<0.01
<0.01
1.84
0.10
<0.01
<0.01
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.01
0.01
<0.01
<0.01
<0.01
0.01
<0.01
2.29
0.38
0.01
0.01
<0.01
1.37
1.35
3.30
NA
NA
NA
NA
NA
NA
Dry
Dry
Dry
NA
NA
NA
NA
NA
3.30
3.30
3.30
3.30
3.30
3.3
NA
NA
Dry
Dry
Dry
Dry
NA
NA
NA
NA
NA
NA
NA
2.10
1.33
NA
1.76
0.98
NA
NA
NA
NA
NA
NA
NA
2.18
NA
NA
NA
NA
1.49
2.49
4.54
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.58
5.12
11.8
10.6
12.7
7.95
>3.30
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.71
0.67
NA
NA
NA
NA
NA
NA
NA
NA
0.33
NA
1.08
0.40
NA
NA
NA
2.60
1.46
4.90
1.79
0.10
<0.01
0.10
0.10
<0.01
NA
NA
NA
NA
NA
NA
NA
>3.30
0.66
0.77
0.97
1.54
1.62
1.62
1.60
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.07
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.74
NA
NA
NA
NA
0.43
1.22
2.89
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.15
8.40
9.90
9.10
10.9
7.80
9.50
2.66
0.80
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
2.10
NA
NA
NA
NA
NA
1.65
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.29
0.08
<0.01
0.01
0.02
<0.01
0.03
NA
NA
NA
NA
NA
NA
NA
2.31
7.10
5.80
5.75
0.29
10.0
7.00
0.29
0.06
NA
NA
NA
NA
NA
NA
NA
0.09
<0.01
0.05
0.10
2.06
3.53
1.16
2.17
0.01
<0.01
0.04
<0.01
<0.01
<0.01
NA
<0.01
2.08
0.19
<0.01
<0.01
0.02
1.54
1.35
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
3.95
10.9
8.40
12.2
10.8
7.65
5.02
0.25
0.05
NA
NA
NA
NA
NA
NA
NA
ND
NA
0.49
ND
5.52
5.74
6.80
4.24
0.03
0.85
0.93
ND
ND
ND
ND
ND
1.97
0.71
ND
ND
ND
2.04
1.49
Notes: NA, not analyzed. ND, not detected. Dry, no water.
83
-------
Table C11. Hexavalent Chromium (Hach DR2010) Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level
Wells
Well ID
Jun-97 Sep-97 Mar-98 Jun-98 Sep-98 Dec-98 Jun-99 Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23 5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
NA
NA
NA
NA
NA
NA
NA
Dry
Dry
Dry
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
Dry
Dry
Dry
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
2.50
1.45
0.70
0.38
ND
0.00
Dry
0.00
0.00
0.00
0.00
0.00
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
NA
0.66
1.20
0.39
0.22
0.56
NA
Dry
Dry
Dry
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.41
0.30
Dry
Dry
NA
Dry
NA
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.66
0.74
0.35
0.21
0.45
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.21
0.16
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.22
ND
0.66
0.46
0.20
0.40
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
0.10
2.50
0.90
0.20
0.30
ND
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
0.60
ND
ND
0.01
0.02
0.14
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
ND
ND
0.12
0.56
0.10
0.03
0.16
ND
NA
NA
NA
NA
NA
NA
NA
ND
ND
0.02
ND
ND
ND
ND
ND
0.06
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.02
0.02
ND
ND
ND
0.01
0.01
ND
ND
0.07
1.50
1.55
0.25
0.02
0.12
ND
NA
NA
NA
NA
NA
NA
NA
0.01
ND
ND
ND
ND
ND
ND
0.10
0.07
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
1.04
1.90
0.54
0.09
0.01
0.12
ND
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
0.01
0.04
NA
NA
NA
NA
NA
NA
NA
ND
NA
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
Notes: NA, not analyzed. ND, not detected. Dry, no water.
84
-------
Table C12. Sulfate Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97 Sep-97
Mar-98
Jun-98
Sep-98
Dec-98
Jun-99
Jun-00 May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23 5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
4.52
22.6
79.1
64.3
39.5
666
1.58
Dry
Dry
Dry
0.57
0.93
<01
16.10
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.68
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.1
<0.1
0.71
<0.1
<0.1
<0.1
<0.1
14.3
2.54
<0.1
<0.1
<0.1
3.74
1.00
4.71
22.0
77.5
69.9
55.1
28.6
16.0
5.65
<1.0
1.09
2.35
1.09
1.25
17.70
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.03
1.06
1.10
1.26
1.06
1.21
1.51
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.1
<0.1
9.40
1.02
1.09
1.14
1.35
13.6
6.28
1.29
1.23
1.50
1.80
1.93
15.5
45.0
80.8
59.3
29.4
26.8
16.8
Dry
Dry
Dry
15.90
<0.1
28.30
18.00
0.92
0.28
1.01
1.64
9.69
0.91
33.1
39.8
30.7
Dry
<0.1
9.27
Dry
<0.1
<0.1
<0.1
0.84
<0.1
<0.1
<0.1
<0.1
<0.1
1.12
3.08
0.51
<0.1
<0.1
<0.1
5.60
<0.1
<0.1
<0.1
8.86
0.53
<0.1
<0.1
4.47
1.31
<0.1
16.7
42.0
45.6
45.2
30.1
24.1
15.0
NA
NA
NA
NA
NA
NA
NA
1.38
12.3
13.5
15.4
19.1
19.1
262
39.3
23.8
NA
NA
NA
NA
NA
NA
NA
0.28
<1
<.1
<.1
0.20
<0.1
0.68
1.20
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
6.93
1.39
<0.1
<0.1
<0.1
1.12
1.33
9.29
31.2
64.9
43.1
36.1
29.8
16.7
NA
NA
NA
NA
NA
NA
NA
3.14
2.43
2.47
3.33
8.46
10.7
19.0
36.7
33.2
NA
NA
NA
NA
NA
NA
NA
5.51
0.65
0.70
0.71
0.35
<0.1
0.83
2.22
1.79
0.19
<0.1
<0.1
<0.1
<0.1
0.50
<0.1
7.62
3.37
8.80
<0.1
0.37
0.94
0.53
9.61
30.4
86.6
64.6
43.5
29.2
18.0
NA
NA
NA
NA
NA
NA
NA
2.10
7.00
7.14
6.91
5.89
10.7
15.0
32.6
29.7
NA
NA
NA
NA
NA
NA
NA
<0.1
<0.1
<0.1
<01
<0.1
<0.1
<0.1
1.02
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
7.69
1.16
0.38
<0.1
<0.1
0.57
<0.1
21.8
40.5
52.1
40.1
28.0
28.0
17.6
NA
NA
NA
NA
NA
NA
NA
9.90
11.0
9.47
10.4
9.38
8.51
21.6
31.4
21.5
NA
NA
NA
NA
NA
NA
NA
0.50
0.66
0.54
0.50
0.65
0.50
22.3
0.67
0.50
0.50
0.50
1.48
0.50
0.50
0.50
0.50
6.94
050
2.93
0.50
0.50
0.50
0.50
81.0
87.3
50.0
36.8
31.4
30.7
23.6
NA
NA
NA
NA
NA
NA
NA
14.6
<1.0
NA
3.36
1.65
5.80
12.9
25.4
24.5
NA
NA
NA
NA
NA
NA
NA
3.98
<1.0
<1.0
<1.0
6.09
4.73
<1.0
4.26
<1.0
<1.0
<1.0
<1.0
<1 0
<1.0
<1.0
<1.0
21.6
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
91.5
67.9
32.7
31.7
29.1
26.7
23.4
NA
NA
NA
NA
NA
NA
NA
17.6
2.64
4.71
4.72
5.98
9.98
19.0
26.0
26.4
NA
NA
NA
NA
NA
NA
NA
NA
<1.0
<1.0
<1.0
<1.0
322
2.04
2.14
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
17.8
2.30
<1.0
<1.0
<1.0
<1.0
<1.0
Notes: NA, not analyzed. Dry, no water.
85
-------
Table C13. Chloride Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97
Sep-97 Mar-98
Jun-98
Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
24.0
51.5
115.0
99.2
42.3
5.2
1.3
Dry
Dry
Dry
27.1
61.5
39.2
16.3
NA
NA
NA
NA
NA
NA
NA
NA
NA
9.2
15.4
12.4
41.1
76.9
40.3
28.4
NA
NA
NA
NA
NA
NA
NA
NA
NA
11.7
12.5
21.5
35.5
46.7
34.1
32.3
6.8
40.7
74.6
83.6
27.0
43.5
49.3
20.9
41.9
97.6
82.8
57.1
15.9
16.9
9.2
16.2
49.5
24.4
59.8
52.6
17.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
9.5
15.8
13.4
43.9
53.1
42.3
45.3
NA
NA
NA
NA
NA
NA
NA
NA
NA
14.2
15.5
25.1
34.7
45.1
40.0
40.3
5.8
20.5
27.2
47.2
38.9
43.3
45.9
60.6
86.1
74.2
59.1
24.3
17.9
19.9
Dry
Dry
Dry
24.5
24.6
16.6
22.7
49.6
6.5
6.5
6.2
33.0
17.1
61.9
52.3
33.7
Dry
16.9
15.9
Dry
55.7
36.0
26.5
29.4
8.6
9.1
8.4
28.7
36.1
52.1
54.9
48.9
12.4
13.7
23.4
24.6
48.6
57.9
28.5
4.1
53.1
39.2
49.2
62.7
53.5
51.1
51.4
75.8
69.3
28.4
15.9
17.7
22.4
NA
NA
NA
NA
NA
NA
NA
32.9
5.4
5.8
11.2
21.8
31.5
464
36.2
21.1
NA
NA
NA
NA
NA
NA
NA
33.1
6.9
8.3
10.3
24.8
31.3
43.0
47.6
40.9
7.0
10.0
16.1
24.0
46.8
43.7
36.6
3.9
40.8
33.5
37.0
52.9
44.2
36.0
36.7
56.8
65.0
34.5
16.3
16.9
24.9
NA
NA
NA
NA
NA
NA
NA
36.1
2.4
3.3
6.3
18.0
28.2
38.7
35.1
26.3
NA
NA
NA
NA
NA
NA
NA
34.8
9.2
10.0
10.6
22.7
26.2
35.3
37.6
30.3
9.6
12.6
26.7
21.2
42.1
32.7
28.0
4.6
21.9
78.9
60.4
37.4
35.2
40.2
36.0
56.1
79.7
38.0
20.4
16.0
25.5
NA
NA
NA
NA
NA
NA
NA
32.0
33.6
35.8
37.3
37.1
36.5
35.3
27.7
20.5
NA
NA
NA
NA
NA
NA
NA
27.9
11.8
10.5
9.0
23.6
27.9
33.5
33.1
32.9
13.1
15.0
24.3
28.2
46.0
44.2
42.6
32.4
15.2
45.1
39.3
48.1
40.0
46.6
47.5
64.0
61.0
57.0
15.8
15.4
25.2
NA
NA
NA
NA
NA
NA
NA
21.5
12.4
12.1
12.5
12.3
22.2
24.3
20.0
20.2
NA
NA
NA
NA
NA
NA
NA
25.8
6.3
6.0
6.8
15.5
20.3
0.5
25.9
26.5
7.5
10.3
5.1
14.0
34.1
34.7
31.3
6.1
35.6
32.4
26.7
36.0
38.2
34.1
97.1
93.0
40.6
19.9
11.1
19.7
31.1
NA
NA
NA
NA
NA
NA
NA
20.7
8.5
14.0
11.9
17.3
26.9
27.1
13.1
13.2
NA
NA
NA
NA
NA
NA
NA
23.9
6.1
6.8
6.1
23.4
31.4
26.2
23.7
29.4
10.3
15.9
26.1
29.9
29.2
33.0
32.7
8.6
24.6
25.0
30.6
38.3
34.6
31.8
90.2
69.1
27.6
17.3
10.0
17.5
271
NA
NA
NA
NA
NA
NA
NA
18.6
33.6
33.9
33.1
34.1
28.1
15.3
11.0
14.1
NA
NA
NA
NA
NA
NA
NA
NA
31.1
15.9
18.9
27.9
30.8
22.7
18.9
22.5
19.7
29.8
40.2
31.0
22.6
32.5
25.5
7.4
20.3
26.8
24.5
34.1
43.3
4U.O
Notes: NA, not analyzed. Dry, no water.
86
-------
Table C14. Nitrate + Nitrite Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97
Sep-97
Mar-98
Jun-98
Sep-98 Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
<0.10
0.54
3.49
2.78
1.07
<0.10
<0.10
NA
NA
NA
<0.10
<0.10
<0.10
0.93
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.28
3.55
2.76
1.59
0.42
0.91
<0.10
<0.10
<0.10
<0.10
<0.10
NA
1.01
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.10
<0.10
<0.10
<0.10
NA
<0.10
<0.10
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.10
NA
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.52
1.82
1.69
1.40
0.51
0.56
1.13
Dry
Dry
Dry
<0.10
<0.10
0.29
1.07
0.55
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.33
0.70
Dry
<0.10
<0.10
Dry
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.38
1.45
2.04
0.59
0.31
0.66
1.28
NA
NA
NA
NA
NA
NA
NA
<0.10
<0.10
<0.10
<0.10
0.15
<0.10
<0.10
0.58
0.29
NA
NA
NA
NA
NA
NA
NA
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.10
0.49
1.40
0.72
0.22
0.51
1.31
NA
NA
NA
NA
NA
NA
NA
<0.10
<0.10
<0.10
<0.10
0.10
<0.10
0.16
0.44
0.33
NA
NA
NA
NA
NA
NA
NA
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.14
<0.10
0.11
0.53
2.40
0.98
0.34
0.46
1.59
NA
NA
NA
NA
NA
NA
NA
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.27
0.27
NA
NA
NA
NA
NA
NA
NA
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.36
0.85
1.61
1.64
0.31
0.47
1.48
NA
NA
NA
NA
NA
NA
NA
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
NA
NA
NA
NA
NA
NA
NA
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
0.14
0.17
0.12
0.13
0.14
0.13
0.14
1.29
1.71
0.77
0.18
0.51
0.66
1.48
NA
NA
NA
NA
NA
NA
NA
0.34
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.47
NA
NA
NA
NA
NA
NA
NA
<0.10
0.85
1.23
0.33
<0.10
<0.10
<0.10
<0.10
<0.10
1.24
0.72
0.25
0.56
0.71
0.87
1.50
0.68
<0.10
0.17
<0.10
0.18
0.84
0.81
1.37
1.49
0.42
0.24
<0.10
0.78
1.60
NA
NA
NA
NA
NA
NA
NA
0.30
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.15
0.39
NA
NA
NA
NA
NA
NA
NA
NA
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
Notes: NA, not analyzed. Dry, no water.
87
-------
Table C15. Total Organic Carbon Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97 Sep-97
Mar-98
Jun-98 Sep-98
Dec-98
Jun-99
jJun-00 May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
1.60
1.86
2.43
2.39
1.65
NA
NA
NA
NA
NA
6.81
4.63
3.55
0.70
NA
NA
NA
NA
NA
NA
NA
NA
NA
2.19
6.71
8.68
375
4.46
7.59
4.19
NA
NA
NA
NA
NA
NA
NA
NA
NA
7.39
7.72
8.42
570
4.84
4.81
4.27
0.86
2.00
1.69
3.03
3.95
1.70
0.98
0.83
1.42
1.77
1.87
1.37
0.94
1.28
2.20
7.20
3.93
3.19
4.35
1.89
<0.40
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.94
5.54
8.49
4.28
3.81
3.34
2.05
NA
NA
NA
NA
NA
NA
NA
NA
NA
8.52
8.87
8.58
2.69
4.04
4.31
2.53
1.26
1.21
5.29
3.43
5.87
2.84
1.93
2.73
2.84
2.94
2.46
2.04
30.20
1.52
NA
NA
NA
4.35
2.35
1.48
1.33
1.99
3.43
2.93
2.88
3.19
2.67
2.81
2.21
2.04
NA
NA
1.93
NA
3.49
4.84
3.36
1.26
2.39
2.92
2.79
3.22
2.93
316
296
285
5.17
4.88
4.23
3.41
3.79
3.49
6.75
1.33
1.92
315
4.22
2.79
1.37
1.37
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
2.73
2.43
7.75
1 78
1.31
4.00
0.82
NA
NA
NA
NA
NA
NA
NA
1.46
3.96
3.64
3.45
3.02
2.57
2.60
2.34
1.68
NA
NA
NA
NA
NA
NA
NA
1.62
2.35
2.14
1.98
2.16
2.20
2.52
247
2.20
3.41
2.74
2.31
1.60
2.44
2.02
2.10
1.27
1.15
2.79
2.57
2.72
1.56
1.36
1 93
2.30
2.27
3.38
1 74
0.98
0.75
NA
NA
NA
NA
NA
NA
NA
210
1.67
1.66
1.75
1 58
1.99
4.23
1.40
1.25
NA
NA
NA
NA
NA
NA
NA
1.60
1.68
2.03
1 85
208
2.01
2.16
2.17
1.82
2.93
2.12
2.03
1.70
2.05
1.72
1.86
1.50
0.85
2.03
2.75
2.08
1.34
1.17
2.43
2.49
1.81
1.73
36.90
1 46
0.99
NA
NA
NA
NA
NA
NA
NA
3.50
2.24
2.21
2.13
2.11
2.71
2.37
2.17
2.21
NA
NA
NA
NA
NA
NA
NA
3.10
2.42
2.46
2.20
3.34
3.23
2.63
2.75
2.79
1.72
2.55
2.94
2.29
2.39
NA
2.19
NA
NA
NA
NA
NA
NA
NA
2.95
2.50
1.51
1.41
1.38
<0.40
<040
NA
NA
NA
NA
NA
NA
NA
0.69
3.87
3.84
3.52
2.53
1.56
1.96
0.99
0.74
NA
NA
NA
NA
NA
NA
NA
<0.40
0.68
0.71
1.20
0.93
1.27
1.04
1.00
1.01
1.52
0.89
0.96
0.69
1.07
1.07
1 49
0.51
<0.40
0.98
1.13
1.18
<0.40
<0.40
9.17
8.77
7.25
6.91
7.62
6.50
691
NA
NA
NA
NA
NA
NA
NA
8.58
14.85
13.12
13.45
12.38
11.57
10.62
7.78
6.76
NA
NA
NA
NA
NA
NA
NA
NA
12.42
813
4.43
13.74
13.72
10.22
8.53
8.15
6.88
7.17
12.82
14.69
11.64
11.39
10.96
6.23
6.77
12.08
12.21
12.09
8.19
9.86
Notes: NA, not analyzed. Dry, no water.
88
-------
Table C16. Vinyl Chloride Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97 Sep-97
Mar-98
Jun-98
Sep-98
Dec-98
Jun-99
Jun-00 May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-3
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
19.7
37.0
127
ND
ND
NA
NA
Dry
Dry
1.4
<1 0
7.3
3.5
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
10.7
<1.0
0.9
1.0
8.6
1.8
3.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
<1.0
<1.0
1.0
1.8
1.5
2.0
ND
1.4
8.3
5.6
1.6
1.2
1.4
20.0
28.3
29.9
0.9
ND
ND
ND
2.2
ND
1.5
1.1
3.8
2.3
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
2.8
ND
0.9
ND
5.0
1.7
2.3
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
0.9
1.1
2.1
1.1
1.3
ND
1.2
2.6
2.8
1.5
1.4
1.3
45.1
53.2
NA
ND
ND
<1.0
ND
2.2
1.2
<1.0
<1 0
3.5
ND
1.0
21.5
45.2
40.0
42.9
24.0
32.9
8.9
3.1
ND
ND
ND
1.5
<1.0
4.8
3.5
3.1
4.1
3.3
3.0
3.8
6.4
6.2
6.4
3.6
3.2
NA
ND
ND
<1.0
ND
ND
ND
<1.0
1.9
ND
ND
5.3
2.8
27.1
350
39.9
<1.0
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
10.1
ND
ND
ND
ND
<1.0
<1.0
ND
<1.0
NA
NA
NA
NA
NA
NA
NA
5.0
1.9
1.4
1.9
1.7
1.2
4.1
3.6
6.6
1.5
1.9
3.0
2.6
70
6.2
8.2
ND
6.1
10.1
8.7
6.7
5.3
4.6
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
4.0
2.9
2.9
2.6
2.2
1.8
1 6
ND
1.0
NA
NA
NA
NA
NA
NA
NA
2.4
1 1
1.2
1.0
1.4
1.2
1.5
2.2
2.9
NA
<1 0
1.0
1.5
3.1
2.5
2.9
<1.0
1.7
4.6
5.0
2.5
2.0
2.5
27.1
42.9
12.2
<1.0
ND
<1.0
ND
NA
NA
NA
NA
NA
NA
NA
12.0
2.9
2.3
3.0
5.9
2.8
2.1
<1.0
1.4
NA
NA
NA
NA
NA
NA
NA
4.6
1.6
2.2
3.9
<1.0
<1 0
1.4
1.8
4.3
<1 0
<1.0
1.3
2.6
16.9
13.6
1.3
1.1
3.1
9.5
5.0
4.0
2.6
3.8
38.2
52.1
5.5
ND
ND
NA
ND
NA
NA
NA
NA
NA
NA
NA
3.1
ND
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
2.8
6.6
1.8
51 4
38.2
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
70
16.9
17.5
14.6
10.9
3.9
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
4.4
2.2
1.8
1.6
3.2
2.1
1.4
NA
ND
ND
ND
ND
1.2
ND
ND
ND
<10
ND
ND
ND
1.8
ND
2.2
26.8
11.8
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
38.5
45.6
45.3
41.3
36.9
22.6
10.6
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
14.1
3.9
ND
12.8
13.5
16.0
23.2
35.3
27
3.2
8.5
14.4
NA
26.3
31.1
ND
ND
ND
ND
ND
ND
ND
Notes: NA, not analyzed. ND, not detected. Dry, no water.
89
-------
Table C17. c/s-Dichloroethene (c/s-DCE) Values (p.g/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97
Sep-97
Mar-98
Jun-98
Sep-98 Dec-98
Jun-99
Jun-00 May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23 5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
28.2
152
151
116
<1.0
NA
NA
Dry
Dry
5.2
ND
27.6
41.2
1.6
NA
NA
NA
NA
NA
NA
NA
NA
NA
8.9
ND
ND
2.0
52.2
5.7
25.9
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
5.5
2.4
8.9
ND
3.9
28.0
8.1
6.0
1.9
14.8
23.8
94.8
190
8.5
ND
ND
ND
2.7
ND
4.9
ND
18.7
26.2
2.3
NA
NA
NA
NA
NA
NA
NA
NA
NA
5.9
ND
ND
1.2
38.4
4.5
12.7
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
9.0
<1.0
4.7
<1.0
1.8
12.8
11.4
3.2
1.7
6.5
201
299
<1.0
<1.0
5.4
3.4
<1.0
1.3
7.8
5.0
5.3
6.8
7.6
9.3
53.7
3.3
2.7
3.0
6.3
3.3
14.6
6.2
3.5
5.5
6.7
5.8
7.0
19.2
9.3
5.2
30.6
<1.0
<1.0
<1.0
3.1
4.1
8.3
8.6
3.7
1.8
ND
3.3
8.1
12.0
20.9
ND
<1.0
21.9
15.9
15.4
23.6
2.7
39.5
152
227
5.4
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
47.9
1.0
ND
ND
ND
1.1
2.0
1.1
3.8
NA
NA
NA
NA
NA
NA
NA
21.3
ND
ND
ND
<1.0
1.4
3.0
3.5
2.8
ND
ND
ND
ND
6.0
10.9
2.5
ND
6.7
13.2
6.3
14.0
7.7
6.4
67.3
153
57.3
ND
ND
ND
<1.0
NA
NA
NA
NA
NA
NA
NA
31.0
1.2
1.2
1.3
1.1
1.3
1.4
ND
1.3
NA
NA
NA
NA
NA
NA
NA
12.8
1.2
1.1
ND
ND
ND
3.0
4.2
4.7
ND
ND
ND
ND
6.2
8.0
4.4
ND
2.7
14.4
13.1
8.1
5.4
3.2
63.6
173
136
21.0
1.8
ND
ND
NA
NA
NA
NA
NA
NA
NA
52.1
3.7
1.3
1.0
1.4
1.7
3.3
2.5
4.6
NA
NA
NA
NA
NA
NA
NA
20.2
1.7
1.1
ND
1.0
<1.0
3.8
5.4
7.3
ND
ND
ND
ND
7.3
8.2
8.1
1.0
1.8
25.9
20.2
8.0
5.9
3.9
164
287
39.9
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
40.9
ND
ND
ND
ND
1.4
ND
ND
7.8
NA
NA
NA
NA
NA
NA
NA
56.3
ND
ND
ND
ND
1.3
3.9
8.2
6.7
ND
ND
ND
6.9
570
18.9
7.8
ND
7.2
16.0
13.9
22.1
12.1
5.5
384
297
1.0
ND
<1.0
ND
ND
NA
NA
NA
NA
NA
NA
NA
104
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
6.1
NA
NA
NA
NA
NA
NA
NA
1130
<1.0
<1.0
<1.0
<1.0
<1.0
4.9
NA
7.7
ND
ND
<1.0
<1.0
<1.0
3.2
18.0
<1.0
13.0
10.5
18.3
24.3
2.3
2.5
206
90.6
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
87.1
3.0
3.3
3.6
3.7
2.0
<1.0
ND
13.0
NA
NA
NA
NA
NA
NA
NA
NA
298.0
ND
<1.0
1.4
3.9
18.0
34.3
51.4
ND
ND
<1.0
ND
NA
20.4
5.8
ND
38.1
74.6
16.4
18.8
2.9
2.9
Notes: NA, not analyzed. ND, not detected. Dry, no water.
90
-------
Table C18. Trichhloroethene Values (p.g/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97
Sep-97
Mar-98
Jun-98
Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22 5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
21.1
157
155
206
21.1
NA
NA
NA
NA
72.9
ND
0.9
ND
4320
NA
NA
NA
NA
NA
NA
NA
NA
NA
8.5
9.2
12.7
ND
3.3
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
1 1
ND
ND
ND
ND
ND
81.6
16.8
103
305
30.3
10.9
314
4110
1.9
1.0
2.4
1.0
3.5
1.0
501
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
2.5
ND
2.1
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
1.3
ND
ND
ND
ND
ND
17.3
201
330
26.7
14.1
10.4
833
3570
1.2
1.6
1.3
5.7
10.3
54.8
3674
4.3
ND
ND
ND
6.6
<1.0
13.7
23.7
747
ND
ND
ND
ND
14.6
<1.0
3.8
1.4
ND
ND
ND
1 1
1.4
3.4
5.5
6.1
<1.0
ND
ND
ND
6.2
2.4
ND
1.7
<1.0
1.0
1.9
NA
2.7
105
133
231
18.1
3.6
18.1
840
4815
NA
NA
NA
NA
NA
NA
NA
55.2
ND
ND
ND
3.0
5.8
15.7
29.4
321
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
1.6
1.1
1.7
• 2.7
ND
ND
ND
ND
1.8
ND
ND
ND
ND
ND
ND
ND
ND
12.4
57.7
140
90.5
25.7
47.1
495
4439
NA
NA
NA
NA
NA
NA
NA
216
1.2
1.3
1.3
3.7
4.5
9.5
17.6
122
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
ND
ND
ND
ND
1.3
3.0
ND
ND
ND
ND
1.2
ND
ND
ND
ND
ND
ND
ND
ND
4.3
40.3
132
154
50.2
44.4
438
3790
NA
NA
NA
NA
NA
NA
NA
242
ND
1.2
1.4
1.2
4.2
7.3
14.4
159
NA
NA
NA
NA
NA
NA
NA
1.3
ND
ND
ND
ND
ND
ND
1.5
3.0
ND
ND
ND
ND
1.0
ND
ND
ND
ND
ND
ND
ND
NA
3.6
170
316
64.9
14.6
10.0
523
6007
NA
NA
NA
NA
NA
NA
NA
510
ND
ND
ND
ND
1.6
24.2
765
563
NA
NA
NA
NA
NA
NA
NA
11.3
ND
ND
ND
ND
ND
2.1
4.1
9.8
ND
ND
ND
1.8
559
1.3
1.8
ND
ND
ND
ND
ND
0.2
34
487
413
11.2
5.0
8.7
1710
9040
NA
NA
NA
NA
NA
NA
NA
1250
5.2
6.5
9.2
15.6
20.3
28.6
74.8
1205
NA
NA
NA
NA
NA
NA
NA
8.9
ND
ND
ND
<1.0
4.5
13.7
16.7
40.5
ND
ND
ND
ND
<1.0
8.1
<1.0
<1.0
ND
1.7
1.5
6.4
ND
3.7
257
123
ND
1.8
1.9
2050
4740
NA
NA
NA
NA
NA
NA
NA
1510
1.6
6.2
12.0
22.0
37.4
47.2
127
1090
NA
NA
NA
NA
NA
NA
NA
NA
3.5
ND
ND
1.6
4.5
23.3
48.0
66.2
1.1
ND
ND
ND
NA
11.4
3.0
65.6
34.7
4.3
2.9
20.3
1.3
3.9
Notes: NA, not analyzed. ND, not detected.
91
-------
Table C19. Ethane Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Sample ID Jun-97
Sep-97
Mar-98
Jun-98
Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
NA
ND
ND
ND
ND
NA
ND
NA
NA
NA
0.008
0.021
0.037
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
0.005
0.007
0.006
0.031
0.034
0.038
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.004
ND
ND
0.010
0.022
0.026
0.039
0.004
0.029
0.015
0.017
0.030
0.014
0.015
ND
ND
ND
ND
ND
ND
ND
ND
0.005
0.011
0.007
0.045
0.052
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
0.005
0.007
0.004
0.042
0.044
0.048
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.005
0.006
0.009
0.014
0.037
0.041
0.038
<0.002
0.030
0.050
0.053
0.048
0.049
0.037
ND
ND
ND
ND
ND
ND
ND
ND
0.004
0.007
0.007
NA
ND
ND
0.025
ND
ND
ND
ND
<0.002
0.003
<0.002
ND
ND
0.002
0.004
0.002
0.012
0.010
0.011
0.016
0004
0.003
0.004
0.008
0.008
0.010
0.007
0.007
0.004
NA
0.005
0.009
0.010
ND
0.012
ND
0.013
0.010
0.009
0.009
0.014
0.013
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
0.036
ND
ND
ND
<0002
0.003
0.004
ND
0.003
NA
NA
NA
NA
NA
NA
NA
0.018
0.003
ND
0.002
0.006
0.006
0.009
0.009
0.012
0.003
0.004
0.004
0.008
0.010
0.011
0.012
ND
0.011
0.018
0.012
0.011
0.010
0.010
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
0.015
ND
ND
ND
<0.002
0.003
0.003
ND
ND
NA
NA
NA
NA
NA
NA
NA
0.014
ND
0.003
0002
0005
0.005
0.007
0.009
0.015
0.002
0.002
0.003
0.005
0.013
0.009
0.017
ND
0011
0.012
0.013
0010
0.010
0.010
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
0010
ND
ND
ND
ND
0.002
0.002
ND
ND
NA
NA
NA
NA
NA
NA
NA
ND
ND
<0.002
ND
0.003
0.003
0.005
0.008
0008
0.002
0.002
0.003
0.005
0.009
0.008
0.011
ND
0.012
0.012
0.013
0.010
0.009
0.011
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
NA
NA
NA
NA
NA
NA
NA
0.018
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
0.006
NA
NA
NA
NA
NA
NA
NA
0.029
<0.002
<0.002
<0.002
0.004
0.006
0.008
0.009
0.016
0.002
<0.002
<0.002
0.004
0.015
0014
0.015
<0.002
0.009
0.013
0.014
0.013
0.012
0.008
ND
ND
ND
NA
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
0.001
0.001
0.003
0.001
ND
0000
NA
NA
NA
NA
NA
NA
NA
0.016
0.001
0.001
0.001
0.004
0.005
0.006
0.007
0.007
0.004
0.005
0.008
0.008
0.008
0009
0.006
0.001
0.011
0.013
0.013
0.012
0.009
0.009
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
0.0138
ND
ND
0.0000
0.0011
0.0027
0.0029
ND
<0.002
NA
NA
NA
NA
NA
NA
NA
NA
0.0350
0.0023
<0.002
0.0060
0.0072
0.0070
0.009
0.0111
<0.002
0.0092
0.0126
NA
0.0129
0.0126
0.0120
ND
0.0117
0.0169
0.0133
0.0163
0.0140
0.0131
Notes: NA, not analyzed. ND, not detected.
92
-------
Table C20. Ethene Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97
Sep-97
Mar-98
Jun-98
Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23 5-3
ML23 5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
ND
ND
ND
ND
ND
NA
ND
NA
NA
NA
<0.003
0.026
0035
ND
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
ND
0.003
0.031
0.029
0.048
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
0.011
<0.003
0.019
0.033
0.040
<0.003
0.029
0.038
0.017
0038
0.016
0.010
ND
<0.003
ND
ND
ND
ND
ND
ND
<0.003
0.008
<0.003
0.024
0.030
<0003
NA
NA
NA
NA
NA
NA
NA
NA
NA
ND
ND
<0.003
ND
0029
0.024
0036
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.003
<0.003
<0.003
<0.003
0.020
0.017
0.023
ND
0.018
0.037
0030
0027
0.027
0.024
ND
ND
ND
ND
ND
ND
ND
ND
<0.003
0.005
0.003
NA
ND
ND
0.043
0.004
0.003
0.003
0.006
0.005
0.007
ND
ND
ND
ND
<0.003
NA
0007
0.007
0.012
0.027
<0003
<0.003
<0.003
0.006
0.008
0.008
0.006
0.006
ND
ND
ND
0.004
0.007
ND
0.009
ND
0.012
0010
0008
0.011
0.010
0.010
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
0.057
ND
ND
<0.003
<0.003
0.003
0.005
ND
0.004
NA
NA
NA
NA
NA
NA
NA
0.025
<0.003
ND
<0.003
0.004
0.005
0.008
0.006
0.008
ND
ND
<0.003
0.004
0008
0.010
0.009
ND
0.010
0.016
0.010
0.011
0.007
0.006
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
0027
ND
ND
<0.003
<0.003
0.004
0.003
ND
ND
NA
NA
NA
NA
NA
NA
NA
0.019
<0.003
<0.003
<0.003
0.004
0006
0.008
0.009
0.013
ND
ND
ND
0.003
0.010
0.009
0.010
ND
0.010
0.015
0.013
0.011
0009
0.007
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
0.023
ND
ND
<0.003
<0.003
<0.003
0.003
ND
ND
NA
NA
NA
NA
NA
NA
NA
0.014
<0.003
<0.003
ND
0.003
0.003
0.005
0.005
0.006
ND
ND
ND
<0.003
0.007
0.008
0.009
ND
0.008
0.014
0.014
0.009
0.008
0.008
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
NA
NA
NA
NA
NA
NA
NA
0.019
<0.001
<0.001
<0.001
<0.001
0.002
<0.001
<0.001
0.005
NA
NA
NA
NA
NA
NA
NA
0.029
<0001
<0.001
0.044
0.002
0.003
0.005
0.007
0.008
NA
NA
NA
NA
NA
NA
NA
<0.001
1.068
0.002
0.008
0.010
0.009
<0.001
ND
ND
ND
NA
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
NA
0.006
0.006
0.005
0.005
0.003
0.001
ND
ND
NA
NA
NA
NA
NA
NA
NA
0.018
0.002
0.001
0.001
0.004
0.004
0005
0.005
0.005
0.001
0001
0.004
0.004
0006
0.007
0.003
ND
0.006
0.009
0.008
0008
0.005
0.004
ND
ND
ND
ND
ND
ND
ND
NA
NA
NA
NA
NA
NA
NA
0.0403
0.0142
00141
0.013
0.0122
0.0085
0.0047
<0.003
<0.003
NA
NA
NA
NA
NA
NA
NA
NA
0.0435
0.0039
<0.003
0.0098
0.0107
0.0084
0.0077
0.0092
<0.003
0.0036
0.0089
NA
0.0107
00100
0.0079
ND
0.0082
0.0135
0.0097
0.0136
0.0074
0.0059
Notes: NA, not analyzed. ND, not detected. Dry, no water.
93
-------
Table C21. Sodium Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97 Sep-97
Mar-98
Jun-98
Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
14.0
35.0
123.0
130.0
49.4
NA
NA
Dry
Dry
Dry
19.8
56.8
34.1
21.2
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
122
16.0
Dry
61.9
43.0
35.4
NA
NA
NA
NA
NA
NA
NA
NA
NA
11.4
11.3
16.3
24.0
49.3
38.8
35.8
7.9
33.6
67.4
77.7
44.8
38.9
49.6
14.3
31.2
96.0
89.6
58.6
27.3
18.9
9.4
13.6
26.3
17.3
61.5
48.7
20.9
NA
NA
NA
NA
NA
NA
NA
NA
NA
11.7
13.7
15.1
24.2
61.7
53.4
54.8
NA
NA
NA
NA
NA
NA
NA
NA
NA
12.5
12.5
16.8
18.9
52.2
43.9
51.9
8.3
22.3
29.1
44.8
43.1
44.7
45.8
29.0
53.1
87.1
55.6
25.6
26.0
20.3
Dry
Dry
Dry
18.0
34.7
24.0
22.6
51.3
11.9
12.7
12.0
37.1
24.5
64.0
56.3
37.1
Dry
Dry
Dry
Dry
67.1
45.3
39.6
31.2
18.3
18.6
19.4
29.3
32.8
47.6
55.4
50.2
10.1
10.0
15.8
19.6
54.4
55.2
40.5
7.5
51.8
51.0
52.7
58.6
42.7
45.3
28.6
52.5
72.8
44.0
24.2
24.0
21.2
NA
NA
NA
NA
NA
NA
NA
34.5
10.2
10.5
15.4
22.8
34.3
52.5
45.8
28.5
NA
NA
NA
NA
NA
NA
NA
37.7
16.0
16.3
16.7
25.3
28.2
44.8
55.1
51.3
7.4
7.8
10.9
18.8
58.1
58.1
52.0
6.8
38.6
44.6
45.7
65.0
43.1
38.7
21.9
41.9
78.4
49.1
27.9
25.1
25.1
NA
NA
NA
NA
NA
NA
NA
40.2
4.2
5.1
7.5
21.0
31.7
47.2
47.8
37.1
NA
NA
NA
NA
NA
NA
NA
44.9
12.3
13.5
14.5
21.1
24.0
41.5
52.4
44.0
6.8
7.4
16.1
14.7
45.0
44.9
33.4
7.7
19.5
61.3
59.4
48.9
42.0
40.1
21.7
39.4
81.3
63.9
33.1
23.3
22.3
NA
NA
NA
NA
NA
NA
NA
38.0
10.0
99
10.2
8.2
281
41.8
41.1
30.1
NA
NA
NA
NA
NA
NA
NA
36.1
14.4
14.1
12.8
21.2
24.6
42.7
52.7
49.7
8.0
8.0
13.3
19.5
59.2
68.8
58.7
12.1
12.4
44.2
52.7
62.5
45.3
49.6
32.8
49.8
72.4
51.1
24.5
23.2
23.0
NA
NA
NA
NA
NA
NA
NA
22.8
5.2
5.2
5.5
5.4
23.9
35.0
30.6
25.4
NA
NA
NA
NA
NA
NA
NA
29.4
6.0
5.7
6.3
11.5
17.6
29.4
38.9
39.7
5.0
4.9
3.0
9.4
43.9
44.5
41.1
6.2
31.4
44.4
39.0
48.4
37.1
34.6
72.5
82.7
61.0
37.0
21.7
NA
24.6
NA
NA
NA
NA
NA
NA
NA
27.0
11.8
11.7
12.6
21.3
32.6
34.8
24.5
23.7
NA
NA
NA
NA
NA
NA
NA
26.2
16.1
17.8
17.8
28.9
30.4
39.1
41.4
49.8
8.2
8.3
14.1
20.4
48.0
46.1
56.2
16.2
29.3
37.2
465
44.4
32.5
23.1
82.2
75.4
43.1
28.1
19.4
22.0
23.2
NA
NA
NA
NA
NA
NA
NA
24.3
17.2
17.5
19.0
22.1
231
21.9
19.9
21.0
NA
NA
NA
NA
NA
NA
NA
NA
32.6
39.0
20.8
22.1
26.6
25.7
29.9
31.9
9.8
11.6
23.9
27.1
35.0
40.4
32.4
12.6
26.9
32.9
36.0
38.0
28.9
24.4
Notes: NA, not analyzed. Dry, no water.
94
-------
Table C22. Potassium Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97
Sep-97
Mar-98
Jun-98 Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
3.92
4.94
<0.53
<0.53
<0.53
NA
NA
Dry
Dry
Dry
1.12
2.92
<0.53
<0.53
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
<0.53
Dry
NA
2.93
057
<0.53
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.21
1.24
1.31
0.90
0.79
0.78
<0.53
3.07
2.34
1.15
0.99
1.89
<0.53
<0.53
6.31
6.94
3.04
2.30
2.24
2.01
NA
551
1.97
1.94
2.33
2.72
1.79
1.82
NA
NA
NA
NA
NA
NA
NA
NA
NA
5.66
1.62
2.87
5.38
4.62
1.48
2.49
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.52
2.33
2.03
1.99
1.93
1.93
2.10
3.65
2.50
1.02
1.02
1.84
1.23
<0.90
7.02
6.15
1.70
1.41
1.04
1.00
1.26
Dry
Dry
Dry
1.89
1.31
<0.79
1.20
11.9
12.7
12.0
37.1
24.5
64.0
56.3
371
51.3
Dry
Dry
Dry
Dry
1.69
1.01
0.94
31.2
18.3
18.6
19.4
29.3
32.8
47.6
55.4
50.2
101
10.0
15.8
19.6
54.4
55.2
405
7.53
51.8
51.0
52.7
58.6
42.7
45.3
6.84
6.48
2.25
1.65
1.76
1.78
0.44
NA
NA
NA
NA
NA
NA
NA
2.06
6.34
6.13
4.73
4.72
3.99
2.82
1.75
1.78
NA
NA
NA
NA
NA
NA
NA
1.65
0.95
<0.92
0.98
1.13
1.52
2.20
2.72
2.39
2.06
2.00
2.39
2.66
2.29
2.91
2.20
4.16
3.04
2.39
3.24
4.98
1.71
0.95
5.25
524
<0.30
<0.30
<0.30
<0.30
<0.30
NA
NA
NA
NA
NA
NA
NA
0.68
2.51
2.73
3.05
2.98
2.34
1.68
0.70
0.63
NA
NA
NA
NA
NA
NA
NA
1.64
1.42
1.03
0.88
1.30
1.52
1.11
1.27
1.90
1.76
1.57
1.86
2.11
2.13
3.37
2.39
3.38
1.42
2.47
1.93
244
1.80
1.08
5.48
5.16
1.55
0.74
0.60
0.40
0.77
NA
NA
NA
NA
NA
NA
NA
1.19
4.30
4.50
4.42
4.29
3.27
2.42
0.82
0.89
NA
NA
NA
NA
NA
NA
NA
1.41
1.23
0.91
0.96
1.22
1.74
1.80
2.33
2.72
1.90
1.92
1.65
1.94
2.09
4.56
3.14
4.77
1.77
1.49
0.95
2.96
2.19
0.75
6.09
5.14
1.27
1.58
1.22
1.00
1.33
NA
NA
NA
NA
NA
NA
NA
1 15
3.30
3.48
3.36
3.27
2.28
1.58
0.81
1.13
NA
NA
NA
NA
NA
NA
NA
1.81
1 19
0.99
1.16
1.05
1.20
1.46
1.83
1.95
1.28
1.45
0.91
1.36
1.72
3.37
2.89
3.77
2.74
2.11
2.9
3.3
2.19
0.5
7.39
5.22
1.56
1 32
1.30
NA
1.53
NA
NA
NA
NA
NA
NA
NA
1.54
5.69
5.52
5.56
4.70
3.14
1.98
1.42
1.39
NA
NA
NA
NA
NA
NA
NA
1.77
2.52
2.29
2.23
2.73
2.47
2.48
2.56
3.62
1.53
2.00
3.15
3.15
3.52
4.39
4.31
5.89
2.08
2.07
2.81
4.47
0.76
0.84
5.53
3.22
2.79
4.43
2.14
1.40
1.30
NA
NA
NA
NA
NA
NA
NA
2.33
6.12
5.83
5.82
5.32
4.36
3.68
0.53
3.55
NA
NA
NA
NA
NA
NA
NA
NA
1.88
2.74
3.63
3.76
3.64
3.05
3.27
2.35
1.84
2.42
3.96
3.46
3.14
3.46
2.27
5.45
2.35
3.47
2.69
3.17
0.85
1.07
Notes: NA, not analyzed. Dry, no water.
95
-------
Table C23. Calcium Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97 Sep-97
Mar-98
Jun-98
Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22 5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22 5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23 5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
24.8
26.7
10.7
4.26
10.8
NA
NA
Dry
Dry
Dry
7.97
2.97
3.64
11.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
5.19
1.87
Dry
3.54
NA
2.50
NA
NA
NA
NA
NA
NA
NA
NA
NA
4.45
4.88
6.01
7.44
3.10
3.80
3.75
6.16
2.86
6.09
8.19
5.24
3.59
2.59
23.3
24.6
17.6
8.87
10.8
9.22
12.1
19.3
4.56
8.83
848
2.04
2.67
10.8
NA
NA
NA
NA
NA
NA
NA
NA
NA
29.90
4.22
3.17
8.64
1.67
NA
2.86
NA
NA
NA
NA
NA
NA
NA
NA
NA
5.65
5.41
7.24
8.09
2.06
2.45
2.08
5.78
247
2.92
3.90
3.91
2.01
1.93
32.2
3 10
10.5
14.5
11.2
9.88
123
Dry
Dry
Dry
9.08
7.93
9.88
12.1
DRY
41.0
45.0
44.0
44.9
45.3
26.1
14.0
11.4
Dry
Dry
Dry
Dry
5.26
4.43
6.42
9.34
12.9
11.5
11.9
17.8
20.7
20.8
12.5
8.33
2.86
3.16
2.88
6.86
6.06
4.99
4.63
5.97
5.69
6.56
7.74
9.32
2.91
2.43
30.1
29.3
977
9.38
9.84
10.6
13.2
NA
NA
NA
NA
NA
NA
NA
7.94
30.4
30.2
29.3
30.6
28.4
22.2
12.7
9.14
NA
NA
NA
NA
NA
NA
NA
4.71
11.3
9.73
10.4
12.7
14.4
13.2
7.44
3.65
1.90
1.68
3.53
4.97
3.76
4.02
3.30
5.89
4.24
4.81
4.94
4 14
2.43
1.46
27.2
26.3
9.70
8.55
9.43
10.4
11 8
NA
NA
NA
NA
NA
NA
NA
6.72
11.4
12.1
14.4
19.1
22.4
19.6
11.0
9.10
NA
NA
NA
NA
NA
NA
NA
2.99
5.16
4.89
5.38
7.88
9.98
10.0
4.65
2.52
2.71
2.37
2.84
4.26
2.71
1.77
2.09
5.45
1.91
2.84
4.95
1.97
1.36
1 47
26.4
253
15.0
8.21
9.12
10.2
12.8
NA
NA
NA
NA
NA
NA
NA
730
21.9
22.8
23.6
22.8
23.8
18.1
10.3
9.14
NA
NA
NA
NA
NA
NA
NA
3.25
472
4.25
4.02
6.74
9.02
9.85
6.05
3.24
3.84
3.50
4.24
4.79
3.22
3.25
2.15
10.6
2.45
1.15
1 57
1 31
2.84
2.47
28.7
292
9.59
13.3
9.93
11 1
13.7
NA
NA
NA
NA
NA
NA
NA
9.70
13.9
12.2
13.8
13.0
20.6
13.5
10.3
9.47
NA
NA
NA
NA
NA
NA
NA
5.72
5.14
473
4.32
6.89
7.93
10.1
538
397
1.82
2.28
3.13
4.17
2.71
3.48
2.51
6.69
5.62
5.22
3.49
4.26
2.76
3.83
321
27.2
6.92
7.72
9.90
NA
14.8
NA
NA
NA
NA
NA
NA
NA
13.3
30.2
30.3
327
29.3
24.6
15.4
10.6
10.5
NA
NA
NA
NA
NA
NA
NA
10.4
230
20.4
20.7
21.0
14.6
17.2
12.0
5.61
2.24
3.69
7.32
8.12
6.40
6.28
309
199
4.63
2.94
3.31
7.83
3.32
6.23
23.3
14.2
673
8.05
9.70
11.4
12.7
NA
NA
NA
NA
NA
NA
NA
12.1
30.0
28.2
27.8
25.3
22.7
13.2
9.01
996
NA
NA
NA
NA
NA
NA
NA
NA
6.19
246
26.5
24.0
22.7
13.0
6.24
5.37
339
4.70
8.90
9.19
6.70
4.65
3.99
19.2
548
512
3.35
5.86
5.83
6.22
Notes: NA, not analyzed. Dry, no water.
96
-------
Table C24. Magnesium Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97
Sep-97 Mar-98 Jun-98 Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22 5-7
ML22.5-6
ML22.5-5
ML22 5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23 5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
952
12.4
7.89
2.91
6.89
NA
NA
Dry
Dry
Dry
0.33
3.42
0.93
6.63
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
0.75
<0.039
Dry
4.65
1.60
1 31
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.039
<0.039
0 14
0.28
1.38
2.12
1.77
2.63
1.27
0.85
2.41
0.26
1.82
1.38
9.07
10.5
125
6.17
7.00
4.67
6.37
4.25
0.89
330
0.26
0.29
0.19
6.61
NA
NA
NA
NA
NA
NA
NA
NA
NA
4.96
0.95
0.07
3.58
0.53
0.07
1.18
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.10
0.19
NA
0.24
0.10
0.27
0.19
2.61
1.20
0.48
0.94
0.20
1.00
0.98
12.0
159
7.92
9.73
6.40
5.69
6.96
Dry
Dry
Dry
2.14
6.86
5.97
7.26
871
4.58
4.37
4.60
6.07
7.83
9.50
7.94
7.21
Dry
Dry
Dry
Dry
7.21
6.69
4.76
6.62
4.65
4.17
4.20
7.12
8.14
7.38
5.55
8.22
0.11
0.12
0.28
1.61
481
7.58
4.19
2.84
1.47
2.03
3.21
2.45
1.43
1.35
11.0
14.2
7.16
6.17
6.02
6.09
7.43
NA
NA
NA
NA
NA
NA
NA
405
3.56
3.59
3.72
4.43
7.01
8.78
7.75
568
NA
NA
NA
NA
NA
NA
NA
6.09
4.10
3.53
3.77
5.02
499
488
4.04
3.95
0.10
0.12
0.38
0.70
2.90
5.84
2.62
2.44
1.39
2.51
390
1.97
1 30
0.81
9.50
11.5
7.34
5.94
6.14
6.28
778
NA
NA
NA
NA
NA
NA
NA
5.20
1.44
1 78
2.08
351
5.72
7.17
6.51
5.98
NA
NA
NA
NA
NA
NA
NA
423
1.60
1.78
1.68
3.30
3.39
3.18
1.70
2.82
0 11
015
0.21
0.34
1.46
1.89
2.46
2.84
1.79
4.24
3.97
1.12
0.61
1.06
9.07
11.1
11.1
5.59
5.86
6.12
7.62
NA
NA
NA
NA
NA
NA
NA
5.57
2.69
2.93
3.11
309
5.62
6.84
6.03
5.98
NA
NA
NA
NA
NA
NA
NA
8.80
1.52
1.43
1 21
2.68
2.79
2.98
2.69
4.74
0.13
0.15
0.33
0.28
3.46
3.37
3.55
4.85
1.13
1.50
1.07
0.45
0.90
1.34
10.8
13.5
7.14
9.35
6.41
6.71
8.17
NA
NA
NA
NA
NA
NA
NA
4.93
1.78
1.66
1.85
1.73
4.36
6.24
6.57
616
NA
NA
NA
NA
NA
NA
NA
3.48
1.40
1.02
1 00
1.91
1 27
2.66
2.12
2.47
0.09
0.24
0.26
0.47
1.58
308
3.07
2.68
2.07
3.95
4.05
3.37
1.44
2.10
14.3
142
5.22
5.54
6.47
NA
8.86
NA
NA
NA
NA
NA
NA
NA
8.04
3.89
397
4.48
461
7.69
7.36
7.04
6.83
NA
NA
NA
NA
NA
NA
NA
11.89
711
6.10
6.16
6.55
4.62
629
5.98
5.74
0.14
0.22
2.54
2.54
3.53
4.07
5.93
683
250
3.24
402
5.45
1 87
362
11.9
8.12
5.34
6.38
6.63
6.99
7.89
NA
NA
NA
NA
NA
NA
NA
7.56
4.21
3.90
3.98
3.69
6.12
7.30
6.07
6.65
NA
NA
NA
NA
NA
NA
NA
NA
6.28
7.73
7.86
7.94
6.01
5.69
3.99
5.81
0.57
1.33
4.02
5.98
4.20
5.39
5.04
6.62
3.84
6.18
3.89
5.11
338
3.48
Notes: NA, not analyzed. Dry, no water.
97
-------
Table C25. Total Iron Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97
Sep-97
Mar-98
Jun-98
Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
5.57
0.098
<0.012
<0.012
0.02
NA
NA
Dry
Dry
Dry
<0.012
<0.012
<0.012
<0.012
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
<0.012
<0.012
Dry
<0.012
<0.012
<0.012
NA
NA
NA
NA
NA
NA
NA
NA
NA
O.012
<0.012
<0.012
0.05
<0.012
<0.012
0.14
2.18
0.58
0.014
0.063
<0.012
1.02
2.52
4.03
0.51
<0.007
<0.007
<0.007
0.02
<0.007
10.4
0.02
2.62
0.02
<0.007
0.01
0.15
NA
NA
NA
NA
NA
NA
NA
NA
NA
7.18
0.07
0.02
7.61
0.27
0.15
0.01
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.007
0.04
0.01
0.01
<0.007
<0.007
<0.007
2.70
0.66
0.009
0.028
<0.007
1.19
1.89
5.45
<0.57
<0.57
<0.012
0.03
<0.019
<0.012
Dry
Dry
Dry
0.54
0.16
0.03
0.05
0.098
13.1
10.8
169
23.6
27.7
15.8
1.15
1.01
Dry
Dry
Dry
Dry
0.17
0.05
0.10
0.06
0.49
0.59
0.32
2.74
2.07
0.39
2.46
1.16
<0.019
0.02
<0.019
<0.019
<0.019
<0.019
<0.019
2.45
1.02
<0.019
<0.019
0.04
3.67
2.74
5.02
0.04
0.01
<0.003
<0.003
0.00
0.01
NA
NA
NA
NA
NA
NA
NA
1.28
13.0
13.0
13.7
15.6
14.9
158
0.82
0.54
NA
NA
NA
NA
NA
NA
NA
0.03
028
0.51
0.08
1.75
1.63
0.19
0.43
0.03
0.00
<0.003
<0.003
0.02
0.00
0.02
0.01
1.04
0.51
0.005
0.014
0.011
2.99
1.57
5.88
1.77
<0.008
<0.008
<0.008
<0.008
<0.008
NA
NA
NA
NA
NA
NA
NA
7.05
4.52
5.55
7.05
9.89
9.63
11.50
2.26
0.57
NA
NA
NA
NA
NA
NA
NA
0.03
0.08
0.18
0.05
0.62
0.85
0.08
0.30
0.02
0.01
0.05
0.02
0.02
0.02
0.02
0.04
1.81
0.27
0.64
0.015
0.019
0.56
1.19
6.29
3.29
<0.003
<0.003
<0.003
<0.003
<0.003
NA
NA
NA
NA
NA
NA
NA
7.79
10.9
12.3
12.2
12.1
10.3
11.1
2.98
0.54
NA
NA
NA
NA
NA
NA
NA
0.03
<0.003
0.06
<0.003
0.49
0.74
0.11
0.66
0.03
0.02
0.07
0.02
<0.003
0.03
0.03
0.03
2.43
0.47
0.21
<0.003
0.02
0.70
1 85
7.05
1.14
<0.006
<0.006
0.008
<0.006
0.011
NA
NA
NA
NA
NA
NA
NA
6.51
2.52
3.58
3.57
3.57
6.18
12.0
1.31
0.33
NA
NA
NA
NA
NA
NA
NA
0.02
0.05
0.30
0.15
035
0.50
0.11
0.34
0.02
0.01
0.07
0.01
<0.007
0.02
0.04
0.06
1.20
0.63
0.02
0.02
0.01
3.01
1.98
2.54
0.16
< 0.035
<0035
< 0.035
NA
< 0.035
NA
NA
NA
NA
NA
NA
NA
7.68
17.2
19.3
22.3
22.2
21.7
18.0
0.45
0.05
NA
NA
NA
NA
NA
NA
NA
0.35
0.27
0.32
0.47
5.11
7.50
3.66
6.03
0.11
0.27
0.07
< 0.035
0.07
0.05
0.19
< 0.035
3.28
0.30
<0.035
<0.035
<0.035
3.25
2.33
0.097
< 0.035
< 0.035
< 0.035
< 0.035
0.10
< 0.035
NA
NA
NA
NA
NA
NA
NA
4.86
21.1
24.8
25.6
25.9
25.1
15.7
0.32
0.05
NA
NA
NA
NA
NA
NA
NA
NA
0.15
0.73
0.13
18.2
21.1
15.6
6.44
0.62
0.81
1.09
0.05
0.17
4.74
0.13
0.07
2.70
1.00
< 0.035
< 0.035
< 0.035
4.19
2.57
Notes: NA, not analyzed. Dry, no water.
98
-------
Table C26. Manganese Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97 Sep-97
Mar-98
Jun-98 Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
2.96
2.52
0.201
0.099
0.240
NA
NA
Dry
Dry
Dry
0.015
0.019
0.010
0.051
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
0.037
<0.003
Dry
0.009
0.010
0.009
NA
NA
NA
NA
NA
NA
NA
NA
NA
0010
0.009
0.015
0.009
0.009
0.012
0.028
0.601
0.273
0.025
0.025
0.004
0.183
0.084
3.06
1.97
0.336
0.203
0.240
0.102
0.090
0.132
0.044
0.344
0.003
0.002
<0.0004
0.053
NA
NA
NA
NA
NA
NA
NA
NA
NA
0095
0.062
0.016
0.421
0.011
0.002
0.002
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.016
0.016
0.033
0.011
<0.001
0.002
0.004
0.648
0.308
0.011
0.011
<0.001
0.072
0.106
4.54
3.08
0.187
0.353
0.238
0.129
0.096
Dry
Dry
Dry
0.023
0.110
0.215
0.067
0.046
0379
0.390
0.527
0.905
1.380
1.900
0.711
0.236
Dry
Dry
Dry
Dry
0.047
0.024
0.135
0.076
0.211
0.274
0.175
0.855
0.817
0.162
0.407
0.078
0.015
0.030
0.040
0.011
0.030
0.049
0.085
0.761
0.502
0.011
<0.010
<0.010
0.170
0.098
4.05
275
0.165
0.215
0.209
0.134
0.104
NA
NA
NA
NA
NA
NA
NA
0.099
0.314
0.418
0.507
0.682
1.090
1.400
0471
0.180
NA
NA
NA
NA
NA
NA
NA
0.010
0.165
0.209
0.157
0.580
0.542
0.109
0.147
0.010
0.005
0.029
0.010
0.005
0.013
0.039
0.041
0.554
0.441
<0.003
0.010
<0.003
0.109
0.060
3.54
2.20
0.191
0.209
0.216
0.136
0.116
NA
NA
NA
NA
NA
NA
NA
0.166
0.136
0.245
0.293
0.543
0.773
1.180
0.549
0.244
NA
NA
NA
NA
NA
NA
NA
0.008
0.050
0.087
0.056
0.285
0.320
0.051
0.108
0.011
0.012
0.044
0.012
<0.003
<0.003
0.010
0.014
0.583
0.181
0.068
0.012
<0.003
0.021
0.074
3.44
2.08
0.266
0.202
0.210
0.135
0.097
NA
NA
NA
NA
NA
NA
NA
0.150
0.321
0.425
0.489
0.487
0.788
1.090
0.502
0.232
NA
NA
NA
NA
NA
NA
NA
0.018
0.040
0.064
0.036
0.243
0.261
0.057
0.187
0.013
0.036
0.064
0036
0.012
0.014
0.024
0.044
1.170
0.324
0.023
0.012
0.004
0.042
0.129
3.82
2.67
0.181
0.330
0220
0.152
0.106
NA
NA
NA
NA
NA
NA
NA
0.147
0.198
0.234
0.261
0.259
0.514
0.814
0.395
0.193
NA
NA
NA
NA
NA
NA
NA
0.009
0.050
0.101
0.061
0.213
0.081
0.081
0.111
0.008
0.249
0.081
<0.002
<0.002
0.010
0.035
0.040
0.629
0.543
<0.001
0.004
<0.001
0.111
0.234
413
2.27
0.111
0.184
0.208
NA
0.112
NA
NA
NA
NA
NA
NA
NA
0.283
0310
0.391
0.522
0.584
0.942
0.916
0.305
0.197
NA
NA
NA
NA
NA
NA
NA
0.046
0.212
0.182
0.197
0.923
0.572
0.671
0.691
0.041
0.108
0.132
0.023
0.051
0.037
0.081
0.054
1 57
0.36
0.002
0.005
0.002
0.21
0.48
299
1.20
0.105
0.228
0.225
0.159
0.110
NA
NA
NA
NA
NA
NA
NA
0.224
0.175
0.210
0.240
0.295
0.860
0.969
0.238
0.199
NA
NA
NA
NA
NA
NA
NA
NA
0.023
0.261
0.176
1.002
0.743
0.871
0.424
0.032
0.196
0.302
0.030
0.056
0.033
0.043
0.066
1.488
0.477
0.004
0.004
< 0.003
0.389
0.453
Notes: NA, not analyzed. Dry, no water.
99
-------
Table C27. Strontium Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97 Sep-97
Mar-98
Jun-98 Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23.5-4
ML23.5-3
ML23.5-2
ML23.5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
0.277
0.390
0.212
0.086
0.157
NA
NA
Dry
Dry
Dry
0.061
0.035
0.046
0.136
NA
NA
NA
NA
NA
NA
NA
NA
NA
Dry
0.022
0.028
Dry
0.034
0.053
0.029
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.028
0.040
0.053
0.059
0.029
0.047
0.049
0.075
0.037
0.028
0.093
0.052
0.045
0.032
0.337
0.299
0.145
0.159
0.105
0.132
0.128
0.025
0.057
0.081
0.029
0.026
0.132
0.250
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.023
0.042
0.058
0.018
0029
0.037
0.042
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.055
0.072
0.069
0.016
0.034
0.029
0.075
0033
0014
0.038
0.038
0.023
0.024
0.278
0.397
0.272
0.186
0.233
0.162
0.139
0.158
Dry
Dry
Dry
0.135
0.106
0.139
0.156
0.140
0505
0.499
0.478
0.465
0.431
0.266
0.207
0.167
NA
NA
NA
NA
0.068
0.049
0.088
0.091
0.081
0.074
0.071
0.128
0.154
0.173
0.120
0.123
0.023
0.038
0.035
0.102
0.051
0.073
0.061
0.083
0.055
0.050
0.081
0.129
0.039
0.031
0.374
0.462
0.168
0.147
0.140
0.146
0.170
NA
NA
NA
NA
NA
NA
NA
0.075
0.364
0.358
0.347
0.335
0.274
0.233
0.188
0.130
NA
NA
NA
NA
NA
NA
NA
0.040
0.066
0.058
0.062
0.086
0.107
0.101
0.081
0.044
0.014
0.022
0.033
0.059
0.030
0.054
0037
0.073
0.040
0039
0.053
0.053
0.035
0.019
0.308
0.367
0.169
0.135
0.135
0.143
0.157
NA
NA
NA
NA
NA
NA
NA
0.076
0.118
0.117
0.140
0.179
0194
0.185
0 157
0.133
NA
NA
NA
NA
NA
NA
NA
0.029
0.030
0.029
0.031
0.052
0.076
0.070
0.042
0.033
0.024
0.033
0.030
0.050
0.020
0.024
0.023
0.072
0.022
0.037
0.057
0.027
0.015
0.018
0.301
0.358
0.255
0131
0.132
0.140
0.165
NA
NA
NA
NA
NA
NA
NA
0.087
0.244
0.248
0.248
0.234
0.206
0.168
0.147
0.132
NA
NA
NA
NA
NA
NA
NA
0.024
0029
0.026
0.022
0.046
0.071
0.071
0.059
0.046
0.041
0.053
0.049
0.058
0.025
0.039
0.024
0.143
0.027
0.013
0.020
0017
0.026
0.029
0.353
0.429
0.164
0.209
0.139
0154
0.179
NA
NA
NA
NA
NA
NA
NA
0.114
0.156
0.131
0.144
0.128
0.158
0149
0.145
0.129
NA
NA
NA
NA
NA
NA
NA
0.067
0032
0.032
0.027
0.045
0.058
0.076
0.048
0.047
0.021
0.027
0.024
0.037
0.021
0.041
0.025
0.082
0.046
0.043
0.040
0.050
0.036
0.038
0.473
0.443
0.117
0.119
0.136
NA
0.194
NA
NA
NA
NA
NA
NA
NA
0.177
0.395
0.393
0.402
0.357
0.251
0.167
0.145
0.142
NA
NA
NA
NA
NA
NA
NA
0.104
0.120
0110
0.111
0.157
0.142
0.130
0.107
0.063
0.033
0.048
0.065
0.111
0.049
0.070
0028
0.236
0.035
0.029
0.035
0.088
0.037
0.055
0.393
0.257
0.108
0.120
0.128
0.163
0.180
NA
NA
NA
NA
NA
NA
NA
0.172
0.364
0.352
0.348
0.320
0279
0173
0.148
0.149
NA
NA
NA
NA
NA
NA
NA
NA
0.063
0.155
0.172
0.235
0.213
0.150
0.082
0.060
0.052
0.053
0.085
0.155
0.060
0.053
0.039
0.239
0.049
0.050
0.032
0.075
0.061
0.059
Notes: NA, not analyzed. Dry, no water.
100
-------
Table C28. Total Chromium Values (mg/L) through Time in Elizabeth City Transect 2 Multi-level Wells
Well ID
Jun-97
Sep-97
Mar-98
Jun-98
Sep-98
Dec-98
Jun-99
Jun-00
May-01
ML21-7
ML21-6
ML21-5
ML21-4
ML21-3
ML21-2
ML21-1
ML22-7
ML22-6
ML22-5
ML22-4
ML22-3
ML22-2
ML22-1
ML22.5-0
ML22.5-8
ML22.5-7
ML22.5-6
ML22.5-5
ML22.5-4
ML22.5-3
ML22.5-2
ML22.5-1
ML23-7
ML23-6
ML23-5
ML23-4
ML23-3
ML23-2
ML23-1
ML23.5-0
ML23.5-8
ML23.5-7
ML23.5-6
ML23.5-5
ML23 5-4
ML23.5-3
ML23.5-2
ML23 5-1
ML24-7
ML24-6
ML24-5
ML24-4
ML24-3
ML24-2
ML24-1
ML25-7
ML25-6
ML25-5
ML25-4
ML25-3
ML25-2
ML25-1
<0.004
0.246
3.430
1 110
0.503
NA
NA
Dry
Dry
Dry
<0.004
<0.004
<0.004
<0.004
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.004
<0.004
<0.004
Dry
<0.004
<0.004
<0004
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
0.059
3.080
1.550
0.583
0.523
<0.004
<0.004
<0.004
0.004
<0.004
<0.004
<0.004
<0.004
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.004
<0.004
<0.004
0.004
<0.004
<0.004
<0.004
NA
NA
NA
NA
NA
NA
NA
NA
NA
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0.004
<0004
<0.004
<0.003
0.716
2.380
0.423
0.234
0.551
<0.002
Dry
Dry
Dry
<0.003
<0.003
0.392
0.009
<0.003
<0.003
<0003
<0.003
<0.003
<0.003
<0.003
0.613
0.389
Dry
Dry
Dry
Dry
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0003
<0003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0002
0.845
1.540
0.382
0.220
0.465
<0.002
NA
NA
NA
NA
NA
NA
NA
<0.002
<0002
<0002
<0.002
<0.002
<0.002
<0.002
0314
0213
NA
NA
NA
NA
NA
NA
NA
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
0116
2440
0.566
0.227
0446
0229
NA
NA
NA
NA
NA
NA
NA
0.003
<0.002
<0.002
0.002
<0.002
<0.002
<0002
0.225
0.191
NA
NA
NA
NA
NA
NA
NA
<0.002
<0.003
<0.003
<0.002
<0.002
<0.002
0.002
<0.002
<0.002
<0003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.002
0.002
3.240
1.370
0.276
0.365
0.002
NA
NA
NA
NA
NA
NA
NA
<0.002
<0.002
<0.002
0.002
<0.002
<0.002
<0.002
0.160
0.212
NA
NA
NA
NA
NA
NA
NA
<0.002
<0.002
<0.002
<0.002
<0002
<0002
<0.002
0.004
<0.002
<0.002
<0.002
<0.002
<0.002
<0002
0.000
<0.002
<0.002
<0.002
<0.002
0.003
<0.002
<0.002
<0.002
<0002
0.426
2.080
0.291
0.095
0.275
<0.002
NA
NA
NA
NA
NA
NA
NA
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
0.123
0.089
NA
NA
NA
NA
NA
NA
NA
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
0.512
1.794
1 720
0.265
0024
NA
< 0.002
NA
NA
NA
NA
NA
NA
NA
< 0.002
0.019
0.022
0.025
0.024
0.023
0.019
0.056
0.083
NA
NA
NA
NA
NA
NA
NA
< 0.002
< 0.002
< 0.002
< 0.002
0.003
0.006
< 0.002
0.003
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
< 0.002
1.404
1 959
0.739
0.106
0.019
0.138
0.004
NA
NA
NA
NA
NA
NA
NA
0.011
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
0.049
0.068
NA
NA
NA
NA
NA
NA
NA
NA
< 0.003
< 0.003
< 0.003
< 0.003
< 0.003
< 0.003
< 0.003
< 0.003
< 0.003
< 0.003
< 0.003
< 0.003
< 0.003
< 0.003
<0003
< 0.003
< 0.003
< 0.003
< 0.003
< 0.003
<0003
< 0.003
Notes: NA, not analyzed. Dry, no water.
101
-------
Appendix D
Quality Control Data for Field Duplicates from
Monitoring Wells at the Elizabeth City Site
103
-------
Table D1. RPD in Sulfate Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Monitoring Wells
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW46
Mar-98
6.37
6.85
7.26
MW50
Mar-99
3.16
2.98
5.86
MW46
Dec-00
25.1
25.3
0.79
MW49
Jun-98
<0.1
<0.1
NA
MW18
Jun-99
112
103
8.37
MW38
Mar-01
19.1
18.5
3.19
MW47
Sep-98
<0.1
<0.1
NA
MW52
Sep-99
2.98
3.57
18.0
MW48
Mar-01
29.9
30.0
0.33
MW50
Sep-98
3.69
3.99
7.81
MW48
Feb-00
54.7
55.9
2.17
MW52
May-01
8.07
4.59
55.0
MW18
Dec-98
98.9
111
11.5
MW38
Jun-00
20.8
19.9
4.42
MW46
Aug-01
18.5
18.5
0.00
MW46
Dec-98
11.4
11.4
0.00
MW48
Jun-00
<1.00
<1.00
NA
MW38
Mar-99
25.6
25.1
1.97
MW18
Dec-00
120
117
2.53
Notes: NA, not applicable due to one or both duplicates being below limit of detection.
Table D2. RPD in Chloride Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Monitoring Wells
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW46
Mar-98
14.9
15.1
1.33
MW38
Mar-99
9.29
9.30
0.108
MW46
Dec-00
56.9
58.8
3.28
MW49
Jun-98
58.5
57.9
1.03
MW50
Mar-99
36.5
36.0
1.38
MW18
Mar-01
91.7
91.3
0.437
MW13
Sep-98
123
122
0.816
MW52
Jun-99
38.8
40.4
4.04
MW38
Mar-01
9.04
9.28
2.62
MW47
Sep-98
32.5
32.4
0.308
MW49
Sep-99
49.3
49.3
0.00
MW52
May-01
28.9
29.3
1.55
MW50
Sep-98
38
38.3
0.786
MW48
Jun-00
23.6
23.0
2.58
MW46
Aug-01
14.5
14.6
0.687
MW18
Dec-98
98.2
110
11.3
MW38
Sep-00
15.7
14.4
8.64
MW46
Dec-98
13.2
13.3
0.755
MW18
Dec-00
102
100
1.98
104
-------
Table D3. RPD in Nitrate + Nitrite Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth
City Monitoring Wells
Sample
MW46
MW49 MW13 MW50 MW18 MW46 MW38
Date
Concentration
Concentration F. Dup
% Difference
Mar-98
<0.10
<0.10
NA
Jun-98
<0.10
<0.10
NA
Sep-98
2.12
2.11
0.473
Sep-98
<0.10
<0.10
NA
Dec-98
<0.10
<0.10
NA
Dec-98
<0.10
<0.10
NA
Mar-99
0.49
0.50
2.02
Sample
MW50
MW18 MW50
MW48
MW48
MW38 MW18
Date
Concentration
Concentration F. Dup
% Difference
Mar-99
<0.10
<0.10
NA
Jun-99
0.14
0.15
6.90
Sep-99
0.10
0.10
0.00
Feb-00
1.36
1.31
3.75
Jun-00
0.39
0.35
10.8
Sep-00
0.47
0.44
6.59
Dec-00
<0.10
<0.10
NA
Sample
MW46 MW38 MW48 MW52
MW46
Date
Concentration
Concentration F. Dup
% Difference
Dec-00
1.46
1.46
0.00
Mar-01
0.39
0.46
16.47
Mar-01
0.75
0.74
1.34
May-01
<0.10
<0.10
NA
Aug-01
<0.10
<0.10
NA
Notes: NA, not applicable due to one or both duplicates being below limit of detection.
Table D4. RPD in Total Organic Carbon Concentrations (mg/L) for Field Duplicates Collected through Time in
Elizabeth City Monitoring Wells
Sample
MW50 MW35D MW49 MW13 MW48 MW18
MW46
Date
Concentration
Concentration F. Dup
% Difference
Jun-97
1.14
0.97
16.32
Mar-98
1.32
1.39
5.17
Jun-98
1.43
1.39
2.84
Mar-99
4.96
5.33
7.19
Jun-00
1.12
0.89
22.9
Dec-00
14.8
4.37
109
Dec-00
0.68
0.92
30.0
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW38
Mar-01
1.12
1.23
8.96
MW48
Mar-01
1.65
1.59
3.58
105
-------
Table D5. RPD in Vinyl Chloride Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Monitoring Wells
Vinyl Chloride
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW46
Mar-98
2.50
2.50
0.00
Vinyl Chloride
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW52
Aug-01
10.8
11.5
6.28
cis-DCE
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW46
Mar-98
6.80
7.70
12.4
cis-DCE
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW18
Dec-00
3.27
3.27
0.00
TCE
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW46
Mar-98
212
240
12.13
TCE
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW38
Mar-01
ND
ND
NA
MW46
Mar-99
4.40
4.00
9.52
MW46
Mar-99
30.6
31.2
2.09
MW38
May-01
ND
ND
NA
MW18
Dec-98
ND
ND
NA
MW52
May-01
597
603
1.00
MW35D
Sep-99
ND
ND
NA
MW35D
Sep-99
<0.08
<0.08
NA
MW46
Aug-01
11.2
11.8
5.22
MW46
Mar-99
146
152
3.58
MW46
Aug-01
128
124
3.17
MW49
Jun-00
ND
ND
NA
MW49
Feb-00
0.91
0.88
3.35
MW49
Feb-00
1.07
0.64
50.3
MW52
Jun-00
ND
ND
NA
MW52
Feb-00
74.9
71.6
4.51
MW48
Jun-00
1625
1625
0.00
MW38 MW18
Sept-00 Dec-00
<0.5 9.42
<0.5 9.32
NA 1 .07
MW48 MW38
Jun-00 Sept-00
<1.0 <0.5
<1.0 <0.5
NA NA
MW38 MW18
Sep-00 Dec-00
ND ND
ND ND
NA NA
Notes: ND, not detected. BLQ, below limit of quantitation. NA, not applicable due to one or both duplicates
being below limit of detection or not detected.
106
-------
Table D6. RPD in Sodium Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Monitoring Wells
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW50
Sep-97
28.5
28.5
0.00
MW52
Sep-99
41.2
41.3
0.291
MW46
Aug-01
19.4
19.5
0.565
MW46
Mar-98
20.0
19.3
3.56
MW48
Jun-00
30.6
30.6
0.261
MW46
Jun-98
22.9
23.8
3.85
MW18
Dec-00
122
122
0.705
MW50
Jun-98
25.9
24.0
7.62
MW46
Dec-00
43.6
44.0
0.891
MW38
Sep-98
49.2
18.2
92.0
MW38
Mar-01
16.5
16.5
0.0608
MW18
Dec-98
135
135
0.00
MW48
Mar-01
26.6
26.8
0.785
MW35D
Dec-98
17.6
17.8
1.13
MW52
May-01
31.1
30.8
0.969
Table D7. RPD in Potassium Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Monitoring Wells
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW48
Sep-97
2.03
1.52
28.7
MW52
Sep-99
1.33
1.22
8.63
8.63
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW46
Aug-01
3.11
3.09
0.645
MW46
Mar-98
<0.79
<0.79
NA
MW48
Jun-00
1.47
1.47
0.00
0.00
MW46
Jun-98
1.52
1.62
6.37
MW18
Dec-00
3.23
3.24
0.31
0.309
MW50
Jun-98
1.85
2.39
25.5
MW46
Dec-00
3.39
3.68
8.20
8.20
MW38
Sep-98
3.12
1.8
53.7
MW38
Mar-01
1.97
1.95
1.02
1.02
MW18
Dec-98
1.79
1.20
39.5
MW48
Mar-01
1.42
1.44
1.40
1.40
MW35D
Dec-98
1.54
1.24
21.6
MW52
May-01
1.04
1.05
0.96
0.957
Notes: NA, not applicable due to one or both duplicates being below limit of detection.
107
-------
Table D8. RPD in Calcium Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Monitoring Wells
Sample
MW48
MW46
MW46
MW50
MW38
MW18
MW35D
Date
Concentration
Concentration F. Dup
% Difference
Sep-97
12.1
12.1
0.00
Mar-98
5.74
5.58
2.83
Jun-98
6.17
5.9
4.47
Jun-98
5.04
4.9
2.82
Sep-98
15
9.97
40.3
Dec-98
11.4
11.4
0.00
Dec-98
15.6
15.7
0.639
Sample
MW52 MW48 MW18 MW46 MW38
MW48
MW52
Date
Concentration
Concentration F. Dup
% Difference
Sep-99
2.90
2.82
3.08
Jun-00
10.9
10.8
1.01
Dec-00
12.0
11.9
1.42
Dec-00
19.4
19.4
0.207
Mar-01
9.85
9.82
0.305
Mar-01
10.3
10.2
0.488
May-01
3.67
3.57
2.76
Table D9. RPD in Magnesium Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Monitoring Wells
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW48
Sep-97
7.79
7.78
0.128
MW35D
Dec-98
5.8
5.83
0.516
MW52
May-01
2.46
2.41
1.85
MW50
Sep-97
3.66
3.71
1.36
MW52
Sep-99
1.979
1.971
0.405
MW46
Aug-01
4.86
4.89
0.615
MW46
Mar-98
3.07
3.00
2.31
MW48
Jun-00
7.26
7.16
1.35
MW46
Jun-98
2.80
2.63
6.26
MW18
Dec-00
9.45
9.52
0.685
MW50
Jun-98
3.14
3.09
1.61
MW46
Dec-00
5.66
5.58
1.42
MW38
Sep-98
9.48
9.46
0.211
MW38
Mar-01
4.96
4.94
0.444
MW18
Dec-98
9.83
9.84
0.102
MW48
Mar-01
6.95
6.92
0.389
108
-------
Table D10. RPD in Total Iron Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Monitoring Wells
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW48
Sep-97
0.018
0.031
53.7
MW35D
Dec-98
6.33
6.33
0.00
MW52
May-01
0.636
0.631
0.789
MW50
Sep-97
0.745
0.775
3.95
MW52
Sep-99
0.19
0.18
5.41
MW46
Aug-01
0.230
0.342
38.9
MW46
Mar-98
<0.019
<0.019
NA
MW48
Jun-00
<0.035
<0.035
NA
MW46
Jun-98
0.02
0.039
63.9
MW18
Dec-00
2.33
2.37
1.61
MW50
Jun-98
1.60
1.53
4.47
MW46
Dec-00
<0.035
<0.035
NA
MW38
Sep-98
<0.0083
<0.0083
NA
MW38
Mar-01
<0.035
<0.035
NA
MW18
Dec-98
2.27
2.31
1.75
MW48
Mar-01
<0.035
<0.035
NA
Notes: NA, not applicable due to one or both duplicates being below limit of detection.
Table D11. RPD in Manganese Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Monitoring Wells
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW48
Sep-97
0.480
0.480
0.00
MW35D
Dec-98
0.588
0.613
4.16
MW46
Aug-01
0.240
0.261
8.38
MW50
Sep-97
0.267
0.271
1.49
MW52
Sep-99
0.064
0.064
0.00
MW46
Mar-98
0.133
0.129
3.05
MW48
Jun-00
0.210
0.211
0.475
MW46
Jun-98
0.125
0.107
15.5
MW18
Dec-00
0.625
0.628
0.479
MW50
Jun-98
0.229
0.216
5.84
MW38
Mar-01
0.063
0.063
0.00
MW38
Sep-98
0.450
0.108
123
MW48
Mar-01
0.162
0.163
0.615
MW18
Dec-98
0.723
0.709
1.96
MW52
May-01
0.107
0.108
0.930
109
-------
Table D12. RPD Difference in Strontium Concentrations (mg/L) for Field Duplicates Collected through Time in Eliza-
beth City Monitoring Wells
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW48
Sep-97
0.184
0.185
0.542
MW35D
Dec-98
0.13
0.13
0.00
MW46
Aug-01
0.174
0.176
1.14
MW50
Sep-97
0.074
0.076
2.55
MW52
Sep-99
0.42
0.42
0.00
MW46
Mar-98
0.0749
0.073
2.57
MW48
Jun-00
0.155
0.153
1.30
MW46
Jun-98
0.083
0.080
3.81
MW18
Dec-00
0.309
0.316
2.43
MW50
Jun-98
0.064
0.061
4.31
MW46
Dec-00
0.289
0.291
0.622
MW38
Sep-98
0.141
0.130
8.12
MW38
Mar-01
0.126
0.127
0.791
MW18
Dec-98
0.314
0.320
1.89
MW48
Mar-01
0.156
0.157
0.639
Table D13. RPD in Total Chromium Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth
City Monitoring Wells
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
MW48
Sep-97
0.724
0.728
0.55
MW35D
Dec-98
0.004
0.002
66.7
MW46
Aug-01
0.01
0.01
0.00
MW50
Sep-97
<0.0041
<0.0041
NA
MW52
Sep-99
<0.001
<0.001
NA
MW46
Mar-98
<0.0034
<0.0034
0.00
MW48
Jun-00
0.21
0.2
0.00
MW46
Jun-98
0.003
<0.0016
NA
MW18
Dec-00
<0.002
<0.002
NA
MW50
Jun-98
<0.0016
0.0002
NA
MW38
Mar-01
<0.003
<0.003
NA
MW38
Sep-98
<0.0021
<0.0021
NA
MW48
Mar-01
0.11
0.11
0.00
MW18
Dec-98
0.004
0.002
66.7
MW52
May-01
<0.001
<0.001
NA
Notes: NA, not applicable due to one or both duplicates being below limit of detection.
110
-------
Appendix E
Quality Control Data for Field Duplicates from
Monitoring Wells at the Denver Federal Site
111
-------
Table E1. RPD in Sulfate, Chloride, and Nitrite + Nitrate Concentrations (mg/L) for Field Duplicates Collected through
Time in Denver Federal Center, Lakewood, CO
Sulfate
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
242
245
1.23
Sample GSA-31
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
<1.00
<1.00
0.00
Chloride
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
57.1
57.0
0.18
Sample GSA-31
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
81.0
81.1
0.12
Nitrate + Nitrite
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
<0.10
<0.10
0.00
Sample GSA-31
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
<0.10
<0.10
0.00
GSA-26
May-99
292
287
1.73
GSA-26
May-99
69.7
68.2
2.18
GSA-26
May-99
3.21
3.22
0.31
C1-I2
Jul-00
4.30
3.98
7.73
C1-I2
Jul-00
54.4
55.5
2.00
C1-I2
Jul-00
<0.10
<0.10
0.00
C2-USGS-5
Jul-00
409
403
1.48
C2-USGS-5
Jul-00
83.0
80.9
2.56
C2-USGS-5
Jul-00
1.29
1.30
0.77
C3-I1
Jul-00
<1.00
<1.00
NA
C3-I1
Jul-00
195
203
4.02
C3-I1
Jul-00
<0.10
<0.10
0.00
GSA-21
Jul-01
213
212
0.47
GSA-21
Jul-01
47.8
45.8
4.27
GSA-21
Jul-01
3.71
3.70
0.27
C3-I2
Jul-01
<1.00
<1.00
NA
C3-I2
Jul-01
111
111
0.00
C3-I2
Jul-01
<0.10
<0.10
0.00
Note: NA, not applicable due to one or both duplicates being below limit of detection.
112
-------
Table E2. RPD in Organic Concentrations (ng/L) for Field Duplicates Collected through Time in Denver Federal
Center, Lakewood, CO
Vinyl Chloride
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
ND
ND
NA
Sample GSA-31
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
ND
ND
NA
GSA-26
May-99
ND
ND
NA
C1-I2
Jul-00
ND
ND
NA
C2-USGS-5
Jul-00
ND
ND
NA
C3-I1
Jul-00
ND
ND
NA
GSA-21
Jul-01
ND
ND
NA
C3-I2
Jul-01
ND
ND
NA
cis -Dichloroethene
Sample
C1-USGS-6 GSA-26
C1-I2 C2-USGS-5 C3-I1 GSA-21
C3-I2
Date
Concentration
Concentration F. Dup
% Difference
May-99
ND
ND
NA
Sample GSA-31
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
ND
ND
NA
May-99 Jul-00
<1.0 8.40
<1.0 7.20
NA 15.4
Jul-00
40.9
39.6
3.23
Jul-00
ND
ND
NA
Jul-01
22.8
41.8
58.8
Jul-01
6.55
6.96
6.07
Trichloroethene
Sample C1-USGS-6 GSA-26
Date
Concentration
Concentration F. Dup
% Difference
May-99 May-99
ND <1.0
ND <1.0
NA NA
Sample GSA-31
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
ND
ND
NA
C1-I2
Jul-00
ND
<1.0
NA
C2-USGS-5
Jul-00
ND
ND
NA
C3-I1
Jul-00
ND
ND
NA
GSA-21
Jul-01
16.5
19.8
18.2
C3-I2
Jul-01
2.58
2.80
8.18
Note: NA, not applicable due to one or both duplicates being below limit of detection. ND, not detected.
Continued
113
-------
Table E2. RPD in Organic Concentrations (ng/L) for Field Duplicates Collected through Time in Denver Federal
Center, Lakewood, CO, continued
1,1,1-Trichloroethane
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
<1.0
<1.0
NA
Sample GSA-31
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
ND
ND
NA
Carbon Tetrachloride
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
ND
ND
NA
Sample GSA-31
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
ND
ND
NA
1 ,1 -Dichloroethane
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
NA
NA
NA
Sample GSA-31
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
ND
ND
NA
GSA-26
May-99
ND
ND
NA
GSA-26
May-99
ND
ND
NA
GSA-26
May-99
NA
NA
NA
C1-I2
Jul-00
BLQ
BLQ
NA
C1-I2
Jul-00
ND
ND
NA
C1-I2
Jul-00
7.30
6.20
16.3
C2-USGS-5
Jul-00
3.20
3.10
3.17
C2-USGS-5
Jul-00
ND
ND
NA
C2-USGS-5
Jul-00
13.2
13.6
2.99
C3-I1
Jul-00
ND
ND
NA
C3-I1
Jul-00
ND
ND
NA
C3-I1
Jul-00
ND
ND
NA
GSA-21
Jul-01
ND
ND
NA
GSA-21
Jul-01
ND
ND
NA
GSA-21
Jul-01
3.97
4.67
16.2
C3-I2
Jul-01
ND
ND
NA
C3-I2
Jul-01
ND
ND
NA
C3-I2
Jul-01
6.72
6.97
3.65
Continued
114
-------
Table E2. RPD in Organic Concentrations (jj.g/L) for Field Duplicates Collected through Time in Denver Federal
Center, Lakewood, CO, continued
trans -1,2-Dichloroethene
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
ND
ND
NA
Sample GSA-31
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
ND
ND
NA
Benzene
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
ND
ND
NA
Sample GSA-31
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
ND
ND
NA
Toluene
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
ND
<1.0
NA
Sample GSA-31
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
ND
ND
NA
GSA-26
May-99
ND
ND
NA
GSA-26
May-99
ND
ND
NA
GSA-26
May-99
ND
ND
NA
C1-I2 C2-USGS-5 C3-I1
Jul-00 Jul-00 Jul-00
ND ND ND
ND ND ND
NA NA NA
C1-I2 C2-USGS-5 C3-I1
Jul-00 Jul-00 Jul-00
<1.0 1.10 <1.0
<1.0 1.40 <1.0
NA 24.0 NA
C1-I2 C2-USGS-5 C3-I1
Jul-00 Jul-00 Jul-00
<1.0 ND <1.0
ND <1.0 <1.0
NA NA NA
GSA-21
Jul-01
ND
ND
NA
GSA-21
Jul-01
ND
ND
NA
GSA-21
Jul-01
ND
ND
NA
C3-I2
Jul-01
ND
ND
NA
C3-I2
Jul-01
ND
ND
NA
C3-I2
Jul-01
ND
ND
NA
115
-------
Table E3. RPD in Cation Concentrations (mg/L) for Field Duplicates Collected through Time in Denver Federal
Center, Lakewood, CO
Barium
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
0.0038
0.0036
5.41
Sample C3-I2
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
<0.002
<0.002
NA
C1-I2
Jul-00
0.033
0.033
0.00
GSA-31
Jul-01
0.185
0.184
0.542
C2-USGS-5
Jul-00
ND
ND
NA
C3-I1
Jul-00
0.032
0.033
3.08
GSA-21
Jul-01
0.022
0.018
20.00
C2-USGS-13
Jul-01
0.002
0.003
40.00
Calcium
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
108
109
0.922
Sample C3-I2
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
2.75
2.53
8.33
C1-I2
Jul-00
1.65
1.56
5.61
GSA-31
Jul-01
111
111
0.450
C2-USGS-5
Jul-00
9.00
8.97
0.334
C3-I1
Jul-00
2.16
2.57
17.3
GSA-21
Jul-01
89.3
87.5
1.96
C2-USGS-13
Jul-01
2.10
2.29
8.66
Chromium
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
<0.0024
<0.0024
NA
Sample C3-I2
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
<0.003
<0.003
NA
C1-I2
Jul-00
<0.002
<0.002
NA
GSA-31
Jul-01
<0.003
<0.003
NA
C2-USGS-5
Jul-00
<0.002
<0.002
NA
C3-I1
Jul-00
<0.002
<0.002
NA
GSA-21
Jul-01
0.025
<0.003
NA
C2-USGS-13
Jul-01
<0.003
<0.003
NA
Note: NA, not applicable due to one or both duplicates being below limit of detection.
Continued
116
-------
Table E3. RPD in Cation Concentrations (mg/L) for Field Duplicates Collected through Time in Denver Federal
Center, Lakewood, CO, continued
Iron
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
1.71
1.59
7.27
Sample C3-I2
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
0.177
0.171
3.45
Potassium
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
<0.21
<0.21
0.00
Sample C3-I2
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
2.42
2.40
0.70
Magnesium
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
7.57
7.65
1.05
Sample C3-I2
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
22.9
21.5
6.31
C1-I2
Jul-00
0.313
0.062
134
GSA-31
Jul-01
19.1
19.2
0.52
C1-I2
Jul-00
0.567
0.628
10.21
GSA-31
Jul-01
0.98
1.00
1.82
C1-I2
Jul-00
2.37
2.30
3.00
GSA-31
Jul-01
31.7
31.6
0.32
C2-USGS-5
Jul-00
<0.035
<0.035
NA
C2-USGS-5
Jul-00
0.861
0.855
0.70
C2-USGS-5
Jul-00
93.2
92.8
0.43
C3-I1
Jul-00
<0.035
<0.035
NA
C3-I1
Jul-00
1.89
2.02
6.76
C3-I1
Jul-00
0.575
0.666
14.7
GSA-21
Jul-01
0.437
<0.035
NA
GSA-21
Jul-01
0.653
0.444
38.1
GSA-21
Jul-01
17.0
16.1
5.44
C2-USGS-13
Jul-01
<0.035
<0.035
NA
C2-USGS-13
Jul-01
0.822
0.783
4.86
C2-USGS-13
Jul-01
14.4
14.1
2.11
Continued
117
-------
Table E3. RPD in Cation Concentrations (mg/L) for Field Duplicates Collected through Time in Denver Federal
Center, Lakewood, CO, continued
Manganese
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
0.186
0.194
4.21
Sample C3-I2
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
0.036
0.034
5.71
Sodium
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
156
158
1.27
Sample C3-I2
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
201
200
0.799
Strontium
Sample C1-USGS-6
Date
Concentration
Concentration F. Dup
% Difference
May-99
0.337
0.339
0.592
Sample C3-I2
Date
Concentration
Concentration F. Dup
% Difference
Jul-01
0.040
0.038
5.13
C1-I2
Jul-00
0.007
0.004
54.5
GSA-31
Jul-01
4.23
4.21
0.47
C1-I2
Jul-00
167
168
0.477
GSA-31
Jul-01
118
119
0.084
C1-I2
Jul-00
0.00
0.00
0.00
GSA-31
Jul-01
1.10
1.11
0.905
C2-USGS-5
Jul-00
0.058
0.058
0.00
C2-USGS-5
Jul-00
232
231
0.475
C2-USGS-5
Jul-00
0.041
0.040
2.47
C3-I1
Jul-00
0.013
0.015
14.3
C3-I1
Jul-00
202
204
0.938
C3-I1
Jul-00
0.025
0.026
3.92
GSA-21
Jul-01
0.109
0.006
179
GSA-21
Jul-01
167
166
0.480
GSA-21
Jul-01
0.461
0.473
2.57
C2-USGS-13
Jul-01
0.006
0.005
18.2
C2-USGS-13
Jul-01
228
223
2.35
C2-USGS-13
Jul-01
0.009
0.009
0.00
118
-------
Appendix F
Quality Control Data for Field Duplicates from
Multi-level Samples at the Elizabeth City Site
119
-------
Table F1. RPD in Sulfate Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Transect 2 Multi-level Wells
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
ML21-7
Mar-97
15.3
15.6
1.94
ML23-3
Sep-97
1.05
1.06
0.95
ML25-2
Mar-98
1.31
1.31
0.00
ML21-2
Jun-99
28.0
27.9
0.36
ML24-5
Jun-00
1.00
1.00
0.00
ML21-3
Jun-97
39.30
39.70
1.01
ML24-6
Sep-97
1.00
1.00
0.00
ML22.5-1
Sep-98
33.4
33.0
1.20
ML22.5-5
Jun-99
9.41
9.34
0.75
ML25-4
Jun-00
1.00
1.00
0.00
ML22-2
Jun-97
0.10
0.10
0.00
ML21-7
Mar-98
15.3
15.6
1.94
ML23.5-1
Sep-98
1.80
1.77
1.68
ML23.5-4
Jun-99
0.50
0.50
0.00
ML22.5-6
May-01
4.67
4.76
1.91
ML23-3
Jun-97
0.10
0.10
0.00
ML22.5-4
Mar-98
0.89
0.92
3.31
ML25-2
Sep-98
0.54
0.59
8.85
ML24-6
Jun-99
0.50
0.50
0.00
ML23.5-2
May-01
2.12
2.15
1.41
ML24-6
Jun-97
0.10
0.10
0.00
ML23-5
Mar-98
8.26
8.27
0.12
ML21-3
Dec-98
43.5
43.4
0.23
ML25-6
Jun-99
0.50
0.50
0.00
ML24-7
May-01
1.00
1.00
0.00
ML25-4
Jun-97
0.10
0.10
0.00
ML23.5-4
Mar-98
0.10
0.10
0.00
ML24-3
Dec-98
0.10
0.10
0.00
ML22.5-1
Jun-00
24.30
24.60
1.23
ML22-2
Sep-97
1.25
1.25
0.00
ML24-5
Mar-98
0.10
0.10
0.00
ML25-2
Dec-98
0.54
0.59
8.85
ML23.5-4
Jun-00
4.30
5.16
18.2
120
-------
Table F2. RPD in Chloride Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Transect 2 Multi-level Wells
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
ML21-3
Jun-97
42.4
42.2
0.47
ML24-6
Sep-97
15.5
15.5
0.00
ML22.5-1
Sep-98
26.2
26.3
0.38
ML22.5-5
Jun-99
12.2
12.3
0.82
ML22.5-6
Jun-00
32.5
33.7
3.63
ML24-7
May-01
19.7
19.7
0.00
ML22-2
Jun-97
39.1
39.2
0.26
ML21-7
Mar-98
60.3
60.9
0.99
ML23.5-1
Sep-98
30.3
30.3
0.00
ML23.5-4
Jun-99
20.3
20.0
1.49
ML23.5-2
Jun-00
19.0
18.7
1.59
ML25-6
May-01
20.3
20.3
0.00
ML23-3
Jun-97
76.5
77.2
0.91
ML22.5-4
Mar-98
17.0
17.2
1.17
ML25-2
Sep-98
35.3
35.1
0.57
ML24-6
Jun-99
10.3
10.2
0.98
ML24-7
Jun-00
19.7
19.7
0.00
ML24-4
Jun-97
12.4
12.5
0.80
ML23-6
Mar-98
16.9
16.9
0.00
ML21-3
Dec-98
20.4
20.4
0.00
ML25-6
Jun-99
35.5
36.2
1.95
ML25-6
Jun-00
20.3
20.3
0.00
ML25-4
Jun-97
83.7
83.4
0.36
ML23-5
Mar-98
15.9
15.9
0.00
ML24-3
Dec-98
47.3
47.7
0.84
ML22.5-1
Jun-00
13.0
13.3
2.28
ML25-4
Jun-00
30.6
31.7
3.37
ML22-2
Sep-97
52.6
52.6
0.00
ML23.5-4
Mar-98
36.1
36.0
0.28
ML25-2
Dec-98
44.1
43.9
0.45
ML23.5-4
Jun-00
31.3
31.4
0.32
ML22.5-6
May-01
33.7
32.5
3.63
ML23-3
Sep-97
53.0
53.1
0.19
ML25-2
Mar-98
53.5
53.4
0.19
ML21-2
Jun-99
15.5
15.3
1.30
ML24-2
Jun-00
29.9
29.2
2.37
ML23.5-2
May-01
19.0
18.7
1.59
121
-------
Table F3. RPD in Nitrate + Nitrite Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth
City Transect 2 Multi-level Wells
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
Sample
Date
Concentration
Concentration F. Dup
% Difference
ML21-3
Jun-97
1.07
1.06
0.94
ML23.5-4
Mar-98
0.10
0.10
0.00
ML24-3
Dec-98
0.10
0.10
0.00
ML23.5-4
Jun-00
0.10
0.10
0.00
ML22-2
Jun-97
0.10
0.10
0.00
ML24-5
Mar-98
0.10
0.10
0.00
ML25-2
Dec-98
0.10
0.10
0.00
ML24-5
Jun-00
0.39
0.10
118
ML23-3
Jun-97
0.10
0.10
0.00
ML25-2
Mar-98
0.10
0.10
0.00
ML21-2
Jun-99
0.47
0.47
0.00
ML25-4
Jun-00
0.10
0.10
0.00
ML24-6
Jun-97
0.10
0.10
0.00
ML22.5-1
Sep-98
0.32
0.34
6.06
ML23.5-4
Jun-99
0.20
0.20
0.00
ML22.5-6
May-01
0.10
0.10
0.00
ML25-4
Jun-97
0.10
0.10
0.00
ML23.5-1
Sep-98
0.10
0.10
0.00
ML24-6
Jun-99
0.20
0.20
0.00
ML23.5-2
May-01
0.10
0.10
0.00
ML21-7
Mar-98
0.52
0.51
1.94
ML25-2
Sep-98
0.12
0.17
34.5
ML25-6
Jun-99
0.15
0.19
23.5
ML24-7
May-01
0.10
0.10
0.00
ML23-5
Mar-98
0.10
0.10
0.00
ML21-3
Dec-98
0.33
0.35
5.88
ML22.5-1
Jun-00
0.81
0.13
145
ML25-6
May-01
0.10
0.10
0.00
122
-------
Table F4. RPD in Total Organic Carbon Concentrations (mg/L) for Field Duplicates Collected through Time in
Elizabeth City Transect 2 Multi-level Wells
Total Carbon
Sample ML21-3
Date
Concentration
Concentration F. Dup
% Difference
Jun-97
1.61
1.68
4.26
Sample ML25-5
Date
Concentration
Concentration F. Dup
% Difference
Mar-98
3.19
3.12
2.22
Sample ML24-7
Date
Concentration
Concentration F. Dup
% Difference
Dec-98
2.93
2.93
0.00
Sample ML24-5
Date
Concentration
Concentration F. Dup
% Difference
Jun-00
0.92
1.00
8.33
ML24-7
Jun-97
7.41
7.37
0.54
ML25-2
Mar-98
1.39
1.35
2.92
ML21-2
Jun-99
1.73
1.19
37.0
ML25-4
Jun-00
0.98
1.28
26.5
ML21-6
Sep-97
1.39
1.45
4.23
ML21-5
Sep-98
13.20
2.20
143
ML22.5-5
Jun-99
2.13
2.08
2.38
ML22.5-6
May-01
13.20
13.70
3.72
ML25-7
Sep-97
1.27
1.25
1.59
ML22.5-4
Sep-98
2.61
2.53
3.11
ML23.5-4
Jun-99
3.25
3.21
1.24
ML23.5-2
May-01
8.37
8.69
3.75
ML22.5-0
Mar-98
1.99
1.98
0.50
ML23.5-4
Sep-98
2.16
2.24
3.64
ML24-7
Jun-99
1.72
1.80
4.55
ML24-7
May-01
7.10
6.66
6.40
ML22.5-8
Mar-98
3.26
3.60
9.91
ML22.5-4
Dec-98
1.99
1.99
0.00
ML22.5-1
Jun-00
0.98
0.49
66.7
ML25-7
May-01
5.61
6.85
19.9
ML24-1
Mar-98
6.62
6.88
3.85
ML23.5-7
Dec-98
2.04
2.01
1.48
ML23.5-4
Jun-00
0.99
1.55
44.1
123
-------
Table F5. RPD in Vinyl Chloride Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Transect 2 Multi-level Wells
Sample
ML21-6 ML22-2 ML23-3 ML22-4 ML23-6 ML25-1 ML22.5-5
Date
Concentration
Concentration F. Dup
% Difference
Jun-97
36.8
37.1
0.81
Jun-97
3.40
3.50
2.90
Jun-97
8.70
8.40
3.51
Sep-97
1.10
1.00
9.52
Sep-97
ND
ND
NA
Sep-97
1.40
1.10
24.0
Mar-98
27.4
20.5
28.8
Sample
ML25-2 ML21-7 ML21-3 ML22.5-3 ML23.5-2 ML25-5 ML21-5
Date
Concentration
Concentration F. Dup
% Difference
Mar-98
2.50
3.10
21.4
Sample ML22.5-2
Date
Concentration
Concentration F. Dup
% Difference
Dec-98
1.00
1.00
0.00
Sep-98
ND
ND
NA
ML23.5-1
Dec-98
4.40
4.11
6.82
Sep-98
ND
ND
NA
ML24-1
Dec-98
1.40
1.21
14.6
Sep-98
1.60
1.60
0.00
ML25-4
Dec-98
5.30
4.78
10.3
Sep-98
2.40
1.90
23.3
ML21-1
Jun-99
0.10
0.10
0.00
Sep-98
3.70
5.40
37.4
ML22.5-5
Jun-99
0.10
0.10
0.00
Dec-98
12.6
11.7
7.66
ML24-6
Jun-99
0.10
0.10
0.00
Sample
ML22.5-1 ML23.5-4 ML24-5 ML22.5-6 ML23.5-2 ML24-7 ML25-6
Date
Concentration
Concentration F. Dup
% Difference
Jun-00
ND
ND
NA
Jun-00
2.16
2.05
5.23
Jun-00
ND
ND
NA
May-01
41.4
41.2
0.48
May-01
24.6
21.7
12.53
May-01
2.68
2.80
4.38
May-01
ND
ND
NA
Notes: NA, not applicable due to one or both duplicates being below limit of detection. ND, not detected.
124
-------
Table F6. RPD in c/s-DCE Concentrations (ng/L) for Field Duplicates Collected through Time in Elizabeth City
Transect 2 Multi-level Wells
Sample ML21-3 ML22-2 ML23-3 ML21-3 M22-4 ML25-1 ML22.5-5
Date
Concentration
Concentration F. Dup
% Difference
Jun-97
ND
<1.0
NA
Jun-97
39.80
42.60
6.80
Jun-97
49.8
54.5
9.01
Sep-97
ND
ND
NA
Sep-97
ND
ND
NA
Sep-97
6.60
6.40
3.08
Mar-98
6.50
6.10
6.35
Sample
ML25-2 ML21-7 ML22.5-3 ML23.5-2 ML25-5 ML21-5 ML22.5-2
Date
Concentration
Concentration F. Dup
% Difference
Mar-98
2.90
2.50
14.81
Sep-98
65.0
69.6
6.84
Sep-98
1.30
1.40
7.41
Sep-98
4.50
3.90
14.29
Sep-98
14.3
14.4
0.70
Dec-98
135
137
1.57
Dec-98
2.87
2.20
26.43
Sample
ML23.5-1 ML24-1 ML25-4 ML22.5-5 ML24-6 ML23.5-4 ML24-1
Date
Concentration
Concentration F. Dup
% Difference
Dec-98
7.51
6.98
7.32
Sample ML25-4
Date
Concentration
Concentration F. Dup
% Difference
Jun-00
18.3
18.3
0.00
Dec-98
8.51
7.77
9.09
ML22.5-6
May-01
3.28
4.00
19.8
Dec-98
20.2
19.0
6.12
ML23.5-2
May-01
33.8
34.7
2.63
Jun-99
0.10
0.10
0.00
ML24-7
May-01
ND
ND
NA
Jun-99
0.10
0.10
0.00
ML25-6
May-01
38.9
37.2
4.47
Jun-00
1.00
1.00
0.00
Jun-00
18.0
1.65
166
Notes: NA, not applicable due to one or both duplicates being below limit of detection. ND, not detected.
125
-------
Table F7. RPD in TCE Concentrations ((ig/L) for Field Duplicates Collected through Time in Elizabeth City Transect
2 Multi-level Wells
Sample
ML21-3 ML23-3 ML25-1 ML22.5-5 ML25-4 ML25-2 ML21-7
Date
Concentration
Concentration F. Dup
% Difference
Jun-97
21.1
7.50
95.1
Jun-97
3.10
3.40
9.23
Sep-97
17.1
17.4
1.74
Mar-98
6.90
6.30
9.09
Mar-98
2.20
1.60
31.6
Mar-98
3.00
2.40
22.2
Sep-98
54.8
60.6
10.1
Sample
ML22.5-3 ML23.5-2 ML25-5 ML21-5 ML22.5-2 ML23.5-1 ML24-7
Date
Concentration
Concentration F. Dup
% Difference
Sep-98
10.1
8.90
12.6
Sep-98
1.40
1.20
15.4
Sep-98
ND
ND
NA
Dec-98
152
156
2.72
Dec-98
14.3
14.6
2.15
Dec-98
2.92
3.02
3.64
Dec-98
ND
ND
0.00
Sample
ML24-1 ML22.5-5 ML24-6 ML22.5-1 ML23.54 ML24-5 ML22.5-6
Date
Concentration
Concentration F. Dup
% Difference
Dec-98
ND
ND
NA
Sample ML23.5-2
Date
Concentration
Concentration F. Dup
% Difference
May-01
48.4
47.6
1.67
Jun-99
0.15
0.15
0.00
ML24-7
May-01
1.00
1.18
16.51
Jun-99
0.15
0.15
0.00
ML25-6
May-01
34.9
34.6
0.86
Jun-00
1200
1210
0.83
Jun-00
4.72
4.17
12.37
Jun-00
ND
ND
NA
May-01
12.1
11.9
1.67
Notes: NA, not applicable due to one or both duplicates being below limit of detection. ND, not detected.
126
-------
Table F8. RPD in Sodium Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Transect 2 Multi-level Wells
Sample
ML21-6 ML21-1 ML23-2 ML23.5-0 ML25-2 ML21-6 ML22.5-5
Date
Concentration
Concentration F. Dup
% Difference
Mar-98
9.95
53.1
137
Sample ML22.5-1
Date
Concentration
Concentration F. Dup
% Difference
Jun-98
28.3
28.6
1.05
Sample ML21-1
Date
Concentration
Concentration F. Dup
% Difference
Dec-98
22.2
22.3
0.45
Sample ML22.5-1
Date
Concentration
Concentration F. Dup
% Difference
Jun-00
23.7
23.6
0.21
Mar-98
20.0
20.6
2.96
ML24-7
Jun-98
7.41
7.43
0.27
ML23.5-5
Dec-98
21.2
21.2
0.00
ML23.5-4
Jun-00
30.2
30.6
1.35
Mar-98
46.2
44.4
3.97
ML21-7
Sep-98
21.6
22.2
2.74
ML25-6
Dec-98
12.3
12.4
0.81
ML24-5
Jun-00
14.1
14.1
0.00
Mar-98
31.4
31.0
1.28
ML21-1
Sep-98
25.1
22.6
10.5
ML21-2
Jun-99
23.1
23.2
0.43
ML25-4
Jun-00
46.26
46.67
0.88
Mar-98
42.6
42.7
0.23
ML23.5-1
Sep-98
43.7
44.3
1.36
ML22.5-5
Jun-99
5.42
5.39
0.56
Jun-98
52.5
52.5
0.00
ML24-1
Sep-98
33.5
33.2
0.90
ML23.5-4
Jun-99
17.6
17.5
0.57
Jun-98
22.8
22.8
0.00
ML21-7
Dec-98
21.7
21.7
0.00
ML24-6
Jun-99
4.91
4.95
0.81
127
-------
Table F9. RPD in Potassium Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Transect 2 Multi-level Wells
Sample
ML21-1
ML23-2 ML23.5-0 ML25-2 ML21-6 ML22.5-5 ML22.5-1
Date
Concentration
Concentration F. Dup
% Difference
Mar-98
1.02
1.49
37.5
Sample ML24-7
Date
Concentration
Concentration F. Dup
% Difference
Jun-98
2.01
2.10
4.38
Sample ML23.5-5
Date
Concentration
Concentration F. Dup
% Difference
Dec-98
1.09
1.35
21.3
Sample ML23.5-4
Date
Concentration
Concentration F. Dup
% Difference
Jun-00
2.48
2.45
1.30
Mar-98
1.23
0.79
43.6
ML21-7
Sep-98
5.18
5.31
2.48
ML25-6
Dec-98
1.80
1.73
3.97
ML24-5
Jun-00
3.17
3.12
1.49
Mar-98
31.4
31.0
1.28
ML21-1
Sep-98
0.30
0.30
0.00
ML21-2
Jun-99
0.73
1.26
53.3
ML25-4
Jun-00
2.812
2.810
0.071
Mar-98
42.6
42.7
0.23
ML23.5-1
Sep-98
1.93
1.86
3.69
ML22.5-5
Jun-99
3.17
3.36
5.82
Jun-98
6.31
6.64
5.10
ML24-1
Sep-98
2.33
2.44
4.61
ML23.5-4
Jun-99
1.20
1.11
7.79
Jun-98
4.43
5.00
12.1
ML21-7
Dec-98
5.53
5.42
2.01
ML24-6
Jun-99
1.41
1.48
4.84
Jun-98
1.75
1.81
3.37
ML21-1
Dec-98
0.78
0.76
2.60
ML22.5-1
Jun-00
1.39
1.40
0.65
128
-------
Table F10. RPD in Calcium Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Transect 2 Multi-level Wells
Sample
ML21-6 ML21-1 ML23-2 ML23.5-0 ML25-2 ML21-6 ML22.5-5
Date
Concentration
Concentration F. Dup
% Difference
Mar-98
3.10
3.08
0.65
Sample ML22.5-1
Date
Concentration
Concentration F. Dup
% Difference
Jun-98
9.14
9.14
0.00
Sample ML21-1
Date
Concentration
Concentration F. Dup
% Difference
Dec-98
12.9
12.7
1.56
Sample ML22.5-1
Date
Concentration
Concentration F. Dup
% Difference
Jun-00
10.5
10.5
0.19
Mar-98
12.4
12.1
2.45
ML24-7
Jun-98
1.89
1.91
1.05
ML23.5-5
Dec-98
6.78
6.69
1.34
ML23.5-4
Jun-00
14.8
14.5
1.98
Mar-98
4.39
4.46
1.58
ML21-7
Sep-98
27.0
27.4
1.47
ML25-6
Dec-98
2.46
2.44
0.82
ML24-5
Jun-00
7.35
7.29
0.87
Mar-98
9.35
9.32
0.32
ML21-1
Sep-98
13.0
10.5
21.28
ML21-2
Jun-99
11.2
11.0
1.80
ML25-4
Jun-00
3.307
3.309
0.060
Mar-98
2.92
2.89
1.03
ML23.5-1
Sep-98
2.51
2.53
0.79
ML22.5-5
Jun-99
13.0
12.9
0.77
Jun-98
29.4
29.1
1.03
ML24-1
Sep-98
2.12
2.06
2.87
ML23.5-4
Jun-99
7.93
7.91
0.25
Jun-98
303
30.9
163
ML21-7
Dec-98
26.2
26.6
1.52
ML24-6
Jun-99
2.29
2.27
0.88
129
-------
Table F11. RPD in Magnesium Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Transect 2 Multi-level Wells
Sample
ML21-1 ML23-2 ML23.5-0 ML25-2 ML21-6 ML22.5-5 ML22.5-1
Date
Concentration
Concentration F. Dup
% Difference
Mar-98
7.03
6.89
2.01
Sample ML24-7
Date
Concentration
Concentration F. Dup
% Difference
Jun-98
0.11
0.10
12.8
Sample ML23.5-5
Date
Concentration
Concentration F. Dup
% Difference
Dec-98
2.69
2.67
0.75
Sample ML23.5-4
Date
Concentration
Concentration F. Dup
% Difference
Jun-00
4.64
4.59
1.04
Mar-98
6.73
6.64
1.35
ML21-7
Sep-98
9.60
9.39
2.21
ML25-6
Dec-98
1.14
1.12
1.77
ML24-1
Jun-00
7.37
4.49
48.6
Mar-98
6.68
6.56
1.81
ML21-1
Sep-98
7.78
6.34
20.4
ML21-2
Jun-99
6.73
6.68
0.75
ML25-4
Jun-00
4.015
4.034
0.472
Mar-98
1.44
1.41
2.11
ML23.5-1
Sep-98
2.82
2.81
0.36
ML22.5-5
Jun-99
1.72
1.74
1.16
Jun-98
14.2
14.0
1.42
ML24-1
Sep-98
2.47
2.45
0.81
ML23.5-4
Jun-99
1.27
1.28
0.78
Jun-98
4.38
4.48
2.26
ML21-7
Dec-98
9.00
9.14
1.54
ML24-6
Jun-99
0.25
0.23
8.81
Jun-98
5.69
5.67
0.35
ML21-1
Dec-98
7.62
7.52
1.32
ML22.5-1
Jun-00
6.85
6.81
0.45
130
-------
Table F12. RPD in Total Iron Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Transect 2 Multi-level Wells
Sample
ML21-6 ML21-1 ML23-2 ML23.5-0 ML25-2 ML21-6 ML22.5-5
Date
Concentration
Concentration F. Dup
% Difference
Mar-98
0.57
0.57
0.00
Sample ML22.5-1
Date
Concentration
Concentration F. Dup
% Difference
Jun-98
0.54
0.54
0.00
Sample ML21-1
Date
Concentration
Concentration F. Dup
% Difference
Dec-98
O.01
<0.01
NA
Sample ML22.5-1
Date
Concentration
Concentration F. Dup
% Difference
Jun-00
0.05
0.05
0.00
Mar-98
0.01
0.01
0.00
ML24-7
Jun-98
0.00
0.01
65.1
ML23.5-5
Dec-98
0.49
0.48
1.44
ML23.5-4
Jun-00
7.59
7.42
2.19
Mar-98
0.06
0.03
54.9
ML21-7
Sep-98
5.85
5.91
1.02
ML25-6
Dec-98
0.47
0.48
2.75
ML24-5
Jun-00
0.04
0.04
0.00
Mar-98
0.06
0.07
18.2
ML21-1
Sep-98
0.01
0.01
0.00
ML21-2
Jun-99
0.01
0.01
0.00
ML25-2
Jun-00
3.29
3.22
2.18
Mar-98
3.69
3.65
1.09
ML23.5-1
Sep-98
0.02
0.02
39.2
ML22.5-5
Jun-99
3.59
3.55
1.12
ML25-4
Jun-00
<0.035
<0.035
NA
Jun-98
0.02
0.06
89.2
ML24-1
Sep-98
0.03
0.05
57.4
ML23.5-4
Jun-99
0.49
0.50
1.61
Jun-98
15.5
15.7
1.28
ML21-7
Dec-98
6.23
6.34
1.75
ML24-6
Jun-99
0.06
0.07
12.4
Notes: NA, not applicable due to one or both duplicates being below limit of detection. ND, not detected.
131
-------
Table F13. RPD in Manganese Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth City
Transect 2 Multi-level Wells
Sample
ML21-1 ML23-2 ML23.5-0 ML21-6 ML22.5-5 ML24-7 ML21-7
Date
Concentration
Concentration F. Dup
% Difference
Mar-98
0.10
0.10
0.00
Mar-98
0.02
0.03
8.33
Mar-98
0.08
0.07
5.26
Jun-98
2.77
2.72
1.82
Jun-98
0.68
0.69
1.76
Jun-98
0.01
0.01
0.00
Sep-98
3.51
3.57
1.69
Sample
ML21-1 ML24-1 ML21-7 ML23.5-5 ML25-6 ML21-2 ML23.5-4
Date
Concentration
Concentration F. Dup
% Difference
Sep-98
0.09
0.14
35.8
Sep-98
0.01
0.14
164
Dec-98
3.41
3.46
1.46
Dec-98
0.24
0.24
0.00
Dec-98
0.32
0.33
0.62
Jun-99
0.15
0.15
0.00
Jun-99
0.08
0.08
0.00
Sample
ML24-6 ML23.5-4 ML24-5 ML25-4
Date
Concentration
Concentration F. Dup
% Difference
Jun-99
0.08
0.08
0.00
Jun-00
0.58
0.57
1.92
Jun-00
0.02
0.02
0.00
Jun-00
0.005
0.005
0.00
132
-------
Table F14. RPD in Total Chromium Concentrations (mg/L) for Field Duplicates Collected through Time in Elizabeth
City Transect 2 Multi-level Wells
Sample ML21-1
Date
Concentration
Concentration F. Dup
% Difference
Mar-98
0.002
0.002
0.00
Sample ML24-7
Date
Concentration
Concentration F. Dup
% Difference
Jun-98
0.002
0.002
22.22
Sample ML23.5-5
Date
Concentration
Concentration F. Dup
% Difference
Dec-98
0.002
0.002
0.00
Sample ML23.5-4
Date
Concentration
Concentration F. Dup
% Difference
Jun-00
0.006
0.005
18.18
ML23-2
Mar-98
0.003
0.003
0.00
ML21-7
Sep-98
0.002
0.002
0.00
ML25-6
Dec-98
0.002
0.002
0.00
ML24-5
Jun-00
0.002
0.002
0.00
ML23.5-0
Mar-98
0.003
0.003
0.00
ML21-1
Sep-98
0.002
0.456
198.2
ML21-2
Jun-99
0.278
0.271
2.55
ML25-4
Jun-00
0.002
0.002
0.00
ML25-2
Mar-98
0.003
0.003
0.00
ML23.5-1
Sep-98
0.002
0.002
0.00
ML22.5-5
Jun-99
0.002
0.002
0.00
ML21-6
Jun-98
0.849
0.840
1.07
ML24-1
Sep-98
0.003
0.003
0.00
ML23.5-4
Jun-99
0.002
0.002
0.00
ML22.5-5
Jun-98
0.002
0.002
0.00
ML21-7
Dec-98
0.002
0.002
0.00
ML24-6
Jun-99
0.002
0.002
0.00
ML22.5-1
Jun-98
0.215
0.211
1.88
ML21-1
Dec-98
0.002
0.002
0.00
ML22.5-1
Jun-00
0.083
0.083
0.00
133
-------
U.S. Environmental Protection Agency
Region 5, Library (PL-12J)
77 West Jackson Boulevard, 12th Fta*
Chicago. IL 60604-3590
-------
SEPA
United States
Environmental Protection
Agency
National Risk Management
Research Laboratory
Cincinnati, OH 45268
Official Business
Penalty for Private Use
$300
Please make all necessary changes on the below label,
detach or copy, and return to the address in the upper
left-hand corner
If you do not wish to receive these reports CHECK HERED,
detach, or copy this cover, and return to the address in the
upper left-hand corner
PRESORTED STANDARD
POSTAGE & FEES PAID
EPA
PERMIT No. G-35
EPA/600/R-03/045b
August 2003
------- |