United States
Environmental Protection
Agency
EPA bOO 3 82 '44
August 1 98?
Research and Development
Frequency
Analysis of Pesticide
Concentrations for
Risk Assessment
(Franco Model)

-------
                                              EPA-600/3-82-044

                                               August  1982
FREQUENCY ANALYSIS OF PESTICIDE CONCENTRATIONS
      FOR RISK ASSESSMENT .(FRANCO MODEL)
                      by

           A.R.  Olsen and S.E.  Wise

                   Battelle
         Pacific Northwest Laboratories
           Richland, Washington 99352
            Contract No.  68-03-2613
                Project Officer

               Robert B.  Ambrose
 Technology Development and Applications Branch
      Environmental  Research Laboratory
           Athens,  Georgia  30613
      ENVIRONMENTAL RESEARCH LABORATORY
      OFFICE OF RESEARCH AND DEVELOPMENT
     U.S.  ENVIRONMENTAL PROTECTION AGENCY
           ATHENS,  GEORGIA  30613

-------
                     NOTICE

Mention of trade names or commercial products does not
constitute endorsement or recommendation for use.

-------
                                  FOREWORD

      As environmental controls become more costly to implement and the
penalties of judgment errors become more severe, environmental  quality
management requires more efficient management tools based on greater know-
ledge of the environmental phenomena to be managed.  As part of this Labora-
tory's research on the occurrence, movement, transformation, impact, and
control of environmental contaminants, the Technology Development and
Applications Branch develops management and engineering tools to help pollu-
tion control officials achieve water quality goals through watershed
management.

      Many toxic contaminants are persistent and undergo complex interactions
in the environment.  As an aid to environmental  decision-makers, the Chemical
Migration and Risk Assessment Methodology was developed to predict the
occurrence and duration of pesticide concentrations in surface waters
receiving runoff from agricultural lands and to  assess potential acute and
chronic damages to aquatic biota.

                                      David W.  Duttweiler
                                      Director
                                      Environmental Research Laboratory
                                      Athens, Georgia
                                    m

-------
                                  ABSTRACT

      This report describes a method for statistically characterizing the
occurrence and duration of pesticide concentrations  in surface waters
receiving runoff from agricultural  lands.   The characterization bridges  the
gap between simulated instream pesticide modeling  and  the risk assessment
information available from laboratory studies on aquatic biota.  A computer
program FRANCO is given to complete the frequency  analysis of concentration
characterization.  The documentation is part of the  Chemical  Migration and
Risk Assessment Methodology.

      Companion reports to this document are Methodology for  Overland and
Instream Migration and Risk Assessment of Pesticides,  User's  Manual  for the
Instream Sediment-Contaminant Transport Model SERATRA,  User's Manual for"
EXPLORE-I:  A River Basin Water Quality Model (Hydrodynamic Module Only),
and Mathematical Model SERATRA for Sediment-Contaminant Transport in Rivers
and Its Application to Pesticide Transport in Four Mile and Wolf Creeks  in
Iowa.

      This report was submitted in partial fulfillment of Contract No. 68-03-
2613 by Battelle Pacific Northwest Laboratories under  the sponsorship of the
U.S. Environmental Protection Agency.  This report covers the period April
1978 to January 1980, and work was completed as of January 1980.

-------
                                  CONTENTS


ABSTRACT	iv

ACKNOWLEDGMENTS   	   vi

SECTION 1 - INTRODUCTION  	    1

SECTION 2 - FREQUENCY ANALYSIS OF CONCENTRATION CONCEPTS  ...    2

SECTION 3 - HYPOTHETICAL EXAMPLE ILLUSTRATING FRANCO
            COMPUTATION   	    8

SECTION 4 - FOUR MILE CREEK WATERSHED CASE STUDY	13

SECTION 5 - REFERENCES	37


APPENDIX A - FRANCO USER'S GUIDE  	   38

APPENDIX B - FRANCO PROGRAM MODULE DESCRIPTIONS   	   49

APPENDIX C - FRANCO SOURCE LISTING    	   58

-------
                               ACKNOWLEDGMENTS
     We wish to acknowledge several people at Battelle, Pacific Northwest
Laboratories who significantly contributed to the development of the con-
cepts, and their implementation, for the statistical frequency analysis of
pesticides.  Yasuo Onishi, Stuart M. Brown and Mary Ann Parkhurst ade-
quately described the information available as input to the analysis and
defined the toxicity information form.  Without their help this program
could never have been designed.  In the early stages of development,
Jim Johnston's painstaking attention to details and their implications was
invaluable.  The assistance of Sharon Popp, Barbara Roberts and Mary Heid
in preparing this manuscript is greatly appreciated.

-------
                                 SECTION 1

                                INTRODUCTION
     In order to provide planners and decision makers in government and
industry with a sound basis for their decision making, a methodology  is
needed to predict the occurrence and duration of pesticide concentrations
in surface waters receiving runoff from agricultural lands and to assess
the potential acute and chronic damages to aquatic biota.  Such a method-
ology has been developed by Battelle, Pacific Northwest Laboratories  (1).
The methodology consists of:  1) overland pesticide modeling, 2) instream
pesticide modeling, 3) statistical analysis of instream pesticide modeling
results, and 4) risk assessment procedure.  This document describes the
methods and computer program used in the statistical analysis of the
pesticide concentrations

     The statistical analysis was designed to bridge the gap between  the
results of the instream pesticide modeling and the risk assessment infor-
mation available from laboratory studies on aquatic biota.  The instream
pesticide model used in the methodology, SERATRA, provides detailed pesti-
cide concentration data over the simulated time period.  For example, the
pesticide concentration is given for each half-hour for 3 years in the
case study used.  A summary of this simulated pesticide time series is
necessary if it is to be useful in a risk assessment.  The pesticide
concentration time series defines the information available for the
assessment.  The particular summary selected is based on the toxicity
information available from laboratory studies.  Results of acute bioassays
and toxicity testing are reported as the median lethal concentration
(LC50) for selected time periods, usually 24, 48 and 96 hours.  Chronic
toxicity is usually recorded as the amount of toxicant causing measurable
effects-  The maximum acceptable toxicant concentration (MATC) is one way
to describe the effect-no effect boundary for chronic toxicity.  The
methods embodied in the frequency of Analysis Concentration (FRANCO)  com-
puter program provide the link between the data available from SERATRA and
the available toxicity information.

     The concepts underlying the procedures used by FRANCO are explained
in Section 2.  This theoretical discussion is followed by a hypothetical
example in Section 3.  Section 4 briefly describes an example from the
case study and illustrates the computer output available from FRANCO.
Appendix A contains a user's manual for running FRANCO.  Appendix B
describes the functions of each of the modules in FRANCO and gives their
interrelationships.  Appendix C contains the computer program source  list-
ing for FRANCO.

                                      1

-------
                                 SECTION 2

                FREQUENCY ANALYSIS OF CONCENTRATION CONCEPTS
     Statistically summarizing the simulated pesticide concentrations
requires a precise interpretation of the phrase "frequency of occurrence
and duration of pesticide concentrations."  The risk assessment method-
ology provides information on pesticide concentrations that will result in
an effect if the concentration remains at or above a specified level for  a
certain length of time.  This concept forms the basis for the statistical
summary.  The summary of the simulated concentrations uses specific defi-
nitions for these terms:  event and duration of an event.  An event
defined by a concentration of C occurs when a sequence of simulated con-
centrations begins below C at time step tj_, becomes and remains greater
than or equal to C in subsequent time steps and then drops below C after
time step t^ (see Figure 1 where C is C$).  This is referred to as an
event defined by concentration C.  The duration of an event defined by
concentration C is the length of time from the beginning to the end of the
event, e.g., t2 - t]_.

     Utilizing the preceding concept of an event FRANCO provides three
types of summaries:  counts of time steps, counts of events and
LC-function global exceedance.  The latter is defined subsequently.  Let
Ci
-------
                                                                                    o
                                                                                    Csl
                                                                                                          to
                                                                                                          c
                                                                                                          o
                                                                                                           (13

                                                                                                          +->
                                                                                                           c
                                                                                                           CD
                                                                                                           (J
                                                                                                           C
                                                                                                           o
                                                                                                           o

                                                                                                           OJ
                                                                                                          TD
                                                                                                          •r—
                                                                                                           O
                                                                                                           CJ
                                                                                                           CL
                                                                                                           0)
                                                                                                           S-
                                                                                                           Cl)
                                                                                                           CD
                                                                                                           E
                                                                                                           Q.
                                                                                                           OJ
                                                                                                          -M
                                                                                                           OJ
                                                                                                           E
                                                                                                           QJ
                                                                                                          •4-)
                                                                                                                C_>   O O

-------
     The second summary is a count of the number of time  steps  in  all
events defined by concentration C-j with a duration of dj  or  greater.
This is denoted as NT(C-j,d,-).  When the duration is d]_, NT(C-j,di)
is equivalent to
     The third summary measures the frequency of occurrence  of  concentra-
tions greater than or equal to C-j for all durations.  Mathematically,
this is given by the fraction:
                  ANT(C>C.)
where T is the total simulation time and  A is the time  in  a  single  time
step.  PT(CIC-J) is a decreasing function  of C-j with Py(C^O)  =  1
and PT(C>Cmax) = 0 where Cmax is the maximum simulated  concentration.

     As an illustration of these summary  measures, a particular  time
series may indicate that for 10% of the time the concentration is greater
than or equal to C-j, i.e., Pj(C^C-j) = 0.10.  At the same time  the
total number of events that occurred during that fraction  of the time  may
be 5, i.e., NE(OC-j) = 5.  In another case  a single event  may  be respon-
sible for the 1035 figure, i.e., Pj(C^Ci)  =  0.10 and NE(C^C-j)  = 1.
     The fourth summary gives frequency of occurrence  information  for
events categorized by duration.  It  is a generalization  of  the  previous
summary and is defined as:

                      ANT(C.,d.)
      PT«>C.,D>d..) = - ^_.



This gives the fraction of the total time there were events defined by
concentration C-j that extended for durations  of dj  or  greater.

     The following two relative frequency summaries only consider  events
defined by a single concentration level C-j.   They  are  useful  when  rela-
tive frequency information is desired for durations while only  considering
a single concentration level to define the events.  The  summaries  are:

                      NE(C,,d )

                                 and
                      NT(C.,d.)
      PT(D>d.j C>C.)

-------
for j=l,2,...,n and i=l,2,...,m.  They measure relative frequency  with
respect to the number of events defined by concentration C-j  and  the
amount of time in events defined by concentration C-j, respectively.

     Laboratory toxicity experiments provide the main basis  for  developing
a risk analysis for fish.  A common method of summarizing  the  results  of
these experiments is to use a medium lethal concentration  LC50 where 50%
of the fish die.  A concentration, say C96, is determined  such that 50%
of the fish die when exposed continuously for a duration of  96 hours,
i.e., d96.  The previous summaries give:

      a)  NE(C96,d96); the number of events defined by C96 with
          durations of 96 hours or greater, and

      b)  Pj(C>C96,D:>d96); the fraction of the total time  period
          that the calculated concentration exceeds the 96 hour  lethal
          concentration.

Usually information for LC50 concentrations at 24, 48 and  96 hours is
available.  This information may be combined in the form of  an LC  curve.
In this study it is assumed that an LC curve is represented  by up  to five
piecewise straight lines, as shown in Figure 2.
o

<
I—
LlJ
O
       .12
       ,24
       C96
                   12     24          96

                              DURATION

                  Figure 2.  LC50 piecewise  linear  curves.

-------
     The summary NE(C96, d96) is a count of the number of times the
calculated concentration time-series meets or exceeds the 96-hr LC50 value
(shaded region above the LC50 curve in Figure 2).  This is termed a point
exceedance of the LC50 curve.  Multiple point exceedances can be measured
by judicious choices of dn and C-j in the preceding discussion.
Py[Dxl96, C>C95] gives the fraction of the total time that the time
series is in the 96-hr point exceedance.

     A more comprehensive measure of exceedance is to obtain the fraction
of the total simulation time that the calculated pesticide concentration
exceeds a LC50 curve (shaded region above the LC50 curve in Figure 3).
This is termed a global exceedance of the LC50 curve.  It is defined as:
     Pr(LC50) =
          ("number of time steps in distinct events  -i
          [such that (C.,d.) is above the LC50 curve  A
          	1—J	-*
o

<
\—
UJ
O
2T
O
           ,96
                             24          96

                                  DURATION

                 Figure 3.  Global exceedance of LC curve.

-------
 This  summarization  can  be  conducted  not  only for an LC50 curve but for
 other LC  curves  such  as LC90,  LC10,  etc.   An example of the use of this
 summarization  involves  deciding  whether  fish will  be killed by acute
 toxicity  or  chronic toxicity under a certain condition.  Assume that the
 chronic toxicity has  a  duration  of 96 hr or  more.   In order to obtain the
 answer, summarization will  be  conducted  for  the following cases:
 a)  Case A has  a  LC  curve shown by the solid  line in Figure 3,  b)  as shown
 in  Figure 4, Case B has a  LC50 curve which is the  same as the  LC50 in
 Case  A for the duration of 96  hr or  more but is parallel to the vertical
 axis  at d =  96.   PQ for Case A provides  the  fraction of the total time
 that  50%  of  fish will be killed  by both  acute and  chronic toxicity of its
 pesticide.  PQ for  Case B  provides the fraction of the total time that
 50% of fish  will be killed by chronic toxicity alone.
      .12
<
at:
o
•^.
O
o
.96
                    12     24             96

                                 DURATION
               Figure  4.   Global  exceedance of LC curve for the
                          duration  greater than 96 hr.

-------
                                 SECTION 3

           HYPOTHETICAL EXAMPLE ILLUSTRATING FRANCO COMPUTATIONS
     The statistical summaries based on the concepts  in Section  2  are  com-
pleted by the Frequency Analysis of Concentration  (FRANCO)  program.  The
analysis requires a set of concentration values  and a set of  durations to
be specified.  The time series is summarized based on these specified
values by a count of the number of events defined  by  concentration level
C-j with a duration of dj or greater.  This is denoted by NE(C-j,dj).
A second count is made of the number of time steps occurring  for all
events defined by concentration level C-j with a  duration of dj or
greater.  This is denoted by NT(C-j.dj).

     As an example, suppose C\t C2, Cq, CIQ, Ci5,  and C20 are
the specified concentrations and dj_, d5, d}Q» d^5  and d2Q are
the specified durations.  Table 1 presents the number of events  defined by
concentration levels C-j and duration dj for the  data  given  in Figure 1.
TABLE 1.  NUMBER OF EVENTS DEFINED BY CONCENTRATIONS C  WITH
                                     FOR DAT

                                    Duration
                 DURATIONS OF dj OR GREATER FOR  DATA  IN  FIGURE  1
              Concentration
                  C4


                  C10

                  Cl5
dl
1
3
4
4
3
0
^5
1
2
2
1
0
0
dlO
1
2
1
0
0
0
4l5
1
1
1
0
0
0
^20
1
0
0
0
0
0
     Table 2 presents the number of time  steps occurring  for  all  events
defined by concentration levels C-j and durations  dj.   In  the  example
d]_ was selected to be one time step, C]_ to  be zero,  and C2  to be  a
model output cutoff value above which calculated  instream dissolved

-------
pesticide concentrations are statistically analyzed.  These  choices  are
necessary for further analyses to be meaningful.  Under  these  restrictions
the total number of time steps in the study period  is given  by
NT(Ci,di), the number of time steps with simulated  concentrations
above the model cutoff by NT(C2,di) and the number  of events defined
by concentrations above the model cutoff by NE(C2,dj).
    TABLE 2.  NUMBER OF TIME STEPS FOR EVENTS DEFINED BY  CONCENTRATIONS
                                           HEATER  FOF

                                           Duration
WITH DURATIONS OF dj OR GREATER FOR DATA  IN FIGURE  1.
              Concentration

                  Cl

                  C2

                  C4
                  Cl5

                  C20
dl
40
35
28
13
4
0
d5
40
33
24
6
0
0
410
40
33
17
0
0
0
dl5
40
19
17
0
0
0
d20
40
0
0
0
0
0
     In addition to the tabular summaries of numbers of events  and  time
steps, a compilation of each individual event defined  by  the  input  con-
centrations C-j is kept internally in FRANCO.  This  compilation,  in  the
order that is actually completed, is presented  in Table 3  to  clarify  sub-
sequent concepts.  Event concentration refers to the concentration  level
that defines the event.

     More specific information is obtained by considering  the duration  of
the events.  For example, if a 10-hr LC50 value is  given  by Cq,  then  the
number of times this occurred, the total time during these occurrences  and
the percent of time during the study period this LC50  condition  was
exceeded is available.  The number of events is given  by
the amount of time by NT(C4,djo) and the percent of time  by
NT(C4,d-|n)/NT(C;L,d;i).  All of these are available as output from
FRANCO,  this is valuable in the risk assessment methodology  as  it  gives
information on whether the instream pesticide concentration exceeds
specific laboratory determined LC50 conditions.

     If more than one LC50 condition is of interest, then  each  can  be con-
sidered separately using the above approach.  In that  case care  in  the
interpretation of the results is necessary because  of  possible  double
counting of times and events.  An alternative summary  termed  global
exceedance is given to eliminate double counting.   Global  exceedance  is
based on the same concept as an LC50 function.  An  LC50 function can  be

-------
          TABLE  3.   COMPILATION  OF  EVENTS  IN  ORDER  OF  OCCURRENCE
                    FOR  EXAMPLE  DATA

     Ending  Time Step     Number of Time Steps     Event Concentration

            5                        1

            7                        4

           15                        2

           17                        6

           19                       17                       C4

           20                       19                       C2

           23                        1                       C4

           24                        2                       C2

           26                        1                       C15

           26                        1                       CIQ

           28                        3                       C4

           34                        2                       CIQ

           37                        7                       C4

           39                       14                       C2

           40                       40                       G
defined by specifying pairs of concentration and duration values based on
LC50 experiments.  By connecting these pairs with straight line segments
and extending the function in a reasonable manner at each end, a function
is defined such that an event defined by a particular concentration level
with a particular duration can be classified as exceeding or not exceeding
the function  i.e., exceeding an LC50 value (see Figure 5).  An event
exceeds the LC function when the concentration defining the event and the
duration of the event results in the pair falling above and to the right
of the function.  For the example data three events exceed LC function 1
(see Figure 5):

     Ending Time Step     Number of Time Steps     Event Concentration
           19                      17                      C4
           17                       6
           15                       2
                                      10

-------
O

<
I—
LU
O

O
O
         '20
          15
          '10
                                              LC FUNCTION 1
                                        	LC FUNCTION 2

                                        	LC FUNCTIONS
               dld2
                                    10

                               DURATION
15
J20
    Figure 5.  Examples of functions used for global  exceedance  summary.
     However, all  three events occur during  the  same  time  period  of  the
study, i.e., they consist of different slices  of the  same  pesticide  con-
centration peak.   The global exceedance summary  eliminates this double
counting by reporting only those events with the lowest  concentrations
that occur in different pesticide peaks.   In this case only the event
defined by 04 is  reported for LC function  1  in Figure 5.   A summary  is
given of the number of non-overlapping events  above the  LC function, the
time during the study spent above the LC function, expressed as time and
as a percent of the total study period.

     By selecting  different LC functions it  is possible  to differentiate
between short-term high concentration pesticide  peaks and  long-term  low
concentration peaks.   By specifying the LC function to be  the model  cutoff
concentration for  all durations, as in LC  function 3, the  location of each
                                     11

-------
pesticide occurrence instream can be determined as well as the global
exceedance summary information.  Figure 5 shows three LC functions which
split the concentration-duration space into four non-overlapping regions
(numbered 1 to 4).  The percent of time spent in each region can be deter-
mined from the global exceedance percent summary.  First LC function 1 is
exceeded 42.5% of the time, LC function 2 is exceeded 45% of the time, and
LC function 3 is exceeded 87.5% of the time.  Therefore, during the study
period the time spent in each region is:

                         Region 1       42.5%
                         Region 2        2.5%
                         Region 3       42.5%
                         Region 4       12.5%

An interpretation of these numbers might be that 12.5% of the. time no
significant pesticide concentration was present instream with the remain-
ing 87.5% divided among acute episodes 2.5%, chronic episodes 42.5% and
potential but undetermined effects 42.5%.
                                    12

-------
                                  SECTION 4

                    FOUR MILE CREEK WATERSHED CASE STUDY
     The dissolved pesticide distribution near the mouth  of  Wolf  Creek
River Kilometer 5 was selected to illustrate FRANCO analysis procedures.
A complete description of the case study can be found  in  Onishi et  al.  (1).
The pesticide migration was simulated for the three-year  period June  1,
1971 to May 31, 1974.  The simulation results near the mouth of Wolf  Creek
were analyzed.  A 30-minute time step was used, resulting in 51,264 simu-
lated dissolved pesticide concentrations to be summarized by FRANCO.

     Data input for FRANCO requires concentration and  duration values to
be selected based on the laboratory toxicity information  and preliminary
information on the concentration and durations expected from the  SERATRA
simulation.  Table 4 summarizes the risk assessment information used  in
defining the input.  SERATRA uses a cutoff value of Ixl0'9 kg/m3  for
dissolved pesticide concentration.  It is assumed that simulated  con-
centrations below that value are zero.  This basic information was  used to
define the input for FRANCO.  A complete description of the  input proce-
dures is given in Appendix A.
         TABLE 4.  CONCENTRATION AND DURATIONS FROM RISK ASSESSMENT
                   RELATIVE TO FRANCO INPUT

                                  LC 50 Concentrations  (kg/m3)
                                  Toxaphene          Alachor

               24-hour LC50      1.15 x 1Q-5        9.6 x  10~3
               48-hour LC50      8.4  x 10~6        7.8 x  10'3
               96-hour LC50      8.4  x 10~6        3.7 x  1Q-3
               MATC              1.5  x ID'8        1.9 x  10~4
     FRANCO'S input procedure presently requires the user to judiciously
select the concentrations and durations to be used for summarization.  The
risk assessment information is used to assure that the basic information
desired is available.  For this case the seven concentration values  in
Table 4 and the SERATRA cutoff value were used as concentration  input
values.  A user determined number of concentration values between the
input concentrations were logarithmically interpolated by FRANCO.  The
number to be interpretated is chosen to provide a smooth description of


                                     13

-------
the simulated concentration distribution.  A trial and error process  is
used to obtain approximately an equal number of time steps between  succes-
sive concentration levels.

     The durations selected should include the LC50 durations as well  as
reflect the durations that are expected to occur or be of interest.   In
general, as many concentration and durations as FRANCO allows should  be
used.

     The global exceedance summary requires LC curves to be specified  as
indicated in Section 2.  The curves are specified by concentration  dura-
tion pairs that define the endpoints of each piecewise linear segment.  A
maximum of five such functions may be specified in a FRANCO run.  Detailed
procedures for selecting these LC curves are given in the risk  assessment
methodology description in Onishi et al. (1).

     The output available from FRANCO is presented at the end of this
section.  The information given to control FRANCO is repeated for the
convenience of the user.  This is followed by five large tables giving
detailed information about the frequency of occurrence and duration of
dissolved pesticide concentrations.  For example, the first table indi-
cates that nine distinct events occurred during the simulation  when the
concentration exceeded the SERATRA cutoff value.  Moreover, these events
involved 8,201 time steps (next table) which accounted for 16.0% of the
simulation (fifth table).  By considering events with longer durations, it
is learned that three events with durations greater than 672 hours
accounted for 6,193 of the time steps or 12.1% of the total time.   This
implies that the dissolved pesticide concentration exceeded the cutoff
value only a few times but that one-third of these lasted for more  than
4 weeks each.  At no time did the dissolved pesticide concentration exceed
the Alachlor MATC of 1.9 x 10~4.

     FRANCO can also be used to determine the number of events, the number
of time steps and the percent of the simulation period the dissolved  pes-
ticide concentration exceeded the 24-hr LC50 concentration (1.15 x  10~5)
for toxaphene.  In this simulation this occurred twice involving 628  time
steps (314 hours) which was 1.2% of the time.  Similarly, for the 96-hr
LC50 concentration of 8.4 x 10~6, this occurred twice involving 595 time
steps (297.5 hours) or 1.2% of the time.  Although the summary  statistics
do not indicate it, it would be suspected that these two events are the
same in both cases.  When the 24-hr concentration was exceeded, the con-
centration was high enough to also exceed the 96-hr value.

     A global exceedance summary for five LC curves follows the initial
five concentration-duration tables.  This summary uses the concepts of
global exceedance as defined in Section 2.  The five curves are:

  -  SERATRA cutoff
  -  MATC for Toxaphene
  -  Lethality curve least likely to indicate mortality
  -  LC50-MATC conservative curve
  -  LC50-MATC alternative curve.

                                     14

-------
The actual concentration-duration pairs used are given  in  the FRANCO  out-
put.  A complete discussion of the rationale behind the curves  is  given  in
Onishi et al. (1).  The first function is simply a horizontal line at the
SERATRA cutoff value.  The summary is a repetition of the  information con-
tained in previous tables.  The second function is set  at  toxaphene's MATC
value for events of any duration, i.e., horizontal line.   The summary
shows the MATC value was exceeded by 12 distinct events and this accounted
for 14.9% of the simulation period.  More detailed information  can be
obtained from previous tables   The third function is defined by the  three
LC50 values with the function extended vertically at 4  hours and hori-
zontally at a concentration of 8.4 x 10~6.  The simulated  concentration
exceeded this LC function for two distinct events which accounted  for 1.2%
of the total time.  This global summary eliminates the  possibility of
double counting certain time periods as a result of the concentration
exceeding more than one LC50 value, e.g., both the 24-hr and 96-hr LC con-
centration.  It is this aspect that makes the concept of global exceedance
useful.

     Detailed information about the events exceeding each  LC curve is
available as optional output from FRANCO.  Each event exceeding the LC
curve is tabulated by the ending time step of the event, the duration of
the event and the concentration level defining the event.  For  the first
LC curve, the location of each event exceeding the SERATRA cutoff  value  is
given.

     The remainder of the FRANCO output was designed to characterize  the
concentration distribution of the dissolved pesticide concentration when
both duration and time sequence were ignored.  This part of the program
was originally implemented as part of a simplified methodology  and is not
an integral part of the risk assessment summarization.  A  brief descrip-
tion is included here for completeness.

     The FRANCO program summarizes the time series of instream  dissolved
particulate pesticide concentrations.  The series is characterized by
periods when pesticide concentration is lower than the  chosen SERATRA
cutoff value and other periods with runoff events causing  the concen-
tration to increase above this value   The cutoff value is selected to
represent the point below which the simulated concentration values are due
to limitations on the numerical accuracy of the model and  the computer.
Hence, time periods below this concentration are considered to  be  zero.
As a result, the relative frequency of pesticide concentration  consists of
two parts:  A discrete part at the SERATRA cutoff value with an associated
frequency that estimates the percent of the time the concentration is con-
sidered to be zero and a continuous part that summarizes the relative
frequency of concentrations above the cutoff value.

     Let Ci equal  zero, C2 equal the cutoff value and the  remaining
C-j chosen such that C3
-------
               6(0 = pF(C) + (l-p)I(C)

where:  p = Pj[C >_ 02] is the relative frequency of concentrations
occurring above the cutoff value, I(C) is a discrete cumulative frequency
function with probability one at the cutoff value, and F(C)  is a
continuous distribution function.

     During the 3-yr period starting June 1, 1971, the dissolved  pesticide
concentration was greater than the cutoff value of 1.0 x 10"9 for 16.23%
of the time.  Hence, p is estimated as 0.1623.  The continuous part F(C)
of the cumulative distribution function G(C) is well represented  by the
log-normal distribution.  A probability plot constructed from the cumula-
tive frequency concentration data illustrates this fit (see  output from
FRANCO).  Similar probability plots using the normal and gamma distri-
butions as alternative choices did not result in the expected straight
line plot characteristic when the data fits a particular probability  dis-
tribution.  The log-normal probability density function is:


                             -|  (£n X - )2/a2

              f(X) = 	— e                           X  >  0.
                     X a /2
                                           2
Stated in this form, the parameters y and a  are estimated by
                           *„ x,
                 y =
                       n             ^ 9
                       |    (An X1 -  yr

                              nTI
where n is the number of concentrations greater  than  the  SERATRA  cutoff
value and X^ are the simulated dissolved  pesticide^concentrations^for
those time steps.   In this case the estimates  are y = -14.83  and  a  = 2.26.
The mean and variance of the  log-normal distribution  are
              E(X) =


                         9  r n2
            Var(X) =  E(Xr  e
                                     16

-------
Using the estimated values for y and a2, the estimates are E(X) = 4.66  x
10~6 with a standard deviation of 5.97 x 10~5.

     The statistical distribution summary for the dissolved pesticide con-
centration is completed by the program FRANCO.  The distribution parameter
estimates are obtained from all concentrations greater than or equal to
the SERATRA cutoff value.  Because of the number of time steps involved,
these estimates are computed by summarizing the data with a flow-through
technique that does not require all the data to be present at once.  In
constructing the probability plots, a modification of the standard proce-
dure, such as described by Hann (2), was necessary.  It was not feasible
for all data points to be plotted individually for the probability plot.
To overcome this difficulty the data were accumulated as an empirical
cumulative distribution function with up to 50 intervals used for the con-
centration.  The probability plot was constructed using those values.   The
effect on the plot is minimal if these concentration values are appro-
priately selected to result in approximately an equal number of time steps
in each interval.  The interpretation of the plot is not affected.

     The dissolved pesticide concentration at Wolf Creek River Kilometer 5
is adequately summarized by the mixed distribution:

              6(C) = 0.1623LN(C;-14.83,2.26) + 0.8377I(C)

where

                                         ,-9
                   •c
                C > 1.0 x 10"
KO
                C < 1.0 x 10"
and LN(C;y,a) denotes the log-normal distribution with parameters y and
a.  A severe limitation of this summary is the total loss of all infor-
mation concerning the actual time sequence of the concentrations.
                                    17

-------
                                                            FRANCO
                                       SEGMENT n DISSOLVED PESTICIDE  (K«/M««J)  RUN NO.  i
       CALCULATE" CONCENTRATIONS  IUPUT  FUF. NAME         --OPJI1 1«», M T IMSERIES.DAT
       CONCENTRATION*  MF  THE  RESULTS  FRO«               --» SESATRA  STMUL»TIOW
       THE DATA FJFLn  10 8E  ANALVSIZFO  IS  NUMBER         --    1
       STAPTINC- TIMF STEP  NUHBFR                          -.    1
       ENDING TI"f STEP NUMBER                           --51ZM
       ANALYZING SEGMENT NUMBF"                           --    T
       ANALYSIS TIMF STEP                                 .-      a, 50  HOUR
       UATA ANALYZED IS                                   — RAW
       CONCENTRATION INPUT METHOD                         -.    3

       THE TH1RO MFTHO» HAS  BEEN CHOOSEN FOR INPUTTING CONCENTRATIONS
                Hl LIMIT FUR  RANIiF.  1
                 0 MIII18ER OF  INTEWI1  VILUES IN RANGE 1
                W LIMIT FOR  RANGE  1

                 5 MUllUER OF  INTERIM  VALUES IN RANGE i
                V» LIMIT FOR  RANRE  «
                ?5 NilMHEX OF  INTERIM  VALUES IN RANGE J
                wiS LIMP FOR  RANGE  J
                 0 NUM8E" OF  INTERIM  VALUES IN RUNGE
       !.lSf,c»fiF-['5 LI'lIT FOR  TANGE  0
                IB riUHHER OF  INIFRIM  VALUES IN RANGE 3
                fii LIMIT FOR  RANGE  5
                   NIIMHEP OF  INtEHIM  VALUES IN RANGE
                   LI'^IT FOR  RANGE  6
                 0 NU'lflt« OF  INTERIM  VALUES IN RANGE T
                aj LIMIT FOR  9ANRE  7
                 « NHiihEH OF  INTERIM  VALUES IN RANGE 8
       9.fcBB("H( .«J LUIT Ft")  RANGE  0
                   hiiHUEH OF  VALUES  (COMPUTED)
j.iiJCTF-e
          5  b.MJM IE-H5
       (HIKMION INPUT MEI
                CONCENTRATIONS  [CALCULATED)

               J4I1BE-08   I.05IJ8E-C17   |.34086E>07
7,3fc«,8JF-07  9,J9»«|E-07   1.198*^-06   1.52B9BE-B6
                                     S   1.91097E-05  Z,071t3E-fV5   3.18S60E-B5
                                                                                                                2.44856E-B8
                                                                                                                2.78281E-07
                                        lil'K AT T0'*'<*  T'1 f*F  RFAO
                                                      SPECIFIED DURATIONS
GLOBAL FKCfFUAMCt INPUT
     NUKnER OF PIECFWTIt LINEAR  FUNCTIONS
     NUMBER UF IIJKATInM, CTNCE N TR A T ION  PAIRS


                   CONI ENTRATION  l.0n0i»0E-09
             ?     DURATI1IN        3.000B0E-01
                   CUNCEMTRATIDN
                   CONCENTRATION
                   DURATION
                   CONCENTRATION
                   DURATION
  l.l503>0E-04^
  S.0B000E-n)
  I.150B0E-P5
  5.000PI>E-1»1
                                                        1.15BCEE-05
                                                        I.15BHBE-05
       "0 LC COIlTINUdllS  FUNCTION  EKCFEDANCF ANALYSIS TO BE PERFORMED
                                                                                      ,60B00Et01
                                                                                      ,50B00E-0«
                                                                                      ,4BBB0E-B«

                                                                                      ,400B0E-0fi
                                                                                                    .(KI0BUE-B*
                                                                                                                   .560BHE40Z
                                                                                                                   .4B0BBEFB6
                                                                18

-------
            «B
             •
            nt
            a>
            •c
   tr
   UJ
   <
   UJ
   a:
   or
   o
            (9
            s
B
ru
   in
a; 2
co
•z o       s
o o z     •
ft    c    m
*- >- «-i    r-
< IT H-
a:    •*
3 o or
o tu 3
   z s
X UJ
•- D
U. iU

C I
   I
   >—

   z
            K.
              •
            cu
                                                                                                                                                U^U^UJU^    UJU.
               o
               u
                                                                               19

-------
      (9
      E
      S
      G>
      
-------
DC f
3 UJ
U tt
(_] u
c
   a:
a c
UJ
Or CJ
IE
or 2
o o
" or
C I-
   2.
U_ ul
O O
   2
- >-«
cr
13
o
U
 f-  O
CO
u  t-
z  z
<  UJ
_J  >
a.  uj
 a
 UJ
                                                                                                                            «• »» « m K> nt
                                                                                                                            K> KI KI
                a:  (5 & (U
                                                                                                                                                        | |^| |fj \^ y_J ^ i ^

                                                                                                                                                        ' 
-------
(9
6!
o
»

(V
O
IS
 »

-------
            O
             »
            ni
   a:
   UJ
   UJ
   or
>- tt
•< O
UJ
o: ^
u. ct
O t-

•2. 10
ou
or    o
^ >- ++
O tt (-
      <
•« c or
   U 3!
S 2 O
U- >
S UJ
t-J X
.1 t-
                                                                                                                                   - • 
-------
      •e
      fu
z
o

                                                            i/- sj —  a:  tc  =» 0.1 »--  jr  o- cr  ru IT.
                                                                                     24

-------
            s
            s

            m
                                                                                                             <-«itin« OBS
a
^ a
o iu
o»-
O •<
   uj
CECC
uj o
UJ O
Q:
b. •«
O or
m z
zuj
O O
< u o
CE >- >-<
3 CD •-
c    «
   O IT
I UJ Z>
*- 2 O
•~t!-!
3; k.
U. UJ
j: >
u, x
o t-

UJ >-
is •»
•< i
t— »—
2
UJ Z
CJUJ
a >
uj «-i
a e
E. 6. i C,

& ri s. ^
                                                                                                                             ) — r~ ac —
                                                                                                                                                         i  t  7  E.  c, : ,
                                                                                                                                                           5.  tt  fi  SG
                                                                                     25

-------
   *>
   «
   «
   nt
a

o
      2

      O
                                                     26

-------
   or
or uJ
c »-
   a
U_ G
O
z «-•
O (->
c t-
   <
1 or
en z        s
K- o        G

IU     C     >-  »^    r-
uu IE  •-
       •«
c o  a
O UJ  3
»- Z  C
•f UJ
t~


t- O
   U-


o or
    a
    ts
                   csrvi — c-^

                                     r. SKIITSC
                                                                                   27

-------
    to
    ID
    •a
    m
o   m
       o
                                                        28

-------
                     UlUhlhjhJUbitLiUJkJ
                     S«BSS«GSSB8
                     SCBSSieSetSBS
                     (9SSSBCBSSBS
                       I UJ uj UA teJ UJ UJ U UJ UJ                   Ul UJ UJ *»* *•' U1 ul *** Si1 **'
                                                         z
                                                         o
                                                                                                  >          UJ Z Kl (O K> IS Kl
                                                                                                            o uJ cu o ni m ni
                                                                                                            x u  •  •  •  •  •

         or          ^? E •
                                                         0.                                                 CD
                                                         O                                                 O
                     UJU1UJUJUJUJUJUJUJUJ       <          UJ UJ UJ Ul U UJ UJ UJ UJ UJ
or       OD    z    ssstassssss       k-
         u.z                                        *—    •-                                              zsseomi
U)U-"-«                                        ZZ                                           z  <   .  .  .  .
U       O    O                                        i-l    Ul                                           O X  G> BO O — >
Z             *">                                              X                                           **!>^^>f\*M4)l


u>       o          +» +  »+i+t  +  t             «o     iiiiiiiiii           a uj
«                    ••••••••••       o           ••••«••«••


O       -0                                              (O                          IIIUJO
-J       Ul                                              Z                                                 Z >i
(S       Z                                              O                                                 « »-
                                                                              •*«««-*ir>v4m««          a.z

         UJ           tlll-flltll        Z          IIIIIIIIII           U) U.





                                                         ^1          (9 S 1O S  S (S *•* S ** 9          O
                                                         z           ..........             n-

                                                         _i                                                 uj »—
                        Z2ZZT»-«                                                 z5
                        C    C    O    C    O       I
                     zarzttzaizckzar       >^          a.   a.     CL    o.    a.           >-ttz(^(Vf\i^fv
                     O>— C^-C*— Or— CJ>-       IL          UJ   UJ     UJ    Ui    UJ          OTUJ.UJ    ««
                     arzaezcrzcKzirz                   t-c»-o»-o»-o>-o       nzu.
                     — O^OljOOOOC                   ZJZ.J2_JZ.JZ_J       CO    C
                     OOCCJOL>CUOC_I                   *>^0)*^ao»-(Cf>v-tQ^»^tf>
                                                                                                         UJ
                  2                                              Z                                     U    Z
                  o                                              c                                     z    o
                  «"                                              «-l                                     «    M
                  *-—    i\i»n«9ir                   >-—^rvKi'ssiri          oi-^^Ai^^in
                  u                                              u                                     uj    u
                  z                                              z                                     uj    z
                                                               29

-------
                          SEGMENT 71  DISSOlVFO  PESTICIDE (KG/M**3)  HUN NO. 1
       TTME STF.P
                                   LC FUNCTION * 1

            I.F.NNTH UF FVFNT (HOUR)    FVFNT CONCENTRATION
                                 1031.0
                                  196.5
                                  96.5
                                  253.a
                                 12P9.5
                                  290,Cl
                                         .00000E-09
                                         .00PI00E-PI9
                                         .009006-09
                                         .000006-09
ENDING M»t STFP
                                   LC FUNCTION # 2

            IENQ1H OF EVFNT (HOUR)    EVENT CONCENTRATION
         8153
         1899
         178S
         1535
ENDING TTME STEP
                         106.0
                          66.5
                         998.5
                          52.0
                          86.5
                          54.5
                         2J8.5
                        1257.5
                         117.5
                          37.0
                 .50000E-PI8
                 ,5fl0i&flE-08
                 .50H00E-0"
                 .50000E-08
                                   LC FUNCTION «  3

            LENUTH OF EVENT (HOUR)    EVENT CONCENTRATION
       TtMt SUP
                                 .496.5
                                 '117.5
                                   LC FUNCTION  #  H

            I.F.NHIH OF EVENT tnouR)    EVENT CONCENTRATION
1 "JMl 1
 ?I53
 153S
        lIMt hfFP
 998,5
 ?t8,5
1557.5
 U7.5
            I FNf,TH OF f-.VFNT (HOUR)
                                                 i .
              FUNCTION » s

                  f CONCENTRAIION
          7 7 '4
                                   30

-------
                 i~*ru(u   a

     u         »^»-«->-< — «y^-.^^-«-.-.^-<-< — ru«(»xjAi«»iAj«ucu«o>nK>K>KiK>»nojrw-«-«—•*">-"«»•-•-'»» s si
     »-
     «D /-.

     Ul +
     !•->_»    «—<~«vi«vn-'-" — -" — K—is—<«XjoMr-9(uc-Aimf^<>«>«mK)ir>-ms04>»«4>r-^-«Me>m<^r-ri^ir>x^ii
     Ul   O
     33 • _J
     I v       *«tr^-«-r>»ofn»»iKii»iKi»»>i\ic»)r\icvi-»»<-«-"-««>»^ir«>onicu«»-»-<-<-»KiK>B»KS»6»s>«"«»»-«-«—«-"-"«->-«-*«»aO«D^Vl>»KtO>r<'>-&^>G;^*H*tn9'*D*~GO'fUOTr\JK>*?9fMKtKt&nir»»B8GG&G>G
«        z                                                                                                       	_________

CO





        a> —•
o      a. +
Z      ID <-•
<      >— *-*
        10 U

a;      h.'(j              -»—    —— — -<-^.-«^.K)ai\j<»Kiru«v^r\i-< — — — —--"fvifo
•«      s: •
a:      •-! w
r      *-«-.
3        >-•
xr~c>s(ax(unimininin>4>4>«r^^»^eira>DO'O>o-o-^(5Bisc&s
->-                                                                                                                         ,<^,«»._
c   a. o

z
o
i-i      U)
>-      I. r*
<   ^- •-* »-*
K   Z t- «-"
«-   U,   t»
Z   U _J •
ui   a •< A
U   Ul k- CJ
z   a. o
o      >-
u



        c. u

       •»-*    *«»«ct»>-r»f^^>^r-r-*^*ir«r«r5»io»ri(n<\i«V)cV'
        ->

        z u
        u.  •
        >  A
        Ul CJ
        *




          u                         ——<-«»»-^ — —.-.-. — nrnjcurtruJufuruftjcvii^KifoKiK. >^>rKiK>Kitj=»«o«?siao=i3ir>

          z
          o    co«)«>h-»^t-.f~i^r-r-f~r^r^^)^!^>^)^i-o>c*^)inmintrifiiPininir<^
          (J
          z
          o    •««~«mKt^><^~*w«c\ii'')fim4>9v4v««*fM'\jfO9irt»<>'&>~*«-*«i*AjK)9irt-^«o««*«v«<\!Kt4m^o«H*v*«i*«oi|'tr»*9
          jj
                                                                      31

-------
                                  o
                                  o
                                  o

                                  •>
                                 o


                                 9
                                 IU
                                 o
                                           6J
                                           «B <
                                 D
                                 or
                                 a
          in 6,  s
          G> S  S
           I +  +
          Hi UJ  U
          CD ^-  I*"
          »- a- s
          " IV *
             CS
             D
a
^
x.
2 «
O I-
o r;
o a>
is •-•
   or
UJ »-
a 
                            c
                            cr
                            I
                            (J
   c

> c.
aJ >-
C- *) --
      4
c  -*-
f- 2 UJ
•O 4 1C
   UJ
 • T.   «
         a cs i
         o o <
         2 _IO
                32

-------
                                        B>
                                        S
                                        *
                                                                                                                         *
                                                                                                                         tu
                                                                                                                         s
                                                                                                                         Ml
s
C9
      •  I
     IS
      I  I
      I t
        u
      I «
        »n
      I  •
        K.
      I  I
     4-  I
     tu
     n  i
                                                                                                                                                          i  •
                                                                                                                                                            s
                                                                                                                                                          I  i
u    +  •
>   Ul
•i   SI
»-   «
«     •  I
_t   K
=)    I  «
      I  *
        u;
      i s.
«   IV  I

                                                                    •
                                                                   &
                                                                                                                         K.
                                                                                                                         ni
                                                                              33

-------
                                                                                    I
                                                                                    u
                                                                                    a
                                                                                                                                                                                      I   I
                                                                                                                                                                                        MJ
                                                                                                                                                                                      I  ">
   C
*-
C -J
_l •*
a. r
   a:
v O
                                                                                                                                                                                      I  I
                                                                                                                                                                                        U.
                                                                                                                                                                                      t o-
                                                                                                                                                                                        o-
                                                                                                                                                                                      I   •
                                                                                                                                                                                        C5
 t tf>
"«  »—    K>    5T  *
z  **    o-    s
at  a    »*>     ii
c *-    sr    iu
2  -z    «•    4i
   u.      •    •&
   (J    9      »  I
   UJ < T
   tT  I »—
                                                                                        34

-------
ni
s

u
                                                                                        ni
                                                                                        G>
                                                                                        +
                                                                                        u
ni
s
                                (5
                                +
                                Ul
                »   I
                tu
                r-   I
         E>    «
         &     •  I

         Ul    II
o
_4
a.
s>
<
o
o
ct "
o
(9 •-*     9    »1  I
O >-  I   •    —
_I7     —     -  I
   * •>  I     C5
   3 >-        II
   es x  •
      <  z        +
                                                                                                                                                                                              •  ni

                                                                                                                                                                                              I   •
                                                                                                                                                                                                 s
                                                                                                                                                                                              t   i
         s
         +
         UJ
                                       *  nj

                                       l  +
                                          tu
                                       i  ir
          z

          x
      •)  •-
      •<  o    •»
      02    —
   •-  e  uj
   2  x  a.
   UJ  C  X
   'CJ  w  ui
   2  a
   >  X
   or  •«
   UJ  I
   
-------
                       •*>
                        •
                       K
                                                                                                             I
                                                                                                            v
                                                                                                            «r
                                                                                                            ni
 i
u
ni
                                                                                                                                                                            i  i
                                                                                                                                                                              lu
                                                                                                                                                                            I r»
                                                                                                                                                                            fl  •
                                                                                                                                                                              S
              fl  *
              oj
               I  I
               • I
              es
                  i
c •«
_> z
0. X
   ^
>- o
»-
*-l tf>
                                    I  I
                                      1C
                                    i  er-
                                      a
                                    i   •
O
or =r
a o
               i  i
               UI
               -O  I
         X
         a
      UJ UJ

      C

      ft

      C
      c
      ^
      a.
      o
      o
                                                                                 I
                                                                                lu
                                                                                •c
                                                                                     36

-------
                            SECTION 5

                            REFERENCES
Onishi, Y., S. M. Brown, A. R. Olsen, M. A. Parkhurst, S. E. Wise and
W. H. Walters.  1979.  "Methodology for Overland and Instream Migra-
tion and Risk Assessment of Pesticides."  Battelle, Pacific Northwest
Laboratories, Richland, WA.

Hann, C. T.  1977.  Statistical Methods in Hydrology.  Iowa State
University Press, Ames, IA.
                                37

-------
                                 APPENDIX A

                            FRANCO USER'S GUIDE


FRANCO Operating Instructions

     FRANCO is activated by typing the MCR command

          MCR RUN FRANCO 

and after it is loaded from the disk it announces itself and asks for  the
control file specification.

               +++++ FREQUENCY ANALYSIS PROGRAM +++++

          ENTER THE NAME OF THE CONTROL FILE

The operator must respond with the name of the control file that has been
prepared for the analysis that is to be run.  A proper response would  be:

          DPL:SEG2P253.CNL


FRANCO Control File Input Requirements

     What follows is the description of the data that is required for  a
FRANCO analysis.  The explanation of each data consists of:

 1)  the data set number
 2)  the data set title
 3)  a short description of the data included in the set and any
     precautions that must be taken.
 4)  the general format of each record in the set and the  number of each
     record that will be read.
 5)  a breakdown of each field of the records that  include the position  in
     the record, the variable's name and the description of the values the
     variable may be assigned.

The order of the data sets is implied by the set's  number.  The order  of
the sets is as follows:
                                    38

-------
               Data Set Number
                                       Title
                     1
                     2
                     3
                     4
                     5
                     6
                     7
                         Analysis Title
                         Data Source Specification
                         Time Specifications
                         Control Options
                         Specified Concentrations
                         Specified Durations
                         LC-50 Piecewise Linear Functions
Data Set 1 - ANALYSIS TITLE

     This record is used to title and identify each analysis.

Format:  80A1

Columns   Variable   	Description	
 1-80     TITLE      80 columns of alphanumeric information used to
                     title the output.

Example:

RIVER MILE 5:  TOTAL PESTICIDE (KG/M**3)
Data Set 2 - DATA SOURCE SPECIFICATION

     FRANCO will analyze the time series output of both the agricultural
overland runoff model ARM and the instream transport model SERATRA, but  it
must be told which set of results is being analyzed.  This data  set
specifies the input file name, the source of the file and the field within
the data file to be analyzed.
Columns   Variable
 1-7
 9-12
Source
JFIELD
                             Description
Source of the time series to be analyzed = ARM;
data are the results of an ARM simulation =
"SERATRA"; data are the results of SERATRA
simulation.

Both models write more than one type of data out to
the time series result files and this variable points
to the data within the output to be analyzed.
If SOURCE = "ARM" and
JFIELD = 1; Discharge (m3/sec)
       = 2; Sediment  (kg/min)
       = 3; Sediment  (g/1)
       = 4; Dissolved pesticide (g/min)
                                     39

-------
Columns   Variable
                             Description
                            = 5; Dissolved pesticide (ppm)
                            = 6; Participate pesticide (g/min)
                            = 7; Participate pesticide (ppm).
                     If SOURCE
                     JFIELD
                  = 1:
                  = 2:
            "SERATRA" and
            Discharge (m3/sec)
            Average sediment concentration
            (kg/m3)
                            = 3; Average dissolved contaminant
                                 (kg/m3 or pc/m3)
                            = 4; Average particulate contaminant
                                 (kg/m3 or pc/m3)
                            = 5; Average particulate contaminant
                                 (kg/kg or pc/kg)
                            = 6; Total contaminant (kg/m3 or pc/m3)
Columns   Variable
                             Description
 9-38
INPFIL
          Column

           1-10
          11-16
          17
          18-21
          22-29
          30-37
          38-45
          46-53
          54-61
          62-69
          70-77
File name description of the time series analysis
file containing the data to be analyzed.  The time
series file from the ARM model is formatted FRANCO
expects the record layout to be as follows:

     Format:  110, 16, IX, 14, 7F8.3

	Contents	

Time plane number of record
Calendar time of the plane (YRMODY)
Not used
Clock time of time plane (HRMN)
Discharge (m3/sec)
Sediment (kg/min)
Sediment (g/1)
Dissolved pesticide (g/min)
Dissolved pesticide (ppm)
Particulate pesticide (g/min)
Particulate pesticide (ppm)
The SERATRA file is unformatted and the order of the variables in each
record should be as follows:
          Field #

            1
            2
            3
            4
                        Contents
           River segment number
           Time plane number
           Discharge (m3/sec)
           Average sediment concentration (kg/m3)
                                     40

-------
          Field #                  Contents
                     Average dissolved  contaminant
                     (kg /OH or  pc/m^)
                     Average parti cul ate  contaminant
                     (kg/rrH or  pc/rrH)
                     Average parti cul ate  contaminant
                     (kg/kg or  pc/kg)
                     Total contaminant  (kg/nv3  or pc/rrH)
Example:
ARM ..... 5 DPO:ARM 7174. TIM

In the above sample, the  time  series  file  is  the  result of an

A)  ARM model analysis and the
B)  5th output parameter, dissolved particulate  concentration (ppm) is to
    be analyzed from the  file
C)  DPO:ARM7174.T1M.


Data Set 3 - TIME SPECIFICATIONS

     The user is not restricted to analyzing  the  complete time series file
as it was written by the  simulation model.  This  data  set is used to
specify the time span that is  to  be included  in  the  analysis.  There are
two different record formats and  FRANCO  chooses  between the two based upon
the value input as SOURCE.

Record type 1 used when SOURCE =  "ARM" - Format:   215,  F10.0, 6A1


Columns   Variable   _ Description _

  1-5       BTP      Starting  time plane number  of the  analysis.
  6-10      ETP      Ending time  plane number  of  the analysis.
 11-20      DELT     Size of the  time step  taken  during the ARM simulation.
 21-26      TUNIT    Time step units.
                     = "DAY";  units of DELT is days
                     = "HOUR"; units of  DELT  is  hours
                     = "MINUTE";  units of DELT is minutes


Record type 2 used when SOURCE =  "SERATRA"  - Format: 2110,  15, F10.0, 6A1
                                     41

-------
Columns   Variable
                                       Description
  1-10
 11-20
 21-25
 26-35

 36-41
Example #1
            BTP      Starting time plane number of the  analysis.
            ETP      Ending time plane number of the analysis.
            BSEG     Number of the river segment to be  analyzed.
            DELT     Size of the time step taken during the  SERATRA
                     simulation.
            TUNIT    Time step units.
                     = "DAY"; units of DELT is days
                     = "HOUR"; units of DELT is hours
                     = "MINUTE"; units of DELT is minutes
                   -> «-  D ->
                15.0 MINUTE

The example above would be appropriate when analyzing  the  time  series  file
from an ARM simulation.  The starting time step  is to  be number

 A)  10, the ending time step is
 B)  425, and the length of each time step during the  ARM  simulation was
 C)  15.0
 D)  MINUTE
Example #2
                      ->C ->
The second sample would be used with  a SERATRA  result  file.
time step is
                                                              The  beginning
 A)  1, the last time step of the  analysis  is
 B)  51264, and the river segment  being  analyzed  is  number
 C)  7. the length of the time  step during  the  SERATRA  simulation  are
 D)  0.5
 E)  HOURS.
Data Set 4 - CONTROL OPTIONS

     The data on this record  and  used  to  signal  FRANCO to use either the
raw data or the natural  log of  the  data.   They  also  specify the method
that will be used  to input the  concentrations  and  durations.

Format:  LI,215
                                     42

-------
Columns   Variable
                                     Description
  2-6
            LOGC
          OPTC
7-11
Example:
            OPTD
              T;  FRANCO will  use the natural log of the data
              during the analysis.
              F;  the raw data will  be used during analysis.
              Control  variable that signals the method chosen to
              input the specified concentrations.
              1;  concentrations will be specified explicitly.
              2;  concentrations are input using a minimum value,
              a maximum value and an interval.
              3;  concentrations are input by specifying a maximum
              of four  ranges  with a separate interval between
              each  range.
              Control  variable that signals the method chosen to
              input the specified durations.  The possible values
              and meanings are the  same as described for OPTC.
A
T'
  B ->•
 ^1^'
 C  ->
^2
In the above sample the user has asked FRANCO to use

 A)  the natural log of the data during analysis.  The  specified
     concentrations will be input using method
 B)  1 and the durations will be input using method number
 C)  2.
Data Set 5 - SPECIFIED CONCENTRATIONS

     The user has the option of using one of three methods  when  inputting
the specified concentration values.  Options 2 and 3 are designed  to  ease
input burden.

Method 1 (OPTC=1) - Each concentration value is entered explicitly.

Record type 1 - Format:  15
Columns   Variable
                                     Description
  1-5
          NC
            Number  of  specified  concentrations (25 maximum)
Record type 2 - Format:  8F10.0; Repeated as often as necessary to  input
NC values.
                                     43

-------
Columns   Variable
                                        Description
  1-10     C(J)      jth  specified  concentration
 11-20     C(0+l)    J+l  specified  concentration
 21-30     C(0+2)    0+2  specified  concentration

 71-80     C(J+7)    0+7  specified  concentration

Example:
<- A +
...19
      B + «-   C

       U • UAAAAAAU •
                        D   -»••<-     E    -»••«-   F  -»••«-   G   -* «-   H  -*•«-

AAAAAAAU • AAAAAA  • L AAAAAAU • UO A A A A A A\J • J.,jAAAAAAvJ , J.HAAAAAAU , .LOAAAA/NAvJ , J. ,/
    I
A/S /N/-V/S
     0.23
Above is a partial example  of  the  method  1  type of input in which
                                                    The first eight values
 A)  19 specified concentrations  are  to  be  input.
     are as follows:
 B)  C(l) = 0.0
 C)  C(2) = 0.02
 D)  C(3) = 0.05
 E)  C(4) = 0.13
 F)  C(5) = 0.14
 G)  C(6) = 0.16
 H)  C(7) = 0.19
 I)  C(8) = 0.23

Method 2 (OPTC = 2) - Concentrations  are input  as  a minimum value, maximum
                      value and an  interval.  FRANCO computes the concen-
                      trations between the  minimum and maximum values.

Format:  3F10.0
Columns   Variable
  1-10
 11-20
 21-30
           VMIN
           VMAX
           VINTVL
                                        Description
Minimum concentration
Maximum concentration
Interval between concentration  values.
FRANCO will use this  information  to  calculate NC values.   NC is computed
as NC=(VMAX-VMIN)/VINTVL+  1  and the  user  must remember that NC must not be
greater than 25.  Also,  VMAX-VMIN should  be evenly divisable by VINTVL.
Example:
      -10.(
              B    •* «-  C
                           2.5
                                     44

-------
In the above sample,  the  minimum value is

 A)  10.0, the maximum  value  is
 B)  20.0, and the  interval  is
 C)  2.5.  This will  result  in  the following 5 concentrations:
           1)
           2)
           3
           4
           5)
C(I) = VMIN = 10.0
C(2) = VMIN + VINTVL = 12.5
C(3) = VMIN + 2*VINTVL =  15.0
C(4) = VMIN + 3*VINTVL =  17.5
C(5) = VMIN + 4*VINTVL =  VMAX  =  20.0
Method 3  (OPTC=3) - This  method  is  used to input a set of ranges and the
                    numbers  of  values to be computed between each range.
                    The  user is  currently allowed to split the concen-
                    tration  values  into a maximum of four uneven intervals.
                    The  maximum  number of concentrations is 25.
Record 1 - Format:   I5.F10.0

Columns   Variable
                        Description
  1-5      NS(J)     Number  of  values to be computed between VALS(J-l)
  6-15     VALS(J)   Maximum value for this interval and the minimum value
                     of  the  next  interval  (if there is one).

Because concentration  values can  vary over orders of magnitude, concentra-
tions between the ranges  are calculated using the natural log of the
values.  Experience  has  shown that this produces values that more closely
match the clustering of  events  into the smaller concentrations found in
the ARM and SERATRA  results.

Example:

•«- A ->- «-    B   ->
/N/\/S/\O S\ S\ S\ S\ S^. S\/\ ^\J • U

«- C + «-   D  ->
xs/\/\\J/\^^/\J- • w II ™H"

«- E -»• «-   F   -»•
/\/vx\/\/ /\/\s\/\J. «Ut.~U

*• G -> ^    H  •*
The sample above will produce  the  following concentrations

          C(l) = 0.0
          C(2) = l.OOOOE-4
          C(3) = 1.7783E-4
                                     45

-------
          C(4) = 3.1623E-4
          C(5) = 5.6234E-4
          C(6) = 9.9999E-4
          C(7) = 1.7783E-3
          C(8) = 3.1623E-3
          C(9) = 5.6234E-3
          C(10)= l.OOOOE-2
          C(ll)= 1.1487E-2
          C(12)= 1.3195E-2
          C(13)= 1.5157E-2
          C(14)= 1.7411E-2
          C(15)= 2.0000E-2
Data Set 6 - SPECIFIED DURATIONS

     The same three methods for inputting concentrations are available for
inputting specified durations.  However, there is one major difference in
computing durations with method 3 (OPTD=3).  Durations between the ranges
are calculated using a linear interpolation rather than a log
interpolation.  This and the fact that durations are expressed in units of
time are the only differences.  Therefore, refer to the section describing
Data Set 5 when preparing the input for specified durations.


Data Set 7 - LC50 PIECEWISE LINEAR FUNCTIONS

     This data set is used to describe the LC50 curves that are to be
included in the analysis.  The endpoint pair of concentration, duration
values is input for each of the line segments that make up the curve.
FRANCO uses this information to compute the slope and intercept of each
line segment.

Record type 1 - Format:  215

Columns   Variable   	Description	

  1-5       NLC      Number of LC50 piecewise functions to be used during
                     the analysis (O^NLC^B).
  6-10      NPT      Number of points that will be used to describe each
                     function.  All NLC functions must have the same number
                     of concentration duration pairs.  (Maximum of 6)

Record type 2 - Format 8F10.0; this type can have 1 or 2 records depending
                               upon the value of NPT and it must be
                               repeated for each curve being input.  Of
                               course, if NLC=0, this record type would
                               not be included.
                                     46

-------
First record
Columns   Variable
                               Description
  1-10
 11-20
 21-30
 31-40
 41-50
 51-60
 61-70
 71-80
  CF(I
  DF(I,
  CF(I
  DF(I,
  CF(I.
  DF(I.
  CF(I,
             1)
             1)
             2)
             2)
             3)
             3)
             4)
  DF(I,4)
Concentration
Duration value
Concentration
Duration value
Concentration
Duration value
Concentration
Duration value
value of first
 of first pair
value of second
 of second pair
value of third
 of third pair
value of fourth
 of fourth pair
pair for function I.
for function I.
 pair for function I
 for function I.
pair for function I.
for function I.
 pair for function I
 for function I.
Second record - Used only  if NPT>4

Columns   Variable
                               Description
  1-10
 11-20
 21-30
 31-40
  CF(I.
  DF(I,
  CF(L
             5)
             5)
             6)
  DF(I,6)
Concentration value of fifth
Duration value of fifth pair
Concentration value of sixth
Duration value of sixth pair
               pair for function I,
               for function I.
               pair for function I
               for function I.
Example:
*• A -> *- B -»•
1 6
<- C -*•*• D -»<- E ^^ F -»•
oc RO ? R ^n



•«- 6 +«-H ->• *• I -><-J^
25 175 15 20 0
The above sample conveys the following  information:
  A)

  B)
C,D)
E,F)
G,H)
I,J)
K,L)
M,N)
        1 LC-50 piecewise linear function will be  included  in the  analysis
        and it will be described using
6 pairs of concentration
3.5, 5.0
                                  duration values.  Those  6  pairs  are
2.5,
2.5,
1.5,
1.0,
1.5,
             5.0
             17.5
             20.0
             27.5
             100.0
FRANCO Run Time Errors

     There are three run time error messages that will be written  on  the
terminal device where FRANCO was activated.  Two will terminate the
analysis.  The first error message is as follows:
                                     47

-------
***** FRANCO — ANALYSIS TERMINATED BECAUSE THE DATA WAS EXHAUSTED WITHOUT
ENCOUNTERING THE STARTING TIME PLANE.  CHECK YOUR INPUT.

This message will be printed whenever an end-of-file is encountered while
searching the source file (Data Set 2) for the beginning time plane.  The
two major reasons for this message are (1) invalid starting time plane
(Data Set 3) or (2) the wrong source file was specified (Data Set 2).

     The second message will occur under similar circumstances as the
first.

***** FRANCO — ANALYSIS TERMINATED BECAUSE THE REQUESTED RIVER SEGMENT
COULD NOT BE FOUND.

This means that while searching a time series analysis result file from
SERATRA for the requested river segment, an end-of-file was encountered.
Examine the river segment number (Data Set 3) and the data file
specification (Data Set 2) for possible mistakes.

     The final message that can be printed is associated with the
processing of the control file.  When an error or data inconsistency  is
detected in the control file, the following message will appear.

*****FRANCO — ERROR ENCOUNTERED DURING INPUT PROCESSING.  EXAMINE LINE
PRINTER LISTING FOR AN EXPLANATION.

     As FRANCO processes the control file, all input and calculated values
are enchoed to the line printer.  Whenever possible, error messages will
appear directly beneath the input values that caused the error.

     Below is the list of error messages that can be produced during
processing.  They are self-explanatory and no further explanation will be
furnished.  Those errors that will suspend further input processing are
marked with an "F" for fatal.

     STARTING TIME IS LATER THAN THE ENDING TIME

 F - INVALID VALUE FOR THE SPECIFIED CONCENTRATION INPUT CONTROL VARIABLE
     - OPTC
 F - INVALID VALUE FOR THE SPECIFIED DURATION INPUT CONTROL VARIABLE  - OPTD
 F - INVALID NUMBER OF LC PIECEWISE LINEAR FUNCTIONS XX MAXIMUM ALLOWED
 F - INVALID NUMBER OF LC PIECEWISE LINEAR FUNCTION PAIRS (MUST BE AT
     LEAST 3 AND NO MORE THAN XX)
                                     48

-------
                                 APPENDIX B

                     FRANCO PROGRAM MODULE DESCRIPTIONS
     The modules that are described in this section include the executive
program FRANCO, numerous subroutines and one INCLUDE file that contains
the array dimensions and other limits.  Each description will include a
narrative explanation and any links to and from the subprograms.  Because
of their nature, some of the routines will be considered as "black boxes"
and very little information will be supplied.

Executive Program - FRANCO

     FRANCO does very few computations.  Its main responsibilities are to
read the time analysis data, control the flow of data through the proper
subroutines, and oversee the printing of the results.

     The basic steps of an analysis are as follows:

 1)  Learn the name of the control file and open it.
 2)  Call the subroutine FACINP to read the control file.
 3)  Determine the number of time steps in each specified duration.
 4)  Open the time series analysis file and search through the file to
     find the river segment to be analyzed and the starting time plane.
 5)  Call subroutine PIECE to compute the intercept and slopes of each of
     the LC50 curves.
 6)  Open the temporary files needed for the LC50 analysis.
 7)  Process all of the time steps to be included in the analysis.  This
     step includes:

      a)  reading the next record in the file and filling in the gaps left
          by any missing time planes,
      b)  calling subroutine EVENT which will increment the proper event
          counters and marking the LC50 curves, and
      c)  calling subroutine SUMSAT which accumulates partial sums and
          other counts.

 8)  Close off the analysis by counting the events caused by using a
     concentration that is the difference of the first two specified
     concentrations.
 9)  Print the event occurrence reports.
10)  Call subroutine FRAC to compute and print the event percentage
     occurrence reports.
                                      49

-------
11)  Call subroutine LCFINI to finish the LC50 analysis and to print the
     results.
12)  Call subroutine CDAS to compute and print the concentration
     distribution summary analysis.
13)  Call subroutine PLTSUM to plot the frequency plot, and the normal,
     log normal and gamma distribution plots.

Calls subprograms FACINP, PIECE, EVENT, SUMSAT, MATPRT, FRAC, LCFINI,
CDAS, and PLTSUM.

     Figure B.I is a graphical representation of the module linkages in
FRANCO.  All of the linkages are shown so there is a certain amount of
duplication that is not reflected in the program's overlay descriptor.

Subroutine CDAS

     Responsible for conducting the concentration distribution summary and
analysis computations for all events with a non-zero concentration.  It
also prints the results of the analysis   The items that are computed
include various means and standard deviations, chi square goodness of fit
tests, various probabilities, the expected observations of each
concentration and many others.

     Called by FRANCO.
     Calls subroutines GAMML, NORCUM, GAMCUM.

Subroutine CROSS

     General purpose two dimensional line printer plotting routine.
     Called by PLTSUM, QQPLOT
     Calls subprograms EVICT, SORTP, and PSCALE

Subroutine EVENT

     Counts the events and the time planes in the events that have
concentrations greater than or equal to each of the specified
concentrations and a duration that is greater than or equal to the
specified durations.
     Called by FRANCO.
     Calls subprograms LCCONT and LCPREP.

Function EVICT

     Range checks the values being plotted by subroutine CROSS.
     Called by CROSS.

Subroutine FACINP

     Supervises the reading of the control input file and reads a majority
of the data itself.
     Called by FRANCO.
     Call subprograms OPT1, OPT2, and OPTS.

                                     50

-------
FRANCO
    MATPRT      FRAC      LCFINI
Figure B.I.   FRANCO module linkages.
                  51

-------
Subroutine FRAC

     Computes the percentage of occurrence values and causes them to be
printed.
     Called by FRANCO.
     Calls subprogram MATPRT.

Subroutine GAMCUM

     Computes the value of the cumulative gamma distribution P with the
limits of intergration from 0 to X.
     Called by CDAS.

Function GAMFNI

     This function is called by subroutine GAMPPF to perform interim
calculations.  The code of both the routines would have to be examined to
gain a full understanding of the routine.

Function GAMLN

     Computes In r (A).
     Called by GAMPPF.

Subroutine GAMML

     Computes the maximum likelihood estimates for the gamma distribution
parameters alpha and beta.

Subroutine GAMPPF

     Computes the probability point function (quantile) for the gamma
distribution given a probability p.
     Called by QQPLOT.

Subroutine LCCONT

     The purpose of this routine is to determine if the conditions of the
event cause exceedance of any of the LC50 continuous functions.  Those
that do are written to the file corresponding to the curve that has been
exceeded for further processing.
     Called by subroutine EVENT.

Subroutine LCFINI

     This subroutine finishes the LC50 exceedance determinations.  It
examines the direct access file for each function and eliminates those
records that would cause double counts.  The remaining records are written
to permanent files which will then contain only those unique events that
exceed the LC50 curve.  It also prints a summary of each file.
     Called by FRANCO.
                                     52

-------
Subroutine LCPREP

     The purpose of this routine is to determine if the conditions of the
event cause exceedance of any of the LC50 piecewise linear functions.
Those that qualify are written to the file corresponding to  the exceeded
curve for further processing.
     Called by subroutine EVENT.

Subroutine MATPRT

     This routine is responsible for printing tables containing either
real or integer values under a predefined format.
     Called by FRANCO and FRAC.

Subroutine NQRCUM

     Computes the cumulative (from minus infinity to X) probability P for
the normal distribution with a mean AMEAN and standard deviation SIGMA.
     Called by CDAS.

Subroutine NORPPF

     Computes the percent point function (quantile) for the  normal
distribution with a mean of AMEAN and standard deviation SIGMA given a
probability P.
     Called by QQPLOT.

Subroutine OPT1

     Responsible for reading the explicit specified concentrations and
durations.
     Called by FACINP.

Subroutine OPT2

     Reads the specified concentrations and durations when the user has
elected to input them as a lower and upper limit and an interval.  Also
computes the interval values.
     Called by FACINP.

Subroutine OPTS

     Called upon to read concentration and duration data that is to be
specified as a set of ranges and the number of values to be  included in
each range.  Also computes the values with the ranges.
     Called by FACINP.
                                    53

-------
Subroutine PIECE
     The purpose of this routine is to construct a preset number of
piecewise linear functions given
function.  Returns the slope and
     Called by FRANCO.

Subroutine PLTSUM
the point pairs that describe the
intercept of each line segment.
     Oversees the production of three line printer plots:  base 10 log of
concentrations versus cumulative, observed concentration versus normal
quantile and observed concentration versus gamma quantile.
     Called by FRANCO.
     Calls CROSS and QQPLOT.

Subroutine PSCALE

     Routine selects the scale for the line printer plots produced by
subroutine CROSS.
     Called by CROSS.

Subroutine QQPLOT

     Makes a line printer plot of the data in the array X versus percent
point probability data (quantiles) obtained from the subroutine PPF.
     Called by PLTSUM.
     Calls UNIFRQ and PPF which is the name of the subroutine passed by
the calling routine.  In the FRANCO application only routines NORPPF and
GAMPPF.

Subroutine SORTP

     This routine sorts the elements of the input vector X and puts the
sorted elements into the vector Y.  It also carries along the index of the
original position of each element in X.
     Called by CROSS, QQPLOT.

Subroutine SUMSAT

     Responsible for accumulating partial sums and means that will become
part of the summary statistics.
     Called by FRANCO.

Subroutine UNIFRQ

     This routine is used by the probability plotting routine to obtain
the distributional quantiles.  It computes an approximation to the median
of the NCI(I) order statistic from a uniform distribution.
     Called by QQPLOT.
                                      54

-------
Include File FRANCO.PRM

     This file contains the parameters that control the maximum number of
specified concentrations and duration, the maximum number of LC50 curves,
the maximum number of points in each curve and the line printer logical
unit number.

     Any changes to the parameters will necessitate recompiling the
program modules and rebuilding of the task image.  It may also be
necessary to construct a new overlay description file.

Variable Descriptions

     Listed below, in alphabetical order, are the brief descriptions of
the more important variables from FRANCO.  Each description contains the
variable names, type and explanation.
     Name	     Type

A(NLCF,NLCP)        R*4


AA(4,NLCF)          R*4


AMEAN(2)            R*4

ASD(2)              R*4

ASUMS(2)            R*4

B(NLCF,NLCP)        R*4


BSEG                1*2

BTP                 1*4

C(JC)               R*4

CF(NLCF,NLCP)       R*4


CNTFIL(30)          BYTE

CONC'7)             BYTE


CURTP               1*4
                 Explanation
Slopes of each line segment of the LC50
piecewise linear curves.

Four constants that describe the LC50
continuous functions.

Arithmetic mean holding array.

Arithmetic standard deviation holding array.

Arithmetic sum of squares holding array.

Intercept of each line segment of each LC50
piecewise linear curves.

Number of the river segment to be analyzed.

Starting time plane number of the analysis.

Specified concentrations.

Concentration values of the LC50 piecewise
linear functions.

Holding array for the control input file name.

Concentration values read from the time series
analysis input data file.

Number of the time plane being processed.
                                      55

-------
Name
D(JD)
DELT
DF(NLCF.NLCP)
ETP
GMEAN(2)
GSD(2)
IER
INPFIL(SO)
JFIELD
JC
JD
JMIS
LMEAN(2)
LOGO
LSD(2)
LSUMS(2)
LUN(NLCF)
MD
MISTP
NC
Type
R*4
R*4
R*4
1*4
R*4
R*/i
1*2
BYTE
1*2
1*2
1*2
1*4
R*4
L*l
R*4
R*4
1*2
1*2
1*4
1*2
Explanation
Specified durations.
Time step size.



Duration values of the LC50 piecewise linear
functions.
Last time plane to be analyzed.
Geometric mean holding array.


Geometric standard deviation holding array.
Input error flag.

Holding array for the time series analysis
input file.
Pointer to the concentration value being
analyzed.

Maximum number of specified concentrations.
Maximum number of specified durations.
Missing time plane number.
Log mean holding array.



Flag indicating whether or not the summary
statistics will be done with the natural log
of the concentrations.
Log standard deviations.
Log sum of squares.
Logical unit number of each LC50 file.
Number of specified durations to be used
during the analysis.
Missing time step number.
Number of specified concentrations to be





used
NCLC
1*2
during the analysis.



Number of LC50 continuous functions.
                                      56

-------
     Name	     Type

ND(JD)              1*2


NDC(OC)             1*4



NE(OC,JD)           1*2

NIC                 1*2

NLCF                1*2

NLCP                1*2

NOT                 1*2



NREC(NLCF)          1*2

NT(JC.JD)           1*4

NTIM                1*4

NXEQ                1*4

P(JC,JD)            R*4


PRVTP               1*4

SOURCE(7)           BYTE


W(2,2)              R*4


FRANCO Data Files
                 Explanation
Number of time steps in each of the specified
durations.

Event counter that is incremented each time
the input concentration is greater than  a
specified concentration.

Event counter matrix.

Number of LC50 piecewise linear functions.

Maximum number of LC50 curves.

Maximum number of points in each LC50 curve.

Number of concentration duration pairs that  is
being used to describe the LC50 piecewise
linear functions.

Record counter for the LC50 temporary files.

Time plane counter matrix.

Current time plane number.

Time plane number.

Scratch pad array used to hold calculated
percentages.

Previous time plane.

Name of the model that produced the
concentrations being analyzed.

Count of the number of sums in LMEAN and
AMEAN.
     The data file manipulation of FRANCO is very straightforward.  In
addition to the control file and the file containing the time series data,
there are two sets of files that are used in the LC50 analysis.

     Each condition that exceeds an LC50 curve is written to the direct
access file corresponding to the curve that was exceeded.  Then after all
the time planes have been analyzed, these files are read in reverse order
and conditions that would cause duplicate counts of exceedance are ignored
and those that remain are written to the permanent file (such as
LCISAVE.RLT).  The permanent file can be used for further analysis.
                                      57

-------
                                 APPENDIX C

                            FRANCO  SOURCE  LISTING
     FRANCO computer source listings are present in FLECS compatible
code.  Some subroutines are entirely in FORTRAN compatible source and may
be used as direct input to a FORTRAN computer.  FLECS routines must be
preprocessed by a FLECS compiler which produces FORTRAN source.

     The typing of variables is consistent with DEC POP 11 and VAX 11
software systems.  In particular BYTE refers to a single character word
length.

     FRANCO is not given in portable code but it should be relatively
simple to transport it to other operating systems that have FLECS or
Fortran 77 capabilities.  Originally, FRANCO was designed to operate on a
POP 11/45 with 28K words of core available.  The code must be overlaid to
achieve this.  Execution times for most applications are less than
5 minutes CPU time.
                                      58

-------
CFLECS  VERSION  2?.
18-JUL-79
                                                PAGE   00001
00001
00002
00003
00004
00305
000C16
003s!T
00'*08
00009
00010
00011
00012
000)3
00014
000)5
00016
00017
00018
00019
00020
00021
0012?
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
P0033
00034
00035
00056
00037
00038
00039
00040
00041
00042
00043
00044
000(15
00046
00047
00048
00049
001*50
00051
00052
C
C
C
c
c
c
c
c
c
c
c
c
c

c


c

c


c

c

c




c




















(101,51 FRANCO, FLX

PROGRAM FRANCO
FREQUENCY ANALYSIS OF CONCENTRATION
.. .. --

PURPOSE IS TO SUMMARIZE A SINGLE TIME SERIES OF CONCENTRATIONS
USING THE CONCEPT OF EVENT AND DURATION, THE TIME SERIES IS
OPERATED UN A SINGLE RECORD AT A TJME SO THAT ANy LENGTH OF
SERIES MAY 8E HANDLED, OUTPUT CONSISTS OF PRINTED FREQUENCY
DISTRIBUTIONS IN TABULAR FORM, AND LINE PRINTER PLOTS. LC*50
INFO IS SAVED FOR FUTURE ANALYSIS,

INCLUDE 'SY|FRANCO,PHM»

RYTE CNTFIL(30),lNPFIL(30),SOURCEm,HEADl (60) / HE AD? (80) ,
1 HEAU3(80),HEAD4(60)

INTEGER*? B8EG

iMT£RtR*4 BTP,ETP,CURTP,NXEQ,NTIM,
1 PRVTP,MISTP,JMIS,NT(JC,JD),NDCCJC)

LOGICAL*! OONE,F.OF,LOGC

REAL LSUMS(2)|LMEA'J(2],LSD(2)

DIMENSION C(JC),n(JO),CFCNLCF,NLCP),DF(NLCF,NLCP),NE(JC,JD),
1 N0(jn),LUNCNLCF),NREC{NLCn,
2 A(NLCF,NLCP),8(NLCFfNLCP),CONCt7),AMEAN(a),ASUMS(2),
3 GMEANC2),A3lH8),GSOC2),H(2,2),AAC4,NLCF),P(JC,JD)

DATA EOF /.FALSE,/
DATA LORC /.FALSE,/
DATA LUN /2,3,4,9,A/ IAS NLCF CHANGES SO MUST LUN
DATA NREC /5*1/
DATA NE /JCJD*0/
OATA NT /JCjD*d/
0«TA HOC /JC*0/
D*TA NO /JD«0/
DATA CURTP/0/
OATA AMEAN, ASUMS, W,LMEAN,LSUM3 /12*0/
0»TA HF.A01/13*' ', 'N', 'U' ( 'M', «6'r 'E'» *R'» ' '»'0*,'F'»
j t • »£• »v» »f 'M« »T* 'S',' ','W 'I' 'T*
2 «H» • • 'A' • • '0» »U' 'R','A»,'T» 'I* '0' *N«
3 • » '0* ' F » • ' •!)• • [ » 'J',')'i' ' '0' 'R' ' '
4 »G» »R* '£• 'A' »T» •£' 'R',16*' '/
DATA HF.A 2/8 ' ' '5' »J» *V','E','N' ' ' 'T' 'H' 'A'.'T',' *r
j »T» »H» *t* ' * *E* 'V 'E','N','T' ' ' 'I' '8'
2 • » *n' »E» 'F' 'I' *N' 'E','0',' • '8' »V» ' • »C»,
3 «o» • M • • C » ' E ' 'N' • T • »R','A','T" 'I' '0' 'N'
'4 • 9 • • * 'C' 'f* 'I* ')' ' ','0','R' ' ' *G','R'
                                          59

-------
(rues VERSION
IS-JUL-T1?   HMP0I08  PAGE
00354
00055
00036
00057
0 pi ^15 S
0001^9
0&PI6PI
0P)0fe ]
00062
00163
00065
00066 C
00067
00068 1
00069
00070
00071 !
05)072
00073
00074 C
00075
00076
00077 C
0^078
00079
000P0
00081 C
00083
00083
00084
000P5
00086 3
00087
00080
000B9
00090
00091 C
00092 C
055093
00094 C
00095 C
00096
00097
00098
00099
00100 4
00101
0010?
00103
001 04
00105
001 06
00107
PI0108
00109
DATA HEAD3/8*' ','N' 'U','M',»S»,
1 •!• 'M»,'E',» • »P» «L','A','N«,


DATA HF.A04/8*' • '(!• M','V','E',
1 'T* *H','E*»* * *E' *V',*E*,'N*,

3 T.» 'Q','N',»C' '£• 'N','T','R',
5 * R ' 'E'i'A't'T'f'E'f'R'iS*' '/

WRITEC1,!)
'E' *R',» ','0','F',' ",'T',
•C' 'S',' ',
* A *

•N' • '.'T'.'H'j'A'.'T',' ',

, • ,9,^ ,y.t
'A' 'T','1','0',
tnt tot • t ttit
w n , ,w ,


FORMATU0X, •**•»* FREQUENCY ANALYSIS PROGRAM *****'//
1 '^ENTEH THE NAME OF THE CONTROL
RE AD (l, a) NCHR, CCNTFIL CD, !•!,«)
FORMAT (Q, 30A1 )
CNTFTL (NCHH*I j • o
CLnSE (UNIT"1 )

CALL ASNLUN(1,«OP',0)
nPEN(UNlT«l,NAME»CNTFIL»TYPE»»OLO

CALL FACINPCBSEr,,8TP,C,CF,D,OELT,
1 ETP,IE",I^PFIL,JFIELO
9 NCLC,AA,LOGC)

CLOSE(UNIT»1)
IF (TER ,NE, 0)
CALL ASNLUN(1,'TI',0)
WRITE(l,3)
FILE>')






•, READONLY)

Df,
, MO, NC,NLC,NPT, SOURCE,






FORMAT(//'*«*** FRANCO •• ERROR ENCOUNTERED DURING INPUT',
I ' PROCESSING'/' EXAMINE LINE
Z • EXPLANATION')
STOP
, »f TN

••» OETEHMINE THE NUMBER OF TIME
00 {K«1,MO) NO(K) • OCK) / CELT

PRINTER LISTING FOR AN",




STEPS IN EACH DURATION ***


*** OPEN THE INPUT FILE AND IF NECESSARY, SKIP DATA ***
WHEN CSOURCE(t) tEO. 'A')

0»»EN (UNI T"l, NAME* I NPFIL, TYPE* 'OLD', READONLY)
REPEAT UNTIL (CUHTP ,GE, BTP)
, READ ( 1 , 0, ENli»3(J0) CURTP
. FORMAT(9X,I1«,5F1S,0)
...FIN
BACKSPACE 1
..FIN
LSE







OPF.N(UNIT«1,NAME«INPFIL, TYPE* 'OLD', FORM "'UNFORMATTED', RE AH ONLY)
REPFAT UNTIL (ISEO ,E'3, 8SEG)
, RE*o(i ,END*5«0) ISER,NXEO
, , ,FIN
UNTIL INXEU .GE. BTP)




                                         60

-------
(FLFCS  VERSION 2?,a«O
                         1B-JUL-79    07120108   PAKE   00003
001 |0
00111
00112
00113
001 14
00115
00116
001)7
001 18
00119
00120
0Hl?l
00122
00123
00124
013125
00126
00127
00128
("0129
00133
00131
00132
00133
P0134
00135
  0013»
  P0138
  00139
    1 a?
 00144
 00145
 001*16
 70147
 00150
 00151
 00154
 00155
 00156
 00157
 00158
 00159
 00161
          1H0
 00163
 00164
 00165   C
                                 5'iuj ISFG,NXEO
                .   ...PIN
                .   BACKSPACE 1
                ...FTN

                IF  (NLC  ,GT, 0)
                .   CALL  PIECE(CF,DI»,UC,NPT,A,B)
                .   ***  OPEN THE  TEMPORARY FILES THAT ARE USED TO STORE DATA FROM
                .       SUBR, LCPREf ***
                .   DO
i.
8.  .
 .  ...MN
 ...MN
                      (1PCN (UNI T^U'U I) fRFE" 'SCRATCH', ACCES3«'DZ*eCT'»
                           FORM«'UNFURMATTeD'fRECORD8
                           ASSOCIATEV*RIA8UE«NREC(D)
 C2LUG i
 DO'JE • .FALSE,
 REPEAT UNTIL (DONE)
    REAO-THE-NEXT-ENTKY
    CALL  EVENT(NC,HO,CaNC(JFIELO),C,NDC,ND,NE,NT,NT IM,DELT,
               A,8,OF,MLC,NPT,NREC,LUN,NCLC,AA)
    WHEN  (LOGC) CARS • AUOGieCCONCUFIELO)) - C2L08
    ELSE  CARS • CONC(JFIELD)
    CALL  SUMSATfAMEAN,ASUMS,CARG,LMEAN,LSUMS,W)
    CONTINUE
  ..FIN
 CL
-------
(FLF.C3  VERSION ??,«61
                Je-JUl-79   07120108  PAGE  0000fl
  00170
  00171
  00173
  00173
  00170
  00175
  00176
  05)177
  00178
  00179
  00180
  00181
  0(9183
  00183
C
300
      CALL PLTS'JM(C,MT,Nr:,NTIM,AMEAN,LMEAN,A50,L9D,ALPHA,eETA)
      STOP

      CONTINUE
      *** FILL TO THE ENiD *UTM ZEROS **«
      MI8TP » ETP - PRVTP
      FTLL-^TSTP-TIMF-SITFPS.WITH-ZEROS
      DONE • ,TRUC.
      Bt) TO
CONTINUE
rLO«F(UNlT«U
TALL ASNLUN(1,
              /' ***** FRANCO — ANALYSIS TERMINATED B6C*USE THE  DATA',
     1 • WAS EXHAUSTED WITHOUT'/' ENCOUNTERING THE STARTING DATE,',
     3 • CHECK YOUR INPUT,')
      STOP
  00185
  00186
  00187
  00188
  00169
  00191
  00193
  00193
  00194
  00195
      TO REAn-THfc.NEXT-ENTRY
      .   PRVTP • CURTP
      ,   WHEN (SOURCF.(l) .CO, 'A') RCAOC1, «,END«aB0) CURTP,(CONC (I),I«l,5)
      .   ELSE REAO(1,END«300) ISEG,CURTP,(CONCCI),I»1,6)
      .   WHEN (CURTP ,GE. ETP) DONE • .TRUE,
      .   ELSE
      .   .  MISTP • CURTP • PRVTP . 1
      .   .  IF (MISTP .ST. 0) FILL-MISTP-TIME-STEPS-WITH-ZeROS
      .   ...FIN
      .   NTIM P NTIM + i
      ...FTN
  00196
  00J97
  00198
  00199
  00200
  00301
  H0303
      TO FILL-MISTP-TIME-STEPS-WITH.ZEROS
         00 (JMIS«1, MISTP)
            NTIM • NTJM » 1
            CALL EVENT(NCrMO(a,p,C,NOC,NO,NE,NT,MTIM, OS1.T, A,B,OF ,NUC,
            CALL SUMS AT (A ME AN, A8UM9,0,0,LMEAN,LSUMS,W)
          ..FIN
       ..FTN
                END
                PROCEDURE  CR03S*REFERENCE TABLE

          00196  FILL-MTSTP"TIME"8TFPS-WITH«ZEROS
                00173  0H193

          00185  REAO-THF-NEXT-ENTRY
                                         62

-------
(FLECS VERSION ?3.4lb)      18-JUL-71   07130111  PACE  00001
000*1
0001*3
00003
00000
00005
0000*1
00007
B0008
00009
00010
00011
005)13
0001)
0001 0
00015
00016
00017
00018
00019
00030
00031
00033
00033
00030
00035
00036
00037
00038
00039
00030
00031
00033
00033
00030
00035
00036
00037
0003*
00039
00000
00041
00003
00003
00040
00045
00046
00007
00008
00049
00050
00051
00053


C
C
C

C

C

C


C

C
C







C
1








3

3





4
5
6
7

8

9

10
SUBROUTINE COAS(C,P,NE,NT,NTIM,NC,AMFAN,LMEAN, ASD, LSD, GMEAN , GSD ,
1 ALPHA, BETA)

CONCENTRATION DISTRIBUTION SUMMARY AND ANALYSIS ROUTINE

INCLUDE 'SYlFRANCO.PRM'

INTEGER** NT(JC,JO),NTIM,NN,NTOIF(JC),NOB,OBSN(JC)

REAL LME*N(3),LSD(?)

DIMENSION ENN(JC),eNLCJC),CN6(JC),CCJC),P(JC,JD),NE(JC,JO),
1 AMEAN(3),ASDC3),GMEAN(S),GSD(a),EXPN(JC)

DATA BOTCNT / 1,0 /

*** ANALY?E ALL NON-ZERO EVENTS ***
J " 3
N • ?
NN • NT(3,1)
COMPUTE-VALUES
PRINT-HEADING
PRINT-TABLES
RETURN

FORMAT(1H1,36X, 'CONCENTRATION DISTRIBUTION SUMMARY AND ANALYSIS'//
1 39X,'« TIME', OX,'PERCENT',5X, 'PERCENT', 36X,
3 'EXPECTED NUMBER OF TIME STEPS*/
3 ?0X,'*EVENTS STSPS TOTAL TIME TOTAL TIME NO, TIME STEPS',
0 10X,*CU) <• C «• C(I*J)'/1X, 'CONCENTRATION C(I) C»»C(I)',
5 3X,'C»«C(I) C>»C (I ) ' , 6X, *C«C (I) C (I) <«C«C (1*1 ) * ,
6 6X, 'NORMAL', 7X,'LnG NORMAL* , 6X, 'GAMMA'/ IX, 13 C '-*) > IX ,'.— ',
7 3X,7('»*),3X,7('-*),3X,10(*-'),3X,10(*«'),3X,14(''»*),
8 ?X,13('-'),!>X,13(*-')»3X,13('»'))
FORMAT(lPE13.5,3X,I3,«X,I5,OX,I5,5X,0PF6.3,6X,P6.3r9X,I5,6X,
1 3(1PE13,3,3X))
FORM4T(///' CHI SQUARE GOODNESS OF FIT'
1 /7X, 'DISTRIBUTION',
3 10X, 'PARAMETER E8TIMAT!S',7X,'TCST STATISTICS* ,5Xf
3 'PROBABILITY OF EXCEEDING DEGREES OF FREEDOM*
0 /7X, 1 3 ('•*), 10X, 38 (*"'),
5 3X,15('-'),5X,3« ('-'), ZX, ie('-'))
FORHAT(1X,'ARITHMET1C',10X,1PE13,5,5X,1PE13,5)
FORMAT(1X, 'ARITHMETIC (LOG C) ' , 3X , 1 PE 1 3 ,5, 5X , 1PE1 3,5)
FORMAT(1X,'6EOMETRIC',11X,1PE13,5,5X,1PE13,5)
FQRMATflX, 'NORMAL (MEAN, 9TD DEV) • , M , 1PE 1 3, 5 , 3X , 1 PE 1 3,5,
1 JX,0PFj.S.i, iix,F!3,3, 10X,F5,0)
FORHAT(1X,'LOG NORMAL CMEAN, STD DEV) • , 3X, 1PE 1 3,5, HX , 1PE13.5,
1 3X,0PF13,1,11X,F13,3,10X,F5,0)
FORMATtlX, 'GAMMA (ALPHA, BET A) • , 9X , 1 PE 1 3 , 5 , 3X , 1 PE 1 3 . 5 ,
1 3X , 0PF 1 3 , 1 , 1 1 X , FI 3 , 3 , 1 0X , F5,0)
FORMAT (1 HI///, ax, 'SUMMARY STATISTICS'/
                    , 'MEAN', TX, 'STANDARD  DEVIATION'/
                                           63

-------
(FLECS VERSION 2?. at,-)

  0PH54        P ?1X,
  00055   C
                        18-JUL-79   0712011!   PAGE   0000?

                      ('-'J ,2X, IM'-*})
00056
00057
0PI05*
00060
0R061
00062
00063
03065
00066
0(9067
0P068
00070
00071
00072
001073
00074
00076
00077
00078
00079
00060
000M
000B2
000fl3
000M
00085
00066
000S7
00088
000P9
00091
00092
00091
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
001f"5
00106
                TD COMPUTE-VALUFS
                   r»U. GAMML(»MFAM(N) ,6ME*N(N) , ALPHA, BET A)
                   DO (I«J,NC)
                      CALL NORCi|Mtr:(I), AMEAN(N) , «SO(N) ,P3U8I)
                      ENN(I) . NN * PSU8I
                      PLUG • ALofi(ctD)
                      CALL Nn9CUM(rLO(5,LMEAN(N) , USD (N) , P8UB1 )
                      ENL(I) • NN * P3U8I
                      CALL GAMCUM(C (I) , ALPHA,BET»rPSUBI)
                      SNG(I) • NN * P9U8I
                    ..'IN
                        -U  • ENLCJ)
                   EMGfJ-1)  • FMG(J)
                   00 U«J,NC-1)
                   .   CNN(I)  • (-NNCI*!) - INN(I)
                   .   ENL(I)  « ENLU + J) • CNLd)
                   .   ENGCI)  • ENC-(I»1) - ENG(I)
        • NN
EMGfNC) • NN
                                  ENG(NC)
                   DO (I"J-liNC-l) NTOIF(I) • N7(I,n - NTCI+1,1)
                   NTOIF(NC) • NT(NC,1)
                   DO (I«J-1,NC)
                   .  EXPN(I"J+?) » ENN(I)
                   .  08SN(I-J+?) i
                   COLI-APSE.CELL8
                   CHIN • 0.0
                   DO CI»1»NCELL3) CHIN • CHIN *  ((OBSN(I)  .  EXPN(I))**2)  / EXPN(I)
                   OFN • NCELLS • 3
                   CALL SAi1CHM(CHIN,OFN/?t,.9,PCHIN)
                   CHIN • (CHIN-OM) / 80RT(2.*OrN)
                   OH (I«J"1,NC)
                   .  EXPN(I-J»2) • ENL(I)
                   .  UWSNCI-J*?) • NTOIF(I)
                       APSE-CELLS
                   CHIL • 0,0
                   DO H«l, NCELLS) CHIL « CHIL +  ((OBSN(I)  .  EXPN(I))**?)  / EXPN(I)
                   OFL » NCELLS • 3
                   CALL f5AMCUMfcHIL,DFL/2.,.5,PCHIL)
                   CHIL • CCHIL-DFL) / 8rJRT(2,*OFL)
                   DO (I«J"1,NC)
                   ,  ExPN(i-j»a) • ENS (i)
                   ,  QRSNCI-J + a) * NTOIFU)
                   ...FIN
                   COLLAPSE- CELLS
                   CHja » tf, 0
                                         64

-------
(FLECS  VFRSION 2?.«6)
U-JUL-Ti
00107
0011*8
0B1PI9
00110
00111
00118
00111
00114
00115
00116
0011T
00118 1
00119
00180
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00138 55
00133
00134 60
00135
00136
0013T
00138
0013'
00140
00141
00148
0PM43 65
00144
00145
00146
00147 70
00148
00149
00150 75
00151
0P152 C
00 (I"l, NCELLS) CHIG • CHIG * ((OPSN(I) - EXP
DFG • NCELLS » 3
CALL GAMCUM(CHir,,l)FG/?,,,5,PCHIG)
CHIG • (CHIG-OFfO / SQRT(8.*OFG)
..FIN
TO PRINT-HEADING
. WRITFUP.n
...FIN
TO PRINT-TABLES
00 (I»J-1,NC)
. WRIT£(LP,2) C(I),I,NE(I,l),NTCI,n,PCI,l),
, NTOIF(nfENN(I),£NL(n,eN6(I)
..tFIN
WRITF.UP,101
WRITECLP.4) AMEAN(N),ASDCN)
WRITECLP.5) LMF-AN(N),L3fHN)
WPITE(LP,6) GMEAN(N) ,G80(N)
WRITE(LP,3)
WRITE(LP|7) AMEAN(N),A8D(N),CHIN,1,.PCHIN,DFN
HRITE(LP,») LMEAN(N),USO(N),CHIL,1,-PCHIL»DFL
WRITE CLP »•») ALPHA, BETA, CHIG, l.-PCHIG,OFG
..FIN
TO COLLAPSE-CELLS
K « 1
NCELLS • 0
NOB • 0.0
PK I 0,0
PK « PK + EXPN(K)
NOB « NOB * l)BSM(K)
K • K + 1
IF fK ,GT, NC-J+2) GO TO 65
IF fPK ,LT. 00TCNT) GO TO 60
NCELLS « NCPLLS + i
EXPN(NCELLS) • PK
OBSN(NCELLS) • NOB
GO TO 55
IF fPK ,GE, BOTCNT) GO TO 70
EXPN(NCELLS) • F-XPN(NCELLS) + PK
OBSN(NCELLS) • OHSN(NCELLS) * NOB
GO TO 75
NCELLS • NCFLL9 * 1
EXPN(NCELLS) • PK
0«SN(NCELL8) • NOB
CONTINUE
..FIN

               END
                                         65

-------
(FLECS  VERSION
i8-jiti«7
-------
CFLECS
00054
00055
00056
00057
00058
00059
00060
00061
00068
00063
0(10)64
00065
(1(1066
00067
0(1068
0(iB69
00070
00071
00078
00073
00074
00075
00076
00077
00078
00079
00080
00081
00088
00083
A A ffl • A
QdnflO
00085
00086
00087
00088
0PCJ89
00090
0(1091
00098
00093
00094
00095
00096
0(1097
H0098
00099
00100
00101
0(il(i8
00103
00104
B0105
00106
0P107
00108
00109
VERSION j
C
C
c
c
c
c
c
C * * * * i




















t aQa
I V T0
1180
1300
800(1
C
C
C
c


5

10







15

C
C
C
c
»2.«6) 18-JUL-79 07120115 PAGE 00003

• 1 UP TU NOIGIT DIGITS FROM ( SVMCX),I*liN ) PRINTED
NOIGIT SEE ABOVE



F0» A FULL DISCUSSION OF PLOT SIZE OPTIONS, SCALE SELECTION OPTION
DATA DELETION OPTION AND MULTIPLE DATA SET OPTIONS CONSULT
A.M. (TONY) OL9EN,

k***************A******:A*********:*****************ft**A*.Use,XBASE,IY8A8E,Y8ASE
DIMENSION X(n,YCn,IDUMCU,OUM(l),SYM(l)
DIMENSION PX(6),DIC.ITC10},ALF(105),NOIG(103)
DIMENSION FORMA(5),IFOR(0),FORMX(3),FORMY(7),FORMB(3)
LOGICAL POS,EV, EVICT
DATA PERT 00 ,IXBASE, XBASE, IYBASE,Y8ASE/1M,, 0,0,0,0,0,0/
DATA FORMA/' 87A1',' 47A1',' 6TA1',' 87A1 ' , ' 107A1 •/
OATA FOHMX/»(6X','F9,3',',5(UX*,'F9,3','))*/
OATA FORM8/'(UX,',M07A1»,')'/
OATA FORMY/'(JX','F9.S',',1X,<',M07A1',',IX','F9,S',^)'/
DATA FORM/'F9,3'/
DATA IFOR/'**, «+',»!',' '/
DATA DIGlT/lH0,lHl,lH3,lH3,lHa,JM3«lH6,lHT,lH8,iH9/
DATA DOLLAR, DASH, BLANK, WINSOY, WINSOX/1HI, 1H», 1H ,1HW,1HW/
DATA LI,NCUL,IXAX,IYAX/S0,100,2,2/
OATA ICONZ.NDICIT/0, I/
FORMAT(IH0,20X,21HCONTOUR • VALUE* IB** (, IS, 1H) )
FORMAT(1H0,10X,J9HCHOS3 HAD NO DATA POINTS TO PLOT « N «,I6)
FO«MATUH1,//,TH PAGE,I2,20H OF A PLOT REQUIRIN6, 13, 7H PAGES,




* * * *























)

LOSICAL FUNCTION EVICT IS USED TO SKJP LINE8 OF DATA
NOT TO BE PLOTTED

IPR»LP
IF(N) 5,5,10
W«ITE(IPR,1300) N
RETURN
XMTN«1,0E37
A(JMAX»"XMIN
XMAXiARMAX
IFCICONZ.E0.0) GO TO 20
00 15 I«1,N
EV«EVICT(X(I),Y(I))
IF(EV) GO TO 15
ARMAXlAMAXl(ARMAX,AnS(8YM(I)))
CONTINUE
IPOW»INT(AL06l0tARMAX)+00,)-NOIGIT"39

DETERMINE Y.AXIS SCALE FOR CROSS^LOT USING THE Y SCALE
SELECTION OPTION GIVEN BY IYAX





















67

-------
(FLECS VFRSIflN 22.
18-JIIC-79   37120115  PAGE   00003
0PI110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
0P121
00122
00123
00124
00125
00126
00127
00128
00129
00131
00132
00133
00134
00135
00136
001 37
00136
00139
00140
00141
00142
00143
00144
00145
00146
00147
00J18
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00169
00U1
00162
00163
00164
00165
?« CALL 3"«TP(Y,N,DUM, JDUM)
J«N/2
KK*N+1
DO ?5 I»1»J
TI«KK-I
K«IOUM(I)
IOHM {15 «IDUM(ii)
25 lOUMfin'K
IF(IYAX,6Q,4) GO TO «B
00 33 I«1»N
IT"IOUM(KK»I)
CV"EVlCT(X(II)|Y(II))
TF(EV) GO TO 30
YMIN.Y(II)
GO TO 35
30 CONTINUE
35 DO 3* I«1,N
n«iouM(i)
EV«EVICT(X(II), Y(ID)
IF(FV) GO TO 36
v u i y • V f T T ^
T ™ * Jl • T \A^«
GO TO 37
36 CONTINUE
37 CONTINUE
IF f YMIM.EQ, YMAX) YHAX«YMIN*1 ,
I9CALE"IYAX
>F(IYAX,GT.2) ISCALE«0
00 TO 50

-------
(FUECS  VERSION 22.46)
          18-JUL-79   07120115  PAGE  00004
00166
00167
001*8
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
30183
00181
00182
00183
00164
00185
00186
00187
30188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
(50201
00302
00303
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221

C
c
C









c
c
c
c
c
c









210















500
520
5?5






52«
525
526
                MCOL»MCUL/2?)

                        3ET  UP OUTER PLOT LIMITS FOR WINSORIZ1NG
                YLOWFR •YFJRST-EXACT* (FLO»T (LINE8O) +0,5)
                VUPPeR»Y
                KOUNTW«0
                FnRMXC4)«FORM
                FORMYC2) "FORM
                FOBMY(6)"FORM

                    DETERMINE PLOTTINO POSITIONS »NO setup PLOT BY LINE THEN
                         BY  PAGE,
                         X  AND V  DATA  POINTS  OUTSIDE THE SPECIFIED PLOT RANGE
                           ARE HINSORIZEn AND COUNTED,

                DO  700  LMrLEAF
                M.5
                IF(5«L-MCOL,GE,0)  M»MOD(HCOL"1,5)*1
                                               l)
FORMY(4)«FORMA(M)
PX(l)«XFlRST*100.tXACT*FLOAT(L
00 »1« I"2,MM
PXm«TENX*FLOAT(I»l)»PXCl)
IFfL.NE.l) WRITE(IPR»2008)
WRITE(IPR,FORMX)
WRITEUPR,FORMX) (PX(I)rI»l,MM)
WRTTe(TPH,1090) ((1H ),!•!, M)
J«l
JAAVE*0
XPLOTL«PX(1)«DEX
XPLOTU«PX(MMJ»2,5«XACT
YPLOTL"YUPPER»EXACT
00 600 I«|,LINFS
YPLOT«YFIRST-EXACT*FLaAT(I«2)
YPLOTU«YPLOTL
YPLOTU«YUPPER«FXACT*FLOAT(I
00 50B K"lf105
                                            1J
                AUF(K)«RLANK
                IF(J-N) 523,523,553
                PLOTY»Y(IOUM(J))
                PLOTX»X(IDUM(J)J
                EV«EVICT(PLOTX,PLOTY)
                IFCEV) GO  TO 5«0
                *LPH»«SYM(1)
                1FUSYMB.EQ.1) ALPHA»8YM(IOUM(J))
                IFCPLOTX-XLOWER) 511,524,524
                IF(PLUTX-XUPPER) 525,542,542
                IFfPLf>TXi«XPLOTL) 51^,526,526
                IFfYIJPPER.PLOTY) 513,3a3,527
                                         69

-------
(FLEC8  VERSION 22.46!)
              18-JUL-79   07120115  PAGE  00005
  00222
  00223
  00224
  00225
  00226
  00227
  0022B
  00232
  00233
  00235
  00236
  0023T
  00238
  00239
  00241
  00242
  00243
  00344
  00245
  00246
  00247
  00248
  00249
  00250
  00251
  00258
  00253
  00254
  00255
  00256
  00257
  00258
  00259
  00260
  00261
  00262
  00263
  00264
  00265
  00266
  00267
  00260
  00269
  00270
  00271
  00272
  00273
  00274
  00275
  00276
  5!{)2T7
527
528
529
530
531
IFtPLOTY-YPLOTU) 5?8,52B,550
IF(PLOTY-YPLOTL) 550,550,529
IFfYLOWEH-PLOTY) "^M,530,543
IF(PL«TX-XPLOTU) 511,531,540
CONTINUE
KOL«INT((PLOTX-XPLOTL)/XACT * 3,0)
IFtKDL.GT.KK)  KOL«KK
IFtKOL.LT.l )  KOL»1

    DETERMINE  if A ONE CHARACTER SYMBOL 18 TO BE PLOTTED AND
         LOAD  ALF ARRAY,
               £0.1) GO TO 535
532 IFCALFfKOD.NE.BLANK) GO TO 533
    ALF(KOL)"ALPHA
533
    00 TO 540
    TF(MDIG(KOL),Ge,101 GO TO 534
    K«NOIG(KOl)*l
    GO TO 540
534 ALF(KOL)«OOLLAR
    GO TO 540
535 IF(ALPHA.EQ.WINSOY) 00 TO 833
    TFCALPHA.EQ.W1NSOX) QQ TO 53?
    INTGeR»INT(9YM(IOUM(J))*10,**(.IPOW))
    POS • INTGER,Ge.0
    DO 536   K«l,3
    II«MOD(IA8S(INTGER),10)*1
    ALPHAiOIGITdl)
    II»KOL-K*1
    IF CALF (I I),NE,BLANK) ALPHAtDOLLAR
    IMTGER«INTGER/10
    IFCINTGER.EQ.B) GO TO 537
536 CONTINUE
537 CONTTNUF.
    IF(POS) GO TO 540
    ALPHAIOASH
    IFfALFdD.NE.BLANK) ALPHA«OOLLAR
    ALFCID»ALPHA
540 J«J»1
    GO TO 520
541 IFCL.NE.l) GO TO 540
    PLOTX«XF1RST-2,0*XACT
    IF(JSAVE.EQ.J) GO TO 526
    J8AVE-J
    KQIINTW.KOUNTW*!
    GO TO 526
542 IFtL.NE.LEAF) GO TO 540
    PLOTX«XUPPCR»1,5*X*CT
    TF(JSAVE.EQ.J) GO TO 526
                                          70

-------
(FLECS  VERSION  22,46)

                J9*VE«J
                        18-JUU-79   07120115  PACE   00006
00278
00279
00282
00283
00284
002B*
002*7
00289
00292
00295
00296
0029S
00299
00300
00301
00302
00303
00304
00309
00306
00307
00308
00309
00310
00311
003)2
00313
00314
00315
          543

          544
              so m sab
              IF(»LPHA,EU,WINSOX) GO TO 544
    Gn TO
550 CONTINUE
    TF(I. EQ. LINES, »NO.
                                     e.N)  00 TO 5?9

                    PRINTOUT  RESULTS  POR  A 8INOLE LINE,

                IF(IXRASE,EQ,0)  SO  TO 553
                KOL"INT(CXPA8E-XPtOTU)/X»CT+3.)
                IF((KOL,5T,(KK.2)).OR,(KOLtLT,3))  60  TO  553
                IF (ALF(KOL).EO. BLANK)  ALF (KOL) "PERIOD
            553  IF(IVt)A3E,EQ.0)  60  TO 354
                JF(YPA8E.ST,VPLOTU) 60 TO  534
                IF(YBA8E.LE,VPLOTL) 60 TO  554
                K»KK-2
                DO  5S2  KOL«3,K,3
                IF t ALF (KOL), EQ, BLANK)  »LF (KOL) »OA8H
            55?  CONTINUE
            554  IK«3
                IF(I.EO,1,OR,I,EO,LINE3)  IK»4
                          ,10J,EO,5)  IK»2
                IFdK.EQ.l)  GO  TO  560
                WRlTE(IP»iFORMB)  IFOR ( U), ( ALF (K),K»J,KK), IFOR (IK)
                GO  TO  600
          560    WRI TE ( IPS f f ORM Y)YPI.OT, IFOR (!),( ALF (K),Knl,KK), IFOR (1),YPLOT
            600  CONTINUE
                WRITE(IPR,1090)(CIH  ),K«1,M)
                WRITE(IPR»FORMX)  (PX(K)»K«1,MM)
            700  CONTINUE
                IFUCUNZ.EQ.l)  WRITE(IPR,1130)  IPOW
                RETURN
                FNO

          (FLECS VERSION 22.46)
                                         71

-------
(FLECS VERSION 83.46)
18-JUL-79   07120120  PAGE  000191
00001
00002
00003
000PO
00005
00006
00007
00006
00009
00010
00011
00018
00013
00014
00015
00016
00017
00016
00019
00020
00021
00022
00023
00024
00025
00026
0002T
00028
00029
000*30
00031
00038
00033
00034
00035
00036
00037
00038
00039
00040
003al
00042
00043
00044
00045
00046
00047
00046
00049
00050
00051
00052
00053
SUBROUTINE EVENT(NC,MD,CQNC,C,NDC,ND,NE,NT,NTIM,DELT,A,B,
1
C
C THIS
DF,NLC,NPT,NREC,LUN,NCLC,AA)

ROUTINE IS RESPONSIBLE FOR COUNTING THE EVENTS AND THE TIME



c PLANES IN THE EVENTS THAT HAVE CONCENTRATIONS (CONC) GREATER THAN
C OR EQUAL TO C(J) AND A DURATION (NOC(J)J GREATER THAN OR EQUAL
C TO NO(K). IT ALSO CALLS LCCONT AND LCPRE? WHICH PREPARE THE SCRATCH
C DATA
C MAIN
C
FILES FOR THE LC50 FUNCTIONS, THIS ROUTINE IS CALLED BY THE
PROGRAM FRANCO,




C NC NUMBER OF CONCENTRATION LEVELS
C MD NUMBER OF DURATIONS
C CONC CONCENTRATION READ FROM THE INPUT FILE (CALCULATED)
C C
CONCENTRATION LEVELS INPUT BY THE USER (SPECIFIED)
C NDC EVENT COUNTER INCREMENTED EACH TIME STEP THAT CONC ,GE.

c
C ND(K) NUMBER OF TIME STEPS IN DURATION K,
C NE EVENT COUNTER MATRIX
C NT TIME PLANK COUNTER MATRIX
C MCLC
C AA
C


C VARIABLES NTIM THRU LUN ARE PASSED TO THIS SUBROUTINE ONLY TO
C PASSED TO LCCONT *NO LCPREP WHERE THEY ARE ACTUALLY USED,
C


INCLUDE 'SYIFRANCO.PRM*
c


INTEGER** NT(JC,JD),NDC(JC)
C


DIMENSION C(JC),ND(JO) ,NE(JC,JO),
1
2
C
OF(NLCF,NCCP),NREC(NLCF},LUN(NLCP),AA(4,NLCF),
A(NLCP,NLCP),B(NLCF,NLCP)




J«NC
RFPEAT UNTIL (J,EQ,0)



















WHEN (CONC ,GR. C(J))
NDC(J)«NDC(J)*1
,,FIN
ELSE
TF(NOC(J) ,6T. 0)
K* 1
UNTIL (H .GT, MO ,OR, NDC(J) .LT, ND(KJ)
. NE(J,K)«NE(J,K)*1
, NT(J,K) •NT(JIK)*NDC(J)
, K'K+1
...FIN
IF (NLC ,GT, 0)












, CALL LCPREP(C(J),NOC(J),NTlM,DELT,A,B,DF,NLe,NPT,NR£C,LUN)
...FIN
IF (NCLC ,GT, 0)


. CALL LCCONT(C(J),NOC(J),NTIM,DELT,AA,NCLC,Nl.C,NRec,LUN)
...FIN
NOC(J)«C
..FIN



                                           72

-------
(FLECS VERSION 2*. 061     IB-JUU-T1*   07120180   PAGE

                .  ...FIN
                RFTUPH
                FNf)

                 VERSION
                                          73

-------
(FLECS  VERSION  23.06}
1S-JUL-79   0719^189  PAGE
00001
Pip PI 02
00Q0S
0 PI PI (a 0
000P5
0000*
051007
00i*08
00009
00010
00011
0717112
00013




C
C
C

1
3

3

FUNCTION EVICTCX»Y)
LOGICAL EVICT
Cr>MMON/BAD/XBAD,Y8AO
(UTA XBAO,YBAO/1,PIE17, 1.0E37/

TRUE MEANS EVICT

IF(X«XBAD)1,Z,1
IF(Y-Y«AD)3,8,3
EVICT».TRUE,
RETURN
EVICT", FALSE.
RETURN
          (FLECS  VERSION
                                          74

-------
(FLECS VERSION ??.06J
lfl»JUl>-7<»
PAGE  0007J1
00001
0000?
00003
00000
000P5
0000fc
00007
00P08
00009
00010
00011
00012
5)05113
00010
00015
0001fc
00017
n00l»
00019
00320
00021
00022
00023
007120
00035
005I2&
00027
00*?fl
00029
Bpnjfl
00031
00032
?pi?33
00030
00035
00036
00037
00038
00039
00000
00001
00002
00003
00000
00005
000a<>
00007
flcicafl
00009
00050
000;i
00052
00053



C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C


C

C

C

C
SUBROUTINE FACINPC9SC8» »TP» C, Cf , 0,
1 ETP, ICR, INPriL, Jf
2 NCi NI.C, NPT, SOURCE

DELT, OF,
1ELD, MO,
, NCLC, AA, LOGO

THIS ROUTINE is CALICO BY THE MAIN PROGRAM TO SUPERVISE THE READING
OF THE CONTROL INPUT FILE,

FORMAL PARAMETERSJ
RSEG
BTP
C
CF
0
nELT
DF
FTP
IFR
TNPFIL
JFIFLO
Mn
NC
NLC
NPT
SOURCE
NCCC
AA

CALLED 8YI FRANCO

INCLUDE 'SYIFRANCO.PHM'
BYTE INPFIL(30), SOU»CC(7), TITLEf80),

INTEGER*2 OPTC, OPTI), B3EG

INTEGERtO BTP, ETP

LOGICAL*l L06C


























TUNITC6), LETRC, LCTRO







DIMENSION C(l), D(t)( CP(NLCP,N|.CP), DF (NLCF,NLCP) , A»(0,NLCM
C

C
C
C


C
C
C
C
C
C
C

DATA LFTHC / 'C' /, UETRO / »D' /

•** RECORD 1.0 *•*
TITLE . 80 COLUMNS USED TO TITLE
REAOfl,!) TITLE
WRITf(LP|2) TITLE

*** RECORD 2.0 *»«




THE OUTPUT




IMPFIL • INPUT FILE CONTAINING CALCULATED CONCENTRATIONS
SOURCE • KEYWORD IDENTIFING THE DATA TO BC ANALYSIZED
• 'ARM 'I DATA 18 THE
• MfRATRA'f DATA IS THE
SIMULATION
OUTPUT OF AN ARM SIMULATION
OUTPUT OF A SERATRA

                                           75

-------
(FUfCS  VERSION
0P054
0P055
00057
000*8
0P 21*9
00060
00061
00068
00963

-------
(FLECS  VERSION 2?,46)
                        18-JUL-79   07120180  PACE  00003
00110
00111
00113
00114
00115
00116
00117
00118

00130
00131
00134
00135
00136
00137
00138
001?9
00130
00131
00133
00133
00134
00135
00136
00137
00138
00139
00140
00141
00143
00144
00145
00146
00147
00148
00149
00150
00151
00158
00153
00154
00155
00156
00157
00158
00160
00161
00ij»a
00163
00164
00165
C
C
C
C
C
C
C













C
C
C
C
C
C














                       • It  RECORD SET 7,0
                IE" • 0
                SELECT (OPTC)
                   (1) CALL OPTKJC,  C, LETRC, NC, IER)
                   (8) CALL OPT3(JC,  C, LETRC, NC, IER)
                   (3) C*LL DPT3(JC,  C, LETRC, NC, IER)
                   (OTHERWISE)
                      IER«3
                      WRIT6(LP,16)
                      WHITMLP.IT)
                      WRITE(LP,18)
                    ..'IN
                 ..FIN
                ir  HER ,EO.  g)  RETURN

                *** RECORD  SETS  8, PI,  9,0, AND 10,0 ***
                     SPECIFIED  DURATIONS
                       RECORD  SET DEPENDS UPON THE VALUE OF QPTO
                       «1»  RECORD SET 8,0
                       • 3>  RECORD SET 9, PI
                       •31  RECORD SET 10.0
                IER  •
                        0)  OPTD
              SELECT (OPTD)
                 (1) CALL OPTKJD, 0, LETRD, MD,
                 (?) CALL OPTaUO, 0, LETRO, MO,
                 C3) CALL OPT3(JO, 0, LETRD, MO,
                 (OTHERWISE)
                    TER • J>
                    WRITE(LP,16)
                    WRITE(LP,19)
                    WRITE(LP,18)
                                                   IER)
                                                   IER)
                                                   IER)
                 ..FIN
                IF  (IER  ,EQ,  a)  RETURN

                ***  RECORD  11,0  **«
                     NLC    - NUMBER  OF  LC  PIECEW18E LINEAR FUNCTIONS
                     NPT    . NUMBER  OF  CONCENTRATION,  DURATION PAIRS USED TO
                              DESCRIBE EACH FUNCTION

                READ(1,14]  NLC, NPT
                IFR  • 0
                WHEN  (NLC  ,EO, R)  WRITE(LP,B1)
                ELSE
                   WRITE(LP,ZZ)  NLC, NPT
                   IF(NLC  ,QT, NLCF)
                     ICR  • 2
                     WRlTE(LP,lfc)
                     WRITE(LP,23) NLCF
                     WRITE(LP,18)
                   F  (NPT  ,LT.  3  .OR.  NPT  ,GT.
                      IEH •  3
                     WRITE(LP,2«)  NLCP
                                          11

-------
(FLECS  VERSION  22.4M
18.JUI.-79   07120184   PAGE
00166
00167
00168
00169
00170
00171
00172
00171
0K174
00175
00176
00177
00178
00179
00 180
00161
00163
00184
001S?
00186
00187
00188
00189
001 90
00191
P0192
00193
00194
00195
00196
PI0197
00198
00199
00200
P0201
00202
00203
00204
00205
00206
00207
00806
00209
00210
002H
00212
00213
00214
00215
00216
00217
00218
00?19
00220
00221



C
C








C
C
C










C
C







C
1
2
]
4

3
6
7
8

9
10
11
12
13
14
15
16
17
WRITE(LP,1«)
..FIN
UNLFS8 (IER ,EO. 2)
*«* RECORD SET 12,0 ***
NPT JOINT CONCENTRATION«OUR*TION PAIRS
WPITE(LPi?3) CI»I"1,NPT)
DO (IMfNLC)
. REAO(1.26) (CFtI, J) ,OF(I, J) , J«l,NPT)
. ^RITE (LP, 27) i, (DF(I,JJ,J*I,NPT)
. WRITE(LP,28) (CF(I,J),J»t,NPT)
...FIN
..FIN
, .F IN
*** RECORD SET 13,0 ***
NCLC • NUMBER OF LC CONTINUOUS FUN1IONS

WHEN (NCLC ,E3. 0) WRITECLP»31)
ELSE
WHEN (NCLC*NLC .GT. NCLF)
IER • 2
WRITE(LP,16)
wRiTE(LP,32) NLCF,NLC,NCLC
.,FIN
ELSE
WRITE(LP,33)
MRITE(LP,23) CI,I«l,4)
**• RECORD SET 14 ***
NCLC SETS OF 4 CONSTANTS DESCRIBING EACH LC CONTINUOUS FUNCTI
00 (1«1,NCLC)
. READ(1,26) (AA(J, I) , J«l,4)
. MfITE(LP,30) I, (AA(J,I),J"1,4)
...FIN
..FIN
. .FIN
RETURN

FORMAT(»0A1)
FORMAT (62X, 'FRANCO' /62X, 6 ('•*l)/62x,K'-')///83X,80AJ)
FORMAT(7Al,I5|lX,Qi30Al)
FORMAT(10X, 'CALCULATED CONCENTRATIONS INPUT FILE NAME',
J 9X,«-.',30AU
FORMAT(10X»'CONCENTRATION8 ARE THE RESULTS* FROM', 1SX, '•»')
FORMAT(1H»,61X,'AN ARM SIMULATION*)
FoRMAf(lM*,61X, 'A SCRATRA SIMULATION*)
FORMATC10X, 'THE DATA FIELD TO BE ANALYSIZED IS NUMBER',
j gx , '--• f 15)
FORMAT(2I5,F10,0,6A1)
FORMAT(10X, 'STARTING TIME STEP NUMBER' , 9X, ••»', 13)
FORMATCJ0X, 'ENDING TIME STEP NUMBER* , 11 X, '•-', 13)
FORMATC10X, 'ANALYSIS TIME STEP', 32X, '••',F10,8, 1X,6A1 )
FORMAT(//'5TARTING TIME IS LATER THEN THE ENDING TIME')
FORMATC2I3)
FORMAT(10X, 'CONCENTRATION INPUT METHOD' , 24X, '-•', 13)
FOPMATUH0,99X, '***** FATAL ERROR •****•)
FOPMATfSWX, 'iNVALin VALUF FOR THE SPECIFIED CONCENTRATION',
                                          78

-------
(FLECS  VERSION  2P.4fe)
                18-JUL-79   07120124  PAGE  00005
  00225
  00229
  00230
  00231
  00232
  00233
  00233
  00236
  002JT
  00238
  00239
  00240
  00241
  00242
  00243
  00244
  00243
  00246
  0024T
  00248
  00249
  00250
  00251
  00232
  00253
  0d?54
          18
          19
21

22


23

24
23
26
27
28
29
30
31

32

33
34
33
36
3T
1 • INPUT CONTROL VARIABLE « OPTC*)
 FORMAT(1«1X,'SCANNING WAS SUSPENDED')
 FORMAK50X,'INVALID VALUE FOR THE SPECIFIED DURATION INPUT',
1 ' CONTROL VARIABLE - OPTD')
 FORMATtlUX, 'DURATION INPUT METHOD',29X,'--',15)
 FORMAT(10X,'NO LCP1ECENISE LINEAR FUNCTION EXCEEDANCE ANALYSIS'
1 ' TO «E PERFORMED')
 FORMATC10X, 'SLOfJAL EXCEEDANCE INPUT'/
1 13X, 'NUMBER OF PIECEHI3E LINEAR FUNCTIONS',9X,'•-',IS/
2 i5x,'NUMBER OF DURATION, CONCENTRATION PAIRS',6x,'--',i5)
 FORMATC50X,'INVALID NUMBER OF LC PIECEWISE LINEAR FUNCTIONS',
1  '(',12,' MAXIMUM ALLOWED)')
 FOSMAHS0X,'INVALID NUMBER OF LC PIECEWISE LINEAR FUNCTION',
J ' PAIRS'/50X,'(MUST BE AT LEAST 3 AND NO MORE THAN ',
2 12,')')
 FnRMATC20X,«FUNCTIUN',ax,«p(l3X,I»))
 FORMATC8F10.0)
 FORMATC39X,«CONCeNTRATION»,lX,lPElZ,S,,5(8X,lPElZi3))
 FORMATt2I10,IS,F10.0,6Al)
 FORMATU0X, 'STARTING TIME STEP NUMBER' , 23X, ••-',! 10/
  10X,'ENDING TIME STEP NUMBER*,ZTX,•«»',I10/
  10X,'ANALYZING SEQUENT NUMBER',26X, '.,',13)
 FORMAT(10X,'NQ UC CONTINUOUS FUNCTION EXCEEOANCE ANALYSIS TO',
  ' Bf  PERFORMED')
 FORMAT(30X,'THE SUM OF NLC*NCLC  MUST NOT EXCEED *,I2,/
 FORMAT(//J«X,'UC CONTINUOUS FUNCTION DEFINED BV FOUR CONSTANTS')
 FORMAT(23X,11,3X,'CONSTANTS',3X,«(ZX,JPE12,3))
 FOPMATtl0X,»OATA ANALYZED IS',3«X,'»* RAW)
 FORMAT(10X,'OATA ANALYZED IS',34X,'-» LOG')
 FORMATtLl,2I5)
 END
          (FLECS  VERSION  23,«i)
                                         79

-------
(FLECS VERSION 83.4(0
18-JUL-79   07180188  PAGE  000101
00001
00008
C"0 C^P 5
00 ptpl tt
000H5
00006
00007
00008
00009
00010
00011
00018
00013
00014
00015
00016
00W1T
00018
00019
00080
00021
00088
00083
00024
00025
00026
00037
00088
00089
0ffl03«t
019031
00038
00033
00034
00035
00036
00037
00038
00039
00040
0004 1
00042
00043
00044
00045
00046
0B047
00048
00049
00050
00051
00058
00053

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

C


C














SUBROUTINE FRAC (N6, NT ,NTIM,NC, MO, P. C, 0)

THIS ROUTINE COMPUTES, PRINTS AND SAVES THREE ITEMS*
PE(I,J) - FRACTION OF THE EVENTS THE CALCULATED CONCENTRATION
IS cm UR GREATER THAT THE CONCENTRATION REMAINED
GREATER THAN OR EQUAL TO C(I) FOR A DURATION OF
0(J) OR GREATER.

PT(I,J) " FRACTION OF TIME THE CALCULATED CONCENTRATION IS C(I)
OR GREATER THAT THE CONCENTRATION REHAINED GREATER
THAN 0» EQUAL TO CCI) FOR A DURATION OF DCJ) OR CREATE

PTTfl.J) - FRACTION OF THE TOTAL TIME PERIOD THAT THE CALCULATED
CONCENTRATION REMAINED GREATER THAN OR EQUAL TO C(I)
FOR A DURATION OF D(J) OR GREATER,

INPUT VARIABLES
NF(I,J) - ACTUAL NUMBER OF EVENTS OCCURING^OF DURATION DCJ)
OR GREATER AND CONCENTRATION CCI} OR GREATER,
NT(I,JJ " NUMBER OF TIME STEPS COVERED BY THE EVENTS THAT ARE OF
DURATION 0(J) OR GREATER FOR CONCENTRATIONS C(I>
OR GREATER,
NTIM • NUMBER OF TIME STEPS ANALIZEO
NC " NUMBER OF SPECIFIED CONCENTRATIONS
MO • NUMBER OF SPECIFIED DURATIONS
PCI.J) • ARRAY USED FOR CALCULATIONS (SCRATCH PAD)
C - SPECIFIED CONCENTRATION VALUES
n • SPECIFIED DURATION VALUES

INCLUDE 'SYlFRANCO.PRM'

BYTE HF_AOl,HEA08fHEA03,HEA04,HeA05,MeA06

INTEGER*4 NT(JC,JO),NTIM

DIMENSION NE(JC,JO)»P(JC» JD),C(JC),D(JD),
1 HEAD] (e0),HEA02(S0),HEAD3(B0),HEAD4(80),HEAD5(80),HEAD(>CB0)

DATA HF.A01/18** • , «P' , 'E ' , 'R* , *C* » 'I ' , *N' , 'T ' , 'A ' , "G" , 'E * » * '»
1 »0»,»F»,» », »E», •V»(*E»,»Nfi *T«i*S*,« ','W'»'I'»'T«,
3 '"'I'D'!'*')' '','D'I'('!»J»!'*»!'T«I«0»I«R»I'N'I
4 *G'» *R'» 'E' , 'A', 'T'» ' E* i *R*t 13*' '/
DATA HEAD2/8*' » , 'G' , ' I » , ' V ' , »E ' , 'N' , » ' , 'T ' , «H« > * A • , »T • , ' ',
1 'T ' | *H ' r *E * ( ' ' , *E * , ' V ' , 'E* t *N ' , *T * , ' *,'I*i*8*»
8 * ','D','E','F','I','N',»E',"0',' ','8','Y',' *i'C«,
3 '0',*N',*C*,'E','N','T*,'R*,*A','T'r*I*»*0'f'N*i
4 'S',' ','C', »(','I'i ')»,' »,'0»,'R',' ',»G*,»R»,
5 'F_ ' | • A • , ' I • , *6 ' , *R* , 7* ' •/
DATA HEADS/8** • , »P « i 'E ' , 'R ' , *C ' , 'E ' , 'N» , • T • , ' A • , 'G« , 'E ' , ' ',
1 '0','F*,* ' , 'T' , • I • f 'M* , 'E* , » ' i *E* » 'V ' , •£' i 'N' ,
8 'T','9',' • , 'W , ' I * , *T* i 'H' , ' * | '0' > 'U* , 'R' , ' A* i
3 *T','I','0','N','S*|* 'j'O'i'F*,' 'i'D','(','J',
                                          80

-------
(FLECS  VERSION 2?,«6)
00054
00055
00036
00057
00058
00059
00060
00062
00063
00064
00065
00066
00067
00068
000fr9
00070
00071
00072
0007J
00074
00075
00076
00077
00078
00079
000B0
00081
00082
 JI0089
 00090
 00091
 000192
 00095
 00096
 005)98
 00099
 00100
 00101
 00085   C

 00087
0010J   C
Pfllflfl
001515   C
1B.JUL-79

0','R* ' '
                                     07IJS0I28
               4 ')',' %'

                DATA HSA04/8*' '
               1 'T'.'H', •€»,' '
               4  "N'f »S», • ',«C'


                DATA  HEADS /8*'
               J  rfQ»  If•  • «  » J»
               2  '£',•  ','P',«E'
               3  »N»,»T*» '3',*  '
               4  'A»,'T','I','0'

               DATA  HEA06/7*'  •
                        ,'0','e
          i
       • \) • , '
rT*'
           '•'TS'E',
           'I'i
           'V,
       'e'r'N',*T'
       '(',»!*,»)»
             »  «.
                                             * *
                                                 ,' '.
         '0',
                                                        ',»!',«0'i
       ,'P'r'E'r'R',«C'i'E'
       '0'f'T','*',»L'.' 'i
       »R»»'I'i»0»,*0*i* ',
       'W,'I','T','H»,' '.

       8*' '/
       'G','R»,'E»,'A»,'T'i
       *0','R',' »,'E'i'V'i
             •
              •N',
               'i'I','
               S'v,1
               'r'U','
               '•'0','
          .'IS

           ' t' I'
          ,ȣ',<
     .t,.f*V*f*E*i'N',1
    ,»e',<*o«,'  «,'8«,'
                                            ,7*' '/
                                                   '•'A'
                                                         •R',
                ***  PE  CALCULATIONS **»
                DO  (I«1,NC)
                   00  CJ«i,MD)
                      IF(NEtI,l)
            0)
              CALL MATPPT(C,D,NE,NT,P,NC,Mn,

              *** PT CALCULTIONS  ***
              DO  (I»1,NC)
              .  no  (j«i,MO)
              .  .  tF(NTCI,l)  ,NE, 0) P(I,J)»FLOAT(NT{I,J):

              .'..FIN

              CALL MATPRT(C,0,Ng,NT,P,NC,Mt
             (NE(I,J))/FLOAT(NE(I,1))*100,
                                                   ,HEAD?,2]
              *** PTT CALCULATIONS ***
              FT'NTlM
              no (t«l,NC)
              .  DO (J»1,MO)
              ,  .  P(I,J)«FL')AT(NTCI, J))/FT*100,
              .  ...FIN
              ...FIN
               C*LL
                  ),HEA05,HE»Ufc,2)
        CFI.EC8
                        22.46)
                                          81

-------
(FLEC8  VERSION  2?.46)
18-JUL-T9   07120131   PAGE
00001
00003
P0CT0!
00004
PI00P5
00006
000BT
00004
00009
00010
00011
00012
005111
00014
000J3
00016
00017
00018
010019
001*20
00021
00022
000?3
0002*
000??
00026
00027
00028
00029
00030
910031
00038
00033
00034
00035
00036
00037
00038
00039
CH0040
00aai
00042
00043
00044
00043
00046
003«7
00048
00049
00050
00&M

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C





1








10
20

30





40
50


SUBROUTINE GAMCUM(X, ALPHA, BETA, P)

FORM OF GAMMA 18 U** (ALPHA-l ) * EXP(f»ETA*U)

FOR CHI SQUARE DISTRIBUTION ENTER ALPHA* DP/8





AND BETA* 1/8

GAMCUM COMPUTES THE VALUE OF THE CUMULATIVE 6AMMA DISTRIBUTION
(P) WITH THE LIMITS OF INTEGRATION PROM 51 TO X

IF X.GE, (ALPHA/8 +4} THE ASYMPTOTIC EXPANSION
CO. 6.5.38 IN ABRAMOHITZ AND STEOUN IS USED,

OTHERWISE, A CONFLUENT HYPERGEOMETRIC JUNCTION
FOR THE INCOMPLETE GAMMA FUNCTION 18 USED, SEE
6.5,1* AND IS, 1.8 IN A8RAMOWITZ AND 8TESUN,

•

GIVEN BY


REPRESENTATION
EQUATIONS


THE RESULTS OF THE ROUTINE WERE CHECKED AOAINST TABLE 86tT
IN A'RAMOWITZ AND 9TEGUN

PROGRAMMED AND CHECKED BY AR(TONY) OL5EN
PATE! SEPTEMBER 29,1978

l|(ll NO ERROR CHECKING OF INPUT ARGUMENTS till

DATA ERR/1. E-4/
A • ALPHA
IF(X.GT,0,) GO TO 1
p • 0,
RETURN
V « «STA*X
IF(Y.LT.(A/2, * «.)} OO TO 30
suw •»,
R • I.
L • INT(A)
00 10 I • IrL
AI • I
P • R*(A-AI)/Y
TF(R.LT.ERR) GO TO 80
SUM • SUM * R
p • 1. . SUM*EXP((A-1,)*ALOB(Y) " Y • GAMLN(A)
RETURN
SUM • 1,
R "I.
no 10 i«t,50
AT • I
R • R*Y/CA * At)
IF(R.LT.ERR) GO TO 50
SUM • SUM + R
p • SU"t/A*EXP(A*ALnGlY} «Y »GAMLN(A))
RETURN
FNO





Illll
















)











                         22.46)
                                         82

-------
(FLECS VFKSIflN ??.ah)     IR-JIIL-T1*    H7U0I32  PAGE
                FUNCTION GAMFN1(X,4)
          C
          C	 FUNCTION USED EXCLUSIVELY  WITH  GAMPPT SUBROUTINE.
          C     RpFF.R TO II FOR OPERATION
          C
                A J • PI ,

                T»n*
  5) PI PI pi 9       10 A.!*AJ+lf
                n«0*X/CA*AJJ
                TFC(»J-1,),LE.(X-A)) GO  TO  10
                TF((X*0/(Af AJ-l.-Xl/T) ,LT,1.E.7)  GP TO 30
                Gn TO 10
             20 C*MFNl»A*ALOG(X)-X+ALOG(T)
                RETURN
          (FLECS  VF-RSION 22,
                                         83

-------
(FLECS VERSION 2?.46)
18-JUL-T9   071251134  PAGE  00001
00001
00002
00003
00004
00005
00006
00007
00008
00009
00(110
00011
0001?
0P013
0001
-------
(FLECS  VERSION  22.46)
18-JUL-7"   07120135  PAGE  00001
00002
00003
00004
00005
00006
00007
0P0P8
CJI009
00010
00011
00012
00013
00014
00013
00016
00017
00018
00019
00020
00021
00022
00023
00024
0002?
00026
00087
00028
00029
00030
00031
00032
00033
00030
00035
00036
00037
00038
00039
00000
00041
0000P
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c


10


30








40

50



60


                SUBROUTINE  GAMML(AMEAN,SMEAN,A,6)
                GAMML  COMPUTES  MAXIMUM  LIKELIHOOD  ESTIMATES  FOR  THE
                  GAMMA  DISTRIBUTION  PARAMETERS  ALPHA  AND  BETA,  THE  DENSITY
                  FOR  THE GAMMA  IS  GIVEN  AS

                G(XMjB) •  B**A*X**(A«l)*EXP(«.BtX)/G(A)

                THE  ESTIMATES ARE OBTAINED BY  USING  NEWTON-RAPHSON
                  METHOD AS DESCRIBED FOR THIS CASE  BY
                CHOI AND WETTE,TECHNOMETRICS  ui683.690,i969

                INPUTI AMgAN •  ARITHMETIC MEAN OF  SAMPLE
                      GMEAN • GEOMETRIC   MEAN  OF SAMPLE
                  OUTPUT!   A    • ALPHA  MAXIMUM LIKELIHOOD  ESTIMATE
                        8    » BETA  MAXIMUM LIKELIHOOD ESTIMATE

                PROGRAMMED  AND  CHECKED  BY AR(TONY) OLSEN
                OATEJ  OCTOBER 3, 1978

                Y    ALOG(AM£AN/GMEAN)
                A    l./(2,*Y)
                L    INT(A).4
                IF L.GE.0)  GO TO 30
                A    A-L
                X    A*A
                Y9 » •>6(/A*(l(«((i«(i,/21,«(5/X)/X)/X)/X + i2l*Y
                Y« • 6,/X + (a.-(ffl-(2./7,«,4/X)/X)/X)/(A*X)
                IF(L.GE,0)  GO TO 5*>
                A  •  A  *L
                LL • -I
                00 4fl  !• 1,LL
                Y9 • Y9 -12,/(A *(I«D)
                Y8 • Y8 *l8,/((A*(I"l))t(A*(]
                CONTINUE
                Y9 • Y9 * 12,*ALOGfl-L/A)
                DELTA  • Y9/Y8
                A •  A  • UELTA
                IFfABS(DELTA),LT.l,0E»0)  GO TO 60
                GO TO  10
                8 •  A/AMEAN
                RETURN
                END

         (FLECS VERSION 22.46)
                                          85

-------
(FLECS  VERSION  8?,461
18-JUL-79   07120136  PAGE
00001
0000?
00003
00004
00005
00006
00007
000<"«
00009
000(0
0001 1
00013
00013
00014
00015
00016
0P017
00018
00SIJ9
00020
00021
00023
00c»?3
000S4
00025
00026
00027
0P028
q002"
0P0J0
00031
00032
00033
00034
00035
00036
00037
00038
00039
000451
00041
00042
00043
00044
00045
00046
00047
00046
00009
00050
00^51
00053
00053
SUBROUTINE GAMPPF (NOPRAM, P AR AM, P , PPP, NAMPRT)
c


C FORM OF GAMMA 13 X**CALPHA"|) * EXP(BETA*X)
C
C FOR CHI SQUARE DISTRIBUTION QUANTILES
c ALPHA »DF/a AND BETA • i/t
c
C — , GAMPPF COMPUTES THE PROBABILITY POINT FUNCTION
C FHR THE GAMMA DISTRIBUTION GIVEN A PROBABILITY
C

ENTER


(OUAMTILE)
P.

C-— . THE ALGORITHM is GIVEN BY W1LK, GNANADESIKAN, HUYETT (1*68)
c TECHNOMKTRICS 4.i«i8
c
c
C--— THE RESULTS w£Rg CHECK AGAINST THEIR TABLES.
C
C--— ExTER^aLS REQUIRED... GAMFN1, GAMLN
C
C-.— PROGBAMMEO AND CHECKED BY AR(TONY) OL8CN
C OATE j, SEPTEMBER 29,1978
C
C
COMMON/ IODEV/IPR, IRQ
C
LOGICAL NAMPRT
C
REAL LHS
C
DIMENSION PARAM(3)
c
IF(NOPRAM) 3,1,8
C---- DEFAULT VALUES FOR PARAMETERS
1 ALPHAM,
BETA •!,
GO TO 3
2 ALPH»«PA»AMC1)
BETA UPARAMC?)
3 IF(N*MPRT) 60 TO 60
C
PPF»0,
IFfP.LE.0.) RETURN
PPF»l ,
PPF«1,
IF(P.GE.l) RETURN
C


































c 	 COMPUTE RIGHT HAND SIDE OF EQUATION IN LOB FORM
C FIND LOWER BOUND FOR PPF
c
i.ALPH*
R«G»MLM(A)
PH3«ALOl> (P) +R
XLB»F.XP((ALOn(P*A)*fl)/A)
C







                                         86

-------
(FLECS VERSION 22,46)
                1B-JUL-T9   07120138  PAGE  00002
  00054
  00053
  00057
  00099
  00060
  00061
  00062
  00063
  00064
  00066
  00067
  00068
  00069
  00070
  00071
  00072
  00073
  00074
  00073
  00076
  00077
  00078
  00079
  00080
  00081
  00082
  00093
  00084
  00085
C-—. FIND MULTIPLE OF LOWER BOUND SUCH THAT LH3.GT,RH3
C
      LHS»GAMFN1 (X,A)
      TFtLHS.GT.RHS) GO TO 20
      XPBE-XU
      IF(AB3((X«XPRE5/X).LT,1C"3) 60 TO 50
      GO TO 10
C
C	 USE METHOD OF HALVING INTERVALS TO DETERMINE X
C
   20 XL«(R-1,)*XLB
   Jf»
      IFfLHS.GT.RHS) GO TO 40
      XL«X
      GO TO 30
   40 XU«X
      GO TO 30
   50 PPF«X/BETA
C
      RETURN
o... WRITF TITLE AND RETURN
   60 WRIT"! tIPR>100«) ALPHA,BETA
 1000 FORMATr20X,27HEXPECTEO GAMMA WITH *LpHA "F9.4.
     1  13H,  ANO BETA
      RETURN
      FMO

(FLECS VERSION 22,46)
                                        87

-------
(FLECS  VERSION 22,461
19-JUL-70   07120140  PAGE
00001
00002
0P003
00004
00005
00006
0000T
0000S
00009
00010
00011
"10018
00013
00014
051015
00016
00017
00016
00019
00026*
00BS1
00028
00023
0002«
00025
00026
00027
00088
00029
00030
00031
00038
00033
00034
00035

C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c

c

c

c












SUBROUTINE UCCONT{rj|NOCJ»NTIM,oeLT,AA,NCLC,NCC,NRECiLUN)

THE PURPOSE OF THIS ROUTINE IS TO DETERMINE IF THE CONDITIONS
OF THE EVENT CAUSE EXCtEDANCE OF ANY OF THE LC CONTINUOUS
FUNCTIONS, THOSE THAT DO ARE HRITTCN TO THE FILE CORRESPONDING TO
THE CURVE THAT HAS BEEN EXCEEDED FOR FURTHER PROCESSINO,

CJ
NPCF
NTIM
CELT
At
NCIC
NIC
NREC
LUN

INCLUDE 'SYIFRANCO.PRM'

INTEGER*^ NOCJ.NT1M

DIMENSION AA(4,NICF),NREC(NLCF),IUN(NUCF)

0 • NDCJ*OELT
00 (J«1,NCU)
. IF (D ,CT. AA(e,J))
. FD • A»(1,J) * CAA(3,J)/CD-AA(8,J)M**(l./AAC4,Jn
. IF (CJ ,QE, FD)
. K • NREC(NLC*J)
, WRITE(LUNtNLC*J)'K) NTIM,NDCJ,CJ
,..^1N
..•'IN
..FIN
RETURN
END
          (FLECS  VERSION 22,46)

-------
(FLECS  VERSION
18-JUI-79   0TI20I41   PARE   0000J
00001
00302
PP003
00004
00005
00006
00007
000P8
0071 C»9
00010
00011
00012
00013
0001 4
00015
00(916
00017
00018
00019
10020
00021
0002?
00023
00?2a
00025
00p?«i
00027
000?8
000?9
00030
00031
00032
00033
00035
00036
00*37
00038
0P039
00040
00041
00002
00043
00044
00045
00046
00047
0004*
00049
00050
00051
00052
00053
SUBROUTINE LCFINl(NHEC,LUN,NLC,NTIM,CFiOF,NPT,NCLC»AA,A,B,DEt.T)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C


C























THIS SUBROUTINE FINISHED THE LC50 DETERMINATIONS, IT EXAMINS
OIPECT ACCF.93 FILE FUR EACH LC FUNCTION AND ELIMINATES THOSE
THAT KfiULO CAUSE DOUBLE COUNTS, THE REMAINING RECORDS ARE
WRITTEN TO PERMANENT FILES WHICH WILL CONTAIN ONLY THE EVENTS
EXCEED THF. LC50 CURVE, IT ALSO PRINTS A SUMMARY OF EACH FILE

NRECCI) THE NUMBER OF RECORDS IN THE FILE FOR FUNCTION I
lUMfl) LOGICAL UNIT NUMBER OF THE FILE FOR FUNCTION I
NLC NUMBER OF LC FUNCTIONS
NTIM NUMBER OF TIME STEPS PROCESSED DURING ANALYSIS
CF
OF
MPT
NCUC
AA
A
8
nELT

INCLUDE 'SYIFRANCO.PRM*

INTEGF.««4 NOC J,NDCJP»KTIM,KTIMP, NTS | NTIM

DIMENSION NREC(NLCF) ,LUN(NLCF) ,CF(NLCF, NLCP) ,DF (NLCF.NLCP) ,
1 »Af4,ULCF),A(NLCF,NLCP),B(NLCF,NLCP)

WRITE (LP» 1 )
IF (NLC ,GT, 0)
. WPITECL**»2) (I,I«1»NPT)
. DO (I»1,NLC)
. . WRITE(LP,3) T,(OF(I,JJ,J«t,NPT)
! I..FIN
, WBITE(LP>5) (I, I»1,NPT»1)
. 00 (I«1,NLC)
. , WRITECLP.6) I, (A(I,J),J«1,NPT»1)
. . WRITE(LP,7) f8CI|J),J-l,NPT«l)
, ,, .FIN
...FIN
IF (NCLC ,GT, 0)
. WRITE(LP,8) (I,I«1,4)
. DO U-1,NCLC)
, . WRITE(LP,9) I,(AA(JfI),J«l,4)
. . . «f I^1
...FIN
CAIL ASNLUNd, 'SY',0)
no CI«I,NLC*NCLC)
. K n.'tPF. C ( I ) - 1
, ^HEN (K ,NE, 0)

THE
RfCOROS

THAT
,











































. , i»t.uj(n I AS NCLF INCREASES so MUST THE NUMBER OF FH
c
. , BEING OPENFD BELOW

                                         89

-------
(rues  VERSION
IS-JUU'79   0712(9111  PACE  00002
00054
00055
00056
00057
00058
00039
00160
00*6 J C
00062 C
00063
00064
00065
00066
0006T
00068
00069
00070 ,
00071 ,
0007? ,
0*073 ,
I
t
1
1
1
1
I
|
1
1
I
I
1



t
1
1

, SELECT (I)
, (1) OPEN (UNI T"l, NAME* 'UC18AVE, RUT', TYPE«»NEW, FORM* 'UNFORMATTED')
, (2) OPEN (UNI T«t,NAME»'UC«8AVC, RUT *,TYPE*«NEH', FORM* 'UNFORMATTED')
, (3) OPEN (IINIT.1,NAME»'UC38AVE. RUT', TYPE«'NEW, FORM. 'UNFORMATTED')
, (4) OPEN (UNI T"1,NAME*'UC48AVE, RUT', TYPE* 'NEW, FORH*'UNFORMATTED')
, (5) OPEN (UNI T«1,NAME«'UC58AVE, RUT', TYPE* 'NEW', FORM* 'UNFORMATTED')
..FIN
i
, *** SEARCH FOR AND SAVE THE VALID RECORDS ***
, NEG»0
, NTG»0
, MREC»K
RF.AOU'MRCC) KTIMP, NOCJP, CJP
, IF (K .ST. 11
. DO (J*3,K1
. , MREC«M(?FC»1
. . READ(L'MREC) KTIM,NDCJ,CJ
. . IF(KTIH ,UE, KTIMP - NDCJP)
. , . NEG*NEG+1


00075 ..... KTIMP.KTIM

00077 	 CJP.CJ

00079
00080 C
00081
00083 ,
00083 ,
00084 ,
00085 ,
00086 ,
00087
00088 ,
00089 ,
00990
00091
00092
00093 ,
00094 ,
00095 ,
00096 ,
00097
00098
00099 ,
<
i
t



4
1
I
1
|

(

I
1
I
I


. ...FIN
. *»* SAVE THE LAST EVENT ***
, ...FIN
WRITE(l) KTIMP, NDCJP, CJP
NEG«NEG*1
NTG*NTG*NOCJ"
PG"FUOAT(NTG)/FUOAT(NTIM1 • 100,
TT • DEUT * NTG
IF (I .EO. 1) WRITE(UP,|0)
WHITE(LP,11) I,NES,NTB,TT,P8
CuOSE(UNIT*n
..FIN
-USE
NEG • 0
NTG • 0
TT « 0.0
PG • 0,0
TFU ,EO. 1) wRITE(UP,10)
MRITE(UP,11) I,NEB,NTG,TT,PG
...FIN
..FIN
00100 RETURN
00101 C
0B10* 1 FORM*T(1H1(46X,»GLOHAU EXCEEDANCE SUMMARY*//)
08103 2 FORMAT(32X,»UC PIECEWI8E UINEAR FUNCTIONS DEFINED BY JOINT',
00104 1 <• PAIRJV/6IX, 'JOINT POINTS'/9X,'FUNCTION'f9X,6(lSX,Il))
00103 3 FORM*T(13XrIt,4X,'OURATIONI»,6X,6(lPEl3,S,2Xn
00106 4 FORMAT(18X,»CONCENTRATION«',1X,6(1PE13,5,2X))
00107 5 FORM»T(//21X,'UC PIECE^ISE UINEAR FUNCTIONS DEFINED BY INTERCEPT',
0010» 1 * ANU SLOP (A+8(OURATION))»//58X,'SCGMENT'/9X, 'FUNCTION',
00109 2 9X,5(15X,I1))
                                        90

-------
cnecs  VERSION
IB-jut,-?1?
PAGE  00003
  00110   6      F09MATfl3X,Il,«X,'INTERCEPTI»,3X,5(lPE13.3,2X))
  00111   7      Fn»MAT(l8X,'Sl.aPF-l',9X,3(lPE13,3,?xn
  00112   8      Fn«MAT(//3«X,'LC  CONTINUOUS FUNCTIONS  DEFINED BY FOUR CONSTANTS'
  00111        t  //9X,'FUNCTION',9X,5(13X,im
  P0M«   •>      Ff5RMATU3X,n,«X|'CONSTANT3l',3X,5f JPE13,5,aX))
  00113   la     FORMAT(//8X,'EXCEEPANCC  SUMM»RY'/?0X,'NUMBER*,«X,'NUMBER Qf't
  0011ft        I  '  TIME  PLANES'fSX,'DURATION WHILE',fcXf'GLOBAt  EXCECOANCE'/
  00117        2  9X,'FUNCTION',?X,'OF  EVENTS',8(8X,'GREATER  THAN FUNCTION'),
  H0118        3  fcX,'(PERCENT)')
  P0H9   11     FORM»T(l3x,Il,7X,I5,llX,I3,16X,F7,l,16X,F6,a)
  00120         END

                 VERSION 82,06)
                                          91

-------
(FLECS  VFRSION  23,46}
                1B-JUU-T"?   07188144  PAGE
  00001
  00002
  00004
  00005
  00006
  00007
  00009
  00010
  00012
  00813
  00015
  00016
  90017
  00018
  00019
  00030
  00084
  000?5
  00036
  000?7
  00038
  00029
  00030
  00031
  03038
  00033
  00034
  00035
  00036
  00037
  00036
  00039
  00040
  00041
  00042
  00043
  00044
  00045
  00046
  00047
  00048
  00049
  00050
  00051
  90058
  00053
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
  SUBROUTINE LCPREP(CJ,NDCJ,NTIM,OELT,A,B,DF,NLC,NPT,NREC,LUN)

THE PURPOSE OF THIS ROUTINE IS TO DETERMINE IF THE CONDITIONS
OF THE EVENT CAUSE EXCEEOANCE OF ANY OF THE LC PIECEWISE LINC*R
FUNCTIONS,  THOSE THAT 00 ARE WRITTEN TO THE FILE CORRESPONDING TO
THE CURVE THAT HAS BEEN EXCEEDED FOR FURTHER PROCESSINO,
   CJ
   NOC.J
   NTIM
   OELT
   A(l,J)
   8(1,J)
   nF(l,J)
   NLC
   NPT
   NRECtI)
   LUN(I)
INPUT CONCENTRATION VALUE C(J) OF THE EVENT
NUMBER OF TIMS PLANF.S IN THE EVENT
TIME PLANE NUMBER
TIME STEP SIZE
INTERCEPT OF FUNCTION i, LINE SEGMENT L
SLOPE OF FUNCTION I, LINE SEGMENT L
TIME FOR FUNCTION J, POINT L
NUMBER OF LC50 FUNCTIONS
NUMBER OF POINTS USED TO DESCRIBE EACH FUNCTION
ASSOCIATE VARIABLE OF DIRECT ADDE8S FILE POR FUNCTION I
LOGICAL UNIT NUMBER OF DIRECT ACCESS FILE I'OR
FUNCTION I
      INCLUDE 'SYlFRANCO.PRM'

      INTEGER*4 NTIM,NDCJ
      DIMENSION A(NLCF,NLCP)iB(NLCF,Nl.CP),OF(NLCP,NLCP).
     I            NREC(NLCF),LUN(NLCF)

      0»NOCJ*DELT
      On 
-------
(FLECS VERSION Za.«6)      18«JUL-7<»   0TI80I44  PAGE  00803

  00<35«         .  .
                ...FIN
                RETURN
                 VERSION
                                       93

-------
(FUECS VERSION 22.46)
J6-JUL-71?   0712014.6  PACE  00001
00001
00002
000*3
00904
n A A AK
*' W "J (n ~
AM An JL
«*i? *>UO
Ola oi ot T
«i W Win 1
00008
A A An M
IP W V W *f
AM A • A
WB w 4 V
00011
00018
00013
000J4
00015
00016
00017
00016
00019
00020
00021
00022
00023
00029
00025
00fl?f>
00027
00028
00039
00030
0m 01 1 1
Wifjvt 3 J
00038
00(134
00055
00036
00037
00038
P0039
00040
00041
00042
00043
00944
00045
00046
00047
00048
00049
000^121
00051
00052
00053

C
C
C


c

c
c
c
c
c
c
c
c
c

c

c

c

c

c


c


c









c
c





SUBROUTINE MATPRT (C,D, N, ON, R, MAXC,MAXD,LIN*i »LINE8» TYPINO)

PRINT ROUTINE FOR 'FRANCO', MAY 1978.
C__M ADDAV PniuTAYklTKJR muf*VUY0ATYnu U A 1 1 1 V •
*w fNrfAT t»U^lji'**''lPiiW VfUniCC'vli^'^TXUIN V A L UC> v
Kl •••••*» lNT'f*PPA? ARRAV CONTAfMTNfi I^RlTOIIffMf*V nTMTBTHllTTOW V A 1 1
FROM FRANCO
n&i _ _«. • TklTfff^CD^iJI ADDAV PDkJTATIJfklfl U A 1 1 Iff • V DAM VDAU^n
UN »••••" InllclvCrfW** AttAT LUNfAJNJi'Nif V * ^ U C. 3 rnU™ r"A:NwU
R ______ flWC f\C TMDffff OK A I A DD A V ft f*fVWTAfKltWf* ftllMklADV n A T A PI W
m — •• — — w Urla t/r (flrttt nC At, AWn A T 8 CUNiAlNING oUnnAKT DATA UN
CONCENTRATION LEVELS OP SISNIPICAMT STRENGTH ANO OURA
TION FROM FRAC
M*XC ---» MAXIMUM NUMBER op c VALUES
MAXO — «• MAXIMUM NUMBER OP o VALUES
LINEl i
UINF.2 — TITLE LINES FQR PRINTOUT
TYPINO — REAL OR INTEGER VALUES TO BE OUTPUT


INCLUDE 'SYIFRANCO.PRM*

DIMENSION C(i),D(i>,R(jc, I)

INTEGER*? NCJC,D,PGPRST, TYPINO

INTEGER** DN(JC,1)

BYTE LINEl(n,LINE?(H»PRHTI(35},FRMTR(35)

HAT A FRMTI/' f ', M ", 'X', ',','1','P','E',M', '2', '.','5',, ', ','!',
2 »*' •/

1 -H' ,'*',',', M ', '0', ' C, '0', 'P', 'PS MS'B',',','!','1,'!


LNPRRW'MAXD/10
IF (M()n(MAXD,10),5T,0)LNPRRW«LNPRRW*l
PGPR9T.MAXC/50
IF (MOn(MAXC,50),NE,0)PQPRST«pr?PRST*!
NPASES«LNPHRW*POPR8T
WRITECLP.I)
WBIT€CLP»6) (LINEl (NDX)»NOX"1»80)
WRlTECLPrb) (LINE2(M)X) (NOX>lf80)
(_ IN«0


IOBEG"!
KNTC»1
t)0 (I"1,NPAGE3)
, IF (KNTC ,EQ, 1)
. . IF CI,OT.l)WRI1EUP»n
                                           94

-------
tFUCS  VERSION ??.0hi
                         lfl-JUL-T<>    0TI?0l4h   PAGE
000-55

0005T
flpflfc*
  003173
  00075
  00(176
  05)177
00080
00081
00382
00083
000B«
00085
         10B
         .  IF  (
         ...'IN
                               ,RT.
                                          IOENO«MAXO
                   WRITEUPr ?nn(NDX) , NOXnIDREQ, IDEND)
                   WPITF.(LP,3)
                   UNTIU(LlN.RT.5W.OR,K,'nC.GT,MAXC)
                   .  3F.LECT  (TYPINO)
                   ,  .   (1) WRlT6{UP,FRMTIJC(KNTC)i (N
                   .  .   W WRlTE(UPrFRMTR)C(KNTC),(R(KNTC,NOX),NDXlI08lO»lDCNO)
                   .  ,   (3) k|RlTE(uP»FRMTIJCCKNTC)»(DN(KNTCiNDX)|NDXtIOBeO, JOEND)
                   ,  ...FIN
                   ,  KNTC«KNTC*1
                   CONTINUE
                   IP (KNTC.Gr.MAXC)
                   .   KNTC'l
       ...FIN
C
C
C
  1

  3
 4
  6
      RETURN


(FtECS VERSION 21,46)
                FORM»T(1H1/1H0)
                      t/il3X|iPi
                      (lX,'CONC
                      (57Xf 'DURATION')
                                           95

-------
(FLEC8  VERSION  82,««i)      18-JUU-7''   07120148  PACE  00001
99991
00004
00005
00006
00008
00009
00010
00911
00013
00914
00016
00017
00019
C
C
C
C
C
C
C
C
C
C
C
C
C
00081
00088
00083
00084
00085
00086
00087
00088
00089
00030
00031
00038
00034



10
80

30



40

50
                SUBROUTINE  NORCUM(X,AMEAN,8I6MA,P)

                NOHCUM COMPUTES  THE  CUMULATIVE (-INFINITY,  x) PROBABILITY
                p  FOR  THE  NORMAL DISTRIBUTION WITH  MEAN AHEAN AND STAND*
                ARO  DEVIATION  SIGH*.

                PROCEDURE  USES A POWER  SERIES EXPANSION FOR B.IE.Z ,IE, !
                RTVEM  BY EU, 7,1,6  IN  ABRAMOWlTZ  AND 8TEGUN, FOR Z.GiT.t
                THE  CONTINUED  FRACTION  EXPANSION  IN EQ, 7,1,14 IN
                ABRAMOHITZ  AND STESUN  IS  USED,

                PROGRAMED  AND  CHECKED  BY  AR(TONY) OtSEN
                DATEl  OCTOBER  8, 1978

                DATA ERR/1, 0E-8/
                Y«fX-AMEAN)/8I6MA
                AV • A8S(Y)/SQRT(8.)
                IMAY.GT.1.) BO  70  30
                At • AY
                AS • AY
                DO Id  U •  1,50
                A? • A2*AY*AY/(FUOAT(L)*0.S)
                IP(A2,i.T,ERR)  60 TO  80
                Al • At +  Ag
                ERF  f  8, *EXP(«AY*AY)*A1/SQRT(3. 1419987)
                60 TO  5(8
                L  »  INT(18,*AY * 15.)
                Al * FLOAT(U/ta,*AY)
                DO 40  I«2»L
                A8
                Al
                 • (*?/2,)/(AY
                 • AY » Al
                                   Al)
                $••1.
  00035          IFfY.6E.0,0)  8  • 1,
  00036          P  •  (1,  +  8*ERF)/8.
  00037          RETURN
  00038          END

          (FLECS VERSION 88.46)
                                         96

-------
(FLECS  VERSION  82,46)
18«JUL»79   07180151   PAGE
00001
00008
00003
00004
00005
00006
00007
0P006
000019
000JO
00011
000)18
00013
00aja
00013
0fl01<.
00017
00018
00019
00020
00021
00022
00023
000?a
00025
00026
00027
00028
00029
00030
00031
00038
00033
00030
00«33
00036
00037
00038
00039
00040
00041
00048
00043
0^044
00045
00046
00047
00048
00049
00050
00051
00053
000*3

C
C— -
C
c
c
c
C-—
c
o—
c
c
c
c
c
o«.
c
c
c-..-
c
c

c

c

c


c

c— .
1


8

3
c










40

c
50
SUBROUTINE NORPPP (NOPR AM, PAR AM, P,PPF, NAMPRT)

NORPPF COMPUTES THE PERCENT POINT FUNCTION (OUANTILC)
FOR THE NORMAL DISTRIBUTION WITH MEAN AMEAN AND STANDARD
DEVIATION SIGMA GIVEN A PROBABILITY P, AMEAN AND SIQMA ARE
CONTAINED IN PARAM(l) AND PARAM(») RESPECTIVELY,

IF NOPRAM IS ZERO THEN THE DEFAULT VALUES FOR AMEAN ANO SIGMA ARE
USED, THAT IS PARAM(1)»0, AND PARAM(Z)«l,
IF NAMPRT IS .TRUE. THE ROUTINE WRITES OUT THE DISTRIBUTION
NAME, MEAN AND STANDARD DEVIATION, NO CALCULATIONS OCCURS IN
NAME, ALPHA AND BETA, NO CALCULATIONS OCCURS IN THIS CASE.
IF NAMPRT IS .FALSE, NO WRITING OCCURS, BUT THE COMPUTATION
IS MitiE.

PROCEDURE USES A RATIONAL APPROXIMATION GIVEN BY
En, 26.8.23 IN ABRAMOWITZ AND STEGUN,

PROGRAMMED ANO CHECKED BY AR(TONY) OLSEN
DATEt OCTOBER 8, 1978

LOGICAL NAMPRT

DIMENSION PARAM(NQPRAM)

COMMON XIOOEV/IPR.IRO

PITA CO,C1,C?,0 1,02, 03/8,5 177 17, 0,803853, 0,0 10328,
1 1,438788,0, 189269, 0.00J308/

JF(NOPRAM) 2,1,2
DEFAULT VALUES
AMEAN«0,
SIGMA«1,
GO TO 3
»MEAW«P*RAM(n
8lGMA»PAHAM(g)
IF(NAMPRT) GO TO 6P

X»0,
IF(P.LE.0..0R.P,GE.l.i?l) GO TO 50
R«P
TF(P,EO,0.5) GO TO «0
IF(P,GT,0.5) R • 1,«R
T«9QRT(-2,*ALOG(R))
ANUM«C0+T*(Ct*T« C?)
AOEN«1,»T*(D1»T«(D«» + T*03))
XBT-.ANUM/ADEN
IF(P,LT,0,5) X«»K
PPFnX*3IGMA+»MEAN
RETURN

PPF»Ji,
                                          97

-------
(FLECS VERSION 2?.«e>)      1B-JUU-T1*   0TI20I51  PAGE

                RETURN
  00055   C
  000s*   c— • WPITE TITLE AND RETURN
                FO"MAT(20X,'tXPF,CTEO NORMAt KITH  MEAK'«» , JPE13,T,
  00059        1 l«H AND STO OE'/ »P15,T)
                END


          (FLECS VERSION 22,
                                           98

-------
(FLECS  VFRSION
18-JUL-79   07120153  PAGE  00001
"10001
PI0a(»2
ppnipij
pi00pio
000105
0(9006
flflUC!7
008) (ARAY(I),I«1»NVAL8)
...HN
RFTURN

FORMAT(IS)
FORMAT(1H0,15X,I5,' NUMBER Of SPECIflEO CONCENTRATIONS TO BE*
1 ' READ')
FORMAT(1H0,15X,I5,' NUMBER OF SPECIFIED DURATIONS TO BE READ')
FORMAT(1H0,99X, ****** FATAL ERROR *****•/
1 50*, 'THE MAXIMUM OP', IS,' SPECIFIED CONDITIONS EXCEEDED'/
2 101X, 'SCANNING WAS SUSPENDED')
FORMAT (JH0,52X, 'SPECIFIED CONCENTRATIONS')
FORMAT (1H0,55X, 'SPECIFIED DURATIONS')
FoRMAT(8F10,0)
FnPMATU«,lP10El3,3)

END
          (FLECS  VERSION  22,46)
                                          99

-------
(FLECS  VCWS10N  22,««>)
JR-JUL-79   07120155  PAGE  00001
00001
051302
00303
00001
00105
000(*f>
00007
5105108
00009
00010
00CIJ1
00012
00313
00010
00015
0001*
00017
00018
t»0?19
00320
001*21
00922
001*33
00024
00*25
00026
00027
00028
00029
00330
00031
00032
00033
00034
00035
00036
00037
00038
00039
00010
00001
00012
00013
091014
00013
00046
00047
00018
00019
00050
00051
P0052
00053

C
C
C
C
C
C
C
C
C
C
C
C


C

C
























C
1
2

3

1



5
SUBROUTINE OPT2(LMT,ARAY,DORC,NVALS,IER)

THIS ROUTINE IS CALLED BY FACINP WHEN EITHER OPTC OR OPTD 13
INPUT AS "2", A LOWF.R BOUND, UPPER BOUND AND INCREMENT ARE READ
AND FROM THIS THF. NUMBER OF VALUES AND THE VALUES ARE DETERMINED,

I_MT - MAXIMUM NUMBER Or VALUES THAT CAN BE CALCULATED
AR»Y - HOLDING ARRAY FOR THE CALCULATED VALUES
DORC - »"CHr CONCENTRATIONS BEING PROCESSED
•"U"; DURATIONS BEING PROCESSED
NVAL3 - NUMBER OF VALUES THAT ARE COMPUTED
IER - DATA ERROR FLAQ

INCLUDE 'SYlFRANCO.PRfl'
BYTE OORC

DIMENSION ARAY(l)

RE*n(l,l) VMIN,VMAX, VINTVL
NVALS«(VMAX«VMIN)/VINTVL*1
SELECT (OORC)
. C'C') MRITECLP,?)
. ('D') WRITECLP,3)
..."*•
WRITE(LP»4) VMIN,VMAX,VINTVL|NVALS
WHEN (NVALS ,GT, LMT)
. IKR-1
. «RITE(LP,5) LMT
...FIN
ELSE
. IER-PI
f ABAY(1)«VMIN
. DO (I»2, NVALS)
. , ARAY(n«ARAY(IM)»VINTVL
. ...FIN
. SELECT (DORC)
. . CC») WRITE(UP,7)
. . C'D«) WRItE(tP,B)
. ...riN
. H9ITEUP,*) (ARAYCI), I«l, NVALS)
...FIN
RETURN

FORMAT(3F10,0)
FORMAT(1H0,9X,'THE SECOND METHOD HAS BEEN CHOOSEN FOR INPUTTING'
1 • CONCENTRATIONS')
FORM»T(1H0,9X, 'THE SECOND METHOD HAS BEEN CHOOSEN FOR INPUTTING'
1 ' DURATIONS')
FORMAT(9X, 1PE12.5, ' MINIMUM VALUE1/
1 QX, 1PF.12.5, ' MAXI'UjM VALUE'/
2 9x, iPEie.s, • INTERVAL BETWEEN VALUES'/
s i*>x,n,' NUMBER OF VALUES (COMPUTED)')
FORMAT riH0,<»9x, ••***• FATAL ERROR *****'/
                                          100

-------
(FLECS  VERSION P3.461      18-JUL-79   HM2PM55  PACE  00008

               1  5HX,'THE MAXIMUM OF',I5,' SPECIWO CONDITIONS EXCEEDED'/
               g  ItltX, 'SCANNING WAS CONTINUED')
          T      FOPMAT(lHei,«TX,'3PFClFICD CONCENTRATIONS (CALCULATED)')
          8      FORMAT(lH0,
-------
(FLEC9  VERSION  2?,flfe)
lfl-JUl«n   07120157   PACE   00001
00001
aeat»2
00003
00000
000103
00006
00007
0051 08
000109
00(110
0001 1
0001?
00013
001*! a
00015
00016
00117
00*18
00019
00020
00021
00022
00023
00021
00025
00056
00027
00028
00929
00030
00031
0003?
00033
0003«
00035
00036
00037
00038
00039
00040
00001
00942
00043
00040
00045
00046
00007
00008
00049
00930
00031
00058
00053

C
C
C
C
C
C
C
C
C
C
C
C


C

C
C
C
C
C
C
C
C
C






C
C












C
C




C
SUBROUTINE 0>>T3(LMT,ARAY,DORC,NVAL9, JER)

THIS ROUTINE IS CALLED BY FACINP WHEN EITHER OPTC OR OPTD 18 INPUT
AS * "3". WITH THIS OPTION, THE USER SPECIFIES A SET OF RANGES AND
THE NUMBER OF VALUES TO BE COMPUTED WITHIN THE RANOE.

L*T MAXIMUM NUMBER OF VAUE3 THAT CAN BE COMPUTED
ARAY HOLDING ARRAY FOR THE CALCULATED VALUES
nORC «"C"» CONCENTRATIONS B|lN6 PROCESSED
•"0"f DURATIONS BEING PROCESSED
NVALS NUMBER OF VALUES THAT ARE PLACED INTO ARAY
IFR DATA ERROR FLAS

INCLUDE 'SYlFRANCQ.PRM*
BYTE DORC

DIMENSION ARAY(I) ,NS(19) , VALSCSB)

*** EXPLANATION OF INPUT VALUES »**
NSETS « NUMBER OF RANGES TO BE READ
VALS(I) . LOWER LIMIT OF RANGE 1*1; UPPER LIMIT OF RANGE I
VALS(I) is THE MINIMUM VALUE
VAL3(NSET*1) IS THE MAXIMUM VALUE
NSU) » NUMBER OF VALUES TO BE COMPUTED BETWEEN VALSCI)
AND VALSUfl)

RE*Otl,l3 NSETS, VAL3U)
RE AD (1,1) (N8(n,VAL8(I»n,I»l,NSETS)
SELECT (OORC1
. CC') WRITEtUP.2)
, CO') WRITE(LP,3)
...FIN

»** DETERMINE THE TOTAL NUMBER OF VALUES »**
NVALS • 1
DO (!•!, NSETS) NVAL9 • NVALS * N3CI) * I
WRlTECLPfO) VAlS(l), (NSC!),I,VALS(l*n,I,I«lfN3£TS)
WRITE(LP,8) NVALS
WHEN (NVALS .GT, LMT)
IEfl«l
WRITE(LP,5) LMT
..FIN
LSE
IER»0
KVAL3«0
On fl»2, NSETS*!)

*** PLACE LOWF.R LIMIT INTO HOLDING ARRAY ***
KVALS«KVAL8+1
ARAY(KVALS)«VAL9(I»1)
N « NS(I-l)
IF (N ,NE, 0)
, *** COMPUTE INTERIM VALUE« BETWEEN VALSO1) AND VALS(I) ***
                                         102

-------
(FLECS  VERSION  22,06)
                        1S-JUL-T9   07«20I5T  PARE  00<"02
  00055
                       SELECT (OtlRC)
                       .  COM
00037
0005B
00059
00061
00068
00063
00064
00065
00066
00067
00068
00070
00071
00372
00373
00074
00073
00076
00077
00378
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00098
00093
010094
00095
00096
00097
00098
00099
00100



C
c








C
1
8

3

4


5


6
7
8
9
C

                   .   .   t   ,   00  (KM,N)
                   .....   KVAtS«KVALS  +  1
                   ,   ,   ,   ,   ,   »R*YUVALS)«ARAY(KVALS-1)  *  RINT
                   ....... FIN
                   ...... FIN
                   .   .   .   CC»)
                   ....   RTNT  •  (AtOG(VALS(n)-ALOG(VAtStl-l)))  /  (N*l)
                   ,   .   .   .   DO  (K«l,N)
                   .....   KVALS  •  KVALS  »  1
                   .   .   .   .   ,   TMP  •  AUOG(ARAY(KVALS»1))  +  RINT
                   .....   ARAY(KVALS)  •  EXP(TMP)
                   ....   ...FIN
                   .   .   .   ...FIN
                   ..... FIN
                   .   ...FIN
                   ...FIN

                   *** PLACE MAXIMUM VALUt  INTO  HOLDING  ARRAY  ***
                   SELECT  (OORC)
                   .   (*C»)  WRITE(LP»6)
                   ,   CO*)  WRITS(LP,9)
                   ...FIN
                   WRITE(LP,7)  (ARAYCI)rI«l»NVAL8)
                 ..FIN
               PETUPN
                ro"MAT{lH0,9X, 'THE  THIRD  METHOD  HAS  BEEN  CHOOSEN  FOR  INPUTTING*,
               1  •  CONCENTRATIONS*)
                FORMAT(1H0,9X,*TH6  THIRD  METHOD  H»S  BEEN  CHOOSEN  FOR  INPUTTING*,
               1  '  DURATIONS')
                FQRMAT(lH0,8Xf 1PE18.5,* LIMIT FOR RANGE I'/
               l  f!6x,i5,* NUMBER OF INTERIM VALUES  IN RANGE', i?/
               2    9X.1PE12.5,' LIMIT FOR RANGE', I8/))
                FORM*T(lH0,99X, '***** FATAL ERROR *****•/
               1  30X,'THE MAXIMUM OF', IS,' SPECIFIED CONDITIONS EXCEEDED*/
               2  101X, 'SCANNING WAS CONTINUED')
                FORMAT(lH0,a7X, 'SPECIFIED CONCENTRATIONS  (CALCULATED)')
                FORMATfl X,1P10E13,5)
                FORM*T(I«»X, is, ' NUMBER OF VALUES (COMPUTED)*)
                FORMAT(1H0,Q9X, 'SPECIFIED DURATIONS  (CALCULATED)')
                VERSION 22,46)
                                        103

-------
(CLECS  VERSION 22,46)
                18-JUL-79   07181101  PAGE
  00001
  00002
  000513
  00004
  00105
  00006
  005107
  00008
  00009
  00010
  00011
  00013
  00013
  00010
  00016
  00017
  »001S
  00019
  00020
  00021
  00023
  00024
  00025
  00026
  0002T
  00028
  00029
  00035"
  00031
      SUBROUTINE PIECE(CF|DF,NLCiNPT(A,B)

    THE PURPOSE or THIS POUTINE is TO CONSTRUCT NLC
    LINE*"  FUNCTIONS C«F(0)  PROM AN INPUT  Of NPT PAIRS OP POINTS
    fOF(I,J),CMI,J))  FOR  EACH FUNCTION.  A(I,J) AND 8(1,J) OP A LINE
    SEGMENT WITH AN INFINITE SLOPE ARE RETURNED AS 0,
       CF(I,J)
       DF(!,J)
       NIC
       NPT
CONCENTRATION VAtUE FOR FUNCTION I, POINT J
TIME FOR FUNCTION i, POINT j
NUMBER OF LC PIECEHI8I LINEAR FUNCTIONS
NUMBER OF PAIRS USED TO DESCRIBE FUNCTIONS
INTERCEPT OF FUNCTION I, LINE SEGMENT J
SLOPE OF FUNCTION I, LINE SEGMENT J
      INCLUDE  'SYlFRANCO.PRM*
      DIMENSION CF(NLCF,NLCP)»OF(NLCF»NLCP),A(NLCF,NLCP)»8tNtCP»NLCP)

      00  CIM,NLC)
      .   DO (J»1,NPT-1)
            WHEN(OFII,J)  ,EQ.  DF(I,J»D)
            ...FIN
            ELSE
            .   8(I,J)«(CF(I,J*n»CF(I,J))/(DF(I,J»l).DF(I,J))
            .   A(I,J)-CF(I,J)-B(I,J)«DF(I,J)
          ..PIN
      ...PIN
      RETURN
      FMO

(FLECS VERSION 82.46)
                                           104

-------
(FLECS  VERSION
18.JUL-79    07121103   P*GE
00001
00002 c
001003
00004 c
0000?
00006 C
0P00T
00008 c
00009
00010 C
001*1 1
00012
00013 C
fl0AMCAN(?),A80(2)

COMMON /SCALE/ UYMIN,UYMAX,UXMIN,UXMAX
COMMON /CONTRUX L I . NCOL r 1XAX, IV»X, ICONZ, NDI6IT, FORM
COMMON /IODEV/ IPR,IRD

*** FREaucNCE PLOT ***
no (I«3,NC)
. NCIU-2) • NTt2,l) - NT(Ifl)
. PNCKI-2) • FLOATINCKI-2)) / FLOAT (NT (2, 1) )
. WORKCI-8) • ALOB1B(C(D)
...MN
NCPLOT • NC * 1
RfPEAT gNTIl (NTCNCPUOT, 1) ,NC. 0) NCPLOT « NCPLOT - 1
FORM • «E9,2'
IPR • LP
IYAX • 4
UYMIN • 0,0
UYMAX • 1,0
WRITCCLP.J)
FORMAT(lHl,34X,'Lor, 10 CONCENTRATION (X) VS CUMULATIVE •
1 'FREQUENCY (Y)')
CALL CR08 S ( NCPLO T-2( WORK, PNC !,*•», I DUM,DUM,0)

*** NORMAL PLOT ***
IY»X • 8
PARAM(l) • AMEAN(2)
PARAM(2) • ASO(2)
WRITC(LP,8)
FORMAT(1HJ,49X, "NORMAL PROBABILITY PLOT'/
1 36X, 'OBSERVED CONCENTRATION (X) VS NORMAL QUANTA (Y)')
CALL QQPLOT{NCPLOT-2,C(3),,FALSE,,2,PARAM,NORPPF,OUM,
1 WORK, NCI, NTC8,D)

*** LOG NORMAL PLOT ***
PARAM(l) « LM£AN(2)
PARAM(g) • LSO(2)
WRITECLP.3)
FORMAT(1H1,4TX, 'LOG NORMAL PROBABILITY PLOT'/
3«X,'LOG OBSERVED CnNCENTRAT ION (X) VS NORMAL QUANTlLE CY)')
C»LL QQPLUt (NCPLOT-2,C(3) , , TRUE . , 
-------
(flECS VFRSION ??.«f>)      H-JIIL-T9   07191103

          c
          C     *** GAMMA PtOT ***
                P*"AM(1) • ALPHA
                P»RAM(?)
                FORM*T(lHtia9X, 'GAMMA PROBABILITY PLOTV
               1 36X,'OB8EHVEO CONCENTRATION (X) V8 OAHMA OUANTILE  (Y)»)
                CALL QOPLOT(NCPLOT-?,C(3),,F»l.9e.»a»PARAM,GAMPPFlOUM,
               t            WORK, NriiNT(2, D)
          (FLEC3 VERSION
                                            106

-------
VERSION 32.06)
                        18«JUL-7<>   07121186  PAGE   00B01
000P1
00003
00005
00006
00007
00°I08
00009
000110
BP0J J
00015
00016
000)8
00019
00020
00091
00088
00023
00020
00026
000?7
00028
   C

   5
   13
20

81

22
      SUBROUTINE P8CAL.e(UXIS,ISCALE,lINBEG,SMIN,9MAX,3INCR,8FIHST,
     1                  LINEND)

      IF (ISCAU) 5, 5, la
      SFI"ST»SMAX
      IF(1AXI3 ,EO. ?) SFIRST«SMIN
      RETURN
      M.LIN8EG/IAXI9
      8LOG»AI.OG10t(SM»X. SMI N) /FLOAT (M))
      9INC«J*AINT(J0,**(»MOO(8UOG*
-------
(FLECS  VERSION  2?.
19-JUL-f    07121107   PAGE   00001
00001
00002
000P3
00900
00^05
00006
00007
00008
00009
000J0
00011
00013
0001$
00014
00015
00016
0001?
0001*
00019
00020
00021
00022
00033
00324
00025
0P«?«
00027
00028
000129
00030
00031
00032
P0033
0003«
00035
00036
00037
00039
00039
00040
00041
00042
00043
00044
00045
00046
000*4T
00008
00049
00050
00051
0005Z
00053

C
C-—
C
C
C
c— —
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c.---
c
c

c

c

c

c
c




10
c
20



30
c

1000

2000
SUBROUTINE QQPLOT(N,X,LOGX,NOPRAM,PARAM,PPF,XS,WORK,NCI,NFREQ)

THIS SUBROUTINE MAKES A LINE-PRINTER PUOT Of THE DATA IN THE
ARRAY x(.) VS PERCENT POINT PROBABILITY DATA (QUANTU.I8) OBTAINED
FROM THE SUBPROGRAM PFF,

INPUT ARGUMENTS
N - NO, OF DATA POINTS IN THE ARRAY Xt,},
X • ARRAY CONTAINING THE DATA TO BE PLOTTED ON THE X.AXIS,
SEE ALSO LOGX BELOW. DIMENSION ,GE. N.
LOGX • A LOGICAL VARIABLE
If LOGX". TRUE, THEN ALOGtXC,)} IS PLOTTED ON THE X-AXI9
IF LOGX-, FALSE, THEN X(,J IS PLOTTED ON THE X-AXIS,
NOPRAM . NO, OF PARAMETERS REQUIRED BY PPF,
PARAM . ARRAY CONTAINING THE PARAMETERS REQUIRED BY PPF,
DIMENSION ,GE, NOPRAM.
PPF - SUBROUTINE SUBPROGRAM TO COMPUTE THE PERCENT POINT
PROBABILITY DATA (OUANTILES) TO BE PLOTTED ON THE
X-AXIS,
XS -A SCRATCH ARRAY WHICH AFTER THE RETURN, WILL CONTAIN
THE ARRAY X(,) tOR ALOBfXC,))) AFTER SORTING! SUCH THAT
XSC1) ,LE. XS(2) ,LE, ... ,LE, XS(N).
DIMENSION ,GC, N,
WORK . A SCRATCH ARRAY, DIMENSION ,8E. 3*N,

IN ADDITION TO PPF, THIS ROUTINE REQUIRES THE FOLLOWING
SUBPROGRAMS^ CROSS, SORTP , UNIFRQ

LOGICAL LOGX

INTEGER** NCI(1),NFREQ

DIMENSION X(1),XS(1) , WORK (3) , PAR AMU )

COMMQN/IODEV/IPR, I«D


CALL SORTP(X,N,X$,WORK)
CALL UNIFRQtN, NCI, WORK, NFREO)
IF(, NOT, LOGX) GO TO 20
DO 10 I«1,N
xsALOG(xsnn

00 30 I«l,N
CALL PPF(NOPRAM,PARAM,WORK(I),PPFVAL,,FALSE,)
J»I+N
WORK (J)«PPFVAL
CONTINUE

IFt.NOT. LOGX) WRITE (IPR,1000)
FORMATC45H QQPLOT X-AXIS ORDERED DATA VS Y-AXIS «)
IF(LOGX) WRITE (IP*»a000)
FORMAT(50H QQPLOT X-AXIS LOGtORDERED DATA) V9 Y-AXIS •)
                                         108

-------
(FLECS VERSION 2?.«fc)     1«.JUL-71   07121187   PAGf   PI0002
          C
          C---- MAKe PRINT C»UL
                CALL PPF(NOPR*M,P*R»H,«Ol»K,PPFV»L»f TRUP.)
  P!0("57   C--"« DP*W PLOT
  P>Pif>l5»         CALL CR08S(N,X9,WORK(N*l)l'*'lWO«K(J)»WORK(a*N«n,8)
                RETURN
          tFLECS VERSION 82,
                                          109

-------
VERSION 22.«<>)
lfl»JUL»79   07121110  PAGE  005101
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
000J4
000J5
00016
00017
000J8
00&19
00020
00021
00022
00323
00024
00025
00026
00027
00026
00029
00030
00031
00032
00033
00030
00035
00036
00037
0-0038
00039
00040
00041
00042
00003
00044
00045
00046
000147
00048
PI 0 PI 09
00050
00051
00052
00053
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c



c






c


         SUBROUTINE 80RTP(X,N,Y, IPOS)
         THIS ROUTINE SORTS THE CLEMENTS Or THE INPUT  VECTOR X AND PUTS THE
         SORTED ELEMENTS INTO THE VECTOR V,  IT ALSO CARRIES ALONG THE
         INDEX NUMBER OF EACH ORDERED  OBSERVATION-. THAT ISi IT CARRIES ALO
         THE POSITION OF THE I*TH ORDERED OBSERVATION  (FOR EACH '[} AS IT
         WAS IN THE ORIGINAL UNORDERED DATA VECTOR X,   THESE POSITIONS ARE
         PL*CEO IN THE VECTOR IPOS,   THIS ROUTINE  IS USEFUL IN ATTEMPTING T
         LOCATE THE MINIMUM, THE  MAXIMUM, OR SOME  OTHER ORDERED OBSERVATION
         OF INTEREST IN THE ORIGINAL  UNORDERED  INPUT VECTOR X.
         THE INPUT TO THIS ROUTINE IS  THE SINGLE PRECISION VECTOfl X OF
         (UNStmEU) OBSERVATIONS,  THE  INTEGER VALUE N  (• SAMPLE SIZE),
         AN EMPTY  SINGLE PRECISION VECTOR V INTO WHICH THE SORTED 098ERVATI
         WILL BE PLACED, AND AN EMPTY  SINGLE PRECISION VECTOR IPOS INTO WHI
         POSITIONS OF THE SORTED  OBSERVATIONS WILL BE  PLACED,
         THE OUTPUT FROM THIS ROUTINE  IS THE SINGLE PRECISION VECTOR V INTO
         THE SORTED OBSERVATIONS  HAVE  BEEN PLACED,  AND THE SINGLE PRECISION
         IPOS INTO WHICH THE POSITIONS OF THE SORTED OBSERVATIONS HAVE SEEN
         RESTRICTIONS ON THE MAXIMUM  ALLOWABLE  VALUE OF N«»THE DIMENSIONS
         OF VECTORS IU AND IL (DEFINED AND USED INTERNALLY WITHIN THIS ROUT
         DETERMINE THE MAXIMUM ALLOWABLE VALUE  OF  N FOR THIS
         ROUTINE,   IF IU AND IL EACH  HAVE DIMENSION K, THEN N MAY NOT EXCEE
         2»*(K*1)  » 1.  FOR THIS  ROUTINE AS WRITTEN, THE DIMENSIONS OF IU A
         HAVE BEEN SET TO 36,  THUS THE MAXIMUM  ALLOWABLE VALUS; Of N IS
         APPROXIMATELY 137 BILLION,   SINCE THIS EXCEEDS THE MAXIMUM ALLOWA8
         VALUE FOR AN INTEGER VARIABLE IN MANY  COMPUTERS,  AND 3INCI A 90RT
         BILLTON ELEMENTS IS PRESENTLY IMPRACTICAL AND UNLIKELY,  THEREFORE
         TEST FOR  WHETHER THE INPUT  SAMPLE SIZE N  EXCEEDS  117 BILLION HAS B
         INCORPORATED INTO THIS ROUTINE,  IT IS THUS ASSUMED THAT THERE IS
         (PRACTICAU RESTRICTION  ON  THE MAXIMUM VALUE  OF N FOR THIS ROUTINE
         PRINTING— NONE UNLESS AN ERROR CONDITION  EXISTS
         THIS ROUTINE IS SINGLE PRECISION IN INTERNAL  OPERATION,
         SUBROUTINES NEEDED—NONE
         SORTING METHOD—BINARY SORT
         REFERENCE—C»CM MARCH 1969,  PAGE m (BINARY  SORT ALGORITHM BY RIC
                    c, SINGLETON,
                  •-CACM JANUARY  1970, PAGE 30,
                  —CACM OCTOBER  1970, PAGE 6?4,
                  — JACM JANUARY  1961, PAGE 41,
         WRITTEN BY JAMES J. FRLIBEN, STATISTICAL ENGINEERING LABORATORY
         NATIONAL  BUREAU OF STANOARE8, WASHINGTON,  D.C, 20234       JUNE 19
         DIMENSION X(N),Y(N),IPQS(N)
         COMMON /IODEV/ IPR,IRD
         DIMENSION IU(J6), 11(36)
         CHECK THE INPUT ARGUMENTS FOR ERRORS
         IF(N.LT,1)GOT050
         IFCN.EQ.l)GrjT055
         HOLO-X (1)
         IF (X(H ,NE. HOLD) GOT 090
         CONTINUE
         WRITE  (IPR,9J   HOL.O
         n06JI«l,N
         vm.xf n
                                    110

-------
(FLECS  VERSION  ?2,46)
18-JUL-T9   07I21H0
B0P03
00054
00055
00056
00057
00SI58
00(559
00060
00061
00062
000*3
00064
00069
00066
00067
00068
00069
00070
00071
00078
00073
00070
00075
00076
00077
00078
001*79
00080
00061
("008?
00083
00084
000B5
00086
00087
000*8
000*9
00090
00091
00098
00093
00094
0009?
00096
00097
00098
00099
00100
00101
00102
00103
00104
00109
00106
00107
00108
00109



















C
C



C
C
C
C



C
C
C






















                CONTINUE
             50  WPnF(IPR,15)
                WRITF(IPH,
-------
(FLECS  VERSION  ;

  00110     380
               .46)
                         18«JIIL-79    07121110   PACK   00003
00118
00113
00114
00M6
00117
  0018?
  00183
  0018«
  00185
  ("0186
  0018T
  00188
 00130
00138
00J35
 0013T
 00138
 00139
 00140
 00141
 00148
 00143
 00140
 00143
 00146
 00147
 00U9
 00150
 00151
 00158
 00153
 00154
 00155
 00156
 00157
 00H«
 00159
00U8
00163
00164
              IF (Y(.H,<;E,AMEr>) 60*03*0
              YfMlO)»Y(J)
              IPOS(»ID)"IP03(J)
              IP03t,n«lMED
              IMEO«IPOS(MID)
              lMYm,LE,AMEO)GOTOJ4B
              Y(Mir»«Y(I)
              YfI)«*MEO
              IPOSfD-IMEO
              *MEO«Y(MIO)
          330
          340
          350
              COTQ340
              YfL).Y(K)
              Y(K)«TT
              !POSfK)«ITT
              L«L"t
              IF(Y(L),CT.A«EO)GOTn340
              ITT«IP03(U)
              !FCY(K).LT,AMEO)GOT0350
              IF(K.LE.U)GOT0330
              JHKiJ.K
              TMLMI.UE,JMK)GOT03fc0
          360
          370
          360
              I«K
              M«M
              GOT
              IL(M)«K
              ROT0380
              M«M«1
              J«IU(M)
              JMI.J-I
              IMJMI,GE,11)GOT0310
              !•!-!
              I«I*J
              IFfI,EQ,J)60T0370
              IMEO«1POS(I»1)
              IF(Y(n.LE.»MEO)GOT0390
              K.I
          395
              !POSfK»n«IPOS(K)
                                        112

-------
(FLECS VERSION 23,46)      IB.JUU-n   &7I21I10  PACK  000)04
                IF(*Meo.LT,yfK))60TOJ95
                V(K+1)«AMED
                GOT0390
                EMO

          (FLECS VERSION 22,fl(O
                                         113

-------
(FLECS VERSION a?,at.)
18-JUU-T9
PAGE  0000J
000I?|
00008
0091*3
00004
00005
00006
00007
00008
00009
00010
00011
00018
00^13
P00J4
00015
00016
00017
00018
00019
00030
000?1
00028
00n?3
00^24
00023
00026
00027
00028
00029
00030
00031
00033
00033
00034
00035
00036
00037
0093»
00039
00040
00041
00043
00043
0P004

C
C
c
C
C
C
C
c
c
c
c
c
c
c
c
c
c

c

c







c













c
SUBROUTINE SUMSAT(AM£AN, ASUMS, CONC, LMEAN, L3UMS» W)

THIS SUBROUTINE 18 RESPONSIBLE FOR ACCUMULATING THE PARTIAL VALUES
THAT WILL FORM THE SUMMARY STATISTICS,

FORMAL PARAMETERS:
AMEAN ARITHMETIC MEAN
ASUMS
CONC CONCENTRATION
LMEAN LOG MEAN
L8UM8
W COUNT OF THE NUMBER OF SUMS IN AMEAN (H(l»D) AND
LMEAN (W (1,2) )
SUBSCRIPT I • ALL CONCENTRATION VALUES
i • ONLY NONZERO CONCENTRATION VALUES

CALLED BYI FRANCO

REAL*4 LHEAN(2), LSUM8(8)

DIMENSION AMEAN(8), ASUMS(S), W(8,8)

I • 1
COMPUTE-VALUES
IF (CONC ,CT, 0,0)
.1-8
, COMPUTE-VALUES
. . .FIN
RRTIJPN

TO COMPUTE-VALUES
. OEV • CONC - AMEAN(I)
. w(i,n • «d,n * 1.0
. AMEAN(I) « AMEAN(I) * OEV / W(I,l)
. ASUMS(I) • ASUMS(I) * OEV t (CONC - AMEANCI))
f IF rCONC ,GT, 0,0)
. H(I,2) • vj(l,2) » 1 ,0
, CL • ALOG(COHC)
. OEV « CL - LMEAN(I)
, LMEAN(I) • LMEAN(I) * OEV / W(I,8)
, LSUMS(I) a LSUMH(I) * OEV * (CL • LMEAN(IJ)
..FIN
...FIN
F N n
                          CROSS-REFERENCE
                                        114

-------
(FLECS  VERSION  ??,«6)      18-JUL-79   07121115  PAGE  00001
                SUBROUTINE  IJNirRQ(N,NCI,X,NFREQ)
  00002    C
          C
                DIMENSION X(N)
          C
                DATA  GAMMA /0,3/
          C
                OEM  • FlQATCNPREQ+1)  -  8,*GAMMA
                on  U»I,N)
                .   Xd)  • (FUOAT(NCHI))  •  6AMMA)  /  DEN
                ...PIN
                RETURN
                FHO

          CFLtCS VERSION 22,ab)
                                        115

-------
     VERSION 82.86)
                         18.JUL-7«    07121117  PAGE  00901
00007
00008
00009
                  5J FRANCO.PRM

            JC * MAXIMUM NUMBER  OF  SPECIFIED CONCENTRATIONS
            JO • MAXIMUM NUMBER  OF  SPECIFIED DURATIONS
            UP • LINE PRINTER  LOGICAL  UNIT NUMBER
            NLCF » MAXIMUM  NUMBER OF LC-50 CURVES
            NLCP • MAXIMUM  NUMBER OF POINTS IN EACH LC-30 CURVE
                          •**  NOTE  ***
                    IF NLCF IS L*«6ER  THAN 9,  LUN AND ITS ASSOCIATED  FILES
                    WILL HAVE  TO 9E ALTERED, IF NLCP GOES BEYOND *i  MANY  OUTPUT
                    FORMAT  CHANGES  MILL  HAVE TO BE MADE,

              PARAMETER JC«50, J0»25,  JCJD«J25e,  tP«T, NLCF«5, NLCPf6
                                         116
ft US GOVERNMENT PRINTING OFFICE 1962-559-092/0470

-------