EPA-450/4-89-013b
September 1989
BACKGROUND DOCUMENT FOR THE
SURFACE IMPOUNDMENT
MODELING SYSTEM (SIMS)
By
Sheryl L. Watkins
Radian Corporation
3200 Progress Center
Research Triangle Park, NC 27709
EPA Contracts No. 68-02-4378
and 68-02-4392
Project Officer
David C. Misenheimer
Technical Support Division
Office Of Air Quality Planning And Standards
U. S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
Prepared For:
Control Technology Center
U. S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
111
-------
NOTICE
This report was prepared by Radian Corporation, Research Triangle Park, NC. It has been
reviewed for technical accuracy by die Emission Standards Division and the Technical Support Division of
the Office Of Air Quality Planning And Standards, and the Air And Energy Engineering Research
Laboratory of the Office Of Research And Development, U. S. Environmental Protection Agency, and
approved for publication. Mention of trade names or commercial products is not intended to constitute
endorsement or recommendation for use.
ACKNOWLEDGEMENT
This report was prepared for the Control Technology Center by Sheryl L. Watkins of Radian
Corporation. The EPA project officer was David C. Misenheimer of the Office Of Air Quality Planning
And Standards. Also serving on the EPA project team were Penny E. Lassiter, Randy McDonald and Anne
A. Pope of the Office Of Air Quality Planning And Standards and James B. White of the Office Of Research
And Development
IV
-------
PREFACE
This document presents a brief description of the operation and design of
surface impoundments and background information on the development of the
Surface Impoundments Modeling System (SIMS). The SIMS was funded by the U.S.
Environmental Protection Agency's (EPA) Control Technology Center (CTC).
The CTC was established by EPA's Office of Research and Development (ORD)
and Office of Air Quality Planning and Standards (OAQPS) to provide technical
assistance to State and local air pollution control agencies. Three levels of
assistance can be accessed through the CTC. First, a CTC HOTLINE has been
established to provide telephone assistance on matters relating to air
pollution control technology. Second, more in-depth engineering assistance
can be provided when appropriate. Third, the CTC can provide technical
guidance through publication of technical guidance documents, development of
personal computer software, and presentation of workshops on control
technology matters.
The technical guidance projects, such as this one, focus on national or
regional interest that are identified through contact with State and local
agencies. In this case, the CTC became interested in automating and
developing default parameters for calculations of volatile organic compound
(VOC) emissions from surface impoundments. The emission models were developed
by the Emission Standards Division (ESD) during the evaluation of surface
impoundments located in treatment, storage, and disposal facilities (TSDF).
The technical document discusses these emission models, surface impoundment
design and operation, default parameter development, and the emission
estimation procedure. In addition, a User's Manual and Programmer's
Maintenance Manual were written to accompany the PC program. The User's
Manual presents a complete reference for all features and commands in the
SIMS, while the maintenance manual presents the documentation of the SIMS
computer code.
cml.153
-------
TABLE OF CONTENTS
Section Page
Preface v
List of Symbols and Abbreviations ix
Executive Summary E-l
1.0 INTRODUCTION 1-1
2.0 SURFACE IMPOUNDMENT DESIGN AND OPERATION 2-1
2.1 Appl ications 2-1
2.2 Design and' Operation 2-3
2.2.1 Physical Design 2-3
2.2.2 Flow and Level Control 2-6
2.2.3 Biodegradation 2-7
2.2.4 Mechanical Aeration 2-10
2.3 References 2-13
3.0 SURFACE IMPOUNDMENT EMISSION MODELS 3-1
3.1 Basic Emission Estimation Approach 3-1
3.2 Emission Equations 3-2
3.2.1 Flow-through Impoundments 3-2
3.2.2 Disposal Impoundments 3-4
3.3 References 3-11
4.0 DEFAULT PARAMETER DEVELOPMENT 4-1
4.1 Concentration Profiles 4-1
4.1.1 Industrial Category Raw Concentrations 4-2
4.1.2 Flow Weighting of Concentration Profiles 4-3
4.1.3 Surface Impoundments at POTW 4-12
4.2 Depth of Impoundment 4-12
4.3 Other Input Parameters Required by the
Emission Models 4-18
4.4 References 4-20
5.0 EMISSION ESTIMATION PROCEDURE 5-1
5.1 References 5-17
Appendix A - Industrial Categories A-l
Appendix B - DSS Pollutant Loadings for the Selected Consent
Decree Industrial Categories B-l
Appendix C - Pollutant Physical Properties Data Base C-l
cml.153 vi
-------
LIST OF TABLES
Table Page
E-l Emission Rate Equations E-4
E-2 Industrial Categories E-5
2-1 Results of a Survey on Surface Impoundment Applications 2-2
2-2 Design Parameters for Activated Sludge Processes 2-8
2-3 Impoundments Designed for Biodegradation 2-9
2-4 Typical or Default Values for Biomass Concentration 2-11
3-1 Equations for Calculating Individual Mass Transfer
Coefficients for Volatilization of Organic Solutes from
Quiescent Surface Impoundments 3-5
3-2 Equations for Calculating Individual Mass Transfer
Coefficients for Volatilization of Organic Solutes from
Turbulent Surface Impoundments 3-7
4-1 Industrial Categories 4-4
4-2 DSS Selected Consent Decree Pollutants 4-5
4-3 Total Indirect Flowrates by Industrial Category 4-7
4-4 Water Discharge Statistics 4-10
4-5 Surface Impoundments 4-14
4-6 Typical Design Parameters for Surface Impoundments 4-15
4-7 Limits on Flow Through Impoundment Retention Time 4-17
4-8 Site-Specific Default Parameters 4-19
5-1 Example Model Data for a Surface Impoundment 5-2
5-2 Concentration Profile 5-6
cml.153 vii
-------
LIST OF FIGURES
Figure Page
E-l Decision Tree to Estimate VOC Emissions ........................ E-8
2-1 Relationship of Freeboard to Wind, Surface Area, Depth, and
n a Surface Impoundment ................................. 2-5
4-1 Flow Rate Versus Depth ......................................... 4-16
5-2 Decision Tree to Estimate VOC Emissions ........................ 5-3
cml.153 viii
-------
LIST OF ABBREVIATIONS AND SYMBOLS
Abbreviations
A -- surface area of impoundment, m2
a, -- surface-to-volume ratio of impoundment, ft"1
B -- biorate constant, g/s/g biomass
bt -- biomass concentration of constituent i, g/m3
C0 -- inlet concentration, g/m3
CL -- bulk liquid and effluent concentration, g/m3
Ct -- concentration at time = t, g/m3
D -- depth of impoundment, m
d -- impeller diameter, cm
d* -- impeller diameter, ft
Da -- diffusivity of constituent in air, cm2/s
de -- effective diameter of impoundment, m
Aether " diffusivity of ether in water, cm2/s
D0 , -- diffusivity of oxygen in water, cm2/s
E -- emission rate of constituent from impoundment, g/s
F -- fetch, linear distance across impoundment, m
F/D -- fetch-to-depth ratio, dimensionless
fair -- fraction of constituent emitted from impoundment, dimensionless
Fr -- Froude number, dimensionless
gc -- gravitation constant, Ibmft/s2/lb£
H -- Henry's law constant, atm m3/mol K
J -- oxygen transfer rating of surface aerator, Ib O^hr/hp
K -- overall mass transfer coefficient, m/s
cml.153 ix
-------
LIST OF ABBREVIATIONS AND SYMBOLS (Continued)
Kp -- overall mass transfer coefficient for quiescent portion of aerated
impoundment, m/s
KT -- overall mass transfer coefficient for turbulent portion of aerated
impound, m/s
Kg -- gas phase mass transfer coefficient, m/s
K! -- liquid phase mass transfer coefficient, m/s
MWa -- molecular weight of air, g/mole
MWL -- molecular weight of liquid, g/mole
Na -- number of aerators
Ot -- oxygen transfer correction factor, dimensionless
P -- power number dimensionless
Pj. -- power to impellar, ft lbf/s
POWR -- total power to aerators, hp
Q -- flowrate of liquid, m3/s
R. -- Reynolds number, dimensionless
ScG -- Schmidt number on gas side, dimensionless
ScL -- Schmidt number on-liquid side, dimensionless
T -- temperature, K
t -- time, sec
U = U10 -- windspeed at 10 m above the liquid surface, m/s
U* -- friction velocity, m/s
V -- volume of impoundment, m3
W -- rotational speed of impellar, rad/s
cml.153
-------
LIST OF ABBREVIATIONS AND SYMBOLS (Continued)
Pg -- density of air, g/m3
P! -- density of liquid, g/m3
pig -- viscosity of air, g/cm s
^1 -- viscosity of liquid, g/cm s
cm!.153 xi
-------
EXECUTIVE SUMMARY
The purpose of this document is to present background information on the
data, equations, default development, and procedures used by the Surface
Impoundment Modeling System (SIMS) Personal Computer (PC) Program. The PC
Program estimates volatile organic compound (VOC) and toxic air pollutant
emissions from surface impoundments (SI).
The SIMS program was written in response to the State and local need for
a methodology to estimate emissions from SI located in treatment, storage, and
disposal facilities (TSDF), publicly owned treatment works (POTW), and other
similar processes. The emissions models contained in the program were
developed by the Emission Standards Division (ESD) during the evaluation of
TSDF. The program requires a minimum amount of information from the user
which include the following:
1) Type of impoundment (aerated/nonaerated and biodegradation/no
biodegradation);
2) Flow model (flow-through or disposal);
3) Impoundment surface area;
4) Total flowrate to impoundment; and
5) Industrial categories discharged to impoundment (a list is given).
Based on this minimum information and standard design practices for
surface impoundments, the program assigns default values to all other input
parameters required by the models. However, the program is designed to allow
the user to replace most of the computer-assigned default values with actual
values, when available.
The technical document provides a brief description of surface
impoundment design and operation, summarizes the emission models used by the
program, discusses default program development, and discusses the emissions
estimation procedure used by the program.
cml.153 E-l
-------
Surface Impoundment Design and Operation
SI are used for the treatment storage, and disposal of liquid wastes.
From available data, waste treatment is the primary application for SI in the
municipal, industrial, and mining categories, while the majority of SI used
for agricultural purposes are designated for storage. Only the oil and gas
industry utilize the majority of SI for disposal. Current SI designs employ a
combination of several application objectives such as treatment followed by
temporary storage or by ultimate waste disposal.
Air emission rates are affected by the design and operation of the SI.
The design and operating parameters considered most important in determining
emissions are flow rate, surface area, liquid depth, retention time (for
disposal SI), degree of aeration, biomass concentration (where biodegradation
is a competing mechanism), and any physical design characteristics that
influence the effective wind speed across the liquid surface.
Surface Impoundment Emission Models
VOC emissions from SI occur due to volatilization at the water surface.
The rate of volatilization is based on the two-film resistance theory. This
theory assumes the rate limiting factor for volatilization is the overall
resistance to mass transfer at the interface of the liquid surface and the
ambient air. The overall resistance is due to individual resistances in the
liquid and gas phase films at the interface. Individual mass transfer
coefficients account for these resistances in the liquid and gas phase films.
The individual mass transfer coefficients are used to estimate overall mass
transfer coefficients for each pollutant. These overall coefficients are
applied in mass balance equations to estimate air emissions from SI. The
forms of the mass balance equations depend on type of flow (i.e., flow through
or disposal), impoundment type (i.e., aerated or nonaerated), and whether or
not pollutants are biodegraded in the impoundment. For the emission models
contained in SIMS, all SI are assumed to be well mixed (i.e., the pollutant
concentration is the same throughout the SI).
cml.153 E-2
-------
The basic approach used by the models to estimate emissions is as
follows:
1) Estimate individual liquid and gas mass transfer coefficients for
each pollutant, KL and Kg;
2) Estimate equilibrium constants, Keq, for each pollutant from the
following expression:
Keq = H/RT
where: H = Henry's law constant, atm*m3/niol*K
R = Ideal gas law constant, atm»m3/niol
T = wastewater temperature, 'K;
3) Estimate overall mass transfer coefficient, K, for each pollutant
from the following expression:
1/K = 1/1^ + l/(kgKeq).
4) Apply a mass balance around the SI to estimate emissions.
The emission rate, E, in g/s, is given in Table E-l for all mass balance
equation types included in SIMS.
Default Parameter Development
Default values were developed using the evaluation of TSDF for many of
the required inputs for the emissions models. However, default values were
not developed for (1) the concentration profile in the wastewater feed to the
SI, (2) the depth of the impoundment, and (3) certain physical property data.
Because concentration data may not be available to State and local
agencies, methods were developed to assign default concentration values based
on the minimum information expected to be available. Raw concentration
profiles were developed for different industrial categories. These profiles
are used to define the composition of the impoundment feed based on the
industrial categories discharging to the SI. A listing of the 29 categories
is presented in Table E-2. In cases where the impoundment is fed by process
units in more than one type of industrial category, a flow weighting scheme
cml.153 E-3
-------
OO
0
I-H
i
cr
1 1 1
1 1
I
a:
2:
o
I-H
OO
oo
I-H
s:
LU
?-H
1
LU
LU
CO
h-
00
O>
aT
+>
ce
o
00
LU
I/I
c
o
-r-
+J
P-
-a
c
o
i"
cr
0
0
cr
^
*-"'
c
o
p-
"fO
i- "O
CD O)
O) -(->
0 S-
.Q to
c
o o
c c
* i-
-C 0
01
3 -a
o a>
S- +->
^C ^S
M S-
^ U^
O (TJ
f
u_
1 1
+ cr
^3* ^f
^ CM
n
+ ^
I??
l ^^
^T1"1
J:
II -
" * ^3
+ <_i
^"° §
fy | ^C
"^w ^*"
S-o" -
' ^-J *
^ ^ 0)
i cr i
«r'^"
^"
C C
o o
+J 4J
CO fl3 T3
T3 ^3 OJ
(O ^3 nj ^J
S- OJ S- a3
U^ j^ QJ^ ^_
d) fTJ d) Q}
^3 i- ^3 *O
O (U O C
i- (O -i- O
.a c JD c
o
- C 05-
-C CO
O) ^
3 0 »-T3
o r a>
S_ T3 OS +J
-CO) oo ftf
-M -t-> O S-
2 (O a.
"^"^
c
o
-M
IT)
^^
(^
J_
cn
^D
o
<^t
««
r
n
00
o
a.
00
r
O
*£
O
(O O
i- a>
+J oo
d)
O I-H
c oo
o
N T-
S oo -t-1
>»1 fl> fl>
rO*e 'c -r-
& ^ c u
O) (T3 « - C
U S- 4-> O) O
<0 3 E -0
4- 3 r- 3 -r-
&- O I i 00
3 r- O O s-
ii
n n ii u
o
o
s-
0)
-C
3
-------
TABLE E-2. INDUSTRIAL CATEGORIES
Industrial
Industrial Category* Category Code
Adhesives and Sealants 1
Battery Manufacturing 2
Coal, Oil, Petroleum Products, and Refining 3
Dye Manufacturing and Formulation 4
Electrical and Electronic Components 5
Electroplating and Metal Finishing 6
Equipment Manufacturing and Assembly 7
Explosives Manufacturing 8
Gum and Wood Chemicals, and Related Oils 9
Industrial and Commercial Laundries 10
Ink Manufacturing and Formulation 11
Inorganic Chemicals Manufacturing 12
Iron and Steel Manufacturing and Forming 13
Leather Tanning and Finishing 14
Nonferrous Metals Forming 15
Nonferrous Metals Manufacturing 16
Organic Chemicals Manufacturing 17
Paint Manufacture and Formulation 18
Pesticides Manufacturing 19
Pharmaceuticals Manufacturing 20
Photographic Chemicals and Film Manufacturing 21
Plastics Molding and Forming 22
Plastics, Resins, and Synthetic Fibers Manufacturing 23
Porcelain Enameling 24
Printing and Publishing 25
Pulp and Paper Mills 26
Rubber Manufacturing and Processing 27
Textile Mills 28
Timber Products Processing 29
"Pesticides Formulation has been omitted from the original list of 30
industry categories because of the lack of data available for this
industrial category.
cml.153 E-5
-------
is required. In addition, if the impoundment is located at a POTW, it is also
necessary to know what percentage of the feed is from industrial (rather than
municipal) sources.
A default depth of the impoundment was developed by plotting flow rate
versus depth from data contained in recent literature. The correlation gives
a linear relationship between flow rate and depth. Separate correlations were
developed for flowthrough and disposal impoundments because of the great
differences in data ranges. Given a specific flow rate, a default depth can
be determined by the following equations.
Flowthrough
Q = 4673.3 D - 3809.5 Q > 1446 m3/day
Q = 863.8 D 0 < Q < 1446 m3/day
Disposal
Q * 354.6 D - 700 Q > 253 m3/day
Q = 101.2 D 0 < Q < 253 m3/day
Physical property data such as diffusivities and Henry's law constants
were developed for the compounds contained in the concentration profile and
are included in Attachment 3.
Emission Estimation Procedure
There are eight emission estimation procedures for the SIMS:
1) flowthrough, aerated, biological system;
2) flowthrough, nonaerated, biological system;
3) flowthrough, aerated, nonbiological system;
4) flowthrough, nonaerated, nonbiological system;
5) disposal, aerated, biological system;
6) disposal, nonaerated, biological system;
cml.153 E-6
-------
7) disposal, aerated, nonbiological system;
8) disposal, nonaerated, nonbiological system;
Assuming the user has the minimum information discussed earlier,
Figure E-l presents a decision tree for estimating VOC emissions. It is
important to realize that the accuracy of the emissions estimate decreases
with the use of the defaults, especially concentration of VOC. If a specific
parameter is known or can be estimated with some accuracy, it is recommended
that the estimated value be used in the SIMS program. Two detailed example
calculations are presented in Chapter 5 of this document.
cml.153 E-7
-------
INPUT DATA:
Total flow to SI
Surface area of SI
Assign industrial
Category codes
DEFAULT VALUES:
POTW7
Concentration profile
Depth
Windspeed
Calculate liquid, gas, and
equilibrium mass transfer
coefficients K,, K,, and
Kj, for each pollutant
Calculate liquid, gas, and
equilibrium mass transfer
coefficients K,, K(, and
K., for each pollutant
Is
the system
biologically
active?
Default values
for a biologically
active system
Calculate liquid, gas, and
equilibrium mass transfer
coefficients K*, Kg, and
for each pollutant
Calculate liquid, gas, and
equilibrium mass transfer
coefficients < Kf , and
K., for each pollutant
Default values for
a biologically
active system
Calculate air
emissions, N
Calculate air
emissions, N
Figure E-l. Decision Tree to Estimate VOC Emissions
cm!.153
E-8
-------
1.0 INTRODUCTION
The assessment of volatile organic compound (VOC) and toxic air pollutant
emissions is essential in order to develop State implementation plans (SIP)
for the control of atmospheric ozone. Additionally, this information is basic
to the review of Prevention of Significant Deterioration (PSD) applications
and other Federal, State, and local agency programs involving assessment of
air pollution.
The U.S. Environmental Protection Agency (EPA) has recently recognized
the State and local need for a methodology to estimate emissions from surface
impoundments located in treatment, storage, and disposal facilities (TSDF),
publicly owned treatment works (POTW), and other similar operations. A set of
emission models for surface impoundments was developed by the Emission
Standards Division (ESD) during the evaluation of TSDF. These models can be
used to estimate VOC emissions from surface impoundments based on input
parameters such as impoundment type (aerated or nonaerated), impoundment
dimensions, influent flow rate, and inlet pollutant concentrations. However,
in some cases, State and local agency personnel may not have information on
all the input parameters required by these models.
For this reason, the air emission models were incorporated into a user
friendly, personal computer-based program. The program requires certain
minimum information from the user. Based on this information, and standard
design practices for surface impoundments, the program assigns default values
to all other input parameters required by the models. In addition, the
program is designed to arllow the user to replace most of the computer-assigned
default values with actual data, when available.
In some cases, there could be volatile inorganic compound emissions from
surface impoundments. However, because the ESD emission models were developed
for VOC emissions, they do not necessarily apply to volatile inorganic
compound (VIC) emissions. For this reason VIC emissions are not addressed in
this document.
The purpose of this document is to present background information on the
data, equations, and procedures used by the program to estimate emissions. A
cml.153 1-1
-------
brief description of surface impoundment design and operation is provided in
Chapter 2. The air emissions models used by the program are summarized in
Chapter 3. The development of the default parameters required by the emission
models are discussed in Chapter 4. Chapter 5 presents the overall procedure
employed by the program to assign default values and estimate emissions.
The focus of this project was the estimation of emissions from surface
impoundments. Although emtssions from the collection system which transports
the wastewater from its generation point to the impoundment may be
significant, they were not included in this study. Emissions from wastewater
collection systems are being addressed in other EPA studies.
Surface Impoundment Modeling System (SIMS) data is primarily intended for
regional studies. However, the program can be used as a screening tool for
evaluating permits, keeping in mind that the models in SIMS do not represent
EPA policy. These models are, however, based on the best information
available to the EPA at this time.
cml.153 1-2
-------
2.0 SURFACE IMPOUNDMENT DESIGN AND OPERATION
Surface impoundments are used in a variety of applications by facilities
in many different industrial categories. The design and operation of these
impoundments are affected by the type of application in which they are used.
A surface impoundment can be a basin, lagoon, treatment tank or any
confinement where wastewater is held for a period of time. However, the
Surface Impoundment Modeling System (SIMS) is limited to completely mixed
surface impoundments. Therefore, the SIMS is not applicable to plug flow (no
axial mixing) systems. (An example of a plug flow system is a narrow, fast
moving canal). A brief discussion of the various applications and impoundment
design and operating practices are provided in this chapter. Also discussed
is how these design and operating practices are incorporated into the emission
models developed by ESD and the computer program developed during this
project.
2.1 APPLICATIONS
Surface impoundments are used for the treatment, storage, and disposal of
liquid wastes. Table 2-1 shows the results of a national study surveying
surface impoundment applications.1 In this document, an impoundment with a
retention time more than 30 days is considered a disposal impoundment. If the
retention time is less than 30 days then it is considered a storage or
treatment impoundment.
Table 2-1 shows that waste treatment is the primary application for the
surface impoundments in the municipal, industrial, and mining categories. The
majority of surface impoundments used for the agricultural purposes are
designated for storage; only the oil and gas industry utilize the majority of
their surface impoundments for disposal. Current surface impoundment design
practices utilize a flexible applications approach, normally employing a
combination of several application objectives (e.g., treatment followed by
temporary storage or treatment followed by ultimate waste disposal).
As previously mentioned, impoundment applications vary depending on the
type of industrial facility using the impoundment. Typical applications
identified for different industries are detailed below:
cml.153 2-1
-------
TABLE 2-1. RESULTS OF A SURVEY ON SURFACE IMPOUNDMENT APPLICATIONS
Storage Disposal Treatment
(Percentage Use in Each Application, %)
Agricultural
Municipal
Industrial
Mining
Oil & Gas
55
5
17
18
29
26
31
31
26
67
19
64
52
56
4
cml.153
2-2
-------
1. Mining and Milling Operations - production of various waste waters
such as acid mine water, solvent wastes from solution mining, and
wastes from dump leaching. Surface impoundments may be used for
separation settling, washing, sorting of mineral products from
tailings, and recovery of valuable minerals by precipitation.
2. Oil and Gas Industry - one of the largest users of surface
impoundments. Surface impoundments may contain salt water
associated with oil extraction and deep-well repressurizing
operations, oil-water, and gas-fluids to be separated or stored
during emergency conditions, and drill cuttings and drilling muds.
3. Textile and Leather Industry - Surface impoundments are primarily
used for wastewater treatment and sludge disposal. Organic species
impounded include dye carriers such as halogenated hydrocarbons and
phenols; heavy metals impounded include chromium, zinc, and copper.
Tanning and finishing wastes may contain sulfides and nitrogenous
compounds.
4. Chemical and Allied Products Industry - Surface impoundments are
used for wastewater treatment, sludge disposal, and residuals
treatment and storage. Waste constituents are process-specific and
include phosphates, fluoride, nitrogen, and assorted trace metals.
5. Other Industries - Surface impoundments are found at petroleum
refining, primary metals production, wood treating, and metal
finishing facilities. Surface impoundments are also used for the
containment and/or treatment of air pollution scrubber sludge and
dredging spoils sludge.
2.2 DESIGN AND OPERATION
Air emission rates are affected by the design and operation of surface
impoundments. The design and operating parameters considered most important
in determining emissions are: influent flow rate; surface area; liquid depth;
degree of aeration; retention time (or turnovers per year in the case of
disposal impoundments); physical design characteristics that influence the
effective wind speed across the surface of the impoundment; and for
impoundments where biodegradation is a factor, the biomass concentration.
2.2.1 Physical Design2
The most common and economical shape for a surface impoundment is
rectangular with straight sides. The rectangular shape is normally preferred
because it presents fewer problems during construction and lining. Circular
shapes increase the costs of grading, liner installation, and construction.
cml.153 2-3
-------
The three major positions of surface impoundments with respect to the natural
grade are (1) below grade, (2) above-grade, and (3) a combination (below and
above grades). A below-grade surface impoundment is excavated such that most
of the capacity is below the natural grade of the surrounding land. An above-
grade impoundment is built so that most of the capacity is at an elevation
higher than the immediate surroundings. Combination types have
characteristics of both the above and below-grade installations. The design
chosen is determined by the economics of storage, containment, excavation
difficulty, and material use. In general, most surface impoundments are
constructed as the combination type because this design minimizes earthwork
costs.
A knowledge of all the parameters which govern the depth of liquid in the
impoundment are used to properly size the unit. These parameters include
changes in liquid level due to storm surges as well as factors which
influence the behavior of liquid while in the impoundment, such as wind speed
and dike slope. Determination of these parameters will, in part, dictate the
final design of the impoundment by establishing the maximum operating liquid
level and minimum freeboard requirements.
Freeboard is typically defined as the distance between the actual liquid
height in the impoundment and the top of the impoundment (height at which
stored liquid would overflow). Freeboard has an affect on the air emission
rate from an impoundment. As the freeboard height decreases, the liquid
surface is more exposed to the ambient wind above the impoundment. For this
reason, air emissions will increase as the freeboard height decreases.
Determination of the design freeboard height requires that several specific
parameters, including fetch, maximum liquid depth, and embankment slope, be
accurately measured. Figure 2-1 presents the relationship of freeboard to
wind, surface area, depth, and fetch (or effective diameter) in a surface
impoundment. Fetch is defined as the maximum unobstructed distance across a
free liquid surface over which wind can act. Typically, the longest fetch
will be the diagonal measurement across the surface of the impoundment. The
fetch to depth ratio for the impoundment is an important parameter in
determining emissions.
cml.153 2-4
-------
uzozeetz
U_ CO
J
.£?
2-5
-------
It should be noted that the models described in Chapter 3 do not
incorporate a variable for freeboard. If freeboard at a particular facility
is significant, then the effective windspeed will be less than the measured
windspeed. Currently no data are available to provide guidance on adjusting
windspeed to account for freeboard.
In addition to freeboard, the effective wind speed across the liquid
surface of the impoundment is affected by other parameters. These include:
the design of the dikes around the impoundment and whether the impoundment is
constructed above or below grade. Design characteristics of the impoundment
that significantly decreases the effective wind speed above the liquid surface
will decrease air emissions.
The surface area and volume of the impoundment also have a significant
effect on air emissions. A 1981 survey compiled by Westat3 showed that the -
median surface area for storage impoundments was 1,500 m2 and the median depth
was 1.8 m. These median values for area and depth yield a total liquid volume
of 2,700 m3.
2.2.2 Flow and Level Control*
The flow of liquid into and out of an impoundment, and the need to
control it, will be defined by the treatment process involved or the storage
requirements of the surface impoundment. The major components which
ultimately govern the flow into and out of an impoundment are the inflow and
outflow structures. In some situations, such as flowthrough systems, inflow
and outflow structures may have the same design. However, in most cases they
will differ. Normally the inflow structure is a pipe equipped with a flow
valve. Typical outflow structures are weirs, spillways, and drain pipes.
Some impoundments are equipped with active level control systems. Level
sensing elements, such as floats, probes, and ultrasonic beams, detect changes
in the liquid level. This level change causes a level control element such as
a pump or control valve to take action and influence the amount of liquid
flowing into or out of the impoundment.
As discussed in the previous section, values for the median surface area
and depth of impoundments were compiled during a survey by Westat.
Information on retention times for impoundments were also gathered during the
study. Based on the survey, retention times ranged from 1 to 550 days, with
cml.153 2-6
-------
over half of the values at 46 days or less.5 The flow range represented by
this range in retention times can be determined from the median value for
impoundment volume reported in the previous section (2,700 m3). A flow range
of 5 to 2,700 m3 per day (m3/day) is obtained by dividing the median volume by
the range in retention times. These ranges in flow and retention time have a
significant impact on air emissions.
2.2.3 Biodearadation
Surface impoundments may be designed for biological activity. The major
mechanisms of organic removal in biologically active impoundments include
biodegradation, volatilization, removal with the effluent, and removal by
adsorption on the waste sludge. A study of purgeable volatile organics in a
pilot-scale wastewater treatment system showed that less than 0.4 percent
(generally lees than 0.1 percent) of the volatiles were found in the waste-
activated sludge.6 Another study of municipal wastewater treatment concluded
that only a modest amount of purgeable toxics were transferred to the sludge.7
A third study found that the concentrations of volatiles organics in sludges
from pilot-scale systems were generally comparable to or less than the
corresponding concentrations in the process effluent.8 This indicated that
volatile organics do not have a high affinity for wastewater solids and do not
concentrate in the sludges.
Biologically active impoundments are used to treat entire plant wastes as
well as to polish the effluent from other treatment processes. Solids usually
settle out in the impoundment or are removed in a separate vessel. Generally,
the solids are not recycled; however, if the solids are returned, the process
is the same as a modified activated sludge process.9 For information
purposes, typical design parameters for an activated sludge process are given
in Table 2-2.10 Typical parameters associated with biologically active
impoundments are given in Table 2-3.u>12 The loading parameter is expressed
in terms of kg BOD per area or volume, and typical retention times in aerated
impoundments range from 7 to 20 days. The level of suspended solids in these
impoundments is over an order of magnitude less than the level in conventional
activated sludge processes. Although the parameters in Table 2-3 are listed
as "typical," large variations exist among facilities, and at a single
facility the values may change with time. For example, a study conducted
cml.153 2-7
-------
TABLE 2-2. DESIGN PARAMETERS FOR ACTIVATED SLUDGE PROCESSES5
F/M,a
kg BOD/ kg
Process
Conventional0
CSTRd
Contact
stabilization
Extended aeration
02 systems
biomass
0.2 -
0.2 -
0.2 -
0.05 -
0.25 -
day
0.4
0.6
0.6
0.15
1.0
Loading
kg BOD/m3
0.3 - 0
0.8 - 2
1.0 - 1
0.1 - 0
1.6 - 3
day
.6
.0
.2
.4
.3
MLSS,"
1.5
3.0
1.0
4.0
3.0
6.0
9/L
- 3.0
- 6.0
- 3.0'
- 10f
- 6.0
- 8.0
Retention
time, h
4 - 8
3 - 5
0.5 - le
3 - 6f
18 - 36
1 - 3
*F/M = Food to microorganism ratio.
bMLSS = Mixed liquor suspended solids.
cPlug flow design.
dCSTR = Continuous stirred-tank reactor.
'Contact unit.
fSolids stabilization unit.
cml.153
2-8
-------
o
14
a
0
LU
O
o
CO
0
a
LU
CO
LU
a
CO
1
LU
Q
|
I-H
.
co
i
CM
LU
CO
>-
_J
o \
cu en
o
cu >
a. -a
v» -^
3 r
CO O
V)
(
** *
o -T
fW ">
>:o-
«_* a»
^o
c >»
o *o
r- -o
M
C "
cu cu
M E
CU -i-
CU r-
^fc
£ -S
-3 cns
'O ^9 ^^
o o o
.r-r-oa
cx
^~ -!M£
o
^
*T
u
*TT
a.
^*>
cu
a.
l^*
jam.
O
^f
*
O
1
I 1
r4
o
in
CM
I
CM
O
00
in
CM
o
S- -
M- -U
C
)-> CU
C E
cu +->
1 fQ
i eu
^~ +J
LU
V)
o
0
a.
cu
(O
s-
cu
to
vT
S-
cu
r*~
>r_
t4_
(^
-o
C
o
a.
u
^3
0
s-
O)
(0
C
to
t^
o
o
co
o
1
10
CM
o
VO
1
CM
0
CM
^
CM
CO
O
1
GO
o
o
o
V)
cu
v>
2
p^
ra
si
4^
v>
3
C
CU
(0
i-
0)
o
cu cu
CO -Mr
> jQ
r- E to
+) '^^ r^
tO l"~ !
r CU >
3 S- (TJ
U CU
(O -C VJ
O V) «»
CU C CU
o o i.
»O -r- 10
O V) +>
r"~ ^3 tO ^3
S- C 3 C
CU O +-> 03
> O. -i- r
O CO
CO
o
1
^^
1 1
o
m
^*
0
1
CO
*
o
o
1
o
-D
CO
o
0
1
CM
o
*
o
+J
(«
cu
1.
-M
O
o
cu
VI
3
>>
r»
(O
u
cu
cu
u
f)
0
i-
QJ
s_
cu
^J
4J
0
E
o
(4«
-(->
CU
3
r~"*
(^
(|M
CU
CU
i 01
-0 03
^3 V*
v> i -E*
eu o (0
0 v>
-§ = =
0 -
t. jc
^I.?
"r r-
V> ^
CU *-> -o
V) C X
V) CU a) V)
CU 3 -O
O i uv<-
O <«- Q i
i-<4- O 0
CL 0) CO vt
10
i i
O
1
GO
O
0
in
i
in
CM
o
in
i
o
CM
O
GO
0
I
vo
""^
o
V)
cu
+J
V)
fO
p^
R)
^,
^J
v»
3
o
C
u
.a
0
s-
cu
to
C
-------
over 12 months at an aerobic impoundment used to treat municipal wastewater
reported suspended solids levels of 0.02 to 0.1 g/L and volatile suspended
solids of 0.01 to 0.06 g/L.13 Anther study of eight quiescent impoundments at
four different sites with confirmed biological activity estimated active
biomass concentrations from the rate of oxygen consumption that ranged from
0.014 to 0.22 g/L with an average of 0.057 g/L.1*
The biomass concentration is an important parameter in estimating
biadegradation rates. The best value to use for a specific site is a direct
measurement such as volatile suspended solids for the system of interest. In
the absence of site-specific data, a number may be chosen from the ranges for
suspended solids given in Tables 2-2 and 2-3. Alternatively, typical or
default values for biomass concentration given in Table 2-4 may be used.
Numerous models have been proposed for the removal of organic compounds
by biodegradation.15 However, there is a general agreement that the
biodegradation rate is zero-order with respect to concentration for high
organic loadings relative to biomass, and becomes first-order with respect to
concentration for low residual organic levels.
First-order or monod-type kinetics assumes that biodegradation of any one
constituent is independent of the concentrations of other constituents. The
significant features of this model are that at high concentrations, the
biodegradation rate is independent of (or zero-order with respect to) the
component concentration; and at low concentrations the rate becomes directly
proportional (or first-order to) the component concentration.
2.2.4 Mechanical Aeration
Mechanical aerators are often used for the purpose of supplying oxygen
required by the microorganisms to biodegrade pollutants in the impoundment.
However, not all impoundments equipped with aeration devices contain biomass,
which is necessary for biodegradation to occur. Some impoundments are aerated
for purposes such as evaporative cooling.
The emission models used by the computer program require values for the
parameters that describe the mechanical aeration system. Typical parameters
for impeller speed and diameter are 126 rad/s (1,200 rpm) and 61 cm (2 ft),
respectively. For impeller power, Metcalf and Eddy, Inc., suggest a range of
cml.153 2-10
-------
|C
TABLE 2-4. TYPICAL OR DEFAULT VALUES FOR BIOMASS CONCENTRATION8
Units Biomass concentration (g/L)
Quiescent impoundments 0.05b
Aerated impoundments 0.30
Activated sludge units 4.0d
"These values are recommended for use in the emission equations when site-
specific data are not available.
bBased on the range (0.0014 to 0.22) and average (0.057) from actual
impoundments.
°From the data in Table 2-3 for aerated impoundments. Assumes biomass is
approximated by the suspended solids level.
dMidrange value from Table 2-2 for CSTR based on mixed liquor suspended
solids.
cml.153 2-11
-------
15 to 30 kw/1000 m3 (0.6 to 1.15 hp/1,000 ft3) for mixing in impoundments.16
However, more power may be needed to supply additional oxygen or to mix
certain treatment solutions such as in activated sludge units. A review of
information gathered during the evaluation of TSDF showed power usage as high
as 92.2 kw/1000 m3 (3.5 hp/1,000 ft3) at a specific TSDF impoundment.17 Data
included in the TSDF report show an average value of 52.67 kw/1000 m3
(2.0 hp/1000 ft3) for activated sludge units.15
Data from Metcalf and Eddy indicated that an aerator with a 75-hp motor
and a 61-cm diameter propeller turning at 126 rad/s would agitate a volume of
658 m3 (23,240 ft3).18 Assuming a uniform depth in the impoundment of 1.8 m,
the agitated surface area was estimated as 366 m2 (658/1.8). The agitated
surface is assumed to be turbulent and comprises a 24 percent (366/1,500 x
100) of the total area. The balance of the surface area of the impoundment
(76 percent) is assumed to be quiescent. As a comparison, Thibodeaux reported
a turbulent area of 5.22 m2/hp and investigated a range of 0.11 to 20.2 m2/hp.
The value of 5.22 m2/hp and a total of 75 hp yields an estimated turbulent
area of 392 m2 (26 percent), which compares favorably with the 24 percent
turbulent area calculated by the alternative approach.19 For activated sludge
units, data presented in the TSDF report show an average agitated surface area
of 52 percent.15
cml.153 2-12
-------
2.3 REFERENCES
1. EPA. 1983. Surface Impoundment National Assessment Report. EPA 570/9-
84-002. U. S. Environmental Protection Agency. Cincinnati, OH.
2. K. W. Brown and Associated, Inc. Hazardous Waste Surface Impoundments.
Prepared for the U. S. Environmental Protection Agency. Contract No. 68-
03-1816.
3. Westat Corporation. National Survey of Hazardous Waste Generators and
TSDF's Regulated Under RCRA in 1981. Prepared for the U. S.
Environmental Protection Agency. Contract No. 68-01-6861. April 1984.
4. Reference 2. pp. 3-80 through 3-93.
5. Reference 3.
6. Petrasek, A., B. Austern, and T. Neiheisel. Removal and Partitioning of
Volatile Organic Priority Pollutants in Wastewater Treatment. Presented
at the Ninth U. S. - Japan Conference on Sewage Treatment Technology.
Tokyo, Japan. September 1983. p. 16.
7. Bishop, D. The Role of Municipal Wastewater Treatment in Control of
Toxics. Presented at the NATO/CCMS Meeting. Bari, Italy.
September 1982. p. 18.
8. Hannah, S., B. Austern, A. Eralp, and R. Wise. Comparative Removal of
Toxic Pollutants by Six Wastewater Treatment Processes. Journal WPCF.
58(1):30. 1986.
9. Metcalf and Eddy, Inc. Wastewater Engineering. New York, McGraw-Hill.
1972. p. 542-554.
10. Eckenfelder, W., M. Goronszy, and T. Quirk* The Activated Sludge
Process: State of the Art. CRC Critical Review in Environmental
Control. 15(2):148. 1984.
11. U. S. Environmental Protection Agency. EPA Design Manual: Municipal
Wastewater Stabilization Ponds. Publication No. EPA-625/1-83-015.
October 1983. p. 3.
12. Reference 19, p. 557.
13. Englande, A. J. Performance Evaluation of the Aerated Lagoon System at
North Gulfport, Mississippi. Prepared for U. S. Environmental Protection
Agency. Publication No. EPA-600/2-80-006. March 1980. p. 39-41.
14. Allen, C. Project Summary: Site Visits of Aerated and Nonaerated Surface
Impoundments. Prepared for U. S. Environmental Protection Agency.
Contract No. 68-03-3253. Assignment 2-8. June 1987. p. 2.
cml.153 2-13
-------
15. Hazardous Waste TSDF - Background Information for Proposed RCRA Air
Emission Standards, Volume 2, U. S. Environmental Protection Agency,
Office of Air Quality Planning and Standards, March 1988, p. C-26 - 27.
16. Reference 9, p. 502.
17. GCA Corporation. Hazardous Waste TSDF Waste Process Sampling. Prepared
for U. S. Environmental Protection Agency. Report No. EMB/85-HNS-3.
October 1985. p. 1-11.
18. Reference 9.
19. Thibodeaux, L. and 0. Parker. Desorption Limits of Selected Gases and
Liquids from Aerated Basins. AIChE Symposium Series. 72(156):424-434.
1976.
cml.153 2-14
-------
3.0 SURFACE IMPOUNDMENT EMISSION MODELS
Mass transfer models were developed to estimate pollutant emissions from
surface impoundments during EPA's evaluation of hazardous waste TSDF.1 The
basic estimation approach, the form of the emission equations, and the input
parameters required by the models are discussed in this chapter.
3.1 BASIC EMISSION ESTIMATION APPROACH
Emissions from surface impoundments result from the volatilization of
organic compounds at the water surface. In order to determine the rate of
volatilization, models based on two-film resistance theory were developed.
This theory assumes the rate limiting factor for volatilization is the overall
resistance to mass transfer at the liquid surface and the ambient air
interface. The overall resistance is due to the individual resistances in
both the liquid and gas phase films at the interface.
Individual mass transfer coefficients account for the resistances in the
liquid and gas phase films. These individual coefficients can be used to
estimate overall mass transfer coefficients for each pollutant. Air emissions
from the impoundment are estimated by applying these overall coefficients in
mass balance equations. The forms of the mass balance equations depend on a
number of factors which are discussed in more detail in the next section
(Section 3.2). The basic approach used by the models to estimate emissions
can be summarized as follows:
(1) estimate individual liquid and gas phase mass transfer coefficients
for each pollutant, kL and kg;
(2) estimate equilibrium constants for each pollutant from the following
expression: Kaq = H/RT
where: Keq = equilibrium constant
H = Henry's Law constant
R = ideal gas law constant
T = wastewater temperature
cml.153 3-1
-------
(3) estimate overall mass transfer coefficient for each pollutant from
the following expression: 1/K = l/kL + l/(kgK.q)
where: K - overall mass transfer coefficient
'(4) apply a mass balance around the surface impoundment to estimate
emissions
3.2 EMISSION EQUATIONS
The emission models account for the following factors concerning the
design and operation of the surface impoundment: (1) the flow regime through
the impoundment (i.e., flow-through or disposal), (2) the impoundment type
(i.e., aerated or nonaerated), and (3) whether pollutants are biodegraded in
the impoundment. These factors affect the correlations used to estimate the
individual mass transfer coefficients as well as the forms of the mass balance
emission equations.
3.2.1 Flow-through Impoundments
Flow- through impoundments act as temporary storage for wastewater prior
to subsequent treatment or discharge to a receiving body. Assuming a well-
mixed system with no reactions and no separate organic phase, the mass balance
for a flow- through impoundment yields the following equation:2
QC0 = QCL + V K^b^tK. + CJ + KACL
where:
Q » flow rate, m3/s
C0 = inlet concentration, g/m3
CL = bulk liquid and effluent concentration, g/m3
K^ = maximum rate constant, g/s-g biomass
Ks = half saturation constant, g/m3
bi = biomass concentration, g/m3
V = volume, m3
K = overall mass transfer coefficient, m/s
A = area, m2
cml.153 3-2
-------
In the equation, the pollutant mass loading into the impoundment is
represented by the term, QC0. The two predominant removal mechanisms
accounted for in the equation are volatilization and biodegradation. The
rates of removal by these two mechanisms are estimated from the terms, KA/V
(for volatilization) and VK^bjCL/JK, + CL) (for biodegradation). Volatile
organics not removed by these two mechanisms are assumed to leave with the
effluent flowing from the impoundment. The rate of removal with the effluent
is represented by the term, QCL.
To determine the fraction of volatile organics emitted or biodegraded
using the Monod model, the above equation is solved for the equilibrium or
bulk concentration, CL:
K'CL2 + [K.K' + (V/Q) K^b, - C0]CL - KSC0 = 0
where K' - (KA/Q + 1)
Using the quadratic formula,
CL = [-b + (b2 - 4ac)°-5]/2a
where
a = K' = (KA/Q + 1)
b = MKA/Q + i) + (v/qjK^b, - c0
c - -KSC0
[NOTE: The plus sign in the quadratic equation is selected to ensure positive
effluent concentrations.]
The fraction of the inlet organic emitted to the air is calculted by the
following equation:
falr = Mass of pollutant i emitted to the air = KAC.L/QC,,
Total mass of pollutant i
Therefore, for a well-mixed flow-through impoundment with biodegradation, the
expression for estimating the air emission rate (E, g/s) of each pollutant is:
cml.153 3-3
-------
E - fairQC0 = KA[-(KS(KA/Q + 1) + (V/Q)I^J)1 - CJ
+ [(KS(KA/Q + 1) + (V/QJK^A - C0)2
+ 4(KA/Q + l)(K3C0)]°-5]/[2(KA/Q + 1)]
For flow through impoundments which contain no biomass, the biomass
concentration (bj equals zero and no biodegradation of pollutants occurs in
the impoundment. For this case, the air emission equation reduces to the
following:
E W)C0 = [KA/(Q + KA)]QC0
As discussed in Section 3.1, individual liquid and gas phase mass
transfer coefficients are used to estimate the overall mass transfer
coefficient for each pollutant in the impoundment. Values for the individual
mass transfer coefficients depend on whether or not the impoundment is aerated
or nonaerated. Empirical correlations, available in the literature, can be
used to estimate values for these individual coefficients. The correlations
used in the computer program for nonaerated impoundments are presented in
Table 3-1.3 The correlations presented in Table 3-1 relate the individual
coefficients to the physical properties of the pollutants, the dimensions of
the impoundment, and the ambient wind speed. The correlations used in the
computer program for aerated impoundments are presented in Table 3-2.* These
correlations relate the individual coefficients to the physical properties of
the pollutants, the dimensions of the impoundment, and the characteristics of
the aerators.
3.2.2 Disposal Impoundments
Disposal impoundments are defined as units that receive wastewater for
ultimate disposal rather than for storage or treatment. Generally, wastewater
is not continuously fed to or discharged from these types of impoundments.
Therefore, the assumption of an equilibrium bulk concentration, which is
applicable for flow-through impoundments, is no longer applicable for disposal
impoundments; the concentration of volatile organics in a disposal impoundment
decreases with time. The emission estimating procedure accounts for the
decreasing liquid-phase concentration which is the driving force for air
cml.153 3-4
-------
TABLE 3-1. EQUATIONS FOR CALCULATING INDIVIDUAL MASS TRANSFER
COEFFICIENTS FOR VOLATILIZATION OF ORGANIC SOLUTES FROM
QUIESCENT SURFACE IMPOUNDMENTS
Liquid phase
Springer et al. (for all cases except F/D<14 and U10>3.25 m/s):
kL = 2.78 x 13.25)(m/s)
[DetherJ (143.25)(m/s)
|_D.th.rJ (14
-------
TABLE 3-1. EQUATIONS FOR CALCULATING INDIVIDUAL MASS TRANSFER
COEFFICIENTS FOR VOLATILIZATION OF ORGANIC SOLUTES FROM
QUIESCENT SURFACE IMPOUNDMENTS (Continued)
pG = density of air, g/cm3
Da - diffusivity of constituent in air, cm2/s
d. = effective diameter of impoundment - 4A 0-5
A = area of impoundment, m2.
Liquid phase
MacKay and Yeun (for F/D <14 and U10>3.25 m/s):
kL = 1.0 x 10'6 + 34.1 x 10'4 U* ScL-°'5 (U*>0.3) (m/s)
kL = 1.0 x 10'6 + 144 x 10'4 U*2'2 ScL-°'5 (U*<0.3) (m/s)
where
U* = friction velocity (m/s) - 0.01 U10 (6.1 + 0.63 U10)°'5
U10 - windspeed at 10 m above the liquid surface, m/s
ScL - Schmidt number on liquid side = ut -
ML = viscosity of water, g/cm-s
PL = density of water, g/cm3
Qv = diffusivity of constituent in water, cm2/s.
cml.153 3-6
-------
TABLE 3-2. EQUATIONS FOR CALCULATING INDIVIDUAL MASS TRANSFER
COEFFICIENTS FOR VOLATILIZATION OF ORGANIC SOLUTES FROM
TURBULENT SURFACE IMPOUNDMENTS
Liquid phase
Thibodeaux:
kL = [8.22 x 1(T9 J (POWR) (1.024)1-20 Ot 106 MWI/(Vaviq.)] (D,/D0 fj°'5 (m/s)
where
J - oxygen transfer rating of surface aerator, Ib O^h-hp
POWR = total power to aerators, hp
T = water temperature, "C
Ot = oxygen transer correction factor
MWL =? molecular weight of liquid
V = volume affected by aeration, ft3
^ = surface-to-yolume ratio of surface impoundment, ft"1
PL = density of liquid, g/cm3
Dw = diffusivity of constituent in water, cm2/s
D0 , = diffusivity of oxygen in water = 2.4 x 10~5,cm2/s.
Gas phase
Reinhardt:
ke - 1.35 x 10 '7 Re1'42 p°'4 ScG°-5 Fr'°-21 DaMW./d (m/s)
where
Re - d^py^ * Reynold's number
d - impeller diameter, cm
w - rotational speed of impeller, rad/s
cml.153 3-7
-------
TABLE 3-2. EQUATIONS FOR CALCULATING INDIVIDUAL MASS TRANSFER
COEFFICIENTS FOR VOLATILIZATION OF ORGANIC SOLUTES FROM
TURBULENT SURFACE IMPOUNDMENTS (Continued)
p, - density of air, g/cm3
/ia - viscosity of air, g/cm-s
- 4.568 x 10'7 T(°C) + 1.7209 x 10'*
P * pi 9c/(^d*V) = power number
Pj - power to impeller, ft«lbf/s
= 0.85 (POWR) (550 ft-lbf/s.hp)/number of aerators (NJ,
where 0.85 » efficiency of aerator motor
gc = gravitation constant, 32.17 1 bm-ft/s2/!bf
.»
PL = density of liquid, lb/ft3
d* - impeller diameter, ft
ScG - Schmidt number on gas side - nj(p* DJ
Fr = d*w2/gc = Froude number
Da - diffusivity of constituent in air, cm2/s
MWa = molecular weight of air.
cml.153 3-8
-------
emissions. For a disposal impoundment that is filled with a batch of
wastewater, the disappearance rate of a volatile pollutant due to air
emissions and biodegradation can be expressed as:5
, - KA/V) dt
where
Ct » concentration in the impoundment at time - t, g/m3
t = time since disposal (residence time in the impoundment), sec
After integration from time = 0 to time = t, the above equation yields the
following expression for the fraction of each pollutant emitted in the air:
falr - Mass of pollutant i emitted to the air =
Total mass of pollutant i
(l-Ct/Ca)(KA)/(KA + K^
where
Ct/C0 = exp (-K^At/K. - KAt/V)
Therefore, the average emission rate for each pollutant over the period of
time - t is:
For disposal impoundments which contain no biomass, the biomass
concentration (bj equals zero and no biodegradation of pollutants occurs in
the impoundment. For this case, the fraction emitted from the impoundment
reduces to:
where
C,yco = Concentration of pollutant i at time t
Initial concentration of pollutant i
exp (- KAt/V)
And, the average emission rate for each pollutant over the period of
time - t is:
E = falrvcyt
cml.153 3-9
-------
Values for the overall mass transfer coefficient (K) in the above
expressions are estimated by the same technique used to estimate overall
coefficients for flow-through impoundments. The individual liquid and gas
phase mass transfer coefficients are based on the same correlations presented
for flow-through impoundments in Table 3-1 and Table 3-2. Therefore, values
for the overall mass transfer coefficients in disposal impoundments depend
only on whether the impoundment is aerated or nonaerated.
cml.153
3-10
-------
3.3 REFERENCES
1. Office of Air Quality, Planning and Standards. U.S. Environmental
Protection Agency. Hazardous Waste Treatment, Storage, and Disposal
Facilities (TSDF) - Air Emission Models. EPA - 450/3-87-026.
December 1987.
2. Reference 1. p. 4-26, January 1989 Draft.
3. Reference 1. p. 4-6 through 4-7.
4. Reference 1. p. 4-31 through 4-32.
5. Reference 1. p. 4-45, January 1989 Draft.
cml.153
3-11
-------
4.0 DEFAULT PARAMETER DEVELOPMENT
In some cases, State and local air pollution control agencies may not
have information available for some of the inputs required by the air emission
models. However, State and local agencies should know at a minimum, the total
flow to the impoundment, the industries which generate the influent, whether
the impoundment is aerated or nonaerated, and the impoundment surface area.
Default values were developed during EPA's evaluation of TSDF for many of
the required inputs. However, default values were not developed for: (1) the
concentration profile in the wastewater feed to the impoundment, (2) the depth
of the impoundment, and (3) certain physical property data. The purpose of
this chapter is to discuss the methods and the data used to develop default
values for these parameters. Default parameters developed during the
evaluation of TSDF for the other inputs required by the emission models are
also covered in the chapter.
It is important to realize that the accuracy of the emissions estimate
decreases with the use of defaults and these values should only be used if no
data are available.
4.1 CONCENTRATION PROFILES
As previously discussed, the emission models require inputs for the
concentrations of each pollutant constituent in the feed to the surface
impoundment. These concentration data may not be available to State and local
agencies. For this reason, methods were developed to assign default
concentration values based on the minimum information expected to be available
in all cases. However, concentration defaults should not be used for
estimating individual toxic emissions.
The first step was to develop raw concentration profiles for each
industrial category. These profiles will be used to define the composition of
the impoundment feed based on the industrial categories discharging to the
impoundment. The development of the raw concentration profiles is discussed
in Section 4.1.1.
cml.153 4-1
-------
In cases where process units in more than one type of industrial category
feed the impoundment, a flow weighting scheme is required to use the raw
concentration profiles developed for each industry. This flow weighting
scheme is presented in Section 4.1.2. If the impoundment is located at a
POTW, it is also necessary to know what percentage of the feed to the
impoundment is from industrial (rather than municipal) sources. The
development of this factor is discussed in Section 4.1.3.
There are several terms which are important to the following discussion.
These are defined as follows.
Direct Discharge - Industrial facilities which collect wastewater, treat
it on-site, and discharge the treated water to a receiving stream are
called direct dischargers. Their effluent flows are termed direct
discharges.
Indirect Discharge - Some industrial facilities collect wastewater and
send it to a publicly owned treatment work (POTW). The POTW then treats
this wastewater along with any wastewater it receives and discharges the
water to a receiving stream. In this case, the industrial facility is
called an indirect discharger.
Raw Concentration - Raw concentration refers to the concentration of
pollutants prior to any treatment. For a direct discharge, raw
concentration is the concentration prior to the facilities on-site
treatment facility.
Current Concentration - Current concentration refers to the concentration
of pollutants after pretreatment. For an indirect discharge, current
concentration is the concentration in the effluent sent to the POTW.
4.1.1 Industrial Category Raw Concentrations
The raw concentration profiles for each of the industrial categories
covered by this study were calculated directly from the Domestic Sewage Study
(DSS)1 data by dividing pollutant loadings (mass per unit time) by total
indirect wastewater flows (volume per unit time). The DSS covers only
indirect discharges.
It was assumed, however, that the raw concentrations for indirect
discharges are approximately the same as direct discharges from these
industrial categories. That is, the raw pollutant concentrations in process
wastewater in each of these categories are not affected by whether wastewater
treatment is conducted on-site or off-site. It is not expected that the types
of processes used by facilities in the same industry are strongly affected by
cml.153 4-2
-------
whether the facility indirectly or directly discharges wastewater. For this
reason, the average raw concentrations for indirect and direct dischargers
should be reasonably similar.
Table 4-1 is a list of the 29 industrial categories and the industrial
category code assigned to each category in the DSS. These industrial
categories constitute the larger generators of hazardous wastes. Each of the
industrial categories in Table 4-1 encompasses multiple Standard Industrial
Classification (SIC) codes grouped together for the purposes of the DSS. A
list of the SIC codes grouped in each of the industrial categories presented
in Table 4-1 is shown in Appendix A.
The pollutant loadings used to develop default raw concentrations were
obtained from Appendix G of the DSS and are presented in Appendix B.
Table 4-2 lists the 50 organic pollutants covered by the DSS. The pollutants
are classified as priority pollutants (P), and/or volatile pollutants (V),
and/or ignitable or reactive (I/R) pollutants. The indirect wastewater flow
rates presented in the DSS for each industrial category are shown in
Table 4-3. The primary data sources for the pollutant loadings and indirect
wastewater flow rates presented in the DSS are OWRS, Industrial Technology
Division (ITD) Development Documents, DSS Industry Profile Forms (updated data
from the development documents), and the Industrial Studies Data Base (ISDB)
developed by the Office of Solid Waste (OSW).
The ITD data bases were developed based on Section 308 surveys and
sampling data gathered under the Clean Water Act (CWA). The ISDB was based on
information gathered from Section 3007 surveys under authority of the Resource
Conservation and Recovery Act (RCRA). In the DSS, data on loadings for four
organic chemical industries were presented in both the ITD and the ISDB data
bases. Loadings are available for more pollutants in the ISDB. Therefore,
this data base was used in developing the default concentration profiles for
these four industries. All other industrial categories contain data gathered
only from the ITD development documents or an updated version in the DSS
Industry Profile Forms.
4.1.2 Flow Weighting of Concentration Profiles
At some facilities, wastewater generated by processes in more than one
industrial category may feed an impoundment. If the flows from each
cml.153 4-3
-------
TABLE 4-1. INDUSTRIAL CATEGORIES
Industrial
Industrial Category* Category Code
Adhesives and Sealants 1
Battery Manufacturing 2
Coal, Oil, Petroleum Products, and Refining 3
Dye Manufacturing and Formulation 4
Electrical and Electronic Components 5
Electroplating and Metal Finishing 6
Equipment Manufacturing and Assembly 7
Explosives Manufacturing 8
Gum and Wood Chemicals, and Related Oils 9
Industrial and Commercial Laundries 10
Ink Manufacturing and Formulation 11
Inorganic Chemicals Manufacturing 12
Iron and Steel Manufacturing and Forming 13
Leather Tanning and Finishing 14
Nonferrous Metals Forming 15
Nonferrous Metals Manufacturing 16
Organic Chemicals Manufacturing 17
Paint Manufacture and Formulation 18
Pesticides Manufacturing 19
Pharmaceuticals Manufacturing 20
Photographic Chemicals and Film Manufacturing 21
Plastics Molding and Forming 22
Plastics, Resins, and Synthetic Fibers Manufacturing 23
Porcelain Enameling 24
Printing and Publishing 25
Pulp and Paper Mills 26
Rubber Manufacturing and Processing 27
Textile Mills 28
Timber Products Processing 29
"Pesticides Formulation has been omitted from the original list of 30
industry categories because of the lack of data available for this
industrial category.
cml.153 4-4
-------
TABLE 4-2. DSS SELECTED CONSENT DECREE POLLUTANTS
Acrolein - P, I/R, V
Benzene - P, I/R, V
Bis-(2-Chloroethyl) Ether - P, I/R, V
Bis-(2-Ethyl Hexyl) Phthalate - P
Bromomethane - P, V
Butyl Benzyl phthalate - P
Carbon Tetrachloride - P, V
Chlorobenzene - P, I/R
p-Chloro-m-Cresol - P
Chloroethane - P, I/R, V
Chloroform - P, V
Chloromethane - P, I/R, V
2-Chloronapthalene - P
Di-N-Butyl Phthalate - P
1,2-Dichlorobenzene - P
1,3-Dichlorobenzene - P
1,4-Dichlorobenzene - P
1,1-Dichloroethane - P, I/R, V
1,2-Dichloroethane - P, I/R, V
1,1-Dichloroethylene - P, I/R, V
Diethyl Phthalate - P
2,4-Dimethyl Phenol - P
Dimethyl Phthalate - P
Di-N-Octyl Phthalate - P
Ethyl Benzene - P, I/R, V
Hexachloro-l,3-Butadiene - P
Hexachloroethane - P
Methylene Chloride - P, V
Naphthalene - P
Nitrobenzene - P
PCB (Polychlorinated biphenyls) - P
Pentachlorophenol - P
Phenol - P
1,1,2,2-Tetrachloroethane - P, V
Tetrachloroethylene - P, V
Toluene - P, I/R, V
Bromoform - P
1,2,4-Trichlorobenzene - P
1,1,1-Trichloroethane - P, V
1,1,2-Trichloroethane - P, V
cml.153
4-5
-------
TABLE 4-2. DSS SELECTED CONSENT DECREE POLLUTANTS (Continued)
Trans-l,2-Dichloroethylene - P, I/R, V
2,4-Dichlorophenol - P
1,2-Dichloropropane - P, I/R, V
Dichlorodifluoromethane - V
Trichloroethylene - P, V
Trichlorofluoromethane - V
2,4,6-Trichlorophenol - P
Vinyl Chloride - P, I/R, V
P = CWA priority pollutant
I/R = Ignitable or reactive compound
V = Volatile compound
cml.153
4-6
-------
TABLE 4-3. TOTAL INDIRECT FLOWRATES BY INDUSTRIAL CATEGORY
Total Indirect0
Discharge Flow
Industrial Category (MGD)
Adhesives and Sealants 2.7
Battery Manufacturing 7.9
Coal, Oil, Petroleum Products, and Refining 92.3
Dye Manufacturing and Formulation 11.3
Electrical and Electronic Components 33.5
Electroplating and Metal Finishing 575.7
Equipment Manufacturing and Assembly* 4,507.0
Explosives Manufacturing 1.0
Gum and Wood Chemicals, and Related Oils 3.5
Industrial and Commercial Laundries 526
Ink Manufacturing and Formulation 1.0
Inorganic Chemicals Manufacturing 18.5
Iron and Steel Manufacturing and Forming 430.7
Leather Tanning and Finishing . 6.4
Nonferrous Metals Forming 36.0
Nonferrous Metals Manufacturing1" 61.4
Organic Chemicals Manufacturing 65.9
Paint Manufacture and Formulation 0.8
Pesticides Manufacturing 4.3
Pharmaceuticals Manufacturing 48.0
cml.153 4-7
-------
TABLE 4-3. TOTAL INDIRECT FLOWRATES BY INDUSTRIAL CATEGORY
Total Indirect6
Discharge Flow
Industrial Category (MGD)
Photographic Chemicals and Film Manufacturing 1.6
Plastics Molding and Forming 18.4
Plastics, Resins, and Synthetic Fibers 21.2
Manufacturing
Porcelain Enameling 5.6
Printing and Publishing 46.4
Pulp and Paper Mills 1,029.3
Rubber Manufacturing and Processing 128.2
Textile Mills 339.2
Timber Products Processing 1.0
"Calculated from data found in Radian Memorandum, October 22, 1986; Subject:
Estimate of Solvent Dischargers to POTW from the Electroplating and Metal
Finishing and Equipment Manufacturing and Assembly Industrial Categories,
p. 4 and 10.
Calculated from Reference 2.
"Represents flow discharged from the industrial category to the POTW.
cml.153 4-8
-------
industrial category are known, then the average concentration can be
calculated from the raw concentration profiles for each category and the flows
for each category. If only the categories of the industrial dischargers are
known then it is necessary to develop a default flow weighted concentration
profile for the total flow stream.
To flow weight the raw concentration profiles developed for each
industry, total flow rates (indirect plus direct) for each industry were used.
Total industrial flow rates listed by SIC code are available in the 1982
Census of Manufacturers' (COM) subject series "Water Use in Manufacturing".2
Flow rate data gathered from this source are summarized in Table 4-4 which
lists the industrial categories, industrial category codes, total number of
indirect plus direct industrial dischargers, and total industrial flow rates.
Total .flow rates for Adhesives and Sealants, Battery Manufacturing,
Explosives Manufacturing, Industrial and Commercial Laundries, Ink
Manufacturing and Formulation, Leather Tanning and Finishing, and Printing and
Publishing are not available in the COM. .For these industries, total indirect
flow rates from the DSS were divided by the total number of indirect
dischargers to get an average flow rate per facility for these industrial
categories. With this average flow rate per facility, a total industrial flow
rate (by industrial category code) was obtained by multiplying this average
flow per facility by the total number of facilities in that industry (direct
plus indirect dischargers).
The following equation is used to determine the flow-weighted
concentration of each pollutant in the feed:
CljFW = sun of concentration of pollutant i multiplied by the flowrate of industrial category code i
sun of f I curate from industrial category code j
(Ci.iFi + Ci<2F2 + ........ ClfBFJ/ i Ft
where:
CI.FW = flow-weighted concentration of pollutant i
Cltl = concentration of pollutant i in the first industrial category
code
cml.153 4-9
-------
TABLE 4-4. WATER DISCHARGE STATISTICS1
Assigned Total No.
Industrial Dischargers
Category (Direct and
Industrial Category Code Indirect)
Adhesives and Sealants19
Battery Manufacturing1*
Coal, Oil, Petroleum Products
and Refining
Dye Manufacturing and Formulation
Electrical and Electronic Components
Electroplating and Metal Finishing
Equipment Manufacturing and Assembly
Explosives Manufacturing1"
Gum and Wood Chemicals, and
Related Oils
Industrial and Commercial Laundries'5
Ink Manufacturing and Formulationb
Inorganic Chemicals Manufacturing
Iron and Steel Manufacturing and
Forming
Leather Tanning and Finishing15
Nonferrous Metals Forming
Nonferrous Metals Manufacturing
Organic Chemicals Manufacturing
Paint Manufacture and Formulation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
307
170
236
75
208
872
105,772
28
10
68,800
460
301
259
158
201
162
211
41
Total Flow*
Discharged
(MGD)
2.8
9.0
692.4
30.9
26.5
68.3
5,763.0
7.0
6.5
528.0
2.1
743.4
1,867.1
7.2
76.1
117.4
343.5
2.1
cml.153
4-10
-------
TABLE 4-4. WATER DISCHARGE STATISTICS (Continued)
Industrial Category
Pesticides Manufacturing
Pharmaceuticals Manufacturing
Photographic Chemicals and Film
Manufacturing
Plastics Molding and Forming
Plastics, Resins, and Synthetic
Fibers Manufacturing
Porcelain Enameling
Printing and Publishing11
Pulp and Paper Mills
Rubber Manufacturing and Processing
Textile Mills
Timber Products Processing
Assigned
Industrial
Category
Code
19
20
21
22
23
24
25
26
27
28
29
Total No.
Dischargers
(Direct and
.Indirect)
18
112
25
219
184
91
38,763
600
175
620
223
Total Flow*
Discharged
(MGD)
15.3
87.1
15.7
33.6
331.3
10.8
46.5
1,760.2
87.4
103.7
68.8
*Zero dischargers, or dischargers to the ground (well, spray, seepage) were
not included.
Calculation from Domestic Sewage Study (DSS).
cml.153
4-11
-------
Ci,n s Concentration of pollutant i in the nth industrial category
code
Fx = relative flow rate of wastewater from the first industrial
category code
Fn = relative flow rate of wastewater from the nth industrial
n
category code
The relative flow rates (FJ used in the equation are the total wastewater
flow rates obtained for each industry from the COM. The concentration
variables used in the equation (C1>n) are obtained from the raw concentration
profiles developed for each industrial category.
4.1.3 Surface Impoundments at POTW
At POTW, the total flow to the surface impoundment consists of both
municipal and industrial wastewater. For this reason, the concentration of
pollutants in the industrial wastewater will be diluted by the municipal flow.
Therefore, it was necessary to develop a default value for the percentage of
industrial flow in wastewater to POTW. This value is used by the program to
adjust the raw industrial concentrations to account for the municipal flow to
the impoundment.
The contribution of municipal and industrial flow rates to the total feed
for approximately 1,600 POTW are listed in the 1984 NEEDS data base.3 Based
on this source, industrial flow rates were found to compose 19.5 percent of
the total flow rates to POTW on a national basis. This factor will be used to
normalize the raw concentration profiles in cases where the impoundment is
located at a POTW. That is, if the total, but not the industrial flow to the
impoundment is known, the raw concentrations developed for each industrial
category will be multiplied by 0.195 to account for the dilution by
non-industrial wastewater sources.
4.2 DEPTH OF IMPOUNDMENT
Depth of the impoundment is also needed as an input parameter for the
emission models. A correlation was developed for the default depth from data
in Metcalf and Eddy's Wastewater Engineering.4 Several approaches were
evaluated. Plots of (1) retention time versus depth, (2) depth versus the
cml.153 4-12
-------
ratio of flow rate to surface area, and finally (3) flow rate versus depth
were generated. Data were used for four types of treatment processes to
generate the plots. Table 4-5 lists these processes and their applications.
Table 4-6 lists the respective ranges for surface area, retention time, depth,
and flow rate for each process. Each plot was generated by matching the
minimum and maximum values in each range for each parameter and each process.
That is, to generate the plot of flow rate versus depth, the minimum value of
the depth parameter in each process was plotted versus the minimum value for
flow rate in each process. The maximum value of the depth parameter in each
process was plotted versus the maximum value for flow rate in each process.
The plot of flow rate versus depth was found to provide the best
correlation, giving a linear relationship between flow rate and depth. The
four processes were broken into two groups, flow-through and non-flowthrough
(or disposal) impoundments, because of the great differences in data ranges.
Anaerobic processes have such long retention times that they can be considered
as non-flowthrough, or disposal impoundments. The other three processes are
flow-through. Figure 4-1 shows the plot of flow rate, Q, versus depth, D, for
flow-through and disposal impoundments. Given a specific flow rate, a default
depth can be determined by the following linear equations.
Flow-through Q = 4673.30D - 3809.5 Q > 1446 m3/day
Q = 863.8D 0 < Q < 1446 m3/day
Disposal Q = 354.60D - 700 Q > 253 m3/day
Q - 101.2D 0 < Q < 253 m3/day
In order to insure that the calculated default depth produces a
reasonable retention time for flow through impoundments, limits were placed on
retention times. Table 4-7 presents the flow through impoundment retention
times. These limits are used by the program to calculate minimum and maximum
depths based on the input flow and surface area. The default depth is
compared to the minimum and maximum depths. If the default depth does not
fall between the minimum and maximum depth values, then the default depth is
cml.153 4-13
-------
TABLE 4-5. SURFACE IMPOUNDMENTS
Type
Common
Application
Aerobic
Maturation or
tertiary pond
Aerobic -
Anaerobic
(oxygen source:
algae)
Aerobic -
Anaerobic
(oxygen source:
surface aerators)
Anaerobic
Facultative pond
Facultative pond with
mechanical aeration
Anaerobic lagoon
(pond), anaerobic
pretreatment ponds
Used for polishing
effluents from
conventional secondary
treatment processes such
as trickling filter or
activated sludge.
Treatment of untreated,
screened or primary
settled wastewater and
industrial wastes.
Treatment of untreated
screened or primary
settled wastewater and
industrial wastes.
Treatment of domestic
and industrial wastes.
cml.153
4-14
-------
TABLE 4-6. TYPICAL DESIGN PARAMETERS FOR SURFACE IMPOUNDMENTS
Type Surface Area (A) T Depth Flowrate (Q)a
(m2) (day) (m) (m3/day)
Aerobic 10120 - 40470 5-20 1-1.5 2024 - 3035
Aerobic/ 10120 - 40470 7-30 1-2 1446 - 2698
Anaerobic (Oxygen Source: Algae)
Aerobic/ 10120 - 40470 3-10 2-6 6747 - 24282
Anaerobic (Oxygen Source: Aerators)
Anaerobic 2020 - 10120 20 - 50 2.5 - 5 253 - 1012
"Flowrate calculated by using available ranges. Q - V/T = AD/T
cml.153 4-15
-------
a.
a>
a
3
I/J
i.
ai
it
o
4-16
-------
TABLE 4-7. LIMITS ON FLOW THROUGH IMPOUNDMENT RETENTION TIME
Impoundment Type
Retention Time Limits
Minimum
Maximum
Quiescent
Aerated
Activated Sludge
10 days
5 days
5 hours
30 days
10 days
10 hours
cml.153
4-17
-------
set equal to the minimum or maximum depth (whichever is closer). If the user
manually inputs a depth which falls outside the minimum and maximum values
± 10 percent, the program will use the manually input depth but will flag the
input for the user.
4.3 OTHER INPUT PARAMETERS REQUIRED BY THE EMISSION MODELS
Section 4.1 and 4.2 discussed the development of concentration and depth
defaults required for use in the models. The purpose of this section is to
provide information on the default values developed during the TSDF project
for the other input parameters required by the model.
The types of other default parameters fall into two categories: 1)
pollutant-specific parameters, and 2) site-specific parameters. The
pollutant-specific default parameters are contained in Appendix C. These
parameters include physical properties (i.e., diffusivities, vapor pressures)
which are specific to a particular pollutant. The site-specific parameters
and defaults for these parameters are provided in Table 4-8.
cml.153 4-18
-------
TABLE 4-8. SITE-SPECIFIC DEFAULT PARAMETERS
Default Parameter
Default Value
Temperature of water
Windspeed
Biomass concentration (for biologically
active systems)
Quiescent impoundments
Aerated impoundments
Activated sludge units
Total power to aerators
(for aerated SI)
(for activated sludge)
Power to impeller (for aerated SI)
Impeller speed (for aerated SI)
Impeller diameter (for aerated SI)
Turbulent surface area
(for aerated SI)
(for activated sludge)
Oxygen transfer rating to surface
aerator (for aerated SI)
Oxygen transfer correction factor
(for aerated SI)
25°C
4.47 m/s
0.05 g/1
0.30 g/1
4.0 g/1
0.75 hp/1000 ft3
2 hp/1000 ft3
0.85 (total power to aerators)
126 rad/s (1200 rpm)
61 cm (2 ft)
0.24 (total surface area of SI)
0.52 (total surface area of SI)
3 Ib oxygen/hp-hr
0.83
cml.153
4-19
-------
4.4 REFERENCES
1. Science Applications International Corporation. Domestic Sewage Study
(DSS) EPA 68-01-6912. U. S. Environmental Protection Agency, Analysis
and Evaluation Division, Washington, D. C., October 1985.
2. 1982 Census of Manufacturers, MC82-S-6 subject series, "Water Use in
Manufacturing", U. S. Department of Commerce, Bureau of the Census, March
1986.
3. 1984 NEEDS survey to Congress: Assessment of Publicly Owned Wastewater
Treatment Facilities in the United States. U. S. EPA Office of Municipal
Pollution Control, Municipal Facilities Divisions, Washington, D. C.,
February 1985.
4. Metcalf, and Eddy. Wastewater Engineering Treatment/Disposal/Reuse.
McGraw-Hill Book Company, New York, NY, 1979.
cml.153 4-20
-------
5.0 EMISSION ESTIMATION PROCEDURE
This section discusses the actual emissions estimation procedure used by
the computer program. The equations used were previously discussed in
Section 3.0, and the development of default parameters were discussed in
Section 4.0. In this section the actual step by step calculation procedure is
explained, and example calculations are presented.
The default parameters for concentration assume the surface impoundment
is the first portion of the treatment system. For cases where it is desired
to estimate emissions from an impoundment which is not the first unit, the
model can still be used if the concentration profiles are manually adjusted to
account for pollutant removal in the upstream treatment system. Systems with
short intervals of aeration followed by quiescent flow can be modeled by
assuming a series of impoundments and adjusting the concentration profile to
account for the air emissions from the previous treatment cycle.
The data in Table 5-1 is the minimum information expected to be available
by a program user. Assuming this minimum information scenario, Figure 5-1
shows a decision tree to estimate VOC emissions. There are 8 different
potential estimation procedures:
1) flowthrough, aerated, biological system,
2) flowthrough, non-aerated, biological system,
3) flowthrough, aerated, non-biological system,
4) flowthrough, non-aerated, non-biological system,
5) disposal, aerated, biological system,
6) disposal, non-aerated, biological system,
7} disposal, aerated, non-biological system, and
8) disposal, non-aerated, non-biological system.
For clarity of how the VOC emissions are estimated, two examples are
presented below. The two examples are:
I. disposal, non-aerated, non-biological impoundment
II. flowthrough, aerated, biological impoundment
cml.153 5-1
-------
TABLE 5-1. EXAMPLE MODEL DATA FOR A SURFACE IMPOUNDMENT
Total flow (Q) = 0.0623 m3/s (flowthrough), 0.001 m3/s (disposal)*'"
Surface Area (A) = 17,652 m2 (flowthrough), 9,000 m2 (disposal)a'b
Number of industrial flow rates discharged to impoundment0 - 3
SIC codes and industrial category for each industrial flow rate into the
impoundment0
1) 2865: Dye Manufacture and Formulation
2) 2879: Pesticides Manufacture
3) 2869: Organic Chemicals Manufacturing
The impoundment is flowthrough/disposal, aerated/non-aerated, and is/is not a
biological system.
*Ref 1, aeration basin dimensions.
bRef 2, disposal impoundments.
°Random choice
cml.153 5-2
-------
INPUT DATA:
Total flow to SI
Surface area of SI
Assign industrial
Category codes
DEFAULT VALUES:
POTW?
1 Concentration profile
' Depth
' Windspeed
Calculate liquid, gas, and
equilibrium mass transfer
coefficients K,, K(, and
K., for each pollutant
Calculate liquid, gas, and
equilibrium mass transfer
coefficiients K,, K(, and
K,4 for each pollutant
Calculate liquid, gas, and
equilibrium mass transfer
coefficiients K,, K(, and
-------
As shown in Figure 5-1, the first step for every case is to input the
minimum data required. Total flow to the impoundment, total surface area of
the impoundment, and industrial categories for each industrial flow rate into
the impoundment are required. The user must first match SIC codes with the
corresponding industrial category. The SIC codes and their corresponding
categories are shown in Appendix A. The assigned code addresses data
collected for that particular industrial category. The second step of the
program also used for every case, defines some general site-specific
parameters needed for estimating VOC emissions. These parameters are
concentration profile, industrial flow rates for each industrial category
code, depth of the impoundment, and windspeed. This step also requires the
user to specify if the impoundment is at a publicly owned treatment work
(POTW). If the impoundment is at a POTW and only the total flow is known, the
percent industrial flow will be estimated since the total flow is the sum of
municipal and industrial wastewater. For step two, these parameters will be
given a default value if no information is supplied.
Step three is the calculation of the individual and overall mass transfer
coefficients. In order to calculate these coefficients two branches of the
decision tree must be descended. The first branch describes the flow scheme
(flowthrough or disposal) while the second branching determines the type of
impoundment (aerated or nonaerated).
Step four is the calculation of the total emissions for a pollutant.
When performing a mass balance around the impoundment, if biodegradation takes
place, it must be accounted for as a removal process for both aerated and'
nonaerated impoundments. From Figure 5-1, it can be seen that the limbs for
the aerated and non-aerated cases come together before branching again. The
form of the emission equations also varies with flow scheme (i.e., flowthrough
or disposal).
The following two examples present the actual calculation steps involved.
I. Estimation procedure for VOC emissions for Model I - a non-aerated, non-
biological disposal impoundment.
cml.153 5-4
-------
Step 1: Input the minimum data
Q - 0.001 m3/s
A = 9,000 m2
number of industrial flow rates discharging to impoundment = 3 industrial
category codes for each discharge
Assigned
Number Industrial Category Code*
1 4
2 19
3 17
*The computer assigns an industrial category code to each industrial category.
Each category contains assigned SIC codes. (See Appendix A for a listing.)
Step 2: Define some general site-specific parameters.
A. Concentration profile
Unless the user can supply a concentration for each pollutant to the
impoundment, a default pollutant concentration is substituted by the program.
If the impoundment is at a POTW, current concentrations will be assigned. A
"current" concentration accounts for pretreatment of an industrial waste
before it is discharged to a POTW. For this example, the surface impoundment
is not at a POTW. Table 5-2 presents the appropriate concentration profile
for Model I.
B. Total Industrial Flow Rates for each Industrial Category Code given
The computer will first ask the user to supply the industrial flow rates
for each industrial category code. If this information is not available the
program will give a default value for the industrial flow rates, depending on
whether the impoundment is at a POTW or not. (Municipal flow must be
accounted for if the impoundment is at a POTW.) For this impoundment, the
total individual industrial flow rates are unknown. The default flow rates
are the following:
cml.153 5-5
-------
TABLE 5-2. CONCENTRATION PROFILE
Industrial Category: Dye Manufacture
and Formulation
Concent rat ion
Compound (g/m )
Acrolein
Benzene
Bis(2-ethyl Bexyl)phthalate
Bromomethane
Butyl Benzyl phthalate
Carbon tetrachloride
Chlorobenzene 7.86 x 10"*
Chloroform
Chloromethane
Oibutylphthalate
1,2 dichlorobenzene 9.6
1,4 dichlorobenzene 16.32
1,2 dichloroethane
2,4 dichlorophenol
Diethyl Phthalate
Ethyl Benzene
Methylene chloride
Napthalene
PCB's 0.0187
Phenol 0.179
1,1,2,2 tetrachloroethane
Tetrachloroethylene 1 . 67
Toluene
1,2,4 Trichlorobenzene 8.44 x 10"3
1,1,2 Trichloroethane
2,4,6 Trichlorophenol
Vinyl chloride
Organic Chemicals Pesticides
Manufacturing Manufacture
Total
Concentration Concentration Concentration
(g/m3) (g/m3) (g/m3)
2.6 x 10~* 2.29 x
11.68 9.13 x 10"2 10.29
8.02 7.07
4.25 X 10'3 3.74 x
8.02 -- 7.07
1.06 0.143 0.940
2.0 x 10"5 7.97 x
9.06 1.3 x 10'3 7.98
0.15 0.02 0.133
5 x 10~6 4.41 x
1.45 X 10"3 0.0878 0.763
1.29
3.83 X 10"* 1.53 x
0.724 2.90 x
3.50 x 10"5 3.08 X
8.25 5.44 x 10"* 7.27
1.04 1.09 0.960
8.02 7.07
1.48 x
27.30 0.108 24.07 '
9.98 x 10"6 -- 8.79 x
1.04 4.35 1.22
14.32 48.31 14.55
6.67 x
1.51 1.33
5.97 X 10"3 2.39 x
0.102 8.99 x
ID'*
icr3
Id'5
1()-6
10-5
10-2
ID"5
ID'3
io-6
nr*
i,r*
ID'2
cml.153
5-6
-------
Industrial Fraction of
Category Industrial Total Industrial Flow Rate
Code Category Flow Rate (m3/s)
4 Dye Manufacture 0.079 7.9 x 10"5
and Formulation
17 Organic Chemicals 0.881 8.81 x 10'4
19 Pesticides 0.040 4 x 10'5
Manufacturing
C. Depth of the Impoundment
If the depth of the impoundment is not easily obtained the computer will
assign a default depth which depends on the total flow rate and whether the
impoundment is flowthrough or disposal. For a disposal impoundment, the
equations are the following:
D = Q + 700 for Q > 253 m3/day
354.6
D = Q for 0 < Q < 253 m3/day
101.2
Q = total flow rate to impoundment (m3/day)
D = depth of impoundment (m)
Q = 0.001 m3/s (86.4 m3/day)
and D = 86.4 = 0.854 m
101.2
D. Windspeed
A default value of 4.47 m/s is assigned for the windspeed.
Step 3: Calculation of the individual liquid and gas mass transfer
coefficients, the equilibrium mass transfer coefficient, and the overall mass
transfer coefficient.
The individual liquid and gas mass transfer coefficients are calculated
based on the type of impoundment, aerated or nonaerated. For quiescent
impoundments, fetch to depth ratio (F/D) and windspeed (W) determine what
cml.153 5-7
-------
ultimate liquid and gas mass transfer coefficient equations are used. (The
fetch is the linear distance across the surface of the impoundment.) For this
model, F/D is 125.3 and the windspeed is 4.47 m/s (assigned default).
The liquid mass transfer coefficient, kx, is estimated using an equation
developed by Springer et. al., while the gas mass transfer coefficient kg is
estimated by MacKay and Matasuga:
A) kj (m/s) = 2.611 x 1(T7 U102[D,/Dether]2/3
U10 > 3.25 m/s
F/D > 51.2
B) kg (m/s) = 4.82 x 10'3 U0'78 ScG-0-67d/0-u
The equilibrium mass transfer coefficient, Keq, is also calculated for
each pollutant:
C) Ke
-------
B) kg(m/s) = 4.82 x 10'3 U°'78 ScG-°-67de"°'U
d. = 107.0 MG = 1.81 x 10-* g/cm-s
U = 4.47 m/s pG = 1.2 x 10'3 g/cm3
Da,B.nz.n. = 0.088 cm2/s
ScG - Schmidt number on the gas side, Me/ft Da
= (1.81 x lO'4 g/cm-s)/[(1.2 x 10'3 g/cm3)(0.088 cm2/s)]
= 1.71
kg(m/s) = 4.82 x 10-3(4.47)0-78(1.71)-°-67(107.0)-°-11
kg = 6.47 x 10'3 m/s
C) K.q = H/RT
H = Henry's law constant for benzene, 5.5 x 10"3 atm m3/g mol
R = universal gas constant, 8.21 x 10"5 atm m3/g mol °K
T = temperature, 298*K
KM = 5.5 x 10'3 atm m3/q mol
(8.21 x 10'5 atm m3/g mol °K)(298°K)
K.q =0.225
D) l/K(m/s) = l/kL + l/(Keq kg)
l/K(m/s) = 1/5.74 x 10'6 m/s + 1/[(0.225)(6.47 x 10'3 m/s)]
K = 5.72 x 10'6 m/s
Step 4: The final step is to determine the emissions of each pollutant.
The emissions equation is written as a mass balance around the impoundment and
considers removal mechanisms as well as volatilization. Biodegradation is a
removal mechanism that is considered for the emission models. For Model I
there is no biodegradaticn and the configuration is a disposal impoundment.
The following emission equation applies.
E(g/s) = falr Q C0
where falr = 1 - exp (-KA/Q)
or E(g/s) = [l-exp(-KA/Q)]QC0
Because more than one industrial flow rate is usually discharged to an
impoundment, the total inlet concentration and flow rate are used to calculate
the total emissions. From Table 5-2 the total concentration of benzene is
10.29 g/m3. The total inlet flow rate is 0.001 m3/s. The total emissions for
benzene in Example I is:
cml.153 5-9
-------
E(g/s) = [l-exp(-(5.72 x 10'6 m/s) (9,000 m2)/(0.001 m3/s))]
(0.001 m3/s)(10.29 g/m3)
E = 0.01029 g/s
II. Estimation procedure for emissions from Model II an aerated, biological
flowthrough impoundment.
Step 1; Input the minimum data.
The input data is the same as Model I for everything except the flow, now
0.0623 m3/s, and the surface area, now 17,652 m2.
Step 2: Define some general site-specific parameters.
A. Concentration profile
Because the category codes supplied to this industrial impoundment is
identical to Model I, the concentration profile is also identical.
B. Total industrial flow rates for each industrial category code
The following individual industrial flow rates apply:
Industrial Category Code Fraction of Flowrate Flowrate. (mVs)
4 0.079 4.92 x 10'3
17 0.881 5.49 x 10'2
19 0.040 2.48 x 10'3
C. Windsoeed
A default value of 4.47 m/s is assigned for the windspeed.
D. Depth of impoundment
For a flowthrough impoundment the equations for the default depth are the
following:
D - 0 + 3809.5 Q > 1,446 m3/day
4673.3
D = Q 0 < Q < 1,446 m3/day
863.8
Q = 0.0623 m3/s (5,383 m3/day)
cml.153 5-10
-------
and
5.383 + 3809.5
4673.3
D = 1.97 m
A check is made to ensure that a 1.97 m depth will keep the retention
time within the set limits. An area of 17.652 m2, depth of 1.97 m, and flow
rate of 0.0623 m3/s gives a retention time of 6.5 days, which is between the
limits of 5 and 10 days set for aerated impoundments.
Step 3: Calculation of the individual liquid, gas, and equilibrium mass
transfer coefficients, and the overall mass transfer coefficient.
Because we are now dealing with an aerated impoundment, the procedure for
estimating kL and kg is different than that for a nonaerated impoundment.
Both turbulent and quiescent mass transfer coefficients are calculated for
this case. For the turbulent area, the liquid mass transfer coefficient, k15
is estimated by Thibodeaux, while the gas mass transfer coefficient, kg, is
estimated by Reinhart.
Al) Mm/s) = [8.22 x 10-9J(POWR)(1.024)T-20Ot(106)MWI/Vav PJ]
(D,/D02>W)°-5
Bl) kg(m/s) = (1.35 x lO-^Re'-V'^c^Fr^-^MWyd
where p = Plgc/( PLd*V)
At this point, it is necessary to assign default values to some
parameters needed to solve the above equations. The following values are
assigned as default for an aerated impoundment: 1) oxygen transfer rating of
surface aerator, J = 3 Ib oxygen/hp hr; 2) Total power to aerators, POWR =
0.75 hp/1,000 ft3 of the impoundment; 3) Water Temperature, T = 25"C; 4)
oxygen transfer correction factor, Ot = 0.83; 5) Turbulent surface area, Vav =
0.24 (total surface area of impoundment); 6) impeller speed, w = 126 rad/s; 7)
power to impeller, Px = 0.85 (total power to the aerator); 8) impeller
diameter, d* = 2 ft (or d = 61 cm); and 9) number of aerators, Na = 3.
The calculation for the equilibrium mass transfer coefficient depends
only on the temperature for a specific compound, and therefore will always be
the same for any model provided the temperature is constant.
cml.153 5-11
-------
Cl, K., - J
The overall mass transfer coefficient is again calculated from the
individual coefficients.
Dl) l/K(m/s) = l/kt + l/(Keq k.)
Equations A) through D) will again be solved for the pollutant benzene.
Al) Mm/s) = [8.22 x 10-9J(POWR)(1.024)T-20Ot(106)
MWL(VavPJ3(DyD02(tf)°-5
Area = 17,652 m2 MWL - 18 g/g mol
D (Depth) - 1.97 m PL - 1 g/cm3
U10 - U - 4.47 m/s Dw, ... = 9.8 x 10'6 cm2/s
J = 3 Ib (yhp hr D0 = 2.4 x 10'5 cm2/s
POWR =0.75 hp/1,000 ft3 (V)
T = 25°C
Ot = 0.83
Vav = (0.24) (Area) (Depth)
Mm/s) - [8.22 x 10'9(3 Ib
-------
= [(0.85)(0.75 hp/1,000 ft3)(17,652 m2)(1.97 m)(550 ft lbf/s hp)
(ft3/0.028317 m3)/12(32.17 Ib ft/lbf s2)]/(ft3)(2 ft)5 (126 rad/s)3]
p - 1.154 x 106/3.994 x 109
p = 2.89 x 10'*
ScG Schmidt number on the gas side = nj PGDa
= (1.81 x 10'* g/cm-s)/[(1.2 x 10'3 g/cm3)(0.088 cm2/s)]
ScG - 1.71
Fr (Froude number) = d*w2/gc
= (2 ft)(126 rad/s)2/32.17 lbm ft/lbf-s2
Fr = 990
kg(m/s) - (1.35 x 1Q-7)(3.1 x 106)1'42(2.89 x 10-4)°-*(1.71)°-5
(990)-°'21(0.088 cm2/s)(29 g/g mol)/61 cm
ks = 0.110 m/s
Cl) Kaq = H/RT = 0.225
Dl) l/KT(m/s) = 1/Mm/s) + l/Keqk8(m/s)
l/KT(m/s) = 1/5.35 x 10'3 m/s + 1/[(0.225)(0.110 m/s)]
KT = 4.40 x 10'3 m/s
Now the mass transfer coefficients must be determined for the quiescent
area of the impoundment. The liquid mass transfer coefficient, klt for the
quiescent area is estimated using an equation developed by Springer, et.al.,
while kg is estimated using an equation developed by MacKay and Matasugu (F/D
= 76.1, U10 = 4.47 m/s).
A2) Mm/s) = 2.611 x ID'7 U102[DyDether]2/3
F/D > 51.2 U10> 3.25 m/s
B2) kg(m/s) = 4.82 x 10-3U0-78Scc-°-67d/0-u
C2) K Benzen. = 9.8 x 10'6 cm2/s
U10 =4.47 m/s
Fetch = effective diameter, de
d. = 2(AreaA)°'5 = 2(17,652 m2/*)0-5 = 149.9 m
F/D = 149.9 m/1.97 m = 76.1
cml.153 5-13
-------
Mm/s) = 2.611 x 10'7 (4.47 m/s)2[(8.5 x 10"6 cm2/s)(9.8 x 1(T5 cm2/s)]0'5
Mm/s) * 5.74 x 1(T6
B2) kg(m/s) = 4.82 x 10'3 U°-78ScG-°-67de-0-11
de = 149.9 m MG - 1.81 x 10'* g/cm s
U = 4.47 m/s pc = 1.2 x 10'3 g/cm3
Da,B.n«n. = 0.088 cm2/*
ScG =1.71 (Same calculation as Model I)
kg(m/s) * 4.82 x 10'3(4.47 m/s)°-78(1.71)-°-67(149.9 m)'0'11
kg = 6.24 x 10'3 m/s
C2) Keq = 0.225
D2) 1/Kpdn/s) = 1/Mm/s) + l/Keqkg(m/s)
l/Kq(m/s) = 1/5.74 x 10'6 m/s + 1/[(0.225)(6.24 x 10'3 m/s)]
Kp = 5.72 x 10'6 m/s
To determine the overall mass transfer coefficient an area-weighing of
the turbulent and quiescent K's is performed.
K(m/s) = KTAT
A
K(m/s) = [(0.24)(17,652 m2)(4.40 x 10'3 m/s) + (0.76)(17,652 m2)
(5.72 x 10'6 m/s)]/(17,652 m2)
K - 1.06 x 10'3 m/s
Step 4: Again the final step is to determine the emissions. A mass
balance is written around the impoundment. Model II is flow-through and
biodegradation is a removal mechanism.
The biomass concentration will vary depending on what type of impoundment
it is. If the user is unable to supply a biomass concentration then a default
value will be supplied. There are three default biomass concentrations 1)
0.05 g/1 for quiescent impoundments, 2) 0.30 g/1 for aerated impoundments, and
3) 4.0 g/1 for activated sludge units. Model II has a biomass concentration
of 0.30 g/1 (aerated impoundments).
The rate equation for monod-type biodegradation is written for
disappearance of a single component in terms of overall biomass concentration
and it is assumed that the biodegradation of any one constituent is
independent of the concentrations of other constituents.
cml.153 5-14
-------
A) Calculate the effluent concentration of benzene
CL - [-b + (b2 - 4ac)°-5]/2a
where
a = KA/Q +1
b = MKA/Q + 1) + (V/Q) K.JV C0
c = -KSC0
K - 1.06 x 1(T3 m/s
Q - 0.0623 m3/s
V - 34,774 m3
D - 1.97 m
bb.M.n. - 0.3 g/1 (300 g/m3)
Cb.nz.n. 10-29 9/m3
K^^n. = 5.28 x 10'6 g/g-s
Ks,b«nz.n. = 13.6 g/m3
a = [(1.06 x 10'3 m/s) (34, 774 m3)/(1.97 m) (0.0623 m3/s)] + 1
a = 301.3
b = (13.6 g/m3)[((1.06 x 10'3 m/s)(34,774 m3)/(1.97 m)/(0.0623 m3/s)) + 1]
+ ((34,774 m3)/(0.0623 m3/s))(5.28 x 10'6 g/g-s)(300 g/m3)
- 10.29 g/m3
b = 4,098 + 884 - 10.29
b = 4,972 g/m3
c = -(13.6 g/m3) (10. 29 g/m3)
c = -140 g2/m6
CL = [-4,972 g/m3 + ((4,972 g/m3)2 - 4(301. 3)(-140 g2/m6))°-5/(2(301.3))]
CL = (-4,972 + 4,989)/(602.6)
CL = 0.0282 g/m3
B) Calculate the fraction VOC emitted for benzene
K - 1.06 x 10'3 m/s
A - 17,652 m2
Q = 0.0623 m3/s
Cb.nzene = 10.29 g/m3
D = 1.97 m
V = 34,774 m3
cml.153 5-15
-------
falr = (1.06 x 1(T3 m/s)(17,652 m2)(0.0282 g/m3)/[(0.0623 m3/s)(10.29 g/m3)]
falr = 0.528/0.641
falr = 0.823
C) Calculate the VOC emissions for benzene
E(9/s) = falrQC0
E = (0.823)(0.0623 m/s)(10.29 g/m3)
E = 0.528 g/s
cml.153 5-16
-------
5.1 REFERENCES
1. Control of Volatile Organic Compound Emissions from industrial
Wastewater, Preliminary Draft. U.S. Environmental Protection Agency,
April 1988.
2. Hazardous Waste TSDF - Background Information for Proposed RCRA Air
Emission Standards Volume 2. U.S. Environmental Protection Agency Office
of Air Quality Planning and Standards, March 1988.
cml.153
5-17
-------
APPENDIX A
INDUSTRIAL CATEGORIES
-------
Appendix A contains a listing of the industrial categories covered by
the DSS. Each category is broken down into several subcategories which are
labeled by SIC code. Because there may be more than one SIC code for each
category, an industrial category code has been assigned to each industrial
category to alleviate any confusion.
cml.153 A-l
-------
Industrial Category Code: 1
Category Name: Adhesives and Sealants - Manufacture of household and
Industrial adhesives and sealants.
Subcategorv SIC Code
Animal Glues and Other Protein
Adhesives 2891
Starch Adhesives 2891
Synthetic Resin Adhesives - Rigid
Thermosets 2891
Synthetic Resin Adhesives -
Rubbery Thermosets 2891
Synthetic Resin Adhesives -
Thermoplastics 2891
Copolymers and Mixtures 2891
Inorganic Adhesives 2891
Other Adhesives 2891
cml.153 A-2
-------
Industrial Category Code: 2
Category Name: Battery Manufacturing - Facilities engaged in the
manufacture of primary and/or storage batteries.
Subcateaorv SIC Code
Cadmium 3691 3692
Calcium 3691 3692
Lead 3691 3692
Leclanche 3691 3692
Lithium 3691 3692
Magnesium 3691 3692
Zinc 3691 3692
Mercury 3691 3692
Other 3691 3692
cml.153 A-3
-------
Industrial Category Code: 3
Category Name: Coal. Oil, Petroleum Products, and Refining: - Petroleum
refining, and production of paving, roofing, and lubricating materials.
Subcateaorv SIC Code
Coal Coking and Oil and Tar Recovery 2951 2992 2999
Coal Tar Distillation 2951 2992 2999
Coal Gasification 2951 2992 2999
Coal Liquefaction 2951 2992 2999
Petroleum Distillation/
Fractionation-Fuel Gas Production 2911
Petroleum Distillation/
Fractionation-Light Distillates 2911
Petroleum Distillation/
Fractionation-Intermed. Prod.
Distillates 2911
Petroleum Distillation/
Fractionation - Heavy Distillates 2911
Crude Feedstock Conversion to
Petrochemical Production and
Integrated Plants 2911
cml.153 A-4
-------
Industrial Category Code: 4
Category Name: Dve Manufacture and Formulation - Manufacture of chemicals
which impart color to fabrics or other materials with which they come into
contact.
Subcateoorv SIC Code
Acid Dyes 2865
Azo Dyes 2865
Basic Dyes 2865
Direct Dyes 2865
Disperse Dyes 2865
Fiber-Reactive Dyes 2865
Fluorescent Dyes 2865
Mordant Dyes 2865
Solvent Dyes 2865
Vat Dyes 2865
Other Dyes 2865
Organic Pigments 2865
cml.153 A-5
-------
Industrial Category Code: 5
Category Name: Electrical and Electronic Components - Manufacture of
components that enable devices to utilize electricity.
Subcategorv SIC Code
Semiconductors 3674
Electronic Crystals 3679 3339
Cathode Ray Tubes 3672 3673 3693
Receiving and Transmitting Tubes 3671 3673
Luminescent Materials 3641
Carbon and Graphite Products 3624
Transformers 3612 3677
Fuel Cells 3679
Electric Lamps 3641
cml.153 A-6
-------
Industrial Category Code: 6
Category Name: Electroplating/Metal Finishing - Industries engaged in
electroplating, fabricating, and finishing of ferrous and nonferrous metal
products.
Subcateqorv SIC Code
Electroplating 3471
Electroless Plating 3679
Anodizing 3471
Coatings 3479
Chemical Etching and Milling 3479
Printed Circuit Board Manufacturing 3679
Cleaning/Degreasing 3471
Heat Treating 3398
Stamping 3465 3466 3469
Metal Fabrication/Metal Products
Manufacture 3421 3422 3423 3425
3429 3433 3441 3442
3443 3444 3445 3448
3449 3451 3452 3493
3494 3495 3496 3498
3499 3910 3911 3914
3931 3961 3964
cml.153 A-7
-------
Industrial Category Code: 7
Category Name: Equipment Manufacture and Assembly - All activities relating
to the manufacture and assembly of equipment, except those activities
covered by other categories (e.g., electroplating/metal finishing
operations).
Subcateqorv
Fabricated Metal products
Machinery, Except Electrical
Electric and Electronic Equipment
Transportation Equipment
Instruments and Related Products
Miscellaneous Metal Products
SIC Code
all 3400 SIC codes, N.E.C3
all 3500 SIC codes, N.E.C.
all 3600 SIC codes, N.E.C.
all 3700 SIC codes, N.E.C.
all 3800 SIC codes, N.E.C.
2500 2520 2522 2540 3993
aN.E.C. = Not elsewhere classified.
cml.153
A-8
-------
Industrial Category Code: 8
Category Name: Explosives Manufacture - Manufacture, load, assemble, and
pack (LAP) of explosives, initiating compounds and propellants.
Subcateoorv SIC Code
Manufacture and Load, Assemble,
and Pack (LAP) of Initiating
Compounds 2892
Manufacture of Propel!ants 2892
Manufacture of Explosives 2892
Formulation and Packaging of
Blasting Agents, Slurry Explosives
and Pyrotechnics 2899
Load, Assemble, and Pack of
Explosive Devices 2892
Load, Assemble, and Pack of Small
Arms Ammunition 3482
Load, Assemble, and Pack of Other
Ammunition 3483
cml.153 . A-9
-------
Industrial Category Code: 9
Category Name: Gum and Wood Chemicals. Varnishes, Lacquers, and Related
Oi1s - Industries which manufacture chemical products derived from wood, as
well as oil and resin products applied to wood.
Subcategorv SIC Code
Char and Charcoal Products 2861
Gum Resin and Turpentine 2861
Wood Resin, Turpentine, and Pine Oil 2861
Tall Oil Resin, Fatty Acids, and Pitch 2861
Sulfate Turpentine (Turpentine from
Spent Kraft Mill Liquors) 2861
Lignin, Cellulose, and Derivatives
of Spent Pulping Liquors 2861
Other Gum and Wood Chemicals 2861
Linseed Oil and Other Drying Oils 2851
Oleoresinous Varnishes 2851
Spirit Varnishes, Shellac 2851
Enamels 2851
Lacquers " 2851
cml.153 A-10
-------
Industrial Category Code: 10
Category Name: Industrial and Commercial Laundries - Laundering of
garments, linens, household fabrics, and industrial fabrics.
Subcateoorv SIC Code
Power Laundries, Family and
Commercial 7211
Linen Supply 7213
Diaper Service 7214
Coin-Op Laundries and Dry Cleaning 7215
Dry Cleaning Plants, Except
Rug Cleaning 7216
Carpet and Upholstery Cleaning 7217
Industrial laundries 7218
Laundry and Garment Services, not
elsewhere classified 7219
Miscellaneous Laundries 7210
cml.153 A-11
-------
Industrial Category Code: 11
Category Name: Ink Manufacture and Formulation - Manufacture and
formulation of chemicals applied to paper or other materials in printing
operations.
Subcategorv SIC Code
Printing Inks 2893
Letterpress, Dry Offset, and
Lithograph 2893
Radiation Cure Inks 2893
Flexographic and Rotogravure Inks 2893
Other Inks 2893
cml.153 A-12
-------
Industrial Category Code: 12
Category Name: Inorganic Chemicals Manufacturing - Industries which
manufacture inorganic chemicals.
Subcateqorv SIC Code
Acids 2819
Alkalies, Chlorine, Chlorine
Chemicals 2812
Sodium, Potassium, Calcium and
Magnesium Salts 2819
Inorganic Pigments 2816
Other Metal Salts 2819
Other Metal Oxides 2819
Nitrogen Inorganic 2819
Phosphorus and Phosphate Chemicals 2819
Silicon Chemicals 2819
Uranium and Radioactive Materials
Manufacturing and Processing 2819
Boron Chemicals 2819
Miscellaneous Inorganic Chemicals 2810 2819
Industrial Gases 2813
cml.153 A-13
-------
Industrial Category Code: 13
Category Name: Iron and Steel Manufacturing and Forming - Industries
engaged in the manufacture (including casting) and forming of ferrous
metals.
Subcategorv SIC Code
Cokemaking 3312
Sintering 3312
Ironmaking 3312
Steelmaking 3312 3313
Vacuum Degassing 3312 3313
Continuous Casting 3312
Hot Forming 3312 3315 3317 3493
Salt Bath Descaling 3312
Acid Pickling 3312
Cold Forming 3315 3316 3317
Alkaline Cleaning 3312
Hot Coating 3312 3479
Electrometallurgical/Metallothermic
Products 3313
Iron and Steel Forgings 3462 3312
Iron and Steel Casting 3321 3322 3324 3325
Miscellaneous Iron and Steel
Operations 3300
cml.153 A-14
-------
Industrial Category Code: 14
Category Name: Leather Tanning and Finishing - Hair removal, tanning,
retanning, finishing, and products processing of animal hides.
Subcategorv SIC Code
Hair Pulp, Chrome Tan, Retan, Wet
Finish 3111
Hair Save, Chrome Tan, Retan, Wet
Finish 3111
Hair Save, Nonchrome Tan, Retan,
Wet Finish 3111
Retan, Wet Finish 3111
No Beamhouse 3111
Through-the-blue 3111
Shearling 3111
Pigskin 3111
Retan, Wet Finish-Splits 3111
Leather Products Processing 3100 3131 3140 3144
3149 3171 3172
cml.153 A-15
-------
Industrial Category Code: 15
Category Name: Nonferrous Metals Forming - Rolling, drawing, and extruding
of metals (including copper and aluminum).
Subcateqorv SIC Code
Copper/Aluminum Metal Powder
Production and Powder Metallurgy 3399
Other Nonferrous Metals Forming 3350 3356 3497
Aluminum Forming 3353 3355 3354 3463
Copper Forming 3351 3357
cml.153 A-16
-------
Industrial Category Code: 16
Category Name: Nonferrous Metals Manufacturing - Facilities engaged in
manufacture (including casting) of nonferrous metals.
Subcateoorv SIC Code
Aluminum Casting 3361
Copper and Copper Alloy Casting 3362
Magnesium Casting 3369
Zinc Casting 3369
Primary Smelting and Refining of
Copper 3331
Primary Smelting and Refining of
Lead 3332
Primary Smelting and Refining of
Zinc 3333
Primary Production of Aluminum 3334
Primary Smelting and Refining of
Other Nonferrous Metals 3339
Secondary Smelting and Refining of
Nonferrous Metals 3341
Other Nonferrous Metals Casting 3369
cml.153 A-17
-------
Industrial Category Code: 17
Category Name: Organic Chemicals Manufacturing - Manufacture of basic
organic chemical feedstocks, (solvents and intermediates) and the
manufacture of organometallics and other organic chemicals.
Subcateaorv SIC Code
Solvents - Alcohol 2869
Solvents - Aliphatic Hydrocarbons 2869
Solvents - Alky! Hal ides 2869
Solvents - Amines 2869
Solvents - Aromatic Hydrocarbons 2869
Solvents - Halogenated Aromatics 2869
Solvents - Esters 2869
Solvents - Glycol Ethers 2869
Solvents - Ketones 2869
Cyclic Intermediates 2869
Fermentation Products 2869
Organometallics 2869
Rubber and Plastics in Additives
Manufacture 2869
cml.153 A-18
-------
Industrial Category Code: 18
Category Name: Paint Manufacture and Formulation - Industries engaged in
formulating paints by mixing various constituent chemicals (solvents, drying
oils, pigment extenders, etc.).
Subcategorv SIC Code
Paint Formulation - Water Based
Paints 2851
Paint Formulation - Sol vent-Based
Paints 2851
cml.153 A-19
-------
Industrial Category Code: 19
Category Name: Pesticides Manufacture - Manufacture of compounds containing
any technical grade ingredient used to control, prevent, destroy, repel, or
mitigate pests.
Subcategorv SIC Code
Phosphates and Phosponates 2879
Ureas and Uracils 2879
Miscellaneous Pesticides 2879
Phosphorothioates 2879
Phosphorodithioates 2879
Other Organophosphates 2879
Carbamates, Thiocarbamates, and
Oithiocarbamates 2879
Amides, Anil ides, Imides, and
Hydrazides 2879
Other Nitrogen Containing Compounds 2879
Triazines 2879
Amines, Nitro Compounds, and
Quaternary Ammonium Compounds " 2879
DDT and Related Compounds 2879
Chlorophenoxy Compounds 2879
Aldrin-Toxaphene Group 2879
Dihaloaromatic Compounds 2879
Highly Halogenated Compounds 2879
cml.153 A-20
-------
Industrial Category Code: 20
Category Name: Pharmaceutical Manufacturing - Production and processing of
medicinal chemicals and pharmaceutical products.
Subcateqorv SIC Code
Fermentation Products 2833
Extraction Products 2831 2833
Chemical Synthesis Products 2833
Mixing/Compounding and Formulation
Processes 2834
Other 2830 2833
cml.153 A-21
-------
Industrial Category Code: 21
Category Name: Photographic Chemicals and Film Manufacturing - Solution
mixing, emulsion or coating solution preparation, coating, packaging, and
testing.
Subcateqorv SIC Code
Silver Halide Sensitized Products 3861
Oiazo Sensitized Products - Aqueous 3861
Diazo Sensitized Products - Solvent 3861
Thermally Sensitized Products 3861
Photographic Chemical Products 3861
cml.153 A-22
-------
Industrial Category Code: 22
Category Name: Plastics Molding and Forming - Molding primary plastics and
manufacturing plastics products.
Subcategorv SIC Code
Miscellaneous Plastics Products 3000 3070 3079
cml.153 A-23
-------
ndustrial Category Code: 25
ategory Name: Printing and Publishing - All forms of publishing,
ommercial printing, and services for the printing trade.
Subcategory SIC Code
Typesetting 2791
Photoengraving 2793
Electrotyping and Stereotyping 2794
Lithographic Platemaking and
Related Services 2795
Commercial Printing, Letterpress 2771 2751
Commercial Printing, Lithographic 2752
Commercial Printing, Gravure 2754
Commercial Printing, Screen 2751
Newspapers 2710 2711
Periodicals 2721
Books 2730 2731
Miscellaneous 2700 2741 2750 2753
2760 2761 2771 2790
Blankbooks, Looseleaf Binders,
and Devices 2782
Bookbinding 2789
cml.153 A-26
-------
Industrial Category Code: 26
Category Name: Pulp and Paper Mills - Manufacturing wood pulp and
processing wood pulp into products.
Subcateoorv SIC Code
Integrated Bleached Kraft Mills 2611 2621 2631
Integrated Unbleached Kraft Mills 2611 2621 2631
Integrated Semi-Chemical Mills 2611 2621 2631 2661
Integrated Sulfite 2611 2621
Groundwood Mills 2611 2621 2646
Nonintegrated Paper Mills 2621 2631
Secondary Fiber and De-Ink Mills 2621
Pulp Molding Mills 2646
Structure Board Manufacture 2661
Paper Products Processing 2600 2620 2640 2641
2642 2643 2645 2647
2648 2649 2650 2651
2653
cml.153 A-27
-------
Industrial Category Code: 27
Category Name: Rubber Manufacture and Processing - Production of elastomers
and the molding and extruding processes which convert these elastomers into
usable products.
Subcateqorv SIC Code
Natural Rubber Manufacture -
Latex Products 3011
Synthetic Rubber Manufacture -
Butadiene/Styrene Rubber 2822 3011
Synthetic Rubber Manufacture -
Butadiene/Acrylonitrile Rubber 2822 3069
Synthetic Rubber Manufacture -
Chloroprene Rubber 2822 3069
Synthetic Rubber Manufacture -
Butyl Rubber 2822 3011
Synthetic Rubber Manufacture -
Thiokol Rubber 2822 3069
Synthetic Rubber Manufacture -
Urethane Rubber 2822 3069
Synthetic Rubber Manufacture -
Ethylene/Propylene Polymers,
Terpolymers 2822 3041
Synthetic Rubber Manufacture -
Synthetic Natural Rubber
(Polyisoprene, Polybutadiene) 2822 3011
Synthetic Rubber Manufacture -
Urethane Rubber 2822 3069
Synthetic Rubber Manufacture -
Silicone Rubber 2822 9999
Rubber Processing and Fabricating
(Compounding, Coating, Molding,
Extruding) 3069
Manufacture of Other Rubbers 3069
cml.153 A-28
-------
Industrial Category Code: 28
Category Name: Textile Mills - Facilities which engage in the manufacture
of natural or synthetic fiber and the processing of these fibers into usable
products, particularly fabrics.
Subcategorv SIC Code
Processing of Natural Fibers 2211 2221 2231 2241
Synthetic Fibers, processing
Cellulose Fibers 2221 2241
Synthetic Fibers, Processing Nylon
Fibers 2221 2241
Synthetic Fibers, Processing
Polyester Fibers 2221 2241
Synthetic Fibers, Processing
Spandex Fibers 2221 2241
Synthetic Fibers, Processing
Inorganic Fibers 2221 2241
Dyeing and Finishing of Processing
Textiles 2261 2262 2269
Miscellaneous Textile Mill
Operations 2200 2250 2252 2253
2254 2257 2258 2260
" 2270 2272
cml.153 A-29
-------
Industrial Category Code: 29
Category Name: Timber Products Processing - Production of lumber, wood, and
basic board materials.
Subcateqorv SIC Code
Veneer and Plywood Products 2435 2436
Structural Wood Members, not
elsewhere classified 2439
Particleboard Manufacturing 2492
Wet Process Hardboard Manufacturing 2499
Insulation Board Manufacturing 2661
Miscellaneous Timber Products
Processing 2400 2430 2434 2490
cml.153 A-30
-------
APPENDIX B
DSS POLLUTANT LOADINGS FOR THE
SELECTED CONSENT DECREE
INDUSTRIAL CATEGORIES
-------
, I, - - - -
IT. II 0
U. 'I IT
1, 1C '1 ^
1 0. «
; 'I
'., * ,
i i. n
i ''
« r
I, U II
l| t - - ! 0*
il T. »I t : «r
it ; ~ fc '1
il A i '- "
it - ~ '1
1 S W
II '1
II '1
II
II '
.. J .1 ^
II flt II
oe r-
II H
; f
'i ii
ii J
"
il
'
'1 (f II O
-' U. '
II - If, 1
1 ; i. :
i| -C II
Ii «** ':
II 1 i 1
n -, - !
ii (/: «- it
II <; 1:
H ? II
ii r ii
'I rt II O
ii . ii
- . ii
ii i -ii
1 > - ii
ii ~ n
c; ii
ii « ii
i
C il
' II
'i 3 II O
". 19 1
il i II
u
II U
II
II It
: II
II It
II Ii
II II
II II
il II
II II
II II
II II
II II
II II
II II
II III II
II If .to* It
U Z Z il
II C I II
II ^ ~ II U< f
II k II c ">
ii «»»><: ie V
II H .,' II C
II fl t" II ^ ~ T
n x c ii x * o
II C II - J.
II (_ II C.
il .1 - - O
ii il :- - <_
il ii C C
il I t- o
o
,£
Ik
3*
^
»-
.
p»
X
r
o
CK
^.
K
r^
CC
ct
CD
r^
fs.
k
"C
f*
<
r
c
o
f t
* c
* L
O «
4- C
<-'
u*
yt
U"5
o
-.
f!
^
C
rr
^
c
01
o
;
^
c_
c
CC
c
CC
IV
tT
Lr
f
fs.
"C
ri
V
p^
,v
ur
pr
rv
ji»
r-
fv
ai
if,
c
-c c
c *
t o
*
t c
4, U
U
in
CD
f".
^
.
«
^
^
r*)
^>
^^
n
«r
VK
c
C in
1C -0
T r
^
^ i
(. m
i- C
=
c
f*"
u?
c
i-
^
CC
c
«
^
r*
^
^
f *fl
C "w1
J
- o
0. JL
_^ ^
C C
~ C "
z
c
o
r-
r
^
r*
*f
r.
c
c
t Jl
'O
c
; ~
« ;
C u.
& 4
*- ^
U (^
«
CO
QB
*f
^
CC
p*
f*fc
CC
PJ
f^
CC
p.
T? if
c r
t c
;
» c
& a.
> «
c
f ^
cr
II 'I
x i! CC '1 CC
z . - u ui
II - 't
; - u
u ii
l! '1
.i tt
n it
; i:
il ii
4 : rv ( if)
x i; CC .; CC
Z ': ~ \ &
t » '1
«< t;
,i .
ti ii
» ,,
j
" 'i
i it
r1 ii o*-
^ II UT '' «
II CC II P,
or -
n r: ii
i i
'i il
« 'i t? ii »
xi, rv ' r.
Z II j CC
« oe if »
l r^ !
n < "
n i
it i
ii '.
It i
II
II II
II
II
II 1
'1 -t
ii ;
i l ^ II £ 7
t il
CC
»
^
O-
^
I/I
r
o c
C 7
^ o
^ tf
r a
- u
N*
'1 1
t ' i
** '1 1-1
-T ' C 't
fl - 'i
t P ii
ri j
, i|
i ii
" ii
I ii
ii
i ..
« !
V II - ,1
Z . C i
.1 1
i f'<:
'l '
il ,i
il
- Ul n
-.11 _i i
k 1C II _ l 4 ^ li
-C i '1 t- U.
S il C S il
C 1 H-
-------
II 11
If. II C
II U, II
tf
II U. ll
r 'i
it C n
1 i ii
i r ii
X '1
'1 « II
" II
'1 3 U O
11 ii
II i£ II
'1 H
, ,|
II II
i II
II II
II
II II
II II
II II
II II
i| II
il II
il II
II II
.1 II
il l/l il
II I/' ' II
ii r c n f
« c -- ,i o
n x r 'i -
II <- ti II I
II t * II "
II fl i' ll - C
ii x ; n c
n =11 a
'i <_ ii '.
it ii - *
n ii :: «
il n *
if ii ^ i ^
c-
o
o
0
c
*
w
c
c
"
p*l
<^
c
_
41
C
1;
r.
£
X
C
0
c
c
c
c
1
£
Hi
i r
c >
- t>
: r
"- »
t; r
i ::
r C
w jC
11
c
o
0
c
o
c
^
"
r
.C
w
U,
c
Iv
c
2
(^
1 k
r. si
w J^
IT -
"* * V
o
^
CC
^
r-
**
T
N 01
C *
&
_ ^
r --
^ c
WBl
|
O !
<£
C
^.
««
f^1
f
n
r^-
o
*
f^
ri
f ,
T
r^
1C
~ *m.
it -.
£
z -
1 £
a""
c
o
0
ps
_
r-
r*.
f<-
-
ll
c
I
^
t
£
b
c
_-
'_
H.
J;
1
r.
-
c
o
e.
c
o
c-
(]l
w
0.
£
^
^
«
*..
c
r
**.
d.
1
F"~
^
C
o
c
c
o
*M
.^
-
Oi
c
&
r-4
^
i>
_£
C
=
r
c.
^
1
*
-
c
o
o
rj
TJ
Ci
u
c
^
^
c.
C
_£
L.
^
i
-
-
C
0
o
c
c-
C'
111
c
(C
J
^
1^
t.
c
r
M
^
i
r
, -
^_
^
O
^
K
^
**
«
^
«.
-
j.
~
1
K
7"
j^
^ ;
1.
c
*
_^
w
^
1
' -
-------
I
I
I
f
I
1
1
II U
!l IT 1
II U. U
II If-
II i '1
H
II 1-1
II * !
II «' '1
ii ^ fc II
ii t/> £ ii
II i II
ll .c 'I
ii T i:
u ^ u
II !
n a "
II 9 II
II tiE II
II II
U It
II U
II II
II II
1, II
II II
II II
It II
II II
II II
II II
II II
II 1 II
II II
II II
II HI II
II tf. 10 Ii
ii : c ii
II C. V it
n r 7 ii
n fe «»' n
u » - ii
u r. ii
II It IT il
u X - ii
ii e n
it (- a
u u
n ii
ii it
n ii
c
<.>
0
fs
Ps
fS.
1
0
o
£
u
ta
I
r: «
u
C Jl
1C «
<- J.
t
C
O
o
c
o
o
4*
£
(^
&
t.
&
~
j^
e
2
i
r
k
c
e
c
e
c
c
i
c
c
mm.
*
m*
y
~ ?
C »
_^ «,;
~ 11
0
«
C
«2
C
c
1 ^(
Ci
O
c
c
c
£
c
*«
c
4*
r
iL
^
y.
r
0.
«
i
^
«,
rj
0
c
c
f
V
«
r,-
*K
fi»
c.
_
^4
V
I*
^
1*
g
^
^
u.
r
4*
£
* >*
rs.
(S.
t*
N.
*
c
o
c
t
t
Mtf
n
^
^
jC
i^
fmf
T
U
O
1
z
1
M
a
c
^
^
p»»
^
4f
r*:
^
*
^
r*-
^
a.
w
01
N
£
V
a
3»
jg
^
UJ
c
o
0
c
o
o
1
»
«^
1
0 H
(- u
C 1:
C <
1 V
;;
4; t£
X
C
O
o
c
o
o
4*
£
**
^
.'
j;
2
iU
r
T
^
Z
c
O
f^
K
C5
N.
»
»
ri
oc
rs.
£
-O
U~3
ps
*
^
0"
81
V
m
tm
*
^
£
^
C
£
,5
W
4.'
*
r*
n
CD
*r
(>h
^
"!
(X
0^
«
iii
or
fx
4l
C
4*
|
jC
i.
*;
*
C
O
o
c
c
c
!""
T
jC
w
T;
4
*K
r
c
c
f
x f
i ^
z
c
c
c
c
c
o
4j
c
41
*4
C
4>
JS
to
«*
*
Z
c
c
c
^
^
T
i9C
t^
CL.
C-
C
o
9*.
^
^
»
C
O
4^
T
C
p\.
r~
^
*
f*t
*-«
c
c
41
£
iL
C
fcv
C
2
u
n
w
c
91
"
C
e
e
H
C
P'
(
r*
^
-c
r-
r.1
ii*
^
"O
*
"C
^
o
c
II
j£
i.
C
0
0
c
o
o
1
c
fc
5
^*
£
u
ft
t
*J
41
t»
f
CJ 81
* C
» .^
^ *.
* I
^
C
o
^
c
^»
o
(I*
-
o
I|T
^>.
41
C
t
* .
~
."
fc
i
2
t.
C
\
*-
*.-
4.
^»
C
c-
«M
r-
~
*
C
,-^
cc
u-
c
p*1
X
t>-
*
O"
*^
X
r
*»
c
h-
c
o
o
c
o
0
4)
w
i*
XJ
^
rt
f
rono
»
*~
-------
II II
II If. '
II U. 11
II If.
II li. II
II
II <- II
II 1 .
II .1
1 ta. ^ It
II - l
1 - 1
1. '1
II '1
II II
II
ll II
.! II
! II
II If. II
_ II
II - V II
i : i.
1 T 1.
! t-. "
,i -s -. ii
i ^
C ;,~ *- H
' * i
1, T U
'' v "
i; ^ * ii
- C '
'. i" *> >i
; i t-
': > ~ 1
i - r i
ii - t_: it
i i ii
1 .C II
'i ~ *
ii i
ii I*
II 3 II
II T II
II uC II
II II
II II
II II
II II
II II
II II
II II
II II
il II
II i
II II
II II
II II
II II
II II
II II
il in il
II tf. -> II
n : c ii
n t i n
II T 7 il
ii "- « ii
ii it ~ ii
ll r-. il
II I* IT II
il X I :l
II C II
II C H
ii n
ii -ii
u ii
ii n
c
o
o
o
o
o
1
o
o
jC
u
4
t, 01
H- C
^ 't
*
VK
Cl
c
«*,
v%
^
Vi,
»*;
.
««.
01
C
It
r
*.-
1;
C
C
2
^
^
k
H-
c
0
o
c
c
c
1
c
*
IK
^
c
c c
«c ^
V ^
f^ I])
( 4
K-
, ""
1 e-
o
c
c
o
o
1
c
c
£
^
*
> O
< c
» ct
^ ^
a.
ri
II U 1 II II il
C . U1 l
.1 " II
i. ii ii ; ii ii
: il " :
II II II II '1 '1
: .i II ' 1 !
II 1 II II N II
'! ,1 1 ! .|
il : ii il ii 'i
O .! Ill '! «t II 111 ' «t ' 111 ,
' ^ H \ n «p 'i v, 11 *r t
. X . ' X '
II ll ; '' ii
: .' ' "
i II It '1 II
! '1 I "
II i- II 1 il
II i ,' ' "
II II 1 '| '1
i II i '1 'I '.
o -o ii -i -a «r ' -o .
ir » *^ r * n ** , f i
oe .t a: ~ oc .
ii ii ii ii ,i
'i " ii
ii u » ' u >i
ii r n
il " i; '> ii u
it ii n 'i
u » i ii n
ii ' ii ii
" il ' ,i !
C n w ii < i: K i «r : f n
'. O i *x " -; x i; o
II ~ ll Z ll " X ll 'I
" M ' 1 «. " I) fc '
ii » ii < i; u < ii
.- u* . ii i*
n _ n ii _ i ii . ii
" ii n
n ii i| i| ii
'i ii i;
i: H h il ii 11
'! . . ' II '
o n n n « : m n t a f> i«
; e v » c ' ^ ic '
n . ; z n i n 'i n
i! * '. : » il ' »
II » '1 :. * '1 II f II
it*: " .- ii i'
n _ M ii » ii u f ii
u ii ii
ii u i n i >i
i« 11 ii i i
O li 00 II « ! CD i 4 li 00 '1 il C il I II C ' " 'I
-------
I
I
I
I
I
1
I
1
I
I
I
I
II II
(C K C
II U« H
: v. i.
ii a. n
! II
Ii <- II
,1 III I II
ii < ;
ic v. n
ii 4 *i
n si ^** n
ii - as - i; c
ii i.. a : ii
(C * I:
II T « l- i!
il C <- l
» re r i:
U 1
II ' II
!t ~
" Sf ''.
II II
'. 3 '. C
ii * i;
iX "
II !
.; 1]
". :
II j
: :i
.i (ft ii c
n :_
il V. H
O. II
n 'i
: IB ii
H |« 1 II
i - - n
:i ; v ii
ir ,'; n - c
n *
K
0
r"
*
(;
O
IT
0
f*»
o
k
fK
^
rt
o
c
II «
e
c
y
~
« 4
O »
« C
£. U
U
-C
t
ON
^
C
rt
f1'
p-i
o
*
(X
c
f?
4:
-o
^e c
c z
(C C
i
-r «
- c
4, u
O
0
o
c
o
o
c
C iff
it "O
i
3< r
! ~
? X
u £
41 (^
X
C
C
o
^
c
<
c
"C V'
C "C
it C
o
t A.
A
^ c
2
c
o
o
^
^
^
^
^
o
c
1*
o
^
- c
C i
4.
c
Ul
c
C-
o
0
c
o
O *
c -o
5
1- O
l: dL
> f
o
- u
i tr
1 II
K '. oc ii oe
V- 1 - II »
.1 K. II
» II
II II
1 II
'! II
II
tt II
1
II H
II II
f» ii f ii r*
9* ii r? 'i *o
p. n ir il c
» N » .
.'; i; -c n p:
H » H HI
II » '1 Irt
u ';
u i
u
H .;
PI " f. il - H
II 2 1!
a e i<
V II & H
b it oe u
II « H V Ul
N II IV- II T3
1 U L
ii » ii
-------
II II
'i V. C
n u. 'i
n v. '.
II 4. II
ii
u <- n
II IK tt .
ii - n
ti £ W
» i « n
ii
ii n -~ '
.-*-' 0
II 0. C C H
. (C C ..
" E w i ',
' ' £ :
;i - ii
n jt ii
ii i-
31 O
II it 1
it '!
" ';
il
i;
n
u ii
'! II
II V. II 06
: u- u
II V II
li. II
II II
«. If
« in ; H
1. «* -ii
II C "-"
li * < '!
II Jl H
II ~. <~- *t II *
i u. C £ i; -0
t- t ii r.
ii b il
i £ ii
li & II
ii r. i
.1 e n
ii i
il 3 II «T
ii n il <
it a, n r.
u n
» n
u «
n n
n n
» H
il il
» n
U II
H 1)
II II
II II
n ii
u n
n »
n n
II (UK
il ». ft H
ii scum
n 0 5. » t
u r T » -
n «- v u £
U < ... H 1
II * «! II t C
U X C U C
II =11 11
II C^ II C **
II II - C
il il :: i-
II - II C (.
II II h- «
c
0
o
c
o
0
01
c
*
c
(t
A
C
c
c
c
0
o
6
c
It
i r
C w
k &
e x
2 -
u j;
f. 0
* ^
- a
*
c
o
o
c
o
o
*»
0*
7
.£
*
e
fa>
c
£
u
1 *-
CJ 41
III
- Ui
A
C
C
c
c
c
N *
4* tt
A
Jl «
W
c
"&
u
o
c
c
c
c
0
i
c
IT
<_
*
c
o
£
,
0.
c
o
c
c
o
^.
c
*
5
o
c
j£
u
^
c
c
o
c.
o
0
o
o
o
r**
£
u
o
c
o
c
c
c
41
c
*
£
41
fl
O
C
JC
c
0
e
c
c
c
«
c
c
£
«.
n
o
c
£
f-
1
n
c
o
0
c
o
o
7 ^
*»
li-
r.
K
bl
f*
^
C
!»
IT)
r*
«
C
f"
^
o
o
o
V
c
g
f4
^
1
'c
e
^
r*
^
0
o
c
o
o
01
c
t
-
t
c
c
£
0
1
ftf*
f*;
C
f«
O
r**
(^
-*
u"
O
^
.
*^
<
u
^
o
o
01
c
4.
r.
-
4.
i.
C
_-
-
I
^
t
C i c
1
1
1
1
1
1
1
1
1
1
o \ o
1
t
J
.
f
'
!
1
0 1 C.
1
1
1
1
1
1
1
C i C
1
f
1
f
1
1
t
,
t
c o
'
f
1
1
0 , C
1
1
,
,
,
,
I
1
,
1
1
J
\
1
4) 1 41
C i C
t t V
.1 i JC
1
t 1 t
« 1 H
C t C
t jZ
- 1 ^
1 1 1
* 1 (*4
<5
o
^.
c
o
o
-^
~
1.
VA
_
4.
k
c
_-
'
,
-------
3 .
n !
ii
1 3 I
u x
a. .1
n n
; il
, ii
» n
r, n
n
,; u
; i*
: *
tr. *
.1 U «
; v. »
, it ..
n - -
. « i u
! C £ »
II S « '!
i! * H
us
I. % *" w M
II it i2 .: !
': _ *" ' 1
'' I ii
n C ii
II - .1
ii :, n
11 r 'i
n 12 n
n n
II 3 II
n ID n
M l3C H
It ii
II II
ft II
ft n
ft il
n *
ft ii
ft n
n .1
n il
n it
il n
H H
n n
» n
M ut B
n t ^ «
u r c n
n c i ii
it v T ii
b n
n c » n
ft !".»
n ut u
n z c u
It C II
II <_' M
ft II
II II
II II
II II
C
o
o
c
o
0
1
0
b
o
S.
o
^
1
P-! *
» c
1 -
HI *
e r
« .-
b t
1
e
o
O
c
o
0
9
c
It
c
^
5
c
c
.c
ft.
ii
1
r*
-
c
o
c
c-
c
0
1
c
b
5
^
<*
1^.
M
C fl>
t- C
» JZ
» ^
C 4*
c
o
c
c
e
c
o
«*
e
91
c.
iL
e
b
0
z
^4
£
t
«r
PI
c
c
c
o
^
o
V
^
e
Ml
c
JC
Jg
u.
(^
Jl
^
^
41
A
c
c
c
o
c
c
^t
e
c
tt
JC
*^
Jl
jC
4)
«
*
A
i
^5
f^
fff
-C
f^
O
u?
^
>c
rt
O"
*
Mt
^
*>
C
c
4r
.e
C
O
o
c
o
o
1
c
u
c
««
j£
u
m
fa.
^
4i
H-
1
r. 41
* c
(V iC
t J
«^ *."
» 4;
^fc
'C
^4
w
1C
^
»
fv
y;
M
IT
«
^
U^
c
o
o
4i
C
«;
«>
y
JC
«
C
5
V
C
^M
£
i.
(C
fat
«
^
c
O
o
t>
*
^
0^
r.
L:
o
O-
C4
M.
Iff
41
w
4f
~
n
C
M
O
o
^«
o
o
4*
C
g
-
c
£
c
e
M
£
>
u
-------
tr, -
II lu ".
*
b
H-
c
o
o
«
o
o
1
c
b
e
"2
u
*4
b
>-
1 0
» i
JL
n
II II II II '1 II
e ii * o : o- i>i ii » ii
u -c ii n < n u* .< r. w
n .: . " r. r; »
II II H n l| H
il '! : '1 ii
II II II ,; II H
'! i : n
i: 'i n n ii n
O !O'!O"O 'rllld
II » H II T i| C « » 1
i » .; CK i; '
i; > .1 ii . , - u .
'! -C . -c l: r. h OC "
n ic it i^ i t*> n ee ')
: » i ». . >i o
n i; n ii -ii « i-
II iff -« »
n ii " ii r; ii r. n
n ii n ii ii
o o " o " o ii « it '
i » r 'i ^ u o i » 'i
.. 9- ' o> n c o> :
ii i ' « -I ii i
ii -G * -« . PJ oe "
II t* 1 'I _* » ! ! S3 II
.1 9* ' o^ II ^ " C "
'1 II » '1 » II
1, " ii Ir-; <
n 'i u r. n r. M
II : II .1;
ii ii ':
C .Iff C « V. >'. -S « I." '1
! « '! ii ce ; v es
i; ' n il Z ll - n
n I || .
n ii ii ii n 'i
II !
» it n ii ii n
'! II II .
it n n il ' :i
il il ' '
ii nun
i n . . ;
o»oononajti.iibliocii
n u C ii s ii C u C n
u n * » n « - » at ii T n ~ ii
T? ii ii Caen C ii en
- « _j ii c. a -IIIIIIII
ii f ii n ii n u
r ii u^ ii i ii « ii i ii « ii
C n ii n ^ ii ^ i b. >i
- ii u - ii e u « u c u
;> ii i| c il t il C n b, u
-------
1
n
II -
if II
l^ H
(R
U. II
b ii
c |
W '
*s t
fl
V
?<'
IK ^ fc» *!
i/: ^ * it
* * t^ '
W IF
& * (
* ^ II
til >
£ »
3 '»
.r ii
ce '-
M
ii
II
I
II
i|
(1
"
*.
Z
*c
x
Z
<£
5;
*
ij
_
C
M
^k
c
c a.
c ^
^M Jj
*C W
* ill
- 4
A
O
C
e
«t
-x
Z
^
Xfc
Z
*r
\
^
<-««
o
i
- &
r
dL
0
b
o
,»
jC
1
M
»»
«r
b
fl
C
c
c
f J
C
o
c
^
X
3;
*c
x
Z
<£
X
2
*
t
^*
t
r
f
»
r
^
'V
^
4
M
O
e
c
^
x
z
^
X
Z
7-
^
^
c
z
4
A
C
C
C
«t
x
Z
^
X
Z
^F
X
Z
*
l ^
' 6
' N
£
i t
A
,M
; y.
_g
w
LJ
C
o
o
^
x
Z
^
X
z
^
x
^
I
rt
i
«*
t
a «
fa C
O Oi
»^ *«
J« TT
u t
<9 *
. *
U tfi
^
c
0
o
c
x
IS
^
X
JJ
-t
x
^;
4f
C
C
b
3
^M
,c
C
*
,T tf
' «t
Z
C
0
C-
^
X
z
i
'
* ' <
X X
Z ' Z
i
i
i
i
i
i
' C
w ' 4
31 ' .C
u. ' w
1
C I C1
1
1
t
1
1
1
1
1
[
1
\
O I O
1
1
t
1
J
1
1
I
1
1
1
O 1 O
1
1
1
t
1
1
1
1
1
1
«* ' ^
X .
cc
i r«
i <
l CC
1 «.
i r-
i
,
\
4 f *
x j «
z i cr
i .
r.
1 -C
i i
i »
c r.
'
e ! «
z > cc
i r;
i ***
i CC
I J*
i r.
i
'
I
i
i
i i
C i «
c I t
r : "r
U i ^
* i W
fa i 1;
» i C
a . i.
^ i C
i i «»
f 41 1 £
* C t O
rj .r , it
-------
II
'1 CC li
1 U. II
II V.
II 0. II
II 'i
II t- Jl
II ii .
II - II
II <* :'.
tl ^ if
II "
n il
u '
II £ £ H
1 41 11 I
ii > r fa ii
" wi ^ b 1
ii i- ^ J i;
i ; r c;
ii ». n
ii :: C
'! 14* T "
II X II
3
II *C I
^ ,.
n ii
n
II H
n i
II 1'
1 'I
1 II
ii tr n
li, II
n ti ii
0. H
n »
i. 9 - i;
II b i II
i r .
u «- n
; c. -s .
'1 T II
"' T i «- li
: 4 - ii
ii Til',
. S IT - '
ii r ( n
: -» ^ II
ii : c_ 'i
?, "C li
li * C II
II - l» II
II II
if r 'i
'1 U- i ii
u ii
ii 'i
ii ii
ii ii
ii ii
i< n
ii ii
II '!
II U
II II
II II
II Id II
,1 X. «> II
il 3 £ H
il O * II
ii t: r ii
II b « ll
ll l» » II
II H ' II
II IV {.' II
'1 X U
il 3 II
il * _- II
II II
II II
II >l
i _ ''
c
o
0
<*
*
zz
^
X
Z
X
n
i
o
c.
O
*+
.C
(J
*
(. to
t i
* c
c: i:
*
o
r.-
^
w
tc
«.
^
c
i
e
r,1
^
»
CC
^
c
»
c
r.
^
»
cc
i
O
c.
c
*,
.5
c
»*
^v (M
i C
- jC
*» «>
* Oi
^
c
o
o
r»
b
re
*
,j
«t
»
f-
^
U
M
<_
i O
^ ^
» JL
ri
ii n il il u n
c it i* .; ; .. 2 n z ;
ii n ii u n ii
If : H . N
II II II II II II
II 1 II i
II II il II >l II
t ' i '- '! .
I II - II
II . II II II II
O " r^ r ^ n r*i . ^ ; r*j
II 1' X l| II V If l|
a . z n : z '
it ., ii 'i n ii
i i in
ii ii ' il ii
1 " II '!
;. n ii u ii »
ii . u it n i it
; » \
>. ii u ii i 'i
o " t** i ^ " n . & i rt "
' II X I. II X U
" |: " 're "
i ii ' >i n
ii it '. ii
' a i ii ii 'i
i ii " 'i *
U >l II '1
': u '
i i;
f c n n e i ii i ii
n «. i ii -. i
II fN If II IX II l| ^ II
n « ' w. ' ii ^ *i
II ll II H II II
« ii r n « ii r-< i1 « ii r, it
x X x X X ! CT '
Z II ^ II Z II ^ i' Z '1 *V '1
« 1 » t It »
n cc u i oc if i c ii
.j it ii .^ ; , ,
il C 'I '1 C .1 ' C il
II Pv il il fs ii i . .1
ii cc ii i cc .1 ' cc n
II C !l . ** . 1 C II
ii c 'i ii c . ' c 'i
ii rv n u r-. i n rv ,i
u . ii ii -^ i ii ~ ii
u ii ii ii .1 i
ii ii ii ii \r ii if, ii
H ii ii ii : ii u ii
H II II II - '1 «. u
ii ii ii ii ; n s !
II II -. il CR n ~ II * !
il il . il (_ ! ~ '! C 'I
II II -* il P^ i| i OC '1
II II C II 2 il C '1 C II
II II .D U - II T il 't il
^ u i ii :: ii K ii M ii IM ;i
£ il C II C '1 C II T il >C '!
If & II " .1 1 ll
." Il U5 II i 'I «E int.
|| il C il ^ 'i ..'IF '
- il ii 1 ii C . i c ' t- i c i-
-------
II II
: u: ii e
II U< II II*
,! .to:1; iv
u «t ife n »
; g ' IT ii
ii cr ce >i
ii ii
ii ii
i: u
ii »
H n
ii u
'1 Jl
II '1
II II
II 'I
II U
II II
II II
II II
II Kl II
II f ~> .1
'f w (1
II C t n
M -o r ii j> -C?
ii <. u . cm
II « il .t W
II M II C
u * .: ,i ti ~ y
II X C II * * O
.i =n Co.
il U II C. 4 «
ii il :: - u
'" ii ;;
.1 n ^ i
c -o
it C
0
i IL
U C
(J
z
c
c
w-
r;
c
*;
*
O
c
w
r;
X II * '1 IV
Z n k- II 0>
i; -c ii o-
ii C : 3
i; - ii
: ii
II H
^ li kt p-
i p.1 .'; p"
i; - ii iv
n ^ ii ^
U "
li II
«IT ?i 1** i ""*
x n iv i! -^
% n r- ii c
ii - , *
f i1 p.
it n
f, u
l" }
n u
ii ..
« ii f n n
x : p. ,5
Z :i f .. o
i. f u p.
ii _
il
,
li I'
I ,
II '
n r -i
X ' -c I1
'1 -C ,i
1 "" II
" O II
II
' II
,
II
: i
II K |
" O* ii
II
II i
II 1
II i
'1 u
X II *
X II -<.' II
Z il -C n
tl » ,'
il r' i
ii » 'i
ii t
il
il
u u
n
it
il u
il
il il
ii
|| n
u i
n 11
il .1
u
II :
U u U
~- || )f ,t
C. II C il
h- in ii i en ;
* u j
t. it II _
-------
II II
ii u: it c
II ~ U. II
ii c u: ii
II - 0. II
it c. '
ii fc t u
II Hi I '!
It « -'It
> A ^ 1
II C IF < U
u - ii
ii 3 r z '!
. t u t '!
ii r > ;
* fc .1
II "3 ^ ~ ''
1 ^ CJ '
l| k Ii
_f I
II '* 1
II T '
.; c a it o
II -. V 1
ii il
ii
n ii
n «
it
it it
. it
' ii
i; X n c
' T II
'i z * < "
n m e 'i
f j, '
i i r - ii o
(_ i z '
it ju n
il T it -
i; c * s- i
n o 9> r ii
< 3 u£ CJ II
ii T ;
il Z '*
n - n
ii 'i
n m 3 i in n
.1 i/i » ii
ii r c n *
l* O * H U
u -c r ii »
it t- « ii i
II N W II Tl
il CO i1" || - C
il X C II C -
fl C It t
II (.''It,
J 'I - C
n tt ::
H 'i C C
1 '( t-
II*
^
c
*
^
1."
^
c
»
ri
b*
«K
C
«M
A
(M
35
;j
^»
Z
«
- o
w l»
Lu i
i n
P. £
'" ?
* "*"
e
e
C
c
0
o
Of
c
fO
«J
Hi
c
c
a
IT
p.
*
o*-
^
U"5
PI
Pi
k
O*
«.
(|T
p;
P*
^
o.
«K
C
o
o
^4
7<
N *
«i it
* ^
7 V
X ;*
a
u
cc
^
*
yt
p-J
GC
o»
t"
p.'
GC
«
0
*
c
o
o
9
o
(i
o
2
JL ^
t *
cJ
o
c
c
o
c
o
(0
u
ill
J
0
o
f*
u
c
e
o
0
_
c
c-
^1
o
Ul
V
CJ
1
*
o
o
JC
L;
X
o
c
c
c
c
C1
0
c
*
w
tl
Q
g
**
u
e
c
»
^
fC
c
c
»
^
w
c
c
k?
»
<
f^
P*J
<
<
»
K
P-J
OT<
^
»
r+
a
w:
^
*
«^
*
C
w
o
c
~
u
c
c
c
o
c
^
ft
c
%
r
«
o
o
0
rl
^
i"
p:
^
j.*
P!
^
C
^
c
1»
£
1
^
t
J^
+f
0.
C
b.
2
<;
rj
i
c i e
\r. i u*
* I 9-
1
» 1 P.
P. i
1
1
1
i
1
O 1 O
IT t U*
^ 1 i>
i
^ 1 P.
P- 1 -
1
1
1
1
;
O I O
H* 1 If
^ 1 9^
» f »
< 1 *-
P- 1 -
1
1
1
I
1
,
C . 0
1
1
1
1
1
1
1
1
1
,
1
0 1 0
1
)
1
(
1
1
,
,
1
0 i 0
1
1
;
i
i
I
,
!
'
,
i
,
41
. C
i i
i -
t t
1 j*
i C
l ;-
~* At i O
** tt J £
* ^^ t *f
< J 1 A
Z w i i
c
o
o
c
o
o
41
£
X
r*
,
4-
il
fe
O
£
^
i
r**
C
O-
j»4
w.
o
!*;
>
^
^
*
o
g7
Ok
M
p;
C
o
o
1»
c
r.
^
i
:.
*
jj
'-
*
»
C
O
0
c
(5
o
tb
c
It
jZ
v~
^;
*
»
-
J2
*-
"7
c
o
o
c
<^
o
41
c
,c
jg
^
i,
^
*
c
'_
c
p.
c
o
O
C
o
0
;,
"
o.
»-.
~
j
~
i
c
u
-
^
-
f
-------
If "
u If. t
II U. It
li » A! W
i; l> t
<- u »
'! S C i
II * ' 1
: m W '!
: c ! «
! t: « '
t M i!
'! "? < V '
» C X " T
! 1C C *! '
n T «- it
f M * 1. !
li -s _i r it
*. - c "
II fa M
li «." '<
f '* II
n r ".
II 1 H
n C J '
II i T H
II uC "
II It
ii ii
it "
n u
n '
it il
.; .
;; . ,-
: £ M
ii
-. tf
a
If-;
fS.
>
U"
N
(V
C
C
o
^*
c
4i
^
^
0
o
M
jj
u
£1
,
T
»
TJ
tft
r-
y*
«,
f*J
U"
f*
»
f^
!C
»
rr
c
c
o
4»
**
«
^*
ft
£
^
g.
a.
^M
31
jj
^
4f
.^
A
C
C
^
«.
-c
«M
c
c
»
c
V4
e
c
^
0
o
0
^x
e
c
&
*c
iL
Jl
£
^J
41
*
*
&
i
^
»
f j
O
C
l«?
C
c
e
o
c
o
C
«
w
ro
*-4
K
£
^g
j^
H*
Jl
£
4»
^
^
iHi
^*
c.*
tf
+
e
^
r:
»
c
IT
r:
^
C
CJ
c
o
c
0)
%
,
nc
^
^
^
Ok
«
J
«»
C
c
i
M
a
C 1 C
C 1
C 1
» 1
O- 1
m i
«r i
i
i
i
i
i
C 1 O
C 1
- t
Of" >
r*- t
«r t
t
i
!
t
c o
c »
;
O- '
rr i
^r i
i
i
i
C i c
^ '
-C I
» I
C l
t
'
1
1
C ' 0
^ 1
< 1
t 1
C 1
f. 1
1
1
1
1
1
C i O
^ 1
O '
^ 1
0 1
bl >
1
|
|
|
'
,
t
1
1
1
|
1
t 1
t n
01 I »
* * **
« i i
N ' O «
C I fa C
4f I O 4
A ' ** *
i j^ -^
i t, 1C
J. 1 H. _.
a; ' :: r
> ' U *
U ' =
c
0
o
c
o
o
4f
C
1C
^
*
Ci
£
b
o
l-*l
£
iC
£
*
c
k*
m
*
c
r-
0
jj-
^
c
r:
O
tp
"*
c
rt
fv
3
^
»
1^
fV
O
<
M
IS
M
fV
O
^
»
t"
«,
*
o
-*<
fa
c
^*
£
cj
1;
i|j
*!»
,^
3;
£
^
^
f
&
Ci
9-
»
^
oc
r-
in
r-j
^
oc
p.
k-
P.
*
^
cr
p.
C
0
o
41
w
*
~
£
v
£
0.
c
2
C
C
C
c
o
o
*»
y
^
^
t
*
*5
C
if
*
U ]f
* C
2 4
1
c
u
5
.
^
c^
T
t
^
C
O
fN.
fc
«r
u~
0
c
^
«-.
U"
^
c
^
^y
t"
<
L*
».
<
-O
L~
^
>C
r.
o
u~
,_
^
r
01
^
a.
~
^.
*
c
o
o
c
o
o
ill
£
,-
^
c
^
,;
J
*
_
_-^
_
_
-------
II II
1 l 1 II
n T (C s. i
II * f» k il
ii c « r !
II 3 |X (J il
II
1 T '1
n z 'i
(i 1
n n
H 9 2 II
; r >c ii
'1 12 l£ '1
II II
II II
II II
II II
II II
II II
II II
K II
II II
n ii
H n
i; n
il it
n n
ii n
ii ii
II Jl H
II HI > II
ii r c u
u e i B
ii TO r »
n t. a
II H> - H
H r, II
U i* r il
u S C il
u C II
il il
il II
il il
ii ii
C
o
o
c
o
I
o
fa
o
ftm
JZ
u
«
fa 0
t- u
i t
» *
r.' ^
» .i
"*
t~
pv
^»
»
«
fv
n
r^
^
»
flC
t fv
U"
«r
OC
c
^
c
o*
^
J.
^
1
a
fa
2
*
,~
*^
*
fa
H *
' C
~ J=
. ^
"
C
0
o
c
0
1
e
fa
i
»*
^
u
*
fa
H> (tt
i C
* ^
^ ^
- U
w
tf5
rv
<
»
<
IT)
^
-C
*
"C
in
rs
c
s
«c
c-
o
m
c
i
j»
jg
^
4!
5
fa
*
-*
C
fa
^
C
If*
c
1^
c
u*
c
c
1
a
If.
2
*
^K
V
c
<- u
C w
n
'" w
^. i*
u ^
"~
C
0
o
c
o
1
o
o
^
u
k
* M
1 O
» !_
^ -Z
» ^
fj
II II II II II II
cue ; i a: :
II -C It il < II II < II
: « ! ; ~ ! H . ..'
»" a u « H it - it
: r; . c. : H r.
,i n i n ii ii
! i l| l
ii ii ii >; ii ii
O'!G'i^:G i^it^ ;
II C II X ! C N X II C «
" rs , z : rs i z n rs
ii - « i . , ii . n
ae ,i '! oc it ix!
II < II II -C It -C II
*^ * ". »* it ^i
» « ii it - u .11
t r-. 'i ; r. n r. '
ii ii » it ii
ii it 'i >i ii
o .. c « c n « e
ii c ii x n c it x ; ii
rs i :r rv x rs
ii -ii it - 'i - ii
I « : OB «. B "
C 1 II -" -t '1
"<,,! ' " ^ '
II 1 ! - II - i:
i r. n r. ' r.
ii i ii u ii 'i
" ! II " i '
i n .. "
c u * 'i t H o- 'i <: n o» n
" ^ ! X i| ^ " V ^ !
it f^ t 2 tr r*i it ^ 'i K! i
: » . : . ' » "
*: r. it n r* *i n r n
'! »* ii " v^ ; . ,
il n ii n .11
: II i "
i H II II il II
'! II
It II H ! II 'i
i II '1
O ,1 0* it « II > II It X II » IX i O- II
il it i X ii I*1 s ii tr ii
u n n ii - 'i
II (N » H Ci II II r. II
H *. tt II 1 II II
i| . II ,1 11 II II
II II II '! II II
n il n u ii n
It U II '1 II II
II U II il il II
ii ii ii ii K> ii cr ii
II U It II C II U It
u ii n n ~ ii «- n
u n ii ii ; u x ii
II II " II V. il t II i
~ II II it II T II i II
- ii _i ii c n u n fc ii ce ii
C II « H - II « II T ,1 i ii
-------
II II
If. Ii -C
ii ii. .' r.1
ii . ii .
"I 7 - II
Ii I C 7 » -C
. n t c: n
I - Z II
" C H
" C I
; u
3 . s:
* : PJ
X '! /v
1 II -
' 1 <»
1 ! -O
f. II
II i
II If 1 f
ii « n
It U. II
« n
u - ii
it '.II
II Jl C i
i r - !
II 'i
II il
II II
II II
II II
II II
II H
II II
II II
II II
it It
II II
II II
II II
II II
II III II
II III W W
ii r c ii
il O 2 II
u -O 7 il oi T?
n i. «. n <> £ ut
II W < H 1C It "O
ii n ~ a .- c
ii i» i/: ii ou ? r
II Z ^ II £ « C
II Q II «k
u C il b 4 *
il II -* - c
.1 II .. - C
il il C t C
1 .1 1- «t
cc
^
^k
CD
c
CO
c
c
o
o
p
£ in
IV V
c
cr
^r
^
-
*»
.
v«
o
c *
* r
c
7 O
- i.
a »
3 C
^ t-'
<-"
«.
c*.
r^
»
*
f*
Qk.
*
^
fS.
n
c
*.
^
o*-
»
>.
~
r-
V.
W
^
(X
fc
^
«*
(X
p^
s
^
o
c
HI
^
< c
- c
* 0.
c t
(_ 2
jC ^»
u
ut
G^
o
«
e
f.
ii^
0>-
*
«£
tt
tf)
*.
*<5
»"
<
-O
0
11
V
UK
.*
*"
3t
U
"^
^
r*?
«
C
f.'
^*
»*
'J
c
r;
c
«
r^
r1
p-1
<
A,
u:
P-J
OS
c
IT.
p;
g»>
"C
«
(ft
III
T?
o s.
C 7
C O
^
r «
n e
I C
If;
P.
V)
ri
^
O-
u*
Ik
o«.
^
^
^
V
* *o
c
** *
"^ i
'- f
ii c2
c
C.'
fX
^
.
r-
r;
f^
*
f.;
O
C
-C
k»
fx
r.
r.
f i
^i
c /
c r
<> 5
w J.
A «
C-
z
c
^
*^
0
^
r*i
r.
c
k
^
c
o
o
c
n in
"Q
f C
c I
11 4
* U
Cfl
/**>
y~
r**
ii*
I**
C
c
c
p *
c -e
it c
«. 5
t 0.
> «
t^
f.r
ii n
ii p«
V II p1 1 C>-
Z ' On -c
II -11 -
: CC II CC
U P. II f»*
! r. ii
D U
' II
II
' II
II '
4 ; fv ii ^
N ii p; i >
Z ". C .1 <
II * il »
C II CC
ii PJ : rv
p-.1 i
: i
i; ;
1 II
I ' ^. ' »
V II -C II P.
S ! C-' ' 0*
! - ' -e
« p- c
i * '
: P' u
H
1 ''
.1 rv
rt ii e cc
i ^ ^
t
'i
i. it
ii
ii u
ii
u u
X II O> '! >*
X il C .. CC
II - 1
II "
,1
II '
ii i:
» i
n i
ii ..
«r ii u- N
Z II C H CC
ii »
u r» u
it i
u i
ii ,.
» i
ii i
ii "
u u.
U 1
n
u 'i
u
n u
H '1
II II
if. « cn ;
7 il 3 II
cue
0 ii C. u
If * iC i'.
* ii i ii
ii
n
I! *
*t
ii
t it
ii
u i
n i
if u
u ii
C M U <|
l< "- II
:i ii x.
fi Fl C
*- / (i i»- in ,
*-" it -J i
i - It ^r *- 'i
_: a 'i »- u. ,
^ £ i) C X
-------
II '1
'1 V. C
II U« II
1 If '
'
1 II
II II
II II
II II
II II
II II
II II
II II
II II
II il
II II
II II
II il
II 1
II U1 1
'1 ul -I 1
il y £ i ji
ii o 1 u
ii "P - ' *
II !. ».- 1 r
il IB - i r
II D - i - C
ii x : i c -
ii ; ' i
:J ^ ! . "^
II I ^ L.
!! '! >l «
<^
0
O
*c
*o
-o
u
t
:
A
C
c
c
c
c
o
V
c
IV
1 .c
0 ->
41
C I
2 -
" *
r< c
r i it
.£ i .
1 "
(U 1 w
C I C
- I ~
S i O
* 1 -C
u t <-
,
«- r.
c
o
o
c
o
o
^
;
J.
_
J
^ r
^
*
^
c
_-
w
-
-------
II
V. ".
U. H
ir. :
iX H
11 ,
i. II
c i i
c * »
« It
t - II
£ r ii
* C II
c. i t ii
» ^ « n
2 c r ii
* 1C U '1
h c n
5 .1
3 ii
1C ,1
i
n
n
i
i
t& it
h» 'i
tr. i
U. It
1
V II
1> C v ii
fc * ^ '
« «» i
w r ': ii
: « i. i
£il. :
c t;
.* *? t
M» 1% II
II
3 I
m n
ce '
ii
ii
u
n
H
II
II
II
If
II
II
II
II
II
II
01 II
m * ii
o i ii
T? ii
t. _- ii
m »
N «. u
i« .t ii
I C il
C II
c.- «
ii
ii
,i
i
O
o
o
0
o
1
G
fa
o
««
r
u
«4
*M
1
r. 41
* C
** 4i
1 p
«t 3;
£ «C
t w
£ *
C
o
o
c
0
0
ill
£
*
c
^
c
5;
M.
.2
[^
^
^
1
^«
^
c
c
c
0
o
1
o
5
~
M
^
M
C 4>
« C
* JC
w ^
V 4i
- a
c
o
c
c
c
c
**
o
c
j£
tk
c
c
2
c
A
^
*
n
c
c
e
c
c
o
4i
^
t
**
ft
jC
^
r
u.
*^
3»
jg
^
I
a
c
c
c
c
o
0
^*
a
4*
r
j.
^M
J,
jC
^
41
^
V*
fi
IT
c~
C
C
c
0
0
0
ft
.^
4
^<
ft
Jm
V
jg
^
^*
Jl
j£
V
41
tf
*
A
C
C
O
f,'
N
f J
4»
«r
*
*«
It
Jj
^
jg
U.
v^
jr
^
u
0
3;
t
IM!
C
o
o
^
10
^
«
6
^»
4*
C
N
C
&
M
y.
j£
u
c
0
o
e
o
o
pr,
«,
«^
I
O 41
&. C
O t
^« *.
J» T
C t
r0 ^
; ~
* A
C
o
0
c
o
o
41
c
1C
_*
l"
*
e
c
_*
L.
>c
II
c
o
o
^
CS
r-*
*
a
41
^j
4
^
C
^(
jC
^;
4:
C
C
r.
jg
^
3*
C
O
0
c
0
o
41
C
c
MK
;
^*
-
£
j^
*
z
C
c
o
C-
c
^
*
o
-
1**
31
JB
I*
f
M
c
^
fa «
- c
c «
i ^
e
c
c
c
0
.
.*'
t
it
H.
*
i
C
o
c
»"^
rj
(jT
PI
ll^
-------
II II
II V- i
II U. II
II tr Ii
ii il, n
« * <;
PI i- u
n n 4: u
II t- 'I1 V .1
II - C W '!
II - ' '!
n t : n
l' t li .1
1 « w b ;
1 -5 C r ii
i T * (J i
il < X ':
" * -1
ii i
" NM I
i; ;
" 3 '!
II «P 1!
'! CC i!
II
ii i;
ii ii
.1 i
n ii
n
II | |, i|
i| * l| i
i; i i u
c ii > ii r» ii -c . c -c ii
'i PI ' - n x i. r* n
ii * H ii T ~ i -r ii
II . ,. i: : i:
II II .: i|
I. ' i| | I il
! l|
; ii ii
il H l : ii M
i; : : M
o .; »> ii ix ii ~o '!
il » II ! * I z il "" II
i " ii
II H 1 1 M i|
ii n : u
l H .. 1 II i
II .1 '! II II
i ii ii M n M
n . u u >
u ii i .1 ii i >i
O II » II IV n -o u i n i ii
n n 'i ii M >i
n '. 'i ii ii ii
u 'i ii n ii ii
ii ii ii ii n 'i
ii « ii ii » .1
n n n i
II II U >l II II
ii ii u ii if ii a> ii
n ii u > ii t; ii
ii » ii n » ii - n
II II II II -HZ il
II II - II if, II T II i - 1
-------
f
I
1
1
I
I
II II
o: ii e
ii u. n
; i-pl - 1**
ni. u; ! r.<
'. T 0. «
ii ,i
» p»
n ii
i n
« ii
ii n
u u
n n
ii n
ii n
ii »
il ii
ii »
u ii
ii ii
II Iff II
II It -J II
Jl " C II
il 0 t il
ii -e r ii * w
ii i. - u -. Cm
II * - N It It -O
il M >l C
il *» .c H t ? ?
ll X £ « S * O
ll C u =0.
ii c: /i t < *
II II - O
ii il :: u
c
t";
'O
C *
ft "O
£
o 5
* C
C A
41 *
IT. C
E. U
t"
M.
n
rs
C
*,
o
'."
1«.
no
0
^
rr
IV
«
«*
OP
o
K
^
"t
}t
W
C
rv
p»
«
r"
&
*
rv
C
o>
0-
to
IN
K1
00
00
y-^
*
rJ
m
^o
"C C
C 3
« a
a.
"T «
rt C
- C*
*
r*
^r
c
^
r^
ac
00
CJ
r.
r
C i*
* -o
u
T r
fe> c
r a.
c Jl
* c
K u
r^
i"
c-
k
if.
rv
il
e
»
i-
c
(T
f.'
»
-C
u*
rj
<
v.
-r
r;
O.'
<"
»
^
^,
r^
C
ce
« C
CJ
ii r.
VI ll -C
Z ' -r » »
i -il
i -c ii rv
i r: u
cc u
n
i ii
u
u
i>
« » u n
X -.I-O
Z «r il »
» *
* ii rv
r1 i
ct '
;i ii
t i
>i
« n y ~>
* n -c ii u?
2 ii , c
n - ',' -
ii rv i: o.
u (*
ii p; i
n - i
ii -^ :
U ~ n
n ,
i
|
I' II
1
II '1
« ii IT i PI
XI C 'I -C
X « -C 1 <
1 - '. -
II T '\ \.~.
ii r: ii
ii
ii ii
n
ii ii
H
'.
m « - i a.
JT I 'I » U. II dL ;
i x ii e z ii c u
O ! <- '1 (J
C
c
r;
»
ir
f>
C
-c
w
r*;
K
*
-C
cc
to
«*
^
C
«
fc
tw
Cl
e
i*
»
p-
*
«c
cc
rv
ii-.
PJ
»
^H
*
Ifl
O
o c
c ?
.C 3
a.
. «
C S
-
u i
u p;
ii
ii u
il
il il
it
ii ii
n !
ii u
ll
il u
u
n u
il
u il
U II U
'1 II ~ II
:: ii x i
0 ll C il
H- J> II t- U) (1
ii -i ii
t. T II _ - u.
- r i c x
C '1 1- '1
-------
.1 II
: CC "
II u. II
: ec i
ii 0. n
ii
l. H
it l '
i; n v il
II C T. V
ii - ; i
il n
H II
II II
II II
II II
>l II
II II
II U
II U) H
i| 01 ** II
i| ? C '1 tf
II O t '1 O
II "U ~ 11 »
If fa. w II *
II ffl » II ~
11 N jm II
il 11 " tl (. C
ii Z M il C *
'1 w II it
'1 tj II w
tl "I - C
'i ii :: -
.i ,i»«
0*
«c
f*
f*"
o
oc
»
k
^
c
o
c
-I,
^
7?
;
t
x
PA
r- »
v «
^** ^a
r. jC
« «»
»/*
^
b*.
C
C
o
41
^
41
^^
fl
j;
^>
i
ft
O
f*
jC
(^
ri
r*
r*»
n
pw.
v^
cc
c
0
o
91
+> ft
* ^
j; ^
' ~
^ **
9*
KI
r«
*
r^
*,
OK
r*)
r*
*.
p*;
«
«r
IN,
^
c*>
^
0
o
^
X
p-
r*
_~
«*
i
c
c
.r
*
^
-------
,, II
; Lu "
'! " !!
{t fa n
n *
* - *' '!
I! f r c !i
II C "
n _ "
ii K : i
il w £ 1
il fa - fa il
1 I U. fa II
Ii r r c '!
'1 - C »
ii ii
! 3 "
11 't II
t ££ '
ii if
il '
ii ':
II V. '1
i! t Jp ii
ii - ii
1 w fa II
.It i II
'l (fa « II
ii r * n
: r.
^*
31
r
fli
««
a
^
XJ
-o
^
<
i rj
^
^
CV!
V".
«-;
^p
f-i
V)
^
r;
<
«,
*c
c
c
o
£
^
c
1
r
jC
u»
^*
7'
^
01
M
a
o
c
o
c
5?
^t
^
f^
k"
M
f?
IK
P1*.
>
if
If}
rv
u*
O"
*r
in
~
U"
.
r;
^
*
Ol
c
*
*
j*
+f
r
V
c
2
^.
0
C
o
c
o
,44
J)
jg
«*
J;
4
5
^*
j
e» 4j
<+ C
-. -«
Z «
i <£
3
w
fv
ac
Of
vt
fv
CC
«.
oc
^B-
g^
C
ae
.
r*^
PI
c
c
c
ty
C
M
,
V
JO
c
fa
4V
«
z
c
o
c
c
c
<£
iX.
u
IV
(^
r.
«
,"V
IT
^
<
f!
«
*^
t."
e
4b
fv
«;
ec
ae
0-
fv
v
r.
«y
«
r»
*
o
c
u
Jj
Ilk
c
fa
a
<*
4T
U
6
w
C
&
c
^
rj
^
r.'
P*J
cc
P-J
*
^.
P.*
P!
-c
P*5
»
ec
oc
r-1
P!
t"
fv
»
p*
e
(
IT
»
fv
O*
ft
,-,
C
^*>
.
^
^
^*
l
^r
*
0
i
1;
^
rr
^>
f*>
^
,fi
«c
C
o
o
c
(»
C
^^
r
c
t~
QC
rvt
-Jr
C
1
*
^
^
c
o
o
c
o
o
31
C
re
,*
w
4;
9
|J
4
C
*
.i
-
-------
II II
II If. '
II U. II
II iX II
li <- ii
! It '!
ii «i n
'! C VI 1» !
ii -.ecu
il C -
II C H
>; ie .:.- i
il t ' C il
il r 1 '
il - - i. il
II C U. 6. ii
ii .; r H
n u
II T C H
II 1 IB i
II II
II "
II H
3 ;
1! if il
it. '.
II 1
1 'i
II II
» i
II M
II II
II If. .
i M "
II - IK '1
ii 7 i. '!
II II
II tv " '
ii i -; li
<| ^ ^ i,
ii r »- n
ii : T < n
it T ; n
ii j »- n
. . - ; u
ii i r t ii
' - U. -II
ii .. - ii
'! tr -c r il
II u U u
il T ifl II
'i c n
1 : n
ii n
: ii
'1C 3 '!
'i ^ -"tt *1
II -. H«
ii il
II II
II '1
tl II
II II
II II
II U
II II
H II
II II
II il
II >l
II II
II II
II II
II II
II I* II
II !/ > II
il 3 C II
II O CU II
ii v r ii
ii * - ii
ii » . ii
n n ii
ii a ,- ii
il £ C il
II C 1
II '_* il
II II
II II
II II
II II
t^
^
f*l
v^
c-
o
o
i
C
fa.
O
*
JZ
u
4
(. *
H- C
I £
» £
PJ n;
*
- «
cc
CO
OP*
c
o
o
i
c
fa.
0
£
^
*
fai
t- 01
f * flC
* ^c
» Hi
-*
0K
c«
c
>
»
c*-
C4
c
«,
*K
w
fv
r-i
.
*«
«
c
>c
,
i
CO
c
«
*H,
CJ
«^
c
M
w
*
c
c
*
j;
jg
^
Of
5
(.
;
~
"o
fai
^-
o
c
c
c
c
0
1
0
c
PA
w
c
c c
"c +*
, **
i 0
" i
T
TJ
ii ' ii n n >i
C : » II « II » i i i 'I n
! II 1
|| ii " O* 1
! -e . -r c ^ ii c
II -. U -C II O- i- X .1 >
1 » i » . II ' * 1
11 C H ff- 1, O- '1 II > II
i Pi ! r* ei ii i" i
II Ift I U 111 '1 II I" '1
! . '1 '1
II II :i u i| il
d ' 11
il 'I I u n 'i
o » o n o 'i o " « ii o ii
.1 * ': » . O '1 V ' O !
II Pi II -C II » " Z '1 * >>
,; *k it * «k if ' >
II C II O II ». >l M > '1
'! P. : ! "1 L7 1 l~
il vr ,i n i-r ii ii i": ii
11 . (i .
n '; ii il 'i i
: ' M 1 ! '.
II II il 1 II li
: ii p n ii
O * M ! T II (V U «t II f* i
' fv ; ct 1 li? '1 -v '1 U- II
II rt II C II T N Z >l « 1
. -,-,!.'! II . II
II I* II t* II O II n C 1
; OB ii pi « n ii 'i
n c* « P. ii Pi ii M r. H
II - II H » II << - l -C II
IT" n n ii M n
n u ii ii ii ii
n ii ii u K> « ir n
n ii ii ii , ii c_ >i
n ii ii n -. ii * n
n ii ii ii i n * ii
n ii * ii u: ii .: n -^ ii
it u \, n t; n r 'i c >i
II il II « H - i| 06 il
ii ii c n z 'i c ii c n
II il ic II l
ill II il - u x '1 7 -I ~ 11
o ii ii c :i e i
=- II _1 il w II C II 1- II CC II
C It - .1
-------
II II
>l CR ii *C
il u. i:
n . t. 1.
1 w C T "
" a; C (^ il
1 W 1C «
! : *
II C II
! 2C "
Ii 1
: 3 ! <£
' iZ '' *
,1 .1
'! " L"
i; l
'.
n -o
'.:*:> e>
II S < t ':
! - C «. II
II i- It t. '
i. r i
l| * fm^ 1
II ~ 1
II "Z
ii 2: ii
ii i
.1
ii 3 ; ~c
u m ii f.
H OC '1
II II
It '1
II 1
II II
II II
II II
II II
II II
II II
II II
II II
II II
II II
II II
II II
II II
II III II
II I/I «> H
n 3 C il
u a * *
ii urn* TJ
II t. II v* C !
II I* II 1C 1C TJ
n N K c
n it f. u : r :
il S C il * « C
n C n -a.
II U II ti « «
II il - - O
ii ii :: » t;
II (1 5 1 u
II II H- 1 .
*c
iff
-o
U"
4
(1*3
X1
c *
n -o
w
u *
** c
C 1-
« 4
tfi C
< u
4
p:
C
^
fL.
C
**
*
o
»
c
r"
*»
iff
^
^
IT
<*
»
ry
OK
.
^«
p
C i"
fC ^
w
41 Z
r o
- JL
« *
? o
- (j
<-"
Iff
r*"
«*
Iff
r*
*»
T
CC
^*
**
f^
^
T
ro
ijl
^
O
*rt
ac
^
^
^
P-4
D
C
1 «
o
S £
- c
a.
c
£ u
u
«K
C
^
M
O
^
cc
"
K*
00
PJ
K
^
(("3
^
.
P.
B
41
T?
.» ,
C
3*
ac
>
oc
o
**i
o
Ch
»
-c
^r
*.
o
^
rv
c
^
^
"C
^;
O-
>
^
v(
in
TJ
^ C
c r
'C O
tL
TT ii
T C
t Cr 1
-. 1
P'4
^
PJ
^
<
»
O
o
*c
C lA
H "O
c
T. r
* c
Z' X
C 4
" C
Si 'v
Ii"!
oe
r*?
«
cc
K
t"
<
l*
^*
W
r*1
o
r^
PJ
rr
OK
r*
»
PJ
«
p^
^
^
«
^
"O1 i/'
c T:
* c
*
- e i
"; J.
J. »
- c
- o
7
*c
^.
-Q
r*
O
Pi
M
**
o*
»c
U1
<
PJ
u*)
u*
X
c
ffl U)
TJ
C
;
^ ^
C il
ai a
^* c
a u
U)
c
^
e
*rf
vrf
c
r.
cc
«^
^
f.
r-
T? »
C TS
ic C
<. Q
i il.
^ ^
C
« (u
cr
II II
< » ir ii r.
« ii >* ; ^
*C II IV
i '
! r: u
n i
, 11
il i,
l i
II i:
1
1
CO i; r: . -o
"C ! CC 1! rt
1 II -
; - u fv
f -
11 r
: i
1!
1
1 II
II
t .1 C i If.
"^ a !* il *i
M II d > '**
: n -
1! T . K
; j
_ "
II 1
II
'1
V^ l| ft* | (^
3C II PJ ,1 f^
II » 1' »
II » II f
II
II
II II
II
II 1
II 1
II II
«r ii r: 1,1
^ II T H CC
xi rv ii -
n r »
» < i f
II ^ i *^
'1
'1 II
II 1
»
II 1
H 1
U 1 .
II
II II
II il
H ,1
II 1
II !
II- M CO II
5 II 3 1
o n e .1
TJ II A II
<- n L£
» II « il T7 >
N II (V. 'I C TJ
" ii «r u « c
z m u z u> ii r
II -1 1 <- c
* 'C II ^ i & ,L
« - II -t >- il t *
j; a. ii >- LJ ji a. o
-< Z II C I II C (J
O il i i w
Qb
CC
fv
O-
cc
cc
c
«
ae
c*
*
ac
p.*
fc
^f
ac
p-
fc
^
fT-
f*
^
^
(;
111
TJ
-o c
c z
(C O
a.
c A
r c
" w
'*
*I 'I *C H
"S II -C II
Z 1 * .1
tf «r ii
ii tt
't it
ii
ii
1 i
ii |
.
:: ,1 x
C u C il
^- U» II H- U3
-" II -1 II
k V ,1 _ « .
01 -w II «X H- ,
jC d « t~ u. i
-> r .' c s n
O ,1-11
-------
II II
1C Ii C
II U> 1
If. !
ii a. ii
ii ii
ii t. u
I III 1i II
II V II
' *C % II
ii ~ ; l tl * C
It II '.' fc.
'l 1 h 1
oc
r*
C
%
«
X.
Z
<
z
*-4
31
M «
C <**
^
r w
"»
- Lb
a
V?
'O
((*
*o
CB
^,
41
Z
4C
Z
4t
Z
0
o
.#M
«
a
c.
O^
^
A -
1 - C
1 1? 1^
' (-'
O-
o»
r--
«
1C
z «
' ^"
A w
c
0
o
«r
:t
<
z
"
C
u
C
"
-
M
B»
-------
! i! "
fl « >
II U. »
ii t II
ii oe u
H II
II il
II II
n u
n ii
!l II
II II
It U
II II
II II
II 11
II II
II II
II II
II II
II It
II Ul II
ii m *» ii
II 3 c II
II 0 1 II
ii -d r ii
II b « II
II / » II
II M ' II
II It :' II
u x ; ii
II C II
II u II
II II
II '1
II '1
rv
^
rv
^
rv
»
.
z
z
91
£
H:
0.
*
b
1.
C
b
C
«
^
M,
C
1
Pi
c
c
o
^
x
z
^
z
<
z
1
o
b
*
*
,.«
*
m.
T?
* b
^ c
c ^
** JC
^
* *
a
c
f*i
O
f
0»
^
(X
<
x
2
Z
Z
(-*
c
c
flt
jC
Ik
o
0
*
JC
u
c*
1
^
f J
fS.
f»*
^fc
4f
x
z
X
z
z
c
t
**
ft
JC
^g
a.
31
j£
^>
«
a
^
c
e
*;
x
Z
x
Z
Z
^4
e
c
4,
jC
fc
^M
r
jj
^
Of
a
-**
£
i
*
r»
i
t tf?
^
\fz
^
t"
^
«.
cr
«^
<£
X
X
X
Z
-------
II II
; if. i.
II U. II
; ir. ii
n ik 'i
i n
II C, II
in c n
II ** W H
1 * f w n
H £ « »
" 1 * II
II Z ' II
ii r n
II IT ~ - II
ii r , t »
i; e r b n
.! - «. <- II
i! tm 7 7 II
11 1 C U .!
II «- r» il
' c x !
1 C
: x ;
11 ii
! 3 :
! V II
'. it '.
.1 II
t, "
II .
I 1
II ''
II 11
II
II
II 1C II
II 0.
ii 'j: 'i
n u. :
ii n
n ji «.
ii « -, »
I "£ ^
n - n
1 1 ^ li
II X 11 I
1 C
i i/: i
r * : '
ii r <- t ii
b C c. ,,
i; t, u. t- i
'1C. 71!
i « C^ '
ii ; '!
ii z ii
II Z !
ii n
u i;
II 3 1
ii n n
u ce ii
if ii
ii n
ii u
ii ii
» ii
n ii
n a
ii a
ii »
» n
» n
il it
ii il
ii il
n u
« * a
U id * *
H 7 C II
il O & II
II *Q 7 II
il >- -' II
ii i« » n
II M II
II IV If H
.1 X C II
il O II
II t- il
II II
II II
1 II
^
^>
^
c
x
^
4
x
Z
^
x
Z
1
o
t*
a
**
.c
o
^
<- «
1- C
1 t
(" C
* JC
«*
C4
O*
fx.
cc
*.
;
n » ii . ii ii- ii
n pi N " p. n ; p. ,
u n ii n u n
n n ; : . n
II .i H II II
H II i u
.! II ! '! II
li . ,i i: n ii
; n ,, n "
II II i '! II 1:
! '! '! '! II '
II II II illll
o :-:«;-.« » - .!
1 r? II X li !* i V H K .i
11 PS * x rv ; x n ^ '
'; -ii 'i - n n . 'i
" « r " c n n 'i
'i Pi u " p. i it p. ii
n ii ii « » ii
11 ' n
|| n ' i| i; n
; : " n
; n i
« n c n l II
.1 II ' II
.i II II II II II
'II II
! II II II II II
i; il i n i ,
4 > O il i
n nun ii
n u n n n n
II II II H . "1
n n n 'i n n
» n n n , n
n » n ii » »
H n n i n n
n n n n n ii
» n ii ii u< ii tn n
n n n n - n ( u
u n n n " n « n
it n » n r ii ~ n
u n .: il -. II 1. ,1 it II
n n r ii z n c ii C n
II II it II 4 II il il
ii ii * ii n n - a ce n r ii n
c n ii e ii c ii c ii c n
- u n II ll 7 n A ll
- n _j n a « c n <- « <£. n
i n i K ii IM n
£ ll C ll 3 II C il n u !l 1 C '1 1- I C '! t- .1
-------
I
I
I
,1 i
' If. ! 0
II U. "
. ; ;
n a.
*' x t- «
i M e U <
ii ie :
; it * « ''
II ;, ~ « "
, n
II * T ii
; I i ' i 4
ii £ .. en
,;«!* '
H T b II
, c t .<
ii - _ r ii
1! C 1 U fi
II C * II
i r, ~ «
ii - ii n
c - »
i; c n
X * C
Ii ff M
! . OE N
Ii »
' Ii
'< *
2 ''
i H
,1 l<
< H
n '
i tc ii r:
: +. : «
"- If. » O
'. A. '
1! II
: ** S« 'i
it a s y #
u ,-,»-»- .;
Ii « - ». H
" _ w « '1
II -. II
II 7!
il « C> *"* 1 ^*
ii .2 - : . <
n u t i n PJ
ii ~ « >
n c, - k n «
u c 5 u ii
ii - v. :
u T r ii
'1 - C
ii e * n
r ;
II J II -6
* .; |£
II IV II ^
II UE '1 ^
Ii
ii i; »
H 1!
n n
ii .1
* n
n ii
n ;
u n
K II
II H
n u
u u
u ii
u u
u n
n * *
» f. *> n
n re*
ii e « »
ii is ~ ii * ^o
n b n « co
n « a ic it -p
II N «' II ~~ C
u * ,: n s -7
n S C it C O
II C II C i
u u ii c a
II II - - C
ii ii :: -- u
U II C C
II II H- .
«;
O
q
o-
te
<%
W
>
*I
n
o
C W
n ^
c
u r
- c
C i.
t> *
* G
i- c:
<
^*
oc
tot
4H,
t
f
>
X
»
»^
»
t*
r.
M
Ci
dt?
C
o-
H
^
X
__,
fv
^
^C
«H
>
9
C
« *
tJ
f £
i* ^
X
e, *
- c
£ U
U
r;
at
p.
PI
-0
»
FT
b~
li-
fe
^
-e
>
^
»
«
«
-c
>
0.
0
r.
n
c
rt
*
^
-C
r*w
«h
«»
r-i
r*5
i^
»
f*«
^"
oe
*>
v^
111
e
m.
^
-i;
3R
U
ac
N
oc
»
ir
-c
oe
e
c
o-
tr
.
CB
»
PJ
»
C
-"
"C
*
IP«
>
«r
r».
rr;
«(
*
ac
rv
I
<
fs
t
ll'
c
P4
in
o
^ c
c ?
« o
a.
r
~. o
9. U
c
O
o
«
bo
o
u?
r
£ U>
* "S
C
3» r
t- c
? a.
u «
t- 0
tf^
OB
>
r,-
Lt
V
^ft
ut
*r
»
i-<
w
-c
>
w
-c
»
«*~
*-'
fv
<
M
»
o>
.
o
*4
e
P.
»
C
ft
~c
tk
~*
f.
N
ire
M
«M
^
p;
M
^
fv
lf>
»
»
ac
p>
v
C
* «
o
f C
M ^
c a.
«> *
««
« u
sn
rv
>
n
k
Iff
<
e
«^
»
OB
P.1
P.1
Ii*
>
*r
9,
O-
PJ
»
^
-C
>
K
CE
K
(>.
ae
<
M
~ «
-c
ee
^.
9 HI
C t?
it C
?
<- a
« t
> «
C
- U
tr
n n
^ n < ii »
ii ir . p.
if. a en o>
K - H -
O » 11 II <
oe n - n
n P: u
II - K
n " u
II >i
n u
n ,
in i -c u PI
fv li ^- .i
O» .' P.' U «
oe .; rr n »
r; (i * ii u~
If, ". ~> II -C
- i; - ,. -
! P.' II -
ii *^
n
« ! UT ' -C
> ii a* ii >
p. i ii- r;
- ,i ,i «
C 1 > il C
i; ae .
-C 1 II OC
» li » , M
II r-" II
1! " 14
R II
II II
i f . T
rs ! (; u OB
K .'. O- .i IV
" < :i
C i «-
f * W
II <>
.. ,.
II II
' '1
II U
1 '
CO '! If. '\ -O
ii- ii « ; >
I : »»
u » ii ae
-c
n ,i «r
ii - ,i
u p. u
II M
U II
II .1
o«. ii p.- .: T
03 H fv ; ac
u * n »
ii r; i ae
II « !
II P! '1 IP?
II - U
II P-' '
n u
«
n
n n
n
H U
U a
n n
n i
II U
« u
o u tn u
3 II 3
6 DC '1
Q u e u
b H OC M
* II « II -P 01
M II M il C 1?
C II
»
c
oe
u-
«
«
c
rr
M
C
«
<
>
«.
oc
»
P-.
o
*v
^
»
«
rv
*
r;
M
p;
r».
" .- ii
» -
A
i' < '!
j *
C II
" II
C ii r*-
; t* ii
U"> II
1 * it
' ui
'I II
II ,
'1
II ll
II
/ II
O '1 *"
ii r
II T :.
ii »
ii > <
.1 i* u
II -C 1
u -
ii P; i
n i
n
ii
OH C ll
u >
n - .,'
'i rr :
i *
II OD I'
II - '1
II P. II
II >
II II
II
II II
II 1
II 1
II II
II il
II il
II
il i
il II
II il
II II
II II
U II U I
* II ~
:: ii x- i
O ii C i
H- < II I U> i
II _
1- t II _ « i
a ,i UJ <
> a .1 c £ >
O H 1-
-------
II II
ii tr. i c
II U. II
it tr. '
n ik ii
ii -»
II £ b II
' Ul C U !
n tr. n
11 e
II '^ t '1 K
II b »
ii v. * - u 9>
u - » T i rv
II C " CJ II t*
II - o- il -
ii T r ii
n - C '
nC* il
II £ i,
II 3 II ^
II K ,1 O»
II IX II X
il 1
II ll x
II II fe-
ll II <
H II »
II II
II il
n ii
n n
n n
n i
u ii
ii
b «
C X
2 «»
i ;;
r. o
^ £
If '
- IV
O
o
0
c
o
o*
.^
l*»
3*
5
4f
O
!
O
r
u
CJ 41
^ £
- i
=
<
09
fij
^.
r.'
c
c
cc
^
^
t*l
c
f«»
k
c
^
c
b
^
«c
c
OK
r;
c
(V
f^
k-
00
o
n
^
*
T-
g
I
,M
? _
^ i»
U* I
r. £
T. £
* ""
~<
rr
oc
*
ii*
X
c
0
41
C
It
w
41
C
«
C
c.
t"
*>.
Qh
»
v^
^
rr
.
OTk
ir;
*
p.
*
oc
rv
*
**
cc
^-
c«
k
e
_,
C
«
^^
c
f^
r^
pv
CD
rr
o
rr
^^
71
N 41
41 «
A
2
Jl <"
w r
£
cc
^
<
^«
^
cc
k
C'
QS
*^
<^
c
,-
*
^
^
f*.-
e
C*-'
*
f*;
f^
*c
*
K.
^"
cc
r*?
41
^T
«
b
C
r
0
O k
- 4.
<-' *"
Ml
ff?
^
^
CC
r-j
^
rr
p;
r'
Cl
4f
^
flU
N
41
JC
O
a
u
c
c
c
c
c
*
o
i
b
u
*
c
£
£
X
C
c
c
<«
*
f^
fv
*
y-
*
r-
OK
^0
^
«
C
11
2
Q
^
"
o»
f^
f»;
*
^
V)
P*i
^
ITS
*
"C
i^-
fw
^
rr
^
C
OK
,*
C
^ I
,,
o.
rr
fv
oc
^
p.*
^*
f!
««
o
O
o
u
f«"
Qpb
r:
Or*
P
.
P^
P-i
I,"
rv
*
^
^
*;
f^
^^
m
C
It
«
f
c
u
o
0
c
o
r*
y-
HI
1*
C
4;
*]J
jC
J^
m
o
J.
jC
"J
c
*«
^«
<
^
r.
9
<3
P«
rv
r.
r
* -
z
. r
-» i^
^
f j
ui
P--
*
CK
r-«
c
^
o
c
^
111
r;
^
n
£
1
N
T
-
'o
C
c.
^
i
r;
c
o
0
c
&
o
o
o
«
^^
01
^
0.
1;
^
^
C
V
^
1
rr
^
O
o
c
o
c
s
f
₯
i
J
"*
^
c
"t
^
1
<
c
o
0
-c
111
»
-c
it
r
-
^
b
C
"£
a
1
c
,
o
o
c
-c
^
Pv
»
ll^
Hk
2
"2
IV.
^
111
£
>t
~
^
»
^
-
"^
^
1
r.
o
o
o
r.
m
r.
ff
X
^
fv
;
rv
^
^
V
r
^
c
c
L.
^
,
-
IT
£.
-------
I
I
I
I
I
I
I
II II
II 1C I!
II U. II
II 05 >
II O. II
ii a u ii
n ui & ti ;;
n or v ii
ii -. >» < »
l! * !
ii v, a
i * C V !
,: u < « :;
n c r »
n - w i:
'! f ~ "
ii c ':
c - ii
II X
! 3 ::
H "j
ui
cc
>
P-4
PJ
c*
41
C
C
^
*
c.
^
£
c.
C
jg
^
.^<
IH
1
f-«
»
-*
C
c
c
c
o
c
1
0
c
_i
V.
M
t^
C 01
t C
£
C 0
* *
o
c
0
^
*
rv
P*»
p^
0^
\f)
n
*K
C
,2
0;
r
A.
o
o
*>4
r
u
4
a
4*
.
f'
(V
fS,
rv
^
C
^
C.'
c
»
^«
<
rv
C
m
*<
Of
^
l«
r*
*
jg
^
£
a.
^^
T.
r
i ~
I 0!
«
' *
.^
f?
<*
c
fc
tr
^
»
*
^
Oi
w
9»
4
y*
to
*c
^
^4
O
en
to
-C
tf?
C-'
01
^
^
rJ
^
Of
A
(--
31
' X
W
U
c
o
o
c
o
o
1
f*5
to
«4
I
0 «
b> C
c «
jC ^?
o t
t w
;; "
01 A
31
C
o
o
c-
o
o
4l
c
'C
^
to>'
ft
*
1.
c
JC
c
4:
X
rv
c
c-«
»
Ob
rv
f*i
c-
Ok
^
o>
c
w
*
c
c«
re
rv
f?
CO
QK
**
to
CC
o-
f
^
to
ac
Of
o
K
4.
C
2
o;
C
*«
7
JC
«.'
t
to.
v:
^
to
c
««
PJ
00
o
-c
If.
to
««
OB
ijh
r;
^
*»
«c
»
*»
^-
>c
*
CJ
^
«
to
^
r*.
*^
o*
c*«
to
rr
rv
01
c
4i
^*
~
j^
to>*
j^
' a.
^
2
c
c
0
c
e
c
w^
31
£
^*
i;
A
f*
^
C
X
c. 41
to, C
A M
z *
1 ^
2
c
o
c
rv
K
ri
.
*
z
o
c-
0
c
c
^
j£
u
^
o
c
tft
fv
"O
«to
«
rv
^.
ri
^t
g
4f
iL
c
c
2
t
to.
£
Of
cc
<£
cc
^
Of*
-c
<
rr
to
Ll
w
rv
OK
c
cc
^
to
1*^
c
PI
rv
c
'
^
to
f^
X
pv
to
^
«
u*
c
»
*r
cc
CO
to
^
«^
0
1 41
' £
e
PI
PI
c
0
0
I
o
fc>
o
^«
jj
u
fQ
(
«JJ
01
H*
1
PJ Of
* w
p; t
* ^
A
to X
^
«
c
to
rv
<
CN
c*
J
*
PI
p^
~
ce
c
Pi
P4
cc
«
rijf
r.
I/*
(1?
c
u"
41
c
4-
^to
r;
JW
^r
t
o
k
«
1
.2
c
T
fa,
to>"
ill
f*;
c
to
^
t
111
o
tt"
^
!»
ce
to
r-
ps.
(V
cc
u?
pv.
cc
p^
f£
l'~
f*"
.
~
CO
<0
^
to
"X
-c
Pv
m
p.
*K
to
o
f\
Pv
Ht
w
a.
~
c
c
o
o
o
o
o
ll
£
c
-C
*
t
4
*
£
c
»
»c
-
_
-------
II II
'1 V. II
II u. II
'1 V. II
II A «
II £ L. II
ii ui a ft ii
ii c ;
: oc |
11 'i
n i
- ii
u u
. ii
u
ii tr. ii
< -4. «
ii ' i"^ * * u
ll 1C PO W II
' v «t :
ii » i
" » T K
« C ; ,j
, (j fc i «
ii ;,*>-'!
.1 - (. r i;
; £ c u n
n - «. n
ii as r ii
II -- C i|
II C it II
u X il
ll 3 II
u i
ii ie n
n u
it »
II U
n ii
« »
ii n
n n
» u
ii ii
ii n
ii ii
n n
ii ii
ii n
ii i|
ii »
II K> II
II 1* «« II
ii r c n
II C t «
ii -o r »
II I> V II
II fl - II
ll N - : ll
II IV ^ II
ll X C il
u e n
11 f » ii
ii (_ ii
ii ii
n u
n ii
ii u
c
o
o
rv
>
*
r*
ik.
0*,
CD
0^
r.
Ik,
«.
-K
t
O
t.
O
_i
U"»
^
Pi
>
rr
ix
^
i
c
c.
C
£
U
*
t.
^ «
f w
r* iv
~ «.-
* ^i
*
C
o
o
c
c»*
«
w
o
1*5
.
C
«K
w
c^
^.
>
M
^
«
c
c
*«
5
_^
V
a;
c
b.
e
^t
_^
Jk»
t
*(
b.
N-
C
0
c
e
o
^
i
o
if
*
i <
W
C
«. «
e c
* *
* (
ko ^
' ^
- ft
c-
^"»
O
O
0
o>
«v
^H
-0
OK
o-
o
f.
1
G
(
O
£
u
d4
fi.
V- >
1 0
- «
T JC
» a.
n
u : , n ii ii
r^ u C n -c :i -c ii u~ ii ii
cnciii^'irviiKiiK.i
n ii c < v; : K « e u « *
n -c oe ii in n IA n e ,:
ii 9- ,' -e -c ii o ii -c ii
1 * 1! IT Ii OB » . - C II
ii i i; « » u u
i » _ n r; : «
II '! H II II II
: ! ; ii i;
» i n ii ii n
o .; cr i rv u i>~ ' < ; ".
-o .1 -e : OR u k* u o> n ;r u
rv ;>'!< ii « , o ; r>.
flk .i -C .! OB II « '! K ! O !
. ii . ' . ii n ii r; n -c «
p« '! w » : rr n iv ,:
ii > ii » it ii i
> » « ir « ». i r. !
ii . n n ii r ii «c ii
ii ; ! ii :
« n ii n u
n » ii p" » N 'i rv ,. » :
« -c u -c ii -: ii ti i c: ii
r: T n tr : cc ' - » o- ..
e P- ii oc : c ; * ^
p. » u r i P. ii « ii ; "
II O> II " " ,i -C ' CI ".
i-. o- ii Hi tt ic ii .r :
II _ i| _ » rf. i| f ^ ,,
11 * ii .' .
II .' '! 1 II
r. » t- ii K H as i -c " cr 11
* II -> ' »C ' > : X "» II
r. ii -c it r^ ii » ii z : o- ii
II « ! » II * 1 II - II
ii c ll ( 'I « ii n ii
u ; n . ,i . u
ll ll ll .1 II >l
H i| il 1 i u
H il ii :; i
.: .1 n u ; n
» n ii ; u ii
il i ,! Ii 1 i
n .; OB n OK ii r- ' . >i
n » iv ; o .; OB i "v ii co '
c ;; rv H -c i rs z n ir «
.»:«:' .1 « »
w n « n ce i: n i n n n
« K « i !.'* ii «r '
ii r-. u . ii T: i u x ii
i . i; « , » 'j ii >!
ii > « rr i; r. 11 11 p. n
n i i 'I ii ii
n n .. >i ii u
; .; u ii n
» « p; 11 a*, 'i ii i i .>
- ii n ii e 'i >i c -i
> il H C 'I 1 I C '. > I
-------
II II
il If. * C
A U* II f^
1 CI5 II f
II "-il.il
' ^ II
1 Ul «. H
! W IT 1 "
,! C u _- II
i » « :
! HI jC < H
' ^* * *!
'i C U. II
'! - * 1 Cf
l! * £ iZ 1* ^
> 4 r t ! f-1
ft 2 CC « I "
.I .C * ' ?-
'1 C; « r II
n u .'
H _ f i|
ii « ; i
ll 5 " U
II " '^ !
II -S 1 H
ii - ve 3 .. e
ii e T ii >
II » Ot t W
ii u
i .* " (*!
M K II
-t ,,^ n
'1 LL. II
''
. 1!
' "
» "
'1 hC CC II O
' Ipw MM -
It IK 1C II
" O.
'1 . « ll
" 1R tm "
II «- -" i ;!
I r - v :
II 1 V. .
i r js « "
I f - :i
'i ", v ii C
!l C * '
ii * r i ii
.. a. u: - n
" .S - «
1 (^ * IT II
il ;_ ll
i £» w. II
t * C !l
II £ -< II
i ~ !T '1
" X(1 i; l|
11 - a: J n o
' C IT II
Ii Lt ll
II
II Kl ll
ii « 'i
: M il
n i. ii
i »
i n
n n
n ii
ii n
il ii
il il
il ii
ii u
il u
ii .1
ii ui ii
il IT «< ll
ii r c ii
u c i ii
II V ~ II 'J> 'C
II L. ll C If
II in * il 1C t *O
II M ' II .V r
ii n« * ii -i r ?
u x c n x « o
ii ; ii r a.
ii i^ u i. a *
II M - ~ O
n 'i .: w u
il il C C
.1 1 L. <£
c
CC
^
^
f.
t
f«;
o
r*
c*
«.
?**
C
o
o
*Q
u (A
t "O
£
^ *
* C
C 0.
* m
b ^
"*
rv
^>
^4
^i
,.
>
r-j
pv
OC
«M
»
(*i
C
O
0
-
o
C O
* r-
c
< 3
r c
A iL
4 £
-C G
t CJ
u ^
oc
-»
0^
n
0*
«
1*"
*K
09
C
^r
«
"C
-.
r*"
c^
fX
»
**
« ,
n
"O
c
A
fS.
t*
c-
r-j
-o
^
,
fv
*c
n
iy
c
f«
U"
rt
*l
oe
c
.1*
r*)
«*.
A
c«
TJ
r^
«K
»
r*
41
o
«.
C
1C
r
u
c
oc
r.1
OK
oc
»
o
P*
*-
_
(**
«b
c-
w
o
c
o
I*
V
^ w
c ?
J^
c «
.r ci
t CJ
u^
o
o
f»»
c
o
o
o
ll *
rt 13
c
y. r
t C
: x
U 4
h. O
'U U'
c
<
^T
fl
*
-*
o>
WJ
>c
*-
c
K
c
«<,
o
o
o
1? «
t C
^
~ o
- iL
a. d
C O
Z
>
0b
r;
r^
^.
»
,*
f*t
CC
c
«y.
«
C
o
o
-o
fl Ul
A C
3 r
^ c
C ii
& A
~ c
(V CJ
«fl
(X
fo
«M
r-i
c
*
K
c*»
f*;
C
«
,»«.
^
c
o
t? l»
c c
- 3
C iL
> *
C
- c_
or
n ii
r; .1 u? « »
c n ur n rr
rr >i ae n b*
U » il
ii n u
ii u
n n
n ii
'! U
n u
f ii
i; u
« » " r.
n - ii -
1! » U IT.
,i - ii i--.
'. 1!
'! II
II H
'1 I1
: ii
: u
-> ". C i O-
r^ ii « u r^
i ii ~
s < .. t*
i ,i
ii * i
ii >i
ii
u ii
n
u ii
«r u r<- ii c
c ii r- .i
*> n t> i
« « .
U"1 II OK ll
II
II II
ii n
ii u
o» n a ii o
r. ii
ii ii
ii ii
H II
H> II CO II
7 II 3 H
O II C ':
o ii c u
< u ce ii
! II ^ ll V Ul
N' II Is* '1 C *O
.Z in ii x u> .: r
M* II _J II f- C
* t: ii « ! Hi
4. n l H- 1 U
r
^
V
»
r.1
o-
c
-c
*
«y
^»
0"
r:
fV
M
^*
1p
sC
C
*.
«
CC
o
o-
*
u*
fl
in
ex
r*«
^
<}
m
uf>
TJ
-o c
c ?
l
'1 ..
C P" .
"I <* ,1
' * i*
u t
C' I.
ii
il it
ii ii
O (t C fl
. Cf .
I. f.
'1 .
1 £
it r" i'
|) it
i i
fi
it
OH CC
c; *
U * il
(
'» c .
ii
ii It
t
U ll
'1 ll
i; '
II il
H II
'1
II II
II
fl II
1 "
'1
il t
1 If
U II CJ 11
<* tl N- ||
:; .ix i
0 il C
H- m n v tr
* n .^ ii
&. *t ii
-------
II II
; if. u X
II w. U, 11 II*
i- V. II
ii «- a. u
i: "~ II
II V, b II
U » .-. tt II
II JC b ll
'! i »- II
II i
u u
II iS V. '1 C
It (C (ft '
! N* y. "
'1 -^ II
ii r, <. .
1 *. IT 1 II
'! 9E < V !
II 1 «- II
'? !/ ^
It .- - II
. IS U.
II \, _ - .. IO
n * r i
: i <£ - "
n ,5 1
Cv * *
u '_- n
,i v. -'
n - C il
II X '!' II
i - a. 3 ii u~>
1C tl il
i oe n
i ii
i '- n
,i ^ n
« »< n
II u. II
II II
II II
II n
II II
II II
II II
'I '1
II II
II II
II II
II II
II U> II
II It- * II
II ? C II u<
II G 1 II O
ii ~e r ii >
n fc «.- ii ;
u i - ii ~
II fl "J II t. C
ii x ; i c -
ll O ' &'
II U I - "
.1 i ~ C
ii i :: i b
.1 i *- : <£
».
C
c.
»>
PJ
<
^_
VM
o-
^
M
M
P-4
«^
^
<
<^
^K
^
\f.
*
C
(V
Wm
tj~
CO
0^
^
b
C5
«i«
<
«
1
r-
C
it-
i»
i
o
o
o
c
c
c
u
c
l«
I JC
o *»
b fc
C X
2 -~
t; r-
P: O
^ J=
j; *
> fll
A
«
o
9
c
o
o
^^
#«
r
e.
^
«
o
b
0
£
U
rj «
s
I/' w
A
««
^
^
^
C
lit
?*;
"*v
^
gg
»
r~
C*
O
Q
A
*
3;
;;
t
fmi
?' 9*
W D
U» ""
Pi JC
>^ «j
IT j:
l£
C
e
0
o
c
o
II
£
<
41
^
o
«
c
a
c
o
o
c
o
o
^.
j;
N »
i ^
d **
& 1C
£
* *
? IX
u
fV
*
o
**
IT
Pi
e
«
f
»
PJ
c
o
o
V
o
b
o
Jj
c
n
b. *B
£ -
b 9.
'T H"
U
O
^j
c
«
o
o
£
c
&
N
(Jl
Jll
o
.c
u
o
c
o
c
c
o
,«
£
o
Jv
u
f.
»
i.-:
^
w
k*
^T
p.
c
c
o
1
c
u
p»
ll~
^
p.1
v;
<5
r:
C
C
^
tt
c
1
r
«
«
c
jC
u
o
c
C-
o
0
0
a.
c
V
^^
ft
£
^
4
C
c
b
O
o
PJ
c
o
o
o
o
0
-1 tl
«> 1C
?
2 -
* "
C
o
o
c
o
o
Ui
^
-------
II I)
II V. II
II fi *, II
II 1- Oi »
,i -< 0. II
1) II
ii « u a
: «- .1 « n
i S - - ii
,! S W II
i f. it « II
H .- - II
l| « Ik II
i - c ^ ii
' 4 r a; ii
II « (A t- '!
: £ « !
n c r ii
'! (v .'
'' '" * .!
'! ^ w
ii ;- n
'! T! IT "
H T, « II
l! t- kt 3 :
n C it II
ii ii
II f ,'.
II C Ii
II « "
ii a. i - »
ii j n
'l ^ n
II O. II
II II
n «
n ii
n ii
n ii
H '1
II H
II II
i| i|
II II
II II
II Kl It
II U» 1 II
ii ? C u
II C 01 II
II V iT II
II t v H
II I* -. II
H N ' II
ii n .-. ii
ii x ; n
II C II
n (j n
n ii
ii ii
ii ii
ii ii
c
o
o
c
o
o
1
c
6.
O
f*
£
u
«
A
I
r, 01
* C
-< 4.
1 »»
i/- IP
c r
f. -.-
t» d
h
cc
r:
C
M
C
r*
c*
c
»
-c
c
o
o
Of
c
t
(J.
3
c.
0.
c
i.
c
«
^g
^
M
£
!
p.
*~
c
c
o
c
c
c
1
o
b
2
~
*^
v>
A
^
C 1»
t- C
c *
*» JC
M **
C 1
13
c
o
c
0
c
o
f*
c
c
Oi
jg
iL
0
tv
0
^
03
^rf
'O
(V
w
Oi
N
iT
fit
A
^«
J!
jj
. »
UJ
c
o
0
c
0
o
,
M
»
^
1
O Ol
*- c
c t
f^ «t
-c r
u -c
<% w
;; ~
41 A
=
c
0
o
c
0
o
111
£
t
*
*.*
*
c
4.
c
^
^
It
"'
5;
=
r;
r:
c
^
o
c
*
o
o
0
41
*
fc.
Ml
-jg
^
*;
jj
q-
j;
jg
V
»
*
5
X
Mk
Ml
p-<
tK
'C
r.
k
r-;
o
o
o
01
c
^^
;
,c
«
j;
t^
"
z
0
c
c
c
c
c>
OT*
Jl
^
-
4;
4
M
^
*
-
»
u 01
«' C
A
z ^
1 c
1
1
1
1
1
(
t
1
1
C ' O
1
(
I
1
I
1
1
(
0 l C
t
f
1
I
!
1
c I c
)
1
I
,
'
1
1
C ' 0
1
1
t
1
1
I
1
1
!
1
1
1
(
!
1
1
1 O
1 C
1 Ol
' JC
1 i
i O
1 U
t o
i 2
1 C
> (C
1
A i C
U* ' 4t
tf:
Ml
at
d?
ta->
fV
^
rt
-
fS.
o
fv
>
(f*
f '
k*
*
^>
*c
c-
9*
^.
<:
H
JH."
t"
r;
^
*
^.
u*
^
px
ll"
CO
-o
^
PW
0
c
4.
JC
c
0
o
c
o
o
i
c
t.
c
jg
y
*
(.
w
01
1
1
r: 41
* c
r: .c
* jC
** ^
«k },
c
o
o
0
0
o
Ol
£
t
*
j£
4,'
ft;
c
^
c
K
.^
c.
~
u
*
1*
o
o
-0
tt
X
o
^
r<
M
fX.
^
«.
r*
C"
f**
.
r*
1*^
l>
f**
fc.
^c
r*
rt
*
o
M
_
r*
*c
11
w
X
~
«
i
c
0
c
c
;»,
0
ll
£
t
.*
i
^
c
£
^
.
.i
-
_
-------
11 II
ll If. II
II S. U. 1!
i. H- ic n
ii - ii. .1
ii - ;
II T t- 1.
tt * .- 1. it
it X - - II
II '- V. II
t if- - 14
. u « r H
>i c;
- 1C I'
1 -^ C «
ii :-
1 "7 IT !
i r. & ii
- it 3 :
. 5 * 'i
» l
ii n «. ii
ii * v. »
« X t »- ||
II t V .
! * JC t 1
II . -
" ". U. '1
II - '1
'. - C - :
ii « ; i;
i w tC b> 1
n - ;
t» * ~ i
H V "
; * .* 'i
ll » C
Hi- ll
i; it .'. u
II " S II
n ~
i * tt
-*
^
n
PJ
^
»
r-i
1*1
(
»
«*
C.
C
o
o
1
o
b.
o
w*
£
o
rt
(.
t- «
i c
Ci (T
- £
«. *i
» 4.
**
f-J
r.
^
^>
^
-o
!>
O
^f
o
o
tt
C
4;
^
jC
+i
ii .. ; , « il
v; ii v. " r^ i p. i p. n
n iv ii -c n c- ; ',*n
: u- ; -e ; n -c ;
i; . >i n » , n - ii
T ; ; » .1 ii < !
n it u , ii u
" ii : ; u "
n ii ii ' n M
o- : ae ! o " ce : « N cc "
rs. » T n » « es i v it cs n
. ii *r i ii * r
« ii n
n u PI ' F- M
o 'i rv ' * ii P. ii n ii \fi n
p, " I* '1 f- il 0> " V I f '
os ii ii ae ii C ii 5- ii
| » ii « i » , -
ii r» u n rs. ii K5 ii c n
- u i r"
n ii ii n >i '
! H i It
n n p>. n PJ i o- ii -c ii u" ii
n : o» » * rr ii >r «
rr « « n ii" u o- u > " c; n
C « t1; n f n o> ii c 'i c ii
r. « r; ii « ii ~c » -c i; r^ ii
II ^. II II tV II » '1 P- II
il-il i| « il - » u
» ce » n cc ii c- 'i ii
II II II II p II V ||
n » ii n i ii
n it n it .". n ii n
II II 11 '1 - '1 C^ il
n ii u 'i - u « ii
11 ii ii » : ii :s ,i
II II * II 1C ! " II *t >l
il u , .1 <_; it ~ ii C il
ii u -. ii >_. u w it ce ii
n u c l C II C ,1 C II
« U II II il T il £ II
t* H ^j n c n tj ii it 0£ ii
S il 4: ll * il . il -; ii <£ :i
il t n :: n x il ' .1 rv. il
£ ii e » c it c 't " ii < ii
U il 1 II f- il t- II X il X il
II A II I ll II ,1
r ii ui ii ii i -i ii i ii «s ii
C il ll jC ' t- ii il l- 'i
- a II . C ' t C "
^ .1 1C ^ ., c 1 t- 'i
-------
or c
w UJ
f- '
i; c* Z "
u r * > ii oc
II " Z K <
u '_ s n
u i e s- ii
||
C
*
^
A
- c
ir
O fx ii ^
i' I" !
« 1.
i
" II
II
U II
II
r ii
u ii
C ' O- II C
( ^ '1
II £ »_ ll i 4
j^ i It ^ ^ || |JL J
< s ii c c .1 3 L;
O II H* '1 CJ
^
jj
PI
^
.
C
"*
X
i
l>
c
^
p;
^
,«
»
C
H.
f
^
PW
ac
f.-
r*-
.
fV.
f^
^f
I/I
*O
"C* C
c ~
1C C
w
r o
^.
C p^ -1
V 'I
il U
1 ft
>l
.1 '1
i ''
' 1'
c i -* '
M &~ 1'
fc 1
«- |
i It
i. Il
(1
t II
II fl
'
1; 'i
ii it
*C f^ i.
u* " < 11
* C. ..
I i
l( j»v (^
1 49*
'1 «* 1
II '1
II 11
il
M If
11
-O " f ,i
Itf ii H;
n ("' ti
ii rv it
i - ii
11
'' tf
M
'1 [|
f^ fJ I1
N- ll" ii
« fj ll
»,
1 CC 11
I |l
« U
" If
H
" 1
(I II
II
>l '1
.1
il i
II
II II
H tl
11 t|
n
ll
Ii 'i
Q V U
:: ii x
O ii C t
1 Ii _J !|
*- -t K «r !»
a» ~ ii - .
Jl X '' H- UJ il
w * ti C Z
O )- ')
.0
ll
71
^
a'
-j
-------
11 "
i ~ en ' c
II i Uri '
II t- If. >'
II U. '
!! «- i :i
0. C C 'i
'i -
£
n
i £
O »»
fi. 41
C X
.£ -~
U 71
p* o
£
L" «J
- 01
i
c
k
*
c
0
<£
X
K
K
«
^
%
o
fc>
O
jC
o
-c -*
t. 4i
f. ^B
U
r1*
*c
o»
r**
C
^
fs.
*O
«£
Z
GC
^
ce
^,
GO
tt
C
N
Of
0
c
m
_£
u
c
c
<
^
c
-
o
0
*
o
If
4)
k
o
1
c
t.
0
c.
(^
,
0.
c
c
fl*
A
o
0
o
tm.
£
u
1 I
K1 1 C ' C
r** ' '
i '
1 1
t 1
t t
1 1
1 1
< - C i C-
C ! 1
X i i
l> 1 <
1 ;
i 1
i '
1 '
t
1 1
i i
! !
1 *
c i o i n
i ' r
i i IT
i i -
i r-
i t
i i
i >
i i
t i
i '
i i
t i
i i
i i
i i
i t
1 4. 1
1 C (
1 tl I
i fQ |
41 I JC !
C t ** i
* i a. i
£ ( 1 1 ~ (U
a, » o i *- (c
dl i u i 3
a i o i A z -
t; r
jC i ; - a.
U 1 TJ ' A
o;
o
c
^
X
C
f^
r
w
T
=
e
o
o
01
^
^;
4
^
^
<_
:
^
^
>
*7
«r
,
i C . p.
- i <
.
',
p
I ,
, ,
O i CD
i . , f-*
i i r^
: i
t \
i
,
»
I 't i
-------
i M
,» If II
i' £ o: ii
I - u. 'I
1, _ II
,i - ~ t H
'. * c ^ ii
' i c "
c, r - 11
, *I C i »
' * ^ i "
i,- .-= c £ »
l! c: C >'
'! i
ll T II
ll C n
1 ^ -
ii - i u
n : re - i:
ii *- - n
ii r r r i
it : w »
II '" U. 1
u -^ u
u I c J 'i
II ~ >V IQ '
'I du iJC u
II N
II 1
n i;
« n
u u
ii ii
n :
ii n
ii 'i
n i
u i
» ii
» ii
n u
ii ii
H ll
ii « ii
u * * n
U 7 C H
ll C S »
ii "0 r ii
n b - n
II l» U
II N -.' U
II It * II
ii r c ii
II £ U
II CJ 'I
II '1
II II
1 II
'' "
C
0
^
n
^K
t
r
f
0.
f»
T.
^
o
c
1
z
I*
A
o
0
V
^
.^
-c
IA
c
t. at
w
-
z «
1 >
i^
O
C
I/
jC
' '-
i
1 O
'
1
1
1 C
» ^
. «,
* 4.
C
c*
tE
£
02
I",*
Cl
f *
f*:
C'
PI
^'
1'
£,
1
J
^
«.
4
C
.;
^*
jC
',,
i;
u
^»
0.
ij-
<
NO
P.
t"
C
^
or
c
i
0
-c
o
o-
r.
e-
-0
fc
0^
r
*p
pv
.*
,
C*
<1*
C
a.
~
_
^
c
o
^t
*
c
o
o
jl
,;
.t
_^
^ .
j.
s
c
Jl
~
^
^
-
-
-------
II II
II U! i
II £ U* II
ii t-
i n ~ - ii
t W - t .1
! r c « ;i
! C *. «. '!
i ~ T r n
: r c c :
II C '1
' * S !
ii i - ii
il ;
II - C II
. '.S3!
|| « - T II
: «e
1 IT- ^ Ii
'! 1; ^- ;
it IL r ii
" 4 1.
II - II
; s n
n ik ii
n
: II
i; ir. »
U. II
; if. H
: a. H
II
' - II
1 H
^ i
' *. II
' « '
II «
C. C "
! r o - ii
n -
n ~ - ii
~ C 3 H
ii = n m n
n a. cc ii
ii ii
n ii
II H
II II
II II
II II
II U
II II
II II
II II
II II
II II
II II
II II
II It
It II
II 01 II
II ». W II
» r c ii
n C ik ii
II V r II
ii b it
II * -" H
II N H
ii n in i|
ii X : il
II C II
,1 U II
II II
II II
II II
1 II
K
00
CD
*
1
a
b
c
^«
^
^;
rt
k
I- «
1 C
<1
- s.
. «
~
c
o
! t
II II . '1 ,i
1
1 ' '1
'1 II .1 ..
il 11
II ! II
II il
i I1 1. ' " 'i
c . y~ i. - -o . »r 'i -c
r- (v c v. o
1 » « O i C Z C H
Tl ^ II * * '' ' ** II
t- . OB » «r i
, .« II » i| : »
1 1 ,1 . . ' U
- II II '! I1 - i
i r- rr . ,i r- .
ii .I il ii n
ii n i
, i ' ii
«t ii «r i « n «i ' l 1
r - ii . 'i
:i i: i i
il : ii
il U " II
I' i
i n « " ;\
i
II 1 " II : r
C II CN i « II « « !l IT II
II T ' C ' lit H V : L"! II
II < II II (V X '! pt i|
n » ' i; il » » n
n il n . i| . ii
II C- ' 1 > ii ' > II
II II II . ' II
II 'i II II
II II II II >l
II II 1 II I II
II II II II If II
il ; il , n
o i. o- 'i » n n ; m it
i » : C . if> ' v. » m
ii « n -> 'i r» " z n r>. M
,i « i, " i ii
ii R n , ii it
'! > ii P- ,; » f-
HUH i II II
n II il
II II '' Ii' II Ii
.i 'i '; ii ii i
II H II II '1
!, II II II
o ii o- ii » : n ii II V. il 9. M
ii ii i r. n z n r. n
H . l| , - || 1 . II
u r». n rv n ii r«. ii
n c '. ion - n c 'i
II * II II ^ II H . II
II U II II 1 II
H II II il II II
ii .; n n u it
II II H II II II
u n u n in « u; il
II - II II C II U II
n n u n n » n
n ,i ii n C ii z il
n n - u o; ii ; n « n
ii n . ii u n n ii i£ n
II II C II Z II C II C II
II II CIIC II II II
II 11 « II O W * II Cfi I
* II II i- ii CC II T II ~ II
on ii c ii c n i ii c ii
- II II II II ~ II i II
- ii _i ii (. ii u H i- ii ce ii
: ii '\ II C .1 i- 1 C .1 >- .1
-------
I
I
I
I
t
I
I
II *» II
ii x a; ii c
II S. U: II
ir cc u: u
II -u.il
ii «s ii
ii r t ii
II V ii 1.'
-- c - ii
n r e *-
ll V \ '<
ii « r ' o
r « * u
ii : c i
T .- - II
ii X w - ,
'' :"!'-" '
" f 5 ''
i: ~
l. 5 » ! O
! t - ot .
. i. ~
1
: i
a u.
i i
11 c * ,! *
ii t- ?- ii
- i. .
II 'H
1 J" ^
II C >- V «
. £ *" i;
ii : c *- ii
, i - C 3 II . n
il C II
ii u. >i
ii ii
ii ii
u ii
ii u
ii ii
it ii«> c
il IB " n *, ?
n X J n S O
u C u 5 4
il U II i- U *
,i ii - - e
i u : c_
il u C *
i ii t-
^
r,-
li"
w
C
w
^
^
C-'
c
0
c a
j.
7 ^
" C
4; ^
'
O
c
ll"
f*;
^.
^.
K
(^
£
?
ut
*
^
bl
r^
(>.
o
r*^
r*'
in
/N
O*
.
>
^
p.
e
O
*
w X
;
11 tj
-"
C
0
c
c
0
«t
z
13 i».
c r
*: C
«- c
r, JL
> ^
c
- u
I'-
ll II
P.1 II * .' O-
p.' '1 1*5 II *
ii rv ' *«
ii » it
II 9- .
ii u
u :
j' j;
II '
> Ii
ii ii
r» ii o» ! P.
^ ' «r il p*"
il n i ~
r -it
II P. P <
- II C
1! lit ' -
'
'
'1 II
* CO ! fi
^ : ii
1 u
ii
« B C «
*£ Ii il Z
ii ii
ii »
n u
ii ii
II II
II
II II
II u
II II
II 1'
II II
H U
U II
i* ii tn ..
- II 3 II
cue
^ II tX (I
IV il ^ II 7 iff
N ii rs ' C IT
1 II «£ il * C
x iff » x in u r
II _ II <- C
i t .t ,i _ O II 1- >l U
*
01
p.
pv
K
O1'
111
p.
r-.
o^
o
c
II
II 0-
II II
II l
r .
ii
u
i
C II 111 '
II C
i r.
* i
II CC
p.
II <
1
fl
C .. U-'
C '(
1 r.
>i *
cc
p
C "
ll "
',
'
1
C '. C
it n
,1
')
tl ,1
It '
II
I) i'
1)
o . " c i
"
' j
tl
1 '1
M
t 1
« .
-------
2 (B ' C
» C. U. *
' tf.tr."
ii - i. >
'
'; r - '!
ii b *c w ii
1 <: ii
: t, S,
ii >~ *i
i w r - o
ii r : n
l| C 4i *'
II t ~ - Ii
i, an i. '
II ~ '1
II IT C U
II 7 1
II X '
II 1- II
1, 0 !'
II - C 1
i - ; 3 o
: & .:
II u. I
II T '
* .
i i.
'! " i!
n ~ cr i; c
t £ ij.,
ii « ii
r - ii
l C II
II U. II
II il
II ll
II 1
; 1
II i
il 1
II 1
il II
il '1
II I/I 'I
il I/I il
II ? H 'I I/I 1
II O 1 '1 L
ii *o T 'i *
il t. «r 11 ;
il i» - ii -
il r. «. i w<
i mi-'- c
i X C C -
i C 1 t
! u i i "3
' '1 'r
'. ; ^ .t
c
T
9
to
^
r
O
*
*
M
O
0
4
3
c
r.
:
a
c
c
c
c
£
^.
J5
^
X
«.
£ -2
W 0
u*
c-. j;
11 *-
*""
c
0
e
c
C-
c
z
«
c
r
^
«
o
c
£
c
0
o
c
0
»
-c
X
»
»
>
c
ac
»
«
c
V?
1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 i
1 1 1
1 1 1
1 1 1
1 1 1
C 1 O 1 P* 1 O
i i «r i
i i i
i i « i
i i i
* i i
i i i
i i i
i i i
i i i
i i i
i i i
e ' o i Is i o
i i » i
i i i
1 1 * 1
i , - i
i i i
i i i
i i
i i
i i i
' i i
C 1 C 1 C 1 C
1 1
1 1 1
I 1 (
1 1 I
I i :
1 1 4
I 1
1 1 1
1 1 1
e ' o ' o i o
* ' i
;
i i !
i ! t
i i i
t i t
-------
I
I
I
1
I
1
1 "» II
!. "
,1 iC If. ..'
II £ U. II
ii tr. v, .'
II - 0. II
n
il r « n
n * - ti-
ii fa »" 'i
ii r e * u
n - <: ii
ii t. i :
II B - 1:
, v. r i
: c ~i Z
i. ,- T fa i;
r «- « .
n r r i
" l«! C C :
II £ ';
t.
i; " : !!
r, ~ ~ t '!
! &. * '
1!
, 1,
Z
II - If
1- ll '1
ii -» cc u
'i £ Lu .!
ii t- IT. II
II « ii
, - « n
'l V £ il
"5 S il
!| W - " II
T ^ M '1
'1 C 'i i «
' «^ '1
i: = r u
u r ii
.1 >* fa ! .
'. i C '!
' T U, 11
i V 'I
- e 3 ii
J k. % * i!
II IT H
» 4 »
il fa ll
ii e u
n u. u
u n
ii M
it ii
u u
ii '<
ii ii
.1 ii
n n
ii ui ii
II ill «J H
ii r c ii
II O * «
ii -e r ii
n t- -
1
c
o
0
c
o
^
1
<
CM
c
C-
c
c
c
jQ
e
^
z
c
c
e
c
c
C
1 fa
t W
l
-------
Ct- i,
II II
i V. '.
II U. II
: tr. :
n a. ii
u r
u <- n
i! W ti ,
; c v it
i; « I w !
r C 1 - a. ;
r * il
II ~ «- H
II li r* i II
II - i -.' II
II W "* II
I '- C " il
II - c II
1 Vtt * «. II
c t i! »
u « fc ii
.1 i r ii
u '* ~ \
ii r u, 'i
i! w ii
>; - c i
,: ..- o 3 'i
i .-. - l
ii r M
II 4 il
II b II
II C II
H Ik II
II II
II II
II il
II «
II II
II II
II II
II 'I
II '1
II i/l II
» ui « i
il 7-n
II 9 4 II
n T> T 'I
u t- ' ii
II i« x
«-*
e-
o
o
c
li*;
*
f^
4g
*v^
3C
I
C
^
~
t.
A
4.
t- 11
: c
"* -£
^- *»
» di
-*
c
0
o
c
0
i! < u p; u c u p* h
i c ' as ii > u x a r*
r » v IT ii C i: -c il
u il il il»» u
ii u u i1 ri » r-; ii
ii u n ) u" u it": >i
u u ii ii pr ii ,-r u
II II II -!!- U
'i u : ii c u r. u
n i. . > ii ii
.. u " n ii
: u u u il u
e i r. i c; i < u tt : ,-.' ,i
; te K c: i- c ii » n c u
11 -c ii r; .1 » a < i' -c r
u o 'i - r c i » i c i:
- 1- < i cc n -r ; p-
1! P^ II ^ 1* «* II C I1 C 11
' i 'i - " - li » it
U il » ~ il - r f ?
.i il -C II -C II
1 1.'
1. i 1 .1 I 1
, cc : r; ii c ii > i c
= -C ' C! , O- n -C I <. !
, > .. - ii e o- c .1
: ii -c cc ii v t* .
>-*:-,« e .
u - ii n - .,'
'
ii n , '.
c . c » c ii e ii « r c '
I. , v , .,
II II II il TS. i| U
H il ':
n n n ii ii ';
« ' n i
'i n n u ii u
n u n
H II II H II II
»':. I ii
» II II II 1. II
ii ': . . ii
O II -O II O H -O 1 « .. -O ,1
II P" ' 1 p« ' ^ ,' P) n
n K K ii ps n }g ', it ii
n i ! : n
II li H 'I ii II
M ! II I' ii :: .1 v. n u r>. ii
jC ii e « c u e it it ii ; ii
t; II 1 II t- II I II X il X il
II iZ 11 il It il il
r ii (R ii t n - il jZ il i I
-il ii > » c il " ' C <>
^ il il O .1 *- ! C 1 1 .'
-------
-I
I
I
I
II II
II (K t C
II Ita II pt
ii oc : it
u a. n -
ii i ^
n i- u
K * !
II IT iT * '1
II tf * *to 1
II - -
'! ! ^
II II
11 !
li '
,:
ii i|
ii u
II (f, <> O
' ll
.: tr. ii
.1 u. ii
ii u
' e. ii
'HI C. II
'! C - II
, > *. II
. C < H
1 « II
' (to II
4 C -- '1 O
: ce ~ '
i *. i
! « - l
i| to li
" * r .'
1 i C^ II
1 C
ii - i:
. «k ii
l s; pl
n ii. .1
II 3 II C
ii n n
ii ce >i
ii i*
ii it
ii ii
u it
n ii
u ii
« u
u n
u u
n it
ii u
n u
n u
ii u
H II
II II
II Id II
II III « II
II ? C «
il O t II
il "O T il id l 1?
II b H 1 C !/
II * u 1C 1 1C "0
H M «? II W 1 to
ii t
p-«
^
«
»
r.'
ps
^
t*
V
C-'
o
o
o
o
c *
W X
c
* r
r o
- 4.
f f
o o
IT U
u-
o*
r*.
pv
^t
*
9"
f*.
^
»
«
^
QK
(V
^,
IpK
^
C
p»
o
,
«c
o
C4
0
r«
c
>
^
o
r.
0
p-
c
I
<
o*
r-;
o
c
t til
*
c
y
* C
* JL
0 f
£ £
U
w
rs
P,
«
<
Pi
**
rv
r;
M
-C
r«
o
c
o
«
CC
c
*?
h
c
*"
»l
^"
Ik
pv
C
tv
f
PI
f
>
rv
c
rv
^»
p»
^
O1
^
4i
^
^
~
fi;
j;
^
C
X
o*
»
V.
^
c
ce
9*
»
w^
^
C
X
I>
»
^"
(^
*K
^T
c
ta"
^^
4f
O
»
tal
rt
^
O
111
^
o c
c r
*c c
4,
r *
= c
,n ^
*
r:
o*
rt
t*t
&
r*5
fM
CK
r*
C
C
p.
o
on
c;
o
CD
p-i
A
^P
C it
c
31
*. c
r J.
u «
V CJ
z
o
^
rr
»
C
o*
PC
K
Pt
^
f*»
t-:
C C
r
- a
C i
-. 0
u?
K II
« :; a a if:
^. il C II OC
Z '! II <
II * 4 »
l iv n rv
'! IV II u*
! H
n l
i il
'! '1
ii ii
« rv 't rv
« rs. ,; u*
il >
H il
u
u .
a "
u l
II '
II H
II
II '1
II '1
II
I* II U) II
r II 3 1
OlIC i
V II & II
"- » II ?
to It II _ ^ u c c Ol 1
^» " «J 1
... .« .1 _ C .1 C C ii
O IV 'l
-------
II
1*
11
tl
11
fl
M -
II f
II C.
II
II -
ii i
II C
» fl
ii t
ii '
II b
II .1
". d
H
1
II
1
II
II
tl
«|t
3
TJ
0
1.
II 1
g:
t;
rc
I5.J
U
ii
,,0°
II "*
1
33
II
11
II
II
II
it
tl
II
tl
II
II
11
I)
II
4
(1
II
II
II
II
l|
II
l|
II
II
W? ' O
^ 11
0? >
li, II
1
L. II
$ 1 1
r v ii
' -
.1
S C il *
o * n y
i? r 'i
t V II 2
19 " ii n
N W II 1*
I C 'I C -
9 " *
il - C
ii :: u
!l C C
(I H- C
<
f :
fv
r.
^
u-.
-o
n
rv
r.
u-
-0
r.
^
p.
D"
C
13;
1
c?
r-
rv
C
cc
£
4*
C
i»
O
2
. c.
C! jc
- *
,aU
e
e
cc
*
ct
^
^
c
cc
*.
yl
<
^,
oc
y*
n
c
u*
c
un
C
u*
^>
r^
T
;;
C»
X
^
r «
jC *^
'0
i^, ,«
'.
^
" -f-
i "
C
o
c
e
o
o
41
£
<»
3
HI
O
a
c
a
OK
c
»*
«
u"
r.
o-
o
»
»
t*
r.
QK
-0
«
h
*.*?
P.
e
O
o
«
31
N «
IK W
41 C
^ £
T. W
X "
a *"
t"
to*
^
*
A
t*
t*
«.
»
cc
»*
u*
*^
t
oc
o
o
o
9t
^
4
b
o
£
U
tl
4*
C
41
N
41
O
C
2
u
c-
o
c
o
c
»*
c
t<
III
w
c_
1
*
i
c
o
JC
<-
Ii.
o
c
c
c
c
0
01
£
*
5
41
O
c
t
o
0-
*
FT
f-'
C
»
>
*
o
*
ri
M
CV!
<
OK
OK
*
re
»
w
<«£
Cl"
M
~
C-
flK
*k
^
0
-o
*
c
c
OK
'
o
c
c
f
0
c
c
c
0
o
£
a
c
1*
£
tl
2
0
O
o
c
^
o
c
c
c
CJI
c
<«
«>
Ch1
.
^*
c
1 A
"7 ! w
rr i v
C
0
o
c
o
o
Hi
c
fC
,*
w
1 L*
r< »
i *
« , rr.
\r. i r.
C« 1
1
i
t
-O 1 Ul
t> J U~
r. i .
*. i *
ff i ff
L" * f«
r* i
i
i
i
t
i
c i c
X 1
-C i
Ik 1
*K |
t
1
,
O ' O
CO
*c
« 1
1
1
t
[
O i O
03 t
*C 1
1
1
1
1
1
1
V
1
1
t i
1 c
it i i.
C I
t i r
-------
II
V. 'I
U* II
(C '!
i. II
(. II
"* *f :
C C «- '
.- -
*
£
*
i.
*
L.
u.
c
fa
c
M.
a
i
Pi
~
0
C
c
c
o
o
f
o
fa
c
5
»-t
^
A
"C
» c
s in
- £
«c ^
C If
A
fv
c
e
«
*-.
c
c
»
»
pfc
c
c
«
V"
c
o
<9
o^
o
^
c
J
*
"C
.
ifl"
*
^;
C
«p
>
MM
C
c
tf
w
*p
&
c
^
JU
a;
^
c
^
c
£
^
jg
i.
^,
jt
_g
^
tt
=
CJ
^
r:
»
<
C.'
^
r.1
«i
<
C-.
^>
ft
C-i
<*,
«r
C
C
<
*
r:
r;
w
;: r
X
c
0
o
c
o
o
4l
c
t
*
«.'
1
2
c.
c
J^
-^
^
*
r-
*c
in
^
«rt
,
o
c
£
w
C.
lik
I»"5
*-*
15
w
u.
^
^
C
p^
C
r*
4T
^»
C
-^
c-
o
o
1
c
c.
Q
^
r
t
ta
^
91
n «
* c
PJ t
t ^
_ _
- "
c^
A
CC
Ik
C'i
e^
cc
("
c^
va
c;
r.
c
cc
p.
o
a:
p.
o
a]
w
jl"
A'
,*
*
£
*«*
t»
C5
i.
c:
I:
;
r*
*
«'
r*
r;
fc
c
r:
r-.
^
p,
p.
Pv
fc
^
rt
rv
^
-
-;
P,
-C
^-
r»
c
ce
c
T
fv
«
^
-C
r"
IX
(^»
*-
fv
*.
^
^;
^
CC
^
«~
/s.
fc
^^
11
£
0
11
c
_*
I
9
c
4
;
-
"
-
^
-------
H II
.1 V. II
1 U> II
1 f. II
0. H
n
b
f ;
^
v
C
*.
r^
C
0
o
f
c
*JB
o
**
jC
a
V
b
H* Hi
i £
f"J
cc
<
^
o
o
*
c
tt
y.
g
^
t
c
c.
M
^
*
t
^
c
c
^.
o
e
o
f
a
t*
*
*
«
^
s
c c
^ gC
c, w
_ f
-
^
«A
o
«
p4
^
*
o
»
f.
^
^
o
*
ft
c
o
0
t
o
tm
0
l~
u
t*
1 -
i O
O il
* *
» "j[
PJ
ll H II II .1 II
c ii *~ » « M IT. '. ce . n ii
II IS. 'i V II (X i| If. '. K II
» a: . x . OB ' ^ ; R u
ii » n ;i » ', » i. ii
II V .1 " » II » ! O- H
ii » ii u«;^!cen
ii r. ii . r. . -c i ce n
u - 'i u » , . n . u
ii -c ii ii -c < r. n oe ii
ii i M ^ ; n ii » u
II II ' '! II II
; : u ;
o ! ii* » « u"! ! ce ii r^ i:
i; IN n v rv : i- » ;
cc I r ' ce ' « H rr ;
. - ii ' : - n » ".
" » » f f. * H 9- Ii
ii » it * ^ n £ '.
' p. n p; ,; >c u ce n
II * .1 '1 * II »
1 -c » -c r, p; ii ce »
ii « ii » n ^ ii T :
' n i il
il . ii ii
o .. '. ; . u 'i P» * ii iv ii
ii *» n i * it " * '
i; rv u ii iv ii n »v ,i
n » u ii ii '. * ii
» f. u n rt » u « i
II .1 II 11 : II
n n >i il ii ii
n n 'ii
o n oe ii « it ce 't « H oe ii
ll v ; v. ii «» ; >» ! v u
» » n X n l i£ n J II ~ II
O il II C il C H C II C H
II II II it C U A II
- II -J II C. II U il b II L£ II
S II 4 II - U ** il .t II 4 II
il H- « :: ii x » r. a N it
.: n e u c ii c n i n -s 'i
t; il h> n *- u t- 'i X il X ll
ll A U n :l ll il
il S il - il _ ;l i. .1 _ u
r >i u: ii t u « n a1 ii £ ii
~ II ll ll C il - :i C ! 1 C 'i i i C 'I HI il
-------
II '
!
; f-
* fc
li «
< n * '
II C .
- k> :
ii T r « ,
" ^
H * *
.**«! ""
n - C n <*'
i; f. s >;
II - U. t- II
- b it
" ? ~ W
i* - u »
K '. - '<
em.
0.
> it
II »
3 « -
II IT II f.
". IX II
II II
" II
ii i|
i n
< i:
li '!
<;
* Ui » O*
II w. ! -C
ll £ T tC U f
ii ~ c -i. i,
II C - II
II - t, i;
u r ; li
II * « - i»
ii i - «- 4i
II JS t « »
u c; « H
» r <
H C « n >
ii - r c i -c
'i .: X i u »
't i. k n
> i <- u
ii ^ -< r u
, T. " i; u
'< ~ U. II
i v
ii .1
II '!
II 1
n ii
ii .1
u u
« ii
U M
14 II
II II
II II
II U
II U
II II
II tl
II II
ii in ii
H * W II
u r c u
ll O 1 U
II U T II «1 tJ
n i. w u cm
u n « H * >c v
M N «.- M -.' ,. i
u a i- ii « > r
II X C It X C
u e a c ik
II U II O 4
II It « « O
ii ii :: .- t;
ii n e :
.1 K _ o
*
V
C *
it *C
o r
*4 2
C i
«
tf. C
*- U'
«t
c
**
^
c
^
*«
o
^*»
vrt
r,»
cc
rr
»
f^-
c
*-t
C!
es
r*.
*
rr
c.
M
P»
kl
»~
»
*
r«
^^
s
C i*
c w
c
r
r o
* ii.
«
r c
- (_
f^
^*
09
ff
^
(*:
/^
c
^
I*-
bi
o
cc
ik,
rr
^
CD
ll?
m
^
«
o
**
tZ
X
7
<-
ei
<
r^
*
<
^
r-
^
rv
<
»
;*,
r
r^
»
<
~
w
o
>o
t
*
«K
o-
c
»
k4
oc
r*
c
tt
r.
c
^r
U"
c
*
BT
i>
>C
O*
O
- a
if
II H
CC II R ) «.
r. n c n rv
ii i> u >
ii - ii
U 06 II
II <- U
II U
« u
ii u
ii »
ll 'i
II K
oa n r- ii o.
n i c " P»
,: > n i>-
ii - r
' OC U
II '
: u
i :
n
ll '!
' '!
'i s
CO i IT i) Ofc
r. i; c i rx
> . CO '1 0»
; i
II CC '!
i tl
,
II
1 >l
II 1
1 .
«t i r.1 »
x , cr .1 r^
a ! r- li «
' .* »
" -C .. -C
11 < i
'! f^
II - II -
il f. ' r*-
il C ':
il * ;
u '
il "
il u
u
H
V " II
ii ;
n u
n
H II
» 1
II ll
II 1
if II W II
3 ll S *
0 U C il
X1 II £ I'
b ll &. i
* II - M u
^
r^
»
»
rrr
^
If:
o>
»
K
»
t^
>
l»
fx
rr
u*
^
IT.
r^
r>-
ii*
B
»
u*
cc
rX
»
y~
-c
o c
c
* 0
a.
c *
- o
- u
N.
II l{
I"- " -C II
II
' 1C II
II - II
r- ii
ii r; ii
i u
u
1 u
' ii
" ii
ii ii
m " -c u
ii - u
CC I
'i - ii
. f u
'i C. II
u
,,
"
ii
u
MI -: ii
i ^. i(
, ^;
_
: r«*
» r1 .
! II
i
'!
li
T ' r«
^ -c
-: ri ,
, r^
,i ^
CI II
'
ii i
ii j
u ,
4 ii n ,
X II -C ,.
Z ii P; ..
ii *
ii r-
n C il
n r, ii
u
ii i
ii
ii rv u
n «
i ii
ii
n ii
ii
n ,i
ii
u
u i
u
ii
ii 'i
u ii
u u
u
ii
it <
n u
u ii u n
-. Il M
:: ii x
0 i' C 1
> in it h- cr) >i
-.11 _j ii
> K u _. «
D - '1 t 1
J*. & II t Ul '>
~ r
-------
II II
ii u: i; C
II U*
ii a: "
il O. !
ii - |
'V t 'I
II £
l » W i*
1. -C -.I « '
!
..CSV'. 0
ii u> s £ '
I '- IL. t. :
'1 ** " C
i! : » U I-
t ** I
'l OL i.
il
i, il
il I u O
II
II .= £ 1 II
Hi - .
II * ji ^ '1
ii - r ii
II 75 - ' H
II w U. '1
u ii
II Z ^C 'I
il £ C :i i! C
ii X - .1 C -
il C il tt
>l t.; it u
.1 u . c
ii it :: '. <-
'I il " ^C
r.
o>
*"*
M
9-
t
««
T
M
c^-
Jl
c
o
«
» JS
A
0
o
o
r*-
r<
p*.
41
o
«t
^
c
2
c %
O t.
jC ^
; *~
w
0
o
o
^
-
fS,
N
41
C
41
H
!»
O
o
*
«
^
k
re
£
^r
rr
N.
*
*
K
04
Ci
c.
(<
^
r-i
«^
0
41
U
l
A
O
0
2
c;
*
c
c
o
0
o
o
4;
C
*
5
41
O
O
£
C
o-.1
e
r-.1
QK
O
n
e
oc
c
at
V.
a
*
O
o
c.
a
*-*
c
o
0
o
o
c
41
C
1*
jC
t
c
o
c
0
c
c
o
o
J;
c
~
19
s.
w
a.
o
5
~
c
*1
-
e
"
ui
C
*
^l
rt
1*"*
c
**
c
c
0*
>
I
l
i
i
i
l
l
,
i
1
i
t
i ^
1 3
31 1 1
C '
iC i ~
-C i JZ.
1
Ti i I;
C l C
"< t ^
c i ;
^ i ^
i : ;
1 i i
r. > -
-------
II II
II f. II
H U. «
II IT. II
II 0. 1
II "
II ( II
in t; :
II C -' !
j ** W '!
J; 7 5 ;
' £ i ~ I
II u : .:
. 1C * S .!
II 'J Ik 1- :
'! £ 1 3 j
ii i S I
ii a. i;
ii n
'. 3 1.
n T n
.' iX U
.1 n
" n
n n
i »
» u
u n
ii
u
a: »
1 te 1
.: n IK n
C u. "
; -4 *i
t b L.
' 1 (. « li
.i £ v. n
II C C - II
ft m f£ Z ii
ii j: r i i;
II C - H
ii - «« r
II T, * C^ II
II C Ik
ii - ii
II C T II
It ^ w It
il ii. ro '(
II 3 II
u * .
ii a ii
ii
n i:
n n
u il
il .1
il n
ii
n
» ii
n :
n ii
II :
II II
II II
II II
II II
il HI «
II tf « II
ii i e 11
II C * II
il t ~ V
II * « II
II * - II
II N II
ii t \r. u
i sen
:l C II
U U II
II II
'1 II
1 II
C
o
o
/*;
^
n
^4
^
*«
t
o
(.
o
f*
JJ
O
04
a
t
r -,' a
* c
-. t
* -^
tf> r^
C £
^ *
c
o
o
c
o
o
f i
X
4t
^
19
IB*
«
jC
^
jC
u.
m
T.
jC
4»
a*
a
c
o
c
~r
^
+*
M>
c
£
4;
jC
iL
*m
J(
jC
^
41
-*
£
i
^
Cl
M
^
o-
r^
0^
rr
o-
^
^
«
V*
VJ
«
11
l«
^*
*
jC
4^
jg
4.
M«
Ji
jC
w
%
*
»
C
e
o
o
0
c
V
^
ft
(4
(V
£
w
£
^.
M.
J!
49
C
c
(
z
a
OP*
r*
-.
Cr
c;
^
c*
^j
*
r*»
«
rv
^
«
^4
Of
jj
tt
N
C
01
A
««
31
£
u!
c
o
o
c
o
o
1
fT-
t
^4
1
O 4t
L. ^J
O H
£ T
C >t
t «*
i.
=
O
0
o
c
0
0
_
41
c
X
c
o
O
^
\n
^
"C
^
**
to
^*
^«
a
w
41
a.
c
c
£
c*
it
*r
C
i!
f«*
y*
0*
f«»
u-:
O"
fk»
u
o*
r>
P-
r*>
«^
0
C
41
u.
^
O
O
c
o
0
>
c
a
j£
u
l«
^
^
4l
fw
n K
- C
TJ t
» £
w
* 4;
^
C.
O
'<
'S
o
'D
t
jjfc
41
C
4:
,.
jt
,c
»
a;
3
u
5
*
H
Cr
ft
1-
£
-
X
03
rn
CO
f**
s;
^
-O
O
o
^
41
c
It
~
c
o
o
o
o
t^
4l
^
t
_^
«»
j*
*
j|
J
w
_^
*
H-
-------
1. II
II i
ii u
» »
ii ii
ii ii
« u
ii n
ii «
H n
it n
it .
»
f
<;
r^
^
>
F^
C'
*
r.«
n
Cl
1
o
6.
c
n^
.^
^;
«<
^
1- «.
1 C
.1
r
- V
~
c
o
o
c
o
o
1
0
6.
0
r*
JC
O
k.
k
* *
r. *
» jC
- t
«rt
«.
*»
*»
«4
*
^
*
v*
**
K
«i
M
«*
^
«M
'
»
W
*
^
"
JC
4>"
0;
c
b>
c
£
b
*-
c
o
c-
^r
*
c
v:
v£
t
c
&
5
*
«
w
c
u »
C C
** («
.C jC
"C *
u 4
>
C
o
o
f^
N.
.*
.
r;
^.
F*
«M
»
Pi
-0
^
f^
,
: i it ; ".
it , it » t. n
O ,.' Ci ,! ri it » n « " » :
« > . r» n -c u v » -o il
n tr « ^ it z ^ n
1 » : » n u
i » ! II » " . "
i ^ .; il v t; i «r it
' " u u "
ii u u . ii ';
i '' II '! r ':
1 II it '1 '
.11 1 ' "
". H '1 Ii II 'I
o M n r« it * i l - '.
,: *^ It ' * ' " * ';
'! » II , «T .. il V
". II . ' : "
II II
r u ' ii ii
i it : it
ii ii " ".
II l| ' ,! !
C it n 'I <; ii r^ n «t , « r
il QC " *k : oe ix ' ce ii
u rv it a n r» i. 31 . (v ii
II « . ' - i : » »
II 9> . II l> , O> II
II ! ! Ii ' II
it n ii ! n
n ; : 'i ii
It H II II ' II
II ' «i ' II
II II II II II
II II 1' II
o ii n 'i <£ ii m i! -t ii fi ,i
n oc ii v ' oo v i oe it
i; f- ii z it r* : z n r» r
u - n ; « * it «. n
^H ii o>. M it o.
II i| ' : II '
. II II ' .1 '
r, H
ii ii- n u ii M
'!:,,!
II i| II 1 II I1
1 It It II 1
O II 09 H i il c il (^ il
ii r. 'i it " n u
u ! ii ii ; ii z n
It .. -- II tR II - [I ,i .1 e ( i- c i i- n
-------
I
I
i
II "
IT. II <
it n u. ii u"
i c u: n
II - U. II
'I JC n
If <- *
~ t a
' W II
' .*. W II
r « »
0.
-c R <
': It OU '!
i. II
' T, «.
ii ; r »
' * Vi '
II « II
ll *
ll -. II
ll -
ll ik II
II 3 . C
II » II <
(I uC '
n n
» '
u n
n
n u
'i .
n (" ii c
'! ""
il HI M O
'! £ i ' **
HI *. ,
J
n Z C u X « o
II C II Co.
ii cue ft
ii ii ;: u
ii ii e c
ii ii t-
OC
I*"
»
o
rr
ae
r^
cf
fV
*
O
>0
-o
»
^
«rt
o
S *c
1^
fl I
r o
- X
T O
t u
^
c-
M
«M
*
c
Pi
o
^t
k
o
p;
rs
-a
c
»
*
p.
r.
(C
PI
ac
C9
w
*>i
^
1*5
£
w *
t C
a.
~ c
V U
_
ac
ON
«w
09
^
O
O
p«
c
o
<9
V
w ^
)j
7' Z
fc* *
? a.
J
C
>
ta"
tl
«^
c -o
ft C
- c
~ a.
* c
* u
z
^
0
o
ce
CO
..
M
u?
»
t,
Q*
^
^
c
^
* c
3 r
*4 C
C 0.
* c
Of U
t~
^>
^
^
^
t?
^
»
*-
»r
.*
<
c
<
c
o
c
0
c t
4
O
- U)
tr
il u
f ". C II O
~. II II -C
ii ii -
» II »
II - ll ll-
ri ii
i; ii
" u
n u
" it
n 11
>
K i
II it
1 ,
-« , rs p
X 1 --ii O
1 » 1 «"
il OC " &
i r~ u
r !
i i
1 il
r n r: rs
s r* 'i os
x. n e . o:
ii it
ii - . e-
a- n .
n r* i
ii ii
ii .1
if if
ii »
» ;
n '
H '
il i:
ll
u -I
n 'i
» il
H II
i> » i
« If iX ''
M II M ' C f
v u ^ ! i C
i * ii x w i r
il _i ii b. ;
A 1 II t Ul i - C
** £ 'i o ^c r w
O II H- 1_
(,~
rs
f
«
-c
oc
f*^
t*;
ir
^;
ec
r*
oc
rr
fs.
Qs
r-
r-
c
c
^
-c
«
r;
f :
e
*r
r
«
e
T? |T
c ?
ie S
a.
{*> t
' G
~ Cw
fv-
H
e c .
z '
ii i
i| n
" II
II II
' (l
II
1 1
i c c ii
0 II- '1
-------
I' II
tr. .: c
il V U. II
1 c a: '
ii - a. u
II t£ * 'I
** V »
II * * II
1 £ ^
II . ii
3 ,' O
II (T 1
i ^ -i
II II
l| il
"
t II
II '1
" "
II IK II C
ii tr ii
,*, "
u m u
£
n - i ii
' * W '
II ". V. II
1 ; i
ii -z ii
II L. II O
- '
1C 1 il
1 '
1, - - II
1 ~ .1
- (^ II
t w ,
II ' >l
7
II Q. '1
1. II
; 3 'i O
i n> ii
n oc »
'i ii
ii ii
ii n
i ii
n ii
n ii
u n
ii «
ii ii
.1 ii
n u
ii ii
ii ii
>i n
ii ii
ii Ji n
ii IK ~> n
ii r c n * i
II C £ H O 1
ii tj r ii - i
n <- ii - i
u a « u t i
II M ' II U! 1
II It f. II <- 1 C
ii I c ii c ; -
II C " I 4'
,i <_; il c i
il II -. . C
t il : t -
tl H r* i r.
il .t i-^ 1 C
t 1> I k
C C t C
jC ~ i C
r. c i c. of
^ JC t ~ jC
a: «- i if, «
A i a
i
r C- C
^r i
L" ' 1
«. i
P^ h '
' '
1 l
i i
1 '
t |
1 1
1
K . C * o
>i i t
ll"5 ' 1
» t t
KI '
I l
! 1
t l
! 1
1 i
\
\
< C i 0
cc
> t 1
r" i
i
i
i
i
- '
(V i C C
*» \
r,- i
! ,
1
!
| i
i |
t
|
l
rv i o . o
i
r. t i
i i
t
t t
i t
t i
i i
; l
i i
i
0 O i O
IT '
T4 I
i
1
i
1
1
t
I
i
,
1
**> 1
» i
3: i
;; t
^ '
X I
tl 1
C t I.
r v , « 1 T
/ s. c | ^ ._:
a " a ' a "
t
f*V 1 C-
1
1
1 <
t
1
1 t
1
1
f*" i C
^ 1
1
1
t
t
1
\
1
1
!
!
* i C
«
.
1
t
i
0 C
1
1
I
1
1
1
)
C 1 C
1
1
1
1
1
1
)
1
1
1
0 I e.
\
\
\
>
i
i
i
l
i
l
t
l
i
l
l
l
4> t
^C 1 41
- 1 C
t- t 41
C 1 H
~ 1 C
£ 1 41
i O 1 -C
w 1 1 O
jC 1 C
^ ! U
u*
^
cc
t"
^
at
o
«
Of-
o
o
c
«^
o
1/1
at
t.
(^
t
«
i
c
o
u
i
o
c
e
c
e
c
i
i
i
1 01
c
1 It
JC
1 &
o
1 C
!*
u
^
rv
rv
»
r^
<
^»
r-
»
t^
LT
<
C
«T
OK
i
< i
1 '
i i
l i
i t
i i
i t
l t
C 1 C ' 0
1 1
f 1
( 1
t 1
t
1 1
\ 1
1 1
I 1
1
, 1
C i C i O
1 1
1
1
1
1 1
1
t .
' I
. 1
O 1 C t O
1 ' T
1 1
1
I
1 t
1 1
1 1
1 1
!
1
1
O ' C 0
i i «r
> i
,
\ \
i ,
i i
t
i i
t i
i
o c . o-
in
i
< i
i
i i
i
i
i t
i i
t *
i i
1 i
i i
i i
i i
l 4- i
) C i
1 HB 1
i fO 1
4. ' £ 1
w 1 W 1
jC 1 * 1 ' 41
w , c ' y. w
41 t O ! V --C
a i <- t ; ~
C 1 £ i 2 v
»" 1 W 1 1 .^
U 1
'
^.
,
;
V
c
^
c
1^-
.
c
^
0
G
O
o
41
£
1>
r.
;
1;
^
v
c
^
«
-
£
-------
II ''
II * 'J.' II
ii c
c- II
; v; <- i.
i» - r 'i
: - (^
«. it
|! £ |
t -. '*
II - '
. ft. "
J '.
It '
1 C£ '*
)»
11 '!
it 't
it
i; il
ii «
H '»
n u; it
<
n us »
II u. '
n n n
C ! 1
II - 1 H
I) MM « '
Hi. V. '1
'4 w » "
" s.
ii : - "
, ^ *
Mi C_ 1
: w "
II tm
~ ll
n i, l
'l it
II 3 li
II IT II
II iX II
ii i;
» n
H II
U II
II II
II II
II II
II II
II II
II II
II II
II II
II II
II II
II II
II II
II U) II
II Ift «« U
ii r c ii
il C it H
ii v * ii
H fc W II
II » ., H
II N _ rt
ii m f il
u 2 C il
II <_: il
ll il
U II
ii u
II '!
C
o
o
c
r.
0
ri
^
r.
i
C
t
c
»»
£
u
*
^
i
r. a
» C
* &
1 f >
III <"
C £
T
c. qi
*~
C
o
o
c
o
o
91
-
1 l C
f 1 *M
1
1 1
1 1
i 1
1 1
1 1
t
1
C ' O 1 C-
i i r.
i '
i
i
i i
i i
i i
i i
i i
i
i
i i
i i
i ' &
i t «»
' «, 1 f
C ' - 1 -
C i >C 1 H
& 1 ** 1 jC
r t i -)
a. i j: i r
1 W 1 li.
i i £ i
£ i ^ i
~ 1 1 31
& 1 « 1 ^
* i r- i g
- i e. i e
e - i .
i 1 01 1 Z
» 1 d 1 i
r-i i a i a
« i o
c
e i
» i
M*^ '
'
i
1
1
i
i
1
» 1 O
O '
c
» 1
IT- '
1
1
1
-C * O
CC *
f-" 1
»
u*
1
1
c . c
I
(
1
1
1
1
1
1
9 1 O
1
t
1
l
l
1
i
l
t
1
C I 0
1
1
1
1
1
1
'
1
1
1
1
1
1
1
1
1
1
1 1
i r*9
« i -
C 1
& 1 1
NIC*
C l <- C
V 1 C 1
f£. 1 M.
1 r r
1 U- "I
J ' 1 *.-
Lj l Z
C
O
0
c
o
o
31
C
1C
^
V
«;
C
2
^K
^g
^
ft
;;
ll
I
;
^
CC
<
W3
«r
C5
w
«
yp
f 4
V
w*
o
T
O
T
0h
l»*
4i
-o
M
^
5
V*
*
f_*
0£
^
&
^^
3i
^,'
Hi
r
.j;
r.
«.
(
"
C1
c
o
C'
,
Q
G
>-^
Jj
c
*
-K
^
ll
^
t
f.* at
** L.'
C- 1'
> ^;
- .
» a;
c
o
o
c
o
o
a»
c
t
-------
II II
i tff
11 UI '.i i
ii - ul ii
" £ '*
HO: k ii
n £ '
II i-. « II
1 ji W '
ii r C II
". CC ii
» ii
: "
i 'I
li II
i| M
,1
li IX M
'i Z ii
" gj^ *
ii m n
li C
ii * ".. n
II *-* W '
ii - *. n
i * -c
u - M
II U II
, ^
II C 1 '1
II «. b '
II f. b II
1 * ~
ii t U it
II b II
1 *
'I ^ n
ii .;
II 3 II
II -T "
>l & '1
II '
« il
II '1
« a
H M
II il
II II
II H
II II
II II
II II
II H
II H
>l U
II II
II II
II 01 II
II II. f- U
II Z b II
II C t II
ii t r u
ii b - u
ii i - it
II N It
il x >.r »
u X C H
u on
II C II
u u
u n
n n
ii ii
c
o
o
c
o
1
e
tV
C
r*>
jg
O
<>
h. U
h- C
1 &
* r«
^
a ft
* £
"*
f
f**,
t+
r**
r**
r.
r:
c
^
c
c
1
o
tw
c
*m.
,"
u
M
fe
H- Of
t C
ffi
M jg
w ^
* III
"
c
o
o
5
'
o*
-o
PI
00
1
c
b
c
*M
J£
t,
»
b
f Ol
l( C
* *
4,
*"*
A
*c
^
.
*
M
"O
^
k
M
r**
fv
t*
M
«,
c
o
4T
fc
^>
*
c
4;
^K
r
^
^ .-
ft
5
b
;
«
^
.^
b
~
o
e
c
e
e
i
0
^
5
,M,
V
»
0*
c c
«A (II
Jv iC
» ^
* &
A
^
c
o
o
c
o
o
,
c
^
o
IJ
b
^
b
b> !
i O
c c
- 1
- i
II II 1 >l
c ; -c -x. : o- <
u > ii n » 11 i * ii
rv " " rv " pv i
II f. 'I II "T ij ^ K II
n ii it ii * i|
u ii i' >i ii ii
C li r» ii t n f>. -C 'i f u
II O II 2 " ' ~ 1 C II
! « - 1 't ~
II »-. II M II
II II ' 11 II II
'. ' " . '1 i
ii >t 'i n ii ii
,; ' n
il ii 'i " il u
O tt f*- i ^ n rv r, i
it ii it " ii
*. i ti n ii 'i
ii i; i u i ii
ii ii ' ii ii
it it n u ii 'i
>i i >i u ii '
" ii ? -? n S n v » rt i
ii P. i Z ii r. n Z 'i r, ii
i » it ii - n 11 ^ i
ii . 'i n »» ii ii -^ >*
II 1 II It II M
II II II II 'T '1
II II II It ' ><
II - n A il *- n
x il il 1 C .1 >- I C H >- 1
I
I
I
I
I
I
I
-------
ft
II 11
CC C
it U, II
V. :
II Uk. H
ft « 'l
n <1>
t» w il
f T w
" C < II
>t <
6. T ': C
il 4) ~ - 1
jC * t !'
ii ^» ^ i
n tic ~ *
1 W Cv '
! T II
1 f '
&
I- '.'
r t»
1 oc '
j t
ii '
11 i
|| U
tl CC ff «
fc_ II
il IT. II
' £ '1
II /) II
! II
~ :
ll X - ll
«S ll
M - II
1 i : '' °
it t _ -
OB .t r n ui tj
U <- ».' II C IT
II * f. H 1C 1C X1
H N «l H ' C
ii « u! ii & r z
II X C II X C
« en Co.
ii u ii c < a
II il _ _ c
ii ii ;: t;
ii ii c r
ii ii i- -i
c
o
0
c
o
o
c «
1C -P
c u
(.
e
i?
*
~
O
ui
«4
t
^
o
u"
*
"
oe
*v
w
r.
<«;
CO
r-
rt
n
"V
CO
r^
r"
(
c
rod tun and
Okr-O'iriljt
A U
U
C
o
o
r*"
h^
C
«r
in
w
r^
r?
«r
*c
ro
r^
f
T
f.
V
o
V
T
t_
C
c
c
t-
!
OK
Qh
W
"
r?
O"
0*
ll?
« ^
f^
>
OS
il.
X
o c
c z
-
111
»
u-
SplJIKl-lPO
p>J« ^JIUJ
« c_
£ :
C
c
n
»
*
c
c
f*;
»
e
o
rt
*
i*
r-
r-
^
ri
t?
IT
I"!
»
r.
L?
PT
r»
»
Cl
rMO and
ofcpoiinds
- <_
z
c
o
o
c
0
o
SpUlltHWO
PIJ« *rtiu4i
« u
U)
e
c
c
c
e
o
Ivfrr arid
ofcFonnds '
- c,
U"
II II
« . C il O
V II II? Il
X i » r
ii - u
11? ii
ii u
i' n
i ii
1 it
r II
" II
II .
« : c o
V 'I U? II
z * ^
' I'
1! k~ II
1 i.
" ll
II I1
II
,1
" 1
II l
il C.' ii
P '1
ll '(
II II
II
1 O
Z ii rr , -
ii « u ~
u r-.
ii e; x
ii r; '
ii <
1^
ii
|| ii
II H
If
II I-
'1
II II
i| '
II '1
II
II II
WHO) i
3 il 3 il
e n e u
X> II C ,1
^ II CC il
H II « II X- !fl
N il ^ II C T
it II « II « C
s » 'i s u) .1 r
ii j ii <- ;
^
r"
r;
-c
w
-0
IT
,w
T
cc
<
J.
X
x^ c
ic C
0.
w *
te C
- c_-
r^
1 i - .
Ii CC II
i' u- u
i
-------
tl II
; CB . C
II U. II
II O. II
II 4- II
1
II '1
f TV.
il C 4 II
i,
II - i
«. r ii o
II » w H
' "r *- b '
n ii 7 T i;
,i .~ ^_* ;
t t Ii
1, X
I, II
3 O
1 t (I
' & 1
ii ii
1 '!
'
'1 i
1
it
r
l II
il n
u il
il ii
u n
II M
II II
II II
II II
If It
II II
'1 II
'1 II
'1 II
II II
ii ifl ii
,i KI w it
II Z iZ fl i"
1 C i H U
< c ; u -.
II * «> II C
ii ^ *- n in
ii n f. a i. c
il X C il C -
ii 5 n i
il C II '.
il II ^ C
ii ii ;: -
il II C C.
ii 'i H- «
- U.
LC.
C
e
C-
r"
o
C
*
r,1
**
rt
fr*
o
v
<*-*
.
*-
f
O"
o
0-
«t
M
A
>-
3:
:c
^
z
"r a.
Lu '-f
C* £
v* j^
- a.
X
e
C
c
c
c
0
i
*
4,
*
C
c
*
c
o
o
«r
"*
"*
«
-K
<.
«fl»
PO
r-.
P.
V«
<;
«T
fl
C*
**
+~
N 01
C **
- r
j -
^ JC
A
c
o
c
c
o
c
*
-
c
c t
£ **
B '^
t t
u
c-
c
c
r*
0*
c
fv
Qb
-0
(N.
o-
"O
41
C
41
M
41
X
C
c
^
£
u
C 1 0
1
1
1
I
!
1
1
1
t
1
t
C 1 C
1
1
1
V
!
1
I
t
1
1
C i C
t
1
(
I
t
C I C
1
I
1
1
1
1
t
1
C i O
,
1
1
1
1
1
1
1
1
C I O
I
1
,
t
I
t
1
I
*
1
1
1
1
1
t
1
1
O )
41 '
u i at
< i t
C 1 *-
t- 1 ftt
C I C
.C i C
W 1 ^
i 1 £.
a. i LJ
C 1 O t C
I 1
1 t
1 t
1 1
1 1
1 (
1 1
i !
1 t
1 1
O I C < C
1
1 (
1 1
! i
1 1
t 1
t 1
1 1
t V
0 i C - C
1
i '
1
1
| r
1
1 1
?» t o ' C
*C i
Q>» t
* . 1
r^
fj ) «
! !
1
1
1 1
» i C : O
0" 1 '
» 1
f 1
r* i
^ ' 1
1 1
1 1
I 1
1 t
t 1
& 1 O i C
,
^
t
t
*
C
t
t
^
c c
1
1
1
1
1
1
1
f
,
0 | 0
. 1
I
!
t
1
o o
1
,
1
1
1
1
C . K
O
' f .
\
!
1
1
t
O i rn
' C
, f.
i
f
,
i
i
i
O i f*>
0
f r.
,
i
,
(
|
1
I
i
(
1
1
1
]
1
Jl I 4i
w ' C
*£ t ^
" I -.-'
A t &
C 1 C
-C i ~
v. 1 -
M f £
1 t \
** 1 C*
c
o
o
c
c*
o
^
-
£
«
j
^
w
i
*
C
w
i
^
I
I
-------
ll I1
tc :
II U. 1'
,: a: "
i; d. '.
U b II
1 £ "
II II
t 7! * i
ii : «t "
i - ii
1 b ~ W Ii
, 41 ^ C '
" *C W 1
n .c - b n
? V b
ii it r : n
" C U i
ir '; n
' C i'
ii u
n n
" 3 .
II it II
if. '
II II
"
II II
H II
i u
ifi n
" _-
II 1C '1
u. '
if ffi il
«
II T, u
l< . "
II £ *. II
1. < .
II b II
II i. V II
1 "3 I. '
'10. i II
1 i.
ii r ^ ii
n S o >i
n . it
1 .
ii r ii
ii a.
II 3 '1
II IQ '1
II i II
i; i:
u n
ii 'I
n u
u u
n '(
n ii
n n
n n
n it
II H
l| II
II U
II 'I
II -1
II II
II J> II
II III W II
ii : c it
II G 1 II
(1 b «' If
II It « II
II H ' II
II » ^ II
II X C II
II C II
II u i|
II II
II II
II II
c
0
o
c
o
o
1
o
i.
c
^*
£
L.
m
^
1
CJ 11
* £
i P*.
tii y.
c r
£ l
c
0
c
c
o
o
It
c
*
i
2
b
a.
c
A.
*
w
^
^
A
^
t
rs
-
c
c
c
c
o
o
1
o
b
*
J
*rt
+*
c
* 41
u C
c
^
1.
a
0
c
c
c
o
o
0*
c
*
£
ik
X
S.
*
a
M
^
|
»
fj
C
e
c
o
e
O
*.
*»
flj
_
t
£
^
^
r
T.
j£
w
It
*
-
c
C-
c
o
o
o
g
«0
It
*M
It
^
^
£
a.
0M
T-
U
C
i
i
=
k~
r.1
"
t*;
IV.
c:
»
p;
u-
IV
pi
p.
C
C
c
M
r.1
r:
^
e
^
^
^
p.«
r.1
rs
o
c
&
»
r.*
w
r^
0
C
N
w
jt
_*
J.
£
Ul
C
o
o
c
o
o
1
rr
*
«
i
c *
^ c
o a
HM
j= r
c >c
K W
:: r
X
tf
o
o
c
o
o
41
C
<
w
J;
^
C
C
*
^
(t
:;
c-
o
o
<
r.
*.
j,.
-0
C*il
w*
«k
L*
>O
r;
.
iff
*
r
^
b
"^
^^
jg
^j
4i
»
C
01
jg
«
*
c
9
o
cc
<*<
>
m
f-J
03
r-
fS
B,
r«
00
c*
f\.
,
r;
4f
C
^»
jg
4^
C
a.
z
c
<»
C
C
o
-
c
*M
Jl
J
4»
\
Q
*
-c
J:
C
b 1
»
z *
z
o
c
e
c
c
6
4)
C
01
N
c
_£
c
1.
*
z
o
o
c-
^
*»
«
»
*:
0^
*^
H
fk
M
o^
OT^
«
,
*
*
Cu
1
O I O
1
J
1
\
I
,
C i C
t
1
t
1
(
1
1
1
1
1
c c
I
)
1
!
i
O 1 -C
t «C
1 1*"
1 »
i r^
I C
I *H
(
1
1
'
O 1 <
1 V
i r-
1 «
> rs
i C
*"
!
,
i
i
b"i I -C
v i <
p * f*
« i ^
» i r*.
C! 1 C
« i *
i
i
i
i
i
t
i
i
i
i
**
e i
C 1
* i
j; i
a. i
C 1
b 1
a i
« i
£ 1
tl ' >
it i e
w 1 C
C ' t
i ! f
c
o
0
c
o
o
1
c
b
o
KM
£
o
It
b
4b}
4i
H-
i
P. 11
* C
PJ «P
» £
-
<^
o
0
ce
4Bk
ll?
.
.*
CD
**
ll~
*.
*.
CO
-
II-
4
««
If
;
1*
«-.
~
.«
.»
V
;
k
;
»
^
'^
;
*
li
c
c
~
<5
C
c
.^
f«*
(^
c
c
L
^
r-
^
V
rr:
m
4*
^
4.
T
^
-
T
*C
T
^
r-*
*,
^
»;
4i
C
4.
^
^
C
^5
o
c
o
o
u
c
t
j£
«
a.
x
~
*
;
i.
^
^
-------
II ll
V. '
II U. II
11 tr.
II u. II
1 '
ii «. n
i i
>i ^ '(
I? W '!
I; ^ l|
it ;
II -
4/ C II
. - I II
1 £. 1 t n
" r ^ ;i
ii if r r ii
C U i
II it
" £ "
II II
II II
11 3 'i
II l II
II II
II II
II II
ll (l
II II
II II
II II
1* Iff II
II IT ** II
ii : c ii
II C t II
i ~c r ii
n b *' {i
II 1 ** H
H S ' H
II l» f. II
U X £ it
II C II
II U II
II II
II II
II II
c
o
o
c
o
o
1
o
c.
c
0*
£.
I*
*
1- 11
1 C
1 t
^ N
c
C- 1
0
c
o
vr
c
c
M.
f!
^T
W2
c
c
k
p*
«r
iff
C
c
f'
^
t
o
fa.
c
04
.2
£;
-^
b
H- b
l C
i»
* £
Ii
^
O
O
C
0
o
1
c
1m
0
0*
£
o
M
fa>
H- ll
I C
rj *
- .c
* c
c
o
0
cc
*
«..
(k
UT
09
**
K
t?
CD
r**
«.
t
4i
C
C
0^
^
A*
c
Li
c
t
* i
fl
II II II ll -1 'I
e B « : « ii «r ij- :
ii r^ ii v ii r. u v it (s. »
IP; x P. z P.
n -ii ii - n i - 'i
! i~ ' , p*. i r" i
i r; n 'i rr i' n rr 11
i « > i
n u it ii
it "i
ii ii i- ii
ii i i
II II 1, 1. I'
O II UT " "C ' V) ' «X ' IjT l'
i rv it -x ii rv 'i >, .1 r^
P' : 'X i p. . z r. -
,. - u ii . i i . .1
'' re .' i t^ J p^
u r? 'l ( ir ii ! r" 'i
! , ll '1
1 II II i| '1
,! '! .: '! !t '!
ii ii 'i ii ' ii
o ' in ' "*,!: ' «.
i p. « 'i r. < 'i r. it
1 it t-; *: i-
i >C H tl < " '1 *C '1
1 K '' «k H
|| . || '1 ~ II ^ If
' '. " 'I
n ii >t H » . » « » p» i «t it rx 'i
Ii O II Z l' C II Z U C "
'! » ". ' *. . *. It
ii c. n ii r. n u p, u
. »~ '! ' U1 1 1* II
II -C II 'i -c II II -^. '1
H - ' " II ' » H
II II illl H II
II II
II II 1 II H >l
i ii II i
o ii p; ii il il r- n n -s ii
ii rv n ii r*. ii n ^ n
n - n u . « ii ^ ii
II _ II II II N !
II U II '1 '1 II
n « n ii - u .'. ii te » i: u rv n
ii c ii e ii c u - ii < ii
t; il H- n ^ ii ^ ii x ii x il
it x u ii ii n ii
« ii ~ n t. ii _, ii i. n _ ii
r ii u; ii i ii l
> II II C ll ^ ;l C II >- !l
KK
-------
'1 '1
13 0-
>l U H >
a: i
,1 0. II
1
i <- «
n '
If Ml ' "
. «- "
i
ii 'i
n i
t;
'' 1
ii IT. « -
u. ' r-
II (A '1 - n
Ii W «
-z II
H - II
" Z 1
II -J ! '
4 : i»
II - 1, »
- - II »
II - »
'" :; T u
' i U 1
i II
i ii
u
i ii
ii _ H
1 3 II "
' Hi rv
i j£ n «
'i ii
ii n v
ii n
II U
n n
n n
ii «
it n
ii n
ii n
n ii
ii ii
ii ii
ii ii
» u
n ii
H |A II
II « - II
H r c ii
H e t u
n w r « m T
II l. _- ii _ c it-
II It » H It It "C
II r. « il « c
u * if ii i * :
M x c H s « c
u on c t
n u ii b *
II II m. -. C
n ii :: c
n II C C
II II fc- c
V
IS
ce
in
-o
*r
»
cc
u1)
*«
^
«.
GC
X
c *
(C -0
c
o T
«
c a.
a. *
tf c
<- c;
<£
«4
K.
«
n
»
r"
^
fv
r.-
«
*
r
/»
r.1
»
««
«
^.
C!
»
M
o
C i/-
it -c
c
* r
r e
- i.
r e
1C 0
u
a
o.
^
*
r.
09
>
*
»
r.
00
»
h
r.
r.
p;
l-
»
p^
pi
ri
i-
k
^
r^.
n
n
u1:
"^
rv
'O
C i*
o
f £
- c
* a.
c «
u c
r c
CJ
o
o
o
Qk
C"
^
o,
4
>
0^
fc
o-
*
(X
o-
.
9>
«
"O
M
^
t
7-
f_i
l»
<
r-
r-
o
(<
r-
^c
r.
-c
^
f«
w
*
f-
<
M.
^<
»
«
r-*
<
*
*
»
«^
C4
*
c
^0 c
c r
re O
A.
r
- c
X U
-
r*
O
»
r^
\r
*
fv
U
^
^
T
CC
K
»
»
^
C HI
H. -O
c
7 r
fc C
r i
c *
v. e
* t;
X
p;
cc
<
*
XI
r^
^
fc
^
-*3
1*^
«r
A
v
r
c
% *
o
c
y
-* C
C i.
1* 4
- C
i u
in
r»
*
r?
^
r--
^
CC
c
r.1
^
*
OC
c
p;
»
CC
c
-
«
VK
x> <
c r-
1C C
?
t- C
1 4
>
w c
- c.
s li-lj
3E " *C i>
i » '1 *
" < I1 O
II '
II .1
;'
' ,i
«t II PS I-
v H !
» o '. f
II T , l-
i r- ii p.
n ~ ,
_
n
M
II i
« II fv i| m
V , * MB
%. :: o n
N il rs il C T3
1% II *£ II IQ C
X >« » X u> u ?
i II J II b C
1- It II _ - LW ii d.c
^ x ii c r c <_
O il N- II U
V
-c
oc
.
ll-
_
c
cc
»
L~
Ps
c
0-
e
_
*
c
ir
P,
^
c
^
u-
p<
^
c
»
ll~
p:
>/.
r
*9 il
C ?
>c o
^
w *
C 0
- u
IS!
If
« C i
v. ii P; i
Z 1 O- .
II 1
\r i
M i
i ,
ii i
(
i ,,
l
' '1
i
1 .
ii i
il
il
it
I
i
>i
*i n
II !l
II
1
| <
1 II
o i u "
" | M ||
:: IX,.
C i C ii
* tfl H ^- O>
II J 1
< If i _
-------
II II
01 O
U Ul '1
V.
II 0. II
II b II
i "
i. m « ii
" ^ W '
il , (b t '
1 £ b 'I
" b v b 1
n i' c r 'i
II 'i i. II
' - II
II 1 II
II i
3 O
ce
i -I
«
i i
*
it 'i
,
n it
p|
1! "
i. X II <
' --i ' **
ii « n t*:
a. "
it ii v
'!
1. C U
" Ul W '
H t- II
: * *£
M - It
' = ;
i: t r ' M
ii ai 'i R
I. «. " **
ii b M -r
il i '2 u
1 l_
II II
II
1 II
j
i 3 ii >o
rt» It U"3
I vK II PC
l II
it n
n ii
ii ii
it tfl it
ii i/i #* ii
il T .1 " m
it O - W <.
II T? 3 II *
II »- W H *
II « * II T
II N W II IS
ii v \r. ii s. c
fi x c ii e -
il C il 1*
If W U « *
il il ~ C
it ti :: fe
II II C C*
II ,1 M- 1 c
K:
^
*c
»
f*
4j
4
c
A
O
O
c
o
o
c
*»
c
t
I £
C w
*- 4:
* g
,M.
^ ^
i ::
r* o
** 41
o
0
o
C
O
o
.^
^
T'
5
4,
O
b
C
£
1 b
r. a
t
a ***
r;
^
r.1
r;
o»
r.
r.1
o
r.
-c
«r
r"
^
K
r*"
^^
7.
M a»
c «*
41 1C
& -.
£
T *
r £
A
O
C
O
o
o
o
*
e
b
* o
2
c *
& -J
b «
t_-
O
O
c
o
o
«*
ur
c
W
c
0
OT*
»
e
c
^
v*
»
C
«M
iy
£
4>
N
C
4*
C
C
CJ
o
C-
c
r.1
r*"
^r
r--1
K1
5f
ci
K
^
0K
C
t'
^
1
0
1
6
b
O
r
U'
a.
C-
<^
c
o
o
V
c
*
jg
^
0
o
2
CJ
r*-
r<
^
fv
r^
fS.
f*
4P*
f,1
PV
\f*
*
0?
r.
C-
r*>-
1*1
cc
'"
-
r:
pt.
V?
«
at
r.*
i
b
o
c
c
o
c*
c
c
c
o
o
4i
c
t
J*
W
4*
O
c
e»
W
l
O t O
1
1
1
I
1
}
1
1
1
I
C i 0
1
1
1
1
1
1
1
I
c , o
1
1
1
,
,
1
(
c e
i .
i -*
i *
i
+ \
i
i
i
i
i
i
i
i
\
i
i
' 4» l
C 1 4i
a* t c
. i *
* t *
.C i a.
5 1 O
- 1 b
C I *
* 1
.- 1 .c
c* 1 V
t 1 1
< 1 .
^n
3W
0
o
o
r*
^;
V*.
ri
>.j
».
C j
x?
«
J*
£
C
-^
^
j
^
*
^
^
"c
f.
91
^
O
O
r*>
r.
^,
-*
pv
ri
«»
%
*»
r*»
d
*_
«
.
^
~
i,
^m
T
^
^
C
i.
5
^-.
.C
-
1
-------
I
1
I
II II
1 Ui
UJ II
it: "
.1 u. it
j
,; <- n
C :
w in II
,i «* ^ '!
i> C. . IT n
. u. - a ".
i i <- ii
'. 1. C. U.
:t i e r ii
c. ** c: .
ll « U. II
II ^ II
II II
.: 3 '
ii Z '!
ii ii
;
II II
II II
ii l,
n n
..
r v. n
" Ui <
n (f. K
a. '
II II
" :» '
II , II
'! iff .11
II »- II
' <-. II
II - II
i: S ii
ii u
'i r n
ii - i ii
i - ii
1 : 7 ii
ii i u ii
1 h- i;
ii ii
i !
II II
'I '1
II 3 II
II n .1
ii ac a
i it
u u
>i n
>i n
ii u
ii ii
ii u
n n
ii »
u ii
H II
II U
II II
II II
II II
II II
II K> II
U l/i «J II
ii r c u
n C ik II
ii -o r n
II k » U
ii i* » a
II N *i H
II l» if. H
u x c n
II OH
U U II
II II
II II
II .1
o
o
C^t
K
ff
<
>
».
M
o-
^;
«.
r*l
0*
<
M,
*
|
c
u
C
Ml
£
U
£
C*i 41
C
« 4;
1 »
* r
C JZ
t *
6* (^
^
o
o
o
>
I;*
r*t
*
W-.
O-
u?
rr
^.
o.
U1
f^
«fc
M
4
c
T
C.
C
u
^
c
K
c
*
c*
M
i£
1
c«
o
c
c
c
o
o
1
o
t.
c
|K
w
n
w
I c
C H
£
^ «
i, ft
A
cc
oc
0-
«
**
a
£
+i
£.
A
f«
7-
r
«^
*
a
o
e
c
»
c
<
»
r<
»
o
<
r;
w
0
<
*
M
n^
C
c
*
£
A.
**
T
£.
«
*
a
\
^
rj
0 i 0
i
i
l
i
i
'
'
i
i
l
C ' C
1
1
1
I
1
1
1
!
'
,
c . o
1
'
1
'
1
1
pv »
O- I
^. .
1
f;
i
i
i
i
i
i
^. i *
0- 1 x
IV 1
c; i
i
i
i
i
i
i
t
r» i f
9- 1
IS. 1
»
W 1
1
1
1
1
1
1
1
(
1
1
i a
i >>
« i *
i
« i a
1 A
* i if
£ l S.
** l iL
JC 1
A> 1
l f-
* \ >
]< 1 L
j: i c
w i i
Hi 1 Z
* i
a i A
^
^
r-
r;
^
rv
«;
*
IV
O
^
C
IV
c
f.
o-
c
c
f+
rv.
u*:
c
*c
.^
^
U",
c
<
41
^O
b.
c
J2
(^
-
£
"
r
tk
X
o
o
o
»
T
fs.
«.
f^
tt
>
t
* 1 O
» J
< 1
» (
r^ i
i
t
i
i
i
t
* \ 0
^ f
< 1
1
/^ J
1
1
[
I
f
1
- . c.
C 1
rrr
» t
fv
r; i
.
C C
IV , V
» 1
C 1
r. i
i
!
1
,
1
C 1 O
* i r,
rv , "
C, "
r; i
p
{
i
i
i
c , o
- PJ
f» i «r
» i
C I
ei i
1
,
1
1
1
1
1
1
1
1 i
1 C
t (.
! C
, 2
1 O
1 t
1 (.
t w
1 1*
i :
i a 4»
^* ' * C
C ! TJ -T
C ' » ~
ftl 1 *
jC t * i
u. l
O
o
o
,
,
l
,
O l O
1
\
1
I
I
\
1
J
m o
c
o- '
04
I
r
r c
C- l
i
**!" l
..» ,
(
t
i
,
r. ! c
O '
-C i
Ci 1
,
!
1^ . 0
& 1
«_ 1
m .
-C 1
-C 1
J
1
,
'
(
,
1
1
1
,
i
1
1
1 41
1 C
1 .*
i -C
,
1 J
0; i i
C ! C
a . L.
r i M
1 ' "
bl ' J
-------
II '1
'1 If
II UJ i
3 i:
it
O
C
c.
*
0-
»
cc
r:
C
If
»
cc
r:
cj
r
o
.
cc
(V
1
o
b
c
urn.
J=
*«;
>*
b
H- 41
I C
*
» £
w. W
* IV
~
o
0
o
o
o
1
o
b
o
I-*
£
o
<*
b
1- 41
i C
C. (C
* -£
~- w
» (J,
**
o
o
o
«»
cc
^
w
1
0
b
c
HA
^
c
0
m 19
« i
.1 '. - it i
i ,' -i ' i
1 '1 fl M !l 1
; t
i ,| . i ,|
O .. CO ' t
; u-; " 2 u1: 'i 3 . ur
ii » '( it ^ -i 'i - -
" r- *t r- M ii r. it
:; ii ii u i 'i
' it ii M .1
,1 ii ii ii >t
0 - i < n n ^
ii M ' " "
il l '1 CC II
il ' >:
n \ >i i; it 'i
,* " ' 'it '
n i' u 'i n ii
.1 ..,,,,.
co it r^ it t ro »
If , ij1) . x liT " X b* '
, U" (1 Z II IT, " Z » l~ 't
II -C '1 " -C '1 II '1
; ~ i «-. .
II CC il ' l CC u
-------
1
1
I
1
1
1
I
I
I
I
I
I
I
I
II
11 A 0- H C
" 1^1 fi *O
II n
II C U. II
>,-« :
ii n
'
n n c
t- -c
r 2 i:
u; ''.
i; j X .1 i."
: - >i
* :
,; fi "
' **r ".
II "
\\ i;
" '. p.'
1: 3 II IT
" -3 If 1*"
i: _ at 'i
i| ^ iX II *
e i i p"
n ^ cr »
n i'
u ii
n
u i
n V. n P"
" £ V*> il
II r- (C II f
II ^ tfe < "
ii . rv
!' ? * i'
1 C U. II
^ ^ ' '
II II
',
II
Ii f~ II T
i z i' ce
it U. 1! <
'. tit II
!' -c ct i -.
>- -S :< P:
ii c c ii r;
ii ^ u
a n
ii > i
ii u
n
ii _ ii cc
'1 t- « II C
'l O *£ '* *~
u i- n ce
i £ i. *C
r N« II «
i, M
II l>
ii II
II .1
II 1'
ii II
'1 II
II II
'1 II
'1 II
II II
II II
ii m il
II 1 -> II
ii r u ii
II O t II
ii ? r ii * ~?
II k II C Ji
ii n < ii re ic v
n ri «i ' C
ii fl j» 11 *, r- c
il X C 'I C C
ii c il C a.
i t_ 11 -. a «
II - - C
> ii " ~ t»
il C C
,1 1- ! -
Or*
^
m
ft*
CC
^*
O
o-
*
r*
03
**
QK
C
.*'
>
I1
r-
^f
p1
ac
M?
*.
c
.c u
ac
<
c
>
c
PC
*-.
^
c
^
«r
L~
0*
C4
c
*c
**
.
^
^,
.^
-*
**.
*-;
«K
*?
C
^t
(*
Oi
1J
^
»
I*
r.
u
-
j*
^
»
-^
^r
*-»
>
^
0
C
c
a^
^
^
"
p*?
c
t~
>
.
-c
fi
c
t
-
*«
r:
c
o-
V
fv
f*
"
**
X
c
0
M
^p
<
IB
*H(
c
J
, M*
p*"l
o
ON
ut
c
' s
^c £
a.
c *
,5 c
. I U
u~
^s
*-
l
T
«K
>
f»^
^r
C.
^p
tl"
r^
*
«
+*
<
f '
ft
C
r-.1
ft
pt
r^
a^
p*"
.
!*"
^>
c
.
*
K,
CC
ac
w.
r.'
t*
u*
J"
f*»
»»»
oc
»
&>
-c
*-c
^
*
r.
rr
f<
»
C
p*;
^ iH
C T?
j
C
.^
"f- C
* t.
z
r-
r-
^
«
r~
c-
«-«v
c
^
U"
^
r*i
u-:
»
»-%
QK
rv
f 4
«.
f**
*-
fV
^
^
C
ec
o-
-*
«M
fv
r-.
"V
^
t
p
"T
P.
ce
*
p.
ce
tm.
.
c
c
n ui
o
f w
- C
C !
1 & A
' *- C
91 o
' (.1
rr
-c
p:
P-*
*
f**
p.
C
rv
C
L~
-C
«-
X
^
p-
»
p.
X
&
-
p-
-^
rv
M.
X
r:
*
rv
X
ii-
»
C
r-i
«
»-
»
>
^
rv
p-
T? T
C ^C"
1- c
;
i- C
1 iL
^ j
c
- l-
cr
ii u
OC II - II »
C II - II X
P. II PI H -C
- II - II
O II T II If)
ae ii f u e
II * \l O»
- u
i; x H
1 ii
ii ii
u
P- II < U C
II-. . I" |l P.
pi ii rv u p-
* «- u
Pi H ^11
u-; u - u p.
- « - ii
- II - II T
: p; "
( ii
i. .1
i
n i
rt ii r. ' x
o n c -:
X " L- II P.
H i; *. t n
f. " ', O
'.11 P- i|
-C '! .- .. <
- II - , -.
> ' r-
i| ^ "
'! - 1
o- ii rv
c " P- u t*
-r » n >
". ' u> , »
II p' 1
! - II C
'! P' . 0-
n rv r .
; i
u ;i
i,
ii u
p. u iv .- c
> n -c :
C II P- .1 C
* ii » «
-« u < -c
II "T .1 -C
ii e ' P.
M.
II C II «
ii '
ii *
rv ,; P. :; -
> ii ce n
» ii
II X II O-
.1 x rv
II U" II f-
ii - -
il rv n p*.
n n p.
ii -> u
ii it
u
u ii
ii
u u
ii i-
u «
ii i
u u
Ul II UI II
: ii 3 M
C II C '1
e? us.
<- u ce 'i
I* II
K>
UI
c
^ c
* ?
x o
X
* <
k7 O
- u
^
U" 11 < '
r*" f** i
P, II C 1
M t
II V 1
i| rv i
ii p- n
II V II
i n
II II
i. ii
IT It II
P" X II
P. II X II
II p" II
, II
O- ii
" - II
II C 1
^ I'
II
n :
P. ' P- II
L: ii <
p. " rv i
it .
1 u~
'i r
p1 ii
II - u
« P.
n i
i p- .,
i
u; ii <
n p* i.
r. ii ..
ii *
II 9- il
II C 1
P- 1
"
II II
'
Ii- II P' ..
'c. n x ii
r or ii
ii ^ >i
_
n or ii
11
u 1 t/l i
_j ,
t- it £ I
41 - aj
> - -K , c r
0 ii-
-------
u '
ii a: or ' <
n c. u. 'i at
ii t- if. n f
ii i. . -
n i| «r
u 5 u; ii
» ** n
II C U. U
' t «C '1
II II
.. 'I
II II .
,. h- Ii «p
II Z II V
U. II -
ii _i i* ii -r
1 « CC
it t- 5 '1
,; C C ii
'I l
ii - '
u
i! 3 ; *
HI-*
. c "
;-«; 'i
i
(T II -C
e, u; ii --
t :-
il 1- -I II OK
'* h- '1 OK
il i U p.
ii i ii fv
ii u f
'i ii
ii u
ii ii
ii ii
n 'i
u ii
ii ii
t ii
I i ~> ii
n o ; n o
u r r ii- -
I! r : i e -
1 i - C
t i :* u
h- : .<:
iX.
T «.-
r a.
i»
<
c
-c
ct
111
PI
PI
cc
c
f
c
Pv!
OK
"<
PK
V,
V.
-a
OK
apt .loi
C.
'J
C m
JC W
c ,
^
^»
ot
C.'
t*"<
9^
X
c
-c
I"
cc
fv
oe
-o
d
O
**
i
01
N
U
jCi
0
o
u
ce
p.
ce
cc
fl-
OC
O-
P-!
oe
OK
P.'
OC
oc
OC
fK
o
o
£
J.
c
o
c
;
r*
rv
W-
J
"O
u
fl
01
o
u
oe
u-
P-;
cc
cc
i*
c
OK
P-'
f
oe
C-
-e
p>
k*
IT
«r
P-.
-c
c
ce
0
c
c
£
U
OK
l*»
C
r-*
r;
fX
r.'
c
c
r"
r:
OB
O
PI
Pi
fv
fv
hane
01
o
c
J*
cc
p;
uri
CC
J
c
cc
PJ
cc
oc
r
^*
"l
c
0
f
Ci
f
e
u-
c
cc
-c
!
c
I*
p,
X
fv
ce
J2
W it
Z -'
s
p.
fv
c-
fv
(V
f
OK
*c
OK
OK
IT
f
«r
f
f.
«r
li-
ce
ce
orriheiirene
~
p.
u*
\r.
*
c
u-
c
-c
c
"c
iv-
r*
~c
oroiien/efie
w
1
f.
1 1 1
rv i ot i rv i ^
» i 0 ' rv i -.
»* i rv i >? i «r
i i > i »
PI P. 1 -G
P. 1 1 -C I p.
1 1 P4 1
i > i
i i i
i i i
i l
i i i
i i i
* i ce ~ i «
fK i e i oe i - i i p. i
i i i
t > i
i i i
i i i
i i i
fv i i «r i p.
CC i P 1 C i f.
f 1 iv 1 « i c
C 1 « Ut 1 «
1 i p i T
< i if.
i i i
< i i
i i i
i i
i oc
v i ; i < i f
c i c i ce i <
p i . r*> . -c
p. , i -- i r
i ,
OK i -C i «:->
C i -c r- i f.
<: i c- P if
"IP i C i f
1 ' f c
1 1 1
1 ' !
U* 1 P- 1 I*
£ i ^ . j- . £
(, 1 - 1 W ' w
~ 1 - 1 - . -
» : - ! P ' -
-------
1, i£ U7 II
II i U. II
ii cr w, n
n n
u cc
il
II 5 U.
<: e C
". h- «S r
il
' i|
i il
' S '1
Ii UJ II
ii - ll
II £ II
II 1 II
II >- II
II II
II II
II II
II II
il il
II II
II II
II II
il II
>l H
II II
H at il
II If W II
il ? C '1
II O 1 U
ii r r .1
u <- - n
u . ii
il rl ll
II V '<
ii x : 'i
u S .1
n u ii
u u
'i M
ii it
i
-c
cc
<
ac
n
r.
c
o
-c
>
rr
i
-c
-c
c
c
2
1
P. 41
C
i
w ^
1 K»
P"
e
p-
-c
cc
e
X
c
p.
p;
o
p.
.
it
e
c.
C
a
i
<
c
c
0
o
«
i rh) oi'O'li f ' mi ro-
de thane
£
p;
-c
*
cc
c
rv
rv
p.
p.-
rv
5
(V
rv
u-
p.
v 4-Oichlorophpnol
r j
rr
oc
r.
X
r.'
c
rv
OK
09
CC
C
oc
rv
-o
5
OB
lethyl Fhthalate
£i
PJ
P-J
u-.
Pi-
pi
«
OK
p
rv
oc
p"
ir
p-
«r
OK
rv
i
pj
\r-
PJ
a
c
£
*.
£
a
PJ
ac
''
oc
ac
ac
-e
*
OK
c
p
c
PJ
p-
PJ
p>
itettufl F'hthalate
A
c
p:
IT
e
n
p.'
r'
i
c
p.1
V
k"
PJ
p.'
p.
41
u.
r
u
a
oc
OK
rv
p;
f
QK
OK
p;
C
Ob
C
OK
C
rv
OK
f
C
C
n
p.
c
rr
rv
oc
PJ
rv
rr
0-
PI
41
w
11
N
C
0
a
' Ul
C
c
-
M
i
0 Of
b C
O it
t «
£ T?
O
f! 1 kt
)Mi'i ) erifc
p.
rr
p.
CK
-C
P.
OC
pj
-------
>i a. u; >, -
u (f cc ' r;
! ii »
! _ ce !
to. .
' C U. lj
II
II
>l II
1 II &
H h- II -
ii z « nn
H _i w£ II *
II * it II
II ^ 3 H
It C Cv 't
» 1 il
II A II
II C II
II i »
" '
«. » ^ »
II IB . 0-
A U. 1' f '
ii ^ i -c
U! <
'i <: « . f-
>- s f.
c u
j JZ_
II KV "
; " |
,1 - '. -
? 3 II -
II H- «t II 111
il C li II -
If 1 II IP
II S. II -O
II ^ II
ii M n
it u
u u
il ii
it it
u n
ii u
it it
u n
ii ii
ii ii
it u
i| IA II 1
II if « II C
ii ; c it <-
H c t n ;
n *c? ~ 'i
M b « u ,~
n ro - ii o
II N II -
II H .1 II u «
ii X C » »- C
II CHI*
II (^ 'I ^ M
II II - C
ii n r. v
II II jO
:l il «
^
r.
ir
M
u-
*c
cc
»
^
or
ii*
o
x
QK
c
T
-c
73
""
1.
*»,
^
~,
^
«
,7
*^T
CC
L"
r**.
PC
c:
u"
<
0.
X
^
-»
^
p<
cc
Ik
,*
*.
1
c
to
0
r*
jC
u
*rt
f.
H- HI
i C
«* T
* -C
w
't
**
^*
^,
'*'-
ri
fx
O
CC
p*.
a
f!
11
'
OK
^
n
(V
OK
r)
OK
^
r.'
r.
OK
f^
n
fv
C
<"
(V
-c
X
^
X
r*
<
r:
OK
>*
«
1*.
i,~i
k~
^
C
oe
*
&
-o
f
^
fS»
oc.
»
^
1.
1^
9t
^^
31
JC
^
01
o
o
-
J2
(
*
to
*~
CC
1^.
~
^
oc
ON
*
I
o
>.
^
oc
>
-,
cc
i>,
~
»«*
0^
QK
-^
M
«K
1
a
^
a
y
*
w
0
<- HI
C C
- If
£ ^
o
- r.
<- *
v
9-
00
1**
,c
0
p*fc
c
*
o.
c
"
OK
e
*
c
^
r-
X
c
ll-
(C
^
"-
tr
X
HI
(^
o
o
^
y*
k
C
^
P-,'
t
C
tf
*
^^
.^
1^
««
(
b *
0
c c
- Ill
» ^
K iL
r.
ii il il ii ii c ,. « n -
^ ,. (T OK II " ' - , T II
> II OK >'!,-- , .-.' ..
- f"- I Si ii ^ '( IV ,
II OK 1' - , \,~ , -C
> - , - r
1 .1 1 II
r- ' v u c * n i .". r; > « v j «r
1^ " f II f i. X II 3. . X '
<?!' K 'i N ii ii rC
ii -e , II OK >i -O .. V, «t 'i C
ii- , ri . o .. f n v .. ,
IP .i « H Q T Z T
CO 1' O II T f : II
n .1 f ,. v pv .' IK- ,i
,1 i« PJ .. IT i. u- .
» i ii -
ii i. r" . f u -
: r; it f»i . -o . .. -c .1
II PK II II PK ' l PV ,,
n 'i
" is ' r cr .
II 1! 1' _ 1 C_ _ i j i
T- It U*. II 11 il
-------
APPENDIX C
POLLUTANT PHYSICAL PROPERTIES
DATA BASE
-------
^sst: a = = as:s:£: s s= s ss s _ = - -
t
a.
<"^"S *" -M^*«^ rf»
-
S » S
i=2ss^sss:
-------
TECHNICAL REPORT DATA
(Please read instructions on the reverse before completing)
1. REPORT NO.
EPA-450/4-89-013b
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Background Document for the Surface Impoundment
Modeling System (SIMS)
.5. REPORT DATE
September 1989
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Sheryl Watkins
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Radian Corporation
P 0 Box 13000
Research Triangle Park, NC 27709
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-02-4378
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Control Technology Center
Office of Air, Quality Planning and Standards
Research Triangle Park, N.C. 27711
13. TYPE OF REPORT AND PERIOD COVERED
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
EPA Project Officer: David C. Misenheimer
16. ABSTRACT
This document presents a brief description of the operation and design of surface
impoundments and background information on the development .of the Surface Impoundments
Modeling System (SIMS) . The SIMS was developed with funding from the U.S. Environ-
mental Protection Agency's (EPA) Control Technology Center (CTC) and with project
management provided by EPA's Technical Support Division of the Office of Air Quality
Planning and Standards. SIMS is based on emission models developed by the Emission
Standards Division (ESD) during the evaluation of surface impoundments located in
treatment, storage, and disposal facilities (TSDF). This technical document discusses
these emission models, surface impoundment design and operation, default parameter
development, and the emission estimation procedure. Another document entitled, SIMS
User's Manual, EPA-450/4-89-013a, presents a complete reference for all features~and
commands in the SIMS PC program.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS C. COS AT I Field/Group
18. DISTRIBUTION STATEMENT
19. SECURITY CLASS (TltiS Reportj
21. NO. OF PAGES
20. SECURITY CLASS (This page/
22. PRICE
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION is
------- |