&EPA
United States
Environmental Protection
Agency
tnvirorvu :•!..)! Researcli
Laboratory
Duluth MN 55804
Research and Development
EPA 600 3-86 061
November 1986
User Manual for
Two-Dimensional
Multi-Class
Phytoplankton
Model with Internal
Nutrient Pool Kinetics
-------
EPA/600/3-86/061
November 1986
USER MANUAL FOR TWO-DIMENSIONAL MULTI-CLASS PHYTOPLANKTON
MODEL WITH INTERNAL NUTRIENT POOL KINETICS
by
Victor J. Merman, Jr.
Environmental Protection Agency
Environmental Research Laboratory
South Ferry Road
Narragansett, RI 02882
and
Lyn M. Mcllroy
Department of Civil and Environmental Engineering
darkson University
Potsdam, NY 13676
ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
DULUTH, MINNESOTA 55804
.•••'• V-,- --'-or- ~. --*-•;! "?roto?tion Agency
Jl'.O S. Dearborn Stt-oat, ~4cc.:c I-7-T
Chicago, IL C'JSC"*
-------
NOTICE
This document has been reviewed in accordance with
U.S. Environmental Protection Agency policy and
approved for publication. Mention of trade names
or commercial products does not constitute endorse-
ment or recommendation for use.
11
-------
FOREWORD
The mission of the Environmental Research Laboratory -
Duluth is to investigate the fate and effects of pollutants on
freshwater ecosystems. The development and validation of
quantitative methods for assessing the transport and fate of
contaminants in the Laurentian Great Lakes are conducted at the
EPA Large Lakes Research Station at Grosse lie, Michigan. These
methods are developed to address site-specific water quality
problems in the Great Lakes; however, they are sufficiently
generic that they can be applied to other water bodies as well.
The model documented in this report has been developed as
part of a long-term case study of eutrophication in Saginaw Bay,
Lake Huron. Results from this model were used to determine the
target phosphorus loading to Saginaw Bay as part of the 1978
Water Quality Agreement between the U.S. and Canada. The purpose
of this user manual is to document the model for scientists and
engineers so that it can be used for other physical systems.
The application of this model should be approached with
caution. It is a reasonably sophisticated water quality model
that requires an experienced FORTRAN programmer for successful
operation. Model calibration and interpretation of results
require a good working knowledge of water quality modeling, and
prior experience with more simple dynamic water quality models.
Applications of this model should be conducted within an overall
research program that includes the acquisition of laboratory and
field data for determination of kinetic and stoichiometric
coefficients, and for validation of model results.
No claims are made that the model is applicable to every
problem, nor that it is error-free.
Gilman D. Veith, Ph.D., Acting Director
Environmental Research Laboratory
U.S. Environmental Protection Agency
Duluth, Minnesota
ill
-------
ABSTRACT
As part of a long-term case study of eutrophication in
Saginaw Bay, Lake Huron, a multi-class phytoplankton model with
internal nutrient pool kinetics was developed. The model is a
deterministic mass balance model which is temporally dynamic, and
spatially segmented in the horizontal. The nutrients included in
the model are phosphorus, nitrogen, and silicon.
The purpose of this user manual is to document the model for
scientists and engineers so that it can be applied to other
physical systems. An overview of the model is presented, along
with the governing equations for conservation of mass, and the
equations for all process kinetic formulations. The structure
of the computer code is presented, with emphasis on model input
and output.
Two spatially simplified examples are presented in detail.
The first example involves a hypothetical lake with a single
input tributary, and a single output tributary. The second
example involves a hypothetical embayment with a single input tri-
butary, and a large open boundary. To illustrate how the model
is applied to a system with multiple spatial segments, a third
example is presented in which the input data groups are set up
for Saginaw Bay.
IV
-------
CONTENTS
Page
Disclaimer ii
Foreword iii
Abstract iv
List of Figures viii
List of Tables ix
Acknowledgements x
1. Executive Summary 1
2. Introduction 3
3. Model Overview 5
3.1 State Variables 5
3.2 Applicability 5
3.3 User Requirements 6
4. Model Development 7
4.1 Background 7
4.2 Conservation of Mass 11
4.3 Kinetic Processes 18
4.3.1 Pbytoplankton 18
4.3.2 Nutrients 19
4.3.3 Zooplankton 19
4.3.4 Sediments 20
4.3.5 Light Extinction 20
5. Structure of Computer Code 22
5.1 Overview 22
5.2 Program Units 22
6. Model Input Structure 28
6.1 Overview 28
6.2 Summary of Data Groups 28
6.2.1 Run Control 28
6.2.2 Model Coefficients 30
6.2.3 Initial Conditions 33
6.3 Environmental Forcing Functions 33
7. Example Applications 41
7.1 Approach 41
-------
CONTENTS (continued)
Page
7.2 Example 1: Simplified Lake 41
7.2.1 Introduction 41
7.2.2 Data Input 44
7.2.2.1 Run Control 44
7.2.2.2 Model Coefficients 44
7.2.2.3 Initial Conditions 44
7.2.3 Environmental Forcing Functions 51
7.2.4 Model Output 51
7.3 Example 2: Simplified Embayment 59
7.3.1 Introduction 59
7.3.2 Data Input 59
7.3.2.1 Run Control 59
7.3.2.2 Model Coefficients 59
7.3.2.3 Initial Conditions 59
7.3.3 Environmental Forcing Functions ....... 59
7.3.4 Model Output 68
7.4 Example 3: Saginaw Bay 68
7.4.1 Introduction 68
7.4.2 Data Input 68
7.4.2.1 Run Control 68
7.4.2.2 Model Coefficients 74
7.4.2.3 Initial Conditions Ik
7.4.3 Environmental Forcing Functions 74
7.4.4 Model Output 74
8. Operational Considerations 78
8.1 Acquisition Procedures 78
8.2 Hardware and Software Requirements 78
8^3 Testing Procedures 75
References 80
Appendix A. Glossary of Principal Variables 82
Appendix B. Process Kinetic Equations 92
Appendix C. Model Output for Simplified Lake Example 97
vi
-------
CONTENTS (continued)
Page
Appendix D. Model Output for Simplified Embayment
Example 105
Appendix E. ENVFF File for Segment 1 for Saginaw Bay
Example 115
Appendix F. Model Output for Saginaw Bay Example 126
vii
-------
FIGURES
Number Page
1 Saginaw Bay and Saginaw River Watershed 8
2 Schematic Diagram of Principal Model Compartments
and Interaction Pathways for Saginaw Bay 9
3 Sampling Station Network and Spatial Segmentation
Grid for Saginaw Bay 10
4 Relationship between Model Output and Field Data
for Total Phosphorus for Saginaw Bay in 1974 12
5 Relationship between Model Output and Field Data
for Diatom Phytoplankton Biomass for Saginaw
Bay in 1974 13
6 Relationship between Model Output and Field Data
for Blue-Green Phytoplankton (Non-Nitrogen-Fixing)
Biomass for Saginaw Bay in 1974 14
7 Relationship between Predicted and Observed
Threshold Odor Violations as a Function of Saginaw
River Total Phosphorus Loadings 15
8 Schematic Diagram of Model Input and Output Data
Files 23
9 Flowchart for Model Structure 25
10 Schematic Diagram of Principal Model Compartments
and Interaction Pathways for Simplified Lake
and Etnbayment Examples 42
11 Spatial Segmentation and Physical Transport for
Simplified Lake Example 43
12 Graphical Output for Phytoplankton, Total
Phosphorus, and Chloride Concentrations for
Simplified Lake Example 56
13 Spatial Segmentation and Physical Transport for
Simplified Embayment Example 60
14 Graphical Output for Phytoplankton, Total
Phosphorus, and Chloride Concentrations for
Simplified Embayment Example 69
15 Spatial Segmentation and Physical Transport for
Saginaw Bay Example 72
viii
-------
TABLES
Number Page
1 Description of Model Input and Output Data Files . 24
2 Description of Model Subroutines 26
3 Record Input Format for RUNCON File 29
4 Record Input Format for COEFF File 31
5 Record Input Format for INICON File 34
6 Record Input Format for ENVFF File 35
7 Constraints on Physical Configuration and
Transport Variables 38
8 Values for RUNCON File for Simplified Lake
Example 45
9 Map of Variable Names for RDNCON File for
Simplified Lake Example 46
10 Values for COEFF File for Simplified Lake
Example 47
11 Map of Variable Names for COEFF File for
Simplified Lake Example 48
12 Values for INICON File for Simplified Lake
Example 49
13 Map of Variable Names for INICON File for
Simplified Lake Example 50
14 ENVFF File for Simplified Lake Example 52
15 ENVFF File for Simplified Embayment Example 61
16 RUNCON file for Saginaw Bay Example 73
17 COEFF File for Saginaw Bay Example 75
18 INICON File for Saginaw Bay Example 77
ix
-------
ACKNOWLEDGEMENTS
We thank Jean A. Nocito and Edward H. Dettman for their
critical reviews of this report. We offer special thanks to
David M. Dolan for reviewing the FORTRAN source code for the
model. The efforts of Colette J. Brown in preparation of the
manuscript for publication are gratefully acknowledged.
This work was supported in part by the Environmental
Research Laboratory - Duluth, U.S. Environmental Protection
Agency. This work was performed while V.J. Bierman, Jr., was on
the staff of the Environmental Research Laboratory -
Narragansett, and L.M. Mcllroy was on the staff of Computer
Sciences Corporation at the Narragansett Laboratory.
This report is Contribution No. 793 of the Environmental
Research Laboratory - Narragansett.
-------
SECTION 1
EXECUTIVE SUMMARY
As part of a long-term case study of eutrophication in
Saginaw Bay, Lake Huron, a multi-class phytoplankton model with
internal nutrient pool kinetics was developed. The model is a
deterministic mass balance model which is temporally dynamic, and
spatially segmented in the horizontal. Each of the spatial
segments contains a water column layer and a surficial sediment
layer. Water exchange among the segments is represented by
advective and bulk diffusive flows. The nutrients included in
the model are phosphorus, nitrogen, and silicon.
The purpose of this user manual is to document the model for
scientists and engineers so that it can be applied to other
physical systems. An overview of the model is presented, along
with the governing equations for conservation of mass, and the
equations for all process kinetic formulations. The structure of
the computer code is presented, with emphasis on model input and
output.
The model is intended for shallow lakes and embayments that
are well-mixed in the vertical. It is designed to address water
quality problems that stem from nutrient enrichment, and which
are manifested primarily by overproduction of phytoplankton
biomass. It is especially well suited to problems that involve
multiple groups of phytoplankton, for example, spring diatom
blooms and summer-fall blooms of nuisance blue-green
phytoplankton, including nitrogen-fixing blue-greens. The model
is not applicable to water quality problems that involve
dissolved oxygen depletion.
For effective use of the model, the user must have FORTRAN
experience, and a good working knowledge of dynamic water quality
models. It is strongly recommended that the user have prior
experience with applications of relatively simple dynamic models
that involve chlorophyll, nutrients, and zooplankton.
The model is coded in FORTRAN 77. The primary system for
which the model has been documented is the IBM PC/AT, with an IBM
Personal Computer Disk Operating System (DOS), and IBM Personal
Computer Professional FORTRAN. The model can also run without
modification on a VAX 11/780 minicomputer with a VMS operating
system.
Two simplified examples are presented in detail. The first
example involves a hypothetical lake which consists of a single,
well-mixed spatial segment. The hydraulic configuration for this
lake is limited to a single input tributary, and a single output
tributary. The second example involves a hypothetical embayment.
This example is identical to that for the simplified lake, with
-------
the exception that the hydraulic configuration includes a single
input tributary, and a large open boundary. To illustrate how
the model is applied to a system with multiple spatial segments,
a third example is presented in which the input data groups are
set up for Sagiaaw Bay.
-------
SECTION 2
INTRODUCTION
Control of nutrient inputs to water bodies is one of the
principal means for attempting to reverse the symptoms of
cultural eutrophication. Cultural eutrophication, here defined
as overproduction of phytoplankton biomass caused by increased
anthropogenic nutrient inputs, may lead to increased turbidity,
aesthetic nuisances, and dissolved oxygen depletion. It may also
lead to filter-clogging, taste, and odor problems in water
supplies.
As part of a long-term case study of eutrophication in Saginaw
Bay, Lake Huron, a multi-class phytoplankton model with internal
nutrient pool kinetics was developed (Bierman et al. 1980;
Bier-man and Do Ian 1981). This model was calibrated to an
extensive set of baseline field data collected in 1974 and 1975
(Bierman and DoIan 1986a). The calibrated model was then used in
a predictive mode to estimate the responses of the bay to a range
of phosphorus control strategies. Subsequently, a post-audit was
conducted in which the model predictions were compared with an
extensive set of resurvey data acquired in 1980, after the bay
had experienced a substantial reduction in external phosphorus
loadings (Bierman and Dolan 1986b).
The purpose of this user manual is to document the model in such
a way that it can be applied to other physical systems. Section
3 contains an overview of the model, and discusses the particular
types of water quality problems for which it is best suited.
Section 4 describes the fundamental equations used for
conservation of mass, and the kinetic processes incorporated for
nutrients, phytoplankton, zooplankton, and sediments. Section 5
contains an overview and flowchart for the computer code*
Section 6 discusses the structure of the various input data
groups.
Two simplified examples are presented in detail in Section 7.
The first example involves a hypothetical lake which consists of
a single, well-mixed spatial segment. The hydraulic
configuration for this lake is limited to a single input
tributary, and a single output tributary. The second example
involves a hypothetical embayment. This example is identical to
that for the simplified lake, with the exception that the
hydraulic configuration includes a single input tributary, and a
large open boundary. To illustrate how the model is applied to a
system with multiple spatial segments, a third example is
presented in which the input data groups are set up for Saginaw
Bay.
Section 8 discusses various operational considerations such as
acquisition procedures, hardware and software requirements, and
testing procedures. The appendices contain a glossary of all
-------
variable names, a tabulation of all process kinetic equations in
the model, and model output files for the three examples.
-------
SECTION 3
MODEL OVERVIEW
3.1 STATE VARIABLES
The model is a deterministic mass balance model which is
temporally dynamic, and spatially segmented in the horizontal.
Each of the spatial segments contains a water column layer and a
surficial sediment layer. Water exchange among the segments is
represented by advective and bulk diffusive flows. Each of the
constituents in the water column is assumed to be transported in
the horizontal by these flows. Exchanges between the water
column and sediment can occur by settling, resuspension, and,
under certain conditions, by mineralization of sediment nutrients
to the water column.
The model includes phytoplankton biomass in terms of
multiple functional groups. The nutrients included are
phosphorus, nitrogen, and silicon. Internal nutrient pool
kinetics is used to describe the processes of phytoplankton
nutrient uptake and growth. The model includes two different
functional groups of zooplankton, herbivorous and carnivorous,
and implicitly includes higher-order predation on the carnivorous
zooplankton.
Nutrients are represented in both available and unavailable
forms in the water column. Various transformation and recycle
processes occur between these forms for each nutrient. No
explicit distinction is made between available and unavailable
nutrient forms in the sediment. The purpose of the sediment
nutrient compartments is to complete the total mass balance cycle
for the system.
3.2 APPLICABILITY
The model is intended for shallow lakes and embayments that are
well-mixed in the vertical. It is designed to address water
quality problems that stem from nutrient enrichment, and which
are manifested primarily by overproduction of phytoplankton
biomass. It is especially well suited to problems that involve
multiple groups of phytoplankton, for example, spring diatora
blooms and summer-fall blooms of nuisance blue-green
phytoplankton, including nitrogen-fixing blue-greens.
The model is not applicable to water quality problems that
involve dissolved oxygen depletion. Dissolved oxygen is not
included as a state variable in the model. In general, shallow
lakes and embayments that are vertically well-mixed do not
experience problems with dissolved oxygen.
The transport structure of the water body must be determined
separately and specified as input to the model. Transport in the
-------
model is represented as advective and bulk diffusive exchange
flows among the various water column spatial segments. For
applications that involve simple spatial segmentation schemes,
these parameters can usually be determined using basic hydraulic
information. For more complicated systems, these parameters
usually need to be determined using a mass balance model for a
conservative constituent, or a hydrodynamic model. One of the
state variables in the model represents a conservative
constituent that can be used to check the transport parameters
specified.
3.3 USER REQUIREMENTS
For effective use of the model, the user must have FORTRAN
experience, and a good working knowledge of dynamic water quality
models at the level of Chapra and Reckhow (1983). It is strongly
recommended that the user also have experience with applications
of relatively simple dynamic water quality models that involve
chlorophyll, nutrients, and zooplankton.
The model is coded in FORTRAN 77. The primary system for
which the model has been documented is the IBM PC/AT, with an IBM
Personal Computer Disk Operating System (DOS), and IBM Personal
Computer Professional FORTRAN. The model can also run without
modification on a VAX 11/780 minicomputer with a VMS operating
system.
Applications that involve simple spatial segmentation
schemes and only a few phytoplankton groups can be run
effectively on the IBM PC/AT. For each of the simplified
examples in this manual, a 30-day simulation requires
approximately 2 minutes of computer time. Applications that
involve more complex spatial segmentation schemes and more
phytoplankton groups will generally require a minicomputer.
Section 8 contains additional details on hardware and
software requirements.
-------
SECTION 4
MODEL DEVELOPMENT
4.1 BACKGROUND
The model was originally developed for Saginaw Bay, Lake
Huron. Saginaw Bay is a broad, shallow extension of the western
shore of Lake Huron (Figure 1). The bay, oriented in a
southwesterly direction, is approximately 85 km long and 42 km
wide, and it has a watershed with a total drainage area of
approximately 21,000 km2. The bay has an average depth of 10 m,
a hydraulic detention time of approximately four months, and is
vertically well-mixed. The Saginaw River is the major tributary,
accounting for over 902 of the total tributary inflow to the bay.
The principal land use categories in the watershed are
agriculture and forest. The total population of the watershed is
slightly over 1,200,000, most of it concentrated into four major
urban-industrial centers: Bay City, Midland, Saginaw, and Flint.
Water quality in Saginaw Bay has been severely impacted by
waste discharges and runoff inputs. The principal results of
eutrophication in the bay were adverse taste and odor, and
filter-clogging problems experienced by municipal water treatment
plants.
A schematic diagram of the Saginaw Bay version of the model
is shown in Figure 2. Phytoplankton biomass was represented in
terms of five functional groups: diatoms, greens, non-nitrogen-
fixing blue-greens, nitrogen-fixing blue-greens, and "others".
The last category consisted primarily of dinoflagellates and
cryptomonads.
The model was applied to five spatial segments on Saginaw
Bay (Figure 3) that were determined on the basis of observed
gradients in water quality. The inner portion of the bay
(segments one, two, and three) has an average depth of 6m, and
the outer portion (segments four and five) has an average depth
of 15 m. Water exchange among the segments, and between Saginaw
Bay and Lake Huron proper, was determined using an advective-
dispersive model for transport of chloride (Richardson 1976).
During 1974-1980, an extensive data base was acquired on
Saginaw Bay for a large number of physical, chemical, and
biological parameters. A total of 62 sampling stations was
established in the bay proper and in the lower Saginaw River
(Figure 3). Ninety-three sampling cruises were conducted during
the study period at intervals of two-three weeks between April
and December of each year.
The objective of the calibration effort was to determine a single
set of model coefficients that resulted in the best overall fit
between model output and field data for both 1974 and 1975. A
-------
00 10 20 30 40 50km
I I I I I I
LAKE HURON
MIDLAND \
BAY CITY—>T3
v •" • ',"*•'." " • *
\ • . • /
ft Saginaw R. /
Shiawassee R.
SAG IN AW \
WATERSHED
43° -
- 43(
Figure 1. Saginaw Bay and Saginaw River Watershed
-------
«1
il
2 ei
X UJ
X
0.
/OROUS
Z
ce
<
1
o
H-
1
1 ZOOPL
r
j
in
0
O
ce
o
CD
X
X
1
1
p ~
J/
""""!*:
Z
O
H-
X.
Z
M
y
....
^
1
I
_ H
r
t
BLUE-GREENS
(N-flicri)
en
SI
X x
(9 =
Si
co £•
OTHERS
z
UJ
UJ
K
O
<
o
1
—
_.
ATMOSPHERIC
NITROGEN
j Z
= X
LABLE
PHORUS
- en
> 9
< £
UJ
1 ^
I
^
— &•
UJ
CD Z
< 0
-J O
UNAVAI
NITR
<1
§ ^
UJ
-i
CD
< Z
-J O
UNAVAI
SILIC
V
fc
^-
*^
J
K z
Z UJ
ss|
en Z
en
h- 3
22 X
o o3;
en §
O.
?^5
5 *- 5£
Sj «°
O
U
CD
i-i
(U
•O
oo
c
cu
(9
a
o
u
(U
"a
CO
c.
o
c
E
CO
CO
03
CO
C
•H
GC
CD
cyj
CO
01
x:
u
en
CM
(U
at
—4
-------
SAGINAW BAY
SAMPLING NETWORK
Legend : • Boot Stotion
o Water Intake
!0km
SAG IN AW
RIVER
Figure 3. Sampling Station Network and Spatial Segmentation
Grid for Saginaw Bay
10
-------
simple Student's t test was used to check for significant
differences between observed mean values from the field data, and
mean values computed by the model (Thomann 1982). Seasonal mean
values of model output and field data were also compared because
the hydrological and productivity cycles in the bay are
characterized by distinct seasonal patterns.
Graphical results for selected variables from model
calibration to the 1974 data are presented in Figures 4-6. The
solid lines represent model output, and the data are sampling
cruise means with three standard errors. In general, the number
of samples for each cruise was such that three standard errors
corresponded to approximately one full standard deviation of the
data about the observed mean. Results for phytoplankton
concentrations are plotted on a logarithmic scale because the
data from individual sampling stations were found to be
lognormally distributed for each of the sampling cruises. Mean
values were calculated using a maximum likelihood method
(Aitchison and Brown 1963).
It was concluded that the model was successfully calibrated
to the field data. An important finding was that water column
total phosphorus concentrations appeared to be strongly
influenced by wind-induced sediment resuspension. The degree of
this influence seemed to be seasonally dependent. In the
calibrated model, the resuspension mechanism accounted for 36 and
68%, respectively, of the computed spring and fall average total
phosphorus concentrations. Sediment-water interactions should be
an important consideration in the application of the model to
shallow, highly dynamic systems.
To develop estimates of the responses of Saginaw Bay to
anticipated reductions in phosphorus loadings, a series of
predictive simulations was conducted with the calibrated model.
The response of the bay in terms of threshold odor in the
municipal water supply was estimated by applying a regression
equation (Bierman et al. 1984) to the model predictions for
blue-green phytoplankton biomass. For each reduced load, an
estimate was made of the number of days on which threshold odor
violations could be expected to occur.
In the post-audit phase of the study, the long-term response
trend for threshold odor agreed well with the model prediction
range (Figure 7). In particular, observations agreed with the
prediction that threshold odor violations in the principal
municipal water supply would be eliminated if the tributary
phosphorus loadings could be reduced to 400-500 metric ton/yr.
4.2 CONSERVATION OF MASS
The fundamental governing principle for the model is
conservation of mass in time and space. The behavior of each
constituent, or state variable, is described by the two-
dimensional advection-diffusion equation:
11
-------
31
3
U
o
a.
o
o
Cu
eg
a
•o
•O
e e
a -H
3 a
s. pa
4J
o s
e
i— I -H
V OC
"0 O
o w
u
e o
01 IM
0)
c.
a
c
o
cd
GJ
u
3
00
12
-------
03
en
2
O
Cfl
H-
Ul
2
O
UJ
en
1C
H-
UJ
2
O
UJ
en
O
CO
<
u.
o
a
o
O
W
a
•H
a
<
mmmmmm
2
•
u.
»
-5
ffl °
O „
E 2
0. 5
en B
»-i c
0) -H
a
tj so
a 3
a
•u e
s •*
a oo
4J gg
i-t O
U tu
T3
o a
Z 09
a
e s
41 o
OJ -H
3 CO
u
a
03
e
o
o
'
2 5
-]/6uj '
2 S 5
0
6
q
o
o
o
o
d
p
6
SSVWOIS
13
-------
o
CJ
2 5
< z
ffl U
— UJ
O D
< II
cn m
z
UJ
2
o
UJ
cn
*•
h-
UJ
cn
CM
UJ
2
o
UJ
cn
UJ
Z
o
UJ
UJ
o
UJ
on
O
O
Q O O -
O O -. P
--00
QOO-
O O -. P
--00
Q
6
O
O
O
6
c
as
i—i
Cu
O
a-
e
01
o <•
I r^
«J OS
3 i-t
1—4
S3 C
u
O
Q
03
a a
a c
o cn
•^
u. u
o
TJ VM
CD CO
0}
4J gj
3 E
a o
0)
01
C
U
c. z
f I
"3 5
c 2:
O <—'
at
as
sO
u
ac
p
o
-|/6ui 'NOIiV^lN30NOO SSVVNOI8
-------
3
£ CO
IT
O
*
O «
X >•
Q. ^
J S
< o
I *
or «
> ^
cr
o
<
en
09
03
CD
C
O
a
o
•*f
>
U CO
O 00
C —
CO Z
41 3
i- U
T3 OB
41 O
> J=
i- —
01
CD H
^ a
O u
o
•O H
C
CO U
0)
"O >
a; -H
- K
o
— 3
-C «3
01 =
u M
a. ac
a
c w
S.'
i w
JJ
a; e
j o
j= c
co r
c fc
9
as
ec
u.
Q10HS3dHl HUM SAVQ dO
15
-------
D 3^C Dv 3^C 3 (UC) 3 (UWC)
A . j x y
3x2 3y^- 3x ay
± S (x, y, t) (4.1)
where:
C - constituent concentration (M/L-^)
t - time (T)
x, y « spatial coordinates in the horizontal (L)
DX, Dy - turbulent diffusion coefficients in the x and y
directions, respectively (L2/T)
^x> uy * flow velocities in the x and y directions,
respectively (L/T)
S(x,y,t) - sources and sinks of constituent C (M/L^-T) .
The turbulent diffusion coefficients represent mixing caused by
large-scale eddys, and dispersion caused by velocity gradients,
or shears, within the mean advective flow. In general,
dispersion usually predominates in estuaries, and turbulent
diffusion predominates in lakes. For long-term simulations,
however, mixing can be adequately represented as turbulent
diffusion.
The solution method used in the model consists of a finite
difference approximation to the derivatives of Equation 4.1.
This method is a control volume approach developed by Thomann
(1972), and used in the Water Quality Analysis Simulation Program
(WASP) (Di Toro et al. 1983). It consists of treating the water,
body as a series of completely mixed volumes, or spatial
segments. It results in transformation of Equation 4.1 from a
partial differential equation in time and space to a system of N
ordinary differential equations in time, where N is the number of
control volumes or segments.
Using the control volume approach, the change in mass of a
constituent with respect to time for a given spatial segment is:
Vk dCk
- - I l-Qkj(akjck + BkjCj) + Ekj (Cj - Ck)]
± Sk (4.2)
where:
constituent concentration in segment k (M/L )
C^ » constituent concentration in adjacent segment j
(M/L3)
V^ » volume of segment k (L )
Q, . » advective flow between segments k and j (L /T)
16
-------
Ek. - bulk diffusion coefficient (L3/T)
J - EkjAk,/L (L3/T)
Ek, - turbulent diffusion coefficient (I//T)
Ak- » cross sectional area between segments k and j (L )
akj" dimensionless weighting factor
- L-j/d-j + Lk)
L^ - length of segment k in direction of flow (L)
Lj - length of segment j in direction of flow (L)
Bkj " 1 - akj
Sfc - sources and sinks of constituent in segment k (M/T)
The parameters akj anc* 3kj are weighting coefficients that
correct for cases where adjacent segments have unequal lengths.
Positive solutions are maintained by the stability criteria:
akj > 1 - (Efcj/Qkj) (4-3>
The general time step constraint for Equation 4.2 is:
where U - Q/A. Refer to Thomann (1972) and Chapra and Reckhow
(1983) for a more detailed discussion.
To integrate Equations 4.2, the model uses Ralston"s second-
order Runge-Kutta method (Chapra and Canale 1985). Previous
versions of the model used a fourth-order Runge-Kutta method, and
an Adams-Moulton predictor-corrector method. The fourth-order
method required four derivative evaluations for every time step.
The predictor-corrector method required two derivative
evaluations, plus any additional evaluations that were required
to meet specified convergence criteria. Experience has shown
that the second-order Runge-Kutta method gives solutions of
comparable accuracy to these other two methods. It requires only
half the number of derivative evaluations as the fourth-order
method, and it is much easier to program than the predictor-
corrector method.
In some applications, particular combinations of spatial
segment, derivative, and time step can cause negative values for
some state variables. This is most likely to occur during
periods of extreme nutrient limitation, or during periods when
phytoplankton blooms "crash" due to heavy zooplankton grazing
pressure. In these situations, the variables that are most
likely to become negative are internal nutrient levels, and
dissolved available nutrient concentrations in the water column.
On occasion, phytoplankton biomass can also become negative. If
this occurs, the computer program issues a warning to the user,
but takes no corrective action. The user should respond by
repeating the computation with a smaller time step.
17
-------
4.3 KINETIC PROCESSES
All state variables in the model are described by Equation
4.2. This equation has two major components: inter-segmental
transport, and intra-segmental sources and sinks. Included in
these sources and sinks are constituent loadings from
tributaries, the atmosphere, and the sediments, as well as
transfers among state variables (constituents). The equations
for sources, sinks, and loadings are tabulated in Appendix B for
all of the model state variables. The process mechanisms
represented by these equations are briefly discussed below.
Refer to Bierman et al. (1980) for a more detailed discussion.
4.3.1 Phytoplankton
Phytoplankton functional groups are distinguished primarily
on the basis of nutrient requirements, growth rates, settling
characteristics, and susceptibility to grazing by herbivorous
zooplankton. All phytoplankton groups have absolute requirements
for phosphorus and nitrogen, with the exception of nitrogen-
fixing blue-greens which can continue to grow in the absence of
dissolved available nitrogen. Diatoms are the only group with a
major absolute requirement for silicon.
The relative maximum growth rates and temperature optima
among the various phytoplankton groups are such that a typical
successional pattern during the growing season begins in spring
with diatoms, progresses to greens, and finally leads to blue-
greens in late summer-fall. Various types of flagellates and
cryptomonads can occur as well.
Diatoms and greens are generally considered to be acceptable
food sources for herbivorous zooplankton. Many species of blue-
greens, including those frequently responsible for nuisance
blooms, are not significantly grazed. Other functional groups
are grazed to varying degrees.
The number and type of phytoplankton functional groups
selected for a given application will generally depend on the
water quality issues to be addressed, and on the availability of
field data.
The phytoplankton nutrient uptake and growth processes in
the model are based on internal nutrient pool kinetics. The
principal advantages of this approach are more realistic
descriptions of non-steady-state conditions, and of nutrient
recycle. The principal disadvantages are increased computational
complexity and the need to specify additional model coefficients.
The principal features of the internal nutrient pool
kinetics model are the following:
1. Growth rates depend directly on internal nutrient
levels, not on environmental nutrient concentrations.
18
-------
2. Nutrient uptake rate is a function of both internal
nutrient level and the environmental concentration.
3. The active internal nutrient pool which participates
in the nutrient uptake mechanism is a function of
the total internal nutrient level. This feedback
mechanism prevents the cells from absorbing arbitrarily
large amounts of a nutrient and depleting the
external environment.
Fixation of atmospheric nitrogen is modeled by constraining
the internal nitrogen level to a maximum value whenever the
dissolved available nitrogen concentration in the water column is
below a user-specified threshold value. This insures that the
specific growth rate for the nitrogen-fixing blue-green group
will not be limited by nitrogen during such periods.
Other phytoplankton processes included in the model are
respiration, decomposition, and settling.
4.3.2 Nutrients
The nutrients included in the model are phosphorus,
nitrogen, and silicon. These are generally considered to be the
most important nutrients that limit phytoplankton growth in
natural waters. In the water column, each of the nutrients
exists in a dissolved available form, and in a total unavailable
form. No explicit distinction is made between dissolved and
particulate fractions for the unavailable forms.
In the sediments, only total nutrient concentrations are
represented. The principal reason for including sediment
nutrients in the model is that in shallow systems, resuspension
can significantly influence water column nutrient concentrations.
To obtain a realistic mass balance it is necessary to model the
coupled water column—sediment system.
Nutrient recycle consists of two distinct components: a
component associated with the minimum cell quota, or
stoichiometry, required by the phytoplankton, and a component
associated with the internal nutrient level in excess of the
minimum cell quota. When loss of phytoplankton biomass occurs
due to respiration, decomposition, or grazing, the nutrient
component associated with the minimum cell quota is recycled to
the total unavailable compartment in the water column. The
nutrient component associated with the excess internal level is
recycled directly to the dissolved available compartment in the
water column.
Other nutrient processes included in the model are
mineralization, and settling of the total unavailable
forms.
4.3.3 Zooplankton
19
-------
Two functional groups of zooplankton are included in the
model: herbivorous and carnivorous. Herbivorous zooplankton
graze directly on one or more phytoplankton groups, and
carnivorous zooplankton graze directly on the herbivorous
zooplankton. Higher order predation on the carnivorous
zooplankton is not explicitly included in the model. Instead, it
is implicitly represented by a second-order predation function.
Refuge concentrations are provided for the phytoplankton and both
zooplankton groups. These are threshold concentrations below
which no grazing or predation can occur.
4.3.4 Sediments
The sediment nutrients are modeled using simple input-output
mechanisms. There are no process kinetic reactions within the
sediment compartment, with the exception of nutrient
mineralization which may occur. Evidence indicates that such
mineralization is especially important in the overall silicon
mass balance cycle.
The principal nutrient fluxes into the sediment are due to
phytoplankton settling, and settling of total unavailable
nutrients. The principal output flux is due to resuspension.
Resuspension in the model is represented by a threshold function
of wind speed (DoIan and Bierman 1982). A resuspension event is
modeled with a constant apparent resuspension velocity for
sediment nutrients on user-specified days for which wind speed
exceeds a given value. Resuspension is zero on all other days.
Resuspended nutrients are assigned to the total unavailable
nutrient compartments in the water column because they are
primarily in particulate forms.
The sediment compartments in the model represent only
surficial sediments with user-specified mixing depths.
Operationally, these depths are usually considered to be 10 cm
for depositional areas, and smaller (or zero) for non-
depositional areas. There is a long-term apparent net loss
velocity from the surficial sediment layer to the deeper sediment
layer. This velocity represents long-term burial.
4.3.5 Light Extinction
Light extinction in the model is parameterized as a function
of inverse Secchi depth (Beeton 1958). This is the most general
formulation commonly used in contemporary water quality models.
Effler (1985) investigated the applicability of this approach for
different lakes, and attempted to define ranges of uncertainty to
be expected when using this formulation.
Alternatively, the user can easily modify the computer code
to incorporate any site specific function for light extinction.
For the final calibration and post-audit phases of the Saginaw
Bay study, daily light extinction coefficients were computed
using a multiple linear regression between measured extinction
20
-------
coefficients, and measured values for phytoplankton biomasa
(grouped as diatoms and non-diatoms) and unavailable phosphorus
(mostly particulate) concentrations. This approach accounted for
effects on the extinction coefficient due to phytoplankton self-
shading, and to background suspended solids concentrations, using
particulate phosphorus as an indicator. Di Toro (1978) has
developed a useful relationship between extinction coefficient
and concentrations of various types of suspended particles.
Photoperiod in the model is computed daily using a sine
function of Julian day. This function approximates photoperiod
at 44 degrees north latitude. User modification is required for
systems at different latitudes.
21
-------
SECTION 5
STRUCTURE OF COMPUTER CODE
5.1 OVERVIEW
The computer code is in modular fora, consisting of a main
program and 14 subroutines. There is also an associated file
that contains a master set of COMMON statements and REAL
declarations. This file is accessed by each of the 15 program
units through use of an INCLUDE statement.
There are four principal data input files, and two output files.
Three of the data input files are directly user-supplied, and the
fourth consists of output from a separate pre-processing package.
This package itself requires a data input file that is user-
supplied. Figure 8 contains a schematic diagram of the model
input and output data files, and their relationship to both the
model and the pre-processing package. Table 1 contains brief
descriptions of each data file.
The model is extremely flexible in terms of accomodating
constant or time-variable values for advective flows, bulk
diffusive flows, loadings, boundary conditions, and other
environmental forcing functions. This is because organization,
interpolation, and formatting of the forcing functions is
conducted off-line by the user and the pre-processing package.
This approach allows the model itself to be more simple, and to
require less computer memory. However, additional effort and
responsibility are placed on the user in terms of data
organization and preliminary data reduction.
The model does not have any intrinsic graphics capability.
This is because the model contains a large number of different
state variables, and it can be configured for a large number of
different combinations and permutations of spatial segments,
phytoplankton groups, and zooplankton groups. The judgment was
made that it would not be cost-effective to develop a generalized
graphics package for the model. Instead, with the increasing
popularity and availability of spreadsheets and graphics programs
for personal computers, including the IBM PC/AT, users can
generate plots to suit their own particular appliceitions.
5.2 PROGRAM UNITS
A flowchart for all program units in the model, with the
exception of subroutine PLOT, is shown in Figure 9. Subroutine
PLOT has the same logic flow as subroutine OUTPUT. Table 2
contains brief descriptions of all model subroutines.
The computer code is in modular form. There are separate
program units for computing transport, and for computing
phytoplankton, herbivorous zooplankton, camivorus zooplankton,
22
-------
LU
Id
LL
U.
UJ
co
0)
a
Q
C
CO
3
a
c
T5
O
O
E
«
U
60
tO
•rt
a
O
33
01
eo
EC
23
-------
Table 1. Description of Model Input and Output Data Files
Data File
Description
Source
ENVFF Time series for environmental
forcing functions
DAILY Daily values for environmental
forcing functions computed by
piecewise linear interpolation
RUNCON Run control parameters and
system configuration
COEFF Internal model coefficients
INICON Initial conditions
TABOUT Output in tabular format for
line printer
PLOTODT Output for selected variables
in format suitable for graphics
User supplied
INTER?/INVERT
Output
User supplied
User supplied
User supplied
MODEL output
MODEL output
24
-------
Figure 9. Flowchart for Model Structure
25
-------
Table 2. Description of Model Subroutines
Subroutine
Description
INPUT
FORCE
TEMP
LIGHT
ACALC
ZCALC1
ZCALC2
SEDIMENT
DIFFEQ
INTGRL
TRANS1
TRANS2
OUTPUT
PLOT
Reads RUNCON, COEFF, AND INICON files and
initializes all variables
Reads daily values for environmental forcing
functions
Computes daily values for temperature
reduction factors
Computes daily values for light reduction
factors
Computes values for phytoplankton specific
growth rates and loss processes
Computes values for herbivorous zooplankton
specific growth rates, loss processes, and
nutrient recycle rates
Computes values for carnivorous zooplankton
specific growth rates, loss processes, and
nutrient recycle rates
Computes values for sediment loading rates
Computes values for state variable
derivatives
Integrates state variable differential
equations
Computes transport for internal nutrient
storage variables
Computes transport for all other variables
Writes model output to a tabular file
Writes model output for selected variables to
a file in format suitable for graphics
26
-------
and sediment kinetics. Values for all environmental forcing
functions are updated daily by a separate module. Inputs and
outputs are also handled by separate program units.
There is a nested hierarchy of subroutines that is related
to different time scales within the model. Loop 1 (Figure 9)
contains the differential equations for phytoplankton internal
nutrient levels and dissolved available nutrients in the water
column. The characteristic time scales for these processes in
natural systems are on the order of minutes. Loop 2 (Figure 9)
contains the differential equations for all other state
variables. The characteristic time scales for these processes
are on the order of hours. Different integration time steps are
used for each of these loops in the model.
Environmental forcing functions can vary over a wide range
of time scales. Advective and bulk diffusive flows can be
considered to vary over weekly, monthly, or seasonal time scales.
Tributary loadings can vary over daily to seasonal time scales.
In practice, the availability of field data is usually the
determining factor for the actual scales used for a particular
application. The pre-processing package conducts a linear
interpolation, on a daily basis, between the user-specified
values for each forcing function, regardless of the time
intervals between the values. Accordingly, the real accuracy of
the forcing functions in the model depends solely on the accuracy
and frequency of the data that the user specifies to the pre-
processing package. The model updates all environmental forcing
factors daily by reading the output file from the pre-processing
package.
Model output consists of a data file in tabular format
(TABOUT) that can be sent to a line printer, and a data file
(PLOTOUT) that can be used as input to a user-supplied graphics
program. Examples of tabular output files are contained in the
appendices. The subroutine PLOT is configured for the special
case of only one spatial segment, and for only selected output
variables. Users must configure this subroutine to suit their
own particular applications in terms of numbers of spatial
segments and variables to be plotted.
Separate time intervals can be selected for tabular and plot
outputs. Generally, tabulated output is requested at intervals
of between 5 and 15 days, depending on the particular
application. An appropriate time scale for plot output is
usually 1 to 5 days.
27
-------
SECTION 6
MODEL INPUT STRUCTURE
6.1 OVERVIEW
This section contains descriptions of the four principal
input data files. Variable names and input sequences are
illustrated for each file. The pre-processing package is
described, and the organization and reduction of environmental
forcing factors are discussed. Appendix A contains a glossary of
all variable names, including array dimensions and physical
units.
6.2 SUMMARY OF DATA GROUPS
6.2.1 Run Control
The run control file, RUNCON, contains information needed to
configure the model for the particular site-specific application.
After initial setup and testing, the data values in this file
will usually not be changed during the model calibration process.
Table 3 contains the record input format for the RUNCON file.
The computer code is dimensioned for a maximum of 10 spatial
segments. Each spatial segment can have up to a maximum of five
interactions with other spatial segments and/or boundaries. A
boundary is considered to be either a large open boundary, or a
tributary. There are important constraints on how these
boundaries can be set up, and on how the forcing; factors for
transport must be specified. These constraints are discussed
below in detail.
The code is dimensioned for a maximum of five phytoplankton
groups. Although it is possible to run the model for only one
group, it is assumed that applications will involve between two
and five groups. One of the phytoplankton groups must be a
diatom for proper representation of the silicon mass balance
cycle. The inclusion of a nitrogen-fixing blue-green group is
optional.
The code is dimensioned for a maximum of two herbivorous
zooplankton and two carnivorous zooplankton groups. Most
applications will involve only one carnivorous zooplankton, and
one or two hervbivorous zooplankton. The herbivorous zooplankton
can be configured to graze on one or more phytoplankton groups.
Not all of the phytoplankton groups need to be grazed. The
carnivorous zooplankton can only graze on herbivorous
zooplankton.
The model can be run to simulate any desired period in real
time. It can be run to simulate a seasonal cycle, or it can be
run over an entire year. If constant environmental forcing
28
-------
Table 3. Record Input Format for RUNCON File
Variable
Sequence
Number
1
2
3
4
5
6
7
8
9
10
11
12
Variable(s)
NSGMTS, INTMAX
VX(N), DEPTH(N)
INT(N.J)
VOLSDX(N), DEPTHS(N)
NBDNTS, NFXLDS, NMISC
NASPEC, NDITMS, NN2BGS
ISILCA(L)
NFIX(L)
NZSPEC, NZ1SPC, NZ2SPC
IZ1PAR(K1,L)
IZ2PAR(K2,K1)
TIMEMX, TPLOT, TPRINT,
Format
215
2E10.
15
2E10.
315
315
515
515
315
515
215
3E10.4,
3
3
15
ISKIP
13
HI, H2
2E10.4
29
-------
functions are specified, it can also be run to steady-state. The
print interval (TPRINT) can have any value, as long as it is less
than the maximum run time. The variable ISKIP is a switch that
controls the optional printing of derivatives and component terms
to the tabular model output file. If ISKIP - 0, the derivatives
are printed; if ISKIP - 1, the printing of derivatives is
suppressed.
The integration time step for loop 2 (H2) must be an integer
multiple of the time step for loop 1 (HI). An integer multiple
of H2 must equal one day. Experience has shown that HI should
correspond to approximately 15-30 minutes, and H2 should
correspond to approximately 3-6 hours, depending on the
particular application. As part of the preliminary testing phase
for any new application, sensitivity analyses should be run for
different integration time steps.
The present version of the computer code requires fixed
values for NBDNTS, NFXLDS, and NMISC. These values are used by
the model to determine the total number of environmental forcing
functions for a particular application.
6.2.2 Model Coefficients
The file of model coefficients, COEFF, contains values for
all kinetic and stoichiometric constants. After initial setup
and testing, these are the values that are varied to calibrate
the model to a given set of field data. Table 4 contains the
record input format for the COEFF file.
The selection of appropriate values for the variables in
COEFF requires a considerable knowledge of the scientific
literature, and good judgment on the part of the user.
Otherwise, use of the model will simply be an exercise in curve-
fitting. Refer to Bierman et al. (1980) for a detailed
discussion of the rationale and approach for selection of model
coefficients for the Saginaw Bay case study. An excellent
resource for selection of stoichiometric and kinetic coefficients
for a wide variety of physical, chemical, and biological
processes is Bowie et al. (1985).
The user should be aware of a constraint between the
minimum cell quotas of the phytoplankton, and the phosphorus and
nitrogen stoichiometries of the two zooplankton types. To
prevent a mass balance violation, the minimum cell quota of a
grazed phytoplankton type must not be less than the
stoichiometry of the herbivorous zooplankton for the same
nutrient. In addition, the stoichiometries for the herbivorous
and carnivorous zooplankton must be identical for the same
nutrient.
To help insure these constraints, the computer code assigns
the same phosphorus and nitrogen stoichiometries to the
herbivorous and carnivorous zooplankton that the user specifies
30
-------
Table 4. Record Input Format for COEFF File
Variable
Sequence
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Variable(s)
TBASE1, TBASE2, TBASE3 , TBASE4
AVNFIX
GMAX(L), TBASEA(L), TBASAR(L)
R1PM(L), PK1(L), KIP(L), K2P(L),
PSAMIN(L), KPCELL(L)
R1NM(L), NK1(L), K1N(L), K2N(L),
NSAMIN(L), KNCELL(L)
RISM(L), SK1(L), K1S(L), K2S(L),
SSAMIN(L), KSCELL(L)
ASINK(L), RDCMP(L), KDCMP(L),
RADSAT(L), RRESP(L)
ZlASSM(Kl), KZISAT(KI), AZMIN(Kl),
BlDETH(Kl)
RZIMAX(KI), TBASZl(Kl)
ZlEFF(Kl.L)
Z2ASSM(K2), KZ2SAT(K2), Z12MIN(K2),
B2DETH(K2), P2DETH(K2), Z23MIN(K2)
RZ2MAX(K2), TBASZ2(K2)
Z2EFF(K2,K1)
RTUP, RTUN, RTUS
KRTUP, KRTUN, KRTUS
TUPSNK, TUNSNK, TUSSNK
VUPP(N), VUPN(N), VUPS(N)
KRSEDP(N), KRSEDN(N), KRSEDS(N)
VPLONG(N), VNLONG(N), VSLONG(N)
Format
4E10.3
1E10.3
3E10.3
6E10.3
6E10.3
6E10.3
5E10.3
4E10.3
2E10.3
5F5.0
6E10.3
2E10.3
2F5.0
3E10.3
3E10.3
3E10.3
3E10.3
3E10.3
3E10.3
(continued)
31
-------
Table 4. (continued)
20 NEVNTS 15
21 TSTART(M), TSTOP(M) 2F5.0
32
-------
for the respective minimum cell quotas for the phytoplankton
group corresponding to L « I. The user needs to insure that the
minimum cell quotas for phosphorus and nitrogen for any other
grazed phytoplankton groups are equal to or greater than those
for this first group.
To specify NEVNTS, the user must determine the number of
significant resuspension events that occur in the water body
during the period of simulation. One way to do this is to
conduct a regression analysis of suspended solids concentration,
or a suitable indicator, versus wind speed. A threshold wind
speed can be identified that produces a significant increase in
suspended solids concentration. The frequency and duration of
resuspension events can then be estimated for any desired period
of time by using daily wind speed records. The start and stop
days for each of these events can then be specified as model
input.
It is also possible to run the model without any
resuspension events. To do this, the user can specify NEVNTS -
0. With this option, no values need to be specified for TSTART
or TSTOP.
6.2.3 Initial Conditions
The initial condition file, INICON, contains initial values
for all of the model state variables. After initial setup and
testing, these values will not be changed for a given simulation
period. Table 5 contains the record input format for the INICON
file.
The INICON file also contains values for atmospheric
loadings for each of the nutrient state variables. This was done
for operational reasons. Atmospheric sources contribute to the
total loading of a water body, and they must be considered. In
most cases, however, insufficient data exist to construct time
series for these loadings. Instead, constant values are usually
specified for the entire period of simulation.
6.3 ENVIRONMENTAL FORCING FUNCTIONS
Values for all environmental forcing functions are specified
by the user in the file ENVFF. The pre-processing package,
consisting of the programs INTERP and INVERT, operates on ENVFF
and produces the output file DAILY. The model reads DAILY once
each day to update all of the forcing functions. Table 6
contains the record input format for ENVFF.
There are 28 environmental forcing functions for each
spatial segment. Values must be specified for all 28 functions.
Zeroes or dummy values must be used, as appropriate, so that
ENVFF is fully defined. Values appear in ENVFF in segment-major
order.
33
-------
Table 5. Record Input Format for INICON File
Variable
Sequence
Number
Variable(s)
Format
3
A
5
6
AVP(l.N), AVN(l.N), AVS(1,N),
TUP(l.N), TUN(l.N), TUS(l.N),
CL(1,N)
A(L,N), PSA(L,N), NSA(L,N),
SSA(L,N)
Z1(K1,N)
Z2CK2.N)
SEDP(N), SEDN(N), SEDS(N)
WAVPAX(N), WAVNAX(N), WAVSAX(N),
WTUPAX(N), WTUNAX(N), WTUSAX(N),
WCLAX(N)
7E10.3
4E10.3
1E10.3
1E10.3
3E10.3
7E10.3
34
-------
Table 6. Record Input Format for ENVFF File
Variable
Sequence
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Forcing
PSABD(L,N),
NSABD(L,N),
SSABD(L,N),
ABD(L.N),
Z1BD(K1,N),
Z2BD(K2,N),
TPBD(N),
AVPBD(N),
TKNBD(N),
N03BD(N),
NH3BD(N),
TSBD(N),
AVSBD(N),
CLBD(N),
WTP(N),
WAVP( N) ,
WTKN(N),
WN03(N),
WNH3(N),
WTS(N),
WAVS(N),
WCL(N),
Function
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
JULIAN DAY
Format
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
2E10.3
(continued)
35
-------
Table 6. (continued)
23 Q(N,J), JULIAN DAY 2E10.3
24 EPRIME(N,J), JULIAN DAY 2E10.3
25 ALPHA(N.J), JULIAN DAY 2E10.3
26 T(N), JULIAN DAY 2E10.3
27 RADINC(N), JULIAN DAY 2E10.3
28 SECCHI(N), JULIAN DAY 2E10.3
36
-------
Variable numbers 1-14 (Table 6) consist of boundary
concentrations for state variables or their components. If a
given spatial segment does not have a boundary, then all of these
values must be set to zero.
Variable numbers 15-22 (Table 6) consist of external
tributary loadings. In practice, the spatial segmentation scheme
is usually configured so that a separate segment is created for
each major tributary. In the limiting case of one spatial
segment, there may be an inflow tributary and an outflow
tributary. In this case, however, loading will still only occur
from one tributary.
There are important constraints on the transport forcing
functions, Q(N,J), EPRIME(N,J), and ALPHA(N.J), and on the
possible types of segment interactions. These constraints are
summarized in Table 7.
The index, N, refers to a given reference segment. The
index, J, refers to the sequence number of the possible
interactions for this reference segment. The value of J ranges
from 1 to INTMAX. Variables indexed with J must be fully
defined. That is, if there is no interaction for a particular
value of J, then zeroes must be used for those variables in
ENVFF.
The two principal types of segment interfaces are adjacent
segments and boundaries. Boundaries can be either large open
boundaries, such as for an embayment, or tributaries. Transport
in the form of constituent mass flux always occurs across
adjacent segment and open boundary interfaces.
Transport may or may not occur across tributary boundaries,
depending on specification of boundary conditions. A tributary
boundary is considered to be transporting if there exists a flow
and a boundary concentration. A tributary boundary is considered
to be non-transporting if there exists a flow, but no (or zero)
boundary concentration. Input tributaries are usually considered
to be non-transporting. Constituent mass loading rates from such
tributaries are considered to be point sources. Output
tributaries must be considered transporting boundaries in order
to maintain continuity and to conserve mass in the reference
segment.
By convention, the order of segment interactions is:
adjacent segments, non-transporting tributaries, and transporting
boundaries (tributaries or open boundaries). Transport of a
constituent across a segment boundary is permitted only for the
interaction corresponding to J « INTMAX. This boundary can be
either a tributary or an open boundary, however, transport must
occur across every open boundary. If a segment has a tributary
boundary and an open boundary, then transport must occur across
the open boundary. If a segment has two tributary boundaries,
then the upstream tributary must be considered a point source,
37
-------
Table 7. Constraints on Physical Configuration
and Transport Variables
Interface
Type
Ad j acent
Segment
Open
Boundary
Tributary
Trans-
porting
Non-Trans-
porting
Q(N,J) EPRIME(N.J)
Arbitrary E1 * 0
Arbitrary E? * 0
Q y o Ef » o
Q / 0 E1 - 0
ALPHA(N.J)
Stability
Criterion
Stability
Criterion
1
1
J
J <
INTMAX
J -
INTMAX
J -
INTMAX
J <
INTMAX
CBOUND( N)
0
CBOUND
> 0
CBOUND
> 0
0
38
-------
and the downstream tributary must operationally be considered a
transporting boundary.
By convention, Q(N,J) is considered negative for flow into a
segment, and positive for flow out. The value for Q(N,J) must be
non-zero for a tributary. The algebraic sum of all flows for a
given spatial segment must be zero. The computer code contains
an algorithm that checks flow balance daily for each spatial
segment. A warning is issued if a flow balance violation is
detected, but no corrective action is taken.
By convention, EPRIME(N,J) must be non-zero for adjacent
segments and open boundaries. It must be zero for all
tributaries. The computer code uses the value of EPRIME(N,J) to
identify tributary boundaries for the transport algorithms. The
user should note that EPRIME(N,J) refers to bulk diffusion
(L^/T), not the turbulent diffusion coefficient (L2/T).
The values for ALPHA(N,J) must satisfy the stability
criteria in Equation 4.3 for all interactions involving adjacent
segments and open boundaries. The computer code contains an
algorithm that checks these stability criteria each day, and
takes corrective action if a violation is detected. In the
tabulated model output, values are printed for both the user-
specified and corrected values of ALPHA(N,J).
The values for ALPHA(N,J) must be equal to 1 for all
tributary interactions. This is a consequence of the convention
that EPRIME(N,J) is zero for all tributaries.
Values for boundary concentrations, represented generically
by the variable CBOUND(N) (Table 7), must be zero in the case of
a non-transporting boundary, and greater than zero in the case of
a transporting boundary. Dummy values greater than zero must be
specified in cases where a tributary is the only outflow for a
given spatial segment. This is required to activate the
transport algorithm in the computer code so that mass can be
conserved.
The pre-processing package consists of two separate program
units, INTERP and INVERT. The program INTERP computes daily time
series values for each variable in the ENVFF file. Output is
stored in an intermediate file. Each record in this file
consists of the time series for one environmental forcing
function.
The program INVERT re-formats this intermediate file so that:
each record contains the values for all environmental forcing
factors on the same day. If the intermediate file is considered
to be a matrix, then INVERT conducts an inversion of rows and
columns. Output from INVERT is stored in the DAILY tile. The
DAILY file is then read directly by the model.
In principle, this two-step pre-processing operation could
39
-------
be conducted in a single step. However, especially for
applications involving multiple spatial segments, large arrays
need to be defined. On a personal computer, these arrays would
usually exceed the addressable memory space.
40
-------
SECTION 7
EXAMPLE APPLICATIONS
7.1 APPROACH
Two simplified examples are presented in detail. Both of
the examples involve a single spatial segment, however, they have
different hydraulic configurations. These examples represent a
large class of potential applications for the model. Two
phytoplankton groups are included for illustrative purposes. The
extension to additional groups is straightforward.
For the simplified examples, the files RUNCON, COEFF, and
INICON are presented in three different ways. First, the actual
data file is presented in model input format. Second, a map of
associated variable names is presented for the values in the
file. Finally, in an appendix, the actual model output file is
presented. This file contains a run header that echoes all of
the input data values for RUNCON, COEFF, and INICON, including
labels for all variable names. It also contains values for all
environmental forcing functions.
To illustrate how the model is configured for multiple
spatial segments, the input data files RUNCON, COEFF, and INICON
are presented for Saginaw Bay. Values for the ENVFF file are
presented for spatial segment 1. Space limitations preclude
presentation of the ENVFF file for all five spatial segments,
however, the complete model output file for this example is
presented in an appendix.
Although subsets of actual data from Saginaw Bay are used
for these examples, no water quality inferences are to be drawn
from the results presented. The examples are intended solely to
illustrate the use of the computer code.
7.2 EXAMPLE 1: SIMPLIFIED LAKE
7.2.1 Introduction
A schematic diagram of the simplified version of the model
is shown in Figure 10. This version is applied to both the
lake and embayment examples. It includes two phytoplankton
groups, diatoms and others. There are no nitrogen-fixing
phytoplankton. Both of the phytoplankton are grazed by
a single herbivorous zooplankton. The herbivorous zooplankton,
in turn, is grazed by a single carnivorous zooplankton.
The spatial segmentation scheme for the simplified lake is
shown in Figure 11. It consists of one completely mixed segment,
an input tributary, and an output tributary. Since bulk
diffusion (EPRIME(N,J)) is zero for all tributary boundaries, the
transport for this example is simply flow (Q(N,J)) in, and flow
41
-------
-^-i DIATOMS
u. - -1 _ ll _ J- .
f
^ AVAILABLE
" SILICON
|
HIGHER
PREDATORS
j
i
CARNIVOROUS
ZOO PLANKTON
i
/•
\
i
i
i
_i
\
" i
HERBIVOROUS
ZOOPLANKTON \
/ Vj
f__ _X
1
AVAILABLE
PHOSPHORUS
*
1
UNAVAILABLE
SILICON
UNAVAILABLE
PHOSPHORUS
r J l 4
*] t
SEDIMENT
1 1 TOTAL
SILICON
r
SEDIMENT
TOTAL
PHOSPHORUS
\
OTHERS »-^
'"I""
AVAILABLE
NITROGEN
U^J J
1
UNAVAILABLE
NITROGEN
A
T
SEDIMENT
TOTAL
NITROGEN
Figure 10. Schematic Diagram of Principal Model Compartments
and Interaction Pathways for Simplified Lake and
Embayment Examples
42
-------
SIMPLIFIED LAKE
4
-N
I
0 !0km
Advective flow
No Diffusion
Figure 11. Spatial Segmentation and Physical Transport for
Simplified Lake Example
43
-------
out.
7.2.2 Data Input
7.2.2.1 Run Control
The RUNCON file in model input format for the simplified
lake example is shown in Table 8. The map of variable names for
this file is shown in Table 9. Note that some variables that are
two-dimensional (e.g., INT(N,J)) have multiple records.
The index N refers to the number of the reference segment,
in this case, segment 1. The index J is the sequence number of
the interactions with the reference segment. 'Die value of J
ranges from 1 to INTMAX. The value of INT(N,J) is the number of
the interacting segment that corresponds to the values of N and
J.
In this example, there are two segment interactions. Both
of these interactions are with tributaries. Since the
tributaries are external to the model segmentation, the values of
INT(1,1) and INT(1,2) are, by convention, set equal to 1, the
same number as the reference segment. These can be called "self-
interactions".
The variables VX(1) and VOLSDX(l) are the values of V(l) and
VOLSED(l), respectively, in I/O units (m^). See the note at the
end of Appendix A regarding I/O units.
7.2.2.2 Model Coefficients
The COEFF file in model input format is shown in Table 10.
The map of variable names for this file is shown in Table 11.
Note that the dimensioned variables for the phytoplankton have
separate records for each phytoplankton group.
The value for AVNFIX has been input as zero because there
are no nitrogen-fixing phytoplankton.
There are 24 resuspension events (NEVNTS). For the first
event, TSTART(l) - 98 and TSTOP(l) - 99. This corresponds to a
resuspension event that begins at TIME - 98, lasts for one day,
and terminates at TIME - 99. The second event begins at TIME *
103, lasts for two days, and terminates at TIME » 105.
7.2.2.3 Initial Conditions
The INICON file in model input format is shown in Table 12,
The map of variable names for this file is shown in Table 13c
The two dimensions for the nutrient state variables are
necessitated by the structure of the transport algorithms in the
computer code.
The variables WAVPAX(l), ..., WCLAX(l) are the values oi
44
-------
Table 8. Values for RUNCON File for Simplified Lake Example
1 2
0.806E10
1
1
.138E09
8 8
2 1
1 0
0 0
2 1
1 1
1
.365E03
.250E-01
0.583E01
.100EOO
3
0
1
.500E01 .500E01 1
. 125EOO
45
-------
Table 9. Map of Variable Names for RUNCON File for
Simplified Lake Example
NSGMTS
VX(1)
INK 1,1)
INK 1,2)
VOLSDX(1)
NBDNTS
NASPEC
ISILCA(l)
NFIX(l)
NZSPEC
IZ1PARU,
IZ2PAR(1,
TIMEMX
HI
1)
1)
INTMAX
DEPTH(l)
DEPTHS(l)
NFXLDS
NDITMS
ISILCAC2)
NFIX(2)
NZ1SPC
IZ1PAR(1,2)
TPLOT
H2
NMISC
NN2BGS
NZ2SPC
TPRINT
ISKIP
46
-------
Table 10. Values for COEFF File for Simplified Lake Example
.1070E01
.OOOEOO
.210E01
.180E01
.100E-01
.200E-01
.200EOO
.200EOO
.500EOO
. 100EOO
.500E-01
.600EOO
.550EOO
1.0 .50
.600EOO
.550EOO
1.0
.200E-01
.100E01
.150EOO
.175E-03
.OOOEOO
.822E-05
24
98. 99.
103. 105.
111. 113.
118. 119.
121. 122.
126. 127.
129. 130.
132. 133.
134. 135.
158. 160.
161. 162.
184. 185.
201. 202.
223. 224.
238. 239.
243. 244.
254. 255.
258. 259.
267. 268.
272. 273.
274. 275.
277. 279.
294. 296.
309. 310.
.1070E01
.1060E01
.1090E01
.226E02
.226E02
.107E02
.107E02
.534E01
. 250EOO
.500EOO
.100E01
.1070E01
.125EOO
.1070E01
.200E-01
.100E01
.150EOO
.114E-03
.OOOEOO
.822E-05
.1070E01
.1060E01
.1090E01
.154EOO
.154EOO
.239EOO
.239EOO
.239EOO
.200E03
.200E03
. 200EOO
.250E-01
.200E-01
. 100E01
.150EOO
.175E-03
.625E-03
.822E-05
.1070E01
.150E01 .500E-03 .500E-03
.300EOO .100E-02 .100E-02
.445EOO .100E-01 .100E-01
.445EOO .200E-01 .200E-01
.445EOO .350E-01 .350E-01
.100E03 .300E-01
.500E02 .300E-01
.300E-01
.300E-01 .100E01 .250E-01
47
-------
Table 11. Map of Variable Names for COEFF File for
Simplified Lake Example
TBASE1
AVNFIX
GMAX(l)
GMAX(2)
R1PM(1)
R1PM(2)
R1NM(1)
R1NM(2)
R1SM(1)
ASINK(l)
ASINK(2)
ZlASSM(l)
RZlMAX(l)
ZlEFF(l.l)
Z2ASSM(1)
RZ2MAX(1)
Z2EFF(1,1)
RTUP
KRTUP
TUPSNK
VtJPP(l)
KRSEDP(l)
VPLONG(l)
NEVNTS
TSTART(l)
TBASE2
TBASEA(l)
TBASEA(2)
PK1(1)
PK1(2)
NK1(1)
NK1(2)
SKl(l)
RDCMP(l)
RDCMP(2)
KZlSAT(l)
TBASZl(l)
Z1EFF(1,2)
KZ2SAT(1)
TBASZ2(1)
RTUN
KRTUN
TUNSNK
VUPN( 1)
KRSEDN(l)
VNLONG(l)
TSTOP(l)
TBASE3
TBASAR(l)
TBASAR(2)
K1P(1)
K1P(2)
K1N(1)
R1N(2)
K1S(1)
KDCMP(l)
KDCMP(2)
AZMIN(l)
Z12MIN(1)
RTUS
KRTUS
TUSSNK
VUPS(l)
KRSEDS(l)
VSLONG(l)
TBASE4
K2P(1)
K2P(2)
K2N(1)
K2N(2)
K2S(1)
RADSAT(l)
RADSAT(2)
BlDETH(l)
B2DETH(1)
PSAMIN(l)
PSAMINU)
NSAMIN(l)
NSAMINU)
SSAMIN(l)
RRESP(l)
RRESP(2)
P2DETH(1)
KPCELL(l)
KPCELL(2)
KNCELL(l)
KNCELL(2)
KSCELL(l)
Z23MIN(1)
TSTARTC24) TSTOP(24)
48
-------
Table 12. Values for INICON File for Simplified
Lake Example
.539E-02 .128E01 .700EOO .131E-01 .381E-01 .700EOO .220E02
.894EOO .125E-02 .350E-01 .105EOO
.473E-01 .500E-02 .700E-01 .OOOEOO
.130E-02
.312E-01
.120E03 .136E04 .479E03
.499E01 .737E03 .684E02 .122E02 .332E03 .684E02 .OOOEOO
-------
Table 13. Map of Variable Names for INICON File for
Simplified Lake Example
AVP(l.l) AVN(l.l) AVS(l.l) TUP(l.l) TUN(l.l) TUS(l.l) CL(1,1)
A(l,l) PSA(l.l) NSA(l.l) SSA(1,1)
A(2,l) PSA(2,1) NSA(2,1) SSA(2,1)
SEDP(l) SEDN(l) SEDS(l)
WAVPAX(l) WAVNAX(l) WAVSAX(l) WTUPAX(l) WTUNAX(l) WTUSAX(l) WCLAX(1)
50
-------
WAVPA(l), ..., WCLA(l) in I/O units (kg/day).
7.2.3 Environmental Forcing Functions
The full environmental forcing function file, ENVFF, is
shown in Table 14. Note that there are multiple records for
variables that have two dimensions. The first record for each
variable is understood to be Julian day 1. The last record must
be for Julian day - TIMEMX. This example file has been set up
for a 365-day run.
Note the flexibility in specification of time intervals
between measured values for each of the forcing functions. The
time intervals do not need to be constant for a given function.
There can be different sets of intervals for different functions.
A function can be made constant by simply specifying equal
beginning and ending values.
Non-zero dummy values are specified for all boundary
conditions. This is because a tributary is the only outflow for
this particular system, and such a tributary must be considered
operationally as a transporting boundary (Section 6.3 and Table
7). The input tributary is non-transporting, and it is treated
as a point source.
The values for Q(l,l) represent tributary inflow, and the
values for Q(l,2) represent tributary outflow. The outflow
tributary is the second segment interaction (J » 2) because,
operationally, it is considered a transporting boundary. A
transporting boundary must always be the interaction for which J
- INTMAX.
The values for EPRIME(1,1) and EPRIME(1,2) are zero because
they both correspond to tributary boundaries.
Values of 0.5 have been specified for ALPHA(1,1) and
ALPHA(1,2). Although this is inconsistent with the constraints
in Table 7, it was done intentionally to illustrate the correc-
tive action that will be taken by the computer code. The code
will correct both of these values to 1.0 because they are tribu-
tary interactions.
7.2.4 Model Output
Tabulated model output is shown in Appendix C. The output
begins with a run header that echoes all of the input data froro
the files RUNCON, COEFF, and INICON. Next, model output is shown
at TIME - 0 (beginning of Julian day 1) after all environmental
forcing functions have been specified for the first day, and
after initial values have been computed for all process rates and
derivatives. Next, model output is shown after 5 days of
simulation. All output variables are labeled. Refer to the
glossary in Appendix A for definitions and units.
51
-------
Table 14. ENVFF File For Simplified Lake Example
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999E01
0.999E01
0.999EOO
0.999EOO
0.999E01
0.999E01
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.999E01
0.999E01
0.999EOO
0.999EOO
0.999EOO
0.999EOO
0.233E04
0.939E04
0.137E05
0.595E04
0.769E04
0.462E04
0.341E04
0.170E04
0.986E03
0.986E03
0.992E03
0.992E03
0.902E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
PSABD(l.l)
PSABD(2,1)
NSABD(l.l)
NSABD(2,1)
SSABD(l.l)
SSABD(2,1)
ABD(l.l)
ABD(2,1)
Z1BD(1,1)
Z2BD(1,1)
TPBD(l)
AVPBD(l)
TKNBD(l)
N03BDU)
NK3BDU)
TSBD( 1 )
AVSBD(l)
CLBD(l)
WTP(l)
(mg P/mg
(mg P/mg
(mg N/mg
(mg N/mg
(mg S/mg
(mg S/mg
(ng/1)
(ng/1)
(mg/1)
(ng/1)
(mg P/D
(mg P/l)
(mg N/l)
(mg N/l)
(mg N/l)
(mg S/l)
(mg S/l)
A)
AT
A)
A)
A)
A)
(mg CL/1)
(kg P/day)
52
(continued)
-------
Table 14. (continued)
0.110E04
0.193E04
0.187E04
0.135E04
0.840E03
0.564E03
0.629E03
0.357E03
0.552E03
0.648E03
0.626E03
0.719E03
0.512E03
0.217E05
0.211E05
0.594E05
0.273E05
0.227E05
0.216E05
0.612E04
0.462E04
0.538E04
0.486E04
0.461E04
0.448E04
0.435E04
0.419E05
0.104E06
0.795E05
0.707E05
0.399E05
0.333E05
0.438E04
0.125E04
0.657E03
0.122E04
0.210E04
0.206E04
0.192E04
0.176E04
0.379E04
0.651E04
0.456E04
0.281E04
0.203E04
0.882E03
0.114E04
0.176E04
0.211E04
0.230E04
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
WAVP(l) (kg P/day)
WTKN(l) (kg N/day)
WN03C1) (kg N/day)
WNH3U) (kg N/day)
(continued)
53
-------
Table 14. (continued)
0.246E04
0.259E04
.628E05
.111E06
.124E06
.118E06
.434E05
.540E05
.238E05
.139E05
.154E05
.204E05
.216E05
.150E05
.147E05
0.314E05
0.557E05
0.619E05
0.591E05
0.217E05
0.270E05
0.119E05
0.694E04
0.770E04
0.102E05
0.108E05
0.748E04
0.736E04
0.721E06
0.197E07
0.171E07
0.208E07
0.161E07
0.103E07
0.686E06
0.494E06
0.578E06
0.651E06
0.914E06
0.308E06
0.344E05
-0.176E03
-0.176E03
-0.167EOO
-0.167EOO
-0.230E03
-0.230E03
0.176E03
0.176E03
0.167EOO
0.330E03
0.365E03
.300E02
.600E02
.900E02
.120E03
.150E03
.180E03
.210E03
.240E03
.270E03
.300E03
.330E03
.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
0.260E03
0.26IE03
0.300E03
0.301E03
0.365E03
0.260E03
0.261E03
WTS(l) (kg S/day)
WAVS(l) (kg S/day)
WCL(l) (kg CL/day)
Q(l,l) (m**3/sec)
Q(l,2) (m**3/sec)
54
-------
Table 14. (continued)
0.167EOO
0.230E03
0.230E03
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
0.500EOO
0.500EOO
0.500EOO
0.500EOO
0.290EOO
0.125E01
0.644E01
0.871E01
0.987E01
0.166E02
0.219E02
0.218E02
0.170E02
0.118E02
0.871E01
0.290EOO
0.100E03
0.700E02
0.100E03
0.300E03
0.440E03
0.600E03
0.660E03
0.625E03
0.540E03
0.390E03
0.210E03
0.100E03
0.167E01
0.313E01
0.313E01
0.760EOO
0.126E01
0.114E01
0.118E01
0.113E01
0.101E01
0.770EOO
0.112E01
0.167E01
0.300E03
0.301E03
0.365E03
EPRIME(1,1) (m**3/sec)
0.365E03
EPRIME(1,2) (m**3/sec)
0.365E03
ALPHA(l.l)
0.365E03
ALPHA(1,2)
0.365E03
T(l) (degrees C)
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.365E03
RADINC(l) (ly/day)
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.365E03
SECCHI(l) (meters)
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.365E03
55
-------
Simplified Lake Example
£
C
Simplified Lake Example
Figure 12. Graphical Output for Phytoplankton, Total Phosphorus, and
Chloride Concentrations for Simplified Lake Example
(continued)
56
-------
Simplified Lake Example
I
300
400
JK.IMI mrs
Simplified Lake Example
5
i
o
Figure 12. (continued)
57
-------
Simplified Lake Example
BO
30 H
an H
10 H
100
aoo
JULUU mra
300
400
Figure 12. (continued)
58
-------
Plots for selected state variables are shown in Figure 12
for a 365-day simulation period. These plots were generated from
the PLOTOUT file using Lotus 1-2-3. Users can generate plots to
suit their own applications, depending on their particular
hardware and software capabilities.
7.3 EXAMPLE 2: SIMPLIFIED EMBAYMENT
7.3.1 Introduction
The same version of the model that was applied to the
simplified lake (Figure 10) is extended to the case of a
simplified embayment. The spatial segmentation scheme for this
example is shown in Figure 13. It consists of one completely
mixed segment, an input tributary, and a large open boundary.
7.3.2 Data Input
7.3.2.1 Run Control
The RUNCON file for this example is the same as the RUNCON7
file for the simplified lake example (Tables 8 and 9). For the
embayment, there are two segment interactions. One is with a
tributary, and one is with an open boundary. Since these are
also external to the model segmentation, they too are "self-
interactions"
7.3.2.2 Model Coefficients
The COEFF file is also the same as the COEFF file for the
simplified lake example (Tables 10 and 11). The variables in
this file are independent of the change in the types of "self-
interactions". They only depend on the number of spatial
segments, and on the configuration of the principal model
compartments (Figure 10).
7.3.2.3 Initial Conditions
The INICON file is the same as the INICON file for the
simplified lake example (Tables 12 and 13).
7.3.3 Environmental Forcing Functions
The full environmental forcing function file, ENVFF, is
shown in Table 15. The difference in segmentation schemes
between the lake and embayment examples is reflected exclusively
in the boundary concentrations, and in the transport parameters.
The boundary concentrations here are real, and they
are associated with the open boundary. This is because transport
must occur across every open boundary (Section 6.3 and Table 7).
As in the previous example, the input tributary is non-
transporting, and it is treated as a point source.
59
-------
SIMPLIFIED BAY
Advective flow
-O Diffusion
Figure 13. Spatial Segmentation and Physical Transport for
Simplified Embayment Example
60
-------
Table 15. ENVFF File For Simplified Embayment Example
.750E-03
.750E-03
.200E-02
.200E-02
.400E-01
.400E-01
.800E-01
.800E-01
.140EOO
.140EOO
.OOOEOO
. OOOEOO
.203EOO
.130EOO
.270EOO
.314EOO
.346EOO
.197EOO
.614E-01
.892E-01
. 148EOO
.426EOO
.259EOO
.235EOO
.203EOO
.488E-02
.300E-02
.660E-03
.660E-03
.162E-01
.360E-02
.460E-03
.820E-02
.880E-02
.115EOO
.930E-02
.570E-02
.488E-02
.581E-02
.462E-03
.186E-02
.357E-01
.351E-01
.210E-01
.397E-01
.269E-01
.174E-01
.808E-02
.581E-02
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
.105E03
.118E03
.134E03
.154E03
.168E03
.189E03
.205E03
.225E03
.261E03
.279E03
.319E03
.365E03
.105E03
.118E03
.134E03
.154E03
.168E03
. 189E03
.205E03
.225E03
.261E03
.279E03
.319E03
.365E03
.118E03
.133E03
.169E03
.189E03
.206E03
.225E03
.261E03
.279E03
.315E03
.365E03
PSABD(l.l) (mg P/mg A)
PSABD(2,1) (mg P/mg A)
NSABD(1,1) (mg N/mg A)
NSABD(2,1) (mg N/mg A)
SSABD(l.l) (mg S/mg A)
SSABD(2,1) (mg S/mg A)
ABD(l.l) (mg/1)
ABD(2,1) (mg/1)
ZlBD(l.l) (mg/1)
(continued)
61
-------
Table 15. (continued)
.265E-01
.116E-01
.126E-01
.219E-01
.191E-01
.106E-01
.261E-01
.112E-01
.316E-01
.328E-01
.265E-01
.415E-02
.409E-02
.500E-02
.555E-02
.530E-02
.487E-02
.418E-02
.415E-02
.102E-02
.165E-02
.713E-03
.701E-03
.750E-03
.732E-03
.815E-03
.893E-03
.914E-03
.124EOO
.155EOO
.155EOO
.130EOO
.181EOO
.131EOO
.207EOO
.252EOO
.144EOO
.395EOO
.124EOO
.120EOO
.124EOO
.272EOO
.260EOO
.309EOO
.288EOO
.286EOO
.265EOO
.256EOO
.277EOO
.272EOO
.118E03
.133E03
.169E03
.189E03
.206E03
.225E03
.261E03
.279E03
.315E03
.365E03
.136E03
.166E03
.197E03
.228E03
.289E03
.319E03
.365E03
.116E03
.138E03
.177E03
.206E03
.246E03
.276E03
.341E03
.365E03
.117E03
.132E03
.153E03
.168E03
.188E03
.205E03
.224E03
.260E03
.278E03
.314E03
.350E03
.365E03
.105E03
.136E03
.166E03
.197E03
.228E03
.289E03
.319E03
.365E03
Z2BD(1,1) (mg/1)
TPBD(l) (mg P/l)
AVPBD(l) (mg P/l)
TKNBD(l) (mg N/l)
N03BD(1) (mg N/l)
62
(continued)
-------
Table 15. (continued)
.123E-01
.147E-01
.963E-02
.124E-01
.998E-02
.739E-02
.414E-02
.113E-01
.123E-01
.132E01
.175E01
.160E01
.138E01
.105E01
.988EOO
.752EOO
.113E01
.132E01
.660EOO
.874EOO
.801EOO
.691EOO
.525EOO
.494EOO
.376EOO
.565EOO
.660EOO
.527E01
.527E01
.538E01
.538E01
.620E01
.620E01
.609E01
.609E01
.580E01
.580E01
.570E01
.570E01
.580E01
.580E01
.549E01
.549E01
0.233E04
0.939E04
0.137E05
0.595E04
0.769E04
0.462E04
0.341E04
.105E03
.136E03
.166E03
.197E03
.228E03
.289E03
.319E03
.365E03
.105E03
.136E03
.166E03
.197E03
.228E03
.289E03
.319E03
.365E03
.105E03
.136E03
.166E03
.197E03
.228E03
.289E03
.319E03
.365E03
.105E03
.106E03
.155E03
.156E03
.175E03
.176E03
.215E03
.216E03
.260E03
.261E03
.290E03
.291E03
.341E03
.342E03
.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
NH3BDU) (mg N/l)
TSBD(l) (mg S/l)
AVSBD(l) (mg S/l)
CLBD(l) (mg CL/1)
WTP(l) (kg P/day)
(continued)
63
-------
Table 15. (continued)
0.170E04
0.986E03
0.986E03
0.992E03
0.992E03
0.902E03
0.110E04
0.193E04
0.187E04
0.135E04
0.840E03
0.564E03
0.629E03
0.357E03
0.552E03
0.648E03
0.626E03
0.719E03
0.512E03
0.217E05
0.211E05
0.594E05
0.273E05
0.227E05
0.216E05
0.612E04
0.462E04
0.538E04
0.486E04
0.461E04
0.448E04
0.435E04
0.419E05
0.104E06
0.795E05
0.707E05
0.399E05
0.333E05
0.438E04
0.125E04
0.657E03
0.122E04
0.210E04
0.206E04
0.192E04
0.176E04
0.379E04
0.651E04
0.456E04
0.281E04
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
WAVP(l) (kg P/day)
WTKN(l) (kg N/day)
WN03(1) (kg N/day)
WNH3(1) (kg N/day)
64
-------
Table 15. (continued)
0.203E04
0.882E03
0.114E04
0.176E04
0.211E04
0.230E04
0.246E04
0.259E04
.628E05
.111E06
. 124E06
.118E06
.434E05
.540E05
. 238E05
.139E05
.154E05
.204E05
.216E05
.150E05
.147E05
0.314E05
0.557E05
0.619E05
0.591E05
0.217E05
0.270E05
0.119E05
0.694E04
0.770E04
0.102E05
0.108E05
0.748E04
0.736E04
0.721E06
0.197E07
0.171E07
0.208E07
0.161E07
0.103E07
0.686E06
0.494E06
0.578E06
0.651E06
0.914E06
0.308E06
0.344E05
-0.176E03
-0.176E03
-0.167EOO
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
.300E02
.600E02
.900E02
.120E03
.150E03
. 180E03
.210E03
.240E03
.270E03
.300E03
.330E03
.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.330E03
0.365E03
0.260E03
0.261E03
WTS(l) (kg S/day)
WAVS(l) (kg S/day)
WCL(l) (kg CL/day)
Q(l,l) (m**3/sec)
(continued)
65
-------
Table 15. (continued)
-0.167EOO
-0.230E03
-0.230E03
0.176E03
0.176E03
0.167EOO
0.167EOO
0.230E03
0.230E03
O.OOOEOO
O.OOOEOO
0.652E03
0.652E03
0.531EOO
0.531EOO
0.146E04
0.146E04
0.500EOO
0.500EOO
0.309EOO
0.309EOO
0.045EOO
0.045EOO
0.325EOO
0.325EOO
0.290EOO
0.125E01
0.644E01
0.871E01
0.987E01
0.166E02
0.219E02
0.218E02
0.170E02
0.118E02
0.871E01
0.290EOO
0.100E03
0.700E02
0.100E03
0.300E03
0.440E03
0.600E03
0.660E03
0.625E03
0.540E03
0.390E03
0.210E03
0.100E03
0.167E01
0.300E03
0.301E03
0.365E03
0.260E03
0.261E03
0.300E03
0.301E03
0.365E03
0.365E03
0.260E03
0.261E03
0.300E03
0.301E03
0.365E03
0.365E03
0.260E03
0.261E03
0.300E03
0.301E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.365E03
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.365E03
Q(l,2; (m**3/sec)
EPRIMEU.l) (m**3/sec)
EPRIME(1,2) (m**3/sec)
ALPHA( 1,1)
ALPHA(1,2)
T(l) (degrees C)
RADINC(l) (ly/day)
SECCHI(l) (meters)
66
-------
Table 15. (continued)
0.313E01
0.313E01
0.760EOO
0.126E01
0.114E01
0.118E01
0.113E01
0.101E01
0.770EOO
0.112E01
0.167E01
0.300E02
0.600E02
0.900E02
0.120E03
0.150E03
0.180E03
0.210E03
0.240E03
0.270E03
0.300E03
0.365E03
67
-------
The values for EPRIME(l.l) are zero because they correspond
to the tributary boundary. The values for EPRIME(1,2) are non-
zero because they correspond to the open boundary. The open
boundary is the second segment interaction (J - 2) because it is
a transporting boundary, and such a boundary must always be J =
INTMAX.
The value for ALPHA(l.l) has been specified as 0.5. The
computer code will correct this to a value of 1.0 because this is
a tributary interaction. The values for ALPHA(1,2) have been
specified consistent with the stability criterion. No corrective
action will be taken for these values.
7.3.4 Model Ouput
Tabulated model output is shown in Appendix D. For
illustrative purposes , ISKIP has been set equal to zero for this
example. Consequently, model output includes values for
derivatives and component terms. These values can be cross-
referenced with comments in the FORTRAN source file for
subroutine OUTPUT. Plots for selected state variables are shown
in Figure 14 for a 365-day simulation period.
7.4 EXAMPLE 3: SAGINAW BAY
7.4.1 Introduction
The schematic diagram for the Saginaw Bay version of the
model is shown in Figure 2. The spatial segmentation scheme,
including advective and bulk diffusive flows, is shown in Figure
15. The principal objective for this example is to illustrate
how the model is configured for multiple spatial segments.
Listings of the RUNCON, COEFF, and INICON files are
presented without maps for variable names. Values for the ENVFF
file are presented in Appendix E only for spatial segment 1.
Refer to tabular model output in Appendix F to cross-reference
input data values with their associated variable names. This
model output also includes values for environmental forcing
functions for all five spatial segments.
7.4.2 Data Input
7.4.2.1 Run Control
The RUNCON file for Saginaw Bay is shown in Table 16.
In this example, there are five spatial segments. There is an
input tributary to segment 1, and open boundaries associated with
segments 4 and 5. There is a maximum of five possible segment
interactions (INTMAX - 5). Each segment has at least two
interactions with adjacent segments.
By convention, the order of segment interactions is:
adjacent segments, non-transporting tributaries, transporting
68
-------
Simplified Emboymenf Example
*
ft.
1
48B
Simplified Embayrnenf Example
4BO
Figure 14. Graphical Output for Phytoplankton, Total Phosphorus, and
Chloride Concentrations for Simplified" Embayment Example
69
-------
Simplified Embaymenf Example
1.0 -
1.4-
l.t -
I -
1.1 -
1.1 -
i -
0.1 -
0.0 -
108
am
JULUUI ».n
3BO
400
Simplified Embaymenf Example
0.1 -
O.BI -
0.81 -
_l
tf 0.38 -
O
{ 0.03 -
5
£ 0. D* -
•*
g 0.03 -
o.n -i
0. 01 -
0 -
fa
^"V
n^p*^^ i IB
JT ^ tt^
* ta P"*%D
^ ^^ SL
^^
1 i r~ 1 i i i "
a 100 «o 300 -u
JULJU a^rs
Figure 14. (continued)
-------
Simplified Embaymenf Example
4OD
Figure 14. (continued)
71
-------
SAG1NAW
RIVER
10km
Advective flow
Diffusion
Figure 15. Spatial Segmentation and Physical Transport fox-
Sag inaw Bay Example
72
-------
Table 16. RUNCON File for Saginaw Bay Example
5 5
0.894E09
2
3
0
1
0
0.589E10
1
3
4
0
0
0.127E10
1
2
5
0
0
0.788E10
2
5
0
0
4
0.939E10
3
4
0
0
5
.232E07
.804E08
.340E08
.597E08
.618E08
8 8
5 1
1 0
0 0
2 1
1 1
1
.365E03
.250E-01
0.385E01
0.733EOI
0.374E01
0.132E02
0.152E02
.100E-01
.100EOO
.100EOO
. 100EOO
.100EOO
3
1
000
0 0 1
1
1
.500E01 .500E01 1
.125EOO
73
-------
boundaries (tributaries or open boundaries). Since there is a
maximum of three interactions with adjacent segments in this
example, the values J - 1, 2, and 3, have been reserved for
adjacent segment interactions. The value J - 4 is used for the
non-transporting tributary in segment 1. The value J - 5
(INTMAX) is used for the transporting (open) boundaries in
segments 4 and 5.
The values of INT(N,J) for adjacent segment interactions are
the segment numbers of the interacting segments. For example,
INT(1,1) - 2 means that for segment 1 (N - 1), the first
interaction (J - 1) is with segment 2. The values for tributary
and open boundary interactions correspond to "self-interactions",
as in the two previous examples.
7.4.2.2 Model Coefficients
The values for the COEFF file are shown in Table 17. The
extension from two to five phytoplankton types is
straightforward. Note that a non-zero value has been specified
for AVNFIX because this example includes a nitrogen-fixing blue-
green phytoplankton.
7.4.2,3 Initial Conditions
The values for the INICON file are shown in Table 18. The
extension from one to five segments is straightforward.
7.4.3 Environmental Forcing Functions
The environmental forcing file, ENVFF, is shown for segment
1 in Appendix E. Space limitations preclude presentation of this
file for all five segments.
Zero values need to be specified for the boundary conditions
for segments 1, 2, and 3 because there are no transporting
boundaries for these segments. Real boundary conditions need to
be specified for segments 4 and 5.
Values for Q(N,J), EPRIME(N.J), and ALPHA(N,.J) all follow
the conventions discussed in Section 6.3, and the constraints
presented in Table 7. For spatial segment 1, the values in
Appendix E can be cross-referenced with the transport pattern
shown in Figure 15, and with the model output in Appendix F. For
spatial segments 2 through 5, the transport pattern in Figure 15
can be cross-referenced with the model output in Appendix F.
7.4.4 Model Output
Tabulated model output is shown in Appendix F. Output is
included for all five spatial segments' after 5 days of
simulation.
74
-------
Table 17. COEFF File for Saginaw Bay Example
.1070E01
.150EOO
.240E01
.240E01
.210E01
.160E01
.160E01
.100E-01
.200E-01
.200E-01
.200E-01
.200E-01
. 200EOO
.200EOO
. 200EOO
.200EOO
. 200EOO
. 500EOO
. 100EOO
.100EOO
. 100EOO
.200E-01
.200E-01
.600EOO
.550EOO
1.0 .50
.600EOO
.550EOO
1.0
.200E-01
.100E01
.150EOO
.350E-02
.175E-03
.250E-03
.417E-04
.362E-04
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.822E-05
.OOOEOO
.822E-05
.822E-05
24
98. 99.
.1070E01
.1060E01
.1070E01
.1060E01
.1090E01
.1090E01
.226E02
.226E02
.226E02
.226E02
.226E02
.107E02
.107E02
.107E02
.107E02
.107E02
.534E01
.250EOO
.250EOO
.250EOO
.500EOO
.500EOO
.100E01
.1070E01
.50
.125EOO
.1070E01
.200E-01
.100E01
.150EOO
.228E-02
.114E-03
.162E-03
.271E-04
.235E-04
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.822E-05
.OOOEOO
.822E-05
.822E-05
.1070E01
.1060E01
.1070E01
.1060E01
.1090E01
.1090E01
.154EOO
. 154EOO
.154EOO
.154EOO
.154EOO
.239EOO
.239EOO
.239EOO
.239EOO
.239EOO
.239EOO
. 200E03
.200E03
.200E03
.200E03
. 200E03
.200EOO
.250E-01
.200E-01
.100E01
.150EOO
.350E-02
.175E-03
.250E-03
.417E-04
.362E-04
.625E-03
.625E-03
.625E-03
.625E-03
.625E-03
.OOOEOO
.822E-05
.OOOEOO
.822E-05
.822E-05
.1070E01
.150E01
.125E01
.125E01
. 300EOO
.450EOO
.445EOO
.445EOO
.445EOO
.445EOO
.445EOO
.445EOO
. 100E03
.100E03
. 100E03
.500E02
.500E02
.300E-01
.300E-01
.500E-03
. 100E-02
.100E-02
.100E-02
.100E-02
.100E-01
.200E-01
.200E-01
.200E-01
.200E-01
.350E-01
.300E-01
.300E-01
.300E-01
.300E-01
.300E-01
.100E01
.500E-03
. 100E-02
.100E-02
. 100E-02
.100E-02
.lOOE-01
.200E-01
.200E-01
.200E-01
.200E-01
.350E-01
.250E-01
(continued;
75
-------
Table 17. (continued)
103. 105.
111. 113.
118. 119.
121. 122.
126. 127.
129. 130.
132. 133.
134. 135.
158. 160.
161. 162.
184. 185.
201. 202.
223. 224.
238. 239.
243. 244.
254. 255.
258. 259.
267. 268.
272. 273.
274. 275.
277. 279.
294. 296.
309. 310.
76
-------
Table 18. INICON File for Saginaw Bay Example
.112E-01
.539E-02
.694E-02
.291E-02
.490E-02
.194E01
.219E-01
.310E-01
.668E-01
.319E-01
.894EOO
.421E-02
.448E-01
.473E-01
.343E-02
.169E01
.425E-01
.293E-01
. 144EOO
.230E-01
.590EOO
.137E-01
.120EOO
.646E-02
.402E-03
.834EOO
.138E-01
.736E-01
.416E-OI
.203E-02
.150E-Q2
.130E-02
.246E-02
.377E-03
.780E-02
.282E-01
.312E-01
.316E-01
.807E-03
.247E-01
.335E01
.120E03
.120E03
.316E02
.406E02
.499E01
.173E02
.731E01
.128E02
.133E02
.631EOO
.128E01
.148E01
.298EOO
.300EOO
.125E-02
.250E-02
.250E-02
.500E-02
.500E-02
.125E-02
.250E-02
.250E-02
.500E-02
. 500E-02
.125E-02
.250E-02
.250E-02
.500E-02
.500E-02
.125E-02
.250E-02
.250E-02
.500E-02
.500E-02
.125E-02
. 250E-02
.250E-02
.500E-02
.500E-02
.378E02
.136E04
.136E04
.357E03
.459E03
.737E03
.255E04
.108E04
.189E04
.196E04
.395EOO
.700EOO
.540EOO
.493EOO
.381EOO
.350E-01
.700E-01
.700E-01
.700E-01
.700E-01
.350E-01
.700E-01
.700E-01
.700E-01
.700E-01
.350E-01
.700E-01
.700E-01
.700E-01
.700E-01
.350E-01
.700E-01
.700E-01
.700E-01
.700E-01
.350E-01
.700E-01
.700E-01
.700E-01
.700E-01
.134E02
.479E03
.479E03
.126E03
.162E03
.684E02
.237E03
.100E03
.176E03
.182E03
.412E-01 .381E-01 .395EOO
.131E-01 .381E-01 .700EOO
.227E-01 .150EOO .540EOO
.184E-02 .146EOO .493EOO
.366E-02 .218EOO .381EOO
.105EOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.105EOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.105EOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.105EOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.105EOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.122E02 .332E03 .684E02
.423E02 .115E04 .237E03
.179E02 .486E03 .100E03
.314E02 .853E03 .176E03
.325E02 .883E03 .182E03
.250E02
.220E02
.290E02
.500E01
.800E01
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
.OOOEOO
77
-------
SECTION 8
OPERATIONAL CONSIDERATIONS
8.1 ACQUISITION PROCEDURES
To obtain a copy of the computer code, write to:
Center for Water Quality Modeling
Environmental Research Laboratory
U.S. Environmental Protection Agency
College Station Road
Athens, GA 30613.
The code will be distributed on a personal computer diskette.
The diskette will contain FORTRAN source files for the model and
the pre-processing package. It will also contain RUNCON, COEFF,
INICON, and ENVFF files for the two simplified examples presented
in this manual.
8.2 HARDWARE AND SOFTWARE REQUIREMENTS
Hardware and software requirements are dictated by the needs
of FORTRAN 77, as well as by the needs of the model. The basic
hardware requirements are the following:
- IBM PC/AT
- Fixed disk drive
- 1 Diskette drive
- Math Co-processor
- Monitor
- Large carriage (132 column) printer,,
The basic software requirements are the following:
- IBM Personal Computer Disk Operating System (DOS)
(Version 2.1 or higher)
- IBM Personal Computer Professional FORTRAN
(Version 1.0)
- Graphics program (e.g., Lotus 1-2-3).
The requirements for computer memory depend to some extent
on the particular operating environment, and on the types of
other software packages that may be installed on the computer.
The IBM Professional FORTRAN requires 192K bytes of memory for
compilation and link editing. The executable load module for the
model requires 142K bytes of memory.
These requirements have been presented in terms of the IBM
PC/AT because this is the principal system for which the model
has been documented. The model has been run without modification
on a VAX 11/780 minicomputer with a VMS operating system. The
model can be run on any computer that has FORTRAN 77 capability.
78
-------
Minimal I/O modifications may be required for systems other than
the IBM PC/AT and the VAX.
8.3 TESTING PROCEDURES
The FORTRAN source files for the model and the pre-
processing package must be compiled into object modules, and
linked to create executable load modules. The programs INTERP
and INVERT must be run, in sequence, to create the DAILY file
for model input.
The sequence of the testing procedure is the following:
1. Compile and link INTERP.FOR, INVERT.FOR,
and MODEL.FOR.
Note that MASTER.FOR is not compiled or
linked. It is automatically accessed by
MODEL.FOR.
2. Run INTERP
3. Run INVERT
4. Run MODEL.
The default file names in INTERP.FOR, INVERT.FOR, and MODEL.FOR
all refer to the Simplified Lake Example. This is the example
that will be reproduced when MODEL is run. To reproduce the
Simplified Embayment Example, edit the appropriate file names in
these three source files, and repeat the above procedure.
79
-------
REFERENCES
Aitchison, J. and J.A.C. Brown. 1963. The Lognormal Distribution,
Cambridge University Press, New York and London.
Beeton, A.M. 1958. Relationship between Secchi Disc Readings
and Light penetration in Lake Huron. American Fisheries
Society Transactions. 87: 73-79
Bierman, V.J., Jr., D.M. Dolan, E.F. Stoermer, J.E. Gannon, and
V.E. Smith. 1980. The Development and Calibration of a
Spatially Simplified, Multi-Class Phytoplankton Model for
Saginaw Bay, Lake Huron. Great Lakes Environmental Planning
Study. Contribution No. 33. Great Lakes Basin Commission,
Ann Arbor, Michigan. 126 p.
Bierman, V.J., Jr. and D.M. Dolan. 1981. Modeling of Phyto-
plankton-Nutrient Dynamics in Saginaw Bay, Lake Huron.
Journal of Great Lakes Research. 7(4): 409-439.
Bierman, V.J., Jr., D.M. Dolan, R. Kasprzyk, and J.L. Clark.
1984. Retorspective Analysis of the Response of Saginaw
Bay, Lake Huron, to Reductions in Phosphorus Loadings.
Environmental Science and Technology. 18(1): 23-31.
Bierman, V.J., Jr. and D.M. Dolan. 1986a. Modeling of Phyto-
plankton in Saginaw Bay: I. Calibration Phase. Journal
of Environmental Engineering. 112(2): 400-414.
Bierman, V.J., Jr. and D.M. Dolan. 1986b. Modeling of Phyto-
plankton in Saginaw Bay: II. Post-audit Phase. Journal
of Environmental Engineering. 112(2): 415-429.
Bowie, G.L., W.B. Mills, D.B. Porcella, C.L. Campbell, J.R.
Pagenkopf, G.L. Rupp, K.M. Johnson, P.W.H. Chan, S.A.
Gherini, and C.E. Chamberlin. 1985. Rates, Constants,
and Kinetics Formulations in Surface Water Quality Modeling
(Second Edition). EPA 600/2-85-040. U.S. Environmental
Protection Agency, Environmental Research Laboratory,
Athens, GA. 455 p.
Chapra, S.C. and R.P. Canale. 1985. Numberical Methods for
Engineers with Personal Computer Applications. McGraw-
Hill Book Company, New York.
Chapra, S.C. and K.H. Reckhow. 1983. Engineering Approaches
for Lake Management. Vol. 2: Mechanistic Modeling. Butter-
worth Publishers, Boston, MA.
Di Toro, D.M. 1978. Optics of Turbid Estuarine Waters: Approx-
imations and Applications. Water Research. 12: 1059-1068.
Di Toro, D.M., J.J. Fitzpatrick, and R.V. Thomann. 1983. Docu-
80
-------
mentation for Water Quality Analysis Simulation Program
(WASP) and Model Verification Program (MVP). EPA 600/
3-81-044. U.S. Environmental Protection Agency, Enviro-
mental Research Laboratory, Duluth, MN. 145 p.
Dolan, D.M. and V.J. Bierman, Jr. 1982. Mass Balance Modeling
of Heavy Metals in Saginaw Bay, Lake Huron. Journal of
Great Lakes Research. 8(4): 676-694.
Ef fler, S.W. 1985. Attenuation Versus Transparency. Journal of
Environmental Engineering. 111(4): 448-459.
Richardson, W.L. 1976. An Evaluation of the Transport Character-
istics of Saginaw Bay Using a Mathematical Model of Chloride,
In: Modeling Biochemical Processes in Aquatic Systems. R.P.
Canale (ed.). Ann Arbor Science Publishers, Ann Arbor, MI.
pp. 113-139.
Thomann, R.V. 1972. Systems Analysis and Water Quality
Management. Environmental Services Division, Environmental
Research and Applications, Inc., New York.
Thomann, R.V. 1982. Verification of Water Quality Models.
Journal of Environmental Engineering. 108(5): 923-940.
81
-------
APPENDIX A
GLOSSARY OF PRINCIPAL VARIABLES
A(L,N)
ADUM(KI,L,N)
ALOSSl(L.N)
ALOSS2(L,N)
ALOSS3(L,N)
ALPHA(N.J)
ASINK(L)
AVNFIX
AVP(l.N)
(AVN(1,N),
AVS(1,N))
AZMIN(Kl)
BPI(L,N)
BlDETH(Kl)
B2DETH(K2)
CL(1,N)
DEPTH(N)
DEPTHS(N)
DUMMY1(18,10),
DUMMY2U3.10)
EPRIME(N.J)
FCROP(L)
Phytoplankton concentration (mg/1)
Minimum concentration of a phytoplankton for
grazing by herbivorous zooplankton (mg/1)
Phytoplankton specific respiration rate (I/day)
Phytoplankton specific decomposition rate (I/day)
Phytoplankton specific settling rate (I/day)
Weighting factor for water column segment
concentrations. Used in transport computations.
(dimensionless)
Phytoplankton apparent net settling rate
(meters/day)
Dissolved available nitrogen concentration
threshold for nitrogen fixation (mg/1)
Dissolved available phosphorus (nitrogen,
silicon) concentration in the water column (mg/1)
Minimum concentration of total phytoplankton for
herbivorous zooplankton grazing (mg/1)
Phytoplankton biomass production integral (mg/1)
Rate coefficient for herbivorous zooplankton
respiration (I/day)
Rate coefficient for carnivorous zooplankton
respiration (I/day)
Chloride (conservative constituent) concentration
(mg/1)
Depth of water column spatial segment (meters)
Depth of sediment spatial segment (meters)
Dummy arrays for storing transport components of
total derivatives
Bulk diffusion (liters/day)
Fraction of total phytoplankton crop
82
-------
(dimensionless)
FX(NMAX2)
FXDUM(NMAX2)
GMAX(L)
HI
H2
ICHECK
INT(N.J)
INTMAX
ISILCA(L)
ISKIP
IZIPAR(KI.L)
IZ2PAR(K2,K1)
KDCMP(L)
KPCELL(L)
(KNCELL(L),
KSCELL(L))
KRSEDP(N)
(KRSEDN(N),
KRSEDS(N))
KRTUP
(KRTUN,
KRTUS)
KZISAT(KI)
Arra?y containing current values of all total
derivatives
Dummy array containing temporary values of all
total derivatives
Phytoplankton maximum growth rate (I/day)
Integration time step for state variables in
loop 1 (days)
Integration time step for state variables in
loop 2 (days)
Flag to compute all derivatives at TIME - 0
Array for segment interactions
Maximum number of interacting spatial segments
Array for indicating diatom phytoplankton types
Run control switch for writing derivatives and
component terms to model output file
Array for interactions between herbivorous
zooplankton and phytoplankton
Array for interactions between carnivorous
zooplankton and herbivorous zooplankton
Summation index for sequence number of
interacting spatial segments
Half-saturation coefficient for phytoplankton
decomposition (mg-day/1)
Internal half-saturation coefficient for
phosphorus (nitrogen, silicon) limited
phytoplankton growth (mg/mg A)
Rate coefficient for mineralization of sediment
phosphorus (nitrogen, silicon) to the dissolved
available compartment in the water column (I/day)
Half-saturation coefficient for mineralization of
phosphorus (nitrogen, silicon) from unavailable
to available compartments in the water column
(mg A/1)
Half-saturation concentration of total
phytoplankton for herbivorous zooplankton grazing
83
-------
(mg/1)
KZ2SAT(K2) Half-saturation concentration of herbivorous
zooplankton for carnivorous zooplankton grazing
(mg/1)
Kl Summation index for number of herbivorous
zooplankton
K2 Summation index for number of carnivorous
zooplankton
K1P(L) Coefficient in phytoplankton phosphorus (nitrogen,
(K1N(L), silicon) uptake mechanism (dimensionless)
KIS(L))
K2P(L) Coefficient in phytoplankton phosphorus (nitrogen,
(K2N(L), silicon) uptake mechanism (dimensionless)
K2S(L))
L Summation index for number of phytoplankton
M Index for sequence number of sediment resuspension
event
N Summation index for number of water column spatial
segments
NASPEC Total number of phytoplankton types
NBDNTS Number of boundary nutrient concentrations
NDITMS Total number of diatom phytoplankton
NEQS1 Number of state variables per spatial segment
in loop 1
NEQS2 Number of state variables per spatial segment
in loop 2
NEVNTS Total number of sediment resuspension events
NFIX(L) Array for indicating nitrogen-fixing phytoplankton
types
NFXLDS Number of external point loadings
NMIN1 Lower limit of array element range for state
variables in loop 1 (NMIN1 =* 1)
NMIN2 Lower limit of array element range for state
variables in loop 2 (NMIN2 - NMAX1 + 1)
NMAX1 Upper limit of array element range for state
84
-------
variables in loop 1 (NMAX1 - NSGMTS*NEQS1)
NMAX2
NN2BGS
NSGITS
NSPARS
NTPARS
NZSPEC
NZ1SPC
NZ2SPC
ONOFF
PCA(L.N)
(NCA(L.N),
SCA(L.N))
PHOTO
PK1(L)
(NK1(L),
SKl(L))
PPI(N)
PPR(N)
PSA(L,N)
(NSA(L,N),
SSA(L,N))
PSAMIN(L)
(NSAMIN(L),
SSAMIN(L))
PSZ1
(NSZ1)
PSZ2
(NSZ2)
P2DETH(K2)
Upper limit of array element range for state
variables in loop 2 (NMAX2 - NMAX1 + NSGMTS*NEQS2)
Total number of nitrogen-fixing blue green
phytoplankton
Total number of water column spatial segments
Number of environmental forcing parameters per
spatial segment
Total number of environmental forcing parameters
Total number of zooplankton
Total number of herbivorous zooplankton
Total number of carnivorous zooplankton
Switch for sediment resuspension (dimensionless)
Intracellular concentration of available
phosphorus (nitrogen, silicon) (mg/1)
Photoperiod (dimensionless)
Affinity coefficient in phosphorus (nitrogen,
silicon) uptake mechanism (liters/ing)
Integral of primary production rate
(mg C/meter**3)
Primary production rate (mg C/meter**3/hr)
Internal phosphorus (nitrogen, silicon) storage
(mg/mg A)
Minimum cell quota for phosphorus (nitrogen,
silicon) storage (mg/mg A)
Phosphorus (nitrogen) stoichiometry for
herbivorous zooplankton (mg/mg Z)
Phosphorus (nitrogen) stoichiometry for
carnivorous zooplankton (mg/mg Z)
Rate coefficient for second-order predation on
carnivorous zooplankton (1/mg-day)
85
-------
Q(N,J)
RADINC(N)
RADSAT(L)
RAGZD(L,N)
RATE1(18,7),
RATE2U6.9)
RDCMP(L)
RECIN(NTPARS)
RLIGHT(L.N)
RPSINK(N)
(RNSINK(N),
RSSINK(N))
RRESP(L)
RTUP
(RTUN,
RTUS)
RZl(Kl.N)
RZ1GZD(K1,N)
RZIMAX(KI)
RZIPEX(KI.N)
(RZINEX(KI.N),
RZISEX(KI.N))
RZ2(K2,N)
RZ2GZD(K2,N)
RZ2MAX(K2)
Advective flow (liters/day)
Incident solar radiation (langleys/day)
Saturation light intensity for phytoplankton
growth (langleys/day)
Rate at which a phytoplankton is grazed by
herbivorous zooplankton (mg/l-day)
Dummy arrays containing values for components of
total derivatives
Rate coefficient for phytoplankton decomposition
(I/day)
Array containing values for all environmental
forcing parameters for current Julian day
Light reduction factor for phytoplankton growth
rate (dimensionless)
Flux rate of total phosphorus (nitrogen, silicon
from water column to sediment (kg/day)
Rate coefficient for phytoplankton respiration
(I/day)
Rate coefficient for mineralization of phosphoru
(nitrogen, silicon) from unavailable to availabl
compartments in the water column (I/day)
Herbivorous zooplankton specific growth rate
(I/day)
Rate at which herbivorous zooplankton are grazed
by carnivorous zooplankton (mg/l-day)
Herbivorous zooplankton maximum growth rate
(I/day)
Rate at which phosphorus (nitrogen, silicon) is
excreted to the unavailable compartment by
herbivorous zooplankton (mg/mg Z-day)
Carnivorous zooplankton specific growth rate
(I/day)
Carnivorous zooplankton predatory death rate
(I/day)
Carnivorous zooplankton maximum growth rate
86
-------
(I/day)
RZ2PEX(K2,N)
(RZ2NEX(K2,N),
RZ2SEX(K2,N))
R1P(L,N)
(RIN(L.N),
RIS(L.N))
R1PM(L)
(R1NM(L),
R1SM(L))
R2PS(L,N)
(R2NS(L,N),
R2SS(L,N))
SECCHI(N)
SEDP(N)
(SEDN(N),
SEDS(N))
SPGR(L.N)
T(N)
TBASAR(L)
TBASEA(L)
TBASE1
TBASE2
TBASE3
TBASE4
TBASZl(Kl)
TBASZ2(K2)
TCROP(N)
Rate at which phosphorus (nitrogen, silicon) is
excreted to the unavailable compartment by
carnivorous zooplankton (mg/mg Z-day)
Specific phosphorus (nitrogen, silicon) uptake
rate (mg/mg A-day)
Maximum phosphorus (nitrogen, silicon) uptake
rate (I/day)
Specific phytoplankton growth rate as a function
of phosphorus (nitrogen, silicon) limitation
(I/day)
Secchi depth (meters)
Total phosphorus (nitrogen, silicon) concentration
in the sediment (mg/1)
Phytoplankton specific growth rate (I/day)
Water temperature (degrees Celsius)
Temperature coefficient for phytoplankton
respiration (dimensionless)
Temperature coefficient for phytoplankton growth
and nutrient uptake (dimensionless)
Temperature coefficient for nutrient
mineralization in the water column
(dimensionless)
Temperature coefficient for phytoplankton
decomposition (dimensionless)
Temperature coefficient for zooplankton
respiration (dimensionless)
Temperature coefficient for nutrient
mineralization in the sediment (dimensionless)
Temperature coefficient for herbivorous
zooplankton growth (dimensionless)
Temperature coefficient for carnivorous
zooplankton growth (dimensionless)
Total phytoplankton concentration (mg/1)
87
-------
TIME
TIMEMX
TPNET(N)
(TNNET(N),
TSNET(N))
TPLOT
TPRINT
TPSUNK(N)
(TNSUNK(N),
TSSUNK(N))
TSTART(M)
TSTOP(M)
TUP(l.N)
(TUN(l.N),
TUS(l.N))
TUPSNK
(TUNSNK,
TUSSNK)
TWGTA(L,N)
TWGTAD(N)
TWGTAR(L.N)
TWGTM(N)
TWGTSD(N)
TWGTZR(N)
TWGTZl(Kl.N)
TWGTZ2(K2,N)
Current time for model simulation (Julian days)
Maximum time for model simulation (Julian days)
Integral of net phosphorus (nitrogen, silicon)
flux from water column to sediment (kg)
Time interval for writing to graphics output
file, PLOTOUT (Julian days)
Time interval for writing to tabular output
file, TABOUT (Julian days)
Integral of total phosphorus (nitrogen, silicon)
flux rate from water column to sediment (kg)
Julian day for start of sediment resuspension
event
Julian day for end of sediment resuspension event
Total unavailable phosphorus (nitrogen, silicon)
concentration in the water column (mg/1)
Apparent net settling velocity for total
unavailable phosphorus (nitrogen, silicon) in the
water column (meters/day)
Temperature reduction factor for phytoplankton
growth and nutrient uptake (dimensionless)
Temperature reduction factor for phytoplankton
decomposition (dimensionless)
Temperature reduction factor for phytoplankton
respiration (dimensionless)
Temperature reduction factor for nutrient
mineralization in the water column (dimensionless)
Temperature reduction factor for nutrient
mineralization in the sediment (dimensionless)
Temperature reduction factor for ssooplankton
respiration (dimensionless)
Temperature reduction factor for herbivorous
zooplankton growth (dimensionless)
Temperature reduction factor for carnivorous
88
-------
V(N)
VOLSED(N)
VPLONG(N)
(VNLONG(N),
VSLONG(N))
VUPP(N)
(VUPN(N),
VUPS(N))
WAVP(N)
(WAVN(N),
WAVS(N))
WAVPA(N)
(WAVNA(N),
WAVSA(N))
WAVPS(N)
(WAVNS(N),
WAVSS(N))
WAVPT(N)
(WAVNT(N),
WAVST(N))
WCL(N)
WCLA(N)
WCLS(N)
WCLT(N)
WNH3(N)
WN03(N)
WTKN(N)
WTP(N)
WTS(N)
WTUP(N)
zooplankton growth (dimensionless)
Volume of water column spatial segment (liters)
Volume of sediment spatial segment (liters)
Long term apparent net loss velocity for total
phosphorus (nitrogen, silicon) from surficial
sediment to deep sediment layer (meters/day)
Apparent net resuspension velocity for total
phosphorus (nitrogen, silicon) from the sediment
to the water column (meters/day)
Total external loading rate for dissolved
available phosphorus (nitrogen, silicon) (kg/day)
Atmospheric loading rate for dissolved available
phosphorus (nitrogen, silicon) (kg/day)
Sediment loading rate for dissolved available
phosphorus (nitrogen, silicon) (kg/day)
Tributary loading rate for dissolved available
phosphorus (nitrogen, silicon) (kg/day)
Total external loading rate for chloride (kg/day)
Atmospheric loading rate for chloride (kg/day)
Sediment loading rate for chloride (kg/day)
Tributary loading rate for chloride (kg/day)
Tributary loading rate for ammonia nitrogen
(kg/day)
Tributary loading rate for nitrate nitrogen
(kg/day)
Tributary loading rate for total kjeldahl
nitrogen (kg/day)
Tributary loading rate for total phosphorus
(kg/day)
Tributary loading rate for total silicon
(kg/day)
Total external loading rate for total unavailable
89
-------
(WTUN(N),
WTUS(N))
WTUPA(N)
(WTUNA(N),
WTUSA(N))
WTUPS(N)
(WTUNS(N),
WTUSS(N))
WTUPT(N)
(WTUNT(N),
WTUST(N))
XTINCO(N)
Y(NMAX2)
YDUM(NMAX2)
Z1(K1,N)
ZlASSM(Kl)
Z1DUM(K2,K1,N)
ZlEFF(Kl.L)
ZlKDUM(Kl.N)
ZlLSSl(Kl.N)
Z12MIN(K2)
Z2(K2,N)
Z2ASSM(K2)
Z2EFF(K2,K1)
phosphorus (nitrogen, silicon) (kg/day)
Atmospheric loading rate for total unavailable
phosphorus (nitrogen, silicon) (kg/day)
Sediment loading rate for total unavailable
phosphorus (nitrogen, silicon) (kg/day)
Tributary loading rate for total unavailable
phosphorus (nitrogen, silicon) (kg/day)
Water column light extinction coefficient
(I/meters)
Array containing current values of all state
variables
Dummy array containing temporary values of all
state variables
Herbivorous zooplankton concentration (mg/1)
Herbivorous zooplankton assimilation efficiency
(dimensionless)
Minimum concentration of a herbivorous zooplankton
for carnivorous zooplankton grazing (mg/1)
Ingestion efficiency of herbivorous zooplankton
for a phytoplankton (dimensionless)
Effective half-saturation concentration of total
phytoplankton for herbivorous zooplankton grazing
(mg/1)
Herbivorous zooplankton specific respiration rate
(I/day)
Minimum concentration of total herbivorous
zooplankton for carnivorous zooplankton grazing
(mg/1)
Carnivorous zooplankton concentration (mg/1)
Carnivorous zooplankton assimilation efficiency
(dimensionless)
Ingestion efficiency of carnivorous zooplankton
for herbivorous zooplankton (dimensionless)
90
-------
Z2KDUM(K2,N) Effective half-saturation concentration of total
herbivorous zooplankton for carnivorous zooplankton
grazing (mg/1)
Z2LSS1(K2,N) Carnivorous zooplankton specific respiration rate
(I/day)
Z23MIN(K2) Minimum concentration of carnivorous zooplankton
for higher-order predation (mg/1)
Note: The suffix "BD" denotes the boundary value of a variable.
The suffix "X" denotes the value of a variable in I/O
units, for those variables which involve conversions
between I/O units and working units.
The suffix "I" on a loading variable refers to the time
integral of the variable, as opposed to the daily loading
rate.
All loading rates and loading integrals have I/O units
of kg/day and kg, respectively. Internal working units
for these variables are mg/day and mg, respectively.
91
-------
APPENDIX B
PROCESS KINETIC EQUATIONS
PHYTOPLANKTON
Nutrient Uptake:
R1P(L,N) - R1PM(L)*TWGTA(L,N)*(1./(1. + PK1(L)*PCA(L,N))
-!./(!. + PK1(L)*AVP(1,N)))
PCA(L.N) - K1P(L)*AVP(1,N)*EXP(K2P(L)*((PSA(L,,N)/PSAMIN(L))
- 1.))
Growth:
R2PS(L,N) - GMAX(L)*TWGTA(L,N)*RLIGHT(L,N)*(PSA(L,N) - PSAMIN(L))/
(KPCELL(L) + PSA(L,N) - PSAMIN(L))
SPGR(L.N) - AMIN1(R2PS(L,N),R2NS(L,N),R2SS(L,N))
RLIGHT(L.N) - 2.718*PHOTO*(EXP(-ALPHA1) - EXP(-ALPHAO))/
(XTINCO(N)*DEPTH(N))
ALPHAO - RADINC(N)/(RADSAT(L)*PHOTO)
ALPHA1 - ALPHAO*EXP(-XTINCO*DEPTH(N))
XTINCO(N) - 1.9/SECCHI(N)
Respiration:
ALOSS1(L,N) - RRESP(L)*TWGTAR(L,N)
Decomposition:
ALOSS2(L,N) - RDCMP(L)*TWGTAD(N)*TCROP(N)/
(TCROP(N) -I- (KDCMP(L)*SPGR(L,N)))
Settling:
ALOSS3(L,N) - ASINK(L)/DEPTH(N)
HERBIVOROUS ZOOPLANKTON
Growth:
RZ1(K1,N) - RZ1MAX(K1)*TWGTZ1(K1,N)*Z1ASSM(K1)*SUM2Z1(K1,N)/
(ZlKDUM(Kl.N) + SUM2Z1(K1,N))
SUM2Z1(K1,N) ml Z1EFF(K1,L)*A(L,N) -AZMIN(Kl)
92
-------
ZlKDUM(Kl.N) - SUM2Z1(K1,N)*KZ1SAT(K1)/ Y Z1EFF(K1,L)*A(L,N)
b
Rate at which phytoplankton type L is grazed:
RAGZD(L.N) - I RZ1MAX(K1)*TWGTZ1(K1,N)*Z1(K1,N)*(Z1EFF(K1,L)*
Kl A(L,N) - ADUM(K1,L,N))/(Z1KDUM(K1,N) + SUM2Z1(K1,N))
ADUM(K1,L,N) - Z1EFF(K1,L)*A(L,N)*AZMIN(K1)/
£ Z1EFF(K1,L)*A(L,N)
Rate at which phosphorus is excreted to the unavailable
compartment in the water column:
RZIPEX(KI.N) - RZ1MAX(K1)*TWGTZ1(K1,N)*(1. - ZlASSM(Kl))*
SUMZ1P(K1,N)/(Z1KDUM(K1,N) -I- SUM2Z1(K1 ,N) )
SUMZIP(KI.N) - I (Z1EFF(K1,L)*A(L,N) - ADUM(K1,L,N))*
L PSAMIN(L)
Rate at which silicon is excreted to the unavailable
compartment in the water column:
RZISEX(KI.N) - RZ1MAX(K1)*TWGTZ1(K1,N)*SUMZ1S(K1,N)/
(ZIKDUM(K1,N) + SUM2Z1(K1,N))
SUMZIS(KI.N) - I (Z1EFF(K1,L)*A(L,N) - ADUM(K1,L,N))*
L SSAMIN(L)
Death (respiration) rate:
ZlLSSl(Kl.N) - B1DETH(K1)*TWGTZR(N)
CARNIVOROUS ZOOPLANKTON
Growth:
RZ2(K2,N7) - RZ2MAX(K2)*TWGTZ2(K2,N)*Z2ASSM(K2)*SUM2Z2(K2,N)/
(22KDUM(K2,N) -t- SUM2Z2(K2,N))
SUM2Z2(K2,N) - 7 Z2EFF(K2,K1)*Z1(K1,N) - Z12MIN(K2)
Z2KDUM(K2,N) - SUM2Z2(K2,N)*KZ2SAT(K2)/
I Z2EFF(K2,K1)*Z1(K1,N)
Rate at which herbivorous zooplankton type Kl is grazed:
RZIGZD(KI.N) - I RZ2MAX(K2)*TWGTZ2(K2,N)*Z2(K2,N)*
K2 (Z2EFF(K2,K1)*Z1(K1,N) - Z1DUM(K2,K1,N))/
(Z2KDUM(K2,N) + SUM2Z2(K2,N))
Z1DUM(K2,K1,N) = Z2EFF(K2,K1)*Z1(K1,N)*Z12MIN(K2)/
I Z2EFF(K2,K1)*Z1(K1,N)
Kl
93
-------
Rate at which phosphorus is excreted to the unavailable
compartment in the water column:
RZ2PEX(K2,N)
SUMZ2P(K2,N)
R22MAX(K2)*TWGTZ2(K2,N)*( 1 . - Z2ASSM(K2))*
SUMZ2P(K2,N)/(Z2KDUM(K2,N) + SUM2Z2(K2,N))
I (Z2EFF(K2,K1)*Z1(K1,N) - Z1DUM(K2 ,
Kl PSZ1
No silicon is excreted to the unavailable compartment by
carnivorous zooplankton because no silicon is ingested by
grazing on herbivorous zooplankton.
Death (respiration) rate:
Z2LSS1(K2,N) - B2DETH(K2)*TWGTZR(N)
Second-order predatory death rate:
RZ2GZD(K2,N) » P2DETH(K2)*Z2(N)*TWGTZ2(K2,N)
IF: Z2(K2,N) > Z23MIN(K2)
NUTRIENTS (Water Column)
Available nutrient forms:
Phytoplankton uptake
Recycle from phytoplankton
respiration losses
Recycle from phytoplankton
decomposition losses
Recycle from herbivorous
zooplankton excretion
Mineralization from
unavailable compartment
External loading
Mineralization from
sediment compartment
Unavailable nutrient forms:
Recycle from phytoplankton
respiration losses
I R1P(L,N)*A(L,N)
L
I A(L,N)*(PSA(L,N) - PSAKIN(L))*
L ALOSSl(L.N)
I A(L,N)*(PSA(L,N) - PSAMIN(L))*
L ALOSS2(L,N)
I (PSA(L.N) - PSAMIN(L))*RAGZD(L,N)
L
RTUP*TWGTM(N)*TCROP(N)*TUP(1,N)/
(TCROP(N) - KRTUP)
WAVP(N)/V(N)
KRSEDP(N)*TWGTSD(N)*VOLSED(N)*SEDP(N")
I A(L,N)*PSAMIN(L)*ALOSS1(L,N)
L
-------
Recycle from phytoplankton
decomposition losses
Recycle from herbivorous
zooplankton excretion
Recycle from herbivorous
zooplankton respiration
Recycle from carnivorous
zooplankton excretion
Recycle from carnivorous
zooplankton respiration
Mineralization to
available compartment
Settling:
External loading
External loading from
sediment resuspension
- £A(L,N)*PSAMIN(L)*ALOSS2(L,N)
L
- £RZ1PEX(K1,N)*Z1(K1,N)
Kl
- I Z1LSS1(K1,N)*Z1(K1,N)*PSZ1
Kl
- £RZ2PEX(K2,N)*Z2(K2,N)
K2
- I Z2LSS1(K2,N)*Z2(K2,N)*PSZ2
K2
- RTUP*TWGTM(N)*TCROP(N)*TUP(1>N)/
(TCROP(N) - KRTUP)
- TUPSNK*TUP(1,N)/DEPTH(N)
- WTUP(N)/V(N)
- ONOFF*VUPP(N)*VOLSED(N)*SEDP(N)/
DEPTHS(N)
ONOFF » 1 wind speed > threshold for resuspension
ONOFF » 0 wind speed < threshold for resuspension
NUTRIENTS (Sediment)
Flux from phytoplankton
settling
Flux from settling of
unavailable nutrient
forms
Loss to resuspension
Long term loss to
deep sediment
Loss to mineralization
to water column
V(N)* I ALOSS3(L,N)*A(L,N)*PSA(L,N)
L
V(N)*TUPSNK*TUP( 1,N)/DEPTH(N)
ONOFF*VUPP(N)*VOLSED(N)*SEDP(N)/
DEPTHS(N)
VPLONG(N)*SEDP(N)/DEPTHS(N)
KRSEDP(N)*TWGTSD(N)*VOLSED(N)*SEDP(N)
TEMPERATURE COEFFICIENTS
TWGTA(L,N) - TBASEA(L)**(T(N) - 20.)
TWGTAR(L,N) - TBASAR(L)**(T(N) - 20.)
95
-------
TWGTAD(N) - TBASE2**(T(N) - 20.)
TWGTZl(Kl.N) « TBASZ1(K1)**(T(N) - 20.)
TWGTZR(N) - TBASE3**(T(N) - 20.)
TWGTZ2(K2,N) - TBASZ2(K2)**(T(N) - 20.)
TWGTM(N) - TBASE1**(T(N) - 20.)
TWGTSD(N) - TBASE4**(T(N) -20.)
96
-------
APPENDIX C
MODEL OUTPUT FOR SIMPLIFIED LAKE EUNPL£
i mi RUNCON INPUT IHHIIUI
NS6MTS »
INTNPJE *
SE9CNT
1
SEGMENT
1
1
1
2
VOLUME (**»3)
0.806E+10
INTEWCnOM
1
2
DEPTH («)
0.383£-K>1
INTEMCHNB SEENENT
1
1
SEDIMENT SESNECT VOLUME (N»t3) DEPTH (»
If XLDS *
WISC »
NflSPE > 2
NDITW » 1
NN2B5S * 0
PHTTO ISILCfi l«l
1 1 0
200
fCSPtC * 2
NZiSPC > 1
NZ25PC * 1
HERB ZOO PHTTD IZlPflR
1 1 1
1 2 1
CflW ZOO HERB ZOO IZSPflR
1 1 1
ratn •
TPLDT »
TPRIMT »
ISKIP "
0.500E-KI1
0.500E+C1
1
HI * 0.2500E-01
H2 * 0.12506+00
97
-------
minim COEFF INPUT iiiniiiii
TWSE1 *
TBflSES *
TBflfiG *
7WE*»
0.1070E+01
0.1070E+01
(UOTOfKU
flVNFtt ' 0.0006+00
PHYTO
1
2
GHtt
0.210&H)!
TBflSEB
0.106E+01
TBflSW
0.10&01
0.109E+01
PHYTO
1
PHYTO
1
2
PHYTO
1
PHYTO
1
R1PH
o.iooe-01
0. 2006-01
PK1
0.226E+02
0,22E&H)e
KIP
0.1546+00
0,15^+00
K2P
0.1506+01
0.30C6+00
PSflMIN
O.SOOE-03
0.1CCE-02
KPCELL
0.500EHB
0.100E-06
Rim
0,2006+00
0.2006+00
Rl»
0.300tK»
0.100&KX)
0.500E-01
0.107E+02
(UOTtKE
9U
O.S3A6+01
RDCTP
0.2506+00
0.5006+00
KIN
0.239&KX)
0.239tK»
K1S
0.239E-KJO
KDCMP
0.200E-KJ3
0.200E+03
K2M
0.445E-KX)
O.U5E-KW
K2S
0.445E+00
RflOGfiT
NSRMIN
0.100E-01
0.200E-01
SSflMIN
0.350E-01
RRESP
0.300E-01
0.300E-01
KNCELL
0. 100E-01
O.aOOE-01
0.3SOE-01
•E® ZOO Z1ASSN KIlSfiT
1 O.SOO&KX) 0.10C€-H)1
-EHB ZOO R21KU TBP6Z1
1 O.S50E+00 0.107E+01
«8 ZOO PHYTO Z1EFF
1 1 0.1006+01
1 2 0.500E-KX)
MHIN
0.200E-MX)
B1DETH
0.300E-01
CMM ZOO
1
cam zoo
i
ZZSSM
0.6006+00
RZ2MRI
0.506*00
KZ2SRT
0.123E+00
TBRSZ2
0.107E-H)1
CflW ZOO HERB ZOO
Z2EFF
Z12MIN
0.250E-01
BSOETH
0.300E-01
P8DE7H
0.100E-HJ1
Z23MIN
0.250EH31
98
-------
0. lOOE-HM
RTUP
0.3006-01
KRTUP
0. 100E-HM
TUP9K
0.150E-HX)
RTUN
0.200E-01
KRTUN
0.iOOE-M)l
TUNS*
0. 130E+00
RUB
0.200E-01
KRTUS
0.100E+01
TUSSNK
0.150E+00
SEDIKMT SEEMENT
1
3E3IICNT SE9CNT
1
SEDIfiff SE9OCT
1
WPP
0.173E-03
KRSEDP
O.OOOE400
VPUMB
0.82E-09
VUPN
0.114E-03
KRSEDN
O.OOOE+00
0.822E-05
VUPS
0.173E-03
KRSEDS
0.625E-03
VSUMB
0.822E-05
NEVNTS *
TSTflRT
98.
103.
111.
118.
ia.
\2L
129.
122.
1>.
158.
161.
184.
201.
223.
238.
243.
254.
258.
267.
272.
274,
277.
294,
309.
TSTTP
99.
103.
Ill
119.
122.
127.
130.
133.
135.
160.
162.
182.
202.
224.
239.
244.
255.
259.
268.
271
275.
279.
296.
310.
minim INIOW INPUT iiiiiniii
99
-------
SE9CNT flVP
1 0.539E-Oe
SEGMENT PHYTO
1 1
1 2
SEGMENT HERB ZOO
1
1
SEGMENT CAW ZOO
1
1
HVH
0. l£fl£-K)l
0.894E-KX)
0.473E-01
Zl
0.130E-OE
Z2
0.312E-01
SE9CNT SEDP
1 0.120E-H)3
SEGMENT UftVOfl
1 0.499E+01
SEDN
0.136E-HH
uouua
w^n^
OVS
0.700E-KX)
PSA
0.125E-48
0.300E-02
TUP
0.131E-01
NSfl
0.350E-01
0.700E-01
SEDS
UflVSfl
0.6ME-HK
U7UPA
0.122E-MS
TUN
0.381E-01
SSfl
0.105E+00
O.OOOe-MX)
TIB
0.700E-HX)
0.
0.220E+02
VTUDfl
0.332E+03
VTUSA
0.6B4E-HS
UCLA
O.OOOE-KW
100
-------
iiiiiiiiiiiiiiiiiiiniiiiiiiniiiiiiiiniiimii
iiiiiiuiiiim QflY * 0. iiiiiiiiiiuiiH
iimmiiiiiiiiiiiiiiiiiiiiiiiiuiiiiiiiuiiiH
iiiiiinii
DAY
0.
SEGMENT
1 iiiiiinii
IUPERRTURE * 0.2906+00
LIGHT INTENSITY » 0.1006*03
XTINCCOEFF » 0.1146+01
TDTflL PHYTO « 0.941E+00
TOTflL ZtB = 0.323E-01
UATER
SEDIKNT
WBL P
0.199E-01
0.1206+03
TDTPLM
0.135E+01
0.136E+04
TDTflL S
0.149E+01
0.479E+03
AVP
IC/L
N6/H5 TOT fWTTO
0.128E+01
SURPLUS P
O.ttOE-03
0.313E-03
PRIM PROD (WTE (MB m«3/HR)
INTESWL PRIM PROD RHTE (W C/W«3)
AVS
0.700E+00
SURPLUSN
0.2476-01
0.2636-01
•0.1526+08
TUP
0.131E-01
SURPLUS S
0.&26EHD1
0.&63E-01
TUN
0.381E-01
TUB
0.700E+00
0.
0.220E+02
PWTD
1
2
PHYTO
1
2
0.9946400
0.473E-01
SP6R
0.549E-01
0.342E-01
0.350EXX)
O.S02E-01
BPI
0.491E-01
PSA
0.12SE-02
O.SOOE-OS
R2PS
0.5V9E-01
0.383E-01
PSA/PSPMIN
0.250E-H)!
0.500E+01
0.&53E-01
0.342E-01
NBA
0.250E-01
0.700E-01
R2SS
0.610E-01
0.990E-KE
NSft/NSflMIN
0.250E+01
0.350E-H)1
TWBTB
0.317E+00
0.1B3E+00
SSfi
0.105E+00
O.OOOE+00
IUSHT
0.137E+00
0.145E-KX)
SSA/SSAMI
0.300E+01
O.OOOE-KX)
ZOO
1
CfiRN ZOO
1
Zl
0.130E-02
Z2
0.312E-01
RZ1
0.416E-01
RZ2
O.OOOE+00
Z1LSS1
0.7S1E-OE
Z2LSS1
0.791E-02
THBTZ1
0.264EXX)
TWBTZ2
0.2&4E+00
LQPOINB5 (KG/DAY)
TRIBUTfWY
ATMOSPHERIC
SEDIKKT
URVP
0.1106+04
0.499E+01
0.0006+00
UfttEi
WPTl^^
0.437E+05
0.737E+03
0.0006+00
0.314E+05
0.109E-H)5
OTUP
0.1236+04
0.122E+02
O.OOOE+00
tfTUN
0.1996+05
0.332E+03
O.OOOE+00
rfTUS
0.3146+05
0.&846+02
0.0006+00
ua
0.721E+06
0.0006+00
0.0006+00
101
-------
TDTflL
TRIBUTfWY
ATW5PHERIC
SEDIICNT
TDTflL
0.1106+04
0.4446+05
0.4246+05 0.1246+04
LDADIN6 INTESRflLS (KE)
0.2036+05
0.3155+05
0.7215+06
MVP
0.1106+04
0.4996+01
0.0006+00
0.1106+04
URVN
0. 4376+05
0.7376+03
0.0006+00
0.4446+05
MflVS
0.3146+05
0.6846+02
0.1096+05
0.4246+05
UTUP
0.1236+04
0.1226+02
0.0006+00
0.1246+04
kTUN
0:. ; 996+05
0^3326+03
0.0006+00
0,2036+05
U7U5
0.3146+05
0. 6846+08
0.0006+00
0.3155+05
UQ.
0.7216+06
0.0006+00
0.0006+00
0.7216+06
RPSINK
0.2895+04
TPSU*
0.2895+04
TPfCT
0.2896+04
fMSINK
0.1255+05
TNSUTK
0.123E-MH
TMCT
0.125E+05
RSSIfK
TSSUPK
0.158E**
T9CT
0.147E-H36
PUM DIFFUSIOM
SE9CNT IKTIHflCTION IHTESflCTING SE9ENT (NwySEC) (MH3/SED PLPHR flLPWIN
1 1 1 -0.176E+03 0.0006-KX) 0.100E-H31 0.500E-KW
1 2 1 0.176EK)3 0.0006-KX) 0.1006+01 0.5006+00
niiiiiiii 9QUCMY VWLU6S miiiiiit
TPB)
0.9996+01
WPBD
0.999E+00
3VPBD
0.9996+00
flVWD
0.2006+01
TKMBO
0.9996+01
nvsao
0.999E+00
NQ3BO
0.9996+00
TWO
O.S99E-H31
MQBD
0.999E+00
0.6966+01
0.3996+01
TUSBD
0.6996+01
WSBD
0.9996+00
QJD
0.9996+00
QJD
0.9996+00
PHYTO
1
2
HERB ZOO
1
CARN ZOO
1
0.9996+00
0.9996+00
Z1BD
0.9996+00
Z2BO
0.9996+00
PSRBD
0.9996+00
0.9996+00
NSW
0.9996+00
0.9996+00
SSfVD
0.999E+00
0.9996+00
102
-------
iimiiiiuiiiimiiiiimiumimmiiiiiiiH
iiiiimiiiiui DflY « 5. iiiiiiiiiiiiiin
lllllimUlllllllllilllllllllMlllllillllllllH
iiiiiiini DAY =
SE9SNT = 1 iiiiiiini
TEWERP.TURE * 0.4226+00
U8HT INTENSITY » 0.9596+02
XT!* COEFF » 0.1026+01
TOTPL PHYTD
TOTBL ZOO
UflTER
SEDIICNT
flVP
0.103E+01
0.301E-01
TOTHL P
0.197E-01
0.1206+03
TDTPL N
0.137E+01
0.13SE+04
TUTflLS
0.1436+01
0.4846+03
WA.
KB/16 TOT PHYTO
0.123E+01
SURPLUS ?
0.749EHB
0.729E-03
AVS
0.6S7E+00
SURPLUS N
0.256E-01
TUP
0.123E-01
SURPLUS S
0.395E-01
0.8706-01
TUN
0.451E-01
TIE
d
0.223E-H32
PRIX PROD WTE (W C/N»*3/HR)
INTESRAL PRIM PROD RRH (MB C/N»*3}
0. 146E+02
PWTD
1
2
0,3606^00
0.461EH31
FCRDP
0.353WO
PSfl
0.10GE-02
0.507E-08
PSR/PSWIN
0.213E+C1
0.5WE+01
N5P
0.340E-01
0.&36E-01
NSft/NSWIN
0.3WE-K)!
0.318EXJ1
ssa
0.126E-HX)
O.OOOE+00
0.361E-K)!
0.000€+00
PHYTO
1
2
SPW
0.541E-01
a.369E-01
BP1
0.243E+00
0.8296-02
R2PS
0.541E-01
0.432E-01
f06
0.721E-01
0.369E-01
R2SS
0.738E-01
0.9906+02
TU6TR
0.320E-HX)
0.185E+00
H.IEHT
0.1S2E-HX)
0.162E-00
ZOO
1
com zoo
i
zi
0.13Z-02
22
0.2S6E-31
RZ1
RZ2
O.OOOE-HX)
Z1LSS1
0.7386-02
Z2LSS1
0.7586-02
TMBTZ1
0.2S6E-HX)
TU6T22
0.2&6E-HX)
LDWINGS
TRIBUTflRY
flTNOSPHERIC
MVP
0.121E+04
0.4996+01
0.0006+00
LJOLJW
IPfVW
WIS
0.3486+05
0.7376+03
0.0006+00
0.111E+03
tJTUP
0.3096+04
0.1Z26+02
0. 0006+00
WTJN
0.1966+05
0.332E+03
0.0006+00
WTUS
0.3476+05
0.&&46+02
0.0006+00
UQ.
0.8S36+06
0.0006+00
0.0006+00
103
-------
TUTBL
0.1ZSE+04
0.5326+05
0.4596+05 0,2106+04
LO»I* IWTEHMLS (KS)
0.1996+05
0.34flE+05
0.8936+06
TRIBUTfWY
ffn«BP*RIC
SEDIKKT
TOTPL
0.5796+04
0.2496+02
0.0006+00
0.5816+04
0.2406+06
0.0006+00
UTUP
0.1656+06 0.8306+04
0.3426+03 0.6106+02
0.0006+00
0.8366+04
win
0.1666+04
0.0006+00
tfTUS
0.1656+06
0.3426+03
0.0006+00
0.1666+06
UQ.
0.0006+00
0.0006+00
0.4046+07
RPSINC
0.2716+04
TPSMt
0.1406+05
TPN6T
0.1406+05
RNSIfft
0.1416+05
TMBUNt
RSSUK
0.1476+06
TMCT
0.7696+06
T9CT
0.7146+06
FLOW DIFFUSION
SE9ENT INTEHCTICM INIUKCTINB SEEKNT (NH3/SED (MM3/SED
1 1 1 -0.17EE+03 0.0006+00
1 2 1 0.17EE403 O.OOOE+00
0.100E-+01
0.1006+01
flLPHAIN
0.5006+00
0.500E+00
iiiiuiiii BOMARY VRLiES iiiiiiini
TPGO
WPBD
0. 993E-KX)
TXMD
0.999E+01
NQ38D
0,9996+00
IK8D
0.9996+00
0.9996+01
avsso
0.9996+00
QJO
0.999E+00
3VPBO
0.999E+00
WICD
avsso
0.9996*00
TUPBD
O.S99&01
rueo
0,£98E+01
TIJSK)
0.699E+01
OJO
0. 9996+00
PHYTD
1
2
ZOO
1
BUM ZOO
1
0.999E+00
0.999E+00
ZIBO
0.9996+00
Z2BD
0.9996+00
PSPff
0.9996+00
0.999E+00
NSflBD
0.9996+00
0.9996+00
SSAEO
0,9996+00
0,9996+00
104
-------
APPDOII 3
MODEL OUTPUT FOR SIMPLIFIED EfflfiYMENT EXflNPLE
iiiiiiiiii RJCON INPUT IIHIIIIII
NSSTTS «
IHTMW «
SEGMENT
1
SEOENT
1
1
SEDIMENT
1
2
VOLUME (Mt»3)
0.806E+10
INTERflCTION
1
2
DEPTH (M)
0.5B3E-K)!
INTERflCTINB SEGMENT
1
1
SC9CNT VOLUME (M**3) DEPTH (N)
1 0. 138E+09 0. 100E-HX)
NBDKTS = 8
CRLDS = 8
NMISC = 3
NftS1€C = 2
WITMS = 1
NN286S = 0
PHYTO ISIU»
1 1
2 0
NZSPEC * 2
NZ1SPC « 1
NZ2SPC = 1
HERB ZOO
1
i
WYTQ
1
2
CflRN ZOO HERB ZOO
1 1
mm
i
i
IZ2PM
i
* 0.500E-H)!
TPLDT s 0.500E+01
TPRIMT » O.SOOE-HJI
ISKIP = o
HI « 0.2300E-01
HE = 0.1250E+00
105
-------
niiiiiiii COEFF INPUT iiiiiinii
TBflSEl *
TBflS62 '
TBflSC *
TBflSE* «
jwrix » o.
PHYTD
1
2
PHYTD
1
2
PHYTD
1
2
PHYTO
1
PHYTO
1
2
*RB ZOO
1
t€RB ZOO
1
^€RB ZOO
I
1
CflRN ZOO
1
CflRN ZOO
1
0. 10706+01
0, 10706+01
0. 10706+01
0006+00
SftU
0.2106+01
0. 1806+01
R1PH
0.1006-01
0.2006-01
R1NM
0.2006+00
0.2006+00
R191
0.5006*00
0,1006*00
0.5006-01
Z1ASSM
0.6006+00
RZlHftt
0.5506+00
TBflSER
0.106E+01
0.10X+01
PHI
0.22EE+02
0.2E6E+02
0.1076+08
0.107E+02
SKI
RDOP
0.2506+00
0. 5006+00
K21SBT
0. 1006+01
TBBSZ1
0. 107E+01
TBflSftR
0. 1066+01
0. 1096+01
KIP
0.1546+00
0.1546+00
KIN
0.23S6+00
0.2336+00
K1S
0.2396+00
KDDf>
0.2006+03
0.2006+03
AZMIN
0.2006+00
K2P PSPHIN
0.1506+01 0.5006H)3
0.3006+00 0.1006-02
K2N NSfMIN
0. 445E+00 0. 1006-01
0.445E+00 0.2006-01
K2S SSWIM
0.445E+00 0.3506H3I1
RflDSfiT RRESP
0.1006+03 0.300E-
-------
0.100E+01
RTUP
0.200E-01
0.1006+01
TUP9K
0.1506400
RTUN
0.200E-01
0.1006+01
TUSK
0.1506+00
RTUS
0.200E-01
KRTUS
o. looE+oi
TUS9K
0.150E+00
SEDIICNT SESCNT
1
SEDIOOT SEEKNT
1
SEDI(€NT SE9CCT
1
NEVHTS » 24
TSTftRT
98.
103.
ill.
118.
121.
12S.
129.
12.
13A.
158.
161.
184.
301.
223.
238.
241
34.
253.
267.
272.
274.
277.
234.
309.
TSTOP
99.
105.
Ill
119.
122.
127.
130.
131
135.
1BO.
162.
185.
202.
224.
239.
244.
255.
259.
2S8.
271
275.
279.
296.
310.
VUPP
0.173E-03
KRSEDP
O.OOOE400
VPUM6
0.822E-05
vum
0.114EHJ3
KRSB9N
O.OOOE-KM
VNJI6
0.322E-C5
'APS
0.173E-03
KJSEDS
VSLON6
0.822E-05
liiiniiii IN1CON INPUT "mum
107
-------
SEGMENT
1
SEGMENT
1
1
AVP
0.5396-02
PHYTD
1
Z
AVN
0. 12BE+01
A
0.8946+00
0.473E-01
AVS
0.7006+00
PSA
0.125E-02
0. 5006-02
TUP
0. 131E-01
NSfl
0.3506-01
0.7006-01
TUN
o.3aiE-oi
ssa
0.105E+00
0.0006+00
TIB
0. 7006+00
a
0.2206+02
SEGMENT HERB ZOO
1
1
SEGMENT CflW ZOO
1
1
Zl
0.1306-02
Z2
0.312E-01
SEGMENT SEDP
1 0.1206+03
SEGMENT UflVPft
1 0.499E+01
SEW
0.12&KH
0.737E-H)3
SEDS
0.4796+03
HPVSfl
WTUPfl
0.122E-KC
UTIMR
UTUSA
0.6ME-0£
UCLA
0.0006+00
108
-------
iiiiiiiiiniiiMiimiiiiiiumiiiimiiiiinii
iiiiiuiiiiiui DAY = 0. imiiiiiiiiiui
iiiiiiiiiiiiiiiniiiniiiniiimiiimiiiimii
iniiiiiii
DflY = 0.
SEBCNT =
iiimiiii
TEHPERftTURE * 0.a90E+00
HOT INTENSITY » 0.100E+03
CTINC COEFF »0.ii4E+Ol
TDTflL PHYTO
TOTflL ZOO
0.941E+00
0.32SE-01
UATEH
SEDIfcNT
TOTRL P
0.199E-01
0.1EOE+03
TOTflLN
0.12EE-KH
TUTRL S
0.149E+01
0.479E+03
flVP
0.53SEHB
*/L
H6/N6TOT PHYTO
SURPLUS P
0.a60E-03
0.913E-03
3VS
0.700&KX)
SURPLUS N
0.263EH31
TUP
0.131E-01
SURPLUS S
0.&2GE-01
0.&6SE-01
TIM
0.381E-01
TUB
0.700E-HX)
CL
0.220E-KS
PROD RATE (« C/Mt*3/HR)
INTEBRflL PRIM PRO) MTE (ffi
PHYTO
1
PHYTD
1
a
0.473E-01
SP6R
0.5WE-01
0.342E-01
FOW
0.350&KX)
0.508EH)!
BP1
0.491E-01
0.1S3EHK
PSfl
0.125EHK
0.5006-02
REPS
0.54SE-01
0.383E-01
PSA/PSAMIN
0.250E+01
0.500E-K)!
f&NS
0.6SZ-01
0.342E-01
NBA
0.330E-01
0.70C€-01
RgSS
0.610E-01
0.990€+08
0.350E+01
0.350E-K)i
TWTfi
0.317E-HX)
0.1S3E+00
SSA
0.105E-KX3
O.OOOE+00
RUSH!
0.137E+00
0.145E-KX)
SSA/SSflW
0.300E-K)
O.OOOE-KH
ZOO
1
CARN ZOO
1
Zl
0.130E-02
Z2
0.31Z-01
RZ1
O.M6EH)!
R22
O.OOOE-M30
Z1LSS1
0.791E-OE
Z2LSS1
TWBT21
0.264EXX)
THBTZ2
0.2&4E-HX)
»»»» LOMINK (KS/DflY)
TRIBUTfWY
UfiVP
0.110E-KH
0. 499E-K)!
O.OOOE+00
uryfcj
I^WTT^
0.437E+05
0.737E+03
O.OOOE+00
»vs
0.324E-KJ5
0.584E+02
0.109E-H35
tfTUP
0.123E-HH
0.122E-MK
O.OOOE-KW
WTUN
0.199E-KS
0.332E+03
O.OOOE-KX)
UTU5
0.314E-HS
0.6WE-KJ8
o.oooe-KX)
Ml
0. 721E-KI6
O.OOOE-HX)
O.OOOE-HX)
109
-------
TOTflL
0.110E+04
O.H4E+05
0.124E-MM
LOADINB INTEBRflLS (KB)
0.203E+05
0.315E+05
0.721E+06
TRIBUTARY
ftTMOQfll^rBT^
n i nvwrT^Ri ^
SEDIKNT
TOTAL
RPSINK
TPSUNK
0.289E+04
UAVP
O.ilOE-KH
0.499E-K)1
O.OOOE-KX)
0.110E+04
RNSINK
0.123E+05
TN9JK
0.123E-KS
TM€T
0.123E-K6
UAVM
0.437E-KS
0.737E+03
O.OOOE-HX)
0.444E-MM
RSSIW
(XiSBE^G
TSSUTK
0.156E+06
T9€T
O.U7E+06
SEBNENT INTERACTION IKTEWCTINB SE9CNT
1 1 1
1 2 1
UQVS tfTUP UTIM MTUS
0. 314E+05 0. 123E-KH 0. 199{:-K)5 0.314E+05
O.S84E-Ke 0. 122E+02 0.332£-K)3 0.684E-Ke
0.109E-KS O.OOOE-KX) O.OOOE+00 O.OOOE-KX)
0.42«+05 0.i2«-KH 0.203E-KS 0.315E-K8
FLOW DIFFUSION
(NM3/SEC) (N»*3/SEC} ALPHA ALPHAIN
-0.176£*03 0.000&KX) 0.100E-K>1 O.SOOE-KX)
UQ.
0.721E+06
O.OOOE+00
O.OOOE-KX)
0.7E1E+06
HIIIIIIII BOUNDARY VALUES iniiiiiii
TP8D
0.413EHK
0,102E-02
PHYTO
1
2
'*HB ZOO
1
CflRN ZOO
1
flVPBD
0.2S4E-HX)
T10CO
0.12*E-K»
W5BD
o.&&oe+oo
A P5RBO
0.203E-KX) 0.750E-03 0.
0.488E-02 0.200E-02 0.
Z1BD
0,581E-Oe
Z2BD
0.26SE-01
ND3BC NK3S) TS8D AVS8D
0.272E-KX) 0.123E-01 0.i32E-t-01 O.S60E+00
PJPBD TIMO TUSB) OfiD
0.235E-02 0.103E+00 Q,&32£<'00 0.527E-K)i
NSABO SSABO
400E-01 0.140E-KX)
800E-01 G.OOOE-KW
CLBO
O.S27E*Oi
»**»» DERIVflTIVES flMD COMPOEMT
DERMTIVE
XI
X2
13
-0.2WE-03 -0.646E-06 -0.133E-03 -0.686E-04
0.10SE-04 -0.176E-05 0.183E-03 -0.171E-03
-O.HIE-03 0.646EH35 O.M7E-02 -0. J32E-02
0.587EHS 0.849E-03
X7
X8
X9
110
-------
0.1ME-01 0.452E-OA 0.165E-01 -0.576E-02
0.261E-03 -0.350E-04
-0.344E-02 -0.308E-02
-0.830E-OE -0.1SE-02
O.M9E-01 -0.562£-^
H3.137E-03 -0.330E-03
0.670E-04 0.22E-0*
-0.589E-03 -0.S56E-0+
-0.231E-03 -0.824E-04
0.189E-OE 0.2S6E-03
-0.171E-01 -0.171E-02
-0.472E-01 -0.137E-HX)
0.111E-01 0.209E-01
-O.E15E-01 0.903E-01
0.103E-K)! 0.115E-K>1
0.112EHJ3 0.742E-05 0.651E-05 0.752E-07 0.335E-04 0.137E-03
-0.136E-02 0.226E-03 0.154E-03 0.231EHS 0.974E-04 O.S1E-02
-0.147E-01 0.595E-03 0.326E-03 0.615E-05 0.173E-02 0.526E-08
0.431EH)! ^.851E-0£ -0.465E-OE -0.153E-41 -0.378E-04
0.162EHK -0.260E-03 -0.75S-03 -0.W6E-03 -0.332E-05
0.541E-04 H5.103E-04 O.OOOE-HX)
0.0006+00 -0.247E-03 -0.257E-03
0.1S2E-03
0.4€1E-03
0.895E-01
0.0006-HX)
O.OOOE-KX)
0.132E-07
0.384E-06
0.3071-05
0.314E-08
0.102E-06
-0.179E-08
O.OOOE-HX)
O.OOOE+00
-0.180E-01
0.123E-06
0.247E-05
0.390E-02
-0.335E-04
-0.374E-04
-0.337EHX3
-0.980E-03
0.15«-03
0.252E-02
O.OOOE-KX) -0,966E-02
O.OOOE-KX) -0.112E+00
-0.789E-01 -0.394E-01
111
-------
iiiiiiiiiiiini DAY =
iiiiiiiiiiiiiiiiiiiiiiiiiiii
5. iiiiiiiiiumii
iiiiiiiiiiiiiiimiiiii
iiiiiinii
DAY
SEGMENT
minim
TEMPERATURE s 0.422E+00
LIGHT INTENSITY « 0.959E+02
XTINC OEFF * 0. 102E+01
TOTAL PHYTQ * 0.iOlE+01
TOTAL ZOO = 0.301E-01
HATER
SEDIPCNT
TDTBL P
0.193E-01
0.120E+03
TDTfLN
0.13SE^01
0.136E-HM
TDTflL S
0.143E+01
3VP
0.600E-<2
N6/L
MB/MB TUT PHYTD
P1?1M PROD RATE (MB
IN7EBML PRIM PROD RATE
flVN
0.12&E-KI1
SURFUS P
0.731E-03
0.7E7E-03
0.6BEE-HX)
SURPUJSN
0.251E-01
0.250E-01
(MB C/M**3> »
Q.143E-K8
0.3&3EXC
TUP
0.120E-01
SURPLUS S
0.376E-01
0.871EH)!
TUN
O.A67E-01
TIB
0.623E-KX)
CL
0.218E+02
PHYTD
1
2
PHYTO
1
2
0.953E-HX)
0.469E-01
SPGR
0.541E-01
0.369E-01
FCHOP
0.353E-KX)
0.467E-01
BPI
0.241&KX)
PSA
0.106E
O.S06EHK
REPS
0.541E-01
0.432E-01
PSA/PSAMIN
0.213E-H)!
R26
0.721E-01
0.369EHJ1
NBA
0.341E-01
0.637EHH
S2SS
0.738E-01
0.9906402
NBA/NSAMIN
0.341E+01
TH6TS
0.320E-KX)
0.185E+00
SSA
0.126E-MX)
O.OOOE+00
RLISHT
0.152E-HX)
0,162E-K»
SSfi/S
0,361
0.000
;-€HS ZOO
1
CARM ZOO
1
Zl
CUS6E-02
Z2
0.285EH)!
RZ1
0.434E-01
RZ2
O.OOOE+00
Z1LSS1
Z2LSS1
0.7S8E-02
TM6TZ1
0.266E+00
TWBTZ2
0.26K+00
LOASIN5E (KB/DAY)
TRIBUTARY
flTMQSPHERIC
SEDIICNT
«AVP
0.1E1E+04
0.499E+01
O.OOOE+00
UAVN
O.S5E+05
0.737E+03
O.OOOE+00
UAVS
0.111E+05
tfTUP
0.209E+04
0.122E+02
O.OOOE^OO
UTUN
0.196E+05
0.332E+03
O.OOOE+00
«TUS
0.347E+05
0.684E+02
O.OOOE+00
UCL
0.893E+06
O.OOOE+00
O.OOOE+00
11:
-------
TUTflL
0.122E+04 0.532E+05 0.4596+05 0.2106+04 0.1996+05
LOWING IMTEBttLS (KB)
TRIBUTARY
OTMEKRIC
SEDIKNT
TOTflL
MVP
0.379E+04
0.2496+02
O.OOOE+00
0,2406+06
0,3686+04
O.OOOE+00
URVS
0.163E+06
HTUP
0.&306+04
0.5486+03
0.221E+06
O.OOOE+00
WTUN
0.166E+04
0.0006+00
0.100E+06
0.348E+05
UTUS
0.1&5E+C6
0.342E+03
O.OOOE+00
UCL
0,4046+07
O.OOOE+00
O.OOOE+00
0.4046+07
mm
0.2SSE-HH
TPSUK
RNSINK
0.135E-KH
TNSUK
O.S6CC+05
TWET
0,6606+05
RSSINC
0.146E+06
TSSUK
0.7UE+06
T9CT
0.713E+06
FLOW DIFFUSION
SE9OT IHTEWCTlQh INTEWCTD6 SEGMENT (»«i/S£E5 (MM3/SED ALPHA flLPHAIN
1 1 1 -0.17EE+03 0.0006+00 O.iOOE+01 0.5006+00
1 2 1 0.176E+03 0.5S2E+03 0.309E-00 0.30SE+00
TPBD
flVPBO
MHO
0.1WE-OS
ffMO
PHYTO
1
2
HOB ZOO
1
CRRN ZOO
1
TKWD
0.123EXX)
3VS8D
0.&U&KX)
IIIIHIIII BQUNMRY VAUES iniiiiiii
MQBD
TUPB
0,293E-OS
0.124E-01
HMO
0.104&00
TSBD
0,1346+01
TtEBD
0.&M&00
WSBO
QJO
0.527E-K)1
CLBD
0.527E+01
0.200E+00
0.481EH32
Z1BD
O.SE2E-02
Z2SO
0.2606-01
PSRBO
0.750e-03
0.2006-32
I6PBO
0.400E-01
0.300E-01
a 1406+00
0.900E+00
DERIVflTIVES
CUTOCNT TEWS *****
DERIVRTIW
-0.144E-05
0.973E-05
-0.1106-03
-0.101EH52
X5
xs
n
x&
X9
-0.372E-06
-0.178E-05
(X705E-05
0.950EH35
0.5B3E-04
0.198E-03
-O.S75E-04
HX 187EHJ3
0.17S-02 HX184E-02
0.133EHK HJ.£35E-Oe
-------
0.102E-02 0.162E-04 0.783E-08 -0.6&3E-OE
0.929EHH -0.335E-04
-0.2S5E-02 -0.796E-08
-0.191E-03 -0.1406-08
0.146E-01 -0.612£-0e
H3.704E-OS -0.32BE-03
0.784E-04 0.194E-04
-0.511E-03 -0.677E-04
-O.J46E-03 -0.743E-0*
0.l5SE-Oa 0.238E-03
-0.135E-01 -0.107E-02
-0.2ME-01 -0.135E+00
0.935E-02
-0.775EHK
0.933E-HX)
-0.171EH8
-0.750E-08
0.6Z3E-05
0.332EH)3
0.838E-03
O.S07E-05
0.163E-03
0.493E-03
0.77«H)7 0.320E-04 0.151E-03
0.294E-05 0.12*EH)3 0.661E-02
0.107E-04 0.166E-08 O.S70E-02
O.S13E-01 -0.919E-Oe -0.5*1E-08 -O.lMt-01 -0.117E-03
0.173E-08 -0.261E-03 -0.7*7E-03 -O.W3E-03 -
0.722E-KH -0.133E-04 O.OOOE-KX)
O.OOOE-KX) -0.227E-03 -O.aifiE-03
O.S31E-05 0.2S5E-07 0.663E-08 O.OOOE+00
0.166E-03 0.510E-06 0.13Z-06 O.OOOE-HX)
0.311E-03 0.4UE-05 -0.166E-08 -0.160E-01
0.111E+00
0.114E-06 -0.320E-04 -0.309E-03
0.227E-05 -0.134E-03 HJ.120E-02
0.431E-08
0.2S1E-03
0.19BE-01
0.104&00
0.106^01
O.OOOE+00 0.000£-H» -0.987EH3e
O.OOOE-HX) O.OOOE-KX) HX112E400
O.OOOE-KX) -0.804E-01 -0.398E-01
114
-------
APPENDIX E
ENVFF FILE FOR SEGMENT 1 FOR SAGINAW BAY EXAMPLE
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
365E03
PSABD(
PSABD(
PSABD(
1
2
3
PSABD(4
PSABD(
NSABD(
NSABD(
NSABD(
NSABD(
NSABD(
SSABD(
SSABD(
SSABD(
5
1
2
3
4
5
1
2
3
SSABD( 4
SSABD(
ABD(1,
ABD(2,
ABD(3,
ABD(4,
ABD(5,
Z1BD(1
Z2BD(1
TPBD( 1
AVPBD(
TKNBD(
5
1
1
1
1
1
'
»
}
1
,D
,1)
,1)
,D
,D
,D
,D
,D
,1)
,1)
,D
,D
,1)
,D
,1>
)
}
}
}
}
1)
1)
)
1)
(mg P/mg
(mg P/mg
(mg P/mg
(mg P/mg
(mg P/mg
(mg N/mg
(mg N/mg
(mg N/mg
(mg N/mg
(mg N/mg
(mg S/mg
(mg S/mg
(mg S/mg
(mg S/mg
(mg S/mg
(mg/1)
(mg/1)
(mg/1)
(mg/1)
(mg/1)
(mg/1)
(mg/1)
(mg P/l)
(mg P/l)
(mg N/l)
A)
A)
"AT
A)
A)
A)
A)
A)
"AT
A)
A)
"A!
A)
A)
TT
115
-------
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
.307E04
.158E04
.864E04
.271E05
.704E04
.291E04
.126E04
.521E04
.582E04
.324E05
.116E05
.403E04
.258E04
.117E05
.544E04
.475E04
.330E04
.173E05
.725E04
.300E04
.197E04
.629E04
.271E04
.126E04
.117E04
.343E04
.529E03
.128E04
.123E04
.123E04
.289E03
.114E04
.161E04
.195E04
.223E04
.407E04
.977E03
.152E04
.833E03
.434E03
.150E04
.133E04
.423E04
.189E04
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
0.365E03
.160E02
.240E02
.290E02
.320E02
.340E02
.490E02
.560E02
.590E02
.660E02
.670E02
.740E02
.900E02
.950E02
.990E02
.114E03
.134E03
.141E03
.142E03
.147E03
.154E03
.162E03
.165E03
.206E03
.295E03
.311E03
.337E03
.365E03
.300E01
.180E02
.210E02
.220E02
.240E02
.250E02
.280E02
.300E02
.320E02
.360E02
.490E02
.560E02
.590E02
.640E02
.670E02
N03BD(1) (mg N/l)
NH3BD(1) (mg N/l)
TSBD(l) (mg S/l)
AVSBD(l) (mg S/l)
CLBD(l) (mg CL/1)
WTP(l) (kg P/day)
WAVP(l) (kg P/day)
116
-------
.636E03
.371E03
.432E04
.109E04
.318E03
.115E04
.442E03
.149E04
.290E03
.240E03
.774E03
.165E03
.701E03
.276E03
.122E04
.499E03
.154E04
.293E03
.499E03
.320E03
.395E03
.946E03
.602E03
.817E03
.847E03
.216E03
.824E03
.916E03
.416E03
.492E03
.527E03
.116E05
.383E04
.495E05
.194E05
.376E05
.876E04
.189E05
. 116E05
.184E06
.220E05
.220E05
.417E05
.181E05
.252E05
.802E04
.105E05
.219E05
.480E05
.139E05
.829E04
.161E05
.886E04
.365E04
.780E02
.990E02
.100E03
.101E03
.106E03
.109E03
.126E03
.134E03
.135E03
.141E03
.142E03
.153E03
.155E03
.158E03
.162E03
.165E03
.171E03
.176E03
.193E03
.226E03
.262E03
.274E03
.280E03
.295E03
.305E03
.311E03
.317E03
.325E03
.337E03
.353E03
.365E03
WTKN(i) (kg N/day)
.140E02
.210E02
.250E02
.300E02
.380E02
.520E02
.590E02
.660E02
.720E02
.890E02
.950E02
.101E03
.105E03
.116E03
.123E03
.135E03
.141E03
.147E03
.158E03
.162E03
.165E03
.179E03
117
-------
.585E04
.435E04
.435E04
.205E05
.111E05
.439E05
.234E06
.117E06
.302E05
.334E05
.419E05
.184E06
.580E05
.300E05
.137E06
.576E05
.547E05
.202E05
.313E05
.536E05
.251E05
.211E05
.454E04
.421E04
.135E04
.114E04
.167E04
.226E04
.192E04
.192E04
.176E04
.176E04
.861E03
.347E04
.999E04
.545E04
.192E04
.103E04
.179E04
.470E04
.394E04
.173E05
.499E04
.421E04
.211E04
.532E04
.890E03
.188E04
.365E04
.902E03
.168E04
.324E04
.242E04
.501E04
.279E03
.353E03
.365E03
WN03(1) (kg N/day)
.180E02
.240E02
.280E02
.300E02
.390E02
.530E02
.590E02
.650E02
.740E02
.900E02
.950E02
.101E03
.106E03
.112E03
.137E03
.141E03
.142E03
.169E03
.179E03
.189E03
.207E03
.225E03
.261E03
.280E03
.353E03
.365E03
WNH3(1) (kg N/r.ay)
.200E01
.180E02
.210E02
.280E02
.320E02
.380E02
.490E02
.520E02
.560E02
.590E02
.650E02
.730E02
.800E02
.870E02
.920E02
.950E02
.101E03
.105E03
.I09E03
.119E03
.123E03
.134E03
.135E03
118
-------
.480E03
.489E04
.516E03
.140E04
.313E04
.180E04
.144E04
.744E03
.461E03
.222E04
.259E04
.259E04
.110E06
.916E05
.546E05
.230E06
.376E05
.124E06
.708E05
.125E06
.780E05
.114E06
.612E05
.244E06
.362E06
.798E05
.106E06
.110E05
.356E06
.236E06
.129E06
.199E06
.126E06
.342E06
.292E06
.149E06
.450E05
.640E05
.624E05
.149E06
.464E05
.752E05
.280E05
.108E06
.574E05
.776E05
.376E05
.102E05
.730E04
.838E04
.832E04
.900E04
.176E05
.131E05
.141E03
.142E03
.143E03
.155E03
.162E03
.165E03
.172E03
.176E03
.226E03
.261E03
.352E03
.365E03
WTS(l) (kg S/day)
.300E01
.100E02
.120E02
.140E02
.250E02
.260E02
.290E02
.410E02
.440E02
.490E02
.550E02
.590E02
.620E02
.660E02
.790E02
.840E02
.860E02
.910E02
.100E03
.108E03
.109E03
.114E03
.119E03
.125E03
.128E03
.138E03
.141E03
.143E03
.148E03
.158E03
.162E03
.168E03
.171E03
.176E03
.193E03
.213E03
.227E03
.248E03
.255E03
.274E03
.295E03
119
-------
.278E05
.152E05
.900E04
.148E05
.100E05
0.548E05
0.458E05
0.273E05
0.115E06
0.188E05
0.621E05
0.354E05
0.627E05
0.390E05
0.570E05
0.306E05
0.122E06
0.181E06
0.399E05
0.528E05
0.551E04
0.178E06
0.118E06
0.643E05
0.995E05
0.629E05
0.171E06
0.146E06
0.747E05
0.225E05
0.320E05
0.312E05
0.747E05
0.232E05
0.376E05
0.140E05
0.542E05
0.287E05
0.388E05
0.188E05
0.509E04
0.365E04
0.419E04
0.416E04
0.450E04
0.882E04
0.655E04
0.139E05
0.762E04
0.450E04
0.739E04
0.500E04
.105E07
.315E06
.311E03
.325E03
.337E03
.353E03
.365E03
WAVS(l) (kg S/day)
0.300E01
0.100E02
0.120E02
0.140E02
0.250E02
0.260E02
0.290E02
0.410E02
0.440E02
0.490E02
0.550E02
0.590E02
0.620E02
0.660E02
0.790E02
0.840E02
0.860E02
0.910E02
0.100E03
0.108E03
0.109E03
0.114E03
0.119E03
0.125E03
0.128E03
0.138E03
0.141E03
0.143E03
0.148E03
0.158E03
0.162E03
0.168E03
0.171EQ3
0.176E03
0.193E03
0.213E03
0.227E03
0.248E03
0.255E03
0.274E03
0.295E03
0.311E03
0.325E03
0.337E03
0.353E03
0.365E03
WCL(l) (kg CL/day)
.150E02
120
-------
.796E06
.520E07
.176E07
.292E07
.165E07
.651E06
.127E07
.291E06
.177E07
.145E07
.229E07
. 108E07
.197E07
.566E06
.190E07
.330E07
.240E07
.291E07
.138E07
.116E07
.188E07
.991E06
.761E06
.102E07
.920E06
.450E07
.117E07
.626E06
.134E07
.754S06
.626E06
.168E07
.942E06
.821E06
.379E06
.595E06
.421E06
.464E06
.846E06
.637E06
.853E06
.970E06
.407E06
.208E06
. 309E06
.379E06
O.OOOEOO
O.OOOEOO
•0.615E03
•0.615E03
•0.262E04
•0.262E04
O.OOOEOO
O.OOOEOO
.180E02
.230E;02
.250E02
.280E02
.290E02
.370E02
.510E02
.530E02
.560E02
.600E02
.650E02
.730E02
.740E02
.880E02
.910E02
.920E02
.940E02
.950E02
.990E02
.101E03
.105E03
.109E03
.116E03
.128E03
.134E03
.137E03
.141E03
.147E03
.151E03
.155E03
.158E03
.162E03
.165E03
.172E03
.179E03
.190E03
.213E03
.272E03
.274E03
.280E03
.295E03
.311E03
.325E03
.337E03
.353E03
.365E03
Q(l,l) (ni**3/sec)
0.700E02
0.710E02
0.155E03
0.156E03
0.170E03
0.171E03
0.175E03
121
-------
-0.437E02
-0.437E02
-0.631E03
-0.631E03
-0.222E03
-0.222E03
-0.404E03
-0.404E03
O.OOOEOO
O.OOOEOO
0.307E03
0.307E03
0.993E03
0.993E03
0.895E03
0.895E03
0.277E04
0.277E04
0.112E03
0.112E03
0.101E03
0.101E03
0.669E03
0.669E03
0.264E03
0.264E03
0.455E03
0.455E03
0.310E02
0.310E02
O.OOOEOO
O.OOOEOO
-0.307E03
-0.307E03
-0.378E03
-0.378E03
-0.280E03
-0.280E03
-0.141E03
-0.141E03
-0.112E03
-0.112E03
-0.570E02
-0.570E02
-0.380E02
-0.380E02
-0.420E02
-0.420E02
-0.510E02
-0.510E02
-0.310E02
-0.310E02
.OOOEOO
.OOOEOO
0.176E03
0.215E03
0.216E03
0.260E03
0.261E03
0.290E03
0.291E03
0.341E03
0.342E03
0.365E03
Q(
0.700E02
0.710E02
0.105E03
0.106E03
0.155E03
0.156E03
0.170E03
0.171E03
0.175E03
0.176E03
0.215E03
0.216E03
0.260E03
0.261E03
0.290E03
0.291E03
0.341E03
0.342E03
0.365E03
Q(
0.365E03
Q(
0.700E02
0.710E02
0.105E03
0.106E03
0.155E03
0.156E03
0.170E03
0.171E03
0.175E03
0.176E03
0.215E03
0.216E03
0.260E03
0.261E03
0.290E03
0.291E03
0.341E03
0.342E03
0.365E03
Q<
.365E03
1,2) (m**3/sec)
;i,3) (ni**3/sec)
;i,4) (m**3/sec)
C1.5) (m**3/sec)
122
-------
0.191E01
0.191E01
0.382E03
0.382E03
0.764E03
0.764E03
0.191E01
0.191E01
0.191E03
0.191E03
0.382E03
0.382E03
0.955E02
0.955E02
0.382E03
0.382E03
0.191E01
0.191E01
0.589EOO
0.589EOO
0.118E03
0.118E03
0.236E03
0.236E03
0.589EOO
0.589EOO
0.589E02
0.589E02
0.118E03
0.118E03
0.295E02
0.295E02
0.118E03
0.118E03
0.589EOO
0.589EOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
O.OOOEOO
0.800EOO
0.800EOO
0.310EOO
0.310EOO
0.146EOO
0.146EOO
0.800EOO
0.800EOO
0.303EOO
0.303EOO
0.215EOO
0.215EOO
0.700E02
0.710E02
0.155E03
0.156E03
0.170E03
0.171E03
0.175E03
0.176E03
0.215E03
0.216E03
0.260E03
0.261E03
0.290E03
0.291E03
0.341E03
0.342E03
0.365E03
0.700E02
0.710E02
0.155E03
0.156E03
0.170E03
0.171E03
0.175E03
0.176E03
0.215E03
0.216E03
0.260E03
0.261E03
0.29CE03
0.291E03
0.341E03
0.342E03
0.365E03
0.365E03
0.365E03
0.365E03
0.700E02
0.710E02
0.155E03
0.156E03
0.170E03
0.171E03
0.215E03
0.216E03
0.260E03
0.261E03
0.290E03
EPRIMEU.l) (m**3/sec)
EPRIME(1,2) (m**3/sec)
EPRIME(1,3) (m**3/sec)
EPRIME(1,4) (m**3/sec)
EPRIME(1,5) (m**3/sec)
ALPHA(l.l)
123
-------
0.800EOO
0.800EOO
0.999EOO
0.999EOO
0.941EOO
0.941EOO
0.934EOO
0.934EOO
0.957EOO
0.957EOO
0.997EOO
0.997EOO
0.786EOO
0.786EOO
0.912EOO
0.912EOO
0.944EOO
0.944EOO
0.786EOO
0.786EOO
0.990EOO
0.990EOO
O.OOOEOO
O.OOOEOO
0.100E01
0.100E01
.OOOEOO
.OOOEOO
0.577EOO
0.200E01
0.716E01
0.989E01
0.100E02
0.172E02
0.161E02
0.222E02
0.218E02
0.224E02
0.167E02
0.120E02
0.861E01
0.433EOO
0.577EOO
.100E02
.140E02
.200E02
.300E02
.330E02
.337E03
.440E03
.600E03
.660E03
.625E03
.540E03
0.291E03
0.365E03
ALPHA(1,2)
0.700E02
0.710E02
0.105E03
0.106E03
0.155E03
0.156E03
0.170E03
0.171E03
0.175E03
0.176E03
0.215E03
0.216E03
0.260E03
0.261E03
0.290E03
0.291E03
0.341E03
0.342E03
0.365E03
ALPHA(1,3)
0.365E03
ALPHA(1,4)
0.365E03
ALPHA(1,5)
.365E03
T(l) (degrees C)
0.500E02
0.108E03
0.119E03
0.135E03
0.155E03
0.170E03
0.190E03
0.207E03
0.226E03
0.262E03
0.280E03
0.315E03
0.351E03
0.365E03
RADINC(l) (ly/day)
.300E02
.600E02
.900E02
.970E02
.980E02
.120E03
.150E03
.180E03
.210E03
.240E03
124
-------
.390E03
.210E03
.115E03
.110E03
.550E02
.500E02
0.132E01
0.300E01
0.500EOO
0.100E01
0.700EOO
0.750EOO
0.950EOO
0.110E01
0.700EOO
0.800EOO
0.600EOO
0.800EOO
0.110E01
0.130E01
0.132E01
.270E03
.300E03
.330E03
.342E03
.343E03
.365E03
0.520E02
0.108E03
0.119E03
0.135E03
0.154E03
0.171E03
.190E03
.207E03
0.226E03
0.262E03
0.280E03
0.316E03
0.351E03
0.365E03
0.
0.
SECCHI(l) (meters)
125
-------
ftPPENDIX F
WDEL OUTPUT FOR SflSINAW BflY EXflflPLE
IIIIHIIII RUNCflN INPUT UMUHM
NSGMTS *
INTNAX *
SE9eiT
1
2
3
4
5
SE9ENT
1
1
1
1
1
SEGMENT
2
2
2
2
2
SEGMEXT
3
3
3
3
3
SEGMENT
4
4
4
4
4
SEGMENT
5
5
5
5
5
5
5
VOLUME (***3)
0.894E+09
0.5B3E+10
0. 127E+10
0.788E+10
0.939E-HO
INTERACTION
1
2
3
4
5
INTERACTION
1
2
3
4
3
INTERACTION
1
2
3
4
5
INTERACTION
1
2
3
4
5
INTERACTION
1
2
3
4
5
DEPTH (N)
0.385E+01
0.733E-H)1
0.374E+01
0.132E+02
0.1S2E+02
INTERPCTIN6
2
3
0
1
0
INTERACTING
1
3
4
0
0
INTERPCTIHS
1
2
5
0
0
INTERPCTIN6
2
5
0
0
4
INTERPCTINB
3
4
0
0
5
126
-------
SE2IICNT SE5MENT
1
2
3
4
5
VQLJ€
0.232E+07
0.340E+08
0.597E+08
DEPTH (ft)
0.100E-01
O.IOOE+OO
0.100E+00
0.100E-KX)
0.100E-HX)
rears
wise
NASPEE* 5
WITM5 > 1
W2B6S = 1
PHYTO
1
2
3
4
3
ISILCP.
1
0
0
0
0
•FIX
0
0
0
0
1
KZSPEC" 2
NZ1SPC * 1
NZ2SPC * 1
ZOO POTTO IZ1PRR
1 1 i
1 2 1
i 3 1
C»W ZOO HERB ZOO IZ2PM
1 1 1
TUBB
TPLUT
TPRIMT
19(1 P
HI »
Hg «
0.500E+01
0.500E-K)!
0.500E-KI1
1
0.25006-01
uiiiiiiii CQEFF INPUT iiiniiiii
TBPSEi »
TBflSEE *
TBflSD =
0.1070E-KJ1
0.1070E+01
0.1070E-KH
12'
-------
« 0. 1506+00
PHYTD
1
2
3
4
5
PHYTD
1
2
3
4
3
PHYTD
1
2
3
4
5
PHYTO
1
PHYTO
1
2
3
4
5
*8 ZOO
1
t€ft ZOO
1
HERB ZOO
I
1
1
CflRN ZOO
1
CM* ZOO
1
SNflX TBflSffi
0.2406+01 0.1066+01
0.2406+01 0. 1076*01
0.2106+01 0.106E+01
0. 1606+01 0. 1036+01
0. 1606+01 0. 1036+01
Rim PHI
0.1006-01 0.2266+02
0.200E-01 0.2266+02
0.20CE-01 0.2266+08
0.2006-01 0.2266+02
0.200E-01 0.226E+02
R1WI Wl
0.200E-MX) 0.107E+OS
0.200E-KX) 0.107E-K&
0.200C+00 0.107&02
0.20Q&KX) 0.107E40S
0.200E-KX) 0.107Ei
-------
OWN ZOO fCB ZOO Z2EFF
1 1 0.100E+01
RTUP
0.200E-01
KRTUP
O.iOOE+01
TUPSNK
0.150E+00
SEDIICNT SE9CNT
1
2
3
4
5
SEDIKNT SE9EKT
1
2
3
4
5
SEDDtNT SE9CXT
1
2
3
4
3
RTUN
0.200E-01
KRTUN
0.100E401
TIMSNK
0.1306+00
VUPP
0.3SOE-02
0.173E-03
0.250E-03
0.417E-04
0.3S2E-04
KRSEDP
(XOOOE+OO
0.0006+00
0.0006+00
0.0006+00
o.oooe+00
VPLQNB
O.OOOE+00
0.8EEE-05
0.0006+00
O.S22E-05
0, 8222-05
RTUS
0.200E-01
KRTIB
0.100E+01
TUSSM(
o.isoe+00
0.22flEH)2
0.114E-03
0.162E-03
0.271E-04
0.23SE-04
KRSEDN
O.OOOE+00
0,0006+00
0,0006+00
O.OOOE+00
O.OOOE+00
VNH6
O.OOOE+00
0.822E-05
O.OOOE+00
0.822E-C6
0.322E-05
VUPS
0.350E-02
0.175E-03
0.250E-03
0.417E-04
0.362E-04
KRSEDS
0.82S-03
0.6Z3E-03
0.&2SE-03
0.6Z5E-03
VSLONB
O.OOOE+00
0.822E-05
O.OOOE+00
0.822E-05
0.822E-05
rcvwrs
24
TSTflRT
96.
103.
111.
116.
121.
12&.
129.
132.
134.
13&.
161.
184.
201.
223.
238.
243.
254.
TSTQP
99.
105.
113.
119.
122.
127.
130.
133.
133.
l&O.
1£2.
185.
202.
224.
239.
244.
235,
129
-------
258.
267.
272.
274.
277.
29*.
309.
259.
268.
273.
275.
279.
2%.
310.
iiiiimii INICON INPUT miiiiiii
SEBfCKT
1
2
3
4
5
SE9CNT
1
1
1
1
1
SE9CNT
2
2
2
2
2
SE9CNT
3
3
3
3
3
SEBH6NT
4
4
4
4
4
SEW6MT
5
5
5
5
AVP
0.112E-01
O.S33E-08
0.694E-02
0.291E-02
0.4906-02
PHYTO
1
2
3
4
5
PHYTO
1
2
3
4
5
PHYTO
1
2
3
4
c
0.493E-KX)
0.381EXK)
PSA
0.125E-02
0.250E-08
0.250E-OS
O.SOOE-02
0.500EHK
PSA
0.12SHK
0.230E-42
0.230EHK
0.500E-02
0.5006-02
PSA
0.125E-42
0.250E-02
0.250E-02
0.5006-02
0.5006-02
PSA
0.125E-02
0.2506H)2
0.250E-02
a500EH«
0.5006-02
PSA
0.125E-02
0.250E-02
0.2506-02
0.5006-02
TIP
0.412E-01
0.131E-01
0.227E-01
0.1846-02
0.36GE-02
NBA
0.3506-01
0.7006-01
0.7006-01
0.7006-01
0.7006-01
HSA
0.350E-01
0.7006-01
0.7006-01
0.7006-01
0.7006-01
NBA
0.350E-01
0.7006-01
0. 700E-01
0.7006-01
0.7006-01
NBA
0.3506-01
0.7006-01
0.7006-01
0.7006-01
0.7006-01
NSP.
0. 3506-01
0.7006-01
0. 700E-C1
0.700EHM
TUN TUS
0.3816-01 0.395E-KX)
0.3B1E-01 0. 7006+00
0.1506+00 0.5406+00
0.146E+00 0. 4936+00
0.2186-HX) 0.3S1E+00
5SA
0.105E+00
0.0006+00
0.0006+00
0.0006+00
0.0006+00
SSA
0. 1056+00
0.0006*00
0.0006+00
O.OOOE+00
0.0006+00
SSA
0.105E+00
0.0006+00
0.0006+00
0.0006+00
0.0006+00
SSA
0.105E+00
0. 0006+00
0.0006+00
0.0006+00
0.0006+00
SSA
0.105E+00
0.0006+00
O.OOOE-KX)
0.0006*00
a.
0.2506+02
0. 2206+02
0.2906+02
0.5006+01
0.8006+01
130
-------
0.203E-02 0.500E-02 0.700E-01 O.OOOE-HX)
SEGMENT
1
a
2
4
5
SEEHENT
1
2
3
4
5
HERB ZOO
1
1
1
1
1
cam zoo
i
i
i
i
i
Zl
0.150E-08
0.130E-02
0.246E-02
0.377E-03
0.780E-08
12
0.2B2E-01
0.312E-01
0.316£-01
0.807E-03
0.247E-01
SEGMENT SEDP SEON SEDS
1 0.333E-M)i 0.378E-KE 0.134E-ME
2 0.120E+03 0.136E-KH 0.479E+03
3 0.120E+03 0.136E-HJ4 0.479E+03
4 0.316E+02 Q.337E-HB 0.126E+03
S 0.406E-KK 0.45gE+03 0.16EE-HJ3
SEGMENT WPP WNR UQVSfl WTUPQ UTUNfl UTUSfl UCLA
1 0.*99tK)l 0.737E443 0.6WE-HJ2 0.122E-KC 0.33££-K>3 0.6d4E+0£ 0.0006+00
2 0.173E+OE 0.2HE+04 (X237E+03 0.423E-+02 0.115E+04 0.237E+03 O.OOOE+00
3 0.731E+01 0.10flE-«>4 0,100E-M)3 0.179E-H2 0.4S6E+03 O.iOOE+03 O.OOOE+00
4 0.12flEH« 0.189&KH 0.17GE-KB 0.314t*0£ 0.853E+03 0.176E-K)3 O.OOOE-HX)
5 0.133E+C6 0.196E+04 0.182E+C3 0.32E402 0.383E-H33 0.182£-H)3 O.OOOE-KX)
131
-------
111 IIIIH minimum m uiiiiiiim ii uu iii
iiiiiiiiiiiiin DAY * 0. iiimiimmii
iiiiiiiiiiiiiimitimiiiniiiiiiiiiiiiiiiiiiii
iiiiiiini DAY » 0.
SEGMENT = 1
IIIHMIII
TEMPERATURE » 0.577E+00
LIGHT INTENSITY * 0. 1006*02
miC COEFF » 0.1446+01
TUTBL PHYTO « 0.2096*01
TOTflL ZOO • 0.2S7E-01
UATER
SEDIMENT
TOTAL P
0.3HE-01
0.335E+01
TDTBLN
0.748E+00
0.378E+02
TUTBL S
0.99*6+00
0.1346+02
AVP
O.U2E-01
W/L
MB/MB TOT PHYTD
0.&31EXW
SURPLUS P
0.133E-02
MS
0.33S+00
SURPLUS N
O.X1E-01
TUP
0.412E-01
SURPLUS 5
0.138E-KX)
0.6WE-01
TUN
0.3B1E-01
TUB
0.395E-HX)
0.
0.250E-KS
PRIH PKB WTE (MB
INTEBRRL PRIM PUB
(N6 (VMM3) • 0, 147EXC
PHYTO
1
a
3
4
5
PHYTO
1
2
3
4
5
0.1946+01
0.213EHH
0.3106-01
0.319E-01
FDDP
0.9286+00
0.10SE-01
0.1486-01
0.319E-01
PSA
0.250EHK
0.5006-02
0,5006-02
PSA/PSMIN
0.2506+01
0.2506+01
0.2506+01
0,5005+01
0.5006+01
NSA
0.3506-01
0.7006-01
0.7006-01
0.7006-01
0,7006-01
NSft/NSAMIN
0,3506+01
0.350E+01
0.3506+01
0.3506+01
0. 3506+01
S3A
0.1056+00
0.0006+00
O.OOOE-HX)
o.Dooe+oo
0.0006+00
SSft/SSf
0.3006-
O.OOOE-
O.OOOE-
0,000£-
O.OOOE-
SPSS
0.19BE-01
0.163E-01
0.173E-01
0.160EH)!
0.1&OE-01
6PI
0.3&4E-01
0.3filH)3
0.537E-03
0.107E-02
O.S11E-03
REPS
0.l9flE-01
C.l6!EH)l
0.173E-01
0.1806-01
0.1806-01
RSNS
0.23CE-01
0. 196E-01
0.206E-01
0.1606-01
0.1606-01
R2SS
0.20E-01
0.9906-MK
0.9906+02
0.9906-H32
0.990E-K2
TMETfi
0.322E+00
O.a&96-H30
0.322E-HXI
0.1B8E-K)0
0. 188E-OC
SLIGHT
0.426E-01
0.425E-01
0.426E-01
0.74flE-01
0.748E-01
zoo
i
CAW ZOO
1
Zl
0.1506-02
Z2
0.2B2E-01
R21
RZ2
O.OOOE-HX)
Z1LSS1
0.806E-02
Z2LSE1
0.906E-02
THSTZ1
0.269E-HX)
TW6TI2
0.269E-KX)
132
-------
LOADIN6S (KB/DAY)
TRIBUTARY
ATMOSPHERIC
SEDIMENT
TOTAL
TRIBUTARY
ATMOSPHERIC
SEDIMENT
TOTflL
ftPSINK
MSOtHH
TPSUK
O.iSOE+04
TPIET
0.150E+04
UAVP
0.123E+04
0.499E401
O.OOOE+00
0.123E-HH
LJflUQ
WHrr
0.123E-KK
0.499EH)!
O.OOOE+00
0.123E+04
HNSINK
0,302tK>4
TNSUK
0.302E-HH
TMCT
0.30EE-KH
UQUU
imvii
0.223£*05
0.737E-*03
O.OOOE-KX)
0.230EHKH
RSSINK
oaasE-Hs
TSSUNK
0.185E-HJ5
TS»CT
0.1B5E+46
SE6MENT INTERACTION INTERACTING SE9CKT
1
1
1
1
1
1
2
3
4
5
2
3
0
1
0
WftVS
0.5WE-KS
0.&34E-M£
0.522E-K)!
0.549E-KC
» LQflOINB
UflVS
0.54flE-K)6
0.&fl4€-K(2
0.522E+01
0.549E-H»
FLOU
(M»3/SEC)
0.000&KX)
0.307E-M33
O.OOOE-HX)
-0.307E-KB
O.OOOE-HX)
WTUP
0.18A£-H)4
0.122E-HK
O.OOOE-KX)
0.185E-04
INTEBRPLS (KB)
WTUP
0.1S4E-KM
0.122E402
0,0006-KK)
0.18SE-H)4
DIFFUSION
(Ht»3/SEC)
0. 191E-H)!
0.589E+00
O.OOOE-KX)
O.OOOE+OO
G,ooce-oo
UTUN
0.964E-KH
0.332E-H53
O.OOOE+00
0.108E+05
™
UTIM
0.964E-K)4
0.332E+03
O.OOCC-MX
0.102E-KS
ALPHA
0.800E-HX)
0.999E-MX)
O.OOOE-HX)
0.100E+01
O.OOOE+00
UTUS
0.552E-KJ5
O.W4EMS
O.OOOE+00
0.553E-KJ5
WTUS
0.552E+C5
O.OOOE-KX)
O.S53E+05
WL
0.105E+07
O.OOOE+00
O.OOOE+00
0.105E+07
ua
0.105E-KJ7
O.OOOE+00
O.OOOE-KX)
0.10S+07
ALPHAIN
0.3006+00
0.999E+00
O.OOOE+00
0. iOOE-K)!
O.OOOE*X>
liiilillll DAY =
0.
SESHENT
tiiniim
TEMPERATURE
UWT INTEK
XTINC Hthf
TOTAL PHYTO
TOTAL 200
UATER
SEDIMENT
•0.300E+00
imr- o.iootH«
« 0. 102E+01
» 0.994E-HX)
» 0.32SE-01
TOTAL P
0.200E-01
0.120&H>3
AVP AVN
0.539E-02 0.128E-K)1
TOTAL M TOTAL S
0. 136E+01 0. 14SE+01
0.136E-KH 0.473E-KJ3
WS TUP
0.700E-KW 0.131E-OI
SURPLUS P
SURPLUS N
SURPLUS S
TUN
0.381E-01
TUS
0.700E-HX)
Q.
0.220E-H)2
133
-------
M6/L
MB/MB TOT PHYTD
0.947E-03
0.953E-03
PRIM PROD RATE (ME C/Mt*3/HR)
INTEBRPL PRIM PROD RATE !M6 C/M*»3)
0.273EH31
O.E75E-01
» 0. 184E+02
0.513E+01
0.626E-01
0.&30E-01
PHYTO
1
3
3
PHYTD
1
2
3
4
3
A
0.894E-KX)
0.«iE-0£
0.448E-01
0.473E-01
0.343E-02
FCRDP
0.900E+00
0.424E-02
0.431EH)!
0.476E-01
(X34S-02
PSA
0.123E-02
0. 2506-08
0.250E-08
0.500EH£
0.500E-02
PSft/PSAMIN
0.250E-K)!
0.250E-K)!
0.250E401
0.5006-K11
0.500E*01
NSA
0.3506H)!
0.700EH)!
0.700E-01
0.700EHH
0.7006H)!
NSA/NSAMIN
0.350E+01
0.350E+01
0.350E-KI1
0.330E+01
0.350E-H)1
SSA
0.105E-KX)
O.OOOE-MX)
O.OOOE+00
O.OOOE-KX)
O.OOOE-MX)
SSfl/SSi
0.300fr
O.OOOE-
O.OOOEH
O.OOOEJ
O.OOOEH
SPGR
-------
SEBKENT
2
I
2
2
2
INTERfiCTION
1
2
3
4
5
INTERflCTTNG SESHENT
1
3
4
0
0
(IHt3/SEC)
O.OOOE+00
O.OOOE+00
O.OOOE-KX)
O.OOOE+00
O.OOOE-HX)
(***3/SEC)
0. 191E+01
o. i3oe-H)i
O.S88E-KX)
O.OOOE-KX)
O.OOOE-KX)
PLPHfl
0.200E+00
0.297E-KX)
0.467E+00
O.OOOE-KX)
O.OOOE-KX)
PLPHAIN
0.200E-HX)
0.297E+00
0.467E-KX)
O.OOOE+00
O.OOOE-KX)
iiiiniiii QAY * 0.
SEGMENT *
IlilHIIII
» 0.739EtOO
LIGHT IMTENBITY « 0.100E+02
XTINC CDEFF * 0.202E+01
TOTBL PHYTO
TOTflL ZtD
*TER
SEBIKNT
0.193E-KJ1
0.341E-01
TDTflL P
0.328E-01
0.120&K>3
flVP
O.S94E-08
NB/W TOT (WTO
0.
TDTflL N
0.136E-KM
TDTflL S
CU26E-KJ1
0.471^)3
SURPLUS P
0.204E-02
0.106E-OS
PV3
0.540E-KX)
SURRUS N
0.542E-01
0.2S1E-01
TUP
0.227E-01
SURPLUS S
o. naE-too
0.613EH)!
TUN
0.150E-KX)
TUS
0.540&KX)
PUD (WTE (* C/«»*3/HR) » 0.3606-Ke
INTESVL WIH PflOD RATE (MB C/M**3> > 0.101E-H£
PHTTQ
1
2
3
4
5
PMYTO
1
2
3
4
3
A
OUHE-KU
0.42S-01
0.293E-01
0.144&KX)
0.2306-01
FOOP
0.876E-KIO
0.2206-01
0.132E-01
0.747E-01
0.119E-01
PSfl
0.i23E-0£
0.250E-02
0.250E-02
0.500E-OS
0.5006-02
PSA/P5PMIN
0.250E-KJ1
0.250E-K11
0.250&K)!
0.500E-K)1
O.SOOE-K)!
NSfl
0.3506-01
0.7006-01
0. 7006-01
0.700E-01
0.7006-01
NSA/M5&MIN
0.350E-KI1
0.350E-KH
0.3506-K)1
0.3506-KJI
0.330E-KU
338
0.105E-KX)
O.OOOE-KX)
O.OOOE-KX)
O.OOOE-KW
O.OOOE-KX)
SSA/SSAHI1
0.300E-K)1
O.OOOE-KX)
O.OOOE-KX)
o.oooe-Kx>
O.OOOE-KX)
SPSR
0.147E-01
0. 1236-01
0.128E-01
0,1206-01
0.120E-01
BPI
0.24flE-01
0.521E-03
0.37K-03
0.172E-OS
0.275E-03
R2PS
0.147E-01
0.123EH)!
0.12B&01
(X134E-01
0.134E-01
R2NS
0.175E-01
0.146E-01
0. 153E-01
0.120E-01
0.120E-01
R2S5
0. 1&3E-01
0.990E-KS
0.990E-KC
0.990E-KK
0.990E+02
TWBTfl
0.32SE-KX)
0.272E-KX)
0.32SE-KX)
0.190E-KX)
0. 1906+00
RLI6HT
0.313E-01
0.313EH)!
0.313E-01
O.SOE-01
0.5506^)1
ZOO
Zl
0.246E-02
RZ1
O.SUE-01
Z1L5S1
0.815E-02
TW6TZ1
0.272E-KX)
csm zoo
Z2
RZ2
Z2LSS1
135
-------
0.316E-01
Q.OOOE+00
0.815E-08
0.272E+00
LOADINGS (KB/DAY)
ATK5RGUC
SEDIfiff
TDTPL
UAVP
0. 1646+02
0.731E+01
O.OOOE+00
0.237E+02
UAVN
0.777E+03
0.1086+04
O.OOOE+00
0.186E+04
UAVS
0.699E+03
0.1006+03
0.277E+04
0.3366+04
WTUP
0.66SE+02
0.179E+OE
O.OOOE+00
0.3446+02
LOROINB INTQRRLS (KG)
WTUN
O.OOCC-HX
WTUS
0.701E-H)3
0.100E-H)3
O.OOOE-KX)
ua
O.OOOE+00
O.OOOE+00
O.OOOE+00
0.0006+00
TRIBUTflRY
ATWSPKRIC
SEDIKNT
TOTRL
UAVP UflVN HBVS WTUP UTIM MTUS UCL
0.164E+02 0.777E+03 0.699E+03 0.665E+02 O.aSfiE+03 0.701E+03 O.OOOE+00
0.731E+01 O.lOflE+04 0.1006+03 0.1756+02 0.486E+03 0.1006+03 O.OOOE+00
O.OOOE+00 O.OOOE+00 O.Z77E+04 O.OOOE+00 0.0006+00 O.OOOE+00 O.OOOE+00
0.237E+02 0.18GE+04 0.35EE+04 0.844E+02 0.7SSE+03 0.801E+03 O.OOOE+00
RPSIIK
0.124E+04
TPSUK
0.124E+04
TPICT
msiw
0.990E+0*
TNBUW
0.990E+04
TMCT
0.990E+04
RSSIM(
0.33S+05
TSS1K
0.33SE+05
T9CT
0.30flE+09
SE9CKT
3
3
3
3
3
INTORCTIQN
1
2
3
4
5
FLOW DIFFUSION
SEGMENT (KM3/SED (H»*y5EC) ALPHA ALPHAIN
1 -0.307E+03 0.5896+00 0.1006-02 0.9606-03
2 O.OOOE+00 0.130E+01 0.703E+00 0.703E+00
5 0.307E+03 O.W6E+00 0.999EXW 0.999E+00
0 0.0006+00 O.OOOE+00 O.OOOE+00 O.OOOE+00
0 0.0006+00 0.0006+00 0.00061+00 O.OOOc+00
iiiiiiiiii DftY » 0.
SE9CNT
immiiii
TOTESA71BE « 0.67*6+00
HOT INTENSITY » 0.1006+OS
XTINC COEFF » 0.528E+00
TOTBL PHYTO * 0.731E+00
TDTRL ZOO «0.118E-08
UATER
SEDIKNT
TOTHL P
O.S6£EH)£
0.316E+02
TOTflL N
0.475E+00
0.357E+03
TOTflL S
0. 105E-H31
0.126E+03
AVP
TUP
TUN
TIE
136
-------
0.231E-02
0.298E-KX)
0.493E-KX)
0.184E-02
0.146E+00
0.493E-KX)
0.500E-KM
HB/L
MB/MB TUT PHYTO
SURPLUS P
0.670EHJ3
0.918E-03
PRIM PROD IWTE (C C/*f*3/HR)
IMTSRPL PRIM PROD RATE (MB C/M»*3>
SURPLUS N
0.218E-01
0.298E-01
« 0.145E-KJ2
0.4E5E+01
SURPLUS 5
0.413E-01
0.565E-01
PHYTO
1
2
3
4
3
PHYTO
1
2
3
4
3
A
0.590E-KW
0.137E-01
0.120E400
(X&4€E-02
0.402-03
FCROP
0.306E+00
o.iaeE-01
0.164E-KX)
O.SB4E-02
0.35CE-03
PSfl
0.123E-02
0.230E-02
0.250E-02
0.500E-02
0.500E-02
PSfi/PSflMIN
0.250E-H)i
0.250E-KU
0.250E-K)l
0.500E-K)1
0.500E+01
NBA
0.350E-01
0.700E-01
0.700E-01
0.700E-01
0.700E-OI
NSA/NSflHIN
0.350E-01
0.330E-M)1
0.350E+01
0.350tH}l
0.330E-K)1
SSA
0.105E-HX)
0.0006-HX)
O.OOOE-HX)
O.OOOE-KX)
o.oooe-oo
SSA/SSANIN
0.300E-H51
o.oooe-KX)
O.OOOE-MX)
O.OOOE-KX)
O.OOOE-HX)
SP6R
0.139E-01
0,132-01
0.139E-01
0.129E-01
0.129E-01
BPI
0.937EHS
0.181E^3
0.167E-02
O.B34E-04
0.31SE-03
R2PS
0.139E-01
0.132E-01
0.13X-01
0.143E-01
0.143E-01
fCJC
0.1B9E-01
0.1SBE-01
0.163E-01
0,12S£-01
0.129E-01
R2SS
0.176EH)!
0.990E+02
0.990E-HS
0.990E+02
o.99oe+oe
TWTfi
0.324E400
0.270E-KX)
0.324E-KX)
0.189E-H»
0.iaS€-HX)
HLIWT
0.340E-01
0.340E-01
0.340E-01
0.597E-01
0.597E-01
tCRB 100
1
CMM ZOO
1
Zl
0.377E-03
Z2
0.807E-03
RZ1
0.354E-01
RZ2
21LSS1
O.ailE-02
Z2LSS1
0.811E-02
TUBTZ1
0.270tH»
TW6TZ2
0.270E+00
TRIBUTfWY
ATOSPtCRIC
SEDIKNT
TUTBL
WVP
0.136E-02
LQADDGS (KE/DfiY)
WS WTUP
UTUN
O.OOQ&KX)
o.iagE+0*
O.OOOE«00
0.263E-K)4
0.176E+03
0.314E-KK
O.OOOtH»
tfTUS
0.749E-M)3
0.176E-K53
TKIBUTflRY
SEDIKNT
7DTPL
0.264E408
0.742E-KS
0.1WE-K>4
O.OOOE+00
0.263E-KH
LOWIN6 INTESROLS (K&)
URVS UTUP
0.751E+03 0.516E402
0.176&H)3 0.314E-MJ2
0.127E-KH O.OOOE-KX)
0.2206+04
O.OOOE+00
0.107E-MH
UTUN
0.21BE-K>3
0.8S3E+03
O.OOOE-KX)
0.107E-H)4
0.325E-H53
rfTUS
0.749E-M53
0.17SE-MX3
O.OOOE+00
0.325E+03
0.000&KX)
0.0006*00
O.OOOE-HX)
o.oooe-Kio
ua
O.OOOE-HJO
O.OOOE+OO
O.OOOE-KIO
O.OOOE-KW
RPSIM(
0.229E+03
TP5UNK
MB1NK
0.149E+03
TNSUK
RSSIfK
TPICT
0.223EXX3
TMCT
0.143E-HS
TSSlfK
0.478E-KB
T9CT
137
-------
SEGMENT
4
4
4
4
4
INTEWCTIQM
I
2
3
4
S
FLQH
(**3/SED
O.OOCE+00
0.300E+04
O.OOOE+00
O.OOOE+00
-0.300E+04
DIFFUSION
(M**3/SED
0.688E+00
0.236E+02
0.0006+00
O.OOOE+00
0.253E+02
RLPHfl
0.533E+00
0.99GE+00
O.OOOE+00
O.OOOE+00
0.996E+00
flLPHRIN
0.533E+00
0.996E+00
O.OOOE+00
O.OOOE+00
0.396E+00
niiiiiiii 3QUMMRY VflLUES iiiiiiiin
TPB)
0.415EHK
0.102E-02
PHYTD
t
2
3
4
5
flVPU
flMCO
0.284E+00
0.124E+00
WSBO
0.660E+00
NQ3BD
0.272E+00
TUPEO
0.291E-02
4QBD
0.122E-01
TUNBD
0.101E+00
TSBD
0.132E+01
TUSBC
0.632E+00
0.660E+00
CLBO
0.527E+01
CLBD
0.527E+01
A
0.203E+00
0.43SE-02
0.138E-01
0.4BflE-OS
0.324E-03
PSRBO
0.790E-43
0.1SOE-02
0.1SOEH2
0.200E-Ce
0.200E-02
ffiABD
0.400E-01
o.aooE-oi
o.aooEH)i
o.aooE-01
0.300E-01
SSffiD
0.140E+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
O.OOOE+00
t£J8 ZOO Z1BD
1 O.SB1EHE
CAW 100 Z2BO
1 0.263E-01
Hillillli DAY *
0.
SE9CNT
5 Illilllll
* O.S74E+00
UBHT IKID6ITY » 0.100E+OE
FTHC COEFF * 0.382E+00
TDTBL (WTO
TDTflL ZOO
WTER
SEDIKXT
0.96SE+00
0.323E-01
TDTRL P
0.101E-01
0.406E+02
TOTflLM
O.S57E+00
0.4SSE+03
TOTflL S
0,B50E+00
0.1&2E+03
0.490E-02
ffi/l
0.300E+00
SURPLUS P
O.S31EHB
ws
(X381E+00
SURPLUS N
0.274E-01
TUP
0.366E-02
SURPLUS 5
0.584E-01
TUN
O.E18E+00
TUS
0.381E+00
0.
0.300E+01
138
-------
IB/MB TOT WYTO 0.965EH33 0.284E-01 0.605E-01
PRIM PROD RATE (MB C/*«3/HR) « 0.18S+02
IMTEBRAL PRIN PROD RATE (ffi C/M*«3) « 0.273E+01
PHYTD
1
2
3
PHYTO
1
2
3
4
3
A
(X&KfrMX)
0.13C-01
0.736E-01
0.416E-01
0.203E-Q2
FCSDP
0.8ME-HX)
O.H3E-01
0.7S3E-01
0.431E-01
0.210E-OE
PSA
0.125E-02
0.2506-02
0.2506-02
0,500E-Og
o.sooE~oe
P5A/P5PMIN
0.250E-H}!
0.250E+01
0.230E+01
0.500E401
0.500E-H)!
NBA
0.350EH)!
0.700E-01
0.700E-01
0.700E-01
0.700E-01
MSA/NSflHIH
0.350E+01
0.350E+01
0.350E+01
0.350E-K)1
0.350E-K)!
SSA
O.I05E-HX)
O.OOOE-HX)
o.oooe^oo
o.oooe+oo
O.OOOE-H50
SSA/SSW1
0.300E-K)1
O.OOOE-KX)
O.OOOE-HX)
O.OOOE-KX)
O.OOOE-HW
SPGR
o.79oe-oe
O.fiSX-02
0.&91E-K
0,&4£E-^
-------
5 1 3 -0.307E+03 0.406E-KX) 0.100E-02 0.662E-03
3 2 4 -0.300E+04 0.236E«02 0.400E-08 0.393E-02
53 0 O.OOOE+00 O.OOOE-KX) O.OOOE-H00 O.OOOE+00
34 0 O.OOOE-HX) O.OOOE+00 O.OOOE-^00 O.OOOE-KX)
53 5 0.331E-KH 0.107E-H£ 0.996E+00 0.99BE-MX)
minim BOUNDARY VflLUES iimiiin
TOD (WBO TKMO N038D *GH) TSBD1 AVSBD
0.2KE-HX) 0.109E-01 0.138Et01 0.688E-K)0 0.527E+01
flVPBO fNW 3VS80 TUPBD TUB) TUSBD nm
O.lOaE-08 0.304E400 O.UaE-HX) 0.377E-OS 0,16SE-K)0 0.64fiEHOO O.S27E-»01
PHYTD A PSflBO NGflBD SSflBD
1 0.331E^OO (X750E-03 0.400E-01
2 0.59S-08 0.lSOE-Oe 0.800E-01
3 0.285E-01 0,1506-OS 0.800E-01 O.OOOE+00
4 0.293E-01 0.20CE-08 O.dOCE-01 O.OOOE-HX)
3 0.522E-02 0.200E-02 0.800E-01 O.OOOE-HX)
>£RB ZOO Z1ED
1 0.115E-01
caw zoo ZZBD
1 0.32S-01
140
-------
iiiiiiiiiiiiiii DAY =
niiiiiiiiiiiiiiiiii
IIIIIIIIIIIIHII
iiiimmmimm
iiiiiiini DAY * 5. SEBCNT = 1 uiiiiini
TBPEJ»TURE > 0.633E+00
LIGHT INTQCITY « 0.106E+02
XTTJC EEFF «0.131E+01
TOTRL PHYTD
TDTPL ZOO
WTO
ZDIICMT
0,1SOE-K)1
0.245E-01
TOTBL P
O.SBE-01
0.63X+01
TOTBLH
0.787EHX)
TUTOLS
0.124E+01
0,1675-01
m/m TUT PHTTD
SVS
0.542+00
TUP
0.367E-01
TIM
0.713E-01
TIE
O.S02E-HX)
CL
0.2S5E-KC
SURPUS P
0. 123^02
0.&E-03
PIW PWD WTE OS DHH3/HR)
WIM PWD WTE (MB
SURPLUS N SURPLUS S
0.4S9E-01 0.142&HX)
0.307E-01 0.950£-01
» 0.276E-KE
PWTD
1
2
3
4
3
PHYTO
1
a
3
4
5
A
Q.13&01
0.135E-0!
0.220E-01
0.473&-01
0.22EE-01
FDW
O.HMEHH
0,147EH)i
0.316E-01
0.151E-01
PSR
0.111E-02
0.246E-02
0.247E-02
0.601E-OS
0.490E-02
PSA/PSAKI*
0.222E+01
0.490E401
H5A
0.390E-01
0.729E-01
0.738E-01
0.710E-01
0.710E-01
NSA^SflKIN
0.390E-KI1
0.3S5E-KJ1
0.363tK)l
0.3S5E-K)!
0.335EHD1
SSA
0. 127E-KX)
O.OOOE-KX)
O.OOOE-KX)
O.OOOE-KX)
O.OOOE-KX)
3SA/SSW1N
0.332S-K)!
O.OOOE-KX)
O.OOOE-KW
O.OOOE-KX)
0. OOOE-nX)
SPS1
0.20E-01
0.1B9E-01
0.190E-01
0.18GE-01
O.iaGE-01
BPI
(X1&5E+00
O.i63t^e
0.242E-02
o.4tfE-oe
0.23SE-02
R2PS
0.210E-01
0.1B9E-01
0.19BE-01
0. £13-01
0.20SE-01
106
0.284E-01
0.231E-01
0.243E-01
0. 1B6E-01
0. 186E-01
R2SS
0.284E-01
0.990E-K)e
0.990E-H52
0.990E+02
0.990E-HK
TWBTft
0.325E-K)0
0.271E-KX)
0.325&KX)
0.189E-KW
0.1OTE-KX)
RLIGHT
0.4a9EH)l
0.48gE-01
0.489E-01
0.853E-01
0.3S3E-01
ZOO
1
CAM ZOO
1
Zl
0.1ME-02
12
0.229E-01
RZ1
0.324E-01
RZ2
O.OOOE-KX)
Z1LSS1
22LSS1
0.812E-02
0.271E400
TW6TZ2
0.271E+00
141
-------
LOADINGS (KB/DAY)
TRIBUTARY
8TKEPHERIC
SEDIKNT
TOTAL
TBIBUTARY
fiDIEPHEJlIC
SEDIfflff
TOTAL
HAVP
O.UO&KM
0.499E+01
0.0006-KX)
0.1UE+04
UAVP
0.396E+04
0,0006+00
0,5996+04
UflVH
0.199E+05
0.737E+03
0.0006+00
0.206E+03
ttfMM
NNVn
0.105E+06
0.3&8E+04
0.0006+00
0.1096+06
UAVS WTUP
0.405E+05 0.157E+04
O.SWE+02 0.122E+02
0.224E+Oe O.OOOE-HX)
O.W6E+05
UMDINB INTEBMLS (KB)
URVS W7TJP
(X235E+06
O.SB3&HS
O.OOOE-MX)
WTUN
0.762E+04
0.332E+03
0.0006+00
0.7WE+04
WTUS
0,405+05
O.SB4E+02
0.0006+00
0.40GE+05
UCL
0.&406+06
0.0006+00
0.0006+00
0.3406+06
UT1M
0.1IXE-KH
O.OOOtMX)
WTU5
0.23SE-K16
0.34ZE+03
0.0006-00
0.226E406
UCL
0,472E-K)7
0.0006+00
O.OOOE-HX)
0.472E+07
RPSINK
TRUNK
0.714E+04
TWCT
0.714E+04
•EM
0.382+04
TN5UNK
0.171E-HS
TMCT
0.171E+05
(XZ19E-H35
TSStlK
0.102E+OS
T9CT
0.102E+06
SE9CKT
1
1
1
1
1
1
2
3
INTEWCTDC SE9CMT
Z
3
0
1
0
FLOW
(MH3/SED
O.OOCEXX)
0.307E*03
O.OOOE+00
-0.3071*03
0,0006+00
DIFFUSION
(Htt37SEC5
0.191E+01
0.389E-KX)
0,0006+00
0.0006+00
O.OOOE-HX)
ALPHA
o.aooE+oo
0.999E-HJO
O.OOC€+00
0. lOOE+01
O.OOC€-H»
flLPHAIN
0.900E-KX)
0.999E+00
O.OOOE-KX)
0. iOOE-H)l
O.OOOE+00
SEGMENT * 2 iiiiiiiiin
0.3S7E+00
o,
IBKJWTURE
LJBfr iKTBerrr
rroc CDBT
TOTBL PHYTO » 0.371E400
TDTBL ZOO * 0.303E-01
URTER
SEDIKNT
TDTBL P
0.190EHM
0.120E+03
flVP
O.S75E-02
TOTPL N
0.13EE+01
0.13SE-KH
TOTflL S
0.143E+01
0,l2flE+01
SURPLUS P
OS'S
0,632+00
SURPLUS N
TUP
0.120E-01
SURPLUS S
TUN
0.371E-01
TUS
0.6306+00
CL
0.2206+02
142
-------
ffi/L
MS/MB TOT PHYTD
0.733E-03
0.841E-03
PRIM PROD RATE (MB C/Nt*3/HR)
IMTEBRflL PRIM PRO) RATE (MB C/M**3)
0.2636-01
0.302E-01
» 0.1536+02
0.236E+02
0.797E-01
PHTTO
1
2
3
4
5
PHYTD
1
4
3
A
0.7866+00
0.3676-02
0.3906-01
0.4016-01
0.291E-02
FCHOP
0.902E+00
0.4226-02
0.448E-01
0.460E-01
0.334E-Oe
PSft
o. niE-oe
0.34S-OS
0.246EHK
0.3MEHK
o.4ae£-
-------
SE9OT
2
2
2
2
2
INTEMCTHM
1
2
3
4
5
INTERflCTINB SE9CMT
1
3
4
0
0
(KH3/SED
0.0006+00
0.0006+00
O.OOCE+00
O.OOOE+00
0.0006+00
(MH3/SED
0.1916+01
0. 1306+01
0.6886+00
0.0006+00
0.0006+00
PLPHft
0.2006+00
0.2976+00
0.4676+00
0.0006+00
0.0006+00
BLPHftlN
0.2006+00
0.2976+00
0.4676+00
O.OOOE-HX)
O.OOOE-KX)
Illlllllll QRV m
SE9CNT * 3 minim
» 0.7606+00
IKTB6ITY * 0.106E+02
• 0.1606+01
70TB.
TUTRL ZOO
WTER
SEDIfCNT
> 0.316E-01
TUTRL P
0,3116-01
0.1206+03
TUTflLM
0.155E+01
0.136E-KH
TOTPL S
0.114&01
(X4&3E+03
MB/MB TUT PWTO
(X141E+01
3APUJ6 P
0.14CHS
O.X1E-03
ws
Q.514E400
SURPUfiN
0.301E-01
PUDI PHD HRTE (MB CvT»«3,'HR) > 0.27BE+02
PRIK PHOD RATE (MB C/NH3) * o.4?aE+oe
TUP
0.204E-01
SURPUE S
0.140E-KX)
0.9106-01
TUN
0.11SE-KX)
TUS
O.H3E-KX)
PHHD
1
2
3
4
S
PHYTD
1
2
3
4
3
A
0.136E-M51
0.3196-01
0.232E-01
0.106E400
0,1856-01
FDDP
0.3836+00
0.207E-01
0.1SOE-01
0.6B86H)1
0.120E-01
PSA
O.lllE-02
0.24aE-0£
0.246EHK
0.572E-OS
0.469E-02
PSA/PSflKIN
0.222E+01
0.245E*)!
0.2*€E+01
0.572E-H)1
0. 4896+01
NSfl
0.375EHM
0.706£H)1
0.713E-01
0.6936-01
0.694E-01
N5A/N5MIN
0.37S+01
0.353E+01
0.357E+01
0.347E+01
0.347E+01
5SA
0.138E+00
0.0006+00
0.0006+00
0.0006+00
0.0006+00
SSA/SS
0.394E
0.0006
0.0006
0.0006
0.0006
SPSR
0.1786-01
0.160E-01
0.16BE-01
0.157E-01
0.157E-01
BPI
0.117E+00
0.250E-02
o.iaaE-oe
0.822EHS
0.13GE-02
R2PS
0.1786-01
0.1606-01
0.168E-01
O.lfi2£-01
0.173E-01
R2NS
0.238E-D1
0.194E-01
0.2046-01
0. 1S7E-01
0. 157E-01
R2SS
0. 2426-01
0,9906^02
0.9906+02
0.9906+02
0.9906+02
TUE7A
0.3265+00
0.2721+00
0. 3266+00
0. 1916+00
0. 1916+00
RL1SHT
0.4146-01
0.414E-01
0.4146-01
0.7236-01
0.7236-01
f€HB ZOO
1
OWH ZOO
Zi
0.2376-02
Z2
RZ1
0.5236-01
312
Z1LSS1
0.3166-02
Z2L5S1
TMBT71
0.2726+00
TWGTZ2
144
-------
0.2B6E-01
O.OOOE+00
0.816E-OS
0.272E-HX3
UMDINBS (KB/DAY)
flTHBKRIC
9EDDCNT
TOTBL
0.7316*01
0.0006*00
0.2376*02
WWP
TROUTMV
SEDIKNT
TDTBL
0.306*02
0.0006*00
0.1196*03
0.7776+03
0.1086*04
0.0006*00
WTUP
0.6656*02
0.1796+02
0.0006*00
0.3886*04
0.9406*04
0.0006*00
0.9286+04
URVS
0.6996*03
0.1006*03
0.2796*04
0.3996*04
LOniNB INTESWLS (KB)
URVS WTUP
0.3496*04 0.3326*03
0.5006*03 0.8996*02
0.1396*05 0.0006*00
UTUN
0.266E+03
0.0006+00
0.7526*03
UTUN
0.123E-HM
0.243E-KM,
O.OOOE-KX)
rfTUS
0.701E-K)3
0.100E+03
0.0006*00
0.a01E*03
UTUS
0.350E-KH
O.SOOE-K)3
O.OOOE-KX)
UCL
0.0006+00
0.0006*00
0.0006*00
0.0006*00
0.000£+00
O.OOCC+00
O.OOOE-KX)
O.OOOE+00
RP5INK
0.1106**
TfBIM
0.9916*04
TPICT
IMBIW
TNGUK
0.457E408
TUCT
0.457E-KC
RSSIMt
O.Z91E+09
TSBW
T9ET
SBXXT
3
3
3
3
3
INTEBflCTTC
1
3
5
INI
FUN DIFFUSIW
TDC SEBW(T (NM3/SEC) (NH3/SEC} ALPHA flLPHAIN
1 -0.307E+03 0.5B9E-KX) 0.100E-02 O.%06-03
2 0.000&00 0.130&K)! 0,702+00 0.703E-KX)
5 0.307E+03 0.406E-HX) 0.?99E-H» 0,999E+00
0 O.OOOE-KW 0.0006-HX) (kOOOE-HX) 0.0006+00
0 (X 0006+00 0.0006+00 0.0006+00 C. 0006+00
Illlllllll DAY a
SE9CKT
HIIIIIIU
TBVERRTUE « 0.70fltKX>
LJWT IXTD6ITY « 0.106E+02
ITDC COEFF > O.S34E+00
TDTHL PHTTIJ « 0.609E-»00
TDTRL ZOO « O.SME-02
TDTBL P
0.353E-02
0.316E+02
SEDI>€XT
TUTBL N
0.457E+00
0.2BE+03
TDTflL S
0,!06£+01
0.130E403
TUP
TUN
TUS
145
-------
0.272E-02
0.295E-KX)
0.5096400
0.197E-02
0.132E400
0.487E+00
0.504E401
MB/L
N6/N6 TUT PHYTO
SURPLUS P
0.4696-03
0.7716-03
SURPLUS N
0.2186-01
0.337E-01
PRIM MOD ROTE (ffi C/«t*3/HR) " 0.116E402
IMTEBWL PRIM PIDD RATE (K C/Mtt3> • 0.1916402
SURPLUS 5
0.5136-01
0.843E-01
PHYTO
1
2
3
4
5
PHYTO
1
2
3
4
5
A
0.4956400
0.1146-01
0.9636-01
0.3536-02
0.4276-03
FCROP
0.8136400
0.1876-01
0.1596400
O.TOeE-03
PSA
0.1096-02
0.2406-02
0.2426HK
0.4846-02
0.4146-02
PSA/PSAMIN
0.2196401
0.242E-K)!
NSA
0.4076-01
0.7716-01
0.7796-01
0.7326-01
0.7396HM
NSA/NSAKIN
0.4076401
0.385E401
0.3906401
0.376E401
0.3806401
SSA
0.1396400
0.0006400
0.0006400
0.0006400
0.0006400
SSA/SSA
0.396E4
0.00064
0.00064
0.00064
0.00064
SPSS
0.149E-01
0.134E-01
O.U1E-01
0.137E-01
0.137E-01
BPI
0.418E-01
0.33SE-03
0.764EHS
0.403E-03
0.273&-04
R2PS
0.14SE-01
0.134E-01
0. 141E-01
0.146E-01
03
UTUP
WTUH
WTUS
0.18S&HH
0.000^00
0.2&3E-KK
0.131E+04
0.224&H)4
O.OOOE-KX)
0.2306+02
LOADINB IMTESWLS (K6)
0.353E+03
O.OC06-HXI
0.107E+04
0. 175E-HXJ
0.0006+00
0.925E-KJ3
JCL
Q.OOOE-HX)
0.0006*00
0.0006-KX)
0.0006-KX)
TRIBUTARY
ATMEPtQIC
SEDIMENT
TOTAL
UAVP
O.UO&02
0.&40E402
0.000&00
0. 132E-K13
IWW^W
0.371tH)4
0.9*36404
O.OOOE+00
0.132E+05
UAV5
0.375tH)4
0.8006403
0.644E404
0.111E405
WTUP
0.25BE403
0.1S7E+03
O.OOOE+00
0.41SE403
*m*
0. 109E+04
0.4c££-H>4
0.0006*00
O.SSE-KH
HTUS
0.374E404
0.3806403
O.OOOE400
0.462E404
UQ.
0.0006400
0.0006400
O.OOOE400
0.0006400
RPSIW
0.229E403
TP5JK
0.113E404
TPICT
0.1136404
IMBItK
0.136E405
TNSUK
0.7196405
TMCT
0.7196405
RSSM
0.47TE405
TSSUMC
0.240E406
TSJCT
0.223E406
146
-------
SESMENT
4
4
4
4
4
INTERACTION
1
2
3
4
5
INTEVCTIN6 SE9CKT
2
5
0
0
4
FLOW
(BBS/SEC)
O.OOOE+00
0.300E+04
O.OOOE+00
O.OOOE+00
-0.3006+04
DIFFUSION
(M»*3/SED
O.&ME+OO
0.236E+02
O.OOOE+00
O.OOOE+00
0.233E+02
ALPHA
0.533E+00
0.996E+00
O.OOOE-KX)
O.OOOE+00
0.996E+00
ALPHAIN
0.533E+00
0.996E+00
0.0006+00
0.0006+00
0.996E+00
iiiiiuiii BOUNDARY VflLUES iiiiiinn
TPBO
0.413E-02
0.104E-02
PWTO
1
2
2
4
3
tern zoo
i
cam zoo
i
AVPBO
0.1046-02
0.2B4E+00
TKNBD
0.12E+00
AVSBD
0.6fiBE+00
MOB)
0.272E+00
TUPBD
0.2896-02
NK3D
0.124E-01
TIMO
o.ioeE+00
T30
0.134E+01
0.&40E+00
AVSBD
o.&ea6+oo
OJD
O.S27E+01
OJD
0.527E+01
A
0. 2006*00
0.44X-02
0.197E-01
0.4B1E-02
0.8266-03
PSABD
0.7906-03
0. 1506-02
0. 1506-02
0.2006-02
0.2006-02
NSAH)
0.4006-01
0.800E-01
0.a006H)l
o.aooE-01
o.aooE-01
SSAK)
0.1406+00
0.0006+00
0.0006+00
O.OOOE+00
0.0006+00
Z1BO
0.5B3E-02
Z2BO
0.260E-01
DIIIIIIII DAY *
SE9BCT -
TDVERRTURE « 0.706E+00
LIGHT INTENSITY * 0.106E+02
COEFF « 0.33SE+00
0.793E+00
0.291E-01
TDTflL P
0.371EHK
0.406E+02
TDTAL PHYTO
TtTTflL ZOO
UA1ER
SEDIMENT
TDTPL N
O.S51E+00
0.461E+03
TOTAL S
0.a63E+00
O.lfiSE+03
QVP
0.432E-02
0.317E+00
SURPLUS P
O.S76E-03
OV5
0.38GE+00
SURPLUS X
0.276E-01
TUP
0.36S-02
SURPLUS S
0.729EH31
TUN
0.197E+00
TUS
0.380E+00
CL
0.789E+01
147
-------
TOT PHYTD
0.853EH)3
0.3WE-01
0.919E-01
PRIH PROD RflTE (MB C/M»3/WH = 0.14aE+02
INTEBRflL PRIH PROD RflTE («6 C/*"3> * 0.123E+OE
PHYTO
1
2
3
4
5
PHYTO
i
A
0.685E+QO
0. 1WE-01
0.558E-01
0.233E-01
0. 161E-02
FCRQP
O.a63£+00
0. 149E-01
0.82gE-01
0.369E-01
0.203E-02
PSA
0.112EHK
0.247E-02
0.247E-OE
0.560EHK
0.495E-02
PSA/PSfWIN
0.223E-K)!
0.247E-K)!
0.247E-K)1
0.5bO£+01
O.W5E+01
NBA
0.411E-01
0.780E-01
0.7%E-01
0.760EH)!
0.75BE-01
N5A/NSAMIN
0.4UE+01
0.390E-K)!
0.395E+01
0.380E+01
0.37SE+01
SSA
0. 141E+00
O.OOOEHX)
O.OOOE-HX)
O.OOOE-HX)
O.OOOE-KX)
SSA/SSAt
0.404€-H
O.OOOE-H
O.OOOE-H
O.OOOE-H
O.OOOE-H
SPGR
0.732E-02
0.676E-02
0.710E-02
0.oa2E-02
O.S31E-32
BPI
0.232E-01
0.430E-03
0.245E-02
0. 119E-OB
0.606E-04
R2PS
0.732E^
0.676E-Oe
0.710EH32
0.760E-02
0.739E-02
RSNS
0.103E-^)1
0.84SE-02
0,39C€-02
O.U2E-02
0.&81E-OS
R2SS
0. 103E-01
0.390E+02
0.990E-KK
0. 9906+02
0.990E-MK
TWBTA
0.323E+00
0.271E-HX5
0.325E-KX)
0.190E+00
0.190E-HX)
RUGHT
0. 175E-01
0.173EH)!
0.175E-01
0.303E-01
0.305E-01
ZOO
1
CMN ZOO
1
Zi
0.800E-02
Z2
0.211E-01
HI
0.377E-01
RZ2
O.OOOE+00
Z1LSS1
0.313E-02
Z2LSS1
0.813E-J2
TW6TZ1
TMBTI2
0.271E+00
THIBLTflRY
SEDI!€NT
TUTflL
TRIBUTWY
SEDIfCNT
TOTRL
UAVP
0.123E+02
0.0006+00
0.5746+02
0.234E+04
0.196E+04
0.0006+00
0.4306+04
UAVP
0.2206+03
0.6656+02
0.0006+00
0.2B7E+03
WVN
0. 1176+05
0.9606+04
0.0006+00
0.2155+05
UflVS
!KS/3OT)
tfTUP
0.177E+03
0.000&KX)
O.lfi
0.173&KH
0.3975+04
U3ADIN6 INTESRALS (KE)
UW5 UTUP
WTUS
0.20S+04
0.910E+03 0.162E+03
0.853E+04 0.0006+00
0.1975+05 0.103E+04
0.0006+00
0.153E+04
mn
0.321E+04
0.441E+04
0.0006+00
0.7636+04
0.0006+00
0.2236+04
WTUS
0.9106+03
0.0006+00
0.1126+05
O.OOOE+00
0.0006+00
0.0006+00
0.0006+00
UQ.
0.0006+00
0.0006+00
0.0006+00
0.0006+00
RPSIIK
0.399E+03
TPSJK
0.203E+04
TP)€T
0.205E+04
RNSINK
0.205E+05
TNSUTK
0.10SE+06
TMCT
0.109E+06
RSSIW
0.412E+OS
TSSUNK
0.206E+06
TSNET
0.196E+06
INTEJWCTIDN iNTERftcnNG SESHDTT
FLOW
!H**3/SEC)
DIFFUSION
(»*»3/SEC5
flLJW
ALPHAIN
148
-------
5
5
5
5
5
HD.307E-KX3
HD.300E-KH
O.OOOE-KX)
O.OOOE+00
0.331E-KH
0.406E-HX)
O.E36E+02
O.OOOE+OO
O.OOOE-KX)
0. 107E-K2
0.100E-02
O.WOE-OE
O.OOOE-KX)
O.OOOE-KX)
0.99K>00
0.662E-03
0.333E-08
O.OOOE-HX)
O.OOOE-HX)
0.998E-HX)
iiuiiiHi BQUMMRY V41E5 iiiiiiiiu
TPBD
0.518E-02
flVPBD
0.104E-<«
PHYTO
I
2
3
4
5
:-OE ZOO
i
CAIM ZOO
1
flVPBD
0.104E-02
WNBO
0.304E-KX)
TKWC
0.196E-KX)
WSBD
0.693E+00
N03B&
7UPBD
0.373E-02
0.109EH)1
TUNBD
0.166E+00
TSBD
0.139E-H)!
TUSBO
0.651E+00
flVSBD
0.693E+00
CLBO
Q-XTE+Ol
CLBD
A
0.327E+00
0.576E-08
0.309E-01
0.2B3E-01
0.506E-02
PSflBC
0.750E-03
0.130E-OE
0.150E-06
0.200E-02
0.200E-02
«aec
0.400E-01
o.aooE-oi
o.aooc-oi
0.800E-01
O.SOOE-01
SSfSO
0.140E-HX)
O.OOOE-KX)
O.OOOE-HX)
O.QOOE+00
O.OOOE*00
Z1BD
0.111E-01
Z2BD
0.31SE-01
149
------- |