-------
CM
CD
CO
CM
CO
CD
=3
CM
CD
3
en
CD
I //I
1
c
u
c
0
c
c.
O
-
\
\
v.>.
CM
CD
"* 1
I
ca
-SIMULATE
i
i
1
-
.
\
y,
//
OJ
3
C
C
o
OJ
s-
3
en
1IOS
39
-------
I 1/7 T
CO
CNI
f\
V.
CM
CM
I I I
CM
CD
C3
=3
cn
CNI
CM
=3
J I
CM
C3
en
oo
00
.
CTi
o>
(O
to
=1 I
(D
S-
cu
Q.
cu
O)
c
o
N
s_
Ol
CL
Q.
00
OJ
J I
•<* CO
^i- co CNI
CO CN(
•«J- CO CNI
40
-------
temperature occurs between 3 and 4 p.m. and that the minimum occurs between
6 and 7 a.m. The other hourly values are derived from a sinusoidal
interpolation between the maximum and minimum temperatures.
The above equations for the surface and upper zones were also tested for the
summer of 1975. The results are shown in Figures 6.9 and 6.10. During this
period the recorded data were taken from small plots planted in corn. The
simulated results are somewhat less accurate than the 1973 simulation but
are still generally within 15 percent. Deviations of this magnitude (10 to
20 percent) do not appear to be detrimental to the simulation of soil
transformations. Rao et al. (1976b) of the University of Florida, using
first-order reaction rates in a nitrogen transformation model, have
indicated that a twofold increase in the reaction rates should not result in
significant differences in the amounts of nitrogen transformed. However,
sensitivity analysis using the actual calibrated reaction rates should be
performed in order to test this conclusion in the ARM Model.
For the Michigan test watersheds observed soil temperature values at the 5
cm depth were used to develop a regression equation for the upper zone.
Maximum and minimum air and soil temperature values for July and August,
1974, provided the basis for the following equation;
OTEMP = 7.20 + 0.39(AT) (6.9)
The recorded data were taken from Miami fine sandy loam under fescue grass.
The simulation results (Figure 6.11) are again generally within 15 percent.
However, regression equations based on max-min air temperatures appear to
be less accurate than ones based on hourly values as in Georgia. Also, the
observed values in Figure 6.11 are for fescue grass whereas the equation
was used for corn and soybean watersheds.
A different regression equation for the upper zone was developed for the
summer of 1975 and provided significantly better results than Equation 6.9
used for 1974. Thus, different equations were used for the two summer
periods simulated. Figure 6.12 shows the simulation results for the 1975
summer using the following equation:
OTEMP = -4.29 + 0.63(AT) (6.10)
Since no soil temperature data were available for the nonsummer period at
Watkinsville, the same regression equations were used for the entire
simulation period. In Michigan maximum and minimum winter soil data were
available for comparison with the regression equation. The observed winter
soil temperatures were considerably more stable than the predicted values.
The insolating effect of snow and ice extremely dampened the daily effect of
air temperature on soil temperatures. Special consideration for the
nonsummer months will be needed for winter simulation runs in areas where
snow accumulation is significant.
The soil temperature values calculated for the upper zone were also used for
the surface zone for the Michigan P6 watershed since no observed data
shallower than 5 cm were available. The lower zone and groundwater zone
41
-------
_ 1 1
—
—
—
—
— ~
—
~~ SI SI
=D Z3
t— i \—t
X ^
JL JL
"~~ O O
O LU Q LU
LU |— LU f—
>• «=E > =£
c£ i ce: i
LU ZD LU r?
CQ I— i CQ HH
O OO O OO
— • O a •
~~
1 1
uo o
LO LO
1 b 1 • 1
o •
o •
o •
0 •
9
• 0
<9
• °O*
^f)
•D
0 •
•o
•f g
%!
: 8
• 0
• 0
• o
• o
• o
•
• c
°o •
•° 0
•
• o
•
• ^
•o
• 0
• 0
••8
• 0
• o
• o
• o
J
o •
• 0
o •
0 •
• o
• o
• o
09
°* «
•o
••J
c*
0°0*
• o
1 %o 1
i_n O tn o
•d" ^t" CO CO
\ffjP 1 1 1 _
^ n
° Ja°
a a
• a ~
Kl
• n
LJ
• a
*•*
• a —
• o
• a
• a
• a
.5 D
• a
• o
". cP
• LJ
• a
• o
• a -
• 1-1
U
•a
JrP
> n
• a
^ • Q
• a
•a
• a —
n
• a
•a
Kl
• a
•-1
• 0
•a
• a
• a
•a
• n
"So
• fcf
g Q
"• a
• a
a*
•a •"•
B
• 0
» " D
• n
i— ' _..«
•. s
• a
• Q
Tla
• a
1 ^Ifco l<| 1
^o
CO
C\J
en
rH
o
i — i
,— i
CO
(O
(O
to
LO
O)
0)
s-
to
i.
O)
Q-
03
-a
T3
c
(O
3
X
fO
O)
o
N
0)
O
3
oo
CTi
CD
42
-------
-Ill
—
—
—
—
—
—
—
—
—
— 5: 5-
s: s:
X "Z.
— CC I-H
2: 2:
_*— . . — "— ,
— Q Q
O UJ O UJ
i , [ i i , i i
Q; _j CC |
oo s: oo 2:
CO i— i CQ i — i
O CO O OO
— O • D •
~
1 1 1
LO O LT>
LO LO ^1-
| J |
%J ^^
O •
•o <
o •
•^>
^ VN
w O
•°£
0. »
• o
'••8
• 0
* + *
9 O
9 O
w O
w O
S r\
Q
• O
• O
o • ,
f\t
• 0
* °l
• t*
• 0
V8
• o
• o
• 8
•0
t— I
O
h-
oo
CO
CM
t I
LO _
—
CM
U_
Lf> O LO O LO O r~3
CM CM i— 1 «— 1
LO
CT>
a>
CO
(O
4J
fO
CO
3
co
CU
CU
3
fO
CU
CL
co +->
n3 >,
•O •—
" to
uj -a
c
to
E
E
•r—
x
E
CU
o
N
s-
CU
Q.
a.
CO
cu
3
43
-------
LD
CTi
7T
r
r/
vV-
'
CM
_l
=>
° Jl
/
ro i
CM »
— /
I
CM '
CM VI
CM
O
CM
f
CO
I T
ro
O
oo
CD
CM
00
CM
CM
CM
un
CM
- CD
CD
«c
- CD
— tl
TTT
00 v>
ID
CD
Z3
ct
CD
CM
- CD
\\-
\\-
\\-
co \\
CD
\\-
^\ '
CD V
)/
LO
i—)
CD
CD
ro
r—I
CD
CM
t—t
CD
CD
CD
< 'J
I Li
Q.
cn
ro
vo r-.
CTl CD
II
IT)
I/)
C
ro
O. LU
LU I—
Q <
o: _ j
O Z3
O SI
LU i—i
c; co
10
(O
LU
c
O
E
in
Ol
(O
O)
Q.
E
CD
CU
c
O
Q.
Q.
0)
S-
C71
O O
•3- oo
O
CM
O O O
*3- CO CM
000
«=J- CO CM
O O O
*d- ro CM
nos
O O O
sj- CO CM
44
-------
CM
CN
ro
CN
CN
CN
O
CN
00
o
I I
CM
OO
CN
O
ro
CM
oo
r-
O
I I
i i r
CN
CN
CN
CO
CN|
CN
CN
CN
O
CN
oo
-a
ai
O
O
cu
i.
3
01
O . O O O
<*• co c\j t—i
o o o o
o o o o
^a- co CNI i—i
o o o o
«5j- CO CM <—I
iios
45
-------
O
o
CN
CN
1
rH
CN
h p
CN
U o
O
V\H
2 (/
r**i
o
oo
o o
OO CM
ho l1
o
i
L- /
CO
^P \ \J
T3
O)
O)
S-
3
CD
o o
CO CM
46
-------
o
CO
CM
00
CM
CM
CO
10 n: CM
CM i— vo
i—i •
s o
Q CM
Q LU 1^
LlJ |— CM
LT> Q -
•f.
'I I X I
CM \\
O
CM
cn
~~ I I
CX3
CO
(I —
CM
O
CO
cr>
CM
CO \\
CM \ \
}/
CM V
;;
CM
CO
CM
CM
ID
73
cn
OJ
3
O)
CL
CU
CU
c
o
N
S-
O)
Q.
Q.
CM
3
CD
C
O
o
o o o o
^f CO CM r—I
o o o o
*3- OO CM i—I
o o o o
•3- CO CM <—I
o o o o
<3- CO CM .—I
47
-------
O\
00
00 O
ro CM I-H
IN
O
CN
— //
OO
CM X\
N
O O
OO CM
O O O
O
CM
V
' I >f I
^D C^ <~^
CO CM •—!
T3
OJ
3
£
O
O)
S-
3
Ul
48
-------
temperatures in both Georgia and Michigan were not based on air temperature
since they are not considered very sensitive to diurnal fluxes, but are
sensitive to seasonal fluxes. Daily average temperatures for these zones
are simulated by interpolating average monthly soil temperature input
values. Figure 6.13 shows that 60 cm soil temperatures at Watkinsville,
Georgia varied no more than 3 Celsius degrees over a 2.5 month summer
period. Figure 6.14 shows the seasonal variation of soil temperatures at
120 on at East Lansing, Michigan. Monthly extremes are within 6 Celsius
degrees of the monthly average.
Since the average temperatures of the lower and groundwater zone should be
similar, the same simulated values were used for both of these zones. Lower
zone monthly values for the Michigan watersheds were estimated from the
values in Figure 6.12. For the Georgia watersheds monthly averages were not
available for the nonsummer months so estimates for this period were made
from Knoxville, Tennessee (1972-1974) 51 cm values. The values are given in
Table 6.1.
The linear regression approach to soil temperature simulation currently used
in the model is simple and practical. It appears adequate for simulating
the summer growing season. However, refinement of the regression equation
is needed for the nongrowing season and winter periods. Model users will
need to develop the required temperature regression coefficients when the
model is applied to watersheds in other geographical areas. In the future,
a physically based model relating soil temperatures to watershed and
meteorologic conditions should be implemented in the ARM Model.
49
-------
I X I
to
D
O)
I I
on
r~-
cr>
0
_Q
E
0
•4->
a
0)
10
D.
O)
O
O
10
(O
0)
4-J
2
CD
O.
CO -P
O) r—
< O
C/0
CO
CU
30 Nl
1IOS
50
-------
\\\
Vi
cr>
0)
O
re
3
C
to
Ol
fO
Q.
O>
-o
O
2
3
' I
O)
co d-
. £: E
°2 CD
O)
51
-------
TABLE 6.1 LOWER ZONE AVERAGE MONTHLY SOIL
TEMPERATURES FOR THE TEST AREAS (°C)
Month
January
February
March
April
May
June
July
August
September
October
November
December
Watkinsville, GA
8.9
8.3
11.7
13.9
18.3
22.8
25.0
25.0
24.4
21.7
14.4
10.6
E. Lansing, MI
3.4
3.4
2.8
4.5
9.2
13.6
16.9
18.4
18.1
14.8
10.7
6.8
52
-------
SECTION 7
SOIL PESTICIDE DEGRADATION SIMULATION
Decay or degradation of pesticides by biological and chemical processes is
the major mechanism for the attenuation of pesticides on a watershed.
Studies conducted by ERL-Athens have found that less than ten percent of the
applied pesticides are lost via runoff (Smith et al., 1977). Thus, for many
pesticides, e.g. diphenamid and atrazine, over 90 percent of what is applied
•is degraded in the soil. Since the amount of pesticide in the soil is the
major factor in determining the amount available to runoff, an accurate
simulation of pesticide degradation is vital to correctly simulate pesticide
transport from a watershed. Consequently, alternative degradation
simulation algorithms have been studied to determine the most accurate
method of simulating pesticide decay that can be generally applied within
the framework of the ARM Model.
As discussed in previous reports (Crawford and Donigian, 1973; Donigian and
Crawford, 1976), the ARM Model initially used a first-order degradation
algorithm. Pesticide decay was directly proportional to the amount of
pesticide in the soil. For some pesticides (atrazine and diphenamid) the
first-order decay rate was found to initially degrade the pesticide too
slowly and then later in the season too quickly. In Figure 7.1 the
relationship between the simulated and observed decay curves demonstrates
this problem. Thus, for runoff events early in the crop season the amount
of pesticide available for runoff was too great, while later in the season
not enough was available. This made simulation of atrazine and diphenamid
runoff difficult.
ALTERNATIVE DEGRADATION ALGORITHMS
Since the simple first-order degradation approach was not accurate enough
for a good simulation of pesticide runoff other approaches were studied.
One alternative was a first-order degradation algorithm corrected for the
effects of soil moisture and temperature. This environmental approach
(Steen, 1975) was derived from laboratory studies of diphenamid and was
described as a subsurface degradation algorithm. However, in our evaluation
we incorporated the algorithm into both the surface and upper zones. The
equation for this approach is:
K = Kbpt e(AK CMoist-Mopt)2) (BK (Tenp-Topt)) T'ttnax-Temp BK (Tmax-Topt)
e [_Tmax-ToptJ ( '
where K = actual degradation rate for the interval (days"-*-)
53
-------
MEASURED SOIL SAMPLES (3 YRS.)
RECORDED DECAY
SIMULATED FIRST-ORDER
DECAY. 0.0 65 DAY
SIMULATED ENVIRONMENTAL
DECAY APPROACH
10
20
30 40 50 60
TIME AFTER APPLICATION, days
70
80
Figure 7.1 Comparison of atrazine degradation
rates for the P2 watershed
54
-------
Kopt = optimum degradation rate, day1
Mopt = optimum soil moisture content, percent by weight
Moist = actual or simulated soil moisture content for the interval,
percent by weight
Tmax = maximum soil temperature at which biological degradation
occurs,°C
Topt = optimum soil temperature, °C
Temp = actual or simulated soil temperature for the interval, °C
AK = constant
BK = constant
For diphenamid Kopt was found to equal 0.123 day"1, Mopt equals 0.175, Tmax
equals 40°C, Topt equals 35°C, AK equals -100, and BK equals 0.05.
As shown in Figure 7.2, the degradation rate is sensitive to changes in
soil moisture and temperature. Thus, correctly modeling these influences
(as discussed in Section 6) should provide a more accurate calculation of
pesticide degradation than given by the simple first-order degradation
approach. However, test results did not support this hypothesis. The
.1230
.1100
.0840
.0770
.0640
.0044
DIPHENAMID
8.75 17.5 26.25
MOISTURE, percent
35
Figure 7.2 Environmental effects on dephenamid degradation rates
55
-------
changes to the actual degradation rate, K, from the daily fluctuation of
soil moisture and temperature proved to be relatively minor and deviated
only slightly in the long run from the simple first-order degradation
approach. This led to results similar to the simple first-order
degradation approach.
A comparison of the simple first-order degradation approach and the
environmental degradation approach (Figure 7.1) shows that the latter
simulated the amount of degradation less accurately than the simple
first-order approach in the period immediately after application. This
early period is critically important in correctly determining the amount of
pesticide runoff. The first significant runoff event after application
usually removes the largest amount of pesticide for the season, because
less pesticide is available for runoff as the season progresses. It is in
this early period prior to the first runoff event that the environmental
approach fails. Failure to correctly simulate pesticide degradation occurs
because the environmental factors (soil moisture and temperature) are not
at optimum conditions for biological decay in the surface zone where
application occurs. Thus, degradation by biological processes is minimal
as reflected by the high percent of application amount remaining in the
soil (Figure 7.1). However, chemical processes (to be discussed below) are
the dominating degradation component for this period and are not handled by
the environmental degradation approach.
Sensitivity tests were conducted on the Steen equation (Fxjuation 7.1).
Daily max-min air temperature, which is used as input to the ARM Model, was
changed by + 10 Celsius degrees. In two sensitivity trials the resultant
pesticide decay after application is changed only slightly from the base
conditions. In the same manner soil moisture values were changed by + 30
percent. This gives a greater change in response from the base conditions
than seen in the temperature sensitivity tests, but still the changes are
not substantially different from the base (Figure 7.3).
The relative insensitivity of the environmental degradation model to the
daily fluctuations of soil moisture and temperature does not justify the
required effort to simulate and incorporate the moisture and temperature
effects. Also, the constants AK and BK will vary with pesticide
characteristics and soil characteristics; they must be evaluated through
calibration with recorded data. For these reasons the environmental
approach has not been implemented in the current version of the ARM Model.
Detailed collection and analysis of atrazine remaining on the P2 watershed
in the summer of 1975 provided enough data to develop a better understanding
of the degradation processes. From this understanding a more accurate
degradation algorithm than the first-order approach was developed. This new
approach is the step-wise degradation algorithm. The ERL-Athens researchers
found that for some pesticides (atrazine and diphenamid) the degradation
rate changes substantially with the first major storm after application
(Smith et al, 1976). Decay rate changes can be explained by existing soil
conditions. Prior to the pesticide application the soil is loosely tilled.
Tillage breaks up thermal and hydraulic conductance between the surface and
subsurface soil layers. This enables the existence of sizable temperature
56
-------
to*
2 2.0-
SM-30%
AT±10°C
BASE
SM+30%
.0
APR 25 MAYA MAY 14
MAY 24 JUNE1 JUNE?
1974
Figure 7.3 Environmental approach sensitivity trials
57
-------
gradients near the soil surface, both relative to subsurface soil
temperature and air temperature. For the first two or three days after
pesticide application the surface soil temperature was 15 to 30 Celsius
degrees hotter than the air temperature on P2. This gradient gradually
decreased with time as the soil compacted. Then a rainstorm further
compacted the surface layer, established strong conductance with the
subsurface soils, and markedly decreased surface soil temperatures.
The high surface soil temperatures immediately after pesticide application
result in pesticide degradation by chemical processes. This greatly
diminishes once the surface soil temperature drops after a significant
rainfall. At this point in time biological processes take over in playing
the major role in pesticide degradation. The simple first-order approach
and the more complex environmental approach by Steen fail in that they
consider only biological decay. They cannot correctly represent the rapid
decay caused by chemical processes without incorrectly representing the
slower decay by biological processes. Both decays can be considered
first-order mechanisms, but at significantly different reation rates. The
step-^wise degradation approach has the capability of reproducing the
effects of more than one first-order decay rate during a crop season.
Thus, both chemical and biological decay processes can be easily
represented in the simulation of pesticide degradation.
SIMULATION RESULTS
As discussed previously, the simple first-order and environmental
approaches to pesticide degradation give poor results. The step-^wise
approach gives good results. This is true for the simulation of atrazine
on the P2 watershed for 1973 through 1975. A decay rate of 0.10 per day is
used prior to the first runoff event after each application. After the
first runoff event a decay rate of 0.04 per day is used. Figure 7.4 shows
the simulated amount of atrazine in the soil from 1973 through 1975
respectively. The atrazine remaining in the soil is low in 1973 compared
to measured soil samples. However, the same step-wise decay rates in 1974
and 1975 give excellent results. The low values in 1973 may result from a
poor knowledge of the actual amount of atrazine applied that season. Disc
filter monitoring of application rates in 1974 indicated that the amount of
pesticide applied was 13 percent greater than the planned amount. A
similar discrepancy would help to explain the 1973 results shown in Figure
7.4.
Paraquat, unlike atrazine and diphenamid, does not exhibit step-wise decay
mechanisms; the simple first-order decay or a step-wise decay with the same
decay rate at all times works reasonably well. Considering the variability
in the recorded values, a constant decay rate of 0.002 per day adequately
represents the decay of paraquat over long time spans, as is shown in Figure
7.5.
A study of the decay rates of atrazine and paraquat on the P6 watershed in
Michigan shows some differences from the results on the P2 watershed.
Atrazine was applied three times on the P6 watershed during the period of
May 1974 through September 1975. From the few soil core samples taken
58
-------
C7>
-------
CO
CO
to
r~.
i—i
CO
r-~-
CTi
•a
0)
.c
t/>
s_
Ol
-!->
i
CM
Q.
S CD
E
O
O)
D1
(13
O
Q£
LU
O
to
2£
§2
C3 =>
CJ> ^
UuJ _
o: co
• I
I
I
Z5
CT
n3
(T3
£X
LO
cu
60
-------
during this period it appears that chemical decay is a minor mechanism
compared to biological decay. These results differ from those on the P2
watershed in Georgia and show the impact of different climatic regimes on
the mechanisms controlling pesticide degradation. This observation is
complicated, however, by the scarcity of measured soil core samples on the
P6 watershed. Atrazine was measured on ten different dates during this 17
month period (Figure 7.6). The measured values all appear to be high;
possibly as a result of problems in the sampling procedures. Similar
questions are evident in the paraquat results shown in Figure 7.6. The
recorded values in the 0 to 30 cm depth are so unusual and inconsistent
that the actual rate of paraquat degradation can not be accurately
determined. The amount of paraquat measured in the surface layer of soil
(0-1 on) is more consistent, but the actual values are impossible to
explain except in terms of sampling problems. Thus, for the simulation of
atrazine and paraquat on the P6 watershed degradation rates could not be
calibrated because of discrepancies in the collected data. For atrazine it
is assumed that biological decay is the only major degradation mechanism.
A decay rate of 0.04 per day is used. For paraquat a constant decay rate
of 0.002 per day is selected based on the assumption that the degradation
rate will not differ substantially from that used on the P2 watershed. The
inability to verify these assumptions makes good simulation results for
atrazine and paraquat runoff from the P6 watershed difficult. This will be
fully discussed in Section 10.
SUMMARY
The step-wise degradation approach works well for the pesticides studied.
However, it is a simple approximation of chemical and biological processes
at work in breaking pesticides down into other compounds. If the
environmental degradation approach, described above, could better represent
these processes (both chemical and biological) and have previously
determined values for its input constants for all pesticides then it would
be the preferable approach. In addition, if more long-term (multi-year)
daily monitoring of pesticide mass and associated moisture and temperature
values in the soil were made, a more accurate environmental approach could
be developed. Further research in this and the better understanding of
the chemical and biological decay processes would result in a more accurate
pesticide degradation submodel.
61
-------
•* 3
CD
N
I
I
I
4
»
\
\
\
u \
•MEASURED FIELD VALUES
-SIMULATED
PESTICIDE APPLICATION
I
1
H
N
i
. J
CD
to
3
CT
(O
s- •)
to c.
I I I I I I
• MEASURED FIELD VALUES (0-30cm)
"MEASURED FIELD VALUES (0-lcm) .
— SIMULATED (Surface Zone, 0-.3cm)
I PESTICIDE APPLICATION
I
i ~^^^_^
,1
1
1
1
50 100 150 200 250 300 350
TIME AFTER APPLICATION, days
400 450 500
Figure 7.6 Atrazine and paraquat in soil storage
on the P6 watershed, 1974-1975
62
-------
SECTION 8
SOIL NUTRIENT SIMULATION
Nutrient modeling in the ARM Model involves the simulation of both soil
nutrient storages and the transport or washoff of nutrients. Section 11
discusses the nutrient runoff simulation while this section discusses the
simulation of soil nutrient storages and transformations. Beginning with a
discussion of the major model changes since the last report (Donigian and
Crawford, 1976), this section continues with a discussion on how optimum
first-order reaction rates were obtained. The reaction rate values for
the test watersheds are presented along with the soil nutrient storage
simulation results. This section concludes with recommendations for
future research and possible model improvements.
MAJOR MODEL CHANGES
During this project modifications were made to the nutrient model to
simplify model operation and more accurately represent certain processes.
The major changes to the nutrient model include:
(1) Elimination of certain transformation paths.
(2) Calculation of transformed nutrients as a function of soil water
content and nutrient concentrations in each soil zone as opposed
to nutrient mass.
(3) Simulation of plant uptake as a function of monthly uptake
factors as opposed to crop canopy.
Transformation Processes
The changes in the transformation processes have been incorporated in Figure
4.5. The phosphorus transformations remain the same, but those for nitrogen
were changed by combining the nitrite (N02) and nitrate (N03) forms. This
resulted in the elimination of the reactions of N02 oxidation to N03 (K2
rate), and N03 reduction to N02 (KK2 rate). N02 was combined with N03 to
simplify the model and to avoid using extremely large oxidation rates from
NCL to NO3. The NO2 form could have been completely eliminated from the
model since it is not persistant in most agricultural soils or in surface
runoff due to rapid oxidation to N03. However, N02 remains in the model in
the combined form (N02 + N03) in case it occurs in any future simulation
work. Also, the combined form indicates that N02 is an intermediate step in
the nitrification and denitrification processes. However, for most
agricultural watersheds, the component of N02 plus N03 can be considered as
N03.
63
-------
One additional change in the nitrogen transformation processes was made; the
nitrification reaction rate/ Kl, occuring from the adsorbed phase of
ammonium (NH4-A) was eliminated, because it has not been observed in
laboratory tests (Davidson and Pao, 1976). Also, Mehran and Tanji's model
(1974) of soil nitrogen transformations does not have a nitrification
pathway from the adsorbed NH form.
These changes are included in the summary of the reaction rate definitions
in Table 8.1 and in the coupled system of differential equations in Table
8.2. Certain clarifications of these tables and Figure 4.5 need to be
made. Plant nitrogen uptake occurs only in the N03 form since N02 is toxic
to plants (Black, 1968). If persistant N02 occurs in the watershed, plant
uptake should normally be reduced. Also, denitrification rates in the
literature based on N03 will be larger than the input denitrification rate
in the model, KD, since KD is based on the amounts N02 plus N03. Finally,
the N2 form represents any form of denitrified nitrogen in the gaseous
form, including nitrous oxides.
Nutrient Transformation Calculations
Nutrient transformations were previously based on the nutrient mass in each
soil zone, but were changed in this project to being based on the nutrient
mass per mass of soil or soil water in each zone. Except for the
groundwater zone, transformations were calculated in terms of kilograms
per hectare of each nutrient form in each zone. Since the surface, upper,
and lower zones have specified depths, the reactions were previously based
on the nutrient mass per total volume of the zone, i.e. a volume-based
concentration. The groundwater zone has no specified depth so the
transformations were based merely on kilograms per hectare. The use of
concentrations based on mass not volume is considered more theoretically
consistent with first-order reaction rates. Most of the literature on
adsorption/desorption reports reaction rates based on concentration on the
soil mass and soil water mass. Plant uptake rates are also typically based
on nutrient concentration in the soil water.
The reaction rates in the model were changed to a mass concentration basis
for all the zones except the groundwater zone; the groundwater zone
tranformations remain in terms of kg/ha. The NH4 desorption rate, KAS, is
now based on the concentration of adsorbed NH4 on the soil mass. Likewise
the nitrogen mineralization rate, KAM, is based on the organic nitrogen
mass per soil mass. The P04 desorption rate, KAS, and the mineralization
rate, KM, are also respectively based on the concentration of adsorbed or
combined P04, and organic phosphorus per soil mass. All the other reaction
rates are based on the mass of the nutrient per mass of soil water in the
zone.
Additional model changes were made for calculating the soil and water
masses. Soil bulk densities are now specified separately for each soil
zone. The bulk densities and the volume of the zone are used to calculate
the soil mass. The LANDS program calculates the moisture stored in each
soil zone during each time interval for the hydrology simulation. The
moisture values are then used in the nutrient model to evaluate nutrient
64
-------
TABLE 8.1 DEFINITION OF N AND P REACTION RATES
Rate
Definition
Nitrogen
Kl
KD
KPL
KAM
KIM
KKIM
KSA
KAS
Phosphorus
KM
KIM
KPL
KSA
KAS
Nitrification rate of ammonium in solution
(NH.-S) to nitrite and nitrate (NO +NO )
Denitrification rate of nitrite and
nitrate to gaseous nitrogen (N )
Uptake rate of nitrate (and nitrite) by
plants (Plnt-N)
Mineralization or ammonification rate of
organic nitrogen (Org-M) to ammonium in
solution
Immobilization rate of ammonium in
solution to organic nitrogen
Immobilization rate of nitrate to organic
nitrogen
Exchange rate of ammonium from solution to
adsorbed phase (NH.-A)
Exchange rate of ammonium from adsorbed
phase to solution
Mineralization rate of organic phosphorus
(Org P) to solution phosphate (PO -S)
Immobilization rate of solution phosphate
to organic phosphorus
Uptake of solution phosphate by plants
(Plnt-P)
Adsorption or combining of solution to
adsorbed or combined phase (PO.-A)
Desorption or dissolving or adsorbed or
combined phase to solution phosphorus
note: All rates are based on the N or the Pamounts of the form.
65
-------
TABLE 8.2 COUPLED SYSTEM OF DIFFERENTIAL EQUATIONS
FOR NITROGEN TRANSFORMATIONS
Organic Nitrogen:
^ {ORG-N} = KIM {NH4-S} + KKIM {N03+N02> - KAM {ORG}
Solution Ammonia:
^r (NH4-S) = KAM {ORG-N} - (KSA + Kl + KIM){NH4-S} + KAS {NH4-A}
Adsorbed Ammonia:
^ (NH4-A) = KSA {NH4-S} - KAS {NH4-A}
Nitrate:
3t {N03+N02) = Kl {NH4-S} - (KD + KKIM + KPL) {N03+N02>
Nitrogen Gas:
Plant Nitrogen:
— {PLNT-N} = KPL{N03+N02)
66
-------
concentrations and transformations. Hence, reasonable simulation of the
soil water storages, especially in the upper and lower zones, is needed for
reliable transformation simulation.
In the model the soil moisture storage value in the upper zone is specified
by UZS. It is the primary moisture component for upper zone transformations
during nonstorm days. During storm days, UZS is augmented by the interflow
component and infiltrating moisture that passes through the upper zone. UZS
is primarily dependent upon the rainfall, evapotranspiration, and the input
nominal upper zone storage value (UZSN). Care must be taken to use
reasonable values for UZSN with regard to the depth of the upper zone so
that realistic upper zone moisture values are simulated. All nutrient
transformations in the model are discontinued at very low moisture values,
which are not uncommon when very low UZSN values (less than 2 mm) are used.
Nutrient transformations are inhibited at low moisture levels because some
minimum moisture content is generally required as a medium for
transformations. Black (1968) discusses the decrease in plant uptake,
mineralization, and nitrification in dry soils. This same stopping of
transformations in the model also occurs in the lower and surface zones at
low moisture values. However, the lower zone soil moisture almost never
reaches this level, and the surface zone moisture is always zero except when
runoff is occurring. Hence, surface zone transformations do not occur
except during storm events. This makes the surface zone a conceptually
stable zone for the nutrient model. Such a stable zone has the advantage of
simpler application; the amount and concentration of soil-associated
nutrients available for erosion are relatively constant. A disadvantage is
that a more active simulation of the surface zone may be needed for
simulating soluble nutrients. Further testing of the model will determine
this.
Groundwater transformations are performed in the model in the same manner as
described in the previous report. The reactions are still based on mass of
nutrients per area. The total groundwater is not simulated, and the depth
and bulk density of the groundwater zone are not typically known. So it was
considered undesirable to change the basis for groundwater transformations.
A highly sophisticated model is needed to accurately simulate groundwater
movement, transport, and transformations of chemicals.
Plant Uptake
Simulation of crop uptake of nutrients is important to soil nutrient
simulation since it usually removes more nutrients from the soil system than
any other process. To improve the ARM nutrient model, crop uptake was
changed from being based on crop cover to being based on a user-specified
uptake factor. Uptake by the crop was based on the monthly fraction of the
cover which is an input factor. The previous algorithm was:
KPL = KPLmax * COVER (8.1)
where KPL = plant uptake reaction rate, day"1
COVER = crop canopy fraction for the watershed
KPL = maximum rate of plant uptake, day"1
max
67
-------
However, further analysis of nitrogen uptake curves, such as those of Viets
(1965), show uptake to occur most during periods of rapid growth and not
when the crop canopy was fullest. Hence, to improve plant uptake
simulation an input factor of monthly uptake was introduced. Separate
monthly uptake factors for the lower zone and upper layers (surface and
upper zones) were added to the model. These factors work basically
the same as the COVER factor. The new algorithm is:
KPL = KPL * UPTK (8.2)
max
where UPTK = average fraction of maximum uptake occurring during a month
Figure 8.1 compares the previous method (Equation 8.1) of distributing
plant uptake using COVER and the new method using the uptake factor
(Equation 8.2). The actual uptake is approximated from Figure 15 of Viets
(1965) and from personal communication with Boyd Ellis (1976) of Michigan
State University. The old method has the maximum uptake occurring in
August and September when the plant is fully grown, while the new method
has maximum uptake occurring in July. The major part of the uptake would
come from the upper zone in June and early July and from the lower zone in
late July and early August.
EVALUATING NUTRIENT REACTION RATES
Optimum nitrogen and phosphorus transformation reaction rates are input to
the nutrient model. They are the main factors influencing simulation of
soil nutrient storages. Each reaction rate is specified for each soil zone.
These reaction rates are optimum at 35°C and above, and at lower soil
temperatures the rates are reduced according to a simplified Arrhenius
Equation. The procedure used for evaluating reaction rates and temperature
coefficients was to search the literature for initial estimates and then
adjust these values by calibration on observed soil storage and runoff data.
The most comprehensive literature found applicable to field conditions was
that of Stanford and Smith (1972). They determined nitrogen mineralization
rate constants for 39 widely differing soils. The mineralization rates did
not significantly differ among the soils. These rates were based on
mineralizable N, so an estimate of the mineralizable N in the soil was made
as a fraction of Total N. Rather than change the input storage values to
potentially mineralizable N, the literature rates were lowered by the
mineralizable N estimate. These rates for each watershed tested were used
for mineralization of both organic nitrogen (RAM) and phosphorus (KM). They
were considered the most reliable rates and were not changed during the
calibration process. These are also net mineralization rates so
immobilization rates were set to zero.
Other literature (Mirsa, et al., 1974; Starr, et al., 1974; Mehran and
Tanji, 1974) was not nearly as comprehensive for field conditions, but was
useful in determining initial rate values and relative magnitudes. Reaction
rates obtained for particular soils gave indications of the magnitude of
initial nitrification rates (Kl) and NH4 exchange (KSA and KSA). The cation
exchange capacity also provided an estimate of the extent of NH4 adsorption.
68
-------
Q h-
UJ ividn JO 3ivy wnwixvw do
69
-------
Research done by nutrient modelers at the University of. Florida also
provided information on the magnitude and sensitivity of reaction rates
(Rao, et al., 1976a; Mansell, et al., 1976).
Quantitative relationships for the effect of temperature on nitrogen
transformations were more prevalent in the literature. The temperature
relationship for nitrification and denitrification was obtained from the
modeling work of Hagin and Amberger (1974). The mineralization rate
temperature coefficient was determined from data of Stanford, et al. (1973)
and compared with Hagin and Amberger (1974). The plant uptake rate
temperature coefficient was determined from data of Van Den Honert and
Hooymans (1955). The adsorption/desorption rates coefficient values were
estimated from the other values and soil water viscosity. The corresponding
nitrogen coefficients were also used for phosphorus.
The same temperature coefficients were used for each watershed and remained
unchanged throughout the calibration period. However, many of the reaction
rates were calibrated to the specific conditions of each test watershed.
The plant uptake rate, KPL, was adjusted to obtain desired results since no
rate data was found in the literature for these field conditions. KPL was
adjusted to produce plant uptake in the range of values estimated for the
growing season. The distribution of seasonal crop uptake was estimated from
observed data of plant growth and distributed by the inputted monthly
fraction of maximum uptake. The month with the most growth was assumed to
have the maximum uptake occurring at the input optimum rates; thus, that
monthly uptake factor was 1.0. The values used are in Table 8.3. Different
values were used each year of simulation due to different crop growth rates.
The observed soil nutrient storages and nutrient runoff values were used to
calibrate the less certain reaction rates. The proportion of NH4 to N03 was
directly regulated by Kl, as well as indirectly by KSA and KAS.
Particular attention was given to the upper and surface zone rates since
these zones have a greater effect on the simulated nutrients in the runoff
from the small test watersheds. Small values of KD were introduced to
lower the excess simulated nitrogen in the soil after the desired plant
uptake amount was satisfied. Broadbent and Clark (1965) estimated 10 to 15
percent of the annual mineral nitrogen input to agricultural areas is lost
by denitrification. P04 exchange rates KSA and KAS were estimated from the
amounts observed in the runoff.
Table 8.4 contains the reaction rates used in the test watersheds. These
values were calibrated on the runoff results as well on soil storage values,
so they may not be directly applicable to pure soil transformation studies.
However, they are generally within the range of such values in the
literature. Since the surface zone transformations occur only during
storm events the rate values should be evaluated with that taken into
account. The surface exchange and mineralization rates were adjusted to
produce the simulated amounts of NH4 and P04 in the runoff.
70
-------
CO
I—
2:
UJ
1 — 1
I—
rD oo
2: Q
UJ
o oo
O£
UJ UJ
\^S i
- Q-
31 UJ
1 — •!—
1 —I—
21 1—
O
O
— )
p— I UJ
XQ
U. UJ
O3C
1—
2:
02:
1 — 1 1 — 1
1—
O Q
~
i —
=3
CU
C"
^3
>~3
^
(O
«£-
^_
S-
Q-
£„
ro
s
r^
O)
u_
c.
ro
O 0
CM CM
0 0
CM CM
O 0
CD O
1 — . CD
0 .-I
•
O LO
CM ^f
LO LO
1 — . LO
• •
LO ro
i — I O
O 0
CM CM
0 0
CM CM
• •
CD CD
CM CM
O O
CM CM
to
S-
-O O) OJ
CU >, C
-C "3 O
to i — M
^_
CU S- S-
+-> 0) CU
ro Q. S
3 «3- Q. o
P*"* "> i
CM CTi
CL. r-i
O O
CM CM
'
0 0
CM CM
0 0
0 O
LO O
O i— I
•
o o
I— 1 r—t
o o
cn co
• •
CD O
O O
CM CM
0 O
CM CM
• •
CD O
CM CM
O O
CM CM
to
s-
CU CU
>> c
ro O
•— N
S- S-
O) CU
Q- S
LO Q- O
P-. I=> _l
CTv
i — I
O 0
c o
0 O
0 O
LO
t£> CM
O t-H
• •
0 0
i— 1 r-H
cn < — i
o o
• •
o o
0 O
0 0
0 0
0 0
to
s_
"O CU CU
CU >, C
-c: ro o
CD Ol
ro CL S
3 «d- Q. o
r-- ZD _i
<-o cn
O- ^H
0 0
o o
0 0
o o
LO
LO LO
o o
•
O LO
LO 1^
o
o oo
• •
1— 1
0 O
0 O
o o
0 O
0 0
to
S-
CU OJ
>•> c:
rO O
r— N
S- S-
CU CU
CL 3*
LO Q. O
r-N ID _j
Ol
! 1
71
-------
o
O O O O LO
o o o o o
oo o in o o •
er CM CM CM O •—I
o
O O O O LO
o o o o o
(/> LO o o o •
ef r-~ CO «3" O i—I
oo
o
LU
IE
oo
01
o
O O O O LO
o o o o o
o o o o •
<: o o o o i—i
oo • • • •
o o o o o
s: o o o o r--
i-. O O O O O
^ o o o o •
o
o o o un
o o o o o
O ro
r*Ni 2
"O
s- c
CU 3
2 0
O S-
_l CD
r
t-
cu
o
CU
S-
3
-{_>
ro
S-
cu
Q.
E
CU
h-
— 1
1
ro
-o
to
CU
+->
ro CU
D" (J
ro
i/l 4—
3 S_
S- 3
o oo
c~
Q.
to
O
c~
Q-
s-
O) CU CU
c c: 4->
O O ro
M M S
-o
i- S- C
CU CU 3
CL 2 0
CL 0 S_
ID _l CD
4-
O O ro
-a
S- S- C
CU CU 3
CL 2 O
CL O S-
Z3 _l CD
i-H
1
ro
4- T3
CU •— '
0
O tO
CU
S-
3
.j_)
ro
S-
CL
E
CU
1—
CU
4->
ro CU
C£ (J
rO
to f-
3 S-
i- 3
O OO
.C
CL
to
O
^r
D.
CU CU
c: c:
O 0
S- S-
CU CU
CL 2
CL 0
•=> _J
CU
S- O
CU O
H->
rO CU
2 S-
T3 3
3 ro
0 S-
S- CU
CD CL
E
CU
h-
72
-------
SOIL NUTRIENT SIMULATION RESULTS
The reaction rates in Table 8.4 were used in the simulation of soil nutrient
storages. The nutrients stored in the surface and upper zones are the
primary sources of nutrients in surface runoff (Section 11). The soil
storage results for the P2 watershed are presented in Figures 8.2 and 8.3.
Figure 8.2 contains the surface zone and upper zone soil storages of total
Kjeldahl nitrogen (TKN = ORGANIC N + NH4-N) and N03-N. The observed values
are calculated from composite areal samples taken from the surface to 7.5 cm
depth. They correspond to the simulated surface zone plus upper zone
results. The surface zone results are for the top 3.2 mm. Due to the
shallowness of this zone no observed values were taken or estimated. Figure
8.3 provides the corresponding lower zone soil storages. The observed
values are also from composite areal and depth samples for 7.5 cm to 190 cm.
The 152 cm to 190 cm component of these observed values was estimated.
Figure 8.4 gives merely the simulated solution P04-P and Organic P results
since no observed data was available. On the P2 watershed, a single set of
reaction rates was calibrated for both the 1974 and 1975 growing seasons.
Soils were not sampled as deeply for the P6 watershed as for P2, so only
surface zone and upper zone results are presented for P6. However, more
nutrient forms were analyzed. Figure 8.5 presents the NOo-N and the
Available P results while Figure 8.6 contains the NH4 and Organic N results.
The observed values again are from composite areal samples from the surface
to 7.5 on depth and correspond to the upper zone plus surface zone values.
The P6 watershed was calibrated on the period of May 22, 1974 through
September 30, 1974. The calibrated reaction rates were then used to
simulate the 1975 growing season, June 1 through September 30; however, the
soil storage, plant uptake, and the soil temperature regression constants
input values were all reset. After the summer 1975 results proved
satisfactory, a single run was made from May 22, 1974 through May 8, 1975.
The pronounced peaks of the upper and surface zone storage of both
watersheds are the result of fertilizer applications (Table 8.5). Unless N03
was applied directly, the N03 peak rose slowly after the fertilizer NH4 had
been oxidized.
The simulation of soil nutrients requires the input of initial soil nutrient
storages (Table 8.6) which correspond to the starting values in Figures
8.3-8.6. The Available P values include both solution and adsorbed PO4.
The initial values for the upper zone and lower zone nutrient forms that
were not analyzed were estimated from other forms analyzed, data from
related soil series in the area, prior data analyzed from the watershed,
prior fertilizer applications, or observation of runoff results. The lower
zone estimates were not considered as crucial as the upper zone values since
that zone does not directly influence the nutrients measured in the surface
runoff from these small test watersheds. However, the initial surface zone
values are critical to the nutrients simulated on the sediment, namely the
organic and adsorbed forms of nitrogen and phosphorus. These values were
obtained by averaging the observed concentration on the runoff sediment.
The other major nutrient storage value is that of plant uptake and storage.
Corn (Zea mays L.) was planted both years on both watersheds. The crop
73
-------
TABLE 8.5 N AND P FERTILIZER APPLICATIONS
UATERSIIED
P2
l>6
DATE
FORM APPLIED
N P
(kg/ha) (kg/ha)
4-29-74 sulphate of ammonia
6-11-74 50% urea,
50% ammonia
4-24-75 ammonium nitrate,
superphosphate
6-25-75 50% urea,
50% ammonia
5-20-74 ammonium nitrate,
monocalcium phosphate
7-8-74 ammonium nitrate
11-7-74 ammonium nitrate
5-16-75 ammonium nitrate,
monocalciun phosphate
6-25-75 amr.ionium nitrate
38
101
22
112
68*
130*
130*
68*
64*
33
21
93*
131
ICAHS OF APPLYING
incorporated pellets
spray, sidedressed
incorporated pellets
spray, sidedressed
incorporated pellets
sidedressed
no incorporation,
pellets broadcasted
incorporated pellets
side dressed
* delivered application rate
TABLE 8.6 INITIAL SOIL STORAGES AND BULK
DENSITIES
WATERSHED
and DATE
ZONE DENSITY
g/cm
ORG-N
NH4,N
(sol)
NH4-N 110,
(ads) 3
1, r. /U m
CIRG-P
(sol)
P04-P
(sol)
(ads)
P2 5-1-74
P2 G- 10-75
P6 5-22-75
Pi5 6-1-75
surface
upper
1 owe r
surface
upper
lower
surface
uoper
lower
surface
upner
1 owe r
1.6
1.6
1.6
1.6
1.6
1.6
1.02
1.16
1.59
1.02
1.16
1.59
100.9
420.3
2802.
22.42
479.7
2690.
76.2
571.6
2339.
77.3
493.2
1667.8
2.24
4.40
6.73
0.22
4.48
6.72
0.45
8.97
10.09
0.22
4.81
22.4
22.42
44.84
22.42
6.16
48.83
22.42
1.12
22.98
25.78
1.02
11.21
56.04
2.24
3.36
237.6
0.57
13.20
213.0
2.19
30.71
112.1
0.3/1
22.30
170.4
13.
112.
8%.
23.
112.
856.
30.
196.
1121.
45.
246.
896
45
1
6
54
1
6
3
1
95
6
6
1.
0.
1.
0.
0.
40.
0.
14.
30.
1.
1.
22.
12
39
12
0
34
35
10
90
0
46
52
42
40.35
341.8
151.3
44.83
336.2
112.1
7.44
113.5
270.7
2.91
125.1
224.2
notes:
sol - solution form
ads - adsorbed form
74
-------
^•M
•••••
MM
1 1
—
— ~ *
=^
O
NJ 5:
«^ at. oo
^ LU
Q_ •>
D- LU
^D ^^
O
+ M
Q
"""" LU LU LU
S C_> O i— i
0 «=C < — 1
Lu U_ O.
— LO o; a: Q-
r-. oo oo
— "Q Q LU
Q LU LU 1^1
LU h- 1— I-H
— o: _i _i i— i
LU Z3 ZD 1 —
oo 2: s: ce
oa i— i >— i LU
— o oo oo LJ_
-*! !"*"
i I
i 1
~ CT""
->-
1 1
o o
lf> <3~
III"
X — —
*"••*
• ^^ "™ "*
>^^
*^"**^.
^f
S
•**" .'
•Q
I
••-
i
1
j
r
f—
•
/~
J
-*' —
^^r
^••^^
pf
\ -—
/*-*
^y
x
<
> —
Xx
V
•;; _
* — • *
__ •> —
""-•v
"j£
i i i
000
CO CM I-H
1 i 1 1
i r
/
_ / i
/ i
_ / I _
j \
[_
^^ ^ ^* »fc
? \_
— *"~
IT , i ^^
i *""
• —
*
« i
i
__ ' _
i
'--, i -
> «
•
_ i —
i
^
^ /
/
• y
- ^ • ^ -
i i i i
o o o o
o o o o
CO ^D *^" CM
0
oo
ct
•"3
S
^
^
Lu
•"3
Q
Z
O
oo
^
'-D
s:
LO
O)
o
N
O)
D.
Ci
3
-o -o
c cu
re x:
to
a> s-
(j OJ
•T3 -»->
<+- 03
S- S
3
10 CM
a_
c
•i- OJ
c
-------
^^^••H
1 1 1 '1 1
— x —
\
\
\
l— \ —
\
S
_ \ —
~>
^ •/
9
— i^ ~~
^ f •
- / —
/
— 1 j
1
\
\ ~
\
\
— \ -
\
\
- \ -
I
"~ \ • ~~
\
\
— \ —
\
\
\
~ V
X
\
_ \ _
\
~ \
\
_^^. 1 —
1 1 1 1 i
o o o o o
o o o o o
LO «^~ CO CM i — 1
1 1 1
—
•j*"
~ Q.
T3
— E
CO
_ °°
rH
1
CM
— o
— Q
LiJ
— LiJ
oo
CQ
o
•
—
—
—
— •
—
—
__
—
• 1
1
I
1 1 1
O O 0
O 0 O
o o o
«J- CO CM
1
_
~
^
o _
1— 1
I—
I — (
Q-
Q.
cr>
01
0)
s_
a;
ro
(NJ
D-
ai
01
en
cu
c
o
N
S-
O)
o
^.
I—
T3
CO
O
CO
00
OJ
S-
3
CD
76
-------
00
Q
o.
ex.
GC. LU
LU I—
OO
s-
D- Ol
4->
O fC
•r- S
CO to
O)
s-
3
CD
CTl
6L|/6>| 'd-
NOIiniOS
77
-------
1 1 1 1 t
1
,--<—
•*- •'— "7
i
___ y
— -t-
i
.*
— i —
t
"~ / *~"
'
j^, -r_« •--=^.-_-=-s=i-=^'
t
1
— — t
/
_ Jfe
• _/_
^»^*"
^ _jf
— W /•"""" ~
^ ---*"•''' • -
i i i i
o o o o
00 z: i
— o f-
+ M I
Q 1
1 I 1 [ 1 1 QJ 1
— 2: 0 0 K-I *-
o «c <: _i 1
_ u_ u_ ex 1
• LO C£ C£ CX •
r^ oo I
« Q Q LU |
— Q LU LU M i-
LU i— i— H-I ;
S 3 3 ^ 1
_ •» LU ZD ^3 h- 1_
co s: 2: n: i
• CO i— i i— " LU 1
O 00 tO Ll_ 1
t ^fe 1 ^^^^. •
/
- • 1-
1 1 '
1 1-
1 1 1
o o o o
C\J CO ^J-
co
CU
ro CD
(O
•-3 t3 S-
c o
ro 4->
i/i
Q CO
O CU
*- C
o
^ N
00 O
O 0.
cu o.
s_ zs
"> ^ .?
r^. u_
ct *"*
rs
•-3
5T
cd
-------
60
40
SI
0>
ft
z
_V 20
z
600
*=
O)
z" 400
O
HH
Z
1 200
o
r
_| 1 IX 1 I 1 IT 1 1 1 1 i 1 X 1 |[ I | _
5 •OBSERVED, 7.5 CM
ij SIMULATED SURFACE + UPPER ZON
!.i SIMULATED SURFACE ZONE, 3 MM
- !fc 1 FERTILIZER APPLIED
'» *
* if:
\ \ ill I
- » • •'
» i "ii • § i
•N ' •' P* jT *1«
1 U 1 1 1 1. 1 1 1 I 1 1 1 1 1 1
• A...
1 1 1 I I 1 I I 1 1 I 1 I I i I
1 J JASON DJFMA MJJAS
1974 1975
Figure 8.6 NH. and organic N in surface and
upper zone storage on the P6 watershed
79
-------
uptake simulation results are shown in Figure 8.7; no observed values were
available. The planting dates are given in Table 5.2. In 1974, the P2
watershed crop uptake was limited by lack of moisture during the early
growing season, so the 1974 uptake was simulated lower than 1975. The P6
watershed growing conditions were better than P2, so more nutrients were
considered removed by the corn.
In general the simulation of the soil nutrient storages by the ARM Model is
reasonably within the expected range of the observed values, especially
since the observed values are an average that may vary 10-20 percent from
the actual value. Hubbard (1975) calculated a standard deviation of 11.32
ppm about a mean of 113.95 ppm for 1974 Available P in the top 15 on of the
P6 watershed. Organic N and Organic P will vary even more. In addition,
localized concentrations of fertilizer after application will increase the
varibility of the samples. Therefore, considering the assumed variability
of the observed values, the simulation results are good, with the exception
of N03.
The P6 early July 1974 and June 1975 upper zone N03 simulation values are
much lower than the observed values. Since the simulated NH4 values are
reasonable, the low N03 values are probably due to too little NH4 being
oxidized. Hubbard (1975) believed that the higher observed N03 values in
the early July 1974 period are due to upward migration.. The Cl
concentration is also higher in the upper zone during that period. Since Cl
does not undergo transformation, it is reasonable to assume both the N03 and
Cl migrated upward during early July 1974 and June 1975. The ARM Model does
not account for upward migration of pollutants so the simulation during
these periods is lower. However, N03 in the runoff was over simulated
during these periods, so an under simulation of the soil storage did not
affect the simulation of nutrients in the runoff.
The poor N03 simulation in the fall and winter for both watersheds for each
zone is partially caused by the poor temperature simulation. The regression
equations that generate summer soil temperatures over simulate the fall and
winter temperatures. The over simulation of these temperatures resulted in
more mineralization and nitrification occurring during this period,
resulting in the gradual increase of N03 in the lower zone (Figure 8.4).
The over simulation of the lower zone values for the P2 watershed may also
indicate the need for more percolation of nutrients to groundwater.
The surface zone simulated values show the effect of the rapid leaching of
soluble nutrients from that zone. The rapid decline of the surface zone N03
and NH4 for P6 (Figures 8.5 and 8.6) show this effect. Nearly complete
removal of solutes from a surface layer 3.2 mm thick would be expected.
With the exception of when N03 was poorly simulated, the simulation of soil
nutrient forms is good and satisfactory for our purposes. The simulation of
both upper and lower zone N03 during the 1974 growing season for P2 (Figures
8.2 and 8.3) is good. It is not until late in the season that over
simulation occurs. The simulation of TKN and Organic N for both watersheds
(Figures 8.2, 8.3, and 8.6) is consistently within the range of observed
values. In addition, the simulation of both Organic N and P (Figures 8.4
80
-------
oo
:r>
2: C£
UJ O
O O-
o; c/o
i— o
Q Q
LU LU
OO OO
\
Q.
UJ
in
CTi
OO
to
C T3
CU Ol
•r- JZ
s- to
3 CU
(O
Q- 'S
o
i- vo
O Q-
T3 -O
CU C
4J (O
fO
i— C\J
3 O.
••- CU
C/) JZ
Ol
s-
01
CTl
o
o
CM
o
o
o
o
CM
o
o
€3>IVldn
'3>IVldn
9d
81
-------
and 8.6) is relatively stable as expected under actual field conditions.
Likewise, Available P is within the fange of observed values as well as
being realistically stable. In summary, the first-order kinetic approach to
soil nutrient storage simulation in the ARM Model is quite satisfactory.
The simulation of plant uptake storage also appears to te adequate. The
monthly uptake factors and plant uptake reaction rates were versatile enough
to produce the desired results. The crop uptake was calibrated based on
observed crop growth and estimated total uptake. The distribution of the
estimated total uptake was also based on the observed crop growth and was
accomplished by using the monthly uptake factors.
MODEL IMPROVEMENTS AND FUTURE RESEARCH
As shown by the simulation results, the ARM nutrient model can
satisfactorily represent the behavior of soil nutrient storages of most
nutrient forms. Further testing of the current algorithms should be done
before major changes are made. Sensitivity tests on the effect of reaction
rate changes to soil storage changes under field conditions are needed.
Likewise the effects of temperature changes on soil storages also need to be
studied. More testing on different watershed soil and crop conditions is
necessary to further evaluate the general applicability of the model.
Testing and analysis of surface zone transformations and their impact on
surface runoff and leaching processes is a major topic for future research.
Changes should be made on the surface zone simulated behavior as indicated
by future testing.
As further testing of the nutrient storage simulation is done, modifications
may be needed to improve the model's applicability under varying field
conditions. One of the first considerations should be to introduce the
effect of moisture and oxygen content on the reaction rates. This would be
needed if denitrification is significant. Also the effect of pH and carbon
content may vary enough under some conditions to significantly influence
reaction rates. Nitrogen fixation, ammonium uptake by plants, ammonium
volatilization, and nutrients in precipitation could be introduced into the
model. However, since these factors would further complicate application of
the model, they should not be introduced until needed.
The simulation results and model development have uncovered specific areas
where more field research is needed. For example, first-order reaction
rate values applicable to field conditions are a major deficiency in the
current literature. Also research is needed to develop more quantitative
relationships between first-order reaction rates and various environmental
factors (moisture, oxygen, pH). Most importantly, nitrogen and phosphorus
uptake by different crops under field conditions needs to be described in a
more quantitative manner. As this research is accomplished, the developed
relationships could be incorporated into the ARM Model to allow more
accurate and reliable modeling of soil nutrients.
82
-------
SECTION 9
RUNOFF AND SEDIMENT SIMULATION RESULTS
The P2 and P6 watersheds were selected for simulation testing of the ARM
Model because both pesticides and nutrients had been applied and then
sampled in the runoff and the soil profile. Both are nonterraced
watersheds and P6 is the larger of the Michigan watersheds. Also the data
collected on these watersheds contained a minimum of inconsistencies and
errors. This combination of requirements provided the best conditions in
which 'to test all components of the ARM Model. Model testing for runoff and
sediment loss was performed on the P2 watershed for the period of record,
May 1973 through September 1975. The P6 watershed was simulated from May
1974 through September 1975. Data for the P6 watershed prior to May 1974
was questionable due to uncontrolled seepage under the outflow weir. This
was corrected in April 1974.
Simulation of hydrology and sediment processes must be sufficiently accurate
to allow evaluation of the pesticide and nutrient simulation results.
Pesticides and nutrients are transported from the watershed either in
solution in the runoff water or adsorbed onto eroded sediment paricles.
Thus, pesticide and nutrient runoff results are dependent on the simulated
runoff and sediment loss. Similarly, the simulated vertical movement of
pesticides and nutrients in the soil profile depends on the model's
representation of infiltration, percolation, and soil moisture processes.
Although the agreement between simulated and recorded runoff and sediment
loss discussed below is generally good, discrepancies do exist. Some are a
result of problems or errors in data collection and analysis. Such obvious
errors must be considered when evaluating simulation results. Others are
due to limitations of the hydrology and sediment algorithms of the model.
Recommendations on how these limitations can be overcome and where
additional research is necessary will be discussed at the end of this
section.
P2 WATERSHED SIMULATION
A monthly volume comparison of simulated and recorded runoff on the P2
watershed (Figure 9.1) shows that the simulation of runoff is good for the
important summer months. In the winter months (December through March)
there is the tendency to over simulate runoff. This happens because of the
new set of calibration parameter values used since the initial calibration
of the Georgia watershed (the calibration parameter values can be found in
Table 9.1). The major changes made were in the values of UZSN and INFIL.
The input value of UZSN (upper zone nominal storage) was increased from 0.05
83
-------
TABLE 9.1 INPUT FOR THE P2 AND P6 WATERSHEDS
Parameter
Hydrology
UZSN
LZSN
L
SS
NN
A
EPXM
PETMUL
K3
January
February
March
April
May
June
July
August
September
October
November
December
INFIL
INTER
IRC
K24L
KK24
K24EL
KV
Snow
RADCON
CCFAC
SCF
ELDIF
I DNS
F
DGM
we
MPACK
EVAPSN
MELEV
TSNOW
(continued)
P2 Watershed
Original
0.05
18.0
200.0
0.025
0.20
0.0
0.12
1.0
0.30
0.30
0.30
0.40
0.40
0.50
0.70
0.80
0.60
0.50
0.40
0.30
0.50
0.70
0.0
1.0
0.6
0.0
0.0
P2 Watershed
Revised
0.50
18.0
100.0
0.025
0.20
0.0
0.12
1.0
0.30
0.30
0.30
0.40
0.40
0.50
0.70
0.80
0.60
0.50
0.40
0.30
0.10
0.59
0.0
1.0
0.6
0.0
0.0
P6
Watershed
0.20
9.00
60.0
0.06
0.20
0.0
0.12
1.0
0.20
0.20
0.20
0.20
0.30
0.30
0.50
0.45
0.40
0.30
0.20
0.20
0.30
0.80
0.0
1.0
0.0
0.0
0.0
1.0
1.0
1.4
0.0
0.14
0.0
0.0
0.03
1.0
0.4
892.0
32.0
84
-------
TABLE 9.1 (continued)
P2 Watershed
Parameter Original
PETMIN
PETMAX
WMUL
RMUL
KUGI
Sediment
COVPMO
January
February
March
Apri 1
May
June
July
August
September
October
November
December
TIMTIL,YRTIL,SRERTL
(max. of 12 events)
115
114
JRER
KRER
JSER
KSER
SCMPAC
Initial Conditions
Date
UZS
LZS
SGW
GWS
ICS
OFS
IPS
PACK
DEPTH
SRERI
0.60
0.60
0.60
0.60
0.00
0.15
0.60
0.85
0.75
0.60
0.60
0.60
,74,1.0
,75 2.0
1.90
0.08
1.30
0.25
0.02
5/11/73
0.10
19.5
0.0
0.0
0.0
0.0
0.0
2.0
P2 Watershed
Revised
0.60
0.60
0.60
0.60
0.00
0.15
0.60
0.85
0.85
0.60
0.60
0.60
115,74,1.0
114,75,2.0
1.90
0.08
1.70
0.50
0.02
5/11/73
1.0
24.0
0.0
0.0
0.0
0.0
0.0
2.0
P6
Watershed
35.0
40.0
1.0
1.0
0.0
0.00
0.00
0.00
0.00
0.00
0.05
0.55
0.90
0.90
0.80
0.00
0.00
140,74,1.0
136,75,0.8
2.2
0.15
1.40
0.50
0.001
5/20/74
0.50
11.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
85
-------
to 0.50 while INFIL (the mean infiltration rate) was decreased from 0.50 to
0.10. These changes produced compensating effects and were necessary to
achieve more reasonable soil moisture storage values for simulating vertical
transport of solutes. By changing these parameters more runoff was
simulated during the winter months. By lowering the value of INFIL less
water could infiltrate and thus more was available for runoff. The
long duration, low intensity winter storms allowed the lower INFIL value to
have a pronounced effect. However, the summer runoff was not substantially
changed due to the high intensity, short duration summer thunderstorms and
the higher upper zone moisture storage maintained by the higher UZSN.
Actually, the revised parameters (higher UZSN, lower INFIL) do not as
accurately represent the summer thunderstorms as the original parameters
because of the lesser effect of INFIL on these short duration.intense
storms. Moreover, it is questionable whether infiltration and subsurface
characteristics can be accurately calibrated on these small watersheds.
Bruce, et al. (1976) have concluded that the surface soil horizon (0-18 cm)
basically determines the infiltration and resulting runoff characteristics
for a major portion of a runoff event on these small Georgia watersheds.
Subsurface characteristics do not effect infiltration until 30-40 minutes
into an event. Consequently, the simulated impact of the summer
thunderstorms is more dependent on UZSN than INFIL. The revised parameter
values are a compromise between runoff and soil moisture simulation. They
adequately represent the runoff for the summer months and give more
reasonable soil moisture storages values. For these reasons the new set of
values was selected over the old.
This conflict between hydrology parameter values best suited for surface
runoff and those best for soil moisture storages has not been completely
resolved. The IANDS section of the ARM Model was not originally designed to
accurately simulate detailed soil moisture movement. Nor is a simple
solution available. A detailed discussion of this problem is in Section
6.
Although the P2 watershed monthly simulated and recorded sediment loss
(Figure 9.1) compare reasonably well, problems do exist. The 1974 recorded
sediment loss is lower than the other years. In 1974 tillage and planting
occurred in late April and the first major sediment producing event occurred
about 60 days later. In 1973 and 1975, tillage and planting was in mid-May
with the first major event about 15-20 days later. Thus, the extra lag time
and intervening changes on the watershed in 1974 appears to be the major
factor for the lower sediment loss.
Sediment loss as represented in the model, results from rainfall detachment
of soil particles and transport of these particles or fines to the stream by
surface runoff. In addition, production of soil fines by tillage operations
significantly contributes to the total fines available for transport. As
shown in Figure 9.1, the major sediment loss occurs within 2 to 3 months
following tillage operations. Changes in crop canopy and settling and
compaction of the soil surface are the major processes occurring in this
intervening period that determine the sediment-producing impact of the first
event following tillage. The ARM Model accepts 12 monthly crop cover values
86
-------
FINES DEPOSIT
tonnes/ha
I I
-o
OJ
.c
to
0)
to
CM
Q.
0)
m
^ §
CO
o
3
S-
zs >,
^^**% _
CTl
O)
S-
3
CD
fSSiSSS^SSSSSSSS^^^^
§
CM
87
-------
for the first day of each month; crop cover on any day is determined by
linear interpolation. Thus for multi-year simulation runs the crop cover is
the same for corresponding days in each year of the simulation. For the P2
watershed, the average cover calculated by this procedure underestimates the
crop cover in 1974 and overestimates the cover in 1973 and 1975. This
effect contributes to the differences in Figure 9.1. Separate calibration
runs with different cover values for each year would improve the agreement
between the simulated and recorded sediment loss.
To account for the settling and compaction of the soil surface following
tillage, a new parameter SCMPAC has been added to the ARM Model to decrease
on each nonrain day the amount of fines available for transport. SCMPAC is
essentially a first-order decay parameter that reduces the soil fines
storage in the following manner:
SRER(T) = SRER(T-1)*(1.0 - SCMPAC) (9.1)
where SRER(T) = soil fines storage on day T, tonnes/ha
SRER(T-l) = soil fines storage on day T-l, tonnes/ha
SCMPAC = soil compaction factor, day"1
On the watershed the decrease in soil fines is due to natural settling and
aggregation of particles, and compaction by rainfall and agricultural
operations. These processes are complex functions of soil characteristics,
meteorologic conditions and agricultural practices. The use of the SCMPAC
parameter is a simple approximation of the overall impact of the above
processes within the scope of this project. Future research should consider
more detailed methods of representation.
A SCMPAC value of 0.02 for the P2 watershd helped to reduce the fines
storage and resulting sediment loss in 1974. Even with this compaction rate
the simulated sediment loss in 1974 was substantially greater than recorded.
Within the limitations of the sediment model, the only remaining option was
to assume that tillage operations in 1974 produced less fines than in 1973
and 1975. Thus, the sediment simulation results in Figure 9.1 are based on
2.24 tonnes/ha of fines produced by tillage in 1974 and 4.48 tonnes/ha in
1973 and 1975. This further points out the need to investigate the impact
of tillage on sediment fines production.
With the above adjustments, the individual hydrographs and sediment graphs
for the P2 watershed show good agreement between simulated and recorded
results for the major storms during the summers of all three years (Figure
9.2-9.4). Other storm event graphs for the P2 watershed can be found in
Appendix B. However, the effect of tillage in dampening the peak of the
recorded hydrograph and retarding the overland flow is noticable in the
storms of May 24, 1974 and June 11, 1975 (Figure 9.3 and 9.4, respectively).
The hydrologic algorithms included in the ARM Model do not handle this
man-made phenomenon. Thus, over simulation of early season storms is to be
expected. Storms occurring later in the crop season when the soil has
become compacted do not exhibit this problem. In general, an accurate
runoff simulation will produce reasonable sediment simulation results on the
P2 watershed. Tillage and other man-related activities (terracing, contour,
88
-------
0.30
0.20
l/l
E
o
0.10
en
co
co
O
UJ
s:
»—!
Q
UJ
CO
CO
CO
O
O
UJ
CO
150
120
90
60
30
16
12
8
4
I I
RECORDED
SIMULATED
—1-
0340
0420 0500
TIME, hours
0540
Figure 9.2 Runoff and sediment loss from the
P2 watershed for the storm of May 28, 1973
89
-------
0.10
0.08
o
„ 0.06
u_
I 0.04
C£
0.02
63
54
c
'i
OO
t/0
O
Q
RECORDED
SIMULATED
cr>
t/0
o
Q
LU
I/O
45
36
27
— \
5 18
~nr~r
\ A I
/l
/ I
/ i
/ i
r »
0420 0500 0540 0620
TIME, hours
0700 0740
Figure 9.3 Runoff and sediment loss from the
P2 watershed for the storm of May 24, 1974
90
-------
to
O
0.30
0.25
0.20
0.15
0.10
0.05
280
240
= 200
E
01
"*. 160
oo
O
Q
LU
00
OO
00
O
O
LU
OO
120
80
40
12
8
4
, RECORDED
SIMULATED
-iT
1825 1905 1945
TIME, hours
2025
2105
Figure 9.4 Runoff and sediment loss from the
P2 watershed for the storm of June 11, 1975
91
-------
planting, grass waterways, etc.) disturb the hydrologic characteristics of a
watershed as stated above. Further research is needed to fully understand
how these management practices affect runoff and how their influence can be
incorporated into the LANDS segment of th ARM Model.
P6 WATERSHED SIMULATION
Like the P2 watershed, the monthly runoff and sediment loss simulation for
the P6 watershed is generally quite good (Figures 9.5). However, problems
with the simulation of snowmelt and runoff during the months of February and
March 1975 are evident. These problems, which result in an under simulation
of runoff during these months, are attributed to difficulties in properly
simulating snowmelt. During winter periods frozen ground conditions
severely decrease infiltration rates resulting in greater runoff than would
otherwise occur. Also, temperature gradients in the soil profile can result
in upward movement of moisture that would be available for runoff during the
thaw periods.
Although the ARM Model snowmelt routine decreases infiltration for freezing
conditions, the complex frozen ground processes that determine the resulting
snowmelt and runoff are not adequately represented. Thus, the simulated
runoff is considerably less than recorded for February and March 1975.
Research is needed to better understand how this phenomenon of frozen ground
can best be simulated.
Except for April 1975, monthly sediment loss on the P6 watershed compared
well between the simulated and recorded results, as shown in Figure 9.5.
The April discrepancy is due entirely to simulation of the April 18 storm
(Figure 9.6). Runoff during this storm is simulated quite well while
sediment is grossly under simulated. The low sediment concentrations for
this storm are due to more sediment fines on the watershed available for
transport than was simulated by the sediment algorithms. Freeze-thaw cycles
during the winter could have produced fines which were washed from the
watershed during this first major spring storm. Also, detachment or scour
by runoff, which is not presently simulated, likely contributed to the high
recorded sediment concentrations especially with the saturated surface soil
conditions existing on the watershed. Detachment by runoff is a significant
mechanism to some degree on most watersheds. Its incorporation and
simulation in the ARM Model would allow better representation of the highly
variable nature of erosion, and should be the next major improvement to the
sediment algorithms.
Except for the April 1975 storm the simulated and recorded runoff and
sediment loss (Figures 9.6 and 9.7 and Appendix C) for individual storm
events is generally quite good. However, some events (not included) exhibit
a problem with the areal variation in rainfall. The two adjoining
watersheds, P6 and P7, are a good example of how areal rainfall variation
can make simulation difficult. One raingage was used for both watersheds.
Runoff from each watershed was measured separately. The runoff record from
P7 is different from the neighboring P6 watershed. The model assumes that
the recorded rainfall falls uniformly over the entire area, and produces
runoff in response to this uniform rainfall. But in fact thunderstorm
92
-------
6
E
LL
U_
O
D
cr
I
O)
LU
CO
100
75
25
5000
4000
co
CO
Q 3000
5 2000
1000
0
i
i
_n
\ \
\ \
I _
\\ \ 1 1
I 1 I 15,8001 I
I I
RECORDED
SIMULATED
~ m_ i^ ^~i i „— — m \ m~* m-> m \ -r-\ w*~ — ™ V
Jlj I A I slTlTlTl J I F iTl A I M I J iTl A IT
1974 1975
Figure 9.5 Monthly runoff and sediment loss
from the P6 watershed
93
-------
0.15
0.12
- 0.09
LJU
l_u
O
§ 0.06
0.03
c
•r-
e
CD
#i
oo
O
e
en
c/o
co
O
o
LU
oo
160
120
80
~ 40
O
LJ
oo
35
~ 30
25
20
15
10
5
I V \L
I I I
—•— RECORDED
SIMULATED
1 I
1720
1900
2040
2220
2335
Figure 9.6 Runoff and sediment loss from the
P6 watershed for the storm of April 18, 1975
94
-------
0.30
0.25
o 0.20
t 0.15
o
i o.io
0.05
120
c 100
UJ
OO
OO
(S)
o
00
E
en
80
60
40
20
10
RECORDED
SIMULATED
I ~
--L
1415
1455
1535
1615
1655
Figure 9.7 Runoff and sediment loss from the
P6 watershed for the storm of August 20, 1975
95
-------
rainfall, typically seen in the summer at the watershed sites, is not
uniform but intense and localized. Consequently, the accuracy of the
simulation decreases as the amount of areal variability of the rainfall
increases. An understanding of this potential problem is vital in reviewing
the runoff and sediment loss results of the P6 watershed.
A discussion of the runoff and sediment loss simulation is not complete
without mention of mass removal and concentration graphs when viewing
sediment loss results. Concentration (measured in mg/1) fluctuates
according to the amount of runoff water available. It is an indication of
the importance of the possible pollutant (in this case sediment) in the
waterway and directly influences the quality of the receiving waters. This
type of measurement is important in streams containing water year-round, as
the organisms in the streams are sensitive to changes in concentrations of
pollutants and particularly toxic substances. However, the streams in the
P2 and P6 watersheds exist only during storm events. They receive no
groundwater and therefore are simply dry waterways when surface runoff and
interflow are not occurring. In cases like these, mass removal (kg/minute)
is a better indicator of the effects of watershed management and the
pollutant loss expected from different events and practices. Mass removal
also shows a direct connection between the pollutant loss and its transport
mechanism, runoff. Thus, it is a good indication of the ability to simulate
the combined runoff-sediment loss process.
SUMMARY
A review of the simulation results of runoff and sediment loss on the P2 and
P6 watersheds shows that they are reasonable and can be used to evaluate
pesticide and nutrient runoff simulation. Problems that are present in the
results have been isolated and discussed. Some (e.g., areal variability of
rainfall) cannot be corrected without major additions to the ARM Model and
the data collection procedures. Other problems can be solved with further
research and development of simulation, methods. Detachment of soil fines by
runoff can and should be included in the model. The development of such
algorithms should be a major priority in future research. Simulation of all
the erosion processes by particle size should be investigated to evaluate
the potential benefits for the simulation of sediment, pesticide, and
nutrient transport as a function of particle size. Such work would be
especially beneficial to coupling the ARM Model to a stream transport model
to simulate sediment and attached pollutant movement throughout a watershed.
Research is also necessary for a more complete modeling of the effects of
agricultural management practices on both runoff and sediment loss.
Parameter changes that reflect different agricultural activities need to be
quantified. In addition, parameters that are directly affected by these
activites may need monthly or seasonal values. This has been done for crop
cover (COVPMO) and index to actual evaporation (K3) in the current version
of the model. Investigation of seasonal variations for nominal upper zone
storage (UZSN) and infiltration (INFIL) should be undertaken.
96
-------
SECTION 10
PESTICIDE RUNOFF SIMULATION RESULTS
The pesticides paraquat (1,1'-dimethyl -4,4-bipyridinium ion) and atrazine
(2 - chloro-4-ethylamino-6-isopropylamino-s-triazine) were applied to both
the P2 and P6 watersheds during the 1973-1975 growing seasons. These
pesticides have been simulated by the ARM Model and the amount of pesticide
runoff compared with recorded data. This section discusses the pesticide
simulation results and the problems encountered along with conclusions and
recommendations related to pesticide simulation.
Paraquat is a highly ionic herbicide that rapidly and irreversibly adsorbs
onto sediment particles. Thus, the amount of paraquat washed off a
watershed is directly related to the amount of sediment eroded. By
comparison, atrazine both dissolves in water (35 ppm) and adsorbs on
sediment. Thus, the study of atrazine allows the comparison of the
single-valued (SV) and nonsingle-valued (NSV) adsorption/desorption
pesticide functions. Evaluation of these functions is important as the
majority of pesticides are transported by both runoff and sediment. The
division between the water and sediment phase is critical to the evaluation
of the potential pollutional impact of different pesticides. Highly soluble
pesticides will infiltrate deeper into the soil profile than less soluble
ones. Soluble pesticides will be affected by practices reducing runoff
while soil erosion control will limit the wash off of pesticides transported
on sediment particles. Thus, determining the ability of the SV and NSV
algorithms to correctly divide a pesticide between its adsorbed and solution
phase coupled with an accurate degradation approach is essential to a good
simulation of pesticide runoff.
MONTHLY SIMULATION RESULTS
The comparison of monthly simulated and recorded runoff amounts of paraquat
on the P2 watershed (Figure 10.1 and Table 10.1) is good. Paraquat, as
noted above, is not found in solution and, therefore, is dependent on eroded
sediment as its transport mechanism. Paraquat simulation is high compared
to the recorded data in May and June, 1974. A review of the P2 sediment
loss simulation will show that these months are over simulated for sediment
loss. Thus, a better simulation of sediment removed on the P2 watershed
will result in closer agreement between simulated and recorded paraquat
removal for this period.
The P2 atrazine results also show a good comparison between simulated and
recorded monthly runoff values (Figure 10.1 and Table 10.1). Figure 10.1
also shows the results of using both the SV and NSV algorithms for atrazine
97
-------
in
ro
O)
uj
Z
N
<
QC
5
80
60
40
ISO
<=>
1 1
1 I I I T I I I I
SEDIMENT RECORDED
SOLUTION RtLORDEO
SSI7 SIMULATED'NSV
num SIMULATEIUV
ItfL
M I J I J I A I
1973
I M I 1 I J I A I
1974
I M I J I J I A
1975
300
in
(D
i_
O)
I
200
100
RECORDED
SIMULATED
M'J 'JTArs' ii
1973 1974
1975
Figure 10.1 Monthly pesticide removal from the P2 watershed
98
-------
a
UJ
T-
co
a:
I—
3
CM
CL.
UJ
•7-
*
| —
O
|j_
1—
CO
UJ
0:
•z.
o
1 —
1
2;
co
1 1
II
^
— ^
^
UJ
pT
O
IT— t
|—
C/)
UJ
Q-
.
f
O
1 1 1
i
CQ
r|_
"O
cu
+j ^-^
ro "a
t — »-—^
re
E
•I—
CO -— -
> "cu
co to
CU ' —
c
•r*
N
ro
+-> ^ — s
<: c i —
00
•i- tO
1 > ^^ ^
ro
3
•i—
CO s-^
> J- CM LO O CM ^J" r**-. ^> LO O CM
cr> CM i— i T— i LO cnvo^i— i I-H co co CM »— i t— i
CM CO t-H CO CM CO
oocoi — oo co cor-sr-»LOO CM OI-HLOLOO vo
OOCM i— 1 CM ^i- CM OCMCTlCM CO
r-l CM i-l r-l CM
r~~OOOOO LO Cfit— IOOO O t-HOOOOO CTi
CM CO t-i
r-HOOOO i-H OOOOO O OOOOO O
^3 ^d" ^3 ^Z) C^ "^" ^^ C3 ^3 C^ O? r*** ^™^ CX3 C3 c j cr^ (.ji
LO LO
CMOOOO CM OOOOO O OrHOOO t-H
LO LO t— 1 O O t-H UDr-HOOO !>-» i-HOOOO t-H
Lfi ^^ i™H t^H
O •— I O O O t-H t-HOOOO i— 1 i— It— IOOO CM
r-H t-l
>, c i— en D. r— >> c r— en a. r- >, c r— en a. r—
(0333OJ (O (O333CU fO (O333CU ro
SlOOeCCO 4-> S'-D'~3 S:i~3rO
000
1— r- 1—
CO «d" LO
en en en
t— 1 1— 1 t— 1
c-
o
*"
H-^
rO
3
C •!-
O to
•r—
4-> C
Q. 0
S- •!-
0 4->
tO C.
CU i-
T3 O
•v^ tO
c cu
o -o
•< — * —
+J c
o_ o
S- T- E
0 -P S-
to a. o
-as- »»-
rd O
tO TD
•a -a cu
CU ro -Q
3 i-
r— "O E O
ra CU &- to
> 3 o -a
1 r— f- (O
CU ro
r— > C 4->
en i o c
C CU -r- CU
•r- r— 4-> E
to en 3 T-
C C r— -O
O'f- O CU
c: to to to
1 1 1 1
» r- -0
oo co o a>
z: to to
• •
to
cu
^.j
o
99
-------
simulation. In addition, a breakdown is given for the recorded atrazine
transported in solution and on sediment. Atrazine runoff results for SV and
NSV algorthms differ little except in the first summer: May and June of
1973. However, looking at all three summers when atrazine was applied on
the P2 watershed the NSV results generally look better than the SV results
in terms of removal in solution, which is the major removal mechanism.
Little atrazine is removed on sediment (less than .15 percent of the total
amount of atrazine removed). For the comparison of NSV and SV's ability to
simulate atrazine removal on sediment, the NSV results produce more removal,
although less than recorded. But because of the small amounts of atrazine
measured as removed from the P2 watershed it cannot be said that the results
are conclusive. Also, problems arise from the variability in determining
the value for K in the Freundlich adsorption/desorption algorithm. Because
of the lack of laboratory data evaluating the Freundlich constants for the
watershed soils exact values have not been determined. Moreover laboratory
determinations will often produce a range of values. This variability in K
hinders evaluation of the relative merits of using either the SV or NSV
algorithm.
A further complication, but one which tends to support the concept of NSV
adsorption/desorption, is the relative change in partitioning of runoff
atrazine between the adsorbed and solution forms during the growing season.
Recorded data has shown the pesticide's tendency to adsorb onto sediment
particles increases with time after application. NSV adsorption/desorption
will produce the same phenomenon, but it is not clear that this is the
mechanism responsible for these observations in the field data. More
laboratory research into this question is necessary to verify this
observation and the physical and chemical reasons behind it.
The simulation of paraquat and atrazine on the P6 watershed (Figure 10.2 and
Table 10.2) was not as good as the P2 pesticide simulation. Paraquat runoff
results are acceptable, except for the month of August, L975. Sediment
removal for this month is high; paraquat removal is higher. However, it is
difficult to determine where the problem lies. Review of paraquat data
collected from soil core samples and discussion with EPA personnel familiar
with the sampling program on the P6 watershed indicate that the recorded
data must be viewed with caution. Uncertainty in the accuracy of this data
makes evaluation of the pesticide results difficult.
The monthly atrazine runoff results on the P6 watershed show even less
resemblance between the simulated and recorded values them was the case for
paraquat. The accuracy of the recorded data can be questioned, but other
problems are also evident. Runoff is over simulated in May 1974 due to the
hydrologic impact of plowing and planting operations not being represented
in the model. The storm on May 29, 1974 occurred eight days after
application and removed all of the atrazine for the month of May. For this
storm there was a large amount of atrazine available for runoff in the
surface zone and it was simulated as running off in solution during this
storm. Atrazine was again applied in November, 1974. This application was
followed by cold weather and snow. The lowered temperatures decreased the
rate of biological degradation (although there is no soil core data to
confirm this hypothesis) and more atrazine was then available for runoff
100
-------
180
160
140
CO
1 ;
o>
4 40
N
<
£ 30
<
20
10
n
—
^
s
r
-*
a
r*J
-C
1 1 1 1 1
'
•
^
.'•:•':•'
.r^rLFL Jtl
II 1 1 1 1
™ RECORDED
SEDII
SOLU
SEDII
SOLU
MFNT
""' SIMULATED, NSV
JJJJ SIMULATED, SV
*l
J n 1 IL ."
1974
1975
200
160 -
CO
I 120
en
I
80 -
40 -
1 1 1 1 1 1 1 1 1
BKCORDED
gg| SIMULATED
-
—
P
-r— -. 1
1 M '• J 1 J ' A ' S ' 0 ' N ' D 1 J
1974 19
'
7!
1
1 F ' M
I
1
1
1
1
1
1
/
^
\
1 1
_n 1^
>M< J i j i
K
1
A
1 1
—
—
—
'S I
Figure 10.2 Monthly pesticide removal from the P6 watershed
101
-------
Q
UJ
~r*
oo
rv
UJ
1—
to
Q.
UJ
:n
h-
ce:
o
LL_
-yr
o
i — t
i —
i
*^-
HH
00
U-
U-
o
5
o:
UJ
Q
1— 1
o
I-H
1 —
oo
1 1 t
Q.
C\J
.
o
, — 1
UJ
CO
1 —
01
re T3
i — CJ
13 to
r- v ^
ffmm
-M 00
3
cr
s_
(O
Q. -0
O)
"O • — -
i. T3
O O)
O to
c
o » — -
+J O
ro to
3
E
OO T3
Qj CJ
c > to
•r- 00 ~— '
N
i- O — >
<: -M o
t/1
00 - —
^^^
t
"T^ ^5
O) tO
~o —
s-
o
O '— ^
(U T3
to
UOOOCOOJOCMO
CNJ
CO CO Ol to
i— t
o^
o
CO
ooocnoooo
CTI CMvooor^ocoor-xO
i—l i— 1 r— < C\J
i— i
oo
CO
I-H
CMi— li— IOOOOO
LO
T-H
^- CMOOOOr-iOOO
un
.— *
oo
coooooooo
CO OOOOOOOOO
o
f""^ i~^ i~H r^ f^ ^^ r~^ ^^
CO
O1 CMOOOO>— IOOO
CO
CO
I— 1 r— 1
COOOOOOOO
CO OOOOOOOOO
o
t
1
0000.-IOOOO
^" «^" O"i to UO O • — i O ' — I O
,-H
to
CO
OO<— ICVJOOOO
00 OOr-tLOOOOOO
VO
>,Cr— COCL-t-J>(J r— CJ3S_l->>C!— D1Q.
«333O)OO<1) 13 rO
T— 1 1— 1
c
o
•'•"
ro
^
E
C -r-
O l/>
•r-
+-> c
Q- 0
S- -r-
O -4^
t/5 Q.
0) i-
•o o
"^^ to
C 0)
o-o
"•M 'c'
CL O
S_ -r- E
O 4-> S-
00 O. O
t3 i- 4-
rO O
t/) "O
-o-o cu
CLJ fO -Q
3 S_
i — T3 E O
H3 OJ S- to
> =3 0 -0
1 i — M- C 4->
CD 1 O C
•r— i — •*-> E
tO O^ 3 *r—
c c i— -o
O •!- O O)
E CO to > r- T3
OO OO O
z: oo oo
. .
to
0)
o
c
102
-------
during warm melt periods later in January, February, March, and April of
1975 than simulated. A biologically oriented degradation approach which
uses soil temperatures would be better able to handle this problem of
pesticide winter application and degradation.
STORM EVENT SIMULATION
An analysis of individual pesticide runoff events on the P2 watershed soon
after application shows that they match recorded results very well (Figures
10.3-10.5). The paraquat simulation (Figure 10.3) matches the sediment
simulation for the storm of May 28, 1973, as one would expect. Atrazine
removal by sediment for this event is low (Figure 10.4), but still within
the range of accuracy required. But even with the use of NSV adsorption/
desorption the amount of atrazine removed is not as great as was recorded.
Simulation of atrazine removed in solution is excellent however.
It can be seen at later events after application (Figures 10.6) that the
simulated amount of atrazine is not as great as that recorded. The reason
for the small amount of atrazine runoff is that only a relatively small
amount is available for runoff. Atrazine (and other soluble pesticides) can
be removed from the watershed by transport on sediment particles eroded from
the surface zone, runoff in overland flow interacting with the surface
layer, and runoff in interflow coming from the upper zone. Interflow
contributes less than overland flow/surface runoff in transporting atrazine
from the watershed. For the P2 watershed interflow contributes from 21
percent (NSV adsorption/desorption) to 48 percent (SV) of the total atrazine
removed. This compares to 74 percent (NSV) to 51 percent (SV) for atrazine
removed by surface runoff. This fact, combined with knowledge that the ARM
Model permits soluble pesticides to percolate faster from the surface zone
to the upper zone than is actually observed (Figure 10.7), results in an
understanding of why the simulation of atrazine runoff decreases in accuracy
with time since application. Retardation of soluble pesticide movement from
the surface to upper zone (perhaps in the same manner as is done for solute
leaching from the upper to lower zone) would keep more pesticide available
on the surface for runoff and sediment transport.
Additional pesticide runoff simulation results for paraquat and atrazine for
the P2 watershed will be found in Appendix B. Appendix C contains
individual paraquat and atrazine runoff results for the P6 watershed.
Tables 10.3 and 10.4 provide the pesticide parameter values and the amount
of pesticides applied on the two watersheds.
SUMMARY
A review of the pesticide runoff simulation results show that while in
general the results are good, problems still exist. Solution pesticides
show greater variability than the adsorbed forms and are not simulated as
accurately with the ARM Model. A better understanding of the movement and
interactions of soluble pesticides in the upper layers of the soil is needed
to better simulate their transport by surface runoff and interflow.
Pesticides attached to sediment are relatively stable and are simulated
103
-------
O 00
ULW/UI6 '3NIZVH1V
CD
1 T
o
O UJ
LU I—
O •=£
o: _i
o ;3
C\J
-P
_
S
00
(O
1
o>
s-
I
(O +J
re s_
0. o
tr>
-
104
-------
uiui/uiB '3NIZVc)lV
OJ
o +J
1 1 1 1 1
o
UJ
— _l UJ —
0 >• CD I
INJ
O
CVJ
0
o
0
CVJ
UJ I
O UJ
a: —i
o is
o z
UJ t—i
a: to
f-.
CM
cu
o
LT>
CO
O
i—I
CO
o
n
CVJ
M-
O
O
01 CM
i- -C i—
4-5
N :
t3
LU I Z
Q UJ i—i O
a; —11/} uj
o o :=>
(J Z Z —I
UJ >-i O <
Ct l/> Z >
I I I
*-——. -
o
o
O
CM
CO
O
C\J
O
'3NIZ\/aiV
CD
.c
•tJ
§ro
r>»
s- en
c «
O 00
•i- CM
4->
3 >>
r- fO
o s:
10
<4-
C O
n3 O
> -!->
o to
CO
5-
cu
o
-------
en
o
M
O
2
Q.
O-
CD
UJ
O
M
Q:
UJ
t i
"I
I
• FIELD SAMPLES
SIMULATED AMOUNT
L 1
11
A
i \
I k±_
APR 25 MAYS MAY 13 MAY 24
JUNE 13
JULY 3 JULY 15
1974
Figure 10.7 Atrazine in soil storage by zone
on the P2 watershed
106
-------
TABLE 10.3 PESTICIDE PARAMETER VALUES
P2 Watershed
Atrazine Paraquat
CMAX
DD
K
N
NP
KDG1
KDG2
SZDPTH
UZDPTH
BDSZ
BDUZ
BDLZ
UZF
LZF
0.000035
0.0
2.0
1.0
2.3
1.10
0.04
0.125
6.125
99.9
99.9
99.9
3.0
1.5
0.000010
0.0003
120.0
2.0
4.6
0.002
0.002
0.125
6.125
99.9
99.9
99.9
3.0
1.5
P6 Watershed
Atrazine Paraquat
0.000035
0.0
4.0
1.0
2.3
0.05
0.05
0.125
6.125
63.7
72.4
99.0
1.0
1.0
0.000010
0.0003
120.0
2.0
4.6
0.002
0.002
0.125
6.125
63.7
72.4
99.0
1.0
1.0
TABLE 10.4 PESTICIDE APPLICATIONS
Watershed
P2
P6
Date
5/11/73
7/29/74
5/21/75
5/11/73
4/29/74
5/21/75
5/22/74
11/8/74
5/17/75
5/22/74
11/8/74
5/17/75
Pesticide
atrazine
atrazine
atrazine
paraquat
paraquat
paraquat
atrazine
atrazine
atrazine
paraquat
paraquat
paraquat
Target Rate
(kg/ha)
3.36
3.36
1.68
1.53*
1.53*
1.53*
4.50
2.25
2.25
1.12*
1.12*
1.12*
Monitored Rate
(kg/ha)
3.81
1.54
2.36
2.45
1.93
3.95
3.00
1.38
1.22
1.29
1.78
* computation based on dichloride salt
107
-------
considerably better than dissolved pesticide forms. The accuracy of the
simulation depends on how well the surface zone and degradation mechanisms
are represented. If erosion by particle size is to be implemented
(discussion in Section 9) adsorption and desorption of pesticides onto
sediment by particle size should also be included. Research has
demonstrated a preference of certain pesticides to adsorb onto sediment
dependent on particle size and composition. If the ARM Model can take
advantage of this knowledge the simulation of pesticides may be improved.
The relative accuracy of using the NSV adsorptiort/desorption approach
over the SV approach cannot be demonstrated until the constants used in the
Freundlich equations (K, N, and NP) are determined with more accuracy.
Thus, it is recommended that laboratory analysis of this problem be done
for all pesticides applied on the Georgia and Michigan watersheds and for
these soil types. Once these values are known with more certainty then
a more valid comparison of the relative merits of the NSV and SV
adsorption/desorption algorithms can be made.
A study of the effects of environmental changes on the behavior of
pesticides in the soil would be useful. As discussed in Section 7,
temperature and moisture conditions affect pesticide degradation and
degradation affects the amount of pesticide runoff. At the Michigan P6
watershed it was seen that winter pesticide simulation was poor, probably
because of the model's inability to take into account the effect of low
temperature on biological decay of atrazine. Thus, the ability to
incorporate environmental effects such as temperature arid moisture in
pesticide simulation will allow the use of the ARM Model in a greater range
of climatic conditions.
108
-------
SECTION 11
NUTRIENT RUNOFF SIMULATION RESULTS
The goal of the nutrient modeling effort was to test and evaluate the
behavior of the nutrient model on the Georgia (P2) and Michigan (P6)
watersheds. To accomplish this goal, the hydrology and sediment simulation
results (Section 9) provided the transport mechanisms for the nutrient
runoff simulation discussed below. Section 8 presented the soil nutrient
simulation results which provide the initial conditions and source values
for nutrient runoff components. The coupling of the transport mechanisms
and soil nutrient storages results in the simulation of nutrient
contributions to a stream. This section will present and evaluate the
monthly nutrient runoff and the storm event simulation results and discuss
the overall functioning of the model. It will conclude with a summary of
results and recommendations for further study.
MONTHLY SIMULATION RESULTS
The monthly total removal of nitrogen (N) and phosphorus (P) for the P2 and
P6 watersheds, divided into sediment and solution components, is presented
in Figures 11.1 and 11.2, respectively. The forms of nitrogen on sediment
for both watersheds are illustrated in Figure 11.3, while the forms of
nitrogen in solution are presented in Figure 11.4. Figure 11.5 provides the
simulated and recorded phosphorus in solution for both watersheds. The
corresponding values for these graphs are given in Tables 11.1 and 11.2.
All these results should be considered in light of the simulated runoff and
sediment values given in Tables 11.1 and 11.2 and in Section 9.
The results should be interpreted with the knowledge that the nutrient
related parameters for the P2 watershed were calibrated on both the 1974
and 1975 summer periods. This provided a single set of reaction rates that
were subsequently used for both summer periods. Following the calibration,
the entire period from April 1974 through April 1975 was simulated to
evaluate the model behavior during the nonsummer period. The P6 watershed
was calibrated only on the summer 1974 period. The calibrated nutrient
reaction rates were then used for the 1975 summer period and provided
reasonable results. As on the P2 watershed, a single simulation run was
then made from May 1974 to May 1975 to evaluate the nonsummer simulation.
The nutrient storages, monthly plant uptake fractions, and soil temperature
regression constants were then reset on June 1, 1975 for the summer 1975
simulation.
Some general comments can be made on the simulation of Total P and Total N,
as presented in Figures 11.1 and 11.2 and Tables 11.1 and 11.2. Generally
109
-------
UJ
-T"
co
1 1 1
I—
CSJ
a.
UJ
I—
a:
o
u.
(—
oo
UJ
H-
UJ
h^H
a:
i
j__
ZD
r— 1
i — 1
r— 1
UJ
1
03
I—
o_ ^—
r— d)
IO OO
-*-> *-^
O
t—
ex ••— ^
1 r—
*fr O
o oo
ex. *— • *
»~- * E
0) -r-
et: oo
CTl HD
r-4 X
in en
CM m
CM in
CTl rH
CM
CO «3-
«*• co
•^j-r-
oo r^.
P"^ CTl
f^- CTl
i-H *3"
CM «3"
r-~ vo
CTl «S-
00 CO
1—4
•°*eo
•a- co
CM CTl
r-» CM
r-4 CTl
o in
CTl l-H
r^ CM
CO CO
O rH
oo oo
IO CO
Cvt
en «a-
l— 1 rH
<-> E
OJ •!-
ce. oo
Ol
c
in q-
CTi CO
m co
co in
CM «3-
r~ co
CM
OO fl
vo *i-
CO CO
CM rH
O CM
CO 0
CTl CM
O
rH CTl
UO CTl
CM CO
CM CM
«a- CM
«3- O
O CM
CO
OO CD
O O
O
l-H
tfl ^Q
co o
0 0
5?
(J E
a oo
!>
OO f-.
CO CO
in I-H
CM
O CO
0 — i
i-H CM
CO rH
CO CO
in CTI
CM *3-
in co
en in
CO CM
CM CM
cn in
VO CO
o
in o
i— i «3-
r~ CM
CM CM
•3" CO
CM i-H
00 CM
CO O
•a- «a-
O CM
r-l CM
CM r^
CM CO
rH rH
u E
OJ •!-
o; oo
en
O) (J
oo o
0 O
o o
0 0
00
0 O
O 0
0 O
O 0
O 0
O 0
o o
o o
0 O
0 0
0 O
0 O
0 O
o o
o e
CJ T-
ce oo
o
0 i-l
O 1-H
I-H
CO l-H
O rH
0 CO
f""l ID
CM
VO CTi
in r^
o in
c~i *i"
CM -a-
o ro
CM O
rH O
O CM
0 r-l
T— 4
1-4 VO
0 0
%*
OL 00
o
Ol
o
J3
CM r-4
CTi
1— 1
O r-.
VD VO
•tf-H
l-H l-H
CM in
1—4
u
VO rH
*a- in
in co
CM rH
CM
0 rH
in CTI
CM
0 0
CO VO
<- o
co m
vo
in I-H
rH CO
0 E
CO •!-
o; oo
in
T «3- CO
1 VO CM CO
CJ CO CM
CO VO
CTl CO O
i «a- o vo
in CTI r~-
i—i
r-4 CO «*
I l-H CO rH
CM O VO
co CTI in
CM OO CO
1 VO «3- ^f
in in co
«a- CTl rH
rH CO CM
1 CM CO VO
l-H CO O
rH CM CM
CO •— 1 CO
1 VO in rH
1—4 CM VO
CM VO
CTI in o
1 CO CO CO
CM in r-*
CM CTI co r^
CO 1—4 CTl O
rH in in ^r
CO CO
ro **• I-H in
CTi O CO CO
CM «d- p~
o E us
CO ••- CO •<-
ce oo ce oo
.Q S-
u- s:
O CM
oo r^
CM
CO CO
*3- CO
co in
I-H in
l-H «fr
rH •— 1
*!• VO
in CM
CM r-~
CO rH
•a- co
CM rH
vo in
in r*.
O CO
O CM
en
rH
vn ^~
vo «*•
i-H CM
r-H
CO CM
CM i-H
CM r-~
CM
in en
vo r--
rH CM
0 £
-------
I I—
«*• o
o
o- •—•
Ol
>c
o
•a
ta
0
l/J
r~
co i
co
O
E
-a
•—< co CO r— o •—i CM t—< «tf- CM
CM ^t in o
i—i
*—i to ro m to t*^ CM ^D r*- ^- t—H
coi CM o r*-^3- «=j- CM in co LOO
• «3~ *± r—* »—* t—' *± CM 1—I
o co «3-
f—i
J3 C O U
i-O . . . • . • • • • •
r^ i co m m oo us »-H co r^ LD «^~
i—! CI O to ^i- tf) i—I CO to C\J
• ^ »> »« * f f
C *-H '~^ CXJ O^ ^"
C <-!
cn
OJ
j~l O
co co«a- CMO CMCM COCM oco
c • • • • •
CMI 3 *j- t-H COCM «a~vo "^cc com
p^. s^. i—H p*«. 01 o^ CM p** r*^» ro CM CM
rH CM kO CO ^" •"-* *3~ CT* P** CM
C " ' "
O •—I P^. IT)
(O
13
E (j tj
(/) . . . . . .
coi p-^r-. CC«d- •—-f-H coco .-HP-.
co co f—f co i—i r--.cc
jz inco inco <—t CM CMP--
jj . *
OJ CM
s-
o
•I-J
OJ
§
ai
CT
IO
t-
o
coco
CO
""1°°
co co
a( co
r-~eo
o 01
ro co
CMCO CT»CO
C t—ft—< O1 *± CM »—4 LT>
•c^" CO P^ CO
-o
0)
C
O
O
UJ
_J
CO
COCM C:
O E
ce oo
CM O CO CO
.-< o CM a*
VOCO
CM CM
in
c
o
a.
ai
oo
_J Q-
«t OJ •
H- U -Q >>
O X OJ (tJ
01
3
'i «
IO >
u u
-Q E
ai o
10 to
+J o
ID C r—
•i- IO
i- a>
ai 0) t—
3 U J3
i— (O
IO CO C
> O) O
•a T-
j— 3 •(->
(O i— l/>
+-> O O)
O X 3
I— uj a
•a
ai
JD
s-
E O
o -a
1- 10
C 4->
O C
58
i— T3
O Ol
00 to
111
-------
o
UJ
^
(/)
t-y
LU
I—
^"^
n
1 i I
'
I —
D:
o
u_
i—
[
GO
1 1 1
1 —
UJ
1—4
1 —
ZD
OJ
t — 1
1 1
LU
_J
1 —
°- _^
•— -o
iQ O)
•*-> I/I
O —
t-
°- _
•t- Ol
fd -O
CX '—
1 r—
«a- o
o o->
O- -—
^
01
oo
y *•
1
r— £
10 -~
4-* £
O C
1— --
O
00
^— •
•—
Ol
GO
1
3C
2;
, —
O
oo
1
CO
o
z
C ^"~-
0> 13
E -C
*O CD
Ol J^
M-
0 E
C E
DC
J=
4-»
C
O
5
71
o co o in in co
O OJ t-H CO «J- •»
CO OO VO
«• o
f— t t-H
O i— 1 VD OJ CO CO
o t— i i-t oj o co
OJ CD
OJ OJ
o vo co o «3- in
o oj o en r^ CO
CO VOVD
o — i «3- r-. co co
o in r^ co vo 10
i — t-H o en
i — i in i — i
»-H OJ OJ
CD p^ en CD co en
o in o t-H vo in
in oj t— i oo r>.
in oj oo r-- <^
o o ro o o o
00 O 0 CO <3-
vo vo
CD t—t t—< en en ^~
CD CO CD "3" CO VO
oo ^3- oo co
t-H
CD vo co *— t co m
or-- vo vo vocn
oo t-H vo en co
in r-i t-n rHoo
o oo en en vo co
oo cnoj
CO f^ CT*
o co oin coco
o o coo men
OJt-l
0 E <-> E 0 E
O -r- sf 0) >i
en 5 a 3
•-"-3 -D -r-
CC. OO DC OO
OL. 4-*
Ol (J
OO O
•a- co o o
«3- m o o
co co o o
CO O O
LO O^ O O
0
CM
in o
o 01
(O
VOO
O »— i
r-ivo
VO
1 O
en
CO
^-vo
CO
•a- oo
coco
invo
cooo
r^vo
o-vo
ccco
i — i
•=!•
1 t-H
CO
in o
en *±
in o
co in
co
t— nn
CO
o
co in *3- i
CO C\J
t-H CO T— 1 VO
§g °°
<-) E u E
QJ .,-
d.
J!
D
CL
•M O CO
I — «-H
"o
" in *a-
10 . .
O) o r-^
cn
CO
0
i o'
coin
oco
vo
en o
o m
oo
OJ CO
rH r-
0 0
-------
JP^^
"O
QJ
13
C
•r—
-K '
0
o
"* — '
CM
i — i
f—^l
UJ
1
CO
e^
| —
O.
i— T3
re ID
o «—
i—
o_
c— TD
•r- CU
Q_ *— >
^- o
O oo
Cy "s_^»
•o
CD
OO
c1
CO -
<-> i
0 C
1— «-
,
o
•o
01
to
1
-— '
H— ^"^
o E
c £
o; ^
5
c
o
s:
g
••*
7)
(O CTi CT\
VO CO OOO • •
»-H ^- o c\] cn JS
CT> CO C\J OJ rM
t-tn *• «
<\JCO CO CO
CM
(O
CT> *-* O C\J to
cncM O--H i c^
cno co
C\i CO
fO
O^ O O «-H CO r-4
^t tn oro O o
cor^ co cno
ou cu roro
0, t\
•—I C\J
(U
t£> O O^J- «d-
cj> O O r^-. o~» csj
tr> ro m co
O^ ^t" CTi Lfl
co tn * *
co un
<- ^H
^D c^ co ^" P~*-
<• *3- o CM r^
r*^ LD i-^ CTI CM
r-% co
<- ^ o o r^
to *r> o o i un
co tn r-.
t-H
TO
COCTt O LT) LT) CM
OrH O •-* ** ^f
CTi
CM CM r-n O U3
to ro co O
r-l CM •> *
to r-.
1 — 1
O VO Or-* IT) LT)
O CM oro cr> vo
in to to i^>
CM CM
U E u E o E
CU -i- flj -r- tlJ -r-
O£ t/) CCCO Di (/)
+J
_J O-
-(-> «X QJ
Cn Q. (— u >,
13 QJ O X
U QJ
OJ
J3 E E
S- S-
QJ O O
al c/i
E -a
M- S- QJ
4_> O -£3
Ul C S-
E i~ LH
c o -o
OJ C! M- (13
•r- -M o c:
Q) QJ +-> E
13 U Z3 -r-
r— r- -O
ro t/) O QJ
> QJ tO 01
-a
r— ZS f 1
rtl 1 —
•4-J O i — "CJ
ox o a1
t — LU UO t/1
*O JD
113
-------
5000
ro
1 4000
z
LU
O
£ 3000
z
^ 2000
1000
3500
ro
.c
\
E
05 2800
CO
D
cr
0
i
CO 210°
0
CL
1
g 1400
700
1 1 1 1 1 1 1 1
—
—
•^~
—
:•:
v
\
!
'•:
',
.*
•!
i
DprnDnrn jimu--
KLUUKUtU y%%%,.
—
| j TOTAL N IN SOLUTION
SIMULATED 1 TOTAL N ON SEDIMENT
OimULAICU TfTf.
m TOTAL N IN SOLUTION
—
n^
%
%
%
%
%
%
%
%
%
n
'•:
1 (1 p^
•; I-FI P r
i
1
i
i
^
1
^^
__
1 r
1 1 III III II
RECORDS
TOTAL PON SEDIMENT
D mmji
P TOTAL PIN SOLUTION
•I':-: TOTAL PON SEDIMENT
SIMULATE
D V/'~
^ TOTAL PIN SOLUTION
—
—
—
IP
,•
j:
*.
i
a
r"
:.:
\
\
.*,
;!
[
n •:'
1 H ra IciJ.J,
«
:!:!
1
1
1
T*
•'.
* ,
."
;•
«l
•\
t*
':]
:'•
•'•
T*
I i I I
—
^ ^
—
—
^
^i
L Jl
MJJASONDJFMAMJ AS
1974 1975
Figure 11.1 Monthly total nitrogen and phosphorus runoff from P2 watershed
114
-------
6000
CO
-C
1 4800
z
LLJ
8
£ 3600
_l
<
£ 2400
1200
3500
CO
o> 2800
CO
^3
cr
O
x
85 210°
O
X
CL
g 1400
£
700
1 1 1 1 1 1
_ RECORDED
SIMULATED
1
33,643
TOTAL N ON SEDIMENT
H TOTAL N IN SOLUTION
x;:.: TOTAL N ON SEDIMENT
P TOTAL N IN SOLUTION
—
—
n
iJiiai
.
'•'.
".
'•
1
\
I
'/
\
III II
RECORDED
- SIMULATED
1 1
7T
g!
1
^
\
1.
\
\
n
.Vi
J»
I
I
1
\
''::.
y
••
$
P
j
I
T*
i-.
/ :
•'•
y!
;:|
;:'.
P
\
^
6,
I
1
~y
i^
f
1 1
1 1
18,506
i TOTAL f ON SEDIMENT
_j TOTAL PIN SOLUTION
v':x' TOTAL P ON SEDIMENT
|| TOTAL ? IN SOLUTION
—
__
i i i
m
.-'':;
*
r
J J A S 0 N
1974
1
D
*
J
^
^
/
"?
3
5
^
F
±
f
f:
';:
3
^
R*
^
1
•.;
;.;
;!;
Ui
K
$
1
1 1
P«
1
^
Tfl
i
1
1 1
LJL
';';:
V''
•^1
:•:'.
";'
?i
y
.';
_
.•
t*
• f
r*
.*
i;
!•
•*
•*
\
:•
• j
i
—
^~
—
—
i 1 1 1
pi
1
MAM
1975
t
.:::;
m
TI
i _i
•«!
•'••:
..
>•;
:."i
r
":
mi
%
i
j:
!;
•;
•;
X
!•]
X
:j:
V
?.
',
^
—
_
m\
J A S
Figure 11.2 Monthly total nitrogen and phosphorus runoff from
the P6 watershed
115
-------
the accuracy of the simulation results for total nutrients corresponds well
with that for runoff and sediment removal. For example, when sediment was
under simulated on the P6 watershed for April 1975 so was Total N and Total
P. For some of the monthly results this relationship to runoff and sediment
simulation was not as strong. Moreover, in some cases runoff and sediment
loss are over simulated and nutrients are under simulated. Examples of this
behavior occur on the P2 watershed for the months of July 1974 and June
1975. In July 1974 runoff is high, sediment removal is low, but Total N
removal is low and Total P removal is high. In June 1975, both runoff and
sediment simulation is low while Total N and Total P removal are high. A
similar event occurs on the P6 watershed where during August 1974 runoff is
under simulated, sediment loss over simulated, yet both Total N and Total P
are under simulated. These seeming inconsistencies are due to particular
solution or sediment nutrient forms comprising most of the observed nutrient
loss and corresponding discrepancies in simulating the associated transport
mechanism.
In general, the simulation of monthly Total N and Total P for the entire
test period gives reasonable results as an initial test of the nutrient
algorithms. For the entire simulation period the Total N removal on the P2
watershed is simulated within 13 percent of the recorded value, while Total
P is over simulated by 80 percent. The over simulation was partially caused
by the over simulation of sediment loss. For the P6 watershed, with the
exclusion of April 1975, the Total N and Total P removals for the entire
simulation period are good: within 6 percent of the recorded values.
The sediment portion of the runoff for both watersheds carries more nitrogen
and phosphorus than does the solution component of the runoff. However, the
solution nitrogen does at times contribute to much of the Total N removal.
Phosphorus in solution is a smaller portion of the Total P washoff on the P2
watershed than on P6. This is likely caused by less phosphorus fertilizer
applied on P2.
The sediment nutrients are either organic or inorganic forms. Measurements
of inorganic phosphorus on sediment were not made except for some analysis
of Available P (Table 11.2). It is assumed that most of the phosphorus
associated with the sediment was in the organic form. Most of the simulated
phosphorus is organic. Thus, the results presented and discussed for Total
P can be considered to be similar to the simulation of the Organic P content
of the sediment.
Breakdown of the forms of Total N attached to the sediment are shown in
Figure 11.3. Much more sediment associated nitrogen is organic than
inorganic. Like phosphorus, the Organic N simulation is similar to the
Total N results. The accuracy of the simulation depends on the accuracy of
the sediment simulation. However, the simulation results for the inorganic
fraction, NH4-N, varies. The largest portion of NH4-N is found in the
summer after spring fertilization. Generally, the simulation of NH4-N is
reasonably good, particularly when the sediment simulation is good.
The solution nutrient simulation results like the sediment results are
strongly influenced by the simulation of the transport mode. The runoff
116
-------
ro
E
o>
2500
2000
§ 1500
o
z
o 1000
o
ct
500
« 5000
_c
z 4000
LU
Q
O
3000
LU
O 2000
1000
I I
4,998
\m \
i i
NH4-N
ORGANIC N
NH4-N
ORGANIC N
1 I I I
RECORDED
SIMULATED
P2 Watershed
i r
i i r
P6 Watershed
i i_jml ill I
M JJASONDJ FMAMJJ AS
1974 1975
Figure 11.3 Monthly organic N and NHL on sediment from the
P2 and P6 watersheds
117
-------
simulation, discussed in Section 9, influences the amount of nutrient
removed in solution. Most of the soluble nutrient removal comes from the
interflow component of runoff. Hence, the interflow hydrology parameter,
INTER, has a major impact on the solute runoff simulation. For example,
INTER for P2 was reduced from 0.70 to 0.59 for the nutrient simulation.
This resulted in a minor difference in the runoff simulation (less than 3
percent increase) during the period of May 1, 1974 through September 30,
1974. However, this reduction in INTER decreased N03-N in solution from
4.52 kg/ha to 0.64 kg/ha during this period.
The simulated and recorded forms of nitrogen in solution are shown in Figure
11.4. The nutrient model does not simulate Organic N in solution even
though the recorded results show that there can be large amounts of Organic
N relative to inorganic forms. The large amounts of Organic N found in the
water phase of the runoff may have been actually attached to sediment
particles that passed the filtering process in the laboratory analysis.
Organics may also have occurred in solution by the disassociation of
sediment organics in the runoff samples.
N03-N and NH4-N in solution are simulated by the model. The overall result
of the N03-N simulation is to over simulate N03-N on the P6 watershed and
slightly over simulate it on P2. The over simulation of P6 N03-N runoff
cannot be directly attributed to the runoff since it is under simulated.
For P6, the simulation of N03-N is worse than average during the months of
June and November, 1974 and June and July, 1975. The simulated soil
storages (Figure 8.5) of N03-N are higher than recorded in November and
lower than observed in both Junes, but the July storage is close to the
observed values. However, the soil storage and runoff results do not
account for the over simulation of N03 for the three summer months. This
situation indicates a need to further study the transport mechanisms. The
influence of the interflow parameter on N03-N runoff simulation appears to
be more important than the soil storage simulation. The November over
simulation of N03-N can be explained by the over simulation of both runoff
and soil storage.
The simulation of N03-N for the P2 watershed generally follows the hydrology
simulation, except for some of the summer months. The effect of the over
simulation of soil N03-N (Figure 8.2) during the winter did not compound the
effect of the over simulation of the runoff. N03-N in the summer months is
slightly over simulated even considering the effect of the runoff results.
The main exception is the under simulation of N03-N in July 1974. No N03-N
in solution occurs during this month because no interflow is simulated. The
inconsistent N03-N simulation indicates that further study of the hydrology
simulation for the P2 watershed and the transport mechanisms is needed.
The simulation of NH4-N in solution for the entire simulation period is
good. The recorded NH4-N in solution for both watersheds is slightly
greater than the N03-N. The results are generally better for NH4 -N
than N03-N on both of the watersheds, although the NH4-N simulation
results generally follow the N03-N trends. However, for the winter period
on the P2 watershed, NH4-N is over simulated; very little NH4-N is
118
-------
CO
.c
o
I-
D
_i
O
1600
1280
960
o
O 640
320
2000
CD
-C
E
01
g 1500
P
D
_i
O
z 1000
LU
z 500
r~~r
i—i—i—i—i—i—r
RECORDED
SIMULATED
ORGANIC N
NH4-N
N03-N
NH4-N
N03-N
P2 Watershed
m
i i
1 I I I I I
111
P6 Watershed
1 I.
'$/'/
Jill
il
I
MJJASONDJFMAMJJ
1974 1975
Figure 11.4 Monthly NH4, NOo, and organic N removal
in solution from the PZ and P6 watershed
A S
119
-------
recorded in the P2 runoff during this period. The over simulation is
perhaps due to over mineralization of organics to NH4-N in the soils during
this period. Much more NH4-N is recorded for the Michigan P6 watershed
during the winter because of fertilization in November cind the possibility
of NH-N in the snow.
Monthly P04-P in solution is shown in Figure 11.5. Much more P04-P is in
solution from the P6 watershed than from P2 mainly because more fertilizer
was applied to P6: 224 kg/ha compared to 54 kg/ha. Although some
inconsistencies exist, the overall simulation of solution P04-P from the P2
watershed is good, particularly in view of the slight over simulation of
runoff. The P6 simulation of P04-P is high, mostly because of the over
simulation of the winter period. However, the P6 summer months are over
simulated when the recorded values are less than 3 gm/ha. Otherwise the
three major summer runoff months of August 1974 and June and August 1975 for
P6 are well simulated for P04-P in solution.
The nutrient model at present simulates monthly results of nutrients on
sediment better than nutrients in solution. The value of a more accurate
sediment than solution nutrient simulation will depend on whether short term
or long term effects are most important. Soluble inorganic nutrients have a
more immediate impact on water quality than the sediment-associated
nutrients since they are more readily used by algae than either the
organic or sediment forms. Thus, soluble nutrients can directly contribute
to accelerated eutrophication. However, over the longer term organics and
sediment-associated inorganics can decompose and release inorganics in
solution available for stimulation of aquatic growth.
STORM EVENT SIMULATION
Analysis of storm event simulation results is needed to determine how well
the model is representing the separate solution and sediment nutrients in
relation to their transport components. Figures 11.6 to 11.11 present the
simulated and recorded values for the June 11, 1975 storm on the P2
watershed. Figures 11.12 to 11.17 show analogous results for the August 27,
1974 storm on the P6 watershed. The results are presented in both
concentration and mass removal (gm/min) units. Also, each graph pertains
either to the solution or sediment transport mode of the specific component.
Other storm event graphs of nutrient simulation results are contained in
Appendices B and C. As is noted in the discussion of the monthly results,
the event graphs should be viewed relative to the corresponding runoff and
sediment graphs in Section 9 and the appendices.
In order to evaluate the storm events simulations, an explanation of the
recorded data is needed. Each recorded data point is the mean
concentration or mass removal since the previous sample. If a long time
span occurs between samples, intermediate values can vary considerably.
For example, in Figure 11.6 a recorded concentration of 1430 ppm at time
20:02 is actually an average value of all the concentrations of TKN on
sediment from time 1917 to 2002. The actual values vary significantly
about the mean of 1430 ppm. This is especially true if there are
significant variations in runoff or sediment transport in the intervening
120
-------
(0
O
H
_l
O
CO
200
150
100
a_
cT
Q.
50
(D
-C
^v
E
o
500
400
O
CO
z
a_
i'
Q.
300
200
100
1 1 1 1 1 1 1 1
P2 Watershed
—
I
yfo
\ I n
lil j
L 1 1 llPn PI II— ' ' -IBni
!
t
l~
1
1
1
III III I i l I
P6 Watershed
H RECORDED
SIMULATED
n
_
: ffl nil
1 Jll_n 1 iJll 1 l_nll ll
M J J A S 0 N D J F
i
^
j
\
fy
$.
I
T
|
i i i i
n
i
i 1 1 _ni i
M A M J J A
1974 1975
_
—
—
—
_
—
s
Figure 11.5 Monthly total P04 removal in solution
from the P2 and P6 watersheds
121
-------
o
o
uidd
CM
Q.
OJ LO
jc r--
-(-> en
O «
S- «-H
•(-> O)
c c
CU 3
- 4-
O) O
to
C S-
o o
4->
1 — CD
o ^:
E -u
OJ
O)
r^. ^r
• 10
t-l S-
I-H a;
-l->
> M
O
E O)
cu ^:
S- 4->
2: s_
^ o
T3
O)
1—I i-
O)
O) -4->
s- to
=3 S
CD
U_
122
-------
CM
Q_
fIZ
V6T
8'9T
2-ei
i'6
\
O)
/-'
o
VO
L/Bui 'N-£
o
CO
ON
ULiu/ui6
LO
O
S- »
3
-~3
O
i— 4->
re to
>
o cu
E ^:
O) -M
T3
t-H S-
(1)
0) -t->
s- to
3 S
O)
s-
3
o
S
o
o
o
o
o
CO
ULUi/ui6 'd IViOl
O UT
s- r-~
M- CTi
c
O) »
T3 Ol
O
§0)
J=
O) +->
S-
re "O
•(-> O)
o x:
H-cn
0>
00 -M
• fC
CM
a.
3 0)
123
-------
6'T
T'Z
r
_j
6'0
O-T
to
o
f-
CM
O
l/6ui 'd-^
ULUI/UI6 M-
CM
O_
QJ
x: tn
O
O OJ
•r- E
4-> 3
3 --3
*0
(O CO
>
O <1>
E ^
a> 4-'
s_
s-
<*• o
O M-
Q.
-a
O)
s-
QJ
(D
5-
I
8'H
9'ei
Z'ZT
C'OT
S'8
O'S
L">7
9-i7
S'V
VV
ere
S'Z
CM
Q.
CD
O
LD
P-.
CTi
_ CVJ O
CO
o
o
L/6ui 'N-*
CVJ
o
ULUi/iuB
OJ
C
a
It-
CD
s_
r— O
(O 4->
> CO
E OJ
a> ^:
s- -P
«3- S-
3: o
O d)
<— I .C
• l/l
i-H S-
O)
S-
124
-------
CO
CO
o
O =1
o 2:
IO
D_
CU
-E «!f
+-> r--
cr>
E --t
o
s- «
4- r-~.
CvJ
O) 10
E 3
•i- en
•a 3
cu *i
(13 O
> •(->
O VI
a> cu
S- .E
rc s-
z. a
o
1C
o
ro
o
o
CO
O
a>
rH S-
0)
O) +->
s- ro
3 3
C7)
uidd
ULiJ/u6 'N- HN
a <
a; _i
o o
o
o
o
CM
O)
o en
S- i— I
CM
•t- (/)
-a 3
CU CD
l/l 3
s-
cu to
S-
cu
ro s-
u o
O 4-
CM
cu
-C
I/)
S-
CU
-4-J
to
•3 (.O
en a.
125
-------
.
CZ -J +
O ID cr
o s: o
O
r~-
O
O
O
L/6ui 'N ItfiOi
ULui/ui6 'N 1V10I
E ^H
o
s. •>
4- r-^
(NJ
c
O -P
•r- C/)
+-> 3
3 CD
i — 3
O 4J
O 00
CD O)
S- -C
s_
O
i- l£>
=5 Q.
CD
O
O
00
o
O
s_
E CM
•I—
"O 4->
O) CO
CO 3
CD
C 3
O ct
tO O
>
O E
E S-
CO
Q_
CD
OJ -C
i— +J
JD
fO i-
(O
>
tudd
313V1IVAV
3iatf1IVAV
CO
s-
OJ
—i 5
CD 10
i. 0-
13
CD O)
126
-------
CO
o
a LU
LU h-
0 <
C£ —I
S i
LiJ »—t
Ct 00
o
C\J
00
O
CD
JC •=!-
+j r-~
CT>
E •-<
o
S- •>
M- r-
C\J
c.
O 4->
3 C7)
i — 3
O <
to
M-
C O
(O O
> +->
O (/>
CU O)
s-
o
I-H O)
O)
S-
3
CD
00
S-
O)
L/6iu 'N-?
'N-^HN
CO
o
a uj
LJJ I—
O •=£
o
O
CO
CD
l/6ui 'N-£ON
D-
OJ
CM
O -!->
•i- 3
3 O>
i — 3
O -t->
O to
CU QJ
S- -C
•4-J
CO
o s-
•z. o
VO T3
i—i CU
• _c
^H tO
t-H S-
cu
OJ 4->
S- <0
3 3
CD
•I—
U-
127
-------
period as occurs near the end of a storm event. Hence, for such long
intervals between samples, the recorded data points are not connected.
Some general conclusions can be made concerning all the individual storm
event results. The summer nutrient simulation is generally better than the
winter. The poor winter nutrient simulation is partially due to inaccurate
runoff, sediment, and soil temperature simulation. Nutrient simulation on
the P6 watershed is also generally better than on P2. This is true for both
the sediment and solution nutrient forms. The poor sediment nutrient
simulation on P2 is because the concentration of nutrients varied from one
storm event to the next more than it did for P6, for which the model
simulates the concentration as remaining fairly stable.
The less accurate soluble nutrient simulation on the P2! watershed compared
to P6 is because interflow is a smaller portion of total runoff and is more
variable. Consequently, soluble nutrients transported mostly in interflow
demonstrate the same highly variable nature as the simulated interflow
component. This is particularly noticeable in the concentration graphs
towards the end of a storm event. For example, N03-N concentration in
Figure 11.9 becomes relatively large toward the end of the June 11 event.
The other soluble nutrients behave similarly to some degree. This can be
explained by the fact that interflow, which contains most or all of the
soluble nutrients in a more concentrated form than surface runoff, makes up
most of the flow towards the end of the storm event. This results in a
higher concentration at the end of the storm event than earlier when the
flow is diluted by surface runoff. Thus the discrepancies in the soluble
nutrient simulation are the direct result of interflow fluctuations.
However, the total mass removed from the watershed which is less affected by
concentration variations is generally within the range of the recorded
values.
N03-N is the most difficult solution component to simulate. This is
particularly noticeable in the P6 storm results where large variations
occur. NOo-N is difficult because it is affected by many transformations as
well as being soluble and thereby easily transported by and in the water.
The other nutrients simulated in solution, NH4-N and P04-P, do not undergo
as many transformations and are also found in adsorbed form. Since the
adsorbed form is usually more stable than the solution form, NH4-^ and P04-P
are simulated somewhat better than N03-N.
All the solution nutrient results including N03-N are closer to the recorded
values in mass per minute than in concentration (ppm). Since nutrients are
not toxic to aquatic life in these small quantities, the simulation of total
mass of nutrients in the runoff is considered more crucial than
concentration. Moreover, eutrophication which occurs most readily in lakes
is dependent more on the total nutrient input than on localized storm
concentrations. Thus, simulation of the total mass loading of nutrients
should be the primary goal of nutrient modeling in the runoff. The
simulation of nutrient loadings with the ARM nutrient algorithms meets this
goal since mass loadings are simulated better than instantaneous
concentrations.
128
-------
The simulation of nutrients on sediment, which affect long term
eutrophication, is simulated more consistently than soluble nutrients. The
concentration of nutrients on sediment in the runoff is simulated as being
equal to the concentration in the surface soil zone. This would be modified
if selective or particle size erosion could be simulated and incorporated
into the ARM Model. Then the nutrient concentration in runoff would be
dependent on the nutrients' preference for specific particle sizes and the
amounts of these particles removed by runoff from the surface zone.
However, with the current version of the model the simulated concentration
of nutrients on the soil varies little during a storm event. The mass of
nutrient removed on the sediment will still vary depending on how much
sediment is being removed during the time period simulated. The storm event
simulation results of the sediment-associated nutrient concentration and
mass removal (shown in Figures 11.6-11.8 and 11.12-11.14) are quite good.
However, for the other major events contained in Appendix B and C, the
results show greater variations due primarily to discrepancies in the
sediment loss simulation. Nevertheless, the overall simulation of sediment
associated nutrients for storm events is better than soluble nutrients and
is reasonably close to the recorded values.
SUMMARY
The nutrient model provides a reasonable framework for simulation of
nutrient runoff. The results show that the model can be calibrated to a
variety of situations. The soil storage simulation provides a reasonably
accurate representation of the soil nutrients which are the sources for
nutrient components in runoff. Nutrient simulation is found to rely heavily
on the hydrology and sediment simulation. Within the present framework of
the nutrient model, the accuracy of the nutrient simulation is a direct
function of the ability to correctly simulate runoff and sediment loss.
Overall, the ARM nutrient model is able with proper calibration to give
reasonable estimates of nutrient mass in runoff. However, further study is
needed in the area of nutrient transport through surface and subsurface
pathways. This involves the study of surface and upper zone relationships,
especially soil moisture, surface runoff, and interflow simulation. Even
though the nutrients on sediment are simulated better than those in
solution, the relationships of nutrient components to erosion processes
should be studied. The behavior and transport of nutrients at the soil
surface is an important topic for future research. With this additional
knowledge, the ARM Model could more accurately simulate nutrients in the
soil and in the runoff.
129
-------
REFERENCES
U.S. Army Corps of Engineers. 1956. Snow Hydrology, Summary Report of the
Snow Investigations. North Pacific Division. Portland Oregon. 437 p.
Anderson, E.A. 1968. Development and Testing of Snow Pack Energy Balance
Equations. Water Resour. Res. 4(l):19-37.
Anderson, E.A., and N.H. Crawford. 1964. The Synthesis of Continuous
Snowmelt Runoff Hydrographs on a Digital Computer. Department of Civil
Engineering, Stanford University. Stanford, California. Technical
Report No. 36. 103 p.
Black, C.A. 1968. Soil-Plant Relationships. John Wiley and Sons, Inc.,
New York. 792 pp.
Broadbent, F.E., and F. Clark. 1965. Denitrification. In: Soil Nitrogen,
W.V. Bartholomew and F.E. Clark (eds.), Madison, Wis., Am. Soc. Agron.
Agronomy Monograph No. 10. p. 344-359.
Crawford, N.H., and A.S. Donigian, Jr. 1973. Pesticide Transport and
Runoff Model for Agricultural Lands. Office of Research and
Development U.S. Environmental Protection Agency, Washington D.C. EPA
660/2-74-013. 211 p.
Crawford, N.H., and R.K. Linsley. 1966. Digital Simulation in Hydrology:
Stanford Watershed Model IV. Department of Civil Engineering, Stanford
University. Stanford, California. Technical Report No. 39. 210 p.
Davidson, J.M., and E.D. Chin Choy. 1974. Diurnal Soil Temperture Model
for Cecial Soil. Supplement to Project No. R-899364 Program Element
1BB039. 16 pp.
Davidson, J.M., and P.S.C. Rao. 1976. Soil Science Department. University
of Florida, Gainesville, Florida. Personal communication on February
5, 1976.
DeVries, D.A. 1958. Simultaneous Transfer of Heat and Moisture in Porous
Media. Trans. Amer. Geophys. Union 39(5):909-916.
Donigian, A.S., Jr., and N.H. Crawford. 1976. Modeling Pesticides and
Nutrients on Agricultural Lands. Environmental Research Laboratory,
Athens, Georgia. EPA 600/2-7-76-043. 317 p.
Ellis, E.G. 1976. Department of Crop and Soil Sciences,- Michigan State
130
-------
University, East Lansing, Michigan. Personnel communication on March
25, 1976.
Frere, M.H. 1975. Integrating Chemical Factors with Water and Sediment
Transport from a Watershed. J. Envir. Qual. 4(1):12-17
Hagin, J., and A. Amberger. 1974. Contribution of Fertilizers and Manures
to the N- and P- Load of Waters. A Computer Simulation. Report
Submitted to Deutsche Forschungs Gemeinschaft. 123 p.
Hubbard, R.K. 1975. The Vertical and Horizontal Redistribution of
Nitrogen, Chloride, and Phosphorus by Precipitation and Surface Runoff
on Two Similar Watersheds. M.S. Thesis, Michigan State University, E.
Lansing, Michigan. 113 pp.
Hydrocomp, Inc. 1976. Hydrocomp Simulation Programming: Operations
Manual. Palo Alto, California, 2nd ed.
Johanson, R.C., and N.H. Crawford. 1976. Development of the Watershed
Erosion and Sediment Transport Model. Prepared for the Environmental
Research Laboratory, Athens, Georgia. Research Grant No. R803726-01-0.
Mehran, M., and K.K. Tanji. 1974. Computer Modeling of Nitrogen
Transformations in Soils. J. Environ. Qual. 3(4):291-395.
Misra, C., D.R. Nielson, and J.W. Biggar. 1974. Nitrogen Transformations
in Soil During Leaching; II Steady State Nitrification and Nitrate
Reduction. Soil Sci. See. Amer. Proc. 38:294-299.
Rao, P.S.C., H.M. Selim, J.M. Davidson, and D.A. Greatz. 1976a. Simulation
of Transformations and Transport of Selected Nitrogen Species in Soils
Proc. Soil and Crop Sci. Soc. Florida. 35:
Rao, P.S.C., J.M. Davidson, and L.C. Hammond. 1976b. Estimation of
Nonreactive and Reactive Solute Front Locations in Soils. In:
Residual Management by Land Disposal. Proceedings of the Hazardous
Waste Research Symposium, Tucson, Arizona. EPA-600/9-76-015. op.
235-242.
Selim, H.M. 1976. Soil Science Department. University of Florida,
Gainesville, Florida. Personnal communication on November 3-4, 1976.
Smith, C.N., R.A. Leonard, G.W. Langdale, and G.W. Bailey. 1977.
Transport of Agricultural Chemicals from Small Upland Piedmont
Watersheds. U.S. Environmental Protection Agency, Athens, Georgia and
U.S. Department of Agriculture, Watkinsville, Georgia. Final report on
Agreement No. D6-0381. (In Preparation.)
Stanford, G., and S.J. Smith. 1972. Nitrogen Mineralization Potential in
Soil. Soil Sci. Soc. Amer. Proc. 36:465-472.
Starr, J.L., F.E. Broadbent, and D.R.-Nielsen. 1974. Nitrogen
131
-------
Transformations During Continuous Leaching. Soil Sci. Soc. Amer. Proc.
38:283-289.
Van den Honert, T.H., and J.J.M. Hooymons. 1955. On the Absorption by
Maize in Water Culture. Acta Bot Neerlandica 43:376-384.
Viets, Franck G. 1965. The Plant's Need for and Use of Nitrogen. In:
Soil Nitrogen, W.V. Bartholomew and F.E. Clark (eds.), Madison, Wis.,
Am. Soc. Agron. Agronomy Monograph No. 10. p. 503-549.
Wierenga, P.J., and C.T. DeWit. 1970. Simulation of Heat Transfer in
Soils. Soil Sci. Soc. Amer. Proc. 34(6):845-848.
132
-------
TABLE Al. ARM MODEL INPUT PARAMETER DESCRIPTION
TYPE
NAME
DESCRIPTION
Control
HYCAL
INPUT
OUTPUT
PRINT
SNOW
PEST
NUTR
ICHECK
DISK
IDEBUG
CHAR
TITLE
DSNFID
DSNERS
DSNROS
INTRVL
HYMIN
AREA
BGNDAY
BGNMON
BGNYR
ENDDAY
ENDMCN
ENDYR
Specifies type of information desired
PROD-production run, prints full tables for each
interval as specified by PRINT
CALB-calibration run, prints removal values for
each interval as specified by PRINT
Input units, ENGL-english, METR-^netric
Output units, ENGL-english, METR-metric, BOTH-both
Denotes the interval of printed output, INTR-each
interval, HOUR-each hour, DAYS-each day, MNTH-each
month
NO-snowmelt not performed, YES,snowmelt calculations
performed
NO-pesticides not performed, YES-pesticide calculations
performed
NO-nutrients not performed, YES-nutrients calculations
performed
ON-checks most of the hydrology, snow (if used),
sediment, and pesticide (if used) input parameter
values and prints out error and warning statements
for input parameter values that are outside of
acceptable value limits, OFF-no check is made
NO-no output written to disk YES-LSRO and/or
EROS written to disk
OFF-no output to check values written to disk
ON-print echo of output written to disk
RUNOFF-Lands Surface RunOff (LSRO) output
SEDIMENT-EROSion (EROS) from sediment output
OVERLAND-Runoff fRom Overland Surface (RROS) output
Title for data set on disk (80 char)
Data set number for LSRO file
Data set number for EROS file
Data set number for RROS file
Time interval of operation (5, 15, or 60 minutes)
Minimum flow for printed output during a time interval
Watershed area
Date simulation begins-day, month, year
Date simulation ends-day, month, year
(continued)
134
-------
TABLE Al (continued)
TYPE
NAME
DESCRIPTION
Hydrology UZSN Nominal upper zone soil moisture storage
UZS Initial upper zone soil moisture storage
LZSN Nominal lower zone soil moisture storage
LZS Initial lower zone soil moisture storage
L Length of overland flow to channel
SS Average overland flow slope
NN Manning's n for overland flow
A Fraction of area that is impervious
EPXM Maximum interception storage
PETMUL Potential evapotranspiration data correction factor
K3 Index to actual evaporation on a monthly basis (12 values)
INFIL Mean infiltration rate
INTER Interflow parameter, alters runoff timing
IRC Interflow recession rate
K24L Fraction of groundwater recharge percolating to deep
groundwater
KK24 Groundwater recession rate
K24EL Fraction of watershed area where groundwater is within
reach of vegetation
SGW Initial groundwater storage
GWS Initial groundwater slope
KV Parameter to allow variable recession rate for
groundwater discharge
ICS Initial interception storage
OFS Initial overland flow storage
IFS Initial interflow storage
Snow SNCWPRINT NO-hourly snow tables not printed during snow pack
periods
YES-hourly snow tables printed
RADCON Correction factor for radiation melt
CCFAC Correction factor for condensation and convection melt
SCF Snow correction factor for raingage catch deficiency
ELDIF Elevation difference from temperature station to mean
watershed elevation
IDNS Initial density of new snow
F Fraction of watershed with complete forest cover
DGM Daily groundmelt
VC Water content of snowpack by weight
MPACK Water equivalent of snowpack for complete watershed
coverage
EVAPSN Correction factor for snow evaporation
MELEV Mean elevation of watershed
TSNCW Temperature below which precipitation becomes snow
(continued)
135
-------
TABLE Al (continued)
TYPE
NAME
DESCRIPTION
PACK
DEPTH
PETMIN
PETMAX
WMUL
EMUL
KUGI
Sediment COVPMO
TIMTIL
YRTIL
SRERTL
JRER
KRER
JSER
KSER
SRERI
SCMPAC
Initial water equivalent of snowpack
Initial depth of snowpack
Minimum temperature at which PET occurs
Temperature at which PET is reduced by 50 percent
Wind data correction factor
Radiation data correction factor
Index to forest density and undergrowth
Fraction of crop cover on a monthly basis (12 values)
Time when soil is tilled (Julian day, i.e. day of the
year, e.g. January 1=1, December 31 = 365/366)
(12 dates)
Corresponding year (last two digits only) for
TIMTIL (12 values)
Fine deposits produced by tillage corresponding to
TIMTIL and YRTIL (12 values)
Exponent of rainfall intensity in soil splash equation
Coefficient in soil splash equation
Exponent of overland flow in sediment washoff equation
Coefficient in sediment washoff equation
Initial fines deposit
Rate by which soil fines are decreased per day on
non-rain days
Pesticide PESTICIDE Title word to begin the reading of pesticide input
parameters
APMODE Application mode, SURF-surface applied, SOIL-soil
incorporated
DESORP NO-single-valued adsorption/desorption used, YES-non-
single-valued adsorption/desorption algorithm used
PSSZ Initial pesticide storage in surface: zone
PSUZ Initial pesticide storage in upper zone
PSLZ Initial pesticide storage in lower zone
PSGZ Initial pesticide storage in groundwater zone
TIMAP Time of pesticide application (Julicin day) (12 values)
YEARAP Year of pesticide application (last two digits only)
(12 values)
SSTR Pesticide application for entire watershed (12 values)
CMAX Maximum solubility of pesticide in water
DD Permanent fixed adsorption capacity
K Coefficient in Freundlich adsorption equation
N Exponent in Freundlich adsorption equation
NP Exponent in Freundlich desorption equation
DDG Julian day when KDG(l) begins (max. of 12 values)
YDG Corresponding year in which DDG applies
KDG Pesticide decay rate (per day) (max. 12 values)
(continued)
136
-------
TABLE Al (continued)
TYPE
NAME
DESCRIPTION
Soil
Nutr ient
LZTEMP Lower zone temperature on a monthly basis (12 values)
ASZT Slope of surface zone soil temperature regression equation
BSZT Surface zone soil temperature regression equation
AUZT Slope of upper zone soil temperature regression equation
BUZT Upper zone soil temperature regression equation
SZDPTH Surface layer soil depth
UZDPTH Upper zone depth or depth of soil incorporation
BD6Z Bulk density of surface zone soil
BDUZ Bulk density of upper zone soil
BDLZ Bulk density of lower zone soil
UZF Upper zone chemical percolation factor
LZF Lower zone chemical percolation factor
TSTEP Timestep of chemical and biological transformations,
must be an integer number of time steps in a day,
and an integer number of simulation intervals
(INTRVL) in a TSTEP, range of TSTEP is 5 or
15 minutes to 1440 minutes, but the solution
technique works best at 60 minutes or less.
NAPPL Number of fertilizer applications, values may range
from 0 to 5
TIMHAR Time of plant harvesting, Julian day of the year,
value may range from 0 to 366
ULUPTK Fraction of maximum crop uptake of nutrients for the
the upper layers (surface and upper zone) on a
monthly basis (12 values), should be 1.0 or less
LZUPTK Fraction of maximum crop uptake of nutrients for the
lower zone on a monthly basis (12 values), should
be 1.0 or less
Nitrogen Reaction Rates
Kl Oxidation rate of solution ammonium
KD Reduction rate of nitrite and nitrate to gaseous nitrogen
KPL Uptake rate of nitrate by plants
KAM Ammonification or mineralization rate
of ORG-N to ammonium
KIM Immobilization rate of solution ammonium
to ORG-N
KKIM Immobilization rate of nitrate (and nitrite) to ORG-N
KSA Transfer rate of ammonium from solution to
adsorbed (adsorption)
KAS Transfer rate of ammonium from adsorbed to
solution (desorption)
(continued)
137
-------
TABIE Al (continued)
TYPE
NAME
DESCRIPTION
Phosphorus Reaction Rates
KM Mineralization rate of ORG-P to solution phospate
KIM Immobilization rate of solution phosphate to ORG-P
KPL Uptake rate of phosphate in solution
KSA Transfer rate of phosphate from solution to
adsorbed form
KAS Transfer rate of phosphate from adsorbed to
solution form
Nitrogen Storages
ORG-N
NH4-S
NH4-A
N02-W03
N2
PLNT^I
Phosphorus Storages
ORG-P
P04-S
P04-A
PIWT-P
Organic nitrogen in or attached to soil
Ammonium in solution
Ammonium adsorbed to soil
Nitrite and nitrate
Gaseous nitrogen forms from denitrification
Plant nitrogen
Organic phosphorus in or attached to soil
Phosphate in solution
Phosphate adsorbed to soil
Plant phosphorus
Chloride Storage
CL Chloride
138
-------
TABLE A2. Km MODEL INPUT SEQUENCE AND PARAMETER ATTRIBUTES
(excluding Nutrient input and parameters)
Namelist
Name
CNTL
STRT
ENDD
LND1
LND2
Parameter
Name
Type
English Units
Metric Units
Watershed name (up to 72 characters)
Chemical name and/or run information (up to 80 characters)
HYCAL
INPUT
OUTPUT
PRINT
SNOW
PEST
NUTR
ICHECK
DISK
IDEBUG
CHAR
TITLE
DSNFLO
DSNERO
DSNROS
INTRVL
HYMIN
AREA
BGNDAY
BGNMCN
BGNYR
ENDDAY
ENDMCN
ENDYR
UZSN
UZS
LZSN
LZS
L
SS
NN
A
EPXM
PETMUL
LND3 K3
(continued)
character
character
character
character
character
character
character
character
character
character
character
(up to 80 characters)
integer
integer
integer
integer
real
real
integer
integer
integer
integer
integer
integer
real
real
real
real
real
real
real
real
real
real
real
minutes
cubic feet/sec
acres
minutes
cubic meters/sec
hectares
inches
inches
inches
inches
feet
inches
millimeters
millimeters
millimeters
millimeters
meters
millimeters
139
-------
TABLE A2 (continued)
Namelist
Name
LND4
LIND5
SN01
SN02
SN03
SN04
CROP
MUD1
MUD2
MUD3
(continued)
Parameter
Name
INFIL
INTER
IRC
K24L
KK24
K24EL
SGW
GWS
KV
ICS
OFS
IPS
SNOWPRINT
RADCON
CCFAC
SCF
ELDIF
IDNS
F
DGM
we
MPACK
EVAPSN
MELEV
TSNOW
PACK
DEPTH
PETMIN
PETMAX
WMUL
FMUL
KUGI
COVPMO
TIMTIL
YRTIL
SRERTL
Type
real
real
real
real
real
real
real
real
real
real
real
real
character
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
integer
real
integer
integer
real
English Units
inches/hour
inches
inches
inches
inches
1000 feet
inches/day
inches
feet
degrees F
inches
inches
degrees F
degrees F
days
year
tons/acre
Metric Units
millimeters/hour
millimeters
millimeters
millimeters
millimeters
kilometers
mill imeter s/day
millimeters
meters
degrees C
millimeters
millimeters
degrees C
degrees C
days
year
tonnes/hectare
140
-------
TABLE A2 (continued)
Namelist
Name
SMDL
PSTR
PST1
PST2
PST3
AMDL
DEGD
DEGY
DEGR
LZTP
RETP
DPTH
Parameter
Name
JRER
KRER
JSER
KSER
SRERI
SCMPAC
PESTICIDE
APMODE
DESORP
PSSZ
PSUZ
PSLZ
PSGZ
TIMAP
YEARAP
SSTR
CMAX
DD
K
N
NP
DDG
YDG
KDG
LZTEMP
ASZT
BSZT
AUZT
BUZT
SZDPTH
UZEPTH
BSDZ
BDUZ
BDLZ
UZF
LZF
Type
real
real
real
real
real
real
character
character
character
real
real
real
real
integer
integer
real
real
real
real
real
real
integer
integer
real
real
real
real
real
real
real
real
real
real
real
real
real
English Units
tons/acre
pounds/acre
pounds/acre
pounds/acre
pounds/acre
day
year
pounds/acre
pounds/pound
Ibs. pesticide/
Ibs. soil
day
year
per day
degrees F
inches
inches
pounds/cubic ft
pounds/cubic ft
pounds/cubic ft
Metric Units
tonnes/hectare
kilograms/hectare
kilograms/hectare
kilograms/hectare
kilograms/hectare
day
year
kilograms/hectare
kilograms/kg
kgs. pesticide/
kgs. soil
day
year
per day
degrees C
millimeters
millimeters
grams/cubic on
grams/cubic cm
grams/cubic cm
141
-------
cr
5
t-
|
55
<
t:
g
8
UJ
c_,
|
CtJ
t-
u
gj
d
fc
£
s
*i
D:
Q
g
E
§
a
K
C
H
ffi
C
flt
,Q
U
u
"jj
3t!
in
' c to
f— <
£
c
0
c --«
r-H U)
8 f£
ff
QJ
1
c
O
4J
c u
"It £
O 13
$
U
o
ca
c •
•r-( O
T C/l
w T c:
i-\ <— i O •
w c: > o ±>
r* TO • o
O * C fc O 4-J lO -rH O ^
&
Qj "H C> --1 VJ Q 4-J C r< 1-. Cl1
C) W U-< -i-t 4J O • ilJ O !l O t1 U n .C
O n CJ '»J lr O S O E D~' 4J O C -i ' '-t-J
"-«a,eo-^'q-^cro^cz) uco
TjcR^j-tcjJ tn ra c: v-i '0
C"-cc: njn— i x
4J4.J Qr-lvJ>CO'O>E rO
O C CO (—t n) o QJ <-* C^ "*J
-^ rH lj 4J T-< tO C 'Si O EH 51 O 1'
E? G sz o*3 o-*~*^ f-T tr. nj?i bi*E-io
to
3 (0
C T3
o >^
a T)
C
• S-
'it;' 5 "3
fH <>J < < <
ID a>
4J 4-J WJ 1J V1
o u a; oj cj
i-i l-i QJ
6 6 £ £ £
g'
r^ Fr1 §
S iS
HH
^J
s
I
1
w
c
o
•H C
.— VJ 3 H3
4-> C O O tj
•fH -*- o C O to p O
I-HC QjrHCl-J S^^C
^ fc 'J ^J f> ^ 01 i— 1 -f-* H
U ra JkT JJ >» 4-> 4J
U-i C i-J V-J CJ O rH .^ U O U
rt rj4Jfo^t> o-^f^3
C> **-* Qj M-i Ot U 4-1 -«-t "U-jRJv-
ra -C ll P JJ ^ i - i . — — ^ c/i 3 uj i-j eta
rij ^O ^i u_i A, jj ^ ,-j f; o O J-* nJ I1
E 'X) 4-> G " 'I' _3 •*-< (/] f-H 13
D ° "^ S P ? ^ ^ 6 "<5 --H 'o a; >
3 o -S .5 -S 5 5 a 'g & j} S S 3
S 3 £ 2 5
ij k-t t-i
C^ GJ c
4-J ftl
• nj n>
01 l-i O •
t/i c 4-J ij ir*
Ct O C -'-t -»J 4-J
t-1 *W 'H O C OJ -rH C
O • -tJ -H —'CO
OO-JU<3 C I3CUCTQ4
V4 •_. C. 0) O «-< (U -P 13
(.) O (3 O l-> -^ O •*** O ^i
• jjp iJ toojco_n
r--( Q.1 O • O U-J -^ IH fj CJ
.irC'GJCOrpSQ^ OwOCJ'J-'
4>XJ4-J O O I- J-1 TO
h •-! "- ' Oj"^ 'b p ? nj T3 •-<
_i jr: — t O r-t r-H rH C C ^TJ «4-J
f1 ra ,><>,
(D (0 (0
'O t3 TJ
fl) fi) flj
Oi O-i DJ
n: nj1 ra
TJ *U TJ
S. S, g.
^J< <£) *J-
1 1 1 1 1 1
l-t W 1-j
JJ -P 4-1
u o u
l-( 1J LJ i— 1 r—t r-H
6 6 u &' (S S
^\
K
§ [4
8 §
K tn
u
1
5
g
U]
£r,
142
-------
1
•H
4->
3
a
§
P
en
c
|
o
£
in
C M
°'^
I
c
o
C -H
3 '"^
8fi
Q,
1
§
I»-H
gti
s 3
K
-4C
8
CO
ation
M
: nine:
o
0
4J
u
• rH
o
&
•D
a
ra*
*"Q
&
fN
I
3
8
°i
0 U
J~> -rH
2 §
0 O
4-> O
rH S
.O C
ro
"O
s.
ro
a
o
i
ro
S
1
ra
V4
4-1
IH
O
fi- o c-*ra34-j ra i-iO-vjOjO
oo c; dJ4-JHC'-H4J QQ
§ 1 § S 3 .2 S S1 § -^ B S c ?. P^ p g s
— -c — - ra DC tJ 4-> ci o <3 '•« •y-iuc-^-'C— 'ra
O u r-nra 4~Ji-< C OXO-^p Q v-i
El'nfer o 'H c >. - o i cg'n^c:
E ft tt O C WO) C Xie4JC'UCJfOEai£-CC
ra C nj «-* O -' w 4J -^ 4J cr> rj Xi o -^ c
U-iC^-i ^ Ou OO4^Ot"j-jrdvjO^C:u-'3-iJ
o t" o -— i o -*J QJ ra u C"1 o s o <"i o
»c o 9 o -^ a- t/i u c -^ c: iJ c: o ^ Q r-
C C C4J«-iL>ON >'-f^ C
M C vj T> O O g * O O -H •'-' g -r-, lu vj C vi T) o
a/ o o •••-< QJ w-i uj i— i y r- 1 .1 > o o o a> N
CDCC Cy TDO'— iDl-jfOOOO")C CUCQS^
iO>-'Q>'nO
fHWEr-ra 5 Oraca.c^rilur-fdHHraE-'yjHraj
rara ra (T/rararararafO
'O'O T3 'UrDrDrO'O T5 T3
CJ fl) O C^ QJ C' 41 0) C; QJ
Qj QJ U' U- D4 Ul UT P.- U' Pi
ra1 ra1 ra' & ro' & ro1 ra1 & &
'G TLr TJ 'U'OrDrJrPJfOfO
c) ii> ai 0,1 cu cj c) 41 4> 4*
Qt Cu D.' tj* P' P- Pi PJ P' P<
*.o ^J1 o '^ *r CN c> co ^o T o
II II I 1 1 I 1 I I I
^rin ^rNro^^in
U kj
O a
& & 6 & ££&§>£&& 6
11 a e&illgl
1 1
1 i
C CD
C» > 0 E
J? ' rH 4J O
W J) tJ W U >4-<
C. .,J jJ -" W JJ
O QJ ••-' £- r-i O '"I --H * g
•IH 4-> c ra ra 4J t) c 7*. b
DC V-i C1) Cu & 22 **-< '^OC
1 ^ t; § 5-P H o ? ° s 1
o ^ o cr> •*- o o"> u ra ui o 4--
4J .3 w cr> o
OJ-H O O -J C O CvjCO
4JC AJ4J4JO OOO4JG
ij o w C) c ^-i o 4-' o 4-j t1 ra
4-1 4-) ra f04-JlTl4-Jl-j
C CiU'^-'OQJ'N M -rH
-2 1 a .S i*^ ° w ro S ^ § ^ £ £
O rd cc3 ra^ .-^ r •< !^J I^H f j H
& i? £?r & '^ &
*U f "O ^ 'O 'U T3
fj (i i fl) qj 0) (\i ni
PJ P. P-< & (5. Qi O
& & ra* ro1 & fa' ra
T3 *U t? "D ^ T^ 'O
c
o
1
143
-------
in
c
£
§
CJ
Ul
&
Vi
4-1
rH
$
C
o
C '"H
rH VI
1
,
z
c
o
C 0
O !^>
0 p
8
rH
CD
c o
O rH
£ &^J
e S oj
C — ' U
§c c
.,00
nj -H -H
4-> 4-1
U-l D U
O r-* flj
O CJ
B s
In u T?
s a s
^
(a
T?
a
(0
•O
6.
i i
C •""
Vj
Q>
%
f3 rj
SjG
0
w
s
ft
n
0
o
c c
C C GO
O O 0> p -H F rn
rp 1 -r4 4_> O 4-> O 4-1
O* «- rH4-J QQl^J
c 0 -^ c r-t o o •<-* • r o g t/j
DC u I'J CL < -^ f> t C F-; T) fi C -H
W O C G' Xi H ••-< 0- O at fO E; C| *- O O
iu .^ 'j_t (^ o1 *.- ra p? c *Q 1-1 vj 4J u-i
Q tj c D1 -1-' o rj' i-i n vj o u-j c u-' ru u-i
4J fO Vj CP Ol^Oi — lilt'
0;-^ QJO'*J CO C'-jC-O ID C Ot/1
jj C 4-' 4J J-i O O O O -t-1 C1 dl C U) O O
f3 fU -iH -H U-J >H -^ 4J 4J 4->
UO ua'C J'O 4JO4JOftJOr;O Of3
c c ra u-j y rj • N M -H D
Og 'OHO ^JJF-rHg.r.uVjCl-lT; XJC
•r-,bo^4J u-< .c b rH 3 r- jj o G ai 5 « o
roncucjsf c cjjCJDcin4JtTij ai-u
T;Our! r; O C O O O C cacr Clcj
-H r 4J Tp 'O 4-1 E O t E L b 'U ro ^H -: (.; ti o
SP — i . >>,>- >«>.>,>, >.>^
T) -U-OTt TJ'U^'O 'D'D
ri fl] t ' ij cj flj o oj St? 5?
& & fl* «* ro'&a"^' &&
•D -O-O-D TJ-O-OTD -D-D
QJ Qi &i &i Ci^ CU CL QJ fi. p.
vD^rfN OCOvOT r«"i \£>
i 111 till lit
rH CN P"l ^T ^* in
Vt
4i
4->
re
* * * * * * * * 5 S fi
S
5 *x W rJ G
^ S22 txrKu:^: S§^
to g
K W
£H U
£ O
U U
WJ 4J
(0
tn a>
c c cr
CJ (U •
O O ^ •
•rH t-l rH
U-l 4-1 -0
U-J -H ,-H O
§=|^
p c 11 a>
4J 0 C
(G Qj O l-i
0) Qj 4J
U, !H (j C
£; i-t ra a
o o o ja
F-" O i-i 4J
>, >• >, >i
"XJ 'D T3 *O
a a a a
ro1 ra' ro* i?
•0 T3 ID -0
DJ DI ij &
•T (N O CD
tN n ^" ^-
1 1 1 1
i-t CN n ^r
O GJ O QJ
cc (Z. of re
s:
t-J y y rH
CL < rH &i2
S S s-- bi
.
s
rH
O C
VI -H
D rH 4J
U rH C
O •<-< CJ
tn tn
4^|
Vi •-*
V C
-LJ O C>
o JJ ro
•iH (J V-<
•D (0 U
C HI 3
>. -V
•a -o
(U flj
& iT
•a TD
a a
m vo •—* r*
till
•3- m
u u
G' 0
O O
fO fO
S S 5 6
< en
tO rt.
s s
tn w
c£ «C
8 g!
D. &
CO 10
144
-------
01
4J
P
8
(J
• JO
V O D
S #w
c
•iH
C
8
a
8 8
Cj O
c-1 CQ
0) Q! C D- C
4J | O 1 O
(0 O "H O -iH
t-r-l 4J ••-» 4J
C 3 CD
TJ rH O • 4> • TOrH
tr' Q 4-J rc J-1 c i>* en Q
kjui ro C >TJ O GJ wjoJ
O ^: J-J ^ -H 4J C
U-ji*-i C Clil-Jp--*-1 OU-i U-j C
o c o o ••"• CROWD i-( oc oo **^
oj---ifi' cy XT3£o c o-«-t QJ QJ
cwcciin' ra c8 CD. w
O O^O CJC^OJ'p O O O W O
jj jj jj j" QJ fD'"~fnjjj 4-s 4-> JJ.CP.
(0 OO. »jj4-)i-N **-i
il'il^ll^l''3 ! gill.il!
ccng-HAJ Ogi-H4J
&£&£& & ^^
'O'D'D'U'D T3 'D'O
S. it S. & S. & S. S.
ot&&TC'& i? &&
•D Tl -0 T) T> T) -0-0
Ui PJ PI C^ Uj PJ p, PI
t i i j^ T 22 ^* '
iH IN m ^H
u
ij
o
(0
fl^fliiWflja^ XiQ QJ C*
.B8 II ^ II
i
B
o
ra
P- *
at • ai • wo 41 • o •
j-j'a^cw o -H 4-» i 13 C^'TJ
C'COTJQJ O O^O-Q (UC4> TV fij O
J-* O -*J y ^< '•"" O itH *— * -^ 4-J O •*•* 0 ^ -r^ O
• vu j- ui i_i CJ n; fO o 1-* jJ Wj V-. GJ f3 •
tn a Qc NCLNrnvj-.H 3 c c ^JCu(lJ
c o Q '> T) N • 1-1 u •-* > ^ a>oa'rn N • ,— i o ra
(TSvutoi^JO 3 tc -^ --H .H o •— • u-iiniwra Snj-^-C
n o fo o ? *^ c o^ £j ^ •tj '0 o *^ o ? f— i n CT* o
>,>- % % % % % %
'O'D 'U'DT) 'D'O *O
RR S.8LB.S.S- S.
ro'o' i? sr i? 3r sT sT
-O'O -0 -0 -D -0 T) Tl
S. S. S. S. & 8. 8. &
in ' ' rH ' ti Jl ' ' '
cs) m .H CN m
U Vj
(1J C>
u u
to X
P i
145
-------
E
3
C
4J
C
8
1
ID
4J
O
.H
VJ
s
0)
•H J3
2
I
§
S "•*
E 4-J
3 -H
rH t/1
8<£
&
i
&
c
o
c o
.S J
O r!
cJi
|
t
?3 qj . QJ *
CP J-J 'O JJ C » Ui
M raC'tgo w in wo
O x«' /i .c -H jj jj c
U-i PJ t-i CL JJ C CO?
OO CO in Q (/) D <]J QJ-r^ra
o-» 4J o c?) o <— i -H -H ,»j .e
4) CJ C .c fa jr. Q O; uu*
JJ ftj 4-1 J f3 rH U-l UH <*J U<
UiflSjT^CLU-JCUHO UH JJ u«j LJ d)
f L* O ** O JJ ^ Q iJ O t/i ^
•H O SZ. JJ O JJ St ^ ti kJ O
SPj O I-' 4-J lJ 1-4 l-l -H Ui ^ rH
IW-H D O 3JJ OaO*
•HCO-Pl-trHVjlJJ JJO 4J W £i O
••H -H dj rH IM U) u_i fa ui flj wj XT T/
^D jj ^ o to w 9^^* jy P- ' — ' r~t
GrHJJ fOOfiJO Su EV)OP
e O Dj CMV-Jl-iV^ DO flJO-Ct?1
>1>,>H>, >,>,>,>,>,
T3 *D *O 'D TO T3 *O 'O *O
fl) gj C) O 41 O 0' Cl QJ
p, Cj Q, p. p, p, p, Q, PJ
>1>l>1>1 >l>«>1>1>1
TD'D'D'O 'D'D'O'D'D
r^gii^fu s^^sy^sy
^o^rfMo ro \O^TCMO
rHC^in-y fNCO^HCNm**
1 1 1 1 1 1 1 1 1 1
O"i r*- 10 ro rH rH o> p* ID rn
rH CN <"> rH CN rO
U
0)
JJ
%
£ & Si £ u £ £ $ £ £
S&ilSs wSS&gS
§ E
p M
g y
W Cu
S 8
p
§
u S
O o
JC E JJ rH
PJ ftj O rH
W-i W^ U £ o
0 1 g-«
4J ti U -i-l rH 10
Qi ^O O O 10 ul
e c » • « s o
>r4 rg rH O O *W
§U-I rH
O O rH C
JJ O C*
JJ O>-iH C U-i ni
SO 4J E O 0
u a E -" to LJ
•H 4J O £ 4J JJ JJ
e-iH JJ •
1 rH
rH
U
0)
JJ U
U 0)
n>
m jj
e s
a
§
to
a
B
01
to
S 0
0> -rH
SO; rH u vi
C QJ *0
o> o a^ CL •
j£ M J> 'O 'O
JJ 0) C "H C1 O ra
SO U-i C S CJ
••H O »-
4J JJ 01 rH rH
<0 C P C rH W
'D JJ '>H E O "^ ^O
C fO •> rH
rH C '^ « O 0 rH
(U U »J rH O
U (J C; CO rH >i CJ
O C >1& O rH
O nj U-i c C
O U rH TJ O -iH
• CP O DJ • C
JJ fij C3 - C .* rtl
aUl UH QJ "* O rH
3 "H U-t r-H
•H (0 W rH O -O <
146
-------
I
£
4->
a
9
g
Conrnents
o
-r-«
w
*J
£
0)
4J
s^
t— 1
H-
&
§
§.;!
4J
•^
r-H U)
S.
^
1
55
4J
C O
o o>
4J .Q
*
8
o
u
o
a)
1c
5g
-H m c
rH O O
m w .r1
tj 4J 4-»
o> •-< :3
c c: —i
•* Q
6 o ffi
>."c c
r-4 10 -H
as §
4J -rH
C r-t C
S3 2
£S 1
* *
S S
O O
"X \
_Q _Q
CO i—t
1 |
i-H &\
fl) U
4J t-t4>OOQj'O
0> O S >Ot*JC^OrH
»O '«H C O C'U'-J'H OEU OS
-*J O jDOC>So»-4 >i C C
'*4 W fl> 0*0 ^ C C •" 1 <0 *H
C -U t: *MCDOi-*'C O-'^'-tcr*
••-*Q»O i_*J (DUE
w c NW OJGjrsa ^r-^o 9
p S^'jyo u*«C4J -<-i
w S S,^H "gRoJ^c'^S^-SIS §
(jj Pu O**-l Z-«-<(UW>-HO.Q'3iM<-'J •§!
re . ^ ^
5* S"1 £ J?
o u p o
(0 *D (u fu
\ X. \ \
O CO O U>
TTT r-H W> CO •-*
1 1 r-t ||
CO rH rH f-l O^
ro *3"
u
O
S p>
ro w «j 4J 10 «J
Sfl> ,G C fl> CI
K U «H « «
^:
fc 3 o ^r
CM J £3 K K
Z K E OS
i
5
iH
8
S
•?>
s
u
8
18
S
g
1
1
^
x>
^*
n
I
r-
rH
8
K
f
i
1
*j
to
0
K-)
•d
»J k4
*J . °
O O r-t
*O "^ ^J •
g g S g
TI re u 4-
c 8" . C
c -^ vj v »-i re
ra c j-> c rH cr
•«^ D (0 lJ
o> vi c: N -^ o
-rH O •*-< Wl C r-t
•i-» 10 ^-t O O O
2 O "^ o & 4J
re ^ ^ .S
5* 51 5* 51
o o o o
m rH rH r-t
r>j m «»
U
0)
^ ,H ^ ? M
ro 10 flj ffl nJ
u
m
g
: 1 »
S« 3 as
Z D* O
1
S
3
I I
t-t O\
5
g
147
-------
o
nj m
rH U $
•H
4->
a
a
*r
-------
o
-p
£
H
r-t
C
o
—I
£
C
o
4J
u
1
1
'.Q • rH C
EC H O
O O Q ••"*
c w m co N
O O N O J~» ••-*
JJ 'D (-H tO A-* 'O *0
D Q» fO 3 3 S • -rH
rH JJ 10 --H i-( rH .Q Ul AJ
8ou-r C
iotoc gJBDvtnc 3
£,CrH QiJ^-CrH U
< § | ^ f. |. |.
j<: ^ ^ j£ 3£ x: x.
o y y u o u o
-C .O _Q O XI i5* _Q
^O^J-
rH CN •— 1 T-J
u u
£J **
o o
ra ra
£ £ £ o & & & & 6
(X CU
T f f) ? T f ^H
o o kJ tS o o j
g |
N S
P5 M
i
'•p
e
c u.
o o
W 4-* 'O
W rH Jj
O Q *-J
-c K o
PJ Si
Of C -0
O "H O
"o..
-------
o
0
o
o
o
oj
o
O
O
CO
ce..
Si
10
in
c>
o
CO
uiiu/63( 'SS01 1N3WIQ3S
l/ui6 'SSCTI 1N3WIQ3S
151
-------
uiiu/ui6 '3NIZVH1V
in
CM
o
o in o
o o o
o o o
1/61U '3NIZVcUV
in
o
O
uiiu/ui6 '3NIZVcJiV
152
-------
S3
Si
8
s-
O 3
CVJ O
§
O
CS1
CO
UlUl/uiB 'N-fr
o
CVJ
o
l_ CM
O 4-
^j-
csj JZ c/i E
CTt C
^H -CO
LU O 4->
3E W
8 p 2J
g
? S
NJ «-H
uidd 'NX1
o
00
8
ULUi/ui-6
153
-------
o
oj
00
o
L/6ui
uiui/ui6 'N-
o
o
00
4-* C\J
| g
OJ
in n-
o
C
O E
ItflOi
uiiu/ui6 'd ItfiOI
154
-------
"1
— z't?
~ e-<7
6-0
l/6ui 'd-
s- •
CM
c
O 0)
•r- c
•W 3
1-1 O
uiiu/ui6
l-l (/)
CO S-
O)
I*
o -=r
cu r-l
CM -C ••- •
§,-
I- O
-------
o
o
uidd
I O LU
LU I—
O <
OL —I
O 3
I- I
o
o
o
r^
o
o
O
o
o
o
o
o
o
CO
C\J r-H
uiiu/6>| 'SS01 1N3WIQ3S
l/ui6 'SS01 1N3WI03S
CM (/) I—
C M-
CU O
cu o
in +->
156
-------
l_
o
o
o
udd
o
8
o
o
*3-
CM
o
10
o
CO
ULUi/uiB
cc. o
-1
D-
01
S- 01
(V -t->
-
N O
JJH-
•u -a
in
o
o
§
o
o
o
l/6ui
§
ULiu/ui6 '
157
-------
03E
LU t—i
DC l/l
10 O
> <->
O V)
§
in
o
00
r
01
«d IViOi
IUUI/UI6 '
8
C3
d
in -
^H
oa
uiui/ui6
158
-------
6'ST
9'TT
9'6T
9'9
Z'i
rzei
: e-cc
I7*2 I
g^
O 2
UJ >-«
o: co
I I
Q-
O i~-
cn
C p
"" o
•— 4J
rc to
>
§a>
.c
ai +J
i-
s-
mo
o<*-
t-H CO
m s-
ai
01 -t->
ULiu/ui6 'N-£
159
-------
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.40
0.32
0.24
0.16
0.08
19
f 5.2 ' ' ' ' , ' _
/
h N -
n
i j
i i
' i
- / ' -
f i
t i
_ i } _
i ' r
»/
V
i
1
1
1
1
I /
»ii i v«»»fr* i
i i i i i i
. 1
« RECORDED fl J
SIMULATED A\ \
f \ \
1 \ '
f I I -
\ I,
~ i 1 ~"
1 1 '
_ .+ r fci _
if * \
• , , I /I , ,1
30 2010 2050 2130 2210 2250 2330
TIME, hours
Figure 819 PO. removal in solution from the P2
watershed f3r the storm of July 24, 1975
160
-------
i—r
i—r
j L
i—r
O 3
'— Ol
3
•O E
CD C
(/) O
ULiu/6)| '
1N3WIQ3S
UD ^J- (-O OJ i—
L/tu6 'SS01 1N3WIQ3S
cu
i. 4->
3 (TJ
01 f
- 11
oo
o
o
o
o
VO
O
ui
CM «-H
E
•5 c
O) o
ULui/6>| 'SS01 1N3WIQ3S
L/uiB 'SS01 1N3WIQ3S
162
-------
I I I I
§
I
s: o o
h- ffi in
g
O
O
O
CO U>
O O
O O
CM
O
O
O O O O
I/Bui '3NIZVM1V
O
O
o
CVJ
o
c5
10
i—I
o
C3
o
o
uiui/ui6
H
J
I
I
I
r
UKid '
163
-------
o s: i—o
^- i—i ro +•>
v-
O
O
00
1V101
ULU/U16
o
CV1
00
o
o
00
o
:z LU
>5;
c +->
E ^
*^ en
i- -a
+j ai
< -E
uidd '3NIZVblV
O O O O
luui/iuB €3NIZVblV
164
-------
o
o
oo
o
o
-------
J L
f
_L
_L
E -
O f>
S- f-H
O Il-
l/I O
o
i— 4->
lO (/)
O 01
3 S
I/6m 'N-£ON
O CM
ULU1/U16 'H
CO
CO
J L
§
VI
S-
en -M
1s
o>
o
CO
o
o
l/6iu 'N 1V101
uiui/ui6 'N HViOi
166
-------
i 1—r
I I I L
E •
O 00
1- .—I
O ZJ
•r- CT>
•M 3
3 eC
O O O O 00
r^ ^o LT> ^- n c^j
l/6ui 'd-^
ULUi/iu6
I I I I I
o
o
CO
o
o
o
10
o
L/6ui 'N-
uiu/ui6
167
-------
Ill
.£=
•tJ
IrC
. 01
O 3
3
E <
t«-
•— O
to
IS
S- U1
s- o
•u t«-
«r
U i.
HI
ll
o
o
o
r-l
O
C3
1C
O
O
ludd
ULU1/U16 '
a) 3
w =r
168
-------
g g
in o
o
o
IT)
'N IVlOi
ULUi/iu6
i- 01
a; ••->
ID S-
l-H 0)
o •!->
O
*-H
O
O
1—4
o
o
'3NIZVaiV
s
o
ULUi/tu6 '3NIZVaiV
169
-------
TT
in
i—i
vo
in
<*>
in
in
f-H
in
•a •>->
(C (/>
mad
uiiu/ui6 €N-*HN
170
-------
I i r
^
^ —• ^ ^ ^ ^
£'£!
O'£l
SL
t
O «
o:.
Si
/
\
/_
I
I
/J
o
CVJ
o
vo
o
d
<£>
Q.
0)
5fC
SS
8 .
<*- o
CM
c
o +J
•r- IO
•»-> 3
3 O>
o5
(/I
>t-
c o
ul ^g
!^S
O S-
csj O)
O +J
'N 1V101
utuj/uiB '
i r
o
O LU
8
o
o
o>
8
o
o
CO
C -4-"
0)
i-
•— o
10 t-
'd
uiui/ui6 'd ItflOi
171
-------
6'T
-S'fr
-g-g
id
-c en
E -
£O
CM
csj w
<_> i.
t/6ui
ULLU/ui6
O UJ
LU 1—
O
O OJ
if)
ID
«•
L/6ui 'N-£ON
uiui/ui6 'N- ON
172
-------
5.0
4.0
r 3.0
2.0
1.0
g.
4.0
3.2
2.4
1.2
0.8
•—RECORDED
SIMULATED
T
1415
1435 1455
1515 1535 1555
TIME, hours
1615
1635 1655
Figure C23 PO. removal in solution from the P6
watershed for the storm of August 20, 1975
173
-------
1. //HARL7508 JOb • A19$X2,44* ,2,35* , • J7508 DAVIS « , CLASS=E ,REGION=512K
2. // EXEC FOPTCL,PARM.FORT='OPT=1,MAP,XREF'.REGION.FORT=512K
3. //FCRT.SYSPRINT 00 SYSOUT=A
4. //FORT.SYSIN 10 *
10. C
10.1 C
10.2 C
10. 3 £ ******* *********** *********************************************
10.4 C * *
10.5 C * AGnICULTURAL -RUNOFF MANAGEMENT (ARM) MODEL - VERSION II *
10.6 C * *
10.7 c **»**************** ********************************************
10.8 C
10.9 C DEVELOPED BY: HYOROCOMP, INCORPORATED
11. C 1502 PAGE MILL ROAD
11.1 C PALO ALTO, CA. 94304
11.2 C 415-493-i>522
11.3 C
11.4 C FOR! U.S. ENVIRONMENTAL
11.5 C PROTECTION AGENCY
11.6 C OFFICE Cf- RcStARCH
11.7 C AND DEVELOPMENT
11.8 C SOUTHEAST ENVIRONMENTAL
11.9 C RESEARCH LABORATORY
12. C ATHENS, GA. 30601
12.1 C 404-546-3581
12.2 C
12.3 C
12.31 C VERSION: 10 JUNE 1977
12.32 C
12.4 C
12.5 C MAIN PROGRAM
12.6 C
12.7 IMPLICIT REALU)
12.8 C
12.9 DIMENSION RESB(!;),k-ESBl(5),ROSB(5),SRGX<5),INTF(5>,RGXi:>) , INFL(i),
13. 1 UiSt (5) ,APERC615) ,-RIB(5),ERSN(5) ,K3( 12)
13.1 01 MEN SI UN SREK(3),fcOBTOM(5) .RuBTOTO) , INFTOHI 5 ) , INFTOT ( 5 ) ,
13.2 1 ROITOM(a),RCITOT(5-J ,RXb(5) ,bRSTOMla) , ERSTOT ( 5 ), MNAMl 12),KAD(24),
13.3 2 TEMpx(t»LiSh , IiNF IL » iNTtR, !.<(,, N'4,L ,S i,SGwl, Pn, SGA,bi»S,l\V,
lb.3 4 K2'tL,KiAi'l,rMEY,CD*MEY,SGMY,CONMEY,CRAINY,SNEGKY,SEVAPY,
15.9 * TSNBAL.COVfcR.CiJVKMX.ROBTOM.KOBTOT, RX B, RO I TOM, RO I TOT , IMFTOrt,
16. 1 INFT0T,ckSTuM , ERSTOT,SSEO,TEMPX»RAD,rtlMOX.RAIN,INPJT,OSNRUS,
16.1 2 DSNFLO,CoNERS ,LSRO, EROS, TM3LSZ, LOOP, NERO S,N ILSRC, KPOS , i>*RROS
175
-------
16.2
A. ^ • C. V
16.3 COMMON /NuT/ OELT , SN, SNT, SNRSM, SNROM , JN, JNT ,UN I , UNI T,
16.4 1 UNR IM,NRS*,LN,LNRPM,GN, SNRBM,UNRBM, LNRtJM, GN*BM, TNRliM,
16.5 2 SrJRSY.SNkOY, UNRIY ,NRSY,LNRPY,SNRBY.UNRBY,LNRbY, liNRBY,
16.6 3 TNKBY|TNkhViTNRHv'MrTNKhVY|TNA,TPA,TCLA,
16.7 4 KN.THK.N, KP,THKP,^BAL,PHbAL,CLBAL ,
16.8 5 TSTEP,NSTEP,SFLG,UFLG,LFLG,GFLG
16.9
17. COMMON
1(. wurinuiN /KC3IIJ/
17.1 1 STST,PRSTCM,SPROTM,PRSTOT,SPRSTM,PROTOM,SAST,PROTOT,
17.2 2 SCST,UPITU«,SCST,UPITdT,UTST,STS,UAST,UTS,JCST,SAS,
17.3 3 UOST,SCS,FP,SCS,CMAX,SSTR1,SPROTT,UAS,SPRSTT,UCS,
17.4 4 FP'J£,Uui,UPRITM,USTR,UPRITr,UPRIS
17.5 C
If.6 C COMMON ALL DECLARATIONS FUR 1*2 £, R*4
17.7 INTEGER PR*TKE ,TIMFAC,IMIN,IHR,TF,JCOUNT,IDEBJG
17.8 REAL RU,HYMIN,LiS,AREA,RES3i,ROSB,SRGX,INTF,RGX,INFL,
17.9 1 JiSB,APERC6,RIB,ERSN,rt,P3,A,RESB,SMOIST,UMOIST,
13. 2 LMOUT.OPST, STENP,UTEMP,LTEMP,MU£fMLZ
18.1 C
13.2 C COMMON LANO DECLARATIONS FOR 1*2 t, R*4
13.3 INTEGER DAY,MCNTH ,0 SNRJS, DSJFLU, DSNERS, TMBLS^ ,NEROS,
Id.4 1 MLSRC.NfchOS
13.5 REAL SEVAPM,SIWSNY,PXSNY,MELRAY,RAL>MEY,CDRMEY,SGMY,CONMEY,
13.6 1 CKAINY.SNcOMY,SEVAPY,TSNBAL.COVER,COVRMX,ROBTOM, ROBTOT,
13.7 2 RX3,ROITON,PtTMAX,ELDIF,DE*X,PACK,DEPTH,SOEN,
13.8 3 IPACK,TMlN,i>UMSNrt,PXSlMM,XK.3,MELRAM,RAOMEM,CDRMEM,CRAINM,
13.9 4 CUNMtMfSGMrt, iNtGMM, PRT'JT, ERSNTT ,PRTOM, ERSNTM.RUTOM,
19. 5 NLPTCM,RCSTUM,RITUM,RIiUOM,BASTOM,RCHTQM,RJTOT,NEPTOT,
19.1 6 RUSTOT.KITUT.RIN TOT,HAS TUT,RCHTOT,TwoAL.EPTOM,EPTOT,
19.2 7 UiS,lUSN,LilS«f INFIL, IrtTLRf IRC ,NU,L, SS, SGtal,PK,SG* ,GrfSt
19.3 8 K\/,!<2'»L ,Ki\2*,K.24EL ,EP ,IFS,Ki, EPXM, RbSSl ,RESS,SCEP,
19.4 9 SL£Pl,SRGXT,SRbXTl,jR£K,K.kER, JSER , KSER , SRERT, MMP! U,
19.5 * METGPT,CCrAC ,SCF,IUNS,F,DGM,WC,HPACK.EVAPSN,MELEV,
19.6 1 TSNu)rt,P£TKIi«,P.OITJT, IN^TOM, INFT UT, ERST DM , ERSTOT ,SRtk ,
19.7 2 TEMPX.RAC,hINUX,RAIN,LSRO,EROS, KKOS
19.8 C
19.9 INTEGER SGNbAY , BGNilC/J, 6GNYR, ENDDAY. ENDMOiN, ENDYR
20. INTEGER YEAR, OYSTRT, OYEND, H, TIf£
20.1 C
20.2 INTEGER IERROR, YK, MO, UY, CN, DA
23.3 INTEGER TIMf
20.4 INTEGER CSN
20. "5 INTEGER
20.6
20,
20.8
23.9
21. lNTtT,EP*4 APWCUE,DESORP,SJRF,SOIL
21.1 C
21.11 INTEGER** LOOP
21.2 INTEGER** IChECK.
21.3 C
21.4 INTEGER** dLANKl,bLANK2,CHNAME,QISK,wSNAME, SNOPRT
21.5 C
21.6 C
21.7 INTEGER TIMTIL, SFLAG .YRTIL
21.9 C
21.9 DOUBLE PRECISICN MNAM,PEST 1C,ENDDIS,RUNOFF,SEOIME.OVERLA,CHAR
22. C
22.1 KEAL I'iOPTH, dCSZ, dO'JZjBDL^ , SiDPTH, CO VPMO, RAOCON
22.2 REAL PETMUL , «M(jL , RrtUL
22.3 RCAL ICS
22.4 REAL N, MJ, ML
22.5 PtAL SRkTMT, ERSNMT, NP
22.6 REAL KUGI
22.7 C
22.3 REAL S TS T , PRSTC,^< i) , SPkOTM ,PR STOT( 5) ,SPRSTM , PROTOM< 5 ) , SAST,
176
,6 C
.1 INTEGER"* bCTH, CALB,DAYS,ENGL,HOJR,HYCAL,INPUT,INTR.METR,
,8 1 MNTh, NO,NUTR,OFF,JN.OUTPOT,PEST,PRINT,PROD,SNUrt,YES
,9 C
-------
32.9 2 PKQTOTOJ.SCST ,UPITOM(&i,SOST,U?ITOT{S),UTST,STSl5}tUAST,
23. 3 UTS(5) ,UCST,SASl3 J, UOST,SCSI 5) ,FP, SDS(5) ,CMAXf SSTRlCi) ,
23.1 4 SPROTT,dAS(5) , SPkiTT,UCS(5),FPU£,UOS15),UPRITM.USTR(5J,
23.2 5 UPRITT,UPRIS15),SSTR<12)
23.3 C
23.4 INTEGER T IMAP(l^J,YEARAPl12).KFLAG,DOGt12),YDG(12)
23.5 C
23.6 REAL K ,,) ,LN<20) ,GNl 20 )
25.6 C
25.7 REAL SNAPL(20.3,5),UNAPL(20,5,5),KNI(3,4),KPI{5,4),UiF,L/F
25.71 REAL UcUPF(i2JrL^UPP(12)
25.8 C
25.9 INTEGER APOAY (f>) , APLCNT, JHUJP. ,NAPPLi Jf I BLKt TIMHAR,
26. 1 SELl- Vl^uJ ,IOERR, I.^TRVL
26.1 IUTEGER OPMMl(l^)
132. C
133. DATA TIMTIL/li*0/,YRTIL/12*0/,SRERTL/12*0.0/
13 4-. DATA CQVPMO/12*J.O/,BJSZ/i03./,SZOPTH/.0625/,UiDPTH/6.0625/
135. DATA ICS, OFS/2*0.0/,8L>U£/103./,BDLm03./
136. C
137.1 DATA BLANK1/1 •/»BLANK2/• '/
135. C
13J.2 DATA K , Nl ,f-?L I, LST K, LAb, LCS ,Lui ,GSTR, tiAb , GC5 ,GDS,
138.3 2 TPB*L,t)EGSCKiOtGilJT,DEoUOM,JtGLiOT,DEiiUfDEGSt
138.4 3 DeGLOM.DEbLCT.NIP.NCOM, J I S T, T JTP AP ,:> JL6/25*0. O/
1"5'1.6 JAT4 TIMAP/L2*SS9/,YEAKAP/12*0/,S JTR/12*0.0/
13^.91 DATA KGPLB/0.45 jo/, bUKF / ' S JXf-' / , SOIL/'SGIL'/
133.95 C
139. DATA GRAD/0.04,0.04,0.03,0.02,
140. *0.02,0.02,0.02,0.06,0.14,0.Id,0.20,0.17,0.13,0.06,0.03,0.01,0.05,
141. *0.07,0.10,0.13,0.15,0.13,0.12,0.08/
142. DATA RAUOIS/b*C .0,C.019,
143. *0.041,0.067,O.C88,0.102,0.110,0.110,0.110,0.105,0.095,0.081,0.055,
144. *0.017,5*0.0/
145. DATA HINDIS/7*C.034,0.035,
146. *0.037,0.04l,O.C4ofC.050,0.053,0.054,0.058,0.057,0.056,0.050,0.043,
147. *0.04U,0.03a,O.OJo,0.036,0,03D/
143. DATA DPM/J1.28,Ji,30,31,30,31,31,JO,31,30,31/
149. DATA PETMOL,nMLL,RMUL/3*1.0/
149.1 DATA PESTIC/'PESTICIU'/,ENDDIS/'ENDOISK«/,RJNOFF/«RJNOFF '/,
149.2 1SEDI ME/'SEDIMENT'/.UVERLA/'OVERLAND'/
149.3 DATA APLCNT/1/
149.4 OATA StLHV/C,C ,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,O/
149.5 OATA DPrf.1l/C,31 ,2«,31,30,31 , 30,31 ,3 1, 30 ,31,30/
149.6 DATA KFLAG/0/,AkUDL/0.0/
149.7 DATA SFLAG/0/
149.9 DATA KDG/12*O.C/
153. C
151. C DATA INPUT — ^AMELIST 'VARIABLES
177
-------
151.1
151.2
151.3
151.4
151.5
151.6
151.7
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
163.
169.
169.1
169.2
169.3
16?. 4
169.5
169.51
169.52
169.53
169.6
169.7
169. 8
170.
171.
172.
173.
174,K.24EL
NAMELIST /LNJ5/ SGW , GWSf KV , ICS iGFS .1 FS
NAMFLIST /SULU/ k ADCCN, CCF AC, SCF ,£LJ I F, IONS ,F
N/MELIST /S,N02/ DuM , wC, MPACK, E VAPSN, MELEV.T SNOW
NAMELIST /SN03/ PACK, DEPTH
NAMELIST /SNQ4/ PETHIN, PETrtAX , /
-------
135.13
166.
187.
188.
189.
190.
191.
192.
193.
1T>.
195.
1.
237.
23'>.
2SO.
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
r
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
/-
V
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
r.
c
£
c
INTRVL: TIME INTERVAL OF PREC I P IT ATI ON i 5 , 15 OR 60 MINUTES )
HYMIN
APEA
BGNOAY
ENFOAY
UZSN
CUS
LZSN
LZS
I.
ss
NN
A
K3
EPXM
INFIL
INTER
IRC
K24L
KK.24
K2AEL
SGW
GUS
KV
1CS
CFS
IPS
MINIMUM FLCrt FUR OUTPUT DURING A TIME INTERVAL (CFS, CMS)
WATERSHED ARtA (AC, HA)
BGNMCN, uGNYk : CATS SIHULATION BEGINS
EHOMCN, ENOVK : DATE SIMULATION ENDS
NOMINAL JPPEk ZONE 5TORAGE (IN, MM)
INITIAL UPPtR iCNE STORAGE (IN, MM)
NCrtlNAL LCrtEP ZONE STORAGE (IN, MM)
INITIAL LGnEk ZCUE STORAGE (IN, MM)
LENGTH CF LVERLAND FLO.J TU CHANNEL (FT, M)
AVERAut OvtKLAND FLUrt SLUPE
MANNING'S N FCR OVcKuANJ FLO1^
FRACTION GF AREA THAT IS IMPERVIOUS
IMOEX TO ACTUAL EVAPJRATION (12 MONTHLY VALUES)
MAXIMUM INTERCEPTION STJRAOE (IN, MM)
INFILTRATION RATE (IN/MR, MM/HP)
INTERFLC* PARAMETER, ALTERS RUNJFF TIMING
INTEKFLU*. RECESSION RAT;
FRACTICN Of- GROUNU^ATER RECHARGE PERCOLATING TO DEEP
GRO'JNGrfATER
GPOJNCWATER RtCbSSIOi-J RATE
FRACTION CF ^ATtRSHEO AREA WHERE GROUNOWATER IS WITHIN
REACH OF Vc-ETATIUN
INITIAL GRCJNlJWATER STORAGE (IN, MM)
GPuU^CwATEK SLUPE
PAkAMtTcR TO ALLOrt VARUdLE RECESSION RATE FOR &ROJND«ATER
DI SChARot
INITIAL INTtM-EPTIUN STORAGE (IN, MM)
INITIAL LiVcKLANO FLOW STORAGE (IN, MM)
INITIAL IMcKflCvi STORAJE (IN, MM)
CNLY IF Sf>'Ow=YES SHOULD PARAMETERS SNOwPRINT THROUGH KUGI BE INPUTTED
SNOWPRINT: (NO) HOURLY SNOW TABLES NOT PRINTED DURING PERIODS
OF SNOhPACK
(YES) HOURLY SNOW TAdLES PRINTED
RADCON
CCFAC
SCF
ELUIF
IONS
F
DGM
WC
MPACK
EVAPSN
MELEV
T SNOW
PACK
DEPTH
PETMIN
PETMAX
PETMUL
hMJL
RMUL
KUGI
CCVPMO
TIMTIL
YRTIL
SRERTL
JRER
KRER
JSFR
KSEP
CORRECTION FACTOR FOR RADIATION
CORRECTICN FACTOR FOP CONDENSATION AND CONVECTION
SNC»< CORRECTION FACTOR FOR RAlNGAGE CATCH DEFICIENCY
ELbVATICN DIFFERENCE FROM TEMP. STATION TO MEAN SEGMENT ELtVA
(lOoO FT, KM)
OENSIT* OF NErJ SNOrt AT 0 DEGREES F.
FRACTION OF iEGMENf WITH COMPLETE FOREST COVER
DAILY GrtuUiOMELT (IN/DAY, MM/OAY)
MAAlriUM wATEK CONTENT OF SNOwPACK BY WEIGHT
ESTlMATgO «ATER EOUIy/ALSNT OF SNOrtPACK FOR COMPLETE COVERAGE
CORKECT10N FACTOR FOR SNOn' E VAPORAT I JN
MEAN ELEVATION OF WATERSHED (FT, M)
TErlPERATJRE DELOW WHICH SNOW FALLS IF, C)
IMTIAL hATER EUUlVALENT OF SNOwPACK (IN, MM)
INITIAL OfcPfH OF SNUwPACK (IN, MM)
TFMPEKATURE AT xHlCH ZtHO PET CCCURS (F, C)
TEMHcRATOrtc AT «h!CH PET IS KeDUCED BY 50? (F, C)
POTcuTIAL tVAPUTRAMSPlKATION MULTIPLICATION FACTOR
WINJ MULTIPLICATION FACTOR
RADIATION !"JLT I PLICATION FACTOR
IMutX TQ FOREST DENSITY AND UNDERGROWTH (0.0-10.0)
PLRCSNTAoE CRCP COVfcK ON MONTHLY BASIS
TlMt (IN JULIAN DAYS) WHEN SOIL IS TILLED
THE CURSESPONCIING YEAR IN WHICH TIMTIL APPLIES
FINE DEPOSITS PRCDJCED 6Y TILLAGE (TONS/ACRE, TONNES/HECTARE)
EXPONENT LiF kAINFALL INTENSITY IN SOIL SPLASH EQUATION
COEFFICIENT IN SCIL SPLASH EUUAT ION
EXPONENT OF OVERLAND FLOW IN SURFACE SCOUR EQUATION
COEFFICIENT IN SURFACE jCUUR EQUATION
179
-------
251 .
251. 1
251.2
252.
253.
254.
255.
256.
.157.
253.
259.
265.
261 .
262.
262.1
262.2
262.3
262.4
263.
264.
265.
26o.
267.
2
272.06
272.C7
272. 1
27 >.Z
27 >..'i>
2T2..4
272.5
27^.6
272.7
272.8
272. S3
272.86
272. 87
272.9
272.91
272.92
272.93
27?. 94
273.
273. 1
273.2
273.3
273.4
273.5
273.6
273.7
274.
2?5,
276.
277.
278.
279.
2U'J.
2?1 .
2 d ' .,
2 -' > . 0 i
282.02
282.03
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
£
v
C
C
C
C
C
C
f.
C
r
C
r
r
C
C
C
C
C
C
C
C
C
C
r
C
SPEkl
SCMPAC
CNLY IF
THRUUGI-
TITLE
PRIOR 1
APMODE
OESORP
PSSZ
PSUZ
PSLZ
PSGZ
SSTR
TIMAP
YFAPAP
CKAX
DD
K
N
NP
ODG
YOG
KDG
SZOPTH
UZDPTH
BDSZ
BDUZ
30LZ
ASZT
BSZT
AUZT
bUZT
UZf
LZF
TURN OFF
ON H
REAC
CHECK
IFlrt
isRIT
STOP
10 REAL
REAL
»EAC
PEAC
°E AC
REAL
RFAC
P f A u.
u c-f r
1MTIAJ. FINcS DEPOSIT (TON5/ACKEi TUNN!:S/HECTARE)
RATt BY WHICH SOIL FINEi ARE UtCKEASED PER DAY (ONLY ON
NCJU-rtAIN CAYjJ
: Pr:ST = Y£S ShJjLO TITLE PcSTICIDE AND PARAMETERS APMUJE
1 8K uE INPLlTtD
vOPO PESTICIiJE MUST rtE INCLUDED IN THc INPUT SEQ.JENCE
TO ANY PESTICIDE INPJT PA*ArtETERS
APPLICATION HUUt; SURFACE APPLIED { SdkF ) ,
SOIL INCORPORATED (SOIL)
(NO) ONLY AOSCRPTION ALGORITHM USED, (VES) BOTH ADSORPTION
AND DESORPTIUN USED
INITIAL PESTICIDE STORAGE IN SURFACE ZLINE (L6/AC, Kij/HA)
INITIAL PESTICIDE STURAuE I.'J UPPER ZONE (LS/AC, KG/HA)
INITIAL PESTICIDE STORAGE IN LOrtcK ZONE ILB/ACt KG/HAJ
If-ITIAL PtSTlLlDE STORAGE IN GRUUNUWATE R ZONE (Lii/AC, KG/HA)
PESTICIUti APPLICATION FOK ENTIhE hATfKSrlED (L6/ACt KG/HA)
Tli-ic UF PESTICIDE APPLICATION (JULIAN DAY)
THt L-UnKESPUuCINu YEAK IU uHlCH TI'-lAP APPLIES
MAAi/JM SGLUlolLlTY JF PLiTUIUE IN ,vAT ti< (L6/Lb)
PERIA^cNTLY t-ULO CAPACITY ( LcJ P E ST I L 13 t/L tJ SOU.!
CrcFlLicNT IN FKEJiuLICri AubOKPriOrJ CUr; VE
FXPJ,,E^T IN FKEUNLICH AJSURPIION CJRVE
OESUrtPTION EXPONENT IN PREUNULICH CURVE
JULIAN CAY WHEN KOuUJ liEGINS (MAX. OF 12 VALUES)
CORRESPONDING YEAR IN WHICH DOG APPLIES
PESTICIUE DECAY RATE ( Pt:R DAY) (MAX. 12 VALUES}
FCLLUnING ARc TO INPUTTED FOR NJTR=YES OR P£ST=YES
SURFACE LAYtk SOIL DtPTri UN THE RANGE OF 1/8 INCH) lift, MMJ
DEPTH OF SOIL INCORPORATION AND UPPER ZONE (IN, MM)
BULK DENSITY OF SURFACE LAYER SOIL (Lb/FT(3M, (G/CM(3J)
BULK DENSITY CF UPPER ZJNE SOIL (LO/FT13), (G/CM(3J)
BULK. Jt^SITY CF LU/JtR ZONE SOIL (L8/FT(3Jf (G/CM(3J)
SLOPE UF SLKFACE ZONE SOIL TEMPERATURE REGRESSION EUN.
Y- INTERCEPT OF SURFACE ZOME SUIL TEMPER4TURE REGRESSION EON.
SLOPE GF UPPER ZCNt SOIL TEMPERATURE REGRESSION EQ.N.
Y-INTEKCEPT UF UPPER ZONE TEMPERATURE REGRESSION E«N.
UPPER ZONE CHEMICAL PERCuLATION FACTOR
LC.AtR ZCNE CHEMICAL PERCOLATION FACTOR
Uf.'DEKFLCw ABORT CM HP30J'0
EAL UNDERFLOW CALL ERRSET
I5,ics6) («SNAME (I) ,1=1,^0)
FOR RUNNING NUMiSEREL) ON ^YLBUR
SNAME ( IS) . tU.uLAMU .^NO . riSi'JAM E( 20 ) .EQ.BLANK2) GO TO 10
E(6,iC79) h SNAi-i EC 1^) - •< iNAM b 1 2 0)
(5,1096) (CHNAMtil) ,1=1,20)
(5,1097) HYCAL
(5,1097) INPCT
(5,109d) CUTPUT
(5,1397) PRINT
(5, 1C 99) SHGrt
(5,109-,) PEST
(S,i099) NJTR
(5,109d) ICHfcCK
RCAU DISK INFORMATION
180
-------
202.0^
282.05
282.06
232.07
232.08
2S2. 39
282.1
282.11
282.12
232. 13
282. 14
262.15
2>2. 16
282.165
2°2. 17
232.18
232.19
2R2.2
282.21
292.22
232.23
232.235
282.24
282.41
282.12
232.43
262.44
282.45
282.46
282.465
282.47
282.48
282.49
232.5
282.51
282.52
2d2.53
282. 54
282.55
282. 56
282.57
282.58
232. 59
282.0
282.61
283.
283.01
283.02
233.03
203.04
233. C5
233.06
263.07
233.03
283.09
283. 1
283.102
263.11
233. 12
283.13
283.14
2P3.15'
283. 16
283.17
283. 18
283. 19
233.2
233.21
IDK.CNT = C
READ (5,1099) DISN
IF (DISK .EU. NO GO TO 20
C
READ 15,1097) ICL-BUG
12 READ (5, HOC) ChAR
IF (ChAR .Ew. ENUUIS) GO TO 20
IF (CHAP .NE. RuNuFF) GO TU 14
IOKCNT = IDKCNI <• i
C
READ I5,lu96) (TITLtUOKCNT, I) ,1 = 1,20)
READ (5.1033) CSNFLO
IDS.U ICi^UNiT) = OirtFLO
ITYPt ( IL/NCNT ) = 1
GO ir i<:
C
14 IF (CHAK .Nc. SEOIME) GO TO 16
IDK.CNT = ID^Ci-n * 1
READ (5,1096) ( TITLE ( IDKCNT , I) , 1= 1,20 )
READ (5,1C83) CSNERS
IDSNUCKCNT) = CSNERS
ITYPE(IOKC.NT) = 2
GO TO 12
C
16 IF ICHA* .NE. GVERLAJ GO TO ia
IOKCNT = IOKCNT <• 1
R6AD (5,1096) (TiTLEdDKCNT.U ,I = 1,20J
READ (5,10d3) DSNKOS
IOSNI ICKCNiT) = DSNROS
ITYPE ( IUKCNT) = 2
GO TO 12
C
18 niRI TE (b, 1C84) CHAR
STOP
C
C
C DATA INPUT ~ NAMELIST VARIABLES
C
C NAM£LIST IS SUPPORTED ON ONLY IBM COMPUTERS. TO USE
C NAMELIST REMOVE C FROM COLUMN 1 IN TH"E FOLLOWING NAMELIST
C READ STATEMENTS. ADO C TU COLUMN! 1 IN THE FORMATTED READ
C STATEMENTS (DIRECTLY BELOW) TO DEACTIVATE THAT SECTION
C OF CODE.
C
C
C
20 READ (5,CNTL)
READ (5.STRT)
READ {5.ENODI
READ <5,I_ND1)
PEAD <5,L,M02)
RSAO (5.LND3)
READ (5,Li\D4)
READ (5,LN05)
C
If- (SNO« .EJ. NC) GO TO 400
READ 15.J013) SNUPRT
fEAD (5.SN01)
RHAD (5,Sivl02)
READ (5,aNu3)
RE40 (5.5IJ04J
C
400 READ (5, CROP)
READ (5, MODI)
READ (5,MuD2J
READ (5,rtUD3)
PEAO (5.SMOL)
C
181
-------
233.22
283.23
233.2*
233.25
233.26
283.27
233.28
283 .29
283.3
282. 31
233. J2
283.33
233.34
283.35
293.36
283.37
283.38
283.39
294.
235.
286.
237.
283.
239.
290.
290.1
291.
292.
292.1
293.
294.
295.
296.
297.
293.
299.
299. 1
299.2
301.
302.
•303.
!304.
305.
'306.
307.
303.
309.
310.
•310.1
310.3
310.4
310. 5
311.1
312.
312.1
312.2
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
IF (PEST .eg. NOJ GO TO 4o<>
READ (5,1100) CHAR
IF (CHAR .Ew. PESTIC) GO TO 401
WRITE (6,1122)
GO TO 1G80
401 RtAD (5,iC9a) APMODE
K?AD (5,109d) UtSCRP
PEAO (5.PSTR)
REAO (5,p->Ti)
READ 15.PST2)
READ (5.PST3)
READ <5tAMDU
READ (5.UEGC)
READ (5,OtGY)
READ (5,0£GR)
20 READ (5,3000) UTKVL, HYMIN, AREA
READ (5,5001) 8GNOAYi8GNMON,dGNYR
READ (5.5C01) ENDUAY , ENDMON ,ENOYR
READ (5,3002) lUSN.U/SiLZSNtL^S
READ (5,5003) I ,SS , NN,A, EPXrt, PETMUL
READ (5,5004) ( K3( I ) , 1=1 , 12 )
REAU (5,5003) I NFI L, INTER, I RC.K24L, KK24, K24EL
READ (5,3003) SG* , OWS ,KV, I CS.OFS, IF S
IF (SWO« .E«. NO GO TO 400
READ <5,pji3) SNUPRT
READ (5,5003) R ADCCN , CCFAC, SCF , ELDI F, IONS,f:
READ (5,5003) DGM , *C , MPACK , E/APSN ,MELEV, TSNOW
READ (5,5005) PACi\, DEPTH
READ (5,3006) PtTMIN , PETMAX , ^MULtkMUL ,KUGI
400 READ (5,5004) ( COVPMO ( I ) , 1=1 ,12 )
READ (5,5009) ( TIMTI L ( I ) , 1= 1, 12)
READ (5.5J09) ( YRT IL ( I ) , 1=1 ,12)
READ (5,aCJ4) I SRERTL(I) ,1=1,1^)
REALi (5,5003) JRER ,KRER, JSEi\,KSER,SRERI , SCMPAC
IF (PEST .EU. NU) GO TO 402
READ 15,1100) CHAR
IF (CHAR. Eg. PESTIC) GO TO 401
WRITE (6,1122)
GO TO 1C8C
401 READ 5,lC9il) APMOQE
READ 5.1C98) DcSORP
READ 5,5002) PiSi ,PSUi,PSLi,PSGZ
READ 5,5009) (TIMAPl I) ,1=1 ,12)
READ 5),5C09) ( YEARAP( 1 1 , 1= 1 , i.2)
READ 5,5004) ( SST R( I ) , 1=1 , 12)
READ 5,3CC6) CMAX ,DD ,K, N ,NP
READ 5,5009) 1 LJO ( I ) , 1 = 1 , 1 2 )
REAU 5,aC09) ( VUvi ( I ) , 1 = 1 , 12 )
READ (5,3004) ( KDG( I ) , 1= 1, 12)
PRINTING OF INPUT PARAMETERS
402 IF (HYCAL.EQ.CAL6) GC TO 1002
WRITE (6,1091)
IF (PEST.EC.VES.AND.NJTR.EU.NO) WRITE < 6,
IF lPtST.EU.NO .ANO.NUTR.fcg.YES) WRITE (6,
IF (PEST. cC -NO .AND.NJTR.Eg.NO) WRITE (6,
IF (PEiT.cw.YES.AND.UUTR.fcW.YES) WRITE 46,
rtRITE (6.1CW)
GO TJ 1003
1123)
1124)
1125)
112&)
182
-------
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
33?.
33d.
339.
340.
341.
342.
343.
344.
345.
346.
347.
349.
350.
351.
352.
353.
353.01
353.02
353.03
.353.04
353.05
353. C6
353.07
353.C8
353.09
353.1
353. 1C5
353.11
353. 115
353.12
353.125
353. 13
353.135
353.14
353.145
353,15
353. 155
353.19
353.2
353.21
353.22
353.23
354.
355.
356.
357.
353.
35".
359. 1
360.
361.
262.
C
1
C
C
C
C
C
1002 WRITE (b, 1093)
IF (PE3T.tC.YtS.AtvJ.NUTR.Ey.NO)
IF (PtST.tC.NU .ANO.NUTR.Ey.YES)
WRITE
wKITfc
(6,1123)
(6,1124)
1003
1010
32
34
40
IF (PEST.EC.NO
WRITE (6,iC92)
IF (PEST.EL..NO
WRITE (0,1121)
GO TO ICdO
.AND.NUTR.EQ.NO)
.OR. NUTR.EQ.NU)
WRITE (6,1125)
GO TO 1003
WRITF (6,1107)
WRITE (0,1106)
IF (INPUT .Ey.
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
WRI
(INPUT
(OUTPUT
(OUTPUT
(OUTPUT
(PPIkT
(PRINT
(PRINT
(PRINT
(SNUrf .
(SNU* .
(PEST .
(OESORP
(L)ESORP
(APHOOE
( APMUDE
.Eu.
.EC
.Eg
.EQ
.Ey.
.EC.
.EC.
.EC.
Ey.
Eg.
EC.
.EQ
.EQ
.fcw
.tg
•
•
(wSNAMEU) ,1 =
-------
363.
36*.
365.
366.
367.
368.
368.1
370.
371.
371.1
371.2
371.3
373.
374.
375.
375.1
376.
377.
377.01
377.1
377.2
377.3
377.4
377.5
377.61
377.62
377.63
377.64
377.65
377.66
377.67
377.68
377.69
377.7
377.71
377.72
377.73
377.735
377.74
378.
379.
330.
381.
*382.
333.
384.
385.
386.
387.
383.
389.
390.
391.
392.
393.
394.
399.
400.
401.
402.
403.
404.
405.
406.
407.
403.
409.
410.
WRITE (6,1171) RAL*CON»CCFAC,SCF,ELDIF ,IONS,F
WRITS (6,1172) CGM,WC,MPACK,eVAPSN,MELEV,TSNOW
WRITE (6,1173) PACK., DEPTH
KRITE (6,1174) PETMIN iPETMAX, WMUL ,RMUL,KUGI
1011 WRITE (6,1175) (CCvPMQ{ I ) , I -1 ,12J
WRITE <6,118J) (TIMTIL(1),I=1,12>,(YRTIU(I),I=1,12)»
1 (S*ERTL(n,I=l,12)
WRITE (6,1177) JRER.KRER, J S£*, KSER, SR ERI , SCMPAC
IF (PEST .EJ. NO) GO TO 1012
WRITE (6,lldC) PSSZ,PSJZ,PSLZ,PSGZ
WRITE <6,117d) (TIMAP(I),I = l,12),(YfcA«APm,I«l,12),
1 (SSTR(I),I=1,12)
WRITE (6,il79) CMAA,DD,K,N,NP
WRITE (0,1182) (JU6I IJ ,1=1,12) , (YDG(I), 1=1, 12* ,(KDG(I) ,1*1, 12J
1012 KRITE (0,1120) hYCAL, INPUT, OUTPUT .PRINT, SNOW, PEST, NUTR, ICHECK
If (SNCw.tJ.YESj uRITE (6,5014) SNOPRT
IF (PEST.EJ.YESJ WRITE (6,1127) APMODEt OESORP
WRITE (6,1092)
C
IF (NUTR .EQ. NO) GO TO 460
CALL NUThIO (IOERR,INTRVi.,NAPPL,SNAPL,UNAPL,TIMHAR,
1 INPtT,OUTPJT,APDAY,KNI,KPI,ULUPF,L£UPFJ
IF (IUERR .Eg. 1) GO TO 1080
C
460 IF (NUTR .EQ. NO) GO TO 464
READ <5,L£TP)
READ (iJ.RETP)
C READ (5,5CC4) J LZTEMP( I ) ,1 =1 ,12)
C READ (5,5002) AS/T.BSZT, AJZT, BUZT
KRITE (6.1UO) (LZTEMPU ) ,1 = 1,12)
WRITE (0,1131) AS/T,dS^T ,AUZT,BU£T
464 IF (PEST. Ed. NO .AND. NUTR. EO. NO) GO TO 465
READ 15,OPTH)
C P.EAU (p,5010) S^DPTH,UiOPTH,BOSZ,BDUZ,BDLZ,UZFfLZF
IF (UZf.EC.O.O) UZF = 1.0
IF UZF.tU.C.O) (.if = 1.0
WRITE (o,117o) SZUPTH,UZDPTH,aDSZ,8UUZ,BOLZ,UZF,LZF
WRITE (6,1181)
C
465 IF (INPUT .EJ. METR) GO TO 559
GO TO 449
C
C CONVERSION OF METRIC INPUT DATA Tu ENGLISH UNITS
C
559 HYMIM= HVMIN*35.3
UZStJ = OZSN/WrlPIN
LZSN = LZSN/MHPIIJ
INFIL= INFIL/MMPIN
L = L*3.2dl
UZS = UZS/^<^^>I^
LZS = LZS/^CPIN
SGW = SlWKMPIN
ICS = ICS/WMPIN
OFS = OFS/MMPIN
IPS = IFS/MNPIN
EPXM = EPX«/MMPIN
SRERI= SkERI/l C tTOPT*2.471 )
ADEIV = AREA+2.471
00 451 I = i, 1-:
451 SREPTL(I) = oKtKTL(I)/(MeTUPT*2.471)
C
IF (SNOw .EQ. NG) GO TO 403
ELDIF = tLDIFv3.2dl
DGM = OGM/rtMPIN
MELEV = HcLEV*3.281
TSNOW = l.d*TSMw + 3^.0
PACK = PACK/NNPIN
DEPTH = DEPTH/^rtPIN
184
-------
411.
412.
413.
414.
415.
416.
416.1
416.2
416.3
416.4
416.5
417.
417.1
417.31
417.32
417.33
417.34
417.35
417.36
417.4
418.
419.
420.
421.
423.
424.
420.
426.
427.
450.
431.
431.1
431.2
431.3
431.4
431.5
431.6
432.
433.
43«.
4^0.
441.
442.
443.
443.1
443.2
443.3
443.4
443.5
44e,DESOkP,ENDYK.ENDrtON,ENDDAY,
3 BGNYk ,BGNMJN,B(iNDAYt IE RKOR, CALB ,PROD,
4 ENGL.METR.BOTH , I NTH, H'JUR ,L)AYS ,MNTH , Y ES , NO,
5 SUKF,iQIL,SZOPTri,COVPMQ,TIMTIL,TIMAP,
6 YEARAP,NUTR,LiTEMP)
f
CALL CHECKS (HYMIN , I NTftVL, UZSi4, LZSN , I RC, NN,L , SS, A.UZS ,LZS ,
1 K24L,NK24,K24EL,KJ,SNOw, ICHECK., IERRQR,
2 YES,NU,LNiCFF, RADCCN ,CCF AC, SCF, ELOIF,
3 IC.'sS, F.DGM.nC, EVAPSN, MEL EV,T SNOW,
4 PErMIN,PETHAX,P£TMUL ,rtMUL ,RMUL , KUGI )
C
IF (IERRUH .GT. 0) GC TO 10UO
C
C ADJUSTMENT OF CONSTANTS
C
452 H = 60/INTRVL
TIMFAC = INTRVL
INTRVL = 24*h
T1MPPT - TIMFAC
IF (TIMFAC. NE. 60) GO TO 4000
INTRVL = S6
TIMFAC = 15
H = 4
C
4000 KRER = KKcR*h**(JRER-l.)
KSEk = K.SEk*H**OSfcR-l.)
C
« = ?OSi*(iiCPTh/i2.0)*43b60.*AREA*'J.2
MU = BDJZ*( (bZCPTH-SZOPTH)/12.0)
ML = BOL/*6.0
XUZ = NU*435t3U.*AREA*0.2
MLZ = ML*4356C.*AkfcA
C
C INITIALIZE TEMP OIST VARIABLES
TEMPI = 35.
CHANGE = -12.
GPAOll) = O.C4
GPAD(2) = 0.04
C
IPACK=0.01
C
J COUNT = BGNCAY
185
-------
458. DO 601 I=1,BGNKCN
459. JC3JNT = JCUUNT + DPMMKI)
4tO. 601 CONTINUE
461. IF (MOD
-------
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
54S.
549.
550.
551.
552.
553.
554.
555.
556.
557.
553.
559.
560.
560.1
560.2
560.3
550.4
560.5
560.6
561.
562.
56 J.
564.
5fa5.
566.
567.
576.
577.
573.
570.
530.
5R1.
562.
533.
534.
5d5.
536.
587.
538.
588.1
539.
590.
591.
592.
509.
6DO.
601.
602.
603.
603.1
603.2
604.
C
600
C
605
C
610
640
1
650
700
C
625
C
C
c
c
c
c
c
c
1009
C
C
DO 600 CA =1,31
PEAD (5,1264) ( IRAD(MN,DA) , MN=1,12)
DO 605 DA=1,31
READ 15,1264) ( IDE*(MN,DA ) , MN=1,12)
IF UMPJT .EG. ENGL) GO TO 625
DO 700 CA=1,31
00 650 MN=1,12
IEVAPUN.OA) = IEVAP(MN,DA)*3.937
IF (SNOn.Ew.YES) UINOIMN.DA) = IWINDIMN.DA) *0. 6214
IF (SNCn.EU.YES) IDErt(MN,DA) = 1 .8*1 DEW (MN,DA) + 32.
DO o4C IT=1,2
IF ( iNUrt .Eg.YES .UK. NJTR.6Q.YES)
UEMPIMN.OA.IT) = 1 .8*1 TEMPtMN ,DA , IT) + 32.5
CCNTINIE
CONTINUE
SAV TMIN OF JAN 1 ON 11/31
IF (SNO«.£Q.YES .UK. NJTR.EQ.YES) I T£MP( 11 ,3 1, 2) = ITEMPU.l
5
,2)
BEGIN MONTHLY LQUP
DO lOoC MONTH=MNSTRT,MNEND
COy/ERl = CUVPMOIMONTH)
IF (MONTH. LT .12) CUVE><2 = COVPMLUMONTH+1 )
IF (MONTH. Eg. 12) COVER2 = COVPMO(l)
XK31 = K3(MONTH)
IF (MCNTh.LT.12) XK32 = K.3 (MONTHtl )
IF (MONTH. Eg. 12) XK.32 = K3 ( 1 )
L TEMPI = L^T£MP( MONTH)
LTEMP2 = L^TcMPtl)
IF (rtjr.Th .Nt .12) LI EMP/=LiThf.P (MUNTH* 1)
IF IHYCAL .c«. PR30) »U TO 1009
IF (NuTR.tJ.YES) GU T J 1009
^KlTE ( o t l/1000.
DO 1C19 I=1,INTRVL
IKA IUI I) = 0
RAINd ) = 0.0
CONTINUE
CALCULATION OF HOURLY TEMPERATURE FUR SNOW AND/OR NUT
IF (SNOx.cQ.NO .ANU. NUTR.EU.NO .AND. PEST. EQ. NO) GO TO 949
RIE
187
-------
t^6. 1
626.12
626.14
626. 15
626.16
626.2
626.3
626.4
627.
629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
642.
643.
64V.
647.
6*t .
649.
649.01
649.03
640.04
t4°.05
649.07
649.03
649. C9
649.1
649. 11
649. 12
649. 13
640. !4
649. 15
649. 16
649. 17
649. 19
649.2
649.21
649.22
649.23
649.24
649.26
649.265
649.27
649.28
649.29
649.3
649.31
650.
651.
652.
653.
654.
655.
656.
657.
65 3.
659.
663.
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
899
900
910
925
940
945
947
948
952
949
950
951
TMIN = ITEMP(MGNTH,DAY,2)
IF (PACK.LE.0.0 .AND. TMIN.GT.PETMAX .AND. NUTR.EQ.NJ
1 .AND. PEST.£0.NO) GO TO 949
IF < YEAk.NE.dGf\YR .OR. MONTH.NE. BGNMON .OR.
1 OAY.NE.BuNDAY) GO TO d99
CHANGE = UTE^PiMUNTH,DAY,2) - TEMPD/0.17
TGRAD = 0.0
DO 948 1=1,24
IF ( 1-7) 94C, 900, 910
CHANGE = ITfcNP(MONTH,DAY,1) - TEMPI
IF (I.NE.17) GO TO 94J
IMUEND IS LAST DAY OF PRESENT MONTH
IF (DAY .NS. Ii-IOuND) CHANGE = 1 TEMP(MONTH,DAY+1,2J - TEMPI
IF (MONTH.Nt.I/:* GO TO 925
IF (DAY .Eg. IMutLND) CHANGE = IT£MP< 11,31 ,2) - TEMPI
GO TO 940
IF (DAY .Eg. IMDEND) CHANGE = IT EMP< MONTH* 1,1,2) - TEMPI
IF u) uU TJ 94J
hINC = IW IN'D(MONTH , JAY)
CEwX = I DEW(MONTH,DAY)
WINF=(1.0-F) * F*( .35-.03*KUGI)
WINF REDUCES WIND FOR FORESTED AREAS
KUGI IS INOEA TU UNDERGROWTH AND FOREST DENSITY,
rilTh VALUES 0 TO 10 - WIND IN FOREST IS 35% OF
WIND IN OPEN WHEN KUGI=0, AND 53 WHEN KUGI=10 -
rtINO IS ASSUMED MEASURED AT 1-5 FT ABOVE GROUND
OR SNUn SURFACE
DEWX = DE«X - 1 .0*ELDIF
CtnPT USES A LAPSE RATE OF 1 DEGREE/1000 FT
IF KPACK .Lc. 0.0).AND.(TMIN .GT. PETMAX)) GO TO 949
CALCULATE HOURLY «INC ANO RADIATION
R = IRAO(MGNTh,CAY)
DO 952 1=1,24
RADII) = RPUL*K*RAOCON*R!\DDIS(I )
CHECK OF TILLAGE TIME
JCOLNT = JCGLNT «• 1
CO S51 1=1, 12
IF UCCUNT.NE.TIMTIL( I) .OR. YEAR.NE.
-------
661. C CROP CANOPY EFFECTS - ASSUMES LINEAR CHANGE BETrtEEN MONTHLY VALUES
662. C
663. COVER = COVER! + I 1.0- (FLCM(DPMI MONTH)+1-DAY)/FLOAT(DPM
664. 1 (HGNTh ))))*(COVERS-COVER 1)
664.1 XK3 = XK31 * il.O - (FLOAT!DPM(MONTH)«-l-DAY)/FLOAT(DPM(MONTH))))*
664.2 1 (XK32 ~ XK31)
665. C
666. IF (NUTR.Ed.NQ) GO TO 1017
667. C
670. C CALCULATION OF HOURLY SOIL TEMPERATURE
671. C
671.1 IF (INPUT.em.ENGL) GO TO 305
671.2 00 802 JHCUR = 1,24
671.3 TEMPX(JHOUR) = 5 ,/9.*( TEMPX( JHOUR J-31. 5 >
671.4 802 CONTINUE
671.5 C
672. 805 DO 810 JhOUR=l,2'*
672.1 STEMPUHOUR) = ASZT + BS£T*TEMPX(JHUUR)
672.2 UTEMPUHOUR) - AUZT + BUZT*STEMPlJHOUk)
672.3 810 CONTINUE
672.4 LT6MP = LTcMPi + 11.0 - (FLJAT (DP M( MUNTH)+1-DAY )/FLOAT ( DPM
672.5 1 (MONTH)))J*(LTEMP2-LTEMP1J
672.51 C
672.52 C CONVERSION OF SOIL TEMP FROM F TO C FuR UUTRNT AND OEGRAO
67.1.53 C
d'>.54 If (IMPUT .Es. 1-cTK) GO TO 315
672.55 DO 812 JHOUR=lf24
672.56 STEMP(JHOUR) - (STEMP(JHOUR)-32.0)*5./9.
672.57 UTE'-1P( JHOUR) = (UTEMP( JHUJR)-32. 0) *5. /9.
672.58 312 CONTINUE
672.59 LTEMP = (LTEKP-32.C)*5./9.
677. C
677.1 C NUTRIENT DAILY CALCULATIONS
677.2 C
678. C TEST FOR APPLICATION OF FERTILISERS
679. C
630. 815 IF (APLCNT .GT. NAPPL) GO TO 660
681. IF (APDAY(APLCNTJ .GE. JCOUNT) GO TO 820
682. APLCNT = APLClMT «• 1
683. GO TU 815
684. 820 IF (JCCUhlT ,NE. AP JAY (APLCNT) ) GO TO 860
635. C
6B6. C ADD NUTRIENT APPLICATIONS TO STORAGES
6fl7. C AND INCREMENT MASS TOTALS IN SYSTEM
688. C
639. DO 830 IBLK=1,5
690. DO 825 J=lt20
691. SN(J.ItJLK) = SN(J,IbLK) i- SNAPL ( J, I BLK , APLCNT)
692. UMJ.IBLK) = UN(J.IBLK) * UNAPL (J , I BLK. .APLCNT )
693. 825 CONTINUE
fc94. 830 CONTINUE
695. C
696. 00 840 J=l,6
697. SUM = C.C
69.3. DO 833 I8LK = li5
699. SUM = SUM * SNAPLUt IBLK, APLCNT) + UNAPL( J i IBLK, APLCNT)
700. S35 CONTINUE
701. TNA = TNA * SUM/5.
702. 840 CONTINUE
703. DO 850 J=llfl4
704. SUM s 0.0
705. 00 845 IBLK=1,5
706. SUM = SUM * SNAPLUt IBLK.APLCND * UNAPL ( J i IBLK, APLCNT)
707. 845 CONTINUE
708. TPA = TPA -»• SUM/5.
709. 850 CONTINUE
710. SUM = 0.0
711. DO 8t)5 I6LK = i,5
189
-------
712.
713.
714.
715.
716.
717.
718.
719.
720.
721.
722.
723.
724.
723.
726.
727.
728.
729.
730.
731.
732.
733.
734.
735.
736.
737.
733.
739.
740.
741.
742.
742.1
742.2
743.
744.
745.
746.
747.
748.
749.
750.
751.
752.
753.
754.
755.
756.
756.1
756.2
757.
757.01
757. C2
757. C3
757. C4
7i>7.05
737. C6
757. C65
757.07
757. C8
757.09
757.1
757.11
757.12
757.13
757.14
757.15
757. 16
757.17
655
C
C
860
C
C
C
865
870
C
C
C
C
C
C
C
C
881
882
883
884
C
885
C
C
C
1017
C
886
C
688
SJM = SUN + SNAPL(20,IBLK, APLCNT) + UNAHL UO » I BLK , AKLI.N I'J
CONTINUE
TOLA = TOLA + SUM/5.
WRIT: Jb,4003) APLCNT, MNArt(MONTH) , DAY, JCOUNT
APLCNT = APLCNT + 1
IF IJCOUNT .IVE. TIMHAR) GO TO 881
COMPUTE AMOUNT HARVESTED AND DECREASE STORAGES
DO 870 J=l,20
TNRH*(JJ = C.O
IF (ScLHVU) .EC. 0) GO TO 870
SUM = C.O
DO Stoii IdLK=i,j
SUrt = SUM * SNU.I6LK) + UNU,It3LK)
SNU, IBLK ) = 0.0
UN(J.IBLK) = d.O
CONTINUE
TNRHVU) = SJM/5. » LMJ) * GNCJJ
LN(J) = 0.0
GNU) = 0.0
TNPHVM(J) = T.NRHVM(J) + TNRHV(J)
CONTINUE
WRITE (6,4006) MNAMJKONTH), DAy
TRANSFER INPUT REACTION KATES (KNI.KPI) INTO
REACTION RATES IN COMMON /NUT/ (KN,KP)
PtANT UPTAKE RATES ARE THE FRACTION OF THE
MAXIMJN MONTHLY UPTAKE PER UPPER
LAYERS, SUKFACE AND UPPER ZONE, (LILUPFJ
AND LOWER /IUNE (LZUPF).
DO
DO
J=»i,8
= KMUtlZUNEJ
CONTIfJUE
DO 8a3 J=l,5
KPU,IZONE) = KPKJ.IZONE)
CONTINUE
CONTINUE
DO 835
KN(3,I^UNE) = KN( 3,IZONE ) *ULUP F( MONTH)
KP<3,I^ONE) = KP(3,UONEJ*ULUPF(MONTH)
CONTINUE
KN(3,J) » KN(3,3)*L^JPF(MONTH)
KP<3,3) = KP(3,3)*LZUPF(MJNTH)
CHECK FCR PESTICIDE APPLICATION DATE
1017 IF (PEST .EW. NO) GO TO lOld
DO 896 1=1,12
IF ( JCOJNT.NE.TIMAP( I) .OK. YE AR.NE. ( YEAR AP ( I ) 41900) ) GO TO 096
WRITE (6,lC7t)) XNAW(MONTHJ,DAY,TIMAP( n,SSTR(I)
KFLAG = C
TOTPAP = T01PAP * SSTR(I)*AKEA
SJLG = SULG * SSTR(I)*AREA
IF (APMCOE .tQ. SUHF)
00 880 J=l,i
SSTRKJ) = i,STRl(J)
USrH(J) = JSTR(J)
CONTINUE
GO TO d96
GO TO U88
+ SSTk{ I) *AREA*0.2*( SZDPTH/UZDPTH)
SSTRII )*AREA*0.2 - SSTRHJ)
00
J=l,5
190
-------
757.18
757. 19
757.2
757.21
757.22
757.23
757.24
737.241
757.25
757 .26
757.27
757.23
757.29
757.3
758t
759.
760.
760.01
760. C2
760.03
760. C4
760.05
760.C6
76D. C7
7o0.08
760. C82
760. CS4
7ft 0.086
760. 11
760.12
760.13
760. 14
760.15
760. 16
760. 17
760. 18
760. 19
760. 2
760.21
760.22
760.23
760. 24
760.25
760.26
760.27
760.28
760.29
760.3
760.31
760. .12
760.33
761.
762.
7o~i.
764.
765.
765.5
766.
766.5
768.
769.
770.
7fl.
777.
773.
77*.
77s.
776.
SSTRKJ) = SSTRHJ) + SSTR(I)*AREA*0.2
890 CUNTIiMJE
8S6 CONTINUE
C
IF (SULG .GT. G.OUl) 1PFLAG = 1
C
C CHECK PESTICIDE bEGRAOATIOJ RATE
C
00 902 I=itl2
IP ( JwOuNT.NC.uUOi I) .'JR. YEAR. HE. (YuG( I) +1900) ) bO TO yu*.
.I'iUTL (6,1C77J l"NAP(MONTH) ,OAY ,bDGl I) ,KOG(I )
L)r.GC'j.N. » itOGil)
902 CONTINUE
C
C
C PRECIP READ LOOP
C
C
C CHECK FOR AISC READ hOJRLY PRECIPITATION
C
1018 IF (TIMPPT.EC.S.OK .TI^PPT.Eg.15) GU TO 1020
2020 00 2000 J=lf2
JK. = J*720/T MPPT
J J = JK = 72C/T IMPPT *• 1
PEAC(3,2010) Y»M.MO,DYiCN,(IRAIN( I) ,l=JJ,JK)
IF( (VK + 1900J .LT.BGNYR) GO TU 2020
IH(MO.«.T.KNSTRT) GC TO 2020
If-( OY.LT.GYSIKT ) GO TU 2020
IF ( INPUT. EL .ENGLJ GO TO 2030
00 204C I=JjfJK
204C IkAINlI) = IRAINU)*3.937 * 0.5
2030 JJJ = J
YR = YR + 1900
IF (C.N.EQ.SJ JJJ = CN
IT = (YEAK-YKJ * (MONTH-MO) + (DAY-OY) * UJJ-CN)
IF ( IT.NE.O) GU TG 1022
IF (CH.Eg.9J GO TO 1025
2000 CONTINUE
C
C HOURLY DATA SPLIT INTU 4 EWUAL 15 WIN DATA ITEMS
C
DO 2050 J=l,24
JK= So - J*4 + 4
JJ = 24 - J + 1
00 205C I=li4
2050 IKAIMI JK-Ui ) = IRAIN(JJ>
DIV = 4CO.
GO TO 1J23
C
C GET 5 UR 15 MINJTE PRECIPITATION DATA
C
1020 DO 1021 J=l,6
JK = J*iaC/Ti,Hf AC
JJ = JK - IfcC/T IMFAC * 1
IF (TIMf-AC.EU.il READ (5f10S5» YR , MO, DY, CN , ( I RA1 N ( I I , 1 = J J , J M
IF (TIMrAC.Eu.lS) READ (t>fl0941 YR t MO , UY, CN , { I RAI N < I J , 1 = J J, JiO
IF( ( Vrt + l^CC J .LT.BbKYR) GO TO 1020
Ic(y,O.LT.MNSTRT ) GO TO 1020
IF (OY.LT.OYSTRTl GO TO 1J20
IF ( I.JPJT.&J.EIJGL) GO TO /OS
00 70u I=JJ.JK
iHAI'id) = IRAIMI )*J. 937 * 0.5
7C6 CCNTlNUE
7C3 JJJ = J
YP = YR + 1SCJ
IF ICN.EU.^1 JJ J = V
IT = iYEAr<-YK) + (MONTH-HJ) + IDAY-OY) *• UJJ-CN)
IP .( IT.NE.O) 'jU TO 1022
191
-------
777.
778.
77", . 1
77M.
760.
781.
782.
783.
784.
765.
786.
787.
7^3.
789.
790.
791.
792.
793.
79 't.
795.
79e>.
797.
793.
7S9.
SOO.
831.
602.
803.
P05.
806.
807.
833.
809.
810.
912.
313.
814.
815.
816.
317.
813.
819.
820.
821.
822.
82j>.
824.
825.
326.
827.
828.
829.
330.
831.
832.
833.
840.
1021
1022
C
C
1023
1024
C
C
C
C USI
c
1025
C
C
C
C
1026
C
1028
1029
C
1030
C
c
c
1031
1033
1034
C
1035
840.3
8« 0.4
IF UN.EC.*) GU TO 1025
CONTINUE
OIV = 100.
GO T 0 lo<;J
«RITr (6,1090) JJJ,MCNTh,DAY,YEAR,
GO TO ICdO
MOtDY,YR
DO 1024 I=1,INTRVL
RAIN(l) = IRAIN(I)/DIV
RAINT = RAINT *• RAIN( I)
CCISTINUE
IF (RAINT.GT.0.0) GO TO 1026
RAIN LCOP IF MOISTURE STORAGES ARE NOT EMPTY
IF ((RESS.LT.0.001) .AND.(SRGXT.LT.0.001)) GO TO 1040
RAIN LOCP
DO
1036
TIME
TF =
PR =
I=1,INTRVL
= TIME + 1
1
RAIN(I)
IMIN = MCDITIME.Hl
IHR = (TIME - IrtlN)/H
IMIh = TIMFAOIMIN
PRNTK.E = 0
IF (PKINT.EJ.HO'JK)
IF (PR INT. E.J. DAYS)
IF (PR INT.EQ.MNTH)
IF (PRINT.£O.INTK)
GO TO 1J30
IF (IMIN .LT
GO TG 1030
IF (IHR .EiJ.
GO TO 1028
GO TO 1029
PRNTKE = 2
PRNTKE = 1
1)
24)
PRNTKE = 1
PRNTKE = I
IF iPRHTKE .NE. 1) GO TO 1031
IF (HYLAL .EU. CALB) GO TO 1031
InR, IMIN, DAY,MNAM(MONTH),YEAR
uRITt
WK I TE
(6, 1101)
(6, 1102)
(6,1103)
CALL LANDS(SFLAG,SNOPRT)
IF (IRfcSS ,\j£. 0.001) .OR. (PR
CO 1033 J=l,5
ERSw(J) = 0.0
CU'JTINtE
IF (PRNTKE .EJ. 0) GO TO
CALL SEDTISFLAG)
IF (IPFLAG .EW. 0) GO TO 971
CALL AJ3RO(UiSNi JZF , Li SN ,L £F ,
1 K,r>i! ,KGPL3,FPL/,LbTR,L.\S,Ll.j,LOi,GSTRtGAS,GCS»GDS,
2 APMJDE , TPliAL.CEGiuM.DcGSiJT , 'JtGUOM, OtGJOT , Uc GJ , OtGS ,
3 D£GLO/,JE JLCT , NIP ,NCLM, JI S T , TiJTP fiP ,T I MAP , Yc AS AP ,
4 DESJPP,SoRF,SC IL.SJLG)
IF ilrik . £j. 24) bO TO 103d
= 0.0
= 0 .u
. GT . 0.001)) GO TU U34
192
-------
845. GC TO 971
846. 1038 CALL OEGKADI
846.1 1 K,NI ,Kt,PLB,FPL^,i.STR,LAS,LCS,LDS,GSTR,GAS,GC$,&DS,
846.2 2 APMODE ,T P6AL , L^toSCM, OEGSOT , OEGUOM, UEGUOT , OE GJ , OEGS,
846.3 3 OEGLCK,DcGLOT,MP,NCCM,UIbT,TOTP AP ,TIMAP,YE ARAP ,
846.4 4 DESORP.SuRF.SC iLf SJLG.JESCQ^J
847. 971 IF (NUTR .EQ. NO) GO TO 1036
848. C
849. C
850. CALL NUTRNT(UZSN,UZF,LZSN,L£F)
851. C
852. 1036 CONTINUE
353. C
854. GO TO 1050
855. C
856. C NO RAIN LOOP
857. C
858. C
859. 1040 TF = 1NTRVL
860. PR = C.O
861. P3 = C.O
862. 00 1C42 1=1,5
863. 1042 RESdK I) = 0.0
864. PRNTrtE = 1
865. IF (PR INT.EQ.MrUH) PRNTKE = 2
866. IMIN * 00
867. IHR = 2t
863. IF
-------
905. 1
905.2
905.3
905.4
906.
907.
908.
909.
910.
911.
912.
913.
913. 1
914.
915.
916.
917.
919.
919.
920.
920.1
921.
922.
923.
924.
925.
925.01
925.02
925. 021
925. C22
925. :3
925.031
925. 032
925.033
°25. 04
925.05
925. 06
925.07
925.08
925.09
S25.C99
925. 1
925. 101
925. 102
925. 103
C25 . 1 1
925.12
925. 13
925. 14
925. 21
925.22
'•25.221
925. 222
'>2K .223
^^'i.23
925.24
925.25
925.26
925.27
926.
927.
923.
929.
929. 1
92". 2
929.3
1
2
3
4
972
C
1050
C
C
r
i
c
c
c
1060
C
C
1
c
c
1070
C
C
C
C
9010
9011
9991
9992
C
9990
9020
9021
C
9080
9030
9031
C
1080
C
c
c
1079
1
2
K,NI,KL.PLS,FPLZ,Li>TR,LAS,LCS,LQS,USTR,GASSOT,L»EGUOM, DEGUUT,OEGU,DECS,
D£GLOM,LJcGLCT,M,3FNCC,-l,UIST,TOTPAP ,T I MAP, YE ARAP,
DE50RP,SuRF,SClL,SJLG,JEGCONJ
IF INUTR .Eu. NO) GO TO 1050
CALL NuTRNT(UZSN,UZF,LZSN,LZF)
END DAILY LOOP
CONTIJVoE
fCNTHLY SUMMARY
CALL CLTMON (YEAR,KGPLB,LSTR,LAS,LCS,LDS.GSTR,GAS,GCS,
GDS,TP&AL,DfcGSOM,DE3UOMiDEGL72 CHAR1,
/.iX.'CCLS 73-80 READ',4X,2A4)
1C9C FORMAT ( ' !• , ****** tKkOR***** INCORRECT INPJT DATA! (JtSIKED ',
* 'CARU ',11,' FuR ' ,12,'/• ,12, '/' ,I4,«; READ CARD «,I1,' FOR '
194
-------
932.
932.05
932.06
932, 1
932.2
932.3
933.
934.
935.
935. I
935.2
935.3
935.4
935.5
935.6
935.7
936.8
935.9
936.
937.
938.
939.
94-0.
940. 1
9M.
942.
943.
944.
945.
946.
947.
943.
949.
950.
«3l.
952.
953.
954.
955.
956.
957.
953.
95->.
96 J.
961 .
962.
963.
So 4.
965.
965.
967.
96S.
969.
973.
9/1.
972.
973.
974.
975.
976.
97f.
978.
979.
979. 1
979.2
979.3
979.4
* I2,'/' ,12, '/M4)
1077 FORMAT t • 0' ,f BEGINNING ON' , IX, AB, IX , 12 i2X, M DOG* ', I3i ') THE ',
1 'PESTICIDE DEGRADATION rtATE (KDG) EQUALS' ,F9. 3 )
1078 FORMAT 4 • 0 • , ' PEST I CI UE APPLICATION OCCURS ON ' , IX , A8, IX, 12, 2X,
1 ' (1 IMAP=' ,13,' ) HITH AN APPLICATION OF',F6.3,
2 ' LBS/AC')
1082 FORMAT ( ' 0' , • T I\LAGE OF THE SOIL OCCURS ON' • IX t A8 , IX , 12 , 2X,
1 '(TIMTIL=( 1 13,'), RESULTING IN A NEW FINES DEPOSIT ',
1 'STOKAGc UH ,F6.3,' TONS/ACRE1)
1083 FORMAT14X.I2)
1034 FORMAT< '0' , '+*+ERRCR*** INCORRECT INFORMATION FOR WRITING TO ',
1 'OISK.' ,/,lX, 'CPTIGNS ARE : KUNOFF , SEDIMENT , OVERLAND FL
2* .',/, XX, ' INPUT wAS «,A8)
1088 FORMAT! '0 ',/ ,'0', ' LINE PRINTER OUTPUT ONLY')
1085 FORMATl '0* ,/,'0',' DATA TO BE WRITTEN TO DISK AS FOLLUHS: ')
1086 FORMAT ( '0','LAMJ SURFACE RUNJFF/EROSI Oi>! nRITTEN TO DISK DATASET NU
1. ',12)
1089 FORMAT( 1A, 'TITLE - S20A4)
1C91 FORMAT ( • 1 ' ,25X ,'THI S IS A PRODUCTION RUN')
1092 FORMAT CO')
1093 FORMAT t • 1' ,24X , ' ThI S IS A CALIBRATION RUN')
1094 FORMAT ( IX ,3 12 , 11 , 12 16 )
1C95 PQRMAT UX,3I2,U, J6I2)
2010 FORM AT ( i OX, 3 II 2, ix), 11,1215)
1096 FORMAT (2CA-*)
1097 FORMAT (bX,A4)
1098 FORMAT (7X.A4)
1C99 FORMAT iiX,A4)
HOC FORMAT (AS)
1101 FORMAT {• 1' ,2>X,I2,' :',I2,' ON • , U , IX, A8, IX, 14)
1102 FORMAT ('«•', 25X,' • )
1103 FORMAT t • 0 ' ,34X , • 8 LOCK 1 BLOCK 2 6LOCK 3 BLOCK 4 BLOCK 5',
C 5X,«TCTAL«)
1104 FORMAT 1 ' J' , 32X ,' PESTICIDE APPLICATION: SURFACE-APPLIED')
1105 FORMAT (' 0' ,32X ,« PESTICIDE APPLICATION: SOIL-INCORPORATED')
1106 FORMAT (« 0« , 32X ,' CHEMICAL : S20A4)
lie? FOPMAT c o» ,32x,' WATERSHED: «,20A4)
1108 FORMAT (• 0' , 32X ,' INPUT UNI TS: ENGLISH')
1109 FORMAT i ' 0 ' , 32x , ' I NPUT UNI TS: METRIC')
111C FORMAT I'O' ,32X,«OLTPUT UNITS: ENGLISH')
1111 FORMAT (' 0' ,32X,'UoTPUT UNITS: METRIC')
1112 FORMAT I' 0« ,32X, 'OUTPUT UNITS: BOTH ENGLISH AND METRIC')
1113 FORMAT I ' C1 ,32X, 'PRINT INTERVAL: tACH INTtKVAL1)
1114 FORMAT C O1 ,j2X ,' PRINT INTERVAL: EACH HJU^')
1115 FORMAT 1 ' C' ,32X , 'PRINT INTERVAL: EACH OAY<)
1128 FORMAT t ' 0 ' , 32 X , ' P R INT INTERVAL: EACH MONTH')
1116 FOPM4T 1' 0' , i2X, ' oNOwMELT L A1.CULA T I U4S PEKfORMEl)1 I
1117 FOKMiT 1 ' C1 , J^X • ' oNOrtMLLT NUT Y Ck HlKMPn • )
1118 FORMAT CO' ,32X, 'ADSORPTION AND OESORPTION ALGORITHMS USED')
1119 FORMAT (' 0' ,32X, 'ADSORPTION CALCULATED ONLY, NO DESORPTION'I
1120 FORMAT 4' 0' ,/' 0', 'hYCAL=« , A4, 2X, • INPUT= ' , A4, 2X, 'OUTPUT=« ,A4,2X,
1'PRINT^' ,A4,2X, 'SNCH=' , A4 , 2 X, • P ES T= ' , A4,2X,« NUTR=' ,A4,2X,
2' ICHECK = ' ,A4)
1121 FORMAT CJ'.'INFUT ERROR: IT IS NOT POSSIBLE TO MAKE CALIBRATION R
1UN WITH BOTH PESTICIDES AND NUTRIENTS TOGETHER',/,' ', 'CHANGE HYCA
2L TO PPOJ, OR EITHER PEST OR NUIR FROM YES TO NO')
1122 FORMAT CO1, 'INPUT ERROR: THE FIRST LINE OF THE PESTICIDE INPUT SE
IQUE'JCE XJST Bt THE rtORO PESTICIbE, CORRECT AND RUN AGAIN1)
1123 FORMAT ('<•', SOX, 'FDR PESTICIUtS'l
1124 FORMAT t ' + • , SOX , ' FOR NUTRIENTS')
1125 FORMAT ('+' , pJX, 'FOR HYOR3LUGY AND SEDIMENT ONLY')
1126 FORMAT t1 +' ,50X,'FCR PESTICIDES AND NUTRIENTS')
1127 FORMAT CO' ,' APHUUt=« ,A4,2X, «UESORP = ' , A4)
113G FOMAT ('0','LQnCR iONE' MONTHLY SOIL TEMPERATURES = ', 12F6.1I
1131 FORMAT 1'0','SCIL TEMPERATURE REGRESSION EQUATION CONSTANTS',
I/,1 ', 'SURFACE ZONE: ASZT = ' ,F8 .3 ,4X, ' BSZT= ',F8.3,
2/,1 ', 'UPPER ZCNc: AUZT = • ,F8.3 »4X, • BUiT = '.Fa. 3)
195
-------
960.
981.
982.
9?3.
984.
985.
936.
986. 1
987.
988.
969.
9°0.
991.
992.
993.
904.
<=95.
9V 6.
997.
99fl.
99^.
999. 1
99V. 2
9^V.3
1000.
1001.
1002. 1
1002.2
1002. 3
1C02. 5
1002.6
1004.
105.
1035. 5
1006. 1
1006.2
1007.
1037.1
ioo';.
100-?.
1013.
1 0 1 U
1012.
1013.
1014.
1015.
1016.
1017.
1018.
1C1-J.
1031.
1032.
10J3.
1C33.01
1033. C2
1033.03
1033.04
1033.05
1033.06
1033.07
1033. OS1
10:3.0S2
1C33.CS7
1033.1
1033.2
1033. 3
1034.
1035.
1164 FORMAT ( • 0 • • • I MRvL= • , 12 , 1 JX, • HYMI N= • , F8.4 , 8X, ' AREA= SF1G.4J
1165 FORMAT ( • 0' , «t3GNL)AY= • ,12 , 1 3X , ' 6GNMON= ' , It, 13X, ' BGNYR= «,I4J
1166 FORMAT ( ' 0 ' , • ENuOAY= • , I 2 , 1 3X, ' ENOMON= ' , I 2, 1 3X , ' ENL)YR = «,I4J
1167 FORMAT 1 ' 0' , /' 0 ' , ' UZSN = • ,Fd. 4 ,9X , • U£S= « ,F8 .4, 1 OX, ' LZSN= «,F8.4,
19X,'tZS= '.F8.41
1168 FORMAT t'0',«L= ' , F8 .4 , 12X , ' SS= ' ,F 8. 4, 11X , • NN= ' , F8 . 4, 1 IX, ' A= ',
lF8.4,l2X,'tPXM= ' ,Fd.4,9X,' PETMUL=' ,F8.4)
1162 FORMAT< '0','K3 = • , 12 (F4.2 , 2X 1 )
1169 FORMAT < • G« » • I NFIL = ' ,F8.4, dX r ' INTER= ' , F 8 .4 , 8X , • IRC= ',F8.4,10X,
l«K24l_ = ' ,Fd.4,9X, 'KK24= ' , F 8.4 , 9X , ' K24EL= SF8.4)
1170 FORMAT CJ','SG«= ' , F8.4, 10X, ' GnS- ' , F8.4, iOX, «KV= SF8.4,11X,
l'ICS= • ,F8.4,IOA,'CFS= ' ,F6.4 , iOX , ' IFS= ',F8.4)
1171 FORMAT ( '0' ,/' OS 'KADCON= • , F8 .4, 7X , ' CCFAC= ' , F8.4, 8X , • SCF= ',
1F8.4.10A, «ELOIF= ' , F 8 .4, 8X, • !ONS= • ,F 8.4,9X, '!F= SF8.4)
1172 FORMAT ('01,'uGK= ' , F8.4 , IOX , ' WC= ' ,F a. 4, 1 IX , • MP ACK= ',F8.4,8X,
l'EVAPSN= ' ,Fd.4,7A,«MELEV= • , f 8.0 ,8X, ' TSNOW= SF8.4)
1173 FORMAT t'0',«PACK= ' , Fa. 4 ,9X, ' DEP TH= ',rd.4l
1174 FORMAT ( • 0 ' , • P E Trtl N= • , F8. 4 , A/. , ' PET MAX= ',F8.-t,
17X,'wMUL= •|Fa.4,9X,lRMi.lL= ' ,f 8.4 ,9X, ' KJ(,I= ',F8.4)
1175 FORMAT <«0',/'0'f ' COVPMO ', 121F4.2.2X) }
1176 FORMAT ('O'.'SCIL ^ONtS DEPTHS AND bJLK DENSITIES1,/,' '»
l'SZDPTH= ' ,Fd.4,7X ,' U/OPTH= ' , F8. 4, 7X , ' 60S i= ",F8.4,7X,
2'BDJi= ',Fd.4,7X,'BOLZ= • ,F 6.4 , /, «0 S • LEACHINO FACTORS',
3/,1 't'UZF = ' ,F6. j, 7X,'LZF = '.F6.3I
1177 FOr.MAT l'0','JRcR= ' , F6.4 , 9X , ' KkE R= • ,F6. 4 ,9X, • JSER= ',F6.4,9X,
l'KSER= ' ,F6.4,9X, ' iR£M= ' , Fu.4 , 9X, ' SCMPAC= SF6.4)
1178 FOf-MAT ( 'O1 , «TIfAP= ' , 121 I J , )
1180 FORMAT ( ' 0' , /• 0 ' , ' PSSZ= ' ,F d.4 , 9X, • PS J£= ' ,F8 .^ , 9X, ' PSL£=' ,F 8.4 , 9X,
1 «P£ui= ' ,F8.4)
1179 FORMAT (10',IC^AA= • , F8.6 , 9X, ' UD= »,Fd.fa,HX,
l'K= ' ,Fd.4,12X, «N= ' ,Fd.4,12X, 'NP= SF8.4J
1181 FORMATJ'l'J
1182 FORMAT (•O'.'UCl^ ' , 12( I 3 ,2X J , / , 1 X, 'Y[)G= ' , 1 2( I 3 , 2X) , /, IX, ' KOG= ',
1 12(F5.3,2XI)
1133 FORMAT ( '0' , 'TIKTIL= ' , 12 ( I J,2 X) , /, IX ,
1 'YRTIL = ',121 IZnH),/, IX,
1 'SRERTL= ' ,121F6.3,2X ))
382 FORMAT (' ' S 7X , ' « AT ER ' ,^4X , ' StUl Mt NT ' )
1208 FORMAT CO' dX, 'bCDIMfc;jT,TOri ^S/HtC TAKE ' )
1209 FOPiXAT CO' ti A , ' S t'J I XC'IT , T JfJ WACrs E ' )
1210 FORMAT (' ' HX.'EROOEO SEDI.-lfcNT ' , 5 ( 3X.F 7. 3) , 4X, f- 7. 3 J
1211 FORMAT 1' • iiX.'F INEi DEPOSIT' ,6X, 5( 3X, F7 .3 ) ,4X,F7.3)
1260 FORMAT (•!• »ENO OF S IMJLAT IdN ' )
1263 FORMAT ('!' bX , 'UA TE ' ,4X , ' T I ME ' ,4X, ' FLO^ ( CFS-CMS ) • , 6X ,
X 'ScUlPENT (LBS-KG-XG/MIN-ult/L) ' ,23X,
X 'PtSTICIOc ( GM-'jM/MlH-PPM)' J
1265 FOPMAT (tlX,2^I3)
1264 FORMAT (ax,12IoJ
4005 FORMAT 1 ' 0 ' , ' NuTR IENT APPLICATION NCJ . ',12,' OCCURS UN ',
1 Ad,2X, 12, ' (DAY = ' ,13, ' ) ' )
4006 FORMAT ('0','PuAM HAR\/ESTMG UCC'JRS ON ',A8,LX,I21
5000 CGRMAT ( oX , I 2 , 2 ( dX , F6 . 0) J
5001 FORMAT (2«8X,Ii ),dX, I4J
5002 FORMAT (-+(dX,l-6.0J)
5003 FORMAT (o(oX,Fo.OJ)
5C04 FORMAT (dX,12F<3.uJ
50C5 FORMAT ( 2 1 dX , Ffc .0) J
5CC6 FORMAT < 3 < 8X , F6 .0) )
5009 FORMAT <8X,12I4)
5010 FORMAT t2 I dX,t-6.0 ) ,3 (6X,F6.0) ,2(4X,F4.0) )
5012 FORMAT <3(3X,F6.uM
9956 FORMAT l'C','OErii/G OPTIUN IS ON')
5013 FORMAT (10X,A4J
5014 FORMAT ( ' 0 ' , ' SNCnP R I NT=' , A4 J
C
STOP
196
-------
1037.
1333.
IOJ'9.
1341 .
1200.
1231.
1202.
1203.
1235.
1206,
12'J7.
12CS.
1209.
1210.
1211.
1212.
1213.
1214.
1214. 1
1215.
1215.1
1215.2
1215.3
1 2 j. 5 . 4
1217.
1 2 1 >.< .
121V.
1223.
1221.
1222.
1223.
1224.
1225.
1226.
1227.
1223.
122-3.
1230.
1231.
1232.
1233.
1234.
1235.
123-j.
1233.
1239.
1243.
1241.
1242.
1243.
1244.
1245.
1246.
1247.
124d.
1249.
1253.
1251.
1252.
] 253.
1254.
1255.
1256.
C
C
C
C
C
C
C
C
C
C
END
SUBROUTINE ERRSET(kESULTJ
REAL RESULT
RES'JLT=O.Q
RETURN
END
SUBROUTINE CHECKR (SSTR.UZDPTH,BDSZ,BOUZ,BDLL,
1 CMAX,AREA,HYCAL, INPUT,OUT PUT,PR!NT,PEST,
2 APMODE.DESUPP,ENOYR,ENOMON,ENODAY,
3 BGNYR,BGW'10N,BGNDAY,IEKROR,CALB,PROD,
4 ENGL,METk,BUTH,I NTR,HOUR,OAYS,MNTH,YES,NO,
5 SURF.SQIL.SZOPTH,COVPrtO,TIMTIL.TIMAP,
6 YEARAP,NUTR,LZTEMP)
DIMENSION SSTR112),COVPMO(12),TIMTIL(12),Li TEMP(12)
REAL LZTEMP
REAL S3TR, UiDPTH, BDSZ,BDJZ,tJUL£, CM AX , AREA ,S £OPTH ,COVPMO
INTEGER** BOTH ,CALB, DAYS , ENGL , HUIM ,H YC AL , I NPUT , INT1? , ML TR ,
1 MfsTh,NO,NUTR,OFF , UN, OUTPUT , PE ST ,P Kl NT , PROD , SNUrf , YES
!NT3GER*4 APMCJE,OESOR",SURF,SOIL
INTEGER ENOYR , END^N, ENDOA Y , bGNYR, 6GNMJN,BGNDAY
INTEGER TIM I IL ,TI MAP(12),YEARAPI 12J
1513 IF (JiDPTh .GT. 5/.CPTH) GO TO 1314
HF- I Tt (o, Iol3 )
lEf-R.CR = Ic*RO< + 1
1514 IF (S2.ul'Th .Lf. 1.0) GO TO 1^15
viHTE. (a, 1614) SZDPTH
IEKKJR= I ERROR + 1
1515 DO 1516 1=1,12
IF (COVPMO(I) .LE. 1.0) GO TO 1516
WRITE (6,1615) COVPMO(I)
IEhRCR= lERR'JR + 1
1516 CONTINUE
DO 1526 1=1,12
IF (TIMTIL(I) .uE. 0 .AND. TIMTIUI) .LT. 367) GO TO 1526
hP.ITE 16,161/1 TIMTILII)
IEKROK= IERKUR + 1
1526 CONTIM't
1513 IF IbOS^.oT.Ji.2 .OR. aDU£.GT.31.2 .OR. BDLZ.GT.31.2) GO TO 1519
hRITc (o,ltld) BDS^, BDU^ > 13DLZ
1519 IF (AOE'A .GT. c.oi) GO TO 1520
WRITE Io,lfcl9) AREA
IERRLR = IERRCR + 1
1520 IP (HYCAL .EJ. L«LB .OR. HYCAL .Eg. PRUO) GO TO 1521
WRITE (o,it20) HYCAL
H.K^UR = IERKUR +• 1
1521 IF (INPJT ,tO. crjoL .OR. INPUT .Eg. METR) GO TO 1522
WRIT- (6,1621) INPUT
IEKKGR = IEKKOR + 1
1522 IF (OUTPJT .Ej. E^GL .OR. OUTPUT .Eg. METR .OR. OUTPUT .Eg. BOTH)
1 GO TO 1523
rtPITE (o,lfc22) OUTPUT
IFKRuR = ItKROR + 1
1523 IF (PPI.'iT .EJ. INIK .OK. PRIfJT .Eg. HOUR .OR. PRINT ,EU. DAYS
1 .C'<. PRINT .Eu. f'NTH) GO TO 1550
\nC IT E (b, U2i ) PKlNT
IFf-RCR = ItKkOR + 1
1550 IF (PEST .EQ. Vh:i .OK. PEST ,EJ. NO) GO TO 1551
197
-------
1257.
1259.
1263.
1261.
1262.
1263.
1264.
1265.
1266.
1267.
126;).
1?69.
1270.
1271.
1272.
1273.
127V. 1
1274.3
1274.4
1274.5
1274.6
1274.7
1274.8
1274.9
129 J.
1551
1553
155A
1555
1556
1557
1
1558
1565
IF
IF
IF
DO
IF
COI
IF
DO
COI
IF
1295.
1277.
1291.
1299.
1300.
1301.
1302.
1303.
1336.
1307.
1303.
1309.
1310.
1311.
1312.
1313.
1314.
I 3 L 5 .
1316.
1317.
1313.
1321
1323.
1324.
1325
1326.
1327
1324.
1329
1330.
1331.
1J32.
1 J33
1 534
WRITE (6,1650) PEST
IERRGR* lEHROR + 1
(PEST .cQ. IvO) GO TU 1565
(APMOoE .EQ. SJkF .OR. APMQOE .EQ. SOIL) GO TO 1553
kiFITt (6,1052) APMOQE
Ifci-kOR = ItRkCR + 1
IOESORP .EQ. YES .CR. DESORP .EQ. NO) GO TO 1554
WRITE (6,1653) DESORP
ICf-RCR = IcRkOR «• 1
1555 1=1,12
(SSTR(I) .GE. 0.0) GO TO 1555
WRITE (6,lfc5f)
IEI-RC* = IERROR + 1
ITINUE
(CMAA .LE. 1.0) GO TO
.•/RITE <6,l£5o) CMAX
lEkRoR = IERRUR + 1
1558 1=1,12
IF (TIMAPU ) .Gt .0 .AMU. TIMAP( I) ,LT. J67) GO TO 1557
WRITE Io,l657) TIMAP(l)
lERkuR = lERRJk * 1
IF ( ( YEARAP ( D-H900).GE.6GMYR .ANO. ( YEARAP(I)+1900).LE.
oJ TO 1558
NO) GJ TO 1570
1556
(MUTk .tO. Yci .JR. NUTR .tQ.
rtP 1 Tc t ii, I toj > NiJTk
IERROR= IERKOR + 1
1570 IF (N'JTK.EU.NO .ANO. PEST.Eg.NO)
DO 1572 1=1.12
IF (LZTEMP(D.GT.-10.0 .AND.
WRITfc (0.167C) LZTEMP(I)
GO TO 1581
LZTEMPID.LT..120.0) GO TU 1572
1572
1531
IERRO«
CONTINUE
IF {ENOrR
IF (EMDVR
IF (
I ERROR * 1
1
.GT.
.Eg.
.Eg.
• G t •
BGNYR) GO TO 1582
doNYR .AND. ENDMON
bGNYR .AND.
dGNOAY) GO
ENOMON
TO 1582
.GT. 6GNMJN) GO TO 159<>
.EQ. BGNMON .AND. ENDUAY
WRITE (6,lodl)
IERRCR = ItkRUR + 1
1582 CONTINUE
; CHECKR ERROR STATENtNTS
1613 FORMAT ('0','eRRUR: U^DPTH HAS BEEN INPUTTED LESS THAN OR EQUAL TO
1 SZDPTHi THIS IS NOT REALISTIC1)
1614 FORMAT (• c1,'ERXUR : S/OPTH HAS BEEN INPUTTED AS ',F8. •<»,••, IT MUST
iaE LESS THAN 1.0 INCHES')
1615 FORMAT CO','ERROR: CNE OF THE VALUES FOR COVPMO HAS BEEN INPUTTED
1 AS ',Fa.4,«; CCv/PMO MUST BE LESS THAN 1.0')
1617 FORMAT CO','ERROR: ONE OF THE VALJES FOR TIMTIL HAS BEEN INPUTTED
1 AS ',18,'; TIMTIL MUST BE A POSITIVE INTEGER LESS THAN 367')
1618 FORMAT <«0','£HROR: BCSZ, BUJZ, AND BDLZ HAS BEEN INPUTTED AS ',
13F8.4,'; THEY fbST bE GREATER ThAfl 31.2 Lb/FT(3)')
1619 FOR-MAT ('0','EkROR: AKCA HAS BEEN INPUTTED AS SF8.6,'; IT JHJULO
1BE INPUTTED IN AtRES, HOWEVER II- THIS IS ACTUALLY THt CASE THEN SE
2T ICHECK=OFF',/,' ','AND RUN AGAIN')
1620 FORMAT i'0','EhkOR: HYCAL HAS 3EEN INPUTTED AS '
1SFT ECiUAL TO CALb CR PRUD')
1621 FORMAT ('0','ERkOR: INPUT HAS BEEN INPUTTED AS '
1SET EQUAL TO E^GL CR METR1)
1622 FORMAT (•0','EX30k: UUTPUT HAS uEEN INPUTTED AS
1 SET EQUAL Tui EITHER ENGL, ricTR, OR BUTH')
1623 FORMAT CO't'EHRUR: PRINT HAS BEEN INPUTTED AS '
1SET EQUAL TO cITri£R INTK, HUJR, JAYS, OP. MNTH')
Io50 FORMAT <'0','EKHUk: PEST HAS BEEN INPUTTED AS "
1ET EQUAL TO rES «R flC'J
,A4,«
,A4,«
1 ,A4,
,A4,«
A4,' ;
; IT MJST Bt
; IT MJST ot
'; IT MUST BE
; IT MJST Bt
IT MUST BE S
198
-------
1335.
1336.
1337.
1338.
1339.
1340.
1343.
1344.
1346.
1347.
1355.
1356.
135?.
1353.
1652
1653
1654
1656
1657
1658
1665
1670
1681
tVn
IT MUST bE
,'cMOk: APMuOE HAS dE E'J INPUTTED AS
TC SuRF OR SUIL' )
,'ERKUk: DESUFP HAS BEEN INPUTTED AS
TO YES CR NO')
SOME OF THE 12 SSTR VALUES INPUTTED ARE LESS T
,A4,
IT MUST BE
13e>0.
FORHAT CO1
1 SET EQJAL
FQk •'Al I ' 0'
1 SET EQJAL
PClFM-iT ( • 0'
1HAN O.C; THEY KuST BE POSITIVE*)
FQRMAT CO'.'ERRua: CMAX HAS B5EN INPUTTED AS ',F8.4,'; IT SHOULD
1BE SET LESS THAN Uk EQUAL TO 1.0')
FORMAT ( «u« ,'EKROk: TIMAP HAS BEEN INPUTTED AS ',14,'
18E A POSITIVE INTEGER LESS THAN 367')
FORMAT l'J','cR*GK: THE INPUTTED YEAR OF APPLICATION
WITHIN THE PtrtlOC CF SIMULATION')
0','ERkuk: NuTR HAS bcEN INPUTTED AS ',A4,'i
TO YES OR NG')
0','ERkuR: ONE OF THE VALUES Or LiTEMP HAS KEEN INPUTTED
IAS ',F8.4,'; THIS IS NOT REALISTIC. CHECK IMPUT UNIT CONSISTENCY•)
FORMAT 1'0','tkKjk: THE IMPJTTcD END DATE (ENDDAY , hNUHOIN, ENOfh ) UL
ICU^S BEFukc THE DtGIN OATE 1 bo^DA Y, 6GNMJN, BGfJYR I ' )
1R
FORMAT t'
1ET EQUAL
FORMAT ( '
TIMAP MUST
DOES NJT OCCU
IT MUST dE S
13-5.
1400.
1401.
1402.
1403.
1404.
1405.
1406.
1407.
1403.
1409.
1410.
1411.
1412.
1413.
1413.1
1413.2
1414.1
1414.2
1414.3
1414.5
1414.6
1415.
141o.
1417.
1413.
1419.
1420.
1421.
1422.
1423.
1424.
14^5.
1426.
1427.
1423.
1429.
1430.
1431.
1432.
1433.
1434.
1435.
1436.
1437.
1430.
1440.
1441.
C
C
C
C
C
C
C
C
C
1501
1502
1503
1504
1505
1506
1507
1508
END
SUBROUTINE CHECKS
(HYMIN,INTRVL»U£SN,LZSN,IRC,NN,L.SS,A,UZSiL£S.
K24L,KK.24,K24ELt K3 f SNOW . I CHECK, I ERROR f
YEStNOiON,OFF,RADCONfCCFACfSCF,EL3IF|
I DNS 11- ,DGMf rtCf EVAPSN.MELEViTSNOW,
PETMINiPETMAX.PETMULiWMUL,RMUL,KUGIJ
DIMENSION K3(12)
REAL LZSN,IRC,NN,L,LZS,K24L,KK24,K24EL,K3
REAL IO,«1S,MELEV,KUGI
REAL HYMIN.UiSNtSSf A,UZStRAJCON,CCFAC,SCF.ELDIFf Fft>&MfrtC,
EVAPSN,TSNUrt,PETMIN,PETMAX,PETMULiwMUL,RMUL
INTEGER*4 BOTH,CALtJ,DAYS,E.^GL,HOUR,HYCAL,INPUT, INTR.METR,
1 MNTH,NO,NOTR,OFF,ON,OUTPUT,PEST,PRINT,PROu,SNOW,YES
INTEGEP*4 IChECK
IF
IF
IF
IF
IF
IF
IF
IF
IF
(HYMIiM .GT. 0.0)
V.RITE (6,1600)
IERROR = IERRCR
(INTRVL.Ed.5 .OR.
liPITE (6,1601)
IERRCR = lEkkCR
(UZSlM .LT. LZi
V.RITE (6,160^)
IE1-RCR = lERkCR
(IRC .LE. l.C) GO
WRITE (0,1603)
!EkRCi\ = ItKKCR
tNN .LC. l.CJ bO
WRITE (6,lo04)
GC TO 1501
HYMIN
+ 1
INTRVL.EU.15
INTRVL
+ 1
GC TO 1503
+ 1
TO 1504
IRC
*• 1
TO 1505
NN
.OR ,
INTRVL.EQ.60* GO TO 1502
IERACR = IERRGR + 1
(L .GT. 1.0) Gu TO 1506
wPITc (e,loJi>) L
IERRCR = liRKCR + 1
(SS .LT. l.C) Gu TC 1507
t'JRITE I 6,1 o06) SS
IE(- RLK = lEkkCR + 1
(A .LE. O.G) oO TO 1508
WRITE (6,loG7) A
IERRCR = ItRROR ••• 1
(UZS .LT. LZ^l GO TO 1509
WRITt Ib, loOd )
199
-------
1442.
1443.
1444.
1445.
1446.
1447.
1443.
1449.
1450.
1451.
145? .
1453.
It 54.
1455.
1456.
1457.
1458.
1459.
1463.
14-jl.
1462.
1463.
1464.
1465.
1466.
146/.
1468.
1469.
1470.
1471.
1472.
1473.
1474.
1475.
1476.
1477.
1473.
1479.
1430.
1431.
1462.
1433.
14«4.
14S5.
I486.
1437.
1483.
1409.
1490.
14V1.
1492.
1493.
1494.
1495.
1496.
1497.
1493.
1499.
1500.
1501.
1502.
1503.
1504.
1505.
1506.
1507.
1518.
1509
1510
1511
1512
1527
1524
1525
1529
1530
1531
1532
1533
1534
1535
1536
IF
IF
IF
00
IF
IERKU =
(K.24L .LE.
WPITE (6,
IERRCR =
(KK24 .LE.
WRITE (o,
lEf'RuK =
(K24LL .Lfc.
WRITE (6,
ItKKCR =
1527 1=1,12
-------
lt>OJ. 1550 IF (PETl'.UL .GT. 0.0) GO TO 1580
1510. WRITE lo,U4l) PETMUL
1511. !F>RCR = IEKRUR + 1
1512. 1580 IF (ICHtCK. .EC. ui4 J GO TO iD32
1513. WF02 FORMAT ( • 0' , • liRKGR : UiSN HAS BEEN INPUTTED GREATER THAN OR EyUAL T
1524. 10 L£SN, THIS IS NOT REALISTIC')
1525. 1603 FORMAT CO', 'ERROR: IRC HAS BEEN INPUTTED AS «,F8.4,'; IT MUST BE
I52b. 1SET LESS THAN CM EuJAL TO 1.0')
1527. 16C4 FORMAT CO', 'ERROR: NN HAS bEEN INPUTTED AS ',F8.4,«; IT MUST 8E S
152;}. 1ET LESS THAN 1.0')
152^. 16C5 FURMAT CO'.'ERkuk: L HAS BEEN INPUTTED AS ',F8.4,«; THIS LOOKS RA
1533. ITHtR STRANGE - REHEMBER THE UNITS ARE IN FEET OR METERS')
1531. 1606 FORMAT i ' 0* , « HARNI NG : SS HAS BEEN INPUTTED AS «,F8.4,'; A LAND SLO
1532. 1PE OF 4f> UEGREES OR GREATER IS QUESTIONABLE, HOWEVER IF THIS ACTUA
15J3. 2LLY IS TRuE'i/.1 'i'SET ICH£CK=OFF AND RUN AGAIN1)
1534. 16C7 FORMAT C 0' , • WARNI NG: A HAS BEEN INPUTTED AS »,F8.4,'; IMPERVIOUS
1535. 1APEA IS NUT CUNSIDcRED IN SEDIMENT REMOVAL AS TH? MODbL IS BASICAL
1536. 2LY FOR ',/,' ', 'AGRI CULTURAL AREAS, HOWEVER IF IMPERVIOUS AREA IS
1537. 3DESIRED SET ICHECK=OFF AND RJN AGAIN')
1533. 16C8 FORMAT i • 0 ' » ' EftKUR : JZS HAS 6EEN INPUTTED GREATER THAN OR EUUAL TO
1539. 1 LZS, THIS IS NCT REALISTIC')
15^3. 16C5 FOP4AT ('0','tRROR: K2^L HAS BEEN INPUTTED AS ',F8.4,«; IT rtuST BE
1541. 1 SET LESS THAN CR EJUAL TO 1.0')
1542. 1610 FORMAT t'U'.'ERKJR: KK24 HAS BEEN INPUTTED AS ',F8.4,«; IT MUST BE
1543. 1 SET LESS THAN OR EgUAL TO 1.0')
1611 FORMAT {' 0 ',' ERROR : K24cL HAS dEEN INPUTTED AS «,F8.4,'; IT MUST B
IE SET LESS ThAN UK EQUAL TO 1.0')
1612 FORMAT 1'0','ERPOR: K3 HAS BEEN INPUTTED AS «,F8.4,'i IT MUST BE S
1ET LESS THAN OR EiJUAL Tij l.O'l
1 1624 FORMAT ('0', 'ERROR: SNOH HAS BEEN INPUTTED AS ',A4,'; IT MUST BE S
2 1ET EUUAL TO YES OR NC')
1628 FORMAT ( « 0' , ' cRRuR : RADCON HAS BEEN INPUTTED AS '.F8.4,'; RADCON M
1UST BE GREATER THAN 1.0')
1550. 1629 FORMAT {'0«, 'ERROR: CCFAC HAS BEEN INPUTTED AS ',F8.4,»; CCFAC MUS
1551. IT BE GREATER ThAN 0.0')
1552. 1630 FORMAT { ' J« , • ERnuK : SCF HAi dEEN INPUTTED AS ',F8.4, '; SCF MUST BE
1553. 1 GREATER THAN C.u')
1554. 1631 FORMAT CO', 'ERROR: ELUIF HAS BEEN INPUTTED AS ',F8.4,'; ELOIF SHO
1555. 1ULD BE INPUT IN TrICUSANUS OF FEET AND CANNOT EXCEED 30.0')
1556. 1632 FORMAT 1'0','ERKOR: IONS HAb BEEN INPUTTED AS «,F8.4,'; IONJ MUST
1557. IrtE LESS ThAN i.o')
155d. 1633 FORMAT ('0','ERKuR: F HAS BEEN INPUTTED AS ',F8.4,'; F MUST BE LES
1559. IS THAN OR ECU4L TO l.J')
1560. 1634 FORMAT { • 0' , • wAHN I N(j : DGM HAS BEEN INPUTTED AS 'tF8.4,'; VALUES GR
1561. 1EATER THAN 1.0 INCHES FOR DGM ARE QUESTIONABLE')
1562. 1635 FORMAT I'O', 'ERROR: hC HAS BEEN INPUTTED AS «,F8.4,'; rtC MUST d£ L
1563. 1ESS THA1M 1.0' )
1564. 1636 FORMAT («C','tRhUK: EVAFSN HAS BEEN INPUTTED AS ',F8.4,«; EVAPSN C
1565. 1ANNLIT BE A NEGATIVE NUMBER')
1566. 1637 FORMAT ('0','cRKOk: MELtV HAS BEEN INPUTTED AS ',F9.1,'; MELEV CAN
1567. 1MOT HAVE A VALLE GREATER* THAN 30000.0')
1563. 1638 FORMAT t'G', 'ERKUK: TSNOv^ HAS BEEN INPUTTED AS ',F8.4,«; TSNUrt MU
1569. 1ST HAVE A VALUE bKEATER THAN 20. U AND LESS THAN 40.0')
1570. 1639 FORMAT {'0','LRKJK: PETMIN MAS BEEN INPUTTED AS (,Fo.4,'; PETMIN M
1571. 1LST BE OKEATEk THAN 30.0')
1572. 1640 (-OKMAT Cu'.'ERKuR: PETrtAX HAS oE EN INPjTTEU AS ',Fd.4,'; PtTMA* M
10n. UJST 6E LESS ThAN oC.0'1
\lj7<.. 16M f'VV.T t* 0' . ' f.nt-.ji\: PfcT-lUL H\b OtfcN I.JHUTTtD AS ',f-a.4,'J PifTi-IJL M
1545
1546
1547.
1547
1547.
1543.
201
-------
1575.
1576.
1577.
1573.
1579.
1530.
1581.
1582.
1583.
1584.
1585.
1587.
1583.
1589.
160J.
1601.
1602.
1603.
1604.
16C5.
1606.
1607.
1608.
1609.
1610.
1611.
1612.
1613.
1614.
1615.
1616.
1619.1
1619.2
1619.3
1620.
1621.
1622.
1623.
1624.
1624.1
1625.
1626.
1627.
1628.
1629.
1630.
1631.
1632.
1633.
1634.
1635.
1636.
1637.
1637.1
1633.
1650.
1651.
1652.
1653.
1654.
io55.
1655.1
1655.2
1655.3
1655. 4
1655.5
16.56.
i
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
1UST BE GREATER THAN 0.0'J
1642 FORMAT ('0','cRROR: UMUL HAS
18E GREATER THAN 0.0')
1643 FORMAT ('O'.'ERRGK: RMUL HAS
1BE GPEATcP, THAN 0.0')
1644 FORMAT CO1,'ERROR: KUGI HAS BEEN
1BE A POSITIVE NUMBER LESS THAN 10
1680 FOP.rlAT ('0','tRRUK: ICHECK HAS
1 SET EUUAL TO ON OR OFF')
1682 FORMAT CO1,'THE TCTAL NUrtbE*
1ENCE EOJALS'.IJ,', PLEASE
PETUPN
END
BLOCK DATA
BEEN INPUTTED AS SF8.4,*; WMUL MUST
BEEN INPUTTED AS ',F8.4,'; RMUL MUST
INPUTTED AS ',F8.4,'; KUGI MUST
0')
BEEN INPUTTED AS ',A<*,'; IT MUST faE
OF DETECTED
CORRECT AND TRY
ERRORS IN THE INPJT
AGAIN OR CONTACT tPA')
ELOCK DATA TO INITIALIZE VARIABLES
IMPLICIT REAL(L)
DIMENSION RES6(5),RESBU5),ROSi3(5),SRGX{&),INTF(5),RGX{5), I NFL (5)
1 JZSB<5),APERC8<5) ,RIB< 5 ) , ERSN< 5) ,K3( 12)
DIMENSION SRER (5) , ROBTOM15) ,RDbTOT( 5) , INFTOM15) , INFTOT(5) ,
1 ROITOM15),RCITOT(5),RXB<5) , 5RSTJMI 5) , ERSTOT (5 ) , MNAMt 12 it RAJ (24),
2 TEMPXJ24) ,WINCA(24) , RAIN(28d)
DIMENSION LSKO(128),EROM123),RRaSU28)
DIMENSION SMCIST(^4,5),JMOIST(24, 5) ,LMOIST(24),
1 STEMP(24),UTEMP(24)
COMMON /ALL/ Rb ,HYM N, PKNTKE ,HYCAL, DPS T, OUTPUT , T IMF AC ,L^S, AREA,
1 RESBl,f',RA'JMtM , CiMM EM , CRA I N>1,CUNM EM , SGMM , SNE GMM , SE VAPM , SUMSNY,
PXSNY,MtLRAY,PAL)MEY,CDRMeY,SGMY,i;UNMEY,CRAINY,SNEGMY,SErfAPY,
TSUeAL,COv/ER,CO\/KMX,R08TllM,*OUTOT,KX6,KaiTUM,KOITOT, IMFTuM,
a
9
* liUPAL,l«UVCKfUUVKnA,KUD1Un,r\UUIUI|RAD,KUllUn,«UllUI,ll';riUI>l,
1 INFTGT .ERSTCf , fcRS TOT , i>RER . T5MPX, RAD, ,1INOX ,R A IN , INPUT,OSNRJS
2 DSNFLO , D SNc* i , LSRU, EROi.TrttJLSZ, LOOP, NERDS, N ILSMJ.RROS, NRROi
COMMON /NUT/ DFLT , SN , S'JT , S NRSM , S NRLM ,Uh,UNT ,UNI , UNI T ,•
1 y,
-------
1656.01
1636.02
1656.03
1656.04
16t>6. 05
1656. C6
165o. C7
1650.08
1656.09
1656. 1
1656. 11
1656.12
1656. 13
1656. 1*
1656. 15
1656. 16
1656. 17
1656.18
1656.19
1656.2
16-J6.21
1656.22
1656.23
1656.29
1659.2
1659.3
1659.31
1659.32
1659.4
1659.5
1660.
1667.
1669.
1670.
1671.
1672.
1673.
1674.
1675.
1676.
1677.
1678.
1678.1
1673.2
1678.3
1673.4
1673.5
167R.6
16BO.
16 tl.
1682 .
1633.
16 is4.
itei .
1667.
1683.
1690.
1691 .
1692.
1693.
1694.
1695.
1698.
1702.
1703.
I70'«.
1705.
1708. 1
C CCKMON ALL DECLARATIONS FOR 1*2 £. R*4
INTEGER P*NTisE»TI fFAC.IMIN, IH*, TF, JCGUNT, I DEBUG
REAL PU,HYHIN,LZS,AkEA,RESBl,ROSfl,SRGX, INTF ,RGX, INFL,
1 UZSti,APtRCB,KlB,ERSN,rt,P3,A,Rt$8,SMUIST,UMOIST,
2 LMOliT.UPST, ST£MP,UTEMP,LTEMP,MU£,MLZ
C
C COMMON LAUti DECLARATIONS FOR I*2't R*4
INTEGER CAY,MOiMTH,OSNRUS,DSi>IFLO,o;>NERS,TM6LSZ,NEROS,
1 NILSkCt.MKROS
REAL SEVAPM,sUfSin,PXSUY,McLRAY,KAOMEY,CDRMEY,SGMY,CONMEY,
1 CkAIrtYf SNcl*MYi SEVAPY.TSNBAL .COVER, COVRMX, ROBTOM.ROBTOT,
2 PX3,ROirCM,PtTMAX,ELDIF,UEWX,PACK,OEPTH,SDEN,
3 IHACK,TMII\,SUMSNM,PXSf'M,XK3 , MEL RAM, RAOMEM, CDRMEM, CRAINM,
4 CUNMEM.SGM, SNEbMM, PRTGT,ERSNTT,PRTUM,ERSNTM,RUTOM,
5 NEPTGM.RCSTOM, RITOM,R IHTOM, BASTOM.RCHTOM, RUTOT .NEPTOT ,
o ROSTUT,KITOT ,R INTUT , B ASTUT, RCHTUT , TwBAL.EPTOM, EPTOT,
7 UZ3,UZSN,L/SN, INFIL, INTER, IRC,NN,L,SS, SGwl , PRt SGw ,GWS ,
8 KVt N24LtKi<24,K24EL,EP,IFS,K3, tPXM, RcSS 1 , RESS.SCEP ,
9 SC£Pl,SkGXT» SRGXT1,JKER,KRER. JSERiKSER , SRERT,MMPI N»
* M£TOPT,CC(-AC tSCF.IDNS ,F,JGM ,WC, rtPACKt E VAPSN.MEL EV t
1 TSNOrt,PETMI,gfROITOT,INFTOMi INF TOT , ERSTOMf ERSTOT , SRERf
2 TEMPX.RAC t« I NDX.RAINt LSRO, EROS, RROS
C
C
INTEGER TSTEP,NSTtPfSFLG,JFLG,LFLG,GFLG
C
INTEGER*-* BOTh , C ALB , DAYS, ENGL ihJUK ,HYCAL T INPUT , INTR.METR,
1 MNTH,NL),NUTR,OFF , ON .OUTPUT , PfcST ,PRI NT , PROD , SNOw , YES
C
INTEGER*4 LOOP
DOUBLE PKECISILN MNAM
REAL NP
C
REAL DELT,
1 SNT(20J ,SiNRSM(20f5) ,SNROM UO, 5) ,
2 UNT(20) fUUI(20,i>) ,UNI Tl 20 J , UNRlrtt 20 f 5) »
3 NR5MUC i5) »LNkfM<20) r
4 SNRbMl2Gr->),UNRdM(20i5) t LNRbH (20) ,GMRBM( 20 J , TNRbM ( 20) ,
5 SNKSYUO,i>)fSNROYt20f5)fUNRIY(20t5»tNRSy<20ia) ,
6 LNRPY(2CJ( SNRBY(20,t>) i (JNRBY (20t 5) ,LNRBY( 20) i GNRUY( 20) ,
7 TfvRt)Y( 20) , TNRHV(20) , TNRHV.M(^O) tTNRHVY(20) ,TNA ,TPA,T CLA ,
8 KMdft) tTHKN(U) i KP 1 3,4) tTHKP(S) , NBAL , PHBAL ,CLBAL
DOUBLE PRECISION SN (2j(f> ) , U.JUOf 5) ,L^{20 ) ,GN( 20)
REAL STST.PRSTOrtl 5) , SPkCTM ,PRSTOT< 5) t SPRSTM ,PROT JM( 5) ,SAST,
2 PROTOT(S),SCST,U^ITOM(5),SOST,JPITOT(!>),UTST,STS(5),UAST,
3 UTS(5) ,JCST,bAS( j ) , UDST , SC i( 5 ) ,F P, SO S (a ) ,CM AX ,SSTkl ( 5 I ,
4 SPROTT.UAS15) , SPRSTT , JCS ( 5 ) , FPUi tUDS ( 5) , UPk ITM.'JSTM 5) ,
5 UPRITT.JPRISiS)
DATA PftTCT, EH SNTT/*0. O/
DAT4 Fu;}TCMt HLuTJT, I.jf:TjM, INFTOT, RjITbM, kUll dT/ 30*G.O/
DAT;, T^.iiAL, RESU, SRGX, INTF, CKSTCM, t,RSTaT/2o*o.o/
DATA PES81, SASTO^, RCHTOM, tJASTQT, RCHTOT/9*0.0/
DATA EPTOM, £ P TOT/2*0.0/, PRNTKE/0/
DATA PR, P3, RXti, RGX, INFL, UZSB, APERCB, DPST/28*0.0/
DATA TIMFAC/0/, J/SN, LZSN, INFIL, INTER, IRC, NN, L, SS/8*0.0/
DATA A, (JiS, LZS, SGh, GWS, KV, K2 4L , KK24/8*0.0/
DATA IFS, K24EL, K3 , £PXM, COVER, CO VRiMX/ 17*0. 0/
DATA ErlSN/5*O.C/, SRER/5*0.0/, SRERT/0.0/
DATA AkEA, M/2*0.0/
DATA Hui, MLZ/2*0.0/
DATA MrjAM/' JAMJA RY ' , • FEBR JARY • , • MARCH ',« APRIL •,
* • NAY ',' JUN£ ',' JULY ',« AUGUST «,
* 'SEPTHJtR1 ,' OCTOdEK* , 'NUVEMbER' , 'DECEMBER'/
DATA KMPlN/2b.4/, rtETOPT/0 . 10 72/
DATA Syi01ST/liJ*U.O/,UMCUST/120*J. 0/,LMOIST/24*0.0/
203
-------
1709.2
1709.
171 T.
1711.
1712.
1713.
1714.
1715.
1716.
1717.
1717. 1
1718.
1713.1
1713.3
171-3.4
1718.5
1713,6
1719.
1720.
1721.
1722.
1723.
1724.
1725.
1725.05
1725. 1
1725.2
17/5.3
1725.4
1726.
1726. Cl
1726. C2
1726. 03
1726. C4
1726. C5
1727.
2000.
2001.
2002.
2003.
C
C
C
C
C
C
C
C
C
2C05.
2C06.
2007.
2 0 J -3 .
20™.
2011 .
2012.
2014.
2015.
2016.
2C23.
2020. 1
2020.2
2020.3
2C21 .
2022.
2023.
2023.
2025.1
2026.
202 '.
C
C
C
C
C
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
STEMP/24* C.O/.UTEMP/2<»*G.O/,L TEMP/0.0/
SUMSNM, PXSNM, NELRAM, RAOMEMt CORMEM, CRAINM,
CUNMeM, SuNM, SNtGMM, SEVAPM, SUMSNY, PXSMY, MELRAY,
kAUHEY, CURfEY, CONMEY, CRAINY, SGMY, SNEGMY, SEVAPY,
TifitiAL/21*0.0/ ,PACK/0.0/,SDEN/0.0/ , PETMAX/0.0/
C/5LB/'CALB'/,PRCD/'PROD'/
ENGL/'EUGL '/,NETR/'METR'/,BOTH/1BOTH'/
NO/'NO'/,YES/'YES1/
JCOuiMT/0/
HOJR/'hOU^'/.DAYS/'DAYS'/.MNTH/'MNTH'/,INTR/'INTR'/
ON/'CN'/,CFF/'OFF'/
LN/20*O.C/,UN/100*0.0/,UNI/100*0.0/
'iOO*0.0/,SNT/20*0.0/,UNIT/20*0.0/,KN/32*0.0/
.C/,KP/2J*0.0/,THKP/b*0.0/,UNT/20*0.0/
PELT ,NBAL,PHBAL,CLBAL/4*0.0/
TSTtiP,NiTEP,SFLG,UFLG ,LFLG, GF LG/6*0/
SNRS^I/100*0. C/ , SUKOM/ 100*0. O/ ,UNR I M/100*0. O/, MR SM/100*0. O/ ,
GNP. dM/20*u. J/i TNKdM/20*0.0/ ,SNR SY/100k 0. O/ » SNROY/iOO*0.0/ ,
UNR!Y/iuC*0.0/,NKSY/100«0.0/.LNRPY/20*0.0/.SNRBY/100*0.O/.
UNRi3Y/luO*0.0/ ,LNRbY/2J*0.0/,GNRBY/20*0.0/ t TNP DY/20*0 .O/.
TNRhV/20*0.0/.TNr(A/0. C/ . TPa/0 ,0/,TCU A/0.0/
2 SCST
3 UDST
4 FPUZ
STST.PKofCf.SPKGTM,MSTGT,SPkSTM,PROTON,SAST,PR3TOT,
'tUPITOMiSOSV.UPITOT,jTSr,STS,UAST,LITSfUCST,SAS.
',SCj,FP,SCS,CMAX,SSTRl,SPRjTT,'jAS,SPRSrT,UCS,
:.UuS,UPRI If,JSTR,JPRITT,JPRIS/102*0.0/
INITIALISE CATA FCR DISK. WRITING
DATA DSIJFLO,OSNERS,TCibLSZ/2*0. Ii8/, DSNROS/0/
DATA LShO,EROS/^f>6*G./,RRGS/128*0.0/
DATA LOOP/0/,NEftGi>/l/,NILSRO/l/,NRROS/l/
END
SUBROUTINE LANCS(SFLAG,SNOPRTJ
HSP LANDS
IMPLICIT REALHL.K)
DIMENSION RES 8 I 5J , RES Bit 5) , RUSBOJ, SRGX(b), INTF(5) ,RGX( 5) , RJZb I 5 t ,
1 'JZS-3{5),APEKCe(5),RIB(5J,tRSN(5),KJll2J
- ,M i>REK (5), ROBTOM(5J ,ROBTOT( 5J , INFTUV (5J , INFTOT{ 5J ,
5J.RCITLT(j) ,RXB(5) ,ERSTOM(5) .ERSTOT(5),MNAMt12),RAD(24),
rtINC At 24),KAINJ2ddJ .uSSBMT(5) ,RESBMT(5),SRGXMT(5J
OIPEDSIGN
1 EV()!ST(24) iKUSINTli)) ,PLPCb( j) .
2 ARCSP(y) .AINTF (SJ ,AROSIT(5),LAPSE(24J,SVP(40J , SNOUT ( 24, 16 J
D I MEN SI ON LSRO(12b)iERCS(12BJ,RRUS(128)
DI MEN SI UN jrtOIST(24.i) ,UMOI ST(24,5),LMOIST(24),
(b)
COMMON /An./ KL ,riY MI N , PRNTK E , H YC AL, DP ST, OUTP UT , T I MFAC ,LZS,AREA,
1 RtS61,RL)Si3,SRGA,INTF,RGX,lNhL,UZSB,APERCafRIB,ERSN,MiPj.A,
2 CALB,PRQu,PES 1 ,1\JTK, ENGL, MSTR , BUTH ,R ESB , YES ,NO , I MIN, IHR , TF ,
3 JC J JNT , PR INT, IKTk , D A YS, HQJR ,MNTH , I CE oUG, CN, OFF .
Sl-101 ST,JMOIiT .L^IOISTjSTEMP, JT EMP , LTE MP , MLU, MLZ
COMMON /LAND/ PNArt, PKTOT, ERS JTT ,PRTO,>1 ,EKSNTi'J ,OAY,
204
-------
2028.
2029.
2030.
2031.
2032.
2033.
2034.
2035.
2036-.
2037.
2038.
203*5.1
2039.
2039. Cl
2C39.02
2C39.03
2039.04
2039.05
2C39.06
2C3°.C7
2039.08
2C39.C9
2039. 1
2039.11
2039.12
2039. 13
2039. 14
2039. 15
2039. 16
2039. 17
2039. 18
2039. 19
2039.2
2039.21
2039.22
203-;. 23
2040.
2042. 1
2C42. 2
2 C •« 2 . 3
2C4? .4
2043.
2044.
2045.
2047.
2050.
2051.
2052.
2C53.
2053. 1
2C53.2
2054.
2055.
2C5b.
2057.
205R.
2059.
2059.1
2063.
2061 .
2C62.
2C63.
2064.
2065.
2066.
2067.
2063.
2069.
1 RUTOMiNEPTCM, KOSTCIM,RITOMrKlNTUM ,8 AS TDM, RCH fUM , R JTU r ,
2 NEPTOT ,ROSTUT,RITCT,RlNTUT,dASTi3T,RCHTOT,TwBAL,EPTUM,EPTOT,
3 UZS,UZSN,LZSN, INF IL, INTER, IRC , NN ,L ,SS ,SGwl» PR ,SGW ,GWS , K.V ,
4 K24L,KK24,K,24EL,tP, IFS.K3, EPXH.RESS1 ,RESS,SCEP,SCEP1,SRGXT,
5 SRGXT1 , JRER.KRER, JSER.KSeR , SREkT ,MMP I N, METOPT , SNQw, CCF AC ,
6 SCF, IDNS.F.DGN ,rtC ,MP ACK , E V APSN,MEL£V , TifMOw, PE TMI N, PE TMAX , ELOI F ,
7 DEwX,PACK,DEPTH,MCNTH,SDEH,IPACK,TMlN,SUMSN^,PXSNM,XK3 ,
8 MELR AM,RAOMtM,CDkMEM,CRAINM,CONMEM,SGMM,SNEGMM,SEVAPM,SUMSNY,
9 PXSNY, MtLRAY , R ADMEY , CORME Y , SGMY , CON'-IE Y, CRAI NY , SNEGM Y , SE VAP Y ,
* TSNBAL ,COVER,CGVKMX,RG3TOM,RUBTOT,RXB,ROITJM,ROITOT, INFTOM,
1 INFTOT,cRSTCM,ERiTOT,SRER,TEMPX, RAD, wlNOX.R A I N , INPUT .OSNRGS ,
2 DSMFLO.USNERS.LSRO, EROS, TMBLbZt LOOP , NERGS ,N ILSRO.RRUS , NRROS
C
C COMON ALL DECLARATIONS FOR 1*2 & R*4
INTEGER PRNlK.t,TlfFAC,IMIN,lHR,TF, JCOUNT , I DEBUG
REAL PU, HYMIN,LZS,AREA,RESB1,ROSB, SRGX, INTF ,RGX, I NFL,
1 U/.SE,AP£RCb,KIB,ERSN,M,P3,A,RESB,SMOIST,JMOIST,
2 LHOIST.JPST, STEMP.UTEMP.LTEMP ,MUZ,MLZ
C
C COfMOfJ LANJ OECLARATIUNS FOR I«2 t. R*4
INTEGER OAY,MCNTH,DSNROS,DS JFLU, DSNE RS, TM8L SZ ,NERUS ,
1 NILSRC.NRRJS
REAL SEV APM.SL MSN Y, PXSNY ,MELRAY,kAUHEY,CDRMEY,SGMY,CONMEY,
1 CkAINY .SNtGHY, SEVAPY, TSNBAL ,CO\/ ER, COVRMX , ROBTOM , ROB TOT,
2 PXB,(-OITOC,PETMAX,ELDIF,[)£«X,PACK,UEPTH, SDEN,
3 IPACK,TMIN,SJMSNM,PXSNM,XK3,MELRA,M,RADMEM,CORMErt,CKAINM,
4 CCNMEM.SG^i.SNEGMM.PRTOT.'ERSMTT.PRTOM, ERSNTM.R JTOM,
5 NtPTCM,hGSTUM,KITOM,R INTOH, B A STOM ,RCriTQM , RUTOT , NEPTOT ,
6 ROSTdT.KlTOT ,R INTOT, 6 AS TOT , RCHTOT, TWB4 L, EPTUM, EPTuT,
7 UZS, JZSN.LZSN, I NFI L , I NTEK , I RC,NiM,L,SS, SGW1 ,PH ,SGrt ,GrtS,
8 KV.K24L ,KK24,\<;4EL,EP,IFS,K3, EPXM,RESSl,PtSS,SCtP,
9 SCEPl,SKGAT,SRGXTl,JRER,KKC-R,JScR,KSEH,SRERT,MMPlN,
* MtTOPT,CCFAC,SCF,IDNS,F,DGM,riC,MPACN,EVAPSN,MELcV,
1 TSlJrt, PcTPlN.RGITOT, Ii'JFTOM, INFTQT, ERSTGM, ERSTUT,SRER ,
2 Tt^PA.RAC ,WI NDX,RAIN, L3RO.EKOS, RRuS
C
INTEGER hHFLAG ,h, SFLAG
INTEGER LASTLF ,LASTRO
INTEGEH*4 BOTH ,CALb , CAYS, t"40L .tlO'.JR ,rl YCAL, IMPiJT, INTR ,METK ,
1 rtNTh.NU ,NUTR,OFF ,JN, OUTPUT , PEST, PRINT jPRuD.S-NOh, YES
tNTEGrF<<4 LCCHtSNCPKT
C
DOJBLE PRECISION MNAM
C
REAL IRC4, INFLT, QMETRC
REAL UZSMET, LZSMET, SGWMET, SCEPMT, RESSMT
REAL T^tJLMT, SRGXTM, RESBMT, SRGXMT
REAL KUGI, NEGNLT, NEGMM, PRJ
REAL MELT, INOT, K.CLD, MELRAO
C
INTEGER*^ TFI.III
C
OATA IHKR, FRFLAG/2*0/
DATA PERC, INFLT/C.0,0.0/
DATA SBAS/0.0/
OATA SUET1, SNET, SRCH/3*0.0/, N'JMI/0/
DATA RUSINT/3*U.O/, AETR, KF/2*0.0/
DATA PEPIN, cPIN, EPIN1, EPHR/4*0.0/
OATA E V L) I ST/o* 0.0, 0.019,0. 041 ,0.067,0.088,0.102,3*0.11,0.105,
C C. J95,O.Cdl, 0.055,0. 017, 5*0. 0/
DATA SVP/1 0*1.005, 1.01, 1.01, 1.015, 1.02,
*1. 03,1. 04, 1.C6, 1.08, 1.1, 1.29, 1.66 ,2. 13, 2. 74, 3. 49, 4. 40, 5. 55, 6. 87,
*8. 36, 10. OS, 12. 19, 14. 63, 17. 51, 20. 66, 24. 79, 29. 32,34.61,40.67,47.68,
*55.71 ,64.8d/
DATA LAPSt/6-»3 .3,3.7,4.0,4. 1,
*4. 3, 4. 6, -f. 7, 4. 8, t. 9, 5.0, 5. 0,4. 6, 4. t>,4. 4, 4. 2, 4. 0,3. 8, 3. 7, 3. 6/
DATA APK, A£PIN/2*O.C/
OATA AROSB, AINTF, AROSIT/ 15*0 .O/
205
-------
^070.
2071.
2072.
2073.
2073.1
2074.
2075.
2076.
2076. 8
2077.
2073.
2079.
2080.
2081.
2032.
20S3.
2C64.
20d5.
2CT6.
2087.
2083.
2C89.
2090.
2091.
2092.
2093.
2094.
2096.
2097.
209 P..
20S9.
2100.
? * ' '
210.;.
2103.
2 1 04 .
2 06.
i 07.
;.' ') '•' .
2 C1-'.
21! J.
2112.
2 1 : 3 .
2! 1 +,
2:14.1
2114. 11
2U4.12
2114. 13
2114. !•••
21 14. 15
211':. 16
2 1 i 4 . 1 "
2U4.1S
2114. K
2 1 1 '•> .
2 . 1 o .
21J7.
2113.
2119.
2120.
2121.
212?.
212?.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
DATA
DATA SUMSN,
* CGUKE,
*
AS0AS, ASRCH/7*0.0/
187
ARU, AROI, AROS, ARGXT, ASNET,
II\L)T, KCLD, PXG'^SN, SEVAPT, RADrtE, CDRME, LIQwl,
GRAIN, NEGMLT, SNEGM, NEGMM, LIQS, LIQrt, XICE,
,^,,.,.. . ,SG^, SPX, WtJAL, SEVAP/21*0.0/
DATA PA,l_rt,PX,l«ELT,CGNV,KAINM,CGNOS /7*0./
DATA SNauT/384*O.C/,CLOF/-1.0/,ALBEOO/0.a5/
DATA SUMSND,PXSNU,MELRAD,KAJMEO,CDRMEO,CONMED,CRAINL),SGMD,
I Sr,EGMU,SfcvAPD/10*0.0/
DATA IEND/0/, LA^TRD/0/, PRO/0.0/
ZEROING OF VARIABLES
LZS1 = LZS
UZSl = UZS
NUMI = 0
DPST = 0.0
PACK.1 = PACK
LIOW1 = LIQW
PRR = Pf\
DO 184 1=1,5
APERCB(I) = C.O
PA=1.0-A
188
;i.C/96.0)
LKK4= 1.0 - KK4
IF ((14*0./TIMFAC).LE.100. ) GO TO 187
LIRC4 = LIRC4/3.0
LKK4 = LKKW3.C
SPC= 102J.
RESS = O.C
(SS)/(N.N*L)
LNRAT*LNRAT)
= (TIMFAC/60.J*03FV
REDUCE INFILTRATION IF ICE EXISTS
AT THE BOTTOM OF THE PACK -
ATTEMPT TO CORRECT FOR FROZEN LAND
IF (SNOw .EU. NO)
0
-------
2125.1
2126.
2127.
2127.1
2128.
2129.
2130.
2131.
2132.
2133.
213
-------
2192.
2193.
2194.
2196.
2197.
2193.
2199.
2200.
2201.
2202.
2203.
2204.
2205.
2206.
2207.
2208.
2209.
2210.
2211.
2212.
2213.
2214.
2215.
2216.
2217.
2213.
2219.
2220.
2221 .
2222.
2223.
2224.
2225.
2226.
2227.
222B.
2229.
2230.
2231.
2232.
2233.
2234.
2233.
2236.
2237.
2233.
2230.
2240.
2241.
2242.
2243.
2244.
2245.
2246.
2247.
2248.
£24o.
2251.
2251.1
2252.
2253.
2254.
2255.
2256.
2257.
2258.
2259.
2260.
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
SEVAP = 0.0
SFLAG = 0
PRHR = 0.0
IKEND = oO./iTIMFAC)
IPT = t!HRR-i)*IKENO
PX = 0.0
00 502 II = 1,IKEND
502 PRHR = PKHR * RAINCIPT+1I)
SUM PRECIP FOR THE HOUR
CORRECT TEMP FOR ELEVATION OIFF
USING LAPSE RATE OF 3.5 DURING RAIN
PERIODS, AND AN HOURLY VARIATION IN
LAPSE RATE ILAPSE(I)) FOR DRY PERIOD
LAPS = LAPSE(IhRR)
IF (PRHR .GT. C.Ob) LAPS * 3.5
TX = TEMPX(IhRR) - LAPS*ELOIF
REDUCE REG EVAP FUR SNOwMELT
CONDITIONS bASfcD ON PETMIN ANiJ
PETMAX VALUbi
IF (PACK.LE.IPACK) GO TO 504
E1E = 0.0
PACKRA - 1.0
GO TO 505
504 PACKRA = PACK/IPACK
E1E = 1.0 - PACKRA
505 EPXX = (1.0-F)*E1E * F
IF (TX.GE.PETMAX) GO TO 512
IF (EPXX .GT. C.5) EPXX = 0.5
REDUCE EVAP BY 50* IF TX IS BETWEEN
PETMIN AND PETMAX
IF (TX.LT.PETMIN) EPXX = 0.0
512 EPHh = Er>hR*EPXX
EPIN = EPIiM*EPXX
IENU = 0
SNBAL = 0.0
IF {(TX .GT. TSNOfc) .AND. (PRHR . GT . .02JJ DEWX = TX
SET DEhPT TEMP tQUAL TO AIR TEMP WHEN RAINING
ON SNOW TG INCREASE SNUWMELT
IF (DEV.X .GT. TX> OEWX = TX
SMTEMP = TSNCrt * ( TX-DEWX)*(0.12 + 0.008*TX)
RAIN/SNUn TEMP. DIVISION - SEE ANDERSON, WRR , VOL. 4, NO. i,
FEB. 1968, P. 27, EG. 23
IF (SNTEMP .GT. TiNOwl) SNTEMP = TSNOW1
IF (TX.LT. SNTEKP) GO TO t>2i
IF (PACK) 997, W7, 525
521 SFLAG = 1
IF ( (PACK.LE.C .0) .AND. (PP.HK .LE. 0. 0) ) GO TO 997
PRECIP ARE ZEKO
SKIP SM«MELT IF BOTH PACK
FUP THE HOUR
525 IEND = 1
SNO.JMELT CALCULATICNS AKE DUNE IF IT IS SNOWING, OR,
IF A SNOwPACK EXISTS
PX = PRHR
208
-------
2261.
2262.
226*.
2264.
2265.
2266.
2267.
2208.
2260.
2270.
2271.
2272.
227}.
22T*.
2275.
2276.
2277.
2273.
227Q.
2233.
22dl.
2232.
22d3.
2285.
2236.
2287.
2268.
2289.
2290.
2291.
2292.
2293.
22V4.
2295.
2296.
2297.
2298.
2299.
2300.
2301 .
2302.
2303.
2304.
2305.
2306.
2307.
2308.
23CM.9
230r>.
2309.1
2310.
2311.
2312.
2313.
2314.
2315.
2316.
2317.
2318.
2319.
2327.
2321.
2322.
2323.
2324.
2325.
232-5.
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
r
C
C
C
C
c
c
548
550
555
570
580
IF (PX.LE.0.0) GU TU
KCLD IS INDEX TO CLOUD COVEK
KCLD = 35.
IF (SFLAG.LE.OJ GO TC 555
SNOW IS FALLING
PX = PX*SCF
APR = APR + ISCF-l.Q)*PRHR
PRHR = HRhR*SCF
SUMSN = SuMSN -t PX
DNS = IUnS
IF (TX .GT. 0.0) UNS = DNS +• ((TX/100.J**2J
SNP,. QtNilTY rtllh TEMP. - APPROX TU FIG. 4, PLATE B-l
SNOW HYUKuUOuY itt ALSU ANU£RSUN, Tft 36, P. 21
PACK = PACK * FX
IF (PACK.LE.IPACK) GO TO 548
IPACK = PACK
IF (!PACK .GT. MPACK) IPACK
DEPTH = JtPTH * (PX/ONS)
IF (DEPTH .GT. C.O) SDEN
INOT = IiNCT - 1000*PX
IF (INDT .LT. 0.0) INDT = 0.0
PX = 0.0
GO TO 5b3
KCLD = KCLO - 1.
IF IKCLO .LT. C.O) KCLD = 0.0
PACKPA = PACK/IPACK
IF (PACK .uT. IPACK) PACKRA
IF (PACK.GE.O.CCS) GO TO 500
MPACK
PACK/DEPTH
1.0
IPACK IS AH INDEX TO AREAL COVERAGE OF THE SNOWPACK
FOP INITIAL STCSMi IPACK = .1*MPACK SO THAT COMPLETE
AREAL COVERAGE RESULTS. IF EXISTING PACK > .1 *MPACK THEN
IPACK IS SET EQUAL TO MPACK NHICH IS THE dATER EUUI. FOR
COMPLETE AREAL COVERAGE PACKRA IS THE FRACTION AREAL COVERAGE
AT ANY TIME.
IPACK = 0.1*MPACN
XICE = 0.0
XLNMLT = 0.0
NEGMLT = C.O
PX = PX *• PACK + L IQW
PACK = 0.0
LIQW = 0.0
iFHO SMbwMELT CUTPUT ARRAY
DO 570 1=1,24
DO 570 M,t=l, 16
SNOuTJI,MM) = 0.0
GO TO 997
PXONSN = PXONSN * PX
IF (DEPTH .GT. 0.0) SDEN = PACK/DEPTH
IF (INDT .LT. 8Cu.) INDT = I,^DT + 1.
INDT IS INDEX TO ALBEDO
MELT = O.C
IF (SDEN .LT. G.5i>J DEPTH = DEPTH*( 1. 0 - 0.00002* ( DEPTH* ( .55-SDtiMj ))
EMPIRICAL RELATIONSHIP FOR S.slOW COMPACTION
IF (DEPTH .GT. 0.0) SDEN = PACK/DEPTH
WIN = rtlNOXt IHRR)
209
-------
327.
232°.
2330.
2331.
23^2 .
2334.
2335.
2336.
2337.
2333.
2339.
2340.
2341.
2342.
2343.
2344.
2345.
2346.
2347.
2348.
2349.
2350.
2351.
2352.
2353.
2354.
2355.
2356.
2357.
2353.
2359.
2363.
2361.
2362.
2363.
2364.
23o5.
2366.
2367.
2368.
2369.
2370.
2371.
2372.
2373.
2374.
2375.
2376.
2377.
2373.
2379.
2330.
23 -•> 1 .
2382 .
23H3.
2304.
2 3 a 5 .
2386.
233 r.
23R3.
2389.
23V3.
2391 .
2392.
2393.
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
6.1Cd) GC TU 610
- 6.1J8)
HOURLY XINO VALUE
LPEF = ITX + lCu.)/5
LREF = IFIX(LREF)
SVPP = SVP ILRErl
ITX = If- 1 AlTX)
SATVAP = SVPP « (MOOJ ITX,5)/:>)*40
ALBEDO = 0.8 - 0. 1 * ( SCRT 1 I NDf/24. ) )
IF (ALBEDO .LT. 0.45) ALBEDO = 0.45
GC T3 650
640 ALBFDO = C.£5 - 0. 07* ( iURT ( INDT/24. 0) )
IF (ALBEDO .LT. 0.6) ALBEDO = 0.6
SHORT WAVE RADIATION-RA - POSITIVE INCOMING
650 RA = RACl IHRR)*(1.0 - ALU tOU ) *( 1 .0-F )
LCNG «AVb RADIATION - LH - POSITIVE INCOMING
OEGHR = TX - 32. J
IF (DEGHR.LE.O.Gj GO TO 660
LW = F* J.26*C£GHR -i- (1.0 - F)*(0.2*DEGHR - 6.<>)
GO TO 665
660 LW = F*0.2*GEGh8 * (1.0 - F ) * ( 0 . 1 7*UE GHR - 6.0)
LW IS A LINEAR APPROX. TO CURVES IN
FIG. 6, PL 5-3, IN SNOW HYDROLOGY. £> . 6
IS AVE BACK RADIATION LOST FROM THE SNOrtPACK
r-i OP£M AREAS, IN LANGLEYS/HP.
665 IF ILW .LT. C.C i
PMNM = 0.0
CLOJLl COVER CORRECTION
L«*CLJF
RAIN MELT
210
-------
2395.
2396.
2397.
2393.
2399.
2400.
2401.
2432.
2403.
2404.
2405.
2406.
2437.
2403.
2409.
2410.
24H.
2412.
2413.
2414.
2415.
2416.
2416.1
2416.2
2416.3
2416.4
2416.5
2416.6
2417.
2418.
2419.
2420.
2421.
2422.
2428.
2429.
2430.
2431.
2432.
2433.
2434.
2435.
2436.
2437.
2438.
2439.
2440.
2441 .
2442.
2443.
2444.
2445.
2446.
2447.
244S.
2449.
2453.
2451.
2452.
2453.
2454.
2455.
2456.
2457.
2453.
2459.
2460.
2461.
C
C
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
RAINMELT IS OPERATIVE If- IT IS
RAINING AND TEMP IS ABOVE 32 F
IF KSFLAG .LT. 1).AND.(TX .GT. 32.)) RAINM = DEGHR*PX/144.
TOTAL .MELT
RM = (LK + RAJ/203.2
203.2 LANGLEYS REQUIRED TO PRODUCE I INCH
RUNOFF FROM SNOW AT 32 DEGREES F
IF (PACK.GE.IPACK) GO TJ 680
RM = RM*PACKftA
CONV = CCNV*PACKRA
CONOS = CGNDS*PACKRA
RAINM = RAINM*FAC*RA
IF (IHRk.NE.6) uU 70 680
XLMEM = O.L)1*<32.0 - TX)
IF (XLNErt .GT. XLNMLT) XLNMLT = XLNEM
680 RADME = RADMt * RM
CDRME = CDRME -» CUNOS
CONME = CCNME » CONV
GRAIN = GRAIN « RAINM
MELT = RM + CONV * CCNDS + RAINM
TP = 32.0 -
-------
2462.
2463.
2464.
2465.
246&.
2467.
2468.
24&Q.
2470.
2471.
2472.
2473.
2474.
2475.
2476.
2477.
2478.
2479.
2^30.
2481.
2482.
2483.
2484.
2485.
24B6.
2487.
2436.
2489.
2490.
2491.
2492.
2493.
2494.
2495.
2496.
2497.
249d.
2499.
2500.
2501.
2502.
2503.
2504.
2505.
2506.
2507.
2508.
2509.
2510.
2511 .
2512.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
2516.
2517.
2513.
2519.
2520.
2521.
2522.
2523.
2524.
2525.
2526.
2527.
2528.
25Z9.
740 IF <
-------
2530.
2531.
2532.
2533.
2534.
2535.
2536.
2537.
2538.
2539.
2540.
2541 .
2542.
2.543.
2544.
2545.
2546.
2547.
2543.
2549.
2550.
2551.
2552.
2553.
2554.
2555.
2556.
2557.
2553.
2559.
2560.
2561 .
2562.
2563.
2564.
2565.
2566.
2567.
2568.
2569.
2570.
2571.
2572.
2573.
2574.
2575.
257;..
2577.
2573.
2579.
2580.
2581.
2582.
258J.
2584.
2585.
2586.
2537.
2509.
2539.
2590.
2591.
2592.
25°3 .
259V.
2595.
25^6.
2597.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SPX = SPX * FX
9S7 SUHSNH = SUMSN
PXSNH = PXQNSN
SPXH = SPX
RAOMEH = P.AOME
COR'IEH = CORME
CQNMEH = CJNME
CRMNH = CRAIN
SGMH = SGM
SNEGMH = SNEGM
SEVAPH = SEVAPT
IF (PRINT. Nt. CAYS)
SUMSNO = SUMSN C +
PXSNO = PXSI\0 +
MELPftU = ftLRAC *
RAOMFO = RAOMEC +
CORNED = CuRMEC *
CONMFD = CONMEC +
CRAIND = CKAINC +
SGMD = SGrtC *
SNEGMO = SNEGMC *
SEVAPO = SEVAPO +
9S6 SUMSNM = SUMSNC +
PXSNM = PXSNM +
MELPAM = ^ELRAM +
RADMEM = RADMEM +
CORMEM = GORMEN +
CONMEM = CONMfcK +
CPAIMM = CRAINC +
SGMM = SGMM +
SNEGMM = SNEortl* *
SEVAPM = SEVAPM *
SUMSMY = SJMSNY +
PXSNY = PXSKY +
NELR4Y = fELRAY +
kADMFY = AAJMEY +
CORNS Y = COR.-1EY *
COf.MEY - COM'EY +
CRATiY = CKAIKY *
SGMY = SGMY +
SNFGMY = SNEGMY +
SEVAPY = SEVAPY +
SUMSN = 0.0
PXONSN = C.O
SPX = 0.0
kADME = 0.0
CDPME = 0.0
COMME = 0.0
C R A I N = 0.0
SGM = 0.0
SNEGM. = 0.0
SEVAPT = 0.0
HOUR VALUE ASSIGNM
DAILY SUMS
GO TO 996
SUMSN
FXCNSN
SPX
RAOME
CDRPE
COMME
CKAIN
SG^
SNEGM
SEVAPT
MONTHLY SUMS
SUMSN
PXONSN
SPX
RAOMS
CORME
CONME
CHAIN
SGM
SNEGM
SEVAPT
YtARLY SUMS
SUMSN
PXLJNSN
iPX
RAOME
CDRME
CGNME
CRAIN
SGM
SNEGM
SEVAPT
ZEKO HOURLY VALUES
SNOWMELT OUTPUT
SNOUT UHKk.l) = PACK
213
-------
2598.
2599.
2600.
2601.
2602.
2603.
2604.
2605.
2606.
2607.
2608.
2609.
2610.
2611.
2612.
2613.
2614.
2615.
2616.
2617.
2613.
2619.
2620.
2621.
,2622.
i2623.
2624.
'2625.
2626.
2627.
2628.
2628.1
2629.
2630.
2631.
2632.
2633.
2634.
2635.
26 iS.
'637.
2638.
2633.8
2639.
2639.8
2640.
2641.
2642.
2643.
2o45.
2t>46.
2647.
2648.
2649.
2650.
2651.
2652.
2653.
2654.
2655.
2656.
2657.
2658.
2659.
2660.
2661.
2662.
SNOUTUHRR,2) <
SNOUTUhRR.3) '
SNOUTUHkR,4) =
SNOUTUHRR,5) =
SNQUT(IhKR,6) ••
SNOUTUHRR,7) =
SNOJT(lHKR,8) -
SNOUT(IHhR,9) =
SNOUTUHRR,1C)
SNOUT{IHRR,11)
SNOUT UHhR,l<>)
SNOUT!IriRRt13)
SNOUTUHRR,14)
SNOUTUHhR.15)
SNOUT!IHRR,16)
IF
IF
(OUTPUT
(OUTPJT
.EU
DEPTH
SDEN
ALBEDO
CLDF
NEGMLT
LIOW
TX
RA
= Lri
= PX
= MELT
= CONV
= RAINM
= CCNDS
= XICE
ENGL)
8UTH
GO
AND
TO 845
INPUT
.EU. ENGL) GO TO 845
C
c
C
CONVERSION TO METRIC SNCk OUTPJT
842
SNOUTUhRR.l )
SNOUTUHRR,21
SNOUT UHRK ,6)
SNOUTUHRR,7 )
SNOUTUHRR,8) = 0.5
DO 842 ISNOOT=I1,16
SNuUTtIHRR,ISNOUT)
CONTINUE
PACK*MMPIN
CEPTH*MMPIU
N£GMLT*MMPIN
LICW*MMPIN
SNOUT(IHRR,ISNOUT>*MMPIN
845
IF
IF
IF
IF
(HYCAL.EU.PROU)
2)
1,24
GO TO 99d
GO TO 998
881
680
880 1
WPITt
00 881
SNOUTU.MNM) =
CONTINUE
CONTINUE
IF (NUTR.EO.YtS ) GO TO 998
WRITE (o,S94)
WRITE (6,995)
I ,»SNOJT( I, MM) ,,1M=1, 16)
0.0
C
C
990 FORMAT CO'.'rtOJR PACK OEPTH SDEN ALBEDO CLDF NEGMELT
1 LIQw TX RA LW PX MELT CONV RAINM
2CONDS ICE')
991 FORMAT (• •,12,2X,2(F8.2,2X),3(F6 .3.IX),2(F8.3,IX ),
1 F7.2,1X,2(F4.0,1X),5(F8.3,1X) ,F6.1)
992 FORMAT <•0',25X,'SNOwMELT OUTPJT FOR*,4X,A8,2X,I 2J
994 FORMAT I•0',5X,'DATE•,4X,•TI1£•,4X,«FLOw(CFS-CKS)•,6X,
X 'SEDIMENT UBS-KG-KG/MI N-GM/L ) • ,23X,
X 'PESTICIDE (GM-GM/MIN-PPM)')
995 FORMAT (' •,a7X ,'KATER1,24X,«SEUIMtNT•)
CORRECT WATER BALANCE FOR SNOwMELT
PACK AND SNOW EVAP
PRR IS INCOMING PRECIP
PX IS MOISTURE TO THE LAND SURFACE
SEVAP IS SNOW EVAP - NEGATIVE.
998 IF UEND.EU.l) SNtfAL = PRHR+SE VAP-PX-PACK*P ACK1-LIUW
IF < (SNtJAL.LT.O.OOCl). AND. ( S.MBAL.GT .-0.0001) I) SNOAL = 0.0
214
-------
2663.
2664.
2665.
2666.
26C7.
2tb8.
2609.
2670.
2671.
2672.
2673.
2674.
2675.
2676.
2677.
2678.
2679.
2630.
2681.
26(32.
2633.
2fcB4.
2685.
2686.
2687.
2633.
2639.
2690.
2691.
2692.
2693.
2694-.
2695.
2696.
2697.
2693.
2699.
2700.
2701.
2702.
2703.
2704.
2705.
2706.
2707.
2703.
2709.
2710.
2711.
2712.
2713.
2714.
2/15.
2716.
2717.
2718.
2719.
2720.
2721.
2722.
2723.
2724.
2725.
2726.
2727.
272d.
2729.
2730.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
TSNBAL = TSNBAL * SN6AL
PACK1 = PACK
L1UW1 = LIOW
********************=»:*************
bND SNOWMELT
*********************************
PX IS TOTAL MOISTURE INPUT
TU
THE LAND SURFACE FROM PKECIP
AND SNOnMELT DURING THE HOUR
999 IF (IEND .GT. C) PR=PX*TIMF AC/60.
IENO>O INDICATES SNOWMELT
OCCURRED DURING THE HOUR
* * * INTERCEPTION FUNC . * * *
EPXM - MAX. INTERCEPTION STORAGE
SCEP - EXISTING INTER. STORAGE
EPX - AVAILAbLc INTtk. STORAGE
RUI - IMPERVIOUS ftcNOFF CURING INTERVAL
IF (COVEk.GT.C.Ob^l ) GO TO 204
SNET = SNET + SCEP
SCEP = 0.0
F.PX = O.C
GO TO 203
204 EPX = EPXM*(CCVER/COVRMX)-SCEP
IF (EPX.LT.(C.OOOI) ) EPX = 0.0
IF (PK.LT.EP> J GO TO 205
203 P3 = PR-EPX
kj = P3*A
RUI = KU
SCF.P = SCEP+EPX
GO TO 2Co
205 SC6P = SCEP+PR
P3 = O.C
RU = 0.0
RUI = 0.0
* * * INTERCEPTION EVAP * * *
206 IF ( (NUMI.NE.O.OR. ( IMIN.NE.O) 1 GO TO 221
IF (SCEP.LE.O.OJ GO TO 221
IF (SCEP.GE.cP IN) GO TO 210
EPIN = EPIN - SCEP
SNET = SNET + SCEP
SCEP = 0.0
GO TO 221
210 SCEP = SCEP-EPIN
SNET = SNET+EPIN
EPIN = 0.0
*** INFILTRATICN FUNC. ***
P4 IS TOTAL MOISTURE IN STORAGE BLOCK
215
-------
2731.
27^2.
2733.
2734.
2735.
2736.
2737.
2738.
2739.
2740.
2741.
2742.
2743.
2744.
2745.
2746.
2747.
2743.
2749.
2750.
2751.
2752.
'753.
2754.
27^5.
2 756.
2757.
2758.
2759.
2760.
2761.
2762.
2763.
2764.
2765.
2766.
2767.
276B.
2769.
2770.
2771.
2772.
2773.
2774.
2773.
2776.
2777.
2778.
2779.
2780.
2781.
2782.
2733.
2784.
2785.
2766.
2707.
2783.
2789.
2751.
2792.
2793.
2794.
2795.
2796.
2797.
2798.
Z799.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SHRD(I) = SURFACE DETENTION AND INTERFLOW FROM BLOCK I
RXX(I) = SURFACE DETENTION FRUM BLOCK I
RGXX(I) = INTERFLC* COMPONENT FROM BLOCK I
RGX(I) = VOLUME TC INTER. DETEU STUR. FROM BLOCK I
BEGINNING CF BLOCK LCOP
221 00 100 1=1,5
P4 = P3 + RESEIIJ
RESBHI ) = RESB(I)
IF ( <10.*P4) .i.E.1 U2*I1-1)*D4F) J GO TO 10
SHR0
IF (( 10.*P4).LE.< ( (2*1 J-1)*04RA )) GO TO 25
RXX(I) = GC TO 7
IF (UZRA( U.GT.^.Oi GC TO 8
UZI(!) = 2.0*A£S«UZRA(I I/2.0J-1.0) *1.0
PRE(I) = (U£RA( !)/^.0)*«1.0/(1.0+UZI (I) ))**U£I ( !))
GO TO 9
7 PRE(I) = 1.0
GO TO 9
8 JZIIIJ = t2.C*AbS(UZRA(I)-2.0J>+1.0
PREU1 = 1.0-t(1.0/(1.0*UZni)) )**UZI(I) )
9 RXB(I) = RXXd J* PREdJ
RGX(I) = RG*X*PRE< I)
RGXX = 0.0
RUZB(I) = SHROjn-RGX(I)-RXB(I>
UZSdil) = UZ5B ( Ii*RUZeiI)
RI Bl IJ = P4 - RXBt I)
* * * UPPER ZONE EVAP * * *
REPIN - ACCOM DAILY EVAP POT. FOR L.Z. AND GROWATERt I.E
PORTION NOT SATISFIED FROM U. i.
IF ( ( NUrtl.NE .0) .OR.lIMIN.NE.On GO TO 290
IF (EPIN.LE.IO.OJJ GO TO 290
IF(UZRA(I).LE.2.0J GO TU 230
IF (JZS3U) .LE.EPIN) GO TO 270
UZSb(I) = LZSd(I)-EPlN
RUZb( I ) = PLZBd J-EPIN
SNET = SNEl*PA*EPr'M*0.20
GO TJ 290
230 EFFECT = 0.3*U£RA(IJ
IF (EFFECT. LT. (O.Oc)J EFFECT = 0.02
IF UZSem .Lt.EPIN*EFFECT) GO TO ?7n
216
-------
2800.
2801.
2802.
2803.
2305.
2806.
280T.
2803.
2810.
2811.
2312.
2813.
2814.
2815.
2816.
281T.
281?.
2819.
2620.
2821.
2S?2.
2823.
2624.
2825.
2326.
2827.
2623.
2829.
2830.
2831.
2832.
2633.
2834-.
2835.
2836.
2837.
2833.
2839.
284-0.
2641.
2342.
2843.
2844-.
28*5.
2846.
2847.
2843.
2849.
2850.
2651.
2852.
2853.
2354.
2855.
285b.
2857.
2858.
2859.
2360.
2861.
2662.
2863.
2£6'».
2865.
2866.
2867.
236B.
2ei69.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
r
C
C
C
C
C
C
C
C
C
C
C
C
C
.JZSo(I) = LZSbtl 1-(EPIN*EFFELU
RUZtslI) = KUZtJU )-(EPIN*EFFECT)
EDIFF = <1.C-EFFECT)*EPIN
PEPIN = KEFIN + EDIFF*0.20
SflET = SNE1 * IP A*EPIN*fcFFECT 1*0. 20
GO TL) 290
270 FOIFF = EPIN - UZSBUJ
KEP1N = REFIN * ECIFF*0.20
SNET = SNET + PA*UZSB( I) *0.20
UZSBUJ « C.O
PUZO(I) = C.O
* * * * INTcfcFLU* FUNCTION * * *
SRGXU) - ir4T£KFLU»« DETENTION STORAGE FROM BLOCK I
INTFIIJ - INTcRFLUV, LEAVING STORAGE FROM SLOCK I
SRGXF - TOTAL INTEkFLCw STORAGE
RGXT > TCTAL iNTtRFLC" LEAVING STORAGE 0-JRINb INTE=VAL
290 IMTF(I) » LIRC4*SRGXII)
SSGXm = SRGX(I) + (RiiXlI)*PAJ-INTF(l)
RU = *U + INTFII1*0.20
SRGXT = SRGXT * (RGX( I )*PA-I NTF (I ) 1 *0.20
KGXT = RGXT + INTF(I)*0.20
*** OVERLAND FLCw ROUTING ***
RXBU) = VOLUME TO OVERLAND SURFACE DETENTION FROM BLOCK I
ROS3U) = VOLUME OF OVERLAND FLQrf TO STREAM FROM BLOCK I
RESB(I) = VOLUKE CF OVERLAND 0 REMAINING ON SURFACE
FKOP BLOCK I
FI = Rxbm-(REsem)
F3 = (RESbdiM RXBl I)
IF (RXB(I).LE.(RESB(I J)l GQ TO 34
DE = DEC*1(F1J**0.6)
GO TO 35
34 OE = (F3)/2.0
35 IF (F3.GT.(2.G + CEn DE = F3/2.0
IF (F3.LE.O.JC5J GO TC 40
OUMV = t 1.0+0.o»(F3/ (2.0*DE))**3. J**1.67
ROSd(I) = (TIMFAC/60.)*SRC* ( (F3/2.) •"* 1 .67 »*OUMV
IF (FOStill) .GT. 0.95*RXBtI)J RUSB.CE IN UPPtR AND LOWER ZONE RATIOS
PERCBU) - UPPE.X ZCNE DEPLETION FROM EACH BLOCK
PERC - TGTAL O.i. DEPLETION
INFLT - TOTAL INFILTRATION
ROS - TOTAL CVCRLAND FLOU TO THE STREAM FROM ALL BLOCKS
IF ((NUMI .Ew. 0).AND.(IMIN .EU. 0)) GO TO 44
PERCb(I) = C.O
GO TO t7
44 OEEPHIJ* < (uZiB( I )/UZSNl-t LZS/LZSNH
IF (OEEPL(I).LE.O.Cl) GO TO 47
PERCB( I) = C.1 + INFIL + JZSN*(OEEPHI )**3)
217
-------
2870.
2871.
2872.
2873.
2874.
2875.
2376.
2877.
2878.
287'}.
2380.
>S-31 .
2882.
2893.
2384.
2885.
28d6.
2887.
2883.
2839.
2C9J.
2891 .
2892.
2893.
2894.
2895.
2896.
2697.
2899.
2899.
2900.
2901.
2902.
29J3.
2904.
2905.
2906.
2907.
2903.
2909.
2910.
2911.
2912.
2913.
2914.
2915.
2916.
2917.
2913.
2919.
2920.
2921.
2922.
2923.
'924.
2925.
2926.
2927.
2923.
2929.
2930.
2931.
2932.
2933.
2
-------
2933.
2939.
29'O.
29V,..
2942.
29*3.
2944.
2945.
2946.
2947.
2948.
2949.
2950.
2951.
2954.
2955.
2<>56.
2957.
2^53.
2959.
2960.
2961.
2962.
2963.
2964.
2965.
2966.
2967.
296*3.
2963.01
2963.02
2963. 03
2963.04
2968. C5
2963. 06
2963.07
2S63.08
2963.085
2963. C86
2963.09
2968.091
2968.092
2968. 1
2968. 11
2963. 12
2963. 13
2968. 14
2969.
2969.01
2969.02
2969.03
2969.04
2969.05
2969.06
2969.07
296'i.08
2969. 09
2969. 1
2969.11
2969. 12
2969. 13
296-1.14
2969. 15
2-J69. 16
2965. 17
Z969. 13
2969. 19
£969. 2
2969.21
LfJS= 5Gw*K24EL*KEPIN*PA
SGn=Sl>« - LQS
GWS=GV.i - LOS
StJET= iNET «• LUS
P£P!N= RtPIN - LOS
IF (GWS.LT. ( C.OJ J GwS=0.0
C
C * * * LO*ER ZON£ EVAP * * *
C
C AETR - EVAP LOST FROM L.L.
C
C
IF (REPIN.LT.CC.OOOl)) GO TO 351
LNRAT = LZS/LZSN
IF (XKJ.LT. 0.995) GC TO 300
KF=50.0
GO TO 320
300 Kr=0.2:>/U.C-XK3)
320 IF CALL EROOOG< RROS .TMBLSZ )
^RITf(DSNRJS) (RRCS(I),I=1,TM6LSZ)
DO 920 I=1,TCBLSZ
920 RROS(I) = j.C
NPROS = J
C
922 NRROS = NKRCS+1
924 P.ROS(NRKOS) = RQS
LASTPD - LOOP
219
-------
2969.22
2969.23
2969.24
2969.25
2969.26
2969.27
2969.28
2969.29
2969.3
2969.31
2969. 32
2969.33
2969.34
2969.35
2970.
2971.
2972.
2973.
2974.
2975.
2?76.
2977.
29T8.
2<979.
2980.
2981.
2982.
2983.
2534.
29^5.
2986.
2937.
298B.
2939.
2993.
2991.
2992.
2993.
2994.
2995.
2996,
2997.
2993.
2999.
30 JO.
3001 .
3002.
3003.
3004.
3005.
3006.
3007.
3008.
3009.
301 J.
3010.1
3010. 11
3010. 12
3010.2
3C10.3
3010. 4
3010.5
3010.6
2010.7
3C10.8
3010.9
3011 .
3012.
IF (NPRUS .LT. TMdLSZ) GO TO 942
IF (OUTPUT .Eg. ENGLJ GO TO 932
00 930 I=l,T*dLSZ
930 PFOSm = RBOS< I)*MMPIN
932 IF (IDFb'JG .EC. UNJ WRITE (6,9997) LOOP
IF UGEbUG .EJ. UN) CALL EROBUG< RROS , TMBLSZ 1
WRITE (OSNROS) ( RRuS ( I J , 1 = 1 , T ^BLSZ )
OU 940 I=l,TMbLSZ
940 RKOSU) = O.C
NRROS = 0
C
942 NRROS = NRROS+1
C
C
C
C WBAL - WATER dALANCE IN THE INTERVAL
C TWBAL - ACCUMULATED WATER BALANCE
C
C
4011 hBAL = (LZS-LZ J H-U ZS-UZS 1 + RESS-RE SS 1 J *PA+( SNET-SNETl*SGK-SGWl+
X SCE^-SC£P1 +SRCH+SRGXT-SRGXTH-RU-PR)
If ((WBAL .Lt. O.OC01J.ANU. UBAL .GE. -0.0001)) WBAL = 0.0
TU3AL = Tf.clAL-«-fc(3AL
C
DPS = F1A*PA
OPST = DPST * DPS
C
C
C RESETTING VARIAbLES
C
LZS1=LZS
UZS1=UZS
RESS1=RESS
SCEP1=SCEP
SRGXT1=SRGXT
SGWl=SGrt
SNETl=Sn6T
C
AStiAS = AS6AS + SoAS
ASPCH = ASRCH + SRCH
APR = APR + PRR
ARU = AKU * RU
ARUI = ARUI + RUI
APOS = ARCS + ROS
ARGXT = ArtGXT + RGXT
IF < (NUMI.NE.O) .OR.UMIN.Nc.OI ) GO TO 148
AEPIN = AEPIN + EPIN1
ASfJET = ASNET + SNETI
148 00 130 1=1,5
APEPC8U) = /iPtKCB(I) * PERCBH)
AROSStI) = AHUSBlI.) * ROSi3(I)
AINTF(I) - AINiTF(I) + INTP(I)
APOSHU) = AftuSITU) * RJSINT(I)
150 CONTINUE
C
IF (IMIN .NE. CJ GO TO 155
C CALCULATION OF SUIL MOISTURE
C
DO 51 1 = 1 ,5
SMOISTf IHR, I ) = 45302. 4*AREA*RESB< I )/M
UMOtSTdHR, I ) = ( (UZS8( I )/UZSN)*0.4Q)/24.0
IF (JMOIST( IhR, IJ .GT. 0.35) UMOI ST( IHR, I) =0.35
51 CONTINUE
LilOISTUMK) * C.1404*(LZS/LZSN)**2.66
IF (LMOIbT(IHR) .oT. 0.35) LMOISTJ IHR)= 0. 35
C
155 CONTINUE
C
220
-------
3013.
3014.
3015.
3016.
3017.
3018.
3019.
3C20.
3021 .
3C22.
3023.
302^.
3025.
3026.
3027.
3028.
3029.
3030.
3031.
3C32.
3033.
3034.
3035.
3036.
3037.
303S.
3039.
3C40.
3041.
3042.
3043.
3044.
30--5.
3C46 .
3047.
3043.
3049.
3050.
3C51,
3053.
3053.5
30 '54.
3055.
3056.
3057.
305ri.
3059.
3CV>.2
3C5T.3
jiC'J^ .4
30.Vi .45
1059.46
1059.5
505'?. 6
3C5v. 7
305'). e
3060.
3061.
3062.
3C6i.
3063.5
306V.
3065.
3066.
3067.
3063.
3069.
3C70.
IF (PRNTKE .EU. 0) GO TO 190
C
C CUMULATIVE RECORDS
C
PRTOM = PkTCM + APR
EPTOM = EPTCM + AEPIN
RUTOM = KUTCM + ARU
ROSTOM = RGSTCf + AROS
RITGM = kirOrt * ARUI
RINTOM = RIMCP + ARC-XT
NEPTOM = IMEPTOP +• ASNET
8ASTCM = oASTOM + ASiJAS
RCHTOM = RCHTCf + ASRCH
C
DO 157 1=1,5
ROoTO.«im =KCBTCM(I) * AROSB(I)
ROBTGT(I) = RUBTOT(I) + AROS31I)
lNf-TOM(IJ = IhFTCM(I) * AINTFtl)
INPTUT(I) = INFTOT(I) «• AINTFII)
POITGM(I) = RUITCMU) * AKOS IT ( I J
157 ROITGT(I) = ROITCT(I) +AROSITU)
C
PRTOT = PRTCT + APR
EPTOT = EPTCT + AEPIN
R'JTOT = RlTCf + ARU
ROSTOT = ROSTQT + AROS
PITOT = KITOT + ARU
RINTOT =RINTGT + ARGXT
NEPTOT = i^EPTOI * ASKET
BASTOT = BASTOT + AS6AS
RCHTOT = RCHTCT + ASRCH
C
IF (PRNTKE .Ew. 2) GO TO 171
IF (HYCAL.Eg.PROD) GG TO 160
C
C CUTPUT FOR HSP LANDS CALIBRATION RUN
C
C
RU = |P.U*A^EA*4ji>oC. )/(TIMFAC*720.)
IF (RU.LT.riYMIN .A NO. MJTR.EJ.YESi PRU = RU
IF (RU .LT. hYI' INJ GO TO 1 IQ
QMETRC=RJ*.0283
IF (NUTK .EC. YESi GO TO 9oO
WRITf (0,379) NKAM(MCNTH) ,OAY ,IHR,IMIN
WRITE U.Jfd) RO.gMETRC
GO Tn 170
C
C
C IsRITE NJTRIENT CALIBRATION OUTPJT
C
960 IF IPRU .LE. hYMlisJ GC Tu 97j
GO TO 930
S70 WRITE (0,4001)
IF (OjTPLT.Ed.ENGL .OR. OUTPUT. EO. BOTH ) WRITE (6,4002)
IF (OUTPUT .tQ. METKi WRITE (o,4003)
MUTE (e.,4004)
980 IF (OUTPUT. Ed .6NGL . CP. . OUTPUT. EQ .BOTH)
1 kklTE (o,',9Jl) NNAM(MONTH), DAY, I HR, IMIN, RU
IF (OUTPUT .E,. MtTR)
1 WMTE (o,i901) MiJAM( MONTH) , DAY, IHR, IMIN, QMETRC
PRU = RU
GO TO 17u
C
160 IF (SNOw. Ed.lNO .OK. PRINT. NE. DAYS ) GO TO 169
SUMSNH = SUKSNJ
PXSNH = PXSNO
SPXH = HELRiO
RADNEH = RACKED
221
-------
3071 .
3072.
3073.
3C7-V.
3075.
3076.
3077.
3078.
307?.
3060.
3C31.
3033.
3084.
3085.
3036.
3087.
3083.
3030.
3050.
3091.
3092.
3093.
3094.
30^5.
3096.
3097.
3093.
3099.
3100.
3101.
3102.
3103.
310*.
3105.
3106.
3107.
3109.
3109.
311 0.
3111.
111'..
3115.
3116.
3117.
3118.
3119.
3120.
3121.
3122.
3123.
3125.
3126.
3127.
312-3.
3129.
3130.
3131 .
3132.
3133.
3134.
3135.
3136.
3137.
31J3.
CDP.MEH = CCRFEO
CGNMEH - CGNKEQ
CRAINH - CRAINU
SGMH = SG.10
SNEGMH = SNt&MD
SEVAPH - SEVAPl)
c
c
c
CuTPUT FOR HSP LANDS PRODUCTION RUN AND SUMMARIES
169 IF (OUTPUT. EC. METR) GO TO 161
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
(6,360)
(t>, Joi )
(6,363) AROSB.AROS
(6,364) AINTF.ARGXT
(6,365) AKUI
(6,366) ARGJIT.ARU
(6,380) AS3AS
(6,3ai) ASRCt-
(6.361J APK,APR,APR»APRf APR,APK
IF ( (SNOrt.EO.NO.OR. < PACK. L E. 0.0) J GO TO 181
C
WRITE
WRITE
WP I T E
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WPITE
SNOrtMELT OUTPUT
(6,478) SLMSNH
(6,479) fxSNH
(6,430) SPXH
(o,4al )
(6,4a2) RAOMEH
(6,4U3) CC.vlMEH
(6,4(34i CCRMEH
(6,465) CKAINH
( o,48fc) SurtH
(o,4d7) Si\E«CH
(6,4-iC) PAC\
CQVP = 100.
If
IF
(PACK .LT. IPACK) COVR = (PACK/ IPACM* 100.
(PACK. GT. 0.01) GO TO 1078
COVR=J.O
SDEN=0.0
C
c
1078 WRITE
WRITE
WRIT
181 WRITE
WKI TF
W (•' I r [
»H ! 1 L
WRITE
WRI TE
Wfi I T£
WRITE
WRITE
WPITE
WPI TE
WRITE
IF ( ( J
161 IF (LH
(0,^91) £CcN
(6,492) CCVK
(6,4do) SEVAPH
(6, 367)
(0, 300) Al:PU,ACPIN,Acl'lN,AfcPlN,AtPIN, AfPIN
( ij , Jti'J) A brti_ T, ASNLT, AS,«ll;T , ASlU T , A^Nt I , ASNF T
( o , 1.1 J) (, l-Vl H
(6,370)
<6,371J oZSa.UZS
(6,372) Liz, LZS,LZS,LZS,LZS,LZS
(o,373) SG«, SGW ,SGW,SGW,SGW ,SGw
(6,374) SCEP.SCEP.SCEP, SCEP ,SCEP,SCEP
(b,37p) RE^d.RESS
(6,376) SKOX.SRGXT
(0,377) T«oAL
iNo«. tw. YES) .AND. (PACK. GT. 0.0) ) WRITE (6,489) TSNbAL
JTf-jr.E^J. £NoL) GO TO 171
METMIC CONvEKSICNS FUR OUTPUT
APR
ARUS
ARGXT
ARUI
AR'J
ASdAS
ASRCH
AEPIN
ASNET
=APR*CMP IN
=AKJS*C^P IN
= Af\GXT*PNPIU
= Ar
-------
3139.
3140.
3141.
3142.
3143.
SCEPMT=SCEP*KMPIN
TKBLMT=ThBAL*MPPIM
3145.
3146.
3147.
3148.
3149.
3150.
3151.
3152.
3153.
3154.
3155.
315*.
3157.
315B.
3159.
3160.
3161.
3162.
3163.
3164.
3165.
3166.
3167.
31o9.
3170.
3171.
3172.
3173.
3174.
3175.
3176.
3177.
3178.
3179.
3130.
3181.
3132.
3133.
3184.
3185.
3186.
3187.
3188.
3139.
3190.
3191 .
3192.
3193.
3194.
3195.
31S5.
3197.
3198.
3199.
3200.
3201.
3202.
3203.
3204.
3205.
3206.
SNOW
163
162
1079
182
IF (SNOw .EG. NO) GO TO 163
SUMSNH = SJMSNh*MMPIN
PXSNH = PxSNh*f-MPIN
SPXH = SPXh*fM*> IN
RADMEH = RAoMEH*MMPIN
CONMEH = CONrtfch*r1MPIN
CDkMEH = CDR«Eh*MMPIN
CHAINH = CKAINH*MMPIN
SGMH = St>PH*P iv>H IN
SNFGtfH = SNEGPh*M,1FIN
PACKKL = PAC**MMPIN
SEVAPH = SEvAPh*rtrtPIN
TSN6ML = TSNBALfMrtPlN
DO 162 1=1,5
AROSB(I) =*KCSb( i)*MMPIN
AINTFU) =AINTF( I)*MMPIN
APOSITin = ARCSIT(I )*MMPIN
UZSBMTt I)=UZSbiI )*NCPIN
PESBMTC I )=rt£S6l I )*MMPIN
SPGXMT(I)=SRCXll )*N«PIN
CONTINUE
WRITE (t,4oO)
WPITE (o,362)
«RITE 16,363) «ROSb,AROS
WRITS ic,364) AINTF,ARGXT
WRITE (c,Ju6) ASui>IT,ARJ
WRITE (o,3oO) <»SdAS
«R I TE ( o, jdl ) ASRCh
WRITE (o,361) APR, APR, APR, APR, APR , APR
IF (StlCh.cJ.NO .UK. PACK,. LE. 0.0) GO TO 132
WRITE (0,479) PXSNH
WRITE (6,480) SPXH
WRITE (6,481)
WRITE (0,482) KAOMEH
WRITE (6,483) CONKEH
WRITE (6,484) CJKKEH
WRITE (to, 485) CRA INH
WRITE (6,486) S^MH
WRITE (o,487) SNEGMH
WRITE (6,490) PACKML
COVR = 1CC.O
IF (PACK..LT.IPACK) COVR = (PACK/I PACK) *1 00.
IF (PACK.GT.O. Jl) GO TO 1079
COVR = 0.0
SDEN = O.C
WRIT? (o,i91) SDcN
WRITE (b,492) COVR
WRITE (6.4U8) SEVAPH
WRITE It,3o7)
WRITE (o,308) AEPIN, AEPIN, AEPIN , AEP IN , AE P IN, AEPIN
WRITE (6,3t>S) ASiNt T,ASNET,ASNET,ASNET,ASNET, ASNET
WRITE (6,383) CCvER
WRITE (o,370)
WRITE 16,371) UZSdMT, OZSMET
WRITE (6,372) LZSMET, LZSMET, LZSMET, LZSMET, LZSMET,
WRITE (o,J73) SG«MET, SGWMET, SGWMET, SGWMET, SGWMET,
WRITE (6,3/iJ SCEPfT, SCEPMT, SCEPMT, SCEPMT, SCEPMT,
WRITE (6,375) REStJMT, RESSMT
WRITE (o,376) SKGXMT, SRGXTM
WRITE (6,377) TfldLMT
LZSMET
SGHMET
SCtPMT
IF I SNOrt.EJ.YES .AND. PACK.GT. 0.0) WRITE (6,489) TSNBML
223
-------
3203.
2209.
3210.
J211.
3212.
3213.
3214.
3215.
3216.
3217.
3213.
3210.
3220.
3221.
3222.
3223.
3224.
3225.
3226.
3227.
3228.
3229.
3230.
3231.
3232.
3233.
3234.
3235.
32 "U>.
1:' 1 1 ,
t > ' 1
If i ' > •
if j').
3240.
3241.
3242.
3243.
3244.
3245.
3246.
3247.
3243.
3249.
3250.
3251.
3252.
3253.
3254.
3255.
3256.
3257.
3258.
3259.
3260.
3260.71
3260.72
3260. 73
3260. 74
3.761. 75
3^61.76
32oJ. 77
326D.78
3260. 79
3260.8
3260.81
32o3. 32
3261.
3262.
171 IF (PRINT. NE. CAYS) GO TO 1 7D
SUMSNO = 0.0
PXSND = 0.0
MELRAD = C.Q
PADMEO = 0.0
CDhMED = C.O
COMMEL) = 0.0
CPAIND = 0.0
SGMD - 0.0
SNFGMD = 0.0
SEVAPD = 0.0
C
C FORMAT STATEMENTS
C
378 FORMAT ( ' + • , 2 IX ,F6.3 ,2X,F6. 3)
360 FORMAT
362 FORMAT
363 FORMAT
364 FORMAT
365 FORMAT
366 FORMAT
380 FORMAT
381 FORMAT
361 FORMAT
478 FORMAT
479 FOP. '11 T
480 FO«"AT
481 Fuk/AT
'•/!/ 1 IH'M/, f
40 t / 'H'. 1 A r
484 HIP MAT
485 FORMAT
486 CORMAT
487 FORMAT
490 FL'RMAT
491 FORMAT
492 FORMAT
488 FORMAT
367 FORMAT
368 FORMAT
369 FORMAT
383 FORMAT
370 PCMMAT
371 FORMAT
372 FORMAT
373 FORMAT
374 F-CPMAT
375 POKMAT
376 FORMAT
377 FORMAT
489 FORMAT
460 FORMAT
4001 FORMAT
1
2
3
4
5
4002 FORMAT
1
4003 FORMAT
1
4004 FORMAT
1
4901 FORMAT
C
( '0' ,dX, 'xATER, INCHES')
CO' ,UX,'RLNOFF' )
(' ' f!4X, 'OVERLAND FLOW , 5X,5( F8. 3 ,2X) , IX, F8.3 )
( ' ', 14 X,' INTERFLOW , ;X , M F8 .3 , 2X ) , IX , F 8. 3 )
(' ' , 14X ,' IKPERVIOJS ' ,59X,F8.3)
1 ' , 14X,'TCTAL' ,13X,5(F8.3,2X),1X,F8.3)
( 'U« ,UX ,'bASE FLOrt' ,o3X,F8.3)
(' ' , UX ,' GRDwATEK RfcCHARiie' ,5 liX, Fd .3 )
t '0' , UX,'PRhCIPITATION',SX,MF/.2,:»X),lX,F7.2)
C ' , 1<*X ,' Sf\iOw' ,o5X,F7.2>
(' ',14X,'rlAIN 0,J SNJ..J' ,5fA,l-7.2)
(• ',14X,'MtLT t. RAI.J' ,5bX,F7.2)
I'C1 .UX.'rttLT')
1 'f r»x,'»AufAf /';//' ,',o/,f I./)
' (,l'»X,'CU'JVLCnu/J',iiVX,f-7.2)
' ' , 14X,'CDN[;E^SAriu-(' ,5/X, F7.2)
1 ' ,14X,'RAIN MELT' ,60X,F7.2)
' ' , l^X ,' GKUUND MELT' ,5feX,F7. 2)
1 ',14X,'CUM NEu HtAT' ,57X,F7.2)
•0',UX,'iNOw PACK' ,03X,F7.2)
1 «,UX,'^NOW DENSITY' ,60X,F7. 2)
(' ',UX,'* SNC^I COVE^' ,60X,F7.2)
( '0' , UX.'SNOw EVAP' ,t>3X,F7.2)
< 'G' ,UX ,'EVAPCTRANSPIRATION')
( ' '.UX.'PLTENTIAL' ,9X,5
-------
3263.
3264.
3265,
3266.
3267.
3263.
3269.
3270.
3271.
3272.
3273.
3274.
3275.
3276.
3277.
3291.
3292.
4030.
4CC1.
4002.
'•003.
4C04.
40-»>.
4006.
4007.
4003.
40 J9.
'-.010.
4C1U
4012.
4013.
4014.
4015.
'< 0 1 o .
4017.
4017.1
4017.2
4017.3
4C18.
4019.
4020.
4021.
4022.
4022. 1
4023.
4024.
4C25.
4C26.
4027.
4028.
4029.
4030.
4031.
4032.
4033.
4034.
4035.
4C35.1
4036.
4C36.01
4C36.02
4C36.C3
4036.04
4036. C5
4036.06
4C3f..
4036.
170
07
08
APR = 0.0
AEPIN = 0.0
APU = 0.0
ARU1 = 0.0
ARCS = 0.0
ARGXT
ASNET
ASbAS
A3RCH
DO 172
0.0
0.0
0.0
0.0
1 = 1,5
172
AROSb(I) -
AINTF(I) '
AROSIT(I)
CJNTMUE
0.0
c.o
= 0.0
19C RETUPN
END
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE SEDTISFLAG)
SEDIMENT EROSION MODEL
DIMENSION RESd<5),RESBH5),ROSBl5),SkGXt5),INTF(5),RGX(5),INFL(:>),
1 UZSb(51,APERCBm,RIB(b),ERSN(5),K3(12)
DIMENSION SRER(b),RObTOM(5),ROBTQT(S),INFTOM(5),INFTOT(5),
1 ROI TOM I 5) .RQITGT15J ,RXti(5) ,ERSTQM(5) , ERSTOT ( 5) ,MNAM( 12),RAD(24) ,
2 TEMPX(24),«INOX(241 t RAIM2ttJ),U£SBMT(5),RESBMT(b),SRGXMTtS),
3 SRERMT15)
DIMENSION AERSMbl .AERSNM151
DIMENSION ISTAR(3J
DIMENSION LSROl 128 ),EROS(128),RROS( 128)
DIMENSION SMuISTU4,5),LlMOIST<24,5) ,L MOIST (2*1,
1 STEMPU4),UTEMP(24)
COMMON /ALL/ RL ,HYMlN,PRNTKE,HYCAL,OPST,OUTPUT,TIMFAC,LiS,AREA,
1 *ES81,£OSB,SKCA,INTF,RGX,INFL,U£SB,APERCB,RIB,ERSN,M,P3,A,
2 CALB,PROU,PEjT,NUTR,EN)GL,METR,BOTH,RESB,YES,NO, IM1N, IHR.TF,
3 JUX'NT .PRINT, INTk ,DAYS, HJiJR.MNTH, I DEBUG, ON, OFF ,
4 SMO!ST,JMCIST , LMOIST , STEMP,JTEMP,LTEMP,MUZ,MIL
COMMON /LANO/ f NAi-1 ,PKTQT, ERSJTT , PRTOM .ERSNTM , DAY ,
1 RUTOM,UcPTCM,Ra$TOM,RITOf1,RINTOM,tiASTQ;«l,RCHTGM,RUTOT,
2 NEPTCT ,RCSTCT,f(ITOT,RlNTOT,dASTOT,RCHTOT,TrtBAL,EPTOM,EPTOT,
3 UZS.'JZSN.LZSN, INF IL, INTER, 1KC,NN,L,SS, SGv^l, PR, SGW,GwS,KV,
4 K24L,KK ,LTEFP ,MUZ,MLZ
4036. CS
COMMON LANU L!£ CL ArvAT IONS FOR 1*2 t. R*4
INTEGER OAY,.-!CNTH,DSNROS,Dii|FLO,DSNtRS,TMBLSZ,NEROS,
1 MLShC.NRROS
225
-------
4036.1
4036.11
4036.12
4036.13
4036.14
4036. 15
4036.16
4036 .17
4036. 18
4036. 19
4036.2
4036.21
4036.22
'.030.23
'.03-J.2
4038.3
4C38.9
4039.
4039. 1
4040.
4042.
4043.
4044.
4045.
SC46.
4046. 1
4047.
4049.
4C49.
4053.
4050.1
4051.
4C52.
405 J.
4054.
4055.
4056.
4057.
4057.1
4057.2
4053.
4059.
4060.
4060.01
4060.1
4060.2
4060.3
4060.31
4060.4
4060. 5
4060.6
4060.7
4061.
4062.
4063.
4064.
4065.
4066.
4067.
4068.
4C69.
4070.
^071.
4072.
4073.
4074.
4075.
4076.
REAL SEVAPM,StMiNY,PXSNY, MELRA Y , RADM EY , CORMEY , SGMV , CUNMfcY,
1 CRAI.NY,SNfcuMY,S£VAPY,TSNfaAL,COVER,CCVRMX,ROBTuM,RObTOT,
2 RXd,RCITCr-,PETMAX,ELJIF,DEniX,PACK,DEPTH,SDEN,
3 I PACK, TMlN,SUMiNM,PXSN,1,XKJ , MEL RAM , RAD MEM, CDRMEM, CkAl NM,
4 CCNrtfcM.SGM, SNEGMM,PRTJT,ERSNTf, PKTOM, ERSNTM,RUTOM,
5 NEPTOM.RCSTJM, RITOM.RI UOM, BASTOrt, RCHTOM, KUTL'T , NEPTOT ,
6 RCJSTOT.KITJT ,R INTuT , 8 ASTOT , KCHTUT, TrtBA L , E PTOM , E P f OT ,
7 U/s U/^N 1 / S N TNFfL I N f F R IRC ^ N L ^ S SC^l PR ^ Grt r w S
8 KV,K24L,KK24,K.24EL,EP , If- i> , KJ, EPXM, RESS 1,RESS,SCEP,
9 SCEP1,SRGXT, SRGXfl, JKE*,KRfcR, JSER. KSER , SRERT ,MMP IN,
* METUPT.CCFAC ,SCF,IUNS,F ,DGrt ,WC, MPACK,E VAPS N, MEL EV ,
1 TiiJO<*,PtTNI.<,Rt,!TjT,INFTJM, I,"if-TOT(ERSTOM,ERSTUT,SKER,
2 Tt!i1PX,RAU,nIi\JX,KAI^,LjKJ,tRJS, RROS
C
INTEGER ^4 BCTH.CALtJ, DAYS, t .luL , HOOR ,H *C AL , IM P'jT, 1 NTR , METR ,
1 MNTh,NO,NljTR,OFF , JN , OuTP JT , PEST ,PRINT, PKOU, SiMOW , YES
INTEGER*'* LCOF
DOUBLE PRECISION MNAM
INTEGER SFLAG
C
"EAL SRrtTHT
REAL KbPLB
C
DAT4 EkSNT/0.0/, AERSN/5*0.0/
DATA IASTRK/'*'/, I6LANK/' '/
DATA LASUP/-1/
C
C SER = TRANSPORT CAPACITY OF OVERLAND FLO* IN TOMS/ACRE
C ERSN = EROSION REACHING STREAM
C SRER = FINES JEPLSIT IN TONS/ACRE
C RER = FINES GENERATED IN INTERVAL
C
C ZEROING OF VARIABLES
C
SRERT = 0.0
DO 4599 1=1,5
4599 ISTAR(I) = IBLANK
EPSNT = J.O
RER = 0.0
CR = COVER
C
C SOIL EROSION LOOP
C
C IF SNOWliJG (SFLAG^iJ NO SOIL FINES GENERATED
IF (SFLAG .EC. 1) GO TO 4399
C
IF (SNOfc.EtJ.NG .OR. P ACK. LT. 0. 01 J GO TO 4389
C INCREASE COVER bY SNCK COVER WHEN RAIN ON SNOW OCCURS
SCOVER = PACK/I PACK
IF (SCOVER .GT. 1.0) SCOVER = 1.0
CR = COVER + U .0-COVbR) *SCOVER
C
4389 RER = (l.C - CR )*KRER*PR** JRER
43"=9 DO 4452 1 = 1,5
SRER( I ) = JkER( I) + KER
IF (uosem+RESBun.GT.o.oi GO TO 4444
C
EkSM IJ =0.0
SER - 0.
GU TO 4446
C
4444 SER = K3EK*
-------
4077.
4073.
4079.
4030.
IF (SREkll) .LT. 0.) SRER(I) = 0.
4033,
••OH/,
•ttlM'l.
C
C
ERbNlI)
IF (PRNTKE .£8. 0) GC TO 4490
4446 AERSMlIi = AEKSNlI)
4452 COMT1NUE
4090 .
4C91 .
4C92.
4093.
4095.
4C96.
4097.
4093.
4099.
4100.
4131.
4102.
41C3.
4104.
4105.
4106.
4107.
4103.
4109.
4110.
4111.
4112.
4113.
4114.
4115.
4116.
4117.
41 Id.
4119.
4120.
4121.
4122.
4123.
4124.
4125,
4126,
4127,
4128.
4129.
4130.
4131 .
4132.
4133.
4134.
4135.
4136.
4137.
4138.
4140.
4141 .
4142.
4143.
C
C
C
C
C
C
C
C
C
C
C
C
892
C
893
49
C
C
C
C
44
44
£./. ,
H*f 1
C
OC 4tiO 1=1,5
FRSdT = trtSHT t AERS.il 11 1*0. 2
SIM Kl • iH| H 1 » ',!(! K( I )+().,'
I I' MiMI II - II' MiJIII II I Al U '.Nil I
i K'.uii in- IK:,IHI (I) * AI
't'tV> I UN 11NUI
CUMULATIVE RECORUS
ERSMTM = ERSNTM + ERSNT
ERSNTT = ERiNTT + ERSNT
IF (PRNTKE .EO. 2) GO TO 4487
EKSNTP = 0.0
ERSNTK. = O.J
ERSNCM = O.C
IF (HYCAL .£(.. PKOD) GO TO
IF (PU .LT. HYMIN > GU TO
CONVERSION CF SECIMENT LOSS TO LBS., KGS.f KGS/MINUTE, AND
GM/L FOR OUTPUT
ERSNTP = ERSNT*20CO.*AREA
ERSflTK = ERSNTP*.454
ERSNKM = ERSNT*/TIMFAC
ERSNCM = ERSMP*454./
-------
il44.
4145.
4146.
> 147.
4 1*8.
-.149.
'.150.
'.151.
4152.
4153.
4154.
4155.
4156.
4157.
4157.01
H57.C2
->157.03
U57. 04
•«157.05
4157.06
4157.07
4157.08
4167.09
4157.1
4157.11
4157. 12
4157. 13
4157.14
4157. 15
4157. 16
4157.17
4157.18
4157.19
4157.21
4157.22
4157.23
4157.24
4157.25
4157.26
4157.27
4157.28
4157.29
4157.3
4157. 31
4157.32
4157. 33
4157.34
4157.35
4157. 36
4157.37
4158.
4158. 1
4159,
4163.
4200.
4201.
4202.
4203.
42u3. 5
4203 .6
4203. 7
42J3.8
4203.9
t <> '... .
-206.
42C7.
4203.
4209.
C
c
44SO
44 81
4482
4484
4485
49C2
C
4487
4489
C
4490
C
C
C
C
c
c
1070
1060
9996
1080
1090
1050
1030
1020
1C40
1000
c
1010
c
c
c
c
c
c
r,
FORMAT STATEMENTS
FORMAT < 'C« , ax, 'SEDIMENT, TO •iS/ ACkfc ' )
FORMAT (' • ,1U, 'ERODED SEDIMENT' ,4X,b(;JX,Fr.3), 4X.F7. 3)
FORMAT <• ' ,UX, 'FINES DEPOSIT' ,6X,5{JX, F7. 3), 4X.F7.3J
FORMAT ('+• ,3oX,4<2X,F7.21)
FORMAT CO', 8X, 'SEDIMENT, TONNES/HECTARE*)
FORMAT (•+' ,30X,F3.2)
DO 4489 1=1,5
AfcPSNU) = C.O
CONTINUE
CONTINUE
STORE EROSION DATA 6 WRITE TO DISK
IF (OSNERS.EJ.CJ GO TO 1010
IF (EPSNT.EJ.C.) GC TC 1010
IF (LOOP. tO. (LASTLP+1 )) GO TO 1050
DATA COMPRESSION PERFORMED - NO , AREA ,
!-i , M , P j , A ,
IMIN, IHR ,Tf- ,
RESBl,R05B,6RCX,INTF,rk;X,Ir.|hL.UZ$B,APEkCb,KtB ,
CALbfPKOOfPcST ,NUTk, ENGL , ME TR , bOTH ,k E S b , Y ES , NO
JCO'JNT , Ph INT , I NTR ( JArS,HU'J^ tMrjTH 1 1 Ot bOG, ON,UFF
SMQIST, J.1UI iT , LMOISTibTEMP,JTEMP,LTbMP,MJ/:, MLZ
COMMON /PEiTC/
STST.PrNSTCM.SPhOTC, FKSTQT, i
SCST,'JPITOH,SCiT,uPITQT,JTirf
fPKljTOM , i Aj T , P° OTUT ,
TS,UAST,JTS,JCST,S;,S,
ALL OECLARATI Cr4S FJR 1*2 & R*4
INTEGER PRNTufi fTIMFAd IMINt IrtR.TFf JCOONT, I DEBUG
PEAL PO.MYMIN.LZS, AREA, RE SB1, ROSS, SRGX, INTF ,RGX, I NFL ,
U^S3,APckLB,RIB,ES,SM,M,P3,A,RES6,SMOIST,UMOIST,
LM'JIST,UPiT,STSKPfUTEMP,LTEMP,MOi,MLi
INTEGER
TIMAPl 12) , YEARAP112 )
BOTh.CALB , OAYS , E N^L .HOUR ,H YCAL , INPUT , INTR , METR,
MNTH ,l«u ,NJTR,OFF,ON,OUTPUT,PtST,PRINT,PR3D,SNOrtt YES
229
-------
5022. 5
5023.
5023.5
5024.
5C2*.5
;>C25.
5025.5
5026.
5C26.5
5027.
5027.5
5028.
5023.5
5029.
5029.5
5030.
503). 5
5031.
5031. 5
5032.
5032.5
503i.
5033.5
503*.
5G3-+.5
5035.
5035.5
3036.
5336.5
503?.
5037. 5
50ol.
5062.
5063.
506*.
5C05.
5066.
5C67.
'3068.
5069.
5072.
5071.
5072.
5073.
5073. 1
507*.
5075.
5C7b.
50/7.
5C73.
5079.
5030.
5081.
5082.
5C33.
508*.
5035.
5086.
50>37.
5033.
5C39.
509).
5091.
5C93.
5095.
C
C
c
c
c
c
c
c
c
c
c
c
c
r
C
C
c
c
c
INTEGER** APPCOE,UESOSP,SJRF,SOIL
REAL KKt INFh
REAL STSTHT, SASTMT, SCSTMT, SOSTMT
REAL STSfET, SASMET, SCSMCT, SUSMET
REAL MMPIN, ME TUP I
REAL NPt KD» CT, ST , CAD
REAL UTSTMT, LASTMT, UCSTMT, UDSTMT
REAL UTSfET, LASMET, UCSMET, UOSMET
REAL JMFw, KNFw, UZSN. UiF , LZSN, UF
REAL KLyJi CTUt STU, CADU
REAL LSTftMT, LASMgT, LCSMET, LOSMET
REAL GSTRMT, GASMET , GCSMET, GDSMET
PEAL KJL, CTL, STL
REAL C'.£iX,PTCT,CAUL
IMTECE? MFLAG, JFLAGi KFLAG
PEAL K,M,FPU,TOTPAPiKOPT,rtOPT,TOPT,TMAXiAK»BK,
ivGPL3,FHLG,LSTR,LAS,LCS,UDS,GSTR,GAS,
3 GCS,GOS,TP8ALfL)EGSOM,DtGSOT,UEGUQrttOEGUOT,0£GUfOEGS,
N IP, OtfGLUrt iOEGLOT,NCJMf UI ST t
DATA UPiT, oASCT, JCSCT,
DATA UOSCT, J P«PT /^*0.0/ ,
DATA AUPK, ALPRI, AUPRP/ 1 5* J. O/
DATA Ac
DATA SPST, SASCT, SCSCT, SPRT, SPRST, SPRTT , SPKPTT/ 7*0. O/
DATA SPRC-T, SPRPT/2*0.0/ , nFrt/0.0/
DATA ASPR, ASPKSi ASPRJ, A SPRP/20*0. O/
DATA SCSC, SPCFi, SDSCT/ 1 1* J. J/
.U/ , OPRIT/U.O/
DATA CT/D*O.C/ ,JFLAG/S*0/,CAO/5*0. 0/tST/5*0.0/
DATA CTJ/5*O.C/,NFLAG/5*0/ iC AUJ/ 5*0. O/ r ST'J/ 5*0. O/
DATA CTL/5*C.C/,MFLAG/3*J/ ,C AUL/ 5* 0. O/, STL/ 5*0. O/ ,KDL/5*0.0/
DATA KDf KDJ/1C*C.O/
SURFACE SOLUTION AUSURPT IUN-UESUKPT I ON MODEL
VARIABLES
STST = 0.0
SAST = O.C
SCST = 0.0
SDST = O.C
ERSNT = 0.0
ASPTOT = 0.0
ACSURPTION-DESORPTION SOLUTION LOOP
WITH KEVERSIflLE DESORPTION
PA = 1.0 - A
I = 1000000. **(NI-1)
KK = M*N*Z
DO 5320 1=1,5
INFW = 0.2*AKEA*(P3+RESfli(I))*226512.
PTOT = SAS(I) + SCS(I) * SUSU) + SSTRl(I)
ASPTOT = ASPTUT * PTOT
230
-------
5097.
509S.
5099.
5100.
5101.
5102.
5103.
5104.
5105.
5106.
5107.
5108.
5109.
5110.
5111.
5112.
5113.
5114.
5115.
5116.
5117.
5118.
5119.
5120.
5121.
5122.
5123.
5124.
512b.
5126.
51^7.
5128.
5129.
5130.
5131.
5132.
5133.
5134.
5135.
5136.
5137.
513«.
5139.
5140.
5141.
5142.
5143.
5144.
5145.
5146.
5147.
51^.8.
5149.
5150.
5151.
5152.
5153.
5154.
5155.
5156.
5157.
5153.
5159.
51oO.
5161 .
5162.
5163.
5164.
5315
C
5316
C
C
C
5321
5317
C
531S
C
C
5324
C
5320
C
C
C
C
C
C
5329
C
IF (PTOT.GT.FP) GO TO 5313
SAS(I) = PTOT
SCSUJ = 0.0
SOS(I) = C.O
JFLAG( I) = 0
CT( I) = C
Go TO 5320
X = KK*CMAX**NI
PSLD = PTOT -
IF (PSLD .LT.
SASU) = X
SCSU) = PSLD
SDS(I) = CMAX*INFrf
JFLAGU) = 0
CTU) = C
GU TO 332C
«• FP
X - INFWCMAX
0.0) GO TO 5316
scsm =
IF UNFw
SAill) =
SDS(I) =
JFLAGlI)
CT(I) = C
GO TO 532C
C.O
GE.O.
PTOT
C.O
= 0
001) GO TO 5321
CCMPuTE C AND X BY THE ADSORPTION EQUATION
C = CMAX+PTOT/(X + INFW*CMAX)
X » KK*C**NI + FP
Q = tPTUT/(X*!NF^*O) - 1.
IF (ABS(U.LE.O.Ol) GO TO 5319
C = C*PTOT/(X + INFW*C)
GO TO 5317
IF (JESUnP .EQ. NO) GO TO 532*
CALL OSHTN » I ,CTtCTJFLAb,CAO,KL>tK,,ZiNC(JM,
ST , A ,M, NI P, FP,PTUT,
SDS(I) = tC*Iiv|Frt)*(PTOT/(X+C:*INFw>)
SAS(I) = X*(PTOT/l X*-C*INF« ))
PESTICIDE REMOVAL LOOP
DO 5330 1=1,5
QS = 400.*AREA*ERSNU)/M
IF (QS .GT. 1.0) GS = 1.0
SAPSU) = SASU)*QS
SCPSU) = SCSI I)*CS
SPRSU) = SAPSt I) + SCPS(I)
SASt I) = SASlU - SAPSU )
SCSU) = SCSU) - SCPSU)
SPRO(I) =0.0
SPUFSCI) =0.0
SPKP(I) =0.0
SPft(I) = C.O
IF IPJ +R£Sei(IJ.LE.0.0) GO TO 5329
SPROU) - SOSl I)*ROSB(I)/((RESB1(I)+P3)*PA)
SPOFS(I) = SCSi I)*(RESB( IJ / ( RESB 1UJ+P3))
SPP.P(I) = SCS(I) - SPROU) - SPOFS(I)
SPR(l) = SPROU) + SPRS(I) * SPRP(I)
SDStl) = SPCFSU)
231
-------
5166.
5167.
5163.
5169.
5170.
5171.
5172.
5173.
5174.
5175.
5176.
5177.
5179.
5180.
5132.
5183.
5184.
5185.
51B6.
5197.
5183.
3139.
5191.
5192.
5193.
5194.
5195.
5196.
'j 1
-------
52^3.
5234.
5235.
5?36.
5237.
5238.
5239.
5240.
5241.
5242.
5243.
5244.
5245.
5246.
5247.
524J.
5249.
5250.
5251.
5252.
5253.
5254.
5255.
525;,.
5257.
5230.
5239.
•3261.
>25J.
:^264.
5265.
T2&7.
S26d.
5269.
5270.
5271.
5272.
5273.
5274.
5275.
5276.
5277.
527ti.
5279.
52SO.
52-31.
5282 .
0233.
5284.
5235.
5236.
5287.
52 « 6.
5289.
5290.
5291.
5292.
5293.
5294.
5295.
529t>.
5297.
5293.
5299.
S300.
STS, STST
SAS, SAST
SCS, SCST
SOS, SDST
SPS, SPST
SASC, SASCT
SCSC, SCSCT
SD£C, SOSCT
AiPk, SPRT
ASPRS, SPRST
ASPRO, SPRUT
ASPRP, iPKPT
ENGL) GO TO 5370
i FUR OUTPUT
STSTMT=STST*KGPLB
SASTMT=SAST*KGPLD
SCSTMT=StST*KGPL3
SDSTMT=SjSf*KGPLB
SPRT =SPKT*KGPuB
SPKST =bPKST*l\GPi.b
SPROT =SHROT*KGPLB
SPRPT =i>PRPT*NGPLi3
DO 5343 1=1,3
STSMET( U = STS(I)*KGPLB
SASMf T( I ) = SAS (I )*KGPl_B
SCSMf1 I I)=SCS(I)*KGPLB
WRITE
WRIT?
WRITE
WRITE
WRITE
WRITE
WP! TE
WRITE
WRITE
WRITE
WRITE
WRITE
(6,5351)
(o,5352)
(6,5353)
(6,5361)
lo,535<«)
(6,5352)
(6,5353)
(e,53el)
(6,5355)
( 6,5336)
(6,5357)
(6.533S)
5341 IF (CUTHJT.EQ.
C
C
METRIC Ct
JNVcKSION
5343
5345
C
C
C
C
SnSMET(i)=SUS(I) *KGPLB
ASPkll) =AiHKl I) *^GPLB
ASPRS(I) =ASPRS( i)*KGPLB
ASPROU) =ASPHO( I)*KGPLB
ASPRPlI) =ASF«P( I) *KGPLB
CONTINUE
WRITE (0,3350)
»RITE (6,5.163) STSME7, STSTMT
WRITE (6,5352) SASMET, SASTMT
WRITE (6,5353) iCSNET, SCSTMT
wPITg (0,5361) SUSMET, SOSTMT
IF (OUTPUT. EC. tOTH) GU TO 5343
WRITE (6,5^34) 6PS, SPST
WRITE (6,5352) SaSC, SASCT
WRITE (6,5353) SCSC, SCSCT
WRITE (6, 5361) SuSC, SDSCT
WRITE (6,5374) ASPR.SPRT
WRITE (6,5336) ASPRS, SPRST
WRITE (0,3357) ASFKC, SPROT
WRITE (6,5355) ASPRP, SPRPT
ZEROING VARIABLES
5370 DO
5380
5380 1=1,5
ASPP. (I) = 0.0
ASPROlI)
ASPRS(I)
ASPPP( I)
CONTINUE
c.o
c.o
C .0
5390 SPST = 0.0
SASCT = 0.0
SCSCT = 0.0
SOSCT = 0.0
SPRT = 0.0
SPRST = 0.0
SPPOT =0.0
SPPPT = 0.0
DO 5391 1= 1,5
233
-------
53C1.
5302.
5303.
5304.
5305.
5306.
53J7.
5303.
5309.
5310.
5311.
5312.
5313.
5314.
5315.
531o.
5313.
5391
C
C
C
C
C
C
C
C
C
C
C
SSTRK I) =0.0
UPPER ZONE SOLUTION ADSORPT ION-DESORPT ION MODEL
ZEROING VARIABLES
UTST = 0.0
OAST = O.C
UCST = 0.0
UOST = 0.0
UIST = 0.0
AUPTOT = 0.0
SGLUTION ADSORPTION-DESURPTION LOOP
5>;i5. C 45302.4 = 0.2 * 43360 FT<2)/ACKE * 1 FT/12 INCHES * 62.4 LB/FTU)
5320.
5321.
5322.
5323.
532''.
5325.
5i2a.
5327.
532-).
5327.
533 3.
5331.
53:52.
5333.
5 3 J 't .
5331.
533i.
533'.
5333.
533 ?.
53 't }.
5341 .
5342.
5343.
534',.
5345.
5346.
534?.
5341.
534->.
535).
5351 .
5352.
5353.
5354.
5355.
5356.
5357.
533? .
535v .
5360.
5361.
53'-.?.
53o3.
5364.
53">5.
536o.
5367.
5363.
C
C
C
C
6315
C
6316
C
6317
C
6319
C
C
6324
C
6320
KK = MUZ*K*Z
DO 6320 1*1,5
JNFKd) = AREA*PA*(UZSB( I )+APEi
-------
5369.
5370.
5370.1
5370.2
5371.
5372.
5373.
5374.
5375.
5375. 1
5373.2
537j.
5377.
5378.
5330.
5381.
5362.
5333.
5334.
5335.
5380.
5337.
5336.
5389.
5291.
5392.
5393.
5394.
5395.
5396.
5397.
5393.
5399.
5400.
5401.
5402.
5403.
5404.
5405.
5406.
5407.
5403.
5409.
5410.
5411.
5412.
5413.
5414.
5415.
5416.
5417.
5413.
5419.
542'J.
5421.
5422.
5423.
5424.
5425.
5426.
5427.
5428.
5^.2 J.
5430.
5431.
5432.
C
C
c
C UZFM I
C
DO
C
6327
6325
6328
C
C
6330
C
IF
C
C
C
C
C
6333
6334
C
C
c
6335
C
C
C
6340
PESTICIDE REMOVAL LOOP
REDUCES SOLUTE PERCOLATION FOR SOIL MOISTURE LESS THAN UZF*UZSN
6330 I=lf5
IF (JNJ-rtll) .LE . 0.0001) GO TO 6327
QSP = AREA*PA*( IMFLII )*APERCB( I) )*>F-.l I = UUSI I)*ySI
UPRISd) = tPRIS(I) + UPRII
UPRId) = CPRIS JPR( I)
AUPHI(I) = A'JPRKI) * UPRItl)
AUPRPII) = AUPRP(I) + UPRP(I)
UIST = JIST + UPRIS(I)
CCNTINUE
(PRNTKE .Eg. 0) GO TO 63dO
PREPARATION UF OUTPUT
DO
6335
UPRT
UPR IT
UPRPT
UAST
UCST
UOST
I=li5
= UFRT -»
= I PR IT
= UPRPT
= UAiT *
- UCST +
= uCST *
AUPRd)
* AUPRI (
+ AJPRP(
UASl I)
UCSd)
UDS(I)
I)
I)
UASC(I) = (UAS(I)/MUZ)*1000000.
UCSC(I) = (UCSl I)/MUZ)*1000000.
IF (JZSB(IJ .LE. 0.0001) GO TO 6333
UDSCII) = (UOSlD/1 JZSdd )*AKEA*45302.4) )*1000000.
GO TO 633^
UUSC(I) = 0.0
i = uAscm * jcscd) <• uoscii)
«• UASC(I)*0.
+ JCSC(I)*0.
* UOSC(I)*0.
UPS(I
UOS(I) » UPRIStI)
UASCT = LASCT
UCiCT = LCSCT
UDSCT = UCSCT
UPST = UPST *
UTSd) = UASU) + UCSd)
UTST = UTST * UTS(I)
CONTINUE
CUMULATIVE RESULTS
DO
634C 1=
UPITOMd)
UHlTOTd)
= UPITOMd)
= JPITOTII)
AUPRI(l)
AUPRI(I)
235
-------
c' 4 j ) .
'_> 14 ~) .
5')4l
'j i 5 '3
54-3,
UPf- I TM =
UPRITT =
UPk ITN
UPhITT
IF
IF
IF
UPRIT
* UPRIT
2) GC TO
ChYC^L .EC. PkUU) GO TJ 6341
(Fi,1. l_T.HY« IM GC TO t>3o5
TPRTGH
TPRTCrt
TPkT.jM
S P P T C, M
10COOJO.*UPRIT/(RU*TI
UPRTow + SPkTGW
>• SPRTCW
=1 SPR ibS/T IMFAC
GO
TF (t,o46G)
T '.1 L J o 5
TPRTGk.TPRTGM.TPRTCrt,SPRTGS,SPRTGM,SPRTCS
PRINTING JF OUTPUT
6341
IF O'JTPJT.EU.
WRITE !o,635C)
(o ,5351)
(o,5352J
(o, 5353)
(6,3361)
(o,o j62 )
(0,5354)
10,5352)
(6,5353)
(6,5J61)
(6,5353)
ftTH) GO TU 6342
rvRITE
WRITE
WRITE
hPITb
KPITE
/«RITE
rtK I T E
nRITE
UT S,
JAS,
UuS,
UD S,
UTST
LAST
UCST
LUST
UPnIS, JIST
UPS, I'PST
UASC, UASCT
UC SC ,
JOSC,
AJFR
6342
(QUTt-iJT.ti.. £IML.LJ
UCSCT
UJSCT
UPkT
, uPRIT
, UPRPT
GO TO 6365
METRIC COfVERSICNS fOk OUTPUT
6344
UOST.',T =
U:'kIT =
UIST = .JIST*KGrLB
1)1 6? 44 1 = 1,3
UTSMETi 1 ) = UT S I I ) *KGPLB
UCC ML Ti
UJSMe r (
A :PK i i i
LlPf- ISr
CONTINU
6345
VvRI
V*PI
«P I
KRI
>vRI
pi
o r 1
IF
WPI
•.'P T
^R:
ft-' i
^r- ;
WF i
•r,KI
T E
T P
1 b
Tr
TE
TL:
(u
TE
T ,-
Tf
T-:
r ^
TE-
TL
( o
! o
( c>
( 0
{ 0
( o
UTP
( o
1 6
I o
( (,
( t-
< t>
( c
, c 3 5 C I
,5363 )
, 53D2 1
, 53a j )
i aJoi )
, c3b2 )
1 J T • t ^* .
, 5354)
, 5 3 S2 )
, J 35 j /
, 53ol I
, 5 ,'J 7 4 )
, 0 3 '3 0 )
, 3 J 5 ', )
) = uCS (I J *KGPL3
i-ubS ( i ; *
-------
550}.
55M.
5502.
5503.
5504.
5505.
5505.
5507.
5503.
5509.
5510.
5511.
5512.
5513.
5514.
5515.
5516.
5517.
5519.
5519.
5520.
5521.
5522.
5523.
552*.
5525.
5526.
5527.
5528.
5529.
5530.
5531.
5532.
5533.
5534.
5535.
5536.
5537.
5533.
5539.
5540.
55-+1 .
S',.42.
5543.
5544.
5545.
5546.
5547.
554.3.
5549.
5550.
5551 .
5552.
5553.
5554.
5555.
5556.
555f.
555:).
5559.
5560.
5561.
TV..2 .
5563.
5564.
5565.
5566.
5567.
r
^
c
c
c
6365
6370
C
638C
C
6381
C
C
C
C
C
C
C
C
C
C
C
C
C
73C5
C
C
C
7315
^EkOING VARIABLES
DO 6370 I=if5
A'JPRU) = C.C
A'JPRKI) = C.O
AUPRPt I) = C .0
CONTINUE
UPST = 0.0
UASCT = Q.O
UCSCT = 0.0
UOSCT = 0.0
UPRT = O.C
UPKPT = 0.0
UPRIT = 0.0
DO 6381 1= 1,5
USTRI I) = 0.0
LOWER ZONE AND GROUNDWATE
SOLUTION ADSORPTION-DESOR
SOLUTION ADSORPTION-DESORPTION LOOP
LCS = O.Q
LAS = 0.0
LDS = 0.0
LPRP = 0.0
ALPTOT = 0.0
KNFri = ARtA*UZS+UPST)*2265l2.
KK = PL/L*K*Z
DO 7305 1=1,5
LSTP = LSTR + UPRP(I)
ALPTOT = ALPTOT *• LSTR
CONTINUE
If- *CMAX
IF (PSLu .LT. C.U) GO TO 7316
LAS = X
LCS = PSLC
LOS = CMAX*«NFW
MFLAGl I) = C
CTL(I) = C
GO TO 7320
237
-------
556d.
5509.
5570.
5571.
5572.
5573.
5574.
0575.
'j57f>.
5577.
5578.
5579.
5530.
5581.
'3582.
5533.
558*.
5535.
5536.
5587.
5533.
5539.
5590.
5590.1
559J.2
5591.
5591.1
5591,2
5592.
5593.
55 i
LAS = X*tPTOT/(X+C*KNF*))
C
7320 CONTINUE
C
C PESTICIDE REMOVAL LOOP
C
C LZFM REDUCES SOLUTE PERCOLATION FOR SOIL MOISTURE 1
C
LZFM = LZS/ILZSN*LZF>
IF (LZFH.GE.l.C) L/FM =1.0
LPRP = LDS*DPST*LZfM/(DPST+LZS)
LOS = LDS - LPfrP
C
LSTR = LAS *• LCS + LDS
C
ALPRP = ALPRP •» LPRP
C
7330 IF (PRNTKE .EU. 2) GO TO 7J79
IF (PRNTKE.NE.l .OR. hYCAL. EU.CALBJ GO TO 7380
C
C PREPARATION OF OUTPUT
C
C
LASC = (LAS/MLZ 1*1000000.
LCSC = »LC5/MLZ)*loOOOOO.
LDSC = (LDS/lLZS*AREA*22b51^.) 1*1000000.
C
C PRINTING OF OJTPUT
C
IF (OUTPUT. EG. PETRJ GO TO 7J40
«RITE (6,73501
WPITf (6,7351) LSTR
WRITE (0,73521 LAS
VsRITE (6,7353) LCS
»RITF 10,7354) LUS
yjRITF (6,7355)
hR.ITE lb,7J52) LASC
UPITE (t>,7353) LCSC
wRITF (6,7354) LUSC
»RITE (6,7357) ALPRP
URITE (6,7359) ALPRP
7340 IF (OUTPUT. EC. ENGU GO TO 7379
C
C METRIC CONVERSIONS FOR OUTPUT
LSTRMT=LSTR*KGPLb
LASMeT=LAS+KGPLB
LCSM£T=LCS*KGPLE
LDSf1F.T = LOS*KGPLB
ALPK'P =ALPkP*KGfL6
WRITE (o,7350)
LESS THAN LZF*LZSN
238
-------
5632
5o33.
5634.
5635.
563S.
5637.
563*3.
3639.
5640.
5641.
5643.
564 't.
5645
5646.
5647
5643.
5649.
5650
5651.
5652.
5653.
5654.
3636.
5657.
56»J.
5659.
56o">.
5661.
5662.
5663.
5664.
56o5.
566o.
5667.
566 4.
5669.
5670.
5671.
5672.
5673.
5674.
5675.
567G.
5677.
5676.
56M.
5-.>:n.
5631.
5o32.
5633.
5o34.
5t.)5.
5636.
56 a .'.
569).
56
-------
5699
5700
5701
5702
5703
570'+
5735
370b
5707
5706
5709
5710
5711
5712
5713
5714
5715
5716
5717
5713
5719
5720
5721
5722
5723
5724
5725
5726
572?
5728
3729
5730
530 J
5801
5802
3803
5804
5803
3d06
5807
3EO 1
.
.
.
.
.
«
.
.
.
.
•
.
.
.
.
.
.
.
.
«
.
.
.
.
.
.
.
.
.
.
•
.
.
.
.
.
.
.
.
•
.
5350
5351
5352
5353
5354
5355
5356
5357
5359
5361
5363
5374
C
635G
6358
6362
6460
C
7350
7351
7352
7353
7354
7355
7357
7359
736C
7361
C
7550
C
C
C
C
C
C
C
FORMAT ('
FOPMAT I '
FOPMAT C
FOPMAT (•
FOPMAT ( '
FOPMAT ( '
FORMAT ( '
FORMAT ( '
FORMAT C
FORMAT c
FORMAT CO
FORMAT CO
FORMAT C
FOPMAT
FORMAT
FOPMAT
FORMAT
FOPMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
F )PMAT
•
i
•
i
i
i
i
i
•
i
t
i
OS
OS
s
s
OS
0' ,
,
,
,
1 1
5X
dX,
11X
11X
8X,
8X,
11X
11X
HX
IX ,
,
i
,
,
i
•
»
,
,
i
'SURFACE LAYER PESTICIDE'}
PESTICIDt, LBSS8X,5(3X,F7.3),3X,F8.3)
'ADSORBED' ,UX,M3X,F7.3)»3X,F8.3)
•CRYSTALLINE' ,8X ,5 (3X.F7 .3)
PESTICIDE, PPM',8X,5(3X
RcKOVAL, L3S' ,10X,5( 3X,
' SEDIMENT' ,11X,5(3X,F7.
•OVERLAND FLOW',6X,5t3X
' FERCOLATIO J« ,6X,513X,F
DISSOLVED' ,10X,bt3X,F7.
1 ax, 'PESTICIDE, KGSS8X,5(3X,
,F7.
F7.3
,3X,F8.3)
3) ,3X,F8.3)
)
3) ,3X
,F7.
7.3)
,3X,F8.3J
,F8.3)
3) ,3X,F8.3)
,3X,F8.3)
3) ,3X
F7.3)
S6X, 'REMOVAL, K.GS',10X,513X,F7.3)
0' ,
' ,
' ,
*•' ,
U' ,
0 ,
,
*
,
0 ,
0 ,
f
0 ,
•0 ,
FOPi-IAT ('
RETURN
END
SUBROUTINE
1
0' i
5X,
1 IX
llA
72X
5*
ax,
11X
1 IX
11X
8X,
8X ,
11X
d> ,
dx ,
5x,
,
,
,
,
•
i
,
,
•
'LPPER iUNE LAYER PcSTl
' INTERFLOW ,10X,5t3X,F7
•INTERFLOW STURAGES2X,
c (3XfFt3«3f ^i X ) i b • 3f^X fr/
CICE
.3),
5(2X
.3))
•LOWER ZJNE LAYER PESTICIDE
PESTICIDE, LBSS61X.F8.
•AUSCRbED1 ,64X,F8.3)
'CRYSTALLINE' ,olX,Fd.3)
' ol S SOLVED' ,63X, Fa. 3)
PhSTICIDE, PPMS61X.F8.
3)
3)
»
i
,F8.3)
,3X,F8.3)
3X.F8.3)
)
3X.F8.3)
,
i
F8.3J,3A,F8.3)
)
'REMOVAL, LBS',63X,Fd.3)
,
i
• PERCGLATlOs' ,61X,F8.3)
PESTICIDE, KGSS61X.F8.
3)
•REMOVAL, KoS',e>3X, Fd.3)
i
DSP7N
oRUUND«ATER LAYER PESTICIDE
( I,CT,C,JFL4G,CAD,KO,K,
•
)
L , NC OM ,
ST,X,M,NIP,FP,PTOT, INFW)
5810.
5811.
5312
5313.
5614.
5815.
5£l7.
5fcH.
5al9.
5 6 7 0 .
5321.
5822.
5823.
5824.
5825.
582b.
582 1 .
5823.
582^.
bd30.
5331 .
5332.
5633.
5 8 -J V .
5335.
D I MEMS 10 -J CT(5) .JFLAG15) ,CAO(5J ,KO(5) ,ST(5)
INTEGER I.JfLAG
K>!AL CT,C,CAO, K
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
P, FP, PTOT ,INFW
THE OESDRPTICN ALGORITHM is BASED ON THE FREUNDLICH EQUATION; THE
CIFFEREMCF BEING THAT TuE CONSTANT ( K) AND EXPONENT (N) OF THE
DESORPTION EI.JATICN DIFFER FROM THE ADSORPTION VALUES. DESORPTICJN
CCCURS «HEi< THE CCNCENTRAT1 ON OF PESTICIDE IN olATER (C) IS LESS THAN
ThE CONCENTRATION (CT ) AT THe LAST TIME STEP. THE DESORPTION
EXPONENT (N? — INPUTTED BY THE USER) AND THE DESORPTION CONSTANT
(KO — CALCutATEC t!Y SETTING TH= DtSORPTIOfl EQUATION EO'JAL TO THE
ADSORPTION cCJATICN AND SOLVING FOR K.D ) THEN DEFINE THE NEW DESORP-
TION CU»VE. ThE ASSUMPTION UF REVERSIBLE DESORPTION IS MADE. ONCE
DESORPTION STCPS ACSORPTIOlM BEGINS BY MOVING BACK UP THE OESOKK'TION
CCFVE UNTIL IT INTERSECTS THE A3SURPTION CURVE (I.E., WHEN C EQUALS
CAO — THE CONCENTRATION OF PESTICIDE IN WATEk AT WHICH THE ADSURP-
TICN AND DfcSOKPTICN CURVES INTERSECT). THEN ADSORPTION CONTINUES UP
The ADSORPTION CUH vt UNTIL DESORPTION OCCURS AGAIN. DEFINTIONS OF
THE OESOPPTICN VARIABLES FOLLOrt BELOW.
CT : CONCENTRATION OF PESTICIDE IN WATER (LB/LB)
AT THE LAST TIME INTERVAL
CAD : CONCENTRATION C AT WHICH THE ADSORPTION AND
DESORPTION bJUATIONS MEET, CAD IS SET
EUuAL TU CT ^HEN UESORPTIUN BEGINS AS A
MAHKER TO LATER DETERMINE WHEN THE ADSORP-
240
-------
5836.
5337.
5833.
583?.
53*0.
5341.
5842.
5843.
5844.
5845.
5846.
5847.
5848.
534Q.
5853.
5851.
5852.
5853.
5854.
5855.
5856.
5857.
585d.
5859.
5860.
5861.
5t)62.
5863.
5864.
5865.
5866.
58o7.
5ao9.
58'0.
5*71.
5872.
5873.
5874.
5875.
6COO.
6001.
6002.
6C03.
6004.
6004.1
6004.2
6004.3
6004.4
6033.
6006.
6007.
6003.
6009.
6C10.
6011.
6012.
6013.
6018.2
6018.3
6019.
602J.
6021.
6022.
6023.
6023. 1
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
ST
JFLAG
NP J
NIP
KO :
NCOH
TICN PROCESS LEAVES T Hfc REVERSIBLE U^SURH-
TICN CURVE AMD RETURNS TO THE NUN-REVERSIBLE
ADSORPTION CJRVE
CONCENTRATION OF ADSORBED PESTICIDE IN THE SOIL
ILB/LB) AT THE LAST TIME INTERVAL
: FLAG hhlCH NOTES WHETHER C WAS CALCULATED ON THE
ADSORPTION CURVE DURING LAST TIME STEP ,SRGX(5),INTF{5),RGX(5),IIMFL(5)f
1 UZSB15),APERCB(5),RIB«5),ERSN(5)
DIMENSION SMOIST124,5),UMOIST(24t5),LMOIST(2^1t
1 STt«P(24),ljTEMPl24)
COMMON /ALL/ RL,HYMNf PRNTKE ,HYCAL, DP ST, OUTPUT, T IMF AC tL
-------
6026.
6027.
6023.
6029.
6034.
6C34. 01
60Jf.ll
6034.21
603^.31
6034.41
6C34. 51
6C35.
6037.
6038. 1
6033.2
6033.3
603t3.4
6039.
6039. 1
6C39.2
6039.3
6039.4
6039.5
603C.6
6C3 ;.7
6C3o. 3
6C39.9
K ; » U '\
6041.
6042.
6043.
6044.
6045.
605:).
6C59.
6060.
6061.
6062.
6C33.
6CH9.06
6C39.07
6C !9.C8
6C39.C9
6089. 1
6089. 11
6C89. 12
6039.17
6089. 18
6Ct>9. 19
6C39.2
6039.21
6039.22
6089.23
6089.24
6089.25
6089.26
6039.27
6039.28
6C89.29
6039. 3
6089. 31
t>0<39.32
6089.33
6089.34
603V. 35
60:iS.4
dC '. 3 . 4 1
C
C
C
C
C
C
/*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
1 STST,PKSTCM,SPPOTM,PRSTOT,SPRSTM.PROTON,SAST,PRUTOT,
2 SCST,UPITCM,SDST,UPITUT,JTST,STS,UAST,UTS,JCST,SAS,
3 UOST,SCi,FP,SCS,C,MAX,SSTRl , SPRUT T, UA S, SPRSTT, JC S ,
4 FPJZ,UDS,UPHI1^,USTR,JPRITT,UPRIS
COMMON ALi. DECLARATIONS FjR 1*2 t. R*4
INTEGER PKNTKE.TI <"FAC , IMIN , IHR ,TF, JCOUNT , I DEBUG
REAL RU,riYM£N,LZS,AfiEA,REStU,ROSB,SRGX,INTF,RGX,INFL,
1 UZSa,AP£RL6,RIB,fcRSN,M,P3,A,RESB,SMOISTfUM01ST,
2 LMJIST.OPST,STEMP,UTtMP,LTEMP,MUZ,MLZ
REAL MMKINfMtIUHI,LMAVb
INTFGER*4 BGTH ,CALb,DAYS,ENjL,HOUR,HYCAL,INPUT,INTk,M£TR,
1 HNTh ,NU,NUTR,OFF,JN,OUTPUT,PEST,PRINT,PROD,SNOh,
INTEGER** APMCCt.CESCRP,SURF,SOIL
INTEGER TIMAP112J ,YEARAP(i<;)
REAL K.NI ,FPLZ,TOTPAP,0£GCON,
2 KGPLd,FPLG,LSTK,LAS,LCS,LOS,GSTR,GAS,
3 GCS,G03 ,TPdAL,DF.GSOM,D£GSOT ,UEGUOM,DEGUUT , I
4 NIPiOcGL(jM,OcGLUT,NCJM, JI ST.SULG
REAL STST,PRSTCrt(Sl,SPKOTM,PRSTClT<5) , SPRSTM , PROTOMt 5) ,SAST,
2 PROTUTo>,SCST,jPITGM(i)rSUST,UPITOT(b) ,UTST,STM5) , UASF ,
^ i \ . it ^ T _ < A (; i .i-itrCT.Qr^f^i.iiD.ciicrK^-rMAv-ccTuiit;*
DfcGS,
) , SPRSTT ,JCS{i>)
IJPP !TT, JPKIil 5 )
DEGRADATION OF PESTICIDE IFROM ADSORBED
-------
6089.42
6039.43
6089.44
6C89.45
6089.46
6089.47
60P9.48
6089.49
6069.5
6069.51
6039.52
6C39.53
6089. 54
6CP9.55
6039.56
6090.
6091 .
6C<92.
6093.
6094.
6095.
6CC!6.
6097.
6093.
6099.
6100.
6101.
6102.
6103.
6104.
6105.
6106.
6107.
6103.
6109.
6in.
6111.
6112.
6113.
6114.
6115.
6116.
6117.
6118.
6119.
6120.
6121.
6122.
6123.
6124.
6125.
6126.
6127.
6128.
6129.
6130.
6131.
6132.
6133.
6134.
6135.
613tj.
6137.
6133.
6139.
6140.
6141.
6142.
UAS1 = UASI - UtGUfl
DEGUC = DEGCCM*ucsm
UCS( I) = DCS (I) - DEGUC
UCST = UCST - OEGUC
OEGUU = DcGCQiM*UDSU)
UOSt I) = UDS(I) - CEGUD
UDST = UOST - UtGUD
DEGU = DEGU + GEGJA *• UEGJC + OEGJD
UTS(I) = OAS(I) + UCS(I) + UDS(I) + UPRIS(I)
UTST = OTST + UTSl I)
8024 CONTINUE
C
C LOWER ZONE
C
8026 IF (LSTR .LE. C.O) GO TU 3U90
DEGLA = DcGCCN*LAS
LAS = LAS - CcGcA
DEGLC = DEGCCN*LCS
LCS = LCS - OEGuC
DEGLU = DfcC.CGMLOS
LDS = LOS - utGtJ
LEoL * uEGLA + CtGLC + OEjLO
LSTR = LAS * LCS * LDS
C
«090 CONTINUE
C
C
C
C CUMULATIVE RESULTS
C
DEGSCM = DEGSCP * DEGS
DEGSOT = DEGSQT + UEGS
DEGUOM = DfcGOO." * CEGU
OEGUOT = CEGUQT + DEGU
DEGLOM = CEGLOM * DEGL
DEGLOT = CEGLCT * UEGL
C
TDEG = DEGS + CEGJ * DEGL
C
IF ((PRNTKE .NE. l).OR.(HYCAL.EU.CALB)) GOTO 8600
C
IF (OUTPUT. EC. fETR) GO TO 8200
WRITE (6.85C5)
WRITE (6t6i>Cll TOEG
WRITE (6i65C2J DEGS
HRITE (6,85CJ) DEGU
WPITE (6.85C7) DEGL
8200 IF (OUTPUT. EQ . ENGL) GO TO 8600
C
C METRIC CONVERSIONS FOR OUTPUT
TDEGMT=TUEo*KGPLS
DEGSMT=DEGS*KGFLb
DEGUMT=DfcGU*KGPL6
DEGLMT=UbGL*KGFLd
hRITE (o,65C6)
WRITE (o,8i-01i TDEGMT
WRITE (6.85C2) OcGSMT
WPITF (6,d50J) OtGCMT
WRITE (0,8507) CEGLMT
C
C
8501 FORMAT (• , dX, 'TOTAL' ,71X/F7.3 J
8502 FOPMAT (• .aX.'FKOM SURFACE1 i64X,F 7. 3)
8503 FORMAT (• ,8X,'FkOM UPPER ZONE1 , 61X, F7.3)
8505 FORMAT («C , 5X , «PE ST 1C IOE DEGRADATION LOSS, LBS.')
6506 FORMAT l«0 , 5X , 'P tST 1C I JE DEGRADATION LOSSf KGS.1)
85C7 FORMAT (« ,d/,'FRCM LG^ER ZONE • , 61X, F7. 3)
C
243
-------
6143.
6144.
6200.
62J1.
6202.
6203.
6204.
6205.
6206.
6207.
6208.
620Q.
621'J.
62H.
6212.
6213.
6214.
6215.
6216.
6217.
6218.
0219.
6220.
6221.
6222.
6223.
6224.
6225.
6226.
6227.
6223.
6229.
6237.
6231 .
6231.5
62J2.
6233.
6234.
6235.
6236.
6237.
6233.
6239.
6240.
6241.
6242.
6243.
62*4.
6245.
6246.
6247.
6243.
6248.5
6249.
6250.
6250.1
6230.2
6250.3
6250.4
6250.5
6250.6
6250.7
6250. 8
6250.91
6250.92
6250.93
6250.94
6250.95
6250.96
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
8600 R51UWN
END
SUBROUTINE NUTRIO UOERR , INTRVL ,NAPP, SNAPL.UNAPL ,TIMHR,
1 INPUT,OUTPUT,APOAY,KNI,KP.(,ULUPF,LZUPF)
THIS SUBROUTINE READS NUTRIENT INPUT SEti.
FOR REACTION RATES, INITIAL STORAGES, AND
APPLICATIONS. INPUT INFORMATION IS SCANNbU
FOR ERRORS V.HICH AR fc FLAGGED BY IOtRR=l.
ON HETUKN TO MAIN IOERft-1 MLL STOP THE RUN
SUBROUTINE ALSO OUTPUTS REACTION RATES,
INITIAL STORAGES, AND APPLICATIONS
DECLARATIONS
COMMON VARIABLES
INTEGER TSTEP,NSTEP,SFLG,UFLG,LFLG,GFLG
REAL DELT,
1 SNT(20) ,SNRSM(20,5) ,SNROM(20,5) ,
2 JNT(20) ,UNI(20,5),UNIT(20),UNRIM(20,5),
3 NRSMUC.5) ,LNRPM(20),
4 SHRBM(20,5),UNRBM(20,5) ,LNRBM<20) ,GNR8M (20) ,TNRBMU01 ,
5 SNRSY(iC,5), SNROY (20.5J ,UW IY (20 ,5) , NRSY( 20, 5) ,
6 LNRPY(20J,SNRBY(20,i>),UNRBY(
-------
6251.
6252.
a253.
6254.
6255.
6256.
6257.
6253.
6259.
6260.
6261 .
6262.
6203.
6264.
62t5.
62^6.
6267.
6263.
6269.
6270.
6271.
6272.
6273.
627>5Ci.
c
c
c
c
c
c
c
c
120
130
132
134
135
C
C
136
7777
C
C
C
C
C
C
C
C
c
c
c
142
C
C142
CHARACTER STRINGS USED TO COMPARE ANU
INTEKPKET INPUT SEQUENCE, NAMES OF
KtACTIQiJ KATES, ANU INPUT UMTS UPTIUN.
IUTEGEF- *4 CHAR, TYPE .BLANK, RE AC ,N I TR, PHOS , CHLO, ENO.S J KF ,
1 JPPEilCrtE.GROLiTEMP , INIT, AP PL , MtTR ,CNGL ,
2 KNNAfE(8>t KPNAME(5)
INITIALUATICN OF STORAGES AND FLAGS
DATA LBPAC/'CB/AC1 /,KGPHA/« KG/HA •/, NTRT/ • NUT RIE NT •/
DATA BLANKS/' •/, bLANK/1 '/, REAC/'REAC1/
DATA ixlITd/'NITrt'/.PHCS/'PHOS'/iCHLO/'CHLO'/rEND/'END '/
DATA SURF/'SURF •/ ,UP PE/' UPPE ' / , LOwE/' LOhE1 /, GROU/'GROU1 /
DATA TEMP/'TcMP'/.INIT/'INIT'/.APPL/'APPL'/.METR/'METR*/
DATA ENGL/'ENGL1/
DATA KMNAfE/1 Kl', • KD ' , ' KPL • , ' KAM«,
1 • KIM', «KKIM», • KSA1, ' KAS1/
DATA KPNAKE/1 KM1, • KIM1, « KPL', ' KSA', 'KAS1/
IGERR = 0
SFLG = 1
UFLG = i
LFLG = 1
GFLG = i
DO 130 J=l,20
00 1^0 I8LK-=1,5
SN( J, I6LK J = 0.0
UNU.IBLK) = 0.0
UNI(J,I3LK) = 0.0
CONTINUE
LiJUi = 0.0
GNU; = c.o
CONTINUE
DO 135 IZONE=1,4
09 132 J=l,8
KNKJ.UCNEJ = 0.0
CONTINUE
00 134 J=l,5
KHI(J,I/CNE) = 0.0
CONTINUE
CONTINUE
READ (5,JCJl) CHAR8
ft'RITE (6,7777) CHAR3
FORMAT {' «,A8J
IF (CHARd .EC. BLANKS) GO TO 13b
IF (CHARd .EG. MKT) GJ TO 142
IOERR = 1
WRITE (6,4595) CHAR3
RETURN
CATA INPUT — NAMELIST VARIABLES
NAMELIST IS SUPPORTED ON ONLY IBM COMPUTERS. TO USE
NAMELIST REMCVL C FROM COLUM.4 1 IN THE FOLLOWING NAMELIST
READ STATEMENTS. £DD C TO COLUMN 1 IN THE TWEE FORMATTED
REA3 STATtMfcNTS (DIRECTLY BELOd) TO DEACTIVATE THAT
SECTION OF CODE.
READ (5.NUTRIN)
READ (5.PLANTU)
READ (5.PLANTL)
READ (5,-jOJC) TSTt ?, NAPPL,TI IHAh
245
-------
630*.
6305.
6305.5
6305.55
6305.56
6305.57
6305.58
6305.6
6305.7
6305. 8
6305.65
6305.9
6306.
63J7.
6300.
6310.
6311.
6312.
6313.
631*.
6315.
6316.
6317.
6313.
6319.
6320.
6321 .
6322.
63^3.
632*.
6325.
6326.
6327.
6328.
6329.
6330.
6331.
6332.
6333.
63:)*.
6335.
6336.
6337.
6333.
6339.
63*0.
63*1.
63*2.
63*3.
63**.
63*5.
63*6.
63*7.
63*3.
63*9.
6350.
6351 .
635^.
6353.
6?5^.
6355.
6356.
6357.
6353.
6359.
C
C
C
c
c
c
c
143
C
C
C
C
c
c
c
c
c
145
C
c
c
c
c
150
160
C
C
C
170
READ (5,5C01) ( ULUPTK ( I) , 1 = 1 ,12 )
PEAU (5,5001) (LZUPTK(I) ,1=1,12)
THE FOLLOWING ASSIGNMENT IS DUE TO THE NAMELIST LISTS
OF JLUPTK AND L^UPTK NOT BEING ABLE TO BE USED IN AN ARGUMENT
LIST BEFORE BEING READ IN A NAMELIST.
DO 143 J=l,12
ULUPF(J) = ULUPTK(J)
LZUPFU) = LZJPTK(J)
CONTINUE
WRITS (0,*oOC)
dRITE (6,4005)
WRITE (6,4005)
WRITE (o,461C> TSTEF.NAPPL, TIMHAR, ULUPTK,L£UPTK
NAPP=NAPPL
TIMHR = TIMhAR
CHECK TSTEP TO SEE IF AN INTEGER NUMBEK ARE
IN A DAY (1440 MINI AND CHECK THAT TSTEP IS
AN INTEGER MULTIPLE OF THE SIMULATION
INTERVAL (5 OR 15 MIN).
DELT IS THE TIME STEP IN HOURS BECAUSE
REACTION RATES ARE PER HOUR (INTERNALLY).
ICHK = 0
ITSTEP=TSTEP
IF ( M00( 1440,ITST£P) .NE. 0) ICHK = 1
IF ( KCDdTSTtP.INTRVL) .NE. OJ ICHK=1
IF (ICHK .EG. C) GO TO 1*5
WRITE (6.47K) TSTEP
TSTEP = 60
DELT = TSTEP/6C.
NSTEP = 1440/TSTEP
INPUT REACTION RATES
READ (5,3000) CHAR
IF (CHAR ,EQ. BLANK) GO TO 150
IF (CHAR .EG. REAC) GO TO 160
IOERR = 1
WRITE <6,461S)
WRITE (6,4620) REAC, CHAR
RETURN
REAO (5,3000) TYPE
IF (TYPE .tG. BLANK) GO TO 160
IF (TYPE .EO. MTk ) GO TO 170
IF (TYPE .EG. PHOS) GO TO 220
IF (TYFL: .EG. END) GC TO 30J
IOERR = 1
WPITt (6, 4619)
WRITE 16.464C) TYPE
RETUKN
NITROGE.N RATES
READ (5,JOJC) CHAR
IF (CHAK .EG. SU\F) Gu TO UJ
IOERR * 1
*RITE (6,46<
-------
6364.
6365.
6366.
6367.
636S.
6369.
6370.
637 1 .
6373.
6374.
6375.
637t>.
6377.
6378.
6379.
6330.
6331.
6362.
6333.
6334.
6335.
6386.
6337.
6383.
6339.
6390.
6391.
6392.
6393.
6304.
6395.
6396.
6397.
6398.
6399.
6400.
6401.
6402.
6403.
64C4.
6405.
6406.
6407.
6403.
6409.
6410.
6411.
6412.
6413.
6414.
6415.
6416.
6417.
6413.
1 41Q.
6420.
6421.
6422.
6423.
6424.
6^25.
6426.
6427.
6423.
6429.
6430.
190
C
200
C
205
C
210
C
C
C
220
230
C
240
C
250
C
260
C
IF (CHAR .EQ. UPPE) GO TO 190
IOEPR = 1
rtRITE (0.462C) TYPE
WRITE (6.463C) UPPE, CHAR
RETURN
PEAO (5,J01C) (KNK J,2) ,J=1,8)
READ (5,3000) CHAK
IF (CHAR .EQ. LGWE) GO TO 2JO
IOEPR = 1
WRITE (6.462C) TYPE
WRITE (6,46JC) LOWE, CHAK
PET'JkiN
READ (5,3010) (KNI (J,3),J=1,8)
READ (5,3000) CHAR
IF (CHAR .Eg. GHGU) GO TO ^05
IOERR = 1
WRITE (6,4620 TYPE
WRITE (6.463C) GROU, CHAR
RETURN
READ (5,3010) (KN ItJ ,4) , J=l,tf)
RE40 (5,3000) CHAR
IF (CHAR .EU. TtMP) GO TO 210
IOERR = 1
WRITE (6,462C) TYPE
WRITE (6.463C) TEMP, CHAR
RETURN
READ (5,3010) (Trif>N ( J) , J=l ,3)
GO TO loO
PHOSPHORUS RATES
READ (5.3COO) CHAR
IF (CHAR .EG. SuRF) GO TO 230
IOERR = 1
W^ITE (6,46iC) TYPE
wRITt (C..463C) SURF, CHAK
REAJ (5.JOIO) (KPK J,ll,J=l,b)
READ (5,300C) CHAR
IF (CHAR .c(j. UPPE) GO TO 240
IOERR = 1
WRITE (6.462C) TYPE
WRITE (6,4630) UPPt, CHA3
RETURN
REAO (5,3010) IKPK J,2) ,J=l,b)
REAJ (5,3000) CHAR
IF (CHAR .EG. LCWfc) GJ TO 250
lOFPn. = 1
>-JkIT£ (o,462CJ TYPE
WRITt («>,463C) LOWE, CHAR
RETUnN
REAO (5.301C) (KPK J,3) ,J = 1,5)
jPEAD (5,3000) CHAR
IF (CHAR .Eg. GKOU) GO TO 260
IOERR = 1
^ITE (o,4t>2C) TYPE
WUTt (6,4o3C) GKOU, CHAR
RETURN
READ (5,3010) (KP I (J , 4) , J= 1 , 5)
READ (5.300C) CHAR
IF (CHAk .Eg. TcMP) GO TO
247
-------
6431.
6432.
6433.
6434.
6435.
6436.
6437.
6433.
6439.
6440.
64*1.
6442.
6443.
644*.
6445.
64*6.
6447.
6443.
6449.
6450.
6451.
6452.
6453.
6454.
6455.
6456.
6457.
6458.
6459.
6^60.
6461.
6462.
6463.
6 4 ( -, * .
6465.
6466.
6467.
6468.
6*69.
6470.
6471.
6472.
6473.
6474.
6475 .
6476.
6477.
6476.
6479.
6480.
64-31.
6432.
6433.
646*.
64^5.
64 r)6.
64.-J7.
6488.
6489.
6490.
6491.
6492.
6493.
6494.
6495.
6496.
6497.
649d.
270
C
C
C
C
300
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
301
302
303
304
305
306
3C7
308
309
310
311
313
IOERR = 1
-VRITE (o,4o2C) TYPE
h'UTE (6,4630.) TEMP, CHAR
RETURN
REAO (5,3010) (THKP(JJ,J=1,5)
GO TO 160
OUTPUT UF REACTION RATES AND TEMPERATURE
CORRECTION FACTORS.
MR1TE (6,46501 (KNNAMEJ J) , J = l,8) ,
1 ( (KNI (J, I ZONE) ,J=1,8) , IZONE=1,4) , (THKN(J) ,J = 1,8)
WRITE (6,4£>t>0) (KPNAMEl J) , J=i,5) ,
1 t (KPKJ.IZONt) ,J=1,!>) , IZONE=1,"») » (THKP( JJ ,J=1,5)
CONVERT KATES FROM PER DAY TO PER HUUR , AND
CHECK REACTION RATES BY ZONE FOR
1) REASUNAdLENESS, I.E. >= 0.0
2) VALIDITY OF NUMERICAL SOLUTION TECHNIQUE
THE EXPRESSION KNK J ,1 ZONE)*DfcLT IS THE
FRACTION OF THE CONSTITUTED REMOVED
DURING THE TIMESTEP. THIS NUMBER SHOULD
BE MJCH LESS THAN 1. FOR ACCURATE SOLUTION
CHECK SET AT 0.5.
3) ON UK OFF, IF KNI AND KPI ARE ALL ZtkO FUR
A ZO^E, THEh NO TRANSFORMATIONS ARE DUNE.
S,U,L, AND GFLG ARE FLAGS TO INDICATE
IF TRANSFORMATIONS ARE DONE (1J OR NUT(O).
DO 311 IZONE=1,4
SUM =0.0
00 303 J=l,d
KNI (J, IZONE) = KNHJ, IZONE) /24.
IF (KNKJ.IZLNE) .GE. 0.0) GO TO 301
IOERR = 1
n'RITE (6,4780) KNNAMEU), IZONE, KNKJ, IZONE)
RETURN
IF (DELT + KNKJ , IZONE) .LT. 0.5) GO T3 302
nRITE (6,4790) KNNAME(J), IZONE
SUM = SUl* + KNKJ, IZONE)
CONTINUE
DO 30o J=l ,3
KPKJ.IZONt) = KPIl J, UUNU/24.
IF (KPK J ,IZLNE) .GE. 0.0) GU TO 304
IDErlR = 1
nRITE lo,4oOO) KPNAMEU), IZONE, KPKJ.IZONF)
RETLfiN
IF (OELT + KPKJ, IZONE) .LT. O.i) GO TO 305
WRITE (6,4810) KPNAME(J), IZONE
SUM = SUP * KPKJ, IZONE)
CONTINUE
IF (SUM .LT. O.C0001) GU TO (307,308,309,310), IZONE
GO TO 311
SFLG = 0
GJ TO 311
UFLG = 0
GO TO 311
LFLG = 0
GO TO 311
G^LG = 0
CONTINUE
DO 313 J=l ,b
IF (THKN(J) .GE. 1.0) GU TO 313
nJRITE
-------
6499.
6500.
6501.
6502.
6503.
6504.
6505.
6506,
6507.
6508.
6509.
6510.
6511.
6512.
6513.
6514.
6515.
6516.
6017.
6518.
6519.
6520.
6521.
&522.
652?.
6524.
6525.
6526.
6527.
6528.
652'J.
6530.
6531.
6532.
6533.
6534.
6535.
65:i6.
c537.
6538.
6539.
6540.
6541.
6542.
6543.
654i».
6545.
6546.
6547.
6544.
6549.
6550.
6551 .
6552.
6553.
6554.
6555.
6556.
6557.
6553.
6550.
6560.
65(^1.
6562.
6563.
,6564.
.6565.
6566.
314
C
C
c
a
c
319
320
330
340
350
C
C
C
360
365
37C
380
390
C
400
410
420
430
C
C
C
440
CONTINUE
INPUT OF INITIAL NUTRIE
READ (5,3000) CHAR
IF (CHAR .EQ. BLANK) GO TO 319
IF (CHAR .EQ. INIT) GO TO 320
IOEPR * 1
WRITE 16,4665) CHAR
RETURN
READ (5,3CGC) TYPE
IF (TYPE .EQ. BLANK) GO TO 320
IF (TYPE .Eg. MTR) GO TO 330
IF (TYPL .EC. FhOS) GO TO 340
IF (TYPE .EQ. ChLO) GO TO 350
IF (TYPE .EQ. END) GO TO 560
IOERR = 1
rfPITE (6,4/25)
rtMTE (6,4740) TYPE
RETURN
NSTRT = 1
NEND = 6
GO TU 360
NSTRT = 11
NEMO = 14
GO TO 360
NSTRT = 20
NEND = 20
SURFACE
READ (5.J020) CHAR, NBLK
IF (CHAR .£Q. SURF) GO TO 36b
ICERR = 1
WRITE (6,4670) TYPE
*RITE (6,4630) SURF, CHAR
RETURN
IF (MBLK.Eu.O .CR. NdLK.EU.l .OR. NBLK.EiJ.5)
IOERR = 1
WRITE 16,4670) TYPE
WRITE 16.46SC) SURF, NBLK
RETURN
IF (NBLK .EQ. 5) GO TU 400
READ (5,3010) liNT( J ) , J=NSTRT,NEND )
00 390 J = NSTR7 ,|MEND
D(J 300 IBLK = 1,5
SM J, IBLK) = SNTU)
CONTINUE
CONTINUE
GO TO 440
DO 41U ItJLK=i,5
RFAU (5,3C1C) (SNU, IBLK), J=NSTRT , NEND)
CONTINUE
DO 430 J=NSTRT,NEND
SUM = 0.0
DO 420 IELK=1,5
SU-t = SUI" * SN(J,IBLK)
CONT IiMJE
SNTU) = SJN/5.
CONTINUE
UPPER ZONE
READ (5,3020) CHAR, NBLK
IF (CHAR .Eli. LPPE) GO TJ 450
GO TO 3 70
249
-------
6567.
6569.
6570.
6571.
6572.
6573.
657^..
6575.
6576.
6577.
6573.
6579.
65dO.
6531.
6583.
6533.
6584.
6533.
6586.
6587.
6533.
6589.
6590.
6591 .
65-92.
6593.
6594.
6595.
6596.
6597.
659^.
65S9.
6603.
6601'.
6602.
6603.
660-V.
6tC5.
6606.
6607.
6603.
6609.
6610.
661 U
6612.
6613.
6615.
6616.
<617.
6618.
6619.
6620.
6621.
6622.
6623.
6624.
6625.
662o .
662 T.
6628.
6629.
6630.
6631.
6632.
6633.
450
460
470
480
C
490
500
510
520
C
C
C
530
540
C
C
C
IOERK = 1
wRITc <6,<«67C) TYPE
WRITE (6.463C) UPPE, CHAR
RETUkN
IF (NBLK.EQ.O .CR. NBLK.EU.l .OR. NBLK.EQ.5) GO TO 460
•IOERR = 1
«PIT£ (6,467C) TYPE
WRITE (6.46SC) UPPE, NBLK
RETURN
IF (NBLK .EQ. 5) GO TO 490
READ (5,-iClC) IM T( J ), J = NST*T ,NEND )
DO 480 J = KSTR7,N£M)
DC 470 I8LK=1,5
UNIJ.IBLK) = UNT(J}
CONTINUE
CONTINUE
GO TO 530
DO SCO IBLK=1,5
READ (5,3010 (UN( J,IBLK1,J = NSTRT,NEND)
CONTINUE
DO 520 J = ,NSTRT ,NEND
SUM = C.J
DO 510 IBLK-1,5
SUrt = SUM + UN(J.IBLK)
CONTINUE
'JMT(J) = SU^/5.
CONTINUE
LOsVEH /JNt
READ (5,3000) CtiAR
IF (CHA^ .£J. LC.ic) GO TJ 540
IOERR = 1
WRITE (6,46?C) TYPE
WRITE (6,463C) LOwE, CHAR
RETURN
READ (5,3010) (LNfJ=NSTRT,NEND)
GROUNDWATER
READ (5,3CCC) CHAR
IF (CHAk .EQ. GPOU) GO TO 550
IOERK = 1
WRITE (&,4o7C) TYPE
Kf-ITE (6,4o3C) GROU, CHAR
) , J=NSTRT,N END)
OUTPUT OF INITIAL NUTRIENT STORAGES
CONC=KGPHA
(SNT( JJ, J-l ,6) * (SNT(J)t J*ll( 14! ,SNT(20)
(IBLK,(SN,4025)
(o,403C)
luNi J
fETR)
CbNC
(SNT
(IBL
SN12
(UNT
I IBL
J),J = n,14J ,UNT(20)
IIBLK,IJN(J,I6LKJ ,J=l,6Jf(UN(J, IBLK) , J=U,1<*)
I6LK=1, 5)
250
-------
6635.
6636.
6637.
6634.
6639.
6640.
6641.
6642.
6643.
6644.
6645.
6646.
6647.
6648.
6649.
6650.
6651.
6652.
6653.
6654.
6655.
6656.
6657.
6653.
6660.
6661.
6662.
66o3.
6664.
6665,
6606.
6667.
666^.
6669.
6670.
6671.
6672.
6673.
66 74 .
6675.
66 7S.
6677.
667H.
6fc7T.
6631.
6682 .
6684.
66S5.
b6 56.
S6S7.
i689.
S690.
S691.
i>692.
b693.
b6 54.
j695.
j696.
Sf 97.
J69-3.
J6 )9.
3700.
3701.
S70?.
C
C
C
565
570
C
C
C
C
C
573
574
575
C
560
585
C
590
C
595
C
C
C
C
C
600
610
C
WRIT?
WRITE (6.402C)
WRITE U.412C)
WRITE (6,4020
),J = 1,6),(LNU),J=11,14J,LN(20)
IGM JJ,J = 1,6) , IGNIJ ), J=11,14),GN(2G)
CONVERSION OF METRIC INPUT TO ENGLISH (LB/AU
IF (INPUT .Eg. ENoU (i'J TO 57J
DO 570 J=l,20
DO 565 IDLK=1,5
SNU.IBLK) * SN(J, IBLK)*.8924
UN(JtldLk) = UN(J,1BLK)*.8924
CONTINUE
LN(J) = I_N(J)*.8924
GN( J J = GN(0 )*.6924
CONTINUE
COMPUTE TOTAL NITROGEN (TNA), TOTAL PHOSPHORUS
(TPAJ, AND TOTAL CHLORIDE (TCLA) IN THE SYSTtM
LiNITS = LB/AC.
TNA = 0.0
DO 575 J=l,6
SUM = C.O
DO 574 IBLK=l,i
SUM = SUN «• SN(J,IBLK) + 'JN(J,IBLKI
CONTINUE
TNA = TrtA •«• WIJJ * GN(J) + SUM/ 5.
CONTINUE
TPA = 0.0
00 585 J = U,14
SUM =0.0
00 580 I6LK = 1,5
SUM = SUt- * SN(J.IBLK) + UN(J,IBLK)
CCNTIislwE
TPA - TPA * LN(J> + GNU) + SUM/5.
CONTINUE
TCLA = O.C
DO 5VO IDLK=l,5
TCLA = TCLA + SN(20,IttLKJ + UN(20,IBLK)
CONTINUE
TCLA = >.M20) + GN120> *• TCLA/5.
IF (INPUT .EG. McTR) GO TO 595
CCNC = LdFAC
VvRITt (t>,4fciC) TNA.uONC, TPA.CONC, TCLA,CONC
GO TO oLO
CUNC = KGPhA
TMMET = TNA*1.121
TPMET = TPd+1.121
TCLMET = TCLA*1.121
WRITE (o,482C) TNKET.CONC, TPMET, CONC, TCLMET, CONC
NUTRIENT APPLICATIONS
IF (NAPPL.GE.C .AUU. NAPPL.LE.5)
IOEPR = 1
WPITE (6,47 1C) NAPPL
RETURN
IF (NAPPL .EC. 0) GO TO 910
GO TO 610
CONC = LdPAC
IF (INPUT .EC. PETR)
WRITE (6.40CC) C'JNC
CONC=KGPHA
251
-------
5703.
57J4.
5705.
5726.
5707.
5708.
5709.
5710.
5711.
5712.
5713.
S714.
5715.
= 716.
i7l6.
,72'j.
6722 .
6723.
6724.
6725.
6726.
6727.
6725.
6731 .
6732.
6733.
6734.
6735.
6736.
6737.
6733.
6739.
6740.
0 741 .
67^2.
6743.
6744.
6745.
6746.
6747.
674$.
6749.
6750.
6751.
6752.
6753.
6754.
6755.
6736.
6757.
6750.
6759.
6760.
6761.
6762.
67^-3.
67t>4.
6765.
6766.
6767.
676 3.
676'J.
f 770.
612
614
C
620
00 9CO IAPPl=l,NAPPL
DO 614 J=lf20
Si-IAPLT(J) = 0.0
UNAPLTU) = O.C
DO 612 IBCK=1,5
S.MAPL(J,IBLK,IAPPL)
UNAPU(JtlBLKtIAPPLJ
CONTINUE
CONTINUE
63C
635
640
650
660
670
C
C
C
680
690
700
710
720
0.0
0.0
PEAD (5.3C2U CHAR, APDAYIIAPPL)
If
IF
{CHAR
(en/;*
ILIcKR
VvMTE
KKITE
.EC
BLANK)
.tw. APPL;
= 1
(6 ,4720)
(o,463C) APPL,
GO TO 620
GO TJ 630
CHAR
IF £
(TYPE
(TYPE
IOERR
hRITE
RETURN
.EC
.EC
.EG
.EC
= 1
(6,4720)
(6,4745)
TYPE
BLANK)
IMITR)
P HO S)
CFLG;
GO TO 640
GO TU 650
GO TJ 660
GO TO 670
E,ND) GO TO 870
TYPE, IAPPL
NSTRT
N6ND
Gu
NSTRT
1
6
TO 6t)C
= 11
NEMO - 14
GJ TO 68C
NSTRT = 20
NEND = 2C
SURFACE
PEAO (5.3C2C) CHAR,
IF (CriAR .EC. SURF)
IGERR = 1
V-RITE (6,4720)
NBLK
GO TO
690
IAPPL, TYPE, SJRF, CHAR
RETURN
(NbLK.EC.U .CK. N3LK.EJ.1 .C
lUEKR » 1
KkiTE (t3,4720)
WRITE (6.40VC) SURF, NtJLK
PSTU.HN
(NBLK .EC. 5) GO TO 73u
READ 45,3010) (SNAPLT(J),J=NSTRT,NEND)
DO 72J J=NSTKT,NEMJ
DO 710 ItLK=l,5
5i\IAPL( J,I BLK,IAPPL) = SNAPLTU)
CONTINUE
IF
IF
N8LK.EW.5) GO TO 700
252
-------
6771.
6772.
6773.
6774.
6775.
6776.
6777.
677'j.
6779.
6760.
67*2*
6783.
6784.
6785.
6786.
6787.
67B8.
6789.
6791.
6792.
6793.
6794.
6795.
6796.
6797.
679H.
6799.
6800.
6801.
6802.
6303.
6804.
6805.
6606.
6307.
66.33.
6809.
6810.
6811 .
6-312.
6813.
6814.
6815.
6816.
6817.
6813.
6319.
6820.
6621.
6822.
6823.
6824.
6825.
6826.
6827.
6828.
6829.
6830.
6331.
6832.
6833.
6834.
6835.
6836.
6637.
662**.
C
730
740
750
760
C
C
C
770
780
790
800
810
C
820
830
840
850
860
C
C
C
87C
C
C
C
C
1
2
I
2
GO To 770
DO 74J Ii3LK*l,5
READ 43,3010) ( SNAPK J , I BL K, I APPL ) , J= NSTRT ,Nt NO)
CCNT INUE
DO 7oO J=i4STRT,NEND
SOM = O.C
DO 750 1ELN=1,5
SJM = SJM * SNAPLU.IBLK.I APPL)
CGiHINUE
Si\,APLT(J) = SJM/5.
C'JNT 1'iUc
UPPER ZONE
READ 15,3020) CHAR, N3LK
IF (CHAR .EC. UPPEJ GO TO 780
IOEKR = 1
WRITE (6,4720)
k.RITE (6.475C) IAPPL, TYPEt SURF, CHAR
RETURN
IF (NdLK.EJ.O .CR. NBLK.EU.l .OR. NBLK.EQ.5) GO TO 790
IGERR = 1
WHITE (6,4720)
WMTE (6,4o90) UPPE, iMBLK
FETUnN
IF (NbLK .EC. 5) GO TO 820
READ (5.JC10) (UNAPLT(J) , J=NSTRT,NEND)
DO 810 J=NSTKT,NENU
DO 800 IBLN=1,5
UNAPL(J,IdLK, IAPPL) = UNAPLT(J)
CONTINUE
CONTINUE
GO To 860
DO C30 IBLK=1,5
P6AO (5,3010) (UNAPLUiI8LKfIAPPUf J=NSTRT,NEND)
CONT I.MOE
DO 850 J=NSTRT,NEND
SUrt = C.C
DO 84C tBLK=l,5
SUM = SJM + UNAPL(J,IBLKfIAPPL)
CONTINUE
UNAPLTU) = SUM/5.
CONTINUE
GO TO 640
OUTPUT OF NUTRIENT APPLICATIONS
WRITE (6,4760) APDAY(IAPPL)
WRITE (6.401C)
WRITE (6, 4025) ( SNAPLT I J) , J = 1 , e>) , ( SNA PLT( J ) , J= U , 14) , SNAPLT ( 2u)
WRITE (6,4030) (I3LK,(SNAPL(J,IBLK.,IAPPL),J=1,6),
(SNAPLU.IBLK, IAPPL) , J = ll ,14) ,
SNAPL(20,IbLK, IAPPL), IBLK=1,5)
WRITE (6,4050)
WRITE (6,4025) (UNAPLTU) ,J»1,6I , I UNAPLTt J » , J*ll , I 4) ,'JNAPLT(20)
WRITE (6,4030) ( IQLK,('JNAPL(J,IBLK, IAPPL) ,J=1,6) ,
(UNAPL(J,I6LK, IAPPL),J*H,14),
IAPPL) ,
CONVERT APPLICATIONS F^ Ort METRIC 10 ENGLISH
IF (INPUT .Ew. ENGL) GO TO 900
DU 8*0 J=l,20
DO ddO IdLK. = l,5
SNAPH j.IoLK.UPPu) = S'^APLU , IbLK, IAPPL)*. b924
253
-------
6839.
6G40.
S842.
6844.
6S45.
6646.
6847.
6843.
6349.
6850.
6851.
6652.
6853.
6854.
6855.
6856.
6857.
6863.
6864.
6865.
6866.
6867.
6868.
6869.
6870.
6871.
6872.
6873.
6874.
6875.
6876.
6877.
6878.
6879.
6880.
6881.
6882.
68d3.
6884.
6885.
6886.
6887.
6888.
68^9.
6890.
6891 .
6892.
6893.
6894.
6895.
6896.
6897.
6893.
6891.
6900.
6901.
6902.
6903.
6904.
6905.
690i..
6907.
6?08.
6909.
£80
890
C
crn
C
C
910
C
C
C
3000
3001
3010
3020
4000
4005
4010
4020
4025
4030
4090
4110
4120
4599
4600
4610
4619
4620
4630
4640
4650
4660
4665
4670
4690
4700
4710
4720
4725
4730
COIN
CONT
rnwTT MII
RETURN
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT (
1
2
FORMAT
FOPMAT i
FORMAT {
FOP'IAT (
FORMAT (
FOPMAT <
FORMAT (
FORMAT I
FORMAT
1
FORMAT
FORMAT
1
2
3
4
5
FORMAT
FORMAT
1
FORMAT
FORMAT
1
FORMAT
1
2
3
4
5
FOPMAT
1
2
3
4
5
FORMAT
FORMAT
1
FORMAT
1
FORMAT
FORMAT
1
FORMAT
FORMAT
FORMAT
1
2
It
i-
(
(
(
(
'
i
3
(
i
•
•
1
•
•
i
(
(
(
(
(
(
(
(
(
i
(
(
(
(
{
(
(
UNAPLlJ.IdLK.IAPPL) = UNAPL(J,IBLK, 1APPL)*.
«,I5,« MINS
>I2,
(A4)
(AS)
6F8.0)
A4.SX, 13)
0',/,'C','NUTRIENTS - •,A5,1IX,'ORG-N',3X,«NHJ-S',JX,
•NH3-A' ,3X , •N03+N02',4X,•N2 «.2X,•PLN T-N•,3X,'ORG-P',
3X,'P04-S' ,3X,'P04-A',2X,'PLNT-P',6X,'CL' )
'0')
C',3X, 'SURFACE LAYER')
C',6X,«STORAGE1,12X,Ftt.O,5F8.3,F8.0,3F8.3,F8.3)
C',6X,'AVERAGE',12X.F8.0,5F8.3,F8.0,3F8.3.F8.3)
',12X,'BLOCK',I2,6X,F8.0,5Fa.3,Fb.O,3F8.3,F6.3)
0' , JX, 'UPPER ZONE')
L1 ,3X, 'LLJ«ER ZONE' )
0' ,3X, 'GROUNOrfATER')
• Oi,. EXRCR EXPECTING THE WORD NUTRIENT BUT ',
'READ IN «,A8)
•1',40X,'NUTRIENT SIMULATION INFORMATION')
•U',jX,'TlME STEP FOR TRANSFORMATIONS
/,' «,3X,'NUMBER OF NUTRIENT APPLICATIONS =
/,' '.JX.'OATE OF PLANT HARVESTING = ',14,
/,' ',3A,'FRACTION OF MAXIMUM MONTHLY UPTAKE ',
/,' «,toX, 'UPPER LAYERS = S12F6.3,
/,' ',6X,'LC,*ER ZONE = '.12F6.3J
•0',' ERROR IN REACTION RATES SECTION OF INPUT')
•0',' ERROR IN «,A4,' REACTION RATES SECTION OF •• ,
•INPUT')
• ',12X,'EXPECTING «,A5,' BUT READ IN •,A4)
• ' ,U*,' EXPECTING NITR, PHOS, OR END, BUT READ ',
'IN «,A4)
•0','MTkCGEN REACTION RATES • ,8 ( 5X, A'V) / ,
' ',6X,'SURFACE1,12X,8(2X,F7.4)/
' «,6X,'UPPER ZONE',9X,8I2X.F7.4)/
' ',t>X,"LUwER ZONE « ,9X,8(2X,F7.4»/
1 ',6X,'GROJNDnATER',8X,a<2X,F7.4)/
' ',3* ,'TEMPERATURE COtF.1,4X,8F9.3)
•0','PHuSPHtRUS REACTION RATES', 5
-------
6910.
6911.
6912.
6913.
6914.
691'5.
6916.
6917.
6918.
6919.
6920.
6921.
6922.
6923.
6924.
692b.
6926.
6927.
6928.
6929.
6930.
6931.
6932.
6933.
6934.
6935.
6936.
6937.
6938.
6939.
6940.
6941.
6942.
6943.
6944.
70CO.
7001.
7002.
7003.
7CC4.
7005.
7006.
7007.
rocs.
7009.
7010.
7011 .
7012.
7013.
7014.
7C15.
7016.
?C1 7.
7017. 1
7013.
701^.
7020.
7021 .
7022.
7023.
7024.
7025.
7026.
7027.
7028.
7C2<3.05
70:1.1
7023.2
4735 FORMAT
1
4740 FORMAT
1
4745 FORMAT
1
4750 FORMAT
1
4760 FORMAT
4770 FORMAT
1
4780 FORMAT
1
4790 FOPMAT
1
2
3
4800 FORMAT
1
4810 FORMAT
1
2
3
4812 FORMAT
1
4814 FOPMAT
1
4820 FORMAT
1
2
5000 FORMAT (
5001 FORMAT (
C
C
END
C
C
C
C
SUBROUTI
C
C
C
C
C
C
C
C
C
C
C
C
C
REAL UZS
INTEGER
C
REAL OE
1
2
3
4
5
6
7
8
DOUBLE P
(
(
(
(
(
(
I
(
(
(
(
I
(
•
•
6
ct
N
N
L'
SI
Jl
m
SI
Sf
Lf
Tr
*f
Rt
DIMENSION
1
',12X,'THE DAY OF APPLICATION NO. SI2,
DOES NOT EXCEED THE PREVIOUS APPLICATION DAY")
CO',ll/,'EXPECTING NITR, PHOS, CHLO, OR END, BUT ',
READ IN «,A5)
<'O1,11X,'EXPECTING NITR, PHOS, CHLO, OR END, BUT ',
READ IN ',A5,' FOR APPL. NO. ',12)
<'0',11X,'IN APPLICATION NO. ',12,' FOR ',A4,
'EXPECTING ',A5, ' 3UT READ IN «,A5)
'0','APPL 1CATIUN FOR DAY ',13)
(«o','INVALID TSTEP SPECIFIED, INPUT WAS ',14,
EXECUTiCN CONTINUING rtlTH TSTEP = 60 MIN.'l
('0',' ERROR INVALID NITROGEN REACTION RATE FOR «,
A4,' IN ZCNE ',12,' INPUT VALUE * «,F8.6)
('0',' nARNING NITROGEN REACTION RATE ',A4,
1 IN ZCNE ',I2,/14X,
' IS TL'O LARGE FOR TIME STEP SELECTED, CONSIDER ',
'REDUCING TSTEP FOR MORE ACCURATE SOLUTION')
( IQ« .'- — ERROR INVALID PHOSPHORUS REACTION RATE FOR «,
A4,« IN ZLNfc ',12,' INPUT VALUE = «,F8.6)
('0',' DARNING PHCSHORUS REACTION RATE ',A4,
' IN ZCNE ' , I2/14X,
' IS TOO LARGE FOR TIME STEP SELECTED, CONSIDER ',
'RECUCIrtL. TSTEP FOR MORE ACCURATE SOLUTION1)
•0',' WARNING TEMPERATURE COEFFICIENT FOR NITROGEN1
,' REACTICM RATE ',A4,' SHOULD BE >= 1.0')
'0' ,• — WARMING TEMPERATURE COEFFICIENT FOR
'PHOSPHORUS REACTION RATE «,A4,
('0' ,3X,'TOTAL NITROGEN IN SYSTEM
',3X,'TOTAL PHOSPHORUS IN SYSTEM
«,3X,'TOTAL CHLORIDE IN SYSTEM =
(6X.I4.8X, I4,tiX,I4)
UA, 12F6 .0)
' ,
SHOULD BE >- 1.0«)
= ',2X,F10.3,2X,A5/
',F10.3,2X,A5/
,2X,F10.J,2X,A5J
SUBROUTINE NUTRNTt UiSN.UZF , L£SN,LZF )
THIS SUBROUTINE IS CALLED EVERY INTERVAL ON
A RAIN DAY OR ONLY ONCE A DAY ON A NO RAIN
DAY TO COMPUTE NUTRIENT LOSSES AND TRANS-
FORMATION. AOVECTIVE LOSS IS COMPUTtO
EVERYTIME SUBROUTINE IS CALLED, WHILE
CHEMICAL AND BIOLOGICAL TRANSFORMATIONS
ARE DON= AT SELECTED INTERVALS AS
SPECIFIED bY INPJT PARAMETER TSTEP.
DECLARATIONS
CU-1MON VARIABLES
KbAL UZi>M,UZt-» LZbN ,LZ.h
INTEGER TSTEP,NiTEP,SFLG.UFLG,LFLG,GFLG
SNT120 ) ,SNfcSM(2U,5),SNROM(20,5),
JUT I 20) ,uNl(20,3) ,JNITl20),UNRIM(«iO,5t,
i^KSM(2C ,5) ,LNRPM(20) ,
SNKtlM42u,i') ,UNKJM(20,b) , LNR bl ( 20 ) , GNRBM 1 20 ) ,'NKBM I 2 J),
SNRSYl20,5),SNRUY(20,i)),JNRIY(20,5),NRSY(20,5) ,
LNRPY(20),SNRBY(20,3),UNRBY(20,5),LNRBY(20),GNRdY(20),
TiMRBYl 20) , TNRhV(20) ,TNRHVM( 20) ,TNRHVY(20) ,TNA ,TPA, TCLA,
3),KP(b,4),THKP(5),NBAL,PHBAL,CLBAL
SMI 20,5) ,U,J(20,b) ,LN(20) ,GN(20)
DIMENSION SMGIST(24,b),JMOIST(24,5),LMOIST(24),
STtMP(24 ),UTE;-IP(24)
255
-------
/C29.
7030.
7031 .
7C32.
7023.
7034.
7035.
7036.
7C37.
7038.
7033.5
7C39.
7C40.
7041.
7042.
7043.
7044.
7045.
7046.
7C47.
7046.
7043.1
7049.
7050.
7051.
7C52.
7053.
7054.
7055.
7056.
7057.
7053.
7059.
7061.
70e>2.
7063.
7064.
7065.
7066.
7067.
7063.
7069.
7070.
7071.
7072.
7073.
7074.
7074. 5
7075.
7076.
7077.
7C7S.
7073.
7080.
7C«1.
70d2.
7C66. 1
7086.2
70ft 6. 3
7085.4
70fc6.5
7C66.6
708S.95
70S 0.96
7CF6.97
70S 6 .98
7086.99
7CH7.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
COMMCN /NuT/ CcLT ,SN,S<>ir,SNRSM,SNRGM,UN,UNT ,UNI,UNIT,
1 UNKIM,NRSP,LN,LNKPM,GN, SNRBM ,UNR BM , LNR6M, GNRBM, TNRBM,
2 SNRbY, SNROY,UNRIY,NRSY,LNRPY, SN^ BY.UNRBY , LNRBY, GNRB Y,
3 TNRbY.TNRHV.TNRHVM.TNRHVY.TNA.TPA.TCLA,
A KN,THI\N,KP,THK.P ,NaAL,PHBAL,CL6AL ,
5 TSTEP,NSTEP,SFLG,UFLG,LFLG,GFLG
INTEGER PftNTKE,TIMFAC,IMIN,IHR,TF,JCOUNT
INTEGER*^ 80l>,CALB,DAYS,£NuL,HOU* ,HYCAL , INPUT , INTR, METR,
, NO, NUTR, OFF, ON, OUTPUT, HE ST,PKI NT, PROD, SNOW, YES
REAL
RU.HYMIN, DPS T , LZS, ARE A, RESB 1( 5) , ROS8 ( 5 ) , SRGX< 5) , INTFt :>) ,
RGXO),INFL(5),UZSti(5),APERCB(5),RIB(5) ,ERSN(5) ,R£SB(5),
M,P3,A,LTEKP,LMOIST,MUZ,MLZ
COMMON /ALL/ RC, HYMI N, PRNTK6 ,HYCAL , OPS T , OUTPUT , T IMF AC , LZS, ARtA,
1 RESB1,ROS8,SRGX, INTF rRGX ,1 NFL ,UZS B, APERCB , RI B , ERSN,
2 M,P3,A,CALB,PRODtPESTf NJTR,ENGL,METRtBaTH,RESBf YESf NO,
3 IMINrlHk, TF , JCUUNT, PRI NT, INTR, DAYS, HOUR, MNTH, I DEBUG,
4 ON.CFF, bMOIST, JMUIST,LMOIST,STEMP ,UTEMP,LT£MP,MUZ,MLZ
DECLARATIONS FOR INTERNAL STORAGE ALLOCATION
REAL SNKSt20,5),SNRO(20,b) ,SNRP(20,5) ,ASNRS (20,5 ) ,
1 ASNRST120J ,ASNRO(20,5) , ASNROT120),
2 ASNRP(20,3J ,AS,MRPT(2J) ,UN1 1 (20 ,5 ) ,UNRI 1 20 ,&) ,
3 UNRP(20,5) ,NRSt20,5),AUNRIt20,5),AUNRIT(20J,
4 AUNRP(20,5),AJNRPT(20) , ANRS (20,5 ) ,
6 ANRSTt iCJ ,LNRP(20) , ALNRPt 20),
7 ASNR8(2L,iJ ,AS.MRBT(20) , AJNR b( ^0 , 5i ,
8 AUNRSTt
-------
7083.
7C89.
7090.
7C91.
7052.
7093.
7094.
7095.
7096.
7097.
7093.
7099.
7100.
7101.
7102.
7103.
7104.
7105.
7106.
7107.
710S.
7109.
7110.
7111..
7112.
7112.2
7112.4
7115.
7116.
7117.
7118.
7119.
7120.
7121.
7122.
7123.
7124.
7125.
7126.
7127.
71<:fl .
7129.
7130.
7131.
7132.
7133.
7134.
7135.
7136.
7137.
7133.
7139.
714T.
7141.
7142.
7143.
7144.
7145.
7146.
7147.
7143.
7149.
7150.
7151.
7152.
7152. I
7152.2
7153.'
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
r
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
20
40
50
c
c
c
c
c
60
BRIEF DESCRIPTION OF VARIABLE NAMING CONVENTION:
1) FIRST TWO LETTERS SN,UN,LN,GN STAND FUR SURFACEt
UPPER ZONE. LOrtER ZONE, AND GROUNOWATEK NUTRIENTS
ONI = INTtKFLOW STORAGE OF DISSOLVED NUTRIENTS
2) FIRST LETTER A STANDS FOR AN ACCUMULATION OF A
WTRIENT LOSS OVER THE INTERVALS BETWEEN PRINTING
3) THE THIRD OR FOURTH LETTER fR' STANDS FOR REMOVAL
4) FOLLOWING THE 'R' A LETTER INDICATES THE CAUSE OF
REMOVAL; «S'=$EDirtENT, »O'=OVERLAND FLU*,
•P'=PERCOLATION, • I'=INTERFLOH, •S'=BIOLOGICAL
5) LETTERS •«• AMD «Y' INDICATE MONTHLY AND YEARLY
SUMS OF REMOVALS, MONTHLY SUM IS ACCUMULATED IN
NUTPNT A^D PASSED TO MAIN FOS OUTPUT, ANO YEARLY
AMUUNTS ARE CALCULATED AND POINTED IN MAIN
6) THt LETTER »T' APPEARING AT THE VERY END INDICATES
THE TCTAL OR AVERAGE MASS OF THE 5 BLOCKS IN THE
SURFACE AND UPPER ZONES
NUTRIENTS ARE STORED IN VECTORS AND ARRAYS IN THE
KILLOrtINO SEgJENCE OF ELEMENTS:
1 = ORG-N, ORGANIC NITROGEN
AMMONIUM IN SOLUTION
AMMUNIUM ADSORBED TO SOIL
NITRITE PLUS NITRATE
NITuCGEN GAS f-ROM DENI TRIF 1C ATI UN
PLANT NITROGEN
PA
1.0 - A
DO 120
2 =
NH4-3,
NH4-A,
4 •
5
6
7
t)
9
iO
11
u
13
14
15
16
18 = CPLN
19 = OPEN
20 = CL,
N2-G4S,
PLNT-N,
OPEN
OPEN
OPEN
= OPEN
= CRG-P,
= P04-S,
= PG4-A,
= PLNT-P,
= OPEN
= OPEN
ORGANIC PHOSPHORUS
PHOSPHATE IN SOLUTION
PHOSPHATE ADSORBED TO SOIL
PLANT PHOSPHORUS
CHLORIDE
ADJECTIVE LOSSES
SURFACE ZONE
SEDIMENT REMOVAL
!F (ERSN(IBLK) .LE. 0.0) GO TO 40
FS =
CONTINUE
GO TO GO
DO 50 J=i,20
SURSUrlBLK) = 0.0
CONTINUE
OVERLAND FLOW AND PERCOLATION
45302.4 = 0.2 * 43500 FT12J/ACRE * 1 FT/12 INCHES * 62.4 LB/FTIJ)
IF < (P3»RESE1( IBLKM .LE. 0.0) GO TO 80
257
-------
7153.1
7153.2
7154.
7155.
7156.
7157.
7158.
7159.
7160.
7161.
7162.
7163.
7164.
7164.5
7165.
7166.
7167.
7168.
7169.
7170.
7171.
7172.
7173.
7174.
7175.
7176.
7177.
7173.
7179.
7180.
7131 .
7132.
7133.
7184.
7184.1
70
80
90
C
C
c
c
100
110
120
C
C
C
c
c
c
c
FT = PA*{P3+kESBl
-------
7207.
7203.
7209.
7210.
7211.
7212.
7213.
7214.
7215.
7216.
7217.
7213.
7219.
7220.
7221.
7222.
7223.
7224.
7225.
7226.
7227.
7223.
7229.
7233.
7231.
7232.
7233.
7234.
7235.
7236.
7236.5
7236.6
7236.7
7236. 8
7237.
723/.S
7233.
7233. 1
7233.2
7239.
7240.
7241.
7242.
7243.
7244.
7245.
724t>.
7247.
7243.
7249.
7250.
7251.
7252.
7253.
7254.
7255.
7256.
7257.
7253.
725^.
7260.
7261.
7262.
7263.
7i64.
7265.
7266.
7267.
170
180
190
C
C
C
200
210
220
C
C
C
C
230
240
C
C
C
UNRIUiieLK) = FLI*UNIU,IbLlO
CONTINUE
GO TU 200
00 190 J=lf20
UNiUUiIBUU » 0.0
CONTINUE
REMOVE AND ADO STORAGES AND ACCUMULATE
DO 210 J=li20 »
UMJ.IBLK) = UNU.IBLKJ - UNTIU.IBLK) - UNRP{J,IBLK)
UNHJiIBLK) = UNKJiIBLK) - UNRIUflBLK)
AUNRIU.IELK) = AUNRKJ.IBLK) * UNRUJ.IBLK)
AUNRP(J,I6LlO = AUNRPU.IBLKI * UNRPtJ.IBLK)
LNU) = LMJ) + UNRP( J,IBLK)*0.2
CONTINUE
CONTINUE
COMPUTE NUTRIENT REMOVAL TO STREAM (NRS»
AND ACCUMULATIONS
DO 240 IBLK=1,5
DO 23J J=lt20
NRSUiIdLK) = SNRS(J,I3LK) + SNROU.IBLK) + UNRKJ.IBtKJ
ANRS(J.IBLK) = ANRS(J.IBLK) •»• NRS(J>1BLK)
CONTINUE
CONTINUE
LOWER 1MB
C 226512 = 435oO FTC21/ACRE * 1 l-T/12 INCHES * 62.4 LB/FTIJ)
C
C
C
250
260
270
C
280
290
C
C
C
C
C
C
C
C
C
C
C
LiFM REDUCES SCLulE PERCOLATION FOR SOIL MOISTJRE LESS THAM LZF*LiSN
TW = LZS + DPST
KNFw = AREA*T»*220312.0
IF (TW .LE. C.C J GO TU 260
LZFM = LZS/(t/SN*L/F)
IF (LZFM.GE.l.Ci LZFM =1.0
FP = LZFM*L)PST/T*
DO 250 J=l,20
LNRP(J) = StLPC(J )*FP*LNUJ
CONTINUE
GO TU 28U
DO 270 J=lr2C
LNRP U J = 0.0
CONTINUE
DO 290 J=1.20
LNUJ = LNtJJ - LNRPIJ)
GN(JJ = GN(J) * LNRPIJ)
ALNRPIJ) = ALNRP(J) «• LNRP(J)
CONTINUE
GROUNDwATER
NO ADVECTIVE LOSS FROM GROUNOWATER
CHECK TO SEE IF PHYSICAL AND BIOLOGICAL
TRANSFORMATIONS ARE TO BE DONE THIS
INTERVAL ON A RAIN DAY, OR SETUP THE
NUMBER OF TIMES TO LOOP FOR A NO RAIN
DAY
IF
-------
7266.
7269.
7270.
7271.
7272.
7273.
7274.
7275.
7276.
7277.
727d.
7279.
7280.
7281.
7282. 1
7282.2
7262.3
7282.4
72S3.
7235.1
7285.2
7286.
7287.
728<3.
7239.
72d9. 1
7290.
7291.
7291.1
7292.
7293.
7294.
7295.
7296.
7297.
7290.
72S9.
7300.
7301.
7302.
7303.
730t.
7305.
730S.1
7306.
7307.
7307.1
73)7.2
7303.
7309.
7310.
7311.
7312.
7313.
7314.
7315.
7316.
7317.
7319.
7313.1
731=3.5
7319.
7320.
7320.2
7321.
7322.
7323.
300
C
310
C
C
C
C
C
320
330
C
C
C
C
C
C
C
C
C
C
430
440
C
C
C
450
C
C
C
540
550
C
C
C
560
C
C
GO TO 310
NCYCLE = NSTEP
DO 800 IBIO=1,KCYCLE
COMPUTE HOUR OF THE DAY TO ACCESS HOURLY
SOIL TEHP DATA FOR THE 4 SOIL ZONES:
SURFACE, UPPER, LOWER, GROUNDWATER
IF
-------
7324.
7325.
7326.
732 7.
732d.
7329.
7329.1
7330.
73J1.
7331.2
7332.
7333.
7334.
7335.
7336.
7337.
733d.
7339.
7340.
7341 .
7342.
7343.
7344.
7345.
7346.
7347.
7343.
7349.
735T.
7351.
7352.
735J.
7354.
7355.
7J5o.
7357.
7358.
7359.
7360.
7361.
7302.
7363.
7364.
73t>5.
7366.
7367.
7368.
7369.
7370.
7371.
7372.
7373.
7374.
7375.
7376.
7377.
7378.
7379.
73HO.
7381.
7332.
7333.
7384.
7335.
7336.
/387.
738d.
7389.
650
C
C
C
660
C
C
750
C
800
C
C
C
810
C
C
C
C
C
C
910
920
C
930
940
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CONTINUE
GROUNDrtATER ZONE
IF (GFLG .£«. 0) GO TO 800
IZONE = 4
IF (T(4) .LE. 4.0) GO TO dOO
CALL TRANS < CEL T, IZONE , GN, DUMA ,KN, THKN.KP ,THKP,T, DELN, DUMA,
L AREA,M,MUZ,MLZ,INFH,JNFW,KNFW)
DO 750 J=l,20
AGNRBU) = AGNRB(J) + SELBL (J )*OELNU)
CONTINUE
CONTINUE
END OF NO RAIN INTERVAL LOOP
IF (PRNTKE .60. 0) GG TO 1JJO
COMPUTE BIOLOGICAL REMOVALS
ACCUMULATE MONTHLY VALUES OF ADVECTIVE
AND BIOLOGICAL REMOVALS
ATNRB = ACCUM. TOTAL NUTR REMOVAL BIOL.
DO 920 J=lf20
SUM = 0.0
00 910 I8LK=1,5
SUM = SUM + ASNRB( J, IBLK) * AUNRB( J ,IBLK)
CONTINUE
ATNRBUJ = SUM/5. + ALNRBU) «• AGNRBU)
CONTINUE
DO 940 J=l,20
DO 930 I8LK=l,5
SNRSM( J.IBLK) * SNRSM ( J , I BLK) t ASNRSt J, I BLK)
SNKCMUfieLKJ = SNROMU.IBLK) «• ASNROJ J, I BLK)
UNRIMCJ, IdLK) = UNRIM
-------
7390.
7391.
7392.
7393.
739'+.
7395.
7396.
7397.
739rf.
7399.
7400.
7401.
7402.
7403.
7404.
7405.
7406.
7407.
7408.
7409.
7410.
7411.
7411.5
7412.
741J.
7414.
7415.
7416.
7417.
7419.
7419.
7420.
7420.1
7420.2
7420.3
7420.4
7420.5
7421.
7422.
7423.
7424.
7425.
7426.
7427.
7423.
742'^.
7430.
7431.
7432.
7433.
7434.
7434.5
7435.
7436.
7437.
7433.
7439.
7440.
7441.
7442.
7443.
7444.
7445.
7446.
7447.
7448.
7449.
7450.
945
950
960
970
C
C
C
C
C
971
S72
C
C
C
C
C
C
980
C
1000
C
C
C
C
1100
CONTINUE
ERSNT » ERSNT/5.
CONFC = 454COC./(RU*TIMFAC*60.*28.32J
IF (ERSNT ,GT. 0.0) CONFS = 1 . OE6/ (ERSNT*2000 .*AREA)
DO 970 J=i,20
SJMD = O.C
SUMA = 0.0
00 950 ULK=1,5
SUrtC = SCML) + ASNkOU ,IBLK.) + A JNR I ( J, IBLK )
SUrtA = SUMA * AS,MRS( J ,IBLK)
CONTINUE
NDS^IJ ) = SLMO*AREA/5.
r^OSCUJ - NLSM( JJ*CQNFC
KASMIJ) = Sly,A*AREA/5.
IF (ERSNT .LE. O.OJ GO TO 960
NASCU) * NASM(JJ*CONFS
GO TQ 970
NASC1J) = 0.0
CONTINUE
COMPUTE TOTAL MASS OF N (TOTN) AND P (TOTP),CONC.
OF TOTAL N (TOTNC) ,P (TUTPC)i AND SEDIMENT ( SEDC )
PER WATER PHASE IN STREAM
TOTN =0.0
TOTP =0.0
DO 971 J=l,6
TOTN = TCTN +iMUSM(JJ * NASMU)
CONTINUE
DO 972 J = U,14
TOTP = TOTP + NDSM(J) «• NASM(J)
CONTINUE
TOTNC = TGTN+CCNFC
TOTPC = TCTP+CCNFC
SEOC = (CCNFC/CCNFS)*1.0E3
MODIFICATIONS FOR METRIC OUTPUT
CONVERT MASS FROM LB. TO KG. CONC. IN MG/L
IF (OUTPUT. EQ.ENGL .OR. OUTPUT. EU. BOTH) GO TO 1000
DO 980 J=lt2C
NDSMU) = NDSrf( J) /2.205
NASMiJ) = NASM( JJ/2.205
CONTINUE
TOTN = TOTN/2.205
TOTP = TUTP/2.2C5
WRITE (6,4130) NL)SM(4),NDSM(2J,NUSM( 12) , NDS Ml 20 J ,
1 NASrt(3),NASMU) ,NAS«( 13) ,NASM( 1 1 ), TOTN, TOTP
WRITE (o,4135) SEOC
WRITE (6,4140) NDSC (4),NOSC(2) ,NUSC( 12) ,NDSC(20J ,
1 NASC(3),NASC(l)fNASC( 13) ,NASC( 1 1) , TOTNC , TOTPC
GO TO 1200
PRODUCTION OUTPUT
COMPUTE WATERSHED AVG. FROM BLOCK STORAGES
DO 1120 J=l,20
SNT(J) = O.C
UNTU) = C.Q
UNITtJJ = 0.0
ASNRST(J) = C.O
ASNROTU) = C.O
ASNHPTU) = 0.0
AUNKIT(J) = t.O
Al)NRPT(J) = C.O
262
-------
7451.
7453.
7455.
745o.
74S7.
7458.
7459.
7460.
7461 .
7462.
7463.
7464.
7465.
7466.
7467.
746d.
7469.
7470.
7471.
7472.
7473.
7474.
7475.
7476.
7477.
7478.
7479.
7480.
7',d2.
7483.
7434.
7435.
7436.
7487.
7483.
7489.
7490.
7491 .
7492.
7493.
7494.
7495.
7496.
7497.
7498.
7499.
7500.
7501 .
7502.
7503.
750V.
?505.
7506.
7507.
7509.
7539.
7510.
7511.
7512.
7513,
7513.1
7513.2
7513.3
7511.4
1
1
C
C
c
c
c
c
c
c
c
c
c
ANRST(J) = C.O
ASNRBTU) = 0.0
AUNRbT(J) = C.O
OU i 1 i 0 IB L K= 1 , 5
SNT(J) = SulUJ) <•
UNT(J) = UMTIJ) +
1-ltlITlJl = J.UTU)
ASNRST(J)
ASNROT(J) ;
AiNRPT(J)
AUNPIT(J) ^
AJNSPT(J)
ANKST(J) =
SUl J,IBLK)*0.2
UN(J,IBLK)*U.2
* JN1 (J,IbLK)*0.2
ASNRSTIJ)
ASNROTtJ)
ASMRPT(JJ
AUNRITIJ)
AUNRPT U)
ANRST(J) *
1110
112C
AS.xIRBTU) = ASNRBTU)
AUMKBT(J) = AJNRBT(J)
CONTINUE
CONTINUE
+ ASNRSU , 1BLKJ*0.2
<- AS'NRO(J,IBLK)*0.2
* ASNRPU TlBLK)*0.2
* AUNRI (Jt IBLiO*0.2
«• AUNRPCJ, IBLM*0.2
ANRStJ»IQLK)*0.2
* ASNKB Ui IbLK)*0.2
* AUNRbU , IBLK)*0.2
IF (DUTPJT .Eti. METR)
CONC = LdPAC
WRITE (o,-iOC5)
WRITE (6,40CO) CGNC
GO TO 1130
1
WRITE
WRITE
WRITE
1
WRITE
WRITE
WRITE
1
WRITE
WRITE
I
WRITE
WRITE
1
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
L
WRITE
WRITE
WRITE
L
WRITE
WRITE
1
WRITP
WRITE
1
1
(6,4050)
(t>,4030)
(6,4060)
(6,4030)
(6,4070)
(6,4030)
(6,408C)
(6,4030)
(6,4090)
(6,4020)
(0,4030)
o,4100)
6.403C)
6.404C)
6,4100)
6,t03C)
(6,4u70)
(6
SURFACE
.„„. ,J),J = 1,6), ISNTU), J= 11,14), SNT( 20)
(IBLK,(SN(J , IBLK) ,J=1 ,6),(SN(J,IBLK),J = ll,14),
SIM (20, IBLK), IBLK=1,5)
(ASNRST(J),J=1,6), 1 AU,slRPT( J) ,J=11,14) ,AUNkPT(^0)
(IdLK, (AUNRP IJ,IBLK),J^1,6),(AUNRP(J,IBLK),J^11,14)
,Aj[\iRP(20, IULK) , I8LK = l,b)
(AUNRBT(J) ,J = 1,6) ,lAJNkdT(J),J=ll,14) ,AUNRttT(20)
(IBLK, ( AJ^KBl J, IBLK), J=1(6),(AUNKB(J, IBLK), J=ll, 14)
IBLK=l,a)
TjTAL TJ STRFAM
WRITE (o,t015) tANkiT(J),J=l,6),(ANKST(J),J=li,14),ANkST(^U)
\ .5
263
-------
7514.
7515.
7515.
7517.
7513.
7519.
7520.
7521.
7522.
7523.
7524.
7524. Cl
7524.02
7524. C3
7524. C4
75?'+. C5
7524. C6
7524. C7
7524. C8
7524. C9
7524. 1
7524.11
7524.12
.'524. 13
7524. 14
7524. 15
7524. 16
7524. 17
7525.
7526.
7527.
7523.
752'..
7530.
7531 .
7532.
7533.
7534.
7535.
7536.
7537.
7533.
753".
75-'. 3.
75M.
7542.
7543 .
7545. 1
754
-------
7564.
75o5.
7566.
7567.
7i>69.
7569.
7570.
7571.
7572.
7573.
7574.
7575.
7576.
7577.
7578.
7579.
75dO.
7581.
7582.
7533.
7584.
7585.
75C6.
7587.
7586.
7589.
7590.
7591.
7592.
7593.
7594.
7595.
7596.
7597.
7598.
7599.
7600.
7601 .
7602.
7603.
7604.
7605.
7606.
7607.
7607.1
7607.2
7607.3
7607.4
7607.5
7603.
7609.
7610.
7611.
7612.
7613.
7614.
7615.
7616.
7617.
7613.
7619.1
7619.2
7619.3
761b.4
7613.5
7618.6
7613. 7
7613.8
C
C
C
WRITE
WRITE
WHITE
i
2
WRITE
WRITE
WRITE
1
WRITE
WRITE
1
WRITE
WRITE
1
WRITE
WRITE
1
C
C
C
WRITE
WRITE
WRITE
1
2
WRITE
WRITE
1
2
WRITE
WRITE
WRITE
1
WRITE
WRITE
1
WPITE
WRITE
1
C
C
C
C
WRITE
C
C
C
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
«PITE
WRITE
WRITE
C
C
C
OEG =
WRITE
WRITE
wRI TE
WRITE
(0,4010)
(6,1020)
(6,403C)
(6,4040)
(t>,405C)
( o,4UJO)
<6,4060)
(6,40^0)
(o,4C70)
(6,4030)
(6,4083)
(6.403C)
(6,409C)
(6,4020)
(6,4030)
(6,410C)
(o,403C)
(6,4040)
<6,410C)
(6,40JO)
(6,^C7C)
(6,4030)
(6,40dO)
(6,4030)
(6,4015)
(o,4UC)
(o,<«J20)
(6.4G4C)
(6.407C)
(o,4CdC)
(0,4120)
<6,-,02C)
(0,4040)
lo,4C8C)
CEL
(6,4124)
(6,4125)
(6,4120)
(6,4127)
SURFACE
(SNTMET(J),J=i,6),(SNTMET(J),J=
(I8LK,(SNMET(J,IBLK),J*1,6),
0( J, IBLK) ,J = 1,6) ,(
,ASNRU(20,IBLK), IBLK=1,5)
(ASNRPT(J),J=1,6I,(ASNRPTlJ)
(IBLK, (ASNRPlJ,IBLK),J = 1,6),(
,ASNKP(20,IbLK), IBLK=1,5)
(ASNRBT(J), J=l,6) ,( ASNRBTU)
(IBLK, (ASNKB(J, IBLK) ,J = l,6) ,(
,ASNRB(20,IBLK),
UPPER ZONE
(UNTMET(J) ,J=1,6) ,(UNTMET(J) ,J= 11,14 ) ,UNT MET (20)
(IBLK, (UNMETU, IBLK) ,J = 1,6J,
(UNMET(J,IBLK) , J=li, 14) ,
U,NrtET(20, IBLK) , IBLK=l,5)
(UNITMT(J),J = 1,6),(UNITMT(J),J=H,14),UMTMT(20)
(IoLK,(ONIMEr(J,IBLK) ,J=1,6) ,
(ONMETU.IBLK) ,J=11,14),
UNIHET(20tIttLK) , IBLK=1,5)
(AuNRIT(J), J-l,o) ,( AJNRIT(J) ,J»11,14) ,AUNRIT(20)
(IBLK, (AUNRI ( J, IBLK) ,J = 1 ,6) ,( AUNRI ( J, IBLK) ,J=11 , J.4)
(AUNKPTl J) , J = l ,6) , ( A'J.NRPT(J) ,J=11,14) ,AUNkPT(20)
(IBLK, (AUNRP( J, IBLK),J=1,6),( AUNRP( J, IBLK),J=ll,i4)
,AJNRP(
-------
7613.9
7619.
7C.20.
7621.
7622.
7623.
7624.
7625.
7626.
7627.
7623.
7629.
7633.
7631.
7632.
7635.
7634.
7*35.
7636.
7637.
7638.
7639.
7640.
76M .
7642.
76->3.
7644.
7645.
7646.
'647.
7647.5
7643.
764B. 1
76*8.2
7643.3
7643. 4
7643.5
7643. 6
7649.
7650.
7651.
7652.
7653.
7654,
765b.
7656.
7657 .
/658.
7659.
7659.5
7660.
7661 .
7662.
7800.
7801.
7601 . 1
7<301.2
7802.
7802.5
7803.
7803.5
7604.
7804.5
?ec5.
7605.5
7806.
7806. 5
7807.
C
c
C
c
1200
1210
1220
C
C
1300
C
C
C
4000
4005
4010
4015
4020
4124
4125
4126
4127
4030
4040
4050
4060
4070
4C80
409C
4100
4110
4120
4130
4135
4140
C
C
c
c
c
c
c
c
c
c
c
c
c
c
ZERO OUT ACCUMULATIONS AFTER PRINTING
00 1220 J=1,2C
DO 1210 IBLK=1,5
ASNKSI J, IBLKJ = 0.0
ASNRG( Jt IBLKJ = 0.0
A$NRP< J, IfcLK) = 0.0
AS.'JRbU, IBLKJ = 0.0
ALURK j, IBLKJ = 0.0
AUNRPU, IBLKJ = 0.0
AU.NRdi J, IdLK) = 0.0
ANRSU.IELK) = 0.0
CONTINUE
ALNPH(J) = C.O
ALNRb(J) = C.O
AGNRb(J) = C.O
CONTINUE
RETURN
FORMAT CO1 f 'NUTRIENTS - ' f A3, 1 IX , ' ORG-N ' ,3X , • NH4-S' , 3X, 'NH4--A « ,
1 3X,'N03+N02' ,4Xi 'N2' ,2X, 'PLNT-N' ,3X, 'ORG-P* t3X,
2 • P04-S1 fJX,' P04-A' ,2X, "PLNT-P ',6Xf »CL' J
FORMAT CO')
FORMAT CO1, 3X, 'SURFACE LAYER')
FORMAT CO' ,9X, 'TOTAL TO STREAM • ,F 8. 2 .5F8.3 ,F8 .2 ,3F3. 3 ,FO. J )
FORMAT CC',6/, ' STOR AGE ' , 1 2X,F 3.2 ,5FU .3 , F8.2 , 3Fa. 3 ,F8 . 3 )
FORMAT CO'.'CAILY SOIL TEMPERATURE IN DEGREE ',A1J
FORMAT CO',' SURFACE ZUNE MAX(4PM) MIN(6AMJ«»
1 /,' ' ,14X,F5.1,5X,F5.1)
FORMAT CO1,1 Ut-P£K ZO(JE MAXCVPM) MINtbAM)',
1 /,' ',14X,F£.1,5X,F5.1J
FORMAT CO',' LUwER ZONE DAILY AVERAGE1,/,1 ',12X,F5.D
FORMAT C « , 12X ,'BLUCK' , 12 , 6X, F8. 2, 5Fa. 3 , F8. 2, 3F8.3 , F8.3 )
FORMAT CO' ,6X, 'REMOVAL' )
FORMAT CO',9X,'SEL)I«ENT'f8X»F8.2,5F8.3,Fd.2fJF8.3,F8.3)
FQCMAT C C' ,'>X, 'O^ERLAMU FLO^',3X,Fa.2,t>F8.3,F8.2,3FtJ.3,F8.3J
FOFMAT C 0' ,9X, ' >'i KCCLA1 I OM ' ,5X,f d.2, 5F8. i,rd.2, 3r8.3,F8.J)
FORMAT C J1 ,9> , 'dICLCGICAL' ,6X,F6.2 ,5F8.3,Fa.2,oF8.3, F6.J)
FORMAT C 0' ,3X , 'JHPER ZUNc'J
FUR MAT Cu' ,9X t 'IiaEKFLO^' ,7X,Fd.2,5F8.3fF8.2,3F8.3,Fb.3)
FORMAT 1' C1 , JX , 'LLUeR ZONt ' )
FORMAT C 0' ,3X, 'GROUNDrtATER ' )
FORMAT ( •+• ,40X,oFb.3,4X,2F8.3)
FORMAT C «,30X,F8.2)
FORMAT C *' ,40> ,aFii.l,4X,2F8.1)
END
SUBROUTINE TRANS 1 UE LT, I ZONE ,N,NB,KN, THKN, KP ,THKP ,T, DELN, OELNB ,
1 A RE A, rt, MUZ, ML Z, I NFW, JNFrt.KNFW)
THIS SUBROUTINE
1) CORRECTS REACTION RATES FOR SOIL TEMP
LESS THAN 3i> DEG C.
KNC = VECTOR OF NITROGEN REACTION RATES
CORRECTED FOR EFFECTS OF ENVIR. FACTORS
KPC = VECTOR OF PHOSPHORUS RATES, CORRECTED
Z) DEVELOPS COEFFICIENT ARRAY OF CORRECTED RATES
266
-------
780/.5
reos.
7808.5
7809.
7809.5
7810.
7810.5
7811.
7811.5
7812.
7812.5
7813.
7813.5
781*.
781^.5
7815.
7815.5
7816.
7816.5
7817.
7817.5
7818.
7818.5
7819.
7819.5
78??.
7620.5
7821.
7821.5
7822.
7822.5
7823.
7823.5
782'+.
762^.5
7825.
7825.5
7826.
7626.5
7827.
7327. 5
7828.
7828.5
7829.
7829.5
7830.
7830.5
7831.
7331.2
7831.5
7832.
7d32.2
7332.21
7832.22
7832.23
7832.24
7832.25
7332.26
7832.27
7832.28
7832.29
7832.3
7832.5
7833.
7833.5
783^.
7634.5
7635.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
20
10
C
C
C
C
3) THEN SOLVES A SYSTEM OF FIRST
ORDER DIFFERENTIAL EQUATIONS FOR THE
CONSTITUENT CONCENTRATIONS AT THE NEXT
TIHb STEP.
CALLING VARIABLES ARE:
M20) - VECTOR OF CONCENTRATIONS (LB/AU
OELT = TIME STEP (DELTA T)
KN<8,4) = NITROGEN REACTION RATES AT 35 C
THKN18) = TEMP. CORRECTION COEF FOR KN
KP(5,4J = PHOSPHORUS RATES AT 35 C
THKP(5) = TEMP. COEF. FOR KP
T<4) = SOIL TEMP AT 4 SOIL LAYERS, OEG C
DELN120) * CHANGE IN CONCENTRATION THIS
TIME STEP
-------
7835.5
7836.
7836.5
7837.
7837.5
7838.
7838.5
783^.
7839.5
7840.
7840.5
7841.
7841.5
7843.
7842.5
7843.
7343.5
7844.
7844.5
7845.
7845.5
7846.
7346.5
7847.
7847.5
7848.
7848.5
7849.
7849.5
7850.
7650.5
7851 .
73t>l. 5
7852.
7852.5
7853,
7853.5
7354.
7654.5
7855.
7855. 5
7856.
7856.5
7S5T.
7857. 5
7853.
7853.5
7859.
7859.5
7860.
7860.5
7861.
7861.5
7862.
7862.1
7862.2
7862.5
7863.
7863.5
7864.
7864.4
78t,4.5
7865.
7865.5
7866.
7866.5
7867.
7367.5
35
36
37
38
39
C
40
41
42
C
C
C
C
C
C
C
C
C
C
C
C
C
C
70
C
00 35 J=l,8
FTN
-------
7863.
786tl.l
7868.5
7869.
7869.5
7870.
7870.5
7871.
7871.5
7872.
7872.5
7873.
7873.5
7874.
7874.5
7875.
7875.5
7fl76.
7876.5
7877.
7877.5
7376.
737(3.5
7379.
7G79.5
7830/5
7831.
7831.5
7882.
7832.5
7833.
7883.5
7884.
7884.5
7835.
7835.5
7336.
7886.5
7SB7.
7C87.5
7388.
7888.5
7839.
7839.5
7890.
7890.5
7891.
7801.5
7892.
7C92.5
7893.
7893.5
789f.
7894.5
7895.
7895.5
7896.
7896.5
7897.
7897.5
7898.
7898.5
7899.
7899.5
7930.
7^30.5
7901.
80
85
90
91
C
C
C
95
100
200
300
C
C
C
C
C
C
C
310
350
360
370
380
390
C
400
410
420
C
C
C
PPMSrtUCUL) = MICOD/tfMMA
SWCT = CURtrt, ICCL)*PPMSri(ICOL)
LBA = ShCT*wMMA
SUM = SUM * LBA
GO TO 85
CONTINUE
DELNl IROW) = DELT*SUM
CONTINUE
DO 91 J=li20
NU) = NU) + JELNIJ)
CONTINUE
P. E TURN
GROUNDwATER
DO 200 lROh=l|20
SUM = C.O
DO 100 ICCL=1,20
SUM = SUN * C( IRO*iICOL)*N(ICOL)
CONTINUE
OELMIRGri) = UtLT*SUM
CONTINUE
DO 300 J=l,20
NIJ) = N(J) * OELNU)
CONTINUt
R5TUFN
FOLLOWING SECTION IS FOR THE BLOCKS
USED IN THE SURFACE AND UPPER ZONE
TEMPERATURE CORRECTION OF REACTION RATES
IF (T(IA)NE) .GE. 35) GO TU 310
RELT = TIUCNEJ - 35.
DO 350 J=l,8
FTN(J) = THKN(J)**RELT
CONTINUt
DO 360 J-1,5
FTPCJJ = THKPtJ)**RELT
CONTINUE
GO TO 400
DO 380 J=l,8
FTN(J) = 1.0
CONTINUE
DO 390 J=l,5
FTP(J) = l.C
CONTINUE
DO 410 J
KNCJ JJ
CONTINUE
00 420 J=l,5
KPC{J) = KPt
CONTINUE
If6
= KN(J,IZONE)*FTN(J)
C(l
Cll
C<2
C(2
C<2
C(3
C(3
C(4
C(4
r*2)
,4)
,2)
f3)
,2)
t3>
»2)
t4)
=
=
f
=
-KNC(4
KNC(5)
KNC(6)
KINiC(4)
-
-------
7901.5
7902.
7902.5
7903.
7903.5
7904.
7904.5
7905.
7Q05.5
7906.
7906.5
7907.
7907.5
790T.
790-3.5
790C>.
7909.5
7910.
7910.5
7911.
7911.5
7M2.
>»12 5
y?i jt
7913.5
7914.
7914.5
7915.
7915.5
7916.
7916.5
7917.
7917.1
7917.2
7917.3
7917.5
7913.
7918.5
791d.6
7919.
7919.5
7920.5
7921 .
7927.
7927.5
7928.
7923.3
7928.5
7929.
7929.5
793r>.
7930.5
8COO.
8C01.
8002 .
eoo3.
8004.
8C04. 1
8005.
8C06.
8C07.
8CO^.
8009.
3010.
ecu .
8011 .1
«01 1 .2
8012.
dC13.
C
C
c
c
c
c
425
430
C
435
C
440
450
500
600
700
C
C
c
c
c
c
c
c
r
c
c
C(5,4) = KNC(2)
C(6,4) = KNCm
Clll, 11) = rKPC(l)
C( lit 12) = KPC12)
C 12,11) = KPC(l)
C 12,12) = -IKPC12) •«• KPC(4) «• KPCCJM
C 12,13) = KPC(5)
C 13,12) = KPC(4)
C 13,13) = -KPC(5)
C(14,12) = KPC(J)
SOLUTION
DO 700 IBLK=l,b
IF ( I ZONE.Ei;.!) GO TO 425
IF UNFrfl luLiO .LE. 0.000001) GO TO 700
SMMA = MUi/ ( 1JOJOOO.*AREA)
WKMA3( IBLfi) = JNFw(IBLK) /( 1000000. *AR£A)
GO TO 430
IF (INFrtUBLK) .LE. 0.000001) GO TO 700
SKMA = M/UCCOOOO.*AREA)
WMMAB(I6Li<) = 1NFW(IBLK)/(1000000.*AREA)
DO 500 IRCV« = 1 t20
SUM =0.0
00 45C ICOL = 1,20
GO TO (4;>5, 440, 435, 440, 450, 450, 450, 450, 450, 450, 435, 440,
1 t35, 450, 450, 450, 450, 450, 450, 450), ICOL
PPMS(ICOL) = NB(ICUL,IBLK)/SMMA
SCT = CIIROW,ICOL)*PPMS( ICOL)
LBA = SCT*SMMA
SUM = SUM + LBA
GO TO 45J
PPMSwUCUL) = NB( ICOL, IBLK)/ riMMAtK IBLK)
SwCT - C( IROW,ICOL)*PPMSW( ICOL)
LBA = SwCT*wMMAB( IBLK)
SUM = SUM «• LBA
CONTINUE
OELNO( IRQn ,IBLK) = DELT*SUM
CONTINUE
DO 600 J=l,2u
NolJ.ieLK) = NB(J,IBLK) «• DELNB ( J , I 8LK )
IF (NBU, IBLK). LT. 0.000001) NB( J , IBLK) =0,.0
CONTINUE
CONTINUE
RETURN
END
SUBROUTINE OUTKCN ( YEAR.KGPLB, LSTR, LAS,LCS,LDS» GSTR ,GAS ,GCS , GDS ,
1 TPSAL,DEGSGM,0£GUOM,OEbLOM,UIST, TOTPAP.T I MAP, YEAP AP )
THIS SUBROUTINE OUTPUTS MONTHLY
TAttLES, AND ZEROS ACCUMULATIONS
INTEGER YEAR
DIMENSION SMOIST<<:4,5),UMQISTU4,51 ,L MOIST (2 4),
1 STErtP(24),UTEMP(24)
COMMON /ALL/ RO,H YM IN, PKNT K>E ,H rC AL ,DPST , OUT PUT , T IMF AC , LZS, AREA ,
1 RESBl.RuSB.SRGX, I^TF.RGX.I NFL , UZS B, APERCB ,RI 6 , ERSN.
270
-------
801*.
8015.
8015. 1
8016.
8C17.
8C1S.1
8C18.2
8018.3
801 S. 5
6019.
•i C ? ) .
8C21.
3022.
8023.
802*.
8025.
8026.
8027.
8023.
6029.
8030.
8031.
8032.
8033.
803*.
8035.
8035.1
6036.
8037.
8033.
8039.
80*0.
80*1.
80*2.
80*3.
80**.
80*5.
30*6.
80*7.
80*8.
80*o.
8050.
8051.
8052.
8C52. 1
8C53.
605*.
805*. 1
8055.
8056.
8057.
8053.
8059.
8060.
8061.
8066.
8066. 1
8066.2
8066.3
8066.*
8066. 5
8067.
8063.
8070.
8076.
8077.
807'3.
8079.
2
3
*
C
1
C
C
1
2
C
1
1
2
3
4
5
6
7
8
9
*
1
2
C
!
C
!
1
2
3
4
5
6
7
9
A
3
C
0
E
F
C
C
C
(
1
2
3
*
C
F
2
3
*
5
C
f
1
C
!
C
(
M,P3 ,A, CALb,PROD,PtST,NUTR,ENGL,METR, BOTH,RESb,YES, NU,
IMIN ,IhR, TF,viCOUCJT,PKINT,INTR,DAYS,HOUR,MNTH, lUhbUG,
CN.CFF,SMGIST,UMUIST,LMUIST,STEMP,UTFMP,LTEMP,MUZ,MLZ
INTEGER PRNTKE ,T1MFAC,IMIN,IHR.TF,JCUUNT
INTEGER*-* oQTH,CALB,DAYS,ENbL,HOUK ,HYCAL , INPUT , INTP , METrt,
MNTh,.NU ,NUTR,OFF,ONfOUTPUT,PCST ,PRINT,PROD, SNUh,YES
INTEGER** LCOF
HEAL Rll.HfMlN.uPiT, LZj,ARfcA,kESbU b) , KJSb(S),SPGX <;>),! UTKi),
RGX(5) ,INFL(5),UZStt(5),APERCB(5),RIB(5J,ERSNl 5),RESB(5),
M,P3,A,LT£MP,LMOIST,MUZ,MLZ *
COMMON /LAND/ fNAM,PRTOT,ERSUTT,PRTOM,ERSNTM,OAY,
RUTOM,NEPTCM,RCSTCM,RITOM,RINTOMfBASTOM,RCHTOM»RUTOT,
NEPTOT,ROSTOT,MTOT,RINTOT,BASTOT,KCHTOT,TWBALȣPTOH,EPTOT,
UZS,UZSi\,LZSN, INUL, INTER, IRC,NN,L,SS,SGrtl, PR,SGW.GWS,KV,
K2*L,KK2*,K2'.EL,EP,IFS,K3,£PXM,RESS1,RESS,SCEP,SCEP1,SRGXT,
S?GXTl,JRER,KhER,JSER,KSER,iRERT,MMP IN, METO PT , SNUrt, CCFAC ,
SCF,IDNS.F.DGM ,«C ,MPACK,EVAPSN.MELEV,TSNOW,PET MIN,PETMAX,ELDIF,
7 OEHX.PACK,DEPTH,MONTH,SDEN,IPACK,TMIN,SUMSNM,PXSNM,XK3,
8 McLRAM,RADMEM , CCR^EM,CRAINM.CONMEH,SGMM,SNEGMM,SEVAPM,SUMSNY,
9 PXSNY,MELRAY,RADMEY,COKMcY,SuMY,CONMEY,CRAINY,SNcGMY,SEVAPY,
* TSNBAL,tCVER,CCVKMX,RCtiT:JM,fiOt}TOT,RXBfROITOM,ROITOTf INF TOM,
INF TOT.ERSTCM , ERSTOT,SKER,TEMPX,RAD,WINDX,RAIN,INPUT,DSwROS,
2 DSNFLUiUSNErtStLSrtCtEROS,TMULSZ,LOOP,NEROS.NILSRO.RRUS,NRROS
DOUBLE PRECISION MNAM(12)
REAL PRTOT,ERSl^TT,PRTOM,ERSrJTM,RUTCM,RITOM,RINTOM,BASTOM,
1 KCHTCM,RUTOT,NEPTOT,rJtGMY,SEVAPY,TSNbAL .CONMEM,
COVER,COVkMX,RCBTOM(5)iRGUTOT(i),RXb(5),ROITUM(5J,
ROITOT (bJ , INFTOd(5) , INF TOT (3) ,£RSTOM(5) , ERST LIT (5) ,
SkERm,TEMPXl2*),RAD(2*),wINL)X(2*),RAIN(288),
LSRC(128J,£RCS(128),HROS(128)
INTEGER CAY.MCNTH
INTEGER OiNERi ,DSNRCS,DSNFLO,TMbLSZ
COMMON /PESTC/
1 STST,PRSTCM,SPROTM,P«STOT,SPRSTM,PROTOM,SAST,PROTOT,
SCST,UPITCM,SCST,UPITOT,UTST,STS,UAST,UTS,UCSTfSAS,
3 UDST,SCS,FP,SDS,CMAX,SSTR1,SPROTT,UAS,SPRSTT,UCS,
FPUZ,UDS,UPRIT^,USTR,UPRITT,UPRIS
STST,PRSTCM( !>) , SPROTM,PRSTOT( 5) , SPRSTM ,PROTOM( 5 ), SAST,
OTl3},SCST,uPITUfU5),S03T,UPlTOT(5),UTST,STS{5),UAST,
5J ,UCST,SAS(5 J,UDST,SCS(5) ,FP , SDS( S ) ,CMAX , SSTRU t>) ,
TT IAC/t.1 CDDCTT,I.-C/K\ CDII7 ilHC/Ct I IDD T T U ItCTa^CI
REAL
PPOTOT
3 UTSI5J ,JV^OI ,3«313J,UUJI ,3l,it3J ,rf,3Uil3) »l.n«A,i3IKil3J ,
* SPROTT,UAS(5) ,SPRSTT,UCS(t>),FPUZ,UDS(5),UPRITM,USTR(5J ,
K UPRITT,UPRIS(5)
REAL KCPLfl,LSTR,LAS,LCS,Li>S,GSTR,GAS,GCS, GDS.TPbAL ,
UEGSCM,OfcGUOM,JEGLOM,UIST,TOTPAP
INTEGER TIMAPJ
,YEARAP(12)
COMMON /NUT/ CcLT,SN , SNT,SNRSrt.SNRCM.UN,UNT,UNI,UNIT,
271
-------
8060.
aoti .
8082.
acai.
8C8*.
8085.
8036.
ece?.
80S3.
ec^9.
8C90.
80-H.
8092.
8093.
809*.
809*. 5
SC95.
8C96.
8097.
8Cf-'8.
6099.
8100.
8101 .
8102.
8103.
810*.
8105.
8106.
8107.
8109.
8109.
3110.
8111.
8112.
8113.
811*.
8115.
8116.
8117.
8113.
8119.
8120.
8121 .
3122.
8123.
bl2*.
8124. 1
812*. 2
8125.
8126.
8127.
8128.
6129.
8130.
eui.
8132.
6133.
813*.
8135.
8136.
6137.
8 1 3 -i .
8139.
81*0.
81*1.
81*2.
81*3.
31**.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
1051
C
C
C
C
1 Ui>*R IM, KRSffLN,LN*PM,GN, SNRtJM (UNt) , NRSY1 20 1 5) t
6 LNRPY(2C),SNRBY(20,iJ,JNRBY(20,5),LNRBY(20)fGNRBYJ20),
7 TNRBYC2CJ ,TNRHV(20) , TNRHVM( 20 j , TNkHV Y( 20 1 t TMA , TPA , TOLA ,
8 KM (8.*) (TriKNtd) iKP( b,*) ,THKP( 5) , NBAL , PHBAL ,CL BAL
DOUBLE PRECISION SN I 20, 5) , 'J 4( 20, 5) ,LN(20) ,GN( 20)
INTEGER TSTePfN$TEP,SrLG,UPt.G,LFLGtGFLG
HYDROLOGY AND PESTICIDE VARIABLES USED
INTERNALLY
REAL PRT,PRTTCM(5),PRTTOT(5),DEGTOM,
1 DEGT,PeAL,COVRiPACKMM,TSNBMM,
2 UiSMtT,LZSMET,SGWMET,SCEPMT,RESSMT,TWBLMT,SRGXTM,
3 SRRTMT,STSTMT,SASTMT,SCSTMT,SDSTMT,JTSTMT,
4 UASTMT tUCSTMT,UDSTMT,LSTRMT,LASMETtLCSMET,LDSMETf
5 GSTRMT,GASMET,GCSMET,GUSMET,DEGTMT,DEGSMT,DEGUMT,
6 DEGLMT.TPbALM.UZSBMTm.KESBMmJtSRGXMTO),
7 SRERMT(b) ,STSf6T(!j) ,SASMfcT(i)) • SCSMET (5 > , SDSMET ( 5 ) t
8 UTSM£T(b) ,ijASMET(5) , JCSMEFIS) ,UL)SMbT ( 5> ,UPRI S,M( 5 )
NUTRIENT INTERNAL VARIABLES
DOUBLE PRECISION CONG, LBPACi KGPHA
REAL NBAL«T,PH6LMT,CLBLMT,
1 Si\MET(^Ot5)f SNTMETUO) tUNM£T(20,5) ,dNTMET(20),
2 LNMET120) ,GNMET(20J f SNRS^Tt 20 ) f SNROMT(20 ) ,
3 oNRIMT(2U) ,SNRBMT(20),UNRBMT(20),NRSHTt20J,
4 HRSlfT(iCJ t SNRSYT(20) ,SNROYT(20J , SNRB YT(20) f
5 UNRIYT(20J ,UNR3YTl20J,'JNITMTl20JfUNIMet(20f5Ji
6 TRC20) ,TNk ,TPR,TCLR , TNS ,T PS ,T CLS ,
7 SUHS,SLMI, SUMOiSUMRStCONVF
DATA PRl/C.O/,CcGT/O.C/,LBPAC/' LB /A C« / f KGPHA/' KG/HA* /
DATA TR/2OO.O/ (CU NVF/1. 121 /
f-CNTHLY SUMMARY
IF IPEST .EG. NO) Gtl TO 973
DO 1051 1= l,i
PRTTOM(I) = PRSTOMdJ * PROTOM(I) * UPITOM(I)
OEGTQM = DEGSLM + UEGJOM * DEGL01
DEGT = UEG1 + OEGTOM
PRTrt = SPRC7M * SPRSTrt * JPRI TM
PF,T = PRT * PkTM
PBAL = STST + LTST * LSTK * GSTR + PRT * DEGT - TOTPAP
IF UPbAL -LE. 0.0). AND. (PBAL . GE . -0.00201) P8AL * 0.0
IF UCCllJNT.LT.TIKAP( 1) .AND. YE Aft . LE. { YE ARAP ( 1 )+l 900) J P8AL = 0
272
-------
8145.
8146.
8147.
8148.
8140.
8150.
8151.
8152.
8153.
8154.
8155.
8156.
8157.
8158.
8150.
8160.
8161.
8162.
8163.
8164.
8165.
8166.
8167.
8161.
8169.
6170.
6171.
8172.
8173.
6174.
6175.
6176.
6177.
8178.
8179.
8160.
8181.
8182.
81B3.
8184.
8185.
8186.
8187.
Bias.
8189.
6190.
3191.
81-72.
8193.
6194.
8195.
8196.
8197.
8198.
819-J.
8200.
S3201.
8202.
8203.
8204.
8205.
8206.
8207.
8203.
8209.
6210.
S21 1.
3212.
8213.
C
973
C
C
C
C
C
C
989
991
C
C
C
992
993
C
C
C
994
995
C
C
C
C
C
996
TPBAL = IftitL + PBAL
IF (NUTR . EJ. NO) GO TO 990
COMPUTE MONTHLY NUTRIENT TOTALS BY £ONE,
ACCUMULATE YEARLY REMOVALS,
COMPUTE TOTAL N, P, CL MASS BALANCES
SURFACE
DO 991 J=i,20
SUMS = 0.0
SUMO = O.C
SUMB = 0.0
SNT(J) = C.O
DO 989 IBLK=1,5
SUMS = SOrtS + SNRSMU.IBLK)
SUMO = SLMO + SNROMU.IBLK)
SUMB = SLMB + SNRBMU.IBLK)
SNTU) = SNTU) + SN(J,IBLK>
CONTINUE
SNRSMTU) - SJMS/5.
SNRCMT(J) = SUMC/5.
SNRBMTU) = SuMB/5.
SNT(J) = SNTU1/5.
CONTINUE
UPPER iUNE
DO 993 J=lf20
SUMI = O.C
SUMS = 0.0
JNT(J) = O.C
UN ITU) = C.O
DO 992 I8LK=1,5
SUM! = SLMI + UNRIMU,IBLK)
SUMB = SliMb + UNRBMUrlBLK)
UNT(J) = UNT{J) +UN(JtIBLK)
UNITU) = UNIT(J) + UNKJ.IBLK)
CONTINUE
UNRIMTU) = SUMI/5.
UNRBMTU) = SUMfl/5.
UNT( J) = UNT(J)/5.
UNITU) = UMT(J)/5.
CONTINUE
TOTAL REMOVAL TO STREAM
DO 995 J=i,20
SUMRS = 0.0
DO 994 I6LK=1, 5
SUMRi = SUMRS + NRSM
-------
8214.
8Z15.
8216.
8217.
8213.
8219.
8220.
8221.
8222.
8223.
8224.
8225.
8226.
8227.
8228.
8229.
8230.
8231.
8232.
8233.
8234.
8235.
8236.
8237.
8238.
8239.
8240.
3241.
8242.
8243.
8244.
8245.
8246.
8247.
8249.
8249.
8250.
8251.
8252.
8253.
8254.
8255.
8256.
8257.
8253.
8259.
82t>0.
6261.
2262.
82bi.
8264.
8265.
8266.
8267.
8268.
£269.
8270.
8271.
8272.
8273.
8274.
8275.
6276.
8277.
8^73.
8279.
8280.
8281.
997
C
C
C
C
C
C
C
C
C
C
C
C
C
502
503
504
505
C
510
511
C
512
513
C
514
C
C
990
C
LNRQY(J) = INrtbYU) + LNRdMU)
GNRBY(J) = CNRbY(J) > GNRBM(J)
TNRHVY(J) = TNRHVY(J) * TURHVM(J)
CONTINUE
MASS BALANCES AND TOTAL REMOVALS
TR(20) = TOTAL REMOVAL OVER SIMULATION PERIOD
TNR = TOTAL NITROGEN REMOVAL
TPR = TOTAL PHOSPHURUS REMOVAL
TCLR = TOTAL CHLORIDE REMOVAL
TNS = TOTAL NITROGEN IN STORAGE
TPS = TOTAL PHOSPHORUS IN STORAGE
TCLS = TOTAL CHLORIDE IN STORAGE
TNA = TOTAL NITROGEN ADDED, AND INITIAL STRG.
TPA = TOTAL PHOSPHORJS ADDED
TOLA = TOTAL CHLORIDE ADDED
DO 503 J=l,20
SUMB = 0.0
DO 502 I6LK=1,5
SUMd » SUMtJ * NRSM( J, IBLK)
CUNTIiMUE
TRIJJ = TR(J) + SUM8/5. * TNRHVMU)
CONTINUE
TNR = 0.0
DO 504 J=l,6
TNR = TNR * TRU)
CONTINUE
TPR = 0.0
DO 505 J=ilrl4
TPR = TPR * TR(J)
CONTINUE
TCLR = TR(2C)
TNS = o.o
DO 511 J=l,6
SUMB = O.C
DO 510 1BLK = 1,5
SUMB = SUPB + SNU.IBLK) + UN(J,IBLK) + UNI(J,tBLK)
CONTINUE
TNS = TNS + SUMB/5. * LN(JJ «• GN(J)
CONTINUE
NBAL = TNS + TNR - TNA
TPS = 0.0
DO 513 J=ll,14
SUMB = O.C
DO 512 IBLK=1,5
Sv,Mb = SLM3 + SNU.IBLK) + UN(J,IbLK) * UNI(J,IrfLK.)
Cl" flt="" imue="" tps="TPS" sumb="" 5.="" ln(j)="" gn(jj="" phbal="TPS" tpr="" -="" tpa="" 514="" iblk*1,5="" f="" sm20,iblk.)="" unj20,iblk1="" uni="" 20,="" 1="" blio="" tcls="SJMB/3." ln(2c)="" gn120)="" clbal="" ^="" tclr="" tcla="" hrite="" (6,1200)="" mnam(month),="" year="" write="" (6,1201)="" (6,1103)="" if="" (output.="" eu.="" petr)="" go="" to="" 1053="" (6.j60)="" 274="" <="" pre="">
-------
8282.
8283.
3284.
8235.
8266.
0237.
8289.
8290.
8291.
8292.
3293.
8294.
8295.
8296.
8297.
829 q.
8299.
333.).
8301.
8302.
8303.
8304.
8305.
8306.
8307.
3303.
8309.
8310.
3311.
8312.
3313.
8314.
8315.
3316.
3317.
3313.
3311.
3320.
3321.
8322.
3323.
3i<.4.
8325.
8326.
8327.
8323.
8329.
8330.
8331.
8332.
8333.
E334.
8335.
8336.
3337.
8333.
8339.
8340.
8341.
83^2.
83'+3.
8344.
8345.
8346.
P347.
8348.
8349.
0350.
WRITE (6,362)
WRITE (6,363)
WRITE (o,364J
WRITE (6,365)
WPITE (6,366)
WRITE (0,380)
WRITE (c,381)
WRITE (6,361)
IF (SNOW .eu.
WRITE (6,4/8)
WRITE (6,479)
WRITE (6,480)
WPITE (6,4t)l)
WRITE (0,482)
WRITE
-------
8351.
8352.
0353.
8354.
8355.
0356.
8357.
8358.
8339.
8360.
8361.
8362.
8363.
8364.
8365.
8366.
8367.
8363.
8369.
8370.
8371.
8372.
8373.
8374.
«375.
8376.
6377.
8378.
S3 79.
WRITE <6
WKlTt (6
MITE (6
WRITE (o
WRITE (6
WRITE (6
124d)
U4i>) DEGTGM
1246) DEGSOM
1247) OEGUOM
1252) 06GLOM
I2oLK,(SN(J,IBLK)f J=1,6),(SN( J „ IBLK) , J = ll, 14)
,SN(2C»I6LK), IBLK=1,5)
(UNT(J),J=1,6),(JNT(J),J=11,14),UNT(20)
(IbLK,(UN(J,I8LK),J-1,6),(UN( J, IBLK),J = 11,14)
,L)iM( 20.I8LK) , I8LK = 1,5)
(UMT(J) ,J= 1,6), (UNIT U) ,J = il,14),UNIT(20)
(IbLK,(UNI( J ,IBLK) ,J = 1,6) , (UNK J, IDLK) ,J = H. 1
UNI <20,Il3LlO , IBLK=1,5)
UM J) ,J=1 ,o) , (LN(J) , J = ll ,14),LN(20)
J) ,J = 1,6) , (G/M(J ), J=U,14),GN(20)
WRITE
WRITE
WRITE
HRI TE
WRITE
WRITE
WRITE
WRITE
(6,4014)
(o,-*03C)
(6,4015)
(6,403C)
(6,4016)
(6,4017)
(6,4018)
(6,4019)
(0,4021)
(SKRSKT(J) ,J = 1,6) ,(SflftSHT(J) ,J = li,14),SNRSMT(20)
(IbLK,(SNRSM(J,IBLK) ,J = 1,6),
(SNKSMU.IbLK) , J = l 1, It 1 ,
SI.K3il(20, IBL*.) , IbLK=l,5)
(SNRUMTt J) , J=l,6) ,( SrjROMT(J) , J=ll ,14) ,SNRUMT<20)
I Ib LK , ( SiiKOM( J, lULK) ,J = 1,6),
(SNKOH(J,IBLK),J=ll,14),
SNRCM(20,IBLK), IBLK=1,5)
(UNKIMT(J),J=1,6),(UNRIMT(Jj,J=11,14),UNRIMT(20)
(IbLK,(UNRIMtJ,IbLK) ,J=1,6) ,
UNKlM(20,I8LK),
(NKSMT(J),J=1,6),(NRSMT(J),J=11,14),NRSMT(20)
(LNRPM(J),J=1,6),(LNRPM(J),J=11,14),LNRPM(20)
(TNRBM(J),J=1,6),(TNRbM(J),J=11,14),TNRBM(20),
(SNRbMT(j),J = l,6),(SNRBMT(J) ,J=ll,14) ,SNRBMT(20),
(U^RBMT(J) ,J = i,6) ,(UNRbMT(J) ,J=11,14) ,UNRbMT(20)t
J=l,6),ILN*BM(J),J=11,14),LMRBM(20),
J-l, 6), (G,NROM( J) |J = 11, 14) ,GNRbM<20)
[J),J=1,6),(TNRHVM(J)iJ-llil4),TNKHVH(20)
NoAL, PHbAL, CLBAL
1053 IF (OUTPUT.EQ. ENGL) GO TO 1055
CONVERSIONS TO METRIC
NEW PARAMETERS OEf INEO FOR VARIABLES NOT RESET TO ZERO.
PRTOM =(
",OSTOM = f
RINTCM=f
RITOM =f
RUTOM zPUTUPOfPIN
BASTCM =BASTCf*NMPIN
RCHTON = RCl-TCf *>-^PIN
EPTGN =EPTO^*f^PIN
NEPTOM =NEPTC.V*MMP IN
MPIN
LZSMET=
276
-------
341P.
8420.
8421.
8422.
8423.
8424.
8425.
3426.
8427.
842Q.
8429.
8430.
8431.
8432.
8433.
3434.
8435.
8435.
9437.
8439.
8439.
8440.
8441 .
3442.
8443.
8444.
8445.
3446.
8447.
3443.
8449",
8450.
8451.
8452.
8453.
8454.
8455.
8456.
8457.
8456.
8459.
3460.
8462.
3463.
P464.
3465.
8466.
8467.
8463.
8469.
8470.
8471.
8472.
8473.
8474.
8475.
8476.
847?.
8473.
8479.
8480.
3431.
8432.
8483.
84S4.
<3435.
SCf PMT=SCEP*fMF Irj
PESSMT=KESS*MMFIN
TiVBLMT=TrtBAL*KfPIN
SRGXTM=SiIN
PXSNM = PxsNf*^iMpiN
MELKAH = MELRA^'MKPIN
kAOMEM = KAOMtJ'+MMPI N
CUNMEM = CUNMEMMrtPIN
CDMEM = COkMEf*MMPIN
CPAINM = CRAINf*MMPIN
SGMM = SGriM*f^i'1PIN
SNEGMM = SiNtG^f*MMPIN
PACK.MM = PACK*M^PIN
SEVAPM = SEVAP^*MMPIN
TSN3KM = TSNtAL*MMPIN
C PESTICIDE
970 IF (PEST .EC. NO) GO TO 975
STSTMT=STST*KGFLB
SASTKT=SAST*KGPLa
SCSTMT=iCST*KGPLB
SOSTMT=iOST*KGHLb
U T S TM T — J T j T * ii£_F Lb
UASTMT=UAST*KGFL8
UCSTMT=UCST*KGFLB
UDSTMT=UOST*KGFLB
UIST=UIST*KGPL8
LSTRMT=LSTR*KGFLB
LASMf;T = LAS*KGPLB
LCS1ET=LCS*KGPLB
LDSMET=LOS*KGPLb
GSTP,MT=GSTR*KGPLB
GASMET=GAS*KGFLti
GCSMET=GQS*KGPLB
GDSMtT = GL)S*AGPL6
PRTM =PRTM*KGFLb
SPPOTM=SPROT«*KGPL8
UPPITM=UPRIT^*KGPL6
DEGTMT=UbGTGM*KGPLB
DEGSHT = L)EGSC^ + KGPLB
OEG'Ji^TsObGUCM + KGPLB
DEGLMT=OEGLCf *KGPLB
TPBALM=TP6AL*KGPLB
C
C ARRAY METRIC PUD IF I CAT IONS
975 DO 1048 I=lt5
ROB TOM ( Ii=RQETUM(I )*MMPIN
INFTOrtl I)=INFTUM(I )*MMPIN
ROITOMUJ=ROITOMII )*MMPIN
UiSBMTl Ii=u^SB( I )*fMPIN
KESBMT(IJ=RfcSb(IJ*«HPIN
SRGXMT(IJ=SKGX(I J*/"fPIN
ERSTOMi I )=ERSTOH( I )*METOPT*2.4
SRERMT1 IJ = SREK(I ) *METOPT*2.471
IF (PEST .Eg. NUJ GC TO 1048
STSMETt I) = STS(I)*KGPLB
SASMET( n-i>AStn*KGPL!3
SCSMET( I}=SCS(I)*KGPLb
SOSMETi I )=SOS(I)*KGPLS
UTSMETt I)=UT J 11 J *KGPLb
UASMf T< I )=JAS(I) *KGPLB
277
-------
8436.
9487.
8483.
8489.
8490.
0491.
849>.
8493.
8494.
8495.
8496.
8407.
8493.
8499.
35)30.
6501.
8502.
35 J3.
-------
8554.
3555.
8556.
8557.
3559.
4560.
8561 .
8562.
85s3.
8564.
8565.
3566.
3567.
asm.
8569.
8570.
3571.
3572.
3573.
8574.
8575.
8576.
3577.
3573.
65/9.
3580.
8581.
8532.
P583.
8534.
3535.
8586.
85-17.
8583.
8589.
85-31.
8592.
8593.
3594.
8595.
8596.
8599.
3600.
&601.
8602.
6603.
8604.
8605.
3606.
8607.
8603.
8609.
8610.
8611.
H612.
3613.
8614.
3615.
«616.
3617.
8618.
861J.
362 J.
8621.
8622.
8623.
C
C
C
C
C
5
5.
C
C
976
WRITE
WRITE
WRITE
rtPITE
WRITE
WRITE
WR I T E
WRITE
WRITE
rtRITE
WKITF
WRITE
WPITP
WRITE
WPUr
WRITE
(6,
(6,
(6,
Jo.
(6.
(o,
1C,
(o,
(0,
(o,
(6,
(0,
TCJM
LPITOM
LcbTMT
CEGSMT
UtGUKT
JcoLHT
TPBALM
,PRTM
,SPROTM
.SPRSTM
,JPRITM
IF (NUTfc .EQ. NO GO TO 1055
CONVF CONVERTS LB/AC TO K.G/HA
DO
520 J=l.
SNRSMT(J)
SNROMTU)
UNRIMTiJ)
NRSKTi JJ
LNRPM(J)
TNRBMtJ)
SNRbrtnJ)
UNRBMTJJ)
LNKBMtJ)
GMPBrtiJ)
TNRHVHtJ)
20
= SNRSMT(J)*CONVF
= SNRCMT(J)*CONVF
= UNRIMT(J)*CONVF
= NRSMTJ JJ*CON\/F
= TNRBf < J)*CONVF
= SNkbMT(J)*CONVF
= IMR6MT ( J)*CONVF
T,MRHVMIJ)*CONVF
SNTMET(J) = iNT(JJ*CONVF
UNTHETiJ) = U^T(J)*CONVF
UNITMTU) = UNIT (J)*CONVF
LNMETIJ) = LN(J)*COMVF
GNMET(J) = uN(J)*CONVF
DO 519 IBLK=1,5
SNKSMtJ, IbLK) = SNrtSMCJ,IBLK)*CONVF
SNRLMJJ, I6LK) = SNRUM(JtIBLK)*CONVF
UfMRIMC J, IdLK) = UNRIM< J.I6LK)*CONVF
SM£T(J,ItiLK) = SN(J,I13LK)*CONVF
UNf.EK J ,IBLK) = UN( J.IttLK) *CONVF
ONIMETCJtlBLK) * UNI(J,IBLK)*CUNVF
CONTINUE
CONTINUE
N8ALMT = NBAL*CCNVF
PHBLMT = PH8AL+CONVF
CLbLMT = CLBAL*CONVF
CUNC
CONC =
WRITE
WRITE
WRITE
WRITE
WRITE
1
WRITE
WRITE
1
WRITE
WRITE
1
2
WRITE
KGPHA
(0.10S2)
(6,400C)
(0,4005)
(6,4006)
(0,4030)
(o,400f)
16,4030)
(6,4015)
(0,403C)
( 6,<»0u8)
(SNTMET(J),J = 1,6) .(SNTMETU) ,J= 11,14),SNTMET(20)
(IbLK,(SNMET(J,IBLK) ,J = 1,6),( SNMET(J,IBLK),J»ll,14)
,SMET(20»IBLK), IBLK=1,5)
(UNTMET(J),J=l,6),(UlUMtT(J),J=ll,14),UNTMET(20)
(IBLK,(UNMET(J,IBLK),J = 1,oi,1 UNMETU,IBLKJ,J=ll,14J
,UMET(20,I BLK) , It3LK=l,5)
(U^ITMT( J) , J = l,6) ,( UNITMTU) ,J=11,14) , UNITMT (20 )
(IcLK,(JNIMET(J,I6LK),J=l,6),
(UMMET(J,IiJLK),J = ll,14),
UrUMET(20,ISLK), IBLK=1,5)
(LNMET(J),J=1,6),(LNMETIJ),J=11,14),LNMET(20)
279
-------
8624.
8625.
8626.
8627.
8623.
6629.
8631,
8632.
8633.
8634.
3635.
863S.
8637.
8633.
8639.
8640.
8641.
8642.
864J.
8644.
3645.
8646.
8647.
8643.
8649.
8650.
3651.
8652.
8653.
8654.
8655.
8656.
8657.
8653.
3659.
3663.
8662.
3663.
8664.
8665.
3666.
3667.
8663.
8669.
8670.
8671 .
8672.
8673.
8674.
3675.
8676.
8677.
8678.
8679.
8680.
8631.
8632.
8683.
8684.
8685.
8686.
8687.
8683.
8689.
8690.
8691.
C
C
C
C
C
C
C
WRITE (6,4005)
,J = 1,6), (GNf1fcT(JJ,J = J
C
C
C
C
C
WRITE
WPITE
WRITE
WRITE
1
2
WRITE
WRITE
1
2
WRITE
WRITE
1
2
V.'RITE
WRITE
WPITE
1
2
3
4
WRITE
WRITE
(6,4011)
(6,4012;
(6,4013)
(6,t03C)
(0,4014)
(6,4030
(6,4015)
(o,403C)
(6,4016)
(6,4017)
(6,4018)
(6,4019)
(6,4021)
(SNRSMT(J) , J=
,J='11,14) ,SNROMT(20)
IBLK) ,J = 1,6),
J = l
I
,6)
1, 14) ,
BLK=1,5)
, (UNhlMTU) ,J=ai,14) , UNRIMTI 20 J
IBLK) ,J=1,6) ,
J=l
I
,6),
(LKRPM(J) ,J=1,6),
(TNRBM1 J) , J=l,6) ,
(SNKBMT(J) , J=
(UNRBMT( J) , J=
(LNRBM(J) , J=l
(GNRBM(J) , J=l
1
1
,6)
,6)
,6),
,
(TNRHVM( J) , J-l
NbALMT, PHBLMT
6),
,6)
1,14),
BLK=1,5J
(NRSMT(J),J»11 ,14),NRSMT(20)
(LNRPM(J),J»11,14),LNRPM(20J
(TNRBM( J) ,J*11, 14),TNRBM(20),
,(SNRUMT(J) , J»ll, 14) ,SNRBMT<20),
,(UNRBMT(Ji ,J=ll,14),UNRdMT(20),
(LNRBM( J) ,J =11,14), LNRBM120J,
(GNRBM(J),J=11,14) ,GNRBM(201
,(TNRHVM(J),J=ll,14),TMRHVrt(20)
, CLBLMT
ZEROING OF VARIABLES
1055
RUTOM
NEPTOM
ROSTOM
RITOM
RINTOM
BASTQM
RCHTOM
SUMSMM
PXSNM
MEL RAM
RADMEM
CDRMEM
CONMEM
CPAIh'M
SGMM =
SNEGf-'M
SEVAPM
1058
PRTGM ~ C
= 0.0
= C.O
= C.C
= 0.0
= C.C
- C.O
= C.O
EPTOM = C
ERSNTM =
PRTM = 0.
SPRGTM =
SHRSTM =
UPRITM =
DEGSOM =
DtGUCM =
DEGLOM =
= 0.0
= 0.0
= 0.0
= C.O
* C.C
= 0.0
= C.C
0.0
= 0.0
= C.C
00 1058
ERSTOf
ROSTOV
IiNiFTCf
PRTTO^
PrtUTO
PRSTCf
uPITOM
RGITC^
.0
.0
0.0
C
C.O
0.0
C.O
C.O
C.O
C.O
1=1,5
(I) * 0.0
(I) = 0.0
(I) = 0.0
(I) = 0.0
(I) = 0.0
(I ) = C.O
(I) = 0.0
tl ) = 0.0
IF (NUTR .EC. NO GO TO 1060
C
280
-------
8692.
8693.
8694.
8695.
8696.
8697.
8693.
8699.
870D.
8701 .
3702.
8703.
6704.
8705.
8706.
3707.
8703.
8709.
8710.
8711.
3712.
8713.
8714.
6715.
8716.
8717.
9718.
8719.
8720.
8721.
Q722.
8723.
8724.
8725.
8726.
8727.
8728.
8 72 9.
3730.
8731.
3732.
8733.
3734.
S735.
8736.
8737.
3733.
67 iV.
8740.
8741 .
6742.
9743.
8744.
8745.
8747.
874H.
^74y.
'3753.
8731.
8752.
d 7 'j 3 .
6754.
U755.
8755.
3757.
87i><3.
8759.
8760.
C ZERO MONTHLY ACCUMULATIONS
C
DO 522 J=l,20
LNRPM1J) = C.O
LNRBK(J) = C.O
GNRBM(J) = C.O
TNRBM(J) = C.O
TNRHVM(J) = C.O
DO 521 IBLK=1,5
SiMkSMt J, I8LK. J = 0.0
SNROMU,I8LK) = 0.0
UnRIMJ, IELKJ *> 0.0
NRSI"(J,IBJ.K) = 0.0
SiNRBKt J, I6LK) = 0.0
UNkB«( J, IbLK) =0.0
521 CONTINUE
522 CONTINUE
C
1060 RETURN
C
C FORMATS
C
1092 FORMAT CO')
1200 FORMAT ( ' i • , , 'ERODED SEOI 1ENT • ,5< 3X.F7.3) ,4X,F7.3)
(' ',liX, 'FINES DEPOSIT' ,6X,5( 3X, F7.3 ) ,4X, F7.3 )
CO', 5X, 'PESTICIDE, PJUNDS')
CO1, HX, 'SURFACE LA YER' , 9X, 3< 3X, F7.3 ) ,3X, F8.3)
C • , 11 X,« ADSORBED' , 11X , 51 JX ,F7.3 ) ,3X ,F8.3 )
C •,! IX, 'CRYSTALLINE' , 8X, 5( 3X ,F7.3) , 3X,F 8.3 J
CO1, 8>, 'UPPER ZONE LAYER ' , 6X , 51 3X.F7.3) , 3X, F 8.3)
1 ', HX,' INTERFLOW STORAGE' ,2X, 5 ( 2X, Fb. 3 ) ,3X , F8.3)
1 ' ,11 X,' DISSOLVED* ,10X,i»UX,F7.J),3X,F8.3)
'C1, 6X,«LtJnER ZU,ME LAYER ' ,59X, F8 .3)
' • ,UX ,'ADSORdED1 ,64A,rd.31
• ' ,UX,'CkYSTALLINE« .61X.F8.3)
C ', 11X , 'DISSOLVED' ,b3X,F8. 3)
CO', 6X ,'GROUND^ATER L AYE *• t5 8X, F8.3 )
i '0' ,dX, 'PC-STICIDE REMOVAL, KGS. ' , 2X, &( F7 .3,3X ) , F8.3)
CO', dX, 'PESTICIDE REMOVAL, LBS. ' , 2X , 5( F 7.3 ,3X) ,F8.3)
C ' ,1U, 'OVERLAND FLO« REMOVAL • , IX, 5 X, 5{ Fd. J,2X ), 1X.F8.3 )
(' • , 14> ,' 1 NTERFLDrt ' ,9X,i)lFa.3,2X),lX,Fd.3)
C • , 14X ,' iMPtERvIUUS' ,^9X, FO .3)
I ' ',14X,MLTAL',13X,fJlFd.3,2x),LX,Fb.3)
CO'.UX.'bASE FLOW ,63X,Fd.3)
C • ,HX,'bP.OnATER RECHARGE' ,55X,F8. 3)
t •0',nx,'PkECIPITATION»,8Xlb(F7.2,3X),lX,F7.2)
C ' ,14* ,'SNOW« ,65X,F7.2J
(• ',14X,'RAIN ON SNOrt' ,i)7X, F/-.2)
C J.ltX.'MELT & RAIN' ,bdX,F7.2)
281
-------
8761
8762
t,763
8764
6,76i
8766
8767
8763
8769
8770
8771
8772
3773
877<»
8775
3776
8777
8778
8779
8780
8731
8732
8783
37d4
876t>
6786
8787
8788
8739
8790
3791
8792
8793
379',
8795
37°6
6797
8791
8799
8800
8BD1
8802
>;603
V 3 j4
•i = 05
6806
ceor
8806
380)
8810
8811
3812
8813
3814
P?l'j
esi6
90J3
9031
9002
9003
9004
^004
•5005
•
•
•
•
*
•
•
.
.
•
•
•
*
.
•
•
•
•
•
•
•
•
•
«
•
•
•
*
.
•
•
•
.
•
•
•
•
•
•
*
*
•
•
•
•
*
•
*
•
•
»
•
•
•
•
•
•
•
m
•
.1
•
9006.
481
482
483
484
435
486
487
490
491
492
488
367
368
369
383
370
371
372
373
374
375
376
377
489
460
C
C
C
4000
4005
4006
4007
4008
4009
4011
4012
4013
4014
4015
4016
4017
4018
4019
4021
4030
C
C
C
C
C
C
FORMAT
FOP MAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
PORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
1
2
FORMAT
FORMAT
FOf-MAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
1
FORMAT
1
2
3
4
FORMAT
POP MAT
1
2
3
F OPMAT
END
SUBROUT
1 TPbAL,
(
(
(
I
(
(
(
(
(
(
I
(
(
i
I
(
(
(
(
(
(
(
i
(
,
i
i
i
i
i
i
i
i
•
•
0
0
0
•0
i
i
i
'
i
,
i
,
1
,
i
i
(•
I
I
I
t
3
i
(
I
t
i
t
(
(
(
(
{
I
<
(
/
/
/
/
(
(
/
/
/
i
0
C
11X ,'
I4X
14X
14X
14X
14X
14X
11X
ilX
11X
11X
11X
14X
14*
14X
11X
14X
14X
14X
14X
14X
14X
11X
11X
i
•
i
MELT")
KAOIATIUN" ,oOX,F7.2)
CONVECTION' ,5yX,H7. 2)
CCNDENSATIUN" ,57X,F7.2)
•RAIN MELT' ,t»OX,F7.2)
t
i
t
i
i
,
i
i
i
i
i
i
i
i
,
t
i
i
i
GROUND MELT" ,58X,F7.2)
CLM NEG HEAT" ,57X, F7.2)
SNOw PACK' ,63X,F7.2)
SMOH OEI.SITY' , 60X, F7.2)
* SNCW COVE*" tbOX,F7.2)
SNOW EVAP' ,63X,F7.2)
E VAPOTRANSPIRATION1)
PLTENTIAL" ,9X, 5( F7 .2 ,3X1 , IX ,F7.2 )
NET ' ,15X,5(F7.2,3X) , 1X.F7.2)
CROP COVER" ,^9X, F7.2)
STORAGES' )
UPPER ZONE',dX,5(F8.3,2X),lX,F8.3)
LCwER ZONE",8A,5(F8.3,2X),1X,F8.3)
OROUNOWATER',7X,5(F8.3,2X),1X,F8.3)
INTERCEPTION" , 6X ,5 IFd. 3, 2X) , IX, F8.3J
OVERLAND FLJW" ,3X,i(F8.3,2X ),1X, F8.
INTERFLOrt' ,9X,5(F8.3,2X),1X,F8.3)
WATER BALANCE*1 , F8 .4 )
SNOW 3ALANCE= «,Fd.4)
3)
0 , 8X, 'WATER, MILLIMETERS')
0«,
X,«
NJTRIcNT FORMATS
•NUTRIENTS - ' , A5, 1 IX , ' ORG-N* ,3X ,« NH4-S'
NC3+N
02' ,4X,'N2' ,2X,'PLNT-N",3X, «ORG-P»,
,3X,"NH4-A" ,
3X,
P04-S' ,3X,'P04-A' ,2X,'PLNT-P",6X,'CL')
•0'
•0'
•0'
•0"
«0"
•0'
• o«
•0"
•C'
•0'
•0'
•0'
F8.
•0<
,'
,'
,'
,'
• C'
'0'
,'
,'
,'
• ,
,3X,"
,9X,"
,*X,"
,9X,"
,9X,"
,3X ,'
,6X ,'
,9X,"
»9X,"
,9X,"
,9X ,"
»VX ,"
2 , 5 Fb
,oX,"
",sx,
',9A,
' ,SX,
",sx.
.6X,'
,iX,'
1 ,tx,
' .tx,
1 ,ex,
UX,'
iME OUTYR
STORAGE')
S UK FACE LAYER«,3X,F8.2,5FU.3,F8.2,3F8.3,F8.3)
UPPER ZONE* ,6X,F8. 2, 5F8.3.F 8.2,3f-8.
LOrtER ZONE" ,6X,H8.2,5F8.3,F8.2,3F8.
GROUNU/JATER1 , iX, FB.2 , 5F8.3, F8.2»3F8
KL-MCVAL' )
ADVfcCTIVE' )
SEJlMEiMT' ,8X,F8.2,5F8.3,F8.2,3F8.3,
3, Fd. 3)
3,F8.3)
.3,Fd.3)
F8.3)
OVERLAND FLJ«' ,3x,F8.2,5Fa..3,F8.2,3F8. j,Fd.3)
INTERFLOW* , /X ,F8 .2 ,5Fd. 3, FO .2 ,3F8.3
,F8.3)
TOTAL TO STREAM ' , F8 .2, 5F8.. 3, F8. 2.3F8. 3, F8.3)
PERCOLATION TO */,' ",12X, 'GROUNOW ATEK' , 2X,
.3,F8.2t3FU.3,F8.3)
oIOLCGICAL - TOTAL • ,F8 . 2,i>F8 . 3, f-8.
' SJKFACE* »9X,F6.2,^Fa.3,Fo.,2,3Fb.3,
•UPPER ZONE" ,6X,t-8.2,5F8.3,,F8.2,3F8
•LOwER ZONE' , 6X, F8 .2 , 5F8. 3,. Fd.2 , 3F8
' GROJNJWATE*' ,5X,Fd.2,5F8.3,F8.2,3F
HARVEST«,12X,F8.2,bFS.3,F8,,2,3Fb.3,
MASS bALANCc' ,
•NITROGEN = f,F6.J,
' PHCSPiiuRJ a = • , F6.3 ,
•LHLURIOt = l,Fd.J)
bLOCK1 , 12,6X,F0.2.5FH.3,F8.2.3F8.i,
2,3Fd.3,F8.3,
F3.3,
.3.F8.3,
.3.F8.3,
d.3,FU.J)
F8.3)
F rt . 3 )
(YEAR,KGPLB,LSTR,LAS,LCS,LDS,GSTR,GAS,GCS,GDS,
UtGSCT,CEGUGT,DEGLUT,JIST,TlMAP,YEARAP)
THIS SUbROUTlNE OUTPUTS YEARLY
;oo9»
'•> 01 0.
INTEGER YEAR
282
-------
9011.
9011.1
9011.2
9012.
9013.
9014.
9015.
9015.1
9016.
9017.
9018.1
9018.2
soie. 3
9018.5
9019.
9020.
9021.
9022.
9023.
9024.
9025.
9026.
9027.
9023.
9029.
9030.
9031.
9032.
9033.
9034.
9035.
9035.1
9036.
9037.
903t3.
9039.
9040.
9041.
9042.
90ITF,RGX,lNFL,UZSB,APEP.CB,RIB,tRSN,
2 M,P3,A,CALB,PROD,PEST,NUTR,ENGL,METR,BOTH,RESB,YES,NJ,
3 IMIN,IHR,TF,JCJUNT,PRINT,INTR,DAYS,HOUR,MNTH,lOEtJUG,
4 ON,CFF,SMOIST,UMOIST,LMOIST,STEMP,UTEMP,LTEMP,MUZ,MLZ
C
INTEGER PRNTKE|T1MFAC,IMIN,IHR,TF,JCOONT
INTEGER*4 BOTH ,C ALB, CAYS, tNGL , HOUR .HYCAL .INPUT , I NTR ,METR,
1 MIST h, NO, NO TR, OFF » JN.OU TPUT , PEST, »RI NT, PROD. SNOW, YES
C
INTEGER*4 LOOP
C
RE At RU,HYMIN,OPST,LZS,AREA,RESB1( 'j) , ROSB (5 ) , SRGX(5) . INTF( 5),
1 RGX(5) , lNFLl5),JZSBJ5),APERCB(5),RIB<5),ER.SN(b),RESfl<5) ,
2 M,P3,A,LTEMP,LM3IST,MUZ,MLZ
C
COMMON /LANG/ V NAM ,PRTOT, ERS"JTT ,PRT OM . ER SNTM, DAY f
1 RUTOM,NEPTCM,ROSTOM,RITOM,RINTQM,BASTOM,RCHTOM,RUTOT,
2 NEPTOT,ROSTCT,RITOT,RINTOT,3ASTOT,RCHTOT,TWBAL.EPTOM,EPTOT,
3 UZS.UZSN.LZSN, INF IL i INTER . I*C ,NN .L .SSiSGril, PR .SGVs.GWS, KV .
4 K24L,KK24,K24EL,EP,IFS,K3,EPXM,KESSl,RESS,SCEP.SCfcPl,SRGXT,
5 SPGXT1 .JRER.KRER. JSER.KSER , SRERT ,MhP IN. METOPT, SNOW.CCFAC.
6 SCF, IDNS,l-,OGM,*C,MPACK,E\/APSN|McLEV,TSNOW, PETMI N, PE TMAX, ELOI F ,
7 OEWX.PACK.DEPTb.MCNTH.SDEN.IPACK.TMIN.SUMSMM.PXSNM.XlO,
8 MELRAM.RAUMEM.CDKMEM.CKAINH.CUNMEM.SGMM.SNEGMMiSEVAPM.SUMSNY,
9 PXSNY, ME LRAY.fi ADM EY.CDRMEY.SGMY.CONMEY.CRAI NY, SNEGMY.SEVAPY,
* TS^BAL,CUVE»,CQvkMX,ROdTJM,tNTM,RUTCM,RITOM, RI MTOM, BASTOM,
1 RCHTCM.RUTOT.NEPTOT.ROSTaT.RITQT.RINTOT.BASTOT.RCHTUT,
2 Th6AL,EPTOM,EPTOT,UZb,UiSN,LZSN,IN(-IL,INTER, IRC,
3 NN.L.SS ,SGrtl,PR,SGw,GWS,Ky/,K24L,KK24,K24EL,EP,II-S,
4 k3tl2),EPXM,RESSl,ReSS,SCEP,SCEPl,SRGXT,SRGxTl,Jl) , EKSTOM ( 5 ) , ERSTOTC 5 I ,
E SRER(5; ,TEMPX(24J,RAO(24) ,H INDX( 24), RAIN 1288) ,
F LSRC(128), EROS1128) ,»
-------
9069.
9076.
9077.
9078.
9079.
9080.
9031.
9032.
9083.
9084.
9085.
9086.
9087.
9038.
90d9.
9090.
9091.
9C92.
9C93.
9094.
9094.5
9C95.
9C96.
9097.
9093.
9C9).
9100.
9101.
9102.
9103.
9104.
•5105.
9106.
9107.
910'3.
9109.
^110.
9111.
9112.
9113.
9114.
9115.
S116.
9117.
9118.
9119.
9120.
9121 .
9122.
9124.
9124.1
9125.
912-i.
9127.
9123.
9129.
9130.
9131 .
9132.
9133.
9134.
9135.
9U6.
9137.
9138.
9131.
9140.
9141 .
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
1061
c
c
c
981
2 OEGSCT,OEGbOT,DEGLUT,UlST
INTEGER TIMAP1 12) ,YEARAP( 12)
COMMON /NOT/ CELT ,SN , SNT, SNRSM , SNROM.UN ,UNT ,UNI ,UNI T ,
1 UNft IM,NRSP,LN,LNRPM,GN, SNR8M,UNR6M , LNRBM, GNRBMr TNRBM,
2 SNRSY, SNRGY,UNRIY,NRSY, LNRPY , SNR BY , UNRBY, LNR6Y , GNRBY ,
3 TNRBY,TNRHV,TNRHVM, TNRHVY ,TNA,TPA ,TCLA,
4 KN,TriKN,KP,THKP,NBAL,PHBAL,CLBAL ,
5 TSTtP,NSTEP,SFLG,UFLG,LFLG,GFLG
REAL DELT,
1 SNT (20) ,SNRSM{20,5) ,SNRGM(20, 5) ,
2 UNTI20J ,UNH20,5),UiMIT(20),UNRIM(20,5),
3 i\IRSM(2C ,3) ,LNRPM(20) ,
4 SNR6iM(20»5J»UNRtJM(20»5), LNRBM (20) »GNRBM(20i,TNRBM(20),
5 SNRSY ( <:0,&),SNRJY(20,S) ,UNK IY (20 ,5) , NRSY (20, 5 J ,
6 LNRPY (20) , SNR8Y(20,5),UNR8Y(20,5) , LNRBY( 20) , GNRBY (20) ,
7 TNRbY(2C»,T.NRHV(20) ,TNRH\/rt< ,20) , TNRHVYI20) ,TN A ,TPA, TOLA,
8 NfM(8,4 ) ,THKN (a) ,KP < 5,4) ,THK.P( 5) , NbAL,PHBAL,CL>3AL
DOUBLE PkECISICN SN (20, 5 ) , U\l (20, 5) ,LN( 20) ,GN(20)
INTEGER TSTEP,NSTEP,SFLG,UFLG,LFLG,GFLG
HYDROLOGY AND PESTICIDE VARIABLES USED
INTERNALLY
REAL PRTT,PRTTCH(5) .PRTTOTtS) ,CJEGTOT,
1 COVR tPACKMY»TSN'lMY»
2 UZSrt£T,L£S^ET,SGhME F.SCEPMT , RES SMI ,TwBLMT , SRGXTM,
3 SRRTMT, jTSTMT, SASTMT,SCSTMT,SOSTMT,UTSTMT,
4 UASTMT ,l>CSTMT,U3STMT,LSTRMT ,L ASMET.LCSMET ,LDSHET ,
5 OSTRMT ,GASMET,GCSMcT,GOSMhT ,DEGTMT ,UEGSMT .DEl^UMT ,
6 OEGLP T , TPb ALM,J£S3MT15) , R ESb.'-IT ( 5 ) ,SPGXMT(5J ,
7 SktRMT(5),STS,MET(5) , JASMET(^) , SCSMET (I, ) , SUSME r ( 5) ,
8 UTSMET ( 5J ,UASM£T(3» ,JCSMET(3) ,UUSMET(!5) .UPKISMl^J
NJTRIENT IKTtKNAL VARIABLES
DOUBLE PRECISICN CONC, LBPAC, KGPHA
PEAL NctALMT,PheLMT,CLSLMT,
1 SMMET(2C,5), SNTMET(^O) ,UNMET( 20, 5) ,UNTMET(20) ,
2 LNMET(2C),GNMET(20) , jNRSMT(20) ,SNROMT(20i ,
3 UNRIMTJ 20) , SN«aMr(20) ,UNRBMT( 20) ,NRSMT (20) t
4 HRSYT(2C) , SNkSYT < 20 i , SNRO YT (2 0 ) , SNR3 YT ( 20 ) ,
5 UrtRIYl(20) ,UNRBYT(20) ,JNITMT(20),UNIMET(20,5J,
7 SJMS.SLMI , SUMb,SUMRS,CGNVF
DATA LBPAC/' LB/ AC' /, KGPHA/1 KG/HA' /, CON\/F/ 1 . 1 21 /
YEARLY JJTPJT
IF (PEST .Ew. NO) GO TO 981
DU 1061 1= 1,5
PRTTOTU) = PRSTOT(I) •»• PRQTOT(I) + UPITOT(I)
DEGTOT = DEGSOT * UEGU'JT + DEGLOT
PRTT = SFROTT * SPRSTT 4- UPRITT
IF (NUTR .Eu. NO) GO TO 977
DO 526 J=l,20
SUMS = 0.0
SUMO = 0.0
SUMB = C.O
00 523 IBLK=1,5
284
-------
9142.
9143.
9144.
9145.
9146.
9147.
9143.
9149.
9150.
9151.
9152.
9153.
9154.
9155.
9156.
9157.
9157.6
915 '3.
9159.
9160.
9161.
9162.
9163.
9165.
9166.
9167.
916<3.
9169.
9173.
9171.
9172.
9174.
S175.
9176.
9177.
9173.
9179.
9130.
91S1.
9132.
9183.
9184.
9185.
91.3'J.
9187.
9139.
9190.
9191.
9192.
9193.
9194.
9195.
9196.
9197.
9193.
9199.
9200.
9201.
S202.
9203.
9204.
9205.
523
SUMS =
SUMO =
S'JM8 =
CONTINUE
SNRSYT(J)
SNROYT(J)
SNRBYTU)
SUMS + SNRSY(J,IBLK)
SIPO * SNROYUtIBLK)
SCM3 + SNRBYlJ,IBLKJ
= SUMS/5.
= SuMC/5.
= SUMB/5.
524
SDMI = 0.0
SUMB =0.0
00 524 IBLK=t,5
SOrf I = SLMI +
SUrtB = SLH6 «•
CONTINUE
UNRIYTU) = SUMl/5.
UMRBYT(J) = SUMB/5.
TNRBY(J) = SNRBYT(J)
UNRIY(JtlBLK)
UNRBY(J,IBLK)
* UNKBYT(J) + LNRBY(J> + GNROY(J)
525
526
C
C
977
SUMRS = 0.0
DO 525 IELK=l,b
SUMRS = SUMRS + NRSY(J.IBLK)
CONTI.gUE
NPSYT(J) » SbMRS/5.
CONTINUE
WRITE (6,125C)
WP. !TE (6,1251)
WRITE ifc,UC3i
YEAR
9207.
920 U.
IF (OUTPUT. Ew.
WRITE (6,360)
WRITE (6,362)
v»R!T£ (0,363)
WRITE (6,364)
WRITE (6,J65J
WRITE (6,366»
WRITE (6,3dO)
WRITE (6,3(31)
WRITS (6,361)
IF (SNOW .EQ.
WRITE (6,478)
WRITE (6,479)
WRITE (6,480)
WRITE (6,481)
WRITE (0,482)
WRITE (6,483)
WRITE (o,484)
WRITE (6,485)
WRITE <6,4do)
WRITE (6,487)
WRITE (6,-*90)
COVR = 100.
^ETxJ GO TU 1066
RCeTCT, ROSTOT
INFTOT, RINTOT
RITOT
KCITOT, RUTOT
BASTOT
RCHTOT
PRTU7,PRTOT,PRTOT,PRTOT ,PRTOT,PRTOT
NO GO TJ 1072
SUMSNY
P XSN Y
MELftAY
RAUMEY
CCNMEY
CURMEY
GRAINY
SGrtY
SNEGMY
PACK
IF (PAOK ,LT. IPACK) COVR * (P ACK/ IPACK)*100.
IF (PACK.GT
COVP=0.0
SOEN=0.0
1074 WRITE (6,491)
WRITE (6,i92)
WRITE (6,488)
1072 WRITE (6,3e7)
WRITE (6,368)
WRITE (o,369)
WRITE (6,383)
WRITE (6,J7C)
WRITE (6,37l)
WRITE (6,372)
.0.01J GO TO 1074
SOEN
CG»/R
SEVAPY
EPIOT, EPTOT,EPTOT,EPTOT,EPTOT, EPTOT
NEPTCT,NEPTOT,.ilEPTOT,NEPTOT,NEPTOT,NEPTOT
COVER
UiSB.JZS
L^S,L^S,LZS,L^S,LiS,L£S
285
-------
9209.
9210.
9211.
9212.
9213.
9214.
9215.
9216.
9217.
9218.
9219.
9220.
9221.
9222.
9223.
9224.
9225.
9226.
9227.
9228.
9229.
9233.
9231.
9232.
9233.
•5234.
9236.
9237.
9238.
9239.
9240.
9241.
9243.
9244.
9245.
9246.
9247.
9248.
9249.
9250.
9251.
9252.
9253.
9254.
9255.
9256.
9257.
9253.
9259.
9260.
9261.
9262.
9263.
9264.
9265.
9266.
9267.
9268.
9269.
9270.
9271.
9272.
9273.
9274.
9275.
9276.
C
C
WRITE (6,
WRITE (6,
WRITE (6,
WRITE (6,
373) SG*,
374) SCfcP
375) RESb
376) SRGX
,SCEP,SC£P,SCEP,SC6P,SCEP
,RESS
,SRGXT
WRITE (6,377) TwBAL
IF (SNg*.
WRITE
WRITE
WRITE
!F
WRITE
WRITE
WRITE
WRITE
WR I T E
WRITE
W* ITE
WRITE
wRITc.
W» ITE
nRITE
W
-------
9277.
9278.
9279.
9280.
9281.
9282.
9283.
9284.
9235.
9286.
9287.
9288.
9289.
9290.
9291.
9292.
9293.
9294.
9295.
-296.
929*7.
9293.
9299.
930D.
9301.
9302.
9303.
9304.
9305.
9306.
9307.
9308.
9309.
931 3.
9311.
9312.
9313.
9314.
9315.
931t>.
9317.
93i<5.
9319.
9320.
9321.
9322.
9323.
9324.
9325.
9326.
932f.
932'!.
9329.
93JO.
9331.
9332.
9333.
9334.
9335.
933t>.
9337.
933«.
9339.
934 J.
9341.
9342.
•J343.
9344.
2 SNKiY(20,IBLKJ , IbLK.= l,3)
WRITE (6,4014) ( SNROYTt J) , J=l,6) ,1 SNROYT(J)
WRITE (6,4030) (IbLK, (SNROY( J,IBLK) ,J = 1,6) ,
1 (SNROY( J, IBLK,) , J = U, 14) ,
2 SNROY(20, IBLK) , IBLK=1,5)
WRITE (6,4015) ( JKRIYT(J) , Jslfb) f (UNRIYT(J)
WRITE (6,4030) HbLK, JUNR1Y ( J, IBLK) ,J=1,6),
1 UNRIY(J,IbLK) , J=ll, 14) ,
2 l-NR IY(20, IbLiU , IdLK=l,5)
WRITE (6,4016) (UKSYT(J) , J=i,o) , (NKSYT( J) ,J
, J*
, J =
= 11
WRITE (0,4017) (LNRPYU) , J = l,6) , (LNRPY( J) ,J=11
WRITE (6,4018) ( T NkBY (J ) , J =1 , 6 ) , (T NR BY 1 J ) , J
1 (SNRBYT(J) ,J=l ,6) ,( SNRBYT(J)
2 (UNRbYT( J) , J = l ,6) ,1 Ui-JRBYTl J)
3 (LNKBYU ) ,J=1,6) , (LNRBYIJ) ,J
4 (GNRbYl J) , J=l,o) , (bNKBYt J) ,J
WRITE (0,4019) ITNRHVY(J) , J=l,o) ,(T'jRHVY(J)
WRITE (6,4021) NbAL, PHBAL , CLBAL
C
C
1C66 IF (OUTPUT .Eg. ENGL) GO TO 1065
C CONVERSIONS
PRTOT =PRfOT*MfPIN
ROSTOT=RUiTOT*KMPlN
RINTOT=RINTCT*f^PIN
RITQT =RITOT*H^PIN
RUTOf =RJTGT*^f PIN
BASTOT=BAST3T*N,«PIN
RCriTOT=RCHTOT*fMPIN
EPTQT =EPTOT*M^PIN
NEPTOT = NEPTOT*I'MP1N
UZSMET = J/.i*fMPIN
LiSMET = LZS*MMP III
SGWMET=So«*fMPIN
SCEPMT=SutP-'f MF IN
RESSMT=RESS*MMPI1M
TwBLMT=TwBAL+Kf'PIiN
SRGXTM=SKuXT'«'MPPIN
EPSNTT=ERSNTT*METOPT*2.47i
SRRTMT=SAERT*('ETUPT*2.471
C SNOW
IF (SNOn .EJ. NG) GO TO 932
SUMSNY = SJMSN»*MMPIN
PXSNY = PXSNY*MMP IN
MELRAY = /•'ELRA^MMPIN
RAOMEY = KAOM£Y*MMPIN
COLMEY = CGi^.CbY*MrtPIN
CDRMEY = CORMEY»MMPIN
ChAINY = CRAINY*MrfPIN
SGMY = SGl"Y*KMF IN
bNEGHY = 5NEGM'»*MMPIN
PACKHY = PACK*^^'PIN
SEVAPY = SEVAPV*MMPI N
TSN'JMY = TSNbA I *rtMPIN
C PESTICIDE
982 IF (PEST .EJ. NO GCJ TO 979
STSTMT=STbT-*KG(:Lb
SASTMT=SAST*KGFLB
SCSTMT=SCST*KGPLb
SOSTMT=SJST*KbPL6
UTSTMT-JTST^KuPLB
UASTMT=UAST*KGPLB
UCSTMT=UcST*KGPLB
UDSTiMT = JOST*KGPLb
UIST=UI ST*KGPLB
LSTRKT = LSTK*KGPl-6
LASMfT=LAS*KGPL6
LCSM6T=LCS*KoPLd
= 11
, J =
rJ =
= 11
= 11
,J =
SNRUYT(20)
,UNRIYT(20)
,14),NRSYT(2u)
,14),LNRPY(20I
,14),TNRbY(2U),
ll,14),SNRBYT(^0)
11 ,14) ,Uf4kBYT(20)
,14) ,LNP iiY(2 J),
,14),GNPUYI2j)
l 1 , 14) ,TMkHVY(
-------
9345.
9346.
9347.
9348.
9349.
9350.
9351.
9352.
9353.
9354.
9355.
9356.
9357.
9353.
935".
9360.
9361.
9362.
9363.
9364.
9365.
9366.
9367.
9363.
9369.
937J.
9371.
9372.
9373.
93/4.
9375.
9376.
9377.
937d.
9379.
9333.
9381.
GSTRMT=GSTR*KGPL8
GASMET=GAS*KGPLb
9383.
<53<)4.
9305.
9336.
9387.
93 39.
9390.
9391.
9392.
9393.
9394.
9395.
9396.
9397.
9398.
(5399.
0409.
9401.
9402.
9403.
94D4.
9405.
9406.
9407.
9408.
9409.
9410.
9411.
9412.
GDSM£T=GOS*KGPlb
PRTT =PKTT*KGPLB
SPROTT=SP*OTT**GPLB
SPRSTT=SPRSTT*KGPLB
UPRITT=UPKITT*KGPLB
DEGTMT=U£GTOT*«GPLd
DEGSMT=DtGSOT*KGPLd
DEGUMT = UEGUUT*KGPt.B
DEGLMT*OEGLOT*KGPL8
TP8ALM=TPBAL*KCPI_B
: METRIC MODIFICATION OF ARRAYS
979 DO 1062 1=1,3
ROBTCH I)=ROeTQT(I )*MMPIN
INFTOTI I)=IiNFTOT(I )*MMPIN
ROITOT( n=ROITuT(I
UZSBMT(I)=U^SB(
RESBMT* I) = ficSC(I)*NMPIN
SRGXMT( I)=SRGMI )*^^•PIN
EPSTCTi I) = ERSTOT(I)*METOPT*2.471
SRERMT(I)=SRER(1J*METUPT*2.471
IF (PEST .Ei.. NO) GO TU 1062
STSMET( I =STS(I)*KGPLB
SASMETII =SA£iIJ*KGPL6
SCSMbT( I =SCS(I)*KGPtB
SDSMEni =SDS (I )*KGPLB
UTSKETII =UTSII)*KGPLB
UASMET( I =JAS(I)*KGPLB
UCSf?ET(I =JC£(I)*KGPLd
UDSMFTt I =JL)S^I)+^GPL3
UPRISMd =UPhIi
PRTTOT(I)=PKTTQT(I
PROTOT(I)=PROTOT(I)*KGPLB
PRSTOH I) = PRSTOT(I)*KGPUB
UP I TO T (I) =Uf> I TOT (I) **GPLB
1062 CONTINUE
(6,460)
(0,3621
(6,363)
(o,36)
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE (6,3dl)
WKITE (c,3cl)
IF (SNC'» .E'J.
V.RITE (6,478)
WRITE (o,479)
WRITE
-------
9413.
9414.
9415.
9416.
9417.
941S.
9419.
9420.
9421.
9422.
9423.
9424.
9425.
9426.
9427.
9428.
9429.
9430.
9431.
9432.
9433.
9434.
9435.
9436.
9437.
9438.
9439.
9440.
9441 .
9442.
9443.
9444.
9445.
9446.
9447.
9448.
9449.
9450.
9451.
9452.
9453.
9454.
9455.
9456.
9457.
945B.
9459.
9460.
9461.
9462.
9463.
9464.
9465.
9466.
9467.
9463.
9469.
9470.
9471.
9472.
9473.
9474.
9475.
9476.
9477.
9478.
9479.
WRITE (o.tdd) SE\/APY
1C89 WRITE (6,367)
WRITE <6,36d) EPTOT, &PTOT, EPTGT, E PTUT.EPTOT, EPTOT
WRITE lo,369) NEPTOT,NEPTOT,.NlEPTOT,
WRITE (6,3d3) CCVtR
WRITE (6,370)
WRITE (6,371) UZSBMT.UZSMET
WRITE (6,372) L/SM ET , LZSMET ,LZSME T,
*RITE (0,373) SG*MET,SGWMET,SGWMET,
WRITE (o,374) SCEPMT.SCEP.-IT.SCEPMT,
WRITE (6,37?) RtSttKT.RESSMT
WRITE (o,j76) SRGXMT,SRGXTM
WRITE (6,377) TwdLf'T
IF (SNOw .EU. YES) hRITE (6,4d9)
WRITE (0,1203)
WRITE (o, UK) EKSTOT.ERSNTT
WRITE (6,1211) S*ERMT,SRRTMT
C
IF (PEST .£y. Nut GO TO 980
C
WRITE (6,1207)
WRITE (6,1221) STSMET.STSTMT
WRITE (6,1222) SASMET,SASTM T
WRITE (6,1223) SC SPE T ,SC STMT
WRITE (o,i227) SDSMET.SDSTMT
WRITE (6,1224) UTSMET.JTSTMT
WRITE (6,1222) UASMeT.'JASTMf
WRITE (6,1223) UCSMET,JCSTMT
WRITE (o,1227) ^;Di>^E T ,'JOSTMT
WRITE (6,1226) UPRISM.JIST
WRITE (6,1228) LiTRMT
WRITE (0.122S) LASMET
WRITE (6,1230) LCSrtcT
WRITE (6,1231) COSSET
WRITE (0,1232) GSTRMT
WRITE (6,1229) GASMET
WRITE 6,1230) GCSMET
WRITE 6,1231) GOSMET
WRITE 0,1239) PRTTOT,PRTT
WRITE o,1241) PKOTOT,SPROTT
WRITE 6,1242) PRiTOT , SPRSTT
WRITE 6,1243) UPITOT.UPRITT
WRITE o, 1,249)
WRITE 6,1243) OEGTMT
WRITE (6,12to) ObGSMT
WRITE (o,1247) OcGuMT
WRITE (6,1252) DfcGLMT
WRITE (o,1^66) TPBALM
C
C
980 IF (NUTR ,EQ. NO) GO T.O 1065
C
C CONVF CONVERTS
C
DO 530 J=l,20
SNRSfT(J) = SNRSYT(J)*COMVF
SNROVT(J) = SrjRC*T
-------
9480.
9481.
9482.
9483.
9434.
9465.
9436.
9<-S7.
9433.
9491 .
9492.
9493.
9494.
9495.
9496.
9497.
9498.
9499.
9500.
9501 .
9502.
9503.
9504.
9505.
9506.
9507.
9503.
950?.
9513.
9511 .
9512.
9513.
9514.
9515.
9 5 L 6 .
9517.
951P.
9519.
9520.
9521.
9522.
9523.
952<>.
9525.
9526.
9527.
9523.
9529.
9533.
9531 .
9532.
9533.
9534.
9535.
9536.
953?.
V5V3.
9539.
95^0.
",541.
c, '", «, 2 .
9543.
9544.
9545.
5i
5;
c
c
c
c
c
c
c
SNTMET(J) = SNT(JJ*CONVF
UNTMETU) = UNTlJ)*CONVF
UNITMTU) = JMIT(J)*CONVF
LNMET(J) = LN(J)*CONVF
GNMET(J) = GN(J)*CONVF
DO 529 IbLK=l,5
SNRSYtJ, IBLK) =
S.MKGYU, IBLK) =
UNRIYU, IBLK) =
5NMEK Jf I6LKJ =
SNRSY(J,IBLK)*CONVF
SNROY(J,I6LlO*CGNVF
UNRIYU, IBLK)*CONVF
SN(Jt IBLK)*CUNVF
UNMcTiJ, IBLK) = UN(J,IBLK)*CCNVF
ONIMETCJ.IbLK) = UNI(J,1BLK)*CONVF
CONT IN'oE
CONTINUE
NBALMT = NBAL*CCMVF
PHBLMT = PH6AL*CONVF
CLBLMT = CLcJAL*CGNVF
CONC = KGPHA
WRITE (6,1092)
WRITE (6,4000)
WRITE
WRITE
WRITE
1
WRITE
WRITE
1
WRITE
WRITE
1
2
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
1
2
WRITF
WRITE
1
2
WRITE
WRITE
1
2
WRITE
WRITE
WRITE
1
2
3
4
WRITf-
wR I T E
(o,4005)
(6,4006)
(o,4030)
(6,4007)
(6,4030)
(6,4015)
(6,4030)
(0,4006)
(6,4009)
(o,4011)
(o ,4012)
(6,4013)
(6,4030)
(6,4014)
(6,403C)
(6,4015)
(6,4030)
( 6,4Clo)
( 6,4017)
( 6,4018)
(6,^019)
lo,4G2l)
C
ill
, •
(
(I
1 '
(,
t
(
Ul
(1
(I
(
(II
(SI
S^i
(
ill
(SI
SNI
(l
(I
(U
UNI
(
(
(
(
I
(
I
I
N
CONC
( SNTMET(J) , J = l,61 .(SNTMETUJ
UBLK,(SNMET( J, I8LK),J = 1,6),(
iSNMET(20t!BLK)t IBLK=1,5)
( JNTMET(J) ,J=1,6) ,(UNTMET(J)
, (JNMET( J, IBLK) ,J = 1 , 6) ,(
,UNMfcT(20,IBLK) , IBLK=1,S)
(JNITMTl J), J=l,6) , (UMITMTJ J)
(IbCK,lUNIMET(J,IBLK) ,J=1,6)
(UNIMETU.IBLK.) ,J = 11,14) ,
,J=11,14;,SNTMETt20)
SNMET(J,IBLK),J=ll,14J
,J=11,14),UNTMET(20)
UNMETU,IBLK),J=11,14)
,J=11,14),UNITMT(20)
( UNflETU) ,J = 1,6) , (LNMETt J) ,J
(UNMET(J) ,J=1,6), (GUMET(J),J
=11,14),LNMET(20)
=11,14),GNMET(20)
(SNRSYTtJ) ,J=l ,6) ,(SNRSYT(J),J = 11,14) ,SNRSYT(20)
(I6LK,(SNRSY(J.IBLK),J=1,6),
(SNRSY(J,IBLK),J=lI,14),
S(>lKSYl20,IBLK) , IBLK=1,5)
(SNROYTIJ) ,J=l,6) ,{SNROYT(J) ,J=11,14),SNROYT(20i
ilBLK,(SNRUY(J.IBLK),J=1,6),
(SNKGYU, IBLK) , J=ll, 14) ,
SNROY(20,IBLK), I6LK=1,5)
(UNKIYTIJ),J=l,6),(UMRIYT(J),J=11,14),UNRIYT(20)
(IbLK, (U'JRIY ( J, IBLK) ,J = 1,6) ,
(UiJRI Y(J, IBLK) , J=ll, 14) ,
U'MR 1Y120, IBLK), IBLK=1,5)
INKSYT(J),J=1,6),(MRSYT(J),J
(LNRPYIJ),J=1,6)
(TNfidY(J) f J = l,6), (TNRBY( J)tJ
( SN.
-------
9350.
9551.
9552.
9553.
9554.
935:>.
9556.
9557.
9558.
9559.
5560.
9561.
9562.
9563.
9564.
9565.
9566.
9567.
9568.
9569.
9570.
r,571.
9572.
9573.
S574.
9575.
9576.
9577.
9573.
9579,
9530.
9581 .
9532.
95?}.
9584.
9585.
"536.
9587.
953t3.
9589.
9590.
9591.
9592.
9593.
9594.
9595.
959'j.
9597.
959!',.
95S>=>.
9600.
9601 .
9602 .
9fc03.
9604.
9605.
9606.
9607.
9603.
9609.
9610.
9611.
9612.
9613.
9614.
9615.
9616.
9ol7.
C
1068
C
C
C
C
533
534
C
1070
C
C
C
C
1092
1103
12C8
12C7
12C9
1210
1211
1220
1221
RINT'JT = 0.0
BASTOT = 0.0
RCHTOT = C.O
EPTOT = 0.0
6RSNTT = O.C
PRTT = O.C
SPBOTT = 0.0
SPRSTT = O.C
UPRITT = C.O
DEGSOT = C.C
DEGUGT = O.C
DEGLOT = O.C
SUMSNY = 0.0
PXSNY = 0.0
MELRAY = 0.0
RADMEY = 0.0
CDRKEY = O.C
CONMEY =0.0
CPAINY - C.C
SGMY = 0.0
SNtGMY = 0.0
SEVAPY = C.C
00 1C68 1 = 1,5
ERSTOTdl = 0.0
ROBTOTd ) = 0.0
INFfOTd = 0.0
PKTTOTd = 0.0
PkSTQTd = 0.0
PrtuTGTU = 0.0
UPIIOTd = 0.0
ROITOTtl = G.O
IF (NUTR .£Q. NGJ GO TO 1070
ZERO YEARLY NUTRIENT ACCUMULATIONS
DO 534 J=l,20
LNRPYUJ = C.O
LNR6YUJ = C.O
GNPBYU) = C.O
TNRBY(J) = C.O
TMRHVY(J) = 0.0
00 533 ieLK = l,!>
ShKSYU, IBLK.) =0.0
SNROY( J, IttiO = 0.0
UNRI Y( J, IdLK.) = 0.0
NKiYJJtlBLNj = C.O
SNRbYUf IiiLK.) = 0.0
UNRoYt J r IbLKl =0.0
CONTIijJE
CQNTINbt
KETUPN
FORMATS
FORMAT J'O'J
FORMAT CO' ,34X,'8LOCK 1 . BLOCK 2 BLOCK 3 BLOCK *
C 5X, 'TOTAL')
FORMAT '0',3X,'SEDIMENT,TUNNES/HECTARE'J
FORMAT '0' t5X, 'PESTICIOEf MLOGRAMS'I
FORMAT «0«t 8>,«SEDINENT, TONS/ACRE')
FORMAT • • ,11X , 'ERODED SEDIMENT ' ,M 3X.F7.3) »4Xt F7.3 J
FORMAT • « , UX.'F INES JEPOSIT' ,6X, b( 3X, F7 .3 ) i 4X, F7. 3 )
FORMAT ' O1 f 5X, 'PESTICUEt POUNDS')
FORMAT 'O'f 8X,'SLRFACE LA YER' t9X, 5( 3X, F7.3 ) , 3X.F8.3)
BLOCK
291
-------
9618.
9619.
9623.-
9621.
9622.
9623.
9624.
9625.
9626.
9627.
9628.
9629.
9630.
9631 .
9632.
9o33.
9634.
9635.
9636.
9637.
9633.
9639.
9640.
9641.
9642.
9643.
9644.
9645.
9046.
9647.
9648.
9649.
9650.
9651 .
9652.
9653.
9654.
965'j .
9656.
9657.
9650.
9659.
9660.
9061 .
9662.
9663 .
9 (, 6 ^ .
9665.
9666.
9667.
966".
9669.
9673.
9671 .
9672.
9673.
9674.
9675.
9676.
9677.
067(3.
9679.
9630.
9681 .
963H.
9663.
9684.
<;635.
1222 FORMAT
1223 FORMAT
1224 FORMAT
1226 FOPMAT
1227 FORMAT
1228 FORMAT
1229 FORMAT
123C FORMAT
1231 FORMAT
1232 FORMAT
1239 FORMAT
1240 FORMAT
1241 FOPMAT
1242 FORMAT
1243 FORMAT
1245 FOPMAT
1246 FORMAT
1247 FORMAT
1248 FORMAT
1249 FORMAT
1250 FORMAT
1251 FORMAT
1252 FORMAT
1266 FORMAT
360 FORMAT
3t2 FORMAT
363 FORMAT
364 FORMAT
365 FORMAT
366 FORMAT
380 FORMAT
381 FOPMAT
361 FORMAT
478 FORMAT
479 FORMAT
480 FOPMAT
481 FOPMAT
482 FORMAT
'«33 FOPd/11"
484 FORMAT
485 FORMAT
4d6 FORMAT
4S7 rORMAT
49C FORMAT
491 F 0» MAT
492 f OF, MAT
488 FOPMAT
3o7 FORMAT
368 PCPMAT
369 FORMAT
383 FOPMAT
370 FOPMAT
371 FORMAT
372 FORMAT
373 FORMAT
374 FORMAT
375 FORMAT
376 FCRMAT
377 FORMAT
489 FORMAT
460 FORMAT
c
c
c
4000 FORMAT
1
2
4005 FORMAT
C ',UX,'AC$ORBEO',UX,M3X,F7.3),3X,F8.3J
(« ', 11 X,' CRYSTALLINE' ,8X, 5( 3X , F7.3) , 3X, F8.3)
CO', 8X, 'UPPER ZONE LAYER', 6X,5(3X,F7. 31 ,3X,F8.3)
(• ' ,11X,« INTERFLOW STORAGE' ,2X,5 ( 2X, F3.3) ,3X, Fd.J)
( ' ', UX,' DISSOLVED' ,IOX,5(3X,F7.3),3X,F8.3)
CO1, 8X,'LCWER ZONE LAYER • , 59X.F3 .3)
C ' ,UX, 'ADSORBED' ,64X,F8.3)
C ' ,11X, 'CRYSTALLINE' ,61X,F8. 3)
C ', UX, 'DISSOLVED' ,o3X,F8. 3)
CO', 8X,'bROUNDwAT£R LA YES' ,5 8X, F 8.3 J
CO1 ,dX, 'PESTICIDE REMOVAL, KGS. • , 2X, 5< F7.3,3X) ,F8.3 )
CC't dX, 'PESTICIDE REMOVAL, LBS. ' ,2X ,5 « F7.3 ,3XJ , Fa. 3)
(' ' ,11X, 'OVERLAND FLOW REMOVAL ' , IX, 5 (F7.3 ,3X) ,Fa.3)
C ', UX, 'SEDIMENT REMO VAL ' , 6X , 5 ( F7 .3 ,3X ) , F8.3 )
C ' , UX ,' INTERFLOn REMOVAL1 ,3X f 5 ( F7. 3t 3X ) f Fa. 3)
(' ' .UX.'TCTAL1 ,6BX,F7.3)
C ' ,11X, 'FROM SURFACE', 61X,F7. 3)
(' • ,11X,'FKOM UPPER ZONE' ,58X,F7.3J
CO', 8X, 'PESTICIDE DEGRADATION LOSS, LBS.')
C C' ,dX, 'PESTICIDE DEGRADATION LOSS, KGS.')
Cl' ,25X ,'SLMMARY FOR ',14)
C*-'i2sX,1 _ _ ')
' '.UXf'FfcOM LOWER ZONE' ,58X,F7.3)
•C' ,11 X,' PEST 1C IDE BALANCE=',F8.4)
'OS dX, 'WATER, INCHES')
' 0' ,11X ,'RLNOFF' )
1 ' ,1<+X, 'OVERLAND F L JW ' , 5X, 5< F8. 3 ,2X ) , IXt F8.3 )
C ' ,14X ,' IKTERFLOW* , 9 A , 5 { F8 .3 , 2XJ , IX ,F8 . 3 )
C ' , 14X,«I fPERVIUJS' ,59X,F8.3 )
C ',l>»X,'TOTAL',13X,3{Fa.3,2X),lX,F8.3)
CO', UX, 'BASE FLOW' ,63X,F8.3)
C ' , UX,'GRD«ATER R ECHAKGE1 ,5 5X, F8.3 )
CO' ,UX,'PKtCIPITATIdN',8X,5(F7.2,3Xj, 1X.F7.2)
(' l,l'«XtlSNOw',65X,F7.2)
C (,14X,'RAIN ON SNOW' , b/X, F7.2J
C ',14X,'MELT j. RAIM' ,5dX,F7.2)
CG'.UX.'McLT')
C ' ,i4X , 'RADIATION1 ,oOX,F7. 2)
(' • ,14X ,'CCNVECTION' ,59X, F7.2)
C ' ,14X,'CGNDENSATION|',57X,F7.2)
C '.UX.'RrflN MELT' ,60X,F7.2)
t1 ' . 14X i1 oROUND MELT' ,5dX,F 7. 2)
C ',14X,'CUM NE'j HE AT1 ,57X, F/.2)
( 'O1 , UX ,' SNO« PACK1 , jjX.F /.2)
C «,UX,'SNUA DCNSITV1 ,60X, F7 .2)
1 ',UXr'^ SNCw COVL^' ,6CX, f- 1 .2)
'0« , UX ,' SNOrt EVAP' , o3X,t- 7.2)
•0" ,UX ,'EVAPCTRANSPIRATION')
' »,14X,' POTENTIAL' , 9X , 5( F7 .2 ,3X) , IX ,F 7. 2 )
• «,14X,'NfcT« ,15X,5(F7.2,3X), 1X.F7.2)
1 «, 14X, 'CROP COVER' ,59X,f7. 2)
•0' ,UX, 'STORAGES' )
' ',14X, 'UPPER ZONE • ,8X,3 (F8.3 ,2X) , 1 X,F8 . 3)
' ',14X, 'LOWER ZONE ' , 8X , 5 (F 8. 3, 2X) ,1X,F8.3)
1 ' ,14X,'GROUNDWATER', 7X, 5( F8 . 3, 2X) , IX , F8 .3)
C ',14X,lINTERCEPTIJN',6X,5(F8.3f2X),lX,F8.3)
C ' ,14X , 'OVERLAND FL JW ' , 5X, 5( F8. 3 ,2X ) , IX , F8.3 )
c • , ux,1 INTERFLOW' ,9x,5iF8.3,2X),ix,F8.3)
C 0' ,UX,'nATER bALANCE=' ,F8.4)
C '.UX.'SNOh ttALANCE= ',F8.4)
C 0' ,dX , 'WATER, MILLIMETERS')
NUTRIENT FORMATS
i'O1 ,'NUTKIENTS - ' , A5,11X,'ORG-N» ,3X,'NH4-S' ,3X,»NH4--A'
3X, «NC 3»iM02' ,4X, 'N2« ,2X,' PLNT-N' ,3X, 'URG-P' ,3X,
' P04-S' ,JX, ' P04-A' , 2X, 'PLNT-P' ,6X, 'CL' )
1 '0' ,3X,' STC)PAf,F« I
292
-------
9606.
•56BT.
9698.
9689.
9690.
9691.
9692.
9693.
9694.
•5695.
9696.
9607.
9698.
9699.
9700.
9701.
9702.
9703.
^705.
9706.
9707.
9703.
9709.
9710.
9712.
,"UPPER /ONE't6X,F8.2»5F8.3,F8.2,3Fa.3,F8.3)
'OS9X,'LOWER /ONE' f6XtFd. 2,5F8.3,F8.2..3F8.3rFd.3)
•0* f9X ,'GKUJNOiMTER1. 5Xi F8 .2 f 5F8.3. F8.2 i 3F8. ->f F8.JJ
'0' ,3X,'REMCVAL' )
«0' i6X,'AiJVECTIVE' )
•C1i9>,'SEDIMENT',8XtF8.2i5F8.3tF8.2,3F8.3tF8.3)
•o« 19x,«OVERLAND FLOW ,3x,f-a.2f 5F8.3tFa.2i3Fa.3iFa.3)
•0'i9X,«INTERFLOW,/X,F8.2t5F8.3,F8.2,3F8.3,F8.3J
•0',9X,'TOTAL TO STREAM ',F8.2,5F8.3iF8.2t3Fa.3,F8.3J
•0't9X,'PERCCLATION TO •/, ' 't!2X, 'GROUNDwATEK* ,<>X,
F8.2,5F8.3,F8.2»3F3.3iF8.3)
('0',6X,'bIOLOGICAL - TOTAL 'rFd.2.5F8.3tF8.2,3F8.3.Fd.3i
/,' ',9X,'SURFACE'i9X,F8.2.5F8.3,F8.2i3F8.3tF8.3,
/t' 'r9X,'UPPER /ONE',6XfF&.2,5F3.3,F8.2f3F3.3,F8.3,
/t' SSiX.'LUnER /UNE',6X,Fd.2,5Fd.3,F8.2,3F8.J,F8.3,
/f' ' ,9X,'GRCUNl>MATE*' ,3X ,F8.2 , ^Fa.3 ,Fb.2 , 3F 8.3 , F8.3 J
(•0',cX,'HARVEST',i2X,Fe.2i5F8.3iF8.2f3Fb.3.F8.3)
( ' 0' ,3X,'MASS OALANCiE' ,
/,' ' ,6X,'NITROGEN = SF8.3,
/,' •,6X,«PHOSPHORUS = 'iFo.3f
/,' «,6X,'ChLCRIDE = SF8.3J
(• ',12X,«BLOCK',I2,6X,Fd.2f5Fa.3iFd.2f3F8.3,F8.J»
4030
C
END
//LKEO.SYSLMOD DO DSN=WYL.X2.A1J.HD7508.AKMLM.DP 100677,DISP = (NEWfKEEP).
// ONIT = OISK iSPACE=(TRK.,(30,2i2) fRLSE) tVOL = SER=PUB005
//LKED.SYSIN 00 *
NAhE ARM
/*
293
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
i
4.
7.
9
12
15
16
REPORT NO.
EPA-600/3-77-098
2.
TITLE AND SUBTITLE
Agricultural Runoff Management (ARM) Model
Version II: Refinement and Testing
AUTHOR(S)
A.S. Donigian, Jr.; D.C. Beyerlein; H.H. Davis, Jr.;
and N.H. Crawford
PERFORMING ORGANIZATION NAME AND ADDRESS
Hydrocomp , Incorporated
Palo Alto, CA 94304
. SPONSORING AGENCY NAME AND ADC
Environmental Research Lab
Office of Research and Dev
U.S. Environmental Protect
Athens, GA 30605
. SUPPLEMENTARY NOTES
)RESS
oratory - Athens, GA
elopment
ion Agency
3. RECIPIENT'S ACCESSI ON- NO.
5. REPOHT DATE
August 1977 issuing date
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
1HB617
11. CONTRACT/GRANT NO.
R803772-01
13. TYPE OF REPORT AND PERIOD COVERED
14. SPONSORING AGENCY CODE
EPA/600/01
. ABSTRACT
The Agricultural Runoff Management (ARM) Model has been refined and tested on
small agricultural watersheds in Georgia and Michigan. The ARM Model simulates the
hydrologic, sediment production, pesticide, and nutrient processes on the land sur-
face and in the soil profile that determine the quantity and quality of agricultural
runoff. This report discusses the research and model refinements related to soil
moisture and temperature simulation, pesticide degradations, nutrient transformations
and plant nutrient uptake. The goal is to evaluate and improve the pesticide and
nutrient simulation capabilities of the ARM Model. However, the runoff and sediment
modeling is also analyzed since these are the critical transport mechanisms of agri-
cultural chemicals.
In general, comparison of simulated and recorded values indicates that the ARM
Model can represent the major processes affecting agricultural runoff and can be a
useful tool for planning and analysis. However, discrepancies do exist and point out
the need for more testing and research in specific areas.
17.
a.
13
DESCRIPTORS
Simulation
Runoff
Water quality
Planning
Land use
DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
KEY WORDS AND DOCUMENT ANALYSIS
b.lDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group
Nonpoint pollution 02A
Model studies 02B
08H
08M
13B
20D
68D
19. SECURITY CLASS (This Report) 21. NO. OF PAGES
n^H-TfAFpTFIEP
20. SECURITY CLASS (This page) 22. PRICE
UNCLASSIFIED
EPA Form 2220-1 (9-73)
294
&U.S GOVERNMENT PRINTING OFFICE. 1977-757-056/6551 Region No. 5-1
-------