&EPA
           United States
           Environmental Protection
           Agency
            tnvirorvu :•!..)! Researcli
            Laboratory
            Duluth MN 55804
            Research and Development
EPA 600 3-86 061
November 1986
User Manual for
Two-Dimensional
Multi-Class
Phytoplankton
Model with Internal
Nutrient Pool Kinetics

-------
                                             EPA/600/3-86/061
                                             November 1986
USER MANUAL FOR TWO-DIMENSIONAL MULTI-CLASS PHYTOPLANKTON
        MODEL WITH  INTERNAL NUTRIENT POOL KINETICS
                             by

                   Victor J.  Merman, Jr.
              Environmental Protection Agency
            Environmental Research Laboratory
                      South Ferry Road
                  Narragansett, RI  02882

                            and

                       Lyn M. Mcllroy
    Department  of Civil and Environmental Engineering
                    darkson University
                     Potsdam, NY  13676
             ENVIRONMENTAL RESEARCH LABORATORY
             OFFICE OF RESEARCH AND DEVELOPMENT
            U.S.  ENVIRONMENTAL PROTECTION AGENCY
                  DULUTH, MINNESOTA  55804
                                           .•••'•  V-,- --'-or- ~. --*-•;! "?roto?tion Agency

                                           Jl'.O S.  Dearborn Stt-oat, ~4cc.:c I-7-T
                                           Chicago,  IL   C'JSC"*

-------
                      NOTICE

This document has been reviewed in accordance with
U.S. Environmental Protection Agency policy and
approved for publication.  Mention of trade names
or commercial products does not constitute endorse-
ment or recommendation for use.
                       11

-------
                            FOREWORD
     The  mission  of  the Environmental  Research  Laboratory  -
Duluth  is to investigate the fate and effects of  pollutants  on
freshwater   ecosystems.    The  development  and  validation  of
quantitative  methods  for assessing the transport  and  fate  of
contaminants  in the Laurentian Great Lakes are conducted at  the
EPA Large Lakes Research Station at Grosse lie,  Michigan.  These
methods  are  developed  to address site-specific  water  quality
problems  in  the Great Lakes;  however,  they  are  sufficiently
generic that they can be applied to other water bodies as well.

     The  model documented in this report has been  developed  as
part  of a long-term case study of eutrophication in Saginaw Bay,
Lake Huron.   Results from this model were used to determine  the
target  phosphorus  loading  to Saginaw Bay as part of  the  1978
Water Quality Agreement between the U.S. and Canada.  The purpose
of  this user manual is to document the model for scientists  and
engineers so that it can be used for other physical systems.

     The  application  of  this model should be  approached  with
caution.   It  is a reasonably sophisticated water quality  model
that  requires an experienced FORTRAN programmer  for  successful
operation.   Model  calibration  and  interpretation  of  results
require  a good working knowledge of water quality modeling,  and
prior  experience with more simple dynamic water quality  models.
Applications of this model should be conducted within an  overall
research  program that includes the acquisition of laboratory and
field  data  for  determination  of  kinetic  and  stoichiometric
coefficients, and for validation of model results.

     No  claims  are made that the model is applicable  to  every
problem,  nor  that it is error-free.
                         Gilman D. Veith,  Ph.D., Acting  Director
                         Environmental Research Laboratory
                         U.S. Environmental  Protection Agency
                         Duluth, Minnesota
                                    ill

-------
                            ABSTRACT
     As  part  of  a long-term case study  of  eutrophication  in
Saginaw Bay,  Lake Huron,  a multi-class phytoplankton model with
internal  nutrient pool kinetics was developed.   The model is  a
deterministic mass balance model which is temporally dynamic, and
spatially segmented in the horizontal.  The nutrients included in
the model are phosphorus, nitrogen, and silicon.

     The purpose of this user manual is to document the model for
scientists  and  engineers  so that it can be  applied  to  other
physical systems.   An overview of the model is presented,  along
with the governing equations for conservation  of  mass,  and the
equations  for all process  kinetic  formulations.  The structure
of the computer code  is presented,  with emphasis on model input
and output.

     Two  spatially simplified examples are presented in  detail.
The  first  example involves a hypothetical lake  with  a  single
input  tributary,  and  a single output  tributary.   The  second
example involves a hypothetical embayment with a single input tri-
butary, and a large  open boundary.  To illustrate  how the model
is applied to a  system with multiple spatial  segments, a  third
example  is presented in which the input data groups are  set  up
for Saginaw Bay.
                                     IV

-------
                            CONTENTS
                                                              Page

Disclaimer 	   ii
Foreword 	   iii
Abstract	   iv
List of Figures  	   viii
List of Tables  	   ix
Acknowledgements  	   x

     1.  Executive Summary	   1

     2.  Introduction  	   3

     3.  Model Overview  	   5

         3.1  State Variables  	   5
         3.2  Applicability  	   5
         3.3  User Requirements	   6

     4.  Model Development  	   7

         4.1  Background  	   7
         4.2  Conservation of Mass  	   11
         4.3  Kinetic  Processes  	   18

              4.3.1  Pbytoplankton  	   18
              4.3.2  Nutrients  	   19
              4.3.3  Zooplankton  	   19
              4.3.4  Sediments  	   20
              4.3.5  Light Extinction  	   20

     5.  Structure of  Computer  Code	   22

         5.1  Overview 	   22
         5.2  Program  Units  	   22

     6.  Model  Input Structure	   28

         6.1  Overview 	   28
         6.2  Summary  of  Data  Groups 	   28

              6.2.1  Run  Control	   28
              6.2.2  Model  Coefficients  	   30
              6.2.3  Initial Conditions  	   33

         6.3  Environmental  Forcing  Functions	   33

     7.  Example Applications  	   41

         7.1  Approach 	   41

-------
                      CONTENTS (continued)


                                                             Page

         7.2   Example  1:  Simplified Lake	  41

              7.2.1   Introduction 	  41
              7.2.2   Data Input	  44

                     7.2.2.1  Run Control 	  44
                     7.2.2.2  Model Coefficients 	  44
                     7.2.2.3  Initial Conditions	  44

              7.2.3   Environmental Forcing  Functions 	  51
              7.2.4   Model Output	  51

         7.3   Example  2:  Simplified Embayment	  59

              7.3.1   Introduction 	  59
              7.3.2   Data Input	  59

                     7.3.2.1  Run Control 	  59
                     7.3.2.2  Model Coefficients 	  59
                     7.3.2.3  Initial Conditions 	  59

              7.3.3   Environmental Forcing Functions .......  59
              7.3.4   Model Output 	  68

         7.4   Example 3:  Saginaw Bay	  68

              7.4.1   Introduction 	  68
              7.4.2   Data Input 	  68

                     7.4.2.1  Run Control 	  68
                     7.4.2.2  Model Coefficients 	  74
                     7.4.2.3  Initial Conditions 	  Ik

              7.4.3  Environmental Forcing Functions 	  74
              7.4.4  Model Output  	  74

     8.  Operational Considerations  	  78

         8.1  Acquisition Procedures 	  78
         8.2  Hardware and Software Requirements 	  78
         8^3  Testing Procedures  	  75

References	  80

Appendix A.   Glossary of  Principal Variables  	  82
Appendix B.   Process Kinetic  Equations  	  92
Appendix C.   Model Output for Simplified Lake Example  	  97

                                     vi

-------
                      CONTENTS (continued)
                                                              Page
Appendix D.  Model Output for Simplified Embayment
             Example 	   105
Appendix E.  ENVFF File for Segment 1 for Saginaw Bay
             Example 	   115
Appendix F.  Model Output for Saginaw Bay Example 	   126
                                    vii

-------
                             FIGURES


Number                                                        Page

  1       Saginaw Bay and Saginaw River Watershed  	   8

  2       Schematic Diagram of Principal Model Compartments
          and Interaction Pathways for Saginaw Bay	   9

  3       Sampling Station Network and Spatial Segmentation
          Grid for Saginaw Bay 	   10

  4       Relationship between Model Output and Field  Data
          for Total Phosphorus for Saginaw Bay in  1974 	   12

  5       Relationship between Model Output and Field  Data
          for Diatom Phytoplankton Biomass for Saginaw
          Bay in 1974 	   13

  6       Relationship between Model Output and Field  Data
          for Blue-Green Phytoplankton (Non-Nitrogen-Fixing)
          Biomass for Saginaw Bay in 1974	   14

  7       Relationship between Predicted and Observed
          Threshold Odor Violations as a Function  of  Saginaw
          River Total Phosphorus Loadings  	   15

  8       Schematic Diagram of Model Input and Output  Data
          Files  	   23

  9       Flowchart for Model Structure  	   25

  10      Schematic Diagram of Principal Model Compartments
          and Interaction Pathways for Simplified  Lake
          and Etnbayment Examples	   42

  11      Spatial Segmentation and Physical Transport  for
          Simplified Lake Example  	   43

  12      Graphical Output for Phytoplankton,  Total
          Phosphorus, and Chloride Concentrations  for
          Simplified Lake Example  	   56

   13      Spatial Segmentation and Physical Transport  for
          Simplified Embayment Example  	   60

   14      Graphical Output for Phytoplankton,  Total
          Phosphorus, and Chloride Concentrations  for
          Simplified Embayment Example	   69

   15      Spatial  Segmentation and Physical  Transport for
          Saginaw Bay Example	   72

                                    viii

-------
                             TABLES


Number                                                        Page

  1       Description of Model  Input and Output  Data  Files  .   24

  2       Description of Model  Subroutines  	   26

  3       Record Input Format for RUNCON File  	   29

  4       Record Input Format for COEFF File  	   31

  5       Record Input Format for INICON File  	   34

  6       Record Input Format for ENVFF File  	   35

  7       Constraints on Physical Configuration  and
          Transport Variables	   38

  8       Values for RUNCON  File for Simplified  Lake
          Example	   45

  9       Map of Variable Names for RDNCON  File  for
          Simplified Lake Example 	   46

  10      Values for COEFF File for Simplified Lake
          Example	   47

  11      Map of Variable Names for COEFF File for
          Simplified Lake Example 	   48

  12      Values for INICON  File for Simplified  Lake
          Example	   49

  13      Map of Variable Names for INICON  File  for
          Simplified Lake Example 	   50

  14      ENVFF File for Simplified Lake Example 	   52

  15      ENVFF File for Simplified Embayment  Example 	   61

  16      RUNCON file for Saginaw Bay  Example  	   73

  17      COEFF File for Saginaw Bay Example  	   75

  18      INICON File for Saginaw Bay  Example  	   77
                                     ix

-------
                          ACKNOWLEDGEMENTS
     We  thank  Jean A.  Nocito and Edward H.  Dettman for  their
critical  reviews  of this report.   We offer special  thanks  to
David  M.  Dolan  for reviewing the FORTRAN source code  for  the
model.   The efforts  of Colette  J. Brown in  preparation of the
manuscript for publication are gratefully acknowledged.

     This  work  was  supported  in  part  by  the  Environmental
Research  Laboratory  - Duluth,   U.S.  Environmental  Protection
Agency.   This work was performed while V.J. Bierman, Jr., was on
the   staff   of   the  Environmental   Research   Laboratory   -
Narragansett,  and  L.M.  Mcllroy  was on the staff  of  Computer
Sciences Corporation at the Narragansett Laboratory.

     This  report  is Contribution No.  793 of the  Environmental
Research Laboratory - Narragansett.

-------
                            SECTION  1

                        EXECUTIVE SUMMARY
     As  part  of  a long-term case study  of  eutrophication  in
Saginaw Bay,  Lake Huron,  a multi-class phytoplankton model with
internal  nutrient pool kinetics was developed.   The model is  a
deterministic mass balance model which is temporally dynamic, and
spatially  segmented  in  the horizontal.   Each of  the  spatial
segments  contains a water column layer and a surficial  sediment
layer.   Water  exchange  among the segments  is  represented  by
advective  and bulk diffusive flows.   The nutrients included  in
the model are phosphorus, nitrogen, and silicon.

     The purpose of this user manual is to document the model for
scientists  and  engineers  so that it can be  applied  to  other
physical systems.   An overview of the model is presented,  along
with the governing  equations for  conservation of  mass, and the
equations for all process kinetic formulations.  The structure of
the computer code is presented,  with emphasis on model input and
output.

     The  model is intended for shallow lakes and embayments that
are well-mixed in the vertical.   It is designed to address water
quality  problems that stem from nutrient enrichment,  and  which
are  manifested  primarily  by  overproduction  of  phytoplankton
biomass.   It is especially well suited to problems that  involve
multiple  groups  of phytoplankton,  for example,  spring  diatom
blooms   and   summer-fall   blooms   of   nuisance    blue-green
phytoplankton,  including nitrogen-fixing blue-greens.  The model
is   not  applicable  to  water  quality  problems  that  involve
dissolved oxygen depletion.

     For effective use of the model,  the user must have  FORTRAN
experience, and a good working knowledge of dynamic water quality
models.   It  is  strongly recommended that the user  have  prior
experience  with applications of relatively simple dynamic models
that involve chlorophyll, nutrients, and zooplankton.

     The  model is coded in FORTRAN 77.   The primary system  for
which  the model has been documented is the IBM PC/AT, with an IBM
Personal Computer Disk Operating System (DOS),  and IBM  Personal
Computer  Professional FORTRAN.   The model can also run  without
modification  on  a VAX  11/780 minicomputer with a VMS  operating
system.

     Two simplified examples are presented in detail.   The first
example  involves a hypothetical lake which consists of a single,
well-mixed  spatial segment.  The hydraulic configuration for this
lake is  limited to a  single input tributary,  and a single output
tributary.  The second example  involves a hypothetical embayment.
This example is identical to that for the simplified  lake,  with

-------
the  exception that the hydraulic configuration includes a single
input tributary,  and a large open boundary.   To illustrate  how
the  model is applied to a system with multiple spatial segments,
a third example is presented in which the input data groups  are
set up for Sagiaaw Bay.

-------
                            SECTION 2

                          INTRODUCTION
     Control  of  nutrient inputs to water bodies is one  of  the
principal  means  for  attempting  to  reverse  the  symptoms  of
cultural eutrophication.   Cultural eutrophication,  here defined
as  overproduction  of phytoplankton biomass caused by  increased
anthropogenic nutrient inputs,  may lead to increased  turbidity,
aesthetic nuisances, and dissolved oxygen depletion.  It may also
lead  to  filter-clogging,  taste,  and  odor problems  in  water
supplies.

As  part of a long-term case study of eutrophication  in  Saginaw
Bay,  Lake Huron, a multi-class phytoplankton model with internal
nutrient  pool  kinetics  was developed  (Bierman  et  al.  1980;
Bier-man  and  Do Ian  1981).   This  model was  calibrated  to  an
extensive  set of baseline field data collected in 1974 and  1975
(Bierman and DoIan  1986a).  The calibrated model was then used in
a predictive mode to estimate the responses of the bay to a range
of phosphorus control strategies.  Subsequently, a post-audit was
conducted  in  which the model predictions were compared with  an
extensive  set of resurvey data acquired in 1980,  after the  bay
had  experienced a  substantial reduction in  external  phosphorus
loadings (Bierman and Dolan 1986b).

The  purpose of this user manual is to document the model in such
a way that it can be applied to other physical systems.   Section
3 contains an overview of the model, and discusses the particular
types  of  water quality problems for which it  is  best  suited.
Section   4   describes  the  fundamental  equations   used   for
conservation of mass,  and the kinetic processes incorporated for
nutrients,  phytoplankton, zooplankton, and sediments.  Section  5
contains  an  overview  and  flowchart  for  the  computer  code*
Section  6  discusses  the structure of the  various  input  data
groups.

Two  simplified  examples are presented in detail in  Section  7.
The  first example  involves a hypothetical lake which consists of
a   single,    well-mixed   spatial   segment.    The   hydraulic
configuration  for  this  lake  is  limited  to  a  single  input
tributary,  and  a  single output tributary.   The second  example
involves a hypothetical embayment.   This example is identical to
that  for  the  simplified lake,  with  the  exception  that  the
hydraulic configuration includes a single input tributary,  and  a
large open boundary.  To illustrate how the model is applied to  a
system  with  multiple  spatial  segments,  a  third  example  is
presented  in which the input data groups are set up for  Saginaw
Bay.

Section  8  discusses various operational considerations such  as
acquisition procedures,  hardware and software requirements,  and
testing  procedures.   The appendices contain a glossary  of  all

-------
variable names,  a tabulation of all process kinetic equations in
the model, and model output files for the three examples.

-------
                            SECTION 3

                         MODEL OVERVIEW
3.1  STATE VARIABLES

     The  model  is a deterministic mass balance model  which  is
temporally  dynamic,  and spatially segmented in the  horizontal.
Each  of the spatial segments contains a water column layer and a
surficial sediment layer.   Water exchange among the segments  is
represented  by advective and bulk diffusive flows.   Each of the
constituents in the water column is assumed to be transported  in
the  horizontal  by  these flows.   Exchanges between  the  water
column  and sediment can occur by  settling,  resuspension,  and,
under certain conditions, by mineralization of sediment nutrients
to the water column.

     The   model  includes  phytoplankton  biomass  in  terms  of
multiple   functional  groups.    The  nutrients   included   are
phosphorus,   nitrogen,  and  silicon.   Internal  nutrient  pool
kinetics  is  used  to describe the  processes  of  phytoplankton
nutrient  uptake  and growth.   The model includes two  different
functional  groups of zooplankton,  herbivorous and  carnivorous,
and implicitly includes higher-order predation on the carnivorous
zooplankton.

     Nutrients are represented in both available and  unavailable
forms  in  the water column.  Various transformation and  recycle
processes  occur  between  these forms  for  each  nutrient.   No
explicit  distinction is made between available  and  unavailable
nutrient  forms  in the sediment.   The purpose of  the  sediment
nutrient compartments is to complete the total mass balance cycle
for the system.

3.2  APPLICABILITY

   The model is intended for shallow lakes and embayments that are
well-mixed  in  the vertical.   It is designed to  address  water
quality  problems that stem from nutrient enrichment,  and  which
are  manifested  primarily  by  overproduction  of  phytoplankton
biomass.   It is especially well suited to problems that  involve
multiple  groups  of phytoplankton,  for example,  spring  diatora
blooms   and   summer-fall   blooms   of   nuisance    blue-green
phytoplankton, including nitrogen-fixing blue-greens.

     The  model is not applicable to water quality problems  that
involve  dissolved  oxygen depletion.   Dissolved oxygen  is  not
included as a state variable in the model.    In general,  shallow
lakes  and  embayments  that  are vertically  well-mixed  do  not
experience problems with dissolved oxygen.

     The transport  structure of the water body must be determined
separately and specified as  input to the model.   Transport in the

-------
model  is  represented as advective and bulk  diffusive  exchange
flows  among  the various water  column  spatial  segments.   For
applications  that  involve simple spatial segmentation  schemes,
these  parameters can usually be determined using basic hydraulic
information.   For  more complicated  systems,  these  parameters
usually  need  to be determined using a mass balance model for  a
conservative constituent,  or a hydrodynamic model.   One of  the
state   variables   in  the  model  represents   a   conservative
constituent  that  can be used to check the transport  parameters
specified.

3.3  USER REQUIREMENTS

     For  effective use of the model,  the user must have FORTRAN
experience, and a good working knowledge of dynamic water quality
models at the level of Chapra and Reckhow (1983).  It is strongly
recommended  that the user also have experience with applications
of  relatively simple dynamic water quality models  that  involve
chlorophyll, nutrients, and zooplankton.

     The  model is coded in FORTRAN 77.   The primary system  for
which the model has been documented is the IBM PC/AT, with an IBM
Personal Computer Disk Operating System (DOS),  and IBM  Personal
Computer  Professional FORTRAN.   The model can also run  without
modification  on a VAX 11/780  minicomputer with a VMS  operating
system.

     Applications   that  involve  simple  spatial   segmentation
schemes   and  only  a  few  phytoplankton  groups  can  be   run
effectively  on  the   IBM  PC/AT.   For each  of   the   simplified
examples   in   this  manual,   a  30-day   simulation   requires
approximately  2  minutes of computer  time.   Applications   that
involve  more  complex  spatial  segmentation  schemes  and   more
phytoplankton groups will generally  require a minicomputer.

      Section  8  contains  additional  details  on  hardware  and
software requirements.

-------
                            SECTION 4

                        MODEL DEVELOPMENT
4.1  BACKGROUND

     The  model  was originally developed for Saginaw  Bay,  Lake
Huron.   Saginaw Bay is a broad, shallow extension of the western
shore  of  Lake  Huron  (Figure  1).   The  bay,  oriented  in  a
southwesterly  direction,  is approximately 85 km long and 42  km
wide,  and  it  has  a watershed with a total  drainage  area  of
approximately 21,000 km2.  The bay has an average depth of 10 m,
a  hydraulic detention time of approximately four months,  and is
vertically well-mixed.  The Saginaw River is the major tributary,
accounting for over 902 of the total tributary inflow to the bay.
The   principal  land  use  categories  in  the   watershed   are
agriculture and forest.  The total population of the watershed is
slightly over 1,200,000,  most of it concentrated into four major
urban-industrial centers: Bay City, Midland, Saginaw, and Flint.

     Water  quality in Saginaw Bay has been severely impacted  by
waste  discharges  and runoff inputs.   The principal results  of
eutrophication  in  the  bay were adverse  taste  and  odor,  and
filter-clogging problems experienced by municipal water treatment
plants.

     A  schematic diagram of the Saginaw Bay version of the model
is shown in Figure 2.   Phytoplankton biomass was represented  in
terms of five functional groups:  diatoms,  greens, non-nitrogen-
fixing  blue-greens,  nitrogen-fixing blue-greens,  and "others".
The  last  category consisted primarily  of  dinoflagellates  and
cryptomonads.

     The  model was applied to five spatial segments  on  Saginaw
Bay  (Figure  3)  that were determined on the basis  of  observed
gradients  in  water  quality.   The inner  portion  of  the  bay
(segments one,  two,  and three) has an average  depth of 6m,  and
the  outer portion (segments four and five) has  an average  depth
of 15 m.   Water exchange among  the segments, and between Saginaw
Bay  and  Lake Huron proper,  was determined using an  advective-
dispersive model for transport of chloride  (Richardson  1976).

     During   1974-1980,  an extensive data base  was  acquired  on
Saginaw  Bay  for  a large  number  of  physical,  chemical,  and
biological  parameters.   A  total  of  62 sampling  stations  was
established   in  the bay proper  and in  the  lower  Saginaw  River
(Figure  3).   Ninety-three sampling cruises were conducted during
the  study period at intervals of two-three weeks  between  April
and  December  of each year.

The  objective of the calibration effort was to determine a  single
set  of model coefficients that  resulted  in the  best overall  fit
between  model output and  field  data  for  both  1974 and   1975.   A

-------
           00   10  20  30  40 50km

           I    I   I    I    I    I
                                                     LAKE HURON
                 MIDLAND   \

                           BAY CITY—>T3
                                      v •" • ',"*•'." " •    *
                                      \  • .  •      /
                                  ft Saginaw R.   /
                  Shiawassee R.
                 SAG IN AW \
                 WATERSHED
43° -
- 43(
           Figure  1.  Saginaw Bay and Saginaw River Watershed

-------












«1
il
2 ei
X UJ
X
0.








































/OROUS
Z
ce
<






1












o
H-
1
1 ZOOPL






r





















j











in
0
O
ce
o
CD
X
X






1
1
p ~








J/
""""!*:
Z
O
H-
X.
Z
M
y
....
^

1
I
_ H
r
t


BLUE-GREENS
(N-flicri)


en
SI
X x
(9 =
Si
co £•

OTHERS


z
UJ
UJ
K
O



<
o


1



—















_.




ATMOSPHERIC
NITROGEN


j Z
= X




LABLE
PHORUS
- en
> 9
< £


UJ
1 ^
I
^

— &•















































UJ
CD Z
< 0
-J O
UNAVAI
NITR




<1
§ ^


UJ
-i
CD
< Z
-J O
UNAVAI
SILIC























V
fc






^-









*^



J






K z
Z UJ
ss|
en Z




en
h- 3
22 X
o o3;
en §
O.


?^5
5 *- 5£
Sj «°



  O
 U
 CD
 i-i
 (U
 •O

 oo
 c
 cu
 (9
 a

 o
u
 (U
"a
 CO
 c.
 o
 c
 E
 CO
 CO
03
 CO
 C
•H
 GC
 CD
cyj
 CO

 01
x:
 u
en
CM


 (U
 at
—4

-------
   SAGINAW  BAY
SAMPLING  NETWORK


Legend :  • Boot  Stotion
         o Water Intake
                                             !0km
    SAG IN AW
      RIVER
          Figure 3.  Sampling Station Network and Spatial Segmentation
                            Grid for  Saginaw Bay
                               10

-------
simple  Student's  t  test  was used  to  check  for  significant
differences between observed mean values from the field data, and
mean values computed by the model (Thomann 1982).   Seasonal mean
values  of model output and field data were also compared because
the   hydrological  and  productivity  cycles  in  the  bay   are
characterized by distinct seasonal patterns.

     Graphical   results  for  selected  variables   from   model
calibration  to the 1974 data are presented in Figures 4-6.   The
solid  lines represent model output,  and the data  are  sampling
cruise means with three standard errors.   In general, the number
of  samples for each cruise was such that three  standard  errors
corresponded  to approximately one full standard deviation of the
data  about  the  observed  mean.    Results  for   phytoplankton
concentrations  are  plotted on a logarithmic scale  because  the
data   from  individual  sampling  stations  were  found  to   be
lognormally  distributed for each of the sampling cruises.   Mean
values   were  calculated  using  a  maximum  likelihood   method
(Aitchison and Brown 1963).

     It was concluded that the model was successfully  calibrated
to  the field data.   An important finding was that water  column
total   phosphorus   concentrations  appeared  to   be   strongly
influenced by wind-induced sediment resuspension.   The degree of
this  influence  seemed  to  be  seasonally  dependent.   In  the
calibrated model, the resuspension mechanism accounted for 36 and
68%,  respectively, of the computed spring and fall average total
phosphorus concentrations.  Sediment-water interactions should be
an  important  consideration in the application of the  model  to
shallow, highly dynamic systems.

To   develop  estimates  of  the  responses  of  Saginaw  Bay  to
anticipated  reductions  in  phosphorus  loadings,  a  series  of
predictive  simulations was conducted with the calibrated  model.
The  response  of  the  bay in terms of  threshold  odor  in  the
municipal  water  supply was estimated by applying  a  regression
equation   (Bierman  et  al. 1984) to  the  model  predictions for
blue-green phytoplankton biomass.   For  each  reduced  load,  an
estimate  was made of the number of days on which threshold  odor
violations could be expected to occur.

     In the post-audit phase of the study, the long-term response
trend  for  threshold odor agreed well with the model  prediction
range (Figure 7).   In particular,  observations agreed with  the
prediction  that  threshold  odor  violations  in  the  principal
municipal  water  supply  would be eliminated  if  the  tributary
phosphorus loadings could be reduced to 400-500 metric ton/yr.

4.2  CONSERVATION OF MASS

     The   fundamental  governing  principle  for  the  model  is
conservation  of mass in time and space.   The behavior  of  each
constituent,   or  state  variable,  is  described  by  the  two-
dimensional advection-diffusion equation:

                                  11

-------
                                                                31
                                                                3
                                                                U
                                                                o

                                                                a.
                                                                o
                                                                o

                                                                Cu
                                                                eg
                                                                a

                                                                •o
                                                               •O
                                                                e  e
                                                                a -H
                                                                3  a
                                                                s. pa
                                                                4J

                                                                o  s
                                                                    e
                                                                i— I -H
                                                                V  OC
                                                                "0  O
                                                                o w

                                                                    u
                                                                e  o
                                                                01 IM
                                                                0)


                                                                c.
                                                                a
                                                                c
                                                                o
                                                                cd

                                                                GJ
                                                                u
                                                                3
                                                                00
12

-------
         03
              en
              2
              O
         Cfl
                              H-

                              Ul
                              2
                              O
                              UJ
                              en
                                        1C

                                        H-

                                        UJ
                                        2
                                        O
                                        UJ
                                        en
              O

              CO
                                                                                      <
                                                                                      u.
                                                                                            o
                          a
                          o
                                                                                            O
                                                                                            W
                                                                                            a
                                                                                            •H
                                                                                            a
                                                               <
                                                               mmmmmm

                                                               2
                                                               •

                                                               u.
                                                               »

                                                               -5
                   ffl     °
                   O     „

                   E     2
                   0.     5
                   en     B
                                                                                            »-i  c
                                                                                            0)  -H
                                                                                               a
                                                                                            tj so

                                                                                            a  3
                                                                                               a
                                                                                            •u  e
                                                                                            s •*
                                                                                            a oo
                                                                                            4J  gg
                                                                                            i-t  O
                                                                                            U tu
                                                                                            T3
                                                                                            o  a
                                                                                            Z  09
                                                                                               a
                                                                                            e  s
                                                                                            41  o
                                                                                            OJ -H
                                                                                            3 CO
                                                                                            u
                                                                                            a
                                                                                             03
                                                                                             e
                                                                                             o
                                                                                                o
              '
2    5
-]/6uj  '

2    S    5
0
6
                                           q
                                           o
o
o
o

d
p
6
                                                    SSVWOIS
                                            13

-------
                                                                              o
           CJ
       2  5
       <  z
       ffl  U
       —  UJ
       O  D
       <  II
       cn  m
  z
  UJ
  2
  o
  UJ
  cn
                   *•

                   h-
                   UJ
                   cn
                        CM
                   UJ
                   2
                   o
                   UJ
                   cn
                                               UJ
                                               Z
                                               o
                                               UJ
                    UJ

                    o
                    UJ
                    on
O
O
Q   O   O   -
O   O   -.   P
--00
QOO-
O   O   -.   P
--00
Q
6
O
O
O

6
                                                                              c
                                                                              as
                                                                              i—i
                                                                              Cu
                                                                              O
                                                                         a-

                                                                         e
                                                                         01
                                                                         o <•
                                                                          I r^
                                                                         «J OS
                                                                         3 i-t
                                                                         1—4
                                                                         S3 C
                                                                         u
                                                                         O
                                                                                Q
                                                                                03
                                                                              a a
                                                                              a c
                                                                         o cn
                                                                         •^
                                                                         u. u
                                                                           o
                                                                         TJ VM

                                                                         CD CO
                                                                           0}
                                                                         4J gj
                                                                         3 E
                                                                         a o
                            0)
                            01
                                                                                C
                                                                                U
                                                                              c. z
                                                                              f I

                                                                              "3 5
                                                                              c 2:
                                                                              O <—'
                                                                              at
                                                                              as
                                                                              sO
                                                                              u

                                                                              ac
p
o
              -|/6ui  'NOIiV^lN30NOO  SSVVNOI8

-------
                                                              3
                                                         £   CO
                                                              IT
                                                              O
                                                                   *
                                                              O   «
                                                              X   >•
                                                              Q.  ^
                                                              J   S
                                                              <   o

                                                              I  *
                                                              or   «
                                                              >  ^
                                                              cr
                                                               o
                                                               <
                                                               en
                                                                         09
                                                                         03

                                                                         CD
                                                                         C
                                                                         O
 a

 o
•*f
>

 U  CO
 O  00
 C —

 CO Z
 41 3
 i- U
T3  OB
41  O
> J=
i- —
01
CD H
^  a
O u
   o
•O H
C
CO  U
   0)
"O  >
a; -H
- K
o
—  3
-C  «3
01  =
u M
a.  ac
   a
c w
S.'
i w

JJ
a;  e
j  o
j=  c
co  r
c fc
                                                                         9


                                                                         as
                                                                         ec

                                                                         u.
Q10HS3dHl  HUM SAVQ dO
                              15

-------
         D  3^C       Dv 3^C        3  (UC)        3  (UWC)
          A         .   j                 x               y
            3x2          3y^-        3x              ay


           ± S (x, y, t)                                         (4.1)
where:
     C         -  constituent concentration (M/L-^)
     t         -  time (T)
     x, y      «  spatial coordinates in the horizontal (L)
     DX, Dy    -  turbulent diffusion coefficients in the x and y
                  directions, respectively (L2/T)
     ^x> uy    *  flow velocities in the x and y directions,
                  respectively (L/T)
     S(x,y,t)  -  sources and sinks of constituent C (M/L^-T) .

The  turbulent diffusion coefficients represent mixing caused  by
large-scale  eddys,  and dispersion caused by velocity gradients,
or  shears,   within  the  mean  advective  flow.    In  general,
dispersion  usually  predominates  in  estuaries,  and  turbulent
diffusion  predominates  in lakes.   For  long-term  simulations,
however,  mixing  can  be  adequately  represented  as  turbulent
diffusion.

     The  solution method used in the model consists of a  finite
difference  approximation  to the derivatives  of  Equation   4.1.
This  method  is a control volume approach developed  by  Thomann
(1972), and used in the Water Quality Analysis Simulation Program
(WASP)  (Di Toro et al.   1983).   It consists of treating the water,
body  as  a  series  of  completely  mixed  volumes,  or  spatial
segments.   It  results in transformation of Equation 4.1 from  a
partial  differential equation in time and space to a system  of N
ordinary differential equations  in time, where N is the number of
control volumes or segments.

     Using  the control volume approach,  the change in mass  of a
constituent with respect to time for a given spatial segment  is:

Vk  dCk
   - -  I  l-Qkj(akjck + BkjCj) + Ekj  (Cj - Ck)]

             ±  Sk                                                    (4.2)
where:
              constituent  concentration in segment  k (M/L )
      C^    »  constituent  concentration in adjacent  segment  j
              (M/L3)
      V^    »  volume  of segment  k (L )
      Q, .   »  advective flow between segments  k and  j  (L /T)

                                  16

-------
     Ek.  -  bulk diffusion coefficient (L3/T)
       J  -  EkjAk,/L  (L3/T)
     Ek,  -  turbulent diffusion coefficient (I//T)
     Ak-  »  cross sectional area between segments k and j (L )
     akj"  dimensionless weighting factor
          -  L-j/d-j + Lk)
     L^   -  length of segment k in direction of flow (L)
     Lj   -  length of segment j in direction of flow (L)
     Bkj  "  1 - akj
     Sfc   -  sources and sinks of constituent in segment k (M/T)

The  parameters akj anc* 3kj are  weighting  coefficients   that
correct  for cases where adjacent segments have unequal  lengths.
Positive solutions are maintained by the stability criteria:
          akj  >  1 - (Efcj/Qkj)                                 (4-3>
The  general  time step constraint for Equation 4.2  is:
where  U - Q/A.   Refer to Thomann  (1972) and Chapra and  Reckhow
(1983) for a more detailed discussion.

     To integrate Equations 4.2, the model uses Ralston"s second-
order  Runge-Kutta  method (Chapra  and  Canale  1985).   Previous
versions of the model used a fourth-order Runge-Kutta method, and
an  Adams-Moulton predictor-corrector method.   The  fourth-order
method  required four derivative evaluations for every time step.
The   predictor-corrector   method   required   two    derivative
evaluations,  plus  any additional  evaluations that were required
to  meet specified convergence criteria.   Experience  has  shown
that  the  second-order  Runge-Kutta method  gives  solutions  of
comparable accuracy to these other  two methods.  It requires only
half  the  number of derivative evaluations as  the  fourth-order
method,  and  it  is much easier to program than  the  predictor-
corrector method.

     In  some applications,  particular combinations  of  spatial
segment,  derivative, and time step can cause negative values for
some  state  variables.   This  is  most likely  to  occur  during
periods  of extreme nutrient limitation,  or during periods  when
phytoplankton  blooms  "crash" due  to heavy  zooplankton  grazing
pressure.   In  these  situations,  the variables that  are  most
likely  to  become  negative are internal  nutrient  levels,  and
dissolved available nutrient concentrations in the water  column.
On occasion,  phytoplankton biomass can also become negative.  If
this  occurs,  the computer program issues a warning to the user,
but  takes  no corrective action.   The user  should  respond  by
repeating the computation with a smaller time step.

                                 17

-------
4.3  KINETIC PROCESSES

     All  state variables in the model are described by  Equation
4.2.   This  equation has two major  components:  inter-segmental
transport,  and  intra-segmental sources and sinks.   Included in
these   sources   and   sinks  are  constituent   loadings   from
tributaries,  the  atmosphere,  and  the sediments,  as  well  as
transfers  among state variables (constituents).   The  equations
for sources,  sinks, and loadings are tabulated in Appendix B for
all  of  the  model  state  variables.   The  process  mechanisms
represented  by  these  equations are  briefly  discussed  below.
Refer to Bierman et al. (1980) for a more detailed discussion.

4.3.1  Phytoplankton

     Phytoplankton  functional groups are distinguished primarily
on  the basis of nutrient requirements,  growth  rates,  settling
characteristics,  and  susceptibility to grazing  by  herbivorous
zooplankton.  All phytoplankton groups have absolute requirements
for  phosphorus  and nitrogen,  with the exception  of  nitrogen-
fixing  blue-greens which can continue to grow in the absence  of
dissolved available nitrogen.   Diatoms are the only group with a
major absolute requirement for silicon.

     The  relative  maximum growth rates and  temperature  optima
among  the various phytoplankton groups are such that  a  typical
successional  pattern during the growing season begins in  spring
with  diatoms,  progresses to greens,  and finally leads to blue-
greens  in late summer-fall.   Various types of  flagellates  and
cryptomonads can occur as well.

     Diatoms and greens are generally considered to be acceptable
food sources for herbivorous zooplankton.   Many species of blue-
greens,  including  those  frequently  responsible  for  nuisance
blooms,  are not significantly grazed.   Other functional  groups
are grazed to varying degrees.

     The  number  and  type of  phytoplankton  functional  groups
selected  for  a given application will generally depend  on  the
water quality issues to be addressed,  and on the availability of
field data.

     The  phytoplankton  nutrient uptake and growth processes  in
the  model  are based on internal nutrient  pool  kinetics.   The
principal   advantages  of  this  approach  are  more   realistic
descriptions  of  non-steady-state conditions,  and  of  nutrient
recycle.  The principal disadvantages are increased computational
complexity and the need to specify additional model coefficients.

     The   principal  features  of   the  internal  nutrient   pool
kinetics model are  the following:

     1.   Growth rates depend  directly on internal nutrient
          levels, not on environmental nutrient  concentrations.

                                  18

-------
     2.  Nutrient uptake rate is a function of both internal
         nutrient level and the environmental concentration.

     3.  The active internal nutrient pool which participates
         in the nutrient uptake mechanism is a function of
         the total internal nutrient level.  This feedback
         mechanism prevents the cells from absorbing arbitrarily
         large amounts of a nutrient and depleting the
         external environment.

     Fixation of atmospheric nitrogen is modeled by  constraining
the  internal  nitrogen  level to a maximum  value  whenever  the
dissolved available nitrogen concentration in the water column is
below  a user-specified threshold value.   This insures that  the
specific  growth  rate for the nitrogen-fixing  blue-green  group
will not be limited by nitrogen during such periods.

     Other  phytoplankton  processes included in  the  model  are
respiration, decomposition, and settling.

4.3.2  Nutrients

     The   nutrients  included  in  the  model  are   phosphorus,
nitrogen,  and silicon.  These are generally considered to be the
most  important  nutrients  that limit  phytoplankton  growth  in
natural  waters.   In  the water column,  each of  the  nutrients
exists in a dissolved available form,  and in a total unavailable
form.   No  explicit  distinction is made between  dissolved  and
particulate   fractions  for  the  unavailable  forms.

In  the  sediments,   only  total  nutrient  concentrations   are
represented.    The   principal  reason  for  including  sediment
nutrients in the model is that in shallow  systems,  resuspension
can significantly influence water column nutrient concentrations.
To  obtain a realistic mass balance it is necessary to model  the
coupled water column—sediment system.

     Nutrient  recycle  consists of two  distinct  components:  a
component   associated   with   the  minimum   cell   quota,   or
stoichiometry,  required  by the phytoplankton,  and a  component
associated  with  the internal nutrient level in  excess  of  the
minimum  cell quota.   When loss of phytoplankton biomass  occurs
due  to  respiration,  decomposition,  or grazing,  the  nutrient
component  associated with the minimum cell quota is recycled  to
the  total  unavailable compartment in  the  water  column.   The
nutrient  component associated with the excess internal level  is
recycled  directly to the dissolved available compartment in  the
water column.

     Other   nutrient   processes  included  in  the  model   are
mineralization,   and   settling   of   the   total   unavailable
forms.

4.3.3  Zooplankton

                                  19

-------
     Two  functional  groups of  zooplankton are included  in  the
model:  herbivorous  and  carnivorous.   Herbivorous  zooplankton
graze  directly  on  one  or  more   phytoplankton   groups,   and
carnivorous   zooplankton  graze  directly  on  the   herbivorous
zooplankton.    Higher   order   predation  on  the   carnivorous
zooplankton is not explicitly included in the model.  Instead, it
is  implicitly represented by a  second-order predation  function.
Refuge concentrations are provided  for the phytoplankton and both
zooplankton  groups.   These  are threshold concentrations  below
which no grazing or predation can occur.

4.3.4  Sediments

     The sediment nutrients are  modeled using simple input-output
mechanisms.   There  are no process kinetic reactions within  the
sediment   compartment,    with   the   exception   of   nutrient
mineralization  which  may occur.    Evidence indicates that  such
mineralization  is  especially important in the  overall  silicon
mass balance cycle.

     The  principal nutrient fluxes into the sediment are due  to
phytoplankton  settling,   and   settling  of  total   unavailable
nutrients.   The  principal  output flux is due to  resuspension.
Resuspension in the model is represented by a threshold  function
of wind speed (DoIan and Bierman 1982).   A resuspension event is
modeled  with  a  constant  apparent  resuspension  velocity  for
sediment  nutrients  on user-specified days for which wind  speed
exceeds a given value.   Resuspension  is zero on all other  days.
Resuspended  nutrients  are  assigned  to  the  total  unavailable
nutrient  compartments  in  the  water column  because  they  are
primarily in particulate forms.

     The  sediment  compartments in  the  model  represent  only
surficial   sediments   with   user-specified   mixing    depths.
Operationally,  these  depths are usually considered to be  10  cm
for   depositional  areas,   and smaller  (or  zero)  for   non-
depositional  areas.   There  is a long-term apparent  net  loss
velocity from the surficial sediment layer to the deeper sediment
layer.  This velocity  represents long-term burial.

4.3.5  Light Extinction

      Light  extinction  in  the model  is  parameterized as a function
of inverse  Secchi depth  (Beeton  1958).   This is the most general
formulation commonly  used  in  contemporary water quality  models.
Effler  (1985) investigated  the  applicability  of this approach  for
different  lakes,  and  attempted  to define  ranges of  uncertainty  to
be expected when  using this  formulation.

      Alternatively,   the  user  can easily modify  the computer  code
to   incorporate  any  site  specific function  for  light   extinction.
For   the   final  calibration and post-audit  phases  of  the   Saginaw
Bay   study,  daily   light  extinction coefficients   were   computed
using  a multiple linear  regression between   measured   extinction

                                  20

-------
coefficients,  and  measured  values  for  phytoplankton  biomasa
(grouped  as diatoms and non-diatoms) and unavailable  phosphorus
(mostly particulate) concentrations.  This approach accounted for
effects  on the extinction coefficient due to phytoplankton self-
shading, and to background suspended solids concentrations, using
particulate  phosphorus  as an indicator.   Di  Toro  (1978)  has
developed  a  useful relationship between extinction  coefficient
and concentrations of various types of suspended particles.

     Photoperiod  in  the model is computed daily  using  a  sine
function  of Julian day.   This function approximates photoperiod
at 44 degrees north latitude.   User modification is required for
systems at different latitudes.
                                  21

-------
                            SECTION 5

                   STRUCTURE OF COMPUTER CODE
5.1  OVERVIEW

     The  computer code is in modular fora,  consisting of a main
program  and  14 subroutines.   There is also an associated  file
that  contains  a  master  set  of  COMMON  statements  and  REAL
declarations.   This  file is accessed by each of the 15  program
units  through  use  of an INCLUDE  statement.

There are four principal data input files,  and two output files.
Three of the data input files are directly user-supplied, and the
fourth consists of output from a separate pre-processing package.
This  package  itself  requires a data input file that  is  user-
supplied.   Figure  8 contains a schematic diagram of  the  model
input  and output data files,  and their relationship to both the
model  and the pre-processing package.   Table 1  contains  brief
descriptions of each data file.

     The  model  is extremely flexible in terms  of  accomodating
constant  or  time-variable  values  for  advective  flows,  bulk
diffusive  flows,   loadings,   boundary  conditions,  and  other
environmental  forcing functions.   This is because organization,
interpolation,   and  formatting  of  the  forcing  functions  is
conducted  off-line by the user and the  pre-processing  package.
This  approach allows the model itself to be more simple,  and to
require  less computer memory.   However,  additional effort  and
responsibility   are  placed  on  the  user  in  terms  of   data
organization and preliminary data reduction.

     The  model does not have any intrinsic graphics  capability.
This  is because the model contains a large number  of  different
state  variables,  and it can be configured for a large number of
different  combinations  and permutations  of  spatial  segments,
phytoplankton  groups,  and  zooplankton groups.  The judgment was
made that it would not be cost-effective to develop a generalized
graphics  package for the model.    Instead,  with the  increasing
popularity and availability  of spreadsheets and graphics programs
for  personal  computers,  including the   IBM  PC/AT,  users  can
generate plots to suit their own particular appliceitions.

5.2  PROGRAM UNITS

     A   flowchart for all program units in the  model,  with  the
exception of subroutine PLOT,  is shown in Figure 9.   Subroutine
PLOT  has  the   same  logic flow  as  subroutine  OUTPUT.   Table   2
contains brief descriptions  of all  model  subroutines.

     The  computer  code is in modular  form.   There  are  separate
program   units   for  computing   transport,   and   for   computing
phytoplankton,   herbivorous  zooplankton,   camivorus  zooplankton,

                                  22

-------
LU
    Id
  LL
  U.
  UJ
                                                                                                co
                                                                                                0)
                                                                                               a
                                                                                               Q
                                                                                               C
                                                                                               CO
                                                                                               3
                                                                                               a
                                                                                               c
                                                                                              T5
                                                                                               O
                                                                                               O

                                                                                               E
                                                                                               «
                                                                                               U
                                                                                               60
                                                                                               tO
                                                                                              •rt
                                                                                              a

                                                                                               O
                                                                                               33

                                                                                               01
                                                                                              eo
                                                                                              EC
                                                   23

-------
  Table 1.  Description of Model Input and Output Data Files
Data File
Description
Source
ENVFF         Time series for environmental
              forcing functions

DAILY         Daily values for environmental
              forcing functions computed by
              piecewise linear interpolation

RUNCON        Run control parameters and
              system configuration

COEFF         Internal model coefficients

INICON        Initial conditions

TABOUT        Output in tabular format for
              line printer

PLOTODT       Output for selected variables
              in format suitable for graphics
                          User supplied
                          INTER?/INVERT
                          Output
                          User supplied


                          User supplied

                          User supplied

                          MODEL output


                          MODEL output
                                 24

-------
Figure 9.  Flowchart for Model Structure
                  25

-------
         Table 2.  Description of Model Subroutines
Subroutine
                Description
 INPUT


 FORCE


 TEMP


 LIGHT


 ACALC


 ZCALC1



 ZCALC2



 SEDIMENT

 DIFFEQ


 INTGRL


 TRANS1


 TRANS2

 OUTPUT

 PLOT
Reads RUNCON, COEFF, AND INICON files and
initializes all variables

Reads daily values for environmental forcing
functions

Computes daily values for temperature
reduction factors

Computes daily values for light reduction
factors

Computes values for phytoplankton specific
growth rates and loss processes

Computes values for herbivorous zooplankton
specific growth rates, loss processes, and
nutrient recycle rates

Computes values for carnivorous zooplankton
specific growth rates, loss processes, and
nutrient recycle rates

Computes values for sediment loading rates

Computes values for state variable
derivatives

Integrates state variable differential
equations

Computes transport for internal nutrient
storage variables

Computes transport for all other variables

Writes model output to a tabular file

Writes model output for selected variables to
a file in format suitable for graphics
                                26

-------
and  sediment  kinetics.   Values for all  environmental  forcing
functions  are  updated daily by a separate module.   Inputs  and
outputs are also handled by separate program units.

     There  is a nested hierarchy of subroutines that is  related
to  different  time scales within the model.   Loop  1 (Figure  9)
contains  the  differential equations for phytoplankton  internal
nutrient  levels and dissolved available nutrients in  the  water
column.   The  characteristic time scales for these  processes  in
natural  systems are on the order of minutes.   Loop 2 (Figure 9)
contains   the   differential  equations  for  all   other   state
variables.   The  characteristic time scales for these  processes
are on the order of hours.   Different integration time steps are
used for each of these loops in the model.

     Environmental  forcing functions can vary over  a wide  range
of  time  scales.   Advective  and bulk diffusive  flows  can  be
considered to vary over weekly, monthly, or seasonal time scales.
Tributary  loadings can vary over daily to seasonal  time  scales.
In  practice,  the  availability  of field data  is  usually  the
determining  factor  for the actual scales used for  a  particular
application.    The  pre-processing  package  conducts  a  linear
interpolation,  on  a  daily basis,  between  the  user-specified
values  for  each  forcing  function,   regardless   of  the  time
intervals between the values.   Accordingly, the real accuracy of
the forcing functions in the model depends solely on the accuracy
and  frequency  of the data that the user specifies  to  the  pre-
processing package.   The model updates all environmental forcing
factors daily by reading the output file from the  pre-processing
package.

     Model  output  consists  of a data file  in  tabular  format
(TABOUT)  that  can be sent to a line printer,  and  a  data  file
(PLOTOUT)  that can be used as input to a user-supplied  graphics
program.   Examples  of tabular output files are contained in the
appendices.   The  subroutine PLOT is configured for the  special
case  of only one spatial segment,  and for only selected  output
variables.   Users  must configure this subroutine to suit  their
own  particular  applications  in  terms of  numbers of  spatial
segments and variables to be plotted.

     Separate time intervals can be selected for tabular and plot
outputs.   Generally,  tabulated output is requested at intervals
of   between  5  and  15  days,   depending  on  the  particular
application.   An  appropriate  time  scale for  plot  output  is
usually 1 to 5 days.
                                  27

-------
                            SECTION 6

                      MODEL INPUT STRUCTURE
6.1  OVERVIEW

     This  section  contains descriptions of the  four  principal
input  data  files.   Variable  names  and  input  sequences  are
illustrated  for  each  file.    The  pre-processing  package  is
described,  and  the organization and reduction of  environmental
forcing factors are discussed.  Appendix A contains a glossary of
all  variable  names,  including  array dimensions  and  physical
units.

6.2  SUMMARY OF DATA GROUPS

6.2.1  Run Control

     The run control file, RUNCON, contains information needed to
configure the model for the particular site-specific application.
After  initial  setup and testing,  the data values in this  file
will usually not be changed during the model calibration process.
Table 3 contains the record input format for the RUNCON file.

     The computer code is dimensioned for a maximum of 10 spatial
segments.   Each spatial segment can have up to a maximum of five
interactions  with other spatial segments and/or  boundaries.   A
boundary is considered to be either a large open boundary,  or  a
tributary.    There   are  important  constraints  on  how  these
boundaries  can  be set up,  and on how the forcing;  factors  for
transport  must be specified.   These constraints  are  discussed
below in detail.

     The  code is dimensioned for a maximum of five phytoplankton
groups.   Although  it is possible to run the model for only  one
group,  it is assumed that applications will involve between  two
and  five  groups.   One  of the phytoplankton groups must  be  a
diatom  for  proper representation of the  silicon  mass  balance
cycle.   The  inclusion of a nitrogen-fixing blue-green group  is
optional.

     The  code  is dimensioned  for a maximum of  two  herbivorous
zooplankton  and  two  carnivorous  zooplankton   groups.    Most
applications  will involve only one carnivorous  zooplankton,  and
one or two hervbivorous zooplankton.  The herbivorous zooplankton
can  be configured to graze on  one or more phytoplankton  groups.
Not  all  of the phytoplankton  groups need  to   be  grazed.   The
carnivorous   zooplankton   can   only    graze   on   herbivorous
zooplankton.

     The  model can be run to  simulate  any desired period in  real
time.   It can be run to simulate  a seasonal cycle,  or  it  can be
run  over  an entire year.    If  constant  environmental  forcing

                                  28

-------
   Table  3.   Record Input Format for RUNCON File

Variable
Sequence
Number
1
2
3
4
5
6
7
8
9
10
11
12
Variable(s)
NSGMTS, INTMAX
VX(N), DEPTH(N)
INT(N.J)
VOLSDX(N), DEPTHS(N)
NBDNTS, NFXLDS, NMISC
NASPEC, NDITMS, NN2BGS
ISILCA(L)
NFIX(L)
NZSPEC, NZ1SPC, NZ2SPC
IZ1PAR(K1,L)
IZ2PAR(K2,K1)
TIMEMX, TPLOT, TPRINT,
Format
215
2E10.
15
2E10.
315
315
515
515
315
515
215
3E10.4,


3

3







15
                  ISKIP
13
HI, H2
2E10.4
                          29

-------
functions are specified, it can also be run to steady-state.  The
print interval (TPRINT) can have any value, as long as it is less
than the maximum run time.   The variable ISKIP is a switch  that
controls the optional printing of derivatives and component terms
to the tabular model output file.   If ISKIP - 0, the derivatives
are  printed;  if  ISKIP  - 1,  the printing  of  derivatives  is
suppressed.

     The integration time step for loop 2 (H2) must be an integer
multiple of the time step for loop 1 (HI).   An integer  multiple
of  H2 must equal one day.   Experience has shown that HI  should
correspond   to  approximately  15-30  minutes,   and  H2  should
correspond   to  approximately  3-6  hours,   depending  on   the
particular application.  As part of the preliminary testing phase
for any new application,  sensitivity analyses should be run  for
different integration time steps.

     The  present  version  of the computer code  requires  fixed
values for NBDNTS,  NFXLDS,  and NMISC.  These values are used by
the model to determine the total number of environmental  forcing
functions for a particular application.

6.2.2  Model Coefficients

     The file of model coefficients,  COEFF,  contains values for
all  kinetic and stoichiometric constants.   After initial  setup
and  testing,  these are the values that are varied to  calibrate
the  model to a given set of field data.   Table 4  contains  the
record input format for the COEFF file.

     The  selection  of appropriate values for the  variables  in
COEFF   requires  a  considerable  knowledge  of  the  scientific
literature,   and  good  judgment  on  the  part  of  the   user.
Otherwise,  use of the model will simply be an exercise in curve-
fitting.   Refer  to  Bierman  et al.   (1980)   for  a  detailed
discussion  of the rationale and approach for selection of  model
coefficients  for  the  Saginaw Bay  case  study.   An  excellent
resource for selection of stoichiometric and kinetic coefficients
for  a  wide  variety  of  physical,   chemical,  and  biological
processes is Bowie et al.   (1985).

     The  user  should  be  aware of a   constraint  between  the
minimum cell quotas of the phytoplankton,  and the phosphorus and
nitrogen  stoichiometries  of   the  two  zooplankton  types.   To
prevent  a mass balance violation,  the minimum cell quota  of   a
grazed   phytoplankton    type   must  not  be    less   than   the
stoichiometry  of  the  herbivorous  zooplankton  for  the    same
nutrient.    In addition,  the  stoichiometries  for the herbivorous
and  carnivorous  zooplankton  must  be identical  for  the   same
nutrient.

     To help insure  these constraints,  the  computer  code  assigns
the   same   phosphorus   and   nitrogen  stoichiometries   to   the
herbivorous  and  carnivorous  zooplankton  that  the user   specifies

                                  30

-------
Table 4.  Record Input Format for  COEFF  File

Variable
Sequence
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Variable(s)
TBASE1, TBASE2, TBASE3 , TBASE4
AVNFIX
GMAX(L), TBASEA(L), TBASAR(L)
R1PM(L), PK1(L), KIP(L), K2P(L),
PSAMIN(L), KPCELL(L)
R1NM(L), NK1(L), K1N(L), K2N(L),
NSAMIN(L), KNCELL(L)
RISM(L), SK1(L), K1S(L), K2S(L),
SSAMIN(L), KSCELL(L)
ASINK(L), RDCMP(L), KDCMP(L),
RADSAT(L), RRESP(L)
ZlASSM(Kl), KZISAT(KI), AZMIN(Kl),
BlDETH(Kl)
RZIMAX(KI), TBASZl(Kl)
ZlEFF(Kl.L)
Z2ASSM(K2), KZ2SAT(K2), Z12MIN(K2),
B2DETH(K2), P2DETH(K2), Z23MIN(K2)
RZ2MAX(K2), TBASZ2(K2)
Z2EFF(K2,K1)
RTUP, RTUN, RTUS
KRTUP, KRTUN, KRTUS
TUPSNK, TUNSNK, TUSSNK
VUPP(N), VUPN(N), VUPS(N)
KRSEDP(N), KRSEDN(N), KRSEDS(N)
VPLONG(N), VNLONG(N), VSLONG(N)
Format
4E10.3
1E10.3
3E10.3
6E10.3
6E10.3
6E10.3
5E10.3
4E10.3
2E10.3
5F5.0
6E10.3
2E10.3
2F5.0
3E10.3
3E10.3
3E10.3
3E10.3
3E10.3
3E10.3
(continued)
                        31

-------
 Table 4.   (continued)
20         NEVNTS                                   15




21         TSTART(M), TSTOP(M)                      2F5.0
                              32

-------
for  the  respective minimum cell quotas  for  the  phytoplankton
group corresponding to L « I.   The user needs to insure that the
minimum  cell  quotas for phosphorus and nitrogen for  any  other
grazed  phytoplankton  groups are equal to or greater than  those
for this first group.

     To  specify NEVNTS,  the user must determine the  number  of
significant  resuspension  events  that occur in the  water  body
during  the  period  of simulation.   One way to do  this  is  to
conduct a regression analysis of suspended solids  concentration,
or  a suitable indicator,  versus wind speed.   A threshold  wind
speed  can be identified that produces a significant increase  in
suspended  solids concentration.   The frequency and duration  of
resuspension  events can then be estimated for any desired period
of  time by using daily wind speed records.   The start and  stop
days  for  each of these events can then be  specified  as  model
input.

     It   is   also  possible  to  run  the  model  without   any
resuspension events.   To do this,  the user can specify NEVNTS -
0.   With this option,  no values need to be specified for TSTART
or TSTOP.

6.2.3  Initial Conditions

     The initial condition file,  INICON, contains initial values
for  all of the model state variables.   After initial setup  and
testing,  these values will not be changed for a given simulation
period.   Table 5 contains the record input format for the INICON
file.

     The  INICON  file  also  contains  values  for   atmospheric
loadings for each of the nutrient state variables.  This was done
for  operational reasons.   Atmospheric sources contribute to the
total loading of a water body,  and they must be considered.   In
most cases,  however,  insufficient data exist to construct  time
series for these loadings.   Instead, constant values are usually
specified for the entire period of simulation.

6.3  ENVIRONMENTAL FORCING FUNCTIONS

     Values for all environmental forcing functions are specified
by  the  user  in the file ENVFF.   The  pre-processing  package,
consisting of the programs INTERP and INVERT,  operates on  ENVFF
and  produces the output file DAILY.   The model reads DAILY once
each  day  to  update all of  the  forcing  functions.   Table  6
contains the record input format for ENVFF.

     There  are  28  environmental  forcing  functions  for  each
spatial segment.   Values must be specified for all 28 functions.
Zeroes  or  dummy values must be used,  as appropriate,  so  that
ENVFF is fully defined.   Values appear in ENVFF in segment-major
order.
                                  33

-------
        Table 5.  Record Input Format for INICON File
Variable
Sequence
 Number
            Variable(s)
Format
   3

   A

   5

   6
AVP(l.N), AVN(l.N), AVS(1,N),
TUP(l.N), TUN(l.N), TUS(l.N),
CL(1,N)

A(L,N), PSA(L,N), NSA(L,N),
SSA(L,N)

Z1(K1,N)

Z2CK2.N)

SEDP(N), SEDN(N), SEDS(N)

WAVPAX(N), WAVNAX(N), WAVSAX(N),
WTUPAX(N), WTUNAX(N), WTUSAX(N),
WCLAX(N)
7E10.3


4E10.3

1E10.3

1E10.3

3E10.3



7E10.3
                                34

-------
Table 6.  Record  Input  Format  for  ENVFF File

Variable
Sequence
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Forcing
PSABD(L,N),
NSABD(L,N),
SSABD(L,N),
ABD(L.N),
Z1BD(K1,N),
Z2BD(K2,N),
TPBD(N),
AVPBD(N),
TKNBD(N),
N03BD(N),
NH3BD(N),
TSBD(N),
AVSBD(N),
CLBD(N),
WTP(N),
WAVP( N) ,
WTKN(N),
WN03(N),
WNH3(N),
WTS(N),
WAVS(N),
WCL(N),
Function
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
Format
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
(continued)
                        35

-------
 Table 6.  (continued)
23               Q(N,J),      JULIAN DAY           2E10.3




24               EPRIME(N,J), JULIAN DAY           2E10.3




25               ALPHA(N.J),  JULIAN DAY           2E10.3




26               T(N),        JULIAN DAY           2E10.3




27               RADINC(N),   JULIAN DAY           2E10.3




28               SECCHI(N),   JULIAN DAY           2E10.3
                              36

-------
     Variable   numbers   1-14   (Table   6)  consist  of   boundary
concentrations  for  state variables or  their components.   If  a
given spatial segment does not  have a  boundary, then all of these
values must be set to zero.

     Variable  numbers   15-22   (Table   6)  consist  of   external
tributary loadings.  In  practice,  the  spatial segmentation scheme
is  usually configured so that  a  separate  segment is created  for
each  major  tributary.   In  the  limiting case  of  one  spatial
segment,  there  may  be an  inflow   tributary  and  an  outflow
tributary.   In this case, however, loading will still only occur
from one tributary.

     There  are  important constraints on  the  transport  forcing
functions,  Q(N,J),  EPRIME(N,J),  and  ALPHA(N.J),  and  on  the
possible  types of segment interactions.  These constraints  are
summarized in Table 7.

     The  index,  N,  refers to a  given reference  segment.   The
index,   J,  refers  to   the  sequence  number  of  the  possible
interactions for this reference segment.  The value of J  ranges
from  1  to  INTMAX.   Variables   indexed  with J  must  be  fully
defined.   That is,  if  there is  no interaction for a  particular
value  of  J,  then  zeroes must  be used for those  variables  in
ENVFF.

     The  two principal  types of  segment interfaces are  adjacent
segments  and  boundaries.   Boundaries can be either large  open
boundaries,  such as for an embayment, or  tributaries.  Transport
in  the  form  of  constituent  mass  flux  always  occurs  across
adjacent segment and open boundary interfaces.

     Transport  may or may not  occur across tributary boundaries,
depending on specification of boundary conditions.   A  tributary
boundary  is considered  to be transporting if there exists a flow
and a boundary concentration.   A  tributary boundary is considered
to be non-transporting if there exists a flow,  but no (or  zero)
boundary concentration.   Input  tributaries are usually considered
to be non-transporting.   Constituent mass  loading rates from such
tributaries   are  considered   to be   point   sources.    Output
tributaries  must be considered transporting boundaries in  order
to  maintain  continuity and to  conserve  mass in  the  reference
segment.

     By  convention,   the  order of   segment  interactions  is:
adjacent segments, non-transporting tributaries, and transporting
boundaries   (tributaries or open boundaries).   Transport  of  a
constituent  across a segment boundary is  permitted only for  the
interaction  corresponding to J « INTMAX.   This boundary can  be
either  a tributary or an open boundary, however,  transport must
occur across every open  boundary.    If a segment has a  tributary
boundary  and an open boundary,  then  transport must occur across
the  open boundary.    If a segment has two tributary  boundaries,
then  the upstream tributary must  be  considered a  point  source,

                                  37

-------
Table 7.  Constraints on Physical Configuration
          and Transport Variables

Interface
Type
Ad j acent
Segment
Open
Boundary
Tributary
Trans-
porting
Non-Trans-
porting
Q(N,J) EPRIME(N.J)
Arbitrary E1 * 0
Arbitrary E? * 0

Q y o Ef » o
Q / 0 E1 - 0
ALPHA(N.J)
Stability
Criterion
Stability
Criterion

1
1
J
J <
INTMAX
J -
INTMAX

J -
INTMAX
J <
INTMAX
CBOUND( N)
0
CBOUND
> 0

CBOUND
> 0
0
                      38

-------
and  the downstream tributary must operationally be considered  a
transporting boundary.

     By convention, Q(N,J) is considered negative for flow into a
segment, and positive for flow out.  The value for Q(N,J) must be
non-zero  for a tributary.   The algebraic sum of all flows for a
given spatial segment must be zero.   The computer code  contains
an  algorithm  that  checks flow balance daily for  each  spatial
segment.   A  warning  is issued if a flow balance  violation  is
detected, but no corrective action is taken.

     By  convention,  EPRIME(N,J)  must be non-zero for  adjacent
segments  and  open  boundaries.    It  must  be  zero  for   all
tributaries.   The computer code uses the value of EPRIME(N,J) to
identify tributary boundaries for the transport algorithms.   The
user  should  note  that  EPRIME(N,J) refers  to  bulk  diffusion
(L^/T), not the turbulent diffusion coefficient (L2/T).

     The  values  for  ALPHA(N,J)  must  satisfy  the   stability
criteria  in Equation 4.3 for all interactions involving adjacent
segments  and  open boundaries.   The computer code  contains  an
algorithm  that  checks these stability criteria  each  day,  and
takes   corrective  action if a violation  is  detected.   In  the
tabulated  model  output,  values are printed for both the  user-
specified and corrected values of ALPHA(N,J).

     The  values  for  ALPHA(N,J)  must be equal  to  1  for  all
tributary interactions.   This is a consequence of the convention
that EPRIME(N,J) is zero for all tributaries.

     Values for boundary concentrations,  represented generically
by the  variable CBOUND(N) (Table 7),  must be zero in the case of
a non-transporting boundary, and greater than zero in the case of
a transporting boundary.   Dummy values greater than zero must be
specified  in cases where a tributary is the only outflow  for  a
given   spatial  segment.    This  is  required  to  activate  the
transport  algorithm  in  the computer code so that mass  can  be
conserved.

     The pre-processing package consists of two separate  program
units,  INTERP and INVERT.  The program INTERP computes daily time
series  values for each variable in the ENVFF  file.   Output  is
stored  in  an  intermediate  file.   Each record  in  this  file
consists  of  the  time  series  for  one  environmental  forcing
function.

     The program INVERT re-formats this intermediate file so that:
each  record  contains the values for all  environmental  forcing
factors on the same day.   If the intermediate file is considered
to  be  a matrix,  then INVERT conducts an inversion of rows  and
columns.   Output from INVERT is stored in the DAILY  tile.   The
DAILY file is then read directly by the model.

     In  principle,  this two-step pre-processing operation could

                                 39

-------
be  conducted  in  a  single  step.    However,   especially  for
applications  involving multiple spatial segments,  large  arrays
need to be defined.   On a personal computer,  these arrays would
usually exceed the addressable memory space.
                                  40

-------
                              SECTION  7

                      EXAMPLE APPLICATIONS
7.1  APPROACH

     Two  simplified examples are  presented in detail.   Both  of
the examples involve a single spatial segment, however, they have
different hydraulic configurations.   These examples represent  a
large  class  of  potential  applications  for   the  model.   Two
phytoplankton groups are included  for illustrative purposes.  The
extension to additional groups  is  straightforward.

     For the simplified examples,  the files RUNCON,  COEFF,  and
INICON are presented in three different ways.    First, the actual
data file is presented in model  input format.    Second,  a map of
associated  variable  names  is  presented  for the values  in  the
file.   Finally,  in an appendix,  the actual model output file is
presented.   This  file contains a run header that echoes all  of
the input data values for RUNCON,  COEFF,  and INICON,  including
labels for all variable names.   It  also contains values for  all
environmental forcing functions.

     To  illustrate  how  the model  is  configured  for  multiple
spatial segments,  the input data  files RUNCON,  COEFF, and  INICON
are  presented  for Saginaw Bay.  Values  for the ENVFF file  are
presented  for  spatial segment  1.   Space limitations  preclude
presentation  of  the ENVFF file for all five  spatial  segments,
however,  the  complete  model  output file for   this  example  is
presented in an appendix.

     Although  subsets  of actual  data from Saginaw Bay are  used
for these examples,  no water quality inferences are to be  drawn
from the results presented.   The  examples are intended solely to
illustrate the use of the computer code.

7.2  EXAMPLE 1: SIMPLIFIED LAKE

7.2.1  Introduction

     A  schematic diagram of the simplified version of the  model
is  shown  in Figure  10.   This  version is applied  to  both  the
lake  and  embayment  examples.    It includes  two  phytoplankton
groups,   diatoms  and  others.    There  are  no nitrogen-fixing
phytoplankton.    Both   of  the  phytoplankton  are  grazed   by
a single herbivorous  zooplankton.    The herbivorous  zooplankton,
in turn, is grazed by a single  carnivorous zooplankton.

     The  spatial segmentation  scheme for  the simplified lake  is
shown in Figure  11.   It consists of  one completely mixed segment,
an  input  tributary,   and  an output  tributary.    Since  bulk
diffusion (EPRIME(N,J)) is zero  for  all tributary boundaries, the
transport for this example is simply flow  (Q(N,J)) in,  and  flow

                                 41

-------




-^-i DIATOMS

u. - -1 _ ll _ J- .
f
^ AVAILABLE
" SILICON
|



HIGHER
PREDATORS
j

i

CARNIVOROUS
ZOO PLANKTON

i

/•
\
i
i
i
_i



\
" i
HERBIVOROUS
ZOOPLANKTON \
/ 	 Vj
f__ _X
1
AVAILABLE
PHOSPHORUS
*
1
UNAVAILABLE
SILICON



UNAVAILABLE
PHOSPHORUS
r J l 4
*] t
SEDIMENT
1 	 1 TOTAL
SILICON

r
SEDIMENT
TOTAL
PHOSPHORUS

\ 	
OTHERS »-^

'"I""
AVAILABLE
NITROGEN
U^J J
1
UNAVAILABLE
NITROGEN
A
T
SEDIMENT
TOTAL
NITROGEN
Figure 10.  Schematic Diagram of Principal Model Compartments
            and Interaction Pathways for Simplified Lake and
                            Embayment Examples
                            42

-------
     SIMPLIFIED   LAKE
                                           4
                                         -N

                                           I
                                        0    !0km
                                            Advective flow
                                            No Diffusion
Figure 11.  Spatial Segmentation and Physical Transport for

                    Simplified Lake Example
                     43

-------
out.

7.2.2  Data Input

7.2.2.1  Run Control

     The  RUNCON  file in model input format for  the   simplified
lake example is shown in Table 8.   The map of variable names  for
this file is shown in Table 9.  Note that some variables  that  are
two-dimensional (e.g., INT(N,J)) have multiple records.

     The  index N refers to the number of the reference  segment,
in this case,  segment 1.   The index J is the sequence number of
the  interactions  with  the reference segment.    'Die value   of  J
ranges from 1 to INTMAX.   The value of INT(N,J)  is the number of
the  interacting segment that corresponds to the  values of  N  and
J.

     In this example,  there are two segment interactions.   Both
of   these   interactions  are  with  tributaries.     Since   the
tributaries are external to the model segmentation, the values of
INT(1,1) and INT(1,2) are,  by convention,  set equal  to   1,   the
same number as the reference segment.  These can  be called  "self-
interactions".

     The variables VX(1) and VOLSDX(l) are the values  of  V(l)  and
VOLSED(l),  respectively, in I/O units (m^).  See the  note  at  the
end of Appendix A regarding I/O units.

7.2.2.2  Model Coefficients

     The  COEFF file in  model input format is shown in Table  10.
The  map  of variable names for this file is shown in   Table  11.
Note  that the dimensioned variables for the  phytoplankton have
separate records for each phytoplankton group.

     The  value  for AVNFIX has been input as zero because   there
are no nitrogen-fixing phytoplankton.

     There  are 24 resuspension events (NEVNTS).   For the   first
event,  TSTART(l) -  98 and TSTOP(l) - 99.   This  corresponds to a
resuspension event that  begins at  TIME - 98,  lasts for one day,
and  terminates at TIME  - 99.   The second event  begins at  TIME *
 103, lasts for two days, and terminates at TIME » 105.

7.2.2.3  Initial Conditions

     The  INICON file in model input format is  shown  in Table  12,
The  map  of variable names for this file is shown in  Table  13c
The   two  dimensions  for  the  nutrient  state   variables   are
necessitated by the  structure of the transport  algorithms in  the
computer code.

     The  variables  WAVPAX(l),   ...,  WCLAX(l)  are the values   oi

                                 44

-------
Table  8.  Values for RUNCON  File  for  Simplified Lake Example

1 2
0.806E10
1
1
.138E09
8 8
2 1
1 0
0 0
2 1
1 1
1
.365E03
.250E-01

0.583E01


.100EOO
3
0


1


.500E01 .500E01 1
. 125EOO
                                45

-------
 Table  9.  Map of Variable Names for RUNCON  File  for
            Simplified Lake Example
NSGMTS
VX(1)
INK 1,1)
INK 1,2)
VOLSDX(1)
NBDNTS
NASPEC
ISILCA(l)
NFIX(l)
NZSPEC
IZ1PARU,
IZ2PAR(1,
TIMEMX
HI
1)
1)
      INTMAX
      DEPTH(l)
DEPTHS(l)
NFXLDS
NDITMS
ISILCAC2)
NFIX(2)
NZ1SPC
IZ1PAR(1,2)

TPLOT
H2
                     NMISC
                     NN2BGS
                     NZ2SPC
                     TPRINT
ISKIP
                             46

-------
Table 10.  Values for COEFF  File  for  Simplified Lake Example

.1070E01
.OOOEOO
.210E01
.180E01
.100E-01
.200E-01
.200EOO
.200EOO
.500EOO
. 100EOO
.500E-01
.600EOO
.550EOO
1.0 .50
.600EOO
.550EOO
1.0
.200E-01
.100E01
.150EOO
.175E-03
.OOOEOO
.822E-05
24
98. 99.
103. 105.
111. 113.
118. 119.
121. 122.
126. 127.
129. 130.
132. 133.
134. 135.
158. 160.
161. 162.
184. 185.
201. 202.
223. 224.
238. 239.
243. 244.
254. 255.
258. 259.
267. 268.
272. 273.
274. 275.
277. 279.
294. 296.
309. 310.
.1070E01

.1060E01
.1090E01
.226E02
.226E02
.107E02
.107E02
.534E01
. 250EOO
.500EOO
.100E01
.1070E01

.125EOO
.1070E01

.200E-01
.100E01
.150EOO
.114E-03
.OOOEOO
.822E-05

























.1070E01

.1060E01
.1090E01
.154EOO
.154EOO
.239EOO
.239EOO
.239EOO
.200E03
.200E03
. 200EOO


.250E-01


.200E-01
. 100E01
.150EOO
.175E-03
.625E-03
.822E-05

























.1070E01



.150E01 .500E-03 .500E-03
.300EOO .100E-02 .100E-02
.445EOO .100E-01 .100E-01
.445EOO .200E-01 .200E-01
.445EOO .350E-01 .350E-01
.100E03 .300E-01
.500E02 .300E-01
.300E-01


.300E-01 .100E01 .250E-01

































                                47

-------
      Table  11.   Map of Variable Names for COEFF File for
                 Simplified Lake Example
TBASE1
AVNFIX
GMAX(l)
GMAX(2)
R1PM(1)
R1PM(2)
R1NM(1)
R1NM(2)
R1SM(1)
ASINK(l)
ASINK(2)
ZlASSM(l)
RZlMAX(l)
ZlEFF(l.l)
Z2ASSM(1)
RZ2MAX(1)
Z2EFF(1,1)
RTUP
KRTUP
TUPSNK
VtJPP(l)
KRSEDP(l)
VPLONG(l)
NEVNTS
TSTART(l)
TBASE2

TBASEA(l)
TBASEA(2)
PK1(1)
PK1(2)
NK1(1)
NK1(2)
SKl(l)
RDCMP(l)
RDCMP(2)
KZlSAT(l)
TBASZl(l)
Z1EFF(1,2)
KZ2SAT(1)
TBASZ2(1)

RTUN
KRTUN
TUNSNK
VUPN( 1)
KRSEDN(l)
VNLONG(l)

TSTOP(l)
TBASE3

TBASAR(l)
TBASAR(2)
K1P(1)
K1P(2)
K1N(1)
R1N(2)
K1S(1)
KDCMP(l)
KDCMP(2)
AZMIN(l)


Z12MIN(1)


RTUS
KRTUS
TUSSNK
VUPS(l)
KRSEDS(l)
VSLONG(l)


TBASE4



K2P(1)
K2P(2)
K2N(1)
K2N(2)
K2S(1)
RADSAT(l)
RADSAT(2)
BlDETH(l)


B2DETH(1)














PSAMIN(l)
PSAMINU)
NSAMIN(l)
NSAMINU)
SSAMIN(l)
RRESP(l)
RRESP(2)



P2DETH(1)














KPCELL(l)
KPCELL(2)
KNCELL(l)
KNCELL(2)
KSCELL(l)





Z23MIN(1)










TSTARTC24)  TSTOP(24)
                                  48

-------
          Table  12.   Values for INICON File for Simplified
                     Lake Example
.539E-02   .128E01   .700EOO  .131E-01  .381E-01   .700EOO   .220E02
 .894EOO  .125E-02  .350E-01   .105EOO
.473E-01  .500E-02  .700E-01   .OOOEOO
.130E-02
.312E-01
 .120E03   .136E04   .479E03
 .499E01   .737E03   .684E02   .122E02   .332E03   .684E02   .OOOEOO

-------
              Table 13.  Map of Variable Names for INICON File for
                         Simplified Lake Example
AVP(l.l)   AVN(l.l)   AVS(l.l)   TUP(l.l)   TUN(l.l)   TUS(l.l)   CL(1,1)
A(l,l)     PSA(l.l)   NSA(l.l)   SSA(1,1)
A(2,l)     PSA(2,1)   NSA(2,1)   SSA(2,1)
SEDP(l)    SEDN(l)    SEDS(l)
WAVPAX(l)  WAVNAX(l)  WAVSAX(l)  WTUPAX(l)  WTUNAX(l)  WTUSAX(l)  WCLAX(1)
                                    50

-------
WAVPA(l), ..., WCLA(l) in I/O units  (kg/day).

7.2.3  Environmental Forcing Functions

     The  full  environmental forcing function  file,  ENVFF,   is
shown  in  Table  14.   Note that there are multiple  records   for
variables  that have two dimensions.   The first record  for  each
variable is understood to be Julian  day  1.   The last  record must
be  for Julian day - TIMEMX.   This  example file has been set   up
for a 365-day run.

     Note  the  flexibility in specification  of   time  intervals
between  measured values for each  of the  forcing functions.    The
time  intervals do not need to be  constant for a given  function.
There can be different sets of intervals  for different functions.
A  function  can  be  made constant  by   simply  specifying  equal
beginning and ending values.

     Non-zero   dummy  values  are  specified  for all  boundary
conditions.   This is because a tributary is the only  outflow  for
this  particular  system,  and such a tributary must be considered
operationally  as a transporting boundary (Section 6.3 and  Table
7).   The input tributary is non-transporting,  and it is treated
as a point source.

     The  values  for Q(l,l) represent tributary inflow,  and   the
values  for  Q(l,2)  represent tributary  outflow.  The outflow
tributary  is  the second segment  interaction (J   »  2)  because,
operationally,  it  is  considered a transporting boundary.   A
transporting  boundary must always be the interaction  for which J
- INTMAX.

     The values for EPRIME(1,1) and  EPRIME(1,2) are zero because
they both correspond to tributary  boundaries.

     Values  of   0.5  have  been   specified  for   ALPHA(1,1)   and
ALPHA(1,2).  Although  this  is inconsistent with  the  constraints
in Table 7, it was done intentionally to  illustrate  the correc-
tive  action  that will  be taken  by the  computer  code.  The code
will  correct both of these values to 1.0 because  they are tribu-
tary interactions.

7.2.4  Model Output

     Tabulated  model output is shown in  Appendix  C.   The output
begins  with a run header that echoes all of the input data  froro
the files RUNCON, COEFF, and INICON.  Next, model  output is shown
at  TIME - 0 (beginning of Julian  day 1)  after all environmental
forcing  functions  have been specified  for the  first  day,   and
after initial values have been computed  for all process  rates  and
derivatives.   Next,  model  output  is   shown after   5  days   of
simulation.   All output  variables are  labeled.   Refer to   the
glossary in Appendix A for definitions and units.
                                  51

-------
Table 14.  ENVFF File For Simplified Lake Example

0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999E01
0.999E01
0.999EOO
0.999EOO
0.999E01
0.999E01
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999E01
0.999E01
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.233E04
0.939E04
0.137E05
0.595E04
0.769E04
0.462E04
0.341E04
0.170E04
0.986E03
0.986E03
0.992E03
0.992E03
0.902E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

PSABD(l.l)
PSABD(2,1)
NSABD(l.l)
NSABD(2,1)
SSABD(l.l)
SSABD(2,1)
ABD(l.l)
ABD(2,1)
Z1BD(1,1)
Z2BD(1,1)
TPBD(l)
AVPBD(l)
TKNBD(l)
N03BDU)
NK3BDU)
TSBD( 1 )
AVSBD(l)
CLBD(l)
WTP(l)

(mg P/mg
(mg P/mg
(mg N/mg
(mg N/mg
(mg S/mg
(mg S/mg
(ng/1)
(ng/1)
(mg/1)
(ng/1)
(mg P/D
(mg P/l)
(mg N/l)
(mg N/l)
(mg N/l)
(mg S/l)
(mg S/l)
A)
AT
A)
A)
A)
A)











(mg CL/1)
(kg P/day)


                          52
                                              (continued)

-------
Table 14.  (continued)
0.110E04
0.193E04
0.187E04
0.135E04
0.840E03
0.564E03
0.629E03
0.357E03
0.552E03
0.648E03
0.626E03
0.719E03
0.512E03
0.217E05
0.211E05
0.594E05
0.273E05
0.227E05
0.216E05
0.612E04
0.462E04
0.538E04
0.486E04
0.461E04
0.448E04
0.435E04
0.419E05
0.104E06
0.795E05
0.707E05
0.399E05
0.333E05
0.438E04
0.125E04
0.657E03
0.122E04
0.210E04
0.206E04
0.192E04
0.176E04
0.379E04
0.651E04
0.456E04
0.281E04
0.203E04
0.882E03
0.114E04
0.176E04
0.211E04
0.230E04

0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
WAVP(l) (kg P/day)












WTKN(l) (kg N/day)












WN03C1) (kg N/day)












WNH3U) (kg N/day)










                                               (continued)
                             53

-------
Table 14.  (continued)
0.246E04
0.259E04
.628E05
.111E06
.124E06
.118E06
.434E05
.540E05
.238E05
.139E05
.154E05
.204E05
.216E05
.150E05
.147E05
0.314E05
0.557E05
0.619E05
0.591E05
0.217E05
0.270E05
0.119E05
0.694E04
0.770E04
0.102E05
0.108E05
0.748E04
0.736E04
0.721E06
0.197E07
0.171E07
0.208E07
0.161E07
0.103E07
0.686E06
0.494E06
0.578E06
0.651E06
0.914E06
0.308E06
0.344E05
-0.176E03
-0.176E03
-0.167EOO
-0.167EOO
-0.230E03
-0.230E03
0.176E03
0.176E03
0.167EOO
0.330E03
0.365E03

.300E02
.600E02
.900E02
.120E03
.150E03
.180E03
.210E03
.240E03
.270E03
.300E03
.330E03
.365E03

0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

0.260E03
0.26IE03
0.300E03
0.301E03
0.365E03

0.260E03
0.261E03


WTS(l) (kg S/day)












WAVS(l) (kg S/day)












WCL(l) (kg CL/day)












Q(l,l) (m**3/sec)





Q(l,2) (m**3/sec)


                             54

-------
Table 14.  (continued)
0.167EOO
0.230E03
0.230E03
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
0.500EOO
0.500EOO
0.500EOO
0.500EOO
0.290EOO
0.125E01
0.644E01
0.871E01
0.987E01
0.166E02
0.219E02
0.218E02
0.170E02
0.118E02
0.871E01
0.290EOO
0.100E03
0.700E02
0.100E03
0.300E03
0.440E03
0.600E03
0.660E03
0.625E03
0.540E03
0.390E03
0.210E03
0.100E03
0.167E01
0.313E01
0.313E01
0.760EOO
0.126E01
0.114E01
0.118E01
0.113E01
0.101E01
0.770EOO
0.112E01
0.167E01
0.300E03
0.301E03
0.365E03
EPRIME(1,1) (m**3/sec)
0.365E03
EPRIME(1,2) (m**3/sec)
0.365E03
ALPHA(l.l)
0.365E03
ALPHA(1,2)
0.365E03
T(l) (degrees C)
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.365E03
RADINC(l) (ly/day)
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.365E03
SECCHI(l) (meters)
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.365E03
                             55

-------
                   Simplified  Lake  Example
£

C
                   Simplified Lake Example

  Figure  12.  Graphical Output for Phytoplankton,  Total Phosphorus, and
                Chloride Concentrations for Simplified Lake Example

                                                     (continued)
                                  56

-------
                  Simplified  Lake Example
I
                                               300
400
                             JK.IMI mrs
                  Simplified  Lake Example
5
i
o
                       Figure 12.   (continued)
                               57

-------
              Simplified  Lake  Example
BO
30 H
an H
 10 H
                 100
     aoo
JULUU mra
                                              300
                                                            400
                       Figure 12.  (continued)
                               58

-------
     Plots  for  selected state variables are shown in Figure   12
for a 365-day simulation period.  These plots were generated from
the PLOTOUT file using Lotus 1-2-3.   Users can generate plots  to
suit  their  own  applications,  depending  on  their  particular
hardware and software capabilities.

7.3 EXAMPLE 2: SIMPLIFIED EMBAYMENT

7.3.1  Introduction

     The  same  version  of  the model that was  applied  to  the
simplified  lake  (Figure   10)  is extended  to  the  case  of  a
simplified  embayment.   The spatial segmentation scheme for this
example  is shown in  Figure  13.   It consists of  one  completely
mixed segment, an input tributary, and a large open boundary.

7.3.2  Data Input

7.3.2.1  Run Control

     The  RUNCON file for this example is the same as the  RUNCON7
file  for the simplified lake example (Tables 8 and 9).   For the
embayment,  there  are two  segment interactions.   One is with  a
tributary,  and  one  is with an open boundary.   Since these  are
also  external  to the model segmentation,  they too  are  "self-
interactions"

7.3.2.2  Model Coefficients

     The  COEFF  file is also the same as the COEFF file for  the
simplified  lake example (Tables 10 and 11).   The  variables   in
this  file  are independent of the change in the types of  "self-
interactions".   They  only  depend  on  the  number  of  spatial
segments,  and  on  the  configuration  of  the  principal  model
compartments (Figure  10).

7.3.2.3  Initial Conditions

     The  INICON  file  is  the same as the INICON  file  for  the
simplified lake example (Tables  12 and 13).

7.3.3  Environmental  Forcing Functions

     The  full  environmental forcing function  file,  ENVFF,   is
shown  in  Table  15.   The difference  in  segmentation  schemes
between the lake and  embayment examples is reflected  exclusively
in the boundary concentrations, and in the transport parameters.

     The  boundary  concentrations  here  are  real,   and   they
are associated with the open boundary.  This is because transport
must occur across every open boundary (Section 6.3 and Table  7).
As  in  the  previous  example,   the  input  tributary  is  non-
transporting, and it  is treated as a point source.
                                  59

-------
                 SIMPLIFIED  BAY
                                          Advective flow
                                      -O  Diffusion
Figure  13.  Spatial  Segmentation and Physical  Transport for
                 Simplified Embayment Example
                          60

-------
Table 15.  ENVFF File For Simplified Embayment Example

.750E-03
.750E-03
.200E-02
.200E-02
.400E-01
.400E-01
.800E-01
.800E-01
.140EOO
.140EOO
.OOOEOO
. OOOEOO
.203EOO
.130EOO
.270EOO
.314EOO
.346EOO
.197EOO
.614E-01
.892E-01
. 148EOO
.426EOO
.259EOO
.235EOO
.203EOO
.488E-02
.300E-02
.660E-03
.660E-03
.162E-01
.360E-02
.460E-03
.820E-02
.880E-02
.115EOO
.930E-02
.570E-02
.488E-02
.581E-02
.462E-03
.186E-02
.357E-01
.351E-01
.210E-01
.397E-01
.269E-01
.174E-01
.808E-02
.581E-02

0.365E03

0.365E03

0.365E03

0.365E03

0.365E03

0.365E03

.105E03
.118E03
.134E03
.154E03
.168E03
.189E03
.205E03
.225E03
.261E03
.279E03
.319E03
.365E03

.105E03
.118E03
.134E03
.154E03
.168E03
. 189E03
.205E03
.225E03
.261E03
.279E03
.319E03
.365E03

.118E03
.133E03
.169E03
.189E03
.206E03
.225E03
.261E03
.279E03
.315E03
.365E03

PSABD(l.l) (mg P/mg A)

PSABD(2,1) (mg P/mg A)

NSABD(1,1) (mg N/mg A)

NSABD(2,1) (mg N/mg A)

SSABD(l.l) (mg S/mg A)

SSABD(2,1) (mg S/mg A)

ABD(l.l) (mg/1)












ABD(2,1) (mg/1)












ZlBD(l.l) (mg/1)











                                         (continued)
                             61

-------
Table 15.  (continued)
.265E-01
.116E-01
.126E-01
.219E-01
.191E-01
.106E-01
.261E-01
.112E-01
.316E-01
.328E-01
.265E-01
.415E-02
.409E-02
.500E-02
.555E-02
.530E-02
.487E-02
.418E-02
.415E-02
.102E-02
.165E-02
.713E-03
.701E-03
.750E-03
.732E-03
.815E-03
.893E-03
.914E-03
.124EOO
.155EOO
.155EOO
.130EOO
.181EOO
.131EOO
.207EOO
.252EOO
.144EOO
.395EOO
.124EOO
.120EOO
.124EOO
.272EOO
.260EOO
.309EOO
.288EOO
.286EOO
.265EOO
.256EOO
.277EOO
.272EOO

.118E03
.133E03
.169E03
.189E03
.206E03
.225E03
.261E03
.279E03
.315E03
.365E03

.136E03
.166E03
.197E03
.228E03
.289E03
.319E03
.365E03

.116E03
.138E03
.177E03
.206E03
.246E03
.276E03
.341E03
.365E03

.117E03
.132E03
.153E03
.168E03
.188E03
.205E03
.224E03
.260E03
.278E03
.314E03
.350E03
.365E03

.105E03
.136E03
.166E03
.197E03
.228E03
.289E03
.319E03
.365E03

Z2BD(1,1) (mg/1)










TPBD(l) (mg P/l)







AVPBD(l) (mg P/l)








TKNBD(l) (mg N/l)












N03BD(1) (mg N/l)









                             62
                                                  (continued)

-------
Table 15.  (continued)
.123E-01
.147E-01
.963E-02
.124E-01
.998E-02
.739E-02
.414E-02
.113E-01
.123E-01
.132E01
.175E01
.160E01
.138E01
.105E01
.988EOO
.752EOO
.113E01
.132E01
.660EOO
.874EOO
.801EOO
.691EOO
.525EOO
.494EOO
.376EOO
.565EOO
.660EOO
.527E01
.527E01
.538E01
.538E01
.620E01
.620E01
.609E01
.609E01
.580E01
.580E01
.570E01
.570E01
.580E01
.580E01
.549E01
.549E01
0.233E04
0.939E04
0.137E05
0.595E04
0.769E04
0.462E04
0.341E04

.105E03
.136E03
.166E03
.197E03
.228E03
.289E03
.319E03
.365E03

.105E03
.136E03
.166E03
.197E03
.228E03
.289E03
.319E03
.365E03

.105E03
.136E03
.166E03
.197E03
.228E03
.289E03
.319E03
.365E03

.105E03
.106E03
.155E03
.156E03
.175E03
.176E03
.215E03
.216E03
.260E03
.261E03
.290E03
.291E03
.341E03
.342E03
.365E03

0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
NH3BDU) (mg N/l)








TSBD(l) (mg S/l)








AVSBD(l) (mg S/l)








CLBD(l) (mg CL/1)















WTP(l) (kg P/day)






                                                 (continued)
                             63

-------
Table 15.  (continued)
0.170E04
0.986E03
0.986E03
0.992E03
0.992E03
0.902E03
0.110E04
0.193E04
0.187E04
0.135E04
0.840E03
0.564E03
0.629E03
0.357E03
0.552E03
0.648E03
0.626E03
0.719E03
0.512E03
0.217E05
0.211E05
0.594E05
0.273E05
0.227E05
0.216E05
0.612E04
0.462E04
0.538E04
0.486E04
0.461E04
0.448E04
0.435E04
0.419E05
0.104E06
0.795E05
0.707E05
0.399E05
0.333E05
0.438E04
0.125E04
0.657E03
0.122E04
0.210E04
0.206E04
0.192E04
0.176E04
0.379E04
0.651E04
0.456E04
0.281E04
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

0.300E02
0.600E02
0.900E02
0.120E03






WAVP(l) (kg P/day)












WTKN(l) (kg N/day)












WN03(1) (kg N/day)












WNH3(1) (kg N/day)




                             64

-------
Table 15.  (continued)
0.203E04
0.882E03
0.114E04
0.176E04
0.211E04
0.230E04
0.246E04
0.259E04
.628E05
.111E06
. 124E06
.118E06
.434E05
.540E05
. 238E05
.139E05
.154E05
.204E05
.216E05
.150E05
.147E05
0.314E05
0.557E05
0.619E05
0.591E05
0.217E05
0.270E05
0.119E05
0.694E04
0.770E04
0.102E05
0.108E05
0.748E04
0.736E04
0.721E06
0.197E07
0.171E07
0.208E07
0.161E07
0.103E07
0.686E06
0.494E06
0.578E06
0.651E06
0.914E06
0.308E06
0.344E05
-0.176E03
-0.176E03
-0.167EOO
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

.300E02
.600E02
.900E02
.120E03
.150E03
. 180E03
.210E03
.240E03
.270E03
.300E03
.330E03
.365E03

0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03

0.260E03
0.261E03








WTS(l) (kg S/day)












WAVS(l) (kg S/day)












WCL(l) (kg CL/day)












Q(l,l) (m**3/sec)


                                                 (continued)
                             65

-------
Table 15.  (continued)
-0.167EOO
-0.230E03
-0.230E03
0.176E03
0.176E03
0.167EOO
0.167EOO
0.230E03
0.230E03
O.OOOEOO
O.OOOEOO
0.652E03
0.652E03
0.531EOO
0.531EOO
0.146E04
0.146E04
0.500EOO
0.500EOO
0.309EOO
0.309EOO
0.045EOO
0.045EOO
0.325EOO
0.325EOO
0.290EOO
0.125E01
0.644E01
0.871E01
0.987E01
0.166E02
0.219E02
0.218E02
0.170E02
0.118E02
0.871E01
0.290EOO
0.100E03
0.700E02
0.100E03
0.300E03
0.440E03
0.600E03
0.660E03
0.625E03
0.540E03
0.390E03
0.210E03
0.100E03
0.167E01
0.300E03
0.301E03
0.365E03
0.260E03
0.261E03
0.300E03
0.301E03
0.365E03
0.365E03
0.260E03
0.261E03
0.300E03
0.301E03
0.365E03
0.365E03
0.260E03
0.261E03
0.300E03
0.301E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.365E03


Q(l,2; (m**3/sec)
EPRIMEU.l) (m**3/sec)
EPRIME(1,2) (m**3/sec)
ALPHA( 1,1)
ALPHA(1,2)
T(l) (degrees C)
RADINC(l) (ly/day)
SECCHI(l) (meters)
                             66

-------
Table 15.  (continued)
0.313E01
0.313E01
0.760EOO
0.126E01
0.114E01
0.118E01
0.113E01
0.101E01
0.770EOO
0.112E01
0.167E01
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.365E03
                            67

-------
     The values for EPRIME(l.l) are zero because they correspond
to  the tributary boundary.   The values for EPRIME(1,2) are non-
zero  because  they correspond to the open  boundary.   The  open
boundary is the second segment interaction (J - 2) because it  is
a transporting boundary,  and such a boundary must always be J  =
INTMAX.

     The  value  for ALPHA(l.l) has been specified as  0.5.   The
computer code will correct this to a value of 1.0 because this is
a  tributary interaction.   The values for ALPHA(1,2)  have  been
specified consistent with the stability criterion.  No corrective
action will be taken for these values.

7.3.4  Model Ouput

     Tabulated  model  output  is  shown  in  Appendix  D.    For
illustrative purposes ,  ISKIP has been set equal to zero for this
example.    Consequently,   model   output  includes  values  for
derivatives  and  component terms.   These values can  be  cross-
referenced   with  comments  in  the  FORTRAN  source  file   for
subroutine OUTPUT.   Plots for selected state variables are shown
in Figure 14 for a 365-day simulation period.

7.4  EXAMPLE 3: SAGINAW BAY

7.4.1   Introduction

     The  schematic  diagram for the Saginaw Bay version  of  the
model   is shown in Figure 2.   The spatial  segmentation  scheme,
including advective and bulk diffusive flows,  is shown in Figure
15.   The  principal objective for this example is to  illustrate
how the model is configured for multiple spatial segments.

     Listings  of  the  RUNCON,   COEFF,  and  INICON  files  are
presented without maps for variable names.   Values for the ENVFF
file  are  presented in Appendix E only for  spatial  segment   1.
Refer   to tabular model output in Appendix F  to  cross-reference
input   data  values with their associated variable  names.   This
model   output  also  includes values  for  environmental  forcing
functions for all five spatial segments.

7.4.2   Data  Input

7.4.2.1  Run Control

     The  RUNCON  file  for  Saginaw Bay is shown  in  Table   16.
In  this example,  there are five spatial segments.   There  is  an
input  tributary to segment  1, and open boundaries associated with
segments  4  and 5.    There  is a maximum of  five possible   segment
interactions   (INTMAX -   5).   Each segment  has  at  least   two
interactions with adjacent  segments.

     By convention,    the   order  of   segment  interactions   is:
adjacent  segments,   non-transporting   tributaries,   transporting

                                  68

-------
               Simplified  Emboymenf Example
*
ft.
1
                                                                48B
               Simplified Embayrnenf  Example
                                                                4BO
 Figure 14.   Graphical  Output for Phytoplankton, Total Phosphorus,  and
             Chloride Concentrations for Simplified" Embayment Example
                                  69

-------
          Simplified  Embaymenf  Example

1.0 -
1.4-
l.t -
 I -
1.1 -
1.1 -
 i -
0.1 -
0.0 -
                108
     am
JULUUI ».n
3BO
400
          Simplified Embaymenf Example
0.1 -
O.BI -
0.81 -
_l
tf 0.38 -
O
{ 0.03 -
5
£ 0. D* -
•*
g 0.03 -
o.n -i
0. 01 -
0 -


fa
^"V
n^p*^^ i IB
JT ^ tt^
* ta P"*%D
^ ^^ SL
^^
	 	 1 i 	 r~ 	 1 i i i "
a 100 «o 300 -u
JULJU a^rs
                  Figure 14.  (continued)

-------
Simplified Embaymenf Example
                                             4OD
            Figure 14.   (continued)
                  71

-------
SAG1NAW
  RIVER
                                             10km
Advective  flow

Diffusion
 Figure 15.  Spatial Segmentation and Physical Transport fox-
                    Sag inaw Bay Example
                        72

-------
Table 16.  RUNCON File for Saginaw Bay Example

5 5
0.894E09
2
3
0
1
0
0.589E10
1
3
4
0
0
0.127E10
1
2
5
0
0
0.788E10
2
5
0
0
4
0.939E10
3
4
0
0
5
.232E07
.804E08
.340E08
.597E08
.618E08
8 8
5 1
1 0
0 0
2 1
1 1
1
.365E03
.250E-01

0.385E01





0.733EOI





0.374E01





0.132E02





0.152E02





.100E-01
.100EOO
.100EOO
. 100EOO
.100EOO
3
1
000
0 0 1
1
1

.500E01 .500E01 1
.125EOO
                         73

-------
boundaries  (tributaries or open boundaries).   Since there is  a
maximum  of  three  interactions with adjacent segments  in  this
example,  the  values J -  1,  2,  and 3,  have been reserved  for
adjacent segment interactions.   The value J - 4 is used for  the
non-transporting  tributary  in  segment  1.   The value  J  -  5
(INTMAX)  is  used  for the  transporting  (open)  boundaries   in
segments 4 and 5.

     The values of  INT(N,J) for adjacent segment interactions are
the  segment  numbers of the interacting segments.  For  example,
INT(1,1)  -  2  means  that for segment 1  (N  -   1),  the  first
interaction (J - 1) is with segment 2.   The values for tributary
and open boundary interactions correspond to "self-interactions",
as in the two previous examples.

7.4.2.2  Model Coefficients

     The  values for the COEFF file are shown in Table  17.   The
extension    from   two    to   five   phytoplankton   types     is
straightforward.    Note  that a non-zero value has been specified
for AVNFIX because  this example includes a nitrogen-fixing  blue-
green phytoplankton.

7.4.2,3  Initial Conditions

     The  values for the INICON file are shown in  Table 18.   The
extension from one  to five segments is straightforward.

7.4.3  Environmental Forcing Functions

     The environmental forcing file,  ENVFF, is shown for segment
1 in Appendix E.  Space limitations preclude presentation of this
file for all five segments.

     Zero values need to be specified for the boundary conditions
for  segments  1,   2,  and 3 because there are  no  transporting
boundaries for these segments.   Real boundary conditions need  to
be specified for segments  4 and 5.

     Values for Q(N,J),  EPRIME(N.J),  and ALPHA(N,.J) all   follow
the  conventions  discussed in  Section 6.3,  and the  constraints
presented  in  Table 7.  For spatial segment   1,   the  values   in
Appendix  E  can be cross-referenced with the  transport  pattern
shown in Figure  15, and with the model output  in Appendix F.  For
spatial segments 2  through 5,   the  transport pattern in Figure  15
can be cross-referenced with the model output  in Appendix F.

7.4.4  Model Output

     Tabulated  model output is shown in Appendix  F.    Output   is
included   for  all five   spatial   segments'   after   5  days    of
simulation.
                                  74

-------
Table 17.  COEFF File for Saginaw Bay Example

.1070E01
.150EOO
.240E01
.240E01
.210E01
.160E01
.160E01
.100E-01
.200E-01
.200E-01
.200E-01
.200E-01
. 200EOO
.200EOO
. 200EOO
.200EOO
. 200EOO
. 500EOO
. 100EOO
.100EOO
. 100EOO
.200E-01
.200E-01
.600EOO
.550EOO
1.0 .50
.600EOO
.550EOO
1.0
.200E-01
.100E01
.150EOO
.350E-02
.175E-03
.250E-03
.417E-04
.362E-04
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.822E-05
.OOOEOO
.822E-05
.822E-05
24
98. 99.
.1070E01

.1060E01
.1070E01
.1060E01
.1090E01
.1090E01
.226E02
.226E02
.226E02
.226E02
.226E02
.107E02
.107E02
.107E02
.107E02
.107E02
.534E01
.250EOO
.250EOO
.250EOO
.500EOO
.500EOO
.100E01
.1070E01
.50
.125EOO
.1070E01

.200E-01
.100E01
.150EOO
.228E-02
.114E-03
.162E-03
.271E-04
.235E-04
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.822E-05
.OOOEOO
.822E-05
.822E-05


.1070E01

.1060E01
.1070E01
.1060E01
.1090E01
.1090E01
.154EOO
. 154EOO
.154EOO
.154EOO
.154EOO
.239EOO
.239EOO
.239EOO
.239EOO
.239EOO
.239EOO
. 200E03
.200E03
.200E03
.200E03
. 200E03
.200EOO


.250E-01


.200E-01
.100E01
.150EOO
.350E-02
.175E-03
.250E-03
.417E-04
.362E-04
.625E-03
.625E-03
.625E-03
.625E-03
.625E-03
.OOOEOO
.822E-05
.OOOEOO
.822E-05
.822E-05


.1070E01






.150E01
.125E01
.125E01
. 300EOO
.450EOO
.445EOO
.445EOO
.445EOO
.445EOO
.445EOO
.445EOO
. 100E03
.100E03
. 100E03
.500E02
.500E02
.300E-01


.300E-01





























.500E-03
. 100E-02
.100E-02
.100E-02
.100E-02
.100E-01
.200E-01
.200E-01
.200E-01
.200E-01
.350E-01
.300E-01
.300E-01
.300E-01
.300E-01
.300E-01



.100E01





























.500E-03
. 100E-02
.100E-02
. 100E-02
.100E-02
.lOOE-01
.200E-01
.200E-01
.200E-01
.200E-01
.350E-01








.250E-01






















                                             (continued;
                        75

-------
    Table 17.    (continued)
103.  105.
111.  113.
118.  119.
121.  122.
126.  127.
129.  130.
132.  133.
134.  135.
158.  160.
161.  162.
184.  185.
201.  202.
223.  224.
238.  239.
243.  244.
254.  255.
258.  259.
267.  268.
272.  273.
274.  275.
277.  279.
294.  296.
309.  310.
                                 76

-------
Table 18.  INICON File for  Saginaw  Bay  Example

.112E-01
.539E-02
.694E-02
.291E-02
.490E-02
.194E01
.219E-01
.310E-01
.668E-01
.319E-01
.894EOO
.421E-02
.448E-01
.473E-01
.343E-02
.169E01
.425E-01
.293E-01
. 144EOO
.230E-01
.590EOO
.137E-01
.120EOO
.646E-02
.402E-03
.834EOO
.138E-01
.736E-01
.416E-OI
.203E-02
.150E-Q2
.130E-02
.246E-02
.377E-03
.780E-02
.282E-01
.312E-01
.316E-01
.807E-03
.247E-01
.335E01
.120E03
.120E03
.316E02
.406E02
.499E01
.173E02
.731E01
.128E02
.133E02
.631EOO
.128E01
.148E01
.298EOO
.300EOO
.125E-02
.250E-02
.250E-02
.500E-02
.500E-02
.125E-02
.250E-02
.250E-02
.500E-02
. 500E-02
.125E-02
.250E-02
.250E-02
.500E-02
.500E-02
.125E-02
.250E-02
.250E-02
.500E-02
.500E-02
.125E-02
. 250E-02
.250E-02
.500E-02
.500E-02










.378E02
.136E04
.136E04
.357E03
.459E03
.737E03
.255E04
.108E04
.189E04
.196E04
.395EOO
.700EOO
.540EOO
.493EOO
.381EOO
.350E-01
.700E-01
.700E-01
.700E-01
.700E-01
.350E-01
.700E-01
.700E-01
.700E-01
.700E-01
.350E-01
.700E-01
.700E-01
.700E-01
.700E-01
.350E-01
.700E-01
.700E-01
.700E-01
.700E-01
.350E-01
.700E-01
.700E-01
.700E-01
.700E-01










.134E02
.479E03
.479E03
.126E03
.162E03
.684E02
.237E03
.100E03
.176E03
.182E03
.412E-01 .381E-01 .395EOO
.131E-01 .381E-01 .700EOO
.227E-01 .150EOO .540EOO
.184E-02 .146EOO .493EOO
.366E-02 .218EOO .381EOO
.105EOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.105EOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.105EOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.105EOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.105EOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO















.122E02 .332E03 .684E02
.423E02 .115E04 .237E03
.179E02 .486E03 .100E03
.314E02 .853E03 .176E03
.325E02 .883E03 .182E03
.250E02
.220E02
.290E02
.500E01
.800E01








































.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
                       77

-------
                            SECTION 8

                   OPERATIONAL CONSIDERATIONS


8.1  ACQUISITION PROCEDURES

     To obtain a copy of the computer code, write to:

                Center for Water Quality Modeling
                Environmental Research Laboratory
              U.S. Environmental Protection Agency
                      College Station Road
                        Athens, GA  30613.

The  code  will be distributed on a personal  computer  diskette.
The  diskette will contain FORTRAN source files for the model and
the pre-processing package.   It will also contain RUNCON, COEFF,
INICON, and ENVFF files for the two simplified examples presented
in this manual.

8.2  HARDWARE AND SOFTWARE REQUIREMENTS

     Hardware and software requirements are dictated by the needs
of FORTRAN 77,  as well as by the needs of the model.   The basic
hardware requirements are the following:

            -  IBM PC/AT
            -  Fixed disk drive
            -  1 Diskette drive
            -  Math Co-processor
            -  Monitor
            -  Large carriage (132 column) printer,,

The basic software requirements are the following:

            -  IBM Personal Computer Disk Operating System (DOS)
               (Version 2.1 or higher)
            -  IBM Personal Computer Professional FORTRAN
               (Version 1.0)
            -  Graphics program (e.g., Lotus  1-2-3).

     The  requirements for computer memory depend to  some  extent
on  the  particular operating environment,  and on the  types   of
other  software packages that may be installed on  the  computer.
The  IBM  Professional FORTRAN requires 192K  bytes of memory   for
compilation and link editing.  The executable load module  for  the
model  requires 142K bytes of memory.

     These  requirements have been presented  in terms of  the   IBM
PC/AT  because this is the principal system for which   the  model
has been documented.  The model has been  run  without  modification
on  a  VAX 11/780 minicomputer with a VMS  operating  system.    The
model  can be run on any computer  that has  FORTRAN 77  capability.

                                  78

-------
Minimal  I/O modifications may be required for systems other than
the IBM PC/AT and the VAX.

8.3  TESTING PROCEDURES

     The  FORTRAN  source  files  for  the  model  and  the  pre-
processing  package  must be compiled into  object  modules,  and
linked  to create executable load modules.   The programs  INTERP
and  INVERT must be run,  in sequence,  to create the DAILY  file
for model input.

     The sequence of the testing procedure is the following:

               1.  Compile and link INTERP.FOR, INVERT.FOR,
                   and MODEL.FOR.

                   Note that MASTER.FOR is not compiled or
                   linked.  It is automatically accessed by
                   MODEL.FOR.

               2.  Run INTERP

               3.  Run INVERT

               4.  Run MODEL.

The default file names in INTERP.FOR,  INVERT.FOR,  and MODEL.FOR
all  refer to the Simplified Lake Example.   This is the  example
that  will  be reproduced when MODEL is run.   To  reproduce  the
Simplified Embayment Example,  edit the appropriate file names in
these three source files, and repeat the above procedure.
                                  79

-------
                                REFERENCES

Aitchison, J. and J.A.C. Brown.  1963.  The Lognormal Distribution,
     Cambridge University Press, New York and London.

Beeton, A.M.  1958.  Relationship between Secchi Disc Readings
     and Light penetration in Lake Huron.  American Fisheries
     Society Transactions.  87: 73-79

Bierman, V.J., Jr., D.M. Dolan, E.F. Stoermer, J.E. Gannon, and
     V.E. Smith.  1980.  The Development and Calibration of a
     Spatially Simplified, Multi-Class Phytoplankton Model for
     Saginaw Bay, Lake Huron.  Great Lakes Environmental Planning
     Study.  Contribution No. 33.  Great Lakes Basin Commission,
     Ann Arbor, Michigan.  126 p.

Bierman, V.J., Jr. and D.M. Dolan.  1981.  Modeling of Phyto-
     plankton-Nutrient Dynamics in Saginaw Bay, Lake Huron.
     Journal of Great Lakes Research.  7(4): 409-439.

Bierman, V.J., Jr., D.M. Dolan, R. Kasprzyk, and J.L. Clark.
     1984.  Retorspective Analysis of the Response of Saginaw
     Bay, Lake Huron, to Reductions in Phosphorus Loadings.
     Environmental Science and Technology.  18(1): 23-31.

Bierman, V.J., Jr. and D.M. Dolan.  1986a.  Modeling of Phyto-
     plankton in Saginaw Bay:  I.  Calibration Phase.  Journal
     of Environmental Engineering.  112(2):  400-414.

Bierman, V.J., Jr. and D.M. Dolan.  1986b.  Modeling of Phyto-
     plankton in Saginaw Bay:  II.  Post-audit Phase.  Journal
     of Environmental Engineering.  112(2):  415-429.

Bowie, G.L., W.B. Mills, D.B. Porcella, C.L. Campbell, J.R.
     Pagenkopf, G.L. Rupp, K.M. Johnson, P.W.H. Chan, S.A.
     Gherini, and C.E. Chamberlin.  1985.  Rates, Constants,
     and Kinetics Formulations in Surface Water Quality Modeling
     (Second Edition).  EPA 600/2-85-040.  U.S. Environmental
     Protection Agency, Environmental Research Laboratory,
     Athens, GA.  455 p.

Chapra, S.C. and R.P. Canale.  1985.  Numberical Methods for
     Engineers with Personal Computer Applications.  McGraw-
     Hill Book Company, New York.

Chapra, S.C. and K.H. Reckhow.  1983.  Engineering Approaches
     for Lake Management.  Vol. 2:  Mechanistic Modeling.  Butter-
     worth  Publishers, Boston, MA.

Di Toro, D.M.  1978.  Optics of Turbid Estuarine Waters:   Approx-
     imations and Applications.  Water Research.   12:  1059-1068.

Di Toro, D.M., J.J. Fitzpatrick, and  R.V.  Thomann.   1983.  Docu-


                                 80

-------
     mentation for Water Quality Analysis Simulation Program
     (WASP) and Model Verification Program (MVP).  EPA 600/
     3-81-044.  U.S. Environmental Protection Agency, Enviro-
     mental Research Laboratory, Duluth, MN.  145 p.

Dolan, D.M. and V.J. Bierman, Jr.  1982.  Mass Balance Modeling
     of Heavy Metals in Saginaw Bay, Lake Huron.  Journal of
     Great Lakes Research.  8(4): 676-694.

Ef fler, S.W.  1985.  Attenuation Versus Transparency.  Journal of
     Environmental Engineering.  111(4): 448-459.

Richardson, W.L.  1976.  An Evaluation of the Transport Character-
     istics of Saginaw Bay Using a Mathematical Model of Chloride,
     In: Modeling Biochemical Processes in Aquatic Systems.  R.P.
     Canale (ed.).  Ann Arbor Science Publishers, Ann Arbor, MI.
     pp. 113-139.

Thomann, R.V.  1972.  Systems Analysis and Water Quality
     Management.  Environmental Services Division, Environmental
     Research and Applications, Inc., New York.

Thomann, R.V.  1982.  Verification of Water Quality Models.
     Journal of Environmental Engineering.  108(5): 923-940.
                                 81

-------
                           APPENDIX A

                 GLOSSARY OF PRINCIPAL VARIABLES
A(L,N)

ADUM(KI,L,N)


ALOSSl(L.N)

ALOSS2(L,N)

ALOSS3(L,N)

ALPHA(N.J)



ASINK(L)


AVNFIX
AVP(l.N)
(AVN(1,N),
AVS(1,N))

AZMIN(Kl)
BPI(L,N)

BlDETH(Kl)


B2DETH(K2)


CL(1,N)


DEPTH(N)

DEPTHS(N)

DUMMY1(18,10),
DUMMY2U3.10)

EPRIME(N.J)

FCROP(L)
Phytoplankton concentration (mg/1)

Minimum concentration of a phytoplankton for
grazing by herbivorous zooplankton (mg/1)

Phytoplankton specific respiration rate (I/day)

Phytoplankton specific decomposition rate (I/day)

Phytoplankton specific settling rate (I/day)

Weighting factor for water column segment
concentrations.  Used in transport computations.
(dimensionless)

Phytoplankton apparent net settling rate
(meters/day)

Dissolved available nitrogen concentration
threshold for nitrogen fixation (mg/1)

Dissolved available phosphorus (nitrogen,
silicon) concentration in the water column  (mg/1)


Minimum concentration of total phytoplankton for
herbivorous  zooplankton grazing (mg/1)

Phytoplankton biomass production integral (mg/1)

Rate coefficient for herbivorous zooplankton
respiration  (I/day)

Rate coefficient for carnivorous zooplankton
respiration  (I/day)

Chloride  (conservative constituent) concentration
(mg/1)

Depth of water  column spatial  segment  (meters)

Depth of  sediment  spatial segment  (meters)

Dummy arrays for storing transport  components  of
total derivatives

Bulk diffusion  (liters/day)

Fraction  of  total  phytoplankton crop

                 82

-------
                (dimensionless)
FX(NMAX2)


FXDUM(NMAX2)


GMAX(L)

HI


H2


ICHECK

INT(N.J)

INTMAX

ISILCA(L)

ISKIP


IZIPAR(KI.L)


IZ2PAR(K2,K1)
KDCMP(L)
KPCELL(L)
(KNCELL(L),
KSCELL(L))

KRSEDP(N)
(KRSEDN(N),
KRSEDS(N))

KRTUP
(KRTUN,
KRTUS)
KZISAT(KI)
Arra?y containing current values of all total
derivatives

Dummy array containing temporary values of all
total derivatives

Phytoplankton maximum growth rate (I/day)

Integration time step for state variables in
loop 1 (days)

Integration time step for state variables in
loop 2 (days)

Flag to compute all derivatives at TIME - 0

Array for segment interactions

Maximum number of interacting spatial segments

Array for indicating diatom phytoplankton types

Run control switch for writing derivatives and
component terms to model output file

Array for interactions between herbivorous
zooplankton and phytoplankton

Array for interactions between carnivorous
zooplankton and herbivorous zooplankton

Summation index for sequence number of
interacting spatial segments

Half-saturation coefficient for phytoplankton
decomposition (mg-day/1)

Internal half-saturation coefficient for
phosphorus (nitrogen, silicon) limited
phytoplankton growth (mg/mg A)

Rate coefficient for mineralization of sediment
phosphorus (nitrogen, silicon) to the dissolved
available compartment in the water column (I/day)

Half-saturation coefficient for mineralization of
phosphorus (nitrogen, silicon) from unavailable
to available compartments in the water column
(mg A/1)

Half-saturation concentration of total
phytoplankton for herbivorous zooplankton grazing
                                  83

-------
                (mg/1)

KZ2SAT(K2)      Half-saturation concentration of herbivorous
                zooplankton for carnivorous zooplankton grazing
                (mg/1)

Kl              Summation index for number of herbivorous
                zooplankton

K2              Summation index for number of carnivorous
                zooplankton

K1P(L)          Coefficient in phytoplankton phosphorus (nitrogen,
(K1N(L),        silicon) uptake mechanism (dimensionless)
KIS(L))

K2P(L)          Coefficient in phytoplankton phosphorus (nitrogen,
(K2N(L),        silicon) uptake mechanism (dimensionless)
K2S(L))

L               Summation index for number of phytoplankton

M               Index for sequence number of sediment resuspension
                event

N               Summation index for number of water column spatial
                segments

NASPEC          Total number of phytoplankton types

NBDNTS          Number of boundary nutrient concentrations

NDITMS          Total number of diatom phytoplankton

NEQS1           Number of state variables per spatial segment
                in loop  1

NEQS2           Number of state variables per spatial segment
                in loop  2

NEVNTS          Total number of sediment resuspension events

NFIX(L)         Array for indicating nitrogen-fixing phytoplankton
                types

NFXLDS          Number of external point loadings

NMIN1           Lower limit of array element range  for  state
                variables in loop  1  (NMIN1 =* 1)

NMIN2           Lower limit of array element range  for  state
                variables in loop  2  (NMIN2 - NMAX1  +  1)

NMAX1           Upper limit of array element range  for  state

                                 84

-------
                variables in loop 1 (NMAX1 - NSGMTS*NEQS1)
NMAX2


NN2BGS


NSGITS

NSPARS


NTPARS

NZSPEC

NZ1SPC

NZ2SPC

ONOFF

PCA(L.N)
(NCA(L.N),
SCA(L.N))

PHOTO

PK1(L)
(NK1(L),
SKl(L))

PPI(N)


PPR(N)

PSA(L,N)
(NSA(L,N),
SSA(L,N))

PSAMIN(L)
(NSAMIN(L),
SSAMIN(L))

PSZ1
(NSZ1)

PSZ2
(NSZ2)

P2DETH(K2)
Upper limit of array element range for state
variables in loop 2 (NMAX2 - NMAX1 + NSGMTS*NEQS2)

Total number of nitrogen-fixing blue green
phytoplankton

Total number of water column spatial segments

Number of environmental forcing parameters per
spatial segment

Total number of environmental forcing parameters

Total number of zooplankton

Total number of herbivorous zooplankton

Total number of carnivorous zooplankton

Switch for sediment resuspension (dimensionless)

Intracellular concentration of available
phosphorus (nitrogen, silicon) (mg/1)


Photoperiod (dimensionless)

Affinity coefficient in phosphorus (nitrogen,
silicon) uptake mechanism (liters/ing)
Integral of primary production rate
(mg C/meter**3)

Primary production rate (mg C/meter**3/hr)

Internal phosphorus (nitrogen, silicon) storage
(mg/mg A)
Minimum cell quota for phosphorus (nitrogen,
silicon) storage  (mg/mg A)
Phosphorus  (nitrogen) stoichiometry for
herbivorous zooplankton  (mg/mg Z)

Phosphorus  (nitrogen) stoichiometry for
carnivorous zooplankton  (mg/mg Z)

Rate coefficient for second-order predation on
carnivorous zooplankton  (1/mg-day)
                                  85

-------
Q(N,J)

RADINC(N)

RADSAT(L)


RAGZD(L,N)


RATE1(18,7),
RATE2U6.9)

RDCMP(L)


RECIN(NTPARS)


RLIGHT(L.N)
RPSINK(N)
(RNSINK(N),
RSSINK(N))

RRESP(L)
RTUP
(RTUN,
RTUS)

RZl(Kl.N)


RZ1GZD(K1,N)


RZIMAX(KI)


RZIPEX(KI.N)
(RZINEX(KI.N),
RZISEX(KI.N))

RZ2(K2,N)


RZ2GZD(K2,N)


RZ2MAX(K2)
Advective flow (liters/day)

Incident solar radiation (langleys/day)

Saturation light intensity for phytoplankton
growth (langleys/day)

Rate at which a phytoplankton is grazed by
herbivorous zooplankton (mg/l-day)

Dummy arrays containing values for components of
total derivatives

Rate coefficient for phytoplankton decomposition
(I/day)

Array containing values for all environmental
forcing parameters for current Julian day

Light reduction factor for phytoplankton growth
rate (dimensionless)

Flux rate of total phosphorus (nitrogen, silicon
from water column to sediment (kg/day)
Rate coefficient for phytoplankton respiration
(I/day)

Rate coefficient for mineralization of phosphoru
(nitrogen, silicon) from unavailable to availabl
compartments in the water column (I/day)

Herbivorous zooplankton specific growth rate
(I/day)

Rate at which herbivorous zooplankton are grazed
by carnivorous zooplankton (mg/l-day)

Herbivorous zooplankton maximum growth rate
(I/day)

Rate at which phosphorus (nitrogen, silicon) is
excreted  to the unavailable compartment by
herbivorous zooplankton (mg/mg Z-day)

Carnivorous zooplankton specific growth rate
(I/day)

Carnivorous zooplankton predatory death rate
(I/day)

Carnivorous zooplankton maximum growth rate
                                  86

-------
                (I/day)
RZ2PEX(K2,N)
(RZ2NEX(K2,N),
RZ2SEX(K2,N))

R1P(L,N)
(RIN(L.N),
RIS(L.N))

R1PM(L)
(R1NM(L),
R1SM(L))

R2PS(L,N)
(R2NS(L,N),
R2SS(L,N))

SECCHI(N)

SEDP(N)
(SEDN(N),
SEDS(N))

SPGR(L.N)

T(N)

TBASAR(L)


TBASEA(L)


TBASE1
TBASE2


TBASE3


TBASE4


TBASZl(Kl)


TBASZ2(K2)


TCROP(N)
Rate at which phosphorus (nitrogen, silicon) is
excreted to the unavailable compartment by
carnivorous zooplankton (mg/mg Z-day)

Specific phosphorus (nitrogen, silicon) uptake
rate (mg/mg A-day)
Maximum phosphorus (nitrogen, silicon) uptake
rate (I/day)
Specific phytoplankton growth rate as a function
of phosphorus (nitrogen, silicon) limitation
(I/day)

Secchi depth (meters)

Total phosphorus (nitrogen, silicon) concentration
in the sediment (mg/1)
Phytoplankton specific growth rate (I/day)

Water temperature (degrees Celsius)

Temperature coefficient for phytoplankton
respiration (dimensionless)

Temperature coefficient for phytoplankton growth
and nutrient uptake (dimensionless)

Temperature coefficient for nutrient
mineralization in the water column
(dimensionless)

Temperature coefficient for phytoplankton
decomposition (dimensionless)

Temperature coefficient for zooplankton
respiration (dimensionless)

Temperature coefficient for nutrient
mineralization in the sediment (dimensionless)

Temperature coefficient for herbivorous
zooplankton growth (dimensionless)

Temperature coefficient for carnivorous
zooplankton growth (dimensionless)

Total phytoplankton concentration (mg/1)

                 87

-------
TIME

TIMEMX

TPNET(N)
(TNNET(N),
TSNET(N))

TPLOT


TPRINT
TPSUNK(N)
(TNSUNK(N),
TSSUNK(N))

TSTART(M)
TSTOP(M)

TUP(l.N)
(TUN(l.N),
TUS(l.N))

TUPSNK
(TUNSNK,
TUSSNK)

TWGTA(L,N)


TWGTAD(N)


TWGTAR(L.N)


TWGTM(N)


TWGTSD(N)


TWGTZR(N)


TWGTZl(Kl.N)


TWGTZ2(K2,N)
Current time for model simulation (Julian days)

Maximum time for model simulation (Julian days)

Integral of net phosphorus (nitrogen, silicon)
flux from water column to sediment (kg)
Time interval for writing to graphics output
file, PLOTOUT (Julian days)

Time interval for writing to tabular output
file, TABOUT (Julian days)

Integral of total phosphorus (nitrogen, silicon)
flux rate from water column to sediment (kg)
Julian day for start of sediment resuspension
event

Julian day for end of sediment resuspension event

Total unavailable phosphorus (nitrogen, silicon)
concentration in the water column (mg/1)
Apparent net settling velocity for total
unavailable phosphorus (nitrogen, silicon) in the
water column (meters/day)

Temperature reduction factor for phytoplankton
growth and nutrient uptake (dimensionless)

Temperature reduction factor for phytoplankton
decomposition (dimensionless)

Temperature reduction factor for phytoplankton
respiration (dimensionless)

Temperature reduction factor for nutrient
mineralization in the water column (dimensionless)

Temperature reduction factor for nutrient
mineralization in the sediment (dimensionless)

Temperature reduction factor for ssooplankton
respiration (dimensionless)

Temperature reduction factor for herbivorous
zooplankton growth  (dimensionless)

Temperature reduction factor for carnivorous
                                  88

-------
V(N)

VOLSED(N)

VPLONG(N)
(VNLONG(N),
VSLONG(N))

VUPP(N)
(VUPN(N),
VUPS(N))

WAVP(N)
(WAVN(N),
WAVS(N))

WAVPA(N)
(WAVNA(N),
WAVSA(N))

WAVPS(N)
(WAVNS(N),
WAVSS(N))

WAVPT(N)
(WAVNT(N),
WAVST(N))

WCL(N)

WCLA(N)

WCLS(N)

WCLT(N)

WNH3(N)


WN03(N)


WTKN(N)


WTP(N)


WTS(N)


WTUP(N)
zooplankton growth (dimensionless)

Volume of water column spatial segment (liters)

Volume of sediment spatial segment (liters)

Long term apparent net loss velocity for total
phosphorus (nitrogen, silicon) from surficial
sediment to deep sediment layer (meters/day)

Apparent net resuspension velocity for total
phosphorus (nitrogen, silicon) from the sediment
to the water column (meters/day)

Total external loading rate for dissolved
available phosphorus (nitrogen, silicon) (kg/day)
Atmospheric loading rate for dissolved available
phosphorus (nitrogen, silicon) (kg/day)
Sediment loading rate for dissolved available
phosphorus (nitrogen, silicon) (kg/day)
Tributary loading rate for dissolved available
phosphorus (nitrogen, silicon) (kg/day)
Total external loading rate for chloride (kg/day)

Atmospheric loading rate for chloride (kg/day)

Sediment loading rate for chloride (kg/day)

Tributary loading rate for chloride (kg/day)

Tributary loading rate for ammonia nitrogen
(kg/day)

Tributary loading rate for nitrate nitrogen
(kg/day)

Tributary loading rate for total kjeldahl
nitrogen (kg/day)

Tributary loading rate for total phosphorus
(kg/day)

Tributary loading rate for total silicon
(kg/day)

Total external loading rate for total unavailable

                 89

-------
(WTUN(N),
WTUS(N))

WTUPA(N)
(WTUNA(N),
WTUSA(N))

WTUPS(N)
(WTUNS(N),
WTUSS(N))

WTUPT(N)
(WTUNT(N),
WTUST(N))

XTINCO(N)


Y(NMAX2)


YDUM(NMAX2)


Z1(K1,N)

ZlASSM(Kl)


Z1DUM(K2,K1,N)


ZlEFF(Kl.L)


ZlKDUM(Kl.N)



ZlLSSl(Kl.N)


Z12MIN(K2)



Z2(K2,N)

Z2ASSM(K2)


Z2EFF(K2,K1)
phosphorus (nitrogen, silicon) (kg/day)
Atmospheric loading rate for total unavailable
phosphorus (nitrogen, silicon) (kg/day)
Sediment loading rate for total unavailable
phosphorus (nitrogen, silicon) (kg/day)
Tributary loading rate for total unavailable
phosphorus (nitrogen, silicon) (kg/day)
Water column light extinction coefficient
(I/meters)

Array containing current values of all state
variables

Dummy array containing temporary values of all
state variables

Herbivorous zooplankton concentration (mg/1)

Herbivorous zooplankton assimilation efficiency
(dimensionless)

Minimum concentration of a herbivorous zooplankton
for carnivorous zooplankton grazing (mg/1)

Ingestion efficiency of herbivorous zooplankton
for a phytoplankton (dimensionless)

Effective half-saturation concentration of total
phytoplankton for herbivorous zooplankton grazing
(mg/1)

Herbivorous zooplankton specific respiration rate
(I/day)

Minimum concentration of total herbivorous
zooplankton for carnivorous zooplankton grazing
(mg/1)

Carnivorous zooplankton concentration (mg/1)

Carnivorous zooplankton assimilation efficiency
(dimensionless)

Ingestion efficiency of carnivorous zooplankton
for herbivorous zooplankton (dimensionless)
                                  90

-------
Z2KDUM(K2,N)    Effective half-saturation concentration of total
                herbivorous zooplankton for carnivorous zooplankton
                grazing (mg/1)

Z2LSS1(K2,N)    Carnivorous zooplankton specific respiration rate
                (I/day)

Z23MIN(K2)      Minimum concentration of carnivorous zooplankton
                for higher-order predation (mg/1)
Note:  The suffix "BD" denotes the boundary value of a variable.

       The suffix "X" denotes the value of a variable in I/O
       units, for those variables which involve conversions
       between I/O units and working units.

       The suffix "I" on a loading variable refers to the time
       integral of the variable, as opposed to the daily loading
       rate.

       All loading rates and loading integrals have I/O units
       of kg/day and kg, respectively.  Internal working units
       for these variables are mg/day and mg, respectively.
                                 91

-------
                           APPENDIX B

                    PROCESS KINETIC EQUATIONS
PHYTOPLANKTON

Nutrient Uptake:

R1P(L,N) - R1PM(L)*TWGTA(L,N)*(1./(1. + PK1(L)*PCA(L,N))
           -!./(!. + PK1(L)*AVP(1,N)))

     PCA(L.N) - K1P(L)*AVP(1,N)*EXP(K2P(L)*((PSA(L,,N)/PSAMIN(L))
                - 1.))

Growth:

R2PS(L,N) - GMAX(L)*TWGTA(L,N)*RLIGHT(L,N)*(PSA(L,N) - PSAMIN(L))/
            (KPCELL(L) + PSA(L,N) - PSAMIN(L))

     SPGR(L.N) - AMIN1(R2PS(L,N),R2NS(L,N),R2SS(L,N))

     RLIGHT(L.N) - 2.718*PHOTO*(EXP(-ALPHA1) - EXP(-ALPHAO))/
                   (XTINCO(N)*DEPTH(N))

     ALPHAO - RADINC(N)/(RADSAT(L)*PHOTO)

     ALPHA1 - ALPHAO*EXP(-XTINCO*DEPTH(N))

     XTINCO(N) - 1.9/SECCHI(N)

Respiration:

ALOSS1(L,N) - RRESP(L)*TWGTAR(L,N)

Decomposition:

ALOSS2(L,N) - RDCMP(L)*TWGTAD(N)*TCROP(N)/
              (TCROP(N) -I-  (KDCMP(L)*SPGR(L,N)))

Settling:

ALOSS3(L,N) - ASINK(L)/DEPTH(N)


HERBIVOROUS ZOOPLANKTON

Growth:

RZ1(K1,N)  - RZ1MAX(K1)*TWGTZ1(K1,N)*Z1ASSM(K1)*SUM2Z1(K1,N)/
             (ZlKDUM(Kl.N)  + SUM2Z1(K1,N))

     SUM2Z1(K1,N)  ml  Z1EFF(K1,L)*A(L,N)  -AZMIN(Kl)


                                  92

-------
     ZlKDUM(Kl.N) - SUM2Z1(K1,N)*KZ1SAT(K1)/  Y Z1EFF(K1,L)*A(L,N)
                                              b
Rate at which phytoplankton type L is grazed:

RAGZD(L.N) -  I RZ1MAX(K1)*TWGTZ1(K1,N)*Z1(K1,N)*(Z1EFF(K1,L)*
              Kl   A(L,N) - ADUM(K1,L,N))/(Z1KDUM(K1,N) + SUM2Z1(K1,N))

     ADUM(K1,L,N) - Z1EFF(K1,L)*A(L,N)*AZMIN(K1)/
                      £ Z1EFF(K1,L)*A(L,N)

Rate at which phosphorus is excreted to the unavailable
compartment in the water column:

RZIPEX(KI.N) - RZ1MAX(K1)*TWGTZ1(K1,N)*(1. - ZlASSM(Kl))*
               SUMZ1P(K1,N)/(Z1KDUM(K1,N) -I- SUM2Z1(K1 ,N) )

     SUMZIP(KI.N) -  I (Z1EFF(K1,L)*A(L,N) - ADUM(K1,L,N))*
                    L PSAMIN(L)

Rate at which silicon is excreted to the unavailable
compartment in the water column:

RZISEX(KI.N) - RZ1MAX(K1)*TWGTZ1(K1,N)*SUMZ1S(K1,N)/
               (ZIKDUM(K1,N) +  SUM2Z1(K1,N))

     SUMZIS(KI.N) -   I (Z1EFF(K1,L)*A(L,N) - ADUM(K1,L,N))*
                      L  SSAMIN(L)

Death (respiration) rate:

ZlLSSl(Kl.N) - B1DETH(K1)*TWGTZR(N)
CARNIVOROUS ZOOPLANKTON

Growth:

RZ2(K2,N7) - RZ2MAX(K2)*TWGTZ2(K2,N)*Z2ASSM(K2)*SUM2Z2(K2,N)/
            (22KDUM(K2,N) -t-  SUM2Z2(K2,N))

     SUM2Z2(K2,N) -   7 Z2EFF(K2,K1)*Z1(K1,N) - Z12MIN(K2)

     Z2KDUM(K2,N) -  SUM2Z2(K2,N)*KZ2SAT(K2)/
                      I Z2EFF(K2,K1)*Z1(K1,N)

Rate at which herbivorous zooplankton type Kl is grazed:

RZIGZD(KI.N) -  I RZ2MAX(K2)*TWGTZ2(K2,N)*Z2(K2,N)*
              K2 (Z2EFF(K2,K1)*Z1(K1,N) - Z1DUM(K2,K1,N))/
                 (Z2KDUM(K2,N) +  SUM2Z2(K2,N))

     Z1DUM(K2,K1,N)  = Z2EFF(K2,K1)*Z1(K1,N)*Z12MIN(K2)/
                       I Z2EFF(K2,K1)*Z1(K1,N)
                      Kl
                                  93

-------
Rate at which phosphorus is excreted to the unavailable
compartment in the water column:
RZ2PEX(K2,N)


     SUMZ2P(K2,N)
               R22MAX(K2)*TWGTZ2(K2,N)*( 1 . - Z2ASSM(K2))*
               SUMZ2P(K2,N)/(Z2KDUM(K2,N) + SUM2Z2(K2,N))
                    I  (Z2EFF(K2,K1)*Z1(K1,N) - Z1DUM(K2 ,
                    Kl  PSZ1
No silicon is excreted to the unavailable compartment by
carnivorous zooplankton because no silicon is ingested by
grazing on herbivorous zooplankton.

Death (respiration) rate:

Z2LSS1(K2,N) - B2DETH(K2)*TWGTZR(N)

Second-order predatory death rate:

RZ2GZD(K2,N) » P2DETH(K2)*Z2(N)*TWGTZ2(K2,N)

               IF:  Z2(K2,N)  >  Z23MIN(K2)
NUTRIENTS (Water Column)

Available nutrient forms:

Phytoplankton uptake

Recycle from phytoplankton
respiration losses
Recycle  from phytoplankton
decomposition  losses
Recycle  from herbivorous
zooplankton excretion

Mineralization  from
unavailable compartment
External  loading

Mineralization from
sediment  compartment

Unavailable  nutrient  forms:

Recycle from phytoplankton
respiration  losses
                               I R1P(L,N)*A(L,N)
                               L

                               I A(L,N)*(PSA(L,N)  -  PSAKIN(L))*
                               L  ALOSSl(L.N)


                               I A(L,N)*(PSA(L,N)  -  PSAMIN(L))*
                               L  ALOSS2(L,N)


                               I  (PSA(L.N)  - PSAMIN(L))*RAGZD(L,N)
                               L

                             RTUP*TWGTM(N)*TCROP(N)*TUP(1,N)/
                             (TCROP(N)  - KRTUP)

                             WAVP(N)/V(N)
                              KRSEDP(N)*TWGTSD(N)*VOLSED(N)*SEDP(N")
                               I A(L,N)*PSAMIN(L)*ALOSS1(L,N)
                               L

-------
Recycle from phytoplankton
decomposition losses

Recycle from herbivorous
zooplankton excretion

Recycle from herbivorous
zooplankton respiration

Recycle from carnivorous
zooplankton excretion

Recycle from carnivorous
zooplankton respiration

Mineralization to
available compartment
Settling:

External loading

External loading from
sediment resuspension
-   £A(L,N)*PSAMIN(L)*ALOSS2(L,N)
   L

-   £RZ1PEX(K1,N)*Z1(K1,N)
   Kl

-   I Z1LSS1(K1,N)*Z1(K1,N)*PSZ1
   Kl

-   £RZ2PEX(K2,N)*Z2(K2,N)
   K2

-   I Z2LSS1(K2,N)*Z2(K2,N)*PSZ2
   K2

- RTUP*TWGTM(N)*TCROP(N)*TUP(1>N)/
  (TCROP(N) - KRTUP)

- TUPSNK*TUP(1,N)/DEPTH(N)

- WTUP(N)/V(N)
- ONOFF*VUPP(N)*VOLSED(N)*SEDP(N)/
  DEPTHS(N)
     ONOFF » 1      wind speed > threshold for resuspension
     ONOFF » 0      wind speed < threshold for resuspension
NUTRIENTS (Sediment)

Flux from phytoplankton
settling

Flux from settling of
unavailable nutrient
forms

Loss to resuspension
Long term loss to
deep sediment

Loss to mineralization
to water column
  V(N)* I ALOSS3(L,N)*A(L,N)*PSA(L,N)
        L
  V(N)*TUPSNK*TUP( 1,N)/DEPTH(N)

  ONOFF*VUPP(N)*VOLSED(N)*SEDP(N)/
  DEPTHS(N)
  VPLONG(N)*SEDP(N)/DEPTHS(N)
  KRSEDP(N)*TWGTSD(N)*VOLSED(N)*SEDP(N)
TEMPERATURE COEFFICIENTS

TWGTA(L,N)   - TBASEA(L)**(T(N) - 20.)

TWGTAR(L,N)  - TBASAR(L)**(T(N) - 20.)

                                 95

-------
TWGTAD(N)    - TBASE2**(T(N) - 20.)




TWGTZl(Kl.N) « TBASZ1(K1)**(T(N) - 20.)




TWGTZR(N)    - TBASE3**(T(N) - 20.)




TWGTZ2(K2,N) - TBASZ2(K2)**(T(N) - 20.)




TWGTM(N)     - TBASE1**(T(N) - 20.)




TWGTSD(N)    - TBASE4**(T(N) -20.)
                                  96

-------
                                                        APPENDIX C

                                         MODEL OUTPUT FOR SIMPLIFIED LAKE EUNPL£


                                           i	mi  RUNCON INPUT  IHHIIUI
NS6MTS »
INTNPJE *
SE9CNT
1
SEGMENT
1
1
1
2
VOLUME (**»3)
0.806E+10
INTEWCnOM
1
2

DEPTH («)
0.383£-K>1
INTEMCHNB SEENENT
1
1
SEDIMENT SESNECT  VOLUME (N»t3)     DEPTH (»
If XLDS *
WISC  »
NflSPE >    2
NDITW »    1
NN2B5S *    0

  PHTTO     ISILCfi     l«l
    1         1         0
    200

fCSPtC *    2
NZiSPC >    1
NZ25PC *    1

HERB ZOO    PHTTD     IZlPflR
    1         1         1
    1         2         1

CflW ZOO  HERB ZOO    IZSPflR
    1         1         1
ratn •
TPLDT  »
TPRIMT »
ISKIP  "
0.500E-KI1
0.500E+C1
   1
HI *     0.2500E-01
H2 *     0.12506+00
                                                        97

-------
                                           minim  COEFF INPUT  iiiniiiii
TWSE1 *
TBflSES *
TBflfiG *
7WE*»
             0.1070E+01
             0.1070E+01
             (UOTOfKU
flVNFtt ' 0.0006+00
 PHYTO
   1
   2
                  GHtt
               0.210&H)!
  TBflSEB
0.106E+01
                                             TBflSW
                                           0.10&01
                                           0.109E+01
 PHYTO
   1
 PHYTO
   1
   2

 PHYTO
   1

 PHYTO
   1
R1PH
o.iooe-01
0. 2006-01
PK1
0.226E+02
0,22E&H)e
KIP
0.1546+00
0,15^+00
K2P
0.1506+01
0.30C6+00
PSflMIN
O.SOOE-03
0.1CCE-02
KPCELL
0.500EHB
0.100E-06
   Rim
0,2006+00
0.2006+00

   Rl»
0.300tK»
               0.100&KX)
               0.500E-01
0.107E+02
(UOTtKE

   9U
O.S3A6+01

   RDCTP
0.2506+00
0.5006+00
                                               KIN
                                            0.239&KX)
                                            0.239tK»

                                               K1S
                                            0.239E-KJO

                                               KDCMP
                                            0.200E-KJ3
                                            0.200E+03
                                                             K2M
                                                          0.445E-KX)
                                                          O.U5E-KW

                                                             K2S
                                                          0.445E+00

                                                            RflOGfiT
                                                                          NSRMIN
                                                                        0.100E-01
                                                                        0.200E-01

                                                                          SSflMIN
                                                                        0.350E-01

                                                                           RRESP
                                                                        0.300E-01
                                                                        0.300E-01
                                                            KNCELL
                                                          0. 100E-01
                                                          O.aOOE-01
                                                          0.3SOE-01
•E® ZOO         Z1ASSN         KIlSfiT
    1           O.SOO&KX)      0.10C€-H)1

-EHB ZOO         R21KU         TBP6Z1
    1           O.S50E+00      0.107E+01

«8 ZOO    PHYTO       Z1EFF
    1         1      0.1006+01
    1         2      0.500E-KX)
                                                MHIN
                                             0.200E-MX)
                                                              B1DETH
                                                            0.300E-01
CMM ZOO
    1

cam zoo
    i
   ZZSSM
 0.6006+00

   RZ2MRI
 0.506*00
   KZ2SRT
 0.123E+00

   TBRSZ2
 0.107E-H)1
 CflW  ZOO  HERB ZOO
                        Z2EFF
                                               Z12MIN
                                             0.250E-01
                                                              BSOETH
                                                            0.300E-01
                                                                           P8DE7H
                                                                         0.100E-HJ1
                                                             Z23MIN
                                                           0.250EH31
                                                     98

-------
                   0. lOOE-HM
RTUP
0.3006-01
KRTUP
0. 100E-HM
TUP9K
0.150E-HX)
RTUN
0.200E-01
KRTUN
0.iOOE-M)l
TUNS*
0. 130E+00
RUB
0.200E-01
KRTUS
0.100E+01
TUSSNK
0.150E+00
SEDIKMT SEEMENT
       1

3E3IICNT SE9CNT
       1

SEDIfiff SE9OCT
       1
   WPP
0.173E-03

  KRSEDP
O.OOOE400

  VPUMB
0.82E-09
   VUPN
0.114E-03

  KRSEDN
O.OOOE+00
0.822E-05
   VUPS
0.173E-03

  KRSEDS
0.625E-03

  VSUMB
0.822E-05
NEVNTS *
TSTflRT
98.
103.
111.
118.
ia.
\2L
129.
122.
1>.
158.
161.
184.
201.
223.
238.
243.
254.
258.
267.
272.
274,
277.
294,
309.
TSTTP
99.
103.
Ill
119.
122.
127.
130.
133.
135.
160.
162.
182.
202.
224.
239.
244.
255.
259.
268.
271
275.
279.
296.
310.
                                         minim  INIOW INPUT  iiiiiniii
                                                    99

-------
SE9CNT      flVP
   1      0.539E-Oe

SEGMENT    PHYTO
   1         1
   1         2

SEGMENT  HERB ZOO
   1
1
SEGMENT  CAW ZOO
   1
1
                           HVH
                        0. l£fl£-K)l
                         0.894E-KX)
                         0.473E-01
    Zl
0.130E-OE

    Z2
0.312E-01
SE9CNT      SEDP
    1      0.120E-H)3

SEGMENT      UftVOfl
    1      0.499E+01
                            SEDN
                         0.136E-HH

                            uouua
                            w^n^
                             OVS
                          0.700E-KX)

                             PSA
                          0.125E-48
                          0.300E-02
                                     TUP
                                  0.131E-01

                                     NSfl
                                  0.350E-01
                                  0.700E-01
                              SEDS
                              UflVSfl
                           0.6ME-HK
                                     U7UPA
                                   0.122E-MS
   TUN
0.381E-01

   SSfl
0.105E+00
O.OOOe-MX)
   TIB
0.700E-HX)
   0.
0.220E+02
   VTUDfl
0.332E+03
   VTUSA
0.6B4E-HS
   UCLA
O.OOOE-KW
                                                          100

-------
                                        iiiiiiiiiiiiiiiiiiiniiiiiiiniiiiiiiiniiimii
                                        iiiiiiuiiiim    QflY  *    0.   iiiiiiiiiiuiiH
                                        iimmiiiiiiiiiiiiiiiiiiiiiiiiuiiiiiiiuiiiH
                                   iiiiiinii
                                  DAY
                                   0.
                           SEGMENT
                  1   iiiiiinii
IUPERRTURE     * 0.2906+00
LIGHT INTENSITY » 0.1006*03
XTINCCOEFF     » 0.1146+01

TDTflL PHYTO « 0.941E+00
TOTflL ZtB   = 0.323E-01
UATER
SEDIKNT
  WBL P
0.199E-01
0.1206+03
        TDTPLM
       0.135E+01
       0.136E+04
         TDTflL  S
       0.149E+01
       0.479E+03
        AVP
IC/L
N6/H5 TOT fWTTO
      0.128E+01

       SURPLUS P
       O.ttOE-03
       0.313E-03
PRIM PROD (WTE (MB m«3/HR)
INTESWL PRIM PROD RHTE (W C/W«3)
   AVS
0.700E+00

 SURPLUSN
 0.2476-01
 0.2636-01

 •0.1526+08
                              TUP
                           0.131E-01

                            SURPLUS S
                            0.&26EHD1
                            0.&63E-01
                              TUN
                           0.381E-01
                      TUB
                   0.700E+00
                      0.
                   0.220E+02
  PWTD
    1
    2

  PHYTO
    1
    2
 0.9946400
 0.473E-01

    SP6R
 0.549E-01
 0.342E-01
        0.350EXX)
        O.S02E-01

           BPI
        0.491E-01
           PSA
        0.12SE-02
        O.SOOE-OS

           R2PS
        0.5V9E-01
        0.383E-01
PSA/PSPMIN
0.250E-H)!
0.500E+01
0.&53E-01
0.342E-01
   NBA
0.250E-01
0.700E-01

   R2SS
0.610E-01
0.990E-KE
                                                     NSft/NSflMIN
                                                     0.250E+01
                                                     0.350E-H)1

                                                        TWBTB
                                                     0.317E+00
                                                     0.1B3E+00
   SSfi
0.105E+00
O.OOOE+00

  IUSHT
0.137E+00
0.145E-KX)
SSA/SSAMI
0.300E+01
O.OOOE-KX)
     ZOO
     1

CfiRN ZOO
     1
      Zl
  0.130E-02

      Z2
  0.312E-01
            RZ1
         0.416E-01

            RZ2
         O.OOOE+00
           Z1LSS1
         0.7S1E-OE

           Z2LSS1
         0.791E-02
   THBTZ1
 0.264EXX)

   TWBTZ2
 0.2&4E+00
                                                      LQPOINB5 (KG/DAY)
TRIBUTfWY
ATMOSPHERIC
SEDIKKT
   URVP
0.1106+04
0.499E+01
0.0006+00
   UfttEi
   WPTl^^
0.437E+05
0.737E+03
0.0006+00
                                     0.314E+05
                                     0.109E-H)5
OTUP
0.1236+04
0.122E+02
O.OOOE+00
tfTUN
0.1996+05
0.332E+03
O.OOOE+00
rfTUS
0.3146+05
0.&846+02
0.0006+00
ua
0.721E+06
0.0006+00
0.0006+00
                                                          101

-------
TDTflL
TRIBUTfWY
ATW5PHERIC
SEDIICNT
TDTflL
      0.1106+04
      0.4446+05
      0.4246+05      0.1246+04

       LDADIN6 INTESRflLS (KE)
                     0.2036+05
                                                                                              0.3155+05
                               0.7215+06
MVP
0.1106+04
0.4996+01
0.0006+00
0.1106+04
URVN
0. 4376+05
0.7376+03
0.0006+00
0.4446+05
MflVS
0.3146+05
0.6846+02
0.1096+05
0.4246+05
UTUP
0.1236+04
0.1226+02
0.0006+00
0.1246+04
kTUN
0:. ; 996+05
0^3326+03
0.0006+00
0,2036+05
U7U5
0.3146+05
0. 6846+08
0.0006+00
0.3155+05
UQ.
0.7216+06
0.0006+00
0.0006+00
0.7216+06
       RPSINK
     0.2895+04
       TPSU*
     0.2895+04
        TPfCT
     0.2896+04
      fMSINK
    0.1255+05
      TNSUTK
    0.123E-MH
       TMCT
    0.125E+05
      RSSIfK
      TSSUPK
    0.158E**
       T9CT
    0.147E-H36
                                                    PUM        DIFFUSIOM
SE9CNT     IKTIHflCTION     IHTESflCTING SE9ENT   (NwySEC)     (MH3/SED        PLPHR         flLPWIN
    1             1                  1           -0.176E+03      0.0006-KX)      0.100E-H31      0.500E-KW
    1             2                  1            0.176EK)3      0.0006-KX)      0.1006+01      0.5006+00
                                        niiiiiiii   9QUCMY VWLU6S   miiiiiit
        TPB)
     0.9996+01

        WPBD
     0.999E+00
        3VPBD
     0.9996+00

        flVWD
     0.2006+01
        TKMBO
     0.9996+01

        nvsao
     0.999E+00
       NQ3BO
     0.9996+00

       TWO
     O.S99E-H31
        MQBD
     0.999E+00
     0.6966+01
0.3996+01

   TUSBD
0.6996+01
   WSBD
0.9996+00

   QJD
0.9996+00
   QJD
0.9996+00
  PHYTO
    1
    2

 HERB ZOO
     1

 CARN ZOO
     1
0.9996+00
0.9996+00

    Z1BD
 0.9996+00

    Z2BO
 0.9996+00
   PSRBD
0.9996+00
0.9996+00
   NSW
0.9996+00
0.9996+00
   SSfVD
0.999E+00
0.9996+00
                                                        102

-------
                                        iimiiiiuiiiimiiiiimiumimmiiiiiiiH
                                        iiiiimiiiiui    DflY  «    5.   iiiiiiiiiiiiiin
                                        lllllimUlllllllllilllllllllMlllllillllllllH
                                   iiiiiiini   DAY =
                                                               SE9SNT =    1    iiiiiiini
TEWERP.TURE     * 0.4226+00
U8HT INTENSITY » 0.9596+02
XT!* COEFF     » 0.1026+01
TOTPL PHYTD
TOTBL ZOO
UflTER
SEDIICNT

        flVP
             0.103E+01
             0.301E-01

               TOTHL P
             0.197E-01
             0.1206+03
                               TDTPL N
                             0.137E+01
                             0.13SE+04
                TUTflLS
              0.1436+01
              0.4846+03
WA.
KB/16 TOT PHYTO
                   0.123E+01

                    SURPLUS ?
                    0.749EHB
                    0.729E-03
        AVS
     0.6S7E+00

      SURPLUS N
      0.256E-01
        TUP
     0.123E-01

      SURPLUS S
      0.395E-01
      0.8706-01
                                                                   TUN
                                                                0.451E-01
                                                                                 TIE
                                     d
                                  0.223E-H32
PRIX PROD WTE  (W C/N»*3/HR)
INTESRAL PRIM PROD RRH  (MB C/N»*3}
                                     0. 146E+02
  PWTD
    1
    2
              0,3606^00
              0.461EH31
   FCRDP
0.353WO
   PSfl
0.10GE-02
0.507E-08
PSR/PSWIN
0.213E+C1
0.5WE+01
                                                                            N5P
                                                                         0.340E-01
                                                                         0.&36E-01
NSft/NSWIN
0.3WE-K)!
0.318EXJ1
   ssa
0.126E-HX)
O.OOOE+00
0.361E-K)!
0.000€+00
  PHYTO
    1
    2
                  SPW
               0.541E-01
               a.369E-01
   BP1
0.243E+00
0.8296-02
   R2PS
0.541E-01
0.432E-01
   f06
0.721E-01
0.369E-01
                                                                            R2SS
                                                                         0.738E-01
                                                                         0.9906+02
   TU6TR
0.320E-HX)
0.185E+00
  H.IEHT
0.1S2E-HX)
0.162E-00
      ZOO
     1

 com zoo
     i
                    zi
                0.13Z-02

                    22
                0.2S6E-31
    RZ1
    RZ2
 O.OOOE-HX)
   Z1LSS1
 0.7386-02

   Z2LSS1
 0.7586-02
   TMBTZ1
 0.2S6E-HX)

   TU6T22
 0.2&6E-HX)
                                                      LDWINGS
 TRIBUTflRY
 flTNOSPHERIC
                         MVP
                      0.121E+04
                      0.4996+01
                      0.0006+00
                                        LJOLJW
                                        IPfVW
                         WIS
                      0.3486+05
       0.7376+03
       0.0006+00
                                                    0.111E+03
tJTUP
0.3096+04
0.1Z26+02
0. 0006+00
WTJN
0.1966+05
0.332E+03
0.0006+00
WTUS
0.3476+05
0.&&46+02
0.0006+00
UQ.
0.8S36+06
0.0006+00
0.0006+00
                                                          103

-------
TUTBL
                0.1ZSE+04
                                   0.5326+05
      0.4596+05      0,2106+04

       LO»I* IWTEHMLS  (KS)
                     0.1996+05
                                                                                             0.34flE+05
                               0.8936+06
TRIBUTfWY
ffn«BP*RIC
SEDIKKT
TOTPL
                0.5796+04
                0.2496+02
                0.0006+00
                0.5816+04
                                   0.2406+06

                                   0.0006+00
                       UTUP
      0.1656+06      0.8306+04
      0.3426+03      0.6106+02
                     0.0006+00
                     0.8366+04
                                                                                 win
                     0.1666+04
                     0.0006+00
                   tfTUS
                0.1656+06
                0.3426+03
                0.0006+00
                0.1666+06
                                                                                                         UQ.
                0.0006+00
                0.0006+00
                0.4046+07
  RPSINC
0.2716+04
  TPSMt
0.1406+05
   TPN6T
0.1406+05
                     RNSIfft
                   0.1416+05
                     TMBUNt
                                   RSSUK
                                 0.1476+06
                      TMCT
                                 0.7696+06
                                    T9CT
                                 0.7146+06
                                                  FLOW        DIFFUSION
SE9ENT     INTEHCTICM     INIUKCTINB SEEKNT   (NH3/SED     (MM3/SED
   1            1                  1           -0.17EE+03      0.0006+00
   1            2                  1            0.17EE403      O.OOOE+00
                                                                       0.100E-+01
                                                                       0.1006+01
                                                                                             flLPHAIN
                                                                                           0.5006+00
                                                                                           0.500E+00
                                        iiiiuiiii   BOMARY VRLiES   iiiiiiini
        TPGO
                 WPBD
               0. 993E-KX)
                                    TXMD
                                 0.999E+01
       NQ38D
     0,9996+00
       IK8D
     0.9996+00
                                                                             0.9996+01
                 avsso
              0.9996+00
                 QJO
              0.999E+00
        3VPBO
     0.999E+00
                 WICD
                                    avsso
                                  0.9996*00
        TUPBD
     O.S99&01
       rueo
     0,£98E+01
   TIJSK)
0.699E+01
   OJO
0. 9996+00
  PHYTD
    1
    2
      ZOO
     1

 BUM ZOO
     1
          0.999E+00
          0.999E+00

              ZIBO
           0.9996+00

              Z2BD
           0.9996+00
                                PSPff
                             0.9996+00
                             0.999E+00
   NSflBD
0.9996+00
0.9996+00
   SSAEO
0,9996+00
0,9996+00
                                                         104

-------
                                                        APPDOII 3

                                       MODEL OUTPUT FOR SIMPLIFIED EfflfiYMENT EXflNPLE


                                           iiiiiiiiii  RJCON  INPUT  IIHIIIIII
NSSTTS «
IHTMW «
SEGMENT
1
SEOENT
1
1
SEDIMENT
1
2
VOLUME (Mt»3)
0.806E+10
INTERflCTION
1
2

DEPTH (M)
0.5B3E-K)!
INTERflCTINB SEGMENT
1
1
SC9CNT VOLUME (M**3) DEPTH (N)
1 0. 138E+09 0. 100E-HX)
NBDKTS =    8
CRLDS =    8
NMISC  =    3

NftS1€C =    2
WITMS =    1
NN286S =    0

  PHYTO     ISIU»
    1         1
    2         0

NZSPEC *    2
NZ1SPC «    1
NZ2SPC =    1
 HERB ZOO
    1
    i
WYTQ
  1
  2
CflRN ZOO  HERB ZOO
    1         1
mm
  i
  i
IZ2PM
  i
       *      0.500E-H)!
TPLDT  s      0.500E+01
TPRIMT »      O.SOOE-HJI
ISKIP  =         o

HI «     0.2300E-01
HE =     0.1250E+00
                                                       105

-------
                                       niiiiiiii  COEFF INPUT  iiiiiinii
TBflSEl *
TBflS62 '
TBflSC *
TBflSE* «
jwrix » o.
PHYTD
1
2
PHYTD
1
2
PHYTD
1
2
PHYTO
1
PHYTO
1
2
*RB ZOO
1
t€RB ZOO
1
^€RB ZOO
I
1
CflRN ZOO
1
CflRN ZOO
1
0. 10706+01
0, 10706+01
0. 10706+01
0006+00
SftU
0.2106+01
0. 1806+01
R1PH
0.1006-01
0.2006-01
R1NM
0.2006+00
0.2006+00
R191
0.5006*00
0,1006*00
0.5006-01
Z1ASSM
0.6006+00
RZlHftt
0.5506+00

TBflSER
0.106E+01
0.10X+01
PHI
0.22EE+02
0.2E6E+02
0.1076+08
0.107E+02
SKI
RDOP
0.2506+00
0. 5006+00
K21SBT
0. 1006+01
TBBSZ1
0. 107E+01

TBflSftR
0. 1066+01
0. 1096+01
KIP
0.1546+00
0.1546+00
KIN
0.23S6+00
0.2336+00
K1S
0.2396+00
KDDf>
0.2006+03
0.2006+03
AZMIN
0.2006+00



K2P PSPHIN
0.1506+01 0.5006H)3
0.3006+00 0.1006-02
K2N NSfMIN
0. 445E+00 0. 1006-01
0.445E+00 0.2006-01
K2S SSWIM
0.445E+00 0.3506H3I1
RflDSfiT RRESP
0.1006+03 0.300E-
-------
                   0.100E+01
   RTUP
0.200E-01
    0.1006+01

       TUP9K
    0.1506400
                      RTUN
                   0.200E-01
              0.1006+01

                TUSK
              0.1506+00
   RTUS
0.200E-01

   KRTUS
o. looE+oi

  TUS9K
0.150E+00
SEDIICNT SESCNT
       1

SEDIOOT SEEKNT
       1

SEDI(€NT SE9CCT
       1
NEVHTS »   24
TSTftRT
98.
103.
ill.
118.
121.
12S.
129.
12.
13A.
158.
161.
184.
301.
223.
238.
241
34.
253.
267.
272.
274.
277.
234.
309.
TSTOP
99.
105.
Ill
119.
122.
127.
130.
131
135.
1BO.
162.
185.
202.
224.
239.
244.
255.
259.
2S8.
271
275.
279.
296.
310.
                 VUPP
              0.173E-03

                KRSEDP
              O.OOOE400

                VPUM6
              0.822E-05
   vum
0.114EHJ3

  KRSB9N
O.OOOE-KM

  VNJI6
0.322E-C5
   'APS
0.173E-03

  KJSEDS
  VSLON6
0.822E-05
                                          liiiniiii   IN1CON INPUT  "mum
                                                   107

-------
SEGMENT
1
SEGMENT
1
1
AVP
0.5396-02
PHYTD
1
Z
AVN
0. 12BE+01
A
0.8946+00
0.473E-01
AVS
0.7006+00
PSA
0.125E-02
0. 5006-02
TUP
0. 131E-01
NSfl
0.3506-01
0.7006-01
TUN
o.3aiE-oi
ssa
0.105E+00
0.0006+00
TIB
0. 7006+00



a
0.2206+02



SEGMENT  HERB ZOO
   1
1
SEGMENT CflW ZOO
   1
1
    Zl
0.1306-02

    Z2
0.312E-01
SEGMENT      SEDP
   1     0.1206+03

SEGMENT      UflVPft
   1     0.499E+01
                           SEW
                        0.12&KH
                        0.737E-H)3
   SEDS
0.4796+03

   HPVSfl
                                           WTUPfl
                                        0.122E-KC
                                                                      UTIMR
                                                                 UTUSA
                                                              0.6ME-0£
   UCLA
0.0006+00
                                                        108

-------
                                        iiiiiiiiiniiiMiimiiiiiiumiiiimiiiiinii
                                        iiiiiuiiiiiui   DAY =    0.   imiiiiiiiiiui
                                        iiiiiiiiiiiiiiiniiiniiiniiimiiimiiiimii
                                   iniiiiiii
                                  DflY =    0.
                                  SEBCNT =
                                                                               iiimiiii
TEHPERftTURE    * 0.a90E+00
HOT INTENSITY » 0.100E+03
CTINC COEFF    »0.ii4E+Ol
TDTflL PHYTO
TOTflL ZOO
0.941E+00
0.32SE-01
UATEH
SEDIfcNT
  TOTRL P
0.199E-01
0.1EOE+03
                              TOTflLN
0.12EE-KH
  TUTRL S
0.149E+01
0.479E+03
        flVP
     0.53SEHB
*/L
H6/N6TOT PHYTO
       SURPLUS P
       0.a60E-03
       0.913E-03
         3VS
      0.700&KX)

       SURPLUS N
       0.263EH31
         TUP
      0.131E-01

       SURPLUS S
       0.&2GE-01
       0.&6SE-01
                                                    TIM
                                                 0.381E-01
                      TUB
                   0.700E-HX)
                      CL
                   0.220E-KS
     PROD RATE  (« C/Mt*3/HR)
INTEBRflL PRIM PRO) MTE (ffi
 PHYTO
   1
 PHYTD
   1
   a
 0.473E-01

    SP6R
 0.5WE-01
 0.342E-01
    FOW
 0.350&KX)
 0.508EH)!

    BP1
 0.491E-01
 0.1S3EHK
    PSfl
 0.125EHK
 0.5006-02

    REPS
 0.54SE-01
 0.383E-01
PSA/PSAMIN
0.250E+01
0.500E-K)!

   f&NS
0.6SZ-01
0.342E-01
   NBA
0.330E-01
0.70C€-01

   RgSS
0.610E-01
0.990€+08
0.350E+01
0.350E-K)i

   TWTfi
0.317E-HX)
0.1S3E+00
   SSA
0.105E-KX3
O.OOOE+00

  RUSH!
0.137E+00
0.145E-KX)
SSA/SSflW
0.300E-K)
O.OOOE-KH
     ZOO
    1

CARN ZOO
    1
      Zl
  0.130E-02

      Z2
  0.31Z-01
     RZ1
  O.M6EH)!

     R22
  O.OOOE-M30
    Z1LSS1
  0.791E-OE

    Z2LSS1
   TWBT21
 0.264EXX)

   THBTZ2
 0.2&4E-HX)
                                               »»»» LOMINK (KS/DflY)
TRIBUTfWY
UfiVP
0.110E-KH
0. 499E-K)!
O.OOOE+00
uryfcj
I^WTT^
0.437E+05
0.737E+03
O.OOOE+00
»vs
0.324E-KJ5
0.584E+02
0.109E-H35
tfTUP
0.123E-HH
0.122E-MK
O.OOOE-KW
WTUN
0.199E-KS
0.332E+03
O.OOOE-KX)
UTU5
0.314E-HS
0.6WE-KJ8
o.oooe-KX)
Ml
0. 721E-KI6
O.OOOE-HX)
O.OOOE-HX)
                                                        109

-------
TOTflL
    0.110E+04
       O.H4E+05
                        0.124E-MM

           LOADINB  INTEBRflLS (KB)
0.203E+05
0.315E+05
                                                                                                            0.721E+06
TRIBUTARY
ftTMOQfll^rBT^
n i nvwrT^Ri ^
SEDIKNT
TOTAL
RPSINK
TPSUNK
0.289E+04
UAVP
O.ilOE-KH
0.499E-K)1
O.OOOE-KX)
0.110E+04
RNSINK
0.123E+05
TN9JK
0.123E-KS
TM€T
0.123E-K6
UAVM
0.437E-KS
0.737E+03
O.OOOE-HX)
0.444E-MM
RSSIW
(XiSBE^G
TSSUTK
0.156E+06
T9€T
O.U7E+06
SEBNENT INTERACTION IKTEWCTINB SE9CNT
1 1 1
1 2 1
UQVS tfTUP UTIM MTUS
0. 314E+05 0. 123E-KH 0. 199{:-K)5 0.314E+05
O.S84E-Ke 0. 122E+02 0.332£-K)3 0.684E-Ke
0.109E-KS O.OOOE-KX) O.OOOE+00 O.OOOE-KX)
0.42«+05 0.i2«-KH 0.203E-KS 0.315E-K8

FLOW DIFFUSION
(NM3/SEC) (N»*3/SEC} ALPHA ALPHAIN
-0.176£*03 0.000&KX) 0.100E-K>1 O.SOOE-KX)
UQ.
0.721E+06
O.OOOE+00
O.OOOE-KX)
0.7E1E+06


HIIIIIIII BOUNDARY VALUES iniiiiiii
TP8D
0.413EHK
0,102E-02
PHYTO
1
2
'*HB ZOO
1
CflRN ZOO
1
flVPBD
0.2S4E-HX)
T10CO
0.12*E-K»
W5BD
o.&&oe+oo
A P5RBO
0.203E-KX) 0.750E-03 0.
0.488E-02 0.200E-02 0.
Z1BD
0,581E-Oe
Z2BD
0.26SE-01


ND3BC NK3S) TS8D AVS8D
0.272E-KX) 0.123E-01 0.i32E-t-01 O.S60E+00
PJPBD TIMO TUSB) OfiD
0.235E-02 0.103E+00 Q,&32£<'00 0.527E-K)i
NSABO SSABO
400E-01 0.140E-KX)
800E-01 G.OOOE-KW


CLBO
O.S27E*Oi




                                 »**»»   DERIVflTIVES  flMD COMPOEMT
  DERMTIVE
XI
X2
13
  -0.2WE-03  -0.646E-06  -0.133E-03  -0.686E-04
   0.10SE-04  -0.176E-05   0.183E-03  -0.171E-03

  -O.HIE-03   0.646EH35   O.M7E-02  -0. J32E-02
              0.587EHS   0.849E-03
                                                                     X7
                   X8
                                                                                                             X9
                                                           110

-------
0.1ME-01    0.452E-OA   0.165E-01  -0.576E-02
 0.261E-03  -0.350E-04
-0.344E-02  -0.308E-02
-0.830E-OE  -0.1SE-02

 O.M9E-01  -0.562£-^
H3.137E-03  -0.330E-03

 0.670E-04   0.22E-0*
-0.589E-03  -0.S56E-0+

-0.231E-03  -0.824E-04
 0.189E-OE   0.2S6E-03
-0.171E-01  -0.171E-02
-0.472E-01  -0.137E-HX)

 0.111E-01   0.209E-01
-O.E15E-01   0.903E-01
 0.103E-K)!   0.115E-K>1
                        0.112EHJ3    0.742E-05   0.651E-05   0.752E-07   0.335E-04   0.137E-03
                       -0.136E-02    0.226E-03   0.154E-03   0.231EHS   0.974E-04   O.S1E-02
                       -0.147E-01    0.595E-03   0.326E-03   0.615E-05   0.173E-02   0.526E-08

                        0.431EH)!  ^.851E-0£  -0.465E-OE  -0.153E-41  -0.378E-04
                        0.162EHK  -0.260E-03  -0.75S-03  -0.W6E-03  -0.332E-05

                        0.541E-04  H5.103E-04   O.OOOE-HX)
                        0.0006+00  -0.247E-03  -0.257E-03
                        0.1S2E-03
                        0.4€1E-03
                        0.895E-01

                        0.0006-HX)
                        O.OOOE-KX)
 0.132E-07
 0.384E-06
 0.3071-05
 0.314E-08
 0.102E-06
-0.179E-08
 O.OOOE-HX)
 O.OOOE+00
-0.180E-01
0.123E-06
0.247E-05
0.390E-02
-0.335E-04
-0.374E-04
-0.337EHX3
-0.980E-03
0.15«-03
0.252E-02
 O.OOOE-KX)  -0,966E-02
 O.OOOE-KX)  -0.112E+00
-0.789E-01  -0.394E-01
                                                        111

-------
                                         iiiiiiiiiiiini   DAY =
                                              iiiiiiiiiiiiiiiiiiiiiiiiiiii
                                                     5.   iiiiiiiiiumii
                                                   iiiiiiiiiiiiiiimiiiii
                                    iiiiiinii
                                  DAY
                                         SEGMENT
                                                                                 minim
TEMPERATURE     s 0.422E+00
LIGHT INTENSITY « 0.959E+02
XTINC OEFF     * 0. 102E+01

TOTAL PHYTQ * 0.iOlE+01
TOTAL ZOO   = 0.301E-01
HATER
SEDIPCNT
  TDTBL P
0.193E-01
0.120E+03
        TDTfLN
      0.13SE^01
      0.136E-HM
        TDTflL S
      0.143E+01
        3VP
     0.600E-<2
N6/L
MB/MB TUT PHYTD
P1?1M PROD RATE  (MB
IN7EBML PRIM PROD RATE
         flVN
      0.12&E-KI1

       SURFUS P
       0.731E-03
       0.7E7E-03
            0.6BEE-HX)

             SURPUJSN
             0.251E-01
             0.250E-01
  (MB C/M**3> »
                        Q.143E-K8
                        0.3&3EXC
               TUP
            0.120E-01

             SURPLUS S
             0.376E-01
             0.871EH)!
        TUN
     O.A67E-01
        TIB
     0.623E-KX)
        CL
     0.218E+02
  PHYTD
    1
    2

  PHYTO
    1
    2
 0.953E-HX)
 0.469E-01

    SPGR
 0.541E-01
 0.369E-01
          FCHOP
       0.353E-KX)
       0.467E-01

          BPI
       0.241&KX)
          PSA
       0.106E
       O.S06EHK

          REPS
       0.541E-01
       0.432E-01
PSA/PSAMIN
0.213E-H)!
   R26
0.721E-01
0.369EHJ1
   NBA
0.341E-01
0.637EHH

   S2SS
0.738E-01
0.9906402
NBA/NSAMIN
0.341E+01
   TH6TS
0.320E-KX)
0.185E+00
   SSA
0.126E-MX)
O.OOOE+00

  RLISHT
0.152E-HX)
0,162E-K»
SSfi/S
0,361
0.000
 ;-€HS ZOO
     1

 CARM ZOO
     1
       Zl
   CUS6E-02

       Z2
   0.285EH)!
            RZ1
         0.434E-01

            RZ2
         O.OOOE+00
           Z1LSS1
           Z2LSS1
         0.7S8E-02
   TM6TZ1
 0.266E+00

   TWBTZ2
 0.26K+00
                                                       LOASIN5E (KB/DAY)
 TRIBUTARY
 flTMQSPHERIC
 SEDIICNT
   «AVP
0.1E1E+04
0.499E+01
O.OOOE+00
   UAVN
O.S5E+05
0.737E+03
O.OOOE+00
                                                       UAVS
                                      0.111E+05
tfTUP
0.209E+04
0.122E+02
O.OOOE^OO
UTUN
0.196E+05
0.332E+03
O.OOOE+00
«TUS
0.347E+05
0.684E+02
O.OOOE+00
UCL
0.893E+06
O.OOOE+00
O.OOOE+00
                                                           11:

-------
TUTflL
        0.122E+04     0.532E+05     0.4596+05     0.2106+04      0.1996+05

                                     LOWING IMTEBttLS (KB)
TRIBUTARY
OTMEKRIC
SEDIKNT
TOTflL
           MVP
        0.379E+04
        0.2496+02
        O.OOOE+00
0,2406+06
0,3686+04
O.OOOE+00
                                     URVS
                                   0.163E+06
                           HTUP
                        0.&306+04
          0.5486+03
          0.221E+06
                                                 O.OOOE+00
                                                                                WTUN
                                                                            0.166E+04
                                                                            0.0006+00
                                                                            0.100E+06
                                                                             0.348E+05
     UTUS
  0.1&5E+C6
  0.342E+03
  O.OOOE+00
   UCL
0,4046+07
O.OOOE+00
O.OOOE+00
0.4046+07
       mm
     0.2SSE-HH
       TPSUK
      RNSINK
     0.135E-KH
      TNSUK
    O.S6CC+05
       TWET
    0,6606+05
                      RSSINC
                    0.146E+06
                      TSSUK
                    0.7UE+06
                       T9CT
                    0.713E+06
                                                  FLOW        DIFFUSION
SE9OT     IHTEWCTlQh     INTEWCTD6 SEGMENT   (»«i/S£E5     (MM3/SED       ALPHA         flLPHAIN
    1             1                   1           -0.17EE+03      0.0006+00      O.iOOE+01      0.5006+00
    1             2                   1            0.176E+03      0.5S2E+03      0.309E-00      0.30SE+00
        TPBD
        flVPBO
       MHO
     0.1WE-OS

       ffMO
  PHYTO
    1
    2

 HOB  ZOO
    1

 CRRN  ZOO
    1
                       TKWD
                     0.123EXX)

                       3VS8D
                     0.&U&KX)
IIIIHIIII   BQUNMRY VAUES   iniiiiiii

           MQBD
               TUPB
             0,293E-OS
                      0.124E-01

                         HMO
                      0.104&00
                                                                             TSBD
                                                                          0,1346+01

                                                                             TtEBD
                                                                          0.&M&00
                                                          WSBO
                 QJO
              0.527E-K)1
   CLBD
0.527E+01
0.200E+00
0.481EH32

    Z1BD
 O.SE2E-02

    Z2SO
 0.2606-01
                   PSRBO
                0.750e-03
                0.2006-32
           I6PBO
        0.400E-01
        0.300E-01
                  a 1406+00
                  0.900E+00
                          DERIVflTIVES
                                                       CUTOCNT TEWS   *****
DERIVRTIW

-0.144E-05
 0.973E-05

-0.1106-03
-0.101EH52
                                                              X5
                                                          xs
                                                                       n
                                                             x&
                                                                    X9
-0.372E-06
-0.178E-05

 (X705E-05
 0.950EH35
           0.5B3E-04
           0.198E-03
                                    -O.S75E-04
                                    HX 187EHJ3
                         0.17S-02  HX184E-02
                         0.133EHK  HJ.£35E-Oe

-------
 0.102E-02   0.162E-04   0.783E-08  -0.6&3E-OE
 0.929EHH  -0.335E-04
-0.2S5E-02  -0.796E-08
-0.191E-03  -0.1406-08

 0.146E-01  -0.612£-0e
H3.704E-OS  -0.32BE-03

 0.784E-04   0.194E-04
-0.511E-03  -0.677E-04

-O.J46E-03  -0.743E-0*
 0.l5SE-Oa   0.238E-03
-0.135E-01  -0.107E-02
-0.2ME-01  -0.135E+00
  0.935E-02
-0.775EHK
  0.933E-HX)
-0.171EH8
-0.750E-08
0.6Z3E-05
0.332EH)3
0.838E-03
                       O.S07E-05
                       0.163E-03
                       0.493E-03
                                               0.77«H)7   0.320E-04   0.151E-03
                                               0.294E-05   0.12*EH)3   0.661E-02
                                               0.107E-04   0.166E-08   O.S70E-02
           O.S13E-01  -0.919E-Oe  -0.5*1E-08  -O.lMt-01  -0.117E-03
           0.173E-08  -0.261E-03  -0.7*7E-03  -O.W3E-03  -

           0.722E-KH  -0.133E-04   O.OOOE-KX)
           O.OOOE-KX)  -0.227E-03  -O.aifiE-03
O.S31E-05 0.2S5E-07 0.663E-08 O.OOOE+00
0.166E-03 0.510E-06 0.13Z-06 O.OOOE-HX)
0.311E-03 0.4UE-05 -0.166E-08 -0.160E-01
0.111E+00
0.114E-06 -0.320E-04 -0.309E-03
0.227E-05 -0.134E-03 HJ.120E-02
0.431E-08

                                                                                              0.2S1E-03
0.19BE-01
0.104&00
0.106^01
O.OOOE+00   0.000£-H»  -0.987EH3e
O.OOOE-HX)   O.OOOE-KX)  HX112E400
O.OOOE-KX)  -0.804E-01  -0.398E-01
                                                         114

-------
                   APPENDIX E




ENVFF FILE FOR SEGMENT 1 FOR SAGINAW BAY EXAMPLE
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03

PSABD(
PSABD(
PSABD(
1
2
3
PSABD(4
PSABD(
NSABD(
NSABD(
NSABD(
NSABD(
NSABD(
SSABD(
SSABD(
SSABD(
5
1
2
3
4
5
1
2
3
SSABD( 4
SSABD(
ABD(1,
ABD(2,
ABD(3,
ABD(4,
ABD(5,
Z1BD(1
Z2BD(1
TPBD( 1
AVPBD(
TKNBD(
5
1
1
1
1
1
'
»
}
1
,D
,1)
,1)
,D
,D
,D
,D
,D
,1)
,1)
,D
,D
,1)
,D
,1>
)
}
}
}
}
1)
1)

)
1)
(mg P/mg
(mg P/mg
(mg P/mg
(mg P/mg
(mg P/mg
(mg N/mg
(mg N/mg
(mg N/mg
(mg N/mg
(mg N/mg
(mg S/mg
(mg S/mg
(mg S/mg
(mg S/mg
(mg S/mg
(mg/1)
(mg/1)
(mg/1)
(mg/1)
(mg/1)
(mg/1)
(mg/1)
(mg P/l)
(mg P/l)
(mg N/l)
A)
A)
"AT
A)
A)
A)
A)
A)
"AT
A)
A)
"A!
A)
A)
TT










                          115

-------
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
.307E04
.158E04
.864E04
.271E05
.704E04
.291E04
.126E04
.521E04
.582E04
.324E05
.116E05
.403E04
.258E04
.117E05
.544E04
.475E04
.330E04
.173E05
.725E04
.300E04
.197E04
.629E04
.271E04
.126E04
.117E04
.343E04
.529E03
.128E04
.123E04
.123E04
.289E03
.114E04
.161E04
.195E04
.223E04
.407E04
.977E03
.152E04
.833E03
.434E03
.150E04
.133E04
.423E04
.189E04
0.365E03

0.365E03

0.365E03

0.365E03

0.365E03

0.365E03

.160E02
.240E02
.290E02
.320E02
.340E02
.490E02
.560E02
.590E02
.660E02
.670E02
.740E02
.900E02
.950E02
.990E02
.114E03
.134E03
.141E03
.142E03
.147E03
.154E03
.162E03
.165E03
.206E03
.295E03
.311E03
.337E03
.365E03

.300E01
.180E02
.210E02
.220E02
.240E02
.250E02
.280E02
.300E02
.320E02
.360E02
.490E02
.560E02
.590E02
.640E02
.670E02

N03BD(1) (mg N/l)

NH3BD(1) (mg N/l)

TSBD(l) (mg S/l)

AVSBD(l) (mg S/l)

CLBD(l) (mg CL/1)

WTP(l) (kg P/day)



























WAVP(l) (kg P/day)















116

-------
.636E03
.371E03
.432E04
.109E04
.318E03
.115E04
.442E03
.149E04
.290E03
.240E03
.774E03
.165E03
.701E03
.276E03
.122E04
.499E03
.154E04
.293E03
.499E03
.320E03
.395E03
.946E03
.602E03
.817E03
.847E03
.216E03
.824E03
.916E03
.416E03
.492E03
.527E03
.116E05
.383E04
.495E05
.194E05
.376E05
.876E04
.189E05
. 116E05
.184E06
.220E05
.220E05
.417E05
.181E05
.252E05
.802E04
.105E05
.219E05
.480E05
.139E05
.829E04
.161E05
.886E04
.365E04
.780E02
.990E02
.100E03
.101E03
.106E03
.109E03
.126E03
.134E03
.135E03
.141E03
.142E03
.153E03
.155E03
.158E03
.162E03
.165E03
.171E03
.176E03
.193E03
.226E03
.262E03
.274E03
.280E03
.295E03
.305E03
.311E03
.317E03
.325E03
.337E03
.353E03
.365E03
WTKN(i) (kg N/day)
.140E02
.210E02
.250E02
.300E02
.380E02
.520E02
.590E02
.660E02
.720E02
.890E02
.950E02
.101E03
.105E03
.116E03
.123E03
.135E03
.141E03
.147E03
.158E03
.162E03
.165E03
.179E03
117

-------
.585E04
.435E04
.435E04
.205E05
.111E05
.439E05
.234E06
.117E06
.302E05
.334E05
.419E05
.184E06
.580E05
.300E05
.137E06
.576E05
.547E05
.202E05
.313E05
.536E05
.251E05
.211E05
.454E04
.421E04
.135E04
.114E04
.167E04
.226E04
.192E04
.192E04
.176E04
.176E04
.861E03
.347E04
.999E04
.545E04
.192E04
.103E04
.179E04
.470E04
.394E04
.173E05
.499E04
.421E04
.211E04
.532E04
.890E03
.188E04
.365E04
.902E03
.168E04
.324E04
.242E04
.501E04
.279E03
.353E03
.365E03
WN03(1) (kg N/day)
.180E02
.240E02
.280E02
.300E02
.390E02
.530E02
.590E02
.650E02
.740E02
.900E02
.950E02
.101E03
.106E03
.112E03
.137E03
.141E03
.142E03
.169E03
.179E03
.189E03
.207E03
.225E03
.261E03
.280E03
.353E03
.365E03
WNH3(1) (kg N/r.ay)
.200E01
.180E02
.210E02
.280E02
.320E02
.380E02
.490E02
.520E02
.560E02
.590E02
.650E02
.730E02
.800E02
.870E02
.920E02
.950E02
.101E03
.105E03
.I09E03
.119E03
.123E03
.134E03
.135E03
118

-------
.480E03
.489E04
.516E03
.140E04
.313E04
.180E04
.144E04
.744E03
.461E03
.222E04
.259E04
.259E04
.110E06
.916E05
.546E05
.230E06
.376E05
.124E06
.708E05
.125E06
.780E05
.114E06
.612E05
.244E06
.362E06
.798E05
.106E06
.110E05
.356E06
.236E06
.129E06
.199E06
.126E06
.342E06
.292E06
.149E06
.450E05
.640E05
.624E05
.149E06
.464E05
.752E05
.280E05
.108E06
.574E05
.776E05
.376E05
.102E05
.730E04
.838E04
.832E04
.900E04
.176E05
.131E05
.141E03
.142E03
.143E03
.155E03
.162E03
.165E03
.172E03
.176E03
.226E03
.261E03
.352E03
.365E03
WTS(l) (kg S/day)
.300E01
.100E02
.120E02
.140E02
.250E02
.260E02
.290E02
.410E02
.440E02
.490E02
.550E02
.590E02
.620E02
.660E02
.790E02
.840E02
.860E02
.910E02
.100E03
.108E03
.109E03
.114E03
.119E03
.125E03
.128E03
.138E03
.141E03
.143E03
.148E03
.158E03
.162E03
.168E03
.171E03
.176E03
.193E03
.213E03
.227E03
.248E03
.255E03
.274E03
.295E03
119

-------
.278E05
.152E05
.900E04
.148E05
.100E05
0.548E05
0.458E05
0.273E05
0.115E06
0.188E05
0.621E05
0.354E05
0.627E05
0.390E05
0.570E05
0.306E05
0.122E06
0.181E06
0.399E05
0.528E05
0.551E04
0.178E06
0.118E06
0.643E05
0.995E05
0.629E05
0.171E06
0.146E06
0.747E05
0.225E05
0.320E05
0.312E05
0.747E05
0.232E05
0.376E05
0.140E05
0.542E05
0.287E05
0.388E05
0.188E05
0.509E04
0.365E04
0.419E04
0.416E04
0.450E04
0.882E04
0.655E04
0.139E05
0.762E04
0.450E04
0.739E04
0.500E04
.105E07
.315E06
.311E03
.325E03
.337E03
.353E03
.365E03
WAVS(l) (kg S/day)
0.300E01
0.100E02
0.120E02
0.140E02
0.250E02
0.260E02
0.290E02
0.410E02
0.440E02
0.490E02
0.550E02
0.590E02
0.620E02
0.660E02
0.790E02
0.840E02
0.860E02
0.910E02
0.100E03
0.108E03
0.109E03
0.114E03
0.119E03
0.125E03
0.128E03
0.138E03
0.141E03
0.143E03
0.148E03
0.158E03
0.162E03
0.168E03
0.171EQ3
0.176E03
0.193E03
0.213E03
0.227E03
0.248E03
0.255E03
0.274E03
0.295E03
0.311E03
0.325E03
0.337E03
0.353E03
0.365E03
WCL(l) (kg CL/day)
.150E02
120

-------
.796E06
.520E07
.176E07
.292E07
.165E07
.651E06
.127E07
.291E06
.177E07
.145E07
.229E07
. 108E07
.197E07
.566E06
.190E07
.330E07
.240E07
.291E07
.138E07
.116E07
.188E07
.991E06
.761E06
.102E07
.920E06
.450E07
.117E07
.626E06
.134E07
.754S06
.626E06
.168E07
.942E06
.821E06
.379E06
.595E06
.421E06
.464E06
.846E06
.637E06
.853E06
.970E06
.407E06
.208E06
. 309E06
.379E06
O.OOOEOO
O.OOOEOO
•0.615E03
•0.615E03
•0.262E04
•0.262E04
O.OOOEOO
O.OOOEOO
.180E02
.230E;02
.250E02
.280E02
.290E02
.370E02
.510E02
.530E02
.560E02
.600E02
.650E02
.730E02
.740E02
.880E02
.910E02
.920E02
.940E02
.950E02
.990E02
.101E03
.105E03
.109E03
.116E03
.128E03
.134E03
.137E03
.141E03
.147E03
.151E03
.155E03
.158E03
.162E03
.165E03
.172E03
.179E03
.190E03
.213E03
.272E03
.274E03
.280E03
.295E03
.311E03
.325E03
.337E03
.353E03
.365E03
Q(l,l) (ni**3/sec)
0.700E02
0.710E02
0.155E03
0.156E03
0.170E03
0.171E03
0.175E03
121

-------
-0.437E02
-0.437E02
-0.631E03
-0.631E03
-0.222E03
-0.222E03
-0.404E03
-0.404E03
O.OOOEOO
O.OOOEOO
0.307E03
0.307E03
0.993E03
0.993E03
0.895E03
0.895E03
0.277E04
0.277E04
0.112E03
0.112E03
0.101E03
0.101E03
0.669E03
0.669E03
0.264E03
0.264E03
0.455E03
0.455E03
0.310E02
0.310E02
O.OOOEOO
O.OOOEOO
-0.307E03
-0.307E03
-0.378E03
-0.378E03
-0.280E03
-0.280E03
-0.141E03
-0.141E03
-0.112E03
-0.112E03
-0.570E02
-0.570E02
-0.380E02
-0.380E02
-0.420E02
-0.420E02
-0.510E02
-0.510E02
-0.310E02
-0.310E02
.OOOEOO
.OOOEOO
0.176E03
0.215E03
0.216E03
0.260E03
0.261E03
0.290E03
0.291E03
0.341E03
0.342E03
0.365E03
Q(
0.700E02
0.710E02
0.105E03
0.106E03
0.155E03
0.156E03
0.170E03
0.171E03
0.175E03
0.176E03
0.215E03
0.216E03
0.260E03
0.261E03
0.290E03
0.291E03
0.341E03
0.342E03
0.365E03
Q(
0.365E03
Q(
0.700E02
0.710E02
0.105E03
0.106E03
0.155E03
0.156E03
0.170E03
0.171E03
0.175E03
0.176E03
0.215E03
0.216E03
0.260E03
0.261E03
0.290E03
0.291E03
0.341E03
0.342E03
0.365E03
Q<
.365E03










1,2) (m**3/sec)



















;i,3) (ni**3/sec)

;i,4) (m**3/sec)



















C1.5) (m**3/sec)

122

-------
0.191E01
0.191E01
0.382E03
0.382E03
0.764E03
0.764E03
0.191E01
0.191E01
0.191E03
0.191E03
0.382E03
0.382E03
0.955E02
0.955E02
0.382E03
0.382E03
0.191E01
0.191E01
0.589EOO
0.589EOO
0.118E03
0.118E03
0.236E03
0.236E03
0.589EOO
0.589EOO
0.589E02
0.589E02
0.118E03
0.118E03
0.295E02
0.295E02
0.118E03
0.118E03
0.589EOO
0.589EOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
0.800EOO
0.800EOO
0.310EOO
0.310EOO
0.146EOO
0.146EOO
0.800EOO
0.800EOO
0.303EOO
0.303EOO
0.215EOO
0.215EOO

0.700E02
0.710E02
0.155E03
0.156E03
0.170E03
0.171E03
0.175E03
0.176E03
0.215E03
0.216E03
0.260E03
0.261E03
0.290E03
0.291E03
0.341E03
0.342E03
0.365E03

0.700E02
0.710E02
0.155E03
0.156E03
0.170E03
0.171E03
0.175E03
0.176E03
0.215E03
0.216E03
0.260E03
0.261E03
0.29CE03
0.291E03
0.341E03
0.342E03
0.365E03

0.365E03

0.365E03

0.365E03

0.700E02
0.710E02
0.155E03
0.156E03
0.170E03
0.171E03
0.215E03
0.216E03
0.260E03
0.261E03
0.290E03
EPRIMEU.l) (m**3/sec)

















EPRIME(1,2) (m**3/sec)

















EPRIME(1,3) (m**3/sec)

EPRIME(1,4) (m**3/sec)

EPRIME(1,5) (m**3/sec)

ALPHA(l.l)











123

-------
0.800EOO
0.800EOO
0.999EOO
0.999EOO
0.941EOO
0.941EOO
0.934EOO
0.934EOO
0.957EOO
0.957EOO
0.997EOO
0.997EOO
0.786EOO
0.786EOO
0.912EOO
0.912EOO
0.944EOO
0.944EOO
0.786EOO
0.786EOO
0.990EOO
0.990EOO
O.OOOEOO
O.OOOEOO
0.100E01
0.100E01
.OOOEOO
.OOOEOO
0.577EOO
0.200E01
0.716E01
0.989E01
0.100E02
0.172E02
0.161E02
0.222E02
0.218E02
0.224E02
0.167E02
0.120E02
0.861E01
0.433EOO
0.577EOO
.100E02
.140E02
.200E02
.300E02
.330E02
.337E03
.440E03
.600E03
.660E03
.625E03
.540E03
0.291E03
0.365E03
ALPHA(1,2)
0.700E02
0.710E02
0.105E03
0.106E03
0.155E03
0.156E03
0.170E03
0.171E03
0.175E03
0.176E03
0.215E03
0.216E03
0.260E03
0.261E03
0.290E03
0.291E03
0.341E03
0.342E03
0.365E03
ALPHA(1,3)
0.365E03
ALPHA(1,4)
0.365E03
ALPHA(1,5)
.365E03
T(l) (degrees C)
0.500E02
0.108E03
0.119E03
0.135E03
0.155E03
0.170E03
0.190E03
0.207E03
0.226E03
0.262E03
0.280E03
0.315E03
0.351E03
0.365E03
RADINC(l) (ly/day)
.300E02
.600E02
.900E02
.970E02
.980E02
.120E03
.150E03
.180E03
.210E03
.240E03
124

-------
 .390E03
 .210E03
 .115E03
 .110E03
 .550E02
 .500E02
0.132E01
0.300E01
0.500EOO
0.100E01
0.700EOO
0.750EOO
0.950EOO
0.110E01
0.700EOO
0.800EOO
0.600EOO
0.800EOO
0.110E01
0.130E01
0.132E01
 .270E03
 .300E03
 .330E03
 .342E03
 .343E03
 .365E03
0.520E02
0.108E03
0.119E03
0.135E03
0.154E03
0.171E03
  .190E03
  .207E03
0.226E03
0.262E03
0.280E03
0.316E03
0.351E03
0.365E03
0.
0.
                 SECCHI(l)   (meters)
                              125

-------
             ftPPENDIX F




WDEL OUTPUT  FOR SflSINAW BflY EXflflPLE






IIIIHIIII   RUNCflN INPUT  UMUHM
NSGMTS *
INTNAX *
SE9eiT
1
2
3
4
5
SE9ENT
1
1
1
1
1
SEGMENT
2
2
2
2
2
SEGMEXT
3
3
3
3
3
SEGMENT
4
4
4
4
4
SEGMENT
5
5
5
5
5
5
5
VOLUME (***3)
0.894E+09
0.5B3E+10
0. 127E+10
0.788E+10
0.939E-HO
INTERACTION
1
2
3
4
5
INTERACTION
1
2
3
4
3
INTERACTION
1
2
3
4
5
INTERACTION
1
2
3
4
5
INTERACTION
1
2
3
4
5


DEPTH (N)
0.385E+01
0.733E-H)1
0.374E+01
0.132E+02
0.1S2E+02
INTERPCTIN6
2
3
0
1
0
INTERACTING
1
3
4
0
0
INTERPCTIHS
1
2
5
0
0
INTERPCTIN6
2
5
0
0
4
INTERPCTINB
3
4
0
0
5
              126

-------
SE2IICNT SE5MENT
        1
        2
        3
        4
        5
        VQLJ€
          0.232E+07
          0.340E+08
          0.597E+08
DEPTH (ft)
0.100E-01
O.IOOE+OO
0.100E+00
0.100E-KX)
0.100E-HX)
rears
wise
NASPEE*    5
WITM5 >    1
W2B6S =    1
PHYTO
1
2
3
4
3
ISILCP.
1
0
0
0
0
•FIX
0
0
0
0
1
KZSPEC"    2
NZ1SPC *    1
NZ2SPC *    1
     ZOO    POTTO     IZ1PRR
    1         1         i
    1         2         1
    i         3         1
C»W ZOO  HERB ZOO    IZ2PM
    1         1         1
TUBB
TPLUT
TPRIMT
19(1 P

HI »
Hg «
     0.500E+01
     0.500E-K)!
     0.500E-KI1
        1
0.25006-01
                                           uiiiiiiii  CQEFF INPUT  iiiniiiii
TBPSEi »
TBflSEE *
TBflSD =
    0.1070E-KJ1
    0.1070E+01
    0.1070E-KH
                                                         12'

-------
« 0. 1506+00
PHYTD
1
2
3
4
5
PHYTD
1
2
3
4
3
PHYTD
1
2
3
4
5
PHYTO
1
PHYTO
1
2
3
4
5
*8 ZOO
1
t€ft ZOO
1
HERB ZOO
I
1
1
CflRN ZOO
1
CM* ZOO
1
SNflX TBflSffi
0.2406+01 0.1066+01
0.2406+01 0. 1076*01
0.2106+01 0.106E+01
0. 1606+01 0. 1036+01
0. 1606+01 0. 1036+01
Rim PHI
0.1006-01 0.2266+02
0.200E-01 0.2266+02
0.20CE-01 0.2266+08
0.2006-01 0.2266+02
0.200E-01 0.226E+02
R1WI Wl
0.200E-MX) 0.107E+OS
0.200E-KX) 0.107E-K&
0.200C+00 0.107&02
0.20Q&KX) 0.107E40S
0.200E-KX) 0.107Ei
-------
OWN ZOO  fCB ZOO      Z2EFF
    1         1      0.100E+01
RTUP
0.200E-01
KRTUP
O.iOOE+01
TUPSNK
0.150E+00
SEDIICNT SE9CNT
1
2
3
4
5
SEDIKNT SE9EKT
1
2
3
4
5
SEDDtNT SE9CXT
1
2
3
4
3
RTUN
0.200E-01
KRTUN
0.100E401
TIMSNK
0.1306+00
VUPP
0.3SOE-02
0.173E-03
0.250E-03
0.417E-04
0.3S2E-04
KRSEDP
(XOOOE+OO
0.0006+00
0.0006+00
0.0006+00
o.oooe+00
VPLQNB
O.OOOE+00
0.8EEE-05
0.0006+00
O.S22E-05
0, 8222-05
                                      RTUS
                                  0.200E-01

                                      KRTIB
                                  0.100E+01

                                    TUSSM(
                                  o.isoe+00
                                   0.22flEH)2
                                   0.114E-03
                                   0.162E-03
                                   0.271E-04
                                   0.23SE-04

                                     KRSEDN
                                   O.OOOE+00
                                   0,0006+00
                                   0,0006+00
                                   O.OOOE+00
                                   O.OOOE+00

                                     VNH6
                                   O.OOOE+00
                                   0.822E-05
                                   O.OOOE+00
                                   0.822E-C6
                                   0.322E-05
                                         VUPS
                                      0.350E-02
                                      0.175E-03
                                      0.250E-03
                                      0.417E-04
                                      0.362E-04

                                        KRSEDS
                                      0.82S-03
                                      0.6Z3E-03
                                      0.&2SE-03
                                      0.6Z5E-03

                                        VSLONB
                                      O.OOOE+00
                                      0.822E-05
                                      O.OOOE+00
                                      0.822E-05
                                      0.822E-05
 rcvwrs
24
TSTflRT
96.
103.
111.
116.
121.
12&.
129.
132.
134.
13&.
161.
184.
201.
223.
238.
243.
254.
TSTQP
99.
105.
113.
119.
122.
127.
130.
133.
133.
l&O.
1£2.
185.
202.
224.
239.
244.
235,
                                                           129

-------
258.
267.
272.
274.
277.
29*.
309.
259.
268.
273.
275.
279.
2%.
310.
                                           iiiiimii  INICON INPUT  miiiiiii
SEBfCKT
1
2
3
4
5
SE9CNT
1
1
1
1
1
SE9CNT
2
2
2
2
2
SE9CNT
3
3
3
3
3
SEBH6NT
4
4
4
4
4
SEW6MT
5
5
5
5
AVP
0.112E-01
O.S33E-08
0.694E-02
0.291E-02
0.4906-02
PHYTO
1
2
3
4
5
PHYTO
1
2
3
4
5
PHYTO
1
2
3
4
c

0.493E-KX)
0.381EXK)
PSA
0.125E-02
0.250E-08
0.250E-OS
O.SOOE-02
0.500EHK
PSA
0.12SHK
0.230E-42
0.230EHK
0.500E-02
0.5006-02
PSA
0.125E-42
0.250E-02
0.250E-02
0.5006-02
0.5006-02
PSA
0.125E-02
0.2506H)2
0.250E-02
a500EH«
0.5006-02
PSA
0.125E-02
0.250E-02
0.2506-02
0.5006-02
TIP
0.412E-01
0.131E-01
0.227E-01
0.1846-02
0.36GE-02
NBA
0.3506-01
0.7006-01
0.7006-01
0.7006-01
0.7006-01
HSA
0.350E-01
0.7006-01
0.7006-01
0.7006-01
0.7006-01
NBA
0.350E-01
0.7006-01
0. 700E-01
0.7006-01
0.7006-01
NBA
0.3506-01
0.7006-01
0.7006-01
0.7006-01
0.7006-01
NSP.
0. 3506-01
0.7006-01
0. 700E-C1
0.700EHM
TUN TUS
0.3816-01 0.395E-KX)
0.3B1E-01 0. 7006+00
0.1506+00 0.5406+00
0.146E+00 0. 4936+00
0.2186-HX) 0.3S1E+00
5SA
0.105E+00
0.0006+00
0.0006+00
0.0006+00
0.0006+00
SSA
0. 1056+00
0.0006*00
0.0006+00
O.OOOE+00
0.0006+00
SSA
0.105E+00
0.0006+00
0.0006+00
0.0006+00
0.0006+00
SSA
0.105E+00
0. 0006+00
0.0006+00
0.0006+00
0.0006+00
SSA
0.105E+00
0.0006+00
O.OOOE-KX)
0.0006*00
a.
0.2506+02
0. 2206+02
0.2906+02
0.5006+01
0.8006+01





























                                                           130

-------
                         0.203E-02      0.500E-02      0.700E-01      O.OOOE-HX)
SEGMENT
1
a
2
4
5
SEEHENT
1
2
3
4
5
HERB ZOO
1
1
1
1
1
cam zoo
i
i
i
i
i
Zl
0.150E-08
0.130E-02
0.246E-02
0.377E-03
0.780E-08
12
0.2B2E-01
0.312E-01
0.316£-01
0.807E-03
0.247E-01
SEGMENT      SEDP           SEON           SEDS
   1      0.333E-M)i      0.378E-KE      0.134E-ME
   2      0.120E+03      0.136E-KH      0.479E+03
   3      0.120E+03      0.136E-HJ4      0.479E+03
   4      0.316E+02      Q.337E-HB      0.126E+03
   S      0.406E-KK      0.45gE+03      0.16EE-HJ3
SEGMENT      WPP          WNR          UQVSfl          WTUPQ          UTUNfl          UTUSfl          UCLA
   1      0.*99tK)l      0.737E443      0.6WE-HJ2      0.122E-KC      0.33££-K>3      0.6d4E+0£      0.0006+00
   2      0.173E+OE      0.2HE+04      (X237E+03      0.423E-+02      0.115E+04      0.237E+03      O.OOOE+00
   3      0.731E+01      0.10flE-«>4      0,100E-M)3      0.179E-H2      0.4S6E+03      O.iOOE+03      O.OOOE+00
   4      0.12flEH«      0.189&KH      0.17GE-KB      0.314t*0£      0.853E+03      0.176E-K)3      O.OOOE-HX)
   5      0.133E+C6      0.196E+04      0.182E+C3      0.32E402      0.383E-H33      0.182£-H)3      O.OOOE-KX)
                                                             131

-------
                                        111 IIIIH minimum m uiiiiiiim ii uu iii
                                        iiiiiiiiiiiiin    DAY *    0.   iiimiimmii
                                        iiiiiiiiiiiiiimitimiiiniiiiiiiiiiiiiiiiiiii
                                   iiiiiiini   DAY »    0.
                                                              SEGMENT =    1
                                                                IIIHMIII
TEMPERATURE    » 0.577E+00
LIGHT INTENSITY * 0. 1006*02
miC COEFF    » 0.1446+01

TUTBL PHYTO « 0.2096*01
TOTflL ZOO   • 0.2S7E-01
UATER
SEDIMENT
               TOTAL P
             0.3HE-01
             0.335E+01
               TDTBLN
             0.748E+00
             0.378E+02
               TUTBL S
             0.99*6+00
             0.1346+02
        AVP
     O.U2E-01
W/L
MB/MB TOT PHYTD
                   0.&31EXW

                    SURPLUS P
                    0.133E-02
                      MS
                   0.33S+00

                    SURPLUS N
                    O.X1E-01
                      TUP
                   0.412E-01

                    SURPLUS 5
                    0.138E-KX)
                    0.6WE-01
      TUN
   0.3B1E-01
   TUB
0.395E-HX)
   0.
0.250E-KS
PRIH PKB  WTE  (MB
INTEBRRL PRIM PUB
                        (N6 (VMM3) • 0, 147EXC
  PHYTO
    1
    a
    3
    4
    5

  PHYTO
    1
    2
    3
    4
    5
0.1946+01
0.213EHH
0.3106-01
              0.319E-01
   FDDP
0.9286+00
0.10SE-01
0.1486-01
0.319E-01
                                              PSA
                                           0.250EHK
                             0.5006-02
                             0,5006-02
PSA/PSMIN
0.2506+01
0.2506+01
0.2506+01
0,5005+01
0.5006+01
NSA
0.3506-01
0.7006-01
0.7006-01
0.7006-01
0,7006-01
NSft/NSAMIN
0,3506+01
0.350E+01
0.3506+01
0.3506+01
0. 3506+01
S3A
0.1056+00
0.0006+00
O.OOOE-HX)
o.Dooe+oo
0.0006+00
SSft/SSf
0.3006-
O.OOOE-
O.OOOE-
0,000£-
O.OOOE-
SPSS
0.19BE-01
0.163E-01
0.173E-01
0.160EH)!
0.1&OE-01
6PI
0.3&4E-01
0.3filH)3
0.537E-03
0.107E-02
O.S11E-03
REPS
0.l9flE-01
C.l6!EH)l
0.173E-01
0.1806-01
0.1806-01
RSNS
0.23CE-01
0. 196E-01
0.206E-01
0.1606-01
0.1606-01
R2SS
0.20E-01
0.9906-MK
0.9906+02
0.9906-H32
0.990E-K2
TMETfi
0.322E+00
O.a&96-H30
0.322E-HXI
0.1B8E-K)0
0. 188E-OC
SLIGHT
0.426E-01
0.425E-01
0.426E-01
0.74flE-01
0.748E-01
      zoo
     i

 CAW ZOO
     1
                    Zl
                0.1506-02

                    Z2
                0.2B2E-01
                   R21
                   RZ2
                O.OOOE-HX)
                  Z1LSS1
                0.806E-02

                  Z2LSE1
                0.906E-02
  THSTZ1
0.269E-HX)

  TW6TI2
0.269E-KX)
                                                          132

-------
                                 LOADIN6S (KB/DAY)

TRIBUTARY
ATMOSPHERIC
SEDIMENT
TOTAL


TRIBUTARY
ATMOSPHERIC
SEDIMENT
TOTflL
ftPSINK
MSOtHH
TPSUK
O.iSOE+04
TPIET
0.150E+04

UAVP
0.123E+04
0.499E401
O.OOOE+00
0.123E-HH

LJflUQ
WHrr
0.123E-KK
0.499EH)!
O.OOOE+00
0.123E+04
HNSINK
0,302tK>4
TNSUK
0.302E-HH
TMCT
0.30EE-KH

UQUU
imvii
0.223£*05
0.737E-*03
O.OOOE-KX)
0.230EHKH
RSSINK
oaasE-Hs
TSSUNK
0.185E-HJ5
TS»CT
0.1B5E+46

SE6MENT INTERACTION INTERACTING SE9CKT
1
1
1
1
1
1
2
3
4
5
2
3
0
1
0
WftVS
0.5WE-KS
0.&34E-M£
0.522E-K)!
0.549E-KC
» LQflOINB
UflVS
0.54flE-K)6
0.&fl4€-K(2
0.522E+01
0.549E-H»






FLOU
(M»3/SEC)
0.000&KX)
0.307E-M33
O.OOOE-HX)
-0.307E-KB
O.OOOE-HX)
WTUP
0.18A£-H)4
0.122E-HK
O.OOOE-KX)
0.185E-04
INTEBRPLS (KB)
WTUP
0.1S4E-KM
0.122E402
0,0006-KK)
0.18SE-H)4






DIFFUSION
(Ht»3/SEC)
0. 191E-H)!
0.589E+00
O.OOOE-KX)
O.OOOE+OO
G,ooce-oo
UTUN
0.964E-KH
0.332E-H53
O.OOOE+00
0.108E+05
™
UTIM
0.964E-K)4
0.332E+03
O.OOCC-MX
0.102E-KS







ALPHA
0.800E-HX)
0.999E-MX)
O.OOOE-HX)
0.100E+01
O.OOOE+00
                                                                             UTUS
                                                                          0.552E-KJ5
                                                                          O.W4EMS
                                                                          O.OOOE+00
                                                                          0.553E-KJ5
                                                                             WTUS
                                                                          0.552E+C5
                                                                          O.OOOE-KX)
                                                                          O.S53E+05
                                                                             WL
                                                                          0.105E+07
                                                                          O.OOOE+00
                                                                          O.OOOE+00
                                                                          0.105E+07
                                                                             ua
                                                                          0.105E-KJ7
                                                                          O.OOOE+00
                                                                          O.OOOE-KX)
                                                                          0.10S+07
                                                                           ALPHAIN
                                                                         0.3006+00
                                                                         0.999E+00
                                                                         O.OOOE+00
                                                                         0. iOOE-K)!
                                                                         O.OOOE*X>
               liiilillll    DAY =
                     0.
              SESHENT
tiiniim
TEMPERATURE
UWT INTEK
XTINC Hthf
TOTAL PHYTO
TOTAL 200
UATER
SEDIMENT
•0.300E+00
imr- o.iootH«
« 0. 102E+01
» 0.994E-HX)
» 0.32SE-01
TOTAL P
0.200E-01
0.120&H>3
AVP AVN
0.539E-02 0.128E-K)1


TOTAL M TOTAL S
0. 136E+01 0. 14SE+01
0.136E-KH 0.473E-KJ3
WS TUP
0.700E-KW 0.131E-OI
SURPLUS P
SURPLUS N
SURPLUS S
                                              TUN
                                            0.381E-01
                                              TUS
                                           0.700E-HX)
                                              Q.
                                           0.220E-H)2
                                       133

-------
M6/L
MB/MB TOT PHYTD
     0.947E-03
     0.953E-03
PRIM PROD RATE (ME C/Mt*3/HR)
INTEBRPL PRIM PROD RATE !M6 C/M*»3)
     0.273EH31
     O.E75E-01

     » 0. 184E+02
       0.513E+01
     0.626E-01
     0.&30E-01
 PHYTO
   1
   3
   3
 PHYTD
   1
   2
   3
   4
   3
A
0.894E-KX)
0.«iE-0£
0.448E-01
0.473E-01
0.343E-02
FCRDP
0.900E+00
0.424E-02
0.431EH)!
0.476E-01
(X34S-02
PSA
0.123E-02
0. 2506-08
0.250E-08
0.500EH£
0.500E-02
PSft/PSAMIN
0.250E-K)!
0.250E-K)!
0.250E401
0.5006-K11
0.500E*01
NSA
0.3506H)!
0.700EH)!
0.700E-01
0.700EHH
0.7006H)!
NSA/NSAMIN
0.350E+01
0.350E+01
0.350E-KI1
0.330E+01
0.350E-H)1
SSA
0.105E-KX)
O.OOOE-MX)
O.OOOE+00
O.OOOE-KX)
O.OOOE-MX)
SSfl/SSi
0.300fr
O.OOOE-
O.OOOEH
O.OOOEJ
O.OOOEH
SPGR

-------
SEBKENT
   2
   I
   2
   2
   2
INTERfiCTION
     1
     2
     3
     4
     5
INTERflCTTNG  SESHENT
         1
         3
         4
         0
         0
(IHt3/SEC)
O.OOOE+00
O.OOOE+00
O.OOOE-KX)
O.OOOE+00
O.OOOE-HX)
(***3/SEC)
0. 191E+01
o. i3oe-H)i
O.S88E-KX)
O.OOOE-KX)
O.OOOE-KX)
PLPHfl
0.200E+00
0.297E-KX)
0.467E+00
O.OOOE-KX)
O.OOOE-KX)
PLPHAIN
0.200E-HX)
0.297E+00
0.467E-KX)
O.OOOE+00
O.OOOE-KX)
                                   iiiiniiii   QAY *    0.
                                                    SEGMENT  *
                                                     IlilHIIII
                » 0.739EtOO
LIGHT IMTENBITY « 0.100E+02
XTINC CDEFF     * 0.202E+01
TOTBL PHYTO
TOTflL ZtD
*TER
SEBIKNT
  0.193E-KJ1
  0.341E-01

    TDTflL P
  0.328E-01
  0.120&K>3
        flVP
     O.S94E-08
NB/W TOT (WTO
        0.
                              TDTflL N
 0.136E-KM
  TDTflL S
CU26E-KJ1
0.471^)3
         SURPLUS P
         0.204E-02
         0.106E-OS
          PV3
       0.540E-KX)

        SURRUS N
        0.542E-01
        0.2S1E-01
         TUP
      0.227E-01

       SURPLUS S
       o. naE-too
       0.613EH)!
       TUN
    0.150E-KX)
   TUS
0.540&KX)
     PUD (WTE (* C/«»*3/HR)       » 0.3606-Ke
 INTESVL WIH PflOD RATE (MB C/M**3> > 0.101E-H£
 PHTTQ
    1
    2
    3
    4
    5

 PMYTO
    1
   2
   3
   4
   3
A
OUHE-KU
0.42S-01
0.293E-01
0.144&KX)
0.2306-01
FOOP
0.876E-KIO
0.2206-01
0.132E-01
0.747E-01
0.119E-01
PSfl
0.i23E-0£
0.250E-02
0.250E-02
0.500E-OS
0.5006-02
PSA/P5PMIN
0.250E-KJ1
0.250E-K11
0.250&K)!
0.500E-K)1
O.SOOE-K)!
NSfl
0.3506-01
0.7006-01
0. 7006-01
0.700E-01
0.7006-01
NSA/M5&MIN
0.350E-KI1
0.350E-KH
0.3506-K)1
0.3506-KJI
0.330E-KU
338
0.105E-KX)
O.OOOE-KX)
O.OOOE-KX)
O.OOOE-KW
O.OOOE-KX)
SSA/SSAHI1
0.300E-K)1
O.OOOE-KX)
O.OOOE-KX)
o.oooe-Kx>
O.OOOE-KX)
SPSR
0.147E-01
0. 1236-01
0.128E-01
0,1206-01
0.120E-01
BPI
0.24flE-01
0.521E-03
0.37K-03
0.172E-OS
0.275E-03
R2PS
0.147E-01
0.123EH)!
0.12B&01
(X134E-01
0.134E-01
R2NS
0.175E-01
0.146E-01
0. 153E-01
0.120E-01
0.120E-01
R2S5
0. 1&3E-01
0.990E-KS
0.990E-KC
0.990E-KK
0.990E+02
TWBTfl
0.32SE-KX)
0.272E-KX)
0.32SE-KX)
0.190E-KX)
0. 1906+00
RLI6HT
0.313E-01
0.313EH)!
0.313E-01
O.SOE-01
0.5506^)1
     ZOO
        Zl
    0.246E-02
      RZ1
   O.SUE-01
    Z1L5S1
  0.815E-02
  TW6TZ1
0.272E-KX)
csm zoo
        Z2
      RZ2
    Z2LSS1
                                                           135

-------
               0.316E-01
                  Q.OOOE+00
          0.815E-08
0.272E+00
                                                     LOADINGS  (KB/DAY)
ATK5RGUC
SEDIfiff
TDTPL
UAVP
0. 1646+02
0.731E+01
O.OOOE+00
0.237E+02
UAVN
0.777E+03
0.1086+04
O.OOOE+00
0.186E+04
UAVS
0.699E+03
0.1006+03
0.277E+04
0.3366+04
WTUP
0.66SE+02
0.179E+OE
O.OOOE+00
0.3446+02
                                                   LOROINB INTQRRLS  (KG)
                                                                                  WTUN
                                                                   O.OOCC-HX
                                                              WTUS
                                                           0.701E-H)3
                                                           0.100E-H)3
                                                           O.OOOE-KX)
                                                    ua
                                                 O.OOOE+00
                                                 O.OOOE+00
                                                 O.OOOE+00
                                                 0.0006+00
TRIBUTflRY
ATWSPKRIC
SEDIKNT
TOTRL
            UAVP           UflVN           HBVS          WTUP           UTIM           MTUS           UCL
         0.164E+02      0.777E+03      0.699E+03     0.665E+02      O.aSfiE+03      0.701E+03      O.OOOE+00
         0.731E+01      O.lOflE+04      0.1006+03     0.1756+02      0.486E+03      0.1006+03      O.OOOE+00
         O.OOOE+00      O.OOOE+00      O.Z77E+04     O.OOOE+00      0.0006+00      O.OOOE+00      O.OOOE+00
         0.237E+02      0.18GE+04      0.35EE+04     0.844E+02      0.7SSE+03      0.801E+03      O.OOOE+00
       RPSIIK
     0.124E+04
       TPSUK
     0.124E+04
        TPICT
          msiw
        0.990E+0*
          TNBUW
        0.990E+04
          TMCT
        0.990E+04
  RSSIM(
0.33S+05
  TSS1K
0.33SE+05
   T9CT
0.30flE+09
SE9CKT
   3
   3
   3
   3
   3
INTORCTIQN
     1
     2
     3
     4
     5
                 FLOW        DIFFUSION
     SEGMENT   (KM3/SED     (H»*y5EC)        ALPHA         ALPHAIN
  1           -0.307E+03      0.5896+00      0.1006-02      0.9606-03
  2            O.OOOE+00      0.130E+01      0.703E+00      0.703E+00
  5            0.307E+03      O.W6E+00      0.999EXW      0.999E+00
  0            0.0006+00      O.OOOE+00      O.OOOE+00      O.OOOE+00
  0            0.0006+00      0.0006+00      0.00061+00      O.OOOc+00
                                   iiiiiiiiii    DftY »    0.
                                                   SE9CNT
                                             immiiii
 TOTESA71BE     « 0.67*6+00
 HOT  INTENSITY » 0.1006+OS
 XTINC  COEFF     » 0.528E+00

 TOTBL  PHYTO * 0.731E+00
 TDTRL  ZOO   «0.118E-08
UATER
SEDIKNT
TOTHL P
O.S6£EH)£
0.316E+02
TOTflL N
0.475E+00
0.357E+03
TOTflL S
0. 105E-H31
0.126E+03
         AVP
                                        TUP
                                                                  TUN
                                               TIE
                                                           136

-------
     0.231E-02
    0.298E-KX)
    0.493E-KX)
    0.184E-02
    0.146E+00
0.493E-KX)
0.500E-KM
HB/L
MB/MB TUT PHYTO
     SURPLUS P
     0.670EHJ3
     0.918E-03
PRIM PROD IWTE (C C/*f*3/HR)
IMTSRPL PRIM PROD RATE (MB C/M»*3>
     SURPLUS N
     0.218E-01
     0.298E-01

     « 0.145E-KJ2
       0.4E5E+01
     SURPLUS 5
     0.413E-01
     0.565E-01
 PHYTO
   1
   2
   3
   4
   3

 PHYTO
   1
   2
   3
   4
   3
A
0.590E-KW
0.137E-01
0.120E400
(X&4€E-02
0.402-03
FCROP
0.306E+00
o.iaeE-01
0.164E-KX)
O.SB4E-02
0.35CE-03
PSfl
0.123E-02
0.230E-02
0.250E-02
0.500E-02
0.500E-02
PSfi/PSflMIN
0.250E-H)i
0.250E-KU
0.250E-K)l
0.500E-K)1
0.500E+01
NBA
0.350E-01
0.700E-01
0.700E-01
0.700E-01
0.700E-OI
NSA/NSflHIN
0.350E-01
0.330E-M)1
0.350E+01
0.350tH}l
0.330E-K)1
SSA
0.105E-HX)
0.0006-HX)
O.OOOE-HX)
O.OOOE-KX)
o.oooe-oo
SSA/SSANIN
0.300E-H51
o.oooe-KX)
O.OOOE-MX)
O.OOOE-KX)
O.OOOE-HX)
SP6R
0.139E-01
0,132-01
0.139E-01
0.129E-01
0.129E-01
BPI
0.937EHS
0.181E^3
0.167E-02
O.B34E-04
0.31SE-03
R2PS
0.139E-01
0.132E-01
0.13X-01
0.143E-01
0.143E-01
fCJC
0.1B9E-01
0.1SBE-01
0.163E-01
0,12S£-01
0.129E-01
R2SS
0.176EH)!
0.990E+02
0.990E-HS
0.990E+02
o.99oe+oe
TWTfi
0.324E400
0.270E-KX)
0.324E-KX)
0.189E-H»
0.iaS€-HX)
HLIWT
0.340E-01
0.340E-01
0.340E-01
0.597E-01
0.597E-01
tCRB 100
    1

CMM ZOO
    1
    Zl
0.377E-03

    Z2
0.807E-03
   RZ1
0.354E-01

   RZ2
  21LSS1
O.ailE-02

  Z2LSS1
0.811E-02
  TUBTZ1
0.270tH»

  TW6TZ2
0.270E+00
 TRIBUTfWY
 ATOSPtCRIC
 SEDIKNT
 TUTBL
         WVP
      0.136E-02
                        LQADDGS (KE/DfiY)

                        WS           WTUP
                                                                                    UTUN
      O.OOQ&KX)
      o.iagE+0*
      O.OOOE«00
      0.263E-K)4
                                    0.176E+03
                     0.314E-KK
                     O.OOOtH»
                                       tfTUS
                                    0.749E-M)3
                                    0.176E-K53
 TKIBUTflRY
 SEDIKNT
 7DTPL
      0.264E408
      0.742E-KS
      0.1WE-K>4
      O.OOOE+00
      0.263E-KH
       LOWIN6 INTESROLS (K&)

         URVS           UTUP
      0.751E+03      0.516E402
      0.176&H)3      0.314E-MJ2
      0.127E-KH      O.OOOE-KX)
      0.2206+04
                     O.OOOE+00
                     0.107E-MH
                        UTUN
                     0.21BE-K>3
                     0.8S3E+03
                     O.OOOE-KX)
                     0.107E-H)4
                                                                                0.325E-H53
                    rfTUS
                 0.749E-M53
                 0.17SE-MX3
                 O.OOOE+00
                 0.325E+03
                                0.000&KX)
                                0.0006*00
                                O.OOOE-HX)
                                o.oooe-Kio
                    ua
                 O.OOOE-HJO
                 O.OOOE+OO
                 O.OOOE-KIO
                 O.OOOE-KW
        RPSIM(
      0.229E+03
        TP5UNK
      MB1NK
    0.149E+03
      TNSUK
      RSSIfK
         TPICT
      0.223EXX3
       TMCT
    0.143E-HS
      TSSlfK
    0.478E-KB
       T9CT
                                                             137

-------
SEGMENT
4
4
4
4
4
INTEWCTIQM
I
2
3
4
S
FLQH
(**3/SED
O.OOCE+00
0.300E+04
O.OOOE+00
O.OOOE+00
-0.300E+04
DIFFUSION
(M**3/SED
0.688E+00
0.236E+02
0.0006+00
O.OOOE+00
0.253E+02

RLPHfl
0.533E+00
0.99GE+00
O.OOOE+00
O.OOOE+00
0.996E+00

flLPHRIN
0.533E+00
0.996E+00
O.OOOE+00
O.OOOE+00
0.396E+00
                                       niiiiiiii   3QUMMRY VflLUES   iiiiiiiin
        TPB)
     0.415EHK
     0.102E-02
 PHYTD
   t
   2
   3
   4
   5
        flVPU
        flMCO
     0.284E+00
     0.124E+00

        WSBO
     0.660E+00
        NQ3BD
     0.272E+00

        TUPEO
     0.291E-02
   4QBD
0.122E-01

   TUNBD
0.101E+00
   TSBD
0.132E+01

   TUSBC
0.632E+00
0.660E+00

   CLBO
0.527E+01
   CLBD
0.527E+01
A
0.203E+00
0.43SE-02
0.138E-01
0.4BflE-OS
0.324E-03
PSRBO
0.790E-43
0.1SOE-02
0.1SOEH2
0.200E-Ce
0.200E-02
ffiABD
0.400E-01
o.aooE-oi
o.aooEH)i
o.aooE-01
0.300E-01
SSffiD
0.140E+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
t£J8 ZOO          Z1BD
    1          O.SB1EHE

CAW 100          Z2BO
    1          0.263E-01
                                   Hillillli   DAY *
                                          0.
                                  SE9CNT
                                5   Illilllll
                * O.S74E+00
 UBHT IKID6ITY » 0.100E+OE
 FTHC COEFF     * 0.382E+00
TDTBL (WTO
TDTflL ZOO
WTER
SEDIKXT
0.96SE+00
0.323E-01

  TDTRL P
0.101E-01
0.406E+02
  TOTflLM
O.S57E+00
0.4SSE+03
  TOTflL S
0,B50E+00
0.1&2E+03
     0.490E-02
 ffi/l
      0.300E+00

       SURPLUS P
       O.S31EHB
         ws
      (X381E+00

       SURPLUS N
       0.274E-01
         TUP
      0.366E-02

       SURPLUS 5
       0.584E-01
   TUN
 O.E18E+00
   TUS
 0.381E+00
                                                                                              0.
                                                                                           0.300E+01
                                                          138

-------
IB/MB TOT  WYTO      0.965EH33      0.284E-01      0.605E-01

PRIM PROD  RATE (MB C/*«3/HR)       « 0.18S+02
IMTEBRAL PRIN PROD RATE (ffi C/M*«3) « 0.273E+01
 PHYTD
   1
   2
   3
 PHYTO
   1
   2
   3
   4
   3
A
(X&KfrMX)
0.13C-01
0.736E-01
0.416E-01
0.203E-Q2
FCSDP
0.8ME-HX)
O.H3E-01
0.7S3E-01
0.431E-01
0.210E-OE
PSA
0.125E-02
0.2506-02
0.2506-02
0,500E-Og
o.sooE~oe
P5A/P5PMIN
0.250E-H}!
0.250E+01
0.230E+01
0.500E401
0.500E-H)!
NBA
0.350EH)!
0.700E-01
0.700E-01
0.700E-01
0.700E-01
MSA/NSflHIH
0.350E+01
0.350E+01
0.350E+01
0.350E-K)1
0.350E-K)!
SSA
O.I05E-HX)
O.OOOE-HX)
o.oooe^oo
o.oooe+oo
O.OOOE-H50
SSA/SSW1
0.300E-K)1
O.OOOE-KX)
O.OOOE-HX)
O.OOOE-KX)
O.OOOE-HW
SPGR
o.79oe-oe
O.fiSX-02
0.&91E-K
0,&4£E-^

-------
   5              1                   3           -0.307E+03       0.406E-KX)      0.100E-02      0.662E-03
   3              2                   4           -0.300E+04       0.236E«02      0.400E-08      0.393E-02
   53                   0            O.OOOE+00       O.OOOE-KX)      O.OOOE-H00      O.OOOE+00
   34                   0            O.OOOE-HX)       O.OOOE+00      O.OOOE-^00      O.OOOE-KX)
   53                   5            0.331E-KH       0.107E-H£      0.996E+00      0.99BE-MX)
                                        minim   BOUNDARY VflLUES    iimiiin
        TOD          (WBO          TKMO          N038D          *GH)          TSBD1           AVSBD
                                                 0.2KE-HX)      0.109E-01      0.138Et01      0.688E-K)0      0.527E+01
        flVPBO         fNW          3VS80          TUPBD          TUB)          TUSBD          nm
     O.lOaE-08      0.304E400      O.UaE-HX)      0.377E-OS      0,16SE-K)0      0.64fiEHOO      O.S27E-»01
 PHYTD             A            PSflBO          NGflBD          SSflBD
   1           0.331E^OO     (X750E-03      0.400E-01
   2           0.59S-08     0.lSOE-Oe      0.800E-01
   3           0.285E-01     0,1506-OS      0.800E-01      O.OOOE+00
   4           0.293E-01     0.20CE-08      O.dOCE-01      O.OOOE-HX)
   3           0.522E-02     0.200E-02      0.800E-01      O.OOOE-HX)

>£RB ZOO           Z1ED
    1           0.115E-01

caw zoo           ZZBD
    1           0.32S-01
                                                            140

-------
                                       iiiiiiiiiiiiiii   DAY  =
                                                  niiiiiiiiiiiiiiiiii
                                                      IIIIIIIIIIIIHII
                                                  iiiimmmimm
                                  iiiiiiini   DAY *    5.     SEBCNT =    1   uiiiiini
TBPEJ»TURE     > 0.633E+00
LIGHT INTQCITY « 0.106E+02
XTTJC EEFF     «0.131E+01
TOTRL PHYTD
TDTPL ZOO
WTO
ZDIICMT
0,1SOE-K)1
0.245E-01

  TOTBL P
O.SBE-01
0.63X+01
              TOTBLH
            0.787EHX)
                             TUTOLS
                           0.124E+01

     0,1675-01
m/m TUT PHTTD
                     SVS
                  0.542+00
                                    TUP
                                 0.367E-01
                                                   TIM
                                                0.713E-01
                                    TIE
                                 O.S02E-HX)
   CL
0.2S5E-KC
     SURPUS P
     0. 123^02
     0.&E-03
PIW PWD  WTE OS DHH3/HR)
        WIM PWD WTE (MB
                    SURPLUS N      SURPLUS S
                    0.4S9E-01      0.142&HX)
                    0.307E-01      0.950£-01

                    » 0.276E-KE
 PWTD
   1
   2
   3
   4
   3

 PHYTO
   1
   a
   3
   4
   5
    A
Q.13&01
0.135E-0!
0.220E-01
0.473&-01
0.22EE-01
                FDW
               O.HMEHH
               0,147EH)i
               0.316E-01
               0.151E-01
   PSR
0.111E-02
0.246E-02
0.247E-02
0.601E-OS
0.490E-02
                                           PSA/PSAKI*
                                           0.222E+01
                                         0.490E401
H5A
0.390E-01
0.729E-01
0.738E-01
0.710E-01
0.710E-01
NSA^SflKIN
0.390E-KI1
0.3S5E-KJ1
0.363tK)l
0.3S5E-K)!
0.335EHD1
SSA
0. 127E-KX)
O.OOOE-KX)
O.OOOE-KX)
O.OOOE-KX)
O.OOOE-KX)
3SA/SSW1N
0.332S-K)!
O.OOOE-KX)
O.OOOE-KW
O.OOOE-KX)
0. OOOE-nX)
SPS1
0.20E-01
0.1B9E-01
0.190E-01
0.18GE-01
O.iaGE-01
BPI
(X1&5E+00
O.i63t^e
0.242E-02
o.4tfE-oe
0.23SE-02
R2PS
0.210E-01
0.1B9E-01
0.19BE-01
0. £13-01
0.20SE-01
106
0.284E-01
0.231E-01
0.243E-01
0. 1B6E-01
0. 186E-01
R2SS
0.284E-01
0.990E-K)e
0.990E-H52
0.990E+02
0.990E-HK
TWBTft
0.325E-K)0
0.271E-KX)
0.325&KX)
0.189E-KW
0.1OTE-KX)
RLIGHT
0.4a9EH)l
0.48gE-01
0.489E-01
0.853E-01
0.3S3E-01
     ZOO
    1

CAM ZOO
    1
    Zl
0.1ME-02

    12
0.229E-01
                  RZ1
               0.324E-01

                  RZ2
               O.OOOE-KX)
                                Z1LSS1
                                22LSS1
                              0.812E-02
               0.271E400

                 TW6TZ2
               0.271E+00
                                                         141

-------
                                                    LOADINGS (KB/DAY)
TRIBUTARY
8TKEPHERIC
SEDIKNT
TOTAL
TBIBUTARY
fiDIEPHEJlIC
SEDIfflff
TOTAL
          HAVP
       O.UO&KM
       0.499E+01
       0.0006-KX)
       0.1UE+04
   UAVP
0.396E+04
0,0006+00
0,5996+04
                 UflVH
              0.199E+05
              0.737E+03
              0.0006+00
              0.206E+03
   ttfMM
   NNVn
0.105E+06
0.3&8E+04
0.0006+00
0.1096+06
          UAVS          WTUP
       0.405E+05     0.157E+04
       O.SWE+02     0.122E+02
       0.224E+Oe     O.OOOE-HX)
       O.W6E+05
                                     UMDINB INTEBMLS (KB)

                                       URVS           W7TJP
                                    (X235E+06
                             O.SB3&HS
                                                  O.OOOE-MX)
WTUN
0.762E+04
0.332E+03
0.0006+00
0.7WE+04
WTUS
0,405+05
O.SB4E+02
0.0006+00
0.40GE+05
UCL
0.&406+06
0.0006+00
0.0006+00
0.3406+06
                                                                                 UT1M
                                    0.1IXE-KH
                                    O.OOOtMX)
                                 WTU5
                              0.23SE-K16
                              0.34ZE+03
                              0.0006-00
                              0.226E406
                                 UCL
                              0,472E-K)7
                              0.0006+00
                              O.OOOE-HX)
                              0.472E+07
       RPSINK
       TRUNK
     0.714E+04
        TWCT
     0.714E+04
       •EM
     0.382+04
       TN5UNK
     0.171E-HS
        TMCT
     0.171E+05
             (XZ19E-H35
              TSStlK
             0.102E+OS
                T9CT
             0.102E+06
SE9CKT
   1
   1
   1
   1
   1
   1
   2
   3
      INTEWCTDC SE9CMT
               Z
               3
               0
               1
               0
FLOW
(MH3/SED
O.OOCEXX)
0.307E*03
O.OOOE+00
-0.3071*03
0,0006+00
DIFFUSION
(Htt37SEC5
0.191E+01
0.389E-KX)
0,0006+00
0.0006+00
O.OOOE-HX)

ALPHA
o.aooE+oo
0.999E-HJO
O.OOC€+00
0. lOOE+01
O.OOC€-H»

flLPHAIN
0.900E-KX)
0.999E+00
O.OOOE-KX)
0. iOOE-H)l
O.OOOE+00
                                                              SEGMENT *    2   iiiiiiiiin
    0.3S7E+00
    o,
 IBKJWTURE
 LJBfr  iKTBerrr
 rroc  CDBT
 TOTBL PHYTO » 0.371E400
 TDTBL ZOO   * 0.303E-01
 URTER
 SEDIKNT
  TDTBL P
0.190EHM
0.120E+03
        flVP
      O.S75E-02
         TOTPL N
       0.13EE+01
       0.13SE-KH
  TOTflL S
0.143E+01
      0,l2flE+01

       SURPLUS P
                OS'S
             0,632+00

              SURPLUS N
         TUP
      0.120E-01

       SURPLUS S
   TUN
0.371E-01
   TUS
0.6306+00
                                                                         CL
                                                                      0.2206+02
                                                          142

-------
ffi/L
MS/MB TOT PHYTD
     0.733E-03
     0.841E-03
PRIM PROD RATE (MB C/Nt*3/HR)
IMTEBRflL PRIM PRO) RATE (MB C/M**3)
             0.2636-01
             0.302E-01

             » 0.1536+02
               0.236E+02
              0.797E-01
 PHTTO
   1
   2
   3
   4
   5

 PHYTD
   1
   4
   3
A
0.7866+00
0.3676-02
0.3906-01
0.4016-01
0.291E-02
FCHOP
0.902E+00
0.4226-02
0.448E-01
0.460E-01
0.334E-Oe
PSft
o. niE-oe
0.34S-OS
0.246EHK
0.3MEHK
o.4ae£-
-------
SE9OT
   2
   2
   2
   2
   2
INTEMCTHM
     1
     2
     3
     4
     5
INTERflCTINB SE9CMT
1
3
4
0
0
(KH3/SED
0.0006+00
0.0006+00
O.OOCE+00
O.OOOE+00
0.0006+00
(MH3/SED
0.1916+01
0. 1306+01
0.6886+00
0.0006+00
0.0006+00
PLPHft
0.2006+00
0.2976+00
0.4676+00
0.0006+00
0.0006+00
BLPHftlN
0.2006+00
0.2976+00
0.4676+00
O.OOOE-HX)
O.OOOE-KX)
                                  Illlllllll   QRV m
                                                  SE9CNT *    3   minim
               » 0.7606+00
      IKTB6ITY * 0.106E+02
               • 0.1606+01
 70TB.
 TUTRL ZOO
WTER
SEDIfCNT
> 0.316E-01

    TUTRL P
  0,3116-01
  0.1206+03
                  TUTflLM
                0.155E+01
                0.136E-KH
              TOTPL S
            0.114&01
            (X4&3E+03
 MB/MB TUT PWTO
        (X141E+01

         3APUJ6 P
         0.14CHS
         O.X1E-03
                                    ws
                                 Q.514E400

                                  SURPUfiN
    0.301E-01
 PUDI PHD HRTE (MB CvT»«3,'HR)       > 0.27BE+02
         PRIK PHOD RATE (MB C/NH3) * o.4?aE+oe
                                      TUP
                                    0.204E-01

                                     SURPUE S
                                     0.140E-KX)
                                     0.9106-01
                                  TUN
                                0.11SE-KX)
                    TUS
                 O.H3E-KX)
  PHHD
    1
    2
    3
    4
    S

  PHYTD
    1
    2
    3
    4
    3
A
0.136E-M51
0.3196-01
0.232E-01
0.106E400
0,1856-01
FDDP
0.3836+00
0.207E-01
0.1SOE-01
0.6B86H)1
0.120E-01
PSA
O.lllE-02
0.24aE-0£
0.246EHK
0.572E-OS
0.469E-02
PSA/PSflKIN
0.222E+01
0.245E*)!
0.2*€E+01
0.572E-H)1
0. 4896+01
NSfl
0.375EHM
0.706£H)1
0.713E-01
0.6936-01
0.694E-01
N5A/N5MIN
0.37S+01
0.353E+01
0.357E+01
0.347E+01
0.347E+01
5SA
0.138E+00
0.0006+00
0.0006+00
0.0006+00
0.0006+00
SSA/SS
0.394E
0.0006
0.0006
0.0006
0.0006
SPSR
0.1786-01
0.160E-01
0.16BE-01
0.157E-01
0.157E-01
BPI
0.117E+00
0.250E-02
o.iaaE-oe
0.822EHS
0.13GE-02
R2PS
0.1786-01
0.1606-01
0.168E-01
O.lfi2£-01
0.173E-01
R2NS
0.238E-D1
0.194E-01
0.2046-01
0. 1S7E-01
0. 157E-01
R2SS
0. 2426-01
0,9906^02
0.9906+02
0.9906+02
0.9906+02
TUE7A
0.3265+00
0.2721+00
0. 3266+00
0. 1916+00
0. 1916+00
RL1SHT
0.4146-01
0.414E-01
0.4146-01
0.7236-01
0.7236-01
 f€HB ZOO
     1

 OWH ZOO
        Zi
    0.2376-02

        Z2
   RZ1
0.5236-01

   312
                                  Z1LSS1
                                0.3166-02

                                  Z2L5S1
  TMBT71
0.2726+00

  TWGTZ2
                                                         144

-------
               0.2B6E-01
                O.OOOE+00
                0.816E-OS
                                               0.272E-HX3
                                                     UMDINBS (KB/DAY)
flTHBKRIC
9EDDCNT
TOTBL
       0.7316*01
       0.0006*00
       0.2376*02
                        WWP
TROUTMV
SEDIKNT
TDTBL
0.306*02
0.0006*00
0.1196*03
       0.7776+03
       0.1086*04
       0.0006*00
                                                       WTUP
                                                     0.6656*02
                                                     0.1796+02
                                                     0.0006*00
0.3886*04
0.9406*04
0.0006*00
0.9286+04
                                URVS
                             0.6996*03
                             0.1006*03
                             0.2796*04
                             0.3996*04
 LOniNB INTESWLS (KB)

   URVS          WTUP
0.3496*04     0.3326*03
0.5006*03     0.8996*02
0.1396*05     0.0006*00
                                                                                  UTUN
                                                                               0.266E+03
                                           0.0006+00
                                           0.7526*03
                                                                      UTUN
                                                                   0.123E-HM
                                                                   0.243E-KM,
                                                                   O.OOOE-KX)
                                              rfTUS
                                           0.701E-K)3
                                           0.100E+03
                                           0.0006*00
                                           0.a01E*03
                                                                    UTUS
                                                                 0.350E-KH
                                                                 O.SOOE-K)3
                                                                 O.OOOE-KX)
   UCL
0.0006+00
0.0006*00
0.0006*00
0.0006*00
                                                                                              0.000£+00
                                                                                              O.OOCC+00
                                                                                              O.OOOE-KX)
                                                                                              O.OOOE+00
       RP5INK
     0.1106**
       TfBIM
     0.9916*04
        TPICT
        IMBIW
       TNGUK
      0.457E408
        TUCT
      0.457E-KC
        RSSIMt
      O.Z91E+09
        TSBW
        T9ET
SBXXT
   3
   3
   3
   3
   3
INTEBflCTTC
     1

     3

     5
             INI
                       FUN       DIFFUSIW
      TDC SEBW(T   (NM3/SEC)      (NH3/SEC}        ALPHA         flLPHAIN
        1           -0.307E+03     0.5B9E-KX)      0.100E-02      O.%06-03
        2            0.000&00     0.130&K)!      0,702+00      0.703E-KX)
        5            0.307E+03     0.406E-HX)      0.?99E-H»      0,999E+00
        0            O.OOOE-KW     0.0006-HX)      (kOOOE-HX)      0.0006+00
        0            (X 0006+00     0.0006+00      0.0006+00      C. 0006+00
                                   Illlllllll   DAY a
                                                 SE9CKT
                                                   HIIIIIIU
TBVERRTUE     « 0.70fltKX>
LJWT IXTD6ITY « 0.106E+02
ITDC COEFF     > O.S34E+00

TDTHL PHTTIJ « 0.609E-»00
TDTRL ZOO   « O.SME-02
  TDTBL P
0.353E-02
0.316E+02
SEDI>€XT
  TUTBL N
0.457E+00
0.2BE+03
                                 TDTflL S
                               0,!06£+01
                               0.130E403
                                                   TUP
                                                    TUN
                                                    TUS
                                                           145

-------
     0.272E-02
    0.295E-KX)
                    0.5096400
                   0.197E-02
                   0.132E400
0.487E+00
0.504E401
MB/L
N6/N6 TUT PHYTO
     SURPLUS P
     0.4696-03
     0.7716-03
                    SURPLUS N
                    0.2186-01
                    0.337E-01
PRIM MOD ROTE (ffi C/«t*3/HR)       " 0.116E402
IMTEBWL PRIM PIDD RATE (K C/Mtt3> • 0.1916402
                    SURPLUS 5
                    0.5136-01
                    0.843E-01
 PHYTO
   1
   2
   3
   4
   5

 PHYTO
   1
   2
   3
   4
   5
    A
0.4956400
0.1146-01
0.9636-01
0.3536-02
0.4276-03
   FCROP
0.8136400
0.1876-01
0.1596400
              O.TOeE-03
   PSA
0.1096-02
0.2406-02
0.2426HK
0.4846-02
0.4146-02
                                           PSA/PSAMIN
                                           0.2196401
                                           0.242E-K)!
NSA
0.4076-01
0.7716-01
0.7796-01
0.7326-01
0.7396HM
NSA/NSAKIN
0.4076401
0.385E401
0.3906401
0.376E401
0.3806401
SSA
0.1396400
0.0006400
0.0006400
0.0006400
0.0006400
SSA/SSA
0.396E4
0.00064
0.00064
0.00064
0.00064
SPSS
0.149E-01
0.134E-01
O.U1E-01
0.137E-01
0.137E-01
BPI
0.418E-01
0.33SE-03
0.764EHS
0.403E-03
0.273&-04
R2PS
0.14SE-01
0.134E-01
0. 141E-01
0.146E-01
03
                                                     UTUP
                                                      WTUH
                                                      WTUS
                      0.18S&HH
                      0.000^00
                      0.2&3E-KK
       0.131E+04
       0.224&H)4
                                     O.OOOE-KX)
                                     0.2306+02
                                                     LOADINB  IMTESWLS (K6)
   0.353E+03
   O.OC06-HXI
   0.107E+04
  0. 175E-HXJ
  0.0006+00
  0.925E-KJ3
   JCL
Q.OOOE-HX)
0.0006*00
0.0006-KX)
0.0006-KX)
 TRIBUTARY
 ATMEPtQIC
 SEDIMENT
 TOTAL
UAVP
O.UO&02
0.&40E402
0.000&00
0. 132E-K13
IWW^W
0.371tH)4
0.9*36404
O.OOOE+00
0.132E+05
UAV5
0.375tH)4
0.8006403
0.644E404
0.111E405
WTUP
0.25BE403
0.1S7E+03
O.OOOE+00
0.41SE403
*m*
0. 109E+04
0.4c££-H>4
0.0006*00
O.SSE-KH
HTUS
0.374E404
0.3806403
O.OOOE400
0.462E404
UQ.
0.0006400
0.0006400
O.OOOE400
0.0006400
RPSIW
0.229E403
TP5JK
0.113E404
TPICT
0.1136404
IMBItK
0.136E405
TNSUK
0.7196405
TMCT
0.7196405
RSSM
0.47TE405
TSSUMC
0.240E406
TSJCT
0.223E406
                                                           146

-------
SESMENT
4
4
4
4
4
INTERACTION
1
2
3
4
5
                           INTEVCTIN6 SE9CKT
                                   2
                                   5
                                   0
                                   0
                                   4
FLOW
(BBS/SEC)
O.OOOE+00
0.300E+04
O.OOOE+00
O.OOOE+00
-0.3006+04
DIFFUSION
(M»*3/SED
O.&ME+OO
0.236E+02
O.OOOE+00
O.OOOE+00
0.233E+02

ALPHA
0.533E+00
0.996E+00
O.OOOE-KX)
O.OOOE+00
0.996E+00

ALPHAIN
0.533E+00
0.996E+00
0.0006+00
0.0006+00
0.996E+00
                                       iiiiiuiii   BOUNDARY VflLUES   iiiiiinn
       TPBO
     0.413E-02
     0.104E-02
 PWTO
   1
   2
   2
   4
   3

tern zoo
    i

cam zoo
    i
        AVPBO
     0.1046-02
      0.2B4E+00
        TKNBD
     0.12E+00

        AVSBD
     0.6fiBE+00
        MOB)
     0.272E+00

        TUPBD
     0.2896-02
   NK3D
0.124E-01

   TIMO
o.ioeE+00
   T30
0.134E+01
0.&40E+00
   AVSBD
o.&ea6+oo

   OJD
O.S27E+01
   OJD
0.527E+01
A
0. 2006*00
0.44X-02
0.197E-01
0.4B1E-02
0.8266-03
PSABD
0.7906-03
0. 1506-02
0. 1506-02
0.2006-02
0.2006-02
NSAH)
0.4006-01
0.800E-01
0.a006H)l
o.aooE-01
o.aooE-01
SSAK)
0.1406+00
0.0006+00
0.0006+00
O.OOOE+00
0.0006+00
     Z1BO
  0.5B3E-02

     Z2BO
  0.260E-01
                                  DIIIIIIII   DAY *
                                                SE9BCT -
TDVERRTURE    « 0.706E+00
LIGHT INTENSITY * 0.106E+02
      COEFF    « 0.33SE+00
0.793E+00
0.291E-01

  TDTflL P
0.371EHK
0.406E+02
TDTAL PHYTO
TtTTflL ZOO
UA1ER
SEDIMENT
  TDTPL N
O.S51E+00
0.461E+03
  TOTAL S
0.a63E+00
O.lfiSE+03
        QVP
     0.432E-02
      0.317E+00

       SURPLUS P
       O.S76E-03
         OV5
      0.38GE+00

       SURPLUS X
       0.276E-01
        TUP
      0.36S-02

       SURPLUS S
       0.729EH31
   TUN
0.197E+00
   TUS
0.380E+00
   CL
0.789E+01
                                                         147

-------
      TOT  PHYTD
     0.853EH)3
             0.3WE-01
             0.919E-01
PRIH PROD RflTE  (MB C/M»3/WH       = 0.14aE+02
INTEBRflL PRIH PROD RflTE  («6 C/*"3>  * 0.123E+OE
 PHYTO
   1
   2
   3
   4
   5

 PHYTO
   i
A
0.685E+QO
0. 1WE-01
0.558E-01
0.233E-01
0. 161E-02
FCRQP
O.a63£+00
0. 149E-01
0.82gE-01
0.369E-01
0.203E-02
PSA
0.112EHK
0.247E-02
0.247E-OE
0.560EHK
0.495E-02
PSA/PSfWIN
0.223E-K)!
0.247E-K)!
0.247E-K)1
0.5bO£+01
O.W5E+01
NBA
0.411E-01
0.780E-01
0.7%E-01
0.760EH)!
0.75BE-01
N5A/NSAMIN
0.4UE+01
0.390E-K)!
0.395E+01
0.380E+01
0.37SE+01
SSA
0. 141E+00
O.OOOEHX)
O.OOOE-HX)
O.OOOE-HX)
O.OOOE-KX)
SSA/SSAt
0.404€-H
O.OOOE-H
O.OOOE-H
O.OOOE-H
O.OOOE-H
SPGR
0.732E-02
0.676E-02
0.710E-02
0.oa2E-02
O.S31E-32
BPI
0.232E-01
0.430E-03
0.245E-02
0. 119E-OB
0.606E-04
R2PS
0.732E^
0.676E-Oe
0.710EH32
0.760E-02
0.739E-02
RSNS
0.103E-^)1
0.84SE-02
0,39C€-02
O.U2E-02
0.&81E-OS
R2SS
0. 103E-01
0.390E+02
0.990E-KK
0. 9906+02
0.990E-MK
TWBTA
0.323E+00
0.271E-HX5
0.325E-KX)
0.190E+00
0.190E-HX)
RUGHT
0. 175E-01
0.173EH)!
0.175E-01
0.303E-01
0.305E-01
     ZOO
    1

CMN ZOO
    1
    Zi
0.800E-02

    Z2
0.211E-01
           HI
         0.377E-01

           RZ2
         O.OOOE+00
           Z1LSS1
         0.313E-02

           Z2LSS1
         0.813E-J2
           TW6TZ1
           TMBTI2
         0.271E+00
 THIBLTflRY
 SEDI!€NT
 TUTflL
 TRIBUTWY
 SEDIfCNT
 TOTRL
                        UAVP
0.123E+02
0.0006+00
0.5746+02
0.234E+04
0.196E+04
0.0006+00
0.4306+04
UAVP
0.2206+03
0.6656+02
0.0006+00
0.2B7E+03
WVN
0. 1176+05
0.9606+04
0.0006+00
0.2155+05
                                      UflVS
                                                               !KS/3OT)
                                              tfTUP
                                           0.177E+03
                                                  0.000&KX)
O.lfi
0.173&KH
0.3975+04
                                    U3ADIN6 INTESRALS  (KE)

                                      UW5          UTUP
                                               WTUS
                                            0.20S+04
                                   0.910E+03      0.162E+03
                                   0.853E+04      0.0006+00
                                   0.1975+05      0.103E+04
0.0006+00
0.153E+04
                                                             mn
                                                          0.321E+04
                                                          0.441E+04
                                                          0.0006+00
                                                          0.7636+04
0.0006+00
0.2236+04
                                                                                                 WTUS
                                                          0.9106+03
                                                          0.0006+00
                                                          0.1126+05
O.OOOE+00
0.0006+00
0.0006+00
0.0006+00
                                                             UQ.
                                                          0.0006+00
                                                          0.0006+00
                                                          0.0006+00
                                                          0.0006+00
RPSIIK
0.399E+03
TPSJK
0.203E+04
TP)€T
0.205E+04
RNSINK
0.205E+05
TNSUTK
0.10SE+06
TMCT
0.109E+06
RSSIW
0.412E+OS
TSSUNK
0.206E+06
TSNET
0.196E+06
             INTEJWCTIDN     iNTERftcnNG SESHDTT
                                    FLOW
                                  !H**3/SEC)
                                          DIFFUSION
                                          (»*»3/SEC5
                                             flLJW
                                            ALPHAIN
                                                           148

-------
   5
   5
   5
   5
   5
HD.307E-KX3
HD.300E-KH
O.OOOE-KX)
O.OOOE+00
0.331E-KH
0.406E-HX)
O.E36E+02
O.OOOE+OO
O.OOOE-KX)
0. 107E-K2
0.100E-02
O.WOE-OE
O.OOOE-KX)
O.OOOE-KX)
0.99K>00
0.662E-03
0.333E-08
O.OOOE-HX)
O.OOOE-HX)
0.998E-HX)
                                       iiuiiiHi   BQUMMRY V41E5   iiiiiiiiu
       TPBD
    0.518E-02

       flVPBD
    0.104E-<«
 PHYTO
   I
   2
   3
   4
   5

:-OE  ZOO
    i

CAIM  ZOO
    1
      flVPBD
    0.104E-02

      WNBO
    0.304E-KX)
   TKWC
0.196E-KX)

   WSBD
0.693E+00
   N03B&
   7UPBD
0.373E-02
0.109EH)1

   TUNBD
0.166E+00
   TSBD
0.139E-H)!

   TUSBO
0.651E+00
   flVSBD
0.693E+00

   CLBO
Q-XTE+Ol
                                              CLBD
A
0.327E+00
0.576E-08
0.309E-01
0.2B3E-01
0.506E-02
PSflBC
0.750E-03
0.130E-OE
0.150E-06
0.200E-02
0.200E-02
«aec
0.400E-01
o.aooE-oi
o.aooc-oi
0.800E-01
O.SOOE-01
SSfSO
0.140E-HX)
O.OOOE-KX)
O.OOOE-HX)
O.QOOE+00
O.OOOE*00
   Z1BD
0.111E-01

   Z2BD
0.31SE-01
                                                          149

-------