-------
I
01
f—I
cfl
M
flj
CU
u
01
3
(-H
o
•o
01
Jj
u
o
•<->
o
1-
e-
•o
01
4-1
CO
IJ
(U
c
0)
00
co
(0
10
u
01
3
o
to
u
£«£3~<
A-27
-------
Table A-8
STATES INCLUDED IN EACH COMPACT AND REGION
Compact
1. Northwest
2. California(l)
3. Rocky Mountain
1. Texas(l)
5. Central
6. South. Dakota
7. Midwest
8. Central Midwest
9. Southeast
10. PA/WV
States Included
AK,HI.ID.MT,OR;UT(2),
WA,WY(2)
CA(6)
AZ(3),CO,NV,NM,
UT(2)(3),WY(2)
TX(6)
AR,IA(2)(3),KS,LA,MN(2)(3),
MO(2)(3),NE,ND(3)(6),OK
SD(6)
IA(2),IN,MI,MN(2),
MO(2),OH,WI
IL,KT
AL,FL,GA,MS,NC
SC,TN,VA
PA,WV
11. Northeast(U) CT,DE,DQ(3)(6) ,MA(3)(6) ,MD,
NJ,NY(3)(6),RI(3)(6)
12. New England{4)
ME(6).VT(6), NH
Hydrogeologic
Region
Arid
Permeable
Arid
Permeable
Arid
Permeable
Arid
Permeable
Humid
Permeable
Humid
Permeable
Humid
Permeable
Humid
Permeable
Humid
Permeable
Humid
Impermeable
Humid-
Impermeable
Humid
Impermeable
Notes on following page.
A-28
-------
Table A-8 (Continued)
STATES INCLUDED IN EACH COMPACT AND REGION
NOTES:
Table A-8 lists the status of States and Compacts in January 1986, prior to
the passage of LLWPA86. Note that the current status of States and
Compacts may have changed since January 1986.
(1) California and Texas were assumed to form single State "Compacts."
Currently, the disposition of South Dakota is unclear; however, the
State is treated as a "Compact" in the analysis.
(2) For States that are members of two Compacts, State volumes are
divided evenly between the Compacts.
(3) Not currently a ratified member of this Compact.
(i*) The Northeast Compact States have changed since January 1986.
Connecticut and New Jersey are current members of the Northeast
Compact. Delaware and Maryland have entered into an agreement with
Pennsylvania and West Virginia (PA/WV Compact) to form the
Appalachian Compact, although this Compact has not been
congressionally ratified.
(5) Not a congressionally ratified Compact.
(6) States currently unaligned.
SOURCE: "The Radioactive Exchange," 1987.
A-29
-------
>. d
00 < <~**
a. Q
w S B
& ° 2
*^ C -~
<** ftE «•-
Z U
S z
< o w
c! 5 w
O S oc
g a £
g § s
I i a
l-i U CO
at cj p
P C 0
S 7
X
*
*
CN I-l t+ iH iH
p p. vo >o O
P i-l r-C
CO
Z
h*
i
•*
1-4 p* CN *— i o
P •* •» O i-i
to CN in CN i-i
Z
H*
CC
41
CN
en in .j PI r*
jj r, « -1 CN
i
ee
*
—1 I-l CN O> .»
O O CP- CN GO
tO VO CN O CN
< P» p< i-i oo
U CN <£> CN fl
1
CC
u
cc .» 1-4 i-l p-
^ ,-4 CN 1-1 CN
O O O O O
< o o o o
to GO <-> eo m
i-i i-4 i-l "49 .»
«< «-l P»
o
«t
vO
CN
*
iH
J-
00
p-
o
CN
O
vn
•*
1C
o
o
CN
O
(••4
g
"So
V
I
b
<
•M
O
3
M
en .» iH
i-l O i-l
i-l PM
vC O i-l
vc m in
•» i-i r»
j p.
.
00 i-l OK
CN O •»
PI .» i-i
00 O 00
in p* p»
O <-> r»
in GO
pi O >c
000
o o o
O P- O
s£> CT> P-
00 i-l i-l
in O
i-l
m
4-1
- 3 4U
eg 09
b £ 41
C 3 *
41 O ^
O to z
P* CN P*
OS p* t— I
CN r-
oo in o
^ ^ 00
CN i-l p»«
I-l 0^ ^
*
CN
i-i co co
CN in in
i-i
00 ** O
O p» m
O in *o
p*- i-i O
I-l O GO
IH CN
J- co o
CN m co
O O ~4
o o o
oo 9^ in
oo cr> 1-4
CN 9< in
"* 'I *"!
l-4| I-l
B
O
*00
41
EC
M
£•
01
•o
« i
41 X
— •
* w ^
U W C/3
£ §
C v>
ON 9 P>
co in i-i
CN
O m in
CO -4 vC
o> P« m
in .»
-4 m o
«o m m
^ P> 0
r> •* ^
*— I 00 'lO
l-l O>
*
;? "^ S
O i-i O
o' d d
O 09 —
-4 01 00
X 41 C
10 £ M
C W
III
m
vO
i-i
GO
in
CN
CN
«
^
00
p*
-»
«N
GO
OO
I-l
iH
O
o
I-l
oo
O
vO
f-l
e
o
•H
00
41
«
i
1
•g
i
1-4
O
"3
P^
9-
-»
i-l
i-l
d
PI
4k
in
O
CM
pH
co
vC
s ^
O tt* C A eg
U W 01
C ^ " T3 6
O 3 co cy o*
••4 O CO U W
U 09 W CO •*>
« o-o
y B 01 o
o g . — o
— * ^ CU cfl «D
• s w c s
41 ., 41 <
£ ,; £ ec
B IM • W 1
o _ at
^ 0)
• * •
a 1 J * -•
00 4V — O OJ
E a- — = b
O- 4) O R M
w o S 5
^ VJ W
5 « « 2 "
m v w at 9
4 -c 2 3
2 .M Ck* ^
«*H * "«k
*o * X) Q «
S *< /K 41
* »4 .. S S
M > £ S 5
3"" 09
• s c «*•
C CO It ^4 O
•• o c v cu
" C 4) §
§w w 3
^5^0
•g •> b - >
4" f> o
(0 O y 01 Itf
• Cb cu — I £
JS b «
S • 2 o |
2 ^ | -S S
M J 41 b
I-l r-i b Q,
^ CO £ 41
41 C^ b
S ,4 00 «i
- £ £ »
.§ - 1 " 8
O 9 3
01 M *-^
u « c 1 o
<~4 ^4 O « >
1L ^ ^>4 _Q
£ 2 ff - g
^ < §
^ 4) U .S
4U £ at x ^
*j z C *
b 41 '
0 c 0 | *
•- 0 W g,
^3 ^3 *— •
HIM!
AJ "S k*
s i » »•§ o
41 u -» * b
U ** «J S •- 0
* i-11 a
. §•«- i 5 a
IB583-
•" - S ** •* x
0 0 * u *J S
CU j- U ^ 41
tolScI g|
S .J * - S S
u S « 2 5 •
OJ S 0 C 3 b
w S cc u o. a
x go 5 a a
I O C Q. •
JJ 41 < b W |
c 4j ce -- 4-L. 3
41 co i > «r p«
5 « eC c 4J o
H > w. u] to >
b]
i
-
o
£
o
u
c
41
U
b
41
o.
>A
in
O
•
O
CO
e
41
(fl
4>
b
D.
41
b
CN
<
CD
at
41
«4 gl
"S «
J*^
B* B.
2 5
CO V
V B
w 3
M — '
« O
3 >
Ui E
i-i si
a 41
tO b
3
— 1 0)
s g
*•" ^
D 41
£ 09
O CU
b
g *
u co
b 41
41 00
O. *J
*J
3 g
O\ u
• b
en oj
CO 41
II
41
h
1-1 21
CO W
to
§«
4J
cc "
*
•
eg
O
U .mml
^fl
" ™
u« ^""o
o
c
41
U
b
ci
C7*
GO
CN
CO
e
4)
U
41
b
O.
4>
b
U.
z
41
—4
£
„
§
.u •
IM 4)
«W in
CO 00
41 U
^ cu
u
to e
5 -
b. "l^mfl
Q J^^H
i |l
i
cc E
•- 41
CO b
O 0)
3
41 CO
*•* C
14- °
O -D
41
C OJ
W A
u
b CU
Mi CU
vO
O CO
i-l CU
• 00
£ *
. g
u u
B b
41 W
09 Q.
41
b CV
CX CO
_
u.
g E
en eo
Z 41
i-i b
1 U
CC 0)
t mt
^
i
F
.
in
CD
U
cu
c
v£
g
C
fek
^*
E
O
•o
41
B9
CO
•°
p^
co
FH
41
"•>
•
U
C
41
4J
b
OJ
1
E"
B
I
U
U
ik
A-30
-------
S
~»
$
2
C/>
8
u. in
g
•
3
uj
> 01
— O
-- o
V
—
J
fl
Z —
_,g ji §°°°s a I
* "" " -^ o>' o-' >' o* o o'
•O co co co «- in o
Q 'i
5 II »«
n ooooo o sr -o
ac n rvj o rg •* in ro co -J-
uj u «.... • • •
xn *r ^ co ^ •- rvj K* f\J
•- n CM CM -O •- —
O n
ii
n
ii X
n ooooo 2 >» -o
n ^*rh»**m co f> «—
ac ii o rvi «M r>j »
ii o^^o^^ ^ P* in
u. II • * •
ZH (v •- eo eo -o p- ^ in
J K^
V> II
*~ll ^J/O^^O^O^ *• O* *O
ZH ^Kir^^-M M fM OJ
II
II
II OOOOO O t> CD
UJ M K^KIU-IKIKI CO •* fO
Z II •-
•• II
II
i! ooooo o rsi •$
n min(M*r^ r\ O Ul
«CII «-^^»-^ f- O-JUJ
ui ii —i « < jr
*• !! * ^ " = *
II ^ O uj) Z —J
n O > z O
§
i.
to oe O
< UJ ffi
— I UJ <
Z -I
-J — X
< ee
<<>>— ac uj
Z Z < UJ >
O •- Z U1 —
1/1 _ ) uj ac
Q •— uj uj oe
I < •- M •-
ooooooooooooooooooo
H
< N
2 !!
•3
g
I
a. —
u
O X
(M rg rg (M (\i _i
<
O
S
g
A-31
-------
Table A-11
"ALL OTHER" AGGREGATED VOLUMES
AS OF 12/85
GENERATOR (Thousand of Cubic Meters)
NLO
PAD
ORGDP
Y12
PANT
SNL
LLNL
BNL
PORT
TOTAL
298.50
7.60
76.90
99.10
0.10
1.90
9.10
0.80
10.00
•
SOU.00
% OF 1985
100.00%
% OF TOTAL
U.S.VOLUME
59.23
1.51
15.26
19.66
0.02
0.38
1.81
0.16
1.98
8.19
0.21
2.11
2.72
0.00
0.05
0.25
0.02
0.27
13.81%
Key: NLO = National Lead of Ohio
PAD = Paducah Gaseous Diffusion Plant
ORGDP = Oak Ridge Gaseous Diffusion Plant
Y12 = Y-12 Plant
PANT = Pantex Plant
SNL = Sandia National Laboratory
LLNL = Lawrence Livermore National Laboratory
BNL = Brookhaven National Laboratory
" PORT = Portsmouth Gaseous Diffusion Plant
NOTE: Facility cumulative historical volumes for this "All Other" category
are used to apportion future waste generation to specific facilities.
SOURCE: Adapted from Table 4.4 in DOE86.
September 1987
A-32
-------
CM
^H
<
01
JO
9
H
to
u
41
4^
V
a *
e 2
pH «p*
S 2 •§
to w u
* s ?
0)
in
§
i— _1 Uj
S a j
u * §
S u. *
u o •
o to
-S *e .
O 9
Ul
PC
£5
£
o
H
z u
O *••
f O
H O
83 S 2
3 o o o
J «N 5 Uj
< i oc S
m p
Ul co V
K S £
<
2
3
Ul
to
z
e
Ul
o
5 e
e s
1 (A
§
£
S
t-H
W tO
to <*
S S
•* t^
U flc
u
SO er> r» O <** <•"!<•<<•">
j- o MS «s CO O r- oo
O O o oo MS n"i in »-4 c*
in m <"^ f-* ^
1-1 m
** ** £*•£*•***•
S CM C>i-!flCl-ir».»CM
O O <-it-(O<«NCMa>r-
O O COCMlHOO'^fM
CM
U u^ifj^^f^j^
Z Mtototototoio
<
1-1
U
SUl OC Ul
bl >• < U
ae to to ^ u co
O to co u to
*" oSSBoSS
3 i-- z z z i-H b 2
s geelise
. ^
s
03
1
gj
a.
z
i-*
S Q J
•J £ Q § 5 Q 2 a. CM
z S J a: 2 5 p 2 -H
a x z O O a. a. w >-
«
in
to
9<
vo MS m p-. eo t^ m \<3 ^ o l~l
m ooo^ininoo> tr* ^
in MS j- rj ^ MS o O in ^ o
o>i-ir»o<*i mo >*4
r^ n t-4 in o oo
• * •
r-( rH *
^
•o
^^
3
u
u
•
S
^
41
n
J3
03
4* *£##££* # rff U
CN vO^r^tACT*O»T> vO O 0)
^ CNO^CNCNOO *Tl O 4J
m r«'^irtOff1OO \£ O S
-» i-t CM Ift O
^ '.
u
•^
A
u
§
^
f^
n
to
*
rH
u
3333333 •
io co (O tn to to to
^
41
4J
a)
•^4
^
U
41
09
"••4
E
Q
W
0
U
Z O •< O oi
O O i- U 6
p M Z l-i 41 •
b x 2 x eo 41
z u o ^! ui *j
<->O£(>.QtOX «, 4>
x s 1-1 2 < 3j u
C0^3^>><3 |u
ssgggeg | a
s •
> a
« ^
41 CO
* U
O S
CM O
« 5
i *
1 I is
£ g g «
B 03 S
ep _} u o
< mow
i i H *
u pc
« a. to
||Jg^| SS |
E 2 i-i -3 .j z: a. w < H z
rl
p^
i
<
T)
«
O
i-l
^
B)
41
1-4
A
fl
•w
a
vD
CO
U
S
E
O
•o
4}
n
.2
.
r»
00
a>
|H
41
-
U
B
M
• M
l-t U
^4 4J
1 41
< -
U
^3 W
S 2
O <£
r-l
i S
X
eg a
4) X
V*
% B
H «
41 4J
41 P
to £
u
- §
g i
41
4J
0.
A-33
-------
UNREGULATED DISPOSAL OPTION WEIGHTINGS Appendix B
This appendix presents the percentages used in weighting the five
unregulated disposal options which characterize the costs and population
risks of unregulated disposal practice on average. These unregulated
disposal practices are used in the NARM analysis presented in Chapter 6
and the BRC analysis presented in Chapter 7. A weighting scheme is
necessary since unit health effects vary significantly by type of disposal
option. By estimating a weighted average of the five disposal options, a
single unregulated disposal scenario can be compared to a regulated
alternative. Through this comparison, the cost-effectiveness of regulation
can be calculated. Also, since two of the unregulated disposal options
involve incineration, which is characterized by a slightly higher cost than
the other three unregulated disposal options, a weighted average unit cost
is calculated for these five options as well.
Table B-1 presents the weights and average disposal cost for the
different disposal options by waste category. The weights were chosen on
a subjective basis, based on our general knowledge concerning the locations
of LLW generators and the type of facilities that they are likely to use.
The five unregulated disposal options correspond to three types of locations
— an urban, suburban, or rural setting. The urban and suburban
disposal options each involve two types of disposal — with or without
incineration. Since no information is readily available on the percentage of
waste that is incinerated, an unbiased representation of this percentage
would be consistent with assigning an equal probability to whether or not a
B-1
-------
waste would be incinerated. Waste from light water power reactors, which
are generally located away from densely populated urban areas, was judged
to be twice as likely to be located in a rural setting vis-a-vis urban areas.
Institutional wastes, generated by hospitals, universities, and other medical
research facilities (which are generally located in metropolitan areas), was
given an equal weighting between a suburban and an urban location and
was given a low.probability of location in a rural setting. Industrial wastes
were assigned weights similar to wastes from light water power reactors for
similar reasons. Only two companies in the U.S. generate process wastes
from uranium hexafluoride conversion. Since these generators are located
in small communities (Metropolis, Illinois and Sequoyah, Oklahoma),
U-PROCESS was assumed to be disposed of with equal probability at a rural
or suburban site. Likewise, the location of fuel cycle waste generators can
be characterized generally by a suburban or rural setting. For these
generators, a small probability was assigned to urban disposal. The
disposal of consumer wastes and the two consumer-like NARM wastes
(R-CLASDS1 and R-INSTDF1) was distributed on the basis of population,
with a 50/50 split between suburban and urban disposal and a five percent
weight assigned to rural disposal. Radium ion-exchange resins
(R-RAIXRSN) were assigned the same weights as those for light water
reactors. Radium sources (R-RASOURC) were assigned the same weights as
institutional wastes since they result primarily from medical or laboratory
applications.
A sensitivity analysis is performed in Chapter 7 to determine the
relative importance of these subjective weighting assumptions. Tables B-2
to B-21 present the results of the sensitivity analysis. In summary, the
results of the. sensitivity analysis suggest that while the incremental costs
associated with regulation do not vary much across the five unregulated
disposal practices, the avoided health effects do vary significantly.
Consequently, cost-effectiveness ratios can vary significantly- as well.
However, the economic impacts at the proposed 4 millirem BRC standard will
B-2
-------
not change under National-Explicit implementation if the valuation per
avoided health effect exceeds $12 million but is less than $17 million,
assuming an extreme weighting scheme of either 100 percent Suburban SLF
with incineration (SI) or 100 percent Urban SLF without incineration (UF),
the two limiting disposal options. By another interpretation, however, a $3
million to $5 million valuation per avoided health effect would increase BRC
savings by $83 million and result in 11 additional health effects, assuming
SI is the only unregulated option considered. If a valuation of $23 million
to $374 million is used, BRC savings would decrease by $456 million with 20
fewer health effects occurring, assuming UF is the only unregulated
disposal option considered. For a more detailed discussion of these results,
see Chapter 7.
B-3
-------
a
O
01
UJ LU
HO
w
II 1 ^
UJ «s.
H 01
co a.
«<
5-f
<
>- CO
f CO O
i a.
03 O tO
oj E O
1 £Q
H G£
_ P~
UJ <
3t -J
-5
On
" u
Z UJ
k. m
A
Q
w0 U
41
U £
U 4J
E O
3
CO — <
n 2
o •<
U
^*
i eg
-4 6
4J O
CO V4
C VI
H. 3
41
00
C
E eg
3 £
~* U
"2 t3
2 f
^•4
«
k.
VI
CO
3
XI
C
»•«
CO
CO
*0cu
U. 0
3 O
g^
§
—
u
s 5
b. h
A
t2
u
u o
41 4^
J U
S a
* S
w
3
u
•J
*4
S
»*
i
eg
0
XI
41
VI
•
»*
£
41
VI
CO
a
3
O O O O O &
Q
l-l
4>
4J
CO
£
i
^
z
in m in m
O P- rx ^ r>
• • • • • • • o
mo m m ri
• CN CN CN CN
V
VI
CO
eg
3
in in in in
Or- r- r- r-
• • • • • o
mm n en n
ri
41
co GO r> as r«. f-
r> r« CN r« CN CN
• • • • • •
J •» >O ^ vO t0
l-l iH ^ ft ft l-l
>
»* *ri
^^ «^
^4 ^4
a. 1*4 1*4 f
E XI XI M
41
u
«4
VI
U
2
3 C G ft ~<
* t- tr JJ§5*
** eg eg ^4 ^4 p»4
eivi vi x X vi xi --
Cb^4 -4 .C U L • 4) »4
-4 B B VI C « « U, S « B
U eg « -4 O vi via) -~. XI O
-i CQ coy— — —c x c —
B vi c C — vi ea vi
3 E -H B^eg eg egu — J eg
X e» — eg .-• k. in CAB co u.
4^4^-441 M k< M 41
-4 U U4 k>**»B B C 41 41 C
eg 3xi 3XI»4 eg «£ > v> -4
k. 4B ABU A AVI —CO
3 3 4^
—
a
.
^i
§«T> 41
-J VI
• eg
f> m »
- 3
> oo
41
1-
B
p
o 2
*f •» eg
O •
o m B
ft f: 5
> 5
CO
CO
41
u
^4
4J
J- u
— •
eg
CO
O
^1
CO
•»4
XI
4J
•* f
f<*i H
m
ix f-i .
v> «
VI
eg
XI
(•H
•C
m GO
O • X
ft i-l W
et/> ^
V/ lib
§
XI
41
r> co
Jf t-i eg
O • A
O m
F* i-l 41
CO k.
V
09
V
VI
01
o
u
•
CO
k>
eg
*"4
«
m
S
iH
XI
41 B
VI ^ -4
eg u
f 41 41
S VI k.
vi a «
41 CO t
k. 0 CO
BOO vi
S »4 CO
- -—A O
d as 3 B
1 2 a ..
p 4) eg 41
H > «H fl.
< a *—
4
ffl
^
B
to
.M
c
e
41
k>
1*4
3
Cj«
4)
b
X
I-
o
VI
eg
3
00
41
•W
14
^
eC
^
i
5
u
41
•^1
A
3
CO
41
A
X
eg
VI
3
A
CO
XI
U
eg
N
eg
j=
1*4
eg
u
•*4
00
o
o
•P4
XI
ft
k.
a
VJ
VI
u
8.
CO
41
k<
B-A
-------
Table B-2
COST EFFECTIVENESS OF REGULATION
HUH10 PERMEABLE REGION
(Regulated Disposal versus Unregulated Municipal Dump)
8RC
CANDIDATE
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
I-ABSLIQO
I-LQSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
N-LOUASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASDS1
R-GLASOS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
INCREMENTAL
COST
(S MILLIONS)
52.51
11.48
9.23
58.69
36.77
3.26
6.87
9.29
38.97
6.88
18.01
10.71
13.99
7.42
42.23
10.88
329.75
212.29
2615.10
0.01
266.77
0.03
9.99
1.33
AVOIDED
HEALTH EFFECTS •
1.0588
0.0005
0.0000
0.6620
68.1458
3.5013
4.1884
0.1735
0.0000
0.0001
10.4270
3.5252
0.0007
0.0005
0.0001
0.0000
0.0054
3.3807
0.1919
0.0000
0.0987
0.0000
0.2091
1.5721
3,772.44
97.1419
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
nmmmmmmmmmmmmmmmMmmmnm
49.60
25,023.24
393,322.20
88.66
0.54
0.93
1.64
53.52
1,060,547.42
54,588.05
1.73
3.04
19,196.87
16,276.89
372,089.40
568,040.01
61,499.79
62.79
13,628.81
194.77
2,701.52
762.69
47.75
0.84
38.83
NOTE:
Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONDRSN (SLD Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARM wastes are currently unregulated.
• Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not inply that zero health effects would be avoided with regulation, only that
the benefit is very small.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-5
-------
Table B-3
COST EFFECTIVENESS OF REGULATION
HUMID IMPERMEABLE REGION
(Regulated Disposal versus Unregulated Municipal Dunp)
8RC
CANDIDATE
P-COTRASH
P-CONDRSN
L-WASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
1-ABSLIQO
I-LOSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
N-LOUASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASDS1
R-GLASOS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
INCREMENTAL
COST
(S MILLIONS)
19.07
3.74
4.84
53.29
36.80
3.27
6.88
9.29
62.48
11.03
10.63
6.32
0.85
0.00
2.55
0.66
163.11
105.01
1293.55
0.00
142.78
0.01
4.94
1.40
AVOIDED
HEALTH EFFECTS
0.2695
0.0003
0.0000
0.6797
1.6465
0.0862
0.1235
0.0038
0.0001
0.0005
0.1482
0.0546
0.0001
0.0000
0.0000
0.0000
0.4684
0.0413
0.5550
0.0000
0.8157
0.0003
2.7005
45.4095
1,942.49
53.0037
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
•••••• al M ••••••• MXV SaT
70.74
12,752.73
180,510.19
78.41
22.35
37.90
55.66
2.420.30
456,486.94
23,621.36
71.72
115.64
8,219.36
N.A.
162,371.97
246,131.06
348.19
2,545.15
2.330.66
83.02
175.05
49.36
1.83
0.03
MM
36.65
NOTE:
Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLO As Generated, except for
P-CONORSH (SLO Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARM wastes are currently unregulated.
Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not ioply that zero health effects Mould be avoided with regulation, only that
the benefit is very-sMll.
N.A. • waste not generated in this region.
SEPTEMBER 1987
B-6
-------
Table B-4
COST EFFECTIVENESS OF REGULATION
ARID PERMEABLE REGION
(Regulated Disposal versus Unregulated Municipal Dump)
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
I-COTRASH
1-BIOWAST
I-ABSLIOO
I-LOSCNVL
N-SSTRASH
tt-SSWASTE
N-LOTRASH
N-LOUASTE
f- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASOS1
R-GLASOS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
INCREMENTAL
COST
(S MILLIONS)
20.48
4.19
1.41
3.30
24.20
2.15
4.52
6.11
23.29
4.11
6.57
3.91
5.80
0.00
17.50
4.51
176.49
113.62
1399.63
0.00
131.95
0.01
5.34
0.55
1,959.65
AVOIDED
HEALTH EFFECTS *
0.0671
0.0000
0.0000
0.0079
•1.9940
•0.1031
•0.1198
•0.0052
0.0000
0.0002
•0.1688
•0.0572
0.0009
0.0000
0.0001
0.0000
0.0076
0.0000
0.9884
0.0000
0.0418
0.0000 .
0.1098
0.6907
(0.5337)
COST-EFFECTIVENESS RATIO
& MILLIONS PER
AVOIDED HEALTH EFFECT)
305.31
91,332.87
424,988.32
419.69
(12.14)
(20.83)
(37.74)
(1.170.72)
491,595.19
25,322.32
(38.93)
(68.24)
6,686.24
M.A.
130,212.41
197,806.65
23,266.60
3,037,681.38
1,416.11
102.27
3,153.35
892.55
48.68
0.80
(3,671.95)
NOTE: Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONDRSN (SLD Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARM wastes are currently unregulated.
• Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not inply that zero health effects would be avoided with regulation, only that
the benefit is very-small.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-7
-------
COST EFFECTIVENESS OF REGULATION
TOTAt U.S.
(Regulated Disposal versus Unregulated Municipal Dump)
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
I-COTRASH
I-BIOWAST
I-ABSLIQD
I-LOSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
N-LOUASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASOS1
R-GLASOS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
INCREMENTAL
COST
($ MILLIONS)
92.06
19.41
15.48
115.29
97.77
8.68
18.27
24.69
124.74
22.01
35.21
20.93
20.63
7.42
62.28
16.05
669.35
430.91
5308.28
0.01
541.51
0.05
20.27
3.28
AVOIDED
HEALTH EFFECTS •
1.3954
0.0008
0.0001
1.3495
67.7982
3.4844
4.1921
0.1721
0.0002
0.0008
10.4063
3.5226
0.0017
0.0005
0.0003
0.0000
0.4814
3.4220
1.7353
0.0001
0.9563
0.0003
3.0194
47.6723
COST-EFFECTIVENESS RATIO
($ MILLIONS PER
AVOIDED HEALTH EFFECT)
7,674.58
149.6119
65.97
24,327.16
288,787.24
85.43
1.44
2.49
4.36
143.45
564,459.00
29,154.07
3.38
5.94
12,145.78
16,276.89
236.257.92
359,617.22
1,390.43
125.92
3,059.08
124.41
566.27
159.62
6.71
0.07
51.30
NOTE:
Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONORSN (SLD Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and HARM wastes are currently unregulated.
• Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not imply that zero health effects Mould be avoided with regulation, only that
the benefit is very small.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-8
-------
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-UASTOIL
8-COTRASN
I-COTRASH
I-BIOUAST
I-ABSLIOO
I-LOSCNVL
N-SSTRASH
M-SSUASTE
N-LOTRASH
N-LOUASTE
F-PROCESS
U-PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS.
R-GLASOS1
R-GLASOS2
R-1MSTDF1
R-INSTDF2
R-RA1XRSM
R-RASOURC
i'able B-fa
COST EFFECTIVENESS OF REGULATION
HUMID PERMEABLE REGION
(Regulated Disposal versus Unregulated Suburban SLF without Incin.)
INCREMENTAL
COST
(S MILLIONS)
«s«x*«xsx*
52.51
11.48
9.23
58.69
36.77
3.26
6.87
9.29
38.97
6.88
18.01
10.71
13.99
7.42
42.23
10.88
329.75
212.29
2615.10
0.01
266.77
0.03
9.99
1.33
•••«*••*•••
3,772.44
AVOIDED
HEALTH EFFECTS
1.7798
0.0003
0.0000
0.8408
151.7716
6.6978
7.9954
0.3328
0.0000
0.0001
23.2102
6.7695
0.0011
0.0007
0.0001
0.0000
0.0028
7.1670
0.1689
0.0000
0.0624
0.0000
0.1974
1.5091
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
29.51
41,669.34
773,286.91
69.80
0.24
0.49
0.86
27.91
1,134,146.94
58,477.28
0.78
1.58
13,136.30
11,137.37
398,381.04
607,961.80
117,420.43
29.62
15,483.58
209.07
4,273.75
1,208.30
50.58
0.88
208.5078
18.09
NOTE: Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONDRSN (SLO Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and HARM wastes are currently unregulated.
• Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not iaply that zero health effects would be avoided with regulation, only that
the benefit is very snail.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-9
-------
BRC
CANDIDATE
«***•»••*
P-COTRASH
P-CONDRSN
L-UASTOIL
••COTRASH
I-COTRASH
I-BIOUAST
I-ABSLIQO
I-LQSCNVL
N-SSTRASH
N-SSWASTE
N-LOTRASH
N-LOWASTE
F-PROCESS
U-PROCESS
F-COTRASH
F-NCTRASH
C-SHOOET
C-TIMEPCS
R-GLASDS1
R-GLASDS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
Table B-7
COST EFFECTIVENESS OF REGULATION
HUMID IMPERMEABLE REGION
(Regulated Disposal versus Unregulated Suburban SLF without Incin.)
INCREMENTAL
COST
(S MILLIONS)
19.07
3.74
4.84
53.29
36.80
3.27
6.88
9.29
62.48
11.03
10.63
6.32
0.85
0.00
2.55
0.66
163.11
105.01
1293.55
0.00
142.78
0.01
4.94
1.40
»mmm»mmmmmm
1,942.49
AVOIDED
HEALTH EFFECTS *
mmmmmmmmmnmmnmmx
0.1855
0.0002
0.0000
0.4381
1.5616
0.1183
0.1549
0.0059
0.0004
0.0013
0.1402
0.0727
0.0003
0.0000
0.0000
0.0000
0.6131
0.0599
0.7056
0.0001
0.9735
0.0003
2.9916
49.5895
57.6130
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
9mmmmmmrnmmmnmm99mmmn*x
102.80
19,632.59
276,193.14
121.63
23.56
27.62
44.39
1,584.27
167,376.34
8,612.02
75.80
86.84
3,023.36
N.A.
58,688.86
90,068.80
266.04
1,751.99
1.833.17
30.67
146.67
41.46
1.65
0.03
33.72
NOTE: Costs represent present values at • 10 percent reel discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONDRSN (SLD Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARN wastes are currently unregulated.
* Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not imply that zero health effects would be avoided with regulation, only that
the benefit is very small.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-10
-------
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
I-ABSLIOO
I-LQSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
N-LOUASTE
F-PROCESS
U-PROCESS
•COTRASH
•NCTRASH
•SMOKDET
•TIMEPCS
•GLASDS1
•GLASOS2
•1NSTDF1
•1NSTDF2
•RAIXRSN
R-RASOURC
Table B-8
COST EFFECTIVENESS OF REGULATION
ARID PERMEABLE KEGION
(Regulated Disposal versus Unregulated Suburban SLF without Incin.)
INCREMENTAL
COST
It MILLIONS)
••*•**•••*
20.48
4.19
1.41
3.30
24.20
2.15
4.52
6.11
23.29
4.11
6.57
3.91
5.80
0.00
17.50
4.51
176.49
113.62
1399.63
0.00
131.95
0.01
5.34
0.55
mmmmmmmmmmm
1.959.65
AVOIDED
HEALTH EFFECTS •
****************
0.0688
•0.0000
0.0000
0.0079
•1.6241
•0.1049
•0.1255
•0.0052
0.0000
0.0002
•0.1376
•0.0588
0.0000
0.0000
0.0001
0.0000
0.0076
0.0000
1.0079
0.0000
0.0425
0.0000
0.0116
0.0389
mmmmmmmmmmm
(0.8705)
COST-EFFECTIVENESS RATIO
($ MILLIONS PER
AVOIDED HEALTH EFFECT)
**********************
297.45
(8,080,859.09)
323,890,184,715.99
420.20
(14.90)
(20.48)
(36.04)
(1,169.63)
483,718.14
24,940.30
(47.78)
(66.45)
139,187,703.14
N.A.
127,627.41
195,287.93
23,326.32
5,637,298.23
1,388.67
100.77
3,105.14
680.10
460.34
14.23
(2,251.17)
NOTE: Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLO As Generated, except for
P-CONORS* (SLD Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARM wastes are currently unregulated.
* Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not inply that zero health effects would be avoided with regulation, only that
the benefit is'very small.
N.A. • Waste not generated in this region.
SEPTEMBER 1987 • -
B-ll
-------
COST EFFECTIVENESS OF REGULATION
TOTAL U.S.
(Regulated Disposal versus Unregulated Suburban SLF without Incin.)
BRC
CANDIDATE
**x*««nss
P-COTRASH
P-CONDRSN
L-WASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
I-ABSLIOO
I-LQSCNVL
N-SSTRASH
M-SSUASTE
N-LOTRASH
N-LOUASTE
F-PROCESS
U-PROCESS
F-COTRASH
F-MCTRASH
C-SMOKDET
C-TIMEPCS
R-CLASOS1
R-GLASOS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
INCREMENTAL
COST
($ MILLIONS)
92.06
19.41
15.48
115.29
97.77
8.68
18.27
24.69
124.74
22.01
35.21
20.93
20.63
7.42
62.28
16.05
669.35
430.91
5308.28
0.01
541.51
0.05
20.27
3.28
•••••••*••
7,674.58
AVOIDED
HEALTH EFFECTS
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
2.0341
0.0005
0.0000
1.2868
151.7091
6.7111
8.0248
0.3334
0.0005
0.0016
23.2129
6.7834
0.0013
0.0007
0.0003
0.0000
0.6235
7.2269
1.8824
0.0001
1.0784
0.0004
3.2006
51.1375
mmmmmmmmmm
265.2503
45.26
41,700.85
525,346.11
89.59
0.64
1.29
2.28
74.06
273,670.53
14,086.47
1.52
3.09
15,343.18
11,137.37
217,286.96
332,302.93
1,073.58
59.63
2,819.92
77.44
502.13
141.85
6.33
0.06
mmmmmmfmm*m
28.93
NOTE: Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONORSN (SLD Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARM wastes are currently unregulated.
• Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not isply that zero health effects Mould be avoided with regulation, only that
the benefit it very sMall.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-12
-------
Table B-10
COST EFFECTIVENESS OF REGULATION
HUMID PERMEABLE REGION
(Regulated Disposal versus Unregulated Suburban SLF with Incineration)
COST-EFFECTIVENESS RATIO
($ MILLIONS PER
AVOIDED HEALTH EFFECT)
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-WASTOIL
B-COTRASH
I-COTRASH
I-BIOWAST
I-ABSLIOO
I-LQSCNVL
N-SSTRASH
N-SSVASTE
N-LOTRASH
H-LOWASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASOS1
R-GLASDS2
R-INSTDF1
R-INSTDF2
R-RA1XRSN
R-RASOURC
INCREMENTAL
COST
(S MILLIONS)
• SSS88MM
52.42
11.48
9.22
56.58
36.70
3.26
6.87
9.28
38.90
6.87
17.98
10.69
13.96
7.41
42.15
10.87
329.72
212.28
2615.08
0.01
266.77
0.03
9.98
1.33
AVOIDED
HEALTH EFFECTS *
•••tf ••••••>•••••
0.9502
0.0003
0.0000
0.7206
35.6046
1.8214
2.1836
0.0902
0.0001
0.0002
5.4133
1.8446
0.0014
0.0009
0.0002
0.0000
0.0073
1.1274
0.3637
0.0001
0.0675
0.0000
0.1571
1.1401
3,771.83
51.4949
55.17
45,831.41
517,270.51
81.30
1.03
1.79
3.15
102.93
567,513.10
29.177.07
3.32
5.79
9,738.19
8,517.23
189,220.64
289,194.72
45,064.78
188.29
7.189.77
104.13
3,949.20
1,112.36
63.55
1.16
mmmmmmmmmmmm
73.25
NOTE:
Costs represent present values at • 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONORSN (SLD Solidified) and R-RA1XRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARM wastes are currently unregulated.
• Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not inply that zero health effects would be avoided with regulation, only that
the benefit is very-«MU.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-13
-------
Table B-ll
COST EFFECTIVENESS OF REGULATION
HUMID IMPERMEABLE REGION
(Regulated Disposal versus Unregulated Suburban SLF with Incineration)
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
B*****X*KXB*»SX*XXa«X*
99.12
19,838.98
245,595.34
116.50
(40.26)
(86.79)
(222.10)
(4,794.92)
155,910.84
8,021.75
(128.82)
(312.91)
2,802.26
N.A.
54,541.42
82,216.86
289.82
6,240.37
1,684.07
28.58
160.94
45.36
1.76
0.03
mnmmmmmmmmmm
37.75
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
I-COTRASH
I-BIOWAST
I-ABSLIOO
I-LOSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
N-LOWASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASDS1
R-GLASDS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
INCREMENTAL
COST
(* MILLIONS)
19.03
3.74
4.84
53.19
36.73
3.26
6.87
9.29
62.37
11.01
10.61
6.30
0.84
0.00
2.55
0.66
163.10
105.01
1293.54
0.00
142.78
0.01
4.94
1.40
AVOIDED
HEALTH EFFECTS •
0.1920
0.0002
0.0000
0.4566
•0.9123
•0.0376
•0.0309
•0.0019
0.0004
0.0014
•0.0823
•0.0201
0.0003
0.0000
0.0000
0.0000
0.5627
0.0168
0.7681
0.0001
0.8872
0.0003
2.8066
46.8345
1,942.08
51.4420
NOTE:
Costs represent present values at a 10 percent real discount rate, expressed (n
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONDRSN (SLD Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and NAftM wastes are currently unregulated.
Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not imply that zero health effects Mould be avoided with regulation, only that
the benefit is very-snail.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-14
-------
BRC
CANDIDATE
••••••a»s
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
1-COTRASH
I-BIOWAST
I-ABSLIQO
I-LQSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
M-LOWASTE
F-PROCESS
U-PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASOS1
R-GLASOS2
R-IMSTDF1
R-INSTDF2
R-RAIXRSM
R-RASOURC
Table B-12
COST EFFECTIVENESS OF REGULATION
ARID PERMEABLE REGION
(Regulated Disposal versus Unregulated Suburban SLF with Incineration)
INCREMENTAL
COST
(S MILLIONS)
•«•••••»
20. 44
4.19
1.41
3.30
24.16
2.15
4.52
6.11
23.24
4.10
6.56
3.90
5.79
0.00
17.47
4.50
176.47
113.61
1399.62
0.00
131.95
0.01
5.34
0.55
•••••*••••*
1,959.40
AVOIDED
HEALTH EFFECTS
0.1132
0.0001
0.0000
0.0117
•2.0327
-0.1057
•0.1208
•0.0054
0.0001
0.0002
•0.1721
•0.0584
0.0012
0.0000
0.0002
0.0000
0.0103
0.0012
1.2708
0.0000
0.0535
0.0000
0.1369
0.8722
••«*«**«••*
(0.0232)
COST-EFFECTIVENESS RATIO
($ MILLIONS PER
AVOIDED HEALTH EFFECT)
»mmmMmmmmnmmmmmm»mmmnm
180.55
67,211.19
244,719.34
282.81
(11.89)
(20.32)
(37.42)
(1,135.70)
342,854.31
17,628.67
(38.13)
(66.83)
4,765.24
N.A.
92,591.64
141,106.84
17,133.41
92,526.02
1,101.41
70.12
2,466.31
696.96
39.02
0.63
(84.283.88)
NOTE: Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLO As Generated, except for
P-CONDRSN (SLO Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARM wastes are currently unregulated.
* Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not imply that zero health effects would be avoided with regulation, only that
the benefit is very .small.
N.A. > Waste not generated in this region.
SEPTEMBER 1987
B-15
-------
Table B-13
COST EFFECTIVENESS OF REGULATION
TOTAL U.S.
(Regulated Disposal versus Unregulated Suburban SLF with Incineration)
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
m»mnmmmm»mmmmmmmm»*»mm
73.20
38,720.97
357.391.38
96.80
2.99
5.17
8.99
297.85
232,142.04
11,941.78
6.81
11.83
6,982.14
8,517.23
135,691.25
206,846.02
1,153.23
376.19
2.209.39
58.78
537.09
151.29
6.54
0.07
mmmmmmmmmmmmm
74.56
BRC
CANDIDATE
SBSSMWW
P-COTRASH
P-CONORSN
L-WASTOIL
B- COT RASH
I-COTRASH
I-BIOWAST
I-ABSLIOO
I-LOSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
N-LOUASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASOS1
R-GLASOS2
R-INSTDF1
R-INSTOF2
R-RAIXRSN
R-RASOURC
INCREMENTAL
COST
(S MILLIONS)
91.89
19.40
15.46
115.08
97.59
8.67
18.26
24.69
124.51
21.97
35.15
20.89
20.60
7.41
62.17
16.03
669.29
430.90
5308.24
0.01
541.50
0.05
20.27
3.28
AVOIDED
HEALTH EFFECTS •
1.2554
0.0005
0.0000
1.1888
32.6596
1.6781
2.0319
0.0829
0.0005
0.0018
5.1589
1.7661
0.0029
0.0009
0.0005
0.0001
0.5804
1.1455
2.4026
0.0002
1.0082
0.0003
3.1007
48.6468
7,673.31
102.9136
NOTE:
Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONORSN (SLD Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARM wastes are currently unregulated.
• Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not iaply that zero health effects would be avoided with regulation, only that
the benefit is very.swell.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-16
-------
Table B-14
COST EFFECTIVENESS OF REGULATION
HUMID PERMEABLE REGION
(Regulated Disposal versus Unregulated Urban SLF without Incin.)
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
I-ABSLIQO
I-LOSCNVL
N-SSTRASH
N-SSWASTE
*• LOT RASH
N-LOUASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SHOKDET
C-TIMEPCS
R-GLASDS1
R-GLASDS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
INCREMENTAL
COST
(S MILLIONS)
52.51
11.48
9.23
58.69
36.77
3.26
6.87
9.29
38.97
6.88
18.01
10.71
13.99
7.42
42.23
10.88
329.75
212.29
2615.10
0.01
266.77
0.03
9.99
1.33
AVOIDED
HEALTH EFFECTS *
4.3403
0.0004
0.0000
1 .8742
394.8502
20.2896
24.2483
1.0066
0.0000
0.0001
60.5843
20.4860
0.0007
0.0005
0.0001
0.0000
0.0032
18.3926
0.1917
0.0000
0.0627
0.0000
0.1116
0.9061
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
3.772.44
547.3494
12.10
28,304.17
762.760.39
31.32
0.09
0.16
0.28
9.23
1,060.592.80
54,635.32
0.30
0.52
18,994.80
16,292.64
369,278.12
563,533.91
103.387.58
11.54
13,642.78
195.61
4,251.81
1,202.85
89.48
1.47
6.89
MOTE:
Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONDRSN (SLO Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARM wastes are currently unregulated.
Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not i*ply that zero health effects would be avoided with regulation, only that
the benefit is very .Mail.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-17
-------
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
1-COTRASH
I-BIOUAST
I-ABSLIOO
I-LQSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
N-LOUASTE
F-PROCESS
U-PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASOS1
R-CLASOS2
R-INSTDF1
R-IMSTDF2
R-RA1XRSN
R-RASOURC
Table B-15
COST EFFECTIVENESS OF REGULATION
HUMID IMPERMEABLE REGION
(Regulated Disposal versus Unregulated Urban SLF without Incin.)
INCREMENTAL
COST
(S MILLIONS)
•••*••«•«*
19.07
3.74
4.84
53.29
36.80
3.27
6.88
9.29
62.48
11.03
10.63
6.32
0.85
O.-OO
2.55
0.66
163.11
105.01
1293.55
0.00
142.78
0.01
4.94
1.40
mmmmMmm*mmm
1,942.49
AVOIDED
HEALTH EFFECTS *
•*•*•••••••*••••
0.2770
0.0002
0.0000
0.5716
1.9275
0.1004
0.1370
0.0062
0.0021
0.0071
0.1742
0.0633
0.0016
0.0000
0.0002
0.0000
1.7594
0.2240
1.8440
0.0005
2.2680
0.0008
S.2434
84.9675
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
99.5759
68.83
15,381.73
205,342.24
93.23
19.09
32.52
50.20
1,509.96
30,169.74
1,544.20
61.01
99.80
543.55
H.A.
10,621.08
16,185.22
92.71
468.71
701.50
5.53
62.96
17.77
0.94
0.02
19.51
NOTE: Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLO As Generated, except for
P-CONORSN (SLD Solidified) and R-RA1XRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARM wastes are currently unregulated.
• Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not imply that zero health effects would be avoided with regulation, only that
the benefit is very.SMll.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-18
-------
BRC
CANDIDATE
••»••*«•*
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
1-COTRASH
1-BIOWAST
I-ABSLIOO
I-LOSCNVL
N-SSTRASH
M-SSUASTE
N-LOTRASH
N-LOUASTE
F-PROCESS
U-PROCESS
F-COTRASH
F-MCTRASH
C-SHOKDET
C-TIMEPCS
R-GLASOS1
R-GLASOS2
R-IHSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOJRC
Table B-16
COST EFFECTIVENESS OF REGULATION
ARID PERMEABLE REGION
(Regulated Disposal versus Unregulated Urban SLF without Incin.)
INCREMENTAL
COST
(S MILLIONS)
20.48
4.19
1.41
3.30
24.20
2.15
4.52
6.11
23.29
4.11
6.57
3.91
5.80
0.00
17.50
4.51
176.49
113.62
1399.63
0.00
131.95
0.01
5.34
0.55
1,959.65
AVOIDED
HEALTH EFFECTS
1.9953
0.0002
0.0000
0.1816
181.2404
9.3199
11.1339
0.4630
0.0001
0.0005
15.3502
5.2246
0.0025
0.0000
0.0004
0.0001
0.0212
0.0004
2.8780
0.0001
0.1207
0.0000
0.2908
1.9072
230.1310
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
mmmmmmmmmmmmmmmmmnmmmf
10.26
24,176.87
151,440.62
18.19
0.13
0.23
0.41
13.21
170,509.37
8.769.79
0.43
0.75
2,311.93
N.A.
45,026.66
68,601.39
8,343.45
271,341.16
486.33
35.49
1,092.95
309.84
18.38
0.29
• mmmmmmmmmmmn*
8.52
NOTE: Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONDRSN (SLD Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and HARM wastes are currently unregulated.
* Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not imply that zero health effects would be avoided with regulation, only that
the benefit is very small.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-19
-------
Table B-17
COST EFFECTIVENESS OF REGULATION
TOTAL U.S.
(Regulated Disposal versus Unregulated Urban SLF without Incin.)
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-WASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
I-ABSLIOO
I-LQSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
N-LOUASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TINEPCS
•GLASOS1
-GLASOS2
•INSTDF1
•INSTDF2
-RAIXRSN
•RASOURC
INCREMENTAL
COST
(S MILLIONS)
92.06
19.41
15.48
115.29
97.77
8.68
18.27
24.69
124.74
22.01
35.21
20.93
20.63
7.42
62.28
16.05
669.35
430.91
5308.28
0.01
541.51
0.05
20.27
3.28
AVOIDED
HEALTH EFFECTS •
6.6126
0.0008
0.0000
2.6274
578.0180
29.7100
35.5191
1.4758
0.0022
0.0077
76.1086
25.7739
0.0048
0.0005
0.0007
0.0001
1.7837
18.6170
4.9136
0.0006
2.4514
0.0008
5.6457
87.7808
7,674.58
877.0562
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
mmmfmmmxmnmmmmmmmmmmmn
13.92
23,614.45
344,140.57
43.88
0.17
0.29
0.51
16.73
55,580.20
2,845.95
0.46
0.81
4,298.01
16,292.64
83,773.09
127,675.29
375.25
23.15
1,080.32
18.53
220.89
62.32
' 3.59
0.04
m»mmmmmmmmm*m
8.75
NOTE:
Cost* represent present value* at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLO As Generated, except for
P-CONDRSM (SLD Solidified) and R-RAIXRSM and R-RASOURC (both ISO Solidified). Note
consumer and MARM wastes are currently unregulated.
• Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not imply that zero health effects would be avoided with regulation, only that
the benefit is wry snail.
N.A. • Waste not generated in this region.
SEPTEHBER 1987
B-20
-------
lable B-18
COST EFFECTIVENESS OF REGULATION
HUMID PERMEABLE REGION
(Regulated Disposal versus Unregulated Urban SLF with Incineration)
COST-EFFECTIVENESS RATIO
(f MILLIONS PER
AVOIDED HEALTH EFFECT)
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
I-ABSLIQO
I-LOSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
N-LOWASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIHEPCS
R-GLASOS1
R-GLASDS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
INCREMENTAL
COST
($ MILLIONS)
52.42
11.48
9.22
58.58
36.70
3.26
6.87
9.28
38.90
6.87
17.98
10.69
13.96
7.41
42.15
10.87
329.72
212.28
2615.08
0.01
266.77
0.03
9.98
1.33
nmmmmmmmfm*
AVOIDED
HEALTH EFFECTS
2.3110
0.0003
0.0000
1.6165
97.4127
4.9946
5.9918
0.2479
0.0001
0.0005
14.8645
5.0492
0.0031
0.0018
0.0005
0.0001
0.0182
2.9145
1.0435
0.0001
0.0799
0.0000
0.1649
1.2841
3,771.83
137.9998
22.68
33,606.19
230,826.81
36.24
0.38
0.65
1.15
37.45
273,038.21
14,061.35
1.21
2.12
4,502.28
4,029.35
87,352.40
133,383.99
18,117.79
72.84
2,506.17
50.47
3,340.21
945.13
60.54
1.03
mmmmmmmmnmmx
27.33
NOTE:
Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONDRSN (SLD Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and HARM wastes are currently unregulated.
Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not imply that zero health effects would be avoided with regulation, only that
the benefit is wry small.
N.A. « Waste not generated in this region.
SEPTEMBER 1987
B-21
-------
COST EFFECTIVENESS OF REGULATION
HUMID IMPERMEABLE REGION
(Regulated Disposal versus Unregulated Urban SLF with Incineration)
COST-EFFECTIVENESS RATIO
(* MILLIONS PER
AVOIDED HEALTH EFFECT)
1,942.08
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-WASTOIL
B-COTRASH
I-COTRASH
I-BIOWAST
I-ABSLIOO
I-LOSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
N-LOUASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASDS1
R-GLASOS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
INCREMENTAL
COST
(S MILLIONS)
19.03
3.74
4.84
53.19
36.73
3.26
6.87
9.29
62.37
11.01
10.61
6.30
0.84
0.00
2.55
0.66
163.10
105.01
1293.54
0.00
142.78
0.01
4.94
1.40
AVOIDED
HEALTH EFFECTS
0.3016
0.0002
0.0000
0.6197
-0.7384
•0.0291
-0.0158
•0.0004
0.0020
0.0071
•0.0668
•0.0136
0.0015
0.0000
0.0002
0.0000
1.6344
0.0619
1.9412
0.0005
2.0795
0.0007
4.9056
79.4385
63.10
15,122.06
162,150.52
85.84
(49.74)
(112.31)
(435.36)
(23,280.85)
30,463.13
1,560.08
(158.90)
(463.08)
548.86
N.A.
10,657.77
16,265.06
99.79
1,697.42
666.38
5.59
68.66
19.28
1.01
0.02
90.1307
21.55
NOTE: Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLD As Generated, except for
P-CONDRSN (SLD Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARM wastes are currently unregulated.
* Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not imply that zero health effects would be avoided with regulation, only that
the benefit is very Mill.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-22
-------
Table B-20
COST EFFECTIVENESS OF REGULATION
ARID PERMEABLE REGION
(Regulated Disposal versus Unregulated Urban SLF with Incineration)
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
I-A8SLIOO
I-LOSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
N-LOUASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASOS1
R-GLASOS2
R-INSTDF1
R-INSTOF2
R-RAIXRSN
R-RASOURC
INCREMENTAL
COST
(S MILLIONS)
20.44
4.19
1.41
3.30
24.16
2.15
4.52
6.11
23.24
4.10
6.56
3.90
5.79
0.00
17.47
4.50
176.47
113.61
1399.62
0.00
131.95
0.01
5.34
0.55
mmnmmmmmmmm
1,959.40
AVOIDED
HEALTH EFFECTS
1.5031
0.0002
0.0000
0.1783
44.0052
2.2494
2.7028
0.1114
0.0002
0.0006
3.7263
1.2641
0.0031
0.0000
0.0005
0.0001
0.0259
0.0026
3.4548
0.0001
0.1451
0.0000
0.3482
2.2897
mmmmmmmmmmm
62.0116
31.60
NOTE: Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLO As Generated, except for
P-CONORS* (SLO Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and HARM wastes are currently unregulated.
• Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not imply that zero health effects would be avoided with regulation, only that
the benefit is very j»ell.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-23
-------
COST EFFECTIVENESS OF REGULATION
TOTAL U.S.
(Regulated Disposal versus Unregulated Urban SLF with Incineration)
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
•••••••••»••*••••••••
22.33
25,398.45
183.202.28
47.66
0.69
1.20
2.10
68.78
52,798.42
2,705.47
1.90
3.32
2,668.09
4,029.35
51,831.12
79,113.35
398.75
144.65
824.34
15.99
234.98
65.98
3.74
0.04
•*•**•••<**••
26.45
7,673.31
BRC
CANDIDATE
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
I-ABSLIQO
I-LOSCNVL
N-SSTRASH
N-SSWASTE
N-LOTRASH
N-LOUASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASDS1
R-GLASOS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
INCREMENTAL
COST
($ MILLIONS)
91.89
19.40
15.46
115.08
97.59
8.67
18.26
24.69
124.51
21.97
35.15
20.89
20.60
7.41
62.17
16.03
669.29
430.90
5308.24
0.01
541.50
0.05
20.27
3.28
AVOIDED
HEALTH EFFECTS *
4.1157
0.0008
0.0001
2.4144
140.6795
7.2149
8.6789
0.3589
0.0024
0.0081
18.5240
6.2997
0.0077
0.0018
0.0012
0.0002
1.6785
2.9789
6.4394
0.0007
2.3045
0.0008
5.4187
83.0123
290.1420
NOTE: Costs represent present values at a 10 percent real discount rate, expressed in
1985 dollars. Health effects include fatal cancers and genetic effects over 10,000
years, and are not discounted. Regulated disposal is SLO As Generated, except for
P-CONDRSN (SLD Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Note
consumer and NARM wastes are currently unregulated.
• Avoided health effects are reported to four significant digits; therefore, "0.0000"
does not imply that zero health effects would be avoided with regulation, only that
the benefit is very swell.
N.A. • Waste not generated in this region.
SEPTEMBER 1987
B-24
-------
COST OF REGULATED AND
UNREGULATED DISPOSAL Appendix C
This appendix presents the estimated unit costs for regulated and
unregulated disposal of commercial LLW and NARM. The methodology used
in constructing these cost estimates is discussed in detail here.
In the BRC analysis presented in Chapter 7, unregulated costs are
compared to regulated costs to determine the cost-effectiveness of
regulating individual wastes. Savings attributed to EPA's BRC standard
were estimated by using the same comparison. In the LLW analysis
presented in Chapter 8, the regulated costs of different disposal methods
are compared to determine the cost-effectiveness of these methods and to
ascertain which disposal methods will meet the alternative LLW standards at
least cost. Of course, to estimate the cost-effectiveness of the alternative
BRC and LLW standards, the cost components of regulated and unregulated
disposal had to be estimated as a first step.
Costs are defined as the real resource costs to society, characterized
in the EIA as the before-tax cash cost paid by the generator of LLW. The
analysis considers those cost components that vary across alternative
disposal options, thus providing the necessary information to measure the
relative cost-effectiveness of each option. The costs that do not vary
across disposal options, such as enforcement or monitoring costs, for
example, are irrelevant for purposes of the analysis and, therefore, are not
considered. Because a relative comparison Is being used as opposed to an
absolute one, the cost numbers presented here should not be" construed as
being all inclusive; therefore, these costs should be used only in the
context of this analysis.
C-1
-------
The cost components considered in the analysis for regulated disposal
include packaging, processing, transportation, disposal, and, for some
consumer-like wastes, collection. Unregulated disposal costs include the
transportation and disposal components only. With regulated disposal,
processing costs, which involve techniques such as solidification,
compaction, and incineration, are paid by the waste generator before
shipping to a disposal site. To the extent that compaction or incineration,
for example, are performed by an unregulated disposal site operator, these
costs would be captured in the tipping fees (disposal costs) charged to the
waste generator. In comparison to packaging costs associated with
regulated disposal, where wastes must be placed in steel drums or boxes
(and sometimes shielded casks for higher activity waste) to meet U.S.
Department of Transportation (DOT) regulations, the packaging costs
associated with unregulated disposal are negligible. Therefore, this
component of cost is not included in the estimates of unregulated disposal
cost. Finally, the cost of collecting waste is a unique problem associated
with the regulated disposal of some consumer-like wastes that are widely
distributed throughout the economy. Collection costs can be quite
significant for regulated disposal of consumer-like wastes, since the owners
of these wastes are not typically involved with radioactive waste handling.
For these generators, the economies of scale in waste disposal that are
present for typical low-level waste generators are not realized, since the
number of items to be disposed is very low. The methodology used in
estimating collection costs is discussed later in this appendix.
This appendix is divided into two sections. The first section
discusses the methodology, data sources, and caveats associated with
estimating the* unregulated costs used in the BRC analysis. The second
section has a similar discussion for the regulated disposal costs used in the
EIA.
C-2
-------
UNREGULATED DISPOSAL COSTS
This section presents estimates of unregulated disposal costs and
describes the methodology and assumptions underlying these estimates.
The general methodology involved in estimating the least-cost (i.e.,
least stringent) form of disposal for the five unregulated disposal practices
is presented in Table C-1. The cost estimates include disposal and
transportation costs for BRC waste shipped to a sanitary landfill or to a
transfer station in the event this latter option was available. The
methodology assumes packaging costs are negligible; therefore, this
component of cost is not included in the estimates of unregulated disposal
cost. Prices, in 1985 dollars, were used to estimate societal cost. A more
detailed discussion follows concerning the data sources used and the
specific assumptions made in arriving at the -unregulated disposal costs
presented in Tables C-2 and C-3.
The data were derived from two primary sources. The tipping fees
for landfills, transfer stations, and resource recovery plants were taken
from a survey by the National Solid Wastes Management Association
(NSWMA) conducted in the fall of 1985 (NSWMA85]. All fees reported are
gate fees which represent the price {rather than cost) charged to the waste
generator. NSWMA emphasizes that the municipality that owns the landfill
and/or others under contract will generally face a lower charge. Follow-
up discussions confirmed that gate fees were the closest approximation to an
unsubsidized charge (i.e., a charge which reflects the societal cost) for
*
solid waste disposal. The analysis of transportation costs used estimates
reported in RAD86.
Based on telephone conversation with C.L. Pettit of National Soild
Wastes Management Association, February 15, 1986.
C-3
-------
CM
<
z
<
2
oo
.O
0)
*-*
a
QJ
C/l
0
0)
£ ^
O v
u z
I/)
o
Q.
to
U
Q£
co
u.
O
>-
cc
D
in
u
5
L.
V
Q.
tfi
L.
JS
3
_o
t5
re
re
eo
r>-
•
eo
oo
r*
oo
— 4)
g>2-
2 O w
•- a o
-------
TABLE C-2
DISPOSAL COSTS FOR BRC WASTE STREAMS BY COMPACT
WITHOUT INCINERATION
(IN 1985 DOLLARS PER CUBIC METER)
STATE
HI
ID
WA
CA
CA
CA
CA
CA
CA
CO
CO
CO
NM
NV
NV
TX
TX
TX
TX
TX
TX
TX
AR
AR
AR
KS
KS
LA
LA
NO
NO
NE
OK
IA
MO
NO
MO
MO
MO
IN
IN
MI
MI
OH.
OH
OH
LOCATION
Honolulu
Boise
Bremerton
Long Beach
Los Angeles
Richmond
Sacramento
San Diego
San Francisco
Boulder
Denver
Denver
Albequerque
Las Vegas
Las Vegas
Austin (high)
Austin (low)
Clute
Dallas
Houston
Houston
San Antonio
Fayettville
Little Rock
N. Little Rock
Wichita (high)
Wichita (low)
New Orleans
Abbeville
BisMerk
BisiMrk
Lincoln (NO FEE)
Tulsa
DM Moines
Minneapolis
St. Paul
Kansas City
St. Joseph (high)
St. Joseph (low)
St. Louis
St. Louis
Fort Wayne
Indianapolis
Detroit
Lansing
Akron (high)
Akron (low)
Cinncinnati
••COMPACT
1
1
1
AVERAGE
2
2
2
2
2
2
AVERAGE
3
3
3
3
3
3
AVERAGE
4
4
4
4
4
4
4
AVERAGE
*
5
5
5
5
5
5
5
S
S
5
5
5 7
5 7
5 7
5 7
5 7
5 7
5 7
5 7
AVERAGE .
7
7
7
7
7
7
7
TRANSFER
LANDFILL STATION
FEE FEE
•••••••S ••••••••
4.36 8.28
1.18
5.04
3.52 8.28
2.62 5.96
2.18
4.80
2.01
3.49
15.83
3.02 10.90
2.62
3.60
3.01
5.49
3.92
2.62 3.27
•••••••» ••••••*•
3.47 3.60
2.15
1.73
.4.14
2.35 4.14
4.12
4.77
3.58
3.26 4.14
3.03
5.45
3.16
1.53
1.20
1.74
5.23
2.35
3.92
1.87
4.36
14.39
6.76
4.36
2.90
0.90
6.06
7.85
3.69 14.39
2.62
4.32
2.29
4.45
3.71
3.53
3.07
DISPOSAL FEE
INCLUDING
TRANSPORTATION
13.07
10.76
14.62
12.82
10.75
11.76
• 14.38
11.59
13.07
20.62
••••••£•
13.70
12.20
13.18
12.59
15.08
8.71
8.06
mmmmmmmm
11.64
11.73
11.31
13.73
8.93
13.70
14.36
13.16
• 12.42
12.61
15.03
12.75
11.11
10.78
11.33
14.82
11.94
13.51
11.46
13.94
19.17
16.34
13.94
12.49
10.49
15.64
17.43
13.60
12.20
13.90 "
11.87
14.03
13.29
13.12
12.66
C-5
Table continued on next page
-------
TABLE C-2 (Continued)
DISPOSAL COSTS FOR BRC WASTE STREAMS BY COMPACT
WITHOUT INCINERATION
(IN 1985 DOLLARS PER CUBIC METER)
TRANSFER
LANDFILL STATION
STATE
OH
WI
WI
LJ t
WI
WI
IA
MN
MN
MO
MO
MO
MO
MO
IL
IL
IL
IL
AL
FL
FL
FL
GA
SC
TN
TN
VA
VA
VA
VA
PA
PA
PA
PA
PA
CT
DC
DE
DE
DE
MA
MA
MD
MD
MD
MD
NJ
NJ
NJ
NJ
NY
NY
LOCATION
Cleveland
Green Bay
Madison
eneinoitee rails \nignj
Menemonee Falls (low)
Des Moines
Minneapolis
St. Paul
Kansas City
St. Joseph (high)
St. Joseph (low)
St. Louis
St. Louis
Bloomington
Ch i cago
Macomb
Ottawa
Huntsville
B reward County
Dade. County
Tampa
Atlanta
Spartanburg County
Menph i s
Nashville
Fairfax County
Prince William County
Richmond
Suffolk
Chester County
Erie
Northampton County
Philadelphia
Pittsburgh
Hartford
Lorton (VA)
Kent County
New Castle County
Sussex County
Hanerhlll
Millbury (NO FEE)
Baltimore County'
Montgomery County
Ocean City (NO FEE)
Prince Georges County
Burlington County
Burlington County
Cape Hay County
Gloucester County
Allegany County
Islip
••COMPACT
7
7
7
7
5 7
5 7
5 7
5 7
5 7
.5 7
5 & 7
5 t 7
AVERAGE
8
8
8
8
AVERAGE
9
9
AVERAGE
10
10
10
10
10
AVERAGE
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
FEE
16.29
3.49
4.36
7 AC
• O?
4.90
4.36
6.76
4.36
2.90
0.90
6.06
7.85
4.95
3.07
4.32
1.96
3.92
mmmmmmmm
3.32
1.66
9.59
6.98
5,10
3.60
1.18
2.18
2.62
7.30
3.27
7.63
5.23
4.69
8.72
5.30
4.80
3.60
5.60
6.70
4.36
7.69
12.86
9.91
5.49
13.08
11.12
10.40
7.00
12.53
15.05
7.19
7.85
FEE
14.39
14.39
9.72
13.78
7.30
10.27
21.80
21.80
6.10
13.52
DISPOSAL FEE
INCLUDING
TRANSPORTATION*
25.88
13.07
13.94
17.43
14.49
13.94
19.17
16.34
13.94
12.49
10.49
15.64
17.43
mmmmmm
14.77
12.66
13.90
11.55
13.51
mmnmmm
12.90
11.24
19.18
14.50
18.56
13.18
10.76
11.76
12.20
12.09
12.85
17.21
14.82
mmmmmm
14.03
18.30
14.88
14.38
26.59
13.18
mmmmmm
17.47
16.28
10.89
17.28
22.45
19.49
15.08
22.66
18.30
20.70
19.98
16.58
22.12
24.64
16.78
17.43
C-6
Table continued on next pag<
-------
TABLE C-2 (Continued)
DISPOSAL COSTS FOR BRC WASTE STREAMS BY COMPACT
WITHOUT INCINERATION
(IN 1985 DOLLARS PER CUBIC METER)
STATE
LOCATION
TRANSFER
LANDFILL STATION
•COMPACT FEE FEE
NT New York City
NY Onondag* County
NY Rochester
RI Providence
RI Warwick
Bidderford
AVERAGE
11
11
11
11
11
12.10
10.90
5.62
5.23
9.17
19.95
6.54
10.90
11.40
DISPOSAL FEE
INCLUDING
TRANSPORTATION*
mmmmmmm
24.73
20.48
11.33
14.82
15.69
12 NO FEE
AVERAGE OVER ALL REGIONS
18.39
NO FEE
14.78
FEE FOR TRANSPORTATION EQUALS S9.S8 FOR SHIPMENT TO LANDFILL (ASSUMING
60 MILE ROUNDTR1P) AND S4.79 FOR SHIPMENT TO TRANSFER STATION (ASSUMING
30 MILE ROUNDTRIP). FOR THOSE LOCATIONS THAT REPORT FEES FOR BOTH LANDFILLS
AND TRANSFER STATIONS, IT WAS ASSUMED THAT WASTE WILL BE SHIPPED TO A TRANSFER
STATION.
COMPACTS
1 •• NORTHWEST
2 •• CALIFORNIA
3 •• ROCKY MOUNTAIN
4 •• TEXAS
5 •• CENTRAL
6 •• SOUTH DAKOTA (NO DATA)
7 •• MIDWEST
6 -• CENTRAL MIDWEST
9 •• SOUTHEAST
10 • PA / WV
11 • NORTHEAST
12 • NEW ENGLAND
NOTE: BASED ON 1986 SURVEY OF TIPPING FEES CONDUCTED BY
NATIONAL SOLID WASTE MANAGEMENT ASSOCIATION.
SEPTEMBER 1987
C-7
-------
TABLE C-3
DISPOSAL COSTS FOR BRC WASTE STREAMS
WITH INCINERATION
(IN DOLLARS PER CUBIC HETER)
STATE
xxixxxxx
CT
FL
FL
FL
IA
IL
ME
MA
MA
MA
MN
MT
NY
NY
NY
NY
PA
OH
RI
TN
TN
LOCATION
RESOURCE
RECOVERY
FEE
TOTAL COST
INCLUDING
TRANSPORTATION*
Uindhm 7.24
Dade County 13.19
Lakeland 24.41
Pinellas County 10.46
AMES (subsidized a SB/truck)
Chicago (No fee)
Auburn 4.85
N. Andover 12.21
Pimfield (subsidized 8 $6.54/cubic meter)
Saugus 15.26
Ouluth 6.80
Livingston 10.90
Albany (subsidized a S5.45/ cubic Meter)
Glen Cove 15.26
Niagra Falls 5.39
Westchester County 15.26
Harrisburg 8.72
Akron (subsidized a S3.32/cubic meter"*)
Portsmouth (No fee)
Sumner County
NashviIle
10.90
10.90
AVERAGE
11.48
12.03
17.98
29.20
15.25
9.64
17.00
20.05
11.59
15.69
20.05
10.68
20.05
13.51
15.69
15.69
••••••
16.27
• THE FEE FOR TRANSPORTATION IS EQUAL TO S4.79 PER CUBIC METER
(ASSUMING A 30 MILE ROUND TRIP).
MOTE:
•* S1.92 (SAT.); S3.60 (M-F)
BASED ON 1986 SURVEY OF TIPPING FEES CONDUCTED BY NATIONAL SOLID WASTE
MANAGEMENT ASSOCIATION (NSWMA)ANO CONVERSATIONS WITH C. L. PETTIT FROM NSWMA.
SEPTEMBER 1987
C-8
-------
Table C-2 demonstrates that tipping fees were sometimes reported for
both landfills and transfer stations. Under this circumstance, the tipping
fee for the transfer station was used. Although the per cubic meter cost
of disposal at the transfer station is usually higher than the gate fee at the
landfill site, transfer stations are located closer to the waste generators.
Therefore, the total cost of disposal, including transportation, is lower
when shipping waste to a transfer station, since a more efficient mode of
transportation can be employed when shipping waste from the transfer
station to the landfill. To capture these transportation savings, our
analysis assumes that the round trip distance to a landfill is 60 miles, while
a round trip to a transfer station is only half that distance. Resource
recovery plants were also assumed to be located closer to the generator site
— the round trip distance being 30 miles as well.
The per cubic meter transportation cost was estimated in RAD86 at
about 15 cents per mile. To be consistent with estimates of disposal fees
which represent prices and not simply costs, an operating profit of 8.5
percent was assumed. Thus, the fee for transportation equals $9.58 per
cubic meter for a round trip of 60 miles and $1.79 for a round trip of 30
miles. Some evidence suggests that, unlike disposal costs, transportation
costs do not vary significantly by geographic region. A 1984 survey of
private trucking fleet operators IATK84] estimated that the cost per mile
varied from a low $1.19 in the Southeast to a high of $1.28 in the Rocky
Mountain region — a difference of only about 7.5 percent.
Tables C-2 and C-3 present the cost of BRC disposal by Compact.
Table C-2 reports the cost of BRC disposal assuming the waste is not
incinerated (i.e., shipped to a landfill or transfer station), whereas Table
*
This operating profit is the 1985 industry average for Refuse Systems
(SIC# 4953) reported by Robert Morris Associates. This profit is
assumed to reflect a fair return on investment and, thus, to be a
legitimate component of societal cost. Profit is also included in the
regulated disposal cost estimates.
C-9
-------
C-3 reports the cost associated with incineration (i.e., waste shipped to a
resource recovery plant). The average tipping fee (including
transportation) for waste not incinerated is $14.78 per cubic meter,
compared to $16.27 for waste that is shipped to a resource recovery plant.
The cost reported in these tables are those used in the BRC analysis.
These costs, it should be emphasized, assume complete deregulation. Some
waste streams that are still considered hazardous (e.g., I-LQSCNVL) or
possibly unsuitable for disposal at a municipal facility (e.g., animal
carcasses found in I-BIOWAST) may have disposal costs that are much
higher, however. The range in possible costs for these two wastes, which
also are similar to the types of wastes deregulated under NRC's BIOMED
rule, are considered below. One additional observation with respect to the
costs presented in Tables C-2 and C-3 is that these costs assume a zero
cost component for packaging. The underlying assumption is that the
deregulated waste would be treated in the same fashion as other
non-hazardous wastes (e.g., placed in a dumpster). While this may be a
slight understatement of actual unregulated disposal costs for some wastes,
the additional costs will likely be negligible in comparison to the regulated
alternatives, if wastes are actually treated as nonhazardous.
As mentioned above, an exception to this assumption is the disposition
of I-LQSCNVL and I-BIOWAST. Since the EIA is limited to analyzing only
the radiological hazards resulting from LLW disposal, however, the health
risks associated with disposing these two wastes in a hazardous waste
facility was not modeled. Therefore, costs were developed consistent with
the risk model, where disposal in unregulated sanitary landfills was
assumed. For illustration purposes, however, the following discussion
presents the possible range in costs associated with disposing I-LQSCNVL
and I-BIOWAST in a more stringent fashion. Use of these alternative
disposal technologies would reduce the potential savings of the proposed 4
millirem BRC standard by as much as $31 million under National Implicit
implementation or $23 million under National Explicit implementation (since
I-BIOWAST is regulated)'.
C-10
-------
Since the liquid scintillation medium (often a toluene/xylene mixture) is
considered hazardous under the Resource Conservation and Recovery Act of
1976 [RCRA76], I-LQSCNVL waste would normally require disposal at a
hazardous waste facility or incineration at the generator site or regional
facility. The cost per cubic meter is $3,592 for hazardous waste disposal
and $2,584 for incinerated waste disposal (although, as discussed below,
incineration costs may be much lower for small quantity generators of
I-LQSCNVL). The cost for hazardous waste disposal is based on fees
currently charged for hazardous waste disposal services, as reported in
EPA86a. The cost of disposal is approximately $529 per cubic meter; the
cost of transporting hazardous waste is about 21 cents per mile per cubic
meter. The cost of packaging I-LQSCNVL is assumed to be the same as for
regulated LLW disposal, i.e., $1,880 per cubic meter (with a volume
increase factor of 3). Assuming that the transportation distance is 200
miles, the cost of disposing I-LQSCNVL at a hazardous waste site,
therefore, would be equal to $3,592 per cubic meter (compared to $3,872
per cubic meter at a commercial LLW disposal site).
The costs of incinerating I-LQSCNVL and I-BIOWAST are calculated
using the same methodology. Costs consistent with the regulated
incineration of I-BIOWAST are considered since municipal facilities may not
accept animal carcasses for unregulated incineration at the municipal site.
Thus, the unregulated disposal of I-BIOWAST could cost as much as $2,482
per cubic meter, based on costs for a pathological incinerator used for
processing radioactive waste [DM86]. This cost and the incinerated cost
for I-LQSCNVL assume that the waste is incinerated at the generator site;
then, the untreated ashes are disposed of at an unregulated facility.
As mentioned above, a tower cost incineration scenario can be
envisioned for I-LQSCNVL. Factors that may contribute to a lower cost
include: 1) the possibility of receiving a credit for the fuel value of the
scintillation fluid and 2) the lower cost of disposing the glass vials at a
C-11
-------
local sanitary landfill. If we assume that a $5 per gallon credit is received
for the scintillation fluid, then a savings of $13 per cubic meter can be
*
achieved. This credit would be approximately offset by the $15 per
cubic meter cost of disposing the glass vials at an unregulated sanitary
landfill. Information on the relative volume of glass to fluid in a
scintillation vial is necessary to precisely calculate the net cost (or
savings). Nonetheless, the actual cost will be quite low relative to
regulated costs.
REGULATED DISPOSAL COSTS
This section presents the .unit costs associated with regulated disposal.
Total unit costs are calculated by aggregating the four main cost
components — packaging, processing, transportation, and disposal.
Collection costs also are added to the four consumer-like wastes —
C-SMOKDET, C-TIMEPCS, R-INSTDF1, and R-CLASDS1. Since costs
generally are positively correlated with waste activity, the unit costs are
reported for each type of waste. Two exceptions involve disposal costs and
solidification costs (a sub-component of processing cost), neither of which
vary by waste.
Unit costs are based on the as generated waste volumes. Therefore,
if any stage of the disposal process results in altering the as generated
volume of the waste, all unit costs in the later stages of the process must
be multiplied by a volume increase factor (VIF) to reflect the change in
volume. For example, if solidification doubles the volume of a given waste,
transportation 'and disposal unit costs will be doubled since twice as much
waste must be transported and buried. Likewise, compaction and
incineration reduce volume; hence, the VIF is less than one.
This credit is based on actual 198M figures for hazardous waste
resource recovery facilities [EPA86a].
C-12
-------
The following sections discuss the methodology, data sources, and
caveats associated with estimating each of the five cost components.
Packaging Costs
The cost of packaging regulated LLW was reported in EEI84a. These
costs, presented in 1980 dollars, were escalated to 1985 dollars by using
the change in the producer price index for capital equipment. Between
1980 and 1985, the producer price index for capital equipment increased by
a factor of 1.253. Packaging costs for all wastes include both material and
labor costs.
To comply with DOT regulations, some wastes require special
packaging treatment. For some industrial wastes, the cost estimates assume
a special container is used because of the high activity of the waste. For
three of the institutional wastes — I-BIOWAST, I-ABSLIQD, and
I-LQSCNVL — the cost estimates assume these wastes are packaged with
absorbent materials. As a result, as generated volumes are increased by a
factor of 1.92 for I-BIOWAST and by a factor of 3 for I-ABSLIQD and
I-LQSCNVL. Estimates for the four LWR wastes containing liquids reflect
the cost of dewatering-these wastes.
R-RAIXRSN is assumed to have the same cost of packaging as
L-IXRESIN, one of the four LWR wastes, since these wastes have similar
characteristics. Likewise, R-RASOURC is assumed to have the same
packaging cost as N-SOURCES. Under current practice, CRCPD86
recommends a maximum of 500 millicuries of radium-226 per 55 gallon drum.
Since R-RASOURC has a total of 620 curies of radium-226, the minimum
volume (i.e., assuming the maximum of 500 millicuries per drum) would
involve the disposal of 1,240 drums or, at .208 cubic meters per drum, a
total of 258 cubic meters. At the other extreme, disposal-of-all 17,200
radium sources disposed over the next 20 years at one source per drum
would result in a disposal volume of 3,578 cubic meters. As an
approximation, it is assumed that 500 millicuries total activity is disposed
C-13
-------
per drum, on average. This results in disposal of 6,230 drums (3,115 total
curies), or 1,296.9 cubic meters. The VIF is calculated by the ratio of
this volume to the as generated 20-year volume for R-RASOURC of O.UM5
cubic meters, and is equal to 2,914.
Table C-u presents packaging costs and associated VIFs for each
waste. The footnotes accompanying the table document the assumptions
underlying each cost estimate.
Processing Cost
LLW processing involves either compaction, solidification, or
incineration. Compaction costs are estimated for comparison purposes.
CPC risks associated with disposal of compacted LLW were not modeled,
however. CPC risk would likely increase under a scenario that assumed
compacted waste is placed in the disposal trench since a larger as generated
volume (more activity) could be disposed per 250,000 cubic meter site (or,
alternatively, the site size is smaller for a given activity).
The general methodology used in estimating processing costs involves
three steps. First, a representative processing technique is identified for
each LLW waste, as defined by the Nuclear Regulatory Commission (NRC).
This allocation of waste to processing technique was reported in studies by
Dames and Moore [DM81, DM86] for the NRC. The allocation was made on
the basis of what is currently being practiced and what is technically
*
feasible. Each processing technique has an associated cost expressed in
dollars per cubic meter. The cost is the same per cubic meter for ail
wastes treated under that particular technique. However, each waste has
a unique volume reduction factor (VRF) for a given processing technique.
Reports by Envirodyne Engineers, Inc. [EElBta] and TRW Energy
Development Group/RAE [TRW83a] also used this methodology.
C-14
-------
TABLE C-4
PACKAGING COST DATA
EPA
WASTE STREAM
MNEMONIC
PHB
ESTIMATE (1)
(1985 DOLLARS
PER CU. METERS,
As Generated)
VOLUME
INCREASE
FACTORS
P-COTRASH
B-COTRASH
L-NCTRASH
L-IXRESIN
P-FCARTRG
L-FSLUDGE
L-CONCLIO
L-DECONRS
F-COTRASH
F-NCTRASH
F- PROCESS
U- PROCESS
N-SSTRASH
N-SSWASTE
N-LOTRASH
N-LOUASTE
L-NFRCOMP
N-ISOPROO
N-TRITIUM
N- TARGETS
N- SOURCES
I-COTRASH
I-BIOUAST
I-A8SL1QO
I-LQSCNVL
R-RASOURC
R-RAIXRSN
NOTES:
(1) ALL ESTIMATES INCLUDE
(2)
(2)
(3)
(4)
(5)
(4)
(4)
(4)
(2)
(3)
(2)
(2)
(2)
<2>
(2)
(2)
(6)
(7)
<5)
(5)
(5)
(2)
(8)
<8)
(8)
(9)
(10)
COMPONENT
303
303
383
449
449
449
512
449
303
355
303
303
303
303
303
303
501
449
501
501
501
303
1,451
1,879
1,879
501
U9
COSTS FOR LABOR,
1.0
1.0
1.0
1.0
.0
.0
.0
.0
.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.92
3.0
3.0
2914.0
1.0
MATERIALS, AND UT
VOLUME INCREASES WHERE APPROPRIATE.
(2) ESTIMATE REFLECT PACKING IN A DRUM ONLY. COSTS ALSO INCLUDE LABOR (FOR A TOTAL
PER DRUM COST OF S50 IN 1980, OF WHICH S22 REPRESENTS THE COST OF THE DRUM ALONE).
(3) ESTIMATE REFLECTS MIX OF DRUMS AND BOXES AND INCLUDES LABOR. COSTS ARE ALSO ASSUMED TO
DEPEND ON ACTIVITY (HIGHEST FOR B-COTRASH, THEN P-COTRASH, THEN F-NCTRASH).
(4) ESTIMATE REFLECTS DRUM PACKING, BUT ALSO REFLECTS DEWATERING COST AND ASSUMES THAT
DRUMS WILL BE SHIPPED IN REUSABLE SHIELDED CASKS (CASK COST INCLUDED IN TRANSPORT COST).
(5) ESTIMATE REFLECTS MIX OF DRUMS AND (APPARENTLY) BOXES, AND INCLUDES LABOR. COSTS ARE ALSO
ASSUMED TO DEPEND ON ACTIVITY. FILTER CARTRIDGE ESTIMATE REFLECTS TRU83* ASSUMPTION THAT
FILTER CARTRIDGE COSTS ARE THE SAME AS RESINS AND SLUDGES.
(6) ESTIMATE REFLECTS MIX OF DRUMS AND (APPARENTLY) BOXES, AND INCLUDES LABOR. COSTS ARE ALSO
ASSUMED TO DEPEND ON ACTIVITY.
(7) ESTIMATE REFLECTS TRW83* ASSUMPTION FOR PACKAGING AT A COST EQUAL TO RESINS. THIS COST IS
APPROXIMATELY THE SAME AS 1/2 L-CONCLIO AND 1/2 F-NCTRASH, SINCE N-1SOPROD IS HALF LIQUID
AND HALF SOLID.
(8) ESTIMATE REFLECTS COST OF A DRUM, LABOR AND ABSORBENT, AND A VIF OF 1.92 (I-BIOUAST)
OR 3.0 (I-ABSLIOO AND I-LQSCNVL).
(9) ESTIMATE REFLECTS ASSUMPTION THAT PACKAGING COSTS FOR R-RASOURC ARE THE SAME AS
N-SOURCES.
(10) ESTIMATE REFLECTS ASSUMPTION THAT PACKAGING COSTS FOR R-RAIXRSN ARE THE SAME AS
L-IXRESIN. -
SEPTEMBER 1987
C-15
-------
The next step in the general methodology involves calculating costs for
each LLW waste as defined by EPA (in general, this involves simple
aggregations of NRC wastes). In the situation where the NRC waste is the
same as the EPA waste, no special assumptions are necessary. However,
when the NRC waste streams that map into the EPA waste streams require
different processing techniques, then a weighted average usually is
*
calculated when estimating processing costs. The footnotes to Table C-5
identify those wastes that have costs calculated by a weighted average
methodology.
The last step in the methodology accounts for inflation. All costs were
calculated from 1980 dollar estimates reported in DM81. Similar to
packaging costs, these figures were escalated to 1985 dollars by using a
single factor — the change in the producer ~ice index for capital
equipment. Although the cost of processing includes other factors such as
labor and fuel, using the capital equipment index as the only escalation
factor will not significantly affect the cost-effectiveness results. The 1985
update [DM86] by Dames and Moore of its original 1981 NRC report adopts
this same methodology.
As mentioned above, the cost of compaction is estimated for purposes
of illustration. Compaction can be considered an intermediate method of
processing in comparison to the two extreme methods of processing assumed
in the analysis, i.e., either* packaging waste in an untreated form or
engaging in maximum processing by incinerating and solidifying the waste.
Two types of compaction techniques were considered — regular compaction
at the generator site and compaction using an industrial hydraulic press at
*
For some EPA waste streams, it was assumed that all of the associated
NRC waste substreams were treated under the same processing
technique even though not all of these NRC substreams (such as small
generators) were included in the NRC report [DM86] under that
particular processing technique. See Table C-5, footnotes 4 and 10.
C-16
-------
«-*
1§
ii f^ K. p> »- ^ o- in
ii ^ *o o* ^ *» o» o
n-^-gr *in • OflOinm
n rg"rg* IM KI rg rg rg
S *o rg
^ • © in
S^ ^f po
_ rg rg K»
w\ p»
rg rg rg rg
Sin rg o rg
co <— in S.
O r» - U
2^!
U r-
2 3
^ at ui
U» UJ U
553
$^
in >— -j
• uj ^
U X O
4, u °
^ o> oa
4J S O^
*- O ••
• •* «^ in >* ^ >o
• ^ « in • n- »o in sr
"r«" f\T i\Trg*r>Tr«r
-gr » ^ ^
rg *• rg (M rg*
rg eg r- N- —•
O> co O> KI O>
. ."X°l ' **!
^-'rirrtTrg" •-*
§
:iiiiiiiiiiiiiiii.i
S:
> x> •
3 •« H
ii co 03 to coatoa
iirgrg rg fNjrgrgrg
rg rj oo 03 «-
*- f- rg rg rg
rg _ _ .- rg
•j- to co co o
O- in m in • m
«-*«v"»v7r«* ••"
o m
35
rg (M
** ^^
IM rg
n xxacxoujOMX
Ul It MCA^^OtO««CKVII
H- N «««V>»-Q_IX«
vu or 3 o B at
s
•*
i ui x ui x ui
u> irt M. oo »-
I Ul < » < U>
i o at < ac «
*
8
8ZV>V>X»-A_JU
3f-u!ac'
S « « O o — 09 a <
— — >-00(J««_IIX
C-17
-------
T3
4)
3
C
*-i
C
o
o
I
O
re
I-
U
I-
to
c
LL!
I-
LU
U.
\-
z
cc
111
I-
LU
y
a
UJ
a.
1-
tn
O
CJ
O
Z
to
un
LU
U
O
* •
in
LU
O
z
ackaging and
CL
4)
£
4>
U
4)
£
4-»
V
"In
"2
3
£
re
in
in
4)
L.
a
5
re
TJ
£•
4)
O
T>
C
^J
re
a
u
~
d
d be reduced
2
o
in
m
O
u
»•
.S
3
W
3
O
£
"re
4)
re
in
w
£
£
"re
4>
u
2
o
in
in
O
u
c
*rf
(Q
4^
1
in
re
volume reduction.
<4_
O
4)
3
re
y
4)
an improved
_
In
3
u-
0
_
»
Q.
O
£
O*
\fi
«^
s
TJ
_3
U
.s
4)
mall generators a
in
sumes
U
4)
2
"in
C
o
u
"o
in
%
in
o
u
u
4)
^^
.21
£
re
«->
re
3
0
in
O
in
LL
£
2
u
1
u
to calculate a
TJ
4)
in
3
4)
l_
re
*
VO
00
O
£
TJ
S«
Q
O.
4)
u.
en
re
£
1-
fY>
*TI
"E
in
II
a
LL
a
o
10
1
%
VO
II
LL
£i
5
n
IT
ST
O
II
X
in
a:
I-
O
U]
z
4)
4)
£
$
4)
cn
£
4)
>
re
•o
4)
£
"«
4-1
'i
^E
VO
vo
ID
II
in
u
4)
£
"o
^^
re
TJ
C
re
CO*
n
LL
S~
•^
£
•^
<•*>
E
o
o
(X
= 6, N-SORMFG1 =
LL
U. —
> II
£ LL
1 >
to calculate a
TJ
4)
in
3
4)
re
«
VO
eo
O
C
TJ
4)
k»
o
a
V
u
in
re
4)
in
re
in
substreams for thi
u
cc,
z
4)
1-
jy
wf
oo
oo
II
a.
a:
I-
z
CM
II
U.
o:
«
"i
rn
E
oo
vo
^"
f*i*
II
IT
O
U
LU
Z
I
Z
4>
L.
4)
$
4)
D)
re
4)
re
TJ
*->
.21
1
.
"i
ME
eo
o
CM
II
in
L.
4)
^2
O
T;
c
re
«e
n
LL
?
£
*rf
i
"E
oo
5
u
•x
E
i-
z
u
LL
^
"i
ro
E
»
n
LL
>
4)
Q
re
a
Oi
o
o
TJ
4)
O
u
in
4>
4^
o
z
C-18
-------
TJ
V
3
£
w
0
O
in
i
U
41
JO
re
H
UJ
H
tn
<
5:
O
UJ
H
<
UJ
Q£
H
Z
3
LL
O
o:
UJ
H
LU
^
«£
O
"•
CO
3
u
a:
UJ
Q.
to
«/)
o
u
o
z
l/l
V *
t/*
V /
UJ
u
o
o:
o.
-
0)
(A
re
4>
u
u
£
0)
E
_3
O
4)
4««
w
]>»
£.
^
3
E
X
JO
•o
4)
JO
3
_u
re
u
in
Dl
C
'o>
re
.X
u
re
a
TJ
c
re
c
JO
*3
u
re
a
u
<*_
o
**
(A
O
u
4)
JZ
»-
n the cost of compaction.
CT
C
T>
•0
re
c
4)
4-
«
CT
"o»
re
X.
u
re
Q.
<•_
o
4->
JO
o
**
u
s.
u
L.
&
2
u
4S
*
•o
4)
4^
O
C
4)
(A
therwi
0
(A
(A
4*
"c
3
4)
4^
*!A
L.
0
^
genera
Tc
u
0
4^
re
4)
"u
£
•a
CD
•o
4)
N
2
3
\L
re
£
T3
4)
l_
3
JO
^2
0)
(A
re
$
4)
J=
4->
u_
0
4rf
C
4)
U
4)
a
o
in
4)
k.
4>
£.
$
culated
re
u
(A
•«M
4>
0)
• re
L.
4)
re
T5
«
Jz
0>
4)
$
<
ized Bed Incinerator at a
2
_3
LL
re
£
T3
w
4>
L.
3
JO
(A
^^
C
4)
U
U
41
Q.
O
IT)
•o
C
re
u
o
flS
41
£
^ >
C i-T
1 ^
I1 re
1 5
*- O»
re 41
Q. L.
II generators are included
re
(A
sumes
IA
re
%
o
(A
<
•
4?
*^
*35
t_
eneratoi
o»
4^
re
i_
0
4^
re
4)
C
"y
£
15
u
"5
_o
"5
w
£
*
5
"n
re
c
4)
y
V)
jA
4^
£
•
L.
4>
4^
C
4>
U
m
\^i
£
"(A
(A
4>
(J
IM
a
re
£
"cn
41
4^
re
u
o
4-"
re
L.
4>
£
"o
£
"2
w
CO
•D
4)
IS)
^
3
LL
C-19
-------
the disposal site. Like incineration and solidification, it is assumed that
regular compaction includes packaging costs. For compaction done by a
hydraulic press at the disposal site, however, packaging and transportation
costs would remain the same, although disposal costs would be reduced due to
volume reduction.
Table C-5 presents the unit costs for processing; note that all wastes
cannot be compacted. Likewise, not all of the NRC substreams comprising
the EPA wastes can be compacted. For two waste streams, N-ISOPROD and
N-TRITIUM, a weighted average was used in calculating compaction costs
and volume reduction factors. Three N-TRITIUM NRC substreams,
accounting for approximately 54 percent of the waste volume, and three
N-ISOPROD NRC substreams, accounting for approximately 43 percent of
the waste volume, were considered for compaction. For those waste streams
that excluded small producers from compaction scenarios, a weighted
average was not calculated, however. The implicit assumption here was
that small generators can compact their waste at the same cost as large
generators (perhaps at regional facilities).
Table C-5 also presents the costs for solidification (which include the
cost of packaging). All wastes, it is assumed, are capable of being
solidified. More important, however, is the assumption made concerning the
solidification agent. The table reports solidification costs for two
alternative techniques — solidifying with cement and solidifying with a
synthetic polymer. Significantly, the costs associated with the polymer are
about double. These costs are further magnified, given the higher volume
increase factor when using the polymer. The VIFs are reported in Table
C-6 for the various processing techniques. These VIFs were taken from
DM86 or, where noted, were calculated from NRC substreams. Since the
VIF for solidifying with a polymer is 2 versus 1.4 with cement, the costs of
transporting and disposal will be greater per cubic meter of untreated waste
under the scenario where a polymer is used. The use of a polymer,
however, results in a more stable waste form, since the first-year leach
C-20
-------
en
u
* H
^ oc uj H m in *— o o •" o in K» **•» K> &• K^ K» o IM ^»
t*^ Uj 19 n nj (Nt «^ o ^*» *• in fv "C *O 4 O- fu «*»• ^*
••£«cuoO'^'>rrNJ^O* • • «" • o o • o o > • © #- o «» • ^-
£ S u H o o o* o* o o* o' o* do do d d d d d
W 5 «C M
o a a. M
M n
^ *• H
3 M
n
n
it
» H
>- *- u* M N- *• ao o o» ao tn eg <•* «* -* o^ *r ro •* o to
— UJ < II
o ft- "
R ^ H
3 «• M
n
M *-k /^ *^
M ^O ^- *O
II
>- tt UJ M OOOOOOOOOOOOOOOOOOOOOOOOOOO
-. X «e M rgrg*Nj(NJ»-f%jrsjfyrsjrNjrgf>rf4r|J
o >• ^ ii
— _J w >)
w O *t "
O £ a. H
W> II
***.«* n
3 il
n *^ ^^ *^
M -o r^ x>
II ^ ^^ *«r
II
0 X W u
— Ul . n
3 •• n
H
H ^^ ** *^ '^
II
UIUJMP^X^ «o o^*om x^ ^^ **o ^f^o** ^9
>»oii^»" i/> OvomfM »o K\K* »*>*n m^^fM w^
«<*N;*^'1'^' '**;' '
v>xuixuJo»o>Tc/>»x»~o^ox
ui* v>i/>i/> — acu*-oev>v>««MiAtewi>-jro5»uiw9>ae»>
Si) >->->~«<-JZ<-'^ — 5o^-3«-3oeO — oc3»-O<«irtbi —
N OOUxu(/)OuiOuacacw>i/iOOik(/ia(
-------
in
ex
O
•° h
4) U
2 <
.£ LL
*•*
C LU
o in
u <
— UJ
? S
U Z
4)
•S LU
-° 5
•= 1
O
>
-
• •
oo
LU
r-
0
Z
d in DM86, are used to calculate a
with VRF = 6. N-SORMFC1 = 56 m3.
*>PO
s e
Q.
4>
U
in
re
4)*
4*
in
re
$
in
!E
+*
L»
vg
in
re
ubstre
in
U
OC.
z
Q)
I-
*~*
*-•
a-
a-
o
»
^
n
X
N-ISOTRS
4)
U
4)
£
$
4)
o>
re
4)
>
re
T3
4>
4B*
£
51
"v
a
s:
4M
'i
PO
E
r«.
CO
vo
»
tn
II
in
u
4)
.C
4-*
O
"re
•D
C
re
*
VO
n
LL
LX
£
4-
'I
PO
E
o
o
PS
»
PO
II
sr
O
LL
2
CX
O
in
i
Z
»
VO
u
LL
£X —
> ,.
£ LL
± cx
5 >
d in DM86, are used to calculate a
3 with VRF = 2, N-TRIPLAT = 88.1
4)
4»
U
O
a
4)
in
re
%
4)
4"f
in
re
$
jn
£
4->
1
vg
in
E
re
ubstre
in
O
(X
Z
4)
H
PS
<_»
E
00
VO
PO
II
<
CX
N-NECOT
4)
L.
41
.C
S
4>
£
4)
>
re
•o
4)
4-
r
51
"S
$
x:
4->
'i
PO
E
00
•
VO
o
PS
PO
li
in
u
4)
4"*
O
•D
C
re
*
VO
n
LL
CX
>
JZ.
4-<
"i
PO
E
eo
r^
=f
u
X
CO
CX
L_
r^^
CX
L_
1
1
z
vo
II
LL
CX
>
•
£ M
5 U.
PO CX
E >
d in DM86, are used to calculate a
m3 with a VRF = 8 and B-CONCLIQ
4
4>
L.
o
Q.
4)
i/l
re
4)
«->
in
re
S
co
£
4-«
£
in
re
ubstre
in
U
CX
Z
4)
£
»-
PO
eo
«
PO
Q
r«-
«
VO
PS
PS
II
a
P-CONCLI
4)
t.
4)
5
4)
0>
re
u
4)
>
re
*
4>>
r
J?
*4>
•
9
•
VO
II
LL
CX
£.
+*
"i
^f
^
•
PS
a-
en
%
PO
o
II
f
•
PS
PO
O
4^
"n
CT
0)
4)
^2
0
**
T3
4)
E
If)
V)
re
in
o
*3
re
4)
"i3
_c
vS
LL
CX
>
-a-
4
^^
4>
CT
re
Q.
01
_C
v2
c
o
•D
4>
3
£
*4->
0
y
CO
4)
4>^
O
Z
C-22
-------
re
o>
*->
J2
3
_y
re
i in
E E
re
tc o>
CM u
u 2
I- 3
c
'a
c
0)
Oi
re
01
O ^ «-
*-«/)«
~ -C
"O ^ «
5 l_ o
z <
TJ
0)
l/l
tt
O
I-
o
0)
u o
(0 CN
. II
S LL
2 Q£
Q >
o
o
LL
Qi
LU
to
C
O
U <
_ LU
vo
I
U
.O
<0
f-
U
Z
LU
2
D
_1
O
\fi
re
« K
JS i-
5 O
* u
U) £!
£ -o
i re
o
c
o
o
•o
0)
10
3
t/1
0)
01
re
O»
C
o
I/)
0)
u
*(/>
0)
I/)
re
0)
o
V)
0)
W)
3
re
0)
in
re
0)
u
o
c
0)
« &
« 5
! 1
o a
> 01
tS O)
re
a- _3
» g
U-
S -21 £ 2
£ « ~ 0)
o
c
in
E
-2
o
>
01
a Z J2
"D C
V
E 2
*" "O
*- 0)
O U)
C 3
(fl
vo
C-23
-------
rate fractions for cement exceed the leach rate fractions for the polymer by
one to two orders of magnitude [TRW83a].
The population health effects and CPC risk would consequently be
lower, everything else being equal, when the polymer is used. As a
result, the choice of the appropriate solidifying agent is a decision that
could be based on the relative cost-effectiveness of using the polymer
versus the cement agent. EPA's risk assessment assumes the polymer will
be used in all cases. Risks for solidification with cement or bitumen were
not estimated.
Finally, the costs of incineration and the associated VIFs are shown in
Tables C-5 and C-6, respectively. Three types of incineration technologies
were considered based on information contained in DM86 — fluidized bed
incinerator at the generator site, fluidized bed incinerator at a regional
*
processing center, and pathological incinerator at the generator site.
Similar to compaction and solidification, packaging costs are included in
incineration costs. Since the analysis assumes that, when incinerated, a
waste is also solidified. Table C-5 also reports the combined cost of
incineration and solidification for the two types of solidifying agents.
Table C-5 demonstrates that not all wastes can be incinerated.
Generally, those wastes considered for incineration in DM86 also were
considered for incineration in the EPA analysis. However, EPA's analysis
considers two additional wastes for incineration — N-LOVVASTE and
N-ISOPROD. Since incineration costs were based on those reported in
DM86, it was necessary to assume an incineration scenario for these two
wastes. Therefore, we assume these wastes are burned in a fluidized bed
incinerator at the generator site, resulting in VRFs of 32 for both
N-LOWASTE (assumed equal to the VRF for N-LOTRASH) and N-ISOPROD.
DM86 costs were derived originally from TEK81.
C-24
-------
The NARM wastes, R-RASOURC and R-RAIXRSN, also were not given
full treatment in DM86. Since the cost data were generally incomplete for
these two wastes, special assumptions were made to facilitate the analysis.
Processing costs were reported by DM86 for R-RAIXRSN, although not for
R-RASOURC. Therefore, it was assumed that the type of R-RASOURC
processing and its associated costs are the same as those processing
methods and costs used for N-SOURCES, since these wastes are similar in
character.
Transportation Costs
Transportation is one of the largest components of LLW disposal costs.
Given the current operation of only three commercial LLW disposal facilities,
with the Beatty, Nevada, site accepting very small amounts of LLW, the
distance from the LLW generator site to the disposal site can be quite
significant. The analysis considers two relatively lengthy transportation
distances ~ 650 miles and 2,300 miles [EEI84a]. The latter is used only
for deep geological disposal (DGD), since the availability of this option is
expected to be limited to a single site.
The methodology for estimating transportation costs involves, first,
*
adopting the 1980 dollar estimates reported in TRW83a. These estimates
assume that current processing methods are employed before shipping the
waste. The 1980 dollar estimates are then escalated using the GNP implicit
price deflator, which increased by a factor of 1.3 between 1980 and 1985.
Concerns about the escalation factor will be discussed below.
Transportation cost estimates are reported on a waste-specific basis since
costs are related to waste activity.
The limitations of the above methodology should be highlighted. First,
under a no-processing (i.e., as generated) scenario, transportation costs
TRW83a based its estimates on transportation tariffs listed in SL80.
C-25
-------
used in the analysis may be slightly understated since these costs are
based on the assumption that current processing techniques are employed.
Current processing techniques, assumed in TRW82, involves some volume
expansion due to solidification of some waste and the addition of packaging
materials for other wastes. This volume expansion deconcentrates
radioactivity, resulting in lower transportation rates (due to lower surface
activity). When comparing two regulated disposal options, this bias cancels
since both options include the same transportation. When comparing a
regulated to an unregulated disposal option, however, these lower regulated
transportation costs result in incremental costs being understated since
transportation costs for unregulated disposal are based on an entirely
different set of assumptions. BRC savings, therefore, may be slightly
understated since the appropriate measure of these savings involves the
comparison of unregulated costs to current practice, which assumes no
processing for Class A wastes.
Similarly, when analyzing a maximum processing scenario, such as
incineration, where as disposed volumes are lower than for current
processing techniques, transportation costs for all wastes are understated.
Again, the reduction of waste volumes, relative to current practice,
concentrates the radionuclides present in the waste, resulting in higher
transportation rates than assumed under current processing. This bias is
minimized somewhat because the cost of transportation is reduced by the
VRF. Therefore, the higher the volume reduction factor, everything else
being equal, the lower the distortion of costs. Conversely, under the
processing scenario that involves the solidification of all wastes,
transportation costs will be overstated since TRW83a assumes that under
current processing techniques, only a subset of wastes will be solidified;
therefore, on 'average, the waste activity will be less highly concentrated
when all wastes are solidified. In short, the analysis of transportation
costs does not consider the effect of a change in the as disposed waste
activity resulting from different processing techniques.
C-26
-------
Another potential area of concern arises since the transportation cost
estimates reported in TRW83a were based on previous estimates of nuclide
concentrations. New analysis has resulted in a substantial revision of these
concentrations for some waste streams. For most waste streams,
transportation costs were calculated on the basis of an average activity for
a general waste type (as reported in SL80). Therefore, the new
concentrations will not, in all likelihood, substantially affect these cost
estimates. In the TRW83a report, however, some wastes (footnoted in Table
C-7) have costs presumably calculated on the basis of an assumed activity.
Since these assumed activities are not altogether clear, there is little basis
for revising the estimates reported in TRW83a and, therefore, the estimates
in that report were simply adopted and escalated from 1980 to 1985 dollars.
Finally, the appropriate escalation factor used is of some concern.
The TRW83a study used cost estimates reported in SL80, escalating 1980
dollar estimates to 1982 dollars by using a factor of 1.2 (implying that
transportation costs are increasing by about 10 percent per year). In
contrast, this analysis inflates 1980 dollars to 1985 dollars by using a factor
of 1.3, which implies that transportation costs are escalating at a rate of
about five percent per year. The rate of inflation in recent years has
slowed, which may account for the difference assuming the escalation factor
used in TRW83a was based on general inflation. However, if the escalation
rate reported in TRW83a is based on knowledge of actual rates of increase
in transporting LLW, or if it is known otherwise that the cost of
transporting LLW has increased at a faster rate than general inflation, then
using a higher escalation factor would be appropriate. Historical evidence
suggests that LLW transportation costs have increased at about the same
rate as inflation, however. Transportation rates per mile increased between
a factor of 1.45 to 1.U9 from 1975 to 1980, whereas the implicit price
deflator increased by a factor of 1.45 during the same period [SL80]. The
1985 dollar estimates of transportation costs are reported in Table C-7.
C-27
-------
P-COTRASH (1)
B-COTRASH (1)
L-NCTRASH (2)
L-IXRESIN (1)
P-FCARTRG (1)
L-FSLUOGE (1)
L-CONCLIO (1)
L-DECONRS (3)
F-COTRASH (1)
F-NCTRASH (2)
F-PROCESS (1)
U-PROCESS (1)
N-SSTRASH
N-SSUASTE
(1)
(1)
N-LOTRASH (1)
N-LOUASTE (1)
N-NFRCOMP (3)
N-ISOPRCO (3)
N-TRITIUM (3)
N-TARGETS (3)
M-SOURCES (3)
•COTRASH
•B10WAST
•ABSLIOO
•LOSCNVL (3)
R-RASOURC (4)
R-RAIXRSN (5)
(1)
(3)
(3)
Table C-7
TRANSPORATION COSTS PER CUBIC METER
ASSUMING NO PROCESSING
(IN 1985 DOLLARS)
650
1
1
1
1
MILES
134
134
548
,176
,176
,176
821
542
134
455
134
134
134
134
134
134
542
311
542
542
542
134
271
271
271
542
,176
2300 MILES
405
405
1,380
3,991
3.991
3,991
2,782
1,820
405
1.148
405
405
405
405
405
405
1,820
923
1.820
1,820
1.820
405
813
813
813
1,820
3.998
NOTES:
(1) THESE COSTS UERE CALCULATED DIRECTLY FROM SL80; COSTS WERE REPORTED
FOR THREE WASTE CATEGORIES--DRY ACTIVE WASTE, RESINS 4 SLUDGES, AND
CONCENTRATES.
(2) THESE COSTS WERE REPORTED IN TRW83a BASED ON ANALYSIS IN: "A HANDBOOK
FOR LOU-LEVEL RADIOACTIVE WASTE DISPOSAL FACILITIES," ROGERS I ASSOCIATES
ENGINEERING CORPORATION, RAE-20-5, SEPTEMBER 1982.
(3> THESE COSTS WERE ADOPTED DIRECTLY FROM TRW83a. COSTS WERE FIRST DEFLATED
FROM 1982 TO 1980 DOLLARS BY USING A FACTOR OF 1.2 THEN WERE INFLATED FROM
1980 DOLLARS TO 1985 BY USING A FACTOR OF 1.3.
(4) COST ASSUMED TO BE EQUAL TO N-SOURCES.
(5) COST ASSUMED TO BE EQUAL TO L-IXRESIN.
SEPTEMBER 1987
C-28
-------
Disposal Costs
Disposal costs were estimated in NRC81b assuming a disposal site sized
for an as generated volume of 1,000,000 cubic meters. Using a capital
scaling factor, these disposal costs were recalculated in EEI84a on the basis
*
of a 250,000 cubic meter site and reported in 1980 dollars. Similar to
packaging and processing costs, disposal costs were escalated from 1980 to
1985 dollars by a factor of 1.253, the change in the producer price index
for capital equipment during this time period. Disposal costs for two
additional disposal technologies — earth mounded concrete bunker and
concrete canister — were estimated in RAE86a. These costs also were
escalated from 1980 to 1985 dollars. Disposal costs per cubic meter are
reported in Table C-8 for the nine major disposal options considered in the
EIA.
Collection Costs
Four wastes considered in the EIA, the two consumer wastes and the
two "consumer-like" NARM wastes, have atypical costs associated with their
regulated disposal. These four wastes are highly dispersed across the
population and would be difficult to collect. In addition, enforcement of
any hypothetical collection process could be very expensive. Although not
quantified, enforcement costs and an additional cost (namely, the dead
weight loss to society) are characterized below. The methodology used in
estimating collection costs for the four consumer-like wastes then is
discussed. Finally, the unit collection costs used for purposes of
evaluating the cost-effectiveness of regulating these four wastes are
presented in a summary table.
The capital scaling factor is calculated as follows:
250,000>t *6 _ „„
,000,000^ ~
C-29
-------
Table C-8
DISPOSAL COSTS
BY DISPOSAL PRACTICE
DISPOSAL OPTION
REGULATED SANITARY LANDFILL
SHALLOW LAND DUMP DISPOSAL
IMPROVED SHALLOW LAND DISPOSAL
INTERMEDIATE DEPTH DISPOSAL
DEEP WELL INJECTION
HYDROFRACTURE
DEEP GEOLOGICAL DISPOSAL
EARTH MOUND/CONCRETE BUNKER
CONCRETE CANISTER*
BURIAL COST
(1985 Dollars per
"Cubic Meter)
238
393
907
732
5,244
3,027
959
520/4,040
540
September 1987
C-30
-------
The additional costs associated with the regulated disposal of the
consumer-like wastes include the following:
1) Collection costs: Significant collection costs may arise because
the owners of the consumer-like wastes are not typically involved
with radioactive waste handling. For these generators, the
economies of scale in .waste disposal that are present for typical
low-level waste generators are not realized, since the number of
items to be disposed is very low. In this analysis of regulated
disposal, it is assumed that each item is disposed of individually
by mailing the item to a regulated disposal facility where the
waste is packaged and disposed of under the same conditions as
other LLW.
2) Enforcement costs: The consumer-like wastes are distributed
among many generators who may be unfamiliar with the hazards of
radioactive wastes and unaware of regulatory requirements. For
these wastes, compliance with regulated disposal requirements may
be very low. To induce compliance, substantial costs may be
incurred to educate these generators about existing laws and
potential health effects and to enforce regulated disposal
requirements through monitoring and inspection.
3) The dead weight loss to society: To the extent that certain
consumer-like wastes are regulated, the additional costs of
collection that must be borne by the purchaser of the item
effectively increase the price of the item. As a result, demand
for the product is likely to fall. This loss of demand results in a
"the dead weight loss" or efficiency loss to society. That is, the
loss .of demand for the regulated product translates into a
real location of resources (i.e., less of the regulated-product is
purchased, freeing up resources to be spent elsewhere), which
presumably is a less efficient allocation (assuming resources were
allocated efficiently prior to the regulation).
C-31
-------
To quantify the additional collection and enforcement costs associated
with consumer wastes, an economic model was developed that describes the
costs and benefits facing an individual generator contemplating regulatory
requirements. This model was used to improve our understanding of
factors that contribute to collection and enforcement costs, as well as the
dead weight loss. However, only collection costs are quantified in the
analysis that follows.
The decision facing an individual generator who is considering whether
to comply with a regulated disposal requirements can be viewed in economic
terms. A generator will choose to comply if the incremental cost of
compliance is less than the cost of noncompliance. The incremental cost of
compliance is the additional cost of regulated disposal vis-a-vis nonregulated
disposal.
Compliance can be achieved through several mechanisms, which may be
used in combination. These mechanisms can be in the form of either a
positive or negative incentive. In the case of a positive incentive,
regulators can offer an economic benefit (e.g., the return of a deposit)
that will induce individuals into compliance. The cost of noncompliance then
becomes the opportunity cost in the form of a forgone payment (the
deposit) if noncompliance is chosen. In the case of a negative incentive,
regulators can impose an economic cost (e.g., a fine) on individuals for
noncompliance. The cost of noncompliance, in this case, is the expected
cost of noncompliance defined as the probability of detection multiplied by
the amount of the fine.
For purposes of this analysis, the focus will be on the incremental cost
of compliance. The greater the incremental cost of compliance, the larger
the cost of noncompliance must be to induce adherence to the law.
Significantly, real resources must be expended (in the form "of greater
enforcement efforts or higher deposits) to increase the cost of
noncompliance.
C-32
-------
The incremental cost of compliance is made up of several components.
The following list itemizes these incremental costs:
1. Postage.
2. Transportation to and from the collection station (e.g., post
office).
3. Packaging.
4. Value of time in traveling to the collection station.
5. Value of time spent at the collection station.
6. Value of time spent packaging item.
7. Value of time spent investigating appropriate actions to take for
regulatory compliance.
Additional costs that are not quantified but may be quite significant
include:
8. Cost to manufacturer of labeling products and record-keeping.
9. Cost to government of enforcing regulations.
10. Cost to society of dead weight loss associated with increasing the
price of a product.
Determining the level of compliance, given an assumed compliance
mechanism, is very complex. The above model, weighing the .incremental
cost of compliance against the cost of noncompliance, implies that compliance
will be an all-or-nothing affair. However, in reality, some individuals will
C-33
-------
comply and some will not. One reason for this is the simplifying assumption
made for the value of people's time — an average wage rate. If the
incremental cost of compliance equaled the cost of noncompliance at a given
wage rate, then an individual with a lower wage rate will comply, while an
individual with a higher rate will not comply.
This variable is very important in trying to determine the
cost-effectiveness of consumer waste disposal. For purposes of analysis,
however, all that needs to be determined, at any level of compliance, is the
cost-effectiveness of regulating consumer waste disposal, when collection
costs are taken into account. If it can be demonstrated that regulation will
be very costly at compliance rates that are expected to be zero, then a
strong case for unregulated disposal exists. By using the minimum wage as
the average wage rate to calculate the value of time, compliance rates will
be very close to zero since most people will have a wage greater than the
minimum wage rate.
Table C-9 reports the calculations and the basic assumptions
underlying these calculations. Postage costs are excluded since these vary
with the weight of the product. Table C-10 reports these collection costs
and postage costs on a cubic meter basis for the four consumer-like wastes
— R-GLASDS1, R-INSTDF1, C-T1MEPCS, and C-SMOKDET.
The total cost of consumer-like waste collection is very significant
compared to the typical costs associated with regulated disposal (i.e.,
packaging, processing, transportation, and disposal emplacement). Again,
these costs do not include the important costs of enforcement and of the
dead weight loss to society. Ignoring these costs, Table C-10 demonstrates
that the regulation of R-CLASDS1 will have costs about 264 times higher
than regulated shallow land disposal, as generated; R-INSTDF1 costs will
increase by a factor of 305, C-TIMEPCS by a factor -of- 117, and
C-SMOKDET by a factor of 21. Table C-11 presents the unit costs of
shallow land disposal, as generated, for these four wastes when collection
costs are included.
034
-------
9)
&
re
LU
U
z
o
U
LL
O
\-
co
o
U
LU
2
LU
o:
u
z
tn
ro
M
4^
0)
re
a:
Qj
o>
re
2
o
PM
CM
^Jt.
^^
C
Q
4^
re
(/>
_o
u
"5 (J
u E
0 0
4^
4-1
C "*
5 a
^^
jS «
t. •
o o
Q. *
tf) *
c *•*
re
H
o
CM
0
"v
a
f
«
a
«^.
£
Ol
^
(J
Q.
vO
m
0
a>
V)
c
o
a
in
0)
K
9)
4^
J2
L.
a.
o
u
a
a.
<
o>
s>
*-<
tf)
5
CO
c
o
*^
u
"o
u
o
4*
J
~v
>
re
£
VO
LT>
0
C
o
re
*-«
01
c
JO
*->
£
"o
^
4W
C
a>
a
4)
_E
j—
a-
eo
o
4J
^
O
*»•
0)
0)
>
•"•
re
S
c
'E
•o
re
«
E
P
"o>
re
re
CL
m
o
•
•¥»•
"re
4W
0
CO
z
O
a.
D
01
CO
^
y
CO
GO
collection center.
E
0
<•_
1
^
v«-
>
a>
3
tf)
O
U
,_
•
(A
V
*-i
3
i
_c
o
V
re
0)
c
re
u
£
i
>
***
t/i
j!
(N
•
0)
E
c"
o
T5
or
tf)
0)
<4-
0
0)
"re
V)
1.
3
t/1
O
U
m
E
™
o
c
.2
re
L.
o
Q.
C
re
<*.
o
.^
t/>
o
u
£T
tf)
4>
3
C
E
m
I
J
t->
D)
re
u
m
vestigating appropriate action
£.
tf)
0>
3
C
E
o
•D
C
a
V)
a;
3
(/)
O
U
(O
•
in
C
'E
o
tf)
c
T5
c
* U
-------
3
5
o
<*• **
Q
it
-i
U
tV
0 C
*» O
u
ug
§'^
w
0
£ (A fl*
U 0
u
fc ?
If
HI S
o j=
u v>
i- n
41 fc C
* ll
S 8 75
U K
«
• J=
•* »*
HI
O O
u ••
•
•C
•I H
1- II
3 II
o «- o ii
5SCS
2" !
• •
X
II
II
» Kl II
«^£ !
5££ !
U 4* II
** K
H
II
II
01 Kl 1
(A E CO 1
O •«. +* 1
U t* 1
>•* H
N
H
1
^s I
•I Kl 1
** < *•* 1
SB r». i
*» ~-
u «*
g
•• Kl
— *» —
O v
u
t> 1
•* »O 1
0 < *• 1
• • in i
2 «* *
C *~ i
a i
^
i
U k.
"•»***
^3 *rf ^J
32-
gr
5^s
•8 S -
O *•
L. —
(X *-
" X
«^ *«
U *> 4
0 0
s ^
Kl *-
ra ra
in o
^
!
1
fe
. 5
1 1
1 1
~9 U
£
^ *> •
cn jj C
8(5" (A
g
|
"*
g
£
m
o
g
fn
s
Ul
s
s
K{
§
UJ
ra
Kl
p.
S
ra
ra
0
^
|
tfr*
U
g
s
1
**
fs.
0
s
Kl
O
a
Kl
$
UJ
8
%
ra
o
£
s
0
«r
fe
UJ
ra
ra
O
ra
w
1
^
u
!
o
s
3
SI
Kl
3
£
Kl
Kl
O
g
ra
o
%
ra
o
£
8
UJ
o
ra
K.
e
&
ra
in
1
I
UJ
*4
I
in
S
s
ra
Kl
s
s
Kl
3
g
S
*
s
w
s
3
—
1
s
in
ra
S
|
*rf
Floresc
N.
Kl
Kl
S
s
3
,_
S
I«
^.
3
UJ
in
g
g
g
£
§
°
ra
S
S
m
ra
o
£
*»
7
"o
«to>
t*
U
<
!! fi.
n KI
n 43
H ra
ii
H
N
ii in
n o
H Ul
H ra
H ra
N
H in
H ra
n
N
N 4
M O
H Ul
S^
n
n
N
US
!«.
N
N
N
5 g
N •
H
II
M
S
mi
e
UJ
si
3s
ra
H
N
.J
O
ra p o P- ra rg
*o ^* ^* o^ *o ^o
rg KI KI r* ra eg
t^ tft 9^
S S S 3 S S
K g S SB K UJ
ra KI KI x> ra ra
in . rJ •«•
S S 1 1 8
o — — « c
w • b • —
8 V = a » 2
U W IU • •
— -8 u "a ~m !
zf | 'i ' s s
£=: 1 5 £ Z 5
!! C R
H • •
n .» K.
HO «-
n KI —
H
H
HO O
ii in S-
n ra »
N
M
N
ii in 4
M ? ?
N * ^
II • •
n ra ma
H
H
II
53 3
II . "1
n
H
5? 1
S3 g
H
N
*
ii ra ra
NO O
M UJ Ul
H Kl Kl
H • •
H
H
II
0)
i
a
UJ
ra o ra
O "^ O
X* UJ
ra m
i S
O ui
k» ^»
pj
0
•*
§
•
»
I
5
S
3
K
,j
3
S
^J
S
KJ
S
s
g
UJ
Kl
s
^
••'
o
8
O
•»
O
1
i
Q.
C-36
Ul
UJ
in
-------
ra
Q
^S
VI
5
OJ
3
OT
ro
tf>
8.
0)
*J
to
"5
01
0)
I.
c
3
3
if,
u
0)
^-
"re
•o
c
a;
C
3
**
0>
L.
0)
.Q
0)
to
•D
4, _.
15 5
3 O
CT Q.
re
s
vo
o
m
(N
• TJ
.£ C
ift re
> .
re c
c o
ro ~
re
5 r
_J O
_1 Q.
E I
P i:
•a
.
re
c
re —
re
LW
u
re
0)
re
u
0)
re
E _.
a. ^
§ 8.
rf
QJ
5
u
2
3
(J
§f
u
a ^
I »
I 1
S S
costs
ng
re
(A
re
•O
TJ
JO
3
O1
0)
O)
re
X
u
5 8.
g >
I -S
2? 1
S ^
0 L.
T: ^
.h t
^ U
"« |
II
V) C
i/i re
< E
Derived from Table
n
V)
4->
I/I
O
U
Total Consu
5
9
in
^
in
O
U
i_
0)
L.
3
4->
U
^S
3
C
ro
o
4^
U
a>
3
U)
O
U
w_
O
.0
4-1
re
K
—. --. o
eo er> «—
C-37
-------
Table C-11
TOTAL COST OF REGULATED SHALLOW LAND DISPOSAL,
AS GENERATED
(in dollars per cubic meter)
Excluding
Collection
Costs
Including
Collection
Costs
C-SMOKDET
C-TIMEPCS
R-GLASDS1
R-INSTDF1
$830
$830
$830
$830
$17,106
$97,351
$218,913
$252,918
September 1987
C-38
-------
DERIVATION OF MAXIMUM CPC DOSE
FOR THE BRC ANALYSIS Appendix D
The computer model (PATHMAX) that generates the estimates of
maximum CPC dose used in the BRC analysis (presented in Chapter 7) is
discussed in this appendix. Since alternative BRC standards permit the
unregulated disposal of different combinations of BRC wastes, a multitude of
PATHRAE runs would be required to estimate CPC doses because CPC dose
depends in a non-linear fashion on the dose contributions of many nuclides
(see EPA85d and EPA87 for documentation of PATHRAE). Therefore, the
contributions to maximum dose of different BRC candidates are not
independent. By making some simplifying assumptions, however, only one
PATHRAE run is necessary to evaluate different BRC standards. The
importance of these assumptions is evaluated below.
PATHMAX uses the data generated by the one PATHRAE run to
calculate the maximum CPC dose for different combinations of BRC wastes.
The result from PATHRAE are reported in PEI86a and PEI86b. The
structure of the PATHMAX model, the necessary inputs to the model, and
the methodology used in estimating maximum CPC dose are the topics
discussed below.
STRUCTURE OF THE PATHMAX MODEL '
PATHMAX calculates the maximum CPC dose occurring over the 10
pathways, the 15 disposal scenarios, and the three hydrogeplogic regions
for the 19 wastes evaluated in the BRC analysis. In Chapter 3, the
exposure pathways and disposal scenarios are defined. These pathways and
D-1
-------
scenarios also are summarized in the first page of Table D-1. which
presents the output from a PATHMAX run. Two of the disposal scenarios
included in PATHMAX involve the disposal of BIOMED waste unregulated
under the NRC's rule [NRCBla]. Also note that the exposure pathway that
evaluates CPC doses resulting from direct gamma exposure to transportation
workers is not included in PATHMAX. This exposure pathway was
evaluated by a different computer model [RAE86d] and was included in the
results presented in the BRC analysis.
INPUTS TO THE PATHMAX MODEL
Each disposal scenario includes a different set of wastes, depending on
the type of waste generator defined in the scenario. The number of wastes
included in each disposal scenario varies from one to 11 wastes per
scenario, as can be seen by inspection of Table D-1, which is. a printout of
PATHMAX. Disposal scenarios are arrayed in rows; exposure pathways are
arrayed in columns for each disposal scenario. The contribution to CPC
dose associated with the top three nuclides in each of the 10 exposure
pathways was aggregated for each waste in a disposal scenario. These data
were input into the PATHMAX model and are listed in Table D-1 for each
hydrogeologic region.
PATHMAX METHODOLOGY
Based on both the individual waste contribution to maximum CPC dose
and on the least-cost method of regulating each waste, PATHMAX can be
used to determine an optimal ranking for meeting the alternative BRC limits
considered in the BRC analysis. PATHMAX estimates the maximum CPC
doses associated with this optimal ranking. The alternative" standards
considered in the BRC analysis are based on the CPC doses calculated
under this ranking of BRC candidates. At each successively lower level of
an alternative standard, an additional waste (or wastes) fails to meet the
D-2
-------
standard. PATHMAX estimates the CPC dose resulting from unregulated
disposal of the remaining set of wastes that meet the standard. An implicit
assumption underlying this methodology concerns the year at which the
maximum dose is attained within each CPC scenario, which is assumed not to
change with a different combination of BRC' wastes. As long as the
dominant pathway and nuclide are constant, this assumption almost
invariably holds true.
EVALUATION OF KEY ASSUMPTIONS
The BRC exposure analysis uses two key assumptions to approximate
the CPC dose contributions of individual wastes. First, the contributions
of only the top three nuclides were considered under the assumption that
these nuclides accounted for most of the maximum CPC dose. This
assumption simplified the computation of CPC. Second, the year at which
the maximum dose is attained was assumed not to change with a different
combination of BRC wastes. This assumption allows us to avoid the large
number of PATHRAE runs that could be required to evaluate the different
combinations of unregulated wastes at alternative BRC standards. The
following analysis evaluates the importance of these two assumptions.
The first assumption is important to ensure that the estimation of CPC
dose is indeed the maximum. Review of Table D-1 will support the notion
that the top three nuclides account for most of the maximum CPC dose. A
comparison of the CPCs reported in the row labeled "ACTUAL Total," which
includes all 40 nuclides, to the CPCs reported in the row labeled "BRC
Total," which is the sum of the top three nuclides, shows that over the 17
disposal scenarios and three hydrogeologic regions, the top three nuclides
account for at least 96 percent of the maximum CPC dose for the pathway
dominant at the higher levels of the alternative standards —'direct gamma
exposure.
The second assumption, concerning the peak year, is not important for
several of the pathways since the .maximum CPC dose occurs in the first
D-3
-------
year of exposure. These exposure pathways include food grown onsite,
natural biointrusion, atmospheric transport, and two pathways that are
dominant at different levels of the alternative — direct gamma and dust
inhalation. Croundwater to well is the only pathway that has a peak year
occurring later in time and also exceeds an alternative standard, but this
pathway only exceeds the 0.1 millirem alternative.
In conclusion, the two simplifying assumptions that were used in
estimating the CPCs associated with unregulated disposal would not appear
to influence the results from the BRC analysis significantly.
-------
Table D-1
Page 1
PATHMAX MODEL
File name :
Pathmax
GLOBAL FLAGS
Region :
Humid Impermeable (HI) 1
Hunid Permeable (HP) 1
Arid Permeable (AP) 1
Pathways :
1. Groundwater to river (GU-R)
2. Grounduater to well (GW-W)
3. Spillage (SPILL)
4. Erosion (EROS)
5. Bathtub effect (BATH)
6. Food grown on site (ON FOOD)
7. Natural biointrusion (BIOUAS)
8. Direct Gamma (GAMMA)
9. Oust inhalation (DUST)
10. Atmospheric Transport (ATMOS)
Scenario :
1 PWR-MD
BUR-MO
LUMC-UF
MAFC-SF
MAFC-SI
PWRHU-MO
UHX-MO
UF-MD
LURO-ON
2
3
4
5
6
7
8
9
10 LMACW-SI
11 LMACW-UI
12 CU-SF
13 CW-UF
14 LURO-ON*
15 LURO-ON**
Waste Streams •- BRC Candidates:
P-COTRASH
B-COTRASH
•COTRASH
•COTRASH
-ABSLIOO
•BIOUAST
•LOSCNVL
N-LOTRASH
N-LOUASTE
N-SSTRASH
N-SSWASTE
F-PROCESS
U-PROCESS
F-NCTRASH
P-CONORSN
L-WASTOIL
C-TIMEPCS
C-SMOICDET
BIOMEO *
• For Scenario 14 and 15 only.
US MAX: 40.703
NE MAX: 21.45256
SE MAX: 40.703
SU MAX: 21.45256
NOTE: See Chapter 3 or EPA87 for explanation of mnemonics used in disposal scenarios
above. The scenario numbering follows the numbering used in the Background
Information Document (EPA87) rather than the scenario numbering used in Chapter 3.
September 1987
D-5
-------
Table 0-1 (continued)
Page 2
Maxinun HI
1.836-05 9.066*00 3.35E-03 4.756-05 1.446-03 8.02E-01 2.686*00 2.156*01 2.08E-01 1.096-05 2t
HI
BRC total
ACTUAL Total
P- COTRASH
P-CONDRSN
L-WASTOIL
HI
2 BWR-MD
BRC total
ACTUAL Total
B- COTRASH
L-WASTOIL
HI
3 LUMC-UF
BRC total
ACTUAL Total
I-COTRASH
I-ABSLIQO
I-BIOUAST
I-LQSCNVL
HI
4 MAFC-SF
BRC total
ACTUAL Total
-COTRASH
-ABSLIQO
•BIOUAST
•LOSCNVL
•LOTRASH
•LOUASTE
•PROCESS
•COTRASH
•NCTRASH
HI
BRC total
ACTUAL Total
I-COTRASH
I-ABSLIQO
I-BIOUAST
I-LQSCNVL
N- LOTRASH
N- LOUASTE
F- PROCESS
F- COTRASH
F- NCTRASH
GU • R
mmm m mmmmt
7.666-07
7.66E-07
7.666-07
5.916-12
0.006*00
GU • R
•••••••••
1.736-06
1.736-06
1.736-06
O.OOE+00
GU - R
7.29E-07
7.296-07
6.546-07
4.006-08
3.346-08
1.676-09
GU • R
1.376-06
1.37E-06
6.966-07
4.266-08
3.566-08
1.786-09
4.366-07
1.486-07
9.97E-09
1.556-09
2.626-10
GU • R
8.286-07
8.286-07
4.096-07
2.516-08
2.096-08
1.046-09
2.566-07
8.686-08
2.456-08
3.806-09
6.426-10
GU • U
•••••••••
3.14E-02
3.146-02
3.146-02
2.406-07
0.006*00
GU - U
[•••••••••
7.106-02
7.106-02
7.106-02
O.OOE+00
GU • U
1.476-03
1.476-03
1.326-03
8.076-05
6.736-05
3.366-06
GU • U
1.816-02
1.816-02
9.176-03
5.616-04
4.686-04
2.346-05
5.736-03
1.946-03
1.436-04
2.246-05
3.776-06
GU - U
6.89E-02
6.89E-02
3.406-02
2.086-03
1.746-03
8.686-05
2.136-02
7.216-03
2.106-03
3.276-04
5.526-05
SPILL
mmmmMmmmm
1.986-03
2.106-03
1.986-03
1.316-06
9.326-08
SPILL
•••••••mi
3.356-03
3.506-03
3.356-03
2.396-07
SPILL
4.186-04
5.406-04
3.666-04
3.816-05
1.446-05
2.316-07
SPILL
3.666-04
5.16E-04
1.836-04
1.916-05
7.236-06
1.166-07
1.156-04
4.176-05
0.006*00
0.006*00
0.006*00
SPILL
2.206-04
2.806-04
9.946-05
1.266-05
5.076-06
1.836-06
6.656-05
3.426-05
0.006*00
0.006*00
0.006*00
EROS
mmmmmmmmm
2.736-06
2.776-06
2.736-06
3.956-11
0.006*00
6ROS
1.726-06
1.776-06
1.726-06
0.006*00
6ROS
WMS*X«*1
1.096-06
1.096-06
9.836-07
5.936-08
4.956-08
2.476-09
6ROS
4.006-06
4.146-06
4.846-07
2.966-08
2.476-08
1.236-09
3.036-07
1.036-07
2.596-06
4.036-07
6.806-08
6ROS
3.286-06
3.426-06
1.216-07
7.406-09
6.17E-09
3.086-10
7.566-08
2.566-08
2.576-06
4.026-07
6.786-08
PATHUAYS
BATH
2.036-04
2.106-04
2.026-04
2.366-08
5.466-10
PATHUAYS
BATH
4.636-04
4.666-04
4.636-04
1.416-09
PATHUAYS
BATH
6.256-04
6.276-04
5.606-04
3.486-05
2.87E-05
1.666-06
PATHUAYS
BATH
5.616-04
5.676-04
2.806-04
1.736-05
1.436-05
7.036-07
1.746-04
5.956-05
1.246-05
1.926-06
3.256-07
PATHUAYS
BATH
1. 496-04
1.536-04
7.116-05
4.496-06
3.636-06
1.756-07
4.446-05
1.53E-05
8.246-06
1.286-06
2.16E-07
[Dose (mrem/yr)]
ON FOOD BIOUAS
mmmmmmmmmmmmmmmmmm
3.206-01 1.076*00
3.236-01 1.806*00
3.206-01
3.946-04
8.906-06
1.076*00
1.326-03
2.976-05
[Dose (mrem/yr)]
ON FOOD BIOUAS
8.026-01
8.056-01
8.026-01
2.606-05
2.686*00
2.696*00
2.686*00
7.706-05
[Dose (mrem/yr)]
ON FOOD BIOUAS
0.006*00
0.006*00
0.006*00
0.006*00
[Dose (mrem/yr)]
ON FOOD BIOUAS
2. 276-02
2.276-02
1.036-02
1.236-03
6.496-04
2.016-04
6.476-03
3.806-03
0.006*00
0.006*00
0.006*00
7.566-02
7.576-02
3.456-02
4.096-03
2.166-03
6.696-04
2.156-02
1.276-02
0.006*00
0.006*00
0.006*00
[Dose (mrem/yr)]
ON FOOD BIOUAS
9.016-02
9.02E-02
4. 106-02
4.876-03
2.576-03
7.966-04
2.576-02
1.516-02
0.006*00
0.006*00
0.006*00
3.006-01
3.006-01
1.376-01
1.626-02
8.586-03
2.666-03
8.546-02
5.036-02
0.006*00
0.006*00
0.006*00
GAMMA
mmmmmmmmm
1.246*01
1 .246*01
1.246*01
9.856-04
8.476-04
GAMMA
1.076*01
1 .076*01
1.076*01
2.196-03
DUST
•mmmmmmmmm
2.406-02
3.156-02
2.406-02
7.586-07
0.006*00
DUST
8.096-03
1.076-02
8.096-03
7.976-07
GAMMA DUST
1.806-01 1.566-04
1.816-01 1.616-04
1.596-01
1.896-02
1.936-03
0.006*00
GAMMA
8.946-01
8.946-01
4.636-01
5.486-02
5.616-03
O.OOE+00
2.916-01
8.036-02
1.136-08
1.746-09
2.956-10
GAMMA
5.366+00
5.366+00
2.786*00
3.286-01
3.366-02
0.006*00
1.746*00
4.816-01
6.766-08
1.056-08
1.776-09
1.456-04
7.696-06
1.926-06
1.416-06
DUST
5.256-02
5.336-02
0.006*00
0.006+00
0.006*00
0.006*00
0.006*00
0.006*00
4.456-02
6.926-03
1.176-03
DUST
2.086-01
2.116-01
0.006*00
0.006*00
0.006*00
0.006*00
0.006*00
0.006+00
1.766-01
2.746-02
4.636-03
ATMOS
1.556-06
2.056-06
1.556-06
4.916-11
0.006+00
ATMOS
immmmmmmmm
1.336-06
1.756-06
1.336-06
1.306-10
ATMOS
1.00E-09
1.086-09
9.326-10
5.026-11
2.136-11
1. 096-12
ATMOS
7.846-06
8.046-06
O.OOE+00
0.006+00
O.OOE+00
O.OOE+00
0.006+00
O.OOE+00
6.636-06
1.036-06
1.756-07
ATMOS
2.52E-26
2.576-26
0.006+00
0.006+00
0.006+00
O.OOE+00
0.006+00
0.006+00
2.136-26
3.306-27
5.576-28
mm
8MAX
1.24E+01
1.24E+01
1.24E+01
1.32E-03
8.47E-04
3MAX
•••••xzzs
1.07E+01
1.07E+01
1.07E+01
2.19E-03
8MAX
1.80E-01
1.81E-01
1.59E-01
1.89E-02
1.93E-03
3.366-06
A
8.9^^i
8.94E-01
4.63E-01
5.48E-02
5.61E-03
6.69E-04
2.91E-01
8.03E-02
4.45E-02
6.92E-03
1.17E-03
3MAX
nnmnmmmmmn
5.36E+00
5.366+00
2.786+00
3.286-01
3.366-02
2.666-03
1.746+00
4.816-01
1.766-01
2.746-02
4.636-03
Note: "ACTUAL Total" represents the maxinun CPG dose for 40 nuclides.
"BRC total" represents the maximum CPG dose for the top three nuclides.
September 1987
D-6
-------
Table D-1 (continued)
Page 3
HI
6 PURHU-MD
BRC total
ACTUAL Total
I-COTRASH
I-ABSLIQO
I-BIOUAST
1-LQSCNVL
M-LOTRASH
N-LOUASTE
P-CONORSN
P-COTRASH
L-WASTOR
HI
SRC total
ACTUAL Total
PATHWAYS [Dose (mrm/yr)]
CU - R CU - W SPILL EROS BATH ON FOOD BIOWAS GAMMA DUST ATMOS 3MAX
9.50E-07 3.75E-02 1.43E-03 1.92E-06 2.42E-04 2.36E-01 7.91E-01 S.76E+00 1.62E-02 8.90E-07 8.76E+00
9.50E-07 3. 756-02 1.59E-03 2.03E-06 2.48E-04 2.43E-01 8.13E-01 8.76E+00 2. 146-02 1.20E-06 8.76E+00
2. 866-07 1.12E-02 6.876-05 1.216-07 6. 986-05 1.436-02 4. 786-02 3.33E-01 1.666-04 9.166-09 3.33E-01
1.74E-08 6.80E-04 8.096-06 7.38E-09 4.30E-06 1.69E-03 5.63E-03 3.916-02 0.006+00 O.OOE+00 3.91E-02
1.47E-08 1.47E-08 2.48E-06 6.26E-09 3.61E-06 7.266-04 2.436-03 4.076-03 0.006+00 0.006+00 4.07E-Q3
7.336-10 2.876*05 O.OOE+00 3.116-10 1.776-07 0.006+00 0.006+00 0.006+00 0.006+00 0.006+00 2.876-05
8.946-08 3.506-03 2.16E-OS 3.80E-08 2.196-05 4.476-03 1.496-02 1.046-01 5.236-05 2.886-09 1.046-01
3.036-08 1.196-03 8.006-06 1.296-08 7.446-06 1.936-03 6.446-03 2.886-02 0.006+00 O.OOE+00 2.88E-02
3.936-12 1.606-07 8.766-07 2.366-11 1.576-08 2.626-04 8.786-04 6.566-04 5.046-07 2.786-11 8.78E-04
5.116-07 2.096-02 1.32E-03 1.746-06 1.356-04 2.136-01 7.136-01 8.256+00 1.596-02 8.78E-07 8.25E+00
O.OOE+00 O.OOE+00 6.226-08 O.OOE+00 3.656-10 5.946-06 1.986-05 5.63E-04 O.OOE+00 0.006+00 5.63E-04
PATHWAYS [Dos* (mrem/yr)l
GW - * CW • W SPILL EROS BATH ON FOOD BIOWAS GAMMA DUST ATMOS MAX
1.796-08 7.37E-04 5.89E-05 2.74E-06 1.526-05 1.246-04 4.156-04 2.426-02 1.286-01 6.666-06 1.28E-01
1.796-08 7.376-04 5.896-05 2.746-06 1.526-05 1.246-04 4.156-04 2.426-02 1.286-01 6.666-06 1.286-01
U-PROC6SS
1.796-08 7.376-04 5.896-05 2.74E-06 1.526-05 1.24E-04 4.156-04 2.426-02 1.286-01 6.666-06 1.28E-01
HI
8 UF-MD
BRC total
ACTUAL Total
N-SSTRASH
N-SSUASTE
GW
GW
SPILL EROS
PATHWAYS [Dose (flirem/yr)]
BATH ON FOOD BIOWAS
GAMMA
DUST
ATMOS
8MAX
5.526-09 2.276-04 1.826-05 8.46E-07 4.686-06 3.846-05 1.286-04
5.526-09 2.276-04 1.826-05 8.466-07 4.686-06 3.836-05 1.286-04
4.896-03 3.886-02 1.096-05 3.88E-02
4.896-03 3.886-02 1.096-05 3.88E-02
1.256-09 5.136-05 4.106-06 1.916-07 1.06E-06 8.666-06 2.896-05
4.286-09 1.756-04 1.416-05 6.556-07 3.626-06 2.976-05 9.906-05
1.106-03 8.756-03 2.466-06 8.75E-02
3.796-03 3.01E-02 8.44E-06 3.01E-02
Note: "ACTUAL Total" represents the maxtnun CPG dose for 40 nuclides.
"BRC total" represents the maxinun CPG dose for the top three nuclides.
September 1987
D-7
-------
Table 0-1 (continued)
Page 4
HI
9 LURO-ON
BRC total
ACTUAL Total
I-COTRASH
I-ABSLIOD
I-BIOWAST
I-LQSCNVL
HI
10 LMACW-SI
BRC total
ACTUAL Total
I-COTRASH
P-COTRASH
I-ABSLIQO
I-3IOUAST
I-LQSCNVL
N-LOTRASH
N-LOWASTE
P-CONDRSN
L-WASTOIL
C-TIMEPCS
C-SMOKDET
HI
11 LMACW-UI
BRC total
ACTUAL Total
I-COTRASH
P-COTRASH
I-ABSLIQO
I-BIOWAST
I-LOSCNVL
N-LOTRASH
N-LOWASTE
P-CONDRSN
L-WASTOIL
C-TIMEPCS
C-SMOKDET
GW • R
mmmmmmnm*
1.08E-06
1.08E-06
9.69E-07
S.93E-08
4.95E-08
2.47E-09
GW • W
5.35E-01
5.35E-01
4.80E-01
2.94E-02
2.45E-02
1.22E-03
GW - « GW - W
******************
1.34E-06 1.14E-01
1.34E-06 1.14E-01
4.08E-07
7.17E-07
2.50E-08
2.08E-08
1.046-09
1.286-07
4.33E-08
4.75E-12
O.OOE+00
O.OOE+00
O.OOE+00
GU • R
MB BBiBBfB.
8.46E-07
8.46E-07
3.57E-07
2.98E-07
2.196-08
1.826-08
9. 116-10
1.12E-07
3.79E-08
1.98E-12
O.OOE+00
O.OOE+00
3.72E-10
3.40E-02
6.16E-02
2.08E-03
1.73E-03
8.666-05
1.06E-02
3.60E-03
4.07E-07
O.OOE+00
O.OOE+00
O.OOE+00
GW • W
*********!
1.196-02
1.19E-02
4.88E-03
4.42E-03
2.99E-04
2.49E-04
1.24E-05
1.53E-03
5.17E-04
2.93E-08
O.OOE+00
O.OOE+00
5.526-06
SPILL
1.25E-05
1.42E-05
1.06E-05
1.25E-06
5.06E-07
1.83E-07
SPILL
6.066-04
6.906-04
9.44E-05
4.56E-04
1.126-05
3.316-06
O.OOE+00
2.95E-05
1.09E-05
2.94E-07
2.18E-08
O.OOE+00
O.OOE+00
SPILL
*********
7.576-04
9.04E-04
2.10E-04
4.09E-04
2.50E-05
9.95E-06
3.51E-06
6.58E-OS
3.36E-05
2.30E-07
2.18E-08
O.OOE+00
O.OOE+00
EROS
6.44E-08
6.44E-08
5.78E-08
3.52E-09
2.94E-09
1.476-10
6ROS
*********
1.916-06
2.07E-06
1.21E-07
1.72E-06
7.41E-09
6.18E-09
3.09E-10
3.78E-08
1.28E-08
2.31E-11
O.OOE+00
O.OOE+00
O.OOE+00
EROS
2.14E-06
2.50E-06
2.55E-07
1.486-06
1.48E-08
1.23E-08
6.16E-10
7.966-08
2.S6E-08
6.41E-11
O.OOE+00
O.OOE+00
2.75E-07
PATHWAYS
BATH
*********
8.866-05
8.88E-05
7.92E-05
S.03E-06
4.10E-06
2.796-07
PATHWAYS
BATH
2.356-04
2.416-04
7.116-05
1,266-04
4.296-06
3.636-06
1.75E-07
2.226-05
7.62E-06
1.056-08
2.406-10
O.OOE+00
O.OOE+00
PATHWAYS
BATH
3.436-04
3.54E-04
1.426-04
1.256-04
8.986-06
7.256-06
3.506-07
4.436-05
1.476-05
1.05E-08
2.40E-10
O.OOE+00
O.OOE+00
[Dose (mrem/yr)]
ON FOOD BIOWAS
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
tDos* (wem/yr)]
ON FOOD BIOWAS
1.986-01
2.0SE-01
4.006-02
1.306-01
4.746-03
2.536-03
7.636-04
1.256-02
7.366-03
1.656-04
3.406-06
0.006+00
0.006+00
6.616-01
6.846-01
1.346-01
4.346-01
1.596-02
8.44E-03
2.54E-03
4.186-02
2.466-02
5.516-04
1.146-05
O.OOE+00
O.OOE+00
(Dose (Mrem/yr)]
ON FOOD BIOWAS
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
CAMMA
1.55E-01
1.55E-01
1.376-01
1.63E-02
1.41E-03
O.OOE+00
GAMMA
2.15E+01
2.14E+01
2.776+00
1.72E+01
3.28E-01
3.356-02
0.006+00
8.686-01
2.416-01
1.37E-03
1.17E-03
O.OOE+00
O.OOE+00
GAMMA
4.446+00
4.44E+00
9.586-01
2.97E+00
1.136-01
1.16E-02
O.OOE+00
3.00E-01
8.30E-02
2.36E-04
2.03E-04
O.OOE+00
O.OOE+00
DUST
7.39E-03
7.62E-03
6.87E-03
3.64E-04
9.09E-05
6.69E-OS
DUST
3.03E-02
3.85E-02
1.566-03
2.116-02
7.616-05
6.56E-06
O.OOE+00
4.906-04
5.426-05
6.086-07
2.83E-07
O.OOE+00
6.966-03
DUST
*********
1.116-02
1.26E-02
S.39E-04
3.64E-03
2.63E-05
2.26E-06
O.OOE+00
1.69E-04
1.87E-05
1.05E-07
4.88E-08
O.OOE+00
6. TOE -03
ATMOS
9m*******
1.54E-06
1.62E-06
1.40E-06
1.10E-07
3.21E-08
1.65E-09
ATMOS
1.2E-27
1.29E-27
4.95E-29
6.68E-28
2.41E-30
2.08E-31
O.OOE+00
1.55E-29
1.72E-30
1.92E-32
8.95E-33
2.20E-2B
2.20E-28
ATMOS
2.96E-22
3.56E-22
2.27E-23
7.15E-23
1.22E-24
5.06E-25
2.57E-26
7.11E-24
1.42E-24
2.37E-27
1.26E-27
1.85E-23
1.73E-22
ft
5.35E-01
4.80E-01
2.94E-02
2.45E-02
1.22E-03
3MAX
2.15E+01
2.KE+01
2.77E+00
1.72E+01
3.28E-01
3.35E-Q2
2.54E-03
8.68E-01
2.41E-01
1.37E-03
1.17E-03
2.20E-28
6.96E-03
3MAX
»'
1
2.97E+00
1.13E-01
1.16E-02
1.24E-05
3.00E-Q1
8.30E-02
2.36E-04
2.03E-04
1.85E-23
6.70E-03
Note: "ACTUAL Total" represent* the maxinun CPG dose for 40 nuclides.
"BRC total" represents th* Msxieui CPG dose for the top three nuclfdes.
September 1987
D-8
-------
Table D-1 (continued)
Page 5
PATHWAYS (Dose (mrem/yr)]
HI GW - R GU • W SPILL EROS BATH ON FOOD BIOUAS
12 CW • S F mmmmmmmmmm*mmm*mmm**mm**m*mmmmmm****mmmmmmm*mmf»mm**mmmmm*mmmm>
BRC total 6.51E-11 9.32E-07 2.64E-05 5.11E-08 1.52E-06 1.33E-05 4.45E-05
ACTUAL Total 6.51E-11 9.32E-07 2.64E-05 5.11E-08. 1.52E-06 1.33E-05 4.45E-05
DUST
ATMOS
3HAX
3.866-06 1.75E-03 2.74E-10 1.75E-03
3.86E-06 1.75E-03 2.74E-10 1.75E-03
C-TIMEPCS
C-SMOKDET
HI
13 CW-UF
BRC total
ACTUAL Total
C-TIMEPCS
C-SMOKDET
HI
14 LURO-ON*
BRC total
ACTUAL Total
BIOMED *
O.OOE+00
6.51E-11
' GW - R
1.51E-10
1.51E-10
O.OOE+00
1.51E-10
GW - R
O.OOE+00
O.OOE+00
O.OOE+00
9.32E-07
GW • U
3.75E-07
3.75E-07
O.OOE+00'
3.75E-07
GW • U
O.OOE+00
O.OOE+00
2.38E-05
2.57E-06
SPILL
1.44E-04
1.44E-04
1.30E-04
1.UE-05
SPILL
O.OOE+00
O.OOE+00
O.OOE+00
5.11E-08
EROS
2.86E-07
2.86E-07
O.OOE+00
2.86E-07
EROS
O.OOE+00
O.OOE+00
5.20E-07
1.00E-06
PATHWAYS
BATH
imrnmmmmmrnt
8.45E-06
8.45E-06
2.83E-06
5.62E-06
PATHWAYS
BATH
tmmmmmmmmi
O.OOE+00
O.OOE+00
O.OOE+00
1.33E-05
O.OOE+00
4.4SE-OS
Dose (mrem/yr)]
ON FOOD BIOWAS
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
Dose (mrem/yr)]
ON FOOD BIOWAS
fmmmmmmmmmmummmmmmt
O.OOE+00 O.OOE+00
O.OOE+00 O.OOE+00
O.OOE+00
3.86E-06
GAMMA
3.73E-06
3.73E-06
O.OOE+00
3.73E-06
GAMMA
O.OOE+00
O.OOE+00
5.09E-07
1.75E-03
DUST
1.69E-03
1.69E-03
4.79E-07
1.69E-03
DUST
O.OOE+00
O.OOE+00
2.60E-11
2.48E-10
ATMOS
3.57E-10
3.57E-10
3.30E-11
3.24E-10
ATMOS
tmmmmmmxml
3.92E-07
3.92E-07
3.92E-07
2.38E-05
1.75E-03
9MAX
1.69E-03
1.69E-03
1.30E-04
1.69E-03
9MAX
3.92E-07
3.92E-07
3.92E-07
GU
GW
SPILL
EROS
PATHWAYS (Dose (mrem/yr)]
BATH ON FOOD BIOUAS
HI
15 LURO-ON"
BRC total 1.83E-OS 9.06E+00 2.24E-05 1.09E-06 1.44E-03 O.OOE+00 O.OOE+00
ACTUAL Total 1.83E-05 9.06E+00 2.24E-05 1.09E-06 1.UE-03 O.OOE+00 O.OOE+00
DUST
ATMOS
8MAX
O.OOE+00 3.77E-06 1.96E-07 9.06E+00
O.OOE+00 3.77E-06 1.96E-07 9.06E+00
BIOMED
1.83E-OS 9.06E+00 2.24E-05 1.09E-06 1.44E-03
3.77E-06 1.96E-07 9.06E+00
Note: "ACTUAL Total" represents the maximum CPG dose for 40 nuclides.
"BRC total" represents the maximal) CPG dose for the top three nuclides.
September 1987
D-9
-------
Table 0-1 (continued)
Page 6
Maxinun HP
4.076+01
5.75E-02
4.766-01 1.59E+00 2.15E*01 2.08E-01 2.36E-OS
HP
BRC total
ACTUAL Total
P-COTRASH
P-CONDRSN
L-UASTOIL
HP
•WHO
BRC total
ACTUAL Total
B-COTRASH
L-UASTOIL
HP
BRC total
ACTUAL Total
I-COTRASH
t-ABSLIOO
I-BIOUAST
I-LQSCNVL
HP
BRC total
ACTUAL Total
•COTRASH
-ABSLIQO
•BIOUAST
•LOSCMVL
•LOTRASH
•LOUASTE
•PROCESS
•COTRASH
•NCTRASH
HP
5MACf».et
BRC total
ACTUAL Total
I-COTRASH
I -ABSLIQO
I -BIOUAST
1-LOSCNVL
N- LOTRASH
N- LOUASTE
F- PROCESS
F- COTRASH
F- NCTRASH
GU - R GU • U
O.OOE+00 1.82E-01
1.82E-01
1.82E-01
3.136-06
0.006+00
GU - R GU • U
0.006+00 3.456-01
3.456-01
3.456-01
0.006+00
GU • R . GU • U
O.OOE+00 3.31E-02
3.31E-02
1.97E-02
7.18E-03
5.996-03
3.03E-04
GU • R GU • W
O.OOE+00 1.25E+00
1 .25E+00
6.40E-01
3.91E-02
3.27E-02
1.66E-03
4.00E-01
1.36E-01
5.66E-04
8.81E-05
1.49E-05
GU - R GU • U
O.OOE+00 1.56E+00
1.56E+00
7.98E-01
4.89E-02
4.07E-02
2.05E-03
4.99E-01
1. 706-01
2.96E-03
4.61E-04
7.786-05
SPILL
O.OOE+00
SPILL
O.OOE+00
SPILL
O.OOE+00
SPILL
O.OOE+00
SPILL
O.OOE+00
PATHUAYS [Dose (mrem/yr)] ^ |
EROS BATH ON FOOD BIOUAS GAMMA DUST ATMOS 3MAX
3.21E-03 O.OOE+00 1.90E-01 6.34E-01 1.24E+01 2.40E-02 3.37E-06 1.24E+01
3.26E-03 1.93E-01 6.42E-01 1.24E+01 3.15E-02 4.44E-06 1.24E+01
3.21E-03 1.90E-01 6.33E-01 1.24E+01 2.40E-02 3.37E-06 1.24E+01
4.73E-08 2.34E-04 7.79E-04 9.85E-04 7.58E-07 1.076-10 9.85E-04
O.OOE+00 5.28E-06 1.76E-05 8.476-04 O.OOE+00 O.OOE+00 8.47E-04
PATHUAYS [Dose (mrem/yr)]
EROS BATH ON FOOD BIOUAS GAMMA OUST ATMOS 9MAX
1.B5E-03 O.OOE+00 4.76E-01 1.59E+00 1.07E+01 8.09E-03 2.88E-06 1.07E+01
1.91E-03 4. 766-01 1.596+00 1.07E+01 1.07E-02 3.80E-06 1.07E+01
1.85E-03 4.766-01 1.S96+00 1.07E+01 8.096-03 2.88E-06 1.07E+01
O.OOE+00 1.37E-OS 4. 566-05 2.19E-03 7.97E-07 2.84E-10 2.19E-03
PATHUAYS tDoae (mrem/yr)]
EROS BATH ON FOOD BIOUAS GAMMA DUST ATMOS 8MAX
1.74E-03 O.OOE+00 O.OOE+00 O.OOE+00 1.80E-01 1.566-04 2.18E-09 1.80E-01
1.75E-03 O.OOE+00 O.OOE+00 1.81E-01 1.61E-04 2.34E-09 1.81E-01
1.57E-03 1.S9E-01 1.45E-04 2.02E-09 1.59E-01
9.SOE-05 1.896-02 7.696-06 1.09E-10 1.89E-02
7.92E-05 1.93E-03 1.92E-06 4.646-11 5.996-03
3.966-06 O.OOE+00 1:416-06 2.386-12 3.03E-04
PATHUAYS CDo»e (mrem/yr)} ^^ \
EROS BATH ON FOOD BIOUAS GAMMA DUST ATMOS ^^^
S.50E-03 O.OOE+00 1.38E-02 4.61E-02 8.94E-01 5.25E-02 1. TOE-OS 1.25E-uO
5.506-03 1.386-02 4.626-02 8.946-01 5.336-02 1.746-05 1.25E+00
7.73E-04 6.24E-03 2.086-02 4.63E-01 O.OOE+00 O.OOE+00 6.40E-01
4.74E-05 7.39E-04 2.476-03 5.486-02 0.006+00 O.OOE+00 5.486-02
3.956-05 4.04E-04 1.35E-03 S.61E-03 O.OOE+00 O.OOE+00 3.27E-02
4.74E-OS 1.426-04 4.756-04 0.006+00 0.006+00 0.006+00 1.666-03
4.846-04 3.89E-03 1.306-02 2.91E-01 O.OOE+00 O.OOE+00 4.00E-01
1.64E-04 2.40E-03 8.01E-03 8.03E-02 O.OOE+00 O.OOE+00 1.36E-01
3.346-03 O.OOE+00 O.OOE+00 1.13E-08 4.45E-02 1.44E-05 4.45E-02
5.196-04 0.006+00 O.OOE+00 1.746-09 6.92E-03 2.24E-06 6.92E-03
8.776-05 0.006+00 O.OOE+00 2.956-10 1.176-03 3.78E-07 1.17E-03
PATHUAYS [Dose (mrem/yr)]
EROS BATH ON FOOD BIOUAS GAMMA DUST ATMOS 9MAX
4.326-03 O.OOE+00 5.506-02 1.836-01 5.36E+00 2.086-01 0.006+00 5.366+00
4.486-03 5.506-02 1.83E-01 5.366+00 2.116-01 0.006+00 5.366+00
1.946-04 2.486-02 8.266-02 2.786+00 0.006+00 2.78E+00
1.196-05 2.946-03 9.796-03 3.286-01 0.006+00 3.286-01
9.896-06 1.616-03 5.366-03 3.366-02 0.006+00 4.076-02
4.946-07 5.676-04 1.89E-03 O.OOE+00 O.OOE+00 . 2.056-03
1.216-04 1.556-02 5.166-02 1.746+00 0.006+00 1.746+00
4.116-05 9.546-03 3.186-02 4.816-01 0;006+00 4.816-01
3.346-03 0.006+00 O.OOE+00 6.766-08 1.76E-01 1.766-01
5.186-04 O.OOE+00 O.OOE+00 1.056-08 2.746-02 2.746-02
8.756-05 O.OOE+00 O.OOE+00 1.776-09 4,636-03 4.63E-Q3
Note: "ACTUAL Total" represents the meximun CPG dose for 40 nuclides.
"BRC total" represents the maximum CPG dose for the top three nuclides.
September 1
D-10
-------
Table 0-1 (continued)
Page 'i
PATHWAYS IDose (mrcm/yr)]
HP
6 PWRHU-MD
BRC total
ACTUAL Total
I-COTRASH
I-ABSLIQO
I-B10WAST
I-LQSCNVL
N-LOTRASH
N-LOUASTE
P-CONORSN
P-COTRASH
L-UASTOIL
HP
BRC total
ACTUAL Total
U- PROCESS
HP
Ur-HP
BRC total
ACTUAL Total
N-SSTRASH
N-SSUASJE
GU - R GU • U
O.OOE+00 8.58E-01
8.58E-01
A.80E-01
2.93E-02
2.48E-02
1.26E-03
1.51E-01
5.10E-02
2.09E-06
1.21E-01
O.OOE+00
GU - R GW - U
O.OOE+00 2.46E-03
2.46E-03
2.46E-03
GU • R GU • U
O.OOE+00 7.57E-04
7.57E-04
1.71E-0*
5.866-04
SPILL EROS
O.OOE+00 2.34E-03
2.47E-03
1.95E-04
1.18E-05
1.00E-05
4.99E-07
6.09E-05
2.06E-05
2.84E-08
2.04E-03
O.OOE+00
SPILL EROS
O.OOE+00 3.55E-03
3.55E-03
3.55E-03
SPILL EROS
O.OOE+00 1. 096-03
1.09E-03
2.47E-04
8.46E-04
BATH ON FOOD BIOUAS GAMMA OUST ATMOS 8MAX
O.OOE+00 1.41E-01 4.68E-01 8.76E+00 1.62E-02 1.93E-06 8.76E+I
1.45E-01 4.ME-01 8.76E+00 2.UE-02 2.60E-06 8.76E+I
8.41E-03 2.81E-02 3.33E-01 1.666-04 2.00E-08 4.80E-I
9.91E-04 3.32E-03 3.91E-02 O.OOE+00 O.OOE+00 3.91E-I
4.26E-04 1.43E-03 4.07E-03 O.OOE+00 O.OOE+00 2.48E-
O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 1.26E-
2.63E-03 8.60E-03 1.04E-01 5.23E-05 6.2BE-09 1.51E-
1.14E-03 3.79E-03 2.88E-02 O.OOE+00 O.OOE+00 5.10E-
1.56E-04 5.19E-04 6.56E-04 S.04E-07 6.03E-11 6.56E-
1.27E-01 4.22E-01 8.25E+00 1.59E-02 1.91E-06 8.25E+I
3.52E-06 1.17E-05 5.63E-04 O.OOE+00 O.OOE+00 5.63E-I
PATHWAYS CDoae (mrem/yr)]
BATH ON FOOD BIOUAS GAMMA OUST ATMOS 3MAX
O.OOE+00 1.14E-04 3.82E-04 2.42E-02 1.28E-01 1.4SE-OS 1.28E-I
1.14E-04 3.82E-04 2.42E-02 1.28E-01 1.45E-05 1.28E-1
1.14E-04 3.82E-04 2.42E-02 1.28E-01 1.45E-05 1.28E-C
PATHWAYS CDoa* (uran/yr))
BATH ON FOOD BIOUAS GAMMA DUST ATMOS 9MAX
O.OOE+00 3.S3E-OS 1.18E-04 4.89E-03 3.88E-02 2.36E-05 3.88E-C
3.53E-05 1.18E-04 4.89E-03 3.88E-02 2.36E-05 3.88E-C
7.98E-06 2.65E-05 1.10E-03 8.75E-03 5.33E-06 8.75E-0
2.73E-05 9.11E-05 3.79E-03 3.01E-02 1.83E-05 3.01E-0
Not*: "ACTUAL Total" reprMent* the maxinun CPG dote for 40 nuctfde*.
"BRC total" repre»ent» tht maximun CPG doce for the top three nucHde*.
Septenter 1987
D-ll
-------
Table D-1 (continued)
Page 8
PATHWAYS [Dose (mrem/yr)]
HP
91 1 IDn . ^1
LUKU Wl
BRC total
ACTUAL Total
I-COTRASH
I-ABSLIOO
I-8IOUAST
I-LQSCNVL
HP
in 1 UASMJ. CT
1U LnAbW'SI
BRC total
ACTUAL Total
I-COTRASH
P-COTRASH
I-ABSLIQO
I-BIOWAST
I-LOSCNVL
N-LOTRASH
N-LOWAST6
P-CONORSN
L-WASTOIL
C-TIMEPCS
C-SMOKDET
GW • R GW • W SPILL
O.OOE+00 2.65E+00 0.006*00
2.656*00
2.386*00
1.466-01
1.216-01
6.166-03
GW • R GW • W SPILL
O.OOE+00 1.376+00 0.006+00
1 .376*00
7.916-01
1.206-01
4.856-02
4.046-02
2.046-03
2.486-01
8.396-02
1.286-06
0.006*00
4.136-02
0.006*00
6ROS
1.036-04
1.036-04
9.27E-05
5.666-06
4.726-06
2.366-07
6ROS
2.326-03
2.526-03
1.936-04
2.026-03
1.18E-OS
9.886-06
4. 936 -07
6.05E-05
2.056-05
2.786-08
0.006*00
O.OOE+00
O.OOE+00
BATH ON FOOD BIOWAS GAMMA DUST ATMOS ^^A
0.006*00 0.006*00 0.006*00 1.556-01 7.396-03 3.286-06 ^1^00
O.OOE+00 O.OOE+00 1.556-01 7.626-03 3.52E-06 2.65E+00
1.376-01 6.876-03 3.046-06 2.38E+00
1.636-02 3.64E-04 1.64E-07 1.46E-01
1.416-03 9.09E-05 6.986-08 1.21E-01
O.OOE+00 6.696-05 3.58E-09 6.16E-03
PATHWAYS [Dose (mrem/yr)]
BATH ON FOOD BIOWAS GAMMA DUST ATMOS WAX
O.OOE+00 1.18E-01 3.956-01 2.156*01 3.036-02 0.80E+00 2.15E+01
1.236-01 4.106-01 2.146*01 3.856-02 0.006*00 2.14E+01
2.416-02 8.056-02 2.776+00 1.566-03 2.77E+00
7.706-02 2.576-01 1.726+01 2.116-02 1.72E+01
2.866-03 9.536-03 3.286-01 7.616-05 3.28E-01
1.58E-03 5.256-03 3.356-02 6.566-06 4.04E-02
5.406-04 1.806-03 0.006+00 0.006*00 2.04E-03
7.546-03 2.516-02 8.666-01 4.906-04 8.68E-01
4.646-03 1.556-02 2.416-01 5.426-05 2.41E-01
9.786-05 3.266-04 1.376-03 6.086-07 1.37E-03
2.00E-06 6.69E-06 1.176-03 2.83E-07 1.17E-03
O.OOE+00 O.OOE+00 0.006*00 0.006*00 4.13E-02
O.OOE+00 O.OOE+00 0.006*00 6.966-03 6.96E-03
HP
11 LMACW-UI
BRC total
ACTUAL Total
I-COTRASH
P-COTRASH
I-ABSLIOO
I-BIOWAST
I-LOSCNVL
N-LOTRASH
N-LOWASTE
P-CONDRSN
L-WASTOIL
C-TIMEPCS
C-SMOKDET
CU
GW
SPILL
EROS
PATHWAYS [Dose (wem/yDl
BATH ON FOOD BIOWAS
OUST
ATMOS
3MAX
O.OOE+00 5.726-01 O.OOE+00 2.73E-03 O.OOE+00 O.OOE+00 0.006*00 4.446*00 1.116-02 O.OOE+00
5.72E-01 3.10E-03 O.OOE+00 O.OOE+00 4.44E+00 1.26E-02 O.OOE+00
3.34E-01
3.156-02
2.046-02
1.716-02
8.586-04
1.04E-01
3.546-02
3.086-07
O.OOE+00
2.81E-02
O.OOE+00
4.03E-04
1.79E-03
2.37E-05
1.98E-05
9.886-07
1.266-04
4.116-05
2.916-08
0.006+00
O.OOE+00
3.326-04
9.58E-01 5.39E-04
2.976+00 3.64E-03
1.13E-01 2.63E-05
. 1.166-02 2.266-06
0.006+00 O.OOE+00
3.006-01 1. 696-04
8.306-02 1.876-05
2.366-04 1.056-07
2.036-04 4.88E-08
O.OOE+00 O.OOE+00
O.OOE+00 6.706-03
" 9^^1
2.976+00
1.13E-01
1.71E-02
8.58E-04
3.00E-01
8.30E-02
2.36E-04
2.03E-04
2.816-02
6.70E-03
Note: "ACTUAL Total" represents the Mxinun CPG dose for 40 nuelides.
"BRC total" represents the Mxinun CPG dose for the top three nuelides.
September 1987
D-12
-------
Table D-1 (continued)
Page 9
PATHWAYS CDote (mr«m/yr)]
HP GU - R GU - U SPILL EROS . BATH ON FOOD BIOUAS
12 CW-SF mnn**xmmm*mm*m************a***x****x*****nmm*mm***:
DUST
ATHOS 8MAX
BRC total
ACTUAL Total
C-TIMEPCS
C-SMOKDET
HP
13 CU*UF
BRC total
ACTUAL Total
C-TIMEPCS
C-SMOKOET
HP
BRC total
ACTUAL Total
BIOMED *
HP
15 LURO-ON"*
BRC total
ACTUAL Total
BIOMEO *
O.OOE*00 4.26E-02
4.26E-02
4.25E-02
6.34E-05
CW - R GW • W
O.OOE+00 1.66E-02
1.66E-02
1.66E-02
2.65E-05
GW • R GW • W
O.OOE+00 O.OOE+00
O.OOE+00
GW - R GW • W
mmmnnmmmmmmummmmmi
O.OOE+00 4.07E+01
4.07E+01
4.07E+01
O.OOE+00 6.18E-05 O.OOE+00 1.36E-05 4.55E-05 3.86E-06 1.75E-03 5.95E-10 4.26E-0;
6.18E-05 1.36E-05 4.55E-05 3.86E-06 1.7SE-03 5.95E-10 4.26E-0;
O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 5.09E-07 5.65E-11 4.25E-0;
6.18E-05 1.36E-05 4.55E-05 3.86E-06 1.75E-03 5.38E-10 1.75E-0:
PATHWAYS CDote (mpem/yr)]
SPILL EROS BATH ON FOOD BIOUAS GAMMA OUST ATMOS 8MAX
O.OOE+00 3.46E-04 O.OOE+00 O.OOE+00 O.OOE+00 3.73E-06 1.69E-03 7.75E-10 1.66E-0;
3.46E-04 O.OOE+00 O.OOE+00 3.73E-06 1.69E-03 7.75E-10 1.66E-0;
O.OOE+00 O.OOE+00 4.77E-07 7.17E-11 1.66E-0;
3.46E-04 3.73E-06 1.69E-03 7.03E-10 1.69E-0:
PATHWAYS CDote (mrem/yr)]
SPILL EROS BATH ON FOOD BIOWAS GAMMA OUST ATHOS 8MAX
O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 8.51E-07 8.S1E-0
O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 8.51E-07 8.51E-0
8.51E-07 8.51E-0
PATHWAYS CDote (mrew/yr)]
SPILL EROS BATH ON FOOD BIOWAS GAMMA DUST ATMOS SHAX
mmmmmmmmmmmmmmmmmm9mmmmmmmmmmmmmmmmmmmmmnmmmmmmmmmmmmmm»mmmmnmmmmmm»mmmm9mmmmmmmi
O.OOE+00 1.74E-03 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 3.77E-06 4.26E-07 4.07E+0
1.74E-03 , O.OOE+00 O.OOE+00 O.OOE+00 3.77E-06 4.25E-07 4.07E+0
1.74E-03 3.77E-06 4.26E-07 4.07E+0
Note: "ACTUAL Total" represents the maxitiun CPG dose for 40 nuclides.
"BRC total" represents the maximum CPG dose for the top three nuclides.
Septenfcer 1987
D-13
-------
Table D-1 (continued)
Page 10
Max i nun AP
2.20E-03
6.63E-01 2.22E+00 2.15E+01 2.08E-01 2.67E-05 2.
AP
1 PUR-MD
BRC total
ACTUAL Total
P-COTRASH
P-CONDRSN
L-UASTOIL
AP
2 BUR -MO
BRC total
ACTUAL Total
B-COTRASH
L-UASTOIL
GU • R GU - W
*«**«***«»«*****••«
O.OOE+00 7.35E-04 0
7.35E-04
7.35E-04
4.72E-09
O.OOE+00
GU - R GU • W
mmm*m*mmmnmmmmm»mmm
O.OOE+00 1.69E-03 0
1.69E-03
1.69E-03
O.OOE+00
SPILL EROS
.OOE+00 O.OOE+00
O.OOE+00
SPILL EROS
Mmmmmmmmmmmmmmnmt
.OOE+00 O.OOE+00
O.OOE+00
PATHWAYS
BATH
O.OOE+00
PATHWAYS
BATH
tm»mm*mmmt
O.OOE+00
[Dose (mrem/yr)]
ON FOOD BIOUAS
2.66E-01
2.69E-01
2.65E-01
3.27E-04
7.36E-06
8.85E-01
8.95E-01
8.84E-01
1.09E-03
2.46E-OS
[Dos* (mrem/yr)]
ON FOOD BIOUAS
immm*mmmmmmmmmmmmmi
6.63E-01 2.22E+00
6.66E-01 2.22E+00
6.63E-01
1.90E-05
2.22E+00
6.36E-05
GAMMA
1.24E+01
1 .24E+01
1.24E+01
9.85E-04
8.47E-04
GAMMA
immmmmmmxi
1 .075+01
1.07E+01
1 .076+01
2.19E-03
DUST
2.40E-02
3.1SE-02
2.40E-02
7.58E-07
O.OOE+00
ATMOS
3.80E-06
S.OOE-06
3
1
0
DUST
8.09E-03 3
1.07E-02 4
8.09E-03
7.97E-07
3
3
.80E-06
.20E-10
.OOE+00
ATMOS
•nnna
.24E-06
.28E-06
.24E-06
.19E-10
'I
1
1
1
1
8
B*
1
1
sMHT
.24E+01
.24E+01
.24E+01
.09E-03
.47E-04
9MAX
•**ats*zs
.07E+01
.07E+01
1.07E+01
2.19E-03
AP
BRC total
ACTUAL Total
I-COTRASH
I-ABSLIOD
I-BIOUAST
I-LOSCNVL
GU • R GU • U
O.OOE+00 6.42E-05
6.42E-05
5.76E-05
3.53E-06
2.94E-06
1.47E-07
PATHWAYS [Dose (mrem/yr)]
SPILL EROS BATH ON FOOD BIOUAS GAMMA DUST ATMOS 3MAX
O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 1.80E-01 1.S6E-04 2.46E-09 1.80E-01
O.OOE+00 O.OOE+00 O.OOE+00 1.81E-01 1.61E-04 2.64E-09 1.81E-01
1.59E-01 1.45E-04 2.2BE-09 1.59E-01
1.89E-02 7.69E-06 1.23E-10 1.89E-02
1.93E-03 1.92E-06 5.23E-11 1.93E-03
O.OOE+00 1.41E-06 2.68E-12 1.41E-06
AP
4y4ef».ec
BRC total
ACTUAL Total
I-COTRASH
I-ABSLIQO
t- B10U AST
I-LQSCNVL
N-LOTRASH
N-LOUASTE
F- PROCESS
F-COTRASH
F-HCTRASH
AP
SHAFr-CI
BRC total
ACTUAL Total
I-COTRASH
I-ABSLIQO
I-BIOWAST
I-LQSCNVL
N-LOTRASH
N-LOWASTE
F- PROCESS
F-COTRASH
F-NCTRASH
GU • R GU • U SPILL
O.OOE+00 1.96E-W O.OOE+00
1.96E-W
6.92E-05
4.23E-06
3.53E-06
1.76C-07
4.32E-OS
1.47E-05
5.17E-05
8.04E-06
1.36E-06
GU • R GU • W SPILL
O.OOE+00 1.97E-04 O.OOE+00
1.97E-04
4.81E-05
2.94E-06
2.46E-06
1.23E-07
3.01E-05
1.02E-05
8.74E-05
1.36E-05
2.30E-06
PATHWAYS CDose (mrem/yr)]
EROS BATH ON FOOD BIOUAS GAMMA DUST ATMOS JM^
O.OOE+00 O.OOE+00 1.93E-02 6.42E-02 8.94E-01 S.25E-02 1.91E-05 S^^V
O.OOE+00 1.93E-02 6.43E-02 8.94E-01 5.33E-02 1.96E-05 8.9?^
8.73E-03 2.90E-02 4.63E-01 O.OOE+00 O.OOE+00 4.63E-01
1.03E-03 3.UE-03 5.486-02 O.OOE+00 O.OOE+00 5.48E-02
5.63E-04 1.87E-03 5.61E-03 O.OOE+00 O.OOE+00 5.61E-03
1.94E-04 6.48E-04 O.OOE+00 O.OOE+00 O.OOE+00 6.48E-04
5.45E-03 1.82E-02 2.91E-01 O.OOE+00 O.OOE+00 2.91E-01
3.34E-03 1.11E-02 8.03E-02 O.OOE+00 O.OOE+00 8.03E-02
O.OOE+00 O.OOE+00 1.13E-08 4.45E-02 1.62E-OS 4.4SE-02
O.OOE+00 O.OOE+00 1.74E-09 6.92E-03 2.S2E-06 6.92E-03
O.OOE+00 O.OOE+00 2.95E-10 1.17E-03 4.26E-07 1.17E-03
PATHWAYS CDoae (mrem/yr)l
EROS BATH ON FOOD BIOUAS GAMMA DUST ATMOS 3MAX
O.OOE+00 O.OOE+00 7.65E-02 2.56E-01 5.366+00 2.08E-01 4.47E-27 S.36E+00
O.OOE+00 7.66E-02 2.S6E-01 5.36E+00 2.11E-01 4.58E-27 5.36E+00
3.45E-02 1.16E-01 2.78E+00 O.OOE+00 0. OOE+00 2.78E+00
4.09E-03 1.36E-02 3.28E-01 O.OOE+00 O.OOE+00 3.28E-01
2.23E-03 7.44E-03 3.36E-02 O.OOE+00 O.OOE+00 3.36E-02
7.71E-04 2.57E-03 O.OOE+00 O.OOE+00 O.OOE+00 2.57E-03
2.16E-02 7.23E-02 1.74E+00 O.OOE+00 O.OOE+00 1.74E+00
1.32E-02 4.40E-02 4.81E-01 O.OOE+00 O.OOE+00 4.81E-01
O.OOE+00 O.OOE+00 6.38E-08 1.76E-01 3.78E-27 1.76E-01
O.OOE+00 O.OOE+00 1.05E-08 2.74E-02 S.88E-28 2.74E-02
O.OOE+00 O.OOE+00 1.77E-09 4.63E-03 9.94E-29 4.63E-03
Note: "ACTUAL Total" represents the maxinun CPG dose for 40 nuctides.
"BRC total" represents the maxinun CPG dose for the top three nucI ides.
September 1987
D-14
-------
Table D-1 (continued)
Page 11
AP
6 PWRHU-HD
BRC total
ACTUAL Total
I-COTRASH
I-ABSLIQO
I-BIOUAST
I-LQSCNVL
N-LOTRASH
N-LOUASTE
P-CONDRSN
P-COTRASH
L-WASTOIL
GW • R CW
SPILL
EROS
PATHWAYS [Dose (mrem/yr)]
BATH ON FOOD BIOUAS
GAMMA
DUST
ATMOS
3MAX
O.OOE*00 4.69E-OS O.OOE+00 O.OOE+00 O.OOE-00 1.90E-01 6.53E-01 8.766+00 1.62E-02 2.18E-06 8.76E+00
4.69E-05 O.OOE+00 2.02E-01 6.75E-01 S.76E+00 2.HE-02 2.93E-06 8.76E+00
2.94E-05
1.77E-06
1.52E-06
7.54E-OS
9.20E-06
3.12E-06
8.69E-11
1.81E-06
O.OOE+00
1.18E-02 3.94E-02 3.33E-01 1.66E-04 2.24E-08 3.33E-01
1.39E-03 4.64E-03 3.91E-02 O.OOE+00 O.OOE+00 3.91E-02
6.01E-04 2.00E-03 4.07E-03 O.OOE+00 O.OOE+00 4.07E-03
O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 7.S4E-06
3.70E-03 1.24E-02 1.04E-01 5.23E-05 7.04E-09 1.04E-01
1.59E-03 5.31E-03 2.88C-02 O.OOE+00 O.OOE+00 2.88E-02
2.17E-04 7.26E-04 6.78E-11 5.04E-07 6.78E-11 7.26E-04
1.70E-01 5.89E-01 8.2SE+00 1.59E-02 2.15E-06 8.25E+00
4.92E-06 1.64E-05 5.63E-04 O.OOE+00 O.OOE+00 S.63E-04
AP
BRC total
ACTUAL Total
GW •
O.OOE-
R
"00
GW • W
9.26E-OS
9.26E-05
SPILL
O.OOE+00
EROS
O.OOE+00
O.OOE+00
PATHWAYS
BATH
O.OOE+00
tDose (mrtm/yr)}
ON FOOD BIOWAS
1.31E-04 4.37E-04
1.31E-04 4.37E-04
GAMMA
2.65E-03
2.65E-03
DUST
1.28E-01
1.28E-01
ATMOS
1.63E-05 1
1.63E-05 1
3HAX
.28E-01
.28E-01
U-PROCESS
9.26E-05
1.31E-04 4.37E-04 2.65E-03 1.28E-01 1.63E-05 1.28E-01
AP
8 UF-MD
BRC total
ACTUAL Total
M-SSTRASH
M-SSWASTE
GW
GW
SPILL EROS
PATHWAYS [Dose (dtrem/yr)]
BATH ON FOOD BIOUAS
DUST
ATMOS 8MAX
O.OOE+00 2.85E-05 O.OOE+00 O.OOE+00 O.OOE+00 4.04E-OS 1.35E-04 4.65E-04
2.85E-05 O.OOE+00 4.05E-05 1.35E-04 4.65E-04
3.88E-02 2.67E-05 3.88E-02
3.88C-02 2.67E-05 3.88E-02
6.UE-06
2.20E-05
9.14E-06 3.05E-05 1.0SE-04
3.13E-05 1.05E-04 3.60E-04
8.75E-03 6.03E-06 8.756-03
3.01E-02 2.07E-05 3.01E-02
Note: "ACTUAL Total" represents the Maximum CPC dose for 40 nuclides.
"BRC total" represents the maximum CPG dose for the top three nuclides.
September 1987
D-15
-------
Table 0-1 (continued)
Page 12
PATHWAYS [Dose (mrem/yr)]
AP
91 1 IDA . nu
LUKU On
BRC total
ACTUAL Total
I-COTRASH
I-ABSLIOD
I-BIOUAST
I-LQSCNVL
AP
in i MAru*Qf
tu UNAWW «i
BRC total
ACTUAL Total
I-COTRASH
P-COTRASH
I-A8SLIOO
I-BIOUAST
I-LOSCNVL
M-LOTRASH
N-LOWASTE
P-CONDRSN
L-UASTOIL
C-TIMEPCS
C-SMOKDET
AP
nLMACU-IJt
bnMi»w w i
BRC total
ACTUAL Total
I-COTRASH
P-COTRASH
I-ABSLIQO
I-BIOWAST
I-LOSCNVL
M-LOTRASH
N-LOWASTE
P-CONORSN
L-UASTOIL
C-TJMEPCS
C-SMOKDET
GU • R GW • U SPILL
O.OOE+00 1.31E-04 O.OOE+00
1.31E-04
1.17E-04
7.16E-06
S.96E-06
2.97E-07
GW - R GW • W SPILL
•MX-XXMMMMBMMSBSS-KlK'Xl
O.OOE+00 8.05E-04 O.OOE+00
8.05E-04
4.80E-05
7.31E-04
2.94E-06
2.45E-06
1.22E-07
1.50E-05
5.09E-06
4.60E-09
O.OOE+00
O.OOE+00
O.OOE+00
GW - R GW • W SPILL
••••••••••••••••••••••••••
O.OOE+00 3.64E-04 O.OOE+00
3.64E-04
3.95E-05
3.03E-04
2.45E-06
2.04E-06
1.02E-07
1.25E-05
4.24E-06
1.91E-09
O.OOE+00
O.OOE+00
O.OOE+00
EROS BATH ON FOOD BIOWAS GAMMA DUST ATMOS f^^p
O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 1.55E-01 7.39E-03 3.69E-06 1.55E-01
O.OOE+00 O.OOE+00 O.OOE+00 1.55E-01 7.62E-03 3.97E-06 1.55E-01
1.37E-01 6.87E-03 3.43E-06 1.37E-01
1.63E-02 3.64E-04 1.B4E-07 1.63E-02
1.41E-03 9.09E-05 7.85E-08 1.41E-03
O.OOE+00 6.69E-05 4.02E-09 6.69E-05
PATHWAYS [Dote (mrem/yr)}
EROS BATH ON FOOD BIOWAS GAMMA DUST ATMOS 9MAX
!•••••••• XM^iK 1KM MMM J1>MM MM MS M tf •• MX MM MMMVMVV XSM • • MMX XX X
O.OOE+00 O.OOE+00 1.65E-01 5.51E-01 2.15E+01 3.03E-02 1.71E-28 2.1SE+01
O.OOE+00 1.71E-01 5.71E-01 2.14E+01 3.8SE-02 2.30E-28 2.14E+01
3.37E-02 1.13E-01 2.77E+00 1.566-03 8.82E-30 2.77E+00
1.07E-01 3.59E-01 1.72E+01 2.11E-02 1.19E-28 1.72E+01
3.99E-03 1.33E-02 3.28E-01 7.61E-05 4.29E-31 3.28E-01
2.19E-03 7.32E-03 3.3SE-02 6.S6E-06 3.69E-32 3.3SE-02
7.36E-04 2.46E-03 O.OOE+00 O.OOE+00 O.OOE+00 2.46E-03
1.05E-02 3.52E-02 8.68E-01 4.90E-04 2.76E-30 8.68E-01
6.43E-03 2.15E-02 2.41E-01 5.42E-05 3.05E-31 2.41E-01
1.37E-04 4.56E-04 1.37E-03 6.08E-07 3.UE-33 1.37E-03
2.81E-06 9.39E-06 1.17E-03 2.83E-07 1.59E-33 1.17E-03
O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00
O.OOE+00 O.OOE+00 O.OOE+00 6.96E-03 3.93E-29 6.96E-03 |
PATHWAYS (Dote (urem/yD) |
EROS BATH ON FOOD BIOWAS GAMMA DUST ATMOS 3MAX
O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 4.44E+00 1.11E-02 7.36E-23 4^W)
O.OOE+00 O.OOE+00 O.OOE+00 4.44E+00 1.26E-02 8.87E-23 <^^^
9.S8E-01 5.39E-04 5.65E-24 9.58C-U1
2.97E+00 3.64E-03 1.78E-23 2.97E+00
1.13E-01 2.63E-OS 3.03E-2S 1.13E-01
1.16E-02 2.26E-06 1.26E-2S 1.16E-02
O.OOE+00 O.OOE+00 6.40E-27 1.02E-07
3.00E-01 1.69E-04 1.77E-24 3.00E-01
8.30E-02 1.87E-OS 3.52E-2S 8.30E-02
2.36E-04 1.05E-07 5.89E-28 2.36E-04
2.03E-04 4.88E-08 3.14E-28 2.03E-04
O.OOE+00 O.OOE+00 4.60E-24 4.60E-24
O.OOE+00 6.70E-03 4.30E-23 6.70E-03
Note: "ACTUAL Total" represent* the mxinun CPG dose for 40 nuclides.
"BRC total" represents the «axiwja CPG dose for the top three nuclides.
Sept enter 1987
D-16
-------
Table D-1 (continued)
Page 13
PATHWAYS Pose (mrem/yr)]
AP
12 CW-SF
BRC total
ACTUAL Total
C-TIMEPCS
C-SMOKDET
AP
13 CU-UF
BRC total
ACTUAL Total
C-TIMEPCS
C-SMOKDET
AP
BRC total
ACTUAL Total
B10HEO •
AP
BRC total
ACTUAL Total
BIOMED *
GW • R GU • W
O.OOE+00 2.76E-08
2.76E-08
1.50E-09
2.61E-08
GU • R GU • U
O.OOE+00 6.21E-08
6.21E-08
1.S3E-09
e.OoE-08
GU - R GU • U
O.OOE+00 O.OOE+00
O.OOE+00
GU - R GU - U
O.OOE+00 2.20E-03
2.20E-03
2.20E-03
SPILL EROS
O.OOE+00 O.OOE+00
O.OOE+00
SPILL EROS
O.OOE+00 O.OOE+00
O.OOE+00
SPILL EROS
0. OOE+00 -0. OOE+00
O.OOE+00
SPILL EROS
O.OOE+00 O.OOE+00
O.OOE+00
BATH ON FOOD BIOWAS GAMMA OUST ATMOS 9MAX
O.OOE+00 1.53E-05 5.13E-05 1.37E-09 1.75E-03 6. TOE- 10 1.75E-03
1.53E-05 5.13E-05 1.37E-09 1.75E-03 6.70E-10 1.7SE-03
O.OOE+00 O.OOE+00 O.OOE+00 S.09E-07 6.36E-11 S.09E-07
1.53E-05 5.13E-05 1.37E-09 1.75E-03 6.06E-10 1.75E-03
PATHUAYS [Dose (mrem/yr)]
BATH ON FOOD BIOUAS GAMMA DUST ATMOS 9MAX
O.OOE+00 O.OOE+00 O.OOE+00 1.32E-09 1.69E-03 8.73E-10 1.69E-03
O.OOE+00 O.OOE+00 1.32E-09 1.69E-03 8.73E-10 1.69E-03
O.OOE+00 4.79E-07 8.07E-11 4.79E-07
1.32E-09 1.69E-03 7.92E-10 1.69E-03
PATHWAYS [Dose (mrcm/yr)]
BATH ON FOOD BIOUAS GAMMA DUST ATMOS 3MAX
O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 9.58E-07 9.58E-07
O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 9.58E-07 9.58E-07
9.58E-07 9.58E-07
PATHWAYS [Dose (mrem/yr)]
BATH ON FOOD BIOUAS GAMMA DUST ATMOS 9MAX
O.OOE+00 O.OOE+00 O.OOE+00 O.OOE+00 3.77E-06 4.79E-07 2.20E-03
O.OOE+00 O.OOE+00 O.OOE+00 3.77E-06 4.79E-07 2.20E-03
3.77E-06 4.79E-07 2.20E-03
Note: "ACTUAL Total" represents the maxinun CPC dose for 40 nuclfdes.
"BRC total" represents the maxinun CPC dose for the top three nuclides.
September 1987
D-17
-------
DISCOUNTING BENEFITS Appendix E
BACKGROUND
In the main text, total costs were discounted at a 10 percent real rate
over the 20-year period in which they occurred. Health effects, occurring
over a 10,000-year period (due to the assumed 20-year disposal volume),
were not discounted, however. This appendix analyzes the sensitivity of
our results to. changes in the discount rate assumptions that were used in
calculating both costs and health effects. A comparison is made between
the base case of 10 percent discount rate for costs, zero percent discount
rate for health effects (10%/0%), and two alternative cases which assume
discount rates of 5%/5% and 2%/2S for costs/health effects.
Economic theory supports the notion of discounting economic costs and
benefits that occur over time since a dollar today is worth more to society
than a dollar tomorrow, even with zero inflation. Economists refer to this
as the "time value of money." However, choosing the appropriate discount
rate is a difficult matter since this is an empirical question related to the
*
project specific risk. In the past, the Office of Management and Budget
has recommended using a 10 percent real discount rate. This rate is not
inconsistent with empirical evidence from the 1960s, where the average
Although * all economists would support the need for discounting,
theoretical complexities also complicate the process of selecting the
appropriate discount rate. These complexities are beyond the scope of
this discussion, however.
E-1
-------
pre-tax real rate of return to the private sector was found to range
between eight and 12 percent [LIND82]. Based on estimated real rates of
return during the 1980s, however, using a lower discount rate of five
percent has been suggested for those projects that are expected primarily
to displace private investments in the short run. A rate of two percent
has been suggested for projects that primarily displace private consumption.
The two percent discount rate represents the social rate of time preference
(or the cost of "foregone" consumption) which has been estimated from
historical data to range from one to three percent. These suggested
alternative discount rates have been used in the sensitivity analysis
presented below.
Since radiological health effects span many generations, the application
of the discounting framework to the costs and health effects associated with
LLW disposal is more complex in comparison to other EPA programs. Socio-
economic theory cannot provide a solution to this problem of valuing inter-
generational redistributions of costs and benefits. Calculating cost-
effectiveness ratios will allow for the determination of only the most
economically efficient disposal options, assuming intergeneration
redistributions of wealth are valued equally over time.
SELECTION OF CASES FOR SENSITIVITY ANALYSIS
Given the lack of unanimity concerning the use of discounting under
these circumstances, particularly since the focus has been centered mainly
on discounting health effects, EPA assumes a base case in which costs,
discounted at 10 percent, are compared to the undiscounted health effects.
Economic theory suggests that, if health effects can be explicitly valued,
this approach understates the actual costs of disposal relative to the
associated benefits, resulting in improving the relative economjcs of the
more costly disposal options.
E-2
-------
METHODOLOGY
The following is a brief summary of the methodology used in dis-
counting costs and health effects.
Annual costs were assumed to remain fixed over a 20-year period
coincident with disposal volumes. This assumption is a slight simplification
since annual volumes increase year to year from zero to five percent,
depending on the particular waste. These annualized costs were discounted
using the following formula:
PV = N Ct
d+d)1
t=1
Where: C = cost in year t
d = discount rate
N = total number of years = 20
EPA uses a range of analytical procedures when evaluating regulations
with long-term benefits, including: 1) analyzing the time-line of costs and
risks, 2) evaluating the environmental risks by eliminating the lag between
expenditures on environmental controls and benefits, and 3) using a
two-step discounting procedure. The methodology used in this appendix is
analogous to the third approach.
Under this procedure, capital costs are annualized over the lifetime of
the capital asset using the pre-tax rate of return on private investment as
the discount rate. This cost stream is added to the other annual costs
associated with the project and then discounted (along with the benefit
stream) by a rate representing the social rate of time preference. As a
simplification of this procedure, all costs associated with LLW disposal are
assumed to be annual operating costs requiring no capital investment. This
assumption makes it possible to avoid the complicated task of re-estimating
all disposal costs. Given a five percent pre-tax rate of return on private
E-3
-------
investment and a two percent social rate of time preference, by assuming all
costs are annual operating expenses (i.e., by not annualizing any capital
costs), total disposal costs would be understated by a maximum of about 60
*
percent if all project costs were treated as capital investments. This 60
percent estimate is a maximum for two reasons. First, all disposal costs
cannot be characterized as capital investments. For example, capital costs
of incineration represent about 50 percent of total costs (i.e., capital costs
plus operating and maintenance costs) [TEK81]. As a result, disposal costs
are understated by only 30 percent, rather than by 60 percent. Another
reason this 60 percent figure might overstate the potential bias introduced
by assuming all costs are operating expenses is that, to some extent, the
costs used in the LLW analysis have already been annualized (albeit at
different discount rates potentially). This annualization was calculated
explicitly in the engineering costs estimated for the 10 alternative disposal
options and various processing techniques. (A 10 percent rate of return
was employed when estimating the costs of disposal options.) To the extent
this annualization of capital costs has already been considered, the
appropriate methodology in eliminating any bias would involve the
complicated task of annualizing the capital costs associated with disposal at
a different discount rate, which matches the particular rate chosen in the
sensitivity analysis (e.g., two and five percent). Nevertheless, the
extreme effect of discounting health effects can be seen since the potential
bias introduced by making the above simplifying assumption on costs is
small in comparison to the change in health effects that results from
discounting.
The 60 percent figure is calculated as follows: if all costs represent
capital investments, then all nominal disposal costs are assumed to be
expended upfront, which is then annualized at a five percent rate,
and discounted at a two percent rate. This calculation is divided by
the present value of the annual nominal cost stream fin "this case,
assumed to be operating expenses), which is discounted at a two
percent rate.
E-4
-------
The discounting of health effects is more complicated than the
discounting of costs since the methodology in this case involves
manipulating cumulative health effects data that are reported over four time
horizons — a 100-, 500-. 1,000-, and 10,000-year horizon. Health effects
are assumed not to occur until site closure, 24 years after the disposal site
begins accepting waste. The health effects occurring in four discrete time
periods were calculated by subtracting the cumulative health effects
reported at each time horizon. Thus, health effects were calculated for a
100-, 400-, 500-, and 9,000-year time interval. For purposes of
discounting, the health effects are assumed to be evenly distributed over
each time interval in which they are estimated. Health effects associated
with the release of radon, which were calculated by a different computer
model covering a 1,000-year period, were equally distributed over this
period and added to the other health effects. The formula used in
discounting these total health effects is:
(HE./N ) * ( d ) * (1+d)~fNi"K2'*)
Where: i = period 1, 2, 3, or 4.
HE. = health effects over period i.
N. = number of years in period i.
d' = discount rate
With discounting, health effects occurring after the first 100 years
contribute very little to the present value of health effects.
RESULTS
Tables E-1, E-2, and E-3 list the distribution of health effects over
time for disposal practices affecting the BRC, NARM, and LLW"standards,
respectively. Tables E-4, E-5, and E-6 demonstrate the effect that
discounting costs and health effects has on the cost-effectiveness ratios.
E-5
-------
The base case of 10%/0% is compared to two alternative cases, 5%/5% and
2%/2%, under the National-Implicit implementation assumption. Table E-H,
which presents the impacts associated with alternative LLW standards,
demonstrates that cost-effectiveness ratios increase from one to two orders
of magnitude when comparing the base case, 10%/0%, to the case 2%/2%, and
from 1.5 to 2.5 orders of magnitude when comparing the base case to the
5%/5% case. Likewise, Table E-5, which presents the impacts associated
with alternative BRC standards, shows a similar one to two order of
magnitude increase in the marginal cost-effectiveness ratio.
Table E-6 presents the discounted cost and health effects associated
with the two NARM wastes EPA is proposing to regulate under TSCA
authority. The cost-effectiveness of regulating R-RASOURC remains
relatively low, even when discounting at EPA's recommended two percent
rate. However, the average cost-effectiveness for both NARM wastes
increases by two orders of magnitude in comparison to the base case.
E-6
-------
r m
> o
1
1 Ul
1 03
t r-
O
i
Ul
sO
en
o
1
U]
rH
en
o
1
Ul
5
en
O
1
Ul
-J
g
1
Ul
rH >•
E-7
-------
A
CM
1
bl
4)
jo
S
iJ
bl
S
CO
M bl
& g
bl O
bl
B S
2^
X -1
<
5 &
•< H
z
u
U. X
C H
See
0
i-i b>
,_<
K
H
M
PH
0
pH
C
4(
1
2
o
o" U
1 ft)
* *H >•
_
pH
g
* W
r-l 0)
1 ft)
S *
in
O
O a
in u
i a
r-> 41
0 >4
*
§u
<0
rH 41
O *"
B
e
B
CO
tl
01
i
s
•r
U
J-
r»
^
Z
O
O
bl
CM
CM
pH
0
u
S
pH
O
o
§
rH
rH
O
1
bl
CO
<*l
„
"J
CO
2.
. a
•o
v
3 CO
5 flC
g
bl
pH
«J
Z
in
O
1
bl
CO
in
i
bl
CO
CM
1-4
|
<0
rH
g
bl
CM
pH
CN
CO
1
o
o
+
bl
rH
rn
CM
g
1
bl
CM
f»
1— 1
0
bl
CO
r»
vD
O
i
bl
n
'"•
rH
O
t
bl
00
rH
rH
U.
I
z
rH
ec
.s-
o
i
bl
CO
r»
U
I
u
in
CM
f
bl
pH
CM
S
bl
er
CM
in
O
i
bl
in
rH
145
CM
i
CO
1
o
bl
CO
vC
(••I
0
bl
°.
rH
bl
CM
CM
O
bl
CM
rH
O
bl
0
CM
§
U
s
J-
1
CO
1
§
u
n
CM
i
*^
in
§
u
3
rH
O
bl
$
9>
S
Ul
§
rH
0
1
bl
pH
n
CO
X
rH
2
ec
41
I
^
1
a
a
u
rH
3,
41
ce
pH
o
i
bl
CM
cr>
z
PH
0
bl
O
CM
00
CM
O
bl
S
CO
CM
0
1
bl
CO
O
t
Bl
^
r-l
C/l
1
m
O
i
bl
$
C*
<
t
bl
MD
in
O
i
bl
r»
in
0
bl
pH
rH
1
bl
CM
pH
10
CM
g
CO
I
rH
0
1
bl
PH
4
n cr
4. 4J .
•*• tT
_ «i « a
|f ii
5 PH cd r
u «J o> 2
** : &
g S | :
•«•* O Ob
*-* «W 0 ^
|B S S .
^4 Tl O« 41
w TS «i a M
5 | 5^-3
41 U 00 B M
€ 5 222
* * " ~
W
1*4
O
01
41
X
Si
V
u
•o
B
B)
01
g.
CO
•o
**w
o
„
m
41
O
CM
b
41
•
a
B
"^
oo
V
n
(0
X
1
x
CO
T!
^J
^
s k*
W a
01 O
#s
I
01
•Jj
i
^
41
O
O.
o
o
•o
AV
U
c
4>
"G
B
OJ
I
"S
B
«M
^J
§
U
0
c
o
0)
41
01
41
IB
41
41
ft
•
U
£
0)
o
z
I
z
7
Q
41
Vu
O
E
41
U
41
a.
CM
•o
c
o
e
41
41
2
41
JO
41
U
41
£
X
C
09
9
i
•
m
\
^
«
b
|
2
iT
v
>
4)
•-4
(J
*«
O
1
,
u
iV
E
S
W
u
41
a
01
41
01
41
E
O
u
I4H
01
•pi
f
"
01
41
^
u
e
41
a.
£
^
k
•
r
E-8
-------
Table E-3
DISTRIBUTION OF HEALTH EFFECTS OVER TIME
FOR SELECTED REGULATED DISPOSAL METHODS
U.S. Totals By_Tiffle Period (Years)
SLF As Is
Class A - BRC
Class B
Class C
NARM
TOTAL LLW
SLD AS IS
Class A - BRC
Class B
Class C
NARM
TOTAL LLW
10 CFR 61
Class A - BRC
Class B
Class C
NARM
TOTAL LLW
A:IDD As Is; B,
Class A - BRC
Class B
Class C
NARM
TOTAL LLW
CC
Class A - BRC
Class B
Class C
NARM
TOTAL LLW
0-100*
16.8240
58.1280
4.4307
1.4482
80.8309
1.5651
0. 7900
0.0009
0.0287
2.3848
1.5651
0.0538
0.0001
0.0163
1.6353
C, & NARM: IDD SOL
0.7996
0.0379
0.0001
0.0157
0.8533
0.0000
0.0000
0.0000
0.0006
0.0006
101-500
4.4549
26.8828
1.7569
17.8964
50.9910
8.6011
13.4259
0.0669
2.7047
24.7986
8.6011
1.9256
0.0010
0.0655
10.5931
6.4645
0.5812
0.0010
0.0629
7.1096
0.2433
0.2065
0.0003
0.0025
0.4526
501-1,000
1. 2135
2.2122
0.5343
15.5599
19.5198
0.5189
0.7126
0.1454
4.7835
6.1604
0.5189
2.2257
0.0011
0.0819
2.8275
1.6243
0.7028
0.0010
0.0787
2.4068
0.3844
0.3393
0.0005
0.0031
0.7273
1,001-10,000
5.0780
4.4706
0.4126
25.8700
35.8312
4.7977
3.6353
0.2146
14.0295
22.6771
4.7977
8.4829
0.0085
0.0004
13.2894
3.8708
4.0567
0.0071
0.0002
7.9348
3.3587
2.8260
0.0047
0.0001
6.1896
Total
27.5703
91.6936
7.1344
60.7746
187.1729
15.4827
18.5639.
0.4278
21.5464
56.0209
15.4827
12.6879
0.0106
0.1640
28.3453
12.7591
5.3785
0.0092
0.1576
18.3044
3.9864
3.3718
0.0056
0.0063
7^3700
Year "zero" of Che health risk analysis begins after 20 years of disposal and three
years of site closure.
September 1987
E-9
-------
'
J-
1
u
.0
i 1
Hi
^C G* t*i
M M U
l-i U
3 Q O.
3 z
j u. S
o
U H
> VJ >i
M U U
H M >•*
«C «c J
i 2 &
B £ 7
-J u: J
i! i 1
0 U. I-.
I-M H
M a <
e H z
< < ee
O- U
s i
3
u
CO *
01 u MM
01 01 U
B a.
$ . 5
— M B -»
•J U O «
C U -* 41
i- 01 ••« X
00 MM ~M
20J Z 0)
1 13
U ~4
CO ^ O
0 >
U <
n
01 W
a u
— 01
» -D u-
> 01 MM
•o u
B O £
01 > 4J
m -e —
01 •
B. X
Sin
- 8~
• »
> <- c
• o
4J 4J ^4
£ S -
41 41 Z
hi U
a. u «/>
B >-•
^*
41 41
*•> • • "O
5|55
41 "K o "§
£ 2 & S
_
5 i I
•o 5
4) X U
A. £ U
•o u •
U S 41
• 1 1 C —
^ W M ^^
•0 • IM
B B 4
«J 5 ** *^
» S S S
dsa a
JP
*^
S
V
2
4J 4*
B m
3 ^^
C 4?
u m
to
a
5
|
4?
41
4J
2
« S
i
u
to
a
^
Q
4J
jf
U lA
§
U
•
*4
O
g
^
u O CD « m u
O Q *P4 U — CO
; | . s . s
S | 8 | 1 t 1 5 I •
*r ^r »«r ^*j
§w **4
••* _^ **^ ^ c
O Lj W (A
W 2 i»^ m
o o o w^^^^ o
* ** •* hM ® ^^ 9 ^" ^3
*^ O rH *j •*» 2
rH rH r* .*'"kT-rfS"Jri
I 2 § g 2
• g § « S w
* !M ^"* •€ Si JS
aj V 3 (Q «J
f-4 \O U*t O 11 M **
1-1 *** "^ JSuSo4*^
y ^J _ _ *** ^
i * W 41 "°
i « § -1 £ =
5 oe 3 ««•*--
u 41 ^ P
. "2 _• fll 01
_ x» <^ OS-D^*1"
01 so \o m ^ to ^
oie^f-ioiin cnOm
•^ . 0 . . rtk"O,5»
0 O 0 0 «04)U4J*to
•—" • U B> B ... •)
s e g „ s g .
O U £ u 41
FH oi w
*— ^» e -M Z> ^ oi
-^fH«*^ fH«4)E
"•»'-' 4J _ O 01
O 2 O i. 0)
Su % 13 -0
hi JJ £ g 3 V
u • *** ** 3
--- ^''''-S,,,
2 s a s s ££«£„"
p»4 ^•B* • ^ — » Jj 54l3 —
^ m ue1"-?*
2 2 • "5 z o
S
1 i 25 § -
/^-^^ -!ff'«iiJ*J'c
0 0 rt o HjS^So!*'
I ? i S ! 3
** fc s ° i
•"* M O t* • s
j- o oi o ic * 3 to • •§ "S ?
S t«. . r-i . ^JScs*'
1-4 OO 01 _'"-"-<'_
i-( ^ -« o U ^
41 41 41 S K u
S ™ • « ^ * -3
> * * * "* S
* '• S s 3 "2.
*_ o u 8 fli • *
B JN*I 2«o>B*
"I *7 *<35
B* •5<2sS5cc"o
8. • "><•<- in — oo
in m in o •» uS»«toe.fltooOE,3S'cr3i-*o«
<-( oi «n .» m
E-10
-------
i 1
III
03 en ui
i— -j
S Q £
aa u. i-.
in O
i W H
U > CO «
•* H S S
2 I 2 si
CC K Z
H £ g ~
J UI -4
< OS <
u. u. o
O U. l-r
1-1 H
OH*
< < oe
i i
""" a
•
0)
41
C
41
-1 >
<0 -<
C *J
— u
00 41
k- VM
a w
r u
i
u
CO
cS
4>
3
« «
* §
4J 94
C W
41 ~<
at -o
l<
•1
41
3
** to
01 00
S> _C
u >
£ 3
U)
41 U
u te,
eu ea
redicted
0.
•o u
»• £
• u
•n
1 §
u §
CO "
i*
oa ^»
u
41
O.
0)
§
«4
»4
^4
CO
•»
a
w
u
41
*•*
»*-
U
Health
1
41
U
^4
W
u
0)
u
Bu
4J
c
4)
U
w
c3
09
3
CO
u
4)
>
i
e
4)
to
2
^
u
u
£
MM
U
s
M
•^
«
£
41
U
w4
4J
U
01
U
a.
4J
C
01
Versus Curr
^^
to
e
o
^*
»M
^*
X
>
N-*
41
i
°
***.
U
•J
4)
>,
U
^
if
CM
, «
U
0?
4J
C f
3 in
0 ««.
u «*
CO S-l
S
1
I
w
r^
cJ
4t
4j
iS
W Jl>
Dlscoun
5
£
if
CM
4>
JJ
U
C jP
g *
u
go
•»4
O
s
2 as o ua di r*
^ O *^ U 00
-J AJ o o» cr
0) «* (A * _^
-, «) o u
« * «H (J B U
s s I i S-3 s S« 1
«-a)C«
B ^^ Q ij
1 •« £ ^ o.
81 S - *
•£>£Nr~ .^ uS"
<*i^moi «S Ss^--
^ n oo u-0 °£«
= 1 -s §-
• * " i
& * S § «
& 4) >S * -H
u e >« S j:
*n ^ e 3 4> ^ 3
•s m M J to
0 H ^ » t S ,' 5 « S
3 y 41 4J — i
u •o « «
u ~ 2 £ « »
41 TI U 00 m
' * B .. •
C **4 *<^ •• !•' ?
S 3 ^ i" C
^» .11 jj c 34)
2 "" *" -J * 'o * 'g"
CM » •*? • .i*4e 4>C
-» M 0 « ^SC •> « —
•— *H o V >• P
* w 5 S Q. i
e 5 " s » 5
U V w C
_ ±t H
2*3 •: -
S S S * - | 5 3 • g
- .- d 8 - 3;g s Jss
«ll £ 8I
oj S c u ,. i-
:! ! I1
•~ £ Z 4/4>
o n o> m o S« * >•*:
r»mrt .CM ta. ** o«
CM •** ti if . -• &
Hot) • • e
0 S W 3i 5
0 41 *J = ^ £
S "-3 • 2 £
« e a j 5 *
^ Q a> O «*4
S £ £ o -o «
0 0 0 0 S • _ § N £ W
» s s a s B 1 E 22£
N - 5 • - • «
«^ ^ fc* in r;
4) 4» — . CO „
3 £ - 2 • 5
^ » » S £ •
O O O 00 Q « 3 B S
CM 00 0 OS 5 S«"O 0 xj£
f m m «n CM fi«£ u •JJ'C
CM* *> 4) 2 *" „, "*•
^ ^ £ >, £ 0
• *3 • ^ S
_ V -« .-44)
" e <-< • u
** 5 S 3 n C
*» C e 25
*•* 41 _ S w L,
* S S 2 § £ § § S „ s
^ •* «n c* In «cog *y'
» ft ^ *•* 5
_T .. _ W MI — W
- 5 " S H 1
m* ,t (W O
I'JS 1 5S
* •- ** S 5 e
•o ° •*
4) _ >a 41 41 "
•S « 5 * >-
- g S S « «
> g. 0 ^ «' « „
" «•" 28 o i
1 S g • « 5 |
O 00 i-l J- Q «U ZI e ^ S
3 8 g » | 5 . S
•^ « o o o ««S- ao-s
8:1- ii 51
*• - -S B «
•* JJ T3 •« * 41 •
• » 41 _ 00 U -O
*J « 4J BU VdU
s 1 « ct* B 3 -
U C ••< *"^ 9 ^4 W
4> * 00 «aT (90U
S -» -H ^ o t3o£ tiSt!S.g
rt • •> C Q»t V OVOQ.3
o o « S -5 j. Ox Oijo-
M ^N /-*
O 1-4 «S
* Z -^^ >w
E-ll
-------
J
I
CO
d °
ft! "*
u.
w *" £
X < U
t^ b4
-J C£ O
U S *"*
vO X CO
i U B
w p H co
Z CO 06
ft) < < W
— 3 >
H 0 S <
O < CO
0*2
S £ la
o o
CJ W
2 5
§
y
^?
3
S
. 1
« O
i*«
4> ? U 4)
00 •< U «-
V 4J g^ 1^4
u u u
> •*- C J=
< «M O 4->
u: — —
1 -" W
S J
*^
£
41
£
*> x
c m
a *-»
o *
u in
a
O
0
^J
_•
s
fM
CO F-l
0 "*
•c in
CO l~-
• •
GO in
•O fH
4
CN 00
00 ^
CN
u
i
41
4J
in o.
O^ 4)
• CO
in
O
vo in
j- o
m o
(V*j
n
O
O F-l O
tl a
•-> o
« T3 4)
a> w ud
ii •** U
B O
V > £
OS < U
41 ••
W B
0. .U
41
S
4J ^
C «"»
1
u
0)
^^
O
o
iH m
O >H
%fi
^
CN fH m
O t*)
0 0
i*^
O
0> fH
fH «A
• W9
fO <«
^
o
4J
v n *—
If I
«_4
^^
B B —
n
0
g
S *
«N
in
^>
r» t-t
WO 00
c^ ~t
CM
oo
^
(*>
r» oo in
O <**
m
*^
41
W
•
1
Z
X U
HI ^
ill
i i
a: as
E-12
-------
BACKUP COST/RISK AND
COST-EFFECTIVENESS TABLES Appendix F
The purpose of this appendix is to provide additional backup tables
associated with costs, health effects, and cost-effectiveness calculations.
For each hydrogeologic region, Tables F-1 to F-3 present the incremental
costs, avoided health effects, and the cost-effectiveness of regulating the
BRC surrogate wastes, the two consumer wastes, NRC's unregulated
biomedical waste, and the six NARM wastes. Table F-U presents this
information for the entire U.S. The information presented in these tables
is used in the analysis of NARM in Chapter 6 and the analysis of BRC
waste in Chapter 7.
The total health effects and costs occurring in each hydrogeologic
region and in the total U.S. are presented in Tables F-5 to F-8 for the 17
regulated disposal methods considered in the analysis of the LLW standard
in Chapter 8. Also included for purposes of comparison are the health
effects and costs associated with regulated and unregulated disposal of the
nine BRC wastes (those expected to meet the proposed 4 millirem BRC
standard) which are excluded from the LLW analysis. The calculation of
total health effects and costs (based on EPA assumptions highlighted in
Appendix C) are shown for DOE waste as well.
Tables F-9 through F-13 introduce the unit health effects and unit
costs associated with the five unregulated disposal options that were used
to calculate a weighted average for unregulated disposal in Chapters 6 and
7. Table F-11 shows the estimated unit health effects and unit costs of
regulated disposal, which are used for comparison to unregulated disposal
in these two chapters.
F-1
-------
Tables F-15 to F-17 present a summary of the accumulative fatal and
genetic unit health effects occurring at four points in time (at 100-, 500-,
1,000-, and 10,000-year intervals) in the three hydrogeologic regions for all
waste types and disposal technologies.
Finally, Table F-18 demonstrates the underlying nuclide concentrations
(curies per cubic meter) and total nuclide inventories assumed for all waste
streams in the Economic Impact Assessment.
F-2
-------
TABLE F-1
COST EFFECTIVENESS OF REGULATION
HUMID IMPERMEABLE REGION
(Unregulated versus Regulated Disposal)
WASTE
mnmnm9*mmm
BRC "SURROGATES"
P-COTRASH
P-CONDRSN
L-WASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
1-ABSL1QO
I-LQSCNVL
N-SSTRASH
N-SSWASTE
N-LOTRASH
M-LOUASTE
F-PROCESS
U-PROCESS
F-COTRASH
F-NCTRASH
CONSUMER
C-SMOKDET
C-TIMEPCS
INCREMENTAL
COST
(S MILLIONS)
19.05
3.74
4.84
53.25
36.76
3.27
6.87
9.29
62.44
11.02
10.62
6.31
0.85
0.00
2.55
0.66
163.10
105.01
AVOIDED
HEALTH EFFECTS
0.2341
0.0002
0.0000
0.5425
0.5190
0.0404
0.0644
0.0025
0.0007
0.0026
0.0649
0.0330
0.0003
0.0000
0.0000
0.0000
1.1087
0.0882
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
81.40
16,304.67
213,325.91
98.16
70.84
80.79
106.75
3.728.59
84,111.04
4,313.97
163.54
191.21
3,199.46
N.A.
62.415.77
94,921.55
147.11
1,190.62
BIOMED
BIOMED
156.14
•0.2060
(757.96)
NARM
R-GLASOS1
R-GLASOS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
•••*••*•*•••
TOTAL
2,098.46
1.2767
0.0003
1.5152
0.0005
3.3885
64.2119
72.89
1,013.17
9.60
94.23
26.55
1.46
0.02
•«*«*««**
28.79
NOTES: Costs represent present values at a 10 percent real discount rate, expressed in 1985
dollars. Health effects include fatal cancers and genetic effects over 10,000 years,
and are not discounted. Regulated disposal is SLD, As Generated, except for P-CONDRSN
(SLO Solidified) and R-RAIXRSN and K-RASOURC (both ISO Solidified). Unregulated
disposal is represented by a weighted average of MD, SF, SI, UF and UI disposal
practices (weighting depends on waste type). Unregulated disposal for BIOM60 waste is
represented by the LURO option. Note that consumer, BIOMED and NARM wastes are currently
unregulated. N.A.« Waste not generated in this region.
Septenfeer 1987
F-3
-------
TABLE F-2
COST EFFECTIVENESS OF REGULATION
HUMID PERMEABLE REGION
(Unregulated versus Regulated Disposal)
BRC
CANDIDATE
BRC "SURROGATES"
P-COTRASH
P-CONDRSN
L-WASTOIL
B-COTRASH
I-COTRASH
I-BIOWAST
I-ABSLIOO
I-LQSCNVL
N-SSTRASH
M-SSUASTE
N-LOTRASH
N-LOWASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-MCTRASH
CONSUMER
C-SMOKDET
C-TIMEPCS
BIOMEO
BIOMED
HARM
•GLASOS1
•GLASOS2
-INSTDF1
•INSTDF2
•RAIXRSN
•RASOURC
INCREMENTAL
COST
(S MILLIONS)
52.48
11.48
9.22
58.65
36.74
3.26
6.87
9.29
38.95
6.87
18.00
10.70
13.98
7.42
42.21
10.88
329.74
212.28
156.14
2615.09
0.01
266.77
0.03
9.99
1.33
AVOIDED
HEALTH EFFECTS
1.7786
0.0003
0.0000
0.9922
164.8216
8.2034
9.8090
0.4071
0.0001
0.0002
19.1937
6.2267
0.0010
0.0006
0.0001
0.0000
0.0078
7.1994
12.291
0.4294
0.0001
0.0697
0.0000
0.1756
1.2283
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
29.51
33,804.99
465.672.61
59.11
0.22
0.40
0.70
22.81
679,480.50
34,979.11
0.94
1.72
13,502.29
12,120.97
287,303.83
438,715.53
42,533.16
29.49
12.70
TOTAL
3,928.35
232.84
16.87
NOTES: Coats represent present values at a 10 percent real discount rate, expressed in 1985
dollars. Health effects include fatal cancers and genetic effects over 10,000 years,
and are not discounted. Regulated disposal is SLD, As Generated, except for P-CONDRSN
(SLO Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified), unregulated
disposal is represented by a weighted average of MD, SF, SI, (If and UI disposal
practices (weighting depends on waste type). Unregulated disposal for BIOMEO waste is
represented by the LURO option. Note that consumer, BIOMEO and HARM wastes are currently
unregulated. N.A.» Waste not generated in this region.
September 1987
F-4
-------
TABLE F-3
COST EFFECTIVENESS OF REGULATION
ARID PERMEABLE REGION
(Unregulated versus Regulated Disposal)
BRC
CANDIDATE
BM**X*BBX
BRC "SURROGATES"
P-COTRASH
P-CONORSN
L-UAST01L
B-COTRASH
I-COTRASH
I-BIOUAST
I-ABSLIOO
1-LOSCMVL
N-SSTRASH
N-SSWASTE
N-LOTRASH
N-LOUASTE
F-PROCESS
U-PROCESS
F-COTRASH
F-NCTRASH
CONSUMER
C-SMOKDET
C-TIMEPCS
INCREMENTAL
COST
($ MILLIONS)
20.47
4.19
1.41
3.30
24.18
2.15
4.52
6.11
23.27
4.11
6.57
3.90
5.80
0.00
17.49
4.51
176.48
113.61
AVOIDED
HEALTH EFFECTS
0.4996
0.0001
0.0000
0.0518
52.5276
2.6925
3.2217
0.1336
0.0001
0.0003
2.2650
0.7675
0.0008
0.0000
0.0002
0.0000
0.0158
0.0010
COST-EFFECTIVENESS RATIO
($ MILLIONS PER
AVOIDED HEALTH EFFECT)
40.96
59,422.31
267,766.68
63.69
0.46
0.80
1.40
45.74
294,729.12
15,162.85
2.90
5.09
6,898.82
N.A.
107,396.90
163,600.64
11.174.26
112,500.38
BIOMED
BIOMED
102.96
•0.6625
(155.41)
NARM
•GLASDS1
•GLASDS2
•INSTDF1
•INSTOF2
•RAIXRSN
•RASOURC
TOTAL
1399.62
0.00
131.95
0.01
5.34
0.55
2,062.51
2.0946
0.0001
0.0880
0.0000
0.1444
1.2472
65.09
668.20
47.16
1,498.92
424.24
37.01
0.44
31.69
NOTES: Costs represent present values at a 10 percent real discount rate, expressed in 1985
dollars. Health effects include fatal cancers and genetic effects over 10,000 years,
and are not discounted. Regulated disposal is SLD, As Generated, except for P-CONDRSN
(SLO Solidified) and R-RAIXRSN and R-RASOURC (both ISO Solidified). Unregulated
disposal is represented by a weighted average of MO, SF, SI, UF and UI disposal
practices (weighting depends on waste type). Unregulated disposal for BIOMED waste is
represented by the LURO option. Note that consumer, BIOMED and NARM wastes are currently
unregulated. N.A.» Waste not generated in this region.
Septertwr 1987
F-5
-------
TABLE F-4
COST EFFECTIVENESS OF REGULATION
TOTAL U.S.
(Unregulated versus Regulated Disposal)
BRC
CANDIDATE
BRC "SURROGATES"
P-COTRASH
P-CONDRSN
L-UASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
I-ABSLIQO
I-LOSCNVL
N-SSTRASH
N-SSWASTE
N-LOTRASH
N-LOUASTE
F-PROCESS
U-PROCESS
F-COTRASH
F-NCTR.ASM
CONSUMER
C-SMOKDET
C-TIMEPCS
INCREMENTAL
COST
(J MILLIONS)
92.00
19.40
15.47
115.21
97.69
8.68
18.26
24.69
124.66
22.00
35.19
20.91
20.62
7.42
62.25
16.04
669.32
430.91
AVOIDED
HEALTH EFFECTS
COST-EFFECTIVENESS RATIO
(S MILLIONS PER
AVOIDED HEALTH EFFECT)
2.5123
0.0006
0.0000
1.5865
217.8682
10.9363
13.0951
0.5432
0.0009
0.0030
21.5236
7.0272
0.0021
0.0006
0.0004
0.0001
1.1323
7.2886
36.62
30,355.21
324,000.67
72.62
0.45
0.79
1.39
45.45
141,876.80
7,280.47
1.63
2.98
9,637.63
12,120.97
177,518.38
270,639.87
591.14
59.12
BIOMED
BIOMEO
415.24
11.4235
36.35
NARM
•GLASDS1
•GLASDS2
•INSTDF1
•INSTDF2
•RAIXRSN
•RASOURC
TOTAL
5308.26
0.01
541.50
0.05
20.27
3.28
8,089.33
3.8008
0.0004
1.6729
0.0006
3.7085
66.6874
370.8151
1,396.62
28.43
323.69
91.17
5.47
0.05
21.82
NOTES: Costs represent present values at a 10 percent real discount rate, expressed in 1985
dollfrs. Health effects include fatal cancers and genetic effects over 10,000 years,
and are not discounted. Regulated disposal is SLD, As Generated, except for P-CONORSN
(SLD Solidified) *nd R-RAIXRSN and R-RASOURC (both ISO Solidified). Unregulated
disposal is represented by a weighted average of MO, SF, SI, UF and UI disposal
practices (weighting depends on waste type). Unregulated disposal for BIOMED waste is
represented by the LURO option. Note that consumer, BIOMED and NARM wastes are currently
unregulated. N.A.» Waste not generated in this region.
Septettfeer 1987
F-6
-------
ft
o
ii
s:
I
i
SSS8SSSSSSSSSS
SS
SSSSSSSSSSSSSSSSSS
°
M 49 M
• •«•*. M
8 o ^ «• • '
— vi — o u
— K
I
I
X33S3333S3333S3332
• a —
8 -
a?
Ma
-8
**
o «
w i« 3
<0
* S
W*~V
£ «.
s 5 | ,88 SJC!
0 - — - - E sssSguiss o^j
*
S- " SK.K. *«5*.*.»K.X.k:tC;;*; « •
M u « • • • w
-I
^* -... £33233833333333333 5-
23 : : |j
&33R33333383333333
3 * w w
V .« «33333333333333333
s *s a s
5 °
*-* " — r
| 833833333333333933 §1
si?8. -T
S g o a
833333333333333333
I jj 5 8
3?P?ir*fi = «e«*E:«53:S
-------
:
ii
w v
ii
-5
s!
§i
I
i
*
II
- 5s
- 8«
M tk «
• s!
323833333333333333
° j
2 s s s s :: s : s 2 2 : 2 s 2 s :
d 3
S2SK32222222S22222
s
523322222222932222
•• •*••*•• e '
- issasj
8a«
W H * M
» Q * *^
= 5:^-
K
5
:£3aS33333333323333
""
A
2:333133333333333333
^ I 8 8
S:» •
;:g33S3333333333333S
g: ss 5afe=
ft "••
--
2-8
!- St
SS
— o •• v? <
» « x S
,-i
88 S
Si!
»•••
2a
S8
S
i
-------
I-
«*
II
§8
:i
§1
s-
1
i
$S3S3SSSS33333S33i
o £*
£33^33333333333333
• i
£33633333333333333
K33S33333333333333
£33733333333333333
7?i««:«K5ix — — < < Si I. •> f» o
Sf*om^«tvto'*'^(*^vB^*''OQ'4
f3m« —o«S
-------
<:::33S33333333333333
*
2-8
?. ?.£-„?.„,,„$
28-S S-8 \
(* U S
» * « J
5° i:
2 »i
88 Si
g * * ; ~~fi~~~ — «i rv ^ m — « - oo"~. X
^ — ^ - — - — _.--._.. TV ^ f
•f
m_ i- •** ~fc **»_** fifi* i. « g
8 ||:s- s;3383"88""82
— a • ^ **
• : -
^1:133833333333333333
W H * 9 «
* •Ki0fi«g«aaaaBfl£aflaa«A
2 Ml* 2 s|
«g!.,_t R i]
a?!^s-^-2:^:,ew;i;L J]
«• • si
|:|33Z33333333333333 S£
8^5o 2 "o
• • •
* £:gaag-----------«««
a -- s •» 3
I.
8
ff'*^s2SS!S2*rtCC^ ® S
^ _• ^ ^ ^ ^ .^ JM ^^^^^^^^^ 4 B ^v —
5*8
S s~
F-10
-------
TABLE F-9
HEALTH EFFECTS AND DISPOSAL COSTS FOR
UNREGULATED SUBURBAN SANITARY LANDFILL, WITHOUT INCINERATION
(PER CUBIC METER)
HUMID IMPERMEABLE
HUMID PERMEABLE
ARID PERMEABLE
WASTE
P-COTRASH
P-CONDRSN
L-WASTOIL
B-COTRASH
I-COTRASH
I-BIOWAST
l-ABSLIOO
I-LQSCNVL
N-SSTRASH
N-SSUASTE
N-LOTRASH
N-LOUASTE
F -PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASOS1
R-GLASOS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
UNIT
HEALTH
EFFECTS
3.68E-06
1.35E-07
2.64E-09
2.91E-06
3.32E-05
7.38E-05
6.28E-05
1.83E-06
4.45E-09
8.65E-08
1.03E-05
6.966-06
2.486-07
2.916-07
1.28E-08
1.22E-08
3.82E-05
2.366-05
1.196-04
2.41E-05
1.22E-03
1.396-05
1.86C-03
2.61E+02
UNIT
DISPOSAL
COST
U.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
UNIT
HEALTH
EFFECTS
1.20E-OS
6.37E-08
9.42E-10
5.01E-06
1.47E-03
2.45E-03
1.97E-03
6.08E-OS
3. 066-10
5.93E-09
4.60E-04
2.27E-04
2.64E-08
3.12E-08
8.71E-10
8.32E-10
1.66E-07
1.40E-03
6.02E-06
1.666-06
2.52E-05
2.87E-07
6.98E-OS
9.096*00
UNIT
DISPOSAL
COST
••••••••
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
UNIT
HEALTH
EFFECTS
1.34E-06
3.71E-11
4.52E-15
8.50E-07
9.30E-06
6.36E-06
5.13E-06
1.S8E-07
7.17E-10
1.39E-08
2.90E-06
5.89E-07
2.556-12
2.326-12
2.72E-09
2.596-09
3.126-07
7.35E-09
6.716-05
3.446-06
3.476-05
3.946-07
7.586-06
5.896-01
UNIT
DISPOSAL
COST
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
F-ll
1987
-------
TABLE F-10
HEALTH EFFECTS AND DISPOSAL COSTS FOR
UNREGULATED SUBURBAN SANITARY LANDFILL, WITH INCINERATION
(PER CUBIC METER)
HUMID IMPERMEABLE
HUMID PERMEABLE
ARID PERMEABLE
WASTE
mmmmm**mm
P-COTRASH
P-CONORSN
L-UASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
I-ABSL100
I-LOSCNVL
N-SSTRASH
N-SSWASTE
N-LOTRASH
N-LOWASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASOS1
R-GLASDS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
UNIT
HEALTH
EFFECTS
••••••**
3.80E-06
1.34E-07
2. 976-09
3.03E-06
9.84E-06
1.87C-05
1.85E-05
4.53E-07
4.59E-09
8.94E-08
3.07E-06
1.86E-06
2.57E-07
3.01E-07
1.32E-08
1.27E-08
3.59E-05
6.64E-06
1.23E-04
2.49E-05
1.15E-03
1.31E-05
1.75E-03
2.47E+02
UNIT
DISPOSAL
COST
••••MM
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
UNIT
HEALTH
EFFECTS
••••••••
6.50E-06
5.79E-08
1.41E-09
4.30E-06
3.77E-OA
7.22E-04
5.85E-04
1.79E-05
6.10E-10
1.19E-08
1.17E-04
6.70E-05
3.56E-08
4.07E-08
1.83E-09
1.75E-09
2.65E-07
2.24E-W
1.30E-05
3.33E-06
2.73E-05
3.11E-07
5.74E-05
7.WE*00
UNIT
DISPOSAL
COST
mmmmmmmm
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
UNIT
HEALTH
EFFECTS
*•»••••»
2.09E-06
3.95E-08
2.97E-09
1.2SE-06
3.4SE-06
5.97E-06
6.83E-06
1.17E-07
1.01E-09
1.96E-08
1.08E-06
6.28E-07
7.27E-08
7.39E-08
3. 746-09
3.S8E-09
4.25E-07
4.48E-07
8.46E-05
4.94E-06
4.37E-OS
4.97E-07
7.96E-05
1.17E*01
UNIT
DISPOSAL
COST
*«ma««»«
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
September 1987
F-12
-------
TABLE F-11
HEALTH EFFECTS AND DISPOSAL COSTS FOR
UNREGULATED URBAN SANITARY LANDFILL, WITHOUT INCINERATION
(PER CUBIC METER)
HUMID IMPERMEABLE
HUMID PERMEABLE
ARID PERMEABLE
WASTE
mmmmmmmmm
P-COTRASH
P-CONDRSN
L-WASTOIL
B-COTRASH
I-COTRASH
I-BIOWAST
1-ABSLIOO
I-LQSCNVL
N-SSTRASH
N-SSWASTE
N-LOTRASH
N-LOWASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASDS1
X-GIASDS2
R-INSTOF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
UNIT
HEALTH
EFFECTS
•»*»•*
5.35E-06
1.72E-07
3. 556-09
3.78E-06
3.66E-05
6.75E-05
5. 866-05
1.88E-06
1.39E-08
2.71E-07
1.14E-05
6.446-06
7.71E-07
9. 086-07
3.95E-08
3.78E-08
8.93E-05
8.84E-05
2.01E-04
7.55E-05
2.19E-03
2.50E-05
3. 266-03
4.476*02
UNIT
DISPOSAL
COST
>»*>****
U.78
U.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
UNIT
HEALTH
EFFECTS
mmmmmmm*
2.89E-05
9.35E-08
9.55E-10
1.11E-05
3.77E-03
7.25E-03
5.866-03
1.80E-04
3.27E-10
6.35E-09
1.18E-03
6.71E-04
1.83E-OS
2.13E-08
9.40E-10
8.98E-10
1.74E-07
3.59E-03
6.83E-06
1.77E-06
2.53E-05
2.B9E-07
4.34E-05
5.746*00
UNIT
DISPOSAL
COST
•«***•«
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14,78
UNIT
HEALTH
EFFECTS
xmmmmmm*
3.40E-OS
1.09E-07
4.81E-09
1.91E-05
2.63E-03
5.07E-03
4.09E-03
1.26E-04
2.04E-09
3.96€-08
8.21E-04
4.70E-04
1.50E-07
1.50E-07
7.71E-09
7.37E-09
8.72E-07
1.53E-07
1.92E-04
9.786-06
9.856-05
1.12E-06
1.66E-04
2.556*01
UNIT
DISPOSAL
COST
*•••***•
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
F-13
ScptMtwr 1987
-------
TABLE F-12
HEALTH EFFECTS AND DISPOSAL COSTS FOR
UNREGULATED URBAN SANITARY LANDFILL, WITH INCINERATION
(PER CUBIC METER)
HUMID IMPERMEABLE
HUMID PERMEABLE
ARID PERMEABLE
WASTE
mmmmMmmmm
P-COTRASH
P- CONORS*
L-WASTOIL
B-COTRASH
1-CQTRASH
I-BIOUAST
I-ABSLIOO
I • LOSCNVL
N-SSTRASH
N-SSWASTE
N-LOTRASH
N-LOWASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SHOKDET
C-TIMEPCS
R-GLASOS1
R-GLASDS2
R-INSTDF1
R-1NSTDF2
R-RAIXRSN
R-RASOURC
UNIT
HEALTH
EFFECTS
mmmmmmmm
5.80E-06
1.75E-07
4.50E-09
4.09E-06
1.15E-05
2.18E-05
2.21E-05
7.25E-07
1.37E-08
2.68E-07
3.58E-06
2.22E-06
7.64E-07
8.97E-07
3.94E-08
3.76E-08
8.37E-05
2.UE-05
2.08E-04
7.47E-05
2.0SE-03
2.35E-05
3.05E-03
4.18E+02
UNIT
DISPOSAL
COST
mmmmmmmm
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
UNIT
HEALTH
EFFECTS
mmmmmmmm
1.55E-05
7.88E-08
3.15E-09
9.60E-06
9.60E-M
1.84E-03
1.50E-03
4.58E-05
1.27E-09
2.46E-08
2.99E-OA
1.71.E-W
7.69E-08
8.60E-08
3.97E-09
3.79E-09
5.05E-07
5.73E-W
3.72E-05
6.86E-06
3.22E-05
3.67E-07
5.98E-05
7.84E+00
UNIT
DISPOSAL
COST
*»mmmmmn
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
UNIT
HEALTH
EFFECTS
mmmmmmmm
2.56E-05
1.11E-07
7.57E-09
1.87E-05
6.64E-04
1.27E-03
1.03E-03
3.15E-05
2.51E-09
4.89E-08
2.07E-04
1.18E-04
1.8AE-07
1.86E-07
9.47E-09
9.05E-09
1.07E-06
9.40E-07
2.30E-04
1.21E-05
1.18E-04
1.35E-06
2.01E-04
3.06E*01
UNIT
DISPOSAL
COST
mmmmmmmm
16.27
16-.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
16.27
Scptmfcer 1987
F-14
-------
TABLE F-13
HEALTH EFFECTS AND DISPOSAL COSTS FOR
UNREGULATED MUNICIPAL DUMP
(PER CUBIC METER)
HUMID IMPERMEABLE
HUMID PERMEABLE
ARID PERMEABLE
WASTE
•*•••••»•
P-COTRASH
P-CONDRSN
L-WASTOIL
B-COTRASH
I-COTRASH
I-BIOUAST
I-ABSLIQD
I-LOSCNVL
N-SSTRASH
N-SSWASTE
N- LOT RASH
M-LOUASTE
F- PROCESS
U- PROCESS
F-COTRASH
F-NCTRASH
C-SMOKDET
C-TIMEPCS
R-CLASDS1
R-GLASOS2
R-INSTDF1
R-1NSTDF2
R-RAIXRSN
R-RASOURC
UNIT
HEALTH
EFFECTS
nmrnmnmrnx
5.21E-06
2.07E-07
4.04E-09
4.48E-06
3.40E-05
6.25E-05
5.54E-05
1.47E-06
3.13E-09
6.09E-08
1.06E-05
5.97E-06
1.75E-07
2.05E-07
8.99E-09
8.60E-09
3.17E-05
1.63E-05
1.08E-04
1.69E-05
1.10E-03
1.25E-05
1.68E-03
2.39E*02
UNIT
DISPOSAL
COST
mmmmmmum
H.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
UNIT
HEALTH
EFFECTS
• •**•••*
7.22E-06
1. 066-07
1.85E-09
3.95E-06
6.B4E-04
1.32E-03
1.06E-03
3.26E-05
3.27E-10
6.36E-09
2.UE-04
1.22E-04
1.81E-08
2.13E-08
9.33E-10
8.90E-10
2.22E-07
6. 666-04
6.84C-06
1. 786-06
3.986-05
4.55E-07
7.34E-05
9.446*00
UNIT
DISPOSAL
COST
mmmmmmmm
U.78
14.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
U.78
14.78
14.78
14.78
U.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
UNIT
HEALTH
EFFECTS
•»••«»•
1.31E-06
2.92E-08
1.71E-09
8.51E-07
4.00E-06
7.32E-06
7.18E-06
1.60E-07
7.06E-10
1.37E-08
1.2SE-06
7.26E-07
5.19E-08
5.22E-08
2.67E-09
2.56E-09
3.13E-07
1.36E-08
6.586-05
3.39E-06
3.41E-05
3.89E-07
6.40E-05
9.28E+00
UNIT
DISPOSAL
COST
mmmmmmmm
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
14.78
Scptmber 1987
F-15
-------
TABLE F-14
HEALTH EFFECTS AND DISPOSAL COSTS FOR
10 CFR 61 DISPOSAL TECHNOLOGY
(PER CUBIC METER)
HUMID IMPERMEABLE
HUMID PERMEABLE
ARID PERMEABLE
WASTE
•*«••*«««
P-COTRASH
P-CONDRSN
L-WASTOIL
B-COTRASH
1 -COTRASH
I-BIOUAST
I-ABSLIQD
I-LQSCWVL
N-SSTRASH
M-SSWASTE
N-LOTRASH
N-LOWASTE
F-PROCESS
U-PROCESS
F- COTRASH
F-HCTRASH
C-SMOKDET
C-TIMEPCS
R-GLASDS1
R-GLASOS2
R-INSTDF1
R-INSTDF2
R-RAIXRSN
R-RASOURC
UNIT
HEALTH
EFFECTS
mmmmmmmm
3.096-07
8.93E-10
6.61E-12
5.32E-08
1.84E-05
3.20E-05
2.59E-05
7.96E-07
2.37E-09
4.62E-08
5.76E-06
2.97E-06
1.33E-07
1.55E-07
6.86E-09
6.55E-09
1.08E-05
4.69E-10
6.79E-05
1.27E-05
4.83E-0*
5.50E-06
1.93E-08
2.75E-03
UNIT
DISPOSAL
COST
«»*•«*«
830
6,202
1,726
830
830
2,726
3,872
3,872
830
830
830
830
830
830
830
1,203
17,106
97,351
218,913
830
252,918
830
7,230
5,962
UNIT
HEALTH
EFFECTS
••••*•••
2.22E-07
4.55E-10
9.37E-15
3.83E-08
4.07E-05
7.80E-05
6.31E-05
1.93E-06
3.30E-16
6.42E-15
1.27E-05
7.23E-06
1.89E-H
2.19E-U
9.77E-16
9.33E-16
1.04E-07
4.166-06
1.26E-11
1.79E-12
1.51E-10
1.73E-12
9.08E-06
7.06E-01
UNIT
DISPOSAL
COST
••••«**
830
6,202
1,726
830
830
2,726
3,872
3,872
830
830
830
830
830
830
830
1,203
17,106
97,351
218,913
830
252.918
830
7,230
5,962
UNIT
HEALTH
EFFECTS
KKKmamam
1.71E-07
• 3.63E-10
2.27E-15
2.42E-08
3.26E-05
6.27E-05
5.07E-05
1.56E-06
7.39E-16
1.43E-14
1.02E-05
5.81E-06
5.44E-14
5.47E-U
2.80E-15
2.68E-1S
3.74E-13
6.46E-14
7.00E-11
3.56E-12
3. 766-11
4.27E-13
9.08E-07
7.06E-02
UNIT
DISPOSAL
COST
mmm**mmm
830
6,202
1,726
830
830
2,726
3,872
3,872
830
830
830
830
830
430
830
1,203
17,106
97,351
218,913
830
252,918
830
7,230
5,962
SeptMfcer 1987
F-16
-------
I
5
3
MPE
s
u»
- 12
I u
to- £
t*.
O w
a
H
o n rwiM*-^*-PM*»**>«o*>**i^^«~*«»''Oi>jf>J^^ — foj^«f'..rv^^»"u-»
•- H
tl
II
(/) II w.***^^-*-^^^^***"*-^******^^*-**^^-^*****^^*****..
^ o t»^«rgcw^-fwjf>j^»*i^f^^
V)
OK
U
^ If ^ •— ^— ^— •— w— »— »— •— •— •*— ^- ~— •— V— V— ^— •— »— ^— ^— ^ ^— ^ ^— ^— ^— ^— ^ »•
Irt u i
S> g n _.'•••
^b ii ^* P^ i^ ^. i^ ^* ^m Q* *f io f^ in o* ^9 in ni ^* f^ «^ t^ P^ ^^ ^* t9 *f t^ o^ m in ^u
5> ii
M
H
i/»n»T»"^' • •*»••»••»•». •."TTT»«»«»»»
§H .
^ ij o
n
H
I/I n O.»O.O>»>"-IM««^>»>>»> — (VI»VI>oprtmi»ll^l
dc il OOOOOO^^^^^"-^^^^OOOO^O"-»-»-«-^"-»-^
^. II •
8 H «<>>*-»K>(«j'^rwin*'-»'«»0"-'O'«^*iX'<)~(\j<>J«>^r^r>i —
H
H
a> M
O « rgrJorwrf^)^oin<>iM'Ol^N.>nr«^iM^'«W<)XJ'«in(vif~-o-<-^
s - ;;
** noooeoo><,»<'*>»^^^inoooeeo««v«»o«»'*
•yiBTTTT T. . . .T.T.T.T.TTTTTTTT
§H"^..^ "*!."*,
H 1^ O* *" ^4 *"* ^ f^ ^M ^* ^4 ^^ ** ^M ^4 ^. ^0 ^ iV *" ^tf V *4T 9^ ^4 •. iJD fM v. V ^k
u-i H
ii
M
::S2SS2S2SS88S8SS8S28S$5 = S888S88
I/I H * • * • • • .»»»«»«»»»».». . . .«**«*»«
H
N
WMM«I«*»> ?| 8$ 2 12 — — 2 —
O - O CIU UU UU
~ 3^a*--**^2**58*---S2"^a"--5
-------
I
5
3
o
o
o
o
** " *"
* *
>r N -o — f« N. o> o« »• K- •« <» S < — • : ; «o
•O -
•5 g
4.) »•
§ 2
CJ
•"
«
H
5
5
e
S
« 5 S «»«(»«»«(»«»««8SS-SSSS8SS8SSS8S<«
88353 *5"88BS 55. §888. 85. 3*
--">'"u>s 8 " - * 3 •• a-~ -ft-4*2'A
5 3S3833S3833
-------
s
5
8
*»
in
•
>•
8
m »n Mo
5
§ s
§
ssssssssssssssssssssssssssssssss
^ i^ K « r\< ». ^- « — ^ rv u r> ir< ^ — K» »» »- > K. K »o r — K> »-
o e o e rvi
eoee«j — o»-«-
3 S
t*
S
S I- S S 5 2 !-1 2 s I "- • 5 I- 2 S I- * * 5 S *• § 2 * * S ' § g J
iiiilllliiiiiiiiiiiiiliiilillili
SSSSSSSS8888SS2S
F-19
-------
I
o «
u.
•c
^
O OO«OOOOOOOPXOIMOIM — >-O — OO-"O(V — OO
^^^^if*VIV^»»O»^^*^^*»^'O>OPrt — .*«-t/<^*- — l/>l^,»»».«/>fM«O
-------
8
3
s
tr\
§
O
e e e e e e
•o S
M
I
S
in
S
«- CM •-
"000000
3 M
j .= 3 . _» oi »^ws . 01 iff a
Ma«iMaw> — BM — o — — —
_i -i 01 e>
a g a 5 o. 2
M a «.
28 . 8 8 S 8
" ~ 9
F-21
-------
§
3
i
•a
OJ
3
O u
£J IW
I
fcu
~>Mnj(M0mno>«-i^(niXe>»-'-^>->-tf'elSuux^3 .2 > ^ ^ K • .olSOtSuuz
~ MOMO-MO = MM-fl-= MMOMOMM-ee — ---
31 * * Z SI Si - -
^^^|u^|u|^|ulMWUWIMWIMIMWVSBVVVXVA ^^ V V X V V •• '
OaOOOOOOeOOPOPOQP>"MMMMl»M«rtM M'M «/» M »» «• M W»
SSSSSSS9SS33SSSS9WWUUJWWWMWWWJUI«U
-------
5
3
g
SSSSS
SfSSSSSSSSSSSSSSSSSSSSSS
S8282fS2SSgSS8f§f«SffSf&8Sff8Sff§i§
^ i g i § i i gs i i i i i i i i s i i * i s i * i i i * i i i i i
IU
--N S
•o x
J 5
*^ tfe
O u
ej iu
21
£ S
§
^ o m o
O O O O O
o a e e o a o
- I
3!
2«So2§o§2§2B-2lS8S2
M —
eiSSSSSSSSSSSSSSSS
F-23
-------
en « IMiMr>m7m
rgrg — ^Ki^f^r-rg—. — »inrgrg»»i»-»-Ki — r.^«>^.«»»>i*>
S55SSSSSSS
«N'>^«9
eooe
eeee
888
^* 0^ ^^ ^ ^5 ^4 ^^ io ^
Ki(MCM»-Or>rgi^wjrg>»—•»- — — »s.ir>
sssssssss
8 8
3 g S r?
8fr=|f8g?88|88||g|8g8888888|
rgo'rgrgood^rgeiooooeorgoornodedeooo
rj
roo
to
a.
x
OJ
c
c
o
•o
4)
3
C
O
u
I
UJ
t
1
o r
U u
7 5
ta. -
•8
H
i
5
wi
m
8
<»
«
8
S*3 hb r» i^ r» »«* N-
O O O O O O O
N.N.K.K.BN.^N.«0inB»
ooooooooooooo
^•«-l>>Mf*+.+*** + + **
o w B e e e
oooo»oorgooeoooo
^ S!
«I-OO
"*
u u u u
• 8 8 ' 2 3 ' 2 S S =
5 § w s! 2
UUUUUOUUU
F-24
-------
I
0.
m
u
~ t/>
at >•
8
in
SSSSSSSSS88SS88SSSS8S88S88S2822S
•i
^
8 MMOrMOrs>«OOOOOOOOOOOmOOOOOOO»>O>O.
8
3
at
5 £ SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
oc
UJ
a
X
I I «, s s s s s s s s s § s s § s s s s s s $ s s s s s s s s s s s s
I 8
.jifc S " ^ »^ «. A.
__ O P^ ^" ^ "4 ^« ^" ^ ^* ^" *O **" ** ^^ ^" *^ *• ^* ^" *^ ^™ ^ "I '^ "* ^* ^" ™ 1^ ^ f^ J^ ^
C I/I M
5 s -
S£SSS2SSSS£SSSSSSS2SSSSSSSS232$2
8 "
m
«i
•t
»-
8
2 ^
s
»
•r
_( S • - «J O UU W U " "
S~ £ S S » »*oifcO**eeouifco*oo*
— S K»«"O — gj — «it»o*» — g — — OMMVI 8 ~ — •" *><*2""~8
oS> 3— •»•• «• — •» —
*"" TTTTTTTTTTTTTTTTT'T'T'T'T'T'T'T'T't'T'T'T'T'T'T'
F-25
-------
o>
8.
§
3
8
in
8
K % S
O in •+
o £ § S
e •• K S
S JS
iv o-
m »v fw ^ •-
SSSSSSSSSS5SSS5SS8SSS5SS3SSSSS
tf%ruXp^ipbZio^k^rst^^o
^«3'4>»S-o-rK.S.^^Kim
^••3m«N^«9in«»l>i
See«)
ooaoeeeopeeeeeeeooeeeoeeeoSoo
^(vviniv^«'«-
8999999999m9m^9'"!fi£9999999Q9OOQ
^9 O O O O ^9 O O O ^ O ••* C? O ^ O O O ^^ w O ^9 O ^9 O O O O O
gggggggggg^g^g^^gggggggggggg
e e K* o o o e
e e
o 5
U IM
I
0)
(8
I
1
8
8
o o o o
s s s a
N*^i/ -^*-^.r^^irgrg/v«-«-
s
oodooooo
ooootSooooootSoooooooooo
o>N.fv-'v«-^<«>-^rv-
IF S ^*
in 'C «• »n (v
rv^**<>ioOKff\i^
^^•o^^oo*^***-
*J«v«ciX«^/%!»-»-
-------
8
3
8
8
^^£tninuitnm»»
g
$ o Z
*
K.Jn^«j!»\"«*ii^
* w
fw^^^rpniwrMmAifWO*^
^•-niO-*-^«»«n-»~-o>O>'O»i
— » «M
g
Xj in
•» e
rgrg*.r~«rs.r«.tn'^«rM*>Br*innj.«
rg^r«iMrsi^.*intntn«'«'O««^o
in in i/\
^Oinpt«»eiM^a«»4D0i/\
m -• »- »v •- in •* ^ fw rw o> •- iv nj
ii! g
W **
???????
•-^•-^•^•*iv»»inm — tn«K(—•
£8^22-8888888
^^g^ggggggg
e e e e e e e
*
i
a »
5 8
§ i
N-' U.
hfe
lA "^
I I
8
8
g g g g g
SS888S8Szs2:i5f~5!
IM p^ rg -« m M
».' B rg n)Clnf^iv^nir>'4>tC^Si»4>^^
«J»-f»irg«»>*^'»^ — >n •* pn ^
8 2 8 2 2 S 5
+ •*••••
o ?5 o AI ^ o 5
8888888
i i i g g i i
e e e e e e e
- K
§1
*!
°3
K £
3 S
«ra v* V wv m
zjg^SS
»i«iviMMin9i9)9iiA
U U
a - -
* wi ui wi irt «n
222222
!iaaa9-*itfi
V>V>W>«tVlMI«»l«ll»V»VIVIVIM
lllll
F-27
-------
g
in
s
fifiSfifififififififiSfiSSS
in CM in
o> o
IMOOOOOOOOOOO
c
o
c
o
u
o
.c
H
I
o 2
u £
2 I
§
§
S
m
o e o o o
o o o o
-------
2 SSSSSSSSSSSSSS«SeScSSSS&S8SgSSS22S
in
or
^
•r
u
~ VI
$ 5
8 8 *-e^«^^^~«i«^o.>o«.-«-^«-«^«««-«^0'
in
•
^
8 >-o'Morgi\joo-«ooooor<.Oinom*i-*oooooooo
8H
_ •
a
u
«
IW
5 £ S S 8 S S S S S S S 8 S S S S 2 3 * 3 3 S S S 5 S 8 8 S S S 8
I | „• ~ S • * • • * "^ ° * °' '• ' C- ' ~ * ' " ' " ' S" * " "' S" * ~ '
' S
§ ^ !S
5 5 i
u i*. e
^ o
n "* * *~
O — IA
o u —
,A uj « Wl • • . i
u. i ~
« s
? I ? I r r I I ? I I I I I ? I ? I ? ? ? I I I I I I I I I I
"2 oe«e««eemee'eeem«3nieoinjiseeeeeeeeeo
o
^
222222^X^z<8^zi^-!2S22!28^ilsz.K*OeUlbXOBQO>^*OOQ*OQUa
s««-ia-asrf«-8{'-a-a5«a<.-a<.-aSrt«-rtrta.-as«M
o ^ si 5 rt 5 rt 2 « S
4C
l/t K
« to
F-29
-------
I
a
I/I II •• •• <*•
« tt!
O H
5 H
^ II
•**>ir<<*~**ir\irt~
•r H
»• H
^ « ^ IM
§
H o> o r^ o
O O O O O O O ir> O | < <• «n O O
(9
tt
*
U
i
= s
•H E
O u
o {-
U. w
O u
3 I
8
8
£
?
•C 0 IA rw
8 f 6 8
i i i i
- K
«» 8
s -
i
S
3 .R5jj^«>u!».B
333
3999
F-30
-------
I
8
3
n ^
i/» u
OK H
>- H
8
in
8
g^^gggggiiiigg^^^iiigggggi
KI«IMIMIMOOOOOOOOOOOKI»
eee
8
VI
u
sO "
Z 1
8
8
=$S£88ff888fSf8S?5«£8|8||8888
^^ggggggggggi^ggiggggigggg
o o o o
^je^>^^goAQAeQQMQONo » e e
e e e o
^85S£|8|8ff|fff|2f5558f8888888
^g^^gggggggggggHH^ggggggggg
e e e e
eoo
oaaaoeo
e e o
8
g
S8888888f888S!8SSS888888888
ggiiiiiiiiii^i^^iiiiiiiii
eeeeooeeememmmeee
e e e
Ul X
V-
- Si
VI •
• Ul
O —
u, S
ii
si z
- ef g g
«n v) K v>
u u u u
ik ik a a o o o « fifi
^ w S ^ vi • ^ • vi »ui •Bvi
vivi = vi_avia-o «--
8
i/i i/i vi vi «n in i/i
2 s 2 : s s :
e
u u
S2S8S88"*S8
VIVIVI — V> — — OO **
ft
xxxxxxxxxxx.xm.acxx
(A(/l(/tW>(AVll/)WIVIIAVk«rt(A(A
888888888
F-31
-------
CM
I
5
3
5 8
4J -
C M
U tu
I ^
fc
«
s I
s
o
8
8
8
— -»~-in.«..««
»-o^- — ^oooo
O KV * O O
gE-^i|g8gSfSf|SS£SSSSSSSSSS£
r^ V *•' *-' ^ O O 0 O e O O O d iX in tX iX ir iX -« W *« -« P^ i^i m rw
Qg^^»JgpQQgggggg^«/S^lfitAlfti^^lf>^^^^^p
^o^^^^oOoOoooooooooooo^oooooo
0od00o55oooooo^«oiA*tf«tmo^iAiftfti«o«o*^
S 8
^ g
2ii888888SS8SSSS££S5SS2SS
ggg
^ o* IA C RI •" 3
S8222S8SS888SSS8SS88SSSS8SS88
^ o ^- •- •-
X
0>
C
e
o
•o
V
3
C
O
u
flj
H
Si
iE
ii
ui 5
» Ui
s s
a to
u u
5 5 S 8 8
VI VI VI VI
VI VI VI VI
i
g- - g- v,2-'-v,v,--3gv, v. 2-~ 8
i2«53g8£888888898898§§-§a
iJ^iJOOOOoviviviMvivivivivivivivivivivi
iiilssissssssssssssssss
F-32
-------
ft
5
3
l/l
oc
u
§
8
ssssssssssssssssssssssssssssssss
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
1 1
5 8
1. =
ssssssssssssssssssssssssssssssss
I
8
SSSSSSSSSSSSSSSSSSSSSSSSSSSSS2SS
IA K. «n ^
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS2S
- 5
3!
a, 5
» Ul
4 *
3 *»
5288 *.* SS5 * 883 "«Bi288* ".535*883 "as
* - - 2 - - """" «• - - - - - - - «• -
a
3 a - - §
a
iiiiiiiiiiiiiiiiiiiiiiliiiiiiiii
=1===1===1======888SS888888888S3
F-33
-------
«0 M rg rO nj <\i
IS. K. fs. N. N. K.
vt O O O O O O
• 5 r« rJ oj '
u "~
_ .. SSSSSSSSSSSSSSSSSSSSSSSJSSSSSSS
>-vO«o>-«<#m
£
w
^
i
u _ ^-.^-,_ __
CL 2 i^^"*"***'**l**l™*"<||'"*"^**»pi^^»'|OW*o*o»^in(O^«*^wi|fl^^i^*w
? i
a i M ooooooaeoeoeeeeeeoeocoo?ooebeic>i3
•S 8
^ **•
C
0 - w
v- S! *
». _>
vO uj «
8
01 *
^ |
5!
i §.
M M V» M V> <^^XX'^XX**~*"~*""~X~XXXXX^
"'uu u u uu " "
«k e o a x 1^ o x o o o o u >* o e o
3
C
C
O
u
F-34
-------
8
£
ui
«j
1 I
C m
•* O
u "•
S
S 5
b.
2 5
S
IM O O O O O
0000000
iiii
(x^niMommm ooooooooooo
m o o o o
S
S
oooooooo
SSSSSS8SSSSSSgSgS8222~|88S8888|Sf
— 0>
SS§SSSSSSgggSggg$822258888S8Sg§g
000
SS3S88S228.222828S8222S88fgffS888g
—
-------
>
It
^
u>
m
^
w
V)
Of
u
»»
IU VI
^
s
in
vi
»-
5 mN.m>»oo — -oo^^worgooiv — N--oooM»o-o>n^.o-»oo
s
•*!
» jo SSSSSSSSSSSSSSSSJSSfiSfiiSSSSSfiSSSSS
_ KfMo3J5'O^Of^OO»cCiftO*V*^i^»np*i^^^K»55^ini*^SofW$
A! § rJ«^Kif^^lXlA^P^«K^»^W^^^>'>>O'O-Kl<>^iX^Nl/i'*<**li^
I I £ s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s $ $
C K -. _~. _. _ *. ,_ ___ _ ___ _
n U) M O m»»^^.^«K-f^^.j»»'i^(^>»-inPu
ai z wi
1 ?
8
_ X
"* K
« S MM«»WMW«K«X9lU
3 «<«<<« a
_, S! " o u o u ^ ^ ^ "
S 3 2 § *. IS 3 I § § 2 12 s s 2 5 2 § [• J 2 § jj I 2 2 *- 2 a s
^
s s I I I I I I I I I 1 I I I I I 1 i I i 1 I I I I I I i'i i i i i
4 ||K u U_ (A. tA- U_ IA. **- kA. »A- t^. kA. M_ U_ ^ U. t^ ^B •«• •• •• «• «M ^ ••• •• •• •• ^ •• ^ ^ ^
F-36
-------
I .
^
I
n >
$, 5
bu -J
ssssssssssssssssssssssssssss
SnOO*'oZp»>'<»«>^'OiAi/\'O*5^O*XXZXSZBXBBB
F-37
x
01
c
c
o
•o
u
3
o
u
-------
I
I
u
1 I
S 8
4J <*•
C «
S 5
_ ssssssssssssssssssssssssssssssss
^ ^ „„*,„*,„„„„„„,..„„„„„.„,„„.*.,»„„
" — K- *•« -CO PI «-•- — — —'•<> !•."»» fj — ^ —"—'—" — f-" m l*> «V PW P»i f>J —'—'•
u
•»
w
u
^
I .
SSS8S8S228228288SSSS88SS§gggg8gS
§
o
>OFs.ls.K.K.I>>^^.l>o«l«>«D4>4>^l
in
•I •
M o ^^^mtn^^i^*BttB0iA^OM^^^^^*M^MOf^i^«*9**"^«|v**^
«~ isl 4> iO
v>
>•
|
lS =
u u u u u u u
< lfcO9*8*t*'oo!i:88*8
-------
S
o
•O =
(U S
3 *
S s
^ tte
C wi
S 5
u. «
UJ
01 *
2 1
Cy ^
H |
S
S
.....
^^<<-<^^)'O^^4)
ppppppppoppo
s ?5 ^ 5 * O 5
.
>• (M rsi »•
.c
2s
eo
33
SSSSffSSSfSSSfgffeSSSffSSSSfffS
S
s
ssssssssssssssssssssssssssssss
$$$$S$$SS$SS$S£SSSSSSSSSS$2SSS
>>Pain>r>^^>»<«- — ^>n^ — ^rx«n»>jf«o«f»p»i
e
88SSS8SSS8SSSSSSSSSSSS882S
u, 5
K £
3 S
si 2
si si
VI- M VI M
-------
I
a.
S
o
I
I 1
§ 2
u u
01
*•*
-a
w>
•c »»••*»•«»»» * * « »
8 **. **!"^^*f....
• -^«-ooooooooo
in
•c
^
M
VI
K
U
U
X
3
^
S ^OO>O'O'OOOOOOOOOOOO^O»-^-«-OOOOOOO
lA
w .». . .»»»»*»»»»»» T • T T .»•»»»«»
"" S8Saa88S8SoS55fiSSsSSSsSa8sSS
8
"H^^^M^^MM^~~~MMM^M
^Kmmmeeeeeoe'eeee«<^eeoei - ii y ii " " " "
••MM*- •• «* <•
s
SS3lisSSSSSSSlsS5K5555R5555- RK
• S«««SSS55«5««giBj^^^^i|^j3i|^^||
Ig'""------ - - ---.---.---
rao
(3
Q.
X
01
e
c
o
•o
-------
S
s
gSSg^^**<=>
000
•O (M ^t tf^ I** **
3 •-:<•- V « INI
SSSSSfeSSSZSSSeSJJSSSJSSfififififififi
<*«<»t-'*.s.N.o»--*^inm
3ooooooo»- — — —••--•
A* in tfs Pi !n 43
~ ^ > -o j^(M^^»»i>^^oj«s^inrM
222S£SSSSS8S8SS£S88228222SSS§
*«*•««. . . .«». . « . . .«,«•
o e
3 I
•5 8
U u.
n «
O >-
n
H
5
S
8
S^^^^^^^OO^i^^^M*^
ooooooo^-^^-^^^op
^ K *^ ^ ^ ^ i^ 5 ^ v> B ^* o 9 ^ ^
i^O0^*A^^0^*<^OiA-ff^OOt
lA •* 5
9* O fW
S2222SSS22
0000
Sgg£333S2£
B^^^-^S^-'JJOin^pnoS*-*
^•n«ininv^^CpXf«4^^>o<5oooeo$Soi^ool^Co^OfMo^oo
SI
£ 3
VI
-------
I
8
o
3
~ 2
•o c
I
•H S
s s
u*
0) itf
g S33SS333333SSgSS::"88S88S88888
^
oc
u
* »H u,
jMN»**Mv*^mh>^t^-c<*v^*i*-*fnr*f*~~~~ooodooooooo
w>fwK.K.r.f^».K.K.K.».K.ee4>ooeeeooooo
v»
M 8 «->N.'«'«'.O'O^--—'^^ — •o'V'-o — — — o'docio'oooooo
•c
.^
tf