-------
Preparation of Standards
The standards are prepared by diluting the certified
1000 ppm atomic adsorption reference solution to obtain concen-
trations in the optimum working range of the atomic absorption
spectrometer. The standards are prepared with each new solution
of 170 lanthanum.
(1) Calcium - 4 mg/£ and 2 mg/£ standard
solutions are prepared from the
reference standard (1000 mg/£)
(2) Magnesium - .4 mg/& and .2 mg/£
standard solutions are prepared from
the reference standard (1000 mg/£)
*
(3) Sodium - 1 mg/5, and .5 mg/£
standard solutions are prepared
from the reference standard (1000
rng/i)
Preparation of Samples
The samples should be diluted within the following
ranges for optimum sensitivity.
(1) Calcium - 1-4 mg/2,
(2) Magnesium - .1-.4 mg/£
(3) Sodium - .2-1 mg/I
If necessary, two step dilution may be made, the first in deionized
water and the second in the lanthanum chloride solution. The
accuracy for each of these analyses within the range indicated
is ±17o.
-91-
-------
2.2 Sulfite
Sulfite in the liquid phase of the equilibrium and
kinetic studies was determined by an iodometric titration with
sodium arsenite as the titrant. The iodometric method
employed in this project is a modification of the standard
iodine oxidation of sulfite ions designed to avoid interferences
from nitrite which may be present in solutions from lime/limes tone
scrubbing processes. The accuracy of the procedure at the 95%
confidence level is ±2% over the range of .001-.100 moles/ I
S03~2. Utilizing a microburette, the method can be extended to
.0001 moles S03~2/£ with an accuracy of ±470 at the 95% confidence
level.
The sample is added to an excess of buffered iodine
solution. The iodine remaining after the stoichiometric oxidation
of sulfite is titrated with standard sodium arsenite solution.
An amperometric dead-stop method is used for the end-point
detection.
The iodine solution is buffered to a pH of 6.0-6.2 to
inhibit sulfite-nitrite and nitrite-iodine reactions. This also
inhibits the hydrolysis of the iodine and enhances the complete
reaction of sodium arsenite and iodine. Arsenite solutions give
more accurate results than thiosulfate solutions in the presence
of nitrite and are also more stable under ordinary conditions.
The dead-stop end-point detection method gives more reliable
and accurate results than starch indicators. In practice, the
dead-stop method is also convenient and simple.
-92-
-------
Equipment
(1) 50 ml buret, 10 ml microburette
(2) magnetic stirrer
(3) pipets (including 2 ml and 10 ml sizes); bulb
pipet fillers; and 100 ml graduated cylinder
(4) 150 ml beakers (preferably graduated)
(5) four-ounce small mouth glass bottles
(6") microammeter apparatus:
^
(a) two 1-cm square platinum-sheet
electrodes mounted about 1 cm
apart
(b) 1.5 volt dry cell battery (a
#735 "hobby" battery works well)
(c) electrometer or microammeter,
0-25 u amp
(d) voltage divider
Reagents and Solutions
D.I. water and reagent grade chemicals should be used
for all solutions.
-93-
-------
1. Sodium Arsenite Stock Solution (^ 0.010 mole/'l )
Dissolve 1.3 grams of NaAsOz into one liter of
D.I. water. Standardize this solution using reagent grade 0.1
N standard iodine.
(ml I2) (normality of la)
(molarity of NaAs02) = 2 (ml NaAs02)
2. Preparation of ^ 0.1 Normal Iodine Solution
Dissolve 25 grams of potassium iodide (KI) in as
little D.I. water as possible. Weigh accurately 12.69 grams of
resublimed iodine and dissolve it completely in the saturated
potassium iodide solution. When the dissolution of the iodine is
completed, dilute with D.I. water accurately to cfne liter. A
larger solution can be made up at one time, if desired. Iodine
should be kept in a well stoppered, dark colored bottle, in a
cool place. It need not be standardized if only used for the
sulfite analysis since a blank is also run.
3. pH 6 Buffer
This solution contains 1 mole/2, NaAc and 0.05
mole/£ HAc. Pipet 2.9 ml of glacial acetic acid into 500 ml of
D.I. water. Stir in 82 grams of NaAc and when completely dissolved
make up to one liter. It is convenient to prepare several liters
of this solution at a time since 50 ml is used for each analysis.
Procedure for Aqueous S02_ Determination
The sample should be taken into a tared 250 ml bottle
containing the iodine and buffer solution.
-94-
-------
(1) Pour the buffered excess iodine sample
bottle contents into a well washed 150
ml beaker containing a magnetic stirring
bar. Rinse the sample bottle well with
buffer and add the rinse to the beaker.
(2) Place the platinum electrodes in the
solution, stir and connect the micro-
ammeter. The current should be 15-24
microamps.
(3) Begin the titration with the .01 mole/2,
sodium arsenite solution using the 50
ml buret. The .color of the solution
serves as a rough indicator of the
state of the titration. The iodine
color (red) changes to yellow 5 ml
before the endpoint is reached. When
the solution turns light yellow, the
titration should be carried out drop-
wise. The solution will become
colorless one to two drops before the
endpoint. The titration is completed
when the current reaches 3-4 micro amp.
(4) After the titration is completed,
record the ml of sodium arsenite used
and rinse the electrodes with D.I. water
after removing them from the solution.
(5) Blanks are to be run each day using
the above procedure without the
addition of the sample.
-95-
-------
Calculations
The concentration of total S02 in the sample can be
calculated using the following equation.
= (B-S)M
where ,
C = concentration of total SO 2 (mole/liter)
B = volume of arsenite solution needed to
titrate the blank (ml)
S = volume of arsenite solution needed to
titrate the sample (ml)
M = molarity of the arsenite solution,
mole/liter (usually 0.0100)
\J i = weight of bottle plus fixing solution
(grams)
W2 = weight of bottle plus fixing solution
plus sample (grams)
-96-
-------
2.3 Sulfate
Total sulfate present in the liquid phase of the
equilibrium and kinetic studies was determined by indirectly
measuring the total sulfur concentraton and subtracting the
aqueous sulfite concentration. This section will discuss the
method used in the analysis for total sulfur.
The aqueous sulfite is converted to the sulfate ion
by oxidation of the liquor with a two-fold excess of H202
during sampling. The liquor is diluted to prevent the precipi-
tation of CaS03-%H20 and/or CaSOi+-2H20 due to any sxipersaturation
of these species. An aliquot of the oxidized diluted filtrate
is passed through the hydrogen-form cation exchange column to
convert all sulfates to sulfuric acid. The sample is then taken
to dryness at 75°C to remove all volatile acids. An acid-base
titration is then used to determine the concentration of sulfate.
This concentration of sulfate represents the total sulfur species
which include sulfate and sulfite.
All acids not volatile at 75°C interfere. In the
equilibrium and kinetic studies, the only acids present in the
sample after passage through the ion exchange column, will be
HC1 and H2SCK. HC1 is volatile at 75°C and should not interfere.
The only other interference in the procedure would be any free
ammonia present in the laboratory.
-97-
-------
Laboratory Equipment
(1) Ion-exchange columns with internal
diameter of 1.2 cm and 20 cm high are
used. These should be equipped with
sintered glass filter and stopcock
control. A 25 ml reservoir bulb at
the top of column is convenient.
(2) Microburet, 10 ml with 0.02 ml
graduations.
(3) pH meter
(4) Graduated 100 ml beakers
(5) Hot plate and steam bath (75°C);
surface thermometer (0-110°C)
(6) Pipets
Reagents
(1) Strong acid resin, 100-200 mesh size,
hydrogen form (Styrene-divinylbenzene
copolymer, 87o cross linkage, with
sulfonic functional group). Possible
choices are Dowex SOW, Amberlite CG-120,
or Rexyn 101 (Fisher brand).
(2) 5 M hydrochloric acid for regenerating
the resin
(3) Hydrogen peroxide (3070)
-98-
-------
(4) Standard sodium hydroxide (0.05-0.1 N).
Commercially available standard solution
concentrate may be used.
(5) pH 4 Buffer to standardize pH meter
Preparation of Ion Exchange Column
Place a strong acid-type resin, 100-200 mesh size,
into a beaker and mix with water. If a cloudy suspension occurs,
decant the liquid several times to remove fine resin particles
which may otherwise pass through the columns during the sulfate
determinations.
Transfer 20-25 ml of resin as a slurry through a
funnel into the column, and drain sufficient water to settle
the resin bed. The resin bed should be at least 17 cm high.
Add more resin as required. Stopper the top of the column and
shake it horizontally with 10 ml of water. This step releases
the air bubbles and renders the resin bed homogeneous. For
optimum packing, allow the resin to settle for at least 5 min-
utes before draining. Air voids below the sintered disk may
be eliminated by backwashing the column (with or without resin).
If the resin needs to be regenerated, pass 50 ml of 5 M hydro-
chloric acid through the column and rinse with 50 ml of water.
The ion exchange column is ready to process at least
seven 10 ml samples of a cation concentration normally encoun-
tered in limestone based SOa scrubbers. However, if the resin
is mixed after a sample has been processed, it is necessary to
regenerate the resin. The bottom 6 cm height of the resin column
must be completely in the hydrogen form. Any other cations pre-
sent on the resin within this region would be eluted during the
processing of samples, resulting in low sulfur values.
-99-
-------
If a large number of columns are to be used, it is
recommended that the resin be regenerated in one batch using
a larger column. Less time and hydrochloric acid would be
required. The regenerated resin may be stored as a slurry in
bottles and be transferred, when needed, to smaller columns.
Spent resin can be stored similarly until a sufficient amount
is accumulated to make its regeneration in a big column worth-
while .
After the resin is stored for several days, the
supernatant liquid may acquire a yellow tinge. This "color
throw" from the resin is easily removed by rinsing in a
column. When eluting with 5 M hydrochloric acid, the extent
of regeneration may be verified by evaporating about 5 ml of
effluent in a beaker on a hot plate. If no residue is obtained,
the resin is completely regenerated.
Procedure for the Determination of Sulfate
(1) Allow the liquid in the column to drain
to the top of the resin bed. Introduce
a sample aliquot containing 0.02-0.25
mmole total sulfur to the column. A
10 ml aliquot is preferable. The total
cation concentration (including H ) shot
be less than 0.7 equiv./liter.
(2) Collect the effluent in a graduated 100 ml
beaker. Allow the column to drain on top
of resin bed. When 100-200 mesh resin is
used surface tension is sufficient to keep
liquid on resin and thus prevent the forma-
tion of air pockets in column. Rinse the
-100-
-------
column reservoir with 5-10 ml of water,
using a wash bottle, and drain again.
Rinse the resin column with an additional
40 ml of water. If a 10-ml aliquot was
used in step (a), collect a total of 60
ml of effluent in the beaker. The col-
umn is ready for another sample.
(3) Place the beaker on a hot plate and
evaporate the solution down to 5 ml.
Do not boil or allow the sample to go
dry on the hot plate. If the effluent
contains a noticeable amount of resin,
it should be filtered prior to the
evaporation step. A suction funnel may
be used.
(4) Place the sample in a water bath at
75 C for 2 hours, or until all the
volatile acids have evaporated (odor
test). The residue should appear oily
with no trace of solids. Evaporation
should be made in an area free from
ammonia and other vapors that may react
with the acid mixture. It is acceptable
to leave samples overnight in the water
bath at 75°C.
(5) Dissolve the residue with a few ml of water,
and titrate with 0.0500 N sodium hydroxide
until the pH is 4.6. Both hydrogens in
sulfuric acid are titrated at this pH. The
effect of a snail amount of carbonate in the
standard base and also that of atmospheric
-101-
-------
carbon dioxide is minimized by stopping
the titration at pH = 4.6.
Calculation for Total Sulfur for Liquid-Phase Samples
Analyzed by Ion-Exchange Method
No significant amount of phosphate has been found in
scrubbing liquors so the calculations outlined below assume that
phosphate is absent.
C = D
Cs 2V DF
where,
C = concentration of total sulfur as
s
sulfate (S03) in sample (moles/liter)
MR = molarity of sodium hydroxide
(moles/liter)
V-n = volume of sodium hydroxide required
for titration (ml)
D-r. = dilution factor (if any)
r
If the concentration of sulfate sulfur is desired then
the values for sulfite (S02) must be known.
C 2 = C 3 - C i
where ,
C2 = concentration of sulfate sulfur (moles
S03/liter)
-102-
-------
C3 = concentration of total sulfur as sulfate,
(SO 3) in sample (moles/liter)
G i = concentration sulfite sulfur (moles
SO 2/liter)
Accuracy
The accuracy of the described method is within 170 for
samples containing at least 0.1 mmole of sulfate. The presence
of salt residues after the evaporation of samples usually results
in low values for sulfate. When this occurs, it is suggested
that the resin be regenerated or a larger column be used. High
sulfate values are obtained if resin particles pass through the
column into the effluent. However, the resin is easily recognized
after evaporation, and the solution turns yellow when titrated
with base.
For an independent quality control check, a sulfate
standard (Na2SOO or a reference solution containing a known
concentration of CaSCU in the same range as the actual samples,
should be passed through the ion-exchange column and titrated
with the sodium hydroxide solution until the pH is 4.6.
-103-
-------
2.4 Chloride
Chloride present in the liquid phase of the equilibrium
and kinetics studies was determined by a manual potentiometric
titration with a standard silver nitrate solution. The detection
limit for the analysis is .02 mmoles/2.. The accuracy of the
procedure at the 9570 confidence level is ±270 over the range of
1-200 mmoles of chloride/£,.
Apparatus
Silver Electrode - a cup type, Fisher No.
13-639-122 is suitable - a solid silver
cylinder may also be used.
Adaptor for Silver Electrode - designed to
fit into pH meter connection designed for
glass electrode and to accept pin from
silver electrode.
Reference Electrode - a silver-silver chlo-
ride with a sodium sulfate bridge is recom-
mended. Fisher No. 9-313-216 is an example
which is commercially available.
pH Meter - any standard pH meter with a milli-
volt scale is suitable.
Microburet - 10 ml capacity
Magnetic Stirrer
-104-
-------
Reagents
0.0200 M Silver Nitrate - Dilute 400 ml com-
mercially prepared 0.1000 M silver nitrate
standard solution to 2000 ml.
.1000 M Hydrochloric Acid - Prepare from
standard solution concentrate or purchase
this concentration of solution.
0.01 M Hydrochloric Acid - Dilute 100 ml
0.100 M hydrochloric acid to 1000 ml.
Acetate Buffer Solution (.4 M sodium
acetate and 0.4 M acetic acid) - Dissolve
54.4 g Na(C2H302)- 3 H20 in about 400 ml
water. Add 24 ml glacial acetic acid and
dilute to one liter.
Non-Ionic Detergent - Tergitol non-ionic
NPX or equivalent
Concentrated Nitric Acid - Reagent grade
Sodium Nitrite - Reagent grade
Procedure for the Determination of Chloride
(1) Standardize pH meter to 0 millivolts
while on standby and in the ± millivolts
mode.
-105-
-------
(2) Pipette a suitable aliquot (.01-.20
millimoles of chloride) into a 150 ml
beaker containing a stirring bar.
(3) Dilute to approximately 50 ml with
deionized water.
(4) Add approximately 50 ml of the acetate
buffer solution.
(5) Add 3 drops of nonionic detergent.
(6) Stir and titrate with .0200 M silver
nitrate to a potentiometric end-point
of -260 millivolts.
Electrode Cleaning
Clean the metallic silver electrode before each series
of titrations and after about 15 titrations if more are run at
one time. Prepare the cleaning solution by adding 50 ml
concentrated nitric acid, 50 ml water and 20 milligrams of
sodium nitrate just before use. Dip the electrode in the
cleaning solution for only a few seconds and wash thoroughly
with D.I. water.
Calculations
Concentrations of chloride in solution can be calculated
using the following formula.
(Vs- VB)M
Ca c
-106-
-------
where,
C = concentration of chloride (moles/Z),
Si
Vs = volume of silver nitrate for sample
titration (ml),
V,j = volume of silver nitrate for blank
D
titration (ml),
M = molarity of the silver nitrate solution,
and
V. = aliquot size of sample.
2.5 Aqueous CO 2
Carbonate in the liquid phase of the equilibrium and
kinetic studies was determined by chemical analysis of the
aqueous COz sample utilizing a nondispersive infrared analyzer.
The operational procedure of the instrument is described in
detail in Radian Technical Note 200-403-50. The detection limit
is .1 ppm COz with the optimum range as 25-100 ppm C02 ± 3%
accuracy.
In general, the aqueous C02 sample is injected with
a microsyringe into an acid pool which liberates C02. The C02
liberated is then measured by the nondispersive infrared analyzer
The output of the analyzer is coupled with a recorder equipped
with disc-chart integrator for determining the peak area (pro-
portional to the amount of C02 injected). The peak area for the
samples and standards along with calibration data is input into
a linear least squares program. The program is used to determine
the C02 concentrations of the injected samples in moles/liter.
-107-
-------
Apparatus
(1) QIC total carbon system equipped with
disc-chart integrator
(2) Hamilton injection syringe
(3) Injector ampules with seal and septum
(4) Glass drying tubes filled with fresh
magnesium perchlorate
Reagents
(1) 10% KH2?(\ stock solution
(2) 6% HaPO^ stock solution
(3) Na2C03 reagent grade
(4) Methyl red indicator
(5) Magnesium perchlorate, anhydrous flake
-108-
-------
3.0 ANALYTICAL PROCEDURES FOR CHARACTERIZATION OF SOLIDS
Characterization of the precipitated solids was
performed in three phases. The first phase consisted of chemical
analysis to determine the chemical composition of the solids.
The solids were then analyzed with X-ray diffraction techniques
to identify any pure crystalline phases. Finally the solids
were analyzed by infrared analysis to confirm X-ray analysis
and to identify possible crystalline structures of coprecipitation
product.
Chemical analyses of the solids consists of a solid
sulfite analysis, specific sulfate analysis, solid carbonate
analysis, and a solid dissolution from which calcium, magnesium,
sodium and total sulfur were determined with the appropriate
analytical procedures.
3.1 Solid Phase Sulfite
Solids obtained from the equilibrium and kinetic
studies were analyzed for their sulfite concentration by an
iodometric titration with sodium arsenite. The theory and sensi-
tivity of the analysis is similar to the aqueous sulfur dioxide
determination. However, the procedure has been modified to
accommodate complete dissolution of sulfite without degradation
of the iodine.
Procedure for Solid Sulfite Determination
(1) Weigh 0.06 g of solid sample to the
nearest 0.1 mg.
(2) Pour 60 ml of pH 6 buffer solution
into a 4 oz glass bottle with cap and
add stirring bar.
-109-
-------
(3) Pipet 10 nil of 0.1 N standard iodine
solution into the bottle, cap and
begin stirring.
(4) Add the weighed solid sample and recap.
(5) Stir for 30 minutes .
(6) Empty bottle quantitatively into a
150 nil beaker and titrate as described
in the procedure for aqueous S02
(Section 2.2) .
Calculations
The concentration (mmole/gram) of sulfite present in
the solid sample can be determined by use of the following
equation:
W
where ,
C = concentration of sulfite (in rnmoles/g)
B = volume of arsenite used to titrate the
blank in ml
S = volume of arsenite used to titrate the
sample in ml
M = concentration of the sodium arsenite
(moles/2,)
W = weight of sample used in grams
-110-
-------
3.2 Specific Sulfate
This method allows a specific determination of the
concentration of sulfate in the solids. This differs from
techniques discussed earlier which determine sulfate by the
difference between the total sulfur and the solid sulfite.
In the procedure, a representative sample of the solids'
is dissolved in 0.1 N HC1 oxygen-free solution to quantitatively
decompose the sulfite to SOz gas which is eluted by constant
bubbling of C02 gas through the solution. When all S02 has been
evolved, the acidic sulfate solution is quantitatively transferred
to an ion-exchange column and the total sulfur procedure described
in Section 2.3 is followed. The detection limit is 0.075 mmoles/g
(0.01 mole fraction sulfate). The accuracy at any level is
±0.004 mmoles SCU~2(0.100 gram of solids).
Apparatus
(1) CO2 tank - oxygen free
(2) C02 regulator
(3) gas manifold
(4) midget impingers
(5) hydrogen-form cation exchange columns
(6) hot plate
(7) 75°C water bath
(8) 100 ml beakers
-111-
-------
(9) pH meter
(10) microburet
(11) magnetic stirrer and bar
(12) analytical balance
Reagents
(1) 0.1 N HC1
(2) 0.05 N NaOH (±0.0001 N)
Procedure
(1) Weigh 100 mg solid sample to the
nearest 0.1 mg.
(2) Fill midget impinger with 20 ml of
an acidic solution (0.1 N HC1) and
purge with oxygen-free C02 gas for
10 minutes at a flow rate of 100 ml
C02/min to remove dissolved oxygen
from acidic solution.
(3) Quantitatively transfer 100 mg sample
to midget impinger containing 20 ml
of the oxygen-free 0.1 N HC1 with a
few ml (<5 ml) of oxygen-free DI HaO.
(4) Purge with oxygen-free COz for 30
minutes to strip the sulfur
dioxide from the acidic solution.
-112-
-------
(5) Quantitatively transfer acidic solution
to hydrogen-form cation exchange columns
and follow total sulfur procedure
described in Section 2.3.
Calculations
The concentration of the solution (mmoles/g) may be
calculated by use of the following formula.
where ,
C = concentration of sulfate in the solids
(mmole/g)
NB = normality of the NaOH solution
VD = volume of the NaOH solution used to
a
titrate sample
W = weight of sample used
and 2 is the number of equivalents per mole (or meq/mmole) of the
HzSOit formed by the ion-exchange column.
-113-
-------
3. 3 Solid Carbonate
Carbonate present in the solid phase of the equilibrium
and kinetic studies was determined by nondispersive infrared
analysis. The apparatus, reagents and solution, preparation of
standards, and calculations are described in Radian Technical
Note 200-403-50. The following section will document the
procedure used for the adaptation of the method for solid
carbonate analysis.
Procedure
(1) Dry the filtered solids at least 48
hours at a maximum temperature of
60°C.
(2) Weigh out 200 mg (±0.01 mg) solids
for analysis (30 mg CaC03 for
standards) and transfer to 100 ml
volumetric flask.
(3) Rinse neck of flask with C02 free
DI H20 (freshly boiled DI H20).
(4) Pipet 10 nil of freshly prepared
C02 buffer into volumetric flask.
(5) Fill each volumetric flask to mark
with C02 free DI H20.
(6) Add teflon magnetic stirring bar
to each flask and stir for 30 minutes
with flasks tightly stoppered.
-114-
-------
(7) Remove stirring bar and rinse the
clean 60 ml polypropylene bottle
with small aliquot of sample.
(8) Fill sample bottles to neck, tighten
cap and seal with tape until analysis.
(9) Run the samples and standards on the
nondispersive infrared analyzer in
the same method as employed in
aqueous C02 determination with the
exception of a modified acid pool
(a mixture of 95 mis of 10% KH2PCU,
5 mis of 5% H3P04, and 1 ml 30% H202).
Calculations
A computer program is utilized to calculate the
concentration of carbonate in moles/liter of the solution '
injected into the analyzer. Utilization of the computer program
is described in detail in Section 8 of Radian Technical Note
200-403-50. The following equation was used for calculation of
the solid carbonate concentration in moles/gram.
C2V
where,
G! = concentration of carbonate in solid
sample (moles/gram)
C2 = concentration (moles/liter) of carbonate
of solution injected into analyzer
(dissolution concentration)
-115-
-------
V = volume of volumetric flask used in
dissolution step (100 ml)
W = weight of solid sample dissolved in
volumetric O200 mg)
3 . 4 Solid Dissolution
The following technique was used for dissolving solids
recovered from the equilibrium and kinetic studies. It entails
dissolving a known weight of dried solid in an acidic medium
containing a sufficient amount of H202 to oxidize the sulfite to
sulfate. Following filtration, the-liquid may be analyzed for
calcium, sodium, magnesium, and total sulfur according to technique
described in Sections 2.1 and 2.3.
Apparatus
(1) 2 100 ml volumetric flasks
(2) 100 ml graduated cylinder
(3) 10 nil graduated cylinder
(4) 1 ml graduated pipet
(5) magnetic stirrer
Reagents
(1) HC1 concentrated (12 Molar reagent
grade)
(2) 1 M HC1 (approximate ) - 84 ml concentrated
HC1 diluted with D.I. H20 to 1 liter
-116-
-------
(3) hydrogen peroxide - 30%
Procedure
(1) Accurately weigh 0.200 g (±0.1 ing)
of solids.
(2) Quantitatively transfer solids to a
clean 100 ml volumetric flask.
(3) Add approximately 50 ml of DI water.
(4) Pipet 0.3 ml of 30% H202 into flask.
(5) Insert stirring bar and stir, tightly
stoppered, for 10 minutes.
(6) Pipet 0.4 ml of 1 M HC1 into the flask
and stir for 30 minutes with stopper
secure.
(7) Add by graduated cylinder an additional
5 ml of 1 M HC1 and stir for an addi-
tional 30 minutes with stopper secure.
(8) Additional HC1 may be added to the
solution, remembering that the (H+)
adds to the total cation concentration.
(9) Remove the stirring bar and dilute
to volume.
(10) Filter.
-117-
-------
(11) Transfer to a clean 120 ml polypropylene
bottle, cap and seal with tube until
ready for use. All liquor analyses
except for chloride may then be performed
on the solid dissolution following
procedures described in Section 2 of
this report.
3.5 X-Ray Diffraction Analysis
Selected solids from the experimental runs were
analyzed utilizing an automatic X-ray diffractometer to identify
crystalline phases present in the precipitated solids with
particular emphasis on the crystalline form of the solid phase
sulfate. The intensity of the diffracted beam is recorded
continuously on a strip chart and compared with published
patterns and with reference standards prepared by Radian for
identification.
Reference standards of calcium sulfite hemihydrate,
calcium sulfate dihydrate and calcium sulfate hemihydrate were
prepared under controlled laboratory conditions and analyzed
chemically for purity. Reference standards and solid samples
were ground with mortar and pestle, and classified. Solids
smaller than 44 micrometers were stored in vials in an inert
atmosphere until analysis. X-ray diffraction patterns of the
samples were compared to the standards for identification.
3.6 Infrared Analysis of the Solid Phase
Infrared analyses were performed on all experimental
solids to distinguish between pure sulfate compounds and sulfate
contained within the sulfite crystalline lattice. Spectra of
standards prepared in the laboratory and published spectra were
used for reference in interpretation of the spectra of experimental
solids.
-118-
-------
-------
APPENDIX E
ANALYTICAL RESULTS, REACTOR MATERIAL BALANCES,
SOLID MATERIAL BALANCES, AND COMPUTER EQUILIBRIUM
DATA OF LABORATORY EXPERIMENTAL RUNS
Prepared by:
Benj amin F. Jones
Larry A. Rohlack
-119-
-------
TABLE OF CONTENTS
Page
1.0 INTRODUCTION 121
2.0 ANALYTICAL RESULTS, OPERATING DATA,
AND COMPUTER SUMMARY 123
2.1 Analytical Results 123
2.2 Operating Data 125
2.3 Computer Summary 125
2.4 Mole Fraction of Sulfite and Sulfate
in the Precipitated Solids . .- 125
3.0 REACTOR MATERIAL BALANCES ... .128
4.0 SOLID MATERIAL BALANCES 131
5.0 COMPUTER RESULTS -. . . .133
-120-
-------
1.0 INTRODUCTION
This appendix presents the experimental data, calcu-
lations, and material balances for experimental kinetic runs 44-71,
and equilibrium extraction runs 1-12. Extensive analysis of
experimental data has been performed on each of these experimental
runs. Four data sheets have been required to fully characterize
each run. The first sheet contains a summary of analytical
results, operating conditions and computer results. The second
sheet presents the material balance calculations around the
reactor. The third sheet presents the material balances for the
solids only. The results of computations by Radian's ionic equi-
librium program are printed and presented as the fourth data
sheet.
The following four sections are provided as explanations
for the content of each of the four data sheets. Equationsoare .
provided as needed for the calculations presented in the data
sheets. The precipitation apparatus utilized in the kinetic
studies is depicted in Figure 1. This diagram will facilitate
the understanding of the experimental data and of the mass
balances which follow.
-121-
-------
y
~^y <*
=} l
z
0
0
a
z
c_
[ill
( [ i ! *! r^^J
UJ
3
0
o
i i
-122-
-------
2.0 ANALYTICAL RESULTS, OPERATING DATA, AND COMPUTER
SUMMARY
An example of the first data sheet for each set is
shown on the following page.
2.1 Analytical Results
Analytical concentrations are presented for the two
feed streams into the reactor and the effluent and solids leaving
the reactor. These concentrations in millimole per liter represent
the average values of duplicate or triplicate determinations.
Major ions, including calcium, magnesium, sodium, chloride,
carbonate, total sulfur, sulfite, and sulfate, have been deter-
mined by the analytical techniques documented in Appendix C.
A set of quality control analytical standards were
prepared. These standards were analyzed each time a set of exper-
imental samples was characterized. The concentration of the
ions in the standards were as follows:
Calcium - 50 mmole/liter
Magnesium - 8 mmole/liter
Sodium - 10.6 mmole/liter
Chloride - 99.5 mmole/liter
Total sulfur and sulfate - 18.8 mmole/liter
The concentration of the standard as measured with each
set of experimental samples is then compared to the actual con-
centration as presented above. The resulting standard deviation
is calculated. This standard deviation in 7= is then presented
in the column labeled "Standards" under the analytical results
section of the first data sheet.
-123-
-------
HUM :,'Q. 44
OATH i/27/76
-T/T
/0,'Ai YTICAL RrSUI.TS
Standards C<1' Feed
Species' (''- Deviation) (mnolo/1)
"2
Ca
Nat1
Cl"1
C03":
S03"
1-0
64.3
6.39
131.
S03~2 Feed
(ranole/1)
1380.
390.
Effluent
(rmr.olc/1)
766
Solids
.02
Time
(mir.)
. 30
60
90
150
130
pH
6.43
6.31
6.29
6.25
6.22
Temp
(°0
47.3
43.0
43.6
50
50
OPERATING DATA
- Solids
SOj"2 Removal
(nraiola/1) (ml/min)
17.5
17.10
32
Solids
(wc%)
.25
Solids
(g)
3.2
COMPUTER RESULTS
Ionic
Strength
1.35
Residual
ElectroneuCralicy
-.063
Relative Saturation
7.4
' 2';!20 CuSO., ^
1.01 0.46
Mole FractJO"
SO,"
.33
SO,,
-124-
-------
2.2 Operating Data
Operating conditions are monitored throughout each
experimental run to determine approach to steady state and to
determine how close the actual operating conditions are to the
design of the experiment. Key parameters which are monitored are
pH, temperature, sulfite concentration, solids removal rate, and
concentration of solids in the reactor. The concentration of the
solids is presented as the total mass of seed crystals and as a 70
of the total weight of the slurry.
2.3 Computer Summary
Key computations of the Radian aqueous ionic equilibrium
program are summarized in this section of data sheet #1. The
ionic strength, residual electroneutrality, relative saturation
of calcium sulfite hemihydrat;e, calcium sulfate dihydrate, and
calcium sulfate hemihydrate are presented. The residual electro-
neutrality is a rough indication of the accuracy of the input
concentrations of the major species. The 70 error is obtained by
dividing the residual electroneutrality by the ionic strength and
multiplying the quotient by one hundred.
2.4 Mole Fraction of Sulfite and Sulfate in the
Precipitated Solids
The mole fractions of the precipitated sulfite and
sulfate were calculated by the following equations:
-125-
-------
Cp(S03"2)
X - 2 = : and
bUa cpcsor2) + cpcsor2)
-2 =
where
Cp(SO,~2) + Cp(S03~2)
Xcn -2 = sulfite mole fraction; i.e., the
bU 3
ratio of sulfite in the precipitated
solids to that of the total sulfur in
the precipitated solids.
Cp(S03~2) = concentration of precipitated sulfite
in millimoles of sulfite per gram of
precipitated solid.
£
Cp(SCU~2) = concentration of precipitated sulfate in
millimoles of sulfate per gram of pre-
cipitated solid.
y
SOit"2 = sulfate mole fraction or the ratio of
precipitated sulfate to that of the
total sulfur precipitated.
The concentration (Cp) of the solid ion of interest, either
calcium, sulfite or sulfate, is calculated using the following
equation.
<* =
Ce = concentration (mmole/gram) of species
(calcium, sulfite, or sulfate) present
in the solids at the end of the experi-
mental run.
-126-
-------
Me = total mass (grams) of solids present in the
reactor at the end of the run
Me = We x Vr where
We = concentration of solids (g/&) at end of run
Vr = volume of reactor in liters = 3.25 liters
Cs = concentration (mmole/gram) of species present in
the seed charge at the beginning of the run
Ms = mass of initial seed charge present in the reactor
at the end of the run.
The mass of the initial seed charge present in the reactor at the
end of the run can be calculated by the following equations:
-T/ T
Ms = Mi x e where
Ms = mass of initial seed charge present at
end of run
Mi = mass of initial seed charge in reactor at
the beginning of run
-T/ T
e ' = fraction of initial seed charge
remaining in reactor at end of run
T = elapsed time of run (minutes)
T = « = residence time of solids in reactor
where
Vr = reactor volume = 3.25 liters
Fs = solids removal rate (liters/min)
-127-
-------
3.0 REACTOR MATERIAL BALANCES
Material balances for the reactor are presented on
the second data sheet for each run. An example of the sheet
is shown on the following page. In addition, precipitation rate
for each species calcium, sulfite, and sulfate have been normalized
to the precipitation rate of the total solids.
Material balances have been calculated for each of the
major ions of interest and include calcium, sodium, magnesium
chloride, sulfite, sulfate, and carbonate. This is accomplished
by calculating the millimolar flow rate of each species into the
reactor and comparing it to the corresponding rate leaving the
reactor.
a
For the inlet, these rates are calculated for each feed
stream by multiplying the volume flow rate (ml/min) by the con-
centration of species (mmole/ml). The resulting millimolar rates
of each ion for two feed streams are then summed.
For the outlet, similar calculations are made for the
millimolar rate in the liquid phase. These effluent liquid phase
millimolar rates are then added to the corresponding effluent
solid phase millimolar flow rate. Solid phase millimolar flow
rate is determined by multiplying the solid phase concentration
(millimoles/gram) by the product of the slurry, removal rate
(liters/minutes), and the solids concentration (grams/liter).
After calculating the precipitation rate (mmole/min)
of each ion of interest (calcium, sulfite and sulfate) the rate
is normalized to the total solids precipitation rate (grams/minute)
This is accomplished by dividing the individual rate (mmole/min)
-128-
-------
REACTOR MATERIAL BALANCE CALCULATION'S
Run '/ 44
Data 1/27/76
INLET
Flow Race (mi
crl
C03~
S03"
SOu"
(moola/niin)
(nnnola/iiin)
(minola/ain)
(aniole/'ain)
(mmole/tnin)
(mnole/^in)
(nmole/niin)
50
50
2.28
100
3.22
59.5
3.38
75.6
2.23
19.5
OUTLET
Flow Race (ml/mia)
Ca z (mmcla/min)
Mg A (mmole/aiin)
Na2 (nmole/tnir.)
Cl"1 (mmola/min)
CDs (mnole/min)
S03 (mmola/min)
SOu (amole/min)
3.04
76.6
1.71
20.0
Solid
Q."'!
.003
.002
.63
.105
(g/min)
3.28
3.04
76.6
2.34
20.1
PREC. RATE
Solid
S0>,~2
mmola/aln nmole/9
0.098
.090
.089
-0.449
-129-
-------
by its concentration in the solid (mmole/gram). This normalizes
each of the rates and allows another independent check
of the accuracy of the analytical measurements and flow rate
measurements .'
-130-
-------
4.0 SOLID MATERIAL BALANCES
Material balances were also calculated for the solid
phase alone. An example data sheet is presented on the following
page. Balances were calculated by multiplying the solid concen-
tration of each ion (mmole/gram) by its molecular weight (g/mmole)
to obtain its fractional equivalent of the total solid. The
water content of the solids was determined by assuming % mole of
water for each mole of sulfite and % mole of water for each mole
of sulfate present. These fractions were then summed and compared
to an optimum balance of one gram.
-131-
-------
SOLIDS MATERIAL BALANCE
Run // 44 Date 1/27/76
g/mmole mmqle/gram g/gram
-'2 --- 7.24 0.290
Ca' .040
Mg+2 .024 .035 .001
Na2+2 .046 .02 .001
Cl"1 .035
C03~2 .060
S03~2 .080 6.43 -514
'2 .096 ^O7 -103
%H20 .009 7'5Q -068
-132-
-------
5.0 COMPUTER RESULTS
As stated earlier, the pH, temperature, and molar
concentrations of the major cations and anions are input into
Radian's aqueous ionic equilibrium program. This program takes
the inputs for each case, together with the relevant dissociation
and solubility product constants, and calculates pertinent equi-
librium data. Activities of the major ions and ion pairs and
the relative saturation of relevant solid species are calculated,
In addition, the ionic strength and residual electroneutrality
are calculated and printed.
-133-
-------
EXPERIMENTAL DATA
-134-
-------
. RUN NO. 44
DATE
1/27/76
ANAJ YTTCAL RESULTS
-T/T
.^15
Species
Ca
Mg
+ 2
+2
Nat1
Cl
CO;
Ts"
S0:
SO 4
-i
2
2
'2
Standards
(% Deviation)
-.1
.3
1.0
Ca+ Feed
(mmole/1)
64.3
6.89
131.
S03~2 Feed
(raiiole/1)
1190.
60.6
1380.
436.
45.6
390.
Effluent
(mrr.ole/l)
25.7
560
30.4
766
217.
17.1
200.
Solids
(mmole/o)
7.24
.035
.02
6.43
1.07
Time
(min)
30
60
90
150
180
pH
6.43
6.31
6.29
6.25
Temp
(uc)
47.3
48.0
48.6
50
~2
S03"
(mmole/1)
17.5
6.22
50
OPERATING DATA
Solids
Removal
(ml/min)
32
17.7
33.
29.
31.
50.
Solids
(wt%)
.25
.26
.29
.32
.29
Solids
(g)
8.2
9.3
10.4
9.31
COMPUTER RESULTS
Ionic
Strength
1.35
Residual
Electroneut ra! ity
-.063
Relative Saturation
7.4
1.01
CaSO., ^
0.46
Hole Fracti
S0
~2
.33
SOu
-135-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
+2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
Ca
Na2+2
ci-1
C03~2
so3~2
Ca£
Na2+:
Cl L
CO 3
S03
SO 4
-2
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC._RATE
Solid
S03~2
Run // 44 Date 1/27/76
A
50
B
50
3.22
59.6
.35
6.54
3.03
69.1
__
2.28
19.5
Liquid
inn
2.57
56.
3.04
Solid
0.098 (g/min)
0.71
.003
.002
76.6
1.71
20.0
mmole/min
0.65
.57
-0.48
.63
.105
mmole/g
7.24
6.43
1.07
100
3.22
59.6
3.38
75.6
2.28
19.5
3.28
56.
3.04
76.6
2.34
20.1
grams/min
0.098
.090
.089
-0.449
-136-
-------
SOLIDS MATERIAL BALANCE
Run // 44 Date 1/27/76
g/mmole mmole/gram g/gram
Ca~!2 .040 7.24 0.290
Cl .035
C03"2 .060
-137-
Mg+2 .024 .035 .001
Na2+2 .046 .02 .001
S03~2 .080 6-^3 .514
.096 1-07 .103
%H20 .009 7'50 -068
z.o-977
-------
KINETIC RUN 44
76 14S15I37.27H
PH S
INPUT snecus
CC2
302
S03
9e,0«a DEC. c.
1 .1 ja-"7
t .367«.:»^
<», 764-^1
VI4SH4-
CU-
3.7«b-Ct
1., -107-1-4
I ,55'J-.'J
0.327-CS
I .2t>7*"C>
503--
CASi.n(«) i'.f??
M-j533C5) 8,<4?i!
"i? * 2.17441-07 ATH.
( .1195.«4
5.127-C3
ACTIVITY
3.77«-17
9[724-16
IONIC STRENGTH > 1 ,3S
t.
SA7UHATTO"
«£S. fc.N. « -P.
-138-
-------
iUIM NO. 45
DATE 2/2/76
-T/T
.06
ANALYTICAL RESULTS
Species
+ 2
+ 2
Ca
Mg
Nat1
Cl
CO 3
Ts"
SO 3
-i
-2
-2
Standards
(% Deviation)
-.1
-.8
.3
1.0
1.0
Ca Feed
(mmole/1)
61.9
6.70
125.
S03~2 Feed
(mmole/l)
1030.
40.7
1400.
418.
33.3
385.
Effluent
(mn;olc/l)
27.7
529. _
23.6
819-
222.
14.9
207.
Solids
5.58
.18
.01
5.6
1.52
4.40
OPERATING DATA
Time
(min)
Temp.
PH
6.30
6.19
6.19
6.18
6.18
47.3
48.8
51-0
49.9
50.0
so3~2
(mmole/1)
16.3
16.2
15.8
15.9
15.5
Solids
Removal
(ml/min)
18.5
16.9
21.4
Solids
(wt%)
.14
.16
.19
.20
Solids
(g)
4.5
5.1
6.0
6.4
COMPUTER RESULTS
Ionic
Strength
1.40
Residual
Electroneutrality
.115
Relative Saturation
6.7
CnS(V2U20
1.15
0.52
Mole Fract5<
SO
-2
0.20
0.80
-139-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
Run # 45
Date 2/02/76
INLET
Flow Rate (ml/min)
50
50
100
Ca+2
Mg+2
Na2+2
ci-1
Ts
SO 3
S0«,
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
3. 1 Q
.34
?ft
51.5
2.04
70.3
20.9
1 . fi7
19.7
3...1Q
51. 5
2.3.8
7fi.fi
20-9
1.67*
19.2
OUTLET
Flow Rate (ml/min)
^z
Mg+2
Na2 2
Cl"1
Ts
S03 2
scu"2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
Liquid
100
2.77
S2.9
2.36
81.9
22.2
1.49
20.7
Solid
0.042 (g/min)
0.235
.008
.0004
0.25
.064
.188
3.01
52.9
2.35
81.9
22.5
1.55
20.9
PREC. RATE
mmole/min mmole/j
Solid
C.+1,
S03
SO 4
-2
0.33
.18
-2.3
5.58
1.52
4.40
O.Q42
.059
.118
- .523
-140-
-------
SOLIDS MATERIAL BALANCE
Run // 45 Date 2/2/76
g/mmole
Ca+2 .040
Mg+2 .024
.046
C03~2 .060
S03~2 .080
mmole/gram
5.58
.18
.01
g/gram
0.223
.004 .
.001
1.52 .122
4.40
.423
5.92 .053
4.40
.119
.096
%H20 .009
1%H20 .027
E .94
-141-
-------
KINETIC RUN 45
f. »
INPUT SPECTES
5.:>v«;>*>ii
.4 Q.I- /
HCl
C02
J02
S03
^.KV 7. "7
1 .1 w?«C7
I ,4l?-;'J
7 . .1 1 « - -i 7
4 t97*-i'3
l.li;2-»>t
1 ,55"-3i3
7.54-1-33
8.
2.
SCTIV1TY
i.ft.-7-M
a.«i«-Ji
2.437-dl
?,«l«-Bt
t .
oes. c.
v \ s n i.
a.645-1?
^.^''n- "5
1.251-/.3
1.327 '2
I ,S4v).?i
1.
S.-J3--
7 ,
ACTIVITY
4,
RELATIVE SATUH4TTQ«
9.»lf-12
IQ»'IC STSEMGTn i 1.4P221+/" RES. e.M. « -1.153-01
-142-
-------
RUM NO. 46
DATE 2/3/76
-T/T
.012
ANA!YTTCAL RESULTS
Secies
Nat1
Cl
co,
Ts~
S03
-i
-^
-2
Standards
(% Deviation)
-.1
.3
1.0
Ca+ Feed
(mrnole/1)
61.9
6.7
126.
S03 2 Feed
(rnmole/1)
-2
1.0
506.
36.4
647
273 .
34.5
240.
Effluent
(mmole/1)
24.6
248
19.9
384
128.
10.3
Solids
(mmolc/o)
7.12
.015
.01
6.70
6.22
1.08
OPERATING DATA
Time
(min)
30
60
110
pH
6.4
6.3
6.28
Temp
48
48.5
49.1
190
S03 *
(mmole/1)
12. 7
11.9
11. 7
10.3
Solids
Removal
(ml/min)
75.5
75.5
75.5
Solids
(wt%)
.22
.'12
Solids
(s)
7.1
L n
COMPUTER RESULTS
Ionic
Strength
n.715
Residual
Electroneutrality
-.053
Relative Saturation
6.7
CaSO,,'2!!20 CaSO., -^11
0.95 0-42
Hole Fracti
S03
.85
-2
.15
-143-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Ca
+ 2
Mg
Naz
Cl
Ts
S03
.+2
-1
-2
-2
OUTLET
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
Flow Rate (ml/min)
y
Mg 2
Na2+2
Cl *
Ts
so3"2
soC2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
=====
Solid
S03~2
-2
Run // 46 Date 2/03/76
A
50
B
50
3.10
25.3
.34
6. 3?
1 .8?
37. 4
__ _ _____
1.73
___
Liquid
100
2.46
24.8
1.99
Solid
0.664
.0014
.0009
38.4
12.8
1.03
11.8
mmole/min
0.64
.70
.16
. 580
.10
mmole/g
7.12
6.22
.70
100
3.10
25.3
13.7
1 .73
3.12
24.8
1.99
1.61
11.9"
grams/min
0.093
.090
.113
.229
-144-
-------
SOLIDS MATERIAL BALANCE
Run // _46 Date 2/03/76
g/mmole mmole/gram g/gram
Ca+2 .040 7-12 0-285
Mg+2 .024 .015 -001
Na2+2 .046 .01 .001
Cl"1 .035
C03~2 .060
S03"2 .080 6.22 .498
SO
-------
KINETIC RUN 46
93
76
14115139,9«SJ
ct><
INPUT SPECIES
CAD
>«GO
5.35/62+vM
i 2, **>."**-*?
5r>j-
»G'I£OUS
7.S37-/17
HCL
co?
M203
SO?
SU3
?, 247-^7
a. "31 --19
TEMPERATURE 49,law OES. C.
CTtFFICTEvT
CAS04
-G**
ur.<
llrt-
Cl-
1 .4M-/IS
5^344-ii3
I.hi5-/1
s|9<4-^3
o!j2'3-l 1
1 . 19.)-i' 3
".757-H3
<,76fl-H2
?,72'-»2
7.17^-li'
9.791-^8
2.344-PIJ
1.
7,-67-Cl
1.13.1»on
7.4ua-^i
W&S03CS)
5.142-1-2 5,36
-P1.4I-TTV ACTIVITY
».e*C 3.872-17
ATM,
SATH^ATIO«
1,143-11
9ls39-fll
9.323-t»2
-5.324-^3
-146-
-------
RUN NO. 47_
DATE 2/3/76
ANA! YTTCAL RESULTS
-T/T
.066
Standards
Species (% Deviation)
Ca+2 -.1
Nat1
Cl
CO
1
2
1.0
Ca Feed
(nmolo/1)
6.7
125.
S03~2 Feed
(ranole/1)
SO-,
"2
i.n
694.
40.5
106.
230.
33.4
197.
Effluent
(mmolc/1)
22.7
354
22.7
634
116.
12.9
103.
Solids
(mmolc/o)
7.32
.03
.03
6.63
6.38
1.07
OPERATING DATA
Time
(min)
20
30
90
180
pH
6.20
6.22
6.22
6.18
Temp.
48.5
48.5
49.0
49.5
S03 2
(ramole/1)
12.9
13.4
12.9
Solids
Removal
(ml /rain)
47.5
47.5
5J3.9
Solids
(wt%)
.17
17
'. 19
Solids
(g)
5.5
6.2
COMPUTER RESULTS
Ionic
Strength
1.03
Residual
Relative Saturation
Electroneutrality CaSOs'%H20
-0.0642 6.21
0.61
CaSO., -
0.26
Mole Fracti
S03
.85
-2
SOu
.15
-147-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
Run # 47
Date 2/3/76
INLET
Flow Rate (ml/min)
50
50
100
,+2
+2
M
Na2
ci-1
Ts
S03
S0i»
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/rain)
(mmole/min)
(mmole/min)
3.10
.3
6.26
34.7
2.03
53.1
11.5
1.67
9.9
3.10
_34._7__
2.37
59.4
11..5
1.67
9.9
OUTLET
Flow Rate (ml/min)
Na2
Cl
Ts
SO 3
SO 4
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
Liquid
100
2.27
3S.4
2.27
63.4
11.63
1.29
10.34
Solid
.096 (g/min)
.70
.003
.003
.67
.61
.10
2.97
35.4
2.27
63.4
12.3
1.90
10.4
PREC. RATE
mmole/min mmole/g
Solid
SO.
SO 4
-2
I
-2
.83
.38
-.78
7.11
6.38
.59
.096
.117
.060
-1.32
-148-
-------
SOLIDS MATERIAL BALANCE
Run // 47 Date 2/03/76
g/mmole mmole/gram g/gram
Ca .040 7.32 .293
.035
C03~2 .060
-149-
Mg+2 .024 .03 .001
Na2+2 .046 .03 .001
S03"2 .080 6.38 .511
SO*"2 - .096 1-07 .103
%H20 .009 6-97 -063
E- "972
-------
KINETIC RUN 47
03
I4:i!
INPUT
CAO
2.2;
3.24/.!»P-k. 1
2.27*VK-i.?
C 0 2 x '.i, ? f-i it* n
« d . 0 fl « a fl
» vi . #??**
S02 » 1.29.1H-J-
SC.3 » 1.
OH s *.?; '-'1
sol
;n.-iPf>.£ . r
HT
«2fl
-;?.+
C 4 S f j »
T * s r,
«H-
n
5
g
2
u
1
I
1
3
2
4
*
5
4
s
e
1
ouALir*
.73.5-^7
.5*7- >°
.4«iy-; ^
. 4 f f - .- 7
. a 1 2 - f '
.21 J-i a
. 18-l-C .<,
. ^ 7 ^ - -- 1
.f-7-,-1
.575-- «
.J*'1-'I3
. 7 1 7 . ,- ?
,4P4-k'?
.-32-1
i 7 t *
, l/i - - "
. fiA-..M
.',-5a- -7
iCTIVpY 4CTIVITY C°cFr
«. 3^18-^7 t . 100+avt
O H O -< "1 <
^.B^n-^l
t.!9«-C'7 I.ty7*"f
1 ,4t*7-'-. 3 «,PMQ.'^ i
4.31*-"7 7,hni?--It
''.t-il
*.45^-"4 7.<>Sfl-i-M
a.9'jt-'-n ;.HPP-SI
49.5CH OEG. r.
Cl-
5 0 A - -
;r -tpi.s f.1 1
C4fOHJ?(S)
r«5 f 3 c")
CASP4C?)
'G fOHj ? (. S)
) . P 1 P - " 4
4CTIVITY
4. 1 7Q-n7
10WIC STRfe^GTh s 1 ,
T <=£LATlvh
, P / d . fl 1
, E.N.
-150-
-------
RUM NO.
DATE
8
2/4/76
ANA I YTTCAL RESULTS
-T/T
Species
+ 2
+2
Ca
Mg
Nat1
Cl
CO 3
Ts"
SO 3
80s,
-i
-2
-2
Standards
» Deviation)
-.1
.3
1.0
Ca Feed
(mmole/1)
65
2.7
130
S03 2 Feed
(ramole/1)
1060
360
1600
214
1.0
27.8
186
Effluent
(mmolc/1)
30.8
520 ,
19.8
880
95.7
10.3
85.4
Solids
(mmolc/cO
7.06
.07
.03
6.98
5.97
1.16
OPERATING DATA
Time
(min)
pH
6.36
6.27
6.24
6.27
6.24
Temp.
C°0
49
50.2
51.0
50.6
51.0
~2
S03
(mmole/1)
11 .3
11.0
10. J_
10.4
10.3
Solids
Removal
(ral/min)
24
25.4
46.8
46.9
Solids
.23
.22
.16
Solids
(g)
7.4.
fi.l
S.I
COMPUTER RESULTS
Ionic Residual
Strength Electroneutrality
Relative Saturation
CaS03-^H20 CnSOM-2i!20
Mole Fracti
SO
-2
1.48
0.070
.54
.7.5
.84
-151-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
Run // K-48
Date 2/4/76
INLET
Flow Rate (ml/min)
Ca+2
Mg+2
Na2+2
ci-1
TS-
S03
SO
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
+ 2
Cl"1
Ts
SO 3
~2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
-- . ^__"
Solid
S03~"
SO.
2
A
48.9
B
49.7
3.18
52.7
.13
6.36
1.79
79.5
10.6
1.38
9.2
Liquid
98.6
3.04
Solid
.074 (g/min)
.52
51.3
1.95
86.8
9.4
1.02
8.42
mmole/min
.14
.36
.78
.52
.44
.09
mmole_/g
7.06
5.97
1.16
98.6
3.18
52.7
1.92
85.9
10.6
1.38
9.2
3.56
51.3
1.95
86.8
9.92
1.46
8.53
.074
.020
.060
.672
-152-
-------
SOLIDS MATERIAL BALANCE
Run // 48 Date 2/4/76
g/mmole mmole/grain g/gram
-f-2
Ca .040 7.06 .282
Mg+2 .024 .07 .002
Na2+ .046 .03 .001
Cl"1 .035
C03~2 .060
S03 .080 5.97 .478
S04~2 .096 1.16 -111
%H20 .009 7.13 ' -064
.938
-153-
-------
KINETIC RUN 48
INPUT SPECUS
3.35fc«a»v1l
MCL
CC.2
S03
0£G. C.
->2S" '
iSOo-
< 31-14-
AQUEOUS SOLCTIT
""I.4LITV
j T U I " " I »
ACTIVITY JCTIVITY
S.75S.P/ i,;
7.S/6--P4
5.3/1-f7
5.C7?-"1
C 4 "...!
6 , 7 * 3 - B
J.nSS-t 5
5.15.1-1 '
t.475.
7,1'jf.
-------
-T/T
RUN
DATE
Species (%
Nat1
cr1
C03~2
Ts~2
S03"2
Time
(min)
50 6
130 5
200 6
320 6
410 6
495- 6
583 6
Ionic
Strength
1.43
NO. 49 c .24
2/10/76
ANALYTICAL RESULTS
Standards Ca+ Feed S03~2 Feed Effluent Solids
Deviation) (mmole/1) (ranole/1) (mmole/1) (mmole/jO
-.1 62 2J9..4 7.45
0 940 500 .05
s 2.4 41.6 22.2 .03
^ 126 1670. 853
1.0 230 101 6.95
18.2 7.69 6.30
719 at. QC
i.o /iz yj y-5
OPERATING DATA
Solids
Temp. SOs"2 Removal Solids Solids
pH (°C) (mmole/1) (ml/min) (wt%) (g)
.18 AQ.l 8. S
45
.00 50.0 9.5 8.0 .125 4.1
.21 51.2 8.3 8.0 .153 5.0
.19 51.1 8.30 7.9 .165 5.4
.10 51.0 8.7 7.8 .202 6.6
.20 50.9 8.0 7.8 .179 5.8
.21 50. Q 7.7 7.8 .201 6.5
COMPUTER RESULTS
. , Relative Saturation Mole Fract
Residual -
Electroneutra] i ty CaS03'i;H20 CaSOi, ' 2V.20 CaSOi, '^r^O S03 SO
-049 3.92 .57 .26 .85
-155-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Ca+2
Mg+2
Na2+2
ci-1
is
S03
SO 4
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
y
Mg 2
Na2 2
Cl~l
Ts
S03 2
so,"2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
Solid
S03~2
-2
Run // K-49 Date 2/10/76
A
50.2
B
50.2
3.11
47.2
.12
6.33
2.09
81.8
11.5
.91
10.6
Liquid
100.4
2.95
Solid
.0157 (g/min)
.117
50.0
2.23
- 88.4
10.1
.77
9.25
mmole/min
.16
.14
1.25
.109
.099
.015
mmo 1 e / g
7.45
6.30
.95
100.4
3.11
47.2
~90.1~
11.5
.91
10.6
3.07
50. D
2.23
88.4
10.2 _
.87
9.37
.0157
.0215
.0222
1.32
-156-
-------
SOLIDS MATERIAL BALANCE
Run // 49 Date 2/10/76
g/rcmole mmole/grara g/grarc
Ca+2 .040 7.45 .298
Mg+2 .024 .05 .001
Na2+2 .046 .03 .001
Cl"1 .035
C03 .060
S03"2 .080 6.30 -504
SO,"2 .096 .95 -091
%H20 .009 7.25 -Q65
.961
E
-157-
-------
KINETIC RUN 49
IS
7o
C»0 « 2.
-U" > s.
K'A2li a 2.
secies c ini.es)
*ci
CD 2
Su3
uFG.
ALir-cl:
ACTIVITY
"FTC r?« r
f S u A '
CL-
3 ,ff 1 -'*
1 ,-'M - ?
3.137-1-7
2.952-..?
1 . /d"-». s
7.. ,53- 'i
5l.047-.-3
i.332-"1
7 . 2^4-y'f5
5 , .«-( 4 5
S.7?i-/7 <(
6.55?-F3 S
\ ^S \ d.^j H
J. *"*- < 1
3.75-«-v:j 1
!.Jc?-*l 3
*.?'! -PI '
7,'1«7-i''v} '
7.J/«-->a 1
3.'74«"a 7
7 . i 1 >* - I -! t
?.7l<3-f-S '
t.lll.,-' a P
f.a«J-?S 1
4.7«3-ai "<
.757- [
,7ri4» i '
. S i 7 - -' 1
,«7?'l
.4S"-.-l
.I/*- U
,?^4-f^-.
.?>»*'..
.1^1-^1
.'~72--l
, 9 h
-------
RUN N0._
DATE
50
2/17 7-76
-I/
< .01
Species
Ca
Mg
Nat1
+ 2
Cl
CO 3
Ts~
S03
-i
-2
-2
Standards
(mnioles/1)
Ca+ Feed
(mmolo/1)
36.9
74.8
ANALYTICAL RESULTS
S03 2 Feed
(rnmole/l)
43.1
42.4
20.8
21.6
Effluent
(mmolc/1)
9.53
20.2
43.3
9.7
1.90
7.8
Solids
(mmolG/cO
7.36
OPERATING DATA
Time
(min)
58
pH
7.95
Temp.
40
Solids
S03~2 Removal
(mmole/1) (ral/min)
400
Solids
(wt%)
Q.1Q2
Solids
(g)
2.79
COMPUTER RESULTS
Ionic
Strength
0.0677
Residual
Electroneutra]ity
-0.0032
Relative Saturation
6.6
0.25
0.09
Hole Fracti
SO
2
0.91
SO
0.0
-159-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Ca+2
Mg+2
Na2+2
ci-1
Ts
SO 3
SO 4
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
Ca
Mg 2
Na2 2
Cl'1
Ts
S03 2
sor2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
Solid
S03
so ^
-2
Run // 50 Date 2/17/76
A
200
B
200
7.38
8.62
15.0
8.48
4.16
4.32
Liquid
400
3.81
Solid
.408 (g/min)
3.00
8.08
17.3
3.88
0.76
3.12
mmole/min
3.57
3.40
1.20
2.86
0.30
mmole/g
7.36
7.00
0.73
400
7.38
8.62
15.0
8.48
4.16
4.32
6.81
8.08
17.3
3.62
3.42
grams/min
0.408
0.485
0.486
1.64
-160-
-------
SOLIDS MATERIAL BALANCE
Run # 50 Date 2/17/76
g/mmole mmole/gram g/gram
Ca+2 .040 7.36 0.295
Mg+2 .024
Na2+ .046
Cl'1 .035
C03~2 .060
S03~2 .080 7.00 .560
SOr2 .096 -J2_ -070
%H20 .009 7.73 .070
0.995
-161-
-------
KINETIC RUN 50
15
7*>
17:11: 4-J.s
CAH a
INPUT SPECIcS
C02 s <, ,,'* /' "* '
* 2 0 5 s *£ 0 E 6 . C .
SU3!i45A I I'^ATI
r:vm
ACTIVITY C">i<=> TCIc''T
M +
" 2 '"'
~ ? S . : 3
H s -1 /i -
-,-.«-
C' »<
CA 'ri*
r 4 s i ,1
C i "> !. 4
-A +
-.'»!>.
v A S ; ' ? -
JAS--.4-
ru.-
CL-
SO?--
504
o«o."v.£sr
X . A 3 0 - L H
.;. 572-11
». . yap-.1, fi
4.57<:-/9
C. "«!- 3
5 . 3 9 2 - " 7
j . 4 1 f< - 1 3
1.44S-'M
s.ya-1-. ?
2.243- *?
n.53C)-"-«
«.ST5!--i
3.27o--'*
a .3?s--'?
4.253-'^
5.a5.".-f 3
H .1 1 A L T T V
t . t 22-Hrt
4 ,fi?7- \ 1
3 . T 1 1 - ' 5
3.5S3-"'.J
?.775-~J
t .9--1 -'V
l.5
3.32*'--*2
2 ,?7'i.p «
S.5.}4-,^
3 . Q M 3 - '* ^
2 , H 1 4 - '/ r>
3 . .1 <* 4 - 1 2
1 .7 i 'S-^u
2 , 1 4 'v - 0 J
ACTIVITY o 3 ; j ,i -j r; )
a
'>
1
7
7
4
7
1
!
q
1
7
7
7
7
4
?
^dliT
. 1 y t- - '
e o i) A - '
, ' 1 2 +»'
, OhO. i
.<»><)-
.IpP-'
. o 7 o - -
.'"!?*'
"1?*r'
.^^w
!"12 + -'
. y 7 1 -
.07Q-"
,079.-
, '- 11 - '
."33-
.«/3-i
i °v c 3 A
1
i
t
1
I
i
1
s
1
1
I
1
1
1
CASM3C?)
(*) fc.tvi'^ 5.945-J6 2.537--J
2 s * . JP772-1 ; ATM,
IONIC 3TU-fGTn * 5.77294-,'}? P£S. E.N. * -
-162-
-------
RUN KO.
DATE
51
2/17/76
ANA! YTICAL RESULTS
0.01
Snccics
Ca
MS
+ 2
+ 2
Nat1
Cl
CO 3
Ts~
SO 3
so-.,
-1
-2
-2
Standards
(mnioles/l)
Ca Feed
(mmolo/1)
36.9
S03~2 Feed
(raiole/1)
42.4
20.8
21.6
Effluent
(mmole/1)
9.02
JU.JL
10.5
1.84
8.7
Solids
(mmolo/cO
7.34
6.70
.69
OPERATING DATA
Time
(min)
68
pH
8.70
Temp.
41
so3~2
(mmole/1)
1.84
Solids
Removal
(ml/min)
200
Solids
(wt%)
0.101
Solids
(g)
2.77
COMPUTER RESULTS
Ionic
Strength
0.0673
Residual
-Q.QQ31
Relative Saturation
Electroneutrality CaSOr^hO
0.10
Mole. Fractii
SO
-2
-163-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Ca'1
Na2
ci-1
Is
+2
SO 3
SO 4
-2
-2
(mmole/min)
(inmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
+2
Na2
Cl"1
Ts
SO 3
SOn
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
Solid
S03~"
so
'2
Run /' si
A
100
Date 2/17/76
B
100
3.69
4.31
7.50
4.24
2.08
2.16
Liquid
200
1.80
Solid
0.202 (g/min)
1.48
4.10
8.20
2.10
0.368
1.74°
mmole/min
1.89
1.71
.42
1.77
0.14
mmole/g
7.34
6.70
.69
200
3.69
4.31
7.50
4.24
2.08
2.16
3.28
4.10
8.20
2.14
1.88
grams/min
0.202
.257
.255
.61
-164-
-------
SOLIDS MATERIAL BALANCE
Run * SI Date 2/177 76
g/mmole mmole/gram g/gram
Ca+2 .040 7.34 0.294
Mg+2 .024
Na2+ .046
Cl"1 .035
C03 .060
S03~2 .080 6.70 .536
SOT2 .096 .69 .066
%HzO .009 7.39 -067
7 .963
-165-
-------
I? -AS? 7- I7:n:*s.s*a
P M a 9 . 7 , " t-
KINETIC RUN 51
SPFCItS
H20 a 5.
s 9. ^2t"/"-: 3
HCL a «.
CU2 a v> . <
a ,-.,. :
502 » i ,s* ::
SC:3 s u.7 "->'
. c,
r«''U
cc
>.37:>-',-s
4 C f t V
< L T £ .. I
,-f>l
«*[.
u 2 s n
Mj>n3-
-.b'"4-
Ca +»
i" crr*
r r. <" :*
C .» " -j &
~ u *
' i\,"h
v ASu.S-
' .,S< 4-
On-
CL-
$ j3
sn/--
l
a
q
3
1
1
1
4
i
7
5
1
4
4
P
.5*0-12
.<*> j-v*
,4K 3-1"
.llT- '3
.32?-.'?
,J7h- T
,5??-/3
..14 !-2
.3^.4-.. 7
.34J-. ^
.74^-' -1
.567-:?
.llC»-- 2
. d"7-' 4
,«>Cl-t 3
J.
7.
7.
?.
1 .
\.
I.
?.
1 .
=>.
4.
I .
3.
' .
2.
f»h4.J2
< t- 2 - ' i
)S*-tv
Sijw-i' j
J-iS. -K
^--1- 'I
^ii'' - fj
?.'*-' '£
-1*>:-:'7
* ^ 4. 'fi
K^?-^4
5dQ-o-b
?4.1-".2
7 >.i /I . if 4
42";-''3
o.Qb4--
1 . >' 1 ? + '
7,t,o'3--.
7.079--^
4. t p-.p.r
7 . p 7 <; -
1 . f" 1 2 1 '
t . v l 2 + 1
c.?vir.-
!.'!?*'
7 ,U7Q.
7.^/0-
7.9/0..-
7.91?- '
" ,yij>*--
3.P/4-.
1
I
1
1
1
1
1
1
]
i
i
1
IQMTC Sretv-GTM s 5.732P3-..?
, £ . r. . = -1 ..'53-'i,5
-166-
-------
RUN NO.
DATE
52
2/17/76
-T/T
<0.01
ANAIYTICAL RESULTS
Species
+ 2
Ca
Mg+2
Nat1
Cl"1
C0,~:
Ts
SOL
SOt,
-2
-2
Standards
(mmoles/1)
Ca Feed
(mpiolo/1)
.36.9
74.8
S03~2 Feed
(mnole/1)
43.1
42.4
20.8
21.6
Effluent
(mmolc/1)
9.01
21.4
40.6
9.5
1.59
7.9
Solids
(inmole/cO
7.51.
6.22
.37
OPEMTING DATA
Time
(min)
83
Solids
Temp. S03~2 Removal
pH (°C) (mmole/1) (ml/min)
8.11 49.1 -. 1.59 200
Solids Solids
(wt%) (g)
0.097 2.67
COMPUTER RESULTS
Ionic
Strength
0.0666
Residual
Electroneutrality
0.0013
5.37
Saturat ion
CnS(V2H20
0.25
0.11
>0
Mole Fracti
S03
0.89
-2
0.1]
-167-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/rain)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
Naif"'
ci-1
Ts
SO 3
so 4
-2
-2
OUTLET
Flow Rate (ml/min)
Na2
Cl'1
Ts _
SO 3
+ 2
2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
. , .
Solid
S03~2
en ~2
Run # 52
A
100
Date 2/12/76
B
100
3.69
4.31
7.48
4.24
2.08
2.16
Liquid
?on
1 .80
Solid
0.194 (g/min)
1.46
_____
4.28
8.12
1.90
.32
1.58
mmole/min
1.89
1.76
.58
1.28
.02
mmole/g
7.51
6.62
.37
200
3.69
4.31
7.48
4.24
2.08
2.16
3.26
4.28
8.12
1.60
1.60
grams/min
0.194
.252
.266
1.57
-168-
-------
SOLIDS MATERIAL BALANCE
Run // 52 Date 2/17/76
g/mmole mmole/gram g/gram
Ca+2 .040 7.51 0.301
+2
Mg .024
Na2+ .046
Cl""1 .035
C03~2 .060
S03~2 .080 6.62 .530
SO.T2 .096 .80 .077
%H20 .009 6.99 .063
-169-
-------
15 -4° 7t- i7:11:«7 ,4is
KINETIC RUN 52
INPUT species
CA", = ti.i-!»?'.;-->
."G" a f-.^.pv.'n
»-A?f! 3 2. 14i»fH'-{-
HCL s 4 , j P .1 :u-
CD2 a KI.K.-'.V..
e ^ .- -« tcv
7.
a f-.il-'.
-C "f-'M
« i r. t .
C * f - *
CL-
303
f ,
b.b3?-. 3
IT y
ACTIvjTir
7.7^--,
9 '.5 !<-.!>
l.S.i-5-','.}
3.4-- fl-rv
4]771--'f>
1.4. ."-» 4
4 C T i ',' i T f C ? > P H
8.-?77-fi
7.5^7- i
4.12s;- 1
'!*!?»
7 '^7"'", '
/:«"i.'!
fiPOPuCT
f'li, 4TTI'
CAS"3(S)
r A s p 4 (n j
<:.?5-t-. i.ior'-t3
»i. c «i-' 5 .4 7 5 -'/' c
"'I-11 ATI-.
IONIC STKE^GTM s 6,66437-k'?.
..17 4 t"/
ff.S. t.r . s t
-170-
-------
1UJM NO.
53
2/17/76
/uNMYTICAL RESULTS
Species
Ca
Mg
Nat1
+ 2
Cl
Ts
S03
-i
-2
-2
Standards
CmmolfS/1)
Ca Feed
(mmolo/1)
36.9
S03 * Feed
(rmno] e/1)
Effluent Solids
(niniolc/1) (mmolc/cO
fi.92 . 7. AO
__«.
74.8
43
.1
21.3
39.6
42
20
21
.4
.8
.6
11.1
1.44 6.69
9.66 .84
Time
(min)
65
pH
8.30
Temp.
-2
S03"
(mmole/1)
1.44
OPERATING DATA
Solids
Removal Solids Solids
(ml/min) (wt%) (g)
200 Q.125 3.44
COMPUTER RESULTS
Ionic
Strength
0.0658
Residual
ElectroneuLra]ity
-0.0044
Relative Saturation
Hole Fracti
4.33
0.23
CaSO.t-%!I20
0.13
SOj
-2
-171-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Ca+/i
Mg+2
Na2+2
ci-1
Ts
S03
-2
-2
(mmole/min)
(mmole/rain)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
Ca+l
Na2+:
Cl"1
Ts
SO 3
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
.'.. : rrrvsr :,:
Solid
S03~2
Run // 53
Date 2/17/76
TOO
100
3.69
4.31
7.48
4 . 24
2.08
2.16
Liquid_
?00
1 .38
" Solid
D.7SO (g/min)
1 .88
_
-4.28
7.92
2.22
0.29
1.93
mmole/min
: =
2.31
1.79
.23
1.88
1.67
0.21
mmole/g
7.40
6.69
.84
200
3.69
4.31
7.48
4.24
2.08
2.16
3.26
4.28
7.92
4.10
1.96
2.14
grams/min
0.250
.312
.268
.274
-172-
-------
SOLIDS MATERIAL BALANCE
Run it 53 Date 2/17/76
g/mmole mmole/gram g/gram
+2
Ca .040 7.40 0.297
Mg+2 .024
+2
Na2 .046
Cl'1 .035
C03~2 .060
S03~2 .080 6.69 .535
S04~2 .096 .84 .081
%H2d .009 7.53 .068
£ -.981
-173-
-------
KINETIC RUN 53
7" 17111 :4d.l,'i TErP£PATuS£ f \.4Vf I,PG. C
INPUT sp?crts (-OLESI
s 5.5?tc«?*v. I HCL « ,J.*hv.fltf~>?
CAO i i.&2?-,<.--K3 CD2 « *../.3
v'LM
t.c'i--:
1.5?r
i.e-iv
«.o
:-ll
- ; "5
,-, 3
)-'. ^
M (^
--3
-' 3
-:;?
- '7
. A
- 4
-':5
-.1?
.1-4
--13
*CT1"IT' iCTlViTy Cr£P(-TCT'; r
5." 1 l-i" i >f.34!5- '1
Q. OH 4-^1
'..^*«-ll I. "12*%
?.?!.5-/f) 7eQl,.,-.,
3,9" «-' y 7,Oi»-.> i
',7n.?-"J /I ,i»40.-' i
1 ."oS-MS 7.^1"- ' 1
r.-'SP-.'j i. -!?+
t.5--)-'3 1. "!?+
.'. 442-^2 «.!»,}"GTH s 6.5a4«e-«;2 P£S.
-174-
-------
RUN NO. 56
DATF, 2/24/76
0,018
Species
Ca
Mg
Nat1
+ 2
Cl
CO-
TS"
so 3
so!_
-1
-2
-2
Standards
(mmoles/l)
Ca Feed
(mmolo/1)
43.2
80.
ANA!YTICAL RESULTS
S03~2 Feed
(mmole/1)
42.3
40.3
22.3
18.0
Effluent
(mmolc/1)
21.0
44.2
10.8
2.08
Solids
(mmolc/cO
_____ 7 ..3.9
6.72
0.62
Time
(min)
55
pH
828
4.10
OPERATING DATA
Temp.
C°0 .
S03~2
(ramole/1)
Solids
Removal
(ml/min)
2.08
200
200
200
COMPUTER RESULTS
Solids
(wt%)
0.115
Solids
(g)
3.16
Ionic
Strength
0.0774
Residual
Relative Saturation
ElcctroneuLrality CaS03-%H20 CnSOil'2H20 CaSO,t %!
0.0054 7.94 _ 0-39 0.14
Mole Fracti
0.91
-175-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Na2+2
ci-1
Ts
SO 3
SO 4
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
Na2
Cl'1
Ts
SO 3
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
Solid
S03~2
-2
Run // 56 Date 2/24/76
A
inn
B
100
4.32
__
4.28
8.00
4.03
2.23
1.80
Liquid
Solid
?nn 0.230 (g/min)
7.94
1.70
4.20
8.84
2.16
.416
1.76
mmole/min
1.36
1.81
0.04
1.69
1.55
0.14
mmole/g
7.39
6.72
.62
200
4.32
4.28
8.00
4.03
2.23
1.80
4.64
-4 ..20
8.84
3.85
1.97
1.90
grams/min
0.230
.184
.270
.065
-176-
-------
SOLIDS MATERIAL BALANCE
Run # 56 Date 2/24/76
g/mmole mmole/gram g/gram
Ca+2 .040 7.39 0.296
M+2 .024
+2
Na2 .046
Cl"1 .035
.060 _ __
S03~2 . .080 " 6.72 .538
SOr2 .096 _ -62 .060
%H20 .009 7.34 -066
0.960
-177-
-------
KINETIC RUN 56
7-. l 7: u :43.7«4 Tf hP£P»T.jB£ 4i. v?/ ,;FG. r,
INPUT SPF.CILS f-")LP5)
s i, «7 ;?/-'?
"GO s '., *c3.»
k t?(j s 2. 1 -' c^r-i"? ':2n;j a .'./"/'i
SO 2 = 2. "..', ->
S03 s 1,-vv.v/-
S U P E » 5 A T i > ? i T T f: N a u L 0 J
4'.."fc"lUj SOL'jl
c...»vt-.r -cuairv
* t .?.'-- j 9
"Sr
r-2c,"'» /. 572-12
-ar,i- i ,81 7-; =>
»5^u- a.l^-kO
CA + + l.i:7--,P
C ''"-+ >. ,5^-''7
CAS-J.^ I./)?-*''
C A«.'.4 i.??4-, *
A -t- c , 1 .1 r> - ', 2
- i^n ? ,S^<--^
4.3. ?-"j
*.7o-3-.'7
I . 7j'3-.-o
3.??-S. M
3.3??- -2
5.3 JJ- 'i
4 . 3 w J - ' o
4.PJl-.'4
".On*-:-,
3 , "i o ^ - ''V
t , ,T^ ^ . " u
2.' 5--J
ACTIvTTr fiSi.ijjCT
crr,ITY
« ^
c, ,
' .
7.
7.
3.
7\
i .
' .
n .
t .
7.
7.
7.
7.
?.
'*
9feu,ri
CCcPr
is#:. ,
i# e L< - ' 1
.-1 -i* ,
P/ a. ]
H;,-- ']
0»n. -i
S,«.-.. {
'Ud*
-!
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
CI-
TS
so 3
1
-2
-2
OUTLET
Flow Rate (ml/min)
<;
Na2+:
Cl"1
Ts _.
SO 3
SOi
2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
Solid
S03~2
Run // 59 Date 3/10/76
A
200
B
100
4.12
1.60
5.27
9.72
4.07
5.65
Liquid
300
2.38
Solid
0.0311 (g/min)
0.28
6.84
7.11
2.78
4.32
mmole/min
2.74
1.29
1.33
0.051
0.047
0.004
mmole/g
8.97
1.50
0.14
300
4.12
6.87
9.72
4.07
5.65
2.66
6.84
7.16
2.83'
4.32'
grams/min
0.0311
.305
.86
9.5
-179-
-------
SOLIDS MATERIAL BALANCE
Run No. 59
Date 3/10/76
g/mmole mmole/gram g/gram
Ca++ °-040 8.97 0.359
.024
Na" -046
Cl" .035
C07 -060 (7.33)* (.440)*
S07 .080 1.50 .120
S07 .096 .14 .013
%H20 .009 1.64 .015
Z .947
* Excess calcium ([Ca] - [Ts]) is assumed to be calcium
carbonate.
-180-
-------
59
JUJM NO.
DATE 3/10/76
ANAIYTICAL RESULTS
.57
Secies
Standards
Ca Feed
(mmolo/1)
SO3 2 Feed
(mmole/1)
Effluent
(mn'.olo/l)
Solids
20.
7.92
8.Q7
t'
-1
Na1
Cl
co-
Ts"2
SO.
SO.,
-2
-2
8.0
97.2
40.7
56.5
22.8
5.2
23.7
9.25
14.4
1.45
1.50
.14
Time
(rnin)
152
150
pH
6.15
6.25
Temp.
50
52
54
S03 2
(mmole/1)
13.4
13.8
9.25
OPERATING DATA
Solids
Removal
(ral/min)
10
10
Solids
0.311
Solids
(g)
10.11
Ionic
Strength
0.0584
Residual
Elcctroneulrality
0.0170
COMPUTER RESULTS
Relative Saturation
CaSO
7.
3-%H20 CnSOi/2H20 CaSO.,-%lI20
87 0.11 n.is
Mole Fraci
SO
"2
-181-
-------
KINETIC RUN 59
43 WAY 7S
16:
H20
CAH
M420 «
INPUT SPECIES ClOLES)
11 WCL
13 C02
1203
12 N205
502
S33
TEMPERATURE
54.<)00 OEG. C.
i.20*00-03
H2C03
HC03-
H2S03
M503-
HS04-
CA» +
CAOH*
CAHC03*
CAC03
CAS03
CAHS03+
CASCM
MAOH
NAC03-
NAS03-
NAS04-
5,690-97
2,341-03
2.69i)-e3
3.58J-37
5,8,198-H5
a.9«2-a7
1,795-03
4,874-84
1,949-03
4,344-02
I,156-09
7,436-35
1,159-06
3,257-04
1.1S7-33
EOUILI8RIA
ACTIVITY
5,623-07
2,365-03
2,157-03
3,620-07
4,662-03
5,641-07
1,530-33
5,367-09
7,377.35
8,994-37
1,814-33
3,909-04
1,969-03
3,530-02
1,168-09
7.SH2-05
9.297-07
a.612-04
9,359-04
ACTIVITY COEFFICIENT
8,4U5-01
9,988-01
1.010*00
8,017-01
1,010*08
8,017-01
8,019-01
4,254-81
8.019-01
8,019-01
1,010+00
i,aia*a(j
8,019-31
i,aia«aa
8,128-01
1.310+03
1,010*00
8,019-81
8,919-01
8,019-01
OH-
C03
S03--
SG4-.
1,533-07
6,474-07
8.124-34
1,126-32
MOLALITY
CAfQH)2CS) 0.H00
CACn3(S) 0,000
CAS03CS) 8.000
CAS04(5) 41.30P
PC02 1.3SS72-01 ATM,
PS02 7.81601-M7 ATM,
1,229-07
2,875-07
3,357-04
4,276-33
8,019-01
4,132-81
4.132-01
3,789-01
ACTIVITY PRODUCT RELATIVE SATURATION
2,311-17
4,392-18
5,132-07
6,526*06
7,627-12
2,618-01
7,865*00
3.863-01
MOLECULAR KATER 9,99875-31 KGS,
IONIC STRENGTH « 5.S4B93-.I2 RES. E.N. «
1.999-02
-182-
-------
RUM NO.
DATE
60
3/11/76
ANAJYTICAL RESULTS
-i/ i
0.07
Standards
Species Cmmolps/l)
Ca
+2
Ca Feed
(mmolo/1)
22.8
S03~2 Feed
(mmole/1)
Effluent
(mir.olc/1)
4.^4
Solids
(mmolc/o)
7.S4
Nat1
Cl
co.
Ts~
SO 3
'1
"2
~2
72.9
82.8
49.3
33.6
38.7
10.8
33.3
18.9
14.4
6.00
5.58
0.52
OPERATING DATA
Time
(min)
30
PH
5.62
J±~1J>
5.66
5.70
Temp.
C°0
53
54.2
55
S03~2
(iranole/1)
"Solids
Removal
(ml/min)
36
A8
32
31
32
Solids
1L_LHS2-
.1877
Solids
(g)
6.12
6.10
fi.in
COMPUTER RESULTS
Ionic
Strength
Residuol
Relative Saturation
ElectroneuLrality CaS03-%H20 CnS(V2H20 CaSO.,-^
Hole Fracti
SO
-2
. 0771 .
0.07
-183-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Ca
+2
Naa
ci-1
Ts
+ 2
S03
-2
(mmole/min)
(mmole/rain)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
N32
cr1
Ts
SO 3
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
Solid
SO
SO
-2
'-2
Run // 60 Date 3/11/76
A
0.100
B
0.100
2.28
0.50
7.29
8.28
4.93
3.36
Liquid
0.200
0.85
Solid
0.195 (g/min)
1.47
7.74
6.66
3.78
2.88
mmole/min
1.43
1.15
0.48
1.19
1.09
0.10
mmole/g
7.54
5.58
0.52
0.200
2.28
7.79
8.28
4.93
3.36
2.32
7.74
7.85
4.87
2.98
grams/min
0.195
0.190
.206
.92
-184-
-------
SOLIDS MATERIAL BALANCE
Run No. 60
Date 3/11/76
g/mmole tnmole/gram g/gram
0.040 7.54 0.302
Mg'1 .024
Nat* -046
Cl" .035
COT -060 (1.44)* (.086)'
SOl .080 5.58 - .446
SO; .096 -52 .050
%H20 .009 6.10 -055
Z .939
Excess calcium ([Ca] - [Ts]) is assumed to be calcium
carbonate.
-185-
-------
KINETIC RUN 60
03
76
16:12102,312
M20
CAQ
*GQ
NA20
INPUT SPECIES (MOL£S)
>««ii HCL
(3 C02
N203
12 N205
S02
S03
TEHPEP. ATUP.E
1 ,M830 0-32
1 .89003-02
1.44033-02
OEG. c.
M20
M2CU3
HC03-
H2SQ3
MSOJI-
HS04-
CA + +
C*SQ3
C»«SO
C»S04
NA*
NAOH
VAC03-
NAS03-
NAS04-
AUUEDUS SOLUTION
MOL»LITY
7,986-03
1,641-^2
2,421-36
1.931-H3
l,en-t)9
4,4*9-03
1 ,208-37
S,S?,&-34
6,899-84
8,947-<)4
,-f
5,812-13
1.235-34
5,514-37
4,351-^4
1,366-^3
ACTIVITY
1.9Y5-06
2,375-03
3,590-CS
1.285-^2
1, 9(13-86
7,345-34
7,935-lB
3.52J-35
1,224-37
8,901-04
5.437-W4
9,369-94
5,976-«12
5,991-13
1.222-34
4,327-37
3,414>34
1 ,464.03
ACTIVITY
8,318-^1
9.980-31
1 ,014*00
7,830-01
7,833-01
7, 847-31
3.98S-31
7,847-01
7,847-01
,
1,014*00
7,347-31
1,014+00
7,967-31
1,014+08
1,314+03
7,847-31
7,847-01
7,847-01
OH-
C03--
S03
S04
COMPONENT
CAtOH)2(S)
CACQ3CS)
C»S03CS)
4,663-08
1,944-37
6.816-04
1,If 4-32
0,303
» 4.8534S-31 ATM,
PS02 7.7S421-38 *TM.
3.663-03
7,386-08
2,502-04
3,932-03
7,847-01
3,759-01
3,759-31
3,377-31
ACTIVITY PRODUCT RELATIVE SATURATION
1,012-18
5,512-11
l,931-»7
2,955-06
3,419-13
3,655-02
2,979+00
1,399-31
HQLECUL** *ATER « 9,99877.01 KGS,
IONIC STRENGTH 7,70614-02 R£S, E,N,
3,358-02
-186-
-------
KUN NO. 61
DATF- 3/19/76
JL. / I
13:
ANAIYTICAL RESULTS
Species
Ca i
Mg+2
Nat1
Ci
CO 3
Ts~
S03
SO;,
-i
-2
-2
Standards
(mmoles/1)
Ca+ Feed
(mmolo./l)
10.8
1Q.8
SO3 2 Feed
(mmole/1)
150
27.4
9.4
180.
Effluent
(mtr.olc/1)
35.2
Q.4
44.2
20.5
23.7
Solids
(mmole/cO
8.61
5.1
0.40
OPERATING DATA
Time
(min)
50
120
165
280
pH
5.86
6.00
6.10
6.23
Temp.
(°C) .
55.9
58.2
55.8
56.2
S03~2
(mmole/1)
22.6
21.9
22.1
20.5
Solids
Removal
(ml/min)
35
20
20
20
Solids
(vt%)
0.48
.34
.33
.27
Solids
(g)
15.5
11.1
10.8
8.9
COMPUTER RESULTS
Ionic
Strength
Residual
Electroneutra]ity
Relative Saturation
CaSOi/2H20 CaSOi,-%Ii20
Mole Fracti
SO
-2
0.09
0.005
2.19
0.152
Q.076
.n.n
-187-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Ca+2
Mg«;
Na2+
ci-1
C03~2
S03~2
OUTLET
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
Flow Rate (ml/min)
Na_2
Cl
C03
S03
so
-2
-2
'-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC ._RATE
Solid
S03~2
Run # 61 Date 3/19/76
A
150
B
50
1.62
7.50
*
1.62
4.445
9.26
Liquid
?nn
n.sa
Solid
D.DS4 (g/min)
0.47
7.05
1.88
4.1
4.74
mmole/min
0.94
0.345
4.52
0.17
0.28
0.02
mmole/g
8.61
4.91
0.44
200
1.62
7.5
1.62
4.445
9.26
1.15
7.05
2.05
4.38
4.76
0.054
0.109
.070
10.3
-188-
-------
SOLIDS MATERIAL BALANCE
Run No. 61
Date 3/19/76
g/mmole mmole/gram g/gram
0.040 8.61 0.344
.024
.046
Cl" .035
COT .060 (2.59)* (0.155)*
SOl .080 5.50 .440
SO; .096 -52 -050
%H20 .009 6.02 -054
Z 1.043
Excess calcium ([Ca] - [Ts]) is assumed to be calcium
carbonate.
-189-
-------
KINETIC RUN 61
33 HAY 78
16:12:0-1.422
INPUT SPECIES
H20 5.53PS2+U1
CAO » 3,4C"«)C<,)-H3
MGO «
PH
HCL
C02
N203
N205
308
303
TEMPERATURE
55.8»a DEC. c.
,
9,4000(5-03
B,000041
0,30008
2,05008-02
2.3730B-<)2
SUPE'SATUHATIQN
H*
H20
M2C03
HC03-
H2S03
HS03-
HS04-
CA + +
CAQM*
CAHC03+
CAC03
CAS03
CAMSQ3+ .
CAS04
NA +
NAOH
NAC03-
MAS03-
NA3Q4-
AWUEOUS SOLUTION EQUILIBRIA
MOLALITY ACTIVITY
6.94S-03
2.338-03
3,934-06
1,827-02
4,235-06
1,389-33
7,237-10
2.S80-B5
7,167-09
3,216-04
5,253-04
9,784-04
6.720-92
5,372-10
9,264-05
4,348-07
4.275-04
2,897-33
1,993-flS
7,056-33
1 ,3i)5-«3
3,997-id6
1,410-02
3,127.06
5,389-34
5,624-10
2,077-115
7,280-08
5,096.04
4.071.H4
9,940-04
3,293«02
5,458-10
9,411-03
3,3751-07
3,313-04
ACTIVITY COEFFICIENT
8,276-01
9,980-01
1,016+00
7,720-01
i,?i6»ae
7,720-01
7,750-01
3,717-01
7,750-01
7,750-01
1,»16*99
1,016+00
7,750-01
1,016+00
7,878-01
1,016+00
1.21S+00
7,750-01
7,730-31
7,750-01
OH-
C03
303--
S04
COMPONENT
CAC03CSJ
CASD3C3]
CASC4CS)
PC02
PS02
1.799-07
7,826-04
2.003.02
MOLALITY
0,000
3,86985-36
ATH.
ATM,
3,831.08
6,391-38
2,781-04
6,310-03
7.750.31
3,553-01
3,553-01
3,150-01
ACTIVITY PRODUCT RELATIVE SATURATION
7,468-19
3.252-11
1.414-M7
3,198-06
2,569-13
2,218-02
2,193+00
1.52S-01
MOLECULAR HATER 9,99fi83-0l KG3,
IONIC STRENGTH 9,(»1060-02 RE3, E.N. « S,139-93
-190-
-------
UUM NO.
DATE
62
3/25/76
ANAJ YTICAL RESULTS
-T/T
0.19
Species
Ca ^
Mg+2
Nat1
Cl
CO 3
Ts~
SO.
SOt,
-i
-2
-2
Standards
(mmoles/1)
Ca Feed
(mmolo./l)
25
S03~2 Feed
(mmole/1)
286
470
182
288
Effluent
(mmole/1)
10.78
64.
36.4
52.8
Solids
(mmolc/tO
8.94
5.74
.89
Time
(min)
60
120
Temp,
pH
5.69
5.69
54.8
OPERATING DATA
S03~2
(itrmole/1)
Solids
Removal
(ml/min)
Solids
(wt%)
Solids
(g)
32.8
25
55
0.44
.40
JL4.2
13.1
COMPUTER RESULTS
Ionic
Strength
Residual
Relative Saturation
ElectroneuLral ity CaS03-%H20 CnS04'2ll20 CaSOt,
Mole Fracti
SO-T2 SOt.
0.160
0.020
7.46
0.49
0.24
-191-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Ca+2
Mg+2
Na2+2
ci-1
C03~2
S03~2
SO.T2
OUTLET
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
Flow Rate (ml/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
Cl
Ts
S03
-2
-2
PREC. RATE
Solid
S03~~
so
'2
Run // 62
A
200
Date 3/25/76
B
50.8
4.94
4.94
9.24
14.63
Liquid
250.8
2.704
Solid
0.222 (g/min)
1.985
8.7?
13,24
mmole/min
- =
0.25
-0.12
1.16
1 .14
0.231
mmole/g
8.94
5.12
1.04
250.8
4.94
4.94
9.24
14.63
4.69
Q.36
13.47
0.222
0.028
0.023
1.11
-192-
-------
SOLIDS MATERIAL BALANCE
Run No. 62
Date 3/25/76
g/mmole mmole/gram g/gram
0.040 8.94 0.358
.024
Na .046
Cl" .035
COl -060 (2.81)* (.169)*
SOT .080 5.24 .419
SOI .096 .89 .085
%H20 .009 6.13 .055
S 1.086
* Excess calcium ([Ca] - [Ts]) is assumed to be calcium
carbonate.
-193-
-------
14
76
15:47139.92i>
H20 «
CAO
"GO «
PH » S.SiCl*
KINETIC RUN 62
INPUT SPECIfcS
C02
N203
N215
302
303
TEMPERATURE
34.6(13 OEG. C.
SOLUTION
M20
H2CC3
HC03-
H2S03
HS03-
HSH4-
CAC03
CAS03
CAS04
SA*
N»OH
HAMC03
NAC03-
XAS03-
NAS04-
1.445-H2
5,392-33
5,429-«)«
4,047-83
1,696-09
1.417-«4
3.4S2-37
1.678-«3
l,844-«3
8,326-l!1
3,25l-?4
1.548-a«
1,349-^3
S, 298-03
ACTIVITY
2.M42-!1!)
1,44«-P2
3,727-^3
5,5b9-S")
I.9ft9-i!2
4.3JS-HS
l,259-«3
1,26^-19
1,?33-C4
3.561-W7
t ,72^-f3
1.37t-"3
3.163-C3
9.1HS-SI2
S.5S3-IC1
3,344-04'
i,i3t-ca
7,7S4-a4
4,S32-i?3
ACTIVITY COEFFICIENT
», 213-^1
3,112-"!
7,434-ai
1 ,««»&*
7,434-5(1
7. 353-31
7,434-31
7,434-tU
7,434-31
OM-
CQ3
SQ3--
304
CA(nH)2t3)
CAC03CS)
CAS03CS)
CAS04C3)
,-
4,453--)7
1.343-M3
3,443-02
MOLALITY
H ,M»IH
8,51055
PC12 8,94793-111 ATI,
> 1,19933-35 ATM,
3,494-83
1,279-37
3,8SS-ei4
7.434-ai
2.S72-H1
2,872-511
2,433-?!
ACTIVITY PSUOUCT 9ELATIVE SATURATION
1,537-18
1,6151-1(9
4,847-C7
3.145-13
I ,S<52-t)l
7,459+3H
10LECULAR WATEP « 9,99431-"!
-------
RUM NO. 63
DATE 3/29/76
-T/T
0.37
Species
+ 2
Ca
Nat1
Cl
CO-
TS"
so 3
SO*
-1
-2
-2
Standards
(mmolps/1)
Ca+ Feed
(mmolo/1)
25
_25_
ANAIYTICAL RESULTS
SO3 2 Feed
(mmole/1)
410
394
110
300
Effluent
(mr.olo/1)
14.9
55.
19.4
61.2
Solids
(mmole/o)
2.04
.53
Time
(min)
33
60
130
pH
5.71
5.70
5.68
Temp.
(°0
55
54.2
55.
-2
S03
(tnmole/1)
17.99
18.46
19.35
OPERATING DATA
Solids
Removal
(ml/tnin)
25
25
25
Solids
(wt%)
0.0409
.050
.050
Solids
(g)
1 .33
1.62
1.62
COMPUTER RESULTS
Ionic
Residual
Relative Saturation
Strength Elcctroneutrality CaS03'%H20
0.175 -0.0104 6.10
0.93
CaSO.,-^n20
0.47
Mole Fracti
SO
-2
-195-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
Run # 63
Date 3/29/76
INLET
Flow Rate (ml/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
Na2
ci-1
CO
SO.*
-2
!
-2
-2
200
6.10
6.10
50
10.3
4.79
14.96
250
6.10
10.3
6.1
4.79
14.96
OUTLET
Flow Rate (ml/min)
Na2
Cl"
C03
so3
~2
~2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(nnnole/min)
(mmole/min)
Liquid
250
3.73
13.75
4.85
15.3
Solid
0.0125 (g/min)
0.025
0.007
3.73
13.8
4.88
15.31
PREC. RATE
mmole/min rnmole/s
grams/min
Solid
S03
SO.,
"2
-196-
-------
SOLIDS MATERIAL BALANCE
Run No. 63
Date 3/29/76
Ca^
I/' ++
Mg
Nat4"
Cl"
coT
sol
«
%H20
g/mmole
0.040
.024
.046
.035
.060
.080
.096
.009
mmole/gram g/gram
2. 04 0.163
0.53 .051
2.57 .023
-197-
-------
14 AP 7*
H20
CAO
"SO
MA 20
PH » 5 , 7/li»»!
KINETIC RUN 63
INPUT SPECIES
C02
N205
S02
S03
6,
35.»)i«0 OEO. C,
H2CTJ3
H2S03
HS03-
HS04-
CAS03
AULO-E"
AOilEnuS SOLUTION
NASQ3-
NASQ4-
5.949-83
2,557-09
2,372-^4
5.153-H7
1 .371-^3
7,326-ll»
2,773-?4
1,371-flS
5.191-H4
1.475-^2
3, 783-^3
1 ,793-f»3
l,8a9-H9
t ,331-514
3,319-07
t ,414. ^i
1.1C8-W3
7,673-<»2
7,555-1?
3,768-34
5.273-»3
ACTIVITY
». 817-01
9,9S«-H1
1 ,C31+9u
7,254-^1
7.388-«l
7,388-^1
1 ,^31+cin
1.931«!ie
7,388-31
I ,»31+f a
7.314-*!
7.368-511
7,388-31
7,388-91
OH-
CQ3
303
S04--
CASU4CS)
4,952-519
4,811-^7
7,934-a4
4,883-32
51.0519
9.d3785-31 ATM,
PS02 « ft,699C6-H« ATH,
3,858-38 7,388-31
1,332-27 a,768-ai
2.2W2-34 2,768-Hl
ACTIVITY P9UOUCT RELATIVE SATURATION
3.4M7-18
2,3^5-1/1
3,9b4.37
1,971-615
MOLECULAR HATER 9,<5954fl.?ll
IONIC STRENGTH 1.73803-01
8,129-13
1.588-fil
8,l«tl »»a
9,334-ai
«E3, E.N, -1,037-02
-198-
-------
KINETIC RUN 63-B
93
76
is:12:14.394
M20
CAO
INPUT SPECIES (HOLES)
5.55W62«B1
1 .
HCL
C02
N203
N205
302
S03
TEMPERATURE
a.00000
5s.0ea OES. c.
PH «
COMPONENT
H20
H2SQ3
HS03-
HS04-
CAOM*
CAS03
CAS04
MQOH*
MGS03
MGHS03*
HGS04
NA +
NAOH
NAS03-
ALLOWED
AQUEOUS SOLUTION
MOLALITY
1.231-06
3.062-06
2,o6t)-02
1.374-05
4,013-03
1.142-09
9,491-04
6,786-03
2.804-01
* 2,061-06
3,007-02
3.326-02
4,387-01
4,816-01
2,498-09
2.490-03
6,423-02
ACTIVITY
1.995-06
4,252-06
1,522-02
1,353-05
l.iai-03
1,124-08
1,192-03
9,342-04
9.424-C3
1.029-01
2.029-06
4,176-02
3,274-02
8,393-31
3,823-01
3,469-09
2,452-03
6,323-02
ACTIVITY COEFFICIENT
9,892-SU
1,389*00
5,723-01
9,844-Ctl
2,743-81
9,844-fU
l,389*t)0
9,844-01
1 ,389*110
3,669-fll
9,844-1*1
1,389*140
9,844-nt
1.389*190
7,524-01
1,389*^0
9,844-91
9,844-^1
OH-
3Q3--
SQ4--
C01PQNENT
CAS031SD
CAS04(S)
NG(OM)2CS)
HGSU3CS)
3,614-28
2.829-03
4.988-01
"OLALITY
0.000
a.e»«»i
a.pag
0,000
3,557-08
3,034-94
2,800-02
9,844-dl
1,073-Ul
5.614-512
ACTIVITY PPOOUCT RELATIVE SATURATION
1.393-18
3,2d8-C7
2,896-05
1.302-16
2,842-05
4,704-13
5.073+0B
1,372*00
1.456-05
6,490-01
PS02 9,49244-06 ATM,
MOLECULAR HATER 9.99452-01 KGS,
IONIC STRENGTH i 1,87660*00 RES, E,N, « -1,205-08
-199-
-------
HUN NO.
DATE
64
4/02/76
0.131
ANAIYTICAL RHSUI/TS
Standards
Species
Ca
Mg+2
Nat1
Cl
CO;
Ts"
SO
SO.,
-1
-2
-2
Ca Feed
(mmolc/1)
32.4
414
828
32.4
SO3 2 Feed
(mmole/1)
1400
700
567
108
459
Effluent
(nimolc/1)
13.8
710
784
5.2
329
38.7
290.
Solids
8.86
(6.97)
1.79
0.10
Time
(min)
pH
5.84
_5_.90
5.93
Temp.
53.2
53.
~2
S03
(romole/1)
37.1
38.0
38.7
OPERATING DATA
Solids
o Removal.
(ml/min)
.2.5
30
Solids
.296
Solids
(g)
11 .Q
9.62
COMPUTER RESULTS
Ionic
Strength
Residual
ElectroneuLrality
Relative Saturation
Mole Fraction
SOj
-2
1.523
0.025
10.1
D.84R
0.41
-200-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Ca
+2
-1
Naa
CI
C03~2
so3~2
so.r2
OUTLET
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(ramole/min)
(mmole/min)
(mmole/min)
Flow Rate (ml/min)
Naa '
Cl"1
S03
SO 4
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
Solid
S03"2
-2
Run # 64 Date 4/02/76
192.3
101
6.23
79-6
159.
142
70.7
6.23
10.91
46.36
Liquid
293.3
4.05
Solid
0.089 (g/min)
0.788
208.2
230.
1.53
11.35
84.76
mmole/min
1.39
0.54
-38.4
0.677
0.10
0.01
nrmole/g
8.86
1.13
.116
293.3
6.23
222.
230.
6.23
10.91
46.36
4.84
208.
230.
2.21
11.45
85.77
0.089
0.157
0.478
-331.0
-201-
-------
SOLIDS MATERIAL BALANCE
Run No. 64
Date 4/02/76
g/mmole mmole/gram g/gram
0.040 8.86 0.354
.024
.046
Cl" .035
GOT .060 (6.97)* (.418.)*
SOl .080 1.79 .143
S(5r .096 .10 .010
%H20 .009 1.89 .017
E -942
* Excess calcium ([Ca] - [Ts]) is assumed to be calcium
carbonate.
-202-
-------
KINETIC RUN 64
33 HAY 76
16112100,
-------
RUN N0._
DATE
65
4/05/75
-T/T
JL03.
ANA1.YTICAL RCSULTS
Species
-t-2
Ca
Nat1
Cl
CO;
Ts"
SO 3
SO:,
- 1
-2
-2
Standards
(mmoles/l)
Ca Feed
(mmolo./l)
30
J1CL
S03~2 Feed
(mmole/1)
1130
.500
160
500
1750
Effluent
(mmole/1)
7.75
574.
155.
4.7
855.
155.
700.
Solids
(mmolc/cO
9.88
1.17
0.05
Time
(min)
46
160
pH
5.8
_5._8
5.8
Temp.
55
55
"2
S03
(mmole/1)
OPERATING DATA
Solids
Removal
(ml/rain)
50
155
80
80
Solids
(wt%)
Solids
(g)
18.2
16.5
COMPUTER RESULTS
Ionic
Strength
1.40
Residual
Electroneulrality
-0.144
Relative Saturation
CaS03-%H20
6.03
0.64
CaSO,, -
0.32
Hole Fraction
SO
0.95
-2
SOu "
0.05
-204-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Ca
+2
Mg
Na2
Cl
C03
S03
SO 4
+2
+2
-'
-2
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
CO 3
S03
S0i»
_2
-2
2
PREC. RATE
Solid
S03~2
Run f? 65 ' Date 4/05/76
A
200
B
100
5.98
167
35.8
5.98
50.0
174.0
Liquid
300
2.32
Solid
0.406 (g/min)
4.01
172
46.5
1.41
46.5
210.
mmole/min
6.64
3.5
-36.
3.52
0.48
0.02
mmole/g^
9.88
1.17
0.05
300
5.98
167.
35.8
5.98
50.0
174.
6.33
172.
46.5
4.93
47.0
210.
0.406
.672
3.0
- 0.720
-205-
-------
SOLIDS MATERIAL BALANCE
Run No. 65
Date 4/05/76
g/mmole mmole/gram g/gram
0.040 9.88 0.395
.024
.046
Cl~ .035
GOT -060 (8.66)* (.520)"
SOT .080 1.17 .094
SOT .096 .050 .005
%H20 . .009 1.22 .011
z 1.025
* Excess calcium ([Ca] - [Ts]) is assumed to be calcium
carbonate.
-206-
-------
KINETIC RUN 65
33 *AY 7»
16!12:fl7.!52S
H20 5.:
CAO » 7,7535*3-^3
NA20 l,55Z33-
-------
RUN NO. 66
DATE A / n ^ / 7 e,
-T/T
,08
Species
Ca
Mg
Nat1
+2
Cl
CO 3
Ts~
SO 3
SO.,
-i
Standards
(mmolPS/1)
Ca Feed
(mmolo./l)
30
ANALYTICAL RESULTS
S03 2 Feed
(raraole/1)
30
113Q_
. 500
160
500
1310
Effluent
(mmolc/1)
7.00
516.
156.
3.5
795-
647
Solids
(mmole/
-------
REACTOR MATERIAL BALANCE CALCULATIONS
Run # 66
Date 4/05/76
INLET
Flow Rate (ml/min)
Ca"*
Mg
Naz
CI
CO 3
S03
.+2
+2
-1
-2
-z
-2
(nunole/min)
(mmole/min)
(mmole/min)
(tmnole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
Ca
Mg'
+2
'+2
N32
Cl"
CO 3
+ 2
-2
SO 3
SO I,
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
Solid
S03"2
200
B
100
5.98
128
32.3
5.98
40.0
120.0
Liquid
300
2.10
Solid
0.397 (g/min)
3.55
155.
46.8
1.05
44.4
194.
mmole/min
3.88
4.4
74.
3.15
0.38
0.02
mmole/g
8.94
0.95
0.05
300
5.98
128.
32.3
5.98
40. Q
120.0
5.65
155.
46.8
4.20
445.
194.
grams/min
0.397
0.434
-4.63
-1480.
-209-
-------
SOLIDS MATERIAL BALANCE
Run No. 66
Date 4/05/76
g/mmole mmole/gram g/gram
0.040 8.94 Q.358
.024
.046
Cl" .035
COT .060 (7.94)* (0.476)*
S07 .080 0.95 .076
SOT .096 0.05 .005
%H20 .009 1.00 .009
Z 0.924
* Excess calcium ([Ca] - [Ts]) is assumed to be calcium
carbonate.
-210-
-------
KINETIC RUN 66
33 WAY 76
181121919.198
N20
CAO
NA20
INPUT SPECIES (HOLES)
n HCL
13 C02
N20S
5G2
SOJ
TSMPESATUP.E
J ,
58,,ia0 OEG, C.
SUPEH3A1IHATION
H2C03
HCQi-
H2S03
HSOJ-
HS04-
CA + *
CAOH*
CAHCOJ
CACQ3
C»S03
CAHS03
CAS04
MG»»
HGQM*
MGC03
MGS03
MGHS03*
MG504
AQUEOUS SOLUTION EOUtLIHT*
ACTIVITY
1,288-36
1,929-33
7,581-24
5.128-S6
2,595-((2
3,626-66
4,699-194
9,339-10
8,17H-a6
4,537-08
1.3B4-03
7,526-«l4
3.734-a3
5,634-32
2,125-86
4,552-34
8,762-36
8,356-5)2
3,293-32
3,345-31
ACTIVITY
1.531-133
1,285-83
4,»tri-ns
4.548-02
1,884-05
1,998-33
1.073-89
9,7aa-«iS
3. 602-08
1,099-83
2.52J-V16
5.524-34
6.957-3S
5,047-aa
3, 913-32
2,417-ai
9,887-31
1.259*3e
5.899-31
1,259+38
5,899-31
8.423-31
2,351-31
8.423-31
8,423-31
1. 259+08
1.269+M8
8,423-31
1,259*33
3,853-91
8,423-»l
8.423-31
1 ,259 + a«)
1.259+30
8,423-81
1,259+30
NA +
MAOH
NAHC03
MAC03-
NAS03-
NAS04-
OH-
C03--
SOJ--
S04--
CA(OH)2(3)
CAC03CS)
CASQ3CS)
CASC4f5)
MGSQ3(S)
2,713-Bl
2,749-»)9
1.159-04
9,886-^7
4.283-B3
3. 633-32
7.817-«8
3.659-01
MOUALITY
PCQ2
PSH2
1,25517-01
1.2.14J3-&15
ATM,
1. 954-31
3,462-39
1 ,459-34
8.327-37
s.eBS-fs
3.U7-82
6.584-CJ3
4,218-38
7.99C-34
2.513-B2
1,2S9+ae
1.259+30
8.423-31
8,423-31
8.423-31
8,423-ai
1.211-31
1,211-31
8,868-32
ACTIVITY PRODUCT RELATIVE SATURATION
2,5137.18
1,982-1 1
3,718-37
1.136-HS
2,442-16
2,?4?.«9
4,246-35
7,375-13
1,463-32
5.855+3H
5,539-31
2.817-35
2.174-34
1.353+33
MOLECULA* WATER 9.99183-ai
IONIC STRENGTH 1.31793 + BPI
RES, E.N, -1.485.H1
-211-
-------
RUN NO. 67
DATE 4/06/76
-T/T
Species
+ 2
Ca
Nat'
Cl
CO;
Ts"
SO 3
so*,
-1
-2
-2
-2
Standards
Cmnioles/1)
Ca Feed
(rr.molo/1)
30
ANAJYTICAL RESULTS
S03 2 Feed
30
(raniole/1)
,1300
500
1580
500
1540
Effluent
(mmolc/1)
fi.08
43 6_ ._
166
5.4
686.
159.
527
Solids
(nunole/o')
9.43
Q.474
0.035
Time
(min)
30
60
100
PH
5.81
-LuSD
5.80
5.79
Temp.
4 2.4
il . 7
41.2
43.
~2
S03
(mmole/1)
OPERATING DATA
Solids
Removal
(inl/min)
Si
159
115
115.
122
Solids
0.404
.326
"." 267
Solids
(g)
13.2
10.6
R f,
COMPUTER RESULTS
Ionic
Strength
1.16
Residual
Relative Saturation
Electroneulra] ity CaS03-%H20 CaSOM'21!20 CaSO.,-^1120
-0.057 7.46 0.50 0.19
Mole Fraction
SO
-2
SOu
0.03
-212-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Ca
+2
Mg
Na2
CI
CO 3
"
+2
-1
-2
SO.
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
Ca
2
+2
Cl l
C03~2
so3~2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
Solid
S03"2
Run # 67 Date 4/06/76
A
182.9
B
105.3
6.05
124.
39.9
6.05
52.7
162.2
L_i_qui_d_
288.2
2.01
Solid
0.324 (g/min)
3.06
126.
47.7
1.55
45.8
151.9
mmole/min
4.04
6.8
10.3
0.15
0.003
irrmole/g
9.43
0.474
0.35
288.2
6.05
124.
39.9
6.05
52.7
162.2
5.07
126.
47.7
46.0
151.9
0.324
0.428
14.4
294.
-213-
-------
SOLIDS MATERIAL BALANCE
Run No. 67
Date 4/06/76
g/mmole mmole/gram g/gram
Ca++ 0.040 9.43 0.397
M"^ .024
.046
Cl" .035
COl -060 (8.92) (.597)*
S07 .080 0.474 .038
SCC .096 .035 .003
%H20 .009 .509 .005
Z 1.040
* Excess calcium ([Ca] - [Ts]) is assumed to be calcium
carbonate.
-214-
-------
KINETIC RUN 67
19 APR
:Jd.293
M20
CAP
MGO
1*20
INPUT SPECIES
5.55«S2*^l
HCL
C02
«203
. N205
S02
S03
TElPtRATURt
l , << f .<
«i .
OEii. C.
H20
H2C')3
HCOJ-
H2S03
HSOJ-
Hjru-
CA»*
CAOH +
CAHC03*
CAC03
CASC,3
CAH503+
C4S04
MGOH*
PGHC03 +
MGCQ3
MQS03
MGH503*
HGS04
A(,UEOUS SOLUTION
MOLALITY
l,39b-0b
2,777-1*3
1.774-31
5.348-H5
S.976-H2
7.912-vS
2,141-*3
3,589-1?
1.351-33
9,593-k)*
2,521-*3
1,631-ai
6.3a5-«7
6,535-4)4
5,177-fS
4,4a9-«<2
3,913-82
ACTIVITY
1.S22-KO
1 ,373-«3
«, 557-^6
1.615-H2
«. 43^-516
2,917-lvJ
1.127-05
4,ay5-eb
1 ,857-«3
7,797-«4
4, 912-6)2
5,125-917
5,312-f4
S, 347-4)6
5,504-92
3.iaa-aa
2,312-ai
ACTIVITY
9,823-'n
I ,?^^+^<^j
6,H49-»n
1 ,226'ft1
6.5140-ai
», 128-^1
8,128-01
8.128-"!
1,226 + f,^
1 ,226»'*n
8,128-^1
8.128-811
8.128-H1
1.22S+HM
1,226*«B
8,128-91
1.22S + SI0
NAHH 9.935-10
NAHC03 1,8?6«H4
NACQ3- 9,755-87
NAS03- S,211-03
NASQ4- 3.59b-4«2
OM- 2.6S8-k>*
C03-- J.Z93--07
SQ3-- 7,»4?-?3
S04-- 3,!i'M4-fll
COMPONENT MOLALITY
CA(OH32tS) Z.aca
CAC03CS) fi.aa?
CASosts) a,ae«
CAS!14(S) B.ffM
HG(u«)2CS) a.a^w
«i,CQ3(S) a,a«a
MGS03CS) iS,H0{l
PC02 1,5^275-^11 ATM,
Pb02 1,*H272-«I5 ATM,
2.895-81
1,218-09
2.214-B4
7,928-tf7
4.235-P3
4, 1
ACTIVITY PRODUCT
2.350-19
2.094-11
5,2b«-?i7
1.165-B5
2.2V2-17
1,927-09
4,886-85
8, 128-H1
8, i29-*l
6,12B-«1
7.94S-H2
RELATIVE 5ATUHATIQN
8,0991-14
8.921-^3
2.256-^6
1.364-B4
HOLECULAR WATER 9,99d28-Bl NGS,
QwIC STRENGTH 1.16431»J« "ES,
-215-
-------
UUN NO.
68
c T -0.063
DATE A /nfi /7ft
Species
Ca*2
»g+2
Nat1
cr1
C03~2
Ts~2
S03~2
SO,,"2
Time
(min)
60
^120
180
240
300
Ionic
Strength
1.03
ANALYTICAL RESULTS -...
Standards Ca Feed S03~2 Feed Effluent Solids
(ramolps/l) (rr.mole/1) (nmole/1) (mmolc/1) (mroole/jO
18 7.79 8.52
1200 404.
315 148.
18 4.7 0T8S2
1490 540.
315 92. .852
1350 448 .035
OPERATING DATA
Solids
Temp. SOs"2 Removal Solids Solids
pH (°C) (ramole/1) (ml/min) (wt%) (g)
5.72 53.0 30" 0.?R 9.1.
5.72 52.4 30 .28 9.1
5.70 51.2 30 .21 6.6
5.69 50.2 30 .142 4.5
5.67 51.3 92.1 30 .146 4.6
COMPUTER RESULTS
e ! T Relative Saturation Hole Fraction
ElectroneuLral ity CaS03-%H20 CaS0^2i:20 CaSOi.-^IhO S03~2 S0u~2
0.101 4.12 0.58 . 0.?7 n.Qfi n 04
-216-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
Run i? 68
Date 4/08/76
INLET
Flow Rate (ml/min)
201.3
99.2
300.5
Ca
+2
Mg
N32
CI
+2
+2
1
CO 3
S03
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
3.60
3.60
113.
31.3
134.
3.60
113.
3.6
31.3
134.
OUTLET
Flow Rate (ml/min)
Liquid
Solid
(g/min)
Cl J
C03~2
S03~2
so.* 2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
2.34
121.
44.5
1.41
27.6
1.35
0.36
0.04
0.01
2.70
121.
44.5
27.7
135.
PREC. RATE
mmole/min mmole/§
Solid
S0
so,,
_
2
1.26
3.61
-0.7
8.52
0.852
0.064
0.042
0.148
4.24
-10.9
-217-
-------
SOLIDS MATERIAL BALANCE
Run No. 68
Date 4/08/76
g/tnmole mmole/gram g/gram
Ca4"1" 0.040 8.52 0.341
Kg4"4 .024
Nat4" .046
Cl" .035
C07 .060 (7.60)* (.456)-
SOl .080 0.852 .068
SO; .096 .064 .006
%H20 .009 ' .916 .008
E 0.879
* Excess calcium ([Ca] - [Ts]) is assumed to be calcium
carbonate.
-218-
-------
KINETIC RUN 68
19 »P» 7ft
PH
H20 » 5,5.-
CAO 7,7^
HliO » 4.
NA20 « 1,
INPUT SPECIES
HCl
CC2
M215
302
503
i , 7 0 vi fl / -
& , tf ** H v v)
4.
OE(,. C,
»Bt'£rjuS SOLUTION
H*
H2G
H2COJ
hCQJ-
"2SOJ
HS03-
H304-
C4 + +
2.756-.J3
1.1S2-SI5
8, <
2. 108-HS
2.133-^2
9.139-06
1,142-05
ACTIVITY COtF* TCItNT
9.*847-'H
«.C79-"I1
7.863-M1
?.?76-0t
7,fto3-^l
7.863-i«l
CAS03
CAHSPJ*
C4S04
MGOH*
MGHC03+
MGS03
MGH5D3*
«GS04
2.962-H3
7,911-34
9.2?2-94
3.1S5-83
1.773-ai
5.3I'7-»)4
21233-32
2.773-82
1,759-01
9.45Q-34
7.252-44
3,739-03
5. 122-82
4,244-34
2|673-<>2
2,1«5-»1
iilE?
2,881-^1
7,a«3-f>i
7,8o3-l»l
l.l»7+M«l
7,863-vtl
MAC03-
UAS03-
NAS04-
OH-
CQ1--
SU3--
304--
CA(UHJ8(S)
CAS03CS)
CASO-l(S)
"IGC03CS)
HG3Q3CS)
PCH2 « 1,
PS02 1,
2,t>40-<)l
J, 157-29
1,222-04
5,827-87
2,138-813
2.912-02
3,4*9-08
2.411-Ml
H , /) 0 H
1 ATM,
5 ATM,
1,887-01
1 ,385-09
1 ,463-04
4.582-C7
l,681-!'3
2,290-«2
2,727-5«8
2.513-Pa
4.174-B4
1 ,9a5-v)2
4,918-19
l.'iS'J-ll
2.737-07
1.272-05
3,810-17
2,342-35
7,127-^1
7, 863-^1
7,863-5)1
7,863-Bl
7,863-01
1 ,36fi-fll
I ,3ofi-t»l
8,265-^2
P9QOOCT =!£LATIVt
1.526-13
9,629-^3
S.832-01
4, lk)2-t)6
1 ,«38-5)4
IONIC STȣ*GTH
RES, £,N. <
t.a 14
-219-
-------
RUN NO. 69
DATE A/27/76
-T/T
> 0.01
Species
Nat1
Cl"1
C03~:
TS
so 3
so,,
-2
-2
Standards
Ca Feed
(mmole/1)
40.0
77.7
ANALYTICAL RESULTS
S03~2 Feed
(mrnole/l)
.26.6
0.
27.2
21.2
6.0
Effluent
(mmolc/1)
9.3
13.0
38.4
2.76
.70
2.06
Solids
(mmolc/cO
7.68
7.47
7.02
0.478
Time
[mirj
90
PH
7.91
Temp.
OPERATING DATA
Solids
SO3~" Removal
(mmole/1) (ml/min)
-2
0.7Q
12S
Solids
(wt%)
0.194
Solids
(g)
6.29
COMPUTER TIESULTS
Ionic
Strength
0.051
Residual
Electroneutralicy
0.0007
Relative Saturation
2.45
-21120
0.092
0.042
Fraction
S03~2 S0u~
0.936 0.064
-220-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
Ca+2
Na2+2
ci-1
Ts
S03
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
Na2
Cl"1
Ts _
S03_
SO i,
+ 2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/rain)
(mmole/min)
(mmole/min)
(mmole/min)
PREC. RATE
Solid
S03~"
so,,
"2
Run # 69 Date 4/27/76
A
100
B
100
4.0
2.66
7.77
2.12
.60
Liquid
200
1.86
Solid
0.24.1 (g/min)
1.86
2.60
7.68
0.14
0.412
mmole/min
2.14
1.98
0.188
1.70
0.116
mmole/g
7.68
7.02
0.478
200
4.0
2.66'
7.77'
2.12'
0.60"
3.72
2.60
7.68
1.84
0.53
grams/min
0.243,
0.229
0.282
0.39
221-
-------
SOLIDS MATERIAL BALANCE
Run No. 69
Date 4/27/76
Ca++
Mg4^
Nat4"
Cl"
col
sol
so;
%H20
g/mmole
0.040
.024
.046
.035
.060
.080
.096
.009
mmole/gram
7 6ft
7.02
.48
7.50
g/gram
0.^07
.562
.046
.067
0.982
-222-
-------
33 *AY 76
lot 12114,6Si
CAO
M50
NA20
PH s 7,913*
KINETIC RUN 69
INPUT SPECIES CiriLES)
it HCL
i3 C02
N205
502
303
5B.2W0 OEG, C,
3.34333-32
iOUEOUS SOLUTION
H»
H20
H2S03
MSQ3-
4504-
C*» +
CAOH +
CAS03
CAHS03+
C*S04
MA*
MAOH
NAS03-
M4SU4-
Ort-
CL-
S03
304
COMPONENT
1.455-38
2.25SI-11
1 .618-85
1.7S6-39
8,172-83
5.621-37
5.539-^4
2.944-05
5,707-4)4
2.588-512
2,552-38
2,499-35
8,937-85
5,559-38
3,539-32
1,343-34
1,403-33
MOLAIITY
ACTIVITY
1.23B-88
2.369-11
1.312-5<5
1.432-39
3.623-33
4,556-?7
5.55S-H4
2.386-36
5,759-34
2.124-32
2,578-38
2.326-35
7.223-35
4.536-3S
3,393-32
4,529-35
5,594-34
ACTIVITY COEFFICIENT
8.456-VM
9,988-31
1 ,flH9»Hti
3,138-31
8,136-31
4,434-dl
8,126-01
I,«a9 + 5>*i
8, i«!6-e
-------
RUM NO. 70
DATE 4/27/76
-T/T
> 0.01
ANALYTICAL UHSULTS
Species
Ca+2
Standards
fmmolfS/1)
Ca+ Feed
(mmole/1)
39.2
S03 2 Feed
(raraole/1)
Effluent
(mmole/1)
8.59
Solids
7.61
Nat1
Cl
CO;
Ts"
SO 3
SO-.,
~2
-2
-2
76.9
43,5
0.
44.0
20.1
23.9
22.3
38.2
10.4
'0.73
9.67
7.41
6.62
0.826
Time
(tain)
PH
Temp.
C°c)
_S1 .8
OPERATING DATA
Solids
SOj"'' Removal
(nmole/1) (ral/min)
rir A
200,
Solids
0.094
Solids
(g)
2.61
COMPUTER RESULTS
Ionic
Strength
0.068
Residual
Elect roneu I mlity
0.0028
Relative Saturation
CnSCK 2U20
Mole Fraction
SO
-2
0.11
-224-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
Run # 70
Date 4/27/76
INLET
Flow Rate (ml/min)
Ca
,+2
.+2
Mg
Naa
ci-1
Ts
+ 2
S03
SO.,
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
100
3.92
7.69
100
4.35
2.01
2.39
200
3.92
4.35
7.69
2.01
2.39
OUTLET
Flow Rate (ml/min)
Ca
Mg'
+ 2
'+2
Cl'1
Ts
S03
SO 4
-2
-2
(mraole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
Liquid
200
1,.72
4.46
7.64
0.146
1.93
Solid
n.188 (g/min)
1.43
1.24
0.155
3.1
4.46
7.64
1.39
2.08
PREC. RATE
Solid
SO
-2
I
-2
mmole/min mmole/g
2.20
1.86
0.46
6.62
0.826
0.188
0.289
0.281
0.557
-225-
-------
SOLIDS MATERIAL BALANCE
Run No. 7Q
Date 4/'27/76
Ca^
vr' ++
Mg
Nat*
Cl"
col
soT
so;
%H20
g/mmole
0.040
.024
.046
.035
.060
.080
.096
.009
mmole/gram g/gram
7.61 0.304
6.62 .530
.826 .079
7.44 .067
.980
-226-
-------
KINETIC RUN 70
»3 HAY 7d
16112: t 1.412
H20
CAO
Pii »
SPECIES C10LES5
HCL
CO?
MJ03
N2Q5
S02
S03
TEMPERATURE
, 8 J C! Jl d
DEC, c,
H20
H2S03
MSOJ-
HS04-
CAOH*
CAS03
CAHS03+
CASQ4
NAUH
NAS03-
OH-
CL-
303
804
ALLOWED
AiUEOUS SOLUTION
1QLALITV
9.871-B9
1.365-11
l,357-<)5
5.324-P9
6.221-33
7,226-*)7
5,085-34
1,787-36
1 ,855-413
4.383-32
7,527-88
5.62i-3S
6,934-34
1,312-35
3,819-32
1 ,496-34
7,119-33
ACTIVITY
7.585-39
1,377-11
1.375-85
4,223-6)9
2,535-33
5,731-37
5,148-04
l,418-*6
1,877-33
3,527-32
7.S17-38
4,463-35
5,499-34
8,324-36
3,31)2-32
5,893-35
2,544-33
ACTIVITY COEFFICIENT
8,362-MJ
9.984-31
1 .312+3B
7.922-31.
7.932-31.
4,874-31
7.932-31
1 ,s>i2*aa
7,932-31
8,346-31
1 ,312»Hf
7,932-eil
7,932-01
7,932-ai
7.862-31
3,938-31
3,574-31
ACTIVITY PRODUCT RELATIVE SATURATION
CA(OH)2(S)
CASO.H5)
CA5U4(S)
3,3513
1,532-13
1.492-37
5.428-36
5,123-38
2,252*ctu
2.963-31
Pi02 2.124M3-H ATM,
HOLECULA9 WATER « t,3«3J4»33
-------
RUN NO. 71
DATE A/27/7A_
-T/T
<0,01
ANALYTICAL RESULTS
Species
Ca 2
Standards
(mmoles/1)
Ca Feed
(mroole/1)
39.7
S03~2 Feed
(nsnole/1)
Effluent
(rnmole/1)
10.1
Solids
(mmole/o')
7.46
Nat1
Cl
CO-
TS"
S03
so
-2
-2
-2
82.0
42.6
0.
0.63
44.1
21.0
23.1
21.8
42.0
0.251
11.3
'2.24
9.06
0.12
7.22
6.56
0.865
Tiroe
(min)
12.5
PH
6.87
Temp.
C°0
52.0
OPERATING DATA
Solids
S03~2 Removal
(nrnole/11 (ml/min)
2.74 200
Solids
(wt%)
0.085
Solids
(g)
COMPUTER RESULTS
Ionic Residual
Strength Electroneutra]ity
0.071 -0.0004
Relative Saturation
5.30
CaS04-2U20
0.30 '
0.14
Mole FractJo:
SO
-2
SO,
-228-
-------
REACTOR MATERIAL BALANCE CALCULATIONS
INLET
Flow Rate (ml/min)
+2
Ca
N321
Cl
-1
C03
SO 3
-2
-2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
OUTLET
Flow Rate (ml/min)
Na2
Cl"1
C03~2
S03 2
soi,"2
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(mmole/min)
(minole/min)
PREC. RATE
Solid
SO;
SO 4
-2
Run // 71 Date 4/27/76
A
100
B
100
3.97
4.26
8.2
0.063
2.1
2.31
Li _qui_d_
Solid
?nn 0.178 (g/min)
2.02
1.33
4.36
8.4
0.050
0.448
1.82
mmole/min
1.95
1.65
0.49
0.021
1.17
0.15
mmole/g
7.46
6.56
0.865
200
3.97
4.26
8.2
0.063
2.1
2.31
3.35
4.36
8.4
0.071
1.162
1.97
grams/rni-n
0.178
0.261
0.252
0.566
-229-
-------
SOLIDS MATERIAL BALANCE
Run No. 71
Date 4/27/76
C.+*
. ' -H-
Mg
Nat4"
Cl"
col
sol
so;
%H20
g/mraole
0.040
.024
.046
.035
.060
.080
.096
.009
mmole/gram
7.46
.12
6.56
.865
7.42
g/gram
0.298
.007
.525
.083
.067
-230-
-------
KINETIC RUN 71
83
76
:i?I 12,>172
HZO « ;
CAO « 1.9H000-H2
NA2Q
INPUT SPECIES (HOLES)
HCL
C02
N203
N205
302
303
TEMPERATURE
4,20909-92
2.:
32.800 OES. c.
2.24/1JM-03
*aueous SOLUTION
COMPONENT
H2U
H2CC13
H2S03
HS03-
HSH4-
CAOH +
C4HCC1-3 +
CAC03
CAS03
CAHSH3+
MA*
NAOH
NAMC03
NACQ3-
NASOJ-
t.sis-a?
3.95S-35
1.933-^4
7,J78-H9
5.2H-04
8,S«8-B3
6,928-a3
4,779-88
1,194-05
4.673-97
1.2i»l-a3
7,7ia-a5
l,878-«3
4,284-83
4,369-89
5,134-99
3,319-97
l.iai-84
6,179-94
ACTIVITY
1 ,349-07
1.52S-94
7,473-09
4.] 18-04
2.788-0J
3. 779-518
9.439-ae
4.731-f 7
1.216-»3
6,102-35
1. 901-03
3,437-32
4,423-!»9
5.168-BS
2.624-07
9.343-015
4,885-04
ACTIVITY COEFFICIENT
8,349-ai
9,9tt3-31
1 ,312 + 3!"
7.895-i»l
1.312 + ai!
7,895-31
7,94)7-01
4,325-Hl
7,94J7-dl
7.9a7-ai
1 ,312»d0
i.ai2*0?
7,907-ai
1,212+00
7,907-«ll
7.9d7-0t
7,987-31
OH-
cu-
CQ3--
303--
SQ-l
CACOH)2tS)
CACU.M5)
CAS03CS)
CASQ4C3)
6,847-97
4,193-02
3.219-04
MOL*LITY
0,000
3,300
PC02 > 2,28blb-?3 ATM,
PSQ2 1.51731-88 ATI,
4.781-37
3,289-02
7,314-08
1,251-04
2.307-03
7,907-01
7,834-01
3.885-.01
3,833-01
3,516-01
ACTIVITY PRODUCT RELATIVE SATURATION
S,374-16
2.179-10
3.4U4-07
8.411-06
2,047-18
1,335-01
5,296+00
2,977-01
MOLECULAR WATER l,B3037+«0 KGS,
IONIC STRENGTH « 7.08080-02 RES, E.N, i
.4.160-04
-231-
-------
RUN NO.
DATE 1/71/76
ANALYTICAL RESULTS
Standards Initial
Percent Liquor Solids
Jpecies Deviation (mmole/1) (mmole/g)
:a+2 +.2 . 10.55 7.60
~^"2 _ l±
la+l +-2 10.Q
:i-1 +.8 21.1
:s"2 +.2 10.0 7.42
;o3~2 ' o. 6.65
;04~2 +-2 ' 10.0 0.77
OPERATING DATA
:ime Temp. S03~2
lin) pH (°C) (mmole/1)
0 50 0.
'020 7.29 50 0.336
Final
Liquor
(romole/l)
13.0
10.0
21.1
13.3
0.336
13.0
Solids
(wt%)
0.357
.304
Solids
(mmole/1 )
7.10
0.05
7.10
6.85
0.24
Solids
(g)
2.001
1.700
COMPUTER RESULTS
Ionic Residual
Strength Electroneutrality
.0563
Relative Saturation
CnS03-%H20 CaS0lt-2H20
-0.001704
1.153
0.60
0.27
Mole Frnction
SO
-2
0.97
srV
0.03
COMMENTS
-9 solids with grinding.
nitial liquor concentrations normalized to final sodium and chloride concentrations,
-232-
-------
RUN NO. E*-l
DATE 1/21/76
REACTOR MATERIAL BALANCE CALCULATIONS
Run # E*-l
Date 1/21/76
INLET
Liquid
560 ml
Solid
2.001 g
Na2+2
or1
s
so3
S0
~2
~2
(mrnole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
5.91
5.60
11.82
5.60
0.
5.60
15.2
14.85
13.3
1.54
21.11
5.60
11.'ST
7.14
OUTLET
+ 2
Na2
Cl"
Ts
S03"
S04"
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
Liquid
560 ml
7.28
5.60
11.82
7.46
0.188
7.27
Solid
1.700 g
12.07
12.07
11.65
0.40
19.35
5.60
11.82
TOT
11.84
7.67
-233-
-------
SOLIDS MATERIAL BALANCE
Run // E*-l Date 1/21/76
g/mmole mmole/gram g/grara
Ca+2 .040 7.10 0.284
+2
Mg .024
Na2+2 .046 0.05 0.002
Cl .035
C03~2 .060
S03"2 .080 6.85 0.548
> 3
SO,"2 .096 0-24 0.023
>009 7.09* 0.064
z °-921
* Water concentration is based on the hypothesis that solid sulfate and
sulfite each have one-half waters of hydration.
-234-
-------
RUH NO.
E*-2
DATE 1/21/76
ANALYTICAL RESULTS
Species
Ca+2
Mg+2
Na+1
cr1
C03~2
Ts~2
S03"2
SO;,"2
Standards
Percent
Deviation
+ .2
-.4
+.2
+.8"
+ .2
+.2
Initial
Liquor
(mmole/1)
10.7
10.3
21.3
10.3
0.
10.3
Solids
(mmole/g)
7.60
7.42
6.65
0.77
Liquor
(mmole/1)
13.1
10.3
21.3
13.44
0.32
13.12
Final
Solids
(mmo 1 e / 1 )
7.38
0.03
7.19
6.89
0.25
OPERATING DATA
Time
(min)
0
7020
pH
7.30
Temp.
(°C)
50
S03~2
(mmole/1 )
0.
0.324
Solids
(wt%)
0.345
.296
Solids
(g)
2.001
1.717
COMPUTER RESULTS
Ionic Residual
Strength ElertroncMitr.il i ty
0.0570
-0.00146
Relative Saturation
CaSO r V:i ?0 Ca SO;.' 21! 20 CaSO u foI ? 0
1.115 0.61 0.28
Mole
'rar t io
0.96
0.04
COMMENTS
K-9 solids without grinding.
Initial liquor concentrations normalized to final sodium and chloride concentrations.
-235-
-------
RUN NO. E*-2
DATE 1/21
776
REACTOR MATERIAL BALANCE CALCULATIONS
Run # E*-2
Date 1/21/76
INLET
Liquid
0.580 ml
Solid
2.001 g
mmole
Ca+2
Mg+2
Na2+2
ci-1
Ts
so3
SO.
~2
2
(mmole )
(nmole )
(mmole )
(mmole )
(mmole )
(mmole)
(mmole )
fi,18
12.16
5.95
5.95
15.71
13.51
13.31
1.54
21.39
5.95
12.36
19.46
13.31
7.49
OUTLET
Solid
Cl'1
so3~2
(mmole)
( mmo 1 e )
(mmole)
(mmole)
(mmole)
(mmole)
2
0.S80 ml
7.60
5.95
(mmole)
12.36
7.80
0.188
7.61
1.717
12.67
12.34
11.83
0.43
"out
mmole
20.27
5.95
12.36
20.14
12.02
8.04
-236-
-------
SOLIDS MATERIAL BALANCE
Run // E*-2 Date 1/21/76
g/mmole mmole/gram g/gram
Ca+2 .040 7.38 0.295
Mg+2 .024
Na2+2 .046 0.03 0.001
Cl .035
C03~2 .060
S03~2 .080 6.89 0.551
SO.'2 .096 °-25 C
%H20 .009 7.14* 0.064
0.935
* Water concentration is based on the hypothesis that the solid sulfate
and sulfite each have one-half waters of hydration.
-237-
-------
RUN NO. E*~3
DATE 1/21/76
ANALYTICAL RESULTS
Standards
Percent
Species Deviation
i 2 i o
.a "t~. £
g 2 -.4
a+1 +-2
II"1 +.8
's~2 +.2
0^
n.-2 +.2
Liquor
(mrnole/1)
10.8
10.3
21.6
10.3
0.
10.3
Initial
Solids
(mmole/g)
7.15
0.03
0.04
6.75
5.65
1.11
Liquor
(mmole/l)
12.4
0.01
10.25
21.6
12.7
0.37
12.3
Final
Solids
(mrno ] c / 1 )
7.28
0.03
7.35
6.55
0.78
OPERATING DATA
ime
in)
0
020
pH
7.38
Temp.
(°0
50
S03*-2
(mmole/] )
0.
0.369
Solids
(wt%)
0.207
0.170
Solids
(g)
1.199
0.987
Ionic
.0553
Residual
Electro n c u _c_r qjl_i_t y^
-0.00161
COMPUTER RESULTS
Relative Snturncion
CnSO,. -2H20
1.279
0.56
0.25
Mol e Frnrtion
SO,
-2
0.89
SO,.'
0.11
COMMENTS
-38 solids used with grinder.
nitial liquor concentrations normalized to final sodium and chloride concentrations,
-238-
-------
RUN NO. E*-3
DATE
1/21/76
REACTOR MATERIAL BALANCE CALCULATIONS
Run // E*~3
INLET
Ca+2
Mg+2
Na2+2
ci-1
Ts
so3~2
S0n~2
OUTLET
<2
2"+'
Na2
Cl'1
Ts
so3~2
sn,,~2
(mmole )
(mmole )
(mmole )
(mmole )
(mmole )
(mmole)
(mmole)
(mmole )
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
( mmn IP)
Date I-/21/76
Liquid
ssn mi
6.26
5.95
12.S2
5.95
_.__._
5.95
Liquid
580 ml
7.19
0.003
5.95
12.53
0.214
7.35
Solid
1 .19941 ?
8.58
o.rn
0.05
8.09
6.78
1.33
Solid
0.987 R
7.19
0.03
6.46
0.774
mmnl
14.84
n.m
6. 00
12.52
14 . 04
6.78
7.28
mmole
14.38
0.003
5.98
12.53
6.6T~
8.12
-239-
-------
SOLIDS RATERIAL BALANCE
Run // E*-3 Date 1/21/76
g/minole mmole/gram g/gram
+2 .040 7.28 0.291
-024
+2 nAfi 0.03 0.001
Na2
Cl"1 .035
C03~2 .060
S03~2 .080 6.55 0.524
S04 2 .096 0.78 [ 0.75
.009 7.33* 0.066
.0.957
* Water concentration is based on the hypothesis that solid sulfate and sulfite
each have one-half waters of hydration.
-240-
-------
RUN NO. E*-4
DATE 1/21/76
ANALYTICAL RESULTS
Standards Initial
Percent Liquor Solids
Species Deviation (mmole/1) (mmole/g)
Ca+2 +.2 16.4 7.29
Mg+2 -.4 0.04
Na+1 +.2 16.2 0.05
Cl"1 +.8 32.8
C03~2
Ts~2 +.2 16.2 6.99
SOT2 0. 6.06
qn, ~2 +2 16-2 l-08
DU -4 i * £
OPERATING DATA
Time Temp. S03~2
(min) pH ( C) (mmole/])
0 - 0.
JS
7020 7!31 50 0.392
COMPUTER RESULTS
,. . n . , , Relative Saturn
Strength Eleotronou trnl i ty CnSOs'V-^O C.iSO., ' 2H
0.0799 -0.00137 1.380 0.82
CO>C»IENTS
Final
Liquor Solids
(mmole/1) (mmole/1)
17.3 7.34
0.182
16.2 0.03
32.8
17.9 7.24
0.39 6.22
17.5 1.05
Solids Solids
(wt%) (g)
0.351 2.000
0.321 1.827
t ion Mo1 e Frart io
20 CaSOt,-%H?0 S03~2 SOU~
0.37 0.86 0.14
K-41 solids with grinder.
Initial liquor concentrations normalized to final sodium and chloride concentrations.
-241-
-------
RUN NO. E*-4
DATE
1 721776
REACTOR MATERIAL BALANCE CALCULATIONS
Run # E*-4
INLET
Ca+2
Mg+2
Na2+2
ci-1
Ts
so3~2
S04~2
OUTLET
<
&>
Cl"1
Ts
S03 2
SOu 2
(mmole )
(r.imole )
(mraole )
(mmole )
(mrnole )
(mmole)
(mmole )
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
("mmo 1 o)
Liquid
570 ml
9.35
9.21
18.70
9.21
9.21
Liquid
570 ml
9.86
0.10
9.21
18.70
10.22
0.22
10.00
Date 1/21/76
Solid
2.00014 g
14.58
0.104
0.08
13.98
12.12
2.16
Solid
1.827 g
13.41
0.055
13.23
11.36
1.92
mmole
23.93
0.10
9.29
18.70
23.19
12.12
11.37
mmole
23.27
0.10
9.27
18.70
23.45
11.58
11.92
-242-
-------
SOLIDS MATERIAL BALANCE
Run // E*-4 Date 1/21/76
g/mmole mmole/gram g/gram
Ca+2 .040 7.34 0.294
Mg+2 .024
Na2+2 .046 0.03 0.001
Cl"1 .035
C03~2 .060
S03~2 .080 6.22 0-498
SO."2 .096 1-05 0.101
%H20 .009 7.27* 0.065
* Water concentration is based on the hypothesis that the solid sulfate
and sulfite each have one-half waters of hvdration.
-243-
-------
RUN NO. E*-5
DATE 1/21/76
ANALYTICAL RESULTS
Standards Initial
Percent Liquor Solids
Jpccics Deviation (mmole/1) (mmole/g)
;a+2 +.2 16.2 7.29
g+2 ...4 0.05
a+i +.2 16.3 0.04
;1-i +.8 32.3
,s-2 +>2 16.3 6.99
,0 -2 0. 6.06
n -2 +2 16-3 1-08
L/LI
OPERATING DATA
ime Temp. S03~2
in) pH (°C) (mmole/1)
0 -- 0.
020 7.33 50 0.406
COMPUTER RESULTS
Ionic Rc-ijuil Relative Saturn
irenfith Electronou t rnl i tv C.riS03-^H?0 CnSOi, ' 2H
.0781 -0.00164 1.425 0.78
COMMENTS
Final
Liquor Solids
(mmole/1) (mniolc/1)
16.6 7.30
0.18
16.3 0.03
32.3
17.5 7.39
0.41 6.25
17.1 1.12
Solids Solids
(wt%) (g)
0.351 2.000
0.319 1.820
tion Mole. Fraction
20 CaSOu-'.?H?0 S03~2 SO!,"2
0.35 0.85 0.15
-41 solids with grinding.
litial liquor concentrations normalized to final sodium and chloride concentrations
-244-
-------
RUN NO. T7*_s
DATE 1/21/76
REACTOR MATERIAL BALANCE CALCULATIONS
Run // E*-5
Date 1/21/76
INLET
Liquid
570 ml
Solid
2.00014 g
L
-LI
mmole
Ca
+2
Naa
ci-1
Ts
+ 2
S03
-2
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
9.21
9.12
18.42
9.12
9.12
14.58
0.10
0.08
13.98
12.12
2.16
23.79
0.10
9.20
18.42
23.10
12.12
11.28
OUTLET
Liquid
Solid
mmole
Naa
Cl
Ts
S03'
S04
2
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmo 11?)
9.46
0.10
9.26
18.41
9.96
0.23
9.72
13.29
0.055
13.45
11.38
2.04
22.75
0.10
9.32
18.41
23.41
11.61
11.76
-245-
-------
SOLIDS MATERIAL BALANCE
Run # E*-5 Date 1/21/76
g/minole mmole/gram g/gram
Ca+2 .040 7.30 0.292
.024
+2
Na2 .046 0.03 0.001
Cl'1 .035
C03 2 .060
S03 2 .080 6.25 0.500
SCH i .096 1.12 0.108
%H20 .009 7.37* 0.066
0.967
* Water concentration is based on the hypothesis that the solid sulfate
and sulfite each have one-half waters of hydration.
-246-
-------
RUN NO. E*-6
DATE i/?i /7ft
ANALYTICAL RESULTS
Standards Initial
Percent Liquor Solids
Species Deviation (mmole/1) (mmole/g)
Ca+2 +.2 16.4 6.96
^2 IL
£\CT H- ___.
Na+1 +.2 16.3
cr1 +.8 32.8
C03~2 '
Ts~2 +.2 16.3 7.06
S03~2 0. 5.89
SO."2 +.2 16.3 - 0.74
OPERATING DATA
Time Temp. S03~2
(min) pH (°C) (mmole/1)
0 0.
7020 7.38 50 0.317
Liquor
(mmole/1)
17.1
16.3
32.8
18.0
0.32
17.7
Solids
(vt%)
0.213
0.179
Final
Solids
(mrnole/ 1 )
6.63
0.03
6.85
6.09
0.73
Solids
(g)
1.216
1.022
Ionic
Strength
0.0799
Residual
COMPUTER RESULTS
Relative Saturation
Elertronrutr.-i1_i ty C nSO 3;VH?0 CnSO.. '2H20_
-0.00208 1.127 0.82
'.;!! ?_0
C.37
Mol e Fract io
cn -2 cn -
oU 3 bUu
0.89 0.11
COMMENTS
K-19 (0.947 g) and K-20 (0.270 g) were mixed and used in these equilibrium studies
with grinding.
Initial liquor concentrations normalized to final sodium and chloride concentrations.
-247-
-------
RUN NO. E*-6
DATE 1/21/76
REACTOR MATERIAL BALANCE CALCULATION'S
Run I? E*-6
Date 1/21/76
INLET
Ca+^
Mg+2
Naa+2
ci-1
TS
so3~2
SOiT2
(mmole )
(mmole )
(mmole )
(mmole )
(mmole )
(mmo 1 e )
(mmole)
Liquid
570 ml
9.35
9.26
18.70
9.26
9.26
Solid
1.21568 g
8.46
8.58
7.16
0.90
mmole
17.81
9.26
18.70
17.84
7.16
10.16
OUTLET
<:
Na2+:
Cl'1
so3~:
SOiT:
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmo1e)
(mmole)
Liquid
Solid
9.75
9.26
18.70
10.26
0.18
10.08
1 n22 a.
6.78
0.03
7.00
6.22
0.74
mmole
16.53
9.29
18.70
17.26
6.40
10.82
-248-
-------
SOLIDS MATERIAL BALANCE
Run // E*-6 Date 1/21/76
g/mmole mmole/grain g/gram
Ca+2 .040 6.63 0.265
.024
Na2+2 .046 ' 0.03 0.001
Cl .035
C03~2 .060
S03~2 .080 6.09 0.487
SO* 2 .096 0.73 0.070
H20 .009 6.82" 0.061
0.884
* Water concentration is based on the hypothesis that the solid sulfate
and sulfite each have one-half waters of hydration.
-249-
-------
N NO. E*-7
.TE 2/11/75
Secies
+2
Ca
Nat1
Cl
CO;
Ts"
SO;
SO.
1
-2
-2
"2
St amlards
% Deviation)
-.1
0
.3
1.0
1.0
ANALYTICAL RESULTS
INITIAL
Liquid Solid
(mmole/1) (nmole/g)
0 7.58
0
0
0
FINAL
Liquor
(mmole/1)
1.16
0
.30
0
Solids
(mmole/cO
L>
7.55
.05
o
0 -
0 7.50
0 .08
1.00
.53
.47
7.20
7.41
.07
Time
(hr)
0
288
PH
7.51
Temp.
49.3
OPERATING DATA
S03~2
(ramole/1)
Solids
(wt%)
Solids
(g)
.2.OOP
1.586
.onic
irength
.0032
Residual
COMPUTER RESULTS
Relative Saturation
Electroneutrality CaS03'%H20 CaSO,'2lI20
. OQIQ 1.20 ... nnQ
COMMENTS
:aS03'%H20 seed crystals added to boiled DI H20.
Mole Fraction
.01
-250-
-------
E*-7
RUN NO.
DATE 2/11/76
REACTOR MATERIAL BALANCE CALCULATIONS
Run # E*-7
Date 2/11/76
INLET
Flow Rate
Ca'
Mg+2
Na2+2
ci-1
Ts
SO 3
SO 4
-2
-2
(mmole )
(mmole)
(mmole)
(ramole)
(mmole)
(mmole)
(mmole)
Liquid
560 ml
Solid_
2.000 g
15.2
15.2
15.0
.2
15.2
15.2
15.0
.2
OUTLET
Flow
+ 2
Mg 2
Na2+
Cl"1
TS
S03~
SOt*
Rate
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
Liquid_
560 ml
0.65
.17
.56
.30
.26
Solid
1.59 g
12.0
.08
11.5
11.8
7TT
12.7
T25"
12.1
T2TT~
-251-
-------
SOLIDS MATERIAL BALANCH
Run # E//-7 Date 2/11/76
g/mnole mmole/gran g/gram
Ca+2 .040 7.55 .302
Mg+2 .024
C03~2 .060
+2
Na2 .046 .05 .002
Cl"1 .035
S03~2 .080 7.41 .593
.096 .067 .006
%H20 .009 7.47 .067
Z -970
-252-
-------
EQUILIBRIUM RUN 7
74 J4IIM12.842 TEMPERATURE 48.3*8 OEG. C.
INPUT JHFCIE3
W2n * b.5;u«2»ot HCL « u.
C»n t nv»rvi-:i.t C(j2 . ?ti,
* G1 » ;, ? " »H'
SU? s 5.
103 « 4.
-ipFi-F£Mr
4 <*
(C
««+
r.i^1^*
'Zss.j-*
'asm
-* & *
"i'n.i-
» i .S Q A -
^-»»
S.T3
5 ' 1 - -
;~ P.V t-n T
C*fM'-)2(S)
ACijfcfliiS SOIJTION £f!iitL IH"I A
.<"1L4LIT'' »CTIVITy
3gA~tBjiA ^iiQa^aa
^cUH" O»^:»»' ("0
J^oj-13 3.5/t5-l!»
9.S9E-^5 H. 995-1*5
2.1^'J-itq !.977-ng
?..l?'?-«!4 *. 453-1*4
J.2V-r» i.^4^-^9
2,/;iH-.-M J.7.1Q-H4
b.71<*-n-i s. 723-^3
5.973-t4 S.SdS-^4
2<.£Q_in 'J^Tnlj
J:f I'7 ^,3/^-1^
l,4Ca-C>« t. VI 1 -t^C
3SC-«1
37S-ni
753-(»l
375-fl
H«l »<"/!
(»^ t *""
380. m
375-H1
37-i-^l
371-^1
745>-e>i
fidfl-tf 1
Vt SAT
^ 4 7 - 1 «;
ri''-;1i';j c-.-'PB ».«!7«-?a i.i9flto>ki
*.»"« 2.?4I-^7 9.213-33
6. J1S77-1!" «Tl.
.A» itfcTfcU r P.Oijgvj').?! K^b.
ST^'eMFJT^ : 3.i5S77-.'1 9E3. E.N. i 1,
-253-
-------
'* NO. E*-S
IE 2/11/76
Species
Ca
+ 2
+ 2
Mg
Nat1
Cl
CO;
Ts"
SO-
'1
~2
-2
-2
ANALYTICAL RESULTS
Standards
Deviation)
-.1
INITIAL
Liquid Solid
(mmole/1) (mnole/g)
9.5 7.58
FINAL
Liquor
(mmole/1)
11.4
Solids
(mmole/cO
LJ
7.44
0
-.8
.3
9.5
19
11.1
20.6
.06
1.0
1.0
9.5
7.50
9.5 .08
11.3
.322
11.0
7.02
7.30
.10
Time
(hr)
0
288
7.08
Temp.
50
OPERATING DATA
SO 3 2
(mmole/1)
.322
Solids
(wt%)
Solids
2.000
1.592
Dnic
rcngth
.0529
Residual
COMPUTER RESULTS
Relative Saturation
Electroneutrality CaS03'%H20
.0018 1.00
.49
.22
Mole Fraction
SO
-2
-2
.99
.01
COMMENTS
-254-
-------
E*-8
RUN NO.
DATE 2/11/76
REACTOR MATERIAL BALANCE CALCULATIONS
Run 1t E*-8
Date 2/11/76
INLET
Flow Rate
Ca
M
+2
+ 2
Naa
ci-1
SO 3
-2
-2
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
Liquid
580 ml
5.51
5.51
11.0
5.51
5.51
_So.lid_
2.000 g
15.2
15.2
15.0
.2
20.7
5.5T
11.0 ~
"20TT~
15.0
5.7
OUTLET
Flow Rate
Solid
Ca
Mg
+ 2
'+2
Na2
Cl"
+ 2
SO
-2
i
-2
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
(mir.o 1 e)
(mmole)
S80 ml
6.61
6.44
11.95
6.55
.19
6.38
1.59 g
.1
11.2
11.61
.16
18.4
6.54
11.95
17.7
11.8
6.5
-255-
-------
SOLTDS MATERIAL BALANCE
Run $ E//-8 Date 2/11/76
g/mniole mmole/gram g/gram
Ca+2 .040 7.44 .298
Mg+2 .024
Na2+2 .046 .06 .003
Cl~! .035
C03~2 .060
S03 2 .080 7.30 .584
SOT2 .096 -10 -010
%H20 .009 7.40 .067
E -961
-256-
-------
EQUILIBRIUM RUN 8
7 ft 1 41 I 9:I 4.3<
SF*fCTES
CAT « 1 , 1 <1 niV>
^G^ i*,?ay^'.i
C02
"203
S02
503
TEMPEPATUI'E SB.ada UEC. C.
SOLUTION fc(.UtLIh«JA
Itlf'T
a.i! J-t?
6.377-^3
^.»c 1-1 »
J.SS^-c-5
5. !St -CS
r A « ,-j «
2. 178--»2
3.137-/9
50 «
7.571--3
I .97 1-P
iCTJ«ITt P=)C')JCr
1.S59-15
"Ol.ECLiLA" '-IATE9 « l.
TC*-IC STPfc^(;Tr « 5.29«
4.P81-SM
KGS.
R£S. E..H.
-257-
-------
N NO. E*-9
TE 2/11/76
ANALYTICAL RESULTS
INITIAL
Standards
Species (% Deviation)
FINAL
+ 2
Ca
Ms
Nat1
cr1
C03~:
Ts~2
S03~:
1.0
1.0
Liquid
(mmole/1)
14
419
607
130
130
Solid
(mmole/g)
7.58
7.50
.08
Liquor
(mmoJe/l)
16.6
419
607
146
3.23
143
Solids
(mrnole/fO
7.43
.02
.05
7.03
7.30
.06
OPERATING DATA
Time
(hr)
288
PH
7.20
Temp.
49
S03~2
(mmole/1)
3.23
Solids
(wt%)
Solids
(g)
2.000
1.318
COMPUTER RESULTS
onic
rength
1.09
Residual
Electroneutrality CaS03-%H20
-.03 1.27
Relative Saturation
.57
.25
Mole Fraction
S03
.99
-2
SOu
.01
-2
COMMENTS
-258-
-------
RUN NO. E*~9
DATE -7 /i i
REACTOR MATERIAL BALANCE CALCULATIONS
Run // E*-9
Date 2/11/76
INLET
Flow Rate
Ca+2
Mg+2
Na2+2
cr1
S03
S04
~2
~
(mmole)
(mmole)
(mraole)
(mmole)
(mmole)
(ramole)
(mmole)
Liquid
580 ml
8.12
243.
352.
75.4
75.4
Solid,
2.000 g
15.2
15.2
15.0
.2
243.
352
90.4
15.
75.6
OUTLET
Flow Rate
+ 2
+ 2
Naa 2
Cl'1
Ts
S03 2
2
(mmole)
( mmo 1 e )
(mmole)
(mmole)
(mmole)
(mmole)
(mmole)
Liquid
85.
1.87
83.
Solid
q.si
.07
9.28
9.64
.08
19.4
243.
.07
352.
94.3
11.5
83.1
-259-
-------
SOLIDS MATERIAL BALANCE
Run // E#-9 Date 2/11/76
g/mmole mmole/gram g/gram
Ca+2 .040 7.43 .297
Mg+2 .024 .02 .001
Na2+2 .046 .05 .002
Cl'1 .035
C03 .060
S03 2 .080 7.30 .584
S04~2 .096 .06 .006
%H20 .009 7.36 ° -066
-'956
-260-
-------
70 MI15M9.4A1
CA(]
Pri
« a. -
EQUILIBRIUM RUN 9
INPUT SPFCIES c
HCL 6.07flOM-flt
C02 i
-v3
302 3.
S03 1.
49.4H» 0£G. C.
SOLUTION
ACTIVITY
H +
Hi3 2
«.«'i7-fB o7
2,t 5
2.^4^-?5 1
4<3^q.n3 s
. 1 31*01"
,«24-(M
.?! 1+^v
,^brt-Pl
.983-01
.3*16-01
.9»3-t»l
.21 l+'H
.211 ^^t'
,932-ni
,9»3-«l
.21 t+Oa)
.211 +^t"
,9S3-fl
,HJS-i?l
.345-!"t
,^4P-«I2
~tS')^ f S I 5> . ' 1.!
:*so4isj /j.p-»'i
1 .977-15
^.«4-a.^jj
1 .P/'-fS
i.934-1 4
1.274*«ii«
?.71«-iM
5,540-03
-------
N MO. E*-10
TE
2/11/76
ANALYTICAL RESULTS
Snccies
Nat1
Cl
CO.
Ts~
S03
-i
-2
-2
-2
Standards
i Deviation)
-.1
.3
1.0
1.0
Liquid
(mmolc/1)
18
487
636
187
187
_I NITIAL
Solid
(nimole/g)
FINAL
7.29
.05
.04
6.99
6.06
1.08
Liquor
(mmole/1)
23.7
479
654
197
3.61
193
Solid
6.86
.08
.07
6.53
5.80
1.05
OPERATING DATA
Time Temp. SO 3
(hr) PH (°C) , (mmole/1)
0
Solids
(wt%)
288 7.11 48.9 3.61
Solids
.9383
.4162
COMPUTER RESULTS
onic
rength
1.22
Residual
Relative Saturation
Electroneutrality CaS03'%H20 CaSO,'2H20 CaSO., J
.98 .43
-.042
1.78
Mole Fraction
S03
.85
-2
SOu
.15
-2
COMMENTS
-262-
-------
RUN NO. E*-10
DATE 2/11/76
REACTOR MATERIAL BALANCE CALCULATIONS
Run # E*-10
INLET
Flow Rate
Ca (mmole)
Mg+2 (mmole)
Na2+ (mmole)
Cl"1 (mmole)
TS (minole)
S0a~2 (mmole)
SO^'2 (mmole)
OUTLET
Flow Rate
Ca (mmole)
Mg 2 (mmole)
Na2 (mmole)
Cl"1 (mmole)
TS (mmole)
S03~2 (mmole)
SCli, 2 Cmmnlp)
Date 2/11/76
Liquid
570 ml
10.3
278.
369.
107.
107.
Liquid
S70 ml
n.si
273.
_
373.
11"*
7,06
iin.
Solid
0.938 g
6.84
.05
.04
6.56
5.68
1.01
Solid
0.416 g
2.85
.03
2.72
2.41
.44
17.1
278.
.04
369.
114.
5.68
108.
16.4
273.
.03
373.
116.
4.47
110.
-263-
-------
SOLIDS M-\TLRTAL BALANCE
Run II E//-10
Date 2/11/76
g/mmole_
mmole/graip.
g/gram
+2
Ca
Mg+2
+ 2
Na2
cr1
C03~2
so3~2
soT2
%H20
.040
.024
.046
.035
.060
.080
.096
.009
6.86
.08
.07
5.80
1.05
6.85
.274
.002
.003
.464
.101
.062
.906
-264-
-------
EQUILIBRIUM RUN 10
93 HA» 76 1411311 a.74S
INPUT SPECIES
»GO 4,
MA20 * 3,
Ph I 7.1
CQ2
302
sci3
48.9*3 OEG. C,
Si, <--
SOLUTION E.Ti.'
6. ;
1.312-B2
O.J13-""
,).a7'i->>4
5 . 1 1 « - f 7i
ACTIVITY ACTIVITY COEFFICIENT
7,7b1-to 1.194 + <7iv*
5.1 J9>-?5
8.2S5-f8
4.263-C3
7,«58-H«
-I. < 5 "5 - 'i 4
6.3?«-TJ
1.07?-Ml
3.S2C-C5
3.C57.;'J
1 .OS-t-i
5.487-!'7
3.7bl-?l
5.593-fI
2. 353-31
8.223-cit
t ,?-37»»Ji
I .237 + 33
1 .237*!!^
l.?J7»nn
1.223-^1
S.76t-H
t .29^-^1
?»ur)uCT
SA|Hh»TTON
C 4 C -1 ) 9 ( S )
1 .7J4.IS
5.274-!f
.'M CS)
1 * ATM.
"OLECuUao
li'iIC ST9I-MGTH
*r,S.
9ES. E.N.
-4.1S3-n2
-265-
-------
N NO. E*-ll
JE 2/11/76
Species
Ca
Mg
+ 2
Nat1
c
C0
Ts
S0
1
~2
-2
-2
ANALYTICAL RESULTS
Standards
Deviation)
_ i
0
.8
.3
1.0
__
1.0
INITIAL
Liquid
(mrnolc/1)
18
487
636
187 .
187
Solid
(rnmole/g )
7.24
.04
.02
7.02
6.43
1.07
FINAL
Liquor
(mmole/l)
23.2
479
660
192
3.44
188
Solids
(mmole/g')
7.21
.05
.05
6.96
6.26
.92
Time
(hr)
0
288
PH
7.13
Temp
48.7
OPERATING DATA
so3~2
(mmole/1)
3.55
Solids
(wt%)
Solids
2.010
1.522
onic
rength
1.3-2
Residual
COMPUTER RESULTS
Relative Saturation
Electroneutrality CaS03-%H20 CaSOu'2H20 CaSO,,'
-.038 1.72 .94 .41
COMMENTS
Mole Fraction
SO 3
.87
-2
.13
-266-
-------
RUN NO.
E-ll
DATE 9/11/7A.
REACTOR MATERIAL BALANCE CALCULATIONS
Run // E*-ll
INLET
Flow Rate
Ca+2 (mmole)
Mg+2 (mmole)
Naa (mmole)
Cl"1 (mmole)
TS (mmole)
SOs"2 (mmole)
S0i4~ (mmole)
OUTLET
Flow Rate
Ca (mmole)
Mg _? (mmole)
Naa (mmole)
Cl~: (mmole)
TS (mmole)
SOa"2 (mmole)
Sfh, fmmni rO
Liquid
570 ml
10.3
278.
362.
107.
107.
Liquid
570 ml
IV 77
273.
376.
109.
2.02
107.
Date 2/11/76
Solid
2.011 g
14.6
.08
.04
14.1
12.9
2.2
Solid
1.52 g
11.0
__«
0.08
10.6
9.52
1.4
24.9
T78~:
.04
362.
121.
12.9
109.
24.2
273.
0.08
376.
120.
11.5
108.
-267-
-------
SOLTDS MATERIAL RALANC"
Run / E//-11 Date 2/11/76
g/inrr.ole mmole/gram g/gram
Ca+2 .040 7.21 .288
Cl .035
C03 .060
'2'
-268-
Mg+2 .024 .05 .001
Na2+2 .046 .05 .002
S03 2 ' .080 6.26 .501
4 2 .096 .92 .088
%H20 .009 7.18 .065
.945
Z
-------
EQUILIBRIUM RUN 11
INPUT SHFCTtS
» J.JS1S2*.'!
MCL
en?
N203
M2nj
502
S()3
J.bS.t<»i»-u3
1. a f t n -f - ft i
48.7»9 OEG. C,
r T jv, n_| J .
iL r i v
1-nulL T''-» J 4
4 C T I « I T Y CnEfFtt:t£^T
*?* H
^4*1
r«4.»
C.-- +
C 4 ': > -1
CiS'J-l
(;++
"'J''K-»
v t ^ J
"Is^tM
"'n-
TL-
S'l,^--
« . 4--
n-Pn^evr
J. 537-1^ 4.4.. 4-l,i
7.9'il-i'S 4,7^^-f5
1./87-.'? 4 .?-.,, l.nj
y,/)^^.,'^ 7.?!'-11-!
3. l^>i-« A 3JQ1 l-C"4
4.377 .'3 S.?JO.,-!i
3.50^-^1 l.«"«-ri
4.5a?-'3 3, 7St!-''b
2,^l/-v'! 3,*l'-"3
1.134-v-l 1.4/.4->-l
b. 134-^7 5.711-07
S .5s I- ' 1 3, 7S4-P I
2.154-.-4 2.7rjq.?b
^,.i
-------
N NO. E*-12
TE 2/11/76
Snocies
r
Ca
f!C
Naa 1
c
C0
Ts
S0
1
~2
Standards
Deviation)
-.1
.3
1.0
1.0
ANALYTICAL RESULTS
INITIAL
Liquid
(mmole/1)
18
487
636
187
187
Solid
(rnrnole/g)
7.24
.04
.02
7.02
6.43
1.07
FINAL
Liquor
(mir.ole/1)
23.1
482
655
198
3.59
194
Solids
(minole/g)
7.11
.04
.05
698
6.32
.94
OPERATING DATA
Time
(hr)
0
288
PH
6.95
Temp.
(°0
50
48
~2
S03
(mmole/1)
3.59
Solids
(wt%)
Solids
2.000
1.510
COMPUTER RESULTS
onic Residual
rcngth Electroneutrality
1.22 --040
Relative Saturation
CaSOr%H20 CaSO<,-2H20
1.70 .96
.41
Mole Fraction
SO
-2
SOu
-2
.87
COMMENTS
-270-
-------
RUN N0._
DATE
E*-12
2/11/76
REACTOR MATERIAL BALANCE CALCULATIONS
Run # E*-12
INLET
Flow Rate
Ca+2 (mmole)
Mg+2 (mmole)
Naa (mmole)
Cl"1 (mmole)
TS (mmole)
S03~2 (mmole)
S0i4~ (mmole)
OUTLET
Flow Rate
Ca (mmole)
Mg (mmole)
Naa (mmole)
Cl"1 (mmole)
TS (mmole)
S03~2 (mmole)
SO i, ("rnrnn IP)
Liquid
570 ml
10.3
278.
362.
107.
107.
Liquid
57D ml
n.?
275.
,___
173.
113.
205.
111.
Date 2/11/76
Solid
2.000 g
14.5
.08
.04
14.0
12.9
2.1
Solid
1 . 51 g
10.7
__ _
.08
_-
10.53
9.54
1.42
24.8
278.
.04
362.
121.
12.9
109.
23.9
275.
.08
373.
124.
11.6
112.
-271-
-------
SOLIDS KATCRTAL BALANCE
Run // E//-12 Date 2/11/76
g/rumple mmole/gram g/gram
Ca+2 .040 7.11 .284
Cl"1 .035
C03 .060
-272-
Mg+2 .024 .04 .001
Na2 .046 .05 .002
S03 2 .080 6.32 .506
SOT2 .096 .94 .090
%H20 .009 7.26 .065
-------
EQUILIBRIUM RUN 12
H3
75
THPE<»ATUDfc
SPECIES c-nt.es)
HCL
DEC, C.
PM s 8.35"!
SCi?
S03
*UUfef".iS SOLUTION E"UILToRI4
""LiLtTY ACTIVITY
«*
-^:
CA + *
CAS" <
^**
XG1' r (
" G 5 w '.
n^-
CL-
S 0 J - -
snt
^.3?5-v.A
1.413-^7
U/7?-M
3iltn-' 4
a:'?i^i
?. 932-3 3
1.172-.U
b.Pi4-«;7
O.S12-J1
2 . 1 S 4 - ,) 4
7.374-.1?
1 .122-1-7
1 . 1 63-.T7
4.17^-13
iiiis^i
?'36^'/5
3 ."5 1 *-'*3
1 .431-"!
4.?3!-.^7
3,'7bS-:n
2 .79^-?5
5, 14^.13
U.dflvtOtl
ACTIVITY COEFFICIENT
1 . 1 95+^n
O.p^c.at
» .JjS*1!'
5.0J<5-<* I
8.231-1" I
9..350-"!
8.7Jl-'l
1 . JJB».1,1
1 .?,}«»<' I"
7,540-'';)
4CTIVITT
" 5 ' L' L") 2 15 J
IO"IC
7.544-16
1 .136-117
2.1 74-in
t ,fi99»:»n
9.^75-C!
2.?41-"3
4.735-v1?
-273-
-------
APPENDIX F
INFRARED SPECTRA OF PRECIPITATED SOLIDS FROM
LABORATORY AND PILOT PLANT STUDIES
Prepared by:
Benjamin F. Jones
Frank B. Meserole
-274-
-------
TABLE OF CONTENTS
Page
1.0 INTRODUCTION 276
2.0 QUALITATIVE APPLICATION OF INFRARED
SPECTRAL ANALYSIS 277
3.0 QUANTITATIVE APPLICATION OF INFRARED
SPECTRAL ANALYSIS 281
INFRARED SPECTRA
-275-
-------
1.0 INTRODUCTION
Infrared spectroscopy has been applied to both the
qualitative identification and quantitative determination of the
calcium sulfite-sulfate solid solution. Infrared spectral analysis
has been performed on selected solids precipitated in the equi-
librium runs and the kinetic runs. Pure phase calcium sulfite hemi-
hydrate, calcium sulfate dihydrate, calcium carbonate, and dolo-
mite have been analyzed by infrared spectroscopy for reference
purposes. In addition, actual pilot plant scrubber samples from
the EPA scrubber at Research Triangle Park, North Carolina, and
the Radian/Joy/PP&L scrubber at Sunbury, Pennsylvania have been
analyzed by IR spectroscopy.
-276-
-------
2.0 QUALITATIVE APPLICATION OF INFRARED SPECTRAL ANALYSIS
Infrared spectroscopy was successfully used to confirm
the presence of sulfate in the calcium sulfite solids. The
infrared absorption due to the sulfate ion showed that the
incorporation occurred by the substitution of a sulfate ion for
a sulfite ion in the crystal lattice. The vibrational spectral
structure of any pure phase sulfate compound such as 03504*21120
in the 1100 cm"1 region is characteristically broad with little
or no resolution of the three component bands. In case of the
matrix isolation as occurs in a solid solution, the peak positions
shift and a greater degree of resolution can be observed. Solids
identified as containing sulfate by chemical analysis and spectro-
scopically appeared to be solid solutions were analyzed by X-ray
diffraction and differential scanning calorimetry. Both techniques
failed to show the presence of a pure phase sulfate compound,
specifically indicating that no gypsum was present.
For comparative purposes, the IR spectra of pure calcium
sulfite hemihydrate and calcium sulfate dihydrate are shown in
Figure 2-1. The absorption structures of interest are the major
sulfite band at approximately 980 cm"1 and the sulfate band near
1130 cm'1. The structure in the 3200-3600 cm"1 and 1600-1700 cm"1
ranges are a result of the waters of hydration of the two solids.
The absorption bands in the 600-700 cm J region are due to the
sulfite and sulfate ions but are not as distinctive as the major
bands.
The infrared spectra of two solid samples from the
experimental precipitaiton studies are shown in Figure 2-2. The
upper spectrum is that of the solids precipitated from a solution
supersaturated in calcium sulfite hemihydrate and subsaturated
-277-
-------
\r\
4C C C
20 « n
w >J vj
.000
FIGURE 2-1.
INFRARED S?ECTH--i. OF PURE CALCIUM SULFI^E
KEMIHYDRATE AND CALCIUM SULFATE DIHYDRAT1
-278-
-------
z.
a
CO
to
SOLID SOLUTlOSi
C
1-
LJ
O
C
LJ
C_
Solid Solucior. -r
2
o
r-.
Gypsun
Masked Macrix
Isolated Sulface
1120 ar.d 1140
o
x
-4000
2000
1000
FREQUENCY (C.V.*1)
FIGURE 2-2. INFILLED SPECTRA OF REACTOR PRODUCTS
-279-
-------
with respect to calcium sulfate dihydrate. The band structure
encircled is indicative of the IR absorption due to matrix
isolated sulfate ion.
The lower spectrum is that of the solids precipitated
from a solution supersaturated in both calcium sulfite hemihydrate
and calcium sulfate dihydrate. In this case, the structure in
the sulfate sorption region shows the presence of sulfate as both
pure phase gypsum and in solid solution with calcium sulfite
hemihydrate. The presence of gypsum was verified using X-ray
diffractions and DSC analyses.
The following is a simplified explanation of the spectral
differences of the sulfate ion in a pure phase crystal or in solid
solution with another compound. In the^first place, the absorp-
tion of electromagnetic radiation in this spectral region results
from a coupling of the incident radiation with the vibrational
modes of the sulfate ion. Quantum theory predicts three different
frequencies. In the case of a pure phase sulfate compound, the
frequency range of these vibrations is broadened due to the
interaction or coupling of the vibrational modes of neighboring
sulfate ions. The matrix isolation of sulfate ions in the solid
solution effectively dilutes the sulfate ions as compared to a
pure phase system and thus reduces the coupling effect. The
frequency shifts and narrowing of the bands are a direct result
of the decoupling of the intermolecular interaction of the
sulfate ion vibrational modes.
Thus, the combination of these instrumental techniques
has been used to verify the existence of the coprecipitation of
sulfate with calcium sulfite as a solid solution. In addition,
it was demonstrated that the IR spectroscopy can be used to
distinguish between the sulfate in a solid solution or as gypsum.
-280-
-------
3.0 QUANTITATIVE APPLICATION OF INFRARED SPECTRAL ANALYSIS
Infrared analysis was also used to quantitatively
measure the sulfate concentration in the solid solution. The
technique was initially calibrated by comparison of the ratio
of the sulfate absorbance at 1220 cm"1 to that of the water band
at 1620 cm 1 with sulfate concentrations determined by the
specific chemical method. In the absence of gypsum, the following
equation is used to calculate mole fraction of sulfate, xqn -2
o U i^
in a solid from the infrared sorption measurements:
-,
2
T.
so
u
*- N no 2
2 a
-j _ i i i_i _ 11
(log =ii) H20
m
where,
CgQ -2 = the concentration of sulfate in the solids
(mole SCU~2/g sample),
Cm = the concentration of sulfate plus sulfite in
3 the solids (mole SCU~2 + S03"2/g sample),
CTT Q = concentration of the hydration water in the
solids (mole H20/g sample),
k = a constant,
-2 - the IR absorbance at 1220 cm 1,
LT Q = the IR absorbance at 1620 cm 1, and
-281-
-------
Tv/T = the ratio of the percent transmission values at
b' m *
the base line and transmission minimum for the
appropriate band.
The correlation of the spectral and chemical results
are shown graphically in Figure 2-3. The accuracy limits at the
95% confidence level is ±.02 in the sulfate mole fraction based
on a linear least square fit to the data.
-282-
-------
j- <
< -.
< '-J
2
t: <
C-t
P C
< o
< Zl
5 P
2
VI C
- ;
:a u
IT. <
CO
I
CM
-283-
-------
INFRARED SPECTRA
-284-
-------
o
CO
o
S
CJ
Q
eu
ci
Cd
-285-
-------
o
en
03
CJ
PH
O
c-i
u
Cd
fc
en
Q
Cd
Cti
Cd
OS
NOISSIWSNVai !N3Dii3d
-286-
-------
o.
ts
co_
Do-
ri-
es.
i
-O
-S3
O-
o 5
-
LU
§§
X UJ
O
C/j
^n
CJ
Pn
O
U
Cd
Q
Cd
PS
o
II
Pn
-281-
-------
L-- f-\-<' 1 -
O
CJ
ca
u
H
O
a
a-
CO
a
Cd
w
o
-288-
-------
o
nJ
O
a
H
CJ
Cd
m
o
I1
fa
-289-
-------
SAMPLE
§
H
-290-
-------
SAMPLE
SPECTRUM NO..
W M
8
-291-
-------
SAMPLE
._ SPECTRUM NO.
co
Pi
M
Pi
O1
w
O P
M
2 O
H en
U
fi3 P
to H
P H
W M
BS PM
M PU
co
§
H
NOISSIWSNVH1 lN3DH3d
-292-
-------
SAMPLE
SPECTRUM NO..
M
Crf
M
M
i-4
H
P
O1
w
|J4 CO
O P
M
< ,-J
(2 O
H en
u
W Q
PJ W
en H
P^
W M
« CJ
g§
M PH
ON
I
NOISSIWSNVbi iN3D«3d
-293-
-------
SAMPLE
SPECTRUM NO..
o
rH
I
e>
M
-294-
-------
SAMPLE.
.SPECTRUM NO..
in
CM"
O
CM
O
en
-------
CA
o
M
H
W
f"4 CD
O O
M
-------
-297-
-------
e>
-298-
-------
o
"CM
±
iN3DM3d
0 5
o ,5
o .^,
U
z
IJJ
o O
CD LLJ
-299-
-------
O Q
M
P§ O
H C/D
u
W O
Oi W
cn H
-------
U
o
NOISSIWSNVai lN3D«3d
-301-
-------
CO
-302-
-------
3
8
-303-
-------
O
CN
8
NOISSIWSNVai !N3DM3d
-304-
-------
BS
a
M
H
W
tn co
O Q
(K O
H co
cj
P-i W
CO H
<5
p3 cj
M CM
g
-305-
-------
.j i . I .
l~ , ;j _" ." ~ t ,_."
, : _,_ |
o
CM
-306-
-------
j _^_ m :
T ' ! ' , ' ^L^. r i
1 i . ^
- - -- . -s^i - . - - , .
1 , , 'It ; .
i- ! O "~ i \ O
. j . =.... '.- . r5"^. .... i ' ., .^? . ,
0
CN
'
1 ,-,
E3E
I O
I Q
NOiSSSA'SKVai iN23s3d
-307-
-------
<: o
P
ON O*
Z OS
p M
H
CJ O
Z H
M M
^ 3
ft. Z
O O
CO
Q
td
ai
CM
Cd
oa
CS4
NOiSSiWSNVHi iN2DHH3
-308-
-------
CNI
NOISSIWSNVHi lN3DH3d
-309-
-------
1
t
:..,*- i '
£iiiL-
w-f-
o
. . o
i "*
1 r
!_^__ J
-':' LJ°
__!___ O
1 i - - -f>
CNI
-------
O
CM"
CO.
. o
>
a:
£'
UJ
O
u
^" 'V~ ' (
~\
Ji
U
z
M PH
r-
CN
l
fa
-311-
-------
--T--+."--J
r_r rr_-tL"- ^ -~n_:
it:
.r~
._ - i -i
- _L~-"^- -,: -{---
:J^r_-_
"^=4^
.--4-^
'i IT"
^r
ik
>rt
CN"
NOISSIWSNVai
O 5
§1
u
LU
0 2
8 °
OD uj
o:
U
H
H
W
!* co
O Q
« O
H GO
0
W Q
p t y
C/3 H
P H
3 M
^C HH
P5 O
M CM
00
CM
I
8
-312-
-------
H
W
Pn CO
o p
M
3 O
H w
o
W P
P-i W
co H
-------
H
H
Pd
O P
H
3 J
« O
H en
cj
w P
(^ w
en H
^
P H
W H
prf p ,
W CJ
Cti Ci3
S s
M PM
O
en
-314-
-------
o
u
UJ
2
O
UJ
of
o
o
-------
en
W
Z
H
fe C/3
O O
M
H
U
W
3
H
PH
O
M
-316-
-------
ft,
8
-317-
-------
ON"
O
CN~
CO
o- i- -o i - -o
-T^T"~T-" - ^Ps^r^s*;-?:
1 ''i ' 4 1
W)
rs"
u
z
LU
2
O
UJ
a:
u.
NOISSIWSNVai
&
U
H
EH
W
23
M
t^
fo cn
O O
M
"^fi nJ
« o
H )
U
W P
PU Cd
cn H
QH
U H
M P-i
M (Li
fa
-318-
-------
ro
h**
3
M
Cn
-319-
-------
"~CN , -;
___.L ..-I, '_+._i..,^.-
pj
a
M
H
W
55
M
&
fa W
o o
M
3 ^
P5 O
H to
U
W Q
cu w
W H
Q^
g M
3 M
pq cj
fa W
23 2
M P4
s
8
NOISSIWSNVai iN3DJ13d
-320-'
-------
.- o - - (--- - O
- -o -- --i
o
z
UJ
NOISSIWSNVHi iN3DH3d
i
ro
Pi
u
M
H
W
3
M
«
fa en
o Q
M
.J
O
H en
U
w o
(it W
en H
*
-------
u
z
LJ
=>
O
-1 -
i_ . jj
-H 1-
O
O
-7
CN
.) ^ ; r I
VO
CN"
co
erf
C_>
M
H
W
25
M
«
fe CO
o n
M
3 I-3
« O
H en
O
W O
eu w
en H
n£
W M
pX p^
^E H^
W cj
pH Jjl
3 2
M p_
oo
fi
8
NOISSiWSNVMl
o
o
o
»
-322-
-------
OS
u
M
H
W
23
fe CO
O Q
H CO
U
W O
PH W
(/) H
O H
3 P-i
H
ft,
O
H
-323-
-------
M
-324-
-------
VO
CN
o
CM
CO.
-o.
V)
a.
111
UJ
O
q
ri
-o-
-cs-
-o-
-(N-
O
O
O
O
-O
O
O
CO
o
O
CM
O
o
o
o
-o
u
UJ
O
UJ
O
O
O
O
O
o
o
CO
CN
o
o
[N
O
O
o
o
o
Pi
o
H
H
W
fu (/I
O O
H
P§ O
H CO
U Q
P-i M
CO H
§
-325-
-------
O
-326-
-------
E ~'~~
LU
O
Oi
O
o
UJ
2
O
UJ
-i-£4-
a
o
o
(N
-Vrt
h-
O
o
^
-------
. i , I. J_ I ;
O 1 O
o
NOISSIWSNVai lN33H3d
u
M
H
fe en
O O
M
2 o
H en
W Q
p t W
en H
QH
W I'
<5 ii
W CJ
M PL,
a
-328-
-------
-329-
-------
^J--" _, 1
o
-330-
-------
SO
W
O O
H en
U
Cd Q
CM W
W H
W M
CM P t
-------
E
o
H
H
W
53
H
O Q
M
< hJ
(2 o
H w
O
W P
PJ W
en H
O
oo
-------
o
CN
00.
>0-
-: --
|.. . ) ~:"j" ~
O -«
§2
u
z
tu
o :g
o O
00 LU
~ Of
oo
u
M
H
W
O Q
« O
H oo
U
W O
P-i U
CO H
M
U
M PH
cn
sr
-333-
-------
CTi
-------
en
3
g
NOISSIWSNVH1 !N3Del3d
-335-
-------
o
vO
Pi
o
M
fc Cfl
O Q
H
U
M
PH
O H
W H
U
CNl
LO
s
-336-
-------
ps
u
M
H
Pn CO
o o
H
0§ O
Hen
M Q
CM M
co H
^)
P H
3 PM
M P-.
NOISSIWSNVai JLN3Dci3d
-337-
-------
10
CN~
-
O
,
P--
o-
T**> c
i
P"
^
i
... . ^. . ,
ff- C
-_ -..
tt"
1 r^j*"
,.?»
| 1-tjT
r- - *^y-
1
i
c
c
1
. t
. .-
^>- *" '-
r- .
J_ .
,
'
K 5=0-
"^=3^
v"*
i
I'-^r^'"
*
3"~^-.>.C;
»
\
\
t.
1
V
v^
/
1
3 .
3 _
.
. _
'
-s.-"
i^^tE:
T r. '
f
u:^zu^
'
1 »
^
"' ' 1
i
V i
(
\!
_ZT~~^*i
^^
"S
F\
' S
y
> i
i .
- . i - i
i , .
I ' :
-4i- -
:: ::
t j
._
-"
i
" : -
i
\
s
D \
3 ( ,
11 'V
\
1
i A
i /
! i \
i '
i
{.:.:;- -:):- .r.::
} T---!
"'
-minjv-L-i:
j
1 -
^«
1 1 -
f- , , , i r
~ ~^ _73
rer: ^
1 1 ; '
: . ,
i__ :
, f ^
1 1
i :
:
! >J
" "^
' 1 ' '
.. - ..... i ,
1
1 1
' 1 i
I i
1
1' !
i
~~i o~ """"
1 "^ 1
-*. ' ' '
"~"^ 1
1 '^ '
X^~> ' i
***" i !
iii I
1 i '
1 I
j--H--)-"r
- ... * - - i
1 ~ ' *
i :-:.::: )-. ;...:!;::.::::;
:~'-_-j r::::^-:--;
t '
. .._ i ;-]- i
t
:. : . ^ . ; .
i j
1 ' "
i i
p_ 1 . 4
j- -"t L_-L
1 . i r
j 7
'
_1_ f--;
-{- f" .;"-'
, 1 , .
. , ~, , , ^
>
CN , j
!
J j -
I
1
1 -'
1 !
i i
i ' '
1
1 ! II,
t ' >
1 ' i < ,
1 i
i
< o ;
CN w
i , i ' i
i . ' i it.
i'i i i i i
i i , ,
i ,
i . ' i
i ] , i i
i 1 , | .
1 i,i.
t ...I
< i . i
1 . i | , t .
H-TH M j f^~
0
0
o
o
Q
o
03
O
o
3
° 5
CN &
O
)_4
H
0 W
O 23
*"" ^
f~\ t~\
° U "^ t-J
12 wo
>. H c/j
-------
LO
O
NOISSIWSNVbi lN3DS3d
-339-
-------
o
CM'
CO.
CJ
3
8
-340-
-------
fA
U
M
£
Z
M
W
tn I/I
O Q
H
<5 iJ
05 O
H W
O
W O
P-! W
W H
-------
in
co
LO
-342-
-------
H
W
S3
M
fe CO
o o
M
< hJ
« o
H co
U
td Q
PS P-.
i H
P5 U
M cm
LTl
8
M
-343-
-------
I*
o
M
H
W
23
M
W
Pn W
o p
M
3 ^
K O
H cn
u
W P
PH W
V3 H
-------
o
CN"
CO.
o
o
T
:_-.p:
o
o
-o
00
ffj
u
M
H
O O
PS O
H en
U
w o
P-i W
«%
(=> H
W M
fv*. p)
2 M
ps U
r-*-. rvi
g 2
M PL,
F-6
FIGU
NOlSSIWSNVai !N3DcJ3d
-345-
-------
CO
M
H
W
fa GO
o n
w o
H o>
U
Ed D
P-. W
CO H
O H
<5 H
P5 CJ
2! 2
M P-i
CN
^O
I
8
H
NOISSIWSNVHi !N3DM3d
-346-
-------
co
^o
Cn CO
O O
^^ hJ
w o
H to
CJ
W O
pu W
M
CJ
-347-
-------
o
cs"
CO.
O-
:^E^:^^^~
- -^----i-
O
o
O
O
FREQUE
CO
u
M
H
en
H en
U
W Q
(^ W
en H
Q£
M
PH
M
O
RE
M (X,
F-64
FIGURE
-348-
-------
SO
0
M
H
W
*:
o p
M
W O
H en
u
W P
£8
W M
P«* p_j
S CJ
E M
so
-349-
-------
Pi
M
H
W
55
fe CO
O Q
P3 O
H co
O
W Q
0 H
W M
PH P-t
-------
O
-351-
-------
O
as
a:
O
BQ
CQ
3
OS
a
en
a,
pu
CO
Q
Pd
Pi
<;
23
CO
fa
pi
3
a
M
fa
NOISSIWSNVal iN3DH3d
-352-
-------
o
CO
O
03
S3
.-^
U
a,
p^
o
CJ
Pd
P-.
C/3
fe Z
Z 3
M Qi
O
ti
NOISSIWSNVai !N3D?3d
-353-
-------
CO
Q
! I
,J
o
CO
ft!
W
QS
CJ
oo
Ot
cu
w
pu r-
CO vD
Q 25
W E3
PS OS
O
p^
ft!
NOISSIWSNVai lN33H3d
-354-
-------
en
Q
I<
_J
O
££
s
<2
-------
O
: O
L^
. |
I __ _____ .^__ -I ___ 1 _. . -. ; _ t_ t ( __ ,^
I ~~~~ """"" * ' ^"T ' ^ ( " ~"^ I ' ' j ~~ ' " - 1 -
^si:i=^
i::r__-nr_:-...o
in
ri~
._) r_.
£
>
L.
NOISSIWSNVaj. lN3D33d
Pi
O
CO
CO
H
re
H I
U
P-. 3
en rn
Q
w o
p^j co
W
OS
-356-
-------
I^1
. l_
E
jt
in
oi
£>
tU
O
cc
o
±s
ip
-O-
-OD
:'o^^
o
-o-
TT-
-o-
-cs-
~ .o
t
-?v-
1 -^-=t
m
:^^. j\
0 5
o -^
-o «.
§5
o _
( . I I I t I '
- 1I ^Q- " -| 1
«f_-j ~-f-
CO
O
O
CO
CO
H
H
Pi >
O >~i
-------
on
Q
I I
O
oo
00
ca m
CJ r*
ON
O-i ^H
H
00
O
W
2!
O
-358-
-------
pi
CO
p
o
CO
CO
cj r-
H
Pi >;
§1
H I
pj td
Pi 3
CO 3
P
w o
LO
> o oo >ooo
1 « ».-' -KO
-------
s
z
U(
I
25
to
O
M
O
C/3
pa
O
eu
h4
o n
^ on
H I
O
fd W
PM IS
co p
o
en
vO
O
-360-
-------
z
OS
O
co
co
«
a
« w
H Z
u 5
w >--
CO rn
Q 7
W ON
« r-i
z <:
i--.
i
-361-
-------
CO
Q
O
CO
CO
O Z
H en
CJ
CO iH
Q M
W Q
OS <
z 3
M OS
CO
r-
w
pi
O
-362-
-------
25
3
CO
O
M
,J
O
CO
H
PS
o w
pp
p2 w
H 0
O W
W O
CO ON
O I
W u-i
ON
r^
I
Pi
o
S . O O O O C O O mOQ
i- » ui -q r-. co »^ CNU
-363-
-------
CO
p
o
CO
CO
pa
cj
a,
fn
W >-)
PH
co ^o
rH
Q I
U
-------
NOISSIWSNVJji !N9DS3d
2
3
OS
cn
Q
01
CQ
U
(X,
P..
01
i
CN
fa
2
co
-365-
-------
00
O
O
173
CO
ca
o
H
O
00 ro
CM
P I
[d
-------
-------
APPENDIX G
DIFFERENTIAL SCANNING CALORIMETRY
PATTERNS OF PRECIPITATED SOLIDS
-367-
-------
1.0 DESCRIPTION OF DIFFERENTIAL SCANNING
CALORIMETRY PATTERNS
Two instrumental techniques based on the thermal proper-
ties of solids were utilized in characterizing the calcium sulfite-
sulfate solid solution. Thermogravimetric analysis (TGA) was
utilized to determine the weight change upon loss of water as the
temperature is raised past the dehydration temperature. Both the
weight loss and the temperature of dehydration are useful to
characterize the solids.
Differential scanning calorimetry was also used to
characterize the precipitated solids by monitoring the enthalpy
change as a function of temperature. Phase changes, marked by
rapid changes in the heat capacity, were observed in the temper-
ature ranges of 120-140°C for gypsum and 350-430°C for calcium
sulfite hemihydrate and the solid solutions. These changes
represented by dips in the scans are associated with the loss of
waters of hydration. If gypsum is not present in the solids, no
enthalpy change will be observed at 120-140°C.
Three distinct patterns have been observed in the
350-430°C range which result from the dehydration of CaS03'%H20
and solid solution. These include an endothermic reaction at
410°C, and a complex endothermic reaction in the range of 350-
400°C. Possible explanations for the three different patterns
include a different crystal structure of the calcium sulfite
hemihydrate resulting from impurities, such as sulfate, in the
crystal and/or particle size. X-ray powder diffraction patterns
have identified only one crystalline structure of calcium sulfite
hemihydrate. This pattern is consistent with literature values
(TE-055) and standards prepared in the laboratory. The complex
-368-
-------
endothermic reactions between 350-400°C were observed only in
runs utilizing the grinder in line. This is a strong indication
that particle size may have an effect on the temperature
of dehydration of the calcium sulfite hemihydrate during analysis
of DSC.
Actual scans of precipitated solids and standards by
differential scanning calorimetry are presented in the remainder
of this appendix. Two levels of sensitivity have been employed.
Unless stated otherwise, the less sensitive scanning level is at
0.5 meal/second, and the more sensitive scanning level" is at 0.2
meal/sec. In each run the less sensitive scan is the upper and
the more sensitive scan is the lower one.
-369-
-------
-------
DIFFERENTIAL SCANNING CALORIMETRY
PATTERNS OF PRECIPITATED SOLIDS
-370-
-------
A'i
*\
V
U
|\:
VM
";|*
t j
^
u
<
£
f*
^
rn
Q
UJ
n
en
X
i
t-
.r-
'1
!* ^
1
VA <-
Q,
tl
^ 1
S DC
f
c
-J c
7- ;
.
.
'
I
"is {
a f
E c
III r
U .
[fl C
,_
1= -
?>
r1
UJ
s
c
c
^ j
u
.
ill
-j
< f
U
0)
.
u.
re
« a ;i
^
r ^
Ql/1
!
v
i
i
0
1 ^
r^ i
> ' ^
3 M 0
i 05
_j c
3 4r~;-
>n^
i
'
i i
7 ; -
_ r
0 r <-r
Ij . i
U 1- L
- I r-
rn
L CD a.
s ill *
- > £
1 > r
c-1
r3»Q
"* ^"^ W^
s 1
J) O li
"3 '- -
a - /
-Hi
G .
uj !-
)
" D
! o
5 J
u" 9
- U
i U
- ; 5
3 H 1-
3 < =
[ I ii
-3
V
0
~£
O .
<^_^ ^
£.
C
c
F
-..
c
i X
' c
L >
'j
r
t-
^
-
>
r
rt
1 y
1 -
'
<
1
i
i -
i °
: C
( 5
>
>
3
j
i
1 ' ' i i
' : ' i '
i
i
i
. i '
i
:."L| ..[ .
-L
' i ' '
"" i
1 ,
f
- : I
' 2.^\ . . .
! - -t
'
""4 t
r "t ~ r
I _ 1
; [
1 , j
i i
1 __^ j
' ' \ ^^i.
i \ *
\
. i \
1 t
\
. _ u
-T"" IJ
\" I
V
j
!
r _ i
j ^
! j
'
j '/I
T i
i ,
" '
" - .
-. i 1
I ^
[ ^I
J
1 V^i
\ }
\
\
. i
j
1 1 '
. j
1
- -
". "_
^^--^
"/^^"
i;
L
r
i
i
i
7 '
'
-
'
t". ' .
~ '. ~
L . ,_
\
\
\
"^
\
r ~ ,
^
.-.
"-"_-
o
u
.
:
I
t
i
j
. i
i
:-r}.-:.-
j
\
.. . | _.
.. '. -L ;
i
:tr-r:
u ,
" -,:
f .
|
i
'
' j
:
,
. , . ,
i
1
^. " i
. ^"^>
^ 7-
- -j
K
\
< i
- . .u '
\
, ji
\
i \
^ t
-: ! -
^i
t ,
i
i i
,i i
i .
ij ' \
i ' '
- 1
i '
; : - i.
'"L. ,.,
' 1
, -
-T.-L
.' "i ..
~.*T~1 1~-'
r
'
i
1
1 , .
i
'
|
,
i
'
I
j '
t
1
!
'
-
.:-.
L. _
. . .
- _
"
. --,
"
i ^
^
_ _.
r~
_
' :
...
'. ~~
~-~.
i.
-*__
,
.,
'
-
. '_L-
-
_
.
J.1
:_:
.. .
~
. ' -TT
- -
"
,
«S==
.
_
:
---
i
i
i
.
^r^>-
. ;
,_-
\
t
i .
-
r ;
1
i
1
.
T1ZT
.
p.
-:
!
\.
1
^
' ' 1 :
-------
01
<I
CG
01
X
j
oj
CO
ij
T3
- 3
UJ y
D -',
_i °
< IL,
u >,
11 i-i
U -i
* i)
'±1 =
~ i
-i u
'- O
13
CN
I
i)
U
o
-372-
-------
^
h-
<
CD
hi
n
r
n
CD
X
i-
i
m
li
(^
C
2
a
'.»
1
£^
^
i \
\ i
^ O
i , \5y _ *^
' 1 ^ "^ r
1 a e "
j j * 1 1
"> i N f-
[2 i ^
t . ! in £
rii 'jj OL K a
< R 2 < =
u y < o >
M 2 tn j a
! 1
' |
' Z ! 1 =
c ° a >- >
a 93 £ 7 =
r '-" - o t
c 'ii >~ Q <
iJ tl i U 3
j £ 0 a c
< - ffi s"
CJ 3 i 2: >-
0 ' c~
lyy ?=£_
*-^. - j f
^\^ ^~1"~ *"fer '
3 ' vu
c .1 a Hi
P 1 "- 7
. : C !U
_j - i
< ~ 'i
y i (^
o
^^ Q
o ;"""
0 j
- ,.; C
= M n
UJ
< a < t
CJ j. ^ I
0) 1 I CO
r?
°/^f : J
Sd^ "7^1
i-ui J?J T S
,< j O° L a
;rlL o0-^ s/J
B ^ q
a 'ji < i
.
l
:
. ' : i '
" i
l
. _j.
"^r - '
^ L__
. ; : _
.
i- E
~
__ V
1 ..
~
1 ~
-
U.
'
j
:
1 ..
i
'
r
^ -
,
-~~\:-
i
i
!
. _. L. .
_
, i
j
r j
j |.
i '
t
' V
'V . _
i
I"
[
'
--{^
/I-"-'
.-;_. -
i
r
, .
j ~ -X" " -
' ,
CS - u.
1_ 1
a ..
V~j-r
^. !.-_..
I T
" " t
- J -
r -
i '
i
1
j , L.
L-^ '
1
. -. _ ...
"~
-
!-
1
1
I
1
i
!
i
r i
j
.
^
L-^-**"
.."'..
-
. ,
,
'
u. _ - 4. _
i .
1
'
1 ..
1 _ J .
1
1
:
!
4
j
" 1 " "
,
i
'
.
" !
. |
i«-^
)
^
---' ,-r- '-'-'
(-
; .
v
-
. .. . _
U .
^
' .
1
T
r :
'
i
'
i
i
i
.,
i
-£- :-:
. _
.
-
~ _-.
.
" .1
Sif*
j
\ 5__-
(T.
j_
^^"
- -
-
^-^
/
/
./
f
/
l\:^
: _
,
j
_
1
!
1
i
i
I
:"--'-::.
..r'~'. i ~_i
, . _
"
;
.
1
1
_
| , 1
]
1
i
1 .
!
i
i
'
i
- -
1
;TI
_
,
i
_ -
...
- - .
^E
i
r -
_
:-2"
i
.
i
. . . j
_Z-i~ : _i_
- ' '.
. L
f - L
^~ : [."TZ
j_
^
i
i
j
, .
i
.
i .
r
U '!
IT-","
'
t
i
0
OJ
O
cn
*-
a r
^
r*
0
OJ
C"
^
3
m "
LU _,
IU
5
^
0 i
U3 n;
2'
n
I
-
_ U
^ u
UJ
,-r
i
3
F-
_ X
Q <
-------
-374-
-------
U_ ._J
U
r
-375-
-------
J
UJ
< -
^s. ^
n ~
2
i- 1 u
I
3
< J:
2 5
1 ~~
'U
i-
-376-
-------
-377-
-------
2
J
^
J
LU
0
I
'J
I
I
lu
n
i
'-U
3
CJ
.LJ
il
ii
I
Ci
U
ab
-378-
-------
, "H
*li
4
e
£_
L.
<
rn
r-
U
U)
n
n
01
n
<
T
rf
i
ro
s
m
0
7
(I
"
i
1
vo!
s
0
r-
0
£
"S
^ a
d n
< n
n C
rn 5
i
i Z
"i rr
^ rn
UJ £
rf *T"
M =i
U _
'J) Cfl
o
^
to <
,3i <
"t 7
*i
< i
n 3
r u
C ' -
a
en
o
r
O' -
" u
C 01
<, u
U <
j CD
< C
CJ I
co- a
~?
V*
<*$£
*£*-,
£3 3
PU
a <
Olfl
i
%
/>
x
^
1
UJ
N
ff
01
^
^
^
n
-
r
i-
i
rn
,1
>
C
o
T
r
P
1
C
a
HEAT
4
i.
a
0
t
_j
s
, i-
!l
0
1
^
^
;
<7
M-
J
-*-
V.
'5
M
u
z
II
IT
3
LL
01
O
C
U.
T
m
f
JE
^
H
C
C
i-
^.
F
(-^
X
'
'
.-
r
5
r
^
C
»
}
)
iU
5
L
£
0
"*
- ...
,
_
j_
,
,
, . -
,
_ _
'
,
_
. : ..
"
|
-
'
.
.
1
\
.
j
V
N,
*
I
J
I-
:
r
->
i
/
'_
-
1.
.
-
L .
'
^
^v
\^
["
.
.
' , .
'
.
1
"
"
.
r
'
"
L
.
,
, .
,
,
,
_-
.
'
^
.
-
..
*2
i
.
.
i
_. _.
.
- V
i
*
«
- _
. . -
.
i
'
:
,
I _1.
""l.
I
!
i . .
__
..::!:_
t -
I'
i
(
'
. !
(
-
1
" ' ,
,
I 1
_
.
1 .
,
"V /
_ ; " -
i
;
: :
-
i
j
j
"
; ,
_ _
...
;
,
,
>
,
1
^rr- .-H
r
.
1
i
. _ .
".'" .'-.
,
- - -
t
i
- i
"\
,
t
'
t i
t " '
I J
t »
.
i l j
*" 1
r- - i"
|
i 1
1
t _
: . !
!
p
|
i ,
i
. .^ .
! j
! -!
t '
T n]
1 (
L j
i i
!
j
1
-|-
':[
!
111
I
a
(T
U
111
-379-
-------
UJ
N
C j m
u{ a si
<
f- 8
Q X
Q ?
< ~.
Q >
j n
CD
r-
c
-v
c
£
a
<
u
CD
s
u <
en u
n
SUPPRESSION. mQ
W&IGHT. mo
TIME CONST., titic
dY. lirtQ/mtnVin
1 .. . .
Q,. -^
* "
« ' . 4vJ
1 i *
J 1 |)
I ? 3V 1
? H 2 ^. g
c g: uj * tf
- Z T ii 51
C UJ
55
a
01
o
a
^ U h
< Q <
U I ui
ui a i
\W £
^c*>
a \ -
i
0 °^
Z -
i t
3 5
I o
~
-380-
-------
UJ
5
_
us
0
I
u-
111
~
H
I
111 .
'JJ
-331-
-------
CJ
H
.U
4>
o
>j
~?
u
3
CJ
1)
>-
^J -n
D
_i
^
j
!J
T O
jj --:
i .^
41
U
CJ
(J
CO
-382-
-------
s.
p
osa-x
< n * £ ~ L
.; UJ S I
Cfl a) $ ;- -3 f
i
i i : ; i
: F
i o.1 ; : f
-s. , J_
-C -^ ^ G i
CJ ^ " 7 t
". c t 'H !
'-J *~ ' (L i-
I-
D
<
a
ni i
i i
C HI
J
< g < i
VA
^
LU
<
a
r*
a
z
z
D
tr
5:
^^
c
<£
tl ^^
P.u -I I
!
S§ v\ 2
a < * i-
QUl <
IU
I-
<
/ I
b
l-
O
10
-383-
-------
CO
0
o
6
7"
Q-
o.
*llf ff\
- 3 -
01 c3 '
0
u <
CD '. I
V U 'A
X -i 13
< < 0
i U I
,i- ;n a
-J
r-
^- tf
L ' P
f*Y f^f
-j- a o"1
0 >- ^
2
s
\ =
r
r
,
T
5
I
P
r;
c
c
HEAT
T
i
*
!.
<1
a
^j
"7
G
u
a
s
h
TJi.
^
1
-i
r
ui
q
r
2
I
o
c
IL
" I
n
c
o
1
1-
c
A
r
^
F
.,
f
r-
U
C
r
r-
^
r
~
y.
^
j
11
|
«
L
u.
-;!
, "' ;
L
- 4
,
i
*
i
-
_
_
-
i
;.-
;
r
|
i i
I
' \
L . 1
" - M
- ...
_
'
_ _
-
"
.
-
.
-T
--
'
-
j
^
vJ
\J
r
i ;
i-;
~^-,
-/-
/
f
\
»
)
>
(
r'
'
j - :
-
J "
I
[
|
1 ,
|
[ , i
j
i
1
1
I '"""""'
;^{
l \
' ^,
-r
/^
I/'
/
1
i
!
t
1
_ -
i * "
i
r
i
"- .
:.j
. ..-
_
-
-
s^
f~*
.
_
,
,
. .
!
-
'
'-;
L_
' !
' ,
1
,
' r
--
;
.
'
-
i
'--
:::
_
-,
. ...
.
,. i
_ -
,
-:
, _
j.
-, q
"
i ,
-
vj
*
a
O
, ,
:-
i: _ '
. ___
I
N
-t
-,
j
uxTT
'
"~
>
'
, -
.:
-
. '
' :;
.
_
i
i
.._
__ . .
-___
'
_^
-
._
.,
^
"
1
'
'
T".
-
.TJ
' 3
-
^
~"~1"
...,
1 -
:::' ;;r:
. i ~
_,
- - ' t -
(
>
1-
i
>
i
i
'
1_
;
U ,
1
;
!
f~ 1
,
I
I
!
i
0
n
G
CD
a
(0
In
tn
Q
in
,0
in
^
J
C OJ
0 5
*
CJ
at
en
-H
^,
"^
wj
^
- 1
>v
0
CJ
3
CJ
i
a
3f
-384-
-------
Ill
2
j
<
j
in
5
G
I
U
U
:i/
I
.J
<
llj
i
i
H
VI
X
o
3
u
-385-
-------
3
_i
<
u
.u
C
03
I
O.
i)
C
VI
o
35
CJ
U
I)
ca
so
-386-
-------
J
01
:c '-
-387-
-------
UJ
5
o
2
0)
C
!_
3
Q
ai
-Q
'.U -
(j_ -^
2
< ^
- 2
u
0)
CO
1
-388-
-------
a
*;»
t v
j
*
1,
*s
l_
CD
I-
G
en
9
S
CD
X
j
u.
c
0
z
z
3
i
i
V*
1
i
*> i '!
«
«
Sv
c u
= Q
UJ UJ r
d n <
< y <
f 1 U c
i i
a
2
£ ^
> w
uj" I "
j n f
n.
a
j:
c
c t
s. 3
r .H C
u 5 (
\ c
_i CD ^
< a -
O £ L
in a.
r
<=Q 150
3-
5^
a -t
0 fO
1
i
i
i
i
jsg
i \* c
".:?!
j \j ~
I ^ ~
\
1 Q X
_- c
= Q r-
> <£ "-
Ov
,
. 0
? CO c
: z ?
- n c
- U -
L U 'r
J u ;
> h t
;
"k 0
*" «
i ^
c
3 u c
^ fj <5
I- 2"^
3 5 >-
>^
n
~ o
J
J
; c
- h
?, =
a
<3
a
^ <
^ c
4 u
>
)
, ; !
.!":
. . . ,
' t *
.
-
. .
~ >.
:
,
"
"~ '
~. ' '
?~
' \"
r-
. """
... _.
O
4
^.
c
. t
- -
V
V
^
/
/ --
r
.
S
\
-
!'
. . .
\-
~
"rs
"
'
i ' '
.**
i
;
*
'
, *"
' ::.
.-
-
_. _
-
-
1
*
j
i
i
- ,'
L
xT V
\t (
< i-
N.
/
;
t.
C
\
V
i
) : ' ' I
I i
i
i i
1
- I - . ' ! ' '
": -: .: :.::
. _ . ....(-
.-
i i _ , . .
"'. " ! L" "
r
r ... i . . ,
r c
:
" ' '
-i I |
- - \ -
i {
1
I I - - [
' : "
. *
i
1
~
" ~ *^_ '
[r .r.-; r^>^=-H
; ' " -
! ^r-*
, ^^"C_r
' ~s^ 1 1
' ~<2^ { " 1
L ''*" ! f
: j ' ~ ' .
, - 1
'
; '
'
\
i
I ;
, - |
f j
^
[ i
-
'
"
~-
I:-.
'
' " ' "
*--
,
".:
i
.
(
.:L.-4_ -
- - i
. . _
. . ._. ... .
.... .
..
i
,
.
...^
,
.
;
.
i
i
'.
Sr»
i
-~
-
_ ...
F'
~
_: ' .-
.
1
I 1
- f ,
1
" \ "i
i '
.
.1
' .
. 1 .'. i
i . i
......
' ' i '
I ' ,
; i
1
.
1
1 u
, 1
! 1
i |
1
|
i . i
i
i
"' ^
i
-(
i i
\
, ,
. L_ _
^ i
- ! '
| i
1
i
1 t
I
i
0
I
3
I
^
C
-389-
-------
t
(->
r
"
^
^
_^
~^_
£
o
03
00
O
o
0
O
at:
a.
-s
i",
^
^
t
^
u.
i
G
UJ
G
r~
n
en
K
: ' t
1 ^> Q-
o .
O <^ a
3 i li
C '.1 3 dj
n "^ c ^
r -j . - 2
. c c :
J ~ ID 3
< nj i
C > li
a
c en
c ~ <=
= £ §
u 5 8
'. cr ?
nj !
J CD H 1-
< Q < i
(J T dj '
j") T" T 3)
fi?
^^ *
QPERATD
SA.VIPLE.
1
IATM
c
7
c
*-
j]
3
i-
1
t-
r
r
^
^-
-
>
c
-
)
IU
1
[FLOW HA
' i ' '
: ' . .'
';
' i |
.." :
!
1 ! '
1
1
ri_"! i ' ~
,
-
L" . . " "
i
. i ,
.,_...__.!
IT -M-
1
J ' ....
1 _.
1
1
[
'
r---
_ - .
. _. i .
1 ' ,
i---
_ _ ,_
i
- i
--
i
!
!
1
\
i
!
'
, - "'
'..j:
' ' !
r
t
,
; ' - 1- -
' r
1
i
f
r i
" i .
\ ' : '
'^~~^~ ~
^ j
"h"^*'
x
r- - I'r
-if'--".
j .
I i i_
f-H:tiZ-.
-/-L
- 1 :
- l- -
i -
r
-;--
i
\j
U
1
0
i
( !
: . -: .
*
.
r r' r
....: .
. L
'
i
-
w
^
'
1
^
- -
-
^
-
...
...
^
-
-
...
-. .
. .
"^
i"
-
i -
r
-
--'-
|
- -
,
'
N>
<
.
,
. .
1 '
--
, .
.
[
/
/
^.-_
/
1
. .:.
-----
l
r-
__
1 _
\^.~."
-
-
~
1
.
p
-
^
--
-
- --
~
. -
- - - -
1
,
_.-
-- .
_
-
i
1
L
1
"
..._
.
~
,
, .
L,
,
.. . -
""'
' :
. 1 .
- -
;;;
- . i-
"
._
-_:
8 '
^
0
CD
O
in
0
CD ^
£
R u
-' i
^
a =
in *-*
-
a ^
^T **.
^_j
CJ
^J
'I ^J
_l ^
0 UJ ~4
_i 'H
<^ ^
-J en
LU
Q > u_
^J Q O
" (T
o 3
u
Q ' X
n LU u
n cr <->
cr ^
q i -*
fj i
8 1
i
a
a
ai
o
o
O JJ
«- u
H
0
n
-390-
-------
-391-
-------
*
\\
r»
t
\
.
^
H
^
rn
U
h
G
CD
Q
H
o
U]
X
u.
Uj
Q
0
. z
I
i
1
-. o-
*$
1
^ i «
>
N^ »4
V9,
- s
a n
r
" ! U
ui (jj i
< s £
n 0 <
CD 2 a
'
' ^
Z
= D t
IS '
J ft"
r, =i U
U 3 ;
01 cn 5
j
i
2
0 **
_
g
: J c
< ->. *
rr rc
1 =
j "
5 i
,
" CJ
: J ;=
U < t
. E \
U r
< g a
'^ i -
\i- rO
>/
°1i
Ccn
| i
j
i i
i i
! ! '
1
i 1
I
1
1 f
j -s^
,
- J] C
Z £
: 8 B
: 'II i
j 5
> £ >
> i- D
i
r! !
ti
' 0».
1
*
1 *
1 '11 fe
: !-(=
- "7
|13
3
]
" 0(
J
1
J .
t
J T
. Ul
UJ
I
i >
<; >
Q
'
-;
-
- - r
'
_ --
,
L
-
-
. . . :
,
_
t
- :
t
|
I
I" ^
h - -
(
/
f
[
J
\
1
\
$
^.
J
J
^l
-
'
. .
.. ...
,'--
.-
.
' "S*
/"
-
~
"
'
' -_
- . -
... _
f
j>
,
^~\
r
, _
(
1
|
'-. ..
\
i
i
1
|
i
_.. j
_
P_ _
1
;
j
;
1
' .
'
1
, '
i
i"
r /-|
i \
-
1 /
i f
\
\
, \_.
^ .-..
t
" i }
] \
l
VI
J
0
^
i
i
1
1
' '
. 1
i . .
__j
' ,
I
""I . - -
p_
j
1
... ". :.
.
,
~-
-^ r
i
, 'r
|
i
*
i
i
S !
!
!
. 1
t
" . i." " .
I
r
- i
1
<
,
1
'
<
'
. L-
<
, L.
h__^^-^
j
!
""]_ '
[
I
1
|
i " ."
1
,
I
1
j
]
- --
.
1
1
,
1
1
"
- ^ ).
!
1
:
'
1
'
_
^- "" "
.
;
!
'
I
,
- - -
j
.
j
^
- 7
"
i i
:--
-I T-*
-
u_ -_.
_
. . ,
r
_,
.
. -*
~ " '^
!:,'
.
! ' i
; '.
. '-,
i ' i
,
,-
__u -
.
; '
0
p\
0
a)
0
a
3
in
j**J
"1
O
in
j
JQ 5
^ ~l
^
n 5
in n
n If
-i.
a
,
j
in s
O LU
^ iT
U 3
LI
c
;j
0
in
0
0
a
in
o
^
-392-
-------
4--r
C I IU
< ! N
t i!
i- fl 2 en j
'. a
_.""_ r -M _r"
0
z
^i
c
1)
-J
a
- D
-I V4
r °
LU ^/^
5
to
O
s-
-393-
-------
^
5s
a
a a
JC-4
^ ''
^ c 7\9'
§ t IV-
- g £
1 I
*
CO!
X
<
u J
IM' 0
H a
<.u
i\
a <
a: i'i
i i ui
_£
\r^
-r
t _ t M i i
~ZH1L;~~ "! ; [~~ t~T~~
_. .~_r___r ,_ _.
-^
a
1
.-u.-. >,--..-..
u.
>
n -t
om
0
ui
i
V,
in
t-
<
a:
$
a
j
u.
K
Ic
-|C
a i.
L.J:
o
1C
o
z.
u
T-(
LJ
UJ '
0 -
C s
:Q £ 5
|Q C^
CN
o
-------
^
^
^
1
Xs
tff
1-
(j
UJ
01
£
En
a
i
^
<
0
X
d
!
i
i
1 !
i
i
i
C
: c
1
C UJ 1
< N £
2 in
J " °S
*" uj n -c 0
J X = Q "
< x 5 < -
M U -"
,
l
1 c u
1 £ s
'7 : "" r
r P ! " 4
£ u n r; A
> u) c ljl 'C\
3 ,n C 7- =\,
.; !U j- Q < i
t^ T" ~S ~ £
~ jT~ \ '-^ .* **"
H -* 'i (\_ ^f~'e'^
U 3 J^2 >
,01 \ 31 "5- i- 13
S^ &». i
S, c ": o
3 '
'J] O 'JJ M
^7 ^ ^ '"'
- £ -' ±\^
- - 0 u
< JT| 1L
Q ;
x^
C jl
F "" °
C UJ' 3
' j rJ 1- f-
< 0 < 4:
LJ I LiJ 1
'
^ 0 -
il * |-
Q >vy'*~ <
.,j *> ^ n
0
-/
4-
I
S>
\
; -1
;
^
,
,
.^ *"
^^^"^-^
^~
-
/
x-
~ S
,.
,
;
v-
i
' - i
i
. i .
;-
, :
,
, ,
,
-f
---
, i '
'.'.'.:
..
,
t^ _^_
.
,
,
- -
~*~ ^
i '
.
.: ,
i .
. _ .
.
. .
r^~~^
"
-
I
_*
'
"
j
^^
L
._.
:_ :
l/:
1
' "'
- -
'
1 _--
""_
, .
"
j ,
'.
_-'
. _. _.
. -
. -
"
,
_LJ:
r - -
- - -
- - -
_
'.~.~
__ . _
'
,
-
1
'
' '
r -
. ... .
[
" '
. _
^J
i
,
i
1 .
1
t t ' '
j
,
t
. ..(
: [i -;
1
-:fO>:i
r
-
.
;
,
i
j
- L .
,
_ ,,
| ' j
.
-,_ ' '
'
, -
'
(
f
1
I
- . ,-
*"
_J
,
~r^^"
-
-
_
~:'-
:
'~
"-
-
L -
;
^""m"
~: !
, z
.._
,
i
.
:-.
_ , .
- ; ,
rrr
.irq
'
-
__.
'
-
1
a '!
fs
0
(2
a
'D
a
in
Q
til
Q
^T
J
n ili
P "s
^ <
~ T
<
_l
'U
a i
« i
u
r 'JJ
K 4;
J
0 1
5
01 j
c
n;
0
0
o
r-
G
in
n
-395-
-------
^o
o
c
3
o
H
s^
^D
a
o
>_
II
5s
tHi
5°
3 -
i 3
I y
UM
P^
^ ^
^
₯ ^J
,^7.
c
a
u
CJ
Q
^o
CN
ci
ai
>-4
a
so
H
fa
-396-
-------
<
f
(-
<
CD
0
UJ
Ql
<
b
en
X
<£
H
3-
Ul
<
Q
0
2
1
i 1 !
1 ! !
! 1 I
! 1 i
i ' ;
i
\
| i
j '
1 i
i i i
i 1 i
i i ,
;
C 1 UJ
< N
- tn
C 1
. 1 m c
UJ ijj n ,-,
I "i u.
< 9 ^ <
n U <* "
m 5 a i.
(
1
|
, n\
; 6 i
7 lf
i l .
£ ° a h
* m - 0
P M ". 2
UJ 1IC.
1 fl m
3 £ a UJ
3 i m >
0 _i -> ^
^r
,
i ~^ C
C rf ,-
S^"12
a ' *
- .1 (2 1.
<. ~^ - ;
^ i t i
ni
o
""" 4
LlJ
f - o
o
2 ^
_i
,n" Q
c < \3
* * > -
_i a H i-
-t 0 < 'i
U I £ I
j! n I cr
=7
^~-
>-.
VJ
fr
L
^
-5
<0
\
s
\
\
LL.
<1
I
L
a
(
\
\
;.
. :
'.'
1 !
j
.;::
r_
*
" '
1
,
*
-
~~
"
>. "
:
i
....
..:.
..
-
-:
_.-!_.
- -
L-
^^ '
'""^^
^ 1
IT
_ .~_r_
1
i
.
-*^^
.._
n~ : i
.
~'^L.
.
«t
,
:
L
,
^^^
<^
"_~rzi7
- '
^_
T
j
y
^C
^r
"*f
*
*~**,
""^ -
^r~
^.^
'-___-
r^T
1
, - -
y.::r
^
<
>
|
{
i
>
j-
j
j
>
|
J
, ,
t
'
'
i i
^ .
-
^
=>-* ^
._
>-~
1
'
_,
c
-_.
h
1
, .
'
-^
L^:""
" T_T
,
- -
[- -
*
!
J '
V
^v
<
~J
k
4
'
- 1
.
i
'
--
-
f
" ^
.__
" --i
i
1
,-"
-^
J ' '
~
'
'
,
.
.
.
'
i .
u ' ""
^ -
-Z.~r-
I -^
L .^
r^ '
C'--
"
-
«_3__H--
^^
'-
::i
" ~
__-
,
,
^>
_".".
-
:"
'
1
....
-
'
-
L
,
1
--
- -
1
i
!
1
i .
\
\ '
'
^ :- -.
. j . .
L._ ., j
1
..... ,
.
'
... .
.
:
i ,
- -
" " i- ' H
1
"
;
\-
:
;
i
!
i
I
i
i
i
!
i
i
i
1 l ' :
1 I
1' '
i
j ;
1
. :j .:
i t '
\ ' . '
j
! '
. '.j -.
. " l . : '
*
,_
i
'
|
j
[
,
1
1 i
I ,
1
. t
| i
. _ - ,
1
i
!
1
-- 'l i
- p- 1
. . '
: _
i
;
,
i
!
i
i
i
!
i
i
H§
J
'U
3
-397-
-------
s.
H
LL
j-
C
0
z
z
3
(I
"4. \_J M, ^ /
U I m I ,
cr, a I 01 '
^'
Cl (*>
\ ~
cr ''s^
n
f-lli
.^
n.'t , i-
uui <
i
I
1
i
iu
^
I
>
^^^
u.
-------
8
<-
v£
_§
- a
c i UJ
<: N
1 !2
UJ a a
=! a <;
H
GT
a X
a 9
a >
-1 T3
,:^__ L-^b -
-
.-. - u ..i ...,
j-- [_ri"iL '
;-. iin
i"U _t_ i. -
~""_'ii zl _ I i.,_
i I . i_ _!__ L_
l i i
<
I,.
OJ
-399-
-------
-------
1
[
I
i N
c
C n
x ^ HI n1
I < R i
2 n 0
i- 01 Jl 5
f-.
iQ ' ^
^ 5Ss3
j
a
r 4T C
U <. i- r
01 M 1 c
'-iJ S-1 j ,
Q - : c
V '" ~ -
4
X
. n
i^>i^
u.
0
a
~r
a
-1
3 "*
. : :
', f
"~
"
1 '
:
"g^-^r^-
_
.
,
:
-
-
.
; . ', '
... -
,
.;
_:;
^
1
^x
1
!
1
' \
}
j
J
^
/
/
(
'. '
r
. i
! ' -
r "
... ^ , ! '.
1
-
i
i
'
1
,
1
1 .. "
U^ ^
L
_ -
r^-
1
i
i
_
: ;;: : : '
-
,
I
i
i
'!
,; | :
'
i
t
.
' ' ' ~
. f
l
- - (f -i -
i
!
" r 1
<
. .
,
-^_ - |
N
.
1
-
\
i
, ' |
!
... I
,
" ""
...
'
. ,
U
±^^,
f
/
*"*_
I
-^;-
4-
J.
1
'
r
'
1
, . - '.
-
,_ -_
' '
.,
r
'
^
'
1
_
(
.
--
_ _
: ~
,
r
--
1
- .
-
. - _,
,
-
.
I
!
-~ i
. .
.._.
.. *
,
;
!
. _
1
-
u
r
1 .
i
,
.
;
i
,
- -
-i - -
I
,
i
-
-
- ...
1
- .
-- > .
1-
" *
-
4
V~_
_
,
i
i
: , . : ,
i
. ' .-, r! I"-/
i
:. ' -'"..
i
. _-.-
^ _
, i
|
i
,
'
.
1
1
;
L
_ 1___ _
'
i
i
*
i
,
-. -; :
L. _
| -
i
i
i
i
a |
Q!
a
Cfl
,
0 !-4
fQ ^
r] ij- =
3 TH
&-*
c a! ij
j- >
a la
"~ 1
S
c ^
ul "-1
-w
S
o ^
5 ^
i
o
01
a ?-
9 £
0
:n
n
-40L-
-------
J
u
CJ
'1J
S4
5
D
a
'u -Z
o
iO
5
V2
>,
i)
w
a
a
M
-402-
-------
-403-
-------
r^
O
CJ
I
4J
-------
o
o
>
o
6
z
£ d
u 5 4
01
n!
3 LU
U -I /-} t" r
j_..
J
HI
I
0
~__:::__z,o
5 IJJ
> i
cn
x _
< a
H cn ct
< 'i
^ i
j- ifl
'X !
'U <
!q
u
"2.
Z ?tL
Z i£'2
3 Q. <
a Dm
- ? t~, ; r-
t 3
'< x
LC
r"
1
a
c
in
-405-
-------
CJ
c
o
u
a.
j
_i u
HI 5j
- o
a -./:
C a)
a ,3
a, 6
'a
H
^j
c
0)
a
eo
-406-
-------
<
^~
1-
|
i
I
t
i
i
i
SCALE, mils/in . -
IVIQQE
SAMPLE SIZE_
LOAD, a
d Y. ( 1O X ). ( milfi/min )/in
I
a
: c
^ z-
<
CD
L-
U
01
a
<
n
T-AXIS
1 . tsiiC
Win
3 $ t z i
= il K Q ^
uj i r u s
~i CL CO MI =
5 , | s ;
u) ji > "- -1
v°! -^
Vr) =-.
aVn
2
C J 3 IU
n^i
ui - I n*
-J "" LD 2
' CJ > tu
« 5 C
^ u
* a k
i ^>
S < '"
^ j u
= .j/ R r
5<^
. I > S
^ (3 i K
< g < i
u 'X '-^ r
ui i i in
RUN NO 2l_DATe4] V&pfc
OPERATOR _.. uFJ"
SAMPLE'
"
\
O
t- *
I ; ui
i^c£ <
1i
< d
;, ! :.
'
.-, ,
1 . ' '
: r. , \ ,-. i .
z:|-i
;-
::.: :
f. - .
* ~~"j .j~z"
_.zz
_ ,
' ' T" * ' '
'
.
__
I 1
,
"^
ITSE
1
i
-[-
,-':
-" -
..-_;
:z
-- ,
:' ' : '
--"I-
:
.
i
". ZZl_/__
1
.
tzzr
__ j
h'
' '
1
I
r .
1
~r "
hr~
1 L_
1 1
1"!*?=
zzz
rf>
. / . .
i
.~^~ -
z~;zz
hi- -
....
_ -
--
T.Vt--',
r
r ,
|_
1
;
I
i
(
f
1
;-,
,'
i
*
. . i
i
i
"I
-
1
1 ^
,
.
i . -. .
:
1
. . _ L_
..- _ r .f- -;-.
:.- - - :: V/ :_:: ~F -- -
F^
" " 1
t i
,
==e
1
1
L -t
*
1 /
r '
_~^r^zrzzr
\
r
__ -
. ._-
._ .
i ~~_"_'\" V
zzzr'
,
_
1 _
i
--^
^ i
L , ,
1__^.
r
i
i j
|
~ ^
±'
'
[
,
.-..
- 1
1 ' ' '
L ',' ' '1
- -
.--
i
...
,
; _ . . .
- 1 - -
"~. ',.---"
"_ .. L.
i
____
|
1
I
,
_] ;
__]
|
1
'. ^-|
\
' -,
"
(
I
i
i
j
*"
{
i
^
L
^-^
.
___-
i:
\ i , .
<<:
' ', -
. ~
._:
_
_. .
_ _.
I
C [^__
C
i
" ~~.
^*-~*-~~r
£_. ^ f.
ZZ i
i
[
1
i
ST ' h I * '
-r-r^r^rr~=
f
:i_
~{ -
-
f
' ^
- - - 1
" " i . ' " . . . ' .'- \ :.'
/ :
' ^
^
i
I
.- :p-"_
;
i
:
! I 1 :
II 1 -
1
j
: i
!
[
: j ; "
1 '
r^
.
i .
i -
/
j
/
i
.
, _
_ _
i
j_
- - -~
;-~: \
_. .
^ . .
j
!
j
,
j
1 1
. .
,
z
\
f
:
i
1
i
!
L _ ,
I
r
1
* "r
f
__^. . j
-..-.(..-
p_ - -
; "- ~
.
j ;
:
j
i_ .
- -
-. - :.: 1 "7 :
. . _
_Z"_
i | _ . .
j
1
1
j
;
i
Zzzz"
zz~z
_,
^
.
-- -
- -
j
o ;
a '
;s
0
if!
JJ
i
0
S i
f
~2
o y
XI
fl V
r-i
^
a 1
a ^
m C
3
o 3
n ""i
^ =,
~r~i
$
o d ^
° ^ 1
< ^
'3
^ V =
0 *3
P ^
a - ^
S != ^
< '-
S ^
Q i "^
S i f
d
^J
6 5
OJ jj
u_,
^^
r-
Q
0
fl
1
0 t
0 -
^
o
vfi
n
-407-
-------
I-
i S
i « i :-
1 m I ^,
i " a X
m a n Q
a
Q
CD I cn j
< 0 >
-,:j.:-:.
're
ICO
0
I
j_
U
O
Z
C
Q
U
u-4
a
i)
a,
^
cj
cu
as
O
en
u
^_)
u
S3
e
v
a
CO
en
I
ii
VJ
£0
-408-
-------
I
X
a
-409-
-------
I
*
3
I
.fl
3
i-4
f
.
! s
a 3
- O
U s
!ii -j
f-J-
J
- 5s
< P
I iJ
ui u
i =.
c
0)
o
^
u
-410-
-------
I
s
-J D
UJ U
01 3
5 -ji
0 ,
I "°
U ,-
0 u
ai
I >,
I 3,
^ c
~ CJ
-------
a
0)
(-
j o
ill
D
j
y M
u 5
iij c/i
3
iC
fi.
-412-
-------
1 *5 1 >
o \A ' ! '
*£ ' '
' i i i '.
i 1 ; ' <
i 1 1 1
i i 1
i i i i
i. o; §. '
1 : ' >
' **l i : ^-
c , ui ,4
- '. 'J] ' -
"- ' '±{ 3 X
.,, '-U .jj n _ Q
< -J if i G -
<-
£. ' 1 U ^ Q y
1 ! i !
i i
. 3 ' !
; o
'7 i rj] *
J r-j > .i"
--^ -q ij}
2 $ -7 =
- '1! '- vJ <
. T - (J -i
x.i , 1 rn -
rn >, i u 5 ~-
u ^ 3 ^ - >
M Jl J) > :- -
I ' C
L,,IL
r
.. , c 0 _rP
i f
.. - 3 "^
0 ;r : - ^
r ^ 1 ?
0
: 3 *>
~ ~ Oi £
" -r
c - 3 J.
!Q| ^ ^ \ =
X J 0 r- J-
s ^
iJL
1 ^*~ b ^3<
g ,_iU VOg;
2^.i C3 >
! fil M
d I I UI < LL
i
- ', -
:-- !
.. .
i
t
_
*
,
i
i
\
.,,...
- -:
>
,
L
V _-.
1
!
..
1"
i
*-^-..:--
<~
I- -
i
i
-~
"
-J-
i_^\
^:-
<
J
^-O
J
\
i
t
, ,
- !
j
. j . .
' i
i
i
-;1
1 "
~U
_ L
i
-1:
,
,
' . "
.
t
._.
1 ^r
' S
, / * '
_|J_
)'
r i;
r -
IT H
[ [
J \
f
:r-
1'
:_-._
j i
i
i
i
|
;
i
1
j
i
s
;
;
i
.'-j--;
- . i ..
i
i
i
L- . .
,
.
;
i
1
- ^~^->
L~2
, ' "
..
11 "1 '
-:
,
,
;
t
i
\
i
__.
j
;
i
i
; i
! ^~;
, ,
i
: " -1
'- -1 ; " i'
- . 1 1 - j ^- ...
"I 1 . !':; '.'.
I j
' '
:.:-:_L ._..: |v . .:.-. :
' ~ '
, [
v - r - - - , j . - -
i ' ^
i
' ( ' '
- 1 i '
i- '
i t i
-^
i ._>^ _.| ,
, ' / i
1 \ f \ r '
. i '
_._ . \. j. j 1 .-
i v i
' i '\ 1 i
, j ._. ._.M .
. 1 . . . -- --
i - ; 1
- r - \- \ ~ 1
1 "*-x^ ^ > 1
v- - **** - j
.V. " *-|.: :"'
-':- -^ | ; --
i i
i \
j
> \
: i
; ;
i
! 'i
1 i / 1
i
.,
1".
" '
_ -
.
1 '
-
:*"
i
t
.
P '
r
m
1° ^
'-^ r^
f
O
::- a 5
' 1 ^ -^
- - ^
_J
- - - - j_J
t '
' "i " G c^
:'." i ' ';: m M
u
1 2j
r ' i ' 'n 3
1 - ,H -1
------ s 0
1 V3
, : 1
^
o
, : Ji
i :<- ^
| 4
-3
-^
i t i O
i 1_. 'c i -
P 5
i'1 n ^
_;; ^ -
< -^
. 1-. 1 _! <
' ' -^* I 1
_-.T n i "X
, j. j
Cj -J
T g .,, ^
'H ^ >v
i _ - ^ _j
- - ; =
C 1 t
- > C>
^3
!c 3
C
OJ c
CJ
u
! u_:
0 -H
!
1 >C"
i o ^
r1 '
i ^~ 1>
._i._l i
i a
u 1
;
I
-------
TECHNICAL REPORT DATA
(Please read hinnicnons on the reverse before completing)
\. REPORT NO. 2.
EPA-600/2-76-273b
4. TITLE AND SUBTITLE
Experimental and Theoretical Studies of Solid Solution
Formation in Lime and Limestone SO2 Scrubbers --
Volume II. Appendices
7-AUTHOR(S) Benjamin F. Jones, Philip S. Lowell, and
Frank B. Meserole
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Radian Corporation
8500 Shoal Creek Boulevard
Axistin, Texas 78766
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
3. RECIPIENT'S ACCESS ION- NO.
5. REPORT DATE
October 1976
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
EHE624
11. CONTRACT/GRANT NO.
68-02-1883
13. TYPE OF REPORT AND PERIOD COVERED
Final; Through May 1976
14. SPONSORING AGENCY CODE
EPA-ORD
15. SUPPLEMENTARY NOTES iERL_RTp project Officer for this report is R.H. Borgwardt,
919/549-8411 Ext 2234, Mail Drop 65.
is. ABSTRACT
gives results of a theoretical and experimental study to charac-
terize the coprecipitation of calcium sulfate with calcium sulfite hemihydrate. A
coprecipitation product had been suggested to explain the mechanism by which sulfate
could be precipitated from a scrubber solution subsaturated with respect to calcium
sulfate. Lime and limestone SO2 scrubbing systems with oxidation rates below 20%
had been operated long-term at steady state with liquors subsaturated with respect to
all known calcium sulfate solid forms and yet sulfate was measured in the solids.
The existence of a calcium sulfate /calcium sulfite solid solution has been confirmed
experimentally and a theoretical formulation has been established. Calcium sulfite
hemihydrate was precipitated under controlled laboratory conditions from solutions
subsaturated in calcium sulfate. Specific chemical analysis and infrared spectroscopir
techniques were used to identify sulfate in the solids. The precipitate's sulfate conten
was studied as a function of the relative saturation of calcium sulfate and the precip-
itation rate of calcium sulfite hemihydrate. Also, the effects of high magnesium con-
centrations and limestone dissolution on the sulfate content of the solids were
measured.
17. KEY WORDS AND DOCUMENT AN ALYSIS
a. DESCRIPTORS
Air Pollution
Calcium Oxides
Limestone
Flue Gases
Scrubbers
Sulfur Dioxide
13. DISTRIBUTION STATEMENT
Unlimited
b. IDENTIFIERS/OPEN ENDED TERMS
Air Pollution Control
Stationary Sources
19. SECURITY CLASS 1 This Report)
Unclassified
20 SECURITY CLASS (Tins page)
Unclassified
c. COSATi Field/Group
13B
07B
08G
21B
07A
21. NO. OF PAGES
419
22. PRICE
EPA Form 2220-1 (9-73)
-414-
-------