-------
Cost ($million> 1982 dollars)
Option 1 Option 2 Option 3
Investment Costs 1.4 2.0 1.2
Annual Pollution Control Costs* 1.0 1.5 6.0
*Without water savings.
Detailed information on these costs are presented in Economic
Impact Analysis of Proposed Effluent Limitations and Standards
for the Plastics Molding and Forming Industry, EPA 440/2-84-001,
February 1984.
Option Selected. The Agency is proposing Option 2 as the tech-
nology basis for the BPT effluent limitations guidelines for this
subcategory. Thirteen percent of the cleaning and finishing pro-
cesses in the questionnaire data base recycle process water.
End-of-pipe treatment for cleaning and finishing water is uni-
formly inadequate because PM&F plants treating only PM&F waste-
water indicated that they currently use only sedimentation and
oil skimming, which does not treat dissolved pollutants (i.e.,
biochemical oxygen demand). Therefore, the activated sludge
process and conventional pollutant effluent data for that process
were transferred from the organic chemicals, plastics, and
synthetic fibers category to this subcategory.
The Agency estimates that the proposed BPT effluent limitations
guidelines result in the removal of 643,000 kilograms per year of
conventional pollutants, 804,000 kilograms per year of nonconven-
tional pollutants, and 786 kilograms per year of priority pollu-
tants from the raw waste. The estimated total investment costs
and total annual costs for the proposed BPT effluent limitations
guidelines are $2.0 million and $1.5 million, respectively. The
Agency has determined that the costs are justified by the efflu-
ent reduction benefits.
The Agency has concluded that the increased production of solid
wastes caused by the implementation of the proposed BPT will not
cause any significant negative environmental impact. Increased
electrical energy usage will be insignificant. Support for these
conclusions is presented in Section IX of this document.
REGULATED POLLUTANTS OR POLLUTANT PROPERTIES
Pollutants or pollutant properties were selected for regulation
in the plastics molding and forming subcategories because of
their frequency of occurrence and concentration in PM&F waste-
waters. Biochemical oxygen demand, total suspended solids, oil
and grease, and pH are controlled in the proposed regulation for
each subcategory.
239
-------
Biochemical oxygen demand (6005) was found in contact cooling
and heating water at concentrations up to 1,000 mg/1. Its pres-
ence was detected in cleaning and finishing water at concentra-
tions up to 540 mg/1. BOD5 is a parameter widely used to
determine the organic content of wastewater. BOD^ is also an
important control parameter for the activated sludge treatment
process; the reduction of BOD5 indicates an overall reduction
of organic pollutants.
Total suspended solids were found in contact cooling and heating
water at concentrations up to 104 mg/1. TSS was found Ln clean-
ing and finishing water at concentrations up to 16,400 ing/1.
Oil and grease was detected in contact cooling and heating water
at concentrations up to 73 mg/1 and in cleaning and finishing
water at concentrations up to 684 mg/1.
For protection of aquatic life and human welfare, pH of waste-
water should be between 6.0 and 9.0. The pH of PM&F wastewater
is regulated because the pH of contact cooling and heating water
was found to range between 5.4 and 8.3 and the pH of cleaning and
finishing water was found to range between 1.6 and 11.5.
The Agency proposes to establish effluent limitations guidelines
for biochemical oxygen demand, total suspended solids, oil and
grease, and pH. The Agency estimates that when these limitations
are met approximately 79 percent of the amount of noncoriventional
pollutants discharged by PM&F processes and approximately 80 per-
cent of the amount of priority toxic pollutants discharged will
be removed. These estimates are based on removal percentages
reported in the literature and previous EPA studies for the non-
conventional and priority toxic pollutants. The nonconventional
and priority toxic pollutants in PM&F wastewater are listed in
Table VII-5.
Although the proposed model treatment technology removes approxi-
mately 79 percent of the amount of nonconventional pollutants in
PM&F wastewater, a substantial amount of these pollutants remain
in the discharge. The Agency estimates that the remaining amount
of nonconventional pollutants results in a discharge of approxi-
mately 48 kilograms per day per direct discharger in this sub-
category. The impact of this amount is not known. For this
reason, the Agency plans to study the nonconventional pollutants,
particularly bulk organic parameters such as chemical oxygen
demand and total organic carbon. Depending on the results of
that work, the Agency may consider additional controls for the
nonconventional pollutants.
240
-------
EFFLUENT CONCENTRATION VALUES
The activated sludge treatment process is the end-of-pipe treat-
ment technology selected as BPT for both subcategories. The
activated sludge process and performance data for that process
were transferred from the organic chemicals, plastics, and
synthetic fibers category because wastewater generated by
processes in that category and PM&F wastewater had similar
conventional pollutant characteristics.
The transfer of the activated sludge process was analyzed by
comparing the sampling data obtained during the sampling program
for this project to process wastewater data from the organic
chemicals, plastics, and synthetic fibers category, particularly
the plastics only subcategory. That comparison showed that the
raw wastewater for the two categories have similar characteris-
tics. Specifically, data on raw waste concentrations of BOD^,
TSS, and oil and grease were examined statistically. A detailed
report on the statistical analysis is presented in Appendix D.
Results of that analysis show that the concentrations for these
pollutants in PM&F wastewater are neither significantly greater
nor more variable than the concentrations of those pollutants in
wastewater generated by processes at plants that manufacture
plastics. This supports the Agency's technical judgment that the
activated sludge process will treat PM&F wastewater effectively
and achieve the conventional pollutant effluent concentrations
achieved by activated sludge processes that treat wastewater
generated by processes at plastics manufacturing plants in the
organic chemicals, plastics, and synthetic fibers category. The
Agency's judgment that the activated sludge process will treat
PM&F wastewater was based on the literature and knowledge of the
performance of the activated sludge process.
Thus, the Agency transferred the activated sludge technology and
treated effluent data for that technology from the organic
chemicals, plastics, and synthetic fibers category to the PM&F
category. Effluent concentration values were transferred for
biochemical oxygen demand, total suspended solids, and oil and
grease. The transferred effluent concentration values are:
Maximum Maximum Monthly
Concentration Average
for One Day Concentration
Pollutant (mg/1) (mg/1)
BOD5 49 22
Oil and Grease 71 17
TSS 117 36
241
-------
The concentration values were used to calculate the mass based
effluent limitations guidelines for both subcategories.
BPT PRODUCTION NORMALIZED FLOWS
The BPT model treatment technologies for this category (Option 2
for both subcategories) reflect the water use controls currently
used by plants in the PM&F category. BPT production normalized
flows were established to relate the quantity of wastewater dis-
charged to a unit of production. When the quantity of wastewater
discharged is expressed as a volume per unit of production,
wastewater discharged by different sized processes can be com-
pared on an equal basis.
Contact Cooling and Heating Water Subcatgory
Production Normalizing Parameter. The production normalizing
parameter used to calculate the production normalized flows in
the contact cooling and heating water subcategory is mass of
plastic material processed. Mass of plastic material processed
was chosen as the normalizing parameter because in a cooling or
heating process the volume of cooling or heating water required
is directly related to the mass of plastic material processed.
The quantity of heat transferred from or to plastic material upon
cooling or heating under isobaric conditions can be expressed as:
f'2
Q = nr / Cp dT (Faires & Simmang)
where: Q = quantity of heat transferred
m = mass of plastic material processed
Cp = heat capacity of the material
T = temperature.
Thus the quantity of heat transferred, Q, is directly related to
the mass of plastic material processed, m.
The basic thermodynamic equation stated above is universal. It
can also be used to describe the quantity of heat transferred to
or from the contact cooling or heating water. The mass of cool-
ing or heating water required is directly related to the quantity
of heat to be supplied or removed by the water. Because the
quantity of heat transferred to the water is equal to the quan-
tity of heat transferred from the plastic material, the mass of
cooling or heating water required is directly related to the mass
of plastic material processed. Assuming the density of water is
constant, the volume of cooling or heating water required is also
directly related to the mass of plastic material processed.
242
-------
Examination of Discharge Flow Rates. To establish a baseline on
which to compare processes in the contact cooling and heating
water subcategory, the volume of water discharged by each process
in the data base for this subcategory was divided by the mass of
plastic material processed by that process. Individual produc-
tion normalized flows for each process were thus established in
terms of liters per metric ton (kkg) of plastic material
processed.
The production normalized flows for the processes in the contact
cooling and heating water subcategory exhibited some variability.
Processes with production normalized flows in both the low end
and high end of the spectrum were examined for factors that would
explain why they were either high or low. Particular attention
was given to the production process employed, such as molding,
extrusion of profiles and extrusion of wire and cable coating.
No trend was found among different processes indicating different
water use requirements. The types of plastic material processed
were also examined. There was nothing to indicate that the type
of plastic material processed influenced the quantity of water
discharged. Thus, the Agency concluded that the quantity of
cooling or heating water used is independent of the type of pro-
cess or type of plastic material processed. The only factor that
had a distinguishable bearing on the quantity of process water
discharged was the use of recycle units. As would be expected,
processes that recycled contact cooling and heating water dis-
charged less process water per metric ton of plastic material
processed than processes that do not recycle process water.
BPT Production Normalized Flows. The proposed BPT for processes
in the contact cooling and heating water subcategory with an
average process water usage flow rate of 35 gpm or less is 100
percent recycle. The BPT production normalized flow for these
processes is zero because no process water is discharged.
The proposed BPT for processes in the contact cooling and heating
water subcategory with an average process water usage flow rate
greater than 35 gpm is based on recycle of process water. The
BPT production normalized flow for these processes is the average
of the best production normalized flows for processes in the data
base that recycle process water.
The average of the best was calculated by averaging production
normalized flows for processes with recycle percentages between
90.0 and 99.9 percent (i.e., 48 of the 183 processes in the data
base that recycle process water). Ninety-five of the other 135
processes were not used to calculate the average because they
either had an average process water usage flow rate of 35 gpm or
less and thus, are controlled by effluent limitations guidelines
based on zero discharge (i.e., 100 percent recycle) or had a
recycle percentage below 90.0. The remaining 40 of the 135
243
-------
processes with an average process water usage flow rate greater
than 35 gpm were not used because the Agency is uncertain about
their reported recycle percentage of 100 percent. Most of those
processes indicated they achieved 100 percent recycle using a
cooling tower. The Agency questions whether 100 percent recycle
can be achieved using a cooling tower. When a cooling tower is
used to recycle water there is necessarily a discharge from the
cooling tower even though no discharge was shown in the
questionnaire.
The 48 processes that have an average process water usage flow
rate greater than 35 gpm and that recycle between 90.0 percent
and 99.9 percent of the process water are presented in Table X-1.
The average production normalized flow for these processes was
calculated by dividing the total volume of process water dis-
charged per year from these processes by their total annual
production. The average production normalized flow for these
processes is 1,589 1/kkg. This value is the BPT production nor-
malized flow for processes in the contact cooling and heating
water subcategory with average process water flows above 35 gpm.
The Agency compared the BPT production normalized discharge flow
of 1,589 1/kkg to the production normalized discharge flows of
the recycle processes in the data base. All of these processes
either have production normalized discharge flows below the BPT
production normalized flow or can reduce their flows to the BPT
production normalized flow by increasing their recycle rates
within demonstrated limits.
Cleaning and Finishing Water Subcategory
Production Normalizing Parameter. Before a regulatory flow
allowance was established for processes in the cleaning and
finishing water subcategory a production normalizing parameter
for the subcategory was chosen. Number of products processed,
surface area of material processed, and mass of plastic material
processed were considered as possible production normalizing
parameters.
The number of products processed was examined as a possible
production normalizing parameter. However, using the number of
products processed as a production normalizing parameter does not
account for the variations in size and shape of molded and formed
products. The cleaning or finishing of a large product does not
require the same amount of water needed to clean or finish a
small product. Therefore, the Agency concluded that the number
of products processed is not an appropriate production normal-
izing parameter.
Surface area was considered as a production normalizing parameter
for processes in the cleaning and finishing water subcategory.
244
-------
Table X-1
RECYCLE PROCESSES* USED TO CALCULATE
BPT PRODUCTION NORMALIZED FLOWS
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Plant I.D.
3070
10781
10377
10376
833131K
3200
362544N
653769Y
653769AA
653769Z
76001A
3210
30
391771E
500
833131F
581
10371
510
10460
10791
1550
581
582
644737WW
280
275857
1945
4015940
10280
644737BB
958218G
958218B
1060
120
731687A
580
940
833131A
250
330
1945
10780
10780
2670
10000021
10720
644737BB
Production
(kkg/yr)
2,187
2,291
3,025
1,653
2,722
27,032
1,497
2,359
5,443
953
1,406
10,478
2,
11
,097
,902
2,412
12,701
17,533
1,665
,985
68,000
3,047
142
17,533
14,269
4,445
34,700
3,
5,
3.
21 ,
21
,402
,977
,039
,106
,221
2,495
7,504
14,866
1,858
3,428
13,918
5,718
30,495
12,076
2,744
1
031
348
523
798
738
513
41
Water Used
(l/yr)
227,572,597
14,200,000
88,600,000
46,600,000
95,468,394
8,759,671 ,247
141,770,000
104,360,000
275,960,000
51,515,403
388,080,000
1,364,855,988
5,905,224
1,143,072,000
307,680,000
142,090,000
583,780,000
76,900,000
741,710,000
5,360,000,000
59,000,000
62,079,018
651,920,000
1,307,100,000
572,350,000
373,940,000
340,690,000
183,000,000
380,430,000
753,000,000
2,697,900,000
122,650,000
379,520,000
1,007.300,000
97,163,647
587,380,000
1,479,900,000
583,900,000
3,372,800,000
883,970,000
385.510,000
275,000,000
48,100,000
72,100,000
380,309,693
270,480,000
102,000,000
102,700,000
Percent
Recycle
99.9
99.8
99.9
99.9
99.9
99.9
99.9
99.9
99.9
99.9
99.9
99.9
96.7
99.9
99.9
99
99.7
99.7
99.9
99.6
98
99.9
98
99.1
99.3
91.5
99
95.8
98.6
95.3
98.7
96.3
95.5
96.5
95.4
98
96
95.7
95
92
95
95.8
91.4
91.4
91.3
91.6
93
99
Water
Discharged
d/yr)
18,805
23,700
28,600
38,000
75,708
844,114
49,210
43,154
123,026
757
1 1 1 , 000
935,000
194,811
1,180,000
245,521
1,362,744
1,945,998
250,000
741,643
19,500,000
1,160,000
62,338
9,729,992
11,675,991
3,815,693
31,860,955
3,936,816
7,550,000
5,034,393
35,400,000
35,961,300
4,504,626
17,072,154
35,714,795
4,469,145
11,197,213
59,158,352
25,794,018
168,637,350
69,445,434
19,194,412
11,400,000
4,140,000
6,210,000
9,652,530
22,712,400
7,120,000
1,369,395
Production
Normalized
Flow
(1/kkg)
9
10
10
23
28
31
33
46
52
56
79
89
93
99
102
110
111
150
186
292
380
439
555
818
858
918
1 ,152
1,260
1 ,657
1,680
1,695
1,813
2,276
2,402
2,406
3,266
4,251
4,511
5,530
5,759
6,995
1 1 , 1 00
11 ,900
11 ,900
12,105
13,068
13,900
33,073
*Processes in project data base.
245
-------
The Agency believes there may be a correlation between the volume
of cleaning and finishing water used and the surface area of
plastic product cleaned or finished. However, records of the
area of the plastic product cleaned or finished are generally not
kept by industry. In some cases, such as for cast or molded
complex shapes, surface area is very difficult if not impossible
to determine. For these reasons, surface area is an inappropri-
ate production normalizing parameter for the cleaning and finish-
ing water subcategory.
Mass of plastic material processed was selected as the appropri-
ate production normalizing parameter for the cleaning and finish-
ing subcategory because even though data correlating mass of
pollutant discharged to mass of plastic materal processed are
limited, the Agency believes that the mass of pollutants gener-
ated is proportional to the mass of plastic material processed.
Additionally, the plastics molding and forming industry typically
maintains records on the basis of mass of plastic material
cleaned or finished.
Examination of Discharge Flow Rates. The proposed BPT for the
cleaning and finishing water subcategory is based on recycle.
Therefore, processes in the data base for the cleaning and
finishing water subcategory that currently recycle process water
were analyzed to establish regulatory flows for this subcategory.
To establish a baseline from which to compare the discharge flows
from the recycling processes, mass of plastic material processed
was used as the production normalizing parameter. The volume of
water discharged by each recycling process was divided by the
reported mass of plastic material processed in that process to
obtain a production normalized discharge flow in units of liters
per kilogram of plastic material processed. The production nor-
malized flows for processes in this subcategory (i.e., product
cleaning, shaping equipment cleaning, and finishing) were
reviewed. As a result of this review, different BPT production
normalized flows were calculated for the washing and rinsing of
molded or formed parts and shaping equipment and the finishing of
products because based on questionnaire data the washing and
rinsing of molded or formed parts and shaping equipment requires
more water than the finishing of plastic products.
BPT Production Normalized Flows
Cleaning Water:
The BPT production normalized flow for cleaning processes is the
average production normalized flow for all cleaning processes in
the questionnaire data base that recycle cleaning water. Data
for these processes are presented in Table X-2. The BPT produc-
tion normalized flow was calculated by dividing the total quan-
tity of wastewater discharged by total mass of plastic material
246
-------
C T3
O - -^- CM
^- ones CM * <
CD
EH
EH
ts
z
3
u
ON O 00 U*» 00
CJN ON ON CT> CT> 00 CJN
OO O OO
O O O O O
o o o o o
00 -
oo
o o o oo
o m o o *—
oo CN o o m
m co
m oo
oo
o
o CM
ON r*«
oo CM T-
oo i—
oo
C
o-
T5 ,
O,
oc
00
•
m CN in vo m oo o
OOi— CO CM 00 VO >3-
cy> ^- vo CM »—
OO CN CN
4-1
C
CO
r-l
OH
O O
O O
O O O O
o o o «N o m o
T- O CM
-------
processed by those processes. The BPT production normalized flow
for cleaning processes in the cleaning and finishing water sub-
category is 4,483 1/kkg. A cleaning process includes both deter-
gent washing and rinsing operations.
The Agency compared the BPT production normalized flow of 4,483
1/kkg to the production normalized discharge flows of the seven
processes that recycle cleaning water. Five of those processes
either have production normalized discharge flows below the BPT
production normalized flow or can reduce their flows to the BPT
production normalized flow by increasing their recycle rates
within demonstrated limits. Two processes will have to reduce
their process water usage flow rates to meet the BPT production
normalized flow.
Finishing Water:
The BPT production normalized flow for finishing processes is the
average production normalized flow for all finishing processes in
the questionnaire data base that recycle finishing water. Data
for these processes are presented in Table X-3. The BPT produc-
tion normalized flow was calculated by dividing the total quan-
tity of wastewater discharged by the total mass of plastic mater-
ial processed by those processes. The BPT production normalized
flow for finishing processes in the cleaning and finishing water
subcategory is 1,067 1/kkg. This BPT production normalized flow
is based on a limited number of data points. However, the Agency
believes the allowance is reasonable based on a comparison of
this PNF to the PNFs for finishing processes that currently recy-
cle process water.
All finishing processes that recycle process water have produc-
tion normalized discharge flows below the BPT production normal-
ized discharge flow or can reduce their flows to the BPT produc-
tion normalized flow by increasing their recycle rates within
demonstrated limits.
BPT EFFLUENT LIMITATIONS GUIDELINES
BPT effluent limitations guidelines were calculated by multiply-
ing the BPT production normalized flow by the BPT effluent
concentration values transferred from the organic chemicals,
plastics, and synthetic fibers category (see Appendix D). Both
one day maximum and monthly average concentration values were
transferred. The BPT effluent limitations guidelines are
presented below.
248
-------
CO
1
X
0)
,_|
o
Cfl
H
£5
3
tM
Q
W
3
^rj
Pi
O
23 JH
O Pi
H O
O W
E> H
O 0
pi ro
PJ ;=> Pi
CO W
H H
P-i Pi <
PQ W 5
H
W T-l I? OC
O rH O J*!
3 03 i-l ^i
TD 0 fe\
O J-l rH
VJ O v-x
P-i 23
O O O
o
^
' —
TJ
o;
>-( 00^-v
,
5 O rH
W ^-^
, -I
•t^
o
o o o
o
o
*
o
CTi
-
4-> 0)
C '"i
11 O
0 >,
V-i O
QJ 0)
P-i Pi
O 0 O
o o r-
1 — t —
o -J- o
T3
0)
CO /-x
^ )-l
^>
}-> ~^~~-
-N
•H S-l
4-1 >i
O ^-
^ oc
T3 ^£
O J«!
P-i
O OO M>
O
oo oo m
-------
Contact Cooling and Heating Water Subcategory
Contact cooling and heating water is process water that contacts
the raw materials or plastic product for the purpose of heat
transfer during the plastic molding and forming process.
Average Process Water Usage Flow Rate of 35 gpm or Less. For
processes with an average process water usage flow rate of 35 gpm
or less, the BPT production normalized flow is zero discharge.
Therefore, no wastewater pollutants can be discharged from these
processes.
Average Process Water Usage Flow Rate Greater Than 35 gpm. For
processes with an average process water usage flow rate greater
than 35 gpm, the BPT effluent limitations guidelines are:
Contact Cooling and Heating Water
BPT Effluent Limitations
Pollutant or
Pollutant Property
BOD5
Oil and Grease
TSS
PH
(1) Between 6.0 and 9.0.
Maximum For
Any One Day
(mg/kg)
78
113
186
Maximum For
Monthly Average
(mg/kg)
35
27
The effluent limitations guidelines are expressed as milligrams
of pollutant per kilogram of plastic material processed.,
Kilograms of plastic material processed when used to determine
effluent limitations guidelines are the mass of plastic material
that process water comes in contact with for cooling or heating
purposes. If the same unit mass of plastic undergoes more than
one molding and forming process (for example, it is compounded
and pelletized, extruded, and blow molded), the mass of plastic
material processed in each process is added to obtain the total
mass of plastic material processed.
Cleaning and Finishing Water Subcategory
Cleaning Water. Cleaning water is process water used to clean an
intermediate or final plastic product or to clean the surfaces of
product shaping equipment, such as molds and mandrels, that are
or have been in contact with the -plastic product. It includes
250
-------
water used in both the detergent wash and rinse cycles of a
cleaning process.
The mass of pollutants discharged by existing processes in the
cleaning and finishing water subcategory that use cleaning water
shall not exceed:
Cleaning Water
BPT Effluent Limitations
Maximum For Maximum For
Pollutant or Any One Day Monthly Average
Pollutant Property (mg/kg) (mg/kg)
BOD5 220 99
Oil and Grease 318 76
TSS 524 161
pH (T) (T)
(1) Between 6.0 and 9.0.
These effluent limitations guidelines are expressed as milligrams
of pollutant per kilogram of plastic material processed. Kilo-
grams of plastic material processed when used to determine efflu-
ent limitations guidelines are the mass of plastic material that
process water comes in contact with for product cleaning pur-
poses. For the purpose of calculating limitations for water used
to clean shaping equipment, such as molds and mandrels, mass of
plastic material processed refers to the mass of plastic material
that was molded or formed by the shaping equipment being cleaned.
These discharge allowances apply to the combined discharge from
the detergent wash and rinse cycle of a cleaning process.
Separate allowances are not given for the wash and rinse cycles.
Finishing Water. Finishing water is process water used to remove
waste plastic material generated during a finishing process or to
lubricate a plastic product during a finishing process. It
includes water used to machine, to decorate, or to assemble
intermediate or final plastic products.
The mass of pollutants discharged by existing processes in the
cleaning and finishing water subcategory that use finishing water
shall not exceed:
251
-------
Finishing Water
BPT Effluent Limitations
Maximum For Maximum For
Pollutant or Any One Day Monthly Average
Pollutant Property (mg/kg) (mg/kg)
BOD5 52 23
Oil and Grease 76 18
TSS 125 38
pH (T) (T)
(1) Between 6.0 and 9.0.
These effluent limitations are expressed as milligrams of pollu-
tant per kilogram of plastic material processed. Kilograms of
plastic material processed are the mass of plastic material that
process water comes in contact with for finishing purposes.
EXAMPLE OF THE APPLICATION OF THE BPT EFFLUENT LIMITATIONS
GUIDELINES
The purpose of the BPT effluent limitations guidelines is to pro-
vide a uniform basis for regulating wastewater discharged from
processes in the plastics molding and forming category. For
direct dischargers, this is accomplished through NPDES permits.
The plastics molding and forming category is regulated on an
individual wastewater flow "building block" approach. An example
that illustrates how the effluent limitations guidelines are used
to determine the amount of pollutants that can be discharged from
plastics molding and forming plants is presented below.
Example
Plant X compounds and pelletizes 1,250,000 kilograms of polyethy-
lene per year. The pelletizing process uses contact cooling
water. Thirty percent of this amount is then extruded in a
process using contact cooling water; the remainder is processed
by injection molding in a process that uses non-contact cooling
water. The injection molds are cleaned with process water.
Fifty percent by weight of the injection molded plastic parts are
trimmed in a finishing process that uses process water. The
average process water usage flow rate for the pelletizing process
is 65 gpm; the average process water usage flow rate for the
extrusion process is 20 gpm. The plant operates 250 days per
year.
252
-------
The daily production from the compounding and pelletizing process
is 1,250,000 kg/year divided by 250 days/year or 5,000 kg/day.
Thirty percent of this amount, or 1,500 kg/day, is extruded in a
process using contact cooling water; 3,500 kg/day is injection
molded; and the injection molds in which 3,500 kg/day of plastic
material are molded are washed. Of the injection molded parts,
1,750 kg/day are trimmed in a finishing process.
Plant X processes 5,000 kg/day of polyethylene in a pelletizing
process using contact cooling water and 1,500 kg/day of
polyethylene in an extrusion process using contact cooling and
heating water. These processes are regulated under the contact
cooling and heating water subcategory. The "average process
water usage flow rate" of contact cooling and heating water for
this plant is 65 gpm for the pelletizing process plus 20 gpm for
the extrusion process. Thus, the effluent limitations guidelines
for processes with an "average process water usage flow rate"
greater than 35 gpm apply.
Plant X cleans injection molds with process water; 3,500 kg/day
of polyethylene are shaped by these molds. This process is
regulated under cleaning in the cleaning and finishing water
subcategory. Plant X trims 1,750 kg/day of polyethylene in a
process using process water. This process is regulated under
finishing in the cleaning and finishing water subcategory. Table
X-4 illustrates the calculation of the allowable discharge of
BOD5 for this plant.
253
-------
CO
CO
oi eg
r-l >,S /~\
43 r-l >,
CO 43 01 CO
IS 4J 0013
O C C0\
r-l O rJ 00
r-j S 01 S
0
o
0
in
r^-
1—
o
o
m
„
CN
m
o
o
m
,
vO
,2
43 CO
cOQ l
S 1
O 0) |
r-l £3 •'
r-lS !
< c
0
c^
>,
5 CO
3 TD
a^
-1 00
< B
0 ^^
O
o
0
*l
o
0\
CO
o
o
o
•t
r^»
-
0
o
o
o
r^
i*~
*
0
o
o
•«
,_
o\
o
o
o
00
vO
CO
I
X
0>
r-l
o
En
m
Q
O
PQ
O
OS
CO
v-4
Q
CO
CO
eg ^
K*>S S~\
r-l OC
43 01^
4J 00^«
C CO 00
0 rl 0
in m
CO CO
CO
CO
cO*
>%S^
cO Od
01
oo
C
o/
01 -rl H
00 >^4-> CO
COr-l O T3
rl-rl d^
01 CO -O 00)
> Q O ,
< rl "
OH
CTi
00
OO
r^.
o
CM
CM
o
o
o
o
o
m
m i—
o
o
m
CO
CO
CM
CM
m
o
m
rl
0)
4-i
cO
^
00 00
C C
rJ
01
4J
cO
C5
CO
CO
01
0
o
}-l
fX,
•r-l TH
r-l N
O -^
O 4-J
C_> Ol
r-l
4J r-t
U O)
CO PM
4J
c w
0 0
CJ14-I
VJ
OJ
4-)
cO
S
00
c
•-• c
r-l O
O -rl
5 CO
d
i-i
4-1 4-1
cO W
4J
C rl
O 0
U <4-l
rl
O
(Jl
MH
CO
rJ T3
01 r-l
4-1 O
CO S
Ds
C
00 O
C -.-I
•rl 4-1
c o
cO (U
11 -I-)
^ c
O M
rl
o
4-1
rl
(U
4-1
cO
S
00
C 00
•1-1 C
43 -n
co S
•rl |
c-5
Sri
m
Q
O
rl
O
4-1
CO
oi
G
•r-t
r-l
01
T)
•rl
d
oo
co
C
O
•rl
4J
cO
4J
§
0)
CQ
Ol
43
0)
V-i
CO
CO
0)
CO
0)
CO
01
(U
CO
(U
43
4J
00
T3 CO
O; rl
4-J Ol
Clj 4-1
CO Ol
O 00
r4
0) CO
4343
CJ
C co
CO -rl
O T3
i—I 0)
--. 4J
60 CO
£, S
CO
C co
O O)
•rl O
4-1 O
0) r-l
O -rl
C CO
O T3
o
CO
4J -
C 4J
01 £3
d co
r-l r-l
"4-1 tX
M-4
Oi 01
Q
o >•>
PQ 43
*
*
254
-------
SECTION XI
BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE
The factors considered in assessing best available technology
economically achievable (BAT) include the age of equipment and
facilities involved, the process employed, process changes, non-
water quality environmental impacts (including energy require-
ments) and the costs of applying such technology (Section 304(b)
(2)(B) of the Clean Water Act). At a minimum, the BAT technology
level represents the best economically achievable performance of
plants of various ages, sizes, processes, or other shared
characteristics. As with BPT, where the Agency has found the
existing performance to be uniformly inadequate, BAT may be
transferred from a different subcategory or category. BAT may
include feasible process changes or internal controls even when
not common industry practice.
The required assessment of BAT "considers" costs, but does not
require a balancing of costs against effluent reduction benefits
(See, Weyerhaeuser v. Costie, supra). In developing BAT,
however, EPA gave substantial weight to the reasonableness of
cost. The Agency considers the volume and nature of discharges
expected after application of BPT, the general environmental
effects of the pollutants, and the costs and economic impacts of
the additional pollution control levels.
Despite this expanded consideration of costs, the primary deter-
minant of BAT is effluent reduction capability. As a result of
the Clean Water Act of 1977, the achievement of BAT has become
the principal national means of controlling toxic pollutants.
The wastewaters generated by PM&F processes contain 28 priority
toxic pollutants that were considered for control including eight
toxic metals and 20 toxic organics.
Contact Cooling and Heating Water Subcategory
The Agency considered two technology options as the basis for the
proposed BAT effluent limitations guidelines. These options,
which are the same as BPT Option 2 and BPT Option 3 for this
subcategory, are:
Option 1:
For processes with an average process water usage flow rate of 35
gpm or less - Zero discharge by 100 percent recycle of the pro-
cess water using either a. tank or chiller.
255
-------
For processes with an average process water usage flow rate
greater than 35 gpm - Recycle through a cooling tower and treat-
ment of the recycle unit discharge in a package activated sludge
plant. An equalization tank is included as part of the package
plant.
Option 2:
For processes with an average process water usage flow rate of 35
gpm or less - Zero discharge by 100 percent recycle of the waste-
water through either a tank or chiller.
For processes with an average process water usage flow rate
greater than 35 gpm - Recycle through a cooling tower and zero
discharge by contract haul of the discharge from the recycle
unit.
The Agency is not proposing BAT effluent limitations guide-
lines more stringent than the proposed BPT effluent limitations
guidelines for this subcategory because there are insignificant
quantities of toxic pollutants remaining in contact cooling and
heating water after compliance with the applicable BPT effluent
limitations guidelines. As previously discussed, the proposed
BPT model technology (BPT Option 2) achieves significant removal
of toxic pollutants present in contact cooling and heating water.
Of the estimated 124,000 kilograms per year of toxic pollutants
currently discharged by direct dischargers in this subcategory,
99,000 kilograms per year of these pollutants will be removed by
compliance with the proposed BPT effluent limitations guidelines.
Thus, 25,000 kilograms per year of toxic pollutants will be dis-
charged after application of the BPT effluent limitations guide-
lines. This discharge equates to approximately 0.20 kilograms
per day of toxic pollutants per direct discharger in this sub-
category. Table XI-1 lists the estimated amount of the 26 toxic
pollutants found in contact cooling and heating water that would
be discharged per year by direct dischargers in this subcategory
after BPT treatment. Also shown on that table are the average
concentrations of the toxic pollutants in wastewater after BPT
treatment. The Agency believes that the amount and toxicity of
these pollutants do not justify establishing more stringent BAT
effluent limitations guidelines for the toxic pollutants.
Accordingly, EPA is proposing to exclude these pollutants from
further national regulation under Paragraph 8(a)(i) of the
Settlement Agreement in NRDC v. Train, supra.
EPA estimates that 79 percent of the projected 27,243,000 kilo-
grams per year of nonconventional pollutants in contact cooling
and heating water will be removed when plants in the PM&F cate-
gory comply with the BPT effluent limitations guidelines. The
remaining amount of nonconventional pollutants results in a
256
-------
Table XI-1
AMOUNT AND CONCENTRATION OF TOXIC POLLUTANTS IN
WASTEWATER AFTER BPT TREATMENT
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Priority Pollutant
4. benzene
6. carbon tetrachloride
(tetrachloromethane)
11. 1,1,1-trichloroethane
22. parachlorometa cresol
23. chloroform (trichloro-
methane)
44. methylene chloride
(dichloromethane)
65. phenol
66. bis(2-ethylhexyl)
phthalate
68. di-n-butyl phthalate
85. tetrachloroethylene
86. toluene
89. aldrin
90. dieldrin
93. 4,4'-DDE
100. heptachlor
102. a-BHC
103. 3-BHC
104. Y-BHC
105. 6-BHC
118. cadmium
119. chromium (Total)
120. copper
122. lead
123. mercury
124. nickel
128. zinc
Estimated Amount
Remaining After
BPT Treatment
(kg/yr)
850
9,300
950
691
280
390
73
10,320
1
610
1,
37
6.8
2.3
0.07
0.9
4
1.7
0.95
3.6
16
60
23
230
0.005
158
460
Average Concen-
tration After
BPT Treatment
(mg/1)
0.010
0.318
0.010
0.025
0.010
0.010
0.025
0.200
0.010
0.010
0.010
0.252*
0.041*
0.044*
0.030*
0.056*
0.176*
0.074*
0.050*
0.004
0.012
0.041
0.042
0.0001
0.446
0.044
257
-------
discharge of approximately 48 kilograms per day per direct dis-
charger in this subcategory. The impact of this amount is not
known. Therefore, EPA will investigate the nonconventional
pollutants, particularly TOG and COD, between this proposal and
promulgation of the PM&F regulation to determine what contributes
to those pollutants (e.g., a toxic pollutant). Additional con-
trols may be imposed for the nonconventional pollutants depend-
ing on the results of that investigation.
As previously discussed, the 35 gpm cut-off for the selected
BPT/BAT option is the average flow rate of the eight processes
with the best flow rates that recycle 100 percent of the process
water using a chiller. Information obtained from the question-
naire surveys for this project indicate that processes with flow
rates as high as 500 gpm can recycle 100 percent of the process
water using a chiller. The Agency will evaluate that information
further to see if the 35 gpm cut-off should be higher under BAT
when the final regulation is promulgated.
Cleaning and Finishing Water Subcategory
The Agency considered two technology options for the basis for
the BAT effluent limitations guidelines for this subcategory.
These options, which are the same as BPT Option 2 and BPT Option
3 for this subcategory, are:
Option 1:
This option consists of recycle through a sedimentation tank and
treatment of the discharge from the recycle unit in a package
activated sludge plant. The package plant includes an equaliza-
tion unit and pH adjustment. A sedimentation tank is used to
remove the suspended solids in the wastewater so that the waste-
water can be recycled.
Option 2:
Option 2 consists of recycle through a sedimentation tank for all
processes and contract haul of the discharge from the recycle
unit.
The Agency is not proposing BAT effluent limitations guidelines
more stringent than the proposed BPT effluent limitations guide-
lines for this subcategory because there are insignificant
quantities of priority toxic pollutants remaining in cleaning and
finishing water after compliance with the proposed applicable BPT
effluent limitations guidelines. The Agency estimates that
compliance with the BPT effluent limitations guidelines results
in the removal of 786 kilograms per year of toxic pollutants from
the current discharge of 890 kilograms per year toxic pollutants
by plants in this subcategory. Thus, 104 kilograms per year of
258
-------
toxic pollutants would be discharged after application of the
proposed BPT effluent limitations guidelines. This equates to
less than 0.01 kilograms per day of toxic pollutants per direct
discharger. Table XI-2 lists the estimated amount of the 17
toxic pollutants found in cleaning and finishing water that would
be discharged per year by direct dischargers in this subcategory
after BPT treatment. Also shown on the table is the average
concentration of the toxic pollutants after BPT treatment. The
Agency has determined that the amount and toxicity of these pol-
lutants do not justify establishing more stringent BAT effluent
limitations guidelines for toxic pollutants. Accordingly, EPA is
proposing to exclude these pollutants from further national regu-
lation under Paragraph 8(a)(i) of the Settlement Agreement in
NRDC v. Train, supra.
EPA estimates that 86 percent of the 939,200 kilograms per year
of nonconventional pollutants in cleaning and finishing water
will be removed when plants comply with the BPT effluent limita-
tions guidelines. The remaining amount of nonconventional pollu-
tants result in a discharge of approximately one kilogram per day
per direct discharger in this subcategory. The Agency will
investigate what contributes to the nonconventional pollutants to
determine if additional controls for these pollutants are needed
when the final BAT effluent limitations guidelines are
promulgated.
259
-------
Table XI-2
AMOUNT AND CONCENTRATION OF TOXIC POLLUTANTS
AFTER BPT TREATMENT
CLEANING AND FINISHING WATER SUBCATEGORY
Priority Pollutant
4. benzene
23. chloroform (trichloro-
methane)
44. methylene chloride
(dichloromethane)
62. N-nitrosodiphenylamine
65. phenol
66. bis(2-ethylhexyl)
phthalate
86. toluene
89. aldrin
100. heptachlor
102. a-BHC
104. Y-BHC
105. 6-BHC
119. chromium (Total)
120. copper
124. nickel
125. selenium
128. zinc
Amount
Remaining After
BPT Treatment
(kg/yr)
0.20
4
40
4
1
10
0.14
0.14
<0.01
<0.01
0.10
0.12
2.3
3
6.5
0.38
32
Average Concen-
tration After
BPT Treatment
(mg/1)
0.01
0.01
0.01
0.01
0.025
0.059
0.010
0.041*
0.003*
0.002*
0.300*
0.052*
0.007
0.024
0.034
0.075
0.380
260
-------
SECTION XII
NEW SOURCE PERFORMANCE STANDARDS
The basis for new source performance standards (NSPS) under
Section 306 of the Act is the best available demonstrated tech-
nology. New plants have the opportunity to design and use the
best and most efficient plastics molding and forming processes
and wastewater treatment technologies without facing the added
costs and restrictions encountered in retrofitting an existing
plant. Therefore, Congress directed EPA to consider the best
demonstrated process changes, in-plant controls, and end-of-
pipe treatment technologies that reduce pollution to the
maximum extent feasible when developing NSPS.
TECHNICAL APPROACH TO NSPS
The Agency believes that characteristics of wastewater dis-
charged by new PM&F processes in each subcategory will be the
same as the characteristics of wastewater discharged by existing
PM&F processes in those subcategories. Thus, the treatment
options considered for new sources in each subcategory are the
same as those considered for existing sources. These options are
outlined in the BPT section of this development document.
NSPS OPTION SELECTION
The Agency is proposing NSPS based on the same model treatment
technologies as the proposed BPT effluent limitations guidelines
in each subcategory (BPT Option 2). EPA is not proposing NSPS
more stringent than the effluent limitations guidelines for
existing sources because the amount and toxicity of the priority
toxic pollutants remaining after treatment in the BPT/BAT model
treatment technologies for each subcategory do not justify more
stringent controls. See Tables XI-1 and XI-2 in the BAT section
of this development document. The proposed NSPS technology basis
for each subcategory are:
Contact Cooling and Heating Water Subcategory
For processes in the contact cooling and heating water subcate-
gory with an average process water usage flow rate of 35 gpm or
less the technology basis of NSPS is zero discharge. For pro-
cesses with an average process water usage flow rate equal to or
less than 0.3 gpm, zero discharge is achieved with a product
quench tank of proper surface area to allow for sufficient heat
transfer to the surrounding environment. For processes with an
average process water usage flow rate for flows greater than 0.3
gpm and less than or equal to 35 gpm, the zero discharge technol-
ogy basis is a chiller system with 100 percent recycle. The
chiller recycle system is depicted in Figure XII-1.
261
-------
co
CQ
Pi 00
w
OH
w o
>25
W M
MH
«< !S
O O
w o
w
J
h-q
262
-------
For flows above 35 gpm, the technology basis of NSPS is a recycle
through a cooling tower and treatment of the recycle unit dis-
charge in an end-of-pipe treatment system consisting of equaliza-
tion followed by a package activated sludge plant. Figure XII-2
illustrates this technology.
The 35 gpm cut-off was used for NSPS for the same reasons it was
used for the BPT/BAT technology options. As discussed in Section
XI, the Agency will consider using a higher flow cut because
information from the questionnaire surveys indicates that the
recycle unit used to achieve 100 percent of the process water may
be used for flows up to 500 gpm.
Cleaning and Finishing Water Subcategory
The NSPS technology basis for the cleaning and finishing water
subcategory consists of a recycle through a sedimentation tank to
remove solids and floatable material. Sludge and scum that
accumulate in the tank are removed periodically by a contract
hauler. Recycle unit discharge flows to an equalization tank
where pH of the wastewater is controlled and is then treated in a
package activated sludge plant. A schematic of the NSPS technol-
ogy for the cleaning and finishing water subcategory is presented
in Figure XII-3.
Costs and Pollutant Removals for NSPS
The Agency conducted an economic analysis of the impact of the
proposed NSPS on new PM&F plants. The analysis was based on a
normal plant that contains four model processes. Each model
process represents one of the four segments of the category for
which technology options were developed. The model processes
consist of two processes that use contact cooling and heating
water and two processes that use cleaning and finishing water.
Two model processes were developed for the contact cooling and
heating water subcategory because that subcategory was subdivided
based on average process water usage flow rate (i.e., a 35 gpm
cut-off was used). Two model processes were developed for the
cleaning and finishing water subcategory because, as discussed in
Section IX, a cut-off of two gpm was used in this subcategory for
costing purposes. Even though the technology basis for NSPS for
all processes in the cleaning and finishing water subcategory is
flow reduction and treatment of the discharge from the recycle
unit, the technology basis for costing purposes for processes
with an average process water usage flow rate of two gpm or less
is flow reduction and contract haul of the recycle unit dis-
charge. This technology was costed for the low flow rate pro-
cesses because it is more economical than treatment of the
recycle unit discharge. The Agency believes that plastic molders
and formers will comply with the BPT effluent limitations guide-
lines in the least costly way.
263
-------
co
to
0)
o
o
p
CM
0)
rH
a
0)
00
M
ctf
JS
a
TO
•rl
O
w
H
s
Cm
W
CJ
00
(3 P
•rl 0)
rH ^
O O
O H
O
00
c
•H A!
T) C
rH Cfl
O H
CO
co
a)
o
o
t-<
fl
O
co
-8
•H
•U
CO
N
•H
rH
CCJ
o-
W
ey
oo
CU
4J
ai
60
CO
A!
a
n)
PL,
CM
I
X
-------
0)
tot
M
n)
•s
en
•rl
O
01
CO
0)
a
o
u
PH
CO
<-<
o
o
CU
a
rt
H
PH
CO
00
CO
13
CU
4-1
rt
>
0)
00
CJ
n)
CM
a
•H
4J
CO
a
o
•H
4J
n)
4-1
a
•H
TJ
a)
r-H E
tS 3
> CJ
o en
§ -n
£4 C
M
O CU
4J 00
O TJ
rt 3
4J CO
C
O "4-1
O O
o
"8
a
c
o
•H
4-1
tt)
N
rt
cr
on
M
M
X
cu
oo
o
O
w
H
O
PQ
c/J
O W
O H
ODS
K O
0 53
W H-i
H M
c/i
CO M
P-i 53
CO M
53 PL)
53
M
I
CJ
to
co
ai
o
o
E
o
g
O
co
265
-------
Thus, four model processes were chosen: one contact cooling and
heating water process with an average process water usage flow
rate greater than 35 gpm, one contact cooling and heating water
process with an average process water usage flow rate less than
35 gpm, one cleaning and finishing water process with an average
process water usage flow rate greater than two gpm, and one
cleaning and finishing water process with an average process
water usage flow rate less than two gpm. The actual flow rates
associated with the model processes are based on the median flow
rates of processes in the questionnaire data base. Those median
flow rates are presented in Table XII-1. The NSPS technology for
contact cooling and heating water processes with an average
process water usage flow rate of 35 gpm or less is depicted in
Figure XII-1; the technology for contact cooling and heating
water processes with a process water usage flow rate greater than
35 gpm is depicted in Figure XII-2. Figure XII-3 depicts the
NSPS technology for the cleaning and finishing water processes
with an average process water usage flow rate greater than two
gpm. These technologies are the same as the technologies for
existing sources.
Table XII-1
FLOW RATES FOR NSPS MODEL PROCESSES
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Model Process #1 (flows <35 gpm) 13 gpm
Model Process #2 (flows >35 gpm) 90 gpm
CLEANING AND FINISHING WATER SUBCATEGORY
Model Process #3 (flows <2 gpm) 0.8 gpm
Model Process #4 (flows >2 gpm) 16 gpm
The amount of pollutants in the raw wastewater of the model pro-
cesses are shown in Table XII-2. The pollutant removals for the
proposed NSPS technology for each of the model processes are
presented in Table XII-3. Data for existing sources were used to
estimate the percent removals.
266
-------
Table XII-2
POLLUTANT MASS IN RAW WASTE
FOR NSPS MODEL PROCESSES (kg/yr)
Pollutant
Conventional
Nonconventional
Priority Toxic
Contact Cooling and
Heating Water
Subcategory
Model
Process
18,800
57,400
261
Model
Process #2
30,100
91,900
418
Cleaning and Finishing
Water Subcategory
Model
Process #3
3,060
4,040
4
Mode]
Process #4
21,500
28,400
27
Table XII-3
ESTIMATED POLLUTANT REMOVALS
FOR NSPS MODEL PROCESSES (kg/yr)
Pollutant
Conventional
Nonconventional
Priority Toxic
Contact Cooling and
Heating Water
Subcategory
Model
Process #1
18,800
57,400
261
Model
Process #2
24,000
58,100
273
Cleaning and Finishing
Water Subcategory
Model
Process #3
3,060
4,040
4
Model
Process #4
19,700
23,800
23
The estimated investment cost and annual pollution control costs
for the proposed NSPS technology for each of the model processes
are presented in Table XI1-4. The average investment costs for
the normal plant is $26,070 and the average annual pollution
control costs for the normal plant is $10,900.
267
-------
Table XII-4
NSPS TREATMENT TECHNOLOGY COSTS PER MODEL PROCESSES
($ Million, 1982 Dollars)
Investment Cost
Annual Pollution
Control Costs
Contact Cooling and
Heating Water
Subcategory
Model
Process #
$10,200
$ 3,840
Model
Process #
$52,500
$20,072
Cleaning and Finishing
Water Subcategory
Model
Model
Process #3
$4,070
$3,702
Process #4
$37,500
$15,971
The data relied on for the economic analysis of NSPS were primar-
ily the data developed for existing sources, which includes costs
on a plant-by-plant basis along with retrofit costs where appli-
cable. The Agency believes that compliance costs could be lower
for new sources than costs for equivalent existing sources
because production processes can be designed to reduce the amount
of wastewater discharged and there would be no costs associated
with retrofitting a process. The Agency does not believe that
applying the proposed technology for NSPS to new sources, includ-
ing major modifications to existing sources, creates a barrier to
entry into the category because new sources will expend an amount
equal to, or possibly less than, the amount required by existing
sources to comply with this proposed regulation.
REGULATED POLLUTANTS AND POLLUTANT PROPERTIES
The Agency has no reason to believe that the pollutants that will
be found in significant quantities in PM&F wastewater from new
sources will be any different than pollutants found in wastewater
from existing sources. Consequently, pollutants selected for
regulation under NSPS are the pollutants controlled at: BPT for
each subcategory. They are: biochemical oxygen demand, total
suspended solids, oil and grease, and pH. Mass based NSPS are
being proposed for the same reasons that the BPT effluent limita-
tions guidelines are mass based (see Section X). The Agency
estimates that 79 percent of the nonconventional pollutants and
80 percent the toxic pollutants are removed when the NSPS for the
above pollutants are met.
NEW SOURCE PERFORMANCE STANDARDS
The regulatory production normalized flows and the activated
sludge effluent concentration values used to calculate NSPS are
268
-------
the same as those used at BPT for each subcategory. These efflu-
ent concentration values and production normalized flows for each
subcategory are discussed in more detail in Section X of this
development document.
NSPS were calculated by multiplying the NSPS regulatory produc-
tion normalized flow by the NSPS technology effluent concentra-
tion values.
Contact Cooling and Heating Water Subcategory
The effluent limitations guidelines and standards for this sub-
category are the mass of pollutant that may be discharged per
unit mass of plastic material processed by processes in the
contact cooling and heating water subcategory. Processes in the
contact cooling and heating water subcategory are processes in
which water contacts the plastic material for the purpose of heat
transfer. A discharge allowance is given each time water is used
for cooling or heating in a process. For example, if one unit
mass of plastic is extruded and then molded, and cooling water is
used in each process, the discharge allowance for a pollutant
would be based on the amount of plastic material processed in
both processes.
Average Process Water Usage Flow Rate of 35 gpm or Less. For
processes with an average process water usage flow rate of 35 gpm
or less, the regulatory production normalized flow is zero dis-
charge. Therefore, no wastewater pollutants shall be discharged
from these processes.
Average Process Water Usage Flow Rate Greater Than 35 gpm. For
processes with an average process water usage flow rate greater
than 35 gpm, NSPS are:
Contact Cooling and Heating Water
NSPS
Regulated Pollutant or
Pollutant Property
BOD5
Oil and Grease
TSS
pH
(1) Between 6.0 and 9.0.
Maximum For
Any One Day
(mg/kg)
78
113
186
Maximum For
Monthly Average
(mg/kg)
35
27
269
-------
The "average process water usage flow rate" of a process in gal-
lons per minute is equal to the volume of process water (gallons)
used per year by a process divided by the total time (minutes)
per year the process operates. The "average process water usage
flow rate" for a plant with more than one plastics molding and
forming process that uses contact cooling and heating water is
the sum of the "average process water usage flow rates" for those
plastics molding and forming processes. The "volume of process
water used per year" is the volume of process water that flows
through a process and comes in contact with the plastic product
over a period of one year.
Cleaning and Finishing Water Subcategory
The NSPS for this subcategory are the mass of pollutant that may
be discharged per unit mass of plastic material processed by
processes in the cleaning and finishing water subcategory. Pro-
cesses in the cleaning and finishing water subcategory are pro-
cesses that use process water to clean or finish plastic material
or processes that use process water to clean the surfaces of
product shaping equipment, such as molds and mandrels, that
contacted the plastic product. The mass of plastic material
processed by processes that use process water to clean or finish
plastic products is defined as the mass of plastic material
cleaned or finished. The mass of plastic material processed by
processes that use process water to clean shaping equipment is
defined as the mass of plastic that is processed in the shaping
equipment.
A discharge allowance is given each time water is used for clean-
ing or finishing in a distinct processing step. For example, if
one unit mass of plastic is washed with water and then polished
in a finishing process that uses process water, a discharge
allowance would be given for each process. Washing and then
rinsing is considered a single process step. Only one discharge
allowance is given for the wash and rinse operation.
Cleaning Water. Cleaning water is process water used to clean an
intermediate or final plastic product or to clean the surfaces of
product shaping equipment, such as molds and mandrels, that
contacted the plastic product. It includes water used in both
the detergent wash and rinse cycles of a cleaning process.
The mass of pollutants that can be discharged by PM&F processes
at new sources that use cleaning water is:
270
-------
Cleaning Water
NSPS
Regulated Pollutant or
Pollutant Property
BOD5
Oil and Grease
TSS
PH
(1) Between 6.0 and 9.0.
Maximum For
Any One Day
(mg/kg)
220
318
524
Maximum For
Monthly Average
99
76
161
Finishing Water. Finishing water is process water used to remove
waste plastic material generated during a finishing process or to
lubricate a plastic product during a finishing process. It
includes water used to machine, to decorate, or to assemble
intermediate or final plastic products.
The mass of pollutants that can be discharged by PM&F processes
at new sources that use finishing water is:
Finishing Water
NSPS
Regulated Pollutant or
Pollutant Property
BOD5
Oil and Grease
TSS
pH
(1) Between 6.0 and 9.0.
Maximum For
Any One Day
(mg/kg)
52
76
125
1
Maximum For
Monthly Average
(mg/kg) _
23
18
8
271
-------
SECTION XIII
PRETREATMENT STANDARDS
Section 307(b) of the Clean Water Act requires EPA to consider
pretreatment standards for existing sources (PSES) to be achieved
within three years of promulgation. PSES are designed to prevent
the discharge of pollutants that pass through, interfere with, or
are otherwise incompatible with the operation of publicly owned
treatment works (POTW). Congress directed that pretreatment
standards be technology based, analogous to the best available
technology for removal of toxic pollutants.
Section 307(c) of the Act requires EPA to consider whether to
establish pretreatment standards for new sources (PSNS) at the
same time that it establishes new source performance standards
for new direct dischargers. New indirect discharge facilities,
like new direct discharge facilities, have the opportunity to
incorporate the best available demonstrated technologies, includ-
ing process changes, in-plant controls, and end-of-pipe treatment
technologies, and to use plant site selection to ensure adequate
treatment system installation.
General Pretreatment Regulations for existing and new sources
were published in the Federal Register (Vol. 43, No. 123; June
26, 1978). These regulations (40 CFR Part 403) describe the
Agency's overall policy for establishing and enforcing cate-
gorical pretreatment standards for new and existing industrial
users of a POTW and delineate the responsibilities and deadlines
applicable to each party in this effort. In addition, Section
403.5(b) of 40 CFR Part 403 lists prohibited discharges that
apply to all users of a POTW.
Before proposing categorical pretreatment standards, the Agency
examines whether the toxic pollutants discharged by an industry
pass through the POTW or interfere with the POTW operation or its
chosen sludge disposal practices. In determining whether pollu-
tants pass through a POTW, the Agency compares the percentage of
a pollutant removed by POTWs to the percentage removed by direct
dischargers applying the best available technology economically
achievable. A pollutant is deemed to pass through the POTW when
the average percentage removed by well-operated POTWs meeting
secondary treatment requirements is less than the percentage
removed by direct dischargers complying with BAT effluent limi-
tation guidelines for that pollutant. For this category where
the Agency is proposing BAT equal to BPT, the Agency compared
POTW removals to BPT level removals.
273
-------
This definition of pass through satisfies two competing objec-
tives set by Congress: (1) that standards for indirect dis-
chargers be equivalent to standards for direct dischargers,
while, at the same time, (2) that the treatment capability and
performance of the POTW be recognized and taken into account in
regulating the discharge of pollutants from indirect dischargers.,
PRETREATMENT STANDARDS FOR EXISTING SOURCES
Contact Cooling and Heating Water Subcategory
BPT/BAT effluent limitations guidelines for PM&F processes in the
contact cooling and heating water subcategory with an average
process water usage flow rate greater than 35 gpm are based on
treatment in the activated sludge process. The Agency reviewed
performance data for that process and compared it to the perfor-
mance data of well operated publicly owned treatment works. The
comparison of activated sludge treatment performance to POTW
performance for contact cooling and heating water is shown in
Table XIII-1.
The sources of the performance data are referenced in the table.
Pass through occurs when the percent removal of a pollutant in
the BPT/BAT is greater than the percent removal Ln the POTW. As
can be seen from the data in the table, chloroform and methylene
chloride may pass through a POTW. However, the amount and toxic-
ity of these pollutants is such that the Agency does not believe
that additional pretreatment is necessary for the reduction of
these pollutants prior to indirect discharge. EPA estimates that
the amount of chloroform in contact cooling and heating water
discharged by indirect dischargers is 0.032 kg/plant per day.
The amount of methylene chloride discharged in contact cooling
and heating water is 0.037 kg/plant per day.
EPA believes that the methylene chloride concentration reported
for contact cooling and heating water is the result of laboratory
contamination. Methylene chloride is used in the laboratory to
prepare sample bottles, as a solvent in some extraction proce-
dures, and for other purposes. Therefore, the potential for a
sample to be contaminated in the laboratory with methylene
chloride is high. This high contamination potential supports
EPA's belief that methylene chloride is not in the process water
and that a categorical pretreatment standard is not needed to
control methylene chloride.
No performance data for either activated sludge treatment or
treatment in a POTW are available for dieldrin, 4,4'-DDE, and
6-BHC. However, the amount and toxicity of these pollutants in
the PM&F wastewater do not warrant categorical pretreatment
standards for those pollutants. The amount of dieldrin,
274
-------
Table XIII-1
COMPARISON OF BPT/BAT POLLUTANT REMOVALS
TO POTW POLLUTANT REMOVALS
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Priority Pollutant
4. benzene
6. carbon tetrachloride
(tetrachloromethane)
11. 1,1,1-trichloroethane
22. parachlorometa cresol
23. chloroform (trichloro-
methane)
44. methylene chloride
(dichloromethane)
65. phenol
66. bis(2-ethylhexyl)
phthalate
68. di-n-butyl phthalate
85. tetrachloroethylene
86. toluene
89. aldrin
90. dieldrin
93. 4,4'-DDE
100. heptachlor
102. a-BHC
103. 6-BHC
104. Y-BHC
105. 6-BHC
118. cadmium
119. chromium (Total)
120. copper
122. lead
123. mercury
124. nickel
128. zinc
BPT/BAT
Percent
Removal Source
POTW
Percent
Removal Source
66
73
73
40
90
88
92
40
17
67
38
20
No Data
No Data
85
77
No Data
44
52
83
76
82
83
75
35
77
1
2
1
4
1
1
1
2
2
2
2
2
1
3
3
1
1
3
3
99
73
94
88
62
56
99
58
51
85
96
20
No Data
No Data
85
77
No Data
44
52
93
76
82
97
85
35
77
3
2
3
2
3
3
3
3
3
3
2
2
2
2
2
3
3
3
3
3
3
3
Sources:
1. Percent removal is based on the analytical detection limit.
See Appendix C.
2. Average of data available from Fate of Priority Pollutants
in Publicly Owned Treatment Works, Final Report, Volume I,
EPA-440/1-82/303, September 1982.
3. Table 10, Fate of Priority Pollutants in Publicly Owned
Treatment Works. Final Report, Volume 1, EPA-440/1-82/303,
September 1982.
4. Based on treatability limits presented in "Contractors Engi-
neering Report, Analysis of Organic Chemicals and Plastics/
Synthetic Fiber Industries, Toxic Pollutants." See
Appendix C.
275
-------
4,4'-DDE, and B-BHC in contact cooling and heating water dis-
charged to a POTW are 0.03, 0.0009, 0.02 grams per plant per day,
respectively.
The BPT/BAT effluent limitations guidelines for processes in the
contact cooling and heating water subcategory with an average
process water usage flow rate of 35 gpm or less are based on zero
discharge by 100 percent recycle. Based on a comparison of the
average percentage removal of priority pollutants by well oper-
ated POTWs meeting secondary treatment requirements to the 100
percent removal of pollutants in the BPT/BAT technology, the
priority pollutants pass through a POTW. However, the amount of
pollutants discharged per day per indirect discharger in the
contact cooling and heating water subcategory with an average
process water usage flow rate of 35 gpm or less is estimated to
be 0.6 kilogram per day. Table XIII-2 contains a distribution of
this mass by individual pollutant. The Agency believes that the
amount and toxicity of the priority pollutants discharged by
those processes do not justify the development of PSES for this
segment of the PM&F category. Accordingly, PSES for this segment
of the contact cooling and heating water subcategory are not
being developed for those pollutants based on Paragraph 8(a)(iv)
of the Settlement Agreement in NRDC v. Train, supra. PSES are
also not being developed for chloroform, methylene chloride,
dieldrin, 4,4'-DDE, and B-BHC for this subcategory based on
Paragraph 8(a)(iv).
Cleaning and Finishing Water Subcategory
BPT/BAT effluent limitations guidelines for PM&F processes in the
cleaning and finishing water subcategory are based on treatment
in an activated sludge process. The Agency reviewed performance
data for the activated sludge process and compared it to the
performance data of well operated publicly owned treatment works.
That comparison is shown in Table XIII-3. The sources of the
performance data are referenced in the table.
As can be seen from the data in the table, only chloroform and
methylene chloride pass through a POTW. However, the amount and
toxicity of these pollutants do not justify categorical pretreat-
ment standards for these pollutants. EPA estimates that the
amount of chloroform in cleaning and finishing water discharged
to a POTW is 0.0008 kg/plant per day; the quantity of methylene
chloride in cleaning and finishing water discharged to a POTW is
0.01 kg/plant per day. EPA also believes that methylene chloride
is present in cleaning and finishing water because of laboratory
contamination of the samples.
Performance data are not available for the removal of N-nitroso-
diphenylamine in a POTW. However, the Agency believes that the
276
-------
Table XIII-2
ESTIMATED MASS OF POLLUTANTS DISCHARGED BY
INDIRECT DISCHARGING PROCESSES WITH AN AVERAGE PROCESS
WATER USAGE FLOW RATE OF 35 GPM OR LESS
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Priority Pollutant
Amount Discharged
(kg/day per plant)
4.
6.
11.
22.
23.
44.
65.
66.
68.
85.
86.
89.
90.
93.
100.
102.
103.
104.
105.
118.
119.
120.
122.
123.
124.
128.
benzene
carbon tetrachloride (tetrachloromethane)
1,1,1 -trichloroethane
parachlorometa cresol
chloroform (trichloromethane)
methylene chloride (dichloromethane)
phenol
bis(2-ethylhexyl) phthalate
di-n-butyl phthalate
tetrachloroethylene
toluene
aldrin
dieldrin
4, 4 '-DDE
heptachlor
a-BHC
B-BHC
Y-BHC
6-BHC
cadmium
chromium (Total)
copper
lead
mercury
nickel
zinc
0.020
0.270
0.028
0.008
0.022
0.026
0.007
0.137
0.006
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.002
0.001
0.011
<0.001
0.002
0.016
TOTAL
0.556
277
-------
Table XIII-3
COMPARISON OF BPT/BAT POLLUTANT REMOVALS TO POTW
POLLUTANT REMOVALS
CLEANING AND FINISHING WATER SUBCATEGORY
Priority Pollutant
4. benzene
23. chloroform (trichloro-
methane)
44. methylene chloride
(dichloromethane)
62. N-nitrosodiphenylamlne
65. phenol
66. bis(2-ethylhexyl)
phthalate
86. toluene
89. aldrin
100. heptachlor
102. et-BHC
104. Y-BHC
105. 6-BHC
119. chromium (Total)
120. copper
124. nickel
125. selenium
128. zinc
BPT/BAT
Percent
Removal Source
POTW
Percent
Removal Source
62
78
85
72
98
0
92
20
85
60
44
55
74
82
35
37
77
1
1
1
1
1
4
1
2
2
1
2
2
1
3
3
2
3
99
62
56
No Data
99
58
96
20
85
77
44
55
76
82
35
37
77
3
3
3
3
3
3
2
2
2
2
2
3
3
3
2
3
Sources :
4.
Percent removal is based on the analytical detection limit.
See Appendix C.
Average of data available from Fate of Priority Pollutants
in Publicly Owned Treatment Works, Final Report, Volume I,
EPA-440/1 -82/303, September 1982.
Table 10, Fate of Priority Pollutants in Publicly Owned
Treatment Works, Final Report. Volume 1, EPA-440/1 -82/303,
September 1982.
Based on treatability limits presented in "Contractors Engi-
neering Report, Analysis of Organic Chemicals and Plastics/
Synthetic Fiber Industries, Toxic Pollutants." See
Appendix C.
278
-------
amount and toxicity of this pollutant do not warrant a categori-
cal pretreatment standard. The amount of N-nitrosodiphenylamine
in cleaning and finishing water discharged to a POTW is 0.0005
kg/plant per day.
PSES are not being developed for chloroform, methylene chloride,
and N-nitrosodiphenylamine for this subcategory based on
Paragraph 8(a)(iv) of the Settlement Agreement in NRDC v. Train,
supra.
Proposed PSES
The Agency proposes no categorical pretreatment standards for
either the contact cooling and heating water subcategory or the
cleaning and finishing water subcategory. Even though no pre-
treatment standards are being proposed, existing indirect dis-
chargers in both subcategories must comply with the General
Pretreatment Regulations (40 CFR Part 403).
PRETREATMENT STANDARDS FOR NEW SOURCES
The Agency is not proposing PSNS for this category because the
pollutants for this category either do not pass through a POTW or
the amount and toxicity of the pollutants discharged to a POTW do
not justify establishing PSNS. The Agency believes that new and
existing indirect discharge sources will discharge the same pol-
lutants in similar amounts. The average percentage removal of
toxic pollutants by well operated POTWs meeting secondary treat-
ment requirements (i.e., 64 percent) is slightly greater than the
percentage removed (i.e., 62 percent) by a direct discharger in
the cleaning and finishing subcategory and by direct dischargers
with an average process water usage flow rate greater than 35 gpm
in the contact cooling and heating water subcategory when in com-
pliance with NSPS (which are equivalent to the BPT/BAT effluent
limitations guidelines). In addition, even though some toxic
pollutants discharged by plants with processes in the contact
cooling and heating water subcategory with average process water
usage flow rates of 35 gpm or less may pass through, the amount
and toxicity discharged to POTWs (0.6 kilograms per discharger
per day) do not justify establishing PSNS. Also, the amount and
toxicity of the pollutants in wastewater discharged by processes
in the contact cooling and heating water subcategory with an
average process water usage flow rate greater than 35 gpm and in
cleaning and finishing process wastewater do not justify estab-
lishing PSNS for those pollutants. Even though new indirect dis-
chargers are not subject to categorical pretreatment standards,
they must comply with the General Pretreatment Regulations (40
CFR Part 403).
279
-------
SECTION XIV
BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY
The 1977 amendments to the Clean Water Act added Section
301(b)(2)(E), establishing "best conventional pollutant control
technology" (BCT) for discharge of conventional pollutants from
existing industrial point sources. Section 304(a)(4) designated
the following as conventional pollutants: biochemical oxygen
demand (6005), total suspended solids (TSS), fecal coliform,
pH, and any additional pollutants defined by the Administrator as
conventional. The Administrator designated oil and grease
"conventional" on July 30, 1979 (44 FR 44501).
BCT is not an additional limitation but replaces BAT for the con-
trol of conventional pollutants. In addition to other factors
specified in Section 304(b)(4)(B), the Act requires that BCT
effluent limitations guidelines be assessed in light of a two
part "cost-reasonableness" test. See, American Paper Institute
v. EPA, 660 F.2d 954 (4th Cir. 1981). The first part of the test
compares the cost for private industry to reduce its conventional
pollutant discharge with the cost publicly owned treatment works
incur for similar levels of reduction. The second part of the
test examines the cost-effectiveness of additional industrial
treatment beyond BPT. EPA must find that the BCT effluent
limitations guidelines are "reasonable" under both parts of the
test before they are established. In no case may BCT be less
stringent than BPT.
EPA published its methodology for carrying out the BCT analysis
on August 29, 1979, (44 FR 50732). In the case mentioned above,
the Court of Appeals ordered EPA to correct data errors under-
lying EPA's calculation of the first test and to apply the second
cost test. (EPA had argued that a second cost test was not
required.)
On October 29, 1982, the Agency proposed a revised BCT methodol-
ogy (47 FR 49176). This proposed methodology was used to deter-
mine whether costs of additional controls for the conventional
pollutants beyond BPT in the PM&F category are "reasonable." EPA
will conduct the two-part cost test again when the final BCT
methodology is promulgated. That test will also be conducted
again if the BPT model treatment technology for the final PM&F
regulation is different than the selected technology for the
proposed regulation.
The Agency reviewed treatment technologies that could be used to
remove additional conventional pollutants after BPT. The only
technology considered feasible in each subcategory is flow reduc-
tion and zero discharge by contract haul of the discharge from
281
-------
the recycle unit. Thus, one BCT Option, which is the same as BPT
Option 3, was considered for each subcategory.
The Agency compared the BCT Option to BPT Option 2 in both sub-
categories using the proposed two part cost reasonable test.
Table XIV-1 presents the information required to perform the two
part cost test on the proposed BCT treatment technology for the
contact cooling and heating water subcategory. Table XIV-2
presents the information required to perform the cost test on the
proposed BCT treatment technology for the cleaning and finishing
water subcategory.
Table XIV-1
ANNUAL COSTS OF TREATMENT AND POLLUTANT MASSES AFTER TREATMENT
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Mass of
Pollutant
Discharged
Level of Treatment
Existing Treatment
BPT Option 2
BCT Option
Annual Cost
+ TSS, Incre- of Treatment Incre-
million Ibs) ment ($ millions) ment
17.5
2.6
14.9
2.6
0
9.4
41.2
9.4
31.8
Table XIV-2
ANNUAL COSTS OF TREATMENT AND POLLUTANT MASSES AFTER TREATMENT
CLEANING AND FINISHING WATER SUBCATEGORY
Mass of
Pollutant
Discharged Annual Cost
(BOD^ + TSS, Incre- of Treatment Incre-
million Ibs) ment ($ millions) ment
Level of Treatment
Existing Treatment
BPT Option 2
BCT Option
1.49
0.14
0
1.35
0.14
0
1.5
4.5
6.0
282
-------
Part 1 of the cost test, the POTW test, compares the cost for
industry to remove a pound of conventional pollutants to the cost
incurred by a POTW for removing a pound of conventional pollu-
tants. The Agency compared the costs by first calculating the
incremental annual costs incurred by industry for conventional
pollutant removals beyond BPT. Annual costs include operation
and maintenance expenses, interest, and depreciation. The Agency
also calculated the incremental removal of conventional pollu-
tants by determining the difference between the annual pounds of
conventional pollutants removed after compliance with BPT and the
pounds removed after compliance with the BCT option.
The conventional pollutants subject to this review fall into two
categories: total suspended solids (TSS) and oxygen demanding
substances (BOD5 and oil and grease). To avoid "double count-
ing" of the incremental amount of pollutants removed, pollutant
removals were calculated using only one pollutant from the oxygen
demanding substances group, as specified in the proposed method-
ology. The Agency used the incremental amount of BOD5 removed
in the BCT cost test calculation for both PM&F subcategories
because while both BOD5 and oil and grease are regulated, a
greater amount of BOD5 is removed by treatment.
The Agency calculated the ratio of incremental annual cost to
incremental conventional pollutant removal for each subcategory
as follows: (BCT Option annual cost minus BPT Option 2 annual
costs) divided by (BCT Option pounds of conventional pollutants
removed minus BPT Option 2 pounds of conventional pollutants
removed). The incremental removal cost must be equal to or less
than a proposed benchmark of $0.47 per pound to be considered
reasonable. The incremental removal cost was $12.23 per pound
(31.8/2.6) for contact cooling and heating water and $32.14 per
pound (4.5/0.14) for cleaning and finishing water. All costs are
calculated in 1982 dollars. These costs are considered
unreasonable.
Part 2 of the cost test, the industry cost test, compares the
compliance costs and the effluent reduction benefits at BPT to
those for the BCT Option. This ratio is calculated as follows:
(total annual cost per pound of conventional pollutant removed
between BPT and BCT) divided by (the total annual costs per pound
of pollutant removed between existing treatment and BPT). This
increasing cost ratio should not exceed a proposed benchmark of
1.43 if the costs of the BCT Option are to be considered
reasonable. The increasing cost ratio calculated for the contact
cooling and heating water subcategory is 19.4 ($12.23/$0.63).
The increasing cost ratio calculated for the cleaning and finish-
ing subcategory is 28.9 ($32.14/$1.11). Thus, the costs asso-
ciated with the BCT Option are also unreasonable based on results
of the second part of the proposed cost test.
283
-------
Based on the preliminary results of the proposed two-part BCT
cost test, costs associated with the additional removal of con-
ventional pollutants are not "reasonable." The Agency proposes,
therefore, that BCT equal BPT for each subcategory and that no
further controls be established for the conventional pollutants
beyond BPT.
284
-------
SECTION XV
ACKNOWLEDGEMENTS
This project was conducted by the Environmental Protection Agency
(EPA). EPA personnel who contributed to this project are:
Deveraux Barnes
Ernst P. Hall
Robert M. Southworth, P.E.
Jill Weller
Ann M. Watkins
R. Clifton Bailey
Alexandra G. Tarnay
Deputy Director, Effluent
Guidelines Division
Chief, Metals and Machinery
Branch, Effluent Guidelines
Division
Project Officer, Effluent
Guidelines Division
Attorney, Office of General
Counsel
Economics Project Officer,
Office of Analysis and
Evaluation
Statistician, Program Integra-
tion and Environmental Staff
Environmental Project Officer,
Monitoring and Data Support
Division
Contractor personnel who contributed to this project are:
Lee C. McCandless
David C. Kennedy
Thomas M. Lachajczyk
Daniel L. Logan
Robert A. Bessent
Albert P. Becker
Program Manager, Versar, Inc.
Vice President, Envirodyne
Engineers, Inc.
Senior Environmental Engineer,
Envirodyne Engineers, Inc.
Environmental Engineer,
Envirodyne Engineers, Inc.
Environmental Engineer,
Envirodyne Engineers, Inc.
Chemical Engineer,
Envirodyne Engineers, Inc.
285
-------
Cindy L. Dahl Environmental Engineer,
Envirodyne Engineers, Inc.
James S. Sherman Program Manager, Radian
Corporation
Calvin L. Spencer Project Director, Radian
Corporation
Roy E. Sieber Chemical Engineer, Radian
Corporation
Arlene A. Freyman Chemical Engineer, Radian
Corporation
Laura L. Murphy Chemical Engineer, formerly
with Radian Corporation
Sandra F. Moore Secretary, Radian Corporation
Daphne K. Phillips Secretary, Radian Corporation
The cooperation of the Society of Plastics Industry, Inc., the
individual PM&F companies whose plants were sampled, and the com-
panies who submitted detailed information in response to the
questionnaires is gratefully appreciated.
286
-------
SECTION XVI
REFERENCES
Agranoff, Joan (ed). Modern Plastics Encyclopedia, 1981-1982.
McGraw-Hill, Inc., New York, New York, 1981.
Agranoff, Joan (ed). "Casting of Polypropylene Film." Modern
Plastics Encyclopedia, 1981-1982. McGraw-Hill, Inc., New York,
New York, 1981. p. 248.
Alex, Kurt. "Melt-Processible Structural Foam Molding." Modern
Plastics Encyclopedia, 1981-1982. McGraw-Hill, Inc., New York,
New York, 1981. p. 248.
Allan, R. W. "Closed Mold Processing." Modern Plastics
Encyclopedia, 1981-1982. McGraw-Hill, Inc., New York, New York,
1981. p. 392.
Allbee, Nancy. "Update: Flame Retardants, Part 1: Inorganic
Additives." Plastics Compounding, 4(4):89, 1981.
Allbee, Nancy. "Update: Flame Retardants, Part 2: Organic
Additives." Plastics Compounding, 4(5):95, 1981.
Ahmed, Makhteur. Coloring of Plastics: Theory and Practice.
Van Nostrand Reinhold, New York, New York, 1979.
American Council of Government Industrial Hygienists. TLVs,
Threshold Limit Values for Chemical Substances and Physical
Agents in the Workroom Environment With Intended Changes.ACGIH,
Cincinnati, Ohio, 1978.
Baijal, Mahendra D. (ed). Plastics Polymer Science and
Technology. John Wiley and Sons, New York, New York, 1982.
Baird, R. J. Industrial Plastics. The Goodheart-Wilcox Co.,
Inc., South Holland, Illinois, 1971.
Bajaj, J. K. L. "Liquid and Paste Mixers." Modern Plastics
Encyclopedia, 1981-1982. McGraw-Hill, Inc., New York, New York,
1981. p. 370.
Bakker, Marilyn. Structural Foam Molding: Status 1979.
Business Communications Co., Stamford, Connecticut, 1979.
Bamford, C. H. and C. F. H. Tipper (eds). Comprehensive Chemical
Kinetics, Vol. 14, Degradation of Polymers. Elsevier Scientific
Publishing Company,New York,New York,T975.
287
-------
Beadle, John, D. (ed). Plastics Forming. The Macmillan Press
Ltd., Hampshire, U.K., 1971.
Beck, R. D. Plastic Product Design. Van Nostrand Reinhold Co.,
New York, New York, 1980.
Becker, Walter, E. (ed). Reaction Injection Molding. Van
Nostrand Reinhold Company, New York,New York"1979.
BeJuki, Walter M. "Degradation." Encyclopedia of Polymer
Science and Technology, Vol. 4, Norbert M. Bikales(ed;.
Interscience Publishers, New York, New York. pp. 647-725.
Berry, R. M. Plastics Additives: Marketing Guide and Company
Directory. TECHNOMIC Publishing Co., Westport, Connecticut,
1972.
Bikales, Norbert M. "Compounding." Encyclopedia of Polymer
Science and Technology, Vol. 4, Norbert M. Bikales (ed).
Interscience Publishers, New York, New York. pp. 118-129.
Bikales, Norbert M. "Extrusion." Encyclopedia of Polymer
Science and Technology, Vol. 6, Norbert M. Bikales(ed) .
Interscience Publishers, New York, New York. pp. 466-467.
Billmeyer, F. W. Jr. Textbook of Polymer Science. John Wiley &
Sons, Inc., New York, New York, 1971.
Blumberg, John G., James S. Flacone, Jr., Leonard H. Smiley, and
David I. Netting. "Fillers." Kirk-Othmer Encyclopedia of
Chemical Technology, 3rd Edition, Vol. 10, Martin Grayson (ed).
John Wiley and Sons, New York, New York. pp. 198-215.
Boland, R. F., T. W. Hughes, and G. M. Rinaldio, Monsanto
Research Corporation. Source Assessment: Plastics Processing -
State of the Art. Environmental Protection Agency, Cincinnati,
Ohio, 1978.
Bown, John. Injection Molding of Plastic Components. McGraw-
Hill Book Company Ltd., England, 1979.
Boysen, Robert L. "Olefin Polymers High Pressure (Low and
Intermediate Density) Polyethylene." Kirk-Othmer Encyclopedia
of Chemical Technology, 3rd Edition, VoTi16, Martin Grayson
(ed).John Wiley and Sons, New York, New York. pp. 402-420.
Brighton, C. A., G. Pritchard, and G. A. Skinner. Styrene
Polymers: Technology and Environmental Aspects. Applied Science
Publishers, Ltd., London, England, 1979.
288
-------
Brighton, C. A. "Vinyl Chloride Polymers (Compounding)."
Encyclopedia of Polymer Science and Technology, Vol. 14, Norbert
M. Bikales (ed). Interscience Publishers, New York, New York.
pp. 419-434.
Erode, George L. "Phenolic Resins." Kirk-Othmer Encyclopedia of
Chemical Technology, 3rd Edition, Vol. 17, Martin Grayson (ed).
John Wiley and Sons, New York, New York. pp. 384-416.
Brown Leesona Corporation, Beaverton, Michigan, Marketing
Brochure, 1981.
Brown, Richard, L. E. Design and Manufacture of Plastic Parts.
John Wiley and Sons, New York, New York, 1980.
Bruins, Paul F. (ed). Basic Principles of Rotational Molding.
Gordon and Breach Science Publishers,New York,New York,1971.
Bruins, Paul F. (ed). Basic Principles of Thermoforming. Gordon
and Breach Science Publishers,New York"New York,19717
Buchanan, D. R. "Olefin Fibers." Kirk-Othmer Encyclopedia of
Chemical Technology, 3rd Edition, Vol.T6^Martin Grayson (ed).
John Wiley and Sons, New York, New York. pp. 357-385.
Campbell, G. A. "Fluxed Melt Mixers." Modern Plastics Encyclo-
pedia 1981-1982. McGraw-Hill, Inc., New York, New York, 1981.
p. 367.
Campbell, P. E. and R. V. Jones. "Ethylene Polymers." Encyclo-
pedia of Polymer Science and Technology, Vol. 6, Norbert M.
Bikales(ed) .Interscience Publishers, New York, New York. pp.
275-336.
Cantow, Manfred J.R. "Vinyl Polymers (Chloride)." Kirk-Othmer
Encyclopedia of Chemical Technology, 2nd Edition, Vol. 21,
Anthony Standen (ed). John Wiley and Sons, New York, New York.
pp. 369-412.
Cargile, H. M., Beloit Corp. "Procedures, Parameters, and
Machinery Requirements-Structural Foam Molding." Plastic Foams.
Plastics Foam Conference, El Segundo, California, 1980.
Carley, J. F. "Introduction to Plastics Extrusion." Polymer
Processing. American Institute of Chemical Engineering, New
York, New York, 1964.
Chemical Marketing Research Association. Additives for Rubber
and Plastics. CMRA, Staten Island, New York, 1977.
289
-------
Chen, S. J. "Static Mixing of Polymers." Chemical Engineering
Progress, 71(8):80, 1975.
"Computerized Filament Winding." Plastics Technology, 27(5): 13,
1981.
Considine, Douglas M. Chemical and Process Technology Encyclo-
pedia. McGraw-Hill, New York, New York, 1974. pp. 743-750.
Cooper, W. "Elastomers, Synthetic." Encyclopedia of Polymer
Science and Technology, Vol. 5, Norbert M. Bikales (ed).
Interscience Publishers, New York, New York. pp. 406-482.
Coplan, Myron J. Fiber Spinning and Drawing. Interscience
Publishers, New York, New York, 1967.
Crane, G. R. "Plastisol Processing." Modern Plastics Encyclo-
pedia 1981-1982. McGraw-Hill, Inc., New York, New York, 1981.
p. 376.
Crespi, Giovanni and Luciano Luciani. "Olefin Polymers (Poly-
propylene)." Kirk-Othmer Encyclopedia of Chemical Technology,
3rd Edition, Vol.f6~|Martin Grayson (ed).John Wiley and Sons,
New York, New York. pp. 453-469.
Crosby, E. G., and S. N. Kochis. Practical Guide to Plastics
Applications. Cahners Books, Boston, Massachusetts, 1972.
Crull, A. W. Polyurethane and Other Foams, Business Opportunity
Report. Business Communications Co., Inc.", Stanford,
Connecticut, 1979.
Curry, Susan and Susan Rich. The Kline Guide to the Chemical
Industry. Charles H. Kline Co., Fairfield, New Jersey, 1980.
Dadik, Sandra and Marilyn Bakker. Blow Molding Enters the
Eighties. Business Communications Co., Stamford, Connecticut,
1979.
Dannenberg, Eli M. "Carbon (Carbon Black)." Kirk-Othiner
Encyclopedia of Chemical Technology, 3rd Edition, Vol. 4, Martin
Grayson (ed).John Wiley and Sons7 New York, New York. pp.
631-666.
Davis, C. W. and P. Shapiro. "Acrylic Fiber." Encyclopedia of
Polymer Science and Technology, Vol. 1, Norman G. Gaylord (ed).
Interscience Publishers, New York, New York. pp. 342-373.
Davis, Gerald W. "Polyester Fibers." Kirk-Othmer Encyclopedia
of Chemical Technology, 3rd Edition, VoTT18, Martin Grayson
(ed).John Wiley and Sons, New York, New York. pp. 531-549.
290
-------
Doak, K. W. and R. A. Raff (eds). Crystalline Olefin Polymers.
Interscience Publishers, New York, New York, 1965.
Dolliff, E. L. "Extrusion-Blow Molding." Modern Plastics
Encyclopedia, 1981-1982. McGraw-Hill, Inc., New York, New York,
1981. p. 234.
Donovan, T. A. "Motionless Mixers." Modern Plastics Encyclo-
pedia, 1981-1982. McGraw-Hill, Inc., New York, New York, 1981.
p. 373.
Doyle, E. N. The Development and Use of Polyurethane Products.
McGraw-Hill, Inc., New York, New York, 1971.
Driver, Walter E. Plastics Chemistry and Technology. Van
Nostrand Reinhold, New York, New York, 1979.
DuBois, J. H. and F. W. John. Plastics, 6th Edition. Van
Nostrand Reinhold Company, New York, New York, 1981.
Dym, Joseph B. Injection Molds and Molding. Van Nostrand
Reinhold Co., New York, New York, 1979.
Eldin, R. A., and A. D. Swan. Calendering of Plastics. American
Elsevier Publishing Co., Inc., New York, New York, 1971.
Enviro Control, Inc. Engineering Control Technology Assessment
for the Plastics and Resins Industry,draft.Rockville,
Maryland, November 1977.
Erlich, V. L. "Olefin Fibers." Encylopedia of Polymer Science
and Technology, Vol. 9, Norbert MTBikales(ed).Interscience
Publishers, New York, New York. pp. 403-438.
Ewald, G. W. "Filament Winding." Modern Plastics Encyclopedia,
1981-1982. McGraw-Hill, Inc., New York, New York, 1981. p. 394.
Fair, R. L. "Rotational Molding." Modern Plastics Encyclopedia,
1981-1982. McGraw-Hill, Inc., New York, New York, 1981. p. 400.
Faires, Virgil M. and Clifford M. Simmang. Thermodynamics.
Macmillan Publishing Co., Inc., New York, New York, 1978.
Farrow, G. and E. S. Hill. "Polyester Fibers." Encyclopedia of
Polymer Science and Technology, Vol. 11, Norbert M. Bikales (ed).
Interscience Publishers,New York, New York. pp. 1-41.
Fisher, Edwin George. Blow Molding of Plastics. Iliffe, London,
1971.
291
-------
Fisher, Edwin George. Extrusion of Plastics. John Wiley & Sons,
New York, New York, 1976.
Fleischmann, J. "Compression Molding." Modern Plastics Encyclo-
pedia, 1981-1982. McGraw-Hill, Inc., New York, New York, 1981.
p. 255.
Fox, D. W. "Polycarbonates." Kirk-Othmer Encyclopedia of
Chemical Technololgy, 3rd Edition, Vol. 18, Martin Grayson (ed).
John Wiley and Sons, New York, New York. pp. 479-494.
Frados, Joel (ed). Plastics Engineering Handbook, S|l, 4th
Edition. Van Nostrand Reinhold Company, New York, New York,
1976.
"Freon Blown Structural Foam is Superior." Modern Plastics,
58(7):28, 1981.
Funt, John M. Mixing of Rubbers. Rubber and Plastics Research
Association of Great Britain, Shawbury, England, 1977.
Gage, P. E. "Casting of Nylon." Modern Plastics Encyclopedia,
1981-1982. McGraw-Hill, Inc., New York, New York, 1981. p. 248.
Galli, Ed. "Update: Polymer Soluble Dyes." Plastics Compound-
ing, 4(3):91, 1981.
Gangal, S. V. "Polytetrafluoroethylene." Kirk-Othmer Encyclo-
pedia of Chemical Technology, 3rd Edition, Vol. 1TJMartin
Grayson(ed).John Wiley and Sons, New York, New York. pp.
1-24.
Gillies, M. T. Stabilizers for Synthetic Resins: Recent Devel-
opments. Noyes Data Corporation, Park Ridge, New" Jersey, 1981.
Glanvill, A. B. The Plastics Engineer Data Book. Industrial
Press, Inc., New York, New York, 1973.
Gogas, C. G., Z. Tadmor. Principles of Polymer Processing.
John Wiley & Sons, New York, New York, 1979.
Griff, Allan L. Plastics Extrusion Technology, Second Edition.
Reinhold Book Corp., New York, New York, 1968.
Grimes, J. F. "Thermoforming." Modern Plastics Encyclopedia,
1981-1982. McGraw-Hill Inc., New York, New York,"1981. p. 405.
Hallet, G. F. "Proposal Method for Evaluating Cooling Equip-
ment." Industrial Water Engineering, May 1980.
292
-------
Hansen, Sigurd P. , Robert C. :.a.~erman, Russel L. Gulp. Esti-
mating Water Treatment Costs, Volumes 1-4. Environmental
Protection Agency Report EPA-600/2-79-162a-d, 1978.
Harper, Charles A. Handbook of Plastics and Elastomers.
McGraw-Hill, Inc., New York, New York, 1975. pp. 8-56.
Harrington, R. C., Jr. "Powder Coatings." Encyclopedia of
Polymer Science and Technology, Supplement, Vol. 1, Norbert M.
Bikales(ed).Interscience Publishers, New York, New York. pp.
544-556.
Hattori, K. "Reinforced Plastics." Encyclopedia of Polymer
Science and Technology, Vol. 12, Norbert M.Bikales(ed) .
Interscience Publishers, New York, New York. pp. 1-41.
Haviland, R. W. "Injection Blow Molding." Modern Plastics
Encyclopedia, 1981-1982. McGraw-Hill, Inc., New York, New York,
1981. p. 241.
Hawley, Gessner G. The Condensed Chemical Dictionary. Van
Nostrand Reinhold Co., New York, New York, 1977.
Hay, A. S., P. Sheniar, A. C. Gowan, P. F. Erhardt, W. R. Haaf,
and J. E. Theberge. "Phenols, Oxidative Polymerization."
Encyclopedia of Polymer Science and Technology, Vol. 10, Norbert
M. Bikales (ed). Interscience Publishers, New York, New York.
pp. 92-111.
Hawthorne, J. M. and C. J. Heffelfinger. "Polyester Films."
Encyclopedia of Polymer Science and Technology, Vol. 11, Norbert
W.Bikales(ed).Interscience Publishers,New York, New York.
pp. 42-61.
Hensley, J. C. (ed). Cooling Tower Fundamentals. The Marley
Cooling Tower Company, Kansas City, Missouri, 1982.
Herbert, Victor. "Multi-Component Liquid Foam Processing."
Modern Plastics Encyclopedia. 1981-1982. McGraw-Hill, Inc., New
York, New York, 1981. p. 305.
Higgins, D. G. "Fabrics, Coated." Encyclopedia of Polymer
Science and Technology, Vol. 6, Norbert M. Bikales (ed).
Interscience Publishers, New York, New York. pp. 476-489.
Higgins, D. G. and Arthur H. Landrock. "Coating Methods."
Encyclopedia of Polymer Science and Technology, Vol. 3, Norbert
M. Bikales (ed). Interscience Publishers, New York, New York.
pp. 764-830.
293
-------
Hill, H. Wayne, Jr. and D. G. Brady. "Poly(Phenylene Sulfide)
(PPS)." Kirk-Othmer Encyclopedia of Chemical Technology, 3rd
Edition, Vol.18, Martin Grayson '(~ed).John Wiley and Sons, New
York, New York. pp. 793-814.
Hitchcock, A. B. "Molding." Encyclopedia of Polymer Science and
Technology, Vol. 9, Norbert M. Bikales (ed).Interscience
Publishers, New York, New York. pp. 1-157.
Hobson, P. H. and A. L. McPeters. "Acrylic and Modacrylic
Fibers." Kirk-Othmer Encyclopedia of Chemical Technology, 3rd
Edition, Vol.1, Martin Grayson (ed).John Wiley and Sons, New
York, New York. pp. 355-386.
The International Plastics Selector, Inc. Desk Top Data Bank.
Cordura Publications, La Jolla, California, 1977.
The International Plastics Selector, Inc. Foams, 1978. Cordura
Publications, La Jolla, California, 1978.
Irick, Gether, Jr. "Additives That Help Polyolefins Stand Up to
Weather." Modern Plastics, 58(4):90, 1981.
Joint Editorial Board, Greenberg, A. E., APHA; Conners, J. J.,
AWWA; Jenkins, J., WPCF. Standard Methods for the Examination
of Water and Wastewater, Fifteenth Edition.American Public
Health Association, Washington, D.C., 1981.
Jones, Roger F. "Molding Principles." Polymer Processing.
American Institute of Chemical Engineers, New York, New York,
1964.
Katz, Harry S. and John V. Milewski. Handbook of Fillers and
Reinforcements for Plastics. Van Nostrand Reinhold, New York,
New York, 1978.
Keating, Joseph Z. "Cut Cost of FRP Spray-Up With Filled
Polyester Foams." Plastics Technology, 26(10):80, 1980.
Kennedy, R. K. "Modacrylic Fibers." Encyclopedia of Polymer
Science and Technology, Vol. 8, Norbert M. Bikales (ed).
Interscience Publishers, New York, New York. pp. 812-834.
Kent, James A. (ed). Riegels Handbook of Industrial Chemistry,
7th edition. Van Nostrana Reinhold, New York, New York, 1974.
p. 250.
Keskkula, Henno. "Styrene Polymers (Plastics)." Encyclopedia of
Polymer Science and Technology, Vol. 13, Norbert M. Bikales (ed).
Interscience Publishers, New York, New York. pp. 395-425.
294
-------
Keskkula, Henno, Alan E. Platt, and Raymond F. Boyer. "Styrene
Plastics." Kirk-Othmer Encyclopedia of Chemical Technology, 2nd
Edition, VolTf9~iAnthony Standen (ed).John Wiley and Sons, New
York, New York. pp. 85-134.
Kine, Benjamin B. and R. W. Novak. "Methacrylic Polymers."
Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Edition,
Vol.V5]Martin Grayson(ed).John Wiley and Sons, New York, New
York. pp. 377-398.
Kobayaski, Akira. "Machining." Encyclopedia of Polymer Science
and Technology, Vol. 8, Norbert M. Bikales(ed).Interscience
Publishers, New York, New York. pp. 338-374.
Kovach, George P. "Thermoforming." Encyclopedia of Polymer
Science and Technology, Vol. 13, Norbert M. Bikales (ed).
Interscience Publishers, New York, New York. pp. 832-843.
Kozacki, John. "Tubing." Encyclopedia of Polymer Science and
Technology, Vol. 14, Norbert M.Bikales(ed).Interscience
Publishers, New York, New York. pp. 94-96.
Kruder, G. A. "Extrusion." Modern Plastics Encyclopedia,
1981-1982. McGraw-Hill, Inc., New York, New York, 1981. p. 268.
Lappin, G. R. "Ultraviolet Radiation Absorbers." Encyclopedia
of Polymer Science and Technology, Vol. 14, Norbert M. Bikales
(ed).Interscience Publishers, New York, New York. pp. 125-147.
Lasman, Henry R. "Blowing Agents." Encyclopedia of Polymer
Science and Technology, Vol. 2, Norman G.Gaylord(ed).
Interscience Publishers, New York, New York. pp. 532-565.
Lebovits, A. and Gerald P. Ziemba. "Acrylonitrile-Styrene
Copolyraers." Encyclopedia of Polymer Science and Technology,
Vol. 1, Norman G. Gaylord(ed).Interscience Publishers,New
York, New York. pp. 374-444.
Lee, H. and K. Neville. "Epoxy Resins." Encyclopedia of Polymer
Science and Technology, Vol. 6, Norbert M. Bikales ~(ed).
Interscience Publishers, New York, Nev.> York. pp. 209-271.
Leis, D. G. and G. D. Lewis. "Reaction Injection Molding."
Modern Plastics Encyclopedia, 1981-1982. McGraw-Hill, Inc., New
York, New York, 1981. p. 386.
Levy, Sidney. Plastics Extrusion Technology Handbook. Indus-
trial Press, Inc., New York, New York, 1981.
295
-------
Levy, Sidney, and Harry J. DuBois. Plastics Product Design
Engineering Handbook. Van Nostrand Reinhold Company, New York,
New York, 1977. p. 181 .
Liptak, Beta G. (ed). Environmental Engineers Handbook. Chilton
Book Company, Radnor, Pennsylvania, 1974.
Luskin, L. S. "Casting of Acrylic." Modern Plastics Encyclo-
pedia, 1981-1982. McGraw-Hill, Inc., New York, New York, 1981.
p. 246.
Maassen, G. C., R. J. Fawcett, and W. R. Connell. "Antioxi-
dants." Encyclopedia of Polymer Science and Technology, Vol. 2,
Norman G. Gaylord(ed).Interscience Publishers, New York, New
York. pp. 171-197.
Mainstone, K. A. "Extrusion Coating and Laminating." Modern
Plastics Encyclopedia, 1981-1982. McGraw-Hill, Inc., New York,
New York, 1981. p. 250.
Mansfield, G. A. "Open Mold Processing." Modern Plastics
Encyclopedia 1981-1982. McGraw-Hill, Inc., New York, New York,
1981.p. 397.
Mascia, L. The Role of Additives in Plastics. Edward Arnold,
London, 1974.
"Materials 1982." Modern Plastics, 59(1):55, 1982.
May, Clayton A. and Yoshio Tanaka. Epoxy Resins, Chemistry and
Technology. Marcel Dekker, Inc., New York, New York, 1973.
McGarry, Frederick J. "Laminated and Reinforced Plastics."
Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Edition,
Vol. 1~3~^ Martin Grayson (ed) . John Wiley and Sons, New York, New
York. pp. 968-978.
Mclntyre, J. E. "Man-Made Fibers, Manufacture." Encyclopedia of
Polymer Science and Technology, Vol. 8, Norbert M. Bikales (ed).
Interscience Publishers, New York, New York. pp. 374-404.
Mead, William J. (ed). The Encyclopedia of Chemical Process
Equipment. Reinhold Publishing Co., New York, New York, 1964.
pp. 641-662.
Meienberg, J. T. "Calendaring." Modern Plastics Encyclopedia,
1981-1982. McGraw-Hill, Inc., New York, New York, 1981. p. 243.
Meinecke, Eberhard. "Calendering." Encyclopedia of Polymer
Science and Technology, Vol. 2, Norman G.Gaylord (ed).
Interscience Publishers, New York, New York. p. 802.
296
-------
Meltzer, Yale L. Foamed Plastics, Recent Developments. Noyes
Data Corporation, Park Ridge, New Jersey, 1976.
Metcalf & Eddy, Inc. Wastewater Engineering: Treatment,
Disposal, Reuse, Second Edition. McGraw-Hill Book Company, New
York, New York, 1979.
Milby, R. V. Plastics Technology. McGraw-Hill Book Company, New
York, New York, 1973.
Mock, John A. "Additives 1982 - A Multiplicity of Problem
Solvers." Plastics Engineering, 38(6):29, 1982.
Monroe, Sam. "Bag Molding." Encyclopedia of Polymer Science and
Technology, Vol. 2, Norbert M. Bikales (ed). Interscience
Publishers, New York, New York. pp. 300-316.
Morneau, G. A., W. A. Pavelich, and L. G. Roeltger. "Acryloni-
trile Polymers (ABS)." Kirk-Othmer Encyclopedia of Chemical
Technology, 3rd Edition, Vol.T, Martin Grayson(ed).John Wiley
and Sons, New York, New York. pp. 442-456.
Morin, Richard and Thomas Tomaszek. "Granulators." Modern
Plastics Encyclopedia, 1981-1982. McGraw-Hill, Inc., New York,
New York, 1981. p. 307.
Myers, Lloyd W. "Wire and Cable Coverings." Encyclopedia of
Polymer Science and Technology, Vol. 14, Norbert M. Bikales (ed).
Interscience Publishers,New York, New York. pp. 796-805.
Nass, Leonard I. Encyclopedia of PVC, Volumes 1, 2, and 3.
Marcel Dekker, Inc., New York, New York, 1977.
Nass, Leonard I. "Heat Stabilizers." Kirk-Othmer Encyclopedia
of Chemical Technology, 3rd Edition, VoT~. TT, Martin Grayson
(ed).John Wiley and Sons, New York, New York. pp. 225-249.
National Sanitation Foundation. Wastewater Technology, Report
No. S-40-1, October 1972.
National Sanitation Foundation. Wastewater Technology, Report
No. S-40-5, April 1974.
National Sanitation Foundation. Wastewater Technology, Report
No. S-40-6, April 1974.
National Sanitation Foundation. Wastewater Technology, Report
No. S-40-7, August 1979.
National Sanitation Foundation. Wastewater Technology, Report
No. S-40-8, June 1979.
297
-------
National Sanitation Foundation. Wastewater Technology, Report
No. S-40-9, August 1979.
National Sanitation Foundation. Wastewater Technology, Report
No. S-40-10, November 1981.
National Sanitation Foundation. Wastewater Technology, Report
No. S-40-11, May 1982.
Nelson, W. L. Petroleum Refinery Engineering, Fourth Edition.
McGraw-Hill Book Company, New York, New York, 1958.
Nicholas, Paul P., Anthony M. Luxeder, Lester A. Brooks, and Paul
A. Hammes. "Antioxidants and Antiozonants." Kirk-Othmer
Encyclopedia of Chemical Technology, 3rd Edition, Vol. 3, Martin
Grayson (ed).John Wiley and Sons, New York, New York. pp.
128-149.
NIOSH. Criteria for a Recommended Standard...Occupational
Exposure to Fibrous Glass.NIOSH Publications, Washington, D.C.,
1977.
NIOSH. Health and Safety Guide for Plastics Fabricators. NIOSH,
Cincinnati, Ohio, 1975.
NIOSH/OSHA. Occupational Health Guidelines for Chemical Hazards.
NIOSH Publications, Washington, D.C., 1981.
Nissel, F. R. "Extruding Thermoplastic Foams." Modern Plastics
Encyclopedia, 1981-1982. McGraw-Hill, Inc., New York, New York,
1981. p. 296.
Noyes Data Corporation. Polymer Additives: Guidebook and
Directory. Noyes Data Corporation, Park Ridge, New Jersey, 1972.
O'Brien, J. C. "Transfer Molding." Modern Plastics Encyclo-
pedia, 1981-1982. McGraw-Hill, Inc., New York, New York, 1981.
p. 424.
Olabisi, Olagoke. "Polyblends." Kirk-Othmer Encyclopedia of
Chemical Technology, 3rd Edition, Vol. 18, Martin Grayson (ed).
John Wiley and Sons, New York, New York. pp. 443-478.
Oleesky, Samuel S. and J. Gilbert Mohr. Handbook of Reinforced
Plastics. Reinhold Publishing Corporation, New York, New York,
1964.
298
-------
Paschke, Eberhard. "Ziegler Process Polyethylene." Kirk-Othmer
Encyclopedia of Chemical Technology, 3rd Edition, Vol. 16, Martin
Grayson (ed).John Wiley and Sons, New York, New York. pp.
433-452.
Pedersen, K. W. "Injection Molding." Modern Plastics Encyclo-
pedia, 1981-1982. McGraw-Hill, Inc., New York, New York, 1981.
p. 315.
Peebles, L. H., Jr. "Acrylonitrile Polymers Degradation."
Encyclopedia of Polymer Science and Technology, Supplement Vol.
T^Norbert M.Bikales(ed).Interscience Publishers, New York,
New York. pp. 1-25.
Peerman, D.E. "Polyamides From Fatty Acids." Encyclopedia of
Polymer Science and Technology, Vol. 10, Norbert M.BikalesTed).
Interscience Publishers,New York, New York. pp. 597-615.
Penn, W. S. PVC Technology, 3rd Edition. Applied Science
Publishers, Ltd., London, England, 1971.
Perkins, N. A. (ed). Plastics and Plastics Additives.
Proceeding of the Third International Research Association in
Conjunction with CMRA, Devonshire House, London, 15-17 June 1970.
Perry, Robert H. and Cecil H. Chilton. Chemical Engineers'
Handbook, Fifth Edition. McGraw-Hill Book Company, New York, New
York, 1973.
Peters, Max S., Klaus D. Timmerhaus. Plant Design and Economics
for Chemical Engineers, Third Edition. McGraw-Hill Book Company,
New York, New York, 1980.
"Phthalates are Alive but Being Watched." Chemical Week,
128(25): 18, 1981.
"Plasticizers - Where Do We Go From Here?." Plastics Engineer-
ing, 36(4):35, 1980.
Postans, J. H. Plastics Molding. Oxford University Press, New
York, New York, 1978.
"Prize Winning Structural Foam Applications." Modern Plastics,
56(7):52, 1979.
Power, G. E. "Laminates." Encyclopedia of Polymer Science and
Technology, Vol. 8, Norbert W.Bikales(ed).Interscience
Publishers, New York, New York. pp. 121-163.
299
-------
Rauch, James A. The Kline Guide to the Plastics Industry.
Charles A. Kline & Co., Fairfield, New Jersey, 1978.
Rebenfeld, Ludwig. "Fibers." Encyclopedia of Polymer Science
and Technology, Vol. 6, Norbert M. Bikales(ed).Interscience
Publishers, New York, New York. pp. 505-572.
Reed, George V. "Improving PP with Phosphite Stabilizers."
Modern Plastics. 56(11):26, 1979.
Reinhart, F. W. "Pipe." Encyclopedia of Polymer Science and
Technology, Vol. 10, Norbert M.Bikales(ed).Interscience
Publishers, New York, New York. pp. 219-228.
Resing, Tom. "Dry Solids Mixers." Modern Plastics Encyclopedia,
1981-1982. McGraw-Hill, Inc., New York, New York, 1981. p. 363."
Richardson Engineering Services, Inc. Process Plant Construction
Estimating Standards, Volumes 1-4. Solona Beach, California,
1981.
Richardson, Paul N. "Plastics Processing." Kirk-Othmer Encyclo-
pedia of Chemical Technology, 3rd Edition, Vol. 18, Martin
Grayson (ed).John Wiley and Sons, New York, New York. pp.
184-206.
Richardson, R. J. and 0. E. Snider. "Polyamide Fibers."
Encyclopedia of Polymer Science and Technology, Vol. 10, Norbert
M~iBikales (ed).Interscience Publishers, New York, New York.
pp. 347-444.
Ritchie, P. D., Stuart W. Critchley and Allan Hill. Plasti-
cizers, Stabilizers and Fillers. The Plastics Institute, London,
1972.
Robinson, J. S. Spinning, Extruding, and Processing of Fibers:
Recent Advances. Noyes Data Corporation, Park Ridge, New Jersey,
1980.
Rodriquez, F. Principles of Polymer Systems. McGraw-Hill, Inc.,
New York, New York, 1970.
Rosato, D. V. "Filament Winding." Encyclopedia of Polymer
Science and Technology, Vol. 6, Norbert M.Bikales (ed).
Interscience Publishers, New York, New York. pp. 713-740.
Rosen, S. L. Fundamental Principles of Polymeric Materials.
Manuscript, Carnegie-Mellon University^Pittsburgh,Pennsylvania,
1979. Chapter 19.
300
-------
Rosenzweig, Mark D. "Motionless Mixers Move Into New Processing
Roles." Chemical Engineering, 84(10):95, 1977.
Rubin, I. I. Injection Molding, Theory and Practice. John Wiley
and Sons, New York, New York, 1973.
"Safety and Health Regulations: Government vs. Plastics Pro-
cessors - An Assessment." Plastics Technology, 25(13):43, 1979.
Saunders, J. H. "Polyamides (Fibers)." Kirk-Othmer Encyclo-
pedia of Chemical Technology, 3rd Edition, Vol. 18, Martin
Gray son (ed). John Wiley and Sons, New York, New York. pp.
372-405.
Scharnberg, John. "Decorating." Encyclopedia of Polymer
Science and Technology, Vol. 14, Norbert M.Bikales(ed).
Interscience Publishers, New York, New York. pp. 605-619.
Schott, N. R., B. Weinstein and D. LaBombard. "Motionless
Mixers." Chemical Engineering Progress, 71(1):54, 1975.
Schwartz, Seymour S. and Sidney H. Goodman. Plastics Material
and Processes. Van Nostrand Reinhold Company, Inc., New York,
New York, 1982.
Sears, J. K. and N. W. Touchette. "Plasticizers." Kirk-Othmer
Encyclopedia of Chemical Technology, 3rd Edition, Vol. 18, Martin
Grayson (ed). John Wiley and Sons, New York, New York. pp.
111-183.
Seymour, Raymond B. (ed). Additives for Plastics. State of the
Art. Academic Press, New York, New York, 1978.
Sherman, Stanley, John Gannon, Gordon Buchi, and W. R. Howell.
"Epoxy Resins." Kirk-Othmer Encyclopedia of Chemical Technology,
3rd Edition, Vol. 9, Martin Grayson (ed). John Wiley and Sons,
New York, New York. pp. 267-290.
Short, James N. "Low Pressure Linear (Low Density) Polyethy-
lene." Kirk-Othmer Encyclopedia of Chemical Technology, 3rd
Edition, Vol. 16, Martin Grayson (ed). John Wiley and Sons, New
York, New York. pp. 385-401.
Shreve, R. N. and J. A. Brink, Jr. Chemical Process Industries,
4th Edition. McGraw Hill, Inc., New York, New York, 1977.
Sweeney, F. M. Introduction to Reaction Injection Molding.
TECHNOMIC Publishing Co., Inc., Westport, Connecticut, 1979.
TECHNOMIC. Flexible Urethane Foam Technology. TECHNOMIC
Publishing Co., Westport, Connecticut, 1974.
301
-------
Thompson, D. C. and A. L. Barney. "yinylidene Polymers
(Fluoride)." Klrk-Othmer Encyclopedia of Chemical Technology,
2nd Edition, Vol. 21, Anthony Standen (ed).John Wiley and Sons,
New York, New York. pp. 269-275.
Tickle, J. D. "Pultrusion." Modern Plastics Encyclopedia,
1981-1982. McGraw-Hill, Inc., New York, New York, 1981. p. 398.
"Toxic Curbs: A Pro-Industry Tilt." Business Week, September 7,
1981, p. 92.
Updegraff, Ivor H., Sewell T. Moore, William F. Herbes, and
Philip B. Roth. "Amino Resins and Plastics." Kirk-Othmer
Encyclopedia of Chemical Technology, 3rd Edition, Vo1~. T, Martin
Grayson (ed). John Wiley and Sons, New York, New York. pp.
440-469.
U.S. Department of Commerce, Bureau of the Census. Water Use in
Manufacturing, 1977 Census of Manufacturers. 1981.
U.S. EPA. Contractors Engineering Report, Analysis of Organic
Chemicals and Plastics/Synthetic Fibers Industries Toxic
Pollutants.Contract No. 68-01-6024, November 1981.
U.S. EPA. Carbon Adsorption Isotherms for Toxic Organics. EPA
600/8-80-023, April 1980.
U.S. EPA. Design Manual On-Site Wastewater Treatment and
Disposal Systems^EPA-625/1-80-012, October 1980.
U.S. EPA. Industrial Process Profiles for Environmental Use:
Chapter 13. Plasticizers Industry. U.S. Environmental
Protection Agency, Cincinnati, Ohio, 1977.
U.S. EPA, Draft Report, prepared by P. W. Spaite, G. E. Wilkins,
and Radian Corporation. Plastics Industry Analysis.
Environmental Protection Agency, Cincinnati, Ohio, 1979.
U.S. EPA, Effluent Guidelines Division. Development Document for
Proposed Effluent Limitations Guidelines and New Source
Performance Standards for the Synthetic Polymer Segment of the
Plastics and Synthetic Materials Manufacturing Point Source
Category. U.S. Environmental Protection Agency, Washington,
D.C., September 1974.
U.S. EPA, Effluent Guidelines Division. Development Document for
Proposed Effluent Limitations Guidelines and New Source Perfor-
mance Standards for the Organic Chemicals, Plastics, and Syn-
thetics Fibers Point Source Category, Volumes I, II, and III.
EPA 440/1-83-009b, February 19837
302
-------
U.S. EPA. Fate of Priority Pollutants in Publicly Owned
Treatment Works. Volume I. EPA 440/1-82/303, September 1982.
U.S. EPA. Fate of Priority Pollutants in Publicly Owned
Treatment Works 30-Day Study. EPA 440/1-82/302, July 1982.
U.S. EPA. Innovative and Alternative Technology Assessment
Manual. EPA 430/9-78-009, February 1980.
U.S. EPA. Treatability Manual. Volume III, Technologies for
Control/Removal of Pollutants. EPA 600/8-80-842c, July 1980.
U.S. EPA. Estimating Water Treatment Costs. Volumes 1-3.
EPA-600/2-79-162, August 1979.
Wallis, Benedict L. "Casting." Encyclopedia of Polymer Science
and Technology, Vol. 3, Herman F. Mark (ed.).Interscience
Publishers, New York, New York, pp. 1-20.
Water Purification Association. Conceptual Designs for Water
Treatment in Demonstration Plants"Department of Energy Report
EF-77-C-01-2635, 1977.
Webber, T. G. "Colorants for Plastics." Kirk-Othmer Encyclo-
pedia of Chemical Technology, 3rd Edition, Vol. 6, Martin Grayson
(ed).John Wiley and Sons7 New York, New York. pp. 597-617.
Webber, T. G. Coloring of Plastics. John Wiley and Sons, New
York, New York, 1979.
Weir, C. L. Introduction to Injection Molding. Society of
Plastics Engineers, Greenwich, Connecticut, 1975.
Welgos, R. J. "Polyamides (Plastics)." Kirk-Othmer Encyclope-
dia of Chemical Technology, 3rd Edition, Vol. 18, Martin Grayson
(ed).John Wiley and Sons, New York, New York. pp. 406-425.
Wessling, R. A. and F. G. Edwards. "Vinylidene Chloride
Polymers." Encyclopedia of Polymer Science and Technology, Vol.
14, Norbert FHBikales(ed).Interscience Publishers,New York,
New York. pp. 540-579.
Wessling, R. A. and F. G. Edwards. "Poly(Vinylidene Chloride)."
Kirk-Othmer Encyclopedia of Chemical Technology, 2nd Edition,
Vol. 21, Anthony Standen (ed) .John Wiley and Sons, New York,
New York. pp. 275-303.
Westover, R. F. "Melt Extrusion." Encyclopedia of Polymer
Science and Technology, Vol. 8, Norbert M. Bikales (ed).
Interscience Publishers, New York, New York. pp. 533-587.
303
-------
Wetzel, D. R. "New Developments in Reinforced Thermoplastics."
Reinforced Plastics Conference. El Segundo, California, December
1980.
White, J. S. "Continuous RP Laminating." Modern Plastics
Encyclopedia, 1981-1982. McGraw-Hill, Inc., New York,, New York,
1981.p. 393.
Wilson, David C., Peter J. Young, Brinley C. Hudson, and Grant
Baldwin. "Leaching of Cadmium from Pigmented Plastics in a
Landfill Site." Environmental Science and Technology, September
1982, p. 560.
Wiman, J. V. "Expandable Polystyrene Molding." Modern Plastics
Encyclopedia, 1981-1982. McGraw-Hill, Inc., New York,, New York,
T9TTTp. 296.
Wolinski, L. E., "Films and Sheeting." Encyclopedia of Polymer
Science and Technology, Vol. 6, Norbert W. Bikales ^e~
-------
SECTION XVII
GLOSSARY
This section contains the definitions of the technical terms used
in this document. Table XVII-1 lists some common plastic
polymers and their uses and properties.
Acidity
The acidity of water is its quantitative capacity to react with a
strong base to a designated pH. Various materials may contribute
to the measured acidity depending on the method of determination.
These materials include strong mineral acids, weak acids such as
carbonic and acetic acids, and hydrolyzing salts such as ferrous
or aluminum sulfates.
Alkalinity
Alkalinity of a water is its quantitative capacity to react with
a strong acid to a designated pH. It is an indication of the
concentration of any carbonate, bicarbonate and hydroxide ions
present.
Analytical Quantification Limit
The minimum concentration at which a pollutant can be accurately
measured. It is also known as the method detection limit.
Average Process Water Usage Flow Rate for Processes That Use
Contact Cooling and Heating Water
The average process water usage flow rate of a process in gallons
per minute is equal to the volume of the process water (gallons)
used per year by a process divided by the total time (minutes)
per year the process operates. The average process water usage
flow rate for a plant with more than one plastics molding and
forming process that uses contact cooling and heating water is
the sum of the average process water usage flow rates for those
plastics molding and forming processes.
Batch Treatment
Batch treatment is a waste treatment method where wastewater is
collected over a period of time and then treated prior to dis-
charge. Collection may be continuous even though treatment is
not. Batch treatment may be used because the processes generat-
ing wastewater are operated on a batch operation mode, or the
treatment system may be oversized for the amount of wastewater
generated.
305
-------
Biological Oxygen Demand (BODc;)
The biological oxygen demand (6005) test for wastewaters deter-
mines the oxygen required for the biochemical degradation of
organic material (carbonaceous demand) and the oxygen used to
oxidize inorganic material such as sulfides and ferrous iron.
The wastewater sample is incubated for a standard period of five
days, hence the common name 8005.
Blowing Agent
A blowing agent is the material injected into a plastic material
that cause the plastic material to expand with the application of
heat. Blowing agents can be gases introduced into the molten
plastic or a gas producing compound that is mixed with the
polymer before processing.
Blow Molding
Blow molding expands a parison into a desired shape with com-
pressed air. Hollow, thin-wall objects from thermoplastic resins
are formed.
BPT Regulatory Flow
The BPT regulatory flow is the production normalized flow chosen
to calculate the effluent limitations guidelines based on BPT.
Calendering Process
The calendering process squeezes pliable thermoplastic between a
series of rolls to produce uniform quality polymer film and
sheet, to emboss sheet and film, to perform compounding opera-
tions, and to coat textiles and papers.
Casting Process
A casting process forms products by allowing a liquid plastic to
cure at atmospheric pressure in a mold or on a mold surface.
Chemical Oxygen Demand (COD)
The chemical oxygen demand (COD) is a measure of the oxygen
equivalent of the organic matter content of a wastewater sample
that is susceptible to oxidation by a strong chemical oxidant.
Chiller System
A chiller system is a heat exchange device that uses a refrigera-
tion medium to lower the temperature of water. This system is
used in water recycle systems in the PM&F industry.
306
-------
Cleaning Process
A cleaning process is a process in which plastic parts and shap-
ing equipment are washed to remove residual mold release agents
and other matter prior to finishing or further processing. A
cleaning process contains a detergent wash cycle, and a rinse
cycle.
Cleaning Water
Cleaning water is process water used to clean an intermediate or
final plastic product or to clean equipment used in plastic mold-
ing and forming that contacts an intermediate or final product.
It includes water used in both the detergent wash and rinse
cycles of a cleaning process.
Coating Process
A coating process covers objects with a polymer layer that is in
the form of a melt, liquid, or finely divided powder. These
objects include other plastic materials, metal, wood, paper,
fabric, leather, glass, concrete, and ceramics.
Compounding
Compounding is the plastics processing step where a plastic resin
is mixed with additives or fillers.
Compression Molding
Compression molding shapes a measured quantity of plastic within
a mold by applying heat and pressure to form products with large
surface areas and relatively simple shapes.
Contact Cooling and Heating Water
Contact cooling and heating water is process water that contacts
the raw materials or plastic product for the purpose of heat
transfer during plastic molding and forming.
Conventional Pollutants
Conventional pollutants are the pollutants defined in Section
304(a)(4) of the Clean Water Act. They include biological oxygen
demand, oil and grease, suspended solids, fecal coliform, and pH.
307
-------
Cooling Tower
A cooling tower is a hollow vertical structure with internal
baffles designed to exchange the heat of water with counter or
cross-current flowing air.
Cooling Trough
A cooling trough is a long open box-like container that holds
water to quench a processed plastic product. It is commonly used
to contact cool extruded strands before they are pelletized, and
to cool extruded pipe.
Direct Discharger
A direct discharger is an industrial water user that discharges
wastewater directly in a navigable stream.
Dry Process
A dry process is a process that uses no proces water or uses
only noncontact water.
Effluent
Effluent is the discharge from a point source after treatment.
End-of-Pipe Treatment
End-of-pipe treatment is the treatment given wastewater before
the wastewater is discharged from the treatment plant.
Extrusion Process
Extrusion is the process that forces molten polymer under pres-
sure through a shaping die to produce products of uniform cross-
sectional area such as pipe, tubing, sheet, and film.
Filler
A filler is a material that when added to a plastic may reduce
the end product cost by occupying a fraction of the volume of the
plastic product. It may also act as a speciality additive to
improve the final product.
Finishing Process
A finishing process renders the plastic parts useful. There are
three types of finishing processes: machining, decorating, and
assembling.
308
-------
Finishing Water
Finishing water is process water used to remove waste plastic
material generated during a finishing process or to lubricate a
plastic product during a finishing process. It includes water
used to machine, to decorate, or to assemble intermediate or
final plastic products.
Foaming Agent
A foaming agent is a gas producing compound added to a polymer
that causes the polymer to foam when the gas is liberated by the
addition of heat or a reduction in pressure.
Foaming Process
A foaming process injects a blowing or foaming agent into a
thermoplastic or thermoset to form a sponge-like material.
Glass Transition Temperature
The temperature at which a polymer changes from a brittle glassy
solid to a rubberlike substance.
Indirect Discharger
An indirect discharger is an industrial source that discharges
wastewater to a publicly owned treatment works.
Influent
Influent is water used in a PM&F process. It can be the source
water for a plant or the source water combined with recycled
water.
Injection Molding
Injection molding forms intricate plastic parts by forcing a
heated plastic with pressure into a mold cavity.
In-Process Control Technology
In-process control technology is the conservation of water
throughout the production processes to reduce the amount of
wastewater discharged.
309
-------
Integrated Plant
An integrated plant is a plant that combines process water from
all sources in the plant for treatment in a wastewater treatment
process.
Laminating Process
The laminating process combines layers of polymeric materials
with other materials through high pressure. These structures are
formed from layers of resins and fillers bonded together as a
unit with the resin used as a reinforcing agent.
Mass of Plastic Material Processed In Cleaning and Finishing
Water Processes
The mass of plastic material processed (kg or Ibs) when used to
determine effluent limitations guidelines is the mass of plastic
material that process water comes in contact with for product
cleaning or finishing purposes. If the same unit mass of plastic
material undergoes more than one cleaning or finishing process
(for example, it is cleaned and finished), the mass of plastic
material processed in each process is added to obtain the total
mass of plastic material processed. For the purpose of calculat-
ing effluent limitations for water used to clean shaping equip-
ment, such as molds and mandrels, "mass of plastic material
processed" refers to the mass of plastic material that was molded
or formed by the shaping equipment being cleaned.
Mass of Plastic Material Procssed In Contact Cooling and Heating
Water Processes
The mass of plastic material processed (kg or Ibs) when used to
determine effluent limitations guidelines is the mass of plastic
material that process water comes in contact with for cooling or
heating purposes. If the same unit mass of plastic undergoes
more than one molding and forming process (for example, it is
compounded and pelletized, extruded, and blow molded), the mass
of plastic material processed in each process is added to obtain
the total mass of plastic material processed.
Melt Temperature
The temperature at which a polymer becomes fluid.
Monomer
A monomer is a chemical compound that during a polymerization
process becomes a repeating link in the polymer chain.
310
-------
New Source Performance Standards (NSPS)
NSPS for new industrial direct dischargers as defined by Section
306 of the Clean Water Act are based on the best available
demonstrated technology.
Nonconventional Pollutants
Nonconventional pollutants include pollutants that are not desig-
nated as either conventional or priority toxic pollutants.
Oil and Grease
Oil and grease are materials that are soluble in trichlorotri-
fluoroethane. They include nonvolatilized materials usch as
hydrocarbons, fatty acids, soaps, fats, waxes, and oils.
Parison
A parison is a preshaped sleeve usually made by extrusion. This
sleeve is an intermediate product often used as the starting
material for the blow molding process.
Pelletizing
Pelletizing is a process by which long extruded strands are cut
into pellets. These pellets are an intermediate product which
can be the feed material of other plastic molding and forming
processes.
21
pH is the negative logarithm of the hydronium ion concentration.
Values below seven represent an acid environment; a value of
seven represents a neutral environment; and values greater than
seven are indicative of a basic environment.
Pigments
A pigment is a compound that when well mixed with a polymer
imparts color to the polymer. To impart color, the pigment must
absorb light in the visible wavelength range.
Plastic
A plastic is a polymeric material of large molecular weight that
can be shaped by flow. A plastic material includes the pure
polymer and any fillers, plasticizers, pigments, or stabilizers.
311
-------
Plasticization - Internal
A copolymerization process by which a chain is made more flexi-
ble. The chain's rigidity is caused by steric factors.,
Plasticizer - External
An external plasticizer is usually a monomeric molecule that when
mixed with polar or hydrogen bonded polymer results in increasing
the flexibility of the rigid polymer.
Plastics Molding and Forming (PM&F) Processes
Plastic molding and forming processes are a group of manufactur-
ing processes in which plastic materials are blended, molded,
formed, or otherwise processed into intermediate or final plastic
products.
Plastisol
A plastisol is a low viscosity system of dispersed polyvinyl
chloride (PVC) in a plasticizer.
PM&F Category
Throughout this document, the PM&F abbreviation stands for the
Plastics Molding and Forming category.
Pollutant Concentration
A measure of the mass of pollutant per volume of wastewater.
Commonly used units are milligrams per liter.
Pollutant Effluent Limitations Guidelines
The pollutant effluent limitations guidelines is the mass of
pollutant allowed to be discharged per unit of plastic produc-
tion. For the PM&F category typical units are milligrams of
pollutant per kilogram of plastic production.
Polymer
A polymer is a macromolecule comprised of linked together repeat-
ing monomers. These macromolecules have molecular weights in the
range of 10^ to 107.
Polymer i zat ion
Polymerization is the chemical reaction that produces a polymer.
312-
-------
Priority Toxic Pollutants
Priority toxic pollutants are toxic pollutants selected for study
from 65 compounds and classes of compounds Congress declared
toxic under Section 307(a) of the Clean Water Act.
Process Water
Process water is any raw, service, recycled, or reused water that
contacts the plastic product or contacts shaping equipment sur-
faces such as molds and mandrels that are, or have been, in
contact with the plastic product.
Production Normalized Flow (PNF)
The PNF is the amount of wastewater discharged from a process
divided by the amount of plastic material processed in that
process (i.e., liters discahrged per kkg of plastic material
processed).
Publicly Owned Treatment Works (POTW)
A POTW is a wastewater treatment facility owned by a state or
municipality.
Reaction Injection Molding (RIM)
A RIM process simultaneously injects two or more reactive liquid
streams at high pressure into a mixing chamber and then injects
the plastic at a lower pressure into the mold cavity.
Recycle
Recycle is a water-saving technology that returns process water
that has been used in a process to that process.
Regrind
Regrind is processed plastic that is scrapped and mixed with pure
plastic and reprocessed.
Reinforcing Agent
A reinforcing agent primarily improves the strength and stiffness
of the base polymer.
Resin
A resin is the homogeneous polymer that forms the basis of a
plastic product. The resin does not include the fillers, plas-
ticizers, pigments or stabilizers.
313
-------
Rotational Molding
A rotational molding process rotates a polymer powder or liquid
inside a large, heated mold to form hollow objects from thermo-
plastic materials.
The sprue is the entrance into the mold through which the plastic
flows.
Stabilizer
A stabilizer is a compound which when added to a polymer protects
it from heat, light, or oxygen.
Thermoforming Process
A thermoforming process heats a thermoplastic sheet or film to a
pliable state and forces it around the contours of a mold.
Vacuum, air pressure, or mechanical force form the molten sheet
to the mold.
Thermoplastic Polymer
A thermoplastic polymer is a linear molecule that can melt and
flow with the addition of heat and pressure.
Thermoset Polymer
A thermoset polymer has crosslinks throughout the chain making it
stable to heat. The polymer will not melt or flow with heat.
Total Organic Carbon (TOG)
TOG is a measure of the organic material in a wastewater and is
determined by oxidizing the organic material to carbon dioxide.
Total Phenols
Phenols are hydroxy derivatives of benzene.
Total Suspended Solids (TSS)
TSS is a measure of the solids in wastewater.
Transfer Molding
Transfer molding uses a preheated plastic and moves it into the
mold cavity with pressure through a sprue. It is similar to
injection molding.
314
-------
Treatability Limit
The treatability limit is the lowest attainable concentration
achievable by a wastewater treatment process.
Volume of Process Water Used Per Year
The volume of process water used per year is the volume of pro-
cess water that flows through a process and comes in contact with
the plastic product over a period of one year.
Wastewater Discharged
Wastewater discharged is process water from a PM&F process that
is discharged to surface water or a POTW.
Water Quench
A water quench is a contact water cooling bath used to quickly
cool a material. It is often used in extrusion and injection
molding to cool the products.
Water Used
Water used is water that contacts the plastic material or prod-
uct. This includes any recycle and makeup water.
Wet Process
A wet process is a process in which the plastic comes into direct
contact with water.
Zero Discharger
A zero discharger is any industrial water user that does not
discharge wastewater.
315
-------
^
1— 1
1— 1
X
01
i
r™i
-Q
H
^
C/j
w
^-t
^^
t-J
o
OH
a
o
j»
o
u
w
s
o
CO
En
O
CO
w *
P£ CO
-3i W
H co
^j '
W 123
PH 1— 1
s <
w s
H
PS
C ^ i i
23 W
H H
W Q
Q
2
•^T*
^*N
s
o
1— 1
H
CO
i — i
CO
Si
00
01
B
•a »<
o m
T) U
rH B
O O
B U
E *O
O B
.-1 0)
u
o -
IV Q)
«-) 01
CO
01
00
e
1
5^
JJ
p
K
•a co
01 01
13
4J iJ
bu 4
BO] -tf
H'J 2
odd 2
H'J 7
6
o
u
01
IH
^
<
u
a
^J
^_l
c
o
Repeat
t
I
1
01
•H
X
0) CO
rH 01
U
B w
rH M
•n a
•O
00 0>
BTJ
oo o
09 e
0 -O
8.6
01 t3
rH 01
91
Q) 4J
rH K
b ov
in
o
i
U
3
CN
1
rj
4-t
re co
£ 01
0
00-rl
rH Ul
U O
^H
V4 Q)
a e
•o o
01 UH
•o
01
•O U
§0)
a
CO
"§ u
Jj
4J 01
w aS
1
t
O
O
1
o
as
s
r x1
X
I
og
01
TJ 'W
01 O
N rl
u
u n
CO tj
09 01
-t 01
a.J=
00
•u
o -
2!
_003
l-i
•0 00
01 oi
3 0
h —1
l_f JJ
w 09
1
1
I
r-.
CO
I
T
X rH
X
U
X
JJ
a
4J
00
01
rH
O
iJ
rl
a)
•O
01
•D
rH
§
TJ
§
*o
•O^H
01 00
•0-H
3 rl
rl
4J 01
^
in
o
i
a,
ft.
T «
X X
X
I
T3
oo
rl
•8
•o
3
u
X
01
•o
g
•o
01
•a
rH
O
e
- 01
00 rH
rl U
01 -1
£ 4J
X U
o
CM
0
in
i
T
1*
-*^v
CM
-C
U
r
°-l
>-^
CM
X
T
Xs
00
s
rH
.rl
UH
00
E
O
jj
00
J-l
E
01
rl
ffl
a
00
g
rl
U
•o
E
«
00
rl
0)
w4
IX
S
<->
r*
a.
0-J
!tf
33
\£)
m__. r^
^••11 *. '
t
tM
^~t
\
I
rH
09
VI
3
u
3
4J
00
"eo
B
•H XI
rl 00
01 3
U O
B u
"DO -
D 4J
: B
01
13 E
ill O
•a a
rH g
£8
C5
03
0
1
r*l
U'
01
4^
T
?
*_„._
CO
CO
3
o
W
ffi
H
IH
0)
£
01
X
rH
O
a
•D
01
o
§
O
ft.
01
•o
^H
u
o
x:
o
§•
IH
CL
£
to
1
VD
E
0
X
X
-------
W
2
o
o
o
w
s
o
En
O
c
JJ 01
e B
01 o
Vi Q.
eg B
O.O
CO U
B
egi-H
Vi eg
U Vi
3
•o u
§s
Vi
.e u
00 (0
O •"
u «
01
•OiH
01 U
•o-*
f-4 W
O Vl
Z eg
01
•o
01
01
.B
en
4J
c
01
n 01
Ui-l
u
4J -<
a 4J
eg M
u a
TJ >
01-1
U O
V <0
4J
c •-
—i a
to 01
..§•
-O —
a oo j:
•U C 4J
-I ao
: B C
•O **4 4J 0)
OI.C B Vi
T3 O « 4J
SOU a
O
in
CM
xs
u
II
01
00
o
4J
Wl
— 0)
».£>
01
a -
a 01
ac
01
. b
a a
01 o
01 a
•H h
•O 01
i oi S
Gi-t u
41 •< te
n w-rf
xw •
U TJ 0)
new
T3
OJ
C
•H
C
o
x
W-X
H Cfl
Oi M
w ^
H
04
C5 i—'
a w
H H
o
o
I
P-l
§«
I
eo
oo
i
W Q
etf
H
a
o
H
CO
i-i
W
eg
o>
a
&
O
w
vO
m u i
si 1 a
u—6—i
x
vO
I
I., .1.
Jk
U
u
X
e«l
O-
X
I
O
04
-------
APPENDIX A
SAMPLING DATA
-------
APPENDIX A
SAMPLING DATA
This appendix presents the daily raw concentration data from the
11 plants in the plastics molding and forming category sampled
during this project. Table A-1 lists the data for the contact
cooling and heating water subcategory and Table A-2 presents the
data for the cleaning and finishing water subcategory. The
concentrations for days one, two, three, and the duplicate listed
in Tables A-1 and A-2 were used to develop Table VI-17.
Processes from Plant K have two source water concentrations
listed. The first value listed represents the concentration of a
make-up water flow and the second value represents a recirculated
water flow to the process. Some pollutants for process K-4 from
Plant K have two concentration values listed under each sampling
day. The first concentration is from an unpreserved sample and
the second listed value is from a preserved sample.
A wastewater treatment system that treats primarily PM&F waste-
water was sampled at one plant (i.e., Plant I) in 1980. Tables
A-3 and A-4 present influent and effluent data for two treatment
systems at that plant (see Figure VI-9).
Table A-5 presents solution casting solvent recovery sampling
data for Plant G. Data presented in Table A-5 may be used as a
guide by the permit writer to write permits for the solvent
recovery wastewater.
A-1
-------
o
a; oa
O 3
iu en
H a:
z w
—' !!2
H W
CO 2 CO
I! <
E^OS
O O"
z z
»—I t—I
ij 1-1
di O
s o
3 o
CO
H
|
O
o
0)
JJ
to
y
•^4
r-t
O.
3
Q
—1
00 co
E
**-s ^,
n)
CO O
C
0
u
4J
C CM
CU
CJ >-
C tfl
O Q
u
r-l
>-
t«
a
cu
CJ
1-.
3
O
CO
CU
f— 1 •»-
CX CU
E a
to >-
CO H
to
CO C0»
CU CU
o -o
0 0
jj
c
ed
3
i-4
o
CM
u-i o CM 10
NX in 10 v
OO
&\ 10 —4 10 10
• • • • •
o CM -vf o CM o r*- oo toio m
& i-4 NX \X N/
OO i— I ON ON i — I
• • * • •
>— *— T— CMCMCO^
I i i I i I i I I I I I i i i t i I
pT| ff] FT (^ fT*] ^1 [V] T^l F^i CT 1 ^^ O ^Tl l~ T *~? V! Vf f^i
T3
C
n)
E
cu
"O
CO C
4J CU
C 00
to ^
| 1 s>
3 0
,-H
o to
CM o /-"N
•r^ in
,-4 OOO
to o o
C r-l CQ
o o ^-^
JJ XI
c
CU
c
o
o
O ~d" CT\ ^
*~ 'v' *^ \^
o o co O
• • • • • •
-^ rr>mr-*-cr>oOio>d"'d" -^•"^"^
CN r-4CMCMr-l \/ \/V\/
o oo oo o o o
* • • • • •
•*aNo~ir'icnvo-^-d'^ /~i r^ r^T M F^ fTi T1- F^H O !T! ^ t-^ f^x ^; fsX
CU
CO
CU
00
c
tO
r-l
O
00
o
00
CU
CD
co
A-2
-------
•o
01
D
c
c
o
u
<
OJ
r—(
-O
CO
H
03
O
O
td
H
U
OS CO
0=>
fa oc
H OS
z w
H -> < H
CO [d V3
X <
< 2
HQ
: u
H
H
2
O
0>
CO
CJ
— ( CO OO CXt O
Q. ...
^3 i/*i -^ oo r*^
°
^4
E O O LO -3" O ^O l^"l if* OX c^ O
co vo%ovOvovor-.r~.r-- r- oo oo
CO Q
C
0
4-)
4J
C CXI m CXI ,-1 CX)
C cQ ^«O v«o ^0 \o vo p-^ r1*- r^* r"-* 10 oo f^*- r^-
O Q
O
-H O lA U~l
r^-oo-^ CTNmmiovoo r^corocMcsioo
Q
O O O
oj oo oo oo
o u~i i/*i ir\ 10 IA i/^ ^ — • — ^
u vovooo inmmuivOvo^o-ST— "iinooo
t/3
01
O.O) >— <— ro.— cocncororommco.— cxicxicnnfo
E 0.
co >,
w H
in
CA
Q)v> F— l^"»^-fO^CNCO-^^-CM^DT— »— *— CXI CXI CO -^I
CJ CU 1 1 1 1 1 1 1 1 1 1 1 I 1 .1 1 1 1 1
Ot3 CQCQCOOCdCdCdCdfafafaO^^^t^^^
VH O <~<.
DH O T3
0)
3
C
.,-(
4J
C
0
^^
to
C
H)
U 4J
C 3
co —1
4-J — )
3 0
^-1 OL,
— 1
0 ^
O, CO
C
0
•-J •X.
•U O.
c
01
>
c
3
o
-d- ^ o
V X/ —
0
oo cxi cxi ro CN in — i ,—
» — N/
O O
i~- -* ~^ CN -d- ^i CN i— ~a- ~*
r~> V
O
^.^.^.(.^.(^f^,^.^.^^, CXI^
\/ O x/ x/ cxi •—
O
^^•O~d-— 4-^^-1— icxicxicxivcin
x/ x/ x/ •— <
^ ^^ ro t— co en ro co co ro co t^o »—
r— ^ -^ »^ CO 1— CXJ CO •^ ^ CXJ VC ^— ^
i I 1 I i I i I i i I I i
CQOQO^EdtdbJ^dfafafaOX
CO
T3
•^
^4
O
CO
13
cu
"O
c
01
D.
CO
3
CO ^~N
c/)
^ y^
co H
4J ^s
O
4J
OO Ct
1 1 1 1 1
*"~3 *~3 1^ ^ i>-
A-3
-------
Jed
I
O
— O ^O
.D CN] ^ CO O
O CJCMl O < < H
PO M c/3
, — ^n — i — c«"i , — rnrorococ^rooo, — CNCNJ "^. *^. *^~.
DJ rO rn rO
H
— 4 j
\A LPl 1^1 lA U~l LTl
sDLn inoOLOcTiLo, — i LOi.ni.nLo
O O O ^H O fO O ^O — ^ O O O O
OOOOOOOOO-J OOOO
V XX XX V XX XX
v£>^ mininmin mc^uiin
oo ooooocomoooooo
oooooooococ>-imoooo
XXVXXXXXX XX XX XX
' — i — cOi — cococorororo^c^T— CJCN
— i
O
o
— 1
0
-------
1
oqco
E
O CM O IA CN O O
oo —I —I -H —< O —i r-~
T- O O O O ^ —I •—
o o o o o o o
Q O O
Z Z Z
o
b
o
CT\ m r~~
CM CNJ v£>
1 i
J
O
P-<
>•<
CO
<
<
otf
O
0
t_l
<
0
=0
=1
w
05
!d
H
3 OS
M
O H
Z <
i — i 3
C— 4 rT^
< H
W rJ2
33 <
3
Q
Z 3
05
O "^
Z
1— )
o
0
u
H
0
t-4
Z
o
^J
J_,
iJ
C
Q)
C
o
u
CNIj
J
ffl
a!
^
^1
cO|
Q 1
GJ
0
3
0
C/}
0)
r-l -1-
CX ,
CO
CO
CDt^J
O 0)
S"°
PnU
/— v
-a
01
c
OJ
c
o
u
^^
w
c
m
O CO LO vj- p") I/*) 00 OO
00 —ICO—lr-*0000
-------
•a
0)
3
C
•M
4J
C
o
u
<
ID
^H
J3
OS
o
O
w
H
<
u
as so
o r>
H a!
z w
<: H
J W
J OH
22 j < H
CO H OT
S<
<: 3
H a
<; zs
o o
z z
(5-1 O
s o
< u
O
u
^N
— 1
ac
E
tions I
:entra
o
u
01
a
B
w
en
Proces
CD
* •*-*-*
ffl] Z ZZZZZZZOO OOO
Ol \/ V V V
— i in
m odzozzzzzz ooooooo
* * >j ~* -a- -a- -a-
o o o z o z z z z z z z o oo o oo o
C/3 VV V WWW
E
c o
(U u
> -O
o
a
c
o
0 0
O ~\ Oi -1
-3" OOOOr^^oco \Orof""-
^3 o^ CO c^ &\ ^ co O m O *^
»— 3^ o\ C?N csj CNJ CM
0 0
O r-l CMCM O O
CM CM t^ \D C^ Ol CT> C^ OO 00 -il" CO VO ^- CM O CJs
^t-l 1 CM CM
(NCMvO-jC^c^oiONCococnoOLnLnooo
co co ro
iiTiVi i i i i i iTTi i i P
i
o
r-t
A-6
-------
TJ
CU
3
C
C
O
u
s
3S
O
o
LJ
H
O
O^ 2Q
O 3
tM CO
E-i as
Z M
< H
E—I ^ x™v
J M
nJ O H
OZ<
d, i—i 3
H M
CQ W CO
<*^
H Q
< Z 3
uj ^ <^
O O —'
J J
CM O
S O
< U
co
cj
O
O
u
CO
o
•H
r-l
O.
3 in
Q v
^
,— i
00 col
E oo
--' >J
CO! CN
co Q| m
C en
O
4->
CS
)-i
4-1
C CNl
J
C fl cs
0 Q| CN
C_5 en
rHl
CN
>J
to] in in i —
Q V \/ ^
en
01
O
I-l
o in m o
CO W
(1)
^ •(-
E a *"""
to >.
co H
w
CO
0> K» ^-x — 1 -<• "O
C
O CO
4-1 e
c u
<8 T3
3 C
—1 CD
4J ^ 00
c o ^
0
e
o
o
-* O m in
— 1 CN CN V
CN —
CN
&* ~3 CN CT>
r— in ^d" i — I* — »— i — v£inr-~
^— CN »-H CO r— vo fO
*— ^f
CN r-- -* CN
oo in oo m — n o o cNinm
rocNCNcncoroinoom r^ v" v
CN i—
^C r~( i—l
• • •
o^ocNminmoo inoocNi — ICNO
i— * ~3~ r^ in in *d" oo ' — oo^ocNincr>^cf
vo in ~* CN i— i—
CN
in m m
o m m \s v* v
• • • — .^ —
inoooo^-^^inmini-nininin
\/ co en en en cy* CJN c^ \/ ^/ »^ T^ \/ ^/ ^/
CN CN CN
00 00 00
— <— .—
^^-cNvo^*^r— CNCNCO-.S'
i i i i i i i i i i i i i i i
Q Fr^ f»1 PL) r^ Eij ^ Crj rh "T^ >— < >— i s^| SX Ky;
00 — ( <)• O
CN OO OO ^O
O O O O
. . • Q Q Q Q Q Q Q
o ooozzzz z z a
CM in CN m ^D co
;(• ^-i in in
O •— 1 i-l — I O O
QQQ.Q QQQ
O OOOOZZZOZ ZZZ
tn r^ vo vo CN i-t
-d- CN tn en oo m
O — 1 ~4 ^H O O
QQ .Q . . • .QQ .QQQQQQ
zzozoooozz ozzzzzz
Q Q Q
Z Z Z
"**-. ^^^ ^^,
QQQQQOQQQQQQQC1QQQQ
zzzzzzzzzzzzzzzzzz
r- ^- T-
tn en eo
f— t-^"t— eo»— cNtn>^»— CNVO»— »— *— cNCNen^"
i i i i i i i i i i i i i i i i i i
f**i cO ^ f^ fo TT1 M &1 rTt c^ c^ r*3 TI t— i >— » ^ sx sx
*J
i-H
O
o
o
A-7
-------
OS
o
o
Ed
CH
<^
U
OS =0
p =>
--- H as
-a z M
ai < H
3 t-< J O H
C O Z <
O CM t-4 ^
o H '-a
<~s >i < H
CQ W CO
- a: <:
| < 3
< H Q
< Z 3
-O O O ~~s
18 Z Z
H t— i i— i
i§
H
<
Z
O
o
—4
00
^E
to
C
0
•1-4
4-1
CO
4-)
C
tl)
O
£
0
u
OJ
r-l
O-
CO
CO
10
01
Q)
0
o
V4
B-i
Q)
4-J
tO
o o
•<-( *—
r-l O
O. < <
3 Z OS
Q V
in in in in
col O O O O
o oo o
col O OOOOOOOZ ZZZ
Q [ V V V \/
in m in m
CN| O O O O
O O 0 0
^•J • • • • ^ ^ rf <^ ^
«1 o oooooooss 2:2:2
Q 1 v v v v
ID m lA LO O
t-lj O O O O i—
o o o o o
cfl 1 SSO23OOQOOO 22Z;O2;2-!3
O N/ X^ \/ \*** \/
CJ uniniAm <; <3 3
Hi
e^j /-s i— )>^-T— rO*"CSl(sr)-»3'<-"CSl-O' — * — •« — CvJOJCO-^
QJ -O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T3 QJ p^fQ^^f^^p^frTr^pg^r^r^'-n^^^tv';
o y
u c
4J
c
o
u
N^/
to
C ^v
CO OJ
4J —1
3 -O
,-1 to
u ^ c
C O 01
CO O-i E
4_) CO
3 ^ -^
r-l CO
r^ C 0)
O O T3
Ol -i-l -H
4J C
C CO
> 0
o
o
m in oo co
cr> oj i — -~H —~l
C^J C-4 0s" ^ «~~ U") lO CO OO CO
~-l-— ZOZZZZZZZOOOOOOO
r- r- r- r- CM
i—4^i — CO < — OJ CO ' — ^- T— CM CM CO
-------
^
OS
o
H
<£
O
OS CQ
O 3
fa to
x-v H OS
T3 2 W
CD -• >H < H
DO W W
— S <£
1 ^ ^
rj~ — i r^- o inmm
E ^OCO—IOCMOCO r^COrH
tOl r-OOOOOO2 OOO
to Q
C
o
• r-4
U
tfl
r-l
4-J OOCNJ^)^ OOCM
C f\i in r*~ ^- CM CM r*^ cj> co in o m
4) *3" ^"0 r— 4 -^ -3" CO ^ O O OO CO r— 4
C « ON OOOOOOOOS OOO
o a
u
OOO^OC^CNJC^OO -J- o <|-
— -1 1 O O ^O ^O tO rH CO CN] p** *sO O'* LO LO ^
>-J • ••*•• » • Q Q • • •
51 ooa\ooooooo oszoooo
Q|
un
O *^~ CN)
D O O ^^ ^3" "^" >^" ^" vD ^O *^D • * •
O O O "N!" O*» O^ O^ O^ rO n fO r—i O O
^ com<— ooooooo -^-^^.
^0 0 OOZOOO 0000 22 25 2 2 2
D
r^ +- •— i— T-
CLCU *— T— CO*— COCOCOcOCOCOCOcO*— CMCM -^^.
E O. co co co
td r*1
W H
CO
U]
Q! c*i x— N i 1 >3"i CO' — CMCO^i CM^Oi ' ' C*JCMCO C
c o
QJ V4
g •"
0
o
c
o
r— 1
V V
-3- CM -—
1 1 1 1 1 1 1 1 1 1 1 1
CQCQOQrXjUCdkJfafarlHO
c
QJ
OC
o
rJ
4-J
• r-l
c
£
cd
, — 1
0)
-r~l
^
o
a
1 — "Z — I
V \S
r-4 — < rH
V W
o
,— r_| r-l r-l
\S \/ V N/
o
• Q Q
•— 2 2 — 1 — 1 rH
V V S/ V
—1 r-4 r-4
O V V V
. Q Q -^ -^^-^^
\S V W
i — CM CN CO CO CO
i — i — CM CM CO ^t
1 1 1 1 1 1
JIJ ^ •— ) ^ t^I ^
A-9
-------
a
I
Q
oqn
E
O
r~-
co
O
m csl
CO "1 ON
VD IO u"i
o r^ o CM co
»O r*1 ^t CO en
^ o o o o
o
Q Q
oooozzz
O Q Q
2:22
OS 4J
0 C
O c_5
^ PQ
O 3'
/-N H OS
"O 2 W
cu < H
C 3 3 OS
•H _J M
4J nJ CJ H
c o s <
o a. 1-1 s
O H to
— ' !>• -^ H
CQ W W
i- I3C <
I < S
< HO
OJ Q <£ ^ ON r*** cy\ ^^ 10 i/^ ^— JCMCMCN]CMONr^ vj-OCMCMi/*iinu~i OOOOOC'OO22S O2I2
Q| «- i- CN
<}• vO i —
• • •
D OOO O T— ON iO u**l \O LO '•O CM OO r- 1 • — 1 — 1< — 1
CJ OO^d"vO^vD**D^D OOr^i — < — •^x.~^s, **-*, r** O ' — 1 i — 1 — 1 i — '
Q Q Q
O O O Q
a Q Q
2^2
Q Q Q Q
H
§
a)
r4 *-
a ai
n) >,
co H
U 0)
OT3
M O
-a i i i i i i i i i i . i i i i i i i i i i i i i i i i i i i i i i i i i i
o
a,
o
a,
to
c
o
c
CD
>
I
0
2
CO
0)
C
c
ttf
oc
c
ttt
E
A-10
-------
s-^
•a
0)
3
C
.^
4-1
C
0
u
^-^
1 —
1
<
ai
—i
n)
oi
O
H
^
E-H
ZD
, 1
i_J
2
CO
^
£-H
^
td
Q
m
i— t
Q QQQQQQQ
r- in in
csl CM ^f ^f in
o o o —t
>i • ..QQQQQQQ
tfl 0 002ZZ2SZ2 O
Q!
^
^
>,
tfl
Q
^>
O
QQQQQQ .QQQ QQQQQ
ZZ222Z022Z ZZ222
O
m
rH
cu
o
j_j
•
O
\
3 QQQQQQQQQQQQQClQQ
O 2ZZ22ZZZ2Z22ZZ2Z
col
01
t-H -r-
O. 0)
E &,
« >-
^^rn^ncnrotnfOroc^c^r-cMCM^.
n
to H
w
03
Q
2
Q
Z
Q
2
Q
2
—
Q
2
^
n
Q
2
Q
2
Q
2
Q
2
Q
2
^
m
,— — i
O c^
\s
^
2
<
2
r-( — r- 1
O O 2 CM
V V
r-( — O
• • <^ •
co CO 2 CM
^/ \/
t— r- T—
o
v
O
o
m o
co r^.,
; ss z •z
in in
ro t-.,
: 2 22 2
O 0)
p"°
l-i o
O-i o
o
•J- r—
c
o
o
c
o
z
E
3
C
cu
73
o
^
t— 1
O
E
A-ll
-------
d
a
o
ro
o
V CN
35
0
O
c_i
<£
QJ
OJ 03
O 3
In CO
•^ H Dd
"D Z W
a; <; H
3p . ^ _.
C~" ^i '^
C r> 2 OS
•H ,J W
4J J OH
C O Z o oo in oo cn oo i~- oo
Q| .— CM M M M vD t^ M mm
M ,—
CM
• m en
O . •
CU OOOO OOMf--CT\
o ooo o oo-~~-^\
Vj oooo^cMoooooooor^r^o ^^MMM
co * — cNj*~MMMi — i — ( — r^r^
M
dl
rH -1- — .- ^>
Q.Q> i — i — CO^— COCOCOCOCOPOCOrO*— CMCM — ~~^ — *
E O. co <*1 en
nj ^i
CO H
y>
co <*9 ^^ 1—4 *^ f— cn ^"- CM en -^ ^^ CNJ ^o v— ^— ^— CM CM en -^
0)0) T3 Illlllllllllllllll
O*O 0) i*^ rO O O FT1 M M TT1 TTi FTp ^ O ^ M P~^ fs^ |^ fs^
O 0 3
VJ O B
Pu M
B
O
U
CO
4J
C
tt)
4->
3
4J r-<
C 0
05 CU
4-1
M IB
M B
o o e
OH tH 3
B T3
cu o
> m
B
o
o
B
0
(^ V
OO
in irt in in —i o o
V V CM OJ r-t r-J r-l
-^- v
o
T— CM CM CM CM CM
i i i l i i l
01
4J
0)
A-12
-------
CO
o
a
3
o
o
«—
V
o
o
o
V
o
o
o
o
^^
•o
01
3
c
T4
-J Cx3
•J OH
O Z <
Oi i-l 3
H U
>• < H
03 W CO
< ^S
H a
<: z 3
d ,
«
Q
rH
cT
Q
01
U
t-i
3
O
CO
0)
i-l 4-
a tu
E a
td tx
co H
CO
o-o
o o
z z z
o
!-•,-•
\s V
O i-l r-l-t OO
• • • • • •
vD OOOOoOOO
.-I U-ICM O .-
.-i en o o .-I o
oooomoooo
V
CMi-< co
oo o
000
V
m CM
i-l .— ~* fl —I i-t r-t
o ooo ooo
T- OO CM CM CM CM CM CM CM'-<•—•—'— r-l ^H •-!
»- >— CM CM ^- •— — i— T- in co cn co co ro co ro fl >— CM CM tn co m
•O I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
c
o
o
c
o
3
B>
cd
*J
u
n)
M-I
u
3
m
A-13
-------
T3
01
3
C
O
o
OS
O
O
u
H
<
O
Qj 30
00
b en
a 3 os
j w
J O H
2Z <
M 3
H W
>" < H
CQ &3 c/i
ac d" f>
OOOOOOOO
QQ Q
ZZZ
tS vorO in u"> in ZZZ oo i—I co co CO i-4 ZZZ
- OOOO -^-^->» OO .-I ^4 •-( O ^.^,-~.
QQQQ . • • .QQQQQQQQQQ QQ • .QQQQ • . . .QQQQQQ
zzzzoooozzzzzzzzzz zzoozzzzoooazzzzzz
d. O
2: o
< O
CO
H
I
Z
O
HI
I—I •*-
O-O)
e a
to >,
ton
a>
m K»
C.
o
u
o
z
A-14
-------
, • < < < < <
Ccfl o -Hc^co*— OOOZZ ZZZ
OQ ^- r- oo r~ r-. o O O
CJ »— r-- r- r-.
t-(
0
cd zzozcr\coooooo zizszzzzz
Q m r-ocr*\ooo
— v- t~- 00
cu <: < <;
J3 ^ ^J ^1 ^ ^ ^J ^ ^1 ^1 ^
O IS 2S ^5 Z f^ r^* ^^ ^^ O ^3 ^^ Z 2 53 3 2 2 2
w o oo
oo oo oo
0)
r-l •!-
e a
w H
CO
aicu *a iiiiiiiiiiiiiiiiii
o *o cu PQ CQ u Q r*i r*i w FTI r-i r^i ^ o 3C ^ *~^ *^ ^ s/^
O O 3
l-i O C
4J
c
0
o
TJ
» --J
tJ l-<
to 01
4J
3 T3
4J| i— 1 >
c o -i
CO Ou O
4J CO
3 i-l CO
rH CO -rf
r-l C T3 ^v
O O W
CU -i-l r-l Q
4-1 0) H
C u^
(U O
> 4J
C
O
o
c
o
Z
m in -* o m
o> in vo r4 in m -tf o\ -*
o ^ ooo — vo co t— oo o oo ro m
-
c ^^
CJ
~l O
C8 E-^
0
i-l
A-15
-------
•a
cu
4-1
B
O
O
£
as
O
e>
Id
H
U
01 PQ
O O
H Oi
z w
< H
J ^ td
SZ <
t—< 3
H W
>* < E-i
CQ W en
< ^3
^ Z3
z z
J J
eu o
s o
< o
H
u
o
u
IV
4J
O O -H
•H CN O
r-l O 0
a
3 o o
Q V V
^ — t r-4 — 1 — 1
OOCO vD O O O O
E OO O O O O
co o oooooomoo
CO Q CN X/ \/ X/ "V* CO T-— O
C CN <-
0
4J
l-l
4J ,— | r-( ^-) ,— 1
C CNl CN O O O O
V i
W H
CO
CO C0» y->i 1— I -^ ' — C""> »— CN CO >^ ' — CNJ^D
CUQ) t? Illltllllll
OT3 CD pfi fO r_T p> fVI frl Frl fll b1 [T, fa^
003
t< o p
a, .^
4J
c
o
o
CO
4-1
C
CO
u
3
4-1 .—4 CO
C 0 -J
cd CU O
•U C
3 ^^ CJ
rH CO £
r-l C O.
O O
CL, .H ,-<
4-1 CO
C 4-1
CU O
> 4J
C
0
O
c
o
O -I
CN CN O
OOO
• • •
OOO
\/ N/ V
cn^^
CM O O
OOO
ooo
x/ X/
O ao *£> i — I
CXI CN O CN O
CN O OOO
O O OOO
\/ X/
O CN CN CN O O O
— 1 OO O OO O
OOOOOOO
wxxx/xxv
, — 1
O ^D
r-l O CN
o . o
• o •
Oxx O
\^- ^ —
CO O O •—( t— 4 i— t
CN CN cxl CN O O O
OOOOOOO
OOOOOOO
XX X/ X/ X/ X/ X/
"~
*— * — T— CN CXJ CO o — *
O OOOOCO— 4OOO OOO
\/
SjNScNO^^^^in ^CNCOOOOcNr,
csjoJOOCSCNiOcMCNii/> oovnr^root^
OOOOOOf-IOPOO OOOOOOO
W V \S
^ oo m
iTi O fO
• • •
in u^o o o
o o rn co ~^» "~ — "^
f— (T— OO"«d"vd"'^"d"CSl^'«^"'^"-^''«^'
CMCJCN^^CMOJCN ^3 C5 O ^5 ^5
x/xx v v
r-r-^
CO ro CO
i— ( ^T r— CO i — CNCO-^i — CNvO< — r- *— CN CN CO >3"
1 1 1 1 1 1 1 1 1 t ( 1 1 1 1 1 1 1
CQCQCOQWWWWC^feCnOE*"!1"!^^^
CO
3
o
a
CO
o
a
1— 1
CIS
4-1
o
4-1
A-16
-------
Q
z
00
E
CO
o
ro
^,
CO
o
a
z
a a
z z
Q Q Q
Z Z Z
Q Q
z z
Q i"*> Q
z z z
Q
z
O Q
Z Z
Q Q Q
Z Z Z
Q Q
Z Z
Q Q Q
z s z
^
"O
0)
3
C
• r-J
OJ
C
o
u
1
,
C CO
0 Q
U
, 1
>**
CO
a
!
1
i
i
01
u
1-J
§
Icol
0)
^H -f-
a CD
E a.
n) >->
OO E"1
CO
c/1
I) C«> x-V
U 0) -O
o -a o
^ O 3
PH U C
.,-«
C
o
o
CO
C
CO
m m c*i ^o
oo o in
OO O o
Q . . . a o a Q . a
z ooozzzzoz
Q Q Q
Z Z Z
Q
Z
QQQQQOQ .Q
zzzzzzzoz
Q Q Q
Z Z Z
LO m m CN
o o o o
o o o o
Q Q Q Q . . . . Q Q
ZZZZOOOOZZ
O
. Q Q Q Q Q Q
O Z Z; Z Z Z Z
Q Q Q
z Z Z
zzzozzzzzzzzoa;zzzz
o o o
o o o
aaa .QQQQQQ . .QQQOQ
zzzozzzzzz oozzzzz
Q a Q
z z z
QQQQQQQQQQQQQQQQQQ
zzzzzzzzzzzzzzzzzz
i I i i i i i i i i i i i
i I i i i i i i i i I i
i i I i i
=
0)1
A-17
-------
•o
01
3
C
•H
4-1
C
o
o
-Q
n)
H
W
H
O
oi S3
O ;=>
fe CO
H OS
2 W
< H
J Ld
J O H
O Z <
(Xi t-i 2
H Id
>c < H
CO M CO
-------
>•!
a!
O
O
w
H
0
OS 33
O 3
til CO
X-N H OS
-o z w
01 <: H
3 H <:--.
C !~i ^? rv;
•rf J W
•u J O H
C O Z •<
O CM 1-1 5
U H til
^ >
•-J O
^ O
a. aa aaaaa aa-
3 ZZ ZZZZZ ZZO
a
QO ~J aaaaaa aaa a .aaaa .aa
col zzzzzz-x zzz z ozzzz ozz
al
1 CO
0
0
\o r— in •
CN| CN O O O
0 J a aaaaaaa aaa a .aa.aaaa --a
101 Z ZZZZZ-XZZ ZZZ Z OZZCMZZZ*Z OOZ
a|
vo — i a
^-1] 1^ 0 Z
O CM O -- .
p>J aaaaQaaaaa aaaaaaa aaaa.aa.aa aaaa. a
lOl ZZZZZZZZZZ ZZZZZZZ ZZZZOZZCNZZ -KZZZZOZ
a|
in in
m in !~^-
o o o
o o o
o o o
oil acaa — i
-------
Q
Z
o
o
o
Q
z
Q
Z
a a
Z 3
Q
Z
Q
Z
a
z
Q O Q Q Q
Z 3 Z Z 3 *
O
z
O Q Q
Z Z Z
Q Q Q Q Q Q O
z z z z z z z
Q Q
z z
-o
0)
3
c
c
o
o
o
O
M
U
OS 33
O n
c*< en
M
H
<^
2 as
M
O H
H ^
< H
W CO
X <
Q
Z "3
>i
CQ
<
H
<
O •
O !
z :
J i-J
PJ O
•5 °
< u
w
U
OJ
r-l +-
O- 0)
E a
tO >!
CO H
o
Z
a Q
Z Z
CM
CO
O
o
Q
z-x
.aaa
zzzzzozzz*
Q
Z
Q Q Q Q
Z Z Z Z
aaaa
zzzz
Q Q
Z Z
Q Q Q Q Q
Z Z Z Z Z
a Q Q
Z Z Z
0000000000
zzzzzzzzzz
aaaaaaa
zzzzzzz
a o o
z z z
aOQQQQOQQQQQQQQ
zzzzzzzzzzzzzzz
aaQaaQOaaaaaaaaaaa
zzzzzzzzzzzzzzzs:zz
o
U
U QJ
p -a
^ o
r^ j
A-20
-------
tO
0
"-1
-1
H
3]
Ql
^~\
-H
Men
E~
CO
CO Q
C
0
>r-t
4J
CO
>< i-i
as u
O c CM!
O 01
w o H
H C col
< OQ
U 0
OS CO
O 3
tn en
/-s H OS
"O Z W U^
d) -< < H
CO W t/j
T— 13- ^
' < 3
< H Q 0)
^Z 3 0
d) UJ -^ <£ V4
^2 O O ~— • O
to z z len
H t— i i— t
J J
Pu O
SO D
< U PH -1-
cn D.4)
H E 0.
0 to ^
< en H
H
Z
s s
0) e0>
O 0)
p-o
(J O
B-IO
^^
"O
cu
3
C
jj
C
o
^s
t-> CO
C u
u to
-i 3
O ,-1
DJ O
Pi
1 — , —
o o
o o
Q
O Z O
Q Q Q Q Q Q
Z Z Z Z Z Z
^D CM
00
00
OQQQQQC3 • •
* zzzzzzzoo
r-l ,— r-l CO<—
o o o o o
o o o o o
oozozzzzzz oo
~3" 'd'
o o
0 0
Q • Q Q O Q •
* * zozzzz* * * o*
CNCMCMCNJCVJCMCNCMCMCMCNCNICXI
^-i ^-, — en*— CMCO^T— CN^I <
i i i i i i i i i i i i i
OJ
c
tO
JS
4J
(1)
0
I-
o
>-<
o
'£
1
r-t
r-1
r-H
,- CM
0 0
o o
, .
o o
^ ^^^
O O -— 1 CO
o o o o
• • • •
o o o o
^^
*£> ' — I r^- co
CO OCOCJV
o oo o
o o o o
<* I-l 1-1 !-< P-
O O O— I CO
o o o o o
o* o o o o
12rHfC
•— O CN1
o o o
o o o
<— t— ,—
i i I i t i i i i i i i i
O
tO
:
a.
A-21
-------
•a
01
e
•H
4J
C
O
U
x_^
^—
1
<
CJ
f— 1
.Q
M
«
O
O
w
H
<^
U
O 3
H 3S
2 M
<: H
H< < H
=Q W M
S <
<: 3
H Q
<: z 3
Q }• -J QQQOQQQ ..a
to zzzzzzz ooz
co a
C
o
•H
•U O CM O CN
C >J 1 ^ >^ >d" ^"
CD O O O O
CJ>J Q QQQQQQQ. ...
CcO Z ZZZZZSZO OOO
o a|
CO CO CNOOOOCMCNCM
— -1 O O ^^ O O *3" ~^ ~cf
oo oooooo
CO OOZZZZZZZZ ZOOOOOO
a
! coro
*d" "^
o o
OJ OO OO OO 00 OO • . Q
o oo oooooz
^J O O OOO ^ ~^^
3 . • Q /"*! Q Q Q Q f*| Q Q /^ » . . (*"*) Q Q
O OOZ2ZZZZZZZZOOOZZZ
Cfl
CD
^ -*-
O- QJ ^" T— CO ^— OO CO OO OO CO CO CO CO ^~ CN CM CO OO CO
E Q.
c/> H
CO
0)
(Ue^s r— t^-T— OO«— CNCO'J'— CM^O«— ^— .— CMCNOO-— < K- \ sx Sf< "^
H 0
PnC_>
•o
CU
3
C
U
C
O —1
O O
•^ CO
CU
4-J CO ^1
C u 0
CO C I
u cd E
3 -u i
^30
O •— 1 O
O-, O r-l
cu ^
o
>, 1
u a
i-j
o
•H CM
^ CM
O ITI OO
r-~ — i o
O — 1 O
Q Q
o O ;z z o
O vo CN a\
ooo
ooo
m m in in m
•^ >^ CTN 00 00 CO 00 "*O OO OO *^ ^H r— t
—4 ^ *~4 »sO vO ^O ^O O O O O O O
OO OOOOO O O O — 1 r-H r-l
oozooooo* * * ozooooo
CNCNCNOMCMCNCMCMCM'^CMCNCNCNCNCMCMCN
r-l-S'r-OO^CSIOO^r-rMVO^r-'— CNCMCOO-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E
o
o
p
0
^~j
-C
o
.
CO
OJ
A-22
-------
E
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
^-x
•O
D
a
c
.H
u
c
o
o
N^X
1
<
QJ
i — i
_o
i2
OS
o
ELI
H
<
H
3
J
iJ
O
Qj
>•
33
;
u
c
oj
o
c
0
u
s
Q
CM
>•,
CO
Q
U
^^ >1
04 n)
Ed 0
< '
3
Ed
H
3
•^
0)
o
$ H
^^ O
en
aj
^i -t-
D. 01
Q Q Q Q Q Q Q
Z Z Z Z Z Z Z
Q Q Q
Z Z Z
Q Q Q Q Q Q Q
Z Z Z Z Z Z Z
Q Q Q
s z z
Q
Z
Q Q
Q Q DQ Q
z z z z z
Q Q a
z z z
Q
z
Q Q
z z
Q O Q O Q
z z z z z
Q Q Q
z z z
aoaaaaaaaei
zzzzzzzzzz
Q Q Q Q Q Q Q
Z Z Z Z Z Z Z
QQQQQQQQQQ
ZZZZZZZZZZ
Q Q Q a Q Q Q
Z Z Z Z Z Z Z
QQQQQOQQOQCICQQQQCIQ Q Q Q O Q O Q
zzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzz
O
u
(0
w
O tJ
0)
21 o
A-23
-------
OS
O
r£j
C-4
fn CO
>-N H OS
•0 Z W
01 < H
3 EH < ^
C 0 2 as
•H -4 W
4J -4 CJ EH
C O Z <
0 a- rH3
U tn Cd
^ >- < H
CD W CO
T < 3
< H Q
< Z 3
CU Q < <
-H OS
_D O O ^
tO Z Z
rJ rJ
cu o
s o
CO
H
| Z
E ^~
^^>J QQQQQQQ QQQ
to ZZZZZZZ ZZZ
CO Q
C
O
4J
to
4J r^ Q
C rsi ^-i z
cu o --.
O>i Q QQQQQQ.Q QQQ
Coj Z ZZZZZZOZ ZZZ
O Q
O
ITI Q
-1 -HZ
O \
X QQ QQQQQQQ .QQQQQQ
tO ZZ*ZZZZZZZ OZZZZZZ
Q
CU 00 QQQ
0 O ZZZ
3 QQ .QQQQOQQQQQQQQQQ
O ZZOZZZZZZZZZZZZZZZ
co
cu
Cl.'aJ tNCMCNCSICXICMCMOJtNCNrslrjCMC^CNCMCSlCN
E a
to >,
CO H
to
to
CUc^} ( — l~3"i — COi — CNC^^'i — C*Jv£>i — i — * — CMCMfn^d"
U CU 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1
O"O rjf) rr\t^ (~\ \-r"\ ^ FT"] [jT fT, [T , C±j TJ1 T^ 1—* •—, ^ ^ ^
t-l 0
P-.U
Q)
^"N C
T3 CO
0) r-t
3 X
c .c
•^ -U
4-1 01
n o
O VJ
U O
^ ^-(
4-1 tO O
C 4-1 -r-l
tO C "O
4-J 10 1
3 4-1 to
r-l 3 C
— 1 rH tfl
O — ^ V4
CU O 4J
cu P
CSI
X -
il ^
0
•r-l O
Cu
Q Q Q Q a
*Zt -3 2w *Z, *2^i
Q
•z.
QQQ QQQ
Z ZZ-k-X* ZZZ
Q
z
•V
QQQQQ QQQ QQQ
* ZZZZZ-XZZZ ZZZ
Q
z
-•^
QQ CJQQQQQ QQQQQQQ
ZZ* Z2ZZZZ-X Z2ZZZZZ
Q a Q
ZZZ
QQQQQQQQQOQQQOQQQQ
ZZZZZZZZZKZZSZZZZZ
CXICMCM^JCMCNICNICSICMC-xlCNCSI'Mfvl'slcNCNC-l
rH
-------
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
"O
0)
3
C
-> < H
CQ td en
< 3
H Q
< Z 3
Q
-------
x-s
T3
^
c
JJ
c
o
U
• — '
1 —
1
<
U
.0
rfl
H
>-i
•*:
O
O
U
H
<£
C_3
o£ CO
0 =>
b-i co
H ai
Z W
< H
C—t ^ '""N
3 3 as
J M
J O H
O Z <
Q* M 3
t-t 51
>-" < H
CQ m ro
^r; <;
< 3
£J Q
< Z 3
a < <
o o ^-^
z z
h-l 1— 1
ij pj
PH O
s o
< 0
CO
f~t
U
g
o
U
0)
1-1
18 ON
CJ OO CM
•H 00 O
—1 r- 0
Ql
51 o o
Ql
i
^^v 00
-1 -10
-J ^00
oqoo T— o o
E O O O
51 CD 0 O * * *
m Ql
c
o
• r-t
4-1
18 ^o m
l-i — 1 O O oo
4J 00 O O O O
C IN oo O O O O
0) O O O O O
0 >,
Ct8 O OOOO-X**
0 Q
U
CO
\O O £N
CTi CO — ^ f^- O O^J -H CM
—1 OOOOOOOO
oooooooo
18 Z -t- O O O O O O O O
Q
i — r^ r^ i —
o o o o
0) — < •— r^OOOO
o oo ^oooo
lj OO OOOOO
O OO-KOOOOO-K**
co
(U
1 — 1 •*—
P-OJ CMOMCMCMOMcMfMcMtNCMCM
e D-
cd ^
co H
M
1/3
U 01 1 1 1 1 1 1 1 1 1 1 1
O"O ^ rf\ O O fT1 TT1 M bl TTi FTi rTi
^ O
O-i CJ
T3
11
C
•H
4J
C I)
o ^
o
i-) | W —1
C U £
^ C CJ
4J Ctf
3 4J (1)
— I 3 C
rH — < 0)
Oi -C
4-1
>] cu
•H
0
•H r^
OO O O> CS] t— 1
00 O O O 0
0 0 Z 0 ZO 0
in in
o co oo
CO CM OO
oo o
• » •
o o o
•-^•^ • — .
oo in in in m in
O O O— ll-l r-l
o o o o o o
z o o o o o o
CM OM CM CM y!
Q
Z
Q
Z
a
z
Q
Z
a a
z z
CM O —
o o o
Q
m o —
—4 CM •—
o o o
Q Q Q Q . . . Q Q
ZZZZOOOZZ
Q Q Q
Z Z Z
Q
z
Q Q Q
Z Z Z
LO in
—I O
o o
QQaaaaaa . .
zzzzzzzzoo
Q Q Q Q Q
Z Z Z Z Z *
Q Q Q
00 CO OO Z Z Z
O O O ~^\\
QQQQQQQQ . . .QQQQQQQ
ZZZZZZZZOOOZZZZZZZ
CMCSCMrMCMCMCSICNCMiXCMCMOMcMCMCMCMCM
—!-<)••— oOr-cMOO^-^-o^vO — >— ,— CNCMOO-3-
I I I I I I I I I I I I I t I I I I
A-26
-------
^
•a
3
c
4J
C
o
u
1
^
cu
v_l
_D
CO
H
ai
O
O
Ez3
H
^
0
oa M
O 3
H OS
Z M
< H
3 3 S
i-J O H
pz<
CX< t-> "3
H M
>< < H
CO [d 00
v
Q
CN
>,
CO
Q
,—1
>-,
CO
O
cu
o
Vj
3
O
t/1
1)
1— 1 •»-
o. o>
E a
« >,
W H
(0
to
o cu
o-o
1J O
OiO
5
0£
E
01
C
o
4-1
CO
u
c
0)
o
c
o
0
11
r-H
O.
E
«
w
(0
to
Q)
O
0
l-i
O.
CU
4-)
CO
O
•i-l
p-l
G Q Q
3 Z Z
Q
vO
fOl O
O
>J Q . Q
CO Z O Z *
al
CNI
>J Q Q Q Q Q Q
C0| Z Z Z Z Z Z
a|
oo
to •*
pHl 00
0 0
>-J a a a • a a a . a
CO] ZZZOZZZOZ
o|
CU ,
H
c*) — •(•j'^-rn^-CNico-^'i —
tu 1 1 1 1 1 1 1 1 1
"O f"l ro r_^ O r'1 r'T M M TTi
O
0
"O
QJ
3
C
<-> C
C CO
0 £.
cj u
s_^ QJ
E
4J| to O
n 4J E
CO C O
4J CO V-l
3 4J .O
-ISO
r-H t-^t Ul
0 PH 0
CL< O r- 1
CXi r^
O
CN
O
O
Q . Q
Z 0 Z
in oo 10 v^
o o o o
o o o o
a ....
z* o o o o
l-v.
o
o
vO "1 •
O O O
OO^-
Q Q Q . . Q
z* z z o o z
Q
z
^
-------
•a
0)
3
c
c
o
u
o
o
w
OS
O
H as1
z w
J < H
as M ty:
< 3
H Q
< Z 3
Q <£ <;
O O ^—•
H <-< h-i
CX O
s o
< 0
co
H
O
O
u
0)
4J
tfl
a.
?
a Q QQQ
Z Z ZZZ
JQ
~-t
~~ r-< Q
00 ro
g
— ' >-
o z
o -^
Q Q Q Q a Q
tO Z Z Z O * * ZZZ
co nl
c
o
• r-l
u
4-1 Q
C CN| Z
01 -^
O H QQQQQ QQ QQQ
C tO Z ZZZZ***ZZ ZZZ
o al
o
z
^
>,
tC
la
^H
O
o
Q Q O Q Q O Q O Q Q O Q O Q •
zzzzzzzz** zzzzzzo
i
01
o
1-1
3
O
C
c n)
o £.
O 4-1
^^ 0)
e
.u
c
cfl
4-1
3
'—|
O
OH
CO O
4J E
C O
to 1J
1 i n
3 -H
•H 0
0 U
OH! O
"-1
H £
4J1 O
J_l
o
Q Q QQQ
Z Z ZZZ
Q QQQ QQQ QQQ
Z ZZZ ZZZ ZZZ
s
o
o
o
Q Q.QQQQQC QQQ
Z ZOZZZZZZ ZZZ
QQQQQQQQQQ QQQQQQQ
zzzzzzzzzz zzzzzzz
QQQ
ZZZ
QQQQQQQQQQQQQQQQQQ
zzzzzzzzzzzzzzzzzz
^^.^^-^tn^m^^^fo^cNcsimrot-,
1 l 1 1 l l 1 l 1 l l 1 1 l l t l l
Oi
C
o
o
D-
o
to
• r-t
.
A-28
-------
Q
Z
QQQ
ZZZ
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
bpfll
>\
,— N
•o
01
3
C
.,-1
4J
C
o
0
^^
1
l
oa
<
H
<
Q
O
z
t— (
J
DM
^
«5
C/3
H
>,
«
Q
-1
^
2 02 cfl
Q
0 H
t— i ^2
H W
< H
W W
§
'"'I
Z ^2
^ *^
^
C^J x_^
2
01
O
j_j
^
O
»_l
J
O
O 01
U -4.4-
Q- 01
H E oj
< WH1
t-i
Z
O w
O w
O 01
o -o
l-i O
a. o
Q
Z
Q Q Q Q Q Q
Z Z Z Z Z Z
QQQ
ZZZ
Q
Z
QQQ
ZZZ
QQQ
ZZZ
QQQ
ZZZ
Q
Z
QQQ
ZZZ
ZZZZZ
QQQ
ZZZ
Q
Z
QQQQQQQQ
zzzzzzzz
QQQ
ZZZ
QQQQQQQQ .Q
ZZZZZZZZOZ
Q Q Q a Q Q Q
Z Z Z Z Z Z Z
QQQQQQQQQQ
ZSZZZZZZZZ
Q Q Q Q Q Q Q
Z Z Z Z Z Z Z
QQQQQQQQQQQQQQQQQQ
zzzzzzzzzzzzzzzzzz
QQQ
ZZZ*
Q Q G
ZZZ
QQQQQQCJQQQQQQQ
zzzzzzzzzzzzzz
i i i i I i i i i i i i t I i i i
C
cfl
4-1
o
D-i
"0
01
C
o
o
M
4-1
C
cfl
CL
CO
C
°l
£1
A-29
-------
c
o
o
-O
tfl
H
8
w
H
CJ
OS co
O 3
H OS
Z W
< H
J W
J O H
O Z <
H W
!x
-------
-o
0)
u
c
o
u
_o
eB
H
><
as
O
O
w
H
~
co
01
Ml
01 rz»
O 0)
O T3
>-l O
O, u
Q
2
Q
2
Q
Z
O Q Q
Z 23
Q Q Q
222
Q
Z
Q Q
2 2 *
a
2
O
z
a o a
2 z z
Q
2
Q a Q
Z Z 2
Q a
z z
aaaaaaaa
ZZ2222ZZ
Q Q Q
Q Q Q Q Q Q Q
ZZZZSZZ-X
Q Q Q
2 Z Z
22Z2ZZ2222;
Q Q Q Q Q Q Q
2 Z Z 2 Z 2 Z
Q Q Q
Z 2 Z
O
O
QQ .QQQQQQ
Z3O2Z2222
Q Q Q Q Q Q
2 -X Z 2 Z Z Z
o
o
2ZZ2ZZZ22Z2ZZ2
Z2Z2Z22Z2ZZZZ
o * *
ClQ^^^
ZZ* -K *
i I i I i
I I i i i i i
i i I i i i i i i i I i i i I i i
3
c
• r-l
4J
C
o
Q)
B
•o
O
01
o
-a
o
01
o
H
4J!
A-31
-------
as
o
p.
I
Q
z
Q
z
Q
Z
Q
2:
Q
Z
-O
01
O 3
fK Cfl
Z W
< < H
CQ W r_o
$**
<: a 3
Q lvo»—*—T—
i i I I i I I I i I i I
I I t I I I
I I I I I I
^. 01
TD C
0) -H
3 E
c o.
0 0
U VJ
^^ Cu
1
CO
1 1
c
to
4-1
^
— 1
r- ^
o
CL,
C
1
•H
•o
O
CO
o
4J
•i-4
O
dl
a
o
x:
a
ctf
4J
C
0)
D-
O
•rH
ft.
A-32
-------
/~\
CU
3
C
•H
JJ
C
o
0
•V
«—
1
<
CO
Q
00 CO O CTi
CM r- oo r^
O CO r*~ rH
• • • d O Q Q d • f"*l Q /*~t Q Q Q
0 00 3 Z Z Z Z* -X OZZZZZZ
01
O
H
^
O
w
O O Q Q Q
r^l , Z Z Z
o o -^^^
' • • Q d Q O O Q d Q Q Q Q
OO* * ZZZZ* -K * ZZZZ552ZZ
E 0,
CO >>
cn H
^— ^— CO *— CO CO CO CO CO CO CO CO rm^ CM CM CO CO CO
M
CO
U t^t
O 0)
0 TD
1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1
o
o
d
1"~
. —
o
d
^
vf
~rj- o
CM O
O 0
O O
00
m
— I vO oo r— o
O O -3 r-i O
o o o o o
o o o o o
VO
VD
T— t r— CO Cf> O
O O O 00 O
O O O CM O
<•
0 0
o o
o o
o o
CM -*
in
r— O
, .
0 0
O CM CO
O O CO
OOO
OOO
O co co m
CM O ^O CM 00
o o o rv o
O O O r-l O
ooooo coooin
OOOOO —
OOO
OOO
o o z o o o
r^ rH r^ CM CM
OOO 0 O
oooooo oo
oooooooo
r- r— CO r- CO
1 1 1 1 1
CO CO CO
1 1 1
o o o z * o o
CO CO CO CO i — CM CM
1 1 1 1 1 1 1
CM
CM
— 1
.
o
\D O-
Or-l
O co
— 1 O
oo r^
m o
CM r-l
00
00
— 1
d
—1
o
o
d o d
o CM in
-------
^-^
T3
01
C
.r-l
JJ
C
O
U
^-^
^-
1
-*
01
J3
cd
H
>•*
•y^
0
H
U
a; 33
00
fe C/}
H cd
Z M
£S
fH ^ /*-\
|'™i ^ *Vf
rJ M
J O H
O 25 - < H
33 W c/3
3= <
< 2
HO
< Z 2
Q < <
Qi
O O *— '
z z
)— 1 K-4
J J
s o
<3 u
H
<£
H
Z
o
U
~
^
oO
E
CO
c
o
4J
n)
,j
4J
c:
c:
0
CJ
(U
cd
o
•H
—1
oJ Q Q a Q Q
3| Z Z Z Z Z
-o-
ro
r**
CO
Q
o
o
Q aa .QQ oaa
z zzozz zzz
ON
^-f
f~) \^
CN| O O
J 0 O
col z 2zozoz*zz zzz
al
— 1 1
bJ Q Q Q Q Q Q
51 z -z & zz & z:z & && 22222:22:
ol
i
v
W H
^ ^— fO ^— ro co CO CO CO CO CO CO ^— CNJ CN CO CO CO
CO
CO
OJ c^j
O OJ
O "O
<— 1 >^-i — CO »— CN CO ^d" i — CNIvOi — ' — ^-CNcNCO^
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
cQpquQCi^pI]rjjrjjCn[iH[3LlrjK'p~3l~3b^j3(-^
t-l p
T3
0)
3 0)
C 4->
•H CO
C CO
O £
U 4J
^x r"
D.
4J
C
cd
4J
3
r— 1
r-l
O
CL,
CO
4J r-l
C >N
CO M
4-1 C
3 01
r^ .Q
r-l
O —1
CM X
4J
>. 3
4J J3
O
^ ^>
CO O O r-l — 1 CO CSJ
O OOOOOO
0 O 0 0 0 C' O
o oooooo*
r-l r-l 00 ON
— icococNON' — ir^oOi — ico
C3 O O r— 1 O ^3 O ^3 O O1
oooooooooo
oooooooooo
m LO m m
CM CN CM CN
1*-- r*- t--* i —
CO CO CO O O O O
o o ooooo
o o ooooo
OO* OOOOO* * *
i — »— CO^^COCOCOCOfOCOCO
-^*3"i — COi — CN CO >3" •— CN VO
1 1 1 1 1 1 1 1 1 1 1
CQCQOOClJ^Ez^CXrCz^rbE^I
01
cd
r-l
cd
t~1
4-1
f.
a.
^-t
1>1
4J
3
J2
1
c
1
• r-l
"O
CN U1
r- O
o o
Q
zoo
r-l
r~t
o
. Q Q
0 ZZ
CO
CN - >^~ %-f r^
O O OOO
00 000
O O OOO
o
' — 1 CO i — - ^ M ^
A-34
-------
Q)
U
|Q
Q
Z
Q
Z
Q
Z
o
2
a
z
o
o
o
Q
z
o
o
OOro
E
OJ
3
C
I
5
U
« ca
O E3
; w
: H
-i u
J O H
22: <
P-I |3
> < H
CO IzJ c/i
s <
H Q
< Z 2
Q O <
cj O ^
a. o
2: o
< o
C/3
H
U
H
Z
o
u
il
CM —I
O CM
O O
Q Q . Q Q Q . Q
Z2 O22 Z O Z
CM
O O
O CM
O O
Q Q . O Q d Q .O Q Q Q
Z2O2ZZ2OZ 2 2 Z
a
2:
CU u»
O CU
O "O
w o
CM O
i c*> n n en CT— CM CM fi co ro »— r— fn ^-
i—I Vf •— PO '— CMOO^-—-CM^O.— ^-»—CsJCNC^ls^-
i i i i i i i i i i i i i i i i i i
CQCQC^Q[x3Ez3£x3tx3hi4£aufaOX
.— CM cN c»"> co ro
i i i i i i i
I I I I I I I I I I
-o
Cp
3
c
C
s
01
4J
CO
CO
O
CM
O
CM
l-i
O
£
a
r«
X!
u
J2
D.
CD
•a
A-35
-------
•o
0)
3
C
• r-l
4J
C
O
CJ
-O
£
>-<
QS
O
o
w
H
CO
I =0
1 =
en
H
Z !
: os
~x3
i H
<; H
M en
H i
g:
O l
z :
; 3
' OS
i O
i °
i O
)
H
H
Z
o
o
01
cti
o
•H
a a a
3 Z Z
Q
—i
• — CN
aflfo o
v-- >1 O a Q . Q
CO Z Z Z 0 z
ra a|
c
o
•H
u
CO
VJ
4J ro
C CNl 0
01 O
O >-J Q QQQQ.Q
CCO Z Z Z Z Z O Z
o a|
o
[H
X aaaaaaaaaa
CO ZZZZZZZZZZ
la
01
o
3 aaaaaaaaaei
o zzzzzzazzz
Icnl
0) I
r-l -4-
f) cu *~~ ^— c"O «•— ro co c^") ro c"O m
E 2J
co H
en Hi
CO
S an _i ^- ^- fn ^- CM tn 1 I 1 1 1 1 1 1 I 1
O*O CQCQOQWltlWWtLifa
V-4 O
P-i O
•o
0)
c
U
C 11
O J-i
O CO
•^X i — I
CO
u ail -C
C 4J U
CO C -C
4-J Ctl CL
3 4-1
r-l —1 X
O i-l JC
DJ O 4->
a. o>
E
ST. •-!
4-1 -O
VI
O
Q Q Q
Z Z Z
a Q a a
z z z z
i —
00
o
a . Q Q a a
z o z z z z
— i
o
0
. a a a a a a
0 Z Z Z Z Z Z
01
o
o
Q . a
z o z
aaaaaaaa
zzzzzzzz
rn0-),_CX|csj(v)r'i>n
^0 r- •— .-CN CN r->
-------
V*
OS
o
u
Id
H
1-3 a H
C 0 Z • i
n)
O
CM|
>^
5]
Q|
^1
1
H
5]
Ql
J
W Hi
01
en
ai ««
0 01
0 T)
i-t o
D-, 0
,^N
T3
OJ
3
C
4J
C
o
^-^
4J CO
C 4J
cC C
4J 03
3 4J
•-I 3
^1 r-4
O .-H
a< o
OH
>J
4-1
• r-l
O
Q Q Q Q a
Z Z Z Z Z
Q QQQ QQQ QQQ
Z ZZZ ZZZ ZZZ
Q Q Q Q fl C3 Q O Q Q O Q
Z ZZZZZZZZ ZZZ
CM •—
r-l O
O 0
QQQ .QQQQQQ Q .QQQa
ZZZOZZZZZZ * ZOZZZZ
Q Q
Z * Z
f^f~>pir^r~iQ^f'^r^fif~il^('~ir^f">'~>f'^^~i
zzzzzzzzzzzzzzzzzz
» — » — rn, — fOoocomrOf^fOfO' — cs|CN]rof">ro
, | ^.j., p-^, CNfO^f' CMvOi i < cs]cslcO>^-
1 1 1 1 1 1 1 1 1 t 1 t 1 1 1 1 t t
0)
c
CJ
V4
>^
a
^
nj
- — ^
O
N
C
0)
J3
,
o
o
a
z
QQQ QQQ QOi
zzz zzz zz:
o
o
QQQQQQQ • dad
ZZZZZZZO ZZZ
a Q Q a
z z z z
Q Q
Z Z
o
o
Q . O Q O Q Q
z o z z: z z z
o
o
. Q Q
O Z Z
zzzzzzzzzzzzzzzzzz
I I I I I
I I I I t I I
0)
c
0)
w
>,
l-l
u
A-37
-------
-I
c
c
l~
J
0
J
-t
i
151
IQI
/^N
•o
0)
3
C
•H
-U
C
o
U
s^
1
<
0)
— 1
tfl
H
0
H
a
<;
H
3
hj
j
o
cu
>-"
03
5
g
O
Z
1 — 1
^J
(X,
i
co
^
CX
0
o
w
c-<
<£
U
CO
Qi
w
H
IS ^
Zi2
CJ? f~<
z <
i — i ^3
c— i !ij
< H
W CO
3
Q
Z 3
-,
t)
2
Nil
H
°
a
-(
>-, Q
0 Z
a
i>
j
-j
3 Q
?
'
U —
aj
:!
^
) i
3
j
01
3
C
4J
C
o
U
J CO
3 c
J to CU
3 4-J C
-i 3 0)
-1 i—l O
D -H CO
U O VJ
Oi £
JJ
ij] «
Q
Z
QQQ
Z Z Z
QQQ
Z Z Z
Q
Z
Q
Z
QQQ
QQQ
•Z.-Z.-Z.
Q
Z
QQQ
Z Z Z
o
o
o
Q . Q Q Q Q Q Q
QQ
-J-
O
O
O
O
O
Q . Q Q Q Q Q Q
ZOZZZZZZ
QQQ
Z Z Z
i-Jt-j QQQQQQQ
zz* zzzzzzz
o
o
Q Q Q Q Q Q •
Z Z Z Z Z Z O
QQQ
Z Z Z
QQQQQQQQQQ
zzzzzzzzzz
Q Q Q O Q Q Q
Z Z Z Z Z Z Z
QQQQQQQQQQQQQOQQQQ
zzzzzzzzzzzzzzzzzz
QQQ
QQQ
Z Z Z
QQQQQQQQQQQQQQ
zzzzzzzzzzzzzz
i— ro *— CNJ ro
-------
CO
o
T3
01
C
C
O
O
OS
o
o
W
H
o
as CO
O 3
IK c/3
t~* OH
Z W
<£
3 SS"
J W
iJ O H
O Z <
DJ M 3
H Cx3
>M < H
« s3 w
a: [£>
o aj
OTD
M o
.— csjvo.— ^-^-
I I I I I I I I I I I I I I I I I I
i i i i i i i i i i t i i i i i i i
•a
s
C
a>
C
cu
(1)
C
-------
at
a
0
•H
H
oj
—1
00
E
CO
C
o
.,_!
4J
nj
£jH i_|
C^ J_J
o n
O 01
Cd O
H C
<£ O
O CJ>
aS CQ
O 0
fa CO
^•N E-I as
"O Z r-d
O1 rH -(-
CO D. 01
fH G O-
O n) >,
D Q
O O — I O —12
O O O O O -^
Q Q Q . . . Q Q Q . Q
0 ZZZO-XO02Z 2O2
I— 1
o
CM CM . C. _
— — 0 2 2
00\\\
aa aaaaa caa..aaQ
ZZ* ZZ2Z2* ** 22OOZ2Z
CMCMCMCMCMcMCMCMCMCMCMCMCSCMCMrMCMCM
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a3couawtdwwcL,fafaoni~>h~iNS^^:
01
£
0)
D
O
4-1
O
CO
CM
O
0
a a a • a
2 2 Z 0 2
a
2
a aaa oao aaa
Z 222 Z2Z ZZ2
—(
— i un Q
0 -1 Z
O CN ^
.aoaaa .a aaa
•X O222Z2OZ ZZZ
Q
C-J Z
1^3 * —
O vO ro -H — I
o -.
jr;
4J
OJ
O
1-1
o
,—1
r^
O
S-i
4J
r~
oo
A-40
-------
03
O
Q
Z
Q
2
Q
2
Q
2
o
o
o
o
O
O
O
O
Q
2
Q
3
OS
O
Q Q
2 2
Q Q Q
222
Q Q Q
2 Z Z
jl
OJ
u
C
00
aaoaaaaaa
X222223S2
Q Q Q
Z 2 2
Q a Q Q a * a
Z Z 2 2 2*2
00
O
O
o
o
•X .QQQOOQQ
-X O2Z2SZ22
Q
2
Q a Q
222
Q
2
Q a Q
222
fe CO
H OS
2 r-*3
< H
H < -
O 2
Oi i—
>< <; H
cq W co
i <
< Ha
< 2 :
at o <;
_D
03
H
O O -
Z Z
»—< I—<
J hJ
OH O
r o
< u
CO
H
u
a)
^-H -
o.
cd
w H
O
o
o
o
o
,— CNl
O
o
o
Q • a i
O
P^ ro
O O
O O
O O
a
2
OZ* 2O2ZOO-X
aa* QQQQ
O
O
o
ZZZ2Z22 2Z* 232202*
Q Q*
22*
Q Q Q
2 2 Z
QQOQQQQQQQQQQQQ
22222ZZ2ZZZZZ2Z
Q
2
2 2 2 2 Z Z 2
Q Q a
222
QQQQQQQQQQaQQQQQQQ
2Z2ZZ2Z2Z22ZZ22222
O
O
o -a
l-i o
i i i i i i i I
i i t i
i i i i I
i i i i i i i i
JJ
C
o
•a
,—i
w
T)
r-4
0)
• ^
T3
A-41
-------
•a
0)
D
c
c
o
o
5
o
o
Cd
H
U
OH °Q
2£
££
< H
E—t ^ ,^x
a 3 oj
,-j u
J O H
2Z <
I-H !3
H W
OQ 2 CO
< 3
H Q
< Z 3
O 0-
Z Z
t—I >—I
,-J I-J
OH O
2 O
-------
•o
cu
3
C
C
O
o
05
O
o
03
H
0
05 CO
O 3
H OS
Z W
< H
H <:~
J W
»J O H
O 2< ^
O, t-( 3
H I
03
Z 3 Z
a
z
o
z
a
z
a a a
z zz
a
z
a a a
z z z
a
z
a a a
Z S5Z
a a a
z z z
a a a
z z z
a
QQQQQQOQ
zzzzzzzz
o
o
o
o
a Q a
Z Z Z
Q
Z
Q
Z
O
o
o
Q Q . Q Q Q Q Q
zzozzzzz
Q Q a
z z z
a a Q a d a . a Q Q
zzzzzzozzz
Q Q Q r^ Q O O Q Q Q Q Q Q f^ Q O Q Q Q Q Q Q O Q
zzzzzzz zzzzzzzzzz zzzzzzz
cu O
2: o
< o
H
o
CJ CD
o-a
>J O
Q Q Q
Z Z Z
zzzzzzzzzzzzzzzzzz
Q Q a
z z z
QQaQaaaaaaaaaaaaaa
zzzzzzzzzzzzzzzzzz
t— CN^O'— »— »
I I I I I I I I I I I I I I I I I I
i I i i i i i i i i i i i i i i i i
-o
a;
3
c
o
o
p
03
4J
3
O
a,
c
"3
o
a,
a
a
a
c
«
M-l
^~i
3
«
o
"O
c
0)
A-43
-------
o
I
Ql
O
2
Q
z
Q
2
Q
2
a
2
Q
2
a
2
•o
0)
3
c
• r-4
4J
C
o
u
V •
1
<£
0)
— 1
-Q
IB
H
r^
O
IK
CH
2
H
f i
j
g
>J
CQ
<
H
<3
Q
o
•z
1 — 1
OH
r"
-<
02
O
O
Id
H
<
0
03
3
CO
OS
Id
H
-,
as
a
^J
X
fl
Q
Q)
C_l
Vj
1 -^
o
co
0)
rH +-
B.D
e ex
tfl >,
co H
E-
O
O
Q a a
222
Q a Q
Z.ZZ
a Q Q
222
Q a Q a a o „-> a
s 2 z; 2 2 K :. z
a a
22
QQQQOQQQ
2Z32222Z
Q Q Q
Z 2 2
Q Q
Z 2
Q*
o a a
222
2 2
QQQQQQQOQQ
2222222Z22
O
O
O
Q Q Q Q a . O
2222302
QQQQQQQQQQ
22322222Z2
Q Q Q Q Q Q a
2 2 2 2 Z Z Z
a a o
322
aaoaaaaaaaaaaaaaaa
22Z2222Z222232Z222
aaQQQQaaaaoaaanaaa
22S2232223Z3222322
J_)
c
ct)
4->
3
— f
O
CL,
-a
0)
3
c
-U
c
o
o
w
4_j
^
CB
1 1
3
1 — 1
o
CL,
X
•I-1
^1
o
• rH
u
OH
01
4-)
c«
U-l
^-1
3
10
£
a!
4-1
3
ra
O
•o
C
-------
•o
01
c
c§
OS
O
O
a
^ 5Q
O 3
&M CO
H PS
Z W
O 01
o -o
P O
i I i i i I i i i I I r i
-o
01
3
c
c
o
u
0)
T>
01
T3
Sj
•a
c
01
o
.-. ON
Vi Ov
a-
O
to
a
01
o
o
A-45
-------
la
Q
Z
O
o
o
o
o
Q
E:
o
o
o
o
o
Q
Z
a
Z
as
o
o
w
E-i
U
OS =Q
O O
tn CO
H 0!
Z M
< H
C
O
CJ
.0
0)
H
J O H
3 Z <
OH h-l "3
>• < H
33 U3 C/2
< ~ 3
H a
< Z 3
* a <; <;
O O •—'
z z
dn O
s o
X> O O
O—I O O O
O O O O O
O O O O O
a a • . a . a . •
zzoozozoo
o
o
o
o
o
o
aaaa .aaaao
zzzzozzzzz
a Q a a Q a a
Z Z Z Z Z Z Z
in ,— --i^-i,-i CNI csl CM *—< co o o
OO tNcslc^CN OOOcslOOO
OO — —I r-4 t-l OOOOOOO
OO OOOO OOOOO..
OO OOOO OOOOOOO
OO OOOO OOOOO^-^--
. .aa • • • .aaaa ao
oozzoooozzzzoooooza
o
U
i I i i i i i i i i I i
I I I I I I I I I I I I I I I I
TJ
(1)
3
c
c
o
o
c
CO
01
-a
•1-1
X
o
D-
X
o>
-------
•x
X
O
Id
c-i
OS
O
C
O
U
.O
ttf
H
<
H
J
J
O
>-i
cc
g
g
O i
2 ;
J J
CM O
= o
3 u
en
O
O
U H
2 <
1-1 3
E-i M
< H
!a en
x <;
3
2 3
\
C CO
o ol
u
h
*
CO
!Q
cu
0
jg
O
CU 1
i — 1 -(— I
CL CU
E oJ
CO H
en HI
CO
10
CU vn
O CU
0 -0
H 0
CL, cj>
4J
C
ctt
u
3
•—I
O
CL,
, ^j-
0 O
O O
0 0
o o
Q a Q
2 2 020
in co
CO CO
^£> CO ' — 1
O O O
o o o
o oo
Q Q Q Q Q Q . . Q
O 222 222 OO 2
CM r^ -H
f^ i — IO
CO ^Ot— OcM, 1
4_1 CQ
• r-t
O
>-i O
0, -1
d Q
2 2
r^ ^D
in cy*
o o
00
o o
o o
Q • • Q Q Q
2 0 O 222
\o o->
r-- —i
1 — . \o
00
00
00
o o
. . o
0 O 2
CO
CO
o
o
o
o
Q Q . Q Q
22 0 2 Z
CM CO
CO r-4
O 0
o o
0 O
o o
Q Q Q Q . .O
2 2 2 2 O O Z
O r-~
Z CM
in m ^ o
CN CM OO O
o o ~-t o
o o o o
o o o • Q
o o o o z
o o o ^.- —
2 2 O O O 2 Z
CO *— CM CM CO CO CO
.— T— — CM CM CO <±
1 1 1 1 1 1 1
A-47
-------
oqco
B
cfl
a
c
o
o
o
o
o
o
a
z
a
z
a a
z z
o
o
o
o
a
z
a
z
a a a
z z z
CN
m
CO
^N
•o
01
3
C
4-1
C
o
v-^
* —
1
<
CD
— 1
.a
CO
H
0 CCN
O CD
w ox c
H C col Z
< o
O CJ>
Oi 35
O 3
£L( u^
H DC
Z W
< H
a
cr» in
0 O
O 0
0 0
-1 O O
O 0
H <^ X) • •*
3 3 as co 00*
j u a
, 1 ^J P— 1
oz <
CX, 1-1 5
H U
5-1 < H !
co u co ' in in
x 5
H a
< z s
a < <
OS
o u^-
o o
o o
CD! O O
O O O
u o o
3 • •*
o o o*
z z Ico ;
Eu O
58 JSJ
CO O. CD r- <— f
H E aJ
U CO Xj
< co HI
z
O «
U tn
QJ fi?9 ^-J ^- i—
O 0) III
o-a ca CQ u
l-i O
Pu U
CM
CO
o o o
o o o
o o o
. a a . a a a a •
ozzozzzzo
00
—t
o
o
o
Q a a a . a a
z z z z o z z
•— in
•— co
o o
o o
o o
o o
o
o
o
a. a .
z z o
CTt I~~ i—I
CO CN wO
O O O
o o o
000
o o o
o o o
00
m
o
o
o
o
a . • a a a
z o o z z z o
Q a
z z
in in -^. —*
wo oo oo oo oo
o o o
o o o
o o o a i
o o o z i
o o o-
co co co co
o o o o m
o o o o o
a . . . . d D a . a a
Z O O O O Z Z Z O Z Z
co —i
o o o o m
o o o o o
. ... n a a a a . a a
OOOOZZZZZ O Z Z
CN CN —I
O O O CN
O O O O
aaaa • • Q .a a aaaa • a a
zzzzoozozz zzzzozz
oaaaaaaaa . • .a
zzzzzzzzzoooz
o o
i o o
; o o
-o o
o o
r- *— COT— COCOCOfOCOCOCOCO'— CNICNcnCOCO
"-> ^ ^ «
I I I I I I I I I I I I f
-O
01
4-1
C
O
o
CO
o
Hi
4-1
^J
o
PH
4^
CJ
4-1
C
CO
o
•rj m
V. o
A-48
-------
^^
"O
OJ
3
C
••-i
u
C
O
s_x
,
1
<
H
=Q
<
H
<
Q
O
Z
t— i
,J
IX
^*
\ Q Q Q Q
CO Z Z Z Z
Q
-<|
>J QQQQQQQ
CO1 ZZZZ2ZZ
Q
1
ID
o
U
o
C/)
QQQQQQQ
Z Z Z 2 Z Z Z
OJ
I— 1 1-
p CU T— T— C""l T— CO CO C*~l
s oJ
0) >J
w HI
CO
CO
O 01
o -o
l-i 0
OH CJ
r— I -j >— f N^ ^ S^
Q
2
Q QQQQQQQ
2 2222ZZ2
CO
O
O
2 22ZZZ2ZOZ
CO
o
o
QQQQQQQQQO .Q
Z2ZZZ222Z2 O2
QQQQQQQQQQQQQ
ZZZZZZZ2ZZZZZ
^_ ,_ f*^ f^ (O CO CO CO CO CO CO CO i
r— 1 ^" r— CO T— CN] CO ^d" *~ CSj \£) ^ 1~
1 1 1 1 1 1 1 1 1 1 1 1 1
PO ro r_^ r~) |-Ti r^l M M fTi FTI fTi O J
QQQ
ZZZ
QQQ
ZZZ
Q Q Q Q Q
Z Z Z 2 Z
QQQ
ZZZ
"~ — ""•-•-. ' —
Q Ci O Q Q
&. ^,'Z'z "z:
1 — 1—1 —
CN CN ~^ *~^- ""-^
co ro m
^_ f*g ^vg p-^ ^~
1 1 1 1 1
r~)>—)^^l^
•o
0)
c
• r-f
4J
c
o
o
PI
Qj1
A-49
-------
jail
u
«
o
^^
*^3
0)
3
C
ij
C
o
0
I
<£
QJ
— t
-O
£
rS.
P
Cu
H
Z
H
3
, •)
J
g
oa
^
H
Q
O
Z
t— 1
(X
2"
<£
CO
OS
o
W
H
<
CQ
3
cn
oi
rj
EH
*^ *~\
2 ai
U H
z ^
C— ( rjj
,
CT)
Q
— 1
X
Q
i
,
cnn1
CO
CO
QJ C<73
O OJ
013
in in ^o \o in m ro in oo
— o o o o m
o o o o o o
QQ.QQ a Q a
O OOOOZZOZZ 222
in x^ ^o vo ro
cs oooo
O OOOO
Q Q • Q . • • . Q Q
ZZOZOOOOZZ
oo
Q Q . . Q Q Q
2 2 OO 2 2 Z
CM CO CO
— O r-
O O O
Q.QQQ.Q Odd
O ZOZZZOZ Z22
r*~ oo oo co i~--
o o oo r~
O O O O O
• ... Q Q Cl • a Q Q Q
OOOO2Z2OZ 222
o m p~* c?x oo co
o "i o o o ~*
cs o o o o —i
Q Q . .o • • • Q Q . Q O Q Q Q Q
ZZOOZOOOZZ O222ZZZ
OH U
O
mininin OOOOQQQ o -QQ
oooo .-—zzz —< ozz
oooo oo^.^^ o —^- —
QQQQ . . • .QQQQQ . .QQO QQO .QQdQQQQQQQQQCia
ZZ2200002Z2ZZOOZZZ ZZZOZZZZ2'ZZZZZ2222
T—»—ro^—
l l l I I
l i l I i l l l l
C
o
u
P
nj
3
£
B
•C
§
•rjj 00
D-i' —I
A-50
-------
"O
4)
C
.1-1
U
c
0
o
f—
r
«^
0)
.£2
tO
5
00
E
CO
c
o
•rl
4-)
tfl
>> Vj
a: u
o c
o v
w o
H C
< o
u u
as CQ
O 3
tfc C/2
z w
•* H
s^i
iJ U H
2z \
1
Q|
(U
ti
3
O
C/5
^|
QJ
pj
O
Hi
"O
cSl
•c
ctt C
4J CO
3 4J
r-l 3
—1 r-^
O i-l
a, o
a.
>^
4J
O vO vo O to v£) *—
.— in ^O vo tA ro O Q.»
OO*£>OCT\CTiCT\OO ZOO
CNCMOOOOOOOOOZZZZZZZ
r— r- I—
ro en en
1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1
^4
OJ
D-
a
o
o
CM CM
0 0
Q
* o * z o
NX NX
CM CNCM CM CM CM
OOO OOO
O -fc-K-je-fcOOO OOO
N/ NX NX NX NX NX
CM CM CM CM CM CM CM
O O O O OOO
O ****OOOO* OOO
NX NX NX \/ \/ NX NX
CM CM CM CN CN CN CNI
O OOO OOO
• ... Q...
•K-KOO-K-fc-K-XOO O*-KZOOO
NX NX NX NX NX NX NX
CM CN CM
OOO
...
ooo
NX NX NX
*~~ *~^ \
CN CMCNCNCN CNCNCM
O OOOO OOO
**oo****oooo*-x* ooo
NX NXNXNXNX NXNXNX
CN
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
^^
i — 1
01
4-)
O
4J
•*^f
cu
"3
C
to
>-,
O
o
t
£i
A-51
-------
g-
«
3
C
• r-*
4J
C
O
o
\^
, —
1
<
H
as
O
O
w
H
<5j
CJ
OS CO
O 3
fe CO
z a
>-• <^ E-*
CQ W CO
X <
< 3
H Q
< Z 3
OS
O U ^-^
z z
I-J H-H
P^ 0
S 0
< u
CO
H
H
O
at ions
ij
j_>
c
OJ
o
c
o
0
0)
D-
E
CO
K
W
O
O
PH
O v
vO C\] ^D O
o —< o ^H —i in
Q . • . cz a a o ...
z ooozzzz ooo
—i CM o r-^
^o o> in in in
O csl O O .-I
QQQQQ . Q Q
OOOOZ2ZZZ OZZ
Q Q Q Q • . Q
z z: s z o o z
u~i in
CsJ O
O O O O • • Q
CO CO 00 00 O O Z
O O O O -^^--.
QQQQ . . . .QQQQQOQQQQ
ZZZZOOOOZ3ZZSZSZZZ
m
o
o
o
o
o
o
o
o
o
Q Q Q Q Q Q d
Z Z Z Z Z Z Z
Q Q Q
s z z
QQQQCQQQQ
zzzzzzzzz
Q Q Q
Z
QQ .l
zzozzzzzz, z
Q Q Q Q O Q Q
l i i l l l l i l l
zzzzzzzzzzzzzzzzzz
^-.— ro*—
i i i i i i i i n i i i i i i i
o
a.
C
O
CJ
§
*\
,—I '
o
"C
-------
^^
•o
0)
3
C
• r-i
4-J
C
O
o
1
<;
0)
, — 1
_D
0)
H
X
O
O
w
C_l
<£
O
o£ 20
O 3
Lin tO
H 02
Z M
< H
H <
-3 H£
1 i
JO
O Z
Cu l-t
H
33 M
< "~
H a
^
CO
Q
01
CJ
'-J
3
O
CO
CV
1 — 1 -t—
o. cu
E a
c^ ^
co H
w
w
-------
s
)-H
D.
I
CM r-l
O O
O O
00 . .QQ O
Z ZO OZ Z Z
0 QQ
Z Z Z
Q Q Q QQ Q Q
z z z z z z z
Q Q Q
z z z
ai :
O :
OJ
O
OJQ
U
00
OO —I —I -H
O 00 O
O OO O
. . Q . Q Q O Q O
o oozozzzzz
Q QQ
Z ZZ
Q
Z
—I
QQQQQQQ .Q
zzzzzzzoz
Q Q Q
Z Z Z
H as
I-1
\X
'Q
CM CN i-H -H
— 000
O 000
Q Q .0 . . . QQ Q
Z ZOZOOOZZZ
OO
O O . . Q QQ
Z Z OO Z Z Z
QQQQQQQQQQ
ZZZZZZZZZZ
OZZZZZZ
U H i:
32 Li2 c/3
— X <
I < 3
•
in H
to
to
O ,
A-54
-------
OCCOl
>•!
a!
o
o
w
H
o
re
E
CO
p
0
•H
c8
I-i
4J
C
Ol
y
c
o
0
J
c?
Q
CN
^
CO
Q
73
01
3
C
O
U
^s
CN CN i—I VO vO vO vO r^ i-( r-l OOO
. """ia a o o a o Q Q
IOOOZZZZZZZ
4J
CO
o
0-,
•o
01
c
c
o
o
R)
c
•l-l
N
01
a
H
01
i-i
a
e
to
to
01
4J
tf4
CO
o
oi a.
4-> g
-< O
CO O
o
ao
E-J
0 4J
O to
.£> jo O
to IB u
|j I-i 3
00 00 CO
1 1 1
— CN CO
1.
was suspected to be result of laboratory contamination.
plant J's cooling tower as an algicide. Its use as an algicide was
t J. For this reason, these data were not used in this project.
at is <0.01 mg/1.
at is <0.005 mg/1.
— 4J O C £ Si
\ -i-l 4-> tO 4J 4J
1— 1 i-l
> Ol T3 O. 01 0)
co 0) 33
00 tO *D to tO tO
3 O to > >
O 0) 73
U Ji to 4JT3 -O
s: to 3 oi 01
4J 73 3 C 4J 4J
O> — 1 VJ \-l
r- CO i-l 4J O O
1 3 O C Ou O.
_, C O 01 01
> 4J 01 U IJ 1-1
O Si CO
CO C O —I H) tO
0) l-l 73
U CO O CO CO
3 tO i— 1 ^i 0) 0)
003 J3 i-i 4-> u
•H O 4J tO tO
fc. 01 to c y o
3 4J 0) -rJ -H
oii-i c y 73 -a
0) tO Ol 01 C C
CO > PH l-l l-l l-l
<»•(-•(- * -X
•1- H- *
«
TJ
01
N
>^
r~|
to
c
to
4J
o
c
CO
CO
3
4J
c
tfl
4-1
3
r-l
1— 1
0
Cb
1
^
A-55
-------
0)
JJ
n)
o
o.
a
>H
ad
O
O
a
aj H
0<
En 0
CO
H 3
2 CO
<
E-* 0£ •""*
O W oi
J H W
J < H
O 2 <
Ot 3
O W
>H 2 H
CO I-l CO
3= <
< CO 3
H 1-1
< Z 3
Q i-l
CJ3 ^^
2 Q
i-l 2
iJ <
C^
•%• o
3z
W *""*
2
3
J
CJ
00
E
s_x
en
C
0
• H
iJ
id
u
jj
c
0)
o
c
o
c_>
CO
^"*
rt
Q
m
r**» c^j vo v^
* • • •
CNJ CN (N \D \O Ln \D
m r^ m CM
CM
>-,
i
id
Q
OO PO ^D C^
• O'-OOOsd" 2ZOOO'-DCN|Pr>
m v d~ ^n ' —
cu
o
u
§
CO
°^« ^^^
LO uO LO LO PO 2 Z CN CN! 1~~ ^~ ^~
\/ v v v oo
cu
i— 1 -4-
&.
-------
\o oo r— Oi -—
o> m r^
m o vo
• Q
O Z
CN CXI
o in m
r- o
o m
•— CN «—
I I I I I I I
c w
o -o
O -rJ
O
to I to
-o
01
•o
c
0)
a
ra
3
r-l CO
td H
c
o;
•o
A-57
-------
o>
4J
cd
o
ado
e!
§
o
a .
z o
o ^o o
o o o
a a
z z
yD •— CO
O cxi m
Z Z Z
3
c
c
o
a
CXI
I
<
W
W
as H
O <
H
2
J < H
O 3 <
a, 3
U i1
>< Z H
CQ >-H C«
3= <
< u} 3
H 1-1
<2 3
a 1-1 <;
ii a:
o ^
2 Q
CN
O
Q .
Z O
O O O O
O O O O
Q Q
Z Z
co
r- -- I- O
O O O O
O 2
V
2 2 Z Z
CM m in in
oo oooooooo —
. . Q Q ........ Q
OO22OOOOOOOO2
CN m ui c^ ~a- ^c oo CM
o oo.— >— ocNino\
Q.QQQ
ZO2ZZOOOOOOOCN
OOOO2OZZZZ2ZO
\/ ^s \/ \/ V V
rn en ^d" ^>
o a)
p-o
S-l o
P-i o
"D
0)
I I I I I I I I I I I I I
I I I I I
»— CMCO-3'T— CSJf^J*— T—
I I I I I I I I I
J CN rO CM . — CM en
-------
>-
oi
O
O
Id
OS H
0<
tK O
oa
x— v EH ^D
•0 Z C/3
01 <
3 H OS ^
•H J H Id
4J iJ < E-l
C O 3 <
O O-i 3
U O Id
x-x >" Z H
OQ h-< c/3
CM I <
r < w 3
< H i-(
o
O
OH
01
nil
o
1
Q
CO
H
id]
Ql
CMl
H
IB
Ql
— | |
H
o!
OJ
CJ
w
•+-
o
H
tff>
V x-^
"O ~^
O 1)
U 3
C
JJ
c
o
^^
to
4J
p
IB
4-1
3
r- 4 1
4J r-l
C O
td Ou
| I
3 *— ^
—I C
O O
0, .^
U
C
0)
>
C
o'
ol
c
o
Z
oo
oo m ON O oo
• • • • •
v^" *o m r*^ vo
cO<— ^— *— O
CNjcsJrOf^Ji^u^L'^CM
T— Cxi csi rn CM »— CNI (*"> -^~ r"1 c*J ro *~~
i i i i i i i i i i i i i
<3
CMOO co—OOO ZO OOOOO
^ *— m
1 —
LO
CM
(^ O
. f~\ Q JH ^ --" Q , ^
» u-l I — I ^ ^ ^ l— i • V
CM CM CM CM CM
CO CO
,_ ^_ T_ ^_ fTJ ^ ,__ fY-J p-J ^T) ^_ ^_ CM 1~~ ^— V '~~ *— »~~ T— T— T—
»— CMCMCOCMT— CMCOst*— CMCO*— »— CMCMCOCM*— CMrO\ cj
X E
O to
,—1
ft ^^ QJ
0 Q T3
•H O -I
E U C
S> v-x tO
XI X
O 0
A-59
-------
!x
oS
O
U
w
OS H
O <
fcj U
03
x-s E-< O
-o 2m
01 <
3 H OS ^-*
C £3 W OS
•~l nJ H M
4J j <; H
C O 3 < 2 H
op t— i en
CN 33 <
i < en 3
-
CO
Q
T— LT) IA '-D CO LA
*— OCM (Nr-r- LTiCMr-
• •
CO
Q
m
r^- m IA r- en CN m
rO O^-rOvDO r^-O
• •,
CO
Q
CO 00
O^OOCS]^ PS~LAO1A^"'' — CTNOfO LOLA
^-OOOOT-O\ ^^^ (^l>J^<-- ^> m ^o IA
o^ooososzssisso ^csioO'-ozT-^o^os: ^-^^-r-o^-or-ooiAocN
mi — CNIVVV v£> ' — r^~^d"i — i —
CO CN O ^O
CO i —
01
0
)j
3
Q
ro
^— »^ v^ ^D r*^ r^» r^
O O >3" in T— r*~ r^ -^ co co *>o ^o v£> CN CN m in in
CNCNCN^O 00 — — CO r- .— OOOOO OOOOOOCO
\s \s \/ \s \s \s \y \y \s
0)
i— 1 -1-
a 01
EQ^
!-*•
en H
to
CO
O) t?3
a 01
o -o
S-i 0
3- U
s-^ r— CN CN CO CN i — CNCOJ "O
•U O C i— 1
C 3 O 0)
0) r-l 1-1 -I-,
> M-l -r-< ii
C
O
0
C
o
A-60
-------
co u~l
o
Q .
Z O
>•< o
OS C
O 0
0 0
oi EH
o<
1* 0
33
-a z w
01 <
C"~l rj3 'V'
— 1 -iJ UM
.H iJ EH W
4-1 t-J <£ E-*
C O "2 <
O PL, ^ 3
^ >- Z H
CM X <
i -, o
o oo
i — > — i —
u
0 0 O
y^ ] o O O ^~ T"~ ^A ^ f*^ f") r*^- f^~ r^- LO 2 S
. — < —
o
Q •
•z o
^— CM
o o
Q
z
a Q
O ro
Q . . Q
Z O O Z
oooooom—
Q a Q
oozsooooooooz
CM 00 CO
r- O o
o o o
• • .QQQQQQ
zzzzooozzzzzz
QDQDQQQQ .QCiClC
ZZ2ZZZZZOZZZZ
QCQCSQQQQQQQQO
Z Z Z Z S Z *"^ Z Z Z Z Z Z
O
-z.
O-
-------
O
J
CJ
C
o
n
a
3
a
sj
al
CL)
r-4 •
O. OJ
CO
W
to
to <^j
0) 01
CJ T3
O O
£ °
CL,
00
CM
,— s
•D
0)
3
p
JJ
£
O
u
tN
1
^
M
CO
«£
s
01
IX O
oZ C
o o
tL5 O
w
p<
ca
E-i=>
z w
^
t*-1 o4 ^^
o tiJ a:
J H Cd
J < H
2t2 "^3
"^
O M
>< Z H
CO h-l W
* J CN \£) ^O O
cot *"^ <£<£<£<£ •• • <* *i<£^l
C
o
o
C
o
z
u
iJ
.-J
C
(II
4J
CO
•o
o
0]
01
JJ
3
m
A-62
-------
open
e
< •
z :
— z
00
o o
V
— .- — CM
O O O ON
m CM
!••» LO CM i—
O O O--
OO C3 OO
CM
,— o
\o o o o
vO
m o u"t u~» en
o •- o>- o
CM
O
a .
z o
<— CM
• . Q
— — Z
Q Q
Z Z
Q CJ Q
z s z •
i < < •
:z z:
il;
r- ,- ,-,- ,- CO
O O OO O O
oooo o:
! z oooo oo o
CM CM irt
^ t-^- O
: Z ooo oo o
V
O O ON
QQQQ -nO -QQ .OQ
zzzzoezoazozz
QQCQOQQQaQQQQ
zzzzzzzzzzzzz
01
—I
a
e o-
to >,
co H
CM v— r- T—
*— co co en *— T— CM *— •— ^— ^— co,— »—
to
(0 <*>
0) 0)
o -o
o o
l-i O
OH
T3
01
3
C
•— CM CM CO CM •— CM CO -* •— CM CO »— T- CM CM CO CM .— CM CO
-------
cu
3
C
O
>J
ca
rs
W
OS H
O <
It- O
00
H 3
Z Cfl
• Z H
co P-I c/>
_! <
$2*
°S1
o -^
Z Q
t-J S
J <
ft4
a
Q
co QI
C
O
•i-i
4J
cfl
eh1
-a-
oo
o
•* r» r—
0 — 0
z, m
O O^t O OJ
O Oi— PO •—
O ^O CM O\
OO O t-O O — C
Q Q
o o r- o
o o CM m
ro ^ CNI CN
I . <
; o o — r-» o Z
o o CM o O m <—
CO GO CM CT> O •— O
— -* co —
in ro CM CNJ
m o •— oo
O- i—
0) 01
013
O O
T3
(1)
3
C
T— CMCM CO CM — CM CO -i >H M N!
•— CMCMCOCSI—CMCOO-— CMCOf— .-- CMCMCOCM— CMcO~*i
I I I I I I I I I I I I I I I I I I I I I I
CMCOf—
I I I
.u
B
rt
o
OH
§
O
OH
CB
O
•i-l
U
C
0)
>
C
o
o
B
O
Z
CO
•D
TT
CU
O
CO
CO
^-1 O
(S H
8
H
C
O
.O
b
n)
o
C
0)
00
i-l
o
A-£4
-------
cu
u
a
o
o
o
CM
i
a
CO
ai
g;
!
H :
z i
£
S3 I
J !
J •
OS
O
oqen
B
w
H
<
H M
Cu
i Z H
I M CO
a <
! co 3
I I— I
I Z 3
1 1-1 <;
It, Of
i *^'
Q
z
<
0)
^ -I-
CXCU
E O.
CO >i
COH
CN CN
o •*
O —
V
01 VO
O CO
o o
\S CN
in en
r-v in oo
CN vO en
m
CN •*
O en
O O
v
in r^.
- m m —
en en m en i
— — CM
in in in i—
oo r^ ^d" r*-
en o o oo
CN CM — CN
Q Q Q
QO
Q Q Q O
Z Z Z Z
CN csi o o
00 — 00
m
Ov
CNCN m
*^ >^ -^ in ^^ en en
O —
J C_>
T5
CU
3
C
i— — cNCNcncN — cNen-31— cNen»—
I I I I t I 1 I 4 I 4 I 4 4 4 4 I 4 4 4 4 4 I 4 4 I
<<03eQCJQCltuCKi-li- ^3" i— CN CO i—
4 4 I I I I I I I 4 I 4 I
C
o
o
4J
to
o
ex,
to
o
a.
to
o
•*4
4-1
C
cu
B
o
o
C
o
z
o
B
CJ
to
3
o
a
to
o
I
A-65
-------
o.
3
Q
CO Q
^N,
•o
CD
3
C
4J
C
o
o
s_x
CXI
1
<
W
•J
CO
<
I
w
as H
O - Z H
CO t-i w
ac <
< co 3
H ^ -,
Q 1-1 <
i as
O --"
Z Q
•J <
IX
25 o
^ 2S
CO 1-1
<
e
o
•rH
u
tO
Concent
"^
>,
to
Q
1
0)
o
D
CO
01
1— 1 -t-
p, Q;
1&
CO H
Q Q
Z 2
Q Q O
z z z
a a
z z
Q D Q Q
Z Z Z Z
Q
Z*
o o
o o
Q . .
ZOO
in CN CM
o — r-
o o o
o * o o
Q Q
Z Z
Q a Q
z z z
Q Q
z z
Q Q Q Q
Z Z Z Z
o o
o o
QQQOQ . .aaaaao
zzzzzooszzzzz
\o n oo oo o — co
O O .— •— i— OSr-,— O
o oooo oooo
• 000
OZZZOOOO-it OOOO
QQQQQQQQQC1QQCJ
zzzzzzzzzzzzz
T— *— rocncn*— ,— CN
in
O
O
. Q Q O Q Q
ozzz* zz*
O O O
O O O
• . . a
o o o z
ZZZZZZZZ
o
o
QQQQOQQOQOQCl •
ZZZZZZZZZZZ2, O
CMCNCMCSICNCMr-JCSJCMCNJCNCSJC^ CNcslCNCNCNJCSCSICMCMCMCNJCNICN
o a)
OT3
)-J O
OL.O
i i i i t i i I i I i i i
i i i i i i i i i i i i i
i i i i i i i i
I
0)
TD
_* I ^
u| -^
CJ
c
Oi
N
c
01
-!
-------
03
o
I?
CM
I
<
a;
O
o
'Jj
a! H
0-H M
2: <
< Z
Q >-i
O
Z
C|CN
01
O
c
00
u
!!'
Iw
Q Q
z z
Q Q
z z
Q Q Q
Z * Z Z
O
O
• Q
O Z
O
O
. O
o z
o
cs
o
Q . Q
Z O Z
O
Q Q Q .
Z Z ZO
a Q
z z
Q Q Q
Z Z 3
Q Q
Z Z
a Q Q Q
z z z z
o
o
o
QQQQQCl .000000
zzzzzzozzzzzz
o *—«— <*"> *— *~ ^
— o o o o •- o
o o o o o o o
. . .0 . .QQO .0 .
•X OOOZOOZZZOZO
o
c
OQQQQQQQQdQ . O
zzzzzzzzzazoz
QQQQQQQQQQQOQ
zzzzzzzzzzzzz
o o
o o
O O* -X
J
W Hi
CO
CO
0) !*,
O 0)
i t i i i i i
t i i i i
-o
01
3
C
C
O
H £
4-1 O
._| I
Si
o
01
c
re
_c
u
01
o
O
• r-l
-c
o!
A-67
-------
><
as
O
O
Id
OS H
O • Z H
CQ 1-1 CO
E <
< co 3
H 1-1
< Z 2
Q M <
i, as
rn s f
Z Q
J <
Oj
a — — CM CM CO CM —
I I I I I I I
i i i I i i i
.— Cv]ro
-------
?"^
OS
o
o
U]
crfH
O <
to
co
^ H 3
T3 Z C/3
3 H as ,~*
•H _3 H W
4-J t-4 •< H
C O 3 <
0 0-- 3
U O til
vx >. Z H
CQ i-l t/3
CN 3i <
1 < W 3
< H 1-1
< Z 3
W Q M <
>J EU as
CQ U ^
•< Z Q
H i— i Z
CL4
3i
«1 QQ QCJQ QQ QQQ QO QQCl
CO
C
O
•H
4J
n)
VJ
C
a;
o
c
o
u
Q ZZ ZZZ ZZ Z3Z ZZ ZZ3
CMI
>J
co Q Q aaaa Q QQQQ QQ QQQQ
Q! sz zzzz z* zzzz zz zzzz
f—< i — i —
0 0
>-i O O
CO QQQQQQQQQQ .QQ QQQQ QQQQQQQQ QQQQCSQQQQQQ .Q
Q 2ZZ2:ZZZZZZOZZ ZZZZ*ZZZZZZZZ ZZZZZZZZZZZOZ
a)
0 CO
|VJ] 0
3 0
:O OQOOOOOOOOOOO OOOd *OOOOQ^OQ QQQQQQQQQOQQQ
w zzzzzzzzzzzzz zzzzozzzzzazz zzzzzzzzzzzsz
HI
r-< -t-
a a)
r-r— CN CNICNCNCNCNCMCMCMCNCMCMCNICN ^- T— i— I
c/3 HI
O a)
O TJ
^1 O
a, o
I I I I I I I I I
CNIrO^— *— CSJCMCOCSI*— CNJrO-3"*— CM
I I I I I I I I I I I I I I
•— tStSrOCN — csj
I I I I I I I I I
•o
0)
•s
c
c
O
O
0)
c
aj
N
C
a)
a)
c
o
ai
.e
D.
O
A-6 9
-------
ill
u
®
\a\
ti
Q Q
Z Z
Q Q Q
Z Z Z
Q Q
Z Z
CN
O
O
Q . Q
Z O 2;
ro
O
O
o
o i
^
T3
3
C
•,-4
AJ
C
O
s_--
CN
I
" o >,
04 C <0
P ,°!Q
w
01 H
0 <
t< U
H O
Z CO —1
2*~
=> U 03 i CO
J E-i W Q
^J< H
03 <
Cu 3
CJ M
>-i Z H
cc i— i co
T^ Z
O
O
O*
CN in
o o
o o
Q •
O* Z O
'•^ O ^" »J*
OO i— i— r*"i
O 010 O
ON eo CN u-v un un CN
,— i— o o o o on
O O OOOOO
OOOO* OO* OOOOO
ON ON r— CN F^ r^ U""! U^ U^ L/N
CN CN O O r- .- OOO —
oooo oo oooo
ZZZZZZZZZZZZZ -k-XZZZZZZZZZZZ OOOO* OO-R* OOOO
CNCSJCNCNCNcNCNCNCNCNCNICNCM *—•—«
• CN CN ro CN -—
I I I I I
1 <— ^ CN CNCMCNCNCNCNCNCNCNCNCNCNCN
i i i i i i i i i
t— CN CN
I I I
< < CQ
1 1 1 1 1 1
0)
"O
5!
Q.|
^
o
t^
01
c
N
c
a
A-70
-------
cfl
o
s~^
•u
0)
3
C
.,-1
4J
C
O
u
^^
CN
1
<
[14
J
CO
£$
>-i
02
O
O
w
as H
83
CO
H O
Z CO
c~* as -^*
3 M as
J H W
iJ < H
23 *^
^3
CJJ W
>< Z H
Z <
< CO 3
r , , ,
<; Z 3
^T, ^
o -^
Z Q
HH 2
hj <£
s o
-, 0
CO QQ .QQQ QQ QQQQ
Q ZZ OZZZ ZZ ZZZZ
t — 1 1 i — ^ i — i/~l »—
O O O •- —
>J o o o o o
IB! QQQQQQ .Q .QQQQ QQ .QQ . .QQQQQQ
Q! Z Z Z Z Z Z 0 Z 0 Z Z Z Z Z ZO Z Z 0 0 z Z Z Z Z Z
41]
O VDv^I >^">J'O\C^CT>00
tj C500O OOOOO —
3! OO OOOOOO
O QQQQQQQ..QQQQ QQQQQ.. ....
to! zzzzzzzoozzsz zzzzzoo**oooo
4)
-J -4-
O. 4)
SO. CNCNJCNcNCNcNCNCNCNCNCNtNlCN CNCNlcNCNlCNICNCNCNCNCMCNCNtN
m H
CO H
CO
QJ <*>
CjQJ ' — CNCNcOCMi — CNrn^T' — CNCO*— i — CNCNCOCN^— CNn^i — OslfO*—
r^
o
Q . QQQ
Z 0 ZZZ
^3-
f")
O
Q . QQQ
Z O Z * Z Z
r^ ro
T- O
O O
QQQQ .QQQ .QQQQ
zzzzozzzozzzz
QQQQQQQQQQOQO
zzzzzzzzzzzzz
CNCSICMCNCNCNCNCNCNCNCNCNCN
^-CNCNf^CNi — CNOO<3"i — CNlrO— -
I I I I I I I I I I I I I
i i i i i i i
i i I I i i i i i I
o
a,
•o
0)
3
C
-1
ij
E
)-i
O
M-l
O
E
O
O
o
r-l
O
• r-4
•a
0)
C
as
s:
4J
cu
E
o
i-i
o
3
A-71
-------
Q.
3
O Q
z z
Q Q
z z
Q Q Q
Z 2 Z
Q
Z
^\
t3
HI
C
4J
C
0
o
s_x
CN
t
<
Id
OS
E~*
c
^ o
OS C
O 0
0 0
Id
o <:
[an CJ
23
Z CO
<
Sid 0?
>J H W
_1 < H
O 3 <
OH 3
O !d
>H Z H
CO i-l CO
3E <
,
n! aa aaoa aa oaaa aa aaaa
a zz zzzz zz zzzz zz zzzz
-4| ^(N
O O
H 00
rt] aaaaa . .aaaaaa aaaaaaa aaaaa aaaaaaaaaeaaa
a| zszzzoozzzzzz zzzzzzz*zzzzz zzzzzzzzzzzzs:
cu
O CN CN vj-
*^> cu
4J
C
n)
4J
3
o
dj
«
4J
C
tfl
4J
3
— I
O
CL,
^.
4J
>r-{
o
C.
O
E
O
n
— '
O
Vt
O
£
o
,
01
c
0)
^-<
1C
.c
4J
x:
a
nj
c
o
c
cu
N
c
cu
.a
o
A-72
-------
Ill
•o
0)
3
C
C
o
o
td
CO
fH
!X
OS
O
CJ
td
: H
H ^
Z co
H os~
3 M 03
J H W
iJ < H
O 3 <
CM 3
O M
>* Z H
CQ 1-1 CO
co 3
i—i
Z 3
Z Q
-J <^
P-.
s u
W
U
Mm
E
to
Q
C
O
01
a oi
E O-
TJ >-,
CO H
to
to
4) i*)
O 01
o-o
£3
Q Q
Z Z
Q Q Q
Z Z Z
Q Q
Z Z
a Q Q
z z z
Q Q
Z Z
Q a
Q Q
Z Z
Q Q Q Q
Z Z Z Z
Q Q
Z Z
Q Q Q Q
Z Z Z Z
Q Q
Z Z
Q Q Q Q
Z Z Z Z
QQQQQQQQClClQCl
zzzzzzzzzzzz*
zzzzzzzzzzzzz
QQQQQQQQQQQQQ
ZZZZZZZZZZZZZ
o
o
zzzzzzzzzzzzo
o
o
Q .QQQOQQQQQQQ
zozzzzzzzzzzz
aannaaaaaaaacs
zzzzzzzzzzzzz
'— •— «M ,— ,— .— mc~->T—.—
i i i i i I i i i i i i
i i i i i i i i
C
o
u
o
p-l
o
C
0)
£
a
o
o
c
0)
JT
a
o
c
• H
•o
I
V£>
-d-
A-73
-------
\i«
4J
CO
CJ
a.
3
a
-
T3
01
3
f*
C
O
0
CM
H
OS
O
o
aj H
0<
tt, 0
=D
Z C/>
^
H od^-x
3 M aj
J H U
2 is •<
^
CJ W
>-i Z H
ca 1-1 to
3j "^
< m 3
H 1-1
« H
c/> H
CO
M^
0 0)
OTJ
^ 0
PL, U
1 1 t 1 1 1 1 1 1 1 1 1 1
<£<2CQp3OQQ[x-— l *— 1&^
CN CN
i — VD ^d"
,- o O .-f--
Q a Q Q Q . . ...
ZZ Z2Z OO OinO
— -* vO O
O — O CO
O — 0 O 0 0
a a Q Q . a • • ...
ZZ ZZOS OO O-KOvD
O CN m CN ,— ~j
CM »— t— CN OO"~» <—
O O— O OOOOOvOCN
ZZZZZZZZZOZZZ ZZOOOZZOOOCNCNO
<- o o o
o o boo
QQQaQQQQQQQQQ QQ.. ...,Q
ZZZZZZZ3ZZZZZ ZZOO-R****OOOZ
^CSICNmcN— CNI»1~a-.— CSIfO^- <— CNCNIO-ICN — CNC'IvS-'— CNfVi—
1 1 f 1 1 1 1 t 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
>
C
01
"5.
•f-i
T!
O
CO
0
u
c
1
z
t
CN
V£)
O
C
01
_e
a
o
s:
o
«
u
C
01
a
A-74
-------
>t
I
w
OS H
O <
En O
00
^•N H 3
T3 Z [/)
oi <;
3 H 03^
C 3 W o5
•-< J H W
4J i-J < H
B 03<
O °-< 3
O O U
— - >- Z H
05 1-4 C/3
CM s <
1 < to 3
J
u
B
0)
O
c
o
u
u
— i
D-
B
c8
W
M
01
0>
4-J
n)
o
•H
^
O.
3
Q
COl ^£) *— O CM r* CS1 CO
-d-— -j- vo o o o
>J oo— oo o o
ro] . . ... Q Q . Q a
al oo ooo zz ozz o*
rM 1 oo ro ^ <-- ro ro
— — 00 00
>J o o oo o o
co] • .a.. aaaaoa ..
Q| *o ozoo zz zzzz oo
—41 in r~ ro CM CT\ CM >* CM O \ OO OOOOOOOOO OOOO
a| z oo* o o oo o oo o o z z z z * z z z z z z z z zoooo
01
i-i omooooooooooo oo
3 OOOCMCMOOOOOO OO
w z z o oo o oo o oo o o z z z z z z z z z z z z z zzoo*
^_
0)
O. — — — COCO— — COCOCO— — CM — — — COCO — — COCOCO — — CM — — — COCO
^,
H
o
o
a a .
Z Z 0
ro —
CM O
o o
. a a .
0 Z Z 0
oo 00 r-
OO 0
00 0
oo* * zzzo
o o o
o o o
• • f"> Q Q .
oo-x -x 2:22:0
T— i— OOCOCOT— T— CN
— CMCMCOCN — CMCO
•U
1-,
0
01
r!
! 1
^
r^
4J
4_)
CO
—i
co
4J
3
JS
D-
X
4J
3
A-75
-------
s~^
-o
0)
3
c
•l-f
4J
C
0
u
^x
H
=Q
-"
as
O
O
w
H
<
U
CO
3
CO
OS
H
3
O
Z
1 — 1
n~*
CO
I-H
2
»—i
^,
Q
Z
<£
O
Z
1 — 1
Z
s§
CJ
^^
OS
Id
H
C8
^1
c
0)
O
C
o
u
rol
>1
ffl
Q!
CNl
H
n)
al
r-(
^
tfl
Q
01
CJ
3
o
ICO
0)
1-1 -1-
p. 0)
E Q.
tfl >1
W H
u
w
CJ 0)
M 0
PH U
•o
a)
3
c
-rM
4J
c
o
CJ
4J «
C 4J
HJ C
4J CO
3 4-1
1-1 1 3
r-H1 r-l
O r-l
c^ o
OH
1
•».!
4J]
Q
Z
Q
Z
> —
,_
1
<^
01
4J
ca
. — i
cfl
4J
r!
CX
, — 1
>-,
-J
O
I
c
t
T3
a o
2 Z
a a Q
Q Q
Z Z
a a a Q
Z 3 Z Z
O
o
CM
O
O
• a Q
OZ Z
CNI
o
o
Q Q • Q
2 Z O Z
a a
Z 2
O
o
a . a
Z O Z
Q Q
Z Z
Q a Q Q
Z Z 2 2
Q QQQQQQQQ
ZZZZ* ZZZZZZZZ
O
o
Q Q .
Z Z O *
O
O
CM
O
o
• Q Q
O Z Z*
QQQQ QQQQQQQQ
ZZZZ-K 2ZZZZ23Z
QQQQQQQQQQQQQ
ZZZ2ZZZZ2ZZZ2
Q Q
Z Z*
QQQQQQQQQQ
2ZZZZZZZZ2
Q Q Q Q Q
•Z, Z Z-Z Z-K
Q Q Q Q a Q
Z 2 2 Z 3 2
i i i i i i i i i i i i
i i i i i i i i i
I I I I I I I I I I I I I
Si
4-1
s:
4-)
4-1
C
tfl
o
N
C
0)
A-76
-------
4J
tO
o
00 co
E
cd
Q
C
o
Q Q Q
Z Z Z
Q Q
Z Z
o
o
Q . Q
ZOZ
Q Q
Z Z
o
o
Q . Q
ZOZ
"O
01
3
C
4->
C
o
o
=0
g
OS
o
o
w
H
<
CJ
3Q
C/!
OS /-v
W OS
H W
< H
3^
O W
Z H
i-l C/3
a <
c/} 3
1—4
Z 3
1-1 <
Dtj oi
Q
Z
Oil
°
°
w
Q
Z*
Q Q QQQQ
Z Z ZZZZ
o
o
Q .QQQQQQQQQ
zozzzzzzzzz
Q Q
Z Z
QQQQ
ZZZZ
Q
Z *
QQQQ
ZZZZ
o o
o o
• -Q Q
o o z z*
o o
o o
Q Q Q . Q . Q Q
zzzozozz
QQQQ
ZZZZ*
00 f")
o o
o o
Q Q Q Q Q . Q .
ZZZZZOZO
QQQQQQQQQQQQQ
zzzzzzzzzzzzz
s.
o
Oj
3
N
C
CD
X)
A-77
-------
s-^
TT
0)
3
C
•rH
JJ
C
o
o
N_^
0*4
1
w
t—3
CQ
<2
H
>*
Qi
O
o
w
OS H
o
•z. w
< Z H
CQ H-l CO
33 <
< co S
< Z 3
ca M <
r_L* OS
O v^
Z Q
i— < Z
J <
S 0
< z
CO *""*
z
^
01
o
c
o
o
V
—1
p.
E
CO
to
CO
o
o
Q Q Q
z z z
Q Q
Z Z
in
o
o
Q . Q
z o z
Q Q
Z Z
o
o
Q . Q
Z O 2
Q
Z*
Q O Q Q
Z Z Z Z
Q
Z *
Q Q Q Q
Z Z Z Z
Q O
Z Z
Q Q
z z
Q
z
aaaaaaaaaaaaci
zzzzzzzzzzzzz
Q Q Q Q
Z Z
00
o
o
Q Q O CJ Q . Q Q
ZZZZZOZZ
^o o
o o
o o
QQQQ QQQQQ • « Q
ZZZZ* ZZZZZOOZ
aaciaQa oaaaaa a i
zzzzzz* zzzzzz zzzazzzzzzzzz zzzzzzzz
zzzzz
i— T— *— mrn.— •—
,— CN *—*—'— rorOr— r— cnrom^— i— CM t— ^-^— mm,— t—
-o
0)
c
c
o
u
I M
4-1
. c
c
0)
1-J
o
01
01
l-l
J3
4-1
C
rd
C
0)
A-73
-------
!>*
OS
O
O
a
cC H
O <
En u
=0
>~s f-H ^D
TJ Z t/}
01 <£
3 H QS^
C *~~i rT1 ry?
4J »-J •< H
C O 2 <
0 0, 3
o o a
•-s >-i Z H
33 1— i C/3
CN X <
i < w 3
1
al
D
a
^3
Q
CO 1
4_
U
a
Ci7>
0)
T3
O
U
0)
3
C
-4j
C
O
U
* —
4-1 to
C 4-1
CO C
4-1 CO
a -u
-i D
1 — 1 1 — I
5 0
I
hj
1
4J
J-i
O
CO
O LO
O CM
Q Q Q Q Q . . Q
Z* ZZZ Z -X OOZ
fl i — O
o o en ,—
o o o .-
Q • QQQQ Q . • Q •
ZO ZZZZ ZO O*ZO
T— *£> CO CM CM
O CO CO CO O O*l LO
o o o o o vr> ~-
ZZZZ* Z3ZZZZZZ ZZZZOOOO-K OOOZ
(^
, —
o
QQQQ «QQQQQQQQ QQQQ QQ QQQQ
ZZZZOZZZZZZZZ ZZZZ -X 3 2 -K * ZZZZ
CMCMCMCMCMCMCMCMCMCMCMCMCM CMCNCMcMCMCMCMCMCNCNCMCMCM
i — CMCMCOCMi — CMCO-^f — CMCOi — ' — CMCMCOCMi — CMC*~1<±* — CMCOi —
1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 t 1 I 1 t 1 1 1 1 1 1
<£<£c*3cQC_}QQE^Ei«i — ii— ii — i^i ^-cCcQpQUQQEi^Eiji — it— i i— i tx*
1)
C
0)
. — I
>?
4J
CO
O
±j
O
r-4
£ CJ
•J p
T! QJ
U 3
OJ O
iJ iJ
.
CO
o
o
Q Q • Q Q
z z o z z
Q Q QQQQ
Z Z ZZZZ
,— ,— CM
o o o
OO 0
Q Q Q Q • • Q Q Q Q Q •
ZZZZ* OOZZZZZO
<^-
0
0
ZZZZOZZZZZZ2Z
CMCMCMCMCMCMCMCMCMCNCNCMCM
i — CNCMCOCNi — CMcO^"' — CNCO' —
1 1 1 1 1 1 1 1 1 1 1 1 1
<^
-------
Odc-o
^
1 frt
O
o —
o o
o o
o o
o o
Q Q Q
Q Q
2 2
Q Q Q
222
C Q
2 2
Q Q Q
2 2 2
C
O
u
OS
o
p
ai H
O <
fa O
H 3
2 CO
H a! /-v
3 M 0!
J H W
iJ < H
O^S <
O M
>- 2 H
23 l-l CO
S <
< co 2
< 3 3
Q P-H <;
fa as
O ^
2 a
t-i 2
J <
S O
< 2
o
C cfl!
o Q!
u
Q O Q Q
2222
O
O
O
QQQQ-X QQQ .QQQQ
2222* 222O2222
Q a
2 2
Q Q Q Q
2222
Q Q
2 2
Q Q Q Q
2222
QQQQQQQ*
22Z2222*
Q Q Q Q Q
22222
QQQQ* aa* QQQQQ
2222* 22* 22222
i§i
Ico!
0)
a QJ
E
cfl
co H
f 1 G Q O Q O Q O Q O f 1 O O Q O Q O O O Q Q O C3 f *
2222222222222 22222222222
T— T— <— men.— •— mcorO'— T— CM ^.— r— moo*— T— rococo*— T-CN] ^-,— »— coro.— *— mmrOT— ,— oj
0
w
w
CD ws
O T3
p-i O
-o
OJ
3
C
C
o
0
4-)| to
C 4J
CO C
4-1 CO
3 4-)
-H! 3
C
CO
14-1
O -H
EL, M
•a
^-t
0)
o]
._j' cr.
u' co
A-80
-------
o.
I
J
cO
w Q!
C
o
CN
CM
O
O
. Q
O Z
Q Q Q
222
O
O .-
O O
o o
o o
o o
Q Q Q
Z Z 2
Q Q
Z 2
Q Q a
Z Z Z
^-y
T3
Q)
3
C
•H
4J
C
o
u
N^
CN
1
<£
LxJ
,_]
:a
^
H
•
^H
OS
O
O
a! H
0 < 2 H
oa 1-1 co
T- <^
< co 3
E— ( 1— '
i O O O
to QQQQ*QQQQQQQQ QQQQ*QQQ*QQQQ QQ.QQ.«QQQQQd
Q 2Z22*2Z222Z2Z 2Z22*222*2ZZZ ZZO22OOZ22ZZ2
ro rn
o o
0) O O
o o o
>J O O
[3 0 0
O QQQQaaQQQQQQO QQ .QQQQQQQ^QQ QQ .QQCJQQQGQQQ
IcO 2Z2:Z2Z2Z2ZZZ2 22O22Z2ZZ2222 ZZO2222Z22ZZZ
QJ
r-l 4~
CL 01
n) S
CO HI
to
10
o'S •— CvJO-JtOCN — CNcn~*^CNCO^— •— CNCMf-lCS — C-JfKt'— CNCO^- — CNCNrOCNl^CNn
-------
as
O
U
C
O
U
03
g
H :
Z I
H
,J
O
Oi
W as
E-> M
*«
O M
Z H
I-H C/l
X <
M S
I-" <
'-L< OS
Q
2
I <
!i
u-i
O
O
O
O
O
2 2
O
O
o
o
• a
o 2
Q Q Q
222
O
O
o
o
. Q
o z;
Q Q Q
222
Q Q Q Q
Z 2 2 2
Q Q
2 2
Q Q Q Q
2 Z 2 2
Q Q
2 Z
Q Q Q Q
2222
E a
a) >i
CO H
m
o
O CM
O O
O O
O O
.QQQQQO .QQQQQ
OZZ2Z2ZOZZ222
O CO
o — co o o
o o o o m csi o
o o o o o o o
O O O O 00 O
o o o o o o o
. . .QQQQ . .Odd .
0002Z2200Z2ZO
vO vD
O O
O O
o o
o o
o o
aaaaa . .-x* QQQQ
222Z2OO-X -X Z2Z2
at o m &, oo
o o o o —
o o o o o
o o o o o
o o o o o
o o o o o
. . . .-K a a a a a a a .
OOOO-i= 22Z22Z2O
i— T— CN ^-^-,—
t— t— rncoro»— »— CM r— t— T— cocn.— *—
CO
CO
O CU
o-o
i O
i i i i i i i I i i i ' i t
^— CMCMCOCM^— CMcn^t— CMrO*— t— CMCMCOCMr— CM
I I t I I I I I I I I I I I I I I I I I
I I I I I
T3
1)
U
2C
D3
I
O
a:
CQ
A-8 2
-------
-o
cu
3
C
C
o
o
H w;
a:
o
CJ
U
0<
in O
H ^3
Z CO
Has^
^3 Cd 3i
iJ H W
iJ ,
4-J
O
,—
o
Q Q
Z Z O
_
CO
o
Q Q on.
z z z zo
f">o^"ir^Qi"^f"jf^r~ir^
zzzzzzzzzz
ON
0
o
zzzzzzzzzo
»— CNCSlrOCNlt— CNCO^"^—
l 1 t 1 I 1 1 l t l
,
^;
O
p
• r-l
4J
C
re
ro
ro
•—
O
Q
Z
in
o
i —
0
o\
o
o
0
CS
1
1 — 1
o ^t o
•— O r-
0 0 O
Q O . .
O Z Z O O
00
in CN
o.-
Q a a Q . .
z z z z o o
in in o
CO C7* --d"
0 O O
.Q QQQQQQQClQ . .
OZ ZZZZZZZZZOO
O\ O O
O CO CO
o o o
OZ ZZZZZZZZZOO
rO*— i— CNlCNIrOCNT— CNCO^T— CN
II 1 1 1 l 1 l 1 l l i l
i— i £*£ ^ -^ n ro rj* Q o T' i TT i i * •—*
o
•H
c
cu
CO
i_<
re
o
CO
0
o
o
CO
o
. Q
0 Z
o
CO
o
o z
(— £%]
ro T—
1 1
Q Q
• Q
O Z
O
ro
O
. Q Q Q
O Z Z Z
r~- m o o o
r-. r- CNI r^ r- CN
o o o o m.-
Q .QQOQ -Q . • • -Q
ZOZZZZOZOOOOZ
O O
QQQQQ . .QQQQCQ
ZZZ2ZOOZZZZZZ
i—,— i—T—ro,— t— rororo^—r-C
CNCNCOCNJ—-CNOO
-------
"O
OJ
C
C
O
U
U
_3
ra
^
>-l
OS
O
O
!d
H
1 <
O
=0
3
c/>
02 ,->
W 04
H W
< H
3 <£
O M
Z H
M rfl
33 ,
en H
to
en
<1J UK
O a)
O -o
S-i O
&H CJ
-*
o
Q •
Z O
CO
CM
O
Z O
*— — CO
o w o
in CM
m
-------
>•
05
O
O
w
05 H
O <
fa u
i!
^x H=>
-0 Z CO
0) <
3 H 05^
C ID W aS
.^ J H W
4J ,-J < Z H
03 >-l CO
CN as <
i < co 3
<: u-ii-i
<£ Z 3
M a i-J <
iJ In 05
=c a -^
-i Z
J <:
D-,
M U
to
"
^
a
Q
m
>1
ctf
Q
CM|
>^
51
0\
^1
d
Q!
cyj
0
M
3
o
co!
1
a
un
0)
-o
o
U
^-x
-o
CD
3
C
4_)
C
O
U
4J| CO!
C U
CO C
4-1 0)
P 4->
-* 3
— ' ^
o; -H
SH 0
OH
H
?
u]
3
ro
O
O
O
0 Q Q .
Z Z Z O
a Q Q Q C5 Q
Z Z Z Z Z Z
LO
o
o
o
QQQQQQQQQQ .
zzzzzzzzzzo
aaaaQaaQQQQ
zzzzzzzzzzz
»— CNCNO")O*J.— cNcn^r— csj
t 1 1 l l l 1 1 l 1 l
-------
T3
0)
C
C
o
u
CM
I
W 03
H W
|
E a
cfl >.
COH
CO
<0<9>
(U 0)
OT>
o o
a 0
z z
o
o
a .a
zoz
CM O
o.-
CO
IA O CT\ CO
a o
z z
QQ a a
zz z z
00 CM
T- O
00
OQQQQQQQQQ . . Q
zzzzzzzzzzooz
o
00
o
o .
z o
GO co r** c^ CO
O •— VOCM CM COCM OO CM m
r^- T^ in irt
*— *— *— »— cocoro
QQQQQQQQOQQQQ
zzzzzzzzzzzzz
a a
— ^-CM •— t— ^,— p*> ^ t— m coco •— ^ CM
«— CM CM CO CM «— CM CO sS- ^ CM rO »— »— CN CM PO CM ^- CM CO -* «— CM CO <—
I I I I I I I I I I I I I I I I I I I I I I I I I I
-^ 00
ME
i— O
o o
00
V V
4J 4-)
« U)
(U
3
C
C
O
13
0)
00
CM
0)
0.
H
0)
1-1
a
fd
CO
•*-
a>
.,-1
CO
o
a; a.
4-1 E
•H O
CO O
0
CX U
O 4-1
o tc
E
rO .*"* O
to nj 4->
Vi Vj 3
oo oo a)
1 1 1
.— CM CO
> a> 01
3 3
C« f^ ^_(
00 fO cC
3 > >
O
P T3 TJ
£ <1) 01
4J 4J 4J
VI V4
•- o o
i a a
1-1 i> cu
01 ^J ^
cu
00 4J 4J
•r^ flj (fl
tn O O
CD T3 T3
01 C C
CO h-1 l-l
«« -X *
•K
5^
i—4
IS
C
«
4J
O
C
CO
S
4-1
C
ts
4J
3
— i
O
CU
t
^
Z
A-86
-------
00
H H
ZH
CO
I
CO
<
2-z •
w
CM •—
>- — vo >£>
r-»— n in
T- CO
O —O
in in o o
mo
do
CMO
•* co
oo
do
CM
O
CM
CO O
o o
OCM
CM co
o
) -*
o d
— — oo
vO vo
• •
VO vo
vo VO
m in
CM CM
do
CM CM
• •
OO
coco
00
mm
oo
OO .- —
m in
oo
OM3S
CM CM
r- !•»
vo v£>
vOvO O O
00 00
m
m +-
at ai
o -o
o o
co m co m
ii ii
co m com
ii ii
com co m com com com
ii ii ii ii ii
I-HH4 h-IH-I H-1 )-< M t—I M»-1
com
i i
com com
ii ii
•o
to
CO
u
c
to
u
B
CO
•iJ
3
r- 1
0
ft<
u
3
r-l
O
D-,
_,
co
B
O
4J
B
01
B
O
CJ
B
01
00
X
o
nt
o ^-,
00 Q
O O
r-l Pa
.^
01
00
o
(0
T>
01
•o
01
a
CO
3
CO •
t/J
i co
1 H
O
U
I
01
00
o
1J
o
g
cd
u
•a
B
B
01
00
(0 <^N
°s
H-I O
X!
O
to
01
01
•o
A-87
-------
a)
CO
O
T3
CD
C
Cx3
as Z
O O
H W
Z H
< W
H ><
3 c/3
4J _J |
O
u
2Z
U
S H
' H Z
W
,J
CQ
O H
Z <
,J W
£ W
W 3
oqco
E
(X OJ
CB 3
73 HI
in o\
•— o
o o
o o
i— r—
o o
o o
CO
CO -t-
OJ OJ
o -o
o o
rt°
com
1 1
ro m
1 1
co in
ii
co m co in
II II
co in
ii
co m
ii
co in
it
co in
i i
co in
i i
co in co m
ii ii
C
o
u
C
CO
3
i — i
4J
C
cO
4J
3
rH
O
a.
^_l
o
Oi
r— 1
c
o
.— t
4J
C
01
c
0
CJ
c
o
z
c
OJ
00
o
iJ
4J
•r-l
c
r— 1
f-
cO
•o
r—l
01
•rl
I
CO
0)
00
cfl
e
01
CO
, — 1
0
CO
CO
• r-4
T3 s-^
r-l d
cO H
o
o
o
H
C
O
o
j_j
it
U
O
•r-l
C
It
00
IJ
o
r-1
CO
4J
O
CO
r-l
O
c
OJ
r?
a
r-l
CO
o
CO
3
M
O
,C
a
CO
o
.c
ex
r-l
CO
.LJ
0
I
•r-l
TD
CO
CO
col
4J
C
cO
4J
O
Cw
O
a<
A-88
-------
c
o
o
CO
I
<
W
pa
3
os 2:
o o
Z H
«; en
J H
2Z
w
00 CO
E
Z
r-l
rJ t
Q
Z
Q
Z
CO
o
o
Q •
Z O
csi
O
O
csi
O
O
Q
Z
Q Q
Z Z
Csl
O
O
Q • Q Q
Z O Z Z
Q
Z
in
O
O
o
Q •
Z O
O
O
Q •
Z O
SO ON
O O
o o
O Csl
r- O
o o
o
o
Q
Z
Q Q
Z Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
Q
Z
CO r-
O O
o o
o
o
csi r-
o o
o o
o
o
• Q
O Z
o
o
Q •
Z O
O —
O O
Csl
O
O
r- in
o o
o o
o o o o
Q Q
Z Z
O
o
. o
o z
ZZ ZZ ZZ 00 ZZ
z z
Q Q
Z Z
Q Q
Z Z
in o
o —
o o
d d
in m
o o
o o
Q Q
Z Z
Q Q
Z Z
o o
o o
Q Q
Z Z
O ON
o o
00
Q O,
z z
o o
o o
r- O
o o
Q Q
Z Z
O
o
Q •
Z O
-*
I*- O
CO
O
O
csi
O
d
o o
o o
O csi O O
-* o
o o
vo r-~ o o
o o o o o o
ZZ
D O
z z
O O r- r-
CO CO O O
O O O O
o o o o
to 5
csi CM CM CM
• r- CM CM
CSI CM CSI CM
co in
i i
co in co in co m
ii ii ii
co in co in
co m
i i
co m
i i
co in
I i
co in co in
ii ii
co in
i i
4J
CO
•o
0)
o
D-i
CD
C
CO
0)
o
IJ
o
I—I
JC
O
cu
03
JC
o
1-1
o
r-l
JC
a
w
Q)
U
CM
CM
Ou
O
4J
I
vD
O
!_,
O
r-l
JC
O
O
D
JC
a.
o
r4
O
I—I
JC
o
I
o
c
CD
a
o
u
o
OJ
c
cu
JC
c
CO
I-I
§
cu
"O
1-1
o
1-1
£
o
0)
c
cu
JJ
0)
E
cu
e
CO
JC
E
O
O
J3
O
1-1
o
r-l
JC
O
0)
E
O
o
•o
o
rJ
o
r-l
JC
o
-a
o
o
c
0)
JC
a.
o
I-.
o
rH
JC
O
CO
4J
C
cu
a
o
c
o
JC
a
cu
4J
CO
r-l
CO
-C
>1
0)
4J
CU
t-l
Cu
in •—
— csi
ON
co
A-89
-------
•o
CU
3
E
•H
4J
E
O
U
aa
052
00
H a
2H
< CO
3 CO
J EH-
OZ i
OH f*1
5 I
t"
CQ
i
CO H
o
o
CN
o
o
v£> CN
o o
oo
o o
Q
2
Q
•z
CN
m
o
Q Q
o
Q •
z o
oo
o
CT\ OO
.— m
o o
m
o
o
CO CM
O CN
Q
2
co
o
o
o
o
o
Q
z
o o o o
Q a
2 2
o o
o o
-3-
CN O
O O m —
o o •- «-
a • . Q
z o 02 o o
m •— o in
C**} ~^ OO CJ> CM
o — o o *-
Q
O 2
CM
o
Q Q
2 Z
o
o
o
Q Q
z z
o
oo a*
CSI O
o o
Q Q
Z 2
o o o o
OO OZ 22 OO
O O CN
CSI ,— O
CN — O
• O
O Z
o o
2 2
Q O .
2 Z
Q Q
2 2
O O
o o
o o
oo oo
o o
00 00
Q a
Z 2
o o
o o
O O
Q Q
Z 2
Q Q
Z 2
O O
CN CN
O O
Q Q
2 Z
ON
I
II
J-l
00
CO
CO •!-
01 01
O T)
O O
^•i O
Cu
m m
i i
m m
i i
m m
i i
m m
i i
m in
i i
m m
i i
m in
i i
m m
i i
m m
i i
m m
i i
-o
01
c
•H Ol
U 4J
E *C
O rH
CO
4-1
e
at
•tJ
3
i-H
rH
O
a.
rl
a
rH
4J
3
A
1
E
Ol
E
01
O
4-1
o
4J
B
1C
E
01
CO
E
O
1J
4-1
O
Ol
13
CO
M
O
CO
vO
i— .— CN
X
I-l
O
01
E
m
CN
m
CM
>
rH
•H
CO
Ol
ex
£
01
rH
a
E
tC
CO
CO
o
a
e
o
o
01
co
E
01
m
i
4J
E
01
3
CO CO
00 00
I i
•— CN
A-90
-------
o
a: 3
O H
fc
H Q
ZH
/
2Z i-i
W
w
rs
Ed
H
<:
3
oqco
e
o
cm-
O. CU
E O-
CO >•
CO H
O
O
i CO
o o
CO CO
o o
o o
CM CO
O O
O O CO O O O
CO -tf
o o .- —
CO vo
— O
o o
Ov
I OO
i O
•* co
VD CO
in
oo vo
o
CM O
o m
co vo
o
m o
r- CM
CM O 00 Ov
ON I—
oo
CM
CO CM
VO--
o
in -*
in co o
T-. o o ;
m
o o
c\ CM
m in vD vo
o o o
o m co co co
• CM CM CO O O
o o
O CM
r~- in
oo
CM
o
o
m in o o
CM O
CO CM
CO CO
— O
o o
vD CO
oo o
ON
-,
X
o
1— 1
«
o ^
-j m
oca
0 O
•-I CO
O v-'
XI
01
o
e o
CU ^-^
XI
o
JD
CO
C
0)
cu
T3
A-91
-------
T3
a;
3
c
C
o
o
u
(0
o
.H
-H
o.
Q
r—l
aom CM
E vo m CM in o o
^ >-| ON p- vo CM — m .—
tOl •• •• • Q • •
to dl •— — com oz vooo oo
cm CM CM
O mm
• r4
4-1
CO
U
C CM •*
01 CM N CNOOCMO CM<—
C CO • • • • Q • •
oo ovo mm oz oom oo
o oo .-CM
m mm
CM oo vo oo .— o m
>-, mcMinr^-oo CM —
Q -^ r-- mm oo r--. *— oo
m CM
V
O ON ON
i-i minininoo mm
3 inmoooo CMCM
en oooo mm oo ONON oo
in m
m m
i— 1 4-
D. U
co H
CO
CO +-
QJ CJ /—^ "3° vo -^ vO -«^ vO -^ VD *3" vo
O^TD II II II II II
1-1 u a
cu c
•H
4-1
C
o
o
**_*•
CO
4J
C
flfl C
3 ao
-H O
4J i— 1 !J
COP
CO DM -H w
4J C 4J
3^-1 El) c
i— 1 CO i— 1 J3 CD CO
rH C £ -^ <1) JJ
O O to to C E O
CM «iH "O QJ CO 3 tO
4-1^-1 C 00 -H M-l
C til 00- C TT lJ
CD T-) to to o 3
> *6 E E w co
C
O
O
c
0
z
VD
r-
o m
Q O .0
Z Z O Z o t—
— oo
ON ON
vD
r**
o
Q O • Q
Z Z 0 z or-
T— ON
ON 00
m
ON r"N
Q • • O
Z •— o z o m
O r-
00
o o mm
O O • • • •
z z oo •- ^~
oo oo
CT.ON
-^ VD -
,_!
O
to
CO
§.tH
T3 x-^
•H CO
C r-( Q
o
o
. a
o s
CJ\ OO
o o
o o
00
o
o
Q .
Z O
m m
o o
o o
-------
T3
(II
c
•r^
U
s
I
s
03
O
tn
H
Z H
2Z t-i
Ed
£ H
>• H Z
< OS Oi
O H
Z <
i-i 3
_J U
On H
S CO
< «<
CO 3
^N
rH
00
^/
01
C
o
u
to
u
4j
B
O
O
u
111
r^
£
cd
10
CO
0)
O
01
•U
CO
O
•rl
rH
a
H
CO
^,
(rj
O
CM
>
CO
Q
rH
U1
Q
0)
o
V4
3
o
CO
•4-
01
&
H
•f-
11
T)
0
4-1
C
cd
u
3
rH
— 1
0
ex.
Q Q
Z Z
Q Q
Z Z
!00
0
d z
Q Q
z z
CM CM
"3" VO
1 1
~a
0)
3
C CO
•H C
u td
C x:
O J-*
U OJ
^ o
|-i
CO O
*-> r-l
C Si
cd cj
4J -rJ
3 V-
— 1 U
r-l 1
0 —
fXi
Y—
>•
U <—
,,_!
rJ
O
•l-l —
V4 —
Ol
Q O
Z Z
^0 -a*
O —
00
oo
^-f
0
o
zo
ON ON
o o
00
o d
CM CM
>a° ^o
i i
01
T3
•rJ
l-l
O
r-l
r!
O
0)
c
0)
r-l
r*N
r*.
4_)
0)
e
•
>"!•
^
0 0
O CO
CM •—
do
CO O
r^ in
O CM
o o
^a° 10
^_ r-
o o
o o
, — r_
oo oo
o o
d o
CO *—
-a* *£>
i i
rH
O
C
-£
a
.
m
vD
->
X
01
J2
r-l
r**>
n
4J
01
1
CM
N^ t
01
•r-l
XI
.
VO
*&
r—
i—
o
. Q Q O
O Z Z Z
CN co
r— in
o o
Q • Q .
ZO ZO
-3-
,.
0
0 z Z Z
Q Q Q O
Z Z Z Z
COr— CO-—
•^ vo > X
u u
3 0
rO O
1 1
c c
1 1
•i-l *H
T3 T3
. .
OO ON
VO ^O
o o\
— o
oo
a Q a Q . .
z z z z oo
ON
o o m
O r- O
o oo
Q • Q Q • •
z o z z o o
*—
o
o
Q Q Q • O O
Z Z Z O Z Z
O Q Q Q O Q
ZZ Z Z ZZ
CO r- CM CM CO *—
a° v£>
II II II
CD
4J
CO
1— 1
CO
f.
LI
JS
cx
r*M
r-l U C
>, C 0
.e o) B
4J 3 -rJ
0) r-l 4J
•HOC
• • •
O vO •*
r*~ oo •—
r-
o oo o
*~ r— r^
oo o
• • • Q
00 0 Z
o o o
1 — r- r—
r-— O
• • • D
oo o z
o in
i — ON
— o
• • Q Q
00 Z Z
00
oo
• — r-
Q a
00 Z Z
CO— CO —
-a* *o -a* v£>
II 11
•H •<-!
C E
0) O
01 l-l
rJ X
CO O
. ,
in ON
r- —
* — • —
O CO \O
— — o
o oo
.0 • •
o z oo
c~^ ^D
CN O
o o
• o •
o z oo
moo
— o
oo
O d . •
z z oo
Q O
z z oo
CO— — —
-a* ^o -xt1 vo
II II
^~*
rH
CO
4J
0
4J
^^
0)
rJ t3
CD -rl
D. C
B. cfl
O >i
0 0
, .
o —
CM CM
i — r—
00
00
o o
o d
, —
o
o
o
o •
Z 0
CM
o
o
o
• Q
0 Z
CJ Q
z z
CO —
~-f \£>
1 1
f^
^J
-3
o
l-l
0)
e
.
CO
CM
, —
A-93
-------
Q.
Q
3
C
c
O
O
Cd
03
o
o3
^
H S
Z H
•4 to
H >->
3 co
_J
J H'
O Z >
a* Cd
>-< H :
CO •< •
H
Z <
J§
SH
o
^
O
• O
OS
o o \r>
oo t~-
CM O .-
• . . Q
O O O Z
o o o
o- o vo
O fO O
Q . . .
so
o o
CN
. Q
o z
E &
O
-*
O
. Q
OS
O Q
z -z
O O
O vD OO —
CM «— O O
O O O O
o o
o o
Q O
O O Z Z
ro i— co ••— f*"> t—
3
00
CO
01 +-
11 0)
o -a
o o
•a
4)
3
C
•t-i
4-)
C
o
u
0)
o
•T-l
c
oo
CN
01
D.
>^
^H
cu
0)
4J
to
0
(1) CL
4-> E
fl O
to o
O
a o
E -i
O U
o to
E
-O ,O O
tO to 4-J
(-1 )j 3
00 00 to
HI
to
^
1
t— 1
-
IJ
c
111
3
r-l
^
C
•H
to
CX III
to T— CM ro
CO
A-94
-------
CO
u
oojco
B
J
co
O
Z
J
l
H
ad
H
U
H
co
35
Ed
H
W
O
CO
c
o
•r4
4-1
CO
U
4J
CCNl
<"
O >J
«1
6
o
o
o
00
O vD O
-^" CO -Cj"
\/ \/
o
oo
o
o
m
o
o
V
st-
— o
o o
r^ ON
o *-
Q
Z
o
V
00
CD
O
CD
O
f-
CN
00
OO
O
in
CM
o
v
o
\s
m
v
CM
oo
O — •-
o
V
vf <-
o o
oo oo
i- 00
O r-
O ^ CD
CM
CD
m
v
•- O
s/ v
CO
o
r- O
\/
CM
O O
»— O
r-ll
d
SI
CU
CJ
^4
3
0
en
01
CX 01
e a
co H
CO
CO tfft
cu cu
o -o
0 0
l-l CJ
CM
CO
4-1
c
TO
4J 4-1
C 3
CO rH
4J rH.
3 0
rH CM
0 rH
Cu co
C
O
•H
4-J
C
CU
^
c
o
U
o
r^
0
•
m
v
CO
CM
i
cj
•a
c
CO
E
CU
•a
c
0)
00
^
X
o
rH
CO
O^x
ooa
O O
— I to
O — '
•r-l
X)
O vo O
OO CO -*
o ^- o
« » •
^O I — vD
T—
CM CN CO
CN CN CM
1 1 1
O O U
CO
-o
•iH
i — 1
O
CO
T3
CU CU
CO TJ
CO C
01 01
b CX
00 CO
3
•a co
c
CO rH
CO
l"-| 1-'
•r4 ffi O
o a. u
O CM
CM m -*
O 0 0
000
m
o
< • ' a
Z 0 Z
V
CO CO CO
CM CN CM
1 1 1
o cj o
CO
C
cc)
^J £*
3 CU
rH 00
rH O
O P
•^•1
rH C
C CU CO
O C 1-1
•M o c c
4-1 4J O O
C 0) 6 V<
CU 0 E O
> CO CO XI
c
o
o
B
o
Z
,_
v^
-* o
O o in
V CO
CN
xO ^O
moo
• • •
o o m
V
CO CO CO
CN CN CM
1 1 1
cj O O
•a
c
CO
e
o
13
C
cu
00
X
o
rH
•O 3 oS"
-r* .H •*-» O
E 0 E 0
O rH CU ^
ij cc x:
Xl O O
ON -O
CO CD vD
*- 0 0 «- i-
0 — 1-002:
V N/
, —
^O OO
~* O r- 00
o . . . a
o z — o m z
V
en co co co co co
CM CM CM CN CN CN
1 1 1 1 1 1
O O O O O CJ)
c
0)
00 CU
O 4J
U -H
4-1 LJ
•H 4J
C -H
§C
~^
•O £ -^ to
•iH CO CO 4J P
VJ T3 CU CO 3
O C rH C la -r<
3 O CU 00 4J 13
rH Vj -t—1 CO -H O
•w — i ^ E C co
^
o o o
m >— o
\/ N/ X^
»—
o o
. ,
O r- O
o- v v
o
CM CO CO
CM CM CM
1 1 1
o o cjj
CO
C
CO
0) 0) 4J
4J -O CJ
CO -.-1 CO
"4-1 MH MH
, 1 rH t-l
333
CO CO CO
A-95
-------
13
QJ
3
C
4J
C
o
o
in
«i
M
rJ
to
EH
O
H
Z
^
OH
1
H
<:
o
Q£
m
H
^C
3
H
53
3
>>
3d
W
0
o
W
ai
H
Z
W
rJ
O
W
Ot
ca
x^»
CO
C
O
4->
a
IH
c
cd
o
.1-1
,M|
a
*
o
m
•—
oo o
cnl r-
— m
>J 0 —
cd]
al o~.ro
r^
r-
CNl OO
0 OS
>| 0 —
al d os d
f~
r-l
rS
cd
a
0
r-
Q
Z m o
^0
, —
(U
O
^.J
3
O
en
>— CN
O O O
O r^ O
V
01
r-l -t-
(X 01
E &
cd >-
W E-H
en en CN
09
CO e*>
CU Ol
o -o
0 O
p- °
^x CN CN CN
•a i i i
cu O O O
3
._*
c o
o o
O E-i
co C
4-1 O
C Xi
cd rJ
4J cd
.5 0
4-1
C
cd
4-1
3
r- 1
O
OH
r-l O CO
0 -rl rH
OH CO
cd c
i—l 00 Ol
cd E ri x:
e 3 o a
O -rl
•rl C r-l r-l
XJ Cd (d Cd
C 4-> 4J 4J
O> -rl O O
> 4-1 4-1 4J
C
o
c
0
^^
O
d
CN
o
•
o
V
^
o
d
^>
o
d
^-
0
d
en
CS|
1
o
09
3
O
a
09
O
a
rH
«
4-1
O
4J
Q
Z
a
z
vO
,^f
O
.
0
Q
^
en
CM
1
O
.,-1
T3
cd
c
ed
^
Q
2;
a
*z»
Q
2
Q
2
rn
cs
i
O
.,-1
jj
4J
jj
^
o
z
Q
Z
o
z
o
o
o
o
o
o
CN OO
o o
o o
— o
Q Q "~. Q
Z Z O O Z
Q
Z
xtf OO
CT\ •-
O O
CN
O
o
a
z
o
o
1
4->
l-l
^
OH
CN
1
0
cu
c
cu
s:
4-1
JS
a.
cd
C
cu
o
cd
,_
CN
i
O
01
"O
•l-l
lJ
0
r-l
r1
O
cd
4J
01
4-1
C
o
\J
cd
o
xO
CN
1
o
cu
c
ed
4-1
Ol
o
0
r-l
£
O
• r-4
^
4-1
1
T—
«
1
K
"—
^_
T—
CN
1
CJ
cu
f^
4J
Ol
i— 1
>s
4J
O>
O
l-l
o
r-4
f
CJ
1
CN
•*~*
CO
•rH
Xt
OO
^
CN
1
O
E
LJ
0
M-l
O
O
r-l
x:
CJ
en
CSI
CN
1
O
0>
13
••-I
j_i
0
r"
O
Oi
c
Ol
rH
^
JC
4J
o>
E
^>
,^
CN CN
1 l
O O
cu
C
•rH
C
cd
i— l
^
c
cu
X!
a
T)
So
CO
o o
M-4 rJ
O 4-1
E -n
0 C
rl 1
XI Z
t~- CN
-* VD
CN CN
1 1
O O
cu
4-1
cd
cd
x:
4-1
XI
^-^
1— 1
rS
X
cu
XI
1— 1
>,
x:
4-1
CU
i— 1 1
O CN
C ^-^
01 CO
XI -rl
a.- xi
m \o
xO xD
CN
1
O
01
4-1
cd
i— i
03
x:
4-1
x;
a.
r-4
&S
4->
3
Xi
l
C
i
^H
•o
OO
*>o
CN
1
01
4J
id
I—I
cd
X!
4-1
x:
a
i— i
>>
f
4J
0)
•rl
•o
0
ps-
CN
1
O
0)
4-1
cd
rH
03
XI
4J
XI
a
rH
5>L,
r*
4-1
01
g
•H
•D
r-
fs^
A-96
-------
C5
EH
Z
<^
J
IX,
1
>— v <£
•0 H
CD ,
CO
Q
CM
>,
CO
rH
ccT
0)
u
I,
2
o
W
•«-
0)
a
>^
V)
0
T3
o
u
4-1
c
CO
4J
3
r-l
O
O-i
CM •—
O O
0 0
Q Q O Q
Z O Z Z Z O
Q O Q
•X * Z -X Z Z
io
0
o o o
•X O -X Z Z Z
O Q Q Q
•X * Z Z Z Z
CS|
r—
O
Q Q Q Q Q
Z Z Z Z 0 Z
CO CO CO CO CM CO
CM CM CM CM CM CM
1 1 1 1 1 1
cj U u O U rj
/~N
•o
01
^
c
•H
4J 01
CO) C
O C 01
U Ol rH
^^ o ^
co 01 _n
03 I-I C *J
4J £ D 01
C 4-1 rl O
CO C >s VJ
4J CO CX O
3 ^ ^-x 01 rH
rH CO CO C X 0)
rH ^- v-' Ol CD CJ C
O O O |J C CO Ol
ex, to N o CD V4 3
C C 3 SJ J-i 1-1
>> 0) OJ rH >, 0) O
4-1 _O & ^W CL 4J 4J
•H
>H
•H CM co o *vf m vo
IH f- r- oo oo oo
CL,
a
z
, —
o
o
o
a
z
o
z
CO
*3"
CO
,
o
CM
CM
1
o
01
e
01
rH
6s
x:
u
01
0
IH
o
rH
r*
o
.H
Vj
4-1
1^
OO
o
z
Q
z
Q
z
o
m
, —
o
o
o
d
Q
z
CO
CM
1
o
tH
o
rH
JC
u
CO
4J
a
01
ft
o
o
a
z
Q
z
^
OO
o
o
o
o
.
o
Q
z
Q
z
CO
CM
1
o
0)
*u
.*4
^
o
a.
01
I-I
o
rH
JC
o
CO
4-1
a,
01
n
,
0
o
z
o
o
o
o
o
o
Q
z
Q
z
Q
z
CO
CM
1
o
o
re
03
8
CM
0
^
o
0
o
o
.
o
Q
z
Q
z
in
OJ
CM
o
o
o
o
VD
vO
,_
o
o
o
C3
CO
CM
1
o
C^5
B
pa
1
CQ
CO
0
CN
p^
o
o
vO
00
o
.
o
l"-~
CO
o
o
a
z
CO
CM
1
o
IH
0)
a.
a
o
o
o
CM
CM
o
.
o
V
CM
o
o
0 Z
V
^f
CN1 O
o o
. .
o o
\/
V4O
CM CM
o o
0 0
\s
CM
o
Q
0 Z
\/
CM CO
CM CM
1 1
o o
/— N
, — 1
CO
4-1
o
u
^—^
01
T3
.,H
C 0
CO C
>* -H
O N
r- 00
CM CM
•
c
o
.rH
4J
CO
c
•iH
E
CO
4-1
e
0
o
^—
I-I
o
4J
CO
I-I
o
CO
r— 1
MH
o
4-1
r-l
3
03
a>
u
•
01 rH
n —
00
0 E
4J
-00
01 •
4-1 O
o \s
01
ex
03 03
o 3-a
01 (H
O 4J CO
o co co 3 co
Ol E 01
CX J3 O IH 4J 03
>, CO 4-> 3 O Ol
H Vj 3 00 c 4J
00 CO 'rH CO
01 In Ol CJ
rH II 3 -H
CX 0) rH T3
S CNJ CO 01 CO C
CO tO > rH
tO t»> -r- -X
A-97
-------
APPENDIX B
STATE INDUSTRIAL GUIDES
-------
APPENDIX B
STATE INDUSTRIAL GUIDES
Appendix B lists the State Industrial Guides used to estimate the
size of the PM&F category. This estimate is described in Section
IV.
State
Alabama
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
Florida
Georgia
Edition Title and Publisher
1980-81 Alabama Director of Mining and Manu-
facturing,Industrial Research
Department, Alabama Development
Office
1982 Arizona Directory of Manufacturers,
Pheonix Metropolitan Chamber of
Commerce
1982 Arkansas Directory of Manufacturers,
Arkansas Industrial Development
Foundation
1983 California Manufacturer's Register,
California Manufacturer's Association
1982 Directory of Colorado Manufacturers,
University of Colorado,Boulder,
Business Division, College of
Business and Administration
1982 MacRae's Connecticut State Industrial
Directory
1981-82 Delaware Directory of Commerce and
Industry^Delaware State Chamber of
Commerce
1982 Directory of Florida Industries, The
Florida Chamber of Commerce c 1981
1980-81 Georgia Manufacturing Directory,
Georgia Department of Industry and
Trade, c. 1980
B-l
-------
State
Edition Title and Publisher
Idaho
Illinois
Indiana
Iowa
Kansas
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
1982 Idaho Manufacturing Directory
University of Idaho Center for Busi-
ness Development and Research
1983 Illinois Manufacturers Directory,
Manufacturer's News Inc., Chicago, IL
Editor, Louise M. West
1983 Harris Indiana Marketer's Industrial
Directory, Harris Publishing Company
(1983, Ohio), State Directory
Division
1981-82 Directory of Iowa Manufacturers,
Iowa Development Commission
1981-82 Directory of Kansas Manufacturers and
Products, Kansas Department of
Economic Development
1981-82 Directory of Kansas Manufacturers and
Products",Kansas Economic Development
Commission
1983 Kentucky Directory of Manufacturers,
Kentucky Department of Economic
Development
1982 Directory of Louisiana. Manufacturers,
Louisiana Department of Commerce
1981-82 Directory of New England Manufac-
turers , New England Council,
George D. Hall Company
1981-82 The Directory of Maryland Manufac-
turers , State of Maryland, Department
of Economic and Community Development
1981-82 Directory of Massachusetts Manufac-
turers , George D. Hall's Association
Industires of Mass c. 1981
1982 The Directory of Michigan Manufac-
turers ,Pick Publications, Inc.
1981 Minnesota Directory of Manufacturers,
Minnesota Department of Economic
Development
B-2
-------
State
Edition Title and Publisher
Mississippi
Missouri
Nebraska
Nevada
New Hampshire
New Jersey
New York
North Carolina
North Dakota
Ohio
Oklahoma
Pennsylvania
Rhode Island
1980 Mississippi Manufacturers Directory
Mississippi Research and Development
Center, printed 1979
1982 Missouri Directory, Mining and Manu-
facturing Industires Services and
Supplies^Information Data Company
1982-83 A Directory of Nebraska Manufacturers
and Their Products,Nebraska Depart-
ment of Economic Development
1981 Nevada Industrial Directory, Nevada
Department of Economic Development
1982-83 Made in New Hampshire, State of New
Hampshire, Office of Industrial
Development, Division of Economic
Development
1983 New Jersey State Industrial Directory
MacRae's Blue Book,Inc.
1983 New York State Industrial Directory,
MacRae's Blue Book,Inc.
Editor, Barbara Sadie
1981-82 Directory of North Carolina Manufac-
turing Firms, North Carolina Depart-
ment of Commerce
1978-79 Directory of North Dakota Manufactur-
ing, North Dakota Business and
Industrial Development Department
1983 Ohio Marketers Industrial Directory,
Harris Publishing Company
1980 Oklahoma Directory of Manufacturers
and Products,Industrial Development
Department
1982 MacRae's Pennsylvania State Indus-
trial Directory
1981-82
Rhode Island Directory of Manufac-
turers , Rhode Island Directory of
Economic Development
B-3
-------
State
South Carolina
South Dakota
Tennessee
Texas
Virginia
Washington
West Virginia
Wisconsin
Edition Title and Publisher
1983 South Carolina 1983 Industrial Direc-
tory, South Carolina State Develop-
ment Board
1981-82 South Dakota Manufacturers & Proces-
sors Directory, Department of
Economic and Tourism Development
1982 Tennessee Directory of Manufacturers,
Tennessee Department of Economic and
Community Development:
1983 Directory of Texas Manufacturers,
Bureau of Business Research,
University of Texas, Austin
1981-82 Virginia Industrial Directory,
Virginia State Chamber of Commerce
1982-83 Washington Manufacturers Register,
Times Mirror Press, Washington State
Department of Commerce and Economic
Development
1980 West Virginia Manufacturer's Direc-
tory, Governor's Office of Economic
and Community Development Department
1983 Classified Directory of Wisconsin
Manufacturers, Wisconsin Association
of Manufacturers and Commerce
B-4
-------
APPENDIX C
BENEFITS
-------
APPENDIX C
BENEFITS
This appendix explains how benefits (i.e., amount of pollutants
removed) were calculated for the BPT options. The BPT effluent
limitations guidelines apply only to direct dischargers. The
amount of pollutants generated by direct dischargers is 44 per-
cent of the total pollutant mass for the contact cooling and
heating water subcategory and 32 percent of the total pollutant
mass for the cleaning and finishing water subcategory. These
percentages represent the percentage of direct dischargers of the
total number of direct and indirect dischargers in the question-
naire data base; they were multiplied by the total mass of
pollutants generated by the PM&F category (see Table VII-7) to
determine the pollutant mass for direct dischargers. The pollu-
tant mass for indirect dischargers is the difference between the
total and direct discharge mass. Table C-1 lists the total
pollutant mass for the direct and indirect dischargers by
subcategory.
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Option 1
The technology for Option 1 consists of a tank in which the
velocity of the wastewater is reduced so that solid material can
settle by gravitational force. There are no benefits for this
option because the suspended solids concentration in the contact
cooling and heating water is very low and because the technology
does not remove the dissolved pollutants (e.g., biochemical oxy-
gen demand). The pollutant masses remaining after treatment are
equal to the total pollutant masses for direct dischargers listed
in Table C-1.
Option 2
The technology for this option consists of zero discharge by 100
percent recycle of the process water using either a tank or a
chiller for processes with an average process water flow rate of
35 gpm or less.
For processes with an average process water flow rate greater
than 35 gpm the technology is recycle through a cooling tower and
treatment of the recycle unit discharge in a package activated
sludge plant. An equalization unit is included in the package
activated sludge plant.
C-1
-------
Table C-1
TOTAL CATEGORY POLLUTANT MASS DISTRIBUTED
BY DISCHARGE MODE
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Conventional Pollutants
BOD5
Oil and Grease
TSS
TOTAL
Nonconventional Pollutants
COD
TOG
Total Phenols
TOTAL
Priority Pollutants
4. benzene
6. carbon tetrachloride
(tetrachloromethane)
11. 1,1,1-trichloroethane
22. parachlorometa cresol
23. chloroform (trichloro-
methane)
44. methylene chloride
(dichloromethane)
65. phenol
66. bis(2-ethylhexyl) phthalate
68. di-n-butyl phthalate
85. tetrachloroethylene
86. toluene
89. aldrin
90. dieldrin
93. 4,4'-DDE(p,p'DDX)
100. heptachlor
102. a-BHC
103. 6-BHC
104. Y-BHC
105. 6-BHC
Direct
Dischargers
Pollutant
Mass
(kg/yr)
7,920,000
708,000
295,000
8,923,000
19,400,000
7,610,000
233,000
27,243,000
4,390
60,300
6,200
2,020
4,840
5,680
1,
30
1,
610
200
290
6
105
15
4
0.
11
29
3
3
13
Indirect
Dischargers
Pollutant
Mass
(kg/yr)
10,080,000
902,000
375,000
11,357,000
24,700,000
9,690,000
296,000
34,686,000
5,590
76,700
7,900
2,580
6,160
7,220
2,
38,
1 ,
13
060
500
650
7
134
19
6
0,
13
36
3
3
16
17
C-2
-------
Table C-1 (Continued)
TOTAL CATEGORY POLLUTANT MASS DISTRIBUTED
BY DISCHARGE MODE
CONTACT COOLING AND HEATING WATER SUBCATEGORY (Continued)
Priority Polultants
118. cadmium
119. chromium (Total)
120. copper
122. lead
123. mercury
124. nickel
128. zinc
TOTAL
Direct
Dischargers
Pollutant
Mass
(kg/yr)
167
440
223
2,360
0.04
426
3,510
123,845.17
Indirect
Dischargers
Pollutant
Mass
(kg/yr)
213
560
284
3,000
0.06
543
4,460
157,657.23
C-3
-------
Table C-1 (Continued)
TOTAL CATEGORY POLLUTANT MASS DISTRIBUTED
BY DISCHARGE MODE
CLEANING AND FINIHSING WATER SUBCATEGORY
Conventional Pollutants
BOD5
Oil and Grease
TSS
TOTAL
Nonconventional Pollutants
COD
TOG
Total Phenols
TOTAL
Priority Pollutants
Direct
Dischargers
Pollutant
Mass
(kg/yr)
299,000
34,600
378,000
711,600
480,000
416,000
43,200
939,200
4.
23.
44.
62.
65.
66.
86.
89.
100.
102.
104.
105.
119.
120.
124.
125.
128.
benzene
chloroform (trichloro-
methane)
methylene chloride
(dichloromethane)
N-nitrosodiphenylamine
phenol
bis(2-ethylhexyl) phthalate
toluene
aldrin
heptachlor
Y-BHC
6 -BHC
chromium (Total)
copper
nickel
selenium
zinc
TOTAL
0.6
22
303
15
73
12
2
0.2
0.03
0.002
0.2
0.3
40
64
30
1
327
890.332
Indirect
Dischargers
Pollutant
Mass
(kg/yr)
634,000
73,400
802,000
1,509,400
1,020,000
884,000
91,800
1,995,800
1.4
48
645
31
154
27
4
0.4
0.07
0.004
0.5
0.6
84
137
65
2
696
1,895.974
C-4
-------
Because Option 2 for the contact cooling and heating water sub-
category is a combination of zero discharge and activated sludge
treatment, a portion of the benefits for this option was attri-
buted to zero discharge and the remaining portions were obtained
by the treatment technology. These portions were based on the
percentage of plastic products produced and not the volume of
wastewater discharged since the pollutant masses are dependent on
the amount of plastic produced. For the contact cooling and
heating water subcategory, 43 percent of the total plastic is
formed by processes with a process water usage flow rate of 35
gpm or less. This percentage is for direct dischargers and was
obtained from the questionnaire data base. Thus, 43 percent of
the total pollutant mass is removed by the processes with a
process water usage flow rate of 35 gpm or less (i.e., zero dis-
charge of pollutants). The remaining 57 percent of the pollutant
mass was multiplied by the removal efficiencies for the activated
sludge process presented in Table C-2 to determine the additional
benefit derived from treating wastewaters discharged by processes
with an average process water usage flow rate greater than 35
gpm.
Also listed in Table C-2 are the sources of the percent removals.
The percent removals for conventional pollutants were determined
by using the effluent concentration values transferred from the
organic chemicals, plastics and synthetic fibers category (see
Section X). There is zero percent removal of TSS, because the
PM&F wastewater TSS concentration (17 mg/1) is below the TSS
effluent concentration value (36 mg/1). Percent removals for the
nonconventional pollutants were obtained from the source listed
in Table C-2. Priority toxic pollutant removals for the package
activated sludge plant were calculated in the following way:
1. Pollutant treatability limits were obtained from USEPA,
Contractors Engineering Report, Analysis of Organic
Chemicals and Plastics/Synthetic Fiber Industries,
Toxic Pollutants, November 16, 1981, Contract No.
68-01-6024. If a treatability limit was below the
analytical detection limit, the treatability limit was
made equal to the detection limit for a pollutant. A
percent removal was calculated using the influent
concentration to the package activated sludge plant and
the treatability limit. If a limit was not listed for
a pollutant, the next source was searched.
2. Percent removals of pollutants were obtained from
the USEPA, Fate of Priority Pollutants in Publicly
Owned Treatment Works, Volume I,September 1982,
440/1-83/303.
C-5
-------
Table C-2
OPTION 2 POLLUTANT PERCENT REMOVALS
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Conventional Pollutants
BOD5
Oil and Grease
TSS
Nonconventional Pollutants
COD
TOG
Total Phenols
Priority Pollutants
4. benzene
6. carbon tetrachloride
(tetrachloromethane)
11. 1,1,1-trichloroethane
22. parachlorometa cresol
23. chloroform (trichloro-
methane)
44. methylene chloride
(dichloromethane)
65. phenol
66. bis(2-ethylhexyl) phthalate
68. di-n-butyl phthalate
85. tetrachloroethylene
86. toluene
89. aldrin
90. dieldrin
93. 4,4'-DDE
100. heptachlor
102. a-BHC
103. 8-BHC
104. Y-BHC
105. 5-BHC
118. cadmium
Removal
78
19
0
63
63
60
66
73
73
40
90
88
92
40
17
67
38
20
0
0
85
77
0
44
52
83
Source
Percent removals
were calculated using
effluent concentration
data transferred from
the organic chemicals,
plastics, and synthe-
tic fibers category
5
5
5
1
2
1
3
1
1
1
2
4
4
2
2
4
2
2
1
C-6
-------
Table C-2 (Continued)
OPTION 2 POLLUTANT PERCENT REMOVALS
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Priority Pollutants Removal Source
119. chromium (Total) 76 2
120. copper 82 2
122. lead 83 1
123. mercury 75 1
124. nickel 35 2
128. zinc 77 2
1. Percent removal is based on the analytical detection limit.
2. Percent removal is from the USEPA, Fate of Priority Pollu-
tants in Publicly Owned Treatment Works, Volume I, September
1982, 440/1-82-303.
3. Percent removal is determined from the USEPA, Contractors
Engineering Report, Analysis of Organic Chemicals and
Plastics/Synthetic Fibers Industries Toxic Pollutants,
November 16, 1981, Contract No. 68-01-0624.
4. Removal efficiencies not presented in sources.
5. Percent removals are from USEPA, Treatability Manual,
Volume III, Technologies for Control/Removal of Pollutants,
July 1980, EPA 600/8-80-842c.
C-7
-------
3. If the percent removal from the POTW study resulted in
an effluent concentration below the pollutant analytical
quantification level, the effluent concentration was
made equal to the analytical quantification level, and
the percent removal was adjusted using that
concentration.
Table C-3 presents the pollutant mass removals for Option 2 and
the pollutant masses remaining after treatment. The calculation
procedure for 6005 removal is described below:
1. The total direct discharge mass for BOD5 is
7,920,000 kg/yr (from Table C-1).
2. Forty-three percent of the 6005 pollutant mass was
eliminated because of zero discharge of pollutants.
This benefit is 3,410,000 kg/yr (3,410,000 = 0.43 x
7,920,000).
3. The remaining pollutant mass available for treatment
in a package activated sludge plant is 4,510,000
kg/yr (4,510,000 = 7,920,000 - 3,410,000).
4. The pollutant percent removal in the package activated
sludge plant is 78 percent. Pollutant mass removals
in the package activated plant are 3,520,000 kg/yr
(3,520,000 - 0.78 x 4,510,000).
5. Total pollutant benefits are the portion of pollutants
removed by zero discharge and the portion removed by the
package activated sludge plant. These benefits equal
6,930,000 kg/yr (6,930,000 = 3,410,000 + 3,520,000).
6. The BOD5 pollutant mass remaining after treatment
is 990,000 kg/yr (7,920,000 - 6,930,000 = 990,000).
Other pollutant benefits were calculated using this procedure.
Table C-4 lists the Option 2 influent and effluent concentrations
for the contact cooling and heating water pollutants. The per-
cent removals listed in Table C-2 were applied to the influent
concentrations (see Table VII-5) to calculate the treatment
system effluent concentrations.
Option 3
The technology for Option 3 for contact cooling and heating water
is:
For processes with an average process water usage flow rate of 35
gpm or less the technology is zero discharge by 100 percent
recycle of the wastewater through either a tank or a chiller.
C-8
-------
Table C-3
POLLUTANT BENEFITS AND AMOUNTS REMAINING AFTER BPT OPTION 2
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Pollutant Mass
Conventional Pollutants
BOD5
Oil and Grease
TSS
TOTAL
Nonconventlonal Pollutants
COD
TOG
Total Phenols
TOTAL
Priority Pollutants
4. benzene
6. carbon tetrachloride
(tetrachloromethane)
11. 1,1,1-trichloroethane
22. parachlorometa cresol
23. chloroform (trichloro-
methane)
44. methylene chloride
(dichloromethane)
65. phenol
66. bis(2-ethylhexyl) phthalate
68. di-n-butyl phthalate
85. tetrachloroethylene
86. toluene
89. aldrin
90. dieldrin
93. 4,4'-DDE(p,p'DDX)
100. heptachlor
102. a-BHC
103. B-BHC
Option 2
Benefits
(kg/yr)
6,930,000
380,800
127,000
7,437,800
15,310,000
6,000,000
179,800
21,489,800
3,540
51 ,000
5,250
1,329
4,560
5,290
1,537
19,880
680
4.
68
8.
1.
0.
10.
25
1.
Remaining
After Treatment
(kg/yr)
990,000
327,200
168,000
1,485,200
4,090,000
1,610,000
53,200
5,753,200
850
9,300
950
691
280
390
73
10,320
610
9 1.1
37
2 6.8
7 2.3
06 0.07
1 0.9
4
3 1.7
C-9
-------
Table C-3 (Continued)
POLLUTANT BENEFITS AND AMOUNTS REMAINING AFTER BPT OPTION 2
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Priority Pollutants
104. Y-BHC
105. 6-BHC
118. cadmium
119. chromium (Total)
120. copper
122. lead
123. mercury
124. nickel
128. zinc
TOTAL
Option 2
Benefits
(kg/yr)
Pollutant Mass
Remaining
After Treatment
(kg/yr)
2.05
9.4
151
380
200
2,130
0.035
268
3,050
99,375.745
0.95
3.6
16
60
23
230
0.005
158
460
24,469.425
C-10
-------
Table C-4
INFLUENT AND EFFLUENT POLLUTANT CONCENTRATIONS - OPTION 2
CONTACT COOLING AND HEATING WATER SUBCATEGORY
Conventional Pollutants
BOD5
Oil and Grease
TSS
Nonconventional Pollutants
COD
TOG
Total Phenols
Priority Pollutants
4. benzene
6. carbon tetrachloride
(tetrachlorotne thane)
11. 1 ,1,1-trichloroethane
22. parachlorometa cresol
23. chloroform (trichloromethane)
44. methylene chloride
(dichloromethane)
65. phenol
66. bis(2-ethylhexyl) phthalate
68. di-n-butyl phthalate
85. tetrachloroethylene
86. toluene
89. aldrin
90. dieldrin
93. 4,4'-DDE(p,p'DDX)
100. heptachlor
102. a-BHC
103. 3-BHC
104. Y-BHC
105. 6-BHC
118. cadmium
119. chromium (Total)
120. copper
122. lead
123. mercury
124. nickel
128. zinc
Influent
Concentration
(mg/1)
102
21
17
241
74
149
0.029
1.176
0.037
0.042
0.097
0.086
316
333
012
030
016
0.
0.
0.
0.
0.
315t
411
44t
203t
250t
176t
132t
104t
0.023
0.050
228
248
0004
686
0.
0.
0.
0.
0.190
Effluent
Concentration
(mg/D
22
17
17
89
27
60
0.010
0.318
0.010
0.025
0.010
0.010
025
,200
010
,010
010
0
0
0
0
0
252t
411
44t
30t
56t
176t
74t
50t
0.004
0.01
0,
0.
0,
0.
2
041
042
0001
446
0.044
tConcentration is in nanograms per liter.
C-ll
-------
For processes with an average process water usage flow rate
greater than 35 gpm the technology is recycle through a cooling
tower and zero discharge by contract haul of the discharge from
the recycle tank.
This option results in zero discharge of pollutants from all pro-
cesses using process water for contact cooling and heating.
Benefits for this option are equal to the total pollutant masses
for direct dischargers listed in Table C-1.
CLEANING AND FINISHING WATER SUBCATEGORY
Option 1
The technology for Option 1 consists of a tank in which the
velocity of the wastewater is reduced so that solid material can
settle by gravitational force. Acidic or basic material is added
to either the tank influent or the tank effluent to adjust the pH
of the wastewater.
Pollutant removals for this option were calculated using percent
removals from the USEPA Treatability Manual, Volume III, Tech-
nologies for Control/Removal of Pollutants, July 1980, EPA-600-
8-80-042c, for sedimentation. Percent removals were applied to
conventional, nonconventional and priority toxic metal pollu-
tants. The percent removal for selenium was adjusted to 57 per-
cent from the treatability manual percent removal of 63 percent,
because the 63 percent removal reduced the effluent concentration
below the analytical detection limit for that pollutant. The
organic priority pollutants are not removed by sedimentation
because they are dissolved. Table C-5 lists the percent remov-
als. These percent removals were applied to the total pollutant
masses for direct dischargers listed in Table C-1 for the clean-
ing and finishing water subcategory to calculate the benefits.
The benefits and pollutant masses remaining after treatment for
Option 1 are presented in Table C-6. Concentrations before and
after Option 1 treatment are listed in Table C-7. The percent
removals in Table C-5 were applied to the raw wastewater average
concentration to calculate the effluent concentrations after
treatment.
Option 2
This option consists of recycle through a sedimentation tank and
treatment of the discharge from the recycle unit in a package
activated sludge plant. The package plant includes an equaliza-
tion unit and pH adjustment.
The benefits for Option 2 include pollutant mass removals in the
sedimentation tank and in the activated sludge plant. Because
processes with a process water usage flow rate of two gpm or less
C-12
-------
Table C-5
OPTION 1 POLLUTANT PERCENT REMOVALS
CLEANING AND FINISHING WATER SUBCATEGORY
Conventional Pollutants
BOD5
Oil and Grease
TSS
Nonconventional Pollutants
COD
TOG
Total Phenols
Priority Pollutants
4. benzene
23. chloroform (trichloromethane)
44. methylene chloride (dichloromethane)
62. N-nitrosodiphenylamine
65. phenol
66. bis(2-ethylhexyl) phthalate
86. toluene
89. aldrin
100. heptachlor
102. a-BHC
104. Y-BHC
105. 6-BHC
119. chromium (Total)
120. copper
124. nickel
125. selenium
128. zinc
%*
Removal
33
47
82
71
40
43
0
0
0
0
0
0
0
0
0
0
0
0
76
66
61
57**
51
*Percent removals are from the USEPA, Treatability Manual,
Volume III, Technologies for Control/Removal of Pollutants,
July 1980, 600-8-80-042c.
**The percent removal for selenium is based on the analytical
detection limit because the Treatability Manual percent
removal reduces the effluent concentration below the analy-
tical detection limit for that pollutant.
C-13
-------
Table C-6
POLLUTANT BENEFITS AND AMOUNTS REMAINING AFTER BPT OPTION 1
CLEANING AND FINISHING WATER SUBCATEGORY
Conventional Pollutants
BOD5
Oil and Grease
TSS
TOTAL
Nonconventional Pollutants
COD
TOG
Total Phenols
TOTAL
Priority Pollutants
4. benzene
23. chloroform (trichloro-
methane)
44. methylene chloride
(dichloromethane)
62. N-nitrosodiphenylamine
65. phenol
66. bis(2-ethylhexyl) phthalate
86. toluene
89. aldrin
100. heptachlor
102. ct-BHC
104. Y-BHC
105. 6-BHC
119. chromium (Total)
120. copper
124. nickel
125. selenium
128. zinc
TOTAL
Option 1
Benefits
(kg/yr)
98,700
16,300
310,000
425,000
341,000
166,000
18,600
525,600
0
0
0
0
0
0
0
0
0
0
0
0
30
42
18
0.
167
57
257.57
Pollutant Mass
Remaining
After Treatment
(kg/yr)
200,300
18,300
68,000
286,600
139,000
250,000
24,600
413,600
0.6
22
303
15
73
12
2
0.2
0.03
0.002
0.2
0.3
10
22
12
0.43
160
632.762
C-14
-------
Table C-7
INFLUENT AND EFFLUENT POLLUTANT CONCENTRATIONS - BPT OPTION 1
CLEANING AND FINISHING WATER SUBCATEGORY
Conventional Pollutants
BOD5
Oil and Grease
TSS
Nonconventional Pollutants
COD
TOG
Total Phenols
Priority Pollutants
4. benzene
23. chloroform (trichloro-
methane)
44. methylene chloride
(dichloromethane)
62. N-nitrosodiphenylamine
65. phenol
66. bis(2-ethylhexyl) phthalate
86. toluene
89. aldrin
100. heptachlor
102. a-BHC
104. Y-BHC
105. 6-BHC
119. chromium (Total)
120. copper
124. nickel
125. selenium
128. zinc
Influent
Concentration
(mg/1)
100
130
1,840
410
371
134
0.026
0.045
0.067
0.036
1.334
0.059
0.120
52t
18t
5t
535t
116t
0.112
401
,136
0,
0,
0.175
3.375
Effluent
Concentration
(mg/1)
67
69
331
119
823
76
0.026
0.045
0.067
0.036
1.334
0.059
0.120
52t
18t
5t
535t
116t
0.027
0.136
0.053
0.075
1.654
•(•Concentration is in nanograms per liter,
C-15
-------
were costed for zero discharge by contract haul, a portion of the
benefits after sedimentation was attributed to zero discharge and
the remaining portion was attributed to the treatment system. As
in the contact cooling and heating water subcategory, these por-
tions were determined using the percentage of plastics produced
and not the volume of wastewater discharged, because the pollu-
tant masses are dependent on the amount of plastics produced.
For the cleaning and finishing water subcategory, 12.7 percent of
the total plastic amount is processed by processes with an aver-
age process water usage flow rate of two gptn or less. This per-
centage for direct dischargers was obtained from the question-
naire data base.
The percent removals and benefits for BPT Option 1 apply to the
sedimentation tank (i.e., the recycle unit) in Option 2 (see
Tables C-5 and C-6). The percent removals for the package acti-
vated sludge plant in the cleaning and finishing subcategory were
determined as described in BPT Option 2 for the contact cooling
and heating water subcategory. The influent concentrations to
the activated sludge process are the concentrations after sedi-
mentation. Table C-8 lists the percent removals for the package
activated sludge plant for the cleaning and finishing water
subcategory.
The pollutant mass removals for BPT Option 2 and the pollutant
masses remaining are presented in Table C-9. The procedure used
to calculate for BOD5 removal is described below:
1. The total direct discharger BOD^ mass load is 299,000
kg/yr (from Table C-1).
2. The benefit for sedimentation is 33 percent 6005
removal or 98,700 kg/yr (98,700 = 0.33 x 299,000).
3. After sedimentation 200,300 kg/yr (200,300 = 299,000 -
98,700) remain.
4. Of this amount, 12.7 percent is removed from processes.
with an average process water usage flow rate of two gpm
or less by zero discharge of pollutants. Benefits for
zero dischargers are 25,400 kg/yr (25,400 = 0.127 x
200,300).
5. The remaining pollutant mass available for treatment
in a package activated sludge plant is 174,900
kg/yr (174,900 = 200,300 - 25,400).
6. The BODij percent removal in the package activated
sludge plant is 67 percent. BODs removal in that
process is 117,000 kg/yr (117,000 = 0.67 x 174,900).
C-16
-------
Table C-8
PACKAGE ACTIVATED SLUDGE PLANT PERCENT REMOVALS - BPT OPTION 2
CLEANING AND FINISHING WATER SUBCATEGORY
Conventional Pollutants
BOD5 '
Oil and Grease
TSS
Nonconventional Pollutants
COD
TOG
Total Phenols
Priority Pollutants
% Removal Source
67 Percent removals
75 were calculated using
89 effluent concentration
data transferred from
the organic chemicals,
plastics, and synthe-
tic fibers category
63 5
63 5
60 5
4.
23.
44.
62.
65.
66.
86.
89.
100.
102.
104.
105.
119.
120.
124.
125.
128.
1
2.
4.
5.
benzene
chloroform (trichloro-
methane)
methylene chloride
(dichloromethane)
N-nitrosodiphenylamine
phenol
bis(2-ethylhexyl) phthalate
toluene
aldrin
heptachlor
a-BHC
Y-BHC
6-BHC
chromium (Total)
copper
nickel
selenium
zinc
62 1
78 1
85 1
72 1
98 1
0 3
92 1
20 2
85 2
60 1
44 2
55 2
74 1
82 2
35 2
0 4
77 2
Percent removal is based on the analytical detection limit.
Percent removal is from the USEPA, Fate of Priority Pollu-
tants in Publicly Owned Treatment Works, Volume I, September
1982, 440/1-82-303.
Percent removal is determined from the USEPA, Contractors
Engineering Report, Analysis of Organic Chemicals and Plas-
tics/Synthetic Fibers Industries Toxic Pollutants, November
16, 1981, Contract No. 68-01-6024.
The influent concentration is below the analytical detection
limit after sedimentation.
Percent removals are from USEPA, Treatability Manual, Volume
III, Technologies for Control/Removal of Pollutants,
July 1980, EPA 600/8-80-842c.
C-17
-------
Table C-9
POLLUTANT BENEFITS AND AMOUNTS REMAINING AFTER BPT OPTION 2
CLEANING AND FINISHING WATER SUBCATEGORY
Conventional Pollutants
BOD5
Oil and Grease
TSS
TOTAL
Nonconventional Pollutants
COD
TOG
Total Phenols
TOTAL
Priority Pollutants
4. benzene
23. chloroform (trichloro-
methane)
44. methylene chloride
(dichloromethane)
62. N-nitrosodiphenylamine
65. phenol
66. bis(2-ethylhexyl) phthalate
86. toluene
89. aldrin
100. heptachlor
102. a-BHC
104. Y-BHC
105. 5-BHC
119. chromium (Total)
120. copper
124. nickel
125. selenium
128. zinc
TOTAL
Option 2
Benefits
(kg/yr)
241,100
30,620
371,440
643,160
435,100
334,800
34,620
804,520
Pollutant Mass
Remaining
After Treatment
(kg/yr)
57,900
3,980
6,560
68,440
44,900
81,200
8,580
0.401
18
263
11
72
2
1.86
0.06
0.026
0.0013
0.102
0.182
37.7
61
23.5
0.62
295
786.4523
134,680
0.199
4
40
4
1
10
0.
0.
0.
0.
0.
0.
2.
3
6.
0.
32
14
14
004
0007
098
118
3
5
38
103.8797
C-18
-------
7. Total benefits are the removals in the sedimentation
tank, the portion of pollutants removed by zero
dischargers and the portion of pollutants removed in
the package activated sludge plant. These removals are
241,100 kg/yr (241,100 = 98,700 + 25,400 + 117,000).
8. The 6005 pollutant mass remaining after treatment
is 57,900 kg/yr (57,900 = 299,000 - 241,100).
Other pollutant removals were calculated using the above
procedure.
Table C-10 lists the pollutant concentrations before Option 2
treatment, after the sedimentation process, and after the package
activated sludge plant for Option 2. The percent removals listed
in Tables C-5 and C-8 were used to calculate the effluent concen-
trations from the sedimentation tank and the package activated
sludge plant, respectively.
Option 3
Option 3 consists of recycle through a sedimentation tank for all
processes and contract haul of the discharge from the recycle
unit. This option results in zero discharge of pollutants from
all processes that use process water for cleaning and finishing.
Benefits for this option are equal to the total pollutant mass
for direct dischargers listed in Table C-1.
BENEFITS SUMMARY
Table C-11 lists the total pollutant masses for conventional,
nonconventional, and priority pollutants for direct dischargers,
benefits, and the pollutant masses remaining after treatment for
each option by subcategory.
C-19
-------
Table C-10
POLLUTANT CONCENTRATIONS - BPT OPTION 2
CLEANING AND FINISHING WATER SUBCATEGORY
Option 2
Conventional Pollutants
BOD5
Oil and Grease
TSS
Nonconventional Pollutants
COD
TOG
Total Phenols
Priority Pollutants
Influent
Concen-
tration
(ing/1)
100
130
1,840
410
(371
134
4. benzene
23. chloroform (trichloro-
methane)
44. methylene chloride
(dichloromethane)
62. N-nitrosodiphenylamine
65. phenol
66. bis(2-ethylhexyl) phthalate
86. toluene
89. aldrin
100. heptachlor
102. a-BHC
104. Y-BHC
105. 6-BHC
119. chromium (Total)
120. copper
124. nickel
125. selenium
128. zinc
0.026
0.045
0.067
Concen-
tration
After
Sedimen-
tation
(mg/1)
67
69
331
119
823
76
Concen-
tration
After
Activated
Sludge
Treatment
0.026
0.045
0.067
22
17
36
44
304
30
0.010
0.010
0.010
0.036
1.334
0.059
0.120
52t
18t
5t
535t
116t
0.112
0.401
0.136
0.175
3.375
0.036
1.334
0.059
0.120
52t
18t
5t
535t
116t
0.027
0.136
0.053
0.075
1.654
0.010
0.025
0.059
0.010
41. 6t
2.7t
2t
300t
52. 2t
0.007
0.024
0.034
0.075
0.380
tConcentration is in nanograms per liter
C-20
-------
4J
C
4-1
|3
r-l
r—l
O
CM
CU
4-1
CO
[5
cO
p^
co
co
CO
cO
a
4-1
C
4-1
0
r-l
r-l
0
PH
00
,_J «,
•n ^|
C cu
•H 4-1
com
B<
CU
P<5
4J
fj
cO
r;J
r-l
r-l
O
PH
4-1
O
CU J-l
CO -H
CO Q
CO
s J-I
O
4-1
C x~x
0 1^
4-1 v~-
cO 00
CU ^
\ i x« X
H
CO ^
4-1 J-I
4-1 •>-»
CU 00
C ^
CU N_X
PQ
co
J-i
&D Vj
j-i >•,
cO -v
XI 00
cj y
CO ^
•r-l
Q
O
O
o
co
CN
CT.
.
OO
o
o
o
o
CO
CN
C^
.
oo
o
o
o
co
»j-
CN
.
p-s.
CM
O
O
o
o
co
^j-
CM
.
r~»
CM
o
o
o
co
CM
^—
o
tn
>j-
CO
CO
CM
i —
O
o
CM
m
oo
^*
.
i —
o
o
oo
rv.
CO
>^-
M
t —
o
o
o
CO
CN
ON
-
00
o
o
CN
CO
m
p-^
•i
in
o
o
00
CT\
00
sj-
..
1 —
CM
O
O
O
CO
o-
CN
.,
r-^
CM
ct\
vO
O"
^-
CM
VO
1 —
CO
cy>
CTi
m
>^-
00
CO
CN
i —
O
o
o
o
CO
CN
O>
*
00
o
o
o
CO
CN
CTi
*
00
00
o m
o
CO
00
CS
O O CO
o o m
O VO CN
m m
CN CN
-3- m
o o o
o o c*
vO CM 00
CO
o oo-
<}• oo o
00 St
vD CO
o o o
O O vO
v£> CN 00
T— in r>-
CO
00
o o o
O O
o o o
o o o>
M3 CM OO
i- CO
r-- CTI
o o o
O O CT>
VO CM OO
T— CO
01
hJ
o
CM
CO
4-1
c
co cO
4-J 4-1
C C
CO r-l
4-1 r-l CO
C O 4-1
r— 1 PH CJ
00
C
•I-l
4-1
cO
CU >*,
PC l-i
0
T3 00
C 0)
CO 4-1
CO
00 O
CX>
r-l CO
0
0 rJ
O O!
4-1
4-1 CO
0 DS
CO
4J
C
o
u
r— 1 cO
O r-l 4-1
PH CO 3
C rH
rH O r-l
Cfl -r-l O
£ 4-> P-i
0 C
•r^ CU tS
4-1 > 4J
C C -H
0) O J-I
> 0 O
C C -H
O O J-i
O p^i PH
, —
C
0
• r-l
4-1
ex
o
CO
4-1
C
co cO
4-1 4J
C 3
CO r-l
4-1 rH CO
3 O 4J
rH PH G
i-H CO
O r-l 4-1
PH CO 3
Cr-1
r-l O rH
CO -r-l O
C 4-1 P-.
0 C
•<-< \
u > V
G G -H
CU O J-i
> o o
C C-H
O O )-i
O S PL.
CM
C
o
•I-l
4-J
ex
o
CO
4-1
C
co cO
4-1 4-1
C 3
CO rH
4-1 rH CO
3 O 4-1
rH PH C
rH CO
O rH 4-1
PH CO 3
CrH
rH O rH
CO 'H O
C 4-1 PH
0 G
•H CU t^
4-1 > 4-1
C C -H
CU O J-J
> 0 O
G G -H
O O J-i
O 3 PH
CO
C
o
•H
4-1
ex
o
o
oo
01
4J
cO
o
,0.
rj
CO
J-l
01
4-1
cO
DS
w
G
(-?
CO
•I-l
G
•r-l
fn
'O
G
cO
00
a
•r-l
c
cO
CU
rH
u
CO
4-1
C
co cO
4J 4-1
C 3
CO rH
4J rH CO
3 O 4-1
rH PH G
rH CO
O rH 4J
PH CO 0
CrH
rH O rH
CO -H O
C 4-1 PH
0 C
•H 0) >>
4-1 > 4J
C C -H
O) O J-i
> o o
C C-H
0 0 J-i
U Z PH
T —
C
0
•H
4J
ex
o
CO
4-1
C
co co
4-1 4-1
C 3
CO rH
4-1 rH CO
3 O 4-3
rH PH C
•H CO
O rH 4-1
PH CO 3
C rH
rH O rH
CO -H O
G 4-1 PH
o c
•H 0) >>
4-1 > 4-1
C C-H
CU O 5-1
> 0 O
C C-H
O O J-l
O S PH
CM
C
0
•H
4-1
ex
o
CO
4-1
C
co co
4-> 4-1
C 3
CO rH
4-1 rH CO
3 O 4-1
rH PH £2
rH CO
O rH 4->
PH CO 3
CrH
rH O rH
CO 'H O
G 4-1 PH
0 C
•H 01 >,
4-1 > 4-1
C C-H
0) O 5-1
> 0 0
C C -H
O O 5-i
U 12 PH
co
C
0
•H
4-1
ex
0
C-21
-------
APPENDIX D
TRANSFER OF TREATMENT TECHNOLOGY PERFORMANCE DATA
AND CALCULATION OF PRODUCTION NORMALIZED FLOWS -
PM&F CATEGORY
-------
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D.C. 20460
FEB IB 1984
MEMORANDUM
SUBJECT: Transfer of Treatment Technology Performance Data and Calculation
of Production Normalized Flows - PN&F Category
FROM: R. Clifton Bailey, Statistician
Program Integration and Evaluation Staff (WH-586)
TO: Robert M. Southworth, Project Officer
Effluent Guidelines Division (V«-552)
Purpose
This memorandum discusses the transfer of performance data for the
activated sludge process for biochemical oxygen demand (6005), total suspended
solids (TSS), and oil and grease (O&G) from the organic chemicals, plastics,
and synthetic fibers (OCPSF) category to the plastics molding and forming (PM&F)
category. It also discusses the production normalized flows (PNF) used to calcu-
late the proposed effluent limitations guidelines and standards for the PM&F
category.
Background
Effluent limitations guidelines and standards for processes in the PN&F
category that discharge wastewater to navigable waters (i.e., direct dis-
chargers) are currently being developed. For regulatory purposes, the PM&F
category has been divided into two subcategories:
0 contact cooling and heating water subcategory, and
0 cleaning and finishing water subcategory.
The technology basis for the best practicable technology currently available
(BPT) effluent limitations guidelines and standards for both subcategories is
flow reduction and treatment of the discharge from the flow reduction unit in
an activated sludge plant. However no effluent data on activated sludge treat-
ment of PM&F only wastewater were available.* Tb obtain effluent concentration
There are no plants in the Agency's data base that treat PM&F wastewter only
in an activated sludge system. Several integrated facilities are known to
combine PM&F wastewater with other industrial wastewater for treatment by
activated sludge. EPA does not have effluent data from these systems.
D-l
-------
-2-
data, we first compared the PM&F untreated wastewater data for BOD5, TSS and,
O&G to data for those pollutants at plastic manufacturing plants (PMP) in the
OCPSF category. Results of that comparison are presented in this memorandum.
Because the wastewaters from PM&F and PMP plants have similar 8005, TSS, and
O&G characteristics, it is appropriate to use activated sludge effluent data
for those pollutants from the OCPSF category to determine limitations for the
PM&F category. Those data are also presented in this memorandum.
To determine the amount of pollutants that can be discharged, effluent
concentration data for the activated sludge process were multipled by a product
normalized flow (liters discharged per mass of plastic material processed).
The amount of plastic material processed was selected as the normalizing para-
meter for the PM&F category because the amount of water used and the amount of
pollutants discharged are related to the amount of plastic material processed.
The PNFs for each PM&F subcategory were calculated by adding the amount of
wastewater discharged by plants in the PM&F data base that currently recycle
process water. The total amount of wastewater discharged was divided by the
total production reported for those plants to obtain the PNFs. Data used to
calculate the PNFs for each subcategory are presented in this memorandum.
Data
Plastics Molding and Forming Process Data;
Samples of untreated process water were collected at 11 plastics molding
and forming (PM&F) plants. The biological oxygen demand (8005), total suspended
solids (TSS), and oil and grease (O&G) concentrations found in these samples
are listed in Appendix IIIA. Concentration data for these pollutants are
presented for both contact cooling and heating water and cleaning and finishing
water.
Plastics Manufacturing Data;
The technical development document (Development Document for Effluent
Limitations Guidelines and Standards for the Organic Chemicals and Plastics,
and Synthetic Fibers Point Source Category, Volume 1 (Proposed BPT), EGD, EPA
440/1-83/0096 - hereafter referred to as the "Organics BPT Development Document11)
contains a summary of 8005 and TSS data used to establish proposed effluent
limitations guidelines for the plastics only subcategory of the OCPSF category.
The effluent limitations guidelines for that subcategory are based on data
from well-operated activated sludge processes at six plastics manufacturing
plants (Nos. 9, 44, 45, 96, 111, 126). These well-operated treatment processes
were identified through an engineering analysis of the performance data for
those processes (see page 190 of the Organics BPT Development Document for a
summary). 8005 and TSS data were available from effluent samples at five of
these six plants (Nos. 9, 44, 45, 111, 126). These data are presented in
Appendix IIIB.
Oil and grease (O&G) data were not available for the six well-operated
wastewater treatment systems at the plastics manufacturing plants in the plastics
only subcategory. Limitations for O&G were developed on the basis of data from
4 plants (3, 61, 124, 170) in the OCPSF data base that manufactured plastics
(not necessarily plastics only plants) and use activated sludge treatment.
D-2
-------
-3-
The limitations were developed on the basis of a lognormal distribution
fit to the data. The goodness-of-fit of the lognormal model for the O&G effluent
data was examined using a graphical procedure described in Appendix I. As
stated in Appendix I, the plots presented in Appendix IIC support the lognormal
distribution as a model for the O&G effluent data. The same graphical procedure
was used to demonstrate lognormality for 0005 and TSS in the Organics BPT
Development Document.
Plastics Molding and Forming Production and Flow Data;
In addition to the sampling data described above, the Agency conducted a
questionnaire survey of the PM&F industry. Production and wastewater discharge
data obtained in this survey for PM&F plants that currently recycle process
water are listed in Appendix IIIC for the two PM&F subcategories. These data
were used to calculate the production normalized flow for each PM&F category.
Process Wastewater Comparison
8005, TSS, and O&G concentration values in untreated PM&F process wastewater
were compared to the concentration values for those pollutants in untreated PMP
process wastewater. Plant averages and log-variances were used for the com-
parisons. The log-variance is a direct measure of the variability in the data
(see Appendix I). Together the plant averages and log-variances provide a
statistical summary of the process wastewater concentrations. The plant averages
and log-variances were computed for each of the PM&F subcategories and for the
plastics manufacturers plants (see Appendix I for a summary of the computational
procedures). The results, ordered from smallest to largest mean and log-variance,
are presented in Tables 1 and 2.
A nonparametric test, the Mann-Whitney U/Wilcoxon T test for two independent
samples, was used to make statistical comparisons. The comparisons (summarized
in Table 3) were made separately for plant means and plant log-variances. In
none of the test results was the median of the PM&F means and log-variances
found to be significantly greater than the PMP values. Consequently, PM&F pro-
cess wastewater is neither significantly greater in average concentration nor
more variable than the PMP process wastewater for 6005, TSS or O&G. This
statistical analysis supports the judgment that BOD^, TSS, and O&G effluent
concentrations for activated sludge treatment at PM&F process wastewater
should neither be greater nor more variable than the effluent concentrations
for those pollutants for an activated sludge process used to treat PMP process
wastewater. We conclude, therefore, that the 8005, TSS and O&G concentration
in PM&F process wastewater and PMP process wastewater are similar and that
activated sludge treatment of PM&F wastewater can achieve the effluent concen-
tration values for 8005, TSS, and O&G for the OCPSF category.
Effluent Concentration Values
The 8005, TSS, and O&G effluent concentration values for the activated
sludge processes that were transferred from the OCPSF category are presented
in Table 4. These values were used to calculate the PM&F effluent limita-
tions guidelines presented in Table 7. The BOD and TSS concentration limits
are the same as the plastics only limitations shown on page 280, Table 4-1 of
the Organics BPT Development Document. The Organics BPT Development Document
does not contain oil and grease effluent concentration values for the plastics
D-3
-------
-4-
only subcategory. Consequently, the effluent data for four plants that manu-
facture plastics and organics (3, 61, 124, 170) (see the Data Section above of
this memorandum) were used to compute the O&G effluent limitations shown in
Table 4. The O&G concentration values shown in Table 4 are the products of
the long-term median (median of the plant averages) and the average varibility
factors based on the lognormal distribution (from Table 5). The variability
factors for the four PHP plants are shown in Table 5. The computational
procedures described in Appendix I follow closely the procedures in Appendix B
of the Organics BPT Development Document.
Production Normalized Flow
The production normalized flow (PNF) for each subcategory (or portion of
subcategory) was calculated by dividing the amount of wastewater discharged by
PM&F processes that currently recycle process water by the total production
for those processes. Table 6 contains those PNFs. Data used to calculate
the PNFs are presented in Appendix II1C.
The Agency calculated and applies only one PNF to all the contact cooling
and heating water processes. The normalizing parameter used to calculate the
PNF is the mass of plastic material cooled or heated. Because the amount of
water needed to cool or heat a product is dependent on the mass of plastic
material and not the type of process or product one PNF is appropriate for all
cooling and heating processes. Two PNFs were calculated for the cleaning and
finishing water subcategory, one for cleaning processes and one for finishing
processes. Again, the normalizing parameter used is the mass of plastic
material. Two PNFs are needed for this subcategory because the water usage
requirements for cleaning operations were found to be substantially different
than those for finishing operations.
BPT Effluent Limitations
Table 7 lists the proposed BPT mass-based effluent limitations guidelines
for each subcategory. These limitations were calculated by multiplying the
transferred effluent concentration values for 8005, TSS, and O&G by the PNFs.
D-4
-------
-5-
TABLE 1
Sunmary of Process Wastewater Data for PM&F and Plastics Manufacturing Plants
Cleaning and Finishing Water Subcategory
D-5
-------
>-
1
-
I
_l
v;
z
<
3:
z
«
UJ
-1
<_)
II
1—
<
y
3
!/l
UJ
CL
V
UJ
X
.
Z
<
•r
a
<
o
II
UJ
O
1.
z
t-4
X
U.
49
H-
Z <
z a.
UJ
ii
t—
X
t?
UJ
a.
u. u. u. u. 'a. a. a au.au.
xs-sixzzsrsiix
3.3.0.3.0.2.0.0.3.0.0.
i/i
en
O
(X
'/i
z
HH
U.
<£'
Z
>— •
Z
UJ
_i
o
ii
u.
X -• '
z
<
•x.
z
<
n -c
i U. -t '-•>*'—
a. Luu.u.u-au-a'j-a.aa'a-
D-6
-------
z
Q tr
o <
OB >
o
0.
UJ
u
'•3 <
Z «
ID
<
o
II
UJ
o
a.
I -• (9
ooooooo — -»
Z
M
U.
o
z ~<
r
V)
z
HH
u.
a:
z
at
UJ
z
<
l~4
<
in
ii
UJ
o
a.
X
<
CE
UJ
U
Z •->
in •* •*• r
•^ r*
-* in <
-i (M
(M <\J
(9
I/I
o
UJ
z
•X
•->
Z
<
UJ
_l
O
II
u
CD
-I
Q.
-i Ifl (VI
u.u.a.u.a.a.o.Q.u.u.u.
xzzzzzzzzzz
0.0.0.0.0.0.0.0.0.0.0.
>-»
z
u
II
u
o
fV)
a. u. u. u. u. u. a. a. a. a. u. u.
> zzzzzzzzzzz
t- a. a. a. a a. a. a. a. a. a. a.
u
II
u
3)
z
<
UJ
X
u.k.u.a.a.xu.u.u.a.u.a.
zzzzzzzzzzzz
0.0.0.0.0.0.0.0.0.0.0.0.
D-7
-------
-8-
TABLE 2
Summary of Process Wastewater Data for PM&F and Plastics Manufacturing Plants (PMP)
Contact Cooling and Heating Water Subcategory
D-8
-------
>- o
tr c
O 00
•-D II
UJ UJ
I- Z Z
U Z UJ
x _i z -«i
s o *
IT O. Z
>• T
r
O
<
o
II
UJ
O
a.
OlTJ^lTXIOOOOOOCO
en
i-
ii
UJ
z z
z uj
z
i- i
u.u.
rz
xa.
u.u.
srz
aa.
au.
zr
a.a.
a.u.
zz
a.Q.
a.a
zT
a.o.
u.a.
ZZ
a.a.
•Jj
I
^
z
o
o
u
O
u
II
u
CD
~> > — O CVJ
K Z
< <
UJ UJ
X T
CS
Z
•*
-i ry
o
r>-
u.u.u.u.u.u.u.o.u.a.xu.a
ZZZZTTTZZZZZT
c
u
o
IT
Z
<
_l
a
UJ
a.
-i (V *
-------
<
»—
3
o
a.
>
X
O
&
UJ
t-
<
u
i
D
-^ t/>
7 x
jj an
a
a.
a
o
o •x.
n <
o
a.
Ul
u
*
2
<
ae
UJ
I
M <
ooooooooooo--t\j
in •
<
UJ
ro o in i
M
(\J
(\j
u.
o
o
o
Ul
m
•* ^ in (\j
: u x -* u. -< si- -< •
~«r»- z z z z z z z z z z z z z
I- 0.0.0.0.0.0.0.0.0.0.0.0.0.
u
t—
o
u
II
00
in
UJ
a.
in
............
ZZZZZXZZZZZZZ2
a.a.a.a.a.a.a.a.a.a.Q.3.a.a
D-10
-------
-11-
TABLE 3
RESULTS OF THE COMPARISON OF PM&F AND PMP PROCESS WASTEWATER
Using Wilcoxon - T Test for 2 Independent Samples
One-Tailed Test HQ: PMF £ PMP
HA: PMF > PMP
SUBCATEGORY
PLANT MEANS
RANKED
Cleaning and
Finishing Water
Contact Cooling
and Heating
Water
PLANT VARIANCES
RANKED
Cleaning and
Finishing Water
Contact Cooling
and Heating
Water
POLLUTANT
BODs
O&G
TSS
BODs
O&G
TSS
BODs
O&G
TSS
BODs
O&G
TSS
NUMBER OF PLANTS
PMF
6
7
7
8
9
9
5
3
5
6
5
7
PMP
5
4
5
5
4
5
5
4
5
5
4
5
RANK MEAN
PMF
4.17
5.00
5.14
5.38
5.44
5.22
6.2
4.7
5.6
6.17
3.80
6.00
PMP
8.2
7.75
8.4
9.6
10.0
11.6
4.8
3.5
5.4
5.8
6.5
7.2
Tx
41
31
42
48
42
58
31
14
28
29
26
36
O
P 2
.974 NS
.885 NS
.926 NS
.967 NS
.983 NS
.998 NS
.274 NS
.314 NS
.500 NS
.465 NS
.915 NS
.691 NS
Conclusion: In all cases, there was no significant difference between rank
means.
1 As defined by Gibbons, J.D., "Nonparametric Methods for Quantitative Analysis,"
Holt, Rinehard and Winston, 1976, p. 163.
2 NS - not significant.
D-ll
-------
-12-
TABLE 4
601)5, O&G and TSS Effluent Concentration Values for
Plastics Molders and Formers
(Concentration Values Are the Same for the Two Subcategories:
Pollutant
BODS*
O&G
TSS*
Long-Term Median Maximum 30-Day (mg/1)
14.5
11.9
24
22
17
36
Maximum Daily (mg/1)
49
71
117
See Table 9-1, page 280, BPT Development Document.
TABLE 5
Variability Factors for O&G
Plant
N
Effluent Mean
Variability Factor
3
61
124
170
46
348
100
163
13.0
14.6
5.2
10.8
1-Day
AVERAGE
6.44
3.77
9.27
4.21
5.92
30-Day
1.37
*
1.37
* Not estimated. Fewer than five consecutive day-pairs available to estimate
the 1-day lag correlation for the variability factor (see Appendix I).
Subcategory
Cleaning & Finisning
Water
a) Cleaning
b) Finishing
Contact Cooling
and Heating Water
TABLE 6
Production Normalized Flow
Discharge Flow
(Liters/Year)
6115919
983333
13583148
Production
(KKG/Year)
1364.5
921.4
8548.3
Production Normalized
Flow
(Flow/Production)
(Liters/KKG)
4482
1067
1589
D-12
-------
-13-
TABLE 7
Effluent Limitations Guidelines by PM&F Subcategory
Cleaning and Finishing Water Subcategory 30-Day (mgAg) 1-Day (mg/kg)
•a) Cleaning Water
BODS 99 220
O&G 76 318
TSS 161 524
b) Finishing Water
BODS 23 52
O&G 18 76
TSS 38 125
Contact Cooling and Heating Water Subcategory
BODS 35 78
O&G 27 113
TSS 57 186
D-13
-------
-14-
APPENDICES
I. Statistical Procedures
II. Summary Statistics
A. PM&F Sampling Data
B. PMP Data
C. Probit Plots for PMP Oil and Grease Data
III. Data
A. PM&F Process Sampling Program Data: BOD, O&G, and TSS
B. PMP Data: Influent and Effluent BOD, O&G, and TSS
C. PM&F Questionnaire Survey Data for Production and Discharge Flow
D-14
-------
-15-
I. STATISTICAL PROCEDURES
Descriptive Statistics
Sane of the more commonly employed descriptive statistics are defined as
follows:
(1) N - number of valid observations used in a particular analysis (e.g.,
the total number of effluent samples at a particular plant for a
particular pollutant)
_ N
(2) Mean - arithmetic average: X = ]> Xj/to
i=l
9 N
(3) Variance - standard unbiased estimate: S^ = 1 £ (X; - X)z
N-l i=l
Log-variance - variance with X^ = loge (observation)
Daily variability factors depend directly on the log-variance (see the
section of this Appendix below on Variability Factors) .
(The standard deviation is S = / S^. )
(4) Minimum - the smallest value in a set of N observations
(5) Maximum - the largest value in a set of N observations
(6) Range - the minimum subtracted from the maximum
(7) Median - the middle value in a set of N observations. If N is odd
(N = 2k - 1 for some integer k), the median is the kth order statistic,
C(k). If N is even (N = 2k), the median is
[C(k) + C(k + l
(8) Stream Average - flow weighted average of sample concentrations
x = I wi Xi
where
Wi = fi/ I f i
for sample concentration Xj[ and stream flow f ^
(9) Plant average - flow weighted average of stream concentrations
X = I Wi Xi
where
D-15
-------
-16-
Wi = fi/ I fi
for sample average concentration xj_ and stream average f^. When
flows are missing the plant average is the plant mean.
Goodness-of-Fit Test
The goodness-of-fit of the lognormal model for the O&G effluent data (PMP)
was checked through a graphical procedure called a probability plot. Let Xj,
..., Xfl denote the n observed daily values of the parameter of interest (the
BOD or measurements from a given plant). Denote the rth largest of the n
values by X(r), and define a corresponding score called the "probit" by
Probit [X(r)] = t~l[r/(n +1)],
where *"!(•) is the inverse of the standard normal cumulative distribution
function. The probit score is the normal deviation (z-value) equivalent to
the value X(r). Probit scores are useful because plots of X values versus
corresponding probit scores tend to be straight lines when X is normally
distributed; this fact is the basis for probability plots. If X has a log-
normal distribution, a log-scale plot of X values versus probit scores tends
to be a straight line. Daniel and Wood (1971) give simulated examples of
probability plots to indicate the degree of random departure from a straight
line to expect for different sample sizes when X is normally distributed.
Probability plots for BOD and TSS are presented in Figures B-l to B-28 of the
BPT Development Document. Similar plots for O&G are presented in Appendix II C.
Based on the probability plots, it was concluded that the lognormal
distribution was a reasonable model for the PMP oil and grease effluent data.
Variability Factors
Assuming that the distribution of the concentration c is_lognormal, then
y = log(c) is normally distributed with mean M and variance o'- (Aitchison and
Brown, pages 8-9). Thus the 99th percentile on the natural log scale is
Y0.99 = v + 2-326 ° '
and the 99th percentile on the concentration scale is
c0.99 = exp(y0>99) = e^ + 2.326 o .
The mean and variance on the concentration scale are:
^ = ey + 1/2 o*
and
a2 = e2v + a2 (eo2 - 1).
c
Hence, the daily maximum variability factor under the lognormal model is
D-16
-------
-17-
VF(1) = cn.QQ = e2-326 a ~ I/2 a2 •
(2)
Estimates of any of the above quantities are calculated by substituting the
mean and variance of natural logs of the observations for y and 02r respec-
tively. Consequently, the daily maximum variability factor depends directly
on the log-variance of the concentration.
Variability factors for 30-day average concentrations, VF(30), are based
on the distribution of an average of values drawn from the distribution of daily
values and take day-to-day correlation into account. Positive autocorrelation
between concentrations measured on consecutive days means that such concentra-
tions tend to be similar. An average of positively correlated concentration
measurements is more variable than an average of independent concentrations.
The following formulas incorporate the autocorrelation between concentration
values measured on adjacent days.
The correlation fp) between adjacent days' measurements (i.e., the lag-1
autocorrelation) was estimated using the available data. Then using the
first-order autoregressive model commonly found to be appropriate in water
pollution modeling, the mean and variance of an average of n daily values,
denoted by c, were approximated by:
y_= exp( y -i- o2/2) (3)
c
and
o2
01 = — fn (P)' <4>
c n
with
n-1
fn( p ) = 1 + (2/n) V (n-k)(exp( pk 02 ) - D/(exp a2 - 1).
k=l
It can be seen in (4) that a2_ equals the variance of an average of n
c
uncorrelated observations, 02 /n, multiplied by a factor, fn( p] that adjusts for
c
the presence of autocorrelation. For oil and grease effluent data, the estimate
for the lag-1 autocorrelation between logs of the concentration measurements
was 0.5095 and the adjustment factor is 2.665. Similar adjustments were made
in the Organics BPT Development Document for 8005 and TSS concentration values.
Finally, since c is approximately normally distributed by the Central
Limit Theorem, the 95th percentile and variability factors of a 30-day average
are approximately
C0.95 = Me + !-64b oc
and
D-17
-------
-18-
VF(30) = cr
1/2
= 1 + 1.645[ea - Df30( P HO] (6)
^_ r\ ____
with Pc and o_ defined by equations (3) and (4). Estimates of 09.95 or
c"
VF(30) are calculated by substituting estimates of P, o2, and P into the
formulas above.
D-18
-------
-19-
References
Aitchison, J., and J.A.C. Brown (1957). The Lognormal Distribution, Cambridge
University Press, London, 8-9.
Bradley, J.V. (1968). Distribution Free Statistical Tests, Prentice-Hall,
Englewood Cliffs, NJ, 149-154, 326-330.
Daniel, C., and F.S. Wood (1971). Fitting Equations to Data, Wiley, New York,
34-43.
Kendall, M.G., and A. Stuart (1973). The Advanced Theory of Statistics, Vol. 2,
3rd Edition, Hafner, New York, 516-520.
D-19
-------
APPENDIX II A
Summary Statistics for PM&F Sampling Data
D-20
-------
i
t
£
13
*-»
X
1- <
Z £
«t
1—
_j
0 £
n Q **^
o s
X U Z
cc ai >-i
O £ £
O <
n i f
< ~ O
O -1 D-
CO ^
3 O
in £
~ O Q
>- Z Z (-
CO O v- in
• -" I
< i- in
< cr z
O *— *-i Z
^ U- -i >
i— o <
CO It !
1- < Z
< C_) <
1- CD-I
l/> t3 O.
CO
CC 1
i
CO |
1 Z
1 <
1 _J
1 a
I
1
I
!
*
i
i
t
i
i
i
i
!
i
i
i
i
i
•
i
•
O O CO O ID O
O CM fl- O CO O
in in co i- CM
m o t
0? O CO LT) CM O
— in CM o in o <
•^ «• o o CM c
CO CM C
C
CM * CO J o
LU ro
i s \
+ ^
E 3
t •
J (3 OOOOt^t«-O U
J > OOinOTlDO
J ft OOCMOO^fO L
r z »- fo "T «
^ < i- C
D -1 C
3 a :
0 I
Z CMVCOCMTCe-'-
z
< < co u a u- -i x:
a.
S
£ CO T- ^— ^- CD
H-I CO CO
X -^ lDOCMinCO"-O V
t— ' rn ro -n <
I Z CM t-
J < <£ ^
D -I *
30. C,
n i
I
Z CM ocoinooooo
u ^H intocooouim
S z CO CO (*)
4 « (O
Z £
J
3
1.
o oot-in«rt-coo
j in oocncocoinioo
•^ OlD'CMCMCOCO^'O
-• O f)
4 t- CM
JJ
U
gl
z ocn — inminino
^ »— » m o CD t*~ o *** o^ in
-4 D en T- c^ CM
J UJ T- t-
D £
3
j o ot-«rcocooo>o
f > OlDSDVCOO'-O
< ocomoriin^o
J Z IT' CO &"~
1 < — t-
- _j
t D-
J
>
3
O Z CMCOCMCDCMCMCMO)
»-
Z
4 CQOUJtl.O^C"33£
n.
D-21
-------
ooocoooooo
<
£
£
OOOOO'JLOOO
rr^rT^j-mcNOt^co
o rg f- ro
o
CL
cc
o
O
5
O
0.
U -I
CD \ O
^ O Z
CO £ n
— t-
> z
CO O
< t-
I- <
< CC
D »-
Z
U- LJ
5 O
CL 2
O
z o
o
z
in <
O EC
UJ
T
=6
o
o
u
)-H
z
n
t-
10
ooocoooooo
r-nooroo
co^ooino
COCNOOIDO
( LI
CN
o o in o
o
a
UJ
O
>
z
<
inooTiooooo
-------
APPENDIX II B
Summary Statistics for PMP Data
D-23
-------
_
2 •—
< 5
1- C.
~^ Q.
-I Z
c o
D- 1-1
1 —
V <
ro cr
i —
< 2
1- UJ
< 0
Q '^
0
^4. O
5-
tL. i —
Z.
Z LU
G O
-J
J/ U_
_> u.
•-4 UJ
(/> Q
»-H ^y
i- <
^
ti i^
^ *--
~~)
1
^
X,
a.
u_
UJ
s
2
LL
U_
LU
t—
CO
U.
u_
UJ
UJ
£
LL
u.
LU
Z
UJ
t-
u_
Li.
UJ
'Z.
•3
-J U,
1 ^
t— <
X
«i
IE
LL
Z
(-4
Z!
k_,
:"
U.
-y
a
V—
vo
U_
-y
o
UJ
u.
Z
z
UJ
s
u.
z
»-4
z
J—
z
1
a.
T — CN — 0 0
O O O O O ID
,- ,- — ,- c^ 0
00 CO CN CD CN CJ"
r-- o CN
co in «r T- »- CN
O CD *?" CO O< 'i
Is*" OC O CO ^— CT'
in co ro c\' CD in
o • o o
CN CO CO TO
CM CD t-- C'O CD
— ri t
c
ai in in • q- o
CN in CN o
C\ ro
a> T in CD —
r~ cri r— o CD
r*- r- iv '^ ^
•- CT) CN T T
co in co co co
r j -r- in
LO T- CD en o
t- ro O
T O -7 CM r-
t-. O — CX' -
oo in co cr ac
t- n o
T^
ro in co o t*- t^
CM Lfi
v T- «- in
....
cv
d .- CN r-
h- •e O) ro
in ro 10 o
— CM CN
co^
cc i- -v c\ o ro
rt :~ o ^J-
h- LO T O) 'T CJ
— cr
C~ CD CTi CN t^- CO
O •=!• O) CN O i-
f-J T- t- T- T- fN
cf o ^f fo rs^ ro
cv o vD CD T :n
CN ro co c\
r- o T> • o o
in o 'j> o o
X ~- *- £>
V< CO T
'-j to CN • o vr
•T- T- l»
(0 o LP -\ r-
T 0~j ? ',0 «I
CD CD O CD t."
T- CO •- »- II)
^J" ^ ^-
t~
in o o ca o
O O CN O *T
CN V O
-------
APPENDIX II C
Probit Plots for PMP Oil and Grease Data
D-25
-------
5
Q_
Q.
UJ
IT
O
O II
H O-
O
a
>
m
o
a;
u
H-
UJ
m
o
CM
n
CO
to
o
II
<
UJ
o
UJ
m
o
a:
n.
z
UJ
U.
O
o
0.
m
o
Q:
a.
z
UJ
o
o
o
o
o
D-26
-------
<
<
CD
<
<
m
m
UJ
ffl
O
t/)
CO
O
CO
m
co
<
<
a
o.
UJ
rr
O
. 1 (0
o ii o
z
<
<
<
<
u. Z
o <
o
-J
Q.
UJ
O
CO
O
a:
a.
o
c:
a
o
_l
0.
CO
O
ct
Q_
Z
Ul
O
o
o
o
o
D-27
-------
+
ID
O
PJ
II
m
CD
m
UJ
a:
O
o
oa
<
ra <
<
<
< oo
+ o
O f Q
it
U. I-
o z
•t
t- -J
O O,
—t
a
>-
m
O
Ct
a.
Z
UJ
'.5
CO
O
a:
a.
2
UJ
<
CO
CQ
O
a:
o.
m
< <
<
u.
o
o
_l
a
CM
I
•+ I 1
o
o
o
o
o
u.
ui
D-28
-------
n
<
<
U
<
<
Q_
a
u;
tr
O
08
-I O
. < r-
O •-
ii
U- h-
O Z
O Q.
Q.
>
l-
*-<
_l
CO
CQ
O
10
CO
o
CN
II
m
1/1
00
o
ii
<
g
UJ
iu
CO
u
cc
a
-z.
UJ
3
ID
CO
4
O
O
o
CD
CQ
<
< CO
03
O
ac
a
CQ
< CO
o
<
to
u.
o
o
_J
Q.
«
m
l I
o
o
o
o
o
D-29
-------
DATA APPENDIX III CONTENTS
A. PM&F Sampling Program: Influent BOD, O&G, and TSS
B. PMP Data: Influent and Effluent BOD, O&G, and TSS
C. MP&F Questinnaire Survey Data for Production and Discharge Flow
D-30
-------
APPENDIX III A
PM&F Sampling Program: Influent BOD, O&G , and TSS
D-3I
-------
z
o
< -i
cc ~~^
i- O
Z £
uj —
o co
z >
D <
00
o.
o
X CO
0>
-J <
U.O
to
o
Ul
t-
<
O
< -I
o o o r~ o o
IN «T «T CM CO —
in f- — —
o c, n rv o c:
in
CN
o o o o o o
o o o CM CM CM
o
01
O O O CM CM CM
CM CM CM
o> in
V O
f-
*— •*— •»—
' CO CO CO O O O
o o o o o o
^ ^— *— CO CO CO
CO CO CO O O O
o o o *• — »-
oooooooooo
O
zz
I Ul —
I O CM
o o o in o o
• CD O CM
oooooo — ooooo
CM ID CM
T- ro
CO f-
D
oc ^v
i- O
z s
UJ —
o to
z >-
o<
oo
a.
O
O >-
W <
u. D
n
a
O «- 00
O) O- t-
CD CO 00
CM CM CM
00 O O
<
t-
<
c
z
o<
OQ
z a.
- o
ll ,^
2CM
08 O >-
-1 <
O b. O
< CM
UJ >-
-I <
O Q
II •—
> UJ
CC f-
o <
o o
ul
»-
< z
o
CO
OOOOOO
O O O Ol O) O
O O O CM CM CM
CM CM CM
• co ro co o o o
CO CO CO CO CO CO
& 0") CH P> C*> CD
O O O CM CM OJ
CO CO CO O O O
O O O »- T- •»-
o o o
O
z z
Ul >~
OCM
Z >•
o <
o o
Ul
«0 Q.
o ~
Z X CM
-I -I <
O U. Q
o
o
n in i-
co CM t~
CD CD CO
CM CM CM
'OOOOOOOOOOOO
co co oo co co co on co cc co CD CD
OlCOCJ^CrjClJlODCOCOCOCDCO
o o o o o o
CM
>•
— OOOOOOOOOOOOOOOOOOOOOOOOC.OnOO(DOOCMOOOOO
< —I
or -v.
Z E
UJ —
o —
z >-
o <
oo
a.
O V
u. O
<
o
»- T o> en
tc ro CM CM -
o <
o o
• o o o
CO CO 00
Ch CT> (T)
CM C^ CM
o o o
ooooo ocnoo
OOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOODODCOCCOOO
oooooocDtncoooocJ>mci>oooo«»vt-i-t~i^ininin
oooooo-^'- — ooooooinininmcococoooo«-»-^ooo^'--^ooo
•r- •*- -^ f V V CMCMCM •- — *- •*• CMCMCM
COCOCOCOCOCOCOCOCOCOfOCOOOOWCOCOCOOOOOOOOOOOOOOOOCOCOW
00 CO 00 00 00 CD CD 00 CO CD CD 00 "00 00 CO CD CO 03 CD CO CD CD CO Of 00 CD 00 CD CD CO CO CD CD 00 00 CD CD
CMCMCMCMCMCMCOmCOnCOCOOOOCMCMCMCMOOOOOO'
OOOOOOOOOOOO'-'-'-OOOO'
• CM CM CM
•000
g
Ul
or
eoo<— coo*-
< «•
I I I
I I I I I I I I I I I
I I I
^-— ••-CMCMCMPJCOCO'-'--
I I I I I 1 I I I I I
O CDOOOOOOOCMCMCM
x<- ooooooooo
cocococococoooo
CD 00 CO CO 00 CO CD CO CD
CO CO CO 00 CO CO CD CO 00
OOOOOOCMCMCM
cococoncocoooo
OOOOOO--— f-
u. o
<
o
I I I I I I11 I I
mcocDCDcomooo
D-32
-------
or ~v
t- o
z: s
UJ —
u n
z >
o<
OQ
ir>oo»-oootf>•
i n
ooooooooooooooooooooo
OOOOOOOOOOOOiniDIOBODCDOOO
t-
O
ooooooooo
ooooooooo
o
UJ
<
o
•ooooooooooooooooooooo
CO CO 00 CD 00 CO 00 00 CD 00 00 CO CO CO CD CD CO CO 00 CO 00
0>cDcr>cftcncftcr>cftcnG)CT)cnooooooooo
ooooooooooooFioc'ipjocococ'jco
ooooooooooooooooooooo
' CO
CO
(O
«
CM
o
'Coocofocororocof')
00 00 CO CO 00 00 00 CO CO
\\\\\^v.\\\
CMCMrMCMCNCNrMCMCM
ooooooooo
o
o
UL
O
4
UJ
I
o
o
< -1
tr -v.
t- O
z s
UJ _
O CM
z >•
o <
(_> O
GPM
o —
>-ioocnaDocnoDO<-(Ooooooooooooooooo
f) C1)
(O
oooooooooooooooooooooooor-t~r-
OOOOOOOOOOOOOOOODCDCDOOOCDCriaiOOO
ooooooooo
ooooooooo
ooooooooo
3: CM
o >
-J <4
u- Q
o
'.£
(J
-
or
o
o
UJ
rj
>•
<
o
Z
O
ooooooooooooooooocooonnnnnro
CD CO CO CO 00 CD 00 CO CD 00 CD CO CO CD CO 00 CO CO CO 00 CO CO CO CO CO CO CO
0? CO CO CO GD OT CD CO CD CO CD CO CJJ CTl CJ> CJ) CT) (31 rj) O~l CJ1' CO 00 CD If} LD in
OOOOOOOOOOOOCNOJCMCMCMC^CMCNCNOOOCMCStS
co c*5 ro co o^ n vT* ["> f)
CDCOCOCOCOCOCOCOCO
ooooooooo
CJ
to
OOCMOOOIOfOlDOOCnoOOOOOOO
CM T- CM CM T-
ooooomoooooooocoooooo
O)
DAY
GPM
OOOOOOOOOOOOOOOOOOOO
ooooooooooooooininincDootD
OOON-t^t~OOOOOOOOOOOOOOO
cocomoooooooooooooooooo
ioioa>
U. O
•r- MCOOOOOOOOOOOOOOOOOOO
">~ CO CO CO CTi CD OC CO CO 00 CO CO CO CO 00 00 CO 00 CO CO 00
— O O O O O O O O O O O O O O CM CM « CM CM CM
(- CMCMOOOOOOOOOOOOOOOOOO
OO'^»-'^'--r-^-^-^'-'--^»--^'--^-^»--^
<
o
CO CD CO CO CO CO CO CO CD CO CO CO CO CD CD CO CD CO CD CO 00
OOOP4CMCMCMCMCMCMCMCM
^^V^^-^V^V^V^^V^^^.
oooooooooooooooooopoo
POLLUTAN
<
UJ
cc
WP>-»--^-»"WCMC(P)nMV«t'T'-'-'-C»(CVW(O«C>«>«--^'--^-'-»--^»--^Cl|CMCMCMtMCMP>WtO*<91V
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I t I I
D-33
-------
APPENDIX III B
PMP Data: Influent and Effluent BOD, O&G and TSS
D-34
-------
z
UJ
3
o.
o_
z
UJ
• o
o
o
^ _") J) r- co o o
o o <•>' o o o —
o o o o o o o
0
o
o
0
o
0
o
0
CO «") £°^ (** (// ^D CN
— — o o o c c
0 O O O O O O
0^ jC O OlJ CO CO Z~ t*~
oo^ooooo
§2££^£££?§5oxSS7)SS£n££
o^-oooooooooooooooooooo
<31 *- •
O O '
u)u3tt>^u3(DiDUj(DioiDU5cc(oiDU3(DU3cncnn)aicna)cricniT)oic^cricnc^aicnaicna)cncn0)cricpaic^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
i-T'-cooLTT — (NCTiCTiujT-aDircocDCN — •a-mtDL"-03i-CMtr)^TincD(T)0-^-cMrDCDf~KaiCNn\rinu3aiO'-CN
O-r-'-'-'-OJ'-CM'-'-O — OJCNO — OOJOOOOOO'-'- — '-•-•r---C\irMCMrirN(MC\C'JOOOC.iOO'-'-'-
^T-r^c^cor)^^iriuioio^-r~cococTia)Oa)cDioiritDoO(DiOir)U)iDiDiDOOtD^ti>cDi---!^i^i--f»!-~r--t^r~
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
<
_i
(L
(/)
CQ
o
CO Ol O
D-35
-------
z
o
Q-
>-
<
(—
a
a.
a.
u,
O
O
a
a
z sr
01 i-
UJ
a.
a
u.
r
iflr-t^r-
a;r-(-t-r-ciuiiot^-cnr~t-«T(vJTiot~c\inr»~r-(Oi^(^oocD(Xit~'J3tT>C!Oiocn '-"JfNnnicr^oi^cocoffico'jcitNn
ooooooooooooooooooooooooooooooooooo oooooooooooooooooo
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
CTv. cna;a>oiooooooooo
D-36
-------
0.
O.
UJ
D
a
a.
a.
o.
z
UJ
3
, CD
O
00
• O
O
in
• en
to
n
ID
CO
00
o
01
• If)
M
O)
o
O
Z
Q
O
5 to i
— n
3
O
u_
oooooooooooooooooooooooooooooooooooooooooooooooooooo»-o
t-
<
Q
m
o
D-37
-------
Z
<
o
Q.
m
Q
< O
t- CQ
< li
Q.
a.
t-
z
s
a
a
z
UJ
, (D
in
o
• o
CN
o
r- c~
a) in
in '-
• CN
CN
O
o
O
00
• in
IT)
a
• o
CTl
in
a. O
5 ^
o — ^> n \ft ~ o r- o ^o -~ r- r, o co «r ^c r, o _i "-. — -^
'
O
Z
(—
(/)
I .3
O oooooooooooooooooooooooooooooooooooooooooooooooooooooo
aicntJicnoicrajcnaiocncJiaiaioooooooooooooooooooooooooocsooooooooooooo
r~^r~t^i^i~r^i^^t^r-t^i^t^aicuccroa)CDcoa3cccoaDcccDCDo3a)cocoa)»(ncDcocacriroc3cooDcocooDaoco cacccooococo
'
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO. OOOOO
z
<
01
m
o
> 01 oiciooocoooooo »-^-.- — -^-— —
^- — — CM
-------
a.
Q.
Q.
Q.
O
Q.
V
<
• o
t~
CD
<0
• 01
01
IT)
in
in
, co
n
• n
co
in
• in
i--
10
o
o
tOoocoOTo:'~'-":r^Ti^^r\O'— ^ojof^fscoin^— cj1^"—r\o*~^ro-— ojo^ro^rr^^c^CLTJ'"O'^>
oooooooo^-oooooooo-^oooooooooooooooooooooooooooooooooooo
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
QDrocococDccaDrocDcocDrococoffirococoroa3rocQcorocDcocorococDrococoGoroOTCO(£cococoro
CNCNr-JCNCNCNCNCOOOOOOOO
CM(NCMCNOJC\CNi(r)OCOOOOO
< CNCNCNCNOOOOO'-'-'-'- — •^
a rvoicsojrorir)f^cororoc5foromfor^fOcr)ronroncor)^^^^^"j^^^^^^^v^
-------
Q.
Q.
z
LU
o
a
a
a.
z
HI
. in .... CD
in r-
in in
• oocoinoomcocoocooinm -troininn
a
c.
u.
O
a
o
-^
6 ooooooooooooo (•>»-«-'
o o~ r- ^ CN ~o r~
-------
CL
a.
UL
u.
UJ
z
<
o
CL
CL
O.
oo oo in oo ro o
o> oo tn co in CN
C* CN CJ CX O «T
• 00 O)
-
oininoinoooininooo(Y)onoinmp-(Dt~-ocoooinor)rMinooo
-------
Q.
O_
Z O.
< 0.
(— •—
t— OLTooonroininino
o
a
o
o
o *- f -r- CM CM —
• CM »- »- CM CM »- T-
n r"' c~ r^« o r^ o *~ n
»-»-<- O»-"-OT-O
ooooooooooooooooooooooooooooooooooooooooooooooooooooo
(U CO CO CD OC 00 00 CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO 00 CO CO CO CO CO CO CO CO CO CO 03 CO CO 03 CO CO CO CO CO CO CO CO CD OD CO CO CO CO '
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
<
_J
a.
m i^cocococoxcocococococnoicnaicnaiocncr, cnoooooooooo
D-42
-------
a.
Q-
t-
Z
al
—I
D
Q.
Q.
(— inoootnonoo
m
~o
o -7
-CM ovr in '
D-43
-------
a.
a.
Z
UJ
IT-WT-CNT-— ^-PJW»-
u.
u.
UJ
a.
a.
o
a.
HI
00
<
f-
a
a.
s
a.
O
O
CO
a
o
— oo*-c< — — CI
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
<
_i
a
ca ojoococncicnoiaicr, oioioicnoooooooooo — — ^^^-•^T---
o •* ^r •* «J n in in UT in in 1/1 ir> in ID in ui in in in in
tn in in in LO in iri m in ir: in m LO in i/i in i.o in in in in
D-44
-------
a
Q.
V
CO
u
o
Q_
Q.
u.
LU
CL
a.
•^oii-tDoocNoo)cocDcoco^cNCD(Dintoocooco{Oincooi^a>ocooajcjcocococou>tDc^tDinoocoa3coro
<_,_,-.,..,-,- _ ,_ ,- »- CN T- ,-,-,- ,~ ,- ,- T-
O C40J04CJCMCMOOOOOOOOOOOOOOOOOOOO — 0-»-^-OOOOO-
OOOOO'-OO'-OOO^
o> a> o> a< OCTiT-r-»-T-^^^^-^^T-^c^cNC\ir^oic\ic\C'jrjc^r\ic\;corirorococoror)fomrocv>cooco>T O^ CD Q) CT) i
o ID i/) in u") tn in IT* LO in in 1/1 u") 1/1 tf) ui ID in in \r ui in <.n u"» in in in LO in u") in in in in in 1/1 u"i LO in LO LO tn LO in ID '/^ r-o LO ui m ^n u"> ut LO 'O
D-45
-------
i—
z
D
a.
>-
ca
<
Q
O.
^
Q.
Q
Q.
CL
Z
Hi
a.
a.
O OOOOOOOOOOOOO
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
CD
O
B-46
-------
O.
Q.
z
UJ
a.
u.
UJ
z
<
o
a.
a.
a.
z
UJ
ID
m
<
^-
<
o
C3
Q
O
m
it
Q
O
•5
o
XCCf^OOCD — ^ ~C •
OOO'-'-O'-OO
r»xr-cot^ccO
'n--a' — a w •*) to oc o> —
. o-- c "• o o t- oo ci r-^
OOOOOOOOO O 00000
<
_)
a
01
m
O
D-47
-------
a
a.
u.
UJ
z a
< a.
D I- f-OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
O 3 *" — .-,-,- ^ JI ^ ,_ JI ,-,_,_,_ JI ' ^^^^.^.^^^ ^H~ .-'
Q.
U-
-z.
CD >-»
a
< o
I- CD
' T
^ tococCi*'jocj*T€\ti)C!l^ii"crcoLrjtr»-^*^kCO"?'— o^^ixconoccx ooo^T'COu")
o oooooooooooooooooooooooooooooooooooooooooooooooooooooo
o
o
z
I—
UJ
H-
<
a
\-
z
_l
Q.
ca
o
D-48.
-------
Q.
O.
o
Q.
Q.
Q.
I- OOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
<
I—
<
O
CD
o
o
T^ ^ ~' j"* — ^ "^ ^ _"' rii c^ LT CN r*i CN in " o ;^- cTi CN o ^r to '-^ *""' ^ "^ L^ ^c ^f UT *?" r^ o -- o c\ ^ r^- ^j ijO *?" o -^ r- •-"5 — o c ifi ••— <"^ (?*
^
o oooooooooooooooooooooooooooooooooooooooooooooooooooooo
t- t-oD — CNi
< — — rMOi
O CMCMCJCM
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
10
03
O
D-49
-------
<
I—
13
o
O.
O
Q.
£
a
u_
O
O
a.
a.
111
3
0.
a.
i- oooooooooooooooooo^rooooooooooooooooooocaooooooooooooooo
z CMCMCNOoooonoocooooaicooinoooooooooo^TiDTOocMconooooooonosDooooooo
^ ^-»-»-r-r- >-CM ^ T- T- »-<-»--^T-CMCMCM'--'-'- »- »- T- CM »•»-»-•- ^- ^- ^- CM CM CM »- ^- «-
a
o
CO
II
_l Q
a o
a. 5
O oooooooooooooooooooooooooooooooooooooooooooooooooooooo
UJ
h-
o
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
CMCMCMCNCMCMCMCMCMCMCMCMCMCMCMC
-------
z
LJJ
O
I— OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO • O O O O -OOOOOOOOOOOOOO
z oo^rTLnToofioooooToooooT-oLnooooooooooo oooo ooonomnoooCTCN^rn
CL
V
CD
Q
< O
h- en
< ii
ex 0 O
'^ Ct_ ^ cc o j-O »~ fv ro c^v n
— cc 03 ID r^ CN o
o c\ cr ^- tr u"; o r- o oo or cc r^- •? ^- '^ :c r>* -- ro j^, ro r^ r^ ™ co cr o
"
o
o
o oooooooooooooooooooooooooooooooooooooooooooooooooooooo
LLI
(_
<
Q
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
^
c en ci c- o o o o c o o o o o -
z
cno^oiovrincDr~-cDT. o — (Nn<
m (aioiou3xcocooocoaQ:aiciO)Ci
o ^ijajmmxroooooooosracooorooncooomQooococoajzmcDoooo
D-51
-------
a
a
z
J3
a
CL
Z
LJ
13
_J
UL
U.
LJ
f-
OJ
o
CM
O
CN
a.
CL
oooooooooooooooooooooooooooooooooo
o
CL
CL
OL
•z.
u
O1/)OOOOOOOO OO
>•
en
n
o
en
o
i
o
o
o
oooooooooooooooooooooooooooooooooo
o
OlO'Tl^UDCliDOO — CJOQ'
— CN — — — — -- »-. CN .-N — CM C\
cooo ooooooo ooo
r- — ^--^-^-CNJCMCNOJOJCMrOCOOOOOOO" •^-'-•^•'-'-CSJOJCNCVOjrslCNJCMtO
oocococococDrocooococococDO'jaiCDcnaiCDaicncnoiaicf. aicna. aicnaicnaicn
oooooooooooooooooooooooooooooooooo
CD
ooooooooooooco
in in UT in te (D ID ID o to to
c. CT> ai en ff> CD 01 en 0: ai en en 01 en
D-52
-------
Q.
Q.
z
UJ
13
in
t-
in
o o
(D t~
o
CM
in
CM
tn
(N
in
CO
o
n
co o
to .-
t-
CM
CM
CM
(D
CM
Z
I—
D
O
Q.
0.
Q.
— o o ooooooooooaooooooooooooooo'in ooinommotnoooooo oo oomoo
z o> o
UJ T- CO
13 i-
"in CO ID CM •- tQ CO -4
»•-
(/)
O — '-'-CMOO'-CMO'-rgCNO-^'-CMO'-CNOJO^'-CN — CNnO'-'-CMCMO'-^CMO — CMr)O-^CMOO'-CMrjCMOT-T-CM
^^^^^mininini£>tDU3ior-h-i^t^comoocDcnaia>aiooo^--^^^CNCNicNc\i'-'-'--»-tNr\iriiricoc«jr)(riOo
-------
o
Oi
Q.
Q_
UJ
_1
u.
o
ro
in
to
o
CM
cj
CM
o
o
o
co
o
in
CO
CO
CD •*-
CO
O
o.
V
CQ
5
Q.
CL
in oooo oin mooi ininooo oomiDoincnor- moint-t-cncNOT-roc'j^mt^cnooo .- oo o o o
Z '£ CMCOUDCM CO!^ ODLILO t^OCOO(C
111 \f\ CO T* CO tO t*~ CD (X) t*- O 0) CO *~
•D CO T- T- CM
(0 r- T tc o
jj '.o co
-------
Q.
Q.
i- in O) t- o r- *3- co t- *r eo en co •«• o
z
01
CD
O
I- O
3 Q
O
2 "^ ^ r~ TJ- »- 13- ^r u~) o ^r co t.o (Ti *r o IT. -r- cc co tr1 ^- t£) ^~-- CN -- o r^ n o (Ti '"^ 17 "^ «,.o o CD -^ JCNO'-'-OJOOOCJC\'OOv-CMOi--^i-'~-»-CMCNO--'--^CviO'-'-^CNOjO-^-^-C^O
OOOOOOOOOOOOOOOOOOOOOi-'-i-'-i-i-i-i-'-T-^i-OOOOOOCOOOOOOOOOOOOOO
I-
z
_l '
a.
in t--i-r-t^r^cocncDCDCD03xa)CDajain)cncr)CT)'j>CTa>cTiff, oooooooooo-^ — ^-1-1-1-1-1- T- — iNCM
-------
^- t- T- »-
T- OJ'r-O-
0.
O.
z
UJ
u.
u.
UJ
a
a
<
i- «- o>
3 z • • •
UJ «~ CO
o *- *-
CL
>-
a
< <
i- o
<
a 5 01 o o
*— C\ C*7 OJ
o o o o
o u.
a
i-
to
< ^T-»-OOO — CNfMCMOO'-'--- — rjMOO^ — r-T-tMrjOOOOOOO — — »- •- r-^- -CMCMCNCNCMtNOJCOOOOOOO
oodooooooooooooooooooooooooooooooooooooooooooooooooooo
t-
z
< »-»-»-»-»-'-»-»-»-«-«-»-T-»-»-'-»-'-'-»-»-'-»-'-'-«-»-»-'-»-»-»-'-'-»-»-'r--^-»-'-»-»"'-»-»-»-'-«-»-»-i-
.J
a.
CO
o
D-56
-------
CO
(N
&
a.
a.
z
UJ
UJ
a.
a.
z
ul
a
a.
o
Q_
5
o
•z.
»-*
h-
1/1
t- w
< O
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
<
_1
Q_
m
o
D-57
-------
a
a.
LU in
o
Q.
n.
i-
UJ CM •- i- CM CM'-'- T- »- '-'-UI'-CV'-'-'-'-CVCM'- r- r- r- CO
_l
U-
z
c:
o
Q
'3 _^ ^ ^
U-
< CNCNC>)CMOJCNOOOOOOO'-'-'-'-'-'-'-OJOJCNC\CvjrOOOOOOO'~'-'-'-'--^C^r, CMOJCNCNCNCOCOOOOOO'-'-
t-'
D.
r~o3aiOT-cN^^intDt^a3CT)o--CMco^ui(Ot^ooO'-cN('><3-ir. (ot-aoaio
D-58
-------
a.
a
u.
u.
tu
oo
z
<
c
a.
00
<
a
o
C3
a.
a
t-
z
UJ
O
<
a
a
o
o
-I
• t^f--ma>0) -T-cniDt^oonroat-- • in ID co '.n CN f- o> • a> o r~' o
,-.-,»,- -r- T- CN
CN C\ C\ C\ <\ '
1 Jl U1 lH n o
o — «- o
UJ
i-
<
D
OOOOOOOOOOOOOOOOOOOOOOOOOOO
<
_l
a.
ci n 01
co oo n r> n n
co r: to .1 n c*> o r: n
D-59
-------
(O
CN
o.
a
•O<-'~'?tnolUir>-r-
• T- v- n
-J
O
n.
Q_
a.
z
UJ
04 T~T-»-
O
<
o
o
a.
<•>- i -«
•—• c\ o» in r, .
3 ....
C cv c\ — —
- r- x o
O O -f
C\ CNJ CJ
f'"- o O *T CD ^"" ."^)
C\ C\ C\ ^ C\ -
o cNC>i(nnroncomM!nrot"nroricotO(^rocomt^^vr^^^'vioir
"
D-60
-------
t- I
04
<
V—
D
.J
_I
O
c_
>-
CD
<
t-
<
O
O
u
S
o.
Q.
U-
u.
1U
a.
a
u.
z
O
<
O
o. — — T-
T- T- OJ CO CO CT
— IT- o o
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
£D
O
D-61
-------
CO
Q.
O.
i- ooooooooooooooo oooo oooooooooooooooonTinoinoonooTcoto ID o at •-
Q.
co
<
o
<
o
a
a.
u.
O
z
I-
(/)
— C ^C u") >J5 — — »- Oi -7 •- J — — - — —
00 O >M
O4 CN ^
tu t^t^t^r^t^r^r^t^r^r^t^t^r^^t^t^t^t^-t^-r^t^-r^r^r^Nt^-t^t^t^r^-Nt^t^-r^t^h-t^r^r^r^t^t^^t^t^t^t^i^c^t^t^h-^c^
i- a!O^r^irjiDt~coa>r^rocintca>o^^cNr^oa(Ticviri^ir)(i)a)o^c>(!^c0i^cDcrioq-focoot3-u)-^t»5^icoooir)«-coooocN
< o — — •-'- — '-'-'-CMrwrNrMCMC-gmrjooooo-^'-'- — -r- — CM(\CMCM(N(Noj!NnT-cNOjrooo^'--r- — '-CN'-'-'-ojCN
Q mnc&ammffifflaococococococDcoa>a>o>oi9>o)a'0>a>0)o0>o>G>0)o>a>o>cT>a>'-i-i~'- c>jc\c\cNr^cYi"5n«T'3->T'5j-T
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
01
co
o
in co t~ co
D-62
-------
Ol
CN
CL
a
z
LJ
•3
cot-i-oococoo--oo
01 CM OJ CO
<
h-
3
o
a.
a.
a.
z
ui
3
CO »- »*
co in T-
C4 U3
in T-
O
z
O
<
o
o
o
z
_1
Q.
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
CD in if} ID LT> If) ID ITl ID Lf) iTj Lfl If) LD [Tl lO IT; ID if) LO LD L/l ID Lf> Lfi LO L/l LD Lfi
< LO IT) U~) if) LTJ lO LfJ U") LH iT> L/l IT) IP LO I/) I.O ij. LI LO LO ITi I/) l/> t/)
D-62
-------
0.
CL
t- O CM CO «T •r- ^ m «- f i- O CO «T O> f- in CM (O ID T CM -3- i- O ID in T- CO i- — }— •
UJ •^CMLOCM'- CM'-'-r-^TUJCNCOCO »- CM *-'-*- f- r- *- »- CM
O
D.
z
V
O)
3
< <
t- O
<
O _^
o. 3 :..;....". ..'.,..
o oooooooooooo ooooooo o oooooooc o
U- _l
o
z
V-H
to to
< CM COO Or- — CMCMO»-»-CMOp — CMCOO'-CMWO»-»-CMOO'-CMCOO'-CMCMO»-»-CMOO»-tNCMp»-T-CMCMO'-CMCMCNt<>
OO'-'-'--^-^'-'-'-'-'-'--^'-'-'-OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
Q.
D-6A
-------
a.
o.
i— ^ t»
z •
13 T- T- Vr-.-CNT-T-.-CN
_l
u_
u.
Ill
a
a.
3
O
a. u,
>•
m
< «
r- Q
O
a
c '3
a
u. —i
o
z
i-<
to co to *p co co co co oo co co co oo oo co co co co co co co co co co co en co co oo oo co OD co oo OD co co co co oo co co co co co co co co co cc oo co co co
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOClOOOOOOO. ,_,-,-,-,-._,-,-, r -,- *-
t—
Z q-T-r'TOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
Q. * ^*~'~'~'"'~'~-~'~''""'~""'~ — '~'~lr"*''-'r"*~T"'~*-'~'~ — '~'-'~>~'"'"'-'~"- — .-.r-,-,-,-,-,-.-,-.-^,-.-.,-,-
O T- T—' T- •— T— »— 1--^ — *-T— ^T-T— ^*- r—T— r~ f— ^-^-— T— — T— T-^— ^---'— ^-~— »— T-^^»~T-T— ^-»— T-IT— T— T~ T- r" 1™ *— T— T- T— T—
D-65
-------
CM
n
a
a.
v
co
Q-
Q.
t- OOCMTOCOOOOOOOOOOOOOOOOtDOOO OOOrjOOOOOOOOOOOOOOOOOOOCOOOOIN
z
1- *- T- CM
'-'-T-'r-^OJ— CMCO
CM--OJ r-
a.
a.
— O
in n
n
OtOO'-COOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCDOTOOOO
C3
o
z
cocjicAQ)cJ>cr>cncj>o>ci>cj^cT)Cii^cio^c^c^cT)Q)CJicn(^c^oicj)CJ>cj)Cj>c7icT)T)C^cnc^
tx-t^t^[^r^f^t^-t^h-r^h-i%-t^r^t^t^t^t^ts^t^t^t^t^c^r^c^r^-i^t--r^cv-i-t^r*h-r^t-'t--h-c^r^r^t^
coi^o^r^^^cOT-^c^'-^X'-inco'a't^'-incO'-iricnT-rycO'-irico^.'inaicNUD'TiroiDooi^o
OO»-<-r-tNCMCNnOO' -~CMCMCNOO-.-'---CMCMC\OOO-- •- -C\CNCMOOO--'-C\iCMCNrO
«--^-^--^----»-------CNjojc\)CNC\jc\icNjcNrocororororocoro^^T«T^T^T T^J ^T^LnLT)LnLr)u")u")Lr)LnLr>
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
1/1
m
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
D-66
-------
n i
r.
a
a.
V
CD
Q.
Q.
a
a
D
_J
u_
Z
Q
O
c". aic^)CNOocT'T)noo
D
z
t—
in
LU
i-
<
o
OO^-^-^CNCMCNOOO'- — •^OJCMCMOOO»-'--^CMC^CNOOOr-r-^rMCM(nOO---->-CNCNf"OOO'-i-CNrMCJrMOO
(BCDO'^(D^'Xi(ii^t^^t^i^r~^f^[^oococococDcocoxcoa)CTiCT)a)a)C^a)aicrioooooooo-^'-T--r--i-T-T--r-T-cjcN
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOr- — »- — »-i-»-T-r-T--^^T-»-^T-r-T-»-
z ooooooooooooooooooooooooooooooooooooooooocoooooooooooo
Q.
D-67
-------
a
a.
t- o o «t o t o
uj co CM t^ co co o
3 i- CN »- W T-
_J
la-
ii.
UJ
Z Q.
— O OOtDOCMOOOOOOOOOOO^rOOOOOOOOOlDOOlDCMIOCMOOCMTOOCMOOOOO
t- I—
o
ui in
_J
o
z
CO
< <
I- O
< II —
-j b
a. o 5
^. 3 • • • • •
U. —I
o
z
O)0)O)O>O)O>OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOC)OOOOOOOOO
-------
in
CT
Q.
a
OOOOOOOOOOOOOOOOCMOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
a
a.
z
UJ
n CM •? »- CM r-moir>cN<3'*-'3-cjrjini-»-cNT-<3-
•IDCNCDOCNCNOCDO
(NCNOCNIT
o
a.
Q.
5
c.
I—
-i a
-J o
;r> in in t«- to lD(O(DCDlDU3U3lOCO(£)CDtDtDCOtDCD(I)(D(Xl'X>(Dt^l^t^^-t--^t--r--t--
T-^--r-^^^-OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
CD
o
ooooaoooDflomcacooccDCOcoajCD
D-69
-------
ID
CO
Q.
O.
— cocococjot
co i- T-
u.
UJ
a.
a.
_!
_l
O
OCMOOOOOOCNCOOOOfOOOODCNCNCDO'TCDCNOOOOOOlDCDOOOO
ro^Tt^iDino-r-tpt^-ooOT-ocDiooir^^j'^rcDf^-ootDocor^oo'^ootDCN
o>ro'3-o-1-cnq-u)o<3'nu)coin!DCNt-cNOj'3-o-r-inr~ — r^mcJor-oooiD'-fO
in o in *- T- in o t~- T- *-oj>-CNor-or~'-r- — o> en CN f-
T-T-Y- •*- *- »- CNf-CNr-CNi- ID
OCiOOOJOOOOOOOOOOOOO
CNii- COCDLncr)^-l£>q-CNCDlDOCO- in 01 oo ci o> 01 o CM a> >- o
COCDCOCN*-- l^-OOOaJCOCN'-'-cncVCDT
o
o
O
ccoooooccooooooococoooooooocccoccoo ooocccocooocoooooo
o
o
ooo
ooooooooooooooooooooooooooooooooooooooooooooooooooo
<
CL
CO
o
ci o -,- r
r~ :••> o" '
00 ..*, -
1 CTl fTl (T> Ol Ol Ol CD Ol CTl O O O O O O O O O O -^- -^ t- -^-
in co oo CD CD ao co CD oo 01 en en a> ai a> en en en tr. 01 en cr> CD
»- — r- i- -r- CN CN CN 01 ci a> o a~, CT; en o> o 01 01 o 0101
D-70
-------
LJ tCOOJCMCOO
o
«- Y- r-*"»-COT-r')«-T-CNCT)C'>OJ CN«- Y- T-
<
*—
3
o
a
CO
<
>—
Q
C-
c"
a.
a.
z <»
UJ T-
OOOOCJTOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO1T1OOOOOOOOO
^CDC^OCDOCOCNCD^ojt~in^O)^^riocnu3'r-tDt^incDiniT(D'-rot~(>iirir--ii)iD'Dt^.-'a'<.otr)roocNoioo
CO in ir)-^-fOCT)(NU3CN(t)o 01 o ai en oi o> a;
> a 01 a> en o.
a> CT> ai 01 a> a> o. a/ 01 en ci 01 en cr/
J en en CD a> ai 01 01 a> 01 ai 01 01 01
D-71
-------
CO
n
CL
OL
z
UJ
CO •-
(D
U.
u.
Ul
CL
a
— o
i- *r
Z CM
UJ i-
oooocoooooooo
iDcoocot^cocoo'TCMCoo
•ooo^oooifi^oooooooooooiooooorjoooooooooooooo
o
CL
in
in r-
CM f> — »-
m
<
3 ' • ~ • ~ • • • "• • • '• ~ • • • '•'•'• ."."". - • "- - "• . . *• ."".". ~. ". . "". . '*".". v. ~". ". . ' . "
a oooooooocoooococccococccoooooooococooo cocoocoocooooooo
O
z
chcncncncnoicncnTioicncncncnoooooooooooooooooooooooooooooooooooooooo
t^[^r~^^-r^r-i^t^r~t~r-t^^cocoooa)cocococococ030CDCDcococDaDcocricococoMaicocoocDiX)a3roocoai;ccocn
CM "0(0000000
<
_l
a.
. ^cricncrtcncnoooooooooooooooooooooooocoooooooooooo
t- >- ,- ^- »- -^- CN CM CM CM CM CM CM CN CM CM CM CM CM CM OJ C*J CM O4 CM (M OJ OJ CM C\ r\ c\ '."M f\ C\ CN tN 'N C\ t.N CN CM '-N
oooo
C* CM CM CM
D-72
-------
Q.
a
2
<
c
Q-
>-
CO
a.
Q.
OOOOOOOOOOOOOOOOOSTOOOOT -lOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
u i- in *r .- co
n ••- oj ••- en
C3
z
jisjODTor^ — ^o^ncvo — iccNOr-cNCTir — CNC^T-ifovr~CDa)O-^<3-in(Dti-ao--c>j(r>'q-Loa3iJ)O»-cNin(or--ooo)cN
•I OJCNCNOOOOO'-— T-T--^^-»-T-ogCMCMCMCNCM(MnOOOOOOO'-— — — -r- — — CN(N(\rgC\CN(N'T)OOOOOOO»-
Q c\c\c^c^fooroocomnmrococommcnco(^coco(or')^^<7^^^^^^^^^'3^'Tq-'ci3-^j-^T<3-in
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
<
_l
a.
C/l
cc
o
ooooocooooo
in in in in in in in in 10 - t~ a ra cc CD tn oc co en oo oo 01 01
ooooooooooccooooooooooooooocooooor-oooooo
D-73
-------
CL
a
z
UJ
••- CM CM —
ro
u.
UJ
CL
Q.
t- OOOOOOOOOOOOOOCMIOIOCO
LU -r-^LOt^rO COCO
•<3'CM — o o •
O COCOOOOOOOCO
r-»-^^-T-CMrMCMCMCM(NCMCMnoOOOOOOO»-^'->-T-— — — ->->-CNCNCMC\JC\(NCNC\ICMnOOOOOOOOOT-
inir)ifiinminLnir)mir)U')mmir)f~r~r~t--r~t--t-r-t^t^t^r^t^t^r~r^r~r-t»t~r^t^i-i^t^r^i^-t~r^i--xttcocoa3cococoa5aD
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
z
_l
Q.
co
O3
O
-------
0.
a.
z
LU
3
z
<
o
o.
>-
<
Q.
s
o
o
a
a
h- CM O T CO <
z t~- ai UD cn
iu 10 »- co in 01
T in T LO co
• V CD O CM 00
CD CO CD 00 CM
• ID CD CM «T CM
oo •- r- t» in
• CM T CO 00 CO
O CM
-------
O.
a
uj r- co •
>- »- i- CN »- co »-•-»- CN .- »- m
CN in co
z
<
o
a
co
<
a.
a.
u.
z
i CO O 00 CO CD
CM t- •!? CN 1C
• O CD O O O
(O O) LO CO O
CN (o T- in
• T T CD ID
r- CD t~- o I
CN CM OJ CN
O
-------
co
z
<
G3
O
D-77
-------
o.
Q.
CN "3" --
CN T CN »- CN
int-CNCOlDCN'-COTCN
U.
ti.
UJ
o
a.
O.
a
u.
z
(C O 1 «T
<- Ol t- ID
CO 01 O O (D
in CD o in OD o c* in
r< co CM
JO CM sr (D T
in c^ t~ ui en
T «T CN CN
• CN CM CO CN (D
i£> cn en CN in
CN CO CO q- CN
• T CN O (£>.IO
O CO Oi nj- CN
T T T co co
• CO O CN CN (N
CN O O) CN O
P) (D i-
CN
o
z
CO
to
o CD T u" o a1 ;•: «?• ~ cr o o v r^ o ',0 X o
03 o in
;/) o. o
o — -— —
_J
u.
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
cococDajcococococoxcocorocorococoajcococoiBcocDCDrococoBcotBCDajcococDcococoroaDcoro
t-c\icYi^rintor~-coc)O'-T-cN'T)'jiniDt^coa>O'-c\(Y', •a-miDr-cocrio — cNnTintor^cocriT-cNr. TLn;or~cD(r, O'-c\ro-q-
CNCNCNCNCNCNCNCNCNrOmOOOOOOOOO'- — — — •-• '-'-r-rNCNCNCNCNrNCNCNCNCNOOOOOOOOO---^- — 1-1-
^^r^^^*-^r^^c^c^c^rvcjcycvwcvCj^cvc^cic^<^c^cJCJt\cvc^cywt4C4c^cjcjr^Fitt&w^Fjm(f)c^(r!t'r)&
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
CO
O
-------
o.
a
in co CM CM ••-••-
co
' CM O CM O CM
CM Cl in 03 LI
• O CM
-------
CD
O.
QL
r- to <3-
in in CM «-«-'-••- t- co
»- CM in >-
in to i- .-^-cotnvcocMCMCM
O
a.
m
<
a
a
s
a.
i/)
CO
O
a.
z
UI
U.
z
a
o
. ID O 04 IO 00
in CN in r- «T
f- «r P-
00 CM O (D CO
O3 00 O CO IT)
cn CM t^ r> in
1 00 T 00 O
oo n in co
ID n t^- CD
04 CO
O 00 00 ID O
01 t- t-~ t^- n
to CN n o in
CM 00 * T 'J'
en en ^— en co
(O CO O t- CM
CM T-
• CM U3 O O O
O ID T T- OD
co t--
o
z
t-4
t-
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
cocococoo3a>cooDooo3mmo3cooDcooDa}coo^c3(3cocccocococococoo30Da>coa>a}cocca)a)m
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
<
_l
(X
CD
O
D-80
-------
0.
Q.
z
3
»- «- CN "-
»- CN CO CS CO
z
<
o
CL
>-
m
a.
CL
2:
UJ
u.
z
• o o o
i- a o
• o
CD
O O O
O 0 O
1C ITi t~
in in o
a> t- r-
(N UO
in un
I/)
to
o o o o o o o o o o o o ••" o in oo to ro r*^ c*} cr* o •— o c* o ^~ CD ^ in
c\o. c\r\ — c\c\c\c\c>.c\c\ — c — cccccccc—c — — ccc
— — CCC — CCCCCCC — <- —
c c c c — c
oorotnaiaiaioia cDOiaiai'-'--'- — •I--^T-T-T--^Y-^T-^^^^^^ ^^ *-i-,-T--i~r-.-ojojCNOjc\cNjojrvcMCNCNCNC\ioj
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
z
_J
a
C3
O
U I ID ID ID LO IT) ID m LO ifl '*T> Lf) t/) ID LH If) If) IO U") iTi ID if) LD LD u ' Lpj I/) U) U") IT u ) «O LO LT. ID in LT/
C\ C\ f\ CM OJ C\ CN CN Cs Oi C-J OJ C\ OJ CN OJ CM OJ CSJ Ol OJ C^J CSJ OJ OJ OJ OJ C>J CSJ C\ OJ OJ C^ OJ r-j ^>J CNJ
, to LT< 'J^ .
CN CN CN
t^ t^- i^ r~ r- co
: in ir '_n in in uo
I (N CN CN Cj CN fN
D-81
-------
u.
0.
z
Ul
13
CO
Q.
a.
-------
f
a.
z
LU
O
^-,-,.01*-
. iniot-oininooto
z
<
o
a.
a
a
z
LU
• O O O
t^ O) O
o
DO
• O O O
-------
t- oooooooooooooinoooooooooooooooooooooooooooooooooooooooo
<
t-
T)
O
a
z in co
Lu «T CO
. in CM o
<• <•; CN o
~- C") '^ LD >~ *T, »—
o — o c\ cv . --
: iQ ir, r^ ji 13
cr. o o — ci
coco
z
h-
l/l
»- — -r-»-CNCN CM CNOJCNCNCNCNOOOOOOOOT- ,-,-,-.- — , ^- T- C\' CN CM O. CN CJ (-J CN CN n") ^, O O O O O O O O O — r- —
coooooooooooocoooooooooobooooooooobooooooooooooooooooo
i/i CD 03 C3 CD co co 01 ai tr> o> c. 01 o to u> ir, c ID u) t" a o -D 'r ^ IP c ID ID 'C
O CN OJ Oi CN CN CM CM iN CN CN CN CJ r. f\ ,"\, f( f, OM rj CN >N C\ CN CN Cj iN CM OJ C\ CM C» C\ C, -^ C-l OJ CN C.' CN C\ M C-l C« CM CJ , Ci
IN CN co to co o co
o 10 i" co 10 x ID
iN CM OJ '"M Ol CN C\
D-84
-------
o
in
<
t—
3
o
Q.
V
co
a
a.
u.
o
2
»-H
f-
a.
a.
u.
u_
01
a.
a.
I -^ »- CO T- »- I
, O f-
• CM O) <3"
CO CO (O
• i- -OO — OOCOOOO — OO«-O—OOOO
— co «o "- in — ^TUiTr~^-oo
c~ " otcncicr. cj^oo— cr
OOOOOCOOO"- — O
- — «- •- O— O — OO— <- O •-
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
—I
a.
in
C3
a
D-85
-------
0.
0.
t-
z *-
a
a.
tu
o
c.
CD
<
• in o >
m v <
• co in oi
in *r CM
• 001-
ID T in
• en o
«r in
• T n o
co q- >n
O
•z.
t-
(O
_J
a
o
-3
o
rv ^3-^-0 T--OOO
OO-— OOOOOOOOO'-OO'-'-'-O'-OOOOOOOOOOOO — OOOOCOOO-— —
oooooooooooooooooooooooooooooooooooooooooooooooooooooo
CD
O
-------
2
a.
a.
i-r-cocncOT-*x-»-if>i-
<
Ib
o
Q.
>
<
0.
0.
UJ
1/5
U)
' CN CO O
f to «*•
, CO ,-
CO If)
• r- CM n
o m n
• CN
CN (
CN
n
ro n o
n to CT
• in o
CO T
o
z
I-H
*—
tn
o in r- — fi <"i CN t-- r- o ra en c~- tc CN ID —
CN — CN-^-OC; •j>O'!Oji~,TaD — o^o
— tT t- — in o to ji <3 tc
-------
a.
a
2 <3'tOCT)QOO>(0C'--COCO-
HJ ^" T— T— »~ ^~ '
l--t---^T-tNOCMin
f~ t~ T- CO CO
a
a
<
h-
<
o
z
u.
U-
01
a.
a
Z CO
ui n
• CT> 03
• o a> t~
V f) CO
in
• ^ ID O
v in v
• IN n o
-------
o
u.
o
a
o
z
1/5
1-1
_J
a
o
a
_J
u.
a.
a.
Z
UJ
u.
UJ
a.
a
i-
z
UJ
'-ID
05
WOO
CD r- t~
in
in
ID co o
(D t^ t~
•t- CM in t--
cocC'-eocoC'-«-ccoecc«-ooooccoooocoooocooocooocttooccoocooo
OJCMOirMCOOOOOOOOOO-r-'-'-'-'-'-'-'-'-'-rMOICMOICMCNtNrMOJCOCOOOOOOO— ' T- — ^-- CM CN (N (N CM OJ OJ
»-T-»-'-T-CVCMCMCMMCMCNCMCMCMCMCMCMCMCMCMCMCSCMCMCMCMCMCMCJCMCNCMCMCMOOOOOOOOOOOOOOOOOOO
<
_)
a
CMCNCMCMCMCMCMCMCNCN'INCMCMCNCMCMCMOlrj
D-89
-------
in
in
a.
a.
LLJ
ID
'^int£>~t^OOO^COOCOCNO.-OOClCM*--rMCNi-r-»-i-*-T-»-»-,-CN>-"- — »-r--r-,~
z
<
O
a
CL
Q.
i— c co i
Z ro — •
LU