EPA-600/3-77-098
August  1977
Ecological Research  Series
         *  l ', *."    "* *  •"*•«'**<  „ ^  ^  ^ •' -^ ; ^ t
      '      -v      c*v?  «  :-, -    «>,v  •• -'  -> ,
             '»'-  ?<-**  .',/*	'  -''( !,''.,-     ".
      s* ' »°>  , ; *• > * »,i'«*» *~  ***   ,v, >>^?S^ % : :  .---:> '•<:"•:  :;.,
    .5 -^ ^4'4'4'^iV^i'l'-r^ ^r'-:: •:!" '*"'
    •i'-f ^:»7^«^^"^§i,-'>>.«• -l*«; •*-,. V  *  i",?i/, ;
    ."?  M?\^w2£^f-.!l-  ,^ ^*:   V* *   ••• i':**^"'* • •
                                                                  ;  '^;:?|isr--''' ;
                                                                    :  -:»i.;''3

                                                         U.S.
                                                         - -^ ... 1  fV ,   *   »*/„.. ^ ^ T ?"S ...  f  ^*"  , ~

-------
                RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology.  Elimination of traditional grouping  was  consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are.

      1.  Environmental  Health Effects Research
      2.  Environmental  Protection Technology
      3  Ecological Research
      4  Environmental  Monitoring
      5  Socioeconomic Environmental Studies
      6.  Scientific and Technical Assessment Reports (STAR)
      7.  Interagency Energy-Environment Research and  Development
      8  "Special" Reports
      9.  Miscellaneous Reports

This report has been assigned to the ECOLOGICAL RESEARCH series. This series
describes research on the effects of pollution on humans, plant and animal spe-
cies, and materials. Problems  are assessed for their long- and short-term influ-
ences. Investigations include formation, transport, and pathway studies lo deter-
mine the fate of pollutants and their effects. This work provides the technical basis
for setting standards to minimize undesirable changes in living organisms in the
aquatic, terrestrial, and atmospheric environments.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
                                           EPA-600/3-77-098
                                           August 1977
AGRICULTURAL RUNOFF MANAGEMENT (ARM) MODEL
   VERSION II:  REFINEMENT AND TESTING
                    by

         Anthony S. Donigian, Jr.
           Douglas C. Beyerlein
           Barley H. Davis, Jr.
            Norman H. Crawford

         Hydrocomp, Incorporated
       Palo Alto, California  94304
      Research Grant No. R803772-01
             Project Officer

              Lee A. Mulkey
        Technology Development and
           Applications Branch
    Environmental Research Laboratory
          Athens, Georgia  30605
    ENVIRONMENTAL RESEARCH LABORATORY
    OFFICE OF RESEARCH AND DEVELOPMENT
   U.S. ENVIRONMENTAL PROTECTION AGENCY
          ATHENS, GEORGIA  30605
                    230

-------
                                 DISCLAIMER

This report has been reviewed by the Environmental Research Laboratory, U.S.
Environmental Protection Agency, Athens, G&, and approved for publication.
Approval does not signify that the contents necessarily reflect the views and
policies of the U.S. Environmental Protection Agency,  nor does mention of
trade names or commercial products constitute endorsement or recommendation
for use.
                                     11

-------
                                  FOREWORD

As environmental controls become more costly to implement and the penalties of
judgment errors become more severe, environmental quality management requires
more efficient analytical tools based on greater knowledge of the environ-
mental phenomena to be managed.  As part of this laboratory's research on the
occurrence, movement, transformation, impact, and control of environmental
contaminants, the Technology Development and Applications Branch develops
management or engineering tools to help pollution control officials achieve
water quality goals through watershed management.

Refinement and testing of the Agricultural Runoff Management (ARM)  Model
represents a continuing effort to develop mathematical tools for analyzing and
managing agricultural nonpoint pollution.  Although more testing and research
in specific areas is needed, the application of the model on small agricul-
ture watersheds in Georgia and Michigan indicates that the ARM Model can
represent the major environmental factors affecting agriculture runoff and can
be a useful tool for planning and analysis.


                                      David W. Duttweiler
                                      Director
                                      Environmental Research Laboratory
                                      Athens, Georgia
                                     in

-------
                                  ABSTRACT
The Agricultural Runoff Management (ARM) Model has been refined and tested
on small agricultural watersheds in Georgia and Michigan.  The ARM Model
simulates the hydrologic, sediment production, pesticide, and nutrient
processes on the land surface and in the soil profile that determine the
quantity and quality of agricultural runoff.  This report discusses the
research and model refinements  related to soil moisture and temperature
simulation, pesticide degradations, nutrient transformations and plant
nutrient uptake.  The goal is to evaluate and improve the pesticide and
nutrient simulation capabilities of the ARM Model.  However, the runoff and
sediment modeling is also analyzed since these are the critical transport
mechanisms of agricultural chemicals.

Small agricultural watersheds in Watkinsville, Georgia and East Lansing,
Michigan, instrumented for continuous monitoring and sampling of runoff,
provided data for model testing.  In general, comparison of simulated and
recorded values indicate that the ARM Model can represent the major
processes affecting agricultural runoff, and can be a useful tool for
planning and analysis.  However, discrepancies do exist and point out the
need for more testing and research in specific areas.

Runoff and sediment simulation results are good except following tillage
operations.  The relationship of agricultural practices to the model runoff
and sediment parameters needs to be studied and quantified.  Pesticide and
nutrient runoff simulations are fair to good when runoff and sediment are
accurately represented.  Sediment-associated pesticide and nutrient forms
are usually better simulated than soluble or solution forms.  Pesticides
that move both on sediment and in solution remain a problem, indicating the
need to further investigate the partitioning mechanism.  Pesticide
degradation can be adequately represented by a step-wise first-order
mechanism if soil pesticide measurements are available; predictive pesticide
degradation and attenuation models are needed.  Soil nutrient
transformations are reasonably simulated with the first-order reactions
assumed in the nutrient model.  Although simulation of the
sediment-associated nutrients in runoff is good, the solution forms, such as
nitrate, are not adequately represented.  These solution forms are highly
sensitive to the simulated interflow component of runoff; thus the soil
moisture profile and the separate runoff components need to be more
accurately defined to improve the nutrient runoff simulation.

In general, the soil processes occurring in the near surface soil zone
exert the major influence on agricultural runoff from small agricultural
watersheds and should be further investigated.  Recommendations are
included for  (1) further testing of the ARM Model,  (2) investigation of the

                                     iv

-------
algorithm deficiencies  noted above, and (3) modifications to promote and
simplify use of the ARM Model by the potential user community.

This report was submitted as partial fulfillment of Research Grant No.
R803722-01 by Hydrocomp, Incorporated under the sponsorship of the
Environmental Protection Agency.  The work was completed as of April 1977.
                                      v

-------
                                  CONTENTS
Abstract ...............................   iv
Figures  ............................... viii_
Tables ................................
Abbreviations and Symbols  ......................   xv
Acknowledgments  ...........................  xvi

     1.  Introduction .........................    l
     2.  Conclusions .........................    3
     3.  Recommendations .......................    6
     4.  The Agricultural Runoff Management (ARM) Model:
          Present Status .......................    9
     5.  Data Collection and Analysis Programs ............   19
     6.  Soil Environment Simulation .................   25
     7.  Soil Pesticide Degradation Simulation ............   53
     8.  Soil Nutrient Simulation ...................   63
     9.  Runoff and Sediment Simulation Results ............   83
    10.  Pesticide Runoff Simulation Results .............   97
    11.  Nutrient Runoff Simulation Results ..............  109

References ..............................  130
Appendices

    A.  ARM Model Input Description:  Version II dated  6/10/77.  . .  .  133
    B.  P2 watershed storm event simulation results  .........  150
    C.  P6 watershed storm event simulation results  .........  161
    D.  ARM Model Source Code:  Version II dated  6/10/77 ....... .174
                                    Vll

-------
                                 FIGURES
4.1   ARM Model structure and operation 	  10
4.2   Model soil layers for pesticide and nutrient storage	11
4.3   Pesticide and nutrient movement in the ARM Model	14
4.4   Pesticide adsorption/desorption algorithms	16
4.5   Nutrient transformations in the ARM Model	17

5.1   P2 watershed, Watkinsville, Georgia 	  20
5.2   P6 watershed, East Lansing, Michigan	21

6.1   Lands simulation	26
6.2   Comparison of soil moisture and UZS/UZSN at
        Watkinsville, 1973	28
6.3   Soil moisture at 5 cm depth at Watkinsville, 1973	29
6.4   Comparison of soil moisture and LZS/LZSN at
        Watkinsville, 1973	30
6.5   Soil moisture at 40 cm depth at Watkinsville, 1973	31
6.6   Variability of UZFM with UZF	36
6.7   Surface zone temperature simulation at Watkinsville, 1973 ...  38
6.8   Upper zone temperature simulation at Watkinsville, 1973 ....  40
6.9   Surface zone maximum and minimum daily temperature
        simulation at Watkinsville, 1973	42
6.10  Upper zone maximum and minimum daily temperature simulation
        at Watkinsville, 1975	43
6.11  Upper zone temperature simulation at East Lansing, 1974 ....  44
6.12  Upper zone temperature simulation at East Lansing, 1975 ....  47
6.13  Watkinsville soil temperature at 60 cm depth, 1973	50
6.14  East Lansing soil temperature at 60 cm depth,
        January 1973 - November 1974	51

7.1   Comparison of atrazine degradation rates for the
        P2 watershed	54
7.2   Environmental effects on diphenamid degradation rates 	  55
7.3   Environmental approach sensitivity trials 	  57
7.4   Atrazine in soil storage on the P2 watershed	59
7.5   Paraquat in soil storage on the P2 watershed, 1974-1975 ....  60
7.6   Atrazine and paraquat soil storages on the
        P6 watershed, 1974-1975 	  62

8.1   Comparison of plant uptake functions	69
8.2   N03 and TKN in surface and upper zone storage on
        the P2 watershed	75
8.3   N03 and TKN in lower zone storage on the P2 watershed	76
8.4   PC>4 and Organic P in upper zone storage on the P2 watershed  .  .  77

                                   viii

-------
 8.5   N03 and Available P in surface and upper zone storage
         on the P6 watershed	   78
 8.6   NH4 and Organic N in surface and upper zone storage
         on the P6 watershed	   79
 8.7   Simulated crop nutrient uptake from the P2 and
         P6 watersheds	   81

 9.1   Monthly runoff and sediment loss from the P2 watershed	   87
 9.2   Runoff and sediment loss from the P2 watershed for the
         storm of May 28, 1973	   89
 9.3   Runoff and sediment loss from the P2 watershed for the
         storm of May 24, 1974	   90
 9.4   Runoff and sediment loss from the P2 watershed for the
         storm of June 11, 1975	   91
 9.5   Monthly runoff and sediment loss from the P6 watershed	   93
 9.6   Runoff and sediment loss from the P6 watershed for the
         storm of April 18, 1975	   94
 9.7   Runoff and sediment loss from the P6 watershed for the
         storm of August 20, 1975	   95

10.1   Monthly pesticide removal for the P2 watershed	   98
10.2   Monthly pesticide removal for the P6 watershed	1°1
10.3   Paraquat removal from the P2 watershed for the storm
         of May 28, 1973	104
10.4   Atrazine removal on sediment from the P2 watershed for
         the storm of May 28, 1973	104
10.5   Atrazine removal in solution from the P2 watershed for
         the storm of May 28, 1973	105
10.6   Atrazine removal in solution from the P2 watershed for
         the storms of June 27 and July 27, 1974	105
10.7   Atrazine in soil storage by zone on the P2 watershed	106

11.1   Monthly Total Nitrogen and Phosphorus runoff from the
         P2 watershed	114
11.2   Monthly Total Nitrogen and Phosphorus runoff from the
         P6 watershed	115
11.3   Monthly Organic N and NH4 on sediment from the P2 and
         P6 watersheds 	  117
11.4   Monthly NH4, N03, and Organic N removal in solution
         from the P2 and P6 watersheds	119
11.5   Monthly Total P04 removal in solution from the P2 and
         P6 watersheds 	  121
11.6   TKN removal on sediment from the P2 watershed for the
         storm of June 11, 1975	122
11.7   NH4 removal on sediment from the P2 watershed for the
         storm of June 11, 1975	122
11.8   Total P removal on sediment from the P2 watershed for
         the storm of June 11, 1975	123
11.9   NO3 removal in solution from the P2 watershed for the
         storm of June 11, 1975	123
11.10  NH4 removal in solution from the P2 watershed for the
         storm of June 11, 1975	124

                                     ix

-------
11.11  P04 removal in solution from the P2 watershed for the
         storm of June 11, 1975	124
11.12  Total N removal on sediment from the P6 watershed for
         the storm of August 27, 1974	125
11.13  NH4 removal on sediment from the P6 watershed for the
         storm of August 27, 1974	125
11.14  Available P removal on sediment from the P6 watershed
         for the storm of August 27, 1974	126
11.15  Total N removal in solution from the P6 watershed for
         the storm of August 27, 1974	126
11.16  NC>3 removal in solution from the P6 watershed for the
         storm of August 27, 1974	127
11.17  NH4 removal in solution from the P6 watershed for the
         storm of August 27, 1974	127
                                      x

-------
                                 APPENDIX B

                                   FIGURES
Bl   Runoff and sediment loss from the P2 watershed
       for the storm of June 27, 1974	151
B2   Paraquat removal on sediment from the P2 watershed
       for the storm of June 27, 1974	151
B3   Atrazine removal in solution from the P2 watershed
       for the storm of June 27, 1974	152
B4   Atrazine removal on sediment from the P2 watershed
       for the storm of June 27, 1974 . . .	152
B5   TKN removal on sediment from the P2 watershed for the
       storm of June 27, 1974	153
B6   NH4 removal on sediment from the P2 watershed for the
       storm of June 27, 1974	153
B7   Total P removal on sediment from the P2 watershed
       for the storm of June 27, 1974	154
B8   N03 removal in solution from the P2 watershed for the
       storm of June 27, 1974	154
B9   NH4 removal in solution from the P2 watershed for the
       storm of June 27, 1974	155
BIO  PO4 removal in solution from the P2 watershed for the
       storm of June 27, 1974	155
Bll  Runoff and sediment loss from the P2 watershed for the
       storm of July 24, 1975	156
B12  Paraquat removal on sediment from the P2 watershed for
       the storm of July 24, 1975	156
B13  Atrazine removal in solution from the P2 watershed for
       the storm of July 24, 1975	157
B14  TKN removal on sediment from the P2 watershed for the
       storm of July 24, 1975	157
B15  NH4 removal on sediment from the P2 watershed for the
       storm of July 24, 1975	158
B16  Total P removal on sediment from the P2 watershed for
       the storm of July 24, 1974	158
B17  NC>3 removal in solution from the P2 watershed for the
       storm of July 24, 1975	159
B18  NH4 removal in solution from the P2 watershed for the
       storm of July 24, 1975	159
B19  PO4 removal in solution from the P2 watershed for the
       storm of July 24, 1975	160
                                     XI

-------
                                 APPENDIX C

                                  FIGURES
Cl   Runoff and sediment loss from the P6 watershed for
       the storm of August 27, 1974	162
C2   Runoff and sediment loss from the P6 watershed for
       the storm of August 13, 1974	162
C3   Paraquat removal on sediment from the P6 watershed
       for the storm of August 13, 1974	163
C4   Atrazine removal in solution from the P6 watershed
       for the storm of August 13, 1974	163
C5   Atrazine removal on sediment from the P6 watershed
       for the storm of August 13, 1974	164
C6   Total N removal on sediment from the P6 watershed
       for the storm of August 13, 1974	164
C7   NH^ removal on sediment from the P6 watershed for
       the storm of August 13, 1974	165
C8   Available P removal on sediment from the P6 watershed
       for the storm of August 13, 1974	165
C9   Total N removal in solution from the P6 watershed
       for the storm of August 13, 1974	166
CIO  NOo removal in solution from the P6 watershed for
       the storm of August 13, 1974	166
Cll  NH^ removal in solution from the P6 watershed for
       the storm of August 13, 1974	167
C12  PC>4 removal in solution from the P6 watershed for
       the storm of August 13, 1974	167
C13  Paraquat removal on sediment from the P6 watershed
       for the storm of August 20, 1975	168
C14  Atrazine removal in solution from the P6 watershed
       for the storm of August 20, 1975	168
C15  Atrazine removal on sediment from the P6 watershed
       for the storm of August 20, 1975	169
C16  Total N removal in sediment from the P6 watershed
       for the storm of August 20, 1975	169
C17  NH> removal on sediment from the P6 watershed
       for the storm of August 20, 1975	170
CIS  Available P removal on sediment from the P6 watershed
       for the storm of August 20, 1975	170
C19  Total P removal on sediment from the P6 watershed
       for the storm of August 20, 1975	171
C20  Total N removal in solution from the P6 watershed
       for the storm of August 20, 1975	171


                                      xii

-------
C21  N03 removal in solution from the P6 watershed
       for the storm of August 20, 1975	172
C22  NH4 removal in solution from the P6 watershed
       for the storm of August 20, 1975	172
C23  P04 removal in solution from the P6 watershed
       for the storm of August 20, 1975	173
                                    Xlll

-------
                                   TABLES
 4.1  ARM Model Components	   12

 5.1  Watersheds for ARM Model Testing	   22
 5.2  Cropping and Chemical Applications for the Test
        Watersheds (1973-1975) 	   23

 6.1  Lower Zone Average Monthly Soil Temperatures for
        the Test Areas	   52

 8.1  Definition of N and P Reaction Rates 	   65
 8.2  Coupled System of Differential Equations for
        Nitrogen Transformations	   66
 8.3  Fraction of Maximum Monthly Plant Uptake of Nutrients
        Used in the ARM Model for the P2 and P6 Watersheds	   71
 8.4  Nutrient Reaction Rates for the P2 and P6 Watersheds	   72
 8.5  N and P Fertilizer Applications	   74
 8.6  Initial Soil Storages and Bulk Densities	   74

 9.1  Input Parameters for the P2 and P6 Watersheds	   84

10.1  Pesticide Runoff Simulation Results for the P2 Watershed ....   99
10.2  Pesticide Runoff Simulation Results for the P6 Watershed ....  102
10.3  Pesticide Parameter Values 	  107
10.4  Pesticide Applications  	  107

11.1  Nutrient Runoff Simulation Results for the P2 Watershed	110
11.2  Nutrient Runoff Simulation Rusults for the P6 Watershed	112
                                     XIV

-------
                     LIST OF SYMBOLS AND ABBREVIATIONS
ABBREVIATIONS

cm
cms
gm/ha
gm/1
gm/min
ha
kg/ha
kg/min
m
mg/1
mg/min
mm
ppm

SYMBOLS

N
NH4
NH4-N
N02
N03
N03-N
P
P04
P04-P
TKN
—centimeter s
—cubic meters per second
—grams per hectare
—grams per liter
—grams per minute
—hectare
—kilograms per hectare
—kilograms per minute
—meters
—milligrams per liter
—milligrams per minute
—millimeters
—parts per million
—nitrogen
—ammonium
—nitrogen in the ammonium form
—nitrite
—nitrate
—nitrogen in the nitrate form
—phosphorus
—phosphate or orthophosphorus
—phosphorus in the phosphate form
—total Kjeldahl nitrogen, i.e. organic nitrogen
  and ammonia nitrogen

-------
                              ACKNOWLEDGMENTS
Many individuals have contributed to the research work performed in this
project.  Mr. Lee A. Mulkey of the EPA Environmental Research Laboratory in
Athens, Georgia (ERL-Athens) provided overall coordination with ERL-Athens
and valuable assistance in his capacity as project officer.  Mr. David M.
Cline and his staff in the Computer Operations branch of ERL-Athens ably
assisted our work effort by supplying the necessary test data for both the
Georgia and Michigan watersheds.  Mr. Charles Smith, also of ERL-Athens, was
a valuable source of information on the analysis and interpretation of the
watershed data.

Dr. Ralph Leonard, from the USDA Southern Piedmont Conservation Research
Center, and Drs. Boyd G. Ellis and Earl Erickson, from Michigan State
University, provided critical insight into the behavior and response of the
test watersheds.  Their readiness to supply data and patience in responding
to our numerous requests is greatly appreciated.  The staff members of all
the above supporting organizations are too numerous to mention without
omission; their assistance is sincerely acknowledged.

At Hydrocomp a research team was organized to conduct the work in this
project.  Dr. Norman H. Crawford, as principal investigator, provided
general direction and coordination.  The research team was comprised of
Anthony Donigian, Douglas Beyerlein, and Barley Davis.  Mr. Donigian, as
project manager, supervised and reviewed the project work and the final
report.  Mr.  Beyerlein, as associate project manager, directed data
preparation and management, software modifications, and pesticide simulation
work.  Mr.  Davis conducted the nutrient model research refinements,
calibration, and testing.  All team members participated in the hydrology
and sediment simulation work.  Mr. Guy Funabiki provided graphical and
drafting expertise, while Ms. Nancy Sharpe and Ms. Donna Mitchell supplied
clerical assistance and support.  The final report was typed by Ms. Kathy
Francies and edited by Ms. Mitchell.
                                      xvi

-------
                                 SECTION 1

                                INTRODUCTION
Since 1972 the Environmental Research Laboratory in Athens, Georgia
(ERL-Athens) has sponsored the development and testing of mathematical
models to simulate the quantity and quality of agricultural runoff.  The
overall goal of the program is to provide state-of-the-art models as tools
for analyzing agricultural nonpoint pollution and evaluating the impact and
effectiveness of alternative land management procedures.  This report is
the third in a series of research reports describing the development and
testing of the Agricultural Runoff Management (ARM) Model, one of the tools
whose development is being sponsored by ERL-Athens.

The initial effort in the ARM Model work produced the Pesticide Transport
and Runoff  (PTR) Model published in December 1973  (Crawford and Donigian,
1973).  The PTR Model includes erosion, pesticide adsorption/desorption,
and pesticide attenuation (volatilization and degradation) models
interfaced with a pre-existing hydrologic model.  Testing of the PTR Model
was limited due to data availability.  As a result of including snow
accumulation and melt routines and developing plant nutrient simulation
models, the PTR Model was renamed the ARM Model to reflect the wider scope
of application.  The ARM Model report (Donigian and Crawford, 1976),
describes the model components, includes a brief user manual, and presents
initial test results for runoff, sediment, and pesticide simulations for
one year of data on two small watersheds in Georgia.

The inital test results and the availability of additional data from
Watersheds in Georgia and Michigan provided the impetus for additional
testing, evaluation, and refinement of the ARM Model simulation
capabilities.  Also, the nutrient model had not been tested with observed
data prior to publication of the ARM Model report.  Accordingly, the work
described herein concentrates on evaluating and improving the pesticide and
nutrient simulations of the ARM Model.  Modeling runoff, sediment, and soil
environmental factors (i.e. temperature and moisture) is also discussed in
terms of their impact on pesticide and nutrient simulation.

Following the major conclusions and recommendations presented in Sections 2
and 3, respectively, the present status of the ARM Model is summarized in
Section 4, emphasizing the significant changes from the version presented in
the ARM Model report.  The reader should refer to that report for a more
complete description of the model components as that material will not be
repeated here.  Section 5 briefly describes the data collection programs and
test watersheds in Georgia and Michigan.  Section 6 discusses the simulation
of soil moisture and temperature while pesticide degradation and soil

-------
nutrient transformations and corresponding simulation results are provided
in Sections 7 and 8, respectively.  Sections 9 through 11 present the
simulation results for runoff and sediment (Section 9), pesticide content in
runoff (Section 10), and nutrient content in runoff (Section 11).  The
appendices include an update of the input sequence and parameter list,
detailed storm event simulation results, and the ARM Model source code
(Version II dated 06/10/77).

-------
                                SECTION  2

                              CONCLUSIONS
(1)   The  Agricultural  Runoff Management  (ARM) Model can  represent runoff,
     sediment, pesticide,  and  nutrient processes on small  agricultural
     watersheds  in Georgia and Michigan.  Model testing  has  shown that  the
     major  soil  and  transport  mechanisms  that determine  the  quantity and
     quality of  agricultural runoff  can be  simulated with  the ARM Model.

(2)   The  hydrologic  portion of the ARM Model simulates soil  moisture
     storages and all  runoff components.  The runoff simulation
     methodology has been  tested  and verified on numerous  watersheds of
     all  sizes in many geographical  areas.  However, the representation of
     the  soil moisture profile may be too approximate for  detailed
     simulation  of the vertical movement  and distribution  of agricultural
     chemicals.

(3)   Model  testing has shown that the loss  of solution phase chemicals,
     such as nitrates  and  soluble pesticides, from small watersheds is
     highly sensitive  to the simulated interflow component of runoff.
     Thus,  the assumptions and calibration  of interflow  characteristics
     must be evaluated in  light of the resulting transport of solution
     chemicals.

(4)   The  method  of snowmelt simulation in the ARM  Model, based  on
     energy-balance  calculations, adequately represents  the  snow
     accumulation and  melt process and the  resulting runoff  volumes.
     However, snowmelt hydrographs are not  accurately simulated and the
     impact of frozen  ground conditions  is  not represented.  This is
     likely due  to both  inaccurate or insufficient meteorologic data and
     inadequacies in the snowmelt algorithms.

(5)   In general, the ARM Model simulation of sediment production on the
     test watersheds is  good when runoff  hydrographs and monthly volumes
     are  well simulated.  The  only exceptions to this are  related to the
     effects of  winter freeze/thaw conditions on sediment  production and
     the  occurrence  of soil detachment and  scour by overland flow.  These
     conditions  are  not  currently simulated in the model.

(6)   Tillage operations  have a major impact on the runoff  and sediment
     producing characteristics of small agricultural watersheds. The ARM
     Model  attempts  to evaluate the  impact  of tillage on sediment
     production  but  does not consider the effect on runoff.  Consequently
     storms immediately  following tillage operations are not as accurately

-------
     simulated for runoff or the resulting sediment loss as storms
     occurring later in the growing season.

 (7)  The accuracy of the pesticide and nutrient simulations with the ARM
     Model  is usually a direct function of the accuracy of the runoff and
     sediment simulation.  Although some discrepancies exist, when runoff
     and sediment are adequately simulated the pesticide and nutrient
     simulated runoff values closely approximate the observed data.

 (8)  The adsorbed or sediment-associated forms of both pesticides and
     nutrients are better simulated with the ARM Model than the
     corresponding soluble or solution forms.  The sediment-associated
     chemicals, such as adsorbed pesticides, organic nitrogen, and organic
     phosphorus are more stable and less affected by transformations than
     the soluble forms like nitrates, phosphates, and soluble pesticides.

 (9)  The pesticide simulation results indicate that:

      (a)  Comparison of the single-valued  (SV) and nonsingle-valued  (NSV)
          adsorption/desorption functions for partitioning pesticides
          between the adsorbed and solution phases is inconclusive.  The
          SV function is better for some storms while the NSV function  is
          better for others. The observed tendency of the ratio of
          adsorbed to solution forms to increase during a growing season
          is better represented by the NSV function, but it is not clear
          that this observed behavior is due to an adsorption/desorption
          mechanism.

      (b)  Processes that degrade and attenuate pesticides have a major
          impact on the amount of remaining pesticide available for
          runoff.  Simulation of the aggregate impact of these processes
          can be reasonably performed by a step-wise first-order
          degradation approach using different rates following application
          and later in the growing season.  The present state-of-the-art
          cannot provide a general method for representing the individual
          degradation mechanisms and the impact of environmental
          conditions.

(10)  The nutrient simulation results indicate that:

      (a)  The nutrient algorithms can simulate with good accuracy soil
          nutrient storages and transformations for the summer growing
          seasons on the test watersheds.  For the nonsummer periods, the
          simulated soil temperatures obtained by regression with air
          temperature were not applicable, and adequate observed soil
          nutrient data was not available for comparison.  However,  the
          simulated soil nutrient storages behaved  in a reasonable  fashion
          throughout an 18-month simulation period.

      (b)  Initial test results indicate that  the accuracy of the
          simulation of nutrient runoff is limited more by the accuracy of
          the simulated transport mechanisms  than the soil nutrient

-------
     storages.   Specifically,  better definition of  the  interflow
     runoff component and vertical moisture movement would
     significantly improve  the nutrient  runoff  simulation.

(c)   Plant uptake of soluble nutrient  forms, especially nitrate  and
     phosphate,  is a major  mechanism controlling  the availability of
     these forms for runoff and vertical leaching.   Accurately
     simulating  the time-dependent behavior of  plant uptake,  in
     relation to crop growth and  fertilizer applications, is  critical
     to evaluating the impact  of  agricultural operations on nutrient
     contributions to streams  and groundwater.

-------
                                 SECTION   3

                              RECOMMENDATIONS
(1)   Further  testing of all portions of  the  ARM Model  is needed  to
     demonstrate the capabilities of the model  and  to  delineate  and  confirm
     topics for  future  research.   Past testing  has  shown that  the model  can
     represent the mechanisms determining  the quantity and  quality of
     agricultural runoff in two different  climatic  and geographical
     regions.  Testing  in other areas is needed to  strengthen  confidence in
     the model and demonstrate  its general applicability.

(2)   Model testing on larger watersheds, in  the general range  of 50  to 500
     hectares, is needed to evaluate the model's representation  of
     processes in the lower soil  zones and chemical contributions to
     groundwater. In this way, simulation of the movement  of  soluble
     chemicals through  subsurface pathways to a stream or waterbody  can  be
     investigated.

(3)   The impact  of tillage operations on runoff and sediment production
     should be quantified and incorporated into the ARM Model.  This is
     especially  important because the first  events  following pesticide and
     fertilizer  applications are  the most  significant  for agricultural
     chemical  runoff.

(4)   The relationship of different agricultural land management  practices
     to the ARM  Model parameters  should  be investigated and quantified if
     the model is to be used to evaluate methods of controlling
     agricultural nonpoint pollution.  The extent to which  specific
     practices can or cannot be simulated  with  the  ARM Model,  and the
     corresponding changes in model parameters  needs to be  delineated.
     Such work will  likely produce additional recommendations  for model
     modifications to accommodate agricultural  practices common  to
     different regions  of the country.

(5)   Future testing  of  the pesticide and nutrient simulation algorithms
     should evaluate the extent to which laboratory measurements and
     literature  values  of model parameters can  be used to simulate
     pesticide and nutrient runoff without calibration on recorded data.
     Although the model algorithms have  been designed  to use commonly
     measured values, calibration of parameters has been used  to evaluate
     the pesticide and  nutrient algorithms after initial parameter values
     had been obtained  from the literature.   General use of the  ARM  Model
     will be  severely limited if  each application requires  calibration of
     certain  pesticide  and nutrient parameters  on recorded  data.

-------
(6)   To improve the reliability and accuracy of the ARM Model the following
     recommendations are extended:

     (a)   Better definition of moisture,  temperature,  and chemical behavior
          in the surface soil  layer (e.g.  0-1 cm)  is needed since the
          processes in this zone directly affect the quality of surface
          runoff.

     (b)   In conjunction with  (a),  more accurate representation of the
          entire soil profile  and intermediate moisture tranfers is
          required for detailed simulation of vertical chemical movement.

     (c)   Refinement of the erosion algorithms should  concentrate on
          inclusion of detachment and  scour by overland flow, consideration
          of gully erosion, and erosion simulation as  a function of
          particle size.  This work could significantly improve the
          sediment simulation  and help to interface the ARM Model output
          with in-stream sediment transport models.

     (d)   If particle size erosion is  added to the ARM Model, the pesticide
          and nutrient algorithms for  sediment related processes should be
          re-evaluated to incorporate  the dependence on particle size.

     (e)   Predictive models are needed for pesticide attenuation processes
          such as chemical, photochemical, and biological degradation and
          volatilization.  Ideally, such  models should consider the impact
          of soil environmental conditions (e.g.  moisture, temperature,
          oxygen), be capable  of application in various regions of the
          country, and utilize parameters easily measured in a laboratory.

     (f)   Evaluation and quantification of the impact  of moisture and
          oxygen conditions on the soil nutrient reaction rates is needed.
          If this impact is significant,  relationships should be developed
          and added to the ARM Model nutrient algorithms.

     (g)   Additional nutrient  processes such as nitrogen fixation, ammonia
          uptake by plants, and the impact of nutrient contributions in
          precipitation, should be evaluated for their effect and possible
          inclusion in the model.

(7)   To promote the general use of the ARM Model for investigation,
     evaluation, and management of agricultural runoff, the following
     topics should be considered:

     (a)   Guidelines for parameter  evaluation, calibration, and analysis of
          simulation results are needed to assist the  user in model
          application.  This is especially lacking for the pesticide and
          nutrient parameters, and  may require research to evaluate
          adsorption parameters, nutrient reaction rates, and nutrient
          uptake by various crops under field conditions.

     (b)   Simplification of the model  structure and reduction in computer

-------
     run  time would provide a more  user-oriented method  of
     application.  Some sacrifice in model  accuracy would be justified
     if this resulted  in less user  effort in input preparation,
     parameter  evaluation,  and  calibration.

(c)   User workshops and assistance  programs should be developed  to
     attract and initiate potential model users.   Some technical
     background and training is necessary for effective  use of the ARM
     Model.   Also, the establishment of the model  on a central,  nation
     wide computer network  would then  make  the model available to
     users across the  country without  the need for separate source
     codes for  each user.  This would  considerably simplify model
     updates and technology transfer with advances in the
     state-of-the-art.

(d)   Extensive  or repeated  model use and model testing require an
     effective  data management  system  to manipulate and  analyze
     recorded and simulated data series. Analysis of the ARM Model
     output  on  a frequency  or probability basis with such a data
     management system is necessary to effectively utilize  the
     information provided by the continuous simulation of the ARM
     Model.   Moreover, such a system is needed to  incorporate nonpoint
     source  analysis and simulation in general simulation models for
     evaluating comprehensive watershed management.

-------
                                 SECTION 4

      THE AGRICULTURAL RUNOFF MANAGEMENT (ARM) MODEL:  PRESENT STATUS
This section provides an overall description of the ARM Model and brief
discussions of the present versions of the major component programs.  The
emphasis will be on the significant changes to the component programs that
occurred in this study.  The reader is referred to the ARM Model report
(Donigian and Crawford, 1976) for details of the simulation algorithms.

THE MODEL

The ARM Model simulates runoff  (including snow accumulation and melt),
sediment, pesticides, and nutrient contributions to stream channels from
both surface and subsurface sources.  No channel routing procedures are
included.  Thus, the model is applicable to watersheds that are small
enough that channel processes and transformations can be assumed
negligible.  Although the limiting area will vary with climatic and
topographic characteristics, watersheds greater than two to five square
kilometers are approaching the upper limit of applicability of the ARM
Model.

Figure 4.1 demonstrates the general structure and operation of the ARM
Model.  The major components of the model individually simulate the
hydrologic response (LANDS) of the watershed, sediment production (SEDT),
pesticide adsorption/desorption (ADSRB), pesticide degradation (DEGRAD),
and nutrient transformations (NUTRNT).  The executive routine, MAIN,
controls the overall execution of the program; calling subroutines at
proper intervals, tranferring information between routines, and performing
the necessary input and output functions.  Table 4.1 describes the
functions of each of the ARM Model components.

In order to simulate vertical movement and transformations of pesticides
and nutrients in the soil profile, specific soil zones (and depths)  are
established so that the total soil mass in each zone can be specified.
Total soil mass is a necessary ingredient in the pesticide adsorption/
desorption reactions and nutrient transformations.  Figure 4.2 depicts the
zones and depths, assumed in the ARM Model.  The depths of the surface and
upper soil zones are specified by the model input parameters, SZDPTH and
UZDPTH, with values of two to six millimeters and five to 20 centimeters,
respectively.  The upper zone depth corresponds to the depth of mixing of
soil-incorporated chemicals.  It also indicates the depth used to calculate
the mass of soil in the upper zone whether agricultural chemicals are
soil-incorporated or surface-applied.  The lower zone depth of 1.83 meters
has proved satisfactory in testing to date.

-------
    cr
    O
iQO
O 01 ^
LU I— I"
I D D
O Z O
* * *
 Z 2T:
                            CQ
                            o:
                   Q
                   LU
D
        f£Ss
          eS
        LU^g
        Qs;s
G
.C/D.
 UJ
 Q.
                                          i
   ii
   -  O
                                     cc _;

                                     5i!
                                     —' i—e
                                       2s:
                                       z.
                                                   C
                                                   O
S-
O)
Q.
O
                                                  (O
                                                  OJ
                                                  s_
                                                  (J
                                                  3
                                                   a
                                                   •o
                                                   0
                                                  o;
                                                  01

                                                  3
                                                  cn
                         10

-------
 f

 as:
 >~.
 a--
 ea-
 **»•
 00
H
h—
                                                               Ol
                                                               CD
                                                               (C

                                                               O
                                                               O)
                                                               •i—
                                                               S-
                                                               -o
                                                               c
                                                               (O

                                                               OJ
                                                               -a
                                                               • r~
                                                               O
                                                               to
                                                               01
                                                               CL

                                                               s-
                                                               o
                                                               to
                                                               s-
                                                               
-------
                    TABLE 4.1   ARM MODEL  COMPONENTS
 Major
Program
Component
Subroutine
Function
MAIN
LANDS


SEDT
ADSRB
DEGRAD


NUTRNT
                CHECKR

                CHECKS

                BLOCK DATA

                NUTRIO

                OUTMON

                OUTYR
                ERDBUG
                DSPTN
                TRANS
                  Master program and executive control
                    routine

                  Checks input parameter errors

                  Checks input parameter errors

                  Data initialization for common variables

                  Reads and checks nutrient input data

                  Prints monthly output summaries

                  Prints yearly output summaries

                  Performs hydrologic simulation and
                    snowmelt calculations

                  Performs erosion simulation

                  Outputs to the printer erosion files
                    written to disk for error checking

                  Performs pesticide soil adsorption/
                    desorption simulation

                  Performs desorption calculations

                  Performs pesticide degradation
                    simulation

                  Performs nutrient simulation

                  Performs nutrient transformations
                                    12

-------
The transport and vertical movement of pesticides and nutrients, as
conceived in the ARM Model, is indicated in Figure 4.3.  Pollutant
contributions to the stream can occur from the surface zone, the upper
zone, and the groundwater zone.  Surface runoff is the major transport
mechanism carrying dissolved chemicals, pesticide particles, sediment, and
adsorbed chemicals.  "Hie interflow component of runoff can transport
dissolved pesticides or nutrients occurring in the upper zone.  Vertical
chemical movement between the soil zones is the result of infiltrating and
percolating water.  From the surface, upper, and lower zones, uptake and
transformation of nutrients and degradation of pesticides is allowed.  On
the watersheds tested, the groundwater zone has been considered a sink for
deep percolating chemicals since the groundwater flow contribution has been
negligible.  However, on larger watersheds this contribution could be
significant.

MODEL COMPONENTS

The ARM Model simulates the major processes of importance in agricultural
runoff with the following components:

LANDS

The LANDS program simulates all flow components (surface runoff, interflow,
groundwater flow) and soil moisture storages by representing the processes
of interception, infiltration, overland flow, percolation,
evapotranspiration, and snow accumulation and melt.  LANDS is basically an
accounting procedure for moisture above, at, and beneath the soil surface.
It is a modification of the Stanford Watershed Model (Crawford and Linsley,
1966) and the Hydrocomp Simulation Program (Hydrocomp, Inc., 1976).  Snow
calculations are based on an energy balance approach derived from work by
the Corps of Engineers (1965), Anderson and Crawford (1964), and Anderson
(1968).  The LANDS program used in this study is identical to the previous
version (Donigian and Crawford, 1976) except the evapotranspiration index
input parameter, K3, can vary on a monthly basis.  Since K3 represents the
areal density of actively transpiring vegetation, this change allows a
better representation of the evapotranspiration opportunity on agricultural
watersheds  (Johanson and Crawford, 1976).

SEPT

The SEDT program simulates the erosion processes of soil particle detachment
by rainfall and transport by overland flow; overland flow values are
transferred from the LANDS program.  Input parameters allow the user to
specify seasonal variations in land cover and the occurrence and impact of
tillage operations.  The only modification to the SEDT program algorithms
performed during this study was the addition of a user-input soil compaction
factor (SCMPAC).  This factor reduces the amount of detached soil particles
available for transport.  It is basically a first-order decrease of the
surface storage of soil fines performed on a daily basis during nonstorm
periods.  The SCMPAC parameter attempts to represent the natural aggregation
and mutual attraction of soil particles and the compaction of the surface
soil zone from which erosion occurs.  These processes are a complex function


                                      13

-------
CD

uo
                                          ii
                                                                         Ol
                                                                        T3
                                                                         O
                                                                         cu
                                                                         
                                                                         O
             \
                                                                        
-------
of soil characteristics, meteorologic conditions, and tillage practices for
which a detailed simulation is beyond the scope of this study.  Further
research is needed to quantify the critical compaction mechanisms before
simulation algorithms can be developed.

ADSRB

The ADSRB program in conjunction with the DSPTN subroutine simulates the
adsorption/desorption processes of pesticides in the soil profile.  The
algorithms are identical to those discussed in the ARM Model report.  The
user can choose to employ either single-valued, reversible (Figure 4.4a) or
nonsingle-valued, irreversible (Figure 4.4b) adsorption/desorption
equations.  Testing results of these options are discussed in Sections 9
and 10.  The ARM Model has been modified to accept initial pesticide
storage and multiple pesticide applications; the necessary input changes
are included in Appendix A.

DEGRAD

The DEGRAD program calculates the attenuation and degradation of applied
pesticide compounds.  Since degradation is the most critical mechanism
determining the amount of pesticide available for runoff, a major portion
of the current work concentrated on the evaluation of alternative
degradation algorithms.  The following methods were considered:

    (a)  Daily first-order degradation.
    (b)  First-order degradation adjusted for soil moisture and
         temperature effects.
    (c)  Step-wise first-order daily degradation.

The present version of the DEGRAD program includes method (c), above,
whereby different first-order rates are applied separately to specific time
periods after pesticide application.  Section 7 discusses each of the
above methods and presents tests results.

NCJTRNT

The NUTRNT program in conjunction with the TRANS subroutine simulates the
nitrogen and phosphorus components of runoff and nutrient transformations in
the soil profile.  First-order mechanisms are used in all the
transformations shown in Figure 4.5.  The major changes in the nutrient
algorithms during this study are:

     (a)  Eliminating N02 as a separate component and combining N02 and N03
          into one component.  Thus the previous K2 and KK2 reaction rates
          between N02 and N03 were eliminated.
     (b)  Eliminating the transformation path between adsorbed NH  and the
          N02/N03 combination.
     (c)  Including a regression equation for estimating soil temperature
          and then adjusting transformation rates for soil temperature
          changes.
     (d)  Allowing the user to specify a monthly variation in nutrient


                                     15

-------
Figure 4.4a  Single-valued adsorption/desorption  algorithm
     T
     If.
      M
     J_
                                              1-ADSORPTION
                                              2-OESORPTION
                                              3-NEW ADSORPTION
                                              4-NEW DESORPTION
               PESTICIDE  SOLUTION  CONG. (C)  MG/ML

Figure 4.4b  Non single-valued  adsorption/desorption  algorithm
   Figure 4.4  Pesticide  adsorption/desorption algorithms


                            16

-------
                  N2
                     PLNT-N
                        KD
                 KPL
                         NO2+NO3
       NH4-A
                               K1
          NH4 -S
                    KAM
                   KIM
                           ORG-N
                                          KKIM
A. Nitrogen transformations in ARM  model
                          PLNT-P
    PO4-A
 KAS
.—   -.
 KSA
                              KPL
PO4 - S
                                        KIM
                                        KM
ORG-P
B.  Phosphorus  transformations in  ARM model

       Figure 4.5  Nutrient transformations in the ARM model
                            17

-------
          uptake by crops.
     (e)  Modifying algorithms so that transformations are performed in
          terms of nutrient concentrations in the surface, upper, and lower
          zones as opposed to nutrient mass in each zone (i.e. kg/ha) as in
          the previous version.

The above changes are discussed in Sections 6 and 8.

OTHER PROGRAMMING CHANGES

The user will notice two additional changes to the ARM Model source code
and input presented in this report.  During this study, the ARM Model code
was modified in order to operate on a Hewlett-Packard 3000 Series II
computer.  This required certain internal program modifications due to
differences between the HP 3000 and the IBM 360/67 on which the ARM Model
was developed.  These changes are not apparent to the user.  Although the
HP3000 does not allow the FORTRAN namelist option, the ARM Model source
code in Appendix H retains the namelist option in order to be compatible
with input sequences prepared for the previous version of the model.

The ARM Model presently includes an option to output simulated runoff and
sediment values to an external storage device (tape, disc, etc) as
unformatted FORTRAN records.  This option and associated plotting routines
were developed in a research effort to develop a basin wide sediment model
including in-stream sediment transport simulation (Johanson and Crawford,
1976).  Appendix A describes the required input to access this output
option in the ARM Model.
                                      18

-------
                                 SECTION 5

                   DATA COLLECTION AND ANALYSIS PROGRAMS
The ARM Model development effort is supported by an extensive data
collection and analysis program sponsored by the U.S. Environmental
Protection Agency's Environmental Research Laboratory in Athens, Georgia
(ERL-Athens).  Test sites located in Georgia and Michigan have been
instrumented for continuous monitoring and sampling of runoff and
sediment.  Collected samples are refrigerated on site and later analyzed
for pesticide and nutrient content.  In addition, meteorologic conditions
are continuously monitored and soil core samples are taken and analyzed
immediately following application and periodically throughout the growing
season.  Table 5.1 presents pertinent characteristics of the test
watersheds.  The individual programs in Georgia and Michigan are described
in the ARM Model report (Donigian and Crawford, 1976).

During the current study testing efforts were concentrated on the P2
watershed (Figure 5.1) in Georgia and the P6 watershed (Figure 5.2) in
Michigan.  Both P2 and P6 are natural nonterraced watersheds.  Data was
available for the 1973 through 1975 growing seasons.  Table 5.2 indicates
the crops, applied chemicals, target application rates, and dates of
application for all test watersheds listed in Table 5.1.  P2 and P6 were
monitored and analyzed for various pesticides and nutrient forms.  This
report presents simulation results for both watersheds.
                                     19

-------
     231.5
     231.0
     230.5
        230
0    10    20 METERS
                                                                232.0
                                                                232.5
DRAINAGE PATTERN

CONTOUR LINES
 METERS ABOVE M.S.L.

SAMPLING STATION
     Figure 5.1   P2  Watershed, Watkinsville,  Georgia  (1.3 ha)
                                 20

-------
                                            -\
                                                   270.5
                                     270.0
              0     10    20 METERS
                                               DRAINAGE PATTERN
                                               CONTOUR LINES
                                               [METERS ABOVE M.S.L.
                                               SAMPLING STATION
Figure 5.2  P6 Hatershed,  East Lansing,  Michigan (0.8 ha)
                             21

-------

























CD
1—
oo
LU
I—

_J
LU
Q
O


2:

•=C
OL
O
U.
oo
Q
LU
**T~
OO
CtL
LU
r- 1
.
LO

LU
	 1
CQ
1—































































































E
0

+J

t-
cu
CO
E
O
o








CO
1^
•r-
0
oo

, 	 „
r—
E CO
0 E
E 4-> CU
rO fO >
 O
s: cu -Q
i— rO
LU
E
—



ro ' -
CU rO
i. .E
e^ 	 •

S-
— o
C -4_>
OJ ra
E i.
S cu
O CL
o



E
o
• r—
•4_J
ra
o
o
	 1
0
cu -P
jE ro
CO E
S- cn
CU -r-
•P CO
ro CU
3 Q

T3
CU
O
ra
<^
i.
O)
^»>

E
£









i —
•i—
O
cu
<->





00
CO
CNJ








o

•
CM


CO
c~
•r—
NX
4->
ro
3







r— (
O-
rO ^s.
"5 *~H
1- i— i
CU
-P t3
ra cu

^~
co ro
CO +->
rO co
i. E




E
rO
O
r— •

>^
^J
C
rd
t/)

































rt3
•r—
cn
^
o
cu
CD










-a
a>
o
rO
i_
S_
OJ
•p

E
O
E



E
ro
O
r—

r-~ ^j
•r- -a
O E
CU ra
O CO





1— 1
CO
CM








O
CO
•
1 — 1


CO ro
E -r-
•i- cri
\/ i_
-P O
rO OJ
3 CD







CM
CL.
J= ro

'^ B

"O ra
CU 2
o
ra co
S- CO
i- to
cu s-
•P en



E
ra
0
r—

^— >.
•r— "O
O E
CU ro
C_5 CO





CTl
CO
CM








vD
CM
•
r-H


D-
LU
•"•^
<£.
O

13
cu
•—
•r—
>
co ro
C •!-
•i- cn
^. i-
-P O
rO O)
3 CD







CO
D-
x: ra
21
2 ^

T3 ra
OJ 2
(J
ra CO
S- CO
s- ^
•r- -O
O E
a> ra
O CO





cn
CO
CM








CO
CO
•
r-H


D-
LU
•^^
^^
Q
CO
3
cu
•—
rjz
>
CO (O
E -^
•i- cn
NX ^_
-P O
ra CU
3 CD







^J-
a.

T3

ra ZD
cn
••- CU
-E -P
O ro
•i— -P
s:oo
cn
E
co
E E
ra ra
_l cn
•r—
•P-E
CO O
ra •!-
LU S







*-O
a_









cu

rO
TD
CO
•r-
1C E
	 fO
 O
CO i —
i.
CU >>
> -a
ro E
S- ra
1— co


















































-o
cu
o
ra
s-

cu


E
o
E


E
ra O
O co
i — r—
to to
CO i —
NX * Q
E -O O
•r- E CO
O. ra 3
oo to h-





,_,
1 —
CNJ








LO
LO
•
o

E E
ra ZD
cn
••-r CU

(_> ra
•r- -P
"SL OO
cr>
E
'!/i
E E
rO ra
_l cn
•r—
•P s^
CO O
ro -r-
LU s:







r^^
Q-















s.
to
o
r-~

>^
"O
C
ra
oo

















































22

-------

"~~^
LO


CO

CT»
i — 1
'**—*'
0
1 1 1


oo


1 1 1

1 —
-^

1 —
oo
LU
1
1
LU
1—
OL
O
LL.

co

o
1 — 1
1 —


o
1 — 1


Q.
D.

	 1

2

h-H

LU


t — ^


eC

C5
i — i
D-

O
ci
o

CM
•
in

i-Lj
_J
CQ

t—
|



i


OJ


o
rO
C
o •— ~»
'•M QJ JI:
it) +j ^,
CX
cx




QJ (_>

Lf) r- E
t^. ex QJ
er> cxx:



G
O

O

s
ra
.d
o * — -


 ex
2 <"
•o ra
QJ (J
^ 'c
cx O
CXJ^
< CJ




cx
o

o
Q
'U
LxJ
K-
^.

GJ U
LO LO LO Lf)
r-. r-» r-*. r-.
i i i i

i i i i

QJ
00 CO
^H CO  c c

13 M C3C!
cr ro o c



cx cx c: oj
P-.
ID
.d
Cn
t-
O

U 0 U
I i I i i r- r^
00 oj G O O i i
oo o I oo oo oo i— i r-i
i i t i i i i
LO LO LO LO LO OJ OJ
QJ
OJ 1C OJ

f-^ LD • . . CO OJ

.C



E t- -M C TO C i-
CJ C ro ro i- QJ C
cr _£; 13 c Z) cn -~
c c. cr a r— o a.
i- I/O ro -C **— 1- (/>
4J O i- CX-r- -t-J O
r^ cx o_*c +J c "cx

c: s-

CJ QJ 4-» S^
Xi •— c a>
>•> t. -r; >

tn ^ ^— •• u

fo oo co n oo

oo oo . i oo oo ro
i i i i i i t
UO LO ^O U3 *"* LO !^D

a>
OO O OJ
•--" cri un cxi • . •
c-j i— ' oj OJ T— » ro i— •


W t/1 "%? -^
c i- c: t- "*J 'E 7a
O) O QJ O .13 O X.
m _c; cnjn zi c ^
O CX C CX CT" QJ ' —
1- t/1 t- 1/1 m r- ll—
•*-* G +•* O i- Ci, 'r~
-f- J^ -r- J^ rO -r- t-
c: cx c: cx CXTD -»-'

_
re
CJ
JD
O
Ul




cs.

O U
1 1 1 1 1 1 1 1


t t 1 1 1 III


OO CO CO tt
•— + l£> "sD OJ OJ OJ
eg .— i . . . . t— < t— •

CO -Q
3.C -f> CJ
C i- -M CJ C QJ C
QJ O *C C_ -r- *O OJ
CJl il 13 T- MX) -r- C^
OCxcrtsiroas-C


»- *2 TJ *J >> - J= —



£
o

U (J U U
i i r i i
en ci c-i c~i •— «
oo oo cvj cx; r-t
^- ^-^-^r i&
QJ


CO 00 . .CD



i/)
;^_Q JD
e i- 4J a c:
CJ O re C C
cn jr n -^- cr-
O c cr M O

4-. o S- £ +->
r- ^r ro 4-> -i-
c: cx ex ro c



E

U


r-j o- ro o-* oo
i i i i r

i i i i i
LO LO LO Lf) ',O

Q,'
^i^o oj
oS ^ -; oo* s


CO
c J- •*-> QJ r:
GJ O JT ZJ — CD
O Cl CT M 0
"- JZ ro +-> •<-
C CX CX rO c




E
O
O



-o
oo
£X

LD en in
!"••» r-x i i i
1 I CO OT CO
CO CO OJ OO OJ
i i i i i
u~j LD tn m in

QJ
OJ (.O OJ
U~> * ro *
XI C

ZJ.D .^- ,T!
cr i- +J E fO
QJ O ro co i_

O Q CT CJ r~
S- co i". x: 4-
4-> O t- CX-r-

C D- CXTJ 4->
C
ra
QJ
j-->
o

U U U
1 1 < 1 1
OJ OJ O O O
oo c-j oo ro oo
1 t 1 J 1
in to LO LO m
OJ
OJ tJZJ OJ

r*. m ...

.c



E j- +J r ro
CJ C ro ra J^
o ~Q. cr 5 r-

4J O i- O-*"-
-r- _^ ra — S^
c ex CX-D -M
c

o


LO


oo oo oo ro ro
i i r — r-*- i i i
OO OJ 1 1 l_O LO LO
1 1 1 1 1 1 1


QJ
OJ td OJ
i — i ro i — i
«— < CTi LO OJ • • •
CJ r-1 OO OJ r- 1 OO rH


-Q c:
t/i t/i "a -f-
13 "JO -f— r—
C i- C t- 4-> ET ro
Ci O CJ O ra ro i.
CTijc: cnjz a cr 3
£CX O CL G CJ t —
co S- vi AJ _C l»-
-*-> O -M O '— C.T-
-r- ^r •*- -C ro -r- t.
c cx cr cx CXTD +->

c
ra
QJ

o
to




0_

LOLn\!o^oLn^^^>
i i i t i ' ' i
^j-^j-^r^r^r^'^j"'
OOOJ-—H'— it-H*— '•— 'OO
' ' ' ' ' in LO UD


OJ CO CO ^"
•— ' U3 VO C^O OO OO
eg fj - - . ^j ^J ^


ZiO XI QJ
c: J- -M QJ c QJ c:
QJ O T3 C -f- tJ OJ

O ci-CTN «3 O t- O



c: cxcxra o^J^ c


E
o
U
CJ CJ U U
r t t i i i
Cl CTi d C. i-n <-"
OO OJ Ou OO •— t "—•
1 1 1 1 1 I
•a-^- •^^•LD o

00 UD
•— t 00 OJ
CO o^ • . i — i



CO
ZJ
c i- -*-' QJ c:
a) o ft, c: QJ
tn_c: rs -i- c
o c. cr N o
i_ en (^ ra s_
+J 0 i- 1- -M




c:
t- QJ
O >>
U C

CJ S~
•M QJ
CJ c >
n 01 oo oo oo oo -r- o
i i i i i i *^-
t-H ^-i ^-i t— i ro LO
I I I I I O
L.O LO LO LO i S
U C^



TJ
•*
Q,
                                     OJ
                                     3
                                     C
                                     O
                                     U
23

-------

0>
  ~-x
o *a DI
-.- a: j*
a.
LO CX
r-. <:
en

*o »o
co o
£ ¥
O. CD
CXJZ
«C 0


CL
O
i.
CJ

 cu -C
10 4J ^
•r- CL: .w:
'cx
<- cx
c^*3"
•o to
'Z'E
CX-C

c.
o
i-

3
s

to
c
o
•r~ tO
•»j a .c
 0
.^ ^'i
^ o. o
•(-> O..C
c < o
0
O
a.
CXI o
• t_>
LD
a
1 1 1 UJ
	 1 to
03 £

? I

1 1 1 1 1 1
^-i ^H t-t ^-i ^-» esj
1111(1
Lf> CO LT> LO LD UD


C*J CsJ <-* CO CM




VI

C. 1-  o «— s_ s_ +j

C 0.0 Cvrt, c


c

o
o
o o o
t f i I i r--. i i i i
OOOCVJCM tr--.r-^coco
CM CM c>j CM c\j co i i i i
f 1 1 1 1 1 t— * «— t I— » •—*


«*-
CM CO CM «3-

O •— * CJ • .^-t^Hl— 1 . *


Z] JD JD -0 0
Uf If III si



£
o

o o o fo m
1 1 1 1 1 U"> _O
CO CO CO CTi en 1 1
1 t 1 1 I «— ' — 1





.— I . i CD O C~i r*-

"— * CM CM *~* f*"J O CM


J3
•^ « "°-o -a
*« c i- •*-* E 4-» i
a S)^ zj c r> lz
r- o cx cr o a cj
 Q S- "Q. i- 2_
4J C CL CX-D CX-5

c
1
o
v>






£
o o o
in LD m LO ID
1 1 1 1 1

1 1 1 1 1


CM VO
CM CSJ «-H CO
u-» «-t •-( t-t n



V) -O




p c-_ t- cr a


CCO CXTJ
c
OJ
JD

o

o o o
1 1 I 1 1 1 1 1
CM CNJ CM CM 1 1 1 I
1 I 1 1 r-t r-* i—l i— l


'+-
CM iD CM tr;

*iJ *-t • • I— • «— 1 . •

X) XI
£.0 !^ j^ !^
CDJT ZJ £1 CT-r- ZJ C
cc-crooL cro
c: Q- cx-c c o C.-O
a


V)
ooo n fo
1 1 1 1 1 U*) LO
co co co o en t i










.a
£ "Q"^"^
'ra c £- 4-> 'E +-> 'E
i- Ci O rtl '"O fC (O
3 CTJJT 3 r 3 c
f— o Q. cr cj cr o
•r- +J O S- "5. I- CX
i- -r- JC. 1C -r- tO -i-
4J c a. cx-o ci.-a

E
_s
O






•o
Q.
                                        4->  I
                                        CO 1^
                                        O  I

                                            o

                                        >>•£

                                        O  to
                                        C r—
                                        OJ  X
           --  '            i«  --!

            c            JI  o
           ••-            4J  L.
            E         c   i   cx
            «     CU  O  V» -r-


           jr:   >, L.  Q.T-
            E  I  C  >, O  C
             i   v) cu  a. i- -r-
           •-<  i  .cr -r-  cx -o
             I   O CL.Q  O  I

         ttJ  C -^ TJ •
         c  «w  E  i  •
        ••-  >,  m CM
-  c
J .1-
I  "O
                                                           -r^r   0
                                                                OJ r-
                                                                CiTJ
                                                                -r-  L.
                         en     MO
                         o     >>
                         t-    i— n
                         tt) H-  S.
                         •<->  t.  +->
                         *O  OJ  ^
                           .
                         ^ "D  VI
                            •f-  aj
                         +JOCX
                                           witfi
                                           row
                                          .0.0
 CD 4-J -M
 c  4-»
+->  ZJ  Z3
 CCLCL
24

-------
                                 SECTION 6

                        SOIL ENVIRONMENT SIMULATION
The soil environment plays a key role in the modeling of pesticide and
nutrient behavior as these constituents await transport from the land to the
stream.  Soil moisture and soil temperature are two major characteristics of
the soil environment that affect pesticide and nutrient behavior by their
impact on chemical and biological transformations.  In order to evaluate the
significance of these impacts, methods of simulating soil moisture and
temperature were developed and incorporated into the ARM Model.  Simulated
soil moisture and temperature were then used to evaluate alternative
pesticide degradation models (Section 7).  Also, soil temperature is used to
adjust nutrient transformation rates in each of the vertical soil zones.

This section discusses the methods developed for simulating soil moisture
and temperature in each of the vertical soil zones represented in the ARM
Model.  Test results are presented and recommendations for future research
topics are provided.  In addition, the problem of leaching or vertical
movement of pollutants is addressed as a function of soil moisture
conditions and soil characteristics.  The extent of leaching of applied
chemicals determines the amount of pollutants available for transport from
each vertical soil zone during a storm event.  A procedure to simulate the
leaching characteristics of a watershed within the framework of the present
hydrologic model is described.

SOIL MOISTURE SIMULATION

Since the LANDS routine of the ARM Model continuously calculates indices of
the moisture status of the soil profile, the goal of the soil moisture
simulation was to quantify the relationship between these indices and
percent soil moisture values for the surface, upper, and lower zones.  The
LANDS routine (Figure 6.1) continuously determines the amount or depth of
water in storage in each zone.  Nominal storage values, determined through
calibration, are specified for the upper (UZSN) and lower (LZSN) zones.  The
soil moisture conditions of these zones are represented as the ratios of the
existing storages (UZS and LZS) to their nominal storage capacity.  As these
capacities are nominal and not absolute, the ratios UZS/UZSN and LZS/LZSN
can have values greater than one.  Consequently, these ratios are related to
percent soil moisture, but are not actual soil moisture values.  For the
surface zone no nominal storage capacity is specified.  The surface zone is
considered to be the zone of wetting by overland flow and contains moisture
only when overland flow is occurring.
                                     25

-------
                                                      c
                                                      o
                                                      03


                                                      Z5

                                                      E


                                                      to


                                                     CO
                                                     Q
                                                     0)
                                                     CD
26

-------
To obtain soil moisture values, relationships were developed between the
upper and lower zone ratios and recorded soil moisture data collected on the
Georgia watersheds.  Daily maximum and minimum UZS/UZSN values were compared
to daily percent soil moisture values at five cm depth for the summer of
1973  (Figure 6.2).  Obviously, the single daily recorded soil moisture
values in Figure 6.2 demonstrate much less variability than the calculated
range of UZS/UZSN values.  This is to be expected since the calculated
ratios include both storm and nonstorm periods, while the recorded
measurements are generally made during non-storm periods after percolation
and re-distribution of the soil water has occurred.  In general, the upper
zone ratio and the 5 on soil moisture behave in a similar manner.  From this
comparison the following linear relationship for the upper zone soil
moisture was developed:


     x = y + °-48                                                      (6.D
           24

where     x = soil moisture fraction (by weight) at 5 cm depth.
          y = UZS/UZSN

Figure 6.3 show how the simulated maximum and minimum soil moisture values
from Equation 6.1 compare with the 5 cm recorded data.  As noted above, the
maximum and minimum simulated values are more variable but they generally
bracket the recorded values during storm periods.  During dry periods the
simulated values are generally lower than recorded.  However, the overall
accuracy is sufficient for evaluating the pesticide degradation algorithms.

For the lower zone we compared the LZS/LZSN ratio with recorded soil
moisture at 23 and 38 cm (Figure 6.4).  The lower zone ratio is much less
variable than the upper zone ratio and behaves much like the 38 cm depth
recorded soil moisture.  This indicated that the 38 cm depth soil moisture
could be simulated using the ratio LZS/LZSN.  The relationship developed is
given by Equation 6.2:


     x = 0.1404 y2-66                                                  (6.2)

where     x = soil moisture fraction (by weight) at 38 on depth
          y = LZS/LZSN

Figure 6.5 shows that the simulated and recorded soil moisture values at 38
cm are in good agreement for the 1973 growing season on the P3 watershed.
Although Equation 6.2 may not be valid for other seasons, the simulation is
sufficiently accurate for evaluating pesticide degradation models with the
summer data on the Georgia watersheds.

The surface zone is the only remaining portion of the soil profile in which
soil moisture needs to be calculated.  Since the model assigns moisture to
the surface zone only when overland flow occurs, the surface soil moisture
is usually zero except during storm events when the soil moisture is
determined by the following equation:


                                    27

-------
                                   c3aniSIOW IIOS
               o
               C\J
                                                          CO
                                                                                    o
                                                                                    LT>
                                                                                    CM
                                                                                    o
                                                                                    •=3-
                                                                                    CM
                                                                                    o
                                                                                    ro
                                                                                    (NJ
                                                                                    o
                                                                                    CM
                                                                                    CM
                                                                                    O
                                                                                    I—1
                                                                                    c\j
                                                                                    o
                                                                                    o
                                                                                    CM
                                                                                    o
                                                                                    cr>
                                                                                    o
                                                                                    CO
                                                                                         LU
                                                                                         LU
                                                                                         O
                                                                                               CO
                                                                                               r~-
                                                                                               CTi
                                                                                               cu
                                                                                               CO
                                                                                               c
                                                                                          CO


                                                                                          (O    OO
                                                                                               oo
                                                                   O)

                                                                   3
                                                                   4J
                                                                   I/)
                                                                   •I—
                                                                   o
                                                             00   •!-
                                                                   o
                                                             LU    CO
                                                             21
                                                                   o
                                                                   co

                                                                   S-
                                                                   (C
                                                                   Q-
                                                                                                OJ

                                                                                                3
                                                                                                en
C3

LD
o

oo
                                           CM
                                   Nszn/szn
                                           28

-------
                                                                                    1
                                                                                                o
                                                                                                un
                                                                                                CM
                                                                                                o
                                                                                                "3-
                                                                                                CM
                                                                                                O
                                                                                                ro
                                                                                                CM
                                                                                                O   
s-
3
-(->
t/1
• r~
O
                                                                                                           O
                                                                                                           oo
                                                                                                           oo
                                                                                                           cu
                                                                                                           s_
                                                                                                           3
                                                                                                           CD
CM
                O
                CM
                                              CM
                                                              CO
                                                       1IOS !N30ci3d
                                                  29

-------
     LZS/LZSN
                               r        i
     v
       i
       I
       )

      i
      I
      i
      I
 I

\
                                             o
                                                                                     CO
                                                                                     r-v
                                                                                     en
in


C43
                                                                                     ITS
         CO
                                                                                     (O

                                                                                     Ol
                                                                                     i-
                                                                                     3
                                                                                     o
                                                                                     in
                                                                                     (Q
                                                                                     a.
         O)
         s_
         3
         O)
     CNI

     CM
                                          1IOS
                                   30

-------
                                             oo
                                             r^-
                                             en
                                              O)
                                              fO
                                              O.
                                              CU
                                              "O
                                              (D
                                              S-
                                              LO
                                              •i—
                                              o
                                              O
                                              00
                                              O)
                                              ZJ
                                              CD
31

-------
         X(t) = VTOW * RESB(t)/M                                      (6.3)

where  X(t)    = soil moisture fraction (by weight) at the surface
                 zone during time interval t.
       VTOW    = 45302.4*AREA, a constant to convert depth of water to
                 weight of water.
       RESB(t) = depth of water in each block of the surface zone during
                 time interval t.
       M       = weight of soil for each block of the surface zone.

Obviously Equation 6.3 is a gross approximation of the soil moisture
behavior in the surface soil layer of a watershed.  However, this
representation was satisfactory for our purposes since a detailed accounting
of the surface zone characteristics was not possible in this project.
Future modeling work should investigate more detailed methods of
representing the surface zone.

With the above equations, soil moisture can be approximated at 3 points: the
surface zone, at 5 on depth, and at 38 cm depth.  To evaluate the
variability of soil moisture values with depth and time, we analyzed
recorded soil moisture data for the period of April through November 1974
for the Georgia watersheds.  As would be expected, soil moisture is most
variable at the surface, and the variation decreases with depth.  Below 50
cm the moisture values are relatively uniform.  The maximum observed values
irrespective of depth were in the range of 20 to 30 percent.  The data
indicated that the soil moisture profile can be approximated given the
following assumptions:

     (1)  Linear interpolation can be used to calculate soil moisture
          values between 5 and 38 cm depth.
     (2)  Simulated soil moisture values at 38 cm depth will be
          representative of moisture values at greater depths.

Thus, the three soil moisture equations and the above assumptions allow the
ARM Model to calculate soil moisture at all necessary depths.  Currently it
is assumed in the model that the five and 38 cm depths are representative of
the upper and lower zones, respectively.  The accuracy of the simulated
results compared to the recorded data is sufficient for evaluation of the
alternative pesticide degradation algorithms.  As will be discussed in
Section 7, the degradation algorithm that corrects for soil moisture
conditions was not found to be the best approach to pesticide degradation.
Therefore, simulated values of percent soil moisture are not currently used
in the ARM Model.  However, the soil moisture equations remain in the LANDS
subroutine (Appendix D) and with only minor programming changes could be
available for other uses in the model.

LEACHING OF SOLUTES

The vertical movement or leaching of soluble pollutants (solution
pesticides and nutrients) affects the amount of soluble pollutant available
for transport to the stream from each vertical soil zone.  The leaching of
soluble pollutants is important since they can reach the stream by  (1)


                                     32

-------
overland flow from the surface zone,  (2) interflow from the upper zone,
and  (3) groundwater flow through the pathway of the lower and
groundwater zones.  On the other hand, sediment-associated pollutants are
transported solely from the land surface where erosion takes place.

Initial nutrient simulation results showed that solution nutrients, as
representd in the model, were percolating much more rapidly than indicated
by the recorded data.  In fact the nonreactive solutes not adsorbed to soil
particles, such as N03 and Cl, were simulated as completely washed to the
lower zone from the surface and upper zones with only minimal rainfall
amounts.  Soluble P04 and NH4 behaved similarly but the impact was not as
dramatic because the simulated adsorption process allowed the adsorbed PC>4
and NH4 to remain in the surface and upper zones.  Further investigation
showed that rapid leaching also occurred for the soluble pesticide forms but
eluded detection because of the simulated adsorption/desorption process and
the small pesticide fraction in soluble form.  The end result of the rapid
leaching was the depletion of soluble pollutants in the surface and upper
zones and the absence of these forms in surface runoff and interflow.

Analysis of the simulation results and review of the model algorithms
showed that the following factors contributed to the rapid leaching
problem:

     (1)  Assumptions on the areal variation of infiltration
          characteristics in LANDS.
     (2)  Extremely small values of UZSN calibrated on the Georgia
          watersheds.
     (-3)  Model assumptions relating chemical movement to simulated water
          movement.

The LANDS routine algorithms were originally developed for natural, rural
watersheds where the assumption of spatially varying infiltration rates is
more applicable than for managed agricultural lands.  Agricultural
practices like plowing, harrowing, cultivating, and terracing tend to
establish relatively uniform properties on the land surface to the depth of
tillage operations.  The infiltration function in LANDS (Figure 6.1)
distributes, in each time step, the available moisture on the land surface
to the upper, lower, and groundwater zones as a function of the lower zone
soil moisture and the input infiltration rate.  The portion assigned to the
upper zone is then divided among the overland flow, interflow, and upper
zone storage components.  The remaining portion of the available moisture
is assigned to and reaches the lower zone or groundwater zone.  In the
initial work on the LANDS algorithms, the upper zone was considered a
noncontinuous layer of near surface and detention storage and the lower
zone was assigned the infiltrated moisture directly from the surface.  With
our present layered representation of the soil profile (Figure 4.2), this
moisture assigned to the lower zone must first travel through the surface
and upper soil zones.  On its way to the lower zone, this moisture
component transports soluble pollutants from the other zones and thus is
the basic cause of the rapid leaching problem.

In developing a solution to the leaching problem we decided to retain the

                                     33

-------
present LANDS algorithms as a constraint on any solution approach adopted.
The success of LANDS and related versions of the Stanford Watershed Model,
and the emphasis on pesticide and nutrient simulation in this work
precluded a major revision of the LANDS algorithms.  This decision should
be re-evaluated in future work if a more detailed simulation of the soil
profile is required.  However, as will be discussed below and in Sections
7 and 8, correcting the second and third factors contributing to the
rapid leaching has provided a satisfactory solution to the problem for our
purposes.

The second factor contributing to the rapid leaching problem was the
extremely small UZSN value determined by calibration of the Georgia
watersheds in previous studies (Crawford and Donigian, 1973; Donigian and
Crawford, 1976).  A UZSN value of 0.13 on (0.05 in) was needed to simulate
the surface runoff response of the watersheds to the high intensity, short
duration summer thunderstorms.  Such a small UZSN effectively represents an
upper zone 2 to 3 on deep, whereas the actual depth of the upper zone was
specified as 15 on.  This conflict points out the need for the calibrated
parameters to be compatible with the user's perception of the soil profile.
With minimal storage capacity in the upper zone, as indicated by the small
UZSN, the moisture assigned to the lower zone in each time interval
completely depletes the soluble pollutants residing in the upper zone.  To
correct this situation, the P2 watershed was recalibrated to obtain a more
realistic value of 1.27 cm  (0.5 in) for UZSN at the expsnse of some accuracy
in the surface runoff simulation  (Section 9).  The higher UZSN significantly
slowed the leaching rate but did not completely solve the problem.  This
lead to an evaluation of the leaching computations in the model as discussed
below.

With the four soil zones in our assumed soil profile  (Figure 4.2), soluble
chemicals can be transferred from the surface to the upper zone, from the
upper zone to the lower zone, and from the lower zone to the groundwater
zone.  The way in which chemical movement between  zones was calculated,
which contributed to the rapid leaching, can be represented as:

         FP = D/(S + D)                                                (6.4)

 where   FP =  fraction of soluble chemical leached from the zone
          D -  moisture leached from the zone or passing! through the zone
          S =  moisture storage in the zone

Since S + D is the total moisture in the zone, Equation 6.4 simply states
that the moisture fraction leaving a zone transports the corresponding
fraction of the amount of soluble chemical available in the zone.  FP,
which is always less than or equal to 1.0, is calculated in each time
interval for each soil zone and is applied to the  mass of each soluble
chemical  (e.g. NO.,, solution P04, solution NH4, Cl) stored in the zone.  The
values of S and D are determined  in LANDS and transferred to the pesticide
and nutrient routines.

For the surface zone, S is greater than zero only  during a storm event
since no moisture storage parameter is provided.   The value of FP is close

                                     34

-------
to 1.0 most of the time; thus, all soluble chemicals applied to the surface
zone are leached to the upper zone at the first rainfall event following
application.  This is a reasonable approximation because of the small depth
of the surface zone.  For the lower zone, the moisture storage S is large
(46 on for the Georgia watersheds) compared to D, and the resulting FP is
small during any time interval.  Consequently, the major leaching problem
occurred from the upper zone where the original small UZSN produced a
corresponding small or zero value for S in the upper zone resulting in an
FP value close to 1.0.  This caused the rapid leaching of all soluble
chemicals from the upper zone to the lower zone for even minor rainfall
events.  With an upper zone depth of 15 cm, such rapid leaching was
contrary to both the physical mechanisms and the recorded data.

Although the recalibrated UZSN slowed the leaching rate, the basic cause of
the problem was the assumption inherent in Equation 6.4 that the solute
movement always occurs at the same rate as the simulated water movement.
Frere  (1975) states that a bell-shaped distribution will develop about the
solute peak concentration due to nonuniform water movement.  This
nonuniformity is similar in concept to the spatial variation of infiltration
simulated in LANDS.  Rao et al. (1976b) have indicated that the peak solute
concentration will move with the wetting front when the incoming water and
solute enters initially dry soil.  For moist soils, the solute peak will lag
behind the wetting front because the soil water present in the profile will
be displaced ahead of the incoming water.  This displacement process is
adequately represented in the model by Equation 6.4 at high moisture
conditions but not at low moisture levels in the upper zone.  Therefore,
leaching factors have been incorporated into the upper (UZF) and lower (LZF)
zone calculations to adjust the simulated leaching process.  For the upper
zone, solute leaching is now calculated as follows:

          USRP = UDS * FP * UZFM                                       (6.5)

where     UZFM = UZS/(UZF*UZSN),UZFM < 1.0                             (6.6)
          USRP = upper zone soluble chemicals removed by leaching or
                 percolation, kg/ha
           UDS = upper zone soluble chemicals initially present, kg/ha
            FP = water percolation factor from Equation 6.4
          UZSN = nominal upper zone soil moisture capacity, cm
           UZF = upper zone chemical percolation factor

Since the multiplication factor UZFM is always less than or equal to 1.0,
solute leaching is lower than that previously calculated.  The quantity
UZF*UZSN represents a soil moisture condition whereby the initial soil water
and associated solute can be completely displaced by incoming water, i.e.
plug-flow or piston-type displacement can occur.  Thus, when UZS is greater
than or equal to UZF*UZSN, UZFM equals 1.0 and the initial solute is
displaced by the fraction of the soil water percolated, FP.  When UZS  is
less than UZF*UZSN, UZFM is less than 1.0 and serves to reduce the solute
percolated from that calculated by complete displacement.  Physically, the
case of UZS less than UZF*UZSN can be visualized as a dry soil condition
whereby moisture can move through empty flowpaths in the upper zone without
transporting solutes stored in the zone.  UZFM evaluated as the ratio


                                     35

-------
UZS/(UZF*UZSN) would then represent the fraction of available flowpaths
through the upper zone where no solute transport occurs.  Thus, when UZFM
equals 1.0 all flowpaths are occupied and complete displacement occurs.
Although this description may not be a precise explanation of the physical
processes, it does indicate the behavior of the simulated leaching process
in the model that has been satisfactory to date.  Figure 6.6 indicates how
UZFM varies for different values of UZF and the UZS/UZSN ratio.

For consistency, a lower zone leaching factor (LZF) that functions similarly
to UZF has been incorporated in the lower zone calculations.  Currently UZF
and LZF are user-specified calibration parameters with internal default
values of 1.0.  These parameters affect both pesticide and nutrient
leaching.  They should be calibrated on soil storage and percolation
characteristics of a nonreactive solute, such as chlori.de, so that the
leaching effect will not be masked by transformations.  The magnitude and
sensitivity of the leaching factors will depend upon soil and solute
characteristics and the UZSN and LZSN values.  A watershed with sandy,
highly permeable soil will have smaller values than a watershed with less
permeable soils and hardpans.  UZF values of 5.0 and 1.0 were used for P2
and P6 watersheds, respectively.  LZF was kept at 1.0 for both watersheds.
The lower calibrated UZF value for P6 was understandable since this
watershed is sandier and more permeable than P2.

In sunomary, the method of representing solute leaching described above was
added to the ARM Model to reduce rapid solute leaching resulting from the
vertical moisture transfer simulated in the LANDS program.  It provides a
flexible mechanism for the user to approximate the vertical distribution of
solutes in the soil profile.  Although the solution procedure is not
rigorous with regard to the actual leaching process, it is compatible with
the LANDS routine and appears to provide sufficient accuracy at the present
time.  If future work requires greater reliability, research efforts should
concentrate on a joint evaluation of the solute leaching and the
infiltration/percolation processes.

SOIL TEMPERATURE SIMULATION

Soil temperature simulation is needed to test soil pesticide degradation
algorithms and adjust nutrient transformation rates.  Nutrient
            1.0
            0.0
                        1.0
4.0
                 2.0        3.0

                   UZS/UZSN
Figure 6.6  Variability of UZFM with UZF

                   36

-------
transformation rates in the ARM Model are corrected for soil temperatures
by a simplified Arrhenius equation.  Both the pesticide and nutrient
algorithms need a reasonably accurate input of soil temperatures in the
surface, upper, and lower zones in order to model soil processes.

Various approaches to soil temperature simulation were considered in this
work.  The most physically realistic approach would be a detailed energy
balance model based on work similar to that of DeVries (1958) or Wierenga
and DeWit (1970).  However, development of an energy balance soil
temperature model as a function of solar radiation, air temperature, crop
cover, and soil properties was considered beyond the scope of this project.

Consequently, other less rigorous approaches were studied.  Davidson and
Choy (1974)  developed a diurnal soil temperature model that uses surface
soil temperature to calculate soil temperature at any depth as a pure
harmonic function of time around an average value.  Air temperature and
solar radiation correlations were used to calculate the surface soil
temperatures.  Simulation results from the Davidson and Choy model were
compared to a linear regression approach based on air temperature and solar
radiation for eight days of recorded hourly summer data from Watkinsville,
Georgia.  Since the regression approach was slightly more accurate and
easier to implement, it was chosen for soil temperature simulation in the
ARM Model.

Soil temperature data at various depths from Watkinsville, Georgia were used
to further test and derive regression equations for each of the soil zones.
The data were recorded on small plots consisting of Cecil fine sandy loam
located next to the P3 and P4 watersheds.  Using eight days  (July 21-28,
1973) of recorded soil temperature at 1 cm depth, the following regression
equation for the surface zone was derived:

         STEMP = -29.67 + 1.351 (AT)                                    (6.7)

where    STEMP = surface zone temperature,°C
            AT = air temperature at 120 cm, °C

Originally radiation was also included as an independent variable in the
equation, but its effect was so minor that it was eliminated.  The upper
zone temperature (UTEMP), based on the computed surface zone temperature,
is calculated from the following regression developed from soil
temperatures at the 5 cm depth:

    UTEMP = -3.22 + 0.675(STEMP)                                       (6.8)

After the above equations were developed on eight days of data, they were
then used to generate the surface zone and upper zone values for the 1 cm
and 5 cm recorded data in Figures 6.7 and 6.8.  The data were measured on
small plots planted in soybeans on June 5.  The accuracy of the simulation,
within 10 to 15 percent of observed data, is reasonable since canopy shading
effects were ignored.  The hourly air temperature values used to produce
these results were generated by the ARM Model from input daily maximum and
minimum air temperatures.  The ARM Model assumes that the daily maximum air


                                     37

-------
-  2
   •>»    co
                                  s
                                  CO
                                  CO
                                CO     CM
                                               CM
                                               C3
                                                         1—rr
                                                        §
                                                        1
                                                        V)
                                                        to
                                                        CO     CNJ
                                                                       en
                                                                       to
                                                                       to
                                                                       co
                                                                         •«r    co     c-g
                                                                 nos
CO
r^
CTi
                                                                                                                       4-=
                                                                                                                       (O
4-)
 (O
                                                                                                                       a>
                                                                                                                       to
                                                                                                                       a»
                                                                                                                       o.
                                                                                                                 Oi.   
-------
CM

CD
CO
CM

CO
CD
=3
CM

CD


3
en


CD
        I   //I
1
c
u
c
0
c
c.
O


-
\
\
v.>.
CM
CD
"* 1
I
ca
-SIMULATE
i
i
1
-
.
\
y,
//
                                                 OJ
                                                 3
                                                 C
                                                 C
                                                 o
OJ
s-
3
en
                          1IOS
                  39

-------
   I      1/7    T
CO
CNI
        f\


        V.
CM
CM
   I      I       I
                         CM

                         CD
                         C3
                         =3
                         cn
                         CNI
                          CM


                          =3
J	I
                       CM


                       C3
                                                   en
                                                   oo
                                                   00

                                                   .
                                                                                                                               CTi
                                                                                                                                o>
                                                                                                    (O
                                          to

                                    =1    I
                                          (D
                                          S-
                                          cu
                                          Q.

                                          cu
                                                                                                    O)
                                                                                                    c
                                                                                                    o
                                                                                                    N

                                                                                                    s_
                                                                                                    Ol
                                                                                                    CL
                                                                                                    Q.
                                                                                                                               00
                                                                                                                                OJ
J	I
  •<*    CO
                           ^i-     co    CNI
                                                           CO    CN(
                                                                                                      •«J-    CO    CNI
                                                             40

-------
temperature occurs between 3 and 4 p.m. and that the minimum occurs between
6 and 7 a.m.  The other hourly values are derived from a sinusoidal
interpolation between the maximum and minimum temperatures.

The above equations for the surface and upper zones were also tested for the
summer of 1975.  The results are shown in Figures 6.9 and 6.10.  During this
period the recorded data were taken from small plots planted in corn.  The
simulated results are somewhat less accurate than the 1973 simulation but
are still generally within 15 percent.  Deviations of this magnitude (10 to
20 percent) do not appear to be detrimental to the simulation of soil
transformations.  Rao et al. (1976b) of the University of Florida, using
first-order reaction rates in a nitrogen transformation model, have
indicated that a twofold increase in the reaction rates should not result in
significant differences in the amounts of nitrogen transformed.  However,
sensitivity analysis using the actual calibrated reaction rates should be
performed in order to test this conclusion in the ARM Model.

For the Michigan test watersheds observed soil temperature values at the 5
cm depth were used to develop a regression equation for the upper zone.
Maximum and minimum air and soil temperature values for July and August,
1974, provided the basis for the following equation;

    OTEMP = 7.20 + 0.39(AT)                                            (6.9)

The recorded data were taken from Miami fine sandy loam under fescue grass.
The simulation results (Figure 6.11) are again generally within 15 percent.
However, regression equations based on max-min air temperatures appear to
be less accurate than ones based on hourly values as in Georgia.  Also, the
observed values in Figure 6.11 are for fescue grass whereas the equation
was used for corn and soybean watersheds.

A different regression equation for the upper zone was developed for the
summer of 1975 and provided significantly better results than Equation 6.9
used for 1974.  Thus, different equations were used for the two summer
periods simulated.  Figure 6.12 shows the simulation results for the 1975
summer using the following equation:

    OTEMP = -4.29 + 0.63(AT)                                           (6.10)

Since no soil temperature data were available for the nonsummer period at
Watkinsville, the same regression equations were used for the entire
simulation period.  In Michigan maximum and minimum winter soil data were
available for comparison with the regression equation.  The observed winter
soil temperatures were considerably more stable than the predicted values.
The insolating effect of snow and ice extremely dampened the daily effect of
air temperature on soil temperatures.  Special consideration for the
nonsummer months will be needed for winter simulation runs in areas where
snow accumulation is significant.

The soil temperature values calculated for the upper zone were also used for
the surface zone for the Michigan P6 watershed since no observed data
shallower than 5 cm were available.  The lower zone and groundwater zone

                                     41

-------
_ 1 1


—



—


—



—






— ~


—




~~ SI SI
=D Z3
t— i \—t
	 X ^
JL JL

"~~ O O
O LU Q LU
LU |— LU f—
>• «=E > =£
c£ 	 i ce: 	 i
LU ZD LU r?
CQ I— i CQ HH
O OO O OO

— • O a •
~~

1 1
uo o
LO LO
1 b 1 • 1
o •
o •
o •
0 •
9

• 0
<9
• °O*
^f)
•D
0 •
•o
•f g
%!
: 8
• 0
• 0
• o
• o
• o
•

• c
°o •
•° 0
•
• o
•
• ^
•o
• 0
• 0
••8
• 0
• o
• o
• o
J
o •
• 0
o •
0 •
• o
• o
• o
09


°* «



•o
••J
c*
0°0*
• o
1 %o 1
i_n O tn o
•d" ^t" CO CO
\ffjP 1 1 1 _
^ n
° Ja°
a a
• a ~
Kl
• n
LJ
• a
*•*
• a —
• o
• a
• a
• a
.5 D
• a
• o
". cP
• LJ
• a
• o
• a -
• 1-1
U
•a
JrP
> n
• a
^ • Q
• a
•a
• a —
n
• a
•a
Kl
• a
•-1
• 0
•a
• a
• a
•a
• n
"So
• fcf
g Q 	

"• a
• a
a*
•a •"•
B


• 0
» " D



• n
i— ' _..«
•. s
• a
• Q
Tla
• a

1 ^Ifco l<| 1



^o






CO
C\J
en
rH



o
i — i



,— i


CO

                                             (O
                                             (O

                                             to
                                             LO
                                             O)
                                             0)
                                             s-
                                             to
                                             i.
                                             O)
                                             Q-
                                             03
                                            -a
                                            T3
                                             c
                                             (O
                                             3



                                             X
                                             fO
                                             O)
                                             o
                                             N
                                             0)
                                             O
                                             3
                                            oo
                                             CTi
                                             CD
42

-------
-Ill




—




—

—

—



—


—



—
—

—



— 5: 5-
s: s:
X "Z.
— CC I-H
2: 2:
_*— . . — "— ,
— Q Q
O UJ O UJ
i , [ i i , i i

Q; _j CC 	 |
oo s: oo 2:
CO i— i CQ i — i
O CO O OO
— O • D •

~

1 1 1
LO O LT>
LO LO ^1-
| J |
%J ^^
O •
•o <
o •

•^>
^ VN
w O
•°£
0. »
• o
'••8
• 0
* + *
9 O
9 O
w O
w O
S r\
Q
• O
• O
o • ,
f\t

• 0
* °l
• t*
• 0
V8
• o
• o
• 8
•0

t— I






O


h-
oo


CO
CM



t I




LO _
—





CM



U_
Lf> O LO O LO O r~3
CM CM i— 1 «— 1
                                                  LO


                                                  CT>
                                                   a>
                                                   CO
                                                   (O
                                                   4J

                                                   fO
                                                   CO
                                                   3
                                                   co
                                                   CU



                                                   CU

                                                   3


                                                   fO


                                                   CU
                                                   CL
                                              co   +->

                                              n3   >,
                                              •O   •—

                                               "   to
                                              uj   -a
                                                    c
                                                    to

                                                    E

                                                    E
                                                   •r—
                                                    x

                                                    E

                                                    CU

                                                    o
                                                    N

                                                    s-
                                                    CU
                                                    Q.
                                                    a.
                                                   CO

                                                    cu

                                                    3
43

-------
  LD
  CTi
        7T
          r
      r/
         vV-
        '
   CM

   _l
   =>

   °    Jl
        /
                      ro   i
                      CM   »
          —      /
                 I

             CM  '
             CM  VI
                      CM
                      O
                      CM
                          f
                      CO
                                I    T
                                         ro
                                         O
                                         oo
                                         CD
                                         CM
                                        00
                                        CM
                                        CM
                                        CM
                                         un
                                         CM
                                                        -  CD
                                                 CD

                                                 «c
                                               - CD
                                                         —     tl
                                        TTT
                                                           00  v>
                                                           ID

                                                           CD
                                                           Z3
                                                           ct
                                                           CD
                                                          CM
                                                         - CD
                                                      \\-
                                                       \\-
                                                       \\-
                                                 co   \\

                                                 CD
                                                                 \\-
                                             ^\ '
                                        CD   V

                                              )/
                                                                     LO
                                                                     i—)


                                                                     CD
                                                                              CD
                                                           ro
                                                           r—I

                                                           CD
                                        CM
                                        t—t

                                        CD
                                                                              CD
                                                                    CD

                                                                    <    'J
                                                                                I	Li
                                                                                        Q.
                                                                                        cn
                                                                                        ro
                                                                                        vo  r-.
                                                                                        CTl  CD
                                                                                                  II
                                                                                                  IT)
                                                                                                      I/)
                                                                                                      C
                                                                                                      ro
                                                                                     O. LU
                                                                                     LU I—
                                                                                     Q <
                                                                                     o: _ j
                                                                                     O Z3
                                                                                     O SI
                                                                                     LU i—i
                                                                                     c; co
                                                                                                      10
                                                                                                      (O
                                                                                                      LU
                                                                                                      c
                                                                                                      O

                                                                                             E

                                                                                             in

                                                                                             Ol
                                                                                   (O

                                                                                   O)
                                                                                   Q.
                                                                                   E
                                                                                   CD
                                                                                                      CU
                                                                                                      c
                                                                                                      O
                                                                                                      Q.
                                                                                                      Q.
                                                                                                      0)
                                                                                                      S-
                                                                                                      C71
O  O
•3-  oo
O
CM
O  O   O
*3-  CO   CM
000
«=J-  CO  CM
O  O  O
*d-  ro  CM
                                                         nos
O  O    O
sj-  CO    CM
                                                   44

-------
CM
CN
ro
CN
CN
CN
O
CN
00
o
    I	I
                          CM
                          OO
                          CN
                          O
                                                    ro
                                                    CM
                                                    oo
                                                    r-

                                                    O
                                                            I	I
                                                                                 i     i     r
                                                                             CN
                                                                             CN
                                                                             CN
                                                                             CO
                                                                             CN|
                                                                                CN
                                                                                CN
                                                                             CN
                                                                                 O
                                                                                 CN
                                                                             oo
                                                                                                           -a
                                                                                                            ai
                                                                                                        O
                                                                                                        O
                             cu
                             i.
                             3
                             01
O .  O    O    O
<*•   co    c\j    t—i
                        o  o    o    o
                                                 o    o    o   o
                                                 ^a-    co    CNI   i—i
o    o  o    o
«5j-    CO  CM    <—I
                                                            iios
                                                 45

-------
    O
    o
    CN
    CN




    1
    rH

    CN
h  p
    CN

U  o
   O
      V\H
2  (/
r**i

o
   oo

    o   o
    OO   CM
                  ho   l1
                        o
                        i
                     L-    /
                        CO
                  ^P   \  \J
                                        T3
                                         O)
                                            O)
                                            S-
                                            3

                                            CD
                     o   o
                     CO   CM
                             46

-------
o
CO
CM
00
CM
CM
           CO
10      n: CM
CM      i— vo
        i—i   •
        s o

        Q CM
     Q LU 1^
     LlJ |— CM
LT>   Q -
                            •f.
                              'I      I  X   I
                                                     CM     \\
                                                      O
                                                      CM
                                                      cn
                                                   ~~     I  I
                                                      CX3
                                                      CO
                                                             (I       —
                                                                                CM
                                                                                O
                                                                                CO
                                                                                cr>
                                                                                CM
                                                                                CO    \\
                                                                                CM     \ \

                                                                                         }/
   CM       V
             ;;
                                                                                CM
                                                                                CO
                                                                                CM
                                                                                CM
                                                                                ID
                                                                                73
                                                                                                            cn
                                                                                                             OJ

                                                                                                             3
                                                                                                             O)
                                                                                                             CL

                                                                                                             CU
                                                                                                            CU
                                                                                                            c
                                                                                                            o
                                                                                                            N

                                                                                                            S-
                                                                                                            O)
                                                                                                            Q.
                                                                                                            Q.
                                                                                                            CM
                                                                                                             3
                                                                                                             CD
                                                                                                                C
                                                                                                                O
                                                                                                                o
o    o    o    o
^f    CO    CM    r—I
                         o   o    o    o
                         *3-   OO    CM    i—I
                                                   o    o    o   o
                                                   •3-    CO    CM   <—I
o    o    o    o
<3-    CO    CM    .—I
                                                     47

-------
O\
00
   00    O
   ro   CM    I-H
                          IN
 O
 CN



—      //
                          OO
                                                 CM     X\
                                                           N
O  O
OO  CM
                                       O      O    O
                                  O
                                  CM
                                                                               V
'  I     >f   I
 ^D  C^    <~^
 CO  CM    •—!
                                                                        T3
                                                                        OJ
                                                                        3
                                                                                                     £
                                                                                                     O
                                                                        O)
                                                                        S-
                                                                        3
                                                                        Ul
                                                 48

-------
temperatures in both Georgia and Michigan were not based on air temperature
since they are not considered very sensitive to diurnal fluxes, but are
sensitive to seasonal fluxes.  Daily average temperatures for these zones
are simulated by interpolating average monthly soil temperature input
values.  Figure 6.13 shows that 60 cm soil temperatures at Watkinsville,
Georgia varied no more than 3 Celsius degrees over a 2.5 month summer
period.  Figure 6.14 shows the seasonal variation of soil temperatures at
120 on at East Lansing, Michigan.  Monthly extremes are within 6 Celsius
degrees of the monthly average.

Since the average temperatures of the lower and groundwater zone should be
similar, the same simulated values were used for both of these zones.  Lower
zone monthly values for the Michigan watersheds were estimated from the
values in Figure 6.12.  For the Georgia watersheds monthly averages were not
available for the nonsummer months so estimates for this period were made
from Knoxville, Tennessee  (1972-1974) 51 cm values.  The values are given in
Table 6.1.

The linear regression approach to soil temperature simulation currently used
in the model is simple and practical.  It appears adequate for simulating
the summer growing season.  However, refinement of the regression equation
is needed for the nongrowing season and winter periods.  Model users will
need to develop the required temperature regression coefficients when the
model is applied to watersheds in other geographical areas.  In the future,
a physically based model relating soil temperatures to watershed and
meteorologic conditions should be implemented in the ARM Model.
                                     49

-------
I  X  I
to
D
O)
               I      I
                                                   on
                                                   r~-
                                                   cr>
                                            0
                                            _Q
                                            E
                                            0
                                            •4->
                                            a
                                            0)
                                                    10
                                                    D.
                                                    O)
                                                    O
                                                    O
                                                    10
                                                    (O

                                                    0)


                                                    4-J

                                                    2
                                                    CD
                                                    O.
                                            CO      -P


                                            O)      r—


                                            <      O
                                                    C/0
                                                    CO
                                                    CU
            30 Nl
            1IOS
         50

-------
\\\
    Vi
                                       cr>
                                       0)
                                       O
                                       re
                                       3
                                       C
                                       to
Ol
                                       fO
                                       Q.
                                       O>
                                       -o


                                       O
                                       2
                                       3

                                '       I
                                       O)
                                 co    d-
                                . £:    E
                                 °2    CD
                                       O)
       51

-------
TABLE 6.1  LOWER ZONE AVERAGE MONTHLY SOIL
           TEMPERATURES FOR THE TEST AREAS (°C)

Month
January
February
March
April
May
June
July
August
September
October
November
December
Watkinsville, GA
8.9
8.3
11.7
13.9
18.3
22.8
25.0
25.0
24.4
21.7
14.4
10.6
E. Lansing, MI
3.4
3.4
2.8
4.5
9.2
13.6
16.9
18.4
18.1
14.8
10.7
6.8
                   52

-------
                                 SECTION 7

                   SOIL PESTICIDE DEGRADATION SIMULATION
Decay or degradation of pesticides by biological and chemical processes is
the major mechanism for the attenuation of pesticides on a watershed.
Studies conducted by ERL-Athens have found that less than ten percent of the
applied pesticides are lost via runoff  (Smith et al., 1977).  Thus, for many
pesticides, e.g. diphenamid and atrazine, over 90 percent of what is applied
•is degraded in the soil.  Since the amount of pesticide in the soil is the
major factor  in determining the amount available to runoff, an accurate
simulation of pesticide degradation is vital to correctly simulate pesticide
transport from a watershed.  Consequently, alternative degradation
simulation algorithms have been studied to determine the most accurate
method of simulating pesticide decay that can be generally applied within
the framework of the ARM Model.

As discussed  in previous reports  (Crawford and Donigian, 1973; Donigian and
Crawford, 1976), the ARM Model initially used a first-order degradation
algorithm.  Pesticide decay was directly proportional to the amount of
pesticide in  the soil.  For some pesticides  (atrazine and diphenamid) the
first-order decay rate was found to initially degrade the pesticide too
slowly and then later in the season too quickly.  In Figure 7.1 the
relationship  between the simulated and observed decay curves demonstrates
this problem.  Thus, for runoff events early in the crop season the amount
of pesticide  available for runoff was too great, while later in the season
not enough was available.  This made simulation of atrazine and diphenamid
runoff difficult.

ALTERNATIVE DEGRADATION ALGORITHMS

Since the simple first-order degradation approach was not accurate enough
for a good simulation of pesticide runoff other approaches were studied.
One alternative was a first-order degradation algorithm corrected for the
effects of soil moisture and temperature.  This environmental approach
 (Steen, 1975) was derived from laboratory studies of diphenamid and was
described as  a subsurface degradation algorithm.  However, in our evaluation
we incorporated the algorithm into both the surface and upper zones.  The
equation for  this approach is:


K = Kbpt e(AK CMoist-Mopt)2) (BK (Tenp-Topt)) T'ttnax-Temp  BK (Tmax-Topt)
                           e                [_Tmax-ToptJ                 (   '

where    K =  actual degradation rate for the interval (days"-*-)


                                    53

-------
                                 MEASURED SOIL SAMPLES (3 YRS.)
                                 RECORDED DECAY
                                 SIMULATED FIRST-ORDER
                                 DECAY. 0.0 65 DAY
                                 SIMULATED ENVIRONMENTAL
                                 DECAY APPROACH
10
20
30      40       50       60
TIME AFTER APPLICATION, days
70
80
Figure  7.1  Comparison of  atrazine  degradation
            rates  for the P2  watershed
                          54

-------
      Kopt = optimum degradation rate, day1
      Mopt = optimum soil moisture content, percent by weight
     Moist = actual or simulated soil moisture content for the  interval,
             percent by weight
      Tmax = maximum soil temperature at which biological degradation
             occurs,°C
      Topt = optimum soil temperature, °C
      Temp = actual or simulated soil temperature for the interval,  °C
        AK = constant
        BK = constant

For diphenamid Kopt was found to equal 0.123 day"1, Mopt equals 0.175, Tmax
equals 40°C, Topt equals 35°C, AK equals -100, and BK equals 0.05.

As shown in Figure 7.2, the degradation rate is  sensitive to changes in
soil moisture and temperature.  Thus, correctly  modeling these  influences
(as discussed in Section 6) should provide a more accurate calculation of
pesticide degradation than given by the simple first-order degradation
approach.  However, test results did not support this hypothesis.  The
            .1230
            .1100
            .0840
            .0770

            .0640
            .0044
                                                DIPHENAMID
8.75       17.5        26.25
     MOISTURE, percent
                                                             35
     Figure 7.2  Environmental effects on dephenamid degradation rates
                                      55

-------
changes to the actual degradation rate, K, from the daily fluctuation of
soil moisture and temperature proved to be relatively minor and deviated
only slightly in the long run from the simple first-order degradation
approach.  This led to results similar to the simple first-order
degradation approach.

A comparison of the simple first-order degradation approach and the
environmental degradation approach (Figure 7.1) shows that the latter
simulated the amount of degradation less accurately than the simple
first-order approach in the period immediately after application.  This
early period is critically important in correctly determining the amount of
pesticide runoff. The first significant runoff event after application
usually removes the largest amount of pesticide for the season, because
less pesticide is available for runoff as the season progresses.  It is in
this early period prior to the first runoff event that the environmental
approach fails.  Failure to correctly simulate pesticide degradation occurs
because the environmental factors (soil moisture and temperature) are not
at optimum conditions for biological decay in the surface zone where
application occurs.  Thus, degradation by biological processes is minimal
as reflected by the high percent of application amount remaining in the
soil (Figure 7.1).  However, chemical processes (to be discussed below) are
the dominating degradation component for this period and are not handled by
the environmental degradation approach.

Sensitivity tests were conducted on the Steen equation (Fxjuation 7.1).
Daily max-min air temperature, which is used as input to the ARM Model, was
changed by + 10 Celsius degrees.  In two sensitivity trials the resultant
pesticide decay after application is changed only slightly from the base
conditions.  In the same manner soil moisture values were changed by + 30
percent.  This gives a greater change in response from the base conditions
than seen in the temperature sensitivity tests, but still the changes are
not substantially different from the base (Figure 7.3).

The relative insensitivity of the environmental degradation model to the
daily fluctuations of soil moisture and temperature does not justify the
required effort to simulate and incorporate the moisture and temperature
effects.  Also, the constants AK and BK will vary with pesticide
characteristics and soil characteristics; they must be evaluated through
calibration with recorded data.  For these reasons the environmental
approach has not been implemented in the current version of the ARM Model.

Detailed collection and analysis of atrazine remaining on the P2 watershed
in the summer of 1975 provided enough data to develop a better understanding
of the degradation processes.  From this understanding a more accurate
degradation algorithm than the first-order approach was developed.  This new
approach is the step-wise degradation algorithm.  The ERL-Athens researchers
found that for some pesticides (atrazine and diphenamid)  the degradation
rate changes substantially with the first major storm after application
(Smith et al, 1976).  Decay rate changes can be explained by existing soil
conditions.  Prior to the pesticide application the soil is loosely tilled.
Tillage breaks up thermal and hydraulic conductance between the surface and
subsurface soil layers.  This enables the existence of sizable temperature
                                    56

-------
to*
2 2.0-
                                       SM-30%
                                       AT±10°C
                                       BASE
                                       SM+30%
    .0
   APR 25 MAYA    MAY 14
MAY 24  JUNE1  JUNE?
      1974
     Figure 7.3  Environmental  approach sensitivity trials
                              57

-------
gradients near the soil surface, both relative to subsurface soil
temperature and air temperature.  For the first two or three days after
pesticide application the surface soil temperature was 15 to 30 Celsius
degrees hotter than the air temperature on P2.  This gradient gradually
decreased with time as the soil compacted.  Then a rainstorm further
compacted the surface layer, established strong conductance with the
subsurface soils, and markedly decreased surface soil temperatures.

The high surface soil temperatures immediately after pesticide application
result in pesticide degradation by chemical processes.  This greatly
diminishes once the surface soil temperature drops after a significant
rainfall.  At this point in time biological processes take over in playing
the major role in pesticide degradation.  The simple first-order approach
and the more complex environmental approach by Steen fail in that they
consider only biological decay.  They cannot correctly represent the rapid
decay caused by chemical processes without incorrectly representing the
slower decay by biological processes.  Both decays can be considered
first-order mechanisms, but at significantly different reation rates.  The
step-^wise degradation approach has the capability of reproducing the
effects of more than one first-order decay rate during a crop season.
Thus, both chemical and biological decay processes can be easily
represented in the simulation of pesticide degradation.

SIMULATION RESULTS

As discussed previously, the simple first-order and environmental
approaches to pesticide degradation give poor results.  The step-^wise
approach gives good results.  This is true for the simulation of atrazine
on the P2 watershed for 1973 through 1975.  A decay rate of 0.10 per day is
used prior to the first runoff event after each application.  After the
first runoff event a decay rate of 0.04 per day is used.  Figure 7.4 shows
the simulated amount of atrazine in the soil from 1973 through 1975
respectively.  The atrazine remaining in the soil is low in 1973 compared
to measured soil samples.  However, the same step-wise decay rates in 1974
and 1975 give excellent results.  The low values in 1973 may result from a
poor knowledge of the actual amount of atrazine applied that season.  Disc
filter monitoring of application rates in 1974 indicated that the amount of
pesticide applied was 13 percent greater than the planned amount.  A
similar discrepancy would help to explain the 1973 results shown in Figure
7.4.

Paraquat, unlike atrazine and diphenamid, does not exhibit step-wise decay
mechanisms; the simple first-order decay or a step-wise decay with the same
decay rate at all times works reasonably well.  Considering the variability
in the recorded values, a constant decay rate of 0.002 per day adequately
represents the decay of paraquat over long time spans, as is shown in Figure
7.5.

A study of the decay rates of atrazine and paraquat on the P6 watershed in
Michigan shows some differences from the results on the P2 watershed.
Atrazine was applied three times on the P6 watershed during the period of
May 1974 through September 1975.  From the few soil core samples taken


                                    58

-------
C7>

-------
                                                    CO



                                                    CO
                                                to  
                                                           r~.
                                                           
                                                           i—i

                                                           CO
                                                           r-~-
                                                           CTi
                                                                                                          •a
                                                                                                          0)
                                                                                                          .c
                                                                                                          t/>
                                                                                                          s_
                                                                                                          Ol
                                                                                                          -!->

                                                                                                          i

                                                                                                          CM
                                                                                                          Q.
                                                    S     CD
                                                            E
                                                            O


                                                            O)
                                                            D1
                                                            (13


                                                            O
                                                    Q£
                                                    LU
                                                            O
                                                            to
2£

§2
C3 =>
CJ> ^
UuJ _
o: co


 •  I


     I

     I
                                                            Z5
                                                            CT
                                                            n3


                                                            (T3
                                                            £X
                                                            LO
                                                            cu
60

-------
during this period it appears that chemical decay is a minor mechanism
compared to biological decay.  These results differ from those on the P2
watershed in Georgia and show the impact of different climatic regimes on
the mechanisms controlling pesticide degradation.  This observation is
complicated, however, by the scarcity of measured soil core samples on the
P6 watershed.  Atrazine was measured on ten different dates during this 17
month period (Figure 7.6).  The measured values all appear to be high;
possibly as a result of problems in the sampling procedures.  Similar
questions are evident in the paraquat results shown in Figure 7.6.  The
recorded values in the 0 to 30 cm depth are so unusual and inconsistent
that the actual rate of paraquat degradation can not be accurately
determined.  The amount of paraquat measured in the surface layer of soil
(0-1 on) is more consistent, but the actual values are impossible to
explain except in terms of sampling problems.  Thus, for the simulation of
atrazine and paraquat on the P6 watershed degradation rates could not be
calibrated because of discrepancies in the collected data.  For atrazine it
is assumed that biological decay is the only major degradation mechanism.
A decay rate of 0.04 per day is used.  For paraquat a constant decay rate
of 0.002 per day is selected based on the assumption that the degradation
rate will not differ substantially from that used on the P2 watershed.  The
inability to verify these assumptions makes good simulation results for
atrazine and paraquat runoff from the P6 watershed difficult.  This will be
fully discussed in Section 10.

SUMMARY

The step-wise degradation approach works well for the pesticides studied.
However, it is a simple approximation of chemical and biological processes
at work in breaking pesticides down into other compounds.  If the
environmental degradation approach, described above, could better represent
these processes (both chemical and biological) and have previously
determined values for its input constants for all pesticides then it would
be the preferable approach.  In addition, if more long-term (multi-year)
daily monitoring of pesticide mass and associated moisture and temperature
values in the soil were made, a more accurate environmental approach could
be developed.  Further research in this and the better understanding of
the chemical and biological decay processes would result in a more accurate
pesticide degradation submodel.
                                    61

-------
•*  3
CD


N
I
I
 I
4
 »
 \
 \
  \
u \

                                        •MEASURED FIELD VALUES
                                        -SIMULATED
                                         PESTICIDE APPLICATION
                      I
                                             1
                            H
                                             N
                                             i
                                                          .  J
 CD
 to
 3
 CT
 (O
 s- •)
 to c.
                             I       I      I      I      I       I
                           • MEASURED FIELD VALUES  (0-30cm)
                           "MEASURED FIELD VALUES  (0-lcm)     .
                          — SIMULATED  (Surface Zone, 0-.3cm)
                           I PESTICIDE APPLICATION
                     I
                          i	~^^^_^
           ,1
             1
                                                       1
                                                        1
          50    100    150   200   250   300    350

                     TIME  AFTER  APPLICATION,  days
                                                 400   450   500
          Figure 7.6  Atrazine and paraquat in soil  storage
                    on the P6 watershed,  1974-1975
                                 62

-------
                                 SECTION 8

                          SOIL NUTRIENT SIMULATION
Nutrient modeling in the ARM Model involves the simulation of both soil
nutrient storages and the transport or washoff of nutrients.  Section 11
discusses the nutrient runoff simulation while this section discusses the
simulation of soil nutrient storages and transformations.  Beginning with a
discussion of the major model changes since the last report (Donigian and
Crawford, 1976), this section continues with a discussion on how optimum
first-order reaction rates were obtained.  The reaction rate values for
the test watersheds are presented along with the soil nutrient storage
simulation results.  This section concludes with recommendations for
future research and possible model improvements.

MAJOR MODEL CHANGES

During this project modifications were made to the nutrient model to
simplify model operation and more accurately represent certain processes.
The major changes to the nutrient model include:

     (1)  Elimination of certain transformation paths.
     (2)  Calculation of transformed nutrients as a function of soil water
          content and nutrient concentrations in each soil zone as opposed
          to nutrient mass.
     (3)  Simulation of plant uptake as a function of monthly uptake
          factors as opposed to crop canopy.

Transformation Processes

The changes in the transformation processes have been incorporated in Figure
4.5.  The phosphorus transformations remain the same, but those for nitrogen
were changed by combining the nitrite (N02) and nitrate (N03)  forms.  This
resulted in the elimination of the reactions of N02 oxidation to N03 (K2
rate), and N03 reduction to N02 (KK2 rate).  N02 was combined with N03 to
simplify the model and to avoid using extremely large oxidation rates from
NCL to NO3.  The NO2 form could have been completely eliminated from the
model since it is not persistant in most agricultural soils or in surface
runoff due to rapid oxidation to N03.  However, N02 remains in the model in
the combined form (N02 + N03) in case it occurs in any future simulation
work.  Also, the combined form indicates that N02 is an intermediate step in
the nitrification and denitrification processes.  However, for most
agricultural watersheds, the component of N02 plus N03 can be considered as
N03.
                                     63

-------
One additional change in the nitrogen transformation processes was made; the
nitrification reaction rate/ Kl, occuring from the adsorbed phase of
ammonium (NH4-A) was eliminated, because it has not been observed in
laboratory tests (Davidson and Pao, 1976).  Also, Mehran and Tanji's model
(1974) of soil nitrogen transformations does not have a nitrification
pathway from the adsorbed NH  form.

These changes are included in the summary of the reaction rate definitions
in Table 8.1 and in the coupled system of differential equations in Table
8.2.  Certain clarifications of these tables and Figure 4.5 need to be
made.  Plant nitrogen uptake occurs only in the N03 form since N02 is toxic
to plants (Black, 1968).  If persistant N02 occurs in the watershed, plant
uptake should normally be reduced.  Also, denitrification rates in the
literature based on N03 will be larger than the input denitrification rate
in the model, KD, since KD is based on the amounts N02 plus N03.  Finally,
the N2 form represents any form of denitrified nitrogen in the gaseous
form, including nitrous oxides.

Nutrient Transformation Calculations

Nutrient transformations were previously based on the nutrient mass in each
soil zone, but were changed in this project to being based on the nutrient
mass per mass of soil or soil water in each zone.  Except for the
groundwater zone, transformations were calculated in terms of kilograms
per hectare of each nutrient form in each zone. Since the surface, upper,
and lower zones have specified depths, the reactions were previously based
on the nutrient mass per total volume of the zone, i.e. a volume-based
concentration.  The groundwater zone has no specified depth so the
transformations were based merely on kilograms per hectare.  The use of
concentrations based on mass not volume is considered more theoretically
consistent with first-order reaction rates.  Most of the literature on
adsorption/desorption reports reaction rates based on concentration on the
soil mass and soil water mass.  Plant uptake rates are also typically based
on nutrient concentration in the soil water.

The reaction rates in the model were changed to a mass concentration basis
for all the zones except the groundwater zone; the groundwater zone
tranformations remain in terms of kg/ha.  The NH4 desorption rate,  KAS, is
now based on the concentration of adsorbed NH4 on the soil mass.  Likewise
the nitrogen mineralization rate, KAM, is based on the organic nitrogen
mass per soil mass. The P04 desorption rate, KAS, and the mineralization
rate, KM, are also respectively based on the concentration of adsorbed or
combined P04, and organic phosphorus per soil mass.  All the other reaction
rates are based on the mass of the nutrient per mass of soil water in the
zone.

Additional model changes were made for calculating the soil and water
masses.  Soil bulk densities are now specified separately for each soil
zone.  The bulk densities and the volume of the zone are used to calculate
the soil mass.  The LANDS program calculates the moisture stored in each
soil zone during each time interval for the hydrology simulation.  The
moisture values are then used in the nutrient model to evaluate nutrient


                                     64

-------
                TABLE 8.1  DEFINITION OF N AND P REACTION RATES
   Rate
             Definition
Nitrogen
       Kl
       KD


      KPL


      KAM



      KIM


     KKIM


      KSA


      KAS
Phosphorus
       KM
      KIM


      KPL


      KSA


      KAS
Nitrification rate of ammonium in solution
  (NH.-S) to nitrite and nitrate (NO +NO )

Denitrification rate of nitrite and
  nitrate to gaseous nitrogen (N )

Uptake rate of nitrate (and nitrite) by
  plants (Plnt-N)

Mineralization or ammonification rate of
  organic nitrogen (Org-M) to ammonium in
  solution

Immobilization rate of ammonium in
  solution to organic nitrogen

Immobilization rate of nitrate to organic
  nitrogen

Exchange rate of ammonium from solution to
  adsorbed phase (NH.-A)

Exchange rate of ammonium from adsorbed
  phase to solution
Mineralization rate of organic phosphorus
  (Org P) to solution phosphate (PO -S)

Immobilization rate of solution phosphate
  to organic phosphorus

Uptake of solution phosphate by plants
  (Plnt-P)

Adsorption or combining of solution to
  adsorbed or combined phase (PO.-A)

Desorption or dissolving or adsorbed or
  combined phase to solution phosphorus
note:   All rates are based on the N or the Pamounts of the form.
                                     65

-------
          TABLE 8.2  COUPLED SYSTEM OF DIFFERENTIAL EQUATIONS
                     FOR NITROGEN TRANSFORMATIONS
Organic Nitrogen:

     ^ {ORG-N}  =  KIM {NH4-S} + KKIM {N03+N02> - KAM {ORG}


Solution Ammonia:

     ^r (NH4-S)  =  KAM {ORG-N} - (KSA + Kl + KIM){NH4-S} + KAS {NH4-A}


Adsorbed Ammonia:

     ^ (NH4-A)  =  KSA {NH4-S} -  KAS {NH4-A}


Nitrate:

     3t {N03+N02) = Kl {NH4-S} -  (KD + KKIM + KPL) {N03+N02>


Nitrogen Gas:
Plant Nitrogen:

     — {PLNT-N} =  KPL{N03+N02)
                                  66

-------
concentrations and transformations.  Hence, reasonable simulation of the
soil water storages, especially in the upper and lower zones, is needed for
reliable transformation simulation.

In the model the soil moisture storage value in the upper zone is specified
by UZS.  It is the primary moisture component for upper zone transformations
during nonstorm days.  During storm days, UZS is augmented by the interflow
component and infiltrating moisture that passes through the upper zone.  UZS
is primarily dependent upon the rainfall, evapotranspiration, and the input
nominal upper zone storage value (UZSN).  Care must be taken to use
reasonable values for UZSN with regard to the depth of the upper zone so
that realistic upper zone moisture values are simulated.  All nutrient
transformations in the model are discontinued at very low moisture values,
which are not uncommon when very low UZSN values (less than 2 mm) are used.
Nutrient transformations are inhibited at low moisture levels because some
minimum moisture content is generally required as a medium for
transformations.  Black (1968) discusses the decrease in plant uptake,
mineralization, and nitrification in dry soils.  This same stopping of
transformations in the model also occurs in the lower and surface zones at
low moisture values.  However, the lower zone soil moisture almost never
reaches this level, and the surface zone moisture is always zero except when
runoff is occurring.  Hence, surface zone transformations do not occur
except during storm events.  This makes the surface zone a conceptually
stable zone for the nutrient model.  Such a stable zone has the advantage of
simpler application; the amount and concentration of soil-associated
nutrients available for erosion are relatively constant.  A disadvantage is
that a more active simulation of the surface zone may be needed for
simulating soluble nutrients.  Further testing of the model will determine
this.

Groundwater transformations are performed in the model in the same manner as
described in the previous report.  The reactions are still based on mass of
nutrients per area.  The total groundwater is not simulated, and the depth
and bulk density of the groundwater zone are not typically known.  So it was
considered undesirable to change the basis for groundwater transformations.
A highly sophisticated model is needed to accurately simulate groundwater
movement, transport, and transformations of chemicals.

Plant Uptake

Simulation of crop uptake of nutrients is important to soil nutrient
simulation since it usually removes more nutrients from the soil system than
any other process.  To improve the ARM nutrient model, crop uptake was
changed from being based on crop cover to being based on a user-specified
uptake factor.  Uptake by the crop was based on the monthly fraction of the
cover which is an input factor.  The previous algorithm was:

         KPL = KPLmax * COVER                                         (8.1)

where    KPL = plant uptake reaction rate, day"1
       COVER = crop canopy fraction for the watershed
      KPL    = maximum rate of plant uptake, day"1
         max
                                     67

-------
However, further analysis of nitrogen uptake curves, such as those of Viets
(1965), show uptake to occur most during periods of rapid growth and not
when the crop canopy was fullest.  Hence, to improve plant uptake
simulation an input factor of monthly uptake was introduced.  Separate
monthly uptake factors for the lower zone and upper layers (surface and
upper zones) were added to the model.  These factors work basically
the same as the COVER factor.  The new algorithm is:

         KPL = KPL    * UPTK                                          (8.2)
                  max

where   UPTK = average fraction of maximum uptake occurring during a month

Figure 8.1 compares the previous method  (Equation 8.1) of distributing
plant uptake using COVER and the new method using the uptake factor
(Equation 8.2).  The actual uptake is approximated from Figure 15 of Viets
(1965) and from personal communication with Boyd Ellis (1976) of Michigan
State University.  The old method has the maximum uptake occurring in
August and September when the plant is fully grown, while the new method
has maximum uptake occurring in July.  The major part of the uptake would
come from the upper zone in June and early July and from the lower zone in
late July and early August.

EVALUATING NUTRIENT REACTION RATES

Optimum nitrogen and phosphorus transformation reaction rates are input to
the nutrient model.  They are the main factors influencing simulation of
soil nutrient storages.  Each reaction rate is specified for each soil zone.
These reaction rates are optimum at 35°C and above, and at lower soil
temperatures the rates are reduced according to a simplified Arrhenius
Equation.  The procedure used for evaluating reaction rates and temperature
coefficients was to search the literature for initial estimates and then
adjust these values by calibration on observed soil storage and runoff data.

The most comprehensive literature found  applicable to field conditions was
that of Stanford and Smith  (1972).  They determined nitrogen mineralization
rate constants for 39 widely differing soils.  The mineralization rates did
not significantly differ among the soils.  These rates were based on
mineralizable N, so an estimate of the mineralizable N in the soil was made
as a fraction of Total N.  Rather than change the input storage values to
potentially mineralizable N, the literature rates were lowered by the
mineralizable N estimate.  These rates for each watershed tested were used
for mineralization of both organic nitrogen (RAM) and phosphorus (KM).  They
were considered the most reliable rates  and were not changed during the
calibration process.  These are also net mineralization rates so
immobilization rates were set to zero.

Other literature (Mirsa, et al., 1974; Starr, et al., 1974; Mehran and
Tanji, 1974) was not nearly as comprehensive for field conditions, but was
useful in determining initial rate values and relative magnitudes.  Reaction
rates obtained for particular soils gave indications of the magnitude of
initial nitrification rates  (Kl) and NH4 exchange  (KSA and KSA).  The cation
exchange capacity also provided an estimate of the extent of NH4 adsorption.

                                     68

-------
    Q h-
    UJ ividn JO 3ivy  wnwixvw  do
                                     69

-------
Research done by nutrient modelers at the University of. Florida also
provided information on the magnitude and sensitivity of reaction rates
(Rao, et al., 1976a; Mansell, et al., 1976).

Quantitative relationships for the effect of temperature on nitrogen
transformations were more prevalent in the literature.  The temperature
relationship for nitrification and denitrification was obtained from the
modeling work of Hagin and Amberger (1974).  The mineralization rate
temperature coefficient was determined from data of Stanford, et al. (1973)
and compared with Hagin and Amberger (1974).  The plant uptake rate
temperature coefficient was determined from data of Van Den Honert and
Hooymans (1955).  The adsorption/desorption rates coefficient values were
estimated from the other values and soil water viscosity.  The corresponding
nitrogen coefficients were also used for phosphorus.

The same temperature coefficients were used for each watershed and remained
unchanged throughout the calibration period.  However, many of the reaction
rates were calibrated to the specific conditions of each test watershed.
The plant uptake rate, KPL, was adjusted to obtain desired results since no
rate data was found in the literature for these field conditions.  KPL was
adjusted to produce plant uptake in the range of values estimated for the
growing season.  The distribution of seasonal crop uptake was estimated from
observed data of plant growth and distributed by the inputted monthly
fraction of maximum uptake.  The month with the most growth was assumed to
have the maximum uptake occurring at the input optimum rates; thus, that
monthly uptake factor was 1.0.  The values used are in Table 8.3.  Different
values were used each year of simulation due to different crop growth rates.

The observed soil nutrient storages and nutrient runoff values were used to
calibrate the less certain reaction rates.  The proportion of NH4 to N03 was
directly regulated by Kl, as well as indirectly by KSA and KAS.
Particular attention was given to the upper and surface zone rates since
these zones have a greater effect on the simulated nutrients in the runoff
from the small test watersheds.  Small values of KD were introduced to
lower the excess simulated nitrogen in the soil after the desired plant
uptake amount was satisfied.  Broadbent and Clark (1965) estimated 10 to 15
percent of the annual mineral nitrogen input to agricultural areas is lost
by denitrification.  P04 exchange rates KSA and KAS were estimated from the
amounts observed in the runoff.

Table 8.4 contains the reaction rates used in the test watersheds.  These
values were calibrated on the runoff results as well on soil storage values,
so they may not be directly applicable to pure soil transformation studies.
However, they are generally within the range of such values in the
literature.  Since the surface zone transformations occur only during
storm events the rate values should be evaluated with that taken into
account.  The surface exchange and mineralization rates were adjusted to
produce the simulated amounts of NH4 and P04 in the runoff.
                                     70

-------








CO
I—
2:
UJ
1 — 1
I—
rD oo
2: Q
UJ
o oo
O£
UJ UJ
\^S i 	
- Q-
31 UJ
1 — •!—
1 	 —I—
21 1—
O
O
— )
p— I UJ
XQ
U. UJ
O3C
1—
2:
02:
1 — 1 1 — 1
1—
O Q
~
i —
=3


CU
C"
^3
>~3



^
(O
«£-
^_
S-
Q-


£„
ro
s


r^
O)
u_


c.
ro















O 0
CM CM

0 0
CM CM
O 0


CD O


1 — . CD
0 .-I
•



O LO
CM ^f



LO LO
1 — . LO
• •



LO ro
i — I O

O 0
CM CM


0 0
CM CM
• •


CD CD
CM CM


O O
CM CM

to
S-
-O O) OJ
CU >, C
-C "3 O
to i — M
^_
CU S- S-
+-> 0) CU
ro Q. S
3 «3- Q. o
P*"* "> i
CM CTi
CL. r-i
O O
CM CM
'
0 0
CM CM
0 0


0 O


LO O
O i— I
•




o o
I— 1 r—t


o o
cn co
• •




CD O

O O
CM CM


0 O
CM CM
• •


CD O
CM CM


O O
CM CM

to
s-
CU CU
>> c
ro O
•— N

S- S-
O) CU
Q- S
LO Q- O
P-. I=> _l
CTv
i — I

O 0


c o
0 O


0 O

LO
t£> CM
O t-H
• •




0 0
i— 1 r-H


cn < — i
o o
• •




o o


0 O



0 0




0 0



0 0

to
s_
"O CU CU
CU >, C
-c: ro o
 CD Ol
ro CL S
3 «d- Q. o
r-- ZD _i
<-o cn
O- ^H

0 0


o o
0 0


o o

LO
LO LO
o o
•



O LO
LO 1^



o
o oo
• •
1— 1



0 O


0 O



o o




0 O



0 0

to
S-
CU OJ
>•> c:
rO O
r— N

S- S-
CU CU
CL 3*
LO Q. O
r-N ID _j
Ol
! 	 1
71

-------
                                 o
                    O O O O LO
                    o o o o o
                 oo o in o o   •
                 er CM CM CM O •—I
                                                                  o
                                                     O O O O LO
                                                     o o o o o
                                                 (/> LO o o o   •
                                                 ef r-~ CO «3" O i—I
oo
o
LU
IE
oo
01
                                 o
                    O O O O LO
                    o o o o o
                    o o o o   •
                 <: o o o o i—i
                 oo   •   •  •   •
                    o o o o o
                 s: o o o o r--
                 i-. O O O O O
                 ^ o o o o   •
                                                                  o
                                                        o o  o un
                                                     o o o  o o
                                                 
O ro
r*Ni 2
"O
s- c
CU 3
2 0
O S-
_l CD






r
t-
cu
o

CU
S-
3
-{_>
ro
S-
cu
Q.
E
CU
h-



— 1
1
ro
-o
to
CU
+->
ro CU
D" (J
ro
i/l 4—
3 S_
S- 3
o oo
c~
Q.
to
O
c~
Q-
s-
O) CU CU
c c: 4->
O O ro
M M S
-o
i- S- C
CU CU 3
CL 2 0
CL 0 S_
ID _l CD






4-

O O ro

-a
S- S- C
CU CU 3
CL 2 O
CL O S-
Z3 _l CD






i-H
1
ro
4- T3
CU •— '
0
O tO

CU
S-
3
.j_)
ro
S-

CL
E
CU
1—



CU
4->
ro CU
C£ (J
rO
to f-
3 S-
i- 3
O OO
.C
CL
to
O
^r
D.
CU CU
c: c:
O 0


S- S-
CU CU
CL 2
CL 0
•=> _J






CU
S- O
CU O
H->
rO CU
2 S-
T3 3

3 ro
0 S-
S- CU
CD CL
E
CU
h-



                                                        72

-------
SOIL NUTRIENT SIMULATION RESULTS

The reaction rates in Table 8.4 were used in the simulation of soil nutrient
storages.  The nutrients stored in the surface and upper zones are the
primary sources of nutrients in surface runoff (Section 11).  The soil
storage results for the P2 watershed are presented in Figures 8.2 and 8.3.
Figure 8.2 contains the surface zone and upper zone soil storages of total
Kjeldahl nitrogen (TKN = ORGANIC N + NH4-N) and N03-N.  The observed values
are calculated from composite areal samples taken from the surface to 7.5 cm
depth.  They correspond to the simulated surface zone plus upper zone
results.  The surface zone results are for the top 3.2 mm.  Due to the
shallowness of this zone no observed values were taken or estimated.  Figure
8.3 provides the corresponding lower zone soil storages.  The observed
values are also from composite areal and depth samples for 7.5 cm to 190 cm.
The 152 cm to 190 cm component of these observed values was estimated.
Figure 8.4 gives merely the simulated solution P04-P and Organic P results
since no observed data was available.  On the P2 watershed, a single set of
reaction rates was calibrated for both the 1974 and 1975 growing seasons.

Soils were not sampled as deeply for the P6 watershed as for P2, so only
surface zone and upper zone results are presented for P6.  However, more
nutrient forms were analyzed.  Figure 8.5 presents the NOo-N and the
Available P results while Figure 8.6 contains the NH4 and Organic N results.
The observed values again are from composite areal samples from the surface
to 7.5 on depth and correspond to the upper zone plus surface zone values.
The P6 watershed was calibrated on the period of May 22, 1974 through
September 30, 1974.  The calibrated reaction rates were then used to
simulate the 1975 growing season, June 1 through September 30; however, the
soil storage, plant uptake, and the soil temperature regression constants
input values were all reset.  After the summer 1975 results proved
satisfactory, a single run was made from May 22, 1974 through May 8, 1975.
The pronounced peaks of the upper and surface zone storage of both
watersheds are the result of fertilizer applications (Table 8.5).  Unless N03
was applied directly, the N03 peak rose slowly after the fertilizer NH4 had
been oxidized.

The simulation of soil nutrients requires the input of initial soil nutrient
storages (Table 8.6) which correspond to the starting values in Figures
8.3-8.6.  The Available P values include both solution and adsorbed PO4.
The initial values for the upper zone and lower zone nutrient forms that
were not analyzed were estimated from other forms analyzed, data from
related soil series in the area, prior data analyzed from the watershed,
prior fertilizer applications, or observation of runoff results.  The lower
zone estimates were not considered as crucial as the upper zone values since
that zone does not directly influence the nutrients measured in the surface
runoff from these small test watersheds.  However, the initial surface zone
values are critical to the nutrients simulated on the sediment, namely the
organic and adsorbed forms of nitrogen and phosphorus.  These values were
obtained by averaging the observed concentration on the runoff sediment.

The other major nutrient storage value is that of plant uptake and storage.
Corn (Zea mays L.)  was planted both years on both watersheds.  The crop


                                     73

-------
               TABLE   8.5  N AND P FERTILIZER APPLICATIONS
UATERSIIED
P2
l>6
DATE
FORM APPLIED
N P
(kg/ha) (kg/ha)
4-29-74 sulphate of ammonia
6-11-74 50% urea,
50% ammonia
4-24-75 ammonium nitrate,
superphosphate
6-25-75 50% urea,
50% ammonia
5-20-74 ammonium nitrate,
monocalcium phosphate
7-8-74 ammonium nitrate
11-7-74 ammonium nitrate
5-16-75 ammonium nitrate,
monocalciun phosphate
6-25-75 amr.ionium nitrate
38
101
22
112
68*
130*
130*
68*
64*
33
21
93*
131
ICAHS OF APPLYING
incorporated pellets
spray, sidedressed
incorporated pellets
spray, sidedressed
incorporated pellets
sidedressed
no incorporation,
pellets broadcasted
incorporated pellets
side dressed

* delivered application rate
TABLE 8.6 INITIAL SOIL STORAGES AND BULK
DENSITIES

WATERSHED
and DATE
ZONE DENSITY
g/cm
ORG-N
NH4,N
(sol)
NH4-N 110,
(ads) 3
1, r. /U m
CIRG-P
(sol)
P04-P
(sol)
(ads)

P2 5-1-74


P2 G- 10-75


P6 5-22-75


Pi5 6-1-75


surface
upper
1 owe r
surface
upper
lower
surface
uoper
lower
surface
upner
1 owe r
1.6
1.6
1.6
1.6
1.6
1.6
1.02
1.16
1.59
1.02
1.16
1.59
100.9
420.3
2802.
22.42
479.7
2690.
76.2
571.6
2339.
77.3
493.2
1667.8
2.24
4.40
6.73
0.22
4.48
6.72
0.45
8.97
10.09
0.22
4.81
22.4
22.42
44.84
22.42
6.16
48.83
22.42
1.12
22.98
25.78
1.02
11.21
56.04
2.24
3.36
237.6
0.57
13.20
213.0
2.19
30.71
112.1
0.3/1
22.30
170.4
13.
112.
8%.
23.
112.
856.
30.
196.
1121.
45.
246.
896
45
1
6
54
1
6
3
1

95
6
6
1.
0.
1.
0.
0.
40.
0.
14.
30.
1.
1.
22.
12
39
12
0
34
35
10
90
0
46
52
42
40.35
341.8
151.3
44.83
336.2
112.1
7.44
113.5
270.7
2.91
125.1
224.2
notes:
sol - solution form
ads - adsorbed form
                                      74

-------







^•M


•••••






















MM



1 1
—

— ~ *



=^
O
NJ 5:
«^ at. oo
^ LU
Q_ •>
	 D- LU
^D ^^
O
+ M
Q
"""" LU LU LU
S C_> O i— i
0 «=C < — 1
Lu U_ O.
— LO o; a: Q-
r-. oo oo
— "Q Q LU
Q LU LU 1^1
LU h- 1— I-H

— o: _i _i i— i
LU Z3 ZD 1 —
oo 2: s: ce
oa i— i >— i LU
— o oo oo LJ_
-*! !"*"

i I
i 1

~ CT""
->-
1 1
o o
lf> <3~

III"
X — —
*"••*
• ^^ "™ "*
>^^
*^"**^.
^f
S
•**" .'


•Q
I
••-
i
1
j
r
f—

•
/~
J
-*' —
^^r
^••^^
pf
\ -—
/*-*
^y
x
<
> —
Xx
V
•;; _
	 * — • *
__ •> —
""-•v 	
"j£
i i i
000
CO CM I-H

1 i 1 1
i r
/
_ / i 	
/ i
_ / I _
j \
[_
^^ ^ ^* »fc
? \_


— *"~

IT , i ^^





i *""

• —
*
« i
i
__ ' _

i
'--, i -
> «

•
_ i —
i
^
^ /
/
• y
- ^ • ^ -
i i i i
o o o o
o o o o
CO ^D *^" CM

0

oo
ct

•"3



S

^


^


Lu

•"3



Q

Z

O

oo

^
'-D
s:



                                                   LO
O)

o
N
                                                            O)
                                                            D.
                                                            Ci
                                                            3

                                                           -o -o
                                                            c cu
                                                            re x:
                                                               to
                                                            a> s-
                                                            (j OJ
                                                            •T3 -»->
                                                           <+- 03
                                                            S- S
                                                            3
                                                            10 CM
                                                               a_
                                                            c
                                                           •i- OJ
                                                            c  
-------










































^^^••H


1 1 1 '1 1
— x —
\
\
\
l— \ —
\
S
_ \ —
~>
^ •/
9


— i^ ~~
^ f •
- / —
/
— 1 j 	
1
\
\ ~
\
\
— \ -
\
\
- \ -
I
"~ \ • ~~
\
\
— \ —
\
\
\

~ V
X
\
_ \ _
\
~ \
\
_^^. 1 —
1 1 1 1 i
o o o o o
o o o o o
LO «^~ CO CM i — 1
1 1 1
—

	
•j*"
~ Q.
T3
— E
CO
_ °°
rH
1
CM
— o
	
— Q
LiJ
— LiJ
oo
CQ
o

•
—


—


—

— •


—



—



__

—
• 1
1
	 I
1 1 1
O O 0
O 0 O
o o o
«J- CO CM
1
_



~
^
o _
1— 1
I—
I — (
Q-
Q.


                                                cr>
01
                                                        0)
                                                        s_
                                                        a;
                                                        ro
                                                       (NJ
                                                       D-
                                                        ai
                                                        01
                                                        en
                                                        cu
                                                        c
                                                        o
                                                        N

                                                        S-
                                                        O)

                                                        o
                                                        ^.
                                                        I—

                                                        T3
                                                         CO
                                                        O
                                                        CO


                                                        00


                                                        OJ
                                                        S-
                                                        3
                                                        CD
76

-------
00
Q
      o.
      ex.
	GC. LU
   LU I—
   OO 
                                                                                                 s-
                                                                                             D-  Ol
                                                                                                4->
                                                                                              O  fC
                                                                                             •r-  S

                                                                                              
                                                                                             CO  to

                                                                                              O)
                                                                                              s-
                                                                                              3
                                                                                              CD
                                                                                        CTl
         6L|/6>|  'd-
                         NOIiniOS
                                           77

-------
1 1 1 1 t
1
,--<—
•*- •'— "7

i

___ y

— -t-
i
.*
— i —
t
"~ / *~"
	 '
j^, -r_« 	 •--=^.-_-=-s=i-=^'
t
1
— — t

/
_ Jfe
• _/_
^»^*"
^ _jf
— W /•"""" ~

^ ---*"•''' • -
i i i i
o o o o
00  z: i
— o f-
+ M I
Q 1
1 I 1 [ 1 1 QJ 1
— 2: 0 0 K-I *-
o «c <: _i 1
_ u_ u_ ex 1
• LO C£ C£ CX •
r^ oo  I
« Q Q LU |
— Q LU LU M i-
LU i— i— H-I ;
S 3 3 ^ 1
_ •» LU ZD ^3 h- 1_
co s: 2: n: i
• CO i— i i— " LU 1
O 00 tO Ll_ 1
t ^fe 1 ^^^^. •
/
- • 1-
1 1 '
1 1-
1 1 1
o o o o
C\J CO ^J-

co
 CU
ro CD
(O
•-3 t3 S-
c o
ro 4->
i/i
Q CO
O CU
*- C
o
^ N

00 O
O 0.
cu o.
s_ zs
"> ^ .?
r^. u_
ct *"*


rs

•-3
5T


cd

-------
60
40
SI
0>
ft
z
_V 20
z
600
*=
O)
z" 400
O
HH
Z
1 200
o
r
_| 1 IX 1 I 1 IT 1 1 1 1 i 1 X 1 |[ I | _
5 •OBSERVED, 7.5 CM
ij 	 SIMULATED SURFACE + UPPER ZON
!.i 	 SIMULATED SURFACE ZONE, 3 MM
- !fc 1 FERTILIZER APPLIED
'» *
* if:
\ \ ill I
- » • •'
» i "ii • § i
•N ' •' P* jT *1«
1 U 1 1 1 1. 1 1 1 I 1 1 1 1 1 1
• 	 A...
1 1 1 I I 1 I I 1 1 I 1 I I i I
1 J JASON DJFMA MJJAS
1974 1975
Figure 8.6  NH. and organic N in surface and
   upper zone storage on the P6 watershed
                79

-------
uptake simulation results are shown in Figure 8.7; no observed values were
available.  The planting dates are given in Table 5.2.  In 1974, the P2
watershed crop uptake was limited by lack of moisture during the early
growing season, so the 1974 uptake was simulated lower than 1975.  The P6
watershed growing conditions were better than P2, so more nutrients were
considered removed by the corn.

In general the simulation of the soil nutrient storages by the ARM Model is
reasonably within the expected range of the observed values, especially
since the observed values are an average that may vary 10-20 percent from
the actual value.  Hubbard (1975) calculated a standard deviation of 11.32
ppm about a mean of 113.95 ppm for 1974 Available P in the top 15 on of the
P6 watershed.  Organic N and Organic P will vary even more.  In addition,
localized concentrations of fertilizer after application will increase the
varibility of the samples.  Therefore, considering the assumed variability
of the observed values, the simulation results are good, with the exception
of N03.

The P6 early July 1974 and June 1975 upper zone N03 simulation values are
much lower than the observed values.  Since the simulated NH4 values are
reasonable, the low N03 values are probably due to too little NH4 being
oxidized.  Hubbard (1975) believed that the higher observed N03 values in
the early July 1974 period are due to upward migration..  The Cl
concentration is also higher in the upper zone during that period.  Since Cl
does not undergo transformation, it is reasonable to assume both the N03 and
Cl migrated upward during early July 1974 and June 1975.  The ARM Model does
not account for upward migration of pollutants so the simulation during
these periods is lower.  However, N03 in the runoff was over simulated
during these periods, so an under simulation of the soil storage did not
affect the simulation of nutrients in the runoff.

The poor N03 simulation in the fall and winter for both watersheds for each
zone is partially caused by the poor temperature simulation.  The regression
equations that generate summer soil temperatures over simulate the fall and
winter temperatures.  The over simulation of these temperatures resulted in
more mineralization and nitrification occurring during this period,
resulting in the gradual increase of N03 in the lower zone  (Figure 8.4).
The over simulation of the lower zone values for the P2 watershed may also
indicate the need for more percolation of nutrients to groundwater.

The surface zone simulated values show the effect of the rapid leaching of
soluble nutrients from that zone.  The rapid decline of the surface zone N03
and NH4 for P6  (Figures 8.5 and 8.6) show this effect.  Nearly complete
removal of solutes from a surface layer 3.2 mm thick would be expected.

With the exception of when N03 was poorly simulated, the simulation of soil
nutrient forms is good and satisfactory for our purposes.  The simulation of
both upper and lower zone N03 during the 1974 growing season for P2  (Figures
8.2 and 8.3) is good.  It is not until late in the season that over
simulation occurs.  The simulation of TKN and Organic N for both watersheds
 (Figures 8.2, 8.3, and 8.6) is consistently within the range of observed
values.  In addition, the simulation of both Organic N and P  (Figures 8.4


                                     80

-------

   oo
   :r>
2: C£
UJ O

O O-
o; c/o
i— o
Q  Q
LU  LU
OO  OO

                                                                           \
                                                                                        Q.
                                                                                        UJ
                                                                                             in

                                                                                             CTi
                                                                                        OO
                                                                                                    to
                                                                                                   C T3
                                                                                                   CU Ol
                                                                                                   •r- JZ
                                                                                                   s- to

                                                                                                   3 CU

                                                                                                      (O
                                                                                                   Q- 'S
                                                                                                   o
                                                                                                   i- vo
                                                                                                   O Q-

                                                                                                   T3 -O
                                                                                                   CU C
                                                                                                   4J (O
                                                                                                   fO
                                                                                                   i— C\J
                                                                                                   3 O.

                                                                                                   ••- CU
                                                                                                   C/) JZ
                                                                                                   Ol
                                                                                                   s-
                                                                                                   01
                                                                                             CTl
o
o
CM
                 o
                 o
o
o
CM
o
o
         €3>IVldn
   '3>IVldn
                                                                                9d
                                                81

-------
and 8.6) is relatively stable as expected under actual field conditions.
Likewise, Available P is within the fange of observed values as well as
being realistically stable.  In summary, the first-order kinetic approach to
soil nutrient storage simulation in the ARM Model is quite satisfactory.

The simulation of plant uptake storage also appears to te adequate.  The
monthly uptake factors and plant uptake reaction rates were versatile enough
to produce the desired results.  The crop uptake was calibrated based on
observed crop growth and estimated total uptake.  The distribution of the
estimated total uptake was also based on the observed crop growth and was
accomplished by using the monthly uptake factors.

MODEL IMPROVEMENTS AND FUTURE RESEARCH

As shown by the simulation results, the ARM nutrient model can
satisfactorily represent the behavior of soil nutrient storages of most
nutrient forms.  Further testing of the current algorithms should be done
before major changes are made.  Sensitivity tests on the effect of reaction
rate changes to soil storage changes under field conditions are needed.
Likewise the effects of temperature changes on soil storages also need to be
studied.  More testing on different watershed soil and crop conditions is
necessary to further evaluate the general applicability of the model.
Testing and analysis of surface zone transformations and their impact on
surface runoff and leaching processes is a major topic for future research.
Changes should be made on the surface zone simulated behavior as indicated
by future testing.

As further testing of the nutrient storage simulation is done, modifications
may be needed to improve the model's applicability under varying field
conditions.  One of the first considerations should be to introduce the
effect of moisture and oxygen content on the reaction rates.  This would be
needed if denitrification is significant.  Also the effect of pH and carbon
content may vary enough under some conditions to significantly influence
reaction rates.  Nitrogen fixation, ammonium uptake by plants, ammonium
volatilization, and nutrients in precipitation could be introduced into the
model.  However, since these factors would further complicate application of
the model, they should not be introduced until needed.

The simulation results and model development have uncovered specific areas
where more field research is needed.  For example, first-order reaction
rate values applicable to field conditions are a major deficiency in the
current literature.  Also research is needed to develop more quantitative
relationships between first-order reaction rates and various environmental
factors  (moisture, oxygen, pH).  Most importantly, nitrogen and phosphorus
uptake by different crops under field conditions needs to be described  in a
more quantitative manner.  As this research is accomplished, the developed
relationships could be incorporated into the ARM Model to allow more
accurate and reliable modeling of soil  nutrients.
                                     82

-------
                                 SECTION 9

                   RUNOFF AND SEDIMENT SIMULATION RESULTS
The P2 and P6 watersheds were selected for simulation testing of the ARM
Model because both pesticides and nutrients had been applied and then
sampled in the runoff and the soil profile.  Both are nonterraced
watersheds and P6 is the larger of the Michigan watersheds.  Also the data
collected on these watersheds contained a minimum of inconsistencies and
errors.  This combination of requirements provided the best conditions in
which 'to test all components of the ARM Model.  Model testing for runoff and
sediment loss was performed on the P2 watershed for the period of record,
May 1973 through September 1975.  The P6 watershed was simulated from May
1974 through September 1975.  Data for the P6 watershed prior to May 1974
was questionable due to uncontrolled seepage under the outflow weir.  This
was corrected in April 1974.

Simulation of hydrology and sediment processes must be sufficiently accurate
to allow evaluation of the pesticide and nutrient simulation results.
Pesticides and nutrients are transported from the watershed either in
solution in the runoff water or adsorbed onto eroded sediment paricles.
Thus, pesticide and nutrient runoff results are dependent on the simulated
runoff and sediment loss.  Similarly, the simulated vertical movement of
pesticides and nutrients in the soil profile depends on the model's
representation of infiltration, percolation, and soil moisture processes.

Although the agreement between simulated and recorded runoff and sediment
loss discussed below is generally good, discrepancies do exist.  Some are a
result of problems or errors in data collection and analysis.  Such obvious
errors must be considered when evaluating simulation results.  Others are
due to limitations of the hydrology and sediment algorithms of the model.
Recommendations on how these limitations can be overcome and where
additional research is necessary will be discussed at the end of this
section.

P2 WATERSHED SIMULATION

A monthly volume comparison of simulated and recorded runoff on the P2
watershed (Figure 9.1) shows that the simulation of runoff is good for the
important summer months.  In the winter months (December through March)
there is the tendency to over simulate runoff.  This happens because of the
new set of calibration parameter values used since the initial calibration
of the Georgia watershed (the calibration parameter values can be found in
Table 9.1).  The major changes made were in the values of UZSN and INFIL.
The input value of UZSN (upper zone nominal storage)  was increased from 0.05

                                     83

-------
TABLE 9.1  INPUT FOR THE P2 AND P6 WATERSHEDS

Parameter
Hydrology
UZSN
LZSN
L
SS
NN
A
EPXM
PETMUL
K3
January
February
March
April
May
June
July
August
September
October
November
December
INFIL
INTER
IRC
K24L
KK24
K24EL
KV
Snow
RADCON
CCFAC
SCF
ELDIF
I DNS
F
DGM
we
MPACK
EVAPSN
MELEV
TSNOW
(continued)
P2 Watershed
Original

0.05
18.0
200.0
0.025
0.20
0.0
0.12
1.0

0.30
0.30
0.30
0.40
0.40
0.50
0.70
0.80
0.60
0.50
0.40
0.30
0.50
0.70
0.0
1.0
0.6
0.0
0.0














P2 Watershed
Revised

0.50
18.0
100.0
0.025
0.20
0.0
0.12
1.0

0.30
0.30
0.30
0.40
0.40
0.50
0.70
0.80
0.60
0.50
0.40
0.30
0.10
0.59
0.0
1.0
0.6
0.0
0.0














P6
Watershed

0.20
9.00
60.0
0.06
0.20
0.0
0.12
1.0

0.20
0.20
0.20
0.20
0.30
0.30
0.50
0.45
0.40
0.30
0.20
0.20
0.30
0.80
0.0
1.0
0.0
0.0
0.0

1.0
1.0
1.4
0.0
0.14
0.0
0.0
0.03
1.0
0.4
892.0
32.0

                     84

-------
TABLE 9.1  (continued)

P2 Watershed
Parameter Original
PETMIN
PETMAX
WMUL
RMUL
KUGI
Sediment
COVPMO
January
February
March
Apri 1
May
June
July
August
September
October
November
December
TIMTIL,YRTIL,SRERTL
(max. of 12 events)
115
114
JRER
KRER
JSER
KSER
SCMPAC
Initial Conditions
Date
UZS
LZS
SGW
GWS
ICS
OFS
IPS
PACK
DEPTH
SRERI







0.60
0.60
0.60
0.60
0.00
0.15
0.60
0.85
0.75
0.60
0.60
0.60


,74,1.0
,75 2.0
1.90
0.08
1.30
0.25
0.02

5/11/73
0.10
19.5
0.0
0.0
0.0
0.0
0.0


2.0
P2 Watershed
Revised







0.60
0.60
0.60
0.60
0.00
0.15
0.60
0.85
0.85
0.60
0.60
0.60


115,74,1.0
114,75,2.0
1.90
0.08
1.70
0.50
0.02

5/11/73
1.0
24.0
0.0
0.0
0.0
0.0
0.0


2.0
P6
Watershed
35.0
40.0
1.0
1.0
0.0


0.00
0.00
0.00
0.00
0.00
0.05
0.55
0.90
0.90
0.80
0.00
0.00


140,74,1.0
136,75,0.8
2.2
0.15
1.40
0.50
0.001

5/20/74
0.50
11.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
           85

-------
to 0.50 while INFIL (the mean infiltration rate) was decreased from 0.50 to
0.10.  These changes produced compensating effects and were necessary to
achieve more reasonable soil moisture storage values for simulating vertical
transport of solutes.  By changing these parameters more runoff was
simulated during the winter months.  By lowering the value of INFIL less
water could infiltrate and thus more was available for runoff.  The
long duration, low intensity winter storms allowed the lower INFIL value to
have a pronounced effect. However, the summer runoff was not substantially
changed due to the high intensity, short duration summer thunderstorms and
the higher upper zone moisture storage maintained by the higher UZSN.

Actually, the revised parameters (higher UZSN, lower INFIL) do not as
accurately represent the summer thunderstorms as the original parameters
because of the lesser effect of INFIL on these short duration.intense
storms.  Moreover, it is questionable whether infiltration and subsurface
characteristics can be accurately calibrated on these small watersheds.
Bruce, et al. (1976) have concluded that the surface soil horizon (0-18 cm)
basically determines the infiltration and resulting runoff characteristics
for a major portion of a runoff event on these small Georgia watersheds.
Subsurface characteristics do not effect infiltration until 30-40 minutes
into an event.  Consequently, the simulated impact of the summer
thunderstorms is more dependent on UZSN than INFIL.  The revised parameter
values are a compromise between runoff and soil moisture simulation.  They
adequately represent the runoff for the summer months and give more
reasonable soil moisture storages values.  For these reasons the new set of
values was selected over the old.

This conflict between hydrology parameter values best suited for surface
runoff and those best for soil moisture storages has not been completely
resolved.  The IANDS section of the ARM Model was not originally designed to
accurately simulate detailed soil moisture movement.  Nor is a simple
solution available.  A detailed discussion of this problem is in Section
6.

Although the P2 watershed monthly simulated and recorded sediment loss
(Figure 9.1) compare reasonably well, problems do exist.  The 1974 recorded
sediment loss is lower than the other years.  In 1974 tillage and planting
occurred in late April and the first major sediment producing event occurred
about 60 days later.  In 1973 and 1975, tillage and planting was in mid-May
with the first major event about 15-20 days later.  Thus, the extra lag time
and intervening changes on the watershed in 1974 appears to be the major
factor for the lower sediment loss.

Sediment loss as represented in the model, results from rainfall detachment
of soil particles and transport of these particles or fines to the stream by
surface runoff.  In addition, production of soil fines by tillage operations
significantly contributes to the total fines available for transport.  As
shown in Figure 9.1, the major sediment loss occurs within 2 to 3 months
following tillage operations.  Changes in crop canopy and settling and
compaction of the soil surface are the major processes occurring in this
intervening period that determine the sediment-producing impact of the first
event following tillage.  The ARM Model accepts 12 monthly crop cover values


                                     86

-------
FINES DEPOSIT

  tonnes/ha
            I     I
                                                           -o
                                                            OJ
                                                           .c
                                                            to

                                                            0)

                                                            to


                                                           CM
                                                           Q.

                                                            0)
                                                     m


                                                   ^    §
                                                           CO
                                                           o
                                                           3
                                                           S-
                                                   zs    >,
                                                   ^^**%    _
                                                           CTl


                                                           O)
                                                           S-
                                                           3
                                                           CD
   fSSiSSS^SSSSSSSS^^^^
                                       §
                                       CM
       87

-------
for the first day of each month; crop cover on any day is determined by
linear interpolation.  Thus for multi-year simulation runs the crop cover is
the same for corresponding days in each year of the simulation.  For the P2
watershed, the average cover calculated by this procedure underestimates the
crop cover in 1974 and overestimates the cover in 1973 and 1975.  This
effect contributes to the differences in Figure 9.1.  Separate calibration
runs with different cover values for each year would improve the agreement
between the simulated and recorded sediment loss.

To account for the settling and compaction of the soil surface following
tillage, a new parameter SCMPAC has been added to the ARM Model to decrease
on each nonrain day the amount of fines available for transport.  SCMPAC is
essentially a first-order decay parameter that reduces the soil fines
storage in the following manner:

         SRER(T) = SRER(T-1)*(1.0 - SCMPAC)                          (9.1)

where    SRER(T) = soil fines storage on day T, tonnes/ha
       SRER(T-l) = soil fines storage on day T-l, tonnes/ha
          SCMPAC = soil compaction factor, day"1

On the watershed the decrease in soil fines is due to natural settling and
aggregation of particles, and compaction by rainfall and agricultural
operations.  These processes are complex functions of soil characteristics,
meteorologic conditions and agricultural practices.  The use of the SCMPAC
parameter is a simple approximation of the overall impact of the above
processes within the scope of this project.  Future research should consider
more detailed methods of representation.

A SCMPAC value of 0.02 for the P2 watershd helped to reduce the fines
storage and resulting sediment loss in 1974.  Even with this compaction rate
the simulated sediment loss in 1974 was substantially greater than recorded.
Within the limitations of the sediment model, the only remaining option was
to assume that tillage operations in 1974 produced less fines than in 1973
and 1975.  Thus, the sediment simulation results in Figure 9.1 are based on
2.24 tonnes/ha of fines produced by tillage in 1974 and 4.48 tonnes/ha in
1973 and 1975.  This further points out the need to investigate the impact
of tillage on sediment fines production.

With the above adjustments, the individual hydrographs and sediment graphs
for the P2 watershed show good agreement between simulated and recorded
results for the major storms during the summers of all three years (Figure
9.2-9.4).  Other storm event graphs for the P2 watershed can be found in
Appendix B.  However, the effect of tillage in dampening the peak of the
recorded hydrograph and retarding the overland flow is noticable in the
storms of May 24, 1974 and June 11, 1975  (Figure 9.3 and 9.4, respectively).
The hydrologic algorithms included in the ARM Model do not handle this
man-made phenomenon.  Thus, over simulation of early season storms is to be
expected.  Storms occurring later in the crop season when the soil has
become compacted do not exhibit this problem.  In general, an accurate
runoff simulation will produce reasonable sediment simulation results on the
P2 watershed.  Tillage and other man-related activities  (terracing, contour,


                                     88

-------
   0.30
   0.20
l/l
E
o
   0.10
en
co
co
O
UJ
s:
»—!
Q
UJ
CO
CO
CO
O
O
UJ
CO
150


120


 90


 60


 30



 16


 12


  8


  4
                                I     I

                               RECORDED

                               SIMULATED
                                        —1-
      0340
             0420        0500
                 TIME,  hours
0540
  Figure  9.2   Runoff and sediment loss from the
   P2 watershed  for the storm of May 28, 1973
                       89

-------
   0.10


   0.08
 

 o
 „ 0.06
u_

I 0.04

C£

   0.02



     63


     54
 c

'i
OO
t/0
O
Q
                            RECORDED
                            SIMULATED
cr>
t/0
o
Q
LU
I/O
45


36


27
        —    \
5    18
      ~nr~r
            \  A   I
        /l
        /  I
       /  i
       /   i
       r   »
     0420  0500   0540  0620

             TIME,  hours
                                  0700   0740
     Figure 9.3   Runoff and sediment loss from the
      P2 watershed  for the storm of May 24, 1974
                        90

-------
to

O
0.30


0.25


0.20


0.15

0.10


0.05



 280


 240
=   200
E
01

"*.  160
oo
O
Q
LU
00
OO
00
O
O
LU
OO
 120


  80


  40
  12


   8


   4
                              ,     RECORDED
                           	  SIMULATED
        -iT
       1825      1905        1945

                       TIME, hours
                                    2025
2105
    Figure 9.4  Runoff and sediment  loss  from the
     P2 watershed for the storm of June  11,  1975
                            91

-------
planting, grass waterways, etc.) disturb the hydrologic characteristics of a
watershed as stated above.  Further research is needed to fully understand
how these management practices affect runoff and how their influence can be
incorporated into the LANDS segment of th ARM Model.

P6 WATERSHED SIMULATION

Like the P2 watershed, the monthly runoff and sediment loss simulation for
the P6 watershed is generally quite good (Figures 9.5).  However, problems
with the simulation of snowmelt and runoff during the months of February and
March 1975 are evident.  These problems, which result in an under simulation
of runoff during these months, are attributed to difficulties in properly
simulating snowmelt.  During winter periods frozen ground conditions
severely decrease infiltration rates resulting in greater runoff than would
otherwise occur.  Also, temperature gradients in the soil profile can result
in upward movement of moisture that would be available for runoff during the
thaw periods.

Although the ARM Model snowmelt routine decreases infiltration for freezing
conditions, the complex frozen ground processes that determine the resulting
snowmelt and runoff are not adequately represented.  Thus, the simulated
runoff is considerably less than recorded for February and March 1975.
Research is needed to better understand how this phenomenon of frozen ground
can best be simulated.

Except for April 1975, monthly sediment loss on the P6 watershed compared
well between the simulated and recorded results, as shown in Figure 9.5.
The April discrepancy is due entirely to simulation of the April 18 storm
(Figure 9.6).  Runoff during this storm is simulated quite well while
sediment is grossly under simulated.  The low sediment concentrations for
this storm are due to more sediment fines on the watershed available for
transport than was simulated by the sediment algorithms.  Freeze-thaw cycles
during the winter could have produced fines which were washed from the
watershed during this first major spring storm.  Also, detachment or scour
by runoff, which is not presently simulated, likely contributed to the high
recorded sediment concentrations especially with the saturated surface soil
conditions existing on the watershed.  Detachment by runoff is a significant
mechanism to some degree on most watersheds.  Its incorporation and
simulation in the ARM Model would allow better representation of the highly
variable nature of erosion, and should be the next major improvement to the
sediment algorithms.

Except for the April 1975 storm the simulated and recorded runoff and
sediment loss (Figures 9.6 and 9.7 and Appendix C) for individual storm
events is generally quite good.  However, some events  (not included) exhibit
a problem with the areal variation in rainfall.  The two adjoining
watersheds, P6 and P7, are a good example of how areal rainfall variation
can make simulation difficult.  One raingage was used for both watersheds.
Runoff from each watershed was measured separately.  The runoff record from
P7 is different from the neighboring P6 watershed.  The model assumes that
the recorded rainfall falls uniformly over the entire area, and produces
runoff in response to this uniform rainfall.  But in fact thunderstorm


                                     92

-------
6
E
LL
U_
O

D
cr
I
O)
LU
CO
     100
      75
      25
    5000
    4000
co
CO
Q   3000
5   2000
    1000


       0
                 i
                 i
                             _n
                                                     \     \
                                                              \    \
                                               I   _

            \\    \    1    1
             I    1   I   15,8001    I
                                                                  I    I
RECORDED
SIMULATED
         ~ m_ i^  ^~i i    „— — m \ m~* m-> m \ -r-\ w*~   —  ™ V
         Jlj  I A  I  slTlTlTl  J  I  F  iTl  A I  M I  J  iTl A IT
        1974                          1975

               Figure 9.5   Monthly  runoff and sediment loss
                           from the  P6 watershed
                                    93

-------
   0.15



   0.12
 - 0.09
LJU
l_u
O


§ 0.06
   0.03
c
•r-
e

CD


 #i
oo

O
 e
 en
c/o
co
O
 o
 LU
 oo
    160
    120
     80
~   40
O
LJ
oo
     35


~   30


     25


     20
     15


     10


      5
             I  V \L
                                   I     I      I

                               —•—  RECORDED
                               	  SIMULATED
                                  1     I
      1720
                1900
2040
2220
2335
  Figure 9.6  Runoff  and sediment loss from the
  P6 watershed for  the  storm of April 18, 1975
                           94

-------
   0.30

   0.25


o  0.20


t  0.15
o

i  o.io


   0.05



    120


c   100
UJ
OO
OO
(S)
o
00
E

en
     80


     60



     40


     20
     10
                                  RECORDED
                                  SIMULATED
                                           I   ~
                                          --L
      1415
                1455
1535
1615
1655
   Figure 9.7  Runoff and  sediment  loss  from the
   P6 watershed for the  storm  of  August  20,  1975
                          95

-------
rainfall, typically seen in the summer at the watershed sites, is not
uniform but intense and localized.  Consequently, the accuracy of the
simulation decreases as the amount of areal variability of the rainfall
increases.  An understanding of this potential problem is vital in reviewing
the runoff and sediment loss results of the P6 watershed.

A discussion of the runoff and sediment loss simulation is not complete
without mention of mass removal and concentration graphs when viewing
sediment loss results.  Concentration (measured in mg/1) fluctuates
according to the amount of runoff water available.  It is an indication of
the importance of the possible pollutant (in this case sediment)  in the
waterway and directly influences the quality of the receiving waters.  This
type of measurement is important in streams containing water year-round, as
the organisms in the streams are sensitive to changes in concentrations of
pollutants and particularly toxic substances.  However, the streams in the
P2 and P6 watersheds exist only during storm events.  They receive no
groundwater and therefore are simply dry waterways when surface runoff and
interflow are not occurring.  In cases like these, mass removal (kg/minute)
is a better indicator of the effects of watershed management and the
pollutant loss expected from different events and practices.  Mass removal
also shows a direct connection between the pollutant loss and its transport
mechanism, runoff.  Thus, it is a good indication of the ability to simulate
the combined runoff-sediment loss process.

SUMMARY

A review of the simulation results of runoff and sediment loss on the P2 and
P6 watersheds shows that they are reasonable and can be used to evaluate
pesticide and nutrient runoff simulation.  Problems that are present in the
results have been isolated and discussed.  Some  (e.g., areal variability of
rainfall) cannot be corrected without major additions to the ARM Model and
the data collection procedures.  Other problems can be solved with further
research and development of simulation, methods.  Detachment of soil fines by
runoff can and should be included in the model.  The development of such
algorithms should be a major priority in future research.  Simulation of all
the erosion processes by particle size should be investigated to evaluate
the potential benefits for the simulation of sediment, pesticide, and
nutrient transport as a function of particle size.  Such work would be
especially beneficial to coupling the ARM Model to a stream transport model
to simulate sediment and attached pollutant movement throughout a watershed.

Research is also necessary for a more complete modeling of the effects of
agricultural management practices on both runoff and sediment loss.
Parameter changes that reflect different agricultural activities need to be
quantified.  In addition, parameters that are directly affected by these
activites may need monthly or seasonal values.  This has been done for crop
cover  (COVPMO) and index to actual evaporation (K3) in the current version
of the model.  Investigation of seasonal variations for nominal upper zone
storage  (UZSN) and infiltration (INFIL) should be undertaken.
                                     96

-------
                                 SECTION 10

                    PESTICIDE RUNOFF SIMULATION RESULTS
The pesticides paraquat (1,1'-dimethyl -4,4-bipyridinium ion)  and atrazine
(2 - chloro-4-ethylamino-6-isopropylamino-s-triazine) were applied to both
the P2 and P6 watersheds during the 1973-1975 growing seasons.  These
pesticides have been simulated by the ARM Model and the amount of pesticide
runoff compared with recorded data.  This section discusses the pesticide
simulation results and the problems encountered along with conclusions and
recommendations related to pesticide simulation.

Paraquat is a highly ionic herbicide that rapidly and irreversibly adsorbs
onto sediment particles.  Thus, the amount of paraquat washed off a
watershed is directly related to the amount of sediment eroded.  By
comparison, atrazine both dissolves in water (35 ppm) and adsorbs on
sediment.  Thus, the study of atrazine allows the comparison of the
single-valued (SV) and nonsingle-valued (NSV) adsorption/desorption
pesticide functions.  Evaluation of these functions is important as the
majority of pesticides are transported by both runoff and sediment.  The
division between the water and sediment phase is critical to the evaluation
of the potential pollutional impact of different pesticides.  Highly soluble
pesticides will infiltrate deeper into the soil profile than less soluble
ones.  Soluble pesticides will be affected by practices reducing runoff
while soil erosion control will limit the wash off of pesticides transported
on sediment particles.  Thus, determining the ability of the SV and NSV
algorithms to correctly divide a pesticide between its adsorbed and solution
phase coupled with an accurate degradation approach is essential to a good
simulation of pesticide runoff.

MONTHLY SIMULATION RESULTS

The comparison of monthly simulated and recorded runoff amounts of paraquat
on the P2 watershed (Figure 10.1 and Table 10.1) is good.  Paraquat, as
noted above, is not found in solution and, therefore, is dependent on eroded
sediment as its transport mechanism.  Paraquat simulation is high compared
to the recorded data in May and June, 1974.  A review of the P2 sediment
loss simulation will show that these months are over simulated for sediment
loss.  Thus, a better simulation of sediment removed on the P2 watershed
will result in closer agreement between simulated and recorded paraquat
removal for this period.

The P2 atrazine results also show a good comparison between simulated and
recorded monthly runoff values (Figure 10.1 and Table 10.1).  Figure 10.1
also shows the results of using both the SV and NSV algorithms for atrazine

                                     97

-------
in

ro

O)

uj
Z
N
<
QC

5
     80
     60
     40
ISO
<=>
                     1    1
1    I   I    I    T   I    I    I    I


  SEDIMENT  RECORDED
  SOLUTION   RtLORDEO


  SSI7  SIMULATED'NSV


  num   SIMULATEIUV
              ItfL
           M I  J I  J I  A  I
          1973
                             I M  I  1  I  J  I A I
                             1974
                I  M  I J I  J I  A
                1975
    300
 in

 (D
 i_
 O)
I
    200
    100
                            RECORDED

                            SIMULATED
           M'J 'JTArs'    ii
          1973               1974
                                              1975
    Figure  10.1  Monthly  pesticide  removal  from the P2 watershed
                                98

-------









a
UJ
T-
co
a:
I—
3
CM
CL.
UJ
•7-
*
| —

O
|j_
1—
CO
UJ
0:

•z.
o
1 —

1

2;

co
1 1
II

^
— ^
^

UJ

pT
O
IT— t
|—
C/)
UJ
Q-


.
f
O


1 1 1
i
CQ

r|_













"O
cu
+j ^-^
ro "a
t — »-—^
re
E
•I—
CO -— -
> "cu
co to
CU ' —
c
•r*
N
ro

+-> ^ — s
<: c i —
00
•i- tO
1 > ^^ ^
ro
3

•i—
CO s-^

> J- CM LO O CM ^J" r**-. ^> LO O CM
cr> CM i— i T— i LO cnvo^i— i I-H co co CM »— i t— i
CM CO t-H CO CM CO




oocoi — oo co cor-sr-»LOO CM OI-HLOLOO vo
OOCM i— 1 CM ^i- CM OCMCTlCM CO
r-l CM i-l r-l CM





r~~OOOOO LO Cfit— IOOO O t-HOOOOO CTi
CM CO t-i


r-HOOOO i-H OOOOO O OOOOO O







^3 ^d" ^3 ^Z) C^ "^" ^^ C3 ^3 C^ O? r*** ^™^ CX3 C3 c j cr^ (.ji
LO LO







CMOOOO CM OOOOO O OrHOOO t-H












LO LO t— 1 O O t-H UDr-HOOO !>-» i-HOOOO t-H
Lfi ^^ i™H t^H








O •— I O O O t-H t-HOOOO i— 1 i— It— IOOO CM
r-H t-l



>, c i— en D. r— >> c r— en a. r- >, c r— en a. r—
(0333OJ (O (O333CU fO (O333CU ro
SlOOeCCO 4-> S'-D'~3 S:i~3rO
000
1— r- 1—
CO «d" LO
en en en
t— 1 1— 1 t— 1



























































































c-
o
*"
H-^
rO
3
C •!-
O to
•r—
4-> C
Q. 0
S- •!-
0 4->
tO C.
CU i-
T3 O
•v^ tO
c cu
o -o
•< — * —
+J c
o_ o
S- T- E
0 -P S-
to a. o
-as- »»-
rd O
tO TD
•a -a cu
CU ro -Q
3 i-
r— "O E O
ra CU &- to
> 3 o -a
1 r— f- (O
CU ro
r— > C 4->
en i o c
C CU -r- CU
•r- r— 4-> E
to en 3 T-
C C r— -O
O'f- O CU
c: to to to

1 1 1 1
» r- -0
oo co o a>
z: to to


• •
to
cu
^.j
o
99

-------
simulation.  In addition, a breakdown is given for the recorded atrazine
transported in solution and on sediment.  Atrazine runoff results for SV and
NSV algorthms differ little except in the first summer:  May and June of
1973.  However, looking at all three summers when atrazine was applied on
the P2 watershed the NSV results generally look better than the SV results
in terms of removal in solution, which is the major removal mechanism.
Little atrazine is removed on sediment (less than .15 percent of the total
amount of atrazine removed).  For the comparison of NSV and SV's ability to
simulate atrazine removal on sediment, the NSV results produce more removal,
although less than recorded.  But because of the small amounts of atrazine
measured as removed from the P2 watershed it cannot be said that the results
are conclusive.  Also, problems arise from the variability in determining
the value for K in the Freundlich adsorption/desorption algorithm.  Because
of the lack of laboratory data evaluating the Freundlich constants for the
watershed soils exact values have not been determined.  Moreover laboratory
determinations will often produce a range of values.  This variability in K
hinders evaluation of the relative merits of using either the SV or NSV
algorithm.

A further complication, but one which tends to support the concept of NSV
adsorption/desorption, is the relative change in partitioning of runoff
atrazine between the adsorbed and solution forms during the growing season.
Recorded data has shown the pesticide's tendency to adsorb onto sediment
particles increases with time after application.  NSV adsorption/desorption
will produce the same phenomenon, but it is not clear that this is the
mechanism responsible for these observations in the field data.  More
laboratory research into this question is necessary to verify this
observation and the physical and chemical reasons behind it.

The simulation of paraquat and atrazine on the P6 watershed (Figure 10.2 and
Table 10.2) was not as good as the P2 pesticide simulation.  Paraquat runoff
results are acceptable, except for the month of August, L975.  Sediment
removal for this month is high; paraquat removal is higher.  However, it is
difficult to determine where the problem lies.  Review of paraquat data
collected from soil core samples and discussion with EPA personnel familiar
with the sampling program on the P6 watershed indicate that the recorded
data must be viewed with caution.  Uncertainty in the accuracy of this data
makes evaluation of the pesticide results difficult.

The monthly atrazine runoff results on the P6 watershed show even less
resemblance between the simulated and recorded values them was the case for
paraquat.  The accuracy of the recorded data can be questioned, but other
problems are also evident.  Runoff is over simulated in May 1974 due to the
hydrologic impact of plowing and planting operations not being represented
in the model.  The storm on May 29, 1974 occurred eight days after
application and removed all of the atrazine for the month of May.  For this
storm there was a large amount of atrazine available for runoff in the
surface zone and it was simulated as running off in solution during this
storm.  Atrazine was again applied in November, 1974.  This application was
followed by cold weather and snow.  The lowered temperatures decreased the
rate of biological degradation  (although there is no soil core data to
confirm this hypothesis) and more atrazine was then available for runoff

                                     100

-------
180
160
140
CO
1 ;
o>
4 40
N
<
£ 30
<
20
10
n
—
^
s
r
-*
a
r*J
-C
1 1 1 1 1


'




•

^
.'•:•':•'



.r^rLFL Jtl

II 1 1 1 1
™ RECORDED
SEDII
SOLU
SEDII
SOLU
MFNT
""' SIMULATED, NSV
JJJJ SIMULATED, SV
*l
J n 1 IL ."
        1974
1975
     200
     160 -
CO

I    120
en
I
     80 -
     40 -
1 1 1 1 1 1 1 1 1
BKCORDED
gg| SIMULATED
-

—





P
-r— -. 1
1 M '• J 1 J ' A ' S ' 0 ' N ' D 1 J
1974 19









'



7!
1












1 F ' M



I
1
1
1
1

1


1
/




^








\
1 1











_n 1^
>M< J i j i









K


1
A
1 1


—

—


—




'S I
   Figure 10.2  Monthly  pesticide removal from the P6 watershed
                                 101

-------










Q
UJ
~r*
oo
rv
UJ
1—

to
Q.
UJ
:n
h-
ce:
o
LL_
-yr
o
i — t
i —

	 i

*^-
HH
00
U-
U-
o
5
o:

UJ
Q
1— 1
o
I-H
1 —
oo
1 1 t
Q.


C\J
.
o
, — 1

UJ

CO

1 —









01
re T3
i — CJ
13 to
r- v 	 ^
ffmm
-M 00
3
cr
s_
(O
Q. -0
O)
"O • — -
i. T3
O O)
O to




c
o » — -
+J O
ro to
3
E

OO T3
Qj CJ
c > to
•r- 00 ~— '
N

i- O — >
<: -M o
 t/1
00 - —






^^^
t
"T^ ^5
O) tO
~o —
s-
o
O '— ^
(U T3

to














UOOOCOOJOCMO
CNJ


CO CO Ol to
i— t

o^
o
CO









ooocnoooo

CTI CMvooor^ocoor-xO
i—l i— 1 r— < C\J
i— i
oo
CO
I-H





CMi— li— IOOOOO
LO
T-H

^- CMOOOOr-iOOO
un
.— *

oo






coooooooo

CO OOOOOOOOO


o




f""^ i~^ i~H r^ f^ ^^ r~^ ^^
CO
O1 CMOOOO>— IOOO
CO
CO
I— 1 r— 1




COOOOOOOO


CO OOOOOOOOO


o









































t
1








0000.-IOOOO


^" «^" O"i to UO O • — i O ' — I O
,-H

to
CO





OO<— ICVJOOOO


00 OOr-tLOOOOOO


VO




>,Cr— COCL-t-J>(J r— CJ3S_l->>C!— D1Q.
«333O)OO<1) 13 rO
T— 1 1— 1













































c
o
•'•"
ro
^
E
C -r-
O l/>
•r-
+-> c
Q- 0
S- -r-
O -4^
t/5 Q.
0) i-
•o o
"^^ to
C 0)
o-o
"•M 'c'
CL O
S_ -r- E
O 4-> S-
00 O. O
t3 i- 4-
rO O
t/) "O
-o-o cu
CLJ fO -Q
3 S_
i — T3 E O
H3 OJ S- to
> =3 0 -0
1 i — M-  C 4->
CD 1 O C

•r— i — •*-> E
tO O^ 3 *r—
c c i— -o
O •!- O O)
E CO to  > r- T3
OO OO O 
z: oo oo

. .
to
0)
o
c
102

-------
during warm melt periods later in January, February, March, and April of
1975 than simulated.  A biologically oriented degradation approach which
uses soil temperatures would be better able to handle this problem of
pesticide winter application and degradation.

STORM EVENT SIMULATION

An analysis of individual pesticide runoff events on the P2 watershed soon
after application shows that they match recorded results very well (Figures
10.3-10.5).  The paraquat simulation (Figure 10.3) matches the sediment
simulation for the storm of May 28, 1973, as one would expect.  Atrazine
removal by sediment for this event is low (Figure 10.4), but still within
the range of accuracy required.  But even with the use of NSV adsorption/
desorption the amount of atrazine removed is not as great as was recorded.
Simulation of atrazine removed in solution is excellent however.

It can be seen at later events after application (Figures 10.6) that the
simulated amount of atrazine is not as great as that recorded.  The reason
for the small amount of atrazine runoff is that only a relatively small
amount is available for runoff.  Atrazine (and other soluble pesticides) can
be removed from the watershed by transport on sediment particles eroded from
the surface zone, runoff in overland flow interacting with the surface
layer, and runoff in interflow coming from the upper zone.  Interflow
contributes less than overland flow/surface runoff in transporting atrazine
from the watershed.  For the P2 watershed interflow contributes from 21
percent (NSV adsorption/desorption) to 48 percent (SV) of the total atrazine
removed.  This compares to 74 percent (NSV)  to 51 percent (SV) for atrazine
removed by surface runoff.  This fact, combined with knowledge that the ARM
Model permits soluble pesticides to percolate faster from the surface zone
to the upper zone than is actually observed  (Figure 10.7), results in an
understanding of why the simulation of atrazine runoff decreases in accuracy
with time since application.  Retardation of soluble pesticide movement from
the surface to upper zone (perhaps in the same manner as is done for solute
leaching from the upper to lower zone)  would keep more pesticide available
on the surface for runoff and sediment transport.

Additional pesticide runoff simulation results for paraquat and atrazine for
the P2 watershed will be found in Appendix B.  Appendix C contains
individual paraquat and atrazine runoff results for the P6 watershed.
Tables 10.3 and 10.4 provide the pesticide parameter values and the amount
of pesticides applied on the two watersheds.

SUMMARY

A review of the pesticide runoff simulation results show that while in
general the results are good, problems still exist.  Solution pesticides
show greater variability than the adsorbed forms and are not simulated as
accurately with the ARM Model.  A better understanding of the movement and
interactions of soluble pesticides in the upper layers of the soil is needed
to better simulate their transport by surface runoff and interflow.

Pesticides attached to sediment are relatively stable and are simulated


                                     103

-------
                                                   O         00



                                                     ULW/UI6 '3NIZVH1V
 CD
1	T
  o
O UJ
LU I—
O •=£
o: _i
o ;3

                                                                                                C\J
-P
_
S
                                                                                                   00
                                                                                                (O


                                                                                                1
                                                                                                o>
                                                                                                s-
                                                                                                I
                                                                                                (O  +J
                                                                                                re  s_
                                                                                                0.  o

                                                                                                tr>
                                                                                                   -
                                           104

-------
uiui/uiB '3NIZVc)lV
                                                                                                     OJ

                                                                                               o    +J
1 1 1 1 1

o
UJ
— _l UJ —
0 >• CD I
INJ
O
CVJ

0
o
0
CVJ
                                                            UJ  I
                                                            O UJ
                                                            a: —i
                                                            o is
                                                            o z
                                                            UJ t—i
                                                            a: to
                                                                                                        f-.
                                                                                                        CM
                                                                                                         cu
                                                                                                o
                                                                                                LT>
                                                                                                CO
                                                                                                O
                                                                                                i—I
                                                                                                CO
                                                                                                o
                                                                                                n
                                                                                                CVJ
                                                                                                        M-
                                                                                                         O
                                                                                                         O
                                                                                                         01 CM
                                                             i- -C i—
                                                                                                        4-5
                                                             N :
                                                              t3
                                        LU I Z
                                        Q UJ i—i O
                                        a; —11/} uj
                                        o o    :=>
                                        (J Z Z —I
                                        UJ >-i O <
                                        Ct l/> Z >

                                         I  I   I
                                        *-——.       -
o

o
        O
        CM
CO


O
                                                                       C\J


                                                                       O
                                                           '3NIZ\/aiV
                                                                                                     CD
                                                                                                    .c
                                                                                                    •tJ

                                                                                                       §ro
                                                                                                       r>»
                                                                                                     s- en
                                                             c  «
                                                             O 00
                                                            •i- CM
                                                            4->
                                                             3 >>
                                                            r- fO
                                                             o s:
                                                             10
                                                                <4-
                                                             C O
                                                                                                     n3  O
                                                                                                     >  -!->
                                                                                                     o  to
                                                              CO
                                                                                                        5-
                                                                                                        cu
                                                                                                    o  
-------
en
o
M
O
   2
Q.
O-
 CD
 UJ
 O
 M
 Q:
 UJ
               t    i
       "I

         I
                                    • FIELD SAMPLES
                               	 SIMULATED AMOUNT
                   L        1
               11
            A
           i  \
       I k±_

APR 25   MAYS MAY 13   MAY 24
                                           JUNE 13
JULY 3   JULY 15
                                       1974
           Figure  10.7   Atrazine in soil storage  by  zone
                         on the P2 watershed
                                   106

-------
                 TABLE 10.3  PESTICIDE  PARAMETER VALUES

P2 Watershed
Atrazine Paraquat
CMAX
DD
K
N
NP
KDG1
KDG2
SZDPTH
UZDPTH
BDSZ
BDUZ
BDLZ
UZF
LZF
0.000035
0.0
2.0
1.0
2.3
1.10
0.04
0.125
6.125
99.9
99.9
99.9
3.0
1.5
0.000010
0.0003
120.0
2.0
4.6
0.002
0.002
0.125
6.125
99.9
99.9
99.9
3.0
1.5
P6 Watershed
Atrazine Paraquat
0.000035
0.0
4.0
1.0
2.3
0.05
0.05
0.125
6.125
63.7
72.4
99.0
1.0
1.0
0.000010
0.0003
120.0
2.0
4.6
0.002
0.002
0.125
6.125
63.7
72.4
99.0
1.0
1.0

                  TABLE 10.4  PESTICIDE  APPLICATIONS

Watershed
P2

P6

Date
5/11/73
7/29/74
5/21/75
5/11/73
4/29/74
5/21/75
5/22/74
11/8/74
5/17/75
5/22/74
11/8/74
5/17/75
Pesticide
atrazine
atrazine
atrazine
paraquat
paraquat
paraquat
atrazine
atrazine
atrazine
paraquat
paraquat
paraquat
Target Rate
(kg/ha)
3.36
3.36
1.68
1.53*
1.53*
1.53*
4.50
2.25
2.25
1.12*
1.12*
1.12*
Monitored Rate
(kg/ha)
3.81
1.54
2.36
2.45
1.93
3.95
3.00
1.38
1.22
1.29
1.78
* computation based on dichloride salt
                                   107

-------
considerably better than dissolved pesticide forms.   The accuracy of the
simulation depends on how well the surface zone and degradation mechanisms
are represented.  If erosion by particle size is to be implemented
(discussion in Section 9) adsorption and desorption of pesticides onto
sediment by particle size should also be included.  Research has
demonstrated a preference of certain pesticides to adsorb onto sediment
dependent on particle size and composition.  If the ARM Model can take
advantage of this knowledge the simulation of pesticides may be improved.

The relative accuracy of using the NSV adsorptiort/desorption approach
over the SV approach cannot be demonstrated until the constants used in the
Freundlich equations (K, N, and NP) are determined with more accuracy.
Thus, it is recommended that laboratory analysis of this problem be done
for all pesticides applied on the Georgia and Michigan watersheds and for
these soil types.  Once these values are known with more certainty then
a more valid comparison of the relative merits of the NSV and SV
adsorption/desorption algorithms can be made.

A study of the effects of environmental changes on the behavior of
pesticides in the soil would be useful.  As discussed in Section 7,
temperature and moisture conditions affect pesticide degradation and
degradation affects the amount of pesticide runoff.  At the Michigan P6
watershed it was seen that winter pesticide simulation was poor, probably
because of the model's inability to take into account the effect of low
temperature on biological decay of atrazine.  Thus, the ability to
incorporate environmental effects such as temperature arid moisture in
pesticide simulation will allow the use of the ARM Model in a greater range
of climatic conditions.
                                     108

-------
                                 SECTION 11

                     NUTRIENT RUNOFF SIMULATION RESULTS
The goal of the nutrient modeling effort was to test and evaluate the
behavior of the nutrient model on the Georgia  (P2) and Michigan (P6)
watersheds.  To accomplish this goal, the hydrology and sediment simulation
results (Section 9) provided the transport mechanisms for the nutrient
runoff simulation discussed below.  Section 8 presented the soil nutrient
simulation results which provide the initial conditions and source values
for nutrient runoff components.  The coupling of the transport mechanisms
and soil nutrient storages results in the simulation of nutrient
contributions to a stream.  This section will present and evaluate the
monthly nutrient runoff and the storm event simulation results and discuss
the overall functioning of the model.  It will conclude with a summary of
results and recommendations for further study.

MONTHLY SIMULATION RESULTS

The monthly total removal of nitrogen (N) and phosphorus (P) for the P2 and
P6 watersheds, divided into sediment and solution components, is presented
in Figures 11.1 and 11.2, respectively.  The forms of nitrogen on sediment
for both watersheds are illustrated in Figure 11.3, while the forms of
nitrogen in solution are presented in Figure 11.4.  Figure 11.5 provides the
simulated and recorded phosphorus in solution for both watersheds.  The
corresponding values for these graphs are given in Tables 11.1 and 11.2.
All these results should be considered in light of the simulated runoff and
sediment values given in Tables 11.1 and 11.2 and in Section 9.

The results should be interpreted with the knowledge that the nutrient
related parameters for the P2 watershed were calibrated on both the 1974
and 1975 summer periods.  This provided a single set of reaction rates that
were subsequently used for both summer periods.  Following the calibration,
the entire period from April 1974 through April 1975 was simulated to
evaluate the model behavior during the nonsummer period.  The P6 watershed
was calibrated only on the summer 1974 period.  The calibrated nutrient
reaction rates were then used for the 1975 summer period and provided
reasonable results.  As on the P2 watershed, a single simulation run was
then made from May 1974 to May 1975 to evaluate the nonsummer simulation.
The nutrient storages, monthly plant uptake fractions, and soil temperature
regression constants were then reset on June 1, 1975 for the summer 1975
simulation.

Some general comments can be made on the simulation of Total P and Total N,
as presented in Figures 11.1 and 11.2 and Tables 11.1 and 11.2.  Generally

                                     109

-------





UJ
-T"
co
1 1 1
I—
CSJ
a.
UJ
I—
a:
o
u.
(—
oo
UJ
H-
UJ
h^H
a:
i
j__
ZD
r— 1
i — 1
r— 1
UJ
	 1
03
I—




o_ ^—
r— d)
IO OO
-*-> *-^
O
t—
ex ••— ^
1 r—
*fr O
o oo
ex. *— • *
»~- *  E
0) -r-
et: oo
CTl HD
r-4 X
in en
CM m
CM in
CTl rH
CM
CO «3-
«*• co
•^j-r-
oo r^.
P"^ CTl
f^- CTl
i-H *3"


CM «3"
r-~ vo
CTl «S-
00 CO
1—4

•°*eo
•a- co
CM CTl

r-» CM
r-4 CTl
o in
CTl l-H


r^ CM
CO CO
O rH
oo oo
IO CO
Cvt
en «a-
l— 1 rH
<-> E
OJ •!-
ce. oo
Ol
c
in q-
CTi CO
m co
co in
CM «3-
r~ co
CM
OO fl
vo *i-
CO CO
CM rH


O CM
CO 0
CTl CM
O

rH CTl
UO CTl
CM CO
CM CM

«a- CM
«3- O
O CM
CO


OO CD
O O
O
l-H
tfl ^Q
co o
0 0
5?
(J E
a oo
!>
OO f-.
CO CO
in I-H
CM
O CO
0 — i
i-H CM
CO rH
CO CO
in CTI
CM *3-


in co
en in
CO CM

CM CM
cn in
VO CO

o
in o
i— i «3-
r~ CM
CM CM


•3" CO
CM i-H
00 CM
CO O
•a- «a-
O CM
r-l CM
CM r^
CM CO
rH rH
u E
OJ •!-
o; oo
en

O) (J
oo o
0 O
o o
0 0
00
0 O
O 0


0 O
O 0

O 0
O 0

o o
o o


0 O
0 0
0 O
0 O
0 O
o o
o e
CJ T-
ce oo
o
0 i-l
O 1-H
I-H
CO l-H
O rH
0 CO
f""l ID
CM


VO CTi
in r^

o in
c~i *i"

CM -a-
o ro


CM O
rH O
O CM
0 r-l
T— 4
1-4 VO
0 0
%*
OL 00
o
Ol
o
J3
CM r-4
CTi
1— 1
O r-.
VD VO
•tf-H
l-H l-H
CM in
1—4


u
VO rH
*a- in

in co
CM rH
CM

0 rH
in CTI
CM


0 0
CO VO
<- o
co m
vo
in I-H
rH CO
0 E
CO •!-
o; oo
in
T «3- CO
1 VO CM CO
CJ CO CM
CO VO
CTl CO O
i «a- o vo
in CTI r~-
i—i
r-4 CO «*
I l-H CO rH
CM O VO
co CTI in


CM OO CO
1 VO «3- ^f
in in co
«a- CTl rH

rH CO CM
1 CM CO VO
l-H CO O
rH CM CM

CO •— 1 CO
1 VO in rH
1—4 CM VO
CM VO


CTI in o
1 CO CO CO
CM in r-*
CM CTI co r^
CO 1—4 CTl O
rH in in ^r
CO CO
ro **• I-H in
CTi O CO CO
CM «d- p~
o E us
CO ••- CO •<-
ce oo ce oo
.Q S-
u- s:
O CM
oo r^
CM
CO CO
*3- CO
co in
I-H in
l-H «fr
rH •— 1
*!• VO


in CM
CM r-~
CO rH
•a- co

CM rH
vo in
in r*.

O CO
O CM
en
rH


vn ^~
vo «*•
i-H CM
r-H
CO CM
CM i-H
CM r-~
CM
in en
vo r--
rH CM
0 £

-------
          I     I—
           «*•    o
         o    
         o-    •—•
                     Ol
          >c

          o
                •a
                ta
                0
                l/J
                                   r~

                                   co  i
           co
         O
          E

          -a
 •—<               co CO    r— o    •—i        CM t—<     «tf- CM


                  CM ^t                                  in o
                                                            i—i




 *—i               to ro    m to    t*^  CM    ^D r*-     ^- t—H

 coi            CM o    r*-^3-    «=j-  CM    in co     LOO
             •     «3~ *±    r—* »—*              t—' *±     CM 1—I
           o                                            co «3-
           f—i


J3          C             O                  U

           i-O       .   .      .   •      .   •      •   •       •   •
 r^  i            co m    m oo    us  »-H    co r^     LD «^~

 i—!        CI     O to    ^i- tf)              i—I CO     to C\J
           • ^       »>   »«      *                             f   f
            C     *-H '~^    CXJ                           O^ ^"
            C                                               <-!

            cn
            OJ
           j~l                       O
 co               co«a-    CMO    CMCM    COCM     oco
            c       •         •         •          •          •
 CMI      3     *j- t-H    COCM    «a~vo    "^cc     com
 p^.         s^.     i—H p*«.    01 o^    CM  p**    r*^» ro     CM CM
 rH               CM kO    CO ^"    •"-*        *3~ CT*     P** CM
            C       "                                       '   "
            O     •—I                                     P^. IT)


            (O

            13
            E             (j                  tj

            (/)       .   .      .         .          .          .
 coi            p-^r-.    CC«d-    •—-f-H    coco     .-HP-.
 co         co    f—f        co i—i     r--.cc
           jz     inco    inco              <—t CM     CMP--
           jj                                              .   *
                                                         OJ CM
            s-
            o
                                             •I-J
                                             OJ
                                             §
                                             ai
                                             CT
                                             IO
                                             t-
                                             o
                                               coco
                                                  CO
                                                                                          ""1°°
                                                                                          
co co

a( co
  r-~eo

  o 01

  ro co
                                                                       CMCO    CT»CO
            C     t—ft—<    O1 *±                 CM    »—4 LT>

                  •c^" CO                                  P^ CO
-o
 0)
 C
 O
 O
UJ
_J
CO
                                   COCM     C:
                                   O E

                                   ce oo
                                                   CM O     CO CO

                                                   .-< o     CM a*
                                                                                          VOCO
                                                                                          CM CM
                                                                                                    in
          c
          o
                                               a.
                                               ai
                                               oo
_J  Q-
«t  OJ  •
H-  U -Q  >>
O  X OJ  (tJ
                            01
                            3
                                                                                                                  'i  «
                        IO  >
                        u  u

                        -Q  E

                        ai  o

                        10  to


                        +J  o
                                                                                 ID C r—
                                                                                    •i- IO


                                                                                    i- a>
                                                                                 ai 0) t—
                                                                                 3 U J3
                                                                                i—    (O
                                                                                 IO CO C
                                                                                 > O) O
                                                                                    •a T-
                                                                                j— 3 •(->
                                                                                 (O i— l/>
                                                                                +-> O O)
                                                                                 O X 3
                                                                                I— uj a
   •a
    ai
   JD
    s-
 E  O

 o -a
1-  10

 C 4->
 O  C

58
                                     i— T3
                                     O Ol
                                     00 to
                                                                  111

-------





















o
UJ
^
(/)
t-y

LU
I—

^"^



n

1 i I

'
I —

D:
o
u_


i—
	 [

GO
1 1 1


1 —

UJ
1—4
1 —
ZD
OJ

t — 1
1 1
LU
_J

1 —
















°- _^
•— -o
iQ O)
•*-> I/I
O —
t-



°- _
•t- Ol
fd -O



CX '—
1 r—
«a- o
o o->
O- -—




^
01
oo


y *•
1
r— £
10 -~
4-* £
O C
1— --

O
00
^— •





•—
Ol
GO

1

3C
2;
, —
O
oo

1
CO
o
z


C ^"~-
0> 13
E -C
*O CD
Ol J^


M-
0 E
C E
DC



J=
4-»
C
O





























5



71














































o co o in in co
O OJ t-H CO «J- •»
CO OO VO
«• o
f— t t-H




O i— 1 VD OJ CO CO
o t— i i-t oj o co
OJ CD
OJ OJ


o vo co o «3- in
o oj o en r^ CO
CO VOVD




o — i «3- r-. co co
o in r^ co vo 10
i — t-H o en
i — i in i — i
»-H OJ OJ







CD p^ en CD co en
o in o t-H vo in
in oj t— i oo r>.
in oj oo r-- <^





o o ro o o o
00 O 0 CO <3-
vo vo




CD t—t t—< en en ^~
CD CO CD "3" CO VO
oo ^3- oo co
t-H

CD vo co *— t co m
or-- vo vo vocn
oo t-H vo en co
in r-i t-n rHoo



o oo en en vo co
oo cnoj
CO f^ CT*




o co oin coco
o o coo men
OJt-l

0 E <-> E 0 E
O -r- sf 0) >i

en 5 a 3
•-"-3 -D  -r-
CC. OO DC OO


OL. 4-*
Ol (J
OO O


•a- co o o
«3- m o o






co co o o
CO  O O
LO O^ O O
0
CM

in  o
o 01


(O
VOO
O »— i
r-ivo





VO
1 O
en
CO


^-vo
CO




•a- oo
coco

invo








cooo
r^vo
o-vo
ccco
i — i




•=!•
1 t-H
CO




in o
en *±
in o
co in

co
t— nn
CO






o
co in *3- i
CO C\J
t-H  CO T— 1 VO
§g °°

<-) E u E
QJ .,- 
d. 
J!
D
CL

•M O CO

I — «-H
"o
" in *a-
10 . .
O) o r-^
cn 
CO





0
i o'





coin
oco
vo


en o
o m
oo



OJ CO





rH r-
0 0


-------


































































JP^^
"O
QJ
13
C
•r—
-K '
0
o
"* — '


CM

i — i
f—^l


UJ
	 1
CO
e^
| —



























































































O.
i— T3
re ID

o «—
i—

o_
c— TD
•r- CU



Q_ *— >
^- o
O oo
Cy "s_^»



•o
CD
OO


c1
CO -
<-> i
0 C
1— «-
, 	
o



•o
01
to
1
 -— '


H— ^"^
o E
c £
o; ^











5
c
o
s:


























g
••*

7)



























































(O CTi CT\
VO CO OOO • •
»-H ^- o c\] cn JS
CT> CO C\J OJ rM
t-tn *• «
<\JCO CO CO
CM
(O
CT> *-* O C\J to
cncM O--H i c^
cno co
C\i CO
fO
O^ O O «-H CO r-4
^t tn oro O o
cor^ co cno
ou cu roro
0, t\
•—I C\J
(U
t£> O O^J-  «d-
cj> O O r^-. o~» csj
tr> ro m co
O^ ^t" CTi Lfl
co tn * *
co un
<- ^H


 ^D c^ co ^" P~*-
<• *3- o CM r^
r*^ LD i-^ CTI CM
r-% co
<- ^ o o r^

to *r> o o i un
co tn r-.
t-H


TO
COCTt O LT) LT) CM
OrH O •-* ** ^f
CTi 
CM CM r-n O U3
to ro co O
r-l CM •> *
to r-.
1 — 1



O VO Or-* IT) LT)
O CM oro cr> vo
in to to i^>
CM CM






U E u E o E
CU -i- flj -r- tlJ -r-
O£ t/) CCCO Di (/)


+J
_J O-
-(-> «X QJ
Cn Q. (— u >,
13 QJ O X 
U QJ
OJ
J3 E E
S- S-
QJ O O
al c/i
E -a
M- S- QJ
4_> O -£3
Ul C S-
E i~ LH
c o -o
OJ C! M- (13

•r- -M o c:

Q) QJ +-> E
13 U Z3 -r-
r— r- -O
ro t/) O QJ
> QJ tO 01
-a
r— ZS f 1
rtl 1 —
•4-J O i — "CJ
ox o a1
t — LU UO t/1


*O JD
113

-------

5000

ro
1 4000
z
LU
O
£ 3000
z
^ 2000
1000

3500
ro
.c
\
E
05 2800
CO
D
cr
0
i
CO 210°
0
CL
1
g 1400

700

1 1 1 1 1 1 1 1
—

—



•^~
	
—

:•:
v
\









!
'•:

',
.*



•!
i

DprnDnrn jimu--
KLUUKUtU y%%%,.
—
| j TOTAL N IN SOLUTION

SIMULATED 1 TOTAL N ON SEDIMENT
OimULAICU TfTf.
m TOTAL N IN SOLUTION
—

n^







%
%
%
%
%
%
%
%
%

n
'•:
1 (1 p^
•; I-FI P r
i
1

i

i
^


1

^^
__
1 r

1 1 III III II
RECORDS
TOTAL PON SEDIMENT
D mmji
P TOTAL PIN SOLUTION

•I':-: TOTAL PON SEDIMENT
SIMULATE
D V/'~
^ TOTAL PIN SOLUTION





—


—

—
IP
,•
j:
*.


i
a


r"
:.:
\
\
.*,
;!







[
n •:'
1 H ra IciJ.J,
«






:!:!
1
1
1


T*
•'.



* ,
."
;•
«l

•\
t*
':]
:'•
•'•
T*
I i I I
—

^ ^





—


—



^

^i
L Jl
MJJASONDJFMAMJ AS
1974 1975
Figure 11.1  Monthly total  nitrogen and phosphorus  runoff from P2 watershed




                                    114

-------


6000

CO
-C
1 4800

z
LLJ
8
£ 3600
_l
<
£ 2400

1200




3500
CO
o> 2800
CO
^3
cr
O
x
85 210°
O
X
CL
g 1400
£
700



1 1 1 1 1 1

_ RECORDED


SIMULATED
1









33,643
TOTAL N ON SEDIMENT
H TOTAL N IN SOLUTION














x;:.: TOTAL N ON SEDIMENT
P TOTAL N IN SOLUTION




—

—

n

iJiiai

.
'•'.
".
'•
1





\


I
'/
\

III II

RECORDED
- SIMULATED













1 1








7T

g!
1








^


\
1.
\





\









n
.Vi
J»
I
I
1













\














''::.
y
••

$
P
j






I
T*

i-.
/ :

•'•
y!

;:|


;:'.
P
\
^
6,
I
1

~y












i^
f














1 1

1 1
18,506
i TOTAL f ON SEDIMENT
_j TOTAL PIN SOLUTION
v':x' TOTAL P ON SEDIMENT
|| TOTAL ? IN SOLUTION




—





__


i i i
m


.-'':;

*

r








J J A S 0 N
1974













1
D












*


J












^
^
/
















"?
















3
5
^
F














±
f
f:

';:







3
^

R*

^
1



•.;
;.;
;!;




Ui
K
$
1
1 1













P«
1

^


























Tfl

i































1















1 1















LJL
';';:
V''
•^1

:•:'.
";'
?i
y

.';

_
.•

t*
• f
r*
.*
i;
!•
•*
•*
\
:•
• j
i
—







^~

—

—



i 1 1 1













pi


1
MAM
1975
t
.:::;
m




TI


i _i
•«!
•'••:
..
>•;
:."i


r
":

mi
%
i
j:
!;

•;


•;
X
!•]


X
:j:
V
?.
',
^






—





_


m\
J A S
Figure 11.2  Monthly total nitrogen and phosphorus runoff from
                       the P6 watershed

                              115

-------
the accuracy of the simulation results for total nutrients corresponds well
with that for runoff and sediment removal.  For example, when sediment was
under simulated on the P6 watershed for April 1975 so was Total N and Total
P.  For some of the monthly results this relationship to runoff and sediment
simulation was not as strong.  Moreover, in some cases runoff and sediment
loss are over simulated and nutrients are under simulated.  Examples of this
behavior occur on the P2 watershed for the months of July 1974 and June
1975.  In July 1974 runoff is high, sediment removal is low, but Total N
removal is low and Total P removal is high.  In June 1975, both runoff and
sediment simulation is low while Total N and Total P removal are high.  A
similar event occurs on the P6 watershed where during August 1974 runoff is
under simulated, sediment loss over simulated, yet both Total N and Total P
are under simulated.  These seeming inconsistencies are due to particular
solution or sediment nutrient forms comprising most of the observed nutrient
loss and corresponding discrepancies in simulating the associated transport
mechanism.

In general, the simulation of monthly Total N and Total P for the entire
test period gives reasonable results as an initial test of the nutrient
algorithms.  For the entire simulation period the Total N removal on the P2
watershed is simulated within 13 percent of the recorded value, while Total
P is over simulated by 80 percent.  The over simulation was partially caused
by the over simulation of sediment loss.  For the P6 watershed, with the
exclusion of April 1975, the Total N and Total P removals for the entire
simulation period are good:  within 6 percent of the recorded values.

The sediment portion of the runoff for both watersheds carries more nitrogen
and phosphorus than does the solution component of the runoff.  However, the
solution nitrogen does at times contribute to much of the Total N removal.
Phosphorus in solution is a smaller portion of the Total P washoff on the P2
watershed than on P6.  This is likely caused by less phosphorus fertilizer
applied on P2.

The sediment nutrients are either organic or inorganic forms.  Measurements
of inorganic phosphorus on sediment were not made except for some analysis
of Available P  (Table 11.2).  It is assumed that most of the phosphorus
associated with the sediment was in the organic form.  Most of the simulated
phosphorus is organic.  Thus, the results presented and discussed for Total
P can be considered to be similar to the simulation of the Organic P content
of the sediment.

Breakdown of the forms of Total N attached to the sediment are shown in
Figure 11.3.  Much more sediment associated nitrogen is organic than
inorganic.  Like phosphorus, the Organic N simulation is similar to the
Total N results.  The accuracy of the simulation depends on the accuracy of
the sediment simulation.  However, the simulation results for the inorganic
fraction, NH4-N, varies.  The largest portion of NH4-N is found in the
summer after spring fertilization.  Generally, the simulation of NH4-N is
reasonably good, particularly when the sediment simulation is good.

The solution nutrient simulation results like the sediment results are
strongly influenced by the simulation of the transport mode.  The runoff

                                     116

-------
ro
E
o>
   2500
   2000
§  1500


o
z

o  1000
o
ct
    500
«  5000
_c
z  4000
LU
Q
O
   3000
LU


O  2000
   1000
        I    I
             4,998
        \m \
                        i    i

                          NH4-N

                       ORGANIC N

                          NH4-N

                       ORGANIC N
1    I    I    I


     RECORDED
     SIMULATED
            P2 Watershed
        i    r
i    i    r
                            P6 Watershed
                            i    i_jml    ill I
         M    JJASONDJ    FMAMJJ    AS
                      1974                             1975



       Figure 11.3   Monthly organic N and NHL on sediment from  the

                            P2 and P6 watersheds
                                    117

-------
simulation, discussed in Section 9, influences the amount of nutrient
removed in solution.  Most of the soluble nutrient removal comes from the
interflow component of runoff.  Hence, the interflow hydrology parameter,
INTER, has a major impact on the solute runoff simulation.  For example,
INTER for P2 was reduced from 0.70 to 0.59 for the nutrient simulation.
This resulted in a minor difference in the runoff simulation (less than 3
percent increase) during the period of May 1, 1974 through September 30,
1974.  However, this reduction in INTER decreased N03-N in solution from
4.52 kg/ha to 0.64 kg/ha during this period.

The simulated and recorded forms of nitrogen in solution are shown in Figure
11.4.  The nutrient model does not simulate Organic N in solution even
though the recorded results show that there can be large amounts of Organic
N relative to inorganic forms.  The large amounts of Organic N found in the
water phase of the runoff may have been actually attached to sediment
particles that passed the filtering process in the laboratory analysis.
Organics may also have occurred in solution by the disassociation of
sediment organics in the runoff samples.

N03-N and NH4-N in solution are simulated by the model.  The overall result
of the N03-N simulation is to over simulate N03-N on the P6 watershed and
slightly over simulate it on P2.  The over simulation of P6 N03-N runoff
cannot be directly attributed to the runoff since it is under simulated.
For P6, the simulation of N03-N is worse than average during the months of
June and November, 1974 and June and July, 1975.  The simulated soil
storages  (Figure 8.5) of N03-N are higher than recorded in November and
lower than observed in both Junes, but the July storage is close to the
observed values.  However, the soil storage and runoff results do not
account for the over simulation of N03 for the three summer months.  This
situation indicates a need to further study the transport mechanisms.  The
influence of the interflow parameter on N03-N runoff simulation appears to
be more important than the soil storage simulation.  The November over
simulation of N03-N can be explained by the over simulation of both runoff
and soil storage.

The simulation of N03-N for the P2 watershed generally follows the hydrology
simulation, except for some of the summer months.  The effect of the over
simulation of soil N03-N  (Figure 8.2) during the winter did not compound the
effect of the over simulation of the runoff.  N03-N in the summer months is
slightly over simulated even considering the effect of the runoff results.
The main exception is the under simulation of N03-N in July 1974.  No N03-N
in solution occurs during this month because no interflow is simulated.  The
inconsistent N03-N simulation indicates that further study of the hydrology
simulation for the P2 watershed and the transport mechanisms is needed.

The simulation of NH4-N in solution for the entire simulation period is
good.  The recorded NH4-N in solution for both watersheds is slightly
greater than the N03-N.  The results are generally better for NH4 -N
than N03-N on both of the watersheds, although the NH4-N simulation
results generally follow the N03-N trends.  However, for the winter period
on the P2 watershed, NH4-N is over simulated; very little NH4-N is
                                      118

-------
CO
.c
o
I-
D
_i
O
   1600
   1280
    960
o
O   640
    320
   2000
CD
-C


E
01


g  1500

P
D
_i
O


z  1000


LU






z   500
        r~~r
                                              i—i—i—i—i—i—r
                      RECORDED
                      SIMULATED
                                  ORGANIC N

                                  NH4-N

                                  N03-N


                                  NH4-N

                                  N03-N
                      P2 Watershed
                    m
                               i    i
                           1    I    I    I    I    I
                                                          111
                      P6 Watershed
        1    I.
                                        '$/'/
                                    Jill
                                                   il
                                                   I
         MJJASONDJFMAMJJ
                      1974                               1975


             Figure 11.4  Monthly NH4, NOo, and organic N removal
                   in solution from the PZ and P6 watershed
                                                                    A   S
                                   119

-------
recorded in the P2 runoff during this period.  The over simulation is
perhaps due to over mineralization of organics to NH4-N in the soils during
this period.  Much more NH4-N is recorded for the Michigan P6 watershed
during the winter because of fertilization in November cind the possibility
of NH-N in the snow.

Monthly P04-P in solution is shown in Figure 11.5.  Much more P04-P is in
solution from the P6 watershed than from P2 mainly because more fertilizer
was applied to P6:  224 kg/ha compared to 54 kg/ha.  Although some
inconsistencies exist, the overall simulation of solution P04-P from the P2
watershed is good, particularly in view of the slight over simulation of
runoff.  The P6 simulation of P04-P is high, mostly because of the over
simulation of the winter period.  However, the P6 summer months are over
simulated when the recorded values are less than 3 gm/ha.  Otherwise the
three major summer runoff months of August 1974 and June and August 1975 for
P6 are well simulated for P04-P in solution.

The nutrient model at present simulates monthly results of nutrients on
sediment better than nutrients in solution.  The value of a more accurate
sediment than solution nutrient simulation will depend on whether short term
or long term effects are most important.  Soluble inorganic nutrients have a
more immediate impact on water quality than the sediment-associated
nutrients since they are more readily used by algae than either the
organic or sediment forms.  Thus, soluble nutrients can directly contribute
to accelerated eutrophication.  However, over the longer term organics and
sediment-associated inorganics can decompose and release inorganics in
solution available for stimulation of aquatic growth.

STORM EVENT SIMULATION

Analysis of storm event simulation results is needed to determine how well
the model is representing the separate solution and sediment nutrients in
relation to their transport components.  Figures 11.6 to 11.11 present the
simulated and recorded values for the June 11, 1975 storm on the P2
watershed.  Figures 11.12 to 11.17 show analogous results for the August 27,
1974 storm on the P6 watershed.  The results are presented in both
concentration and mass removal  (gm/min) units.  Also, each graph pertains
either to the solution or sediment transport mode of the specific component.
Other storm event graphs of nutrient simulation results are contained in
Appendices B and C.  As is noted in the discussion of the monthly results,
the event graphs should be viewed relative to the corresponding runoff and
sediment graphs in Section 9 and the appendices.

In order to evaluate the storm events simulations, an explanation of the
recorded data is needed.  Each recorded data point is the mean
concentration or mass removal since the previous sample.  If a long time
span occurs between samples, intermediate values can vary considerably.
For example, in Figure 11.6 a recorded concentration of 1430 ppm at time
20:02 is actually an average value of all the concentrations of TKN on
sediment from time 1917 to 2002.  The actual values vary significantly
about the mean of 1430 ppm.  This is especially true if there are
significant variations in runoff or sediment transport in the intervening


                                     120

-------
(0
O
H

_l
O
CO
   200
   150
   100
a_

cT
Q.
    50
(D
-C
^v

E
o
   500
   400
O
CO
z

a_

i'
Q.
   300
   200
   100
1 1 1 1 1 1 1 1

P2 Watershed
—
I
yfo
\ I n
lil j
L 1 1 llPn PI II— ' ' -IBni



!
t
l~




1



1
1

III III I i l I
P6 Watershed
H RECORDED
SIMULATED


n



_

: ffl nil
1 Jll_n 1 iJll 1 l_nll ll



M J J A S 0 N D J F


i








^
j
\

fy
$.



I














T
|

i i i i








n
i
i 1 1 _ni i
M A M J J A
1974 1975

_
—





—

—



_

—
s

             Figure 11.5  Monthly  total  P04 removal in  solution
                       from the  P2 and P6 watersheds
                                    121

-------
                            o
                            o
      uidd
                                                                                                                  CM
                                                                                                                  Q.

                                                                                                                  OJ LO
                                                                                                                  jc r--
                                                                                                                  -(-> en
                                                                                                                  O   «
                                                                                                                  S- «-H
                                                                                                                 •(-> O)
                                                                                                                  c c
                                                                                                                  CU 3
                                                                                                                 -   4-
                                                                                                                  O) O
                                                                                                                  to

                                                                                                                  C S-
                                                                                                                  o o
                                                                                                                     4->
                                                                                                                 1 —  CD
                                                                                                                  o ^:
                                                                                                                  E -u
                                                                                                                  OJ
      O)
 r^. ^r
   •  10
 t-l  S-
 I-H  a;
     -l->
  
 >  M
 O
 E  O)
 cu ^:
 S- 4->

2:  s_
^  o
                                                                                                                   T3
                                                                                                                   O)
1—I  i-
    O)
 O) -4->
 s-  to
 =3  S
 CD

U_
                                            122

-------
                                                                                                                   CM
                                                                                                                   Q_
      fIZ
      V6T
      8'9T
      2-ei
      i'6

\
                                                                                                                   O)
                                                                                                      /-'
        o

        VO
  L/Bui  'N-£
                                                                  o

                                                                  CO
                                 ON
                                                                              ULiu/ui6
                                                                                                                      LO
                                                                                              O
                                                                                              S-   »
                                                                                                                       3
                                                                                                                      -~3
                                                                                                                       O
                                                                                                                   i— 4->
                                                                                                                   re  to
                                                                                                                   >
                                                                                                                   o  cu
                                                                                                                   E ^:
                                                                                                                   O) -M
   T3
  
t-H  S-
    (1)
 0) -t->
 s-  to
 3  S
 O)
                                                                                                              s-
                                                                                                              3
                                                                                                              o
                                                                                     S
            o
            o
            o
o
o
CO
                                                                          ULUi/ui6  'd IViOl
                                                                                                                    O UT
                                                                                                                    s- r-~
                                                                                                                   M- CTi
                                                                                                                    c
                                                                                                                    O) »
                                                                                                                   T3  Ol
                                                                                                                      O
                                                                                                                       §0)
                                                                                                                      J=
                                                                                                                    O) +->
                                                                                                                    S-
                                                                                                                    re "O
                                                                                                                   •(->  O)
                                                                                                                    o x:
                                                                                                                   H-cn

                                                                                                                       0>
                                                                                                                   00 -M
                                                                                                                     •  fC
                                                                                                 CM
                                                                                                 a.
                                                                                                                    3  0)
                                                      123

-------
 6'T

 T'Z
             r
            _j
 6'0
 O-T
   to

   o
                                                                                                    f-
                     CM


                     O
                     l/6ui  'd-^
                                                                         ULUI/UI6 M-
                                                                                                                   CM
                                                                                                                   O_


                                                                                                                   QJ
                                                                                                                   x: tn
                                                                                                                   O
                                                                                                  O OJ
                                                                                                 •r- E
                                                                                                 4-> 3
                                                                                                  3 --3

                                                                                                 *0 
                                                                                                  (O CO
                                                                                                  >
                                                                                                  O <1>
                                                                                                  E ^
                                                                                                  a> 4-'
                                                                                                  s_
                                                                                                     s-
                                                                                                  <*• o
                                                                                                 O M-
                                                                                                 Q.
                                                                                                     -a
                                                                                                     O)
     s-
     QJ
                                                                                                                   (D
                                                                                                                   5-
    I

8'H
9'ei
Z'ZT
C'OT
S'8
O'S
L">7

9-i7
S'V

VV
ere
S'Z

                                                                                                                  CM
                                                                                                                  Q.
                                                                                                                   CD
                                                                                                 O
                                                                                                    LD

                                                                                                    P-.
                                                                                                    CTi
                                                                                   _ CVJ   O
            CO

            o
    o

L/6ui  'N-*
                     CVJ

                     o
                                                                          ULUi/iuB
                                                                                                                      OJ
                                                                                                                      C
                                                                                                 a
                                                                                                  It-
                                                                                                     CD
                                                                                                    s_
                                                                                                r— O
                                                                                                 (O 4->
                                                                                                 > CO

                                                                                                 E OJ
                                                                                                 a> ^:
                                                                                                 s- -P

                                                                                                 «3- S-
                                                                                                3: o
O  d)
<— I .C
  •  l/l
i-H  S-
                                                                                                                  O)
                                                                                                                  S-
                                                   124

-------
                                                                                            CO
                                                                                            CO
                                                                                            o
                                           O =1
                                           o 2:
                                                       IO
                                                       D_

                                                        CU
                                                       -E «!f
                                                       +-> r--
                                                           cr>
                                                        E --t
                                                        o
                                                        s-   «
                                                       4- r-~.
                                                           CvJ
                                                                                                            O)  10
                                                                                                            E  3
                                                                                                           •i-  en
                                                                                                           •a  3
                                                                                                            cu *i
                                                                                                            (13  O
                                                                                                            > •(->
                                                                                                            O  VI


                                                                                                            a>  cu
                                                                                                            S- .E
                                                                                                            rc  s-
                                                                                                            z.  a
                                                                                            o
                                                                                            1C
                                                                                            o
                                                        ro
              o

              o
CO


O
                                                                                                                a>
rH  S-
    0)
 O)  +->
 s-  ro
 3  3
 C7)
uidd
                                                        ULiJ/u6  'N-  HN
                                         a  <
                                         a;  _i
                                         o  o
 o
 o
 o
 CM
                                                                                                            O)
                                                                                                             o en
                                                                                                             S- i— I
                                                                                                               CM
                                                                                                            •t-  (/)
                                                                                                            -a  3
                                                                                                             CU  CD
                                                                                                             l/l  3
                                                                                                                  s-
                                                                                                             cu to
                                                                                                             S-
                                                                                                                cu
                                                                                                             ro s-
                                                                                                            u o
                                                                                                             O 4-
                                                        CM
                                                                                                                cu
                                                                                                                -C
                                                                                                                I/)
                                                                                                                S-
                                                                                                                CU
                                                                                                                -4-J
                                                                                                                to
                                                                                                             •3 (.O
                                                                                                             en a.
                                          125

-------
                                                  .
                                           CZ  -J +
                                           O  ID  cr
                                           o  s: o
                                                                                          O
                                                                                          r~-
                                                                                          O
O

O
    L/6ui 'N  ItfiOi
ULui/ui6 'N  1V10I
                                              E ^H
                                              o
                                              s.   •>
                                              4- r-^
                                                 (NJ
                                              c
                                              O -P
                                              •r- C/)
                                              +-> 3
                                              3 CD
                                              i — 3
                                              O  4J
                                              O 00

                                              CD O)
                                              S- -C
                                                                                                          s_
                                                                                                          O

                                              i- l£>
                                              =5 Q.
                                              CD
                      O
                      O
                     00

                     o
                                                                                                       O
                                                                                                       s_
                                                                                                       E CM
                                                                                                      •I—
                                                                                                      "O 4->
                                                                                                       O)  CO
                                                                                                       CO  3
                                                                                                          CD
                                                                                                       C  3
                                                                                                       O ct
                                                                                                       tO  O
                                                                                                       >
                                                                                                       O  E
                                                                                                       E  S-
                                                                                                       
                                                                                                          CO
                                                                                                      Q_
                                                                                                          CD
                                                                                                       OJ  -C
                                                                                                      i—  +J
                                                                                                      JD
                                                                                                       fO  i-
                                                                                                       (O
                                                                                                       >
  tudd
          313V1IVAV
                                                               3iatf1IVAV
                                                                                                          CO
                                                                                                          s-
                                                                                                          OJ
—i  5

 CD 10
 i. 0-
 13
 CD O)
                                          126

-------
                                                                                                     CO
                                                                                                     o
a  LU
LU  h-
0  <
C£  —I

S  i
LiJ  »—t
Ct  00
                                                   o

                                                   C\J
            00

            O
                                                                                                                     CD
                                                                                                                    JC  •=!-
                                                                                                                    +j  r-~
                                                                                                                        CT>
                                                                                                                     E  •-<
                                                                                                                     o
                                                                                                                     S-   •>
                                                                                                                    M-  r-
                                                                                                                        C\J
                                                                                                                     c.
                                                                                                                     O  4->
                                                                                                                     3 C7)
                                                                                                                    i — 3
                                                                                                                     O <
                                                                                                                     to
                                                                                                                        M-
                                                                                                                     C O
                                                                                                                     (O  O
                                                                                                                     >  +->
                                                                                                                     O  (/>

                                                                                                                     CU  O)
                                                                                                                        s-
                                                                                                                        o
                                                                                                                    I-H  O)
O)
S-
3
CD
                                                                                                                        00
                                                                                                                        S-
                                                                                                                        O)
         L/6iu  'N-?
     'N-^HN
                                                                                                       CO
                                                                                                       o
                                           a  uj
                                           LJJ  I—
                                           O  •=£
                                           o
                                           O
                                                               CO

                                                               CD
l/6ui 'N-£ON
                                                D-

                                                OJ
                                                                                                                       CM


                                                                                                                    O -!->
                                                                                                                    •i-    3
                                                                                                                    3  O>
                                                                                                                    i —  3
                                                                                                                    O  -t->
                                                                                                                    O  to

                                                                                                                    CU  QJ
                                                                                                                    S- -C
                                                                                                                       •4-J
                                                                                                                     CO
                                                                                                                    o  s-
                                                                                                                    •z.  o
                                               VO T3
                                               i—i  CU
                                                 • _c
                                               ^H  tO
                                               t-H  S-
                                                    cu
                                                OJ 4->
                                                S-  <0
                                                3  3
                                                CD
                                               •I—
                                               U-
                                                 127

-------
period as occurs near the end of a storm event.  Hence, for such long
intervals between samples, the recorded data points are not connected.

Some general conclusions can be made concerning all the individual storm
event results.  The summer nutrient simulation is generally better than the
winter.  The poor winter nutrient simulation is partially due to inaccurate
runoff, sediment, and soil temperature simulation.  Nutrient simulation on
the P6 watershed is also generally better than on P2.  This is true for both
the sediment and solution nutrient forms.  The poor sediment nutrient
simulation on P2 is because the concentration of nutrients varied from one
storm event to the next more than it did for P6, for which the model
simulates the concentration as remaining fairly stable.

The less accurate soluble nutrient simulation on the P2! watershed compared
to P6 is because interflow is a smaller portion of total runoff and is more
variable.  Consequently, soluble nutrients transported mostly in interflow
demonstrate the same highly variable nature as the simulated interflow
component.  This is particularly noticeable in the concentration graphs
towards the end of a storm event.  For example, N03-N concentration in
Figure 11.9 becomes relatively large toward the end of the June 11 event.
The other soluble nutrients behave similarly to some degree.  This can be
explained by the fact that interflow, which contains most or all of the
soluble nutrients in a more concentrated form than surface runoff, makes up
most of the flow towards the end of the storm event.  This results in a
higher concentration at the end of the storm event than earlier when the
flow is diluted by surface runoff.  Thus the discrepancies in the soluble
nutrient simulation are the direct result of interflow fluctuations.
However, the total mass removed from the watershed which is less affected by
concentration variations is generally within the range of the recorded
values.

N03-N is the most difficult solution component to simulate.  This is
particularly noticeable in the P6 storm results where large variations
occur.  NOo-N is difficult because it is affected by many transformations as
well as being soluble and thereby easily transported by and in the water.
The other nutrients simulated in solution, NH4-N and P04-P, do not undergo
as many transformations and are also found in adsorbed form.  Since the
adsorbed form is usually more stable than the solution form, NH4-^ and P04-P
are simulated somewhat better than N03-N.

All the solution nutrient results including N03-N are closer to the recorded
values in mass per minute than in concentration (ppm).  Since nutrients are
not toxic to aquatic life in these small quantities, the simulation of total
mass of nutrients in the runoff is considered more crucial than
concentration.  Moreover, eutrophication which occurs most readily in lakes
is dependent more on the total nutrient input than on localized storm
concentrations.  Thus, simulation of the total mass loading of nutrients
should be the primary goal of nutrient modeling in the runoff.  The
simulation of nutrient loadings with the ARM nutrient algorithms meets this
goal since mass loadings are simulated better than instantaneous
concentrations.
                                     128

-------
The simulation of nutrients on sediment, which affect  long term
eutrophication, is simulated more consistently than soluble nutrients.  The
concentration of nutrients on sediment in the runoff is simulated as being
equal to the concentration in the surface soil zone.  This would be modified
if selective or particle size erosion could be simulated and incorporated
into the ARM Model.  Then the nutrient concentration in runoff would be
dependent on the nutrients' preference for specific particle sizes and the
amounts of these particles removed by runoff from the surface zone.
However, with the current version of the model the simulated concentration
of nutrients on the soil varies little during a storm event.  The mass of
nutrient removed on the sediment will still vary depending on how much
sediment is being removed during the time period simulated.  The storm event
simulation results of the sediment-associated nutrient concentration and
mass removal (shown in Figures 11.6-11.8 and 11.12-11.14) are quite good.
However, for the other major events contained in Appendix B and C, the
results show greater variations due primarily to discrepancies in the
sediment loss simulation.  Nevertheless, the overall simulation of sediment
associated nutrients for storm events is better than soluble nutrients and
is reasonably close to the recorded values.

SUMMARY

The nutrient model provides a reasonable framework for simulation of
nutrient runoff.  The results show that the model can be calibrated to a
variety of situations.  The soil storage simulation provides a reasonably
accurate representation of the soil nutrients which are the sources for
nutrient components in runoff.  Nutrient simulation is found to rely heavily
on the hydrology and sediment simulation.  Within the present framework of
the nutrient model, the accuracy of the nutrient simulation is a direct
function of the ability to correctly simulate runoff and sediment loss.
Overall, the ARM nutrient model is able with proper calibration to give
reasonable estimates of nutrient mass in runoff.  However, further study is
needed in the area of nutrient transport through surface and subsurface
pathways.  This involves the study of surface and upper zone relationships,
especially soil moisture, surface runoff, and interflow simulation.  Even
though the nutrients on sediment are simulated better than those in
solution, the relationships of nutrient components to erosion processes
should be studied.  The behavior and transport of nutrients at the soil
surface is an important topic for future research.  With this additional
knowledge, the ARM Model could more accurately simulate nutrients in the
soil and in the runoff.
                                     129

-------
                                 REFERENCES
U.S. Army Corps of Engineers.  1956.  Snow Hydrology, Summary Report of the
     Snow Investigations.  North Pacific Division. Portland Oregon.  437 p.

Anderson, E.A. 1968.  Development and Testing of Snow Pack Energy Balance
     Equations.  Water Resour. Res.  4(l):19-37.

Anderson, E.A., and N.H. Crawford.  1964.  The Synthesis of Continuous
     Snowmelt Runoff Hydrographs on a Digital Computer.  Department of Civil
     Engineering, Stanford University.  Stanford, California.  Technical
     Report No. 36.  103 p.

Black, C.A.  1968.  Soil-Plant Relationships.  John Wiley and Sons, Inc.,
     New York. 792 pp.

Broadbent, F.E., and F. Clark.  1965.  Denitrification.  In:  Soil Nitrogen,
     W.V. Bartholomew and F.E. Clark  (eds.), Madison, Wis., Am. Soc. Agron.
     Agronomy Monograph No. 10.  p. 344-359.

Crawford, N.H., and A.S. Donigian, Jr.  1973.  Pesticide Transport and
     Runoff Model for Agricultural Lands.  Office of Research and
     Development U.S. Environmental Protection Agency, Washington D.C.  EPA
     660/2-74-013.  211 p.

Crawford, N.H., and R.K. Linsley.  1966.  Digital Simulation in Hydrology:
     Stanford Watershed Model IV.  Department of Civil Engineering, Stanford
     University.  Stanford, California.  Technical Report No. 39.  210 p.

Davidson, J.M., and E.D. Chin Choy.  1974.  Diurnal Soil Temperture Model
     for Cecial Soil.  Supplement to Project No. R-899364 Program Element
     1BB039.  16 pp.

Davidson, J.M., and P.S.C. Rao.  1976. Soil Science Department. University
     of Florida, Gainesville, Florida.  Personal communication on February
     5, 1976.

DeVries, D.A.  1958. Simultaneous Transfer of Heat and Moisture in Porous
     Media.  Trans. Amer. Geophys. Union 39(5):909-916.

Donigian, A.S., Jr., and N.H. Crawford.  1976.  Modeling Pesticides and
     Nutrients on Agricultural Lands.  Environmental Research Laboratory,
     Athens, Georgia.  EPA 600/2-7-76-043.  317 p.

Ellis, E.G.  1976.  Department of Crop and Soil Sciences,- Michigan State

                                     130

-------
     University, East Lansing, Michigan.  Personnel communication on March
     25, 1976.

Frere, M.H.  1975.  Integrating Chemical Factors with Water and Sediment
     Transport from a Watershed.  J. Envir. Qual. 4(1):12-17

Hagin, J., and A. Amberger.  1974.  Contribution of Fertilizers and Manures
     to the N- and P- Load of Waters.  A Computer Simulation.  Report
     Submitted to Deutsche Forschungs Gemeinschaft.  123 p.

Hubbard, R.K.  1975.  The Vertical and Horizontal Redistribution of
     Nitrogen, Chloride, and Phosphorus by Precipitation and Surface Runoff
     on Two Similar Watersheds.  M.S. Thesis, Michigan State University, E.
     Lansing, Michigan. 113 pp.

Hydrocomp, Inc.  1976.  Hydrocomp Simulation Programming:  Operations
     Manual.  Palo Alto, California, 2nd ed.

Johanson, R.C., and N.H. Crawford.  1976.  Development of the Watershed
     Erosion and Sediment Transport Model.  Prepared for the Environmental
     Research Laboratory, Athens, Georgia.  Research Grant No. R803726-01-0.

Mehran, M., and K.K. Tanji.  1974.  Computer Modeling of Nitrogen
     Transformations in Soils.  J. Environ. Qual. 3(4):291-395.

Misra, C., D.R. Nielson, and J.W. Biggar.  1974.  Nitrogen Transformations
     in Soil During Leaching;  II Steady State Nitrification and Nitrate
     Reduction.  Soil Sci. See. Amer. Proc.  38:294-299.

Rao, P.S.C., H.M. Selim, J.M. Davidson, and D.A. Greatz.  1976a.  Simulation
     of Transformations and Transport of Selected Nitrogen Species in Soils
     Proc. Soil and Crop Sci. Soc. Florida.  35:

Rao, P.S.C., J.M. Davidson, and L.C. Hammond.  1976b.  Estimation of
     Nonreactive and Reactive Solute Front Locations in Soils.  In:
     Residual Management by Land Disposal.  Proceedings of the Hazardous
     Waste Research Symposium, Tucson, Arizona.  EPA-600/9-76-015. op.
     235-242.

Selim, H.M.  1976.  Soil Science Department.  University of Florida,
     Gainesville, Florida.  Personnal communication on November 3-4, 1976.

Smith, C.N., R.A. Leonard, G.W. Langdale, and G.W. Bailey.  1977.
     Transport of Agricultural Chemicals from Small Upland Piedmont
     Watersheds.  U.S. Environmental Protection Agency, Athens, Georgia and
     U.S. Department of Agriculture, Watkinsville, Georgia.  Final report on
     Agreement  No. D6-0381.   (In Preparation.)

Stanford, G., and S.J. Smith.  1972.  Nitrogen Mineralization Potential in
     Soil. Soil Sci. Soc. Amer. Proc.  36:465-472.

Starr, J.L., F.E. Broadbent, and D.R.-Nielsen.  1974.  Nitrogen

                                     131

-------
     Transformations During Continuous Leaching. Soil Sci. Soc. Amer. Proc.
     38:283-289.

Van den Honert, T.H., and J.J.M. Hooymons.  1955.  On the Absorption by
     Maize in Water Culture.  Acta Bot Neerlandica 43:376-384.

Viets, Franck G.  1965.  The Plant's Need for and Use of Nitrogen.  In:
     Soil Nitrogen, W.V. Bartholomew and F.E. Clark (eds.), Madison, Wis.,
     Am. Soc. Agron.  Agronomy Monograph No. 10.  p. 503-549.

Wierenga, P.J., and C.T. DeWit.  1970.  Simulation of Heat Transfer in
     Soils.  Soil Sci. Soc. Amer. Proc.  34(6):845-848.
                                     132

-------
            TABLE Al.  ARM MODEL INPUT PARAMETER DESCRIPTION
TYPE
NAME
          DESCRIPTION
Control
HYCAL
           INPUT
           OUTPUT
           PRINT
           SNOW

           PEST

           NUTR

           ICHECK
           DISK
           IDEBUG
           CHAR
           TITLE
           DSNFID
           DSNERS
           DSNROS
           INTRVL
           HYMIN
           AREA
           BGNDAY
           BGNMON
           BGNYR
           ENDDAY
           ENDMCN
           ENDYR
Specifies type of information desired
PROD-production run, prints full tables for each
   interval as specified by PRINT
CALB-calibration run, prints removal values for
   each interval as specified by PRINT
Input units, ENGL-english, METR-^netric
Output units, ENGL-english, METR-metric, BOTH-both
Denotes the interval of printed output, INTR-each
   interval, HOUR-each hour, DAYS-each day, MNTH-each
   month
NO-snowmelt not performed, YES,snowmelt calculations
   performed
NO-pesticides not performed, YES-pesticide calculations
   performed
NO-nutrients not performed, YES-nutrients calculations
   performed
ON-checks most of the hydrology, snow  (if used),
   sediment, and pesticide (if used) input parameter
   values and prints out error and warning statements
   for input parameter values that are outside of
   acceptable value limits, OFF-no check is made

NO-no output written to disk YES-LSRO and/or
   EROS written to disk

OFF-no output to check values written to disk
ON-print echo of output written to disk

RUNOFF-Lands Surface RunOff  (LSRO) output
SEDIMENT-EROSion  (EROS) from sediment output
OVERLAND-Runoff fRom Overland Surface  (RROS) output
Title for data set on disk (80 char)
Data set number for LSRO file
Data set number for EROS file
Data set number for RROS file
Time interval of operation (5, 15, or  60 minutes)
Minimum flow for printed output during a time interval
Watershed area

Date simulation begins-day, month, year
         Date simulation ends-day, month, year
 (continued)
                                     134

-------
TABLE Al (continued)
TYPE
NAME
DESCRIPTION
Hydrology  UZSN     Nominal upper zone soil moisture storage
           UZS      Initial upper zone soil moisture storage
           LZSN     Nominal lower zone soil moisture storage
           LZS      Initial lower zone soil moisture storage
           L        Length of overland flow to channel
           SS       Average overland flow slope
           NN       Manning's n for overland flow
           A        Fraction of area that is impervious
           EPXM     Maximum interception storage
           PETMUL   Potential evapotranspiration data correction factor
           K3       Index to actual evaporation on a monthly basis (12 values)
           INFIL    Mean infiltration rate
           INTER    Interflow parameter, alters runoff timing
           IRC      Interflow recession rate
           K24L     Fraction of groundwater recharge percolating to deep
                       groundwater
           KK24     Groundwater recession rate
           K24EL    Fraction of watershed area where groundwater is within
                       reach of vegetation
           SGW      Initial groundwater storage
           GWS      Initial groundwater slope
           KV       Parameter to allow variable recession rate for
                       groundwater discharge
           ICS      Initial interception storage
           OFS      Initial overland flow storage
           IFS      Initial interflow storage

Snow       SNCWPRINT  NO-hourly snow tables not printed during snow pack
                         periods
                      YES-hourly snow tables printed
           RADCON   Correction factor for radiation melt
           CCFAC    Correction factor for condensation and convection melt
           SCF      Snow correction factor for raingage catch deficiency
           ELDIF    Elevation difference from temperature station to mean
                       watershed elevation
           IDNS     Initial density of new snow
           F        Fraction of watershed with complete forest cover
           DGM      Daily groundmelt
           VC       Water content of snowpack by weight
           MPACK    Water equivalent of snowpack for complete watershed
                       coverage

           EVAPSN   Correction factor for snow evaporation
           MELEV    Mean elevation of watershed
           TSNCW    Temperature below which precipitation becomes snow

(continued)
                                    135

-------
TABLE Al (continued)
TYPE
NAME
DESCRIPTION
           PACK
           DEPTH
           PETMIN
           PETMAX
           WMUL
           EMUL
           KUGI

Sediment   COVPMO
           TIMTIL
           YRTIL

           SRERTL

           JRER
           KRER
           JSER
           KSER
           SRERI
           SCMPAC
         Initial water equivalent of snowpack
         Initial depth of snowpack
         Minimum temperature at which PET occurs
         Temperature at which PET is reduced by 50 percent
         Wind data correction factor
         Radiation data correction factor
         Index to forest density and undergrowth

         Fraction of crop cover on a monthly basis  (12 values)
         Time when soil is tilled (Julian day, i.e. day of the
            year, e.g. January 1=1, December 31 = 365/366)
               (12 dates)
         Corresponding year  (last two digits only) for
            TIMTIL (12 values)
         Fine deposits produced by tillage corresponding to
            TIMTIL and YRTIL  (12 values)
         Exponent of rainfall intensity in soil splash equation
         Coefficient in soil splash equation
         Exponent of overland flow in sediment washoff equation
         Coefficient in sediment washoff equation
         Initial fines deposit
         Rate by which soil fines are decreased per day on
           non-rain days
Pesticide  PESTICIDE   Title word to begin the reading of pesticide input
                       parameters
           APMODE   Application mode, SURF-surface applied, SOIL-soil
                       incorporated
           DESORP   NO-single-valued adsorption/desorption used, YES-non-
                       single-valued adsorption/desorption algorithm used
           PSSZ     Initial pesticide storage in surface: zone
           PSUZ     Initial pesticide storage in upper zone
           PSLZ     Initial pesticide storage in lower zone
           PSGZ     Initial pesticide storage in groundwater zone
           TIMAP    Time of pesticide application  (Julicin day)  (12 values)
           YEARAP   Year of pesticide application  (last two digits only)
                        (12 values)
           SSTR     Pesticide application for entire watershed  (12 values)
           CMAX     Maximum solubility of pesticide in water
           DD       Permanent fixed adsorption capacity
           K        Coefficient in Freundlich adsorption equation
           N        Exponent in Freundlich adsorption equation
           NP       Exponent in Freundlich desorption equation
           DDG      Julian day when KDG(l) begins  (max. of 12 values)
           YDG      Corresponding year in which DDG applies
           KDG      Pesticide decay rate  (per day)  (max. 12 values)

 (continued)
                                     136

-------
TABLE Al  (continued)
TYPE
NAME
DESCRIPTION
Soil
Nutr ient
LZTEMP   Lower zone temperature on a monthly basis  (12 values)
ASZT     Slope of surface zone soil temperature regression equation
BSZT     Surface zone soil temperature regression equation
AUZT     Slope of upper zone soil temperature regression equation
BUZT     Upper zone soil temperature regression equation
SZDPTH   Surface layer soil depth
UZDPTH   Upper zone depth or depth of soil incorporation
BD6Z     Bulk density of surface zone soil
BDUZ     Bulk density of upper zone soil
BDLZ     Bulk density of lower zone soil
UZF      Upper zone chemical percolation factor
LZF      Lower zone chemical percolation factor
           TSTEP    Timestep of chemical and biological transformations,
                       must be an integer number of time steps in a day,
                       and an integer number of simulation intervals
                       (INTRVL) in a TSTEP, range of TSTEP is 5 or
                       15 minutes to 1440 minutes, but the solution
                       technique works best at 60 minutes or less.
           NAPPL    Number of fertilizer applications, values may range
                       from 0 to 5
           TIMHAR   Time of plant harvesting, Julian day of the year,
                       value may range from 0 to 366
           ULUPTK   Fraction of maximum crop uptake of nutrients for the
                       the upper layers (surface and upper zone)  on a
                       monthly basis (12 values), should be 1.0 or less
           LZUPTK   Fraction of maximum crop uptake of nutrients for the
                       lower zone on a monthly basis (12 values), should
                       be 1.0 or less
Nitrogen Reaction Rates
           Kl       Oxidation rate of solution ammonium
           KD       Reduction rate of nitrite and nitrate to gaseous nitrogen
           KPL      Uptake rate of nitrate by plants
           KAM      Ammonification or mineralization rate
                       of ORG-N to ammonium
           KIM      Immobilization rate of solution ammonium
                       to ORG-N
           KKIM     Immobilization rate of nitrate (and nitrite) to ORG-N
           KSA      Transfer rate of ammonium from solution to
                    adsorbed (adsorption)
           KAS      Transfer rate of ammonium from adsorbed to
                    solution (desorption)
(continued)
                                     137

-------
TABIE Al (continued)
TYPE
NAME
DESCRIPTION
Phosphorus Reaction Rates
           KM       Mineralization rate of ORG-P to solution phospate
           KIM      Immobilization rate of solution phosphate to ORG-P
           KPL      Uptake rate of phosphate in solution
           KSA      Transfer rate of phosphate from solution to
                       adsorbed form
           KAS      Transfer rate of phosphate from adsorbed to
                       solution form
Nitrogen Storages

           ORG-N
           NH4-S
           NH4-A
           N02-W03
           N2
           PLNT^I

Phosphorus Storages

           ORG-P
           P04-S
           P04-A
           PIWT-P
         Organic nitrogen in or attached to soil
         Ammonium in solution
         Ammonium adsorbed to soil
         Nitrite and nitrate
         Gaseous nitrogen forms from denitrification
         Plant nitrogen
         Organic phosphorus  in or  attached  to  soil
         Phosphate  in solution
         Phosphate  adsorbed  to soil
         Plant phosphorus
Chloride Storage

           CL       Chloride
                                      138

-------
      TABLE A2.   Km MODEL INPUT SEQUENCE AND PARAMETER ATTRIBUTES
     	(excluding Nutrient input and parameters)	
Namelist
Name
CNTL
STRT
ENDD
LND1
LND2
Parameter
Name
  Type
  English Units
  Metric Units
           Watershed name (up to 72 characters)
           Chemical name and/or run information  (up to 80 characters)
HYCAL
INPUT
OUTPUT
PRINT
SNOW
PEST
NUTR
ICHECK
DISK
IDEBUG
CHAR
TITLE
DSNFLO
DSNERO
DSNROS

INTRVL
HYMIN
AREA

BGNDAY
BGNMCN
BGNYR

ENDDAY
ENDMCN
ENDYR

UZSN
UZS
LZSN
LZS

L
SS
NN
A
EPXM
PETMUL
LND3       K3

(continued)
                       character
                       character
                       character
                       character
                       character
                       character
                       character
                       character
                       character
                       character
                       character
                       (up to 80 characters)
                       integer
                       integer
                       integer
integer
real
real

integer
integer
integer

integer
integer
integer

real
real
real
real

real
real
real
real
real
real

real
minutes
cubic feet/sec
acres
minutes
cubic meters/sec
hectares
inches
inches
inches
inches

feet
                                   inches
millimeters
millimeters
millimeters
millimeters

meters
                      millimeters
                                     139

-------
TABLE A2  (continued)

Namelist
Name
LND4





LIND5






SN01





SN02





SN03

SN04




CROP
MUD1
MUD2
MUD3
(continued)
Parameter
Name
INFIL
INTER
IRC
K24L
KK24
K24EL
SGW
GWS
KV
ICS
OFS
IPS
SNOWPRINT
RADCON
CCFAC
SCF
ELDIF
IDNS
F
DGM
we
MPACK
EVAPSN
MELEV
TSNOW
PACK
DEPTH
PETMIN
PETMAX
WMUL
FMUL
KUGI
COVPMO
TIMTIL
YRTIL
SRERTL

Type
real
real
real
real
real
real
real
real
real
real
real
real
character
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
integer
real
integer
integer
real

English Units
inches/hour





inches


inches
inches
inches




1000 feet


inches/day

inches

feet
degrees F
inches
inches
degrees F
degrees F




days
year
tons/acre

Metric Units
millimeters/hour





millimeters


millimeters
millimeters
millimeters




kilometers


mill imeter s/day

millimeters

meters
degrees C
millimeters
millimeters
degrees C
degrees C




days
year
tonnes/hectare

                                      140

-------
TABLE A2  (continued)

Namelist
Name
SMDL








PSTR



PST1
PST2
PST3
AMDL





DEGD
DEGY
DEGR
LZTP
RETP



DPTH






Parameter
Name
JRER
KRER
JSER
KSER
SRERI
SCMPAC
PESTICIDE
APMODE
DESORP
PSSZ
PSUZ
PSLZ
PSGZ
TIMAP
YEARAP
SSTR
CMAX
DD

K
N
NP
DDG
YDG
KDG
LZTEMP
ASZT
BSZT
AUZT
BUZT
SZDPTH
UZEPTH
BSDZ
BDUZ
BDLZ
UZF
LZF
Type
real
real
real
real
real
real
character
character
character
real
real
real
real
integer
integer
real
real
real

real
real
real
integer
integer
real
real
real
real
real
real
real
real
real
real
real
real
real
English Units




tons/acre




pounds/acre
pounds/acre
pounds/acre
pounds/acre
day
year
pounds/acre
pounds/pound
Ibs. pesticide/
Ibs. soil



day
year
per day
degrees F




inches
inches
pounds/cubic ft
pounds/cubic ft
pounds/cubic ft


Metric Units




tonnes/hectare




kilograms/hectare
kilograms/hectare
kilograms/hectare
kilograms/hectare
day
year
kilograms/hectare
kilograms/kg
kgs. pesticide/
kgs. soil



day
year
per day
degrees C




millimeters
millimeters
grams/cubic on
grams/cubic cm
grams/cubic cm


                                     141

-------
















cr
5
t-
|
55
<
t:

g
8
UJ
c_,
|
CtJ

t-
u
gj
d
fc
£
s
*i

D:
Q
g
E
§

a
K
C

H



















ffi
C
flt

,Q
U



u
"jj

3t!
in
' c to
f— <
£

c
0
c --«
r-H U)
8 f£





ff



QJ
1


c
O
4J
c u
"It £
O 13
$

U
o
ca
c •
•r-( O
T C/l
w T c:
i-\ <— i O •

w c: > o ±>
r*  TO • o

O * C fc O 4-J lO -rH O ^
&
Qj "H C> --1 VJ Q 4-J C r< 1-. Cl1
C) W U-< -i-t 4J O • ilJ O !l O t1 U n .C
O n CJ '»J lr O S O E D~' 4J O C -i ' '-t-J
"-«a,eo-^'q-^cro^cz) uco
TjcR^j-tcjJ tn ra c: v-i '0
C"-cc: njn— i x

4J4.J Qr-lvJ>CO'O>E rO
O C CO (—t n) o QJ <-* C^ "*J
-^ rH lj 4J T-< tO C 'Si O EH 51 O 1'

E? G sz o*3 o-*~*^ f-T tr. nj?i bi*E-io
to

3 (0
C T3


o >^
a T)
C



• S-
'it;' 5 "3
fH <>J < < <



ID a>
4J 4-J WJ 1J V1
o u a; oj cj
i-i l-i QJ 

6 6 £ £ £


g'
r^ Fr1 §
S iS




HH
^J
s

I
1
w
c
o
•H C



.— VJ 3 H3
4-> C O O tj
•fH -*- o C O to p O
I-HC QjrHCl-J S^^C
^ fc 'J ^J f> ^ 01 i— 1 -f-* H
U ra JkT JJ >» 4-> 4J
U-i C i-J V-J CJ O rH .^ U O U
rt rj4Jfo^t> o-^f^3
C> **-* Qj M-i Ot U 4-1 -«-t "U-jRJv-
ra -C ll P JJ ^ i - i . — — ^ c/i 3 uj i-j eta
rij ^O ^i u_i A, jj ^ ,-j f; o O J-* nJ I1
E 'X) 4-> G " 'I' _3 •*-< (/] f-H 13
D ° "^ S P ? ^ ^ 6 "<5 --H 'o a; >

3 o -S .5 -S 5 5 a 'g & j} S S 3













S 3 £ 2 5


ij k-t t-i
C^ GJ  c
4-J ftl
• nj n>
01 l-i O •
t/i c 4-J ij ir*
Ct O C -'-t -»J 4-J
t-1 *W 'H O C OJ -rH C
O • -tJ -H —'CO
OO-JU<3 C I3CUCTQ4
V4 •_. C. 0) O «-< (U -P 13
(.) O (3 O l-> -^ O •*** O ^i
• jjp iJ toojco_n
r--( Q.1 O • O U-J -^ IH fj CJ
.irC'GJCOrpSQ^ OwOCJ'J-'
4>XJ4-J O O I- J-1 TO
h •-! "- ' Oj"^ 'b p ? nj T3 •-<

_i jr: — t O r-t r-H rH C C ^TJ «4-J

f1 ra ,><>,
(D (0 (0
'O t3 TJ

fl) fi) flj
Oi O-i DJ

n: nj1 ra
TJ *U TJ
S. S, g.



^J< <£) *J-
1 1 1 1 1 1


l-t W 1-j
JJ -P 4-1
u o u
l-( 1J LJ i— 1 r—t r-H

6 6 u &' (S S



^\




K
§ [4
8 §
K tn

u
1
5
g
U]
£r,
142

-------

































1
•H
4->
3
a
§
P





en
c


|

o

£
in
C M
°'^
I
c
o
C -H

3 '"^
8fi




Q,


1
§
I»-H
gti
s 3
K

-4C
8
CO
ation
M


: nine:
o
0
4J

u
• rH
o
&
•D
a

ra*
*"Q
&


fN

I

3
8

°i
0 U
J~> -rH
2 §
0 O
4-> O


rH S
.O C
ro
"O
s.

ro

a


o

i
ro





S

1





ra
V4
4-1

IH
O
 fi- o c-*ra34-j ra i-iO-vjOjO

oo c; dJ4-JHC'-H4J QQ
§ 1 § S 3 .2 S S1 § -^ B S c ?. P^ p g s

— -c — - ra DC tJ 4-> ci o <3 '•« •y-iuc-^-'C— 'ra
O u r-nra 4~Ji-< C OXO-^p Q v-i
El'nfer o 'H c >. - o i cg'n^c:
E ft tt O C WO) C Xie4JC'UCJfOEai£-CC
ra C nj «-* O -' w 4J -^ 4J cr> rj Xi o -^ c
U-iC^-i ^ Ou OO4^Ot"j-jrdvjO^C:u-'3-iJ
o t" o -— i o -*J QJ ra u C"1 o s o <"i o
»c o 9 o -^ a- t/i u c -^ c: iJ c: o ^ Q r-


C C C4J«-iL>ON >'-f^ C
M C vj T> O O g * O O -H •'-' g -r-, lu vj C vi T) o
a/ o o  •••-< QJ w-i uj i— i y r- 1 .1 > o o o a> N
CDCC Cy TDO'— iDl-jfOOOO")C CUCQS^
iO>-'Q>'nO
fHWEr-ra 5 Oraca.c^rilur-fdHHraE-'yjHraj
rara ra (T/rararararafO
'O'O T3 'UrDrDrO'O T5 T3
CJ fl) O C^ QJ C' 41 0) C; QJ
Qj QJ U' U- D4 Ul UT P.- U' Pi

ra1 ra1 ra' & ro' & ro1 ra1 & &
'G TLr TJ 'U'OrDrJrPJfOfO
c) ii> ai 0,1 cu cj c) 41 4> 4*
Qt Cu D.' tj* P' P- Pi PJ P' P<


*.o ^J1 o '^ *r CN c> co ^o T o

II II I 1 1 I 1 I I I
^rin ^rNro^^in
U kj
O a

& & 6 & ££&§>£&& 6

11 a e&illgl
1 1
1 i



C CD
C» > 0 E
J? ' rH 4J O
W J) tJ W U >4-<
C. .,J jJ -" W JJ
O QJ ••-' £- r-i O '"I --H * g
•IH 4-> c ra ra 4J t) c 7*. b

DC V-i C1) Cu & 22 **-< '^OC
1 ^ t; § 5-P H o ? ° s 1
o ^ o cr> •*- o o"> u ra ui o 4--
4J .3 w cr> o
OJ-H O O -J C O CvjCO
4JC AJ4J4JO OOO4JG
ij o w C) c ^-i o 4-' o 4-j t1 ra
4-1 4-) ra f04-JlTl4-Jl-j
C CiU'^-'OQJ'N M -rH
-2 1 a .S i*^ ° w ro S ^ § ^ £ £
O rd cc3 ra^ .-^ r •< !^J I^H f j H
& i? £?r & '^ &
*U f "O ^ 'O 'U T3
fj (i i fl) qj 0) (\i ni
PJ P. P-< & (5. Qi O

& & ra* ro1 & fa' ra
T3 *U t? "D ^ T^ 'O


c
o
1


























143

-------













in
c
£
§


CJ
Ul
&
Vi
4-1

rH
$
C
o
C '"H

rH VI




1
,
z

c
o

C 0
O !^>


0 p






8
rH
CD
c o
O rH

£ &^J
e S oj


C — ' U

§c c
.,00
nj -H -H
4-> 4-1
U-l D U
O r-* flj
O CJ
 B s
In u T?
s a s
^
(a
T?
a

(0
•O
6.



i i
C •""
Vj
Q>

%
f3 rj
SjG
0

w
s
ft
n

0

o










c c
C C GO
O O 0> p -H F rn
rp 1 -r4 4_> O 4-> O 4-1
O* «- rH4-J QQl^J
c 0 -^ c r-t o o •<-* • r o g t/j


DC u I'J CL < -^ f> t C F-; T) fi C -H
W O C G' Xi H ••-< 0- O at fO E; C| *- O O

iu .^ 'j_t (^ o1 *.- ra p? c *Q 1-1 vj 4J u-i
Q tj c D1 -1-' o rj' i-i n vj o u-j c u-' ru u-i
4J fO Vj CP Ol^Oi — lilt'
0;-^ QJO'*J CO C'-jC-O ID C Ot/1
jj C 4-' 4J J-i O O O O -t-1 C1 dl C U) O O
f3 fU -iH -H U-J >H -^ 4J 4J 4->
UO ua'C J'O 4JO4JOftJOr;O Of3
c c ra u-j y rj • N M -H D
Og 'OHO ^JJF-rHg.r.uVjCl-lT; XJC
•r-,bo^4J u-< .c b rH 3 r- jj o G ai 5 « o
roncucjsf c cjjCJDcin4JtTij ai-u
T;Our! r; O C O O O C cacr Clcj
-H r 4J Tp 'O 4-1 E O t E L b 'U ro ^H -: (.; ti o
SP — i . >>,>- >«>.>,>, >.>^

T) -U-OTt TJ'U^'O 'D'D
ri fl] t ' ij cj flj o oj St? 5?

& & fl* «* ro'&a"^' &&
•D -O-O-D TJ-O-OTD -D-D
QJ Qi &i &i Ci^ CU CL QJ fi. p.


vD^rfN OCOvOT r«"i \£>
i 111 till lit
rH CN P"l ^T ^* in
Vt
4i
4->
re
* * * * * * * * 5 S fi
S
5 *x W rJ G
^ S22 txrKu:^: S§^
to g
K W
£H U


£ O















U U
WJ 4J
(0
tn a>

c c cr
CJ (U •
O O ^ •
•rH t-l rH
U-l 4-1 -0
U-J -H ,-H O
§=|^
p c 11 a>
4J 0 C
(G Qj O l-i
0) Qj 4J
U, !H (j C
£; i-t ra a
o o o ja
F-" O i-i 4J
>, >• >, >i

"XJ 'D T3 *O
a a a a

ro1 ra' ro* i?
•0 T3 ID -0
DJ DI ij &


•T (N O CD
tN n ^" ^-
1 1 1 1
i-t CN n ^r




O GJ O QJ
cc (Z. of re
s:
t-J y y rH
CL < rH &i2
S S s-- bi





















.
s

rH
O C

VI -H
D rH 4J
U rH C
O •<-< CJ

tn tn
4^|
Vi •-*
V C
-LJ O C>
o JJ ro
•iH (J V-<
•D (0 U
C HI 3
>. -V

•a -o
(U flj

& iT
•a TD
a a



m vo •—* r*
till
•3- m
u u
G' 0

O O
fO fO
S S 5 6
< en
tO rt.
s s


tn w
c£ «C
8 g!
D. &
CO 10










144

-------








01
4J
P
8

(J
• JO
V O D
S #w
c
•iH
C
8
a
8 8
Cj O

c-1 CQ
0) Q! C D- C
4J | O 1 O
(0 O "H O -iH
t-r-l 4J ••-» 4J
C 3 CD
TJ rH O • 4> • TOrH
tr' Q 4-J rc J-1 c i>* en Q
kjui ro C >TJ O GJ wjoJ
O ^: J-J ^ -H 4J C
U-ji*-i C Clil-Jp--*-1 OU-i U-j C
o c o o ••"• CROWD i-( oc oo **^
oj---ifi' cy XT3£o c o-«-t QJ QJ


cwcciin' ra c8 CD. w
O O^O CJC^OJ'p O O O W O
jj jj jj j" QJ fD'"~fnjjj 4-s 4-> JJ.CP.
(0 OO. »jj4-)i-N **-i
il'il^ll^l''3 ! gill.il!
ccng-HAJ Ogi-H4J
&£&£& & ^^
'O'D'D'U'D T3 'D'O

S. it S. & S. & S. S.

ot&&TC'& i? &&
•D Tl -0 T) T> T) -0-0
Ui PJ PI C^ Uj PJ p, PI


t i i j^ T 22 ^* '
iH IN m ^H
u
ij
o
(0

fl^fliiWflja^ XiQ QJ C*
.B8 II ^ II

i
B








o

ra
P- *
at • ai • wo 41 • o •
j-j'a^cw o -H 4-» i 13 C^'TJ
C'COTJQJ O O^O-Q (UC4> TV fij O
J-* O -*J y ^< '•"" O itH *— * -^ 4-J O •*•* 0 ^ -r^ O
• vu j- ui i_i CJ n; fO o 1-* jJ Wj V-. GJ f3 •
tn a Qc NCLNrnvj-.H 3 c c ^JCu(lJ
c o Q '> T) N • 1-1 u •-* > ^ a>oa'rn N • ,— i o ra
(TSvutoi^JO 3 tc -^ --H .H o •— • u-iiniwra Snj-^-C
n o fo o ? *^ c o^ £j ^ •tj '0 o *^ o ? f— i n CT* o
>,>- % % % % % %
'O'D 'U'DT) 'D'O *O

RR S.8LB.S.S- S.

ro'o' i? sr i? 3r sT sT
-O'O -0 -0 -D -0 T) Tl
S. S. S. S. & 8. 8. &


in ' ' rH ' ti Jl ' ' '
cs) m .H CN m
U Vj
(1J C>
u u


to X

P i








145

-------































E
3
C
4J
C
8
1



ID
4J


O
.H
VJ
s
0)
•H J3

2
I
§
S "•*
E 4-J
3 -H
rH t/1
8<£




&

i
&
c
o
c o
.S J
O r!
cJi



|
t
?3 qj . QJ *
CP J-J 'O JJ C » Ui
M raC'tgo w in wo
O x«' /i .c -H jj jj c
U-i PJ t-i CL JJ C CO?
OO CO in Q (/) D <]J QJ-r^ra
o-» 4J o c?) o <— i -H -H ,»j .e
4) CJ C .c fa jr. Q O; uu*
JJ ftj 4-1 J f3 rH U-l  UH <*J U<
UiflSjT^CLU-JCUHO UH JJ u«j LJ d)
f L* O ** O JJ ^ Q iJ O t/i ^
•H O SZ. JJ O JJ St ^ ti kJ O
SPj O I-' 4-J lJ 1-4 l-l -H Ui ^ rH
IW-H D O 3JJ OaO*
•HCO-Pl-trHVjlJJ JJO 4J W £i O
••H -H dj rH IM U) u_i fa ui flj wj XT T/
^D jj ^ o to w 9^^* jy P- ' — ' r~t
GrHJJ fOOfiJO Su EV)OP
e O Dj CMV-Jl-iV^ DO flJO-Ct?1
>1>,>H>, >,>,>,>,>,

T3 *D *O 'D TO T3 *O 'O *O

fl) gj C) O 41 O 0' Cl QJ
p, Cj Q, p. p, p, p, Q, PJ

>1>l>1>1 >l>«>1>1>1

TD'D'D'O 'D'D'O'D'D
r^gii^fu s^^sy^sy

^o^rfMo ro \O^TCMO
rHC^in-y fNCO^HCNm**
1 1 1 1 1 1 1 1 1 1
O"i r*- 10 ro rH rH o> p* ID rn
rH CN <"> rH CN rO
U
0)
JJ
%

£ & Si £ u £ £ $ £ £

S&ilSs wSS&gS
§ E
p M
g y
W Cu

S 8
p





§
u S
O o
JC E JJ rH
PJ ftj O rH
W-i W^ U £ o
0 1 g-«
4J ti U -i-l rH 10
Qi ^O O O 10 ul
e c » • « s o
>r4 rg rH O O *W
§U-I rH
O O rH C
JJ O C*
JJ O>-iH C U-i ni
SO 4J E O 0
u a E -" to LJ
•H 4J O £ 4J JJ JJ
e-iH JJ • 
1 rH
rH

U
0)
JJ U
U 0)
n>
m jj
e s
a
§

to
a

B
01





to
S 0
0> -rH
SO; rH u vi
C QJ *0
o> o a^ CL •
j£ M J> 'O 'O
JJ 0) C "H C1 O ra
SO U-i C S CJ
••H O »-
4J JJ 01 rH rH
<0 C P C rH W
'D JJ '>H E O "^ ^O
C fO •> rH
rH C '^ « O 0 rH
(U U »J rH O
U (J C; CO rH >i CJ
O C >1& O rH
O nj U-i c C
O U rH TJ O -iH
• CP O DJ • C
JJ fij C3 - C .* rtl
aUl UH QJ "* O rH
 3 "H U-t r-H
•H (0 W rH O -O <
































146

-------



































I
£
4->
a
9
g









Conrnents


o
-r-«
w
*J
£
0)
4J
s^
t— 1
H-
&
§
§.;!
4J
•^
r-H U)




S.
^


1
55
4J
C O
o o>
4J .Q



*
8
o





u
o
a)
1c
5g
-H m c
rH O O
m w .r1
tj 4J 4-»
o> •-< :3
c c: —i
•* Q
6 o ffi
>."c c
r-4 10 -H
as §
4J -rH
C r-t C
S3 2
£S 1
* *
S S


O O
"X \
_Q _Q


CO i—t
1 |
i-H &\




 fl) U
4J t-t4>OOQj'O
0> O S >Ot*JC^OrH
»O '«H  C O C'U'-J'H OEU OS
-*J O jDOC>So»-4 >i C C
'*4 W fl> 0*0 ^ C C •" 1 <0 *H
C -U t: *MCDOi-*'C O-'^'-tcr*
••-*Q»O i_*J (DUE
w c NW OJGjrsa ^r-^o 9
p S^'jyo u*«C4J -<-i
w S S,^H "gRoJ^c'^S^-SIS §
(jj Pu O**-l Z-«-<(UW>-HO.Q'3iM<-'J •§!
re . ^ ^
5* S"1 £ J?


o u p o
(0 *D (u fu
\ X. \ \


O CO O U>
TTT r-H W> CO •-*
1 1 r-t ||
CO rH rH f-l O^
ro *3"
u
O
S p>
ro w «j 4J 10 «J
Sfl> ,G C fl> CI
K U «H « «


^:
fc 3 o ^r
CM J £3 K K
Z K E OS
i

5











iH
8
S
•?>
s
u
8
18
S
g
1
1



^

x>

^*
n
I
r-
rH



8
K


f
i








1
*j
to
0
K-)
•d
»J k4
*J . °
O O r-t
*O "^ ^J •
g g S g
TI re u 4-
c 8" . C
c -^ vj v »-i re
ra c j-> c rH cr
•«^ D (0 lJ
o> vi c: N -^ o
-rH O •*-< Wl C r-t

•i-» 10 ^-t O O O
2 O "^ o & 4J
re ^ ^ .S
5* 51 5* 51


o o o o
m  rH rH r-t
r>j m «»
U
0)
^ ,H ^ ? M
ro 10 flj ffl nJ
u
m
g
: 1 »
S« 3 as
Z D* O
1
S
3





                                    I    I

                                   t-t    O\
                                        5
                                        g
147

-------
                                               o

                                               
                                                                                                         nj     m
                                                                                                  rH     U     $
•H
4->
a
a
                *r    
-------








o

-p
£
H
r-t
C
o

—I

£








C
o
4J
u
1
1
'.Q • rH C
EC H O
O O Q ••"*
c w m co N
O O N O J~» ••-*
JJ 'D (-H tO A-* 'O *0
D Q» fO 3 3 S • -rH
rH JJ 10 --H i-( rH .Q Ul AJ
8ou-r C
iotoc gJBDvtnc 3
£,CrH QiJ^-CrH U


< § | ^ f. |. |.
j<: ^ ^ j£ 3£ x: x.
o y y u o u o
-C .O _Q O XI i5* _Q


^O^J-

rH CN •— 1 T-J
u u
£J **
o o
ra ra

£ £ £ o & & & & 6
(X CU
T f f) ? T f ^H
o o kJ tS o o j
g |
N S
P5 M

i
'•p
e
c u.
o o
W 4-* 'O
W rH Jj
O Q *-J
-c K o
PJ Si
Of C -0
O "H O
"o.. 
-------
                o
                0
o
o
o
oj
o
O
O

CO
                                                                ce..
                                                                Si
10
in
c>
                               o
                               CO
                                uiiu/63(  'SS01  1N3WIQ3S
                                 l/ui6 'SSCTI  1N3WIQ3S
                                           151

-------
                                                           uiiu/ui6  '3NIZVH1V

in
CM
o
o        in      o

o        o      o

o        o      o

  1/61U  '3NIZVcUV
in
o
O
                                                          uiiu/ui6 '3NIZVcJiV
                                             152

-------
                                             S3
                                             Si
                                                                                                        8
                                                                                                            s-
                                                                                                        O  3
                                                                                                        CVJ  O
                                                                                                        §
                                                                                                        O
                                                                                                        CS1
                                                                                                        CO
                                                                 UlUl/uiB 'N-fr
                                                                                                    o
                                                                                                    CVJ
                                                                                                    o
                                                                                                           l_ CM

                                                                                                    O      4-
                                                                                                    ^j-        
                                                                                                    csj  JZ  c/i E
                                                                                                    CTt        C
                                                                                                    ^H   -CO
                                                                                                       LU  O 4->
                                                                                                       3E    W


                                                                                                    8  p  2J
g
?       S
NJ       «-H

 uidd 'NX1
o
00
8
                                                                  ULUi/ui-6
                                                    153

-------
 o

 oj
00

o
        L/6ui
                                  uiui/ui6  'N-
o
o
00
                                                                                          4-* C\J

                                                                                          | g
                                                                                          OJ
                                                                                          in n-
                                                                                             o
                                                                                          C
                                                                                          O  E
            ItflOi
                                                     uiiu/ui6 'd  ItfiOI
                                     154

-------
"1	

— z't?
~ e-<7

     6-0
                       l/6ui 'd-
                                                                                                                      s-  •


                                                                                                                        CM
                                                                                                                      c
                                                                                                                      O 0)
                                                                                                                     •r- c

                                                                                                                     •W 3
                                                                                                                1-1      O
 uiiu/ui6
                                                                                                                     l-l (/)
                                                                                                                     CO S-
                                                                                                                        O)
                                                                                                                     


                                                                                                                     I*
                                                                                                          o        -=r
                                                                                                          cu       r-l
                                                                                                          CM  -C  ••- •
                                                                                                                  §,-
                                                                                                                  I- O
                                                                                                                  
-------

                                                                           o

                                                                           o
         uidd
                                                               I	    O LU
                                                                     LU I—
                                                                     O <
                                                                     OL —I
                                                                     O 3
                                                               I-     I
o
o
o
r^
o
o
O
o
o
o
                               o
                               o
                                    o
                                    CO
                                                                                     C\J    r-H
                                uiiu/6>|  'SS01  1N3WIQ3S
                                                                  l/ui6  'SS01 1N3WI03S
                                                                                                   CM   (/)   I—
                                                                                                           C M-
                                                                                                           CU O


                                                                                                           cu o
                                                                                                           in +->
                                              156

-------
                                         l_
              o
              o
              o
             udd
o

8

o
o


*3-
CM
                                           o

                                           10
                                                             o

                                                             CO
                                                                    ULUi/uiB
                cc. o

       -1
                                                                                                               D-


                                                                                                                01
                                                                                                                S- 01


                                                                                                                (V -t->
                                                                                                                    -

                                                                                                                N O

                                                                                                                JJH-


                                                                                                                •u -a
in
o
o
§
o
o
o
       l/6ui
§




                            ULiu/ui6 '
                                               157

-------
                                                          03E
                                                          LU t—i
                                                          DC l/l
                                                                                                                   10 O
                                                                                                                   > <->
                                                                                                                   O V)
                              §
                              in
                         o

                         00
r
01
                      «d IViOi
               IUUI/UI6 '
8
C3

d
                                                                                                                      in -
                                                                                                                      ^H
                                                                                                                      oa
                                                                         uiui/ui6
                                                       158

-------
6'ST

9'TT

9'6T

9'9
Z'i
   rzei


:   e-cc


   I7*2     I
                                                                        g^
                                                                        O 2
                                                                        UJ >-«
                                                                        o: co

                                                                             I	I
                                                                                                                   Q-


                                                                                                                   
                                                                                                                   O  i~-
                                                                                                                  cn
                                                                                                                C  p

                                                                                                                ""  o
                                                                                                                •— 4J
                                                                                                                rc  to
                                                                                                                >
                                                                                                                   §a>
                                                                                                                  .c
                                                                                                                ai +J
                                                                                                                i-
                                                                                                                   s-
                                                                                                                 mo
                                                                                                                o<*-
                                                                                                                t-H CO
                                                                                                                m s-
                                                                                                                   ai
                                                                                                                01 -t->
                                                                                 ULiu/ui6 'N-£
                                                    159

-------
2.00

1.75

1.50


1.25


1.00



0.75


0.50


0.25
0.40


0.32

0.24

0.16

0.08


19
f 5.2 ' ' ' ' , ' _
/
h N -
n
i j
i i
' i
- / ' -
f i
t i
_ i } _
i ' r
»/
V

i
1
1
1
1
I /
»ii i v«»»fr* i
i i i i i i
. 1
« RECORDED fl J
	 SIMULATED A\ \
f \ \
1 \ '
f I I -
\ I,
~ i 1 ~"
1 1 '
_ .+ 	 r fci _
if * \
• , , I /I , ,1
30 2010 2050 2130 2210 2250 2330
                   TIME, hours

Figure 819  PO.  removal in solution from the P2
   watershed f3r the  storm of July 24, 1975
                      160

-------
i—r
                i—r
                                          j	L
                                                                                            i—r
                                                                                                                O 3
                                                                                                               '— Ol
                                                                                                                  3
                                                                                                               •O E
                                                                                                               CD C
                                                                                                               (/) O
ULiu/6)|  '
                                                         1N3WIQ3S
UD     ^J-    (-O    OJ    i—

  L/tu6 'SS01 1N3WIQ3S
                                                                                                               cu 
                                                                                                               i. 4->
                                                                                                               3 (TJ
                                                                                                               01 f
                                                                          -   11
                                                                                                          oo
                                                                                                          o
                                          o
                                          o
            o

            VO
 O

 ui
                                                                                             CM    «-H
                                                                                                                 E
                                                                                                                 •5  c
                                                                                                                 O)  o
                                       ULui/6>| 'SS01  1N3WIQ3S
                                       L/uiB  'SS01 1N3WIQ3S
                                                       162

-------
                 I        I        I        I


                                                                                                         §
                                                                                                             I
                                                                                                             s:    o o

                                                                                                             h-    ffi in
                                                                                                         g
        O

        O

        O
CO      U>
O      O
O      O
CM
O
O
                 O       O        O       O


                       I/Bui '3NIZVM1V
                                           O

                                           O
o
CVJ
o

c5
10
i—I
o

C3
                                            o
                                            o
                                                     uiui/ui6
H
J
 I
 I
 I
r
                                UKid  '
                                                         163

-------
                                                                                  o s:   i—o
                                                                                  ^- i—i   ro +•>
                                                                             v-
                     O
                     O
                     00
           1V101
   ULU/U16
                                                                                 o
                                                                                 CV1
                                                                                 00
                                                                                 o
                                                                                 o
                                                                                 00
                                                                                 o
                                          :z LU


                                          >5;
                                          c +->
                                          
                                          E ^
                                          *^ en
                                                                                          i- -a
                                                                                          +j ai
                                                                                          < -E
uidd  '3NIZVblV
O      O        O       O

   luui/iuB €3NIZVblV
                                    164

-------
                                                                                   o
                                                                                   o
                                                                                   oo
                                                                                   o
                                        o 
-------
               J	L
                                                                                     f

                                                                  _L
                 _L
                                                                                                              E -

                                                                                                              O f>

                                                                                                              S- f-H
                                                                                                              O Il-

                                                                                                              l/I O
                                                                                                                o

                                                                                                              i— 4->

                                                                                                              lO (/)


                                                                                                              O 01
                                                                                                              3 S
                     I/6m 'N-£ON
         O      CM




             ULU1/U16 'H
CO


CO
                J	L
                                                                                                    §
                                                                                                               VI
                                                                                                               S-
                                                                                                            en  -M



                                                                                                             1s
                                                                                                             o>
                            o


                            CO
o

o
                    l/6iu 'N 1V101
                                                                        uiui/ui6  'N  HViOi
                                                      166

-------
             i	1—r
 I       I      I	L
                                                                                                                 E  •
                                                                                                                 O 00
                                                                                                                 1- .—I
                                                                                                                 O ZJ
                                                                                                                •r- CT>
                                                                                                                •M 3
                                                                                                                 3 eC
O    O     O     O     00

r^    ^o     LT>     ^-     n     c^j
                   l/6ui  'd-^
 ULUi/iu6
    I         I         I         I         I
                                                                                                        o
                                                                                                        o
                                                                                                        CO
                                                                                                        o
                                                                                                         o
                                                                                                         o
                                                                                                         10
                                                                                                         o
                 L/6ui  'N-
uiu/ui6
                                                       167

-------
                                                                                                  Ill
                                                                                                  .£=
                                                                                                  •tJ
                                                                                                   IrC
                                                                                                   . 01
                                                                                                  O 3


                                                                                                     3

                                                                                                  E <


                                                                                                    t«-

                                                                                                  •— O
                                                                                                  to
                                                                                                  IS
                                                                                                  S-  U1
                                                                                                  s- o
                                                                                                  •u t«-
                                                                                                  «r
                                                                                                  U i.
                                                                                                     HI

                                                                                                  ll
                   o

                   o
o
r-l

O


C3
                                                            1C

                                                            O

                                                            O
ludd
                                                      ULU1/U16  '
                                                                                                       a) 3
                                                                                                       w =r
                                      168

-------
g      g
in      o
                 o
                 o
                 IT)
'N IVlOi
                                              ULUi/iu6
                                                                                         i-  01

                                                                                         a;  ••->
                                                                                         ID S-
                                                                                         l-H 0)

                                                                                         o •!->
O
*-H


O
                                   O
                                   1—4
                                   o

                                   o
  '3NIZVaiV
                                                             s
                                                             o
                                                ULUi/tu6  '3NIZVaiV
                                169

-------
TT
                                                                                                 in
                                                                                                 i—i
                                                                                                 vo
                                                                                                 in
                                                                                                 <*>
                                                                                                 in
                                                                                                 in
                                                                                                 f-H
                                                                                                 in
                                                                                                         •a •>->
                                                                                                         

                                                                                                   (C  (/>
       mad
   uiiu/ui6 €N-*HN
                                           170

-------
                          I        i        r
                                 ^



^ —• ^ ^ ^ ^
       £'£!

       O'£l

                                        SL
                                        t
                                     O «
                                     o:.

                                     Si

                                                                                 /
                                                                                 \
                                                                                 /_

                                                                                 I
                                                                                 I
                                                                                 /J
       o

       CVJ
o

vo
                                                         o

                                                         d
                                                                                                                   <£>
                                                                                                                   Q.

                                                                                                                   0)

                                                                                                                   5fC

                                                                                                                   SS

                                                                                                                   8  .
                                                                                                                   <*- o
                                                                                                                     CM
                                                                                                                   c
                                                                                                                   o +J
                                                                                                                   •r- IO
                                                                                                                   •»-> 3
                                                                                                                   3 O>

                                                                                                                   o5
                                                                                                                   (/I
                                                                                                                     >t-
                                                                                                                   c o
                                                                                                                  ul  ^g
                                                                                                                        !^S
                                                                                                                      O S-
                                                                                                                      csj O)

                                                                                                                      O +J
                           'N  1V101
                                              utuj/uiB  '
                                                           i	r
                                                               o
                                                             O LU
8
                       o
                       o
                       o>
8
               o
               o
               CO
                                                                                                                   C -4-"

                                                                                                                   0) 
                                                                                                                      i-
                                                                                                                   •— o
                                                                                                                   10 t-
                     'd
                                               uiui/ui6  'd ItflOi
                                                         171

-------
 6'T



-S'fr
-g-g
                                          id

                                        -c en


                                        E  -
                                          £O
                                          CM
                                                                                                              csj w
                                                                                                              <_> i.
                                                                                                                 
                   t/6ui
ULLU/ui6
                                                         O UJ
                                                         LU 1—
                                                         O 
                                                                                                                O OJ
                                                                                                       if)
                                                                                                       ID
                                                                                                       «•
                      L/6ui  'N-£ON
 uiui/ui6  'N- ON
                                                       172

-------
    5.0
    4.0
r   3.0
    2.0
    1.0
g.
    4.0
    3.2
    2.4
    1.2
    0.8
           	•—RECORDED
           	SIMULATED
                                     T

      1415
              1435   1455
1515   1535    1555

     TIME,  hours
                                                   1615
1635   1655
            Figure C23  PO.  removal  in  solution  from  the  P6
               watershed for the storm  of  August 20,  1975
                                  173

-------
 1.     //HARL7508  JOb  • A19$X2,44* ,2,35* , • J7508 DAVIS  « , CLASS=E ,REGION=512K
 2.     // EXEC FOPTCL,PARM.FORT='OPT=1,MAP,XREF'.REGION.FORT=512K
 3.     //FCRT.SYSPRINT  00 SYSOUT=A
 4.     //FORT.SYSIN  10  *
10.     C
10.1    C
10.2    C
10. 3    £       ******* *********** *********************************************
10.4    C       *                                                                *
10.5    C       *    AGnICULTURAL -RUNOFF MANAGEMENT  (ARM)  MODEL - VERSION  II    *
10.6    C       *                                                                *
10.7    c       **»**************** ********************************************
10.8    C
10.9    C                                 DEVELOPED  BY:   HYOROCOMP, INCORPORATED
11.     C                                                 1502 PAGE MILL ROAD
11.1    C                                                 PALO ALTO, CA.  94304
11.2    C                                                   415-493-i>522
11.3    C
11.4    C                                          FOR!   U.S. ENVIRONMENTAL
11.5    C                                                  PROTECTION AGENCY
11.6    C                                                 OFFICE Cf- RcStARCH
11.7    C                                                  AND DEVELOPMENT
11.8    C                                                 SOUTHEAST ENVIRONMENTAL
11.9    C                                                  RESEARCH LABORATORY
12.     C                                                 ATHENS, GA.  30601
12.1    C                                                   404-546-3581
12.2    C
12.3    C
12.31   C                                                 VERSION: 10 JUNE  1977
12.32   C
12.4    C
12.5    C                                MAIN  PROGRAM
12.6    C
12.7           IMPLICIT   REALU)
12.8    C
12.9           DIMENSION  RESB(!;),k-ESBl(5),ROSB(5),SRGX<5),INTF(5>,RGXi:>) , INFL(i),
13.           1 UiSt (5) ,APERC615) ,-RIB(5),ERSN(5) ,K3( 12)
13.1           01 MEN SI UN  SREK(3),fcOBTOM(5) .RuBTOTO) , INFTOHI 5 ) , INFTOT ( 5 ) ,
13.2          1 ROITOM(a),RCITOT(5-J ,RXb(5) ,bRSTOMla) , ERSTOT ( 5 ), MNAMl 12),KAD(24),
13.3          2 TEMpx(t»LiSh , IiNF IL » iNTtR, !.<(,, N'4,L ,S i,SGwl, Pn, SGA,bi»S,l\V,
lb.3          4 K2'tL,KiAi'l,rMEY,CD*MEY,SGMY,CONMEY,CRAINY,SNEGKY,SEVAPY,
15.9          * TSNBAL.COVfcR.CiJVKMX.ROBTOM.KOBTOT, RX B, RO I TOM, RO I TOT , IMFTOrt,
16.           1 INFT0T,ckSTuM , ERSTOT,SSEO,TEMPX»RAD,rtlMOX.RAIN,INPJT,OSNRUS,
16.1          2 DSNFLO,CoNERS ,LSRO, EROS, TM3LSZ, LOOP, NERO S,N ILSRC, KPOS , i>*RROS


                                       175

-------
16.2
A. ^ • C.    V
16.3          COMMON /NuT/   OELT , SN, SNT, SNRSM, SNROM , JN, JNT ,UN I , UNI T,
16.4         1            UNR IM,NRS*,LN,LNRPM,GN, SNRBM,UNRBM, LNRtJM, GN*BM, TNRliM,
16.5         2            SrJRSY.SNkOY, UNRIY ,NRSY,LNRPY,SNRBY.UNRBY,LNRbY, liNRBY,
16.6         3            TNKBY|TNkhViTNRHv'MrTNKhVY|TNA,TPA,TCLA,
16.7         4            KN.THK.N, KP,THKP,^BAL,PHbAL,CLBAL ,
16.8         5            TSTEP,NSTEP,SFLG,UFLG,LFLG,GFLG
16.9
17.           COMMON
1(.            wurinuiN  /KC3IIJ/
17.1          1 STST,PRSTCM,SPROTM,PRSTOT,SPRSTM,PROTOM,SAST,PROTOT,
17.2          2 SCST,UPITU«,SCST,UPITdT,UTST,STS,UAST,UTS,JCST,SAS,
17.3          3 UOST,SCS,FP,SCS,CMAX,SSTR1,SPROTT,UAS,SPRSTT,UCS,
17.4          4 FP'J£,Uui,UPRITM,USTR,UPRITr,UPRIS
17.5    C
If.6    C    COMMON  ALL DECLARATIONS FUR 1*2 £, R*4
17.7           INTEGER  PR*TKE ,TIMFAC,IMIN,IHR,TF,JCOUNT,IDEBJG
17.8           REAL  RU,HYMIN,LiS,AREA,RES3i,ROSB,SRGX,INTF,RGX,INFL,
17.9          1     JiSB,APERC6,RIB,ERSN,rt,P3,A,RESB,SMOIST,UMOIST,
13.           2     LMOUT.OPST, STENP,UTEMP,LTEMP,MU£fMLZ
18.1    C
13.2    C    COMMON  LANO DECLARATIONS FOR  1*2  t,  R*4
13.3           INTEGER  DAY,MCNTH ,0 SNRJS, DSJFLU, DSNERS, TMBLS^ ,NEROS,
Id.4          1         MLSRC.NfchOS
13.5           REAL  SEVAPM,SIWSNY,PXSNY,MELRAY,RAL>MEY,CDRMEY,SGMY,CONMEY,
13.6          1     CKAINY.SNcOMY,SEVAPY,TSNBAL.COVER,COVRMX,ROBTOM, ROBTOT,
13.7          2     RX3,ROITON,PtTMAX,ELDIF,DE*X,PACK,DEPTH,SOEN,
13.8          3     IPACK,TMlN,i>UMSNrt,PXSlMM,XK.3,MELRAM,RAOMEM,CDRMEM,CRAINM,
13.9          4     CUNMtMfSGMrt, iNtGMM, PRT'JT, ERSNTT ,PRTOM, ERSNTM.RUTOM,
19.           5     NLPTCM,RCSTUM,RITUM,RIiUOM,BASTOM,RCHTQM,RJTOT,NEPTOT,
19.1          6     RUSTOT.KITUT.RIN TOT,HAS TUT,RCHTOT,TwoAL.EPTOM,EPTOT,
19.2          7     UiS,lUSN,LilS«f INFIL, IrtTLRf IRC ,NU,L, SS, SGtal,PK,SG* ,GrfSt
19.3          8     K\/,!<2'»L ,Ki\2*,K.24EL ,EP ,IFS,Ki, EPXM, RbSSl ,RESS,SCEP,
19.4          9     SL£Pl,SRGXT,SRbXTl,jR£K,K.kER, JSER , KSER , SRERT, MMP! U,
19.5          *     METGPT,CCrAC ,SCF,IUNS,F,DGM,WC,HPACK.EVAPSN,MELEV,
19.6          1     TSNu)rt,P£TKIi«,P.OITJT, IN^TOM, INFT UT, ERST DM , ERSTOT ,SRtk ,
19.7          2     TEMPX.RAC,hINUX,RAIN,LSRO,EROS, KKOS
19.8    C
19.9           INTEGER  SGNbAY , BGNilC/J, 6GNYR, ENDDAY.  ENDMOiN,  ENDYR
20.            INTEGER  YEAR, OYSTRT, OYEND, H,  TIf£
20.1    C
20.2           INTEGER  IERROR, YK, MO, UY, CN,  DA
23.3           INTEGER  TIMf
20.4           INTEGER  CSN
20. "5           INTEGER
20.6
20,
20.8
23.9
21.            lNTtT,EP*4  APWCUE,DESORP,SJRF,SOIL
21.1    C
21.11          INTEGER**  LOOP
21.2           INTEGER**  IChECK.
21.3    C
21.4           INTEGER**  dLANKl,bLANK2,CHNAME,QISK,wSNAME, SNOPRT
21.5    C
21.6    C
21.7           INTEGER  TIMTIL, SFLAG .YRTIL
21.9    C
21.9           DOUBLE  PRECISICN  MNAM,PEST 1C,ENDDIS,RUNOFF,SEOIME.OVERLA,CHAR
22.     C
22.1           KEAL  I'iOPTH, dCSZ, dO'JZjBDL^ , SiDPTH, CO VPMO, RAOCON
22.2           REAL  PETMUL , «M(jL , RrtUL
22.3           RCAL  ICS
22.4           REAL  N,  MJ,  ML
22.5           PtAL  SRkTMT, ERSNMT,  NP
22.6           REAL  KUGI
22.7    C
22.3           REAL  S TS T , PRSTC,^< i) , SPkOTM ,PR STOT( 5) ,SPRSTM , PROTOM< 5 ) , SAST,


                                        176
  ,6    C
  .1          INTEGER"*   bCTH, CALB,DAYS,ENGL,HOJR,HYCAL,INPUT,INTR.METR,
  ,8         1            MNTh, NO,NUTR,OFF,JN.OUTPOT,PEST,PRINT,PROD,SNUrt,YES
  ,9    C

-------
 32.9          2  PKQTOTOJ.SCST ,UPITOM(&i,SOST,U?ITOT{S),UTST,STSl5}tUAST,
 23.           3  UTS(5) ,UCST,SASl3 J, UOST,SCSI 5) ,FP, SDS(5) ,CMAXf SSTRlCi) ,
 23.1          4  SPROTT,dAS(5) , SPkiTT,UCS(5),FPU£,UOS15),UPRITM.USTR(5J,
 23.2          5  UPRITT,UPRIS15),SSTR<12)
 23.3    C
 23.4           INTEGER  T IMAP(l^J,YEARAPl12).KFLAG,DOGt12),YDG(12)
 23.5    C
 23.6          REAL     K ,,) ,LN<20) ,GNl 20 )
 25.6    C
 25.7          REAL   SNAPL(20.3,5),UNAPL(20,5,5),KNI(3,4),KPI{5,4),UiF,L/F
 25.71         REAL   UcUPF(i2JrL^UPP(12)
 25.8    C
 25.9          INTEGER   APOAY (f>) , APLCNT, JHUJP. ,NAPPLi Jf I BLKt TIMHAR,
 26.           1            SELl- Vl^uJ ,IOERR, I.^TRVL
 26.1          IUTEGER  OPMMl(l^)
132.     C
133.           DATA   TIMTIL/li*0/,YRTIL/12*0/,SRERTL/12*0.0/
13 4-.           DATA   CQVPMO/12*J.O/,BJSZ/i03./,SZOPTH/.0625/,UiDPTH/6.0625/
135.           DATA   ICS,  OFS/2*0.0/,8L>U£/103./,BDLm03./
136.     C
137.1          DATA  BLANK1/1     •/»BLANK2/•     '/
135.     C
13J.2          DATA  K , Nl ,f-?L I, LST K, LAb, LCS ,Lui ,GSTR, tiAb , GC5 ,GDS,
138.3          2  TPB*L,t)EGSCKiOtGilJT,DEoUOM,JtGLiOT,DEiiUfDEGSt
138.4          3  DeGLOM.DEbLCT.NIP.NCOM, J I S T, T JTP AP ,:> JL6/25*0. O/
1"5'1.6          JAT4  TIMAP/L2*SS9/,YEAKAP/12*0/,S JTR/12*0.0/
13^.91         DATA  KGPLB/0.45 jo/, bUKF / ' S JXf-' / , SOIL/'SGIL'/
133.95   C
139.           DATA  GRAD/0.04,0.04,0.03,0.02,
140.           *0.02,0.02,0.02,0.06,0.14,0.Id,0.20,0.17,0.13,0.06,0.03,0.01,0.05,
141.           *0.07,0.10,0.13,0.15,0.13,0.12,0.08/
142.           DATA  RAUOIS/b*C .0,C.019,
143.           *0.041,0.067,O.C88,0.102,0.110,0.110,0.110,0.105,0.095,0.081,0.055,
144.           *0.017,5*0.0/
145.           DATA  HINDIS/7*C.034,0.035,
146.           *0.037,0.04l,O.C4ofC.050,0.053,0.054,0.058,0.057,0.056,0.050,0.043,
147.           *0.04U,0.03a,O.OJo,0.036,0,03D/
143.           DATA  DPM/J1.28,Ji,30,31,30,31,31,JO,31,30,31/
149.           DATA  PETMOL,nMLL,RMUL/3*1.0/
149.1          DATA  PESTIC/'PESTICIU'/,ENDDIS/'ENDOISK«/,RJNOFF/«RJNOFF   '/,
149.2          1SEDI ME/'SEDIMENT'/.UVERLA/'OVERLAND'/
149.3            DATA  APLCNT/1/
149.4            OATA  StLHV/C,C ,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,O/
149.5          OATA  DPrf.1l/C,31 ,2«,31,30,31 , 30,31  ,3 1, 30 ,31,30/
149.6          DATA  KFLAG/0/,AkUDL/0.0/
149.7          DATA  SFLAG/0/
149.9          DATA  KDG/12*O.C/
153.     C
151.     C                   DATA INPUT — ^AMELIST 'VARIABLES
                                      177

-------
151.1
151.2
151.3
151.4
151.5
151.6
151.7
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
163.
169.
169.1
169.2
169.3
16?. 4
169.5
169.51
169.52
169.53
169.6
169.7
169. 8
170.
171.
172.
173.
174,K.24EL
NAMELIST /LNJ5/ SGW , GWSf KV , ICS iGFS .1 FS
NAMFLIST /SULU/ k ADCCN, CCF AC, SCF ,£LJ I F, IONS ,F
N/MELIST /S,N02/ DuM , wC, MPACK, E VAPSN, MELEV.T SNOW
NAMELIST /SN03/ PACK, DEPTH
NAMELIST /SNQ4/ PETHIN, PETrtAX , /
-------
135.13
166.
187.
188.
189.
190.
191.
192.
193.
1T>.
195.
1.
237.
23'>.
2SO.
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
r
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
/-
V
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
r.
c
£
c

INTRVL: TIME INTERVAL OF PREC I P IT ATI ON i 5 , 15 OR 60 MINUTES )
HYMIN
APEA
BGNOAY
ENFOAY
UZSN
CUS
LZSN
LZS
I.
ss
NN
A
K3
EPXM
INFIL
INTER
IRC
K24L

KK.24
K2AEL

SGW
GUS
KV

1CS
CFS
IPS
MINIMUM FLCrt FUR OUTPUT DURING A TIME INTERVAL (CFS, CMS)
WATERSHED ARtA (AC, HA)
BGNMCN, uGNYk : CATS SIHULATION BEGINS
EHOMCN, ENOVK : DATE SIMULATION ENDS
NOMINAL JPPEk ZONE 5TORAGE (IN, MM)
INITIAL UPPtR iCNE STORAGE (IN, MM)
NCrtlNAL LCrtEP ZONE STORAGE (IN, MM)
INITIAL LGnEk ZCUE STORAGE (IN, MM)
LENGTH CF LVERLAND FLO.J TU CHANNEL (FT, M)
AVERAut OvtKLAND FLUrt SLUPE
MANNING'S N FCR OVcKuANJ FLO1^
FRACTION GF AREA THAT IS IMPERVIOUS
IMOEX TO ACTUAL EVAPJRATION (12 MONTHLY VALUES)
MAXIMUM INTERCEPTION STJRAOE (IN, MM)
INFILTRATION RATE (IN/MR, MM/HP)
INTERFLC* PARAMETER, ALTERS RUNJFF TIMING
INTEKFLU*. RECESSION RAT;
FRACTICN Of- GROUNU^ATER RECHARGE PERCOLATING TO DEEP
GRO'JNGrfATER
GPOJNCWATER RtCbSSIOi-J RATE
FRACTION CF ^ATtRSHEO AREA WHERE GROUNOWATER IS WITHIN
REACH OF Vc-ETATIUN
INITIAL GRCJNlJWATER STORAGE (IN, MM)
GPuU^CwATEK SLUPE
PAkAMtTcR TO ALLOrt VARUdLE RECESSION RATE FOR &ROJND«ATER
DI SChARot
INITIAL INTtM-EPTIUN STORAGE (IN, MM)
INITIAL LiVcKLANO FLOW STORAGE (IN, MM)
INITIAL IMcKflCvi STORAJE (IN, MM)

CNLY IF Sf>'Ow=YES SHOULD PARAMETERS SNOwPRINT THROUGH KUGI BE INPUTTED

SNOWPRINT: (NO) HOURLY SNOW TABLES NOT PRINTED DURING PERIODS
OF SNOhPACK
(YES) HOURLY SNOW TAdLES PRINTED
RADCON
CCFAC
SCF
ELUIF

IONS
F
DGM
WC
MPACK
EVAPSN
MELEV
T SNOW
PACK
DEPTH
PETMIN
PETMAX
PETMUL
hMJL
RMUL
KUGI

CCVPMO
TIMTIL
YRTIL
SRERTL
JRER
KRER
JSFR
KSEP
CORRECTION FACTOR FOR RADIATION
CORRECTICN FACTOR FOP CONDENSATION AND CONVECTION
SNC»< CORRECTION FACTOR FOR RAlNGAGE CATCH DEFICIENCY
ELbVATICN DIFFERENCE FROM TEMP. STATION TO MEAN SEGMENT ELtVA
(lOoO FT, KM)
OENSIT* OF NErJ SNOrt AT 0 DEGREES F.
FRACTION OF iEGMENf WITH COMPLETE FOREST COVER
DAILY GrtuUiOMELT (IN/DAY, MM/OAY)
MAAlriUM wATEK CONTENT OF SNOwPACK BY WEIGHT
ESTlMATgO «ATER EOUIy/ALSNT OF SNOrtPACK FOR COMPLETE COVERAGE
CORKECT10N FACTOR FOR SNOn' E VAPORAT I JN
MEAN ELEVATION OF WATERSHED (FT, M)
TErlPERATJRE DELOW WHICH SNOW FALLS IF, C)
IMTIAL hATER EUUlVALENT OF SNOwPACK (IN, MM)
INITIAL OfcPfH OF SNUwPACK (IN, MM)
TFMPEKATURE AT xHlCH ZtHO PET CCCURS (F, C)
TEMHcRATOrtc AT «h!CH PET IS KeDUCED BY 50? (F, C)
POTcuTIAL tVAPUTRAMSPlKATION MULTIPLICATION FACTOR
WINJ MULTIPLICATION FACTOR
RADIATION !"JLT I PLICATION FACTOR
IMutX TQ FOREST DENSITY AND UNDERGROWTH (0.0-10.0)

PLRCSNTAoE CRCP COVfcK ON MONTHLY BASIS
TlMt (IN JULIAN DAYS) WHEN SOIL IS TILLED
THE CURSESPONCIING YEAR IN WHICH TIMTIL APPLIES
FINE DEPOSITS PRCDJCED 6Y TILLAGE (TONS/ACRE, TONNES/HECTARE)
EXPONENT LiF kAINFALL INTENSITY IN SOIL SPLASH EQUATION
COEFFICIENT IN SCIL SPLASH EUUAT ION
EXPONENT OF OVERLAND FLOW IN SURFACE SCOUR EQUATION
COEFFICIENT IN SURFACE jCUUR EQUATION
179

-------
251 .
251. 1
251.2
252.
253.
254.
255.
256.
.157.
253.
259.
265.
261 .
262.
262.1
262.2
262.3
262.4
263.
264.
265.
26o.
267.
2
272.06
272.C7
272. 1
27 >.Z
27 >..'i>
2T2..4
272.5
27^.6
272.7
272.8
272. S3
272.86
272. 87
272.9
272.91
272.92
272.93
27?. 94
273.
273. 1
273.2
273.3
273.4
273.5
273.6
273.7
274.
2?5,
276.
277.
278.
279.
2U'J.
2?1 .
2 d ' .,
2 -' > . 0 i
282.02
282.03
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
£
v
C
C
C
C
C
C
f.
C
r
C
r
r
C
C
C
C
C
C

C
C
C



C










r
C
SPEkl
SCMPAC


CNLY IF
THRUUGI-

TITLE
PRIOR 1

APMODE

OESORP

PSSZ
PSUZ
PSLZ
PSGZ
SSTR
TIMAP
YFAPAP
CKAX
DD
K
N
NP
ODG
YOG
KDG



SZOPTH
UZDPTH
BDSZ
BDUZ
30LZ
ASZT
BSZT
AUZT
bUZT
UZf
LZF

TURN OFF

ON H

REAC

CHECK

IFlrt
isRIT
STOP

10 REAL
REAL
»EAC
PEAC
°E AC
REAL
RFAC
P f A u.
u c-f r



1MTIAJ. FINcS DEPOSIT (TON5/ACKEi TUNN!:S/HECTARE)
RATt BY WHICH SOIL FINEi ARE UtCKEASED PER DAY (ONLY ON
NCJU-rtAIN CAYjJ

: Pr:ST = Y£S ShJjLO TITLE PcSTICIDE AND PARAMETERS APMUJE
1 8K uE INPLlTtD

vOPO PESTICIiJE MUST rtE INCLUDED IN THc INPUT SEQ.JENCE
TO ANY PESTICIDE INPJT PA*ArtETERS

APPLICATION HUUt; SURFACE APPLIED { SdkF ) ,
SOIL INCORPORATED (SOIL)
(NO) ONLY AOSCRPTION ALGORITHM USED, (VES) BOTH ADSORPTION
AND DESORPTIUN USED
INITIAL PESTICIDE STORAGE IN SURFACE ZLINE (L6/AC, Kij/HA)
INITIAL PESTICIDE STURAuE I.'J UPPER ZONE (LS/AC, KG/HA)
INITIAL PESTICIDE STORAGE IN LOrtcK ZONE ILB/ACt KG/HAJ
If-ITIAL PtSTlLlDE STORAGE IN GRUUNUWATE R ZONE (Lii/AC, KG/HA)
PESTICIUti APPLICATION FOK ENTIhE hATfKSrlED (L6/ACt KG/HA)
Tli-ic UF PESTICIDE APPLICATION (JULIAN DAY)
THt L-UnKESPUuCINu YEAK IU uHlCH TI'-lAP APPLIES
MAAi/JM SGLUlolLlTY JF PLiTUIUE IN ,vAT ti< (L6/Lb)
PERIA^cNTLY t-ULO CAPACITY ( LcJ P E ST I L 13 t/L tJ SOU.!
CrcFlLicNT IN FKEJiuLICri AubOKPriOrJ CUr; VE
FXPJ,,E^T IN FKEUNLICH AJSURPIION CJRVE
OESUrtPTION EXPONENT IN PREUNULICH CURVE
JULIAN CAY WHEN KOuUJ liEGINS (MAX. OF 12 VALUES)
CORRESPONDING YEAR IN WHICH DOG APPLIES
PESTICIUE DECAY RATE ( Pt:R DAY) (MAX. 12 VALUES}

FCLLUnING ARc TO INPUTTED FOR NJTR=YES OR P£ST=YES

SURFACE LAYtk SOIL DtPTri UN THE RANGE OF 1/8 INCH) lift, MMJ
DEPTH OF SOIL INCORPORATION AND UPPER ZONE (IN, MM)
BULK DENSITY OF SURFACE LAYER SOIL (Lb/FT(3M, (G/CM(3J)
BULK DENSITY CF UPPER ZJNE SOIL (LO/FT13), (G/CM(3J)
BULK. Jt^SITY CF LU/JtR ZONE SOIL (L8/FT(3Jf (G/CM(3J)
SLOPE UF SLKFACE ZONE SOIL TEMPERATURE REGRESSION EUN.
Y- INTERCEPT OF SURFACE ZOME SUIL TEMPER4TURE REGRESSION EON.
SLOPE GF UPPER ZCNt SOIL TEMPERATURE REGRESSION EQ.N.
Y-INTEKCEPT UF UPPER ZONE TEMPERATURE REGRESSION E«N.
UPPER ZONE CHEMICAL PERCuLATION FACTOR
LC.AtR ZCNE CHEMICAL PERCOLATION FACTOR

Uf.'DEKFLCw ABORT CM HP30J'0

EAL UNDERFLOW CALL ERRSET

I5,ics6) («SNAME (I) ,1=1,^0)

FOR RUNNING NUMiSEREL) ON ^YLBUR

SNAME ( IS) . tU.uLAMU .^NO . riSi'JAM E( 20 ) .EQ.BLANK2) GO TO 10
E(6,iC79) h SNAi-i EC 1^) - •< iNAM b 1 2 0)


(5,1096) (CHNAMtil) ,1=1,20)
(5,1097) HYCAL
(5,1097) INPCT
(5,109d) CUTPUT
(5,1397) PRINT
(5, 1C 99) SHGrt
(5,109-,) PEST
(S,i099) NJTR
(5,109d) ICHfcCK

RCAU DISK INFORMATION

180

-------
202.0^
282.05
282.06
232.07
232.08
2S2. 39
282.1
282.11
282.12
232. 13
282. 14
262.15
2>2. 16
282.165
2°2. 17
232.18
232.19
2R2.2
282.21
292.22
232.23
232.235
282.24
282.41
282.12
232.43
262.44
282.45
282.46
282.465
282.47
282.48
282.49
232.5
282.51
282.52
2d2.53
282. 54
282.55
282. 56
282.57
282.58
232. 59
282.0
282.61
283.
283.01
283.02
233.03
203.04
233. C5
233.06
263.07
233.03
283.09
283. 1
283.102
263.11
233. 12
283.13
283.14
2P3.15'
283. 16
283.17
283. 18
283. 19
233.2
233.21
IDK.CNT = C
READ (5,1099) DISN
IF (DISK .EU. NO GO TO 20
C
READ 15,1097) ICL-BUG
12 READ (5, HOC) ChAR
IF (ChAR .Ew. ENUUIS) GO TO 20
IF (CHAP .NE. RuNuFF) GO TU 14
IOKCNT = IDKCNI <• i
C
READ I5,lu96) (TITLtUOKCNT, I) ,1 = 1,20)
READ (5.1033) CSNFLO
IDS.U ICi^UNiT) = OirtFLO
ITYPt ( IL/NCNT ) = 1
GO ir i<:
C
14 IF (CHAK .Nc. SEOIME) GO TO 16
IDK.CNT = ID^Ci-n * 1
READ (5,1096) ( TITLE ( IDKCNT , I) , 1= 1,20 )
READ (5,1C83) CSNERS
IDSNUCKCNT) = CSNERS
ITYPE(IOKC.NT) = 2
GO TO 12
C
16 IF ICHA* .NE. GVERLAJ GO TO ia
IOKCNT = IOKCNT <• 1
R6AD (5,1096) (TiTLEdDKCNT.U ,I = 1,20J
READ (5,10d3) DSNKOS
IOSNI ICKCNiT) = DSNROS
ITYPE ( IUKCNT) = 2
GO TO 12
C
18 niRI TE (b, 1C84) CHAR
STOP
C
C
C DATA INPUT ~ NAMELIST VARIABLES
C
C NAM£LIST IS SUPPORTED ON ONLY IBM COMPUTERS. TO USE
C NAMELIST REMOVE C FROM COLUMN 1 IN TH"E FOLLOWING NAMELIST
C READ STATEMENTS. ADO C TU COLUMN! 1 IN THE FORMATTED READ
C STATEMENTS (DIRECTLY BELOW) TO DEACTIVATE THAT SECTION
C OF CODE.
C
C
C
20 READ (5,CNTL)
READ (5.STRT)
READ {5.ENODI
READ <5,I_ND1)
PEAD <5,L,M02)
RSAO (5.LND3)
READ (5,Li\D4)
READ (5,LN05)
C
If- (SNO« .EJ. NC) GO TO 400
READ 15.J013) SNUPRT
fEAD (5.SN01)
RHAD (5,Sivl02)
READ (5,aNu3)
RE40 (5.5IJ04J
C
400 READ (5, CROP)
READ (5, MODI)
READ (5,MuD2J
READ (5,rtUD3)
PEAO (5.SMOL)
C
181

-------
233.22
283.23
233.2*
233.25
233.26
283.27
233.28
283 .29
283.3
282. 31
233. J2
283.33
233.34
283.35
293.36
283.37
283.38
283.39
294.
235.
286.
237.
283.
239.
290.
290.1
291.
292.
292.1
293.
294.
295.
296.
297.
293.
299.
299. 1
299.2
301.
302.
•303.
!304.
305.
'306.
307.
303.
309.
310.
•310.1
310.3
310.4
310. 5
311.1
312.
312.1
312.2
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.





C










c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c








IF (PEST .eg. NOJ GO TO 4o<>
READ (5,1100) CHAR
IF (CHAR .Ew. PESTIC) GO TO 401
WRITE (6,1122)
GO TO 1G80

401 RtAD (5,iC9a) APMODE
K?AD (5,109d) UtSCRP
PEAO (5.PSTR)
REAO (5,p->Ti)
READ 15.PST2)
READ (5.PST3)
READ <5tAMDU
READ (5.UEGC)
READ (5,OtGY)
READ (5,0£GR)


20 READ (5,3000) UTKVL, HYMIN, AREA
READ (5,5001) 8GNOAYi8GNMON,dGNYR
READ (5.5C01) ENDUAY , ENDMON ,ENOYR
READ (5,3002) lUSN.U/SiLZSNtL^S
READ (5,5003) I ,SS , NN,A, EPXrt, PETMUL
READ (5,5004) ( K3( I ) , 1=1 , 12 )
REAU (5,5003) I NFI L, INTER, I RC.K24L, KK24, K24EL
READ (5,3003) SG* , OWS ,KV, I CS.OFS, IF S

IF (SWO« .E«. NO GO TO 400
READ <5,pji3) SNUPRT
READ (5,5003) R ADCCN , CCFAC, SCF , ELDI F, IONS,f:
READ (5,5003) DGM , *C , MPACK , E/APSN ,MELEV, TSNOW
READ (5,5005) PACi\, DEPTH
READ (5,3006) PtTMIN , PETMAX , ^MULtkMUL ,KUGI

400 READ (5,5004) ( COVPMO ( I ) , 1=1 ,12 )
READ (5,5009) ( TIMTI L ( I ) , 1= 1, 12)
READ (5.5J09) ( YRT IL ( I ) , 1=1 ,12)
READ (5,aCJ4) I SRERTL(I) ,1=1,1^)
REALi (5,5003) JRER ,KRER, JSEi\,KSER,SRERI , SCMPAC

IF (PEST .EU. NU) GO TO 402
READ 15,1100) CHAR
IF (CHAR. Eg. PESTIC) GO TO 401
WRITE (6,1122)
GO TO 1C8C

401 READ 5,lC9il) APMOQE
READ 5.1C98) DcSORP
READ 5,5002) PiSi ,PSUi,PSLi,PSGZ
READ 5,5009) (TIMAPl I) ,1=1 ,12)
READ 5),5C09) ( YEARAP( 1 1 , 1= 1 , i.2)
READ 5,5004) ( SST R( I ) , 1=1 , 12)
READ 5,3CC6) CMAX ,DD ,K, N ,NP
READ 5,5009) 1 LJO ( I ) , 1 = 1 , 1 2 )
REAU 5,aC09) ( VUvi ( I ) , 1 = 1 , 12 )
READ (5,3004) ( KDG( I ) , 1= 1, 12)


PRINTING OF INPUT PARAMETERS

402 IF (HYCAL.EQ.CAL6) GC TO 1002
WRITE (6,1091)
IF (PEST.EC.VES.AND.NJTR.EU.NO) WRITE < 6,
IF lPtST.EU.NO .ANO.NUTR.fcg.YES) WRITE (6,
IF (PEST. cC -NO .AND.NJTR.Eg.NO) WRITE (6,
IF (PEiT.cw.YES.AND.UUTR.fcW.YES) WRITE 46,
rtRITE (6.1CW)
GO TJ 1003






























































1123)
1124)
1125)
112&)


182

-------
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
33?.
33d.
339.
340.
341.
342.
343.
344.
345.
346.
347.
349.
350.
351.
352.
353.
353.01
353.02
353.03
.353.04
353.05
353. C6
353.07
353.C8
353.09
353.1
353. 1C5
353.11
353. 115
353.12
353.125
353. 13
353.135
353.14
353.145
353,15
353. 155
353.19
353.2
353.21
353.22
353.23
354.
355.
356.
357.
353.
35".
359. 1
360.
361.
262.
C
1







C


















C




















C



C
C









1002 WRITE (b, 1093)
         IF (PE3T.tC.YtS.AtvJ.NUTR.Ey.NO)
         IF (PtST.tC.NU  .ANO.NUTR.Ey.YES)
                                      WRITE
                                      wKITfc
      (6,1123)
      (6,1124)
 1003
1010
  32
  34
  40
          IF  (PEST.EC.NO
          WRITE (6,iC92)
          IF  (PEST.EL..NO
          WRITE (0,1121)
          GO  TO ICdO
                    .AND.NUTR.EQ.NO)

                    .OR. NUTR.EQ.NU)
WRITE (6,1125)

GO TO 1003
WRITF (6,1107)
WRITE (0,1106)
IF (INPUT .Ey.
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
WRI
(INPUT
(OUTPUT
(OUTPUT
(OUTPUT
(PPIkT
(PRINT
(PRINT
(PRINT
(SNUrf .
(SNU* .
(PEST .
(OESORP
(L)ESORP
(APHOOE
( APMUDE
.Eu.
.EC
.Eg
.EQ
.Ey.
.EC.
.EC.
.EC.
Ey.
Eg.
EC.
.EQ
.EQ
.fcw
.tg

•
•
(wSNAMEU) ,1 =

-------
363.
36*.
365.
366.
367.
368.
368.1
370.
371.
371.1
371.2
371.3
373.
374.
375.
375.1
376.
377.
377.01
377.1
377.2
377.3
377.4
377.5
377.61
377.62
377.63
377.64
377.65
377.66
377.67
377.68
377.69
377.7
377.71
377.72
377.73
377.735
377.74
378.
379.
330.
381.
*382.
333.
384.
385.
386.
387.
383.
389.
390.
391.
392.
393.
394.
399.
400.
401.
402.
403.
404.
405.
406.
407.
403.
409.
410.
WRITE (6,1171) RAL*CON»CCFAC,SCF,ELDIF ,IONS,F
WRITS (6,1172) CGM,WC,MPACK,eVAPSN,MELEV,TSNOW
WRITE (6,1173) PACK., DEPTH
KRITE (6,1174) PETMIN iPETMAX, WMUL ,RMUL,KUGI
1011 WRITE (6,1175) (CCvPMQ{ I ) , I -1 ,12J
WRITE <6,118J) (TIMTIL(1),I=1,12>,(YRTIU(I),I=1,12)»
1 (S*ERTL(n,I=l,12)
WRITE (6,1177) JRER.KRER, J S£*, KSER, SR ERI , SCMPAC
IF (PEST .EJ. NO) GO TO 1012
WRITE (6,lldC) PSSZ,PSJZ,PSLZ,PSGZ
WRITE <6,117d) (TIMAP(I),I = l,12),(YfcA«APm,I«l,12),
1 (SSTR(I),I=1,12)
WRITE (6,il79) CMAA,DD,K,N,NP
WRITE (0,1182) (JU6I IJ ,1=1,12) , (YDG(I), 1=1, 12* ,(KDG(I) ,1*1, 12J
1012 KRITE (0,1120) hYCAL, INPUT, OUTPUT .PRINT, SNOW, PEST, NUTR, ICHECK
If (SNCw.tJ.YESj uRITE (6,5014) SNOPRT
IF (PEST.EJ.YESJ WRITE (6,1127) APMODEt OESORP
WRITE (6,1092)
C
IF (NUTR .EQ. NO) GO TO 460
CALL NUThIO (IOERR,INTRVi.,NAPPL,SNAPL,UNAPL,TIMHAR,
1 INPtT,OUTPJT,APDAY,KNI,KPI,ULUPF,L£UPFJ
IF (IUERR .Eg. 1) GO TO 1080
C
460 IF (NUTR .EQ. NO) GO TO 464
READ <5,L£TP)
READ (iJ.RETP)
C READ (5,5CC4) J LZTEMP( I ) ,1 =1 ,12)
C READ (5,5002) AS/T.BSZT, AJZT, BUZT
KRITE (6.1UO) (LZTEMPU ) ,1 = 1,12)
WRITE (0,1131) AS/T,dS^T ,AUZT,BU£T
464 IF (PEST. Ed. NO .AND. NUTR. EO. NO) GO TO 465
READ 15,OPTH)
C P.EAU (p,5010) S^DPTH,UiOPTH,BOSZ,BDUZ,BDLZ,UZFfLZF
IF (UZf.EC.O.O) UZF = 1.0
IF UZF.tU.C.O) (.if = 1.0
WRITE (o,117o) SZUPTH,UZDPTH,aDSZ,8UUZ,BOLZ,UZF,LZF
WRITE (6,1181)
C
465 IF (INPUT .EJ. METR) GO TO 559
GO TO 449
C
C CONVERSION OF METRIC INPUT DATA Tu ENGLISH UNITS
C
559 HYMIM= HVMIN*35.3
UZStJ = OZSN/WrlPIN
LZSN = LZSN/MHPIIJ
INFIL= INFIL/MMPIN
L = L*3.2dl
UZS = UZS/^<^^>I^
LZS = LZS/^CPIN
SGW = SlWKMPIN
ICS = ICS/WMPIN
OFS = OFS/MMPIN
IPS = IFS/MNPIN
EPXM = EPX«/MMPIN
SRERI= SkERI/l C tTOPT*2.471 )
ADEIV = AREA+2.471
00 451 I = i, 1-:
451 SREPTL(I) = oKtKTL(I)/(MeTUPT*2.471)
C
IF (SNOw .EQ. NG) GO TO 403
ELDIF = tLDIFv3.2dl
DGM = OGM/rtMPIN
MELEV = HcLEV*3.281
TSNOW = l.d*TSMw + 3^.0
PACK = PACK/NNPIN
DEPTH = DEPTH/^rtPIN
184

-------
411.
412.
413.
414.
415.
416.
416.1
416.2
416.3
416.4
416.5
417.
417.1
417.31
417.32
417.33
417.34
417.35
417.36
417.4
418.
419.
420.
421.
423.
424.
420.
426.
427.
450.
431.
431.1
431.2
431.3
431.4
431.5
431.6
432.
433.
43«.
4^0.
441.
442.
443.
443.1
443.2
443.3
443.4
443.5
44e,DESOkP,ENDYK.ENDrtON,ENDDAY,
3 BGNYk ,BGNMJN,B(iNDAYt IE RKOR, CALB ,PROD,
4 ENGL.METR.BOTH , I NTH, H'JUR ,L)AYS ,MNTH , Y ES , NO,
5 SUKF,iQIL,SZOPTri,COVPMQ,TIMTIL,TIMAP,
6 YEARAP,NUTR,LiTEMP)
f
CALL CHECKS (HYMIN , I NTftVL, UZSi4, LZSN , I RC, NN,L , SS, A.UZS ,LZS ,
1 K24L,NK24,K24EL,KJ,SNOw, ICHECK., IERRQR,
2 YES,NU,LNiCFF, RADCCN ,CCF AC, SCF, ELOIF,
3 IC.'sS, F.DGM.nC, EVAPSN, MEL EV,T SNOW,
4 PErMIN,PETHAX,P£TMUL ,rtMUL ,RMUL , KUGI )
C
IF (IERRUH .GT. 0) GC TO 10UO
C
C ADJUSTMENT OF CONSTANTS
C
452 H = 60/INTRVL
TIMFAC = INTRVL
INTRVL = 24*h
T1MPPT - TIMFAC
IF (TIMFAC. NE. 60) GO TO 4000
INTRVL = S6
TIMFAC = 15
H = 4
C
4000 KRER = KKcR*h**(JRER-l.)
KSEk = K.SEk*H**OSfcR-l.)
C
« = ?OSi*(iiCPTh/i2.0)*43b60.*AREA*'J.2
MU = BDJZ*( (bZCPTH-SZOPTH)/12.0)
ML = BOL/*6.0
XUZ = NU*435t3U.*AREA*0.2
MLZ = ML*4356C.*AkfcA
C
C INITIALIZE TEMP OIST VARIABLES
TEMPI = 35.
CHANGE = -12.
GPAOll) = O.C4
GPAD(2) = 0.04
C
IPACK=0.01
C
J COUNT = BGNCAY
185

-------
458.           DO  601  I=1,BGNKCN
459.                 JC3JNT  =  JCUUNT + DPMMKI)
4tO.       601 CONTINUE
461.           IF  (MOD
-------
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
54S.
549.
550.
551.
552.
553.
554.
555.
556.
557.
553.
559.
560.
560.1
560.2
560.3
550.4
560.5
560.6
561.
562.
56 J.
564.
5fa5.
566.
567.
576.
577.
573.
570.
530.
5R1.
562.
533.
534.
5d5.
536.
587.
538.
588.1
539.
590.
591.
592.
509.
6DO.
601.
602.
603.
603.1
603.2
604.
C

600
C

605
C
610






640
1
650
700
C
625
C
C
c
c

c









c


c



c
1009
C


C


DO 600 CA =1,31
PEAD (5,1264) ( IRAD(MN,DA) , MN=1,12)

DO 605 DA=1,31
READ 15,1264) ( IDE*(MN,DA ) , MN=1,12)

IF UMPJT .EG. ENGL) GO TO 625
DO 700 CA=1,31
00 650 MN=1,12
IEVAPUN.OA) = IEVAP(MN,DA)*3.937
IF (SNOn.Ew.YES) UINOIMN.DA) = IWINDIMN.DA) *0. 6214
IF (SNCn.EU.YES) IDErt(MN,DA) = 1 .8*1 DEW (MN,DA) + 32.
DO o4C IT=1,2
IF ( iNUrt .Eg.YES .UK. NJTR.6Q.YES)
UEMPIMN.OA.IT) = 1 .8*1 TEMPtMN ,DA , IT) + 32.5
CCNTINIE
CONTINUE
SAV TMIN OF JAN 1 ON 11/31
IF (SNO«.£Q.YES .UK. NJTR.EQ.YES) I T£MP( 11 ,3 1, 2) = ITEMPU.l















5






,2)



BEGIN MONTHLY LQUP
DO lOoC MONTH=MNSTRT,MNEND

COy/ERl = CUVPMOIMONTH)
IF (MONTH. LT .12) CUVE><2 = COVPMLUMONTH+1 )
IF (MONTH. Eg. 12) COVER2 = COVPMO(l)
XK31 = K3(MONTH)
IF (MCNTh.LT.12) XK32 = K.3 (MONTHtl )
IF (MONTH. Eg. 12) XK.32 = K3 ( 1 )
L TEMPI = L^T£MP( MONTH)
LTEMP2 = L^TcMPtl)
IF (rtjr.Th .Nt .12) LI EMP/=LiThf.P (MUNTH* 1)

IF IHYCAL .c«. PR30) »U TO 1009
IF (NuTR.tJ.YES) GU T J 1009

^KlTE ( o t l/1000.

DO 1C19 I=1,INTRVL
IKA IUI I) = 0
RAINd ) = 0.0
CONTINUE

CALCULATION OF HOURLY TEMPERATURE FUR SNOW AND/OR NUT

IF (SNOx.cQ.NO .ANU. NUTR.EU.NO .AND. PEST. EQ. NO) GO TO 949














RIE


187

-------
t^6. 1
626.12
626.14
626. 15
626.16
626.2
626.3
626.4
627.
629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
642.
643.
64V.
647.
6*t .
649.
649.01
649.03
640.04
t4°.05
649.07
649.03
649. C9
649.1
649. 11
649. 12
649. 13
640. !4
649. 15
649. 16
649. 17
649. 19
649.2
649.21
649.22
649.23
649.24
649.26
649.265
649.27
649.28
649.29
649.3
649.31
650.
651.
652.
653.
654.
655.
656.
657.
65 3.
659.
663.
C



C








c





c






c
c
c
c
c



c
c
c
c
c
c
c
c

c
c

c
c





c
c
c









c








899


900
910





925

940

945
947

948


























952



949






950
951

 TMIN = ITEMP(MGNTH,DAY,2)
 IF (PACK.LE.0.0  .AND.  TMIN.GT.PETMAX .AND.  NUTR.EQ.NJ
1 .AND. PEST.£0.NO)  GO TO 949

 IF < YEAk.NE.dGf\YR  .OR. MONTH.NE. BGNMON .OR.
1         OAY.NE.BuNDAY) GO TO d99
 CHANGE = UTE^PiMUNTH,DAY,2) -  TEMPD/0.17
 TGRAD = 0.0
 DO 948 1=1,24
   IF  ( 1-7)  94C, 900,  910
   CHANGE = ITfcNP(MONTH,DAY,1) -  TEMPI
   IF  (I.NE.17) GO  TO 94J
                     IMUEND IS LAST  DAY OF PRESENT MONTH
   IF  (DAY .NS. Ii-IOuND)  CHANGE  = 1 TEMP(MONTH,DAY+1,2J - TEMPI
   IF  (MONTH.Nt.I/:* GO  TO 925
   IF (DAY .Eg. IMutLND)  CHANGE  =  IT£MP< 11,31 ,2)  - TEMPI
   GO  TO 940
   IF  (DAY .Eg. IMDEND)  CHANGE  =  IT EMP< MONTH* 1,1,2) - TEMPI

   IF  u)   uU TJ  94J
          hINC = IW IN'D(MONTH , JAY)
          CEwX = I DEW(MONTH,DAY)
 WINF=(1.0-F) * F*( .35-.03*KUGI)
                                WINF REDUCES  WIND FOR FORESTED AREAS

         KUGI IS INOEA  TU UNDERGROWTH AND FOREST DENSITY,
         rilTh VALUES  0  TO 10  -  WIND IN  FOREST  IS 35% OF
         WIND IN OPEN  WHEN KUGI=0, AND  53 WHEN KUGI=10 -
         rtINO IS ASSUMED MEASURED AT  1-5 FT  ABOVE GROUND
         OR SNUn SURFACE

 DEWX = DE«X -  1 .0*ELDIF
               CtnPT  USES A  LAPSE RATE  OF 1  DEGREE/1000 FT

 IF KPACK .Lc. 0.0).AND.(TMIN  .GT. PETMAX))   GO TO 949

 CALCULATE HOURLY «INC  ANO RADIATION
 R  = IRAO(MGNTh,CAY)
 DO 952 1=1,24

   RADII)   = RPUL*K*RAOCON*R!\DDIS(I )
   CHECK OF TILLAGE TIME
          JCOLNT = JCGLNT «• 1
          CO S51 1=1, 12
             IF  UCCUNT.NE.TIMTIL( I)  .OR.  YEAR.NE.
-------
661.     C  CROP CANOPY  EFFECTS - ASSUMES LINEAR CHANGE BETrtEEN MONTHLY  VALUES
662.     C
663.           COVER = COVER!  + I 1.0- (FLCM(DPMI MONTH)+1-DAY)/FLOAT(DPM
664.           1          (HGNTh ))))*(COVERS-COVER 1)
664.1          XK3 = XK31  * il.O - (FLOAT!DPM(MONTH)«-l-DAY)/FLOAT(DPM(MONTH))))*
664.2          1          (XK32  ~ XK31)
665.     C
666.           IF  (NUTR.Ed.NQ)  GO TO 1017
667.     C
670.     C                           CALCULATION OF HOURLY SOIL TEMPERATURE
671.     C
671.1          IF  (INPUT.em.ENGL) GO TO 305
671.2          00  802 JHCUR =  1,24
671.3            TEMPX(JHOUR)  = 5 ,/9.*( TEMPX( JHOUR J-31. 5 >
671.4      802 CONTINUE
671.5    C
672.       805 DO  810  JhOUR=l,2'*
672.1              STEMPUHOUR) = ASZT + BS£T*TEMPX(JHUUR)
672.2              UTEMPUHOUR) -  AUZT + BUZT*STEMPlJHOUk)
672.3      810 CONTINUE
672.4          LT6MP = LTcMPi  + 11.0 - (FLJAT (DP M( MUNTH)+1-DAY )/FLOAT ( DPM
672.5          1                   (MONTH)))J*(LTEMP2-LTEMP1J
672.51   C
672.52   C     CONVERSION  OF  SOIL TEMP FROM F TO C FuR UUTRNT AND OEGRAO
67.1.53   C
d'>.54         If  (IMPUT  .Es.  1-cTK)  GO TO 315
672.55         DO  812 JHOUR=lf24
672.56             STEMP(JHOUR) - (STEMP(JHOUR)-32.0)*5./9.
672.57             UTE'-1P( JHOUR) = (UTEMP( JHUJR)-32. 0) *5. /9.
672.58     312 CONTINUE
672.59         LTEMP = (LTEKP-32.C)*5./9.
677.     C
677.1    C                           NUTRIENT  DAILY CALCULATIONS
677.2    C
678.     C                           TEST FOR  APPLICATION OF FERTILISERS
679.     C
630.     815   IF  (APLCNT  .GT. NAPPL)  GO  TO  660
681.           IF  (APDAY(APLCNTJ  .GE. JCOUNT)  GO TO 820
682.               APLCNT =  APLClMT «•  1
683.               GO TU  815
684.     820   IF  (JCCUhlT  ,NE. AP JAY (APLCNT) )  GO TO 860
635.     C
6B6.     C                           ADD NUTRIENT APPLICATIONS TO STORAGES
6fl7.     C                           AND INCREMENT MASS TOTALS IN SYSTEM
688.     C
639.           DO  830  IBLK=1,5
690.               DO 825   J=lt20
691.                 SN(J.ItJLK)  = SN(J,IbLK)  i-  SNAPL ( J, I BLK , APLCNT)
692.                 UMJ.IBLK)  = UN(J.IBLK)  *  UNAPL (J , I BLK. .APLCNT )
693.     825       CONTINUE
fc94.     830   CONTINUE
695.     C
696.           00  840  J=l,6
697.               SUM =  C.C
69.3.               DO 833   I8LK = li5
699.                 SUM =  SUM * SNAPLUt IBLK, APLCNT)  + UNAPL( J i IBLK, APLCNT)
700.     S35       CONTINUE
701.               TNA =  TNA *  SUM/5.
702.     840   CONTINUE
703.           DO  850  J=llfl4
704.               SUM s  0.0
705.               00 845   IBLK=1,5
706.                 SUM =  SUM * SNAPLUt IBLK.APLCND  * UNAPL ( J i IBLK, APLCNT)
707.     845       CONTINUE
708.               TPA =  TPA -»•  SUM/5.
709.     850   CONTINUE
710.           SUM = 0.0
711.           DO  8t)5  I6LK = i,5


                                         189

-------
712.
713.
714.
715.
716.
717.
718.
719.
720.
721.
722.
723.
724.
723.
726.
727.
728.
729.
730.
731.
732.
733.
734.
735.
736.
737.
733.
739.
740.
741.
742.
742.1
742.2
743.
744.
745.
746.
747.
748.
749.
750.
751.
752.
753.
754.
755.
756.
756.1
756.2
757.
757.01
757. C2
757. C3
757. C4
7i>7.05
737. C6
757. C65
757.07
757. C8
757.09
757.1
757.11
757.12
757.13
757.14
757.15
757. 16
757.17

655

C


C
860
C
C
C








865




870

C
C
C
C
C
C
C
C
881


882


883
884
C



885


C
C
C
1017






C




886

C
688
       SJM = SUN +  SNAPL(20,IBLK, APLCNT)  + UNAHL UO » I BLK , AKLI.N I'J
    CONTINUE
    TOLA = TOLA + SUM/5.

    WRIT: Jb,4003)   APLCNT,  MNArt(MONTH) ,  DAY, JCOUNT
    APLCNT = APLCNT +  1

    IF IJCOUNT  .IVE. TIMHAR)   GO TO 881

                         COMPUTE AMOUNT HARVESTED AND DECREASE STORAGES

    DO 870   J=l,20
       TNRH*(JJ =  C.O
       IF  (ScLHVU) .EC.  0)   GO TO 870
       SUM =  C.O
       DO  Stoii   IdLK=i,j
           SUrt  = SUM *  SNU.I6LK) + UNU,It3LK)
           SNU, IBLK ) = 0.0
           UN(J.IBLK) = d.O
        CONTINUE
        TNRHVU) =  SJM/5.  »  LMJ)  *  GNCJJ
        LN(J) = 0.0
        GNU) = 0.0
        TNPHVM(J) =  T.NRHVM(J) +  TNRHV(J)
     CONTINUE
     WRITE (6,4006)  MNAMJKONTH),  DAy

                           TRANSFER INPUT REACTION  KATES (KNI.KPI) INTO
                           REACTION RATES IN COMMON /NUT/  (KN,KP)
                           PtANT  UPTAKE RATES ARE THE FRACTION OF THE
                           MAXIMJN MONTHLY  UPTAKE PER UPPER
                           LAYERS, SUKFACE AND UPPER ZONE, (LILUPFJ
                           AND LOWER  /IUNE  (LZUPF).
     DO
        DO
                J=»i,8
                       = KMUtlZUNEJ
        CONTIfJUE
        DO 8a3  J=l,5
           KPU,IZONE) = KPKJ.IZONE)
        CONTINUE
     CONTINUE
     DO 835
        KN(3,I^UNE) = KN( 3,IZONE ) *ULUP F( MONTH)
        KP<3,I^ONE) = KP(3,UONEJ*ULUPF(MONTH)
     CONTINUE
        KN(3,J) » KN(3,3)*L^JPF(MONTH)
        KP<3,3) = KP(3,3)*LZUPF(MJNTH)

             CHECK FCR PESTICIDE APPLICATION  DATE

1017 IF (PEST .EW. NO)  GO TO lOld
     DO 896 1=1,12
        IF ( JCOJNT.NE.TIMAP( I) .OK.  YE AR.NE. ( YEAR AP ( I ) 41900) )  GO TO 096
        WRITE (6,lC7t)) XNAW(MONTHJ,DAY,TIMAP( n,SSTR(I)
        KFLAG = C
        TOTPAP = T01PAP * SSTR(I)*AKEA
        SJLG = SULG * SSTR(I)*AREA
IF (APMCOE  .tQ. SUHF)
00 880 J=l,i
   SSTRKJ) = i,STRl(J)
   USrH(J)  = JSTR(J)
CONTINUE
GO TO d96
                               GO TO U88

                               + SSTk{ I) *AREA*0.2*( SZDPTH/UZDPTH)
                                SSTRII )*AREA*0.2  -  SSTRHJ)
        00
               J=l,5
                             190

-------
757.18
757. 19
757.2
757.21
757.22
757.23
757.24
737.241
757.25
757 .26
757.27
757.23
757.29
757.3
758t
759.
760.
760.01
760. C2
760.03
760. C4
760.05
760.C6
76D. C7
7o0.08
760. C82
760. CS4
7ft 0.086
760. 11
760.12
760.13
760. 14
760.15
760. 16
760. 17
760. 18
760. 19
760. 2
760.21
760.22
760.23
760. 24
760.25
760.26
760.27
760.28
760.29
760.3
760.31
760. .12
760.33
761.
762.
7o~i.
764.
765.
765.5
766.
766.5
768.
769.
770.
7fl.
777.
773.
77*.
77s.
776.
SSTRKJ) = SSTRHJ) + SSTR(I)*AREA*0.2
890 CUNTIiMJE
8S6 CONTINUE
C
IF (SULG .GT. G.OUl) 1PFLAG = 1
C
C CHECK PESTICIDE bEGRAOATIOJ RATE
C
00 902 I=itl2
IP ( JwOuNT.NC.uUOi I) .'JR. YEAR. HE. (YuG( I) +1900) ) bO TO yu*.
.I'iUTL (6,1C77J l"NAP(MONTH) ,OAY ,bDGl I) ,KOG(I )
L)r.GC'j.N. » itOGil)
902 CONTINUE
C
C
C PRECIP READ LOOP
C
C
C CHECK FOR AISC READ hOJRLY PRECIPITATION
C
1018 IF (TIMPPT.EC.S.OK .TI^PPT.Eg.15) GU TO 1020
2020 00 2000 J=lf2
JK. = J*720/T MPPT
J J = JK = 72C/T IMPPT *• 1
PEAC(3,2010) Y»M.MO,DYiCN,(IRAIN( I) ,l=JJ,JK)
IF( (VK + 1900J .LT.BGNYR) GO TU 2020
IH(MO.«.T.KNSTRT) GC TO 2020
If-( OY.LT.GYSIKT ) GO TU 2020
IF ( INPUT. EL .ENGLJ GO TO 2030
00 204C I=JjfJK
204C IkAINlI) = IRAINU)*3.937 * 0.5
2030 JJJ = J
YR = YR + 1900
IF (C.N.EQ.SJ JJJ = CN
IT = (YEAK-YKJ * (MONTH-MO) + (DAY-OY) * UJJ-CN)
IF ( IT.NE.O) GU TG 1022
IF (CH.Eg.9J GO TO 1025
2000 CONTINUE
C
C HOURLY DATA SPLIT INTU 4 EWUAL 15 WIN DATA ITEMS
C
DO 2050 J=l,24
JK= So - J*4 + 4
JJ = 24 - J + 1
00 205C I=li4
2050 IKAIMI JK-Ui ) = IRAIN(JJ>
DIV = 4CO.
GO TO 1J23
C
C GET 5 UR 15 MINJTE PRECIPITATION DATA
C
1020 DO 1021 J=l,6
JK = J*iaC/Ti,Hf AC
JJ = JK - IfcC/T IMFAC * 1
IF (TIMf-AC.EU.il READ (5f10S5» YR , MO, DY, CN , ( I RA1 N ( I I , 1 = J J , J M
IF (TIMrAC.Eu.lS) READ (t>fl0941 YR t MO , UY, CN , { I RAI N < I J , 1 = J J, JiO
IF( ( Vrt + l^CC J .LT.BbKYR) GO TO 1020
Ic(y,O.LT.MNSTRT ) GO TO 1020
IF (OY.LT.OYSTRTl GO TO 1J20
IF ( I.JPJT.&J.EIJGL) GO TO /OS
00 70u I=JJ.JK
iHAI'id) = IRAIMI )*J. 937 * 0.5
7C6 CCNTlNUE
7C3 JJJ = J
YP = YR + 1SCJ
IF ICN.EU.^1 JJ J = V
IT = iYEAr<-YK) + (MONTH-HJ) + IDAY-OY) *• UJJ-CN)
IP .( IT.NE.O) 'jU TO 1022
191

-------
777.
778.
77", . 1
77M.
760.
781.
782.
783.
784.
765.
786.
787.
7^3.
789.
790.
791.
792.
793.
79 't.
795.
79e>.
797.
793.
7S9.
SOO.
831.
602.
803.
P05.
806.
807.
833.
809.
810.
912.
313.
814.
815.
816.
317.
813.
819.
820.
821.
822.
82j>.
824.
825.
326.
827.
828.
829.
330.
831.
832.
833.
840.

1021


1022

C
C
1023


1024
C

C
C
C USI
c
1025
C
C
C
C
1026



C







1028

1029
C
1030
C

c



c
1031



1033

1034
C
1035

840.3
8« 0.4
    IF UN.EC.*) GU  TO  1025
 CONTINUE
 OIV  = 100.
 GO T 0 lo<;J
 «RITr (6,1090)  JJJ,MCNTh,DAY,YEAR,
 GO TO ICdO
                                                      MOtDY,YR
                         DO 1024  I=1,INTRVL
                            RAIN(l) = IRAIN(I)/DIV
                            RAINT = RAINT *• RAIN( I)
                            CCISTINUE

                         IF (RAINT.GT.0.0) GO  TO  1026
                RAIN  LCOP IF MOISTURE STORAGES  ARE  NOT EMPTY

                IF  ((RESS.LT.0.001) .AND.(SRGXT.LT.0.001))  GO TO 1040
                             RAIN LOCP
                         DO
              1036
              TIME
              TF  =
              PR  =
      I=1,INTRVL
     = TIME + 1
     1
     RAIN(I)
                            IMIN = MCDITIME.Hl
                            IHR = (TIME - IrtlN)/H
                            IMIh = TIMFAOIMIN
                            PRNTK.E = 0
                            IF (PKINT.EJ.HO'JK)
                            IF (PR INT. E.J. DAYS)
                            IF (PR INT.EQ.MNTH)
                            IF (PRINT.£O.INTK)
                               GO TO 1J30
                               IF (IMIN .LT
                               GO TG 1030
                               IF (IHR .EiJ.
                                 GO TO  1028
                                 GO TO  1029
                                 PRNTKE = 2
                                 PRNTKE =  1
                               1)
                              24)
                      PRNTKE = 1

                      PRNTKE = I

IF iPRHTKE .NE.  1)   GO TO 1031

IF (HYLAL .EU. CALB)   GO TO 1031

                 InR,  IMIN,  DAY,MNAM(MONTH),YEAR
                            uRITt
                            WK I TE
                    (6, 1101)
                    (6, 1102)
                    (6,1103)
              CALL  LANDS(SFLAG,SNOPRT)
              IF  (IRfcSS ,\j£. 0.001) .OR. (PR
              CO  1033  J=l,5
                 ERSw(J) = 0.0
                 CU'JTINtE
              IF  (PRNTKE .EJ. 0)  GO  TO
              CALL  SEDTISFLAG)
             IF  (IPFLAG .EW. 0)  GO TO  971
             CALL  AJ3RO(UiSNi JZF , Li SN ,L £F ,
1 K,r>i! ,KGPL3,FPL/,LbTR,L.\S,Ll.j,LOi,GSTRtGAS,GCS»GDS,
2 APMJDE , TPliAL.CEGiuM.DcGSiJT , 'JtGUOM, OtGJOT , Uc GJ , OtGS ,
3 D£GLO/,JE JLCT , NIP ,NCLM, JI S T , TiJTP fiP ,T I MAP , Yc AS AP ,
4 DESJPP,SoRF,SC IL.SJLG)
              IF  ilrik . £j.  24)  bO TO  103d
                    = 0.0
                    = 0 .u
                                                          . GT . 0.001))   GO TU U34
                                         192

-------
845.                         GC TO 971
846.       1038              CALL OEGKADI
846.1         1  K,NI ,Kt,PLB,FPL^,i.STR,LAS,LCS,LDS,GSTR,GAS,GC$,&DS,
846.2         2  APMODE ,T P6AL , L^toSCM, OEGSOT , OEGUOM, UEGUOT , OE GJ , OEGS,
846.3         3  OEGLCK,DcGLOT,MP,NCCM,UIbT,TOTP AP ,TIMAP,YE ARAP ,
846.4         4  DESORP.SuRF.SC iLf SJLG.JESCQ^J
847.        971           IF (NUTR .EQ. NO)  GO TO  1036
848.     C
849.     C
850.                        CALL NUTRNT(UZSN,UZF,LZSN,L£F)
851.     C
852.       1036              CONTINUE
353.     C
854.                     GO TO  1050
855.     C
856.     C                    NO RAIN LOOP
857.     C
858.     C
859.       1040           TF = 1NTRVL
860.                     PR = C.O
861.                     P3 = C.O
862.                     00  1C42  1=1,5
863.       1042              RESdK I) = 0.0
864.                     PRNTrtE = 1
865.                     IF (PR INT.EQ.MrUH)  PRNTKE  = 2
866.                     IMIN * 00
867.                     IHR =  2t
863.                     IF 
-------
905. 1
905.2
905.3
905.4
906.
907.
908.
909.
910.
911.
912.
913.
913. 1
914.
915.
916.
917.
919.
919.
920.
920.1
921.
922.
923.
924.
925.
925.01
925.02
925. 021
925. C22
925. :3
925.031
925. 032
925.033
°25. 04
925.05
925. 06
925.07
925.08
925.09
S25.C99
925. 1
925. 101
925. 102
925. 103
C25 . 1 1
925.12
925. 13
925. 14
925. 21
925.22
'•25.221
925. 222
'>2K .223
^^'i.23
925.24
925.25
925.26
925.27
926.
927.
923.
929.
929. 1
92". 2
929.3
1
2
3
4
972

C
1050
C
C
r

i
c
c
c
1060
C
C

1
c

c
1070
C
C
C

C



9010
9011


9991

9992
C
9990


9020
9021



C
9080


9030
9031



C
1080
C
c
c
1079
1
2
                K,NI,KL.PLS,FPLZ,Li>TR,LAS,LCS,LQS,USTR,GASSOT,L»EGUOM, DEGUUT,OEGU,DECS,
                D£GLOM,LJcGLCT,M,3FNCC,-l,UIST,TOTPAP ,T I MAP, YE ARAP,
                DE50RP,SuRF,SClL,SJLG,JEGCONJ
                      IF  INUTR .Eu. NO)  GO TO  1050
                            CALL NuTRNT(UZSN,UZF,LZSN,LZF)
                                                        END DAILY LOOP
                         CONTIJVoE

                              fCNTHLY SUMMARY

                         CALL CLTMON (YEAR,KGPLB,LSTR,LAS,LCS,LDS.GSTR,GAS,GCS,
                         GDS,TP&AL,DfcGSOM,DE3UOMiDEGL72  CHAR1,
           /.iX.'CCLS  73-80 READ',4X,2A4)
1C9C FORMAT  ( ' !• , ****** tKkOR*****  INCORRECT INPJT DATA!    (JtSIKED  ',
    *   'CARU  ',11,'  FuR  ' ,12,'/• ,12, '/' ,I4,«; READ CARD  «,I1,'  FOR  '
                                         194

-------
932.
932.05
932.06
932, 1
932.2
932.3
933.
934.
935.
935. I
935.2
935.3
935.4
935.5
935.6
935.7
936.8
935.9
936.
937.
938.
939.
94-0.
940. 1
9M.
942.
943.
944.
945.
946.
947.
943.
949.
950.
«3l.
952.
953.
954.
955.
956.
957.
953.
95->.
96 J.
961 .
962.
963.
So 4.
965.
965.
967.
96S.
969.
973.
9/1.
972.
973.
974.
975.
976.
97f.
978.
979.
979. 1
979.2
979.3
979.4
* I2,'/' ,12, '/M4)
1077 FORMAT t • 0' ,f BEGINNING ON' , IX, AB, IX , 12 i2X, M DOG* ', I3i ') THE ',
1 'PESTICIDE DEGRADATION rtATE (KDG) EQUALS' ,F9. 3 )
1078 FORMAT 4 • 0 • , ' PEST I CI UE APPLICATION OCCURS ON ' , IX , A8, IX, 12, 2X,
1 ' (1 IMAP=' ,13,' ) HITH AN APPLICATION OF',F6.3,
2 ' LBS/AC')
1082 FORMAT ( ' 0' , • T I\LAGE OF THE SOIL OCCURS ON' • IX t A8 , IX , 12 , 2X,
1 '(TIMTIL=( 1 13,'), RESULTING IN A NEW FINES DEPOSIT ',
1 'STOKAGc UH ,F6.3,' TONS/ACRE1)
1083 FORMAT14X.I2)
1034 FORMAT< '0' , '+*+ERRCR*** INCORRECT INFORMATION FOR WRITING TO ',
1 'OISK.' ,/,lX, 'CPTIGNS ARE : KUNOFF , SEDIMENT , OVERLAND FL
2* .',/, XX, ' INPUT wAS «,A8)
1088 FORMAT! '0 ',/ ,'0', ' LINE PRINTER OUTPUT ONLY')
1085 FORMATl '0* ,/,'0',' DATA TO BE WRITTEN TO DISK AS FOLLUHS: ')
1086 FORMAT ( '0','LAMJ SURFACE RUNJFF/EROSI Oi>! nRITTEN TO DISK DATASET NU
1. ',12)
1089 FORMAT( 1A, 'TITLE - S20A4)
1C91 FORMAT ( • 1 ' ,25X ,'THI S IS A PRODUCTION RUN')
1092 FORMAT CO')
1093 FORMAT t • 1' ,24X , ' ThI S IS A CALIBRATION RUN')
1094 FORMAT ( IX ,3 12 , 11 , 12 16 )
1C95 PQRMAT UX,3I2,U, J6I2)
2010 FORM AT ( i OX, 3 II 2, ix), 11,1215)
1096 FORMAT (2CA-*)
1097 FORMAT (bX,A4)
1098 FORMAT (7X.A4)
1C99 FORMAT iiX,A4)
HOC FORMAT (AS)
1101 FORMAT {• 1' ,2>X,I2,' :',I2,' ON • , U , IX, A8, IX, 14)
1102 FORMAT ('«•', 25X,' 	 	 	 • )
1103 FORMAT t • 0 ' ,34X , • 8 LOCK 1 BLOCK 2 6LOCK 3 BLOCK 4 BLOCK 5',
C 5X,«TCTAL«)
1104 FORMAT 1 ' J' , 32X ,' PESTICIDE APPLICATION: SURFACE-APPLIED')
1105 FORMAT (' 0' ,32X ,« PESTICIDE APPLICATION: SOIL-INCORPORATED')
1106 FORMAT (« 0« , 32X ,' CHEMICAL : S20A4)
lie? FOPMAT c o» ,32x,' WATERSHED: «,20A4)
1108 FORMAT (• 0' , 32X ,' INPUT UNI TS: ENGLISH')
1109 FORMAT i ' 0 ' , 32x , ' I NPUT UNI TS: METRIC')
111C FORMAT I'O' ,32X,«OLTPUT UNITS: ENGLISH')
1111 FORMAT (' 0' ,32X,'UoTPUT UNITS: METRIC')
1112 FORMAT I' 0« ,32X, 'OUTPUT UNITS: BOTH ENGLISH AND METRIC')
1113 FORMAT I ' C1 ,32X, 'PRINT INTERVAL: tACH INTtKVAL1)
1114 FORMAT C O1 ,j2X ,' PRINT INTERVAL: EACH HJU^')
1115 FORMAT 1 ' C' ,32X , 'PRINT INTERVAL: EACH OAY<)
1128 FORMAT t ' 0 ' , 32 X , ' P R INT INTERVAL: EACH MONTH')
1116 FOPM4T 1' 0' , i2X, ' oNOwMELT L A1.CULA T I U4S PEKfORMEl)1 I
1117 FOKMiT 1 ' C1 , J^X • ' oNOrtMLLT NUT Y Ck HlKMPn • )
1118 FORMAT CO' ,32X, 'ADSORPTION AND OESORPTION ALGORITHMS USED')
1119 FORMAT (' 0' ,32X, 'ADSORPTION CALCULATED ONLY, NO DESORPTION'I
1120 FORMAT 4' 0' ,/' 0', 'hYCAL=« , A4, 2X, • INPUT= ' , A4, 2X, 'OUTPUT=« ,A4,2X,
1'PRINT^' ,A4,2X, 'SNCH=' , A4 , 2 X, • P ES T= ' , A4,2X,« NUTR=' ,A4,2X,
2' ICHECK = ' ,A4)
1121 FORMAT CJ'.'INFUT ERROR: IT IS NOT POSSIBLE TO MAKE CALIBRATION R
1UN WITH BOTH PESTICIDES AND NUTRIENTS TOGETHER',/,' ', 'CHANGE HYCA
2L TO PPOJ, OR EITHER PEST OR NUIR FROM YES TO NO')
1122 FORMAT CO1, 'INPUT ERROR: THE FIRST LINE OF THE PESTICIDE INPUT SE
IQUE'JCE XJST Bt THE rtORO PESTICIbE, CORRECT AND RUN AGAIN1)
1123 FORMAT ('<•', SOX, 'FDR PESTICIUtS'l
1124 FORMAT t ' + • , SOX , ' FOR NUTRIENTS')
1125 FORMAT ('+' , pJX, 'FOR HYOR3LUGY AND SEDIMENT ONLY')
1126 FORMAT t1 +' ,50X,'FCR PESTICIDES AND NUTRIENTS')
1127 FORMAT CO' ,' APHUUt=« ,A4,2X, «UESORP = ' , A4)
113G FOMAT ('0','LQnCR iONE' MONTHLY SOIL TEMPERATURES = ', 12F6.1I
1131 FORMAT 1'0','SCIL TEMPERATURE REGRESSION EQUATION CONSTANTS',
I/,1 ', 'SURFACE ZONE: ASZT = ' ,F8 .3 ,4X, ' BSZT= ',F8.3,
2/,1 ', 'UPPER ZCNc: AUZT = • ,F8.3 »4X, • BUiT = '.Fa. 3)
195

-------
960.
981.
982.
9?3.
984.
985.
936.
986. 1
987.
988.
969.
9°0.
991.
992.
993.
904.
<=95.
9V 6.
997.
99fl.
99^.
999. 1
99V. 2
9^V.3
1000.
1001.
1002. 1
1002.2
1002. 3
1C02. 5
1002.6
1004.
105.
1035. 5
1006. 1
1006.2
1007.
1037.1
ioo';.
100-?.
1013.
1 0 1 U
1012.
1013.
1014.
1015.
1016.
1017.
1018.
1C1-J.
1031.
1032.
10J3.
1C33.01
1033. C2
1033.03
1033.04
1033.05
1033.06
1033.07
1033. OS1
10:3.0S2
1C33.CS7
1033.1
1033.2
1033. 3
1034.
1035.
1164 FORMAT ( • 0 • • • I MRvL= • , 12 , 1 JX, • HYMI N= • , F8.4 , 8X, ' AREA= SF1G.4J
1165 FORMAT ( • 0' , «t3GNL)AY= • ,12 , 1 3X , ' 6GNMON= ' , It, 13X, ' BGNYR= «,I4J
1166 FORMAT ( ' 0 ' , • ENuOAY= • , I 2 , 1 3X, ' ENOMON= ' , I 2, 1 3X , ' ENL)YR = «,I4J
1167 FORMAT 1 ' 0' , /' 0 ' , ' UZSN = • ,Fd. 4 ,9X , • U£S= « ,F8 .4, 1 OX, ' LZSN= «,F8.4,
19X,'tZS= '.F8.41
1168 FORMAT t'0',«L= ' , F8 .4 , 12X , ' SS= ' ,F 8. 4, 11X , • NN= ' , F8 . 4, 1 IX, ' A= ',
lF8.4,l2X,'tPXM= ' ,Fd.4,9X,' PETMUL=' ,F8.4)
1162 FORMAT< '0','K3 = • , 12 (F4.2 , 2X 1 )
1169 FORMAT < • G« » • I NFIL = ' ,F8.4, dX r ' INTER= ' , F 8 .4 , 8X , • IRC= ',F8.4,10X,
l«K24l_ = ' ,Fd.4,9X, 'KK24= ' , F 8.4 , 9X , ' K24EL= SF8.4)
1170 FORMAT CJ','SG«= ' , F8.4, 10X, ' GnS- ' , F8.4, iOX, «KV= SF8.4,11X,
l'ICS= • ,F8.4,IOA,'CFS= ' ,F6.4 , iOX , ' IFS= ',F8.4)
1171 FORMAT ( '0' ,/' OS 'KADCON= • , F8 .4, 7X , ' CCFAC= ' , F8.4, 8X , • SCF= ',
1F8.4.10A, «ELOIF= ' , F 8 .4, 8X, • !ONS= • ,F 8.4,9X, '!F= SF8.4)
1172 FORMAT ('01,'uGK= ' , F8.4 , IOX , ' WC= ' ,F a. 4, 1 IX , • MP ACK= ',F8.4,8X,
l'EVAPSN= ' ,Fd.4,7A,«MELEV= • , f 8.0 ,8X, ' TSNOW= SF8.4)
1173 FORMAT t'0',«PACK= ' , Fa. 4 ,9X, ' DEP TH= ',rd.4l
1174 FORMAT ( • 0 ' , • P E Trtl N= • , F8. 4 , A/. , ' PET MAX= ',F8.-t,
17X,'wMUL= •|Fa.4,9X,lRMi.lL= ' ,f 8.4 ,9X, ' KJ(,I= ',F8.4)
1175 FORMAT <«0',/'0'f ' COVPMO ', 121F4.2.2X) }
1176 FORMAT ('O'.'SCIL ^ONtS DEPTHS AND bJLK DENSITIES1,/,' '»
l'SZDPTH= ' ,Fd.4,7X ,' U/OPTH= ' , F8. 4, 7X , ' 60S i= ",F8.4,7X,
2'BDJi= ',Fd.4,7X,'BOLZ= • ,F 6.4 , /, «0 S • LEACHINO FACTORS',
3/,1 't'UZF = ' ,F6. j, 7X,'LZF = '.F6.3I
1177 FOr.MAT l'0','JRcR= ' , F6.4 , 9X , ' KkE R= • ,F6. 4 ,9X, • JSER= ',F6.4,9X,
l'KSER= ' ,F6.4,9X, ' iR£M= ' , Fu.4 , 9X, ' SCMPAC= SF6.4)
1178 FOf-MAT ( 'O1 , «TIfAP= ' , 121 I J ,  )
1180 FORMAT ( ' 0' , /• 0 ' , ' PSSZ= ' ,F d.4 , 9X, • PS J£= ' ,F8 .^ , 9X, ' PSL£=' ,F 8.4 , 9X,
1 «P£ui= ' ,F8.4)
1179 FORMAT (10',IC^AA= • , F8.6 , 9X, ' UD= »,Fd.fa,HX,
l'K= ' ,Fd.4,12X, «N= ' ,Fd.4,12X, 'NP= SF8.4J
1181 FORMATJ'l'J
1182 FORMAT (•O'.'UCl^ ' , 12( I 3 ,2X J , / , 1 X, 'Y[)G= ' , 1 2( I 3 , 2X) , /, IX, ' KOG= ',
1 12(F5.3,2XI)
1133 FORMAT ( '0' , 'TIKTIL= ' , 12 ( I J,2 X) , /, IX ,
1 'YRTIL = ',121 IZnH),/, IX,
1 'SRERTL= ' ,121F6.3,2X ))
382 FORMAT (' ' S 7X , ' « AT ER ' ,^4X , ' StUl Mt NT ' )
1208 FORMAT CO' dX, 'bCDIMfc;jT,TOri ^S/HtC TAKE ' )
1209 FOPiXAT CO' ti A , ' S t'J I XC'IT , T JfJ WACrs E ' )
1210 FORMAT (' ' HX.'EROOEO SEDI.-lfcNT ' , 5 ( 3X.F 7. 3) , 4X, f- 7. 3 J
1211 FORMAT 1' • iiX.'F INEi DEPOSIT' ,6X, 5( 3X, F7 .3 ) ,4X,F7.3)
1260 FORMAT (•!• »ENO OF S IMJLAT IdN ' )
1263 FORMAT ('!' bX , 'UA TE ' ,4X , ' T I ME ' ,4X, ' FLO^ ( CFS-CMS ) • , 6X ,
X 'ScUlPENT (LBS-KG-XG/MIN-ult/L) ' ,23X,
X 'PtSTICIOc ( GM-'jM/MlH-PPM)' J
1265 FOPMAT (tlX,2^I3)
1264 FORMAT (ax,12IoJ
4005 FORMAT 1 ' 0 ' , ' NuTR IENT APPLICATION NCJ . ',12,' OCCURS UN ',
1 Ad,2X, 12, ' (DAY = ' ,13, ' ) ' )
4006 FORMAT ('0','PuAM HAR\/ESTMG UCC'JRS ON ',A8,LX,I21
5000 CGRMAT ( oX , I 2 , 2 ( dX , F6 . 0) J
5001 FORMAT (2«8X,Ii ),dX, I4J
5002 FORMAT (-+(dX,l-6.0J)
5003 FORMAT (o(oX,Fo.OJ)
5C04 FORMAT (dX,12F<3.uJ
50C5 FORMAT ( 2 1 dX , Ffc .0) J
5CC6 FORMAT < 3 < 8X , F6 .0) )
5009 FORMAT <8X,12I4)
5010 FORMAT t2 I dX,t-6.0 ) ,3 (6X,F6.0) ,2(4X,F4.0) )
5012 FORMAT <3(3X,F6.uM
9956 FORMAT l'C','OErii/G OPTIUN IS ON')
5013 FORMAT (10X,A4J
5014 FORMAT ( ' 0 ' , ' SNCnP R I NT=' , A4 J
C
STOP
196

-------
1037.
1333.
IOJ'9.
1341 .
1200.
1231.
1202.
1203.
1235.
1206,
12'J7.
12CS.
1209.
1210.
1211.
1212.
1213.
1214.
1214. 1
1215.
1215.1
1215.2
1215.3
1 2 j. 5 . 4
1217.
1 2 1 >.< .
121V.
1223.
1221.
1222.
1223.
1224.
1225.
1226.
1227.
1223.
122-3.
1230.
1231.
1232.
1233.
1234.
1235.
123-j.
1233.
1239.
1243.
1241.
1242.
1243.
1244.
1245.
1246.
1247.
124d.
1249.
1253.
1251.
1252.
] 253.
1254.
1255.
1256.




C
C
C
C






C

C


C


C

C

C




































     END
     SUBROUTINE  ERRSET(kESULTJ
     REAL RESULT
     RES'JLT=O.Q
     RETURN
     END
     SUBROUTINE CHECKR  (SSTR.UZDPTH,BDSZ,BOUZ,BDLL,
    1                    CMAX,AREA,HYCAL, INPUT,OUT PUT,PR!NT,PEST,
    2                    APMODE.DESUPP,ENOYR,ENOMON,ENODAY,
    3                    BGNYR,BGW'10N,BGNDAY,IEKROR,CALB,PROD,
    4                    ENGL,METk,BUTH,I NTR,HOUR,OAYS,MNTH,YES,NO,
    5                    SURF.SQIL.SZOPTH,COVPrtO,TIMTIL.TIMAP,
    6                    YEARAP,NUTR,LZTEMP)

     DIMENSION  SSTR112),COVPMO(12),TIMTIL(12),Li TEMP(12)

     REAL  LZTEMP
     REAL  S3TR, UiDPTH, BDSZ,BDJZ,tJUL£, CM AX , AREA ,S £OPTH ,COVPMO

     INTEGER**  BOTH ,CALB, DAYS , ENGL , HUIM ,H YC AL , I NPUT , INT1? , ML TR ,
    1           MfsTh,NO,NUTR,OFF , UN, OUTPUT , PE ST ,P Kl NT , PROD , SNUrf , YES

     !NT3GER*4  APMCJE,OESOR",SURF,SOIL
     INTEGER  ENOYR , END^N, ENDOA Y , bGNYR, 6GNMJN,BGNDAY

     INTEGER  TIM I IL ,TI MAP(12),YEARAPI 12J

1513 IF (JiDPTh .GT.  5/.CPTH)  GO  TO 1314
          HF- I Tt (o, Iol3 )
          lEf-R.CR  =  Ic*RO< +  1
1514 IF (S2.ul'Th .Lf.  1.0) GO TO  1^15
          viHTE.  (a, 1614) SZDPTH
          IEKKJR= I ERROR + 1
1515 DO 1516 1=1,12
     IF (COVPMO(I)  .LE.  1.0) GO TO 1516
          WRITE  (6,1615) COVPMO(I)
          IEhRCR= lERR'JR + 1
1516 CONTINUE
     DO 1526 1=1,12
     IF (TIMTIL(I)  .uE. 0 .AND.  TIMTIUI)  .LT. 367)  GO TO 1526
          hP.ITE  16,161/1 TIMTILII)
          IEKROK= IERKUR + 1
1526 CONTIM't
1513 IF IbOS^.oT.Ji.2 .OR.  aDU£.GT.31.2  .OR.  BDLZ.GT.31.2) GO  TO  1519
          hRITc  (o,ltld)  BDS^, BDU^ > 13DLZ

1519 IF (AOE'A .GT.  c.oi) GO TO 1520
          WRITE  Io,lfcl9)  AREA
          IERRLR  =  IERRCR + 1
1520 IP (HYCAL  .EJ.  L«LB .OR.  HYCAL .Eg. PRUO)  GO TO  1521
          WRITE  (o,it20)  HYCAL
          H.K^UR  =  IERKUR +• 1
1521 IF (INPJT  ,tO.  crjoL .OR.  INPUT .Eg. METR) GO  TO 1522
          WRIT-  (6,1621)  INPUT
          IEKKGR  =  IEKKOR + 1
1522 IF (OUTPJT .Ej.  E^GL .OR. OUTPUT .Eg.  METR .OR. OUTPUT .Eg.  BOTH)
    1     GO TO  1523
          rtPITE  (o,lfc22)  OUTPUT
          IFKRuR  =  ItKROR + 1
1523 IF (PPI.'iT  .EJ.  INIK .OK.  PRIfJT .Eg. HOUR  .OR. PRINT ,EU.  DAYS
    1     .C'<.  PRINT  .Eu. f'NTH)  GO TO 1550
          \nC IT E  (b, U2i )  PKlNT
          IFf-RCR  =  ItKkOR + 1
1550 IF (PEST .EQ.  Vh:i  .OK.  PEST  ,EJ. NO)  GO TO 1551
                               197

-------
1257.
1259.
1263.
1261.
1262.
1263.
1264.
1265.
1266.
1267.
126;).
1?69.
1270.
1271.
1272.
1273.
127V. 1
1274.3
1274.4
1274.5
1274.6
1274.7
1274.8
1274.9
129 J.
1551



1553


155A



1555



1556


1557
1


1558
1565
IF
IF


IF


DO
IF


COI
IF


DO






COI
IF
1295.
1277.
1291.
1299.
1300.
1301.
1302.
1303.
1336.
1307.
1303.
1309.
1310.
1311.
1312.
1313.
1314.
I 3 L 5 .
1316.
1317.
1313.
1321
1323.
1324.
1325
1326.
1327
1324.
1329
1330.
1331.
1J32.
1 J33
1 534
           WRITE (6,1650) PEST
           IERRGR* lEHROR + 1
         (PEST .cQ. IvO)  GO TU 1565
         (APMOoE .EQ. SJkF .OR. APMQOE  .EQ.  SOIL)  GO TO 1553
           kiFITt (6,1052)  APMOQE
           Ifci-kOR = ItRkCR + 1
         IOESORP .EQ. YES .CR. DESORP .EQ.  NO)  GO  TO 1554
           WRITE (6,1653)  DESORP
           ICf-RCR = IcRkOR «• 1
         1555  1=1,12
         (SSTR(I) .GE. 0.0) GO TO 1555
           WRITE (6,lfc5f)
           IEI-RC* = IERROR + 1
        ITINUE
         (CMAA .LE. 1.0) GO TO
           .•/RITE <6,l£5o)  CMAX
           lEkRoR = IERRUR + 1
         1558  1=1,12
         IF  (TIMAPU ) .Gt .0 .AMU. TIMAP( I) ,LT. J67)   GO TO 1557
         WRITE Io,l657) TIMAP(l)
         lERkuR  = lERRJk * 1
         IF  ( ( YEARAP ( D-H900).GE.6GMYR  .ANO. ( YEARAP(I)+1900).LE.
                     oJ TO 1558
                                                  NO) GJ TO 1570
                                          1556
         (MUTk .tO. Yci .JR. NUTR .tQ.
           rtP 1 Tc t ii, I toj > NiJTk
           IERROR= IERKOR + 1
 1570 IF (N'JTK.EU.NO .ANO.  PEST.Eg.NO)
      DO 1572  1=1.12
         IF (LZTEMP(D.GT.-10.0 .AND.
         WRITfc (0.167C) LZTEMP(I)
                                   GO TO 1581

                                 LZTEMPID.LT..120.0) GO TU  1572
 1572
 1531
   IERRO«
CONTINUE
IF {ENOrR
IF (EMDVR
IF (
                  I ERROR * 1
               1
.GT.
.Eg.
.Eg.
• G t •
BGNYR) GO TO 1582
doNYR .AND. ENDMON
                                bGNYR .AND.
                                dGNOAY) GO
                                 ENOMON
                                TO  1582
.GT. 6GNMJN) GO TO  159<>
.EQ. BGNMON .AND. ENDUAY
           WRITE (6,lodl)
           IERRCR = ItkRUR + 1
 1582  CONTINUE

; CHECKR  ERROR STATENtNTS

 1613  FORMAT ('0','eRRUR: U^DPTH HAS  BEEN  INPUTTED  LESS THAN OR EQUAL  TO
     1 SZDPTHi THIS IS NOT REALISTIC1)
 1614  FORMAT (• c1,'ERXUR : S/OPTH HAS  BEEN  INPUTTED  AS ',F8. •<»,••, IT MUST
     iaE  LESS THAN 1.0 INCHES')
 1615  FORMAT CO','ERROR: CNE OF THE  VALUES  FOR COVPMO HAS BEEN INPUTTED
     1 AS ',Fa.4,«; CCv/PMO MUST BE LESS  THAN 1.0')
 1617  FORMAT CO','ERROR: ONE OF THE  VALJES  FOR TIMTIL HAS BEEN INPUTTED
     1 AS ',18,'; TIMTIL MUST BE A POSITIVE  INTEGER LESS THAN 367')
 1618  FORMAT <«0','£HROR: BCSZ, BUJZ,  AND  BDLZ   HAS BEEN INPUTTED AS  ',
     13F8.4,'; THEY fbST bE GREATER ThAfl 31.2 Lb/FT(3)')
 1619  FOR-MAT ('0','EkROR: AKCA HAS BEEN  INPUTTED AS SF8.6,'; IT JHJULO
     1BE  INPUTTED IN AtRES, HOWEVER II-  THIS  IS  ACTUALLY THt CASE THEN  SE
     2T ICHECK=OFF',/,'  ','AND RUN AGAIN')
 1620  FORMAT i'0','EhkOR: HYCAL HAS 3EEN INPUTTED AS '
     1SFT ECiUAL   TO CALb  CR PRUD')
 1621  FORMAT ('0','ERkOR: INPUT HAS BEEN INPUTTED AS '
     1SET EQUAL   TO E^GL  CR METR1)
 1622  FORMAT (•0','EX30k: UUTPUT HAS  uEEN  INPUTTED  AS
     1 SET EQUAL Tui EITHER ENGL, ricTR,  OR  BUTH')
 1623  FORMAT CO't'EHRUR: PRINT HAS BEEN INPUTTED AS '
     1SET EQUAL   TO cITri£R INTK, HUJR,  JAYS,  OP.  MNTH')
 Io50  FORMAT <'0','EKHUk: PEST HAS BEEN  INPUTTED AS "
     1ET  EQUAL TO rES «R flC'J
,A4,«
,A4,«
1 ,A4,
,A4,«
A4,' ;
; IT MJST Bt
; IT MJST ot
'; IT MUST BE
; IT MJST Bt
IT MUST BE S
                                        198

-------
1335.
1336.
1337.
1338.
1339.
1340.
1343.
1344.
1346.
1347.
1355.
1356.
135?.
1353.
1652

1653

1654

1656

1657

1658

1665

1670

1681
                                                    tVn
                                                                          IT MUST bE
,'cMOk: APMuOE HAS  dE E'J  INPUTTED AS
TC SuRF OR SUIL' )
,'ERKUk: DESUFP HAS  BEEN  INPUTTED AS
TO YES CR NO')
         SOME OF THE  12  SSTR  VALUES INPUTTED ARE LESS  T
                              ,A4,
                                                           IT  MUST  BE
13e>0.
 FORHAT  CO1
1 SET EQJAL
 FQk •'Al  I ' 0'
1 SET EQJAL
 PClFM-iT  ( • 0'
1HAN O.C; THEY  KuST  BE  POSITIVE*)
 FQRMAT  CO'.'ERRua:  CMAX HAS B5EN INPUTTED AS  ',F8.4,';  IT SHOULD
1BE SET  LESS THAN Uk EQUAL TO 1.0')
 FORMAT  ( «u« ,'EKROk:  TIMAP HAS BEEN INPUTTED AS  ',14,'
18E A POSITIVE  INTEGER  LESS THAN 367')
 FORMAT  l'J','cR*GK:  THE INPUTTED YEAR OF APPLICATION
   WITHIN THE PtrtlOC CF SIMULATION')
          0','ERkuk:  NuTR HAS bcEN INPUTTED AS  ',A4,'i
          TO YES OR  NG')
          0','ERkuR:  ONE OF THE VALUES Or LiTEMP HAS  KEEN INPUTTED
IAS ',F8.4,'; THIS  IS  NOT REALISTIC.  CHECK IMPUT UNIT  CONSISTENCY•)
 FORMAT  1'0','tkKjk:  THE IMPJTTcD END DATE (ENDDAY , hNUHOIN, ENOfh )  UL
ICU^S BEFukc THE DtGIN  OATE 1 bo^DA Y, 6GNMJN, BGfJYR I ' )
1R
 FORMAT t'
1ET EQUAL
 FORMAT ( '
                                                          TIMAP MUST
                                                        DOES  NJT  OCCU
                                   IT MUST dE S
13-5.
1400.
1401.
1402.
1403.
1404.
1405.
1406.
1407.
1403.
1409.
1410.
1411.
1412.
1413.
1413.1
1413.2
1414.1
1414.2
1414.3
1414.5
1414.6
1415.
141o.
1417.
1413.
1419.
1420.
1421.
1422.
1423.
1424.
14^5.
1426.
1427.
1423.
1429.
1430.
1431.
1432.
1433.
1434.
1435.
1436.
1437.
1430.
1440.
1441.
C
C
C
C





C

C






C
C

C



1501


1502


1503


1504


1505


1506


1507

1508

                 END
                SUBROUTINE CHECKS
                        (HYMIN,INTRVL»U£SN,LZSN,IRC,NN,L.SS,A,UZSiL£S.
                         K24L,KK.24,K24ELt K3 f SNOW . I CHECK, I ERROR f
                         YEStNOiON,OFF,RADCONfCCFACfSCF,EL3IF|
                         I DNS 11- ,DGMf rtCf EVAPSN.MELEViTSNOW,
                         PETMINiPETMAX.PETMULiWMUL,RMUL,KUGIJ
                DIMENSION   K3(12)
                REAL  LZSN,IRC,NN,L,LZS,K24L,KK24,K24EL,K3
                REAL   IO,«1S,MELEV,KUGI
                REAL   HYMIN.UiSNtSSf A,UZStRAJCON,CCFAC,SCF.ELDIFf Fft>&MfrtC,
                       EVAPSN,TSNUrt,PETMIN,PETMAX,PETMULiwMUL,RMUL
                 INTEGER*4   BOTH,CALtJ,DAYS,E.^GL,HOUR,HYCAL,INPUT, INTR.METR,
                1            MNTH,NO,NOTR,OFF,ON,OUTPUT,PEST,PRINT,PROu,SNOW,YES
                 INTEGEP*4  IChECK
                 IF
                 IF
                 IF
                IF
                IF
                 IF
                IF
                 IF
                IF
        (HYMIiM  .GT.  0.0)
          V.RITE  (6,1600)
          IERROR  =  IERRCR
        (INTRVL.Ed.5 .OR.
          liPITE  (6,1601)
          IERRCR  =  lEkkCR
        (UZSlM  .LT.  LZi
          V.RITE  (6,160^)
          IE1-RCR  =  lERkCR
        (IRC  .LE.  l.C)  GO
          WRITE  (0,1603)
          !EkRCi\  =  ItKKCR
        tNN  .LC.  l.CJ bO
          WRITE  (6,lo04)
GC TO 1501
 HYMIN
 + 1
 INTRVL.EU.15
 INTRVL
 + 1
GC TO 1503

 + 1
 TO 1504
 IRC
 *• 1
TO 1505
 NN
                                                    .OR ,
                                         INTRVL.EQ.60* GO  TO  1502
          IERACR  =  IERRGR  + 1
        (L .GT.  1.0)  Gu  TO 1506
          wPITc  (e,loJi>)   L
          IERRCR  =  liRKCR  + 1
        (SS  .LT.  l.C)  Gu  TC 1507
          t'JRITE  I 6,1 o06)   SS
          IE(- RLK  =  lEkkCR  + 1
        (A .LE.  O.G)  oO  TO 1508
          WRITE  (6,loG7)   A
          IERRCR  =  ItRROR  ••• 1
        (UZS .LT. LZ^l GO  TO 1509
          WRITt  Ib, loOd )
                                         199

-------
1442.
1443.
1444.
1445.
1446.
1447.
1443.
1449.
1450.
1451.
145? .
1453.
It 54.
1455.
1456.
1457.
1458.
1459.
1463.
14-jl.
1462.
1463.
1464.
1465.
1466.
146/.
1468.
1469.
1470.
1471.
1472.
1473.
1474.
1475.
1476.
1477.
1473.
1479.
1430.
1431.
1462.
1433.
14«4.
14S5.
I486.
1437.
1483.
1409.
1490.
14V1.
1492.
1493.
1494.
1495.
1496.
1497.
1493.
1499.
1500.
1501.
1502.
1503.
1504.
1505.
1506.
1507.
1518.

1509


1510


1511


1512



1527
1524


1525



1529


1530


1531


1532


1533


1534


1535


1536


IF


IF


IF


00
IF


IERKU =
(K.24L .LE.
WPITE (6,
IERRCR =
(KK24 .LE.
WRITE (o,
lEf'RuK =
(K24LL .Lfc.
WRITE (6,
ItKKCR =
1527 1=1,12

-------
lt>OJ.      1550 IF  (PETl'.UL  .GT.  0.0)  GO TO 1580
1510.                WRITE  lo,U4l)  PETMUL
1511.                !F>RCR =  IEKRUR  + 1
1512.      1580 IF  (ICHtCK.  .EC.  ui4 J  GO TO iD32
1513.                WF02 FORMAT ( • 0' , • liRKGR :  UiSN HAS BEEN INPUTTED GREATER THAN  OR EyUAL T
1524.           10  L£SN,  THIS IS NOT REALISTIC')
1525.      1603 FORMAT CO', 'ERROR:  IRC HAS BEEN INPUTTED AS  «,F8.4,';  IT MUST BE
I52b.           1SET LESS THAN CM EuJAL TO 1.0')
1527.      16C4 FORMAT CO', 'ERROR:  NN HAS bEEN  INPUTTED AS  ',F8.4,«;  IT MUST 8E S
152;}.           1ET  LESS  THAN 1.0')
152^.      16C5 FURMAT CO'.'ERkuk:  L HAS BEEN INPUTTED AS ',F8.4,«;  THIS LOOKS RA
1533.           ITHtR STRANGE - REHEMBER THE UNITS ARE  IN FEET OR  METERS')
1531.      1606 FORMAT i ' 0* , « HARNI NG : SS HAS BEEN INPUTTED AS «,F8.4,';  A LAND SLO
1532.           1PE  OF  4f> UEGREES OR  GREATER IS QUESTIONABLE,  HOWEVER  IF  THIS ACTUA
15J3.          2LLY IS TRuE'i/.1 'i'SET ICH£CK=OFF  AND RUN AGAIN1)
1534.      16C7 FORMAT C 0' , • WARNI NG: A HAS BEEN INPUTTED AS  »,F8.4,';  IMPERVIOUS
1535.          1APEA IS  NUT CUNSIDcRED IN SEDIMENT  REMOVAL AS TH? MODbL  IS BASICAL
1536.          2LY  FOR ',/,'  ', 'AGRI CULTURAL AREAS, HOWEVER  IF  IMPERVIOUS AREA IS
1537.          3DESIRED  SET ICHECK=OFF AND RJN AGAIN')
1533.      16C8 FORMAT i • 0 ' » ' EftKUR :  JZS HAS 6EEN INPUTTED GREATER THAN OR EUUAL TO
1539.           1 LZS,  THIS  IS NCT REALISTIC')
15^3.      16C5 FOP4AT ('0','tRROR:  K2^L HAS BEEN INPUTTED AS ',F8.4,«;  IT rtuST BE
1541.           1 SET LESS  THAN CR EJUAL TO 1.0')
1542.      1610 FORMAT t'U'.'ERKJR:  KK24 HAS BEEN INPUTTED AS ',F8.4,«;  IT MUST BE
1543.          1 SET LESS THAN OR EgUAL TO 1.0')
           1611 FORMAT {' 0 ',' ERROR :  K24cL HAS dEEN  INPUTTED  AS  «,F8.4,'; IT MUST B
               IE SET  LESS  ThAN  UK EQUAL TO 1.0')
           1612 FORMAT 1'0','ERPOR:  K3 HAS BEEN  INPUTTED AS  «,F8.4,'i  IT MUST BE S
                1ET  LESS  THAN OR  EiJUAL Tij l.O'l
     1     1624 FORMAT ('0', 'ERROR:  SNOH HAS BEEN INPUTTED AS ',A4,';  IT MUST BE S
     2         1ET  EUUAL TO YES  OR NC')
           1628 FORMAT ( « 0' , ' cRRuR :  RADCON HAS BEEN INPUTTED  AS  '.F8.4,'; RADCON M
               1UST BE GREATER THAN  1.0')
1550.      1629 FORMAT {'0«, 'ERROR:  CCFAC HAS BEEN  INPUTTED  AS  ',F8.4,»; CCFAC MUS
1551.          IT BE GREATER ThAN 0.0')
1552.      1630 FORMAT { ' J« , • ERnuK :  SCF HAi dEEN INPUTTED AS  ',F8.4, '; SCF MUST BE
1553.          1 GREATER  THAN C.u')
1554.      1631 FORMAT CO', 'ERROR:  ELUIF HAS BEEN  INPUTTED  AS  ',F8.4,'; ELOIF SHO
1555.          1ULD BE INPUT IN  TrICUSANUS OF FEET AND CANNOT  EXCEED 30.0')
1556.      1632 FORMAT 1'0','ERKOR:  IONS HAb BEEN INPUTTED AS «,F8.4,';  IONJ MUST
1557.          IrtE  LESS  ThAN i.o')
155d.      1633 FORMAT ('0','ERKuR:  F HAS BEEN INPUTTED AS ',F8.4,';  F MUST BE LES
1559.          IS THAN OR ECU4L  TO l.J')
1560.      1634 FORMAT { • 0' , • wAHN I N(j :  DGM HAS BEEN  INPUTTED  AS  'tF8.4,'; VALUES GR
1561.          1EATER  THAN  1.0  INCHES FOR DGM ARE QUESTIONABLE')
1562.      1635 FORMAT I'O', 'ERROR:  hC HAS BEEN INPUTTED AS  «,F8.4,'; rtC MUST d£ L
1563.          1ESS  THA1M  1.0' )
1564.      1636 FORMAT («C','tRhUK:  EVAFSN HAS BEEN INPUTTED  AS  ',F8.4,«;  EVAPSN C
1565.          1ANNLIT  BE  A  NEGATIVE  NUMBER')
1566.      1637 FORMAT ('0','cRKOk:  MELtV HAS BEEN  INPUTTED AS  ',F9.1,';  MELEV CAN
1567.          1MOT  HAVE  A  VALLE GREATER* THAN 30000.0')
1563.      1638 FORMAT t'G',  'ERKUK:  TSNOv^ HAS BEEN INPUTTED  AS  ',F8.4,«;  TSNUrt MU
1569.          1ST  HAVE  A VALUE  bKEATER THAN 20. U AND LESS THAN 40.0')
1570.      1639 FORMAT {'0','LRKJK:  PETMIN MAS BEEN INPUTTED  AS  (,Fo.4,';  PETMIN M
1571.          1LST  BE OKEATEk  THAN  30.0')
1572.      1640 (-OKMAT Cu'.'ERKuR:  PETrtAX HAS oE EN INPjTTEU  AS  ',Fd.4,';  PtTMA* M
10n.          UJST  6E LESS ThAN oC.0'1
\lj7<..      16M f'VV.T t* 0' . ' f.nt-.ji\:  PfcT-lUL H\b OtfcN I.JHUTTtD  AS  ',f-a.4,'J  PifTi-IJL M
1545
1546
1547.
1547
1547.
1543.
                                        201

-------
1575.
1576.
1577.
1573.
1579.
1530.
1581.
1582.
1583.
1584.
1585.
1587.
1583.
1589.
160J.
1601.
1602.
1603.
1604.
16C5.
1606.
1607.
1608.
1609.
1610.
1611.
1612.
1613.
1614.
1615.
1616.
1619.1
1619.2
1619.3
1620.
1621.
1622.
1623.
1624.
1624.1
1625.
1626.
1627.
1628.
1629.
1630.
1631.
1632.
1633.
1634.
1635.
1636.
1637.
1637.1
1633.
1650.
1651.
1652.
1653.
1654.
io55.
1655.1
1655.2
1655.3
1655. 4
1655.5
16.56.









i

C


C
c
c
c

c
c
c
c
c

c








c





c













c





c





c
    1UST BE GREATER  THAN 0.0'J
1642 FORMAT ('0','cRROR: UMUL HAS
    18E GREATER  THAN 0.0')
1643 FORMAT ('O'.'ERRGK: RMUL HAS
    1BE GPEATcP,  THAN 0.0')
1644 FORMAT CO1,'ERROR: KUGI HAS BEEN
    1BE A POSITIVE  NUMBER  LESS  THAN 10
1680 FOP.rlAT ('0','tRRUK: ICHECK HAS
    1 SET EUUAL  TO  ON OR OFF')
1682 FORMAT CO1,'THE TCTAL NUrtbE*
    1ENCE EOJALS'.IJ,',  PLEASE

     PETUPN
     END
     BLOCK DATA
                               BEEN INPUTTED AS  SF8.4,*;  WMUL MUST

                               BEEN INPUTTED AS  ',F8.4,';  RMUL MUST

                                    INPUTTED AS  ',F8.4,';  KUGI MUST
                                    0')
                                 BEEN INPUTTED AS  ',A<*,';  IT MUST faE
                                OF DETECTED
                            CORRECT AND TRY
ERRORS IN THE  INPJT
AGAIN OR CONTACT  tPA')
                    ELOCK DATA TO INITIALIZE VARIABLES
     IMPLICIT  REAL(L)

     DIMENSION RES6(5),RESBU5),ROSi3(5),SRGX{&),INTF(5),RGX{5), I NFL (5)
    1 JZSB<5),APERC8<5) ,RIB< 5 ) , ERSN< 5) ,K3( 12)
     DIMENSION SRER (5) , ROBTOM15) ,RDbTOT( 5) , INFTOM15) , INFTOT(5) ,
    1 ROITOM15),RCITOT(5),RXB<5) , 5RSTJMI 5) , ERSTOT (5 ) , MNAMt 12 it RAJ (24),
    2 TEMPXJ24) ,WINCA(24) , RAIN(28d)
     DIMENSION LSKO(128),EROM123),RRaSU28)
     DIMENSION SMCIST(^4,5),JMOIST(24, 5) ,LMOIST(24),
    1          STEMP(24),UTEMP(24)

     COMMON /ALL/  Rb ,HYM N, PKNTKE ,HYCAL, DPS T, OUTPUT , T IMF AC ,L^S, AREA,
    1 RESBl,f',RA'JMtM , CiMM EM , CRA I N>1,CUNM EM , SGMM , SNE GMM , SE VAPM , SUMSNY,
      PXSNY,MtLRAY,PAL)MEY,CDRMeY,SGMY,i;UNMEY,CRAINY,SNEGMY,SErfAPY,
      TSUeAL,COv/ER,CO\/KMX,R08TllM,*OUTOT,KX6,KaiTUM,KOITOT, IMFTuM,
a
9
* liUPAL,l«UVCKfUUVKnA,KUD1Un,r\UUIUI|RAD,KUllUn,«UllUI,ll';riUI>l,
1 INFTGT .ERSTCf , fcRS TOT , i>RER . T5MPX, RAD, ,1INOX ,R A IN , INPUT,OSNRJS
2 DSNFLO , D SNc* i , LSRU, EROi.TrttJLSZ, LOOP, NERDS, N ILSMJ.RROS, NRROi

 COMMON  /NUT/   DFLT , SN , S'JT , S NRSM , S NRLM ,Uh,UNT ,UNI , UNI T ,•
1            y,
-------
1656.01
1636.02
1656.03
1656.04
16t>6. 05
1656. C6
165o. C7
1650.08
1656.09
1656. 1
1656. 11
1656.12
1656. 13
1656. 1*
1656. 15
1656. 16
1656. 17
1656.18
1656.19
1656.2
16-J6.21
1656.22
1656.23
1656.29
1659.2
1659.3
1659.31
1659.32
1659.4
1659.5
1660.
1667.
1669.
1670.
1671.
1672.
1673.
1674.
1675.
1676.
1677.
1678.
1678.1
1673.2
1678.3
1673.4
1673.5
167R.6
16BO.
16 tl.
1682 .
1633.
16 is4.
itei .
1667.
1683.
1690.
1691 .
1692.
1693.
1694.
1695.
1698.
1702.
1703.
I70'«.
1705.
1708. 1
C CCKMON ALL DECLARATIONS FOR 1*2 £. R*4
INTEGER P*NTisE»TI fFAC.IMIN, IH*, TF, JCGUNT, I DEBUG
REAL PU,HYHIN,LZS,AkEA,RESBl,ROSfl,SRGX, INTF ,RGX, INFL,
1 UZSti,APtRCB,KlB,ERSN,rt,P3,A,Rt$8,SMUIST,UMOIST,
2 LMOliT.UPST, ST£MP,UTEMP,LTEMP,MU£,MLZ
C
C COMMON LAUti DECLARATIONS FOR I*2't R*4
INTEGER CAY,MOiMTH,OSNRUS,DSi>IFLO,o;>NERS,TM6LSZ,NEROS,
1 NILSkCt.MKROS
REAL SEVAPM,sUfSin,PXSUY,McLRAY,KAOMEY,CDRMEY,SGMY,CONMEY,
1 CkAIrtYf SNcl*MYi SEVAPY.TSNBAL .COVER, COVRMX, ROBTOM.ROBTOT,
2 PX3,ROirCM,PtTMAX,ELDIF,UEWX,PACK,OEPTH,SDEN,
3 IHACK,TMII\,SUMSNM,PXSf'M,XK3 , MEL RAM, RAOMEM, CDRMEM, CRAINM,
4 CUNMEM.SGM, SNEbMM, PRTGT,ERSNTT,PRTUM,ERSNTM,RUTOM,
5 NEPTGM.RCSTOM, RITOM,R IHTOM, BASTOM.RCHTOM, RUTOT .NEPTOT ,
o ROSTUT,KITOT ,R INTUT , B ASTUT, RCHTUT , TwBAL.EPTOM, EPTOT,
7 UZ3,UZSN,L/SN, INFIL, INTER, IRC,NN,L,SS, SGwl , PRt SGw ,GWS ,
8 KVt N24LtKi<24,K24EL,EP,IFS,K3, tPXM, RcSS 1 , RESS.SCEP ,
9 SC£Pl,SkGXT» SRGXT1,JKER,KRER. JSERiKSER , SRERT,MMPI N»
* M£TOPT,CC(-AC tSCF.IDNS ,F,JGM ,WC, rtPACKt E VAPSN.MEL EV t
1 TSNOrt,PETMI,gfROITOT,INFTOMi INF TOT , ERSTOMf ERSTOT , SRERf
2 TEMPX.RAC t« I NDX.RAINt LSRO, EROS, RROS
C
C
INTEGER TSTEP,NSTtPfSFLG,JFLG,LFLG,GFLG
C
INTEGER*-* BOTh , C ALB , DAYS, ENGL ihJUK ,HYCAL T INPUT , INTR.METR,
1 MNTH,NL),NUTR,OFF , ON .OUTPUT , PfcST ,PRI NT , PROD , SNOw , YES
C
INTEGER*4 LOOP
DOUBLE PKECISILN MNAM
REAL NP
C
REAL DELT,
1 SNT(20J ,SiNRSM(20f5) ,SNROM UO, 5) ,
2 UNT(20) fUUI(20,i>) ,UNI Tl 20 J , UNRlrtt 20 f 5) »
3 NR5MUC i5) »LNkfM<20) r
4 SNRbMl2Gr->),UNRdM(20i5) t LNRbH (20) ,GMRBM( 20 J , TNRbM ( 20) ,
5 SNKSYUO,i>)fSNROYt20f5)fUNRIY(20t5»tNRSy<20ia) ,
6 LNRPY(2CJ( SNRBY(20,t>) i (JNRBY (20t 5) ,LNRBY( 20) i GNRUY( 20) ,
7 TfvRt)Y( 20) , TNRHV(20) , TNRHV.M(^O) tTNRHVY(20) ,TNA ,TPA,T CLA ,
8 KMdft) tTHKN(U) i KP 1 3,4) tTHKP(S) , NBAL , PHBAL ,CLBAL
DOUBLE PRECISION SN (2j(f> ) , U.JUOf 5) ,L^{20 ) ,GN( 20)
REAL STST.PRSTOrtl 5) , SPkCTM ,PRSTOT< 5) t SPRSTM ,PROT JM( 5) ,SAST,
2 PROTOT(S),SCST,U^ITOM(5),SOST,JPITOT(!>),UTST,STS(5),UAST,
3 UTS(5) ,JCST,bAS( j ) , UDST , SC i( 5 ) ,F P, SO S (a ) ,CM AX ,SSTkl ( 5 I ,
4 SPROTT.UAS15) , SPRSTT , JCS ( 5 ) , FPUi tUDS ( 5) , UPk ITM.'JSTM 5) ,
5 UPRITT.JPRISiS)
DATA PftTCT, EH SNTT/*0. O/
DAT4 Fu;}TCMt HLuTJT, I.jf:TjM, INFTOT, RjITbM, kUll dT/ 30*G.O/
DAT;, T^.iiAL, RESU, SRGX, INTF, CKSTCM, t,RSTaT/2o*o.o/
DATA PES81, SASTO^, RCHTOM, tJASTQT, RCHTOT/9*0.0/
DATA EPTOM, £ P TOT/2*0.0/, PRNTKE/0/
DATA PR, P3, RXti, RGX, INFL, UZSB, APERCB, DPST/28*0.0/
DATA TIMFAC/0/, J/SN, LZSN, INFIL, INTER, IRC, NN, L, SS/8*0.0/
DATA A, (JiS, LZS, SGh, GWS, KV, K2 4L , KK24/8*0.0/
DATA IFS, K24EL, K3 , £PXM, COVER, CO VRiMX/ 17*0. 0/
DATA ErlSN/5*O.C/, SRER/5*0.0/, SRERT/0.0/
DATA AkEA, M/2*0.0/
DATA Hui, MLZ/2*0.0/
DATA MrjAM/' JAMJA RY ' , • FEBR JARY • , • MARCH ',« APRIL •,
* • NAY ',' JUN£ ',' JULY ',« AUGUST «,
* 'SEPTHJtR1 ,' OCTOdEK* , 'NUVEMbER' , 'DECEMBER'/
DATA KMPlN/2b.4/, rtETOPT/0 . 10 72/
DATA Syi01ST/liJ*U.O/,UMCUST/120*J. 0/,LMOIST/24*0.0/
203

-------
1709.2
1709.
171 T.
1711.
1712.
1713.
1714.
1715.
1716.
1717.
1717. 1
1718.
1713.1
1713.3
171-3.4
1718.5
1713,6
1719.
1720.
1721.
1722.
1723.
1724.
1725.
1725.05
1725. 1
1725.2
17/5.3
1725.4
1726.
1726. Cl
1726. C2
1726. 03
1726. C4
1726. C5
1727.
2000.
2001.
2002.
2003.











C












C




C
C
C




C
C
C
C
2C05.
2C06.
2007.
2 0 J -3 .
20™.

2011 .
2012.

2014.
2015.
2016.
2C23.
2020. 1
2020.2
2020.3
2C21 .
2022.
2023.

2023.
2025.1
2026.
202 '.
C
C
C
C
C
 DATA
 DATA
 DATA
 DATA
 DATA
 DATA
 DATA
 DATA

 DATA
 DATA
 DATA
 DATA
 DATA
 DATA
                       STEMP/24* C.O/.UTEMP/2<»*G.O/,L TEMP/0.0/
                      SUMSNM, PXSNM,  NELRAM, RAOMEMt CORMEM,  CRAINM,
                        CUNMeM,  SuNM,  SNtGMM, SEVAPM,  SUMSNY,  PXSMY, MELRAY,
                        kAUHEY,  CURfEY,  CONMEY, CRAINY,  SGMY,  SNEGMY, SEVAPY,
                        TifitiAL/21*0.0/ ,PACK/0.0/,SDEN/0.0/ , PETMAX/0.0/
                      C/5LB/'CALB'/,PRCD/'PROD'/
                      ENGL/'EUGL '/,NETR/'METR'/,BOTH/1BOTH'/
                      NO/'NO'/,YES/'YES1/
                       JCOuiMT/0/
                       HOJR/'hOU^'/.DAYS/'DAYS'/.MNTH/'MNTH'/,INTR/'INTR'/
                      ON/'CN'/,CFF/'OFF'/

                       LN/20*O.C/,UN/100*0.0/,UNI/100*0.0/
                         'iOO*0.0/,SNT/20*0.0/,UNIT/20*0.0/,KN/32*0.0/
                                .C/,KP/2J*0.0/,THKP/b*0.0/,UNT/20*0.0/
                       PELT ,NBAL,PHBAL,CLBAL/4*0.0/
                       TSTtiP,NiTEP,SFLG,UFLG ,LFLG, GF LG/6*0/
                       SNRS^I/100*0. C/ , SUKOM/ 100*0. O/ ,UNR I M/100*0. O/, MR SM/100*0. O/ ,
       GNP. dM/20*u. J/i TNKdM/20*0.0/ ,SNR SY/100k 0. O/ » SNROY/iOO*0.0/ ,
       UNR!Y/iuC*0.0/,NKSY/100«0.0/.LNRPY/20*0.0/.SNRBY/100*0.O/.
       UNRi3Y/luO*0.0/ ,LNRbY/2J*0.0/,GNRBY/20*0.0/ t TNP DY/20*0 .O/.
       TNRhV/20*0.0/.TNr(A/0. C/ . TPa/0 ,0/,TCU A/0.0/
2 SCST
3 UDST
4 FPUZ
                      STST.PKofCf.SPKGTM,MSTGT,SPkSTM,PROTON,SAST,PR3TOT,
                     'tUPITOMiSOSV.UPITOT,jTSr,STS,UAST,LITSfUCST,SAS.
                     ',SCj,FP,SCS,CMAX,SSTRl,SPRjTT,'jAS,SPRSrT,UCS,
                     :.UuS,UPRI If,JSTR,JPRITT,JPRIS/102*0.0/
    INITIALISE  CATA FCR DISK.  WRITING

 DATA DSIJFLO,OSNERS,TCibLSZ/2*0. Ii8/, DSNROS/0/
 DATA LShO,EROS/^f>6*G./,RRGS/128*0.0/
 DATA LOOP/0/,NEftGi>/l/,NILSRO/l/,NRROS/l/
 END
 SUBROUTINE  LANCS(SFLAG,SNOPRTJ
                          HSP LANDS
 IMPLICIT   REALHL.K)
 DIMENSION  RES 8 I 5J , RES Bit 5) , RUSBOJ, SRGX(b), INTF(5) ,RGX( 5) , RJZb I 5 t ,
1 'JZS-3{5),APEKCe(5),RIB(5J,tRSN(5),KJll2J
 -	,M  i>REK (5), ROBTOM(5J ,ROBTOT( 5J , INFTUV (5J , INFTOT{ 5J ,
         5J.RCITLT(j) ,RXB(5) ,ERSTOM(5) .ERSTOT(5),MNAMt12),RAD(24),
             rtINC At 24),KAINJ2ddJ .uSSBMT(5) ,RESBMT(5),SRGXMT(5J
 OIPEDSIGN
1 EV()!ST(24) iKUSINTli)) ,PLPCb( j) .
2 ARCSP(y) .AINTF (SJ ,AROSIT(5),LAPSE(24J,SVP(40J , SNOUT ( 24, 16 J
 D I MEN SI ON  LSRO(12b)iERCS(12BJ,RRUS(128)
 DI MEN SI UN  jrtOIST(24.i) ,UMOI ST(24,5),LMOIST(24),
                                                                (b)
 COMMON  /An./  KL ,riY MI N , PRNTK E , H YC AL, DP ST, OUTP UT , T I MFAC ,LZS,AREA,
1 RtS61,RL)Si3,SRGA,INTF,RGX,lNhL,UZSB,APERCafRIB,ERSN,MiPj.A,
2 CALB,PRQu,PES 1 ,1\JTK, ENGL, MSTR , BUTH ,R ESB , YES ,NO , I MIN, IHR , TF ,
3 JC J JNT , PR INT, IKTk , D A YS, HQJR ,MNTH , I CE oUG, CN, OFF .
  Sl-101 ST,JMOIiT .L^IOISTjSTEMP, JT EMP , LTE MP , MLU, MLZ

 COMMON  /LAND/ PNArt, PKTOT, ERS JTT ,PRTO,>1 ,EKSNTi'J ,OAY,
                          204

-------
2028.
2029.
2030.
2031.
2032.
2033.
2034.
2035.
2036-.
2037.
2038.
203*5.1
2039.
2039. Cl
2C39.02
2C39.03
2039.04
2039.05
2C39.06
2C3°.C7
2039.08
2C39.C9
2039. 1
2039.11
2039.12
2039. 13
2039. 14
2039. 15
2039. 16
2039. 17
2039. 18
2039. 19
2039.2
2039.21
2039.22
203-;. 23
2040.
2042. 1
2C42. 2
2 C •« 2 . 3
2C4? .4
2043.
2044.
2045.
2047.
2050.
2051.
2052.
2C53.
2053. 1
2C53.2
2054.
2055.
2C5b.
2057.
205R.
2059.
2059.1
2063.
2061 .
2C62.
2C63.
2064.
2065.
2066.
2067.
2063.
2069.
1 RUTOMiNEPTCM, KOSTCIM,RITOMrKlNTUM ,8 AS TDM, RCH fUM , R JTU r ,
2 NEPTOT ,ROSTUT,RITCT,RlNTUT,dASTi3T,RCHTOT,TwBAL,EPTUM,EPTOT,
3 UZS,UZSN,LZSN, INF IL, INTER, IRC , NN ,L ,SS ,SGwl» PR ,SGW ,GWS , K.V ,
4 K24L,KK24,K,24EL,tP, IFS.K3, EPXH.RESS1 ,RESS,SCEP,SCEP1,SRGXT,
5 SRGXT1 , JRER.KRER, JSER.KSeR , SREkT ,MMP I N, METOPT , SNQw, CCF AC ,
6 SCF, IDNS.F.DGN ,rtC ,MP ACK , E V APSN,MEL£V , TifMOw, PE TMI N, PE TMAX , ELOI F ,
7 DEwX,PACK,DEPTH,MCNTH,SDEH,IPACK,TMlN,SUMSN^,PXSNM,XK3 ,
8 MELR AM,RAOMtM,CDkMEM,CRAINM,CONMEM,SGMM,SNEGMM,SEVAPM,SUMSNY,
9 PXSNY, MtLRAY , R ADMEY , CORME Y , SGMY , CON'-IE Y, CRAI NY , SNEGM Y , SE VAP Y ,
* TSNBAL ,COVER,CGVKMX,RG3TOM,RUBTOT,RXB,ROITJM,ROITOT, INFTOM,
1 INFTOT,cRSTCM,ERiTOT,SRER,TEMPX, RAD, wlNOX.R A I N , INPUT .OSNRGS ,
2 DSMFLO.USNERS.LSRO, EROS, TMBLbZt LOOP , NERGS ,N ILSRO.RRUS , NRROS
C
C COMON ALL DECLARATIONS FOR 1*2 & R*4
INTEGER PRNlK.t,TlfFAC,IMIN,lHR,TF, JCOUNT , I DEBUG
REAL PU, HYMIN,LZS,AREA,RESB1,ROSB, SRGX, INTF ,RGX, I NFL,
1 U/.SE,AP£RCb,KIB,ERSN,M,P3,A,RESB,SMOIST,JMOIST,
2 LHOIST.JPST, STEMP.UTEMP.LTEMP ,MUZ,MLZ
C
C COfMOfJ LANJ OECLARATIUNS FOR I«2 t. R*4
INTEGER OAY,MCNTH,DSNROS,DS JFLU, DSNE RS, TM8L SZ ,NERUS ,
1 NILSRC.NRRJS
REAL SEV APM.SL MSN Y, PXSNY ,MELRAY,kAUHEY,CDRMEY,SGMY,CONMEY,
1 CkAINY .SNtGHY, SEVAPY, TSNBAL ,CO\/ ER, COVRMX , ROBTOM , ROB TOT,
2 PXB,(-OITOC,PETMAX,ELDIF,[)£«X,PACK,UEPTH, SDEN,
3 IPACK,TMIN,SJMSNM,PXSNM,XK3,MELRA,M,RADMEM,CORMErt,CKAINM,
4 CCNMEM.SG^i.SNEGMM.PRTOT.'ERSMTT.PRTOM, ERSNTM.R JTOM,
5 NtPTCM,hGSTUM,KITOM,R INTOH, B A STOM ,RCriTQM , RUTOT , NEPTOT ,
6 ROSTdT.KlTOT ,R INTOT, 6 AS TOT , RCHTOT, TWB4 L, EPTUM, EPTuT,
7 UZS, JZSN.LZSN, I NFI L , I NTEK , I RC,NiM,L,SS, SGW1 ,PH ,SGrt ,GrtS,
8 KV.K24L ,KK24,\<;4EL,EP,IFS,K3, EPXM,RESSl,PtSS,SCtP,
9 SCEPl,SKGAT,SRGXTl,JRER,KKC-R,JScR,KSEH,SRERT,MMPlN,
* MtTOPT,CCFAC,SCF,IDNS,F,DGM,riC,MPACN,EVAPSN,MELcV,
1 TSlJrt, PcTPlN.RGITOT, Ii'JFTOM, INFTQT, ERSTGM, ERSTUT,SRER ,
2 Tt^PA.RAC ,WI NDX,RAIN, L3RO.EKOS, RRuS
C
INTEGER hHFLAG ,h, SFLAG
INTEGER LASTLF ,LASTRO
INTEGEH*4 BOTH ,CALb , CAYS, t"40L .tlO'.JR ,rl YCAL, IMPiJT, INTR ,METK ,
1 rtNTh.NU ,NUTR,OFF ,JN, OUTPUT , PEST, PRINT jPRuD.S-NOh, YES
tNTEGrF<<4 LCCHtSNCPKT
C
DOJBLE PRECISION MNAM
C
REAL IRC4, INFLT, QMETRC
REAL UZSMET, LZSMET, SGWMET, SCEPMT, RESSMT
REAL T^tJLMT, SRGXTM, RESBMT, SRGXMT
REAL KUGI, NEGNLT, NEGMM, PRJ
REAL MELT, INOT, K.CLD, MELRAO
C
INTEGER*^ TFI.III
C
OATA IHKR, FRFLAG/2*0/
DATA PERC, INFLT/C.0,0.0/
DATA SBAS/0.0/
OATA SUET1, SNET, SRCH/3*0.0/, N'JMI/0/
DATA RUSINT/3*U.O/, AETR, KF/2*0.0/
DATA PEPIN, cPIN, EPIN1, EPHR/4*0.0/
OATA E V L) I ST/o* 0.0, 0.019,0. 041 ,0.067,0.088,0.102,3*0.11,0.105,
C C. J95,O.Cdl, 0.055,0. 017, 5*0. 0/
DATA SVP/1 0*1.005, 1.01, 1.01, 1.015, 1.02,
*1. 03,1. 04, 1.C6, 1.08, 1.1, 1.29, 1.66 ,2. 13, 2. 74, 3. 49, 4. 40, 5. 55, 6. 87,
*8. 36, 10. OS, 12. 19, 14. 63, 17. 51, 20. 66, 24. 79, 29. 32,34.61,40.67,47.68,
*55.71 ,64.8d/
DATA LAPSt/6-»3 .3,3.7,4.0,4. 1,
*4. 3, 4. 6, -f. 7, 4. 8, t. 9, 5.0, 5. 0,4. 6, 4. t>,4. 4, 4. 2, 4. 0,3. 8, 3. 7, 3. 6/
DATA APK, A£PIN/2*O.C/
OATA AROSB, AINTF, AROSIT/ 15*0 .O/
205

-------
^070.
2071.
2072.
2073.
2073.1
2074.
2075.
2076.
2076. 8
2077.
2073.
2079.
2080.
2081.
2032.
20S3.
2C64.
20d5.
2CT6.
2087.
2083.
2C89.
2090.
2091.
2092.
2093.
2094.
2096.
2097.
209 P..
20S9.
2100.
? * ' '
210.;.
2103.
2 1 04 .
2 06.
i 07.
;.' ') '•' .
2 C1-'.
21! J.
2112.
2 1 : 3 .
2! 1 +,
2:14.1
2114. 11
2U4.12
2114. 13
2114. !•••
21 14. 15
211':. 16
2 1 i 4 . 1 "
2U4.1S
2114. K
2 1 1 '•> .
2 . 1 o .
21J7.
2113.
2119.
2120.
2121.
212?.
212?.









C
C
C







C


C




C



C


C



C
C
C













C




C
C
C
C
    DATA
    DATA   SUMSN,
   *      CGUKE,
   *
                                           AS0AS,  ASRCH/7*0.0/
187
       ARU, AROI, AROS, ARGXT, ASNET,
              II\L)T, KCLD, PXG'^SN,  SEVAPT,  RADrtE,  CDRME, LIQwl,
              GRAIN, NEGMLT, SNEGM,  NEGMM,  LIQS,   LIQrt, XICE,
       ,^,,.,.. . ,SG^,  SPX, WtJAL,  SEVAP/21*0.0/
 DATA PA,l_rt,PX,l«ELT,CGNV,KAINM,CGNOS /7*0./
 DATA  SNauT/384*O.C/,CLOF/-1.0/,ALBEOO/0.a5/
 DATA  SUMSND,PXSNU,MELRAD,KAJMEO,CDRMEO,CONMED,CRAINL),SGMD,
I      Sr,EGMU,SfcvAPD/10*0.0/
 DATA IEND/0/,  LA^TRD/0/, PRO/0.0/

               ZEROING OF VARIABLES

 LZS1 = LZS
 UZSl = UZS
 NUMI = 0
 DPST = 0.0
 PACK.1 = PACK
 LIOW1 = LIQW
 PRR = Pf\

 DO 184 1=1,5
    APERCB(I)  = C.O

  PA=1.0-A
188
                ;i.C/96.0)
      LKK4=  1.0 -  KK4

     IF  ((14*0./TIMFAC).LE.100. ) GO  TO  187
     LIRC4  = LIRC4/3.0
     LKK4 =  LKKW3.C
    SPC=  102J.

    RESS  = O.C
                     (SS)/(N.N*L)
                       LNRAT*LNRAT)
        =  (TIMFAC/60.J*03FV
                                       REDUCE  INFILTRATION IF ICE EXISTS
                                       AT  THE  BOTTOM OF THE PACK -
                                     ATTEMPT  TO CORRECT FOR FROZEN LAND
 IF (SNOw .EU. NO)
 0
-------
2125.1
2126.
2127.
2127.1
2128.
2129.
2130.
2131.
2132.
2133.
213
-------
2192.
2193.
2194.
2196.
2197.
2193.
2199.
2200.
2201.
2202.
2203.
2204.
2205.
2206.
2207.
2208.
2209.
2210.
2211.
2212.
2213.
2214.
2215.
2216.
2217.
2213.
2219.
2220.
2221 .
2222.
2223.
2224.
2225.
2226.
2227.
222B.
2229.
2230.
2231.
2232.
2233.
2234.
2233.
2236.
2237.
2233.
2230.
2240.
2241.
2242.
2243.
2244.
2245.
2246.
2247.
2248.
£24o.
2251.
2251.1
2252.
2253.
2254.
2255.
2256.
2257.
2258.
2259.
2260.





C



c
C
c
c
c



c
c
c
c
c
c









c
c
c

c
c





c
c
c
c


c
c
c
c





c
c
c
c

c
c
c
c

    SEVAP = 0.0
    SFLAG = 0
    PRHR = 0.0
    IKEND = oO./iTIMFAC)
    IPT = t!HRR-i)*IKENO

    PX = 0.0
    00 502 II = 1,IKEND
502 PRHR = PKHR * RAINCIPT+1I)
SUM PRECIP FOR THE HOUR
                                  CORRECT  TEMP  FOR  ELEVATION OIFF
                                  USING  LAPSE RATE  OF 3.5 DURING RAIN
                                  PERIODS,  AND  AN HOURLY VARIATION IN
                                  LAPSE  RATE  ILAPSE(I))  FOR DRY PERIOD
    LAPS = LAPSE(IhRR)
    IF (PRHR .GT. C.Ob)  LAPS *  3.5
    TX = TEMPX(IhRR) - LAPS*ELOIF
                                 REDUCE  REG EVAP  FUR  SNOwMELT
                                 CONDITIONS bASfcD ON  PETMIN ANiJ
                                 PETMAX  VALUbi

    IF (PACK.LE.IPACK) GO TO 504
    E1E = 0.0
    PACKRA - 1.0
    GO TO 505
504 PACKRA = PACK/IPACK
    E1E = 1.0 - PACKRA
505 EPXX = (1.0-F)*E1E * F
    IF (TX.GE.PETMAX) GO TO 512
    IF (EPXX .GT. C.5)  EPXX = 0.5

                               REDUCE EVAP BY  50* IF TX IS BETWEEN
                               PETMIN AND  PETMAX
    IF (TX.LT.PETMIN) EPXX = 0.0
512 EPHh = Er>hR*EPXX
    EPIN = EPIiM*EPXX
    IENU = 0
    SNBAL = 0.0
    IF {(TX .GT. TSNOfc)  .AND.  (PRHR  . GT .  .02JJ  DEWX = TX

    SET DEhPT TEMP  tQUAL  TO AIR  TEMP WHEN  RAINING
    ON SNOW TG  INCREASE  SNUWMELT

    IF (DEV.X  .GT. TX>  OEWX = TX
    SMTEMP =  TSNCrt  *  ( TX-DEWX)*(0.12 + 0.008*TX)

    RAIN/SNUn TEMP. DIVISION - SEE ANDERSON,  WRR , VOL. 4, NO. i,
    FEB. 1968,  P. 27,  EG. 23

    IF (SNTEMP  .GT. TiNOwl) SNTEMP = TSNOW1
    IF (TX.LT. SNTEKP)  GO  TO t>2i
    IF  (PACK)  997, W7,  525
521 SFLAG = 1
    IF ( (PACK.LE.C .0)  .AND. (PP.HK .LE. 0. 0) )  GO TO 997
     PRECIP ARE  ZEKO
    SKIP SM«MELT  IF  BOTH  PACK
    FUP THE HOUR

525 IEND =  1
    SNO.JMELT  CALCULATICNS  AKE  DUNE  IF IT IS SNOWING, OR,
    IF A SNOwPACK  EXISTS

    PX = PRHR
                            208

-------
2261.
2262.
226*.
2264.
2265.
2266.
2267.
2208.
2260.
2270.
2271.
2272.
227}.
22T*.
2275.
2276.
2277.
2273.
227Q.
2233.
22dl.
2232.
22d3.
2285.
2236.
2287.
2268.
2289.
2290.
2291.
2292.
2293.
22V4.
2295.
2296.
2297.
2298.
2299.
2300.
2301 .
2302.
2303.
2304.
2305.
2306.
2307.
2308.
23CM.9
230r>.
2309.1
2310.
2311.
2312.
2313.
2314.
2315.
2316.
2317.
2318.
2319.
2327.
2321.
2322.
2323.
2324.
2325.
232-5.

C


C






c
c
c
c

c



c









c

c
c
c
c
c
c
c
c







c
c
r




C
C



C


C
c
c























548




550
555
























570



580










 IF  (PX.LE.0.0)  GU TU
                             KCLD IS INDEX TO CLOUD COVEK
 KCLD =  35.
 IF  (SFLAG.LE.OJ  GO TC 555
                            SNOW IS FALLING
 PX  = PX*SCF
 APR = APR +  ISCF-l.Q)*PRHR
 PRHR =  HRhR*SCF
 SUMSN =  SuMSN  -t  PX
 DNS = IUnS
 IF  (TX  .GT.  0.0)  UNS = DNS +• ((TX/100.J**2J

 SNP,. QtNilTY rtllh TEMP. - APPROX TU FIG. 4, PLATE B-l
 SNOW HYUKuUOuY  itt ALSU ANU£RSUN, Tft 36, P. 21

 PACK = PACK  *  FX
IF (PACK.LE.IPACK) GO  TO 548
IPACK = PACK
IF (!PACK  .GT.  MPACK)   IPACK
DEPTH = JtPTH  *  (PX/ONS)
IF (DEPTH  .GT.  C.O)  SDEN
INOT =  IiNCT -  1000*PX
IF (INDT .LT.  0.0)  INDT =  0.0
PX = 0.0
GO TO 5b3
KCLD =  KCLO -  1.
IF IKCLO .LT.  C.O)  KCLD =  0.0
PACKPA  = PACK/IPACK
IF (PACK .uT.  IPACK)  PACKRA

IF (PACK.GE.O.CCS)  GO TO 500
    MPACK


PACK/DEPTH
    1.0
IPACK IS AH  INDEX  TO  AREAL  COVERAGE  OF  THE  SNOWPACK
FOP INITIAL  STCSMi  IPACK =  .1*MPACK  SO  THAT COMPLETE
AREAL COVERAGE  RESULTS.  IF  EXISTING PACK > .1  *MPACK THEN
IPACK IS SET EQUAL  TO MPACK  NHICH  IS THE  dATER  EUUI. FOR
COMPLETE AREAL  COVERAGE PACKRA  IS  THE  FRACTION  AREAL COVERAGE
AT ANY TIME.

IPACK = 0.1*MPACN
XICE = 0.0
XLNMLT = 0.0
NEGMLT = C.O
PX = PX *• PACK  + L IQW
PACK = 0.0
LIQW = 0.0

iFHO SMbwMELT CUTPUT  ARRAY

DO 570 1=1,24
  DO 570 M,t=l, 16
    SNOuTJI,MM) =  0.0
GO TO 997
PXONSN = PXONSN * PX
IF (DEPTH .GT. 0.0) SDEN =  PACK/DEPTH
IF (INDT .LT. 8Cu.) INDT =  I,^DT  +  1.
                            INDT  IS INDEX  TO ALBEDO
MELT = O.C
IF (SDEN .LT. G.5i>J DEPTH = DEPTH*( 1. 0 -  0.00002* ( DEPTH* ( .55-SDtiMj ))

EMPIRICAL RELATIONSHIP FOR  S.slOW  COMPACTION

IF (DEPTH .GT. 0.0) SDEN =  PACK/DEPTH
WIN = rtlNOXt IHRR)
                        209

-------
327.
232°.
2330.
2331.
23^2 .
2334.
2335.
2336.
2337.
2333.
2339.
2340.
2341.
2342.
2343.
2344.
2345.
2346.
2347.
2348.
2349.
2350.
2351.
2352.
2353.
2354.
2355.
2356.
2357.
2353.
2359.
2363.
2361.
2362.
2363.
2364.
23o5.
2366.
2367.
2368.
2369.
2370.
2371.
2372.
2373.
2374.
2375.
2376.
2377.
2373.
2379.
2330.
23 -•> 1 .
2382 .
23H3.
2304.
2 3 a 5 .
2386.
233 r.
23R3.
2389.
23V3.
2391 .
2392.
2393.
C









C
c









c
c
c
c
c



c
c
c
c


c
c

c







c

c





c
c
c
c
c
c
c

c
c
6.1Cd) GC TU 610
     - 6.1J8)
               HOURLY  XINO  VALUE

               LPEF =  ITX  + lCu.)/5
               LREF =  IFIX(LREF)
               SVPP =  SVP  ILRErl
               ITX =  If- 1 AlTX)
               SATVAP  = SVPP  « (MOOJ ITX,5)/:>)*40
               ALBEDO  = 0.8 -  0. 1 * ( SCRT 1 I NDf/24. ) )
               IF (ALBEDO  .LT.  0.45)   ALBEDO = 0.45
               GC T3 650
           640 ALBFDO  = C.£5 -  0. 07* ( iURT ( INDT/24. 0) )
               IF (ALBEDO  .LT.  0.6)   ALBEDO = 0.6
                                   SHORT  WAVE RADIATION-RA - POSITIVE  INCOMING
           650 RA = RACl IHRR)*(1.0  - ALU tOU ) *( 1 .0-F )
                                   LCNG  «AVb RADIATION - LH - POSITIVE  INCOMING
               OEGHR = TX - 32. J
               IF (DEGHR.LE.O.Gj  GO TO  660
               LW = F* J.26*C£GHR  -i- (1.0 -  F)*(0.2*DEGHR - 6.<>)
               GO TO 665
           660 LW = F*0.2*GEGh8 *  (1.0  - F ) * ( 0 . 1 7*UE GHR - 6.0)

                                      LW  IS  A LINEAR APPROX. TO CURVES  IN
                                      FIG.  6, PL 5-3,  IN SNOW HYDROLOGY.   £> . 6
                                      IS  AVE BACK RADIATION LOST FROM  THE SNOrtPACK
                                      r-i  OP£M AREAS, IN LANGLEYS/HP.
           665 IF  ILW  .LT.  C.C i


               PMNM  =  0.0
          CLOJLl  COVER  CORRECTION
           L«*CLJF

          RAIN MELT
                                         210

-------
2395.
2396.
2397.
2393.
2399.
2400.
2401.
2432.
2403.
2404.
2405.
2406.
2437.
2403.
2409.
2410.
24H.
2412.
2413.
2414.
2415.
2416.
2416.1
2416.2
2416.3
2416.4
2416.5
2416.6
2417.
2418.
2419.
2420.
2421.
2422.
2428.
2429.
2430.
2431.
2432.
2433.
2434.
2435.
2436.
2437.
2438.
2439.
2440.
2441 .
2442.
2443.
2444.
2445.
2446.
2447.
244S.
2449.
2453.
2451.
2452.
2453.
2454.
2455.
2456.
2457.
2453.
2459.
2460.
2461.
C
C
C
c

C

c
c













c

c
c
c
c



c
c
c
c






c
c
c


c
c
c

c
c
c






c








                                   RAINMELT  IS OPERATIVE  If-  IT  IS
                                   RAINING AND TEMP  IS  ABOVE  32  F

    IF KSFLAG .LT. 1).AND.(TX  .GT. 32.))  RAINM  = DEGHR*PX/144.
                          TOTAL .MELT
    RM = (LK + RAJ/203.2
                          203.2 LANGLEYS REQUIRED TO PRODUCE  I  INCH
                          RUNOFF FROM SNOW AT 32  DEGREES  F
    IF (PACK.GE.IPACK) GO TJ 680
    RM = RM*PACKftA
    CONV = CCNV*PACKRA
    CONOS = CGNDS*PACKRA
    RAINM = RAINM*FAC*RA
    IF (IHRk.NE.6) uU 70 680
    XLMEM = O.L)1*<32.0 - TX)
    IF (XLNErt .GT. XLNMLT) XLNMLT = XLNEM
680 RADME = RADMt * RM
    CDRME = CDRME -» CUNOS
    CONME = CCNME » CONV
    GRAIN = GRAIN « RAINM
    MELT = RM + CONV * CCNDS +  RAINM

    TP = 32.0 - 
-------
2462.
2463.
2464.
2465.
246&.
2467.
2468.
24&Q.
2470.
2471.
2472.
2473.
2474.
2475.
2476.
2477.
2478.
2479.
2^30.
2481.
2482.
2483.
2484.
2485.
24B6.
2487.
2436.
2489.
2490.
2491.
2492.
2493.
2494.
2495.
2496.
2497.
249d.
2499.
2500.
2501.
2502.
2503.
2504.
2505.
2506.
2507.
2508.
2509.
2510.
2511 .
2512.
C

C
C
C
C
















C
C
C
C

















C
C
C
C


C

2516.
2517.
2513.
2519.
2520.
2521.
2522.
2523.
2524.
2525.
2526.
2527.
2528.
25Z9.
740 IF <
-------
2530.
2531.
2532.
2533.
2534.
2535.
2536.
2537.
2538.
2539.
2540.
2541 .
2542.
2.543.
2544.
2545.
2546.
2547.
2543.
2549.
2550.
2551.
2552.
2553.
2554.
2555.
2556.
2557.
2553.
2559.
2560.
2561 .
2562.
2563.
2564.
2565.
2566.
2567.
2568.
2569.
2570.
2571.
2572.
2573.
2574.
2575.
257;..
2577.
2573.
2579.
2580.
2581.
2582.
258J.
2584.
2585.
2586.
2537.
2509.
2539.
2590.
2591.
2592.
25°3 .
259V.
2595.
25^6.
2597.

C
C










C
C











C
C










C
C










C
C










C
C
C
C
C
SPX = SPX * FX


9S7 SUHSNH = SUMSN
PXSNH = PXQNSN
SPXH = SPX
RAOMEH = P.AOME
COR'IEH = CORME
CQNMEH = CJNME
CRMNH = CRAIN
SGMH = SGM
SNEGMH = SNEGM
SEVAPH = SEVAPT


IF (PRINT. Nt. CAYS)
SUMSNO = SUMSN C +
PXSNO = PXSI\0 +
MELPftU = ftLRAC *
RAOMFO = RAOMEC +
CORNED = CuRMEC *
CONMFD = CONMEC +
CRAIND = CKAINC +
SGMD = SGrtC *
SNEGMO = SNEGMC *
SEVAPO = SEVAPO +


9S6 SUMSNM = SUMSNC +
PXSNM = PXSNM +
MELPAM = ^ELRAM +
RADMEM = RADMEM +
CORMEM = GORMEN +
CONMEM = CONMfcK +
CPAIMM = CRAINC +
SGMM = SGMM +
SNEGMM = SNEortl* *
SEVAPM = SEVAPM *


SUMSMY = SJMSNY +
PXSNY = PXSKY +
NELR4Y = fELRAY +
kADMFY = AAJMEY +
CORNS Y = COR.-1EY *
COf.MEY - COM'EY +
CRATiY = CKAIKY *
SGMY = SGMY +
SNFGMY = SNEGMY +
SEVAPY = SEVAPY +


SUMSN = 0.0
PXONSN = C.O
SPX = 0.0
kADME = 0.0
CDPME = 0.0
COMME = 0.0
C R A I N = 0.0
SGM = 0.0
SNEGM. = 0.0
SEVAPT = 0.0







HOUR VALUE ASSIGNM











DAILY SUMS
GO TO 996
SUMSN
FXCNSN
SPX
RAOME
CDRPE
COMME
CKAIN
SG^
SNEGM
SEVAPT

MONTHLY SUMS
SUMSN
PXONSN
SPX
RAOMS
CORME
CONME
CHAIN
SGM
SNEGM
SEVAPT

YtARLY SUMS
SUMSN
PXLJNSN
iPX
RAOME
CDRME
CGNME
CRAIN
SGM
SNEGM
SEVAPT

ZEKO HOURLY VALUES











SNOWMELT OUTPUT



SNOUT UHKk.l) = PACK
213

-------
2598.
2599.
2600.
2601.
2602.
2603.
2604.
2605.
2606.
2607.
2608.
2609.
2610.
2611.
2612.
2613.
2614.
2615.
2616.
2617.
2613.
2619.
2620.
2621.
,2622.
i2623.
2624.
'2625.
2626.
2627.
2628.
2628.1
2629.
2630.
2631.
2632.
2633.
2634.
2635.
26 iS.
'637.
2638.
2633.8
2639.
2639.8
2640.
2641.
2642.
2643.
2o45.
2t>46.
2647.
2648.
2649.
2650.
2651.
2652.
2653.
2654.
2655.
2656.
2657.
2658.
2659.
2660.
2661.
2662.
      SNOUTUHRR,2)  <
      SNOUTUhRR.3)  '
      SNOUTUHkR,4)  =
      SNOUTUHRR,5)  =
      SNQUT(IhKR,6)  ••
      SNOUTUHRR,7)  =
      SNOJT(lHKR,8)  -
      SNOUT(IHhR,9)  =
      SNOUTUHRR,1C)
      SNOUT{IHRR,11)
      SNOUT UHhR,l<>)
      SNOUT!IriRRt13)
      SNOUTUHRR,14)
      SNOUTUHhR.15)
      SNOUT!IHRR,16)
      IF
      IF
      (OUTPUT
      (OUTPJT
               .EU
 DEPTH
 SDEN
 ALBEDO
 CLDF
 NEGMLT
 LIOW
 TX
 RA
= Lri
= PX
= MELT
= CONV
= RAINM
= CCNDS
= XICE

 ENGL)
 8UTH
 GO
AND
                          TO 845
                           INPUT
                                      .EU.  ENGL)   GO TO 845
C
c
C
CONVERSION TO METRIC SNCk OUTPJT
  842
     SNOUTUhRR.l )
     SNOUTUHRR,21
     SNOUT UHRK ,6)
     SNOUTUHRR,7 )
     SNOUTUHRR,8) = 0.5
     DO 842 ISNOOT=I1,16
        SNuUTtIHRR,ISNOUT)
     CONTINUE
                         PACK*MMPIN
                         CEPTH*MMPIU
                         N£GMLT*MMPIN
                         LICW*MMPIN
                                 SNOUT(IHRR,ISNOUT>*MMPIN
845
IF
IF

IF
IF
          (HYCAL.EU.PROU)
          2)
                1,24
                          GO  TO  99d
                         GO TO 998
  881
  680
      880 1
      WPITt
      00 881
         SNOUTU.MNM) =
      CONTINUE
   CONTINUE
   IF (NUTR.EO.YtS )  GO TO 998
   WRITE (o,S94)
   WRITE (6,995)
                        I ,»SNOJT( I, MM) ,,1M=1, 16)

                           0.0
C
C
  990 FORMAT CO'.'rtOJR    PACK     OEPTH    SDEN   ALBEDO  CLDF   NEGMELT
     1    LIQw     TX     RA   LW     PX       MELT      CONV     RAINM
     2CONDS     ICE')
  991 FORMAT (• •,12,2X,2(F8.2,2X),3(F6 .3.IX),2(F8.3,IX ),
     1        F7.2,1X,2(F4.0,1X),5(F8.3,1X) ,F6.1)
  992 FORMAT <•0',25X,'SNOwMELT  OUTPJT  FOR*,4X,A8,2X,I 2J
  994 FORMAT I•0',5X,'DATE•,4X,•TI1£•,4X,«FLOw(CFS-CKS)•,6X,
     X        'SEDIMENT  UBS-KG-KG/MI N-GM/L ) • ,23X,
     X        'PESTICIDE  (GM-GM/MIN-PPM)')
  995 FORMAT (' •,a7X ,'KATER1,24X,«SEUIMtNT•)

                             CORRECT  WATER  BALANCE  FOR SNOwMELT
                             PACK  AND SNOW  EVAP

                             PRR IS  INCOMING PRECIP
                             PX   IS  MOISTURE  TO THE LAND SURFACE
                             SEVAP IS SNOW  EVAP -  NEGATIVE.
  998 IF UEND.EU.l)   SNtfAL =  PRHR+SE VAP-PX-PACK*P ACK1-LIUW
      IF < (SNtJAL.LT.O.OOCl). AND. ( S.MBAL.GT .-0.0001) I)  SNOAL = 0.0
                                         214

-------
2663.
2664.
2665.
2666.
26C7.
2tb8.
2609.
2670.
2671.
2672.
2673.
2674.
2675.
2676.
2677.
2678.
2679.
2630.
2681.
26(32.
2633.
2fcB4.
2685.
2686.
2687.
2633.
2639.
2690.
2691.
2692.
2693.
2694-.
2695.
2696.
2697.
2693.
2699.
2700.
2701.
2702.
2703.
2704.
2705.
2706.
2707.
2703.
2709.
2710.
2711.
2712.
2713.
2714.
2/15.
2716.
2717.
2718.
2719.
2720.
2721.
2722.
2723.
2724.
2725.
2726.
2727.
272d.
2729.
2730.

C
C


C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C





C
C












C
C
C
C
C
C










C
C
C
C
TSNBAL = TSNBAL * SN6AL


PACK1 = PACK
L1UW1 = LIOW
********************=»:*************
bND SNOWMELT
*********************************
PX IS TOTAL MOISTURE INPUT








TU
THE LAND SURFACE FROM PKECIP
AND SNOnMELT DURING THE HOUR

999 IF (IEND .GT. C) PR=PX*TIMF AC/60.
IENO>O INDICATES SNOWMELT
OCCURRED DURING THE HOUR




* * * INTERCEPTION FUNC . * * *


EPXM - MAX. INTERCEPTION STORAGE
SCEP - EXISTING INTER. STORAGE
EPX - AVAILAbLc INTtk. STORAGE
RUI - IMPERVIOUS ftcNOFF CURING INTERVAL



IF (COVEk.GT.C.Ob^l ) GO TO 204
SNET = SNET + SCEP
SCEP = 0.0
F.PX = O.C
GO TO 203


204 EPX = EPXM*(CCVER/COVRMX)-SCEP
IF (EPX.LT.(C.OOOI) ) EPX = 0.0
IF (PK.LT.EP> J GO TO 205
203 P3 = PR-EPX
kj = P3*A
RUI = KU
SCF.P = SCEP+EPX
GO TO 2Co
205 SC6P = SCEP+PR
P3 = O.C
RU = 0.0
RUI = 0.0



* * * INTERCEPTION EVAP * * *


206 IF ( (NUMI.NE.O.OR. ( IMIN.NE.O) 1 GO TO 221
IF (SCEP.LE.O.OJ GO TO 221
IF (SCEP.GE.cP IN) GO TO 210
EPIN = EPIN - SCEP
SNET = SNET + SCEP
SCEP = 0.0
GO TO 221
210 SCEP = SCEP-EPIN
SNET = SNET+EPIN
EPIN = 0.0


*** INFILTRATICN FUNC. ***
P4 IS TOTAL MOISTURE IN STORAGE BLOCK

























































215

-------
2731.
27^2.
2733.
2734.
2735.
2736.
2737.
2738.
2739.
2740.
2741.
2742.
2743.
2744.
2745.
2746.
2747.
2743.
2749.
2750.
2751.
2752.
'753.
2754.
27^5.
2 756.
2757.
2758.
2759.
2760.
2761.
2762.
2763.
2764.
2765.
2766.
2767.
276B.
2769.
2770.
2771.
2772.
2773.
2774.
2773.
2776.
2777.
2778.
2779.
2780.
2781.
2782.
2733.
2784.
2785.
2766.
2707.
2783.
2789.
2751.
2792.
2793.
2794.
2795.
2796.
2797.
2798.
Z799.
C
C
C
C
C
C
C
C
C











C
C
C
C
C
C
C
C
C
















C

C
C
C
C
C
C
C
C
C
C











SHRD(I) = SURFACE DETENTION AND INTERFLOW FROM BLOCK I
RXX(I) = SURFACE DETENTION FRUM BLOCK I
RGXX(I) = INTERFLC* COMPONENT FROM BLOCK I
RGX(I) = VOLUME TC INTER. DETEU STUR. FROM BLOCK I


BEGINNING CF BLOCK LCOP


221 00 100 1=1,5
P4 = P3 + RESEIIJ
RESBHI ) = RESB(I)
IF ( <10.*P4) .i.E.1 U2*I1-1)*D4F) J GO TO 10
SHR0
IF (( 10.*P4).LE.< ( (2*1 J-1)*04RA )) GO TO 25
RXX(I) =  GC TO 7
IF (UZRA( U.GT.^.Oi GC TO 8
UZI(!) = 2.0*A£S«UZRA(I I/2.0J-1.0) *1.0
PRE(I) = (U£RA( !)/^.0)*«1.0/(1.0+UZI (I) ))**U£I ( !))
GO TO 9
7 PRE(I) = 1.0
GO TO 9
8 JZIIIJ = t2.C*AbS(UZRA(I)-2.0J>+1.0
PREU1 = 1.0-t(1.0/(1.0*UZni)) )**UZI(I) )
9 RXB(I) = RXXd J* PREdJ
RGX(I) = RG*X*PRE< I)
RGXX = 0.0
RUZB(I) = SHROjn-RGX(I)-RXB(I>
UZSdil) = UZ5B ( Ii*RUZeiI)

RI Bl IJ = P4 - RXBt I)



* * * UPPER ZONE EVAP * * *


REPIN - ACCOM DAILY EVAP POT. FOR L.Z. AND GROWATERt I.E
PORTION NOT SATISFIED FROM U. i.


IF ( ( NUrtl.NE .0) .OR.lIMIN.NE.On GO TO 290
IF (EPIN.LE.IO.OJJ GO TO 290
IF(UZRA(I).LE.2.0J GO TU 230
IF (JZS3U) .LE.EPIN) GO TO 270
UZSb(I) = LZSd(I)-EPlN
RUZb( I ) = PLZBd J-EPIN
SNET = SNEl*PA*EPr'M*0.20
GO TJ 290
230 EFFECT = 0.3*U£RA(IJ
IF (EFFECT. LT. (O.Oc)J EFFECT = 0.02
IF UZSem .Lt.EPIN*EFFECT) GO TO ?7n
216

-------
2800.
2801.
2802.
2803.
2305.
2806.
280T.
2803.
2810.
2811.
2312.
2813.
2814.
2815.
2816.
281T.
281?.
2819.
2620.
2821.
2S?2.
2823.
2624.
2825.
2326.
2827.
2623.
2829.
2830.
2831.
2832.
2633.
2834-.
2835.
2836.
2837.
2833.
2839.
284-0.
2641.
2342.
2843.
2844-.
28*5.
2846.
2847.
2843.
2849.
2850.
2651.
2852.
2853.
2354.
2855.
285b.
2857.
2858.
2859.
2360.
2861.
2662.
2863.
2£6'».
2865.
2866.
2867.
236B.
2ei69.











C
C
C
C
C
C
C
C
C





C
C
C
C
C
C
C
r
C
















C
C
C
C
C
C
C
C
C
C
C



C



.JZSo(I) = LZSbtl 1-(EPIN*EFFELU
RUZtslI) = KUZtJU )-(EPIN*EFFECT)
EDIFF = <1.C-EFFECT)*EPIN
PEPIN = KEFIN + EDIFF*0.20
SflET = SNE1 * IP A*EPIN*fcFFECT 1*0. 20
GO TL) 290
270 FOIFF = EPIN - UZSBUJ
KEP1N = REFIN * ECIFF*0.20
SNET = SNET + PA*UZSB( I) *0.20
UZSBUJ « C.O
PUZO(I) = C.O


* * * * INTcfcFLU* FUNCTION * * *

SRGXU) - ir4T£KFLU»« DETENTION STORAGE FROM BLOCK I
INTFIIJ - INTcRFLUV, LEAVING STORAGE FROM SLOCK I
SRGXF - TOTAL INTEkFLCw STORAGE
RGXT > TCTAL iNTtRFLC" LEAVING STORAGE 0-JRINb INTE=VAL

290 IMTF(I) » LIRC4*SRGXII)
SSGXm = SRGX(I) + (RiiXlI)*PAJ-INTF(l)
RU = *U + INTFII1*0.20
SRGXT = SRGXT * (RGX( I )*PA-I NTF (I ) 1 *0.20
KGXT = RGXT + INTF(I)*0.20

*** OVERLAND FLCw ROUTING ***


RXBU) = VOLUME TO OVERLAND SURFACE DETENTION FROM BLOCK I
ROS3U) = VOLUME OF OVERLAND FLQrf TO STREAM FROM BLOCK I
RESB(I) = VOLUKE CF OVERLAND 0 REMAINING ON SURFACE
FKOP BLOCK I

FI = Rxbm-(REsem)
F3 = (RESbdiM RXBl I)
IF (RXB(I).LE.(RESB(I J)l GQ TO 34
DE = DEC*1(F1J**0.6)
GO TO 35
34 OE = (F3)/2.0
35 IF (F3.GT.(2.G + CEn DE = F3/2.0
IF (F3.LE.O.JC5J GO TC 40
OUMV = t 1.0+0.o»(F3/ (2.0*DE))**3. J**1.67
ROSd(I) = (TIMFAC/60.)*SRC* ( (F3/2.) •"* 1 .67 »*OUMV
IF (FOStill) .GT. 0.95*RXBtI)J RUSB.CE IN UPPtR AND LOWER ZONE RATIOS
PERCBU) - UPPE.X ZCNE DEPLETION FROM EACH BLOCK
PERC - TGTAL O.i. DEPLETION
INFLT - TOTAL INFILTRATION
ROS - TOTAL CVCRLAND FLOU TO THE STREAM FROM ALL BLOCKS

IF ((NUMI .Ew. 0).AND.(IMIN .EU. 0)) GO TO 44
PERCb(I) = C.O
GO TO t7

44 OEEPHIJ* < (uZiB( I )/UZSNl-t LZS/LZSNH
IF (OEEPL(I).LE.O.Cl) GO TO 47
PERCB( I) = C.1 + INFIL + JZSN*(OEEPHI )**3)
217

-------
2870.
2871.
2872.
2873.
2874.
2875.
2376.
2877.
2878.
287'}.
2380.
>S-31 .
2882.
2893.
2384.
2885.
28d6.
2887.
2883.
2839.
2C9J.
2891 .
2892.
2893.
2894.
2895.
2896.
2697.
2899.
2899.
2900.
2901.
2902.
29J3.
2904.
2905.
2906.
2907.
2903.
2909.
2910.
2911.
2912.
2913.
2914.
2915.
2916.
2917.
2913.
2919.
2920.
2921.
2922.
2923.
'924.
2925.
2926.
2927.
2923.
2929.
2930.
2931.
2932.
2933.
2
-------
2933.
2939.
29'O.
29V,..
2942.
29*3.
2944.
2945.
2946.
2947.
2948.
2949.
2950.
2951.
2954.
2955.
2<>56.
2957.
2^53.
2959.
2960.
2961.
2962.
2963.
2964.
2965.
2966.
2967.
296*3.
2963.01
2963.02
2963. 03
2963.04
2968. C5
2963. 06
2963.07
2S63.08
2963.085
2963. C86
2963.09
2968.091
2968.092
2968. 1
2968. 11
2963. 12
2963. 13
2968. 14
2969.
2969.01
2969.02
2969.03
2969.04
2969.05
2969.06
2969.07
296'i.08
2969. 09
2969. 1
2969.11
2969. 12
2969. 13
296-1.14
2969. 15
2-J69. 16
2965. 17
Z969. 13
2969. 19
£969. 2
2969.21
LfJS= 5Gw*K24EL*KEPIN*PA
SGn=Sl>« - LQS
GWS=GV.i - LOS
StJET= iNET «• LUS
P£P!N= RtPIN - LOS
IF (GWS.LT. ( C.OJ J GwS=0.0
C
C * * * LO*ER ZON£ EVAP * * *
C
C AETR - EVAP LOST FROM L.L.
C
C
IF (REPIN.LT.CC.OOOl)) GO TO 351
LNRAT = LZS/LZSN
IF (XKJ.LT. 0.995) GC TO 300
KF=50.0
GO TO 320
300 Kr=0.2:>/U.C-XK3)
320 IF  CALL EROOOG< RROS .TMBLSZ )
^RITf(DSNRJS) (RRCS(I),I=1,TM6LSZ)
DO 920 I=1,TCBLSZ
920 RROS(I) = j.C
NPROS = J
C
922 NRROS = NKRCS+1
924 P.ROS(NRKOS) = RQS
LASTPD - LOOP
219

-------
2969.22
2969.23
2969.24
2969.25
2969.26
2969.27
2969.28
2969.29
2969.3
2969.31
2969. 32
2969.33
2969.34
2969.35
2970.
2971.
2972.
2973.
2974.
2975.
2?76.
2977.
29T8.
2<979.
2980.
2981.
2982.
2983.
2534.
29^5.
2986.
2937.
298B.
2939.
2993.
2991.
2992.
2993.
2994.
2995.
2996,
2997.
2993.
2999.
30 JO.
3001 .
3002.
3003.
3004.
3005.
3006.
3007.
3008.
3009.
301 J.
3010.1
3010. 11
3010. 12
3010.2
3C10.3
3010. 4
3010.5
3010.6
2010.7
3C10.8
3010.9
3011 .
3012.
IF (NPRUS .LT. TMdLSZ) GO TO 942
IF (OUTPUT .Eg. ENGLJ GO TO 932
00 930 I=l,T*dLSZ
930 PFOSm = RBOS< I)*MMPIN
932 IF (IDFb'JG .EC. UNJ WRITE (6,9997) LOOP
IF UGEbUG .EJ. UN) CALL EROBUG< RROS , TMBLSZ 1
WRITE (OSNROS) ( RRuS ( I J , 1 = 1 , T ^BLSZ )
OU 940 I=l,TMbLSZ
940 RKOSU) = O.C
NRROS = 0
C
942 NRROS = NRROS+1
C
C
C
C WBAL - WATER dALANCE IN THE INTERVAL
C TWBAL - ACCUMULATED WATER BALANCE
C
C
4011 hBAL = (LZS-LZ J H-U ZS-UZS 1 + RESS-RE SS 1 J *PA+( SNET-SNETl*SGK-SGWl+
X SCE^-SC£P1 +SRCH+SRGXT-SRGXTH-RU-PR)
If ((WBAL .Lt. O.OC01J.ANU. UBAL .GE. -0.0001)) WBAL = 0.0
TU3AL = Tf.clAL-«-fc(3AL
C
DPS = F1A*PA
OPST = DPST * DPS
C
C
C RESETTING VARIAbLES
C
LZS1=LZS
UZS1=UZS
RESS1=RESS
SCEP1=SCEP
SRGXT1=SRGXT
SGWl=SGrt
SNETl=Sn6T
C
AStiAS = AS6AS + SoAS
ASPCH = ASRCH + SRCH
APR = APR + PRR
ARU = AKU * RU
ARUI = ARUI + RUI
APOS = ARCS + ROS
ARGXT = ArtGXT + RGXT
IF < (NUMI.NE.O) .OR.UMIN.Nc.OI ) GO TO 148
AEPIN = AEPIN + EPIN1
ASfJET = ASNET + SNETI
148 00 130 1=1,5
APEPC8U) = /iPtKCB(I) * PERCBH)
AROSStI) = AHUSBlI.) * ROSi3(I)
AINTF(I) - AINiTF(I) + INTP(I)
APOSHU) = AftuSITU) * RJSINT(I)
150 CONTINUE
C
IF (IMIN .NE. CJ GO TO 155
C CALCULATION OF SUIL MOISTURE
C
DO 51 1 = 1 ,5
SMOISTf IHR, I ) = 45302. 4*AREA*RESB< I )/M
UMOtSTdHR, I ) = ( (UZS8( I )/UZSN)*0.4Q)/24.0
IF (JMOIST( IhR, IJ .GT. 0.35) UMOI ST( IHR, I) =0.35
51 CONTINUE
LilOISTUMK) * C.1404*(LZS/LZSN)**2.66
IF (LMOIbT(IHR) .oT. 0.35) LMOISTJ IHR)= 0. 35
C
155 CONTINUE
C
220

-------
3013.
3014.
3015.
3016.
3017.
3018.
3019.
3C20.
3021 .
3C22.
3023.
302^.
3025.
3026.
3027.
3028.
3029.
3030.
3031.
3C32.
3033.
3034.
3035.
3036.
3037.
303S.
3039.
3C40.
3041.
3042.
3043.
3044.
30--5.
3C46 .
3047.
3043.
3049.
3050.
3C51,
3053.
3053.5
30 '54.
3055.
3056.
3057.
305ri.
3059.
3CV>.2
3C5T.3
jiC'J^ .4
30.Vi .45
1059.46
1059.5
505'?. 6
3C5v. 7
305'). e
3060.
3061.
3062.
3C6i.
3063.5
306V.
3065.
3066.
3067.
3063.
3069.
3C70.
IF (PRNTKE .EU. 0) GO TO 190
C
C CUMULATIVE RECORDS
C
PRTOM = PkTCM + APR
EPTOM = EPTCM + AEPIN
RUTOM = KUTCM + ARU
ROSTOM = RGSTCf + AROS
RITGM = kirOrt * ARUI
RINTOM = RIMCP + ARC-XT
NEPTOM = IMEPTOP +• ASNET
8ASTCM = oASTOM + ASiJAS
RCHTOM = RCHTCf + ASRCH
C
DO 157 1=1,5
ROoTO.«im =KCBTCM(I) * AROSB(I)
ROBTGT(I) = RUBTOT(I) + AROS31I)
lNf-TOM(IJ = IhFTCM(I) * AINTFtl)
INPTUT(I) = INFTOT(I) «• AINTFII)
POITGM(I) = RUITCMU) * AKOS IT ( I J
157 ROITGT(I) = ROITCT(I) +AROSITU)
C
PRTOT = PRTCT + APR
EPTOT = EPTCT + AEPIN
R'JTOT = RlTCf + ARU
ROSTOT = ROSTQT + AROS
PITOT = KITOT + ARU
RINTOT =RINTGT + ARGXT
NEPTOT = i^EPTOI * ASKET
BASTOT = BASTOT + AS6AS
RCHTOT = RCHTCT + ASRCH
C
IF (PRNTKE .Ew. 2) GO TO 171
IF (HYCAL.Eg.PROD) GG TO 160
C
C CUTPUT FOR HSP LANDS CALIBRATION RUN
C
C
RU = |P.U*A^EA*4ji>oC. )/(TIMFAC*720.)
IF (RU.LT.riYMIN .A NO. MJTR.EJ.YESi PRU = RU
IF (RU .LT. hYI' INJ GO TO 1 IQ
QMETRC=RJ*.0283
IF (NUTK .EC. YESi GO TO 9oO
WRITf (0,379) NKAM(MCNTH) ,OAY ,IHR,IMIN
WRITE U.Jfd) RO.gMETRC
GO Tn 170
C
C
C IsRITE NJTRIENT CALIBRATION OUTPJT
C
960 IF IPRU .LE. hYMlisJ GC Tu 97j
GO TO 930
S70 WRITE (0,4001)
IF (OjTPLT.Ed.ENGL .OR. OUTPUT. EO. BOTH ) WRITE (6,4002)
IF (OUTPUT .tQ. METKi WRITE (o,4003)
MUTE (e.,4004)
980 IF (OUTPUT. Ed .6NGL . CP. . OUTPUT. EQ .BOTH)
1 kklTE (o,',9Jl) NNAM(MONTH), DAY, I HR, IMIN, RU
IF (OUTPUT .E,. MtTR)
1 WMTE (o,i901) MiJAM( MONTH) , DAY, IHR, IMIN, QMETRC
PRU = RU
GO TO 17u
C
160 IF (SNOw. Ed.lNO .OK. PRINT. NE. DAYS ) GO TO 169
SUMSNH = SUKSNJ
PXSNH = PXSNO
SPXH = HELRiO
RADNEH = RACKED
221

-------
3071 .
3072.
3073.
3C7-V.
3075.
3076.
3077.
3078.
307?.
3060.
3C31.
3033.
3084.
3085.
3036.
3087.
3083.
3030.
3050.
3091.
3092.
3093.
3094.
30^5.
3096.
3097.
3093.
3099.
3100.
3101.
3102.
3103.
310*.
3105.
3106.
3107.
3109.
3109.
311 0.
3111.
 111'..
 3115.
 3116.
 3117.
 3118.
 3119.
 3120.
 3121.
 3122.
 3123.
3125.
3126.
3127.
312-3.
3129.
3130.
3131 .
3132.
3133.
3134.
3135.
3136.
3137.
31J3.
CDP.MEH = CCRFEO
CGNMEH - CGNKEQ
CRAINH - CRAINU
SGMH = SG.10
SNEGMH = SNt&MD
SEVAPH - SEVAPl)
c
c
c




CuTPUT FOR HSP LANDS PRODUCTION RUN AND SUMMARIES

169 IF (OUTPUT. EC. METR) GO TO 161









WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
(6,360)
(t>, Joi )
(6,363) AROSB.AROS
(6,364) AINTF.ARGXT
(6,365) AKUI
(6,366) ARGJIT.ARU
(6,380) AS3AS
(6,3ai) ASRCt-
(6.361J APK,APR,APR»APRf APR,APK
IF ( (SNOrt.EO.NO.OR. < PACK. L E. 0.0) J GO TO 181
C












WRITE
WRITE
WP I T E
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WPITE
SNOrtMELT OUTPUT
(6,478) SLMSNH
(6,479) fxSNH
(6,430) SPXH
(o,4al )
(6,4a2) RAOMEH
(6,4U3) CC.vlMEH
(6,4(34i CCRMEH
(6,465) CKAINH
( o,48fc) SurtH
(o,4d7) Si\E«CH
(6,4-iC) PAC\
CQVP = 100.


If
IF
(PACK .LT. IPACK) COVR = (PACK/ IPACM* 100.
(PACK. GT. 0.01) GO TO 1078
COVR=J.O
SDEN=0.0

















C
c









1078 WRITE
WRITE
WRIT
181 WRITE
WKI TF
W (•' I r [
»H ! 1 L
WRITE
WRI TE
Wfi I T£
WRITE
WRITE
WPITE
WPI TE
WRITE
IF ( ( J
161 IF (LH

(0,^91) £CcN
(6,492) CCVK
(6,4do) SEVAPH
(6, 367)
(0, 300) Al:PU,ACPIN,Acl'lN,AfcPlN,AtPIN, AfPIN
( ij , Jti'J) A brti_ T, ASNLT, AS,«ll;T , ASlU T , A^Nt I , ASNF T
( o , 1.1 J) (, l-Vl H
(6,370)
<6,371J oZSa.UZS
(6,372) Liz, LZS,LZS,LZS,LZS,LZS
(o,373) SG«, SGW ,SGW,SGW,SGW ,SGw
(6,374) SCEP.SCEP.SCEP, SCEP ,SCEP,SCEP
(b,37p) RE^d.RESS
(6,376) SKOX.SRGXT
(0,377) T«oAL
iNo«. tw. YES) .AND. (PACK. GT. 0.0) ) WRITE (6,489) TSNbAL
JTf-jr.E^J. £NoL) GO TO 171

METMIC CONvEKSICNS FUR OUTPUT
APR
ARUS
ARGXT
ARUI
AR'J
ASdAS
ASRCH
AEPIN
ASNET
=APR*CMP IN
=AKJS*C^P IN
= Af\GXT*PNPIU
= Ar
-------
3139.
3140.
3141.
3142.
3143.
                SCEPMT=SCEP*KMPIN
                 TKBLMT=ThBAL*MPPIM
3145.
3146.
3147.
3148.
3149.
3150.
3151.
3152.
3153.
3154.
3155.
315*.
3157.
315B.
3159.
3160.
3161.
3162.
3163.
3164.
3165.
3166.
3167.
31o9.
3170.
3171.
3172.
3173.
3174.
3175.
3176.
3177.
3178.
3179.
3130.
3181.
3132.
3133.
3184.
3185.
3186.
3187.
3188.
3139.
3190.
3191 .
3192.
3193.
3194.
3195.
31S5.
3197.
3198.
3199.
3200.
3201.
3202.
3203.
3204.
3205.
3206.
SNOW













163






162
























1079


182











IF (SNOw .EG. NO) GO TO 163
SUMSNH = SJMSNh*MMPIN
PXSNH = PxSNh*f-MPIN
SPXH = SPXh*fM*> IN
RADMEH = RAoMEH*MMPIN
CONMEH = CONrtfch*r1MPIN
CDkMEH = CDR«Eh*MMPIN
CHAINH = CKAINH*MMPIN
SGMH = St>PH*P iv>H IN
SNFGtfH = SNEGPh*M,1FIN
PACKKL = PAC**MMPIN
SEVAPH = SEvAPh*rtrtPIN
TSN6ML = TSNBALfMrtPlN
DO 162 1=1,5
AROSB(I) =*KCSb( i)*MMPIN
AINTFU) =AINTF( I)*MMPIN
APOSITin = ARCSIT(I )*MMPIN
UZSBMTt I)=UZSbiI )*NCPIN
PESBMTC I )=rt£S6l I )*MMPIN
SPGXMT(I)=SRCXll )*N«PIN
CONTINUE
WRITE (t,4oO)
WPITE (o,362)
«RITE 16,363) «ROSb,AROS
WRITS ic,364) AINTF,ARGXT
WRITE (c,Ju6) ASui>IT,ARJ
WRITE (o,3oO) <»SdAS
«R I TE ( o, jdl ) ASRCh
WRITE (o,361) APR, APR, APR, APR, APR , APR
IF (StlCh.cJ.NO .UK. PACK,. LE. 0.0) GO TO 132
WRITE (0,479) PXSNH
WRITE (6,480) SPXH
WRITE (6,481)
WRITE (0,482) KAOMEH
WRITE (6,483) CONKEH
WRITE (6,484) CJKKEH
WRITE (to, 485) CRA INH
WRITE (6,486) S^MH
WRITE (o,487) SNEGMH
WRITE (6,490) PACKML
COVR = 1CC.O
IF (PACK..LT.IPACK) COVR = (PACK/I PACK) *1 00.
IF (PACK.GT.O. Jl) GO TO 1079
COVR = 0.0
SDEN = O.C
WRIT? (o,i91) SDcN
WRITE (b,492) COVR
WRITE (6.4U8) SEVAPH
WRITE It,3o7)
WRITE (o,308) AEPIN, AEPIN, AEPIN , AEP IN , AE P IN, AEPIN
WRITE (6,3t>S) ASiNt T,ASNET,ASNET,ASNET,ASNET, ASNET
WRITE (6,383) CCvER
WRITE (o,370)
WRITE 16,371) UZSdMT, OZSMET
WRITE (6,372) LZSMET, LZSMET, LZSMET, LZSMET, LZSMET,
WRITE (o,J73) SG«MET, SGWMET, SGWMET, SGWMET, SGWMET,
WRITE (6,3/iJ SCEPfT, SCEPMT, SCEPMT, SCEPMT, SCEPMT,
WRITE (6,375) REStJMT, RESSMT
WRITE (o,376) SKGXMT, SRGXTM
WRITE (6,377) TfldLMT






















































LZSMET
SGHMET
SCtPMT



                IF  I SNOrt.EJ.YES  .AND. PACK.GT. 0.0)  WRITE  (6,489)   TSNBML
                                         223

-------
3203.
2209.
3210.
J211.
3212.
3213.
3214.
3215.
3216.
3217.
3213.
3210.
3220.
3221.
3222.
3223.
3224.
3225.
3226.
3227.
3228.
3229.
3230.
3231.
3232.
3233.
3234.
3235.
32 "U>.
1:' 1 1 ,
t > ' 1
If i ' > •
if j').
3240.
3241.
3242.
3243.
3244.
3245.
3246.
3247.
3243.
3249.
3250.
3251.
3252.
3253.
3254.
3255.
3256.
3257.
3258.
3259.
3260.
3260.71
3260.72
3260. 73
3260. 74
3.761. 75
3^61.76
32oJ. 77
326D.78
3260. 79
3260.8
3260.81
32o3. 32
3261.
3262.
171 IF (PRINT. NE. CAYS) GO TO 1 7D
SUMSNO = 0.0
PXSND = 0.0
MELRAD = C.Q
PADMEO = 0.0
CDhMED = C.O
COMMEL) = 0.0
CPAIND = 0.0
SGMD - 0.0
SNFGMD = 0.0
SEVAPD = 0.0
C
C FORMAT STATEMENTS
C
378 FORMAT ( ' + • , 2 IX ,F6.3 ,2X,F6. 3)
360 FORMAT
362 FORMAT
363 FORMAT
364 FORMAT
365 FORMAT
366 FORMAT
380 FORMAT
381 FORMAT
361 FORMAT
478 FORMAT
479 FOP. '11 T
480 FO«"AT
481 Fuk/AT
'•/!/ 1 IH'M/, f
40 t / 'H'. 1 A r
484 HIP MAT
485 FORMAT
486 CORMAT
487 FORMAT
490 FL'RMAT
491 FORMAT
492 FORMAT
488 FORMAT
367 FORMAT
368 FORMAT
369 FORMAT
383 FORMAT
370 PCMMAT
371 FORMAT
372 FORMAT
373 FORMAT
374 F-CPMAT
375 POKMAT
376 FORMAT
377 FORMAT
489 FORMAT
460 FORMAT
4001 FORMAT
1
2
3
4
5
4002 FORMAT
1
4003 FORMAT
1
4004 FORMAT
1
4901 FORMAT
C
( '0' ,dX, 'xATER, INCHES')
CO' ,UX,'RLNOFF' )
(' ' f!4X, 'OVERLAND FLOW , 5X,5( F8. 3 ,2X) , IX, F8.3 )
( ' ', 14 X,' INTERFLOW , ;X , M F8 .3 , 2X ) , IX , F 8. 3 )
(' ' , 14X ,' IKPERVIOJS ' ,59X,F8.3)
1 ' , 14X,'TCTAL' ,13X,5(F8.3,2X),1X,F8.3)
( 'U« ,UX ,'bASE FLOrt' ,o3X,F8.3)
(' ' , UX ,' GRDwATEK RfcCHARiie' ,5 liX, Fd .3 )
t '0' , UX,'PRhCIPITATION',SX,MF/.2,:»X),lX,F7.2)
C ' , 1<*X ,' Sf\iOw' ,o5X,F7.2>
(' ',14X,'rlAIN 0,J SNJ..J' ,5fA,l-7.2)
(• ',14X,'MtLT t. RAI.J' ,5bX,F7.2)
I'C1 .UX.'rttLT')
1 'f r»x,'»AufAf /';//' ,',o/,f I./)
' (,l'»X,'CU'JVLCnu/J',iiVX,f-7.2)
' ' , 14X,'CDN[;E^SAriu-(' ,5/X, F7.2)
1 ' ,14X,'RAIN MELT' ,60X,F7.2)
' ' , l^X ,' GKUUND MELT' ,5feX,F7. 2)
1 ',14X,'CUM NEu HtAT' ,57X,F7.2)
•0',UX,'iNOw PACK' ,03X,F7.2)
1 «,UX,'^NOW DENSITY' ,60X,F7. 2)
(' ',UX,'* SNC^I COVE^' ,60X,F7.2)
( '0' , UX.'SNOw EVAP' ,t>3X,F7.2)
< 'G' ,UX ,'EVAPCTRANSPIRATION')
( ' '.UX.'PLTENTIAL' ,9X,5
-------
3263.
3264.
3265,
3266.
3267.
3263.
3269.
3270.
3271.
3272.
3273.
3274.
3275.
3276.
3277.
3291.
3292.
4030.
4CC1.
4002.
'•003.
4C04.
40-»>.
4006.
4007.
4003.
40 J9.
'-.010.
4C1U
4012.
4013.
4014.
4015.
'< 0 1 o .
4017.
4017.1
4017.2
4017.3
4C18.
4019.
4020.
4021.
4022.
4022. 1
4023.
4024.
4C25.
4C26.
4027.
4028.
4029.
4030.
4031.
4032.
4033.
4034.
4035.
4C35.1
4036.
4C36.01
4C36.02
4C36.C3
4036.04
4036. C5
4036.06
4C3f..
4036.
             170
     07
     08
  APR =  0.0
  AEPIN  =  0.0
  APU =  0.0
  ARU1 = 0.0
  ARCS = 0.0
                 ARGXT
                 ASNET
                 ASbAS
                 A3RCH
                 DO 172
           0.0
           0.0
           0.0
           0.0
           1 = 1,5
             172
     AROSb(I)  -
     AINTF(I)  '
     AROSIT(I)
     CJNTMUE
                               0.0
                               c.o
                               = 0.0
             19C  RETUPN
                 END
          C
          C
          C
          C

          C
          C
          C
          C
          C
          C
          C
  SUBROUTINE  SEDTISFLAG)
                          SEDIMENT EROSION  MODEL
                 DIMENSION RESd<5),RESBH5),ROSBl5),SkGXt5),INTF(5),RGX(5),INFL(:>),
                1  UZSb(51,APERCBm,RIB(b),ERSN(5),K3(12)
                 DIMENSION SRER(b),RObTOM(5),ROBTQT(S),INFTOM(5),INFTOT(5),
                1  ROI TOM I 5) .RQITGT15J ,RXti(5) ,ERSTQM(5) , ERSTOT ( 5) ,MNAM( 12),RAD(24) ,
                2  TEMPX(24),«INOX(241 t RAIM2ttJ),U£SBMT(5),RESBMT(b),SRGXMTtS),
                3  SRERMT15)
                 DIMENSION AERSMbl .AERSNM151
                 DIMENSION ISTAR(3J
                 DIMENSION LSROl 128 ),EROS(128),RROS( 128)
                 DIMENSION SMuISTU4,5),LlMOIST<24,5) ,L MOIST (2*1,
                1           STEMPU4),UTEMP(24)

                 COMMON /ALL/ RL ,HYMlN,PRNTKE,HYCAL,OPST,OUTPUT,TIMFAC,LiS,AREA,
                1  *ES81,£OSB,SKCA,INTF,RGX,INFL,U£SB,APERCB,RIB,ERSN,M,P3,A,
                2  CALB,PROU,PEjT,NUTR,EN)GL,METR,BOTH,RESB,YES,NO, IM1N, IHR.TF,
                3  JUX'NT .PRINT, INTk ,DAYS, HJiJR.MNTH, I DEBUG, ON, OFF ,
                4  SMO!ST,JMCIST , LMOIST , STEMP,JTEMP,LTEMP,MUZ,MIL

                 COMMON /LANO/ f NAi-1 ,PKTQT, ERSJTT , PRTOM .ERSNTM , DAY ,
                1  RUTOM,UcPTCM,Ra$TOM,RITOf1,RINTOM,tiASTQ;«l,RCHTGM,RUTOT,
                2  NEPTCT ,RCSTCT,f(ITOT,RlNTOT,dASTOT,RCHTOT,TrtBAL,EPTOM,EPTOT,
                3  UZS.'JZSN.LZSN, INF IL, INTER, 1KC,NN,L,SS, SGv^l, PR, SGW,GwS,KV,
                4  K24L,KK ,LTEFP ,MUZ,MLZ
4036. CS
COMMON LANU  L!£ CL ArvAT IONS FOR 1*2 t. R*4
  INTEGER  OAY,.-!CNTH,DSNROS,Dii|FLO,DSNtRS,TMBLSZ,NEROS,
 1         MLShC.NRROS
                                        225

-------
4036.1
4036.11
4036.12
4036.13
4036.14
4036. 15
4036.16
4036 .17
4036. 18
4036. 19
4036.2
4036.21
4036.22
'.030.23
'.03-J.2
4038.3
4C38.9
4039.
4039. 1
4040.
4042.
4043.
4044.
4045.
SC46.
4046. 1
4047.
4049.
4C49.
4053.
4050.1
4051.
4C52.
405 J.
4054.
4055.
4056.
4057.
4057.1
4057.2
4053.
4059.
4060.
4060.01
4060.1
4060.2
4060.3
4060.31
4060.4
4060. 5
4060.6
4060.7
4061.
4062.
4063.
4064.
4065.
4066.
4067.
4068.
4C69.
4070.
^071.
4072.
4073.
4074.
4075.
4076.
REAL SEVAPM,StMiNY,PXSNY, MELRA Y , RADM EY , CORMEY , SGMV , CUNMfcY,
1 CRAI.NY,SNfcuMY,S£VAPY,TSNfaAL,COVER,CCVRMX,ROBTuM,RObTOT,
2 RXd,RCITCr-,PETMAX,ELJIF,DEniX,PACK,DEPTH,SDEN,
3 I PACK, TMlN,SUMiNM,PXSN,1,XKJ , MEL RAM , RAD MEM, CDRMEM, CkAl NM,
4 CCNrtfcM.SGM, SNEGMM,PRTJT,ERSNTf, PKTOM, ERSNTM,RUTOM,
5 NEPTOM.RCSTJM, RITOM.RI UOM, BASTOrt, RCHTOM, KUTL'T , NEPTOT ,
6 RCJSTOT.KITJT ,R INTuT , 8 ASTOT , KCHTUT, TrtBA L , E PTOM , E P f OT ,
7 U/s U/^N 1 / S N TNFfL I N f F R IRC ^ N L ^ S SC^l PR ^ Grt r w S
8 KV,K24L,KK24,K.24EL,EP , If- i> , KJ, EPXM, RESS 1,RESS,SCEP,
9 SCEP1,SRGXT, SRGXfl, JKE*,KRfcR, JSER. KSER , SRERT ,MMP IN,
* METUPT.CCFAC ,SCF,IUNS,F ,DGrt ,WC, MPACK,E VAPS N, MEL EV ,
1 TiiJO<*,PtTNI.<,Rt,!TjT,INFTJM, I,"if-TOT(ERSTOM,ERSTUT,SKER,
2 Tt!i1PX,RAU,nIi\JX,KAI^,LjKJ,tRJS, RROS
C
INTEGER ^4 BCTH.CALtJ, DAYS, t .luL , HOOR ,H *C AL , IM P'jT, 1 NTR , METR ,
1 MNTh,NO,NljTR,OFF , JN , OuTP JT , PEST ,PRINT, PKOU, SiMOW , YES
INTEGER*'* LCOF
DOUBLE PRECISION MNAM
INTEGER SFLAG
C
"EAL SRrtTHT
REAL KbPLB
C
DAT4 EkSNT/0.0/, AERSN/5*0.0/
DATA IASTRK/'*'/, I6LANK/' '/
DATA LASUP/-1/
C
C SER = TRANSPORT CAPACITY OF OVERLAND FLO* IN TOMS/ACRE
C ERSN = EROSION REACHING STREAM
C SRER = FINES JEPLSIT IN TONS/ACRE
C RER = FINES GENERATED IN INTERVAL
C
C ZEROING OF VARIABLES
C
SRERT = 0.0
DO 4599 1=1,5
4599 ISTAR(I) = IBLANK
EPSNT = J.O
RER = 0.0
CR = COVER
C
C SOIL EROSION LOOP
C
C IF SNOWliJG (SFLAG^iJ NO SOIL FINES GENERATED
IF (SFLAG .EC. 1) GO TO 4399
C
IF (SNOfc.EtJ.NG .OR. P ACK. LT. 0. 01 J GO TO 4389
C INCREASE COVER bY SNCK COVER WHEN RAIN ON SNOW OCCURS
SCOVER = PACK/I PACK
IF (SCOVER .GT. 1.0) SCOVER = 1.0
CR = COVER + U .0-COVbR) *SCOVER
C
4389 RER = (l.C - CR )*KRER*PR** JRER
43"=9 DO 4452 1 = 1,5
SRER( I ) = JkER( I) + KER
IF (uosem+RESBun.GT.o.oi GO TO 4444
C
EkSM IJ =0.0
SER - 0.
GU TO 4446
C
4444 SER = K3EK*
-------
4077.
4073.
4079.
4030.
                       IF (SREkll) .LT. 0.) SRER(I)  =  0.
4033,
••OH/,
•ttlM'l.
          C

          C
                               ERbNlI)


     IF  (PRNTKE .£8. 0)   GC  TO 4490
4446    AERSMlIi  =  AEKSNlI)
4452    COMT1NUE
4090 .
4C91 .
4C92.
4093.
4095.
4C96.
4097.
4093.
4099.
4100.
4131.
4102.
41C3.
4104.
4105.
4106.
4107.
4103.
4109.
4110.
4111.
4112.
4113.
4114.
4115.
4116.
4117.
41 Id.
4119.
4120.
4121.
4122.
4123.
4124.
4125,
4126,
4127,
4128.
4129.
4130.
4131 .
4132.
4133.
4134.
4135.
4136.
4137.
4138.
4140.
4141 .
4142.
4143.
C
C
C

C

C




C


C
C
C
C





C


C
892

C
893

49

C
C
C
C
44



44




£./. ,
H*f 1


C
        OC 4tiO   1=1,5
           FRSdT  =  trtSHT  t  AERS.il 11 1*0. 2
           SIM Kl  •  iH| H 1  »  ',!(! K( I )+().,'
           I I' MiMI II  -  II' MiJIII II  I  Al U '.Nil I
           i K'.uii in-  IK:,IHI (I)  *  AI
't'tV>       I UN 11NUI

                    CUMULATIVE  RECORUS

     ERSMTM = ERSNTM  +  ERSNT
     ERSNTT = ERiNTT  +  ERSNT

     IF (PRNTKE .EO.  2)   GO TO 4487

       EKSNTP = 0.0
       ERSNTK. = O.J

       ERSNCM = O.C

      IF (HYCAL .£(..  PKOD)  GO TO
      IF (PU  .LT. HYMIN >  GU  TO

   CONVERSION CF  SECIMENT LOSS TO  LBS., KGS.f KGS/MINUTE,  AND
                                     GM/L FOR OUTPUT

      ERSNTP  =  ERSNT*20CO.*AREA
      ERSflTK  =  ERSNTP*.454
      ERSNKM  =  ERSNT*/TIMFAC
      ERSNCM  =  ERSMP*454./
-------
il44.
4145.
4146.
> 147.
4 1*8.
-.149.
'.150.
'.151.
4152.
4153.
4154.
4155.
4156.
4157.
4157.01
H57.C2
->157.03
U57. 04
•«157.05
4157.06
4157.07
4157.08
4167.09
4157.1
4157.11
4157. 12
4157. 13
4157.14
4157. 15
4157. 16
4157.17
4157.18
4157.19
4157.21
4157.22
4157.23
4157.24
4157.25
4157.26
4157.27
4157.28
4157.29
4157.3
4157. 31
4157.32
4157. 33
4157.34
4157.35
4157. 36
4157.37
4158.
4158. 1
4159,
4163.
4200.
4201.
4202.
4203.
42u3. 5
4203 .6
4203. 7
42J3.8
4203.9
t <> '... .
-206.
42C7.
4203.
4209.
C
c
44SO
44 81
4482
4484
4485
49C2
C
4487

4489
C
4490
C
C
C



C
c
c





1070
1060
9996



1080

1090
1050




1030
1020



1C40

1000
c
1010


c
c
c
c



c
c
r,




FORMAT STATEMENTS

FORMAT < 'C« , ax, 'SEDIMENT, TO •iS/ ACkfc ' )
FORMAT (' • ,1U, 'ERODED SEDIMENT' ,4X,b(;JX,Fr.3), 4X.F7. 3)
FORMAT <• ' ,UX, 'FINES DEPOSIT' ,6X,5{JX, F7. 3), 4X.F7.3J
FORMAT ('+• ,3oX,4<2X,F7.21)
FORMAT CO', 8X, 'SEDIMENT, TONNES/HECTARE*)
FORMAT (•+' ,30X,F3.2)

DO 4489 1=1,5
AfcPSNU) = C.O
CONTINUE

CONTINUE

STORE EROSION DATA 6 WRITE TO DISK

IF (OSNERS.EJ.CJ GO TO 1010
IF (EPSNT.EJ.C.) GC TC 1010
IF (LOOP. tO. (LASTLP+1 )) GO TO 1050

DATA COMPRESSION PERFORMED - NO  , AREA ,
                                                     !-i , M , P j , A ,
                                                   IMIN, IHR ,Tf- ,
 RESBl,R05B,6RCX,INTF,rk;X,Ir.|hL.UZ$B,APEkCb,KtB ,
 CALbfPKOOfPcST ,NUTk, ENGL , ME TR , bOTH ,k E S b , Y ES , NO
 JCO'JNT , Ph INT , I NTR ( JArS,HU'J^ tMrjTH 1 1 Ot bOG, ON,UFF
 SMQIST, J.1UI iT , LMOISTibTEMP,JTEMP,LTbMP,MJ/:, MLZ
COMMON  /PEiTC/
 STST.PrNSTCM.SPhOTC, FKSTQT, i
 SCST,'JPITOH,SCiT,uPITQT,JTirf
                                   fPKljTOM , i Aj T , P° OTUT ,
                                 TS,UAST,JTS,JCST,S;,S,
     ALL  OECLARATI Cr4S FJR 1*2  &  R*4
INTEGER   PRNTufi fTIMFAd IMINt IrtR.TFf JCOONT, I DEBUG
PEAL  PO.MYMIN.LZS, AREA, RE SB1, ROSS, SRGX, INTF ,RGX, I NFL ,
      U^S3,APckLB,RIB,ES,SM,M,P3,A,RES6,SMOIST,UMOIST,
      LM'JIST,UPiT,STSKPfUTEMP,LTEMP,MOi,MLi
INTEGER
        TIMAPl 12) , YEARAP112 )
            BOTh.CALB , OAYS , E N^L .HOUR ,H YCAL , INPUT , INTR , METR,
            MNTH ,l«u ,NJTR,OFF,ON,OUTPUT,PtST,PRINT,PR3D,SNOrtt YES
                         229

-------
5022. 5
5023.
5023.5
5024.
5C2*.5
;>C25.
5025.5
5026.
5C26.5
5027.
5027.5
5028.
5023.5
5029.
5029.5
5030.
503). 5
5031.
5031. 5
5032.
5032.5
503i.
5033.5
503*.
5G3-+.5
5035.
5035.5
3036.
5336.5
503?.
5037. 5
50ol.
5062.
5063.
506*.
5C05.
5066.
5C67.
'3068.
5069.
5072.
5071.
5072.
5073.
5073. 1
507*.
5075.
5C7b.
50/7.
5C73.
5079.
5030.
5081.
5082.
5C33.
508*.
5035.
5086.
50>37.
5033.
5C39.
509).
5091.
5C93.
5095.
C

C





c




c



c


c









c




c




c




c
c
c
c
r
C






C
c
c
c




 INTEGER**  APPCOE,UESOSP,SJRF,SOIL

 REAL   KKt INFh
 REAL  STSTHT, SASTMT, SCSTMT, SOSTMT
 REAL  STSfET, SASMET, SCSMCT, SUSMET
 REAL  MMPIN, ME TUP I
 REAL  NPt KD» CT, ST , CAD

 REAL  UTSTMT, LASTMT, UCSTMT, UDSTMT
 REAL  UTSfET, LASMET, UCSMET, UOSMET
 REAL  JMFw, KNFw, UZSN. UiF , LZSN,  UF
 REAL  KLyJi CTUt STU, CADU
 REAL  LSTftMT, LASMgT, LCSMET, LOSMET
 REAL  GSTRMT, GASMET , GCSMET, GDSMET
 PEAL  KJL, CTL, STL

 REAL  C'.£iX,PTCT,CAUL
 IMTECE?  MFLAG, JFLAGi KFLAG
 PEAL    K,M,FPU,TOTPAPiKOPT,rtOPT,TOPT,TMAXiAK»BK,
         ivGPL3,FHLG,LSTR,LAS,LCS,UDS,GSTR,GAS,
3        GCS,GOS,TP8ALfL)EGSOM,DtGSOT,UEGUQrttOEGUOT,0£GUfOEGS,
         N IP, OtfGLUrt iOEGLOT,NCJMf UI ST t
DATA  UPiT, oASCT, JCSCT,
DATA  UOSCT, J P«PT /^*0.0/ ,
DATA  AUPK, ALPRI, AUPRP/ 1 5* J. O/
DATA  Ac
 DATA  SPST, SASCT, SCSCT, SPRT,  SPRST,  SPRTT ,  SPKPTT/ 7*0. O/
 DATA  SPRC-T, SPRPT/2*0.0/ ,  nFrt/0.0/
 DATA  ASPR, ASPKSi ASPRJ, A SPRP/20*0. O/
 DATA  SCSC, SPCFi, SDSCT/ 1 1* J. J/
                                     .U/ ,  OPRIT/U.O/
 DATA  CT/D*O.C/ ,JFLAG/S*0/,CAO/5*0. 0/tST/5*0.0/
 DATA  CTJ/5*O.C/,NFLAG/5*0/ iC AUJ/ 5*0. O/ r ST'J/ 5*0. O/
 DATA  CTL/5*C.C/,MFLAG/3*J/ ,C AUL/ 5* 0. O/, STL/ 5*0. O/ ,KDL/5*0.0/
 DATA KDf KDJ/1C*C.O/
                  SURFACE SOLUTION  AUSURPT IUN-UESUKPT I ON MODEL

                        VARIABLES
 STST = 0.0
 SAST = O.C
 SCST = 0.0
 SDST = O.C
 ERSNT = 0.0
 ASPTOT = 0.0
               ACSURPTION-DESORPTION SOLUTION  LOOP
                   WITH KEVERSIflLE DESORPTION

 PA = 1.0 - A
 I = 1000000. **(NI-1)
 KK = M*N*Z
 DO 5320  1=1,5
    INFW = 0.2*AKEA*(P3+RESfli(I))*226512.
    PTOT = SAS(I) + SCS(I) * SUSU) +  SSTRl(I)
    ASPTOT = ASPTUT * PTOT
                         230

-------
5097.
509S.
5099.
5100.
5101.
5102.
5103.
5104.
5105.
5106.
5107.
5108.
5109.
5110.
5111.
5112.
5113.
5114.
5115.
5116.
5117.
5118.
5119.
5120.
5121.
5122.
5123.
5124.
512b.
5126.
51^7.
5128.
5129.
5130.
5131.
5132.
5133.
5134.
5135.
5136.
5137.
513«.
5139.
5140.
5141.
5142.
5143.
5144.
5145.
5146.
5147.
51^.8.
5149.
5150.
5151.
5152.
5153.
5154.
5155.
5156.
5157.
5153.
5159.
51oO.
5161 .
5162.
5163.
5164.







5315








C
5316






C
C
C
5321
5317




C
531S
C


C
5324

C
5320
C
C
C

C







C






C



5329
C
IF (PTOT.GT.FP) GO  TO 5313
   SAS(I) =  PTOT
   SCSUJ =  0.0
   SOS(I) =  C.O
   JFLAG( I)  = 0
   CT( I) = C
   Go TO 5320
X = KK*CMAX**NI
PSLD = PTOT -
IF (PSLD .LT.
   SASU) =  X
   SCSU) =  PSLD
   SDS(I) =  CMAX*INFrf
   JFLAGU)  = 0
   CTU) = C
   GU TO 332C
                    «•  FP
                  X  -  INFWCMAX
                  0.0)  GO  TO 5316
      scsm =
      IF  UNFw
      SAill) =
      SDS(I) =
      JFLAGlI)
      CT(I)  =  C
      GO  TO  532C
            C.O
            GE.O.
            PTOT
            C.O
            = 0
001) GO TO 5321
     CCMPuTE C  AND  X  BY  THE  ADSORPTION EQUATION

      C = CMAX+PTOT/(X + INFW*CMAX)
      X » KK*C**NI  +  FP
      Q = tPTUT/(X*!NF^*O)  -  1.
      IF  (ABS(U.LE.O.Ol)  GO TO  5319
         C = C*PTOT/(X + INFW*C)
         GO TO  5317

         IF (JESUnP .EQ. NO)   GO  TO  532*

CALL OSHTN » I ,CTtCTJFLAb,CAO,KL>tK,,ZiNC(JM,
           ST , A ,M, NI P, FP,PTUT,
         SDS(I) =  tC*Iiv|Frt)*(PTOT/(X+C:*INFw>)
         SAS(I) =  X*(PTOT/l X*-C*INF« ))
               PESTICIDE REMOVAL  LOOP

DO 5330   1=1,5

   QS = 400.*AREA*ERSNU)/M
   IF (QS  .GT.  1.0)   GS =  1.0
   SAPSU) = SASU)*QS
   SCPSU) = SCSI I)*CS
   SPRSU) = SAPSt I)  + SCPS(I)
   SASt I)  = SASlU -  SAPSU )
   SCSU)  = SCSU) -  SCPSU)

      SPRO(I)  =0.0
      SPUFSCI)  =0.0
      SPKP(I)  =0.0
      SPft(I) =  C.O
   IF IPJ  +R£Sei(IJ.LE.0.0) GO TO  5329
      SPROU)  - SOSl I)*ROSB(I)/((RESB1(I)+P3)*PA)

   SPOFS(I) =  SCSi I)*(RESB( IJ / ( RESB 1UJ+P3))
   SPP.P(I) = SCS(I) - SPROU) -  SPOFS(I)
   SPR(l)  = SPROU) + SPRS(I)  *  SPRP(I)
   SDStl)  = SPCFSU)
                        231

-------
5166.
5167.
5163.
5169.
5170.
5171.
5172.
5173.
5174.
5175.
5176.
5177.

5179.
5180.
5132.
5183.
5184.
5185.
51B6.
5197.
5183.
3139.
5191.
5192.
5193.
5194.
5195.
5196.
'j 1 
-------
52^3.
5234.
5235.
5?36.
5237.
5238.
5239.
5240.
5241.
5242.
5243.
5244.
5245.
5246.
5247.
524J.
5249.
5250.
5251.
5252.
5253.
5254.
5255.
525;,.
5257.
5230.
5239.

•3261.
 >25J.
 :^264.
 5265.

 T2&7.
 S26d.
 5269.
 5270.
 5271.
 5272.
 5273.
 5274.
 5275.
 5276.
 5277.
 527ti.
 5279.
 52SO.
 52-31.
5282 .
 0233.
 5284.
 5235.
 5236.
 5287.
 52 « 6.
5289.
5290.
 5291.
 5292.
 5293.
5294.
5295.
529t>.
5297.
5293.
5299.
S300.
                                 STS, STST
                                 SAS, SAST
                                 SCS, SCST
                                SOS, SDST
                                 SPS, SPST
                                 SASC, SASCT
                                 SCSC, SCSCT
                                 SD£C, SOSCT
                                 AiPk, SPRT
                                 ASPRS, SPRST
                                 ASPRO, SPRUT
                                 ASPRP, iPKPT
                                ENGL) GO TO 5370

                               i  FUR OUTPUT
                STSTMT=STST*KGPLB
                SASTMT=SAST*KGPLD
                SCSTMT=StST*KGPL3
                SDSTMT=SjSf*KGPLB
                SPRT   =SPKT*KGPuB
                SPKST  =bPKST*l\GPi.b
                SPROT  =SHROT*KGPLB
                SPRPT  =i>PRPT*NGPLi3
                DO 5343  1=1,3
                  STSMET( U = STS(I)*KGPLB
                  SASMf T( I ) = SAS (I )*KGPl_B
                  SCSMf1 I I)=SCS(I)*KGPLB












WRITE
WRIT?
WRITE
WRITE
WRITE
WRITE
WP! TE
WRITE
WRITE
WRITE
WRITE
WRITE
(6,5351)
(o,5352)
(6,5353)
(6,5361)
lo,535<«)
(6,5352)
(6,5353)
(e,53el)
(6,5355)
( 6,5336)
(6,5357)
(6.533S)
5341 IF (CUTHJT.EQ.
C
C

METRIC Ct

JNVcKSION





5343










5345



C
C
C
C
SnSMET(i)=SUS(I) *KGPLB
ASPkll) =AiHKl I) *^GPLB
ASPRS(I) =ASPRS( i)*KGPLB
ASPROU) =ASPHO( I)*KGPLB
ASPRPlI) =ASF«P( I) *KGPLB
CONTINUE
WRITE (0,3350)
»RITE (6,5.163) STSME7, STSTMT
WRITE (6,5352) SASMET, SASTMT
WRITE (6,5353) iCSNET, SCSTMT
wPITg (0,5361) SUSMET, SOSTMT
IF (OUTPUT. EC. tOTH) GU TO 5343
WRITE (6,5^34) 6PS, SPST
WRITE (6,5352) SaSC, SASCT
WRITE (6,5353) SCSC, SCSCT
WRITE (6, 5361) SuSC, SDSCT
WRITE (6,5374) ASPR.SPRT
WRITE (6,5336) ASPRS, SPRST
WRITE (0,3357) ASFKC, SPROT
WRITE (6,5355) ASPRP, SPRPT


ZEROING VARIABLES

           5370 DO
           5380
5380  1=1,5
ASPP. (I) = 0.0
ASPROlI)
ASPRS(I)
ASPPP( I)
CONTINUE
                               c.o
                               c.o
                               C .0
           5390  SPST  =  0.0
                 SASCT  = 0.0
                 SCSCT  = 0.0
                 SOSCT  = 0.0
                 SPRT  =  0.0
                 SPRST  = 0.0
                 SPPOT  =0.0
                 SPPPT  = 0.0

                 DO  5391  1= 1,5
                                         233

-------
53C1.
5302.
5303.
5304.
5305.
5306.
53J7.
5303.
5309.
5310.
5311.
5312.
5313.
5314.
5315.
531o.

5313.
5391
C
C
C
C
C
C
C
C






C
C
C
SSTRK I) =0.0



UPPER ZONE SOLUTION ADSORPT ION-DESORPT ION MODEL


ZEROING VARIABLES

UTST = 0.0
OAST = O.C
UCST = 0.0
UOST = 0.0
UIST = 0.0
AUPTOT = 0.0

SGLUTION ADSORPTION-DESURPTION LOOP

5>;i5. C 45302.4 = 0.2 * 43360 FT<2)/ACKE * 1 FT/12 INCHES * 62.4 LB/FTU)
5320.
5321.
5322.
5323.
532''.
5325.
5i2a.
5327.
532-).
5327.
533 3.
5331.
53:52.
5333.
5 3 J 't .
5331.
533i.
533'.
5333.
533 ?.
53 't }.
5341 .
5342.
5343.
534',.
5345.
5346.
534?.
5341.
534->.
535).
5351 .
5352.
5353.
5354.
5355.
5356.
5357.
533? .
535v .
5360.
5361.
53'-.?.
53o3.
5364.
53">5.
536o.
5367.
5363.
C

C






C







C
6315








C
6316
C


6317




C
6319


C


C
6324

C
6320

KK = MUZ*K*Z

DO 6320 1*1,5
JNFKd) = AREA*PA*(UZSB( I )+APEi
-------
5369.
5370.
5370.1
5370.2
5371.
5372.
5373.
5374.
5375.
5375. 1
5373.2
537j.
5377.
5378.
5330.
5381.
5362.
5333.
5334.
5335.
5380.
5337.
5336.
5389.
5291.
5392.
5393.
5394.
5395.
5396.
5397.
5393.
5399.
5400.
5401.
5402.
5403.
5404.
5405.
5406.
5407.
5403.
5409.
5410.
5411.
5412.
5413.
5414.
5415.
5416.
5417.
5413.
5419.
542'J.
5421.
5422.
5423.
5424.
5425.
5426.
5427.
5428.
5^.2 J.
5430.
5431.
5432.
C
C
c
C UZFM I
C
DO
C











6327
6325

6328

C



C
6330
C
IF
C
C
C




C



C





6333
6334
C




C


c
6335
C
C
C


6340
            PESTICIDE REMOVAL  LOOP

REDUCES SOLUTE PERCOLATION  FOR  SOIL  MOISTURE  LESS THAN UZF*UZSN

 6330  I=lf5

 IF (JNJ-rtll)  .LE .  0.0001)   GO  TO  6327
 QSP = AREA*PA*( IMFLII )*APERCB( I) )*>F-.l I = UUSI I)*ySI
 UPRISd) = tPRIS(I) + UPRII
 UPRId)  = CPRIS JPR( I)
 AUPHI(I) = A'JPRKI) * UPRItl)
 AUPRPII) = AUPRP(I) + UPRP(I)
 UIST = JIST + UPRIS(I)

 CCNTINUE

 (PRNTKE .Eg. 0)   GO TO 63dO
             PREPARATION UF OUTPUT
 DO
6335
UPRT
UPR IT
UPRPT
UAST
UCST
UOST
I=li5
= UFRT -»
= I PR IT
= UPRPT
= UAiT *
- UCST +
= uCST *

AUPRd)
* AUPRI (
+ AJPRP(
UASl I)
UCSd)
UDS(I)


I)
I)



    UASC(I) = (UAS(I)/MUZ)*1000000.
    UCSC(I) = (UCSl I)/MUZ)*1000000.
    IF (JZSB(IJ  .LE. 0.0001)  GO TO 6333
    UDSCII) = (UOSlD/1 JZSdd )*AKEA*45302.4) )*1000000.
    GO TO 633^
    UUSC(I) = 0.0
         i  = uAscm * jcscd) <• uoscii)
    «• UASC(I)*0.
    + JCSC(I)*0.
    * UOSC(I)*0.
    UPS(I
                 UOS(I) » UPRIStI)
    UASCT = LASCT
    UCiCT = LCSCT
    UDSCT = UCSCT
    UPST = UPST *
    UTSd) = UASU) + UCSd)
    UTST = UTST * UTS(I)
    CONTINUE
            CUMULATIVE RESULTS
 DO
634C  1=
UPITOMd)
UHlTOTd)
= UPITOMd)
= JPITOTII)
                            AUPRI(l)
                            AUPRI(I)
                       235

-------
c' 4 j ) .
'_> 14 ~) .
5')4l
'j i 5 '3
54-3,
                 UPf- I TM  =
                 UPRITT  =
                           UPk ITN
                           UPhITT
                 IF

                 IF
                 IF
                   UPRIT
                 * UPRIT

                 2)   GC  TO
   ChYC^L  .EC. PkUU)  GO  TJ 6341
   (Fi,1. l_T.HY« IM GC  TO t>3o5
                    TPRTGH
                    TPRTCrt
                    TPkT.jM
                    S P P T C, M
             10COOJO.*UPRIT/(RU*TI
             UPRTow +  SPkTGW
                    >•  SPRTCW
                            =1  SPR ibS/T IMFAC
                 GO
                    TF  (t,o46G)
                    T '.1  L J o 5
                                 TPRTGk.TPRTGM.TPRTCrt,SPRTGS,SPRTGM,SPRTCS
                                PRINTING JF  OUTPUT
            6341
IF O'JTPJT.EU.
WRITE  !o,635C)
       (o ,5351)
       (o,5352J
       (o, 5353)
       (6,3361)
       (o,o j62 )
       (0,5354)
       10,5352)
       (6,5353)
       (6,5J61)
       (6,5353)
                                 ftTH) GO  TU  6342
                 rvRITE
                 WRITE
                 WRITE
                 hPITb
                 KPITE
                 /«RITE
                 rtK I T E
                 nRITE
UT S,
JAS,
UuS,
UD S,
     UTST
     LAST
     UCST
     LUST
UPnIS, JIST
UPS, I'PST
UASC,  UASCT
UC SC ,
JOSC,
                                  AJFR
            6342
                    (QUTt-iJT.ti.. £IML.LJ
      UCSCT
      UJSCT
      UPkT
      , uPRIT
      , UPRPT
      GO  TO  6365
              METRIC COfVERSICNS fOk OUTPUT
            6344
                 UOST.',T =

                 U:'kIT =
                 UIST = .JIST*KGrLB
                 1)1 6? 44  1 = 1,3
                   UTSMETi 1 ) = UT S I I ) *KGPLB
                   UCC ML Ti
                   UJSMe r (
                   A :PK i i i
                   LlPf- ISr
                 CONTINU
            6345
VvRI
V*PI
«P I
KRI
>vRI
pi
o r 1
IF
WPI
•.'P T
^R:
ft-' i
^r- ;
WF i
•r,KI
T E
T P
1 b
Tr
TE
TL:
(u
TE
T ,-
Tf
T-:
r ^
TE-
TL
( o
! o
( c>
( 0
{ 0
( o
UTP
( o
1 6
I o
( (,
( t-
< t>
( c
, c 3 5 C I
,5363 )
, 53D2 1
, 53a j )
i aJoi )
, c3b2 )
1 J T • t ^* .
, 5354)
, 5 3 S2 )
, J 35 j /
, 53ol I
, 5 ,'J 7 4 )
, 0 3 '3 0 )
, 3 J 5 ', )
                            ) = uCS (I J *KGPL3
                            i-ubS ( i ; *
-------
550}.
55M.
5502.
5503.
5504.
5505.
5505.
5507.
5503.
5509.
5510.
5511.
5512.
5513.
5514.
5515.
5516.
5517.
5519.
5519.
5520.
5521.
5522.
5523.
552*.
5525.
5526.
5527.
5528.
5529.
5530.
5531.
5532.
5533.
5534.
5535.
5536.
5537.
5533.
5539.
5540.
55-+1 .
S',.42.
5543.
5544.
5545.
5546.
5547.
554.3.
5549.
5550.
5551 .
5552.
5553.
5554.
5555.
5556.
555f.
555:).
5559.
5560.
5561.
TV..2 .
5563.
5564.
5565.
5566.
5567.
r
^
c
c
c
6365



6370
C
638C






C

6381
C
C
C
C
C
C
C
C
C
C
C





C


C



73C5
C

C











C
7315










^EkOING VARIABLES

DO 6370 I=if5
A'JPRU) = C.C
A'JPRKI) = C.O
AUPRPt I) = C .0
CONTINUE

UPST = 0.0
UASCT = Q.O
UCSCT = 0.0
UOSCT = 0.0
UPRT = O.C
UPKPT = 0.0
UPRIT = 0.0

DO 6381 1= 1,5
USTRI I) = 0.0



LOWER ZONE AND GROUNDWATE
SOLUTION ADSORPTION-DESOR




SOLUTION ADSORPTION-DESORPTION LOOP

LCS = O.Q
LAS = 0.0
LDS = 0.0
LPRP = 0.0
ALPTOT = 0.0

KNFri = ARtA*UZS+UPST)*2265l2.
KK = PL/L*K*Z

DO 7305 1=1,5
LSTP = LSTR + UPRP(I)
ALPTOT = ALPTOT *• LSTR
CONTINUE

If- *CMAX
IF (PSLu .LT. C.U) GO TO 7316
LAS = X
LCS = PSLC
LOS = CMAX*«NFW
MFLAGl I) = C
CTL(I) = C
GO TO 7320
237

-------
556d.
5509.
5570.
5571.
5572.
5573.
5574.
0575.
'j57f>.
5577.
5578.
5579.
5530.
5581.
'3582.
5533.
558*.
5535.
5536.
5587.
5533.
5539.
5590.
5590.1
559J.2
5591.
5591.1
5591,2
5592.
5593.
55 i
LAS = X*tPTOT/(X+C*KNF*))
C
7320 CONTINUE
C
C PESTICIDE REMOVAL LOOP
C
C LZFM REDUCES SOLUTE PERCOLATION FOR SOIL MOISTURE 1
C
LZFM = LZS/ILZSN*LZF>
IF (LZFH.GE.l.C) L/FM =1.0
LPRP = LDS*DPST*LZfM/(DPST+LZS)
LOS = LDS - LPfrP
C
LSTR = LAS *• LCS + LDS
C
ALPRP = ALPRP •» LPRP
C
7330 IF (PRNTKE .EU. 2) GO TO 7J79
IF (PRNTKE.NE.l .OR. hYCAL. EU.CALBJ GO TO 7380
C
C PREPARATION OF OUTPUT
C
C
LASC = (LAS/MLZ 1*1000000.
LCSC = »LC5/MLZ)*loOOOOO.
LDSC = (LDS/lLZS*AREA*22b51^.) 1*1000000.
C
C PRINTING OF OJTPUT
C
IF (OUTPUT. EG. PETRJ GO TO 7J40
«RITE (6,73501
WPITf (6,7351) LSTR
WRITE (0,73521 LAS
VsRITE (6,7353) LCS
»RITF 10,7354) LUS
yjRITF (6,7355)
hR.ITE lb,7J52) LASC
UPITE (t>,7353) LCSC
wRITF (6,7354) LUSC
»RITE (6,7357) ALPRP
URITE (6,7359) ALPRP
7340 IF (OUTPUT. EC. ENGU GO TO 7379
C
C METRIC CONVERSIONS FOR OUTPUT
LSTRMT=LSTR*KGPLb
LASMeT=LAS+KGPLB
LCSM£T=LCS*KGPLE
LDSf1F.T = LOS*KGPLB
ALPK'P =ALPkP*KGfL6
WRITE (o,7350)
                       LESS  THAN LZF*LZSN
238

-------
5632
5o33.
5634.
5635.
563S.
5637.
563*3.
3639.
5640.
5641.
5643.
564 't.
5645
5646.
5647
5643.
5649.
5650
5651.
5652.
5653.
5654.
3636.
5657.
56»J.
5659.
56o">.
5661.
5662.
5663.
5664.
56o5.
566o.
5667.
566 4.
5669.
5670.
5671.
5672.
5673.
5674.
5675.
567G.
5677.
5676.
56M.
5-.>:n.
5631.
5o32.
5633.
5o34.
5t.)5.
5636.
56 a .'.
569).
56
-------
5699
5700
5701
5702
5703
570'+
5735
370b
5707
5706
5709
5710
5711
5712
5713
5714
5715
5716
5717
5713
5719
5720
5721
5722
5723
5724
5725
5726
572?
5728
3729
5730
530 J
5801
5802
3803
5804
5803
3d06
5807
3EO 1
.
.
.
.
.
«
.
.
.
.
•
.
.
.
.
.
.
.
.
«
.
.
.
.
.
.
.
.
.
.
•
.
.
.
.
.
.
.
.
•
.
5350
5351
5352
5353
5354
5355
5356
5357
5359
5361
5363
5374
C
635G
6358
6362
6460
C
7350
7351
7352
7353
7354
7355
7357
7359
736C
7361
C
7550


C
C
C
C


C
C
C
FORMAT ('
FOPMAT I '
FOPMAT C
FOPMAT (•
FOPMAT ( '
FOPMAT ( '
FORMAT ( '
FORMAT ( '
FORMAT C
FORMAT c
FORMAT CO
FORMAT CO

FORMAT C
FOPMAT
FORMAT
FOPMAT

FORMAT
FOPMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
F )PMAT
•
i
•

i
i
i
i
i
•
i
t
i
OS
OS
s
s
OS
0' ,
,
,
,
1 1
5X
dX,
11X
11X
8X,
8X,
11X
11X
HX
IX ,
,
i
,
,
i
•
»
,
,
i
'SURFACE LAYER PESTICIDE'}
PESTICIDt, LBSS8X,5(3X,F7.3),3X,F8.3)
'ADSORBED' ,UX,M3X,F7.3)»3X,F8.3)
•CRYSTALLINE' ,8X ,5 (3X.F7 .3)
PESTICIDE, PPM',8X,5(3X
RcKOVAL, L3S' ,10X,5( 3X,
' SEDIMENT' ,11X,5(3X,F7.
•OVERLAND FLOW',6X,5t3X
' FERCOLATIO J« ,6X,513X,F
DISSOLVED' ,10X,bt3X,F7.
1 ax, 'PESTICIDE, KGSS8X,5(3X,
,F7.
F7.3
,3X,F8.3)
3) ,3X,F8.3)
)
3) ,3X
,F7.
7.3)
,3X,F8.3J
,F8.3)
3) ,3X,F8.3)
,3X,F8.3)
3) ,3X
F7.3)
S6X, 'REMOVAL, K.GS',10X,513X,F7.3)

0' ,
' ,
' ,
*•' ,

U' ,
0 ,
,
*
,
0 ,
0 ,
f
0 ,
•0 ,

FOPi-IAT ('
RETURN
END




SUBROUTINE
1




0' i








5X,
1 IX
llA
72X

5*
ax,
11X
1 IX
11X
8X,
8X ,
11X
d> ,
dx ,

5x,






,
,
,

,
•
i
,
,
•

'LPPER iUNE LAYER PcSTl
' INTERFLOW ,10X,5t3X,F7
•INTERFLOW STURAGES2X,
c (3XfFt3«3f ^i X ) i b • 3f^X fr/


CICE
.3),
5(2X
.3))

•LOWER ZJNE LAYER PESTICIDE
PESTICIDE, LBSS61X.F8.
•AUSCRbED1 ,64X,F8.3)
'CRYSTALLINE' ,olX,Fd.3)
' ol S SOLVED' ,63X, Fa. 3)
PhSTICIDE, PPMS61X.F8.
3)



3)
»

i
,F8.3)
,3X,F8.3)
3X.F8.3)

)
3X.F8.3)
,


i





F8.3J,3A,F8.3)


)





'REMOVAL, LBS',63X,Fd.3)
,
i
• PERCGLATlOs' ,61X,F8.3)
PESTICIDE, KGSS61X.F8.

3)




•REMOVAL, KoS',e>3X, Fd.3)

i






DSP7N


oRUUND«ATER LAYER PESTICIDE






( I,CT,C,JFL4G,CAD,KO,K,







•







)






L , NC OM ,
ST,X,M,NIP,FP,PTOT, INFW)





















5810.
5811.
5312
5313.
5614.
5815.
5£l7.
5fcH.
5al9.
5 6 7 0 .
5321.
5822.
5823.
5824.
5825.
582b.
582 1 .
5823.
582^.
bd30.
5331 .
5332.
5633.
5 8 -J V .
5335.
                D I MEMS 10 -J  CT(5) .JFLAG15) ,CAO(5J ,KO(5) ,ST(5)
   INTEGER  I.JfLAG
   K>!AL CT,C,CAO, K
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
                                          P, FP, PTOT ,INFW
THE OESDRPTICN ALGORITHM  is  BASED  ON  THE  FREUNDLICH EQUATION; THE
CIFFEREMCF BEING  THAT  TuE CONSTANT  ( K)  AND EXPONENT (N)  OF THE
DESORPTION EI.JATICN DIFFER FROM  THE  ADSORPTION VALUES.  DESORPTICJN
CCCURS «HEi< THE CCNCENTRAT1 ON  OF PESTICIDE IN olATER (C)  IS LESS THAN
ThE CONCENTRATION  (CT )  AT THe  LAST  TIME STEP.  THE DESORPTION
EXPONENT (N? — INPUTTED  BY  THE  USER)  AND THE DESORPTION CONSTANT
(KO — CALCutATEC  t!Y  SETTING TH= DtSORPTIOfl EQUATION EO'JAL TO THE
ADSORPTION cCJATICN AND SOLVING  FOR  K.D ) THEN DEFINE THE  NEW DESORP-
TION CU»VE.  ThE  ASSUMPTION  UF REVERSIBLE DESORPTION IS  MADE.  ONCE
DESORPTION STCPS  ACSORPTIOlM  BEGINS  BY  MOVING BACK UP THE OESOKK'TION
CCFVE UNTIL IT INTERSECTS THE  A3SURPTION  CURVE (I.E.,  WHEN C EQUALS
CAO — THE CONCENTRATION  OF  PESTICIDE  IN  WATEk AT WHICH  THE ADSURP-
TICN AND DfcSOKPTICN CURVES INTERSECT).   THEN ADSORPTION  CONTINUES UP
The ADSORPTION CUH vt  UNTIL DESORPTION  OCCURS AGAIN.  DEFINTIONS OF
THE OESOPPTICN VARIABLES  FOLLOrt  BELOW.

        CT  :  CONCENTRATION OF  PESTICIDE IN WATER (LB/LB)
                   AT  THE  LAST  TIME  INTERVAL
        CAD  :  CONCENTRATION  C  AT  WHICH  THE ADSORPTION  AND
                   DESORPTION  bJUATIONS MEET, CAD IS SET
                   EUuAL  TU  CT ^HEN  UESORPTIUN BEGINS  AS A
                   MAHKER TO LATER  DETERMINE WHEN THE  ADSORP-
                                          240

-------
5836.
5337.
5833.
583?.
53*0.
5341.
5842.
5843.
5844.
5845.
5846.
5847.
5848.
534Q.
5853.
5851.
5852.
5853.
5854.
5855.
5856.
5857.
585d.
5859.
5860.
5861.
5t)62.
5863.
5864.
5865.
5866.
58o7.
5ao9.
58'0.
5*71.
5872.
5873.
5874.
5875.
6COO.
6001.
6002.
6C03.
6004.
6004.1
6004.2
6004.3
6004.4
6033.
6006.
6007.
6003.
6009.
6C10.
6011.
6012.
6013.
6018.2
6018.3
6019.
602J.
6021.
6022.
6023.
6023. 1
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
ST
JFLAG
NP   J

NIP
KO   :
NCOH
    TICN PROCESS LEAVES  T Hfc  REVERSIBLE U^SURH-
    TICN CURVE AMD RETURNS TO  THE  NUN-REVERSIBLE
    ADSORPTION CJRVE
CONCENTRATION OF ADSORBED PESTICIDE  IN THE SOIL
   ILB/LB) AT THE LAST TIME  INTERVAL
:   FLAG hhlCH NOTES WHETHER  C  WAS  CALCULATED ON THE
     ADSORPTION CURVE DURING LAST  TIME STEP ,SRGX(5),INTF{5),RGX(5),IIMFL(5)f
     1 UZSB15),APERCB(5),RIB«5),ERSN(5)
      DIMENSION SMOIST124,5),UMOIST(24t5),LMOIST(2^1t
     1          STt«P(24),ljTEMPl24)

      COMMON /ALL/ RL,HYMNf PRNTKE ,HYCAL, DP ST, OUTPUT, T IMF AC tL
-------
6026.
6027.
6023.
6029.
6034.
6C34. 01
60Jf.ll
6034.21
603^.31
6034.41
6C34. 51
6C35.
6037.
6038. 1
6033.2
6033.3
603t3.4
6039.
6039. 1
6C39.2
6039.3
6039.4
6039.5
603C.6
6C3 ;.7
6C3o. 3
6C39.9
K ; » U '\
6041.
6042.
6043.
6044.
6045.
605:).
6C59.
6060.
6061.
6062.
6C33.
6CH9.06
6C39.07
6C !9.C8
6C39.C9
6089. 1
6089. 11
6C89. 12
6039.17
6089. 18
6Ct>9. 19
6C39.2
6039.21
6039.22
6089.23
6089.24
6089.25
6089.26
6039.27
6039.28
6C89.29
6039. 3
6089. 31
t>0<39.32
6089.33
6089.34
603V. 35
60:iS.4
dC '. 3 . 4 1




C
C




C
C



C

C









/*
C
C
C
C
C
C
C



C
C
C
C
C
















C
C
C





    1  STST,PKSTCM,SPPOTM,PRSTOT,SPRSTM.PROTON,SAST,PRUTOT,
    2  SCST,UPITCM,SDST,UPITUT,JTST,STS,UAST,UTS,JCST,SAS,
    3  UOST,SCi,FP,SCS,C,MAX,SSTRl , SPRUT T, UA S, SPRSTT, JC S ,
    4  FPJZ,UDS,UPHI1^,USTR,JPRITT,UPRIS

   COMMON  ALi. DECLARATIONS FjR 1*2 t. R*4
     INTEGER  PKNTKE.TI <"FAC , IMIN , IHR ,TF, JCOUNT , I DEBUG
    REAL   RU,riYM£N,LZS,AfiEA,REStU,ROSB,SRGX,INTF,RGX,INFL,
    1       UZSa,AP£RL6,RIB,fcRSN,M,P3,A,RESB,SMOISTfUM01ST,
    2       LMJIST.OPST,STEMP,UTtMP,LTEMP,MUZ,MLZ
      REAL   MMKINfMtIUHI,LMAVb
     INTFGER*4  BGTH ,CALb,DAYS,ENjL,HOUR,HYCAL,INPUT,INTk,M£TR,
    1            HNTh ,NU,NUTR,OFF,JN,OUTPUT,PEST,PRINT,PROD,SNOh,

     INTEGER**  APMCCt.CESCRP,SURF,SOIL
  INTEGER TIMAP112J ,YEARAP(i<;)
  REAL   K.NI ,FPLZ,TOTPAP,0£GCON,
2        KGPLd,FPLG,LSTK,LAS,LCS,LOS,GSTR,GAS,
3        GCS,G03 ,TPdAL,DF.GSOM,D£GSOT ,UEGUOM,DEGUUT , I
4        NIPiOcGL(jM,OcGLUT,NCJM, JI ST.SULG
 REAL  STST,PRSTCrt(Sl,SPKOTM,PRSTClT<5) , SPRSTM , PROTOMt 5) ,SAST,
2 PROTUTo>,SCST,jPITGM(i)rSUST,UPITOT(b) ,UTST,STM5) , UASF ,
^ i  \  . it ^ T _ < A (; i .i-itrCT.Qr^f^i.iiD.ciicrK^-rMAv-ccTuiit;*
                                                             DfcGS,
                  ) , SPRSTT ,JCS{i>)
      IJPP !TT, JPKIil 5 )
                          DEGRADATION OF PESTICIDE  IFROM ADSORBED 
-------
6089.42
6039.43
6089.44
6C89.45
6089.46
6089.47
60P9.48
6089.49
6069.5
6069.51
6039.52
6C39.53
6089. 54
6CP9.55
6039.56
6090.
6091 .
6C<92.
6093.
6094.
6095.
6CC!6.
6097.
6093.
6099.
6100.
6101.
6102.
6103.
6104.
6105.
6106.
6107.
6103.
6109.
6in.
6111.
6112.
6113.
6114.
6115.
6116.
6117.
6118.
6119.
6120.
6121.
6122.
6123.
6124.
6125.
6126.
6127.
6128.
6129.
6130.
6131.
6132.
6133.
6134.
6135.
613tj.
6137.
6133.
6139.
6140.
6141.
6142.
UAS1 = UASI - UtGUfl
DEGUC = DEGCCM*ucsm
UCS( I) = DCS (I) - DEGUC
UCST = UCST - OEGUC
OEGUU = DcGCQiM*UDSU)
UOSt I) = UDS(I) - CEGUD
UDST = UOST - UtGUD
DEGU = DEGU + GEGJA *• UEGJC + OEGJD
UTS(I) = OAS(I) + UCS(I) + UDS(I) + UPRIS(I)
UTST = OTST + UTSl I)
8024 CONTINUE
C
C LOWER ZONE
C
8026 IF (LSTR .LE. C.O) GO TU 3U90
DEGLA = DcGCCN*LAS
LAS = LAS - CcGcA
DEGLC = DEGCCN*LCS
LCS = LCS - OEGuC
DEGLU = DfcC.CGMLOS
LDS = LOS - utGtJ
LEoL * uEGLA + CtGLC + OEjLO
LSTR = LAS * LCS * LDS
C
«090 CONTINUE
C
C
C
C CUMULATIVE RESULTS
C
DEGSCM = DEGSCP * DEGS
DEGSOT = DEGSQT + UEGS
DEGUOM = DfcGOO." * CEGU
OEGUOT = CEGUQT + DEGU
DEGLOM = CEGLOM * DEGL
DEGLOT = CEGLCT * UEGL
C
TDEG = DEGS + CEGJ * DEGL
C
IF ((PRNTKE .NE. l).OR.(HYCAL.EU.CALB)) GOTO 8600
C
IF (OUTPUT. EC. fETR) GO TO 8200
WRITE (6.85C5)
WRITE (6t6i>Cll TOEG
WRITE (6i65C2J DEGS
HRITE (6,85CJ) DEGU
WPITE (6.85C7) DEGL
8200 IF (OUTPUT. EQ . ENGL) GO TO 8600
C
C METRIC CONVERSIONS FOR OUTPUT
TDEGMT=TUEo*KGPLS
DEGSMT=DEGS*KGFLb
DEGUMT=DfcGU*KGPL6
DEGLMT=UbGL*KGFLd
hRITE (o,65C6)
WRITE (o,8i-01i TDEGMT
WRITE (6.85C2) OcGSMT
WPITF (6,d50J) OtGCMT
WRITE (0,8507) CEGLMT
C
C
8501 FORMAT (• , dX, 'TOTAL' ,71X/F7.3 J
8502 FOPMAT (• .aX.'FKOM SURFACE1 i64X,F 7. 3)
8503 FORMAT (• ,8X,'FkOM UPPER ZONE1 , 61X, F7.3)
8505 FORMAT («C , 5X , «PE ST 1C IOE DEGRADATION LOSS, LBS.')
6506 FORMAT l«0 , 5X , 'P tST 1C I JE DEGRADATION LOSSf KGS.1)
85C7 FORMAT (« ,d/,'FRCM LG^ER ZONE • , 61X, F7. 3)
C
243

-------
6143.
6144.
6200.
62J1.
6202.
6203.
6204.
6205.
6206.
6207.
6208.
620Q.
621'J.
62H.
6212.
6213.
6214.
6215.
6216.
6217.
6218.
0219.
6220.
6221.
6222.
6223.
6224.
6225.
6226.
6227.
6223.
6229.
6237.
6231 .
6231.5
62J2.
6233.
6234.
6235.
6236.
6237.
6233.
6239.
6240.
6241.
6242.
6243.
62*4.
6245.
6246.
6247.
6243.
6248.5
6249.
6250.
6250.1
6230.2
6250.3
6250.4
6250.5
6250.6
6250.7
6250. 8
6250.91
6250.92
6250.93
6250.94
6250.95
6250.96


C
C
C
C
C


C
C
C
C
C
C
C
C
C
C
C
C
C
C

C










C






C
C


C


C



C

C
C
C
C
C
C
C
C
C
C



C
8600 R51UWN
END





SUBROUTINE NUTRIO UOERR , INTRVL ,NAPP, SNAPL.UNAPL ,TIMHR,
1 INPUT,OUTPUT,APOAY,KNI,KP.(,ULUPF,LZUPF)

THIS SUBROUTINE READS NUTRIENT INPUT SEti.
FOR REACTION RATES, INITIAL STORAGES, AND
APPLICATIONS. INPUT INFORMATION IS SCANNbU
FOR ERRORS V.HICH AR fc FLAGGED BY IOtRR=l.
ON HETUKN TO MAIN IOERft-1 MLL STOP THE RUN

SUBROUTINE ALSO OUTPUTS REACTION RATES,
INITIAL STORAGES, AND APPLICATIONS

DECLARATIONS

COMMON VARIABLES

INTEGER TSTEP,NSTEP,SFLG,UFLG,LFLG,GFLG

REAL DELT,
1 SNT(20) ,SNRSM(20,5) ,SNROM(20,5) ,
2 JNT(20) ,UNI(20,5),UNIT(20),UNRIM(20,5),
3 NRSMUC.5) ,LNRPM(20),
4 SHRBM(20,5),UNRBM(20,5) ,LNRBM<20) ,GNR8M (20) ,TNRBMU01 ,
5 SNRSY(iC,5), SNROY (20.5J ,UW IY (20 ,5) , NRSY( 20, 5) ,
6 LNRPY(20J,SNRBY(20,i>),UNRBY(
-------
6251.
6252.
a253.
6254.
6255.
6256.
6257.
6253.
6259.
6260.
6261 .
6262.
6203.
6264.
62t5.
62^6.
6267.
6263.
6269.
6270.
6271.
6272.
6273.
627>5Ci.
c
c
c
c
c



c
c
c



















120


130



132


134
135
C
C
136

7777





C
C
C
C
C
C
C
C
c
c
c
142


C
C142

CHARACTER STRINGS USED TO COMPARE ANU
INTEKPKET INPUT SEQUENCE, NAMES OF
KtACTIQiJ KATES, ANU INPUT UMTS UPTIUN.

IUTEGEF- *4 CHAR, TYPE .BLANK, RE AC ,N I TR, PHOS , CHLO, ENO.S J KF ,
1 JPPEilCrtE.GROLiTEMP , INIT, AP PL , MtTR ,CNGL ,
2 KNNAfE(8>t KPNAME(5)

INITIALUATICN OF STORAGES AND FLAGS

DATA LBPAC/'CB/AC1 /,KGPHA/« KG/HA •/, NTRT/ • NUT RIE NT •/
DATA BLANKS/' •/, bLANK/1 '/, REAC/'REAC1/
DATA ixlITd/'NITrt'/.PHCS/'PHOS'/iCHLO/'CHLO'/rEND/'END '/
DATA SURF/'SURF •/ ,UP PE/' UPPE ' / , LOwE/' LOhE1 /, GROU/'GROU1 /
DATA TEMP/'TcMP'/.INIT/'INIT'/.APPL/'APPL'/.METR/'METR*/
DATA ENGL/'ENGL1/
DATA KMNAfE/1 Kl', • KD ' , ' KPL • , ' KAM«,
1 • KIM', «KKIM», • KSA1, ' KAS1/
DATA KPNAKE/1 KM1, • KIM1, « KPL', ' KSA', 'KAS1/
IGERR = 0
SFLG = 1
UFLG = i
LFLG = 1
GFLG = i
DO 130 J=l,20
00 1^0 I8LK-=1,5
SN( J, I6LK J = 0.0
UNU.IBLK) = 0.0
UNI(J,I3LK) = 0.0
CONTINUE
LiJUi = 0.0
GNU; = c.o
CONTINUE
DO 135 IZONE=1,4
09 132 J=l,8
KNKJ.UCNEJ = 0.0
CONTINUE
00 134 J=l,5
KHI(J,I/CNE) = 0.0
CONTINUE
CONTINUE


READ (5,JCJl) CHAR8
ft'RITE (6,7777) CHAR3
FORMAT {' «,A8J
IF (CHARd .EC. BLANKS) GO TO 13b
IF (CHARd .EG. MKT) GJ TO 142
IOERR = 1
WRITE (6,4595) CHAR3
RETURN


CATA INPUT — NAMELIST VARIABLES

NAMELIST IS SUPPORTED ON ONLY IBM COMPUTERS. TO USE
NAMELIST REMCVL C FROM COLUM.4 1 IN THE FOLLOWING NAMELIST
READ STATEMENTS. £DD C TO COLUMN 1 IN THE TWEE FORMATTED
REA3 STATtMfcNTS (DIRECTLY BELOd) TO DEACTIVATE THAT
SECTION OF CODE.


READ (5.NUTRIN)
READ (5.PLANTU)
READ (5.PLANTL)

READ (5,-jOJC) TSTt ?, NAPPL,TI IHAh
245

-------
630*.
6305.
6305.5
6305.55
6305.56
6305.57
6305.58
6305.6
6305.7
6305. 8
6305.65
6305.9
6306.
63J7.
6300.
6310.
6311.
6312.
6313.
631*.
6315.
6316.
6317.
6313.
6319.
6320.
6321 .
6322.
63^3.
632*.
6325.
6326.
6327.
6328.
6329.
6330.
6331.
6332.
6333.
63:)*.
6335.
6336.
6337.
6333.
6339.
63*0.
63*1.
63*2.
63*3.
63**.
63*5.
63*6.
63*7.
63*3.
63*9.
6350.
6351 .
635^.
6353.
6?5^.
6355.
6356.
6357.
6353.
6359.
C
C
C
c
c
c
c



143
C






C
C
C
c
c
c
c
c







145

C
c
c
c
c
150






160








C
C
C
170





READ (5,5C01) ( ULUPTK ( I) , 1 = 1 ,12 )
PEAU (5,5001) (LZUPTK(I) ,1=1,12)

THE FOLLOWING ASSIGNMENT IS DUE TO THE NAMELIST LISTS
OF JLUPTK AND L^UPTK NOT BEING ABLE TO BE USED IN AN ARGUMENT
LIST BEFORE BEING READ IN A NAMELIST.

DO 143 J=l,12
ULUPF(J) = ULUPTK(J)
LZUPFU) = LZJPTK(J)
CONTINUE

WRITS (0,*oOC)
dRITE (6,4005)
WRITE (6,4005)
WRITE (o,461C> TSTEF.NAPPL, TIMHAR, ULUPTK,L£UPTK
NAPP=NAPPL
TIMHR = TIMhAR

CHECK TSTEP TO SEE IF AN INTEGER NUMBEK ARE
IN A DAY (1440 MINI AND CHECK THAT TSTEP IS
AN INTEGER MULTIPLE OF THE SIMULATION
INTERVAL (5 OR 15 MIN).
DELT IS THE TIME STEP IN HOURS BECAUSE
REACTION RATES ARE PER HOUR (INTERNALLY).

ICHK = 0
ITSTEP=TSTEP
IF ( M00( 1440,ITST£P) .NE. 0) ICHK = 1
IF ( KCDdTSTtP.INTRVL) .NE. OJ ICHK=1
IF (ICHK .EG. C) GO TO 1*5
WRITE (6.47K) TSTEP
TSTEP = 60
DELT = TSTEP/6C.
NSTEP = 1440/TSTEP


INPUT REACTION RATES


READ (5,3000) CHAR
IF (CHAR ,EQ. BLANK) GO TO 150
IF (CHAR .EG. REAC) GO TO 160
IOERR = 1
WRITE <6,461S)
WRITE (6,4620) REAC, CHAR
RETURN
REAO (5,3000) TYPE
IF (TYPE .tG. BLANK) GO TO 160
IF (TYPE .EO. MTk ) GO TO 170
IF (TYPE .EG. PHOS) GO TO 220
IF (TYFL: .EG. END) GC TO 30J
IOERR = 1
WPITt (6, 4619)
WRITE 16.464C) TYPE
RETUKN

NITROGE.N RATES

READ (5,JOJC) CHAR
IF (CHAK .EG. SU\F) Gu TO UJ
IOERR * 1
*RITE (6,46<
-------
6364.
6365.
6366.
6367.
636S.
6369.
6370.
637 1 .
6373.
6374.
6375.
637t>.
6377.
6378.
6379.
6330.
6331.
6362.
6333.
6334.
6335.
6386.
6337.
6383.
6339.
6390.
6391.
6392.
6393.
6304.
6395.
6396.
6397.
6398.
6399.
6400.
6401.
6402.
6403.
64C4.
6405.
6406.
6407.
6403.
6409.
6410.
6411.
6412.
6413.
6414.
6415.
6416.
6417.
6413.
1 41Q.
6420.
6421.
6422.
6423.
6424.
6^25.
6426.
6427.
6423.
6429.
6430.




190
C





200
C






205
C






210

C
C
C
220





230
C






240
C






250
C






260
C


IF  (CHAR  .EQ.  UPPE)   GO TO 190
    IOEPR  =  1
    rtRITE  (0.462C)   TYPE
    WRITE  (6.463C)   UPPE,  CHAR
    RETURN
PEAO  (5,J01C)   (KNK J,2) ,J=1,8)

READ  (5,3000)   CHAK
IF  (CHAR  .EQ.  LGWE)   GO TO 2JO
    IOEPR  =  1
    WRITE  (6.462C)   TYPE
    WRITE  (6,46JC)   LOWE,  CHAK
    PET'JkiN
READ  (5,3010)   (KNI (J,3),J=1,8)

READ  (5,3000)   CHAR
IF  (CHAR  .Eg.  GHGU)   GO TO ^05
    IOERR  =  1
    WRITE  (6,4620   TYPE
    WRITE  (6.463C)   GROU,  CHAR
    RETURN
READ  (5,3010)   (KN ItJ ,4) , J=l,tf)

RE40  (5,3000)   CHAR
IF  (CHAR  .EU.  TtMP)   GO TO 210
    IOERR  =  1
    WRITE  (6,462C)   TYPE
    WRITE  (6.463C)   TEMP,  CHAR
    RETURN
READ  (5,3010)   (Trif>N ( J) , J=l ,3)
GO  TO  loO
                      PHOSPHORUS RATES
READ  (5.3COO)   CHAR
IF (CHAR  .EG.  SuRF)  GO TO 230
   IOERR  =  1
   W^ITE  (6,46iC)   TYPE
   wRITt  (C..463C)   SURF,  CHAK
REAJ  (5.JOIO)   (KPK J,ll,J=l,b)

READ  (5,300C)   CHAR
IF  (CHAR  .c(j.  UPPE)  GO TO 240
    IOERR  =  1
    WRITE  (6.462C)   TYPE
    WRITE  (6,4630)   UPPt,  CHA3
    RETURN
REAO  (5,3010)   IKPK J,2) ,J=l,b)

REAJ  (5,3000)   CHAR
IF  (CHAR  .EG.  LCWfc)  GJ TO 250
    lOFPn.  =  1
    >-JkIT£  (o,462CJ   TYPE
    WRITt  («>,463C)   LOWE,  CHAR
    RETUnN
REAO  (5.301C)   (KPK J,3) ,J = 1,5)

jPEAD  (5,3000)   CHAR
IF  (CHAR  .Eg.  GKOU)  GO TO 260
    IOERR  =  1
    ^ITE  (o,4t>2C)   TYPE
    WUTt  (6,4o3C)   GKOU,  CHAR
    RETURN
READ  (5,3010)   (KP I (J , 4) , J= 1 , 5)

READ  (5.300C)   CHAR
IF  (CHAk  .Eg.  TcMP)  GO TO
                         247

-------
6431.
6432.
6433.
6434.
6435.
6436.
6437.
6433.
6439.
6440.
64*1.
6442.
6443.
644*.
6445.
64*6.
6447.
6443.
6449.
6450.
6451.
6452.
6453.
6454.
6455.
6456.
6457.
6458.
6459.
6^60.
6461.
6462.
6463.
6 4 ( -, * .
6465.
6466.
6467.
6468.
6*69.
6470.
6471.
6472.
6473.
6474.
6475 .
6476.
6477.
6476.
6479.
6480.
64-31.
6432.
6433.
646*.
64^5.
64 r)6.
64.-J7.
6488.
6489.
6490.
6491.
6492.
6493.
6494.
6495.
6496.
6497.
649d.




270

C
C
C
C
300



C
C
C
C
C
C
C
C
C
C
C
C
C
C
C








301

302
303






304

305
306


3C7

308

309

310
311



313



IOERR = 1
-VRITE (o,4o2C) TYPE
h'UTE (6,4630.) TEMP, CHAR
RETURN
REAO (5,3010) (THKP(JJ,J=1,5)
GO TO 160

OUTPUT UF REACTION RATES AND TEMPERATURE
CORRECTION FACTORS.

MR1TE (6,46501 (KNNAMEJ J) , J = l,8) ,
1 ( (KNI (J, I ZONE) ,J=1,8) , IZONE=1,4) , (THKN(J) ,J = 1,8)
WRITE (6,4£>t>0) (KPNAMEl J) , J=i,5) ,
1 t (KPKJ.IZONt) ,J=1,!>) , IZONE=1,"») » (THKP( JJ ,J=1,5)

CONVERT KATES FROM PER DAY TO PER HUUR , AND
CHECK REACTION RATES BY ZONE FOR
1) REASUNAdLENESS, I.E. >= 0.0
2) VALIDITY OF NUMERICAL SOLUTION TECHNIQUE
THE EXPRESSION KNK J ,1 ZONE)*DfcLT IS THE
FRACTION OF THE CONSTITUTED REMOVED
DURING THE TIMESTEP. THIS NUMBER SHOULD
BE MJCH LESS THAN 1. FOR ACCURATE SOLUTION
CHECK SET AT 0.5.
3) ON UK OFF, IF KNI AND KPI ARE ALL ZtkO FUR
A ZO^E, THEh NO TRANSFORMATIONS ARE DUNE.
S,U,L, AND GFLG ARE FLAGS TO INDICATE
IF TRANSFORMATIONS ARE DONE (1J OR NUT(O).

DO 311 IZONE=1,4
SUM =0.0
00 303 J=l,d
KNI (J, IZONE) = KNHJ, IZONE) /24.
IF (KNKJ.IZLNE) .GE. 0.0) GO TO 301
IOERR = 1
n'RITE (6,4780) KNNAMEU), IZONE, KNKJ, IZONE)
RETURN
IF (DELT + KNKJ , IZONE) .LT. 0.5) GO T3 302
nRITE (6,4790) KNNAME(J), IZONE
SUM = SUl* + KNKJ, IZONE)
CONTINUE
DO 30o J=l ,3
KPKJ.IZONt) = KPIl J, UUNU/24.
IF (KPK J ,IZLNE) .GE. 0.0) GU TO 304
IDErlR = 1
nRITE lo,4oOO) KPNAMEU), IZONE, KPKJ.IZONF)
RETLfiN
IF (OELT + KPKJ, IZONE) .LT. O.i) GO TO 305
WRITE (6,4810) KPNAME(J), IZONE
SUM = SUP * KPKJ, IZONE)
CONTINUE
IF (SUM .LT. O.C0001) GU TO (307,308,309,310), IZONE
GO TO 311
SFLG = 0
GJ TO 311
UFLG = 0
GO TO 311
LFLG = 0
GO TO 311
G^LG = 0
CONTINUE
DO 313 J=l ,b
IF (THKN(J) .GE. 1.0) GU TO 313
nJRITE 
-------
6499.
6500.
6501.
6502.
6503.
6504.
6505.
6506,
6507.
6508.
6509.
6510.
6511.
6512.
6513.
6514.
6515.
6516.
6017.
6518.
6519.
6520.
6521.
&522.
652?.
6524.
6525.
6526.
6527.
6528.
652'J.
6530.
6531.
6532.
6533.
6534.
6535.
65:i6.
c537.
6538.
6539.
6540.
6541.
6542.
6543.
654i».
6545.
6546.
6547.
6544.
6549.
6550.
6551 .
6552.
6553.
6554.
6555.
6556.
6557.
6553.
6550.
6560.
65(^1.
6562.
6563.
,6564.
.6565.
6566.
314
C
C
c
a
c
319





320









330


340


350

C
C
C
360





365




37C




380
390

C
400

410




420

430
C
C
C
440

CONTINUE


INPUT OF INITIAL NUTRIE


READ (5,3000) CHAR
IF (CHAR .EQ. BLANK) GO TO 319
IF (CHAR .EQ. INIT) GO TO 320
IOEPR * 1
WRITE 16,4665) CHAR
RETURN
READ (5,3CGC) TYPE
IF (TYPE .EQ. BLANK) GO TO 320
IF (TYPE .Eg. MTR) GO TO 330
IF (TYPL .EC. FhOS) GO TO 340
IF (TYPE .EQ. ChLO) GO TO 350
IF (TYPE .EQ. END) GO TO 560
IOERR = 1
rfPITE (6,4/25)
rtMTE (6,4740) TYPE
RETURN
NSTRT = 1
NEND = 6
GO TU 360
NSTRT = 11
NEMO = 14
GO TO 360
NSTRT = 20
NEND = 20

SURFACE

READ (5.J020) CHAR, NBLK
IF (CHAR .£Q. SURF) GO TO 36b
ICERR = 1
WRITE (6,4670) TYPE
*RITE (6,4630) SURF, CHAR
RETURN
IF (MBLK.Eu.O .CR. NdLK.EU.l .OR. NBLK.EiJ.5)
IOERR = 1
WRITE 16,4670) TYPE
WRITE 16.46SC) SURF, NBLK
RETURN
IF (NBLK .EQ. 5) GO TU 400
READ (5,3010) liNT( J ) , J=NSTRT,NEND )
00 390 J = NSTR7 ,|MEND
D(J 300 IBLK = 1,5
SM J, IBLK) = SNTU)
CONTINUE
CONTINUE
GO TO 440

DO 41U ItJLK=i,5
RFAU (5,3C1C) (SNU, IBLK), J=NSTRT , NEND)
CONTINUE
DO 430 J=NSTRT,NEND
SUM = 0.0
DO 420 IELK=1,5
SU-t = SUI" * SN(J,IBLK)
CONT IiMJE
SNTU) = SJN/5.
CONTINUE

UPPER ZONE

READ (5,3020) CHAR, NBLK
IF (CHAR .Eli. LPPE) GO TJ 450
                       GO TO 3 70
249

-------
6567.
6569.
6570.
6571.
6572.
6573.
657^..
6575.
6576.
6577.
6573.
6579.
65dO.
6531.
6583.
6533.
6584.
6533.
6586.
6587.
6533.
6589.
6590.
6591 .
65-92.
6593.
6594.
6595.
6596.
6597.
659^.
65S9.
 6603.
 6601'.
 6602.
 6603.
 660-V.
 6tC5.
 6606.
 6607.
 6603.
 6609.
6610.
 661 U
6612.
6613.
 6615.
 6616.
 <617.
 6618.
 6619.
 6620.
 6621.
 6622.
 6623.
 6624.
 6625.
 662o .
 662 T.
 6628.
 6629.
 6630.
 6631.
 6632.
 6633.
450
460
470
480

C
490

500
510

520
C
C
C
530
 540
 C
 C
 C
   IOERK = 1
   wRITc <6,<«67C)  TYPE
   WRITE (6.463C)   UPPE,  CHAR
   RETUkN
IF (NBLK.EQ.O  .CR.  NBLK.EU.l .OR. NBLK.EQ.5)  GO  TO  460
   •IOERR = 1
   «PIT£ (6,467C)   TYPE
   WRITE (6.46SC)   UPPE,  NBLK
   RETURN
IF (NBLK .EQ.  5)   GO  TO  490
READ (5,-iClC)   IM T( J ), J = NST*T ,NEND )
DO 480  J = KSTR7,N£M)
   DC 470  I8LK=1,5
      UNIJ.IBLK) =  UNT(J}
   CONTINUE
CONTINUE
GO TO 530

DO SCO  IBLK=1,5
   READ (5,3010   (UN( J,IBLK1,J = NSTRT,NEND)
CONTINUE
DO 520  J = ,NSTRT ,NEND
   SUM = C.J
   DO 510  IBLK-1,5
      SUrt =  SUM +  UN(J.IBLK)
   CONTINUE
   'JMT(J) =  SU^/5.
CONTINUE

                      LOsVEH /JNt

READ (5,3000)   CtiAR
IF (CHA^  .£J.  LC.ic)  GO  TJ 540
   IOERR  =  1
   WRITE  (6,46?C)   TYPE
   WRITE  (6,463C)   LOwE, CHAR
   RETURN
READ  (5,3010)   (LNfJ=NSTRT,NEND)

                      GROUNDWATER

READ  (5,3CCC)   CHAR
IF (CHAk  .EQ.  GPOU)  GO TO 550
   IOERK  =  1
   WRITE  (&,4o7C)   TYPE
   Kf-ITE  (6,4o3C)   GROU, CHAR
                                      ) , J=NSTRT,N END)
                            OUTPUT OF  INITIAL NUTRIENT STORAGES
                             CONC=KGPHA
                       (SNT( JJ, J-l ,6) * (SNT(J)t J*ll( 14! ,SNT(20)
                       (IBLK,(SN,4025)
(o,403C)
luNi J









fETR)
CbNC


(SNT
(IBL
SN12

(UNT
I IBL
                                            J),J = n,14J ,UNT(20)
                       IIBLK,IJN(J,I6LKJ ,J=l,6Jf(UN(J, IBLK) , J=U,1<*)
                                      I6LK=1, 5)
                                           250

-------
6635.
6636.
6637.
6634.
6639.
6640.
6641.
6642.
6643.
6644.
6645.
6646.
6647.
6648.
6649.
6650.
6651.
6652.
6653.
6654.
6655.
6656.
6657.
6653.
6660.
6661.
6662.
66o3.
6664.
6665,
6606.
6667.
666^.
6669.
6670.
6671.
6672.
6673.
66 74 .
6675.
66 7S.
6677.
667H.
6fc7T.
6631.
6682 .
6684.
66S5.
b6 56.
S6S7.
i689.
S690.
S691.
i>692.
b693.
b6 54.
j695.
j696.
Sf 97.
J69-3.
J6 )9.
3700.
3701.
S70?.




C
C
C





565


570
C
C
C
C
C
573



574

575
C





560

585
C



590

C


595



C
C
C
C
C
600



610
C



WRIT?
WRITE (6.402C)
WRITE U.412C)
WRITE (6,4020
     ),J = 1,6),(LNU),J=11,14J,LN(20)

IGM JJ,J = 1,6) , IGNIJ ), J=11,14),GN(2G)

     CONVERSION OF METRIC INPUT TO ENGLISH  (LB/AU
IF (INPUT  .Eg.  ENoU   (i'J  TO  57J
DO 570  J=l,20
   DO 565   IDLK=1,5
      SNU.IBLK) * SN(J, IBLK)*.8924
      UN(JtldLk) = UN(J,1BLK)*.8924
   CONTINUE
   LN(J) =  I_N(J)*.8924
   GN( J J =  GN(0 )*.6924
CONTINUE
                     COMPUTE  TOTAL  NITROGEN (TNA), TOTAL PHOSPHORUS
                     (TPAJ, AND  TOTAL CHLORIDE (TCLA) IN THE SYSTtM
                      LiNITS = LB/AC.

TNA = 0.0
DO 575  J=l,6
   SUM = C.O
   DO 574   IBLK=l,i
      SUM = SUN  «•  SN(J,IBLK) +  'JN(J,IBLKI
   CONTINUE
   TNA = TrtA •«• WIJJ  * GN(J) +  SUM/ 5.
CONTINUE

TPA = 0.0
00 585  J = U,14
   SUM =0.0
   00 580   I6LK  =  1,5
      SUM = SUt-  *  SN(J.IBLK)  +  UN(J,IBLK)
   CCNTIislwE
   TPA - TPA * LN(J>  + GNU) +  SUM/5.
CONTINUE

TCLA = O.C
DO 5VO  IDLK=l,5
   TCLA = TCLA + SN(20,IttLKJ +  UN(20,IBLK)
CONTINUE
TCLA = >.M20)  +  GN120> *• TCLA/5.

IF (INPUT .EG. McTR)  GO TO  595
   CCNC = LdFAC
   VvRITt (t>,4fciC)  TNA.uONC, TPA.CONC,  TCLA,CONC
GO TO oLO
   CUNC = KGPhA
   TMMET =  TNA*1.121
   TPMET =  TPd+1.121
   TCLMET = TCLA*1.121
   WRITE (o,482C)  TNKET.CONC,  TPMET, CONC,  TCLMET, CONC
                      NUTRIENT  APPLICATIONS
IF (NAPPL.GE.C  .AUU.  NAPPL.LE.5)
   IOEPR =  1
   WPITE (6,47 1C)   NAPPL
   RETURN
IF (NAPPL  .EC.  0)   GO TO  910
                  GO TO 610
CONC = LdPAC
IF (INPUT  .EC.  PETR)
WRITE (6.40CC)  C'JNC
      CONC=KGPHA
                         251

-------
5703.
57J4.
5705.
5726.
5707.
5708.
5709.
5710.
5711.
5712.
5713.
S714.
5715.
= 716.
i7l6.

,72'j.

6722 .
6723.
6724.
6725.
6726.
6727.
6725.
6731 .
6732.
6733.
6734.
6735.
6736.
6737.
6733.
6739.
6740.
0 741 .
67^2.
6743.
6744.
6745.
6746.
6747.
674$.
6749.
6750.
6751.
6752.
6753.
6754.
6755.
6736.
6757.
6750.
6759.
6760.
6761.
6762.
67^-3.
67t>4.
6765.
6766.
6767.
676 3.
676'J.
f 770.
612
614
C
620
      00 9CO  IAPPl=l,NAPPL
         DO 614  J=lf20
            Si-IAPLT(J)  =  0.0
            UNAPLTU)  =  O.C
            DO  612   IBCK=1,5
               S.MAPL(J,IBLK,IAPPL)
               UNAPU(JtlBLKtIAPPLJ
            CONTINUE
         CONTINUE
63C
635
640
650
 660
 670

 C
 C
 C
 680
690
 700
710
720
                                      0.0
                                      0.0
         PEAD (5.3C2U   CHAR,  APDAYIIAPPL)
                   If
                   IF
             {CHAR
             (en/;*
             ILIcKR
             VvMTE
             KKITE
                   .EC
                                  BLANK)
                             .tw.  APPL;
                             =  1
                             (6 ,4720)
                             (o,463C)   APPL,
        GO TO 620
       GO TJ 630
                                   CHAR
IF £
             (TYPE
             (TYPE
             IOERR
             hRITE
             RETURN
                   .EC
                   .EC
                   .EG
                   .EC
                   = 1
                   (6,4720)
                   (6,4745)
 TYPE
BLANK)
IMITR)
P HO S)
CFLG;
                                           GO  TO 640
                                          GO  TU 650
                                          GO  TJ 660
                                          GO  TO 670
E,ND)  GO TO 870
                                       TYPE,  IAPPL
          NSTRT
          N6ND
             Gu
          NSTRT
                  1
                 6
                TO 6t)C
                = 11
         NEMO  - 14
             GJ TO 68C
         NSTRT = 20
         NEND  = 2C
                            SURFACE
                    PEAO (5.3C2C)  CHAR,
                    IF  (CriAR .EC. SURF)
                       IGERR = 1
                       V-RITE (6,4720)
                               NBLK
                               GO  TO
                                     690
                             IAPPL, TYPE,  SJRF,  CHAR
                       RETURN
                       (NbLK.EC.U .CK. N3LK.EJ.1  .C
                       lUEKR » 1
                       KkiTE (t3,4720)
                       WRITE (6.40VC)  SURF,  NtJLK
                       PSTU.HN
                       (NBLK .EC. 5)  GO TO  73u
                    READ 45,3010)   (SNAPLT(J),J=NSTRT,NEND)
                    DO  72J  J=NSTKT,NEMJ
                       DO 710  ItLK=l,5
                          5i\IAPL( J,I BLK,IAPPL)  =  SNAPLTU)
                       CONTINUE
          IF
          IF
                                             N8LK.EW.5)  GO TO 700
                                252

-------
6771.
6772.
6773.
6774.
6775.
6776.
6777.
677'j.
6779.
6760.
67*2*
6783.
6784.
6785.
6786.
6787.
67B8.
6789.
6791.
6792.
6793.
6794.
6795.
6796.
6797.
679H.
6799.
6800.
6801.
6802.
6303.
6804.
6805.
6606.
6307.
66.33.
6809.
6810.
6811 .
6-312.
6813.
6814.
6815.
6816.
6817.
6813.
6319.
6820.
6621.
6822.
6823.
6824.
6825.
6826.
6827.
6828.
6829.
6830.
6331.
6832.
6833.
6834.
6835.
6836.
6637.
662**.

C
730

740




750
760
C
C
C
770




780




790




800
810

C
820

830




840

850
860
C
C
C
87C





C





C
C
C























































1
2




I
2







GO To  770

DO 74J   Ii3LK*l,5
   READ  43,3010)   ( SNAPK J , I BL K, I APPL ) , J= NSTRT ,Nt NO)
CCNT INUE
DO 7oO   J=i4STRT,NEND
   SOM = O.C
   DO  750   1ELN=1,5
       SJM =  SJM *  SNAPLU.IBLK.I APPL)
   CGiHINUE
   Si\,APLT(J)  = SJM/5.
C'JNT 1'iUc

                   UPPER ZONE

 READ  15,3020)  CHAR,  N3LK
 IF  (CHAR .EC. UPPEJ  GO TO 780
    IOEKR =  1
    WRITE (6,4720)
    k.RITE (6.475C)   IAPPL, TYPEt SURF, CHAR
    RETURN
 IF  (NdLK.EJ.O .CR. NBLK.EU.l .OR. NBLK.EQ.5)  GO TO 790
    IGERR =  1
    WHITE (6,4720)
    WMTE (6,4o90)   UPPE, iMBLK
    FETUnN
 IF  (NbLK .EC. 5)   GO TO 820
 READ  (5.JC10)  (UNAPLT(J) , J=NSTRT,NEND)
 DO  810  J=NSTKT,NENU
    DO  800   IBLN=1,5
       UNAPL(J,IdLK, IAPPL) = UNAPLT(J)
    CONTINUE
 CONTINUE
 GO  To  860

 DO  C30  IBLK=1,5
    P6AO  (5,3010)   (UNAPLUiI8LKfIAPPUf J=NSTRT,NEND)
 CONT I.MOE
 DO  850  J=NSTRT,NEND
    SUrt = C.C
    DO  84C   tBLK=l,5
       SUM  = SJM + UNAPL(J,IBLKfIAPPL)
    CONTINUE
    UNAPLTU) = SUM/5.
 CONTINUE
 GO  TO  640

                   OUTPUT OF NUTRIENT APPLICATIONS

 WRITE  (6,4760)  APDAY(IAPPL)
 WRITE  (6.401C)
 WRITE  (6, 4025) ( SNAPLT I J) , J = 1 , e>) , ( SNA PLT( J ) , J= U , 14) , SNAPLT ( 2u)
 WRITE  (6,4030)  (I3LK,(SNAPL(J,IBLK.,IAPPL),J=1,6),
                 (SNAPLU.IBLK, IAPPL) , J = ll ,14) ,
                 SNAPL(20,IbLK, IAPPL),  IBLK=1,5)

 WRITE  (6,4050)
 WRITE  (6,4025) (UNAPLTU) ,J»1,6I , I UNAPLTt J » , J*ll , I 4) ,'JNAPLT(20)
 WRITE  (6,4030)  (  IQLK,('JNAPL(J,IBLK, IAPPL) ,J=1,6) ,
                 (UNAPL(J,I6LK, IAPPL),J*H,14),
                                IAPPL) ,
                   CONVERT APPLICATIONS  F^ Ort METRIC 10 ENGLISH

 IF  (INPUT .Ew. ENGL)  GO TO 900
 DU  8*0  J=l,20
    DO ddO  IdLK. = l,5
       SNAPH j.IoLK.UPPu) = S'^APLU , IbLK, IAPPL)*. b924
                       253

-------
6839.
6G40.

 S842.

6844.
6S45.
6646.
6847.
6843.
6349.
6850.
6851.
6652.
6853.
6854.
6855.
6856.
6857.
6863.
6864.
6865.
6866.
6867.
6868.
6869.
6870.
6871.
6872.
6873.
6874.
6875.
6876.
6877.
6878.
6879.
6880.
6881.
6882.
68d3.
6884.
6885.
6886.
6887.
6888.
68^9.
6890.
6891 .
6892.
6893.
6894.
6895.
6896.
6897.
6893.
6891.
6900.
6901.
6902.
6903.
6904.
6905.
690i..
6907.
6?08.
6909.
£80
890
C
crn
C
C
910
C
C
C
3000
3001
3010
3020
4000


4005
4010
4020
4025
4030
4090
4110
4120
4599

4600
4610





4619
4620

4630
4640

4650





4660





4665
4670

4690

4700
4710

4720
4725
4730


COIN
CONT

rnwTT MII


RETURN



FORMAT
FORMAT
FORMAT
FORMAT
FORMAT (
1
2
FORMAT
FOPMAT i
FORMAT {
FOP'IAT (
FORMAT (
FOPMAT <
FORMAT (
FORMAT I
FORMAT
1
FORMAT
FORMAT
1
2
3
4
5
FORMAT
FORMAT
1
FORMAT
FORMAT
1
FORMAT
1
2
3
4
5
FOPMAT
1
2
3
4
5
FORMAT
FORMAT
1
FORMAT
1
FORMAT
FORMAT
1
FORMAT
FORMAT
FORMAT
1
2
It

i-






(
(
(
(
'
i
3
(
i
•
•
1
•
•
i
(

(
(





(
(

(
(

(





(





i
(

(

(
(

{
(
(


UNAPLlJ.IdLK.IAPPL) =  UNAPL(J,IBLK, 1APPL)*.
                                         «,I5,«  MINS
                                              >I2,
(A4)
(AS)
 6F8.0)
 A4.SX, 13)
 0',/,'C','NUTRIENTS -  •,A5,1IX,'ORG-N',3X,«NHJ-S',JX,
•NH3-A' ,3X , •N03+N02',4X,•N2 «.2X,•PLN T-N•,3X,'ORG-P',
3X,'P04-S' ,3X,'P04-A',2X,'PLNT-P',6X,'CL' )
 '0')
 C',3X, 'SURFACE LAYER')
 C',6X,«STORAGE1,12X,Ftt.O,5F8.3,F8.0,3F8.3,F8.3)
 C',6X,'AVERAGE',12X.F8.0,5F8.3,F8.0,3F8.3.F8.3)
  ',12X,'BLOCK',I2,6X,F8.0,5Fa.3,Fb.O,3F8.3,F6.3)
 0' , JX, 'UPPER ZONE')
 L1 ,3X, 'LLJ«ER ZONE' )
 0' ,3X, 'GROUNOrfATER')
 • Oi,.	EXRCR	   EXPECTING  THE  WORD  NUTRIENT  BUT  ',
 'READ IN «,A8)
 •1',40X,'NUTRIENT  SIMULATION  INFORMATION')
 •U',jX,'TlME STEP  FOR  TRANSFORMATIONS
 /,' «,3X,'NUMBER OF NUTRIENT  APPLICATIONS =
 /,' '.JX.'OATE OF  PLANT  HARVESTING = ',14,
 /,' ',3A,'FRACTION OF  MAXIMUM MONTHLY UPTAKE ',
  /,' «,toX, 'UPPER LAYERS  =  S12F6.3,
  /,' ',6X,'LC,*ER ZONE  =    '.12F6.3J
 •0','	ERROR	   IN REACTION RATES  SECTION OF INPUT')
 •0','	ERROR	IN «,A4,' REACTION  RATES SECTION OF •• ,
 •INPUT')
 •  ',12X,'EXPECTING «,A5,'  BUT READ IN  •,A4)
 •  ' ,U*,' EXPECTING NITR, PHOS, OR END,  BUT READ ',
 'IN  «,A4)
 •0','MTkCGEN REACTION  RATES • ,8 ( 5X, A'V) / ,
 '  ',6X,'SURFACE1,12X,8(2X,F7.4)/
 '  «,6X,'UPPER ZONE',9X,8I2X.F7.4)/
 '  ',t>X,"LUwER ZONE « ,9X,8(2X,F7.4»/
 1  ',6X,'GROJNDnATER',8X,a<2X,F7.4)/
 '  ',3* ,'TEMPERATURE COtF.1,4X,8F9.3)
 •0','PHuSPHtRUS REACTION RATES',   5
-------
6910.
6911.
6912.
6913.
6914.
691'5.
6916.
6917.
6918.
6919.
6920.
6921.
6922.
6923.
6924.
692b.
6926.
6927.
6928.
6929.
6930.
6931.
6932.
6933.
6934.
6935.
6936.
6937.
6938.
6939.
6940.
6941.
6942.
6943.
6944.
70CO.
7001.
7002.
7003.
7CC4.
7005.
7006.
7007.
rocs.
7009.
7010.
7011 .
7012.
7013.
7014.
7C15.
7016.
?C1 7.
7017. 1
7013.
701^.
7020.
7021 .
7022.
7023.
7024.
7025.
7026.
7027.
7028.
7C2<3.05
70:1.1
7023.2
4735 FORMAT
1
4740 FORMAT
1
4745 FORMAT
1
4750 FORMAT
1
4760 FORMAT
4770 FORMAT
1
4780 FORMAT
1
4790 FOPMAT
1
2
3
4800 FORMAT
1
4810 FORMAT
1
2
3
4812 FORMAT
1
4814 FOPMAT
1
4820 FORMAT
1
2
5000 FORMAT (
5001 FORMAT (
C
C
END
C
C
C
C
SUBROUTI
C
C
C
C
C
C
C
C
C
C
C
C
C
REAL UZS
INTEGER
C
REAL OE
1
2
3
4
5
6
7
8
DOUBLE P
(

(

(

(

(
(

I

(



(

(



(

I

(
•
•
6
ct







N













N


L'
SI
Jl
m
SI
Sf
Lf
Tr
*f
Rt
DIMENSION
1

            ',12X,'THE DAY OF APPLICATION NO. SI2,
            DOES  NOT EXCEED THE PREVIOUS APPLICATION DAY")
         CO',ll/,'EXPECTING NITR, PHOS, CHLO, OR END,  BUT  ',
           READ  IN  «,A5)
         <'O1,11X,'EXPECTING NITR, PHOS, CHLO, OR END,  BUT  ',
           READ  IN  ',A5,'  FOR APPL. NO. ',12)
         <'0',11X,'IN APPLICATION NO.  ',12,' FOR ',A4,
          'EXPECTING ',A5, ' 3UT READ  IN «,A5)
          '0','APPL 1CATIUN FOR DAY ',13)
         («o','INVALID TSTEP SPECIFIED, INPUT WAS ',14,
            EXECUTiCN CONTINUING rtlTH TSTEP = 60 MIN.'l
         ('0','	ERROR	  INVALID NITROGEN REACTION  RATE  FOR «,
          A4,'  IN ZCNE ',12,' INPUT VALUE * «,F8.6)
         ('0','	nARNING	  NITROGEN REACTION RATE ',A4,
          1  IN  ZCNE  ',I2,/14X,
          '  IS  TL'O  LARGE  FOR TIME STEP SELECTED, CONSIDER  ',
          'REDUCING  TSTEP  FOR MORE ACCURATE SOLUTION')
         ( IQ« .'- — ERROR	  INVALID PHOSPHORUS REACTION  RATE  FOR  «,
          A4,«  IN ZLNfc ',12,' INPUT VALUE = «,F8.6)
         ('0','	DARNING	  PHCSHORUS REACTION RATE  ',A4,
          '  IN  ZCNE  ' , I2/14X,
          '  IS  TOO  LARGE  FOR TIME STEP SELECTED, CONSIDER  ',
          'RECUCIrtL.  TSTEP  FOR MORE ACCURATE SOLUTION1)
          •0','	WARNING	  TEMPERATURE COEFFICIENT  FOR  NITROGEN1
          ,'  REACTICM RATE ',A4,' SHOULD BE >= 1.0')
          '0' ,• — WARMING	  TEMPERATURE COEFFICIENT  FOR
          'PHOSPHORUS REACTION RATE «,A4,
         ('0' ,3X,'TOTAL NITROGEN IN SYSTEM
           ',3X,'TOTAL PHOSPHORUS IN SYSTEM
           «,3X,'TOTAL CHLORIDE IN SYSTEM =
        (6X.I4.8X, I4,tiX,I4)
        UA, 12F6 .0)
                ' ,
SHOULD BE >-  1.0«)
= ',2X,F10.3,2X,A5/
   ',F10.3,2X,A5/
  ,2X,F10.J,2X,A5J
SUBROUTINE  NUTRNTt UiSN.UZF , L£SN,LZF )
                      THIS SUBROUTINE IS CALLED EVERY  INTERVAL ON
                      A RAIN DAY OR ONLY ONCE A DAY ON  A  NO  RAIN
                      DAY TO COMPUTE NUTRIENT LOSSES AND  TRANS-
                      FORMATION.  AOVECTIVE LOSS  IS COMPUTtO
                      EVERYTIME SUBROUTINE IS CALLED,  WHILE
                      CHEMICAL AND BIOLOGICAL TRANSFORMATIONS
                      ARE DON= AT SELECTED INTERVALS AS
                      SPECIFIED bY INPJT PARAMETER TSTEP.

                      DECLARATIONS
                      CU-1MON VARIABLES
KbAL UZi>M,UZt-» LZbN ,LZ.h
INTEGER  TSTEP,NiTEP,SFLG.UFLG,LFLG,GFLG
        SNT120 ) ,SNfcSM(2U,5),SNROM(20,5),
        JUT I 20) ,uNl(20,3) ,JNITl20),UNRIM(«iO,5t,
        i^KSM(2C ,5) ,LNRPM(20) ,
        SNKtlM42u,i') ,UNKJM(20,b) , LNR bl ( 20 ) , GNRBM 1 20 ) ,'NKBM I 2 J),
        SNRSYl20,5),SNRUY(20,i)),JNRIY(20,5),NRSY(20,5) ,
        LNRPY(20),SNRBY(20,3),UNRBY(20,5),LNRBY(20),GNRdY(20),
        TiMRBYl 20) , TNRhV(20) ,TNRHVM( 20) ,TNRHVY(20) ,TNA ,TPA, TCLA,
                      3),KP(b,4),THKP(5),NBAL,PHBAL,CLBAL
                  SMI 20,5) ,U,J(20,b) ,LN(20) ,GN(20)
DIMENSION SMGIST(24,b),JMOIST(24,5),LMOIST(24),
          STtMP(24 ),UTE;-IP(24)
                          255

-------
/C29.
7030.
7031 .
7C32.
7023.
7034.
7035.
7036.
7C37.
7038.
7033.5
7C39.
7C40.
7041.
7042.
7043.
7044.
7045.
7046.
7C47.
7046.
7043.1
7049.
7050.
7051.
7C52.
7053.
7054.
7055.
7056.
7057.
7053.
7059.
7061.
70e>2.
7063.
7064.
7065.
7066.
7067.
7063.
7069.
7070.
7071.
7072.
7073.
7074.
7074. 5
7075.
7076.
7077.
7C7S.
7073.
7080.
7C«1.
70d2.
7C66. 1
7086.2
70ft 6. 3
7085.4
70fc6.5
7C66.6
708S.95
70S 0.96
7CF6.97
70S 6 .98
7086.99
7CH7.
c






c
c



c



c





c
c
c








c
c
c

c

c








c
c
c
c
c
c
c












c
 COMMCN /NuT/   CcLT ,SN,S<>ir,SNRSM,SNRGM,UN,UNT ,UNI,UNIT,
1            UNKIM,NRSP,LN,LNKPM,GN, SNRBM ,UNR BM , LNR6M, GNRBM, TNRBM,
2            SNRbY, SNROY,UNRIY,NRSY,LNRPY, SN^ BY.UNRBY , LNRBY, GNRB Y,
3            TNRbY.TNRHV.TNRHVM.TNRHVY.TNA.TPA.TCLA,
A            KN,THI\N,KP,THK.P ,NaAL,PHBAL,CL6AL ,
5            TSTEP,NSTEP,SFLG,UFLG,LFLG,GFLG


 INTEGER  PftNTKE,TIMFAC,IMIN,IHR,TF,JCOUNT
 INTEGER*^   80l>,CALB,DAYS,£NuL,HOU* ,HYCAL , INPUT , INTR, METR,
                 , NO, NUTR, OFF, ON, OUTPUT, HE ST,PKI NT, PROD, SNOW, YES
REAL
       RU.HYMIN, DPS T , LZS, ARE A, RESB 1( 5) , ROS8 ( 5 ) , SRGX< 5) , INTFt :>) ,
         RGXO),INFL(5),UZSti(5),APERCB(5),RIB(5) ,ERSN(5) ,R£SB(5),
         M,P3,A,LTEKP,LMOIST,MUZ,MLZ
 COMMON /ALL/   RC, HYMI N, PRNTK6 ,HYCAL , OPS T , OUTPUT , T IMF AC , LZS, ARtA,
1            RESB1,ROS8,SRGX, INTF rRGX ,1 NFL ,UZS B, APERCB , RI B , ERSN,
2            M,P3,A,CALB,PRODtPESTf NJTR,ENGL,METRtBaTH,RESBf YESf NO,
3            IMINrlHk, TF , JCUUNT, PRI NT, INTR, DAYS, HOUR, MNTH, I DEBUG,
4            ON.CFF, bMOIST, JMUIST,LMOIST,STEMP ,UTEMP,LT£MP,MUZ,MLZ

                       DECLARATIONS FOR INTERNAL  STORAGE  ALLOCATION

 REAL  SNKSt20,5),SNRO(20,b) ,SNRP(20,5) ,ASNRS (20,5 ) ,
1         ASNRST120J ,ASNRO(20,5) ,  ASNROT120),
2         ASNRP(20,3J ,AS,MRPT(2J) ,UN1 1 (20 ,5 ) ,UNRI 1 20 ,&) ,
3         UNRP(20,5) ,NRSt20,5),AUNRIt20,5),AUNRIT(20J,
4         AUNRP(20,5),AJNRPT(20) , ANRS (20,5 ) ,
6         ANRSTt iCJ ,LNRP(20) , ALNRPt 20),
7         ASNR8(2L,iJ ,AS.MRBT(20) , AJNR b( ^0 , 5i ,
8         AUNRSTt 
-------
7083.
7C89.
7090.
7C91.
7052.
7093.
7094.
7095.
7096.
7097.
7093.
7099.
7100.
7101.
7102.
7103.
7104.
7105.
7106.
7107.
710S.
7109.
7110.
7111..
7112.
7112.2
7112.4
7115.
7116.
7117.
7118.
7119.
7120.
7121.
7122.
7123.
7124.
7125.
7126.
7127.
71<:fl .
7129.
7130.
7131.
7132.
7133.
7134.
7135.
7136.
7137.
7133.
7139.
714T.
7141.
7142.
7143.
7144.
7145.
7146.
7147.
7143.
7149.
7150.
7151.
7152.
7152. I
7152.2
7153.'
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
r
c
c
c
c
c
c
c
c
c

c
c
c
c
c

c
c
c





20

40

50
c
c
c
c
c
60
                BRIEF  DESCRIPTION OF VARIABLE NAMING  CONVENTION:
                1)  FIRST TWO LETTERS SN,UN,LN,GN STAND  FUR  SURFACEt
                   UPPER ZONE.  LOrtER ZONE, AND GROUNOWATEK  NUTRIENTS
                   ONI = INTtKFLOW STORAGE OF DISSOLVED NUTRIENTS
                2)  FIRST LETTER A STANDS FOR AN ACCUMULATION OF A
                   WTRIENT LOSS OVER THE  INTERVALS BETWEEN PRINTING
                3)  THE THIRD OR FOURTH LETTER fR'  STANDS  FOR REMOVAL
                4)  FOLLOWING THE 'R' A LETTER INDICATES THE CAUSE OF
                   REMOVAL;  «S'=$EDirtENT, »O'=OVERLAND FLU*,
                   •P'=PERCOLATION, • I'=INTERFLOH,  •S'=BIOLOGICAL
                5)  LETTERS •«•  AMD «Y' INDICATE MONTHLY AND YEARLY
                   SUMS OF REMOVALS, MONTHLY SUM IS ACCUMULATED IN
                   NUTPNT A^D PASSED TO MAIN FOS OUTPUT,  ANO YEARLY
                   AMUUNTS ARE  CALCULATED  AND POINTED IN  MAIN
                6)  THt LETTER »T' APPEARING AT THE  VERY END INDICATES
                   THE TCTAL OR AVERAGE MASS OF THE 5  BLOCKS IN THE
                   SURFACE AND  UPPER ZONES
                   NUTRIENTS ARE STORED IN VECTORS  AND  ARRAYS IN THE
                   KILLOrtINO SEgJENCE OF ELEMENTS:
                   1 = ORG-N,  ORGANIC NITROGEN
                               AMMONIUM IN SOLUTION
                               AMMUNIUM ADSORBED  TO SOIL
                                  NITRITE PLUS NITRATE
                               NITuCGEN GAS  f-ROM  DENI TRIF 1C ATI UN
                               PLANT NITROGEN
   PA
     1.0 - A
DO 120
               2 =
                   NH4-3,
                   NH4-A,
               4 •
               5
               6
               7
               t)
               9
               iO
               11
               u
               13
               14
               15
               16
                   18 = CPLN
                   19 = OPEN
                   20 = CL,
 N2-G4S,
 PLNT-N,
 OPEN
 OPEN
 OPEN
= OPEN
= CRG-P,
= P04-S,
= PG4-A,
= PLNT-P,
= OPEN
= OPEN
                                ORGANIC PHOSPHORUS
                                PHOSPHATE IN  SOLUTION
                                PHOSPHATE ADSORBED  TO  SOIL
                                PLANT PHOSPHORUS
                             CHLORIDE
                         ADJECTIVE LOSSES

                         SURFACE ZONE



                         SEDIMENT REMOVAL
       !F  (ERSN(IBLK)  .LE. 0.0)   GO TO 40
       FS  =  
       CONTINUE
       GO  TO GO
       DO  50   J=i,20
          SURSUrlBLK)  =  0.0
      CONTINUE

                         OVERLAND FLOW AND PERCOLATION

45302.4 = 0.2 * 43500 FT12J/ACRE * 1  FT/12 INCHES * 62.4 LB/FTIJ)

      IF  < (P3»RESE1( IBLKM .LE.  0.0)   GO TO 80
                            257

-------
7153.1
7153.2
7154.
7155.
7156.
7157.
7158.
7159.
7160.
7161.
7162.
7163.
7164.
7164.5
7165.
7166.
7167.
7168.
7169.
7170.
7171.
7172.
7173.
7174.
7175.
7176.
7177.
7173.
7179.
7180.
7131 .
7132.
7133.
7184.
7184.1







70

80


90

C
C
c
c
100






110
120
C
C
C

c
c
c
c
FT = PA*{P3+kESBl
-------
7207.
7203.
7209.
7210.
7211.
7212.
7213.
7214.
7215.
7216.
7217.
7213.
7219.
7220.
7221.
7222.
7223.
7224.
7225.
7226.
7227.
7223.
7229.
7233.
7231.
7232.
7233.
7234.
7235.
7236.
7236.5
7236.6
7236.7
7236. 8
7237.
723/.S
7233.
7233. 1
7233.2
7239.
7240.
7241.
7242.
7243.
7244.
7245.
724t>.
7247.
7243.
7249.
7250.
7251.
7252.
7253.
7254.
7255.
7256.
7257.
7253.
725^.
7260.
7261.
7262.
7263.
7i64.
7265.
7266.
7267.

170

180

190
C
C
C
200





210
220
C
C
C
C




230
240
C
C
C
UNRIUiieLK) = FLI*UNIU,IbLlO
CONTINUE
GO TU 200
00 190 J=lf20
UNiUUiIBUU » 0.0
CONTINUE

REMOVE AND ADO STORAGES AND ACCUMULATE

DO 210 J=li20 »
UMJ.IBLK) = UNU.IBLKJ - UNTIU.IBLK) - UNRP{J,IBLK)
UNHJiIBLK) = UNKJiIBLK) - UNRIUflBLK)
AUNRIU.IELK) = AUNRKJ.IBLK) * UNRUJ.IBLK)
AUNRP(J,I6LlO = AUNRPU.IBLKI * UNRPtJ.IBLK)
LNU) = LMJ) + UNRP( J,IBLK)*0.2
CONTINUE
CONTINUE

COMPUTE NUTRIENT REMOVAL TO STREAM (NRS»
AND ACCUMULATIONS

DO 240 IBLK=1,5
DO 23J J=lt20
NRSUiIdLK) = SNRS(J,I3LK) + SNROU.IBLK) + UNRKJ.IBtKJ
ANRS(J.IBLK) = ANRS(J.IBLK) •»• NRS(J>1BLK)
CONTINUE
CONTINUE

LOWER 1MB

C 226512 = 435oO FTC21/ACRE * 1 l-T/12 INCHES * 62.4 LB/FTIJ)
C
C
C








250

260

270
C
280



290
C
C
C
C
C
C
C
C
C
C
C






LiFM REDUCES SCLulE PERCOLATION FOR SOIL MOISTJRE LESS THAM LZF*LiSN
TW = LZS + DPST
KNFw = AREA*T»*220312.0
IF (TW .LE. C.C J GO TU 260
LZFM = LZS/(t/SN*L/F)
IF (LZFM.GE.l.Ci LZFM =1.0
FP = LZFM*L)PST/T*
DO 250 J=l,20
LNRP(J) = StLPC(J )*FP*LNUJ
CONTINUE
GO TU 28U
DO 270 J=lr2C
LNRP U J = 0.0
CONTINUE

DO 290 J=1.20
LNUJ = LNtJJ - LNRPIJ)
GN(JJ = GN(J) * LNRPIJ)
ALNRPIJ) = ALNRP(J) «• LNRP(J)
CONTINUE

GROUNDwATER
NO ADVECTIVE LOSS FROM GROUNOWATER


CHECK TO SEE IF PHYSICAL AND BIOLOGICAL
TRANSFORMATIONS ARE TO BE DONE THIS
INTERVAL ON A RAIN DAY, OR SETUP THE
NUMBER OF TIMES TO LOOP FOR A NO RAIN
DAY

IF 
-------
7266.
7269.
7270.
7271.
7272.
7273.
7274.
7275.
7276.
7277.
727d.
7279.
7280.
7281.
7282. 1
7282.2
7262.3
7282.4
72S3.
7235.1
7285.2
7286.
7287.
728<3.
7239.
72d9. 1
7290.
7291.
7291.1
7292.
7293.
7294.
7295.
7296.
7297.
7290.
72S9.
7300.
7301.
7302.
7303.
730t.
7305.
730S.1
7306.
7307.
7307.1
73)7.2
7303.
7309.
7310.
7311.
7312.
7313.
7314.
7315.
7316.
7317.
7319.
7313.1
731=3.5
7319.
7320.
7320.2
7321.
7322.
7323.

300
C
310
C
C
C
C
C



320
330




C
C
C
C
C



C


C
C
C
C



430
440
C
C
C
450


C


C
C



540
550
C
C
C
560



C


C


GO TO 310
NCYCLE = NSTEP

DO 800  IBIO=1,KCYCLE

                     COMPUTE HOUR OF  THE  DAY  TO ACCESS HOURLY
                     SOIL TEHP  DATA FOR  THE 4 SOIL ZONES:
                     SURFACE, UPPER,  LOWER, GROUNDWATER

   IF 
-------
7324.
7325.
7326.
732 7.
732d.
7329.
7329.1
7330.
73J1.
7331.2
7332.
7333.
7334.
7335.
7336.
7337.
733d.
7339.
7340.
7341 .
7342.
7343.
7344.
7345.
7346.
7347.
7343.
7349.
735T.
7351.
7352.
735J.
7354.
7355.
7J5o.
7357.
7358.
7359.
7360.
7361.
7302.
7363.
7364.
73t>5.
7366.
7367.
7368.
7369.
7370.
7371.
7372.
7373.
7374.
7375.
7376.
7377.
7378.
7379.
73HO.
7381.
7332.
7333.
7384.
7335.
7336.
/387.
738d.
7389.
650
C
C
C
660


C


C


750
C
800
C
C
C
810
C
C
C
C
C
C




910

920
C








930




940
C

C
C


C
C
C
C
C
C
C
C
C
C
C



CONTINUE

GROUNDrtATER ZONE

IF (GFLG .£«. 0) GO TO 800
IZONE = 4
IF (T(4) .LE. 4.0) GO TO dOO

CALL TRANS < CEL T, IZONE , GN, DUMA ,KN, THKN.KP ,THKP,T, DELN, DUMA,
L AREA,M,MUZ,MLZ,INFH,JNFW,KNFW)

DO 750 J=l,20
AGNRBU) = AGNRB(J) + SELBL (J )*OELNU)
CONTINUE

CONTINUE

END OF NO RAIN INTERVAL LOOP

IF (PRNTKE .60. 0) GG TO 1JJO

COMPUTE BIOLOGICAL REMOVALS
ACCUMULATE MONTHLY VALUES OF ADVECTIVE
AND BIOLOGICAL REMOVALS
ATNRB = ACCUM. TOTAL NUTR REMOVAL BIOL.

DO 920 J=lf20
SUM = 0.0
00 910 I8LK=1,5
SUM = SUM + ASNRB( J, IBLK) * AUNRB( J ,IBLK)
CONTINUE
ATNRBUJ = SUM/5. + ALNRBU) «• AGNRBU)
CONTINUE

DO 940 J=l,20
DO 930 I8LK=l,5
SNRSM( J.IBLK) * SNRSM ( J , I BLK) t ASNRSt J, I BLK)
SNKCMUfieLKJ = SNROMU.IBLK) «• ASNROJ J, I BLK)
UNRIMCJ, IdLK) = UNRIM
-------
7390.
7391.
7392.
7393.
739'+.
7395.
7396.
7397.
739rf.
7399.
7400.
7401.
7402.
7403.
7404.
7405.
7406.
7407.
7408.
7409.
7410.
7411.
7411.5
7412.
741J.
7414.
7415.
7416.
7417.
7419.
7419.
7420.
7420.1
7420.2
7420.3
7420.4
7420.5
7421.
7422.
7423.
7424.
7425.
7426.
7427.
7423.
742'^.
7430.
7431.
7432.
7433.
7434.
7434.5
7435.
7436.
7437.
7433.
7439.
7440.
7441.
7442.
7443.
7444.
7445.
7446.
7447.
7448.
7449.
7450.
945









950






960
970
C
C
C
C
C




971


S72
C



C
C
C
C
C




980


C
1000





C
C
C
C
1100








CONTINUE
ERSNT » ERSNT/5.
CONFC = 454COC./(RU*TIMFAC*60.*28.32J
IF (ERSNT ,GT. 0.0) CONFS = 1 . OE6/ (ERSNT*2000 .*AREA)
DO 970 J=i,20
SJMD = O.C
SUMA = 0.0
00 950 ULK=1,5
SUrtC = SCML) + ASNkOU ,IBLK.) + A JNR I ( J, IBLK )
SUrtA = SUMA * AS,MRS( J ,IBLK)
CONTINUE
NDS^IJ ) = SLMO*AREA/5.
r^OSCUJ - NLSM( JJ*CQNFC
KASMIJ) = Sly,A*AREA/5.
IF (ERSNT .LE. O.OJ GO TO 960
NASCU) * NASM(JJ*CONFS
GO TQ 970
NASC1J) = 0.0
CONTINUE

COMPUTE TOTAL MASS OF N (TOTN) AND P (TOTP),CONC.
OF TOTAL N (TOTNC) ,P (TUTPC)i AND SEDIMENT ( SEDC )
PER WATER PHASE IN STREAM

TOTN =0.0
TOTP =0.0
DO 971 J=l,6
TOTN = TCTN +iMUSM(JJ * NASMU)
CONTINUE
DO 972 J = U,14
TOTP = TOTP + NDSM(J) «• NASM(J)
CONTINUE

TOTNC = TGTN+CCNFC
TOTPC = TCTP+CCNFC
SEOC = (CCNFC/CCNFS)*1.0E3


MODIFICATIONS FOR METRIC OUTPUT
CONVERT MASS FROM LB. TO KG. CONC. IN MG/L

IF (OUTPUT. EQ.ENGL .OR. OUTPUT. EU. BOTH) GO TO 1000
DO 980 J=lt2C
NDSMU) = NDSrf( J) /2.205
NASMiJ) = NASM( JJ/2.205
CONTINUE
TOTN = TOTN/2.205
TOTP = TUTP/2.2C5

WRITE (6,4130) NL)SM(4),NDSM(2J,NUSM( 12) , NDS Ml 20 J ,
1 NASrt(3),NASMU) ,NAS«( 13) ,NASM( 1 1 ), TOTN, TOTP
WRITE (o,4135) SEOC
WRITE (6,4140) NDSC (4),NOSC(2) ,NUSC( 12) ,NDSC(20J ,
1 NASC(3),NASC(l)fNASC( 13) ,NASC( 1 1) , TOTNC , TOTPC
GO TO 1200

PRODUCTION OUTPUT
COMPUTE WATERSHED AVG. FROM BLOCK STORAGES

DO 1120 J=l,20
SNT(J) = O.C
UNTU) = C.Q
UNITtJJ = 0.0
ASNRST(J) = C.O
ASNROTU) = C.O
ASNHPTU) = 0.0
AUNKIT(J) = t.O
Al)NRPT(J) = C.O
262

-------
7451.
7453.
7455.
745o.
74S7.
7458.
7459.
7460.
7461 .
7462.
7463.
7464.
7465.
7466.
7467.
746d.
7469.
7470.
7471.
7472.
7473.
7474.
7475.
7476.
7477.
7478.
7479.
7480.
7',d2.
7483.
7434.
7435.
7436.
7487.
7483.
7489.
7490.
7491 .
7492.
7493.
7494.
7495.
7496.
7497.
7498.
7499.
7500.
7501 .
7502.
7503.
750V.
?505.
7506.
7507.
7509.
7539.
7510.
7511.
7512.
7513,
7513.1
7513.2
7513.3
7511.4













1
1
C




C
c
c
















c
c
c

















c
c
c
c

                ANRST(J)  = C.O
                ASNRBTU)  = 0.0
                AUNRbT(J)  = C.O
                OU  i 1 i 0   IB L K= 1 , 5
                    SNT(J)  = SulUJ) <•
                    UNT(J)  = UMTIJ) +
                    1-ltlITlJl = J.UTU)
                    ASNRST(J)
                    ASNROT(J) ;
                    AiNRPT(J)
                    AUNPIT(J) ^
                    AJNSPT(J)
                    ANKST(J) =
                          SUl J,IBLK)*0.2
                          UN(J,IBLK)*U.2
                          * JN1 (J,IbLK)*0.2
                    ASNRSTIJ)
                    ASNROTtJ)
                    ASMRPT(JJ
                    AUNRITIJ)
                    AUNRPT U)
                   ANRST(J) *
       1110
       112C
       AS.xIRBTU)  =  ASNRBTU)
       AUMKBT(J)  =  AJNRBT(J)
    CONTINUE
 CONTINUE
                              + ASNRSU , 1BLKJ*0.2
                              <- AS'NRO(J,IBLK)*0.2
                              * ASNRPU TlBLK)*0.2
                              * AUNRI (Jt IBLiO*0.2
                              «• AUNRPCJ, IBLM*0.2
                              ANRStJ»IQLK)*0.2
                              * ASNKB Ui IbLK)*0.2
                              * AUNRbU , IBLK)*0.2
             IF (DUTPJT  .Eti. METR)
             CONC =  LdPAC
             WRITE (o,-iOC5)
             WRITE (6,40CO)   CGNC
                         GO TO 1130
1
             WRITE
             WRITE
             WRITE
            1
             WRITE
             WRITE
             WRITE
            1
             WRITE
             WRITE
            I
             WRITE
             WRITE
            1
             WRITE
             WRITE
 WRITE
 WRITE
 WRITE
 WRITE
L
 WRITE
 WRITE
 WRITE
L
 WRITE
 WRITE
1
 WRITP
 WRITE
            1
1
       (6,4050)
       (t>,4030)

       (6,4060)
       (6,4030)

       (6,4070)
       (6,4030)

       (6,408C)
       (6,4030)
(6,4090)
(6,4020)
(0,4030)

 o,4100)
 6.403C)

 6.404C)
 6,4100)
 6,t03C)

(6,4u70)
(6
                                   SURFACE
           .„„. ,J),J = 1,6), ISNTU), J= 11,14), SNT( 20)
           (IBLK,(SN(J , IBLK) ,J=1 ,6),(SN(J,IBLK),J = ll,14),
           SIM (20, IBLK),   IBLK=1,5)

           (ASNRST(J),J=1,6), 1 AU,slRPT( J) ,J=11,14) ,AUNkPT(^0)
                             (IdLK, (AUNRP IJ,IBLK),J^1,6),(AUNRP(J,IBLK),J^11,14)
                             ,Aj[\iRP(20, IULK) ,   I8LK = l,b)
                              (AUNRBT(J) ,J = 1,6) ,lAJNkdT(J),J=ll,14) ,AUNRttT(20)
                             (IBLK, ( AJ^KBl J, IBLK), J=1(6),(AUNKB(J, IBLK), J=ll, 14)
                                               IBLK=l,a)
                                   TjTAL TJ STRFAM

             WRITE  (o,t015)   tANkiT(J),J=l,6),(ANKST(J),J=li,14),ANkST(^U)
\ .5
                                       263

-------
7514.
7515.
7515.
7517.
7513.
7519.
7520.
7521.
7522.
7523.
7524.
7524. Cl
7524.02
7524. C3
7524. C4
75?'+. C5
7524. C6
7524. C7
7524. C8
7524. C9
7524. 1
7524.11
7524.12
.'524. 13
7524. 14
7524. 15
7524. 16
7524. 17
7525.
7526.
7527.
7523.
752'..
7530.
7531 .
7532.
7533.
7534.
7535.
7536.
7537.
7533.
753".
75-'. 3.
75M.
7542.
7543 .
7545. 1
754
-------
7564.
75o5.
7566.
7567.
7i>69.
7569.
7570.
7571.
7572.
7573.
7574.
7575.
7576.
7577.
7578.
7579.
75dO.
7581.
7582.
7533.
7584.
7585.
75C6.
7587.
7586.
7589.
7590.
7591.
7592.
7593.
7594.
7595.
7596.
7597.
7598.
7599.
7600.
7601 .
7602.
7603.
7604.
7605.
7606.
7607.
7607.1
7607.2
7607.3
7607.4
7607.5
7603.
7609.
7610.
7611.
7612.
7613.
7614.
7615.
7616.
7617.
7613.
7619.1
7619.2
7619.3
761b.4
7613.5
7618.6
7613. 7
7613.8
C
C
C
WRITE
WRITE
WHITE
i
2
WRITE
WRITE
WRITE
1
WRITE
WRITE
1
WRITE
WRITE
1
WRITE
WRITE
1
C
C
C
WRITE
WRITE
WRITE
1
2
WRITE
WRITE
1
2
WRITE
WRITE
WRITE
1
WRITE
WRITE
1
WPITE
WRITE
1
C
C
C
C
WRITE
C
C
C
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
«PITE
WRITE
WRITE
C
C
C
OEG =
WRITE
WRITE
wRI TE
WRITE



(0,4010)
(6,1020)
(6,403C)


(6,4040)
(t>,405C)
( o,4UJO)

<6,4060)
(6,40^0)

(o,4C70)
(6,4030)

(6,4083)
(6.403C)




(6,409C)
(6,4020)
(6,4030)


(6,410C)
(o,403C)


(6,4040)
<6,410C)
(6,40JO)

(6,^C7C)
(6,4030)

(6,40dO)
(6,4030)





(6,4015)



(o,4UC)
(o,<«J20)
(6.4G4C)
(6.407C)
(o,4CdC)
(0,4120)
<6,-,02C)
(0,4040)
lo,4C8C)



CEL
(6,4124)
(6,4125)
(6,4120)
(6,4127)
      SURFACE
 (SNTMET(J),J=i,6),(SNTMET(J),J=
 (I8LK,(SNMET(J,IBLK),J*1,6),
 0( J, IBLK) ,J = 1,6) ,(
,ASNRU(20,IBLK),   IBLK=1,5)
 (ASNRPT(J),J=1,6I,(ASNRPTlJ)
(IBLK, (ASNRPlJ,IBLK),J = 1,6),(
,ASNKP(20,IbLK),   IBLK=1,5)
 (ASNRBT(J), J=l,6) ,( ASNRBTU)
(IBLK, (ASNKB(J, IBLK) ,J = l,6) ,(
,ASNRB(20,IBLK),

      UPPER  ZONE
 (UNTMET(J) ,J=1,6) ,(UNTMET(J) ,J= 11,14 ) ,UNT MET (20)
(IBLK, (UNMETU, IBLK) ,J = 1,6J,
(UNMET(J,IBLK) , J=li, 14) ,
U,NrtET(20, IBLK) ,   IBLK=l,5)
 (UNITMT(J),J = 1,6),(UNITMT(J),J=H,14),UMTMT(20)
 (IoLK,(ONIMEr(J,IBLK) ,J=1,6) ,
(ONMETU.IBLK) ,J=11,14),
UNIHET(20tIttLK) ,   IBLK=1,5)

 (AuNRIT(J), J-l,o) ,( AJNRIT(J) ,J»11,14) ,AUNRIT(20)
(IBLK, (AUNRI ( J, IBLK) ,J = 1 ,6) ,( AUNRI ( J, IBLK) ,J=11 , J.4)
 (AUNKPTl J) , J = l ,6) , ( A'J.NRPT(J) ,J=11,14) ,AUNkPT(20)
(IBLK, (AUNRP( J, IBLK),J=1,6),( AUNRP( J, IBLK),J=ll,i4)
,AJNRP(
-------
7613.9
7619.
7C.20.
7621.
7622.
7623.
7624.
7625.
7626.
7627.
7623.
7629.
7633.
7631.
7632.
7635.
7634.
7*35.
7636.
7637.
7638.
7639.
7640.
76M .
7642.
76->3.
7644.
7645.
7646.
'647.
7647.5
7643.
764B. 1
76*8.2
7643.3
7643. 4
7643.5
7643. 6
7649.
7650.
7651.
7652.
7653.
7654,
765b.
7656.
7657 .
/658.
7659.
7659.5
7660.
7661 .
7662.
7800.
7801.
7601 . 1
7<301.2
7802.
7802.5
7803.
7803.5
7604.
7804.5
?ec5.
7605.5
7806.
7806. 5
7807.
C
c
C
c
1200









1210



1220
C
C
1300
C
C
C
4000


4005
4010
4015
4020
4124
4125

4126

4127
4030
4040
4050
4060
4070
4C80
409C
4100
4110
4120
4130
4135
4140
C

C
c
c
c


c
c
c
c
c
c
c
c
c


ZERO OUT ACCUMULATIONS AFTER PRINTING

00 1220 J=1,2C
DO 1210 IBLK=1,5
ASNKSI J, IBLKJ = 0.0
ASNRG( Jt IBLKJ = 0.0
A$NRP< J, IfcLK) = 0.0
AS.'JRbU, IBLKJ = 0.0
ALURK j, IBLKJ = 0.0
AUNRPU, IBLKJ = 0.0
AU.NRdi J, IdLK) = 0.0
ANRSU.IELK) = 0.0
CONTINUE
ALNPH(J) = C.O
ALNRb(J) = C.O
AGNRb(J) = C.O
CONTINUE


RETURN



FORMAT CO1 f 'NUTRIENTS - ' f A3, 1 IX , ' ORG-N ' ,3X , • NH4-S' , 3X, 'NH4--A « ,
1 3X,'N03+N02' ,4Xi 'N2' ,2X, 'PLNT-N' ,3X, 'ORG-P* t3X,
2 • P04-S1 fJX,' P04-A' ,2X, "PLNT-P ',6Xf »CL' J
FORMAT CO')
FORMAT CO1, 3X, 'SURFACE LAYER')
FORMAT CO' ,9X, 'TOTAL TO STREAM • ,F 8. 2 .5F8.3 ,F8 .2 ,3F3. 3 ,FO. J )
FORMAT CC',6/, ' STOR AGE ' , 1 2X,F 3.2 ,5FU .3 , F8.2 , 3Fa. 3 ,F8 . 3 )
FORMAT CO'.'CAILY SOIL TEMPERATURE IN DEGREE ',A1J
FORMAT CO',' SURFACE ZUNE MAX(4PM) MIN(6AMJ«»
1 /,' ' ,14X,F5.1,5X,F5.1)
FORMAT CO1,1 Ut-P£K ZO(JE MAXCVPM) MINtbAM)',
1 /,' ',14X,F£.1,5X,F5.1J
FORMAT CO',' LUwER ZONE DAILY AVERAGE1,/,1 ',12X,F5.D
FORMAT C « , 12X ,'BLUCK' , 12 , 6X, F8. 2, 5Fa. 3 , F8. 2, 3F8.3 , F8.3 )
FORMAT CO' ,6X, 'REMOVAL' )
FORMAT CO',9X,'SEL)I«ENT'f8X»F8.2,5F8.3,Fd.2fJF8.3,F8.3)
FQCMAT C C' ,'>X, 'O^ERLAMU FLO^',3X,Fa.2,t>F8.3,F8.2,3FtJ.3,F8.3J
FOFMAT C 0' ,9X, ' >'i KCCLA1 I OM ' ,5X,f d.2, 5F8. i,rd.2, 3r8.3,F8.J)
FORMAT C J1 ,9> , 'dICLCGICAL' ,6X,F6.2 ,5F8.3,Fa.2,oF8.3, F6.J)
FORMAT C 0' ,3X , 'JHPER ZUNc'J
FUR MAT Cu' ,9X t 'IiaEKFLO^' ,7X,Fd.2,5F8.3fF8.2,3F8.3,Fb.3)
FORMAT 1' C1 , JX , 'LLUeR ZONt ' )
FORMAT C 0' ,3X, 'GROUNDrtATER ' )
FORMAT ( •+• ,40X,oFb.3,4X,2F8.3)
FORMAT C «,30X,F8.2)
FORMAT C *' ,40> ,aFii.l,4X,2F8.1)

END




SUBROUTINE TRANS 1 UE LT, I ZONE ,N,NB,KN, THKN, KP ,THKP ,T, DELN, OELNB ,
1 A RE A, rt, MUZ, ML Z, I NFW, JNFrt.KNFW)

THIS SUBROUTINE
1) CORRECTS REACTION RATES FOR SOIL TEMP
LESS THAN 3i> DEG C.
KNC = VECTOR OF NITROGEN REACTION RATES
CORRECTED FOR EFFECTS OF ENVIR. FACTORS
KPC = VECTOR OF PHOSPHORUS RATES, CORRECTED
Z) DEVELOPS COEFFICIENT ARRAY OF CORRECTED RATES

266

-------
780/.5
reos.
7808.5
7809.
7809.5
7810.
7810.5
7811.
7811.5
7812.
7812.5
7813.
7813.5
781*.
781^.5
7815.
7815.5
7816.
7816.5
7817.
7817.5
7818.
7818.5
7819.
7819.5
78??.
7620.5
7821.
7821.5
7822.
7822.5
7823.
7823.5
782'+.
762^.5
7825.
7825.5
7826.
7626.5
7827.
7327. 5
7828.
7828.5
7829.
7829.5
7830.
7830.5
7831.
7331.2
7831.5
7832.
7d32.2
7332.21
7832.22
7832.23
7832.24
7832.25
7332.26
7832.27
7832.28
7832.29
7832.3
7832.5
7833.
7833.5
783^.
7634.5
7635.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C






C


C
C
C




20
10
C

C
C
C


                   3)  THEN SOLVES  A  SYSTEM  OF  FIRST
                       ORDER DIFFERENTIAL  EQUATIONS FOR  THE
                       CONSTITUENT CONCENTRATIONS  AT THE NEXT
                       TIHb STEP.

                       CALLING VARIABLES ARE:
                       M20) - VECTOR  OF CONCENTRATIONS   (LB/AU
                       OELT = TIME  STEP  (DELTA  T)   
                       KN<8,4) = NITROGEN  REACTION  RATES AT 35 C
                       THKN18) = TEMP.  CORRECTION  COEF FOR KN
                       KP(5,4J = PHOSPHORUS  RATES  AT 35  C
                       THKP(5) = TEMP.  COEF. FOR KP
                       T<4) = SOIL  TEMP AT 4 SOIL  LAYERS, OEG C
                       DELN120) * CHANGE IN  CONCENTRATION THIS
                                 TIME  STEP  
-------
7835.5
7836.
7836.5
7837.
7837.5
7838.
7838.5
783^.
7839.5
7840.
7840.5
7841.
7841.5
7843.
7842.5
7843.
7343.5
7844.
7844.5
7845.
7845.5
7846.
7346.5
7847.
7847.5
7848.
7848.5
7849.
7849.5
7850.
7650.5
7851 .
73t>l. 5
7852.
7852.5
7853,
7853.5
7354.
7654.5
7855.
7855. 5
7856.
7856.5
7S5T.
7857. 5
7853.
7853.5
7859.
7859.5
7860.
7860.5
7861.
7861.5
7862.
7862.1
7862.2
7862.5
7863.
7863.5
7864.
7864.4
78t,4.5
7865.
7865.5
7866.
7866.5
7867.
7367.5


35


36

37

38


39
C
40

41


42
C
C
C












C








C
C
C

C
C
C
C
C
C







C
70




C
00 35 J=l,8
FTN
-------
7863.
786tl.l
7868.5
7869.
7869.5
7870.
7870.5
7871.
7871.5
7872.
7872.5
7873.
7873.5
7874.
7874.5
7875.
7875.5
7fl76.
7876.5
7877.
7877.5
7376.
737(3.5
7379.
7G79.5
7830/5
7831.
7831.5
7882.
7832.5
7833.
7883.5
7884.
7884.5
7835.
7835.5
7336.
7886.5
7SB7.
7C87.5
7388.
7888.5
7839.
7839.5
7890.
7890.5
7891.
7801.5
7892.
7C92.5
7893.
7893.5
789f.
7894.5
7895.
7895.5
7896.
7896.5
7897.
7897.5
7898.
7898.5
7899.
7899.5
7930.
7^30.5
7901.
80




85

90


91

C
C
C
95



100

200


300
C
C
C
C
C
C
C
310



350


360

370

380


390
C
400

410


420
C
C
C










    PPMSrtUCUL) =  MICOD/tfMMA
    SWCT = CURtrt, ICCL)*PPMSri(ICOL)
    LBA = ShCT*wMMA
    SUM = SUM * LBA
    GO TO 85
  CONTINUE
   DELNl IROW) = DELT*SUM
CONTINUE
DO 91   J=li20
   NU) = NU) + JELNIJ)
CONTINUE
P. E TURN

          GROUNDwATER

DO 200  lROh=l|20
   SUM = C.O
   DO 100  ICCL=1,20
      SUM = SUN *  C( IRO*iICOL)*N(ICOL)
   CONTINUE
   OELMIRGri) = UtLT*SUM
CONTINUE
DO 300  J=l,20
   NIJ) = N(J) * OELNU)
CONTINUt
R5TUFN
                     FOLLOWING SECTION IS FOR THE BLOCKS
                     USED IN THE SURFACE AND UPPER ZONE
                     TEMPERATURE CORRECTION OF REACTION RATES
IF (T(IA)NE) .GE. 35)  GO TU 310
RELT = TIUCNEJ - 35.
DO 350  J=l,8
   FTN(J) = THKN(J)**RELT
CONTINUt
DO 360  J-1,5
   FTPCJJ = THKPtJ)**RELT
CONTINUE
GO TO 400
DO 380  J=l,8
   FTN(J) = 1.0
CONTINUE
DO 390  J=l,5
   FTP(J) = l.C
CONTINUE
DO 410  J
   KNCJ JJ
CONTINUE
00 420  J=l,5
   KPC{J) = KPt
CONTINUE
If6
= KN(J,IZONE)*FTN(J)
C(l
Cll
C<2
C(2
C<2
C(3
C(3
C(4
C(4
r*2)
,4)
,2)
f3)
,2)
t3>
»2)
t4)
=
=
f
=
-KNC(4
KNC(5)
KNC(6)
KINiC(4)
-
-------
7901.5
7902.
7902.5
7903.
7903.5
7904.
7904.5
7905.
7Q05.5
7906.
7906.5
7907.
7907.5
790T.
790-3.5
790C>.
7909.5
7910.
7910.5
7911.
7911.5
7M2.
>»12 5
y?i jt
7913.5
7914.
7914.5
7915.
7915.5
7916.
7916.5
7917.
7917.1
7917.2
7917.3
7917.5
7913.
7918.5
791d.6
7919.
7919.5
7920.5
7921 .
7927.
7927.5
7928.
7923.3
7928.5
7929.
7929.5
793r>.
7930.5
8COO.
8C01.
8002 .
eoo3.
8004.
8C04. 1
8005.
8C06.
8C07.
8CO^.
8009.
3010.
ecu .
8011 .1
«01 1 .2
8012.
dC13.


C








C
c
c


c



c
425


430
C




435




C
440



450

500



600
700
C


C
c
c
c


c
c
c
r

c
c




C(5,4) = KNC(2)
C(6,4) = KNCm

Clll, 11) = rKPC(l)
C( lit 12) = KPC12)
C 12,11) = KPC(l)
C 12,12) = -IKPC12) •«• KPC(4) «• KPCCJM
C 12,13) = KPC(5)
C 13,12) = KPC(4)
C 13,13) = -KPC(5)
C(14,12) = KPC(J)

SOLUTION

DO 700 IBLK=l,b
IF ( I ZONE.Ei;.!) GO TO 425

IF UNFrfl luLiO .LE. 0.000001) GO TO 700
SMMA = MUi/ ( 1JOJOOO.*AREA)
WKMA3( IBLfi) = JNFw(IBLK) /( 1000000. *AR£A)
GO TO 430

IF (INFrtUBLK) .LE. 0.000001) GO TO 700
SKMA = M/UCCOOOO.*AREA)
WMMAB(I6Li<) = 1NFW(IBLK)/(1000000.*AREA)
DO 500 IRCV« = 1 t20

SUM =0.0
00 45C ICOL = 1,20
GO TO (4;>5, 440, 435, 440, 450, 450, 450, 450, 450, 450, 435, 440,
1 t35, 450, 450, 450, 450, 450, 450, 450), ICOL
PPMS(ICOL) = NB(ICUL,IBLK)/SMMA
SCT = CIIROW,ICOL)*PPMS( ICOL)
LBA = SCT*SMMA
SUM = SUM + LBA
GO TO 45J

PPMSwUCUL) = NB( ICOL, IBLK)/ riMMAtK IBLK)
SwCT - C( IROW,ICOL)*PPMSW( ICOL)
LBA = SwCT*wMMAB( IBLK)
SUM = SUM «• LBA
CONTINUE
OELNO( IRQn ,IBLK) = DELT*SUM
CONTINUE
DO 600 J=l,2u
NolJ.ieLK) = NB(J,IBLK) «• DELNB ( J , I 8LK )
IF (NBU, IBLK). LT. 0.000001) NB( J , IBLK) =0,.0
CONTINUE
CONTINUE

RETURN
END




SUBROUTINE OUTKCN ( YEAR.KGPLB, LSTR, LAS,LCS,LDS» GSTR ,GAS ,GCS , GDS ,
1 TPSAL,DEGSGM,0£GUOM,OEbLOM,UIST, TOTPAP.T I MAP, YEAP AP )

THIS SUBROUTINE OUTPUTS MONTHLY
TAttLES, AND ZEROS ACCUMULATIONS

INTEGER YEAR


DIMENSION SMOIST<<:4,5),UMQISTU4,51 ,L MOIST (2 4),
1 STErtP(24),UTEMP(24)
COMMON /ALL/ RO,H YM IN, PKNT K>E ,H rC AL ,DPST , OUT PUT , T IMF AC , LZS, AREA ,
1 RESBl.RuSB.SRGX, I^TF.RGX.I NFL , UZS B, APERCB ,RI 6 , ERSN.
270

-------
801*.
8015.
8015. 1
8016.
8C17.
8C1S.1
8C18.2
8018.3
801 S. 5
6019.
•i C ? ) .
8C21.
3022.
8023.
802*.
8025.
8026.
8027.
8023.
6029.
8030.
8031.
8032.
8033.
803*.
8035.
8035.1
6036.
8037.
8033.
8039.
80*0.
80*1.
80*2.
80*3.
80**.
80*5.
30*6.
80*7.
80*8.
80*o.
8050.
8051.
8052.
8C52. 1
8C53.
605*.
805*. 1
8055.
8056.
8057.
8053.
8059.
8060.
8061.
8066.
8066. 1
8066.2
8066.3
8066.*
8066. 5
8067.
8063.
8070.
8076.
8077.
807'3.
8079.
2
3
*
C


1
C

C

1
2
C
1
1
2
3
4
5
6
7
8
9
*
1
2
C
!
C
!
1
2
3
4
5
6
7
9
A
3
C
0
E
F
C


C
C
(
1
2
3
*
C
F
2
3
*
5
C
f
1
C
!
C
(
            M,P3 ,A, CALb,PROD,PtST,NUTR,ENGL,METR, BOTH,RESb,YES, NU,
            IMIN ,IhR, TF,viCOUCJT,PKINT,INTR,DAYS,HOUR,MNTH, lUhbUG,
            CN.CFF,SMGIST,UMUIST,LMUIST,STEMP,UTFMP,LTEMP,MUZ,MLZ

 INTEGER  PRNTKE ,T1MFAC,IMIN,IHR.TF,JCUUNT
 INTEGER*-*  oQTH,CALB,DAYS,ENbL,HOUK ,HYCAL , INPUT , INTP , METrt,
            MNTh,.NU ,NUTR,OFF,ONfOUTPUT,PCST ,PRINT,PROD, SNUh,YES

 INTEGER**  LCOF

 HEAL  Rll.HfMlN.uPiT, LZj,ARfcA,kESbU b) , KJSb(S),SPGX <;>),! UTKi),
          RGX(5) ,INFL(5),UZStt(5),APERCB(5),RIB(5J,ERSNl 5),RESB(5),
          M,P3,A,LT£MP,LMOIST,MUZ,MLZ       *

 COMMON /LAND/  fNAM,PRTOT,ERSUTT,PRTOM,ERSNTM,OAY,
  RUTOM,NEPTCM,RCSTCM,RITOM,RINTOMfBASTOM,RCHTOM»RUTOT,
  NEPTOT,ROSTOT,MTOT,RINTOT,BASTOT,KCHTOT,TWBALȣPTOH,EPTOT,
  UZS,UZSi\,LZSN, INUL, INTER, IRC,NN,L,SS,SGrtl, PR,SGW.GWS,KV,
  K2*L,KK2*,K2'.EL,EP,IFS,K3,£PXM,RESS1,RESS,SCEP,SCEP1,SRGXT,
  S?GXTl,JRER,KhER,JSER,KSER,iRERT,MMP IN, METO PT , SNUrt, CCFAC ,
  SCF,IDNS.F.DGM ,«C ,MPACK,EVAPSN.MELEV,TSNOW,PET MIN,PETMAX,ELDIF,
7 OEHX.PACK,DEPTH,MONTH,SDEN,IPACK,TMIN,SUMSNM,PXSNM,XK3,
8 McLRAM,RADMEM , CCR^EM,CRAINM.CONMEH,SGMM,SNEGMM,SEVAPM,SUMSNY,
9 PXSNY,MELRAY,RADMEY,COKMcY,SuMY,CONMEY,CRAINY,SNcGMY,SEVAPY,
* TSNBAL,tCVER,CCVKMX,RCtiT:JM,fiOt}TOT,RXBfROITOM,ROITOTf INF TOM,
  INF TOT.ERSTCM , ERSTOT,SKER,TEMPX,RAD,WINDX,RAIN,INPUT,DSwROS,
2 DSNFLUiUSNErtStLSrtCtEROS,TMULSZ,LOOP,NEROS.NILSRO.RRUS,NRROS

 DOUBLE PRECISION   MNAM(12)

 REAL  PRTOT,ERSl^TT,PRTOM,ERSrJTM,RUTCM,RITOM,RINTOM,BASTOM,
1         KCHTCM,RUTOT,NEPTOT,rJtGMY,SEVAPY,TSNbAL .CONMEM,
          COVER,COVkMX,RCBTOM(5)iRGUTOT(i),RXb(5),ROITUM(5J,
          ROITOT (bJ , INFTOd(5) , INF TOT (3) ,£RSTOM(5) , ERST LIT (5) ,
          SkERm,TEMPXl2*),RAD(2*),wINL)X(2*),RAIN(288),
          LSRC(128J,£RCS(128),HROS(128)

 INTEGER  CAY.MCNTH
 INTEGER  OiNERi ,DSNRCS,DSNFLO,TMbLSZ


 COMMON /PESTC/
1 STST,PRSTCM,SPROTM,P«STOT,SPRSTM,PROTOM,SAST,PROTOT,
  SCST,UPITCM,SCST,UPITOT,UTST,STS,UAST,UTS,UCSTfSAS,
3 UDST,SCS,FP,SDS,CMAX,SSTR1,SPROTT,UAS,SPRSTT,UCS,
  FPUZ,UDS,UPRIT^,USTR,UPRITT,UPRIS
       STST,PRSTCM( !>) , SPROTM,PRSTOT( 5) , SPRSTM ,PROTOM( 5 ), SAST,
      OTl3},SCST,uPITUfU5),S03T,UPlTOT(5),UTST,STS{5),UAST,
      5J ,UCST,SAS(5 J,UDST,SCS(5) ,FP , SDS( S ) ,CMAX , SSTRU t>) ,
      TT  IAC/t.1  CDDCTT,I.-C/K\  CDII7  ilHC/Ct I IDD T T U ItCTa^CI
 REAL
  PPOTOT
3 UTSI5J ,JV^OI ,3«313J,UUJI ,3l,it3J ,rf,3Uil3) »l.n«A,i3IKil3J ,
* SPROTT,UAS(5) ,SPRSTT,UCS(t>),FPUZ,UDS(5),UPRITM,USTR(5J ,
K UPRITT,UPRIS(5)
 REAL    KCPLfl,LSTR,LAS,LCS,Li>S,GSTR,GAS,GCS, GDS.TPbAL ,
         UEGSCM,OfcGUOM,JEGLOM,UIST,TOTPAP
 INTEGER  TIMAPJ
                    ,YEARAP(12)
 COMMON /NUT/  CcLT,SN , SNT,SNRSrt.SNRCM.UN,UNT,UNI,UNIT,
                          271

-------
8060.
aoti .
8082.
acai.
8C8*.
8085.
8036.
ece?.
80S3.
ec^9.
8C90.
80-H.
8092.
8093.
809*.
809*. 5
SC95.
8C96.
8097.
8Cf-'8.
6099.
8100.
8101 .
8102.
8103.
810*.
8105.
8106.
8107.
8109.
8109.
3110.
8111.
8112.
8113.
811*.
8115.
8116.
8117.
8113.
8119.
8120.
8121 .
3122.
8123.
bl2*.
8124. 1
812*. 2
8125.
8126.
8127.
8128.
6129.
8130.
eui.
8132.
6133.
813*.
8135.
8136.
6137.
8 1 3 -i .
8139.
81*0.
81*1.
81*2.
81*3.
31**.





C










C
C

C
C
C
C
C









C
C
C

C










C
C
C
C
C

C

1051
C
C


C


C



1 Ui>*R IM, KRSffLN,LN*PM,GN, SNRtJM (UNt) , NRSY1 20 1 5) t
6 LNRPY(2C),SNRBY(20,iJ,JNRBY(20,5),LNRBY(20)fGNRBYJ20),
7 TNRBYC2CJ ,TNRHV(20) , TNRHVM( 20 j , TNkHV Y( 20 1 t TMA , TPA , TOLA ,
8 KM (8.*) (TriKNtd) iKP( b,*) ,THKP( 5) , NBAL , PHBAL ,CL BAL
DOUBLE PRECISION SN I 20, 5) , 'J 4( 20, 5) ,LN(20) ,GN( 20)


INTEGER TSTePfN$TEP,SrLG,UPt.G,LFLGtGFLG


HYDROLOGY AND PESTICIDE VARIABLES USED
INTERNALLY

REAL PRT,PRTTCM(5),PRTTOT(5),DEGTOM,
1 DEGT,PeAL,COVRiPACKMM,TSNBMM,
2 UiSMtT,LZSMET,SGWMET,SCEPMT,RESSMT,TWBLMT,SRGXTM,
3 SRRTMT,STSTMT,SASTMT,SCSTMT,SDSTMT,JTSTMT,
4 UASTMT tUCSTMT,UDSTMT,LSTRMT,LASMETtLCSMET,LDSMETf
5 GSTRMT,GASMET,GCSMET,GUSMET,DEGTMT,DEGSMT,DEGUMT,
6 DEGLMT.TPbALM.UZSBMTm.KESBMmJtSRGXMTO),
7 SRERMT(b) ,STSf6T(!j) ,SASMfcT(i)) • SCSMET (5 > , SDSMET ( 5 ) t
8 UTSM£T(b) ,ijASMET(5) , JCSMEFIS) ,UL)SMbT ( 5> ,UPRI S,M( 5 )

NUTRIENT INTERNAL VARIABLES

DOUBLE PRECISION CONG, LBPACi KGPHA

REAL NBAL«T,PH6LMT,CLBLMT,
1 Si\MET(^Ot5)f SNTMETUO) tUNM£T(20,5) ,dNTMET(20),
2 LNMET120) ,GNMET(20J f SNRS^Tt 20 ) f SNROMT(20 ) ,
3 oNRIMT(2U) ,SNRBMT(20),UNRBMT(20),NRSHTt20J,
4 HRSlfT(iCJ t SNRSYT(20) ,SNROYT(20J , SNRB YT(20) f
5 UNRIYT(20J ,UNR3YTl20J,'JNITMTl20JfUNIMet(20f5Ji
6 TRC20) ,TNk ,TPR,TCLR , TNS ,T PS ,T CLS ,
7 SUHS,SLMI, SUMOiSUMRStCONVF
DATA PRl/C.O/,CcGT/O.C/,LBPAC/' LB /A C« / f KGPHA/' KG/HA* /
DATA TR/2OO.O/ (CU NVF/1. 121 /



f-CNTHLY SUMMARY

IF IPEST .EG. NO) Gtl TO 973

DO 1051 1= l,i
PRTTOM(I) = PRSTOMdJ * PROTOM(I) * UPITOM(I)


OEGTQM = DEGSLM + UEGJOM * DEGL01
DEGT = UEG1 + OEGTOM

PRTrt = SPRC7M * SPRSTrt * JPRI TM
PF,T = PRT * PkTM

PBAL = STST + LTST * LSTK * GSTR + PRT * DEGT - TOTPAP
IF UPbAL -LE. 0.0). AND. (PBAL . GE . -0.00201) P8AL * 0.0
IF UCCllJNT.LT.TIKAP( 1) .AND. YE Aft . LE. { YE ARAP ( 1 )+l 900) J P8AL = 0
272

-------
8145.
8146.
8147.
8148.
8140.
8150.
8151.
8152.
8153.
8154.
8155.
8156.
8157.
8158.
8150.
8160.
8161.
8162.
8163.
8164.
8165.
8166.
8167.
8161.
8169.
6170.
6171.
8172.
8173.
6174.
6175.
6176.
6177.
8178.
8179.
8160.
8181.
8182.
81B3.
8184.
8185.
8186.
8187.
Bias.
8189.
6190.
3191.
81-72.
8193.
6194.
8195.
8196.
8197.
8198.
819-J.
8200.
S3201.
8202.
8203.
8204.
8205.
8206.
8207.
8203.
8209.
6210.
S21 1.
3212.
8213.

C
973
C
C
C
C
C
C










989




991
C
C
C










992




993
C
C
C




994

995
C
C
C





C


C

996

TPBAL = IftitL + PBAL

IF (NUTR . EJ. NO) GO TO 990

COMPUTE MONTHLY NUTRIENT TOTALS BY £ONE,
ACCUMULATE YEARLY REMOVALS,
COMPUTE TOTAL N, P, CL MASS BALANCES

SURFACE
DO 991 J=i,20
SUMS = 0.0
SUMO = O.C
SUMB = 0.0
SNT(J) = C.O
DO 989 IBLK=1,5
SUMS = SOrtS + SNRSMU.IBLK)
SUMO = SLMO + SNROMU.IBLK)
SUMB = SLMB + SNRBMU.IBLK)
SNTU) = SNTU) + SN(J,IBLK>
CONTINUE
SNRSMTU) - SJMS/5.
SNRCMT(J) = SUMC/5.
SNRBMTU) = SuMB/5.
SNT(J) = SNTU1/5.
CONTINUE

UPPER iUNE

DO 993 J=lf20
SUMI = O.C
SUMS = 0.0
JNT(J) = O.C
UN ITU) = C.O
DO 992 I8LK=1,5
SUM! = SLMI + UNRIMU,IBLK)
SUMB = SliMb + UNRBMUrlBLK)
UNT(J) = UNT{J) +UN(JtIBLK)
UNITU) = UNIT(J) + UNKJ.IBLK)
CONTINUE
UNRIMTU) = SUMI/5.
UNRBMTU) = SUMfl/5.
UNT( J) = UNT(J)/5.
UNITU) = UMT(J)/5.
CONTINUE

TOTAL REMOVAL TO STREAM

DO 995 J=i,20
SUMRS = 0.0
DO 994 I6LK=1, 5
SUMRi = SUMRS + NRSM
-------
8282.
8283.
3284.
8235.
8266.
0237.
8289.
8290.
8291.
8292.
3293.
8294.
8295.
8296.
8297.
829 q.
8299.
333.).
8301.
8302.
8303.
8304.
8305.
8306.
8307.
3303.
8309.
8310.
3311.
8312.
3313.
8314.
8315.
3316.
3317.
3313.
3311.
3320.
3321.
8322.
3323.
3i<.4.
8325.
8326.
8327.
8323.
8329.
8330.
8331.
8332.
8333.
E334.
8335.
8336.
3337.
8333.
8339.
8340.
8341.
83^2.
83'+3.
8344.
8345.
8346.
P347.
8348.
8349.
0350.
      WRITE (6,362)
      WRITE (6,363)
      WRITE (o,364J
      WRITE (6,365)
      WPITE (6,366)
      WRITE (0,380)
      WRITE (c,381)
      WRITE (6,361)
      IF (SNOW .eu.
      WRITE (6,4/8)
      WRITE (6,479)
      WRITE (6,480)
      WPITE (6,4t)l)
      WRITE (0,482)
      WRITE 
-------
8351.
8352.
0353.
8354.
8355.
0356.
8357.
8358.
8339.
8360.
8361.
8362.
8363.
8364.
8365.
8366.
8367.
8363.
8369.
8370.
8371.
8372.
8373.
8374.
«375.
8376.
6377.
8378.
S3 79.
WRITE <6
WKlTt (6
MITE (6
WRITE (o
WRITE (6
WRITE (6
124d)
U4i>) DEGTGM
1246) DEGSOM
1247) OEGUOM
1252) 06GLOM
I2oLK,(SN(J,IBLK)f J=1,6),(SN( J „ IBLK) , J = ll, 14)
                     ,SN(2C»I6LK),   IBLK=1,5)
                     (UNT(J),J=1,6),(JNT(J),J=11,14),UNT(20)
                    (IbLK,(UN(J,I8LK),J-1,6),(UN( J, IBLK),J = 11,14)
                     ,L)iM( 20.I8LK) ,   I8LK = 1,5)
                     (UMT(J) ,J= 1,6), (UNIT U) ,J = il,14),UNIT(20)
                    (IbLK,(UNI( J ,IBLK) ,J = 1,6) , (UNK J, IDLK) ,J = H. 1
                    UNI <20,Il3LlO ,  IBLK=1,5)
                     UM J) ,J=1 ,o) , (LN(J) , J = ll ,14),LN(20)
                         J) ,J = 1,6) , (G/M(J ), J=U,14),GN(20)
                 WRITE
                 WRITE
                 WRITE
                 HRI TE
                 WRITE
                 WRITE
                 WRITE
                 WRITE
           (6,4014)
           (o,-*03C)
           (6,4015)
           (6,403C)
           (6,4016)
           (6,4017)
           (6,4018)
           (6,4019)
           (0,4021)
             (SKRSKT(J) ,J = 1,6) ,(SflftSHT(J) ,J = li,14),SNRSMT(20)
            (IbLK,(SNRSM(J,IBLK) ,J = 1,6),
            (SNKSMU.IbLK) , J = l 1, It 1 ,
            SI.K3il(20, IBL*.) ,  IbLK=l,5)
             (SNRUMTt J) , J=l,6) ,( SrjROMT(J) , J=ll ,14) ,SNRUMT<20)
            I Ib LK , ( SiiKOM( J, lULK) ,J = 1,6),
            (SNKOH(J,IBLK),J=ll,14),
            SNRCM(20,IBLK),  IBLK=1,5)
             (UNKIMT(J),J=1,6),(UNRIMT(Jj,J=11,14),UNRIMT(20)
            (IbLK,(UNRIMtJ,IbLK) ,J=1,6) ,
            UNKlM(20,I8LK),
             (NKSMT(J),J=1,6),(NRSMT(J),J=11,14),NRSMT(20)
             (LNRPM(J),J=1,6),(LNRPM(J),J=11,14),LNRPM(20)
             (TNRBM(J),J=1,6),(TNRbM(J),J=11,14),TNRBM(20),
             (SNRbMT(j),J = l,6),(SNRBMT(J) ,J=ll,14) ,SNRBMT(20),
             (U^RBMT(J) ,J = i,6) ,(UNRbMT(J) ,J=11,14) ,UNRbMT(20)t
                       J=l,6),ILN*BM(J),J=11,14),LMRBM(20),
                       J-l, 6), (G,NROM( J) |J = 11, 14) ,GNRbM<20)
                    [J),J=1,6),(TNRHVM(J)iJ-llil4),TNKHVH(20)
             NoAL,  PHbAL,  CLBAL
            1053 IF (OUTPUT.EQ.  ENGL)  GO TO 1055
              CONVERSIONS TO METRIC
              NEW PARAMETERS OEf INEO  FOR VARIABLES NOT RESET  TO  ZERO.
                 PRTOM =(
                 ",OSTOM = f
                 RINTCM=f
                 RITOM =f
                 RUTOM zPUTUPOfPIN
                 BASTCM =BASTCf*NMPIN
                 RCHTON = RCl-TCf *>-^PIN
                 EPTGN =EPTO^*f^PIN
                 NEPTOM =NEPTC.V*MMP IN
                             MPIN
    LZSMET=
                                           276

-------
341P.
8420.
8421.
8422.
8423.
8424.
8425.
3426.
8427.
842Q.
8429.
8430.
8431.
8432.
8433.
3434.
8435.
8435.
9437.
8439.
8439.
8440.
8441 .
3442.
8443.
8444.
8445.
3446.
8447.
3443.
8449",
8450.
8451.
8452.
8453.
8454.
8455.
8456.
8457.
8456.
8459.
3460.
8462.
3463.
P464.
3465.
8466.
8467.
8463.
8469.
8470.
8471.
8472.
8473.
8474.
8475.
8476.
847?.
8473.
8479.
8480.
3431.
8432.
8483.
84S4.
<3435.
SCf PMT=SCEP*fMF Irj
PESSMT=KESS*MMFIN
TiVBLMT=TrtBAL*KfPIN
SRGXTM=SiIN
PXSNM = PxsNf*^iMpiN
MELKAH = MELRA^'MKPIN
kAOMEM = KAOMtJ'+MMPI N
CUNMEM = CUNMEMMrtPIN
CDMEM = COkMEf*MMPIN
CPAINM = CRAINf*MMPIN
SGMM = SGriM*f^i'1PIN
SNEGMM = SiNtG^f*MMPIN
PACK.MM = PACK*M^PIN
SEVAPM = SEVAP^*MMPIN
TSN3KM = TSNtAL*MMPIN
C PESTICIDE
970 IF (PEST .EC. NO) GO TO 975
STSTMT=STST*KGFLB
SASTKT=SAST*KGPLa
SCSTMT=iCST*KGPLB
SOSTMT=iOST*KGHLb
U T S TM T — J T j T * ii£_F Lb
UASTMT=UAST*KGFL8
UCSTMT=UCST*KGFLB
UDSTMT=UOST*KGFLB
UIST=UIST*KGPL8
LSTRMT=LSTR*KGFLB
LASMf;T = LAS*KGPLB
LCS1ET=LCS*KGPLB
LDSMET=LOS*KGPLb
GSTP,MT=GSTR*KGPLB
GASMET=GAS*KGFLti
GCSMET=GQS*KGPLB
GDSMtT = GL)S*AGPL6
PRTM =PRTM*KGFLb
SPPOTM=SPROT«*KGPL8
UPPITM=UPRIT^*KGPL6
DEGTMT=UbGTGM*KGPLB
DEGSHT = L)EGSC^ + KGPLB
OEG'Ji^TsObGUCM + KGPLB
DEGLMT=OEGLCf *KGPLB
TPBALM=TP6AL*KGPLB
C
C ARRAY METRIC PUD IF I CAT IONS
975 DO 1048 I=lt5
ROB TOM ( Ii=RQETUM(I )*MMPIN
INFTOrtl I)=INFTUM(I )*MMPIN
ROITOMUJ=ROITOMII )*MMPIN
UiSBMTl Ii=u^SB( I )*fMPIN
KESBMT(IJ=RfcSb(IJ*«HPIN
SRGXMT(IJ=SKGX(I J*/"fPIN
ERSTOMi I )=ERSTOH( I )*METOPT*2.4
SRERMT1 IJ = SREK(I ) *METOPT*2.471
IF (PEST .Eg. NUJ GC TO 1048
STSMETt I) = STS(I)*KGPLB
SASMET( n-i>AStn*KGPL!3
SCSMET( I}=SCS(I)*KGPLb
SOSMETi I )=SOS(I)*KGPLS
UTSMETt I)=UT J 11 J *KGPLb
UASMf T< I )=JAS(I) *KGPLB
277

-------
8436.
9487.
8483.
8489.
8490.
0491.
849>.
8493.
8494.
8495.
8496.
8407.
8493.
8499.
35)30.
6501.
8502.
35 J3.

-------
8554.
3555.
8556.
8557.
3559.
4560.
8561 .
8562.
85s3.
8564.
8565.
3566.
3567.
asm.
8569.
8570.
3571.
3572.
3573.
8574.
8575.
8576.
3577.
3573.
65/9.
3580.
8581.
8532.
P583.
8534.
3535.
8586.
85-17.
8583.
8589.
85-31.
8592.
8593.
3594.
8595.
8596.
8599.
3600.
&601.
8602.
6603.
8604.
8605.
3606.
8607.
8603.
8609.
8610.
8611.
H612.
3613.
8614.
3615.
«616.
3617.
8618.
861J.
362 J.
8621.
8622.
8623.















C

C
C
C












C











5
5.



C
C















976
WRITE
WRITE
WRITE
rtPITE
WRITE
WRITE
WR I T E
WRITE
WRITE
rtRITE
WKITF
WRITE
WPITP
WRITE
WPUr
WRITE
(6,
(6,
(6,
Jo.
(6.
(o,
1C,
(o,
(0,
(o,
(6,
(0,
TCJM
LPITOM

LcbTMT
CEGSMT
UtGUKT
JcoLHT
TPBALM






,PRTM
,SPROTM
.SPRSTM
,JPRITM






IF (NUTfc .EQ. NO  GO  TO  1055

                     CONVF  CONVERTS  LB/AC TO K.G/HA
    DO
   520  J=l.
   SNRSMT(J)
   SNROMTU)
   UNRIMTiJ)
   NRSKTi JJ
   LNRPM(J)
   TNRBMtJ)
   SNRbrtnJ)
   UNRBMTJJ)
   LNKBMtJ)
   GMPBrtiJ)
   TNRHVHtJ)
20
 = SNRSMT(J)*CONVF
 = SNRCMT(J)*CONVF
 = UNRIMT(J)*CONVF
= NRSMTJ JJ*CON\/F
                = TNRBf < J)*CONVF
                 =  SNkbMT(J)*CONVF
                 =  IMR6MT ( J)*CONVF
                    T,MRHVMIJ)*CONVF
        SNTMET(J) = iNT(JJ*CONVF
        UNTHETiJ) = U^T(J)*CONVF
        UNITMTU) = UNIT (J)*CONVF
        LNMETIJ) = LN(J)*COMVF
        GNMET(J) = uN(J)*CONVF
       DO 519   IBLK=1,5
          SNKSMtJ, IbLK)  =  SNrtSMCJ,IBLK)*CONVF
          SNRLMJJ, I6LK)  =  SNRUM(JtIBLK)*CONVF
          UfMRIMC J, IdLK)  =  UNRIM< J.I6LK)*CONVF
           SM£T(J,ItiLK)  = SN(J,I13LK)*CONVF
           UNf.EK J ,IBLK)  = UN( J.IttLK) *CONVF
           ONIMETCJtlBLK)  * UNI(J,IBLK)*CUNVF
       CONTINUE
    CONTINUE
    N8ALMT = NBAL*CCNVF
    PHBLMT = PH8AL+CONVF
    CLbLMT = CLBAL*CONVF
                    CUNC
CONC =
WRITE
WRITE
WRITE
WRITE
WRITE
1
WRITE
WRITE
1
WRITE
WRITE
1
2
WRITE
KGPHA
(0.10S2)
(6,400C)
(0,4005)
(6,4006)
(0,4030)

(o,400f)
16,4030)

(6,4015)
(0,403C)


( 6,<»0u8)
                    (SNTMET(J),J = 1,6) .(SNTMETU) ,J= 11,14),SNTMET(20)
                    (IbLK,(SNMET(J,IBLK) ,J = 1,6),( SNMET(J,IBLK),J»ll,14)
                    ,SMET(20»IBLK),   IBLK=1,5)
                    (UNTMET(J),J=l,6),(UlUMtT(J),J=ll,14),UNTMET(20)
                    (IBLK,(UNMET(J,IBLK),J = 1,oi,1 UNMETU,IBLKJ,J=ll,14J
                    ,UMET(20,I BLK) ,   It3LK=l,5)
                    (U^ITMT( J) , J = l,6) ,( UNITMTU) ,J=11,14) , UNITMT (20 )
                    (IcLK,(JNIMET(J,I6LK),J=l,6),
                    (UMMET(J,IiJLK),J = ll,14),
                    UrUMET(20,ISLK),   IBLK=1,5)
                    (LNMET(J),J=1,6),(LNMETIJ),J=11,14),LNMET(20)
                             279

-------
8624.
8625.
8626.
8627.
8623.
6629.
8631,
8632.
8633.
8634.
3635.
863S.
8637.
8633.
8639.
8640.
8641.
8642.
864J.
8644.
3645.
8646.
8647.
8643.
8649.
8650.
3651.
8652.
8653.
8654.
8655.
8656.
8657.
8653.
3659.
3663.
8662.
3663.
8664.
8665.
3666.
3667.
8663.
8669.
8670.
8671 .
8672.
8673.
8674.
3675.
8676.
8677.
8678.
8679.
8680.
8631.
8632.
8683.
8684.
8685.
8686.
8687.
8683.
8689.
8690.
8691.

C






















C
C
C


























C









C

C
WRITE (6,4005)
,J = 1,6), (GNf1fcT(JJ,J = J























C
C
C



























C









C
WRITE
WPITE
WRITE
WRITE
1
2
WRITE
WRITE
1
2
WRITE
WRITE
1
2
V.'RITE
WRITE
WPITE
1
2
3
4
WRITE
WRITE

(6,4011)
(6,4012;
(6,4013)
(6,t03C)


(0,4014)
(6,4030


(6,4015)
(o,403C)


(6,4016)
(6,4017)
(6,4018)




(6,4019)
(6,4021)



(SNRSMT(J) , J=
 ,J='11,14) ,SNROMT(20)
IBLK) ,J = 1,6),
J = l
I
,6)
1, 14) ,
BLK=1,5)
, (UNhlMTU) ,J=ai,14) , UNRIMTI 20 J
IBLK) ,J=1,6) ,
J=l
I
,6),
(LKRPM(J) ,J=1,6),
(TNRBM1 J) , J=l,6) ,
(SNKBMT(J) , J=
(UNRBMT( J) , J=
(LNRBM(J) , J=l
(GNRBM(J) , J=l
1
1
,6)
,6)
,6),
,
(TNRHVM( J) , J-l
NbALMT, PHBLMT


6),
,6)
1,14),
BLK=1,5J
(NRSMT(J),J»11 ,14),NRSMT(20)
(LNRPM(J),J»11,14),LNRPM(20J
(TNRBM( J) ,J*11, 14),TNRBM(20),
,(SNRUMT(J) , J»ll, 14) ,SNRBMT<20),
,(UNRBMT(Ji ,J=ll,14),UNRdMT(20),
(LNRBM( J) ,J =11,14), LNRBM120J,
(GNRBM(J),J=11,14) ,GNRBM(201
,(TNRHVM(J),J=ll,14),TMRHVrt(20)
, CLBLMT


ZEROING OF VARIABLES

1055
RUTOM
NEPTOM
ROSTOM
RITOM
RINTOM
BASTQM
RCHTOM









SUMSMM
PXSNM
MEL RAM
RADMEM
CDRMEM
CONMEM
CPAIh'M
SGMM =
SNEGf-'M
SEVAPM









1058


PRTGM ~ C
= 0.0
= C.O
= C.C
= 0.0
= C.C
- C.O
= C.O
EPTOM = C
ERSNTM =
PRTM = 0.
SPRGTM =
SHRSTM =
UPRITM =
DEGSOM =
DtGUCM =
DEGLOM =
= 0.0
= 0.0
= 0.0
= C.O
* C.C
= 0.0
= C.C
0.0
= 0.0
= C.C

00 1058
ERSTOf
ROSTOV
IiNiFTCf
PRTTO^
PrtUTO
PRSTCf
uPITOM
RGITC^


.0







.0
0.0
C
C.O
0.0
C.O
C.O
C.O
C.O











1=1,5
(I) * 0.0
(I) = 0.0
(I) = 0.0
(I) = 0.0
(I) = 0.0
(I ) = C.O
(I) = 0.0
tl ) = 0.0






















































































































IF (NUTR .EC. NO GO TO 1060
C






                          280

-------
8692.
8693.
8694.
8695.
8696.
8697.
8693.
8699.
870D.
8701 .
3702.
8703.
6704.
8705.
8706.
3707.
8703.
8709.
8710.
8711.
3712.
8713.
8714.
6715.
8716.
8717.
9718.
8719.
8720.
8721.
Q722.
8723.
8724.
8725.
8726.
8727.
8728.
8 72 9.
3730.
8731.
3732.
8733.
3734.
S735.
8736.
8737.
3733.
67 iV.
8740.
8741 .
6742.
9743.
8744.
8745.
8747.
874H.
^74y.
'3753.
8731.
8752.
d 7 'j 3 .
6754.
U755.
8755.
3757.
87i><3.
8759.
8760.
C ZERO MONTHLY ACCUMULATIONS
C
DO 522 J=l,20
LNRPM1J) = C.O
LNRBK(J) = C.O
GNRBM(J) = C.O
TNRBM(J) = C.O
TNRHVM(J) = C.O
DO 521 IBLK=1,5
SiMkSMt J, I8LK. J = 0.0
SNROMU,I8LK) = 0.0
UnRIMJ, IELKJ *> 0.0
NRSI"(J,IBJ.K) = 0.0
SiNRBKt J, I6LK) = 0.0
UNkB«( J, IbLK) =0.0
521 CONTINUE
522 CONTINUE
C
1060 RETURN
C
C FORMATS
C
1092 FORMAT CO')
1200 FORMAT ( ' i • , , 'ERODED SEOI 1ENT • ,5< 3X.F7.3) ,4X,F7.3)
(' ',liX, 'FINES DEPOSIT' ,6X,5( 3X, F7.3 ) ,4X, F7.3 )
CO', 5X, 'PESTICIDE, PJUNDS')
CO1, HX, 'SURFACE LA YER' , 9X, 3< 3X, F7.3 ) ,3X, F8.3)
C • , 11 X,« ADSORBED' , 11X , 51 JX ,F7.3 ) ,3X ,F8.3 )
C •,! IX, 'CRYSTALLINE' , 8X, 5( 3X ,F7.3) , 3X,F 8.3 J
CO1, 8>, 'UPPER ZONE LAYER ' , 6X , 51 3X.F7.3) , 3X, F 8.3)
1 ', HX,' INTERFLOW STORAGE' ,2X, 5 ( 2X, Fb. 3 ) ,3X , F8.3)
1 ' ,11 X,' DISSOLVED* ,10X,i»UX,F7.J),3X,F8.3)
'C1, 6X,«LtJnER ZU,ME LAYER ' ,59X, F8 .3)
' • ,UX ,'ADSORdED1 ,64A,rd.31
• ' ,UX,'CkYSTALLINE« .61X.F8.3)
C ', 11X , 'DISSOLVED' ,b3X,F8. 3)
CO', 6X ,'GROUND^ATER L AYE *• t5 8X, F8.3 )
i '0' ,dX, 'PC-STICIDE REMOVAL, KGS. ' , 2X, &( F7 .3,3X ) , F8.3)
CO', dX, 'PESTICIDE REMOVAL, LBS. ' , 2X , 5( F 7.3 ,3X) ,F8.3)
C ' ,1U, 'OVERLAND FLO« REMOVAL • , IX, 5 X, 5{ Fd. J,2X ), 1X.F8.3 )
(' • , 14> ,' 1 NTERFLDrt ' ,9X,i)lFa.3,2X),lX,Fd.3)
C • , 14X ,' iMPtERvIUUS' ,^9X, FO .3)
I ' ',14X,MLTAL',13X,fJlFd.3,2x),LX,Fb.3)
CO'.UX.'bASE FLOW ,63X,Fd.3)
C • ,HX,'bP.OnATER RECHARGE' ,55X,F8. 3)
t •0',nx,'PkECIPITATION»,8Xlb(F7.2,3X),lX,F7.2)
C ' ,14* ,'SNOW« ,65X,F7.2J
(• ',14X,'RAIN ON SNOrt' ,i)7X, F/-.2)
C J.ltX.'MELT & RAIN' ,bdX,F7.2)
281

-------
8761
8762
t,763
8764
6,76i
8766
8767
8763
8769
8770
8771
8772
3773
877<»
8775
3776
8777
8778
8779
8780
8731
8732
8783
37d4
876t>
6786
8787
8788
8739
8790
3791
8792
8793
379',
8795
37°6
6797
8791
8799
8800
8BD1
8802
>;603
V 3 j4
•i = 05
6806
ceor
8806
380)
8810
8811
3812
8813
3814
P?l'j
esi6
90J3
9031
9002
9003
9004
^004
•5005
•
•
•
•
*
•
•
.
.
•
•
•
*
.
•
•
•
•
•
•
•
•
•
«
•
•
•
*
.
•
•
•
.
•
•
•
•
•
•
*
*
•
•

•
•
*
•
*
•
•
»
•
•
•
•
•
•
•
m
•
.1
•
9006.
481
482
483
484
435
486
487
490
491
492
488
367
368
369
383
370
371
372
373
374
375
376
377
489
460
C
C
C
4000


4005
4006
4007
4008
4009
4011
4012
4013
4014
4015
4016
4017

4018




4019
4021



4030

C
C
C
C


C
C
FORMAT
FOP MAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
PORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT



FORMAT
1
2
FORMAT
FORMAT
FOf-MAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
1
FORMAT
1
2
3
4
FORMAT
POP MAT
1
2
3
F OPMAT
END




SUBROUT
1 TPbAL,


(
(
(
I
(
(
(
(
(
(
I
(
(
i
I
(
(
(
(
(
(
(
i
(
,
i
i
i
i
i
i
i
i
•
•
0






0


0
•0
i
i
i
'
i
,
i
,
1
,
i
i
(•



I

























I





I



t
3
i
(
I
t
i
t
(
(
(
(
{
I
<

(
/
/
/
/
(
(
/
/
/
i








0






C

























11X ,'
I4X
14X
14X
14X
14X
14X
11X
ilX
11X
11X
11X
14X
14*
14X
11X
14X
14X
14X
14X
14X
14X
11X
11X
i
•
i
MELT")
KAOIATIUN" ,oOX,F7.2)
CONVECTION' ,5yX,H7. 2)
CCNDENSATIUN" ,57X,F7.2)




•RAIN MELT' ,t»OX,F7.2)
t
i
t
i
i
,
i
i
i
i
i
i
i
i
,
t
i
i
i
GROUND MELT" ,58X,F7.2)
CLM NEG HEAT" ,57X, F7.2)
SNOw PACK' ,63X,F7.2)
SMOH OEI.SITY' , 60X, F7.2)
* SNCW COVE*" tbOX,F7.2)
SNOW EVAP' ,63X,F7.2)
E VAPOTRANSPIRATION1)
PLTENTIAL" ,9X, 5( F7 .2 ,3X1 , IX ,F7.2 )
NET ' ,15X,5(F7.2,3X) , 1X.F7.2)
CROP COVER" ,^9X, F7.2)
STORAGES' )
UPPER ZONE',dX,5(F8.3,2X),lX,F8.3)
LCwER ZONE",8A,5(F8.3,2X),1X,F8.3)
OROUNOWATER',7X,5(F8.3,2X),1X,F8.3)














INTERCEPTION" , 6X ,5 IFd. 3, 2X) , IX, F8.3J
OVERLAND FLJW" ,3X,i(F8.3,2X ),1X, F8.
INTERFLOrt' ,9X,5(F8.3,2X),1X,F8.3)
WATER BALANCE*1 , F8 .4 )
SNOW 3ALANCE= «,Fd.4)
3)



0 , 8X, 'WATER, MILLIMETERS')



0«,
X,«




NJTRIcNT FORMATS

•NUTRIENTS - ' , A5, 1 IX , ' ORG-N* ,3X ,« NH4-S'
NC3+N
02' ,4X,'N2' ,2X,'PLNT-N",3X, «ORG-P»,



,3X,"NH4-A" ,
3X,
P04-S' ,3X,'P04-A' ,2X,'PLNT-P",6X,'CL')
•0'
•0'
•0'
•0"
«0"
•0'
• o«
•0"
•C'
•0'
•0'
•0'
F8.
•0<
,'
,'
,'
,'
• C'
'0'
,'
,'
,'
• ,





,3X,"
,9X,"
,*X,"
,9X,"
,9X,"
,3X ,'
,6X ,'
,9X,"
»9X,"
,9X,"
,9X ,"
»VX ,"
2 , 5 Fb
,oX,"
",sx,
',9A,
' ,SX,
",sx.
.6X,'
,iX,'
1 ,tx,
' .tx,
1 ,ex,
UX,'





iME OUTYR
STORAGE')

S UK FACE LAYER«,3X,F8.2,5FU.3,F8.2,3F8.3,F8.3)
UPPER ZONE* ,6X,F8. 2, 5F8.3.F 8.2,3f-8.
LOrtER ZONE" ,6X,H8.2,5F8.3,F8.2,3F8.
GROUNU/JATER1 , iX, FB.2 , 5F8.3, F8.2»3F8
KL-MCVAL' )
ADVfcCTIVE' )
SEJlMEiMT' ,8X,F8.2,5F8.3,F8.2,3F8.3,
3, Fd. 3)
3,F8.3)
.3,Fd.3)


F8.3)
OVERLAND FLJ«' ,3x,F8.2,5Fa..3,F8.2,3F8. j,Fd.3)
INTERFLOW* , /X ,F8 .2 ,5Fd. 3, FO .2 ,3F8.3
,F8.3)
TOTAL TO STREAM ' , F8 .2, 5F8.. 3, F8. 2.3F8. 3, F8.3)
PERCOLATION TO */,' ",12X, 'GROUNOW ATEK' , 2X,
.3,F8.2t3FU.3,F8.3)
oIOLCGICAL - TOTAL • ,F8 . 2,i>F8 . 3, f-8.
' SJKFACE* »9X,F6.2,^Fa.3,Fo.,2,3Fb.3,
•UPPER ZONE" ,6X,t-8.2,5F8.3,,F8.2,3F8
•LOwER ZONE' , 6X, F8 .2 , 5F8. 3,. Fd.2 , 3F8
' GROJNJWATE*' ,5X,Fd.2,5F8.3,F8.2,3F
HARVEST«,12X,F8.2,bFS.3,F8,,2,3Fb.3,
MASS bALANCc' ,
•NITROGEN = f,F6.J,
' PHCSPiiuRJ a = • , F6.3 ,
•LHLURIOt = l,Fd.J)
bLOCK1 , 12,6X,F0.2.5FH.3,F8.2.3F8.i,






2,3Fd.3,F8.3,
F3.3,
.3.F8.3,
.3.F8.3,
d.3,FU.J)
F8.3)




F rt . 3 )





(YEAR,KGPLB,LSTR,LAS,LCS,LDS,GSTR,GAS,GCS,GDS,
UtGSCT,CEGUGT,DEGLUT,JIST,TlMAP,YEARAP)









THIS SUbROUTlNE OUTPUTS YEARLY


;oo9»
'•> 01 0.
                INTEGER   YEAR
                                        282

-------
9011.
9011.1
9011.2
9012.
9013.
9014.
9015.
9015.1
9016.
9017.
9018.1
9018.2
soie. 3
9018.5
9019.
9020.
9021.
9022.
9023.
9024.
9025.
9026.
9027.
9023.
9029.
9030.
9031.
9032.
9033.
9034.
9035.
9035.1
9036.
9037.
903t3.
9039.
9040.
9041.
9042.
90ITF,RGX,lNFL,UZSB,APEP.CB,RIB,tRSN,
2 M,P3,A,CALB,PROD,PEST,NUTR,ENGL,METR,BOTH,RESB,YES,NJ,
3 IMIN,IHR,TF,JCJUNT,PRINT,INTR,DAYS,HOUR,MNTH,lOEtJUG,
4 ON,CFF,SMOIST,UMOIST,LMOIST,STEMP,UTEMP,LTEMP,MUZ,MLZ
C
INTEGER PRNTKE|T1MFAC,IMIN,IHR,TF,JCOONT
INTEGER*4 BOTH ,C ALB, CAYS, tNGL , HOUR .HYCAL .INPUT , I NTR ,METR,
1 MIST h, NO, NO TR, OFF » JN.OU TPUT , PEST, »RI NT, PROD. SNOW, YES
C
INTEGER*4 LOOP
C
RE At RU,HYMIN,OPST,LZS,AREA,RESB1( 'j) , ROSB (5 ) , SRGX(5) . INTF( 5),
1 RGX(5) , lNFLl5),JZSBJ5),APERCB(5),RIB<5),ER.SN(b),RESfl<5) ,
2 M,P3,A,LTEMP,LM3IST,MUZ,MLZ
C
COMMON /LANG/ V NAM ,PRTOT, ERS"JTT ,PRT OM . ER SNTM, DAY f
1 RUTOM,NEPTCM,ROSTOM,RITOM,RINTQM,BASTOM,RCHTOM,RUTOT,
2 NEPTOT,ROSTCT,RITOT,RINTOT,3ASTOT,RCHTOT,TWBAL.EPTOM,EPTOT,
3 UZS.UZSN.LZSN, INF IL i INTER . I*C ,NN .L .SSiSGril, PR .SGVs.GWS, KV .
4 K24L,KK24,K24EL,EP,IFS,K3,EPXM,KESSl,RESS,SCEP.SCfcPl,SRGXT,
5 SPGXT1 .JRER.KRER. JSER.KSER , SRERT ,MhP IN. METOPT, SNOW.CCFAC.
6 SCF, IDNS,l-,OGM,*C,MPACK,E\/APSN|McLEV,TSNOW, PETMI N, PE TMAX, ELOI F ,
7 OEWX.PACK.DEPTb.MCNTH.SDEN.IPACK.TMIN.SUMSMM.PXSNM.XlO,
8 MELRAM.RAUMEM.CDKMEM.CKAINH.CUNMEM.SGMM.SNEGMMiSEVAPM.SUMSNY,
9 PXSNY, ME LRAY.fi ADM EY.CDRMEY.SGMY.CONMEY.CRAI NY, SNEGMY.SEVAPY,
* TS^BAL,CUVE»,CQvkMX,ROdTJM,tNTM,RUTCM,RITOM, RI MTOM, BASTOM,
1 RCHTCM.RUTOT.NEPTOT.ROSTaT.RITQT.RINTOT.BASTOT.RCHTUT,
2 Th6AL,EPTOM,EPTOT,UZb,UiSN,LZSN,IN(-IL,INTER, IRC,
3 NN.L.SS ,SGrtl,PR,SGw,GWS,Ky/,K24L,KK24,K24EL,EP,II-S,
4 k3tl2),EPXM,RESSl,ReSS,SCEP,SCEPl,SRGXT,SRGxTl,Jl) , EKSTOM ( 5 ) , ERSTOTC 5 I ,
E SRER(5; ,TEMPX(24J,RAO(24) ,H INDX( 24), RAIN 1288) ,
F LSRC(128), EROS1128) ,»
-------
9069.
9076.
9077.
9078.
9079.
9080.
9031.
9032.
9083.
9084.
9085.
9086.
9087.
9038.
90d9.
9090.
9091.
9C92.
9C93.
9094.
9094.5
9C95.
9C96.
9097.
9093.
9C9).
9100.
9101.
9102.
9103.
9104.
•5105.
9106.
9107.
910'3.
9109.
^110.
9111.
9112.
9113.
9114.
9115.
S116.
9117.
9118.
9119.
9120.
9121 .
9122.
9124.
9124.1
9125.
912-i.
9127.
9123.
9129.
9130.
9131 .
9132.
9133.
9134.
9135.
9U6.
9137.
9138.
9131.
9140.
9141 .

C

C






c










c
c

c
c
c
c
c









c
c
c

c








c
c
c


1061
c

c

c
981





2 OEGSCT,OEGbOT,DEGLUT,UlST

INTEGER TIMAP1 12) ,YEARAP( 12)

COMMON /NOT/ CELT ,SN , SNT, SNRSM , SNROM.UN ,UNT ,UNI ,UNI T ,
1 UNft IM,NRSP,LN,LNRPM,GN, SNR8M,UNR6M , LNRBM, GNRBMr TNRBM,
2 SNRSY, SNRGY,UNRIY,NRSY, LNRPY , SNR BY , UNRBY, LNR6Y , GNRBY ,
3 TNRBY,TNRHV,TNRHVM, TNRHVY ,TNA,TPA ,TCLA,
4 KN,TriKN,KP,THKP,NBAL,PHBAL,CLBAL ,
5 TSTtP,NSTEP,SFLG,UFLG,LFLG,GFLG

REAL DELT,
1 SNT (20) ,SNRSM{20,5) ,SNRGM(20, 5) ,
2 UNTI20J ,UNH20,5),UiMIT(20),UNRIM(20,5),
3 i\IRSM(2C ,3) ,LNRPM(20) ,
4 SNR6iM(20»5J»UNRtJM(20»5), LNRBM (20) »GNRBM(20i,TNRBM(20),
5 SNRSY ( <:0,&),SNRJY(20,S) ,UNK IY (20 ,5) , NRSY (20, 5 J ,
6 LNRPY (20) , SNR8Y(20,5),UNR8Y(20,5) , LNRBY( 20) , GNRBY (20) ,
7 TNRbY(2C»,T.NRHV(20) ,TNRH\/rt< ,20) , TNRHVYI20) ,TN A ,TPA, TOLA,
8 NfM(8,4 ) ,THKN (a) ,KP < 5,4) ,THK.P( 5) , NbAL,PHBAL,CL>3AL
DOUBLE PkECISICN SN (20, 5 ) , U\l (20, 5) ,LN( 20) ,GN(20)


INTEGER TSTEP,NSTEP,SFLG,UFLG,LFLG,GFLG


HYDROLOGY AND PESTICIDE VARIABLES USED
INTERNALLY

REAL PRTT,PRTTCH(5) .PRTTOTtS) ,CJEGTOT,
1 COVR tPACKMY»TSN'lMY»
2 UZSrt£T,L£S^ET,SGhME F.SCEPMT , RES SMI ,TwBLMT , SRGXTM,
3 SRRTMT, jTSTMT, SASTMT,SCSTMT,SOSTMT,UTSTMT,
4 UASTMT ,l>CSTMT,U3STMT,LSTRMT ,L ASMET.LCSMET ,LDSHET ,
5 OSTRMT ,GASMET,GCSMcT,GOSMhT ,DEGTMT ,UEGSMT .DEl^UMT ,
6 OEGLP T , TPb ALM,J£S3MT15) , R ESb.'-IT ( 5 ) ,SPGXMT(5J ,
7 SktRMT(5),STS,MET(5) , JASMET(^) , SCSMET (I, ) , SUSME r ( 5) ,
8 UTSMET ( 5J ,UASM£T(3» ,JCSMET(3) ,UUSMET(!5) .UPKISMl^J

NJTRIENT IKTtKNAL VARIABLES

DOUBLE PRECISICN CONC, LBPAC, KGPHA

PEAL NctALMT,PheLMT,CLSLMT,
1 SMMET(2C,5), SNTMET(^O) ,UNMET( 20, 5) ,UNTMET(20) ,
2 LNMET(2C),GNMET(20) , jNRSMT(20) ,SNROMT(20i ,
3 UNRIMTJ 20) , SN«aMr(20) ,UNRBMT( 20) ,NRSMT (20) t
4 HRSYT(2C) , SNkSYT < 20 i , SNRO YT (2 0 ) , SNR3 YT ( 20 ) ,
5 UrtRIYl(20) ,UNRBYT(20) ,JNITMT(20),UNIMET(20,5J,
7 SJMS.SLMI , SUMb,SUMRS,CGNVF
DATA LBPAC/' LB/ AC' /, KGPHA/1 KG/HA' /, CON\/F/ 1 . 1 21 /

YEARLY JJTPJT

IF (PEST .Ew. NO) GO TO 981
DU 1061 1= 1,5
PRTTOTU) = PRSTOT(I) •»• PRQTOT(I) + UPITOT(I)

DEGTOT = DEGSOT * UEGU'JT + DEGLOT

PRTT = SFROTT * SPRSTT 4- UPRITT

IF (NUTR .Eu. NO) GO TO 977
DO 526 J=l,20
SUMS = 0.0
SUMO = 0.0
SUMB = C.O
00 523 IBLK=1,5
284

-------
9142.
9143.
9144.
9145.
9146.
9147.
9143.
9149.
9150.
9151.
9152.
9153.
9154.
9155.
9156.
9157.
9157.6
915 '3.
9159.
9160.
9161.
9162.
9163.
9165.
9166.
9167.
916<3.
9169.
9173.
9171.
9172.
9174.
S175.
9176.
9177.
9173.
9179.
9130.
91S1.
9132.
9183.
9184.
9185.
91.3'J.
9187.
9139.
9190.
9191.
9192.
9193.
9194.
9195.
9196.
9197.
9193.
9199.
9200.
9201.
S202.
9203.
9204.
9205.
523
      SUMS  =
      SUMO  =
      S'JM8  =
   CONTINUE
   SNRSYT(J)
   SNROYT(J)
   SNRBYTU)
SUMS + SNRSY(J,IBLK)
SIPO * SNROYUtIBLK)
SCM3 + SNRBYlJ,IBLKJ

= SUMS/5.
= SuMC/5.
= SUMB/5.
524
   SDMI = 0.0
   SUMB =0.0
   00 524   IBLK=t,5
      SOrf I  = SLMI  +
      SUrtB  = SLH6  «•
   CONTINUE
   UNRIYTU) =  SUMl/5.
   UMRBYT(J) =  SUMB/5.
   TNRBY(J) =  SNRBYT(J)
                           UNRIY(JtlBLK)
                           UNRBY(J,IBLK)
                               *  UNKBYT(J)  + LNRBY(J> + GNROY(J)
525

526
C
C
  977
   SUMRS = 0.0
   DO 525  IELK=l,b
      SUMRS = SUMRS  +  NRSY(J.IBLK)
   CONTI.gUE
   NPSYT(J) » SbMRS/5.
CONTINUE
   WRITE  (6,125C)
   WP. !TE  (6,1251)
   WRITE  ifc,UC3i
      YEAR
9207.
920 U.
IF (OUTPUT. Ew.
WRITE (6,360)
WRITE (6,362)
v»R!T£ (0,363)
WRITE (6,364)
WRITE (6,J65J
WRITE (6,366»
WRITE (6,3dO)
WRITE (6,3(31)
WRITS (6,361)
IF (SNOW .EQ.
WRITE (6,478)
WRITE (6,479)
WRITE (6,480)
WRITE (6,481)
WRITE (0,482)
WRITE (6,483)
WRITE (o,484)
WRITE (6,485)
WRITE <6,4do)
WRITE (6,487)
WRITE (6,-*90)
COVR = 100.
^ETxJ GO TU 1066


RCeTCT, ROSTOT
INFTOT, RINTOT
RITOT
KCITOT, RUTOT
BASTOT
RCHTOT
PRTU7,PRTOT,PRTOT,PRTOT ,PRTOT,PRTOT
NO GO TJ 1072
SUMSNY
P XSN Y
MELftAY

RAUMEY
CCNMEY
CURMEY
GRAINY
SGrtY
SNEGMY
PACK

IF (PAOK ,LT. IPACK) COVR * (P ACK/ IPACK)*100.
IF (PACK.GT
COVP=0.0
SOEN=0.0
1074 WRITE (6,491)
WRITE (6,i92)
WRITE (6,488)
1072 WRITE (6,3e7)
WRITE (6,368)
WRITE (o,369)
WRITE (6,383)
WRITE (6,J7C)
WRITE (6,37l)
WRITE (6,372)
.0.01J GO TO 1074


SOEN
CG»/R
SEVAPY

EPIOT, EPTOT,EPTOT,EPTOT,EPTOT, EPTOT
NEPTCT,NEPTOT,.ilEPTOT,NEPTOT,NEPTOT,NEPTOT
COVER

UiSB.JZS
L^S,L^S,LZS,L^S,LiS,L£S
                                         285

-------
9209.
9210.
9211.
9212.
9213.
9214.
9215.
9216.
9217.
9218.
9219.
9220.
9221.
9222.
9223.
9224.
9225.
9226.
9227.
9228.
9229.
9233.
9231.
9232.
9233.
•5234.

9236.
9237.
9238.
9239.
9240.
9241.
9243.
9244.
9245.
9246.
9247.
9248.
9249.
9250.
9251.
9252.
9253.
9254.
9255.
9256.
9257.
9253.
9259.
9260.
9261.
9262.
9263.
9264.
9265.
9266.
9267.
9268.
9269.
9270.
9271.
9272.
9273.
9274.
9275.
9276.
C

C
WRITE (6,
WRITE (6,
WRITE (6,
WRITE (6,
373) SG*,
374) SCfcP
375) RESb
376) SRGX
,SCEP,SC£P,SCEP,SC6P,SCEP
,RESS
,SRGXT
WRITE (6,377) TwBAL
IF (SNg*.
WRITE
WRITE
WRITE
!F
WRITE
WRITE
WRITE
WRITE
WR I T E
WRITE
W* ITE
WRITE
wRITc.
W» ITE
nRITE
W
-------
9277.
9278.
9279.
9280.
9281.
9282.
9283.
9284.
9235.
9286.
9287.
9288.
9289.
9290.
9291.
9292.
9293.
9294.
9295.
-296.
929*7.
9293.
9299.
930D.
9301.
9302.
9303.
9304.
9305.
9306.
9307.
9308.
9309.
931 3.
9311.
9312.
9313.
9314.
9315.
931t>.
9317.
93i<5.
9319.
9320.
9321.
9322.
9323.
9324.
9325.
9326.
932f.
932'!.
9329.
93JO.
9331.
9332.
9333.
9334.
9335.
933t>.
9337.
933«.
9339.
934 J.
9341.
9342.
•J343.
9344.
2 SNKiY(20,IBLKJ , IbLK.= l,3)
WRITE (6,4014) ( SNROYTt J) , J=l,6) ,1 SNROYT(J)
WRITE (6,4030) (IbLK, (SNROY( J,IBLK) ,J = 1,6) ,
1 (SNROY( J, IBLK,) , J = U, 14) ,
2 SNROY(20, IBLK) , IBLK=1,5)
WRITE (6,4015) ( JKRIYT(J) , Jslfb) f (UNRIYT(J)
WRITE (6,4030) HbLK, JUNR1Y ( J, IBLK) ,J=1,6),
1 UNRIY(J,IbLK) , J=ll, 14) ,
2 l-NR IY(20, IbLiU , IdLK=l,5)
WRITE (6,4016) (UKSYT(J) , J=i,o) , (NKSYT( J) ,J

, J*



, J =



= 11
WRITE (0,4017) (LNRPYU) , J = l,6) , (LNRPY( J) ,J=11
WRITE (6,4018) ( T NkBY (J ) , J =1 , 6 ) , (T NR BY 1 J ) , J
1 (SNRBYT(J) ,J=l ,6) ,( SNRBYT(J)
2 (UNRbYT( J) , J = l ,6) ,1 Ui-JRBYTl J)
3 (LNKBYU ) ,J=1,6) , (LNRBYIJ) ,J
4 (GNRbYl J) , J=l,o) , (bNKBYt J) ,J
WRITE (0,4019) ITNRHVY(J) , J=l,o) ,(T'jRHVY(J)
WRITE (6,4021) NbAL, PHBAL , CLBAL
C
C
1C66 IF (OUTPUT .Eg. ENGL) GO TO 1065
C CONVERSIONS
PRTOT =PRfOT*MfPIN
ROSTOT=RUiTOT*KMPlN
RINTOT=RINTCT*f^PIN
RITQT =RITOT*H^PIN
RUTOf =RJTGT*^f PIN
BASTOT=BAST3T*N,«PIN
RCriTOT=RCHTOT*fMPIN
EPTQT =EPTOT*M^PIN
NEPTOT = NEPTOT*I'MP1N
UZSMET = J/.i*fMPIN
LiSMET = LZS*MMP III
SGWMET=So«*fMPIN
SCEPMT=SutP-'f MF IN
RESSMT=RESS*MMPI1M
TwBLMT=TwBAL+Kf'PIiN
SRGXTM=SKuXT'«'MPPIN
EPSNTT=ERSNTT*METOPT*2.47i
SRRTMT=SAERT*('ETUPT*2.471
C SNOW
IF (SNOn .EJ. NG) GO TO 932
SUMSNY = SJMSN»*MMPIN
PXSNY = PXSNY*MMP IN
MELRAY = /•'ELRA^MMPIN
RAOMEY = KAOM£Y*MMPIN
COLMEY = CGi^.CbY*MrtPIN
CDRMEY = CORMEY»MMPIN
ChAINY = CRAINY*MrfPIN
SGMY = SGl"Y*KMF IN
bNEGHY = 5NEGM'»*MMPIN
PACKHY = PACK*^^'PIN
SEVAPY = SEVAPV*MMPI N
TSN'JMY = TSNbA I *rtMPIN
C PESTICIDE
982 IF (PEST .EJ. NO GCJ TO 979
STSTMT=STbT-*KG(:Lb
SASTMT=SAST*KGFLB
SCSTMT=SCST*KGPLb
SOSTMT=SJST*KbPL6
UTSTMT-JTST^KuPLB
UASTMT=UAST*KGPLB
UCSTMT=UcST*KGPLB
UDSTiMT = JOST*KGPLb
UIST=UI ST*KGPLB
LSTRKT = LSTK*KGPl-6
LASMfT=LAS*KGPL6
LCSM6T=LCS*KoPLd
= 11
, J =
rJ =
= 11
= 11
,J =



















































                              SNRUYT(20)
                             ,UNRIYT(20)
                       ,14),NRSYT(2u)
                       ,14),LNRPY(20I
                       ,14),TNRbY(2U),
                       ll,14),SNRBYT(^0)
                       11 ,14) ,Uf4kBYT(20)
                       ,14) ,LNP iiY(2 J),
                       ,14),GNPUYI2j)
                       l 1 ,  14) ,TMkHVY(
-------
9345.
9346.
9347.
9348.
9349.
9350.
9351.
9352.
9353.
9354.
9355.
9356.
9357.
9353.
935".
9360.
9361.
9362.
9363.
9364.
9365.
9366.
9367.
9363.
9369.
937J.
9371.
9372.
9373.
93/4.
9375.
9376.
9377.
937d.
9379.
9333.
9381.
      GSTRMT=GSTR*KGPL8
      GASMET=GAS*KGPLb
9383.
<53<)4.
9305.
9336.
9387.
93 39.
9390.
9391.
9392.
9393.
9394.
9395.
9396.
9397.
9398.
(5399.
0409.
9401.
9402.
9403.
94D4.
9405.
9406.
9407.
9408.
9409.
9410.
9411.
9412.
      GDSM£T=GOS*KGPlb
      PRTT  =PKTT*KGPLB
      SPROTT=SP*OTT**GPLB
      SPRSTT=SPRSTT*KGPLB
      UPRITT=UPKITT*KGPLB
      DEGTMT=U£GTOT*«GPLd
      DEGSMT=DtGSOT*KGPLd
      DEGUMT = UEGUUT*KGPt.B
      DEGLMT*OEGLOT*KGPL8
      TP8ALM=TPBAL*KCPI_B
:   METRIC  MODIFICATION OF ARRAYS
 979  DO 1062 1=1,3
       ROBTCH I)=ROeTQT(I )*MMPIN
       INFTOTI I)=IiNFTOT(I )*MMPIN
       ROITOT( n=ROITuT(I
       UZSBMT(I)=U^SB(
       RESBMT* I) = ficSC(I)*NMPIN
       SRGXMT( I)=SRGMI )*^^•PIN
       EPSTCTi I) = ERSTOT(I)*METOPT*2.471
       SRERMT(I)=SRER(1J*METUPT*2.471
          IF (PEST .Ei..  NO)   GO TU 1062
       STSMET( I  =STS(I)*KGPLB
       SASMETII  =SA£iIJ*KGPL6
       SCSMbT( I  =SCS(I)*KGPtB
       SDSMEni  =SDS (I )*KGPLB
       UTSKETII  =UTSII)*KGPLB
       UASMET( I  =JAS(I)*KGPLB
       UCSf?ET(I  =JC£(I)*KGPLd
       UDSMFTt I  =JL)S^I)+^GPL3
       UPRISMd  =UPhIi
       PRTTOT(I)=PKTTQT(I
       PROTOT(I)=PROTOT(I)*KGPLB
       PRSTOH I) = PRSTOT(I)*KGPUB
       UP I TO T (I) =Uf> I TOT (I) **GPLB
 1062  CONTINUE
(6,460)
(0,3621
(6,363)
(o,36)
      WRITE
      WRITE
      WRITE
      WRITE
      WRITE
      WRITE
      WRITE
      WRITE  (6,3dl)
      WKITE  (c,3cl)
      IF  (SNC'» .E'J.
      V.RITE  (6,478)
      WRITE  (o,479)
      WRITE  
-------
9413.
9414.
9415.
9416.
9417.
941S.
9419.
9420.
9421.
9422.
9423.
9424.
9425.
9426.
9427.
9428.
9429.
9430.
9431.
9432.
9433.
9434.
9435.
9436.
9437.
9438.
9439.
9440.
9441 .
9442.
9443.
9444.
9445.
9446.
9447.
9448.
9449.
9450.
9451.
9452.
9453.
9454.
9455.
9456.
9457.
945B.
9459.
9460.
9461.
9462.
9463.
9464.
9465.
9466.
9467.
9463.
9469.
9470.
9471.
9472.
9473.
9474.
9475.
9476.
9477.
9478.
9479.
WRITE (o.tdd) SE\/APY
1C89 WRITE (6,367)


WRITE <6,36d) EPTOT, &PTOT, EPTGT, E PTUT.EPTOT, EPTOT
WRITE lo,369) NEPTOT,NEPTOT,.NlEPTOT,
WRITE (6,3d3) CCVtR
WRITE (6,370)
WRITE (6,371) UZSBMT.UZSMET
WRITE (6,372) L/SM ET , LZSMET ,LZSME T,
*RITE (0,373) SG*MET,SGWMET,SGWMET,
WRITE (o,374) SCEPMT.SCEP.-IT.SCEPMT,
WRITE (6,37?) RtSttKT.RESSMT
WRITE (o,j76) SRGXMT,SRGXTM
WRITE (6,377) TwdLf'T
IF (SNOw .EU. YES) hRITE (6,4d9)
WRITE (0,1203)
WRITE (o, UK) EKSTOT.ERSNTT
WRITE (6,1211) S*ERMT,SRRTMT
C
IF (PEST .£y. Nut GO TO 980
C
WRITE (6,1207)
WRITE (6,1221) STSMET.STSTMT
WRITE (6,1222) SASMET,SASTM T
WRITE (6,1223) SC SPE T ,SC STMT
WRITE (o,i227) SDSMET.SDSTMT
WRITE (6,1224) UTSMET.JTSTMT
WRITE (6,1222) UASMeT.'JASTMf
WRITE (6,1223) UCSMET,JCSTMT
WRITE (o,1227) ^;Di>^E T ,'JOSTMT
WRITE (6,1226) UPRISM.JIST
WRITE (6,1228) LiTRMT
WRITE (0.122S) LASMET
WRITE (6,1230) LCSrtcT
WRITE (6,1231) COSSET
WRITE (0,1232) GSTRMT
WRITE (6,1229) GASMET
WRITE 6,1230) GCSMET
WRITE 6,1231) GOSMET
WRITE 0,1239) PRTTOT,PRTT
WRITE o,1241) PKOTOT,SPROTT
WRITE 6,1242) PRiTOT , SPRSTT
WRITE 6,1243) UPITOT.UPRITT
WRITE o, 1,249)
WRITE 6,1243) OEGTMT
WRITE (6,12to) ObGSMT
WRITE (o,1247) OcGuMT
WRITE (6,1252) DfcGLMT
WRITE (o,1^66) TPBALM
C
C
980 IF (NUTR ,EQ. NO) GO T.O 1065
C
C CONVF CONVERTS
C
DO 530 J=l,20
SNRSfT(J) = SNRSYT(J)*COMVF
SNROVT(J) = SrjRC*T
-------
9480.
9481.
9482.
9483.
9434.
9465.
9436.
9<-S7.
9433.
9491 .
9492.
9493.
9494.
9495.
9496.
9497.
9498.
9499.
9500.
9501 .
9502.
9503.
9504.
9505.
9506.
9507.
9503.
950?.
9513.
9511 .
9512.
9513.
9514.
9515.
9 5 L 6 .
9517.
951P.
9519.
9520.
9521.
9522.
9523.
952<>.
9525.
9526.
9527.
9523.
9529.
9533.
9531 .
9532.
9533.
9534.
9535.
9536.
953?.
V5V3.
9539.
95^0.
",541.
c, '", «, 2 .
9543.
9544.
9545.












5i
5;



c
c



c













c























c
c
c

                    SNTMET(J)  = SNT(JJ*CONVF
                    UNTMETU)  = UNTlJ)*CONVF
                    UNITMTU)  = JMIT(J)*CONVF
                    LNMET(J)  = LN(J)*CONVF
                    GNMET(J)  = GN(J)*CONVF
                   DO 529   IbLK=l,5
                      SNRSYtJ, IBLK) =
                      S.MKGYU, IBLK) =
                      UNRIYU, IBLK) =
                        5NMEK Jf I6LKJ =
                            SNRSY(J,IBLK)*CONVF
                            SNROY(J,I6LlO*CGNVF
                            UNRIYU, IBLK)*CONVF
                             SN(Jt IBLK)*CUNVF
                        UNMcTiJ, IBLK) = UN(J,IBLK)*CCNVF
                        ONIMETCJ.IbLK) = UNI(J,1BLK)*CONVF
                   CONT IN'oE
                CONTINUE
                NBALMT  =  NBAL*CCMVF
                PHBLMT  =  PH6AL*CONVF
                CLBLMT  =  CLcJAL*CGNVF
                CONC = KGPHA
                WRITE  (6,1092)
                WRITE  (6,4000)
WRITE
WRITE
WRITE
1
WRITE
WRITE
1
WRITE
WRITE
1
2
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
1
2
WRITF
WRITE
1
2
WRITE
WRITE
1
2
WRITE
WRITE
WRITE
1
2
3
4
WRITf-
wR I T E
(o,4005)
(6,4006)
(o,4030)

(6,4007)
(6,4030)

(6,4015)
(6,4030)


(0,4006)
(6,4009)
(o,4011)
(o ,4012)
(6,4013)
(6,4030)


(6,4014)
(6,403C)


(6,4015)
(6,4030)


( 6,4Clo)
( 6,4017)
( 6,4018)




(6,^019)
lo,4G2l)

C
ill
, •
(
(I
1 '
(,
t
(
Ul
(1
(I


(
(II
(SI
S^i
(
ill
(SI
SNI
(l
(I
(U
UNI
(
(
(
(
I
(
I
I
N
                     CONC
                                 ( SNTMET(J) , J = l,61 .(SNTMETUJ
                                UBLK,(SNMET( J, I8LK),J = 1,6),(
                                 iSNMET(20t!BLK)t   IBLK=1,5)
                                 ( JNTMET(J) ,J=1,6) ,(UNTMET(J)
                                     , (JNMET( J, IBLK) ,J = 1 , 6) ,(
                                 ,UNMfcT(20,IBLK) ,   IBLK=1,S)
                                 (JNITMTl J), J=l,6) , (UMITMTJ J)
                                 (IbCK,lUNIMET(J,IBLK) ,J=1,6)
                                 (UNIMETU.IBLK.) ,J = 11,14) ,
                                                   ,J=11,14;,SNTMETt20)
                                                   SNMET(J,IBLK),J=ll,14J

                                                   ,J=11,14),UNTMET(20)
                                                   UNMETU,IBLK),J=11,14)

                                                   ,J=11,14),UNITMT(20)
                                 ( UNflETU) ,J = 1,6) , (LNMETt J) ,J
                                 (UNMET(J) ,J=1,6), (GUMET(J),J
                                                   =11,14),LNMET(20)
                                                   =11,14),GNMET(20)
                                 (SNRSYTtJ) ,J=l ,6) ,(SNRSYT(J),J = 11,14) ,SNRSYT(20)
                                (I6LK,(SNRSY(J.IBLK),J=1,6),
                                (SNRSY(J,IBLK),J=lI,14),
                                S(>lKSYl20,IBLK) ,   IBLK=1,5)
                                 (SNROYTIJ) ,J=l,6) ,{SNROYT(J) ,J=11,14),SNROYT(20i
                                ilBLK,(SNRUY(J.IBLK),J=1,6),
                                (SNKGYU, IBLK) , J=ll, 14) ,
                                SNROY(20,IBLK),   I6LK=1,5)
                                 (UNKIYTIJ),J=l,6),(UMRIYT(J),J=11,14),UNRIYT(20)
                                (IbLK, (U'JRIY ( J, IBLK) ,J = 1,6) ,
                                (UiJRI Y(J, IBLK) , J=ll, 14) ,
                                U'MR 1Y120, IBLK),   IBLK=1,5)
                                 INKSYT(J),J=1,6),(MRSYT(J),J
                                 (LNRPYIJ),J=1,6)
                                 (TNfidY(J) f J = l,6), (TNRBY( J)tJ
                                 ( SN.
-------
9350.
9551.
9552.
9553.
9554.
935:>.
9556.
9557.
9558.
9559.
5560.
9561.
9562.
9563.
9564.
9565.
9566.
9567.
9568.
9569.
9570.
r,571.
9572.
9573.
S574.
9575.
9576.
9577.
9573.
9579,
9530.
9581 .
9532.
95?}.
9584.
9585.
"536.
9587.
953t3.
9589.
9590.
9591.
9592.
9593.
9594.
9595.
959'j.
9597.
959!',.
95S>=>.
9600.
9601 .
9602 .
9fc03.
9604.
9605.
9606.
9607.
9603.
9609.
9610.
9611.
9612.
9613.
9614.
9615.
9616.
9ol7.






















C








1068
C

C
C
C













533
534
C
1070
C
C
C
C
1092
1103

12C8
12C7
12C9
1210
1211
1220
1221
RINT'JT = 0.0
BASTOT = 0.0
RCHTOT = C.O
EPTOT = 0.0
6RSNTT = O.C
PRTT = O.C
SPBOTT = 0.0
SPRSTT = O.C
UPRITT = C.O
DEGSOT = C.C
DEGUGT = O.C
DEGLOT = O.C
SUMSNY = 0.0
PXSNY = 0.0
MELRAY = 0.0
RADMEY = 0.0
CDRKEY = O.C
CONMEY =0.0
CPAINY - C.C
SGMY = 0.0
SNtGMY = 0.0
SEVAPY = C.C

00 1C68 1 = 1,5
ERSTOTdl = 0.0
ROBTOTd ) = 0.0
INFfOTd = 0.0
PKTTOTd = 0.0
PkSTQTd = 0.0
PrtuTGTU = 0.0
UPIIOTd = 0.0
ROITOTtl = G.O

IF (NUTR .£Q. NGJ GO TO 1070

ZERO YEARLY NUTRIENT ACCUMULATIONS

DO 534 J=l,20
LNRPYUJ = C.O
LNR6YUJ = C.O
GNPBYU) = C.O
TNRBY(J) = C.O
TMRHVY(J) = 0.0
00 533 ieLK = l,!>
ShKSYU, IBLK.) =0.0
SNROY( J, IttiO = 0.0
UNRI Y( J, IdLK.) = 0.0
NKiYJJtlBLNj = C.O
SNRbYUf IiiLK.) = 0.0
UNRoYt J r IbLKl =0.0
CONTIijJE
CQNTINbt

KETUPN


FORMATS

FORMAT J'O'J
FORMAT CO' ,34X,'8LOCK 1 . BLOCK 2 BLOCK 3 BLOCK *
C 5X, 'TOTAL')
FORMAT '0',3X,'SEDIMENT,TUNNES/HECTARE'J
FORMAT '0' t5X, 'PESTICIOEf MLOGRAMS'I
FORMAT «0«t 8>,«SEDINENT, TONS/ACRE')
FORMAT • • ,11X , 'ERODED SEDIMENT ' ,M 3X.F7.3) »4Xt F7.3 J
FORMAT • « , UX.'F INES JEPOSIT' ,6X, b( 3X, F7 .3 ) i 4X, F7. 3 )
FORMAT ' O1 f 5X, 'PESTICUEt POUNDS')
FORMAT 'O'f 8X,'SLRFACE LA YER' t9X, 5( 3X, F7.3 ) , 3X.F8.3)
                                BLOCK
291

-------
9618.
9619.
9623.-
9621.
9622.
9623.
9624.
9625.
9626.
9627.
9628.
9629.
9630.
9631 .
9632.
9o33.
9634.
9635.
9636.
9637.
9633.
9639.
9640.
9641.
9642.
9643.
9644.
9645.
9046.
9647.
9648.
9649.
9650.
9651 .
9652.
9653.
9654.
965'j .
9656.
9657.
9650.
9659.
9660.
9061 .
9662.
9663 .
9 (, 6 ^ .
9665.
9666.
9667.
966".
9669.
9673.
9671 .
9672.
9673.
9674.
9675.
9676.
9677.
067(3.
9679.
9630.
9681 .
963H.
9663.
9684.
<;635.
1222 FORMAT
1223 FORMAT
1224 FORMAT
1226 FOPMAT
1227 FORMAT
1228 FORMAT
1229 FORMAT
123C FORMAT
1231 FORMAT
1232 FORMAT
1239 FORMAT
1240 FORMAT
1241 FOPMAT
1242 FORMAT
1243 FORMAT
1245 FOPMAT
1246 FORMAT
1247 FORMAT
1248 FORMAT
1249 FORMAT
1250 FORMAT
1251 FORMAT
1252 FORMAT
1266 FORMAT
360 FORMAT
3t2 FORMAT
363 FORMAT
364 FORMAT
365 FORMAT
366 FORMAT
380 FORMAT
381 FOPMAT
361 FORMAT
478 FORMAT
479 FORMAT
480 FOPMAT
481 FOPMAT
482 FORMAT
'«33 FOPd/11"
484 FORMAT
485 FORMAT
4d6 FORMAT
4S7 rORMAT
49C FORMAT
491 F 0» MAT
492 f OF, MAT
488 FOPMAT
3o7 FORMAT
368 PCPMAT
369 FORMAT
383 FOPMAT
370 FOPMAT
371 FORMAT
372 FORMAT
373 FORMAT
374 FORMAT
375 FORMAT
376 FCRMAT
377 FORMAT
489 FORMAT
460 FORMAT
c
c
c
4000 FORMAT
1
2
4005 FORMAT
C ',UX,'AC$ORBEO',UX,M3X,F7.3),3X,F8.3J
(« ', 11 X,' CRYSTALLINE' ,8X, 5( 3X , F7.3) , 3X, F8.3)
CO', 8X, 'UPPER ZONE LAYER', 6X,5(3X,F7. 31 ,3X,F8.3)
(• ' ,11X,« INTERFLOW STORAGE' ,2X,5 ( 2X, F3.3) ,3X, Fd.J)
( ' ', UX,' DISSOLVED' ,IOX,5(3X,F7.3),3X,F8.3)
CO1, 8X,'LCWER ZONE LAYER • , 59X.F3 .3)
C ' ,UX, 'ADSORBED' ,64X,F8.3)
C ' ,11X, 'CRYSTALLINE' ,61X,F8. 3)
C ', UX, 'DISSOLVED' ,o3X,F8. 3)
CO', 8X,'bROUNDwAT£R LA YES' ,5 8X, F 8.3 J
CO1 ,dX, 'PESTICIDE REMOVAL, KGS. • , 2X, 5< F7.3,3X) ,F8.3 )
CC't dX, 'PESTICIDE REMOVAL, LBS. ' ,2X ,5 « F7.3 ,3XJ , Fa. 3)
(' ' ,11X, 'OVERLAND FLOW REMOVAL ' , IX, 5 (F7.3 ,3X) ,Fa.3)
C ', UX, 'SEDIMENT REMO VAL ' , 6X , 5 ( F7 .3 ,3X ) , F8.3 )
C ' , UX ,' INTERFLOn REMOVAL1 ,3X f 5 ( F7. 3t 3X ) f Fa. 3)
(' ' .UX.'TCTAL1 ,6BX,F7.3)
C ' ,11X, 'FROM SURFACE', 61X,F7. 3)
(' • ,11X,'FKOM UPPER ZONE' ,58X,F7.3J
CO', 8X, 'PESTICIDE DEGRADATION LOSS, LBS.')
C C' ,dX, 'PESTICIDE DEGRADATION LOSS, KGS.')
Cl' ,25X ,'SLMMARY FOR ',14)
C*-'i2sX,1 	 	 _ _ ')
' '.UXf'FfcOM LOWER ZONE' ,58X,F7.3)
•C' ,11 X,' PEST 1C IDE BALANCE=',F8.4)
'OS dX, 'WATER, INCHES')
' 0' ,11X ,'RLNOFF' )
1 ' ,1<+X, 'OVERLAND F L JW ' , 5X, 5< F8. 3 ,2X ) , IXt F8.3 )
C ' ,14X ,' IKTERFLOW* , 9 A , 5 { F8 .3 , 2XJ , IX ,F8 . 3 )
C ' , 14X,«I fPERVIUJS' ,59X,F8.3 )
C ',l>»X,'TOTAL',13X,3{Fa.3,2X),lX,F8.3)
CO', UX, 'BASE FLOW' ,63X,F8.3)
C ' , UX,'GRD«ATER R ECHAKGE1 ,5 5X, F8.3 )
CO' ,UX,'PKtCIPITATIdN',8X,5(F7.2,3Xj, 1X.F7.2)
(' l,l'«XtlSNOw',65X,F7.2)
C (,14X,'RAIN ON SNOW' , b/X, F7.2J
C ',14X,'MELT j. RAIM' ,5dX,F7.2)
CG'.UX.'McLT')
C ' ,i4X , 'RADIATION1 ,oOX,F7. 2)
(' • ,14X ,'CCNVECTION' ,59X, F7.2)
C ' ,14X,'CGNDENSATION|',57X,F7.2)
C '.UX.'RrflN MELT' ,60X,F7.2)
t1 ' . 14X i1 oROUND MELT' ,5dX,F 7. 2)
C ',14X,'CUM NE'j HE AT1 ,57X, F/.2)
( 'O1 , UX ,' SNO« PACK1 , jjX.F /.2)
C «,UX,'SNUA DCNSITV1 ,60X, F7 .2)
1 ',UXr'^ SNCw COVL^' ,6CX, f- 1 .2)
'0« , UX ,' SNOrt EVAP' , o3X,t- 7.2)
•0" ,UX ,'EVAPCTRANSPIRATION')
' »,14X,' POTENTIAL' , 9X , 5( F7 .2 ,3X) , IX ,F 7. 2 )
• «,14X,'NfcT« ,15X,5(F7.2,3X), 1X.F7.2)
1 «, 14X, 'CROP COVER' ,59X,f7. 2)
•0' ,UX, 'STORAGES' )
' ',14X, 'UPPER ZONE • ,8X,3 (F8.3 ,2X) , 1 X,F8 . 3)
' ',14X, 'LOWER ZONE ' , 8X , 5 (F 8. 3, 2X) ,1X,F8.3)
1 ' ,14X,'GROUNDWATER', 7X, 5( F8 . 3, 2X) , IX , F8 .3)
C ',14X,lINTERCEPTIJN',6X,5(F8.3f2X),lX,F8.3)
C ' ,14X , 'OVERLAND FL JW ' , 5X, 5( F8. 3 ,2X ) , IX , F8.3 )
c • , ux,1 INTERFLOW' ,9x,5iF8.3,2X),ix,F8.3)
C 0' ,UX,'nATER bALANCE=' ,F8.4)
C '.UX.'SNOh ttALANCE= ',F8.4)
C 0' ,dX , 'WATER, MILLIMETERS')

NUTRIENT FORMATS

i'O1 ,'NUTKIENTS - ' , A5,11X,'ORG-N» ,3X,'NH4-S' ,3X,»NH4--A'
3X, «NC 3»iM02' ,4X, 'N2« ,2X,' PLNT-N' ,3X, 'URG-P' ,3X,
' P04-S' ,JX, ' P04-A' , 2X, 'PLNT-P' ,6X, 'CL' )
1 '0' ,3X,' STC)PAf,F« I
292

-------
9606.
•56BT.
9698.
9689.
9690.
9691.
9692.
9693.
9694.
•5695.
9696.
9607.
9698.
9699.
9700.
9701.
9702.
9703.
^705.
9706.
9707.
9703.
9709.
9710.
9712.
,"UPPER /ONE't6X,F8.2»5F8.3,F8.2,3Fa.3,F8.3)
  'OS9X,'LOWER /ONE' f6XtFd. 2,5F8.3,F8.2..3F8.3rFd.3)
  •0* f9X ,'GKUJNOiMTER1. 5Xi F8 .2 f 5F8.3. F8.2 i 3F8. ->f F8.JJ
  '0' ,3X,'REMCVAL' )
  «0' i6X,'AiJVECTIVE' )
  •C1i9>,'SEDIMENT',8XtF8.2i5F8.3tF8.2,3F8.3tF8.3)
  •o« 19x,«OVERLAND  FLOW ,3x,f-a.2f 5F8.3tFa.2i3Fa.3iFa.3)
  •0'i9X,«INTERFLOW,/X,F8.2t5F8.3,F8.2,3F8.3,F8.3J
  •0',9X,'TOTAL TO  STREAM  ',F8.2,5F8.3iF8.2t3Fa.3,F8.3J
  •0't9X,'PERCCLATION  TO •/, '  't!2X,  'GROUNDwATEK* ,<>X,
  F8.2,5F8.3,F8.2»3F3.3iF8.3)
 ('0',6X,'bIOLOGICAL - TOTAL  'rFd.2.5F8.3tF8.2,3F8.3.Fd.3i
 /,'  ',9X,'SURFACE'i9X,F8.2.5F8.3,F8.2i3F8.3tF8.3,
 /t'  'r9X,'UPPER /ONE',6XfF&.2,5F3.3,F8.2f3F3.3,F8.3,
 /t'  SSiX.'LUnER /UNE',6X,Fd.2,5Fd.3,F8.2,3F8.J,F8.3,
 /f'  ' ,9X,'GRCUNl>MATE*' ,3X ,F8.2 , ^Fa.3 ,Fb.2 , 3F 8.3 , F8.3 J
 (•0',cX,'HARVEST',i2X,Fe.2i5F8.3iF8.2f3Fb.3.F8.3)
 ( ' 0' ,3X,'MASS OALANCiE' ,
 /,'  ' ,6X,'NITROGEN    =  SF8.3,
 /,'  •,6X,«PHOSPHORUS  =  'iFo.3f
 /,'  «,6X,'ChLCRIDE    =  SF8.3J
(•  ',12X,«BLOCK',I2,6X,Fd.2f5Fa.3iFd.2f3F8.3,F8.J»
4030
C
      END
//LKEO.SYSLMOD DO  DSN=WYL.X2.A1J.HD7508.AKMLM.DP 100677,DISP = (NEWfKEEP).
//  ONIT = OISK iSPACE=(TRK.,(30,2i2) fRLSE) tVOL = SER=PUB005
//LKED.SYSIN  00 *
 NAhE ARM
/*
                                          293

-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
i
4.
7.
9
12
15
16
REPORT NO.
EPA-600/3-77-098
2.
TITLE AND SUBTITLE
Agricultural Runoff Management (ARM) Model
Version II: Refinement and Testing
AUTHOR(S)
A.S. Donigian, Jr.; D.C. Beyerlein; H.H. Davis, Jr.;
and N.H. Crawford
PERFORMING ORGANIZATION NAME AND ADDRESS
Hydrocomp , Incorporated
Palo Alto, CA 94304
. SPONSORING AGENCY NAME AND ADC
Environmental Research Lab
Office of Research and Dev
U.S. Environmental Protect
Athens, GA 30605
. SUPPLEMENTARY NOTES

)RESS
oratory - Athens, GA
elopment
ion Agency
3. RECIPIENT'S ACCESSI ON- NO.
5. REPOHT DATE
August 1977 issuing date
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
1HB617
11. CONTRACT/GRANT NO.
R803772-01
13. TYPE OF REPORT AND PERIOD COVERED
14. SPONSORING AGENCY CODE
EPA/600/01

. ABSTRACT
The Agricultural Runoff Management (ARM) Model has been refined and tested on
small agricultural watersheds in Georgia and Michigan. The ARM Model simulates the
hydrologic, sediment production, pesticide, and nutrient processes on the land sur-
face and in the soil profile that determine the quantity and quality of agricultural
runoff. This report discusses the research and model refinements related to soil
moisture and temperature simulation, pesticide degradations, nutrient transformations
and plant nutrient uptake. The goal is to evaluate and improve the pesticide and
nutrient simulation capabilities of the ARM Model. However, the runoff and sediment
modeling is also analyzed since these are the critical transport mechanisms of agri-
cultural chemicals.
In general, comparison of simulated and recorded values indicates that the ARM
Model can represent the major processes affecting agricultural runoff and can be a
useful tool for planning and analysis. However, discrepancies do exist and point out
the need for more testing and research in specific areas.
17.
a.

13
DESCRIPTORS
Simulation
Runoff
Water quality
Planning
Land use
DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
KEY WORDS AND DOCUMENT ANALYSIS
b.lDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group
Nonpoint pollution 02A
Model studies 02B
08H
08M
13B
20D
68D
19. SECURITY CLASS (This Report) 21. NO. OF PAGES
n^H-TfAFpTFIEP
20. SECURITY CLASS (This page) 22. PRICE
UNCLASSIFIED
EPA Form 2220-1 (9-73)
                                                                   294
                                                                              &U.S  GOVERNMENT PRINTING OFFICE.  1977-757-056/6551  Region  No.  5-1

-------