r/EPA
           Unitea Slates
           Envii oninenial Pi o".eciior
            t'iv! onmentdl Research
            Lahcit atiir-^
            Alheru GA ?OP1 3
           Reseaicl; and Development
User's Manual for
EXPLORE-I:

A River Basin Water
Quality Model
(Hydraulic Module Only)

-------
                                         EPA 600/3-82-054
                                         May 1982
       USER'S MANUAL FOR EXPLORE-I:
       A RIVER BASIN WATER QUALITY
       MODEL  (HYDRAULIC MODULE ONLY)
                     by
                 Y. Onishi
                 Battelle
       Pacific Northwest Laboratories
         Richland, Washington 99352
          Contract No. 68-03-2613
               Project Officer

              Robert B. Ambrose
Technology Development and Applications Branch
     Environmental Research Laboratory
          Athens, Georgia 30613
     ENVIRONMENTAL RESEARCH LABORATORY
     OFFICE OF RESEARCH AND DEVELOPMENT
    U.S. ENVIRONMENTAL PROTECTION AGENCY
          ATHENS, GEORGIA 30613

-------
                     NOTICE

Mention of trade names or commercial products does not
consititute endorsement or recommendation for use.

-------
                             FOREWORD

      As environmental controls become more costly to implement
and the penalties of  judgment errors become more severe, environ-
mental quality management requires more efficient management tools
based on greater knowledge of the environmental phenomena to be
managed.  As part of this Laboratory's research on the occurrence,
movement, transformation, impact and control of environmental
contaminants, the Technology Development and Applications Branch
develops management and engineering tools to help pollution
control officials achieve water quality goals through watershed
management.

      Many toxic contaminants are persistent and undergo complex
interactions in the environment.  As an aid to environmental
decision-makers, the Chemical Migration and Risk Assessment
methodology was developed to predict the occurrence and duration
of pesticide concentrations in surface waters receiving runoff
from agricultural lands and to assess potential acute and chronic
damages to aquatic biota.


                            David W. Duttweiler
                            Director
                            Environmental Research Laboratory
                            Athens, Georgia
                               111

-------
                            ABSTRACT

     EXPLORE-I is a computer program that simulates the dynamic
hydraulic and water quality characteristics of a river basin.   It
can be used to study the effects of various flow conditions,
waste discharge and treatment  schemes on the water quality
conditions of lakes, reservoirs, rivers,  and estuaries.  This
user's manual provides input instructions for the hydraulic
module of the EXPLORE-I code.  Basic programming requirements  of
the code are also included.

      Companion reports to this document are Methodology for Over-
land and Instream Migration and Risk Assessment of Pesticides,
Mathematical Model SERATRA for Sediment-Contaminant Transport  in
Rivers and Its Application to Pesticide Transport in Four Mile
and Wolf Creeks in Iowa, User's Manual for the Instream Sediment-
Contaminant Transport Model SERATRA, and Frequency Analysis of
Pesticide Concentrations for Risk Assessment (FRANCO Model).


      This report was submitted in partial fulfillment of Contract
No. 68-03-2613 by Battelle Pacific Northwest Laboratories under
the sponsorship of the U.S. Environmental Protection Agency.
This report covers the period April 1978 to January 1980, and
work was completed as of January 1980.
                               IV

-------
                            CONTENTS


 ABSTRACT ••••••••••     1V

FIGURES   ..........     vi

TABLES    ..........    vii

     INTRODUCTION   ........      1

     GENERAL DESCRIPTION OF EXPLORE-I   ....      2

          EXPLORE-I River Basin Codes   ....      2

     HYDRAULIC CODE ........      6

          Hydraulic Data Input Information   ...      8

          Controlled Nodes and Upstream Boundary
          Conditions     .......     13

          Hydraulic Input Data Deck Preparation    .     .     16

     PROGRAMMING INFORMATION  ......     26

          Hydraulic Input Program  (IMAINT) Description  .     37

          Hydraulic Calculations Program  (HMAINT)
          Description    .......     37

REFERENCES.    .........     55

APPENDIX A.    .........     56
                                v

-------
                             FIGURES


 1    Overview of  the BNW EXPLORE-I  river  basin  codes    .      4

 2    Relationship of time base  in hydraulic  and
     quality codes  ........      5

 3    A sample river basin.     ......      9

 4    Worksheet for gathering input  data to describe  the
     problem's junction points.     .....     10

 5    Worksheet for gathering input  data to describe  the
     problem's channels  .......     12

 6    Sample data  deck construction  for executing the
     BNW EXPLORE-I hydraulic input  code .    .     .     .     25

 7    Sample data  deck construction  for executing the
     BNW EXPLORE-I hydraulic calculation code.     .     .     29

 8    Layout of example system .     .     .    .     .     .     30

 9    Listing of sample input data deck for hydraulic
     code .    .     .     .     .     .     .    .     .     .     31

10    Relationship of the hydraulic  input, calculation
     and output codes    .     .     .     .    .     .     .     35

11    Flow chart of subroutine INK   .     .    .     .     .     46

12    Flow chart of TIDE  .......     48

13    Flow chart of subroutine PICTUR    .    .     .     .     49

14    Flow chart of subroutine HYDCAL    ....     50

15    Flow diagram of subroutine GENFUN  ....     52

16    Flow diagram of subroutine HYDPLT  ....     54
                               VI

-------
                        TABLES
A Tabulation of Values of the Manning Friction
Coefficient for Various Types of River Channels   .     13

Data Card Format for EXPLORE-I Hydraulic Input
Code ..........     17

Control Cards for Requesting Punch, Print and
Plot Output From Hydraulic Calculation Code  .    .     27

Variable Definition for Hydraulic Code  ...     38
                          vn

-------
                         USER'S MANUAL


INTRODUCTION

The Battelle-Northwest (BNW) water quality model, EXPLORE-I
(Baca et al., 1973a,b),  is a computer program which simulates
the dynamic hydraulic and water quality characteristics in a
river basin.  It can be used to study the effects of various
flow conditions, waste discharge and/or treatment schemes on
the water quality levels in the river basin.

EXPLORE-I is capable of simulating a number of hydraulic regimes
in either a dynamic or steady state mode.   These are:

     • streams and rivers,

     • shallow lakes,

     • estuaries or tidally influenced rivers, and

     • thermally stratified reservoirs.

In addition, the behavior of the following water quality parameters
can be studied:

     • Carbonaceous Biochemical Oxygen Demand (BOD)

     • Nitrogenous BOD

     • Benthic BOD

     • Total Organic Carbon (TOC)

     • Refractory Organic Carbon

     • Sedimentary Phosphorus

     • Soluble Phosphorus

     • Organic Phosphorus

     • Ammonia Nitrogen

     • Nitrite Nitrogen

-------
      • Nitrate Nitrogen

      • Organic Nitrogen

      • Toxic Compounds

      • Phytoplankton

      • Zooplankton

      • Dissolved Oxygen

This user's manual is intended to provide the information
necessary for application of the hydraulic module of EXPLORE-I
to a river basin.  A summary description of the hydraulic
model used is provided to assist in understanding the code and
selecting the necessary input values.  Programming details of
the code are also included.

GENERAL DESCRIPTION OF EXPLORE-I
The EXPLORE-I computer model consists of four computer program
modules:

     • hydraulic code for river and estuarine flow,

     • quality code for river and estuary systems,

     • hydro-thermal code for thermally stratified reservoirs, and

     • quality code for thermally stratified reservoirs.

The hydraulic and hydro-thermal codes must be run first to provide
flow and/or temperature patterns which are input information for
the quality codes.  The river basin codes are not coupled to the
deep reservoir models, so quality profiles in impoundments must
be analyzed separately.

EXPLORE-I River Basin Codes

As explained above, the EXPLORE-I river basin model consists of
a hydraulic code and a quality code.  The hydraulic code, which
is executed first, produces a magnetic tape which contains all
the necessary geometric and hydraulic data used by the quality
code.  This separation of hydraulic and quality calculations
allows the user to set up and calibrate the hydraulic model while
gathering data for the quality model.

Each of these codes has two parts, an input program and a calcula-
tion program.  The results of the input programs are stored on mag-
netic tape for use by the calculational code.  The input codes

-------
check the input data deck for consistency and calculate all time
varying functions needed by the calculational codes.  This
allows the user to check his input before executing the calcula-
tional portion of the code.  A diagram of the river basin code
is shown in Figure 1.

The hydraulic and quality codes are set up to operate for a
specified number of cycles; each calculation begins with a spe-
cific cycle and ends with a specific cycle.  These are normally
referred to as tidal cycles.  However, the user can specify a
cycle different from the tidal cycle  (for example, a daily cycle)
if no tidal influence occurs in the river basin being modeled.
The quality code will accept two types of hydraulic input:

      (1) time varying hydraulic data which in general is not
         cyclic in nature; and

      (2) steady or cyclic varying flows.

If the user wanted to observe the effects of increased flow from
an upstream source or from time varying additions and withdrawals
of water from the system, option (1) would be used since these
actions are not cyclic in nature.  If only constant or cyclic
flows (such as tidally influenced flows)  were of interest, option
(2) would be used.  With option (2)  the quality code will use the
hydraulic data for one cycle again and again as it calculates the
quality parameter concentrations for a number of cycles.

Since it is difficult to input all the initial velocities, depths,
and flows exactly, both options allow the hydraulic code to cal-
culate for a specified number of cycles before writing out the
results of the calculations or starting to add time varying in-
puts.  The time variables used in the hydraulic and quality codes
are discussed below.

The relationship between the time bases used in the hydraulic and
quality codes is most simply illustrated by time lines,  as shown
in Figure 2.  The variables in this figure are defined as:

     • Hydraulic code time variables

       NQSWRT = the number of the tidal cycle where printout and
                writing of time varying hydraulic data begin.
                NQSWRT refers to a segment of time rather than
                to a specific point in time;  it is the number of
                the tidal cycle at which the system establishes
                the proper initial conditions.

       NTCYC  = the number of the last tidal cycle for which the
                hydraulic calculations will be performed.  NTCYC
                also refers to a time segment rather than to a
                specific point in time.

-------
(^HYDRAULIC
INPUT DATA
CARD DECK



EXECUTE THE BNW EXPIORE-1
HYDRAULIC INPUT CODt
(1)
\
r


LISTING
OF HYDRAULIC
INPUT
                                     /TtMPORARY
                                    /   STORAGE
                                        TAPE FOR
                                    y  HYDRAULIC
                                     \INPUT
              PUNCH
            PRINT OUT
           PLOT CONTROL
              CARDS
 EXECUTE THE BNW EXPLORE-1
HYDRAULIC CALCULATION CODE
                                         I
                                                                 OUTPUT PLOTS
                                                              AND CALCULATIONS
                                                                  REQUESTED
                                       PERMANENT
                                        STORAGE
                                      TAPE FOR THE
                                       HYDRAULIC
                                        OUTPUT
                                    PUNCH
                                    RESTART
                                   DATA DECK
                                 WHEN REQUESTED

f" QUALITY
INPUT DATA
CARD DECK


i
r
EXECUTE THE BNWEXPLORE-1
QUALITY INPUT CODE
13)



LISTING OF THE
QUALITY INPUT
V ^n^"

            PUNCH. PRINT
              AND PLOT
            CONTROL CARDS
                                      TEMPORARY
                                        STORAGE
                                     TAPE FOR THE
                                        QUALITY
                                        INPUT
 EXECUTE THE BNW EXPLORE-1
 QUALITY CALCULATION CODE
          (4)
                               LI STING OF THE
                                 QUALITY
                               CALCULATION
                               RESULTS WHICH
                                 HAVE BEEN
                                 REQUESTED
                                      PERMANENT
                                        STORAGE
                                     TAPE FOR THE
                                       QUALITY
                                        OUTPUT
                                                                PUNCH RESTART
                                                                DATA DECK WHEN
                                                                  REQUESTED
Figure 1.   Overview of  the BNW EXPLORE-I  river  basin  codes,

-------
        A.   Time  line
                              Tidal Cycles with PERIOD  =  25  hrs.
TIDAL
CYCLE 1

TIDAL
CYCLE 2

TIDAL
CYCLE 3

TIDAL
CYCLE 4

TIDAL
CYCLE 5

TIDAL .
CYCLE 6

                  25
50          75
   Time,  Hrs.
100
                                                             125
150
        B.  Time  line showing NQSWRT, NTCYC, NTQCYC and  zero  time  for  the
           hydraulic time varying data and for the quality time varying data

           (For  example let NQSWRT = 3, NTCYC = 6, NTQCYC  =  6, PERIOD = 25)
                                 >Time = 0 for time varying  hydraulic input.
                                       Hydraulic code was  run  for these TC.*
HYDRAULIC \
CODE | TC = 1 | TC = 2
QUALITY 0
CODE
w
TC

=3 | TC = 4
Quality code
| TC= 5
was run
| TC = 6 |
for these tic
	 A.
                                                   cycles
                                  Time = 0 for time  varying  quality data.
        C. Time line  showing NQSWRT, NTCYC, NTQCYC and zero time point  for 'steady
           state or cyclic  hydraulic data

           (For example let NQSWRT = 2,  NTCYC = 2, NTQCYC = 6, PERIOD = 25)
                    Hydraulic
                    tidal cycle
                    The hydraulic data used
                    here by the quality code is
HYDRAULIC
CODE
QUALITY
CODE (
TC = 1*
>
TC = 2

^ — • —
TC = 3

~*^ fe
TC = 4 TC = 5 TC = 6

•^ 	 	 — — 	 • 	 	 —
Quality cycles
simulated
                      •Time = 0 for time varying quality input.

*TC = Tidal cycle
           Figure  2.   Relationship  of time base  in hydraulic
                       and quality codes.

-------
       PERIOD = period of one tidal cycle in hours.

     • Quality code time variable

       NTQCYC = the number of the last tidal cycle for which the
                quality model will be run.  The quality model
                will be run for the tidal cycle number starting
                with NQSWRT and ending with NTQCYC.

For the purposes of diurnal calculations the quality code assumes
that the start of the time varying data is midnight.

HYDRAULIC CODE

The hydraulic submodel used by EXPLORE-I  (Baca et  al., 1973a)
was originally developed for the receiving water block of the
Storm Water Management Model (SWMM) by Water Resource Engineers
(WRE).  Because the SWMM hydraulic model has been  previously
applied successfully to various problems, Water Resources Engi-
neer (1966), Callaway et al. (1969), Metcalf and Eddy  (1971),
it was chosen for this study.  An extensive discussion of the
theory appears in Callaway et al.  (1969) and Baca  et  al.  (1973a)
and will not be given here.

The hydraulic code used by EXPLORE-I solves two-dimensional
problems with one-dimensional equations by requiring  the  two-
dimensional system to be described by a set of interconnected
"channels" and "junctions" which represent the actual physical
system.  The equations of motion and continuity for a one-
dimensional hydraulic system consist of two simultaneous
equations referred to as the Saint Venant equations.  These
equations can be written in terms of the discharge, rather than
velocity, as the primary kinetic variable.  For flow  through a
channel of rectangular cross section, these equations are:



and

          ,9h   8q _ /->                                        o\
            dt   3x
where

          g = gravitational acceleration

          h = water depth

          u = vertically averaged  velocity

          b = channel width

          q = discharge

                                 6

-------
          So = bottom slope

          Sf = friction slope due  to bed  shear  stress

          Sw = friction slope due  to wind  stress

         t,x = time and space coordinates, respectively.

The code uses a modified set of one-dimensional Saint Venant
equations to model the two-dimensional flow  in  an estuary or
river basin by superimposing on the estuary  or  river basin  a
grid of junctions and channels.  Only one-dimensional flow  is
then allowed in the channels connecting the  junctions.  Each
junction in the system is a water  and potential energy  storage
element which is characterized by  its  (1)  surface area,  (2) water
surface elevation, (3) bottom elevation,  and (4) the actual  (X,Y)
coordinates of the junction points.  The  water  storage  of the
basin or estuary is represented by this series  of junctions.
Flow between these junctions is through rectangular channels
which connect the junctions.  A channel is described by its
(1) length, (2) width, (3) Manning coefficient,  (4) average
bottom elevation at the midpoint,  and  (5)  the junction  numbers
which lie at its end points.

Thw two Saint Venant equations are not solved simultaneously for
this system.  Instead, the one-dimensional equation of motion,
Equation 1, is solved for each of  the channels  in the system on
the basis of the present values of the junction heads.  Velocity
and flow in each of the channels are thus  determined.  Next, the
modified equation of continuity, Equation  3:

              3h.    k



where

         ASJ = surface area associated with  the junction j

          Qi = flow of a channel i connectivy to the junction j

         Q^m = water importation rate to  the junction j
               (source term)

         Q?x = water exportation rate from the  junction j
          -1    (sink term)

         Qev = evaporation rate

is solved for  each of the junctions on the basis of the predicted
flows in each  of the channels.   This process is repeated for the
duration of the simulated time period.

-------
Hydraulic Data Input Information

An example of the nodalization of a river basin is shown in
Figure 3.  The selection of junctions and channel locations and
the necessary data for each is discussed below.

Junction Data.  The selection of junction points and the distances
between them are determined by a size of a time step desired  for
running the hydraulic model.   For a large problem a time step
greater than 100 seconds would generally be used.   For most estu-
aries and large rivers (say, flows greater than a few thousand cfs) ,
the maximum time step, At, which can be used for a given channel
length, L, is determined approximately from
          At
             ~  /gR

where

          R = the hydraulic radius (R = average water depth)
              of the channel

          L = length

          g = gravitational constant

Figure 3 shows the initial nodalization of a sample river basin.
After running the model, the user might wish to add new junctions,
change the locations of junctions, or remove junctions to improve
the simulation results.

Figure 4 is a worksheet which can be used to gather the data
necessary to describe the junctions.  As indicated on the work-
sheet, and described in succeeding paragraphs, hydraulic data are
required for :

     1) the average water surface elevation for the junction point,

     2) the water surface area associated with the junction point,

     3) any significant inflows to the junction point from small
        streams, tributaries or other sources,

     4) any significant outflows from the junction point,

     5) the average elevation of the bottom of the river or
        estuary for the junction point, and

     6) the cartesian coordinates of the junction point (necessary
        only if the effect of wind stress on channel flow is being

-------
                           NOTE THAT CHANNEL LENGTH
                           IS THE DISTANCE IN RtVER
                           FEET BET WEEN JUNCTIONS
                           NOT THE STRAIGHT LINE
                           DISTANCE
                                    SCALE
                                   (MILES)
                                        JUNCTION POINT N


                                        CHANNEL N

                                        CHANNEL MIDPOINT

                                        SURFACE AREA
                                        ASSOCIATED WITH
                                  VA JUNCTION N
                                        CENTROIDS
   OCEAN

Figure 3.   A  sample river basin,

-------
03
1
•H
r"



|S ~
E
•H
'j3





in
in
,!,
.i;





in ~
i'
ij5
M





in ~
M
i

iM



in
00
i






ifi
_j in J
O -H
0 (l





IO
I
•rn








,*\
•r
«r LU
S ui
!Z i¥
0 0
P*
Z "!/*•
!H5 *—•
-3 i*
>H CD CO
T) VJ
C  s
CO 4J CU v_/
J2 O i-i
O PQ W

^. ^
S o
0 CU
r-< CO

4J CO
3 e
O N-^


^^
> 0
o cu
i-H CO

a m
M 0


cu >— - ~

M-l CU

3 O cr
W CD
^^^


T) ^^ ""
cO 6
cu ^*^
EC






^t
CU CU
T) XI
o S

"Z




4-> CU
3 0
a 3
M O



l-i CU
CU i-t
> -H

~
















































































































-







~




























-










































































~


































































































_













-








~









































































_




























~





































-




































~





































-




































~










































































—





































-










































































-








_

































































-




































-





































-










































































-















































































































n





































-















~




















~





















































~































































































~










































































"^

























































































-






















-








~



























"














































.



























~





































— ,








.

































































-




































~





































-








~
















__
















































-








—






~~









"
















































..








"






-_ i










"









"





































-















,









"
















































—








_






i


























































-








—






_










"









"














™






















-








~-
















~

















—







_






















-








~



























~














_






















-















~








_











1






-






























-

























~









_





CO
-p
£5
•H

Qi

C
0
-P
U
Pi

•n

CA
»
g
0)
X!
O
a


X!
•H
S-l
u


-------
calculated).

The water surface elevations need only be a reasonable guess,
as the code will predict the correct head after the simulation
has run a day or two.  The initial head can be determined from
the elevation (taken from topographic maps), by adding the known
water depth at the junction point to the known elevation of the
river or estuary bottom, or from other sources (e.g., Corps of
Engineers records/ if available).

The surface area of a junction is bounded by the lines which
connect the centroids of adjacent areas.  Figure 3 illustrates
the method of determining the surface area of a junction for
almost any kind of junction point.  The surface area can be
obtained by planimetering topographic or navigation maps.
Junctions with tributary inflows which are not modeled should
be accounted for by a representative surface area.

Inflow rates for tributaries or streams which are not modeled
but contribute a significant amount of water into the junction
should be specified.  Outflow rates for unmodeled outflows
should also be specified.

The average elevation of the river or estuary bottom for the
junction point can be determined from

     • physical measurements;

     • navigation charts or topographic maps which give sounding
       contours for the river or estuary (any good method of
       averaging this data can be used to determine the average
       junction point's bottom elevation; see Callaway et al.
       (1969)  for one method; and

     • data (such as from the U. S. Corps of Engineers)  avail-
       able on average water depth versus river mile (the area
       under this curve can be integrated and divided by the
       channel  length to determine the average water depth
       for the junction).

The cartesian coordinate system used to define the (X,Y)  values
must be a right-hand coordinate system, i.e., the positive Y
axis must point north.

Channel Data.   Figure 5 is a worksheet which can be used to
gather the data necessary to describe the channels.  As indicated
by the channel worksheet and described below, hydraulic data must
be gathered for:

     1)  channel length,
                                11

-------
































































,f\
E
LU
ij: tt
i- i-
ij. I J |
°a:
LU •>-••
Z IX
Z UJ
O &]
in
I1--
i
'J3




in
i

in





in ~
in
i
'£!
M-







in ~
i
M






in
M
1
'-D


Ij'l
z
r>
o
o ,
in
•H
^
•H









•H
1






in
i
r-l







^""
tfl 4.) O
•i-l -H Ol
4J O CO

d r-l 0
M £~

60 4-1
d c
••-( 0)
(3 -i-l
C o
2 4^
4-1
0)
O
O

^^
(1) Q
as a)
0) -H JJ
> (A ft
 4-1
o
CO



d -o --I
odd)
•H W g
4— t (13
O ^t W)
d a) ,d
3 > U
^ O
O
4-1
ta

^-i
(U t-i
d 0)
d JZ
ca g

u z




1








































































~








































































~








































































~








































































1

















































































































































*








































































~








































































~

















































































































































"•


































_





































—

















































































































































~

















































































































































~








































































~












































_



























~





















































































































"


























_
—








































































n












































~








































































	
^




































































































— (








































































~


































~





































~"












































~



























~i


































"








,
"1




























i

































_





































-i


































_





































—


































_








^




























""
















~

















~





































~







~

















_


















_
^



























-







_

















_








_









~





















































—


















_


































•
i — \
Q)
C
£
£
U

CO
"g
Q)
H
0
5-1


d)
tr~]
-P
(U
,_|
rn
u
CD
Ti
o
-p

(0
flj
Ti

4J
r^
C
-H


H1
•H
ni
J±
5
fd
tT1

t_ .
o

-p
OJ
Q)
rC
CO
X
i

t
in

d)
LJ
M
tr>
•H
Cn






12

-------
     2)  channel width,

     3)  average elevation of the channel bottom,

     4)  Manning coefficient for the channel, and

     5)  initial velocity in the channel.

The length of a channel is simply the distance in river meters
between the two junction points which lie at either end of the
channel (see Figure 3).

The channel width is the average surface width of a river or trib-
utary channel or the distance between centroids of adjacent areas
for an estuary channel (see Figure 3).

The average elevation of the channel bottom can be estimated as
the average of the bottom elevations of the junctions at the ends
of the channel.

If actual measurements are not available, the Manning friction
coefficient for the channel can be estimated from Table 1 below.


   Table 1.  A Tabulation  of  Representative  Values  of  the Manning
            Friction  Coefficient  for Various Types of River
            Channels  (Henderson  1966)

       Natural  River  Channels

       Clean and  straight                      0.025-0.030

       Winding, with  pools and  shoals          0.033-0.040

       Very weedy, winding,  and overgrown      0.075-0.150


The initial velocity  must be supplied only  for channels where  a
stability  problem might exist.  Flow and velocity  in  the channels
are positive when the flow in the channel is from  a  low junction
number to  a high  junction number.   In an estuary or  large  river
where  the  channels are more  likely  to be stable, 0 can be  input
for the initial velocity.

Controlled Nodes  and  Upstream Boundary  Conditions

     The solution of  the  hydraulic  problem  requires  two driving
functions:

       • a  time  varying function to  control  the head  or outflow
        for the downstream end point junctions (controlled
        nodes), and
                                13

-------
      • an upstream constant or time varying flow input for the
        upstream end point functions.

For the sample river system in Figure 3,  constant or time vary-
ing inflows would be specified for upstream junctions 14 and 16
and a stage versus time history would be  supplied for the down-
stream controlled node 1.

Constant inflows to upstream end point junctions are simply
specified as inflows on the junction data sheets (see Figure 4).
Time varying upstream inputs are handled  as indicated below.

Controlled Nodes.  Controlled nodes, which are required at
every downstream boundary in the river system, specify the
boundary conditions. When simulating an entire river basin it
is likely that points of discontinuity such as dams, waterfalls
and locks will occur in the hydraulic system.  These are not
downstream end points but they must be controlled as if they
were.  The original structure of the SWMM code would have
required simulation of each portion of the river basin lying
between two discontinuities as a separate problem.   The modified
code used here nodalizes the entire river basin to include these
discontinuities and locates a controlled  junction at each point
where flow or head is to be specified.  An associated controlled
channel must connect this controlled junction with the next
downstream junction.

Use of the controlled nodes and channels  must conform to the
following rules:

     • Controlled junctions must be numbered first; for instance,
       if there are N controlled junctions in the system they
       must be numbered as junctions 1 through N.

     • Each controlled junction (except a tidally influenced
       one) must have only downstream flow.

     • Each controlled junction must have only one controlled
       channel connecting it downstream to another junction
       (or seaward, with no junction, in  the case of a tidally
       influenced junction).  The controlled channel must be
       assigned the same number as the controlled junction
       with which it is associated.

     • No two controlled nodes can be directly connected by a
       channel.

Except for these restrictions, numbering  of nodes and channels
can be carried out in any order.

Six types of controlled nodes are allowed.  They are:
                               14

-------
     1) a weir type, in which the flow over the weir and out of
        the controlled node is determined by the formula


             Q = A1(H-A2)A3                                   (5)

     where
                        3
             Q = flow, m /sec

             H = water surface elevation upstream of weir, m

            A, = weir coefficient

            A? = elevation of weir, m

            A^ = weir exponent

     2) a tidally controlled node at which the stage versus time
        history is specified;

     3) a Q versus H dam, where outflow is controlled as a
        function of the dam upstream water surface elevations
        [the user inputs an array of (H,Q) points which are fit
        by polynomial regression to form a function to predict
        Q for any value of H];

     4) a dam at which head and outflow are both known functions
        of time [the user supplies an array of (t,Q) points and
        an array of (t,H) points; these arrays are fit by poly-
        nomial regression and two time functions are formed, one
        to predict Q as a function of time and one to predict H
        as a function of time];

     5) a dam at which head is a known function of time [the out-
        flow from the dam is determined via a mass balance; an
        array of (t,H) points is supplied by the user and a poly-
        nomial function is fit to these data points]; and

     6) a dam at which outflow is a known function of time and
        head must be determined from a mass balance [an array of
        (t,Q)  points is supplied and a polynomial fit of the data
        is performed].

Time Varying Inflows or Upstream Hyraulic Inputs from Discharge
Hydrographs.  The user can specify time varying inflows to any
junction in the system by indicating the number of time varying
inputs and an array of junction numbers where these inputs are
to be added.  In addition, the user must supply an array of
(Q,t) points for each input where Q is the discharge and t is
time.  These arrays are then fit via polynomial regression
and functions are formed so that the inflow or outflow can be


                                15

-------
predicted for any time.

Evaporation and Wind Stress.  If in the river basin being simu-
lated evaporation or wind can significantly affect flow patterns
or water quality, the gross effects of these factors can be
accounted for.  The user can supply an evaporation rate in
(inches/month) and the average wind speed and direction for the
entire basin.

Tributary Channels.  The original SWMM hydraulic code was modi-
fied to allow the marking of "small tributary channels" which
became necessary at every junction between a large river and a
small tributary  (Baca et al., 1973a,b).  The original code cal-
culates the hydraulic radius of a channel by averaging the char-
acteristics of the nodes at the ends of the channel.  In a
single river or an embayment all of the channels have similar
characteristics and this is a valid estimation.  However, at the
junction between a large river and a small side tributary the
characteristics of the small tributary channel are grossly over-
estimated by averaging the properties of the nodes at the chan-
nel ends.  The properties of the channel are most like those of
the first upstream node in the tributary (except when backflow
to the tributary is allowed).  The changes in the hydraulic code
allow the user to mark the small tributary channels and asso-
ciate with each of these channels the characteristics of the
first upstream node in the small tributary.  The revised code
then simply calculates the channel properties for the small
tributary channel on the basis of the properties of the marked
upstream node.  If there is backflow to the tributary, channel
properties are calculated in the normal manner.

Hydraulic Input Data Deck Preparation

After the river-estuary system has been nodalized as described
above and the data sheets for the junctions and channels have
been prepared, the input data deck is prepared.  As mentioned
above and in the following section, the hydraulic code consists
of two separate executable programs, an input code  (IMAINT and
associated subroutines) and a calculation code (HMAINT and asso-
ciated subroutines).  Table 2 and Figure 6 indicate the input
data format and the relative order of the input card deck
required for running IMAINT, the input code.  Modifications in
Table 2 from the 1973 version of EXPLORE-I include a change from
English to metric units for all variables, a maximum value for
the number of data points used in defining the time varying
function (see data group H9) , and an additional variable,
HYDEND, in the hydrograph input requirements  (see data group
H10).  Input variables in metric units are converted to English
units within the program.  An additional input modification
noted in the text includes the requirement of assigning the same
number to a controlled node and to its associated controlled
channel.

                                16

-------





cu
rr-4
'U
0
U
4J
3
CU
c
H
u
•rH
H
d
tO
rH
T3
s^
K^l
ffi
H
1
w
DM
o
h5
CL
HH
X
w
rH
O
H |

d Format
rH
rd
U
to
•p
frt
to
Q


CN
Q)
rH
ft
10
EH





4-)
rH 0>
3 3
(0 rH
4H tO
s>
0)
!§
I2











G
o
•H
Descript


m


rH
Q
U



-p
01
p
fa
Qi
V-i O
(0 >d
O 0

§ §

-"^ O
<; LO rf n
3 rH ffi |
P, j p \.£:
3 rH M rj_








rH1 CN

^ ^
g I
rH rH
0 0
<4H HH
CD (U
rH rH
4J -P
•H -H
EH EH




O O
V£> >-D
1 1
rH rH





"3! "21
^ $
rH rH

§

Q) (DO)
6 G G
G C G

y 8 r
1 § g
s a s



8
5 y
^ rHg
0 g CL,
& ^c
>i Q ^ f4
(b rH (X-H
"ia o (!)
>1 -p (1)
rH O 0} rH
(0 ,Q
TJ t3 >i flj -H
>H -H ns S in
(D -P Ti H -H
D -P >
4-) .- ) -H
-<3 3 ^ i^'0
H H ^ -^^
co) \ rg q
ox; SH p fl)
o -P £ G1 P>
QJ
u m TJ M-I IM
•H o (D o O qj
3 rH Oj rH -g
K S cn 2 h-i ~-^
-


LO
0 rH
LO rH |
1 1 rH
rH l£> rH




O
•
LO
LO fa
M n

3 17

1


El
Q




T3
>.; *--^
tn o'
;^B
5-3
tn
i (l)
Q) rH
E Xj
*
•t-t -rH
r^TJ
2^
"1?
^ 0)
<4H
0^
bif
.§1



o
CN
|
vo
rH





><
LO



CD 0) Q
G S G
G c G


PJ Q a
g 2 H
P P Q
tq S S:



O
f^l
8
r<
r-1
in
tn
0)

&
2 ^
-P
G a)
O w
^ ?
I" 8 -8
•5 w ,9
"> u
$ S ^
n3 ^ S
^ 1? -2
r: -H -p
-H1 8 8
-P rH rH
2 5 ^
M si IS



O LO O
ro ro ^
1 1 1
^£> rH V£)
CN CO CO




0
•
LO
fa
ft



G

8
^



rH 0)
-H 3
*fr
3^
&i
^^
0
rH
rC5 rH
O -H
-P t^
•§8.
ftss
a>
M >i
(U -P
•i^
G -P
I>i T5
Jo c
tj ro
rH 4J
rrt W
TJ rd
-H -P
EH 01



LO
•=r
i
rH
•^r





LO
H
•^r




-S
lu
»
1
£
•H
£
U)
|
-n
MH
0
rH
3



O
LO
1
IX)
^r










1


1






tn
C
Q
•H
-P
U
•n
'd

i
>>O
LO










-------
0)
c
0
o
CO
rH

                           •E
                   MH


                   9
      1
               0)
S -P    fi

   83
   n
-rj 
-------
-p
li CD ' G'
$ 3 i!
M -P U)
s a J
-P -P M
rr H
(0 ,C y
PQ ,c -M ro
S m ^
K IH O XJ
^1 O T-l
H Jj
QJ J-j 0} 4-J
rO CD rO
rH 1 13
rH O
CD flj -H Q)
0) ^ O -P
1— I O I'D -H


O
1/1 rH
I I




H
CN


s
•H
•P f— |
1, § ^7
1 " ^
S| GO
§ O -H
" *Cl *H 4^
O »5 -PL)
LW g > §
"^ ^^ QJ *n
M , — |
R5 yj M d) m
'p Q/ i o
y rQ cu
,g C LH SH
-P -H Q S 0)
0* 1 "u a! *§

1^ 1 1 I

in
m CN
IT) rH |
1 1 VD
rH V£> rH


0 O
O O
in rH rH
H fe fo


m
ffi
19

§
c
rH
pLj


r^
s
a
u
0)
w
n
g
'
G
0
• H
P
0
C
3
•n
(1)
rC
+J
0
+J

3

G
•H

Se
0
rH
4H
4J
G
IT)
P
M
G
0
CJ

in
co
1
vo
CN


O
0
a




§
a
CN
fj_|
Qi
(1
r^
1

^^
O
W
\
ro
S
c
O
•H
4J
O
c
3
•n
CD
-P

M-J
o
p
3
O

u
O
rH
M-l
-p
d
p
M
8

tn
^j*
i
ro


o
o





§
G

FH
Q
I]
^
I









£
•H
C
0
•H
-P
fl5
j>
CD
rH
CD

g
0
P
P
C
0
P
U
C
3

in
in
I
rr


0
o
El


























G
m
rH
•Q

ui
1
rH
O
O
cu
>
rtf
CD

0

1
in




X
in



CT-.
(Tl
(Tl
CT\
CTi
•H
LO

-------
-p
'd 8
MH To
S>
0)
rH
•Q 91
(O E
•rH (D
13 a
>




















s
£
-H
b
CO
s
1
5
rH
8
c
•rH 4J
C S
o g
3 S
CN
(U
H T3 8^
(Tj 3 H
EH CJ (3


S i
a a

3

3T
g

o
o
vo

II

A i
^ §
0) X 0)
d c
^ S c
,O *•" ea
iW • ,C
Tj O
Q< ffl
? -P MH
O (0 O
§> "3 -0
E C

S-j CO
Tj dJ
O D r-j fi
g m o
m .5 42
•H a] I* 4J
6 -S B *
rH Pi
-U 0) rH O
ffj C 0) -H
Op 2 g w
pt ra 2 O
-3 J
in m
rH m
i i
rH VO
rH (N

O
o
1 — 1
CM
in







CD QJ
Q o


p
E
H 9


g

g
o
JJ
Q
^
rH
o;
C
c
(0
u

g 0

c
H 0
Q) -H
C 4J
g 5
,c a)
0 rH
Q)
O 0)
d
A «J
T) 0)
•rH ^
m m
^r in
i i
ro ^








20

CO
rH
O 0
6 d



pr.
U rf


rH
0)

fH
5
U
0)
r|
J-)

^_j
0 —
4H U
-P cn
(U j3

o
•H >,
tl i I I
MH -H
0) U
O 0
O H
Q)
W >
tn H

•rl -H
C -P
C -H
g H
in in

i i
vo vo
in vo











g
g






CTi
CTi
O^
CTi

5
d
§

*.




rH
C
c
(0
f7
O
(Jl
•p
G
4J
S


m
rH



in
H



00
W

-------
 ITS
m
•8
I2

   rH
   8
   fi
                                                         1
                                                         o
                                                         0)
                                                        CN
                                            21
nJ
en
S3
                                                                  CM
          rH rH
       00
           C
           0
          •H
          -P
       •P  it!
       C  >
       Q)  0)
       •H iH -P
       0  CU  C
       •H     0)
       M-l -P  C
       MH  to  0
       0)  
-------
     CD

    I
                                      VD
                                              S
                                                                                                                  ft
 CD

 C
•H
4->

 O
 O
CN

£  3
                                      o
                                                       22

-------
 QJ

 C
•H
4J

 O
 U
CM
 
                                                               23
                                                                          i
                                                                          0)
                                                                          SH
                                                                             CJ
                                                                         TS
                                                                          "3
                                                                          CD
                                                                         4J  tn
                                                                         -9
                                                                         c«  O
                                                                         T!  03
                                                                         (3 -H
                                                                          W
                                                                         4H

                                                                         <4H
                                                                         o

                                                                         M
                                                                         
 C ^
-H  ||

 n >i

X  O
   4-1

    Q)
                                                                        a
                                                                                      0!
                                                                                      Q

                                                                                      -P

                                                                                      U)
                                                                                             g
                                                                                             (O
                                                                                            'd
                                                                                             ro
                                                                                      O     Q)
                                                                                            x
w
>
                                                                                             CO
                                                                                             0)
                                                                                             U
                                                                                                    w
 W
 0)
 d
rH
 (C
>
                                                                                                   0
                                                                                                  3
                             in

                              II

                              CD
                                                                                                                w
                                                                                                                4J
                                                                                                                0)
                                    tn
                                    cu
                                                                                                                >
                                                                                                                              in
                                                                                                                       CD
                                -P

                                w
5
MH

 O
 u)
 0>
                                   i
                                   w
                                                                                                                             u

-------
       (0  r-1
      M-l  flj
       0)
73
 CO

 C
•H
-P
 C
 O
 U
CM
          K
          fi
 CO
"""*     flj

I     a
                M-l

                -P  'D  rH  CQ
                 0)  M-l 72  O

                J5$8J
                •P  -P  CO   .
                 E -H
                   M-l  -•«
                 W      CO  CO
                73  0)
                           s
                O   •
MH jS
 O  »3 -P.
                 0)
                           H
                        0)
                 O  M-l  M
                    •H  O   •
                -P  y MH  o
                 3  ffl     -P
                 "5
                    -P -P
                          Tj 0
                           C -
                                             CO
                                                 CO
                                          O
                                                         Q
                                                         PS
                                                         rt3
                                                         CJ

                                                         W
                                                         o
                                                         CO
                                                          I
                                                                      73
                                                                       CO
                                                                       CO  g
                                                                       3  3 4J
                                                                          g'H
                                                                      4-1  -rH MH
                                                                       c  c
                                                                      •rH  -H 0
                                                                       O  g 4-1
                                                                       a
                                                                          a^o
                                                                       m c
                                                                       o
                                                                 co  tr> 4-i
                                                                rC  C
                                                                4J -rH TD
                                                                    > CO
                                                                 >1--H CO
                                                                X!  cn 3

                                                                73     CO
                                                                 CO  i-J X3
                                                                •O  CO
                                                                 u  Cn O
                                                                 (0  0) 4->
                                                                   VD
                                                                    I
                                                                   CN

                                                                    C

                                                                    3
                                                                   rH
                                                                    O
                                                                    o
                                                                   u
                                                                    CO
                                                                    o
                                                                    fO
                                                                   i-H
                                                                       (0  >  3
                                                                       T3 -rH
                                                                           cn Co
                                                                       MH    X!
                                                                       O
                                                                           u  O
                                                                           CO 4J
                                                                       i-i  O1
                                                                       CO  CO rH
                                                                       cn4->  to
                                                                       CO  C -rH
                                                                       4-> M  g
                                                                       c     o
                                                                       M     C

                                                                           CO rH
                                                                       i-i XI  O
                                                                       co  g  ex
                                                                       X!  3
                                                                       g  C MH
                                                                       3^0
                                                                       c
                                                                       -"  II  VH
                                                                              CO
                                                                       II Z t3
                                                                          M  i-l
                                                                       s s  o
 Q)  C rH
 iJ  M (0
 CO     -H

tl  !M O
    CU C
 W  X! >i

    D O
 VJ  C CX
 0)  >--
X!     MH
 g  II  O
 3
 C  X u
    < CO
 CO  S 73
•rH     )_|
-C   - 0
E-<  -—
    E g
    (D 3
  •  i-i g
 (0  Cn-rH
-POX
 (0  i-i (fl
73  CXg
X!  CO    73
    CO fO  CO

 QJ rH     fO
73  (0 II   i-i
 i-i  ^     (0
 fO     >H  (X
 cn cu     co
 co  g  - co
 i-l 'rH *—v
 CO -P CO   «.
       (0  U
           co
           CO
 CO
•H 4J
    CO
 i-l -rH >)
 0) rH X!  C
X!        -rH
 g  (C 'T3
 3 — CO  CO
 C     4->  CO
    II  fO -P
 CO     i-i  03
-H X (0  -J
x:     cx
E-i ^ CO  S
    E co  O
    05    rH
  .U  *.MH
 rtj  CT> CO
                                                                              MH g
                                                                              o g
                                                                                 o\
                                                                                 Oro
                                                                                     g
    O i-l M-l  g
    l-i 3  O  g
    cx o     o
       .C -P  O
    CO     CO
    _C C -H  >H
    4-1 -rH rH  XJ
                                                                C
                                                                O
                                                ft    
                                                                o
                                                                         24

-------
                                                     H
                                                      I
                                                     w

                                                     o
                                                     X
                                                     w

                                                     s
                                                     ffl
                                                      0)


                                                      tn
                                                     •H
                                                     4-1

                                                      O
                                                      Q)
                                                      o
 C
 O
•H
4-»
 O
 3
 S-l
4-)
 cn
 C
                                                         0)
                                                     O
                                                     CJ  O
                                                     U 4-)
                                                     (U  3

                                                         c
                                                     (C -H
                                                     4-1
                                                     (0  U
                                                     T3 -H
                                                        rH
                                                     0)  ^i
                                                     i—I  <$
                                                     pi  j_|
                                                     £ 'TIS
                                                     (U
                                                     tn
                                                    •H
                                                    fe
25

-------
Table 3 and Figure 7 provide input specifications for the
additional cards required for running and receiving output
from the calculation code.  No output is printed or plotted
while the hydraulic code is running.  As the program is run, a
scratch file of the time history of the flows, velocities,
heads, inflow, outflow, and volumes for all the junctions and
channels is written to tape.  These values are output once, as
average values, for each quality time step.  This scratch file
begins with tidal day NQSWRT and is written through tidal day
NTCYC.  Since a hydraulic model of a river basin can produce
voluminous output, the code has been set up to allow selection
of junctions and channels in user-grouped and labeled sets of
20 or less for print and/or lineprinter plot output.  Any
particular or conti uous set of 7 or less simulated tidal days
starting with tidal day NQSWRT can be specified.  Limiting the
output to groups of 20 or fewer junctions and channels will
prevent production of unwanted volumes of printout.  However,
since at times the user may want printout for more than 20
junctions and channels, as many groups of 20 or less as are
needed may be requested.  An advantage of this method is that
the output can be ordered into reaches or tributaries.

Data card group PI allows the user to request the punching of
a restart hydraulic deck.  The restart deck includes the H group
of data cards, with revised values for the initial water surface
elevations of the junctions and for the initial channel
velocities.

Figures 8 and 9 provide an  example  application  of  the hydraulic
component of EXPLORE-I to Four Mile and Wolf Creeks  in Iowa.
For this case, EXPLORE-I was run by a UNIVAC 1100  computer.
Figure 8 is a stick diagram of the  physical layout oE the  sys-
tem.  Figure 9 is an annotated listing of  the  input  data used
in this application and described  in Tables 2  and  3.  As can be
seen  from Figures 8 and 9,  junction 1 and  associated channel 1
are the downstream controls, with  the control  being  a dam  with
a constant head of 1.0 m  (option 5).  Junctions 2  and 26 have
constant inflows; a hydrograph input exists at  junction 14.
The simulation runs for 2 days  (NTCYC = 2).  Printed output will
be obtainable for each hour of the  two days output values  and
plots for all 57  junctions  and channels.  The  accuracy of  the
input data for the initial  channel  velocities  indicates that the
listed input  is the result  of a restart deck.

PROGRAMMING INFORMATION

This  section describes the  two separate executable programs -
the input code and the calculation  code - which constitute the
hydraulic module  of EXPLORE-I.  Figure 10  shows the  relationship
of these programs, which must be executed  in sequence.  A
                                26

-------
iJ m
3 S
SH
*£{ £
S>
3 5
1 -88
s M!
0 |
-p
o
rH
04
•O
C
1
O K
I -
M
+> e m
GO 2
O *-i E
r ) iu 9
u w ^
8
•
m
CU
i — i
XI
rt
^ .p

c
g

it
o u


m
C
8

1
Q

•H ^
til
I-P
S -p
(0
.\
speated for each group of 20 or :
be printed and/or plotted.
Descriptive title for the grouj
channel data to be printed and/
\tf
»a
0)
9 n
(a rH

00 C
C^ C o
fo 00
' -6 rH
(N
PJ 'd
to i
81
3 2
&-H
T"} ^3
tj c" ^t
tj -n o
oa
O]
a.

0) 0)
G G
O O
G G

cl rf
H — H
J
s_.
t>l
Q «
^H, 1 §
"> v| q g
^ '" r
h a»s,
tP H
•H v i a 
-------
-p
i*
s^
s
•Si
•3!
1














"IT
_j_;
a
•r~
li
a

c
g
•H
8
T?
0>
r-(
r->
C
•H -P
-P P?
" VI
o 5
O fa
•
ro
H a-
•s "§ p
^ ,"< ,y
EH O CJ
S G
o §
G G
rH OJ ro CM
§ 111 . . .1
1
3
•H
M '"'
ao
(N
•£ vl
u ^_-
-H
•i*a
•g aj
M co
O j "nj^
B'C!
G CO
(D CO
rG 
-------
oe
<
                                                        \
o
Q£
<
O

§
               oo
               CU
(/>
o.
8
oe
o
I                 it
                 o
                            a
                                              o
                                                            a:
                                                            o
                                                                o
                                                                O£.
                                                                o
                                                                Of.

                                                                o
                                                                z
                                                                cc
                                                                o
                                                                z

                                                                o

                                                                o
                                                                o
                                                                                                                   H
                                                                                                                    I
                                                                                                                   W
                                                                                                                   «
                                                                                                                   O
                                                                                                                   i-q
                                                                                                                   Cu
                                                                                                                   X
                                                                                                                   w
                                                                                                                  4J

                                                                                                                   tn
                                                                                                                   C
                                                                                                                  •H
                                                                                                                  •P
                                                                                                                   3
                                                                                                                   O
                                                                                                                   0)
                                                                                                                   X
                                                                                                                   cu

                                                                                                                   S-l
                                                                                                                   o
                                                                                                                   o
                                                                                                                   -H   •
                                                                                                                   -P  0)
                                                                                                                   u 
-------
3E
O
_j
LL.
Z O i— C^J f>i

z c\j ro ^- LO vD p""- CO CTt C3 ^~ cvj ro ^
t—
t/i
"Z.
o
0
1
1


1
I
                                           <: o
                                           i—	i
                                           on LL.
30

-------
3


£
g
           Oi

           W
K
3
a
(X
<<
u

z,
o
t-t
&
u
                                                                     -p  t-i

                                                                      3   O
                                                                      a  o
                                                                     u  >-i
                                                                         o
                                                                                                                                                  O
                                                                                                                                                  o

                                                                                                                                                  u
FILE OP SCRflTCH TflPE

X
o

i3T
&
O
O U't
'E iJZ
O
O
iD H-
I-H
•H

•j» j__
in i— i
_ Z
:?5
iK Z
a
(3£ *~*
u m
i/i in

•z.
0
LU UJ
a. IK
i— P
o
LULU
1— IB
LU _J
iK _l
I-H
iK 3
O
LU
LU O
5 '-j
o >
i—
|V I-H
LU _]
o;
O LU
LU t-
1-1 a:
u. o
i—
Z 1-
LU D
z a.
;X t

It O
U)
CL 0
a: _i
^t
O (X
1— IK
Ci
OJ y-
X
h-
I-H LU
Z X
_) 1—
Z "^
a
I-H
LTl
•X


11:
IK LU
Ixj I —
O Z
!X 1-1
LU IK
ii: Q_
O LU
Ct Z
'X 1-1
O _J

LU LU
X X
V- H-

Ij'l U-|

in w

i- i-
r-H I-H
zz
ZD r)



y
iX
IK
0
O
CL

1—
~~~i
CL
Z
I-H

LU
X
1—
LU
1
I-H
£L
O
o
                                                 LU
                                                 C.
                                                 O
                                                 O


                                                 H-


                                                 0-
                                                 O
                                                 iX
                                                 LU
                                                 x
                                                 u_
                                                 a


                                                 o
                                                 LU
                                                 ct;
                                                 CE
                                                 'X
                                                 a:
                                                 IK
                                                 o
                                                                                                         cooooooooooo
                                                                                                         oooooooooooo
                                                                                              oooooooooooo
                                                                                              oooooaoooooo
                                                                                                                                                  o
                                                                                                                                                 U-l
                                                                                                                                       u
                                                                                                                                       
0-
I-H

LU
X
t-

LU
H"
n
o
LU
X
LU


s: INJ
LJ
1— •
i/; o
>-
to

£ SS^ff^oS?'?*^^
LJJ GOVi4riir\tr>oo\o^^C^cro
o *-< o^fNi^r^c7^r\ju^r~Of\j»r^


— J Q. ^ rsj
»— « Uj (\i
(rm{M*intf\rHiMC*^
fc
                                                                         ts
                                                                                         or--
                                                                                         oo-
        O

-------
                                                                                                                                               P
                                                                                                                                               Pi
                                                                                                                                               <
                                                                                                                                               U

                                                                                                                                               J
                                                                                                                                               K
                                                                                                                                               £
                                                                                                                                               !a
                                                                                                                                               <:
                                                                                                                                               ffi
                                                                                                                                               u
                                                                                                                                               o to d
                                                                                                                                               O CO ITl
                                                                                                                                               o o o
                                                                                                                                               O -d •»
                                                                                                                                               o o  o
                                                                                                                                               o o  o
                                                                                                                                               •a- r-  r-
                                                                                                                                               o o  o
                                                                                                                                               ooo
                                                                                                                                               o eo i-*
                                                                                                                                               O>OO
ooooooooooooooooooooooooooooooooocoooocoooocc     ooo
ooooooooooooooooooooooooooooooooooooooooooo oo     ooo
 ..................................................     r-oocvi
                                                                                                                                                tf\ O rj
                                                                                                                                                 •  •  •
                                                                                                                                                o r- r-
                                                                                                                                                (f-



OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO CO     OOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO CO     OOO
 .......  .................   ..................  ..  .....     ooo
                                        ir»                                                                                                      o r- f*-
                                                                                                                                                 •  •  •
                                                                                                                                                Tn>'^u^^oir>'^or^roo*r^^                                             f-^^(\j^rO(^r^u^t^»rnrHr^mo^irr\ico^Oor>JCOir\rHr^o^^^Ocvtt                                               C
                                                                                                                                                Ocsjro

                                                                                                                                                                  CD
                                                                                   32

-------
                                                                                                                                                                                           I




OO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO  OOO OOOOOOOOOO
oooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooo  ooooo ooooooooooooooooooooooo  ooooooooooooo






oooooooooooooooooo ooooooooooooooooooooooo  ooooooooooooo









OO OOOOOOOOOOO  OOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO









oooooooc. oooooooooo ooooooooooooooooooooooo  ooooooooooooo
OOOOOOOC'OOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
oooooooooooooooooooooooooooooooooooooooooooooooooooooo



O O O O O  O O O O O O  O O  O O  O O  O O  O O  O *H  r~< •-* <—* r-4  «—1 ^H  t-4 rH  rH ^l  r-4 ^*  ft rH  ^-l ^H  r-4 ^H  r—t ^H t-H ^^ rH t—4  r-t .-H r-H r-H «—*  ^H r-t
OOCOOOCOCO«DCDCDajCDOOflO€OCOCX)OOCDCXJeDOOCOOO
-------
 o
 c

t!
 t
OK
                                                                                            oo
                                                                                            O4
                                                                                             I
                                                                                            fNl
                                                                                            cu
                                                                                             o

                                                                                             -P
                                                                                             (0
                                                                                             0)
                                                                                             a*
                                                                                             Q)

sO
It
X
<
r
•>
O vO
•J* II
f-o z
_l •-•
U- 2T
z •
*— o

Q II
uj z:

Irt r-4
r-tt o
lOuj cc
zt- <
O< U
\J^f.
rOQ
rrtO
7««8i»9.flOi»lli»12»»13«»14»»15«tl6»tl7«tl8«»
28, 20, 78 6, 16. Oil, 1.306, 1 .084 , 1 . 01 3 , . 948 , . 886,
6 34, t *> 93 ..5 V»»0. »HYDEND=6fl400.
<**»#*»***»#*»»**»»**»««*****•*»***#»**»***«******-*****»#
•> rv • *
•• . •* *
•O f- (C *
*> IM r*~ ifc
• • <£> *
.T —I • *
*• -3 *• *
•* O IT *
•3" • 0V *
•• -i r- *
co •• » ^
*• *C vO *

IM • f*- *
» co » *
-. • » *
i-< v£> O *
* n"i rv #
» - w *
*
O
tH
UJ
iL^
O
,^'l
o
1 — t
1-
_l
C.'
_J
ir
ij
_i
iil
^
j-
r. "j-
uj:
fli UJ
l" 3:
!"• r -
ft'.
t fe
Ui CJ
1— UJ
U. £>
d
U i1
_J -"
cr: L,.
y
uj >r
X Li£
i-- i—
a;
Lu O
-l U.
»"H
O-
o
O




r"Q
?.<
y
c^>
?H
^J.j ^^
-^ o
3 !N
fX,-W
E S
0 0
Cj Co

'I'.
r^
LT.
'T'
'L
a.
jT
\--
a-
	 i
o
j
01
o
LU
h~

UJ
H-
_^
0
UJ
y.
UJ




y
?H
«
o
Q) \--i
-P Q
3 ?^
fX-W
E S
Q 0
Cj O

o o
fM (M
a o
f-4 <-H
00 00
t-l r-1
r*- r^
f-4 f-H

00 CO
l^
1C
UJ
cc i~- r~
u
U-
_J vC vO
O
3t

D r^- in in
Z
«t
^ •* -3-
UJ
UJ
Ct
U m ro
UJ f-l O O
_l /
UJ
UJ
or
u
LU
_J
t_i
r

a:
0
L'_

0 O

r- i^
oo ci
>o -c
t*i m
in in
m m
-a- .3-
ci m
r^ m
rn m
IM IM
(^i m
f-H f-4
fi m
O 0
m m
0" o
IM IM
00 00
CM IM
r- r-
rv IM
xC vO
IM IM

r- m in
CVJ M

•* -3-
IM IM


CO *;
UJ
LL,
ce
u
UJ '
_i

£

a:
o
O
u.

r-- t--
m in
vC >O
in in
in in
in in
 vO
J- -3-

in iTi ir
•* •* ?2
u..
-3- J- U-
-1 3- o

o
on co ?
J- 

Id
0)
f— t
P
C
-H
1 1
•P
C
O
o
•s.— '



•
iTi
QJ
S-i
.-3
tn
•H
p-l
                                                              34
 BE
                  ffi

-------
           r
                             EXECUTIVE PROGRAM
                                 "IMAINT"
                           MAKE UNIT ASSIGNMENTS
                           AND "CALL INH" THE MA IN
                             INPUT SUBROUTINE
                                                   CARD READER
                                                     (UNIT 5)
                                                    HYDRAULIC
                                                    INPUT CARDS
                        MAIN HYDRAULIC INPUT SUBROUTINE
                                   "INH"
                     READ IN INPUT DATA DECK AND INTERPRET
                     CARDS AND CALL THE REGRESSION
                     SUBROUTINE AND TIDAL COEFFICIENT
                     SUBROUTINE AS REQUIRED PRODUCE/
                     LJNEPRINTER OUTPUT AND OUTPUT TAPE
               SUBROUTINE "REGRES"
                READ IN NAMELIST
                CARDS SCRATCHFILE
                 1 AND PERFORM
               REGRESSION ANALYSIS
                        SUBROUTINE'TIDCF"
                         READ IN NAMELIST
                       CARDS FROM SCRATCH
                         Fl LEI AND FIT THE
                      USER SIIPPIIEDTIDF DATA
                  FUNCTION"REGR"
                 PERFORM AN N th
                 ORDER POLYNOMAL
                   REGRESSION
                       SUBROUTINE "P1CTUR"
                        PROGRAM TO MAKE
                        LINEPRINTER PLOTS
                        OF THE REG RES SI ON
                             BITS
                 BNW EXPLORE-1
              HYDRAULIC INPUT CODE
                                                                      LINE PRINTER
                                                                       (UNIT 6)
Figure  10,
Relationship  of  the  hydraulic  input,  calculation
and  output  codes.
                                          35

-------
                                 EXECUTIVE PROGRAM
                                     "HMAINT"
                             MAKE T<\PE AND UNIT ASSIGN-
                             MENTS AND "CALL HYDCAL" TO
                             DO THE CALCULATIONS AND THEN
                                J\LLHYDPLT"TODOTHE
                                      PRINTING
  MAIN HYDRAULIC CALCULATION SUBROUTINE
               "HYDCAL"
  READ IN THE NECESSARY INPUT DATA FROM
  UNIT 2 AND THEN PREPARE IT AS AN OUTPUT
  FILE FOR THE HYDRAULIC DATA TO BE SAVED
  FOR THE QUALITY PROGRAM.  PREPARE THE
    SCRATCH FILE ON UNIT I FOR USE BY SUB-
     ROUTINE "PLOT".  DO THE ENTIRE SET OF
  HYDRAULIC CALCULATIONS CALLING "OENFUN"
     AS NEED TO GENERATE THE TIME VARYING
      DATA. PUNCH RESTART DECK  WHEN
               REQUESTED.
       SUBROUTINE
        "GEN FUN"
   GENERATES ALL TIME
   VARYING DATA FOR
   CONTROLLED NODES
 AND FLOW HYDROGRAPH
        INPUT
                  ERROR
                                  CARD READER^
                                    (UNIT 5)
                                 PUNCH-PRINT-
                                 PLOT DATA DECK
                           MESS-
                           AGES
LINEPRINTER
  (UNIT6)
   SUBROUTINE "HYDPLT"
 THIS SUBROUTINE PRODUCES
THE PRINT AND PLOT INFORMATION
   REQUESTED BY THE USER
                                   SUBROUTINE
                                     "FIND"
                                 THIS SUBROUTINE
                               SORTS SCRATCH FILE 1
                               FOR THE DESIRED DATA
    BNW EXPLORE-1
HYDRAULIC CALCULATION
  AND OUTPUT CODE
                              L_.
                                                 SUBROUTINE
                                                  "PICTO"
                                                SAME AS PICTUR
                                                 ESSENTIALLY
                                                          	I
          Figure  10.    (continued).
                           36

-------
listing of the two codes may be found in Appendix A.  The vari-
ables used in the hydraulic program and their definitions are
given in Table 4.

Hydraulic Input Program (IMAINT) Description

The executive program is MAIN  (formerly IMAINT).  This program
serves only to make I/O device assignments and to call the main
input subroutine INK.  Subroutine INK reads in the input data
necessary for the hydraulic calculations.  INH calls subroutine
TIDE  (formerly TIDCF) when a fit of the stage versus time data
is required and subroutine REGRES when it is necessary to fit
time varying data on controlled nodes or flow hydrographs.
Figure 11 shows a flow chart for subroutine INH.

Subroutine REGRES is a standard polynomial regression program
taken from Reference 6.  This program reads in an array of
M ordered data points and does a user-specified set of Nth
order polynomial regressions (1< N < 9).  In each case print
and plot data indicating the quality of the fit are produced.
REGRES calls on functions REGR and SIMUL for the regressions
and on subroutine PICTUR for the line-printer plots.  Details
of this subroutine can be found in Reference 6.

Subroutine TIDE calculates the coefficients of the tidal func-
tion H(t) = Al + A2*SIN(t) + A3*SIN(2t) + A4*SIN(3t) +
A5*COS(t) + A6*COS(2t) + A7*COS(3t) from input values of H and T
by a least squares procedure.  Figure 12 is a flow chart of
TIDE.

Subroutine PICTUR prepares a lineprinter plot of a set of N
data points.  Figure 13 shows a flow chart of PICTUR.  This
subroutine uses subroutine SORT and functions SORDER and Q to
sort the plot points according to descending values of Y.

Hydraulic Calculations Program  (HMAINT) Description

Executive Program MAIN (formerly HMAINT) serves only to make I/O
device assignments and to call the calculation subroutine HYDCAL
and the print-plot program HYDPLT.

Subroutine HYDCAL, the hydraulic calculation program, receives
its input data from tape unit 2 and carries out the hydraulic
computations.  HYDCAL calls subroutine GENFUN as required to
generate all time varying input functions and to solve the
weir formula.  Figure 14 shows a flow diagram of HYDCAL.

Subroutine GENFUN, a flow diagram of which is shown in Figure 15,
is used to solve the weir formula and to generate the functional
values of all input variables which were fit via polynomial
regression.


                                37

-------
Variable
  Name
Table 4.  Variable Definition  for Hydraulic Code


         Location            Description
A(500)


AK(600)


ALPHA(30)

ALEN

ARRAY(33)


AREA


AS(500)

AT(600)


A(3,20,10)



ATEMP(IO)


ASTERK


ATOT


ASTER
Al
A2
A3
A4
A5
A6
A7
            C

            C
Channel cross-section area at
start of time-step  (HYDCAL,INH)

Modified friction factor
(HYDCAL,INH)

Title for printing  (HYDCAL,INH)

Channel length  (INH)

Dummy array used in printing
(HYDCAL,INH)

Computed nodal area to find
initial nodal volume  (HYDCAL)

Node surface area (HYDCAL,INH)

Channel cross-section at midpoint
of time-step (HYDCAL,INH)

Array used to store the regression
coefficients and wier, constants
(HYDCAL,INH)

Variable to pass the regression
constants (INH)

Variable containing asterisk
(HYDCAL,INH)

Total surface area of receiving
water (INH)
Variable containing asterisk

Coefficients of the expression

H(WT) = A + A2*COS(WT)   + A3*COS(?WT)

          + A4*COS(3WT)  + A5*SIN(WT)

          + A6*SIN(2WT)  + A7*SIN(3WT)

          + A8*SIN(4WT)

          for  tidal input
                               38

-------
Table 4.   (continued)
  Variable
    Name


  B(600)

  BLANK

  COEF


  DEL

 (DELH )
 (DELHHJ

  DELMAX


  DELTA



  DELT

  DELTH

  DELTQ


  DELT2

 fDELVll
 <|DELV2f

  DEP(SOO)


  DEPTH
  DIFF


  DT

  DVOL


  EVAP



  EWIND(600)
Location            Description


   C       Channel width  (HYDCAL,INH)

           Variable containing blank  (INK)

           Manning's coefficient for
           channel (INK)

           Temporary variable

           Increment of head of a junction
           for a time-step  (HYDCAL)

           Maximum difference between the
           calculated and stage input

           Maximum allowable difference
           between the calculated and input
           tidal stage

   C       Time-step increment  (HYDCAL,INK)

           Temporary variable  (HYDCAL)

   C       Length of quality time-step
           (usually an hour);  (HYDCAL,INH)

           1/2 time-step increment  (HYDCAL)

           Component of velocity change
           during a time-step  (HYDCAL)

   C       Depth of water of a junction at
           zero datum (HYDCAL,INK)

           Computed depth of node at a
           junction for initial volume
           (HYDCAL)

           Difference between the calculated
           and input tidal stage

           Junction depth (INK)

           Volume change in a time-step
           (HYDCAL)

   C       Evaporation  rate  for whole
           system  converted  from ft/mo
           (HYDCAL,INH)

   C       Drag force due to wind  (HYDCAL,INH)

                39

-------
Table  4.   (continued)

Variable
  Name
Location
FJ1

FJ3

H(500)


HAVE(500)


HBAR(SOO)


HEAD


HN(500)


HOUR

HYDRAD(600'

HT(500)


I'DELT


IDECK
I
II
IHJN
IL
UK
IJN

I FLAG
IPERID

IPOINT(500,6)


IQINT

IT
   C

   C
       Description


Internal variable

Internal variable

Head at junction at beginning
of time-step  (HYDCAL,INH)

Junction average head during a
daily cycle  (HYDCAL)

Junction average head during a
quality cycle  (HYDCAL)

Distance water surface is from
datum plane  (INH)

Junction head at end of  bime-
step (HYDCAL)

Time-hours

Hydraulic radius (INH)

Junction head at end of  1/2
time-step (HYDCAL)

Length of hydraulic cycle
(integration  step)   (.INH)

Switch variable to request
restart deck be punched  (HYDCAL)
            Index numbers

               (HYDCAL,INH)
            Variable to indicate  small
            tributary channel  (INH)

            Length of tidal cycle  (INH)

            Pointer array containing node
            to node connections  (HYDCAL,INH)

            Length of quality cycle  (INH)

            Iteration counter

                  40

-------
Table 4.   (continued)
  Variable
    Name


  ITRIB(50,2)
Location
  J

  JGW(20)


  JSW(20)


  K

  KO


  LEN(600)

  M

  MAX IT


  N

  NC

  NCHAN(500,6)


  NCLOS(600)


  NDRY

  NEXIT


  NH

  NHH

  NHCYC


  NI

  NINT
   C
   C

   C


   C
        Description


Array containing the channel
numbers of the small tributary
channels and also the associaced
junction numbers (HYDCAL,INH)

Index variable (HYDCAL,INH)

Array indicating the type of
controlled node I is (HYDCAL,INH)

Array of junction numbers which have
time varying flow input.  (HYDCAL,INH)

Index variable (HYDCAL,INH)

Switch to cause generation of a full
tide from HHW, LLW, HLW, LHW

Channel length (HYDCAL,INH)

Index variable (HYDCAL,INH)

Maximum number of iterations in
tidal curve fit,  usually 5U

Index variable (HYDCAL,INH)

Number of channels  (HYDCAL,INH)

Channels associated with nodes
(HYDCAL,INH)

If equal to 1 channel dry, otherwise
no effect (INH,HYDCAL)

Number of dry junctions  (HYDCAL)

Set equal to 1 when error condition
exists  (HYDCAL,INH)

Node at channel end (HYUCAL)

Hydraulic cycle counter  (HYDCAL)

Number cf tine-steps per quality
cycle (HYDCAL,INH)

Number of tidal input values

Number of hydraulic c_ c.les per tidal
cycle (1'NrO
                                 41

-------
Table 4.   (continued)
Variable
  Name


NJGW


NJ

NJ2

NJGW1

NJSW



NJUNC(600,2;

NL

NQ

NQCYC


NQSWRT


NT

NTCYC


NTEMP(6)


NTIMS


NTRIB


NTT

NX

N5


N6

N7


N20
Location
   C

   C
   C

   C
        Description


Number of controlled nodes
(HYDCAL,INH)

Number of junctions  (HYDCAL,INH)

Temporary variables

NJGW+1  (HYDCAL)

Number of junctions with time
varying flow hydrograph input
(HYDCAL,INK)

Nodes at channel ends  (HYDCAL,INH)

Node at channel end  (HYDCAL)

Quality cycle  counter  (HYDCAL)

Number of quality cycles per day
(HYDCAL,INH)

Number of daily cycles at which
printing will  start  (HYDCAL,INH)

Daily cycle number  (HYDCAL,INH)

Number of daily cycles to be
simulated  (HYDCAL,INH)

Temporary array of channels entering
a node  (HYDCAL,INH)

Number of times through drying up
connection  (HYDCAL)

Number of small tributary channels
(HYDCAL,INH)

Temporary variables

Temporary variable  (HYDCAL)

Card reader of equivalent
(HYDCAL,INH)

Lineprinter  (HYDCAL,INH)

(Fake printer) scratch file
or permanent file  (INH)

Hydraulic input and  output
file  (HYDCAL", INH)
                                 42

-------
Table 4.   (continued)
Variable
  Name

N22
Location
N24
PERIOD
Q(600)
QAVE (600)
QBAR(600)
QF1
QF2
C
C
C
C
C


QIN(500)         C

QUINBAR(500)     C


QINST(20)         C



QUINT            C


QJ2

QOU(500)         C

QOUBAR(SOO)      C


RK600)           C

RAD


RES



RNT


SURF
        Description


Scratch file  (equal to N20 in
HYDCAL)

Scratch file

Period in hours of daily cycle
(HYDCAL,INK,TIDCF)

Channel flow  (HYDCAL,INK)

Daily cycle average flow (HYDCAL)

Quality cycle average flow
(HYDCAL)

Temporary storage for junction
inflow (INH)

Temporary storage for junction
outflow (INH)

Inflows to junctions (HYDCAL,INH)

Quality cycle average junction
inflow (HYDCAL)

Array for storing the constant
inflow at junctions with flow
hydrograph input (HYDCAL)

Quality time-step interval
(HYDCAL,INH)

Temporary variable  (HYDCAL)

Outflow from  junction (HYDCAL,INH)

Quality cycle average junction
outflow (HYDCAL,INH)

Hydraulic radius (HYDCAL,INH)

Channel depth measured from
datum  (HYDCAL,INH)

Accumulative difference between
the calculated and input tidal
stage

Temporary hydraulic radius at
1/2 time-step  (HYDCAL)

Temporary storage for junction
surface area  (HYDCAL)
                                 43

-------
Table 4.   (continued]
  Variable
    Name


  SUM

  SUMQ


 (sxx(io,io))

 (SXY(IO)   )


  TITLE(33)

  T


  TT(50)



  T2

  TEMP


  TF


  TIME


  TIM2

  TRBDEP(50)



  VEL


  V(600)


  VBAR(600)


  VOL(SOO)

  VOLUME
Location
   C
         Description


Computed tidal stage

Total flow leaving junction
(HYDCAL)

Matrix used for least square
tidal fit
Vector used for least square
tidal fit

Title arrary read from cards

Time counter for whole analysis
(HYDCAL)

Time from start of storm of
input for tidal condition and
from hydrograph file

T + 1/2 At  (HYDCAL)

Simplifying variable used during
solution of velocities  (HYDCAL)

Estimate maximum time-step for
channel (INH)

Time counter for time varying
input

Time + 1/2 At

Small tributary channels mid-
point depth measured from datum
(HYDCAL,INH)

Temporary storage of velocity
(INH)

Channel velocity at start of
time-step  (HYDCAL,INH)

Average velocity during quality
cycle  (HYDCAL)

Nodal volume  (HYDCAL,INH)

Initial nodal volume  (HYDCAL)

      44

-------
Table 4.   (continued)
  Variable
    Name
Location
         Description
  VT(600)


  V2


  W


  WDIR


  WIDTH

  WIND

  X(J)


  XI


  XMK



  XX(10)


  Y(J)


  Yl
   C

   c
Channel velocity at 1/2 time-
step  (HYDCAL)

Velocity during a half hydraulic
time-step  (HYDCAL)

Fundamental frequency of daily
tidal variation "(HYDCAL,INH)

Wind direction  in degrees from
north  (HYDCAL,INK)

Width of channel  (INH)

Wind force  (HYDCAL,INH)

X coordinate of junctions
(HYDCAL,INH)

Temporary storage x coordinate
(INH)

Blank or asterisk depending on
whether estimated maximum time-
step is satisfied  (INH)

Vector used in  least square
tidal fit

Y coordinate of junctions
(HYDCAL,INH)

Temporary storage for y
coordinate  (INH)
                                45

-------
   READ IN THE USERS
   INPUT DATA DECK
    FROM THE CARD
   READER AND STORE
   IT ON SCRATCH FILE
   N24 (UNIT 1) AND
 MAKEALINEPRINTER
 LI STING OF THE CARDS
READ IN CARD GROUP
 H5 THE JUNCTION
 DATA FROM UN I Tl.
  PR INT OUT PAGE
ONE OF THE SUMMARIZED
   DATA TO UN IT 2
                                              READ IN THE
                                               NEXT CARD
                                            IMAGE FROM UNIT 1
                        READ IN
                     CARD GROUP H7
                      THE JUNCTION
                     DATA FROM UN IT 1
   READ IN THE
 NEXT CARD IMAGE
   FROM UNIT 1
                            WAS
                        IT A TRIBUTARY
                           CHANNEL
    CALCULATE THE
  HYDRAULIC RADIUS
AND CROSS-SECTIONAL
AREA OF THE TRIBUTARY
      CHANNEL
                      PRINT OUT PAGE
                   TWO OF THE SUMMARIZED
                     INPUT DATA FOR THE
                     CHANNELS TO UN IT 2
                           I
                          CALCULATE
                        THE HYDRAULIC
                         RADIUS AND
                     CROSS-SECTIONAL AREA
                     OR THE REGULAR CHANNEL
                      PR INT OUT PAGE
                       THREE OF THE
                     SUMMARIZED INPUT
                       DATA FOR THE
                       JUNCTIONS TO
                          UNIT2
               Figure 11.    Flow chart  of  subroutine  INK.
                                          46

-------


DETERMINE THE 1
THE 1th CONTROL
FROM THE JGW
READ IN UNDER
CROUP HJ AND

1 1
•YPEOF
LED NODE
ARRAY
CARD
1 RANCH

h-

SET
l--\

—
PRINT THE HEADER
FOR PAGE « THE
CONTROLLED NODE
DATA SUMMARY
TO UNIT 2


. I 1 1
                JGWIIIJ
               ATI DALLY
             INFLUENCED NODE ,
JGWIM±3
QvsH DAM
  JGWdlU
QvsT AND HVST
   DAM
                                 CALL REGRES
                              TO MAKE A CRESS ION
                                FIT OF THE USED
                              SUPPLIED QvsH DATA
          MAKE A BRIEF SUMMARY
           LISTING OF THE TIDAi
           FUNCTION ON UNIT 2
                                     HvsT DAM
                                                       JGW(l) • 6    \
YES
                                        SUMMARIZE
                                       THE POLYNOMIAL
                                        FIT MADE FOR
                                     HYDROGRAPH INPUT I
                                     AND WRITE IT CN UNIT 2
WRITE AN
END OF DATA
SUMMARY
LINE TO UNIT 2



WRITE IN BINARY
AU THE COMMON
DATA REQUIRED
BY THE HYDRAULIC
COOETOUNIT2


WRITE A SUMMARY
TO THE PRINTER UNIT 6
Of THE TRIBUTARY
DEPTHS OF NTRIB 0



READ INPUT FROM
UNIT 2 AND WRITE
SUMMARY TO
LINE PR INTER
1
                         Figure   11.     (continued).
                                           47

-------
       READ IN TITLE CARD
         SUPPRESS ALL
          PRINTING IF
         COLUMNS 75-60
       CONTAIN ASTERISKS)
    NAMELISTREAD IN KO, Nl,
    MAXIT AND THE TT ARRAY
   OF TIME POINTS AND Y ARRAY
        OF STAGE POINTS
                              EXPAND THE TITLE
                              FOR  STAGE TIME
                             POINTS INTO A FULL
                              TIDE BY THE 1/4-
                                 1/10 RULE
 ITERATE AT MOST MAXIT TIMES TO
DETERMINE THE COEFFICIENTS OF THE
TIDE FUNCTION  H(t)-AHA2 sin (t) +
 A3 sin (2t) +A4sin (3t) A5 cost +
 A6 cos <2t) +A7 cos (3t) WHICH GIVE
  THE BEST FIT OF THE INPUT DATA.
   A LEAST SQUARES PROCEDURE
          IS UTILIZED
     PRINT THE GOODNESS OF FIT
     SUMMARY ON THE PR INTER
 UNLESS COLUMNS  76-80 OF THE TITLE
  TITLE CARD CONTAIN ASTERISKS
 Figure 12.   Flow chart  of TIDE,
                     48

-------
             (^ENTERJ
            DETERMINE
            XX   AND
              max
            XXmjn VALUES
           SORT THE SET OF
           (XX,  YY, ARKL)
       DATA POINTS ACCORDING
        TO DESCENDING VALUES
               OFYY
        DETERMINE THE SIZE OF
        THE PLOT IN COLUMNS
        AND LINES FROM XX
                        max
        XX .  , MAND YY   ,
           mm         max
        YY .  , MCOL
           mm'
           PLOT THE DATA
           POINTS ON THE
           LINE PRINTER
             (EXIT)
Figure 13.  Flow chart of subroutine  PiCTUR.
                 49

-------
 ! ,A J±
 • t^ a

,*2S


 fil
  -..u -
 ,£-:


 ill
£*
iSg^go-
IssiilS
a £ - ^ ~ 8 <
ggliSl^
O uj •*" < S ° •£
a 2 z o: O z S
< i~ < O (J < 0


                                            Q
                                            >t
                                            ffi

                                            (U
                                            c
                                            -H
                                            -P
                                            -P
                                            S-l
                                             U


                                             O
                                             cu
                                             Cn
                                            •H
    50

-------
                                                QJ
                                                3
                                                C
                                                •H
                                                -P
                                                c
                                                o
                                                u
                                                •^r
                                                rH

                                                0)
                                                Cn
                                               •H
51

-------
                                            D
                                            PM
                                            3
                                            H
                                            O

                                            (1)
                                            C
                                            •H
                                            -p
                                            3
                                            o
                                            n
                                            X!
                                             O

                                             6
                                            Tl

                                             5
                                             O
                                            1—I
                                            PM



                                            LO
                                            •H

                                             0)
                                             Cn
                                            -H
52

-------
Subroutine HYDPLT is used to print out the hydraulic information
calculated by HYDCAL for the user-requested sets of junctions
and channels.  Figure 16 is a flow diagram of subroutine HYDPLT.
The plotting program PICTO used by HYDPLT is identical to
PICTUR, except that titles are printed on the plots and a check
insures that the data plotted covers 75% or more of the X axis.
                               53

-------
            1. READ IN THC TITLE CARD AND
              TEST FOR EOF.
            2. DETERMINE DAYS FOR WHICH
              PRINTOUT IS DESIRED.
            3. DETERMINE THE NUMBER AND
              AND ORDER FOR JUNCTION
              DATA PRINT AND PLOTS.
            4. DETERMINE THE NUMBER AND
              ORDER'FOR CHANNEL DATA
              PRINT AND PLOTS.
            5. DETERMINE IF PLOTS ARE
               REQUESTED.
                    SEARCH THE
                   SCRATCH FILE
                  FOR THE DESIRED
                   TIME INTERVAL
                 CALL FIND WHICH
                SORTS THE SCRATCH
               FILE FOR THE DESIRED
               CHANNELAND JUNCTION
                INFORMATION AND
               PUTS IT IN THE PROPER
                     ARRAYS
                    PRINTOUT
                  JUNCTION DATA
                     PRINTOUT
                   CHANNEL DATA
                      ARE
                      PLOTS
                    REQUESTED.
                         YES
                 PLOT OUT JUNCTION
              HEAD VERSUS TIME CURVES
                AND THE CHANNEL FLOW
                VERSUS TIME CURVES
Figure  16.   Flow  diagram of  subroutine  HYDPLT


                        54

-------
                          REFERENCES
1.  Baca, R.  G.,  W.  W.  Waddel,  C.  R.  Cole,  A.  Brandstetter  and
    D. B. Cearlock.   EXPLORE-I:  A River Basin Water  Quality
    Model.  Prepared for the U.S.  Environmental Protection
    Agency by Battelle, Pacific Northwest Laboratories,
    Richland, WA, 1973a.

2.  Baca, R.  G.,  W.  W.  Waddel,  C.  R.  Cole,  A.  Brandstetter,
    and D. B. Cearlock.  Appendix  B.   User's Manual for
    EXPLORE-I;  A River Basin Water Quality Model,  Prepared
    for the Environmental Protection Agency, Battelle,  Pacific
    Northwest Laboratories,  Richland, WA, August 1973b.

3.  Water Resource Engineers, "A Hydraulic  Water Quality Model
    of Suisan and San Pablo  Bays."  Report  to EPA,  March 1966.

4.  Metcalf and Eddy, Inc.   "Storm Water Management Model."
    Palo Alto, CA, Prepared  as EPA Report No.  11024DOC08/71,
    August 1971.

5.  Callaway, R.  J., K. V. Bysam and G.  R.  Ditsworth.   "Mathe-
    matical Model of the Columbia  River  from the Pacific Ocean
    to Bonneville Dam."  Federal Water Pollution Central Admin-
    istration, Pacific  Northwest Laboratory, November  1969.

6.  Henderson, F. M. Open Channel Flow, Macmillan  Company,
    1966.

7.  Carnahan, B., H. A. Luther, and J. 0. Wilkes.   Applied
    Numerical Methods.   John Wiley and Sons Inc., 1969.

-------
               APPENDIX A

LISTING OF THE EXPLORE-I HYDRAULIC CODE
    Hydraulic Input Computer Program
                 IMAINT
                            Page
         GAUSS	57
         INK 	58
         MAIN 	72
         PICTUR 	73
         Q 	76
         REGR 	77
         REGRES 	79
         SIMUL 	84
         SORDER 	87
         SORT 	88
         TIDE 	90
Hydraulic Calculational Computer Program
                 HMAINT

         FIND 	92
         GENFUN 	93
         HYDCAL 	96
         HYDPLT 	112
         MAIN 	119
         PICTO 	120
         SORDER 	124
         SORT 	125
                   56

-------
 «»»»»»
»ELT,L  TMAINT.r,/UJSS
000001
000002
000003
000004
00000=.
00000ft
000007
OOOOOR
000009
000010
oooon
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
00003B
000039
000040
000041
000042
000043
000
000
000
000
000
000
000
000
000
000
000
000
000
000
oon
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
oon
000
oon
000
000
000
000
000
                         SUBROUTINE  GAUSS (ft.X)
                          TNI1;  ROUTINE  IS CALLED RY  TIDE
                         DIMENSION  A (8,9) »X (8)
                         L=7
                         DO 1?  K*l ,L
                         JJ*K
                         BIGsABSIA (K,K) )
                         KP1=K»1
                       SEARCH FOR  LARGEST PIVOT ELEMFNT
                         DO 7 I=KP1,N
                         AB=ARS(A ( I.K) )
                         IF(RIG-AR) 6,7,7
                       6 HIG = AB
                         JJ=I
                       7 CONTINUE
                       DECIDE WHETHER ROW INTERCHANGE  IS
                         IF(JJ-K)  P,in,R
                       INTERCHANGE  ROWS
                       fl 00 9 J=K,M
                         TEMP=A ( JJ»,J)
                         A (J,J, J) =A(K,J)
                       9 A(K,J)=TEMP
                       CALCULATE ELEMENTS OF NEW MATRIX
                     10  DO 11  I=KP1,M
                         QIJOT = A ( I,K) /A (K,K)
                         no 11  J=KPI.M
                      11 A ( I, J)=A (I , J)-QUOT»A (K. J)
                         no 12  ISKPI.N
                      12 A(I,K)=0.
                       FIRST STEP  IN  RACK SURSTI IIJTIOH
                         X (N)=A (N.M)/A (N,N)
                         DO 1*  NNrl.l.
                         SUM=n.
                         I=N-NN
                         1^1=1*1
                         Do 13  J=IP] ,M
                      IT SUM=SUM+A ( I , J) »X ( J)
                      1* X ( I) = (A (I,M)-SIJM) //V ( I, Tl
                         CONTINUE
                         R(" TURN
ENO ELT.
*HDG,P
                                           57

-------
 »«»«»»   I'jM   »»»»««

»ELT,I. TMAINT.INH
oooooi
000002
000003
000004
000005
000006
000007
OOOOOR
000009
000010
000011
000012
000013
000014
000015
00001*
000017
00001R
0 0 0 0 19
000020
000021
000022
000023
000024
000025
000026
000027
00002P
000029
000030
000031
000032
000033
000034
000035
000036
000037
00003B
000039
000040
000041
000042
000043
000044
000045
000046
000047
00004H
000049
000050
000051
000052
000053
000
000
000
ono
ooo
ooo
ooo
ooo
000
000
001
ooo
000
000
ooo
000
ooo
ooo
000
ooo
000
000
000
ono
ooo
000
ooo
000
ooo
ooo
ooo
ooo
000
000
000
000
000
000
ooo
ooo
000
000
000
000
001
ooo
000
000
000
000
100
001
000

c
c
c
c
c
c
c;
c


c
c





c
c
c


c
c
c



c

c







c
c
c
c










                         SUPROUt INF- 1MH
                         «»»»«»«««»»«•»»  IMPUT  PROGRAM FOR FXPLORF-1
                                                                                0»»0ft«0«»««»«
                                        RATTF.LLE  NORfHwFST 11/9//1             ««»««»#«•«*•#
                         « o»«t»««««» »««t>tt»»e»a»«e»0o0 » »« «»«*»«» <»««*«»*««*«»•**»***«*»«*••**•
                          THIS ROUTINE IS CALLED  RY Ufl[NV (OR iMAlNT)
                          AMU CALLS TIOE AND  REPRES
                         »»#»«»»«»»» ASSIGN  THE COMMON  DATA
                         COMMON /TA^F S/N5»N6tN20«N22»N24
                                                                                »«»#«•«»•••»#
                         »<»»»» »»«»•»»»»» CONTROL  AND TITl.F. INFORMATION          »«•*«»»*»«»•#
                         COMMON /PTTNTV NJ•NCtNJGW.NfCYC.NQSWRT»NOCYC«OELTO*PERIOD»
                        1 ALPHA (301 .UF_I'(70) . TPOIHT(70»M .AS (70) »EVA^
                                                 tLENd 00) tNJUNC (100«2) . JRWI20)
                                                    vnis.NjSW,     NHCYC»NT»ICYC»NCYCtW»
                        1NEXIT* JSW (r-0) .         A0(3»20,10)
                         »»»»»»«»»*«»»« JUNCTION
 COMMON/H50/H(70)»VOL(70)«X(70)»Y(7n).
10 IN (70) ? 0()i I (70) tOINST (20)

 »«»*»»«B»(HKH»«  CHANNEL  INFORMATION
                                                                                ••»«•«»•»••##
                                                                                •«•#»•»««•••#
                         COMMON/H72/HI100)»»(100)»A(100),AK(100)«0(100)fV(100)t
                        IFWlNDUdO) .NTF.MP(6) iNCLOSIlOO)
                         DIMENSION HYDRAO(100)fITRIH(50.2)»TRRDEo(50)
                       »*» HYDENO TS A SPFCIAL  CASE  FOR  THF EPA PESTICIDE  STUDY •»»
                         COMMON /Nfi-// UK»CHK«XM(?0) .YM(?0) .HYDENO

                         PFAL LEH
                         DIMENSION ARRAYO3)tATEMP(lO)
                         niMENSION A[FNM(100).WIDTHM(IOO),RAOM(100),VEl.M(100)»AM(100),
                        IHYORAMI 1 CUM
                         DI«FNSIOM hEAUM(/O)»SURFM(70)tOF1M(70)»OF?M(70)
                         OIMENSIHN ATIOE(H)
                         DATA ASTF.PKtBl ANK/4H»»»»,4H
                         ««»«««««»««»»«                  END                    »»«»»*•»<
                         «»«oo»*«»(t«tt»« ZERO  ALL  THF INPUT DATA VARIABLES
                                                                                »»«»»«»«»
                         01 N1 = 0 .
                         [ULT = i>.

                         «l I) I P = 0 .
                                                                            2
                                                                            3
                                                                            4
                                                                            5
                                                                            7
                                                                            8
                                                                            9
                                                                           10
                                                                           11
                                                                           12
                                                                            1
                                                                           1?

                                                                           2(
                                               58

-------
INH
000054
oono5s
000056
000057
000058
000059
000060
000061
00006?
000063
000064
000065
000066
000067
00006R
000069
000070
000071
000072
000073
000074
000075
000076
000077
000078
000079
000080
000081
000082
000083
000084
000085
000086
000087
00008S
000089
000090
000091
000092
000093
000094
000095>
000096
000097
000098
000099
000100
000101
00010?
000103
000104
000105
000106
oooio r
000108
000109
0001 10
000
000
000
000
000
000
000
000
000
000
000
000
000 100
000
000
000
ooo
000 110
000
000 120
000
000 130
000
000 140
000
000
000
000
000
ooo
000
000
000
000
000
000
000 150
000 160
000
000
000
ooo
000
ooo
000
000
000
Of)0
000
000
000 170
nno c
oon c
o n o c
(100 C
n o n c
ono c
NHCYC»0
NT = 0
DKLTO=0.
ICYCsO
NCYC=0
NFXITsO
NJ = 0
MC = 0
NTR 18=0
DO 100 1=1. SO
TRBi»EP(I)=".
ITRIRd.l )=0
ITRIB(1»2)=0
DO 120 L«1.IZ12
no 110 11=1.10
A0(l tit 111*0.
AO(2»L«I I)=0.
AO (3»L» I I) =0.
QINST (L) «0.
JSW(L)sl)
DO 130 I3),IZ13
JOW ( I ) =0
DO 140 I»1.30
ALPHA(I)=HL ANK
DO 160 J=l t 1 25
H(J) =0.
AS ( J) =0.
VOL ( J)=n
X (J) =0.
Y(J) =0.
OCP»»«<>«««»«««««««»«»«» 102
««»«««««»«««* 103
KXXt  (tit JQ4
105
                                59

-------
ooon i
onni i?
0001 n
0001 14
00011S
00011*
0001 17
0001 Ifl
000119
000120
000121
000122
000123
000124
0001?5
00012*.
000127
00012H
000129
000130
000131
000132
0001 33
000134
ft A f\ 1 1C
000 1 3*3
000136
000137
00013«
000130
000140
000141
000142
000143
000144
000145
000146
000147
00014R
000149
000150
000151
000153
000153
000154
000155
000156
000157
000158
0001 59
000160
000161
000162
000163
000164
000165
000166
nnn i t 7
000
000
000
nOO
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
0 0 0
ooo
000
0 0 0
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
ooo
000
ooo
ft n n

180
c


r

r;
c


1«0


r

c

c
c
c

c
c
c
c



c


c




200








c
c
c
c
c


210
c
c
r
N/ = fVO
CONT INIJF
I'FAi) All. HYDRAULIC DATA CARDS flMD ECHO WRITE THEM
PF AO (4-3.740) (ALPHA ( I > » T=l »?0)
WKITF  NTCYC.PERIOD.OINT.DELT.EVAP«WINO»WDlRtNOSWRT.N
1JSW,NJGW,NTRIB
EVAPM=EVAP
CONVERT EVAP FROM MM/MONTH TO INCHFS/MONTH
EVAP=.0 J937»EVAP
WINDM=WIND
CONVERT WIND FROM MFTFHS/SFC TO MPH
WIND = 2. NTRIB
STOP
CONTINUE
IPERID=PERIOn+0. 1
IOINT=OI^T»3600.*0. 1
IDELT=DELT+0. 1
N«CYr= (IPEWID»3f>oo)/lf)TNT
NHCYCsIlilNT/IDELT
NINT= < iPERio«36oo) /IOEI T
MPDEL=(NIMT+50)/100
DELTO=DELT*FLOAT (NHCYC)
tt«»« » o otnnnmtui fM|i »«««»»««««»*»

106
107

10B
109

110


111
112
113
11*
115

116

117
1U
lie
II5
12(
1 9
1 C
12<
\ y
1 r. :
12'
12!






12
12
12
12
13
1
1
1
1
1
1
1
1
1
1 A
i *

1<
r
i.
i
i
i
60

-------
I MM
000168
000169
000170
000171
000172
000173
000174
000175
000176
onoi77
000178
000179
OOOlflO
000181
000182
000183
000184
0001R5
000186
000187
000188
000189
000190
000191
000192
000193
000194
000195
000196
000197
000198
000200
000201
000202
000203
000204
000205
000206
000207
000208
000209
000210
000211
000212
000213
000214
ooo?!1;
000216
000217
000218
000219
000220
000221
000222
000223
000224
ono
000
00.0
000
000
000
ono
noo
ono
noo
noo
ooo
ono
noo
ono
ooo
noo
noo
oon
ooo
ooo
nno
oon
oon
ooo
ooo
noo
noo
ooo
ooo
ooo
rt n n
ono
ono
ooo
000
000
000
noo
ooo
ooo
000
noo
ooo
ooo
ooo
noo
noo
noo
ooo
ooo
ono
ooo
ooo
nno
noo
oon
no"
c

c
c
c
c


c

??0
230
C
C
C






C






240
C
C
C
C
C


c



c


c



c



c



SPECIFY MJGW CONTROLLED NODF TYPFS
READ (Nt>,740) MOW ( I ) t 1=1 .NJGW)

«<*»«» »»»»•»«»«» RFAO IN CARD GROUP H4 »»«»»*««»»»«»
»*«»»»»«« ARE THERE ANY TIDM. FLATS »»#»»#*»»»•»«»•»»»•««•»»*«•»•#
IF (NTPI3.I E.O) GO TO 230
DO ?20 1=1 .NTRIR
«»«»» SPFCIFY THE CHANNEL AND , (UNCTION NUMBERS FOR THF TIDAL FLATS »
READ  ITRIB(Iil) »ITRUm»2>
CONTINUE
CONTINUE
tio »»»« »«»»««»« END »»»»•«»»»«•#•

««»»»»»»»«»»«« PRINT OUT PAGE ONE THF CONTROL DAT* ••••»•«••#•#•
WRITE (N7.HOO) ALPHA
WRITF (N7.H10) NTCYC
WRITE (N7.K20) NOCYC
WRI IF (M7,': M) NHCYC
WRITF (H7.H40) DELT
WRITE (N7.710) EVAPM

EVAP=EVAP/(12.»30.»86400.)
WRITE (N7.860) WINDM»WOIR
WRITE (N7.H70) NOSWRT
IF (NTRIH.LE.O) GO TO 240
WRITE  »I = 1»NTRIB)
CONTINUE
»»»o«H»«»»fl(HH»» FN|) »»»»«»»«»»»»»

«.»*«««*«**B(nnt READ CARD GROUP H5 ««••»«•»••»»»
»tt#»»«»»»«into» READ IN THE JUNCTION INFORMATION «*«««««««#*•»
NJ = n
00 ?50 1=1 , 175
READ(N5t9PO) JtHfAn«SURF«QFl«')F2tDT
««««»««««««»«« olD WF READ IM A CARD GROUP H6 CARD «»«««*«»««»«•
IF (J.GT.125) GO TO 260
DT=-DT
HEAOMI j) =HF AD
CONVERT HEAD FROM METERS TO FFFT
HEAl>=M.?ri<>HFAn
SURFM ( J) sSURE
CONVERT SURF FROM K"n»»/> TO MII_I IONS OF so FFFT
SUPF = 10.74&o«;()OF
(JF1M ( J) =OF 1
OF2M ( J) =OF?
CONVERT OF1 AMD OF2 FROM CUHIC METERS/SEC To CFS
OF1 =35..<14»iJFJ
OF2 = 35. 3l*»,)F ?
DTM = r>T
CONiVh.RT m FROM MFTFP'i 1O FFFT
OT = 3.
-------
IMH
000225
000226
000227
000228
000229
000230
000231
0002J2
000233
000234
000235
000236
000237
000238
000239
000240
000241
000242
000243
000244
000245
000246
000247
000248
000249
000250
000251
00025?
000253
000254
000255
000256
000257
000258
000259
000260
000261
000262
000263
000264
000265
Q00?f,6
000267
OOfl?6H
000269
000270
0002M
000272
000273
000274
000275
000276
000277
000278
000279
000280
000281
000
000
000
000
000
ooo
000
000
000
000
000
000
ooo
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000
000
ooo
000
000
ooo
000
000
000
000
000
ooo
000
ooo
000
000
000
000
000
000
oon
noo
000
000
000
noo
000
ooo
000
000
ono




c

250
260
c



270
2*0
c
c
c
c
c
c



c



c


c


c


c







c
c
c
c
c
c

c





               H( J)=Hfc"AO
               AS
-------
INH
0002R?
0002R3
0002R4
0002H5
OOQ2K6
0002R7
0002RR
0002R9
000290
000291
00029?
000293
000294
000295
000296
000297
00029R
000299
000300
000301
000302
000303
000304
000305
000306
000307
00030R
000309
000310
000311
000312
000313
000314
000315
000316
000317
00031R
000319
000320
0003?!
0003??
0003?3
000324
000325
0003?6
000327
n n n "3 ^ o
0 0 0 Jc °
000329
000330
000331
00033?
000333
000334
000335
000336
000337
00033R
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
oon
000
000
000
000
000
000
noo
000
000
000
000
000
000
000
000
noo
000
000
000
000
000
000
000
000
noo
000
noo
n n n
000
noo
noo
noo
noo
non
(ion
noo
000
noo
ooo
?90

300


C
C
C
C
C
C

C

310
C





C
C






C
C
c

C

c


3?_0



330
340


350





C



CONTINUf
GO TO 310
IFLAG=1
I JNafTRIB ( [(.»?)
TKBOEPI IL)=^AO
CONVENTION USED ASSIGNS A NEGATIVE VALUE TO THE JUNCTION BOTTOM
Fl FVATION (DTaDEP). wHFRFAS HEAD (WATER SURFACE ELEVATION)
AM> WATER DEPTH ARF POSITIVE
RlvfR IIF.PTH IS EQUAL TO HEAD MINUS BOTTOM ELEVATION. BUT BECAUSE
PF THE S'lGN CONVENTION FOR THE LATTER (DEP)» THE TWO TERMS
Af'F ADDED
HY[)RAD (N) =H< UN) *OEP(IJN)
CONVERT HYDRAD TO METRIC U'UTS FOR OUTPUT
HYf)PAM(N)s HYDRAD(N)/3.?8
CONTINUE
CROSS-SECTIONAL AREA « DFPTH«WIDTH
A (N)=HYPPAH (N)»«IDTH
AM(N)=A (M) /] 0.744
R(N) =RAD
AK (N)=COEF
V (N)=VEL
STORE THE MUMPERS OF THE JUNCTIONS AT EACH END OF CHANNEL N
IN ARRAY NJUNC(N.I)
NJUNC (N. 1 ) =MINO (NTFHP< 1 ) »NTEMP(2) )
NJIIMC(N.?I ='"AXO (MTEMP(l) .NTEMP (2) )
K = NJUNC (^. 1 )
IF (K.EO.O) GO TO 360
JsNJUNC (M.^)
IF (IFLAG.EO.l) SO TO 320
CONVENTION USED ASSIGNS A NEGATIVE VALUE TO THE RIVER BOTTOM
ELEVATION (RAD). WHEREAS HEAD (WATER SURFACE ELEVATION)
AND WATER DEPTH ARE POSITIVE
HYnRAO(M)=f'AO*(H0
NC=MC-1
WMI TE (Nfi. 730) N«M
MzNCHAN (K« J)
LEN (M) =A|.t fl
ft (MI =« (n> 4-v ini H
R (M) =F
HYl)*'AD (M) =HYI1PAI1 (N)
224
225
226
227







229


230

231

232
233
234


235
236
237
238
239
240



241



242

243
244
245
246
247
248
249
250
OC 1
?Tl
252
253
254
255
256
257

?5R

?59
                                                                             63

-------
INK

000339
000340
00034]
00034?
000343
000344
000345
000346
000347
000348
000349
000350
000351
000352
000353
00035*
000355
000356
000357
000358
000359
000360
000361
000362
000363
000364
000365
000366
000367
000368
000369
000370
000371
000372
000371
000374
000375
000376
00037?
000378
000379
000380
000381
00038?
000383
000384
000385
000386
000387
000388
000389
000390
000391
000392
000393
000394
000395
noo
nno
od n
onn
non
oon
noo
ono
000
nno
noo
onn
n n o
000
ono
oon
non
000
oon
noo
oon
nno
oon
000
000
000
000
000
noo
000
ono
onn
00(1
000
000
oon
000
000
000
000
000
000
onn
oon
ooo
oon
noi)
noo
onn
oon
000
non
(100
000
noo
non
non
c



36()
370
C
C
C



C
C

C












380
390
400




410

420

430
441)


45(1




C


460
C
C
c


CONVF-'f'T MYORAD TO METRIC UNITS FOR OUTPUT
HYDKAM (M) = HYpRan (N) X3.28
AK ("1) =COFF
VIM) =VFL
CUNT INMf-
CONTINUt-
»««»»«»«»»"  » »<;  aNjtjMc (N» i >
NCH/iN ITf- (w/.KOO) ALPHA
Wi» I H" ('J t . >4
-------
INH
000396
000397
000398
000399
000400
000401
000402
000403
000404
000405
000406
00040 '
00040R
000409
000410
000411
00041?
000413
000414
000415
000416
000417
000418
000419
000420
000421
00042?
000423
000424
000425
000426
000427
000428
000429
000430
000431
000432
000433
000434
000435
000436
000437
00043P
000439
000440
000441
000442
000443
000444
000445
000446
0004*7
00044H
000449
000450
000451
000452
000
000
000
000
000
000
onn
000
000
oon
ono
on o
ono
ono
noo
000
000
000
000
noo
noo
onn
noo
000
ono
000
000
000
noo
noo
oon
noo
000
000
onn
000
oon
000
onn
000
000
onn
noo
000
ooo
000
000
noo
000
onn
000
onn
noo
000
noo
onn
onn


C

C


470
C


C
C
c

c




c
4«0


C

c
c
r
490




c
c
c
c
c
r.
son
c
c

49V


C
C
c
c
f.
Mfi
C
(,


ATOT*0.
DO 470 J=J , M.I
USE ATOT TO SUM SURFACE AREAS
/\Tor = ATOT + flS ( J)
WHI1F JUNCTION DATA
WRI TE U-7. -JSO) J»HEADM( J) .SURFf-H J) ,QE1M( J) .OF2MI J) * (NCHAN( J.K) tKsl
1 ,IZM
CONTINUE
WRITE TOTAL SURFACE AREA
ATOMsATOT/10.744
WRITE (NT, 9(,0) ATOM
tf4ttttO44't?&tM>tt-&4> C" M f"\ ttttttttftttttttlUJttiJtt

»»«»»»««»«»«»« OUTPUT PAGE FOUR , CONTROL NODE INFORMATION •••*«»*
WHITE 7fl) NJGW
00 580 J=1.NJGW
0() 4«d J I = ! • 1 0
An (?, J, 1 I) =0.
ZERO OUT ARRAY AO
AO(l,,J.II)=0.
WHITE *»» A TIDALLY CONTROLLED MODE «•»*•«»»»«»««

CALL TIDE TO READ DATA AMD GENFRATE REGRESSION COEFFICIENTS TO
SJMULATF. A TIDAL CYCLE
CALL TICF(ftTEMP)

WPI1F COEFFICIENTS
DO 499 1=) .«
ATIDE ( I )=ATEMP ( 1 ) /3.?H
WHITE (N 7.1 ii20) (AT IDF ( I) ,1 = 1 ,H)
GO TO H!-n

»»»«»»»««««»»« |)£M WHICH IS OPFP&TED VIA A 0 VS H POLICY »«««««««»

C«LI RFGPES TO READ DATA A. HI PERFORM REGRESSION
fiLL RE'-RFS («TEMP)

CONVFRT CCFF F ITIENTS SO THftT TMFY CORRESPOMP TO METRIC VALUES
AI=ATE:JIH t j i /3^. n 4
A2 = ATFMP(2)/]l)./l.>rt
311
312

313



316


O 1 Q
JIB
319
320
321

322
323
324
325

326
327
328

329
330
331

332
333
334

335
336
337
33S









341
34?
343
344


345




                           65

-------
I MM
000453
000454
000455
000456
000457
000458
000459
000460
000461
00046?
000463
000464
000465
000466
000467
000468
000469
000470
000471
00047?
000473
000474
000475
000476
000477
000478
000479
000480
000481
000482
000483
000484
000485
000486
000467
000488
000489
000490
000491
00049?
000493
000494
000495
000496
000497
000498
000499
000500
000501
000502
000503
000504
000505
000506
000507
00050*
000509
non
ooo
ooo
oon
onn
noo
non
oon
ooo
noo
noo
non
noo
ooo
oon
noo
000
000
000
onn
oon
ooo
noo
noo
non
ooo
ooo
ooo
non
ooo
ono
ooo
non
onn
oon
noo
oon
ooo
noo
ooo
noo
oon
ooo
onn
non
0 0 n
non
nnn
non
ono
non
non
oon
nnn
onn
onn
nnn








c


c
c
c
c
c
1
c


c
c










c


5
c
c
c

c


c
c










c

           ( 3)/T.'8
          ' (4 »
  A5 = ATEMF- If.) # 1.28
  A6=ATEMP(f)«10.758
  AP=»TEMP(8)»115.ft3
  A7=ATEMP(7)«35,314
  A9=ATEMP(9)»379.92
  A10=ATEHP(10)»1?46.14
POINT THE '1FTPTC  EQUIVALENTS OF THE REGRESSION  COEFFICIENTS
  WRITE (N7.J 0 111)  Al«A2»A3»A4tA5.A6,A7»A«tA»              fM)                        »*»##»»•»»»»»

  ««»««»«•»««»»«  0AM  WHERE THE O VS T AMf) H  VS  T  CURVES ARE KNOWN**
   FIND H vs i  FUNCTIO'N

  CHK=1.
      CALL R^GRES TO READ  DATA AND PERFORM REGRESSION
  CALL REGDF";  (ATEMP)
  CHK=0.

CONVERT COEFFICIENTS SO  THAT THEY CORRFSPQMD  TO  METRIC VALUES
  Al=ATEMP(])/3.2H
  A2=ATEMP(?>/3.?8
  A3=ATEMP(3)/3.?«
  A43ATEMP(41/3.28
          1 (5)/3.PR
                                                                                        347
                                                                                        348
                                                                                        349
                                                                                        350
                                                                                        351
  A8=ATEMP(81/3.28
  A9=ATEMP(9)/3.28

PRINT THE METRIC EQUIVALENTS OF THE RFGRFSSION  COEFFICIENTS
  WR I rf ( N7 ,1 ()4n ) Al*A?«A3( ID)/ VS.314
             TWI'JT THE  ^FTI-fFC  FOUIVALENTS OF IHF RFRRESSION  COEFFICIENTS
               wlvTTf  (N7.]liSO)  Al»A?»A3fA4.AS,Afi»A7.AR«A9»A10
                                      66

-------
INH
000510
00051 1
00051?
000513
000514
000515
00051ft
000517
000518
000519
000520
000521
00052?
000523
000524
000525
000526
000527
00052«
000529
000530
000531
000532
000533
000534
000535
000536
000537
000538
000539
000540
000541
000542
000543
000544
000545
000546
000547
000548
000549
000550
000551
000552
000553
000554
000555
00055ft
000557
000558
rj rt A C c O
U U u T>!3 V
000560
000561
00056?
000563
000564
000565
000566
000
000
ooo
000
000
000
000
000
000
000
000
000
000
noo
noo
noo
ooo
ooo
ooo
ooo
000
noo
noo
ooo
ooo
ooo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
noo
000
000
000
noo
000
noo
noo
n n n
(} (' '/
000
oon
ooo
0 0 0
noo
no"
oon
GO TO 56Q
C
C »«•«•««»»»«»»» RAM WHERE THE H VS T CURVE IS KNOWN
C
C CALl PFGPf-S TO READ DATA ANO PFRFORM REGRESSION
540 CALL HF^RFs (ATFMP)
C
C CONVERT COEFFICIENTS SO THAT THEY CORRESPOND TO METRIC
Al=ATEM(Ml 1/3.28
A?=ATEMP (?) /3.2rt
A3=ATEMf'<3>/3.28
A4 = ATEMf- (41/3.28
A5=ATEMP(5)/3.28
Aft=ATEM^ (61/3.28
A7*ATEM^<7>/3.28
A«=ATEMP(8)/3.?B
A9=ATEM> (9) /3.2B
AlO=ATEMP(10)/3.28

' (41/35,314
A5SA TEMP (5 1/35. 314
A6=ATEMP(6)/35.314
A7=ATEMP(7)/35.314
A8 = ATF.MP(R)/35.314
A9=ATEMP (91/35. 314
A10=ATtMp ( 1 01/35.314


««««*«»»««**•

«•««««»«#**»»




VALUES










C PRINT THE METRIC EOOI VALENTS OF THE REGRESSION COEFFICIENTS
WHITE (N 7. 10 70) Al»A?,A3»A4,A5,A6,A7,Afl.A9fAlO
C *HHH»«««MHH»«IKH> FM[)
C
bftO no s?o 1 = 1 , in
C TRAf^SFFR ((EGRESSION COEFF1CIFNTS TO ARRAY AO
570 AO (1 « J< I I =1TFMP( I )
SHO CONTINUt
C »»»««««»»«<>«»<•«»««««»».•«««»«»»»««»«»«»»»«»»»». «««».,i

C
<•

««««««««««*««





•«•••••» 	

-------
I'JH
000567
00056B
000569
000570
000571
000572
000573
000574
000575
000576
000577
00057K
000579
000580
000581
000582
000583
000584
000585
000586
000587
000588
000589
000590
000591
000592
000593
000594
000595
000596
000597
000598
000599
n ft n A n n
U u U P IMI
000601
000602
000603
000604
000605
000606
000607
00060&
000609
000610
000611
000612
000613
000614
000615
00061*
000617
00061^
000619
000620
000621
000622
000623
oon
oon
non
oon
nnn
oon
000
non
onn
nno
000
non
nno
onn
non
onn
oon
000
oon
ooo
oon
000
000
oon
000
000
onn
oon
000
oon
000
000
oon
n ft ft
U " ' *
oon
oon
noo
oon
onn
000
onn
ono
000
non
oon
non
000
000
nno
ono
oon
ooo
ooo
oon
onn
non
pno
Wi'ITE (NN10MO) NJSW
DO 600 L = ) »N )Sv*
J=JSW(L>
••JWITE IN7,10'-M>) J
C
CHK=3.
C CALL PMiPFS TO READ DATA AMP PFRFORM REGRESSION
CALL REP"t '- (ATFMP)
CHK=n.
C
C CONVERT COEFFICIENTS SO THAT THF.Y CORRESPOND TO METRIC VALUES
AlaATEMPd >/ 15.314
A?=ATEMP (?) / 15. 314
A3=ATEMP M) 715. 314
A4=ATEMP(4)/?5.314
A5 = ATEMP (5) /.(S.314
Mj=ATtMP (6) / 15. 314
A7=ATtMP (7) / IS. 314
Afl = ATEM(-' (P 1 /3H.314
A9=ATEMP (9) /35.314
A10=ATEMP(10)/35.314
C PRINT THE METRIC EQUIVALENTS OF THE REGRESSION COEFFICIENTS
'••(HI TE (N7« 1 1 00) A)»A2?A3tA4»A5.A6.A7«Afl»A9»AlO
DO S90 1=1.10
C TPAi-'SFFP PEGRESSION COEFFICIENTS TO ARRAY AO
590 AO (3tL»I I=ATF.HP ( I)
600 CONTINUE
610 CONTINUE
C «»««««*«««<>»«« F'K) «»»«««««*«*««
C
C «»«»««*«»«<>»»» PREPARE HYDRODYNAMIC INPUT TAPE •«»*»«•»•*»«*
'VHITF C-.'7»inn) aSTERK
*JPI re (NH firrYC«PERIOD»OINT.DEt.T.WINn»WDIR»NOSWRT.MJSW,NJGW
1 fl^ufM) r 1 f ^ T M ) f f A 0 f 1 1 Ml T •* 1 "i\ Wai 1 H ) * 1 X 1 T71?l f 1 C U ( I 1 ! tt 1
2»I713)»(ftl''HA(I)«IaJ»30) ,NfJCYC«NHCYC.NTtDELTO»ICYC.NCYCtNEXIT.NJ.N
3C. ( (NCHAMI I, II) .IPO I NT ( t« II) t 1I = 1»IZ6) «H(I) «H(I) »H(I) »H(I) tH(I) »AS
4 ( I 1 ,VOL ( I ) »X ( I ) . Y ( I ) »DEP( I) »QIN( I) »OOII( I ) »OIN(I) »OOU( I ) f I = 1 1 NJ) » ( (
5NJUMC
-------
INH
000624
000625
000626
000627
000638
000629
000630
000631
00063?
000633
000634
000635
000636
000637
000638
000639
000640
000641
000642
000641
000644
000645
000646
000647
00064ft
000649
000650
000651
000652
000653
000654
00065^
000656
000657
000658
000659
000660
000661
000662
000663
000664
000665
000666
000667
000668
000669
000670
000671
000672
000673
000674
000675
000676
000677
000678
000679
000680
000
000
000
000
000
nno
000
000
noo
oon
onn
000
noo
000
000
000
ooo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
non
000
000
000
000
000
000
000
000
000
000
000
noo
000
000
non
noo
non
nOO
non
oon
noo
noo
oon
oon
fjon


640


C
C
C
C
C
C
C
650

660
670


680
690
700


710
720
730
740
750
760
770
780
790
600

810
820
630
840
860

870
880
fl90
900
910



920

930

94n




WRITE (N6.1120) ARRAY
GO TO 630
WRITE (N6.1130)
N5=5.
RETURN


»»»»««»»«»»«»» FORMAT STATEMENT 950 MUST BE CHANGED •*«»»*«»««*«•
«»»»«*»«»«»»«» WHENEVER PARAMETER 176 IS CHANGED «»»«•«»«»»«»»



FORMAT (' YOU REQUESTED TOO MANY TIDE FLATS* /»I5t' TO RE EXACT(JO
IB ABORTED) '//)
FORMAT (215)
FORMAT!" THIS PROBLEM HAS'.I5,' TIDE FLAT CHANNEL ( S) .'/« THEY(IT
1) ARE(IS)'/' CHANNEL NO. CHARACTERIST 1C ' /15X, ' JUNCT ION NUMBER
2 '//)
FORMAT (I10»10X,I5)
FORMAT I//.1X. 'THERE ARE', 15.' TIDE FLAT CHANNELS'*/)
EORMATOX, 'CHANNEL' »I3» • IS A TIDE FLAT CHANNEL* WITH NOOE«»I3»' B
IEING THE TIDE FLAT.«.?X,I BOTTOM ELEVATION OF THE CHANNEL is «
2.1PE12.5 )
FORMAT UHO.'THE EVAPORATION RATE IS '.1PE10.3.' (MM/MONTH)')
FORMAT (• THE JUNCTION INFORMATION IS OUT OF ORDER')
FORMAT < 'CHANNELS' ,15. • AND'»I5,' ARE REDUNDANT')
FORMAT (20A4)
FORMAT <2>sx.?OA4)
FORMAT (1H1)
FORMAT (15A4)
FORMAT (15. 3F5. 0. 5X, 1F5. 0.415)
FORMAT (2015)
FORMAT <1H1 .15A4.20X.20HBATTELLE NORTHWEST »/l X , 15A4. 19X » 21 H RICH
ILAND. WASHINGTON./»80X,20H HYDRODYNAMJC MODEL «//)
FORMAT (15HODAYS SIMULATED. I 4 )
FUPMAT (29HOWATER QUALITY CYCLES PFR DAY. 14)
FORMAT (43HOINTFbRATION CYCLES PER WATER QUALITY CYCLE. 14)
FORMAT (30HOLENRTH OF INTEGRATION STEP IS.F6.0.8H SECONDS)
FORMAT (15HOUIIND VELOC I TY »F5 , 0 . ??H M/SEC WIND DIRECTION, F5. 0 . 19H D
1EGREES FROM NORTH)
FORMAT (?6HOWRITE CYCLE STARTS AT THF.I4.11H TIME CYCLE//)
FORMAT 
FORMAT (3I5.10X.5F10.0)
FORMAT (45H CHANNEL INPUT INFORMATION OUT OF ORDER )
FORMAT (108H CHANNEL LENGTH WIDTH AREA MANNING VELOCI
1TY HYO RADIUS JUNCTIONS AT ENDS MAX INT/67H NUMBER
2 (M) (Ml (M»»?) COFF. (MPS) >4H JUNCTION INITIAL HF.AO SURFACE AREA INPUT OU
IT^UT CHANNELS FMTF^ING JUNCTION
? /]??H NiiUMpo (f() (St)UARF KM) (CMS) (CMS
1) /
4)
                                                                                   419
                                                                                   420
                                                                                   421

                                                                                   425
                                                                                   426
                                                                                    427
                                                                                   428
                                                                                   429
                                                                                   430
                                                                                   431

                                                                                   433
                                                                                   434

                                                                                   436
                                                                                   437
                                                                                   438
                                                                                   442
                                                                                   443
                                                                                   444
                                                                                   445
                                                                                   446
                                                                                   447
                                                                                   448
                                                                                   449
                                                                                   450
                                                                                   451
                                                                                   452
                                                                                   453
                                                                                   454
                                                                                   455
                                                                                   457
                                                                                   45S
                                                                                   459

                                                                                   461
                                                                                   462
                                                                                   463
                                                                                   464
                                                                                   465
                                                                                   466
                                                                                   467
                                                                                   46B
                                                                                   469
                                                                                   470
                                                                                   471
                                                                                  475
                                  69

-------
 « e »IH> ft
0006P1
onn68?
000683
000684
0006H5
000686
0006H 7
000688
0006H9
000690
000691
00060?
000691
000694
00069*1
000696
000697
00069H
000699
000700
000701
00070?
000703
000704
00070S
000706
000707
000700
000709
000710
00071 )
00071?
000713
000714
000715
000716
000717
000718
000719
000720
0007?!
000722
000721
000724
000725
0007?6
000727
000728
000729
000730
000731
00073?
000733
000734
00073S
000736
000737
000
noo
ooo
noo
POO
ooo
non
ooo
noo
noo
000
noo
ooo
ooo
000
000
000
000
ooo
000
000
noo
noo
000
ooo
000
ooo
000
000
000
ooo
000
000
000
000
000
000
000
ooo
000
nno
nno
ooo
000
noo
noo
000
000
oon
000
oon
noo
000
ooo
000
000
non
 FORMAT  (I '.F 1^.?.-6PF15.?,OP?F10.0.I 10.5 I 6)
 FORMAT  (F->f>.M
 FORMAT  I//.I«H  THIS  PROHLFM HAS  . I-S.20H CONTROLLFD NODES
 FORMAT  t 16HOJUNCTION NHMRtR.lM
 FORMAT
                  10.0)
 FORMAT  (1H!.?OA4/30H  THE  INPUT  »FIR CONSTANTS ARE  /5H  Al= .EIO.4,2
1 X.1^
960
970
WflO
990
1000
           A?=  • (• 1 0.4 .2X.5H  A3= .F10.4//)
101(1  FORMAT  <1H*./VX,10H  IS A WEI°X34H THE CONTROLLING  WEIR  FORMULA IS
     1 •' r>ELH = nrLTXARf-.A» ( INFLOW-Al * ( HF AM-A ?»OELH/2) »»,H3) ' »/»lX. 'WHERE A
     ?l = '.El?.1-.'  .A?  =  '.F12.S.'  .A3 = '.El2.S.X.1X»•AND  THE CONSTANT
     IS CORRESPOND  TO  METRIC DATA')
1020  FORMAT  *H»«5 + A7»H»*6»A8«
      4H»»r*A9«H«»H*A10Y THE FOLLOWING FUNCTION .
     A4=
5Aft =
10 HO
1091)
1100
 FORMAT
 FORMAT
 FORMAT
1PH
0«T«a9 /11H WHERE Al=  .E10.4.6H,  A2= .E10.4.6H. A3=  »E10.4»
 • FI0.4.6H, A5= .El 0.4. X7X»4HA*=  »E10.4»6H» A7= .F10.4.6H.
')./«,6H, A?= ,F10.4,7H.  A10=  ,F 1 0 .4 . X . \ X • ' AND THE CONSTANTS
OND TO METRIC DATA')
(XX.18H THIS PROBLEM HAS  .I =>»21H  HYOROGRAPH INPUTS    .X)
< 16HO.JUNCT"ION NUMRF.R.TS)
(1H+,2?X»10H IS A HYOKOfiHAPH TMPuT MODE   X62H THE HYDROGRA
  (IIRVF IS FIT RY THF  FOLLOI-'ING  FUNCTION  X76H Q = Al+A2«T + A3

                                               A4= .E10.4.6H
                      l=  .F10.'t»6H,  A?= .F10.4.6H,
                                                                    «F.in.«,6H,
477
478
479
480
4R1
482
4fl3
                                                                         486
                                                                         491
                                                                         49?
                                                                         493
                                                                         49<
                                                                         49?
                                                                         49'
                                                                         49<
                                                                         49<
                                                                         50i
                                                                         50
                                                                         50
                                                                         50^
                                                                         50'
                                                                         50
                                                                         "50
                                                                         SO
                                                                         51
                                                                         51
                                                                         51
                                                                         SI
                                                                         51
                                                                         51
                                                                         51
                                                                         51
5?
5?
5J
52
52
52
                                              70

-------
         I'JH
00073H
000739
000740
000741
000742
000743
000744

END ELT.
000
000
000
000
000
000
000
     4. A5= »Eln.4t/7X«4HA<[« =  »F.]n.4,ftH«  A7 = »Fln.4,ftHi Afls tE10.4t6Ht  A9     526
     S= .F.10.4.7H* A>»»  . F_ 1 0 . 4, /, 1 X , • AMR THF CONSTANTS CORRESPOND  TO  MET
     ftPIC DATA')
1110  PORMAT (A4)                                                             5?8
11?0  FORMAT (33A4)                                                           5?9
1130  FORMAT (35HlPNr> OF HYOROOYNAMJC  INPUT PROGRAM )                         530
WHOR»P  »»««»•  MAIM   »»««*»
                                                71

-------
 »»»o»»  Mi\JN  »o#


'"ELT.L IMAIfJT.MMN
000001
00000?
000003
000004
000005
000006
000007
0 0 0 0 0 ft
000009
000010
00001 1
00001?
000013
000014
000015
000016
000017
00001R
000019
000020
000021
00002?
000023
000024
000025
000026
000027
000020
000029
000030
000031
00003?
000033
000034
00003S
000036
000037
00003R
000039
000040
000041
00004?
000043
000044
000045
000046
000047
00004H
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
ooo
000
000
000
000
ooo
000
ooo
000
000
ooo
000
ooo
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000
ooo
000
ooo
000
r
c
c
c
c
c
c
c
c
c


c
c



c

c
c
c





c



c
c

c


c
c
c
c

c


c


                         tt««»«tn»»»»«<»«»  MAIN PROGRAM FOR FXP|_ORF-1  INPUT
                         #«»«»* »»»«<•»«« RftTTELLE NORTHdFST  11/9/71
                                                      ««««««««««««»
                                                      «««««0«»«ff««»
                          THIS PROOWAM CALLS INN

                             THIS FXECUTIVE PROGRAM MAKES  I/O  ASSIGNMENTS AND CALLS
                                  IMF MAIN INPUT SUBROUTINE  IMH
                         »»»*»»« «» o ASSIGN THE COMMON   DATA
                         COMMON /TAPF.S/N5.N6,N?0»N??.M?4
                                                                               »»»»»»«»»•»#»
                         #«#*«»#«»#»»«« CONTROL AND  TITLE  INFORMATION         «»»«»»»«»»»#«
                         COMMON /PTTNT/ NJ»NC.NJGW,NTCYC»NQSWRT.NQCYC.OELTQ.PERIOD,
                        ] ALPHA (Ji') ,OEP(70) »IPOINT(70tf)»AS{70) ,EVAP
                         COMMON/!)UAL/NCHAN(70»6) »L£N(100) »NJIIMC (100.2) » JI3W{20)
                         REAL  LEU

                         «»»»»«»«««<>*•  ASSIGN THE UNIT  NUMBERS  AND REWIND    «»«•«*»•«•#•«

                         175=70
                         176=6
                         129=100
                         THE  UNIVAC 1100 DOES NOT ALLOW  THE  USE  OF LOGICAL UNIT 1 SINCE  IT  IS
                         THF  SYS1FM PUNCH FILE.
                         N?4  =  4
REWIND 1*20
PfcWINO li?4
aa#atteft"0tt*>0t»#

««««»«« o «•<>»« « »

CALL INh

REWIND H?'»
REWIND tJ?0
                                                     FNO
                                          HYDRAULIC
                                                                               ««««»»««««»»»

                                                                               «««««»««»«««»
                         STOP
                         FflO
END ELT.
                                                72

-------
 »»»«»»  PICTUR  »»««»#

«ELT,L IMAINT.PICTIIP
000001
000002
000003
000004
000005
000006
000007
OOOOOH
000009
000010
000011
000012
000013
000014
000015
000016
ooooi r
oooom
000019
000020
000021
00002?
000023
000024
000025
000026
000027
00002*
000029
000030
000031
000032
000033
000034
000035
000036
000037
000039
000039
000040
000041
00004?
000043
000044
000045
000046
000047
00004H
000049
000050
000051
00005?
000053
noo
ooo
000
noo
000
ono
000
ono
ooo
noo
ooo
ooo
ooo
ooo
noo
ooo
ooo
ooo
000
noo
ooo
ono
ooo
ooo
ooo
noo
000
noo
000
000
noo
ooo
ooo
ooo
000
ooo
000
ono
non
nno
ooo
ooo
ooo
ooo
noo
noo
ono
000
nnn
noo
ono
ooo
nnn

c
r
c
c
c
c
c
c
c
c
r
c
c
c
c
c
c
c
c
r
c
r
SUBROUTINE PICTUR (NtM.MCOL .X X • Y Y» -\RK , ISYM, CARD1 )
THIS ROUTINE IS CALLED BY RtPRES AND CALLS SORT AND

SORDER
PROGRAMMED BY JE SCHLOSSER 1965 MODIFIED BY CA OSTER 1966
PRESENTS A PICTURE OF DATA OM PRINTED OUTPUT* TWO OPTIONS REING
AVAILABLE
1 MCO| POSITIVE
2 MCOL WGATlVE» IN WHICH CASE XTNCREMENTS ARE
10 Y INCREMENTS AS DETERMINED BY M

DICTIONARY

VARIABIF DEFINITION
N NUMBER OF POINTS TO PLOT (MAXIMUM
M MAXIMUM NUMBER OF LINES
MCOL MAXIMUM NUMBER OF COLUMNS

XX(I) X COORDINATE FOR ITH POINT
YYU) Y COORDINATE FOR ITH POINT
ARM!) MARKER FOR ITH POINT
ISYn(I) PRIORITY DESIGNATOR FOR MARKER USED ON
(LOWER SUBSCRIPT INDICATES HIGHER




TAKEN AS EQUAL





OF 500)






I-TH POINT
PRIORITY)


DIMENSION xx(?),YY(2)»XYM(3»500)tPX(6) » ALE (107) «ARK<2) i



C


C












100






1 in


lILFdOM » ISYM(5) «IXYM(3i500)
DIMENSION TARDI (20)
EQUIVALENCE ULF«ALF) » (BLANK.LANKBA > » (IXYM.XYM)

EXTERNAL SORDER
DATA RLANK/1H /

N=MAXO (HIMO (500tN) »2)
XYM(1.2)=1 .01
XYM(2,2)=1.01
XYMI3.2) =HI AMK
XMIN=1,OE37
XMAX = -1 . OE 37
DO 100 I«l »N
XYM(1, 1 ) =XX ( I )
XYM(?, I ) =YY ( I )
XYM(3, 1 )=ftt;K ( J )
XMIfJ = AMJNl (X'-!IIM,XYM(1,I))
XMAX = AMAX] (XM/\XtXYM(ltII)
CONTINUE
CALL S'M'T ( xYMtN, 3, BORDER)
YMIN=XYM ( ? • N)
YMAX=XYM (?, 1 )
HYL OG = ALOCJ1 0(10. /FLOAT (M)»l.nf 5)
IF ( (YMAX-YMIN) .EU.O.I 60 TO 11(1
DYLOfi = AL 0(U 0 ( (YMAX-YMIM) /FLO A T ( M ) » 1 . OF5 )
CONTTMUfc
<\MPOX = i iiLfi'--A IMT (DYLOG)
1C) 1 ?0 J ='i> ' 1 0





























                                                                                                 3
                                                                                                 4
                                                                                                 5
                                                                                                 6
                                                                                                 7
                                                                                                 B
                                                                                                 9
                                                                                                10
                                                                                                11
                                                                                                12
                                                                                                13
                                                                                                14
                                                                                                15
                                                                                                16
                                                                                                17
                                                                                                IB
                                                                                                19
                                                                                                20
                                                                                                21
                                                                                                2?
                                                                                                23
                                                                                                24

                                                                                                2ft
                                                                                                27
                                                                                                30
                                                                                                28
                                                                                                29
                                                                                                31
                                                                                                32
                                                                                                33
                                                                                                34
                                                                                                35
                                                                                                36
                                                                                                37
                                                                                                38
                                                                                                39
                                                                                                40
                                                                                                41
                                                                                                42
                                                                                                43
                                                                                                44
                                                                                                45
                                                                                                46
                                                                                                47
                                                                                                4fl
                                                                                                49
                                                                                                ^0
                                                                                                51
                                                                                                5?
                                              73

-------
PICT"1*
000054
000055
000056
000057
000058
000059
000060
000061
000062
000061
00006*
000065
000066
000067
000068
000069
000070
000071
000072
00007"?
OOOOf*
000075
000076
000077
000078
000079
000080
000081
00008?.
000083
000084
000085
000086
000087
oooos8
000089
000090
000091
00009?
000093
00009*
000095
000096
000097
00009H
000099
000100
000101
00010?
OOOIOT
00010*
000105
000106
000107
00010R
000109
000110
noi
000
000
ooo
000
000
ooo
000
000
000
ooo
000
000
000
ooo
ooo
000
000
000
ooo
000
000
000
ooo
000
000
ooo
000
ooo
000
000
000
000
000
ooo
000
000
000
000
000
ooo
ooo
ooo
000
ono
000
000
nno
ooo
000
000
ooo
000
000
non
1)00
(ion


1?0
UO

140


150

160
170

180
190


200
?10










220

230
240

250




?60










270
?HO
?on
300

J10
J?n
                FI = I
                IF  (APf-"'X-'H.O<;lO  130,130,120
                CONTINUF
                EXftCT*FlMQ.O«»nNT (DYLOG)-M
                IF  (MCOU  ?10.14"«140
                [)XLOO=ALnr, I II ( (XMAX-XMIN) /FLOAT (MCOL/2)»1.0F_5)
                XAPROX = f-(XUiG-AINT (OXL06)
                IF  (XAP^OX-.iniO) 150*150,160
                GO  TO 190
                IF  (XAPKOX-.6990) 170*170, 1«0
                XEXACT=5.0»10.0«« ( INT(nXLOG)-5)
                GO  TO I'JO
                XF.XftCT=10.i!«« ( INT(OXLOO)-*)
                CONTINUE
                XACT=XEXACT/?.0
                60  TO ?10
                XACT=EX£CT/?.0
                TENX=?O.O*XACT
                TENE=10.0»FXACT
                MAXYJs(YMAX/TENE) + ( 0 . 5*S t GN ( 0 . S , YMAX ) )
                MAXXI=(XMAX/Tf NX) + (0.'5»SIGN(0.5»XMAX))
                MINYI={YMIN/T6NE)-{0.5*SIGN(0.5»-YMIM)
                YFIHST=TENF«FLOAT
                LINFS=10»(MAXYI-MINYI) +1
                KQLSs20« (MAXX7-MINXI)
                IF  (KOLS-^OO) ?30.?30«2?0
                WPITE 
-------
  »»»«««
000111
000112
000113
000114
000115
000116
000117
000118
000119
000120
000121
000122
000123
000124
000125
000126
000127
00012H
000129
000130
000131
000132
000133
000134
000135
000136
000137
00013^
000139
000140
000141
000142
000143
000144
000145
000146
000147
00014R
000149
000150
A ft n i c i
v U v i 5 1
000152
000153
000154
000155
000156
000157
000
000
ooo
000
000
000
000
000
000
000
000
000
000
000
000
noo
000
000
000
000
noo
000
000
ooo
000
noo
000
000
000
000
noo
ooo
000
000
000
000
noo
ooo
ooo
ooo
n n n
U If U
noo
ooo
noo
noo
ooo
ooo

310










340


350

360
370

3BO



390


400
410
420


430

C
C
C
440
450
460
A 7 n
H f U
4flO
490

SOO
S10

IF (XYM(1,J)-PX(6)-ODO) 330*330.370
CONTINUE
KOL = I NT ( (XYMI1 * J) +DEX-PXU) )/XACT) +4
IF ( (KOL.M .107) .OR. (KOL.LT.l) ) 60 TO 370
TXYM3J=IXY»'(3. J)
ILFKOL=ILF (KOL)
IF (ILFKOL.EO.LANKBA) (50 TO 360
ISYMlaO
ISYH2=0
DO 340 HYY = 1.5
IF (ILFKOL.EO.ISYM) IIYY) ) tSYMlsIIYY
IF <1XYM3J.FO.ISYM(IIYYM ISYM2sIIYY
CONTINUE
ISYMMaMlNO ( JSYM1. ISYM2)
IF (ISYhM) 370*370.350
ILF(KOL)=1SYM(ISYMM)
60 TO 370
ALF (KOL) =XYM (3»J)
J = J + 1
GO TO 2^0
CONTINUE
IF (MODI 1-1 .10) .NE.O) 00 TO 390
WRITE (6,4^0) YPLOT.ALF
GO TO 410
IF (MOOU-1.5) .NE.O) 60 TO 400
WRITE (6*5)0) ALF
GO TO 410
WHITE (6*4*10) ALF
CONTINUE
CONTINUE
WRITE (6,47U)
WRITE (6,4fln) PX
CONTINUE
RETURN



FORMAT 
FORMAT (1X.F9.3.2H »»107AltlH»)
FORMAT (11 X.1HI.107A1.1HI)

FORMAT 
-------
 ««»«««  IJ

•ELT.L
000001      000         FUNCTIOM  0  (R.C)
00000?      000   C      THIS FUNCTION  IS  CALLED BY HT
000003      000         PIMFNSION W(S)»  C(5)                                                      2
000004      000         Q = C(2)-fM?>                                                               3
000005      000         RETURN                                                                    4
OOOOOf)      000         END

END ELT.


»H06tP  •»«#«•  REGP  »»»*»«
                                              76

-------
 »«»»»»

0ELT.I. IMAINT.RFGR
000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
ooooir
000012
000013
000014
000015
000016
000017
000018
000019
000020
0000?!
00002?
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000042
000043
0000*4
000045
000046
000047
000048
000049
000050
000051
000052
OOOOS3
000
000
oon
000
ono
000
oon
onn
000
POO
000
oon
ooo
000
000
000
ono
000
000
000
non
noo
000
000
000
non
oon
oon
POO
ono
oon
non
nnn
oon
oon
000
000
ono
ono
000
onn
non
oon
r>00
oon
non
nno
oon
oon
000
noo
00')
nno

C
C
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c



c
c








inn







1)0


1 ?o
C
C







                        FUNCTION Re«l» .   HOWEVER. IF THE SIMULTANEOUS
                           FfQUATIor  SOLVING  POUTINF  SIMUL ENCOUNTERS A NEAR-SINGULAR
                           MATRIX. IMF FUNCTION RETURNS THF VALUE o.o

                        C	MrtTWIX CONTAINING  THF.  COEFFICIENTS
                        CYX	.c 11 »Y» VECTOR
                        C.YY. ... ..c (Y.y) VECTOR
                        OET	OFTFRMINANT OF THE  COEFFICIENT MATRIX C.
                        EPS	TOLERANCE USED PY  THE  FUNCTION SIMUL
                        SIMUL....FUNCTION  FOR SOLVING SIMULTANEOUS EQUATIONS
                        SX.SYX...VFCTOR CONTAINING  SUMMATIONS X»»I AND X»«I » Y
                        SY.SYY...VFCTOR CONTAINING  SUMMATIONS Y AND Y»«2
                        DIMENSION
                        DATA EPS/
                        DATA
C(51,51),SX(100).SYX(51)»CYX(5l)«X(100)»Y(100).P.(51)
i .OF-?')/
                              COMP'ITE SUMS OF  POWERS  A'lD  PRODUCTS	
                        NP1=N+1
                        sr=o.o
                        SYY=0.0
                        DO 100 1=1,N
                        NPI=M*I
                        sxmso.o
                        SX (MPI) =n.(l
                        SYX '
                        SX (J) =SA ( J) *DtlH
                                      COEFFICIFNTS C(I.J)
                        FM=FLOAT(M)
                        CYY=SYY-SY»SY/FM
                        1)0 1 '10 1 = ) ,N
                        CYX(I)=SY*U )-SY<*SX(T)/FM
                        C(I.MPI)=CVX(i)
                        i)0 I 3D J=l ,[J
 2
 3
 4
 5
 6
 7
 a
 9
10
11
1?
13
14
15
16
17
18
19
20

22
23
24
25
26
27
28
29
30
31
32
33
34
3<5
36
37
3B
39
40
41
42
43
44
45
46
47
48
49
50
51
5?
                                              77

-------
 #««««»  13 p fl O
onoosA
ooons^
OOOOS6
000057
0000b«
000059
000060
000061
00006?
000063
00006*
000065
000066
000067
000063
000069
000070
000071
00007?
000073
000074
000075
000076
000077
000078
000079
OOOOPO
ooo
non
QOO
000
000
0(10
000
000
000
000
000
ono
000
000
000
ono
000
000
000
000
000
ooo
000
000
000
000
000
MO
c
c.





c
c
140



ISO







c
c
c
160

C(I.J)-S*(JPJ!-S<(T)»^<(.J)/FH

..... C4LI. ON SFMUL TO 50LVF 5 T Mill TANFOUS FOLIATIONS .....
OETrSIMUU (M«CtH,EPS. 1 ,NN)
WPITE (6.160) DEI
IF (DEI. NF . 0.0) 00 TO 140
*EG«=0.0
RETURN

	 COMPUTE IMTERCFPT A AMD STANDARD DEVIATION S 	
BOM=SY
TtMP=CYV
DO 150 1=1. N
DiiM=oUM-n ( i ) »sx (I )
Te.MP = TF.Nf-ft( 1 ) »CVX ( I )
fi=DHM/FH
nKN()M=FLO« f (M) -FLOAT (M)-l .0
S = flHS( TEMp/DhMOM)
S=DSOWT (<;>
IF (S.Eft.O.) S=FPS
RF6H=S
RFTIJWN



FORMAT (1JHO DET = «E14.M>
EWD
                                                                                                S3
                                                                                                54
                                                                                                5S
                                                                                                56
                                                                                                57
                                                                                                58
                                                                                                59
                                                                                                60
                                                                                                61
                                                                                                6?
                                                                                                f>3
                                                                                                64
                                                                                                65
                                                                                                66
                                                                                                67
                                                                                                6B
                                                                                                69
                                                                                                70
                                                                                                71
                                                                                                7?
                                                                                                73
                                                                                                74
                                                                                                75
                                                                                                76
                                                                                                77
                                                                                                78
END FIT,
        »*»»»»  REGRES  «««»«•

-------
»ELT,L IMAINT.REGPES
000001
000002
000003
000004
OOOOOS
000006
000007
OOOOOfl
000009
000010
000011
000012
000013
000014
oooois
000016
00001 7
OOOOlfl
000019
000020
000021
000022
000023
000024
00002*;
000026
000027
00002R
000029
000030
000031
000032
000033
000034
000035
000036
000037
00003*
000039
000040
000041
000042
000043
000044
000045
000046
000047
000048
000049
000050
000051
00005?
000053
000
noo
oon
non
000
000
ooo
000
ooo
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
ooo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
noo
000
ono
000
noo
000
000
000

c
c
c
c
c
c
c
c
c
c
r
c
c
c
c
c
c
c
c
c
c
c
c
r

c




r









c
c
c
c
c
c
c
c
c


ir
                        SUBROUTINE HEGRFS  (ATEMP)
                         THIS HOUTINF  IS CALLFD  RY  INH  AND  CAU S  PICTUR AND REGR
                           poL^NOMiAi  REGRESSION WITH PLOTTING.

                           THIS MAIN PROGRAM HFAOS  THF.  HORI70NTAL AND VERTICAL COORDINATES
                           OF M DATA POINTS  INTO THE X  AND  Y  ARRAYS.    THE LEAST AND
                           GREATEST VALUES nF  X  SHOULD  P-E STORED  IN X(l)  AND X(M)  RESPEC-
                           TIVELY.   THE FUNCTION REGR  IS USED TO PERFORM SUCCESSIVE NTH-
                           OROEP REGRESSIONS,  FROM  N =  MIN  THROUGH N  a MAX.   IN EACH
                           CASE« THE REGRESSION  CURVE is PLOTTED  AGAINST  THE ORIGINAL
                           DATA POINTS.

                        A	REGRESSION  COEFFICIENT (INTERrEPI)
                        H	VECTOR CONTAINING  REGRESSION COEFFICIENTS
                        DELTAX...X-SPACING FOR ?6 POINTS ON THE REGRESSION CURVE
                        M	NUMBER OF DATA  POINTS
                        MAX,MIN..UPPER AND LOWER LIMITS ON  ORDER  OF REGRESSION
                        N	ORDER, N, OF  POLYNOMIAL REGRESSION
                        REGR	FUNCTION FOR  PERFORMING NTH  ORDER  REGRESSION
                        S	STANDARD DEVIATION OF  THE  POINTS ABOUT THE REGRESSION
                                 LINE.  IF SIMUl. ENCOUNTERS A NEAR-SINGULAR MATRIX,  S IS
                                 RETURNED ZERO AS A WARNING.
                        X,Y	VECTORS CONTAINING THE X AND Y COORDINATES OF THE DATA
                                 POINTS.

                        COMMON /TAPES/N5»N6,N7»Nin,N20»N22.N24
                      »»« HYOEND is A SPECIAL  CASE  FOR  THE  EPA PESTICIDE  STUDY «•»
                        COMMON /NEW/ I,JKtCHK,XM<20),YM<20)»HYDEND
                        DIMENSION ARRAY(SO)
                        DIMENSION X(100)»Y(100)«B<55),ARK(100)»ISYM(5)•CARD*(20)
                        DIMENSION ATEMP(ln)
                      »«« HYDENl) IS A SPECIAL  CASE  FOR  THE  EPA PESTICIDE  STUDY *«•
                        NAMELIST /CARDI/ M,MIN«MAX»X»Y,HYDEND
                        DATA  STAR/1H*/
                        DATA ASTEP/4H»«»*/
                        DATA CONST/4H CON/
                        DATA APRAY/lHl,lH?,lH3,lH4»lH5,lH6»lH7»lHrt,lH9»2HlO,2Hll»2H12,;?Hl3
                       1,?HJ4,2H15,,?H16,;»H17,2H18,;>H19,2H20,?H21,2H2?,;?H23»2H24,2H25,2H26,
                       ?2H27,?H2S,?H?9,?H30.2H31,2H3?»2H33.2H34,?H35,2H36.2H37,2H38,2H39,2
                       3H40,2H41,?H4?,2H4j,?H44.?H45.2H46,?H47»?H4fl,2H49,2H50/
                        OATA MMM/100/«NM/55/,III/?5/,JJJ/ino/

                         CARDI is TITLE CARD FOR PLOTTING
                         HEAD AND CHFCK COOPntNATES X(l)...X(M),  Y(1)...Y(M),
                         AND LOWEST AMD HIGHEST  ORDERS  MIN  AND "AX
                         CHK
                         CHK
IS A DUMMY VARIAHI.E
= 1  PEGRES WAS CALLED TO FIND H FOR 0 VS  T  AND  H  VS  T
                                                                                    DAM
                         CHK  = t RF.GRES WAS CAILFD TO FIND 0 FOR 0 VS T »ND H VS  T DAM
                         CHK  = 3 PFKRFS WAS CA|LEO TO EVAIIIATF HYDROGRAPH NODES
                        A = 0.0
                        no  ion i = 1.MM
                        H(I)=0.0
                                                                    5
                                                                    6
                                                                    7
                                                                    e
                                                                    9
                                                                   10
                                                                   11
                                                                   12
                                                                   13
                                                                   1*
                                                                   15
                                                                   16
                                                                   17
                                                                   18
                                                                   19
                                                                   20
                                                                   21
                                                                   22
                                                                   23

                                                                   25
                                                                   27

                                                                   ?9


                                                                   31
                                                                   33
                                                                   34
                                                                   35
                                                                   36

                                                                   38
                                                                                                4?
                                                                   43
                                                                   44
                                                                   4S
                                              79

-------
000054
000055
000056
000057
00005B
000059
000060
000061
00006?
000063
000064
000065
000066
000067
000068
000069
000070
000071
00007?
000073
000074
000075
000076
000077
000078
000079
000080
OOOOfll
00008?
000083
000084
000085
000086
000087
000088
000089
000090
000091
000092
000093
000094
000095
000096
000097
000098
000099
000100
000101
000102
000103
000104
000105
000106
000107
000108
000109
000110
000
000
000
000
noi
001
001
001
noo
oon
000
000
000
ooo
ooo
000
oon
ooo
ooo
000
oon
noo
noo
non
ooo
noo
noo
ooo
oon
noo
ooo
noo
ooo
non
ooo
ooo
ooo
oon
noo
oon
onn
ooo
noo
oon
ooo
oon
ooo
onn
000
000
oon
ooo
oon
ooo
000
000
non






c
c
c



c
c


c


c
c
c


c
c
c



c
c
c



c
c
c



c
c.
c
c

I'EAD INS. 310) CA»D4
WRITE (6,310) CARD4
IF (CAR04(1 ) .NE. CONST) GO TO lln
DECODE (18,220, C«RD4<1> ) A
IF (CHK. EQ. 3.) GO TO 105
GO TO (200,200,101,102,103,104) , UK

Q IS CONSTANT (0 VS H)
STORE MFTRIC VALUE IN AM, CONVERT A TO ENGLISH UNITS
ini AM=A
A=35.314«A
GO TO 20n

STORE MFTRIC VALUE IN AM. CONVERT A TO ENGLISH UNITS
102 AM=A
IF (CHK .EQ. ?.) GO TO 202
H IS CONSTANT (Q VS T AND H VS T)
A=3.?8»A
GO TO 200

o is CONSTANT (Q vs T AND H vs T)
STORE METRIC VALUE IN AM, CONVERT A TO ENGLISH UMTS
202 A=35.314»A
GO TO 2dO

H IS CONSTANT (H VS T)
STORE MFTRIC VALUE IN AM, CONVERT A TO ENGLISH UNITS
in.i A^A
A=3.?8»A
GO TO 200

0 IS CONSTANT (0 VS T)
STORE MFTRIC VALUE IN AM, CONVERT A TO ENGLISH UNITS
104 AM=A
A = 35.U4«A
GO TO 200

HYOROGRAPH INPUT IS CONSTANT
STORE MFTRIC VALUE IN AM, CONVERT A TO ENGLISH UNITS
1(15 AM = A
A=35.31 4»A
GO TO 200
»«»»«THE FOLLOWING ELEMENT MUST RF u£MADE IN THE PROGRAM, SEE APPENDIX
»»«»«<;. 7 IN FOPTRAN( ASCI I ) MANUAL. TO ALLOW A NAMFLIST READ FROM A
»«»»»LOGICAI UNIT OTHER THAN 5 ON THE UNIVAC linn.

-------
000111
000112
000113
000114
0001 IS
000116
000117
OOOllfl
000119
000120
0001?!
000122
000123
000124
000125
000126
000127
000128
000129
000130
000131
000132
000133
000134
000135
00013
-------
*«««»»  RFGRES  «««««»
000168
000169
000170
000171
000172
000173
000174
000175
00017*
000177
000178
000179
000180
000181
000182
000183
000184
000185
00018ft
000187
000188
000189
000190
000191
000192
000193
000194
000195
000196
000197
000198
000199
000200
000201
000202
000203
000204
000205
000206
000207
000208
000209
000210
000211
000212
000213
000214
000215
000216
000217
OOOP18
000219
000220
000221
000222
000223
000224
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000
000
000
oon
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
ooo
000
000
ooo
oon
oon
non
noo
oon
000
000
noo
noo

150





160
c
c
c




170


c
c
c









180

r
c
c

190
200


210

211

21?

c
c
c
c
r
2?"
230
?4n
250
2*n

DO 15n 1=1, M
ARK (I )=STAR
ISYMd )=STAR
DO 190 N=MIN,MAX
IF  .EO.ASTEH) GO TO 16n
WRITE (6,250) CARU4
WRITE (6,?80) N
CONTINUE

USE FUNCTION HEGR TO PERFORM NTH-ORHEH REGRESSION

S=REGR(M,X»Y,N»A«S>
IF (S.NE.0,0) SO TO 170
WRITE (6.290) C»RD4
GO TO 19n
CONTINUE
IFICARD4 (19) ,FQ. ASTER) GO TO 190
WRITER, 300) S.AM, ( I,B(I) ,1=1, N)

COMPUTE 26 POINTS LYING ON REGRESSION CURVE

DELTAX= (X (M)-X(l ) )/25.0
MP1=M+1
MP26=M»26
00 180 I=MP1,MP?6
STEPS=FLOAT (II-FLOAT(M)-l.O
X(I)=X(1)+STEPS»OELTAX
Y(1)=A
ARK (I)=ARRAY(M)
00 JftO J=l,N
Y(I)=Y(I)«B(.))«X (I)»«J
ISYM(2)=ARRAY(N)

PLOT REGRESSION CURVE AGAINST ORIGINAL POINTS

CALL PICTUR (M*?6,IIItJJJ»X»Yf ARK* ISYM.CARD4 )
CONTINUE
CONTINUE
ATEMPI1 )=A
DO 210 1=2.10
ATEMP(I)=Bf 1-1)
RETURN
WRITF (6,210) ^^U04
STOP
WHITE C',240) Cft»04
STOP

FORMATS FOR INPUT ANO OUTPUT ST^TFMF^!T<;



FORMAT (6X.F17. ] )
FORMAT (• FHROW IN fJAMFLIST INPUT TO REfiRES »/,20A4)
FORMAT (• ENO OF FTI.F ENCOUNTERED IN REGRES «/.20A4)
FORMAT (1H ,?OA4)
FORMAT M4H POLYNOMIAL REGRFSSION, WITH M a ,i2,i?'H
)PK,5H X(I),HX,5H Y ( I ) // ( ?F 1 3. 2 ) )
                                                                            OAT* POINTS//
                                                                                              66
                                                                                              67
                                                                                              68
                                                                                              69

                                                                                              71
                                                                                              72
                                                                                              73
                                                                                              74

                                                                                              76
                                                                                              77
                                                                                              78
                                                                                              79
                                                                                              80
                                                                                              81
                                                                                              84

                                                                                              86
                                                                                              87
                                                                                              88
                                                                                              89
                                                                                              90
                                                                                              91
                                                                                              9?
                                                                                              93
                                                                                              94
                                                                                              9<5
                                                                                              96
                                                                                              97
                                                                                             100
                                                                                             101
                                                                                             102
                                                                                             103
                                                                                             104
                                                                                             105
                                                                                             106
                                                                                             107
                                                                                              108
                                                                                             109
                                                                                              110
                                                                                             111
                                                                                             112

                                                                                             114
                                                                                             115
                                                                                             116
121
122
                                             82

-------
 »•»•»«  RF.GRES  »»••«•
000225
00022*i
000227
000229
000229
000230
000231
000232
000233

END ELT.
000   270   FORMAT (SflHO THE LOWEST AND HIGHEST ORDER POLYNOMIALS TO RE TRIED     123
000        1ARE//6X»7H MIN = .M.BX.7H MAX = .13)                                 124
000   2flO   FORMAT (3?H  POLYNOMIAL REGRESSION OF ORDER/lHO.SXt7H N   a .13)      125
000   290   FORMAT (69HO MATRIX C IS NEAR-SINGULAR.   REGRESSION COEFFICIENTS     126
000        1NOT OETtHMINEO/lH ?OA*)
000   300   FORMAT (IHO.SX.'iH S = .F10.6/6X.5H A = .F10.6//(6X.3H B(.12,*H) »     128
000        1.F11.6))                                                               129
000   310   FORMAT
000
WHDG.P  «»««««  SIMUL  «*••«#
                                              83

-------
 tKKHH>9  StMUl

i*ELT.L IMAINT.SIMUL
000001
00000?
000003
000004
000005
oooooft
000007
ooonof
000009
000010
000011
000012
000013
00001*
oooois
ooooifc
000017
000018
000019
OOOOPO
000021
0000??
0000?3
000024
000025
00002*
000027
00002"
OOOP?9
000030
Q00031
00003?
000033
000034
000035
00003^
000037
0 0 0 0 3JR
000039
000040
000041
000042
000043
000044
000045
00004ft
000047
00004R
00004?
000050
000051
00005?
000053
000
000
oon
000
noo
000
000
000
noo
010
000
000
000
000
noo
000
noo
ooo
oor
one
oon
000
noo
00')
noo
000
9(10
000
nno
000
000
000
ooo
001
noo
000
ooo
000
000
ooo
ooo
0 0 T
nno
000
000
oon
ooo
nnn
nnn
noo
000
non
ooo

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
THIS FUNdl'lN
                                        tN,A.X.EPS«INDIC»NRC)
                                        IS  CALLED  BY  REGR
                           *HEN  I NO 1C  IS  NEGATIVE*  SIMUL  COMPUTES THE INVERSE OF THE N BY
                           N MATRIX A  IN  PLACE.   WHEN INOIC IS 7F.RO* SIMUL COMPUTES THE
                           n soi. minus  xii)...xtN)  CORRESPONDING TO THE SET OF LINEAR
                           EOUAllO'iS WITH AUGMENTED MATRIX OF COEFFICIENTS IN THE N BY
                           N+I ARI-AY A  A>«) IN  ADDITION COMPUTES THE INVERSE OF THE
                           COEFFICIENT  MATRIX  IN  PLACE AS ABOVE.  IF INOIC IS POSITIVE*
                           THF SF.T OF  Lt'JEAR EQUATIONS IS SOLVED RUT THE INVERSE IS NOT
                           COMHDTF-d TH  PLACE.  THE GA"SS- JORDAN COMPLETE ELIMINATION METHOD
                           IS E^PLf'YKI)  WITH THE MAXIMin PIVOT STRATEGY.  ROW AND COLUMN
                           HIHSCRIPTS  OF  SUCCESSIVE PIVOT CLEMENTS ARE SAVED IN ORDER IN
                           THE IROi AMD JCOL ARRAYS PhSPF.CT I VFLY.  K IS THE PIVOT COUNTER*
                           PTVOt THF, ALGEBRAIC VALUE OF THE PIVOT ELFMENTt MAX
                           THE MIMt.r.R  OF  COLUMNS  IN A AND DETER THE DETERMINANT OF THE
                           COEFFICIENT  MATRIX. THE SOLUTIONS ARE COMPUTEO IN THE NO  COLUMN SUBSCRIPTS. RESP.
                        INDIC. ...COMPUTATIONAL SWITCH
                        MAX......NUM*FR OF COLUMNS  IN A. EITHER N OR N»l
                        is) ........ MMMHKR OF ROWS IN  A
                        X ........ VPCTOR OF SOLUTIONS

                        AI JCK. .. . ft TC (K )
                        INTCH. . . .NUMfl
                        INTCH.... NUMBER OF PAIRWISF INTERCHANGES REQ'O TO ORDER J-VECTOR
                        IP1*KM1«NM] .. . I + lt K-l. AND N-l,  RESP,
                        I«OW ..... VPCTOR OF PIVOT  ELEMENT  ROW  SUBSCRIPTS. PtK)
                        ICOI. ..... VHCTUH OF PIVOT  FLFMENT  COLUMN SUBSCRIPTS* C(K)
                        JCOL I . JCOLJ* JCOLK. ,.R ..... THL J VECTOR
                        JTEMP. . . .TFMPORA^Y  VARIARIE  USFO  I "I  ORDERING THE J VECTOR
                        K ........ CYCLF COUNTER  AND  PIVOT  FI.FMENT  SUBSCRIPT
                        uRC ...... Rd^ A^lD COLUMN HIMFNSIONS  OF STORAGF FOR THE A-MATRIX
                        PIVOT. .. .PI voi FI.EMF.NT
                                                                        3
                                                                        4
                                                                        5
                                                                        6
                                                                        7
                                                                        8
                                                                        Q
                                                                       10
                                                                       11
                                                                       13
                                                                       13
                                                                       14
                                                                       15
                                                                       16
                                                                       17
                                                                       18
                                                                       19
                                                                       20
                                                                       21
                                                                       Z2
                                                                       23
                                                                       2*
                                                                       25
                                                                       26
                                                                       ?7
                                                                       28
                                                                       29
                                                                       30
                                                                       31
                                                                       32
                                                                       3:
                                                                       34
                                                                       35
                                                                       3C
                                                                       3'
                                                                       3f
                                                                       3<
                                                                       4(
                                                                       4
                                                                       4;
                                                                       4:
                                                                       4'
                                                                       4'
                                                                       41
                                                                       4
                                                                       4
                                                                       4
                                                                       5
                                                                       5
                                                                       5
                                               84

-------
000054
000055
000056
000057
000058
000059
000060
000061
000062
000063
000064
000065
000066
000067
000068
000069
000070
000071
000072
000073
000074
000075
000076
000077
000078
000079
000080
000081
00008?
000083
000084
000085
000086
000087
000088
000089
000090
000091
00009?
000093
000094
000095
000096
000097
000098
000099
000100
000101
000102
000103
000104
000105
000106
000107
000108
000109
000110
000
000
000
noo
ooo
ooo
ono
000
ooo
000
ooo
000
000
ooo
000
000
000
000
ono
ooo
ooo
ooo
000
000
000
ooo
000
000
000
000
000
ooo
000
ooo
000
000
000
000
oon
009
000
000
000
000
000
noo
000
000
noo
000
000
000
noo
oon
noo
oon
000
c
c

c


c
c




c
c
100


c
c



c




110
120



130
c
c



c
c
140


c
c

150
c
c






16P
i rn


OIMfiNSJON I ROW (50) .JCOL (50) t.lOKO(50) tY(50) «A (NRCtNRC) tX(50)

MAX = N
IF (INDIC.KF..O) MAXsN+1

	 IS M LAWYER THAN 50 	
IF (N.LE.5") 60 TO 100
wwi IE (6«?l>0)
SIMUL=0.
RtTIIRN

	 HtGjN FLIMINATION PROCFOURE 	

DO 170 KzltM
KM1=K-1

	 SFAPTH FOR THE PIVOT FLFMFNT 	
PI VOT=0.
00 130 I=1.N
DO 130 J=J.N
	 SCAM IROH AND JCOL ARRAYS FOP INVALID PIVOT SUBSCRIPTS ...
IF (K.Eti.l) fiO TO 120
DO 110 1SC/SN=1 tKMl
DO 110 JSCAM=l.KMl
IF tl.EU. JROW(1<5CAN}> GO TO 130
IF (J.EW.JCOL(JSCAN) ) GO TO 130
IF (l)AHS(A (ItJ) ) .LF.DABS(PIVOT) ) GO TO 130
PIVOT=A (I t J)
IHOW (K) =1
JCOL (K)=J
CONTINUE

	 INSUPF THAT SEI ECTED PIVOT IS LARGER THAN EPS 	
IF (OABSfPI VOT) .GT.EPS) GO TO 140
SIMIJL=(I .
HF TURN

	 UKOATF THE DFTFWMINANT VA| UE 	

JCOLK = JCO|_ (K )
r)KTFH = DETFw<>PIVOT

..... NOPMALI7F PIVOT ROW EIFMFNT1: .. ..
DO 150 J=I.MAX
A ( IROWK.J) =A (IROWK, J) /PIVOT

	 CAWPf OUT FLIMINATION AND OEVFl OP INVER^F 	

DO 1 7(1 1 = 1 «N
AI JTK = A ( I t JC1I.K)
IF ( I.t'J. JPOUK) PO TO 170
fl ( 1 . JCOLK)=-A1JCK/PI VOI
0(1 160 J=l ,MAX
IF ( J.NF ..JfOLK) A ( I t J) =A ( I t J)-AIJCK*A (tHOWKtJ)
cotu INMF
                                                 53
                                                 54
                                                 55
                                                 56
                                                 57
                                                 5B
                                                 59
                                                 60
                                                 61
                                                 62
                                                 63
                                                 64
                                                 6<5
                                                 66
                                                 67
                                                 68
                                                 69
                                                 70
                                                 71
                                                 72
                                                 73
                                                 74
                                                 75
                                                 76
                                                 77
                                                 78
                                                 79
                                                 80
                                                 «1
                                                 82
                                                 83
                                                 84
                                                 85
                                                 86
                                                 87
                                                 88
                                                 89
                                                 90
                                                 91
                                                 92
                                                 93
                                                 94
                                                 95
                                                 96
                                                 97
                                                 98
                                                 99
                                                100
                                                101
                                                102
                                                103
                                                104
                                                105
                                                106
                                                107
                                                108
                                                109
85

-------
"00111
00011?
000113
000114
0001 15
000116
0001 17
OOOllfl
000119
000120
000121
0001??
000123
000124
000125
00012*.
000127
000128
0001H9
000130
000131
000 U?
000133
000134
000135
0001.36
000137
00013"
000139
000140
000141
000142
000143
000144
000145
000146
000147
00014R
000149
000150
000151
00015?
000153
000154
000155
000156
000157
00015"
000159
000160
000161
00016?
000163
000164
000165
oon
ooo
nno
oon
000
000
000
000
000
000
000
oon
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
ooo
000
000
000
000
000
000
ooo
000
ooo
000
000
000
ooo
000
000
ooo
000
000
0 0 °
noo
c
c




180
c
c










190

c
c



c
c
c
200



210

??0
c




230

?40
c
c


c
c
c
c
c
?50


	 ORPFU '-OLUTION VALUES UF ANY) »MO CREATE joRn ARRAY 	
(10 180 1 = ] «M
IHOV>I = lWOto ( 1 )
Jci>Li=jtoi (i )
JOBI){ IKO»II) =JCOl I
IF (JNOIC.RF.O) X(JCOLT)=A ( TROWI ,MAX)

	 ft 0, JUST MfiN OF DETERMINANT 	
IHTCH=0
NM1=N-1
no 190 i = i.,.iMi
IP1=I+1
DO 190 J = IH.N
IF (JOPD(J) .UF. .JORO(I) ) 00 Tn 190
JTEMP=JORD(J)
JOH!)(J)sJORD(I)
JORIK I)»JTEMP
INTCH=INTCH»I
CONTINUE
IF {INTCM/?»?.NE.INTCH) DETER=-OETER

	 IF INOIC IS POSITIVE RETURN WITH RESULTS 	
IE UNt>lC.LF..O> fiO TO 200
SIM!)L=ntTEP
RETURN

	 IF INOIC IS NEGATIVE OR 2ERO» UNSCRAMBLE THE INVERSE
E1RST HY ROWS .....
no ?ao J»I»N
UO ?10 1=1 «N
IHOWI=I^OW ( I)
JCOLI=JCOL d)
Y(JCOLI)=A ( I«HWt«J)
00 ?2l) 1 = 1 tN
A (I,J)=Y (I )
	 THEN «Y COLUMNS 	
DO />4() 1 = 1 .N
HO ?30 J=l »M
IMOwJ=IPQW(J)
JCOLJ=JtOL ( J)
Y(IPOWJ)=A ( I.JCOLJ)
f)0 ?40 J=l .N
A (I,J)=Y (J)

	 HETtlWN FOR INOIC NEGATIVE OR ZERO 	
SIMUL=DETEW
ot'TURN

	 E(lu^•A^ FOR OUTPUT STATEMENT 	



FORMAT (lOHOig TOO HIR)
EMI)
                                                                                             110
                                                                                             111
                                                                                             112
                                                                                             113
                                                                                             114
                                                                                             115
                                                                                             116
                                                                                             117
                                                                                             lie
                                                                                             119
                                                                                             120
                                                                                             121
                                                                                             122
                                                                                             123
                                                                                             124
                                                                                             125
                                                                                             126
                                                                                             127
                                                                                             129
                                                                                             130
                                                                                             131
                                                                                             132
                                                                                             133
                                                                                             134
                                                                                             135
                                                                                             136
                                                                                             137
                                                                                             13B
                                                                                             139
                                                                                             UO
                                                                                             141
                                                                                             1*2
                                                                                             1*3
                                                                                             144
                                                                                             145
                                                                                             146
                                                                                             147
                                                                                             14fl
                                                                                             149
                                                                                             150
                                                                                             151
                                                                                             152
                                                                                             153
                                                                                             154
                                                                                             155
                                                                                             156
                                                                                             157
                                                                                             158
                                                                                             159
                                                                                             160
                                                                                             161
                                                                                             162
                                                                                             163
ENO El T,
                                              86

-------
 «««»»»

f'FLT.L JMA INT.SOPOFP
000001
00000?
000003
000004
000005
OOOOOiS

END fLT.
000
noo
000
000
000
000
FUNCTION SOLDER  (F IRSTtSECONO)
 THIS FUMCriON  IS  CALLED  BY SORT
niMFNSIOM F IRSTO) • SECOND (3)
SOROER=FIPST(?)-SECOND(?)
RETURN
END
        nttintoo   SORT   «ntnt»
-------
»««»»«  SOHT

      IMAINT.SOPT
000001
000002
oooooi
000004
00000?
000006
000007
000003
000009
000010
00001 1
00001?
000013
000014
oooois
000016
00001 7
00001*
000019
000020
0000?!
000022
000023
000024
000025
000026
000027
00002R
000029
000030
000031
000032
000033
000034
000035
000036
000037-
00003*
000039
000040
000041
00004?
000043
000044
000045
000046
000047
00004fl
000049
000050
000051
000052
000053
000
000
000
000
000
OOP
000
000
000
000
000
000
oon
000
000
ooo
000
ooo
000
ooo
flOO
000
000
000
000
000
noo
noo
oon
oon
000
000
000
000
000
000
oon
noo
oon
000
000
oon
ooo
noo
ono
(too
ooo
ooo
ono
0011
oon
noo
ono

c
c
c
c
c
c
c
c
c
c
t
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
r
c
r.
c
c
c
c
c
c
c
c
c
c
c




ino


no




                       SUBROUTINE SORT (M,N, ITEM,Q)
                        THIS KOHT1NF IS CALLED BY PICTIIR AND CALLS 0 AND SORDER
                              FROM ACM, DEC.  1964
                                   VOL 7   NUMRER  1?» PACE  701
                                     -  TREESORT 3


                       PROGRAMMED "V JE SCHLOSSER
                       GENFRAL PURPOSE INTERNAL SORT SUBROUTINE
                       EXAMPLE OF USE - - -
                       OIMFNSIOM A(5»1000)
                       ASSUME -   N ITEMS OF 5 WORDS EACH
                                  TO BE SORTED IN ASCENDING
                                  ORDER ON THE SECOND WORD.

                       N IS LESS THAN OR EQUAL TO 1000
                       A CONTAINS THE ITEMS TO RE SORTED
                       FXTKRNAL 0
                  0 IS A FUNCTION SUBROUTINE WHICH WILL RETURN
                  A POSITIVE NUMBER IF THE FIRST  ITEM  (FIRST
                  ARGUMENT) IS TO SORT AHEAD OF THE  SECOND
                  ITEM (SECOND ARGUMENT).   SEE EXAMPLE BELOW.
                       CAll  SORT (A.N,5»Q)
FUNCTION O(H.
DIMENSION H (

-------
         SORT
000054
000055
000056
000057
000058
000059
000060
000061
000062
000063
000064
000065
000066
000067
000068
000069
000070
000071
000072
000073
000074
000075
000076
000077
000078
000079
000080
000081
000082
000083
000084
000085
000086
000087
000088
000089
)00090
)00091
J00092
500093
J00094
00095
'00096
000
000
000
000
ooo
000
ooo
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
ooo
000
000
000

120
130



140
150
160
170


IPO
190
200
210





2?0
230



240
25"
260
270


280
290




300
310
320


no 120 KJsl.ITFM
KOPY ( IQJMMUU. IS)
J=2»IS
IF (J.GT.NS) GO TO 180
IF (J.GE.NS) GO TO 150
IF (<)(M(1,J*1) ,M(1,J) ) ) 140.150.150
J=J+1
IF (Q(M(1,J) ,KOPY) ) 160,180,180
1)0 170 10 = 1, ITEM
M(IQ,IS)=M(IQ,J)
IS = J
GO TO 130
no 190 10=1, ITEM
M(IQ,IS)sKOPY(IO)
CONTINUE
NPLUS=N*2
00 310 11=2. N
I=NP|_US-II
IS = 1
NS=I
DO 220 10=1 ,ITEM
KOPY(IO)=M(IQ.I«;)
Js2«JS
IF (J.GT.MS) GO TO 280
IF (J.GE.NS) GO TO 250
IF (0(M(1,J+1) , Mtl.J) ) ) 240,250,250
J=J+1
IF (0(M( I ,J) .KOPY) ) 260.280.280
00 270 10=1, ITEM
M(IO. IS)=M( 10. J)
IS = J
GO TO 230
00 290 10=1, ITEM
M(IQ. IS)=HOPY ( 10)
110 300 1T = 1,ITEM
LAZY=M
-------
 «»»»»#  TJItF  «»»»»«

0FLT.L IMAINT.TIPE
000001
000002
000003
000004
000005
000006
000007
QOOOOR
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
00002?
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000042
000043
000044
000045
000046
000047
000048
000049
000050
000051
000052
000053
000
000
000
000
000
000
000
000
000
ono
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
oon
000
000
000
000
000
000
000
000
oon
000

c
c
c
c
r
c
c
c
c
c






c

r


c




c


c



c










r







                        SUBROUTINE:  TIDE  IFEFTI
                         THIS  ROUTINE  IS  CALLED BY INH AND CALLS GAUSS
                      THIS PROGRAM  USES GAUSSIAN ELIMINATION TO GENERATE
                      «N EXPRESSION FOR TIDAL  HEIGHT
                         INPUT  CONSISTS  OF  TCYC,  THF LENGTH OF THE TIOAL CYCLE  IN HOURS,
                         AS WFLL  AS  THE  HEIGHT  IN METFRS OF THF HIGH HIGH» LOW  LOW*
                         LOW HIGH, AND HIGH LOW TIDES.   THE TIMES AT WHICH THESE TIDES
                         OCCUR  ARF INPUT  IN DECIMAL FORM AND STORED IN THE ARRAY >T,
                         WHILE  THF HEIGHTS  ARE  STORED IN THE ARRAY »TIOH»
                         DIMENSION A(8,9)»  T(4),  TIDH<4), THFTA(4)t RESULT(fl)tFEET(fl)
                         DIMENSION TITLEO3) «TT(50) »YY<50)
                         COMMON /PTINT/  NJ»NC»NJGW,NTCYC»NQSWRT»NQCYC«DELTQ»PERIOD?
                        1 ALPHA 00 ) ,OEP(70> ,IPOINT(70»6),AS(70)«EVAP
                         COMMON/NEW/IJK,CHK»XM
                         EQUIVALENCE  (TT(4),T(4))t(TIDH(4),YY<4))
                         «»««««»»»»»»«»  NAMELIST  CARD1?  FOR  INPUT OF DATA      ••«*»»••»•»*•
                         NAMELIS1 /CARD1/  TT.YY
                           SET N5=l  SO  THAT  INPUT  WILL BE  FROM SCRATCH FRF
                         N5=l
                         Nf> = 6
                           SET LENGTH OF  CYCIE
                         TCYC=PRRIOD
                         RFAf)  =-SIN(THETAUC) )
                         A(IP,3)=-?.«SIN(?.*THETA(1C))
                         A(IP,4)=-3.»SIN(3.»THETA(ID)
                         A(IB,5)=COS(THFTA(TO)
                         A(IB,6)=?.«COS(?.*THETA( 1C) )
                         A (IB, n=3.«COS(?.»THETA ( 1C) )
                         A(IB,fl)=4.«COS(4.«THFTA(1C))
                         A ( IB,91=0.0
                         GO TO  in
                      F0« EQUATIONS  USING  F(X)
                     ?0  A(IB.1)=0.5
                         A(IB.?)=CnS(THETA(IH)(
                         A(IB, 3)=COS(?.»THETA(IB))
                         A(IB,4)=COS(3,»THhTA( IH) )
                         A (IH,5) sSIiitTHETA ( IH) )
                         A(IB, 6)=SIN(?.«THtTfl(IH))
                         A(IB,7)=SIM(1.»THF_TA(ItU)
                                             90

-------
000054
OOOOSS
000056
OOOOS7
00005R
000059
000060
000061
00006?
000063
000064
000065
000066
000067
00006B
000069
000070
000071
00007?
00007^
000074
000075
000076
000077
OOOOff
000079
OOOOfiO
ooooai
OOOOH?
OOOOB3
000084
0000fl5
000086
OOOOB7
00008R
000089
000090
000091
00009?
000093
000094
000095
000096
000097
000098
000099
000100
000101
00010?
onoioi
000104
000105
00010ft
000
noo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
ooo
000
000
oon
000
000
000
000
ooo
000
000
000
000
000
noo
000
000
000
000
noo
000
000
000
000
oon


30
c

c

35


40
C rff


c a




]



50


?91

60?

?9?

603
]
?93

3?0
330
?00
1
400
1
£
3
4
5
f-
500
1
600
601
300

                         A ( IH.H)=SIU(4.«THETA (I") )
                         A ( in,9)=TTI "RESULT < 6) *S.IN< 3. »BANGLE) "RESULT! 7) +SIN< 4. "BANGLE)"
                        3       HtSULT(fl)
                         AT IMF_=< ANGLE/360. )»TCYC
                         WRITKlbtftOP)  ANGLE, AT IME» VALUE
                         WRITEI6.601 )
                         GO  TO 2*3
                         CONTINUE
                         WRITE (6.60?)
                         FORMAT(i?X, 'ERROR  IN  NAMELIST --- NO FUNCTION GENERATED")
                         (50  TO  ?<»3
                         CONTINUE
                         WPITE(6,603)
                         FORMAT (2X»'ENH OF FILE ENCOUNTERED IN READING DATA --- NO FUNCTION G
                        1ENERATEOM
                         CONTINUE
                        RETURN
                        FORMAT (
                        FORMAT(2Xt»TIRAL  CYCLE  LASTS « »F7. 2, 1 X , i HOUOS • t ///. 1 X ,
                       1« INPUT STAGE  TIME PAIRS' »/«6X .' HOUPS • »5X» « METERS' )
                        FORMAT (1HO» 'COEFFICIENTS  FOR  AN  EQUATION OF FORM i ,6X « 'F ( X) a 0.5»A
                       11 + A2«COS(THETA)  *  A3«COS ( ?«THET A) • f / »45X , • » A4«COS (3«THET A) + A
                       2S*MN(THFTA)  *  A6»S IN (2»THET A ) ' ,/.*5X , '  +  A7«SIN ( 3«THET A)  « A**SIN
                       3(4»THETA) ,' ,//,40X, 'WHERE F(X)  HAS UNITS OF METERS. ARE AS FOLLOWS
                       4»./»5Xt(Al  =  ' .FM.3./.SX, «A?  =  ' »F«.3./,SX,»A3 * '«Ffl.3»/.5X,
                       5'A4 a  '»FB.3,/.5X.'A5 =  • . Ffi . 3 . / , SX , ' A6  »  '»F8.3./»5X»
                               (4MH1FUMCTION VALl'ES LTSTFn  FOR  10 DEGREE INCREMENTS.//.
                       19X, TiEGMFFS' « 1 3X • ' T IMF (HRS) ' ,SX« 'HFJGHT (METERS) ' )
                        FORMATflHl )
                        ENO
END
                                            91

-------
 ««««»«  FTNO   »»»»»»

       HMMNT.FINO
000001
00000?
000003
000004
000005
000006
000007
000008
000009
000010
000011

END ELT,
ono
ooo
oon
ooo
ooo
ono
ooo
ooo
ooo
ooo
ooo
100
SUBROUTINE FIND(I LAST.NJP.DUM«NJW,HP,NJ)
 THIS HCMT1NF  IS CALLED BY HYOPl.T
COMMON /TAPES/N<5.Nf>»N?0»N22»M2'V
DIMENSION nuM<6o'i) »NJW (20) .HP (?0i?oo>
READ (N?4) (DUM(I),I=1,NJ)
DO 100 1=1,NJP
MP=NJW(I)
HP (I » ILPST ) =IH!M (NP)
CONTINUE
RFTL'RN
ENO
4
5
6
7
8
9
WHOG.P  •#••»«   6ENFUN   «»•»»»
                                               92

-------
 «»«»»»  fiTNFUN  #«»»««


»ELT,L HMAINT.GENFUN
000001
000002
000003
000004
000005
000006
000007
ooooon
000009
000010
ooooi i
000012
oooon
000014
000015
oooniis
000017
00001R
000019
000020
000021
000022
000023
000024
000025
000026
000027
00002«
000029
000030
000031
00003?
000033
000034
000035
000036
000037
00003P
000039
000040
000041
000042
000043
000044
000045
000046
000047
00004H
000049
000050
000051
000052
000053
000
000
001)
000
000
000
000
noo
noo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000
000
000
oon
000
000
noo
000
POO
000
ooo

c
c
c
c
c
c


c
c





c
c
c



c
c
c



c

c
c
c
c

c
c


c
c
100











 SUHHOUUNF GENFUU  (Z1,Z2.IY«[X.73)

 »«»»»»»*»(»»«<»« BATTELLE NORTHWEST  11/9/71


  THIS ROUT INF IS CALLED BY HYDCAL

 »»«»*«««*»»»»<> ASSIGN THE COMMON   DATA
 COMMON /T/\PES/N5»N6»N20»N2?»w?'4
                                                                              «»•»»««»•»«»#
                                                                              «•««««»»»*»*«
                CONTROL AND  TITLE  INFORMATION          «»»»•«»••»«»«
 COMMON /PRINT/ NJ»NC»NTCYC.NQCYC»OELTO.PERIOD.ALPHA(30)»
10F.PI70) iNOSWRT
 COMMON/lJlJAl./NCHAN(70«6) .AS (70) .LEN(IOO) .NJIJNC tlOO»2)
 COMMON/UIN/iJINT»DELT«WIND»W01R»NJSW,NJGW,NHCYC»NT»ICYCtNCYC.W,
INEXIT.JSW(^O),JG«(20)«AO13.?0.10>

 »«»»«•««««»««« JUNCTION  INFORMATION                   »»»»»»««»»«••

 COMMON/H50/HI70)»HM(70)»HT(70).HBAPI70).HAVE(70)i
1IPOINT(70.M.VOL(70)«X(70)»Y(70)»C)IN(70> »OOU(70) *
20INST(20),OINHAR(70).QOURARI70)

 ««««*«»*«<»«»«» CHANNEL INFORMATION                    »*»•»»«•«»•»•

 COMMON/B7P/BUOO)«R(100).0(100).OBAR(lOO)t
10AVF. (100),V(100).VT(IOO)fVRAR(lOO).FWINO(lOO),NTEMP(6)»
                        REAL LEW
                        IF (IY.FO.?) RO TO 200

                        »«»»»«»»»«««««  CONTROLLED NODE  FUNCTIONS  DESIRED
                        IJK=JGW (IX)
                        RO TO  (InO. 120« !'10« 170.140. 140) .  UK
                                                      »«»««*•««*««•
»««»»*«*»»««<»«
CONTINUE
                                               FORMULA OF.MRED
                        CON=73/AS(IX)
                        DHLM=0.
                        00 110 ICT=lt1?
                        CM=CON»ln. 7t4
                        DHM= (Z2M+OHLM)/?.
                                                                          3
                                                                          4

                                                                          6
                                                                          7
                                                                          e
                                                                          9
                                                                         10
                                                                         11
                                                                                                 16
                                                                                                 17
                                                                                                 IS
                                                                                                 19
                                                                                                23
                                                                                                24
                                                                                                25
                                                                         ?9
                                                                         30
                                                                         31
                                                                         32
                                                                         33
                                                                         34
                                                                         35
                                                                         36
                                                                         37
                                                                         38
                                                                         39
                                                                         40
                                                                         41
                                                                         42

                                                                         44

                                                                         46
                        H2M=
-------
GFNFIIN
000054
000055
000056
000057
000058
000059
000060
000061
000062
000063
000064
000065
000066
000067
000068
000069
000070
000071
000072
000073
000074
000075
000076
000077
000078
000079
000080
onooai
000082
000083
000084
000085
000086
000087
000088
000089
000090
000091
00009?
000093
000094
000095
000096
000097
000098
000099
000100
000101
000102
000103
000104
000105
000106
000107
000108
000109
000110
noo
oon
ooo
ooo
noo
onn
ooo
ooo
ooo
ooo
ooo
ooo
oon
ooo
ono
ono
ono
noo
noo
ooo
ooo
ooo
ooo
ooo
ooo
000
000
000
ono
noo
000
ooo
000
000
000
000
ooo
000
ono
ooo
ooo
ooo
000
ono
000
oon
noo
ono
oon
noo
oon
noo
ono
noo
non
nno
nno

110

c
c
c
1?0

Z2 = 72M».1.?'<
CONTINUE
RETURN
««««*«»*»««*««

««»*»«»»»»««»«
7? = 0.5»AO ( ) » IX
lAO(l.IX.4)»Cf)S



END »»»»•»»»•»*»«

TIDAL CONTROLLED NODE «#•»»»»«••#••
.1 ) +AO(l»IXt2)»COS(W»zn+AO(l»IX»3)«COS(2.»W»Zl)*
<3.«W»Zl)+AO(l,IX«5)»SIN(W»Zl)+AO(liIX»6)»SIN<2.»W»Z
/?!> +AO (1 •IX.7)«SIN(3»»W*Zl)«AO(l«IXtA)*SIN(4.*W*Zl)

C
C
C
130

C
C
140

150



160


C
C
C
c
17(1





IPO




190


C
C
C
c
200





?in


RETURN
»«»»«»»«»»«»«»

»»»«»»«»»»««*»
TX = Z1
GO TO ISO
»»«»««««*««*•»
«»«»»»»<*»»«»»»
CONTINUE
TX=7l/3bOn.
11 = 1
I2=IX
IRErUR=l
GO TO 220
CONTINUE
z?=zz
RETURN
»»»»»»»»»»»»»»


OtXHUHHHHHHHtttft
CONTINUE
TX=Z3/360n.
11 = 1
I2=IX
IRETUR=?
GO TO 220
CONTINUE
7 <»<> « «» «
CONTINUE
TX=71/360n.
11=3
I?=IX
1RF.THR = 4
GO TO 7?0
OOUTINIIF
7.? = 77
PFTllRN

END ««»»«««»«*»««

Q VS H NODF *»»•»••*•«»«


END «»»««»«*»«*««
HVS T AND Q VS T MODES »«»«#«#»•«•»•









EMD «»«««•*»»**•«


THIS is THE H vs T AND a vs T NODE »«•»»*«#•••••














FNI) »«»«««««•»««*


GENERATE THE HYDROGRftPH OUTPUTS ««»••«»•«•»••









                                                                                       53
                                                                                       5*
                                                                                       55
                                                                                       56
                                                                                       57
                                                                                       61
                                                                                       6?
                                                                                       63
                                                                                       64
                                                                                       65
                                                                                       66
                                                                                       67
                                                                                       68
                                                                                       69
                                                                                       70
                                                                                       71
                                                                                       72
                                                                                       73
                                                                                       7*
                                                                                       75
                                                                                       76
                                                                                       77
                                                                                       78
                                                                                       79
                                                                                       80
                                                                                       81
                                                                                       82
                                                                                       83
                                                                                       84
                                                                                       85
                                                                                       86
                                                                                       87
                                                                                       88
                                                                                       89
                                                                                       90
                                                                                       91
                                                                                       9?
                                                                                       93
                                                                                       94
                                                                                       95
                                                                                       96
                                                                                       97
                                                                                       98
                                                                                       99
                                                                                      100
                                                                                      101
                                                                                      102
                                                                                      103
                                                                                      104
                                                                                      105
                                                                                      106
                                                                                      107
                                                                                      108
                                      94

-------
         GFMF'IW
000111
0001 1?
000113
00011*
000115
000116
00011 7
00011*
00011V
000120
0001?!
0001??
000
000
000
000
000
000
000
000
ooo
000
000
ooo
c
c
c
c
?




c
c

END ElT.
                        «»»«»«*«•»«»»»
                                                                             •*»•»*****»•*
                                       GENERATE  THE FUNCTION                •«•»••••*•«••
                        CONTINUE
                        ZZaAOm.I?.l)*AO
-------
         HYOCAL  •««»««

»ELT»l. HMAIMT.HYDCAL
000001
00000?
000003
000004
000005
000006
000007
00000«
000009
000010
OOOOli
000012
00001.1
000014
000015
000016
000017
ooooio
000019
000030
000021
00002?
000023
000024
000025
000026
000027
00002*
000029
000030
000031
000032
000033
000034
000035
000036
000037
00003*
000039
000040
000041
000042
000043
000044
000045
000046
000047
00004fl
000049
000050
000051
000052
000053
000
00 (1
000
000
ooo
000
ooo
000
000
000
oon
OOD
000
ooo
oon
000
000
ooo
ooo
00(1
000
000
000
000
ooo
ooo
ooo
000
000
000
ooo
ooo
ooo
000
ooo
000
000
000
000
000
00 0
000
noo
000
000
000
000
000
000
oon
ono
oon
000

c
c
c
c
c
c


c
c





c
c
c



c
c
c




c




c
c
c

c
c
c
c
100




1) 0





                         SUfROUT IMF  HYDCAL
                          THIS  ROUTINE IS CALLED »V HMAINV  (09 HMAlNT)
                          AND CALLS  GENFUN
                                          BATTELLE NORTHWEST 11/9/71
                                          A5SIGN THE COMMON DATA
                         COMMON  /TAPFS/N5»N6»N20*N22»N2*
                         COMMON/PARAMS/IZ5«IZ6*lZ9»l/n2*IZ13

                                          CONTROL AND TITLE INFORMATION
                         roMMON  /PRIMT/  NJfNCtNTCYCtNQCYC.DELTOfPERIOD.ALPHAMO) .
                        1DEP(70)tNOSwRT
                         COMMON/UUAL/NCHAN(70«6)»AS(70)»LEN(100)»NJUNC(100»?.)
                         COMMON/«IN/<)INT.DELT»HINO»WOIR»NJSW,NJGW»NHCYC»NT»ICYC»NCYC»W»
                        INFXITtJSW(PO)tJflW(20)»AO(3,20,10)

                                          JUNCTION INFORMATION

                         COMMON/M50/H(70)»HN(70 I»HT(70)tHBAP(70) .HAVE(70) *
                        11 POINT ( 70 f M .VOL (70) »X(70) »Y(70) »QIN(70) »OOIJ(70) <.
                        ?(JIMST (20) ,QINRAR(70) »QOUBAR(70)

                                          CHANNEL INFORMATION

                         COMMON/B7?/B<100)*R(100)«A(100)tAT(1001tAK(100)»0(100)»QBAR(100)t
                        10AVF(100),VUOO)»VT(100)«VHAR(100).FWIND(IOO).NTFMP(6)t
                        2NCLOSUOO)
                         COMMON/NTR/NTRIBtTRBDEP(50) ,ITRIB(50,?)

                         REAL  LEN
                         REAL  LAM
                         DIMENSION  ARHAY(J3)
                         DIMENSION
                        DATA  A51Ff
-------
HYDC4I.
000054
OOOOSS
000056
00005?
000058
000059
000060
000061
000062
000063
000064
00006S
000066
000067
00006fl
000069
000070
000071
00007?
000073
000074
000075
000076
000077
00007«
000079
000080
OOOOfll
OOOOP?
OOOOR3
0000«4
OOOOB5
000086
000087
OOOOflU
OOOOH9
000090
000091
00009?
000093
000094
000095
000096
000097
00009H
000099
000100
000101
oooioa
000103
000104
00010S
000106
000107
000108
000109
000110
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ono
000
000
000
000
000
000
000
ooo
000
000
000
ooo
000
000
ooo
000
000
000
000
ooo
000
000
000
000
ooo
000
000
000
000
000



c
c
c
c
c





c
c
c





c
c
c



c
c
c
c
c
120
c


c
c
c
130
c

c
c
c
140
c

c
c
c
c
150
c


c
              5(1)»I=1»NJ).((NJUNCtN.L)«L*I.2)»LEN(N)»R(N)»R.OAVE(N),V(N).VTrNl»VBAR(N)»FWIND ,W=1 tNC) .PERIOD* 
-------
HYOCAL
000111
000112
000113
000114
000115
000116
000117
000118
000119
000120
000121
000122
000123
000124
000125
000126
000127
00012«
000129
000130
000131
000132
000133
000134
000135
000136
000137
00013*
000139
000140
000141
00014?
000143
000144
000145
000146
000147
000148
000149
000150
000151
000152
000153
000154
000155
000156
000157
00015S
000159
000160
000161
00016?
000163
000164
000165
000166
000167
000
000
noo
noo
000
oon
ooo
ooo
noo
ooo
ooo
ooo
ooo
oon
000
non
ooo
noo
ooo
ooo
ooo
ooo
noo
ooo
ooo
oon
ooo
ooo
oon
noo
ooo
oon
oon
noo
noo
noo
ono
ooo
ooo
oon
oon
000
oon
oon
noo
nn-o
oon
ooo
ono
oon
nno
oon
ooo
oon
noo
noo
non
c
c
c
160
C
170
180
C
C
C

241

C
C
C


190
C




C
C
c

c



200

210


C
C


C

2?n
C


C


?30


?4n
C
r.
c
DETERMINED FROM A MASS BALANCE

USE GENFUU TO CALCULATE INITIAL VALUES
CALL GENFUN  +. { H ( N|_ ) » H ( NH ) ) /2 .
*»«»««*»» /1RF. THERE ANY TIDAL FLATS •«•*••«*»•#••##»#*••«•«•»•**•»
IF (NTRIO.LE.O) GO TO 220
00 200 I=1«NTRIR
IF (N.EO.ITRIB(I.l) ) GO TO 210
CONTINUE
GO TO 220
I JN=lTRIfl (It?)
IF ('IJN.EO.ND IHJNsNH
IF < IJN.EO.NH) IHJN=NL
RIVER DEPTH IS THE DIFFERENCE BETWEEN HEAD AND BOTTOM
ELEVATION (NOTE THAT PEP IS NEGATIVE)
P (N) =H( UN) +TRHnEP(I)
IF (H(IHJN) .LT.H(IJN) I GO TO 220
COMPUTE AVG RIVER DEPTH (MOTE SIGN CONVENTION)
R(N) = (H( fHJN) +HUJN) ) /?, +TRRDEP ( I )
TONT INUE
AREA = '
-------
HVOCAI   »•*»»«
00016R
000169
000170
000171
000172
000173
000174
000175
000176
000177
00017«
000179
OOOlflO
OOOlfll
000182
000183
000104
0001B5
000186
000187
0001HH
0001fl9
000190
000191
000192
000193
000194
00019S
000196
000197
000198
000199
000200
000201
000202
000203
000204
000205
000206
000207
000208
000209
000210
000211
000212
000213
000214
ooo?i=;
000216
000217
000218
000219
)00?20
)0022l
)002?2
)00223
)002?4
noo
noo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
ooo
ooo
000
000
ooo
000
nno
000
ooo
000
000
oon
ooo
ooo
000
000
noo
noo
000
ono
000
nno




260
c
c
c
c
c
c
c
c
c
c
c


c
c
c
c
c
c
c
c
c
c

c
c


270




280
c
c
c
c
c
c
c
c
c
c
c

c
c
c
(,


               00 260 J=ltNJ
               VOL(J)=0.
               IF (AS(J) .1-0.0.) 60 TO 260
               VOL(J)»(H(J)+DEP(J))»AS(J)
               CONTINUE
               «» » »»»»*»« tnnxt              ENH
               0«0000«»»«»0» START OF OUTER DO LOOP  «••»»•*•»»#•««•»«•»•*•»*•«•••

               NT=THE DAILY CYCLE NUMBER
               NTCYC'THF. MUMPER OF DAILY CYCLES TO PE  SIMULATED

               ««»«««««»»«#«»«««««»«***«*»««»»»«»«»«*«»*•»«««»«»»«»»«»««»««*•«**•
               DO "510 NTel.NTCYC
               HOIJWaO.O
               00»»»»»«0«x»0» START OF THE 2ND OF THREE NESTED  DO  LOOPS  ••»•*•«•«•
               ««»tt««*«»««««»«»»*««*«»*tt»*«ff«««»ff«»»««»*«»««»**««*««««*»0««**«***
               NQ=THE (HI AI ITY CYCLE NUMBER
               NQCYCsTHE MJMRER OF QUALITY CYCLES PER DAILY  CYCLE
               DO 900 NQ*1,NQCYC
                              INITIALIZE THE OUTPUT ARRAYS FOR  THE  SWOUAL  ROUTINE
               DO 270 Nal.NC
               VBAR(N)=0.
               (JflAH(N)=0.
               00 280 J«1»NJ
               HBAPI J)=0.
               <»INBAR(J)«n.
               OOUHAR (J)*0.
               CONTINUE
               «««»««««««»»««
                                                                     *»«***«***••*
               »«00«»«00»000 START OF THE THIRD OF THREE  NESTED DO LOOPS  *••••»*
               NHH=THE HYDRAULIC CYCLE COUNTER
               NHCYC=THE NUMBER OF HYDRAULIC CYCLES PER QUALITY CYCLE
               DO 860 NHHaltNHCYC
               TIME IS THf  TIMINB VARIABLE THAT RFfilNS AFTFR THE FLOW PATTERNS
               HAVF REACHED F.OUILIHRIUM
               IF (NT.LT.MQSWRT)  C,(l TO 300
137
138
139

150
151
152
153
154
155
156
157
158
159
160
161
16?

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
                                       99

-------
HYDCA!.  •««*»»
000??5
000226
000227
0002?fi
000229
000230
000231
000232
000233
000234
000?35
000236
000237
00023*
000239
OOOP40
000241
00024?
000243
000244
000245
000246
000247
000248
000249
000250
0002M
000252
000253
000254
0002*15
000256
000257
000258
000259
000260
000261
000262
000263
000264
000265
000266
000267
000268
000269
000270
000271
000272
000273
000274
000275
000276
00027?
000278
000279
000280
00028)
000
000
000
000
000
000
oon
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
,000
000
000
000
ooo
000
000
000
000
ono
ooo
000
000
000
000
000
oon
000

c
c



c
c

c
c


c
290
c
c
c
c
300





310



320

c
c
c
c
330


c
c
c
c


c
c




340


c
c


  »»»»•»»«> e »«« HYDpoGPAPH INPUTS *»»»»»»«»»»#»»«»»«»•»«»»»«*»»•»«»»««
  IF (NJSW.F.-l.O) GO TO 300
  no ;»90 L = l «N isw
  J=JSW(L)

+ *» + + USE SUHROUTINE GF.NFUN TO GENERATE  FUNCTIONAL  VALUES + + + + + »
  CALL GENFUN  (TIHE»OIN(J)»2»L»TIME)
»»» SPECIAL TASF - EPA PESTICIDE STUDY
   THE TEST FOR EQUALITY BETWEEN NON-INTEGERS  MAY NOT  BE  MEANINGFUL.
  IF (TIMt .GT.HYDEND.AND.HYDENIi.NE.  0.0)  OIN(J)  » 0.0
  IF(QIN(J).LT.0.0) OIN(J) = 0.0                                     PEST
                                                                                      203
                                                                                      ?04
                                                                                      205
                                                                                      206
                                                                                      207
                                                                                      208
                                                                                      209
               OIN( J)=++»       OF THE CHANNELS TO SEE IF THEY HAVE DRIED UP»  AND»  IF  THEY
* + + +       H/WF» SKIP THE CALCULATIONS. +»*»»«•

 IF  (NJUNC(Ntl).LE.O)  GO TO 380
f + + +  PRY CHANNI-L CHECK (DRY IMPLYING THAT DEPTH  IS LESS  THAN  0.01
»++*       MFTEWS OR 0.033 FEFTI »++*»»
 IF(R(N).GF.0.001)   GO TO 340
 VT(N)=0.0
 Q(N)=0.0
 GO  TO 3UO
 CONTINUE
               NH=NJUNf(N.?)
              »»»+ DELFH =  DIFFERENCE  HETWFEN HEADS «T THE NODES AT EACH END OF THE
              t++*      CHANNEL  (BEGINNING  OF TIMFSTFP)  ++++++
               OtLTH = H (^|H) -H ( NL )
               HELT/ = i'EP(ML)-r>FP(NH)
                                                                         210
                                                                         211
                                                                         212
                                                                         213
                                                                         214
                                                                         215
                                                                         216
                                                                         217
                                                                         218
                                                                         219
                                                                         220
                                                                         221
                                                                         222
                                                                         223
                                                                         224
                                                                         225
                                                                         226
                                                                         227
                                                                         228
                                                                         229
                                                                         230
                                                                         231
                                                                         232
                                                                         233
                                                                                      234
                                                                                      235
                                                                                      238
                                                                                      239
                                                                                      240
                                                                                      241
                                                                                      242
                                                                                      243
                                       100

-------
HYOCAI.
00028?
000283
000284
000285
00028ft
000287
000288
000289
000290
000291
000292
000293
000294
00029S
000296
000297
000298
000299
000300
000301
000302
000303
000304
000305
000306
000307
000308
000309
000310
000311
000312
000313
000314
000315
00031ft
000317
000318
000319
000320
000321
000322
000323
000324
000325
00032ft
000327'
000328
000329
000330
000331
n n n 1 1 ?
U U U J Jr
000333
000334
000335
000336
000337
000338
oon
000
000
000
000
000
000
000
oon
000
000
oon
oon
oon
000
noo
oon
oon
noo
000
000
oon
oon
noo
000
000
000
000
000
000
oon
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
noo
000
n n n
U U v
ono
000
noo
noo
000
000


c


c

3^0

c
360









370
C



C


C


C


c




c
c

380
C
c
c
c
c

c
c





DEL
DEL
4 » * + + +
IF
DO
+**«+»
IF
CON
GO
»»»
UN
IF
IF
DEL
IF(

IF(
IF(
IF(
IF(
CON

TEM
TEMi
HCH

DEL
V2=

OEL
V2 = '

OEL'
V2 = '


1»»2
OEL'
VTII


0(N
CON
«»»•

otto
»»«'
0004
00 '

»»»+*«
SUM*
00 '
IF
If
N = M(
DELH»n.6»(H(NH)-HT(NH)+H(NL)-HT(NL))
--' TY=UE.LTH-OtLTZ
    ARE THFi?F  ANY  TRIBUTARY  CHANNELS? » + + + + +
   (NTRIH.IE.O) 00 TO  370
   350 IL=1»MTRIH
    IS CHANNEL N A TRIBUTARY  CHANNEL? +»*+»+
   (N.EG.TTHTR1IL«1))  GO  TO  360
   riwut
   TO 370
   »»» IJN=NUMBER  OF THE  TIDF  FIAT  NODE «*»»»«••»«»•»«•»»***»«»»«»
IJN=ITRIB(IL»?)
   (IJN.FO.NL) IHJN=NH
   (IJN.E(J.NH) IHJNsNL
   TZ=2.»("KPFLV2

               OELV4=-32.1719»(OELTH-DELTZ)/LEN(N)
               V2=V2»DELT?«OELV4

                     B.5»( (l./TEMP*2.»ABS(V2))-SQ&T«l./TEMP<

               DELV3=-SIGN(DELV3iV2)
               VT(N)=V?*DELV3
                                                    ,»V2))»«2-4.»V2
               0(N)=VT(N)«A(N)
               CONTINUE
               «»«»««»««««««»
                                           F NO
                                                                     «»*«»»»«««*»*
               «»»»««««««»«» CONTROLLED NOOF CALCULATIONS  •*«•••••«»#»»»#••••••»*
                          nt» FLOW AT 1/4 OFLT AND HFAO  AT  1/2  DELT
               00 470 J=1.NJGW
                  FLOW OUT OF NODE  (SIIMQ)  OUE  TO FLOWS
         CALCULATED IN ADJACENT CHANNELS  +*++*»

00 400 K = l,I7f>
IF (NCHAN(JtK) .F.O.J) GO TO 400
If (NCHAN(J.K).LE.O) GO TO 400
                                                                       265
                                                                       266
                                                                       267
                                                                       268
                                                                       269
                                                                       270
                                                                       271
                                                                       272
                                                                                      273
                                                                                      274
                                                                                      275
                                                                                      276
                                                                                      277
                                     101

-------
HYDCAI.
000339
000340
000341
00034?
000343
000344
000345
000346
000347
000348
000349
000350
000351
000352
000353
000354
000355
000356
000357
00035R
000359
000360
000361
000362
000361
000364
000365
000366
000367
000368
000369
000370
000371
000372
000373
000374
000375
000376
000377
000378
000379
000380
000381
000382
000383
000384
000385
000386
000387
00038M
000389
n A n ion
U U v J V v
000391
00039?
000393
000394
000395
noo
000
000
ono
000
000
000
oon
ooo
000
000
000
000
ooo
noo
ooo
oon
ooo
ooo
000
000
000
ooo
000
000
000
000
000
oon
ooo
ooo
ono
oon
ono
ooo
ooo
ooo
ooo
ooo
000
000
ooo
ono
noo
noo
000
000
oon
000
oon
non
n n n
\* \i \'
000
000
noo
nno
noo



390
400
c
c


c

c
c
c
410
C



C


C
c
c
420
C



C
C
C
430
C
C

c



c
c
c
440
C


c
c
c
1
450
C



                IF  ( J.NE.KJUNC FLHH
               GO TO  47n
               TIDAL  CONTROL  STAGE

            ****** USE  SUBROUTINE  GENFUN TO GENERATE FUNCTIONAL  VALUES ******
               CALL GENFUN  { T2.HT ( J) t 1 • Jt T2 )

               Q(J)=-SUMQf (HT(J)-H(J) )«AS(J)/DELT2
               VT (J)sQ,
               GO TO  470
               0AM IS OPERATED ACCORDING TO A Q VS H OPERATION POLICY

            ****** USE  SUBROUTINE  GENFUN TO GENERATE FUNCTIONAL  VALUES ******
               CALL GENFUN  
-------
HYOCAI_
000396
000397
00039B
000399
000400
000401
000402
000403
000404
000405
000406
000407
000408
000409
000410
000411
000412
000413
000414
000415
000416
000417
000418
000419
000420
000421
0004??
0004?3
000424
000425
000426
000427
000428
000429
000430
000431
000432
000.431
000434
000435
000436
000437
000438
000439
000440
000441
000442
000443
000444
000445
000446
000447
000448
000449
000450
000451
000452
000
000
000
000
000
ooo
000
000
000
noo
000
000
000
000
oon
000
000
000
oon
000
oon
ooo
ooo
000
000
000
flOO
000
000
000
000
POO
000
000
000
000
ooo
000
000
000
000
000
000
000
ooo
000
000
noo
000
000
000
000
000
001
000
000
000

c
c
c
c
460
c
c

c


470
c
c
c
c

c
c
c







480
400
c

c

c

c

c
c







c

500
c

510




GO
DAM
OETI

******
CALl

******
SUM(
******
HT (>
VT (.
CON1
«««<
»*•<

»»o<
no «

******
******
SUMC
00 t
IF 1
N=N(
IF i
SUMf
GO 1
SUMl
CON1

If 1
******
SUMr,
******
HT(v
******
IF (
******
******
HT(v.
VOL(
AS(J
no *
NX»lN
IF (
IF (
******
NCLfl
CONT
******
NOPY
CONT
IF (
IF (
no 5
IF <
                  TO 470
               OflM WHOSE OUTFLOW  IS A KNOW FUNCTION  OF  TIME  AND WHOSE HEAD IS
               DETERMINED FROM A  MASS BALAMCE

             »»»+* USE SUBROUTINE GENFUN TO GENERATE  FUNCTIONAL VALUES ******
               CALL GENFUN  (TIM?»Q(J)•1«JtTIM?)

             ++++» NET FLOW *****
               SUMQ=SUMO+o
             ***** CHANGE HFAD TO ACCOMODATF NET  FLOW »*++»»
               HT(J)=H(J)-OELT2«SUMQ/AS(J)
                     0.
                     UE
                                                                     ««*•*«««»•»**
                                                                     »*»«««»«**•««
               «*«»**•«««»•« REGULAR NODE1; STAGE  AT  1/2  DELT
                      JaNJRWltNJ
             ***** CALCULATE NET FLOW OUT OF NODE  (SUMO)  DUE  TO  FLOWS
                        CALCULATED IN ADJACENT CHANNELS  ******

                      Kal, 17*
               IF (NCHANM.K) .LE.O) GO TO 4<>0
               N=NCHAN( J,K)
               IF ( J.NF. .NJUNClNi 1) ) 00 TO 480
                          J (N)

               SUMU*SUMO-0 (N)
                  (AS(J) .LE.O.) GO TO 510
               »+* NET FLOW OUT ******
               SUMO=SUMQ+OOU(J)-QIN(J)+EVAP»AS(J)
               ++» CHANGE HEAD TO ACCOMODATE NET FLOW »++«**
               HT(v))»H(J)-OELT2«SUMQ/AS(J)
               »+» IS HEAt) GREATER THAN BOTTOM ELEVATION  (IS THERE WATER  PRESENT)?
               IF (HT(J)*dEP(J) .GT.O.) GO TO 510
                   NQDt IS DRYt SO SET HEAD EQUAL TO BOTTOM ELEVATION
                        (RUT CHANGE SIGN) +++*»+
               HT(J)3-DEP(J)
                      0.
                      AS(vl)
                      K = l,IZf-
                      N(J,K)
                  (NX. LE.O)  GO TO "500
                  (NX.LE.MJOU) GO TO 5PO
                   MARK AS A DRV CHANNEL ******
                   S(NX)=)
                   INUE
                   MARK AS A DRY NODE ******
               IF  (NDRY.FO.O)  00 TO 560
               IF  (NTIMS.GT.?)  00 TO S60
               DO  5SO  NaMJGW) ,NC
               IF  (NJUNC(Mtl ) .LE.O) GO TO 5SO
 314
 315
 316
317
31B

319
320
321
322
323
32*
325
326
32T
328
329
330
331
332
333
334
335

336

337

338

339
34o
341
34?
343
344
345
346

347
348

349
350
351
352
353
354
                                     103

-------
HYOCAL  »»»«»»
000*53
000454
000455
000*56
000457
000458
000459
000460
000461
000462
000463
000464
000465
000466
000467
000468
000469
000470
000471
00047?
000473
000474
000475
000476
000477
00047*
000479
000480
000481
OOOAB?
000483
000484
000485
000486
0004R7
000488
000489
000490
000491
00049?
000493
000494
000495
000496
000497
000498
000499
000500
000501
000502
000503
000504
000505
000506
000507
000508
000509
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
noo
000
oon
000
ooo
000
000
000
000
000
oon
000
ooo
000
000
000
000
oon
non
000
onn
ooo
noo
000
ooo
000
onn
non
ooo
ooo
noo
ooo
noo
000
oon
oon
non
oon








5?0

530
540
550

560
C
C
C
C




C ^
C <







r


c

570

580










590
C
C. +




               If (NCLOSri) .MF.I ) GO TO 550
               CJ (N I = 0 .
               V(N)=0.
               VT(N)=0.0
               00 540 1=1,2
               II=NJUNC(N,I>
               DO 520 J=1«IZ6
               IF .EQ.N) 00 TO 530
               CONTINUF
               GO TO 540
               NCMANUI tJ)e-N
               NJUNC(N»I)=-II
               CONTINUF
               60 TO 330
               CON1
                                                       «*«*««««*»*»*

                COMPUTATION OF  CROSSECTIONAL  AREA AND FLOW AT 1/2 0
                AND VELOCITIES  AT  THE  FULL  OELT        «»••#««•»••»•
 DO 630 NsNJfiWlfNC
 IF (NJU*'C(N»1 ) .LE.O) 60 TO 630
 NL=NJUNC(N.1)
 NHsNJUNC (M.?J
*++» HEAD FICRFMENT * AVG OF THE CHANGE  IN  HEAD  OVER  ONE-HALF
* + »*      TIMFSTEP AT THE TWO CHANNEL  ENDS  +++«*+
 DELH=O.S*(HT(NH)-H(NH)+HT(NL)-H(NL))
 DELTH*HT(NH)-HT(NL)
 OELT7 = DF.f> (M|_ ) -DEP (NH)
 DELTY=OELTM-OF_LTZ
 RNT=R(N>*DFLH
 HCHAN=(HT(MH)*HT(ND)/?.
 AT(N)eA(M)+B(N)»DELH
 «»»»»»»»»  /\Rf THERE ANY TIDal  FLATS «««««««««»»»«»*«»»«»«»»»»»»»»»
 IF (NTPIR.l E.O)  GO TO 590
 DO 570 Us] ,NTRIB
 ooooo» 15  CHANNEL N A TIDE FLAT CHANNEL «»»»««*#»»«»»»««»*«««««•«•
 IF (N.EO.ITHIfl(IL»1))  00 TO 580
 CON!INUF
 GO TO 5VO
 UN=ITRIHUL»?)
 IF  (IJN.FO.UH)  IHJN=NL
 IF  (UN  .FU.  ND  IHJN = NH
 neLT^ = ^.»(nF_P(I JN)-TRRP)EP( IL ) )
 IF (IHJN.I_T.UN) l)ELTZ=-DFLW

                          DFLTYaO.O
                          DELH*HT( UN)-H  (UN)

                          RNT= (HT (IHJN) *HT (UN) )/2.«TRBDEP( ID
                   355
                   356
                   357

                   358
                   359
                   360
                   361
                   362
                   363
                   364
                   365
                   366
                   367
                   368
                   369
                   370
                   371
                   372
                   373
                   374
                   375
                   376
                                                                                      377
                                                                                     379
                                                                                     380

                                                                                     381
                                                                                     382
                                                                                     383
                                                                                     384
                                                                                     385
 IF (HT(IJN).GT.HT(IHJN))
 IF(HT(IJN).6r.HT(IHJN))
 RMT = HT (UN) *TRBDEP( ID
 IF (HT (UN) .GT.HT (IHJN) )
 AT (N) =B (N) »«f)T
 COM INUF
 «»«»»*#«*«»»»» nHY CHANNEL CHECK   (UNHFR  0.1
+++*  IF  (HANMFL IS D«Y, SET VFLOCITY AND FLOW
 IF (UNT.GT.n.OOl)   GO TO 600
 V(M)=0.
 O (M ) = (I.
 r,o ro ^in
                                                           FEET)
                                                           TO  ZERO
»«»«»«««««»*«
»++++*
                                                                       391
                                                                       394
                                                                                     396
                                                                                     397
                                                                                     39fl
                                     104

-------
HYDCAl
000510
000511
000512
000513
0005)4
000515
000516
000517
00051H
000519
000520
000521
000522
000523
000524
000525
000526
000527
000528
000529
000530
000531
000532
000533
000534
000535
000536
000537
00053*
000539
000540
000541
000542
000543
000544
000545
000546
000547
000541
000549
000550
000551
000552
000553
300554
300555
300556
300557
30055*
300559
100560
100561
'00562
'00563
'00564
• 00565
'00566
noo
000
000
000
noo
000
noo
000
000
oon
000
000
000
000
000
000
000
000
000
000
oon
000
000
000
000
000
000
000
oon
oon
000
000
000
000
000
noo
000
000
oon
flOO
000
noo
000
000
000
000
000
000
000
000
000
oon
non
noo
noo
000
000
600


c


c


c


c




c
c
c
c +
c *

610
c
c «•



620
C




630
C
C
C
C

c
c «
c *








640
650
C
C »

  CON11NUE
  TF.MPaAK (N) /(RNT»» 1.3333)
                                                                                       399
               DELV1=*»?))
               OELV33-SIGH GO  TO fi?0
 OBAH»»«  CHECK  FOR EXCFSSIVE VELOCITIES        «••««•••»•••«
 RAN=R(N)/3.2*
 VAN=V(N)X3.2R
 IF  (ABS(VAN)  .LT. 10.0) GO TO 630
 WRITE(N6,1110)  NT»NO»NHH»RAN.VAN»N
 CONTINUE
 ««»«««««»»«»»«               fMn                      »«•»•*«*»«*»•
 »«««««»«»«<»»«  CONTROLLED NODE CALCULATIONS AT FULL TIME STEP *#•••
 00 740 J=1.NJGW

++++ CALCULATE  NET  FLOW  OUT  OF  NODE (SIIMQ)  DUE TO FLOWS
+»*+      CALCULATED  IN  ADJACENT CHANNELS +++*++
 SUM(J=0.
 DO 650 K=1,I76
 IF (NCHAN(.NK).FO.J)  GO TO  6^0
 IF (NCHAN(J.K).LE.O)  GO TO  650
 N=NCHAN(J.K)
 IF (J.NE.NJUNC(Ntl))  60 TO  640

 RO TO b50
 SUMQ=SUMQ-0(N)
 CONTINUE
                       FL'1»/ flilT ** + * + *
                            (J)-UIN(J)*FVAP»AS(J)
                                                                                      408
                                                                                      409
                                                                                      410

                                                                                      411
                                                                                      41?
                                                                                      413
                                                                                      414
                                                                                      415
                                                                                      418
                                                                                      419
                                                                                      420
                                                                                      421
                                                                                      422
                                                                                      423
                                                                                      424
                                                                                      425
                                                                                      426
                                                                                      427
                                                                                      428
                                                                                      429
                                                                                      430
                                                                                      431
                                                                                      432
                                                                                      433
                                                                                      434
                                      105

-------
"HYOCAI.  •»»«««
000567
000568
000569
000570
000571
000573
000573
000574
000575
000576
000577
000578
000579
000580
000581
000582
000583
000584
000585
000586
000587
000588
000589
000590
000591
000593
000591
000594
000595
000506
000597
000598
000599
000600
000601
000603
000603
000604
000605
000606
000607
00060P
000609
000610
00061 1
00061?
000613
000614
00061";
000616
000617
000618
000619
000620
0006?!
0006??
000623
000
000
000
000
000
000
000
ooo
ooo
000
000
ooo
ooo
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
noo
000
000
000
ooo
000
000
000
000
1)00
000
000
000
oon
000

c

c
c
c
660
c



c

c
670
c


c
c
c
680
c



c
c
c
690
c

c

c



c
c
c
700
c



c
c
c
c
no
f




r
                * + +  WHAT  TYPE OF" CONTROLLED MODE?  ******
                GO  TO  (660>6HO»690«700»710«7?0) « I, IK
                WEIR RELATIONSHIP

             ******  USE  RENFIJN TO CALCULATE FUNCTIONAL  VALUES  ******
                CALL GENFUN  /DELT-SUMQ
                If  (O(J).LT.O.)  (J(J)«0.
                V(J)sO.
             »**«+»  CHANGE  HFAD  TO ACCOMMODATE NET FLOW  ******
                HN(J)=H(J) +OELHH
             *+*+++  CALCULATE VOLUME CHANGE ******
                DVOL*(HN{J)-H( J) >«AS< J)
             ******  NEW  VOLUMF ******
                VOL (J)=VOL ( J) *DVOL
                GO  TO  730
                TIDAL  CONTROL STAGE

             ******  USE  OENFUN TO CALCULATE FUNCTIONAL  VALUES  ******
                CALL GENFUN < T ,HN ( J) • 1 • J» T )

                Q(J)=-SUMO- (HN(J)-H(J) )»AS( J)/OELT
                V(J)*0.
                GO  TO  670
                0AM  OPEHATEP ACCORDING TO A Q VS H OPERATING POLICY

             +++*++  USE  GFMFUN TO CALCULATE FUNCTIONAL  VALUES  *++»*+
                CALL GENFUN (HT ( J) tOJ?» 1 »Jt T IME )
                    NET  Fl Ort OUT ******
                SUMQ=SUMO»QIJ)
             +*»++*  CHAMGF HEAD TO ACCOMMODATE NET FLOW  **++++
                HN ( J) =H ( J) -DEL T«SUMO/AS ( J)
                V(J)=0.
                RO TO 670
                DAM  WHOSE  HEAD  AND OUTFLOW APE KMOHN FUNCTIONS  OF TIME

             ++*»»+  USF  GENFUN  TO CALCULATE FUNCTIONAL VALUES  ++++++
                CALL GENFUN (HN(J) »OJ2t 1 t J» T IMF )

                0(J) = (U(J) *OJ?) //>.
                V ( J)=0.
                GO TO 670
                [JAM  WHOSE  UFA!)  IS A KNOWN FIJMCTION OF  TIME  AND  WHOSE OUTFLOW
                IS DETFKMlnFn F«OM A MASS RAI /1NCF

               ** + +  USE  GF'IFUM  T" CALCULATE FUNCTIONAL VAL'IFS  + + « + + +
                CAM   fiKNFUM (T IMEtHN(J) t ItJ.T IMF )

                0 (,))=- SUMO- (HM ( J)-H(J) )«AS ( J) XOELT
                IF  (G(J).IT.O.)  0(J)=0.
                V (J) =0.
                fio ro t>?o
                I)A"  WHOSF  DIITFLOtl IS A KNOWN HJNCTIOM  OF  TlnK  AND '-IHOSF HEAD IS
435

436
437
438

439
440
441

442

443

444
445
446


447

448
449
450
451


452

453

454

455
456
457
458


459

460
461
46?
46J
464
466
467
46f
46
-------
»»«»»«  HYHCAI   *»«»»»
000624
00062^
000626
000627
000628
000629
000630
000631
000632
000633
000634
000635
000636
000637
000638
000639
000640
000641
000642
000643
000644
000645
000646
000647
000648
000649
000650
000651
000652
000653
000654
000655
000656
000657
000658
000659
000660
000661
000662
000663
000664
000665
000666
000667
000668
000669
000670
000671
000672
000673
000674
000675
000676
000677
000678
000679
000680
non
ooo
ono
ooo
noo
noo
ooo
noo
oon
noo
ooo
nno
noo
nuo
ooo
ooo
ooo
ooo
00ft
noo
ooo
ooo
ooo
ono
ooo
000
ono
ooo
ono
000
ooo
ooo
ooo
000
000
000
000
000
000
000
000
000
000
noo
noo
000
000
0 0 ft
ono
noo
ono
ono
nno
noo
ono
ooo
nnn
c
c
c
7^0
r

c

c



c
c
730


c
c
740
c
c
c
c

c
c
c









750
760
C
C

C



770
C
C
C





780
79n
COMPUTE!; FM)M A MASS BALANCE

+»»»** USE RF^FM'J TO CALCULATE FUNCTIONAL VALUES
CALL fiFUFUN (TIME*OJ2*1 fv/»TIM£)

(J< J)ss (»fto«tnnn>« FNO

CONTINUE
«*«»«*»«»»»««» £Nn
««»»«*•*•«»»»*»•»««»•»»»•»•»•«»••«»»«»«•••*•»

«««««»#«»»»»»« COMPUTATION OF NODAL <:TAfiE AND
DO 770 JsMJGWltNJ

****** CALCULATE NET FLOW OUT OF NODE (SUMO) DUE
****** CALCULATED IN ADJACENT CHANNELS »** +
SUMQsO.
HN(J)=-OFP(J)
IF (ASKI) .I.F.O.) GO TO 770
DO 760 Ksl,IZ6
IF (NCHANI J»K) .LE.O) 00 TO 760
N=NCHAN(J,K)
IF (J.Nt.N,IUNC(Nil) ) 00 TO 750
SIIMQ=SUMQ*iO (N)
GO TO 760
SUMOaSI)MQ-O(N)
CONTINUE

****** NET FLOW OUT ******
Sl)M(|sSIJMiJ + oOU( J) -QIN(J)*EVAP*AS(J)
****** CHAMGF. HEAD 8ASED ON CALCULATED NET FLOW
HM ( J) =H ( J) -1>ELT«SUMQ/AS ( J)
HT(J)=0.5«(HN(J) *H(J) )
VOL ( J) =V>L < J) -DELT»SUMQ
CONTINUE

««»»«»«»«»»»«« SUM NODAL VOLUMES AND FLOWS
IF CNT.l T.NWSWRT) GO TO 790
1)0 780 v)=l .HJ
HhAP ( J) =HPAR ( J) *HN( J)
OINHAH(J)=OINHAR( J) *OIN(J)
OOIIRAR ( J) =OOUHAR ( J) *QOU ( J)
COHTI'lUf
CuNTINUt


******





*




CONTROL NODES ••»«•»•



*«««««•*««««*


««««»«•»**•**
«•»«»«»««»«»«»«»•*«»*

VOLUME AT FULL DELT


TO FLOWS
**














******





«««#«««««*«»»







                                                                                            471
                                                                                            473

                                                                                            474

                                                                                            475
                                                                                            476
                                                                                            477
                                                                                            478
                                                                                            479
                                                                                            480
                                                                                            481
                                                                                            482
                                                                                            483
                                                                                            484
                                                                                            485
                                                                                            486
                                                                                            487
                                                                                            488
                                                                                            489
                                                                                            490
                                                                                            491
                                                                                            492
                                                                                            493
                                                                                            494
                                                                                            495
                                                                                            496
                                                                                            497
                                                                                            498
                                                                                            499
                                                                                            500
                                                                                            501
                                                                                            50?

                                                                                            503

                                                                                            504
                                                                                            505
                                                                                            507
                                                                                            508
                                                                                            509
                                                                                            510
                                                                                            511
                                                                                            513
                                                                                            513
                                                                                            514
                                                                                            515
                                             107

-------
»*«»«»  HYDCAL   •*»«««
000681
00068?
000683
000684
000685
000686
000687
000688
n fi ft AUQ
U U \J Oo "
000690
000691
n n n £ ri 3
0 0 Oo9i*
000693
000694
000695
000696
000697
000698
000699
000700
000701
00070?
000703
000704
000705
000706
000707
000708
000709
n n n 7 1 n
\l U U f 1 U
000711
00071?
000713
00071*
00071^
000716
000717
000718
000719
000720
000721
0007??
0 0 07?3
0007?4
000725
000726
n n n 7 *3 i
U u U fcf
000728
000729
000730
000731
n ft n T *a 3
UU U r jc
000733
000734
000735
000736
000737
oon
000
000
oon
000
000
000
000
n n n
'Ml U
000
000
000
000
000
oon
000
000
oon
000
000
000
000
000
000
1)00
noo
000
000
nno
n A n
U " "
000
ooo
noo
000
000
000
non
noo
noo
oon
oon
000
nOO
nno
ono
oon
n n n
\i U f '
noo
ooo
000
ooo
n n n
U U «'
oon
oon
ooo
non
noo
c
c
c
c




c *



c

800

eio




c *


830
C *


840
C
C
C

850
C
C
c
c
86P
C
c
c
c


c *


c »

8«0

»»» o » »» » no » « P;NO «#»»»««»«•«»«

«!»»»»»»«»««»«» CALCULATE THE HYDRAULIC RADIUS AND CHANNEL CROSSECT
« »«»•»»««»««<>*« AREA AT THE FULL DELT ••»«•««»•••••
DO 840 NrNJGWl.NC
IF (NJUNC(N»1) .EQ.O) RO TO 840
ML = IARS (NJIINC (N.I))
NH=IABS(NJUNC(N,?) )
..... PAI f'lll ATC" L^CAD T^ir*DfkJC*MT AC TLJC* Al/C~DAPC* f\C TLJET fUtiMf^f
***** LALviM.riL MFAU JNCKtMtNT Ab THr AvtRAbc. Or IHE CHANGE
***** IN HFAO AT EACH END OF THE CHANNEL OVER ONE-HALF TIMESTEP +»
OELH = 0.b» (HN(NH) -H(NH) +HN ( Ml. ) -M ( NL ) )
n^otf^fftf^tt ARE THERE ANY TIOAL FLATS *»*(HHHHK*»«» SHIFT THE NODAL ARRAYS «»»»*«»»*•••#
no HSO j=i("g,j
H(J)=HN( J)
a««a««*««««o»« END »««o»oo«»«»»»


 /FLOAT (NHCYO
***** OAVE = DAILY CYCLE AVERAGE FLOW +++»»*
QAVF (N) =OAVF ( N ) *QB AR ( N) /FLOA T (NQCYD
CON! INUF.
00 tt90 J=) ,NJ
516
517
518
519
520
521
522
523

524
5?5
526

527
528
529
53.0
531
53?



535
536
540

541
54?
543
544
545
546
54T
548
5*9
550
551
552
553
CCA
55*
555
556
557
558
559

563
564

565
•^66
567
                                           108

-------
 OOOiUKt

00073R
000739
000740
000741
000742
000743
000744
000745
000746
000747
00074«
000749
000750
000751
000752
000753
00075*
000755
000756
000757
00075R
000759
000760
000761
000762
000763
000764
000765
000766
000767
000768
000769
000770
000771
000772
000773
000774
000775
000776
000777
00077H
000779
000780
000781
000782
000783
00078*
000785
000786
000787
0007fl8
000789
000790
000791
00079?
000793
000794
PCM »«»»«»
000
000
000
000
000
000
000
000
000
ooo
000
000
ooo
000
000
000
000
000
ooo
000
000
000
000
000
000
ooo
000
000
ooo
000
000
000
000
000
000
ooo
000
ooo
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
OOT
OOP
ooo
000
000
c

c

c

c
c







c
890
c
c
c
c


c
c
c
c
c







c
c
c
900
c
c
c
c
910
c
c
c








****** QUALITY CYCLE AVERAGE Fl OW INTO THE NOPE ******
OINHARt J)=«IK'BAR< J) /FLOAT (NHCYC)
****** DUALITY CYCLE AVERAGE FLOW OUT OF THE NODE *++
HOIMAR ( J) =(JOUHAR ( J) /FLOAT (NHCYC )
****** AVERAGE HEAD AT THE NODE DURING A DUALITY CYCLE
HBAk ( J)=HRAH ( J) /FLO AT-(NHCYC )

****** EVALUATE THE MAGNITUDE AND SIGN OF THE NFT FLO" »
IF (OINBAR(J) .EQ.O.) GO TO P90
IF (QOUUAR ( J) .EQ.O. ) GO TO K90
QINRAR(J)=OINRAR ( JJ-QOUBAR U>
QOUNAtt < J)=0.
IF (QINHAR(J) .OT.0.1 GO TO 09(1
QOURAR ( J)=- JINRAR ( J)
OINHAR(0)='I.

CONTINUE
»»***»»»»*«*«» FND

«»•««»**»»«»»« WRITE OUT THE HYDRAULIC INFORMATION
»»»»»»»»««»»«« FOH USE BY THE SWQUAL PROGRAM
WRITE (N2?) NT»NO» (HRAR(J) »VOL(J) »OINBAR(J) .OOUBAR(J)
1R(N) ,VBAR(M) ,Mrl,NC)
» e txt »»  F)Y THE PRINTING AND PLOT PROGRAM
WRITE (N?4) NT»NO
WRITE (N?4) (HBAR(J) »J=1»NJ)
WRITE (N?4) (VOL(J) »J=1»NJ)
WRITE (N?4) (OINBAR(J) »Jsl,NJ)
WRITE 
-------
««««»«  HYDCAL
000795
000796
000797
000798
000799
000800
000801
00080?
000803
000804
000805
000806
000807
000808
000809
000810
000811
00081?
000813
000814
000815
000816
000817
000818
000819
000820
000821
000fl?2
0008?3
000824
000825
000826
000827
000828
000829
000830
000831
000832
000833
000834
000835
000836
000837
000838
000839
000840
000841
000842
000843
000844
000845
0008*6
000847
000848
000849
000850
000851
000
000
000
000
000
000
000
000
000
000
000
00"
000
000
000
000
000
000
000
00"
000
000
000
000
000
ooo
000
000
000
000
000
000
000
ooo
000
ooo
000
000
000
000
000
000
000
ooo
000
000
000
000
000
ooo
ooo
000
000
000
000
000
000


920




930
940









950





960

970


980




9"0












1000

1010

C
c
C
c

c
IK  (NJSw.l K.O) flO  TO  920
PUNCH 10SO.  ( JSW =-OEH(J)
HAM=H(J) /3.?«
AS (J)sABS(AS(J) )
A5M=AS ( J) /10.744
OIM=01N< Jl/35.314
UOM=OOU< JJ/35.314
PAM=-DEP(J)/3.28
PUNCH 1070,  J»HAM» ASMiQlM.QOMf 9AM» X ( J) t Y ( J)
CONTINUE
PUNCH 1080
no  1000 N=1,NC
IK  (NTR1H.LE.OJ GO  TO 980
no 960 !L=ltNTRlR
IF  (ITRIR(ILfl) .EQ.N)  00 TO  970
CONTINUf
RO  TO 980
IJN=ITHIP
RAD = 0.5«(-f)f P(IJN)-TRBOEPdL) )
GO  TO 9«0
NHaNJUNC (N. 1 )
                                                                                               617
                                                                                               618
                                                                                               619
                                                                                               620
                                                                                               631
                                                                                               622
                                                                                               623
                                                                                               624
                                                                                               625
                                                                                               626
                                                                                               627
                                                                                               629
                                                                                               630
                                                                                               631
                                                                                               632
                                                                                               633
                                                                                               634
                                                                                               635
                                                                                               636
IF (NH.EQ.O) NHaNU
IF (NL.EQ.O) NL=NH
RAD=0.5« (-OEO(NL)-DEP(NH) )
CONTINUF
AK (N)=ABS(AK(N) )
R(N)=A6S (R(N) )
NJIINC(N»l)aIABS(NJUNC(Nf 1) )
NJUNC (N, ?) =IflHS (NJUNC (N»?) )
LEN(N)=ARS(LFN(N) )
RAO=RSAV(N)
AK (M) =SOHT (AK (N) *2. 208196/32. 1739)
LAM=LEN1N) /3.?8
WAMsB (N) /3.?M
WAM=RAD/3.?B
VAM=V(N) /3.?H
PUNCH 1090, M, NJUNC (N, 1 ) , NJUNC (N»2) «L AM, WAM»RAM. AK JN) , VAM
CONTINUE
PUNCH 1080
CONTINUE
WUITF 
-------
 «»»•»»•»
000«S3
000854
00085S
0008S7
0008S8
0008^9
000860
0008M
00086?
00086T
000864
OOOB65
oon
oon
ooo
ooo
oon
nnn
oon
ono
ooo
00 I)
ooo
ooo
ooo
ooo
ooo
c
c
in?n
1030
1040
10SM

1070
                                                                                                 6S8
1040
1100
 11 in
 FORMAT (TC0
 FORMAT UH^.
 FORMAT 
 FORMAT (
 FORMAT (
 FORMAT (
 FORMATCO V OVF.R  10 MPS»  TIDAL CYCLF',14,' OUAL CYCLE»«M»'
1 CYCLE' • I*« ' DEPTH'»E10.4t •    V«tE10.4«* CHANNEL•iIS)
 FORMAT <3PH()COMPLETION  OF THF  HYDRAULIC PROGRAM   }
 END
                                                                          PFST
                                                                          PFST
                                                                    HYDRO
 661 -
  662
 663
 664
r
 666
r
 66fl

 670
 671
EMI) R
PHDG.P
                HYIjPLT   *»*o»»
                                                111

-------
 ««««»*  HYDPLT  «*##«»

WELT.L MMAINT.HYDPLT
oooooi
00000?
00000?
000004
000005
00000ft
000007
000008
000009
000010
00001 1
00001?
000013
000014
000015
000016
000017
000018
000019
0000?0
0000?)
0000??
0000?3
0000?4
onoo?s
0000?6
0000?7
oooo?«
0000?9
000030
000031
00003?
000033
000034
000035
000036
000037
0000-38
00003^
000040
000041
00004?
000043
000044
000045
000046
000047
000048
000049
000050
000051
00005?
000053
000
000
000
000
000
000
noo
000
ono
000
000
000
ono
ono
noo
000
noo
noo
noo
nno
noo
000
noo
000
000
000
000
000
onn
noo
000
noo
000
000
noo
noo
noo
noo
oon
nno
onn
oon
oon
non
nno
noo
000
non
noo
oon
noo
oon
OOn

C
c
C
c
c
c
c
c
c
c


c
c











c
c
c
c
100


110
1?0


















                         SURWOUTINF  HYPPLT
                          THIS  ROUTINE is CALLED BY HMAJNV  IOR  HMA!NTI
                          AMU CALLS  FIND AND PICTO
                         «»»««««»»««»«« HYDRAULIC PROGRAM PRINTING
                         »»»»»»«##«»»»* A'lD PLOTTING PROGRAM

                                 »«»««« RATTELLE NORTHWEST  11/9/71
                                                       «»««»««»««»**

                                                       »«»««»»«»««*«
                         «»«»»»»*»»«»»» ASSIGN THE COMMON  DATA
                         COMMON  /TAPF_S/NStN6»N?0»N??»M?4
                         COMMON/PAPAMS/IZ5|IZ6»IZ9,
                                                                               »»««»««»••»•#
                                   ;»»« CONTROL AND TITLE  INFORMATION          »•»**«»•»*»»•
                        COMMON  /PBINT/ NJtNCtNTCYC»NOCYC»OFLTO»PERIOD.ALPHA(30) «
                        10EP (70) ,NO^WRT
                        COMMON/NT/MT^.NQPtniJMjeOO) «HP (?0.200) .VOLP (20.200) »TIM£P(?00) I
                        1QINP,5ln)  IOAY1»IDAYL.NJP
IF (IOAYl.lF.0)  IDAYlal
IF (IDAYl.l r.MOS«RT)  IDAY1=NOSWR,
IF (IOAYL.GT.NTCYC)  IDAYL=NTCYC
IF ( (IDAYL-IOAY1 ) .GT.6)  IDAYL. = IDAY1 »6
IF (IDAY1 .fiT.IDAYL)  IDAYL=TD/VY]
IF (NJP.GT.?n) WRITE  (N6.50n)
NJRrMINO (?(1»NJP)
READ (N5.5?n)  (NJW( I) ,1 = 1,NJP)
RF.AH (N5.530)  NCP
IF (MCP.GT.20) WWITF  (M6.54n>
NCP=MINH(Po.Mrp)
               (NCW(I),1=1,MCP)
               NPLOTS
               (RUNT IT(KITF).KITF = l.?n)
               /VLPHA
               !')AYI . IHAYL «NJP. (Nji*1 ( T ), 1 = 1 .NJP)
•in IT F (ri6.5>,n) MCP« (MfW ( T ) » 1 = 1 «NCP)
                        pfsn  !(»
                        WRITE  (*»4K'I)
                               (H6.S50)
                                               112

-------
000054
000055
000056
000057
000058
000059
000060
000061
00006?
000061
000064
000065
000066
000067
000068
000069
000070
000071
00007?
000073
000074
000075
000076
000077
000073
000079
OOOOPO
000081
000082
000083
000084
OOOOP5
000086
000087
00008*
000089
000090.
000091
00009?
000093
000094
000095
000096
000097
000098
000099
000100
000101
oooioa
000103
000104
000105
000106
000107
000108
000109
OOOJ.1'1
nin
non
noo
000
000
noo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
noo
noo
noo
000
000
000
non
noo
000
000
000
noo
noo
noo
noo
noo
000
000
000
oon
000
noo
000
000
noo
000
noo
non
nnn
nnn
noo
nnn
oon
onn
non
IF (NPLOTS.FO.O) WRITF <6»49n)
C «»«»»«»«»«««»« FND ••»•»»•»»»•»•
C
C
C 
READ (N24)
READ 
READ (N34)
GO TO 130
140 CONTINUE
DO 160 MO=TOAYl»IDAYl
00 150 NQC = 1«M
CALL FIND ( ILAST»NCP»DUM»NCW.VP,NC>
IF { (ND.EQ.IDAYL) .AND. JNOC.EO.NQCYC » 60 TO 170
READ (N34) NTP.NQP
150 CONTINUE
IF (ND.EO. IDAYL) 00 TO 170
160 CONTINUE
C »»»»»»»»»«#«»» END *»#«•»••••#••
r
C
C «««»*««««ec««« WHITE OUT THF JUNCTION DATA TO PRINTER •«*•«•#•«•*«
170 CONTINUE
IWHOLE=NJP/3
IP«WT=NJP-IWHOLE»3
IF OWMOLF.E'J.O) GO TO 210
DO ?00 I = ]i!'VHOlE
IL=(I-1)«3
rfPITE (6f470) (RUNTIT(KITE) .KITEel.PO)
WRITE (6.4KO) ALpHA
DO 180 IK=1.3
180 ICH(IK) =NJ«/ ( IL*IK)
WRITE (r46,'i70) (SPACE (L ) • ICH (L ) »L = 1 « 3)
WRITE .TDL
HC ( I 1 «L ) =H^ ([],!.) X3.?8
VOLP (I1«L) =VOLP( 1 1.1 ) /35.'U4
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
7B
79
80
fll
8?
83
84
85
86
87
flfl
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106




113

-------
«««»««  HYDPl.T  »»»»»•
000111
onoiiH
000113
000114
000115
000116
000117
000118
000119
000120
000121
000132
000123
000134
00013=1
000126
000127
00012"
000129
000130
000131
00013?
000131
000134
000135
000136
000137
00013H
000139
000140
000141
000142
000143
000144
000145
000146
000147
00014H
000149
000150
000151
00015?
000153
000154
000155
000156
000157
00015H
000159
000160
000161
00016?
000163
000164
00016^
000166
000167
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
ooo
000
000
000
000
noo
noo
000
000
noo
nno
000
noo
000
000
000
000
noo
ooo
000
000
000
000
noo
000
nno
oon
noo
nno
nno
noo
noo
non

iftft








189
190
200

210



??0












?30




231






23?

?.40





?4)





 QINP(IltL)=tLMO»lDL>
 DO 169 Il=ILl»tL3
 DO 1R9 L=TO,IDL
 HPUl,L)«Hf(Il»U*3.2B
 YOLP(Il»L)=VOLP(IltL)»35,314
 QINPUltl )=<)INt>.tnL
 HP (1 1.1. )=HP(I1 tl.)/3.?8
 VOUH(Il«L)=VOLP(TltL)/35.314
 i)lMP(IliL)='HNPUl .D/35.314
 QfiUP (I 1 »L) =001 IP (1 1 .L) /35.314
 WRITE tTOL)
 HO ?4? 11=TL1.ILL
 DO
 HP
                                                                                               110
                                                                                               111
                                                                                               112
                                                                                               113
                                                                                               114
                                                                                               115
                                                                                               116
                                                                                               117
                                                                                               118
                                                                                               119
                                                                                               120
                                                                                               121
                                                                                               122
                                                                                               123
                                                                                               124
                                                                                               125
                                                                                               126
                                                                                               127

                                                                                               129
                                                                                               132
                                               114

-------
nonius
OOOlf.9
000170
000171
000172
000173
000174
000175
000176
000177
000170
000179
oooieo
000181
0001*2
0001R3
OOOlfU
000185
000186
000187
000189
000189
000190
000191
000192
000193
000194
00019S
00019*.
000197
000198
000199
000200
000201
000202
000203
000204
000205
000206
000207
000208
000209
000210
000211
000212
000213
000214
00021S
000216
000217
000218
000219
000220
000221
00022?
000223
000224
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
nOO
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
oon
000
000
ooo
000
000
000
000
000
noo
onn
000
oon
noo
ooo
noo
onn


242
250
260
c
c
c
c








270











278





?79
280
290

300



310











•»lfl

VOLP(I1»L)«VOLP(M ,L>«35.314
OlNP(Il»L)aQINP(Il,L)»35.314
OOUPU1»L)*QOUP(I1.L>«35.314
CONTINUE
CONTINUE
»»«»»»»«»»»»»»
                                                                       135
                                                      ****«*«•«««»»
»»««»»»«•«»«»»  WHITE  OUT  THE  CHANNEL DATA TO THE PRINTER ••»«••««»
IWHOLE=NCP/6
IPART=NCP-IWHOLE«6
IF  (IWHOLE.EO.O) GO TO  300
DO  290  Isl.IWHOLE .
WRITE  (6,470)  (RUNTIT (K ITE ) f K 1 TE»1 ,20)
WRITE  <6,4PO) ALPHA
IL«=(I-1>«6
DO  270  IK=1,6
ICH(1K)=NCW(IL+IK)
WRITE   » ICH (L) »L»1 ,6)
WRITE  (N6.650)  (SPACE  »L«1 .6)
WRITE  *VP/3.28
WRITE(N6,600) IDAY
WRITE(N6,670) (TIMEP(L) , (QP ( II ,L) » VP ( 1 1 »L> » II'
DO 279 I1=IL1,IL3
DO ?79 L«IO»IDL
OP (II »L)»OP(n»L)*35.3)4
VP(IlfL)*VP(Il.D«3.2ft
CONTINUE
CONTINUE
IF (IPAHT.LE.O)  GO TO 3RO
ILL=IWHOLE«6*IPART
IL1=I«HOLE«6+1
DO 310 I=IL1,ILI
J=I-tLl*I
ICH(J)=NCW(I)
WRITF (6,470) (PUNTTTIKITF) ,KITF3l.?n)
      (6,4flO) ALPHA
      (Nft, X3.?8
               IDAY
                       115

-------
HYDPLT  #*«»«»
000225
000226
000227
00022*
000229
000230
000231
000232
000233
000234
000235
000236
000237
000230
000239
000240
000241
000242
000243
000244
000245
000246
000247
00024B
000249
000250
000251
000252
000253
000254
000255
000256
000257
00025H
000259
000260
000261
000262
000263
000264
000265
000266
000267
000?6«
000269
000270
000271
000272
000273
000274
000275
000276
000277
00027B
000279
0002RO
000231
000
oon
noo
000
oon
noo
noo
000
oon
oon
noo
000
noo
ooo
000
oon
000
000
000
000
ono
000
oon
000
noo
noo
nnn
noo
000
000
000
non
000
000
000
000
000
000
000
noo
ooo
000
000
ono
ooo
ooo
ooo
oon
ooo
noo
ooo
ooo
noo
000
ooo
nni
non

320


330


34n


350


360

368



369
370
3RD
C
C
C
C


C
C
C

390

C
C
C
C

C
C
C






400








GO TO (320.330.340.350.360), IPART
CONTINUF
WRITE  (TIMFP(L) » (OP < H .1 > « VP ( 1 1 ,L > . 1 1 = IL1 » ILL ) »L«ID» IDL)
GO TO 360
CONTINIIf
'•/KITE (Nf.,f,40) (TIMEP(L) , (OP( 11,1.) .VP(Il.L) .IlsRl» ILL) *L«ID»IDL)
GO TO 36H
CONTINUF
WRITE(N*-,7no) (TIMEP(L) » (OP (ILL) tVP(Il.L) tll'tLl* tl.L) «L«IO»IDL)
00 TO 36R
CONTINUE
WRITE (N6.710) (TIMEP(L) » (QP ( 11 »L ) . VP ( 1 1 »L) , I l*lLl » 'ILL ) *L»ID, IDL )
GO TO 36fl
CONTINUE
WRITE (N6.7PO) ( T IMFP (L > , ( OP ( t 1 .L ) , VP ( T 1 .L) . 1 1 = ILl . ILL) *L»ID. IDL)
CONTINUE
DO 369 11=11 1.ILL
00 369 L=IP. IDL
QP ( 11 .L) =»OP ( 11 ,L> *35.314
VP(Il,L)=VP(Il,L>«n.2fl
CONTINUE
CONTINUE
»»»»#»**»«»»»* FNH »»«*»»»»»»«»»


«»«»««««««««»« CALCULATE THE NUMBER OF POINTS TO HE PLOTTED «»•«»»
| IF (NPLOTS.EQ.O) GO TO 100
NPOINT= (IDML-IOAY141 ) »NQCYC
»»«»»•#»•»««»* ENQ »«««»««««««•*

»»»»»««*««»»»« <;FT UP THE SYMHOL PPIORITIES EOR PICTUR «*»»»»«*«««
DO 390 1=1.4
ISYMI I)=STAR
ISYM(5) =HLANK
»»»»«»«»«»o»»» ENID «•»«»•»#••*»*


»#»»»«»*»»»»»» SET UP THE OUTER 00 LOOP FOR THE JUNCTION PLOTS ••*
DO 410 J=1.MJP

«««»»»«tnto»«»» SET UP THE APPRAYS AMD ALPHA NECESSARY *»•»**»»»»**
«
-------
 OB a otto  HYDPLT  »»««»«
000282
                        YY(IJI)=YY <
000283
000284
000285
000286
000287
0002P8
000289
000290
000291
0002.9?
000293
000294
000295
000296
000?97
00029H
000299
000300
000301
000302
000303
000304
000305
500306
500307
50030«
500309
500310
500311
500312
100313
100314
'00315
100316
00317
100318
00319
00320
00321
003??
00323
00324
00325
00326
00327
00328
00329
00330
00331
0033?
00333
00334
50335
00336
50337
50338
000
000
000
000
000
ooo
000
000
000
000
000
ooo
ooo
000
ooo
000
000
000
000
000
000
000
000
000
000
ooo
000
000
oon
oo'o
000
000
ooo
000
000
ooo
000
ooo
000
000
000
000
noo
000
000
000
000
000
ooo
ooo
000
noo
000
000
000
0(50
c
c



410
c
c
c

c
c
r.
c

c



4?0
c
c
c
c




430




435
c
c
c



440
c
c
c

c
c
c
c
450
460
470
48(1


««•»»»»«»»»»»« FNO

ENCODE C^T. 7 *0,CA«D1 ) IJtINC
ENCODE (45.740.CAR01 (34) ) IJUMO
CALL PICTP (NPOIN,?5.50»ISYM,C/VPD1»RUNTIT)
CONT INUF.
»» »«.«»»«»*«»»« F.NO

«»«««»«««««««» SET UP THE SYHHOL PRIORITIES
ISYM(1)=STAP
»»»«»««»»«»«*» FND


«»»!o

t.MCODE (S3.7=10.CARD15 ICHN
ENCODE (47. ?60tCAR01 (34) ) ICHN
CAU. PICTO (NPOIN. 25.50. ISYM.CARDltRUNTlT)
CONTINUE
#« ##*nnnn* END


GO TO 100
»0»«»»»«»
-------
 «*»««»   HYO°lT  «»»»»»
000339
000340
000341
000342
000343
000344
00034S
000346
000347
00034H
000340
000350
0003S1
00035?
000353
000354
000355
000356
000357
00035"
000359
000360
000361
000362
000363
000364
000365
000366
000367
000368
000369
000370
000371
000372
000373
000374
000375
000376
000377
000178
000379
000380
000381
00038?
000383
000384
000385
ono
000
oon
000
000
ooo
ono
noo
ooo
000
000
ooo
000
ooo
oon
ooo
ooo
000
oon
ooo
000
ooo
000
000
000
000
000
000
000
oon
noo
ooo
ooo
ooo
ono
ooo
non
ooo
oon
noo
ooo
ono
oon
noo
ooo
noo
non
eon
510
52n
530
540
550





560



570

580


590


600
610
6?0
610
640


650


66P


670
680
6^0
700
71(1
7?0
730
740
750
760

FOPMAT (• YOIJ CANNOT MONITOR MORE THAN ?0 MOOES AT ONE TIME '/)
FORMAT <*I1
FORMAT III!')
FOPHA1 (• YOU CANNOT MONITOR MQPF. THAN 20 CHANNELS AT ONE TIME '/)
FORMAT (IHf'.ifOR WHAT SPAN OF HAYS DO YOU WISH LINEPRINTER AND PLO
IT INFORMATION'/* I WISH TO LOOK AT THE DATA STARTING WITH DAY'»I5»
?.• AMD ENDING WITH DAY'»I5«//' HOW MANY NODAL POINTS DO YOU WISH TO
i MONITOR'/* t WISH TO MONITOR »»i5»» NODES'//* FOR WHICH NODES DO
4 YOU WISH LlNfPPJNTER AND PLOT INFORMATION'/' I WISH TO MONITOR TH
4E FOLLOV IN'- 'JOOFS '/20I5»/?ni5)
FORMAT (//.' HOW MANY CHANNELS DO YOU WISH TO MONITOR •/• i WISH T
10 MONITOR '»I5»« CHANNELS •//' FOP WHICH CHANNELS DO YOU WISH LINE
ZPRINTEW AMO PLOT INFORMATION •/' i OFSIPC PLOT AMD LINEPRINTEP INF
FORMATION FOP THE FOLLOWING CHANNELS '/20I5/20I5)
FORMAT (??X, Al t ' JUNCTION* » I4,Al »?7X, 'JUNCTION' «I4»Al»27X» 'JUNCTION*
t«I4,/)
F()PMAT(6X. Al . 'TIME' t*X« 'HEAD' t6*» 'VOLUME' »4X« • INFLOW' »3X. 'OUTFLOW*
*.Al«3X,'HFAO'»6X. 'VOLUME' »4X. » INFLOW' .3X« 'OUTFLOW «A1» 3X» 'HEAD*»6X
*« 'VOLUMF ' .4X, • INFLOW' »3X» 'OUTFLOW' )
FORMAT (^X.^l «' (DAYS) (M) (M#»3) (CMSI tCMS)'»Al»'
* X,Al, • (DAYS) (CMS) (M/SEC) ' » Al , ' (CMS) (M/SEC)'»
1A1,' (CMS) (M/SEC) '.Al, ' (CMS) (M/SEC) «,A1,» (CMS)
2IM/SFC) ' ,Al . ' (CMS) (M/SEC)')
FORMAT .3,?X«2F9.3)
FORMAT (Fl ?.4,?E9.3,2X,2E9.3,?X,2E9.3,?X»2F9.3,2X»2E9,3)
FORMAT (» PLOT OF THE HEAD VERSUS TIME CURVE FOR JUNCTION ',14)
FORMAT!' (HF.AD IS IN METERS flNn THE TIME IS IN DAYS) •)
FORMAT (» PLOT OF THE FLOW VERSUS TIME CURVE FOR CHANNEL '• 14, « «)
FOPMATC FLOW IN (THOUSANDS OF CMS) AND TIME IN (DAYS)')
F'-iO
                                                                                                    284
                                                                                                    28f
                                                                                                    2Bf
                                                                                                    287
                                                                                                    28F
                                                                                                    28«
                                                                                                    29(
                                                                                                    29
                                                                                                    29J
                                                                                                    29!
                                                                                                    30
                                                                                                    30
                                                                                                    31
                                                                                                    31
                                                                                                    31
                                                                                                    31
                                                                                                    31
                                                                                                    31
                                                                                                    31
                                                                                                    32
                                                                                                    32
                                                                                                    32
                                                                                                    32
EMI) ELT.
                                                118

-------
               MAIN
000001
000002
00000?
000004
000005
00000ft
000007
OOOOOfl
00000°
ooooio
00001 1
000012
000013
00001*
000015
000016
000017
ooooia
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
nor>
000
noo
000
000
000
000
noo
000
ooo
000
000
100
000
000
000
ooo
ooo
000
ooo
000
000
ooo
000
000
000
ooo
000
000
000
000
ooo
000
000
c
c
c
c
c
c
c
c
c
c


c


c











c

c

c


END ELT.
                          MMN  HKOG'^" TO COORDINATE THE CALCULATION AND PLOTTING PROGRAM
                          THIS  PhOC-KAM CALLS HYDC4L AMD HYDPlT
                         SCRATCH  Ut"[TS ARE SCRATCH TAPf-'S
                             THIS  MFCUTIVE PROGRAM MAKES i/o ASSIGNMENTS AND CALLS  THE
                                  CALCULATION SUBROUTINE HYDCAL AND THE PRINT-PLOT
                                          HYOPLT
                         COMMON  /TAPES/N5«N*»N20fN??;>tM24
                         COMMON/PARAMS/IZ5.IZ6»I?9.I712«I713
                         IZ1?=30
                         1711=20
                        REWIND
                        REWIND
                        REWIND
                        CALL HYdCAl

                        CALL HYI'PLT

                        STOP
                        END
 6
 7
 B

10

1?
13
14
15

17
18
19

20

21

22
l8HDtt,P  ««««««  PtCTO  ««*»»«
                                              119

-------
         PICTO  »»»»»»

WELT.L HMAINT.PICTO
ooooni
ooooo?
000001
000004
ooooo^
000006
000007
OOOOOH
000009
000010
0000] 1
00001?
000013
000014
000015
000016
000017
ooooi«
000019
000020
000021
000022
00002.3
000024
000025
00002*
000027
00002"
000029
000030
000031
00003?
000033
000034
000035
000036
00003?
00003"
000039
000040
000041
000042
000043
000044
000045
000046
000047
00004R
000049
000050
000051
00005?
000053
ono
000
000
000
000
000
000
000
ono
000
000
000
000
000
ono
000
ono
000
000
onn
ooo
oon
000
000
000
ooo
oon
ooo
nno
ooo
ooo
ooo
ooo
oon
noo
noo
non
ooo
noo
noo
ooo
oon
ooo
ooo
ooo
ooo
ooo
oon
nno
noo
nno
non
non

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c


c
c












c

c






                          SUHROUTINF PICTO (N.M.MCOL•ISYM.CARD1»RUNT I T)
                          THTS  POHTTNE IS CALLED BY HYOPLT  AND  CALLS  SORT
                         PROGRAMMFD HY JE SCHLOSSER   1965   MODIFIED  BY CA OSTER  196ft
                         PRESENTS  A PICTURE OF DATA ON PRINTED  OUTPUT. TWO OPTIONS REIN6
                         AVAILAFU F
                            1    HC«L POSITIVE
                            ?    t-'COl  NFGATIVEt IN WHICH CASF  XINCREMENTS ARE TAKEN AS EQUAL
                                TO Y INCREMENTS AS DETERMINED RY  M
                         DICTIONARY

                            V4RI ARI £
                               N
                               M
                               MC.OL

                             XXU)
                             YY(1)
                             ARK (!)
                             ISYMJI )
PF.F INIITION
NUMBER OF POINTS  TO  PLOT
MAXIMUM NUMBER  or  LIMES
MAXIMUM NUMRER  OF  COLUMNS
(MAXIMUM OF SOO)
X COORDINATE FOR  ITH  POINT
Y COORDINATE FOP  ITH  POINT
MARKER FOR ITH  POINT
PRIORITY DESIGNATOR FOR  MARKF.R USED ON I-TH POINT
     (LOWER SUBSCRIPT INDICATES HIGHER PRIORITY)
                         »««»»»«»»««»««  RATTELLF NORTHWEST  11/9/71             «»»»««»*••»»«
                         «««»«»««««»»«««»»IHHH>«««HHHHK>««««««««»*«*»«*«»»»««« »»»*<>«•««««««#*«
                         «»»»»«»»»»»««» ASSIGN THE COMMON  DATA
                         COMMON  /TA(JES/N5»N6,N20»N22»M?4
                         CO"MON/PAOfiMS/I7S,I76»IZ9.I712,IZ13

                         »»»»»«»<»»»»»*» CONTROL AND TITLE  INFORMATION          »«»»*«»*»»»#«
                         COMMON  /PBINt/ NJ.NC.NTCYC.NOCYT.Dr L.TO,PERIOD,ALPHAMO) «
                        1 DFP (70 ) .IJQ^WRT
                         COMMON/NT/NTP.NOP,DIIM(600) »HP(20,200) .VOLP(20,200) .TIMER(200)t
                        101NP(20«200).OOUP(20»?00)»OP(?0.20n),VP(20,200),XX(*00),YY(400)»
                           : (40(1) ,XYM(3»'
                        FQHIVALfNCF  ( IX
                        DIMENSION  PX i^.) .ALFIIOTJ ,ILF< 107) fts
                        DIMENSION  C/V401 (66)
                        DIMENSION  R(INTIT(20)
                        FOtllVALf-NCF  (ILF«ALF) « (BLANK. LANK PA)
                        EXTERNAL
                        OATA

                        KILL*')
                         < YM (3,?) =«l
                         X'->IM=1 .'IF 3 7
 2
 3
 4
 5
 6
 7
 n
 9
10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24
25
26
27
2B
29
30
31
 32
                                                           37
                                                           38
                                                           39

                                                           41
                                                           42
                                                           46
                                                           43
                                                           44
                                                           45
                                                           47
                                                           40
                                                           4Q
                                                           50
                                                           51
                                                           5?
                                               120

-------
««««»•
OOOOS4
OOOOS5
OOOOSfi
000057
00005H
000059
OOOOf-0
000061
000062
000063
000064
000065
OOOOf-6
000067
000068
000069
000070
000071
00007?
000073
000074
000075
000076
000077
00007R
000079
OOOOflO
oooom
OOOOP2
0000«3
OOOOP4
OOOOR5
OOOOH6
000087
OOOOflfl
OOOOP9
000090
000091
000092
000093
000094
000095
000096
000097
00009R
000099
000100
000101
00010?
000101
000104
00010*1
000106
000107
00010H
000109
000110
000
non
000
noo
ono
ono
ooo
000
oon
000
000
000
ono
000
000
000
000
000
ooo
000
000
000
ooo
000
000
000
000
000
000
000
000
oon
000
ooo
000
000
ooo
001
000
000
000
001
000
000
000
000
ooo
000
000
000
000
ooo
000
000
000
000
000







100








110
120
no
140


150

160
170

IflO
190


?00
210










2?0

?30
240

?5o





?60


                        XMAXx-l .OF -T7
                        no  loo  1 = 1. 'i
                        XYM(1,I)=>MI>
                        XYM<2« 1>=YY ( I )
                        XYM(3. I)=A'-'K (!)
                        XMINsAMINl XLOG-AlNT (OXLOG)
                        IF  (XAPKOX-,3010)  150»150»160
                        XEXACT=?.0»10.0»«(INT (nXLOG)-S)
                        GO  TO  190
                        IF  (XAPPOX-.6990)  170»170,180
                       GO  TO  1^0
                       XEXACT=ln.O»» (INT (OXLOG)-A)
                       CONTIMUE
                       XACT=XEXACT/3.0
                       GO  TO  Zln
                       XACT=EXACT/2.0
.5+SIGN ( 0 .5» YMAX » )
.5+SIGN(O.S»XMAX) }
                           F. = 10.0«FXACT
                       MAXYI=(YMAX/TENE)+ ( 0.
                       MAXXI=(XMAX/TFNX) +(0
                       MINYIs(YMIH/TENE>-(0.5*SIGN(0.5.-YMIN) )
                       MI NX I =(XMirj/TFNX)-( 0.5 + SIGN (O.S»-XMIN) )
                       YFI»ST=TFNF»FLOAT (MAXYI)
                       XFIRST=TFNX«FLOAT(MINXI)
                       KOLS=?n»(MAXXI-MINXI)
                       IF  (KOL^-^'lO)  ?30.?30»??0
                       WRITF  C-.530)  KOLS
                        IF  (LINKS-401)  250.2SO.?40
                        WPITF  (6,-Si.O)
                        RFTIIMN
                        CONTINUF
                        KILL=KILL+1
                        IF  (KILI .OT.SnO)  GO TO 360
                        IF  (KOLS. OF .7M  GO TO ?60
                       GO  TO  Un
                       LFAF= (K0| S*99) /100
                       IF  (I.EAf .1 F.I )  GC TO ?70
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 7»
 79
 80
 fll
 8?
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
                                              121

-------
p T n o  »»»»«••>
00011 1
00011?
0001 1 3
000114
000115
0001 16
000117
0001 IS
000119
000120
0001?!
0001??
000123
000124
0001?5
0001?*
000127
0001?fl
0001?9
000130
000131
ooon?
000133
000134
000135
00013*
000137
00013"
000139
000140
000141
00014?
000143
000144
000145
000146
000147
00014R
000149
000150
000151
00015?
000153
0001S4
00015^
000156
000157
000150
000159
0001*0
0001*1
0001*2
000163
000164
000165
00016*
000167
noa
000
noo
ooo
000
noo
noo
oon
npo
000
ooo
000
ooo
ooo
000
000
000
oon
oon
000
ooo
000
000
000
000
noo
000
000
000
000
ooo
000
000
000
000
000
ooo
000
ooo
000
000
oon
nOO
(i no
noo
000
000
000
nno
oon
nnn
000
ooo
000
noo
oon
noo

?70


2HO












?90
300
310
320

330
340

350










360


370

3«0
390

400



410


4.')
                                                                                         110
                                                                                         111
                                                                                         112
                                                                                         113
                                                                                         114
                                                                                         115
                                                                                         116
                                                                                         117
                                                                                         118
                                                                                         119
                                                                                         120
                                                                                         121
                                                                                         122
                                                                                         123
   440 1=1-LIMES
       |TIPST-FXACT»FLOAT(I-I )
00 ?<)0 J* 1-1.1 07
AI.F UKL> =HI AMK
IT (J-t!) 3\0.310.400
IF (XrM(l.J)-PX(I))  390.3?0.3?0
                                                                                         126
                                                                                         127
                                           330.330.400
                                           400.340.340
IF (XYM(?,J)-(YPLOT + nEL) )
IF (XYM(?, J)-(YPLOT-DELI)
COMTINUf-
IF (XYM(1,.I)-('X (6)-DOO)  350.350.390
CONTINUE
KOL = INT( (XYH(1 .J) +OEX-PXU) I/XACT) *4
IF ( (KOL.RT.IO?).OR.(KOL.LT.lI) GO TO
IXYM3J=lXY-< (3. J)
ILFKOL = ILF (K0|. )
IF (ILFKOl .EO.LANKBA)  SO TO
ISYM1=0
                                           ISYMlaflYY
                                           ISYMPallYY
                                                       390
HO 360 IIYYal.S
IF (ILFKOL.EQ.ISYMdlYYn
IF (IXYM3J.FQ. ISYM(HYY) )
CONTINUE
ISYMM=MJMO(ISYM1.ISYM2)
IF (ISYMM)  J90,3^0.370
ILF (K')L>»ISYM( ISYMM)
GO TO 3°0
AI.F (KOL) =XYH(3.J)
J=J*1
GO TO 300
CON T I Ml It
IF (MOtXI-l.10).NE.O)  GO TO 410
"IPITF. (6.440)  YPLOT.4LF
GO TO 430
IF (MOD(1-1.5).NK.O)  GO TO 4?0
WPI TF
no TO
*/nt TR;
C.OMT
COMTIMUK
WTTF (t.sio)
WPITF. (6,5?0)
CdMTTNUt
                              AI F
                              PX
                                                                         129
                                                                         130
                                                                         131
                                                                         13?
                                                                         133
                                                                         134
                                                                         135
                                                                         136
                                                                         137
                                                                         138
                                                                         139
                                                                         140
                                                                         1*1
                                                                         142
                                                                         1*3
                                                                         144
                                                                         145
                                                                         146
                                                                         147
                                                                         14B
                                                                         149
                                                                         150
                                                                         151
                                                                         15?
                                                                         153
                                                                         154
                                                                         155
                                                                         156
                                                                         157
                                                                         153

                                                                         160
                                                                         161
                                                                         162
                                                                         163
                                                                         164
                                                                         165
                                                                         166
                                       122

-------
 »«»««»
         PITTO
00016P
000169
000170
000171
00017?
000173
000174
000175
00017ft
000177
000178
000179
000180
OOOlfll
0001*2
000183
000184
000185
OOOlfll
000187

END ELT.
noo
ooo
ooo
ooo
000
000
000
000
000
000
000
ooo
noo
ooo
000
000
000
000
900
noo
c
c
c
460
470
480
490
500
510
5?0
530

 540
550
 FORMAT (IH0.1SA4.20X.20HBATTELLE NORTHWEST
RAND. WASHINGTON./.fllX,20HEXPLORE-l CORE
?C MODEL  ./)
 FORMAT (1H1»25X,?OA4)
        
                                                  ./1X,15A4.19X.?1H RICH
                                                    ./81X,20HHYPRODYNAMI
      FORMAT
      FORMAT
      FORMAT
      FORMAT
      FORMAT
      FORMAT
     1COLUMNS
        <1HH.14X»1H».    5(?OH •
        )
        (48HOONLY THE FIRST 500
         WILL BE PRINTED.)
COLUMNS OF A PLOT REQUIRING 13»25H
 FORMAT*IX,'THERE
 FORMAT (11X.IH*,
 END
                       IS A LIMIT OF 400 LINES')
167
168
169
170
171
172
173
174

176
177
17R
179
IflO
1B1

194
PHDfi.P  «»««»«
                        »»»»»*
                                               123

-------
         SOPDER   »»»»«»
000001      000          FUNCTION Sf),?DER (F IRST . SECOND )
00000?      OOP   C       THIS  FUNCTION TS CALLED RY
000003      OOn          DIMENSION F I PST{3) •SECOND(1)                                              2
000004      oon          SOROER=EIP^T(?)-SECOND (?)                                                 3
00000^      000          RETURN                                                                    4
ooooo*      noo          END

END El.T.


!»HI)G.P  *«»#*»  SORT  «»•»•»
                                                 124

-------
««««»«  S'iPT  »»»»»»

      HMAINT.SORT
000001
000002
000003
000004
000005
000006
000007
OOOOOP
000009
ooooio
000011
000012
000013
000014
000015
000016
000017
OOOOlfl
000019
000020
000021
00002?
000023
000024
000025
0000?6
000027
00002«
000029
000030
000031
000032
000033
000034
000035
000036
000037
000039
000039
000040
000041
000042
000043
000044
00004S
000046
000047
00004*
000049
000050
OOOOSl
00005?
OOOOST
non
000
(100
000
noo
000
noo
oro
non
000
noo
noo
onn
000
000
non
000
noo
000
000
000
non
000
000
000
000
oon
000
non
000
000
000
onn
000
000
000
000
000
000
onn
000
noo
000
000
000
non
noo
ono
000
noo
oon
nno
noo

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c




100


1 in




                       SUBROUTINE SORT (M»N«ITEM,OI
                        THIS ROUTIMF. IS CALLED BY PICTUR AND CftLl S Q AND SORDER
                       ALGORITHM ?45 -  TREESORT 3


                       PROGRAMME!! PY J£ SCHLOSSER
            FROM ACM» OEC. 1964
                 VOL 7   NUMBER 12. PAGE 701
                       GENIAL PURPOSE INTERNAL SORT SUBROUTINE
                       EXAMPLE OF USE - - -
                       MAIM PROGRAM
                                 M5. 1000)
     ASSUME -   M ITEMS OF 5 WORDS EACH
                TO BE SORTED IN ASCENDING
                ORDER ON THE SECOND WORD.

     N IS LESS THAN OR EQUAL TO 1000
     A CONTAINS THE ITEMS TO RE SORTED
                       EXTFRNAl  0
Q IS A FUNCTION SUBROUTINE WHICH WILL RETURN
A POSITIVE NUMBER IF THE FIRST ITEM  (FIRST
ARGUMENT) IS TO SORT AHEAD OF THE  SECOND
ITEM (SECOND ARGUMENT).   SEE EXAMPLE BELOW.
                       CALL SOPT 
                       RETURN
                       END
      WRITE A FUNCTION SUBROUTINE SUCH AS THIS,
      IT SHOULD RETURN A POSITIVE RESULT IF
      THE FIRST ARGUMENT SHOULD SORT AHEAD
      OF THE SECOND ARGUMENT.  THIS ROUTINE
      PRODUCES AN ASCENDING SORT ON THE SECOND
      WORD  OF THE ITEMS.
                       NOTE  - -  THE MAXIMUM MUMBER OF WORDS PER ITEM is LIMITED
                       HY THE DIMENSION OF KOPY.     THIS LIMIT is PRESENTLY 100.

                       APPROXIMATE SPEED IS ?50 ITEMS PER SECOND.
                       INTEGER 0
                       DIMENSION KOPY (100)
                       DIMENSION MHTFM.N)
                       IF (N-l)  3>M).320.100
                       K=N/2»1
                       L=M/?-l
                       IF (LI  210.?10,110
                       CONTINUE
                       no ?no  11 = ] .1.
                       t=K-II
                       JS=I
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
la
19
20
21
22
?3
24
25
26
27
29
29
30
31
3?
33
34
35
36
37
3<5
39
40
41
42
43
44
45
46
47
48
49
50
51
52
                                              125

-------
          SORT  »•»»»»
000054
000055
000056
000057
000058
000059
000060
000061
000062
000063
000064
000065
000066
000067
000068
000069
000070
000071
000072
000073
000074
000075
000076
000077
000078
000079
000080
000081
000082
000083
000084
000085
000086
000087
00008H
000089
000090
000091
000092
000093
000094
000095
000096
000
000
000
000
OO1)
000
ooo
ooo
000
ooo
000
000
000
000
ooo
000
000
ooo
000
000
ooo
000
000
000
000
000
000
000
ooo
ooo
000
000
000
000
ooo
ooo
000
000
000
000
ooo
000
ooo

120
130



140
150
160
170


180
IPO
200
21 0





2?0
210



240
250
?60
270


280
290




300
310
320


00 120 10=1»ITEM
KOPY(10)sM(IQ. IS)
J*2»IS
IF (J.QT.NS) GO TO 180
IF (J.OF.M^) GO TO 150
IF (Q(M(1..)*1) »M(1,J) ) I 140.150.150
J=J + l
IF (0(M(1 t J) .KOPY) > 160*180.180
00 170 10=1. ITEM
M(IO,IS)*M(IQ.J)
I^ = J
GO TO 130
no 190 IO=I»ITEM
M(IO»1S)=K')PY( 10)
CONTINUE
NPLUS=N+?
no 310 n=;>. N
I=NPLUS~t T
IS=1
NS=I
no 220 1 0*1* ITEM
KOPYUO)=>'
J=2«IS
IF (J.OT.NS) GO TO 280
IF (J.GE.NS) GO TO 250
TF (Q(M(1 ,J+1 ) »M(1«J1 ) ) 240.250*250
J=J»1
'IF (Q(M( J ,J) .KOPYJ ) 260*280*280
00 270 IfJ = l.ITEM
M(IO*lS)sM< 10. J)
IS = J
GO TO 230
no ?9o 10=1. ITEM
M(IU,IS)=KOPY(IO)
00 300 IT=1.ITEM
U4ZY=M(1T,1 )
M(IT.1)=M(IT.I )
M ( I T » I ) =l.«/Y
CONTINUE
CONTINUE
CONTINUE
RETURN
F.Nn
END  ELT.
                                                                                                             53
                                                                                                             54
                                                                                                             55
                                                                                                             56
                                                                                                             57
                                                                                                             5fl
                                                                                                             59
                                                                                                             60
                                                                                                             61
                                                                                                             62
                                                                                                             63
                                                                                                             64
                                                                                                             65
                                                                                                             66
                                                                                                             67
                                                                                                             6$
                                                                                                             69
                                                                                                             70
                                                                                                             71
                                                                                                             72
                                                                                                             73
                                                                                                             74
                                                                                                             75
                                                                                                             76
                                                                                                             77
                                                                                                             78
                                                                                                             79
                                                                                                             80
                                                                                                             81
                                                                                                             82
                                                                                                             83
                                                                                                             84
                                                                                                             85
                                                                                                             86
                                                                                                             87
                                                                                                             88
                                                                                                             89
                                                                                                             90
                                                                                                             91
                                                                                                             92
                                                                                                             93
                                                                                                             94
                                                    126
  » U.S. GOVERNMENT PRINTING OFFICE. 1982 -559-092/0527

-------