------- o> CM OJ < a o Ul I/I I-* ¥ o u « D u. a. u. t- LU O O CJ LU LU or Q£ O UJ 033 I- (- Q cj •-" a < i- U. _l UJ < Z i- o o in r— O LU a or O CJ a 3 a: UJ a < U a x 0 CO I cP 01 §, 01 tn •4-» in 3 01 O 1- _! O CM r cP 01 E O) O U! •H in 3 01 O I- _i CJ O I U 01 i 01 10 •H 3 in o 01 -1 h- (J m t. •o IB 0 01 z > fi CN CN CN *- *- *- CN O O O O O O O 1 1 1 1 1 1 ( UJ UJ UJ LU m LU LU 0) ro u) o r^ r- in en ^r u> CM en en 10 p- co IP co CM CM r- rr in IP CM «r v co ro r- r~ ^- CM CM r~ OOOOOOO CM ro ro CM CM CN CM OOOOOOO i i i i i i i ni in m in in in m *- T en *- CM o O co co in co CM co in §CO (S> t- CM ID IP IP ro en ID CM O OOOOOOO ii iii CM CM CO CM "- ••- 1 OOOOOOO 1 1 1 1 t 1 1 ii I n I 1 1 I Ii t i_[i 1 1 1 11 1 en r~ in co 0) 01 r^ *- IP CM CO r- t-- CM CM IP O) CM •- — IP CO CM t^ ID IP tP CM «- T 1 CM CM CN f OOOOOOO 1 1 CM CM CO CO CM »- "- OOOOOOO t i i i i i i 1 1 1 lij nj LU LLI UJ LU IN r^ in CM f*- r^ co ro — in T in c- — O O t^ n O "- -• T CM CN 05 CO O O CM ro in ro co *- ~- OOOOOOO i i t i i i i OOOOOOO 1 1 1 1 1 1 1 ii i ti i LU LU UJ UJ LU ••- CM co f~ in if) OT co in co O cn en in co in co *- o O OT t CM Oin 1C CM CM CP cn ID to t *- »- cn LP t~ «- »- IP u> in •t oo »- co cn cn CM " CO CN '-«-'-'- OOOOOOO 1 1 1 1 1 1 1 o o o o o 1 1 1 1 1 UJ UJ LU UJ UJ LU LU *— h- r- if co — in o O CO CM T 01 CO 2 Z *r <- CO O co CO *- O O) «T 0) 01 »- CM CM ^- CM 01 01 O O O O O 1 1 1 1 1 co o> •>- t ro cp co co r- t- co co cn o> cj) oi cn cn -f I 1 I I I 1 00 01 oo O CM in n 01 t, CD h- t^ (*- CO ^ CL Ol O) 01 01 01 0 u o o o o o o 1 1 1 1 1 1 1 1 1 it f ii I Qj 1 ii nj cn co CM o co O CO O T f» 1^ CO oo f o t oo oo O O co in o co ••- i- «- t~ CN CN 0 0 O O O O 1 1 1 1 1 1 CM CM CN O CN CN o o o o o o 1 1 1 1 1 1 LU LU 1 |J * ' ' UJ LU O O co ro co o oo 01 co in 01 in in cp *- — ^- co CN CN »- CO t in 87325E-O2 -O 92466E-02 -O 1O925E-O1 -O B7910E-02 -0 i8603E-01 -O 35871E-O1 -O 89245E-02 -O 59791E-02 -0 24156E-02 -O 12575E-02 -0 68045E-02 -0 65O5OE-02 -O O O O O O O 1 1 1 1 1 1 o o o o o o LU 1 1 ] yj UJ i^j \f\ ••- 01 — O co cp
r- i- r- co 0) CTI O) O) O) + 1 1 1 1 1 CO 0) co ro in o> o> c. cp r- r~ i- *- 0. 0) Ol 0) O) X LU Oi X 3 # tion factor for appropriate pollutant. o 0) L. 0 0 01 L. 3 4-> IB L. 0 a E 01 il «* a a. CJ i- e, and model year; for test segment b i. 3 IB i. 0) a E 0 v 4^ C 01 a e IB e (Fahrenheit) s. 3 (B L. 0) a E 01 •H •M C 0) J2 E u t— tion factor coefficient for appropriate pollutant. o o L. i. O o 0) i. 3 •H IB t_ 01 a E 0 u -~\ .Q >«• O t- ure and model year; for test segment b •*-• IB 0 a 0 0 o c 0 0 u. 0 c. 0 t- 3 ** IB L. 01 1 0 V 0 CJ C 01 i. 01 It. 0 a: u O in r- c X 3 •H W a a JZ •H •*J 3 C O U c 3 •*— » O o c •a 0 V) 3 in L. O •H U IB 4. 0 Jj_» O 0 !. t. O 0 0 L. 3 IB t_ 0 a E 0 •H 0 ^_ ••" 111 ^ O z CO CM 0 5 IB f— c C 0 i- O) u 0 4^ o . ^ Z LU ^_ 4j a
------- H-30 TABLE 1.2.7B NORMALIZED BAG FRACTIONS FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I Pol HC CO NOx Model Years Pre-1968 1968-1969 1970-1971 1972-1971* 1975-1983 1984-1986 1987+ Pre-1968 1968-1969 1970-1971 1972-1974 1975-1983 1984-1986 1987+ Pre-1968 1968-1972 1973-1974 1975-1978 1979-1986 1987+ Test Bl .282 .31*5 .3^5 .398 .860 2.200 2.634 1.277 1.442 1.553 1.573 1.972 2.438 3-941 1.121 1.199 1.262 1.299 1.372 1.830 Seg 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 2. 0. -0. 0. 0. 0. 0. .#1 Dl 025 07U 178 060 3^5 714 104 033 071 109 05k 176 282 009 009 004 022 012 040 169 Test B2 0-973 0.946 0.919 0.885 0.766 0.571 0.368 1.017 0.996 0.933 0.902 0.881 0.658 0.0 0.785 0.793 0.770 0.783 0.766 0.703 Seg. #2 D2 0.028 0.054 0.118 0.055 0.234 0.171 0.499 0.029 0.042 0.079 0.079 0.157 0.062 1.186 0.001 -0.002 0.004 0.004 0.046 0.149 Test B3 0.839 0.842 0.894 0.919 0.804 0.914 0.973 0.758 0.674 0.711 0.755 0.628 0.621 0.689 1.319 1.245 1.242 1.197 1.167 0.939 Seg 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. -0. 0. 0. 0. 0. 0. .#3 D3 019 048 093 036 196 T»3 391 025 033 038 029 log 077 014 009 006 027 016 063 222 Tota BO 1.000 .000 .000 .000 .000 .000 .000 .000 .000 1.000 1 .000 1 .000 1 .000 1 .000 1 .000 1.000 1.000 1.000 1.000 .000 1 Test DO 0.025 0.056 0.124 0.051 0.243 0.286 0.59^ 0.029 0.046 0.074 0.060 0.139 0.111 1.308 0.0 0.0 0.014 0.012 0.051 0.173 NOTE : The fractions given in this table are used in operating-mode/ temperature correction factor the calculation of (OMTCF) . the WHERE 2 OMTCF = ((TERM1 + TERM2 + TERM3)/DENOM) TERM1 = W *TCF (1)*(B1+D1*M) TERM2 = (1-W-X)*TCF (2)*(B2+02*M) TERM3 = X *TCF (3)*(B3+D3*M) DENOM = BO + DO*M W = Fraction of VMT in the cold start mode X = Fraction of VMT in the hot start mode TCF (b) - Temperature correction factor for pollutant, model year; for test segment b M = Cumulative mileage / 10,000 DATE : MAY 25, 1985
------- H-31 TABLE 1.2.8A AIR CONDITIONING CORRECTION FACTOR COEFFICIENTS FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I * ACCF= U*V*(A + B*(T-75) -1) + 1 Model Years Pre-1975 1975+ HC B 0.1023E+01 0.33ME-02 0.1000E+01 0.3512E-02 CO B 0.1202E+01 0.1808E-02 0.1130E+01 0.1528E-02 NOx B 0.1299E+01 0.1221E+01 0.i»262E-03 * WHERE : ACCF • V U 01 DILO DIHI DB WB T given in Table 1 .2.8B (DI-DILO)/(DIHI-DI) , = Air Conditioning Correction Factor = Fraction of vehicles which are equipped with AC * Fraction of vehicles with AC that are using it 0<=U<=1 = Discomfort index = (DB+WB) *.M-15 • The highest discomfort index where no AC is used - The lowest discomfort index where all vehicles with AC use it • Dry bulb temperature (Fahrenheit) = Wet bulb temperature (Fahrenheit) * Ambient temperature (Fahrenheit) TABLE 1.2.8B ESTIMATED FRACTION OF LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I EQUIPPED WITH AIR CONDITIONING Model Fraction Equipped Years With Air Conditioning Pre-1977 0.32 1977 0.52 1978-1- 0.39 DATE : MAY 25, 1985
------- H-32 TABLE 1.2.9 EXTRA LOAD CORRECTION FACTOR COEFFICIENTS FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I * XLCF = (XLC-1)*U + 1 Model Years Pre-1968 1968-1969 1970-1971 1972 1973-1971* 1975+ Coeff HC 1.0786 1 .01*95 1.0852 1.0556 1.0556 1.0455 icients CO 1.2765 1 .138U 1.21478 1.1 3^7 i.W 1.3058 (XLC) NOx 0.9535 1.0313 1.0313 1.0313 1.0753 1.0719 WHERE XLCF « Extra load correction factor U = Fraction of VMT with an extra load XLC * Correction factor coefficient TABLE 1.2.10 TRAILER TOWING CORRECTION FACTOR COEFFICIENTS FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I * TTCF * (TTC-1)*U -I- 1 Model Coefficients (TTC) Years HC CO NOx Pre-1968 1968-1969 1970-1971 1972 1973-1971* 1975+ 1 .2614 1.2762 1.4598 1 .7288 1.7288 1-5909 1-9327 1 .8940 2.4753 2.1414 2.1414 3-9722 1 .1184 1.1384 1.1384 1 .1384 1 .2170 1.3875 WHERE TTCF = Trailer towing correction factor U = Fraction of VMT towing a trailer TTC = Correction factor coefficient DATE : MAY 25, 1985
------- H-33 TABLE 1.3-1A EXHAUST EMISSION RATES FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I (RATES REFLECT ZERO TAMPERING) * BER = ZML + (DR * M) Pol HC CO NOx Model Years Pre-1970 1970-1973 1974-1978 1979-1980 1981-1983 1981* 1985-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1980 1981 1982-1983 1981* 1985-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1983 1984 1985-1986 1987+ Zero Mi le Emission Level (Grams/Mi 1 e) 9-57 6.28 6.28 0.92 0.92 0.58 0.1*5 0.51 93-98 60.08 60.08 13.67 13.67 13.67 7.41 6.1+3 5.60 5.44 6.1+5 1+.61 1.74 l.7i* l.7i* 0.86 Deter iorat ion Rate (Gm/Mi/lOK Mi) 0.18 0.25 0.17 0.27 0.19 0.13 0.07 0.06 2.25 2.55 2.44 2.59 1.13 1.13 0.98 0.1+9 0.91 0.0 0.0 0.01+ 0.09 0.09 0.01+ 0.01+ 50,000 Mi Je Emission Level (Grams/Mile) 10.47 7-53 7-13 2.27 1.87 1.23 0.80 0.81 105.23 72.83 72.28 26.62 19.32 19-32 12.31 8.88 10.15 5.44 6.45 4.81 2.19 2.19 l .94 1 .06 * WHERE : BER = Basic emission rate (untampered) ZML = Zero mile level DR » Deterioration rate M = Cumulative mileage / 10,000 DATE : MAY 25, 1985
------- H-34 TABLE 1.3.1B EXHAUST EMISSION RATES FDR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II AT VARIOUS MILEAGE INTERVALS (RATES INCLUDE TAMPERING) Po1 HC CO NOx Model Years Pre-1970 1970-1973 1974-1978 1979-1980 1981-1982 1983 1984 1985-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1980 1981-1982 1983 1984 1985-1986 1987+ Pre-1970 1970-1972 1973 1974-1978 1979-1982 1983 1984 1985-1986 1987 + OK 9. 6 6 1 , 1 , 1 , 1 . 0 0, 93, 60 60. 19 19 19 12 1 1 9, 5 6 6 4 1 1 1 1 1 57 28 ,28 .52 .52 ,50 08 .95 .90 .97 .08 .09 .57 .57 .36 .07 .07 . 19 .44 .45 .47 .63 .92 .92 .95 .95 . 19 20K 9. 6. 6. 2. 2. 2. 1 . 1 . 1 . 98. 65. 64. 26. 23. 23. 15. 13. 12. 5. 6. 6. 4. 2. 2. 2. 2. 1 . 93 78 62 26 09 06 48 23 13 42 12 99 95 90 61 62 63 24 44 45 48 72 24 24 28 18 39 Emission Rate (Grams/Mile) 40K 60K 80K 100K 10. 7. 6, 2 2, 2 1 . 1 1 , 102 70 69 34 28 27 19 16 .15 5 6 6 4 2 2 2 2 1 29 ,29 .96 .99 .67 .62 .88 .52 .37 .87 . 16 .89 .36 .25 .88 . 19 .21 .30 .44 .44 .49 .82 .57 .57 .62 .42 .59 10. 7. 7, 3, 3. 3. 2 1 1 . 107, 75, 74, 41 32 32 22 18 18 5 6 6 4 2 2 2 2 1 ,65 80 ,29 ,72 ,24 , 19 29 .81 .61 .32 .21 ,79 .77 .58 . 13 .76 .80 .36 .44 .44 .51 .92 .90 .90 .95 .65 .80 11 , 8 7 4 3, 3 2, 2 1 111 80 79 49 36 36 26 21 21 5 6 6 5 3 3 3 2 2 ,01 .30 .63 .45 ,81 .75 ,69 . 10 .84 .77 .25 .69 . 19 .92 .39 .32 .38 .42 .44 .44 .52 .01 .23 .23 .29 .89 .00 1 1 . 8. 7. 5. 4. 4 . 3. 2, 2, 1 16 85 84. 56 41 40 29 23 24 5 6 6 5 3 3 3 3 2 36 ,81 97 . 19 38 .31 09 ,38 ,08 .22 .30 .59 .61 .25 .64 .89 .96 .48 .44 .44 .53 . 1 1 .55 .55 .62 . 12 .20 12OK 1 1 . 9. 8 5 4 4 3 2 2 12O 90 89 64 45 44 33 26 27 5 6 6 5 3 3 3 3 2 72 ,31 ,31 .92 ,95 .88 ,50 .67 .32 .68 .34 .49 .03 .58 .83 .46 .54 .54 .43 .43 .55 .20 .88 .88 .95 .36 . 41 140K 12.08 9.82 8.65 6.65 5.52 5.44 3.90 2.96 2.55 125. 13 95.38 94.39 71 .46 49.91 49. 14 37.03 29. 13 30.60 5.43 6.43 6.56 5.30 4.21 4.21 4 . 29 3.60 2.61 DATE : MAY 25, 1985
------- H-35 TABLE 1.3-1C CRANKCASE AND EVAPORATIVE HYDROCARBON EMISSIONS FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II (RATES REFLECT ZERO TAMPERING) ** CCEV - (HSK * TPD + DNL)/MPD + CC Model Years Pre-1968 1968-1978 1979-1983 1981* 1985 1986 1987 1988-1989 1990+ SHED Hot Soak Emi ssions (Gm/Trip) 27.66 27.66 3-98 3-59 3.20 2.81 2.1*7 2.05 1.82 Tr ips* Per Day 3-05 3-05 3-05 3.05 3.05 3-05 3-05 3-05 3-05 SHED Di urnal Emi ssi cms (Gm/Day) 77-89 77.89 9-31 9.31 9-31 9.31 9.31 9-31 9-31 Crankcase Miles* Emi ssions Per Day (Gin/Mi 1e) 33.70 33.70 33-70 33-70 33.70 33-70 33-70 33-70 33.70 5-70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Crankcase and Evap. Emi ss ions (Gin/Mile) 10.51 It 0 0 81 61* 60 0.57 0.53 0.50 * Default information that may be altered by the MOBILE3 user with information about the local area. ** WHERE : CCEV = HSK = TPD » DNL = MPD « CC » Total untampered crankcase & evaporative HC emissions (Gm/Mile) Hot soak emissions (Gm/Trip) Trips per day Diurnal emissions (Gm/Day) Mi les per day Crankcase emissions (Gm/Mile) DATE : MAY 25, 1985
------- H-36 TABLE 1.3.ID TOTAL CRANKCASE AND EVAPORATIVE HC EMISSIONS FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II AT VARIOUS MILEAGE INTERVALS (RATES INCLUDE TAMPERING) Model Years Pre-1968 1968-1970 1971-1974 1975-1977 1978 1979 1980 1981-1982 1983 1984 1985 1986 1987 1988-1989 1990+ OK 10.51 4.97 it. 96 4.96 it. 96 0.83 0.8l 0.8l 0.80 0.76 0.72 0.67 0.64 0.59 0.56 20K 10.51 5.00 4.99 4.99 4.98 0.86 0.84 0.84 0.83 0.78 0.74 0.70 0.66 0.61 0.58 Emission Rate 40K 60K 10.51 5-03 5.01 5.01 5.00 0.90 0.87 0.87 0.86 0.8l 0.76 0.72 0.68 0.63 0.61 10.51 5-05 5.04 5.03 5.02 0.93 0.90 0.89 0.88 0.84 0.79 0.74 0.70 0.65 0.63 (Grams/Mile) 80K 100K 10.51 5.08 5.06 5.06 5-05 0.96 0.93 0.92 0.91 0.86 0.81 0.77 0.73 0.67 0.65 10.51 5.10 5-09 5.08 5.07 0.99 0.96 0.95 0.94 0.89 0.84 0.79 0.75 0.69 0.67 120K 10.51 5-13 5.11 5.10 5.09 1.03 0.99 0.98 0.96 0.91 0.86 0.81 0.77 0.72 0.69 140K 10.51 5.16 5-13 5.13 5.H 1.06 1.02 1.01 0.99 0.94 0.89 0.84 0.79 0.74 0.71 DATE : MAY 25, 1985
------- in oo 01 < a < CM UJ —I m UJ Q «^ 3 t-1 UJ t- 1/1 « W < >- ^ O -I O J^ < 3 Z a: < 3 i- a o o _i a UJ 06 a a. o LU a u. 3 < o > t/i a. u> _j LU uj in > Z uj UJ t-H Q -I -I O O -I 2 on O O < Z HH O •-* 10 ^ I/) > HI I- O SOI LU O _) I- »- < (O I i- 3 O O < « t- I -J X LU r-*r~t-r-r--r^f-i--cocooocococococooocoo>0! t^t^r~r~t<~t--fi-f-r*cocococooocococococooi OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOICJIOJOI i. 10 11 i. « TJ U5 C CO HI Ol ID O LO >« i- Ol M (0 •D ujuJLnLO't^T^rocoiriLn^i'C'icocM O1O1O1O1O1O105O)O1O)O)O1O1O)O)O101O1O)O1 OO ior-r~t^t-t~r~t^i^t^f~cococococococoaico O1OIOI01O101O1O101OIOIO1O101OIOIO1O1OIO1 OIOIOIOIOIOIOIOIOIOIOJOIOJOIOIOIOIOIOIOI trjiDcDr-t-f-f~t-r-r-f-f-r-cococococococo 01O)O!O)C1O>O1O1O)CT>O)01O!O)01OJC71O)O)O1 OIOIOIOIOIJIOIOIOJOICT.ITJOIOIOIOIOIOIOIO) LBiDiou3iBt-r~t-r-r-r~Nr-^r-cococococo OIOIOICJICTIOIOIOIOIOIOIOIOIOIOIOJOIOIOIOI O1O1O)O>01O101O)0101C1O)O1O)O1O)O1O)O)O1 CM CM CM CN CM (SiBUjiBiotoiDt-r-t^t^t-i^r-i—r~i»-cococo OIOIOIOIOIOIOJOIOJOIOIOIOICIOIOIOIOIOIOI 0101O1O101O10101O1O)O)O1O)O)C1O)O)O1O>01 Cal endar Year 998 99 January 1997 ~'-ii~-c'- COBJCOCOCOCOO>O>0)O)O>O>OC1O1O>OOOO O1O1O1O)O10101O)0)O)O1O1010101O)OOOO '--c'-'-if- — OOCOCOCOCOCOC001O1C7}O1O1O1O)O)O1?)OOO O1O)O1O1010)01O1O1O1O1O101O)O1O1O)OOO LninCJCNCNCMCMCNCNCMOJ COCOCOCOCOCOGOCOOIOIOIOIOIOIOIOIO'IOIOQ •~*-*-i~*--r — -r*--~r-*--w--^T-*-r-rftr* COCOCOOOCOCOCOCOCOOIOIOIOIOIOIOIOIOIOI OOCOCOCOCOGOCOQOCOOOO)O}0)O)O1O1OO)0)O1 OIOIOIOIOIOIOIOIOIOIOIOIJIOIOIOIOICDOIO} lOioinininrocMcMCMCNCM f-oococococccocoeooocnoioioioioioioioio) O1O)O)O)OJC^J)C1O1O1O)O1(T)O1O)0101O1O1O1 TftPtPiniOtncMCMCMCNCM 01O101O1O101O)O1O)0)01O1O)O1O>O1O1O1O101 t^r^iNcooococoaocooocooooooioioicioioiO) O1O101O)O1O)O1O1O1O10101O1O1O)OJO)010101 T^TCOlOttTncMCNCM oioioioioioioioio)oioicno)O5O)Oicnoioio) TrrTTTTrtccD^Tr^cDcMCN • > 3 t-*• C >t- C 0) O O (J L0 QJ com > DILL, t- (0 0) in £ 0) in •M a> c S. O O ID in O ia in E >,t~ uj t. ii m a. i. - ID r = Ol <0 t- ~~ C. - T3 C O) E 0) - r^r^r^i^-t^ooflOoocococococooocooioioioioi OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOI OlOlOlOlOlOlOlOlOlOlOlOlOlOlOldOlOlOlO) ra 3 i. t. o a > 01 o 01 - (0 41 01 L s_ o > E m in 01 01 01 •H V 01 ui m at ai c (0 (0 — u u in -,— m T3 n - C C E « « 01 I I Is Ol «- -•- 0 fc - o LO ID -^ 10 O v O in w 13 0) ~ Ol O fl U 9) C -
------- tfl 00 0) in CM < LU t- H CO t- X -I O a 3 I- o -i a LU a: a o w 00 u. 3 CM O l/> O. UJ LU O - > z u LU i-l LU -I —1 -I O CO Z UO < O < h- w O LO LO > i-l I— Z =1 uj C I- I- i/> I 3 O r j X to n en I c oo CD 01 ID U in >oo t_ en (0 t~f-l>l^l^f-t-f-COCOCOCOtDt^t-r-t>-t-t~t^i~t-f-coeocococo encncncncncncDcnojcncncncncncncncncncncn 'j-iniOf-oocnO'-cMcotmiot-oocnO'-cNn u5iD(j5U5U5iDr-t~t^r»r-i—r~r-t~t»-ooeococo cnocncncncncncncncncncncncncncncncncncn cnencncncncncncncncncftCDcncncncncncncncn nronnncMCMCMOjencnoooocot^r^p-cM'-'- cncncncncncncncncncncncnencncncnenencncn 8 L. 10 T3 00 c en ai en ra o i. en 10 '- 10 -3 cncncncncncnOTencnaioicncncncncncnencncn CM »- *- CM CM CN • - cococooocooocncncncnencncncncnojdOOQ cncncnencnoicncncncncncAcncncncnoooo - aocococooocooocncncno)cncno)cncnenooo cncncnencncncnencncncncnencncnencnoQO Tf^^-tOcncooor^io^ttcncM'-encotcin ney)cM-r~i»-cM^-*-^~'-'-*-*-'-»-'- oooococococococoencnencncncncncncncnoo cnencncncncncncncncncncncnencncncncnoo COCOCOOOOOOOCOCOCOO)0)0)0)O)0)O)O)0)O^ u> co r-j n CM «5iLoencoOenin'-r5inioiB«)'TCMoo<»coflo u>ioci>ne>5CM*-»-»-'-»-»-»-*-»-»- r^cocococococooococooocncncncncncncnencn inocncMcM — cMmnr~(Din«rncM'-encotfin Oioinc<)nncM»-'-»-»-»-v»-'-»- r-t^cocococooooooocooococncncncnencncnai encncnencncDencncncnencnencncncncncnencn OOmincncirjcM r~t~i^cccocococoixicococococno)cncncncncn cncnencncnencncncncncncncncncncncncncncn ••-OcocOTiocDOcor^coipmiDiCMcoTcoeo OOOininnne^cN r^r^r^t^cococococooocoaococoencncneneTjcn cncncncncncncncnenojcnenenencnencncncncn OCDOOinineoencMCM inior^eocnO'-cMfo^i-intfli^oocnO — rMD't h-t--t^r^i^cooooooocooooooooooo<3)enencnen cncnencncncncncncncnencncno)cncno)cno)cn OOOOOmmfocNCM-^'-'-1^'-'- tinu5r-oocnO'-cMcnniniflt~ooenO'- 3 i. a c n (. ID £- Z C (0 > -H •o C Olu. t. 10 ai in £ 0) in •H 4> C t- 0 10 E (. II io a. C UJ 4-* <0 K C " c I in o a Z -H = O > 10 £ s en o i- " c oi in 0 2 0) +> T3 — u- o n o e§^ t-on o • • w CM • — o> o 01 -H -a • 0) O <0 ^ •- 0 in - — c a -a a o ja 01 ra — N i— 0 t- 0£ ^ -D E eo in a e - • (0 3 I- t- O (0 OI — 0 10 0) 10 0 ra c *• o in > C 01 t- 0 z i. > 3 OI s« c "- O 0) C. £. • — TJOIOCM*' o> inio 000 +J »J 0 in in 0 0 c v *- O (0 10 '~~ u u in iii - 3 10 O •H O in 10 •O 0 " Ol O 10 C - •«- g r^r^i^r-t^i^t^eoeooaoaoocaoocoeoconcncn
------- in co 01 in CM < UJ I- Q c-3 UJ Q •-« 11 t/1 t- X. -I U < 3 oc » t- o -I Q UJ a a O UJ CJ u- 3t CM O l/l Q. _l X uj uj O - > 2 2 UJ 1 UJ —I —I -I O CO 2 in < O < t- <-i O to on > p.. K £ 3 LU O in I < HI X -I x 01 CO t_ 10 TJ U) c co OJ 01 "w o in >.co t. 01 ro — 3tou>r-r-t-i-r-t^t-r^f-r-cococococo OlO101C71OlOlOlC7)OlcnO}O>O101O>OlOlO>O101 u>iDtD tiotBt»cooi COCOCOCOCOCOCOCOCOC001010101O101O1010101 OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOI TinocMcMnri'j'TnoncMcM'-OOOioi connnnocMoi'-'-'-^^-'-'-'-'-'-oo oio^-eNnrTinu)t--cooiO'"r :- S r (0 > V •o c o o O V com > — . u O1U. C IS a) in £ 0 in •H g) C (- 0 O v in ^_ Q in "me >t» uj L. II |l • C uj ••-• fl t- i. •3 (8 . +J C x in O OL Z +* * 0 > U) £ = 0) is £. *" C (0 .. - 0) in > C (- O £ 'ilZ> T3 - t- 0 T3 O E C O S« t. O CO 0 • • in CM • — a) n 0) v TJ • > C — ni u a r~ 1- Q) in • — C (B tJ J3 O j3 t) (0 »— C !_ (0 C O -H 0) •- -o E 0) in (0 • 10 3 £. L O 10 01- II) 10 O) — (0 OJ (DLL C Ol in I- « £ t- > 3 O) i»- •»- O H- s« c •^ o t-t^r-r-r^cococococococococooooioioicioi 0101010101010101010101010101010)01010101 iriniBh-cooiO'-tMnTfiniotvoooiO'-cMco f^^f^r^r^r^cocococococococococochoioioi OIOIOIOIOIOIOIO/IOIOIOIOIOIOIOIOIOIOIOIOI oioio)oioia)a)O)oio)O)oio)oia)0)O)oioioi 0) 0) OJ c r > ^ V 0) in in Q) 0) c v v o « (0 - o o in T: -D - C C E > UJ X* *• in to •k' E i. 3 ------- Pol HC CO NOx H-40 TABLE 1.3.3 IDLE EMISSION RATES FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS * IER = ZML + (DR * M) Model Years Pre-1970 1970-1973 1974-1978 1979-1980 1981-1983 1984 1985-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1980 1981 1982-1983 1984 1985-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1983 1984 1985-1986 1987+ IER ZML DR M Zero Mi le Emission Level (Grams/Mi n.) 1.67 1 .06 1.06 0.07 0.06 0.04 0.03 0.03 18.98 11.53 11.53 1.57 1.31 1.19 0.69 0.34 0.34 0.08 0.10 0.07 0.06 0.05 0.02 0.02 = Idle emi ss ion Deter i orati on Rate (Gm/Min/lOK Mi) 0.03 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.45 0.52 0.49 0.32 0.27 0.24 0. 14 0.18 0.18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 rate = Zero mile 1 evel = Deterioration = Cumulative Mi Rate leage / 10,000 * WHERE DATE : MAY 25, 1985------- H-41 TABLE 1.3.J* REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II Jan 1 Model July 1 Mileage Jan 1 Mileage Year Registration Accumulation Registration Accumulation Index** Mix* Rate Mix Rate per truck * (fleet) Jan 1 Mileage Accumulation (fleet) 1 2 3 k 5 6 7 8 9 10 11 12 13 li» 15 16 17 18 19 20+ 0.067 0.085 0.081 0.077 0.073 0.069 0.065 0.061 0.057 0.053 0.048 0.041+ 0.040 0.036 0.032 0.028 0.021+ 0.020 0.016 0.024 18352. 16946. 15648. 11+41+9. 13342. 12320. 11376. 10504. 9700. 8956. 8270. 7637- 7052. 6511 . 6012. 5552. 5126. 4734. 4371- 4036. 0.022 0.085 0.081 0.077 0.073 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 18352. 18000. 16621. 15348. 14172. 13086. 12084. 11158. 10303. 9514. 8784. 81 12. 7491. 6917. 6386. 5897. 5445. 5028. 4643. 4287. 2294. 13720. 31021. 46997- 61748. 75370. 87947. 99562. 110286. 120188. 129332. 137775- 145572. 152771. 159419- 165557. 171225. 176458. 181291. 185753. * Default information that may be altered by the MOBILE3 user with information about the local area. ft* The indices refer to the most recent model year vehicles in any given calendar year. Index 1 references the newest model year vehicles and index 20+ references the oldest model year vehicles. DATE : MAY 25, 1985------- H-42 TABLE 1.3-5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II JANUARY 1, 1988 (A) (B) Model LDT2 Fleet Sales Years Reg i strat ion Fract ion (C=A*B/DAF) (D) LDGT2 Annual Mileage Reg i strati on Accrual Rate (C*D/TFNORM) Travel (C*D) Fractions 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 197^ 1973 1972 1971 1970 1969- 0.022 0.085 0.081 0.077 0.073 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 0.760 0.790 0.820 0.840 0.870 0.900 0.920 0.940 0.966 0.972 0-991 0.995 0.997 0.998 1.000 1 .000 1 .000 1 .000 1 .000 1 .000 0.017 0.067 0.066 0.065 0.064 0.062 0.060 0.057 0.055 0.052 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 0.019 0.077 0.076 0.074 0.073 0.071 0.068 0.065 0.063 0.059 0.054 0.050 0.046 0.041 0.037 0.032 0.027 0.023 0.018 0.027 18352. 18000. 16621. 15348. 14172. 13086. 12084. 11158. 10303. 9514. 8784. 81 12. 7491. 69!7. 6386. 5897. 5445. 5028. 4643. 4287. 355-7 1380.3 1260.7 1133.6 1027.8 928.0 825.2 730.6 647.8 559-7 477-2 405-5 341 .1 283.8 233-4 188.6 149.2 114.8 84.8 117-5 0.032 0.123 0.112 0.101 0.091 0.083 0.073 0.065 0.058 0.050 0.042 0.036 0.030 0.025 0.021 0.017 0.013 0.010 0.008 0.010 DAF: 0.876 TFNORM: 11245.4 WHERE : A B D D(l) D(MYI) January 1 registration mix from Table 1.3-4. Fleet sales fractions Sales weighted fleet mileage accumulation rate from Table 1.3-4, adjusted to January 1 Annual Mi les (1) .25* (Annual Miles (MYI)) + . 75* (Annual Mi 1 es (MY I - 1) ) , MY I =2 , . . . , 20+ NOTE : In general, the travel weighting fractions will change for every calendar year since the sales fraction (column B) changes for almost every model year. DATE : MAY 25, 1985------- LU Q 1— 1- I-H ^ O 10 -i ¥ (J a o o a U- K CO Q Z OX LU UJ ID 1-1 3 O O tn i-i a. tn • u. ^ i- U_ LU i uj z I uj O M _i CJ _l CO O < a to i- a < 0 u. f- z5 o i-* f— t- i O CJ LU 1-1 OX -1 a O CJ a tu LU a. to j~, •*-! T3 10 in Ll. V. in LL to II ^ ••-, •Q (0 10 • in Lu CJ to * 01 r- 01 *~ + l OJ O ai r- O t. 01 a. "- *xx CJ O 0 X Z Z . . . IT f ^~ in in in # * » U. U- U. 444 * « « in in in » * * UJ UJ UJ 444 n n n (/) W W * * * C Q Q 4 + + *«c 10 — oi •D 0 r~ O i UJ O OOO O 01 0 O 1 1 UJ UJ cn o t CM CO I- co in O CN in CD O OOO i i — — cn OOO i i i UJ UJ LU co r- O ID — CD co in to CD Ol t — T- TJ- odd 885 4 4 1 LU LU UJ i^ tn cn co cn cn " CC CC §T r- T O cn cn t- OOO i i i OOO 444 LU LU LU cn CM in f"~ CO ^ co cn in O co — i to CM CM CM *- OOO tn co cn r- r- co 01 Ol Ol i i i O •? 01 r^ r^- r^ Ol Ol Ol T- T- *- O O d d o o d d o o o o tn cn 0 0 i i LU UJ 0 0 CO CM to co in CM cn tn r~ tn d o 5 5 LU LU !-• Ol in '- co tn 0 r- 00 ID co in d d i i 08 LU UJ ID O CO O) cn o 1 CO •r- 01 O O to CO O) 4 1 CO T 01 CO *- Ol *- r- r- i- OOO i i i LU LU UJ co 01 in r~ co O Ol Ol ^ tn •"T cc O *• cn rr tn ID o O O O O O O O 0 i i i in in T OOO i i i LU UJ UJ CM co r- in t cc r- 01 CM 1C Tf 1C O CO O r- in »- o O O 0 O O O 0 0 cn cn cn OOO i i i LU LU LU to t^ co 01 CN cn cn cn T r~ CN co t~ CN r~ *r T to O O O O O O O O O i i i ^- T- *— OOO 1 1 1 uj tu tu *- cn CM r- co co 8- f. tn o - cn ^r cn O O O O O O O O t i i i tu tu tu tu Ol CM tn — ^ CD cn co in tn cn 01 00 O CD CN CM tn tn CD cn CM CN CM O O O O i i i 8888 4444 LU UJ LU UJ X CM CD "- cn oo i T CO CM O O cn co in CD co o 01 co r- cn CM cn O O O O co cn cc t- co co 01 Ol Ol 4 1 l l CO ^ Ol ^ Ol f* r» co •*• Ol Ol Ol »-*-»- C " 0 .- 10 (0 ^ L. '— 01 X a i O 3 +* *- if "^ a <* 4 in cc t) CM ^- *\ O "~ O X 4 <4- 3 C n O Z B U CO a in t_ ^ «^. ^ L. ^ O l»- 3 0) C f 0 in ••- 3 *• -, 10 T3 i- to 0) Q. .. o T3 41 *- 01 <- Q. (0 in 4* in 4) ^ i. * £ 3 0 Q.T3 £ E 0! ^- O *• 0 0 T3 c- 01 a c 01 0 Q. +J •*- tO 10 4-* (1) U 01 v (0 O) i- 10 O M- 0) in T3 > (0 C ra 13 10 n u r*^ T3 10 in m tu ox LU I 3 * to CO Ol ^ • in CM J £ LU ^_ ^ O ------- a o CJ CJ « 3 u. ex in i— O U CO Q UJ a CC Q UJ O Z3 3 t- I- O • cj i-. a. *- < t— U. — I LU LU < Z -I Z i- CQ 03-1 < "00 (- t- —I t/1 CJ < a o cj o: UJ a LU a. x LU a u. CJ .c a n i *• u 01 1 0) 10 4^ in 3 01 O i- _i O CM I •H O 01 Ol 01 in 4^ Ul 3 0) O t- _l O £ D I CJ 0> 01 10 4- 3 in o 0) -1 H (J 01 i- T3 (0 O 0) Z > "o a CM CM CM *- •- CM OOOOOO 1 1 1 1 1 1 LU UJ UJ LU UJ LU 01 co (O t- t~ in 01 «r U) o) 01 c* i^ co vo CM CM r- TT in 1C * T 00 CO t» r» CM CM t^ OOOOOO CM CO CO CM CM CM OOOOOO i i i i i i u i 1 1 1 1 1 1 in ni ni — T 01 CM O O co oo in CM co in 800 ID CM m CD U5 CO LO CM O 13219E-O2 -O 42667E-O2 -O 47925E-03 O 26179E-01 -O 26179E-O1 -O 12627E-O4 -0 24O32E-02 0 32O17E-O2 0 52755E-03 -O 88O57E-02 0 1O177E-O1 O 1O113E-O1 -0 O O O O O O 1 1 1 1 1 1 0 O O O O O 1 1 1 1 t 1 LU LU LLJ UJ LU LU *- CN co in in O co in GO o en 10 n 10 co o O o ^T Ol O T T — 000000 1 1 1 1 1 o o o o o o III 111 ni LII 111 in co CM in t- ro o CM to in »- en oo ID »j CM in t- oo O *r ^ m r~ o CM CM CM CM CM n OOOOOO i i i i i i O n oo co f- r» r- r- oo co 01 01 en en en -f I I I 1 I CO a> o T 01 *r 01 t- f^ f^ r^- co *~ 0- en en 01 01 CJ OOOOOO 1 1 1 1 1 1 LU LU UJ UJ LU LU ^r en co ci en 01 *- Is- CO CO CO CO O •— T t T o"i *- in oo *- — ID — IN CM ro co en OOOOOO CM CM CM CM f *- OOOOOO t i i i i i LU UJ UJ UJ LU LU t- en co eo •- «- 01 ^* in in t^ in O t^- CM in co en *- in co *- o *- 37462E-02 O 84685E-O2 0 236O3E-01 O 48537E-01 -0 48537E-01 -0 13861E-01 -0 15784E-02 0 15289E-02 O 59951E-02 0 88336E-02 O 17783E-01 0 18813E-01 0 OOOOOO 1 1 1 1 1 OOOOOO 1 1 1 1 1 1 LU LU UJ UJ LU " ' — r- in CM CN U3 en CB in — *- en ID t- — 10 ID in TT oo — en en CM — CO CM — — — OOOOOO O 0 0 0 1 1 1 1 LU UJ LU LU LU LU t— h— r- ID ro in o O oo CM ^r ro Z Z•*• CM CM CM ttl CD O O O 0 III! O co oo co r- r- r- t* co co cn 0) en cn en •*• 1 1 1 1 1 00 ot o T en T en t- r- t- r- co «- 0- en 01 CD en o CJ 10839E-01 10108E-01 18042E-O1 20878E-O1 2883OE-01 0 O 0 0 O i i i i i CM CM CM CM CM 0 O O O O 1 1 1 1 1 ti 1 11 1 li 1 1 1 1 yj O O oo oo O co en oo en in in ID T- -r- m CM CM *- T in O O O O o i i i i i CM CM f *- «- O O 0 0 0 1 1 1 1 t LU LU LU LU " ' in (o in co — CM ID CM O C- co n 01 ^fi co t- CM o oo in co en *" *~ co 89245E-02 -0 59791E-02 -O 24156E-02 -0 68045E-02 -0 65O5OE-02 -O O O O O O I I 1 1 1 o o o o o 1 1 1 1 1 — en •*• co ic •T co O in ••- 00 CO CO — T CD O 00 IB t ro *- — CM co O O O O O i i i i O O O O O 1 1 1 1 1 n I 111 in Li L III r- T in ^J- O en c- in ^y »~ 00 O CO O !- to in co to co *- CM n r~ in O O O O O II II O co CO t- r- r- r- oo en 01 en en + I 1 I I CO d) o *r 01 01 t. r- r- i- " o. en en 01 X o I ection factor for appropriate pollutant. ^ L. 0 O 01 t_ 3 •H ID i. 01 a. E 01 t- ll *^. o «— • LU CJ >- a c 01 O) 01 in « cj 4- I- o I. 01 1 T) <0 Ol' t. 3 to 01 a E 01 4^ C 01 a « ure (Fahrenheit) jiy to L. 01 Q. E 01 •H 4-1 C 01 £ E ^ n 1- ection factor coefficient for appropriate pollutant, ^ i. 0 o 01 i. 3 (0 i. 01 a E 01 t- II ^^ a ^_* CJ 1— ature and model year; for test segment b ^ 01 a £ 01 V 0) 0 c 01 L. a> ai ^ ature L 0) a e 01 4-1 01 o c 01 01 14- 01 a M o tn t~ ction factor is used in conjunction with the Ripstwxn 01 i. L. O U 01 £_ 3 to 0) a E 0) 01 £ 1- •*~ LU h~ O z CQ n 01 a to c 0) f_ O) s. 0 o to. c 0 4rf u 01 i. o u o in i i— CM CO n i n •H 0) in o a CJ Ol to CO ^ O (4- T3 0) in 3 _ 01 T3 0 E +j 01 in (4> (4* O CM UJ Q Z in oo 01 . in CM ^m ^ Z UJ t~ o ------- H-45 TABLE 1.3.7B NORMALIZED BAG FRACTIONS FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II Normalized Fractions Pol HC CO NOx Model Years Pre-1970 1970-1973 1974-1978 1979-1983 1984-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1983 1984-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1986 1987+ Test Bl 1.282 1.345 1.398 1.860 2.200 2.634 1.277 1.442 1.573 1.972 2.438 3-941 1 .121 1.199 1.262 1.372 1.830 Seg.#l Dl 0.025 0.074 0.060 0.345 0.714 1.104 0.033 0.071 0.054 0.176 0.282 2.009 0.009 -0.004 0.022 0.040 0.169 Test B2 0.973 0.946 0.885 0.766 0.571 0.368 1.017 0.996 0.902 0.881 0.658 0.0 0.785 0.793 0.770 0.766 0.703 Seg 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 . 0. -0. 0. 0. 0. .#2 02 028 054 055 234 171 499 029 042 079 157 062 186 001 002 004 046 149 Test B3 0.839 0.842 0.919 0.804 0.914 0-973 0.758 0.674 0.755 0.628 0.621 0.689 1.319 1 .245 1 .242 1 .167 0.939 Seg 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 . -0. 0. 0. 0. 0. .#3 D3 019 048 036 196 143 391 025 033 029 109 077 014 009 006 027 063 222 Tota BO 1.000 1.000 1.000 1.000 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 1 .000 1 .000 1.000 1.000 1.000 1.000 1 Test DO 0.025 0.056 0.051 0.243 0.286 0.594 0.029 0.046 0.060 0.139 0.111 1.308 0.0 0.0 0.014 0.051 0.173 NOTE : The fractions given in this table are used in the calculation of the operating-mode/ temperature correction factor (OMTCF). WHERE : OMTCF = ((TERM1 + TERM2 + TERM3)/DENOM) TERM1 = W *TCF (1)*(B1+D1*M) TERM2 = (1-W-X)*TCF (2) * (B2+D2*«) TERM3 = X *TCF (3)*(B3+D3*M) DENOM - BO + DO*M W - Fraction of VMT in the cold start X = Fraction of VMT in the hot start TCF (b) = Temperature correction factor for year; for test segment b M » Cumulative mileage / 10,000 mode mode pollutant, model DATE : MAY 25, 1985------- TABLE 1.3.8A AIR CONDITIONING CORRECTION FACTOR COEFFICIENTS FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II * ACCF= U'W*(A + B*(T-75) -1) + 1 Model Years HC B CO B NOx B Pre-1979 0.1023E+01 0.33^E-02 0.1202E+01 0.l8o8E-02 0.1299E+01 1979+ 0.1000E+01 0.3512E-02 0.1130E+01 0.1528E-02 0.1221E+01 0.4262E-03 * WHERE : ACCF V U Dl DILO DIHI DB WB T Air Conditioning Correction Factor Fraction of vehicles which are equipped with AC Fraction of vehicles with AC that are using it given in Table 1-3-8B (Dl -Dl LO) / (D IHI -Dl) , Discomfort index = (DB+WB) *.k+} 5 The highest discomfort index where no AC is used The lowest discomfort index where all vehicles with AC use it Dry bulb temperature (Fahrenheit) Wet bulb temperature (Fahrenheit) Ambient temperature (Fahrenheit) TABLE 1.3.8B ESTIMATED FRACTION OF LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I EQUIPPED WITH AIR CONDITIONING Model Fraction Equipped Years With Air Conditioning Pre-1977 0.32 1977 0.52 1978+ 0.39 DATE : MAY 25, 1985------- H-47 TABLE 1.3-9 EXTRA LOAD CORRECTION FACTOR COEFFICIENTS FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II * XLCF = (XLC-1)*U + 1 Model Coefficients (XLC) Years HC CO NOx Pre-1970 1970-1973 1974-1978 1979+ 1.0786 1.0495 1.0556 1.0455 1.2765 1 .1384 1.1347 1.3058 0.9535 1.03U 1.0753 1.0719 * WHERE XLCF = Extra load correction factor U = Fraction of VMT with an extra load XLC = Correction factor coefficient TABLE 1.3.10 TRAILER TOWING CORRECTION FACTOR COEFFICIENTS FOR LOW ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II * TTCF = (TTC-1)*U + 1 Model Years Pre-1970 1970-1973 1974-1978 1979+ Coef f i c ients HC CO 1.2614 1.9327 1.2762 1.8940 1.7288 2.1414 1.5909 3-9722 (TTC) NOx 1.1184 1 . 1384 1.2170 1.3875 * WHERE TTCF = Trailer towing correction factor U - Fraction of VMT towing a trailer TTC * Correction factor coefficient DATE : MAY 25, 1985------- H-48 TABLE 1.4.1A EXHAUST EMISSION RATES FOR LOW ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES (RATES REFLECT ZERO TAMPERING) « BER = ZML + (DR » M) Pol HC CO NOx Model Years Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997+ Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997 + Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997 + Zero Mile Emission Level (Grams/Mi 1 e ) 16 17 9 8 7 3 2 2 2 2 2 0 0 0 0. 200 208 157 141 124. 104. 97 96. 97. 38 30. 13 12 12. 12. 7 . 8 . 9. 6. 5. 5. 4 . 4 . 4 . 4 . 4 . 4 4 . 4 . 4 . .49 .08 .21 .28 .31 .07 .86 .83 .84 .45 . 16 .97 .95 .93 .91 .80 . 10 .48 .48 .90 .78 .71 .53 , 15 .30 45 26 98 63 39 87 15 ,35 12 41 14 80 74 77 79 82 60 50 38 30 Deterioration 50,000 Mile Rate Emission Level (Gm/Ml/tOK Mi) (Grams/Mile) 0 0. 0. 0. 0. 0, 0 O, 0. 0. 0, 0, 0, 0. 0, 4. 4 . 6. 5. 5. 4 . 4 . 4 4 . 0. 0. O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. O. 0. .31 32 .37 .22 . 19 19 . 17 . 17 . 17 .06 06 .09 ,08 08 ,08 81 99 .68 74 07 83 50 45 47 92 93 58 57 55 54 0 0 0 07 06 06 06 06 06 03 03 10 09 09 09 18 18 1 1 9 8 4 3 3 3 2 2 1 1 1 1 224 233 190 170 15O. 128 . 120 1 18 1 19 42. 35. 16, 15 15 15. 7 . 8. 9. 6. 5. 5. 5 5. 5. 4 4 . 5. 4 . 4. 4 .04 .68 .06 .38 .26 .02 .71 .68 .69 .75 .46 .42 .35 .33 .31 .85 .05 .88 . 18 .25 .93 .21 78 50 ,90 , 10 , 16 83 38 .09 87 . 15 .35 47 71 44 10 04 07 94 97 10 95 83 75 WHERE : BER * Basic emission rate (untampered) ZML » Zero mile level DR * Deterioration rate M = Cumulative mileage / 10,000 DATE MAY 25, 1985------- H-49 TABLE 1.4.1B EXHAUST EMISSION RATES FOR LOW ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES AT VARIOUS MILEAGE INTERVALS (RATES INCLUDE TAMPERING) Model Pol Years HC Pre-1963 1963-1969 197O-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997+ CO Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997+ NOX Pre-1963 1963- 1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997 + OK 16. 17. 9. 8. 7. 3, 2. 2. 2. 2. 2. 1 . 1 1 , 1 . 200 208, 157 141 124 104 97 96 97 38 30 17 16 16 16 7 8 9 6 5 5 4 4 4 4 4 4 4 4 4 49 08 ,21 .28 31 .07 86 .83 .84 ,45 . 16 .42 .40 .38 36 .80 . 10 .48 .48 .90 .78 71 .53 . 15 .30 .45 .25 .97 .62 . 38 .87 . 15 .35 . 12 .41 . 14 .80 .74 .77 .79 .82 .77 .67 .55 .47 20K 17.11 17.72 9.95 8.72 7.69 3.45 3.20 3. 17 3 18 2 57 2.28 1 .73 1 .69 1 .67 1 .65 210.42 2 1 8 . 08 170.84 152.96 135.04 1 14 . 44 106.71 105.43 106 09 40. 14 32 31 19.82 19.52 19.13 18.87 7 87 8. 15 9 35 6.26 5.53 5.26 4.92 4.86 4.89 4.85 4.88 5.11 4.99 4.87 4.79 Emission Rate (Grans/Mile) 40K 60K 80K 100K 17.73 18.36 1O. 69 9. 16 8.07 3.83 3.54 3.51 3.52 2 .69 2.40 2.05 1 .99 1 .97 1 .95 22O.04 228.06 184.20 164 44 145. 18 124 . 10 115.71 114.33 1 15 .03 41 .98 34. 17 22.40 22.08 21 .65 21 .37 7 .87 8. 15 9.35 6.40 5.65 5 .38 5.04 4 .98 5.01 4.91 4 .94 5.46 5.32 5 .20 5. 12 18.35 19. OO 1 1 .43 9.60 8.45 4.21 3.88 3.85 3.86 2.81 2.52 2.37 2.29 2.27 2.25 229.66 238.04 197.56 175.92 155 .32 133.76 124.71 123. 23 123 .97 43.82 36.03 24.98 24 .64 24. 17 23.87 7 .87 8. 15 9.35 6.54 5.77 5.50 5. 16 5. 10 5. 13 4.97 5.00 5.8O 5.64 5.52 5.44 18. 19. 12, 1O. 8, 4, 4. 4, 4, 2 2, 2 2 2 2, 239 248 21O 187 165 143 133 132 132 45 37 27 27 26 26 7 8 9 6 5 5 5 5 5 5 5 6 5 5 5 97 64 , 17 04 .83 ,59 .22 , 19 .20 .93 ,64 .68 .58 .56 .54 .28 .02 .92 .40 .46 .42 .71 . 13 .91 .66 .89 .56 .20 .69 . 37 .87 . 15 .35 .68 .89 .62 .28 .22 .25 .03 .06 . 15 .97 .85 . 77 19.59 20.28 12.91 10.48 9.21 4.97 4.56 4.53 4.54 3.05 2.76 3.00 2.88 2.86 2.84 248 .90 258.00 224 .28 198.88 175.60 153.08 142.71 141 .03 141 .85 47.50 39.75 30. 14 29.76 29.21 28.87 7.87 8. 15 9 .35 6.82 6.01 5.74 5.4O 5.34 5.37 5.09 5. 12 6.49 6.29 6. 17 6.09 120K 2O. 20. 13. 10. 9. 5. 4. 4, 4. 3 2. 3 3 3 3, 258 267 237 21O 185 162 151 149 150 49 41 32 32 31 31 7 8 9 6 6 5 5 5 5 5 5 6 6 6 6 21 92 65 92 59 ,35 ,90 87 .88 . 17 ,88 .32 . 18 , 16 . 14 .52 98 .64 .36 .74 .74 .71 .93 .79 .34 .61 .72 .32 .73 . 37 .87 . 15 .35 .96 . 13 .86 .52 .46 .49 . 15 . 18 .84 .62 .50 .42 140K 20.83 21 .56 14 .39 1 1 .36 9.97 5.73 5.24 5.21 5.22 3.29 3.00 3.64 3.48 3.46 3.44 268. 14 277.96 251 .OO 221 .84 195.88 172.40 160.71 158.83 159.73 51 . 18 43.47 35.30 34.88 34.25 33.87 7.87 3. 15 9.35 7. 10 6.25 5.98 5.64 5.58 5.61 5.21 5.24 7. 18 6.94 6.82 6.74 DATE : MAY 25, 1985------- H-50 TABLE 1.1».1C CRANKCASE AND EVAPORATIVE HYDROCARBON EMISSIONS FOR LOW ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES (RATES REFLECT ZERO TAMPERING) ** CCEV = (HSK * TPD + DNL)/MPD + CC SHED Hot Soak Emi ss ions (Gm/Trip) Tr i ps* Per Day SHED D i urna 1 Emi ss i ons (Gm/Day) Mi les* Per Day Crankcase Emi ss ions (Gm/Mi le) Total Crankcase and Evap. Emi ssions (Gm/Mi le) Model Years Pre-1968 27.66 6.88 77-8g 36.70 5.70 13.01 1968-198U 27.66 6.88 77.89 36.70 0.0 7.31 1985+ 6.3U 6.88 H.83 36.70 0.0 1.59 * Default information that may be altered by the MOBILE3 user with information about the local area. ft* WHERE : CCEV = Total untampered crankcase £ evaporative HC emissions (Gm/Mile) HSK = Hot soak emissions (Gm/Trip) TPD = Tr i ps per day DNL = Diurnal emissions (Gm/Day) MPD = Miles per day CC = Crankcase emissions (Gm/Mile) DATE : MAY 25, 1985------- H-51 TABLE l.lf.lD TOTAL CRANKCASE AND EVAPORATIVE HC EMISSIONS FOR LOW ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES AT VARIOUS MILEAGE INTERVALS (RATES INCLUDE TAMPERING) Model Years Pre-1968 1968-198!* 1985+ 13 7 1 OK .01 .1.8 • 92 20K 13.01 7.51 1.97 Em! ss UOK 13.01 7.51* 2.03 ion Rate 60K 13.01 7-57 2.08 (Grams /Mile) 80K 100K 13-01 7.60 2.11. 13.01 7.62 2.19 120K 13.01 7-65 2.21. 1UOK 13.01 7.68 2.30 DATE : MAY 25, 1985------- in oo en in Of < o CO UJ o — 3 l/l UJ I- UJ I- O CJ -J i— ¥ < X Z UJ < a > a o w -i a UJ oB a a O LU a. o > 1/1 a ui UJ UJ 1/1 > Z ui UJ •* Q -1 _l 3 O -I Z l/l O O < Z t/i ^ X D I Ul O (- > < l/l > h- 3 < O < UJ K Z I x UJ n in L a a> t. (Q •Q to C 00 0) 01 ID O IT) XCO t. Ol BJ - Q .. oioiwoiaioiOTOioiaioiojoiaioiooioioioi i^(^r~f~r~f>r~r^f~cococooococococococooi OlOlOlOlOlOlOlOlOlaiOlOlOlOlOlOlOlOiOlOl r-t-r-t-.t^r-r-r^t~r~-cocoo3cococoeooococo OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOI in^j-cM'-oi'TCOCMOm'-oin'-coiDi^roooi COCMCMCMCM--'-"-''-'-'-*- — -'-''-'- I0f-r-r~t-t-r~r^r~r~r~cocococooocooocooo O1O1O101O1O1O101O1O)O)O1O1O1O1O1O1O1O1O1 ^•^.r-^^^^-^^T-^^^-^^--^-^--^^-^ n n CM w cs CM (Olor-r-r~i~t~r-r~t~-r»i^cooocococooooDco 01O1O1O)O1O1O1O)O)O1O1O)01O1O1O1O1O1O1O1 n n co CM CM CN CM UJlOOOCMCMCMCMOlCOOOOOlCCMCM'-'-'-O'T ClCOCOnCNCMCMCM'-'-'-'-'-'-'-'-'-'-'- OlCnOlO)O101O101O)01OlOlOlOlOlOlO101O101 nnnpincMCMCMtN iBiDU5u5U5r~r-t-r-r~r-r-r~r^r-coeoooaoco CIOIOIOIOIOJOIOIOIOIOIOIOIOIOIOIOIOIOIO) cN^O)ooOaoir)CMOt~ictCMO)inoir--o^m PlPinnplCMCMCMCMCM'-'-'-'-'-'-'-'-'-'- tovpt^tptotpt^r^r^r^r^r^r^t^r^r^cocococo O1O1O1O1O1O1O1O)O1O1O1O1O1O101O1O1O1O1O1 PldClCincMCMCMCMCMCM ujicifl«)tou5ior~-r~r-i~r-p*t~r-c~t^coooco OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOI CIPlPlCinCICMCNCNOICMCM OIOIOOIOIOOIOIOIOIOIOIOIOIOIOIOIOIOIOI CICOOrOrinWCMCMCMCMCMCM O at > c. T3 oo C Ol 0 01 n r~ >o> L 01 c (0 OIOIOIOIOIOIOIOIOIOIOIOIOIOIOICICTIOIOIOI oocooocococoCTioi<7>oic3)OioioiciO)OOOO cnooioioioiaioioiaicjirooffioiaioooo CDCOCOCOCOCOCOOIOIOIOIOIOIOIOIOIOIQOO cnoioioioioio}O)oiO)oioioioio}Oio)OoO ^-^T-T-^^^-^^^-^^^^-^^-^c^cMCM COOOGOOOOOOOCOCOGlOlOlOlOlOlOlOlOlOlOO OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOO COCOCOCOOOOOOOODCOOlOlOlOlOlOlOlClC'lOli 01O101O1O1O1O1O}O1O1O1O1O1O)O1O1O)01O1< COCOOOOOOOOOCOOOOOOOOIOIOIOIG'IOIOIOICTIO} r~oocoooco(OcccocococoaioioiO)O)CioiO)O) i'-O'J'rofV'-ri5oi'-ooicou3in<»cM'-o)eo ^r~cooococococoa3cocoeooioi(jioioioioioi OlOlOlOlOlO)CTlO)OlOlOlOlOlOlO}OlOlCT)OlCfl [^r^r^cocococoaocoaocoooaooioiOioioioiO] oioio)oioioioioioioioioio)oioioioio)0icn O)oonoioooi^OcocNooa)oot~-u5<=rtN'-aiO1O1O1010101O101O)O101O1O1O1O)O1O1O1O1O) a>o)Oioiconr5racN(NCNinTCnnnpip3CMiN 01 C 0) 0 0) to > t. «) 01 u. 0) in r to •H OJ (. ^_ D in L. u c ui (0 >- 0| > 10 * ai • L. 0) in • 0 *" . a) (1) *- r- 13 - a o ~o « E C I- 0 t- o c o in c - «) a» Q) * > (BOO) in in cam o .a t_ in ai O) an. c 0 o £%? 1°§ •(030 (. (- O U (0 Ol •— 10 a Q > a) o ai 01 01 •- (0 9) ID U) t. L 0) E (0 in E 4) 01 oj — •H V 0 > •— L. in ui n a> 0) c 3 v *- o c (0 flj "*~ TO O}O1O)O1O1O1O1O1O1O1O1O1O)CJ101CDO101O)0) •*••" T5 tJ - ai c c E r OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOI ------- in CO in CM < o CD CM m < UJ D 3 in < I UJ s > O -1 O UJ cc oc O uj U- 3 O co Q. —i LU uj o > z o LU <-l _l _l O z in o < "~i C3 CO CO > LU Q t- > co > 3 < < 01 I I L. (0 TJ IP C CO <£ m o t^. o in xco t- en ra «- CMCMCMCMCMCMCM CMCMCMCMCNCMCMCMCMCM OJCMCMCMCMCNCMCMCMCMCM OICMCMCMCNCNCNCNCNCMCNCM — Trcncotcocnconineoinini'-ootPioco n 8 CM CM 8 CM 8 CM O O O CM 0) o> 2 t_ XJ 0) C. ID T5 oo C O 0) 0) 1— V- nj CJ n- 0 " ^ S- 0) 3 C 1C 01 o> »— in en O) r- •T 0) CD ^ n O) O) CM 0) 0) *•- * * UJ •» > S » * UJ * > Z # » u * > £ * # UJ # > £ # * UJ » > Z * # LU # > £ * # UJ > £ * LU * >- Z * * UJ * > £ * * LU * > £ * # LU > £ * # LU # > £ i0^dOl(3^O>O)ff)O)OOOO lOlOlCDCDCnOOlCT'OOOO *-^--^»--»-^-^-T-cNOJCNCM 888 CM CM CM :S — noocnojcor-coinincM CMCMCMCMCMCN TJ a) I- J3 a 01 01 X i. a in •O C C O Oi •- — in a in o •*• 01 u. HI in Jt 0) 4- 01 I. <^ O) O 01 ^ Q in >i- t. ii m a. ra i c x o a. i. ffl •• V 01 in • > C -^ O _ .^ U 01 +•• ~ •D - J2 0 T3 W E C I- o t- (J C o - 4- ^ in c — 0) 0) 01 -H > 01 U OI — nj 01 01 c L. T3 0) (D ' O > E nj in 0) 01 01 ' a .c > •H -H 01 in in Q) 0) C •H f Q (0 *C *~ o o in -- - in U n - C C E « « 01 I I------- in oo O) in cv < o o 3 W I- UJ I- O < I UJ a > o _l Q UJ Q£ OX O ui CJ u. 3 CM O • V) 0_ ^ _J X UJ UJ O *- > z z UJ 1-H UJ —1 _1 -I O CQ Z t/1 < O < s o UJ O I- >• to > 3 < < UJ X I X £- ra T3 ID C 00 HI O) 10 u in >oo s. m (0 *"• R! 8 t_ 10 T3 00 C O) 0) 01 fl! O i- 01OjOOOO CM CM CM CM co*rini£>r-coc>O'-cMC')'Tinior-cooi0'"-cM OOCOOOOOCOCOOOOlO10}0}O)O101O}OlO)QOO v-T-r*-rT--r-rr~-r-r*-r-i-*--r-(*lcVvl ininininin(DiD(ou>ininininininT'ji'T«T*»- csn^-inu3r-coO)O'-cMn^inicr-.ooo)O'~ OOCOOOCOOOODODCOO)0)O)01O10)O)O)O)OlOO O>0)O)O)O)0)O10)OO)O)O)OO)O)O)CDOlOO O)O7O>O)CDOlO)0)0)0)0)O)O)0)O)O)9)OlO) COOOCOOOOOOOCOOOOOQOO)OlO)0)01CI)CT)0)0)0) r--r~r--u5u5u)ininininininmininin'rTT'!rTT t^r^r^r^f*-ooooooooflocoooooooflooio)o?o)0) r^r^-t^-r^t^t^oooooooooooocococoQOOioo^O) 0) « C (U o I- TJ 01 in • Oiui Hi in r v •H « L «t- 0) O 0) Q in L. II §i C UJ 10 I- §1 » 0) • «- T o ^ ~ 0) T3 •- 5 E C H- O t- U C O ~ in C — OJ OJ OJ •*-• > 41 U O) in in C o fl t. Q) t. C o o — T3 (0 e c — • (0 3 U t- £- O O oi n > Q) O Q) O) O) — (0 HI (0 01 t- t- 01 T3 0) 10 — o > - 01 01 01 »- •H V 01 > — L. in in io 01 OJ C 3 v -H O C o u in ~3 — — 1/1 TJ 13 - Oi c c E r ------- H-55 TABLE 1.4.3 IDLE EMISSION RATES FOR LOW ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES * IER = ZML + (DR » M) Pol HC CO NOx Model Years Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997 + Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997 + Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997 + Zero Mi le Emission Level (Grams/Mi n . ) 2.29 2.29 0.85 0.85 0.85 0. 14 0.43 0.43 0.43 0. 10 0. 10 0. 1O 0. 10 0. 10 0. 10 22. 18 22. 18 6. 15 6. 15 6. 15 6.42 6.42 6.42 0.70 0 34 0. 34 0. 34 0.34 0. 34 0.34 0.04 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.07 0.01 0.01 0.01 0.01 0.01 0.01 Deter iorat ion Rate (Gm/M1n/10K Mi ) 0.04 0.04 O.O4 O.O2 O.O2 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.53 0.53 0.28 0.27 0.27 0.28 0.28 0.28 0.14 0. 18 0. 18 0. 18 0. 18 0. 18 0. 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 WHERE DATE IER ZML DR M MAY 25, 1985 Idle emission rate Zero mile 1evel Deterioration Rate Cumulative Mileage / 10,000------- H-56 TABLE I.**.1» REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR LOW ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES Model Year Index** 1 2 3 4 5 6 7 8 9 10 11 12 13 lit 15 16 17 18 19 20+ July 1 Mi leage Jan 1 Jan 1 Mi leage JU. J , ... -,_ Registration Accumulation Registration Accumulation u:« BatP Mix* 0.079 0.136 0.116 0.099 0.085 0.072 0.062 0.053 0.045 0.038 0.033 0.028 0.024 0.020 0.018 0.015 0.013 0.011 0.009 0.01*5 Rate _veh i c1e* 19967- 18077- 16365. 14815- Mix 12143. 10993. 9952. 9010. 8156. 7384. 6685- 6052. 1*960. 41*90. 4065. 3680. 3332. 3016. 0.0 0.136 0.116 0.099 0.085 0.072 0.062 0.053 0.01+5 0.038 0.033 0.028 0.024 0.020 0.018 0.015 0.013 0.011 0.009 0.01*5 Rate (fleet) 0. 19967. 18077. 16365- 11*815. W3. 12143. 10993- 9952. 9010. 8156. 7384. 6685. 6052. 5^79. 4960. 4490. 4065. 3680. 3332. Jan 1 Mi leage Accumulation (fleet) 0. 9983- 29005- 46226. 61816. 75930. 88708. 100276. 110749. 120230. 128813. 136583. 143617- 149985. 155751. 160970. 165695. 169973. 173845. 177351. * Default information that may be altered by the MOBILE3 user with information about the local area. ** The indices refer to the most recent model year vehicles in any given calendar year. Index 1 references the newest model year vehicles and index 20+ references the oldest model year vehicles. DATE : MAY 25, 1985------- H-57 TABLE 1.4.5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR LOW ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES JANUARY 1, 1988 (A) (B) Model HDGV Fleet Sales Years Regi stration Fraction 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 1974 1973 1972 1971 1970 1969- 0.0 0.136 0.116 0.099 0.085 0.072 0.062 0.053 0.045 0.038 0-033 0.028 0.024 0.020 0.018 0.015 0.013 0.011 0.009 0.01*5 1.000 1.000 1 .000 1.000 1.000 1.000 1 .000 1.000 1 .000 1.000 1.000 1.000 1.000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 DAF: 0.0 0.136 0.116 0.099 0.085 0.072 0.062 0.053 0.01*5 0.038 0.033 0.028 0.024 0.020 0.018 0.015 0.013 0.011 0.009 0.01+5 0.921 (C=A*B/DAF) (D) HDGV Annual Mileage Reg i strat ion Accrual Rate (C*D/TFNORM) Travel (C*D) Fractions 0.0 0.148 0.126 0.107 0.092 0.078 0.067 0.057 0.049 0.041 0.036 0.030 0.026 0.022 0.020 0.016 0.011* 0.012 0.010 0.01*9 0. 19967. 18077- 16365. 14815- 13413. 12143. 10993- 9952. 9010. 8156. 7384. 6685, 6052, 5479, 1*960, 1*1*90, 4065. 3680. 3332, 0.0 2945.2 2274.3 1757-2 1365.8 1047.4 816. 631, 485, 371-3 291.9 224.2 174.0 131.3 107.0 80.7 63-3 48.5 35-9 162.6 0.0 0.226 0.175 135 ,105 0, 0, 0.080 0.063 0.049 0.037 0.029 0.022 0.017 0.013 0.010 0.008 0.006 0.005 0.004 0.003 0.012 TFNORM: 13015-0 WHERE A B D 0(1) • D (MY I) •• January 1 registration mix from Table 1.4.1*. Fleet sales fractions Sales weighted fleet mileage accumulation rate from Table 1.4.4, adjusted to January 1 Annual Miles(1) .25* (Annual Miles(MYI)) + .75* (Annual Miles (MY I - 1)) , MY I=2 20+ DATE : MAY 25, 1985------- H-58 TABLE l.lt.6 SPEED CORRECTION FACTOR COEFFICIENTS FOR LOW ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES * SCF (s) = EXP(A + B*s + C*s2) , HC & CO A + B*s + C*sJ , NOx Pol HC CO NOx Model Years Al 1 All All Coef f icients A B 1 1 0 .60800 .52000 .82UOO -0 -0 0 .09700 .09800 .00880 0 0 0 C .00083 .00110 .0 * WHERE: s - average speed (mph) DATE : MAY 25, 1985------- H-59 TABLE 1.1*.7 TEMPERATURE CORRECTION FACTOR COEFFICIENTS FOR LOW ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES * TCF = EXP( TC A (T - 75-0)) Pol HC CO NOx Model Years Pre-1970 1970-1973 1974-1978 1979-1983 1984 1985+ Pre-1970 1970-1973 1974-1978 1979-1983 1984 1985+ Pre-1970 1970-1973 1974-1978 1979-1983 1984 1985+ TC Low -0.58903E-02 -0.73870E-02 -0.49759E-02 -0.28549E-02 -0.74107E-02 -0.92859E-02 -0.20576E-02 -0.45541E-02 -0.42899E-02 -0.13085E-02 -0.77H7E-02 -0.60195E-02 -0.64315E-02 -0.55456E-02 -0.139&9E-02 -0.46352E-03 -0.57524E-02 -0. 19733E-02 TC High 13458E-02 52317E-02 54651E-02 10082E-01 0.20546E-01 0.84842E-02 0.81720E-02 0.20268E-01 0.24127E-01 0.22061E-01 0.27019E-01 0.71457E-02 83986E-02 86880E-02 18079E-01 74889E-02 0.21593E-01 0.29584E-01 >v WHERE : TCF = T TC 75-0 Temperature correction factor for appropriate pollutant, ambient temperature, and model year Ambient temperature (Fahrenheit) Temperature correction factor coefficient for appropriate pollutant, reference temperature, and model year Reference temperature DATE : MAY 25, 1985------- H-60 TABLE 1.5.1 EXHAUST EMISSION RATES FOR LOW ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES (RATES REFLECT ZERO TAMPERING) * BER = ZML + (DR * M) Pol HC CO NOx Model Years Pre-1975 1975-1976 1977 1978 1979 1980-1- Pre-1975 1975-1976 1977 1978 1979 1980+ Pre-1975 1975-1976 1977 1978 1979 1980 1981-1981* 1985+ Zero Mi le Emission Level (Grams/Mi le) 1.31 0.1*2 0.1+2 0.1*2 0.42 0.29 2-71 1.17 1.17 1.17 1.17 1.15 .1*6 .1*0 .1+0 .1+0 .1*0 .1*0 1.31 0.87 Deter ioration Rate (Gm/Mi/lOK Mi) 0.08 0.07 0.07 0.07 0.07 0.03 0.13 0.09 0.09 0.09 0.09 o.oi* o.oi* o.oi* o.oi* o.oi* o.oi* o.oi* 0.03 0.03 50,000 Mile Emission Level (Grams/Mi le) 1.71 0.77 0.77 0.77 0.77 0.1*1* 3-36 1.62 1.62 1.62 1.62 1.35 1.66 1 .60 1.60 1.60 1.60 1.60 1.1*6 1 .02 * WHERE : BER » Basic emission rate (untampered) ZML - Zero mile level DR • Deterioration rate M • Cumulative mileage / 10,000 DATE : MAY 25, 1985------- in oo 0) in a o 3 ui O > UJ O IX < u. uj CM to in _i a UJ -I *• > -i < LU LU K LU _J l/> O _l UJ I- oo z ~ < O Q t- "-> i/) > Z Q co O 3 «-> < -I X so CD cn ox - *- ID TJ CO C CO CD cn CO u in >oo (. cn ra »- 10 ocncncncjicncnoicncocncnocncncjicncjicyjo) CNCMCNCNM oooooooooo CNCNCNCNCNCN OOOOOOOOO CN CN CN CN CN CN CN oooooooo CNCNCNCNCNCNCNCN — — — — OOOOOOOO 10 T3 00 c cn 01 CO CNCNCNCNCNCNCNCNCN- — — OOOOOOOO *- r- t_ 01 -------,-------- — -, UJ CMCMCNCNCNCNCNOICNCN — — OOOOOOOO CNCNCNCNCNCNCNCNCNCNCN—OOOOOOOO oooooooooooooooooooo cooococooococnocncncncncncncocnOooo cnoicncncncocno)0)0)cno)ocno)cnOooO — — — — — — — — — —— — — — — — CMCNCNCN OOOOOOOOOOOOOOOOOOOO nvintor-ooenO'-CNcn^-inusr-cocno-'-cN cooococococococncncncncncno)O)cncnooo o)cncncDcncncna)a)0)0)0)cno)cno)CDOOO OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOO O — cNr>«Tin0)CnO)0)CI)0)0)0) - O 0 O 0 O O O O O O O O O O O O O O O r^cooocococoaococooococnocncncncncTicDcn CNCNCNCNCNCNCNCNCNCNCNCNOOOOOOOO CNCNCNCNCNCNOlCXCNOICNCN'-OOOOOOO cnocncncnocTicnoicncncncncncncncncTicncn CNCNCNCNCNCNCMCNCNCNCNCN'- — OOOOOO ^OOOOOOOOOOOOOOOOOO t^-t-cocDcococococococococnaicncncncocncn ---OOOOOOOOOOOOOOOOO r^r^r^cocccooooococococooocncjiCDOcncoo) '-'--'-OOOOOOOOOOOOOOOO 01 in Oi - jc t) I- 01 > — i. at 3 C. 10 K t. •3 (0 o a. z +- » o >• cc j: < cn a c. c (0 •• — ai in T3 - ••- O tJ O [_ O C"5 O • • <4- +> t^ rt ooooooooooooooo r^f^r^r^r^cocococoGOcooococococncjjcncncn oooooooooooooo • CO C_ L CD > 0) 01 — (0 $« o > E CO in 10 01 CD -It. 3 > 3 o a 10 O «- o s« c CD — O i. • — in 10 io — 01 -H e CD « 0) - E I i i i > uj Z * * * ------- in oo O) in CM O a -i u O > o o: uj o a. CQ U. UJ CM S t/1 O in —IQ. UJ UJ UJ —I I/I _l UJ CQ Z t-i < o o I- >-> l/> > (/! t- (/> UJ < -I X L. 10 tJ tfl C 00 0) O) ffl o 3 <0 CM U) r-r-r-t~t-t^r~[-cococococooooocococoaioi o)oioioio)oioio)O)oioiaioioiaioioio)oiO1O1CD01O1O1O101 t^(ou3in^rnr5CM'-'-oo5co'5''rnncMCMCM TrTTT^T^riTCMCMCN'-^'-'-'-'-'-'-'- L (0 T3 ra C Ol 0 Ol 10 CJ TT^T'T^r^r'T'TTCMCM ifllou)Or-r-t~t~r-r-p^r~r-t~aooocococooo 3 (0 TTfl-'q-'T^-'iTTT^q-TJ'n U)tfiou3U)iDiot--r-t~r~t~i^i~r-t^-(~coooeo 0)O105O5010501O5O1O1010501O1O10101O1O1O1 TnTTTTTtTTCldn iDU3iDmiDiou3tOf-r*-r~^t-r-t-rvt-t-ooco nti'r'r'r't'r'r'TC'incon cooacooaooooaioioicicioiaicnoiaioooo O1O1O1O1O1O1O105O105O1O101O5O105OOOO Oi)0)O)0)O) inf--t^t~r-(^u5iDicinininTiTTrP5rjcMCMCM OJ"-»-»-»-T-T- !*-oocococccocoaooococoo'i05OiO)OioioiOi O5O101ClOlO)01O5O105O5O101OlOlCnOlO50505 r^r^t^cocooocococococoooxcDOiojoioioiO 0101010101050101010501010101010101010101 r^r^r^r^r^oooococococococooocooioicnoioi Ill — s. 0) 10 • > 3 t- (0 C 10 C. 10 X I- 0) (. z r 10 > -H •o c «- c 000 O ID 0) CO<0 oi CM ja ~ . o> Olu. t_ .C 0 in <-> 0 C £- 0 O 0 in O in ^ in E > U) £ • 0) (Q «r^ O T3 O L y n o • • . *• *• f~ T in CM • — 0 in Q) •*•• "D > C •— 0 in • — C <0 T3 J3 O X3 0 (0 s ~- a oicrec 0 *• w •a c O) : 0 - . +* v> ~ Z t. 3 > 3 O Ol S« C 01 •- O T CM CM CM CM CM r-t^t~-r~r-t^cooocococoeooooooooo050lO)Oi oo C C t- to 0) — « « s. • o > in a W *- E m ra o — •HO in to c O T3 Q) - - 01 in 0 (0 in u 0 0 0 •H +* ui in Q) 0) • UJ Z * » » ------- m « 01 in CN UJ H- Q U CN OB UJ § K 10 1-4 UJ t— -J -I O < 1-1 ,£ o > _J Q or ui O or u. uj i/l O _l O. X UJ O > _i Z UJ UJ -j 10 UJ Z « O Q oo K- S 0 t- I ui O D « (•> (0 re 01 t_ (0 T3 U>; C CD' a) cn IB o in >t- cn 3 re -3 O O O O O i CN CN CN CM CN O O O r^i^f^t^r-r-r^r-r-r-cococococoaococococo 010)0101010101010101010101010101010)010) CN CN CN CN CN CN o o o oio)oio)0)oi0)O)CD0)o0)0io)O)0)o)0)oi0) — OOOOO0)cooocoooi~r-inin>t*tcn~ 01 CMCNCNCNCNCN--'- — — — •'-•-••-'-'---OOO CN CN CN M CN CN O O CN CN CN CN CN CN • U3l0if)i0r~r~r^r^-i^r*-ri-t'^f~r-cocococococo CN CN CN CM CM CN • CN CN CN CM CN CN u>iBujiDiDU>r-r~r-r-r~r-r-r-r-r»cocococo CN CN CN CN CN CM CN CN CN CM CN CN ictoccojiotoujujf^t^r^r^r^f^r^f^f^r^oooo i. « T3 CD C 01 0) O) (0 U O -r- >01 (- Ol ID •r- C (0 -3 O O O O O O cocooococococooioioicncncnoicnoioiQOO oioioioicnoioioioicoo)0io)0)oioioiooo oococoo3cooococooioioioioioio)oio>cn oioioio)OioicDoioicj3oioio)cncncnoiO) o o o oococococacoaoaOQOOloiO)OioiO)0>o>ooi 01CJlOlOlOlOlOlOlOlO501CD01CnoiO1010)O) • o o o COCOCOCOCOCOOOCOCOCOO)0)01010)Cnol01O)CT> oioioioioioicnoioioicnoicnoioicnoioicnoi i-~cacooococococococoo3OiO)Oioioioioi0icn o o o >>COCOOOCOa)COCOCOCOCOO)01O101O10105Ol cncioienoiciaioicncicnoioiciioioicioioioi OOOOir^r^r-iocNCN'- — ••-••-OOOOIOIOI CMCNCN'-'^'-'-'-'-'-^'-'-'-'-'-'-OOO oioioioioicncncnoioicjioioicncnoicnoioioi CNCNCN'--^'-»-*-^'-'-'-'-'-'-*--^OOO ^•r^r^t^cococoooGOcocococococnoioioicncn CM CN CN o o o • o o o r*r^p^r*-f*-p*cocooooococoooco — _ -- -- _. _. 0)oio)cnoio)oioioioicT)oio)c7)cncnc7)0)aici co CD 01 01 01 01 in Q) *• r* ^ •— L 01 (0 «.££ re>. c «- c 01 O O (j to ft) Oiu- L (D O in £ 0) in •H 01 C t- 0 a in in E i. » ID a 3 Z • C UJ v ID 1- t C I in o a. Z -H S10." < 01 ID L "" C 0) in O z 'oj +- •D — M. i?° O S« J. O CO o • • in CN • — 0) in 0) -H "D • > C «- oi u ra — ^ a in - — C IB 13 J3 0 J3 0> ID — N I— £ 0-1-0) <*- in > E \ in • (0 L. L a oi 01 > « O) 01 L. 0 > -D C 0) -^ at re K CD - z u 3 > 3 O 01 ID O e c f CD — E ------- Pol HC CO NOx H-64 TABLE 1.5-3 IDLE EMISSION RATES FOR LOW ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES * IER * ZML + (DR * M) Model Years Pre-1975 1975-1976 1977 1978 1979 1980+ Pre-1975 1975-1976 1977 1978 1979 1980+ Pre-1975 1975-1976 1977 1978 1979 1980 1981-1981* 1985+ IER ZML DR M Zero Mi le Emission Level (Grams/Kin.) 0.14 0.03 0.04 0.06 0.05 0.03 0.23 0.14 0.16 0.17 0.18 0.15 0.13 0.22 0.17 0.20 0.18 0.19 0.14 0.09 * Idle emi ssion Deter ioration Rate (Gm/Min/lOK Mi) 0.01 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.01 0.01 0.01 0.01 0.0 0.0 0.01 0.01 0.01 0.01 0.01 0.01 rate = Zero mile level * Deter iorat ion • Cumul at i ve Mi 1 Rate eage / 10,000 * WHERE DATE : MAY 25, 1985------- H-65 TABLE 1.5-1* REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR LOW ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES Jan 1 Model July 1 Mileage Jan 1 Mileage Year Registration Accumulation Registration Accumulation Index** Mix* Rate Mix Rate per vehicle* (fleet) 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ 0.077 0.071 0.065 0.059 0.053 0.047 0.041 0.035 0.029 0.023 0.017 0.011 0.008 0.006 0.008 9619. 9082. 8575- 8096. 761*5. 7218. 6815- 6^35. 6076. 5737. 5416. 5114. 4829- 4559- 4305- 0.077 0.071 .065 .059 0. 0. 0.053 0.047 0.041 0.035 0.029 0.023 0.017 0.01 1 0.008 0.006 0.008 10045, 9485, 8955. 8455, 7983. 7538, 7117. 6720, 6345. 5991- 5340. 5043. 4761. 4495, Jan 1 Mi 1eage Accumulat i on (fleet) 1 2 3 4 5 0.080 0.101 0.095 0.089 0.083 12818. 12102. 11427- 10789. 10187- 0.027 0.101 0.095 0.089 0.083 12818. 12639. 11933. 11267. 10638. 1602. 9591. 21873. 33470. 44420. 54758. 64520. 73738. 82440. 90657. 98415. 105740. 112657- 119187. 125354. 131176. 136673- 141863. 146763. 151390. * Default information that may be altered by the MOBILE3 user with information about the local area. ** The indices refer to the most recent model year vehicles in any given calendar year. Index 1 references the newest model year vehicles and index 20+ references the oldest model year vehicles. DATE : MAY 25, 1985------- H-66 TABLE 1.5-5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR LOW ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES JANUARY 1, 1988 (A) (B) .Model LDV Fleet Sales Years Regi stration Fraction (C-A*B/DAF) (D) LDDV Annual Mileage Regi strat ion Accrual Rate (C*D/TFNORM) Travel (C*D) Fractions 1988 198? 1986 1985 1984 0.027 0.101 0.095 0.089 0.083 0.090 0.080 0.073 0.066 0.060 0.002 0.008 0.007 0.006 0.005 0.055 0.184 0.158 0.131* O.lU 12818. 12639. 11933. 11267. 10638. 701.6 2328.9 1887.3 1509.1* 1208.2 0.065 0.2U 0.171* 0.139 0.111 1983 1982 1981 1980 1979 1978 1977 1976 1975 1973 1972 1971 1970 1969- 0.077 0.071 0.065 0.059 0.053 0.01*7 O.OUl 0.035 0.029 0.023 0.017 0.011 0.008 0.006 0.008 0.053 0.046 0.061 0.034 0.028 0.0 0.0 0.0 0.0 0.0 0.004 0.003 0.004 0.002 0.001 0.0 0.0 0.0 0.0 0.0 DAF: 0.044 0.093 0.074 0.090 0.046 0.034 0.009 0.004 0.003 0.003 0.0 0.000 0.000 0.000 0.000 0.0 0.010 0.004 0.002 0.002 0.0 0.0 0.0 0.0 0.0 0.0 10045. 9*85- 8955- 8455- 7983. 7538. 7117- 6720. 6345- 5991. 5657. 5.3*0. 5043. 4761. 4495. 93*.9 706.4 809.8 386.8 270.2 72.7 26.6 16.1 12.6 0.0 0.0 0.0 0.0 0.0 0.0 0.086 0.065 0.074 0.036 0.025 0.007 0.002 0.001 0.001 0.0 0.0 0.0 0.0 0.0 0.0 TFNORM: 10871-3 WHERE : A - January 1 registration mix from Table 1.5.4. B - Fleet sales fractions D - Sales weighted fleet mileage accumulation rate from Table 1.5-4, adjusted to January 1 D(l) - Annual Mi les (1) D(MYI)- .25*(Annual Miles(MYI)) + .75* (Annual Mi les (MY I - 1)) , MYI*2,... ,20+ NOTE : In general, the travel weighting fractions will change for every calendar year since the sales fraction (column B) changes for almost every model year. DATE : MAY 25, 1985------- H-67 TABLE 1.5.6 SPEED CORRECTION FACTOR COEFFICIENTS FOR LOW ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES * SCF(s.sadj) = SF(s)/SF (sadj) SF (s)= EXP(A + B*s + C*s2) Pol HC CO NOx Model Years Al 1 All All Coef f ic i ents A B 0 1 0 .90900 •37520 .66800 -0 -0 -0 .05500 .08800 .04800 0 0 0 c .00044 .00091 .00071 * WHERE : s = average speed (mph) sadj » basic test procedure speed; adjusted for fraction of cold start operation x and fraction of hot start operation w, [ 1/sadj - (w+x)/26 + (l-w-x)/l6 ] DATE : MAY 25, 1985------- H-68 TABLE 1.5-7 NORMALIZED BAG FRACTIONS FOR LOW ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES Normalized Fractions Pol HC CO NOx Model Years Pre-1975 1975-1976 1977 1978 1979 1980+ Pre-1975 1975-1976 1977 1978 1979 1980+ Pre-1975 1975-1976 1977 1978 1979 1980 1981-1982 1983+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 Test Bl .209 .209 .209 .209 .209 .3^5 .199 .199 .199 .199 .199 .157 .068 .068 .068 .068 .068 .969 .969 .969 Seg.#l Dl 0.071 0.105 0.105 0.105 0.105 0.103 0.060 0.067 0.067 0.067 0.067 0.061 0.026 0.031 0.031 0.031 0.031 0.031 0.031 0.031 Test B2 1.073 1.073 1.073 1.073 1.073 0.966 0.935 0.935 0.935 0.935 0.935 1 .000 0.981 0.981 0.981 0.981 0.981 1 .062 1.062 1 .062 Seg.#2 02 0.056 0.081* 0.081* 0.08A 0.081* 0.138 0.01*2 0.01*8 0.01*8 0.01*8 0.01*8 0.026 0.029 0.033 0.033 0.033 0.033 0.01*7 0.047 0.01*7 Test B3 0.703 0.703 0.703 0.703 0.703 0.793 0.97** 0.97^ 0.971* 0.971* 0.971* 0.90U 0.985 0.985 0.985 0.985 0.985 0.906 0.906 0.906 Seg.#3 D3 0.061* 0.088 0.088 0.088 0.088 0.103 0.051 0.057 0.057 0.057 0.057 0.035 0.026 0.030 0.030 0.030 0.030 0.031 0.031 0.031 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Tota BO .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 1 Test DO 0.061 0.098 0.098 0.098 0.098 0.138 0.01*8 0.051* 0.051* 0.05lt 0.05^ 0.035 0.028 0.032 0.032 0.032 0.032 0.039 0.039 0.039 NOTE : The fractions given in this table are used in the calculation of the operating-mode/ temperature correction factor (OMTCF). WHERE : OMTCF =• ((TERM! + TERM2 + TERM3) /DENOM) TERM1 - W *TCF (1)*(B1+D1*M) TERM2 - (1-W-X)*TCF (2) * (B2+D2*M) TERM3 - X *TCF (3) * (B3+D3*M) DENOM - BO + DO*M W - Fraction of VMT in the cold start X - Fraction of VMT in the hot start TCF (b) = Temperature correction factor for year; for test segment b M • Cumulative mileage / 10,000 mode mode pollutant, model DATE : MAY 25, 1985------- H-69 TABLE 1.6.1 EXHAUST EMISSION RATES FOR LOW ALTITUDE LIGHT DUTY DIESEL POWERED TRUCKS (RATES REFLECT ZERO TAMPERING) * BER = ZML + (DR * M) Zero Mile Deterioration Model Emission Level Rate Pol Years _(Grams/Mi 1 e) (Gm/Mi/lOK Mi) HC Pre-1978 1978-1980 1981 + CO Pre-1978 1978-1980 1981 + NOx Pre-1978 1978-1980 1981-1986 1987+ * WHERE : BER = Basic ZML = Zero DR = Deter M = Cumul 0.86 0.86 0.1*3 1.97 1.97 1.33 1.83 1.83 l.i»8 0.94 emission rate mile 1 evel ioration rate at i ve mil eage / 0.08 0.08 0.0^4 0. 10 0.10 O.OU 0.08 0.08 0.03 0.03 (untampered) 10,000 50,000 Mi le Emission Level (Grams/Mi 1 e) 1.26 1.26 0.63 2.^7 2.W 1-53 2.23 2.23 1.63 1.09 DATE : MAY 25, 1985------- in to 0) UJ K < < CN 03 HH I/) H X -I CJ UJ a a O UJ U. 3 O CJ to a I _ > uj < UJ (/I (- _J UJ O « i- 2O a tn D « a I X o I- I r L. ra "O IB c co 0) en ra CJ >co (. a> ra -- CNCMCNCNCNCNCNCN'-OOOOOOOOOOO CNCNCNCNCNCNCNCN'-'-OOOOOOOOOO CNCNCNCNCNCNCNCN'-'-'-OOOOOOOOO CNCNCNCNCNCNCNCN'-'-'-'-OOOOOOOO CNCNCNCNCNCNCNCN OOOOOOO CNCNCNCNCNCNCNCN- OOOOOO oiocDcncncjicncnoicncncncncnoioioicnoicT) CNCNCNCNCNCNCNCN OOOO CNCNCNCNCNCNCNCN OOO CNCNCNCNCNCNCNCN L. ra 0 i. cu T3 CO c en ffl en nj CJ I- >0) t- 0) c nj -3 ooooooooooo ooooooooooo >-cocococococoooeTienencnoicnencnenci o^cjicncncncncncncncnoicncncncncncn T- — *-oOOOenencncocor^r~iD "-^"-••----^oodooooo 8O O I CN CN in TT O O OOOOOOOOOOO neo-»-'-'~ooooo>c7icnoocot^c^cflmLn^j' tNCN-- — '--'-"- — ---OOOOOOOOOOO cricocN'--^oOOOcncncncooof~r-iBininT CN CN CN •- •- — — '-'-OOOOOOOOOOO cocno —O''-cNCO'3-ir>ict- r-r~-oococccocococooocococna>cna>cncncnCT> CN Ol CN CN OOOOOOOOOOO nncNoj'-ooOOOcncnoooot^r-iDinm'T • • • • • • • ...... • • • CNCNCNCNCN*-'- — »-OOOOOOOOOOO U)r~-oocnO'-oin^-mior~cOO)O'-cNrOTrin CNOICNCNCNCN — '-'-OOOOOOOOOOO 0) •*• JT T3 f- L 0) «S • > 3 i. a c n) c. 10 0) *• -D x I- 0) i. S £ 10 > «•• TJ C t- C 0) 0 O 0 (0 01 Olu, £_ (0 HI Ul J^ 0) Ul •* V C i. O in £ - L. C I 10 o a. o >• z * ffl (0 £. C to •• — O £ ffl .H TJ - M- i?° o ss e o co o • • in CN • — 01 1C 01 •* T3 ffl U 10 — .- si in • — C (0 T3 JO O J2 ffl (0 — c ncncNCN-- — ooocncncn inin tiniBr-coenO'-cNO r^f^r^r^r^r^aocoGOoococooococooocnocDen neo •- T3 C O) E 0> — ^ -H in • <0 3 > 3 t. L O Ol ffl Ol~ n. - ffl to O **- > ffl O 01 s? c — « 01 *- o ffl L. i. • - — - 3 £ r > t! 3 +* +* ffl W O - v O in in in 10 ffl 0) c •H -H O t) 0) 10 10 ••- ^- OJ o o in o ffl •O T3 - - C C E C - ------- in co in CM LU Q K l-H H * _l CJ < 3 a. cn or o LU CO u. 3 CN O C/l Q. CD —J LU _J O *- > LU O LU in LU _l LU CD Z Q < O W I- "-< Q LU I— I- O 01 -C 3 _l i. CO •o u> C CO u cn re o un >co i- cn cc •>- 3 CO •3 i--t^r^r»t^f~r~!-cocococooocococococoo)Co p-i~-t--t^r~t~-r-r^t~-cococococococococococn nnconconconcococo ronnnronDnnnnn cncncncocncocncncncncncncncncnoiciicncncn ococorooconnconorocN' cnoicncnccocncococnococ^cncocncocococo concoronncncoconconcNCN mcnnnconcononcnncNcNCM cocncoocncocooicrjcococncocncncncncncncii nnnnnocDC'JC'ionooicNCNcN"- — --'- cooicooicooicncococococnoicococncncncnd coi^r-iDinLnLOTOcN'-ocncor-tO'Tin'Tr') nmnnnonconc'icDC'icNCNCNCNCM — *- — iou)tcicu)mi^t^t^r-r-r--t--r-t~p-cocococo cororoncoroc^ncoococDCNcNCNCNCNCN1'--'- nnonnnnnnmnncNCNCNcNCNCNCN-f coiOiDCBCfiiciccoh-f-i^r^r^r^r^r-r-p-coco O) cn cn E. re CD > £. re •o co c cn 0) 01 CO >cn c cn cooocococococnoicncncncncnOTOioioooo ^-•^-•^•^->--r--^-r--r-i-t-T-^^^i-CNCNCNCN eocococooococooicncocnoicncncncncnooo CN CN CN CM CM CN CN CN CN CM CN CN cocococococococococncncncncncncncno)cn cncncncncncncncno^cncncncncncncncncncn H CN CN CN CN CN cococococococococococncncncncncncncncncn cocococncncncncocncncncncncncocncncncoo) coi~OOOOcnoicncococof~t~cBcoininin OmCNCMCNCN*-'-'-'--'--'-*-"--'-*-*-"-'-*- jiO--cNnfLncflr-cocnO'-cNr)<3-LOcci~-co Ncococococococococococnoioioicnoioicncn ^r-~cocococoxcocooocococncncocncncncnco cncococbcn'coococ'icocococncncncococncnco coP-r--ccoocnoicncococot^r~iDiCLOLnrrn nrjnncMCN'-^'-'-'-'-'-^'-'-'-'-'-'- t^r~r~coxcococococoxcococnc'icno)cncncn cococncnoicncooooicooicocncooicncncncn n D co n co CN t--r~r-t^cococococococococacocncndcncnCf> cot~r-iotOLOcnoicncococoi^t*-iiiiBinin'rn nc')cT)ronn*~'^'~T~'^'"*-'-'~'~'--^'~'- ai — C. T3 ia c t- «J i. S £ re > +-1 13 C x- C ID O O CO S? tl U U) CD > •^ . 01 re 0) cn c.in •H ttl C t. O H- D •'- Q cn "~ LO E C- II ro a c LU *• re i- i. •3 re C I cn °l^ = O > to r Z • » cn o i. C o s C os« o r> in CN • CD U> •H 13 u re — 41 in • — fff T1 O fl CU CO CD - r — c O +-• 01 i*- in > co i- t. co O) CD > OJ O) — re - T3 C O) E CD ~*~ \ +- cn in (o ^ CD 3 > 3 O O) .— 14- -r- re o *• u s« c o; «- o p) cn n ro co D n ^^-^^^^^-.,— _ ."5 0) CD CD <-> E • -H -H CD CO O r-^-^^^^ — ^ — ^»- — *- O cn in cn re ID CD c <-• *-• 0 T3 CD f~t~t~r~^t~-coxcocococococofflcooioicnoi uoinoco ^T-^^-^--T-^»-»---^^^-^^^- "D-O- - C C E C -------- in oo 0) in CM < a o CM _J < Q w (/) I- * -1 O -i o UJ a a O UJ u. 3 O w o. _i X uj _i O > ui Z UJ 1/1 — 1 UJ 11 z o o « > to i- 1/1 3 •" Q UJ h- K U l/l M CM t I c ca 01 en in >co i. 0) (8 '- 18 O O a> ' •r-' - O O O en • ^ - 6 C-JC-JCMCN-- — oocncocor^UJininoi'-cncn £_ 18 13 CO c en oi en 18 o i- en 18 *- c (8 -3 CM CM CM CM e"3Trinccr-cocnO't-eMc'5«rinmfcocfiQ'-cM cocococoooQOcoo)O)o)cno)cncncncno) cnocncDCT)cno)cncr)O)cncncncncncncn CM CM CM CM CM CM cocococococococococno}CDOO)cncno)0)O) CO CM CM CM CM CM P3 n CM CM CM CM r**xcococooocccocooococDO)a)(7)Oiocyicncnc>cncn C-JCJC^C-JCMCN r~coa)O-— cMm'srinior-coOTO'-cNC'jrrinip t^t^f--cooocococococococooo0)C7)C3icno)Oioi O C5 D Cn O CM r-r~t^r-ooooooo3cooocxjoococoaiO)CT)O)cn(j) nmcMCM'- — a)cncncncococMcNCM"-*-OOoi c*incococr)cT7'-'-»--'--'-»-*-*-'--'-*-i«-i'-o 01 01 — r t) i- 01 >> •- L. 01 18 • > 3 i. (8 C IB t. IB 01 V -3 t- Z £ «>•!-• c «- c 01 O O IB S« D O 10 01 • in > .- . 01 01U. L. 18 Oi in jz 0) in •H 01 C t- 0 in E t_ it• to .c > en to L "~ c as .. -^ ai » o z •a - M- o -a o (. O CO o • — tiniot^tomo--cNp>«rinu>f-coo)O — CN r~r^r~r^r«r^i^oocococooooooocooocoO)0)0) o oi *- — 13 E 01 V) 18 • 18 3 t. £- U IB O) — III 18 > 0) O OI — 18 0" 0) £- L O > 0) 0) 0) v -M 01 in 1/1 01 01 C •H -H 0 <8 18 - o o in — — in T3 T3 •- C C E M 1-1 Q) I I V UJ I* * * C 01 I/) t- 01 > 3 Ol - E ------- Pol HC CO NOx * WHERE H-73 TABLE 1.6.3 IDLE EMISSION RATES FOR LOW ALTITUDE LIGHT DUTY DIESEL POWERED TRUCKS * IER = ZML + (DR * M) Model Years Pre-1978 1978-1980 1981 + Pre-1978 1978-1980 1981 + Pre-1978 1978-1980 1981-1986 1987+ IER ZML OR M Zero Mile Emission Level (Grams/Mi n.) 0.08 0.10 0.07 0.30 0.31 0.31 0.19 0.32 0.31* 0.13 = Idle emission Deter iorat ion Rate (Gm/Min/lOK Mi) 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 rate = Zero mile 1 evel = Deterioration = Cumulative Mi Rate leage / 10,000 DATE : MAY 25, 1985------- H-74 TABLE 1.6.4 REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR LOW ALTITUDE LIGHT DUTY DIESEL POWERED TRUCKS Jan 1 Model July 1 Mileage Jan 1 Mileage Year Registration Accumulation Registration Accumulation Index** Mix* Rate Mix Rate per truck * (fleet) Jan 1 Mi leage Accumulat ion (fleet) 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20+ 0.067 0.085 0.081 0.077 0.073 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 17552. 16262. 15068. 13961. 12936. 11986. 11105. 10290. 9534. 8833. 8185. 7583- 7026. 6510. 6032. 5589. 5179- 4798. 4446. 4119. 0.022 0.085 0.081 0.077 0.073 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 17552. 17229. 15963- 14791 . 13705. 12698. 11766. 10901 . 10101. 9359. 8671. 8034. 7444. 6897. 6390. 5921. 5486. 5084. 4710. 4364. 2194. 13124. 29711. 45080. 59321. 72515. 84741. 96068. 106564. 116288. 125298. 133646. 141381. 148548. 155188. 161340. 167041. 172323. 177217. 181752. * Default information that may be altered by the MOBILE3 user with information about the local area. The indices refer to the most recent model year vehicles in any given the newest model year the oldest model year DATE : MAY 25, 1985 calendar year. Index 1 references vehicles and index 20+ references vehi cles.------- H-75 TABLE 1.6.5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR LOW ALTITUDE LIGHT DUTY DIESEL POWERED TRUCKS JANUARY 1, 1988 (A) (B) Model LDT1 Fleet Sales Years Regi stration Fraction 1988 198? 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 1973 1972 1971 1970 1969- 0.022 0.085 0.081 0.077 0.073 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 0.240 0.210 180 160 130 0. 0. 0. 0.100 0.080 0.060 0.034 0.028 0.009 0.005 0.003 0.002 0.0 0.0 0.0 0.0 0.0 0.0 (C=A*B/OAF) (D) LDDT Annual Mileage Regi stration Accrual Rate (C*D/TFNORM) Travel {C*D) Fractions 0.005 0.018 0.015 0.012 0.009 0.007 0.005 0.004 0.002 0.001 0.000 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.067 0.224 0.183 0.155 0.119 0.087 0.065 0.046 0.024 0.019 0.005 0.003 0.002 0.001 0.0 0.0 0.0 0.0 0.0 0.0 17552. 17229. 15963. 14791- 13705- 12698. 11766. 10901. 10101. 9359. 8671. 8034. 7444. 6897. 6390. 5921. 5486. 5084. 4710. 4364. 1181.5 3862.4 2923.0 2288.6 1633.4 1100.4 768.4 501.1 245.8 174.4 47.0 22.2 11.2 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.080 0.262 0.198 0.155 0.111 0.075 0.052 0.034 0.017 0.012 0.003 0.002 0.001 0.000 0.0 0.0 0.0 0.0 0.0 0.0 DAF: 0.080 TFNORM: 147&5.6 WHERE : A B D 0(1) D(MY I) January 1 registration mix from Table 1.6.4. Fleet sales fractions Sales weighted fleet mileage accumulation rate from Table 1.6.4, adjusted to January 1 Annual Mi tes (1) .25*(Annual Miles(MYI)) + .75* (Annual Miles (MYI-1)), MYI-2 20+ NOTE : In general, the travel weighting fractions will change for every calendar year since the sales fraction (column B) changes for almost every model year. DATE : MAY 25, 1985------- H-76 TABLE 1.6.6 SPEED CORRECTION FACTOR COEFFICIENTS FOR LOW ALTITUDE LIGHT DUTY DIESEL POWERED TRUCKS * SCF(s.sadj) = SF(s)/SF (sadj) SF (s)= EXP(A + B*s + C*s2) Pol HC CO NOx Model Years All All All Coef f icients A B 0 1 0 .90900 •37520 .66800 -0 -0 -0 .05500 .08800 .04800 0 0 0 C .000l»l4 .00091 .00071 * WHERE : s * average speed (mph) sadj * basic test procedure speed; adjusted for fraction of cold start operation x and fraction of hot start operation w, [ I/sadj = (w+x)/26 + (l-w-x)/l6 ] DATE : MAY 25, 1985------- H-77 TABLE 1.6.7 NORMALIZED BAG FRACTIONS FOR LOW ALTITUDE LIGHT DUTY DIESEL POWERED TRUCKS Normalized Fractions Pol HC CO NOx Model Years Pre-1979 1979 1980-1982 1983+ Pre-1979 1979 1980-1982 1983+ Pre-1979 1979 1980-198** 1985+ Test Bl 1.209 1.209 1.209 1 .209 1.199 1.199 1.199 1.199 1.068 1 .068 1.068 1 .068 Seg 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .#1 01 112 110 110 115 062 060 057 057 033 033 036 071 Test B2 1.073 1.073 1.073 1.073 0.935 0.935 0.935 0-935 0.981 0.981 0.981 0.981 Seg , 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .#2 02 091 089 089 093 044 043 040 040 036 035 038 072 Test B3 0.703 0-703 0.703 0.703 0.974 0-974 0.974 0-974 0.985 0.985 0.985 0.985 Seg. #3 D3 0.093 0.092 0.092 0.095 0.053 0.051 0.048 0.048 0.032 0.032 0.035 0.068 Total BO 1 .000 1.000 1 .000 1 .000 1.000 1.000 1.000 1.000 1 .000 1 .000 1 .000 1.000 Test DO 0.096 0.094 0.094 0.098 0.050 0.049 0.046 0.046 0.034 0.034 0.037 0.071 NOTE : The fractions given in this table are used in the calculation of the operating-mode/ temperature correction factor (OMTCF). WHERE : OMTCF = ((TERM1 + TERM2 + TERM3)/DENOM) TERM1 = W *TCF (0 * (Bl+D 1*M) TERM2 = (1-W-X)*TCF (2) * (B2+D2*M) TERM3 = X *TCF(3) * (B3+D3*M) DENOM = BO + DO*M W = Fraction of VMT in the cold start X = Fraction of VMT in the hot start TCF (b) = Temperature correction factor for year; for test segment b M = Cumulative mileage / 10,000 mode mode pollutant, model DATE : MAY 25, 1985------- H-78 TABLE 1.7.1 EXHAUST EMISSION RATES FOR LOW ALTITUDE HEAVY DUTY DIESEL POWERED VEHICLES (RATES REFLECT ZERO TAMPERING) * BER = ZML + (DR * M) Zero Mile Model Emission Level Pol Years HC Pre-1963 1963-1965 1966-1968 1969-1971 1972-1974 1975-1979 1980-1981 1982-1984 1985 1986 1987-1992 1993-1996 1997 + CO Pre-1963 1963-1965 1966-1968 1969-1971 1972-1974 1975-1979 1980-1981 1982-1984 1985 1986 1987-1992 1993-1996 1997 + NOx Pre-1963 1963-1965 1966-1968 1969-1971 1972-1974 1975-1979 1980-1981 1982-1984 1985 1986 1987-1992 1993-1996 1997 + (Grams/Mi le) 3 3 3 3 3 3 3 3 3 2 2 2 2 9 9 10 10 1 1 1 1 9 8 8 8 8 7 7 21 21 22 24 25 24 20 18 18 17. 1 1 . 10. 10. .37 .36 .48 .70 .93 .89 .53 .25 . 1 1 .50 .43 .39 .37 .84 .80 . 15 .80 .46 . 18 .50 .75 .45 .30 .07 .93 .86 .94 .85 .61 .06 .53 . 77 .50 88 .23 .90 , 19 .98 .89 Deterioration 50,000 Mile Rate Emission Level (Gm/M1/10K Mi ) (Grams/Mile) 0 0 0 0. 0 0 0 0 0 0 0. 0 0 0. 0 0. 0 0 0. 0, 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0 0. 0. 0. o 0. .05 .05 .06 .06 .06 .06 .06 .05 .02 .02 ,02 .02 .02 . 14 , 14 . 14 . 15 . 16 16 . 14 . 13 . 12 . 12 12 12 1 1 0 0 0 0 0 0 0 0 0 0 05 05 05 3, 3. 3. 4. 4. 4. 3 3 3. 2 2. 2 2 10, 10 10. 1 1 12. 1 1 , 10, 9 9. 8 8. 8. 8, 21 . 21 . 22. 24. 25. 24. 20. 18. 18. 17 . 1 1 . 1 1 . 1 1 . ,62 ,61 .78 .00 .23 . 19 .83 .50 ,21 .60 .53 .49 .47 .54 .50 .85 .55 .26 ,98 ,20 ,40 .05 .90 .67 53 .41 94 85 61 06 53 77 50 88 23 90 44 23 14 WHERE : BER = Basic emission rate (untampered) ZML = Zero mile level DR = Deterioration rate M = Cumulative mileage / 1O.OOO DATE MAY 25, 1985------- in oo at in CM UJ i- o in p- -J UJ *- > UJ UJ -J CO ESEL POWERED VEHICLES TOTAL HC EXHAUST EMISSION HEAVY DUTY D 0) f- 1 I Calendar Yea 986 January 1985 O oo 0) r-i~-f~t^f-t-r~r-cococococQcocococococna> mmTrc>io(»-cnGot->-O''"Cnr-cocococoooa> p-i^-r~r~f-f-r^t~t^i~-oocoeocooocococococo ict-r-r~r^r-r-r-t^c~t~cocococococococo(D cnoocnocncncncocncncflCJicnocnincncncf) OCM--O — ocnr--ir>co — cnn'-not-cNin t0i0u>t^-r~f-t-r-f-r-r-i--r-cococococo!X]oo " *-OO'*~OOO ioiDr^r-i—t^r^t-t-r~r~c--oocoa3oo(n CT) jo|pgM cocooococooocococncDcnoicoencncnc)' cococococococococnocncftcncncncncncnoo •t-1--^-r-—-^-r-T-t-,-,~»-,-,-.^T-,-,-OICN cocQoococotooococococDcncncncFicncncncni r-cooocococo3;oococococncna)aiO)a)(3)O)C) minTOTcoojeot^O^cN«»-oo>eoi~tPinfl' t^r-t^cococococococococococncncncncncno) invDr-coaiO'-cNnTiniot-cocno — c. L. 10 m T3 C c o — in 10 in o *- Cu^ IV O) u. 0 in £ 9> 4-* QJ t- 01 O 0 a IT) i. u n a. 3 Z (0 I- C I o a £". = en L. (0 •• •O - O E C I- o t- O C o - — 0 0) 0) *^ > «) O Ol i/i in C 10 4) O j3 £- in a) 01 o o — T3 10 E Q) _ in n E • (0 3 U t- C 0 O a) re O> O) «— (0 Q) (0 0) L C 0) o > - a) a> 0 *- +J *- 0) > — £_ i/j w to 01 01 C 3 •H 4- 0 C i- •- W •O T3 - 0) c c e £ i^r^r-t--t~r~ioiciOLnLnLnnr; ------- in oo en in m LU _J cc LU O -I U O > _l a Q£ UJ o a U- LU 3 I/) O -I Q. UJ o > -I (J LU LU -J CO LU ~z. *-< o a >-i i/i >• to t- « D Z Q I- > CO < 3 LU O CO n ID c CD 01 CD fl *~ O >00 i. O) (0 -^ 19 •3 O — — t--'-«>t--r-'«TcoOcoo cooocooitnoooiococor^t^ioinnfNOOoioo coiococor-r-r-t-t^r-r-i-r^^cocococococo cooooooooioooooicooop-r-iCLOincM'-oooo — n — cor-i — 4. Q •a eo c 01 a; 0) « u i. ra «- 3 1C •3 oocococococooiaioioiaioioicnaioiQO OTOOOlOOOlOlCTJOlOlOlCDO^OlOiOO1 •^»--.-.-»-*-~»-*-^^i-T-'.-.-i-CNrMCNCM QQ oO aocooocoeoooaoooo)0)0)o>oioio)0)oid)QQ ^^-•r-^-^-^^-^^^^^^-^-T-^^^-CMCS r^COCOGOCOCOCOCOCOCOCOG)(7)O)O)OOO)01 V) J= 01 4- Q) i. II 10 0. §1 >• ID Oi in o E C I- 0 I- O C in c - 0) o> o> o 01 in in c n it o .a i- t-^r^r^r^F^t^cocococococococoeocoCTcncno) »-»-OO(J>0>c>u3ip^^c"3fS'-*-oo)a>cooo OICNOiCN'-*- — — *-*-*-*-'-''-'-'- p>«Tinipf-coa)O'-cMnTrinu>t-«aio*- (0 0) C. C. 01 fl) 01 0) *- *- *- 0) > in in ra 01 0) C 3 •^ v O C o u in -3 •o TJ — a C C E £ i i > UJ I* * * ------- in co cn in (N a o CM a -I O < >-> ,5 o > _l a DC. 1U o a U_ LU 10 O — i a. x UJ O > -I "Z. UJ UJ _J 1/1 LU O O I- > CO < O LU < I X LU <0 0) c. (0 T3 IP C CO d) cn in >co t- cn c ID LninLncococococotnLOcncoaioioicNOi-t™ CMNCMMCXCNMWOICN'-'--^'-'-'-'-'-'-'- t-r^r~f-r-r»f-r--a}cocococococococococncn cncncncnocncncncncncncncncncncncncncncn '-inLOincococococoinincncncncMcnot^'Toi ^intfiin^^r^t^t^-OOcocococor^cN'-'-'- CNCMCNCMeNOiCMCMOIfNCM'--^'-'-'-'-'-'-'- ^c~t-t^t^t~t^f-t--cocococococococoa>cocn cncncncncncncncnoicncncncnocncncncncjicn '-'-ininincococococoLOincncncncNcni^icM OlOiCJOICMCNCNeNCMCNCMOl*-'-'-'-'-'-'-^ r^t^r~i^f-r~f»t— t-t~cocococococococococo cncncncncncncncncocncricocooicocncncooio) '-'-'-ininLOcococococoLOLOcncncncMcnrroi CNtSCNCNNCNCMtNCNCNCMCMCM»-»-»-*-*-'-»- U3t~t^r-^r-i^i~-t~-t~t^cococooocococncnooOO cno^cncncncnoicncncncncnocncncnooOo •^i-^-r-^r--^^^».^^»-^^T-CMCJCNCS cococor-.nrJP3p5npjnc>JCNCMO('-'-'-'-O cococooococococncncncncncncncncncnoOO cncncncncncncncncncncncncncncncncnooo •^T-»-^>-T-^-»--^^.-^^^^^.^»-CJCJCN cncncncMcncot-«>ir>TO(co^inc'jcnr»rr cMp>^inu>t~cocnO'*-fii<''>'Tintot-cocnO*- cococooocococococncncncncncncncncncnQO cncncncncncocncncncncncncncncno)cno)Oo cocococococococococncncncncncncnoocn cncncncncncncncncncncncncncncncncncncn1 OOcocococOt^r3r)r>picocN cncncn cncncncncncncncncnocncncncncno)cnc7)0)CD inLO'r^rrrn^iOOcocococor~CNCMpj'-'-»- CMtNMCSCMCMMCMCN'-'-'-'-'-'-'-'-'-'-'- 03 in c 01 O f* in • w t- JQ a > £. 10 L. io in •D C C O — in ia in o — c LU 0) u. Oi in £ 0) <4- a o o ^_ a in t. ii || 10 t- §1 i*. ' cn t_ o — - Ql Srz 0?« o I"- in c — tt) 0) 0) -H > > •- 0) U C71 W U) end) O fl t- m 11 O) 0) t. C o o — •DO e 01 - w . « u « o> cn — a oi - ID — i. in ia (0 01 0) c 3 •H *- O C (Q (0 "^ fl o o m -3 TJ S - 0) C C E £ I I I I > 01 i-h~r-r-r--[^r~cococococococococococnCT)cn ** ------- H-82 TABLE 1.7.3 IDLE EMISSION RATES FOR LOW ALTITUDE HEAVY DUTY DIESEL POWERED VEHICLES * IER = ZML + (OR * M) Pol HC CO NOx Model Years Pre-1963 1963-1965 1966-1968 1969-1971 1972-1974 1975-1979 1980-1981 1982-1984 1985 1986 1987-1992 1993-1996 1997 + Pre-1963 1963-1965 1966-1968 1969-1971 1972-1974 1975-1979 1980-1981 1982-1984 1985 1986 1987-1992 1993- 1996 1997 + Pre-1963 1963-1965 1966-1968 1969-1971 1972-1974 1975-1979 1980-1981 1982-1984 1985 1986 1987-1992 1993-1996 1997 + Zero Mi le Emission Level (Grams/Mi n . ) 0.36 0.36 0 36 0.36 0.36 0.36 0.36 0.36 0.27 0.27 0.27 O.27 0.27 0.67 0.67 O.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 O.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.22 0.22 0 22 0.22 0.22 Deteriorat ion Rate (Gm/M1n/10K Mi ) 0.0 0.0 o.o 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 o.o 0.01 O.O1 0.01 0.01 0.01 O.O1 0.01 O.O1 0.01 O.O1 O.O1 0.01 0.01 o.o o.o o.o 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - WHERE : IER ZML DR M DATE : MAY 25, 1985 « Idle emission rate = Zero mile 1evel = Deterioration Rate « Cumulative Mileage / 1O.OOO------- H-83 TABLE 1.7.^ REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR LOW ALTITUDE HEAVY DUTY DIESEL POWERED VEHICLES Model Year 1 ndex** 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ July 1 Regi strat ion Mix* 0.090 0.151 0.126 0.105 0.088 0.073 0.061 0.051 0.043 0.036 0.030 0.025 0.021 0.017 0.014 0.012 0.010 0.008 0.007 0.031 Mi leage Accumul at ion Rate per vehicle* 66333. 60319. 54855. 49894. 45386. 41288. 37565- 34182. 3H05. 28309. 25766. 23453. 21350. 19437. 17697. 16114. 14673. 13363. 12170. 11085. Jan 1 Regi stration Mix 0.0 0.151 0.126 0.105 0.088 0.073 0.061 0.051 0.043 0.036 0.030 0.025 0.021 0.017 0.014 0.012 0.010 0.008 0.007 0.031 Jan 1 Mi leage Accumul at ! on Rate (fleet) 0. 66333. 60319. 54855. 49894. 45386. 41288. 37565- 34182. 3H05. 28309. 25766. 23453. 21350. 19437. 17697. 16114. 14673- 13363. 12170. Jan 1 Mi leage Accumulation (fleet) 0. 33166. 96492. 154079- 206454. 254093- 297*00. 336857. 372730. 405374. 435081. 462118. 486727. 509129. 529522. 548089. 564994. 580388. 594406. 607173. * Default information that may be altered by the MOBILE3 user with information about the local area. This mileage distribution is applicable to calendar year 1988 only. ** The indices refer to the most recent model year vehicles in any given calendar year. Index 1 references the newest model year vehicles and index 20+ references the oldest model year vehicles. DATE : MAY 25, 1985------- H-84 TABLE 1.7-5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR LOW ALTITUDE HEAVY DUTY DIESEL POWERED VEHICLES JANUARY 1, 1988 (A) (B) (C-A*B/DAF) Model HDDV Fleet Sales HDDV Years Registration Fraction (A*B) Registration 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 1974 1973 1972 1971 1970 1969- 0.0 0.151 0.126 0.105 0.088 0.073 0.061 0.051 0.043 0.036 0.030 0.025 0.021 0.017 0.014 0.012 0.010 0.008 0.007 0.031 1 .000 1.000 1.000 1 .000 1 .000 1 .000 1.000 1.000 1.000 1.000 1 .000 1 .000 1 .000 1.000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 0.0 0.151 0.126 0.105 0.088 0.073 0.061 0.051 0.043 0.036 0.030 0.025 0.021 0.017 0.014 0.012 0.010 0.008 0.007 0.031 0.0 0.166 0.139 0.116 0.097 0.080 0.067 0.056 0.047 0.040 0.033 0.028 0.023 0.019 0.015 0.013 0.011 0.009 0.008 0.034 (D) (C*D/TFNORM) Annual Mileage Travel Accrual Rate (C*D) Fractions 0. 66333- 60319. 54855- 49894. 45386. 41288. 37565. 34182. 31105. 28309. 25766. 23453. 21350. 19437. 17697. 16114. 14673. 13363. 12170. 0.0 11019.0 8361.1 6336.4 4830.2 3644.8 2770.7 2107-6 1617.0 1231.9 934.3 708.6 541.8 399-3 299-4 233-6 177.3 129.1 102.9 415.1 0.0 0.240 0.182 0.138 0.105 0.079 0.060 0.046 0.035 0.027 0.020 0.015 0.012 0.009 0.007 0.005 0.004 0.003 0.002 0.009 DAF: 0.910 TFNORM: 45860.0 WHERE A B D D(MY I) January 1 registration mix from Table 1.7-4. Fleet sales fractions Sales weighted fleet mileage accumulation rate from Table 1.7.4, adjusted to January 1 Annual Mi les(l) .25* (Annual Miles(MYI)) -I- .75*(Annual Mi les (MY I-1)) , MYI»2 20+ DATE : MAY 25, 1985------- H-85 TABLE 1.7-6 SPEED CORRECTION FACTOR COEFFICIENTS FOR LOW ALTITUDE HEAVY DUTY DIESEL POWERED VEHICLES * SCF (s)= EXP(A + B*s + C*s>) Pol HC CO NOx Model Years Al 1 All All Coef f icients A B 0 1 0 .921400 .39600 .67600 -0 -0 -0 .05500 .08800 .01+800 0 0 0 C .00041+ .00091 .00071 * WHERE: s = average speed (mph) DATE : MAY 25, 1985------- H-86 TABLE 1.8.1A EXHAUST EMISSION RATES FOR LOW ALTITUDE MOTORCYCLES (RATES REFLECT ZERO TAMPERING) * BER = ZML + (DR * M) Pol HC CO NOx Model Years Pre-1978 1978-1979 1980+ Pre-1978 1978-1979 1980+ Pre-1978 1978-1979 1980+ Zero Mile Emission Level (Grams/Mi le) 8.90 3.UO 2.70 3^.30 23-10 18.50 0.20 0.65 0.85 Deterioration Rate (Gm/Mi/lOK Mi) 0.78 1.65 1.73 2.1*7 3-96 2.02 0.06 0.0 0.0 50,000 Mi le Emission Level (Grams/Mi 1 e) 12.80 11.65 11-35 U6.65 1*2.90 28.60 0.50 0.65 0.85 * WHERE : BER = Basic emission rate (untampered) ZML = Zero mile level DR » Deterioration rate M = Cumulative mileage / 10,000 DATE : MAY 25, 1985------- H-8? TABLE 1 .8.18 CRANKCASE AND EVAPORATIVE HYDROCARBON EMISSIONS FOR LOW ALTITUDE MOTORCYCLES (RATES REFLECT ZERO TAMPERING) *ft CCEV = (HSK * TPD + DNL)/MPD + CC Model Years Pre-1978 1978-1979 1980+ SHED Hot Soak Emi ss ions (Gm/Trip) 4.56 7.00 7-53 Tr ipsft Per Day 1.35 1-35 1.35 SHED D iurnal Emi ss ions (Gm/Day) 6.71 8.60 Mi les* Per Day 8.30 8.30 8.30 Crankcase Emi ss i ons (Gm/Mi le) 0.31 0.0 0.0 Total Crankcase and Evap. Emi ss ions (Gm/Mi le) 1.86 2.16 2.26 * Default information that may be altered by the MOBILE3 user with information about the local area. ** WHERE : CCEV = HSK = TPD - DNL - MPD » CC Total untampered crankcase & evaporative HC emissions (Gm/Mile) Hot soak emissions (Gm/Trip) Trips per day Diurnal emissions (Gm/Day) Mi 1es per day Crankcase emissions (Gm/Mile) DATE : MAY 25, 1985------- in oo en in a o V) < (J a u CM 00 EDa. U. LU < I/) O LU -I > LU (J I/) > a LU LU O O -IKS zid o z 1-4 It (/) •** I/) < X UJ CO 00 I c. ra 0) re u >co L 0) ffl "- 0)0)O)0)O)O)O)O)O)0)0)O)0)O)O)0)0)O)0)O) •f-f-r^r-t-t-iOuJiBLninin I^t^r»t~r~t^r-r-^t--a3cooocococococoooo3 0)0)0)0)0)010)010)0)0)0)0)0)0)0)0)0)0)0) (jjt^r-r-t-t'-t-r-r-i^t^cooococooocOflOflOco 0)0)0)0)O)Cj)O)O)O)C)Cf)OCnO)O)O)O)OO)O) 0)O)0)0)0)0)O)O>0)OOOOOOCM'-O)NnO)COO »-*-»-»-»-^--.-^»-«-f-f-[-t»-usiDioininLO U5ioujr~r^t^r~r-r-r--t^t-i-cotococooocoa3 0)0)O)O)O)O)O)O)O)0)O)O)O)O)OC)O)0)O)0) O)O)O)O)O)O10)0)0)COOOCOCOLO^>(^COO)COO »-.-.r--.-»----r-»-»-.-*-*--r-f.I-lPU>ininiO u3iDu3iou3r-t-i-t-r-t--i^i-r'-t-oococoo3co r» t- to in in in iDiDU3iDiou5t^t-r-t-r-t^r-i^i-»t»-cDcococo • r- is in in in leioiotoiflicujt^t-r-r-r-r-f-r-t-t-cocooo 0)0)O)0)0)COO)O)O)O)0)O)0)0)0)O)0)O)O)O) ic u> in in (niO(c«)«)ip t-oa)no t^r^t^t^^-r-r-^r^r^f^r-i^r- iou?ininin 000000030000030)0)0)0)0)0)0)0)0)0)000 *-*-*-.-T-1-»-»-T-^-T-,-»-»->-'I-»-fMCMCM •ininio OOOOC003COOOOOOOO)0)0)O)O)O)O)O)O)01OQ O)O)0)O)O)O)01O1O)O)O)O1O)O)0)O)O)0)OO ttttTT^'j't^tncncM'-oii'-cocncoO r^t^r^f^f^t^r^t^t^t^i^r*Nt^iDtDiDif)Lnio OOCOOOCOCOQOOOCOCOOOIOIOIOIOIOIOIOIOI oicoooioioioiaioioiooioicooioioioico ttrtTf^ -t^r~r->r-r-f-r~t~r-ri>(CipiOLOioio f~r^COGOCOCCCOCOCOCOCOCOO)O)O)O)0)O)C<10) O)O)O)01O)CDC101O)O)CnO)O)O)O)OlO)O)O)O) oio)O)'j-^-' -r^^t^^C003000000000000COOOO)O)0)O)O)O) t^t-«r^r^F^C003COCOCOCOCOCOCOcbo)O)OO)O) 0) I/I OJ ^ r T3 h- 9> > a a • > 3 I. IB C re i. re 01 •* -3 L Z C M- C 01 o O u u> a) • in c o re d) CM J3 OILL L. re 01 V) £ 0) in v 0) C t- O O a) w in E >.l- UJ L. U re a. C I IB Ols >«>,? » 0) re c *~ c IB •• -^ 0) 0) * •o - *• O TJ O t. o n o - • in CM • — 0) 00 .^^ o u re — — ai in • — c re TJ ja o a 01 re E- JO on. re c -O «- 0) - T3 £ Q) i/> re i re 3 ; i- s- O a 01 — 11 IB 01 — re 01 0) (. t- C O) in S C — O t^t^i^r^p-r-^i^p-r^toiBioininin niniDp-ooo)O'-cMn'Tin«)i~-ooo)O'-cMp) ^^^^^^000300000300030000000)0)0)0) 0)O)O)O)0)O)O)O)0)O)O)0)0)0)O)0)O)0)O)0) o > in re ** E re u *• o in re H& o re •r-r»t~t~t-i^t^i>-t~«) ------- in CD 0) o UJ O o O C/l CO U- LU CM _l l/) O 03 -I >- LU O O »- > at o LU O LU _l t- -J O 03 Z £ < a 0) CO ID •n C 00 111 O) 15 o >oo i. O) (9 - a •3 cocooooooocooococouJincM'-Oooin'-iooiin r~t-cooooocococooooo ooooooeocoooooooooi^r-tOLOcrioOcNicmin oooooocoooaococoaor^r-uiinroot^oJnoiin0)O)0)0)CnO)O)0)OOO •^•^•^-•r-^^T-i-^T-^^^^^T-r-tMCMCM TT^-'j-'t'T^-i-cocopJcM'-Oooin'-woiin T-*->-»--'-'-»--'-T-~«-»-i-»-OOOO>oOoo COOQCOGOQOCOOOCQO)0)0)O)0)0)O)0)0>0)QO O)O)O)0>O)0)O)O)0)O)0)0)O)CnO)OO)0)OO coaocoaococooocoooo)(7)Gioic)0)0)0)0) 0)0) 0)0)0)070)0)^(7)0)0)^0)0)0)0)0)0)0)0)0) r-^t^ttTTpjnncM'-ocoin'-ioojin r-COOOOOCOCOCOCOCOCQC0O)O)Ol)0)0)0)O>0)0) t~i~'T^T'j^t^rt*)nr)cM'-o . aJ n c. ID c 10 1- ifl L s r is > «-• ?.c (POO ffl S« T3 O (0 OJ • in con w cs a > OILL L 10 0) Ifl £ HI in •H 01 C M.fe3 o v in o in "me >!•• LU (. n in a. C UJ -H ra K L. "3 10 O a. Z -f « o Z • = en ID £. "" c oj in o z « -H 13 — t- O T3 O E C. O »? t. o n O — 01 CO 01 *• T3 • > C -• 01 O (0 ^ — u in • — c ra T3 a O a 0) ID cococor^r-Trf^rocincM-'-oooin'-iflcnm f-r-.r-cooo--'-'--- — --•-'-••-OOOWooco CnnriCMCMCMCMOiCMCNOICMCMCMCMCNCM'-'-'- r^r^r^r^t^oDcooocooooocococooocncncncnoi 01 t. to c o -H oi 01 «- in > ^ T3 c 01 £ (D •""" x^ +^ yj in 10 i- oi • 10 3 > 3 L (- u O) 05 O CJI 5« C — (0 tt) — O 0) t, i- • — o > in 10 01 i ffl +- E t^i^r-r-xoO'-'-'-'-'-'-'-'-OOOOJOOOo COnrOnCNCMCMCMCNCMrMCMCMCMCMCMCM'-'-^ c^r^r^r^r^r^cooococoaDcooocococococncncn ^ •+• y in in in 10 OJ OJ C (0 (0 ••" ^ Oi U u in o n •O -D - — C C 6 C — r~ t^ r- r> r- oo eo • O O O 0) co oo i i '-^'- 1 z* ------- in CO 01 in CM UI t- < (J CM CO < O O a o 1/1 U- UJ _l l/l U _l >• X UJ U O > a r uj o a X UJ X UJ O O) 0 >• t. (0 T3 (O C CO 0) 01oo i. 01 It! "• foonoonuiiflcooococooocooooococococo oddooooooooooooooooo >lt~ t-t-t^r-t-t-r~cocococococococococooici Z GI oiciaioioicnoioioicnoicnoioaiaioioio) onooonoioiococooocooooococooococo ddddooooooooododoooo t^r^t^t^r^t^r^r^r^aococooococooooocoooO) o)0)0)0)oio)0)O)O)O)cno)cncno)oicj)Oio)oi ncnnconcoconioiooococooooocococococo OOOOOOOOOOOOOOOOOOOO ("•t-t-r-r-r^i-r-f-r^oocooococococooococo 0)O)O)0)0)0)0)0)010)O)O10)O)C710)O101OlCn nncoononconujiflcococococococococo dddddddddddddddododo oicjioioioicjioioioioioioioioioioioicnoioi cnnnnnconronnmiococooococooOQoco OOOOOOOOOOOOOOOOOOOO 01010101O1O101010101O10101010101010101O1 OOOOOOOOOOOOOOOOOOOO 01010101CJlCn01CIlCTJ010)O101OlO)0101010101 ooooooooo O1O1O1O1O101010101O1O1O101010101O101O1O) oooooooooooooooo OIOIOIOIOIOIOIOIOIOIOIOIOICJIOIOIOIOIO^OI oooo OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOI OOOOOOOOOOOOOOOOOOOO 91C71010101010)010101010)010101O101O10101 OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOO *- 01O1010101O10101O1C10101010101010101010) n 8 CM CM 8 CM 8 CM CM O) O) Ol Calendar 1998 o jnuary 1 1997 -3 01 O) in 01 O) 0) 0) n 0) 0) CM 0) 0) * UJ Z UJ Z i UJ Z * UJ UJ •5. UJ Z UJ i UJ * 2 UJ 1 * UJ * Z * UJ * £ * UJ * z COCQCQCOCOCQCOOQCOCOCOCOCOCQCOCQCQCOCOCO OOOOOOOOOOOOOOOOOOOO COCOCOCOC000010^03O)C)0)0)0^010lOOOO 1) oioio^CT)0)ai(7)a)oiooicDa)o>o)a5OOOO w £ 13 OOOOOOOOOOOOOOOOOOOO 3 ifl i- 10 COQ3GOCOCOCOOOO1O)0)010)0)0)0)0)0)OOO ^ 01010)0)01010101010)0)01010101O)O">OOO f— CD <0 > -H OOOOOOOOOOOOOOOOOOOO 0> 0 0 U l£ CD OOCOCOCOCOCOCOC0010101O)0)0)O)O)O)0)OO C O <0 0)c7>o)Cio>oo)O)0)o)0)oo)0)cno)oyo)OO QJCMJO GOGOGOCOCOCOCOCOCOCOCOODaQQQCOOOCOOOOOCO O) U- C- OOOOOOOOOOOOOOOOOOOO Bin c a m •H 0) C C O COOOCOCOCOCOCOcOOOO)0)0)01O)0)O1010101O O CD (A oioioio)oioioioiO)oio)oio)oio)o)O)oioio on in E COCOCOCOCOCOCOOOCOCOCDCOCOCOCOCOCOCOCOCO >t- UJ OOOOOOOOOOOOOOOOOOOO «j a. C UJ -H (0 1— (. O^cMDTiniDr-eoo)O'"CNP)'rinu)t~ooo) "3 m COCOCOCOCDOOCOGOCOOOO)0)O)0)0)O10)0)0)0) ••*-' 010101O1O101O)010)010101O)010)O)O)0)0101 CXIA Z -H Ifl CO CO CO CO CO CO CO CO CO GO 00 CO CO CO CO 00 00 CO CO * O OOOOOOOOOOOOOOOOOOOO Z - * ai to t- *" C tx>CQCOCQGOCOCOCOCOCQC07)0)0)3)G)0)0')0)0') Q) 10 OOOOOOOOOOOOOOOOOOOO OT3O £_ O CO OOTOlCTJO^O^OlOlOlCncncnOToSoiCDoSOTOJO) WCN fl) +j "O C*) tO tp 00 CO 00 00 CO CO CO 00 00 CO CO 00 CO 00 00 CO CO > C ^ OOOOOOOOOOOOOOOOOOOO —— 0) V) - — C (TJ "D jQ O JO QJ (0 r--r^t^cocococococococococoo>cnO)CT)oioi(J) wo-^ OlCTJO^O^OlCDOTCJOlOlOCOO^OlOdCnCOOOl l/)JC-»C n r, «,«, oo co co co co oo co co co oo co co CD co co co 1 «_ S c OOOOOOOOOOOOOOOOOOOO 0)°U1> - tJ C 01 E 111 ~ r^r^r^t^-oocooocococooocoaococjioioioioioi ui«3»— oi cnoicnoioioioicnoioioiciioioioioioicficoo) E •— £ t- !. 1. O C3) C*lC*inu7(£QOCOCOCOCOCOCOCOOOCOCOCOCOOOCO (QG)'~H-''~ OOOOOOOOOOOOOOOOOOOO >-OJO Ol SS C ^ 10 Q) ••- O oio)oiaioioiO)OO)0)0)oioio)oioioio)O)oi E t. D OOOOOOOOOOOOOOOOOOOO --HO ui i/i ui m Q) 0) C ^ *- *- 0 13 0) 010101010101010)010)0)01010)0)0)0)0)0101 *- — tnucy C C E C - nnnnnwuicooooocoeoeococoaooococooa « ^-. a) - E OOOOOOOOOOOOOOOOOOOO i i t 1 > UJ 0)0)0)0)01010)010)0)0)0)010)010)0)0)0)0) ------- IDLE H-91 TABLE 1.8.3 EMISSION RATES FOR LOW ALTITUDE MOTORCYCLES * IER = ZML + (OR * M) Pol HC CO NOx * WHERE : Zero Mile Model Emission Level Years (Grams/Mi n.) Pre-1978 1978-1979 1980+ Pre-1978 1978-1979 1980+ Pre-1978 1978-1979 1980+ 1.95 0.74 0.59 4.33 2.92 2.34 0.01 0.03 0.04 IER ZML DR M Deter ioration Rate (Gm/Min/lOK Mi) 0.42 0.36 0.38 0.23 0.50 0.26 0.0 0.0 0.0 Idle emission rate Zero mile 1evel Deterioration Rate Cumulative Mileage / 10,000 DATE : MAY 25, 1985------- H-92 TABLE 1.8.U REGISTRATION MIX AND MILEAGE ACCUMULATION RATES LOW ALTITUDE MOTORCYCLES FOR Jan 1 Model July 1 Mileage Jan 1 Mileage Year Registration Accumulation Registration Accumulation Index** Mix* Rate Mix Rate per vehicle* (f leet) 6 7 8 9 10 11 12 13 15 16 17 18 19 20+ 0.114 0.069 0.044 0.024 0.009 0.085 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 800. 600. 400. 200. 200. 200. 0. 0. 0. 0. 0, 0, 0. 0. 0, 0.114 0.069 0.044 0.024 0.009 0.085 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1200. 800. 600. 400. 200. 200. 200. 0. 0. 0, 0. 0, 0. 0, 0. Jan 1 Mi leage Accumulation (fleet) 1 2 3 4 5 0. 0. 0. 0. 0. 133 H5 138 116 123 4100. 2800. 2100. 1600. 1200. 0.044 0.145 0.138 0.116 0.123 0. 4100. 2800. 2100. 1600. 0. 2050. 5500. 7950. 9800. 11200. 12200. 12900. 13400. 13700. 13900. 14100. 14200. 14200. 14200, 14200. 14200, 14200, 14200, 14200, * Default information that may be altered by the MOBILE3 user with information about the local area. ** The indices refer to the most recent model year vehicles in any given calendar year. Index 1 references the newest model year vehicles and index 20+ references the oldest model year vehicles. DATE : MAY 25, 1985------- H-93 TABLE 1.8.5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR LOW ALTITUDE MOTORCYCLES JANUARY 1, 1988 (A) (B) (C*A*B/DAF) (D) Model MC Fleet Sales MC Annual Mileage Years Regi stration Fraction (A*B) Regi stration Accrual Rate (C*D/TFNORM) Travel (C*D) Fractions 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 197^ 1973 1972 1971 1970 1969- 0.044 0.145 0.138 0.116 0.123 0.114 0.069 0.044 0.024 0.009 0.085 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 .000 1.000 1 .000 1.000 1 .000 1 .000 1.000 1.000 1 .000 0.044 0.145 0.138 0.116 0.123 0.114 0.069 0.044 0.024 0.009 0.085 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.167 0.159 0.134 0.142 0.131 0.080 0.051 0.028 0.010 0.098 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 4100. 2800. 2100. 1600. 1200. 800. 600. 400. 200. 200. 200. 0. 0. 0. 0. 0. 0. 0. 0. 0.0 685.7 445.7 281.0 227.0 157.8 63.7 30.4 11.1 2.1 19.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.356 0.232 0.146 0.118 0.082 0.033 0.016 0.006 0.001 0.010 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 DAF: 0.911 TFNORM: 1924.0 WHERE A B 0 • January 1 registration mix from Table 1.8.4. » Fleet sales fractions - Sales weighted fleet mileage accumulation rate from Table 1.8.4, adjusted to January 1 D(1) * Annual Miles (1) D(MYI)- .25* (Annual Mi les (MY I)) + .75* (Annual Mi les (MY I -1)) , MY I =2 20+ DATE : MAY 25, 1985------- UJ a i- I** t- ^ 3 O —1 a 0 u. 00 t- Z LU 00 U) HI LU CO >-« (J ^ U. >• 01 ^- u. U i uj ce. X LU O O -1 O (- m o < a z ^~ O &— o u. Z Q h- U LU QC a o o o LU LU a. LO O U 08 X 0 0 X Z ^ " » » in in * * u. u. ^ "*""* + *f TJ (0 •• « in in in >— - * * U. LU LU I/I ^ + + U) no ^ t/> W U. #• * t/1 Q Q ii + + ~ „ „ •i in in 10 O O in •*• -f in — in in u. * » tJ GO OL1 to •f -f * *t *i •^ff 0. X UJ II II ^^ in ^^ u. 10 •H c 10 +* 3 ^-* •— O a. u. LJJ Q o m 4 in i. 10 01 13 >• C to •— 0) T3 O t- t~ f O O O l i l UJ UJ UI ID ID LO in 01 in T in t CO -^ CO 10 CO O CO Tfr •>* odd i i i LO LO in 0 O O 1 1 1 LU LU LU CD in Tt oo m tn *- co o oo n ("- ^ in o t0 f- f1- odd CO CO CO O O O i i i UJ UJ UI 01 CO 01 co n r^ ID CO »• ID (O CO •T O t- *$• in ^t O 0 0 1 1 1 000 1 1 1 UJ UJ UJ O co O 01 LO CM 01 •*- co CM CO ID LO ID LO COO 888 UJ LU LU CM t~ CO f» co r- in •r- r- m CD t~ co o co CM CO CM d o o i i i T- *- — 000 + + + LU LU LJJ ID CO CO CM (^ CM O CO CM — O LO fO rr CM CM CM CM odd CO 01 fx. f^ Ol 01 + — »- o U I I CO I 01 CO 01 i- t~ — a 01 *- O O O 1 1 1 UJ UJ UJ co 01 co r» ID o 01 01 CO ro I- r~ O - r^ *5f C*5 ^T odd i i i in in in O O 0 i i i UJ UI LJJ CM CO CM in IT o ^> 01 ^ ID *r r- O 00 — t- in co O O O CO CO CO O O O i i i UJ UJ LU ID t~ CO 01 CM 00 CO CO LO f- CM CO [^ CM CO ^ ^ LO odd 1 1 1 000 1 1 1 UJ UJ UJ — CO 0) t-- co r^ O ro to ID in t- odd 888 LU LU LU CO O CO r- co co 01 *- O ID 01 *- 01 *- CO CM CO CO odd 1 1 1 T- ,- T- 000 + + + LU LU LU 01 •» co co O t 01 co r^ ro t-. O CO f- t^ CN CM CM odd co a> i^- f*~ 01 01 + a i i co U 01 CO 01 t. 1^. T- a 01 ^— O O d d in ID o o i i LU UJ 01 o rf (D CO O 85 *- 01 d d ro ro 0 O i t LU UI 01 «- ro 01 *- co r- co ro *- T— T- O O o o 1 1 LU UJ m in f- CO 01 t- T in in ro (D LO O O O "- O O LU LU co *r O r- n co CO T — O — 00 d d o o + -f LU UJ in 01 ro m ID — co co ID CN »- ^- d d CO r- 01 + X *- CO z u 01 a. C <— i o — ID 10 \ C. — 9 X a i O 3 +-• *- L. ^ 10 V + in ID •a CM o ^ O X M- 3 o ^ C II o +j •5" 0 * to in **• *~ L. — O H- * 3 0) C *- O in — 3 -H •- , (0 •o L. 10 41 a •• o •a 41 *- 0) !- Q. 10 in +^ in 0) O.TJ JT *~ IJ H- 0 O TJ e u a c 0) O a ^ — in in -M Q) U a> *-10 C 10 J2 10 II II •*-» 13 10 in in UJ a UI I 3 * in CO 01 . in CN J y LU < O ------- Or O U. H *•» Z *•» ui O HH cj in i— * t^ u. U. 1 Ul O H 0 •— < Ul r» Q! O I/I * O D Ul 00 H 1- _J -» in • cj ~ u j3 O) — < H >• — • i U. _l U U x ui < a H -i z o CO O 3 H -* < >-> o o a. h- H _J Z X U Ul UJ CC II o ~ U XI Ul U. or u D H H < * 02 Ul a z H £ O ^ m I •M 0 C H 01 E O) 01 in •H in 3 01 O 1- _l CJ i- r o F- CM X •H O C H i O) 01 in 4^ 10 3 01 0 O H r Ol •^ X "" 0 •H 1— C 01 01 in v 3 in 0 01 -1 o — in 01 L. "O (0 o o) _ 0 a. CM CM CM O O O 1 1 1 Ul Ul UJ 01 n u? 01 T U? r- 00 to t in u> CO t- t- ddd oj co n o o o 1 1 1 Ul Ul UJ -TO) co oo in 800 IP u> ro — 00 0) odd i i CM CM CO O O O i i i UJ UJ UJ 0) r- in T- (C CM CM 10 O) n CM r~ — T T odd i CM CM O O O O i i i UJ UJ UJ 01 r- in n — in O O r- T CM CM CM n in O O O 1 1 1 o o o 1 1 1 UJ Ul UJ — CM 00 co in oo n in oo T CM O — ~- *- odd o o o i i i UJ Ul Ul n CM in CM u> in ST CM T *- CM CM CM odd 1 1 1 00 01 t- r» Ol 01 + *- - o 1 1 00 OJ 00 01 c t- — a 01 u X O 0 O 1 1 1 UJ UJ UJ T 01 n "- l> 00 o <- <* •r- m oo — CM CM odd CM CM CM O O O 1 1 1 UJ UJ UJ r*» 01 ro 01 T in O f- CM — in oo *- *- »- d d o CM CM - O O O 1 1 1 UJ .UJ Ul CM in co ic co o TJ- U3 UP r* T co n eo CM d o d CM CM CM O O O 1 1 1 UJ UJ UJCM CM r- ID d d i i CM CM O O i i Ul UJ in us CM U3 CO T r- CM 00 01 O O i i CM CM O O i i UJ UJ in — T 01 CM f- Ol Ol co in 0 O CN 0>J 0 0 UJ UJ *- Ol T 00 CO CO co O d d 1 O O t i UJ UJ r- T 01 c» oo O u> in *- CM 0 0 1 1 CO 1- 01 + — 00 1 1- 01 01 i. — 0. X 0 z UJ a UJ X * +J c ro 3 O a V O (B c - +> 10 *• £- C •H c a o; 3 01 OS - e t 01 — oi a oj o o a in a in (o 01 -H t. m v in o 01 ro 01 M- v s- * i. at- co O 0 01 t- £. o >^ o «*- -H (J •— t_ 01 Oj i. T3 O T3 JT O O •H o c <-• e O 6 0) O (0 I- (0 T3 1- t) £ t- C cm n C 10 u. C O ^ 0 01 OJ •- • — t. i_ •H 01 01 *• 3 3 O L. C. O V *J 01 3 3 (U (S (0 t. *• *• 1- t, L. f- 10 10 I- 01 01 o f- t. o a a O 01 01 U £ E a a 01 0) 0) E E HI v *• t- 01 0) L. 3 -H +> 3 01 OJ +- -H O U (o +^ -H (o c c t. C C t- 01 01 01 01 01 01 C. i- a — — a oj ai E Q Q E l_ — S. Ol o 0 t- o 01 v S. O 3 (0 •M It. (0 !- C 01 O a- E *- 01 U •H 01 t- 01 (. c o H O UJ o z in co Ol . in CM >. ^ z Ul 4 Q ------- H-9& TABLE 1.8.7B NORMALIZED BAG FRACTIONS FOR LOW ALTITUDE MOTORCYCLES Normalized Fractions Pol HC CO NOx Model Years Pre-1978 1978-1979 1980+ Pre-1978 1978-1979 1980+ Pre-1978 1978+ Test B1 1.282 1.3*5 1.3*5 1.277 l.*l*2 1.553 1.121 1.199 Seg.#l Dl 0.025 0.07* 0.178 0.033 0.071 0. 109 0.009 -0.00* Test B2 0.973 0.9*6 0.919 1.017 0.996 0-933 0.785 0.793 Seg 0. 0. 0. 0. 0. 0. 0. -0. .#2 D2 028 054 118 029 OU2 079 001 002 Test B3 0.839 0.81*2 0.89* 0.758 0.67* 0.711 1.319 1 .2*5 Seg 0. 0. 0. 0. 0. 0. -0. 0. .#3 03 019 Qi*8 093 025 033 038 009 006 Total BO 1 .000 1.000 1.000 1.000 1.000 1 .000 1.000 1.000 Test DO 0.025 0.056 0.124 0.029 0.01*6 0.071* 0.0- 0.0 NOTE : The fractions given in this table are used in the calculation of operating-mode/ temperature correction factor (OMTCF). WHERE : OMTCF = ( (TERM1 + TERM2 + TERM3)/DENOM) TERM1 = W *TCF (1)*(B1+D1*M) TERM2 = (1-W-X)*TCF (2) * (B2+D2*M) TERM3 = X *TCF (3) * (B3+D3*M) DENOM = BO + DO*M W = Fraction of VMT in the cold start X = Fraction of VMT in the hot start TCF (b) = Temperature correction factor for year; for test segment b M = Cumulative mileage / 10,000 DATE : MAY 25, 1985 the mode mode pollutant, model------- H-97 TABLE 2. 1 .1A EXHAUST EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED VEHICLES (RATES REFLECT ZERO TAMPERING) * BER - ZML + (DR * M) DO 1 "O 1 HC CO NOx Zero Mile Model Emission Level Years (Grams/Mile) Pre-1968 1968-1969 1970-1971 1972-1974 1975-1976 1977 1978-1979 1980 1981 1982 1983 1984 1985-1989 1990+ Pre-1968 1968-1969 1970-1971 1972-1974 1975-1976 1977 1978-1979 1980 1981 1982 1983 1984 1985-1986 1987-1989 1990+ Pre-1968 1968-1972 1973-1974 1975-1976 1977 1978-1979 1980 1981 19S2 1983 1984 1985-1986 1987-1989 1990+ 9.35 5.60 4.58 4.58 2.02 0.95 2. 10 0.78 0.54 0.37 0.36 0.29 0.29 0.29 1 17.70 85.54 79.64 75.63 43.07 16.97 39.78 22.80 1 1 .43 7. 18 5. O1 3. 18 3. 16 3.02 3.03 1 .96 2.91 1 .91 1.70 1 .42 1.00 0.82 O.46 0.60 0.56 0.54 0.54 0.54 0.54 Deterioration Rate (Gm/Mi/10K Mi 0. 18 0.25 0.37 0. 17 0.27 0.27 0.27 0. 10 0. 14 0. 14 0. 14 0.15 0. 14 0. 13 2.25 2.55 3. 13 2.44 2.59 2.59 2.59 0.73 3.26 3.29 3.33 3.55 3.35 3. 13 3.05 0.0 0.0 0.04 0.03 0.09 0.09 0.07 0.08 0.08 0.08 0.09 O.09 0. 10 0. 10 50,000 Mile Emission Level ) (Grams/Mile) 10.25 6.85 € .43 5 . 43 3.37 2 .30 3.45 1 .28 1 .24 1 .07 1 .06 1 .04 0.99 0. 94 128.95 98 .29 95.29 87 .83 56.02 29.92 52.73 26.45 27 .73 23.63 21 .66 20.93 19.91 18 .67 18.28 1 .96 2.91 2.11 1 .85 1 .87 1 .45 1 . 17 0.86 1 .00 0.96 0.99 0.99 1 .04 1 .04 » WHERE : BER = Basic emission rate (untampered) ZML * Zero mile level DR » Deterioration rate M - Cumulative mileage / 10.000 DATE : MAY 25. 1985------- H-98 TABLE 2 . 1 . 1B EXHAUST EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED VEHICLES AT VARIOUS MILEAGE INTERVALS (RATES INCLUDE TAMPERING) Model Pol Years HC Pre-1968 1968-1969 1970-1971 1972 1973-1974 1975 1976 1977 1978-1979 1980 1981 1982 1983 1984 1985-1986 1987-1989 1990+ CO Pre-1968 1968-1969 1970- 1971 1972 1973-1974 1975 1976 1977 1978-1979 1980 1981 1982 1983 1984 1985-1986 1987-1939 1990+ NOx Pre-1968 1968-1972 1973 1974 1975-1976 1977 1978-1979 1980 1981 1982 1983 1984 1985-1986 1987-1989 1990+ OK 9. 5. 4. 4 . 4. 2. 2. 0. 2. 0. 0. 0. 0. 0. o. o. o. 1 17 . 85 , 79. 75. 75 . 43, 43 . 17 . 4O. 23 1 1 7 5 3 3 3 3 1 2 1 1 1 1 1 0 0 0 0 0 0 0 0 35 60 .58 58 58 05 05 98 14 82 57 40 39 32 32 .32 32 .68 .54 .65 .64 64 ,35 37 .27 . 10 . 18 .64 .39 .22 .37 .35 .21 .22 .96 .91 .91 .91 .70 .42 .00 .82 .47 .61 .57 .55 .55 .55 .55 20K 9.71 6.11 5.32 4.92 4.93 2.69 2.70 1.62 2.78 1 . 13 0.93 0.76 0.74 0.69 0.66 0.66 0.64 122. 12 90.60 85.95 80.62 80.78 49.54 49.56 23 .41 46.27 25.78 18.99 14.75 12 .63 11.15 10.68 10.08 9.93 1 .96 2.91 2.03 2.04 1 .89 1 .74 1 .32 1.11 0.72 0.86 0.82 0.83 0.83 0.85 0.85 Emission Rate (Grams/Mile) 40K 60K 8 OK 100K 10. 6. 6. 5. 5. 3. 3. 2. 3. 1 . 1 . 1 . 1 . 1 . 1 . 1 , 1 . 126 95 92 85 86 56 56 30, 53 29 26 22 2O 19 18 17 17 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 07 61 06 27 29 38 39 32 48 51 33 15 , 14 09 05 ,04 ,00 .56 .70 .29 .69 . 18 .41 .43 . 19 .08 . 14 .92 .67 .57 .42 .46 .37 .05 .96 .91 . 15 . 17 .08 .06 .64 .39 .00 . 14 . 10 . 15 . 15 . 19 . 19 10.43 7. 12 6.80 5.61 5.65 4.08 4.09 3.01 4. 18 1 .89 1 .73 1 .55 1 .54 1 .50 1 .43 1.43 1 .36 1 3 1 . 00 1 00 . 8 1 98.62 90.76 91 .57 63.28 63.29 36 96 59.89 32.51 34 .86 30.58 28.50 27.69 26.23 24.65 24. 18 1 .96 2.91 2.28 2.29 2.27 2.37 1 .95 1 .68 1 .28 1 .42 1 .38 1 .47 1 .47 1 .53 1 .53 10.79 7.63 7 .54 5 .96 6.01 4 .77 4.79 3.71 4.89 2 .-27 2 . 13 1 .95 1 .93 1 .90 1.81 1 .81 1 .73 135.45 105.92 104 .96 95 .83 96 .96 70. 15 70. 15 43 .73 66.70 35.89 42 .79 33 .49 36 .44 35.96 34 .00 31 .94 31 .30 1 .96 2 .90 2 .40 2.42 2.46 2 .69 2 .27 1 .97 1 .56 1 .70 1 .66 1 .79 1 .79 1 .87 1 .87 1 1 . 8. 8. 6. 6. 5 5. 4, 5 2, 2, 2 2 2 2 2 2 139 1 1 1 1 1 1 100 102 77 77 50 73 39 50 46 44 44 41 39 38 1 2 2 2 2 3 2 2 1 1 1 2 2 2 2 , 14 14 .28 .31 .37 .47 49 .41 .59 .64 .53 .35 .33 .31 . 19 . 19 .09 .89 .03 .30 .89 .35 02 .01 . 50 .51 26 .72 .40 .37 22 .77 .23 .42 .96 .90 .52 .55 .65 .01 .59 .26 .84 .98 .94 . 1 1 . 1 1 .21 .21 120K 11 . 8. 9. 6. 6. 6. 6. 5. 6 . 3. 2. 2. 2 2 2 2 2 144 1 16 1 17 105 107 83 83 57 80 42 58 54 52. 52 49 46 45 1 2 2 2 2 3 2 2 2 2 2 2 2 2 2 50 65 O2 65 73 . 16 19 . 10 29 02 .93 .75 .73 .71 .58 .57 .45 .34 . 15 .64 .95 .74 .89 .88 .28 .32 .63 .66 .31 .31 .49 .54 .51 .55 .96 .90 .64 .58 .84 .33 .91 .55 . 12 .26 .22 .43 .43 . 54 .54 140K 1 1 .86 9. 16 9. 76 7.00 7.09 6.86 6.89 5.80 6.99 3.40 3.33 3. 15 3. 12 3. 12 2.96 2.95 2.81 148.79 121 .27 123.98 1 1 1 .02 113.12 90.76 9O.74 64.05 87. 13 46.01 66.59 62.22 60.24 60.76 57.31 53. SO 52.67 1 .96 2.90 2.77 2. SO 3.03 3.65 3.23 2.84 2.40 2.54 2.50 2.75 2.75 2.88 2.88 DATE : MAY 25, 1985------- H-99 TABLE 2.1.1C CRANKCASE AND EVAPORATIVE HYDROCARBON EMISSIONS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED VEHICLES (RATES REFLECT ZERO TAMPERING) ** CCEV = (HSK * TPD + DNL)/MPD + CC Model Years Pre-1963 1963-1967 1968-1970 1971 1972-1976 1977 1978-1980 1981 1982 1983 1981* 1985-1986 1987-1989 1990+ SHED Hot Soak Emi ss ions (Gm/Tr i p) 29-18 29-18 29.18 20.99 20.96 12.32 10.31 9.71 4.60 4.30 3.01 2.50 2.05 1.82 Tr ips* Per Day 3-05 3-05 3-05 3-05 3-05 3-05 3.05 3.05 3-05 3-05 3-05 3-05 3-05 3-05 SHED D i urnal Emi ssions (Gm/Day) 62.38 62.38 62.38 50.15 44.93 22.53 24.11 24.11 12.10 12.10 9-31 9.31 9-31 9.31 Mi les* Per Day 31.10 31.10 31.10 31.10 31.10 31.10 31.10 31 .10 31.10 31.10 31 .10 31.10 31 .10 31 .10 Crankcase Emi ss ions (Cm/Mi le) 5-29 1 .03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Crankcase and Evap. Emi ssions (Gm/Mi le) 10.16 5.90 4.87 3.67 3-50 1.93 1.79 1.73 0.84 0.81 0.59 0.54 0.50 0.48 * Default information that may be altered by the MOBILE3 user with information about the local area. *ft WHERE : CCEV = Total untampered crankcase 6 evaporative HC emissions (Gm/Mile) HSK « Hot soak emissions (Gm/Trip) TPD * Trips per day DNL » Diurnal emissions (Gm/Day) MPD = Miles per day CC * Crankcase emissions (Gm/Mile) DATE : MAY 25, 1985------- H-100 TABLE 2. 1 .10 TOTAL CRANKCASE AND EVAPORATIVE HC EMISSIONS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED VEHICLES AT VARIOUS MILEAGE INTERVALS (RATES INCLUDE TAMPERING) Model Years Pre-1963 1963-1967 1968-1970 1971 1972-1971* 1975-1976 1977 1978-1979 1980 1981 1982 1983 1981* 1985-1986 1987-1989 1990+ OK 10.16 5-90 4.87 3.67 3-50 3-50 1.93 1-79 1.79 1.73 0.84 0.81 0.60 0.55 0.50 0.48 20K 10.16 5.90 4.89 3.69 3^2 3-52 1.95 1.81 1 .80 1.74 0.86 0.83 0.61 0.56 0.51 0.49 Emission Rate 40K 60K 10.16 5.90 4.91 3.72 3-55 3-55 1-99 1.83 1.83 1-77 0.88 0.85 0.63 0.58 0.53 0.51 10.16 5.90 4.92 3-74 3-59 3-59 2.02 1.86 1.85 1.79 0.90 0.87 0.65 0.60 0.55 0.52 (Grams/Mi le) 80K 100K 10.16 5-90 4.94 3-77 3.62 3.62 2.05 1.89 1.88 1.81 0.92 0.89 0.67 0.6l 0.56 0.54 10.16 5-90 4.96 3.79 3-65 3-65 2.08 1.91 l .90 1.84 0.95 0.91 0.69 0.63 0.58 0.55 120K 10.16 5-90 4.98 3.82 3.68 3.68 2.11 1 .94 1.93 1.86 0.97 0.93 0.71 0.65 0.60 0.57 140K 10.16 5.90 5-00 3.84 3-72 3.71 2.15 1-97 1.95 1.89 0.99 0.95 0.73 0.67 0.61 0.59 DATE : MAY 25, 1985------- in co O) UJ I- < o CO Q ^ H- i/) uj i— UJ l/l I 1 < _1 U (J < -1 * I 2 I UJ < O > CC HH O I Q UJ cd or ex O uj Q. u. 3 < O > l/> Q- UJ _] UJ UJ tO > 2 UJ UJ f< Q _l -I 3 O -I 2 on (J Q < Z _, o « in ^ ui >• >- i- u SOI uj O ul I H- O 13 O < >- h- I -1 X UJ 10 •O 10 C CO 0) O) (B O in >.co i- en (0 — « -3 O I r~i^r~r^i^t~h-i~-co£Oooc6oocbcoix)cocC)O)Cn 010)OlO)O)O)C)010)0)OjulO)Cn01O)OlulO)O2 '-coii»-t-innor-inr)tNOO) ^OOOO)0)lOIs-U3r5DCNCNCM'--^»-'-'-O . OpjO')OO"JOO')C10)0)u'jO)ul01O>0)O)ulu')0>0") mnOOOOTroiptfiBrontNCN- 8 tTt'rnooOcoooLnij3U3nc<)(N'-'-'-'-o CO*TTT'3-C*5OOO (Pr'3r'J{NT--'--I-O I. ra D co C O) 0) 0) cor-t^i-nOOOcocOLnu>innro^'-'-o -- Ocnco — enncntN-^ocMO'-coujcMcntjDi'O coh~i>'rcotcNOOOoocOLnininp) t»-r^cbcocococo oioiuiO)OioicnoiO)0)duiO)O)cno)O)COuico cor^f^t^nn^csiOOcncof^TrininncN'"'" tfl^U3ti)(j3LO^f*t^r^r^t^r^r*t^-r^wcpcocp cor~r--t-f-ot"jC)(NOOiuir--r-TiflLnmoi'- (OtDtototDij5u?r^t^t^r^i^(^[^t^r^r^aOfflcp -r5r:fO'-oiO)uir-u5Tr'}-'»cM tNCS — — ^ — •^'~--'- — cooocococDoocncna)0)0)0)cno)0)0)5ooo uioicnoioicno)oiO)O)uioio)0)O)OOOOO r-^-T-i-^T-^^^^^-T-T-.-^-T-^OJCNCN ^--.-•^•^•»--»--»--r--.--.-f--»-^.^-t-T-»-CNiOJCM intO'-cocoioinincM'-ooioot^iD^rD'-OO) r)cor3CNcscMcs o — MC*)«Tinij3iv-cooiO»- CpCOCOCpcpCpacpCT)0)^0)O)01O)C}O)d)OQ rr'VOrjrjCNCMtNMCNM COTtDnCNCMCSCMdCM h-oooooooooococDcoooeoO)OioiO)OiC)O)0)CT) COCOt^rnOCNOJCNCNCNCM t~!~-cococococx)cocoa3eoot!O)a)a)D)Oioia)a) CMT-oi-^Pi — Ot^ oicocnoiO)Oicncno) oir~r-!^^r^-r3!NcMfsi!NCN r^r-t^r>cbcpcocpcpcpcpcpcpcpcno)0}p)0}0i 0) in 0 «- r T3 I- ffl > — i- V <0 • > 3 t- a c ra L nj H CD c. s c (0 > *• •a c «- c cu o o « S? T3 O ID 0! • in > - . 0) aiu- c 10 U C i. o Q I/) in ^ >l~ UJ t- II - W £ i. C a •• -~ cu in > c i- o s T3 — •*- O T3 O E C O J« eon O > C CN 0 O <0 — - 0) (/) . — c 10 n a o ja cu us •*- N h- CO HI - W £. — C cot--oicoiBO'-o)coincN'-cncoiO' ^rfl-CMCN(NCNCM'---'-'-'---'-O c~r^r-r«.^-cpcpcocpcpcocpcocpcpoipiO)cna) o 0) u- i? \ -H co ra E - • 10 3 I- i. U (0 Ol — CD O O) — ra cu (1) i- i. T3 cu nj O > i E •H *- QJ -H 01 CO > C 0) > 3 01 J« C "- O •H E B O <-> u OOOTOjCCP-onCJCVdCMfN CU 0) C +- T3 T3 - - C C E C - « — 0) - E >- s ------- in oo 01 UJ f- < co CM CN LU o t- CO M LU X UJ CJ > X Q UJ 0£ EX O LU u. 3 o l/l Q. _l LU LU O > Z U LU 1-1 o < l/l l/l > 3 C3 I " X CM O L. <0 TJ ID C 00 0) 01 ra u u- 0 in >CD <- en ra *- 3 ra -3 O - LOCMCMtNCMOOOl— IDTUJlfltNCNCM — — 8 L- 10 T3 CO C 01 IV 01 10 U t- O) (0 *- c ra -3 i OOCOOOCOOOOOOIOIOIOIOIOIOIOIOIOIOOOO 01O)O1O501O1O)O)0103O1O)O1O101O1OOOO COCOCOCOCOCOCOOIOIOIOIOIOIOIOIOIOIOOO OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOOO ~-»-»-lrge« u>nnooiocMOfflLncMOooinrMOiu5P)oiinr> ' COCOCOOOCOOOCOCOOIOIOIOIOIOIOIOIOIOIOO O1O1O1O1010101O10101O1O1O>O1O10101O1OO oooocooooococococooioioioioioioioioioi OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIO noinooiincMcoiDnoootncMOiiOPJoiinci COCOCOCOCOCOCOOOOOCOO1010)0101O10)O101O1 01O101O101010)O10101O101O)O101O10)0)O)O1 f^-COaOGOQ3COcOCOCOCOOOO)O)O}O101OlOlOlOl OlO101OlO)CnOO)OlO101O1010101OlO10101Ol t-t~-aoooxcooocoooeoooeooioiaioioioioioi oioioioioioicnoioioicioioioioicioioioici t^cooio — r^t^t^r-cococococococococoflooioioioioio! O1O101O101O1O1O1O1O1C1O1O1010101O1O1O1O1 oic~Lnoi'5loO'-'-OOiu3O*""~LficMr^oiLO t-f~t*-^-t^cocococoooeococococooicioioiOl OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOI r""-t"*r**^f'ip"'cocoxoococococooocooioio>0i OlOlOlOlOlOlOlOlOlOlOlOlOlClOlOlOlOlOiOl 4) i- S. T3 — t. 01 10 t- 10 c re c. io Tz-J! 10 > -H T3 c »- c 0) O O 10 SS T3 O (O OJ • 10 cow at CM a - . a) 10 •H HI C t- O o oj in Q in ~ in E i. ii 10 i- c. •3 IB Cl in O a Z +- « o >• 10 jz * Ol (0 t. *" c S (. o n o — 0) O v CM tt) U . .- — 41 in - — C (0 T3 J3 o a 41 10 N K W £ •— C O t- in 10 10 CO 41 41 C v +• O (5 W *~ ' U O oiO) J)CT}0101010)01C710)0)01010)0)0)0)010)0)0) ------- in eo 01 in CN < a U CM -I CD < P3 o Q to -1 U < 11 I LU a > »H r a UJ a; a O u u. S O co a —I X LU LU O > Z Z LU >-< _J _l O Z 10 o < M C3 I/) to > s 5 LU O I- I- to I 3 U < II I -J X LU t- R) T3 (O C CO a> CD 'io in >co t. 01 ra '- C ra CNCNCMCNCMCNCMCS- OOOOO OOOOO OOOOO CNCNINCMCMCNCMCMCNOICN'-'- — O'-OOOO CNCMCNOJ(NCMCMCMCNCNCN'-CN — '-'-OOOO CNCNCNCNCMCNCMCMCNCNCN'-'^CN'-'-'-OOO OOOOOOcncnmoiaicNcNcncnconcNcnin CNCMCNCNOJCMOICNCNCNCNCMOi — »-'-'-»- O O OOOOOOOcncnoioioicNCNcncot^cN'-eo CNCNfNCNCNCNCNMCMCNCSCNCMCN'-'-'-'-'-O 8 c. ID 13 CO C 01 m 0) m u CNCNCMCMCNCNOICNCNtNCMCN--- — *-OOOOO *- L. C7> 15 — C a -3 0) O O O O >• co cocoeococooicnoicncncncioioioOQQQ z cn 0)0)010)010^010)0)0)010)0)0)010000 '»-T-»-»-T-»--r----^.-,-i-T->-r-»-O(OiOJCN cooioocococor^f-tcm^TTrc<)CM*-oo!cou>u> ^.^^^^^^•^•^^^•^.^•^^^0000 COCOCOOOCOCOOOC7)G)C7>0)O1O)0)OO)O) O O O O COCOCOCOCOCOCOCOO)0101CI)CT)O)O10)010)OO 0)OO)0)0)O)Oioicicno)0)cncT)O)O)O)O)OO »-«-,-.-,-,-,-.i-»-,-,-,-.-,-.-,-,-,-N{M O O O O COOOaOOOCOOOaOOOCDO)OO)^)(7)0)0)OO)0) oocoeooooocococooococ7)0)Oio)cncno>o)a)cn o o o o r-cocococococococQoocociCToaoocnaio) o o o o o o o o o o o o *- — r-cNCNt-Tin^^TcocicN'-ocncoicto CNCNCNCNCN»-'-»-*-*-»-»-'-»-»-*-OOOO t*»r>~f~r~r-cocc|cocococococococoo)0)O)cocn Ifli-i-lBCN'-lfi'T'tOincNCN'-OOICOtftO CN CM CM CN CN CN O O O O tiniflr~a}O)O*-CNcoTinier-cooiO*-cNc'i ^^p^^^^cocococococococococooioicoo) CN CN CM CN CN CN CN r5^inu>t~coo)O^cNp)^incn 0) in a •*• r TJ 1- 0) > — s. 0) ID L. ra c ra L «j t. z r (0 > -H 13 C x- C. a) o o O to Q) ai CN n > D1U- L. 10 0 0) r 41 m v ai c I. O OT in E I. II « £ ' O) ID L. C 0) in o z — — > •o - »- O 13 O L. O CO O • • in CN • .-ID «- (1) *- T3 • V 0 (0 ^ — 0) tn - — C (0 T5 D o a Q) - T) C Ol E 0 - -x +* in • 10 ra 01 HI > 0) O) — (0 0) t- 0 > £ ID HI 111 tn in 0) 0) •H +J (0 (Q u u II D > 3 O O) *— «*- •*- 18 O *• °xc 0) *- O s. • — tn m tn — «j +* 6 > 1- 3 <1) (0 O — •HO in (0 0 -D 0) - - 0) in o 10 E C - cu — E I I I I > UJ z * * * ------- H-104 TABLE 2.1.3 IDLE EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED VEHICLES * IER * ZML + (DR * M) Zero Mile Model Emission Level Pol Years (Grams/Min.) HC Pre-1968 1968-1969 1970-1971 1972-1974 1975-1976 1977 1978-1979 1980 1981 1982 1983 1984 1985-1989 1990+ CO Pre-1968 1968-1969 1970-1971 1972-1974 1975-1976 1977 1978-1979 1980 1981 1982 1983 1984 1985-1986 1987-1989 1990+ NOx Pre-1968 1968-1972 1973-1974 1975-1976 1977 1978-1979 1980 1981 1982 1983 1984 1985-1986 1987-1989 1990+ 1 .63 0.76 0.71 0. 74 0.27 0. 12 0.24 0.05 0.07 0.06 0.06 0.06 0.05 0.05 15.98 1 1 .24 12.93 13.99 7.42 2.87 5.79 2.68 1 .74 1 .46 1 .44 1 .06 1 .06 1 06 1 .06 0.11 0.09 0.07 0.07 0.06 0 04 0.04 0.03 0.03 0.03 0.03 0.03 O.O3 0.03 Deterioration Rate (Gm/Min/10K Mi ) 0.03 0.06 0.07 0.04 0.07 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.4O 0.63 0.88 0.76 0.85 0.42 0.42 0.42 0.61 0.61 0.61 0.62 0 62 0.62 0.62 0.0 0.0 0.0 O.O 0.0 0.0 0.0 0 01 0.01 0.01 O.O1 0.01 0.01 0.01 * WHERE : IER ZML DR M DATE : MAY 25, 1985 » Idle emission rate * Zero mile level * Deterioration Rate • Cumulative Mileage / 10,000------- H-105 Model Year Index** TABLE 2.1.4 REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED VEHICLES Jan 1 July 1 Mileage Jan 1 Mileage Registration Accumulation Registration Accumulation Mix* Rate Mix Rate per vehicle* (fleet) Jan 1 Mileage Accumulation (fleet) 1 2 3 4 5 6 7 8 9 10 11 12 13 1U 15 16 17 18 19 20+ 0.080 0.101 0.095 0.089 0.083 0.077 0.071 0.065 0.059 0.053 0.047 0.01*1 0.035 0.029 0.023 0.017 0.011 0.008 0.006 0.008 12818. 12102. 111*27. 10789. 10187. 9619- 9082. 8575- 8096. 7645- 7218. 6815- 6435- 6076. 5737- 5416. 5114. 4829- 4559. 4305. 0.027 0.101 0.095 0.089 0.083 0.077 0.071 0.065 0.059 0.053 0.047 0.041 0.035 0.029 0.023 0.017 0.011 0.008 0.006 0.008 12818. 12639- 11933. 11267. 10638. 10045. 9485. 8955- 8455. 7983. 7538. 7H7. 6720. 6345. 5991. 5657- 5340. 5043. 4761. 4495. 1602. 9591. 21873. 33470. 44420. 54758. 64520. 73738. 82440. 90657- 98415. 105740. 112657. 119187. 125354. 131176. 136673. 141863. 146763. 151390. * Default information that may be altered by the MOBILE3 user with information about the local area. ** The indices refer to the most recent model year vehicles in any given calendar year. Index 1 references the newest model year vehicles and index 20+ references the oldest model year vehicles. DATE : MAY 25, 1985------- H-106 TABLE 2.1.5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED VEHICLES JANUARY 1, 1988 Model Years 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 197^ 1973 1972 1971 1970 1969- (A) LDV Fleet Regi strat ion 0.027 0.101 0.095 0.089 0.083 0.077 0.071 0.065 0.059 0.053 0.047 0.041 0.035 0.029 0.023 0.017 0.011 0.008 0.006 0.008 (B) Sales Fract ion 0.910 0.920 0.923 0.934 0.940 0.947 0.954 0.939 0.966 0.972 0.991 0.996 0.997 0.997 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 (A*Bj 0.024 0.093 0.088 0.083 0.078 0.073 0.068 0.061 0.057 0.052 0.047 0.041 0.035 0.029 0.023 0.017 0.01 1 0.008 0.006 0.008 (C=A*B/DAF) LDGV Reg i strat ion 0.027 0.103 0.097 0.092 0.087 0.081 0.075 0.068 0.063 0.057 0.052 0.045 0.039 0.032 0.026 0.019 0.012 0.009 0.007 0.009 (D) Annual Mi leage Accrual Rate 12818. 12639. 11933. 11267. 10638. 10045. 9485. 8955. 8455- 7983. 7538. 7117. 6720. 6345. 5991. 5657. 5340. 5043. 4761. 4495- (C*D/TFNORM) (C*D) 345-4 1304.3 1162.1 1040.2 921.8 813.5 713.5 607.0 535-2 456.7 389.9 322.8 260.4 203.7 153-0 106.8 65.2 44.8 31.7 39.9 Travel Fract ions 0.036 0.137 0.122 0.109 0.097 0.085 0.075 0.064 0.056 0.048 0.041 0.034 0.027 0.021 0.016 0.011 0.007 0.005 0.003 0.004 DAF: 0.902 TFNORM: 9518.0 WHERE : A = January 1 registration mix from Table 2.1.4. B * Fleet sales fractions D » Sales weighted fleet mileage accumulation rate from Table 2.1.4, adjusted to January 1 D(l) * Annual Miles(l) D(MYI)- .25* (Annual Miles (MY I)) -I- .75* (Annual Mi 1 es (MY I - 1)) , MY I «2 20+ NOTE : In general, the travel weighting fractions will change for every calendar year since the sales fraction (column B) changes for almost every model year. DATE : MAY 25, 1985------- r- •— O — CM co < a *- t—l h- _l < I tO 13 LU H- _J I O 1-4 a I a LU LJL > to D t- LU z a LU LU *-• 3 O O i- a. u. LL. LU LU Z (J -J O a to o < K C3 o z a o K I U O LU *-i a: -i cc o u a to 0 0 in in in >—' * # U. LU LU to \ + + to in a o TJ n in in in * * u u ^ in in LL. * # U CO CO CL X in LU to in *• t- C nj n ai •H T3 > 3 C - (0 - - 0) o n a. o r~r-r~r^r^>r-r- OOOOOOOO UJ UJ LU H' UJ LLJ UJ UJ oico — IP--OGOIP OOOOOOOO I I I I I I I I OOOOOOOO I t I I I I I I LU UJ LU UJ LU UU LU LU Otnt^LOr-coOr- TTOOCO — CMHLOO tPlBtOt~COtOt~ — OOOOOOOO OOOOOOOO O OOOOOOO i-i-i'TLnTj-LOr- OOOOOOOO OOOOOOOO i i i i i I i i ni iii Hi Hi j 11 ni Hi ni Ot-tptocncoocn coLOcooocn — tp OOOOOOOO 88888888 i^f LU QJ QJ LU LU UJ UJ CMCMCMCMCMCMCMH OOOOOOOO OOOOOOOO LU UJ LU UJ LU LU LU UJ cMcnio'-O'-oo tDr-OOcNfirJio CMCMCMCMCMCMCMCM OOOOOOOO CO U) O) o i to to r>- 0) 1 I 1 1 1 1 LULULULULULULULU lOOCDOTtnr- — coi't'-miDcM*- oooooooo 1 1 1 1 1 1 1 1 OOOOOOOO t i t i \ \ i t LU " ' " ' CU "' UJ " ' " ' r-corct-iOLOOO Of-^TLO'-CMOTf- LO^tDcn^"OOy3 r^cocoo)'-'-'-'- OOOOOOOO OOOOOOOO 1 1 1 1 1 ( 1 t COCMCVDLOCOO"- r-cocM-^cOLOOitc TLOLOlor-tDLOO) 66066666 OOOOOOOO 1 1 1 I I I I I UJ LLJ UJ UJ UU UJ LLj UJ CMCNOlDTOTOO '-'-'-'-CMCMCNCM OOOOOOOO 88888888 ++++++++ UJ i ' I 'i i UJ UJ UJ ' ' ' UJ cMCMCMCMnnnr) OOOOOOOO OOOOOOOO + + + + + + -f + 1 1 1 o i 1 1 1 uj ' ' ' UJ LJJ " ' OOOOOOOO oa tp O) OOOOOOOO OOOOOOOO OOOOOOOO I I I I I I I I LU '" LU UJ UJ UJ LU "' OoOioOcMCMin CM-r--^^^»-^I~ OOOOOOOO OOOOOOOO 111(1111 LU UJ UJ UJ LU LLJ LU LU CM*-»--a> 60000666 I I I t I I I I *-CMCM — CMCMCMM OOOOOOOO I I I 1 I I t I LU LU UJ LJJ UJ UJ LU UJ — aitc1 — t-r~r-n OOOOOOOO 88888885 OOOOOOOO I I I I I I I I o i ic u mw i_T- a. t- f- r- i ojroron »-^^t-- 01 OOOOOOOO UJ U,1 UJ LU LU LU UJ UJ OOOOOOOO CO 9 IP I- 0) 01 -f X'-cocnO'-cM'-LO O i to IP p- r~ r- i r- ^ t. <-> X L. —• 10 10 O ^ O X t- 3 O ^ C n 0 u a a) in t, ^ •M O in — 3 V —i (8 T3 t. « V a • - o T3 OJ *- (V (- a ra m v in JT 3 O an £ E 0) ^ O «- 0 O TJ i. ai a c o; o a.*' — in in -H U u tu -H ro at i. a o «- t. — 01 U) T3 > ra c 15 JO 10 T3 re in in LU a I in co < a ------- < r- CO o o: O Z m UJ -I « O U. UJ u. > UJ O O U uj uj a a a: D uj 01-3 h- « O U I- 0. < -I U. < UJ O O -I l-l 1-4 O I- X in O < I]J ^J a: OJ > O K U 3 a cc UJ a. O in a o o co X c^ 0) & 01 in •H in 3 01 O 1— — 1 C O• o a. O O 0 O O 0 0 1 1 1 1 1 1 1 tit lit UJ Ut ttl il 1 til 05 to 10 O i- r~ in 01 i ic CN o> 01 ic r~ co ic co CM CM IN TT in 1C CM Tf TT CO en t» t- »- CN CM r~ o o 6 6 o o 6 CN CO CO CM CM CN CN O O O O O O O i i i i i i i UJ UJ U ' " ' I' 1 1 1 1 1 1 1 *- T 01 *- CN O O co oo in co CN CD in 800 (O t- CN 1C 1C ID CO 01 ID CN O o o o o o o o t t 111 O O O O O O O t i i t i i i lit 111 II 1 it 1 UJ U t ^1 1 en t- in co en cn r- *- (S> CN oo i- r- CM CN -r- — — O O O O O O O 1 1 1 1 1 1 o o o o o o o 1 1 1 1 1 1 1 1 1 1 ii I nj ti 1 uj ii t ^ co CN in r- r- co o CM ID in CM *- en oo §^r CM •» in t- oo t — »- n r- co CM CM CM CN CM CN CO o o o o o o o 1 1 t 1 1 1 I 00 01 *•" ^ 01 tc U? r*- r^ p* en en en o 01 + i i i i i co oo 8) oo o CM in en o> i- 1C I- r- r- — «- CL 0) O) 01 01 U o o o o o o o i i i i i i i UJ UJ *' ' ILJ UJ UJ n i Tf CD CO CO 01 01 01 -- r- oo rr n n o O *• t co ^ ^f 01 *- in oo in »- •*• (o i- CM CM cs co co en O O O O O O O CM CN CN CM CM — — O O 0 0 O 0 O i i i i i i i \J t III III III 1 J 1 Ul 1 f 1 t- 01 n CM CO — *- cn t in ea in r- in O t- CM en in co 01 *- in oo r- *• O *- O O O O O O O 1 1 1 O O 0 O O O O 1 1 1 1 1 1 1 U UJ UJ UJ UJ UJ UJ CM in <") r~ t- t~ *- U3 03 O — C5 0 U3 t cfl U) t~- in in oo t~ i n ^- co co n CO «J CN CM >t •» — O O O O O O O CM CN CN n CM ••- •— O O O O O O O i i i i i i i UJ UJ LU LLJ LU UJ ii ' T cn »- o ic en n co co in t~ co oo *- r- CN cn n co r- oo in m en CN oo t- oo *- *- in ^r oo »• »- O O O O O O O i i i i i i O O O O O O O 1 1 1 1 1 1 1 1 1 1 I II 1 1 1 n 1 I; 1 Ii t Ii I «• r- in u) CM CN ic cn us ic T *- *- oi u) r- «- *- ic ID in v ao *- n a) oi CM »• P3 CM — *- T- — O O 0 0 O 0 O 1 1 1 1 1 t 1 o o o o o 1 1 1 1 1 UJ UJ LU LU UJ UJ UJ t— I— t~ (p r: >- in o o 00 CM tj- 01 CO 2 Z •* -^ eo O co n »- O cn rr ai oi i- CM CM -r- CM 0 01 O O O O O I I I I I co cn •*" ^t 05 (C IP r- r- t- Ol 05 01 0> Oi + I 1 1 1 1 CO O di co o CM m cn o> u «i r- r~ r- -^ *- a. 01 o) CT> 0) O u O 0 O O 0 0 O 1 1 1 1 1 1 1 ii i n t i ^f QJ uj UJ UJ cn co CM o co co O n O T r~ c~ t>- co co *- O T co co co O O oo in O O oo ••- •*- »- r~ CM CM CM O O O O O O O i i i i i i t CM CM CS CO CM CM CM O O O O O O O 1 1 1 1 t 1 1 n i ii i uj ii ' ii i UJ UJ O O co co oo O O co cn co in oi »- in m to — — — co (c CM CM " co ^r in in O O O O O O O 1 1 1 1 1 1 1 o o o o o o o 1 1 1 1 1 1 1 UJ UJ ii ' UJ 1 1 ' UJ UJ in 10 in o co co «- CM 1C CM "- O O f- CO *t O) O> 10 (SI CO t- CN o r- co co in co o> •*" co •»" ••- n 89245E-02 -0 59791E-O2 -O 24156E-02 -O 12575E-02 -0 68045E-O2 -O 67130E-O2 -0 65050E-O2 -0 O O O O O O O I 1 I I I I I o o o o o o o 1 1 1 1 1 1 1 1 1 1 1 1 1 uj UJ UJ UJ " ! *• cn " O co co (B t oo o CM in in '- co co co *r — — rr CO O CO »- 1C ID t co »• i- r- CN CM co O O O O O O O iiitii O 0 O O O O O 1 1 1 1 1 1 1 tn uj uj UJ UJ UJ UJ r- T in t T O O cn t- in o i *• *- co o co in o — t- up in oo in 10 o co — CN n TT t~ co in O O O O O O O t i iiii co CM ^T 10 cn 10 r- r- [»• t- 01 cn o) 01 cn + I I I 1 I CO CO \r> t~ a> o> i. 1C t* t- ("- "- *- o. cn CD 01 cn X . 4^ C 10 2 _ ,— o a 0) (0 t_ a o ^ a. a (0 t. 0 (^ t_ o o (0 c o 4^ u 01 L O o o) 3 (0 L. 01 a a> i- n ^^ a u. o i— a 4.1 c 01 E O 0! in 4^ in 01 £_ O (J^, t. C- *Q 0) ^- 01 TJ O E •o C (0 - 0> s_ 3 4-1 10 c. 01 a E 0) 4-1 C eg i 10 *~* +1 — 0) r c 0> L. ^ 1C u. 01 L. 3 (0 01 a 01 4^ C 0) E II t- • c 10 4-t 3 "o a 01 1 II +rf 01 in i^. 14- o o u •^ 01 n m j_ o 14- T3 0) in 3 ^ 01 13 O E 4^ 0) in 14- 14- 0 CM in CO 01 . in CM >. < Z X § 2 ------- H-109 TABLE 2 1.78 NORMALIZED BAG FRACTIONS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED VEHICLES Normalized Fractions Pol HC CO NOx NOTE : Model Years Pre-1968 1968-1969 1970-1971 1972-1974 1975-1979 1980 1981 1982 1983 1984 1985-1986 1987-1989 1990+ Pre-1968 1968-1969 1970-1971 1972-1974 1975-1979 1980 1981 1982 1983 1984 1985-198S 1987-1989 1990+ Pre-1968 1968-1972 1973-1974 1975-1976 1977-1979 1980 1981 1982 1983 1984 1985-1986 1987-1989 1990+ Test Seg.*l Test Seg.*2 1 . 1 . 1 . 1 . 1 . 2. 2. 2. 2. 2. 2. 2. 2. 1 . 1 . 1 . 1 . 1 . 2. 3. 3. 3. 3. 3, 3. 3. 1 . 1 . 1 . 1 . 1 . 1 1 . 1 . 1 . 1 1 . 1 . 1 . The fractions 81 D1 82 282 0.025 0.973 345 0.074 0.946 345 0.178 0.919 398 0.060 0.885 856 0.345 0.765 200 0.714 0.571 654 0.96O 0.383 609 1 . 101 0.387 613 1.097 0.384 6O3 1.285 0.372 617 1.173 0.371 634 1 . 104 0.368 639 1 051 0.368 277 0.033 1 .017 442 0.071 0.996 553 0. 109 0.933 573 0.054 0.902 792 0. 177 0.882 4O3 0.278 0.649 724 1.325 0.0 854 2.041 0.0 865 2.030 0.0 959 2.285 0.0 946 2 124 0.0 941 2.009 0.0 935 1.940 0.0 121 0.009 0.785 D2 0.028 0.054 0. 1 18 0.055 0.233 0. 171 0.375 0.435 0 443 0.529 0.510 0 499 0.489 0.029 0.042 0.079 0.079 0. 157 0.061 0.792 1 . 152 1 . 153 1 . 351 1 .254 1 . 186 1 . 144 0.001 199 -0 004 0.793 -0.002 262 0.022 0.770 297 0 012 0 781 371 0.040 0 766 313 0.047 0810 752 0.129 0.737 652 0 121 0.768 725 0. 137 0. 728 817 0. 167 0.707 818 0.167 0.707 83O 0.169 0.703 830 0. 169 0.704 given in this tabl 0.004 0.004 0.046 0.034 0. 123 0. 1 15 O. 129 0. 148 0. 148 0. 149 0. 149 e are Test B3 0.839 0.842 0.894 0.919 0 802 0.914 0.929 0.957 0.958 0.989 0.981 0.973 0.969 0.758 0.674 0.711 0.755 0.628 0.621 0.853 0.755 0.746 0.675 0.686 0.689 0.694 1.319 1 .245 1 .242 1 . 194 1 . 166 1 . 125 0.935 0.951 0.973 0.942 0.942 0.939 0.939 used in operating-mode/ temperature correction factor WHERE OMTCF TERM1 TERM2 TERM3 DENOM W X TCF(D) = = ± = = = = ((TERM1 + TERM2 + W «TCF( 1 )«(B1 ( 1-W-X)-TCF(2)"(B2 X -TCF(3)*(B3 BO + DO-M Fraction of VMT in Fraction of VMT in Seg.#3 0 0 0 0 0 0 0 0 0 0 0. O 0 0 0 0 0 0 0 0 1 1 1 1 1 0, -o 0 0. 0 0, 0. 0. o. o. 0. 0. 0. 0. D3 .019 .048 .093 .036 . 196 . 143 ,31O .365 .367 .417 .404 . 391 .385 .025 .033 .038 .029 . 109 .076 .659 .010 .007 . 163 .081 .014 ,979 .009 .006 .027 .016 .063 ,054 173 , 162 183 219 219 222 222 the cal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Total Test 80 .OOO .000 .000 .000 .OOO .000 .000 .OOO .000 .OOO .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 OOO cul at 0 0 0 0, 0 0, o 0 0 0 0, 0 0 0, 0 0 0 0, 0 0 1 1 1 1 1 1 0 0 0, 0 0 0, 0. o. 0, 0. 0. 0. 0. i on DO .025 .056 . 124 .051 .246 ,274 ,478 .553 .557 .654 ,618 .594 .577 .029 .046 .074 .060 . 148 . 110 .865 .296 ,294 .492 .386 .308 .263 .0 .0 .014 ,O09 .049 ,042 . 138 , 129 , 145 172 172 173 173 of the (OMTCF) . TERM3)/DENOM) +01 *M) +D2"M) +D3*M) the cold start the hot start - Temperature correction factor for mode mode pol lutant , model year; for test segment b M st Cumulative mileage / 10. 000 DATE : MAY 25, 1985------- H-1 10 TABLE 2.1.8A AIR CONDITIONING CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED VEHICLES ft ACCF= U*V*(A + B*(T-75) -1) + 1 Model Years Pre-1975 1975+ 0. 0. A 1023E+0 1000E+0 HC 1 1 0 0 B •3344E-02 .3512E-02 CO B 0.1202E+01 0.1808E-02 0.1130E+01 0.1528E-02 NOx B 0.1299E+01 0.5643E-04 0.1221E+01 0.4262E-03 ft WHERE ACCF V U Dl DILO DIHI 08 WB T Air Conditioning Correction Factor Fraction of vehicles which are equipped with AC Fraction of vehicles with AC that are using it = given i n Table 2.1.88 (D!-DILO)/(DIHI-DI) , Discomfort index = (DB+WB)ft.4+15 The highest discomfort index where no AC is used The lowest discomfort index where all vehicles with AC use it Dry bulb temperature (Fahrenheit) Wet bulb temperature (Fahrenheit) Ambient temperature (Fahrenheit) TABLE 2.1.8B ESTIMATED FRACTION OF HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED VEHICLES EQUIPPED WITH AIR CONDITIONING Model Years Pre-1962 1962-1964 1965-1966 1967-1968 1969-1971 1972-1976 1977+ Fraction Equipped With Air Conditioning 0.07 0.14 ,24 • 37 0.51 0.61 0.72 0. 0. DATE : MAY 25, 1985------- H-n i TABLE 2.1.9 EXTRA LOAD CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED VEHICLES * XLCF = (XLC-1)*U + 1 Model Years Pre-1968 1968-1969 1970-1971 1972 1973-197^ 1975+ Coeff HC 1.0786 1.01+95 1.0852 1.0556 1.0556 1.0^55 i ci ents CO 1.2765 1.138U 1.2478 1.1 3^7 1. 13^7 1.3058 (XLC) NOx 0.9535 K0313 1.0313 1.0313 1.0753 1.0719 WHERE XLCF » Extra load correction factor U - Fraction of VMT with an extra load XLC = Correction factor coefficient TABLE 2.1 .10 TRAILER TOWING CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED VEHICLES * TTCF = (TTC-l)ftU + 1 Model Coefficients (TTC) Years HC CO NOx Pre-1968 1968-1969 1970-1971 1972 1973-197** 1975+ 1.26U* 1.2762 1.1*598 1 .7288 1 .7288 1.5909 1.9327 1 .891*0 2.4753 2.11+11* 2.11+11+ 3-9722 1.1181+ l .1381+ 1.1381* l . 1381* i .2170 1.3875 WHERE TTCF * Trailer towing correction factor U * Fraction of VMT towing a trailer TTC = Correction factor coefficient DATE : MAY 25, 1985------- H-1 12 TABLE 2.2. 1A EXHAUST EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I (RATES REFLECT ZERO TAMPERING) * BER = ZML + (DR * M) Pol HC CO NOx Model Years Pre-1968 1968-1969 1970-1971 1972-1974 1975-1976 1977 1978 1979-1980 1981 1982-1983 1984 1985-1986 1987 + Pre-1968 1968-1969 1970-1971 1972-1974 1975-1976 1977 1978 1979-1980 1981 1982-1983 1984 1985-1986 1987 + Pre-1968 1968-1972 1973-1974 1975-1976 1977 1978 1979-1980 1981 1982-1983 1984 1985-1986 1987 + Zero Mile Emission Level (Grams/Mi le) 9. 5. 4. 4. 3. 1 . 3, 1 . 1 . 1 . 0, 0. 0, 117. 85. 79 75. 58 22 53. 29 29 19. 12 8 7 1 2 1 1 2 1 1 1 1 1 1 O 35 .60 58 .58 .40 60 53 ,81 .81 .08 .72 55 .62 . 70 .54 .64 63 .01 .86 .57 .83 .83 .75 .95 .88 . 74 .96 .91 .91 .88 .25 .88 .02 .02 .74 .74 .74 .86 Deterioration 50,000 Mile Rate Emission Level (Gm/M1/10K Mi ) (Grams/Mile) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0 0. 0. 2. 2. 3 2. 2 2 2 2 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 18 .25 37 , 17 ,27 27 27 .27 19 , 19 . 13 07 07 .25 .25 . 13 .44 .59 .59 .59 .59 . 13 . 13 .98 .49 .56 .0 .0 .04 .03 .03 .03 .09 .09 .09 .09 .04 04 10. 6. 6. 5. 4 2. 4 . 3 2. 2 1 0, 0. 128 96 95 87 70 35 66 42 35 25 17 11 15 1 2 2 2 2 2 1 1 2 2 1 1 25 .85 43 43 .75 95 88 . 16 76 .03 .37 .90 .97 .95 .79 .29 .83 .96 .81 .52 .78 .48 .40 .85 .33 .54 .96 .91 . 1 1 .03 .40 .03 .47 .47 . 19 . 19 .94 .06 WHERE : BER « Basic emission rate (untampered) ZML » Zero mile level DR = Deterioration rate M = Cumulative mileage / 10,000 DATE MAY 25, 1985------- H-1 13 TABLE 2 .2. 1B EXHAUST EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I AT VARIOUS MILEAGE INTERVALS (RATES INCLUDE TAMPERING) Pol HC CO NOx Model Years Pre-1968 1968-1969 1970-1971 1972 1973-1974 1975 1976 1977 1978 1979-1980 1981 1982 1983 1984 1985-1986 OK 9 5 4 4 4 . 3 3. 2 3 2. 2. 1 . 1 , 1 1 .35 .60 .58 , 59 .60 .83 .89 .06 .99 .30 .40 .63 ,61 .22 .05 20K g 6. 5 4 . 4 . 4 4 . 2 4 3. 2 2 2. 1 1 .71 . 1 1 .32 .93 .96 .53 .60 .75 .69 ,O1 .97 . 19 . 16 .62 .33 Emission Rate 40K 60K 1O. 6. 6 5. 5. 5 5. 3 5 3. 3 2 2 2 1 . .07 62 .06 .28 32 .21 .31 .44 .38 .71 .54 ,74 .70 .02 .62 10. 7. 6 5. 5. 5 6. 4 6 4 4 3 3 2 1 .43 13 .80 .62 68 .90 .01 .13 .07 .42 . 1 1 .30 .25 .42 .91 (Grams/Mi le) 80K 1 OOK 10 7. 7 5 6. 6 6 4 6 5 4 3 3 2 2 .79 .64 .54 .97 .04 .58 .71 .81 .76 . 12 .68 .85 .80 .83 . 19 1 1 . a. 8 6. 6. 7. 7. 5 7 5. 5 4 . 4 3 2 14 15 .28 ,32 40 .27 ,41 .50 .45 ,82 .24 ,41 .34 .23 .48 120K 1 1 8 9 6 6 7 8 6 8 6 5 4 4 3 2 .50 .65 .02 .66 .76 .95 . 1 1 . 19 . 14 .53 .81 .96 .89 .63 .77 140K 1 1 . 9. 9 7. 7, 8 8, 6 8 7 6 5 5 4 3 86 16 .77 ,01 , 12 .64 ,81 .87 .83 .23 .38 .52 .44 .03 .05 1987+ 1 01 1 .26 1 .52 1.78 2.03 2.29 2.55 2.80 Pre-1968 1968-1969 1970-1971 1972 1973-1974 1975 1976 1977 1978 1979-1980 1981 1982 1983 1984 1985-1986 117 85 79 75 76 64 64 27 59 35 36 25 25 17 13 .68 .61 .72 .79 .09 ,07 .61 ,90 .73 .39 .22 .45 .24 .69 .56 122. 90. 86. 80. 81 . 71 . 71 . 34 . 66 42. 40. 29. 29. 21 . 16 12 1 1 06 86 48 25 94 87 88 ,65 .60 .66 .37 .23 . 12 126 94 92 85 86 78 79 41 73 49 44 33 33 24 18 .56 .62 .40 .93 87 .37 .20 .83 .96 89 .97 .86 .49 79 .69 131 99 98 90 92 85 86 48 81 57 49 38 37 28 21 .00 . 13 74 .99 .27 .44 .42 .80 .01 13 .31 .06 .61 .35 .27 135 103 105 96 97 92 93 55 88 64 53 42 41 31 23 .45 .64 .08 .06 .66 .48 .61 .76 .03 .36 .63 .24 . 71 .92 .85 139. 108. 111. 101. 103. 99. 100 62. 95. 71 , 57, 46, 45, 35, 26, .89 16 ,42 12 ,05 5 1 79 72 03 .58 95 .42 81 .48 ,43 144 , 1 12 . 1 17. 106 . 108 . 106. 107. 69. 102 . 78. 62. 50. 49. 39. 29. ,34 68 76 . 19 43 53 ,95 68 03 ,80 .26 .60 91 05 01 148 1 17, 124 111 1 13 1 13 115 76 109 86 66 54 54 42 31 .79 .20 . 10 .25 .82 .54 . 10 .64 .01 .02 .56 .77 .00 .61 .59 1987-1 11.33 15.68 20.04 24.41 28.77 33.13 37.49 41.85 Pre-1968 1968-1972 1973 1974 1975-1976 1977 1978 1979-1980 1981 1982 1983 1984 1985-1986 1987 + 1 2 1 1 2 2 2 1 1 1 1 1 1 1 .96 .91 .96 .97 .03 .40 .03 . 19 . 19 92 93 .95 .95 . 19 1 2 2 2 2 2 2 1 1 2 2 2 2 1 .96 .91 .08 .09 .21 .58 21 52 .52 .25 .26 .28 . 18 .39 1 2 . 2. 2 2. 2 2 1 , 1- 2 2 2 2 1 .96 c ; .2^ .22 .39 . 76 , 39 .85 .85 .58 .59 .62 .42 .59 1 2 2 2 2 2 2 2 2 2 2 2 2 1 .96 91 .33 .35 .57 .94 57 . 18 . 18 .91 .93 .95 .65 .80 1 2. 2 2 2 3 2 2 2 3 3 3 2 2 .96 .90 .45 . 48 .75 . 1 1 .75 . 51 .51 .24 .26 .29 .89 00 1 , 2 . 2 2 2 3 2 2 , 2 3 3 3 3 2 .96 ,90 .57 .60 ,93 .29 .93 .84 .84 .56 .59 .62 . 12 .20 1 . 2. 2 . 2, 3 3 3. 3. 3 3, 3 3 3, 2, 96 90 .69 ,73 1 1 .47 , 1 1 17 , 17 89 ,92 .95 .36 . 41 1 . 2. 2 2, 3. 3 3 3 3 4 4 4 3 , 2 96 90 .82 .86 29 .64 .29 .50 .49 .22 .25 .29 .60 .61 DATE : MAY 25, 1985------- H-114 TABLE 2.2.1C CRANKCASE AND EVAPORATIVE HYDROCARBON EMISSIONS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I (RATES REFLECT ZERO TAMPERING) ** CCEV = (HSK * TPD + DNL)/MPD + CC Model Years Pre-1963 1963-1967 1968-1970 1971 1972-1976 1977 1978-198! 1982-1983 1984 1985 1986 1987 1988-1989 1990+ SHED Hot Soak Emi ssions (Gm/Tr i p) 29-18 29-18 29.18 20.99 20.96 12.32 10.31 10.31 4.67 4.16 3-65 3-21 2.67 2.37 Tr i ps* Per Day 3.05 3.05 3-05 3.05 3-05 3.05 3-05 3.05 3-05 3-05 3-05 3-05 3-05 3.05 SHED D i urnal Emi ss ions (Cm/Day) 62.38 62.38 62.38 50.15 44.93 23-53 24. 11 12.10 12.10 12.10 12.10 12.10 12.10 12.10 Miles* Per Day 26.30 26.30 26.30 26.30 26.30 26.30 26.30 26.30 26.30 26.30 26.30 26.30 26.30 26.30 Crankcase Emiss ions (Gm/Mi le) 5.29 1 .03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Crankcase and Evap. Emi ss ions (Gm/Mi le) 11.05 6.79 5-76 4.34 4.14 2.32 2.11 1.66 1.00 0.94 0.88 0.83 0.77 0.73 * Default information that may be altered by the MOBI user with information about the local area. ** WHERE : CCEV = Total untampered Crankcase & evaporative HC emissions (Gm/Mile) HSK = Hot soak emissions (Gm/Trip) TPD = Trips per day DNL = Diurnal emissions (Gm/Day) MPD = Miles per day CC = Crankcase emissions (Gm/Mile) DATE : MAY 25, 1985 LE3------- H-115 TABLE 2.2.ID TOTAL CRANKCASE AND EVAPORATIVE HC EMISSIONS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I AT VARIOUS MILEAGE INTERVALS (RATES INCLUDE TAMPERING) Model Years Pre-1963 1963-1967 1968-1970 1971 1972-1974 1975-1976 1977 1978-1979 1980 1981 1982 1983 1981* 1985 1986 1987 1988-1989 1990+ OK 11.05 6.79 5-87 4.50 ^.35 4.34 2.53 2.28 2.27 2.27 1.81 1.81 1.14 1.07 1.01 0.95 0.87 0.83 20K 11.05 6.79 5.89 4.53 4.38 4.38 2.56 2.31 2.30 2.29 1.84 1.83 1.17 1 .10 1 .03 0.97 0.89 0.85 Emi ss i 40K 11.05 6.79 5.91 4.55 4.42 4.41 2.60 2.34 2-32 2.32 1.86 1.86 1.19 1.12 1.05 0.98 0.91 0.87 on Rate 60K 11.05 6.79 5.93 4.58 4.45 4.45 2.63 2.37 2.35 2-35 1 .89 1.88 1 .21 1.14 1.07 1 .00 0.93 0.88 (Grams/Mi le) 80K 100K 11.05 1 6.79 5-95 4.61 4.49 4.48 2.67 2.40 2.38 2.37 1.92 1.91 1.24 1.16 1.09 1.02 0.94 0.90 1.05 6.79 5-96 4.63 4.52 4.52 2.70 2.43 2.40 2.40 1 .94 1-93 1.26 1.18 1.11 1 .04 O.g6 0.91 120K 11.05 6.79 5.98 4.66 4.56 ^.55 2.74 2.46 2.43 2.43 1.97 1 .96 1.29 1.21 1.13 1 .06 0.98 0.93 140K 11.05 6.79 6.00 4.69 4.59 4.59 2.77 2.49 2.46 2.45 2.00 1.98 1.31 1.23 1.15 1.08 0.99 0.95 DATE : MAY 25, 1985------- ID CO Ol If) CN < a 1-1 in H l/i < -1 ^ O x a < C3 i— a UJ c8 cc a: o LU a. < u. 3 < CM o > 1/1 a. LU CM —) LU UJ CO CM > Z UJ UJ *-t Q LU -J _l D -J O -J CD 2 Ul U < O < 2 UI >- — f- U z a i LU O _1 K I- < C/) I H 3 C3 O X LU 10 I I (0 T3 10 C. CO HI Ol If) >co I. O) oioioioioiaioioioioioioioiaioioioioioioi OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIO oioioiooioioioioioioioioioioicnoioioio) O1O)O101O101(7)O1O)O1010101O1CJ101O1O)01O1 OIOIOIOIOIO^OIOIOICJIOIOIOIOIOIOIOIOIOIO) oioioioicnoioioioioioioicnoioioioioioioi OIOIOIOIOIOIOIOIOIOIOIOIOIOICDOIOIOIOIOI 8 8 (. (0 13 CO C O) U 01 a u t. 01 nj - C 10 0) iou3U)(j3ujco(j3tor»r»rs-r-r»r»r~i>-r^r«.co 0)0)010)0)010101O)O1010)0)010)CJ)0)0)0) cocococococoaiaioioiaiaiojoioioiOOOO oiaiaioiaioicncioiaioioioioioiciOOOO cocococacococooioiooioioioioioioiooo OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOOO »-»--r-»-^-^-'»-i-.|-T-»-,-^-~,-*-i-CMCMCM iDinc'5Ooicof*r-t0uiinTrncM-'--—Ocof-t~ COCOCOCOCOCOCOCO01O)01O1O1O1O)010)01QO OlOlOlOIOlCJIOlOlOlOlOlOlOlOlOlOlOlOlOO ^»-»-t-»-»-»-i-'.-»-»-T-»-'.-*-»-»-»-C^eM coinTj-cMcico«if-(flinLri<±r>cM"-*-ocor-t- CQCOCOCOCOC0COCGCOO101O1O1O)O10*10101O) COCOOOCOOOOOOOCQOOCOO1O)01O)O1O>O)O)O)O) O1O1O1O1O101O1O1O)O1O)O)O1O10)O>O1O)O>01 r-cocoaococccococococooioioioioioicnoioi r~i~-oocococoixiooeooooocO(J)OiO)Oioioiaioi O)O)O1O1O}O1C1O101O1CT)O1O)01O1O1O)O1O101 OlOOlCOr-lDLOrOCMCMCNCMCMCNCMCMIN''--'-'— CQCOCOCQCQCOCOCOCOCOOIOIOIOIOIOIO) OcMcoait-noicocor-inmncn — — ocor~t~ r*-r**t*~^cooococococococococoo)G)oiO}O)O) O)CnO101OlOlO)Olff)O101O)OJO)OlO)OlO>O)Ol l^t>^r^^COCOCOCOCOCOCQCQcOCOOlOlOlO)Ol OIOIOIGIOIOIOIOIOIOIOIOIOIOIOIOJOIOIOIOI 0) in 01 •- r -o — t- ai is • > 3 C. (0 C 10 t. <0 >, I- 0) c z c «>•(-• ?.c 0) O O Ifl S« "D U IB 0) • tn com Q) OJ JD — . Q) Olu. t- ffl (l) in r 0) in •H 0) C t- O ^ O in in "i (. u 3^ . C ui v 0} (- i- -3 a C I a O o. Z *• « O >- U) L. * 01 w L *" c cj in O Z •D - *. O T3 O [-00 O • • in£- (0 C ova »** in > 13 c 01 0) •- «- in ro i- 01 — Z I- 3 > 3 O Ol fll O s- S« C 01 *- O ^t^t^t^r^r^cococococooococococooioioioi 0) 0) •H +J in in 0) o> +•> v U U •5 5 C £ — • 3 0? ^ E 0) 10 U I/I 10 C O ^ Q) - - O) in o (0 EC- MCMCMCNOOOOOOO(OininnCMWCMO(P('-'-'- i^r~t~r-t^r-f~oococooocoeococooocoaiO)Ol ------- in a a> in CM < a oa cv CN CN m a < o X a X Q UJ a a. O UJ U. 3 o to a. _i UJ UJ O o < 1-1 U 01 1/5 > Z 3 UJ Q |5 X " x UJ I Xco !- 05 10 - (0 •3 05050505050505O)O5C3505O5O)a5O5O5CT)O)O5O5 O505O505O50505O5O5O5050505O5O5O5O5O5O505 r-r~r-r-r-r-t-r-r-t~cocococooocococococo 05C550505O505O5O505O5O505050505O50505O505 8 O50)O5O5O5O5O5cn05O50505O5O505O5CT5O5O5O5 in ^ i CN CN I 05050505O505050*5050505O505O505O505O505O5 0505O5O505O5O5O"5O505O5O5O)O5O5O505O5CJ5O5 0505050505O)O5O5O5O5O5O5O5O5O5CT)O5O5cno5 05O)CT)O)CJ5O5050505050505O5O50505O5C55O5O5 0505O5O5CDO505O5O5O5O50505fl5O5O5O505O5O5 0505O5O505O5O505O50505050505O50505O5O505 0505O5O5C)5O505C75050505050)05050501O5O5O5 t. 10 T3 X C 05 0) 05 (0 (J r- >0> i. 05 <0 — 3 C 10 -3 iflU3tBiClOtOU>u3U3r~f*t^f-t*-r-r-r~r-f-co 0)010)05C)505d50)050505O505050505050505O5 W'-'-OrOr'SCOCNCNCNCNCNCNCN — '-"-•'- COCOCOCOOOCOO5O5O505d50505050505OOOO <-T-,-.-,-.r-i-^i-.-'^.T--^T-'1--~ CN CN CN CN COCOCOCOCOOOCO05O505O505O5O5O5fl505OOO r-»-f-i-.-»-'r-»-*-»-i-i-i-.i-.-T---CMC«OI Ocncnt^iii — ooscor^inTcsocoiDTCNOTco - - cocooococococoaoO505O5O50505O505O5G5OQ O505O5O5C5a5C5C5C5O5O5O50505O)O5O505OO (oaicnoocou>u>inoor>inTrcNOco(()^rcNO>oa COCOOOCOCOCOCOOOCOOOO)0)O)01O)0)010)07J) r-oocooococcxcoaocococncno)0)0)O)a)O (IM'-^-<--r- 01 - .c -o — L 01 Q ,'Si 10 U 10 t- z r (0 > -H !.c » O 0 « ss ^) u u> 41 c o (OKI. -3 (0 o a Z v >- 1C £ o z T3 - «- O T3 O E C O o^ t- o n 0 — 01 CN 01 -H -a • ai u n — ,. ai in • — C 10 T3 J3 O JO 01 (0 N K O -H 0) innOoi'-inniniDOinOincoaioouJnr-o — T3 E 0) E - • 10 3 C C. O (0 O> — 01 (0 O5 — 10 01 0) I- t- C OJ Ifl Z t- > 3 Ol •*- -^ O *- ^- o f^r*.r*-r*r»*cococooococococococoo50505O505 o> 1010 "" *- E t. 3 10 O '-OOU>O5(J310TC5COCN^'-CN '-«-OOl005UJlBTr5(DrM'-'-^'-'-'- f-t~p-t~r»t~r~coooooeoooooooeoeoooo)0)0) 41 01 01 r £ > •H •*•* 05 in en 01 D C v +^ O (Q (0 'f~ O O in -- — in •0 -O - C C E i i i i > UJ Z » * * in a •O 01 - Ol 0 (0 U 01 c - ------- H- 1 19 TABLE 2.2.3 IDLE EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I * IER = ZML + (DR » M) Pp.1 HC CO NOx Model Years Pre-1968 1968-1969 1970-1971 1972- 1974 1975-1976 1977 1978 1979-1980 1981 1982-1983 1984 1985-1986 1987+ Pre-1968 1968-1969 1970-1971 1972-1974 1975-1976 1977 1978 1979-1980 1981 1982-1983 1984 1985- 1986 1987 + Pre-1968 1968-1972 1973- 1974 1975-1976 1977 1978 1979-1980 1981 1982-1983 1984 1985-1986 1987 + Zero Mile Emission Level (Grams/Min. ) 1 .63 0.76 0.71 0.74 0.33 0. 15 0.30 0.06 0. 10 0.07 0.04 0 04 0.04 15.98 1 1 . 24 12.93 13.99 7 . 76 3.00 6.05 1 .52 2.27 1 .72 0.69 0.49 0.49 0. 1 1 0.09 0.07 0.02 0.02 0.01 0.01 0.06 0.06 O.O5 0.02 0.02 Deter iorat ion Rate (Gm/Min/10K M1 0.03 0.06 0.07 0.04 0.06 0.06 0.06 0.02 0.02 0.02 0.01 0.01 0.01 0.40 0.63 0.88 0.76 0.72 0.72 0.72 0.32 0.27 0.24 0. 14 0.28 0.28 0.0 0.0 0.0 0.0 0.0 0.0 O.O 0.0 0.0 0.0 0.0 0.0 • WHERE : IER ZML DR = M DATE : MAY 25, 1985 Idle emission rate Zero mile 1evel Deterioration Rate Cumulative Mileage / 10,000------- H-120 TABLE 2.2.4 REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I Jan 1 Model July 1 Mileage Jan 1 Mileage Year Registration Accumulation Registration Accumulation Index** Mix* Rate Mix Rate per_truck * (fleet) 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 11935- 11069. 10266. 9521. 8830. 8189. 7595- 7044. 6533. 6059- 5619- 5211. 4833- 4483. 4157. 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 12635. 11718. 10868. 10080. 9348. 8670. 8040. 7457. 6916. 6414. 5949. 5517. 5116. 4745. 4401. Jan 1 Mi leage Accumulat ion (fleet) 1 2 3 4 5 0.067 0.085 0.081 0.077 0.073 17394. 16132. 14961. 13876. 12869. 0.022 0.085 0.081 0.077 0.073 17394. 17078. 15839. 14690. 13624. 2174. 13006. 29456. 44713. 58862. 71986. 84156. 95444. 105912. 115621. 124625. 132976. 140720. 147903. 154565. 160744. 166474. 171787. 176716. 181287. * Default information that may be altered by the MOBILE3 user with information about the local area. ** The indices refer to the most recent model year vehicles in any given the newest model year the oldest model year calendar year. Index 1 references vehicles and index 20+ references vehicles. DATE : MAY 25,------- H-121 TABLE 2.2.5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I JANUARY 1, 1988 (A) (B) Mode] LDT1 Fleet Sales Years Reg i strat ion Fract ion (C=A*B/DAF) LDGT1 Reg i strat ion (D) Annual Mi leage Accrjjal Rate (CAD/TFNORM) Travel (C*D| Fractions 1 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 1974 1973 1972 1971 1970 1969- 0.022 0.085 0.081 0.077 0.073 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 0.760 0.790 0.820 0.840 0.870 0.900 0.920 0.940 0.966 0.972 0.991 0.995 0.997 0.998 1.000 1 .000 1 .000 1 .000 1 .000 1 .000 0.017 0.067 0.066 0.065 0.064 0.062 0.060 0.057 0.055 0.052 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 DAF: 0.876 0.019 0.077 0.076 0.074 0.073 0.071 0.068 0.065 0.063 0.059 0.054 0.050 0.046 0.041 ".037 0.032 0.027 0.023 0.018 0.027 17394. 17078. 15839. 14690. 13624. 12635- 11718. 10868. 10080. 9348. 8670. 8040. 7457. 6916. 6414. 5949. 5517. 51 16. 47^5. 4401 . 337.1 1309.6 1201.4 1085.0 988.1 896.0 800.2 711 .6 633-8 5^9-9 470.9 402.0 339.6 283.8 234.4 190.2 151.2 116.9 86.7 120.6 0.031 0.120 0.110 0.099 0.091 0.082 0.073 0.065 0.058 0.050 0.043 0.037 0.031 0.026 0.021 0.017 0.014 0.011 0.008 0.011 TFNORM: 10909.0 WHERE : A = January 1 registration mix from Table 2.2.4. B = Fleet sales fractions D * Sales weighted fleet mileage accumulation rate from Table 2.2.4, adjusted to January 1 0(1) » Annual Mi les(l) D(MYI)= .25*(Annual Miles(MYI)) + .75*(Annual Mi 1 es (MY I - 1)) , MY I =2, . . ., 20+ NOTE : In general, the travel weighting fractions will change for every calendar year since the sales fraction (column B) changes for almost every model year. DATE : MAY 25, 1985------- CN CN CN »- CN a 3 t- »H i- _i < i <-> a « i/i x * u CX D o o: wi a I— LU Z ex LU LU 1-1 3 U O HH a u. U. LU UJ Z O «-> CJ -I o CX 1/1 o < (- O o z c o £ X o o LU l-t ex o CJ a i/i 0 u XT3 > 3 C — IB — — 0) O 13 a. o OOOOOOOO i i i i i i i i LUUJUJLLJLULUUJUJ coO*-"-t~i~-t-tB 0>eo*-t£>"-OcoiD r~coc")cO"-r- — in OOOOOOOO oooooooo i i i i i i i i 1 1 1 m 11 1 in m in in Hi cBcocOf-cocDr-*- 66006660 OOOOOOOO 1 II L1J II 1 1 1 1 II 1 II 1 1 1 1 1 1 1 tiipeocownO r-icncocscDOn ^T^frtLO^rinr- OOOOOOOO «> O OOOOOOOO 1 1 1 t 1 t 1 1 III III 111 III III 111 111 11] coinconoai'-cD .r-.-,-,-,-,-,-^ OOOOOOOO 88888888 ++++++++ CNCNCNCNCNCNCNO OOOOOOOO OOOOOOOO II 1 II 1 UJ 11 1 II 1 1 1 1 11 1 1 1 1 CNO110--O — OO CNCNCNCNIMCNOJCN OOOOOOOO CO IB O) CJ CD u? c. a f- O) + ^oi — in p- r-- i t-- t- »- 0) OOOOOOO i i i i i i i i LULULULUUJUJLULU oooooooo 1 I 1 1 1 1 I 1 OOOOOOOO u I ti 1 11 1 UJ UJ ' ' ' It t 1 1 1 i-coor-LOLOOO r*cocooi'~^'-<^' OOOOOOOO OOOOOOOO i i i i i i i i UJ UJ "' LU UJ UJ !' * 111 TLnLOcor-cocooi OOOOOOOO OOOOOOOO 1 1 1 1 1 1 1 1 LU " ' " ' " ' ' ' ' " ' LU LU '-••-••-•'-CNCNCNOJ OOOOOOOO 88888888 •f-f-f-f-f + + + LU UJ LU UJ LU UJ UJ UJ COOT^TCOCOt^lSCN CNCMCNcNnncnn OOOOOOOO OOOOOOOO UJ UJ UJ UJ LU UJ 'i i UJ cooo-'-ncoi-r-- •^••^ — CNCNCNCNCM OOOOOOOO (O T IB f- O) 0) -f '-COOTO'-CN'-LO O pOOOOOO OOOOOOOO OOOOOOOO 1 1 1 1 1 1 1 1 1 1 1 in 1 1 1 ii I UJ UJ UJ UJ OnOlDOcNCNLO (N-^'-^'-t-^p- 66666666 OOOOOOOO i i i t i i i i UJ 'i1 U LLl UJ LU UJ UJ CN»-»-OJ»-*-'-O> OOOOOOOO '-CNCN — CNCNCNCN OOOOOOOO i t i UJLUUJLUUJLULUUJ CNOlcor^OOOlCN '-cnifl--r~t--r~-n OOOOOOOO 88888885 + + + + + + + i UJ LU UJ LU UJ UJ '' i 11' 0 UJ LU ' ' ' LU " ' OOOOOOOO co us O) t r- 0) C. a t. a t~ — 01 o — UP •H *• «\ t. —» 9) X a. i o 3 i v — i. ^ 10 4-« -f I/I CD TJ - O M- o o W Q. C CD o a *- - w in -H HI u 0) *• 10 Ol !- (0 U t- L. — a) in T3 > fl C (Q ^ 10 II II T3 ------- CO CM or O iu in » ^ u cj 1-1 3 u_ ce u. i— LU o a CJ UJ UJ < Q a p~ or D u o i- 3 CM H « O CJ I- U. CM < -I U. < UJ UJ Z -I Z I 1-1 CO O O -I < « M O 1- I- I 00 o < LU C? ex a > O I- CJ D UJ or i- < or in r- CJ o. X UJ JZ o n I •H U 01 OI 01 in +j in 3 01 0 i- _i o CM I V (J W OI 01 V) +^ in 3 01 O t- —i o JZ o I o 0) 01 n •H 3 V> O HI -1 0 01 (- •O (0 00, 15 o. 0 O O 0 0 O 1 1 1 1 1 1 UJ UJ UJ UJ UJ UJ O) co to o t- in 01 T U> CM O) ID r- oo to n CM r~ ^ in to CM ^ co co r» r- *- CM r- 0 O O 0 0 O CM CO CO CM CM CM 0 0 O O 0 0 i i i i i t ii i ii i uj ii i u I 1 1 1 *- 1 O) *- CM O co oo in ro CM in 8 CO ID r- CM1 II 1 1 1 II 1 co CM in t- r- co CM ID ifi CM r- 00 CO f CM •» in 00 O rr ••- •- co co CM CM CM CM CM CO O O O O O O 1 1 1 1 1 1 CO 0) ^~ ^ CO to m r- r~ co CD CO CO 0} CO -f 1 1 1 1 t CO 01 CO O CM LO O) s. to r- r- r- *- CL, 01 01 CO CJ} S O O O O O O i i i i i i LU UJ LU in in in *r 0) co co 01 CO *- r- oo i co co O «- ^ oo ^ co *- in co in *- co — CM CM CM CO CO O 0 0 O O O CM CM CM CM CM *- O O O O O O 1 1 1 1 1 1 LU LU LU LU LU LU r- 0) ro CM co •- en •» in oo in in O t- CM en in co »- in oo f» «- " 37462E-02 0 84685E-02 O 236O3E-O1 0 24717E-01 0 48537E-O1 -0 13861E-O1 -0 15784E-O2 O 15289E-02 0 59951E-02 0 42373E-03 0 88336E-02 0 18813E-01 0 O 0 O O O O i i i i i O O O O O O ••- t- in co CM co en ID ID ^ *- o) ID r- *- *- uj in t co >- n co CM -- CO CM '-'-*- O O O 0 O O i i i i i i O O O O O 1 1 1 1 1 UJ LU UJ UJ UJ LU K- t- 10 n ~- in o 00 CM TT CO CO Z T «- CO O CO CO *- O O) t fl) •* CM CM i- CM 0) O O O O O 1 1 1 1 t CO CD »- ^ CO CO co r- r- co O) CD en CO O! + I 1 I I I CO Hi oo o CM in 01 L U5 f- r* f- »- CX 01 05 0) CO o CJ o o o o o o 1 1 1 1 1 1 1 1 1 n t uj ii I n t ni O) CO CM O 00 O co O ^ r- N co CO ~ O T CO CO O O co in o oo *-»-»- r- IN CM O O O 0 0 O i i i i i i CM CM CM CO CM CJ O 0 0 O 0 O 1 1 1 1 1 1 n I 1 1 1 ii i UJ *i ' i ' 1 O O co co co O co co co in en in in co ••- •— *- io CM CM t- CO T LO 87325E-O2 -0 92466E-O2 -0 1O925E-01 -0 87910E-O2 -0 186O3E-O1 -0 35871E-01 -0 89245E-02 -0 59791E-O2 -O 24156E-02 -O 12575E-02 -0 68045E-O2 -0 65050E-02 -0 0 O 0 O O O 1 1 1 1 [ 1 o o o o o o 1 1 I 1 1 1 — 01 *- O CO tD •y co O CM in *- co co co ^- *- T CO O CO — CD T CO — ••- 1- CM CO 0 0 O 0 0 O i i i i i O O O O O O 1 1 1 1 1 1 ii t ti i ii i 1 1 1 n i uj r- - ex co co en en X i . •4-1 C ID 3 O a 0) • +^ o •*-• jQ IB C •- f CO *• !_ C •H c a oi 3 ai o e — e c 01 — 01 a ai o cu a in a. in ID 4J ai -H L. in ^ en oo) <$ (U H- •*•• — +•* L. *- £. a. L- co O 0 01 M- a. u •• a •• - c. (S L- 4- A3 <0 u- 01 C. 0! 01 > 0 >~ 0 H- -M (J ^- , 0) t- 0) 0) c, 'O O "O £. O O •H 0 C *- E o e ai u ra L. (u a M- T3 JZ o) i— n) < i- i- ct n u ii n ,— y JO '~s ~ J3 O u. ^ ej cj in i- h- i- r- C X 3 •H in a a: 01 JZ JZ •*-* f 3 C O +-« O c 3 •^ C o (J c T3 01 in m 3 t~ in CM CM O 01 U JJ ra n M- 1— C C o — *- c U 01 01 > s. ra 0 O t- 0 0) -H £. 0 3 It •*•* «w IB t- C 01 0 e ^ 01 U •H 01 L. 01 L. JZ 0 1- O •*" LU *-* o in i ^_ •^^ * CN T- co CO •*- i n 4^ 01 !/> M. 1^. O a CJ ^ O) IB CO U o TJ 01 in 3 «_ 01 •o O +w 01 in 14. «4_ O CM LU in CO 01 T- • in CM >. ^ Z LU ------- TABLE 2.2.7B NORMALIZED BAG FRACTIONS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I Normalized Fractions Pol HC CO NOx Model Years Pre-1968 1968-1969 1970-1971 1972-1974 1975-1983 198it-1986 1987+ Pre-1968 1968-1969 1970-1971 1972-1974 1975-1983 198l»-1986 1987+ Pre-1968 1968-1972 1973-197^ 1975-1978 1979-1986 1987+ Test Bl 1.282 1.31*5 1.345 1.398 1.860 2.200 2.6314 1.277 1.442 1-553 1.573 1.972 2.1438 3-941 1.121 1.199 1.262 1.299 1.372 1 .830 Seg.#l Dl 0.025 0.074 0.178 0.060 0.345 0.714 1.104 0.033 0.071 0.109 0.054 0.176 0.282 2.009 0.009 -0.004 0.022 0.012 0.040 o. 169 Test B2 0.973 0.946 0.919 0.885 0.766 0.571 0.368 1.017 0.996 0.933 0.902 0.881 0.658 0.0 0.785 0.793 0.770 0.783 0.766 0.703 Seg 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. -0. 0. 0. 0. 0. .#2 02 028 054 118 055 234 171 499 029 042 079 079 157 062 186 001 002 004 004 046 149 Test 83 0.839 0.842 0.894 0.919 0.804 0.914 0.973 0.758 0.674 0.711 0.755 0.628 0.621 0.689 1.319 1.245 1.242 1.197 1 .167 0.939 Seg 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. -0. 0. 0. 0. 0. 0. .#3 D3 019 048 093 036 196 143 391 025 033 038 029 109 077 014 009 006 027 016 063 222 Total BO 1 .000 1 .000 1.000 1 .000 1.000 1.000 1 .000 1.000 1.000 1 .000 1.000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 Test DO 0.025 0.056 0.124 0.051 0.243 0.286 0.594 0.029 0.046 0.074 0.060 0.139 0.111 1.308 0.0 0.0 0.014 0.012 0.051 0.173 NOTE : The fractions given in this table are used in operating-mode/ temperature correction factor the calculation of (OMTCF) . the WHERE : OMTCF = ((TERM1 + TERM2 + TERM3) /DENOM) TERM1 = W '''TCP (I)*(B1+D1*M) TERM2 = (1 -W-X) *TCF (2) * (B2+D2*M) TERM3 = X *TCF (3) * (B3+D3*M) DENOM = BO + DO*M W = Fraction of VMT in the cold start X = Fraction of VMT in the hot start TCF (b) = Temperature correction factor for year; for test segment b M = Cumulative mileage / 10,000 mode mode pol1utant, model DATE : MAY 25, 1985------- H-125 TABLE 2.2.8A AIR CONDITIONING CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I * ACCF= U*V*(A + B*(T-75) -1) + 1 Model HC CO NOx Years A B A B A B Pre-1975 0.1023E+01 0.33ME-02 0.1202E+01 0.l8o8E-02 0.1299E+01 1975+ 0.1000E+01 0.3512E-02 0.1130E+01 0.1528E-02 0.1221E+01 0.4262E-03 * WHERE : ACCF • Air Conditioning Correction Factor V * Fraction of vehicles which are equipped with AC given in Table 2.2.88 U « Fraction of vehicles with AC that are using it - (Dl-DlLO)/ (DI HI-Dl), 0<=U<=1 Dl - Discomfort index - (DB+WB) *.!•+!5 DILO * The highest discomfort index where no AC is used DIHI » The lowest discomfort index where all vehicles with AC use it DB » Dry bulb temperature (Fahrenheit) WB * Wet bulb temperature (Fahrenheit) T * Ambient temperature (Fahrenheit) TABLE 2.2.BB ESTIMATED FRACTION OF HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I EQUIPPED WITH AIR CONDITIONING Model Fraction Equipped Years With Air Conditioning Pre-1977 0.32 1977 0.52 1978+ 0.39 DATE : MAY 25, 1985------- H-126 TABLE 2.2.9 EXTRA LOAD CORRECT FOR HIGH LIGHT DUTY GASOL ION FACTOR COEFFICIENTS ALTITUDE INE POWERED TRUCKS I * XLCF = (XLC-1)*U + 1 Model Years Pre-1968 1968-1969 1970-1971 1972 1973-1971* 1975+ Coeff HC 1 .0786 1.0U95 1 .0852 1.0556 1.0556 1.01*55 i c i ents CO 1.2765 1.1381* 1.21*78 1.13V 1.131*7 1 .3058 (XLC) NOx 0.9535 1.0313 1.0313 1.0313 1.0753 1.0719 * WHERE : XLCF U XLC Extra load correction factor Fraction of VMT with an extra Correction factor coefficient load TABLE 2.2.10 TRAILER TOWING CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I * TTCF = (TTC-1)*U + i Model Coefficients Years _H_C_ _._CQ_ Pre-1968 1968-1969 1970-1971 1972 1973-1971* 1975+ 1.26H* 1.2762 1.1*598 1 .7288 1.7288 1.5909 1.9327 1 .891*0 2.U753 2.1411* 2.1l*H* 3.9722 1.1181* 1.1381* 1.1381* 1 .1381* 1 .2170 1.3875 * WHERE TTCF = Trailer towing correction factor U = Fraction of VMT towing a trailer TTC = Correction factor coefficient DATE : MAY 25, 1985------- H-127 TABLE 2.3.1A EXHAUST EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I (RATES REFLECT ZERO TAMPERING) * BER = ZML + (DR * M) Pol HC CO NOx Model Years Pre-1970 1970-1973 1974-1978 1979-1980 1981 1982-1983 1984 1985-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1980 1981 1982-1983 1981* 1985-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1980 1981 1982-1983 1984 1985-1986 1987+ Zero Mile Emission Level (Grams/Mile) 12.35 8.56 8.56 l.8l 1.81 1.08 0.72 0.55 0.62 141.35 107.72 107.72 29.83 29.83 19-75 12.95 8.88 7-74 3-10 4.32 3.07 1.02 1 .02 1-74 1-74 1-74 0.86 Deter ioration Rate (Gm/Mi/lOK Mi) 0.18 0.25 0.17 0.27 0.19 0.19 0.13 0.07 0.06 2.25 2-55 2.44 2.59 1.13 1.13 0.98 0.49 0.91 0.0 0.0 0.04 0.09 0.09 0.09 0.09 0.04 0.04 50,000 Mi le Emission Level (Grams/Mile) 13.25 9.81 9.41 3.16 2.76 2.03 1.37 0.90 0.92 152.60 120.47 119.92 42.78 35-48 25.40 17.85 11.33 12.29 3.10 4.32 3-27 1.47 1.47 2.19 2.19 1 .94 1.06 * WHERE : BER » Basic emission rate (untampered) ZML * Zero mile level DR = Deterioration rate M = Cumulative mileage / 10,000 DATE : MAY 25, 1985------- H-128 TABLE 2.3.1B EXHAUST EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II AT VARIOUS MILEAGE INTERVALS (RATES INCLUDE TAMPERING) Pol HC CO NOx Model Years Pre-1970 1970-1973 1974-1978 1979-1980 1981 1982 1983 1984 1985-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1980 1981 1982 1983 1984 1985-1986 1987 + Pre-1970 1970-1972 1973 1974- 1978 1979-1981 1982 1983 1984 1985-1986 1987 + OK 12 8 8 2 2 1 1 1 1 1 141 107 107 36 36 25 25 17. 13 1 1 3 4 4 3 1 1 1 1 1 1 .35 .56 .56 .42 .42 .68 .66 .22 .05 .01 .33 .72 .73 .32 .32 .87 66 .69 .56 . 33 . 10 32 . 34 .09 . 19 .92 92 95 95 . 19 20K 12 9 8 3 2. 2 2. 1 1 . 1 145. 112 112 43 40 30 29 21 16 14 3 4 4 3 1 2 2 2 2 1 .71 .07 .90 . 15 .99 .26 22 .62 .33 .24 .76 .72 .65 .79 .75 .24 .95 .23 . 12 .38 . 10 32 .35 . 18 .52 24 24 . 28 . 18 .39 Emission Rate (Grams/Mile) 40K 60K 8OK 100K 13. 9. 9. 3. 3. 2. 2. 2, 1 . 1 . 150. 1 17. 1 17. 51 . 45. 34. 34. 24 18. 17. 3. 4 , 4 . 3 1 . 2 2 2 2 1 . .07 ,57 .23 .89 56 83 79 .02 62 .48 . 19 .72 .56 26 15 .61 24 79 69 .44 . 10 . 32 37 .28 .85 .57 . 57 .62 42 .59 13 10 9 4 4 3 3 2 1 1 154 122 122 58 49 38 38 28 21 20 3 4 4 3 2 2 n 2 2 1 .43 .08 .57 .62 . 13 .40 .35 .42 .91 .72 .62 74 48 .72 .53 96 .51 .35 27 .50 . 10 .31 .38 .38 . 18 .90 .90 .95 .65 .80 13 10, 9 5 4 3 3 . 2 2 1 159 127 127 66 53 43 42 31 23 23 3 4 4 3 2 3 3 3 2 2 .78 ,59 .91 .35 ,71 .97 .91 .83 . 19 .95 .05 .76 .39 . 17 .90 . 31 . 78 .92 .85 56 . 10 . 31 . 39 .47 .51 . 23 . 23 29 .89 .00 14. 1 1 . 10. 6. 5. 4 . 4 , 3 2. 2 163 132 132 73 58 47 47 35 26 26 3 4 4 3 2 3 3 3 3 2 . 14 .09 ,25 ,09 ,28 .54 .47 .23 .48 . 19 .49 .78 .29 .62 .25 .65 .04 .48 .43 .62 . 10 .31 .4 1 .57 .84 . 55 .55 .62 . 12 .20 120K 14 . 1 1 , 10, 6 . 5 , 5 5, 3 2, 2. 167, 137, 137, 81 62, 51 51 , 39 29 29 3 4 4 3 3 3 3 3 3 2 ,50 .60 59 .82 85 . 1 1 .04 .63 ,77 .43 .93 .80 .20 06 .60 .98 , 29 .05 .01 .68 . 10 .31 .42 . 66 . 17 .88 .88 .95 . 36 .41 140K 14.86 12. 1O 10.93 7.55 6.42 5.68 5.60 4.03 3.05 2.66 172.37 142.83 142. 10 88.50 66.95 56.32 55.55 42.61 31 .59 32.74 3. 10 4.31 4 . 44 3.76 3.50 4.21 4.21 4.29 3.6O 2.61 DATE : MAY 25, 1985------- H-129 TABLE 2.3-1C CRANKCASE AND EVAPORATIVE HYDROCARBON EMISSIONS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II (RATES REFLECT ZERO TAMPERING) ** CCEV = (HSK * TPD + DNL) /MPD + CC Model Years SHED Hot Soak Emi ssions (Gm/Trip) Pre-1968 1968-1978 1979-1981 1982-1983 1984 1985 1986 1987 1988-1989 1990+ 35.96 35.96 10.31 10.31 U.67 U.16 3.65 3-21 2.67 2.37 Tr i ps* Per Day SHED D i urna) Emi ss i ons (Gm/Day) Mi les* Per Day Crankcase Emi ssi ons (Gm/Mi le) Total Crankcase and Evap. Emi ss ions (Gm/Mi le) 3-05 3-05 3.05 3-05 3-05 3-05 3.05 3-05 3-05 3-05 101.26 101.26 24.11 12.10 12.10 12.10 12.10 12.10 12.10 12.10 33.70 33.70 33.70 33.70 33.70 33.70 33.70 33.70 33.70 33.70 7.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.61 6.26 1.65 1.29 0.78 0.74 0.69 0.65 0.60 0.57 * Default information that may be altered by the MOBILE3 user with information about the local area. ** WHERE : CCEV = Total untampered crankcase & HC emissions (Gm/Mi le) HSK = Hot soak emissions (Gm/Trip) TPD = Tr i ps per day DNL = Diurnal emissions (Gm/Day) MPD = Mi les per day CC = Crankcase emissions (Gm/Mi le) evaporative DATE : MAY 25, 1985------- H-130 TABLE 2.3-ID TOTAL CRANKCASE AND EVAPORATIVE HC EMISSIONS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II AT VARIOUS MILEAGE INTERVALS (RATES INCLUDE TAMPERING) Model Years Pre-1968 1968-1970 1971-197^ 1975-1977 1978 1979 1980 1981 1982 1983 198l» 1985 1986 1987 1988-1989 OK 13-61 6.42 6.41 6.41 6.40 1.84 1.82 1.82 1.46 1.46 0.94 0.88 0.83 0.79 0.73 20K 13.61 6.45 6.43 6.43 6.42 1.88 1.85 1.85 1 .49 1.48 0.96 0.91 0.86 0.81 0.75 Emi ss 40K 13.61 6.47 6.46 6.45 6.45 1.91 1.88 1.88 1-52 1-51 0-99 0-93 0.88 0.83 0.77 ion Rate 60K 13.61 6.50 6.48 6.48 6.47 1.94 1.91 1.91 1.55 1.5^ 1.02 0.96 0.90 0.85 0.79 (Grams/Mi le) 80K 100K 13-61 1 6.52 6.51 6.50 6.49 1.97 1 .94 1 .94 1.58 1.57 1 .04 0.98 0.93 0.87 0.81 3.61 6.55 6.53 6.53 6.51 2.01 1.97 1.96 1.61 1.59 1.07 1 .01 0.95 0.90 0.83 120K 13.61 6.57 6.55 6.55 6.54 2.04 2.00 1.99 1.64 1.62 1.09 1.03 0.97 0.92 0.85 140K 13-61 6.60 6.58 6.57 6.56 2.07 2.03 2.02 1.67 1.65 1.12 1 .06 1.00 0.94 0.88 1990+ 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 DATE : MAY 25, 1985------- in co en in CM UJ Q I- t/1 < -I ^ O < CJ * 3 Z I a: < o i- a 11 U I Q UJ 08 a a. o uj a u, 3 < o > en a. uj -i UJ LU I/) > 2 uj UJ M Q -I _l D O -I 2 to o O < 2 W (J -I 1/5 ^^ l/l > -. h- CJ S 3 X UJ O _) K (- < I/) I I- X -J X cnoicncncncncnaicnoicncnaicnoicicncncncT) cncncnoicncncncncnocncncncncncncncncno (B T3 CD C CO HI 0) ffl O in >co i. en 3 *~ (B oicnoicncncncncncncncncncDcnoicncncTjQcn CNCNCNCNCN ocncDcncnoicDOicncncJicncncncncrjcncncno) CMCNCNCMCNCN — ocninncoiD<»cMOcnr--tncN'-txT-co oicncncncncncnoicncncncnoicncJicjjcnocncD cncncncncoco — '- CNCMCNCNCNCNCNCN CNCNCNCMCNCNCMCNCN n 8 CM CN 8 CM 8 CM O o o CN en en en "- (B HI t- IS •Q CO c en co en IB u **- o ,_ r- >cn i- en (B *- 3 C IB CO en en in en en ^ en en F> en en CM 0) en # # UJ * £ UJ £ * * * > £ * * LU * £ * LU * £ # * UJ ;>_ £ * UJ * >- £ * UJ i * * UJ * S * # UJ # 2 •W UJ * S •M- LU •3-CMCNCMCNCNCMCMCNCMCMCMCMCNCN cococococococnencnencncncncncncnoooo cncncncncncnencncnencncnencnoicnoooo »-T--^ — r- — »- — •t~T-^ — — — — — CMCMCMCM IBTCMCMCMCMCMCMCMCMCMCMCMCMCM cocococococoeocncncncncncncncncncnooo OTcncncncncncj)cncncncncncncncncnenOOO t--r- — -^ — — T--^'~»- — »-— — ^-t- — CMCMCM UJlO^rCMCMCMCMCMCMCMCMCNCMCMCM cococococococococncnenenencncncncnenoo cncncncncncncncncj)cncncncncncncncncnoo >-^T-i-T-t- — ^»- — »- — T- — »- — ^ — CMCN r~lPU>TCNCNCMCMCMCMCMCMCMCNCM COr~U?lCTCMCMCMCMCMCMCMCMCNCM cooococooooocooooooocncnocioo^cnocncn COCOt^lOlOnCMCNCMCNeMCMCNCNCM COCOCOf^ininnCMCNCMCMCMCMCMCM t^t^cooococoajajeDcDeococncncncncncncncn COCOCOCOt^-inmrOtNCMCMCMCMCNCM i^r^t^oocooooooDtooooooooocnaiaicntnaicj) o c*) CM TT c*3 co to in ep in ^ CM ^~ ^~ o en co r^ CD in COCOCOCOCOlDininMCNCMCMCMCMCM-^'-^'-'- COCOCOCOCOCOlDininnOICMCNCMCM t^t^r-r~i~-coooooC7)0)O)Cf>C7)0)Q)Cn0101dO)0)0) encocococot^i^^icininocNcMCM m in 4> -- C T3 "ai IB L. (B C IB L IB > I- 0) I- £ .C (B > -H T3 C *- C 01 O O IB S^ T3 0 u? eu to c o ra > - - 01 IB 01 in £. 01 V> •M 0) C t- 0 O 0) Ul in E >r- uj t_ (i IB Q. 3 £ • C UJ v 10 I- 1- "3 (B c I in O Q. = o > ID r £_ C ra-- — tP 10 T3 - «- O 13 O E C 0 SS t- o r> o — 0) en 0) *J T3 • > C CM CD O IB ^ .~ 41 to . — C (B T3 Q O a ID IB •"- N h- — C o -H ai CO 14- W > - T3 C O) E 3 !- L O Dl (B Q) -— «4- •'- HI IB 0 14- > ® U O) SS C "- IB CO -r- O CO t- L. o> IB t^i~i~t~r~r»r--oocoooxoocooooooococno)cn - - 3 CO CO CD ^ E £ r > t. 3 •f +J CO IB U — •HO in in in IB 0) CO C •H -H O U CD o o in o IB t> 13 •- - C C E C - I I I I >- UJ £ * * * ------- in CO oi in CM LU H < a ca CM UJ a < o x a (3 t- i—« I D UJ cc ct O UJ u. 3 o 1/1 a. _i uj uj o > z o UJ »-l -I -J O Z CO O < 1-1 O 10 10 >• 1-H t- s a UJ O in I Z! C3 < 1-1 X —I X LU CM cn T3 1C C CO 0) 0) Ul >00 L O) W • c ro "-UJ*J-- £ * * * > £ * UJ # ?- £ ; # > £ j> yj ^ £ # U) * E •It- > * * UJ £ * UJ * £ * UJ ^ £ «• *• UJ * £ n-^'-CMCMCMCMCMCM Tn'-^CMCNCMCMCM COCOODCOCOOOCOG)0)0)O)0)G)CT)0)G)0) UltCOCM'-'-CMCMCM cococococooococococnoiocncnoon^o^ t^inomcM'-'-CNcM-'-'-*-*-*-"-"-"-"- cococococococococococncncncncnaicnoioio) t^ t^ T 01 n cs r**cooococococococococoo)C5a) in^r-vrocl)cM'-'-'-»-»-'-'-»-'-'-»- cocno — cNcoTinujt^cooiO'-cMco^rmiBi^ inint~t~-^rrico 0)cn in 0) '- j: TJ i- m x ^ £. • > 3 I- (0 C (0 £- ID I- 0) c. z r 10 > *• T3 C - IB JZ » 01 IB £- "^ C 0) in O S U - M- O T3 O E C O SS i. O CJ o • • in CM • — 01 n ID -H T3 • > C CM 01 O ID .- — OJ « L L o> uno EnJI/l >& 4- ••- O - UJ z* * * * e « o •H O in ra •O 0) — ra o « O 0) c - ------- in co co in CM UJ i- o CJ CM _1 m UJ a 3 « i- i/> -i x < o I a u H i—i I Q UJ a: or O uj u. 3 O I/) O. _J X UJ UJ O > z z UJ t-H z^ o < 1-1S 3 UJ O t/> I 3 C3 I J X UJ CO CO ID CD i. to •Q ID C 00 « 05 "ID u in >co i- CO ID »- C ID r~t-f~r*r~r~t-i—cocococococococococococo rorororor-r-r-iptocM'-oioinrrooiocno) r^p^f^^t^r^r^f^t^f^cococococooocooococo «h-r^t^r~t~r~r-r-i~-r~oocooocooococoflOco U3iBr-r~r~r-r^t~r~r~r~t~cocoo3cooocoeoco '-»-'-'-'-cocococoicinuiin^rr~ij3iocooo nroconr5i-u>t~r^t^i^i^-t^r-t~t^r^aDcoco ncorocoin^-i-Doro'-o u5U5U)U3U)U>U)U)i^r^h-N-t^r~r~r^r^r~coco OCOCOCOt^-COCOCM'-O 00 8 CM CM 8 CM O O CM o CM CD CO CO ^~ s_ IB CO t_ a "0 CO C CO CD CO a u «*- o 1- i- cn c m -3 u> CO CO in CO CO *- CO CO *• CO CO CO CM CO CO ••- # UJ * £ * It J £ i * > £ # # UJ # £ * UJ * > £ ^ * UJ * >. £ * ill # ^ * UJ V £ * * UJ * £ * # UJ * £ * * UJ £ * UJ * £ o o ~ cococooooococncncncocncncnojcocnoooo cncoco cnencocno) r-cocno — cMco^inu5t-coa> CMCMCMCOCOCOCMCM o o f^COCOCOCOCOCQCOCOOOC00}0)OO)OO>G)0)0) rOCMCMCMCOCOrOCMCM o o * COCOCMCMCMCOCOCOCMCM' o o COCOCOCMCMCMCOCOCOCMCM o o (Dt~cocnO'-CNn- oococo cr>a>cnO) cococot^ininTOOcncMCMcocMCM — oocno) COCOCOCOCMCMCNCOrOrMCNCM»-*-*--'-»-*-OO CO in I- CO > H> a • > 3 i. 10 C 10 s. as ,-SI (0 > +J C M. C tt) O O (0 >« T5 O 1C CO con > - . a) re CD in r ^ UJ £- II ID a 3 I • C UJ V (0 I— S_ -3 ID O Q. Z -H = O > ID .C = O) 10 !- C CO in "*" O £ — •- > TJ — *- O 13 0 fe8" — Co n CD * -D • > C CM 0) U (0 — - fl) in • •— c w TJ ja O J3 01 (0 ^- C I/) . E jD ovo 0) <*- in > — TJ C O) E CD - ^ -H in • (D t. £- CD > 0) O — (0 0) i. o > HI (1) 3 > 3 O O) « O it- O CD — O i. • — COCOCOCOCOCMCMCMCOCMCMCMCM O O r-r»r-t-!-r^r~cococococococococo«a>o>o> in in 0) tt) ------- H-134 Pol HC CO NOx * WHERE TABLE 2.3.3 IDLE EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II * IER - ZML + (DR * M) Model Years Pre-1970 1970-1973 1974-1978 1979-1980 1981 1982-1983 1984 1985-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1980 1981 1982-1983 1984 1985-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1980 1981 1982-1983 1981* 1985-1986 1987+ IER ZML DR M Zero Mi 1 e Emission Level (Grams/Mi n.) 2.06 1 .09 1 .09 0.06 0.10 0.07 0.04 0.0k 0.0k 22.0k 12. 7^ 12.714 1.52 2.27 1.72 0.69 0.149 0.49 0.10 0.05 0.04 0.01 0.06 0.06 0.05 0.02 0.02 = Idle emi ss i on = Zero mile 1 eve = Deterioration = Cumulative Mi 1 Deter iorat ion Rate (Gm/Min/lOK Mi) 0.03 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.45 0.52 0.49 0.32 0.27 0.24 0.14 0.28 0.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 rate 1 Rate eage / 10,000 DATE : MAY 25, 1985------- H-135 TABLE 2.3-1* REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS Model Year 1 ndex*ft 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ July 1 Regi strat ion Mix* 0.067 0.085 0.081 0.077 0.073 0.069 0.065 0.061 0.057 0.053 o.oi»8 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 Mi leage Accumul ation Rate per truck * 18352. 16946. 15648. 14449. 13342. 12320. 11376. 10504. 9700. 8956. 8270. 7637. 7052. 6511. 6012. 5552. 5126. 4734. 4371. 4036. Jan 1 Regi stration Mix 0.022 0.085 0.081 0.077 0.073 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 Jan 1 Mi leage Accumulation Rate (fleet) 18352. 1 8000 . 16621. 15348. 14172. 13086. 12084. 11158. 10303- 9514. 8784. 8112. 7491. 6917. 6386. 5897. 5445. 5028. 4643. 4287. Jan 1 Mi leage Accumul ation (fleet) 2294. 13720. 31021. 46997- 61748. 75370. 87947. 99562. 110286. 120188. 129332. 137775- 145572. 152771. 159419. 165557. 171225. 176458. 181291. 185753- * Default information that may be altered by the MOBILE3 user with information about the local area. ft* The indices refer to the most recent model year vehicles in any given calendar year. Index 1 references the newest model year vehicles and index 20+ references the oldest model year vehicles. DATE : MAY 25, 1985------- H-136 TABLE 2.3-5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II JANUARY 1, 1988 (A) (B) Model LDT2 Fleet Sales Years Regi stration Fraction 1983 1982 1981 1980 1979 1978 1977 1976 1975 1974 1973 1972 1971 1970 1969- 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 0.900 0.920 0.940 0.966 0.972 0.991 0-995 0.997 0.998 1 .000 1 000 000 000 000 000 (C=A*B/DAF) (0) LDGT2 Annual Mileage Regi strat i on ..Accrual Rate 0.062 0.060 0.057 0.055 0.052 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 (C*D/TFNORM) Travel (C*D) Fractions DAF: 0.876 0.019 0.077 0.076 0.074 0.073 0.071 0.068 0.065 0.063 0.059 0.054 0.050 0.046 0.041 0.037 0.032 0.027 0.023 0.018 0.027 18352. 18000. 16621. 15348. 14172. 13086. 12084. 1 1158. 10303- 95 H». 8784. 8112. 7491 . 6917. 6386. 5897. 5445. 5028. 4643. 4287. TFNORM: 355-7 1380.3 1260.7 1133.6 1027.8 928.0 825.2 730.6 647-8 559-7 477.2 ^05.5 341 .1 283.8 233- 1» 188.6 149.2 114.8 84.8 117-5 11245-4 0.032 0.123 0.112 0.101 0.091 0.083 0.073 0.065 0.058 0.050 0.042 0.036 0.030 0.025 0.021 0.017 0.013 0.010 0.008 0.010 WHERE : A = January 1 registration mix from Table 2.3.4. B = Fleet sales fractions D = Sales weighted fleet mileage accumulation rate from Table 2.3-4, adjusted to January 1 D (1) = Annual Mi les(l) D(MYI)= .25* (Annual Miles (MY I)) + .75* (Annual Mi 1 es (MY I - 1)) , MY I =2, . .., 20+ NOTE : In general, the travel weighting fractions will change for every calendar year since the sales fraction (column B) changes for almost every model year. DATE : MAY 25, 1985------- LU O 3 t- t-t 1— _J < I « C3 l-H I/) I * (J IV ""1 O CC U. 1— 1/5 Q t- UJ Z or UJ UJ ID >-« 3 O O t--. CO M Q. cn • u, •^ CM U. LU 1 LU Z I LU O f-c _J (J _l CO O < cc in K 0 < i- a u < >• LL K Z Q l-H (— H I O O UJ I—* C£. _J fV o u o LU CL to 0 0 c$ X 0 O I Z • • CT „ in in * * LL U_ ^* •<-> 4 4 TJ in in in ^ * * U_ LU LU I/) \ 4 4 •"* ^ 1/1 in u. * * to 00 II 44 *~* F* F. •—i in in T3 * * 18 U U in 4 4 (n ^- in in LL * * (/) 4 4 * 4 4 ^ Q. X LU II II in >— * u. to 4-1 C ro +J 3 p— F— O a u. LU Q cj CD ^ in L. ffl V T3 > C ra -- 0) T3 o £ 0 O 0 O 1 1 1 1 LU LU LU LU oo t^ t^ to 0> O 00 (D t- r~ •*- in CM rr t^ CO cn d co ^f co co •q- t~ o o d d 1111 in in in ^ O o O O i i i i LU UJ UJ UJ r- CM t- in t- CO 10 *- O co o r- ^ co in o cn cn in CM to CD r^ ^~ O O O O CO CO CO CO 0 O 0 0 i i i i LU UJ UJ UJ T 0) CO O cn in o> in T is is in CN O) O "- f~ 10 O CO t i in N dddd 1 1 1 1 o o o o i i i i LU LU LU UJ O x o cn 05 T CO O co cn ^~ to co 10 co i- in in to -- T~ ^ T— CN dddd 8888 LU LU LU LU CO »- ID »- r~ in r- co cn T to i>- O co in in cn oo co co CM CM CM CO o o o o 1 1 1 1 o o o o 4444 LU UJ LU LU CM i- O O •*- to ^T ^T to co co in i- in -^ cn CM *- •— CO CM CM CM CM O O O O O ro oo r« r- r» cn cn cn 4 — •r- -r 01 U I I 1 t~ I Q) O t CD t- t*~ r^ *~ a cn cn t- ^~ r- r- f- to O O O O i i i i UJ UJ LU LU i ^" in t^ •— 10 CN *- in CM ^ n cn co f^ ^t •3- cn T O ^T in ID •— dddd i i i i in ^r *t ^i O O O O i i i i UJ LU LU UJ r~ in O O O CM CD r^ CM CM CO CM co CN oo in in O O U) t-. ^- ^ ^ dddd CO CO CO CO 0 O O O i i i i LU LU LU UJ t^ ^~ r^ co O) cn in r*- CO CO O *- t» in CD to oo to co t^ TO O O O 1 1 1 1 LU UJ UJ UJ in r~ *r co oo r^ CD oo in is T oo is in in o O CM CM in CM *- *• t^ dddd co co co n O O O O i i i i LU UJ LU Ul in oo oo co CM IS CM LO O O i oo Is- ••" cn cn 00 IS 10 CO CM *- •- 05 dddd i i i i " CN CM CM O O 0 O 1 1 1 1 LU LU LU LU CO *t 05 CO 05 CN *- in CM O O5 CM oo in to to co cn oo oo •*• r^ r~ ro d d o d O O 0 " o o o o LU LU LU UJ f~ •» -r- O O •» r- ^ •r- TJ- UJ CM O CM in co in CM CN CM CN •- T- TT dddd i i i i 4444 LU LU Ul UJ ^r tn r~ — CM CM T CO <* CO t — ^r t co CM ^r T in — ' 0 3 t) 0) C •» o in — .2, n TJ t- m oi Q. •- O TJ Q) 4- 01 L, Q. ro in 4> in ra c ro j3 ro u ii •*— i T) ro in in UJ cc LU I 3 # in CO 01 . in CM ------- co co co CM UJ _J 00 a. o to >-< »- w z CJ CJ O Q U UJ UJ Q a. a: Z) LU o H 3 I— 1-4 O (J K CL < -I U. < UJ o o _i M <-> o K I CO CJ < UJ CJJ a: D; >- O h- U O Q UJ o; K Z3 I a LU a_ in r- a o a x u. CJ o CO I •H CJ 01 O! 01 in •H U) 3 OJ 0 1- -J JT O CM I •H O 01 O) 0) 10 4-1 in 3 a> o i— _i CJ JT D i o OJ 01 CO •H 3 in o 01 -1 l- CJ OJ i. TJ ro O 01 s >- £ o o o o o o 1 1 1 1 1 1 LU UJ UJ in Hi til en co 10 r~ t~ in en «t co en cn ic f- CO CO CM CM 1^ « in 10 <* •» co co r- t^ CM CM f* 606660 CM CO CO CM CM CM O 0 O O 0 O 1 1 1 1 1 1 U I 111 111 ill til in *- t O) CM O O co co in CM co in 8 CO CO CM 1C 1C tO CO 1C CM O 13219E-O2 -0 42667E-O2 -O 47925E-03 0 26179E-01 -0 26179E-O1 -O 12627E-O4 -O 24032E-O2 O 32O17E-O2 O 52755E-O3 -0 88O57E-O2 O 1O177E-O1 O 1O113E-O1 -0 O O O O O O I 1 1 I 1 I o o o o o o 1 1 1 1 1 1 »- CM co in in en co in co 01 CD in co in co O o en *t CM O T T *- 6 0 0 O 0 0 i i i i i O O O O O O 1 1 1 1 1 1 UJ UJ UJ UJ UJ UJ co CM in f- co co CM to in — en co to t CM in t-- co O t *- ro r- co CM CM CM CM CM CO O 0 0 O O 0 i i i i i i O co co co r^ i— t- r~ co co 0") en O> CJ) 0) + i i i i i co 0> O T 0) ^r en t. t- t- t- oo *- O- CD CD C7> O) CJ O O O O O O 1)1111 UJ LU UJ UJ UJ UJ *r en co en en en •»- r* CO CO CO CO O *- TT T t en f in co *- ••- ID •»- CM CM co co en O O O O O O CM CM CM CM ••- »- 0 O 0 O O 0 1 1 1 1 1 1 UJ UJ LU UJ UJ UJ r- en co co •- t- en T in in r- in O r- CM in co en *- in co *- O »- 37462E-02 O 84685E-O2 O 23603E-01 0 48537E-O1 -O 48537E-01 -0 13861E-O1 -0 15784E-02 O 15289E-02 O 59951E-02 0 88336E-02 O 17783E-01 0 18813E-01 O O O O O O O i i i i i O O O O O O 1 1 1 1 1 1 UJ UJ UJ UJ UJ UJ - *- t- in CM CM 10 en ID UJ — *- en 10 f- '- to to in i co f en en CM *- CO CM *- -- *- O O O O O O 1 1 1 1 1 1 o o o o 1 1 1 1 UJ UJ UJ LU UJ LU t— I— t-- CD co in o o CO CM •» CO Z Z ^ -^ CO CO co — o t 0) o> »- CM CM CM OJ 01 o o o o 1 1 1 1 O CO CO CO 1^ r- t*- t*- co co 01 en en en en + i i i i i co o> o T oi T en L. r* t^ t*- CO •*- o. en o? en en a o 10839E-O1 10108E-01 18042E-01 20878E-O1 2883OE-01 O O O O O i i i i i CM CM CM CM CM 0 0 O 0 O i i i i i 1 1 1 nj ii t 1 1 1 ^j O O co co O co en co en in in us *- *- to CM CM •— *t in 87325E-02 -0 92466E-02 -O 10925E-01 -O 18603E-01 -0 35871E-O1 -O 89245E-O2 -0 59791E-02 -0 24156E-O2 -O 68045E-O2 -O 65O50E-O2 -0 0 0 0 0 O o o o o o 1 I 1 I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 — en "- co ID T co o in ••- CO CO CO -r- tt oo O oo is f CO — *- CM CO O O O O O i i i i O O O O O 1 1 1 1 1 UJ LU UJ LU UJ t- T in ^- O CJ) t- in •<* "- co O oo O r- 10 in co to co •^ CM co i^ in O O O O O ii ii O CO CO f- t- r- r- co en en en en + 1 1 1 1 CO oj o t en o) c. i- t- t* "- o. en en en X o z a LU 3 ection factor for appropriate pollutant. t_ i. o o 01 L. 3 4-* (0 £- OJ a E 01 K ii ,— « _Q >^ CJ 1- ure, and model year; for test segment b 4-* 10 L. 0) Q. E 01 4-f 4J C 01 £ E 10 ure (Fahrenheit) +J 10 L 01 a E 01 +J 4-1 C 01 •(- a E II t— ection factor coefficient for appropriate pollutant, t_ c. o 0 0) 3 4-» (0 t. 01 a E 01 II *— V £1 O 1- ature and model year; for test segment b i. 01 0. E 01 01 D C 01 L. 01 01 t_ ature ^ OJ a E 01 OJ u c 0) L_ 01 01 cc. II o in f~ ction factor is used in conjunction with the Ripstwxn 0) L. £- 0 u 01 [_ D (0 0) Q. E 01 01 l_ "" LU 0 Z CO CO CM 01 10 t- c 01 ^ •r~ O) L 0 4-1 U ro (4~ c o 4^ 0 01 1. L. 0 0 o in i h- * CM co CO i u OJ in •4- o o CJ O) 03 [_ 0 t) 01 in 3 , — 01 T3 0 E 4J 01 10 H- 14- O CM LU 0 z in CO en - in CM >. LU ^ Q------- H-139 TABLE 2.3-7B NORMALIZED BAG FRACTIONS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I I Normalized Fractions Pol HC CO NOx NOTE : Model Years Pre-1970 1970-1973 1974-1978 1979-1983 1984-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1983 1984-1986 1987+ Pre-1970 1970-1973 1974-1978 1979-1986 1987+ The fracti Test Seg.#l Test Seg.#2 Test Seg.#3 Bl 01 B2 D2 B3 D3 1.282 0.025 0.973 0.028 0.839 0.019 1.345 0.074 0.946 0.054 0.842 0.048 1.398 0.060 0.885 0.055 0.919 0.036 1.860 0.345 0.766 0.234 0.804 0.196 2.200 0.714 0.571 0.171 0.914 0.143 2.634 1.104 0.368 0.499 0.973 0.391 1.277 0.033 1.017 0.029 0.758 0.025 1.442 0.071 0.996 0.042 0.674 0.033 1.573 0.054 0.902 0.079 0.755 0.029 1.972 0.176 0.881 0.157 0.628 0.109 2.438 0.282 0.658 0.062 0.621 0.077 3-941 2.009 0.0 1.186 0.689 1-014 1.121 0.009 0.785 0.001 1.319-0.009 1.199 -0.004 0.793 -0.002 1.245 0.006 1.262 0.022 0.770 0.004 1.242 0.027 1.372 0.040 0.766 0.046 1.167 0.063 1.830 0.169 0.703 0.149 0.939 0.222 ons given in this table are used in the cal Total Test BO 1 .000 1.000 1 .000 1 .000 1.000 1.000 1 .000 1 .000 1 .000 1 .000 1 .000 1.000 1.000 1 .000 1 .000 1 .000 1 .000 culat DO 0.025 0.056 0.051 0.243 0.286 0.591* 0.029 0.046 0.060 0.139 o.in i .308 0.0 0.0 0.014 0.051 0.173 ion of operating-mode/ temperature correction factor (OMTCF). WHERE : OMTCF TERM1 TERM2 TERM3 DENOM W X TCP (b) M - ((TERM1 + TERM2 + TERM3) /DENOM) W *TCF (1)*(B1+D1*M) = ( 1 -W-X) *TCF (2) * (B2+D2*M) X *TCF (3)*(B3+D3*M) = BO-l- DO*M = Fraction of VMT in the cold start mode = Fraction of VMT in the hot start mode = Temperature correction factor for pollutant, year; for test segment b = Cumulative mileage / 10,000 model the DATE : MAY 25, 1985------- Model Years H-140 TABLE 2.3.8A AIR CONDITIONING CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II * ACCF= U*V*(A + B*(T-75) -1) + 1 HC CO NOx B B B Pre-1979 0.1023E+01 0.33M»E-02 0.1202E+01 0.l8o8E-02 0.1299E+01 0.5&43E-04 1979+ 0.1000E+01 0.3512E-02 0.1130E+01 0.1528E-02 0.1221E+01 0.i»262E-03 * WHERE : ACCF = Air Conditioning Correction Factor V = Fraction of vehicles which are equipped with AC U = Fraction of vehicles with AC that are using it 0<=U<=1 Dl = Discomfort index = (DB+WB) *.k+15 DILO = The highest discomfort index where no DIHI = The lowest discomfort index where all DB = Dry bulb temperature (Fahrenheit) WB = Wet bulb temperature (Fahrenheit) T = Ambient temperature (Fahrenheit) given in Table 2.3-8B = (DI-DILO)/(DIHI-DI) , AC is used vehicles with AC use i t TABLE 2.3.8B ESTIMATED FRACTION OF HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS I EQUIPPED WITH AIR CONDITIONING Model Fraction Equipped Years With Air Conditioning Pre-1977 0.32 1977 0.52 1978+ 0.39 DATE : MAY 25, 1985------- H-141 TABLE 2.3-9 EXTRA LOAD CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II * XLCF = (XLC-l)'VU + 1 Model Years Pre-1970 1970-1973 1974-1978 1979+ Coef f ici ents HC CO 1.0786 1.2765 1.01*95 1.138'* 1.0556 1.1 347 1.0455 1.3058 (XLC) NOx 0-9535 1.0313 1.0753 1.0719 WHERE : XLCF = Extra load correction factor U = Fraction of VMT with an extra load XLC = Correction factor coefficient TABLE 2.3-10 TRAILER TOWING CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE LIGHT DUTY GASOLINE POWERED TRUCKS II * TTCF - (TTC-l)*u + 1 Model Coefficients Years HC CO Pre-1970 1970-1973 1974-1978 1979+ 1.2614 1.2762 1 .7288 1.5909 1.9327 1.8940 2.1414 3.9722 1 .1184 1.1384 1 .2170 1-3875 WHERE TTCF = Trailer towing correction factor U = Fraction of VMT towing a trailer TTC = Correction factor coefficient DATE : MAY 25, 1985------- H-142 TABLE 2.4.1A EXHAUST EMISSION RATES FOR HIGH ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES (RATES REFLECT ZERO TAMPERING) * BER = ZML + (DR * M) Model Pol Years HC Pre-1963 1963-1969 197O-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997+ CO Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1964 1985 1986 1987-1990 1991-1993 1994-1996 1997 + NOx Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997 + Zero Mi le Emission Level (Grams/Mi le) 22 23 12 1 1 9 4 3 3 3 3 2 1 1 1 1 360 373 282 253 223 187 175 173 174 68 54 34. 33 32, 32. 5. 5. 6 4 . 3, 3. 3. 3. 3. 3. 3, 3. 3, 3. 3. .46 .28 .55 .28 .96 . 18 .90 .85 .87 . 34 .94 .60 .56 .52 .49 .04 . 12 .36 .67 .94 .87 . 19 .09 . 18 .67 .59 , 4 1 .68 .77 . 14 24 .43 .23 ,08 .60 .43 .20 16 18 . 19 .21 64 ,56 46 40 Deterioration 50,000 Mile Rate Emission Level (Gm/M1/10K Mi ) (Grams/Mile) 0 0 O 0 0 0 0 0 0 0 O 0 0 0 O 4 4 6 5 5 4 4 4 4 0 0 O 0 0 0 0. 0, o 0, 0. 0, 0, 0. 0, 0, 0. 0. 0. 0. 0. .31 .32 .37 .22 . 19 . 19 . 17 . 17 . 17 .06 .06 .09 .08 .08 .08 .81 .99 .68 .74 .07 .83 .50 .45 .47 .92 .93 .58 .57 .55 .54 .0 .0 .0 ,07 .06 .06 .06 .06 06 .03 .03 , 10 .09 .09 09 24 24 14 12 10 5 4 4 4 3 3 2 1 1 1 384 398 315 282 249 212 197 195 196 73 59 37 36 35 34 5 5 6 4 i 3. 3 3, 3. 3. 3 3 , 4 , 4 3, 3. .01 .88 .40 .38 .91 . 13 .75 .70 .72 .€4 .24 .05 .96 .92 .89 .09 .07 .76 .37 .29 .02 .69 .34 .53 .27 .24 .31 .53 .52 .84 .24 .43 .23 .43 .90 .73 .50 .46 .48 .34 .36 , 14 .01 .91 .85 * WHERE : BER = Basic emission rate (untampered) ZML = Zero mile level DR = Deterioration rate M = Cumulative mileage / 10,000 DATE : MAY 25, 1985------- H-143 TABLE 2 .4 . 1B EXHAUST EMISSION RATES FOR HIGH ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES AT VARIOUS MILEAGE INTERVALS (RATES INCLUDE TAMPERING) Pol HC CO NOx Model Years Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997+ Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-198O 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997 + Pre-1963 1963-1969 197O-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997 + OK 22, 23. 12, 1 1 9, 4 , 3, 3, 3. 3 2. 2. 2. 1 1 36O, 373, 282 253 223 187, 175 173 174 68 54 38 37 36 36 5 5 6 4 3 3 3 3 3 3 3 3 3 3 3 ,46 ,28 ,55 .28 ,96 . 18 .90 .85 .87 .34 94 .05 .01 .97 .94 ,04 . 12 .36 .67 .94 ,87 . 19 .09 . 18 .67 .59 .40 .67 .76 . 13 .24 .43 .23 .08 .60 .43 .20 . 16 . 18 . 19 .21 .81 .73 .63 .57 20K 23.08 23.92 13.29 11 .72 10.34 4.56 4 . 24 4. 19 4.21 3.46 3.06 2.36 2.30 2.26 2.23 369.66 383. 10 295.72 265. 15 234.08 197.53 184 . 19 181 .99 183. 12 70.51 56.45 40 97 40.22 39.27 38.62 5.24 5.43 6.23 4.22 3.72 3.55 3.32 3.28 3.30 3.25 3.27 4. 15 4.05 3.95 3.89 Emission Rate (Grams/Mile) 40K 60K 80K 100K 23. 24. 14. 12. 10. 4. 4. 4 , 4 , 3. 3. 2. 2, 2 . 2, 379. 393. 309 276, 244 207, 193, 190 192 72 58 43 42 41 41 5 5 6 4 3 3 3 3 3 3 3 4 4 4 4 70 56 03 , 16 72 .94 58 ,53 ,55 .58 18 ,68 ,60 ,56 .53 .28 ,08 .08 .63 .22 , 19 . 19 .89 .06 .35 . 31 .55 .78 .79 . 12 . 24 .43 .23 .36 .84 .67 .44 .40 .42 .31 .33 .50 .38 .28 .22 24.32 25.20 14.77 12.60 11.10 5.32 4.92 4.87 4.89 3.70 3.3O 3.OO 2.90 2.86 2.83 388.90 403.06 322 .44 288. 1 1 254 .36 216.85 202. 19 199.79 2O1 .00 74. 19 60. 17 46. 13 45. 34 44.31 43.62 5.24 5.43 6.23 4 .50 3.96 3.79 3.56 3.52 3.54 3.37 3.39 4.84 4 . 70 4.60 4. 54 24, 25. 15, 13, 1 1 , 5, 5. 5, 5 3 3 3, 3 3 3 398, 413 335 299 264 226 21 1 208 209 76 62 48 47 46 46 5 5 6 4 4 3 3 3 3 3 3 5 5 4 4 .94. 84 .51 .04 .48 .70 .26 .21 .23 .82 .42 ,31 . 19 . 15 . 12 ,52 .04 .80 .59 .50 .51 . 19 .69 .94 .03 .03 .71 .90 .83 . 12 .24 .43 .23 .64 .08 .91 .68 .64 .66 .43 .45 . 19 .03 .93 .87 25. 26. 16. 13. 11 . 6. 5. 5. 5, 3. 3, 3. 3. 3. 3. 408. 423, 349. 311 , 274, 236, 220, 217 218, 77 63, 51 50 49, 43 5 5 6 4 4 4 3 3 3 3 3 5 5 5 5 56 48 25 .48 86 08 60 55 57 .94 ,54 63 49 .45 ,42 14 02 , 16 .07 ,64 17 , 19 .59 ,88 .87 .89 .29 .46 .35 .62 . 24 .43 .23 . 78 .20 .03 .80 . 76 .78 .49 .51 .53 .35 .25 . 19 120K 26. 27. 16, 13, 12. 6, 5. 5. 5. 4 3 3 3 3 3 417, 433 362 322 284 245 229 226 227 79 65 53 53 51 51 5 5 6 4 4 4 3 3 3 3 3 5 5 5 5 , 18 , 12 .99 .92 ,24 .46 .94 .89 .91 .06 .66 .95 .79 .75 .72 .76 .00 .52 .55 .78 .83 . 19 .49 .82 .71 .75 .87 .02 .87 . 12 .24 .43 .23 .92 .32 . 15 .92 .88 .90 .55 .57 .88 .68 .58 .52 140K 26.80 27.76 17.73 14.36 12.62 6.84 6.28 6.23 6.25 4. 18 3.78 4.27 4.09 4.05 4.02 427.38 442.98 375.88 334.03 294.92 255.49 238. 19 235.39 236.76 81 .55 67.61 56.45 55.58 54.39 53.62 5.24 5.43 6.23 5.06 4 .44 4.27 4 .04 4.OO 4.02 3.61 3.63 6.22 6.00 5.90 5.84 DATE : MAY 25, 1985------- H-144 TABLE 2.it.1C CRANKCASE AND EVAPORATIVE HYDROCARBON EMISSIONS FOR HIGH ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES (RATES REFLECT ZERO TAMPERING) ** CCEV = (HSK * TPD + DNL)/MPD + CC Model Years Pre-1968 1968-1984 1985+ SHED Hot Soak Emi ss i ons (Gm/Tr ip) 35-96 35-96 8.24 Tr ips* Per Day 6.88 6.88 6.88 SHED D i urnal Emi ss i ons (Gm/Day) 101 .26 101 .26 19.28 Mi les* Per Day 36.70 36.70 36.70 Crankcase Emi ssions (Cm/Mile) 7.35 0.0 0.0 Total Crankcase and Evap. Emi ss ions (Gm/Mile) 16.85 9-50 2.0? * Default information that may be altered by the MOB! user with information about the local area. ** WHERE : CCEV = Total untampered Crankcase & evaporative HC emissions (Gm/Mi1e) HSK = Hot soak emissions (Gm/Trip) TPD = Trips per day DNL = Diurnal emissions (Gm/Day) MPD = Miles per day CC = Crankcase emissions (Gm/Mile) DATE : MAY 25, 1985 LE3------- H-H5 TABLE 2.4.ID TOTAL CRANKCASE AND EVAPORATIVE HC EMISSIONS FOR HIGH ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES AT VARIOUS MILEAGE INTERVALS (RATES INCLUDE TAMPERING) Model Years Pre-1968 1968-1981* 1985+ 16 9 2 OK • 85 .68 • 39 20K 16.85 9-70 2.1*5 Emi ss 1*OK 16.85 9.73 2.50 ion Rate 60K 16.85 9-76 2.56 (Grams/Mi le) 80K 100K 16.85 9.79 2.61 16.85 9.82 2.67 120K 16.85 9-85 2.72 ll*OK 16.85 9-87 2.78 DATE : MAY 25, 1985------- in CO 0> o a •-« LU IO _i u o x o Ul oB at a o LU a < U- 3 < CM o > to a. uj LU LU CO CM > Z UJ LU « O UJ _l _J 3 _1 O _l CD Z I/)X 3 X LU a _l I— > < to > t- 3 < O X LU UJ I x T3 1C C CO 0) 0) (0 o in >oo t- O) US '- c (9 0)0)0)0)OO)0)0)O)0)0)0)O)0)0)0)0)0)0)O) CMCMOICMCNCMCMCM r-t-r-i-t^f-r-f-r-cococoeocococoencocoo) 0)0)0)0)0)0)0)0)0)0)0)010)0)0)0)0)0)0)0) CMCMCMCMCMCMCMCMCM' 0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0) 0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0) ~ P5OCMCMCMCMCNCMCMCMCM 0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0) CMCOlDlPtCMOOCMOOOOOOO — OOLOCMCO'T O)0)0)O)CD0)O)0)CD01010)0)0)0)0)0)0)0)0) 0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0) 0)0)0)0)0)0)0)0)O)0)0)0)0)0)O)0)0)0)0)0) 0)0)0)0)0)0)0)0)0)0<0)0)0)0)0)0)0)0)0)0) 0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0) 0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0)0) I. (0 *- c ra OOCOCOCOC0000)0)0)0)0)0)0)0)0)0)OOQO •^f-»-^.r-»-»-^»->r-^inr>cM»-woo ujtotDiotOinininLninTr^^ttTj-rrTrTinfo OOOOcOOOOOCOGOCOOOCDO)O)0)0)0)9)0)O)0)0) cn[^r--u)iotflii)iou)intf)int'rt' — « o 01 10 Ul c 10 ai o a <~ O ft) 0) 01 t- C o o Q) i*- •'- *- 4>rf — TJ IB E 0) - E - 3 • m 3 u 1- i- U U (o 01»— nj > 0) o U) Ol Ol — m ai nj ai t. t. at ^-Sr-(%-r^oooococooocoabaocbco0)0)0i0)0) 0> *~ inintcor-t^ioioiBLnifluj'j-'rTT'rf'Tcn CMCMCMOM'- — '-•^'-•r- LninrT'TCMr-ioipifiioiniDiott'rTi'^p) CMCMCMCMCM'*-'-'-'-'-'- Q) Q) Q) *~ *'*•«>. 1— L in in nj 0) « C 3 *• *- O C 0)0)0)0)0)0)0)00)0)0)0)0)0)0)0)0)0)0)0) -^-»- CM CM CM M CM CM t»r>r~r-r-r~r^eo cocaa)0)0) 0)0>0)0)0)0)0)0)0)0)O)0)0)0)010)0)0)O)O) T5 TJ - » C C E £ >• UJ i» • * ------- in ca O) in CM tx ca u. CM tf> •* _J UI CM > UI UI -J CO DUTY GASOLINE POWERED VEHICLES CO EXHAUST HEAVY of Calendar Year 1986 1987 January 1985 Ooo^ooipcoor^f^cncNcntp — coi^tpinn r^i^r-t^-r^r^t^t^cococooocococooocococncj) VOCOOCOPJPICMCNCNCMCMCMCM t-p-t-f-t-r-f~t^r-eococococococococccoa> Scomniococnujc'JOtninOcMcoTcoujin oio)0)t^-np50)inTcMCM'-or-inr5co r-i^r-r»t-r-t'-i-.r-r-cocococococoeoccicoco iot-r~t-r-t-r~r-r»t-r~cococococococococo UJinincnoooocDconcNoioocnnoooicoiOin O ui 00 0) — '-uocN'-cncor-r- cfltptl>cpy3t>-f*f~(wr^i^i^r~r^r"-coooaococo ^^•TTtinnpjcnnnc'jncNCMCM'-'-'- ^•TrTir^-tTtnnrjcocnfoncNcNCNCM'-'- i0ifliDiPioic<45r-r-t^r-f-r~t~-r-r~r--cococo Tf^T'CV'T^T'J''j'nnpjrjfncocMCMCNCN'-'- iou5iDU>iB(flio<0r-r~r-r-t~r»r»h-t>-t-coco 8 8 £_ a CO L (0 13 C CO < ffl o i. a C a -3 cocococoxcocT)O)CDcncf)cncno)CT)cnQOOO cncDoicncDO)0)cncnci)cno)0)ci)c))cDOOOO T- — — T-T-^^^^-^-^^^-^^T-CMtMJNJJ^ OoinOr^-^'-t^inoincnfiiocNincot-r-'- ininoor~TtTlflU>t-OOC>O*-CMCT>TTiniDr~cO i^cDcocococococococooocncncna>cncn PJCOnCOCNCNCMCNCMCM r^r^t^r^h-coaooocococDcooococoocncncno) mmir>*TOiDtpf>nc"5CMr--ioc'jC'3c')C'J('oc"5c*) PJODDnCNCNCNCNCNCM 8n-^ooiocNOf-iBnior>5t~cNoooor~u5'fl-p> uiuiT^OipinnncNCNt^ionnnonn CO w c 01 o K D 0) in • Olu. CO W r 0) t_ »- oi O CO Q in c n ra a. c x o a > 10 : 0) • £. Hi in • O - - co «^5 O T3 « E C K O I. (J C O >^- 4^ (DUO) W W c ra co O £) L. — 3 O O £ CU ~ •^ +* 3 W ID E • (0 3 O I- t- U O co 1o > ai u co 01 oi — o co ra 0) C u O o > ^ Q) ttl U) — •H -H 8) > — i. W W ID CO CO C 3 ^_ ^_ * •* o c. r»t-f~p-r~t^oocococococococoooeo0icncncn oow-3 T-T-»-»-^-^^- — - — — ^ — ^ — ^<-»-^-^ T3T3— 0) C C E r i i i i >• UJ z* * * ------- H-149 TABLE 2.4.3 IDLE EMISSION RATES FOR HIGH ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES * IER * ZML + (DR * M) Zero Mi le Model Emission Level Pol Years (Grams/Min. ) HC Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997 + CO Pre-1963 1963-1969 1970-1973 19^4-1977 .978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997 + NOx Pre-1963 1963-1969 1970-1973 1974-1977 1978 1979-1980 1981-1982 1983 1984 1985 1986 1987-1990 1991-1993 1994-1996 1997+ 2.83 2.83 0.87 0.87 0.87 0.44 0.44 0.44 0.23 0. 12 0. 12 0. 12 0. 12 0. 12 0. 12 25.75 25.75 6.80 6.80 6.80 7.09 7.09 7.09 1.21 0.49 0.49 0.49 0.49 0.49 0.49 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.07 0.01 0.01 0.01 0.01 0.01 0.01 Deterioration Rate (Gm/Min/10K M1 O.O4 O.O4 O.O4 0.02 0.02 O.O1 O.O1 0.01 O.O3 O.O4 O.O4 0.04 O.O4 O.O4 O.O4 0.53 0.53 O.28 0.27 0.27 0.28 0.28 0.28 0. 14 0.28 0.28 0.28 0.28 0.28 0.28 0.0 0.0 O.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.O 0.0 0.0 0.0 0.0 * WHERE : IER ZML DR • M DATE : MAY 25, 1985 Idle emission rate Zero mile level Deterioration Rate Cumulative Mileage / 10,000------- H-150 Model Year Index** TABLE 2.4.A REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR HIGH ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES Jan 1 July 1 Mileage Jan 1 Mileage Registration Accumulation Registration Accumulation Mix* Rate Mix Rate per vehicle* (fleet) Jan 1 Mileage Accumulation (fleet) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ 0.079 0.136 0.116 0.099 0.085 0.072 0.062 0.053 0.045 0.038 0.033 0.028 0.024 0.020 0.018 0.015 0.013 0.011 0.009 0.045 19967. 18077. 16365. 14815- 13413. 12143. 10993- 9952. 9010. 8156. 7384. 6685. 6052. 5479- 4960. 4490. 4065. 3680. 3332. 3016. 0.0 0.136 0.116 0.099 0.085 0.072 0.062 0.053 0.045 0.038 0.033 0.028 0.024 0.020 0.018 0.015 0.013 0.011 0.009 0.045 0. 19967. 18077. 16365. 14815. 13413. 12143. 10993. 9952. 9010. 8156. 7384. 6685. 6052. 5479. 4960. 4490. 4065. 3680. 3332. 0. 9983. 29005. 46226. 61816. 75930. 88708. 100276. 110749. 120230. 128813. 136583. 143617. 149985. 155751. 160970. 165695- 169973- 173845. 177351. * Default information that may be altered by the MOBILE3 user with information about the local area. ** The indices refer to the most recent model year vehicles in any given calendar year. Index 1 references the newest model year vehicles and index 20+ references the oldest model year vehicles. DATE : MAY 25, 1985------- H-151 TABLE 2.4.5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR HIGH ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES JANUARY 1, 1! (A) (B) Model HDGV Fleet Sales Years Registration Fraction 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 '977 1976 1975 1974 1973 1972 1971 1970 1969- 0.0 0.136 0.116 0.099 0.085 0.072 0.062 0.053 0.045 0.038 0.033 0.028 0.024 0.020 0.018 0.015 0.013 0.011 0.009 0.045 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 (OA*B/DAF) (D) HOGV Annual Mileage Reg i strat ion Accrual Rate (CWTFNORM) Travel (C*D) Fractions 0.0 0.136 0.116 0.099 0.085 0.072 0.062 0.053 0.045 0.038 0.033 0.028 0.024 0.020 0.018 0.015 0.013 0.01 1 0.009 0.045 DAF: 0.921 0.0 0. 148 0.126 0.107 0.092 0.078 0.067 0.057 0.049 0.041 0.036 0.030 0.026 0.022 0.020 0.016 0.014 0.012 0.010 0.049 0. 19967. 18077. 16365. 14815- 13413. 12143. 10993. 9952. 9010. 8156. 7384. 6685. 6052. 5479. 4960. 4490. 4065- 3680. 3332. 0.0 2945.2 2274.3 1757.2 1365.8 1047.4 816.6 631.9 485.7 371.3 291.9 224.2 174.0 131-3 107.0 80.7 63-3 48.5 35-9 162.6 0.0 0.226 0.175 0.135 0.105 0.080 0.063 0.049 0.037 0.029 0.022 0.017 0.013 0.010 0.008 0.006 0.005 0.004 0.003 0.012 TFNORM: 13015-0 WHERE A B D 0(1) < D(MYI) January 1 registration mix from Table 2.4.4. Fleet sales fractions Sales weighted fleet mileage accumulation rate from Table 2.4.4, adjusted to January 1 Annual Miles (1) .25* (Annual Miles (MY I)) + .75* (Annual Miles (MY I-1)), MY I-2 20+ DATE : MAY 25, 1985------- H-152 TABLE 2.4.6 SPEED CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES * SCF (s) = EXP(A + B*s + C*s2) , HC & CO A + B*s + C*s2 , NOx Pol HC CO NOx Model Years All All All Coef f i ci ents A B 1 1 0 .60800 .52000 .821*00 -0 -0 0 .09700 .09800 .00880 0 0 0 C .00083 .00110 .0 * WHERE: s = average speed (mph) DATE : MAY 25, 1985------- H-153 TABLE 2.1».7 TEMPERATURE CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE HEAVY DUTY GASOLINE POWERED VEHICLES * TCF - EXP( TC * (T - 75.0)) Pol HC CO NOx Model Years Pre-1970 1970-1973 197^-1978 1979-1983 198** 1985+ Pre-1970 1970-1973 1974-1978 1979-1983 1984 1985+ Pre-1970 1970-1973 197^-1978 1979-1983 1984 1985+ TC Low -0.58903E-02 -0.73870E-02 -O.A9759E-02 -0.28549E-02 -0.7M07E-02 -0.92859E-02 -0.20576E-02 -0.455ME-02 -0.42899E-02 -0.13085E-02 -0.77H7E-02 -0.60195E-02 -0.64315E-02 -0.55456E-02 -0.13969E-02 -0.46352E-03 -0.5752'4E-02 -0.19733E-02 TC High 0.13458E-02 0.52317E-02 0.54651E-02 0.10082E-01 0.20546E-01 0.848A2E-02 0.81720E-02 0.20268E-01 0.24127E-01 0.22061E-01 0.27019E-01 0.71457E-02 -0.8398&E-02 -0.86880E-02 -0.18079E-01 -0.74889E-02 -0.21593E-01 -0.29584E-01 WHERE : TCF = Temperature correction factor for appropriate pollutant, ambient temperature, and model year T = Ambient temperature (Fahrenheit) TC = Temperature correction factor coefficient for appropriate pollutant, reference temperature, and model year 75-0 * Reference temperature DATE : MAY 25, 1985------- H-151* TABLE 2.5-1 EXHAUST EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES (RATES REFLECT ZERO TAMPERING) * BER = ZML + (DR * M) Pol HC CO NOx Model Years Pre-1975 1975-1976 1977 1978 1979 1980-1981 1982-1983 1984+ Pre-1975 1975-1976 1977 1978 1979 1980-1981 1982-1983 1984+ Pre-1975 1975-1976 1977 1978 1979 1980 1981-1984 1985+ Zero Mi le Emission Level (Grams/Mi 1 e) 3.01 0.97 0.97 0.97 0.97 0.67 0.1+0 0.29 4.74 2.05 2.05 2.05 2.05 2.01 2.01 1.15 1.46 1 .40 1.40 1 .40 1 .40 1 .40 1.31 0.87 Deter ioration Rate (Gm/Mi/lOK Mi) 0.08 0.07 0.07 0.07 0.07 0.03 0.03 0.03 0.13 0.09 0.09 0.09 0.09 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 50,000 Mi le Emission Level (Grams/Mile) 3.41 1-32 1.32 1.32 1-32 0.82 0.55 0.44 5-39 2.50 2.50 2.50 2.50 2.21 2.21 1.35 1.66 1.60 1 .60 l .60 1.60 1.60 1.46 1.02 * WHERE : BER * Basic emission rate (untampered) ZML * Zero mile level DR » Deterioration rate M « Cumulative mileage / 10,000 DATE : MAY 25, 1985------- in CO O) in-I < UJ UJ K _l in O UJ I- z •-< o o I/) I- so UJ t- v- X < —I x UJ in in t. ra TJ to c oo a> cr. "a in >co L 0) ra -^ 3 10 ! O) O)O)O)O)O)0)O)OJO)O)C71OJO)CnO)O)0)0)Oi 0)O1O)O)O)O)O)0)0)O)0)0)O)0)O)0)O)O)O)O1 O)O)0)0)0)O)O)O)0)O)0)O)0)O)0)O)0)O)O)0) O)O)C7)O)O)0)O)O)O)0)O10)O10)0)O}C7)O)O)0) O)O)0)0)O)O)O)O)O)0)0)O}0)O)O)O)CI)0)O)0) "- — ooo)cnr»u5u3in O10)OiO)CT>O)CJ!CT)0)0)O)O)OO> 10 01 i. a •0 CO C O) 01 en ID o 3 ra -3 O)O)OO)0)0)C7)0)C7)O)O10)0)O1O)O)O)O]O)0) OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOO CNCf)Tinu3t-COO)O'-CNC'5«TinU3t-COC)O*- COOOCOOOCOCOCOCOO)0)O)O)O)O)CT}O)O)0)OO O)O)O101O10)O)C71O101O)O)O)O)010)O)O)OO •^'-'-'-'-'-'-'-'-•^'-'-'-'-'-'-'-'-CNCN --0000000000000000000 *-*-oooooooooooooooooo O'-CNC3irinior-ooo)O'-cNr5'Tinwr».ooo) cococococococococo0o)0)0)O)0)0)0)0)cn0) 0)0)05010)0)0)0)0)070)0710)0)0)0)0)0)0)07) CN i- -r- O 0 0 0 O O O O O O O O O O O O O r^cocococococococococoO}0)O)Oi0)C7)O}O)C7) O)O)0)0)OltT)J10)O)O)O)O10)O)O)O)O)O)O)CJ) CNCN^-^OOOOOOOOOOOOOOOO r-t~cococococos>cocococoO)a>o>CT)CT>0)a]0! O)O)0)O)O)O)010)O)O10)01O)O)0)CDO)O)O)O) -^ — OOOOOOOOOOOOOOO O)O)O)0)O)O)01CJ101O)O)O)01O)0)O)O)0)O1O) CNCNCN'--^'-OOOOOOOOOOOOOO t^t^r^i-coaicocotncooooocooocncnoiojoio) O)O)O1O10)O1O)0)01O>O)O10)O1O3O)O)O)O)CT> 0) "- JT T3 (- 01 > — i. 01 10 • > 3 t- Q C a t- ID «.£! IB > v C 1- C moo fl X T3 U 1C 01 -in cod) - . 01 * 01 in £ 01 in •H o> C (. O K- 01 — in E L. ii C UJ V ID t- !_ •3 ID c x" in O Q. X *• " O > IP £ = 0) 10 O £ T3 - *. O T) O s- o cn o in CN • — « in 0) *• T3 • > C CN 0) O (8 — — 01 UJ - — c (0 t) £ O £ 01 <0 <" • C CNCMCN-^'-'-'-OOOOOOOOOOOOO r*r"-r>>^»r*-cococoo3cocooocQGOCGO}O)O}O)O) O)O)OJO)O)C71O)O)C7)Cf)O)CJ)CnO)O)O)O)O)O)0) oooooooooooo «jpinu>i^coo)O'-cNniinu)t-coa)O*-cNn r^r-i-r~r-i-cococococococooococoa)a)a)o> 0)O)O)O)O)0)O)0)O)0)O)0)0)O)0)0)C71J)O)0) CNCNOC7)a)0)cooot~f~inininint^r - D C O) E OJ — ^^ f in • B 3 > 3 !. t. U O) (0 U) •—•*- — 01 ID O u- > 0) O 0) S« C — BJ 0) — O 01 t- t- • •— o > in ra E 10 in — 0) 0) 01 v E *• ^ 0) is o -- *• u in in mm 0) 0) C +- +* O T3 0) (0 (0 •*- ^™ O) T: -D - — c c e c — M i-, 0) - E >- UJ s * ------- LO CO O) in CM UJ t— a m cs in n LU _l CQ a H H-I in H LU _l -J < O a u x Q or LU o a 1/1 o _i a. LU O > -I «J LU UJ Z "-i o o »-« LO > in (- £0 LU I— I- X in o 3 >- I x UJ 10 LO '- a "O 10 c co a> oiincscM'-'-Oi''3'fin^^'^c^CNCNCS - oioicncncicncioioiojoioioioicioioicnoio) iDUJiflujiflnnnncNcscMCNc^ t-t-r-t-r-*t-r~r~r-r-cocococococococococo oicnoioioioioioioioicncioioioioicjioioioi 8 iflUjujiflifiioonmc^cMCNCNOiCN oicno^oioioicjioioioioioioiCTjcjioioioioicn oicnoioicioioioioioioioioioioioioioicjioi OUJUJtPlOlCVfllOC'lCNOlCNOiCMCMOiOi'-'-'- r^coOiO'i~cNCTi^rLnvDr^-cooiO'^c^oiTrLOio L 10 "0 ao C 01 CD 01 t~p-lOLOLnTC*lCN--aiOlCOt^lDCMCN'-'-CNCN IClDlfllOlDUJlBlDtOINCMCNOICNCVitNCNCN-^'- OICIOIOIOIOIOIOIOIO^OIOIOICJIOIOIOIOIOIOI c (0 -3 IClBlDlDOlDlBlDlDlDCMCNOiCNCN U5ir>ii)iDior-t~i^t^r~-t^r~r-t^(~oococoa!co cnoicTioicnoicncTioicficncnoioicnoioioicno) t~r~-u3LOLO^rncM^oo)cor-iDinin^'-^O lPtBU>LOCNOiCNCNCNCNMO)C^ iDU3ioicu>u5r-r»i~-t~r^p-r^t~t~i~-cococox O10101O1O101O101O1O1O5O10101O1O1O101O101 lOlO
lOlDlOLOinCNCMOICNCNCNCNC\ iBiOlDifl(i)iOiPt^r-r-t~t~r~p-r-t^r-cococo O101OlO)O)0>010!O!Cn01CT)C!O)O!CiO)ClOO) ICtOUJlClfllOlfllOlDlflLnLnincNCMCNCMCNCMCN 0101O1010101O)0)01O)01O)O1O101O101O10101 lpt5(^COt£)tOlClDlC)COLOLr>LQLOCNCNCSCSWCS 0)C7)0)010101010)0)0)01010)0}0101010101CJ1 >cocooocococoo)cnoiO)a)Oia)OioioioOOO »-»-»-»-^^-»-»-»-»-»-^-»-»-»-»-eMtM(NCM u>f-r-r-t~r~iBU5ipininLOT*rTCIinc>ioiCN UJ oococococococooiaioioioioioicnoiaiooo 01O)OlO)CT)CJlO)CDCJlO)tT)CIlO)CJ10)0101OOO ^^.-^-•^•r-T-i-t-»->-^^»-»-»--^-CNCNN COCOOOCOCOCOCOCOOlOlOlOlOlOlOlOlOlOlOO O101O)0101O101O)O)0101O1O1O10101O101OO •r-^ — -•^^•^^-•^•^T-^^^^^-^^CMP* cococococococoaocooioicnoioioiaicncnm cncnoioioioioioicncTioioioioicnoioioicji cacooococococoeococooia)cncna>(noiaiOioi oioioioioicnoicno^oioicTioicnoioioioioioi n oi CM CN CM oiO-^tNn^i-iniot~-cooiO'^oinTLOiBr~co r^COCOCQCOCOOOCOCOCOCOOlOlOlOlOlOlOlCDOl 01O1O1010)C}J>G1C!O1O)O10"1O!O1OO)O)O)C) T-T-rT-r^r-'^rr-'r-r^^'r^T-'rrr- ro n oi CM oi r-r-cocococco3oococococoa)cna>a>a)CT>C)ai 01O)O)C101Cnc7)01O)CDOlO)O1010101O)O)0101 Nr-r^cocococococococococooioioioioioio) m010101O101OlO101010101OlO)0)OlO)O)01C7) oconncMoioicM r^r^r^t^coxcococococoxcocooicnoioioioi OlOlOlCJlOlOlOlGlOlOlOlOlOlOlOlOlOlCflOlOl nconncicNCNcMoi ST,- I- 01 >. — s. • > 3 s- (0 C (0 L (0 V- 4) t. s r -w c t- c 0) o o 1o >« 13 o ID o) • in C O <0 0) CM JQ O1LL t- 10 oi in £ Ol in •H 0) C i- O <•- O)-- o 0) in a in *" in E >p- uj 10 a. C UJ -4-* <0 I- C- -3 « C l" t) O 0. Z v » O >- 10 JZ » O) CO t. C (0 •• ••- 0) v T3 - i O TJ E C O 1 t_ O i o in — CD 0) *• > 0) U in C (0 o .a in a> in JT oi • in T3 • c CM (0 0) •o S 0) (0 >— c 0) t. 0 0) «- i? • <0 3 t- i. O 0) (0 > 01 U Ol — R> 01 01 (- L. (0 C 4J 0) in > C 01 in £2 > 3 Ol o C ^- O r*t^r*r^r^rocococococococococooioiO)O)Oi 0> innj O)C71010101O)O10101O)0101010101C)O)010101 lOPincnnnrMoioicM 0) 01 0) v v 01 in in Oi 01 C *- v o OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIO) •»-••- •H E 10 O *- o in io t> T3 - - c c s c - iDicnfonnncMOioioi O)O)O)0101O)OlCT)010)O)0)O1010)O)01O)0101 ------- in CO 01 in CM >- < £ Ul t- < Q U CN in CM UJ _J CO < 1— r-. LT) 1 X EXHAUST EMISSION LEVELS FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES NOx January 1 of Calendar Year 198O 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 # * LU # £ * # Ul » £ * UJ * £ ; UJ I S. * UJ # >- Z * * UJ * >" Z * * UJ * Z * * UJ *- >• S. * LLJ # >• z I 1 * * UJ * z * u, -*• ^OOOT^t^cooiiO^ o)0)0) 0)O)cococQu>iflininOOOOc>-cii . -. f*L f*. S* 0)CRO)<7)0101O)OO)(7)OlCf)CT)OlO)0>O>OO)0> ^-OOOOOiO)cocoooco(i»if)ininooO)O)0) **. *-* x^. 01O10)(7)010)O3O)0)01O)C7JO)G)0)O)C)0)O)0> -000000)ooeoooeoi>.inininTrOO) 01O)C7)O)Cr3(DO)O)CnO)O101J)Ol010)O)01OlCF) •^OOOOOoioocacDeot^r^iniOT^-OOO) ^. -» <*. coo)O-^oJcn^mijDr-®OTO*-cNo^int0»> 0)O)0>0)OTO)O)050)OIO)O)OOlCJ5(J>OlO)ff>(7) -OOOOOoiencococoM-r-m^ntoicn Oiai050)O)O)OT01O0)O10)O)01ff)O)0)01010) *"OOOOOC7)0)0)cocDr^r-r^(j3^rTr'3-roai (ur^cooiO^ojn^LniDr-coa/O'-cNn^TLO oioicno^o'io^oicncnoo^o'jo^ojoioio^cDoiCTi *-OOOOOO/CDcncocop-r^p*-iocon'!Tncn in O'-cNr5^t O^Ol(7>(JlOlCT)CT)^)Oia)0)O)0)O>ff)0>O)01C7)01 ^, 0)05C7)O)O^OTO)0)O^O501ff)0)01^01OTC101J) 01J)010)CT)0)0)ff)OO5O<71J)0)ff)010)CnC7)01 -OOOOOoioioicococo^t-wtOLOin^n ' Q(7}d)G)^)0)C)0)O0/lO0')0)OjlOO)O0)0)0) ^ooooooioiaicococo^^^^inmtn ' A. 8 e ID T3 CO C 01 CD Ol (7) o o o r~r^cocococococococncDooonoioioicj>cnoicn 0101O)01010101010101O10101O1O)01010101O1 '-'-'- — ooocncncn ^^•^•^^-^dod r~cocnO-— cNDTLOUjf-cooiO'-cMO^-LOip f^r^r^coxcocococococoxcooioioioioioioi oioia)O)oioioioioioioioio)oioioioioioioi OOOOloir~-r^iD(j3CM — '-'-'-( CNCNCM'-'-'-'-'-'-'-'-'-^-'- • O O O O O O 41 - C TJ — [. gj ID • > 3 ID C. ID f- Z £ 10 > +* Lc 0) O O m (J Q) c o > 10 01 in C. 9) in •H 8) C 1- 0 o o in in E L. n « a. c ui *• ID K U •3 (0 C l" W °»v 0 >• U3 £ = 01 ID O £ •O - M- ii° o s« i- o n o • • in CM • — tt) in fl) •+-< "O > C CM 9) O <0 — - Q) Ul - — C ID t> J3 O JJ 01 ID w : - c 0 i- o HI *- A +j in — -a c E m - r~r*r~t~r--cocococococococococooiO)Oioioi 0101O5O1010101010101O1010101O501O1O10101 e - • ra D 1- i. U 0) 1C > d) O Ol - ID HI CD i. i. O > - - E ID Ul — Z C- > 3 O) O *- s« c — o — -"- — ooooioiej] -'-'-',-'- - d d d r-i^r^t^i^r-cococooococooocooocoCTOioiO) 0) 0) ID JZJT > CO t/) 01 OJ C ** ** O ram — • 3 *- o in ID -O Q) - O) O O O t( T3 - - C C E C - > UJ 2* * * ------- H-158 Pol HC CO NOx TABLE 2.5.3 IDLE EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES Model Years IER * ZML + (DR * M) Zero Mile Emission Level (Grams/Mi n.) Deter iorati on Rate (Gm/Min/lOK Mi) * WHERE : Pre-1975 1975-1976 1977 1978 1979 1980-1981 1982-1983 1984+ Pre-1975 1975-1976 1977 1978 1979 1980-1981 1982-1983 1984+ Pre-1975 1975-1976 1977 1978 1979 1980 1981-1984 1985+ IER ZML DR M 0.32 0.07 0.09 0.14 0.12 0.07 0.04 0.03 0.40 0.25 0.28 0.30 0.32 0.26 0.26 0.15 0.13 0.22 0.17 0.20 0.18 0.19 0.14 0.09 = Idle em i s • Zero mile = Deteriora = Cumulativ .ion rate level 0.01 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0 0.0 0.01 0.01 0.01 0.01 0.01 0.01 DATE : MAY 25, 1985------- H-159 TABLE 2.5.k REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES Jan 1 Model July 1 Mileage Jan 1 Mileage Year Registration Accumulation Registration Accumulation Index** Mix* Rate Mix Rate per vehicle* (fleet) Jan 1 Mileage Accumulati on (fleet) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ 0.080 0.101 0.095 0.089 0.083 0.077 0.071 0.065 0.059 0.053 0.047 0.041 0.035 0.029 0.023 0.017 0.011 0.008 0.006 0.008 12818. 12102. 11427. 10789. 10187. 9619. 9082. 8575- 8096. 7645. 7218. 6815. 6*35. 6076. 5737. 5416. 5114. 4829. 4559. 4305. 0.027 0.101 0.095 0.089 0.083 0.077 0.071 0.065 0.059 0.053 0.047 0.041 0.035 0.029 0.023 0.017 0.01 1 0.008 0.006 0.008 12818. 12639- 11933- 11267. 10638. 10045. 9485. 8955- 8455- 7983- 7538. 7117- 6720. 63^5. 5991. 5657- 5340. 5043. 4761. 4495- 1602. 9591- 21873- 33470. 44420. 54758. 64520. 73738. 82440. 90657- 98415- 105740. 112657. 119187- 12535^. 13H76. 136673- 141863- 146763. 151390. * Default information that may be altered by the MOBILE3 user with information about the local area. ** The indices refer to the most recent model year vehicles in any given calendar year. Index 1 references the newest model year vehicles and index 20+ references the oldest model year vehicles. DATE : MAY 25, 1985------- H-160 TABLE 2.5-5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES JANUARY 1, 1988 Model Years 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 '978 1977 1976 1975 197^ 1973 1972 1971 1970 1969- (A) LDV Fleet Registration 0.027 0.101 0.095 0.089 0.083 0.077 0.071 0.065 0.059 0.053 0.047 0.041 0.035 0.029 0.023 0.017 0.011 0.008 0.006 0.008 (B) Sales Fraction 0.090 0.080 0.073 0.066 0.060 0.053 0.046 0.061 0.031* 0.028 0.009 0.004 0.003 0.003 0.0 0.0 0.0 0.0 0.0 0.0 (A*B) 0.002 0.008 0.007 0.006 0.005 0.004 0.003 0.004 0.002 0.001 0.000 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0 (C=A*B/DAF) LDDV Regi stration 0.055 0.184 0.158 0.134 0.114 0.093 0.074 0.090 0.046 0.034 0.010 0.004 0.002 0.002 0.0 0.0 0.0 0.0 0.0 0.0 (D) Annual Mi leage Accrual Rate 12818. 12639- 11933- 11267. 10638. 10045- 9485. 8955. 8455- 7983. 7538. 7117. 6720. 6345. 5991- 5657. 5340. 5043. 4761. 4495- (C*D/TFNORM) (C*D) 701.6 2328.9 1887.3 1509.4 1208.2 934.9 706.4 809.8 386.8 270.2 72.7 26.6 16.1 12.6 0.0 0.0 0.0 0.0 0.0 0.0 Travel Fractions 0.065 0.214 0.174 0.139 0.111 0.086 0.065 0.074 0.036 0.025 0.007 0.002 0.001 0.001 0.0 0.0 0.0 0.0 0.0 0.0 DAF: 0.044 TFNORM: 10871.3 WHERE : A » January 1 registration mix from Table 2.5.4. B » Fleet sales fractions D * Sales weighted fleet mileage accumulation rate from Table 2.5-4, adjusted to January 1 D(l) - Annual Mi les(1) D(MYI)= .25*(Annual Miles(MYI)) + .75* (Annual Mi les (MYI-1)) , MY 1-2, ... ,20+ NOTE : In general, the travel weighting fractions will change for every calendar year since the sales fraction (column B) changes for almost every model year. DATE : MAY 25, 1985------- H-161 TABLE 2.5.6 SPEED CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES ft SCF(s.sadj) = SF (s)/SF (sadj) SF (s)= EXP(A + B*s Pol HC CO NOx Model Years Al 1 Al 1 All Coef f ic i ents A B 0 1 0 .90900 .37520 .66800 -0 -0 -0 .05500 .08800 .04800 0 0 0 C .00041* .00091 .00071 * WHERE : s « average speed (mph) sadj = basic test procedure speed; adjusted for fraction of cold start operation x and fraction of hot start operation w, [ 1/sadj = (w+x)/26 + (l-w-x)/l6 ] DATE : MAY 25, 1985------- H-162 TABLE 2.5-7 NORMALIZED BAG FRACTIONS FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED VEHICLES Normalized Fractions Pol HC CO NOx Model Years Pre-1975 1975-1976 1977 1978 1979 1980+ Pre-1975 1975-1976 1977 1978 1979 1980+ Pre-1975 1975-1976 1977 1 1978 1979 1 1980 c 1981-1982 c 1983+ c Test Seg.#l Test Seg.#2 Test Seg.#3 Total Test 81 Dl B2 D2 83 D3 BO DO .209 0.071 1.073 0.056 0.703 0.064 .000 0.061 .209 0.105 1-073 0.084 0.703 0.088 .000 O.ogS .209 0.105 1-073 0.084 0.703 0.088 .000 0.098 .209 0.105 1.073 0.08*4 0.703 0.088 .000 o.ogS .209 0.105 1-073 0.084 0.703 0.088 .000 0.098 .345 0.103 0.966 0.138 0.793 0.103 .000 0.138 .199 0.060 0.935 0.042 0.974 0.051 .000 0.048 .199 0.067 0.935 0.048 0.974 0.057 .000 0.054 .199 0.067 0.935 0.048 0.974 0.057 .000 0.054 .199 0.067 0.935 0.048 0.974 0.057 -000 0.054 .199 0.067 0.935 0.048 0.974 0.057 .000 0.054 .157 0.061 i.ooo 0.026 0.904 0.035 i.ooo 0.035 .068 0.026 0.981 0.029 0.985 0.026 1.000 0.028 .068 0.031 0.981 0.033 0.985 0.030 1.000 0.032 .068 0.031 0.981 0.033 0.985 0.030 1.000 0.032 .068 0.031 0.981 0.033 0.985 0.030 1.000 0.032 .068 0.031 0.981 0.033 0.985 0.030 1.000 0.032 J.969 0.031 1-062 0.047 0.906 0.031 1.000 0.039 ).969 0.031 1-062 0.047 0.906 0.031 1.000 0.039 ).969 0.031 1.062 0.04? 0.906 0.031 1.000 0.039 NOTE : The fractions given in this table are used in the calculation of the operating-mode/ temperature correction factor (OMTCF). WHERE : OMTCF - ((TERM1 + TERM2 + TERM3)/DENOM) TERM1 - W *TCF (}) * (81+01 *M) TERM2 - (l-W-X)ATCF (2) * (B2+D2*M) TERM3 - X *TCF (3)*(B3+D3*M) DENOM - BO + DO*M W - Fraction of VMT in the cold start X - Fraction of VMT in the hot start TCF (b) - Temperature correction factor for year; for test segment b M * Cumulative mileage / 10,000 mode mode pol1utant, model DATE : MAY 25, 1985------- H-163 TABLE 2.6.1 EXHAUST EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED TRUCKS (RATES REFLECT ZERO TAMPERING) * BER = ZML + (OR * M) Pol HC CO NOx Model Years Pre-1978 1978 1979-1980 1981-1983 1984+ Pre-1978 1978 1979-1980 1981-1983 198*1+ Pre-1978 1978 1979 1980 1981-1984 1985-1986 1987+ Zero Mi le Emission Level (Grams/Mi le) 1.98 1.98 1.98 0.99 0.51* 3.1+5 3.45 3-U5 3.45 2.33 1.83 1.83 1.83 1.83 1.48 1.48 0.94 Deter iorat ion Rate (Gm/Mi/lOK Mi) 0.08 0.08 0.08 0.04 0.04 0.10 0.10 0.10 0.10 0.04 0.06 0.06 0.06 0.06 0.03 0.03 0.03 50,000 Mi le Emission Level (Grams/Mi le) 2.38 2.38 2.38 1.19 0.74 3-95 3-95 3-95 3-95 2.53 2.13 2.13 2.13 2.13 1.63 1.63 1.09 * WHERE : BER = Basic emission rate (untampered) ZML = Zero mile level OR = Deterioration rate M = Cumulative mileage / 10,000 DATE : MAY 25, 1985------- in oo 01 in OJ < O x ce I a UJ cc ac. O UJ 01 ID 01 UJ _1 CQ . O O a I > UJ < UJ l/l K _l uj o •-> I— Z Q O 5° UJ h- I- O I/) 1-1 i. (0 • C CO 0) 01 (D O in >oo i. 01 ID *- 3 (0 -3 — O 8 L. ntr) nn 01 ex CM '-•<-'- ro^ c en a> 01 r-coaio — oieT)Tj-inuJt--oooiO'-oin^inu3 — »- ID u 3 ID -3 OOOOOOOO OOOOOOOO OOOOOOOO i — *---OOOa>oiaocor-r-iOin ^-'-'---'-ooooodod OOOOOOOO OOOOOOOO OOOOOOOO r~r-cococorococoa)cococoOTa>0)O)cno)O)a> OOOOOOOO CO CO CO CO d ' OJ *- •- L. 01 (D • > 3 L ID C (D C ID !55£ woo 0 (0 ffl •<« CO• 1C £ ' O) (0 t- " C 0) (0 O S *r! 0 T3 O E C ose £. o n o — a to > CO! 0) U ID , Q) (0 - — C ID 'O J3 O J3 (U ID O -H OJ OOOOOOOO^ -o c a> E 01 •- O1O1O1O1O)O)O1O1O)O1O)O1O1O)01O1O)O1J1O) E •— XL. ^^^^^^-^r-^--^^^^^^^^^^ -(D3>3 f- L U 01 OJ (BOM- nnnnwn'-'-^'-^'-oooooooo >«o O) S« C — (D 0) "- O 0) i. L. • •- 010101O)OlOlO)01OlC71CflO101O)0101OlOldl01 £(D(0 •— 0)UJ S* ------- in to 0) tn 01 Ul f- < a UJ a K o -1 X. < u I o: a i- i—i i o UJ a. a O UJ m u. 3 01 a IP a. U5 _J UJ —I O > UJ O UJ 1/1 _I UJ Ol ffl Z a o 1-1 > I/) I- o*-cNcnTriniDt-cocnO t-r-t-t~[-r~r-t~r-cococpcocpopcoapcoooO) inininininintTrnTiT'tf'j-oioicNCMoicN O'-cNOtinior-cooiO'-oic'jTriniDr-coo) r-t-r»t-r~r-r^^-r~i^cpcpopopcpcocpcoooop cooioj'-'-ocnojoor^ioin^'PicMicinintrt inminmininTT^f'rti-i'^T'a-oicMoioiCN 0)O*-oiC'3iinij>r-ooa)Oi'-cNC'3'3-inu3i-oo u5r-t~r~h-r-r»r-r-t^-r--cpapcpopcooDcococoT3 CO CO) 0) O) u3r-coO)O*-cNr>iinu3t--cOCT!O'-eNPi 0)0)O)0)0)0)O)O)0)O)0)0)0)9> OOCOOOOOCOCOC>10)CT)COOlO)O)CTlCnoSOOOO COO)O>O)O)O)O)O)O)O)O)O)O)O)C)O)OOOO cococpcpcpopcocno)ojc^o)oiCf)O)0)0) ininnrjpjcooioicMoioiojoicMoicNCNOJCMoi OOCOOOCOCOOOCOCOO)O1O)COO)O)O)O)O}O)OO o)oicoo)0)0)O)O)cnoio)O)coo)O)O)O)O)OO c*>CNOJOOOO)O)O)ooooeoi~r^ij5u)inin'rn inininncofooioJoioioioioicNoaoioioiotoi 03noOOpCQCpCOOOCpOJO)O)Cf)0)O)COCpO)O>< oooocococooococoobaoo)coo)O)cod>cnd)d)O) OlOOlOOOIOlC^JIOTOJG^OC^COC^^CnCQC1) c">cNo< — — c>o)O)cncococor-t~ieu5tnintcn i~cococooococooooocoooo>o>o>o>O)O)O>O)a> nc (j)cococor-t~«tfinin'!rn coo>O'-cNn'3-iniot~eoo>O'~cM05ninu5r~ i^i^ooooa3ccooooooajeoeooiO)O)0)O30305O) o)O)O)o>o)ocnCT)o>o)O)a)O)0)d)0)O)O)cno) t^^r^cbppcocpcpoocoapoocpoioiotcnoicoo) cooicN'-'-ocioiwoooooot^r-tciPinintP) inininininin'T^roicscNoicNCNojoitNoioioi r^r^-r^t^-cQcocococococoncocococncnoioC') O)O)O)O)O)O)O)CDCT)O)O)O}O)01O)0)01O)O)O) ^r»^t^^cocoopcpcpcocoopopopo^ojO)O)Oj in fl) '- r n \- 0) > — i. « ia • > 3 t. ia c ffl £. (0 « -M -3 > >- fl) (-1 r c v c ai o o Is H T3 O U5 OJ • in cow 0) 01 O •~ . flj OIU. I. a ai in £. 01 in v 0) C (. 0 <4- 01- o oi in o u *~ vn E >h- UJ i. u in a. o a. Z v > o > W £ * O) O > C I- o z 01 -H T3 - «- O B O E§* I- O O o • • v- *• r- ^r in oi • — 0) u? 01 +• 73 • > C 01 01 U (0 .- — CO in - — C (0 "O J3 O J2 01 10 •^ N I— in 01 — inminininin'r'j-'r'roioioioioioioioioioi ^^.^t^^^QpopcocoopoooQcpoocpo)p)O)0) E 0) L o 41 H_ Z -o E 01 ~v +- in Q • IB 3 c- t. u (0 0>^ oi ca > Ol O Ol — (0 01 0) t- i- T3 0) « o > E Q in 41 01 01 jr r > •f +^ 01 in in 0) o> c •H *J O « (0 — u u in — — in •O t3 - C C E (0 C •M 01 in > c oi in I- 0) z t- > 3 Ol i*- — O »- i« C in ra •H E £- 3 n> u •H O u a T3 41 — Ol o a C - — 6 n^in(Oi~co0)O*-CNf'> O*-fN r~f~r-r»f»r-t-ooooeoooococoooooooO)WO) 010)0>0)0>O)0)0)0)0)0>0)0)0)0)010)O>0)0) > uj z* ** ------- in CO en in CM UJ t- < LU a < u X a I O LU cr a O LU O U. 3 CM O 10 a. U) -I X LU U O CM > LU Z LU 1/7 LU _l LU -J ** ca z o < o t- 1-1 > LO I- x U) IP £. ra T3 (O c co ai cn ra in >co i. cn cncncncococor-r-iDcntccocotxt-.'-'-oOcn t-r-r-f~r^r-r-f~cocococococococococacncn cncicncncncncncncocncncncncncncncncncno) CMCMCMCMCMCMCMCMCNCM cocncncncncncncncncncnencncncncncncncncn CMCMCMCNCMCMCMCNCMCMCM cncncncncncncncncncncncncncncncncncncncn encncncncncncncncncncnencnencnencnencncn CMCMCMCMCMCMCMCMCMCMCMCMCM 8 8 8 cncncncncncnenencocncncncncncncncncncocn CMCMCMCMCMCNCMCNCMCMCMCMCMCN cncncncncncncncncncncncncncncncncncncncn iBf-cocnO — cNn^inior-coa>O'-cM(")iflt~-!^txf-t^^r-!~t^r-cocococococo cncncncncncncocncncncficncncncncncncncncn CMCMCMCMOICMCMCMCMCMCNCMCMCMCMCM-^^^^ LOtDr-oocno — cMn^ttfiiDr^oocnO'-CMO^t ioi0cotciDf-t~r-c»t--t-!xr»f-rxcococococo cncncncncncncncncncncncncncncncncncncncn CMCMCMeMCMCNCMCMCMCMCMCMCMCMCMCMCM-^'-'- cocncncnencncncncncncncncncncocncncncncn CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM'-'- cnocncnencncnencncncnencnencncnencncncn CMCNCMOiCMCMCNCMCNCMCMCMCMCMCMCMCMCM'-'- cnocncncncncncncncncncncnencncnencncncn CMCMCMCMCMCMCMCMCMCMCMCMCMCNCMCMCMCM'-'- cnocncncncncncncncncncDCDOcncncncocno') L. a T3 CO c en 4) cn ra u i. en ra *- 3 ID cocococococococncncncncncncncncncnoQQ cncncncncncncnoicncncncncncncncncnooo ,-,-,-,-,-,-.-,-.-,-,-T-,-,_,-,-,-CV|C>(CV| CM CM CM CM CM COCOOOCOCOCOCOCOO)O070)OOCDO)O)O)OO O)CT)O)0)0)O)0)O)010)01CT)0101O)O01O)OO CM CM CM CN CM CM cooocococococococo(j>oiCT)o0)oa)oio)0> CM CN CM CM CM CM CM CM CM CM CM CM ' CM CM CM CM CM CM cncncncooocncncncnpjncMCMCM^'-oocn CMCMCMCMCMCN-- '-*-*- — —'-••-••-••-•'-••-'-O r*-r*-r*-coGOcococococococococncncncf)cncno cncncncncncncncncncncDcncncncncncncncncn cncncncocoocncncncncor'jcMCNCM — — oocn CMCMCMCMCMCM'-'-ir-<'-»-*-»-»-'-^-<'-1'--'-O r-r-!~r~.cocooococococococococncna>cncncn cncncncncncncncncncnocncncncnoicncncncn 41 *- c. t> f- 4> > — L. 4i ra • > 3 E. ra c ra c. ra t- x. r ra > -H •O c •*- c 41 o O O ID 01 • in c o BJ > - - 41 ra ai in r 01 in •H 4) C (- O O 4) in in E L u 1C £ « cn « ^ c 0 S •a - M. O T3 O t. O o ^41 u) 0) f ~O • > C CM oi u ra — — (S) (0 - — C 10 T3 £1 0 .Q 0) (0 N t- (ffl £ - C CM CM CM CM CM CM r^^t^^r^cococococoaocococococncnocncn cocncncncncncncncncncncncncncncncncncncn cncncncococor-cncncncocococMoi'-'-oOcn CMCMCNCMCMCMCM'-'-'-'-'-'-'-^'-'---^O r^t^f^^r^r^cococococococococococncncncn cncncncncocncncncncncncncncncncncocncncn cncncnoococot--t~cncncococotxcM'- — ooen CMCMCMCMCMCMCMCM*-*-'---'-'-''-'- — -"-i-O ^txr>r^t>r~r~eoooeococococoaocococncncn E A 0) t- (0 C O -H 41 41 t- in > - T3 C Ol E 4) •- ^x <-> in • ra 3 > 3 t- L. o O) ra 01 •— v -^ ai ra o <4- > 01 o ra s* c — ra 4> ••- o 41 i_ [_ • — o ^ in ra E ra in — oi « a! -H E £ r > u 3 •H ^ 01 ra o — *• u in in in a ai a c •H •H 0 T3 41 ra ra -— o> o o in o nj •a TJ - - c c E c - 1-4 >-< 4) — E l i l l > ui Z * * *------- Pol HC CO NOx * WHERE H-167 TABLE 2.6.3 IDLE EMISSION RATES FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED TRUCKS * IER = ZML + (DR * M) Model Years Pre-1978 1978 1979-1980 1981-1983 198U+ Pre-1978 1978 1979-1980 1981-1983 1984+ Pre-1978 1978 1979 1980 1981-1981* 1985-1986 1987+ IER ZML DR M Zero Mile Emission Level {Grams/Mi n.) 0.18 0.23 0.23 0.07 0.07 0.53 0.51* 0.54 0.54 0.31 0.19 0.32 0.32 0.32 0.34 O.Ik 0.13 Deter ioration Rate (Gm/Min/lOK Mi) 0.01 0.01 0.01 0.0 0.0 0.02 0.01 0.01 0.0 0.0 0.01 0.01 0.01 0.01 0.0 0.0 0.0 Idle emission rate Zero mile level Deterioration Rate Cumulative Mileage / 10,000 DATE : MAY 25, 1985------- H-168 TABLE 2.6.4 REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED TRUCKS Model Year 1 ndex'V* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ July 1 Regi strat ion Mix* 0.067 0.085 0.081 0.077 0.073 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 Mi leage Accumul at ion Rate per truck * 17552. 16262. 15068. 13961. 12936. 11986. 11105. 10290. 9534. 8833. 8185. 7583. 7026. 6510. 6032. 5589. 5179. 4798. 4446. 4119. Jan 1 Regi stration Mix 0.022 0.085 0.081 0.077 0.073 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 Jan 1 Mi leage Accumul at ion Rate (fleet) 17552. 17229. 15963. 14791. 13705. 12698. 11766. 10901. 10101 . 9359. 8671. 8034. 7444. 6897. 6390. 5921. 5486. 5084. 4710. 4364. Jan 1 Mi leage Accumul at i on (fleet) 2194. 13124. 297 11. 45080. 59321. 72515. 84741. 96068. 106564. 116288. 125298. 133646. 141381. 148548. 155188. 161340. 167041. 172323. 177217. 181752. Default information that may be altered by the MOBILE3 user with information about the local area. ** The indices refer to the most recent model year vehicles in any given calendar year. Index 1 references the newest model year vehicles and index 20+ references the oldest model year vehicles. DATE : MAY 25, 1985------- H-169 TABLE 2.6.5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED TRUCKS JANUARY 1, 1988 (A) (B) (C-A*B/DAF) (D) Model LDT1 Fleet Sales LOOT Annual Mileage Years Regi stration Fraction (A*B) Regi strat ion Accrual Rajte (C*D/TFNORM) Travel (C*D) Fractions 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 1974 1973 1972 1971 1970 1969- 0.022 0.085 0.081 0.077 0.073 0.069 0.065 0.061 0.057 0.053 0.048 0.044 0.040 0.036 0.032 0.028 0.024 0.020 0.016 0.024 0.240 0.210 0.180 0.160 o. 130 0.100 0.080 0.060 0.034 0.028 0.009 0.005 0.003 0.002 0.0 0.0 0.0 0.0 0.0 0.0 0.005 0.018 0.015 0.012 0.009 0.007 0.005 0.004 0.002 0.001 0.000 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.067 0.224 0.183 0.155 0.119 0.087 0.065 0.046 0.024 0.019 0.005 0.003 0.002 0.001 0.0 0.0 0.0 0.0 0.0 0.0 17552. 17229. 15963. 14791. 13705. 12698. 11766. 10901. 10101 . 9359- 8671. 8034. 7444. 6897. 6390. 5921. 5486. 5084. 4710. 4364. 1181.5 3862.4 2923.0 2288.6 1633.4 1100.4 768.4 501.1 245.8 174.4 47-0 22.2 11.2 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.080 0.262 0.198 0.155 0.111 0.075 0.052 0.034 0.017 0.012 0.003 0.002 0.001 0.000 0.0 0.0 0.0 0.0 0.0 0.0 DAF: 0.080 TFNORM: 14765.6 WHERE : A = January 1 registration mix from Table 2.6.4. B * Fleet sales fractions D = Sales weighted fleet mileage accumulation rate from Table 2.6.4, adjusted to January 1 D(l) = Annual Mi les (1) D(MYI)= .25*(Annual Miles(MYl)) + .75*(Annual Mi les (MY I-1)) , MY 1=2, . . . ,20+ NOTE : In general, the travel weighting fractions will change for every calendar year since the sales fraction (column B) changes for almost every model year. DATE : MAY 25, 1985------- H-170 TABLE 2.6.6 SPEED CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED TRUCKS * SCF(s.sadj) - SF (s)/SF (sadj) SF (s)= EXP(A + B*s + C*s2) Pol HC CO NOx Model Years A1 1 All Al 1 Coef f icients A B 0. 1. 0. 90900 37520 66800 -0 -0 -0 .05500 .08800 .04800 0 0 0 C .OOOU .00091 .00071 * WHERE : s = average speed (mph) sadj * basic test procedure speed; adjusted for fraction of cold start operation x and fraction of hot start operation w, [ 1/sadj = (w+x)/26 + (1-w-x)/l6 ] DATE : MAY 25, 1985------- Pol Model Years HC Pre-1979 1979 1980-1982 1983+ CO Pre-1979 1979 1980-1982 1983+ NOx Pre-1979 1979 1980-1984 1985+ H-171 TABLE 2.6.7 NORMALIZED BAG FRACTIONS FOR HIGH ALTITUDE LIGHT DUTY DIESEL POWERED TRUCKS Test Seg.#l JL 1.209 0.112 1.209 o.no 1.209 o.no 1.209 0.115 1.199 0.062 1.199 0.060 1.199 0.057 1.199 0.057 1.068 0.033 1.068 0.033 1.068 0.036 1.068 0.071 Normalized Fractions Test Seg.#2 Test Seg.#3 B2 D2 B3 D3 1.073 1.073 1.073 1.073 0.935 0.935 0.935 0.935 0.981 0.981 0.981 0.981 0.091 0.089 0.089 0.093 0.044 0.043 0.040 0.040 0.036 0.035 0.038 0.072 0.703 0.703 0.703 0.703 0.974 0.974 0.974 0.974 0.985 0.985 0.985 0.985 0.093 ' 0.092 1 0.092 1 0.095 l 0.053 1 0.051 1 0.048 1 0.048 1 0.032 1 0.032 1 0.035 1 0.068 1 Tota.l Test BO DO J.OOO 0.096 i.ooo 0.091* i.ooo 0.091* 1.000 0.098 1.000 0.050 1.000 0.049 1.000 0.046 1.000 0.046 1.000 0.034 1.000 0.034 i.ooo 0.037 i.ooo 0.071 NOTE : The fractions given in this table are used in the calculation of the operating-mode/ temperature correction factor (OMTCF). WHERE : OMTCF = ((TERM1 + TERM2 -I- TERM3)/DENOM) TERM1 = W *TCF (1)*(B1+D1*M) TERM2 = (l-W-X)ftTCF (2) * (B2+D2*M) TERM3 = X *TCF (3)*(B3+D3*M) DENOM = BO + DO*M W = Fraction of VMT in the cold start mode X = Fraction of VMT in the hot start mode TCF (b) = Temperature correction factor for pollutant, model year; for test segment b M = Cumulative mileage / 10,000 DATE : MAY 25, 1985------- H-172 TABLE 2.7.1 EXHAUST EMISSION RATES FOR HIGH ALTITUDE HEAVY DUTY DIESEL POWERED VEHICLES (RATES REFLECT ZERO TAMPERING) « BER = ZML + (DR • M) Pol HC CO NOx Model Years Pre-1963 1963-1965 1966-1968 1969-1971 1972-1974 1975-1979 1980-1981 1982-1984 1985 1986 1987-1992 1993-1996 1997+ Pre-1963 1963-1965 1966-1968 1969-1971 1972-1974 1975-1979 1980-1981 1982-1984 1985 1986 1987-1992 1993-1996 1997 + Pre-1963 1963-1965 1966-1968 1969-1971 1972-1974 1975-1979 1980-1981 1982- 1984 1985 1986 1987-1992 1993- 1996 1997+ Zero Mile Emission Level (Grams/Mi le) 7.76 7.73 8.00 8.51 9.03 8.95 8.11 7.47 7. 16 5.75 5.59 5.49 5 .44 17.22 17. 15 17.75 18.89 20.04 19.56 16.64 15.32 14.80 14.53 14 . 14 13 .88 13.76 21 .94 21 .85 22.61 24 .06 25.53 24 .77 20.50 18.88 18.23 17.90 11.19 10.98 10.89 Deterioration Rate (Gm/M1/lOK Mi ) 0.05 0.05 O.O6 0.06 0.06 O.O6 0.06 0.05 0.02 0.02 0.02 0.02 0.02 0.14 0. 14 0. 14 0. 15 0. 16 O. 16 0. 14 0. 13 0. 12 0. 12 0. 12 0.12 0. 1 1 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.05 0.05 0.05 50,000 M1le Emission Level (Grams/Mile) 8.01 7.98 8.30 8.81 9.33 9.25 8.41 7.72 7.26 5.85 5.69 5.59 5.54 17.92 17.85 18.45 19.64 20.84 20.36 17.34 15.97 15.40 15. 13 14 . 74 14.48 14.31 21 .94 21 .85 22.61 24.06 25.53 24.77 20.50 18.88 18.23 17.90 1 1 .44 1 1 .23 11.14 * WHERE : BER = Basic emission rate (untampered) ZML * Zero mile level DR * Deterioration rate M = Cumulative mileage / 10,000 DATE MAY 25, 1985------- in eo 01 in 01 Ul a 11 U ui a O£ Ul o a < U. LU UJ r» CM Ul Ul K Ul —J VI O -J Ul K ea Z >-• < o a in > z a Ul a 0) u 10 C CO 01 01 ID O IT) XCO t. O) 10 — 10 -3 t^r^r-r-t-r-r-h-cococococosjcoajcocooio) OOOOicocor- " * > * * > z CO (D 01 CO O U> 0) I~ (0 n i- 01 01 t~ 1C O O CM CO (0 (p 01 en 10 n — in u> u? to 01 01 u> in O O •w in u> (0 en 01 (N — r- co U) 10 01 01 CM f - " m t^ U? U) 0) 01 •fl- 01 10 01 01 o CO (O en n 0 c- 01 o - 01 (0 ai *- in n ••- CM C*) r^ r- i- Ol Ol Ol «- 01 CO - 0 '- 0 - CM r~ t>- r» Ol 01 01 ••- h- _^ ^r in r- r- 01 oi i- CO " O n T i> h- 0) 01 in CM (O r^ i>- p^ Ol Ol in CM O O in 10 r- r- 01 01 en in ' co 01 r- r~ en en en in en 01 f- CO r- r^ 0) 01 n «- 0 - CO CO en m *- ~- Ol CO 01 O P- CO 01 01 n 8 CM CM 8 CN *- 8 CM o CM Ol 01 01 *" L fit w i. (0 "U CO C 01 01 01 f— ^ (0 0 <^ o "• i. Ol (0 «- 3 C u> 01 0) ^ in Ol en tr Ol O) n 01 Ol CM en 01 +- * * UJ * > Z * * UJ * > X * * LU •N. > X * # LU # >- z # # UJ * > Z # # LU * >• z ft # UJ * >- Z * X- LU * >- Z * * LU >- Z * * LU > Z # LU > Z # LU * > 188 COCOCOCOCOCOCOCOOOOIOIOIOIOIOIOIO'ICIIOI OlOlOlOlcnOlCTlOlOlOlOlCnOlOlOlOlOlCnOl cococococococococococnenenoicftoioioicooi oicnoio'ioioioioioicnoioioioio'ioioioicncji — '-ooocoioiouivotoujioipininininin f-COCOCOCOCOXCCCOCOCOO'lOlO'lOlOlOlOlCOO) in 10 in CM — Oi>-t-in*rnDCN»-0)cof-iD"T CMCM*- — ooocoioioioioiousioininininin t^r^cocococooocococococoaioicioioioioioi OlOlClOlOlOlClOlOlOlCnOlOlOlOlOlOlOlCDOl CMCMCM — --oooicou3iDU>u>u>cooio — CMn^in ^r^f^f^r^cococococococococococncnoioioioi SOIOIOIOIOIOIOIOIOICOOIOIOIOIOIOIOIOIOIOI cMcMCMCMCM--*-oia>oicou>ioiouitDinininin GlOlCnOlOlOlOlOlOlO'lO'lOlOlCnOlOlOlCJlOlOl — OO01lOinP>COn*-OcnCOr-lO ai V) C ai o ai tfi 0) 0) > t- n c. A u T3 C c o 0) — •- in in £ 0) •H 01 M- a O 0) o in >r- i. HC d o . 01 01 *• - o € 01 O Ol in in c 01 U 01 Ol 01 — 10 01 <0 0) £. i. 0) "O 01 (o *~ o > - E (0 in g Q) 0) 01 •*• *j *• 01 > in in (0 Oi 0) C 3 •H -H O C ftj CQ ••" (0 o o in -3 f- — in T3 13 - 01 C C E £ « M 0) f l i t-r-r-r~r»i>r--cocococococococOGOcocncj]0! ' ------- in oo en in CM < o ca CM UJ o < 0 I X CJ UJ C£ UJ o a U, UJ 3 I/) O -< a. uj O > -i o UJ UJ _i in UJ Z 1-1 o o £ O UJ t- > 01 < I I CO T3 C cx> 0)CO U in >co i- en CO '- CO MCMCMCMCMCMCMCMCMCMCMCN CMCMCMCMCMCMCMCMCMCMCMCM CMCMCMCMCMCMCMCNCMCMCMCM- CMCMCMCMCMCMCMCMCMCMCMCMCMCM CMCMCMCMCMCMCMCNCMCMCMtNCMCNCN CNCMCMCMCMCNCMCNCMCMCMCMCNCMCM CNCMCMCMCMCMCMCMCMCMCMCMCMCMCM CMCMtNCNCMCMCMCNCMCNCMCMCMCMCNCM'-'-^ CMCMCMCMCMCMCMCMCMCMCMCMCMCMtMCMCM'-'-'- CNCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM'- CNCMMCMCMCMCMCMOJCMCMCMCMCMCMCMCMCMCM'- 8 CO 01 L. CO t) CO C 0) 0 01 CO O t- 05 CO — 3 CO "3 CMCMCMCMCNCMCMCM' oicnoioioioicnoiOTcnojOicjicncncnoooo ~T-T-,-.-.r-,-,-,-,-,-,-T--r-^^0'.CMCMCM CMCMCMCMCMCMCMCM CMCMCMCMCMCMCMCM' CMCMCMCMCNCMCMCM inincMcMCM»-oocno)o>oooot~toicin^''Tn CMCMCMCMCMCMCNCM*-'-»-»-»-*-»-»-*-»-*-*- COCOCOOOOOCOOOODOOC001OO)0)0)0)O)0)0)0) CNCMCMCMCMCMCMCM CJ)0)f^tcMCN^ooo)0)cocjor*h-u3inin^rn CMCMCMtNCMtMCNCNCM'-'-'-'-'--^'--'-'-'-'- CMCMCMCMCMCMCMCMCM OIOICOCO^TT — — — O05coeor~r~cj3ioin«tclJ CMtNCMCMCMCMCNCMtNCN'-'- — '--^'^-^'--^^ CDOlClCnG10>(J)Cr)O)O)CT)O101CDOO)010>O)01 in C G) 0 t- T3 Q> in • ifl I- Q CO O 0) c. co in c o — in co to o •- cS > 01 u! 0) in r CD •H U t. in i. ii |ft C UJ CO 1- §5 I* - 01 o _ ._ IB •o — a O T3 CO o — I/I C — 0) 9) 9) O O) in in c ra 0) o a t- D'-coiflCO'-coionOt^OcNr-cMiflOcncooi CMCMCMCMCMCMCMCMCMCN-'-*-'-*- — *- — '-'-*- t'-[*-t<*r'-h~COCOCOCOCOCOCOCOCOCOO')0)G)0)(7) &CTO)O)0)cj}ij)cnc7)crjcT)0}Cn0)0)0)0)0)0)cj> o>mcococococ')p')»- — oc>aoc^!-ipipin' E co in £ (U Q) QJ -r- +* ** 0) > in in co 0) 0) C 3 •H -H 0 C r^r-c~t-r-r-cooooococococoooenooo)(n UJ z» ** ------- in co en in 01 o cs CM UJ CO a M l/l H- Ul o a U. UJ l/l O _i a x uj O > -I Z UJ LU _J > S Q UJ I- > U) < 13 UJ < X X a •Q (O C co V CD ID O in xo t. en ffl -- a CNCMCMfMCMCMCMCMCNCM' •»iniflintTf^«TTtoococococot~cM'-''- CNCMCMCMCMCMCMCMCNCMCM*-*- — '-*-'-*-'- r-t^t-r-r-i~r-r-r~cocococococococococoo) cno)cno)cooio)CooicnoiC7icocooicncocr»oiC) '-••-ininincococococoininoicncncMcnf-tcM ^•ninininfi'r^'TOOcococooor*-'-'- — CMCMCMCMCMCMCMCMCMCMCMCM>-*-»-'-'-*- — »- ts-^-p~r<-p*p*r--r^^*f"'COcococococococococo '-'-'-inmincocooococoinuicocncncMOivcN *rTr^finininTr«T'<±t'»oocococoaaN"--- CNCMCMCNCNrNCMCNCMCNCMCMOl'-'-'--^'-'-'- mt--t^t^t^t~r-i^r-i^t~cococococococococo cNVV'rinininTT'r'TTOOcocococol'- — CNCMNCNCNPJOJCMCNCMCMOiCMCM'-^'-'-'-'- U3u5r~t~t~-t^r~i~i^t~-t~t-cocococococococo {NCMCMCMCNOI(NCN(NCMCMO(OICMCM tNCNCMCMCMOgCMCNCNCNCMCNOICMOIrN'-'-'-'- coiDieiD"--'-*-ininincocococooointno>o)0) •^eNcNoj^-^Trinmin-TT^^^-oocococo OJCMCMCMCMCMCNCMCMCMCNCNCMCMMCNCS'-'-'-iD'-'-'-minincococococoinino)O) '-'-cMCMcMt^-rrininin^-iT^-^-oococo CNCMOJCNCNOirNCNCNCNCNCNCNOJCMOICMOl-'- — U5U5U)U)U3iDr~t-r-c~t~.i~r~r-r-r-cocococo oooocoiflifliO'-'-'-ininincococococoinincn '-•^'-cMCMCNTr'r^-ininin'T'r^T'j-oOco CNCMCSCiCJCMCMCMCMfNOlCNOJCMCMCJOiCMCM'- icu3u>iDiBUJiDr~r— r~r^t^f-r~i^f-r^cococo cncococoioicuj'-'-'-ininincococococoinin '-•^'-'-CMOicN'a'ii'inininT'T'TTTOO CM(N(NCMCMCMCNCMCNCMCN ujlOlDU>lOlOu5f-t-r-r-t-f-t~f-t~!--OOCO cnoicococoicupiO'-'-'-inininoococococoin '-'-'- — '-cMCNMTr^^-inininTTrTi-'T'TO CMCMCMCMCMCNCMCSCSCNCMC4(NCM(NCMCMCMCSCV T3 CO C O) 0 0) ra CJ i. en (D — C 10 -3 rrinujp-cooiO'-cNcoirintft^cocno-^cMrj cocooococococDCDcncncDCDcbcftcncnoooO o>cnc)c7)0)OiOicncncDcncT)0)O)cnc)OOOO cococococococoo)cncno)cnO)encno)0]QOO '-'-'-'-'-'-'-'-'-'-•-'-'-'-'^•^'-rjOJCS cococococococococncncncnoicncocDcno) COCOCOCOCOCOCOCOCOCOO)0)0)O)COO)0)O)Cn01 cncnoicoojojcnoiojcncococncncoojoo)^^ t^cocococococococococochocncnocnoicDcn CM CM CM CM I h* t^-cocococococococococococncncococncncn t-eoo>O»- O-— cMd^iniP t^r^-r^cocococococococococooicncncnoioio) CM CM CM i. Ic: c o ai - — (0 o — C UJ 0) > Ou. 0) Ifl r D •M 0) c O 01 in i. n Q a 3 X C UJ §1 5f = 0) dtco 0 — - 01 |r* Q?« o I- O C o u- v 1/1 C - 05 Q) 0) v > oi u a C <0 Q) O fl (. •- 3 •«- v •*- 0) I. C 0 O — TJ B E 01 - I/I 10 E E - 3 • « 3 O i. i- 0 O fa Ol *" (0 0) IB > ai o ai Ol Ol — (0 0) 10 31 t- i. 01 T5 01 10 — O > - E ID W E (J) Q) Q) T- •f *> 41 > *- £_ i/i in ra 01 01 C 3 •H ^ O C (D 03 " 10 o u in "3 T3 T3 - 0) c c E r >• UJ Z* ------- H-176 TABLE 2.7.3 IDLE EMISSION RATES FOR HIGH ALTITUDE HEAVY DUTY DIESEL POWERED VEHICLES * IER - ZML + (DR * M) Pol HC CO NOx Model Years Pre-1963 1963-1965 1966-1968 1969-1971 1972-1974 1975-1979 1980-1981 1982-1984 1985 1986 1987-1992 1993-1996 1997 + Pre-1963 1963-1965 1966-1968 1969-1971 1972- 1974 1975-1979 1980-1981 1982-1984 1985 1986 1987-1992 1993-1996 1997 + Pre-1963 1963-1965 1966- 1968 1969-1971 1972-1974 1975-1979 1980-1981 1982-1984 1985 1986 1987-1992 1993- 199S 1997 + Zero Mile Emission Level (Grams/Min. ) 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.62 0.62 0.62 0.62 0.62 1 . 17 1 . 17 1 . 17 1 . 17 1 . 17 1 . 17 1 . 17 1 . 17 1 . 17 1 . 17 1 . 17 1 . 17 1 . 17 0.92 0.92 0.92 O.92 0.92 0.92 0.92 O.92 0.22 0.22 0.22 O. 22 O.22 Deter iorat ion Rate (Gm/M1n/10K Mi ) 0.0 0.0 0.0 0.0 o.o o.o o.o 0.0 o.o 0.0 0.0 0.0 0.0 0.01 0.01 O.01 0.01 0.01 O.01 0.01 0.01 O.01 0.01 0.01 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 * WHERE : IER » Idle emission rate ZML * Zero mile level OR = Deterioration Rate M = Cumulative Mileage / 10,000 DATE : MAY 25, 1985------- H-177 TABLE 2.7-4 REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR HIGH ALTITUDE HEAVY DUTY DIESEL POWERED VEHICLES Model Year Index** 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ July 1 Registration Mix* 0.090 0.151 0.126 0.105 0.088 0.073 0.061 0.051 0.043 0.036 0.030 0.025 0.021 0.017 0.014 0.012 0.010 0.008 0.007 0.031 Mi leage Accumulat ion Rate per vehicle* 66333. 60319. 54855. 49894. 45386. 41288. 37565- 34182. 31105. 28309. 25766. 23453. 21350. 19437. 17697. 16114. 14673- 13363- 12170. 11085. Jan 1 Regi strat ion Mix 0.0 0.151 0.126 0.105 0.088 0.073 0.061 0.051 0.043 0.036 0.030 0.025 0.021 0.017 0.014 0.012 0.010 0.008 0.007 0.031 Jan 1 Mi leage Accumulation Rate (fleet) 0. 66333- 60319. 54855- 49894. 45386. 41288. 37565. 34182. 31105. 28309. 25766. 23453. 21350. 19437. 17697. 16114. 14673. 13363. 12170. Jan 1 Mi leage Accumulat ion (fleet) 0. 33166. 96492. 154079. 206454. 254093. 297430. 336857. 372730. 405374. 435081. 462118. 486727. 509129. 529522. 548089. 564994. 580388. 594406. 607173. * Default information that may be altered by the MOBILE3 user with information about the local area. This mileage distribution is applicable to calendar year 1988 only. ** The indices refer to the most recent model year vehicles in any given calendar year. Index 1 references the newest model year vehicles and index 20+ references the oldest model year vehicles. DATE : MAY 25, 1985------- H-178 TABLE 2.7-5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR HIGH ALTITUDE HEAVY DUTY DIESEL POWERED VEHICLES JANUARY 1, 1988 (A) (B) (C=A*B/DAF) (D) Model HDDV Fleet Sales HDDV Annual Mileage Years Regi stration Fraction (A*B) Reqi stration Accrual Rate 1988 1987 1986 1985 198U 1983 1982 1981 1980 1979 1978 1977 1976 1975 1974 1973 1972 1971 1970 1969- 0.0 0.151 0.126 0.105 0.088 0.073 0.061 0.051 0.01*3 0.036 0.030 0.025 0.021 0.017 0.011* 0.012 0.010 0.008 0.007 0.031 1 .000 1.000 1.000 1.000 1 .000 1 .000 1 .000 1 .000 1.000 1 .000 1.000 .000 .000 .000 .000 .000 .000 .000 1 .000 1.000 DAF: 0.0 0.151 0.126 0.105 0.088 0.073 0.061 0.051 0.01*3 0.036 0.030 0.025 0.021 0.017 0.014 0.012 0.010 0.008 0.007 0.031 0.910 (C*D/TFNORM) Travel (C*D) Fj"actions 0.0 0.166 0.139 0.116 0.097 0. 66333- 60319. 51*855. 1*9891*. 0.0 11019.0 8361.1 6336. 4 1*830.2 0.0 0.21*0 0.182 0.138 0.105 0.080 0.067 0.056 0.01*7 o.oi+o 0.033 0.028 0.023 0.019 0.015 0.013 0.011 0.009 0.008 0.034 1*5386. 1*1288. 37565. 31*182. 31105. 28309. 25766. 23^53. 21350. 17697. 16114. 14673- 13363. 12170. 3644, 2770, 2107 1617 233 177 129 102 415 1231.9 934.3 708.6 541.8 399-3 299-4 .6 • 3 .1 • 9 ,1 0.079 0.060 0.046 0.035 0.027 0.020 0.015 0.012 0.009 0.007 0.005 0.004 0.003 0.002 0.009 TFNORM: 45860.0 WHERE : A B D 0(1) D(MYI January 1 registration mix from Table 2.7.4. Fleet sales fractions Sales weighted fleet mileage accumulation rate from Table 2.7-4, adjusted to January 1 Annual Mi 1es (1) .25*(Annual Miles(MYI)) + .75* (Annual Miles(MY I-1)), MYI=2 20+ DATE : MAY 25, 1985------- H-179 TABLE 2-7.6 SPEED CORRECTION FACTOR COEFFICIENTS FOR HIGH ALTITUDE HEAVY DUTY DIESEL POWERED VEHICLES * SCF(s)= EXP(A + B*s + C*s») Pol HC CO NOx Model Years All Al 1 Al 1 Coef f icients A B 0 1 0 .921*00 .39600 .67600 -0 -0 -0 .05500 .08800 .04800 0 0 0 C .OOOU .00091 .00071 * WHERE: s - average speed (mph) DATE : MAY 25, 1985------- H-180 TABLE 2.8.1A EXHAUST EMISSION RATES FOR HIGH ALTITUDE MOTORCYCLES (RATES REFLECT ZERO TAMPERING) * BER - ZML + (DR * M) Pol HC CO NOx Model Years Pre-1978 1978-1979 1980+ Pre-1978 1978-1979 1980+ Pre-1978 1978-1979 1980+ Zero Mile Emission Level (Grams/Mi 1 e) 11. 4, 4, 30 12 51-59 35-07 3^.95 0.11 0.43 0.57 Deter ioration Rate (Gm/Mi/IOK Mi) 0.78 1.65 1.73 2. 3 2 96 02 0.06 0.0 0.0 50,000 Mile Emission Level (Grams/Mile) 15.38 12.55 12.77 63-9** 54.87 45-05 0.41 0.43 0.57 ft WHERE : BER ZML OR M Basic emission rate (untampered) Zero mile level Deterioration rate Cumulative mileage / 10,000 DATE : MAY 25, 1985------- H-lBl TABLE 2.8.IB CRANKCASE AND EVAPORATIVE HYDROCARBON EMISSIONS FOR HIGH ALTITUDE MOTORCYCLES (RATES REFLECT ZERO TAMPERING) ** CCEV - (HSK * TPD + DNL)/MPD + CC Model Years Pre-1978 1978-1979 1980+ SHED Hot Soak Emi ss ions (Gm/Tr i p) Trips* Per Day SHED Diurnal Em! ssions (Gm/Day) Mi lesft Per Day Crankcase Emi ss ions (Cm/Mile) Total Crankcase and Evap. Emi ss i ons (Gm/Mi le) 5.93 9.10 9.79 1.35 1.35 1.35 8.72 10.97 11.18 8.30 8.30 8.30 O.kQ 0.0 0.0 2.1.2 2.80 2.94 Default information that may be altered by the MOBILE3 user with information about the local area. ** WHERE : CCEV = HSK = TPD = DNL * MPD = CC » Total untampered crankcase 6 evaporative HC emissions (Gm/Mi le) Hot soak emissions (Gm/Tr i p) Trips per day Diurnal emissions (Gm/Day) Mi les per day Crankcase emissions (Gm/Mi le) DATE : MAY 25, 1985------- in 00 cn in CM < o o 3 *-> I— UJ HH I/I O 0£ « U cO a o i/> o. CM 00 CM UJ _i CO 01 X L ID T3 U? C 00 _i ? Oi cn I/) U UJ — «- UJ (J l/l > a uj I/) H 3 O < t- X UJ CM 00 o 0 in >00 t. cn IB «- r^f-f-r^r^r-o-r^oooooococoaococooocoOjOi t-r-r-t--r-r-f-r--t-~r~tDODcoxcccoajcc co ao (or-p-ooc^^r-r-i^r^oococoeooooooococo OOOOOOOOOO'J'ntooiOoO'ro^t'- upior~t-r»i-r-r^t-»r-!-coaococococococo oicooj'Coo'iu'icDOi'Oio'ioioioioiOjO'ioioioioi OOOOOOOOOOOcoojcsOco^rO^'1^ s > t> eo c 01 Oj cn OOOOOOOOOOOcoM'-oeoiO'T'- OlOlOlClOlOlOlOiOlOjOlOlOlOlGlOjOlOlOjOj OOOOOOOOOOOOlOl'-OTCO'TO'r — ininininininmininuiint'TOicooococot-t- iPioifliBipr-i—!-r^i-r-f-r~r-r~oococo(oeo 0") 0) Ol O1) 10010101010101010101010101 OOOOOOOOOOOOioiooaiP-trOT'- 10 UD 10 ti> ID U) t- f-r-r-r-f-r-r-i>r-oooococo OOOOOOOOOOOaeocor~r-i>(--i>'>r--t-r-r~cococo iCU?ioicu3U>toio^-r-t>r-r~t--r~r-r-r-cooo OOOOOOOOOOO050loooor»mOT'- t. Ol m »- c iti cooocooocooooioiaioioioioicnoioioooo »-»-T-^-^T-^--^»--^»-^T-»-^t-CMfMOiO4 CM CM CM OOOOC0000003COCOO'101O)OjujOlO1OI)01O)1 o)oio)o>aiO)a>oia)0)O)cnoia>O)oooDoot^i^ OOOOOOOOCOOOCOCOCOujO)OjO1O)O)OO>C001< aooooooooocooocooocooioioioioicncocncnco OIOIOIOICOOIOIOIOIOIOIOIOIOIOIOICOOOIOI cnO'-Mn^rinu)r~oooiO'~cjn^-miot~co r^oooococoaococoenoococna)a> cnc>0)cncn oocno»-cMn^inwt»ooo)O'-Nn^io»ot~ t~t^-cooo(Ococoa3coo!)ooooO)a)Cncno)OiCT)cn cncnoiooocncncnooiCDOjcnoioooocn mcno)o>cno)0)O)aicn(i)O)0)0)0)aooooot~p- r^r^r^aocooocococococococooioioioiOjOioi 010101010101010)010)01010101010101010101 r^h~r^r^cooocoaocooocDcococoo)0)O)O)O)uj r^r^t^t^-t^coooaooooooococoaooooioioioio) — t_ <- n c « s. a i. z c. a > * C 1- C 01 0 O o to o> C 6 (0 > O1U- C Q 01 IA JZ 01 in •H Q) C I- O O oi in O in ^ in E >l- UJ i- II n a. 3 Z • C W ^ nj i- !. "3 (8 • +^ C X 10 o a. z v *>•<&£. = O)« i. C (0 •• — o z "ai +• •a ~ *. E c ^ o ro — » oo QJ •*•* "D > C CM 0) U (0 .— -^- ft) in • — C R! D fl o a ai ID — N t- 41 U O) •— (Q Q) a> i- i_ c 01 to 01 > 3 O) s« c •*• 0 O > in r-p-i--oooooooococooooBooooo>0)0) V 0) ai •M +^ 0) in in 01 01 C v *• O (8 IB — U O in •55™ C C E w >-i a) •H E n> o *• o VI Q "D Q) — Ol O IB — E ------- in oo 0) CO CN 03 CN UJ UJ o < I a- o t UJ O O > D£ CJ UJ O _J K O Z Z o *-t 00 in x 00 X £. to cn L IS T3 ID C CO 0) cn in >oo i- cnif>ipinTj- r~t~t~r^aocococoaoa3ooooeocoaicncno)cncn a> — JT -o t- a> > 0) «S • > 3 t- (0 C c. Z £ T3 C «- C cu o o O IP OJ • in com -H Q) C t. O o fl) cn aw in E M X C UJ -M to j: L c a) in 0 Z EC O S3 i- o n o • — OJ CO CD -H 13 • 01 U ro •- N K •^'-'-i^r~oocococor~r~u)^TCNO)inono) r~r~r~r~i~coeooocococococoeococncno)encj) in in in i • r^ r* r^ r^ 0)CT) 0)C7)0)0)O)O)O)O)O)CT}O)O)O)0)0)0)O)0)C7)O) »-»-»-»-'-i^t~oooor-f^ccinvcNO)inoc>50) inininininoOi^r-r-(~-r~r-r~h-upu>ioinTt ^-^-^•^^^^•000000000000000000000)0)0) E - J3 ai c a c O -H 0) 0) u- in > — T5 C O) "^ -M in in is i— 0) • «! 3 > 3 t- i. O O) 15 0)— t- — 01 10 0 t- »— (0 QJ *~ O 0) t. i. • - •o cu nj CN *< o > in (D — • 3 OJ 0) 01 -t^ E - v O in in in n (D 4) C v -H o n 0) (0 (13 •«• — O) O O in o IB — •— in O (D T3 T3 — — C C E C - „ _ (u _ g i i
------- in CO O) in CN 4 I- O u CN CN ALTITUDE LEVELS FOR OTORCYCLES NOx UJ CD Z Z 4 O EXHAUST EMISS CO i Calendar Year 1986 1987 January 1985 oooooooooooooooooooo t^r~t-r-r-r-r-r-cocococococococccocn O1O)O)O)O)05O)0)O)0)O)0)CT101O)0)0)CJ)0)O) o OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOO r»t^r-r-i-r-p-t-r--r^oococoo3oooocooooDoo OOOOOOOOOOOOOOOOOOOO tor^r-r-t-t^r-c-^-i^t-cococococooocoeoco OOOOOOOOOOOOOOOOOOOO U3U5t-t-r-t-r^r^r-t-r^r-cocococooDcoooco oooooooooooooooooooo O) O) a> i. 10 01 >• s. (0 "O co C O) 01 Ol O o OOOOOOOOOOOOOOOOOOOO iDt~coo)O*-cMnTLnii)r^coo)O'-(Nrj^j-in OOOOOOOOOOOOOOOOOOOO iDU3iotou5r-f~t-t-r-r~t~r^r-r-cooocococo OOOOOOOOOOOOOOOOOOOO tp<0tou)U3u?t~r-r-r^t^>r-t'~t^i'-oooococo 0)COO)O)0)O)O)O)O)CDCT)O1O)0)O)0)0)O10)C) OOOOOOOOOOOOOOOOOOOO OTrinioi^oooiO'-cNn^rintDt-coaiO'-cM ini0ioioipiou>r~r~f~-f-i-r-t-!--r~r~coooco OOOOOOOOOOOOOOOOOOOO ioiBioiD(o U)tDlBU)U3U)IDU3U)U)u;iBlO OOOOOOOOOOOOOOOOOOOO U"5l0t^COO)O'~CNC'5TttntDt*-COO)O*~CNC')^ ^h^r^t^r^cocQcoooaococooocococjioioioo) Sfe 0) *. "^ T3 E 01 in to i E - : • ai o D) — (0 01 0) t- L. T3 0) HJ o > Sc ^ OJ in > OOOOOOOOOOOOOOOOOOOO r^i^p-r^r^t^cocooocooooocooooococncnojo") CNCNCMCNCNTrrr^iciAUJlo^totftftOtftoU) OOOOOOOOOOOOOOOOOOOO in in 0) 01 C •H V O (0 B •"- u u in 55- C C E « i_ OJ I I I I >• UJ X * * # in Y- 0) !! O iH 5- o CN V in to •H E 10 U +< o V) (0 •O 0! - O) O ffi C •<- -^ EO>CJ)0)0)9)0) oooooooooooooooooooo eococooococoaioicncncnaioiaicnaioooo oicncnaioicncnoicDcntncnoiocnoiOOOO f- *- ~ *- *- i »-—T-,-T- — »-.--.-cNCNrMCN OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOO O)0)0)OO)CJ)0)i OOOOOOOOOOOOOOOOOOOO O"-CNP5TinUJI— COOlO'-CND'J-inWN-OOO) OOCOCOOOCOCOOOCOCQCOOlCno)O)COO)0)0)O>O) oooooooooooooooooooo r~cooooocooococDcocx)coa)a)(J)cr>(T)Oia)Oicn ^TYC0O(P(X1^(J?lJ7U?liP^PCD(J^C0iD(j7iO^Ot0 oooooocooooooooooooo r-t~cocococococococococoaioa>a)cj>(na>o) OOOOOOOOOOOOOOOOOOOO r*r*r»cocococDcocococooocoo)O)O)OiO)O)O) OOOOOOOOOOOOOOOOOOOO ipt^cooiO'-cNcn'cj-inior^cooiO'-cNn^rin (^•r^r^r^cocooocococococococooiO)0)o)O}0) O)O)O1CT)O)0)0)O) OO)C/)0)O)O) 0) in 0) — £ T3 I- 0) >, — (_ 0) (0 • > 3 t, (0 C (U L flQ t z c. «s > •* c *- c 41 O O o us o) • in c o (o > Din. c. JZ 0) tn •w a) c 1- O u. O1-- 0 oi in in E >-r- uj L II 10 a. 3 Z • C ui v 10 K S. ^ (0 - 4J c I in o a z -H > 10 JT o z OJ +- TJ - V- O T3 O E C O S« L. U CO O CO •o • C CM
------- H-185 TABLE 2.8.3 IDLE EMISSION RATES FOR HIGH ALTITUDE MOTORCYCLES * IER = ZML + (OR * M) Zero Mile Deterioration Model Emission Level Rate Pol Years (Grams/Min.) (Gm/Min/lOK Mi) HC Pre-1978 2.41 0.42 0.36 0.38 CO Pre-1978 5.03 0.23 0.50 0.26 NOx Pre-1978 0.01 0.0 0.0 0.0 * WHERE : IER • Idle emission rate ZML = Zero mile level OR » Deterioration Rate M = Cumulative Mileage / 10,000 DATE : MAY 25, 1985 Pre-1978 1978-1979 1980+ Pre-1978 1978-1979 1980+ Pre-1978 1978-1979 1980+ 2.41 0.53 0.78 5.03 2.34 2.56 0.01 0.02 0.02
------- H-186 TABLE 2.8.1* REGISTRATION MIX AND MILEAGE ACCUMULATION RATES FOR HIGH ALTITUDE MOTORCYCLES Model Year 1 ndex** 1 2 3 i* 5 6 7 8 9 10 11 12 13 li* 15 16 17 18 19 20+ July 1 Regi strat ion Mix* 0.133 0.1U5 0.138 0.116 0.123 0.111* 0.069 0.01+1* 0.021* 0.009 0.085 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mi leage Accumulat ion Rate per vehicle* MOO. 2800. 2100. 1600. 1200. 800. 600. 1*00. 200. 200. 200. 0. 0. 0. 0. 0. 0. 0. 0. 0. Jan 1 Regi strati on Mix 0.01*1* 0.11+5 0.138 0.116 0.123 0.111* 0.069 0.01*1* 0.021* 0.009 0.085 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 Jan 1 Mi leage Accumul ation Rate (fleet) 0. 1*100. 2800. 2100. 1600. 1200. 800. 600. 1*00. 200. 200. 200. 0. 0. 0. 0. 0. 0. 0. 0. Jan 1 Mi leage Accumul ation (fleet) 0. 2050. 5500. 7950. 9800. 11200. 12200. 12900. 131*00. 13700. 13900. 11*100. 11*200. 11*200. 11*200. 11*200. 11*200. 11*200. 11*200. 11*200. Default information that may be altered by the MOB1LE3 user with information about the local area. *ft The indices refer to the most recent model year vehicles in any given calendar year. Index 1 references the newest model year vehicles and index 20+ references the oldest model year vehicles. DATE : MAY 25, 1985
------- H-187 TABLE 2.8.5 EXAMPLE TRAVEL WEIGHTING FRACTION CALCULATION FOR HIGH ALTITUDE MOTORCYCLES JANUARY 1, 1988 (A) (B) Model MC Fleet Sales Years Regi stration Fract ion (C-A*B/DAF) (D) MC Annual Mileage Regi stration Accrual Rate (CWTFNORM) Travel (C*D) fractions 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 1974 1973 1972 1971 1970 1969- 0.044 0.145 0.138 0.116 0.123 0.114 0.069 0.044 0.024 0.009 0.085 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 .000 1.000 1 .000 1 .000 1.000 1 .000 1 .000 1.000 1 .000 1.000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 0.044 0.145 0.138 0.1 16 0.123 0.114 0.069 0.044 0.024 0.009 0.085 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.167 0.159 0.134 0.142 0.131 0.080 0.051 0.028 0.010 0.098 0.0 0.0 0.0 0.0 o.o. 0.0 0.0 0.0 0.0 0. 4100. 2800. 2100. 1600. 1200. 800. 600. 400. 200. 200. 200. 0. 0. 0. 0. 0. 0. 0. 0. 0.0 685.7 ^5-7 281.0 227.0 157.8 63-7 30.4 11.1 2.1 19.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.356 0.232 0.146 0.118 0.082 0.033 0.016 0.006 0.001 0.010 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 OAF: 0.911 TFNORM: 1924.0 WHERE A B D 0(1) • D (MY I) •• January 1 registration mix from Table 2.8.4. Fleet sales fractions Sales weighted fleet mileage accumulation rate from Table 2.8.4, adjusted to January 1 Annual Miles(l) .25*(Annual Miles(MYl)) + .75* (Annual Mi 1es (MYI-1)), MYI=2,...,20+ DATE : MAY 25, 1985
------- 00 00 *- t X Ul Q ^ J— ft t- J < 5 X a. Q u. to 1- z Ul lO CD *-i Ul • CJ _J 00 — U u. >• CM U. O Ul CX LU O O -1C ro — 01 ^ O X O O 0 1 1 1 ul ui ui 00 -- r- O> — -- t- CO «~ CM CO O O1 T t*- CO CO ^t odd 1 1 1 in in in 0 O O i i t LU LU LU r» CM in r~ co o O r- r- T CO CM 01 CM O (Q tO 00 odd CO CO CO o o o 1 1 1 Ul Ul Ul f to oo 01 CO Tt ^ *~ ^~ CM CM 1C r- n CM ^r ^j in odd i i i o o o 1 1 1 LU Ul LU O ifl a) 01 co co co co O oo n en in in to O O O 888 •f -f 4- LU LU LU CO O CM 1- CM [•* 01 IB O O CO — 01 00 01 CM CM CM odd 1 1 1 0 0 O UJ Ul UJ CM tO O — m co CO O CM n in CM CM ••- •*• CM CM CM d d o CO 01 01 01 -f - - o c_) 1 1 CO X 01 00 01 t- 1- -- o. 01 T— o o o 1 I 1 UJ UJ U) TOO — T Ol in n to w — in T ^~ ^" •T in r- odd i i i in in tj- O O 0 i i i tU LU UJ t~ 03 in O T — CM in CM 00 CM 10 in to — h- CO — d o d 0 O O 1 1 1 LU LU LU r-- »- f- O) CM CM co o in t~- CM 00 co in O T in r^ O O O i i i 000 1 1 1 LU Ul LU r» rr CM *r O in CO CO 00 CM O T in t~ O odd 888 LU LU LU CO TJ- 00 co in — CO O CD 1 CM O in r~ <- CM CM CO O O O i i i 000 •i + -f UJ LU LU CO CO CO r- co co 01 -r- in -- CM rr co eo o *- •*• CM odd 00 O) t- r- Ol 01 + - - 0 O l i CO u a> co en t. c^ ^~ a 01 T~ O O d d in in o o Ul UJ in r- oo r- in t- r~ in O CM CM *- d d CO CO 0 O 1 1 LU UJ in co CM r- O O co r- CM •r- O O 1 1 ^" CM 0 O 1 1 LU Ul co *r Ol CM CM O oo in CO Ol *~. ^ O O 88 LU Ul r~ TT O T O CM in CM CM '- d d o o LU LU • 4- 3 o ^^ C u 0 U <0 10 in t. — H w L. ^-* O J •n 0 C * O in — -i (0 ^ L 10 0 a •• o •a 0) v 01 C- Q. (0 in -H in 0 "^ i. v £ 3 O D.T3 r E 0 *— O (0 C ------- ct o (/> t- u. LU O CJ UJ < Q r~ o; z) tn o t- uj cn co i- M _i co • cj i- cj — CM < _l > I U. < O x LU a -i 2X0 co o cj i- < i- -i Q I- t- X I CJ LU a cc o cj ex LU a. LO r» a. x r 0 co x ** CJ C 1- 01 E 01 in 4^ in 3 « O 1- _! O f~ JZ o •f CM I •H CJ C (- s 01 in v in 3 0) 0 (- _j CJ *~ jz o r* Io Q. CM CM CM O O O 1 1 1 LU LU UJ cn ro tp en T 10 r- co 10 T in to en t-~ r- d d O CM CO CO O O O 1 1 1 LU LU UJ »• t en co co m SCO tO CO CO *- co cn odd i i CM CM CO 0 O O 1 1 1 LU LU LU 01 r~ in «- ID CN CM to cn co CN r- •*• •* -V odd 1 CM CN CO O 0 O 1 1 1 LU LU LU CM ^ m co -- in O O 1- ^r CM CN CM co in d o d 1 1 1 O 0 0 1 1 1 LU UJ LU — CM CO co in co co in co T CM O *- *- *- o o o 1 1 1 o o o 1 1 1 LU UJ LU CO CM LO CM to m 10 T CM O t <- CM CM CN odd i i i co en r- f» cn cn + - - O 1 1 CO 01 co en 0. 01 CJ I O 0 O 1 1 1 LU LJ LU T 0) CO "• P- co O - *- a en o 0 0 O 1 1 LU LU 01 00 co o CO *- O O T- f o d i i CM CN O O 1 i LU LU O O co en in co CN CN r- to d d i i CM CM O 0 1 1 LU LU in to CM to r> tr t- CM co en O d i i CM CN O O 1 | LU LU lf> *~ i. Q. i. CO O O 01 *- i. *• — a u •- a •- - i. a i. M- n 10 x- 0) t. 0) 01 > o >^ o *" ^ ° "m i. 0) CJ £. "O o TJ r o o " O C ^ E U E 01 U ID i. a T3 X" T3 Jv X- C c ra IQ c ra u. c O ^ 0 0) 01 - - - t- !_ •H 01 0) * 3 3 U L. I- U •H +> 0) 3 3 01 10 IB L. -H *- i. i. i. i. (0 (0 £. 01 Q) o s. s. o o. a O 0 01 O E E d d 0) 01 ai e E 01 *-• -H L 01 Q) L 3 v v 3 0) 01 +* +• u o IB -H -H (0 C C L C C t- 0) 01 01 01 01 01 C. L. a - — a oi 0) £ .O jQ E x- t 01 E E 01 0) 01 t- IB < 1— i. Q; n ll ll n *—* Q ~ •>~ a o u. — cj cj in t- I— (- r- C X 3 in a a. OJ v JZ .^ 3 C O a c 3 C? O 0 c T) 01 • in ca 3 t- in co CM t. 0 01 o 3 IB ra c c 0 - •H C U 01 0) > £. O) 0 O L o 01 -w L. U 3 IB v it- IB i. C 01 0 a- E -H 01 U •H 01 L. 0) I. JZ O 1- 0 LU o z in CO 01 . in CM ^ < Z LU ------- Pol H-190 TABLE 2.8.7B NORMALIZED BAG FRACTIONS FOR HIGH ALTITUDE MOTORCYCLES Normalized Fractions Model Test Seg.#l Test Seg.#2 Test Seg.#3 Total Test Years 81 01 82 02 __ B.1 __D3 BO DO HC CO NOx Pre-1978 1978-1979 1980+ Pre-1978 1978-1979 1980+ Pre-1978 1978+ 1.282 1.31*5 1.3^5 1.277 l.i»i*2 1.553 1.121 1.199 0 0 0 0 0 0 0 -0 .025 .07*4 .178 .033 .071 .109 .009 .004 0.973 0.91*6 0.919 1.017 0.996 0.933 0.785 0.793 0.028 0.054 0.118 0.029 0.01*2 0.079 0.001 -0.002 0.839 0.81*2 0.891* 0.758 0.671* 0.711 1.319 1.21*5 0 0 0 0 0 0 -0 0 .019 .01*8 .093 .025 .033 .038 .009 .006 1 .000 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 0.025 0.056 0.121* 0.029 0.01*6 0.071* 0.0 0.0 NOTE : The fractions given in this table are used in the calculation of operating-mode/ temperature correction factor (OMTCF). WHERE : OMTCF = ((TERM1 + TERM2 + TERM3)/DENOM) TERM1 = W *TCF (1) * (B1+D1 *M) TERM2 = (1-W-X)*TCF (2)*(B2+D2*M) TERM3 = X *TCF (3)*(B3+D3*M) DENOM » BO + DO*M W = Fraction of VMT in the cold start mode X * Fraction of VMT in the hot start mode TCF (b) = Temperature correction factor for pollutant, model year; for test segment b M = Cumulative mileage / 10,000 the DATE : MAY 25, 1985------- Appendix I EMISSION SENSITIVITY TABLES - ALL VEHICLES COMBINED This appendix contains average emission factors for all mobile sources combined for several calendar years between 1980 and 2000, for various ambient temperatures, cold/hot start VMT weightings, and for a range of average speed combinations. This appendix includes one case that represents the average national emission factors as generated from the standard test conditions (in Tables 3, 9, and 15 for HC, CO, and NOx; respectively) as well as other scenarios that can be used to assess the sensitivity of the emission factors to changing input conditions. All emission factors are given in units of grains of pollutant per vehicle mile traveled. The hydrocarbon emission levels include the crankcase and evaporative HC emission results. Further, the hydrocarbon emissions are total, rather than nonmethane. Emission factors presented in this section are intended to assist those individuals interested in compiling approximate mobile source emission estimates for large areas, such as an individual air quality region or the entire nation. The emission factor calculation techniques presented in this document are strongly recommended for the formulation of localized emission estimates required for air quality modeling or for the evaluation of air pollutant control strategies. Many factors, which vary with geographic location and estimation situation, can affect emission estimates considerably. The factors of concern include average speed, percentage of VMT in cold/hot start vehicle operation, percentage of travel by vehicle type, ambient temperature, air conditioning usage, vehicle load, trailer towing, and humidity. Clearly, the innumerable combinations make it impossible to present mobile source emission factors for each application. An effort has been made, therefore, to present emission factors for a range of conditions. The following conditions are considered for each of these cases:------- 1-2 1. Each table represents one average speed. There are 6 basic tables with speeds of 5.0, 10.0, 19.6, 35.0, 50.0, and 55.0 mph. 2. Each table presents six calendar years: 1980, 1985, 1988, 1990, 1995, and 2000. 3. Each calendar year presents 35 combinations of five temperatures and seven operating modes. The five temperatures are 0°, 25°, 50°, 75°, and 100°F. The seven operating mode combinations are shown in the following Table. Operating Mode Combinations MOBILES Input Description 0/0/0 100% Stabilized 0/100/0 100% Hot Start 100/0/100 100% Cold Start 50/0/50 50% Cold Start, 50% Stabilized 0/50/0 50% Hot Start, 50% Stabilized 50/50/50 50% Cold Start, 50% Hot Start 20.6/27.3/20.6 20.6% Cold Start, 52.1% Stabilized, 27.3% Hot Start NOTES: All percentages are percent of VMT accumulated in that mode. 4. The VMT mixes are those calculated from MOBILES. They are as follows: Calendar Year LDGV LDGT1 LDGT2 HDGV LDDV LDDT HDDV MC 1980 1985 1987 1990 1995 2000 0.666 0.652 0.647 0.635 0.617 0.608 0.133 0.128 0.124 0.115 0.102 0.095 0.088 0.087 0.087 0.086 0.086 0.087 0.040 0.040 0.040 0.041 0.041 0.041 0.005 0.023 0.031 0.046 0.067 0.076 0.001 0.008 0.012 0.021 0.035 0.042 0.060 0.054 0.051 0.049 0.045 0.044 0.007 0.007 0.007 0.007 0.007 0.007------- 1-3 TABLE 1 LOW ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AT 5.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb 0 F 18.17 18.12 124.47 59.90 18.02 71 .29 35. 13 12.20 12.06 91 .77 42.60 12.00 51 .91 24.50 9.47 9.67 81 .01 36.58 9.42 45.34 20.51 7.98 8.35 75.30 33.49 8.01 41 .83 18.40 5.64 6.28 64.59 28.14 5.81 35.43 14.91 4.72 5.40 58.62 25.44 4.91 32.01 13.28 ined for Eight Veh @ Ambient Temper 25 F 16.71 17.96 72.94 38.74 17.08 45.45 25.91 10.78 1 1 .63 50.78 26.02 10.99 31 .21 17. 11 8. 13 9.01 42.33 21 .05 8.36 25.67 13.52 6.75 7.61 37.79 18.47 6.99 22.70 1 1 .66 4.67 5.46 29.99 14.29 4.91 17.72 8.73 3.89 4.60 26.27 12.47 4.11 15.44 7.51 50 F 15.48 17.88 43.50 26.40 16.31 30.69 20.39 9.62 11.30 28.89 16.92 10. 17 20.10 12.89 7.06 S.47 22.87 12.99 7.51 15.67 9.73 5.78 7.00 19.67 10.98 6. 17 13.33 8. 1 1 3.92 4.78 14.44 7.89 4.20 9.61 5.69 3.25 3.95 12.19 6.66 3.48 8.07 4.76 icle Type ature 75 F 14.43 17.88 26.63 19.13 15.69 22.26 17.03 8.68 11.05 17.05 1 1 .81 9.51 14.05 10.40 6.21 8.04 12.92 8.69 6.83 10.48 7.56 5.01 6.50 10.76 7. 13 5.51 8.63 6. 14 3.32 4.23 7.37 4.83 3.63 5.80 4.10 2.75 3.42 6.02 3.98 2.98 4.72 3.37 s 100 F 17.09 23.21 21 . 18 18.56 19.34 22.19 18.91 1 1 .56 15.70 14. 17 12.44 13.01 14.94 12.70 8.53 1 1 .66 1 1 .40 9.53 9.60 11.53 9.51 6.80 9.32 10. 1 1 7.99 7.67 9.72 7.75 4.02 5.56 8.19 5.58 4.56 6.88 4.95 2.95 4. 1 1 7.40 4.64 3.36 5.75 3.86 TABLE 1 : THC AT 5.0 MPH.------- 1-4 TABLE 2 LOW ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AT 10.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb 0 F 1 1 .30 1 1 .25 68.58 33.75 1 1 .20 39.92 20.42 8.02 8.00 56.91 26.64 7.93 32.45 15.57 6.48 6.68 54. 16 24.52 6.48 30.42 13.84 5.63 5.95 52.66 23.45 5.68 29.30 12.93 4.26 4.75 48.38 21.11 4.39 26.56 1 1 .21 3.67 4. 19 44.93 19.53 3.82 24.56 10.23 ined for Eight Veh @ Ambient Temper, 25 F 10.45 11.12 40.73 22.29 10.64 25.92 15.39 7.12 7.68 31 .42 16.35 7.26 19.55 10.96 5.59 6.20 28.06 14.06 5.76 17. 13 9. 13 4.79 5.41 26. 19 12.86 4.97 15.80 8. 18 3.55 4. 14 22.39 10.72 3.73 13.26 6.57 3.05 3.59 20. 15 9.60 3.22 1 1 .87 5.82 50 F 9.73 1 1 .03 24.84 15.61 10. 18 17.93 12.38 6.39 7.43 18.00 10.77 6.73 12.71 8.36 4.88 5.81 15. 15 8.72 5. 18 10.48 6.61 4.12 4.96 13.59 7.67 4.39 9.27 5.71 3.00 3.64 10.78 5.94 3.21 7.21 4.31 2.57 3. 10 9.38 5. 17 2.74 6.24 3.72 icle Type: ature 75 F 9.13 10.99 15.74 1 1 .67 9.80 13.36 10.53 5.80 7.23 10.84 7.67 6.29 9.03 6.83 4.31 5.48 8.65 5.91 4.71 7.06 5. 18 3.60 4.59 7.48 5.03 3.93 6.04 4.36 2.57 3.23 5.55 3.68 2.79 4.39 3. 14 2. 19 2.70 4.68 3. 13 2.36 3.69 2.67 5 100 F 10.67 13.95 12.79 1 1 .43 1 1 .87 13.37 11.63 7.59 10.06 9.24 8. 15 8.45 9.65 8.28 5.79 7.78 7.84 6.52 6.47 7.81 6.45 4.76 6.43 7.22 5.65 5.33 6.83 5.43 3.04 4. 16 6.24 4.24 3.43 5.20 3.74 2.33 3.21 5.75 3.63 2.64 4.48 3.03 TABLE 2 : THC AT 10.0 MPH.------- 1-5 TABLE 3 LOW ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AT 19.6 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb 0 F 7.44 7.40 39.70 20.09 7.39 23.55 12.58 5.23 5.21 33.51 16.01 5. 17 19.36 9.60 4. 19 4.31 32.42 14.89 4. 19 18.37 8.55 3.66 3.86 32.00 14.41 3.69 17.93 8.06 2.82 3. 13 30.31 13.33 2.91 16.72 7.16 2.48 2.80 28.60 12.52 2.57 15.70 6.63 ined for Eight Veh: @ Ambient Temper. 25 F 6.97 7.33 24.01 13.64 7.07 15.67 9.75 4.71 5.03 18.70 10.03 4.79 11.87 6.93 3.68 4.03 16.89 8.66 3.77 10.46 5.76 3. 16 3.53 15.98 8.01 3.27 9.76 5.20 2.40 2.76 14.09 6.85 2.51 8.42 4.27 2.10 2.44 12.91 6.24 2.20 7.67 3.85 50 F 6.56 7.28 15.06 9.87 6.81 11.17 8.05 4.29 4.88 10.96 6.81 4.48 7.92 5.42 3.26 3.80 9.27 5.52 3.44 6.54 4.28 2.77 3.27 8.41 4.89 2.93 5.84 3.72 2.07 2.46 6.87 3.88 2.19 4.66 2.88 1.80 2.14 6. 10 3.44 1.91 4.12 2.53 icle Type ature 75 F 6.22 7.26 9.94 7.65 6.60 8.60 7.01 3.95 4.77 6.84 5.03 4.24 5.80 4.54 2.94 3.61 5.46 3.87 3. 17 4.54 3.44 2.46 3.05 4.77 3.32 2.66 3.91 2.92 1 .81 2.21 3.64 2.49 1 .94 2.92 2. 16 1.57 1.89 3.14 2. 16 1.68 2.52 1 .87 s 100 F 7. 1 1 8.93 8.27 7.52 7.78 8.60 7.64 4.98 6.37 5.95 5.31 5.46 6. 16 5.37 3.78 4.92 5.04 4.23 4.17 4.98 4. 17 3. 12 4. 10 4.67 3.69 3.46 4.39 3.53 2.07 2.75 4. 10 2.83 2.31 3.42 2.51 1 .65 2.20 3.82 2.47 1 .84 3.01 2.09 TABLE 3 THC AT 19.6 MPH.------- 1-6 TABLE 4 LOW ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AT 35.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb 0 F 5.30 5.29 23.91 12.64 5.28 14.60 8.28 3.51 3.50 18.81 9.36 3.48 11.15 5.88 2.71 2.78 17.79 8.44 2.71 10.29 5.05 2.34 2.45 17.52 8. 1 1 2.36 9.99 4.71 1 .81 1 .97 16.76 7.53 1.85 9.37 4.17 1 .61 1.79 15.98 7. 14 1.66 8.88 3.89 ined for Eight Vehi @ Ambient Tempera 25 F 5.05 5.26 14.88 8.92 5. 1 1 10.07 6.66 3.24 3.41 10.81 6. 13 3.28 7. 11 4.44 2.45 2.64 9.49 5. 12 2.50 6.07 3.56 2.09 2.28 8.93 4.68 2. 14 5.61 3. 17 1 .58 1 .78 7.93 4.00 1 .64 4.85 2.60 1 .40 1.59 7.35 3.68 1 .46 4.47 2.36 50 F 4.83 5.24 9.72 6.75 4.97 7.48 5.69 3.02 3.34 6.63 4.39 3. 13 4.98 3.64 2.24 2.52 5.43 3.44 2.33 3.97 2.77 1 .88 2. 14 4.88 3.01 1 .97 3.51 2.39 1.41 1.62 4.01 2.39 1.47 2.81 1 .84 1 .24 1.42 3.61 2. 14 1.30 2.52 1 .64 .cle Type iture 75 F 4.65 5.23 6.77 5.47 4.86 6.00 5.10 2.85 3.28 4.40 3.43 3.00 3.84 3.17 2.07 2.42 3.40 2.56 2. 19 2.91 2.33 1.72 2.03 2.94 2. 18 1 .83 2.49 1 .96 1 .27 1 .48 2.26 1 .64 1.34 1.87 1 .46 1.12 1 .29 1.98 1 .44 1 . 18 1 .64 1 .28 5 100 F 5. 12 6. 14 5.79 5.36 5.50 5.97 5.42 3.37 4. 12 3.92 3.56 3.63 4.02 3.59 2.49 3.09 3. 19 2.74 2.70 3. 14 2.71 2.05 2.57 2.91 2.37 2.23 2.74 2.28 1 .40 1.76 2.52 1.82 1.53 2. 14 1 .64 1 . 15 1.46 2.36 1 .61 1 .26 1.91 1 .40 TABLE 4 : THC AT 35.0 MPH.------- 1-7 TABLE 5 LOW ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AT 50.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0-0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb 0 F 4.64 4.63 18.90 10.28 4.61 1 1 .76 6.93 2.94 2.93 13.74 7.09 2.92 8.34 4.62 2.21 2.25 12.45 6. 1 1 2.21 7.35 3.80 1.88 1.95 12.02 5.74 1.89 6.98 3.46 1.42 1 .53 1 1 .23 5. 17 1 .45 6.38 2.97 1.26 1 .38 10.67 4.88 1 .29 6.02 2.75 ined for Eight Veh: @> Ambient Temper* 25 F 4.45 4.60 1 1.98 7.42 4.49 8.29 5.69 2.76 2.87 8.13 4.82 2.79 5.50 3.61 2.03 2. 16 6.84 3.85 2.06 4.50 2.79 1 .71 1.84 6.29 3.45 1 .74 4.07 2.44 1.27 1 .40 5.44 2.86 1.31 3.42 1.94 1.12 1.25 5.02 2.62 1. 16 3. 13 1.75 50 F 4.29 4.59 8.03 5.76 4.39 6.31 4.95 2.61 2.83 5.17 3.59 2.68 4.00 3.05 1 .89 2.08 4.07 2.71 1.95 3.08 2.26 1 .57 1.74 3.59 2.33 1 .63 2.67 1.91 1.15 1.29 2.87 1.80 1.20 2.08 1 .44 1 .02 1.14 2.57 1 .61 1 .06 1 .86 1.28 Lcle Type ature 75 F 4.15 4.59 5.77 4.78 4.31 5.18 4.49 2.49 2.79 3.59 2.90 2.59 3. 19 2.71 1.77 2.01 2.69 2. 11 T.86 2.35 1 .96 1 .46 1.67 2.29 1.77 1 .53 1.98 1.63 1 .06 1 .21 1.72 1 .31 1.11 1.46 1.19 0.94 1.05 1.51 1. 15 0.98 1.28 1 .05 s 100 F 4.49 5.27 5.01 4.68 4.78 5. 14 4.72 2.85 3.37 3.23 2.98 3.03 3.30 3.00 2.06 2.47 2.53 2.23 2.20 2.50 2.21 1.69 2.03 2.25 1.89 1.81 2. 14 1 .84 1 . 15 1.39 1.89 1.43 1.23 1 .64 1.31 0.96 1 . 16 1.75 1.26 1 .03 1.46 1.12 TABLE 5 THC AT 50.0 MPH.------- 1-8 TABLE 6 LOW ALTITUDE' THC EMISSION FACTORS (GRAMS/MILE) AT 55.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb 0 F 4.50 4.49 17.80 9.77 4.48 11.15 6.64 2.83 2.82 12.70 6.62 2.81 7.76 4.37 2.11 2. 15 1 1 .41 5.65 2. 11 6.78 3.55 1.79 1 .85 10.96 5.28 1.80 6.41 3.22 1 .35 1.45 10. 18 4.73 1 .37 5.81 2.74 1. 19 1 .30 9.65 4.45 1 .23 5.48 2.54 ined for Eight Vehi <5> Ambient Tempere 25 F 4.33 4.47 1 1 .35 7. 1 1 4.37 7.91 5.49 2.66 2.77 7.57 4.55 2.69 5. 17 3.45 1.95 2.06 6.32 3.61 1.98 4.19 2.64 1 .63 1 .75 5.79 3.21 1 .67 3.77 2.29 1 .21 1 .33 4.97 2.65 1 .25 3. 15 1.82 1 .07 1 . 18 4.58 2.42 1.11 2.88 1.64 50 F 4. 18 4.46 7.67 5.55 4.28 6.06 4.79 2.53 2.73 4.87 3.42 2.59 3.80 2.93 1 .82 1 .99 3.81 2.57 1.87 2.90 2.15 1 .51 1 .67 3.34 2.20 1 .56 2.50 1 .82 1.11 1 .23 2.65 1 .69 1.15 1 .94 1.37 0.98 1 .09 2.38 1 .51 1.02 1 .73 1 .22 .cle Type iture 75 F 4.05 4.46 5.56 4.64 4.20 5.01 4.37 2.42 2.69 3.42 2.80 2.51 3.06 2.62 1.72 1.93 2.55 2.03 1 .79 2.24 1 .88 1 .42 1 .60 2. 16 1 .69 1 .48 1.88 1 .56 1 .03 1 . 16 1.62 1 .25 1 .07 1 .39 1.14 0.91 1 .01 1 .42 1 . 10 0.94 1 .22 1.00 s 100 F 4.36 5.08 4.85 4.54 4.63 4.96 4.58 2.74 3.22 3. 10 2.86 2.91 3. 16 2.88 1.98 2.35 2.40 2. 13 2.11 2.38 2.11 1 .62 1 .93 2. 13 1 .80 1 .73 2.03 1.75 1.11 1.32 1.77 1.36 1 . 18 1.55 1 .25 0.93 1.11 1 .64 1 .20 0.99 1.37 1.07 TABLE 6 THC AT 55.0 MPH.------- 1-9 TABLE 7 LOW ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AT 5.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 mo.o 50.0 0.0 50.0 20.6 Com! 0 F 209.88 157.76 1533.32 713.77 187.83 845.54 403.58 147.22 108.78 1051 .92 485.02 130.27 580.35 275.83 1 16.60 89.32 812.72 375. 10 103.96 451 .02 215. 18 101 .83 80.50 684.56 317.92 91.53 382.53 184.37 80.95 68.92 495.24 235. 16 74.39 282.08 140.27 73. 14 63.84 430. 17 206.99 67.73 247.00 124.79 Dined for Eight Vehicle Type @ Ambient Temperature 25 F 189.00 160.48 910.75 463.42 176.32 535.61 294.10 124.34 104.42 618.55 308.49 1 14.89 361.48 194.31 92.21 80.47 478.87 235.54 86.03 279.67 147.30 76.64 69.26 404.50 198.07 72.24 236.88 123.76 55. 15 54.42 296.00 144.77 53.56 175.21 90.83 47.86 48.79 258.83 126.90 47.03 153.81 79.64 50 F 171 .68 164.14 546.95 313.89 167.31 355.54 227.31 106.69 101 .64 360. 14 200.65 103.24 230.89 143. 12 74.62 73.96 275. 13 148.60 73.03 174.55 103.91 59.17 60.85 231 .08 122.58 58.62 145.97 84.71 38.39 43.53 168.47 86.67 39.47 106.00 58.65 31 .83 37.54 147.20 74.97 33.26 92.37 50.19 75 F 157.31 168.81 332.53 223. 14 160.43 250.67 185.82 92.89 100. 18 198.51 131 .42 94.39 149.35 109.38 61.69 69.29 140.36 90. 16 63.51 104.83 74.26 46.84 54.60 1 1 1 .88 70.34 48.87 83.24 57.49 27.40 35.34 73.26 44. 10 29.81 54.30 35.50 21 .63 29. 12 60.51 35.94 24.01 44.82 28.74 ;s 100 F 302.54 313.84 224.41 268.86 303.21 269.13 289.00 208. 19 193.67 142.25 179.77 199. 16 167.96 191 .56 142.55 130.76 99.97 123.82 135.28 1 15.36 130.86 106.66 98.80 80.63 94.77 101 .45 89.72 98.90 51 . 16 53.66 54.45 51 .39 50.98 54.05 51.11 31 .90 38.47 45.86 36.53 33.69 42. 17 34.73 TABLE 7 CO AT 5.0 MPH.------- 1-10 TABLE 8 LOW ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AT 10.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comt 0 F 1 12.95 86.23 809. 12 376.69 101 .56 447.67 214.40 88.53 67.45 638.33 292.38 79.06 352.89 166.53 76.35 60.37 537. 15 246.63 68.74 298.76 141 .66 70.61 57.37 479.09 221 .61 64.01 268.23 128.60 61 .87 53.05 382.11 181 .05 56.97 217.58 107.81 57.60 50.20 342. 13 164.28 53.28 196. 16 98.77 >ined for Eight Veh @ Ambient Temper 25 F 101 .24 86.92 479.39 244.32 94.78 283. 16 156. 1 1 73.57 63.52 375.87 185.49 68.59 219.70 1 16.50 59.00 53. 17 317.70 154.52 55.64 185.44 96. 12 51 .94 48.38 284. 16 137.74 49.47 166.27 85.58 41 .63 41 .52 228.64 111.21 40.57 135.08 69.42 37.43 38. 19 205.64 100.46 36.77 121 .92 62.78 50 F 91 .57 88.12 287.60 165.49 89.40 187.86 120.54 62.24 60.73 217.77 119.56 60.71 139.25 84.77 46.73 47.79 181 .87 96.42 46.24 1 14.83 66.71 39.20 41 .61 161 .89 84.38 39.29 101.75 57.66 28.56 32.86 129.87 66. 18 29.52 81.37 44.41 24.67 29.22 1 16.66 59.07 25.81 72.94 39.31 licle Type •ature 75 F 83.55 89.84 174.90 117.68 85.23 132.37 98.36 53.52 58.86 116.68 76.38 54.75 87.77 63.49 37.88 43.79 89.58 56.50 39.41 66.69 46.28 30.36 36.53 75.84 46.76 32.07 56. 18 37.95 20.06 26.36 55.48 32.96 21.99 40.92 26.35 16.58 22.52 47.45 27.94 18.46 34.99 22.22 !S 100 F 163.50 166.70 121.41 145.33 162.68 144.05 155.56 122.69 113.38 85.47 106.60 1 17.03 99.42 112.98 88.55 81.58 64.67 77.92 84.14 73. 13 81.75 69.05 64.86 55.05 62.46 66.00 59.96 64.65 36.93 39.43 41 .13 37.78 37.04 40.28 37.30 24.49 29.66 35.76 28.23 25.89 32.71 26.75 TABLE 8 : CO AT 10.0 MPH.------- 1-11 TABLE 9 LOW ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AT 19.6 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Com! 0 F 61 .73 46.98 442.77 206.23 55.38 244.88 117.26 50.51 38.57 369.26 168.83 45.08 203.92 95.82 45.34 36.03 322.29 147.86 40.83 179. 16 84.70 43.02 35. 14 294.40 136. 12 39.03 164.77 78.82 39.31 33.74 244.71 115.85 36. 19 139.22 68.83 37. 18 32.35 222.99 106.87 34.36 127.67 64.07 sined for Eight Veh @ Ambient Temper 25 F 55.09 47.23 261.35 133.19 51.49 154.29 85.00 41.53 36.01 217.37 106.70 38.73 126.69 66.59 34.55 31.38 190.88 92.37 32.63 111.13 57.08 31 .22 29.32 174.90 84.40 29.79 102. 1 1 52. 13 26.21 26.24 146.49 71.02 25.57 86.36 44. 13 24.01 24.51 133.91 65.20 23.59 79.21 40.58 50 F 49.63 47.73 156.22 89.84 48.40 101.98 65.36 34.80 34.15 125.34 68.20 33.98 79.75 47.97 26.99 27.88 108.91 57. 17 26.78 68.39 39. 17 23.23 24.93 99.40 51.33 23.37 62. 16 34.75 17.79 20.62 83.06 42.05 18.43 51.84 28.03 15.70 18.67 75.81 38.18 16.44 47.24 25.27 icle Type ature 75 F 45. 13 48.52 94.63 63.61 46.00 71.57 53. 13 29.67 32.86 65.81 42.75 30.40 49.33 35.39 21 .60 25.27 52.45 32.73 22.57 38.86 26.65 17.74 21 .64 45.62 27.81 18.83 33.63 22.43 12.34 16.40 35.02 20.61 13.59 25.71 16.38 10.44 14.31 30.56 17.85 1 1 .67 22.44 14. 12 s 100 F 90.23 90.08 65.81 79.63 88.94 77.95 85.16 69.42 63.30 47.99 60.09 65.82 55.64 63.61 51. 19 46.87 37.68 45.10 48.47 42.27 47.19 40.53 38.10 32.92 36.85 38.72 35.51 38.01 22.56 24.32 25.81 23.32 22.70 25.06 22.93 15.44 18.82 22.89 17.92 16.36 20.85 16.93 TABLE 9 : CO AT 19.6 MPH.------- 1-12 TABLE 10 LOW ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AT 35.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comh 0 F 33.49 25.80 234.34 1 10. 17 30.17 130.07 62.99 25.86 19.82 183.61 84.83 23. 1 1 101 .71 48.43 22.84 18. 19 158.59 73.37 20.58 88.39 42.22 21 .61 17.70 144.94 67.49 19.62 81 .32 39.24 19.90 17. 12 122.36 58. 15 18.34 69.74 34.65 19.00 16.55 1 13.25 54.36 17.57 64.90 32.64 )ined for Eight Veh @> Ambient Temper 25 F 30.07 25.96 139.29 71.71 28. 19 82.62 46.04 21 .39 18.53 108.73 53.98 19.95 63.63 33.90 17.45 15.82 94.39 46.05 16.48 55. 10 28.58 15.70 14.73 86.48 42.00 14.98 50.61 26.03 13.27 13.30 73.43 35.72 12.95 43.37 22.25 12.29 12.55 68.07 33.20 12.08 40.31 20.70 50 F 27.27 26.26 83.90 48.78 26.63 55.08 35.69 18.04 17.59 63. 10 34.77 17.59 40.35 24.61 13.68 14.05 54.08 28.63 13.55 34.06 19.71 1 1 .70 12.51 49.31 25.63 1 1 .75 30.91 17.41 9.01 10.43 41.72 21. 19 9.34 26.08 14. 15 8.06 9.57 38.58 19.48 8.43 24.08 12.92 icle Type ature 75 F 24.96 26.72 51.26 34.85 25.41 38.99 29.24 15.48 16.95 33.39 22.01 15.81 25. 17 18.32 1 1.00 12.73 26.09 16.47 11.45 19.41 13.47 8.96 10.83 22.61 13.92 9.49 16.72 1 1 .26 6.26 8. .28 17.56 10.39 6.88 12.92 8.28 5.37 7.34 15.58 9. 13 6.00 1 1 .46 7.24 s 100 F 48.55 48.93 35.82 43.01 48.06 42.37 46.00 35.29 32.34 24.69 30.64 33.53 28.52 32.41 25.47 23.38 19.01 22.52 24.15 21.20 23.53 20.00 18.87 16.53 18.28 19. 13 17.70 18.81 11.18 12. 14 13.05 1 1.65 1 1 .29 12.60 1 1 .42 7.87 9.61 1 1 .72 9. 16 8.35 10.67 8.65 TABLE 10 : CO AT 35.0 MPH.------- 1-13 TABLE 11 LOW ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AT 50.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comh 0 F 26.20 20.41 173.21 82.83 23.69 96.81 47.96 18.33 14.00 1 18.31 56. 16 16.37 66. 16 32.71 14.74 1 1.61 94.31 44.65 13.25 52.96 26. 13 13. 15 10.67 82.23 39.05 1 1.92 46.45 23.05 1 1 .08 9.58 64.70 31 . 15 10.24 37. 14 18.81 10.35 9.10 59.20 28.68 9.62 34.15 17.43 nned for Eight Veh @ Ambient Temper 25 F 23.62 20.47 103.66 54.39 22.18 62.06 35.40 15.47 13.24 70.37 36. 18 14.38 41 .80 23.33 1 1 .60 10.29 56.24 28.33 10.88 33.27 18.04 9.85 9.05 49. 18 24.56 9.34 29. 12 15.57 7.56 7-. 53 39.01 19.32 7.38 23.27 12.26 6.83 6.98 35.76 17.68 6.72 21.37 11.19 50 F 21 .49 20.64 63.01 37.39 20.97 41 .83 27.70 13.28 12.69 41.44 23.84 12.87 27.07 17.37 9.35 9.30 32.61 18.02 9. 17 20.96 12.79 7.58 7.83 28.34 15.31 7.53 18.09 10.70 5.28 5.99 22.36 1 1 .65 5". 44 14. 18 7.96 4.59 5.39 20.43 10.52 4.79 12.91 7.11 icle Type ature 75 F 19.73 20.94 39.00 27.04 20.04 29.97 22.88 11 .58 12.32 22.97 15.78 11 .72 17.65 13.36 7.72 8.56 16.53 10.94 7.91 12.55 9.13 5.99 6.91 13.59 8.76 6.23 10.25 7.25 3.79 4.83 9.71 5.96 4.11 7.27 4.85 3. 16 4. 19 8.48 5.12 3.49 6.34 4. 13 s 100 F 37.82 37.92 28.10 33.56 37.37 33.01 35.82 25.56 23.29 17.89 22.18 24.25 20.59 23.46 17.35 15.69 12.65 15.22 16.37 14. 17 15.93 13.05 12.06 10.40 11 .77 12.39 1 1 .23 12. 16 6.62 7.06 7.48 6.81 6.64 7.27 6.70 4.51 5.44 6.55 5.19 4.77 6.00 4.93 TABLE 11 CO AT 50.0 MPH.------- 1-14 TABLE 12 LOW ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AT 55.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb 0 F 24.89 19.66 158.52 76.47 22.62 89.09 44.72 16.96 13.11 103.65 49.87 15.23 58.38 29.46 13. 19 10.45 80.27 38.47 11.90 45.36 22.81 1 1.51 9.38 68.75 33.02 10.46 39.06 19.72 9.35 8.13 52.64 25.57 8.67 30.38 15.60 8.64 7.65 47.91 23.38 8.06 27.78 14.34 ined for Eight Veh @> Ambient Temper, 25 F 22.51 19.66 95.41 50.59 21 .21 57.53 33.27 14.45 12.42 61.97 32.43 13.48 37.20 21.26 10.53 9.33 48.05 24.62 9.89 28.69 15.93 8.75 8.02 41.26 20.94 8.31 24.64 13.48 6.47 6.44 31.85 15.97 6.32 19.15 10.26 5.78 5.91 29.04 14.50 5.70 17.47 9.29 50 F 20.54 19.77 58.42 35.07 20.07 39.09 26.22 12.51 11.93 36.87 21.67 12. 13 24.40 16.04 8.60 8.49 28. 11 15.89 8.42 18.30 1 1.47 6.84 7.00 23.97 13.23 6.78 15.48 9.41 4.60 5. 17 18.38 9.74 4.73 11.78 6.76 3.95 4.60 16.70 8.72 4.11 10.65 5.98 icle Type ature 75 F 18.90 20.00 36.50 25.59 19.19 28.25 21.78 10.99 11.59 20.92 14.67 11.10 16.26 12.54 7. 18 7.85 14.62 9.91 7.33 1 1.24 8.37 5.49 6.22 1 1.79 7.79 5.68 9.00 6.53 3.37 4.21 8.16 5. 12 3.63 6.18 4.22 2.78 3.62 7.0? 4.36 3.04 5.34 3.56 s 100 F 35.68 35.97 26.95 31 .85 35.36 31.46 33.93 23.73 21 .76 16.91 20.73 22.59 19.34 21 .87 15.77 14.30 11.59 13.88 14.91 12.95 14.52 11 .70 10.80 9.33 10.56 11.12 10.07 10.92 5.78 6. 12 6.44 5.92 5.79 6.28 5.84 3.91 4.67 5.57 4.46 4.12 5.12 4.25 TABLE 12 : CO AT 55.0 MPH.------- 1-15 TABLE 13 LOW ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 5.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb: 0 F 5.89 7.20 6.40 6.19 6.63 6.80 6.42 4.66 5.91 5.90 5.28 5.30 5.90 5.27 4. 14 5.43 5.54 4.82 4.78 5.49 4.77 3.84 • 5. 18 5.23 4.50 4.48 5.21 4.46 3.48 4.93 4.78 4.09 4. 16 4.86 4. 10 3.33 4.81 4.54 3.89 4.01 4.67 3.93 ined for Eight Veh: @ Ambient Temper* 25 F 5.45 6.65 6.15 5.85 6. 13 6.40 5.99 4.30 5.40 5.45 4.87 4.87 5.43 4.85 3.78 4.88 5.04 4.39 4.33 4.96 4.33 3.48 4.59 4.73 4.08 4.02 4.66 4.02 3. 14 4.27 4.31 3.69 3.67 4.29 3.65 3.01 4. 12 4. 1 1 3.51 3.52 4. 12 3.50 50 F 5.07 6.18 5.95 5.56 5.70 6.06 5.62 3.98 4.97 5.08 4.53 4.49 5.02 4.49 3.48 4.42 4.61 4.03 3.95 4.52 3.96 3.18 4.10 4.30 3.72 3.63 4.20 3.65 2.86 3.73 3.91 3.35 3.26 3.82 3.28 2.73 3.57 3.73 3.19 3.11 3.65 3.13 icle Type ature 75 F 4.75 5.77 5.79 5.33 5.33 5.78 5.31 3.71 4.60 4.77 4.25 4.17 4.68 4. 18 3.22 4.03 4.26 3.73 3.63 4.15 3.65 2.93 3.69 3.94 3.41 3.30 3.82 3.33 2.61 3.28 3.56 3.05 2.92 3.42 2.96 2.49 3. 12 3.41 2.91 2.78 3.26 2.82 s 100 F 4. 15 4.79 5.02 4.64 4.51 4.90 4.55 3.07 3.60 3.63 3.36 3.35 3.61 3.34 2.51 2.99 2.98 2.74 2.75 2.99 2.74 2. 17 2.63 2.61 2.38 2.39 2.62 2.38 1 .78 2.21 2.20 1 .98 1 .98 2.20 1 .97 1 .65 2.06 2.07 1.84 1 .84 2.06 1.83 TABLE 13 : NOx AT 5.0 MPH.------- 1-16 TABLE 14 LOW ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 10.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Combi 0 F 5.34 6.60 5.83 5.63 6.05 6.21 5.85 4.21 5.37 5.34 4.77 4.81 5.36 4.77 3.72 4.91 5.00 4.34 4.31 4.95 4.30 3.44 4.67 4.71 4.04 4.03 4.69 4.01 3. 10 4.41 4.27 3.65 3.71 4.34 3.66 2.96 4.29 4.05 3.46 3.57 4.17 3.50 .ned for Eight Vehi @ Ambient Tempera 25 F 4.93 6.09 5.60 5.31 5.58 5.84 5.45 3.86 4.90 4.93 4.40 4.40 4.92 4.38 3.39 4.41 4.54 3.95 3.90 4.47 3.90 3.12 4. 13 4.25 3.66 3.61 4. 19 3.61 2.80 3.81 3.85 3.29 3.27 3.83 3.26 2.67 3.67 3.66 3. 12 3.13 3.67 3. 11 50 F 4.58 5.65 5.41 5.05 5.18 5.53 5. 10 3.57 4.50 4.59 4.08 4.05 4.54 4.05 3. 1 1 3.99 4.15 3.62 3.55 4.07 3.56 2.84 3.68 3.86 3.33 3.25 3.77 3.26 2.53 3.32 3.48 2.98 2.90 3.40 2.92 2.41 3.17 3.32 2.83 2.76 3.24 2.78 .cle Type: iture 75 F 4.28 5.26 5.27 4.84 4.83 5.27 4.81 3.32 4. 16 4.30 3.82 3.76 4.23 3.77 2.87 3.63 3.82 3.34 3.25 3.73 3.27 2.60 3.31 3.53 3.05 2.95 3.42 2.98 2.31 2.92 3.17 2.71 2.59 3.04 2.63 2.20 2.76 3.02 2.58 2.46 2.89 2.50 5 100 F 3.69 4.31 4.51 4. 16 4.04 4.41 4.08 2.71 3.21 3.23 2.99 2.98 3.22 2.97 2.20 2.66 2.64 2.42 2.43 2.65 2.42 1.90 2.32 2.31 2. 10 2.11 2.32 2.09 1 .55 1.93 1.93 1.72 1.73 1.93 1.72 1.43 1.79 1 .80 1.60 1.60 1.80 1.59 TABLE 14 : NOx AT 10.0 MPH.------- 1-17 TABLE 15 1980 1980 1980 1980 1980 1980 1980 LOW ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 19.6 MPH Cold/Hot Start VMT Percentages PCCN PCHC PCCC Combined for Eight Vehicle Types @ Ambient Temperature — OF 25 F 50 F 75 F 5.10 6.42 5.55 5.38 5.85 5.98 5.63 ,68 .89 ,34 ,07 5.37 5.62 5.22 4 5 5, 5, 4.32 5.44 5.17 4.81 4.96 5.31 4.87 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2.000 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 3.84 4.96 4.86 4.35 4.43 4.91 4.37 3.32 4.41 4.45 3.87 3.86 4.43 3.84 3.03 4.12 4. 14 3.56 3.56 4. 13 3.54 2.67 3.79 3.67 3.14 3.19 3.73 3.15 2.52 3.66 3.45 2.95 3.05 3.56 2.98 3 4 4 4 4 4 4 3 3 4 3 3 4 3 2 3 3 3 3 3 3 2 3 3 2 2 3 2 2 3 3 2 2 3 2 .51 .52 .49 .01 .04 .50 .00 .01 .95 .04 .52 .48 .00 .48 .74 .65 .73 .22 .18 .69 .18 .40 .27 .31 .82 .81 .29 .79 .27 .13 .12 .66 .66 .12 .64 3 4 4 3 3 4 3 2 3 3 3 3 3 3 2 3 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 .23 . 14 .18 .72 .71 .16 .69 .75 .57 .69 .22 .16 .63 .17 .49 .25 .39 .92 .86 .32 .87 .17 .85 .99 .55 .49 .92 .50 .05 .70 .82 .41 .35 .76 .36 2 3 3 3 3 3 3 2 3 3 2 2 3 2 2 2 3 2 2 3 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 .99 .81 .93 .48 .42 .87 .43 .53 .24 .40 .97 .89 .32 .91 .27 .92 .10 .67 .59 .01 .61 .97 .50 .71 .32 .22 .61 .25 .86 .34 .57 .19 .08 .45 .12 2.40 2.90 2.91 2.68 2.67 2.90 2.66 1.91 2.33 2.32 2.12 2. 13 2.33 2. 11 1 .63 2.01 1.99 1 .81 1.82 2.00 1.81 1.29 1.62 1.61 1.44 1.45 1.62 1 .44 1 . 18 1.49 1.50 1 .32 1.32 1.49 1.32 TABLE 15 : NOx AT 19.6 MPH.------- 1-18 TABLE 16 LOW ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 35.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Combi 0 F 5.47 6.95 5.91 5.75 6.32 6.43 6.05 3.89 5.05 4.87 4.39 4.51 4.96 4.43 3.25 4.32 4.32 3.78 3.79 4.32 3.76 2.91 3.95 3.94 3.41 3.42 3.95 3.39 2.46 3.48 3.37 2.89 2.94 3.43 2.90 2.30 3.31 3.13 2.68 2.77 3.22 2.71 .ned for Eight Vehi @ Ambient Tempera 25 F 4.99 6.36 5.69 5.41 5.77 6.02 5.59 3.55 4.60 4.50 4.04 4.11 4.55 4.06 2.95 3.88 3.93 3.44 3.42 3.90 3.41 2.63 3.50 3.56 3.08 3.06 3.53 3.05 2.22 3.01 3.04 2.60 2.59 3.02 2.58 2.07 2.83 2.82 2.42 2.42 2.83 2.40 50 F 4.58 5.84 5.52 5. 12 5.30 5.68 5.20 3.25 4.21 4.21 3.75 3.76 4.21 3.74 2.69 3.51 3.60 3. 15 3.11 3.55 3.11 2.39 3. 12 3.24 2.80 2.75 3.18 2.76 2.00 2.63 2.74 2.35 2.30 2.68 2.31 1.87 2.45 2.56 2. 19 2.14 2.50 2.14 .cle Type iture 75 F 4.22 5.40 5.39 4.89 4.90 5.39 4.87 3.00 3.87 3.96 3.51 3.47 3.92 3.47 2.47 3.19 3.32 2.90 2.84 3.26 2.85 2.18 2.81 2.96 2.56 2.49 2.89 2.51 1 .82 2.31 2.49 2.14 2.05 2.40 2.08 1.70 2. 13 2.33 1.99 1.90 2.23 1.93 s 100 F 3.51 4.25 4.50 4.08 3.94 4.37 3.98 2.38 2.91 2.93 2.69 2.67 2.92 2.67 1.84 2.28 2.26 2.06 2.07 2.27 2.06 1.55 1.93 1.90 1.72 1.74 1.91 1.72 1. 18 1.49 1.47 1.32 1.32 1.48 1.32 1.06 1.34 1.35 1. 19 1. 19 1.34 1.19 TABLE 16 : NOx AT 35.0 MPH.------- 1-19 TABLE 17 LOW ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 50.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb: 0 F 6.18 7.81 6.69 6.50 7. 12 7.25 6.83 4.43 5.71 5.53 5.00 5.11 5.62 5.04 3.70 4.87 4.88 4.28 4.29 4.87 4.26 3.28 4.41 4.41 3.83 3.83 4.41 3.81 2.73 3.80 3.69 3. 18 3.23 3.75 3. 19 2.51 3.57 3.38 2.91 3.00 3.47 2.94 ined for Eight Veh: @ Ambient Temper* 25 F 5.65 7. 16 6.44 6.12 6.52 6.80 6.32 4.05 5.21 5.12 4.60 4.67 5. 16 4.62 3.36 4.38 4.44 3.90 3.88 4.41 3.87 2.97 3.92 3.99 3.47 3.44 3.96 3.43 2.46 3.30 3.33 2.87 2.86 3.32 2.84 2.27 3.07 3.06 2.64 2.64 3.07 2.62 50 F 5.19 6.59 6.24 5.80 5.99 6.42 5.89 3.72 4.78 4.78 4.28 4.29 4.78 4.26 3.07 3.98 4.07 3.57 3.53 4.02 3.53 2.70 3.51 3.63 3.16 3. 1 1 3.57 3.11 2.23 2.90 3.02 2.60 2.55 2.96 2.55 2.06 2.67 2.78 2.40 2.34 2.72 2.35 icle Type ature 75 F 4.80 6. 10 6.10 5.54 5.55 6.10 5.52 3.44 4.41 4.51 4.00 3.96 4.46 3.96 2.82 3.63 3.77 3.30 3.24 3.70 3.25 2.48 3. 17 3.33 2.90 2.82 3.25 2.84 2.04 2.56 2.75 2.37 2.28 2.65 2.31 1.89 2.34 2.54 2.19 2.09 2.44 2.12 s 100 F 4.01 4.83 5.10 4.63 4.48 4.96 4.53 2.75 3.34 3.36 3.08 3.07 3.35 3.06 2. 13 2.61 2.58 2.37 2.38 2.60 2.37 1.78 2.20 2.17 1.98 2.00 2.19 1.98 1 .35 1.68 1.66 1.50 1.51 1.67 1.50 1.21 1.50 1.51 1.35 1.35 1.50 1.34 TABLE 17 : NOx AT 50.0 MPH,------- 1-20 TABLE 18 LOW ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 55.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Combi 0 F 6.72 8.46 7.27 7.07 7.72 7.87 7.42 4.84 6.21 6.02 5.44 5.57 6. 1 1 5.49 4.03 5.28 5.30 4.66 4.66 5.29 4.63 3.57 4.77 4.78 4. 15 4. 16 4.77 4. 13 2.94 4.07 3.97 3.42 3.47 4.02 3.43 2.70 3.81 3.61 3. 12 3.21 3.71 3.15 .ned for Eight Vehi (?) Ambient Tempera 25 F 6. 15 7.76 7.00 6.66 7.08 7.38 6.87 4.42 5.67 5.58 5.02 5.09 5.62 5.04 3.67 4.77 4.83 4.25 4.23 4.80 4.21 3.23 4.25 4.32 3.76 3.74 4.29 3.73 2.66 3.55 3.58 3.09 3.08 3.57 3.06 2.44 3.28 3.27 2.83 2.83 3.28 2.81 50 F 5.66 7. 16 6.79 6.32 6.52 6.97 6.40 4.07 5.21 5.21 4.67 4.68 5.21 4.65 3.36 4.33 4.43 3.90 3.86 4.38 3.85 2.95 3.82 3.94 3.43 3.38 3.88 3.38 2.42 3.12 3.25 2.81 2.75 3. 19 2.76 2.23 2.86 2.98 2.57 2.52 2.92 2.53 ,cle Type: iture 75 F 5.25 6.63 6.63 6.04 6.04 6.63 6.01 3.77 4.81 4.92 4.37 4.33 4.86 4.32 3.09 3.96 4. 10 3.60 3.54 4.03 3.55 2.70 3.45 3.62 3. 15 3.08 3.53 3.09 2.21 2.77 2.96 2.57 2.47 2.86 2.50 2.04 2.51 2.72 2.36 2.26 2.62 2.29 s 100 F 4.39 5.27 5.56 5.07 4.91 5.42 4.95 3.03 3.67 3.68 3.39 3.38 3.67 3.37 2.36 2.87 2.84 2.61 2.63 2.86 2.61 1.97 2.42 2.38 2. 18 2.20 2.40 2. 18 1 .49 1.84 1 .82 1 .65 1 .65 1.83 1 .64 1.33 1 .64 1 .64 1.48 1.48 1 .64 1 .47 TABLE 18 : NOx AT 55.0 MPH.------- 1-21 TABLE 19 HIGH ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AT 5.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comt 0 F 23.35 21.98 142.53 72.28 22.64 82.25 42.98 16.58 15.74 122.97 58.73 16.04 69.36 33.52 13.31 13. 16 119.67 54.91 13.05 66.42 30. 17 11 .57 11 .83 1 18.35 53.12 11 .49 65.09 28.50 8.80 9.72 112.49 48.98 9.01 61.11 25.33 7.62 8.76 106.29 45.84 7.94 57.52 23.41 »ined for Eight Veh (5> Ambient Temper 25 F 21.36 21 .62 83.88 46.98 21.33 52.75 31 .83 14.56 15.01 66.33 35.05 14.57 40.67 22.94 1 1 .36 12. 1 1 60.27 30.46 11.50 36.19 19.24 9.73 10.65 57.26 28. 19 9.94 33.96 17.39 7.24 8.38 50.98 24.14 7.57 29.68 14.32 6.23 7.41 46.96 21.97 6.59 27. 19 12.85 50 F 19.69 21 .36 50.48 32.25 20.26 35.92 25.14 12.93 14.42 37.10 22.45 13.38 25.76 17.07 9.80 1 1 .25 31 .56 18.26 10.25 21 .41 13.50 8.27 9.67 28.77 16. 19 8.71 19.22 1 1 .74 6.01 7.28 23.82 12.85 6.42 15.55 9.02 5. 15 6.32 21.30 1 1 .35 5.53 13.81 7.89 icle Type ature 75 F 18.29 21.18 31 .41 23.57 19.37 26.29 21 .04 11.61 13.93 21.78 15.55 12.42 17.86 13.66 8.56 10.54 17.44 11.96 9.24 13.99 10.32 7.12 8.87 15.27 10.22 7.71 12.07 8.70 5.06 6.38 11.73 7.58 5.50 9.05 6.33 4.30 5.42 10. 17 6.52 4.68 7.79 5.41 s 100 F 22.06 27.66 25. 10 23. 19 24.20 26.38 23.68 15.51 19.66 18.85 16.67 16.98 19.25 16.78 12.80 16.43 17.13 14.34 14.07 16.78 14.11 9.43 12.39 15.47 1 1 .65 10.45 13.93 10.88 5.93 8.16 13.80 8.90 6.71 10.98 7.57 4.54 6.47 12.87 7.71 5.22 9.67 6.20 TABLE 19 : THC AT 5.0 MPH.------- 1-22 TABLE 20 HIGH ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AT 10.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN PCHC PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 O-.O 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Com! 0 F 14.94 14.20 79.99 41.67 14.55 47.09 25.67 10.40 9.95 67.84 33. 18 10. 1 1 38.89 19.55 8.19 8. 10 65.33 30.55 8.05 36.72 17.25 7.05 7. 19 64.32 29.34 7.01 35.76 16. 14 5.31 5.81 60.81 26.82 5.43 33.31 14. 16 4.60 5.22 57.40 25.06 4.78 31.31 13.05 oined for Eight Vehicle Type @ Ambient Temperature 25 F 50 F 75 F 13.83 13.98 47.96 27.83 13.82 30.97 19.55 9.30 9.54 37.27 20.38 9.31 23.41 13.83 7. 12 7.53 33.43 17.40 7.20 20.48 1 1 .36 6.05 6.54 31 .56 15.96 6. 16 19.05 10. 16 4.46 5.07 27.88 13.51 4.64 16.48 8.25 3.84 4.48 25.65 12.27 4.04 15.07 7.39 12.91 13.81 29.71 19.77 13.21 21.76 15.88 8.41 9.21 21.48 13.56 8.66 15.35 10.65 6.28 7.05 17.99 10.83 6.51 12.52 8.26 5.25 6.01 16.27 9.51 5.49 11.14 7.12 3.79 4.47 13.34 7.46 4.01 8.90 5.40 3.25 3.88 11.91 6.58 3.45 7.90 4.72 12.12 13.69 19.27 15.00 12.71 16.48 13.62 7.69 8.94 13.19 9.82 8. 13 1 1 .07 8.80 5.60 6.66 10.38 7.43 5.96 8.52 6.54 4.62 5.57 9.01 6.29 4.94 7.29 5.48 3.27 3.98 6.85 4.63 3.50 5.42 3.95 2.79 3.39 5.94 3.98 2.99 4.67 3.39 !S 1 00 F 14. 17 17.23 15.86 14.80 15.34 16.55 15.06 9.80 12.05 11.62 10.44 10.61 1 1 .84 10.50 8.03 9.98 10.36 8.86 8.71 10.17 8.73 5.87 7.47 9.12 7.07 6.43 8.30 6.66 3.75 4.95 7.97 5.34 4.17 6.46 4.62 2.92 3.96 7.40 4.63 3.29 5.68 3.82 TABLE 20 : THC AT 10.0 MPH.------- 1-23 TABLE 21 HIGH ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AT 1-9.6 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb 0 F 10.38 9.94 49.78 26.60 10. 15 29.86 16.89 7. 10 6.82 41 .26 20.66 6.92 24.04 12.55 5.45 5.40 39.17 18.65 5.37 22.29 10.80 4.64 4.72 38.32 17.76 4.61 21 .52 9.98 3.42 3.72 35.96 16.03 3.49 19.84 8.61 2.95 3.31 33.89 14.94 3.05 18.60 7.90 ined for Eight Veh @ Ambient Temper 25 F 9.74 9.83 30.41 18.24 9.74 20.12 13.21 6.46 6.60 23.12 13.07 6.46 14.86 9.16 4.83 5.07 20.37 10.91 4.88 12.72 7.34 4.06 4.35 19.08 9.90 4. 12 1 1 .71 6.48 2.93 3.29 16.67 8.24 3.04 9.98 5. 16 2.52 2.89 15.30 7.46 2.63 9.10 4.60 50 F 9.21 9.75 19.38 13.37 9.39 14.57 11.01 5.94 6.42 13.73 9.02 6.09 10.07 7.28 4.35 4.80 11 .27 7.04 4.49 8.04 5.52 3.60 4.04 10.09 6. 1 1 3.74 7.07 4.70 2.55 2.95 8.15 4.70 2.67 5.55 3.50 2. 18 2.55 7.26 4. 13 2.30 4.90 3.04 icle Type ature 75 F 8.76 9.70 13.08 10.50 9. 12 1 1 .39 9.66 5.52 6.27 8.80 6.80 5.79 7.53 6.19 3.95 4.58 6.78 5.04 4. 17 5.68 4.51 3.23 3.79 5.82 4.22 3.42 4.81 3.74 2.25 2.66 4.35 3.04 2.39 3.51 2.65 1 .91 2.26 3.76 2.61 2.03 3.01 2.26 s 100 F 9.95 11.81 1 1 .00 10.35 10.67 11.41 10.50 6.75 8. 10 7.84 7.14 7.23 7.97 7.17 5.46 6.63 6.85 5.96 5.87 6.74 5.88 3.96 4.90 5.87 4.66 4.29 5.39 4.42 2.52 3.23 5.00 3.46 2.77 4.11 3.04 1 .98 2.59 4.61 2.98 2.20 3.60 2.51 TABLE 21 : THC AT 19.6 MPH.------- 1-24 TABLE 22 HIGH ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AT 35.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb 0 F 7.82 7.56 33.20 18.35 7.69 20.38 12.06 5.08 4.92 25.04 13.06 4.98 14.98 8.29 3.73 3.70 22.65 11.17 3.69 13. 17 6.75 3. 10 3. 14 21 .67 10.35 3.09 12.41 6.06 2.21 2.37 19.85 9.05 2.25 11.11 5.02 1.89 2.08 18.63 8.38 1 .94 10.36 4.57 ined for Eight Vehi @> Ambient Temperc 25 F 7.47 7.53 20.78 12.98 7.47 14.16 9.72 4.74 4.81 14.53 8.65 4.74 9.67 6.34 3.41 3.53 12. 17 6.85 3.43 7.85 4.82 2.79 2.95 11.11 6.03 2.83 7.03 4. 14 1 .95 2.14 9.41 4.83 2.00 5.78 3. 16 1 .66 1.86 8.58 4.33 1.72 5.22 2.78 50 F 7.17 7.51 13.70 9.86 7.29 10.60 8.33 4.46 4.73 9.05 6.28 4.54 6.89 5.25 3. 14 3.40 7.06 4.68 3.22 5.23 3.81 2.55 2.79 6. 15 3.95 2.62 4.47 3.16 1.74 1 .96 4.79 2.92 1.81 3.38 2.26 1 .48 1.68 4.23 2.54 1.54 2.96 1.94 .cle Type iture 75 F 6.91 7.50 9.65 8.03 7. 14 8.58 7.49 4.23 4.66 6.15 4.98 4.38 5.40 4.62 2.93 3.28 4.53 3.55 3.05 3.91 3.25 2.36 2.66 3.79 2.90 2.46 3.23 2.64 1 .58 1 .81 2.73 2.02 1 .66 2.27 1.80 1.34 1.53 2.34 1 .72 1.40 1.94 1 .53 s 100 F 7.57 8.76 8.31 7.86 8.04 8.54 7.94 4.89 5.69 5.55 5.13 5. 18 5.62 5. 15 3.87 4.54 4.66 4. 16 4.11 4.60 4.12 2.74 3.27 3.80 3. 13 2.93 3.53 3.00 1.73 2. 1 1 3.07 2.24 1 .86 2.59 2.01 1.37 1 .71 2.80 1.92 1.49 2.25 1.66 TABLE 22 : THC AT 35.0 MPH.------- 1-25 TABLE 23 HIGH ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AT 50.0 MPH Cal. \T A « «• Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PfTN PCHT PCCC JL v^V^lN t v^llw r^\_>\^\^ 0.0 0.0 0.0 100.0 100.0 0.0 1 50.0 0.0 0.0 50.0 50.0 50.0 20.6 27.3 0.0 0.0 0.0 100.0 100.0 0.0 ' 50.0 0.0 0.0 50.0 50.0 50.0 20.6 27.3 0.0 0.0 0.0 100.0 100.0 0.0 50.0 0.0 0.0 50.0 50.0 50.0 20.6 27.3 0.0 0.0 0.0 100.0 100.0 0.0 50.0 0.0 0.0 50.0 50.0 50.0 20.6 27.3 0.0 0.0 0.0 100.0 100.0 0.0 50.0 0.0 0.0 50.0 50.0 50.0 20.6 27.3 0.0 0.0 0.0 100.0 100.0 0.0 50.0 0.0 0.0 50.0 50.0 50.0 20.6 27.3 0.0 0.0 00.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Combi 0 F 7.09 6.87 28.53 16.01 6.98 17.70 10.68 4.51 4.38 20.57 10.95 4.43 12.48 7. 10 3.25 3.22 18.12 9.11 3.21 10.67 5.62 2.67 2.70 17.13 8.32 2.66 9.91 4.97 1 .86 1 .99 15.45 7.14 1.89 8.72 4.03 1.59 1.74 14.47 6.58 1.63 8.10 3.65 ned for Eight Vehic @ Ambient Tempera! 25 F 50 F 6.81 6.86 18.06 1 1.48 6.81 12.46 8.72 4.24 4.30 12.15 7.41 4.25 8.23 5.54 3.00 3. 10 9.91 5.72 3.02 6.50 4. 12 2.44 2.56 8.92 4.97 2.46 5.74 3.48 1 .67 1.82 7.42 3.89 1.71 4.62 2.60 1 .41 1 .57 6.74 3.47 1 .46 4.15 2.28 6.57 6.85 12.08 8.85 6.67 9.47 7.56 4.03 4.24 7.74 5.51 4. 10 5.99 4.67 2.80 3.00 5.90 4.01 2.86 4.45 3.33 2.25 2.44 5.07 3.34 2.31 3.75 2.73 1 .51 1 .68 3.86 2.42 1 .56 2.77 1 .91 1 .27 1.43 3.40 2.09 1.32 2.41 1.63 :le Types :ure 75 F 6.37 6.86 8.66 7.31 6.56 7.76 6.86 3.85 4.20 5.40 4.46 3.98 4.80 4.17 2.64 2.91 3.90 3.12 2.73 3.41 2.89 2.10 2.34 3.22 2.53 2. 18 2.78 2.32 1.39 1.57 2.28 1.73 1.45 1 .92 1.56 1.17 1 .32 1.94 1.46 1 .22 1.63 1.31 100 F 6.88 7.89 7.54 7.14 7.28 7.71 7.20 4.36 5.01 4.90 4.56 4.60 4.96 4.57 3.42 3.96 4.05 3.65 3.61 4.00 3.61 2.40 2.81 3.22 2.70 2.54 3.01 2.60 1.50 1 .80 2.53 1 .89 1.60 2. 17 1.72 1.19 1 .45 2.29 1 .61 1.29 1.87 1 .41 TABLE 23 : THC AT 50.0 MPH.------- 1-26 TABLE 24 HIGH ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AT 55.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb: 0 F 6.94 6.74 27.44 15.48 6.83 17.09 10.38 4.37 4.25 19.27 10.36 4.29 1 1.76 6.78 3. 12 3.09 16.73 8.49 3.09 9.91 5.30 2.55 2.58 15.69 7.69 2.54 9. 13 4.65 1.77 1.88 14.04 6.53 1.80 7.96 3.73 1 .50 1.64 13.12 6.01 1.54 7.38 3.36 ined for Eight Vehi @> Ambient Tempera 25 F 6.68 6.72 17.44 11.15 6.68 12.08 8.51 4.13 4.18 1 1.48 7.08 4. 13 7.83 5.33 2.89 2.98 9.23 5.39 2.91 6. 1 1 3.92 2.34 2.45 8.24 4.65 2.36 5.35 3.30 1 .59 1 .73 6.79 3.60 1.63 4.26 2.43 1 .34 1 .49 6. 16 3.21 1.39 3.82 2. 13 50 F 6.46 6.72 1 1.72 8.64 6.55 9.22 7.40 3.93 4.12 7.38 5.31 3.99 5.75 4.53 2.71 2.89 5.56 3.83 2.77 4.22 3.20 2.17 2.34 4.74 3.17 2.22 3.54 2.61 1 .45 1.60 3.58 2.27 1.50 2.59 1.81 1.22 1.36 3.14 1.96 1.27 2.25 1.55 cle Typei iture 75 F 6.27 6.74 8.45 7. 16 6.45 7.59 6.73 3.77 4.08 5.20 4.33 3.88 4.64 4.06 2.57 2.82 3.72 3.39 3.00 3.66 3.15 2.04 2.25 3.06 2.43 2. 1 1 2.66 2.24 1.34 1.50 2.14 1.64 1:39 1.82 1.49 1. 12 1.26 1 .83 1.39 1.17 1.54 1.26 5 100 F 6.74 7.70 7.38 6.99 7. 12 7.54 7.05 4.23 4.84 4.74 4.42 4.45 4.79 4.43 3.30 3.80 3.88 3.51 3.48 3.84 3.48 2.30 2.68 3.05 2.58 2.44 2.87 2.49 1 .44 1.71 2.37 1.79 1.54 2.04 1 .64 1. 15 1.38 2. 14 1.53 1.23 1 .76 1.35 TABLE 24 : THC AT 55.0 MPH.------- 1-27 TABLE 25 HIGH ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AT 5.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Com 0 F 281.80 186.74 1738.47 883.13 237.49 962.60 503.95 234.03 165.90 1316.55 669.28 201 .04 741 .23 394. 18 208.25 154.75 1094.68 560. 1 1 181.41 624.72 337.56 197.59 151.52 974.51 503.65 173.85 563.01 309.82 180.84 146.33 773.48 41 1.67 162.03 459.91 264.95 170.43 140.30 692.02 372.98 153.62 416.16 244.05 bined for Eight Vehicle Type (?) Ambient Temperature 25 F 248.94 185.75 1018. 19 565.82 218.53 601 .97 362. 14 189.29 150.92 783.09 426.97 169.54 467.00 275.77 156.41 131 .88 657.50 354.44 142.66 394.69 229.90 141.69 124.29 590.33 317.76 131.03 357.31 207.86 120.00 1 13'. 09 478.51 259.41 1 13.97 295.80 173.68 1 10.04 106.25 432.58 235.23 105.49 269.42 158.71 50 F 222.06 185.90 605.49 378.90 203.46 395.70 276.13 156.41 139.77 465.94 279.24 146.37 302.86 201. 16 120.59 1 14.68 391 .28 226.77 115.34 252.98 161.13 104.22 103.82 352.99 201.26 101 .45 228.41 142.36 81.01 88.20 290.60 162.28 81 .74 189.40 114.60 71.93 80.85 264.29 146.48 73.56 172.57 103.26 75 F 199.99 187.20 366.64 266.72 191.62 276.92 222.71 131.82 131.64 265.99 183.94 129. 15 198.81 151.64 95.39 101 .78 213.01 140.67 95.83 157.39 1 14. 10 78.74 88.43 188.07 120.68 80.75 138.25 96.94 55.85 69.54 150.01 91.92 59.90 109.77 72.76 47.79 61.88 133.81 80.77 52.18 97.85 63.63 2S 100 F 417.04 352.65 262.06 345.85 384.07 307.36 369.82 306.39 249.35 199.77 256.50 277.06 224.56 269.88 245.31 201 .82 169.20 208.81 222.33 185.51 217.75 171 . 17 148.70 138.74 153.77 157.96 143. -72 156.77 96.84 99.07 1 12. 12 100.35 95.20 105.60 97.31 68.92 80.07 100.87 79.81 71 .56 90.47 74.76 TABLE 25 : CO AT 5.0 MPH.------- 1-28 TABLE 26 HIGH ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AT 10.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comt 0 F 161 .36 109. 18 961 .85 492.51 137.04 535.51 283.75 130.91 94.03 713. 13 365.32 1 13.06 403.58 217. 12 1 14.52 85.81 587.54 302.44 100. 13 336.67 183.56 107.74 83. 14 520.79 270.53 95.08 301.96 167.42 97.65 79.37 41 1.70 219.98 87.68 245.54 142.23 91.78 75.86 368.07 199.08 82.89 221 .97 130.79 )ined for Eight Vehicle Type (5> Ambient Temperature 25 F 143.20 108.34 566.91 318. 12 126.43 337.63 205.70 106.69 85.75 426.07 234.70 95.94 255.91 153.21 86.71 73.43 354.01 192.43 79.29 213.72 125.91 77.86 68.49 316.31 171.48 72. 14 192.40 1 13.02 65.26 61.60 255.23 139. 14 62.06 158.42 93.71 59.66 57.69 230.53 125.99 57.27 144. 1 1 85.46 50 F 128.28 108. 18 339.84 215.02 1 17.96 224.01 158. 17 88.82 79.57 255.23 154.94 83.29 167.40 112.84 67.43 64.09 211.74 124.08 64.55 137.91 89.01 57.78 57.45 189.94 109.35 56.25 123.70 78.02 44.46 48.27 155.52 87.53 44.84 101 .90 62.26 39.36 44. 12 141.28 78.86 40.23 92.70 55.97 75 F 1 16.00 108.68 207.91 152.89 111.28 158.30 128.51 75.39 75.03 147.47 103.43 73.84 1 1 1.25 85.99 53.81 57.06 116.49 77.95 53.97 86.77 63.75 44.06 49.13 102. 15 66.35 45. 10 75.64 53.72 31 .00 38.26 80.93 50. 12 33. 15 59.59 39.97 26.46 33.97 72.09 43.96 28.80 53.03 34.87 »s 100 F 236.23 202.52 152. 18 197.58 218.87 177.35 210.89 171 .44 141 . 13 1 14. 13 144.62 155.83 127.63 151 .90 136. 19 1 13.05 95.34 1 16.60 123.96 104.20 121 .46 94.22 82.27 76.84 84.91 87.20 79.56 86.54 53. 14 54.35 61 .24 55.00 52.28 57.79 53.40 37.88 43.83 54.84 43.66 39.29 49.34 40.98 TABLE 26 : CO AT 10.0 MPH.------- 1-29 TABLE 27 HIGH ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AT 19.6 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Coml 0 F 102.56 68.24 627.23 320.05 86.57 347.74 182.94 81.73 57.76 456.51 232.84 70. 15 257.14 137.27 71 .47 52.96 373.70 191.65 62.21 213.33 1 15.59 67.26 51.48 330.10 170.91 59. 15 190.79 105.23 61 .01 49.39 260.00 138.54 54.68 154.70 89.26 57.39 47.30 232.32 125.33 51.76 139.81 82.09 Dined for Eight Vel @> Ambient Temper 25 F 91.13 68.10 369.32 206.22 80.06 218.71 132.24 66.51 52.78 272.07 149.02 59.49 162.43 96.45 53.97 45.30 224.67 121.55 49. 15 134.98 78.98 48.44 42.35 200. 10 108.02 44.75 121 .23 70.79 40.60 38.24 160.94 87.41 38.56 99.59 58.62 37. 15 35.88 145.30 79.13 35.62 90.59 53.47 50 F 81.76 68.37 220.79 138.89 74.91 144.58 101 .41 55.30 49.10 162.32 97.88 51 .64 105.71 70.72 41.86 39.55 133.92 78.03 39.94 86.73 55.60 35.81 35.49 1 19.81 68.60 34.79 77.65 48.65 27.51 29.89 97.84 54.78 27.74 63.86 38.77 24.36 27.36 88.86 49.36 24.91 58. 11 34.87 licle Typt :ature 75 F 74.06 69.05 134.39 98.33 70.88 101 .72 82.25 46.89 46.45 93.18 64.92 45.81 69.81 53.66 33.31 35.25 73.25 48.71 33.36 54.25 39.62 27.20 30.33 64.08 41 .36 27.82 47.21 33.31 19.05 23.63 50.65 31 . 16 20.40 37. 14 24.72 16.26 20.99 45. 12 27.33 17.73 33.05 21 .58 ?s 100 F 150.21 128.92 95.56 125.07 139.20 1 12.24 133.88 107.06 87.69 70.07 89.75 97.08 78.88 94.50 84.98 70.19 58.63 72.35 77.16 64.41 75.52 58.67 51.01 47.44 52.67 54. 18 49.22 53.74 32.91 33.65 37.97 34.05 32.35 35.81 33.05 23.39 27. 15 34.09 27.04 24.28 30.62 25.35 TABLE 27 : CO AT 19.6 MPH.------- 1-30 TABLE 28 HIGH ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AT 35.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comh 0 F 65.35 43. 18 401 .04 205.55 55.02 222. 1 1 1 17. 16 48.72 33.87 273.14 139.76 41 .58 153.50 82. 10 41 .35 30.23 216.90 1 11 .46 35.82 123.56 67.02 38.31 29.05 188.39 97.66 33.58 108.72 60.01 34. 13 27.57 145.50 77.55 30.56 86.53 49.94 31 .99 26.35 129.56 69.89 28.84 77.96 45.76 uned for Eight VehAmbient Temper 25 F 58.62 43.44 237.70 133.27 51.35 140.57 85.24 40.05 31.23 163.07 89.74 35.59 97. 15 57.96 31 .49 26.03 130.43 70.82 28.52 78.23 45.96 27.76 24.00 1 14. 19 61.80 25.53 69.09 40.46 22.74 21 .36 90.05 48.93 21.57 55.70 32.81 20.71 19.99 81.03 44. 13 19.86 50.51 29.81 50 F 53.08 43.98 142.87 90.27 48.47 93.42 65.80 33.64 29.33 97.48 59.19 31 .20 63.40 42.76 24.64 22.90 77.80 45.61 23.36 50.35 32.52 20.66 20.21 68.38 39.33 19.97 44.29 27.91 15.44 16.71 54.73 30.68 15.54 35.72 21 .72 13.59 15.25 49.55 27.53 13.89 32.40 19.45 icle Type ature 75 F 48.52 44.79 87.28 64.24 46.27 66.03 53.72 28.81 28.02 56.24 39.55 27.94 42. 13 32.72 19.80 20.58 42.74 28.67 19.68 31.66 23.36 15.81 17.38 36.69 23.84 16.07 27.03 19.23 10.71 13.23 28.35 17.47 11.45 20.79 13.87 9.07 1 1 .71 25. 16 15.24 9.89 18.44 12.04 s 100 F 94.86 82.99 60.81 79.16 88.62 71.90 85.01 64.11 52.86 41.71 53.64 58.31 47.28 56.64 50.13 41.53 34.23 42.54 45.59 37.88 44.53 33.85 29.37 27.04 30.25 31 .24 28.20 30.94 18.50 18.89 21 .23 19.10 18.18 20.06 18.56 13.06 15.16 19.01 15.09 13.56 17.08 14.15 TABLE 28 : CO AT 35.0 MPH.
------- 1-31 TABLE 29 HIGH ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AT 50.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Com! 0 F 58.63 38.89 357.07 183.51 49.44 197.98 104.79 43.08 29.98 239.39 122.84 36.79 134.69 72.30 36.21 26.47 188.67 97.17 31.37 107.57 58.52 33.35 25.28 163.01 84.65 29.23 94. 15 52.09 29.50 23.85 125.25 66.83 26.43 74.55 43.09 27.60 22.76 11 1 .39 60.15 24.90 67.08 39.43 Dined for Eight Veh @ Ambient Temper 25 F 52.71 39. 14 212. 12 119.29 46.22 125.63 76.45 35.55 27.70 143. 14 79.07 31.59 85.42 51 .21 27.68 22.84 113.56 61.86 25.06 68.20 40.24 24.24 20.92 98.88 53.65 22.29 59.90 35.20 19.70 18.50 77.55 42.21 18.69 48.02 28.35 17.90 17.28 69.70 38.01 17. 16 43.49 25.71 50 F 47.84 39.64 127.80 81.02 43.70 83.72 59. 17 29.96 26.06 85.75 52.33 27.77 55.91 37.92 21 .75 20. 14 67.84 39.95 20.60 43.99 28.56 18.1 1 17.66 59.28 34.22 17.48 38.47 24.35 13.40 14.49 47. 17 26.51 13.49 30.83 18.80 1 1 .77 13. 19 42.65 23.74 12.02 27.92 16.80 icle Type ature 75 F 43.81 40.38 78,28 57.82 41 .77 59.33 48.43 25.75 24.95 49.68 35.13 24.94 37.31 29. 14 17.55 18. 14 37.41 25.24 17.41 27.78 20.61 13.91 15.21 31 .90 20.83 14.11 23.56 16.84 9.33 1 1 .48 24.49 15. 14 9.96 17.98 12.04 7.88 10. 14 21.69 13.18 8.58 15.92 10.42 5 100 F 84.84 74.67 54.74 70.96 79.48 64.71 76.21 56.77 47.00 37. 11 47.58 51.74 42.06 50.25 44.20 36.72 30.25 37.54 40.26 33.49 39.31 29.62 25.72 23.64 26.47 27.36 24.68 27.09 16.08 16.40 18.40 16.58 15.80 17.40 16. 12 11.33 13. 12 16.43 13.06 1 1 .75 14.78 12.26 TABLE 29 : CO AT 50.0 MPH.------- 1-32 TABLE 30 HIGH ALTITUDE Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 CO EMISSION Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 FACTORS ( Comt 0 F 56.84 38.15 338.82 175.06 48. 14 188.49 100.54 41.11 28.86 223. 15 1 15.20 35.23 126.00 68.24 34.05 25.03 174. 16 90.15 29.58 99.60 54.57 31 .10 23.67 149.58 78.02 27.31 86.63 48.23 27.22 22.08 114.19 61 . 14 24.43 68. 13 39.56 25.39 21 .00 101 .43 54.93 22.94 61.22 36. 13 ;GRAMS/MILE) AT 55. >ined for Eight Veh @> Ambient Temper 25 F 51 .24 38.34 202. 10 1 14.38 45.07 120.22 73.75 34.13 26.72 133.89 74.55 30.41 80.31 48.65 26.22 21.68 105.09 57.65 23.77 63.39 37.74 22.76 19.66 90.92 49.64 20.95 55.29 32.76 18.28 17. 18 70.82 38.73 17.36 44.00 26. 13 16.55 16.00 63.56 34.80 15.89 39.78 23.65 50 F 46.63 38.77 122.37 78.12 42.67 80.57 57.37 28.93 25.19 80.61 49.69 26.85 52.90 36.29 20.75 19.18 63.03 37.46 19.65 41 . 10 26.98 17. 12 16.65 54.69 31.84 16.53 35.67 22.81 12.52 13.50 43.19 24.42 12.60 28.35 17.43 10.96 12.26 38.99 21.82 11.19 25.62 15.52 0 MPH icle Type ature 75 F 42.81 39.46 75.41 56.09 40.83 57.43 47. 16 24.99 24. 14 47.13 33.69 24.20 35.63 28. 1 1 16.85 17.33 35.06 26.72 18.85 28.88 22.08 13.25 14.40 29.66 19.56 13.42 22.03 15.92 8.79 10.74 22.56 14.07 9.36 16.65 1 1 .25 7.40 9.46 19.95 12.21 8.04 14.70 9.71 s 100 F 81 .77 72.59 53.56 68.76 76.90 63.07 73.77 54.26 45.30 35.98 45.72 49.64 40.64 48.23 41.97 35. 1 1 29.02 35.79 38.35 32.06 37.46 27.87 24.29 22.33 24.96 25,80 23;31 25.54 15.04 15.33 17.13 15.48 14.78 16.23 15.07 10.58 12.22 15.22 12. 16 10.97 13.72 1 1.43 TABLE 30 : CO AT 55.0 MPH.------- 1-33 TABLE 31 HIGH ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 5.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb: 0 F 4.95 5.54 4.85 4.99 5.39 5.19 5.21 3.84 4.22 4. 12 4.06 4.12 4.17 4.09 3.39 3.71 3.73 3.63 3.63 3.72 3.62 3. 12 3.43 3.44 3.35 3.34 3.43 3.34 2.83 3.15 3.07 3.01 3.05 3.11 3.03 2.71 3.04 2.92 2.87 2.94 2.98 2.90 ined for Eight Veh: @ Ambient Temper; 25 F 4.64 5.20 4.75 4.78 5.05 4.97 4.93 3.59 3.94 3.90 3.82 3.85 3.92 3.82 3.14 3.42 3.47 3.37 3.34 3.45 3.35 2.87 3. 12 3. 18 3.08 3.05 3. 15 3.06 2.58 2.80 2.83 2.76 2.74 2.82 2.74 2.48 2.69 2.69 2.63 2.63 2.69 2.63 50 F 4.37 4.90 4.67 4.62 4.75 4.78 4.69 3.37 3.70 3.72 3.61 3.61 3.71 3.60 2.92 3.17 3.25 3. 15 3. 10 3.21 3. 12 2.65 2.86 2.96 2.86 2.80 2.91 2.82 2.38 2.52 2.62 2.54 2.49 2.57 2.51 2.28 2.40 2.49 2.43 2.37 2.45 2.39 icle Type ature 75 F 4. 14 4.64 4.62 4.48 4.50 4.63 4.48 3.18 3.50 3.57 3.44 3.41 3.53 3.41 2.74 2.97 3.07 2.96 2.90 3.02 2.92 2.47 2.64 2.77 2.67 2.60 2.70 2.62 2.20 2.29 2.43 2.36 2.27 2.36 2.31 2.10 2. 16 2.32 2.25 2. 16 2.24 2.20 s 100 F 3.71 4.00 4. 15 4.02 3.93 4.08 3.96 2.73 2.93 2.94 2.88 2.87 2.94 2.87 2.46 2.63 2.63 2.58 2.58 2.63 2.58 1 .92 2.05 2.05 2.01 2.01 2.05 2.01 1 .59 1 .70 1 .70 1 .66 1 .66 1 .70 1 .66 1 .49 1 .59 1 .60 1 .56 1 .55 1 .59 1.55 TABLE 31 : NOx AT 5.0 MPH.------- 1-34 TABLE 32 HIGH ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 10.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Combi 0 F 4.24 4.74 4.21 4.30 4.61 4.48 4.47 3.44 3.79 3.74 3.67 3.70 3.77 3.68 3.11 3.42 3.46 3.36 3.34 3.44 3.34 2.90 3.20 3.22 3. 12 3. 12 3.21 3. 1 1 2.66 2.97 2.90 2.84 2.88 2.94 2.86 2.55 2.88 2.75 2.71 2.78 2.82 2.74 tned for Eight Vehi @ Ambient Tempera 25 F 3.97 4.45 4.11 4.12 4.32 4.28 4.23 3.20 3.53 3.52 3.43 3.44 3.52 3.43 2.86 3.13 3.20 3.09 3.06 3.16 3.07 2.65 2.89 2.96 2.86 2.82 2.92 2.83 2.41 2.63 2.66 2.59 2.57 2.64 2.57 2.32 2.53 2.53 2.47 2.47 2.53 2.47 50 F 3.74 4. 19 4.02 3.97 4.07 4.11 4.02 2.99 3.30 3.33 3.23 3.21 3.32 3.21 2.65 2.89 2.98 2.87 2.82 2.93 2.84 2.43 2.63 2.73 2.64 2.58 2.68 2.60 2.20 2.34 2.44 2.37 2.31 2.39 2.33 2.11 2.24 2.33 2.26 2.21 2.28 2.23 :de Type iture 75 F 3.54 3.98 3.96 3.84 3.85 3.97 3.84 2.82 3.11 3. 18 3.06 3.02 3.14 3.03 2.47 2.68 2.79 2.68 2.62 2.74 2.64 2.25 2.42 2.54 2.45 2.37 2.48 2.40 2.02 2.11 2.26 2.18 2.10 2.18 2. 13 1.94 2.00 2. 15 2.09 2.00 2.08 2.03 s 100 F 3. 15 3.41 3.52 3.41 3.34 3.46 3.36 2.38 2.56 2.57 2.51 2.50 2.56 2.50 2. 16 2.31 2.31 2.26 2.27 2.31 2.26 1 .70 1 .83 1 .82 1 .78 1.79 1.82 1.78 1.41 1.52 1.52 1 .48 1.49 1.52 1.48 1.32 1.42 1.43 1.39 1 .38 1.42 1.38 TABLE 32 : NOx AT 10.0 MPH.------- 1-35 TABLE 33 HIGH ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 19.6 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb: 0 F 4.05 4.61 4.08 4.15 4.47 4.34 4.32 3.44 3.85 3.82 3.72 3.74 3.83 3.72 3.20 3.56 3.62 3.50 3.47 3.59 3.47 3.03 3.39 3.42 3.31 3.29 3.41 3.29 2.82 3.20 3.11 3.04 3.09 3. 16 3.06 2.71 3.11 2.95 2.90 2.99 3.03 2.94 Lned for Eight Veh @ Ambient Temper; 25 F 3.76 4.29 3.95 3.94 4. 15 4. 12 4.05 3.15 3.53 3.54 3.43 3.43 3.54 3.42 2.90 3.22 3.30 3. 18 3.13 3.26 3. 14 2.73 3.02 3.10 2.99 2.94 3.06 2.95 2.52 2.78 2.81 2.73 2.72 2.80 2.72 2.43 2.68 2.67 2.61 2.61 2.68 2.61 50 F 3.51 4.01 3.84 3.77 3.87 3.93 3.82 2.91 3.26 3.31 3. 19 3. 16 3.29 3. 17 2.64 2.92 3.03 2.91 2.85 2.98 2.87 2.47 2.70 2.83 2.71 2.64 2.77 2.67 2.27 2.44 2.55 2.47 2.40 2.50 2.43 2. 18 2.33 2.43 2.36 2.30 2.38 2.32 icle Type ature 75 F 3.29 3.77 3.77 3.63 3.63 3.77 3.62 2.70 3.03 3.13 2.99 2.93 3.08 2.95 2.42 2.67 2.81 2.68 2.61 2.74 2.63 2.25 2.44 2.59 2.48 2.39 2.52 2.43 2.05 2. 15 2.33 2.24 2. 14 2.24 2.18 1.97 2.04 2.22 2.14 2.04 2.13 2.08 s 100 F 2.84 3.13 3.25 3.13 3.06 3.19 3.08 2.18 2.38 2.39 2.33 2.32 2.39 2.32 1 .98 2. 16 2. 15 2. 10 2.11 2. 16 2.10 1 .59 1.74 1 .72 1.68 1 .69 1 .73 1 .69 1 .32 1 .44 1 .44 1 .40 1 .40 1 .44 1 .40 1 .22 1 .34 1 .34 1.30 1.30 1.34 1.30 TABLE 33 : NOx AT 19.6 MPH.------- 1-36 TABLE 34 HIGH ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 35.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Combi 0 F 4.70 5.45 4.70 4.82 5.26 5.07 5.06 3.97 4.51 4.44 4.33 4.37 4.48 4.34 3.72 4.20 4.26 4.11 4.07 4.23 4.08 3.55 4.03 4.05 3.91 3.90 4.04 3.89 3.33 3.82 3.70 3.61 3.68 3.76 3.64 3.20 3.72 3.50 3.44 3.56 3.61 3.50 .ned for Eight Vehi <5> Ambient Tempera 25 F 4.31 5.02 4.53 4.54 4.83 4.78 4.69 3.60 4. 10 4.09 3.95 3.96 4.10 3.95 3.33 3.75 3.85 3.69 3.64 3.80 3.65 3. 16 3.54 3.64 3.50 3.44 3.59 3.46 2.94 3.28 3.31 3.21 3. 19 3.29 3. 19 2.83 3. 16 3.14 3.06 3.07 3. 15 3.06 50 F 3.97 4.65 4.40 4.31 4.46 4.53 4.38 3.28 3.75 3.80 3.64 3.61 3.77 3.61 3.00 3.37 3.51 3.35 3.27 3.44 3.29 2.83 3. 14 3.29 3.14 3.06 3.21 3.09 2.61 2.83 2.98 2.87 2.79 2.90 2.82 2.51 2.70 2.83 2.74 2.67 2.77 2.69 .cle Type iture 75 F 3.68 4.32 4.31 4. 13 4. 14 4.32 4.12 3.00 3.45 3.56 3.38 3.31 3.50 3.33 2.72 3.05 3.22 3.05 2.96 3. 13 2.99 2.54 2.80 2.99 2.85 2.74 2.89 2.78 2.34 2.47 2.69 2.58 2.45 2.58 2.50 2.24 2.33 2.56 2.46 2.33 2.45 2.38 s 100 F 3.08 3.47 3.63 3.47 3.37 3.55 3.40 2.32 2.60 2.61 2.53 2.52 2.60 2.52 2. 1 1 2.35 2.33 2.27 2.28 2.34 2.27 1 .70 1 .89 1 .87 1 .82 1 .84 1.88 1 .83 1 .40 1 .56 1.55 1 .50 1 .51 1.55 1 .50 1.29 1 .44 1 .44 1 .39 1 .39 1 .44 1 .39 TABLE 34 : NOx AT 35.0 MPH.------- 1-37 TABLE 35 HIGH ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 50.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Comb: 0 F 5.39 6.23 5.38 5.52 6.02 5.81 5.79 4.54 5. 14 5.06 4.93 4.98 5. 10 4.95 4.23 4.77 4.84 4.66 4.63 4.81 4.63 4.03 4.56 4.59 4.43 4.42 4.58 4.41 3.77 4.32 4. 18 4.08 4. 16 4.25 4.12 3.63 4.20 3.96 3.89 4.03 4.08 3.96 Lned for Eight Veh: @ Ambient Temper* 25 F 4.94 5.75 5.19 5.21 5.53 5.47 5.38 4. 11 4.68 4.67 4.51 4.53 4.67 4.51 3.80 4.27 4.38 4.20 4. 14 4.32 4. 16 3.60 4.02 4. 13 3.97 3.91 4.08 3.93 3.34 3.71 3.75 3.64 3.62 3.73 3.62 3.21 3.58 3.56 3.47 3.48 3.57 3.47 50 F 4.56 5.33 5.05 4.95 5. 12 5.19 5.03 3.75 4.29 4.34 4. 16 4. 13 4.31 4.14 3.43 3.84 3.99 3.82 3.73 3.92 3.76 3.22 3.57 3.74 3.58 3.48 3.65 3.51 2.97 3.22 3.38 3.26 3.17 3.30 3.20 2.86 3.07 3.22 3.1 1 3.03 3.14 3.06 icle Type ature 75 F 4.24 4.96 4.95 4.74 4.75 4.96 4.73 3.45 3.95 4.08 3.87 3.80 4.01 3.82 3. 11 3.48 3.67 3.49 3.38 3.58 3.42 2.91 3. 19 3.41 3.24 3. 12 3.30 3. 16 2.66 2.81 3.06 2.93 2.79 2.93 2.85 2.55 2.65 2.91 2.80 2.65 2.78 2.71 s 100 F 3.57 4.01 4.19 4.00 3.90 4. 10 3.93 2.69 3.00 3.01 2.92 2.91 3.00 2.91 2.44 2.71 2.69 2.62 2.63 2.70 2.62 1 .96 2. 18 2. 16 2. 10 2.1 1 2-. 17 2. 10 1 .61 1 .79 1 .78 1.73 1 .74 1.79 1.73 1 .49 1 .66 1 .66 1 .60 1 .60 1 .66 1 .60 TABLE 35 : NOx AT 50.0 MPH.------- 1-38 TABLE 36 HIGH ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 55.0 MPH Cal. Year 1980 1980 1980 1980 1980 1980 1980 1985 1985 1985 1985 1985 1985 1985 1988 1988 1988 1988 1988 1988 1988 1990 1990 1990 1990 1990 1990 1990 1995 1995 1995 1995 1995 1995 1995 2000 2000 2000 2000 2000 2000 2000 Cold/Hot Start VMT Percentages PCCN 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 PCHC 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 0.0 100.0 0.0 0.0 50.0 50.0 27.3 PCCC 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 0.0 0.0 100.0 50.0 0.0 50.0 20.6 Combi 0 F 5.91 6.82 5.90 6.05 6.59 6.36 6.34 4.96 5.61 5.53 5.39 5.44 5.57 5.41 4.62 5.20 5.27 5.08 5.05 5.24 5.05 4.40 4.97 5.00 4.83 4.81 4.98 4.81 4. 10 4.70 4.55 4.44 4.52 4.62 4.47 3.94 4.57 4.31 4.23 4.38 4.44 4.30 .ned for Eight Vehi (5> Ambient Tempers 25 F 5.43 6.30 5.70 5.71 6.07 6.00 5.90 4.51 5. 12 5.11 4.94 4.95 5. 1 1 4.93 4. 15 4.66 4.78 4.59 4.52 4.72 4.54 3.92 4.38 4.50 4.33 4.26 4.44 4.28 3.64 4.04 4.08 3.96 3.94 4.06 3.94 3.50 3.89 3.88 3.78 3.79 3.88 3.77 50 F 5.02 5.84 5.55 5.44 5.61 5.70 5.52 4.12 4.69 4.76 4.56 4.53 4.72 4.53 3.75 4.20 4.36 4.17 4.08 4.28 4. 11 3.52 3.89 4.08 3.90 3.80 3.99 3.84 3.24 3.50 3.68 3.55 3.45 3.59 3.49 3. 1 1 3.34 3.50 3.39 3.30 3.42 3.33 Lcle Type iture 75 F 4.66 5.45 5.44 5.21 5.22 5.44 5.20 3.79 4.33 4.47 4.25 4.17 4.40 4.19 3.41 3.81 4.02 4.02 3.92 4. 14 3.95 3. 18 3.49 3.72 3.54 3.41 3.60 3.46 2.91 3.06 3.33 3.20 3.05 3.20 3. 1 1 2.79 2.89 3.18 3.06 2.90 3.04 2.96 s 100 F 3.95 4.42 4.62 4.42 4.30 4.52 4.34 2.97 3.31 3.32 3.22 3.21 3.31 3.21 2.69 2.99 2.97 2.89 2.90 2.98 2.89 2. 16 2.40 2.38 2.32 2.33 2.39 2.32 1 .78 1.98 1.97 1.91 1 .91 1 .97 1 .91 1 .64 1 .83 1 .83 1 .77 1 .77 1 .83 1 .76 TABLE 36 : NOx AT 55.0 MPH.------- Appendix J EMISSION SENSITIVITY TABLES BY VEHICLE TYPE Appendix J is the same as the Appendix I except that the emission factors are disaggregated by vehicle type. The LDGT category combines LDGTls and LDGT2s.------- D ca < o I a in < LU _J >-< GRAMS/^ "ACTORS O t-« 1/1 in £ £ -HDGV 1 U_ D -^ ^0 1 U- t- O 0 O a -- _j i i O LL > o D '- _l 1 i O 1 U. i O 1 1 U. 1 . 1 f- 1 1 L. (- . D in _i u_ CM U- Li_ U. t^ U. > . D in _i ."- CM U. CJ i- a> o (0 O)Q- •H (0 I/) V C 0 o o o I i. a \ Q) T) D. (J E U > CL • l_ r- ID (0 01 f t >- O in o in o CM m h~ o & @< ©/ & & r- ro in in ro CM in in CM CM CM ID *- r- ••- O O O O O O O O O O O O O O r- O — O in in ro r- co en CM r- ro cn *- "- CM CN -- CM -^ in co ro r^ in in TJ- co co •» o co *- cn 0 O - T- 0 - 0 oo r- in ro f- ic oo CM t-- in in r- T- o ro CM en in ic -^ ic co co cn o CM T co O 10 in CM T- ••- o O in co > CM CM t ID O ro co in to ro co u> in ^- co o O ••- in TT co CM in co CM CM tO CO CM t CM in ic ro *- CM co ro co in co co t-- ic CM rM in cn ID ro r- r- CM CM o in CM ic ro O t- CM 1C t~- CO 1C to in o •»- r~ CM o ^ in en en ^ ^ -^ CM CM co co CM o in co co CM ic CM o en ro CM ro i^ in co o ^r o co in 10 en ic ro CM tr co co co r- 10 CO 1C CM CO CM "- ••- *j co to CM co «tf *- CO ^ 10 ID 10 U) in ic co ••- CM CM CM CM t cn ro ro r- f- •^ •*- ro CM •»- CM *- ic -- in i^ *- co •«• in in CM en co ro •» co •» co ^- ro -^ CM »- -^ 1C CO •r- rt CM •r- o co r-- *- en •>- co ^ ^- ro in CM CM t ^ co in t ID *- •^ •r- f in -^ ID co O O O O O O ic 0 0 0 0 O 0 0 O in in CM O O O O O O ro O O O O O O r- O in in CM O O o O O O ic O O O O O O O O in in CM O O O O O O O CO CO CO CO CO CO CO CO 0) CO CO CO CO CO O in O in O CM in r- o (5* @y @/ @/ @> >- CO CM O O r- t- CM O *f CM en i- in cn 1C 1C CD U) ID 1C 1C CO CO CO CO CO CO CO O co ro f- ••- o CM •"- ••- co ro ••- in CM t- co co r- o co t- 10 r- - co f- co f- O O -- O O O O »- en O oo in in o ro co to co en CM o co in o co o ro o cn o co cn CM cn ro ro co ro in en in co ro t^ r^ co ^t CM to co ID O O ^- ro co co o O O cn in ro i co t- r- in CM o *- ••-CO -^ CO *- -^ T 10 *- co eo in ro CM in N CM T- en r^ -- O CM •* '- CO CM CM O O CM O ro co ••- ic co >* t- ^ in in Tj- T- m o ic co t en r- ••- co in ^ cn CM CM — en CM r^ co ro r- ro co r~ co in i r- r- O CM f f -- 10 co O ro CM •* in CM en in CM •« CM •» CO CO t^ CO CO CO *t •5T CM CM *- »- CM CO 1C O O CM in ro O en eo CM co co co co co cn cn ••- CO CO ^f CM O O O O O O (C O 0 0 O O O 0 O in in CM O O O O O O ro O O O O O O r- o in in CM O O O O O O ID o o o o o o o O in in CM in in in in in in in CO CO CO CO CO CO CO co cn co co co co cn O in o in o CM in r~ o @, e @ @, @< ro ••- o O u> en co ^ ro in *r *- en h- O 0 0 0 0 O 0 0 t- r- t-~ t~ p- r~ t~- ic - ^- r~ ro ^- - - t- O in i- ro oo co ro TJ- f- O O O O O O to 0 O O O O O O O in in CM O O O O O O ro O O O O O O t- O in in CM O O O O O O to O O O O O O O O in in CM CO CO CO CO 00 CO CO CO CO CO CO CO 00 CO cn co a- d> co cn cn O in O in CM in r- @. & @< @. <- O CM CO »- CM CO CO •^ co in co CO CO CO CO to to to tc r- t^ co ^j- O -- r- ro t- r~ T in to r» »- co 00-0 r^ CM ro ro co in t i- CM co in co i~- ro cn "- to cn ^ to CO ^- CO CM to co >» en O to ro ro O CM in co -- ^ ro *- O co ro to oo •» in t- — ro in — •r- — tO CO co »- ro r~ cn in to co co Tf ro rf »- i- CM in O <» "~ en CO CO — CO T to co to *- co to >» in r- CO in ro t co in to CM co h- — CM 1C CM TT in i~- en co to CM in CO t~- CM CO i in tc to CO — •fl- ro co o O 3- 1C 1C y> oo in co CM f O CM *- O »- in co •* co en -r- ts in CM in CM co en CO CO O CO en o r- ic - O t en ro in co in en oo in CM co r- ^r •*• O 1C TT ro *- ro oo CM co to ro •r- -r- o in oo ic r- en CM ro ro cc •<3- ro o O «• CM in co ro TJ- o ro CO •>- in co ic in CM CO O '- • co t ID O ID •^ -- «r ro CO *- CM CO co in cn in co o i" ro r^ O ID ro ^ 10 cn o r- co co r- co O O cn in t-- ro co t ••- ro CM t~- CM CO •<* O ••- r- oo ic — cn «t Tt co in IP O -- eo o CN ro r- •» •^ O co co O i— in ro CM CM in ro co cn ro in 1 "- CO CM CM CO CM (O t cn 10 ID O 1- O ID co ro co CM CM *- t- *- in co r~ if) t- CM ro » t- l~ <- CM t- >^- CO CM O CM en *- ro in p~ cn ro co O 0 0 in CM CM CM CM X Q. o in t- < o K TABLE 1 ------- "ITUDE 0 a. O LU «l t/5 C£ ACTORS ( i NOISS LJ tj HDGV i i 1 U- D '- X i i 0 u. )- O _] 1 i 0 1 U. > O O >- _j i i 0 U- 8 LL_ LL. t-. Q \n CN u_ U- 8 LL, r- LL. Q LD LL. OJ O £- Q) CJ CO Old. •H (0 I/) +^ C 0 O U U I t- D. \ Q) "O CL - -2. U £ U > 0- - to ro o) C3 ->- O in O CM in in oo to ro -- ro CD eo ro co ro co ro ro ro ro ^ oo CO ^ CM r- ro CM to to — O O i- ro co CM ro ro -- ro co r- ro ••- co •r- -^ CO CM in i- ro 05 r^ co O ^ CM in in CM ro CM r- O CM co in ro •^ -- in ro -^ ro to "- t^ 'j in o - - c5 in ro to r~ ro oo co — o ro ro o — ro co p- oo ro ro ro in CD CO CD p- CO CM CM ro CM o CM CO CM 00 CO CO ro "- 00 N O P- in ro co in CD O O O 0 O 0 O O O O Ogo o o o o o o o 000 CO co CO CO 05 05 in p- O r- CO CO ro p- 00 O in CM CO in en CD CO in CO CO co O in ro CO p- ro O in ro p- ro ro CO O O in 0 O O o in O CO CO 8 CO co ro ro en en en P- t- P- co in CM ro co in CD O •fl- ic co i^ O O O f CM CO oo O •* in co in in en oo CM rf CM CO CO f ID CO O to CM 05 co in CD ••- CM ~- in in co -- •>- CM •^ CO CM fl- in CM r- en in t r- co ••- in CM ro CM en en T CD en i- en t CO CO oo co in p- »- CO O 1- CO ••- t- CM co in O ro i- ro TT in •*- 00 CO CO CM ••- ^f CO CD 00 ••- 05 co r- r- co ••- O O to 0 O 0 in CM O O co OOP- in in CM O O to O O O in CM O O O 00 00 00 CO CO CO O in O in o CM in r- O r- in p- CM O O ••- •» O 05 f CM o en -- ro co ro co ro D ro O O O O O O O p- r- r-* r- P- r- p- to co ro co r- co to CO CO ^T O CO •>- CO co •»- CM co in p- O in to en to in r- to O O O O O O O en tc ••- in ^ *r ro ID "- S C) CM f tD f tD CM ••- CO ^J CM CM CO CD 'f CM T- CO in i- to in f en CM co -- to "- en co o to ^ ro to P~ ro 'tf T en -- -3- O p- to 05 -- co to O en CM •r- CM -f- ••- ••- ••- -- co o in to ro en ID in to co co o in O ••- oo t O o ID i- T- -J CM — CO -- n co oo u. ro co ro O co CM r- co in CM CM T- in co — co ro co o P- co CM ro CD r- O co ^ in en ^r in co P- ID CD p- to »- "- CO tD CD f •»- CM in ••- O to ro CM t in en to T h- in CM CD en to CM co in I- ID -- O O 01 CD f in tc co in o to in t- to •? co CM '- CO CO P- tC 1 CO CM in in en ^ in t^- co CM •»- ••- in -^ P- ••- to in CM ••- *- ro ro O CM 05 ID to to in to T- ro in CM co '- O O O O O O to O O O O O O O O in in CM O O O O O O ro O O O O O O P- O in in CM O O O O O O to O O O O O O O O in in CM in in in in in in in co co co co co en co CO CO 05 CO CO CO CO O in O in O CM in r- o CM T en CM ID en en CM en o t- in n CM in co co en co co co en CO 00 CO CO CO CO CO in in in in in in in t ••- CD in in in co co en co o co -- en co -r- o P- in CD O in to en to in P- to O O O O O O O to en CM o ro to en O O O ro •st in oo O f ••- O ••- CM o ro o oo t- ro en oo co CM ro in ic r- co to en T en p- "- oo en CM co co oo r- •*- t- to •>- ••- co co r- t^ ro in *j co P- O CM T- i- i- ro ro p- en o O •*- en -- O ro ro to to co O in CM en P- *t -- ^ CM CM '- ro ^ •*- co ^r co to ^ r~ ro CM i in co O O CM r- o- *- co ro ••- •* CM -- in CN ~ P- •»" co ro en co ^ ? •>- o CM o 00 CD CO t CD ^ CO in i- CM to ID o t~ CO O CM CM CO •*- tO co in -- oo co oo in CD oo co CM r- in CD CM ••- "- — CM -r- 1 T- T- 1 O *- en en ro o f co en CM o oo to ro t CM CM •>- en cc CM <* en T O ^ CO ^f CM ^ tD f en co -^ tc co in o CO CO •<- in to ro to in r- (c 0 0 o 0 0 O 0 in O f co oo CM co r- CM O ro in tp cc in co ro to to oo to O t CM CO CO 00 1 »- in T o in -a- *- <$ in c7) CD ^ t*- in CM ro ro o CM en (~ ro "• 05 ro co CM '- •3- to co ro in CM t- r- oo tc in in CM ro ro ro CM to CM "- co in CD t^ i- to CM o CO "- CM "- O T r- in CM -- *- co ro T to ^ t~" '- r- i- r^ ro r- CM oo t- ro f o- in to CM o *- en oo O O -- to T in oo CM ro CD co CM ^ CM co r- ^ co co ••- to co *T ro O O r- f "- CM 1 rO CM CO CM in to ro o in en v CM co in •* t ID to CM CM O in CM 1C CO to co T CM — co in r- co ro CD ro ro o CM ro ro o CM co CD CM ••- *- ^ "- CN in o t~- ro ro ro co co in co >- co co CM CM ro oo *- IT5 CM CM '- O O O O O O ID O O O O O O O O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O to O O O O O O O O in in CM in in in in in in in en ro co ro en ro co en (J) co co ro co ro O in o in O CM in r- O 00 O ^ CM t^ T CD T- ro O -- ro co to oo o o o o o o o CM CM CM CM CM CM CM CM in in to CD O i- ro o in ^ en ro o CD i ••- O ro oo co in CD en t- in t^ CD 00 0 0 OO O O t- ro to co oo co CD CM CM CO — t~ CC ro in co in >» CD f oo co co r- ro co CD O O "- in ro in oo ro •» r-- i ro in co in O -- oo in to •<* p- i- o ro o oo ------- LU O CO ID K Lu l~f CO -J < < o I 0. IB CO LU _J Vswvas ACTORS ( J NOISS] £ LU -HDGV i i > 0 D '- 1 U- K O D -- f 0 1 U_ DO Q *~ _J 1 i 0 i LL. 1 . i O i i t LL I . LL, H . Q in LL. CM LU- LL. ^ r- LU Q in CN £- 0) CJ CO O10_ •H a to v c o 0 O CJ I i- Q. \ OJ T3 0- 0 S CJ > 0. . C. — a a CD O in o in o CM in r- o in co in ^ ^t co ^" co ^ t~- CM O co r^ co CO CO CO CO CO CO CO in in in in in in in CO 1 CO in CM *T i- 0) CO in •>- CD CM O 0 0 - *- 0 - - in ID in 10 f o CD *j ^r ^ in *t (D *t O O O O O O O CM CO Ol CM CM -^ O ^t f o O ^r ic CM CD CM *- O O -- O co co in ^r ID 10 co co CD r- •» CD co in CO CD CO O CO *- CD co co CM r^ O in o r- CD co ID CN ID o co o *- co co in i- CN •r- 1- T- in 01 in r- co r- co CM CD in "- ^f CM *I CD CO ^ CD CD CN CO CO "- CN i- *- ••- CO T CM >• *- co O r- ID co co in CD O r~ CO CD CO f- i- in CM co i- ID CO CM t- CM in CO co ID o CM in co co in f1- h- to to t^ to ID r- O O CM co T CD CD t^ ^ co co r^ TJ in co to in i^ in in CM "- TJ- co CM T- CN en r- in T co r^ in in co oo in co to CO CD CM *- 1- *- t in co in CM ID CM co in in CM CM in TT co CM -r- -r- *- t~ f in *- in co O co o in 0) CD o to in co co in *- i- CO i- CM *- O O O O O O CD O O O O O O O O in in CM O O O O O O co O O O O O O t- O in in CM O O O O O O ID O O O O O O O O in in CM O O O O O O O CO CO CO CO CO CO CO CD CO CD CD CD CO CD O in o in O CM in i- O <& @> @/ ® (§/ ^r co in CM ic CO CO O CO t- in rj- Tt co TJ- CO CN ID CM CO CO <* in ID CD r^ in t^ ID O O O O O O O in ••- CM in t- -- o co -a- ID T co in •» O O O O O O O CD co O *- in CD O t 0) O ID co CD O r- co co r- co co co t- CO rj ID t-- CO CO tD — CN CO "- ID ID in t- O f- ID co ID •*-co co h- ••- r~ O O CM CN O CN co in in t i in ^r O in r- r~ ID »- co CD ID t-- CD ••- r* *t CM co in co co *j co O in r- CM co ^ CM CM r-. co t^ co co co CO CO CD in CO CD ^> r- co co O in in co in co oo O o> co co co co r~ en co o in *t ^ ^ O CD CD T~ O O LO CO CD r- ID •a- M- to in co co co co ••- -- O O O O O O u> O O O O O O O O in in CN O O O O O O co O O O O O O t- O in in CM O O O O O O ID O O O O O O O O in in CM m in in m in m in CO CO CO CO CO CO CO CO CD CD O CD CO CO O in o in o CM in r- o *r ID co in ••- CM CM rr r- oo *- O co co CD CO CO CO CD CD CO CD CO CO CO CO CO CO CO ID ••- co o r- i~- CN in ID CD r- in t- ID O O O O O O O in ••- o in r~ *- O co ^ CD •» co in -3- O O O O O O O co co *^ in o ^~ o co in co •* «- r~ f- ID co ID ID r~ r- ID CO »- »- CM •* ID ID •3- CO t- O CD CM CO •y in co CD ^ r^ in ^r in ^t CN tD O f-- O O i-- ID co tr ic in u> ^r x in o ic CM •* in i co in r- r- co co CN co -- co in ID in co in ID co CM ••- -^ CO CO O O CO CD CO in ID CD ID in r- ID ID tD 1C "- ID CD CN 1 CM CM i- »- co r- in to O ID CO CO in fl- "- CM CN CN CO - o in t- o O co ^r to ^ co in ^r O O O O O O O •^ CM in O CD oi O in in •«• co *- co O in i-- IP in to ic to oo to -- O co •q- r- 00 O CO CO CN ^I tD co in t^ in -q- to ^r CN 1C (S CM CM ••- r- •a- co ic co t- in CD ^t in co r- ^ CD in O CN co r- ID in o "- r~ co t CM co ~- in in •» CM in in co CN T- T- in ^ •*- o> ^r co O O) "- •r- CN U) tD CM in tc f~ ••- in tp CN •^ CM CN i- O r- co h- O co t~ co *- co o ID r- c^ CM CO •» CO CM CO CM co ID rr en ^ in eo 00 CO -r- 1C O CM CN •^- CM *T CN CM CO CN *- r~ CO ^ ID in CO •^ in CD co CM CM o CN CN r- •» CM in CO ID CN CN ID (D [- f T co ••- ID in *t ID CN CN ID r- CM CO t O ^ CN CM in co en CD -^ *- CO CO IP t~ CN CO ^t ^t CN CO t1- CO »- f O O O O O O ID O O O O O O O O in in CN O O O O O O co O O O O O O r~ O in in CM O O O O O O ID O O O O O O O O in in CM o o o o o o o CD CO CD CD CD CO CO CD CO CD CO C7) CD CO O in o in O CM in t^ o <& «, «, a, "to O ID ^- T- CD i- ID in in in CD CD CD CO CD CD 0) CM CN CN CM CN CM CM CD ID O) *r *- CM 1C in to CD i~- ID co 10 0 O 0 0 O O O to »• o in eo »- »- co rr ID ^r co in t O O O O O O O 1- »- r~ t »- - •r- r~ 10 in in in in en ID O co in c~ en *- ^T in ID O t in *- 1 CM CM i- CD CM CO I~ »- O *- rj — o t f- ^- O »• CM T CN »- CO CM CO ID CM ••- CM TT in co t^ co -^ in in r^ •^- -^ co CM ••- CM •»- CM *- t T- in CN o to O oo ID t- t in »- CM 1C CO ^- t CM CN — Tf T- TJ- CN CM cn co en en O ID O »- CN 1 10 CN CO t »- r^ CN 1 »- t CO CO tD (C CO t f CN CN CM co t CN co r- CO ••- '- o o o o o o to o o o o o o o O in in CN O O O O O O CO O O O O O O r- O in in CM O O O O O O to O O O O O O O O in in CM in in in in in in in CO CD CD CO CD CD CD CO CO CO CO CD CO CD O in O in o CN in h- o CO CD in ID CO oo oo *- in «- ID in in •- en CO CO O (T) CO CM in CN — *- -^ CM ^- TT U> CO co co co co 0) O ^ co q- in co in o •» »- CM -r- t** CO 00 t** r^- CO CD CM CO CO CN t CO l- ^- »- CO CN •>- CN f r~ O CM CO co »- O CM 1C O CD CO CO 10 ••- *- CO •»- -^ CM •«- Ol ^1 ^ ^ O CD *- Tj- CO CO CO 1C O CO »- «- ID CO T- rf CN ID CO 00 O CO O (O ^ ^- O in co *- r~ •r- CN 1 U) *- 00 CO CM en t en co «- »- •^ M- — ID CM co en CM CN CN CO CM l~ CO CO v- ^~ O O O O O O 10 o o o o o o o O in in CN o' O O O O O eo O O O O O O t~ O in in CN O O O O O O 1C 0 0 O 0 O O 0 O in in CN §000000 o o o o o o o o o o o o CN CM CN CN CN CM CN a. (0 en * CO LU CO 1- ------- in -i i m T < o o I a 0 in ro UJ t— i GRAMS/I* "ACTORS ( SSION F UJ CJ HDGV 1 1 1 LL. >o D O §7 i O I U. So Q *- 1 O 1 U- >g Q "- V 0 1 U. i . 8 i \ \ u_ i r*- i i i LL Q IO _J LL CN LL LL ^ LL D in CM LL CJ t- Q) CJ CO O)0_ V CO I/) V C CJ O O O I t. a \ Q) TJ Q. U S CJ > a. • c. ro cu CJ >- O in o CM in co ro o co in co 1 CO CM CD O) CD CM CM CM CO CO CO co o in in in CD O O O CO CD CD CM CM ^C 000 t- CD CO CD ^ CD co co r- O O oo 1 CO •tf to t- en ro o co CO CO CO CO t- CO O *- CM CD co in CO t- *- CM *- CM CO CM CO CD r- t- t CO ^ t- CO CN CM CD i in i t- co o r- co CD CO *- CD en ro r- CO T CO •^ CM co T ^r co t CO CC CO CM 1— •» ^ CM CM O O O oog 0 0 O ogo 000 o o o 2 o o o CO CO CO CJ) CD CJ) in o r- O @> @/ to in CM CM CD CD 0) CD CM CN CM CM CO CO CO CO CM r- r- co t- in i- to O O O O in eo f- O CO CM CO CO 0000 *- CO *- "- co in CM «t f- t- co r- en co CD cc in t-- co o t-- co co t- tc i- co -^ t co in CD en to O t- in co -^ CM CD O 't CO CM r- ^r CD in CM co CD T- CM "- CD co i- *- *- »- CM »- en CM o in t co -^ in t T in t en r- CM CM in en *- CM co co in t- oo O in t- in t CD ^r en <- o t- r- f CD in CD CD CM CO in CM in CM «- ^ CO t- O O O tc 0 0 0 O in in CM O O O co O O O c- in in CM O O O to o o o o in in CM O 0 0 0 co co co co CD 0) CJ) CD O in O CM in @* ®; ®/ v *- ro co CD in •^ 0 0 CM CM CM en en CD CM CM CM CO CO CD co co in o o o CM in co CM CM CO o o o ^j- in in CD CN CM n CD in i- r- rf O r- <» rg- ^f (C CD ro r- CM CO CO rr *r CD ro O O CC CD O t^ rt tD ID CO CD O CD CD in M- CD CM CD CC CD in CM CM CM CO CO •^ *- to i- in co I-- CC CD CN in co CM CM in ^I 1C CM CN CN O *- CM CM CM CM CO 000 O O O O 000 ogo O 0 0 oog in in in CO CO CO 0) Q CD in o t- O CM CO 0 O CM CM CM CM CD CD CD CD CN CN CN CM in CD CD O •V CO T IT O O O O co ro CM in CM CM CO CM o o o o CM CD in CM O co r- CM in in in in *- CO *- CM CD CM cc in O N in ^ T Tf CO CM co n t- in in o in co CD N *f *t CO T O to CD CO t- CM CO CD CD ^~ ro TT in co CM f- 1- O CO CO CM CO CM CM CO CM o in en CN tO CM O f •» CO CM CD CC CO CM CO ro CM T CM •» in ^j to in CM CD co in CD CM o CO CD t- CM co CM o in O O O CD o o o o in in CM O O O ro O O O f- in in CM O O O CD O O O O in in CM in in in in CO 00 CO CO CD CD CD 0) O in o in O CM in i- O O in co f- in ic •— r- •» en r-> f- co cc co ??????? CM CM CM CM CM CM CM in co co co in co cn co co in *t co ^ co O O O O O O O CM in t- co co T- in CM CM CO CM CM CO CM 0 O 0 O 0 0 0 CD in CD t- CD CM CO ro *- CN o co t- CN CO in Tt TT *T «tf t t- in in CD O O CN O r~- CM co co in in co ro in ro co i co in CD r- *- -- CN CD eo co co CM in *- '- co co co in co co T CD O co O r-- CD co CD O ••- to i- O co co T q- t- co CD in CM r~- -- T o CD O ••- -^ o cn ^- in co ^ ^t in ^- ^T 'J ^ CM — *- cn ro CD ^ t- T co CO T CO CM O CO -- *- CM CM CN CM CN CM co co en in r- co CM in oo co O CD co co •^ t- co in en co to t- CD CD CJ) t- «t CM ••- -^ «tf CM -^ CO CM CD O co i- CD r- o •^ CM CD ^ -^ in co ^f CO CM t in CM CM •*- CM tc *t -^ i" r- CM CM CO 00 CN O t O O O O O O cc O O O O O O O O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O co O O O O O O O O in in CM co co co co co co co CO CO CO CO CO CO CO CJ) CD CD CD CD CD CD O in o in CM in t- @< @/ &- in CM CO CM O 0 0 co O co r- CM to co Tt ro CM CM CM co en O CM CO CO •» "- CD O in co co in co CM CM CO co in co CO CO •» cc t- *- cc co en co •q- to — 1C T- t~ co co *- CM *- •r- co to t O in i- in en in T- en *- CO »- r- i co •^ in CM CD •t in - O <± O O to O O O in CM O O co O O r- m in CM O O CD O O 0 in CM O O O CD CD CD CD CD CD O in o in o CM in r- o »- en in co r- t- CM CD 1C CD ^ ^ CO CO CO tD CD CO tO tO CO tC CO CO CO CO CO CO 00 1- — -r- (C CO *- *• CO r)- CC t CO in TJ- 0 O O 0 0 O O co to r- co ro *- in CM CM CO CM CM CO CM o o o o o o o CM CO CO CO I- CO CM co o •* t- in CM to CM CO CO CM CM CO CM in en r- t O co i- co CM •» ^r O co •<- •^ CM CO CM CM CM CM •*• en co co co en o •^ Tf CM CO CM CO CO CM CM CO CO CM t CM co in in f CM o oo T t- CM *- in in en CM CM CM CO CM f- CO in in co in en en o CO O ^ CM CO O CO CM co in ••- CM t cc CM *- "- t- ••- o *- CD in in O t in to ••- en co >- T- CM f -r- *- »- CM CM t- ••- co *r •*• O CN O t O CC CM * in o ro •r- oo CM *- CO O CM CM 1C CO T- T- T}- CM •«- CM i- co in ^ O co CD ^r "- — CO •* *- t CM CM CM T- co r- *- in in t- t- *- in CM CM *- •r- CO CO *- O t O O O O O O to O O O O 0 O O O in in CM O O O O O O co O O O O O O h- O in in CM O o O O O O to O O O O O O O O in in CM in in in in in in in CD CD CD CD CD CD CD CD CJ) CD CD CD CD CD O in O in Q CM in r- o a a e a ft en t- ro to CM CM co in CM in ^ CO CO CO CO CO ^ ^T 00 O ^ CO co T to T •» in n 0 O O O O O O ro t- co en ^ CM to CM CM CO CM CM CO CM O O 0 O O O O ^ cn co co co ^ O IP «- CM CM CO r- O •r- CM CO CM i- CM CM O *- co en o CM co in co co en to co t- *- *- CM *- *- CM *- CM ^ CO •» CM 10 1C r- O •* i- co t- co *- CM in ro »- co CM *- CN CD CM O O CO O co t to *- en in CN CN •»- in CM CO CO co in a o in CM co co to *- *- t en CD CM CM in *- CM co in CM *- -r- ••* O O O O O O to O O 0 O O O O O in in CM O O O O O O CO O O O O O O 1- O in in CM o o o o o o u> O O 0 O O O O o in in CM CM CM CM CM CM CM CM a. o in CO ^- K TABLE 4 ------- CD < 3 O I 0. O O in < tu _i GRAMS/I\ 'ACTORS SSION F ' LU O f- -HDGV i i 1 LJ_ > O ?o 1 U- h- O Q -- _J I i O 1 U. > O Q -- _J I i O 1 LJ_ ) , i O 1 •*- 1 1 1 U_ i r*" i LL_ t- . o in _i 1 U_ t , 1 CM 1 LL, 1 I I LL i . ! 8 1 •»- 1 1 1 IX 1 i u_ > , Q in _i i 1 U_ 1 w 1 LJ_ 1 1 1 O i. Q) C_> a raa •H TO (/) -H C CJ O O O I t. tx \ a TS CL - Z U £ O > a . c. — ro ro CD O in o in O CM in r- O ® s @. @ a co ID r- ^rf- in CM co CM co co C~ 1 ••- CD O CM CM in o> oo CD CD f- ID in in o co co oo ^ o "3- in -^ ••- oi co in ID ••- co ti> co u> in to o co in co CM *- i ^ in CM o> o ID in r- o (S *- co O) r- CM co O O in co ^ r~ oo *J *- co tD tD f~ ^ tD r- CO CM T- i- ^j- «- to co CM co i~ r- in CM co o co co m t t n t -y n CO CM •>- CM in •>- CO co co o O in T f- — CO CM t^ — — CD in r- CM co ID in *- co co r~- ^ co in ^ in oo o co co t r^ tD r^ -^ in (£> *t co co co •*- to co r~ <^- CM r- o co co co t- co r- co co t- co o CO CO t-- 0) CO O ID O O O O O O ID O O O O O O O O in in CM O O o o O O co O O O O O O r- O in in CM O O O O O O ID O O O O O O O O in in CM O O O O O O O CO CO CO CO CO CO CO CO CO CO CO CO 0) CO O in o in o CM in i^ o <§> © © @/ @» co t cj) r- ••- -- x in co co O CO CO 0) CO «t i ^ t n T •* CM CM CM CM CM CM CM 1- CO ID t CO CO O CM CM T CO CM CO CO O O O O O O O r- CO CO CM co T 0) *- ••- CM CM "- CM *- o o o o o o o SO -a- ID -r- h- co O CO T- -tf ID CM co oo in co co co in co ID o> *- *- i- *- ^- en m <• t co o •* "- ID r- r- in in r- ^ *- ID U> CO CO ID CO CM CM CM CM CM CM CM in *r in t^ in ^ t-~ co ••- en CM o in o ID t~ CM ^- co in o co *- in co o co •? »- CM ^T CM CM CO CM O *- U) co co co t- •^ CM in -^ ^- co O) CM CM r- ^T CM ^ CM t- to o CO in co CM CM CN in in CM co O CM CM CO ID CM 1-- 1 O O O O O O to O O O O O O O O in in CM O O O O O O co O O O O O O r^ O in in CM O O O O O O ID O O O O O O O O in in CM in in in in in in in CO CO CO CO CO CO CO CO CO CO CO CO CO CO U_ U. U- LL. O in O in CM in f- @ @, @, @ •^ -r- UJ ID ic co o co CD cp ID in oo co co co co co co oo (^ CO ^ CO CM CM •» CO o o o o r- 05 0) *- •r- •r- CM CM 0 O O 0 •r- CO CO f~ CM CO T CM CO CO CO CO co in CD ^ in O O ••- CM COin co co in CM ID in CM t~ co ^ 1C ID CM •^ -^ CO CM 00 O CM O in r~ ID in T- T- ID CO TJ- 01 ^ CO f~ r- co co -^ -^ CM in O O O O O O O O O tn O O O O O O O O O O O O O O O O O in CO CO CO CO CO CO CO CO CO co t t i- r- r- r- ID CD ID ID co h- r- O CO CM CO CO O O O O »- co •* en CM ^- CM i- 0000 co in T cj> CO CO CM CO CM CM CO CM r- ••- cc in ID CO O T CM CM CO CM in ID co O in <» T- o CO CM TJ- CM CO •» ID C~ — ID -- ID in CM ID co in r- co t~ CM CO O O co CM o in r- o CM to in ^- co T "» CO CO CO rf T- ID CM CM co in oo O CM co in CM i- CM *- CM en r- co CM CO CO "- CO "- CO CM O CM CD l^ co in "- CM in •»- h- co O O O CD O O O O in in CM O O O co O O O r^- in in CM O O O ID 0 O O 0 in in CM O O O O CO CO CO CO CO CO CO CO O in o in o CM in r- O © a e. a a CO O t- CO 0) O) 1- t CM 1 CO CO CO CO CO CM CM CM CM CM CM CM T ^t ^t ^ ^T ^f ^~ co *- t- in en co •>- CM CO •<* CO CM CO CO O O O O O O O t- O CO CM 00 *t CD •*- CM CM CM "~ CM "- O O O O O O O -- O CD co co (0 T- co co in o CD ^ o T- CM CM CM "- CM CM "- CO CO O O CO CM in r- in CD ID ••- r- "- "- CM *- »- CM "- co co CM O U) r- co (D co T t- i- i- ••- "- •*- ^I CM *- CO CM co O ^ »- in CM ••- CO "- CO CO CO CM CO "- CM co ^r "- in CM CD O CO CO CO t CM T- co r- ID *- in i CM CM ID r- CM CO T co CM co in r^ t- co CO ••- 00 CM CO t O O T- "- T- O -r- *- CD CD in CM »- r~- co co co in "- o CM co — — *~l r~: *t CO CM CD CD in CD CD O CO ID CO CD CM O — CM T- O — -- in co CM Tt co ID *- O ••- f~ oo O t co »- "- in CM *- co -r- CD CM CO "- CO CO r- •^ co i in CM co en •r- "- CM in "~ CD CM O O O O O O (D O O O O O O O O in in CM O O O O O O co O O O O O O c- O in in CM O O O O O O to O O O O O O O O in in CM in in in in in in in CO CO CO CO CO CO CO CO CO CO CO CO CO CO O in o CM in s, a a "- CM CD ID CO O CO CO CO ^t ^T ^T CO CO CO CD CO CD CM CO ^t 000 oo o co *- CM CM o o o CM CO CD CO ID CO *- f CM CM CO O CM ^r *- »- "- CM r- oo CM co in oo f T- CO ID CD in in i- r- •^ »- t- O co O co en r- "- T- ID CD O ^ r~ O r- O "- "- CD i- CM t^ en T r- O CM CO O CD O -- CM r- O >- CD "- "3- O "- in O CO CM "- CM CO o o o oog O O O o o o o o o o oog o o o o o o o o o CM CM CM £8 e, & •*• CD co o CM co Tf q- ^ i co co co eo t-- •>- «- co CO CO ^ CO 0000 CM 0) m o CM -- CM CM o o o o CM ^3- co in r- T]- o in f i- CM — in cn io CT) in CM t- co O •» O co co TT t- t- CM *- CM *- ••- CM in in en CD r- in CO *- T CM en in ^r in \c co co i- r- *- CD t in t- i- oo •*- oo co o *- O ••- O co co r- ••- O co *- en • o ID O CM ID CM •>- CO i- [-- ^ CO CO CM -- in oo in ••- CD CM O O O CD 0 O O 0 in in CM O O O co O O O t- in in CM O O O ID O O O O in in CM §OOO O O O o O O CM CM CM CM I a 0 O in ^- < o i- TABLE 5 ------- UJ Q UJ t-l -J I- co -i O I a O in in < /-s U4 _i GRAMSA 'ACTORS ^ NOISS UJ o h- l 1 > C3 Q 1 1 ! LL X 1 i 0 1 LU. 1- O D - _J i i O 1 UL > O D "- _J l i O 1 U_ i , 8 i t I U- i . i i U- V- . a in _j i i LL. i . 1 OJ i i i u_ i . i i LL 1 i." i i LL. D in _J i 1 U- 1 . 1 OJ 1 1 1 1 LL { , t I u L. 0) O (C DID. •H ro CO -H c o o u o I £- a \ a> •D a o s u > a • i. •- (0 ro tt) CJ >- O in o in O CM in t- o & a s/ @. i& CM CO -- O CO O •» O CD 05 CM •>- "- O O CM CM tM CM CM CM CM CM CO O CO CM CD CD «3~ *t r^ in M- in ^r O O O O O O O O "- T CD O CO CM CM CM CO CM CM CM CM O O O O O O O CM CO O ^ ^~ CO CO O O f- CM M- a) ro CD r^ CD CD CD CD CDco co co in CD 'tf CM in o CD ro co o to n t- •* O ID *- en t-- •» O r- CD co ao CD CM co ro ro cp co ro O in O O O O O O ID O 0 0 0 O 0 0 O in in CM O O O O O O co O O O O O O t- O in in CM O O O O O O 1C O O O O O O O O in in CM O O O O O O O CO CO CO CO 00 CO CO 01 0) CD CD 05 O) CD O in o in O CM in t- O (& @; @; @> (§y •^ •* O 01 O O t*~ in CM r~ O 01 01 01 O) •7 ^ -3- ^ >J •* ^ ID CO 1 CO 1- CD 05 CM CM t CO CM CO CM O O O O O O O ID en co *- r~ co co •>- *- CM CM -- CM i- 0000000 •^ •» in co O t O 01 r- -- o) CM <» T- ro ^t ^- co t f ^» in co co M- CM co co co co O) 0) in co to CM r- t^ ••- ^r CM in in oo •*- O) tp in *~ n co r* T ro uo tj- n »- IB r- co •» CM r- ro »- in t^ in a> n co T- ip n r- t en to — co in •* »- 0) O) CO ^ 01 ^ CM co r> co o> co *- IB co •* co ^t •» co o O in in CM CM in CM O in o r~ en CM o co O co *- co i- o O) CO CO O) ID *J3 (7) co O CM r~ O) ••- CM •^ CM TT CM -^ CO CM CM CM O CO •* ID — O — O 0) O in oo CM CM r- CO CM ^ CM r- t- — — uo O) f~ ••- "- rr T- -r- CM I-- CM CM CN IB CM r~ CO O O O O O O ID O O O O O O O O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O ID O O O O O O O O in in CM in iri in in in in in CO CO CO CO CD CO CD o o o o") 01 en 01 O in O in o CM in r~ o &€&(&<& CM ro en o> o in CM o> r~ *- (D CD in in tp O O O O O O O in co CM CM CD in co CM CM ^3- CO CM CO CM 0 0 0 0 0 0 O IP O) co O t- ro oo *- *- CM CM i- CM -r- O O O O O O O in r- CD ••- o -^ '- O r^ (N ^ ro in CM ro co ro ro co ro co O CM r- o •! en co in oi co o CD o i^ t- en T in r- ••- o cp en co co t~ ^r CM CM CM in ro CM TT ro co (- co in ro co ••- co o •» ro en CM en CM CO 0") in CM CP CO •=r co en co n co in ••- i- CM O ••- r- *- ro ro CD co co en in O t CO CM CM CD in in co O r- cp d CD O O) CM O CD *- CP co TT *- cc co co fl' en in o in ^- oo ro co in n ••- •» n r- *- ••- co CM -r- CM *- •^ CM CD •«•«••* CO in CD O CM in co CM •^ •- CD ro r- ro CM CD o co en IP en CM CD r~ CD t CD CD CM T- -r- i- m f- cp co O O O O O O CD O O O O O O O O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O CD O O O O O O O O in in cv CO CO CO CO CO CO CO CO CO CO CO CO CO CO en en o) cj) o) o 0) O in O in O CM in t- O @. & ®- @- @- ro CD T in *- CM en t- in co in i ^r -^ ^> O O O O O O O CD CD CP CD CD CD CD cp co co CM CD in co CM CM ^ CO CM CO CM O O O O O O O CD en h- o t^ ro co •^ *- CM CM -^ CN »- O O O O O O O co f »- en en CD ^j- in CM en CD r- O t- CM CO CM CM CM CO CM O) CD CO •» CM O 'J O •* co uo CM O) ro cp in en t in i-. in CM in •— co ro co r- CM CM in ro CM n CM CP CD CO CM CM Oi in •3- CD t~ co in K i CM CM co t CM in ro CN CO O CM CM O CM r- r- co CD t- ro r- CM CM in t-- CM Ct) ^J ro •*- ••- en co -^ CD CM in co •* co r^ ro oi in ro r- ^- ^r ro O CM oo co "• in CM t^ CM CD en CM 05 en •^ ro o co CM — TJ- •^ ••- en T- •r- CM -r- ct) O CM co CM CD en CM ^ t-- en co in en •r- *- in CM T- ro *- ro O ^f O ^i CM CM •T in in ro ^r in o — T- -r- m -^ co ro O O O O O O CD O O O O O O O O in in CM O O O O O O co O O O O O O r- O in in CM O O O O O O CD O 0 0 0 O O 0 O in in CM O O O O O O O o> o> cn p> en en en 0) o> CD o> o~> o en O in O in o CM in i— o & @; & @J @J •^ T ro in T en cp ^ CM TT CO CO CO CO CO CP CD CD CP CD CD Cp co co ro co co ro ro r- O in - CM CM ••- CM '- O O O O O O O CM CD O CD t- 00 O r- *- T en oo CM en *- CM CM •<- *- CM *- in O -^ O co CP t •» r- •» co in O CP O ro co CM r~ in *- CD co o no CD en O "~ "- ^ CM •>- CM CM en co CM t- t O *- t~- en cc o) co co r- i- T- r-- ro >- rr CM ro CD CD CM CD •*• co O -- CM o O r- O CM CM in t~ CM CO 1 CD CD O co ro co ro oo o r- -^ en co o A ro in in CD r- O in co en ^ o co CM en ••- ro 01 in in •*- en co O in in en co "- O »- CM -^ o -^ '- §CM O r ^r CD co -- CM CD O »- IP •^ -^ in CM •>- ro ^ co t CM -^ cp co ro ••- CM CM O *- CM t^ »- ••- — in t- cp CM O O O O O O cp O O O O O O O O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O CD O O O O O O O O m in CM in in in in in in in co co co en oi co en 05 o co en en co o) O in O in O CM in i- o @/ Q @j @j <& •3- r* in co in in CM o co o ro co co CM ro co co co co co co co CM CM CM CM CM CM CM co CM r~ in d O CM CM co ^r ro CM >? co O O O O O O O r- O oo »- co TT 0) ••- CM CM CM -^ CM •»- O O O O O O O CD CO CM CM t>- O t~ CM in CM CD co co i- ^ r- CM *- -^ ^- f r- CP CD ID ro CD CM »- ro en i CM IP co O O5 CM f CP O CO ro ^ in *- ro in cp •r- »- CO CM — CM ••- h' in in 05 ro in t- ^- CD c in in ro ro •r- -r- t~ CO »- T CM CO in i- CM co oo *- CD co ^- co r- 'j- co r- T- m CP "- CO CO i- in -^ en ro co co t- co cp o oo CM en *** -~ t- t*- co co O O r-* t** co ro co co "~ co TT in o i N co O CO 05 TT Tf CO CP ^ O O CM *- O ••- '- co ^r -- ID co t»- co o en i co en in O "- 1- CM O CM -r- t CD ^ co oo in O) O f t- t- o co in »- -- O ^ ^ in CM O O O O O O cp o o o o o o o O uo in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O IP O O O O O O O O in in CM O O O O O O O O O O O O O O O O O O O O O CM CM CM CM CM CM CM CL O in in i- < o t- TABLE 6------- I a O in at to 0 £ r- o < t- a. UJ M CS I CO —1 -3 < < t/> H- a 3 0 O 1- -1 CJ 2 t— i l/l l/l £ LJJ O CJ HDGV 1 ' 1 LL. Q -- fi 1 LL. DO Q "- I O t u. > O Q *- T1 o 1 U_ t . 1 2 \ LL, 1 . i f- i i i LL t- . o in I < LL. t . l CM 1 1 U- 1 . 1 1 1 l ii. i 2 l 1 U_ i P- i i i LL, Q in .J LL. CM U- i- 0) O IB DID. •H (0 -H c o o u u I £- 0. \ Q) TS 0. O £ O > CL • t. ro a) O in CM in cn O CM in en CO CO en en co ro en in (N ^ O *- tD •- ova- te CM in CM o co ••- to CM r- ^ in en co t*- O f~ •*" t"~ CO *- to in o f in CM in in ro TT ro t ro o O CM to in in •» t- cn to co in o CM -3- to p- to o t- CM co co i CM ro o co r- cn en <3 ro en •*- co co i-- co r*- r— o *~ co *- CM *- CM <3- o cn in CM in co ••- in r- ••- co co to en CM co co o to cn r^ co r~ co co to in CM co i- co CM in to to ro to •"• ••- en <3- ro o en co ro *tf t-~ CM cn co *~ co en ^f O co *r -- en -^ ^ in CM O O O O O O to O O O O O O O O m in CM O O O O O O ro O O O O O O r- O in in rM O O O O O O to O O O O O O O O in in CM in in in in in in in CO CO CO CO CO CO CO en en en en en en en O in o in O CM in r- O CM «- t^ CM CO t- •» in in O to CM CM to r^ *3 ••- CO in CM CM CM CM CM CM CM CM co co ro ro ro ro co O O O O O O O ro ro co ro ro co ro ro T- o •*- to O O O ro in ro co en O ro in to i f) in ^> CM t CM en r- ro in t- CM to r- CM en t CM t in co ro ^j ro to f- co ro in o m (^ co en en en ^ *- *- co t- f~ r~ co to in CM -3- o co co CM CM CM ro ^ co ro t- r~ in ro o co M- in en o oo eo — en CM en T- rr in O r- rM •r- CM f- »- -^ '- r- to •>- o (^ en ^ en o en o O rn rM en ro CM in in t- co ••~ •*" tc ^r ^~ co tD »-••-<» CM »- CM *- CM CM r~ in o en to CO i- rj CM in CM O to i~- h- CM CM i- en ^- T- T- co co tc ro ••- -^ co eo T- -^ CM r- to en •? en co CM O O en in to o co •^ ro to co in in co co rM CM ro in r- in T- ^- ^ to -r- r- co en CM T o ^ co t ^ en N in ^j co "31 en t- to •» CM t- en O en t~ en o co en •<- *t in o ^t ^ co CM CM O C^ CM ID O •"3- CM t^ O tD >3 ID ^r in ••- r- ^ co in •- CO 1- CM CO CO *- O O CM to O to in to t^ ^3- en in in in in in in CM in in co CM i- T- co ^ in *~ O O en co O ro "3- r- CM r~ CM ^t CM *T t^ CO r- r-- to in ^- to in CM ^3- CM CM -^ en in <3 CM n in o — r- in »- to ••- T r^ co co co in -^ ro en r°~ to ^f co CM en t- eo T *- O O O O O O to O O O O O O O O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O to O O O O O O O O in in rM CO CO CO CO CO CO CO CO CO CO CO CO CO CO CD m en en en en en O in o in O CM in i- O co ^ co co ^J" CM 1 CM CM "3" O CM CO t- CO ID CO O CO O CM CM CM tD tD tD tP3 co co co cn ro in ID t co in co CM -3- in o f- f in r^ CM to co CM en •» CM ^ in co ro ^ ro c^- co r^ ^ en o tc f» r- co co eo co ro t- in in CM T]- m to O co CM r^ en in co en en o O t- cn CM cn to cn o CM CM in cn o in in CM co en r^ cn o CM co ^r en CM *- •>- in en in o CM CM cn to en i co ••- t- ••- en in cn co to t- CM cn cn en o cn ^t ^r ro CM CM T- CN o r~ O O en <3- CM -3- in co en en in to co CM o ^ t- !•- CM o *- ^r -^ O O i- i- t- ro T- M- CM in to to O en to — r^ in *- en to ro in CM CO -^ ^ O CM CO to •r- in to t co *- •*- -r- CM in •>- to ro r- O O co ••- in en r^ r- to O ^ "^ ^ CO CM CO -^ ^ CO CO r^- 1*^ to t*^ !"•• to ^ in CM «3- co cn co CM »- ID O CM -^ CO •» ro »- TJ- in in r~ ro ro ^ cn in co tc ^t to co o ••- in ^3 '- co ^ to O O O "- ^f co r- en in eo •»- Tf T -^ O ^3" CO t^ ^t to t^ en CM r*- co CM co <3 i en to co CM t~ r~ co co CM en to in co co in CM O CO "- CM ••- to co ^r ^- co to "- ro in en r~ CM CM CM co o -- co cn »- en co r- in cn r- to to to CM ro *- O O O O O O to O O O O O O O O in in CM O O O O O O co O O O O O O t- O in in CM O O O O O O 3 CO O in in CM co *- ro CM CM in co r- *> co o en t- -^ •«• ro O ••- en x to o t CO O CO CM T- CM •* •>- »- cn -3- -^ in CM K r~ o "- in ro co co in r- co O >- O ^t O r- co to 1 r~ ro ^3 ^ ro co i1 co tn in to in ••- -^ to ro i- to co »- en r- O en to r~ ro r- co CM CM tD CO CM 1 CM co co co co eo co — in CM to cn CM en co T- co T- ro co *3- ro co co t^ co co o in *- •* O r- co t- in co in ^3 o co ^ ^3- en o CM ^ co to t~ TT in O ^ ^J" r- CO CO — »- s T en en in CM to co o *- O CM *- in N r^ co ro T- o r- h- to cn ro t^ co co Tt CM CM *- O O O O O O to 0 0 O O O 0 O O in in CM O o o O O o ro O O O O O O t~ O in in CM O O O O O O tD O O O O O O O O in in CM in in in in in in in cn en cn cn en en cn en CD cn cn CD en en O in O in O CM in i— O in ro o t- O ro in o -- t- O •* O en '- CM O cn r- O co co co co co co co CM CM CM CM CM CM CM to to to to to to to CM CM CM CM CM CM CM co *r to r- ••- in in ^- in t-- ^3 O *- '- ro in to t ^ to T co to CM ro in T to ^ co en en co ••- in CM *t in co co tn ro cn ro to CM co ^3- o ^t ^r CM O CM co eo i O t~ co in ro tD in to to in in to in r~ O O *- in in in O in ir en in ^ to O ^ in ro co co ••- ro ^3 cn in ro to t O CM to T r- cn *- cn in o in t r- co to •» en •«• co T- in •3 in CM -r- TJ- i f- CS -r- T- co co — ^r in in to ^ en cn cn co T o co *- co in o O to i- r- CM o t-- in CM •3- CM CM f- co ro r- co cn in in in ^ to co to in r- in in in in •«• o '- *- en co to O ^3 '- •^ t~ CO ••- ^- CM ro r~ o CM •>- ^r O in ID CM 0) co en ^ in co ^- »- r- co rn CM CO Tf CO CM CO CM 8ro to t co en cn ^ in r^ r^ ^ co co u> O ro o ro in •>- CM to ro CM T CM O co o CM ^- i- ro cn to o *3 to ro o co in *- co O co O CM co to t- co cn in in co o co CM CM in CM O to to to co cn to co -- t in ^r i- ^3 •» CO CO t tO CO CM *- *- ro to O O O co ro O r- co en •» CM co ^3 ^ ^ in co co oo r- to in *- to in CM *r CM CM *- O O O O O O to O O O O O O O O in in CM O O O O O O co O O O O O O t- O in in CM O O O O O O ID O O O O O O O O in in CM O O O O O O O O O O O O O O o o o o o o o rM CM CM CM CM CM CM Q. O in 4 O U TABLE 7 ------- 1 1 > o D I t o ••- i 0 1 U. I- O Q -- _l 1 i 0 1 U. > O Q "- _l t i 0 1 U_ t . i O » ••- i I 1 U. CL I . i t- 0 i O i »- U. 1— . < Q in _i UJ _1 u. *-H • ••v CM UJ I/) Q £ 00 D < i- a u. UJ >H O I CO _l -p < < 10 h- D; S 0 o t- -i o. u. < 2 o 1— 1 C/) U. V) E t* UJ o c_> u. > . Q in _j u. CM U. u i. 0) O (0 D1CL V « in v c u O 0 0 I t- Q. v. 0) 73 O. CJ E CJ > a • [_ •- as 10 01 O in O m O CM in t- O 6 a a, a @, 'CD o> 01 fo in t- t 00 CD CO CN TJ- cn co o co co in CM CD T n ro co in CO CD CD CD CO U) CO CD co co co in •»- cn 0) *- CM *- r- t* co CM in ID t ro in ro en •» in »- in CD n i- O t- in CM co ro ••- ro co CM CM ro CM oo n r- r- co o co O r- CM cn co o oo O) (D in in co •*- i-~ co O co ID co r- oo co co o to co ••- r- in co ••- cn CM in r~ *- O O CO •* O CM O *- co «t O r- CM in t CD to rr r- co *- cn t- O in oo •*• ••- CD rf in co in CM *- O co «- O -a- in *- *- CO CM *- CM i- »- CM oo CO CD in r- CO CO CO CD ^~ CO 00 CM co co CN ^r in cn CM o •» CM »- r- en *- *~ CD co ••- co •>- CO CM •q- CO 00 CO ••- O) O CM CM CO *- •* co O O <• *- O co co o O O CM o r- «-»-*- in »- 10 CM CD CD ^ CD CO CM CD O ic r- «t CM r- •* CD rr O CO CO CM CD T ^r O CM ^ CM co 10 co •>- *- in r- cc O co O O U) •>- "- CD in co < O CD T 10 r- CD O t- *- co CO •>- CO 00 CO CM *J O CM •» O 10 co r- io CM co CM ro in in r~ r^ r-- in i^ r~ o CM v i- T- *- in ••- o ic co T- CD in en CM r- t- i- •» cn in CM i- CM T- co CD i"-- ro r^ f- ^r T CM CM "- *- CM CM CM in r- *- CM CO CM 0) CM CM O in f-- h- f- co CM o 0) ID *- IP 00 T O oo n •« CM O O O O O O ID O 0 0 O 0 0 0 O uo in CM O O O O O O o O O O O O O t- O in in c\j O O O O O O u> O O O O O O O O IP in CM O O O O O O O CO CO CO CO 00 CO CO CO 0") 0") 00 CD 0) CD O in O in o CM in r- o @/ @* & © © •>- <* n CM en i- co t- n CM r- r- O r- *- rj- >- 0) U) t~ CO CO CM CM *T «•! «-f «•>«•. ^t 2! 2f CM CM CM CM CM CM CM in ic o in ^r co co •^ t~ co o t- *- co CM CO f CO CM ^T CM l£) -r- — CO Tf 1C ID co en co in CM co co "- CM CO CM CM CO CM *- u> T cn ^t in to (C u> oo in co i- O CM co oo *- co co in oo cc O in t>- co ID in ••- CM co T- T- m h- r- co is t o T TT CM CO CO ID CO -^ r- co co ••- r» co CD CO CM CM CM CO CM 00 *t in co co o cn co r-- CM CD in ^ in •*- CO CO CM r- CO O CM CO *- CM "- •7 CM co •* cn in -a- ro co oo r-- t- co CM co CM O r- co *- CD O co co r~ oi co (S •*• in CM co *- •;r co 10 r~ O CM •» T 1C CO CO CO O CM CO CO CM CS CO CO CO CM oo CM in o in ^ *- o •» ^- in CM CM ID 10 cn co ID cc »- -- co CD CM t~ cn tc CD co -r- o *r tc co co tc oo cn r*- oo co tc r- o CM CM r~ in cn co in co ^ *- oo co oo o cn *- co co rr cn to co t- t CM ID CM co r^ •* in CM •* ID ic cn in co ic in co i ^ ^- CD ^r t O o •» CM to CM -- — •^ •r- CM •» in r- co CO O CO TO -- T- CO CC CO O CO CM T O in •» ic CD in O O co *- CM -- co co CM -- ic in CM cn oo ^ in ^- ID co O ^ CO CO CM CM 00 r» in T- t- 10 m t U) CM CO T- O O O O O O CD 0000000 O in in CM O O O O O O co O O O O O O t- O in in CM O O O O O O ID O O O O O O O O in in CM in in in in in in in CO CO CO CO CO 00 CO cn cn cn en co cn cn O in o in o CM in r- O €>&&&& co in cn f~ *- ID 00 CO 1C '- O t- t«. O ^ co o co r- oo CM CM »- •P- CM m *T\ «\ «\ /*\ ff. rr. O O O O O O O cn ID co r- (D t- CD O ID T cn CD o Is- CM CO ^- CM CN ^ CM t- CM oo ^- in o co CO CO CO ID CM t CO *- CM CO CM CM CO CM Co in co O O t co O in r-> co in •»" co in oo •>- co in in co in co en CM rt ••- co t i- CM cn •>- in co O to in ID co f i- co ic CM *- cn cn CM in ID in co in o i- O in co ^- CM CD in CM -^ t- t- co cn ro •^ cn o O co co CM r- ID CJ) in ID I- O CM *- — T- ^j t-- in cn co -^ co ID O co CM cn r- co co co ic i O T t- 00 f~ "- •» CO CDCM CM in co O cn co TT r- co cc in oo t in CM co i- •» CM in ro O "- CM ID -3- CM co ic co t ID in cc co in h- co tc m in cc co co i- co co O in co cn co in co t ro t- ID co o co in cn r- co co in -j CD in - in co -- cn in CM cn cn co CM co r~ co oo O in CM ^f in co i- in cn co *- O 1- 0) -^ CO CM CO CM CD I- CO in TT CM CM Tf in O CO — CD CD CD CO CC CD CD CM "- »- cn in CD t- co in o) i- in co co co N r- O co T •» T *- in oo co r» CM i- t- co TT CM CM *- co in r~ ••- o -" co CD o i>- co f co in ID r- ^ CM co in t- O i» co r- ro in o •*- CO CO ^T CM co ** ^ cn cn -^ t- CO T- T- f »- »- CD — o) in i- CD f- oo co *- CD CM cn co o CM O CM CM •- CD CO CM CO CD CO ^- f- CD CN CM CD CO CM >t CM ^r T CD CM *- CM CM CD CD co CM in in in O ^ co co ^ CD O co co in r- co cn in ^r r- ^t in oo *- co O CM T- CC •*" CM •»- ^ CM CM CM CM CM 0) ^ ^ co co ^j- CD r-- CM *- -- in CD in CM o ^- '- cn in co co 0) CM CD CO CM »- in t- CM CM cc in t- «- in co CM T CM CM *- O O O O O O CO O O O O O O O O in in CM O O O O O O CO 0 0 0 0 O O r- O in in CM O O O O O O CD O O O O O O O O in in CM O O O O O O O cn cn co cn co cn cn co cn cn co cn cn co O in o in o CM in i- o «, & ®. 6, S CO CD CM in *t •* t- co co o co O CO O ••- O CO 1- t- O CD CC CD CD CD CD CD co oo oo co oo co oo CM TJ- r- CM i- m O >- i- in O (~ ^ oo CM co ^r co CM *r CM 01 co cn co oo i- "- 00 0) 05 CD CM TJ TJ- »- CM CO CM CM CO CM !-- t-- O CD O) CO CD CD CD CO *- CO CD '» cn ^ T CM in co t t- i~ CD r- i- cc f- CM CO 00 t I- CO CD TJ- oo -^ co o in CM CM ^- t- in in cn co co rr CD in co CD T T 1- r- CD CM CM CM »- M- co CD in ^ t CD O T I- CD CM -- ^r in »- O t co r* CM *- '- co co oo O co co in r- co oo co »- oo f~ CO •r- CO CO CO t- CO CD CD cn x CD CM -- ro *- CM »• in t- cn ^ co co *- CD O CO CM *3- CM 1- t- f~ r~ CM r- CM co O5 N O CM 00 CD 00 r- co co *- co u> co CD o in cn in in t- O t~ CD in to »- t- O t- n co CM CO CO CO CM CO CM O in o co co oo cn CO CD CD CO -- t-- in in CM CM O) co i-- CM *- CM in CM *- co CM CM r-- in CM co •«- CM CO CM ••- n *- CM in 'j- O CD cc CD ro CM CM CO CO CD CM CO t CM o T I- t- r- «- CD »- CO O CM CO CM CO O CD ^ CO CD CO CO 1 CO *- CO CO CD CM ^ "- O ^ CO O T *- CM ro co o •* in t- co •^ ro O ^T CD i- co CD in cn co in CM o CO *- CM "- O O O O O O CD O O O O O O O O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O CO 0000000 O m in CM tn in LO in in in in CD cn cn cn co cn cn 05 cn cn cn cn cn cn O in O in o CM in t- O a e- ® a a r- t oo r- r- O in >» co CD O co O CM r- oo CD CD in to co oo oo oo co as oo CO CM CD CO 1- t CD •^ 00 CO O t- CM CO CM CO t CO CM T CM ••- •*- oo f f in in 0) O O i- co in ^r f CO ^T CM CN CO CM O oo 0) r- cn TJ- Tt "- cn CD O r- co CD co r- co co ro O •» tt t in T <• in T CD co co co co cn o cn O o cn t- in CM co ro CD CM cP t co CM CO t- Tf CM in CO CM co oo o oo in n ^ in cn in CD CM *- t- CO CM i- 00 CO O CO T CO Cn CO — CD "~ ^ CD t» CM O t t- in co in cD *- Is- oo r- CM t cP O O in in ^ CD in o O CO ••- CM ^ • 3- ^ CD o TT O CD t CD f in CD CM CM ro T r- ro in in CD r- in O O CO *- CM *- O O O O O O CD O O O 0 O O O O in in CM O O O O O O CO O O O O O O t- O in in CM O O O O O O CD O O O O O O O O in in CM CM CM CM CM CM CM CM Q. o 0 t- < o u TABLE 8- ------- 1 1 o § i I U. Q 0 Q i- I 1 i O 1 LL 1- O i 0 1 L_ DO a ••- _j i t 0 1 Ll_ t . ! 8 t I 1 LL. a. i . i P- 0 i i in i CO U_ h- . < D in _i UJ •v. CM UJ I/I O Q Z i-3 < t- O: u. i- uj h-i c5 I 03 _l -3 < «t CO 1- CX s o 0 K- _l U U. < 0 o I/) LL. £ P- O 0 u- Q LO Li- CS u i- a> o «J Old. V B C U O U O I t- CL ^ 01 T3 a. O 2 O > a. (0 0) O in o in o CM in t- o T}" ^t in in co r- ro O P- CD CO p~ r— p- CD CN i- o en CD CN CM CN CN CM CM CM ro ro co co ro ro ro i- co ^- en tp CD O m in en rM i- r- CM in ^ tp co en in CM in en ••- t— co o P- O O ••- O O - O rn t- CD CD CM P- >3- in P- co in t in — CD O O en r- o T en en en ro r~ en p~ *t i- P~ CD CM *3" tP O co p* <3- i- o tp ro ro CD i ro in oo i- co i- cn P- en i- CN o P- in i co CM CO CN CM CO CM CM in ro ro i- CD ro t-- *t in r- co i- co r- r- in O O O O O O CD •*- en in «^ o m ro ro co en co i- LO CM in •» P- in rn <• tp i- co r- i- en en O O en r- tpen o O t- co O O ro CM CM CN co cn cn cn en cn cn cn in in in in in in in in in i- ro ^3- co r- CD i- ^ cn co CN co CO i- CO CN O P- t in cn CN co r- O r~ O O i- O O i- O CM i- tp r- in co in P* P" ^j cn P- in ^ CN i- cn O i- o i- co CD in in o i- O in ^r i- co <^ co cn cn CM cn CD o O CM T- CM *- i- CN i- p~ cn CN co ro o O CO CM LO CO O -5 P- CO LO LO CN ^ O i- *- i- CP CO i- ^f CM r~ in i- -j CM ro P- ro o T ro ro p- co O cn o P- cn cn ^ CM i- CM in i- tp ro CM p- CN i- ij- LO — ro o co O — cn tp O T in co P- cn CD ro CM i- en CN i- in CN i- i- in T co co <• in in CM •«• P- cn ro CN co o CN cn co i- cn i- i O tp in CN CM CM in co CD en t ^> in P- P- cn in CM p- r- co O in CN cn co i- cn O cn to <» o co cn in i- co r*- ^t ^r CM CM i- LO CD in o ^ i" P* CO CN i- p- CP CM CO CM ro cn p- CN tp CM i- i- p- CO i- il CN cn cn i- o CN in i- CN CD CD en P- i- O O P- co o co co CD CM i- CM CD i- P- CO O O O O O O CD O O O O O O O O in in CM O O O O O O co O O O O O O r- O in in CM O O O O O O CD O O O O O O O O in in CN in in in in in in in cn cn cn en cn cn m cn cn cn cn cn cn cn O in o in o CM in p- o CM cn cn P- ro co CD cn tp i- ro o P- in o CM CN i- i- CN cn en cn cn cn cn cn in in in in in in in p~ co ^- in in i- co to i- T cn co co co cn co CD ^r i- cn CD in cn CN co P- o P- O O »- O O i- o i- cn O co CM cn ^f in CM in CD co co i- ro in P" ^ ro CD ^ in CM O in in i- CD p- P- P- cn CD P- P- p- o ^r co co P- o i- CM i- 1-1- co O CM i- o i- ro i- CM co cn IP o IP CN T cn en CN P- cn i- i- in CM i- co i- O P- CD cn ro CD co CN co O co in *t en cn co CM ro co in CM i- i- i- in i- CD co P* ^ in ^ CM cn ro ro i- CM co in i- in O in in in P- in in co CM O cn CM i- in CM i- CP LO CO CO O CD O co o co in in t cn CD cn i- co p- o t- in o co P- P- en tp co i- CM o in CD cn t P- IP en in i- CD p- co P- co <• CM in p* LO CN O CM •*)• i? P- cn ro i- co tp co • o ro •q- CD cn P- i- co co cn t i- i- CM LO i- CD CO O O O O O O CD O O O O O O O O in LO CM O O O O O O co O O O O O O P- O in in CN O O O O O O tp O O O O O O O O in in CN O O O O O O O o o o o o o o o o o o o o o CN CM CM CM CM CN CM I a O in 00 t- o o 0 UJ CO 1— ------- 1 I 1 1 > o 8 i i i i U. i O 1 LL. £8 Q i- 1 O 1 U. > 0 ST i 0 1 U- i . i 8 i i X i LL, CL i . o 1 "" 1 O i in u. < o in UJ -1 U. E 'in •^ CM LU I/) *- Q S "3 < t- o: u- CM LU >-< O 1 CO -1 ~3 t f I/) i- a S 0 0 t- _J O LL. < z o 1/5 LL X r~ UJ O 0 LU a tn CN O L. (1) O in oia. +• <0 10 V C 0 O 0 0 I t a \ 0) 13 Q- U 5 0 > 0. . L r- OJ ra (v Cl >- O in O in O CM in i- o CO 00 tD t- O co to O co co O 01 o ••- in CM o O cn in 05 01 en 01 01 01 05 O O O 0 0 O 0 co in in o cn o CM t- co tc *- en in O O - - <- o - *- r- O 01 to cn 01 ••- i oo 01 to in oo to O O O O O O O cn cn CM r- in to to in co 01 o O to in co to o co •» oo ••- to eo ^- in CM t-- CM in in to CM *- in CM ro in f T?01 01 01 01 en 01 O in o in O CM in t^ O S/ @l @< €, C< co ro co ro •» ic CM co eo O to co O •«• *- 05 CO CO t— CO co eo co ro ro eo co O O O O O O O to to to to to to to r- 01 *- O CM o in in 01 CM co t^- ••- t^ O O -- O O *- O 01 f~ O co 01 co CN •» r- O tc in co to 0 0 - 0 O 0 O in t- tt in t- «- in to CM ••- *- in ro i- ro CM co to cn O 01 ro CM O en o ^ "*~ in ^ cn *t o 01 ^ t^ o -- f o t •*• in ro *- "- CM in tc *- co in o CM T CM to en CM in v cn 01 9- ro CM *- f» r- *- 01 t i- to 01 t ro co to to 01 CM ro •— to T 01 tC CM tC 00 t 1- 01 t- co tc i ro t- co to i- o O 01 to t~ CO 01 CM CO CO Ol t- 01 t CM Ol CM t- eo co h* ^ 01 co to O) co co O co co ro CO CM CM i- to 01 to t »- co o co CM eo cn co co tc •^ en co CM o oo en T- tO CO •»- CO •«- r- co in •— in *r CM O 01 in O f CM 01 *t en to eo CM eo co i- T- in *- to CM o o o o o o to o o o o o o o O in in CM O O O O O O CO o Q o O o O r- o in in CM O O O O O O 10 o o o o o o o O in in CM in in in in in in in co co co oo co co oo Ol 01 Ol 01 Ol 01 Ol O in O in O CM in t- o ^r 01 t*- in 01 — t- CM ^ 01 *f t- CM t-- 00 to in m i f- O O O O O O O in in in in tn in in in in in in in in in in to co oo O r- CM in 01 •>- t>- r- o t- 0 O >- O 0 - 0 m r- CM cn 05 en ro i t- o to in co to O O *- O O O O en o o o> n o o en 01 *- CM CM o *- in CM in *- t en to *- Ol •>- 1C Ol O CM »• O i- in CM *- t O "- in in O co CM O) en h- ••- ^t eo o CM •q- in eo r» in eo CM *- t~ in *- 01 r- •<- »• t}- CM *~ CM r- t~ oo to co co r- tc i- o oo to to cn t- in CM to o co i- •» T- "^ CO •» -r- >T CM rj CM Ol 05 -r- O tD O 01 t *- ro CM f- 01 CM in to to cn to »- ^- f to " r» co -- in 01 O co i» ro O co T- CM o CM r* co »- cn »- CM o *- O to o 05 t ro eo CM f Ol CO T O tO in tc ro m in o to co co CM O •*- in »- t» CO CM 01 tO O t u> to -- in to o> o ro T- r- i- ro co oo ro m co to cn oo to in CM r- t~ co t- in to co *- in in CM co "- in to CM ^- CM i CM •r- CM CM "- t~ t^ O CM o> •«• ro o *• •* •^ 01 •q- ^ in CM O O O O O O to O O O O O O O O in in CM O O O O O O co O O o 0 0 0 t~ O in in CM o o o o o o to 0 O O O 0 O O O in in CM CO CO CO 00 00 00 00 co co co co co co co cn cn en 01 01 cn 01 O in o in O N in r- O fei & ®i (& @* in O co •* ro *- O in to -^ CO CO CO T tD ^r ^ ro eo in in in in in in in in CM CM CM CM CM CM CM in in in in in in in in to oo co o t~ CM in 01 T- i-- i~ O i~- O O *- O O >- O cn r- CM 01 01 o eo TT t^ o to in 01 tc o o •- o o o o m in CM O ••- ro *- in co CM 01 O O CM *- co co r- O to en CM 01 o 01 T in co CM CM *r 01 t ro CM oo 01 *- CM co in o CM *•• T- •*• CM i o co t CM tn T O to CM O co O O O CM CM o to in "- *- "J CM »- CM *- to t^- co ^ ^r CM in f O 01 to CM in CM ro T- in to CM ro CM *- *~ t~ eo *- rr CM ro to o N ^ co in t* •» i- i ro in co i- CM CM O in CM ro ^~ ^~ to u) *~ t^- ro *r to r* r^- f^ to ^ in t-- en to en ro co 05 CO t^ CO CO 00 CO co in o t- co CM co O *• f~ to ro rf co i in i- to rt co in CM *- CM ro to i- to tO *- CO 05 to 05 O in to r- co in IP 01 CM T- *- ^ CO ^ t^ CM CO 05 01 ^t in in in t o t^ r^ 05 co t^ co ^ TT CM CM '- •a- o •?• in f- in co T CM cn co CM o t- -- 01 CM oo o to *- •^ oo co T- ^r CM O O O O O O to O O O O O O O O in in CM O O O O O O ro O O O O O O t- O in in CM O O O O O O to o o o o o o o o in in CM o o o o o o o Ol 01 Ol 05 Ol Ol 01 Ol 01 Ol 01 Ol 01 01 O in o in O CM in r^ O & ®f & & @; r~- t 01 to 01 i- CM *- in O co in CM en oo CM CM CM »- CM CO CO CO CO CO CO CO Ol Ol Ol 01 Ol 05 Ol to oo o 01 "^ 01 ^J in 01 CM r^ r^ o t- O O *- O O -- O O co in O O *- co in t^ o i^ to 01 to O O "- O O O O in to oo *- r^ CM O *- i *- T- in co •* CM — O *- " O •*• to t-- r- ro in CM to •^ in CM co in 01 co in to in co in o tc "- CM O *- Tf »- tO ^r O CM ro ^t »- <» ro i- CM '- ••- in oo -- O t- f oo 01 t- *- CM eo ro O Ol CM O O tC CO *- to ro •«- ro *~ »- T i 01 to 01 O O in i co CM ^ t- tO CM CM "- ^1 CM 01 f >- »- in »- tc CM Ol "- ^- O) h- ID CO in ^ in T- t- 01 01 i- in to in ^r in t to in to co co ••- O t~ 01 O O i- m 01 CM co 01 in ro to co O CN 01 01 co to in eo CN t v in co eo ^ in co •»- *f ^t i^ CM •r- ^ in eo in ro CM t t~ r- 01 ro r- to *- 01 to to ^- 01 to i *- Tf f- CM •^* CM CM 1C Ol CO « •* 1C CM CM CO t» CM CO O 05 r- «- 01 co co •^ to co re *• O O O O O O to O O O O O O O O in in CM O O O O O O ro O O O O O O N O in in CM O O O O O O to 0 0 O O O O O O in in CM in in in m in in in 01 Ol 01 01 Ol 01 Ol Ol 01 Ol 01 01 01 01 O in o in O CM in r~ o &«,&&& to f CM in ••- CM ro oo to oo CM 01 10 ^ X CM i- T- •r- 1- tc tc to to to to to r- r- r- h- t~ t~ t- f- O co f co «- in in o CM oo tv f t~- O *- -^ O O -r- O O Ol f» *- " CO ^I in r- o t~ to 01 tc O O ^ O O O O cn in to ^ t^ to ^r r~ 1s- o ^ 05 ro *^ to r- co r- to oo r- in oo ro co CM in o en T tc ^ T o in co in CM r- ^r 01 in co r- co rj- in co to CM CM 1C CO *T Ol O tc r- O in to oo o ro *- f *- in 01 en to *- 01 co oo to •» to in in cn 01 01 i- r- 01 ro to in CM ro v ••- eo o CM in cv ro to 01 co CM »- •*- in in CM in 01 ^r 01 oo •^ -- O •» f in CM to 01 to in cn co o in to — ^ oo T »- co ^f to <• co in ^ CM CO TT O O5 tO — in to t t~ co O to CM CO 00 T CM t£> CO ro to ro eo h- o r» O Ol T Ol CM t^ 01 t T CM o rr ro to CM i- *- t en t to to t~ CM i to CM i^ co en t to to 01 co to CM ••- m *• CN »- •^ CM in co ro 01 in co o cn O in 01 01 O 05 CM O CO in t» »- to ro eo i- O O O O O O to O 0 0 O 0 O O O in in CM O O O O O O ro O O O O O O N o in in CM O O O O O O 10 o o o o o o o O in in CN CM CM CM CM CM CM CM i o s 1- 0 TABLE 11 ------- o I D. O in in < LU _l v/swvao -ACTORS o )-H l/l I/) 2 LU O CJ -HDGV 1 1 1 O *- fo 1 U- h- O _J 1 t 0 1 U- > O 0 <- _J 1 i O t U- i O 1 I LJ- 1 . i r- i LL. h- . o in -J 1 t u. 1 CM 1 1 LU 1 . I 1 1 U_ 1 . i O i 1 U. 1 . 1 f- 1 1 u_ > . O ID _J 1 I LL. I . I (N t 1 l i LL. I . 1 1 1 U i- CD CJ re rao. v a in •P C CJ Cold/Hot Cal . VMT Perce year PCCN PCH O in O CM in e @, a <» — — co t- CM — CD 01 co - o LT LT LT r- r- I- - O CM co *j- r^ CD co CM T 00 O 00- r- O - O 0) 1C O CM CO O co — — 0 r- CM CM ^ ^ CO CO t- CD CO co CM co CM CM f^ O O CD O CM ^J CD CN — CN CN CO co co o r^ in co CO — — CM CM CN CM CD CD in CM (o m 01 co en i CD i- co co o fl- in CM — — co -- CM 1- CD f- 0) in *tf co i- — in CD CD — — — CM r- -3- — — — CD in CD co — ID — o co in T- — in 000 O O O O O O O ogo o o o o o o o o o o 00 CO CO 0) CD 0) in o t- O @, © D TT r- O o) O CD t- LT XT t LT i- r- r- r- ^J CM l£ CD — O in O CD — CO <^ 1C ID CD ID O O O O i- — in O O ID i- co in o in co in CM CN O r- i r- CM — oj in CD co CM co CM «t — CO — CD CM CO — >t co o CN i CM in co co co in CD r~ CM co CD ID •» ID — ID CN r- T O f^ — co CM CD -q- "* co in — r- O CM CM in r- r- CM O — in co CM in co •» r- t- 00 CN — O in t^ CM — •& co r- CN ••- ot — — CD t CM co O en n O in T -r- co — co CM t» O CD r~ u> oo ID O in in CN oo T — in CM — 1- TO 00 10 r- T CN — 1C «» O> r- — co co O O O U) O O O O in in CM O O O c-3 0 0 0 r- in in CM O O O ID 0000 in in CNJ O O O O CO CO CO CO CD C) CD CD O in O in O CM in r^ O @' @* @, @^ ^ CN O O CM CN in co CM — O in ID co *- co O 0) co co T CM fS fN rM rN rM rS CM CM CN CM CM CM CM tD CD ID ID ID CD CD CD CO tO CO in it t~~ in o CM co r- -^ r^ A — ~^ *~ — CD <* O — CN- CN co O CD O t in — O ir »- in CM O O O O O O CD O O O O O O O O in in CN O O O O O O co 0 O 0 0 0 0 i- O in in CM O O O O O O u> O O O O O O O O in in CN in in in in in in in CO CO CO CO CO CO CO CD CD CD CD CD CD CD O in o in O CM in r- OO in CM •t in CM - r~ rr CO CM CM in in in co CM in in o cs CN — CD in co O O 0 - CM CN& CO CO OT in in O — CM ------- CO UJ _1 co < i- LOW ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 5.0 MPH Cold/Hot Start :al VMT Percentages LDGV LDGT -LDDV- -LDDT- -HDDV- HDGV Vear PCCN PCHC PCCC 0' F 25' F 50' F 75' F 1OO' F O" F 25' F 5O' F 75' F 1OO' F O-1OOF 0-100F 0-1OOF O in O CM in @) @j @; ••- co O O in *- r- ID ID O O O o) en Q) co co co CO CO CO i- (S> -e} co to «) CM CO CO O) T CO O 1 ID CM CM CM CD CO 0) CM T- in CM CO CO r- O t- O *f CO CM Tt Tt r- ••- O CO CD M- co q- *t co o 10 co in rr co in f f~ 00 r- co *- tn t ID *S oo in ID ID co in — CM CM t^ CO ID CM CO CO CM CO CO O in ID IE r- in CM CO CO oo co >- O) CM 00 CM -tf CO T CD CO <» r- »- n t t 000 °°8 O 0 O °8° o o o °°8 o o o 00 00 CO O) O) 0") £8 @, » CM CM r- <- in t 0 0 O 0 CD CD Cn CD CO CO 00 CO CO CO CO CO co to o O ••- O in *- CO CO CO CO t in ^ co CO CM in CM CM CM CM CM CM o co r- O CO CO CO CO CM CO CM CD CO 00 ^1 r- r- co r- CO CO 1 CO m T in O) en CM ID o co T -a T *- r- cc O CM r- en in i T i T CM O t- O in T co 0 i in in in oo IB in o — O •q- *- CM CM CM CM t- ID tco f CM in ID O •^ co co O O co O co ^r t •» f T *j- ^ en in to o t"- in ID *tf 't in to ^ in co in in >j -g- in T ••- o — ••- T O en CM CM CM CM CM CM ^ t- CO r~ CM CO CO CM CM CO CM en *j CM o co co en in to co CM CM oo ••- CM CO CO CO CO CO CO O O O O O O 1C 0 0 0 0 0 O O O in in CM O O O O O O co O O O O O O t- O in in CM O O O O O O u> 0 0 0 0 0 0 O O in in CM in in in in in in in CO CO CO CO CO CO CO en en en en en CD en O in o in o CM in r~ O @) ^ @j @; @J ID ID CO CO CO •7 •>- CO ID CO in in ^r ^t CM r~ r- r~ r~ r» r~ r~ r- r~ r- r~ t- t- r- CM CM CM CM CM CM CM to in co CM co TJ CD O T ID eo CM in CM CM CM CM CM CM CM CM »- *- CO ID -r- t~ CO CO CO 05 CO CO CO CO r^ in co ^ CM r- r~ t~ ID 1 *- CM in •" »- CM CN CM CM CM CM en in en O co t- to ID CM CM in 1- CM 1 CM T st CO CO ^T CO CM CM CM CM CO f- ID ••- co en O en co en CO -3- *T T CO Tt CO co r- o ID en ID ID f i- ID in in in co in in ^ t in •» CO CM If) CM CO CO t*- CM CM <£in in •* t CM N t- f- r- r- r- r- K r- h- r^ p^ t-~ r-* CO CO CO CO CO CO CO CM CM CM CM CM CM CM co t^ co in co in o co »- co o en CM o "- CM CM CM -^ CM CM O en o •» O •* CM h- CD CO N r- r~ t^- O to co CM CM to ID ID •» CM en o to en •«- CM CM -^ CM CM •»- O in co in CM en o ID o "- co co o co CM ^ t CO CO 1 CO co in r- co co *- CM O (D r~ co co r- to CO ^ t CO CO *t CO co rr in CM co in co in co in in -^ ^ ^t eo in in - to *r ^ en r- co o r- u> en CM *- t- CM ••- CM CM CM CM CM CM CM co CM •* r- in t- O *- to ID in CM in CM CO CO CM CM CO CM r- co O T ID ••- CM to co co O O co O CM CO CO CO CO CO CO O O O O O O (D O O O O O O O O in in CM O O O O O O co O O O O O O t>- O in in CM O O O O O O to 0 0 0 O O O 0 O in in CM O O O O O O O en en en en en en en en en en en en en en O in o in CM in r- © ©, a ft CM in o ID in CM o t- in in in T CO CO CO CO en en en CD en en en en r- r~ CM r~ ID en i- oo *- ^- CM — •^ en co t to in ID to •* 1C t- O CM en r- in ro cf> t co co in t- O CM CO CO CO *- ID t •» co CM co in CM ^t Tj- CO •r- 1^ ID •» co O O i- co in in ^i- en in ^- in co o en co ro ID in en en oo t in f CM 00 CM co O oo O ••- O t^ in to N to oo — CM *- t 00 ID •^ t^ »- CM CM CM co en r~ in CM in CM CO CM CM -^ T •*• en o CO CO CO O O ID O O O in CM O O co O O (-- in in CM O O ID 000 in CM in in in en en en en en en O in o in O CM in r- o @, @ @, @, © r- ^- ID CM en 1 CM CD t-- CM in in ^r •» CM O O O O O O O CO CO CO 00 00 CO CO 00 CO CO CO 00 00 00 in in en in oo CM o CD eo O co t- O co T- T- CM T- T- CM i- O t^ f~ CO CD CM ••- LD in ID to in to to en CM en CM co CD t en ID t CM CM in CM O T- -^ ^ T- - T- O CD O ID ID CD 00 CM ^- •* r- ID CM ID CM CO CO CM CM CO CM O O CM •»- O — CO to en en CM CM en -- CM CO CO CO CO CO CO to CD to -a- in •v r- O r- in r- co 10 t^ co ^- ^- co co •» co •r- CM •» CD CO CO r- to co CM to co tn ^t co in in ^t T in 'a- en in oo -^ o ID o in o O co co o co o *- ^- o o ^ o ^r in in in i- in co •^T ^ in CD r^ co co •^ CM CM i- *- CM '- O r~ CM ID •» CD r-- r~ ID CD CM ••- r- •r- •^ CM CM CM CM CM CM O •r- t ••- O CM co O co co ID ID co in CM n co CM CM eo CM tn en *- CM in in IP co o co o T- en o CM ^r co co co co co O O O O O O ID O O O O O O O O in in CM O O O O O O to O O O O O O r- O in in CM O O O O O O 10 O O O O O O O O in in CM 8O o O O o O O O O O O O o o o o o o o ------- in i -3 UJ * D CD < NOx EMISSION FACTORS (GRAMS/MILE) AT 1O.O MPH Cold/Hot Start Zal . VMT Percentages LDGV LDGT -LDDV- -LDDT- -HDDV- HDGV year PCCN PCHC PCCC 0' F 25' F 50' F 75* F 1OO' F 0' F 25' F 50' F 75' F 100' F 0-100F 0-100F 0-10OF O in o CM in e/ ® «> ID 1C *- ro eo t r- co to t^ r~ t^ CM CM CM CM CM CM CO CO CO CO 0) CM co r- O CM CM ro ^r CM 01 t- O - *- CM CM CM co rr CM O ^ CM CO CO co eo ^r CO CM CM CMCO ^t CO O O 0 °°8 o o o °8° O O O °°8 0 O O co co co 01 01 01 in o r- O © a *- ro O co ID •q- r» r- r- r- CM CM CM CM CM CM CM CM CO CO CO CO •» •» O r- to in en in CM CM CM CM T (D O 01 01 oo ••- co •^ CM (C co 01 r- CM r- CM CM CO CM in r- CD co co co CM 10 co co ^r co CM o O in co *- in 01 CO t TJ CO in en O co O in co co •» T *r i co r- co 01 co »- -r- r^ O O O O in in CM O O O co O O O r- in in CM O O o u> 0 O O 0 in in CM 0 0 O O CO 00 00 CO Ol 0") 01 01 O in o in o CM in r- O 18 © a a a co O r- r~ t^ O r- co O t- u> in in in co 01 01 01 01 01 01 01 01 en 01 01 01 01 o") 1C CO to tO (D CO 1C CM CM CM CM CM CM CM in co T- o CM CM in O) ro in CM ••- 3- ^ in T §t~ »- u> in 01 T ^ in CM CM *r CM 00 1C CO 01 01 1- •*• in co in o 01 ^r O "- CM CM CM »- CM CM CM o in rr co co oo co r- oo co CM i^ CM •^ CM CM CM CM CM CM O — t- ^ CM •V O T- T- i- to u> T- (c CM CO CO CM CM CO CM co cn in O) CM r~ co f in in oi o in O) CM CO CO CM CO CO CM O O O O O O to O O O O O O O O in in CM O O O O O O co O O O O O O r~ O in in CM O O O O O O 1C O O O O O O O O in in CM in in in in in in in CO 00 00 03 00 CO CO Ol 01 01 01 Ol 01 CD O in o in o CM in r^ o 6, @. ®. ® @ rf CM CO U) f- r» i- — oo 01 in in in ^r CM 01 01 01 01 01 01 01 01 01 01 01 01 01 01 CM CM CM CM CM CM CM CM CM CM CM CM CM CM — ro co CM in f r- t- O ••- 01 co «- oo O O O in o in CM in in 10 in in m in r- O t CM O CM in us in co o — <* o •^ CM CM CM CM CM CM co O to 01 co CM in in O O CM CM O CM CM >t •» co ro ^ co co ro O t- ^ (C CM 01 IP tc r^ (^ tfi r-- CM •* •» ro co rt co O ro »- in oo CM ^ •3- •»- co ro CM CM CM co in in O r- 01 O 01 oo •» in CM o oo x *- co CM co ^ ro o ••" oo T l~ 00 -^ -^ 00 O CM ro ro ro ro ro ro •r- ro CM " t~ co in co co Tt ic in co in CM fl- •» ro ro T ro co (S> ro co CM in *- CM 01 "- »- ^- O "- ro TJ- in ^r TI- in ^r CM i- co co 10 in r~- oo r^ 01 oo i^ oo ^ ro in in ^t 'j- in •» r- 01 O oo i» O t* 10 o "- co oo »- co O ••- - O O ^ O in CM ^ CM r- co CM co o ro oo ic ••- r- "- CM CM T- -r- CM ^ co CM m co T *- in ^T 10 O 01 in O »- CM CM CM -- CM CM in o ro >- in ic in oo 01 O ^r co 01 co •^ CM CO CM CM CM CM 1C 01 (D f- 01 r- ID ••- n ^ t- t- ^ f- CM CO CO CM CM CO CM v D O O O O 1C O O O O O O O O in in CM O O O O O O co O O O O O O r~ O in in CM O O O O O O ID 0 0 O 0 0 O 0 O in in CM O O O O O O O 01 01 01 01 01 01 01 01 01 01 01 01 01 01 O in o CM in e, e/ e, O CM in co in CM in in in T f *r in in in ID 1C CD co i ic co 10 r- ^ CM O CO CO 1 1 01 CM ••- 1- CO co oo -- *- CM rr CM co ro r~ O) cc in co cn CM CO CO -- CM '- O U> ID CO < t t O co in in co co in in in ic 01 in 01 o> O O O O 1- 01 co cn CM •»- T- CM ro 01 CM in co CD •^ CM CM O T 01 X Ol Ol »- CM CM CM CM CO "- 10 •* CM CO CO 000 oog O O O ogo o o o oog in in in 01 01 Ol 01 01 01 in o r- O a. a 8? in CM f •«• •» t in in in in CD 10 CD CD in o O *- in in r^ in IP CO CC ^ co ro ro ro r- in i- »- ro •>» t~- «f h- »- rr *- r^ t^ co r^ CM CM CO CM co O CM oo CM CM 01 »- CO CO CO CO t*. co CM ^r r~ i^ CD r^ CO CO •« CO CM r~ t •*• •» ^ ^ t T •<]• in ^3- in •» t~ t . r^ t^ 01 r~ 0 O O 0 co 01 T- in r~ in i- ID •<- f- CM •<- ro CM o in O 01 in o CM •>- CM *- in co r- '- CO CO CJ) CO CM CM CM CM CM ^- CM <» r- oo in h- CM CM CO CM o o o ic o o o o in in CM O OO fo O O O r- in in CM O O O U) 0 OO O in in CM in in in in 01 01 01 01 Ol 01 01 01 O in O CM in a a a in r» *- r~ fl- CM in in in O O O 10 u> co in o f~ © a « CD *• 01 T •* CM o o o o CO CO 1C ID in in in in in in in r- CM co co CD r~ CO *- CO ro ro ro 01 co in co v co ^^ 01 co CD 01 00 O T- CM ro ^ CM T co in in CM ro co CD 01 01 t-- CM O CM •* ^ in in co CM CM r- co in T CO ^ f- in 01 cn O O 0 O •* 01 CO 01 CM »- •- CM ro o CM in Tf IB *- M CM 01 t~ Q t^ 01 O •^ CM CO •^ CO CO •^ IP ^r CM co ro O O O oog O O 0 O 0 0 o o o o oog CM CM CM CO 00 P- 01 in ^r ID t in CM T co CO CO CO CO O CD *- CM 1- T- T} -r- 01 O r~ CM rr 1- 01 T CM CM CM CM O 01 CO 1^ 01 co in oo CM CM CO CM oo r* 01 O CO T *- t CO CO >J CO t 00 01 T 01 -^ 01 O CO ^ ^- •» n CM ID CM r- f- 01 t^ O O 0 O 1C 01 T- rj- r- in ••- CD •- -^ CM *- co co «- in O 01 in 01 CM -- CN »- in ^ 01 CM CO CO 01 CO CM CM CM CM CM •* io in r~ 00 to N CM CM CO CM O O O CD o o o o in in CM O O O CO O O O r- in in CM O O O CD O O O O in in CM CM CM CM CM I O o K < X o «• LU _J CD < 1-------- LU in o CD I O o a CD CO < UJ _j I-H GRAMSA -ACTORS ( SSION UJ X o HDGV 1 I > o Q ~ i O 1 li. £8 Q *- _l I O 1 U. zx Q - i o M. U. (-- u_ t-. Q in _l U- CM U. U- ^ u_ LL >. o in -i u. CM Q_ 0 £- tt) O 10 010. v (0 +J C 0 O U 0 I i. 0. -^ 01 T3 O. O S U > Q. • t. — ra <0 0) o >- O in o CM in a s, a ^- 05 o o t o co Is- r- 05 CO 05 tf 1 1 O in co co •«- ro •^ CM CM t CD CO co in CD ^- T cn ^ ro ic CM ^- CD " co in co ^r T CO O -3- •? ^- in to in T CO t~ CO co CD in co in •sr ro T- T- •v ro co ^- co f •» O O) r- 1 in — CM CM ro co O to ro « rr co r- co r~ in CM CO CO T- in co O CM r- co •» ro T 00 CO •T r~ O O 0 0 oog o o o ogo 000 o o o £ o o o co co co CO O) CO in o r- O & & CD CO in r- co •» CO O) 05 CD T •» •» ^> ^- CD 1 CO O 05 CM O) CM ^- CM — O ^ CM CO in t cc n t in — -^ *- cn in O T r- cn CM cn co in co ro ro f to O -^ CM in *- t CO CM i rr rt -*j CM -^ — CO CO OI *- CO >* •» in rf co o co co in in i o f in in in ro CM o in CM •>- in v CM CM CM IN CO CM 05 O 05 co ro 05 r^ ro r- T- •^ CM ID CM CO CO CO CO in «- »- co ^t r- O in co co ^r co O »- CM ^ CO CM •* O O O O co O O O 0 in in CM O O O ro O O O r- in in CM O O O CD O O O o in in CM 0 0 O O co to co co CO 05 CO 05 O in o CM in @j ^ & in ro f- CD CM CO co CD in CO CO CO O O O - 0 t in co ro r- ro ro ro co ^r in CM cn CO f- CD -- — o) to T- O CM T f r^ 05 r-- co in -t t i- CM •*- O co co t- co O) O O 1- co *r i- co ro co 0 0 0 O in in CM O O O co O O O r- in in CM O O O in O O O O in in CM in in in in oo co co co 01 0") 0) CO O in o in CM in h- @, ft ft ®, I- CM *- — CN CO 1C CO ic in in in t- i- r- h- r~ t-- r~ f~ CM [^ CO CO co in CD T CD CD co cn ••- *- CM i- co co en co 1C t CM O) co rr in in t co co — CM CO CO CO O CM in co co co to in CM ^J- •» CO co co t- O CM co en i- CO tj- ^ T T -^ CO CM h- in r- r- co in in t in rj- in in r- -- *- en 0 *- - o CM 1- i- (O co en CM c- co o co en in co ^r en •"- CM CM i- r- ro cn t- t- 1C t- CM »- CM CM CM CO t- CD CO O »- -- in CM to CO CM O O O O O 0 O O O in O O O O O O O O o o o o o O 0 0 0 O in CO CO CO CO CO CO CO CO CD 0) O) CD O O ft in CM CO r- t- t- r~ r- t- co to in t 1C 1 co O r- '- CM ••- "J CD O O co O in ^- CM T- CO T- CO CO CO co co in in co in CO t CO t- CM in O CD O •sr •? •» t CM ^> CO 1C 10 t in -^ in in •* O) "- 0) 0-0 in cn co CD O 10 -- ro co CD CO O) — CM ••- CO ^ CO CM t- CM CM CM CM O CD CO co — in CM CO CM o o ic O O O in CM O O co 0 0 r- in in CM O O 10 O O O in CM co co co co co co a) ro a> O in o in o CM in t- o & @> <§/ <§/ {§< CD in in CD o CM o co ro o CD in in in co CM CM CM CM CM CM CM in in in in in in in r- CD CD CM t-- t co "- CO •* CO CM •* CM 05 co in CM ro CM o o o *- ^ o - '- to co cn CM O co in i »- 01 r>- co O i- t- TI- co co *- CD cn CM in in o> cn in co CM CO CO CM CM CO CM CM TJ- cn in co m — co o O co co o co CM •? >» CO CO Tf CO •* — T- co co co •>- O CD r- CO CO CO CO CO T ^J CO CO f CO T co co co — t- O in CM ^ *3- ^r co ^t co in in •q- T in t co o - -- - O O 10 O O co co O co O *- >- O O -^ O co co cn i CM co CD CM co O co in cn in co r^ r- co cn r~ -^ •» T- tO CO h- CM CO •^ CM CM i- -- CM — r-- O O co *- in — co co t- — — co — •^ CM CM CM CM CM CM in — co 01 O ro t- 01 »- O ^r in o •* •^ co co CM CM n CM O O O O O O co O O O O O O O O in in CM O O O O O O co 0 0 0 O O O f- O in in CM O O O O O O CO O O O O O O O O in in CM O O O O O O O o"> cn cn cn CD o cn cn Q 0") cn ro cn cn O in o CM in & & @^ to to ^> co o r- co CD in i- r- r- CN CM CM r- co in O CM co CO CM CO O O O CM — in O co i- ^t CM CM 0) O) O *- CM CO t~ in o CN ^ in CM CO CO f- oo r~ co O O CM •* f co in •» T- co r- co ^ fl- co co in ^- co co O 0 0 CM t-- t^ •— CD cn CM in in CO O CN v- CM CM in co co in in in T- CM CM CM »- in co •*• cn — CO CM 000 oog O O O ogo 000 oog in in in cn 01 cn cn cn cn in o r- O a ft ID CD t r- in CM i^- r-- r- r* CM CM CM CM O in — r~ CM i- CO - in CM in to O O O O co -^ ro co CM to in CM in *- r- ••- ^ 'j cn t CM CM CM CM CD CO t- CM CO CO ^ CO CM CM CO CM J CO "t CO -• CO CO O CO CO CO T CO O in o cn 0) CO CO CO CO CO 1 CO in •» ^- •» co co co to O O O O •^ CO CM CM in co co t in co in co t- CD •»• CD •^ ^- CM — co o in 01 o O in cn CM CM CM ^" •q- CM CO CO ro f O co CM CM CO CM O O O co 0 0 O 0 in in CM O O O to O O O r- in in CM O O O CD O O O O in in CM in in in in cn cn o oi cn a> cn cn O in o in O CM in N o e, e, a a a co co o> CM ro CM CD CO t CD co in in in CM O O O O O O O CM CM CM CM CM CM CM in in •q- to ^- cn in O CM CO "- ••- CM •»- CO — 1- t CM 1 CO o o o o o o o h- CD CD in O ••" f^- r- CM T- co o CM co •— O5 TT M- 1- CD CD t^ TT co — o in rj *- CM CM CM CM CM CM CM co in O co t r- O O O in ^ O i CM CO CO CM CM CO CM co O ro -- cn -- co ro r~ in co CD co co CM ro ro CM CM co CM •^ CM CO O O O CO co in o t co co ^a- CM ^- ^- co ro ^f co in *- co co — CM ••- •tf CO CO CO CD CO CO O O O O O O O •*• ••- »- »- CD co in co co •>t O in i tf in in t^ CO O CM t- CD — CD •>- CM CM T- i- CM T- co ^ co -^ o in co in in in o O in oi T- CM CM CM CM CM T- O in to CM CM Tf m CO -^ CO CO Tt O CO — CO CM CM CM tO CM O O O O O O CD O O O O O O O O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O (O o o o o o o o O in in CM BO O O O O O o o o o o o o o o o o o o ------- 01 IP O •r- ID r- h- T- UJ *-* "D CO —1 < < (- 3 O _J X a O in CO < UJ _l GRAMS/* ACTORS SSION y^ LU X -HDGV i i > O o ••- xo 1 li_ So i O 1 U. §8 _J i i 0 1 U- 8 i — i 1 U- i r- i i LL. o tn _i i 1 U. 1 . 1 CN t 1 1 1 U- 1 . 1 1 I 1 U. i 0 1 •*- 1 [ 1 LL, t . 1 LL, >. _J U_ CN LL O t- 01 Ua • L •- a a a> O in O in O CM in r-- o & & © © @- ^f »- in to f- •*- in CD *t eo CD co r^ t^ in tp tp to to to to tp to r- CM t*~ o ^ CM in CO O r~ r~ CD r- ^ to to ID o in •— tp "- CO CO t- CD I- CM CO CO O co o tp CO CM r- ' O CD CM CO O O T in co co CD co to ••- CD O O tP CP in CM CD in to co co O tp eo in TT TT tt in ^j- O O O O O O to O O O O O O O O in in CM O O O O O O co O O O O O O r- O in in CM O O O O O O to 0 O 0 0 O 0 0 O in in CM O O O O O O O CO CO 00 CO CO CO 00 CD CD CD CD CD CD CD O in O in O CM in r- O in to tD O co in o to co to r~ r-- tp tp *J 0000000 eo co co co co co co •*- to oo r^ CM CM TT eo in tp ^ *? - CM CM CM CM CM CM |-^ TT ^ |^ CD CM tD CO CD CD CO CO CD CO *- CM CM CM CM CM CM O O O O O O to o o o o o o o O in in CM O O O O O O co O O O O O O r~ O in in CM O O O O O O ID o o o o o o o O in in CM o o o o o o o CD CD CD CD CD CD CD CD CD CD CD CD CD CD U. Ll_ U_ U. U. O in o m o CM in f~ o O in CM ^ o CM CO in CM — i- to to tp co O O O O O O O CO O CO *t O ^ -r~ CD ^ »- O O *- O _ _ CD CO CO -r- CD ••- O 00 CO CD CD CO CD CD ^^ ^^ CJ) t CD CO tD r- CM CD in co -^ CM ^ CM O "- T- -r- T- T- r co t^ in CM CD -^ co CO r- CO CO CM CO CM f- CM CM CM CM CM CM in to CD o co r- ID •^ CM CM r~ tO CM tP CM CO CO CM CM CO CM — T CM ^ in CO CM in oo ro ••- -- co — CM CO CO CO CO CO CO in in in t- *- O tp CD in *t to Is- in tp CM •» T CO CO >» CO co in r~ CD co tp co ^ r- t^ in in h* in ' * *- O r- tp •? co co O in i- co CM to CM CD *)• CM r- O) co ••- ^- co o in ^ CD in 05 to •— CM O CD CD co CM co co ro CM r*- T- CM CM -- "- CN T- 1 CO Tf O f- T- CM tp r- to *- -^ c~ -^ "- CM CM CM CM CM CM O O O O O O to o o o o o o o O in in CM O O O O O O co O O O O O O t~- O in in CM O O O O O O to 0 O 0 O 0 0 0 O in in CM in in in in in in in CD CD CD CD CD CD 0) CD CD CD CD CD CD 0) O in o in o CM in r^ O ^ CD r~ to O) ••- r- T ••- ai h- tO tP CP CM ??????? O O O O O O O CM CO CD CO CD CM O CD O "- O CD -- O CD r- co — co O O) CO CO CD CD CO 0) CO _^ O in in tp -r- o co r- ^- O CO CD f CO 0 - -- 0 0 - 0 in in oo co r~ -^ co in CM co CD co co co *- CM CM •*- -^ CM -^ co T in to in in co CO 1^ f-- CM CM r^ CM — CM CM CM CM CM CM in ^t co co o tP in "- CO *- tO I- CM ID CM CO CO CM CM CO CM co r-« O) r*- in co ^ in o tp O CM co -^ CM ^" CO CO CO CO CO O "- co in ^- CM ^r 'j r^ r*- in in r^ in _. co r~ ^f co o O ^i CD ^f t* CO CM LD CM A in CM oo ^ tp O co ••- co CD in ^- en i tp in r- co r- tp in CO CM CM [-• 1- CM r~ ^- CM CM r- -^ CM •r- O ro O CP in CD co to t~ to O ^ tP O ••- CM CM CM CM CM CM O O O O O O to 0 O O 0 0 O 0 O in in CM O O O O O O co O O O O O O r- O in in CM O O O O O O to O O O O O O O O in in CM o o o o o o o O O Q O O O O o o o o o o o CM CM CM CM CM CM CM a o in CO X o 2 1C LU on t- ------- r- Q co i -3 O NOx EMISSION FACTORS (GRAMS/MILE) AT 50.0 MPH Cold/Hot Start ~al. VMT Percentages LDGV LDGT -LDDV- -LDDT- -HDDV- HDGV fear PCCN PCHC PCCC O" F 25' F 5O' F 75' F 1OO' F 0' F 25' F 50' F 75' F 100' F O-1OOF O-1OOF O-1OOF O in O in CM in r- §, @, S @, O O co ro CM in co CD O en co oo O O O o O O O O 10 ID ID tD CM CM CM CM co in co co CO CM T »- i- CM CM CM O CO CD <£> <3 ID f- in *- r- ro rt ••- CM r- O CO Tt TJ -3 •- oo CM in O CO CO O •^ in in in t- co 03 -3 •3 <* r- CM t CD 10 LO ••- r- i» en O ••- N -3 in t- in in T r~ — *- co o co a> LO r~ LO LO to o in m CM ••- co co CM o ro CM •—- CM CO 1- 00 ^ ro in i ^ CM m ro in •>j O •*- co •v to in 0) *- co ^ rj- rr — CO r- CO to in co LO co in in T O ID O ro '-'-WO •3 CD LO in cu CD r^ *3" ID CO LO ID ^r to CD in I- T- T 00 CM co oo in O en in in 01 r~ co *t •^ CM CM CM t— in •<- ••- ••- *- CM t- CM CO CO CM oo r- CM CM T LO LO O CM CO CO CO i t- en oo 00 O CO CO CM f co ro o o o o o o o o O in O O O O O O O O O O O O O O O O O LO in in in in CO CP 00 CO en en co en O O ft CM CM in t -3- ^ CM CM CM -- LO CO f- cn r- T O CD t in ^ in CN CM CO CO CO CM CO CM t CO 0) •^ O) O t T •* CO LO LO co T in *t in ^ O co co CM O O in CD in in co CM oo r^ r- in CD in r^ co cp in oo in co t-- co Co CO CO CM CM CM O oo co r^ T- is> CM co CM §in CM LO O co co co O) 00 OJ T CO T ro co ro O O CD O 0 0 LO CM O O CO O O !•- in in CM O O CD 000 in CM in in in CO CO 00 CO 0) CO U- U- U. Lu O in O in CM in t- @v ©j i& <§- ID v- ^- T CO LO -r- t~ r~ f^ t^ CD CM CM CM CM LO in in in co co CD in ro CD i— in '-'-mm CM CM CM CM ID ••- -sr oo co co r- co •^ CN CM CM co in •» ^t co in in t— CM -tf t CO "- O O CM CO i- i- CM co in tn '3' •^ •» CO '- oo r~ r- oo CO LO LO 1^' CO CD -3 -r- CO -3" CD LO TJ ID CD LO t^ O m cn CO CO CM O i- r- co co •» i- CO CO -- CM CM T- CO -^ CD t- co en CD »- •^ CM CM CM in ^- co to CO CD CO *3 "- CM CM CM CD O CD O CM -3 CO 00 CM CO CO CN O O 0 0 O 0 0 0 O LO O O O O O 0 O 0 O O 0 0 O O O O O in CO CO CO 00 CO CO CO CO 0) CT) 0} CO U- o o a CN t CN CM CN in in in CD O '- •3- t- in •>- LO CM CM CM CM CD CO O •» ro •* CN CM CM LO -3 »- r— in t- co -3- ro •3 O cn CM *- i- •a- in -3 O CD CD co r- t- T in ^> CD LO t t in CO ••- LO O CD CO CO CM 0) ^- r- in O CD •^ i- CN ••- »- CM "- m in CM t CD <3 co t CM ^ CO CO CO 00 •r- CM CN »- t- CM '- ^ CD LO CM CO O CO r~ CD r- CM - •^ CM CN CM CM CM CM CM CD CM LO 00 T •» O *- ^ in in ^- in CM CO CO CM CM CO CM O O O O O O CD O O O O O O O O in in CM O O O O O O co O O O O O O t- O in in CM O O O O O O co O O O O O O O O LO LO CM O O O O O O O CD CD CD CD O) O) O) O) CD CO O CO CO O) O in o in o CM in r~- o © & S- & © ro in oo ro CD O co CM co q- co r- r~ CD ro ro co co ro ro co ro ro ro co co ro ro co ••- CM T- in "- r- CM •r- CO 1 CM CM CO CM 00 CD CM O t- CD 00 o o -- ^ o o o O CM rr CM o co in »- r- in ro T CD ro CM CO CO CD CO O CM O O •*- tn in ^- in CM CO CO CM CM CO CM r~ o ro oo CD -- t ro CD co co m CD m CM ro ro CM CM co CM CO <* CN r^ CO CO 't r- CN CM t 1 CM T CM f -3 co co t ro CD o co in co CD f CM O O) O O 0) O CO LO ^ ^3 ^ ^t T CD O) O CM "- O '- •3 t^ CO tD CD CO CD o o o o o o o CD t— in CM o ^- "i" O LO co t ro r- ro ^ CO -^ T CD CN CO CM co ••- co in o LO -- -^ CN T- t- CM *- CD t^- •*- o co co r- ^f co ^t m oo co oo -- CM CM *- ^- CM ^ CN -^ CD O t- CO CM r- CO t- CM CM oo CM •^ CM CM CM CM CM CM O O O O O O CD O O O O O O O O LO LO CM O O O O O O co O O O O O O r- O LO LO CM O O O O O O to O O O O O O O O in LO CM in LO in in in in in CD co co CD cn co co CD CO O) CD CO 0) 01 O LO O in o CM in r^ o & a & a ® r~ co CM co M- 01 in CM to co r~ t-- r~ CD co r— (^ r^ r- r^ N h- in in in LO in LO LO O O O to co LO o •>- ro ^ CM i- ro CM r^ in ••- O) CD 00 Is* O O >- O O O O to co CM co co co in t- CM f- CJ) CD — CD in O co to O t- "- CD rr in o O T O »- CN CM CM CN CM CM in CN ro o O co co CD CD CO *I T CO CO ••- CM CM CM CN CM CM CO LO O -~ CO CO CM CM in ^ co co *? oo CM CO CO CN CM CO CM O CO M X CD CO LO 1- CO CD CM »J — CO CN •sr co ro co i co ••- ^- CO r~ CD in CD 'J r- r- LO in r- LO O O O O O O O CM CM O co in CD O) O LO 00 CO CM CD CM O co to co -r- r~ ro CM oo O in in m in •r- -r- CM T- T- T- ~- •r- CO LO •* CO •* CM *j ro ro oo oo ro co *- CM CM ••- ^- CN ^~ in co cn to CM co CD CD co co •*- CN r*- "- •^ CM CN CN CM CN CN O O O O O O CD O O O O O O O O in in CM O O O O O O ro O O O O O O t- O in in CM O O O O O O CD O O O O O O O O LO in CM O O O O O O O O O O O O O O o o o o o o o I a O 6 LO t- < X o f- LU _l m < i- ------- UJ Q LU HH 05 —I I— i- CD _J I < < I 0. o in in LU _J GRAMS/N ^ACTORS 1.. ISSION £ UJ X O -HDGV i i i 1 U. > O o ••- i O 1 U_ ~~ _1 1 i 0 1 U. oo _J 1 i O 1 U. X i *- i 1 Ll_ 1 . i r*- i i U_ I— . Q in i 1 U. i . 1 CN 1 1 1 f U_ 1 . 1 I U. 1 * X i "- i i i LJ_ i . 1 LO 1 t- 1 1 L_ Q in L. CN U_ u L. 0) CJ re oia +> (0 in +> C 0 000 T i- a -x 01 ^ Q. — z CJ £ 0 > a •- ra ro CD O in o in o oj in r- O a a s/ e> a ID CO 05 CM •>- in co ••- ID CM O 01 05 00 ID 01 05 01 OI 01 CD OI ID CD ID CO CD CD to 05 01 05 05 05 01 05 in r- co co t i> i> •^ in r- ^r ro tD co r^i r\l PM r\l r\l rNi rxl O tD — CO CM 1T- CO ID Ol CM in r- CD in to to to CO •*- CM *- in ID 01 O in CM CM ^- co co to CO tD CD P~ Is* tD CM CM CTJ o in to 01 ^T co in *~ 01 ^ 01 ro in r~ in in to CN CM tD tD O O tD O to 01 01 r- •» ^ f CD *- co co in o t co in T *t ^ in ^ to ^- ID in *- 01 co ••- co ••- t-- •*• ^ O5 rt in in ^ in in ^ •» CO CM T- CO CM ••- r- in in CM r~ o in *r to in in in to in O O O O O O CD O O O O O O O O LO Ul CM O O O O O O CO O O O O O O I- O in in CM O O O O O O to O O O O O O O O in in CM O O O O O O O 00 CD CO CO CO CO CO 01 01 01 01 01 05 05 O in o in o CM LO h- O CN CO O t- *- O "- t- CM T co co r^ i^ in co co co n ro co co O T *- co in CM r- CO f CO O 01 CN 01 CO tD Is- O) LO CN ID tD tD f- tD 1C » tD LO 01 tD CD ID t- t •» in in o O in o m m m m m m ro to M- i ID in >- ^ co co ^r T ro ^ ro in in rr TT in q- 01 tO O 01 05 CO ••- CO 01 00 CO 01 CO 05 co in in ^j ^r in ^r n in co ^ o "- 05 ^ tD CO ^T tD LO rf *sj ci> to in in to LO in co T- o CM r- co O i *- "- ro 01 T- in i- r^ ID to f- CD to in oo o oo to oo CO 01 01 r- tD 05 ID t o to co to co t- O O *- to in O in ro 01 •» -- O *- co CO CO ^ 05 05 ^ CO CN ro ro CN CM ro oj to ^ co t 01 ^ in CD CO 1— CM CM CO CM CM ro ro co ro ro co in r- co <» in r- co O co ^- to f» CM ID co ^ < co ro ^ ro O O O O O O CD O O O O O O O O in in CM O O O O O O co O O O O O O r- O LO LO CM O O O O O O to O 0 O O 0 O O O in in CM in in in in in in in ro co co n co co co 01 01 05 01 05 05 05 O in o in O CM LO r~ o ro co to r- CD cv t~ n a> cv co f^ f~ to ^j" in in in in in in LO f~ t^ ••- r~ O •» CN in oo o i*- t- 05 r~ co co r- CM ro co O co ro ^ ^r ro ^ ^r CN LO t-~ t^ tD VD ^ ••- " 01 in to o to ^r t CM to r^ co CM "- 05 O) O O 05 O O ^ ^j 01 o ^ in CD in in in to in in co in in i- t in <• ^r co o co -^ to t^ «- CM CO CM OJ CN *- T to to in LO to in 1- CN CO O CO CN *- r- O CN O oi *- o> t t- t~ to in [^ in CO 01 05 tD r- 05 tD 01 CO CO •*- -^ CO *~ t- CM in ID to ^r oo in co in o 01 T oi f co t CN in to to CO CD CO CO CN I~- CM *- CM OI OJ CM CM CN 01 •«- ro co o in oi O ••- T- ID to — in CN CO CO CN CM ro CN •*• oi ro 01 CN o co •* tD in 05 O ID 05 CM CO CO CM CO CO CM O O O O O O ID O O O O O O O O in in CM O O O O O O CO O O O O O O 1- O in LO CM O O O O O O ID O O O O O O O O LO in CM CO CO 00 CO CO CO CO CO CO CO CO CO CO CO 01 01 01 01 05 05 01 O m O LO O CM in t- O in CM i- ^ i CM ro T o 05 co t-- r~ f~ co in in in in in in in co co ro ro ro ro ro O to ro r~ *- CM ro ^ to t-* in in r*- LO O 01 r- ro O co •*• CO CN CO CO CO CO CO oj co ••- ro 01 oj oj ro r- in •— CN to CM co CM CM ro ro oj o CO *3" ^ CD tD *3" CD CM •* ^ CO CO ^ CO tO O CO ^- < CM •>- CN O O *- *- O •*- co LO in -3- <• in •» t^ CO t^ CD < CO O ro in in M- ^ in t to co r~ o ro i~- »- ro *r ID in t in ^ t tD to in LO to in CO "f *t ^ *f *t CO t^ f- r- Q5 01 "^ O5 r~ co co "- o m co ro O CM ro r- *- r» 01 05 N t-- 00 ro O in co in o 01 1 O •>- CM CM CM ••- CN OJ LO CO CM O CO ^ CM ro co 01 co ro ro ro »- CM CN CM CM OJ OJ CD CD CN T- -!J- *t O •^ co co t- r- co i^ CM CO CO CM CM CO CN O O O O O O to 0 O 0 0 0 0 O O in in CM O O O O O O co O O O O O O !•- O in in CM O O O O O O to O O O O O O O O in in CM O O O O O O O 01 01 05 01 01 01 01 01 01 01 O) 05 01 01 O in O in o CM in i- o & @/ @/ & @/ •^ ^- ro f- ro co 01 in -^ in co t- r- i- ro CN CM CN CM OJ CN CM CM CN CM CM OJ CN CN in in in in LO LO in t- — CN CO CO CD 01 oi in to t co in co CO T- CO LO CM in CO CM OI CN CM CM CM CM 05 LO 10 CN •»- LO CD •*- ro CD ^ in f~ i ^ o) tp in CM co o *- CM ro r~ r- ro t^ CM CO CO CM CM CO CM •a- to o 05 ro ro to in co 01 ^ ^- co ^ CM co co co co co ro co T co ro to *r O 01 in in e- t~- in o CM *T TT co ro ^- ro O to 01 to oi co ^ LO CO CM CO CO CO CO co in in "sr ^r in <3 ro ro TT in T t i ^t co ro to to co to ••- in i o to O •r~ *- to 01 in co ro *r O CO CM CO ^T CM CD CO O CN f- ID ••- tD •^ CN CM "- ^- CM "- co 05 ro O ro ••- t- in ^r in O 05 in 05 •^ CM OJ CM T- CM -^ O to o "- ro co to ro o 05 co co 05 co *- CO CM CM CN CN CN O O O O O O ID O O O O O O O O in in CM O O O O O O co O O O O O O t- O in in CM O O O O O O to O O O O O O O O in in CN in in m in in in in 05 01 01 01 05 01 01 05 01 05 05 01 01 01 o LO o in O CM in t~ O in in r- CN in CM co *r *- ^i co r- i-- r- co in in in in in in in co ro ro co ro ro co «• TT * Tf ^ * * ID 01 01 »- to T ro CN TJ- in ^ co in co CM O t- LO *- ^r co CS CN CN Ol CM CM CM *- ^ 05, o) t in »- CO CO -^ Ol O CM O ^ . in in ro ro CN ••- co r- in to »- ^ to '- •^ CM CM CM CM CM CM CD 05 O in ^ O oj O O »- LO in ••- in CM CO CO CM CM CO CM ro to O r^ in co 01 T r- ID 01 O ID 05 CM co co CN ro ro CM ID ro r- i~ to ro LO ro in ••- TJ- ID co LO CM ^ ^t CO CO ^ CO ro f- O O 01 co 05 TJ- t^ ro to in i^ in to 05 ro i O co in O in oo T co r- co in i~- in t-- ro CD o CM m -^ CD in o to T- — M -^ T- CN •— r^ i to co CN in o T ^ ^ 05 05 T 01 ••- CM CN T- i- CM *- CO CN *- CO CO CN ID r- O ro CM co 01 CM •^ CO CM CN CM CN CN O O O O O O to O O O O O O O O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O to O O O O O O O O in in CM §OOOOOO O O O O O O O O O O O O CM CM CM CM CM CN CN i a 0 in in K X o ro LU m ------- 111 o O CM I _J CO < I a in UJ _j 1 ACTORS 0 tn 00 UJ s HDGV 1 I I >g i O 1 U. o o _1 1 i O 1 U. >g Q •>- T1 o 1 U. 1 . ! 8 1 t u_ 1 . 1 I u. O in -j i 1 U- 1 . \ (N 1 1 t 1 U. 1 . I 1 t u_ 1 . ! 8 i i 1 U- i . 1 S i i u_ o in u_ OJ u_ o L. 01 O * ffl10" c u £2g 2*z o s o > Q. • (_ •- ro (C HI < i ^~ O in o CM in t CM O r- co en t~- O ro to to in CO CO CO CM CO CM r- r- v- T co ro t- r~ en T- T- CM t*- r- •r- O en *- co in CN "- CM en t^- CO CO CO t- T- T CO »- co co t in r- en CM CM tD f~ CO ^~ CM en to f- i- t- CM CM •>- in ^r ^ in >- CM en co CN CM CM O CM CM tD O in CM r- co * *- ^T f^ CO to in »- ^ ^ CO i- "- CM ID CO T- 00 1 O in t^ f^ CM in t~ CO ^t CM p- r- O »- »- co en co in O i 01 en r*- oo T- ••- CO O O 0 oog o o o ogo o o o o o o o o o co co co en eo en £8 ©< @< co ro ro in co co i in co co co co co co in r- to to en o en ro to CM *- t- eo en CM *- CM >- •r- Tt- •T co CM ro CO tD CM — CN *- CO CM CO CN ID ID en CM oo r- CM r^ co f^ *T *- T CM fl- ID CN f- O CM CM tO co oo oo co 1D t- t- ro O O O to O O O O in in CM O O O ro O O O f- in in CM O O O to O O O O in in CM 0 O 0 0 CO CO CO 00 en en en eo O in o in O CM in t- O ro i- o in in en *- en O i— "- CO 1 CM f- ^ co co ro co tc tc to to tD to to co co in eo ID *- co oo en o CM co in o • t- CM r~ *r CM O O en ••- to CM O f ••- o „. ,- ,- ,- _ ,_ co in in en t in o •» ••- ro in co CM co ro O -J eo in r- Tt co r- CM co r-- *r in r- T to in O O co to o ••- CM co to en ro O en co ^r en CM co en CM eo *r in en co O *r CM co r- *t ••- CM in co ••- ro CM in O ro - O ^ *- i- CN en O •*" t-- r-- *t *r *r CM to to ro ro tc co en o co to o CM en in en -- to ^r o to co O en CM en in O r- ro eo f~ in to ro r- co r- in CM o O en — rr en o ro •* •*- co ••- •*- CM ••- ro oo co O CM i- — CM co in to ro t— o *- ••- in CM f co O T- i- tD CO "- CO CM i~ f- in CM to to co O in en en to r- — ro CM to r- CM en •— *- ••- CM in i- to ro O O O O O O ID O O O 0 O O O O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O to O O O O O O O O in m CM in in in in in in in CO 00 00 CO CO CO 00 en co co en en en en O in o in CM in t- 81- *- en O co O CM CO t CM CO CM CM CN 0 0 0 O co r- 0) 0) «3- in co r- O CM in i- co en co o 0 0 - <- O CM CM »- t-- CO 1 i- O tD CM ••- ro to CM r* CM in to co eo to to co - in r- to co in en co to co O CO CO CM CN r- co O to CO *- co o "- to i- i- ro — co en ^ en tc CM en CN co ID •» r- in O O O r- to T- ••- CM in O O O O o o o o O in o o o o o o o o o o o o o o o o O in CO 00 CO CO co co co oo en en en en O O ft en CO en CM O O to oo i en 00 — o »- CM CN oo to CM en eo in T T- in oo co in in CM ••- co en o tD CO t- co *- in tD r- cn o en ro *- en CM ID en i O ^ O in en co to -r- ••- t- co in r~ en in o en in co in CO en co ro ••- O en "- ID 0 0 O 0 in O O O O in in 0 O O O in CO CO 00 00 en en o o to en O 0 CM en in t- t- o CM O en CM 0 en CO •3- in CM - o co CM O CM to o en CN to 0 CM CO 1- CM to O CN CO CO en O in o in o CN in r- O in r-~ en N o O CM •r- tO *- t~ CO O N "- 01 CM CN ^- CM ID to tD tD tO tD tO rf. rf, rf* *r. ff. m in en to co co t*- — co •» CM to co co in TJ- in in ro co in ^ h- co CM co r-- O co O 0 -^ 0 O - 0 T O to ro eo co t- to co eo O T n »- to i- o co co -^ co in en ^r »- r- CM TJ- co ro co •^ ro ^~ oo •>- ^f co to CM en co o to to in o to •* ro co co co en co in ro in -a- in co en oo •^ •r- TJ- CM "- CM "- in CM to in en TT -^T t^ ID T- oo r* co co in to in CM in o to •*- -^ co ^ -^ in CM ro — i to ^r co in co en to O •<- t- CM CO t^ t*" t^ CO CM CM T- •- to r- >- en t O CM ^t "- CM CO t- en oo en en co co to to en ^f en t- CM oo (O CM T tD ID CO CO •^ en co i t- ro oo in to co oo in o to O »- in en co oo CM CM r- CM to to en en to t- co t tc t- en CM -^ •*- CM en t en co to co in to to to oo f en r~ co en t- t-- T in in CM co >- O f- tD CM CO t- T- CM 00 CO tO CM CO CM en co co in en en co CM in to CM O O O O O O tc O O O O O O O O in in CM O O O O O O co O O O O O O i~- O in in CM O O O O O O (D 0 0 0 0 O O O O in in CM O O O O O O O en en en en en en en en co co en en co en O in o in O CM in i^ o ^ t"~ CO h- CO CM in to CM t^ CM oo in ro in CM f T- T- f- en en en co en en en t en t co co t» o co *r CM to co oo in •»-•«- to co ^r en en r*- co *~ co r1- en t^- 0 O *- 0 0 0 0 oo O CO O •* f in t* CO O CO -^ 01 r- o t en co CM to CM O to en t~ co CM o en CM -^ r- to CM en r~ o co "r- co - *- to in en ^- CM CM CM en — to o O i- n *- CO CN i- CM -^ •^ ^i co O en tc ro co i- in CM o ro co -- co t~ r~ CM in CM •^ -^- r-* ro •<- rr CM en i in ••- r~ in in in o ^ t ^ t~ in ^r in to ro ^ o co co co ro o en in co O co "- en co CN o *j to ^t r*- TJ- o to O t- in CN to i- o r- o •*- in *- *- •<- ro in •— to "3- co in r*- co f*- en co co t^ in en to CM o eo en ^ in ^ CM in in t^- CM -r- -^ en en en co CM ri CM to O f- O "- i co in i- in in to ^ ro in CM eo T- CM in O t^ O CM co ^- <» tc r-- in O ro r- co t~ co r~ co tc CM in to CM 0 0 0 O O O to O O O O O O O O in in CM O O O O O O ro O O O O O O f- O in in CM O O O O O O 10 O O O O O O O O in in CM in in in in in in in en en en en en en en en en co m en co en O in O in O CM in f- O ro O *- CM ro to O "- co O CM ••- ^- ^- »- co co ro ro ro ro eo t^ in o CM CM ro <3~ ro in ro r- t en in CM CM t- en in m O t— co •*" co r*~ en oo o o -- o o o o t co •» to r- to r- r- en en en co en O to en t-. o i~- ro co in oo in co in to en en i» in ••- in i- in in r- •» en to -^ t- cn en -^ co fl- o O co i- co r- en in in r- en *- to t- o *- CO •*• CM -- co ^ co 1 en en in CM en CM *- to o CM en o "~ ro en ••- en T- t- CO T •>- en -r- co o O CM o in o co t- en T in *- co »- en ••- r~ in t- -r- to to i~ co ro CM eo en -^ oo to CM ro q- •q- CM O ^ co co in co r^ T en in CM to ir »- ^r in o ro in f en t^ ro to m f o in m r~ *r CM in in to to O *- •^ -o- en co in CM co ^ in CM •*- TJ ------- UJ O O n CN K CN LJJ t- "3 CO < 2 I O X I Q. O LU -J GRAMS/II rACTORS o »-< in CO £ O I- -HDGV i i i O 1 U. ™ _l i i O i LL- GO _l 1 i O 1 LL 1 . ! 8 i I LL i • . I 1-* I I LL h- . Q in LL CN LL LL LL r- LL Q in i u. CM U. CJ i. Q) CJ 10 O>O_ V 10 I/I +> C CJ O O CJ X i- Q. -^ 0) 13 Q. CJ E CJ > a F- ro ro ai O in o in o CN m i^ o Is- "- o in CD co o co *- in r-- co co in co in in in in in tn in in in in in in in in CN Is- o co en en CD en en co to co co T- ru m \j m m Is- *- O CN CD in -- co i co ^ co co in CN CD oo ro >- CN en to cn co **t co ro co Is- •F- en co en o co CO CO CO CO rf CO O CN in CN co T- co *t in i- in en CD ••- t- co in -F- co CD co f •F- in co -F- co co in CD I- O ID CD CO O O *- co CN co Is- •» CN CD Is- Is- CN ••- CD Is- r- CD f- Is- CN in •F- »- CD ro ••- ^r CN eo co Is- *~ eo co ro ^ CO O Is O CO CN co r- eo Is- co in T *- T- i- in -F- ID co ^ Is- O en co co in in CD co •F- Is- en t •F- T CO CN CN CO CN CD in en cn in CN co ^r o Is- co o en en cn — io CN o co o *- en Is- O O co co •F- en o o T o O O O Is- Is- O en co O Is- ro ro in co ro cn en ••- co oo O in O O in ^ o co ID •F- -F- •? CM i- CN — in co in ^ o CD co oo en •r- m ^- o in "- O Is- CO *- 1 CN •F- -F- Is- CO -F- t CN O O O O O O CD O O O O O O O O in in CN O O O O O O CO O O O O O O Is- O in in CN O O O O O O CD O O O O O O O O in in CN 0 0 0 O O 0 O CO CO 00 CO CO CO 00 CD cn en cn CD en en O in o in o CN in i^- o (§- @/ © @; @ CO •F- Is- O t co ^r CN T •F- O co co Tf co CO CO CO CO 00 CO CO ^r in cn o to Is- o ^ in eo co f en to . CD co ••- Is- O O Is- Is- oo co cn co *- co CN <3- tr o -F- cn in •F- Is- to CN i T- oo •tf Is- <* "3- tn CD TT T co co co co in o in in in to CN in CN O CN CO CO *- in CN T in oo O CD CN <3- to t^- co co cn co CD •-- CN o cn ••- -F- i cn CN in Is- CD co cn CD O — O 00 O T CM co co ro CN co ro ••- T- in CN "- co *- in co f- to in OO CO — cn CD t co co *]- CD CD ro -F- CD eo co CN CD CO ^ CD CN in cn CN ••- ^ cn t- to CD Is- tD CO ID ••- *- CO — CN -^ O CO CN Is- CO CM CD cn CD CN o CD T to Is- f- CD CN r- co Is- CD CO CO *- O O O O O O CD o o o o o o o O in in CN O O O O O O co O O O O O O Is- O in in CN O O O O O O CD O O O O O O O O in in CN in in in in in in in CO 00 CO CO CO CO CO cn CD cn cn cn en en O in O in o CM in Is- o cn CN co ro in cn t CM T? cn CN O CO tD *- Is- r- Is- i- r- t-- 1s- co co co -F- in in in — CN CO T *- in CN co CN CD ro co cn *- tO I"~ O Is- CD CO Is- /-^ /-x 1^ /~l /^ l~* •r- CN Is- •» CD 'T CN co to CN in *r t O CN in co CM co *r co co Is- »- CD ro ro in •F- cn i ro r^ to CD co ro in o co CN ro to cn in in ro CN in CN CO CO *- in CD CN en o CD CD ro co CM *- cn o ^ Is- ro CM CD co r- cc in Is- t- O O co in o ro co *- •>- ^r CN »- CM ••- ro co i- in en CN *- CM 'j- ro co r~ CM Is- CN »- O CO -^ -r- *t *- *- ro •* *- in CN Is- r- O m ^ co "~ co Is- -^ cj in ^r i~ in i- ro Is- CD co to co oo ^- co ro in o ro ro ro oo CM ro ro co T co in <» to T CN ^ co to co ro O in co co CM r- O to ^ in CD ro t -- CD Is- co Is- co ro co ^~ CN !~ M- CM CO CD CO in in co to in ro ro CO "- T- •^ co CD in in «t CD CN co ro to »- to "- CD CD CO O tD Is- CD CD CO CO •*- O O O O O O CD O O 0 O 0 0 0 o in m CN O O O O O O co O O O O O O Is- O in in CN O O O O O O to o o o o o o o O m m CN co co co co co co oo CO CO CO CO CO CO CO ro ro ro ro ro cn ro O in o in o CM in t~- o ro *- ro T ro CM CO Is- -- CO ro CD ^- ro in to CO CD CD CD CO CO CD t- i~ ro ro Is- oo O ••- t- co o t *- co r- co co •- co to in CD ro Is- CD co CD ^^ _^ _^ O ro t~ in CD in CM co CD O in Is- co CD ro CM CM o O CM o CD O ro co CM t *- cn to co in in *- co CD co co ro Is- *- co •— ••- co o co CM eo O •*• i~- in co ro co co ro ^- *t oo co o CM co co CM ^j •*- ro co Is- to ro co CN CM ro ro co co ro co in •T CM CN i- r^ co *- *- O O O O O O O O O in in CN O O O O O O co O O O O O O Is- O in in CN O O O O O O U> O O O O O O O O in in CM in in in in in in in ro ro ro ro ro ro cn cn ro ro ro ro ro ro O in o in o CN in r- O CD CO CO CO CO ^ O *- u> *- fl- CM o co O ro ro ro ro ro ro ro O CM CO CO T- CO CM r- TT CM o ro co co in CD ro Is- in r- CD _^ CM in -r- co CN co Is- O Is- O CN CD CO CN ^r tn o CD t r^ in O Is- ro CN CN co Is- CD in ^- co ro co n co ^j- co in co CD ^t to co CN to to co co co ro t co CD co in ^ in ^ ro ^ ** to in in co co o ro *- co CM in *- CD co t- in CD co co in CN o CO ^- CN •>- T- t^- TJ co co CD ro CD co ro CD r^ ^ eo to Is- CD Is- CD Is- ro co co ^t *~ CN in CD O co ••- ro O *- ^ •- ^ co o CN eo Is- ^r CN in co CM co t-- -^ in co ^~ O CD CD *t CM •»- t^- CN CN in CO CN -^J CN in CD CN CM ro •» CD •«r -^ in co ID co T- CN CO CN CD CN Is- ^ i- in o in t co in O Is- in co CN -^ *- CO CO CO CN CO CD Is- CM -F- -F- CN Is- co in •q- CN in t- i Is- Is- ro ••- CD co ^ in Is- co in co ID CM m *- O O O O O O to O O O O O O O O in in CN O O o O O O co 0 0 0 0 0 0 Is- O in in CN O O O O O O CD O O O O O O O O in in CM O O O O O Q O O O O O O O O o o o o o o o CN CN CN CN CN CM CN 1 0. 0 O 1- CJ I O CN UJ m (— ------- CM 1 -3 UJ Q •r- O CM 1- h-4 LU 1- CQ < 1- I O I I O. Ol UJ GRAMS/N ACTORS ( Z o 1-4 to to E UJ O I L- 1 1 1 O Q 1 1 LL > g D -- O I LL DO D *- 71 o 1 LL 00 D *- f O I LL I . i O i 1 LL I . 1 f- H. D LO 1 1 LL i rj i i I LL i . I I i LL t . ! 8 i •*- i LL i . I h- I I I LL O if) _J LL CJ LL CJ !. 0) O ro 010. *• ID I/) +-" c o 0 O O X i- CL \ Q) — Z 020 > 0. • L. •- a a a) O a 01 co Ol o in 01 Ol O to to CM co CM - co ••- CM CM in ro CO CM CO 8 Ol CO f- IO CO CM CO O 0 O O 0 0 O co 0) in o CM LD CM i- in -q- ID IT O) Ol 0 0 CO "- Ol CM T- CO TT ro Ol LO O "- »- CO co O in •»• in co ID CO CM r~ in -- ic in CM 1C CO CO ic in CM CM CM r- r- t- CM O •>- r- CMCM O •r- O "- ••- ••- Ol Ol *fr CM 1C 1C T CO CO ^ CO in o 01 c- i- co 01 in ro ••- ^ CM co *- co to co -^ in t O CM Ol ^t ^ CO CO N 01 T ID in ^T CM O O CM "- CM f O CM f CM *- o> t- co t- CM "- CM CO •r- Tf CM t in CM cn to 01 t- t- CO CO Ol CO CO 1C Ol CM t- co to 01 co r- 01 t- to i- r- o) in in t- -r- *- I- CM O) CM CM CO O ro co CM ro tO t- CO •r- i> in co co in i- co co CM CM i- o o o ic 0 0 0 O in in CM O O O co O O O r- in in CM O O O 10 0000 in in CM O O O O CO CO CO CO 01 Ol O) Ol O in O in o CM in r- o @j @/ @; (§/ €• in CM in CM co ro ••- O *- 01 O 01 co r- co to tc to «, to to tc 01 Ol 0) Ol Ol O) Ol ic T O O co CM r- 01 O u> CM 01 ro o 0 -••--• 0 - - ••- 01 co in co co co in in co tc in i- in O O O O O O O r- ^r CM ^r in co CM 1C CO O t>- t Ol *- 01 »- O 01 o O O r- in 01 to 01 t- t- in r^ ro t 01 in in i- co CM 01 r- O co CM CO ID CM i- CM "- CM CO r- CO 'J CO CM CO CO Ol CM CO ^ O ••- CO O t- T 1- CM o o *- 10 01 o 01 01 01 ro co co *- CM ro -^ CM ••- 01 -r- in co co co in 01 CM ro o in CM in 0"i 01 r~ 01 0) ro o in CM co »- •^ co ro ID co co o> ••- ^ to ID in in in in tc to in in to in TJ r^ -»- TJ- o 01 *~ O » T CO CO O t^ •^- ^r r-* in ^t to ^t •r- O *- LO 1C tO t- ^ 01 ^r in in to i> ^r ^T CM h- ^r co in t^ t*- co *~ 01 in oo CO O CM t> CO ID tO T in CM — •* co t- CM ••- i- ^- co co co *~ co co •J CM t- t- CO LO CM in in ••- 01 LO ro ••- 1 »- CM -^ O O O O O O to 0 0 O O O 0 O O in in CM O O O O O O co O O O O O O r- O in in CM O O O O O O 10 O O O O O O O O in in CM in in in in in in in CO CO CO 00 CO CO CO O) Ol Ol Ol Ol Ol Ol O in O in o CM in f- o ••- CO ID t- CO ^t »- o *- co ^t CO CM -^ ^• co co co co co co co co co co co co co co o r> h~ t^- t> o IN in CM in ^- t*- ^f ^r o co CM 01 r- O co O O -r- O O *- O CM CO ^- CO t O N ^ ^j t*^ in ^ tc T O O O O O O O CM o »- ix ^- O in co ro m rr O tp N CO O CO CO Ol 0) CO co ^ co T in tc ic t** CO O *T •*" ^t tD in ic O r- ID co to CM Ol CO CM »- CO O T O co in to 01 CM to t- to o to *- co ••- t- LO tr cn -^ LO CM CO CO *- -r- tD CO r- t-- 01 to i- co o CM ••- ^ *- 01 CM •>- ID O »• CO •^ r- 01 tc 01 ro in co N ^ tc r*- ••" in in CM co •— in co to in in r- in O "- 01 r- ^ in in *r in in ^ ^ in ^r t in r-* tD in ••- •»- CO TT l> Ol O tO t CM CO LO CO CO T CO co to ro m co in v- *- tc t 01 co o •» co co O in co r- t CM CM CM co cn r^ cn to cn CM o ic O CM ro ro o O co CM m CM ••- -- i> t r- in -3- ic co •*- CM O in ^ ic o 1 1 *- CO 1- CM O Tf -^ CM •»- O O O O O O to 0 0 0 0 0 0 O O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O to O O O 0 0 O 0 O in in CM CO CO CO CO CO CO CO CO CO CO CO CO CO CO Ol O) 01 Ol Ol Ol Ol U. LL U. u. LL O in O in o CM in r- o O to in co in 01 1C 1C 00 Ol *- O 01 co 01 in in in in in in in r- t- h- r- t~ t- r- *- co co O) cn co 01 t^ r- ••- co o 01 o- O O T- O O O O 01 in in 01 T- in *t ro T to *r t in *f O O O O O O O i >- 01 01 *- in co in CM co Ol ••- O O to co r-- to t> co i> co f to O O in r- co co co ^ CM ro tc TJ- in co to in r- in Ol T O 1 00 t- I- tn tc in 01 in O r* tc O r- •— r- i O CM LO CO O) CM to r~ co co co co co co co tD CD tO 1C tD to to O co r» co CM co 01 t- r- T- co t- m r- O O ••- O O O O t- CM -- to cn CM CM ro Tt to ^ co m ^t O O O O O O O 01 in 01 •» CM CM o "- i t- ••- to f co T in to in *^ to *j m CM oj o co o •*- CM o in in in CM 01 ro *y tc *r ro in ro CM co CM CM O ro r- co ^r *r -^ O t CM ro ^t CM t^ 't co in •^ CO h' Ol O LO CM in m "- t to o co ^r -^ in CM ^ in o CM •>- •*- co CM to in *t 01 •*- ro in o oo co CM 01 in in ro co in 01 CM in CM CM i- O CM in o CM CM t- CO CM O T ID IN t- tO CO CM Ol to o co CM r- f- to CM ro O t- CM i- co ^- "- CM O O O O O O ID o o o o o o o O LO in CM O O O O O O co O O O O O O r- O in m CM o o o o o o to o o o o o o o O in in CM in in in in in in in Ol Ol 01 01 Ol Ol Ol Ol Ol Ol O) 01 Ol Ol O in O in o CM in r~ o r- m •» 01 CM in ro i- ID t co t> to in tc co co co co co co co in in in in in in in cv *- - o v -- - r- a CM 01 r-- o co O O *- O O -- O co ro T- t- cn CM CM ro rr tc ^r co in ^t O O O O O O O CM ^ ro ^- co co in t- t- CM o O 01 ^ CM ro tc ^- ro ^- co co in r- 01 to ••- 01 -* o -- -a- ic ••- 01 CM ro in co CM -^ CM CM m f- in o ro ••- 01 ^- in co •*- O CM CM ro o in ro r- ^r O co co 01 in co T in o 01 01 ic T to co M- CM o co co to CM *- •r- •t co r~ co rr co CM CM to CM ^- co 01 t- in CM CM '- O » 01 CM TJ- co ro •t o in to to co O ••- CM •» CM f CO CM •»- m ^r -^ ^r r- ••- M- t- in CM in to co ••- •*- co CM ~r- CM ••- to t~ in CM cn ••- in to O in 01 f- co to *- CM r- ro »- 'j CM CO CM "- ^T CM 1C -r- 01 ^t Ol O -^ tO ^~ — CM to r- CM cn t O ^ ro r- ro co -r- t co i> n in i> CM CM CM CO 1C CM O CO CO •P- CM O O O O O O (O O O O O O O O O in in CM O O O O O O ro O O O O O O t- O in in CM O O O O O O ------- 1 1 4 > CJ Q l ' 1 U- > O D O ?4 1 U_ £8 _i i t O I LL. S8 O - _l 1 i O 1 U. i . ! 8 1 1 I 1 U. a i r- O i in i CO U_ t- . < a in UJ _) U. UJ ~v CM a i/i CN D Z CN 1- < MO: u. uj i- a CN DO < 1 < l/l •31-1 a C3 O I-H i- 10 u. < 0 z 2 O t— * (/) LL. I/) lie ll^ U-l a X u. 1- >. O if) —I LL CN li_ O L Q) O n Dia. •H (0 i/j +> c o 000 I L. CL \ tt) T) a u E o > Q- • t_ — ID (0 01 O in O in O CM in r- O a a a © » O O ID ro O ID ID ID r- Ln CO r- 1C If) ID in in in in in in in T TT TT * TT TT T CD CD CO C0 CD CD CD •- ro ro *- O *- CM CM CM O) IP CM 1C CO "----*- r~ co in — 10 r- CM in in en t- in t-- CD O O O O O O O *- TT in CN ro ro in O f- o TT CD ro in o *- *- o o T- o ro T- no in Is- T co CM "- T- CO in IB O CO O CO O C) ••- O in O TT oo in r~ •— m *- CM in r- IB co ro O en ro o TT T- CM O co ro f~ t~ in 05 ••- co CM en ro ro ro o ro co ro ro ro *- CM "- "- •>- in CM eo- co CM CM CM r- O O eo ID O 0) co *- *- T CM T- CM T- 0) 0) Tt eo in t- (D ro in T- ID to n r- to h* f*. in to t^ rn O Cn CD CM CO CO CO r*- CM TT co m ro CM co in CN ro TT co co 0) CM ^j in O ro o in u> CM co u> en t- O CM ID CM co en -^ C1 CM CO CD *- t- t CO IB 01 »- ID CM 00 CM O CO ID U> Cn ID in CN in co co oo CD U) CD *- ID CD 00 O CO *- -^ »- O O O O O O CD O O O O O O O O in in CM O O O O O O ro O O O O O O i- O in in CM O O O O O O ID O O O O O O O O in in CM O O O O O O O co oo co co co oo co O Q) 0) CD CD 0) 0) O in O in o CM in t- o @ ®, a @ a 0) ^ CD ^ CO in o in ^- en t TJ- ro ro ro in in in in in in in i^ h- t~ r^ r-- r- r~- in in in in in in in O •» en in T- CM CD CD CD CD r- CD CO CD _^ ^,^ _^ CN CD <• o ro in CD ro ro in •» ro ^r ro 0 0 O 0 0 0 0 ro ro t *- O * CM O ro ro »- in oo co r- co r- r~ r- i- t~ co t- oo ro ro co co co in r- O *- CD •* in CD co f~ CD r- CD T ro r- i- CD in CD CN CD CM O CO O) ^1 CD CD ro m CD o> r~ co -^ •<)• ^- in CN en CD r- ro CD CD O O CD CD -- CN CD *r en C-M »- T- ro o in CD O t- CD CM oo en oo o co co r- CD in co c- ••- •»- ro i- CM '- CD ro - co CM in CD •^ in »- en co ro in co in »- *- CD co i~- ro CD O CM <» oo *- ro ro co in ro in * ro ro ro o •» oo CD CD r- CD CD CD CD CN ro ro ro r» ro co in ^ ro CD O CD O I" en co t- CM co co CN ro ro •* CN ro i f- CN *- f O O O O O O CD 0 0 OO OO 0 O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O o CD O O O O O O O O in in CM in in in in in in in co co co co co co co en en en en en o> en O in o in o CM in r- o <§, @ a © @ CN •» CD CD TT r~ i- CD CM CM en en co co o en en en en en en en CO CO CO CO 00 CO CO Tt «»• TT TT Tf TT TT t- •- co co co TT cs TT in r- in TJ- CD in _^ CD O t ro r*. h- 0) CN ro TT ro CN ro CM O O O O O O O en m o T- o oo CD co O ro o ro CD »- in r* CD CD CD CD CD in CD in CN CD o CD ro en co ro in en eo TT TT CD in TJ in TT O co o •*" CN TJ- m r- O co T- co en t- Tt in O r- TT r^ in •t ro O CD ro t- r- T- CN ro ro T- r~ CN in in co o in *- r~- co ••- en CN ••- in co CD t CD t in o en in in CN CD in en en n *- i- CN CD co ••- in r-- O en in en ro T- t- CN CD o en oo r- TT co •^ in r- r- CM ••- TT in T- r-. T- ro en ro ro CD ro en ^ TT o CN CM CD ro CN TT ro co TT co i- CN CD f- cn f~ r- T- CD CM o CM CN T- CD CN r- TT co — in t CD co CM co en CN oo eo O *- CN CM CO O CM CO CD CM i- T- O O O O O O CD O O O O O O O O in in CN O O O O O O eo O O O O O O r- O in in CM O O O O O O CD O O O O O O O O in in CM co co co x co co co CO CO 00 CO CO CO CO en en en en en en en O in o in o CM in r- o @/ ©j @, @. @, CD o t r~ co co ro oo t en f~ r^ CD cp CD TT t Tt Tt Tf Tf Tt Tt t Tt Tt TT Tf Tt Tt Tt Tt Tt Tt TT Tt TT eo ro m in -- en •a- Tt r~- in TT CD Tt t co ••- O in TT t- CM CM TT ro CN ro CM O O O O O O O O CD co CD ro r- en in TJ- CN r- co ro t^ TT in in TT TT in TT O t CD f~ co O in CD T- 00 Tf f~ O O ro Tt in TT ro in Tt Tt o r- Tt Tt ro en en ro in T- o en co ro t en CD TT CD TT in en co co CD co r~ eo TT oo CM ro CD eo t TT CD en TT o CD co CM in p- CD ro o co t^ in ro t^ T- •<- t TT T- m Tt co m n — T- T- T- co CM oo in T- O in ro in T- en co T- »- O CO T- T- O r-^ O CM CN co CD O en TT co in r- •- co co T- CD ro en o in T- CN in ro ^- ro CN T- O in f- CD co in "• ro O in »- CD in CM CN T- m CM CD ro en o CD Tt — co in ro in co ro TT ID CD CN CN CM O CN CM in CM T- "- O O O O O O CD O O O O O O O O in in CN O O O O O O ro O O O O O O r^ O in in CN O O O O O O CD O O O O O O O O in in CM O O O O O O O en CD en en en o> ro CD en en en en en en O in O in o CM in f- O S. @ ®. © @ ro en CD — oo en eo en CD ro in in Tt Tt Tt O O O O O O O ro ro ro ro en ro ro co ro ro ro ro ro ro ro ro eo in in i- ro Tt TT f- in TT CD ^ ro CD co en TT CN CD r\i CM ro CM CM ro CN O O O O O O O CM T- ro ro in r- CD co in CM ro o eo *- CM ro TT ro ro ro ro ro ro o O CD CN t- co h- ••- o t Tt CD CN CM Tt CO CM CO CN CM in CM CM CM CO ••- CD en ro TT h- >- TT CM CN i^ TT CN in ro en CN in in TT TT o en CN CM eo o r^ co CN ro TT r- ro co TT CD Tt O CM Tt K CD TT in TT m TT TT in ro ro ro ro ro CD r*~ NT- -r- «- O T- in in in in CM CD ro co ro CN in TT h- O CN CN O) CO •^ ro TT CD CN oo co en eo ro en t^ ^~ h- CM in CD in ro — co T- ^ TT CN ••- ro »- co CN TT in in eo in •=r i- ro r- in oo co T- T- ro TT f in CN CN in f- O oo T- co r» ro O CD r» O 0) T- T- CM en ••- CM TT CM T- O O O O O O CD O O O O O O O O in in CM O O O O O O ro O O O O O O r- O in in CM O O O O O O CD O 0 0 0 0 0 0 O in in CN in in in in in in in ro en en en en ro en ro ro ro ro ro ro ro O in o in o CN in r- O ® & <& » 5 ID CM o CD en ro co TT o ro in TT t TT TJ- ro ro ro ro ro co co in *- in ID CD eo o TT in t*- in TT CD in ro r~ co ro TT CN CD CM CN ro CN CN ro CN 0 O 0 0 0 0 0 co ro i- ro r- O r~ co Tj- r~ in o *- CN T- CN ro CN CN ro CM in in O ro in ro CM t- O CM CN CO CD O •>- CN CO CM T- CN CN ro en *- t- oo O oo ro CM — in o CN CD T- CN CD ro CN TT CN O co co TT co co en co in 1s- ro co CD ro CM CM CM CD CN f- CO O TT oo T- in T- t t- ro O in r- in t^ CN CN CO CM CN in CD CM T- T- 8 ID CN CD ro TT TT ro t- CD T- O ro ' CM §1- CD TT t^ co CN CM f TT O CD CM TT CD CN CD T- TT CO T- co ro ro CN oo CD T- ••- TT CM *- CM f- 1- in r- CN ro CD CM ro in ro TT ro TT CD •^ T- ro TT T- in CN TT co TT ro T- CD oo in t~ T- »- CD t CD *- T- T- en T- T- TT CM T- O O O O O O ID 0 O O 0 O 0 O O in in CN O O O O O O ro O O O O O O t* O in in CN O O O O O O co O O O O O O O O in in CN CM CN CN CN CM CM CN a o in CO f- < o (- CN CN UJ _J CO ------- CO CM 03 < I— .TITUDE < o I a O o in LU i— t GRAMS/H "ACTORS ( ISSION F s LU O h- HDGV i i >g O ••- u_ H- O D '- _J i 1 O 1 Lu >g o -- ~f O 1 LL 1 . LL r- LL h- . o in LL OJ LL LL ^ LL "in LL Q in LL CM LL o t- ffl O a oio. •H n C 0 0 O O I t. Q. ^- 0) U E (J > 0- ro CD O in o in CM in r- @/ (^ @j @/ *- co ^ 01 co O T co in in ^t co co co cn co ro in co to cn cn in »- O o *- ••- ^ in co in •T i r- in O O O O to ^r cn ro CM r- *- ID ^^ /~v n« in co O co to co O O CO CO CM O •r- CD CO 1C co ro -^ co co cn t-- CM f- r- CM co CM CO CM CO CO 01 to 10 CM "- to co in r- in ro o "- cn cn CM co 1 CN r- co ro co co co in ••- in to to to CO CM CO t- co co to CM in in r* to *- co in in in r- 01 t- in in o r- co *T co O t- r~ r- co in in 10 o CO CM CN O 01 r- o t~ in in t^ ^ CM *- 0000 o o o o O in o o o o o o o o o 0 0 O 0 o o o o O in o o o o CO CO CO CO co cn 01 cn 8 0 •» cn tn co CM TJ CN CO CM O o *- *- co cn oo *r in ^r O O O in to co CO T t- •* cn f- O to co co o cn 00 00 — O CM ^ CO CO O in o in CM CO »- co r^ CM ID -r- CO ^ r- O 01 in in CM *- t- *- 01 CM l~ — to to to CN CO CN in r- co in to in O ID CO to co n in co to T- ID O) r- CM in in •>- t- in t- oo CO CO •* in to cn O O (O O 0 0 in CM O O ro O O i- in in CM O O to O 0 O in CM 000 CO CO CO co co cn O in O in O CM in r- O in r- tn r~ co O to co o to CO CM CM CM CM- co o ^r 01 t^ co to co cn in in f- to in to in 01 *- CO CO 01 t O to O T O t*- r- r— in to -- co in co to •sr to o f CM x ro O O ••- cn o O O 1C 1C CO O tD CM CO r- co to to cn cn 01 TT *- O O CM O CM to to o to to co o ro ••- ••- •r- cn *- 01 in CM in CM CO O O ID tD O ID ro ^ ^ co ro *t ro co r- oo ^ in r- in co CM -t in o co CN CN co ^- co ro co co cn O O to to in co O co co in *- o r- co ro to t co in co 01 ID CO t- 01 CM 01 CM CO CM 1- CM CO LO co co ••- to co r- ^r co t O CM r- r- co LO TJ T~ T- *J f~ -r- co co o O ro T- to CM — V- O O O O O O ID 0 0 0 O 0 O 0 O in in CM O O O O O O n O O O O O O t- O in in CM O O O O O O tc 0 0 0 0 O 0 0 O in in CM in in in in in in in CO CO CO CO CO CO CO 01 01 co cn co 01 01 O in o in O CM in r- o to t- in co D 1- O r- ^f *- co oo i- r~ cn f£ ^ }£ N S S S ro co co ro ro co co to cn o in i^ o O ro ro to •* ro in t O O O O O O O O ro i in »- co co CM CN CO CM CM CM CM o o o o o o o co r~ cn t to oo in CM ~ tn co in oo t in in n n ID Tf ID t CO O h- 01 T CO 1^ ^- CM CO co t in •» i in •« ro ro -fl- co CN rj- co CM in *- ^- co co O TJ ^5- 01 to ^i to in r^ ^t ^ co tc 01 01 in to ••- r- in oo CM TT - to CM in r- co ro ro in ^ co ^ co 0000000 co -- »- ro 01 to -r- " CM CO CM — CM CM O O O O O O O T O h- tc •»- *t t^ 0) r-- in "- CN ID •<- in r- ^r 'J O tc r CN ID O CO *T CO ID co ro in co ro - -r- CM '- cn co CN CN in in co to co to oo r- CM T- •r- -r- •& CN 1- CO CN to "- r~ ^f O CO r- oo O t- in co co co •^ CM co ^r -^ in CM co to oo CM co CM cn O *~ co CM o O in CM CM t- CO CN O "* O O O O O O to O O O O O O O O in in CM O O O O O O co O O O O O O i- O in in CM O O O O O O ID o o o o o o o O in in CM o o o o o o o 01 01 01 01 CO 01 01 01 01 CO CO CO CO 01 O in o in o CM LO f- O ••- ^- in CM r- O ID ro T- ro in T -» ^ ^ co co co cn co cn co CM CM CM CM CM CM CM CO !-• 1C CM tj- |- t-- co co in ^ co -^ co O O O O O O O co O CO CM co in O *- CN CM CM T- CN CM O O O O O O O in co •t <* ro to — T co in co ID CM t-- P- co T co t- ••- •5- O ro ^ in i- co ro CM CM CO CM CM CM CN O in co cn t-- T *- co in cn to co CN cn CM CN in CO CM 1 CN co in co in CM CM co in t-- CM cn to O Co CM CM -^ in CM t-- ro t O to ••- ro oo •<- CO O CO f~ CO CO ^~ CM CO CM O CN CM tD CM •>- t- f— h- co r~- co t^- ro O ro co in — co co ••- i- CM *-*-••-*- CM O 01 CO CO O ••" O CM cn ro o to CM t CM •* ^ O CO CO *- ro r~ ^- CM in in *- ^- CO CM »- CM ^ 00 tO CO CO ^ CM Tt CM *t r~ f- co to co *- -^ l~- CO "- TJ- CN r- •» CO CM CM h- r- ^ tc O in in co cn ••- •r- N i^ f co n o o o o o o to o o o o o o o O in in CN O O O O O O to O O O O O O f- O in LO CM O O O O O O tD O O O O O O O O in in CM in in in in in in in 01 01 CO CO 01 01 CO 01 CO 01 01 01 01 01 O in o in o CM in r- o O •* in CM i* in -^ co ID co ^ ^r co ro ro co co co co co co co CM CM CM CM CM CM CM T cn co co to co co co co in ^ co ^ co o o o o o o o co O o CN cn in o *- CM CM CM i- CN CN O O O O O O O in t- o O o cn in to O *- CN co in cn rN rt rN r\i in co to t- co CM to in r- ID cn to CN r- •r- t- CM f *- CN T- co t- O in T- ro r- r- cn co co oo ^t CM »- »- t CM *- CO CN t» cn CM f» ro i- r- co ^- O O O ••- CN <- CM o in CM ic ro CO 10 r- CM CM CM CO CM •* r^ co ro i- co CM CM T- 01 CM CM LO CM i- co r~ ^- O cn co LO CO i- CM T 01 1C ^~ O *- CM -i- O -^ •*• co in co co in CM to co O r- CM cn rr O 0 " -- - o - - O t~ i •» in *- -r- O •*" ^t cn O ro TT •^ f CO f -r- CM *- CO -^ CM CM 01 T- TJ- »- co co in *- co »- •r- -r- I- CO •" TT CM O O) tO CO tD CM CM CO T CO ^- CO CO t^ >- »- to s i- co ro O O O O O O ID o o o o o o o O in in CN O O O O O O CO O O O O O O r- O LO LO CN O O O O O O tfl O O O O O O O O in in CM O O O O O O O O O O O O O O O O O O O O O CM CN CM CN CM fM fM Q. O o in \ ro CN UJ _J cc ------- 1 1 1 > (3 Q i i >s D "- I 1 i O 1 LL 08 O '- -J 1 i O 1 U. 08 Q *- -J 1 i 0 1 U. ! 8 t t- i l X i u. a i . i t- O i 4 in i in u. i— . < D in L1J — t u. Ul V. CN Q l/l *f =1 £ CN h- < P-H CC U. in LJ H o 1 CO < ~3 <. t/> 1- X DC O O >-H 1— X CJ U. < I 2 o C/1 U. in LU O I u_ o in u. cs u. u t. CD CJ Ifl Old. V 10 C CJ 0 O cj ^fea "O ^ U E CJ > a • L. — ro (0 (D C3 !>- O in o in o CM in t-- o *r t co ••- o in co CM t^ CN in i <» co i S^SSS? cn o CD ••- co co r- co cn •$ •— co *- cn O o - -- O -r- O CN CO O CM ••- CP ID ^ ^j r-^ in TT in rf O O O O O O O cn •»-••- to to cp in o in o ^- CO CN CD — CO ^T -r- co CN CD in CN a) r~ en cn o CN cn T ^ tT CM CN *- t O cn O CM TJ- in f- r- n O "- in O in CD CD CD CD CD CD in ••- co *t co r- i- CM f" *r •- t in t- CM r- cn cP ^- co -«T t IP in in in *- co in in o r*- in co cp CM co •* co O cn O CD cp ••- cn cp co ^r in in ID cJ) in o t*~ in ••- o r- co in en co ID co f t- t- *- in in in «r in in cn CN *- •>- O O O O O O CD O O Q O O O O o in in CM O O O O O O co O O O O O O t- O in in CN O O O O O O cc o o o o o o o O LO in CM o o o o o o o co co co co co co co cn cj) cn CD cn co co O in O in o CM in f- o CJ) *r co CD O co in CM cn in CN CM CM i- CN CN CN CN CN CM CN CN CN CN CM CN CN CM CM ^ r-~ co in in O cn •3- <» t-- in TJ- co "j- 0 O O 0 0 0 0 co K O O ^r co to CM CM -q- CO CM CO CN O O O O O O O o O O 0) ID in co O f •» •>- T f- co ID t- CO CD 1C CD CD cn f CN oo co tp in CM CO LO T- TT CD t- in in f- CD in cp in in •* cn in ^t ••- o in co cn t- CD i in in in O t- in co CD t- cn <- co T in TT co co CM TT co in r- in in f* o in ^* t^ in T CM cn cn co CD CN cn t CN O "- CO CD in x in cp r*- cn CM T- »- co CD co CM cn cn cn CM co cn in *y co ^ CO CO CO CO CO CO CO r- r- O co co co ID co ^ co ^ cn r- ^~ "- O t f- h- CM o O CM T CO O CO ID CO CO CD ^ CO ^ CO O) in r- co 0) »- O) •^ CM in ••- T- cn co CO CO O CD CO CC t •^ CM co O in O ID n co CD in co O co co ro co cJ) co T- in O O O O O O ID O O O O O O O O in in CN O O O O O O co O O O O O O t- O in in CM O o O o o O CD O O O O O O O O in in CN in in in in in in in cn cn cn cn co cn cn O in o in O CM in r^ o T t^ 1C CO CM n cn CD in o co r- t- co cn O O O O O O O CD CD tC CD CD CO CD CO CO CO (O CO CO CO ^r co h- co in r^ co co co in ^r co T co O O O O O O O Cn CM CN •» O t- CM *- CN CO CM CN CN CM O O O O O O O CO O 00 *T *T *T *t O CJ) CO — CO ID CM in in in in in in in in cn o t co co r- CO CM 1- O t t ID co ^r in in «j in *t O r» in >- co ••- co •»- co to cn •*• in co •a- •» co in < CD *t O r- O CM O «r O ^r T CM co tj- co O co cn cn co i^ cn cn r- in t- r- cc to cn CN *- ••- CN O) CO O CJ) CO CM in cn CN co CD -^ r* CN CM CO CN CN CO CN CM ID C- CD t- CO CO cn *- o 10 CN cn «t in ro CN co O t^ co O CM cn *- f in in CM CM ^- CO CN CO CN ^- CM in r- co co r~- CN CO [-- > CM in CM CM CM CO ^J CN U) CO CN CO t r- O ^ CM ^ ^ co O ^3" CD r^ CM CM CD co CM cn fl- O O O O O O CD 0 0 0 0 O 0 O O in in CM O O O O O O co O O O O O O t~ O in in CM O O O O O O CD O O O O O O O O in in CN co co co co co co co CO CO CO CO CO CO CO co co cn cn cn co cn O in o in o CM in r» O s a a a a CD O *- co O CD CO O t- "- CD CD CD in CD to to CD CD co to cp CM CN CN CM CN CM CM CO CO CO CO CO CO CO CN to ^ •*- co in CD ro co LO ^j- co ^r co O O O O O O O co O O CN cn in o •>- CM CO CM f CM CN O O O O O O O f~ r- in t- CN i- co r~ *t co cn O *r cn CO «T ^t CO *t ^J CO in ro cn co co to co •^ in h- r~ CN »- TJ co co ^ ro co ^r co co *r cn O CD f~ co co to ^ O ^ in o co co r* in co in ^3- co r- co r- co co in CD r- t- CM CD CN *- n ro CM r- ro co in t CM CO CD ID CO i- O cn ro IP cn tp — i co co *- ro co t~ CN •- T- T- tO CD CD CO CD CN r- O CD O co co CJ) •r- CM CM CM *- CM i- O •<- in O t- co o in r- in cn in -^ h- CM o co in co f r~ CD CO CN tO CO O O *- T Tt CM f CO CM 00 ^- CO O ••- r- CJ) r^ cn O CM co cn r^ •*- •»- co ^ •*- ^y CM r- in t- co co tp in co o CM in cn *- CM »- CN to t~ T- co i o o o o o o to O 0 0 O O O 0 O in in CN O O O O O O co O O O O O O t- O in in CN O O O O O O U) 0 O 0 O 0 O 0 O in in CM O O O O O O O cn o o cJ) cn co cn cn cn cn cn co cn cn O in o in o CN in h- o CM r- cJ) t- ••- cn in CM o co i- f T t •» CO CO CO CO CO CO CO CM CM CM CN CN CM CN CN tD T O CO in 1C co co in ^r co ^ co O O O O O O O r- cn co •*- co ^ cn "- »- CM CM •r- CM '- 0 0 0 0 0 O 0 co »- ••- cn cn tp to co co co to ^- o m CM CM CO CN CN CO CM cn r- co CD co in co cn CN CN ^r o t- CM ••- CM CO CM CN CN CN cn CN oo in CD in T •*- ^t *f t CN cn t*- CM CM in CO CM CO CM in o CN cj) co cc " co o O co CN in CD O CO CN t *- t~ CN "- f CM " ^- »- '- co ^r in •*- TJ- o in cn -- co co o in ••- §in ^ cn ^ ^t co CM t cn •>- co t »- ^- ro i- — CM *- CM co r-- oo r^ co r* CM CO O V CM CM «- »- ^ r- co i- rt CM CO ^ t^ ^ CO O "^ co in i oo ^r in to ••- f in CD -^ oo co O O O O O O ID o o o o o o o O in in cs o o O O o O ro O O O O O O r- O in in CM O O O O O O u> O O O O O O O O in in CN in in in in in in in o co cJ) cn cn co cn co co cn cn co cn cn O m o in O CM in r- O »- t- cn co cn M" O r- in t^ ^ ^ CO CO CO co co co co co co ro CM CM CN CM CN CN CM co r- in ^- t to t~- to co in rf ro q- co O O O O O O O ^ O oo ^* co ^" CJ) •^ CM CN CN "- CN *- O O O O O O O co in oo r- •- CN in tn cn co o r- ^ co *- -^ CM CM *~ CM -^ co O cn to in cn r^ t r- - CM •P- in CD *- ^ CM oo co cc co in t^ r- •*"•*" i- ^ ^ CN «- CO CM r~ to CM to CM cJ) n oo O -- to cn in o *- CM cn t *- in co •^ co r^ co <• O co CM CM CO CO CM •>- «T to O in i- m co cn co *- O co cn in o O »- CM — O *- '- CD O CD ID f CO T- CO O ID »- CJ) CO O in »- in O Q co CM CJ) "- "- co O "- co O "- CO »- i- CM f t^ *t in co CM *t co O CM to CM *- cj) cn *- f CD CO f CO i- co cn O oo co O O CN CO CO ^ CM *- t »- f t CD f CO CO O O O O O O (D O O O O O O O O ID in CN O O O O O O co O O O O O O t- O in in CM O O O O O O to O O O O O O O O in in CM O O O O O O O o o o o o o o o o o o o o o CM CN CM CN CM CN CN X CL O in in \- o i— CM LU _J CO 1— ------- UJ D in ID CM 1- UJ 1— CO < < t- I U I X CL 0 in < UJ _i GRAMS/I* "ACTORS ( Z t-* to in £ L1J 0 CJ i. (0 o n U HDGV i t i 1 0- SR §7 i O 1 U- K 0 3' i O U- >g ?6 1 U. I . i O 1 U_ i r- i i Ll_ f- . Q in LL. CN LJ_ U- § ."• r^ u_ _j u_ OJ U- CJ 0) CJ roa (0 C CJ u u L. a m z £ CJ > a — (0 re CD o >- O in O CM in CM ^r ro ^ 01 ^ CM ro T CD CD ro O co ro co co ro CD CD CO CO ^ P- CM in co f- CM in t-- ro *- CO CO T~ *J I1- CD — ID CD 01 T- CO Tf t- CD CD O CO co o ro co in oo in T t ro *- in CM CM- co in co »- *- in - t CM CD in ro P- CD — *- o in in ^r ro p- CO CO oo ••- P- CD en CD T CM *t CM CM ro co CM ro r- n f i ro in CM ^f CD P- ro ro t CM 1 CM •— O en en CD »- f in p- CM p- in CD in O ffl co en P- »• ro CD ro *- CM CM CD O 0) CM CO •» in CM co O t in ^ CO ^ CO CD CO p- ro en ro in 'j- CM T- CM P- O O in CD P- n *- co *- CD in P- P- CD rf O in t ro ro in ••- in CM O CM •^ ^J CO in P- co P- CO CD ro •>- en O 0 O 0 O O in in 0 O O O O O in in O O O 0 O O in in O 0 O co oo co CO CD CD CO CD CD en P- CD in CM *- CM in cc CM p- o ro CO ro in ro ro O CO p- CM CC p- CD CM CM CM en in CM CM CM CO CO p- p- ^ CO o CM CO p- CM CD O CM O ro CD O in O in o CM in P- o in en CD P- CD 01 CD CO -^ CO CD t ro *- O rt P- o in in ro P- P- CD ••- CM CM CM CM CM CM CM CM CM CM CM CM CM CM in in in in in in in CD O co co ro cc CM - CM in in CD *- ro CD ro CM co CN *f in i CM co P- cn •*- O "fl" P" O CD co CD ro in f P- t ro co ro in CD ro co CM CD CO CO W CM 1 en co rj- »- CD en o CM CM -^ CO P- CD CD CD O CD ro CD CD ro P- CM ro ^ CM p- ro CM CD CO ^ CO p- CO p- in in i co in co *- *- CO CM "- CM -- co o •>- in in -r- P. CO CO p- 03 "- O ffl ro O co ro *- o CM O CD ro p- ro o CD CM *- CD CO "- Tf CM co ro co •» CD co in O in o *- *- co CM ro CM ^t co ^t ro CD T co ro O O «t CD CM »- »- CD CM CD ro in cc in co ^ ID ^ CD CM o CM ro *- co CM co ^r -- ro o ID CD CD •»- CO CO CD •sj CM *- O CD CM O in CM v in CM ro oo in o CD CD en *j ro »- CM CD O P- oo ID ro ro P- in en in O CM p- »- CO *- 1 O CO CO CD T in co CM ^t ^ CD CD ro co in ro co *- en O t in en P- CM *- CM *- *- »- O ro O P- co f co CM o CD en co ro CD CM -^ in in -^ ro P- *- "- ^ CM -r- CM '- in CD cp in CM p- ro M ro in CM *- t P- cp t ro o co cp cp in CM ID O co TJ t 1- -r- f- *t -^ •* CM rr ro co CD P- co CD P- in co ^ ro P* co CO ^- P- p- CN t « O T co ro p- *- CD CM ^- CM CD — p- CO O O O O O O CD O 0 O 0 O O 0 O in in CM O O O O O O co O O O O O O P- O in m CM O O O O O O CD O O O O O O O O in in CM in in in in in in in co co co co co co ro 0> CO O) CO CD CO CD O in o in O CM in P- o - in ro ro co co CM p- co o ro Tt co ro co T en co co CD en en co in in in in in in in O *- en in P- in •— ro ro ro in P- ro o in en T- P- CD o P- •»- CM ^- co ro *- ^t O P- ro CM CD in ro ro rj ID ^ co in ro CD co ro co i- p- •*• ro P- en CM o co co en co CD CM rr co co ro -^ CD co in en T en co o ro P- CD CD •^ O co CD 'j CD in *- CM ro en ro P- co *- *• CD CD o ro co •r- y- CM ^- »- 1- T- •* ro ro co -- co i- 1 O CD O CD O in CM co CM ro o ro in • - co i- CO CD CD CD O *- •r- ro CD ro P- CM en t in P- CD co -^ ro i- ro ro -^ P- CD 01 CD *- •r- CD t ••- in CM en o CM CM •* ^- f O en en en o co CM P- P- P- o ^* P- o *t in co o O en in CM »- CD ro CM ro t CD CM CO in *!• ffl CD O in O O in CM o »- P- en CM T- ro CM if CM CM CO CO CM CO O ro in en in T ro in CM ro ro TI o P- •* CD CD *- co ro in cp P- ro ^ CD co ro •^ in en CD O CM P- co P- cp P- P- P- o CD CO CP CD O) CO CO CO ••- CM *- cp O CO -^ 01 CP O p- p- ^ P- CO O P- ^j- CM co P- in n ir ro CM o *~ CM CD O t- ^ cc co •*- ro CM rr P- o co ro en ro »- CM P- CO CO CO CD §co ro CM CD T *- in P- o P- CD -^ CM ^ en in ^ in co O O O O O O CD O 0 0 O 0 0 0 O in in CM O O O O O O co O O O O O O P- O in in CM O O O O O O cp O O O O O O O O in in CM O O O O O O O 01 CD CO CO CD CD CD (D CD CD CO CD CD CD O in o in o CM in P- o <& @/ @/ @/ @/ co Tt cc in in CO *- O CO P- ro in CD o ro cc co o ro in CM CM CM — CM ?5????5 co co ro ro co co co ro in CD CM co cc CD ••- O O co in O P- in CD »- P- 10 O to "- O •? CD CD P- CD ro ^ en co co *~ in CM v in ro ro tn co *- CM CO TT fl- CO CD ^r ro *r CD P- •*• O CM in ro co CD CM CD P- «* co in in •» in •^ CD CM Tf en t t CD P- CD ^~ CO CO CO ^t CD co ^ P- in cc P* ro O CM P- ^ CD CM ••- f •^ f CM in i co O CO CM p- CD CD ^T P- P- CD "3- O ro in in O O CM co o cc in ••- ^- 1 CM «- CM i- •^ co o en CM ^- ro CM CM CD CD CD 1 CO CD CM ro in *- O CD in co CD en ^t in •q- "- *- P- ro f *t CM O P- co ro ro O CD ro CD o CM co o -^ O CD co co ffl in ro co CD ro ro en P- en CM *- ro co f P- ro P- O CO CO O CO *- -- co o in ~- »• ro CM co P- co t in P- 00 CD T- CD ro O CO *- en CM P- en cc t O •*• in P- CD ro in *- co CM co CD in *- in CD CD en in »- P- O P- co •- in in p- •^ ffl O O ro CD CM ro CD CM P- ro O i- co -^ CM •*- ro en CM CM *- to ro CM CO in -^ CO CD CD co CM in P- o ffl t CM CM •— r- CM v- ro ••- •*- in CM •*• ro •»- O ro en CD CD "* O P- t *- CM CM ro (D co n o CM CD "^ co CD co o ro p- ro ro i- -^ m ^- >- ^r CN O O O O O O CD 0 0 0 O 0 0 O O in in CM O O O O O O ro O O O O O O P- O in in CM O O O O O O CD O O O O O O O O in in CM in in in in in in in CO CT) CD CD CD CD CD CD CD co ci cr> CD en O in O in O CM in P- O •>- CO CM CM TO CD •*" ^J" •*" ro in P- CM T- ro »- ro (S -v P- CM »- ••- »- "- co ro co ro co ro ro CM CM CM CM CM CM CM CM CD CC *- CO CD CD *- O O n in o P- in CD »- P- cc o co co ro ^ in co co r- P- ro CD en ro -^ in CM t in co ro in co p- en O en co o '- »- CM in CM CM n in p- CM CM •v co CM en CD O CM O CO -^ CO P- i CM »- o ro O co CD ro oi *- q- P" p- CO — O CM CM P- in P- P- O CD CM p- *t <» CD ro i in co ro t ro in ^ ^- ro oi p- CM co O in ^> ro 01 P- 01 co co co CO *- CM *- ro co CD co en »- o CM 1 P- p- CM i- CO *- CD CO CD CM CO '- q- CM p- f ro o CM ^- »- CO CO -r- ft CM co in 01 -^ CM p- ••- co •«• co P- »- -r- in CM CM in i cc CD ro CM p- CM •— CO 01 ID CM -- CM CD »- CD CO O co co -^ ro ro in CD O in CD CM CM CD CD co »- CM *- p- in CD ffl ^~ ro P- en P- ••- CD -^ O P- ro O co •*- ro ro en en en P- in CM P- CM ro CD T cc in ro in o CD CM in co » •» ^ CD p- ffl CO CM CM -- CM P- ro o 10 P- en *- CO -- »- "- co f in CM CM co P- •^ rt co CD T ro ro ••- ro CD CM ID CM ID CM »- ro CD *- o P- -- ^ TI CM »- ro *- CD ro o CM CD co •- co CD ^- co T ^r ^ co CD ro CD T -- o CD in ^t O P- in P- O O O O O O ID O O O O 0 0 O O in in CM O O O O O O ro O O O O O O P- O in tn CM O O O O O O CD O O O O O O O O in in CM CM CM CM CM CM CM CM CL o in 1- o CJ in CM LIJ m 1- ------- 1 1 o D i t 1 U. §8 X i i O 1 U- 08 O -- i O 1 Ll_ >g Q "- _J t t O 1 U_ ! 8 i •»- I I U. a i . i r- O i O i "- U. I- . < a in UJ —1 LL. i— i . LU ""^ OJ O t/> U> ID 2 CM I— < r- uj i— CJ 1 00 < -3 < in HI a C5 O I O LL. < Z 0 1— 1 l/l U_ LLJ 0 O U- D LO U. Oi LJ_ 1 1 U f- Q) U ro cna •H « C/) 4-* c o o u o I i. Q. \ 01 T3 Q. CJ S. U > CL — 10 10 CD O in o in o CM in t- O TJ in to to co co to ^ tp Is- 8tf co *- co to O i- CM ^ in tc CM o to CM o co — in r~ co CO CM in CO CM CO *t *- •F- en o ^ in CM O co co CM co co o to to r- co i- CM to «r •F- CM to co t-- co »- •*- T CM "- CM '- CM CN O CM ID *- CO t-- in i- CM CM co co CM CO CO 01 01 O tD tO *- CN CO CO CM <9 »- ••- Is- co *- t CM •«- in 'tf in co 01 in O in CM co co co in co o co 01 en en Is- co ^- *3- CM t Is *?• *- T- CN 1C ••- tO CO "T O tD 01 t- CO tO r- 01 CO 01 01 CO CM Sco co r*- co co ^~ 1C ••- tC CO *T CO *r *- co *r O 01 CM in in co co co to co co to O CM co co to CO CO CO CO CO CO O to co co en f~ co ^~ co 01 in CN t^ h- co *3 co Is- in co in in O CO CM 01 01 O CO t- CO *- CM i- M- i- in CN 01 co co CO 01 tD CM ^ CM t r-. T- *fr T- o co co *- CO ID O O CM CO *- in co •>- co f in co 01 r-- ^ •*- Is- tO t 01 CO CO CM CM fl1 O CO CM CO O CO co co r- co O co to •*- 01 ^- ••- in CM O O O O O O to O O O O O O O O in in CM O O O O O O co O O O O O O r- O in in CM O O O O O O to O O O O O O O O in in CM O O O O O O O co co co co co co co en co en co en en en O in o in o CM in t-- o CO T~ *t CO ^ ^ rr to CM co in in <- co in ID •»- r~ to to O O O O O O O O O O O O O O CO CO CO CO CO CO CO to en t co i- ID Is- •3- I- in co to to co M- Is- en to in co in O co in in to en co r- CM in t^ CM co ^r CM ^j in co co T co O co co co •» to O co x tr ••- en *- o 'r- in tc en co tc in co r- ••- r- o ^ en in ^f ••- in in co h- Tj [^ Tj T- 1- O CO ^f to co co 01 O r~ 01 CO Ol CO CO -3- O 01 *- co co 01 CM *- o CN CM co to r- en •»- r^ to in co ij? CM »- co -* O en »- -9 ••- CO CM CN ••- O O in in in CM r~ — co in in 01 «r *- CM CO CM tD O O O co oo T" CN *- in O — tO CO — CO CM CM - -^ CO CM 01 ^J ^r ^r <•- co rl CO CO ^T CM »- 1^ in in o -^ in co r^ CM *- -- co to t ^ in in co r~ r- in CN in to r^ •y t O co co r- in i— to in oo to O •'- CO »- CM i- T- CM o »- to "- in 01 t to co »- in CN in 01 in ^- CM r-- ^j O Is- t^ 01 co CM r^ — in CM co "- O O O O O O to O O O O O O O O in in CM O O O O O O co O O O O O O Is- O in in CM O O O O O O to O O O O O O O O in in CM CO CO CO CO CO CO 00 co co co co co co co en en oi co co co 01 O in o in o CM in r- o to co t T- co CO 01 O 1^ T CN ••- in -r- *- co in CM o CM co co co co co co co to tc to to to tc to CO CO CO CO CO CO CO to CM in O Is- T co tD TT CO CM tD "- CO co to c-* in •t r-* ^ co in in i- o O in O CM co 01 in co to CM CO M- CM CN CO CM in ^ ^ en co ^ co en in *- o co co co t t- 01 ^ in co ••- in T- co CM co O co CM O CM "- (O tD ID r- en to co T- CM in en 01 O O co O — in in •« en in o t- Is- *- O •*• CN to in co Is- to co 01 to in to in co co 01 en Tf r- to r- in to to o CM •>- -^ f in in in co to in co t in co *r T- co to co co o - co in CN 01 r- i- co co Is- co co co in O ^ 01 to co O *- co — o '- co to co in i- i>- r- co ^j- o to ^r r- in O co •* in -r- -^ CM O CO -r- CO O Is tC r- to in CM in o CM in in CN CM in ^- co CM "- *- »- 1s- r- CM CO CM CO CO O CO CO CN Is- tO CN o t- 01 in co O CO 1^ O O t- CO CO <* CM CM •»- •^ in Tt co h- co Is- t T en »- »- to O CN CO CM CM in O ••- CM CO CO ID O ^ '- T- t- CO *- T CM Is- to T 01 01 in in •^ co 01 ^ ^t to ^t co 01 -^- 01 ^ in tc ^ ^ tc ^ ^J in ^- co •»- co -*~ 01 cj) in 01 to co to co CM co ID to IP en en •>- r- CN CO CO t CM ID CO to o O co Is- in o co to co in in 01 -^ CM CO 01 »• CO CO CO "T 1 1C CO t O tO *- in CM O Is- t to to ^- CM to co co Is- to to r- i to to co CM »- T- in in O O O O O O O CN CN CM CM CM CM CN co in co ^3- N ^ co in CM to o in 01 tc co to Is in ^ to rt CM CM O CM CM CO tO en O ••- t- co in ^ *- CO rj- CM CM CO CM O "- T- Is- CN tO T ^3- *- co ^~ 01 ^ to *- - CO CM CM *- O O O O O O to o o o o o o o O in in CM O O O O O O co O 0 O O O O I- O in in CN O O O O O O to O O O O O O O O in in CM 80 o o o o o o o o o o o o o o o o o o CN CM CM CM CM CN CM I O- o o r- o 0 to CM UJ _J CO \- ------- CO 1 •s UJ Q P- O CM H t-i uj H 00 < < H- I O *-* I X Q. CD Ol < UJ _J cn £ < or C3 'ACTORS ( o I/) CO s. UJ 0 CJ HDGV 1 1 LL. > 2 Q "- f 0 1 U- H 0 Q *- _l I 1 O 1 U. >g Q -r- _J 1 i O 1 U_ i . i 8 i •<- i 1 L_ i . i t- i i i LL. t- . Q in _j U. CN U- U_ u_ p- U- >. Q in _j LL. OJ U_ CJ t, Q) O (0 OJCL •H (0 C/l 4-* C CJ O O CJ I L. Q. \ 0) •D 0. CJ E U > Q. • i. — <0 (0 01 O in O CM in «, a © to in P- — 01 Ol P- CO CO p- i *- ro co co ro co co P- •r- O P- oo en CM T in P- co O CB co in i- CM CO in f co CD CO ••- en o O CD in o ro co co co O oo 00 00 CD in *- 01 ro oo co p- P- CO cn P- co CM oo -» co CM in O co in *- O P- co co co *- in ^r co "- CO CM CM P- CM T- 00 co in co •^ CO CM r- -- CO 01 CD in O CM CO CM r- in CD in CM f CD CO O T co 01 in in CD in i- CM CO CM *- CD O t P- T O p- in P~ CO in ^r *t TT Ol CO 00 CM *- CD 000 oog O O O O O O O O 0 0 oog o o o co co co 01 cn 01 in O P- O ID 03 co *- CD O co cn ro ro co co ro ro co co CM CM in t cn in co CD co co in co in O CD CD ro *- •r- — CM CM CO CM CM ••- p- O p- en in o co in CM in O co CM ^r O CD CO *- — CO t 01 CM CO CM 01 i CD o in co in CD P- T P- O co p- CO 00 CM -- P- *- 01 in co co p- ^r CM co co CD 01 P- CD CM CM -- •>- O in co 01 CM -^ 01 in 01 co 01 ••- 01 <* CM t f CM O O CM P- *- O co co O T *t a> P- O CD P- in 01 in P- p- co "- O co in 01 P- O CM CM CO 00 O •» CD co CM in 01 CM CD CO CO CO P- -- t- O CM CM p- 00 CD CM O 01 CD ^- CM "- CM v in oo t CD co co *- P- CD ••- P- CM CO CO T- O O O CD 0 0 O 0 in in CM O O O ro O O O P- in in CM O O O CD O O O O in in CM O O O O CO CO CO CO 01 CD Ol 01 O in O in O CM in r- O © ©; @; ®j (& *- cn f in f P- 01 CD *- CO •r- f "- — 00 O P* in co o CO CO CO CO CO CO CO O O O O O O O CO CO "- CM tO CM f- •^ co co in •»- co CM CM ^ in ro co ^ co O CD cn 01 -- CM '- in ro o O co p- cn •r- CM CO CM *- CM "- ••- <^ p~ *- co o in O T in CD CM in CD in t- p- *- ro 01 CM O O P- CM T CO CO 01 CD P- 01 CO *-- in CM CD ro CD in CD i i t o CM co ro co in co CD ^r co to CM cn •» cn cn "- CD "- 00 CM •» CO CO CO CD P* O P- Ol t co in oo •? cn in to co •»*-*-»- t- ro co co co CM -^ ^ T CM in co co •q- in in T CD n •» in oo CM -- i- O CM -- "- CO -- CM ro in co co in ^r oo O oo i O 01 CD in •5 CM CM •r- O O O O O O ID O O O O O O O O tn in CM O O O O O O co O O O O O O P- O in in CM O O O O O O CD O O O O O O O O in in CM in in in in in in in CO CO 00 00 CO CO CO 03 01 01 cn 01 cn cn O in O in O CM in P- o CO U> CD ^ 0) -- T- p- CD CO co co O in 01 01 P- CD 1- 00 00 CO CO CO CO CO CO oo oo co co oo co co ro co co CM *- in *- «- P- in o P- ^ co CM CO •tf CO CM t CM *t in 01 ^- O P- co CM cn in p- in CM in •>- •>- CM -r- i- CM *- co P- in CD co CD ro ro CM oo CD co o co 01 P- CD O to CM CO CM cn CD O ^ co o in co in -^ ^ cn CN ro CM in »- co co »- CD •» CM CO •» CO ^1 ^ ^ O CD 't P- in - t~ CM p- ^ CM «t v- »- O CD ^- 01 T rr oo •^ Ol CO Ol O CD 01 p- t ^r p- CD en O CO T- i- i- CD "- Ol P- P- O CD O O 01 CM Ol O 01 O ^ r^ co CM ^- in CD in O cn P- co CD CD CM ro »- in en CM co in »- t- 01 co CD co O in o CO CD CO CO CM CM T- co in CM CM i T co p- ro f v T CM 01 in 01 01 CM CD 01 CN CM CM CD t CM 1 CO co CD ro »- co O co in ro co o T CD CD ^- T CM CO CO CO Ol co co ro P- co co ^~ O 01 in ^r co P- oo P- "- CO CO CO CM p- P- T- co CD co CM ro T t CM T- » co p- •9- ^r p- cn i O CD t ^- ••- o 01 P^ in CD O in O CM CM p- co P- co co in O CD CD <» *- CD in CO CD CO i- — co CD co o co in »- CD CD CD co P- co P- ^r ro p- co 01 in co co in in P- CD O in in CM co i- •^ CD P- 01 CO P- CO p- O •» in ^i- CM CD p- CO CO T 13- CO rr in •- CD *- ^r T oo ro P- en CD *- co 01 •^ CD CM p- CO T CO CM CM CD CO CM ^ CM P- 01 CM CD CM CD CO •^ oo ^ CD 01 CD in *- CM CM CD O P» in CO CO CM CD CO P~ t O Co •*- CD P- P* CM ^r CM *- cn co — 01 in — ro CD CM CM oo f v O O -a- CM CD CM i- i- O in P- co co •r- p- CO TJ p- CM CO — CD P~ CM P- O) Ol O "^ CO *- >- -r- O O O O O O CD O O O O O O O O in in CM O O O O O O co O O O O O O P- O in in CM O O O O O O CD 0 O O 0 O O O O in in CM O O O O O O O cn co 01 01 CD 01 01 cn cn cn cn cn cn en O in o in o CM in p- o © a <&> @> © ro P- in ro co Tt 1 •<- CM O in co co i o Ol 00 P- CD Ol f^r.f.^r. CD CD CD CO CO CO CO CO CD CD CD CO CD CD P- r- i *- CM CD f CD ^r CN co in co CD •^ CO Tt CM CM CO CM co cn oo CM O 01 oo O CD CM in co 01 co CD ^ 00 ^ CD **- *~ CM CM in oo 01 01 p- 00 tD CD i- CN P- CM in *r *r in in ^r in co in P- •*- P- CD in co CM CD 01 *- 01 in in 01 co *- CD co CM CM CM CD *T CM ^t CO co CD P- »- oo ^ o CM P- co P- cn ro in CD in CM p~ ^t cn CM co co ^ r~ co co in O in in o CM in in P* *T *? CM CO ^ 01 CM ^ CO CO P- f CM in ^ in co t in oo CM T- -- ^t p- CM it in O in p- O CD oo P- in 01 P- CD •» CD CD O CO P- in CD CM CD ID CO 1 CN CM i- O eo 01 CM in *- o) in CM >- co *- CM co p- " 01 -r- co in cn p- CD o 01 co co in O •*- ^f co 01 P* cn P* CO ^ *- 00 CO CO *- CM in co »- co CM •^ in CM ••- r~ •q- CM oo P- »- en in cn cn CD O P- P- P- 00 Ol CM ro o in CM CD co P- P- CD CD P- CD CM CM 01 in p- ^t P- 01 CM O CM CM O IO *- ^- ^r p- 01 ^ O ID T CM •» CD O 00 CO 00 P- 00 CD O CM Ol ID "tf p* ^ O ^~ ^ CM i- T- O O O O O O CD o o o o o o o O in in CM O O O O O O co 0 0 0 O 0 O P- O in in CM O O O O O O CD O O O O O O O O in in CM in in in in in in in 01 en 01 01 01 cn 01 cn cn cn cn co cn cn O in o in o CM in P- O ®l @J ^ @J @; t fl- CD 01 O co T CD O in CD CD P- O CO p- CD in in CD p- p- p— p- p- p- P~ CD CO CD CD CD CD CO P- CO T *- CM CD -^ 01 ^r CM oo in oo to -- CO 1 CM CN CO CM P- 00 00 CM CD 00 P~ O CD CM in CM 01 co •^ T- CM *- f- T- 1- CM rf ^ T- CM CM -^ in CM o 01 CM CD co CM t — ^ CM P- CO co ro TT ro co co co O in in co en O — CM CD CO p- p- O O 01 t P- ro o "- CD *- CM in CO CM T CN p- i- *- o P- -^ ro O CD CO CO •«- P- ^~ O CM i co O co in CO CO CM CO CO P- 1 01 CM ••» 00 00 CO 00 CM co in O CN 01 — P* CO CD P- *3" ^ ^t ^t ^ CM f- ** CO P^ CM *- »- CM CN i CD in co in co P~ ro p- CD O to T p- o in in t co P- in — o to co CM 1 CM CM — CD cn to in CD co 01 n p- co co co in co CM P- P- p- ro CM in ^" •*" in 01 co co 01 oo co *• ro p- ^- ro in -^ *- 01 N CD CM "- CM in CM f CO CM *t O CO 01 01 ^f *~ CO ^ CO CD •»" CD Ol in 0) *- n co in p- CM CM O in CM CD CO CD T Ol O P- CM CO in ID P- cn co CM cj O cn CM P- oo •r- 01 ^ co CD co ro o in CM in CD •*" O O 'r~ CD *t P- O Tt T- ^ • ------- 1 1 1 > ci Q I 1 1 1 1 LL Q *- 1 O K O Q '- 1 O 1 U. §8 ~? O 1 U- i . 8 i i I i u- Q- i . i r- O i in i CO U_ K . < Q in UJ 1 _l 1 U. 1-1 . UJ \ I CM D in i ro D £ i CN K1 1- I QC 1 O O X O 1 U- < 1 . I O O I h-l 1 C^O 1 U_ trt t . £ I P- 1 0 i U u. Q in u_ CN LL. U i. 01 CJ ro ma +> CO in -^ c cj O O CJ I (- a. ^ OJ T3 a CJ E CJ > a to CD O in o in o CM in t^ o <3 <5 g. @ g, in in ^t co co CM r- o en CN O *- in ro eo *- ro t- in r- CM *- •>- •F- CM O O O O O O O co eo co eo ro ro ro t t- f- ro in r- CM in CD CM — ro ro o •>- CM eo CN •*- CN CM co r* i o CD in *- ro in ro co -^ t^ CM ro ro ro co en ro CM CD i- t- ro o CM '- CM CM f- i- r-- in *- ••- O to ro o co o in in CD r~ cn •*- in CM eo CM O ro co eo "- in t ro i- ^r ro CD in »- ro in ro CD ro O co •* eo CM ro m T ro ro CN >- in CD n o ro o CM ^j- CD in ro -^ CD CM co O co ro ^ CM CD CM ro CD CM co eo i ro ro -- ••- ro cn CD o h- in CM r- co ro *- ro *- •>-••- i- CM co CD ro ro t- CM o ro ro CM •» CM CM o i- r~- t- r- ^f ro in ^ t~ CD ro in in CM CM T- i- in CM CM co ro CM O t ro ^ in CD •>- t- CM o o ro *- CD *- ro o ro co o i T r- ro CD *- ro ro ••- t~ ••- r~ en cn CD in cn CD CM as o CM ^ cn CD co r-- in CD in CD ro co o r- ro ^ co co ro ^ ro in CD CN o ro en ••- ro •a- *- co TT O r- ro O in CD r-- cn in t- in co ro CM t ro t- CN ••- ••- ro in o T ro co o CD -- in in *- ro ro to ^ in •»- co ro o in to o O - in co '- •» CM CM »- O co CD "• CD in O co t- ro ••- t- ro in CN ••- CM en CD t- in ro ro o t- ro o CM r- ro r- O CM co ••- ••- i- O ro »- CD CD co in •s -r- ro • CD *- ro CM o in in ^r - r~ M- eo CM CM CD •» CM ^- CO in O O ro r- O O CM CM CD CM *r ro co in ro in r- — *- CD ro CM •»- ID co r^ *t CD ro in *- CD ^ ro ^ ro ro ^T r^ cn co co ro ^ ro co r^ to •a- CM o CD co *- co CM •>- •>- ro CM o O CM — co •3- "- in to ro m in •^- CM ••- ro eo to ro in co co r- T en ro m i- T- co CM in CM in ro ro in CM cn in in t- ro O co co ^ to O in O O in o ro CM co CM O ro r-- ^r TJ- CM in r- ro -fl- in ro ro in CM co n ro in CM •r- t^ T- -r- ro ro i- O ro to CM ro t^ ro CN -^ r- i »- T CM ro CD o t- to cn ro ^r -^ o -^ O i- cn c~ cn ro r- in in CN CM CM CM CO CM r- ^ O in in co r- in cn in in T- m cn eo in ro ro O CD cn ro co co CM T- o eo T- ID CM ••- T- O O O O O O CD 0000000 O in in CM O O O O O O to O O O O O O t- O in in CM O O O O O O CD O O O O O O O O in in CM ro ro ro ro ro ro ro ro co ro ro ro ro ro ro ro ro ro ro ro ro O in o 'n o CM in c~ o N ^ t O *- *- ro ro o CD TJ *r to O in ro r- CD CD ro t- t- t- t- r^ t- t- r*- r^ r- c^ r-- t^- t^ ro ro ro ro ro ro ro co ro CM •>- ^r o ro •^ m ^ to ^r CM TT *- »- CN *- T- CM i- t O ^r O t-- r- CM to o co ro t- i- ro f^ f~. *^ ** ro t>- ro ro ro CM CM ro O in O ro co CM ro in co r~ »- ro O in - cn in co CM ^- CM ro CN ro r- r- in o to in r~ r- t^- ro ro r^ r- ro in *- v- CD CO T- TJ- CN in in co ro ro CM ro to "- -a- cn ro ro ro in co ^- o ro ro ro CM CM •*- CD CM CD CO to ro r~- CD ^ t^ in ro cn r- >» cn o ro r*- ro ** in co t*~ ro r> CM co en ro o in O o o O o o to o o o o o o o O in in CN O O O O O O cn O O O O O O t- O in in CN O O O O O O to 0 0 0 O 0 0 0 O in in CM O O O O O O O ro ro CD ro ro ro ro ro CD CD ro ro ro ro O in o in O CM in t^ O O eo ro ••- CM CN in r^ ro CM cn to o in o in T ri- co in CM CM CM CM CM CM CN ro ro ro ro ro ro ro ro eo in co O ^ t O ro co in i -- ^r •^ ••- CM ^- »- CM *- O i to T CM o to to ro CM ro r- T- r- CM *- co ^r ro ^ O CM O CM ^ *- ^ O ro ro CD ro O r~ o CO CM CM CM CO CM CO to ro CM cn ^ O ^f in in ro ro ro r^ in T CD ro m ^ N ro »- ^- eo CM >- CM •r- O ro cn ro r- to CD r- -- in ro ro cn t- o o o cn ro o cn CM CM m i *- in CM cn CN in •r- CD ro ro ro O in CM o CM ro ro in in in t^ in to CM CM rj- r~ CM ro ^r to t- CM r~ CM r~ in •» cn cn CM co CD CD CO CD CD CD CD ro cn ro cn ro cn ro en cn in CD o t T O ro co in ^r T- •tf •^ -^ CM -^ ••- CM T- m ro co ^f CN O co in en CM ro r- *- h- •^ co co TJ t in 'J »- O ro ^r cn 01 in ro ro CM ro t-- O ro *- T- CM *- i- CN ••- ro CM co •»- t*~ eo ro CD r^ ro ro in ro ^t O co ••- ro •»- CM ^i »- »- ro »- T- CN >- ^r CD ro ro o CN eo r^ i- fl- T- co ro ••- to ro ro p~ CD co in ^- ^- co cn i- •<}• CM co CM co ro in CM o ro ••- *- •*- 10 •»- n CD "^ co in *± in <^- CM CM CM CD CM t- ^ in ^ to ID in O ro in •r- i in in cn CD "- CN ro 'j- to O ro •«• cn CM -^ co co co CM »- i- r- r~ ro O ro co o •» * r- ^ CM *- »• CM in O in co co T CM ^- co CD r- i- r-» co — •» co co co TT ro CM co to cn o CM »- r- CN CM ro in »- *- co t-- to in m »- TT CD CD O n CD *- •^ -^ in co -^ co CM ro t-a- CM in co in to O CM "- co ^ •^ r^ in r^ in -^ co to ro co in CM ^a- o m CM co t- cn ro in O O O O O O CD O O O O O O O O in in CM O O O O O O cn O O O O O O t- O in in CN O O O O o O CD O O O O O O O o in in CM CM Oi CM CM CM CM CM I a o in CO o CJ ro CM UJ CO 1- ------- co CM LU Q -p ^ 5l * 5 I Q. O 6 in LU _J l—t ACTORS ( o H-t in in s o u HDGV 1 1 I 1 LU Q O i O 1 U- So Q - _l I " 0 t LU Q '- _J i i O 1 LU t . i O i 1 LU I . I LU Din LU CM Lu Lu S LU LU Q in i I LU CM LU o i.C 0 000 I t- Q. ~^ 01 T3 a — z u s. u > a • t_ •- ra ro m (3 ^>- O in o CM in co t *- in CM CD CD 05 CO 05 t- CD CM CM CM *- f- CD ro CM t^ •>- CM CM 05 •» in r- ro to 0 - "• ro in -- 05 in CD §CM O CM i- in CO O5 t- in os CM in T o *- CM t- •tf •r- CO O CO ••- CD t r- CD co r- in T o CO CD 00 CD t CO CM CO 0) *- O5 O5 CO ro •» r- O5 CO CD *- co ro T — in -- oo en r- co CM •v in -- CD ^ *J O CM ro ^ CO CM 00 — T- 05 ro 05 •» i- CO ^T CO O CM r- o co co TJ m O O en in co in ro O O O oog o o o o o o o O 0 O oog o o o CO CO 00 Co CD CO in o t- O & ©/ 05 n 1- rt 05 in •» in f CM CM CM CM CM in CD ro CM co CD in i- "- "- CM 1- "- CD O CO •^ cn in o •r- O *- ••- in *t co CM *t "- t- t- CM ID CD O oo CD n CD co CM ro ic •» CM CO *- r~ in r- co ^ "^ ^ en O ro r~ *- r- T en co O in O r- O CM r^ i CM o CM r- O r- t- en co in co 05 CM CM O r- CM in ^r •» CD O CD 00 •3- CD 1C CO CM CM •"• CM O O CM in r-- O cc en o oo ^r in *- co en *- in co i- oo t~ co in t- ^r en co ^ CD P- CM r- ro t- in t- *- •— CD ^ *T CC ^ ro oo O en *- co CM CD 8 CD CO CO O 05 CO O) •>- •* t- t"~ ^ O5 05 O O O CD O 0 O 0 in in CM O O O ro O O O f- in in CM O O O CD O 0 O 0 in in CM O O O O oo co co oo CO CO CO O5 O in O in O CM in t- O ro O ro CD en CM ro — *r r- r^ ro ••- o CM in t co CM *- *- T- T- -r- CM CD CO CD CD CD CD CD ^ ^ *T ^ ^- t *T U5 CJ5 U5 O5 O) O5 CD t-- U5 ••- CC CO CO *y T- o in CD t CM in •>- CM CM f ••- CM '- "- T- CD CD CD 05 O r- ••- - o co in in CD r^ CM co co in in ^r in ro t^ co i O O ro •>- CM *- oo O "^ co t^ CM in t^ CD co r~ 05 t-- co ^_ co "- > in in 05 t- CM CM CO O l~- t~ CD CD O5 ^t O5 CO ^~ CM ^ co f^ ^- O O *t »- CO O CM *f t- ID co O — CD *- O *- CM CM co ^r CM in co O) CO CO 05 CO CO ^~ in O CM CM -^ ID co co CM r^ CM in 05 * O ro *- — in CM O •» co CO CM 00 •r- CM 00 co en CM O O o 000 O in O O O o o o in O O O O 0 O O in co co co 00 00 CO CO CO CD 00 CO Ci> CD ro ro CD ro O5 CO r- in O t- *- 0 — CD CO CM •^ CO d CO — in CD O5 CO CM 8ro I-- co O - co CM CO co TT O in O CD 0 0 in CM O co O r- in CM O CD O 0 in CM CO CO CO CO CD CD O in o in O CM in r- O ^- ^ ^ CO J^- CD O in o co CO O CM CD 05 t- f- cc in oo co co co co ro co ro co co co ro ro co ro ro TO ro ro ro ro ro to co CD f- ro co i- O5 CD O CO CM CO CM O •>- CM. '-"-'-*- in ID M- r- CD O O in co *- t- CD O r- O O -- O O - O *- O in o co co CD in ^- CM — co co oo — en en — in t ro CM co co r~ — r- •* r~ O •* CD CD CM co O O CD o en co i CM CM f CO -- CO CM CD en CD o co co in O CD ro ••- in in en CD — en — co in ^> CM CM co in CM in ro O CO CD t-- •* CD t- i en co ID cc CD ro ro ro 05 co oo *~ *~ ro CM in ro CM en in CD -a- CD o O in O CD O •** ^ ^ f- in co r* CM en in t co i CM co co co in t- CM "- -^ >- CM co ro r- in t in ••- ^- co oo ^- 05 co in (^ *t en CD ^~ CO O CD T CO CO CM O co o x — •«- T en f- in co o — -^ CM CO t 1 — I1- CM in in 05 CM in t-- CM — *- in co — co CM *- CM O CO t~- CD O — 05 CD o in CM in CM CD CO CM O CO CO CM -- 05 in CM in co en CD CM CM 05 05 CD in CM i- CM ID — t- CM in 05 CM oo CM o ro CM in oo CM 05 in O O O O O O CD O O O O O O O O in in CM O O O O O O ro O O O O O O t- O in in CM O O O O O O CD O O O O O O O O in in CM O O O O O O O CD CD 05 co en co en CD CO 05 CO CO CO CO O in o in o CM in r- O CO O CM t- ^> t^ in •»- ^ 05 05 co co ro CD ^ ^ CO CO ^ t^r-^^r- CO CO CO CO CO CO 00 co i o co en CM ro O) CD O CO -- CO CM O *- CM — T- t- »- •— O ro CM — ^- in in co O t~ CD en CD O 0 - 0 O 0 O CM O in co en ro CM f» CM CD ^T O •* CD oo t CM in CD co in *- »- CO 00 CM O CO CD CO 1 in O) 05 O CM ^t co o CM ro CD •^ *- ro CM f CM ••- O — co i r- O en co ^ ro co — ^t CD t- t~- en r- r- co in *- ^- CD ro *- i CM T in o in in r~ co co in "^ oo co ^ ^ in — in i- co co o CM CM CM CD CM r- •* CM 05 r- r- in co O en o co CD ^- CM *- t^ t^ in ^- CM CD in ro CM CM ••- ro CM CD CM i- ••- in co T r^ co co in •" 05 f- O5 «t 00 O CD r-- — *- t- ^t in "• O O O O in "i- oo *- co in co co ••- CM O *- 05 CO CO O5 00 t- CM CD — 05 O CM rr — r- ro CM 05 *- — in CM f co — •^ 05 en in in ^ O CM in i co co o CD O CO CM t 05 "- CO CM *- co ^ f in CM ID CD in h» oo O oo O5 *- O "- ID — CO -- CD co 05 oo r- in CO CM CM CD CM t~ T O O O O O O CD O O O O O O O O in in CM O O O O O O co O 0 0 0 O 0 r- O in in CM O O O O O O CD O O O O O O O O in in CM in in in in in in in co 05 co CD co en 05 CO CO CD CD 05 O5 CD O in o in o CM in r» o a a © a a ^f CM in O 05 en to o — o en t o to ro CO CO CO CM CO ^^^^ CC CD CD CD CD CC CO CO *t -^ CO 05 CM CO CO CD O CO -r- 00 CM O - CM -r- - - - O en oo CM *- ^r in in t- o t~ co 05 to O O i- O O O O in t- o 05 O 05 CM in ro CD CD T CD o) in CD 05 co in t-- in oo co CM in ^ o co •— r- 'J •>- O5 CD T 05 — i-- CD en 05 CM "- CM — -r -r- oo O5 r~- t CM co t- ro in CD en ^ CD in ^t in 05 — *t t^ — •^ — in co — co CM — — o t- t- ••- CD co r- co en «- in ^> CM O co in — t in CM CM o in CM CD co r~ O t- r- oo oo r- CD ID — CO CO 00 O) in r~ CD oo ^ — ro co CM en en co •*- in •^ 05 in CM *- r~ O f- CM co CM ^ in — ^ r>- co in in oo t *- in t ^t O ^t ^ t^- r^ O ^ ^t co f- O CM CD O O5 CM CO CM •^ O t- CM in co — CM 1 CO CD CM — CO *- — •* CM T- CO i- 01 in CO CM CO O5 CM ro co co O co co CM en co r~ CM oo oo co •»- — r^ ^ •*" ^ CM t in CM CM CM Tf CM O in co o en CM CM •— in oo in r~ CM co CO CM -r- CD CM f~ 'Jf O O O O O O CO 0 O O O O 0 0 O in in CM O O O O O O co O O O O O O r- O in in CM O O O O O O CD O O O O O O O O in in CM §OOOOOO O O O O O O o o o o o o CM CM CM CM CM CM CM CL O O in i- o u CO CM LU CO 1- ------- X a 0 in in UJ »— i UJ -^ O I/O O 3 £ CO 1- < M a UJ h- C3 co co < 1 < I/) •3 )- I a: C3 O I 0 < O 1— 1 00 £ LU O O -HDGV i i i 1 U_ n n I LL. t- O a *- V 0 1 U. > O _J 1 i O 1 LL. ! 8 i ( LU I f- I u_ H. o in I U_ i . i w i i i 1 U_ t . t 1 1 1 LL. j 0 1 1 1 U- 1 , i r^ t t t LL Q in t 1 U. i . 1 CM 1 1 1 1 U. 1 . 1 1 1 I- OJ O 10 OIO. •H (0 C 0 000 I «- n. ^ OJ TD a U S 0 > a — (0 ro a) O in o in o CM in r- o O ro N IB O in to in «- oo t in co ro co •>- O5 r- tD r- CM •>-*-«- CM in in in in in in in in in in in in in in to to 05 ro co co O5 co co co co i*- tc r~* T- CM CM f "- CM ••- CM o) CM in ro in f- co co r^ •*" O in O C5 O5 1C CM O CO t~- O ID CM to co- to n in i- CM co o ro ••- to CM o 05 •*- in o r~ to oo h- o oo co in r- co co co co co CM ^ CM CO tD CO CO 05 CO »- i- O O O O O O tc O 0 0 O 0 0 O O in in CM O O O O O O ro O O O O O O t- O in in CM O O O O O O ID O O O O O O O O in in CM O O O O O O O 00 CO CO CO CO CO CO 05 CO CD CO O) CD CO O in o in o CM in r- O O ••- CM r» in tc *r "- ^ CM *- to ro »- CM r- in rr ro ro f -- i- T- CM ro ro co ro ro ro co CM ro o ro in ID o CM ••- to r- in ro to ••- CM CM *- "- CM ••- ^r to CM CM m ^t T t^ i- in O oo co 05 j-_ ^ __ in co co -^ CM T- ic CM O *- CO *- - co co in r- ^J- CM O O CO •»- tO CM f *- CM CO 1 CM CM t- [- t~ O t* "- f- O5 CM CO O CO 1- CM i- CO in co in i- i- 05 co ro f -r- 05 co in -~ to en O •» O t- O O ro O CM •» to in co o r- *- co r«- f- *- CM rr O oo T- o m in <» co r- »- f- r- 05 *- ••- •*- -3- cs ••- CM CM co in co CM "- ^3- o in co o 05 05 co ^ — oo in CM co to co CM i- t~- V *- ^t CM *3~ co in r~ co f-- «* in ro 05 o> co to ro tc O tc ID co co •*- CM CM CM tD CM r- ^• in r~ o *r CM *? 05 in to O t- CM ro «- co CM CM in oo f- O ro CM ••- o CM ••- to CM — »- O O O O O O to O O O O O O O O in in CM O O O O O O ro O O O O O O i- O in in CM O O O O O O to O O O O O O O O in in CM in in in in in in in CO CO CO CO 00 00 CO O) CD CO CD 05 CD CO O in o m O CM in r- o (§/ @; (g, (§; (S; ~- ro in to 05 r- ro •- h- to CO co in T ro co O) to •*- 00 •*- CO CD O5 CO CM *- o in -- in co ro to O) to co t~ O ^" T ^t ^ ro TJ- ro O cs tc ^ tc ^ O CO CM 1C CO CM O5 in O O O O O O to O O O O O O O O in in CM O O O O O O co O O O O O O t- O in in CM O O O O O O u> O O O O O O O O in in CM co co co co co co co co co co co oo co co CO O5 CD 0) 05 05 CO U. U. U_ U. U_ O in o m O CM in h- O r^ in 05 »- "» oo ir CM CM in in to co ^- t- 03 r» (C tO CO in in in in in in in tc to tc to to tc tc O in t CM t~- in CM O r- -- •» CM 05 ro i- -r- CM «- ^- •>- »- r- co co O co •«• CM in co -^ co to O r^ r~ to to co »- »- CM in ^ o) 05 co r- in r- to to r» "- ^- O 05 (0 r CM O5 CO CO CM in 05 ^ ^j r^ in 05 CO CM CO CO O CM "- "- t CM •>- CO CM CO CM O O ^t tC CM »- O co CM oo ^- co ^ O CM r- •— ^- CM CM CM co ^r CM in co f in CM in to f O 05 o to ••- ^ co ^r O CM to r- to ^- i~- co CM ^t r- CM oo t O5 CM r^ in co in O CM co ID ro to CM ro O T CO CO CM CM CM t CM in CM ro •» o CN •*• '- 1- l~- 05 tC r- CO CO •T CM CM 05 O) CM O *- O5 CO 05 O) O5 O O O5 ^r CM i- CM O O5 CO 05 CO ^T 05 O O) *- r- to O co co •^- CM *- t- -^ t- in co CM o t^ CM ^t O5 in T- to r- co CM co *t *r 05 co n o ••- •<- in CM ••- ro CM •^- "- t co CM ro o ••- -- r~ ro i- O) in O CO O5 P- CO CO O CM T- oo ^ ^- in ro in in <3- in co co 05 1C O5 CO CO O 00 "- 0) CM TJ- ^r ID ro to CM CM *- 00 r* ^" CO CO ^i t ^j t~ in ro ID ^> ro 05 to t "- r- oo ro to co to O i- CM CO O ^ *t 05 t^ ^~ f CM "- »- «- t T T- tO 00 CM 1C O *- — 05 o ••- in ro ^ - CO CO T TJ- O CM n CO i- CO tO «- »• ^ CM »- CM i- 05 05 CO *" CO CO O5 in *- in f co co in r- r- O co to co in *- *- t^ ro >- n CM in r- T U3 CM ^- O •>- ••- co 05 co in CM co co r- co in in en CM CM o in CM to co O O o O O o to O O O O O O O O in in CM O O O O O o ro O O O O O O r- O in in CM o O o o O o to O O O O O O O O in in CM CM CM CM CM CM CM CM O. O in in o u O UJ _j m i— ------- 0-32 TABLE 31 HIGH ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AT 5.0 MPH Cold/Hot Start Za\ . VMT Percentages LDGV LDGT -LDDV- -LDDT- -HDDV- HDGV year PCCN PCHC PCCC O' F 25' F SO' F 75' F 1OO' F O' F 25' F 50' F 75' F 1OO' F Q-1OOF O-1OOF 0-1OOF O in CM V CM tx <» •* T 0 O ro ro CO CO CO CO to o tx CO CM CO ro ^ 0 •» CM CM 00 CM ••- CM to ^ co o CM CO CM |x IO CO CM CO in t ro tx CM CO in ix CO »- CO ^- ID tx CM in 00 CO to *- »- CM — in 05 t — CM oo in — t~ CM CM o - in »- CM CO O O O 0 O O °8 O 0 O 0 O 0 co co ro ro O in in ix <& & CO |x ••- co t co 0 O ro ro oo co CO CO |x CM in — CO CO CO T to co CM CM t CM CM CM O CM O CO CO CM to co ro ro CM CM ^r ix ro o CM CO T IB ro CM CM CO — tx t- in to CM *- o CM CM t CO CM *- CM CM *f ID CO CO CM CM CO CO •«• in CM CM 0 0 0 0 O in 0 0 O 0 0 0 0 0 O in 0 0 oo co ro ro o o 05 tx CM 0 0 ro ro co co CO CO O co O i CO CO in ^r CM in CM CM CM t •<- co CM CM in CM co O CM CO tx ID CO CO in "3- in co CO CO co in ro in CO CO ro ^ T |x 0 - O ro co CO O CO co CM CM co CM CM CO CM O CO CO CO CO to to CO CM in CM o CM CM CM O <* •* CO CO CM CM CM O in to in CM CM in ro ro ix CM CM 0 0 O O in O O O 0 in in O 0 O 0 in 0 O co co ro ro CM ro CM IX CM to o CM CO CM 1C O CM 0 co ro O in o in O CM in tx o <§, a & © a to -r- o »- 10 05 tx in co t CO CO CO CO CM ro co co ro co co co in in in in in in in CM CM CM CM CM CM CM CO CO CO CO CO CO CO co co ro co co oo to co tx ro to in co in CM CM CM CM CM CM CM •j co CM CM (D in co •— *- CO CM <~ CM *- CM CM CM CM CM CM CM in co to co ro N co ^J fx fx tC tC fx tO (O tx to tx 00 tO tx O to to •* ^ to ^ CM CM CM CM CM CM CM in co oo -a- ro co to co ro co fx I— co fx CM CM CM CM CM CM CM cn CM r- to in in o 1C CO T- O *- CM *- CM CO CO CO CO CO CO O CM •» in to co O •^ tx in •» in ic in CO CO CO CO CO CO CO to ^ to o ro in ro r- ro ro ro co ro co O O O O O O O ro tx tx in ro CM *- *- ** in T co in *r ix rx •>- ^- 05 ro 05 co to ix to in (D in fx -^ co o CM ro O in ro co co co co co CM ro co CM ro tt in oo ••- O O O *- O ••- CM CM CM CM CM CM O O O O O O to O O O 0 0 O 0 O in in CM O O O O O O co O O O O O O ix O in in CM O O O O O O 1C O 0 0 0 0 0 0 O in in CM in in in in in in in CO CO CO CO CO CO 03 ro co co ro ro co ro O in O in o CM in ix o ro co co o co co to i to o CO CO CO CO CM Ix tx tx |x (x fx tx CM CM CM CM CM CM CM in co CM o CM CM in O T 1C CO CM in CM CM CM CM CM CM CM CM i- T- CO 10 "- t- CO co co ro co co co co »- O CM lx CM 1C O ^ tx tc in to to to *- CO 1 CO lx CO tO O in in co co in co CM CM CM CM CM CM CM co in tc o O in ro CM CM CM CM CM CM CM ro •*- tc o fx co ix tO CM CM -^ O CM O CM CO CO CO CO CO CO CM CM in |x i- CO CM *- to r- in in to in CO CO CO CO CO CO CO co ro o in ^t ro ^t ID tx 00 fx IX |x IX O O O O O O O m in — o — co *t O CM •» CO CM CO CM in to ix ix T- CM co CM ^ in ^ rr in ^j in •»- tx tx «3- TJ m 00 CM O *- CM *- — tc O O ro cn o ro f CM CM T- f CM T- O O O O O O ID o o o o o o o O in in CM O O O O O O co O O O O O O tx O in in CM O O O O O O ID O O O O O O O O in in CM co co co co co co co CO CO CO CO CO CO CO ro co co ro ro ro ro O in o in O CM in fx o T CM CM rr 1C *- cn ix in ro ^ CO CO CO *~ |X fx fx lx IX |X |x CO CO CO CO CO CO CO CM CM CM CM CM CM CM CM to CM in ix Tt o oo *- co o ro CM O •r- CM CM CM — CM CM O ro o •» O v CM t- to co tx tx tx tx O CO CM "- tx t— *J CM *T CO CO CO CO CO CO ^ fx ^J- CM tB CM ro co co CM CM co CM ••- CM CM CM CM CM CM *t fx o ix in 05 in CM to tx in in IP in CM CM CM CM CM CM CM O in •>- ix co co i to o ••- ro ro o ro CM CO CO CM CM CO CM co ro o t co « o O ^ to ^t co in ^ CO CO CO CO CO CO CO CM *fr in »- O *3- O in ic ic to to to u> O O O O O O O in ix m in in to ro O ••- co CM i- CM — CM O CO CO ID ID CO CM i in i co t co CO tx ^ ^ -^ O CM •^ to tx to tc ix to tx — co ro *- ro O to o ro oo m ro ro -- CM ••- -r T- ^ -^ O O O O O O to o o o o o o o O in in CM O O O O O O to O O O O O O (x O in in CM o o o o o o to o o o o o o o O in in CM 0000000 ro 05 ro ro ro ro ro ro ro co ro ro ro ro O in o in o CM in fx o oo to u) ID CM- CM *- -- ro oo ^ o co CM tc in to to to to to *- tx fx tx CO CM O ro o ro ro o o o ^- rr -^ ^r o ix CM tx ro o ro ro ro ro _ in ro co to T *- in O CM CO CM CM CO CM CM CM CM CM CM CM CM O "- O <* in *- >» ^t fx fx tD tC tx tc CM CM CM CM CM CM CM co CM in ro co ro o CO CM *- O -r- f •»- CM CO CO CO CO CO CO t in to CM i- to *- ^r in in in in in in O O O O O O O co o O CM O O in O — CO CM •r- CM f CM to ro — co co to CM CO IT 1 CO T CO CO fx •»- CO T~ O) •*- T tc fx tc to tC to co to in co Tf •*" ^ to o ro oo ro o ro »- CM T- •r- r- CM 1- O O O O O O to o o o o o o o O in in CM O O O O O O CO O O O O O O tx O in in CM O O O O O O ID 0 O O 0 O 0 O O in in CM in in in in in in in ro ro cn co ro 05 ro ro ro ro ro ro co ro O in O in o CM in tx o co T- o *- ro in co *- ro co TJ- Tf M- CO T- 0000000 co co co co co co co co co co co co co co in in co in co cs o to ro O co ix o co *- •r- CM t- T- CM T- O tx tx co ro CM — to in tc to in to to •»- ^ tx tx -^ -^ ro o o o o o o o ro to to co r- *- cn in to tx rx to tx u> 00 CM tO T- -- CM •»- eo O O O O O O *- CM CM CM CM CM CM — to in in *- •r- co CM •q- co co -a- •* co CM CM CM CM CM CM CM O i- CM ------- to to TABLE 32 GH ALTITUD NOx EMISSION FACTORS (GRAMS/MILE) AT 1O.O MPH Cold/Hot Start 3a1 . VMT Percentages LDGV LDGT -LDDV- -LDDT- -HDDV- HDGV Year PCCN PCHC PCCC O' F 25' F 50' F 75' F 10O' F O' F 25' F 50' F 75' F 1OO' F O-10OF 0-1OOF 0-1OOF O in o CM in <§.<£(§, co t ^ oi to co ^ "* ' CM CM CM CM CM CM CO CO CO Ol ^ tD CM r- Ol CM CM CM If CM 01 t^ O - -^ CM CM •* Ol Ol in oo o O) O r-- 01 to in *- CM CM co r~ ^ CM oo in CM CM CM O r- *r in -r- in CM CO CM CM CM 1 oo in in CM CO CM CO CM CM ^ 01 Ol co in o tD *- O *- CN CM CM T- i- O) ^ *- ••- CN CM 01 *- in -- r- CN CM CM CM o o o O O 0 o o o o o o o °°8 o o o CO CO CO Ol Ol Ol U- U. in o t- 0 r~ co O 01 «t CM i- r- t- r- CM CM CM CM CM CM CN CM CO CO CO CO 01 01 in CM in i co in CM CM CM CM t to o 01 01 CO i- CO to -^ 01 in 01 CO Ol CO '-00)'- *j ^r in -tf CM CM CM CM o o ••- o in r- t- to CM CM CM CM to o in co tO O CO CO CM CO CM CM CO tv fO O [- co O ••- CN CO CO CO 1- O CO CM CO CO 't CO Ol Ol CM CO r~ r- o t— to CM (- r- 01 o o 01 "- CM CM "- O eo to o) *- CM CN -- CN CM CM CM O co co in co in -^ "tf CM CM CN CM O O O to o o o o in in CM O O O co O O O r- in in CM o o o tc o o o o in in CN o o o o CO CO CO CO 0") Ol Ol Ol O in O in O CM in r- O to o co co co *- o> to ^ in •t CO CO CO CM 01 01 Ol O) Ol O) Ol Ol Ol Ol 01 Ol Ol Ol to to to to to to to CM CM CM CM CM CM CM CO O CO 00 O 01 CN 01 to- to in to to ^j- to *- 01 in f — CM CM co in to in in to in "- — CM CO CO CM CM in co co r- r- co r- ^ co CM in 01 in r- r- O O oi 01 O 01 O O O O O O ID o o o o o o o O in in CM O O O O O O co O O O O O O t- O in in CM O O O O O O - CM *- CM en CN co in to co CN co in T co t co CN tO CO T O O »- t to t- ID to r- to t^ O co 01 O en 01 to o 01 co 01 01 co O O O O O O to O O O O O O O O in in CM O O O O O O co O O O O O O r- O in tn CM O O O O O O to O O O O O O O O in in CM O O O O O O O Ol Ol Ol Ol Ol Ol 01 Ol Ol 01 Ol 01 Ol Ol O in o CM in O oo to r~ T CN M- -tf 1 T 1 rf in in in to to to co to tn co to t- •* CM O CO CO TJ- ••- t- to O) O 01 « _ - o o 1 CM in in in in to to to ID in 01 01 -- tn <3- to in ID CO ID - *- -r O) r- oo oo r- 0000 • ------- LU Q CO Z> CO K LU H CO CO < 1 < -3 1- I O I I Q. ID cn < UJ _J 1— t GRAMS/H "ACTORS ( **- o l/l LU X o a in 0 V o HDGV 1 1 1 08 Q <- i O 1 LL. Eg y, i O 1 U- So V 0 u_ u. r- *- . Q in L_ CN U_ LL o ."• f L_ >. U_ CM U_ o m o Dld. Q c o u o t. a 01 z X U > 0. ro ai O in O CM in rj r- ^> ^r o t- in in ^r oi cn cn •q- rt i r- •«- ro r- *- CM TI ID O1 co in ID CN t- — t- *- co CM ••- t-- CM O) CO CM CM CN ro 01 in rr *- CO CM CO CM t~ CN t t- in ro CM CO CN •>- O ID T- cn ro CO CO CM i T in CM in ID t- r- (-• ID — i- * 0 - f- CO T CN ID O -^ »- r- <» CN CM CM ID CO CO TT o in CM CO CN O O O oog 0 0 O ogo O 0 O oog 0 0 O ro co oo cn O) cn in r- in "* O> O o o in ; Ol to CN Ol t^ CN CO O) CN 0 CO CO in CM O co ro CO CM CM to CM o o in O 0 O O in O ro cn O O 0 CM CO 01 CO 01 CM o in 01 CM 01 ^J- CN ID •j to -in CN O O to 000 in CN O O O co co ro co cn cn O in o in O CN in t- O 1- ID CM O CM in CM o ro co 1 rr TJ- co CM ro co ro co oo ro ro O O O O O O O cn ro CN ro CM in t •j t^ 01 to to ro to t- cn 01 CM co •<* O co co i i co rr i ro ro 01 CM -7 T- CN in 01 co ro co cn ro r- co co CM co ro •>- CM 01 Ol t^ t1^ 01 [^ CN CM CN CM CN CM CM O tO CN *t 1- rj •» Ol CN CN O O CN O CN CO CO CO CO CO CO ro -^ cn CM to CM co o> to in T 'tf to ^ CN co co co ro co ro co r- in 01 •*- to 01 •T O O ro co o ro ro ^ ^j co ro ^ co t i to O ro in ro ro o O O 01 o cn to in co *t r- CM 01 co to r- to in r- in to ro ID ^ 01 CM o in ro cn ro t*- cn co 01 in ro to in to in t- *- *- O O *- O T- CM CM CN CM CM CM r- r* co ro to in *J O ^ ^ co ro TJ- co CM CM CM CM CM CM CM O O O O O O ID O O O O O O O O in in CM O O O O O O co O O O O O O r- O in in CM O O O O O O ID O O O O O O O O in in CM in in in in in in in ro co ro oo ro ro oo cn cn oi cn cn co cn O in O in O CM in t- O t- CM O Ol 00 T CM O t- ro •3- t n ro CN ^- r* f^ c* r^ F"~ ^ t~ r- i~- r- i- r- t- -- to ro ro CN CM •t co in to ^ •? to T to to co o> to o i- "- »- CM *- •>- CM ^ O CM — r- n t- o to 01 ro t- ro ro ro •3 CM ^r in t co co CO Ol Ol t-- 1— O) f- CM CM CM CM CM CM CM *- ro rr in CM ^- CM r- CM ro »- i- ro ^ CM co co co ro ro co •^ r^ co to in r^ in ro ro co ro ro ro ro in 01 in -^ t- CN CN 10 ••- ^t CM O CO "r- co -^ CM to to — in f~ 01 co co ro 01 ro ro ro ro ^ co ro t** CM ^- to in i in T cn co ro to r— *~ O t c- ro r- to ro r- co •«]• CM o in ro r- r~ o "^ o cn O cn •^ CM CM CN *- CM '- •r- O — o cn — cn O t T CO CM *T CN CN CM CM CN CM CM CM O O O O O O to O O O O O O O O in in CM O O O O O O co O O O O O O r- O in in CN O O O O O O to 0 0 O O 0 0 0 O in in CM ro ro co ro ro ro ro oo ro ro ro ro ro ro cn 01 01 cn CD co cn O in O in O CM in r~ O (^ @> @y @J @i in ~ co to in i~- in CM o CM *r ^r ^r ^f CM CM CN CM CM CM CM CM in in in in in in in t- ro 01 — to TJ ro *- co ^ ro CN »j CM 01 oo in CN 01 CN O 0 O - - 0 T- - ••- r~ ^r ro o »- r- n to in in to ID in cn to O in CN co CM CM r- 00 ID tO t-- ID CN CN CM CM CM CM CM to in *- in CM co CM to »- CM o O «- O CM ro co co co co co O O "- t ro ID cn •^ to t^- in ^ to ^t CO CO CO CO CO CO CO CN CO CM CM -- CM in ID ••- CO -r- O CN O CN h- ro ro CM ro CN to h- t- r- t- i^ r- r^ CM ^ -r~ co co ^r CM t to in co in ^- rornto^jpro co CM •>- O in t- to I- O -^ O CO O CO •^ CM CM CM »• CM '- CO CO -r- O *- CM O O i T co co ^r co CN CM CN CM CN CN CN O O O O O O to O O O O O O O O in in CM O O O O O O co O O O O O O t- O in in CM o o o o o o to o o o o o o o O in in CN o o o o o o o 01 01 cn cn 01 01 cn cn cn 01 01 co 01 cn O in o in O CM in r~ O t cn (0 ro O »- ro tD t CM in T i rf CM t- r- t- i- i- r- t- CM CM CN CM CM CM CM r- to in o in *- i~- O CM CO CM *- CO V co CM ro in CM in co 0 0 0 0 0 O 0 O O r~ r^ ^ co •»- *- CO ^ T- CM CM CM CN in *t to ••- O co *~ CO Tf CO CO T CO CM CN CN CM CM CM CM 01 ro co in co ^~ co ^ t*- ro p~- P^ ro Is* CN CM CM CM CM CN CM CO O CO CN CM O *- Ol CO CM CM CM CO CM CM CO CO CO CO CO CO in co T i- *- co ro CO CO CO CO CO CO CO ^ t^ cn TT co co co in to to to to to to r- in o o> in oo »- CM CO ID t CO T ^ o> i- co CM co in t- in in co cn t- t-- f- e- O O O) cn O cn »- CM CM T- *- CN »- ID CO CO •*- CO ID t O in co co co TJ- co CM CM CM CM CM CM CM O O O O O O to O O O O O O O O in in CM O O O O O O ro O O O O O O i- O in in CM O O O O O O ID O O O O O O O O in in CN in in in in in in in o) 01 o) co O) cn co cn 01 01 01 01 cn cn O in o in o CM in r~ o © @j <& @< @- O in »- co t- CM 01 t» T «- in ^T * ro in to ro r~ to t- to t- ro O •"• O o> 01 r- O -^ O 5 O O) •r- CM CM CM CM CM ^ ro co *- CN CM 01 t~ O in •» co i TJ- co CM CM CM CM CM CM CM O O O O O O to O O O O O O O O in in CM O O O O O O to O O O O O O r- O in in CM O O O O O O to o o o o o o o O in in CM §OOOOOO O O O O O O O O O O O O CM CM CN CN CN CN CM a. U) Ol 1- X 0 CO ro LU CO 1- ------- 1 u Q l l l 1 U. D x- "i" o 1 U. H O _J 1 i O 1 U. LJ —t 1 i O 1 LL. ' 0 I 1 u. CL 1 . O 1 1 in i i- . < D in UJ _J U. £ in UJ ^ CN D l/J xt D S ro t- < t-H or u. UJ H O in _j _i ^ O CO Cfl < i < i/> •o i- i a (3 O w t- I u u. < O I-H t/> U- (/> UJ X O it Q in LL. CM U- o i- 01 O (0 Old. •H ro l/l -H c u o o u I <- 0. \ ttl "0 Q_ •- z o s u > a . L — M (0 01 c l >- O in o in o CN in t-- o co u) co in co x- r- co O u) u> in in in ro O O O O O O O til U) U)01 ro o CM CM CN CO CO CN x- y> r^ xj in co xj in xj xj p- t^ CM tn to xt 01 UJ O CM O 01 x- 01 xt O O — x- O 01 CM 01 01 r- r- 01 u> xt ro ro CM xt ro r- in CM O 01 O x- 01 CM CO CO CM CO CO CM O1 CM O CO CM x- O CO U) CM x- xj xj CO CM ro ro ro co co co O ID CM O) f- xt 01 ro O xj O O CM CM in U) xj xt (D xj 01 x- 01 co O in x- x- CM CM CM CM CM CM O t- CM CN in in CM x- in in xj xj m xj x- 01 CO — CM CO O O CO CO U) ID CO (D ro ro ro ro ro co co xj CO CM O O CM O CO xj xj xj xj xj xj in co ro CM 01 co xj 01 co r- in in r- in rO XJ XJ Xt XJ TJ TJ xt x- CN CO 01 ID in ID Xt CO X- -r- CO X- xj in in in in in in x- r- O x- O 01 O x- ro xj co co co ro co r*- xt to to ID 01 r~ x- to x- o CN o f*l r*l r*1 r*l m Xj t*~ h- x- m CM tD O xj in XT co in co CM CM CM CM CM CM CM in CN xj o 01 ro 01 CO CO CO f- ID CO ID CN CN CN CN CM CM CM ••- xj t-- in o O r~ t- CM x- O x- CM O CM co co ro co co co O O O O O O to O O O O O O O O in in CM O O O O O O ro O O O O O O t~ O in in CM O O O O O O to O O O O O O O O in in CM in in in in in in in CO CO CO CO CO CO CO 01 01 01 01 01 01 01 O in o in o CM in r- O <& s, g, e, J CO O xt x- x- O co in co t- in xj xj xj CN co ro co ro ro ro ro in in in in in in in xj in in co co o in x- CO t CM CN xj CN x- x- r- CO x- rj CM O O O O O O O O xj 01 XJ CN tD CO x- in ro co xj xt ro t^ co in x- o xj 01 O co co ID u) co in co co ro co co co ro in co co x- o co o CO XJ xj XJ xt xt xt x~ to x~ in f- xt 01 x- co o f- to 01 to XJ XJ m Xj XJ xj rj co O O O xj in 01 t- in co in co to co xj in in in in in in U> 01 O CO CN 01 CM 01 x- CM x- x- x- x- r- D co •*- i£> in CN & en — O co O O) xj in in co r^ in •*- O1 CN xj CN x- ro CM x- CM CM CM CN CM CN in in to O xj o u> CM ID h- to in i- in CM CM CM CM CM CM CM CM ro co co co co r- ID x- x- 01 01 x- 01 CN ro ro CN CM ro CN O O O O O O to O O O O O O O O in in CM O O o O O o co O O O O O O f- O in in CM O O O O O O U) O O O O O O O O in in CM CO CO CO 00 CO CO CO CO CO CO CO CO CO CO 01 01 01 01 01 01 01 O in o in O CM in (^ o O CM to x- m xt x- co UJ in in in xj xj CN CM CM CM CM CM CN CM co ro co co ro co co X- O 01 XJ O Xt X- O CM CM x- x- CN x- ir> xj o t— xt F~ in 01 01 O 01 01 01 01 in 01 CM O O x- in co x- o O x- x- o 01 x- to u> ro ro ro 01 ID tD xj xt (O xj CM co ro ro co co co XJ x- ,- 01 01 x- O1 CO xj xj CO (0 xt CO xt o xt -^ xt r^. in O i- co to in r~ in x- 01 CM tD xt O CO r- co u) co CM in CM xt in in in in in in x- o x- in xt x- xt co o O 01 01 o 01 ^ .* A « xt xf CN tD O CO U> ID CO x- 01 CO O1 CO CM 01 x- m co o r^ 01 x- -xj CM x- ro — x- CM CM CM CM CM CM in co t 01 co co xt CM to f- in in CD in CM CM CM CM CM CS CM ro in CM co O xt co tD x- x- 01 O x- 01 CM ro ro CM ro ro CM O O O O O O UJ O O O O O O O O in in CM O O O O O O co O O O O O O t- O in in CM O O O O O O to O O O O O O O O in in CN 0 0 O 0 OO O 01 01 01 01 01 01 01 01 01 01 01 01 01 01 O in o in o CM in t- O xt U) O) xt o co in CN O in in in in in CM 0 O O 0 O 0 O CM 01 r- xt o ro x- 01 O x- o O x- o 01 CO CO x- 01 x- O CO CO 01 01 CO 01 O1 CO CO CM CN x- O t^ xt to tn in (o to in in in to to o x- CN r- O x- O o x- o CM CO CO CO CO CO CO CM u> ID in in IB in co co co co co ro ro CO CN CM x- x- CN x- t^ 01 CO CO xt CO O xt o 01 co 01 o o> O1 f*- 01 CO x- co x- CD CO CO CO 03 CO 00 f^ ^N J-* J-^ f^ s^ f^ xt in t^ co in x- CM UJ t^ o 01 r^ 01 oo co to t- ro -r- to to O1 x- tO CM x- CM x- x- CN CM CM CM CM CN i— in x- oo in oo in CM to i^ in in u> in CN CM CM CM CM CM CM r- f~ o 01 oo oo co ID CM x- 01 O x- O CM ro co CM co r) co O O O O O O to O O O O O O O O in in CM O O O O O O ro O 0 O 0 OOt- o m in CM O O O O O O ID 0 0 0 O 0 OO o in m CM in in in in m in in 01 01 01 01 01 01 01 01 01 01 01 01 01 01 O in o m O CN in (^ o e. » » ft a o CM m 01 1- 01 UJ ro o xt ir> in in in CM O O O O O O O CM 00 U) CO 01 CM O 01 O x- o 01 x- o ^^ 01 t^ CO x- CO O 01 co co 01 01 co 01 co co xt ro CM oo co in x- CO CM CM CM CM CM CM ro 01 xt in x- 01 in to f~ f* UJ r— (D CM CM CM CN CM CM CM 01 CM CM CN x- CM x- CM CO CO CO CO CO CO O x- CM CN CO CN CO in 01 t^ t^ co oo Is- co co ro co co co co CO t~ x- xj ,- ^ 00 x- r- co co uj in xt i- in co x- o) r- o x"v r* r~L r*L r* r** f^ in UJ co xt to CM co U) t- O O1 1- 01 CO in t~ oo in co eo t~ O1 x- CO CM x- CM x- x- CM CM CM CM CM CM O1 01 CN O CO x- 00 CN to e~ to in !»• in CM CM CM CM CM CM CN d xj x- x- co CM r- UJ CO x- O x- CM O CM CO CO CO CO CO CO o o o o o o to 0 0 0 0 0 0 O O in in CN O O O O O O CO 0 0 O 0 O O r- O in in CM O O O O O O to O 0 0 O 0 O O O in in CM CM CM CN CM CM CM CM a. Z O in ro i- •x. i CO UJ _J CO ------- in co LU CO DQ 1 < 75 h- .TITUDE < 5 i 0. 0 6 in < UJ -J t— 1 GRAMS/ FACTORS HH t/) l/l LU X HDGV i i i 1 U_ > O O *r~ "F 0 1 U. 00 -1 1 i 0 1 LI- nH O '- i O 1 U- 1 *O ! o 1 •*- 1 1 1 U_ 1 . i h- I u. \~ . O in u u. LO- LL. 8' ^_ u_ r* t LL D in -j U_ CJ LU CJ s. 0) U (0 D1Q. •H <0 I/) •»-• c u O U CJ I i. a ~^ o •o Q. (J S 0 > o. . t_ •- « n a) O in o in o CM in t^ o a, a s, @, 6 O co ^ ir ID O) T O IP O ID ID ID in TT 8888888 ID ID (O to CD (O CD ^ •*- 00 C7) ^- CJ) CO CO CM CO O O CM O O CO ID ID O O CM in 10 f- O CM CM co ID CM in co *- ^ -^ CM CO CO CO CO CO CO co cn CM in cn in in •* ^ i •*• *- •* »- CO ^ T T «J ^- co ^- co co ••» T - cn O in O in o CM in t- O (S, ID O ID cn co '- in co O t- ID cn r- co (s> in co T o to CD cn co CM in ID CM n co co i- t~ oo r~ CM CM CN CM CM CM CM co 10 in in to CD ^t co co co O O co O CO - cn in *- in CM co t o> CN ••- r- t- CO CO CD CO t^ 1^- CD CM CM CN CN CN CM CM T 01 •— *)• CO O CN •a- CM to O O co O co t rr i i- T i CO to O) CM CD CD CO cn co oo CD in co in co ^r •* i ^ ^r t •r- in •>- CM co to in co t ID to CM in CM in CD cn CD oo CM f co *- M- .- cn co o in CD CD CD in CD CD oo co in CD in ^- in O CO CO CM CM CO CM t- CD Tf in oo O in co *- ^- CM o co »- ••- CM CM CM CM CM CM CD CN ^- in co co t- »- in r- in ^j- CD i CM CM CM CM CM CM CM CN CD 00 "- ^ CM CD in 0) o cn co o oo CN CM P3 CM CM CO CN co O cn co •» o CM cn in i co co in co CM CO CO CO CO CO CO O O O O O O CD O O O O O O O O in in CM O O O O O O co O O O O O O r- O in in CM O O O O O O CD O O O O O O O O in in CM co co co co co co co m oo co co co co co cn cn cn CD cn cn cTi O in O in CM in r- @> a a © co T- CM in O t- t *- CD in in in cn cn cn cn co co oo co in in in in CM i in r- CM •q- in co t co o t- t- CO CD t O * CN CM CN CM CM CM q- t O t- co O *- co co ^r ^r co cn O cn CD co CD CD ^> CO t T T CN CD — CD in CM i " co co cn O CM O CM O in CD CD CD -- CM CO CD O) "- *- O 0 - ^ - ^f CD l~ 01 co O co ••- »- CM CM CM in in cn CM *- •» CD in CM CM CM CN *- ^ CO 0) in cn o co CN CN CO CM ^ CM cn to o) in i co CM CO CO CO o o o o O O O O O in 00 0 O O O O O O 0 O O O 0000 O in 0 O 0 O cn co cn cn CD cn cn oi 8 a in co CM cn O) C7> oo co oo in in in CM o co co in co co t^ in in CD o CO CO CO CM CM CM t 1- Tj- co o co CO T CO i- in -f t CD •» t TJ- TJ- co n o O co ••- CD CD O co i- en in (o in in co in 0^0 — *- co O CM O CM CM CM CO 1- CO co in i- CM CM CM CM O t co O oo CM CO CM in i- ro co in co CO CO CO O O CD O O O in CM O O co O O t- in in CM O O 10 O 0 0 in CM O 0 O en co co cn O (J) O in O in O CM in t- O a » & e> ft CM O *- CM O) in CM o> CD f- ic CD in in CM CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO *- CM *- in O CD CM ••- CO t CM CM CO IN CD ic CM o t- en m O co O O O CO ID CD co r- r» co t- t- r~ •"- co CM in r- i- O •» in t co ^ co CO CO CO CO CO CO CO »- co o cn in r- co ID o *- cn en o cn CO •» TT CO CO <» CO i oo t- ic t- oo in CM I-- I- CD CD t~- CO cn co CD in CM CM oo CD ID in -sr in CD T •» in in in in in in co r- o CM T- oo *- t~ 0") O 0> ffl CD 0) 0 0 - 0 0 O 0 co 10 *- CD in •» co co 01 co -- 01 *- O *- *- CM CM *- CM CM 10 "- t O (O CO *- -- •» CD •» n in t CM CM CM CM CM CM CM ^f t^ co co in O in in cn o co co o co CM CM CO CM CM CO CM oo in CD cn o"> O in o in o CM in t- o ft e a a a cn co r- cn in in N 01 CD t- to to in in CM r- t- i- t- t- t- t- in in in in in in in CM CM CM CM CM CM CM O O O co cn in O *- CO ^ CM •— CO CN t- in ••- cn u> to r- r~ co t~ co co co o CM •T CO CO T ^- t CM •* *- to (o co o CO CO *- O CO O O CM CM CO CO CM CO CO CN 00 O t~ co 0) CD co in ID in in in in CO CO CO CO CO CO CO CM r» 1C (0 CO 10 CM O> CO *- "- CM CM CM •<- co *- in in h- '- 1C CO CO CO *- O O T in T T in in in in in co o cn t- cn t^ cn 0) cn oo cn co 0 O 0 0 o 0 O in to CM N in co in TJ CM CM CM CM CM CM CM ID -^ T O CO CO CO in o O cn oo o co CM CO CO CM CM CO CM »- CO 00 10 O O CO O t~ t (o in to TJ- CO CO CO CO CO CO CO O O O O O O IO o o o o o o o O in in CM O O O O O O co O 0 0 O 0 0 t-. O in in CM O O O O O O (D O O 0 O O 0 O O in in CM §OOOOOO O O O O O Q O O O O O O CM CM CM CM CM CM CM I D. X o o in 1- < X o in CO UJ _p 03 < 1- ------- 1 1 1 C3 Q i i' i LL o o 5p f i O \ U. Q "- _l I 1 O 1 U_ o o Q -- _l I i O 1 U_ 1 . 1 f- 1 1 I 1 U- 0. 1 . ( I"- 0 i 1 in i in LL. K- - < a in UJ 1 _J 1 U_ UJ -X. 1 CN O l/l 1 CD n £ 1 CO 1- < 1 i- a i u. UJ I- O 1 . CO 03 < 1 1 < CO 1 -3 i- i a i cs o 1-H 1- Z U 1 u- < 1 . z I 2 O 1 HH 1 CO 1 U_ CO 1 . S i h* LU 1 X 1 o in _j i I LL. 1 C\ i i 1 Lu 1 . 1 1 1 U L ffl O (0 oio. +j ra CO -P C u 0 O O I t- a \ Q) t> a o & u > Q. • t, •- ro W- CD »- CD *- CP »- 01 O co r~ O r- ^t t LO ^t TJ- LO TJ 00 CO ^ t~- CO CD O oo CD oo LO •sr r~ in •«T in in in in in in 01 ••- co co co in t» CD in r» -a- co CD co in CD CD CD CD CD CO CO •>- CN LO ^ CN CO O! CM CN *- •"- CM ^ co CN CD r- P~ 05 in a> 01 in co T- co CN *- CN CN CN CN CN CN CN in o »- P- c- CN co co 01 p* in r^ CD CN CN CM CN CN CN CN •^ t— O CN in co f- t- *- CO •r- O CN O CN CO CO CO CO CO CO f- O CD O CN CO O T- CO r- CD CD t*- CD CO CO CO CO CO CO CO O O O O O O CP O O 0 O O O O O in in CN O O O O O O co O O O O O O r~ O in in CN O O O O O O to O O O O O O O O in in CN O O O O O O O CD Ol CJ) O5 01 05 01 01 O5 05 05 05 05 Ol O in o LO o CN in P~ o «, ® ® a a in CN ••- CN 01 &"• ^ ^~ oo oo CD CD CD LO CM CN CN CN CN CN CN CN r~ o *- co co to 01 CN LO CD "3- CO LO CO co -r- co in CN in co CN CN CN CN CN CN CN to co TT tr in co O t- O CO 00 01 O 05 CN co •— 01 CN in ^i CO ID CO to CD f- CO CO CO CO CO CO CO CO O in CN O CD 01 p- CT) CO ^- CO CN CO CN oo CD in co ^r in CN in »- -r- o O ••- O <» in in in in in in CO 1 O CO CD h- *- CO -^ O CO O5 O 01 in CD CD in in CD in ^ in co O co CD co co O O O 01 O 0) co *- O co -^ o O 01 f in co •»- co CN »- CM CN CM CN CN CM co o in 05 T ro O co CD oo to in p^ to CN CN CN CN CN CN CN ^ O to "- t- co co P» CN CN -r- O CN O CN CO CO CO CO CO CO CN - CN *- n- CN f f o> ^- in co i- co CN ^- CN CN CN CN CN CN in CN P- *- p- in CN co CD co P- in P- CD CM CM CN CN CN CN CM to in co co »- to *- p- CN CN »- T- CN »- CN CO CO CO CO CO CO in CN in CM co en o CN O P- CD P- CO P- CO ^J CO CO CO CO CO O O O O O O co O O O O O O O O in in CM O O O O O O co O O O O O O P- O in LO CN O O O O O O CD O O O O O O O O in in CM O O O O O O O O O O O O O O o o o o o o o CN CN CN CN CN CN CN 0. 0 in in i- X o CP CO UJ _J CO r- ------- Appendix K EMISSION SENSITIVITY TABLES A/C AND LOAD The following tables show the sensitivity of the MOBILES emission factors to variations in air conditioner usage, extra vehicle loads, and the percentage of vehicles towing trailers. The LDGT category is a weighted average of LDGTls and LDGT2s. The following conditions are included:t Altitudes: Low, High Air Conditioner Usage: 0%, 50%, 100% Extra Load Percentage: 0%, 5%, 10%, 15% Trailer Towing Percentage: 0%, 5%, 10%------- K-2 TABLE 1 LOW ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 0 % WET BULB TEMPERATURE = 66 F DRY BULB TEMPERATURE = 71 F CAL. EXTRA LOAD YEAR PERCENTAGE LDGV EMISSION FACTORS TRAILER TOWING PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS 3) TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES @LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 .58 .59 .60 .60 .76 .76 .76 .77 .38 .38 .39 .39 .84 .85 .85 .85 3.66 3.66 3.67 3.68 2.81 2.82 2.82 2.83 2.43 2.43 2.44 2.44 1.88 1.88 1 .89 1.89 3.73 3.73 3.74 3.75 2.87 2.87 2.88 2.88 2.48 2.48 2.49 2.49 1 .92 1 .92 1 .92 1.93 6.80 6.82 6.83 6.84 5.53 5.54 5.55 5.56 4.84 4.85 4.85 4.86 3.53 3.54 3.55 3.55 6.94 6.95 6.96 6.98 5.64 5.65 5.66 5.67 4.94 4.95 4.96 4.97 3.61 3.62 3.63 3.63 7.07 7.08 7. 10 7.11 5.76 5.77 5.78 5.79 5.05 5.06 5.07 5.08 3.69 3.70 3.71 3.71 4.66 4.66 4.67 4.68 3.55 3.55 3.56 3.56 3.02 3.02 3.03 3.03 2.24 2.25 2.25 2.25 4.73 4.74 4.75 4.75 3.61 3.61 3.62 3.62 3.07 3.07 3.08 3.08 2.28 2.28 2.29 2.29 4.81 4.81 4.82 4.83 3.67 3.67 3.68 3.68 3. 12 3.13 3. 13 3. 14 2.32 2.32 2.33 2.33 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 71 F AMBIENT TEMPERATURE, AND 19.6 MPH AVERAGE SPEED. TABLE 1 THC @ 0 % A/C USAGE------- K-3 TABLE 2 LOW ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 50 % WET BULB TEMPERATURE = 71 F DRY BULB TEMPERATURE = 79 F LDGV EMISSION FACTORS <9> TRAILER TOWING CAL. EXTRA LOAD PERCENTAGE YEAR PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS @ TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES @LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 i 1990 1990 1990 1990 1995 1995 1995 1995 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 .57 .58 .59 .59 .74 .74 .74 .75 .35 .35 .36 .36 .79 .80 .80 .80 3.65 3.65 3.66 3.67 2.79 2.80 2.80 2.81 2.40 2.40 2.40 2.41 1 .83 1 .83 1 .84 1 .84 3.72 3.72 3.73 3.74 2.85 2.85 2.86 2.86 2.44 2.45 2.45 2.46 1 .87 1 .87 1 .87 1.88 6.79 6.81 6.82 6.83 5.53 5.54 5.55 5.56 4.83 4.84 4.85 4.86 3.49 3.50 3.51 3.51 6.93 6.94 6.95 6.97 5.65 5.66 5.67 5.68 4.94 4.95 4.96 4.96 3.57 3.58 3.58 3.59 7.06 7.08 7.09 7. 10 5.76 5.78 5.79 5.80 5.05 5.05 5.06 5.07 3.65 3.66 3.66 3.67 4.65 4.66 4.66 4.67 3.53 3.54 3.54 3.55 3.00 3.00 3.01 3.01 2.21 2.21 2.21 2.21 4.73 4.73 4.74 4.75 3.60 3.60 3.61 3.61 3.05 3.05 3.06 3.06 2.24 2.25 2.25 2.25 4.80 4.81 4.82 4.82 3.66 3.66 3.67 3.67 3.10 3.11 3.11 3.12 2.28 2.28 2.29 2.29 *EMI SSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 79 F AMBIENT TEMPERATURE, AND 19.6 MPH AVERAGE SPEED. TABLE 2 THC § 50 % A/C USAGE------- K-4 TABLE 3 LOW ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 100 % WET BULB TEMPERATURE = 79 F DRY BULB TEMPERATURE = 86 F LDGV EMISSION FACTORS <3> TRAILER TOWING CAL. EXTRA LOAD PERCENTAGE YEAR PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS @ TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES <6>LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % v 70 5 % 10 % 15 % 0 % 50/ /o 10 % 1 R V I 3 /o n ^ \J /o 5o/ /o 10 % 15 % 0 % 5o/ 7o 10 % 15 % 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 .80 .81 .82 .82 .93 .93 .94 .94 .51 .51 .52 .52 .89 .89 .90 .90 3.88 3.89 3.90 3.90 2.99 2.99 3.00 3.00 2.56 2.56 2.57 2.57 1.93 1 .93 1.93 1 .94 3.96 3.97 3.97 3.98 3.05 3.06 3.06 3.07 2.61 2.62 2.62 2.63 1 .97 1 .97 1 .97 1 .98 7. 18 7. 19 7.21 7.22 5.92 5.93 5.94 5.95 5. 19 5.20 5.21 5.22 3.74 3.75 3.76 3.76 7.33 7.34 7.35 7.37 6.05 6.06 6.07 6.08 5.31 5.32 5.33 5.34 3.83 3.83 3.84 3.85 7.47 7.49 7.50 7.51 6. 18 6. 19 6.20 6.21 5.43 5.44 5.45 5.46 3.91 3.92 3.93 3.94 4.90 4.91 4.91 4.92 3.75 3.76 3.76 3.77 3.18 3. 19 3. 19 3. 19 2.32 2.32 2.32 2.33 4.98 4.99 5.00 5.00 3.82 3.82 3.83 3.83 3.24 3.24 3.25 3.25 2.36 2.36 2.36 2.37 5.06 5.07 5.08 5.09 3.88 3.89 3.89 3.90 3.30 3.30 3.31 3.31 2.40 2.40 2.41 2.41 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 86 F AMBIENT TEMPERATURE, AND 19.6 MPH AVERAGE SPEED. TABLE 3 THC <6> 100 % A/C USAGE------- K-5 TABLE 4 LOW ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 0 % WET BULB TEMPERATURE = 66 F DRY BULB TEMPERATURE = 71 F LDGV EMISSION FACTORS @ TRAILER TOWING CAL. EXTRA LOAD PERCENTAGE YEAR PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS )> TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES <5>LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 0 °/0 5 % 10 % 15 % 0 % 5 % 10 % 15 % 29 29 30 30 23 23 23 24 20 20 20 21 16 16 17 17 .30 .69 .07 .45 .07 .39 .72 .04 .33 .63 .93 .23 .58 .83 .09 .34 32.76 33. 19 33.62 34.05 26. 16 26.53 26.90 27.27 23.21 23.56 23.90 24.24 19.04 19.33 19.62 19.92 36.21 36.69 37. 17 37.65 29.25 29.67 30.09 30.50 26. 10 26.48 26.87 27.25 21 .51 21 .83 22. 16 22.49 52.46 53.09 53.73 54.36 43.35 43.91 44.47 45.02 38.33 38.85 39.36 39.88 29. 16 29.60 30.03 30.46 58.01 58.72 59.43 60. 14 48.54 49. 17 49.80 50.43 43.23 43.82 44.41 44.99 33.35 33.84 34.34 34.83 63.56 64.35 65. 14 65.92 53.72 54.43 55. 14 55.84 48.13 48.79 49.45 50. 1 1 37.53 38.09 38.65 39.21 37. 1 1 37.50 37.88 38.27 28.40 28.73 29.05 29.38 24. 17 24.46 24.76 25.05 18.04 18.28 18.52 18.76 40.56 41 .00 41 .43 41 .86 31 .47 31 .84 32.21 32.58 26.99 27.32 27.66 28.00 20.35 20.62 20.90 21 . 17 44.01 44.49 44.97 45.46 34.54 34.95 35.37 35.78 29.81 30.18 30.56 30.94 22.66 22.97 23.27 23.58 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 71 F AMBIENT TEMPERATURE, AND 19.6 MPH AVERAGE SPEED. TABLE 4 CO § 0 % A/C USAGE------- K-6 TABLE 5 LOW ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 50 % WET BULB TEMPERATURE = 71 F DRY BULB TEMPERATURE = 79 F CAL. EXTRA LOAD YEAR PERCENTAGE LDGV EMISSION FACTORS TRAILER TOWING PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORSTRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES <5>LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0°/ h 5 % 10 % 15 % 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 31 31 31 32 23 24 24 24 20 20 20 21 15 16 16 16 .00 .40 .81 .21 .70 .04 .37 .70 .39 .69 .99 .29 .78 .03 .27 .51 34.64 35.09 35.54 36.00 26.86 27.24 27.62 27.99 23.27 23.61 23.95 24.30 18. 13 18.41 18.68 18.96 38.27 38.78 39.28 39.79 30.02 30.44 30.87 31 .29 26. 15 26.53 26.92 27.30 20.48 20.79 21 . 10 21 .41 55.51 56. 19 56.86 57.53 45.59 46. 18 46.76 47.35 39.90 40.43 40.97 41.51 29. 10 29.53 29.96 30.39 61 .42 62. 18 62.94 63.69 51 .05 51 .72 52.38 53.05 44.99 45.60 46.21 46.82 33.26 33.75 34.25 34.74 67.34 68. 17 69.01 69.85 56.51 57.25 58.00 58.74 50.08 50.76 51 .45 52.13 37.43 37.98 38.54 39.09 39.35 39.75 40. 16 40.57 29.53 29.86 30.20 30.53 24.69 24.99 25.29 25.58 17.60 17.83 18.06 18.29 42.99 43.45 43.90 44.36 32.69 33.07 33.45 33.84 27.54 27.88 28.22 28.56 19.83 20.09 20.36 20.62 46.63 47. 14 47.65 48. 16 35.86 36.28 36.71 37. 14 30.40 30.78 31. 16 31.54 22.06 22.36 22.66 22.95 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 79 F AMBIENT TEMPERATURE, AND 19.6 MPH AVERAGE SPEED. TABLE 5 CO 50 % A/C USAGE
------- K-7 TABLE 6 LOW ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 100 % WET BULB TEMPERATURE = 79 F DRY BULB TEMPERATURE = 86 F CAL. EXTRA LOAD YEAR PERCENTAGE LDGV EMISSION FACTORS ?> TRAILER TOWING PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS § TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES @LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 0 % 37.91 42.42 46.92 1985 5 % 38.41 42.97 47.54 1985 10 % 38.90 43.53 48.16 1985 15 % 39.40 44.09 48.79 1988 0 % 28.59 32.41 36.22 1988 5 % 28.99 32.86 36.74 1988 10 % 29.39 33.32 37.25 1988 15 % 29.79 33.78 37.76 1990 0 % 24.09 27.49 30.89 1990 5 % 24.45 27.90 31.34 1990 10 % 24.80 28.30 31.80 1990 15 % 25.15 28.70 32.25 1995 0 % 17.54 20.14 22.75 1995 5 % 17.80 20.45 23.10 1995 10 % 18.07 20.76 23.44 1995 15 % 18.34 21 .07 23.79 66.62 73.91 81.20 67.44 74.83 82.22 68.26 75.75 83.24 69.09 76.68 84.27 55.45 62.20 68.95 56.17 63.02 69.87 56.89 63.84 70.79 57.62 64.66 71.70 48.41 54.64 60.87 49.06 55.39 61.71 49.72 56.13 62.55 50.37 56.88 63.39 34.06 38.94 43.81 34.57 39.52 44.46 35.07 40.09 45.11 35.57 40.67 45.76 47. 47. 48. 48. 35. 35. 36. 36. 29. 29. 29. 30. 19. 20. 20. 20. 34 84 34 83 34 75 15 56 19 54 90 26 80 06 32 58 51. 52. 52. 53. 39. 39. 40. 40. 32. 33. 33. 33. 22. 22. 22. 23. 84 41 97 53 20 66 13 59 60 01 41 82 32 62 92 22 56. 56. 57. 58. 43. 43. 44. 44. 36. 36. 36. 37. 24. 25. 25. 25. 35 97 60 23 05 58 10 62 01 47 93 39 85 18 52 86 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 86 F AMBIENT TEMPERATURE, AND 19.6 MPH AVERAGE SPEED. TABLE 6 CO @ 100 % A/C USAGE------- K-8 TABLE 7 LOW ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 0 % WET BULB TEMPERATURE = 66 F DRY BULB TEMPERATURE = 71 F CAL. EXTRA LOAD YEAR PERCENTAGE LDGV EMISSION FACTORS » TRAILER TOWING PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS (5> TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES <5>LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 0 % 5 % 10 % 15 % 2.04 2.04 2.05 2.06 2.07 2.08 2.08 2.09 2. 2. 2. 2. 10 11 12 13 3.42 3.44 3.45 3.46 3.48 3.49 3.50 3.51 3.53 3.54 3.55 3.56 3.47 3.47 3.48 3.49 3.50 3.51 3.51 3.52 3.53 3.54 3.55 3.56 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % 5 % 10 % 15 % 0 5 10 15 0 5 10 15 1.72 1 .72 1 .73 1.73 1 .59 1.60 1.61 1.61 1.46 1 .47 1.47 1.48 1.75 1.75 1.76 1.77 1.62 1.63 1 .64 1.64 1 .49 1.49 1.50 1 .50 1 1 1 1 1 1 1 1 1 1 1 1 .78 .79 .79 .80 .66 .66 .67 .67 .52 .52 .53 .53 3 3 3 3 2 2 2 2 2 2 2 2 .19 .20 .21 .22 .95 .96 .97 .98 .47 .48 .49 .49 3.24 3.25 3.26 3.27 3.01 3.02 3.03 3.04 2.52 2.52 2.53 2.54 3.30 3.31 3.32 3.33 3.06 3.07 3.08 3.09 2.56 2.57 2.58 2.59 2 2 2 2 2 2 2 2 2 2 2 2 .95 .95 .96 .97 .65 .66 .66 .67 .28 .29 .29 .30 2.98 2.98 2.99 3.00 2.68 2.69 2.69 2.70 2.31 2.32 2.32 2.33 3.01 3.02 3.02 3.03 2.71 2.72 2.72 2.73 2.34 2.34 2.35 2.35 *EMI SSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 71 F AMBIENT TEMPERATURE, 19.6 MPH AVERAGE SPEED, AND 75 GRAINS WATER/LB OF DRY AIR HUMIDITY. TABLE 7 NOx <5> 0 % A/C USAGE------- K-9 TABLE 8' LOW ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 50 % WET BULB TEMPERATURE = 71 F DRY BULB TEMPERATURE = 79 F LDGV EMISSION FACTORS (3> TRAILER TOWING CAL. EXTRA LOAD PERCENTAGE YEAR PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS <5> TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES @LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 2. 2. 2. 2. 1. 1. 1. 1. 1. 1. 1 . 1 . 1 . 1. 1 . 1 . 00 00 01 02 65 65 66 66 51 51 52 52 35 35 36 36 2.03 2.04 2.04 2.05 1 .67 1 .68 1 .69 1.69 1 .54 1 .54 1 .55 1 .55 1 .38 1 .38 1 .39 1 .39 2.06 2.07 2.08 2.08 1.70 1.71 1.72 1.72 1 .56 1 .57 1 .57 1 .58 1 .40 1 .41 1 .41 1 .42 3.31 3.32 3.33 3.34 3.03 3.04 3.06 3.07 2.78 2.79 2.80 2.81 2.26 2.27 2.28 2.29 3.36 3.37 3.38 3.39 3.09 3. 10 3.11 3. 12 2.83 2.84 2.85 2.86 2.30 2.31 2.32 2.33 3.41 3.42 3.43 3.44 3. 14 3.15 3. 16 3. 17 2.88 2.89 2.90 2.91 2.35 2.36 2.36 2.37 3.40 3.41 3.42 3.42 2.85 2.86 2.86 2.87 2.54 2.54 2.55 2.55 2.15 2. 16 2. 16 2. 17 3.44 3.44 3.45 3.46 2.88 2.89 2.89 2.90 2.57 2.57 2.58 2.58 2. 18 2. 18 2. 19 2. 19 3.47 3.47 3.48 3.49 2.91 2.92 2.92 2.93 2.59 2.60 2.60 2.61 2.20 2.20 2.21 2.21 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 79 F AMBIENT TEMPERATURE, 19.6 MPH AVERAGE SPEED, AND 75 GRAINS WATER/LB OF DRY AIR HUMIDITY. TABLE 8 NOx @ 50 % A/C USAGE------- K-10 TABLE 9 LOW ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 100 % WET BULB TEMPERATURE = 79 F DRY BULB TEMPERATURE = 86 F LDGV EMISSION FACTORS <5> TRAILER TOWING CAL. EXTRA LOAD PERCENTAGE YEAR PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS a TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES @LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % 5Q/ /O 10 % 15 % 0 % K V *S fO 10 % 15 % 0 % C o/ 10 % 15 % 0 % 5 % 10 % 15 % 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .88 .89 .89 .90 .50 .50 .51 .51 .34 .35 .35 .36 .16 .16 .17 .17 1.91 1.92 1.92 1.93 1.53 1 .53 1.54 1.54 1.37 1.37 1 .38 1.38 1 . 18 1.19 1 . 19 1.19 1 .94 1.95 1 .96 1.96 1.55 1.56 1 .56 1.57 1.39 1 .40 1 .40 1.41 1.20 1.21 1.21 1 .22 3. 10 3.11 3. 12 3. 13 2.79 2.80 2.81 2.82 2.52 2.53 2.54 2.55 1.96 1.97 1 .98 1.99 3. 15 3. 16 3. 17 3. 18 2.84 2.85 2.86 2.87 2.56 2.57 2.58 2.59 2.00 2.01 2.02 2.02 3.20 3.21 3.22 3.23 2.89 2.90 2.91 2.92 2.61 2.62 2.63 2.64 2.04 2.05 2.05 2.06 3.27 3.27 3.28 3.28 2.68 2.68 2.69 2.70 2.35 2.35 2.36 2.36 1 .94 1.95 1.95 1 .96 3.30 3.30 3.31 3.31 2.71 2.71 2.72 2.72 2.37 2.38 2.38 2.39 1 .96 1.97 1.97 1.98 3.33 3.33 3.34 3.35 2.73 2.74 2.74 2.75 2.40 2.40 2.41 2.41 1 .99 1 .99 1 .99 2.00 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 86 F AMBIENT TEMPERATURE, 19.6 MPH AVERAGE SPEED, AND 75 GRAINS WATER/LB OF DRY AIR HUMIDITY. TABLE 9 NOx100 % A/C USAGE
------- K-1 1 TABLE 10 HIGH ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 0 % WET BULB TEMPERATURE = 66 F DRY BULB TEMPERATURE = 71 F LDGV EMISSION FACTORS § TRAILER TOWING CAL. EXTRA LOAD PERCENTAGE YEAR PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES @LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 n % \J m 5V 70 10 % 15 % 0 % 5py A) 10 % 15 % 0 % 5V A) 10 % 15 % 0 % 5QJ To 10 % 15 % 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 .84 .85 .86 .87 .53 .54 .54 .55 .94 .95 .95 .96 . 13 . 14 . 14 . 14 4.93 4.94 4.95 4.95 3.60 3.60 3.61 3.62 3.00 3.01 3.01 3.01 2. 18 2. 18 2. 18 2.19 5.02 5.03 5.03 5.04 3.67 3.67 3.68 3.68 3.06 3.06 3.07 3.07 2.22 2.23 2.23 2.23 8.78 8.79 8.81 8.82 6.85 6.86 6.88 6.89 5.86 5.87 5.88 5.89 4.08 4.09 4.09 4.10 8.94 8.95 8.97 8.99 6.99 7.00 7.01 7.02 5.98 5.99 6.00 6.01 4.17 4.17 4. 18 4. 19 9. 10 9. 12 9.13 9.15 7.13 7.14 7. 15 7. 16 6. 1 1 6. 12 6. 13 6. 14 4.25 4.26 4.27 4.28 6.33 6.33 6.34 6.35 4.64 4.65 4.65 4.66 3.86 3.86 3.87 3.87 2.75 2.75 2.76 2.76 6.42 6.43 6.43 6.44 4.71 4.72 4.72 4.73 3.92 3.92 3.93 3.93 2.79 2.80 2.80 2.80 6.51 6.52 6.53 6.54 4.78 4.79 4.80 4.80 3.98 3.99 3.99 4.00 2.84 2.84 2.85 2.85 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMTr 71 F AMBIENT TEMPERATURE, AND 19.6 MPH AVERAGE SPEED. TABLE 10 THC 0 % A/C USAGE------- K-12 TABLE 1 1 HIGH ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 50 % WET BULB TEMPERATURE = 71 F DRY BULB TEMPERATURE = 79 F CAL. EXTRA LOAD YEAR PERCENTAGE LDGV EMISSION FACTORS TRAILER TOWING PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS <3> TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES (5>LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % 5o/ n) 10 % 15 % 0 % 5(V /O 10 % 15 % 0 % c w *s /O 10 % 15 % 0 % c y W /V 10 % 15 % 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 .83 .83 .84 .85 .50 .51 .51 .52 .90 .91 .91 .92 .07 .08 .08 .08 4.91 4.92 4.93 4.94 3.57 3.58 3.58 3.59 2.96 2.97 2.97 2.97 2. 12 2. 12 2. 12 2. 13 5.00 5.01 5.02 5.03 3.64 3.64 3.65 3.65 3.02 3.02 3.03 3.03 2. 16 2. 16 2. 17 2. 17 8.76 8.77 8.79 8.80 6.84 6.85 6.86 6.87 5.84 5.85 5.86 5.87 4.03 4.03 4.04 4.05 8.92 8.93 8.95 8.96 6.97 6.99 7.00 7.01 5.96 5.97 5.98 5.99 4.11 4. 12 4. 13 4. 13 9.08 9.09 9.11 9. 13 7. 1 1 7. 12 7. 13 7. 15 6.08 6.09 6. 10 6. 1 1 4.20 4.21 4.21 4.22 6.31 6.32 6.33 6.34 4.62 4.63 4.63 4.64 3.83 3.83 3.84 3.84 2.70 2.71 2.71 2.71 6.41 6.41 6.42 6.43 4.69 4.70 4.70 4.71 3.89 3.89 3.90 3.90 2.75 2.75 2.75 2.76 6.50 6.51 6.51 6.52 4.76 4.77 4.78 4.78 3.95 3.96 3.96 3.97 2.79 2.79 2.80 2.80 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 79 F AMBIENT TEMPERATURE, AND 19.6 MPH AVERAGE SPEED. TABLE 11 THC @ 50 % A/C USAGE------- K-13 TABLE 12 HIGH ALTITUDE THC EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 100 % WET BULB TEMPERATURE = 79 F DRY BULB TEMPERATURE = 86 F LDGV EMISSION FACTORS (3> TRAILER TOWING CAL. EXTRA LOAD PERCENTAGE YEAR PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS (5) TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES <3>LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 0 % 5 % 10 % 15 % 5. 5. 5. 5. 3. 3. 3. 3. 3. 3. 3. 3. 2. 2. 2. 2. 10 1 1 12 13 73 73 74 75 09 10 10 1 1 19 19 19 20 5.20 5.21 5.22 5.23 3.80 3.81 3.81 3.82 3. 15 3. 16 3. 16 3. 17 2.23 2.24 2.24 2.24 5.30 5.30 5.31 5.32 3.88 3.88 3.89 3.90 3.22 3.22 3.23 3.23 2.28 2.28 2.29 2.29 9.20 9.21 9.23 9.24 7.25 7.27 7.28 7.29 6.22 6.23 6.24 6.25 4.28 4.29 4.29 4.30 9.37 9.39 9.40 9.42 7.40 7.41 7.43 7.44 6.35 6.36 6.37 6.38 4.37 4.38 4.39 4.40 9.54 9.56 9.58 9.59 7.55 7.56 7.58 7.59 6.48 6.49 6.50 6.51 4.47 4.48 4.48 4.49 6.61 6.62 6.63 6.64 4.87 4.87 4.88 4.88 4.04 4.04 4.05 4.05 2.83 2.83 2.84 2.84 6.71 6.72 6.73 6.74 4.94 4.95 4.96 4.96 4. 10 4.11 4. 1 1 4. 12 2.88 2.88 2.88 2.89 6.81 6.82 6.83 6.84 5.02 5.03 5.04 5.04 4.17 4.17 4. 18 4. 19 2.92 2.93 2.93 2.93 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 86 F AMBIENT TEMPERATURE, AND 19.6 MPH AVERAGE SPEED. TABLE 12 : THC @ 100 % A/C USAGE------- K-14 TABLE 13 HIGH ALTITUDE CAL. EXTRA LOAD YEAR PERCENTAGE CO EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 0 % WET BULB TEMPERATURE = 66 F DRY BULB TEMPERATURE = 71 F LDGV EMISSION FACTORS TRAILER TOWING PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES <5>LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 0 % '.5.01 50.39 55.77 1985 5 % 45.60 51.06 56.51 1985 10 % 46.19 51 .72 57.26 1985 15 % 46.78 52.39 58.00 1988 0 % 35.26 40.02 44.78 1988 5 % 35.76 40.59 45.42 1988 10 % 36.26 41.16 46.06 1988 15 % 36.76 41.73 46.70 1990 0 % 31.31 35.76 40.22 1990 5 % 31.77 36.29 40.81 1990 10 % 32.24 36.82 41.41 1990 15 % 32.70 37.35 42.00 1995 0 % 26.22 30.12 34.02 1995 5 % 26.62 30.58 34.54 1995 10 % 27.03 31.04 35.06 1995 15 % 27.43 31.50 35.58 73.19 80.81 88.43 74.07 81.79 89.51 74.94 82.76 90.59 75.81 83.74 91.67 57.03 63.68 70.34 57.75 64.50 71.25 58.47 65.31 72. 16 59.19 66. 12 73.06 48.92 55.03 61.14 49.56 55.76 61.96 50.21 56.49 62.78 50.85 57.23 63.60 35.27 40.30 45.32 35.79 40.89 45.99 36.31 41.49 46.66 36.83 42.08 47.33 55.98 61.13 66.28 56.55 61.77 66.99 57.13 62.42 67.71 57.70 63.06 68.43 41 .83 46.27 50.72 42.30 46.81 51.32 42.77 47.34 51.92 43.24 47.88 52.52 35.45 39.51 43.57 35.88 40.00 44.12 36.30 40.48 44.66 36.72 40.96 45.20 26.71 30.05 33.40 27.05 30.45 33.85 27.40 30.85 34.30 27.74 31.24 34.75 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 71 F AMBIENT TEMPERATURE, AND 19.6 MPH AVERAGE SPEED. TABLE 13 CO @ 0 % A/C USAGE------- K-15 TABLE 14 HIGH ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 50 % WET BULB TEMPERATURE = 71 F DRY BULB TEMPERATURE = 79 F CAL. EXTRA LOAD YEAR PERCENTAGE LDGV EMISSION FACTORS » TRAILER TOWING PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS 5> TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES <5>LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % 5QJ To 10 % 15 % 0 % 5Q/ /o 10 % 15 % 0 % 5Qf fO 10 % 15 % 0 % 5QJ fa 10 % 15 % 47 48 49 49 36 37 37 38 31 32 32 33 25 26 26 26 .86 .48 .11 .74 .60 . 1 1 .63 . 14 .87 .34 .80 .27 .66 .05 .45 .84 53.56 54.26 54.97 55.67 41 .51 42.09 42.68 43.27 36.38 36.92 37.45 37.99 29.48 29.93 30.38 30.83 59.25 60.04 60.83 61 .61 46.42 47.08 47.74 48.40 40.89 41 .50 42. 10 42.71 33.29 33.80 34.31 34.82 77.40 78.32 79.25 80. 17 59.87 60.63 61.38 62.14 50.87 51 .54 52.21 52.89 35.27 35.79 36.30 36.82 85.50 86.53 87.57 88.60 66.86 67.72 68.57 69.43 57.21 57.97 58.74 59.50 40.28 40.87 41 .46 42.05 93.60 94.74 95.89 97.03 73.86 74.81 75.76 76.71 63.55 64.40 65.26 66. 1 1 45.28 45.95 46.62 47.29 59.50 60. 11 60.72 61.32 43.67 44. 15 44.64 45. 13 36.45 36.88 37.32 37.75 26.44 26.78 27. 12 27.46 64.96 65.64 66.33 67.01 48.28 48.83 49.39 49.95 40.60 41.09 41.59 42.08 29.74 30. 13 30.52 30.91 70.42 71.18 71 .94 72.70 52.89 53.51 54. 14 54.76 44.74 45.30 45.85 46.41 33.03 33.47 33.91 34.35 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 79 F AMBIENT TEMPERATURE, AND 19.6 MPH AVERAGE SPEED. TABLE 14 CO @ 50 % A/C USAGE------- K-16 TABLE 15 HIGH ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 100 % WET BULB TEMPERATURE = 79 F DRY BULB TEMPERATURE = 86 F LDGV EMISSION FACTORS f> TRAILER TOWING CAL. EXTRA LOAD PERCENTAGE YEAR PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS » TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES <5>LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % 5Q£ fO 10 % 15 % 0 % 5q/ /b 10 % 15 % 0 % C O/ 10 % 15 % 0 % c y 10 % 15 % 58. 58. 59. 60. 43. 44. 44. 45. 37. 37. 38. 38. 28. 28. 29. 29. 08 84 60 36 64 25 87 48 20 75 30 84 36 79 23 66 65.06 65.92 66.78 67.64 49.50 50.20 50.90 51.61 42.47 43.09 43.72 44.35 32.57 33.07 33.57 34.07 72.04 73.00 73.96 74.92 55.36 56. 15 56.94 57.73 47.73 48.44 49. 14 49.85 36.79 37.35 37.91 38.48 92.44 93.56 94.68 95.80 72.00 72.92 73.84 74.76 60.99 61 .80 62.61 63.42 40.80 41 .40 42.00 42.59 102.371 103.621 104.881 106. 141 80.54 81 .58 82.62 83.66 68.65 69i57 70.49 71.41 46.59 47.27 47.96 48.65 12.29 13.69 15.08 16.47 89.09 90.25 91 .41 92.57 76.32 77.35 78.38 79.41 52.38 53. 15 53.93 54.70 71. 19 71.92 72.66 73.40 51 .70 52.28 52.87 53.46 42.55 43.06 43.57 44.08 29.44 29.82 30.20 30.58 77.88 78.71 79.54 80.37 57.24 57.91 58.58 59.24 47.44 48.02 48.61 49. 19 33. 13 33.57 34.01 34.44 84.57 85.49 86.42 87.35 62.79 63.54 64.28 65.03 52.33 52.99 53.64 54.30 36.82 37.32 37.81 38.30 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 86 F AMBIENT TEMPERATURE, AND 19.6 MPH AVERAGE SPEED. TABLE 15 CO § 100 % A/C USAGE------- K-17 TABLE 16 HIGH ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 0 % WET BULB TEMPERATURE DRY BULB TEMPERATURE 66 F 71 F CAL. EXTRA LOAD YEAR PERCENTAGE LDGV EMISSION FACTORS TRAILER TOWING PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS <5> TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES @LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % 5o/ fO 10 % 15 % 0 % 5 OS To 10 % 15 % 0 % 5V n 10 % 15 % 0 % 5(y fo 10 % 15 % 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .62 .63 .63 .64 .51 .51 .52 .52 .47 .48 .4.8 .49 .45 .45 .46 .46 1 .65 1 .66 1 .66 1 .67 1 .54 1.54 1 .55 1.55 1.50 1 .51 1 .51 1.52 1 .47 1 .48 1.48 1.49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .68 .68 .69 .70 .56 .57 .57 .58 .53 .53 .54 .54 .50 .51 .51 .52 2.76 2.77 2.78 2.79 2.79 2.80 2.81 2.82 2.68 2.69 2.70 2.71 2.39 2.40 2.41 2.41 2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.73 2.74 2.75 2.76 2.43 2.44 2.45 2.46 2.85 2.86 2.87 2.88 2.89 2.90 2.91 2.92 2.78 2.79 2.80 2.81 2.48 2.49 2.50 2.51 2.98 2.99 2.99 3.00 2.67 2.67 2.68 2.68 2.46 2.47 2.47 2.48 2.22 2.22 2.23 2.23 3.01 3.01 3.02 3.03 2.69 2.70 2.71 2.71 2.49 2.50 2.50 2.51 2.24 2.25 2.25 2.26 3.04 3.04 3.05 3.05 2.72 2.73 2.73 2.74 2.52 2.52 2.53 2.53 2.27 2.27 2.28 2.28 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 71 F AMBIENT TEMPERATURE, 19.6 MPH AVERAGE SPEED, AND 75 GRAINS WATER/LB OF DRY AIR HUMIDITY. TABLE 16 NOx $ 0 % A/C USAGE------- K-18 TABLE 17 HIGH ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 50 % WET BULB TEMPERATURE = 71 F DRY BULB TEMPERATURE = 79 F CAL. EXTRA LOAD YEAR PERCENTAGE LDGV EMISSION FACTORS TRAILER TOWING PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS <5> TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES <3>LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % C o/ 10 % 15 % 0 % C (V 10 % 15 % 0 % c ------- K-19 TABLE 18 HIGH ALTITUDE NOx EMISSION FACTORS (GRAMS/MILE) AIR CONDITIONING USAGE = 100 % WET BULB TEMPERATURE = 79 F DRY BULB TEMPERATURE = 86 F LDGV EMISSION FACTORS § TRAILER TOWING CAL. EXTRA LOAD PERCENTAGE YEAR PERCENTAGE 0% 5% 10% LDGT EMISSION FACTORS § TRAILER TOWING PERCENTAGE 0% 5% 10% EMISSION FACTORS FOR 8 VEHICLE TYPES @>LDG TRAILER TOWING PERCENTAGE 0% 5% 10% 1985 1985 1985 1985 1988 1988 1988 1988 1990 1990 1990 1990 1995 1995 1995 1995 0 % 5V /O 10 % 15 % 0 % 5Q/ To 10 % 15 % 0 % 5y A» 10 % 15 % 0 % 5V fa 10 % 15 % 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .48 .49 .49 .50 .30 .30 .31 .31 .23 .23 .24 .24 .15 . 15 . 15 .16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .51 .51 .52 .52 .32 .33 .33 .34 .25 .25 .26 .26 .17 .17 .18 .18 1.53 1 .54 1 .54 1.55 1 .35 1 .35 1 .36 1 .36 1 .27 1.28 1 .28 1 .29 1.19 1 . 19 1 .20 1 .20 2.48 2.49 2.50 2.50 2.43 2.44 2.44 2.45 2.27 2.28 2.29 2.30 1.89 1.90 1.91 1.91 2.52 2.53 2.54 2.54 2.47 2.48 2.49 2.50 2.31 2.32 2.33 2.34 1.93 1.94 1.94 1.95 2.56 2.57 2.58 2.58 2.51 2.52 2.53 2.54 2.35 2.36 2.37 2.38 1.97 1 .97 1.98 1.99 2.81 2.81 2.82 2.82 2.42 2.43 2.43 2.44 2. 18 2.19 2. 19 2.20 1.89 1 .89 1 .90 1 .90 2.83 2.84 2.84 2.85 2.45 2.45 2.46 2.46 2.21 2.21 2.21 2.22 1.91 1.91 1.92 1 .92 2.86 2.86 2.87 2.87 2.47 2.48 2.48 2.49 2.23 2.23 2.24 2.24 1.93 1 .93 1.94 1.94 *EMISSION FACTORS ARE CALCULATED FOR JANUARY 1 OF CALENDAR YEAR UNDER CONDITIONS OF 20.6 % COLD START VMT, 27.3 % HOT START VMT, 86 F AMBIENT TEMPERATURE, 19.6 MPH AVERAGE SPEED, AND 75 GRAINS WATER/LB OF DRY AIR HUMIDITY. TABLE 18 : NOx f» 100 % A/C USAGE------- APPENDIX L SIZE SPECIFIC TOTAL PARTICIPATE EMISSION FACTORS FOR MOBILE SOURCES Final Report EPA Contract No. 68-03-1865 Work Assignment No. 1 Prepared for: U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Mobile Source Air Pollution Control Ann Arbor, Michigan 48105 Prepared by: ENERGY AND ENVIRONMENTAL ANALYSIS, INC, 1655 North Fort Myer Drive, Suite 600 Arlington, Virginia 22209 August 1985------- TABLE OF CONTENTS Page 1. INTRODUCTION 1-1 2. PROJECTING SIZE SPECIFIC TOTAL PARTICIPATE EMISSION FACTORS 2-1 2.1 Overview of Methodology 2-1 2.2 Light-Duty Vehicles and Light-Duty Trucks I and II 2-5 2.2.1 Lead Emission Factors 2-6 2.2.1.1 Mis fueling and Fuel Switching 2-10 2.2.2 Organic and Sulfate Emission Factors 2-11 2.2.2.1 Control System Fractions 2-11 2.2.2.2 Organic and Sulfate Emission Factor Components 2-13 2.2.3 Diesel Emission Factors (Light-Duty) 2-16 2.3 Heavy-Duty Vehicles 2-17 2.3.1 Lead Emission Factor Components 2-18 2.3.2 Organic Emission Factor Components 2-19 2.3.3 Sulfate Emission Factor Components 2-20 2.3.4 Diesel Particulate Emission Factors 2-21 2.4 Motorcycle Emission Factors 2-21 2.5 Brake and Tire Wear Particulate Emission Factor Components 2-22 3. EXAMPLE CALCULATION OF AUTOMOBILE PARTICULATE EMISSIONS LESS THAN 10 MICRONS 3-1 REFERENCES------- LIST OF TABLES Page 2-1 Emission Factors of Motor Vehicle Engine Total Particulate Emissions 2-25 2-2 Lead Content of Gasoline 2-27 2-3 Fraction of Light-Duty Vehicle Model Year Sales Equipped With Different Emission Control (Low-Altitude Non- California 2-28 2-4 Fleet Sales Fractions Light-Duty Vehicles 2-29 2-5 Travel Weighting Factor Calculation Light-Duty Vehicles 2-30 2-6 City/Highway Combined On-Road Fuel Economy (Miles/ Gallons 2-31 2-7 Fuel Economy Correction Factors at Various Speeds, Cs (Normalized to 32.7 Miles/Hour-Cyclic Driving) 2-32 2-8 Fraction of Light-Duty Truck I Model Year Sales Equipped With Different Emission Control Systems (Low-Altitude Non-California 2-33 2-9 Fleet Sales Fractions Light-Duty Trucks I 2-34 2-10 Travel Weighting Factor Calculation Light-Duty Gas Trucks I 2-35 2-11 Fraction of Model Year Sale of Light-Duty Trucks II By Emission Control Systems 2-36 2-12 Fleet Sales Fractions Light-Duty Trucks II 2-37 2-13 Travel Weighting Factor Calculation Light-Duty Gas Trucks II 2-38 2-14 Travel Weighting Factor Calculation Light-Duty Diesel Trucks I and II 2-39 2-15 Fleet Sales Fractions Heavy-Duty Gasoline Vehicles (HDGV) 2-40 2-16 Travel Weighting Factor Calculation Heavy-Duty Gasoline Vehicle (HDGV) 2-41 2-17 Travel Weighting Factor Calculation For Heavy-Duty Diesel Vehicles in Calendar Year 1987 2-42 2-18 Travel Weighting Factor Calculation Motorcycles 2-43 Lli------- LIST OF TABLES (cont'd) Page 2-19 Rates of Misfueling (r^) For Different Vehicle Classes 2-44 2-19a Rates of Misfueling (r^) For Different Vehicle Ages and Classes 2-45 2-20 Average Data on Particulate Size Distribution 2-46 2-21 Low Altitude HDDV Conversion Factors 2-48 2-22 Fraction of Lead Burned That is Emitted, as 2-49 2-23 Fraction of Catalyst Equipped Vehicles With Catalyst Removed, P^ 2-50 3-1 Example Calculations Light-Duty Vehicle Particulate Emission Rate Less Than 10 Microns For the Year 1985 3-7 A-l Average Annual Mileage By Vintage For Heavy-Duty Trucks A-l A-2 Projections of Heavy-Duty Vehicles in Operation A-2 Liii------- LIST OF FIGURES Page 2-1 Leaded Gasoline Particulate Size Distribution 2-51 2-2 Unleaded Gasoline Particulate Size Distribution 2-52 2-3 Diesel Particulate Size Distribution 2-53 2-4 Brake Wear Particulate Size Distribution 2-54 Liv------- 1. INTRODUCTION The following material was developed to predict total particulate emission factors for gasoline and diesel fueled on-road vehicles, trucks and motorcycles at various vehicle speeds for particles in the respir- able size range (less than 10 microns). Particulate emissions from these vehicles may also be determined at other size intervals less than 10 microns (e.g.,. less than 7.5, 5, or 2.5 microns). User inputs to the equations to determine these emission factors include area travel fractions by vehicle class, vehicle miles traveled, vehicle speed, particle size limits of interest and calendar year. This report presents particulate emission factor equations as the sum of individual masses of lead salt, organic and sulfate components for leaded and unleaded gasoline fueled vehicles. Composite (i.e., total particulate mass) equations are presented for diesel fueled vehicles and motorcycles, and tire and brake wear particulate. These equations are subsequently accompanied by tabulated emission factors which may be inserted into the appropriate particulate component equations. Fleet sales fractions and travel fractions by model year are included for each vehicle class. The fractions within each vehicle class that are equipped with different emission control systems also are provided. Cumulative distributions of particle size for leaded and unleaded gasoline and diesel fuel are presented both graphically and tabularly. Also, for the benefit of the user, an example calculation of particulate emissions from light-duty vehicles is provided. t 1-1------- The procedure herein can be used to project automotive particulate emissions by those agencies developing State Implementation Plans for particulate matter or by other interested parties within or outside the EPA concerned with size specific particulate emission factor projections for mobile sources. This document is an updated version of an April 1984 report prepared by the Environmental Protection Agency, Office of Mobile Sources. It has been revised to include estimates of travel fractions and fleet characteristics from the June 1984 EPA report, User's Guide to MOBILE3 447 (Mobile Source Emissions Model), EPA 460/3-84-002. Revised estimates of emission control technology fractions also have been included. The methodology presented in this document is consistent with the procedure outlined in the April 15, 1983 EPA report, Supplementary Guidelines for Lead Implementation Plans — Updated Projections for Motor Vehicle Lead Emissions which also was recently updated by Energy and Environmental 457 Analysis, Inc. That report can be used to project the lead component of total particulate emissions for vehicles using leaded and unleaded gasoline. In addition to the lead component, the methodology outlined in this document can be used to develop estimates of three other components of particulate emission factors. Emission factors for organics, sulfates on the Federal Test Procedure (FTP) cycle, and heavy-duty gasoline trucks came from the Draft Study of Farticulate Emissions From Motor Vehicles (for Section 214 of the Clean Air Act), by the Environmental Sciences Research Laboratory, Office of Research and Development, U.S. EPA, July 8/ 1983. Sulfates on the Sulfate Emission Test (SET) cycle and motorcycle emission factors came from the March 1981 EPA report, Compilation of Air 2/ Pollutant Emission Factors: Highway Mobile Sources EPA-460-3-81-005. Light- and heavy-duty diesel particulate emission factors are referenced */ = Reference at end of text. LI-2------- from the Draft Diesel Particulate Study, Emission Control Technology Division, Office of Mobile Sources, Office of Air and Radiation, U.S. A/ EPA, October 1983. Emission factor estimate updating is an ongoing process and, in many cases, these values are based on testing of only a few vehicles. This document has been revised to reflect changes in the lead content of gasoline. On March 7, 1985, EPA issued regulations which require petroleum refiners to drop the average lead content of leaded gasoline to 0.5 g/gallon by July 31, 1985 and 0.1 g/gallon by January 1, 1986 to: 1) reduce the health hazards associated with lead, and 2) to discourage the practice of misfueling which deteriorates the efficiency of vehicle emission control systems. (See Federal Register, Volume 50, No. 45, March 7, 1985.) Li-3------- 2. PROJECTING SIZE SPECIFIC TOTAL PARTICIPATE EMISSION FACTORS This report provides a methodology to project areawide total particulate emissions from mobile sources in a given calendar year. Particulate emissions can consist of lead salts, organics and sulfate emissions. The relative amounts vary for different vehicle types, emission control strategies and vehicle operating modes. Analysis of lead particulate indicates that most of the exhausted lead appears as salts, PbClBr. Therefore, estimates of the mass of lead particulate will be consider- ably larger than those predicted by the lead document, which predicts the mass of lead alone. Organic emissions include both soluble organics and elemental carbon and are important contributors to total particulate emissions from all vehicles, especially diesels. Sulfate emissions, mostly from unleaded gasoline-fueled vehicles equipped with catalysts, also are important contributors to total vehicular particulate emis- sions. Section 2.1 provides an overview of: 1) the methodology used to calcu- late total areawide particulate emissions, and 2) the computations required to estimate the individual emission factor components by vehicle category and type of particulate. The detailed emission factor component equations for light-duty vehicles and light-duty trucks are discussed in Section 2.2. Equations for heavy-duty vehicles are described in Section 2.3. Section 2.4 presents the calculations required for motorcycles and Section 2.5 provides brake and tire wear particulate emission factor components. 2.1 OVERVIEW OF METHODOLOGY Areawide particulate emissions (shown in Equation (2-1)) are a function of calendar year, average vehicle speed, vehicle class travel fractions, the particle size range of interest and the vehicle class emissions L2-1------- associated with the calendar year and vehicle speed. With the excep- tions of the vehicle class emission factors, all of the above parameters are inputs selected by the user on an areawide basis to obtain the desired output of mobile source particulate emissions for the area of interest. EF = t. EF, + EF, , (M_) + EF,. . (2-1) pm,n,s £ ~> i,n i,n,s brakes B tires 1-1 where EF = size specific all-vehicle class total particulate ' ' emission factor on January 1 of calendar year n at vehicle speed s (g/mile) i = vehicle class designator; 1 = light-duty vehicles (LDV), 2 = light-duty trucks I (LDT1) , 3 = light- duty trucks II (LDT2) , 4 = heavy-duty gas vehicles (HDGV) , 5 = heavy-duty diesel vehicles (HDDV) , 6 = motorcycles (MC) s = vehicle speed; avg. Federal Test Procedure (FTP) = 19.6, avg. Sulfate Emissions Test (SET) - 34.8 (miles/hr) ; (Note: The FTP and SET are driving cycles used for the determination of emission factors . ) t. = area travel fraction of vehicle class i in calendar i,n year n EF. = particulate emission factor for vehicle class i in ' ' calendar year n at vehicle speed s (g/mile) EF, . = airborne brake wear particulate emission factor h f* a \f& ^ component = 0.0128 grams/mile; this emission factor component is assumed to be the same for all vehicle classes, vehicle speeds and calendar years (all i, s, and n) due to lack of separate information for each i, s, and n EF . = airborne tire wear particulate emission factor component = 0.002 grams/mile; this emission factor component is assumed to be the same for all vehicle classes, vehicle speeds and calendar years (all i, s, and n) due to lack of separate information for each i, s, and n L 2-2------- M_ = fraction of airborne particles less than a user- specified size cutoff (0.1-lOy) that are attributable to vehicle brake wear, from Table 2-20 or Figure 2-4 The vehicle classes for which emission factor estimates may be obtained include: 1) light-duty vehicles (passenger cars), 2) light-duty trucks I (0-6000 Ibs. GVWR), 3) light-duty trucks II (6001-8500 Ibs. GVWR), 4) heavy-duty gas vehicles (greater than 8,501 Ibs. GVWR), 5) heavy-duty diesel vehicles (greater than 8,501 Ibs. GVWR), and 6) motorcycles. The exhaust emission factors for each vehicle class for a given calendar year (EF. ) are broken down into component emission factors in Equation i,n, s (2-2). The components represent the masses of lead salt, organic and sulfate emissions from both leaded and unleaded gasoline fueled vehicles and total particulate mass from diesel vehicles—all of which are multiplied by the fraction of total vehicles of a given model year designed for use on these three fuel types. The sum of these components for each model year is also multiplied by the fraction of the vehicle class travel (disaggregated by gasoline and diesel fuel types for all vehicle categories except light-duty vehicles) that is attributable to that model year in the calendar year of interest. For example, the component (EF. . . ) *•» J > K»n» ^ represents the emissions in grams per mile of lead salts (k=l) from vehicle class i emitted from model year j gasoline vehicles that are on the road in calendar year n and are designed for use on leaded fuel. These emission components must be summed up over the twenty model years prior to the calendar year of interest to include all the contributing fractions of emissions from vehicles on the road. ^ f ?i,n,s - 2- (EFi,j,M,n,L + EFi,j,k2,L + EFi? j >k3>L) (FL> if j) j=n-19 L +NL + EFi)jfk3>NL)(FNL>ijj)] mi,j> + D)(FD>i>j) mi>j>D L 2-3 ------- where j = model year j = n-19, n-18, .... n-2, n-1, n L = vehicles designed for use on leaded fuel NL = vehicles designed for use on unleaded fuel k = component of total particulate emission factor (k. = lead, k_ = organic, k = sulfate) expressed individually for gasoline vehicles and trucks (except motorcycles) and cumulatively for diesel vehicles and trucks and motorcycles F . . = fraction of the vehicle class i fleet designed for ' use on leaded gasoline in model year j F . = fraction of the vehicle class i fleet designed for ' '-1 use on unleaded gasoline in model year j FD . = fraction of the vehicle class i fleet designed for * use on diesel fuel in model year j m. . „ = travel fraction for all gasoline vehicles in class '^' i in model year j m. . = travel fraction for all diesel vehicles in class i '^' in model year j Component emission factors are derived for each vehicle class over different model years at average speeds of 19.6 mph (cyclic driving comparable to average speed of the Federal Test Procedure) and 34.8 mph (cruising conditions comparable to the average speed of the Sulfate Emissions Test). Emission factors for speeds between 19.6 mph and 34.8 mph can be linearly interpolated. As the reader will note in the following sections, the calculation of these component emission factors is highly dependent on the assumptions made concerning particle size distribution. Distributions of particle size are different for leaded gasoline, unleaded gasoline and diesel fueled vehicles as well as brake and tire wear particles. They are also L 2-4------- different for various conditions of vehicle driving cycle (speed) and load. For the purposes of this report, however, typical or average conditions are presented to facilitate the determination of vehicle particulate emissions versus particle size. Particle size distributions for leaded, unleaded and diesel fueled vehicles and brake wear particles are contained in Table 2-20 and also in Figures 2-1, 2-2, 2-3, and 2-4 (no distributions are available for tire wear particulate). Typically, the average diameter of particles emitted from vehicles fueled with leaded gasoline are the largest, particles emitted from vehicles fueled with unleaded gasoline are somewhat smaller and particles emitted from diesel fueled vehicles are smaller yet. Some of the data for the size distribution of lead parti- cles are conflicting (e.g., Moran et al, 1971 which shows a larger fraction of the lead in smaller size ranges than the other leaded gasoline references). Thus, these data are less certain than those for unleaded and diesel particles. References for those reports used in the determination of particle size distributions of leaded, unleaded and diesel fueled vehicle emissions and brake wear emissions are listed in Table 2-20. Values for IL , M^ , M^ , VL, and K., should be expressed as dimen- sionless fractions of total particulate by weight emitted below a given size cutoff. Values may be read directly from Table 2-20 for the data points listed therein, or may be read off the graphs of continuous cumulative particle size distributions in Figures 2-1, 2-2, 2-3, and 2-4 for interpolated size cutoffs (e.g., 6.5 u, 2.5u). 2.2 LIGHT-DUTY VEHICLES AND LIGHT-DUTY TRUCKS I AND II This section presents the lead, sulfate and organic emission factor equations for gasoline-fueled light-duty vehicles and light-duty trucks I and II. In addition, composite particulate emission factors are L2-5------- presented for light-duty diesel vehicles and light-duty diesel trucks. The fractions of light-duty vehicles and light-duty trucks by model year which operate on leaded or unleaded gasoline or diesel fuel are presented in Tables 2-4, 2-9, and 2-12. Tables 2-5, 2-10, 2-13, and 2-14 contain information on light-duty vehicle and light-duty truck travel fractions from model years n to n-19. To remain consistent with the data used in MOBILES, travel fractions are assumed to be identical for gas and diesel light-duty vehicles; but separate travel fractions are used to characterize gasoline versus diesel light-duty trucks 1 and light-duty trucks II. 2.2.1 Lead Emission Factors Lead emission factors are calculated in the same manner as in the recent report entitled, Supplementary Guidelines for Lead Implementation Plans — Updated Projections for Motor Vehicle Lead Emissions^ereinaf ter referred to as the "lead document." These lead emission estimates are multipled by a factor of 1.557 to account for the halogens, typically bromine and chlorine, which combine with lead to form total lead salt particulate emissions. This factor was obtained £rom a report by the Ethyl Corporation entitled Composition, Size, and Control of Automotive Exhaust Particulates, and is the ratio of PbClBr mass to Pb mass based 227 on FTP results of 16 test vehicles. LDV (Pre-1971) and LPT (Pre-1971); Leaded Fuel For i=l,2,3 j=n-19,...,1970 k=l Cs=from Table 2-7 asl?j=(0.75): EFifj,kl,n,L = [pbL,n(0.887)(ML) + (2-3a) (0.75X1.557) OK (n MIUM ^1 (0-75X PbNL>n(0.113)(MNL>NC)J (Ec>i>j L2-6------- where a 3 fraction of lead burned that is exhausted; for 3 all non-catalyst vehicles and for catalyst vehicles using unleaded gasoline a = 0.75 (i.e., 75 percent); for catalyst vehicles using unleaded gasoline in 1975-1980, a 9 . * 0.40; for sz, j catalyst vehicles using leaded gasoline in 1981 and later, a 0 . = 0.44 (see Table 2-22) sZ, j C * speed-dependent fuel economy correction factor based on steady cruise or cyclic driving; available from Table 2-7 (nondimensional) Pb » lead content of unleaded gasoline in calendar year n 'n from Table 2-2 (g/gal) Pb «• average lead c itent of leaded gasoline in calendar 'n year n from Table 2-2 (g/gal) E . . * city/highway combined on-road fuel economy for model ' year j and vehicle class i from Table 2-6 (miles/ gallon) M. * fraction of particles less than a user specific size cutoff (0.1-lOlj ) that are emitted from vehicles that are fueled with leaded gasoline, from Table 2-20 or Figure 2-1 M^ s fraction of particles less than a user specified ' size cutoff (0.1-lOy ) that are emitted from catalyst vehicles that are fueled with unleaded gasoline, from Table 2-20 or Figure 2-2 M - fraction of particles less than a user specified ' size cutoff (0.1-lOy ) that are emitted from non- catalyst vehicles that are fueled with unleaded gasoline, from Table 2-19 or Figure 2-2 LDV (MY 1971-1974) and LPT (MY 1971-1978); Leaded Fuel For i=l,2 j=1971,...,1974 k=l C3=from Table 2-7 asljj=0.75: and For i = 3 j-1971,...,1978 (2-3b) PK rn na^UM ^1 (0-75)(1.5 PbNLjn(0.084)(MNL>NC)J (Ec>i)m)(C 557) ) L 2-7------- LDV (MY 1975+) and LPT (MY 1979+) ; Leaded Fuel For i-1,2 j-1975,...,n k=l C8=»from Table 2-7 asifj-0.75: and For i=3 j»1979, . . . ,n EFi, j,kin,L " [pbL>n(0.724)(ML) + (2-4) PbNL,n(0.276)(MNL,NC)l J LDV (MY 1975-*-) and LPT (MY 1975+) ; Unleaded Fuel For i»l,2,3 j=1975,...,n k=l Cg»from Table 2-7 ag=from Table 2-22 ) + (2-5) PbL>n(ri)(ML)(l-Pi)(Fi>j>NL>CAT)(as>2>j)] U55J J C»1->J »' where r£ = misfueling rate for vehicle class i from Table 2-19 P^ = fraction of catalyst equipped vehicles with catalysts removed from Table 2-23 The calculation of area lead particulate emissions necessitates the determination of the percentage of burned lead exhausted (a ). A value for a of 0.75 (i.e., 75 percent of the lead burned is exhausted) should be used for non-catalyst equipped, gasoline-powered vehicles. The 0.75 value is based on tests which measured exhaust emissions under cyclic driving conditions and found that 17 percent of the lead is retained by the engine (in the oil and combustion chamber) and 8 percent is retained by the muffler and exhaust pipes. For gasoline powered vehicles equipped with catalysts, a value of a =0.40 for 1975 to 1980 and a =0.44 L2-8------- for 1981 and later model year vehicles that have been misfueled, should be used. (For properly fueled catalyst vehicles the values of a for 5 all model years is 0.75.) The value of a was computed from lead s retention of monolithic and pelleted catalysts, respectively, and weighted for the sales mix of these catalysts in each time frame. The values of a are not assumed to vary with speed, since a is more i s s correlated with driving mode, e.g., acceleration, cruise or decelera- tion, rather than speed alone, and little data is available to make a s sensitive to all of these variables. Combined city/highway fuel economy (E . ) is yet another factor c > i, j affecting area lead particulate emissions. Fuel economy versus model year is provided in Table 2-6. Lead particulate emissions can be determined at any speed by using Equations (2-3), (2-4), and (2-5) (for light-duty vehicles and trucks) and the appropriate value of the speed dependent fuel economy correction factor (C ) for the vehicle speed of interest. Values of C at various s s speeds are provided in Table 2-7. It should be noted that average vehicle speed and C can be determined for an area by either of two approaches. One approach is to base C on the average vehicle speed for S the area of concern. The average area vehicle speed should be a weight- ed average based on average speeds and VMT data for the various roadway classifications, such as limited access (greater than 5 mph), suburban roads (35 mph) and urban streets (25 mph or less). The other approach, which is considered more accurate, is to determine C and area emissions s separately for each roadway classification (and average speed). Area lead particulate emissions also are dependent upon the lead content of gasoline in a given calendar year. Values for the lead content of leaded (PbT ) and unleaded gasoline (Pb.TT ) are contained in Table L,n NL,n 2-2. Values for future years will be updated as new information becomes available. L 2-9------- 2.2.1.1 Misfueling and Fuel Switching EPA has observed that misfueling rates (i.e., percentage of vehicles designed for use on unleaded gasoline that use leaded gasoline) are dependent on vehicle mileage and increase with vehicle mileage accumu- lation. Strictly speaking, this dependence on mileage should be reflected in the calculation of particulate emissions, with each model year receiving its own misfueling rate. However, this further compli- cates an already complex calculation. To give the user a choice, this report offers both the option of using a single average misfueling rate for all model years of a given vehicle class and exact misfueling rates for each vehicle class by vehicle age. The single average rates are determined for the weighted average mileage accumulated for each vehicle class and are listed in Table 2-19 for inspection and maintenance (I/M) and non-I/M areas. In other words, in the calculation of emission factors from 1975 on, the misfueling rate (r.) depends only on which vehicle class (i) is being considered and whether the area of interest has an I/M program. As a result, misfueling rates and particulate emissions will be slightly overestimated, with the degree of overestima- tion declining with later evaluation years and essentially disappearing in 1995. For users who desire more accuracy, Table 2-19a gives exact misfueling rates for different vehicle ages and classes affected by misfueling. The use of leaded gasoline on vehicles designed for unleaded fuel results in lead salt emissions. Since most of these vehicles have catalysts, the lead results in poisoning of the catalyst so that organic particulate emissions can be assumed to increase to the levels found with non-catalyst vehicles. Also, catalyst poisoning should result in no sulfur dioxide oxidation to sulfates. Sulfate levels are therefore assumed to be the same as those from non-catalyst vehicles. L2-10------- Discretionary fuel switching (i.e., percentage of vehicles designed for use on leaded gasoline that use unleaded gasoline) is assumed to equal 11.3 percent of the leaded fleet prior to 1971, and 8.4 percent from 1971 to 1974 for the LDV and LDT I categories. The discretionary rate for the LDT II class is 8.4 percent from 1971 to 1978, and 27.6 percent thereafter. For the LDV and LDT1 classes, discretionary switching is assumed to be 27.6 percent after 1974. These discretionary rates apply only to the lead salt component of light-duty vehicle and light-duty truck I and II emissions. The misfueling rates employed here were used in the December 1983 EPA report, Anti-Tampering and Anti-Misfueling Programs to Reduce In-Use Emissions from Motor Vehicles, EPA-AA-TSS-83-10. The discretionary fuel switching rates were obtained from Energy and Environmental Analysis, Inc., Assessment of Current and Projected Trends in Light-Duty Vehicle Fuel Switching, June 1984.7/ 2.2.2 Organic and Sulfate Emission Factors 2.2.2.1 Control System Fractions Organic and sulfate emissions of gasoline-fueled vehicles depend on the type of vehicle emission control system in addition to the vehicle model year. The fraction of vehicles with different emission control systems to which different emission factors are applied are handled similarly to the fleet sales fractions for leaded, unleaded and diesel vehicles versus model year. The main difference is that these are fractions of the total number of vehicles designed for use of unleaded fuel and not the total number of vehicles in each vehicle class. These fractions are listed in Tables 2-3, 2-8, and 2-11 for light-duty vehicles and light- duty trucks I and II, respectively. These vehicle classes have a relatively wide range of control technology and, as a result, have a wide range of emission factor estimates. It should be noted that a small number of non-catalyst equipped vehicles have been certified for use on unleaded gasoline since 1975. These vehicles constitute a very L 2-11------- small percentage of the total non-catalyst fleet, but are nonetheless considered in this report and have been given their own control system fraction category (F^ . }NL>NOCAT) • The light-duty vehicle and truck emission control system fractions were obtained from the "sales-weighted" EPA emission factor in-use vehicle test data base. This data base contains gasoline-fueled vehicle m,ixes approximating the sales mixes for the 1975 through 1982 model years. All vehicles and trucks prior to 1975 models are assumed to be designed for use on leaded fuel (i.e., no diesel or catalyst vehicles). Emission control system fractions for 1983 and later LDVs are determined from recent projections by Energy and Environmental Analysis, Inc. in a report 387 entitled, Forecasts of Emission Control Technology 1983-1990. Data for 1975 through 1978 light-duty truck I technology fractions were obtained by combining EPA fuel economy data base sales figures by engine displacement and model type and Federal Certification Test Results for these years from the Federal Register, Volume 40, No. 48, March 11, 1975;9^ Volume 41, No. 46, March 8, 1976;10' Volume 42, No. 110, June 8, 1977;ll/ and Volume 43, No. 181, September 18, 1973.12/ The certification data provided emission control systems by model type and engine displacement which were matched with fuel economy sales fractions. These two data sources also served as the basis for deriving the 1979-1981 light-duty truck technology fractions. Data for 1982 through 1984 light-duty trucks I and II technology frac- tions were obtained by subtracting California sales figures by engine family from Federal sales figures given in the EPA Certification data base for those years. Forecasts of post-1984 light-duty truck I and II technology fractions were developed internally and are consistent with data used for EPA emission factor projections. L 2-12------- 2.2.2.2 Organic and Sulfate Emission Factor Components Organic and suifate emission factors for light-duty vehicles and light- duty trucks vary by model year, control system, vehicle speed and fuel type (leaded versus unleaded). These emission factors are derived from emission test data and are listed in Table 2-1 in terms of grams per mile. This table of emission factors is used in the following sets of equations to calculate LDV and LDT organic and suifate emission factor components. (Table 2-1 also refers the user to the proper equation(s) listed below to which each emission factor should be applied.) Organic Emission Factor Components LDV and LDT (Pre-1970); Leaded Fuel.Avg. Speed = All For i-1,2,3 j-n-19,...,1969 k=2: £Fi,j,k2,L = 0.193 ML (g/mile) (2-6) LDV AND LDT (1971-1974): Leaded Fuel.Avg. Speed = All For i=l,2,3 j-1970, . . . , 1974 k=2 : EFi,j,k2,L = °-068 ML (gMile) (2-7) LDV and LDT (I975+): Leaded Fuel.Avg. Speed = All EFi,j,k2,L = °-030 ML (g/mile) (2-8) L 2-13------- LDV and LPT (1975+): Unlf aded Fuel^Avg. Spe o i - All 0.017)(MNL>c) (2-9) (Fif j,NL,NOCAT> (0.030) (MNL)NC) where F^ j CAT = fraction of the unleaded vehicle class i fleet equipped with a catalyst in model year j ^i i NL NOCAT = fraction of the unleaded vehicle class i fleet without a catalyst in model year j Sulfate Emission Factor Components LDV and LPT (All Model Years); Leaded Fuel,Avg. Speed = 19.6 mph For 1*1,2,3 j=n-19,...,n k»3 s=19.6: EFi»J'k3L = °-002 ML (g/mile) (2-10) LDV and LPT (All Model Years); Leaded Fuel.Avg. Speed = 34.8 mph For 1=1,2,3 j=n-19,...,n k=3 s=34.8 EFi,j,k3,L = 0.001 ML (g/mile) (2-11) L 2-14------- LDV and LPT (1975+); Unleaded Fuel.Avg. Speed = 19.6 For i-1,2,3 j-1975, . . . ,n k-3 3=19.6 > (2-12)(0-016)(MNL>c) <*if j, NL,NOCAT><0.002)(MNL>NC)J (ri)(0.002)(ML) where ?£,j,CAT/NOAIR = fraction of Che unleaded vehicle class i fleet equipped with a catalyst but no air pump in model year j; this includes oxidation catalyst and three w«y catalyst (Fifjf3WCAT) vehicles with no air pump F£ : CAT/AIR * fraction of the unleaded vehicle class i fleet equipped with a catalyst and an air pump in model year j; this includes oxidation catalyst (Fi,j OCAT/AIR) an<* three-way plus oxidation catalyst (Fi?j,3WCAT/OXCAT) vehicles with air pumps LDV and LPT (1975+); Unleaded Fuel Avg. Speed - 34.8 mph For i*l,2,3 j-1975,... ,n k=»3 s-SA.S r^ = from Table 2-19: - d-*i> [^i,j,NL,NOCAT)(0.001)(MNL>NC) (2-13) + (Fi>j>OXCAT><0-005)(MNL>c) + (Fifj,3WCAT)(0.001)(MNLfc) * (Fi,j,OXCAT/AIR)(0-020)(MNL,c) * ^Fi,j,3WCAT/OXCAT> (0.025)(MNL)C)1 + (ri)(0.001)(ML) L2-15 ------- where F, : OXCAT = fraction of the unleaded vehicle class i equpped with an oxidation catalyst but no air pump in model year j F£ i 3WCAT = fraction of the unleaded vehicle class i equipped with a three-way catalyst in model year j; note these vehicles are sometimes equipped with air pumps that are usually only used during vehicle start-up; therefore, the vehicle category as a whole is assumed to emit sulfates at the same rate as non-air pump-equipped vehicles for emission factor consideration Fi i OXCAT/AIR ~ fraction of the unleaded vehicle class i equipped with an oxidation catalyst and an air pump in model year j 2.2.3 Diesel Emission Factors (Light-Duty) Diesel particulate emission factors for different model years are listed separately for light-duty vehicles and light-duty trucks in Table 2-1. These emission factors are derived from test data and are used in the equations below to calculate total diesel particulate emission factor components for LDVs and LDTs. (Table 2-1 also refers the user to the proper equation below to which each emission factor should be applied.) LDV (Pre-1981); Diesel Fuel For i=l j=n-19, . . . ,1980: EFi,j,D = 0.700 MD (g/mile) (2-14) where Mp = fraction of particles less than a user-specified size, cutoff (0.1-10 M ) that are emitted from vehicles that are fueled with diesel fuel, from Table 2-20 or Figure 2-3 LDV (1981-1986); Diesel Fuel For i=l j=1981,...,1986: EFi,j,D = °-3°0 MD (gMile) (2-15) 2-16------- LDV (I987-O; Diesel Fuel For i=l j=1987,...,n: EFi,j,D = °-200 MD (g/mile) (2-16) — _ — ——__ — — __ — — .— -— — — _- — —. — _- — — — — — — — — — — — — — — — —. — — _ — _ _ ..._.__.... _ —•.— ______.,.. _ _ _ _.___>____ «• LPT (Pre-1981); Diesel Fuel For 1=1,2,3 j=n-19,...,1980: EFi,j,D = 0-8°0 MD (g/mile) (2-17) LPT (1981-1986); Diesel Fuel For 1=1,2,3 j-1981,...,1986: EFi,j,D * 0-300 MD (g/mile) (2-18) LPT (1987 + ) ; Diesel Fuel For i=2,3 j=1987,...,n: EFi,j,D = °-260 MD (g/mile) (2-19) 2.3 HEAVY-DUTY VEHICLES This section presents the lead, sulfate and organic emission factor component equations for gasoline-fueled heavy-duty vehicles. Composite particulate emission factor components for heavy-duty diesel vehicles also are provided. These emission factor components are then used in conjunction with estimates of sales fractions of heavy-duty vehicles by model year and fuel type (Table 2-15) and travel fractions by vintage (Tables 2-16 and 2-17) to calculate total emission factors. As shown in Table 2-15, heavy-duty gasoline vehicles use leaded gasoline prior to 1987. The fraction of unleaded vehicles from 1987 on represents the L2-17------- 8,501-14,000 Ibs percentage of heavy-duty gasoline vehicles, and is based on the assumption that the more stringent emission standards currently proposed for 1987 and later heavy-duty gasoline vehicles in the 8,501 to 14,000 Ibs range will require the use of oxidation catalysts and air injection. Heavy-duty gasoline vehicles above 14,000 Ibs are assumed to consist entirely of leaded gasoline vehicles for all model years. The reader also should note that the travel fractions for heavy-duty diesel trucks in Table 2-17 are specific to calendar year 1987 and are therefore presented for example only. These fractions shift from one calendar year to the next due to the increasing penetration of diesels in the lower mileage, lighter weight categories of heavy-duty trucks (which consists of all vehicles over 8,500 Ibs. GVW). To calculate heavy-duty diesel travel fractions in a particular year of interest other than 1987, the reader needs to use the projections of diesel heavy-duty vehicles in-use by GVW category and the estimates of diesel heavy-duty vehicle mileage accumulation by GVW category which are contained in Appendix A. Table 2-6 presents data on heavy-duty truck fuel economy. Estimates of misfueling for heavy-duty gas vehicles under 14,000 Ibs GVW (after model year 1986) are contained in Tables 2-19 and 2-19a. The effect of discretionary fuel switching ha*s not been incorporated in the heavy-duty vehicle emission factor equations due to the lack of data on the current fuel purchase behavior of owners of heavy-duty vehicles. However, as new data become available these equations will be revised accordingly. 2.3.1 Lead Emission Factor Components The following equations are used to derive lead emission factor components for heavy-duty gas vehicles operated on leaded and unleaded gasoline: L 2-18------- HDGV (Pre-1987); Leaded Fuel For i=4 j-n-19,...,1986 k=l ag = from Table 2-22: (ML) (2-20) HDGV (1987->-): Unleaded Fuel For i=4 j=1987,...,n k=l ag = from Table 2-2 r^ = from Table 2-19: En.j.M.n.ttL ' ""*>C.1.1""'»L.;)(1.»57) (M^,, (2-21, ^c^a, j' * (r4)Us2tj)(PbLtn)(1.557) Ec,4a, j HDGV (1987 + ) ; Leaded Fuel For i=4 j=1987,...,n k=l as = from Table 2-22: *4a represents the fuel economy for HDGV1 after 1986. **4b represents the fuel economy for HDGV2 after 1986. 2.3.2 Organic Emission Factor Components Organic emission factors for heavy-duty gasoline vehicles are listed in Table 2-1 in g/mile. These factors are used in the equations below to calculate the total HDG organic emission factor component. The reader should note that the HDG organic emission factors listed in Table 2-1 were derived assuming a constant 5.0 rapg for HDG vehicles of all model years. Therefore, the equations below have been adjusted by the factor (5.0/EC>4 :) to account for the HDG fuel economy values currently used in MOBILE3. L 2-19------- HDGV (Pre-1987); Leaded Fuel For i=4 j»n-19,...,1986 k=2: EFi,j,k2,L " 0.370 (HI.)(2"23) — — ____. _______ — —-*——. — — — — — — —. — — __ — -. — — —. — —— — — — — --— — — — ^. — —. — _-—.»— _-—_-._— _ --.- — — — __—._ HDGV (1987+); Unleaded Fuel For i=4 j«1987,...,n k=2 r4 * from Table 2-19: En,i,k,,NL= [ ° ) (2-25) •" "-c^b.j 2.3.3 Sulfate Emission Factor Components Sulfate emission factors for HDG vehicles also are listed in Table 2-1 and are used in the following equations to produce HDG sulfate emission factor components. As with the HDG organic emisison factor components, the equations below contain the adjustment factor (5.0/EC 4 j) to reflect the HDG fuel economy values currently used in MOBILES. HDGV (Pre-1987); Leaded Fuel For i=4 j-n-19,...,1986 k=3: EFi,j,k3,L • 0-006 (ML) (E5>° .) (2-26) HDGV (1987-O; Unleaded Fuel For i*4 j«1987,...,n k=3 r4 » from Table 2-19: EFi i k-> L f (l-r4)(0.048) (\,i r> + (r4) (0.006) (ML)| L—^—) (2-27) J' L ' -1 Ec,4a,j L 2-20 ------- HDGV (1987+) ; Leaded Fuel For i=4 j-1987,...,n k=3: EFifj,k3,L- 0.006 (ML) <-i^;* (2-28) 2.3,4 Diesel Particulate Emission Factors Diesel particulate emission factors (measured in g/mile) for heavy-duty diesel vehicles are derived with the following equations: HDDV (All Model Years): Diesel Fuel For i-5 j=n-19,...,n: EF5,j,D " 0-7 MD (CFDjj) (2-29) where CFjj : = factor for converting gm/bhp-hr to gm/mi, ' from Table 2-21 2.4 MOTORCYCLE EMISSION FACTORS This section presents the emission factors for motorcycles. Table 2-18 contains travel fractions for the motor vehicle fleet. Motorcycle sales are assumed to consist entirely of leaded gasoline vehicles for all model years. Therefore, misfueling rates for motorcycles are zero. Discretionary fuel switching rates are not incorporated into the equations due to the lack of data on the fuel purchasing habits of motorcycle owners. Motorcycle fractions are based on 2-stroke versus 4-stroke emission factor estimates (see Table 2-1). Before 1978, most on-road motorcycle travel was done by 2-stroke vehicles (53.4 percent) and slightly less (46.6 percent) by 4-stroke vehicles according to sales figures in the 1983 Motorcycle Statistical Annual published by the Motorcycle Industry L2-21------- Council, Inc. In 1978, more stringent control of motorcycle emis- sions caused nearly all motorcycle manufacturers to build 4-stroke vehicles for on-road usage. Therefore, it is assumed that all motorcycles from 1978 on are 4-stroke vehicles since nearly all 2-stroke mileage is accumulated off-road. The equations below present the lead emission factor component calcu- lations for motorcycles. Due to the absence of catalyst emission controls on motorcycles, organic and sulfate emission factor components are not calculated. MC (Pre-1978); Leaded Fuel For i=6 j=n-19,...,1977: EF6,j,L = [(0.466X0.046) + (0.534) (0.330)J (ML) (2-30) = 0.198 ML (g/mile) MC (1978+) ; Leaded Fuel For i=6 j=1978,...,n: EF6,j,L = 0.046 ML (g/mile) (2-31) 2.5 BRAKE AND TIRE WEAR PARTICIPATE EMISSION FACTOR COMPONENTS Additional sources of motor vehicle particulate emissions include brake and tire wear emission components. Limited testing has been performed to estimate the contributions of brake and tire wear emissions to the total light-duty vehicle particulate emission rate. No data exist on the rate at which light-duty trucks, heavy-duty vehicles, or motorcycles emit brake and tire wear emissions. The user should be aware that brake and tire wear particulates are emitted from these vehicle classes at different rates than the light-duty vehicle rate, but since no data exists, the light-duty vehicle rate is used to estimate their contribution to total particulate emission rates. L 2-22------- Brake, wear emissions from light-duty vehicles have been measured in a recent study and have been found to consist of significant quantities of particulate in the airborne particle size range. Airborne particulate emission rates for brake wear particles as measured on braking cycles representative of urban driving averaged 0.0128 grams per mile for light- 40/ duty gasoline vehicles. Particle size distribution for brake wear particulate (M_) is included in this reference and is summarized in Table 2-20. The rate of 0.0128 g/mile times the appropriate fraction of VL for the particle size cutoff of interest should be added to any calculation of particulate emissions less than 10 microns for all classes of vehicles. In the example calculation in Section 3-0 of this report, for example, M_ » 0.98, the brake wear particulate emission rate is therefore 0.0125 g/raile and the total light-duty vehicle particulate emission rate is 0.0726 g/mile. In this particular example, therefore, brake wear emissions account for 17 percent of the total particulate emission rate. Tire wear particulate is generally larger in size than brake wear particulate and therefore consists of fewer particles in the airborne size range. Emission rates for airborne tire wear particulate for light-duty vehicles has been estimated at 0.002 g/mile. This rate should be added to calculations of particulate emissions less than 10 microns for all classes of vehicles. The addition of 0.002 g/mile in the example calculation in Section 3-0 indicates that airborne tire wear particulate accounts for about 3 percent of the total light-duty particulate emission rate. No data on airborne particle size distribution are available for analyses of tire wear particulate emission rates at smaller particle size cutoffs (i.e., 2.5 microns or 7 microns). The user should either interpolate between zero and 10 microns to determine the appropriate emission rate for the distribution of tire wear particles below the desired size cutoff (e.g., at 7 microns tire wear emissions = 0.0014 g/mile and at 2.5 microns tire wear emissions = 0.0005 g/mile) or simply neglect tire wear particulate since it is likely to be negligible in these smaller particle size ranges. L2-23------- Another source of particulate emissions for which emission factors could be developed is reentrained particulate from particles that have been deposited on road surfaces or possibly road material itself. While 467 477 information is available on these reentrained particulates, they are not considered to be directly emitted by mobile sources and therefore are not included in this report. L 2-24------- 09 CO a O w ti CO J3 U C8 "O V -O OOOOOOOOOOOOOOOOCNOOOOOOcMCMCNCNCNcMCN CA Z o eo Uo N CU H 3 2 5 c £ o ,? 3 C U O I-. O « O CU &£ CO OO O r^ OO O CN CSI i—* l/N, \O CN "-H •—< I/N, f-H O iA •—I ON \^ co »-H sO c*"l O O O O ••-* O CO O O O CM CN CM 00 en e^l O O O O CflCOCOr-leO'—ICOCOCO'^'—lp-ICO<—li—Ip-l oi 60 | t* oi t—4 t—4 < < H H H H 5- _^ UOOHHOOHOHH •< OS O M HZ )->h33 CJ CJ CJ CJ O C_> H u u u u u XJ u 33333333333 -3- O r- U ON P- -H ^^ ON ^^ ^^ ^^ ^j ^^ C^ O^ ^^ ^^ ^^ ^^ ^^ ^^ C^ Ol 01 Ol 0) Ol 0) co >>>>> a a a o o a a o a o a a —,OO r-l CO OO ON oO ON ON r~( ON tiH^ _, I 4. ^ | + I ^ r- 1 -< r- CU 00 OO CU OO OO iM &\ O"* M O^ CT^ PJ ^ rt PU -H ^ 2-25 ------- ^ •a 4-1 c o u i CN ,J 3 H co z o r-l CO CO M w w H O i OH ^ O H Z r-4 CJ z u (J o § 0 E-t o to O C« 0 H a to z o cn h_4 _, p? VH ... 0) 8-S e £ 3 .2 o52 £ w « cn .. o •H £ e B 2 *> W „ VH 2" § c .2 M *T3 •V Ml — CD er M w p 0) c ~* O V4 -r4 -HOB cn u •--. cn o cn *r4 Cfl & e to « 6t 0) 0 01 S • •H CU OH ff. 0,;£ 01 C/1 ^ > T3 U-l (U o tn 3 Ol [Xr-H H 3 to 1-1 e £ 4> c !? 0 £ Ol XJ U CO C r-4 (J 3 C 0 O •r4 a 4-i e VH O CO CJ OH S~\ «^ ^ U 32 W fc^j • r^ "^ r? r-l 1- ^ 0 S •r4 oo oo N^ oo oo oo CM CM CM CM CM CM CM 1 1 1 1 1 1 1 CM CM CN CM CM CSI CM O -?• (V) o vO 00 vO r^ in vo r-^ o ^f c^ cn o — H ri o O O O O O O O O O < < 5 < < < < Ol O) *^ *X3 *O "O "^ *O T3 0) cfl 41 Ol 0) CO l) T3 Ol "O T3 T3 Ol t3 Cfl ^"4 CO Cfl Cfl i—^ CO 0) C Ol 0) Ol C Ol _: 3 j j j 3 j Of! OS & H <: <: H H < H cj E-H E-I cj o E-i O O < < O O «J! O Z U U Z Z U Z 0} U cn 3 OOCJUOIOIO) ^ W •H >r4 .—I, >, 3 r- rv 3 o oo oo a 1 ON ON I >>-H4. + +^H>+ >, > 1 r~ r- r-~ 1 i^ r» > cfl O) CO CO OO D oo 00 cfl QJ ^4 *^^ ^^ ^^^ ^ ^^ ^^ f\) X OH -. -H -. D-, -H -. X oo ON CN CM * O O O r-4 r— 4 < r-4 cn 0) •H Q 1 H Q Q 33 r-4 r-4 <^ —4 r— 1 rJ rJ 01 Ol .* ^ o o cn co l i -3- CN es X Ol V4 • rH CO 4-1 cn >N 1-4 cfl 4-1 Cfl O "O c * CO 01 3 |H r-4 •r4 Cfl Cfl > O CJ c •-< ^~ c . u Cfl cu cn (so 3 rX 14 r-4 r-4 O tfl tfl > 4-1 t3 cfl 60 l-i l-l O cn o I O C CO CO 4J 60 eg VH O cn cx 1.2 CL e to VH 00 •r4 U efl O • J= .» cn u r~~ 4-1 "4 I Cu S O 6 r- 3 cn ON a. oi —< f-4 P a oi •r4 -H £ CO J= U 0) 4-1 > 3 O 4J -r4 J= CO r-4 4J X •r4 r-1 £i 3 CO u u cn co 4) y _ —i u C cn •r4 O CO C: ••"( Cfl 4) U r-l > Cfl CJ •a U -r4 M cn M M >% O r-l ^ cfl cn u i-> 3 3 Cfl r-4 |* O CX 4J >. >< X efl cfl 4J 3 S 3 I I -O 0) 0) I 01 O) 4-1 IH V4 X £ £ 60 4-1 4-1 -r4 IV 3 •O 73 C C 01 co to .e cn cn 01 0) IH r-4 r-l O O CJ UJ • r4 -rH S. J= 4-1 00 •a tu CO 0) oi ai 01 > js 60 4J .-I en A U -4 CO cfl ON O cfl cfl O O O C O —i cn cn 01 c c O O 3 0) U ^ A cn 60 • r4 C >* X to -I 01 IH -I O tfl CO J 01 fl cfl • -a -H oi cn C « O •-! • r4 J3 CU >-i B S Cfl O CO oS u cn u co J= co co u 0 01 1-1 co 01 tfl 3 u-i cu w S •r4 Cfl S co Cfl cfl cfl cfl ^3 TJ -O O OH •r4 -r4 -T3 C X X r-4 S OO34-IO O cn cn oi T3 T3 3 3 3 Vi JS u-i cn s-* IH CU 0) CU 334-1 O O e e ca eg oo -C 01 l a. ca 00 * L 2-26 ------- TABLE 2-2 LEAD CONTENT OF GASOLINE Leaded Gasoline* Unleaded Gasoline Year (g/gal) (g/gal) 1974 1.79 0.014 1975 1.82 0.014 1976 2.02 0.014 1977 2.03 0.014 1978 1.94 0.014 1979 1.85 0.014 1980 1.38 0.014 1981 1.15 0.014 1982 1.24 0.014 1983 1.14 0.014 1984 1.10 0.014 1985 0.50 0.014 1986 0.10 0.014 1987 0.10 0.014 1988 0.10 0.014 1989 0.10 0.014 1990 0.10 0.014 *1974-1982: Lead content based upon data submitted to EPA on historical sales data for leaded gasoline and data indicating the actual pooled average lead content. The value for unleaded gasoline is based on recent MVMA fuel surveys. 1983-1990: Lead content based upon requirements for average lead content of leaded gasoline. During the first half of 1983, small refineries were subject to a pooled average lead standard. Recent EPA regulations require refiners to reduce the lead content of leaded gasoline to 0.5 g/gal by July 31, 1985 and to 0.1 g/gal by January 1, 1986 and thereafter. (See Federal Register, Vol. 50, No. 45, March 7, 1985.) L2-27------- § m X H a w Oi Q* h-* I CO M CO as 2 >• p-> w i a CM O w j M 5 d H S u > S^ H a CA -H >• c CO M O J U-I O -H as -H H C8 Z O O I u c o §z H-l 41 CO "O CO 3 M U € U >• H < P Z I 3 W » a at o i u -J E- If- •** X Cb O 1-1 >— a Ct4 O O PM H O 4- 00 ^ sO 00 ® sTs _ OOOO^'CMOOm.^ • • • • t • —" CT\ O O 00 CM ao •* m oo O —> ao CTiOOGOsOPIOOin-tf • ••*•* •4 so r^. ^ *n O O f*- ao oo -* rs. o m oo asoOOOin-stoo^m *-4 m CM oo ^C O -H ^^ OO <*^ vO *O O 00 ^ ^oooom-a-oori^ —^ •••••• ^^ QO &\ Q ^ Q f^ s^ ^ O O O O c^ ^ O O f**J f*** «••••* ^^ *^ r^ ^^ ^D ^f ^D 00 O -^ *>7 u^ O ^ O ^OOO^^^^COO"^00 • *••••• —* P-J rsicntnvOO^*^ OO >T -^ ^ ^ O ^ u^ ^ooo^Hfomoo^oo • ••••*• f*^CNc*"»in—«o^o*^ ^OOOO(N^OOeo — « x z < o r». CM O> CN m en O O £ O 4i e > x u U 41 W H 41 H3 - 41 I- 41 0) w U) 3 C (0 I O tt> a u —i a B i-l i- o a O -H O U CO S5 £ *•,§§ 6 O O HH U •HOW n 03 (0 —I •<-! W 41 S 0) 3 W <0 &L, u < 41 < a. u a. wow u. O O o a a s -J •D T3 T3 V CO t> CO u si O -H c c o <0 CO 3 O G O CO 3* CO 01 •O 4) O M •<-i Z X X 3 2 ^5 ^3 ^^ ^^ ^^ 8 -. — Q -< -I -< bb W Cb CK Eh Ch § (A CO u L 2-28 ------- TABLE 2-4 FLEET SALES FRACTIONS Light-Duty Vehicles Model Years Pre-1975 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995+ Nonleaded Gasoline Fraction of LDV Leaded Gasoline Fraction of LDV Fleet, F, NL,l,j* 0.000 0.869 0.863 0.838 0.865 0.875 0.966 0.939 0.954 0.947 0.940 0.934 0.927 0.920 0.910 0.900 0.887 0.887 0.886 0.886 0.885 0.885 1.000 0.128 0.134 0.158 0.126 0.097 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Diesel Fraction of LDV Fleet, FD>1.J** 0.000 0.003 0.003 0.004 0.009 0.028 0.034 0.061 0.046 0.053 0.060 0.066 0.073 0.080 0.090 0.100 0.113 0.113 0.114 0.114 0.115 0.115 Where F,IT , = Estimated fraction of the LDV model year fleet which use NL, 1 , , , .. , nonleaded gasoline F = Estimated fraction of the LDV model year fleet which use ' leaded gasoline F = Estimated fraction of the LDV model year fleet which use ' diesel fuel *Percentages of gasoline vehicles requiring leaded and nonleaded fuel obtained from Energy and Environmental Analysis, Inc., "The Highway Fuel Consumption Model: Tenth Quarterly Report," November 1983. **Diesel and gasoline sales projections were made by EPA based on data obtained from Energy and Environmental Analysis, Inc., "The Highway Fuel Consumption Model: Tenth Quarterly Report," November 1983. L 2-28------- TABLE 2-5 TRAVEL WEIGHTING FACTOR CALCULATION* Light-Duty Vehicles Vehicle Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ (a) January 1 Fraction Total Registration 0.028 0.107 0.100 0.094 0.088 0.080 0.075 0.069 0.062 0.056 0.050 0.043 0.037 0.031 0.024 0.018 0.012 0.008 0.006 0.008 (b) Annual Mileage Accumulation Rate t(a)(b)/(SUM)] Fraction of LDV Travel by Model Year m, . „ and m. l.j.G ,j,D** 12,818 12,639 11,933 11,268 10,639 10,045 9,485 8,955 8,455 7,983 7,538 7,117 6,720 6,345 5,991 5,657 5,341 4,043 4,762 4,496 358.9 1,352.4 1,193.3 1,059.2 936.2 803.6 711.4 617.9 524.2 447.0 376.9 306.0 248.6 196.7 143.8 101.8 64.1 32.3 28.6 36.0 0.038 0.142 0.125 0.111 0.098 0.084 0.075 0.065 0.055 0.047 0.040 0.032 0.026 0.021 0.015 0.011 0.007 0.003 0.003 0.004 SUM: 9,538.9 *Data derived from MOBILE3. **Travel fractions are the same for diesel and gasoline fueled LDVs. L2-30------- TABLE 2-6 CITY/HIGHWAY COMBINED ON-ROAD FUEL ECONOMY (miles/gallon) Fuel Economy, Ec £ j Model Year Pre-1970 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 + LDV* 13.9 13.9 13.2 13.1 12.9 12.6 13.5 14.8 15.5 16.8 17.2 20.0 21.4 22.2 22.2 22.8 23.2 23.8 24.3 24.8 25.2 25.7 26.2 26.6 27.2 27.6 29.0 LDTl** 10.6 10.6 10.4 10.2 9.9 9.6 11.6 12.3 13.0 13.4 14.2 16.1 17.7 18.6 19.2 19.9 20.7 21.4 23.0 23.3 23.1 24.0 24.5 24.4 25.3 25.8 26.2 LDT2 7.9 7.9 7.7 7.4 7.0 6.9 8.8 9.7 9.4 9.6 9.8 11.5 13.3 13.6 13.7 13.9 14.0 14.3 14.5 14.7 14.9 15.2 15.4 15.7 15.9 16.2 16.4 HDGVU _ - - - - - - - - - - - - - - - - - 9.5 9.5 9.6 9.7 9.7 9.8 9.8 9.9 10.1 HDGV2 . - - - - - - - - - - - - - - - - - 5.6 5.6 5.6 5.6 5.7 5.7 5.7 5.7 5.8 HDGV++ 6.5 6.4 6.4 6.4 6.5 6.7 6.8 7.3 7.7 8.0 8.2 8.4 8.6 8.8 8.9 8.9 9.0 9.0 9.0 9.1 9.2 9.2 9.3 9.4 9.4 9.5 9.6 *Fuel economies for LDV's based on EPA memo from Karl H. Helltnan Co Ralph C. Stahman regarding Light-Duty MPG, June 15, 1984. **Fuel economies for LDT's drawn from the input data used to generate "The Highway Fuel Consumption Model: Tenth Quarterly Report," prepared by Energy and Environmental Analysis, Inc. •••Fuel economies for Heavy-duty gasoline vehicles (HDGV) were derived from figure presented in an EPA memo to Mark Wolcott from Cooper Smith, dated July 2, 1984. •n-Pre-1986 fuel economies are composites of HDGV1 and HDGV2. L2-31------- TABLE 2-7 FUEL ECONOOT CORRECTION FACTORS AT VARIOUS SPEEDS, C (Normalized to 32.7 miles/hour-cyclic driving) Speed (mph) 5 10 15 f TTTP'\ 70——— ——— -._ — 25 30 32.7 40 45 50 55 60 C s Cyclic Driving 0.323 0.553 0.692 0.885 0.963 1.000 - - 1 09? 1.053 1.073 1.078 1.063 1.023 C s Steady Cruise 0.467 0.709 0.997 1 1 C-l 1.248 1.294 1.303 1.288 1.256 1.210 1.159 1.104 L 2-32------- 00 1 CM Ed CO ^ ^1 /-** x < 3 i •* 9* Sf*] — 1 OH _J IX < rH 0 CD- Z Ed o z CO Ed Ed -4 0 < 3 co H rH o: H Ed ^1 >• I 3 •J O Ed J G •^ f^t IE c/3 g £_ ^ CO 0 >- 3 CO en H -J o >- 04 H H 3 Z O O 1 CJ X Z u o I-H I-H 1 r/5 OO tb *-H O 2: 3 z O H i-l Z H U u o: <; u 02 Eh Eh En t-H Q H> OO CO 1^ oo \D OO cr. m oo ON I_H ^ 00 cr. en 00 CM oo ,-H l—i CD »— 1 o 00 cr< cr. p^ cr* .« CD cr. i — r-» cr. vO CP> _^ m cr. , 1 m 0- -H a 4j to > o o 0 o o CM CM o •H CM o • XD CM o HH CM O f) o P*. CM o oo en O CO OO O 00 oo , o o o -) • pS, • ^m O o 0 o o o o _« _H 0 f*>, CM O ^3- m O cr. o en oo O in CM CM m CM t O H O o * _J 1 Z f-l CM U. o o o o en O O CM 0\ O \& vO o • ^ P*. in • »^ sO u^ ^^ ^ i/^ • in O sO ^o ^ in « ^ o in • o m , o oc; ^ c •z. c-i O X O .^^ «t CM 0 in •~4 0 m -* 0 in m o in m • m Ox in p^ 00 p^ oo oo * m ,_ t *j • (y\ o •* in O -3- • in CM cn • ^H CM en • ^* P^ CM • P- O en . O c£ ^ ^^ H O X O •> I—I CM (L, o in en 0 en 0 m »-4 O in _H • 0 CM ••* ST m o p^ CM O • O o o 0 0 0 0 o E-i u 3 en •t 1—J „ CM Eu O o m o O in O o en O O cn • xO P- CM p^ xO — ' ~H CM O • O o o o o o o o H CJ X o H u 3 en « •f— ) •, CM EK O -3- CM 0 CM O 00 "* O xO •-H • o cn — * o o 0 00 o • o xO o • -3- en O 00 CM 0 cr. o o m o o • en O O • CM O o o 1— 1 •1 CM •» a Eh o o 0 -1 o 0 o — o o 0 n-H 0 o o • "H o o 0 _H o o o _J o o o • _* cr. 00 cr. • f--. r^ cr \c ^O C3^ * 0 en cr> • r^ —• cr. • m P«« P^ • P^. P^ 00 o H U 1—1 * CM U. o o O 0 CM 00 O O 0 0 CM CO O O CO CM ^D CT* o o CO CM ^D ^^ • • vo• • U^l j/*j O csj so cn • • o — • ^ CM m cn v , ** — » O r- m CM • • O r-. r^ o in cn « « 0 O Oi M « e < cj H ** t^ •>-) CJ « •> CM CM EK Ci. 01 Id ca to S 4) (0 x cn u< ^j o i-H i— 1 CO P— t H a j rH rH CO >3- O OO 1 10 CM C OO O U •a eo C >H CD UH 00 tU r^ M 1 CO in r**» *f~> ON * ^ OJ * OQ a u Eh iH 3 T3 ta c CJ CO a£ 0) *J • « (0 to 03 CM ca 01 c CO HO -I •H U. CO B 4J u O U X CO 1-1 01 i-H C5 *J *^^ C to o o tu o u -H -H OH U UH i-( i-t CO O r- 4-» E O 01 M 01 O > OJ 4J « cj tn — • u X cn f-i co o 01 co w H V4 -^ . 01 o a. • 01 OJ TI M 3 CO co to aj u —> ^ ca Eh c *O H 1 0Q O *^) O C CJ CO J I-H CO •• 4J IH C 4J T3 IH CO tU O O OJ O Q 4J i-( C TJ 4^ en a co U X -H tfl O 01 CO S 60 -H "0 rH Ch 0 01 6 B B C6 Ed CO 3 CO C O CJ r- 1 HH E i— i i-t W CO O 3 -H CO IH i-H CO CO rH 01 CO O •H 01 "O 01 O UH Q 3 O) 4J O U Eh Eh CO hi E CO CO •< < < TH 01 C OH CU OH 4J X O Ed bj Ed 01 -H DJ i— 1 U • • • tu u CO CO CO < T3 CO • • • W O IH 3 3 3 W S "-I .. tn 01 u IH 01 3 •>-> 0 0 CO Z /-33 ------- TABLE 2-9 FLEET SALES FRACTIONS Light-Duty Trucks I Unleaded Gasoline Years ' NL,2,j* Pre-1975 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 + Where F.TT 0 NT / nL- , z. V L,2 0.000 0.810 0.909 0.957 0.964 0.942 0.945 0.914 0.899 0.878 0.870 0.840 0.820 0.790 0.760 0.730 0.706 0.697 0.688 0.679 0.670 0.661 = Estimated frac nonleaded gaso = Estimated frac 1 £» ft d ^ rl r* i f ^\ 1 -IT-I Leaded Gasoline Fraction of LDTl Fleet, F „ . J-> j *-»J 1.000 0.188 0.088 0.038 0.027 0.030 0.021 0.026 0.021 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Diesel Fraction of LDTl Fleet. F 0.000 0.002 0.003 0.005 0.009 0.028 0.034 0.060 0.080 0.100 0.130 0.160 0.180 0.210 0.240 0.270 0.294 0.303 0.312 0.321 0.330 0.339 Estimated fraction of the LDTl model year fleet which use nonleaded gasoline. Estimated fraction of the LDTl model year fleet which use leaded gasoline. Estimated fraction of the LDTl model year fleet which use diesel fuel. *Percentages of gasoline vehicles requiring leaded and unleaded fuel obtained from Energy and Environmental Analysis, Inc., "The Highway Fuel Consumption Model: Tenth Quarterly Report," November 1983. **Diesel and gasoline sales projections were derived from MOBILE3. L 2-34------- TABLE 2-10 TRAVEL WEIGHTING FACTOR CALCULATION* Light-Duty Gas Trucks I** Vehicle Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (a) January 1 Fraction Total Registration 0.023 0.089 0.085 0.081 0.076 0.072 0.068 0.064 0.060 0.055 0.050 0.046 0.042 0.038 0.034 0.029 0.025 0.021 0.017 0.025 (b) Annual Mileage Accumulation Rate Ua)(b)/(SUM)] Fraction of LDV Travel by Model Year, m 2,j,G 17,394 17,079 15,839 14,690 13,624 12,636 11,719 10,868 10,080 9,348 8,670 8,041 7,457 6,916 6,415 5,949 5,517 5,117 4,746 4,402 400.1 1,520.0 1,346.3 1,189.9 1,035.4 909.8 796.9 695.6 604.8 514.1 433.5 369.9 313.2 262.8 218.1 172.5 137.9 107.5 80.7 110.1 0.036 0.135 0.120 0.106 0.092 0.081 0.071 0.062 0.054 0.046 0.039 0.033 0.028 0.023 0.019 0.015 0.012 0.009 0.007 0.010 SUM: 11,219.1 *Data derived from MOBILES. **Light-duty trucks I have a gross vehicle weight (GVW) rating of 6,000 pounds or less. L 2-------- hi r-i V. CJ 3 ai H >• E-i c/3 o c*3 1 H E~i c/3 |-r; >t O t/3 t—4 i-J jJ —i Cb OS CM Z w o W »J O •J < < o H OS i-i < 0! U CO >-i rH jr — W w Q >• o CQ y Cb O •z. O t- u 2 [i. oo 00 2 p»» CO % — vO 00 ON i—4 m 00 OS -a- 00 ON CO 00 CM CO 2 — « 00 ON «-4 O 00 ON — ri ON r«- ON -^ oo r^. ON ^t r~^. r-^ ON ~* vO r- -" in ON f^t 1 m Oj r- l-i ON Oi — • e OI en co O 0 o o o o o o o 0 CO oo ON . o o o • ^ o o o • c c o ^* o o o -^ •1— J •t co * J Cb o o o o o 0 o o o 00 o o • 0 o o o o H (_J o z jj yz M >f— 3 A CO [b 0 o o 0 o ^. 00 CM tsi CM CM o o • o o m • vO ON -3- • 0 o o o o H CJ X 0 •"— ) * CO Cb o o 0 o 00 • o o 00 • co CM 00 1 — r- m *y o 1 — o o in « o o m • vO ON <3- • o 0 0 o o 04 ^£ -*^ E-H *c QJ X 0 «t **-! M CO Cb o CM o o CM o * o o CO o o CM _M o o o o o o o o o 0 H CJ 2 CO * •r") * CO Cb o 00 o 00 • o o CM * o o CM • ^ f-fc p— t (^ CM «4 ^ r«^ o o o o o o 0 o o H CJ X o H ^^ CJ -( CO • •r-l «l CO Cb CM CM CM 00 0 CM * *a- o> ••4 * o 00 « r^ •a- CO •-H — o CO o o in o • o in o in CM o . CM _^ o * o o o 0 •n • CO •I Q o o o ~* o o o ^ o o o I—I o o o • t— 1 o o o — 1 0 o o -I o o 0 p-H o c o • — < c c o • — « CNI ON ON . 0 0 o 0 o H CJ •1 f—) » m t%4 o CN o • o CM o * o o o CO ON CM CM CM CM o o m • o o m • vO CJN *J- • o o o o o ai i-H ^f o z "•^ 81 CJ * **™J •k 01 Cb o 00 • o 00 o\ * o o o I— 1 o o o ~* o o o ^4 p^ o r*. 00 r~ r- o o m • o 0 in • •o ON01 4J U (0 *J ^ tO i— 1 t/3 01 CO H l-i pi CJ O 41 T) l-i to 41 U 3 to. C 1 O C CJ 1^ C M 01 O 0 U -H 4J W (0 O -H tfl co ac -H "b 0> S K bj O r-4 i*-l i-l CO O to w CO 01 03 •H "CJ 41 E 41 u [L] C^ Cd e < < 1-1 Cu ft, u U W to u • • C/3 C/5 ------- TABLE 2-12 FLEET SALES FRACTIONS Light-Duty Trucks II Unleaded Gasoline Model Years Pre-1975 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995+ WHERE F.IT , NL,3 F L,3 .LUV~t.-A.V^LJ \S A. UV JL *- Fleet« FNL,3,j* 0.000 0.000 0.000 0.000 0.000 0.972 0.966 0.940 0.920 0.900 0.870 0.840 0.820 0.790 0.760 0.730 0.706 0.697 0.688 0.679 0.670 0.661 = Estimated frac nonleaded gaso = Estimated frac 1 « »* *•! A /^ r» <•» e> ^ 1 •! « Leaded Gasoline Fraction of LDT2 1.000 0.998 0.997 0.995 0.991 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Diesel Fraction of LDT2 Fleet, F _ . u,j,j ** 0.000 0.002 0.003 0.005 0.009 0.028 0.034 0.060 0.080 0.100 0.130 0.160 0.180 0.210 0.240 0.270 0.294 0.303 0.312 0.321 0.330 0.339 Estimated fraction of the LDT2 model year fleet which use nonleaded gasoline. Estimated fraction of the LDT2 model year fleet which use leaded gasoline. Estimated fraction of the LDT2 model year fleet which use diesel fuel. *Percentages of gasoline vehicles requiring leaded and nonleaded fuel obtained from Energy and Environmental Analysis, Inc., "The Highway Fuel Consumption Model: Tenth Quarterly Report," November 1983. **Diesel and gasoline sales projections were derived from MOBILES. L2-37------- TABLE 2-13 TRAVEL WEIGHTING FACTOR CALCULATION* Light-Duty Gas Trucks II** Vehicle Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 + (a) January 1 Fraction Total Registration 0.023 0.089 0.085 0.081 0.076 0.072 0.068 0.064 0.060 0.055 0.050 0.046 0.042 0.038 0.034 0.029 0.025 0.021 0.017 0.025 (b) Annual Mileage Accumulation Rate 18,352 18,001 16,622 15,348 14,172 13,087 12,084 11,158 10,303 9,514 8,785 8,112 7,491 6,917 6,386 5,897 5,446 5,028 4,643 4,287 SUM: (a)(b) 422.1 1,602.1 1,412.9 1,243.2 1,077.1 942.3 821.7 714.1 618.2 523.3 439.3 373.2 314.6 262.8 217.1 171.0 136.2 105.6 78.9 107.2 11,582.9 [(a)(b)/(SUM)] Fraction of LDT2 Travel by Model Year, m 3.J.G 0.036 0.138 0.122 0.107 0.093 0.081 0.071 0.062 0.053 0.045 0.038 0.032 0.027 0.023 0.019 0.015 0.012 0.009 0.007 0.009 *Data derived from MOBILE3. **Light-duty trucks II have a gross vehicle weight (GVW) rating of 6,001 to 8,500 pounds. L, 2-38------- TABLE 2-14 TRAVEL WEIGHTING FACTOR CALCULATION* Light-Duty Diesel Trucks I and II** Vehicle Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ (a) January 1 Fraction Total Registration 0.023 0.087 0.083 0.079 0.075 0.071 0.066 0.062 0.058 0.054 0.049 0.045 0.041 0.037 0.033 0.029 0.025 0.020 0.016 0.025 (b) Annual Mileage Accumulation Rate [(a)(b)/(SUM)l Fraction of LDDT I & II Travel by Model Year, m. » j t 17,552 17,230 15,964 14,791 13,705 12,699 11,766 10,901 10,101 9,359 8,671 8,035 7,444 6,897 6,391 5,921 5,487 5,084 4,710 4,364 403.7 1,499.0 1,325.0 1,168.5 1,027.9 901.6 776.6 675.9 585.9 505.4 424.9 361. A 305.2 255.2 210.9 171.7 137.2 101.7 75.4 109.1 0.035 0.129 0.114 0.101 0.088 0.078 0.067 0.058 0.050 0.043 0.037 0.031 0.026 0.022 0.018 0.015 0.012 0.009 0.006 0.009 SUM: 11,622.4 *Data derived from MOBILE3. **Light-duty trucks I and II have a gross vehicle weight (GVW) rating of 0-8,500 pounds. L 2-39------- TABLE 2-15 FLEET SALES FRACTIONS Aeavy-Duty Gasoline Vehicles (HDGV)* Model Unleaded Fraction of Leaded Fraction of Years HDGV Fleet FNL>4tj** HDGV Fleet FL>4>j Pre-1977 0.000 1.000 1977 0.000 1.000 1978 0.000 1.000 1979 0.000 1.000 1980 0.000 1.000 1981 0.000 1.000 1982 0.000 1.000 1983 0.000 1.000 1984 0.000 1.000 1985 0.000 1.000 1986 0.000 1.000 1987 0.823 0.177 1988 0.824 0.176 1989 0.825 0.175 1990 0.826 0.174 1991 0.828 0.172 1992 0.829 0.171 1993 0.833 0.167 1994 0.837 0.163 1995 0.840 0.160 *Heavy-duty gasoline vehicles have a gross vehicle weight (GVW) rating greater than 8,501 pounds. *The estimated fractions of the HDGV model year fleets which are gasoline- powered are consistent with figures from M.C. Smith, "Heavy-Duty Vehicle Emission Conversion Factors: 1962-1997," EPA-AA/SDSB-84-1, Office of Mobile Sources, August 1984. L2-40------- TABLE 2-16 TRAVEL WEIGHTING FACTOR CALCULATION* Heavy-Duty Gasoline Vehicle (HDGV)** Vehicle Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ (a) January 1 Fraction Total Registration 0.000 0.148 0.126 0.107 0.092 0.078 0.067 0.058 0.049 0.041 0.036 0.030 0.026 0.022 0.020 0.016 0.014 0.012 0.010 0.049 (b) Annual Mileage Accumulation Rate [(a)(b)/(SUM)] Fraction of HDGT Travel by Model Yeqr, m 4.J.G 0 19,967 18,077 16,365 14,815 13,413 12,143 10,993 9,952 9,010 8,156 7,384 6,685 6,052 5,479 4,960 4,490 4,065 3,680 3,332 0.0 2,955.1 2,277.7 1,751.1 1,363.0 1,046.2 813.6 637.6 487.6 369.4 293.6 221.5 173.8 133.1 121.0 79.4 62.9 48.8 36.8 163.3 0.000 0.227 0.175 0.134 0.105 0.080 0.062 0.049 0.037 0.028 0.023 0.017 0.013 0.010 0.009 0.006 0.005 0.004 0.003 0.013 SUM: 13,035.5 *Data derived from MOBILE3. **Heavy-duty gasoline vehicles have a gross vehicle weight (GVW) rating greater than 8,500 pounds. L 2-41------- TABLE 2-17 TRAVEL WEIGHTING FACTOR CALCULATION* For Heavy-Duty Diesel Vehicles in Calendar Year 1987 Vehicle Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ (a) January 1 Fraction Total Registration 0.000 0.166 0.13 0.115 0.097 0.080 0.067 0.056 0.047 0.040 0.033 0.027 0.023 0.019 0.015 0.013 0.011 0.009 0.008 0.034 (b)** Annual Mileage Accumulation Rate 0 67,910 61,749 56,155 51,073 46,457 42,260 38,447 34,982 31,832 28,968 26,363 23,995 21,43 19,883 18,101 16,41 15,007 13,665 12,444 0.0 11,273.1 8,521.4 6,457.8 4,954.1 3,716.6 2,831.4 2,153.0 1,644.2 1,273.3 955.9 711.8 551.9 415.0 298.2 235.3 181.3 135.1 109.3 423.1 SUM: 46,841.8 Fraction of HDTT 1 Travel by Model Year, mj ; j 0.000 0.241 0.182 0.138 0.106 0.079 0.060 0.046 0.035 0.027 0.020 0.015 0.012 0.009 0.006 0.005 0.004 0.003 0.002 0.009 *Data derived from MOBILE3. **The tabulated annual mileage accumulation rate is specific to CY 1987 only. The rate shifts from one year to the next due to the increasing penetration of diesels in the lower mileage, lighter weight classes of the heavy-duty truck category (which contains all vehicles with a GVW ra.ting over 8,500 pounds). L 2-42------- TABLE 2-18 TRAVEL WEIGHTING FACTOR CALCULATION* Motorcycles Vehicle Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ (a) January 1 Fraction Total Registration 0.000 0.167 0.159 0.134 0.142 0.131 0.080 0.051 0.028 0.010 0.098 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 (b) Annual Mileage Accumulation Rate 0 4,100 2,800 2,100 1,600 1,200 800 600 400 200 200 200 0 0 0 0 0 0 0 0 t(a)(b)/(SUM)] Fraction of MC Travel by Model Year, m, . 6 , j , G 0.0 685.7 445.7 281.0 227.0 157.8 63.7 30.4 11.1 2.1 19.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -• ' .I..-I- - - w - 0.000 0.356 0.232 0.146 0.118 0.082 0.033 0.016 0.001 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SUM: 1,924.0 *Data derived from MOBILES. L 2-43------- TABLE 2-19 RATES OF MISFUELING (r^ FOR DIFFERENT VEHICLE CLASSES* I/M Non-I/M Light-Duty Vehicles (i=l) 0.09 0.20 Light-Duty Trucks I (i=2) 0.20 0.46 Light-Duty Trucks II (i=3) 0.21 0.47 Heavy-Duty Gasoline Vehicles (i=4)** 0.19 0.40 Motorcycles (i=6) 0 0 *Values in this table are expressed as fractions of the total number of vehicles in each class. Misfueling rates are determined for the weighted average mileage accumulated for each vehicle class. **Misfueling rates for Heavy-Duty Gasoline Vehicles pertain only to heavy-duty gasoline vehicles 1 made after model year 1986. SOURCES: The equations used to estimate misfueling as a function of mileage for I/M and non-I/M areas are drawn from "Anti- Tampering and Anti-Misfueling Programs to Reduce In-Use Emissions from Motor Vehicles," EPA-AA-TSS-83-10, Office of Mobile Sources, December 31, 1983. Weighted average mileages by vehicle category are calculated from data contained in MOBILE3. L 2-44------- TABLE 2-19a RATES OF MISFUELING (r ) FOR DIFFERENT VEHICLE AGES AND CLASSES* Vehicle Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ LDV Non-I/M .-04 .07 .10 .13 .16 .18 .21 .23 .25 .27 .29 .31 .33 .34 .36 .37 .39 .40 .41 .42 I/M .04 .05 .06 .07 .08 .09 .09 .10 .11 .11 .12 .12 .13 .13 .14 .14 .15 .15 .15 .16 LDTI Non-I/M .22 .27 .31 .35 .38 .42 .45 .47 .50 .52 .55 .57 .59 .60 .62 .64 .65 .66 .68 .69 I/M .13 .14 .16 .17 .18 .19 .20 .21 .21 .22 .23 .24 .24 .25 .25 .26 .26 .26 .27 .27 LOT 1 1 Non-I/M .23 .27 .32 .36 .39 .43 .46 .49 .51 .54 .56 .58 .60 .62 .63 .65 .66 .68 .69 .70 I/M .13 .15 .16 .17 .18 .19 .20 .21 .22 .23 .23 .24 .25 .25 .26 .26 .26 .27 .27 .28 HDGV1 Non-I/M .18 .23 .28 .32 .36 .39 .42 .45 .48 .50 .52 .54 .56 .57 .59 .60 .61 .62 .63 .64 I/M .12 .13 .15 .16 .17 .18 .19 .20 .21 .22 .22 .23 .23 .24 .24 .25 .25 .25 .25 .26 *Values in this table are expressed as fractions of the total number of vehicles in each class. Misfueling rates are determined for the average mileage in each class. Misfueling rates are determined for the average mileage accumulated by each vehicle class of each vehicle age group. **Misfueling rates for Heavy-Duty Gasoline Vehicles I (HDGV1) are estimates for 1987 and later calendar years. Currently all HDGVls use leaded fuel. (For example, for the year 1990, use the first three values in either the non-I/M or I/M HDGV1 column. All HDGVls greater than 3 years old in this case (i.e., pre-1987 vehicles) would have a misfueling rate of zero since they do not require use of unleaded fuel. SOURCES: The equations used to estimate misfueling as a function of mileage for I/M and non-I/M areas are drawn from "Anti- Tampering and Anti-Misfueling Programs to Reduce In-Use Emissions from Motor Vehicles," EPA-AA-TSS-83-10, Office of Mobile Sources, December 31, 1983. Weighted average mileages by vehicle category are calculated from data contained in MOBILE3. L 2-45------- TABLE 2-20 AVERAGE DATA ON PARTICLE SIZE DISTRIBUTION Cumulative Fraction of Particulate Mass Smaller Than Diameter Leaded Fuel, M.^ Median Particle Fractions, Ranges of M Values* 0.2 V 0.23 0.18-0.28 10 u 0.43 0.64 0.28-0.58 0.45-0.84 References: (author summary of) Ninotniya et al, 1970; Moran et al, 1971; Cental et al, 1973; Cantwell et al, 1972; Boyer and Laitiner, 1975; Habibi et al, 1970; Hirschler and Gilbert, 1964. Cumulative Fraction of Particulate Mass Smaller Than Diameter Unleaded Fuel, Ranges of M^ Valves** Ranges of M^ Valves 0.2 u 0.87 0.86-0.88 0.42 0.29-0.55 2 y 0.89 0.84-0.94 0.66 0.52-0.80 10 y 0.97 0.84-1.00 0.90 0.63-1.00 References: (author summary of) Foster et al, 1976; Trayser et al, 1976; Foster et al, 1974; Melton et al, 1973; Habibi, 1973; Cental et al, 1973. *95 percent confidence intervals on mean of data. **95 percent confidence intervals by "t" statistics, 2-46------- TABLE 2-20 AVERAGE DATA ON PARTICLE SIZE DISTRIBUTION (cont'd) Cumulative Fraction of Particulate Mass Smaller Than Diameter Diesel Fuel, M^ «D Ranges of M^ Values 0.2 y 0.73 0.69-0.75 1.0 y 0.86 0.76-0.93 2.0 y 0.90 0.86-0.95 2.5 y 0.92 0.88-0.95 10 y 1.00 0.97-1. 00 References: Breslin, et al, 1976; Hare, 1979, Bykowski, 1981; Bykowski, 1983; McCain and Faulkner, 1979; Vuk, et al, 1976; Begeman, 1979; Carpenter and Johnson, 1979; Verrant and Kittelson, 1977. Cumulative Fraction of Particulate Mass Smaller Than Diameter Brake Wear Particulate, t'L n . _ . . . _ 7 ,n __B 0.43 u 1.1 y 4.7 u 7 u 10 u Median Particle+ Fractions, Kg"1"*" 0.09 0.16 0.82 0.90 0.98 Ranges of M^ Values Not available Reference: Cha et al, 1983. Intermediate speed, no load, prechamber engine, 2D fuel. Samples for determining particle size distribution were collected by running about 20 braking cycles weighted to be representative of urban driving conditions. L 2-47------- TABLE 2-21 LOW ALTITUDE HDDV CONVERSTION FACTORS* Model Year 1951-1962 1963-1965 1966-1968 1969-1971 1972-1974 1975-1979 1980-1981 1982-1984 1985 1986 1987-1992 1993-1996 1997-2000 Conversion Factor (CF;) 2.7420 2.7307 2.8267 3.0080 3.1917 3.1420 2.7780 2.5580 2.4700 2.4260 2.3600 2.3175 2.3100 *These factors are used to convert emissions in g/Bhp-hr to g/mile. They are consistent with those contained in M.C. Smith, "Heavy-Duty Vehicle Emission Conversion Factors: 1962-1977," EPA-AA-SDSB-84-1, Office of Mobile Sourcs, August 1984. L 2-48------- TABLE 2-22 FRACTION OF LEAD BURNED THAT IS EMITTED, a.s asl,j* as2,j** All years .75 1975-1980 .40 1981+ .44 *asi j is used for all vehicles using unleaded gasoline and for vehicles without catalysts using leaded gasoline. **as2>j is used for catalyst equipped vehicles using leaded gasoline, L 2-49------- TABLE 2-23 FRACTION OF CATALYST EQUIPPED VEHICLES WITH CATALYST REMOVED, P.* and I/M .017 .050 Non-I/M .045 .195 *Fractions obtained from "Anti-Tampering and Antl-Misfueling Programs to Reduce In-Use Emissions From Motor Vehicles," U.S. EPA, December 1983. L 2-50------- S 2 c~. to a Cd CO _o -ca CJ o &3 o o a p* — SS31 23"!CI- L2-51------- "S • It Q U o o z O < a w 3 00 O I o P* y -3 O o I* 9 n SSal S2TDI1HV«£ ZAli L 2-52------- 00 2 a 2 So 3 CO -3 D CJ CO C=3 a w C O 1-ifl -2 U 09909933099 aacp-wo^otv — SS31 L 2-53------- HYH1 SS31 L 2-54------- 3. EXAMPLE CALCULATION OF AUTOMOBILE PARTICULATE EMISSIONS LESS THAN 10 MICRONS PROBLEM For an area characterized by light-duty vehicles driving under cyclic conditions with an average speed of 19,6 miles per hour, calculate the particulate emission rate of particles less than 10 U in diameter for the year 1985. Assume an inspection and maintenance program has been implemented in this area. The simplified misfueling rates from Table 2-19 will be used. SOLUTION Use equations (2-1), (2-2), (2-3), (2-4), (2-5), (2-6), (2-7), (2-8), (2-9), (2-10), (2-12), (2-14), and (2-15). Particulate Matter Size Cutoff = 10 M n=1985 i=l=LDV s=19.6 mph M^=0.98 r- (from Table 2-19) - 0.09 Base Equation (2-1); Total Particulate Emission Factors Vehicle Exhaust Particulate 'Component and Airborne Brake Wear Component and Airborne Tire Wear Component EFPM10,1985,19.6 " <1-0>+ (0.0128)(0.98) + (0.002) ------- Total Vehicle Exhaust Particulate Emission Component (2-2)*; ,1985,19.6 ' .TT [+ EFl,j,k2,L + EF1,j,k3,L> ,l,j) Mi>:j,G * CEFljj>D)(FD>1>j) m1>j) where Pb^igss = 1-1 (g/gal) pbNL,1985 = °-014 (g/gal) ML, 10 = 0.64 %L,C,10 = °-97 MNL,C,10 = °-90 MD = 1.00 as = from Table 2-22 Cs = 0.79 ?l * 0.017 Using the following equations to plug into Equation (2-2) and sum over the appropriate model years: Lead Emission Factor Component (2-3a) ; Leaded Fuel For j=1966-1970 k=l EFl,j,klf1985,L = [(l.D(. 887X0.64) + (0.014) (0. 113) (0.90) J (0.75)(1.557) = .925 X (Ecl>jX0.79) Ec>i>j *The numbers in ( ) in equation titles refer to the equations presented in Section 2. L 3-2 ------- Lead Emission Factor Component (2-3b); Leaded Fuel For j=1971-1974 k=l EFi,jfklf1985,L = [(1.IX.916X0.64) + (0.014) (0.084) (0. 90)] (0.75X1.557) .955 Lead Emission Factor Component (2-4); Leaded Fuel For j=1975-1985 k-1 EFlfj,klf1985tL 3 [(1.1X0.724X0.64) + (0.014) (0.276) (0.90)j (0.75)(1.557) .7586 CECfi,j)(0.79) Lead Emission Factor Component (2-5); Unleaded Fuel For j=1975-1985 k-1 NL ' [(0.014)(0.91)(0.97)(0.75) * (1.1)(0.09)(0.64) (FI)J?NL)NOCAT * (0.17) (Fi,j,HLfCAT)) (0-75) * (1.1X0.09X0.64X.983XFifj>HIj|cAT>J L Er.i;(0.79) J Ec>1>j(0.79) L 3-3 ------- 1985 .0731 1984 .0731 1983 .0731 1982 .0731 1981 .0731 1980 .0682 1979 .0682 1978 .0682 1977 .0682 1976 .0694 1975 .0717 Organic Emission Factor Component (2-6); Leaded Fuel For j-1966-1969 k=2 EFl,j,k2,L = CO.193)(0.64) - 0.124 (g/mile) Organic Emission Factor Components (2-7); Leaded Fuel For j=1970-1974 k=2 EFl,j,k2,L = (0.068)(0.64) = 0.044 (g/mile) Organic Emission Factor Component (2-8): Leaded Fuel For j=1975-1985 k=2 EFl,j,k2L = (0.030X0.64) - 0.019 (g/mile) L 3-4------- Organic Emission Factor Component (2-9); Unleaded Fuel For j=1975-1985 k=2 EFl,J,k2,NL - (0.91)(Fifj,cAT><0. 017X0. 97) + (0.09)(F1> j>CAT)(0.068)(0.64) + (FI,J,NL,NOCATXO. 030X0. 90) = (0.019)(F1>j)CAT) + <0.027)(FitjfHL|HOCAT> Sulfate Emission Factor Component (2-10); Leaded Fuel For j=1966-1985 k»3 EFl,j,k3,L = (0.002X0.64) = 0.001 (g/mile) Sulfate Emission Factor Component (2-12): Unleaded Fuel For j=1975-1985 k=3 "l,j,k3,NL " (0.91) [(Fijj)CAT/NOAIRXO. 005X0. 97) * (n,j,CAT/AIR)(0.016)(0.97) * (F1, j,NL,NOCATX°-002X0.90) J + (0.09) (0.002) (0.64) * )Fi, j,CATMiR>Co.oi6) Diesel Particulate Emission Factor Component (2-14) For j=1966-1980 EFl,j,D = (0.700)(1.00) = 0.700 (g/mile) L 3-5------- Diesel Particulate Emission Factor Component (2-15) For j=1981-1985 EFl,j,D • (0.300X1.00) = 0.300 (g/mile) Table 3-1 presents the inputs and the sequence of calculations necessary to derive the LDV exhaust particulate emission factor components (using the above equations) and the total LDV exhaust particulate emission rate, EF1 1985 19.6' This estimate is then combined with the airborne brake wear and airborne tire wear particulate components to obtain the total LDV particulate emission rate: EFPM10,1985,19.6 = (1.0X0.0581) + 0.0125 + 0.002 =» 0.0726 (g/mile) This example is an estimate of particulate emissions from light-duty vehicles only. Therefore, the total emission rate from all vehicle classes for an area in calendar year 1985 can be expected to be considerably higher. 3-6------- u I I I I I PPOPPPPPPPP < o C1CN — — CN-^^*C\ONOl/^l I I I I 1 I I t ppppppdddpp «C a* Z u 3 o o z p — CM 00 I I I I P P I I I I I I I I I >PPPPPOPPPCT> PPPPPOPOCO — ipOPPPOOPCTNO* I I I I I I o^o^^r\Of*ievtpcoO OOOOOOOOOOOI I I I I I I I I ........... PPPOOOPOOOP I I I 1 I O O — — -< — O O O O O O O O O odocJdo — — — — — — — -^-J coopooo ao ------- •o 4J C o o •^x i H CO o ^^ H •< 3 O ^ CJ XAMPLE Cd Cd H 2 !Z o 1— 1 CO CO fd IE Cd Cd 3 O Hd i A . HICLE I Cd ** >• H Q 1 H O *"? >-J in oo ej\ (A < Cd >« X OS 0 CO •z. o o 1— 1 £ o 1— 1 5 X H CO CO Id CU Id eg 4J eg 4-1 ^~^ ^ 1 CM T5 c CO •t /-> 40 CO £ - _ ) 4-1 o. Descri c 0 .-1 4j eg 3 CO 4-1 c Ol o 0 0 u 0 4J CJ CO C*. C o en en ' E Cd a 03 en I CN ^^ ^ en 1 CM 01 c o '""^ CO 3 cr Cd c 4-1 C 0) compon id o u CO c o • l-l en en 'E CU r* 4-1 en 0) ^ t CO (-d 3 U CO o s-^ ^i \^ C o • H 4J CO g 3 CO • CM 1 CN •^ C o • xd 4J eg 3 cr c • *d T) 0) en 3 • ^— ^ CM CM ^^ e o 4-1 eg 3 cr Cd c • i>4 T3 CU co 3 01 • l-l JJ eg •" 4nJ m 1 CN C o ' eg 3 cr Cd e 4J C 01 compon u o u eg c 0 • *4 en en 's Ol Ol 4J en tn eu eg f— ( 3 O eg CJ x^ en ^•x c o 4J eg g g 3 CO • CN 1 CN ^x c o • rd 4J eg 3 cr Cd c •rf • X— N CN 1 CN ^^ G O • id 4J eg 3 cr Cd c • id •O 01 CO 3 en • id 4J eg •^ 1 CN C 0 • id efl Cd C " 4-1 C Ol compon id 0 CJ CO C O • H CO CO • r-< E Ol «x c o •l-l u eg 3 er Cd e T3 eu 0] 3 01 • id 4J (Q .C ^ /*^n O ~ H CN e o *'"' 3 er e * 4J C 0) compon ^ o ej CO C O • p^ CO w • >H E cu oj jr 4-1 en O) ^ 1 eg f— 1 3 u CO U x^s in •k-/ c o • id 4J CO E £ 3 CO t X-N CN 1 CN *^f C o 4-1 CO 3 er Cd C •id TJ CU CO 3 to • id 4-1 CO j: ^J CN CN C o *" XJ eg cr c " 4J C eu compon u o o CO c o en tn • rd E 01 1) 4-1 en 1 1 i-d 3 ej eo u s-^ «fcO N*-X C O • ^ 4J CO E E 3 CO C •o eu 01 3 cu P cd ^ CO JJ x*s m •M 1 CM ^^ *t3 c cO 1 CN 09 0 •^ 3 er Cd e * 4J C CU compon ,_, o u CO c 0 • pj to tn 's Ol eu j: 4J tn cu ^ i eo l-d 3 ej ^_ j CO CJ X- V p^. N^X C o • H 4J CO g g 3 CO • /x^ CM I CN SvX C 0 • id 4J efl 3 er Cd 3-8------- OO OO — — 'CM— ' O O O O OOOOOCJOO OOOOOOOO I I I I I ooooooooooo o o* ^3-r^sOi^—-t GO »*"l u"i -^ m ro O—i—• —> —• O O O O O O OOOOOOOOOOO I ooooooooooo ooooooooooo I I I I I I o o 1 r"l jj _J 03 < OT Z 0 >-H H < _! a u j s a _; a. 3 2 u 6- 2 Z o w C/3 i u H < _ O CJ hH H X < a. ii _) o Ltl > >• H o a i E- X O -a w C o u o-i CO - u s H as 0 Cb W Z o as O 2 0 H U3 U5 en c o •H (0 3 U U u C 01 c o Q. a 0 o u o 4-1 O (0 [b c o T-t X CO TH B U • U <*i a —'—•—«-«~P"tr"lCMCN-«"*OO< OOOOOOOOOOOOO' OOOOOOOOOOOOO' §000000000000 oooooooooooo oooooooooooooo o o o z. r CN ^ U Z --• Eb O^J^JfN—*—'—«—'OOO ooooooooooo ooooooooooo ooooooooooo I I I I I I in O o I I I I I I OOOOO — — OOOOOOO OOOOOOOOOOOOOO oooooooooooooo oooooooooooooo o o OOOOOOOOOOO ooooooooooo ooooooooooo ooooooooooo I I I I I o o CO dv — I I I I I I OOOOOO — —'—-OOOOO oooooooooooooo oooooooooooooo oooooooooooooo O O O ta II L 3- 9------- REFERENCES 1. Carey, Penny M., Supplementary Guidelines for Lead Implementation Plans — Updated Projections for Motor Vehicle Lead Emissions, EPA-450/2-3-002, OAR, QMS, ECTD, TSS for OAQPS, March 1983. 2. Compilation of Air Pollutant Emission Factors: Highway Mobile Sources, EPA 460/3-81-005, OAR, QMS, ECTD, TEB, March 1981. 3.- Anti-Tamper ing and Anti-Mis fueling Programs to Reduce In-Use Emissions From Motor Vehicles, EPA/AA/TSS-83-10, December 193. 4. Diesel Particulate Study (Draft), U.S. EPA, OAR, QMS, ECTD, SDSB, i October 1983. 5. Lorang, Philip A., White, John T., and Brzezinski, David J., In-Use Emissions of 190 and 1981 Passenger Cars; Results of EPA Testing, SAE Paper No. 820975, U.S. Environmental Protection Agency, presented at West Coast International Meeting, San Francisco, CA, August 1982. 6. The Impact of Light-Duty Diesel Particulate Standards on the Level of Diesel Penetration in the Light-Duty Vehicle^ and Light-Duty Truck Markets, Jack Faucett Associates report for EPA, January 1983. 7. Assessment of Current and Projected Future Trends in Light-Duty Vehicle Fuel-Switching, Energy and Environmental Analysis, Inc., report for EPA, June 1984. 8. Draft Study of Particulate Emissions from Motor Vehicles, by the Environmental Sciences Research Laboratory (for Section 214 of the Clean Air Act), U.S. EPA, Office of Research and Development, Mobile! Source Emissions Research Branch, July 1983. 9. "Control of Air Pollution from New Motor Vehicles and New Motor Vehicle Engines: Federal Certification Test Results for 1975 Model Year," Federal Register, Vol. 40, No. 48, March 11, 1975. 10. "Control of Air Pollution from New Motor Vehicles and New Motor Vehicle Engines: Federal Certification Test Results for 1976 Model Year," Federal Register, Vol. 41, No. 46, March 8, 1976. 11. "Control of Air Pollution from New Motor Vehicles and New Motor Vehicle Engines: Federal Certification Test Results for 1977 Model Year," Federal Register, Vol. 42, No. 110, June 8, 1977. R-l------- 12. "Control of Air Pollution from New Motor Vehicles and New Motor Vehicle Engines: Federal Certification Test Results for 1978 Model Year," Federal Register, Vol. 43, No. 181, September 18, 1978. 13. 1983 Motorcycle Statistical Annual, Motorcycle Industry Council, Inc., Research and Statistics Department, Governmental Relations Office, Arlington, VA, June 1983. 14. Hare, Charles T., Characterization of Gaseous and Particulate Emissions from Light-Duty Diesels Operated on Various Fuels, EPA-460/3-79-008, Southwest Research Institute, report prepared for Office of Mobile Sources, June 1979. 15. Bykowski, Bruce B., Characterization of Diesel Emissions from Operation of a Light-Duty Diesel Vehicle on Alternate Source Diesel Fuels. EPA-460/3-82-002, Southwest Research Institute, report prepared for Office of-Mobile Sources, November 1981. 16. Bykowski, Bruce B., Petroleum Versus Alternate-Source Fuel Effects on Light-Duty Diesel Emissions, EPA 460/3-83-007, Southwest Research Institute, report prepared for Office of Mobile Sources, August 1983. 17. Bykowski, Bruce B., Characterization of Diesel Emissions as a Function of Fuel Variables, EPA-460/3-81-015, Southwest Research Institute, report prepared for Office of Mobile Sources, April 1981. 18. McCain, Joseph D., and M. Gregory Faulkner, Assessment of Diesel Particulate Control: Particle Size Measurements, EPA-600/7-79-232c, Southern Research Institute, report prepared for Office of Research and Development, December 1979. 19. Begeman, C.R., and P.J. Groblicki, Particle Size Variation in Diesel Car Exhaust, SAE Paper No. 790421, presented in Detroit, MI, February 26-March 2, 1979. 20. Carpenter, Kenneth, and John H. Johnson, Analysis of the Physical Characteristics of Diesel Particulate Matter Using Transmission Electron Microscope Techniques, SAE Paper No. 790815, presented in Milwaukee, WI, September 10-13, 1979. 21. Verrant, John A., and David A. Kittelson, Sampling and Physical Characterization of Diesel Exhaust Aerosols, SAE Paper No. 770720, presented in Detroit, MI, February 1977. 22. Ter Haar, G.L., D.L. Lanane, J.N. Hu, and M. Brandt, Composition, Size, and Control of Automotive Exhaust Particulates, Ethyl Corpora- tion, report presented at the 64th Annual APCA Meeting, Atlantic City, NJ, June 27-July 1, 1971. R-2------- 23. Breselin, J.A., A.J. Strazisar, and R.L. Stein, Size Distribution and Mass Output of Particulates From Diesel Engine Exhausts, report prepared by Pittsburg Mining and Safety Research Center, Pittsburgh, PA, U.S. Department of the Interior, Report of Investigation 8141. 24. Boyer, K.W., and H.A. Laitinen, "Automobile Exhaust Particulates," Environ. Sci. Technol., S>( 5) :457-469, 1975. 25. Cantwell, E.N., E.S. Jacobs, W.G. Kunz, Jr., V.E. Liberi, Control of Particulate Lead Emissions from Automobiles, SAE Paper No. 720672, Detroit, MI, May 1972. 26. Foster, J.F., D.A. Trayser, C.W. Melton, and R.I. Mitchell, Chemical and Physical Characterization of Automotive Exhaust Particulate Matter in the Atmosphere, Fourth Annual Summary Report, prepared by Battelle Columbus Laboratories, Columbus, OH, to Coordinating Research Council (CRC-APRAC Project No. CAPE-19-70) and U.S. Environmental Protection Agency (Contract No. 68-01-0279), July 1974. i 27. Foster, J.F., D.A. Trayser, E.R. Blosser, F.A. Creswick, and D.F. Miller, Chemical and Physical Characterization of Automotive Exhaust Particulate Matter in the Atmosphere, Fifth Annual Summary Reported prepared by Battelle Columbus Laboratories, Columbus, OH, to Coordinating Research Council (CRC-APRAC Project No. CAPE-19-80), March 1974. 28. Gentel, J.E., O.J. Manary, and J.C. Valenta, Characterization of Particulates and Other Non-regulated Emissions from Mobile Sources and the Effects of Exhaust Emissions Control Devices on these Emissions, report prepared by The Dow Chemical Company, Midland, MI, under Contract No. EHA-70-101 to the U.S. Environmental Protection Agency, Ann Arbor, MI, March 1973. 29. Habibi, K., "Characterization of Particulate Matter in Vehicle Exhaust," Environ. Sci. Technolo., 7_(3) :223-234, 1973. 30. Habibi, K., E.S. Jacobs, W.G. Kunz, Jr., and D.L. Pastell, Characterization and Control of Gaseous and Particulate Exhaust Emission from Vehicles, paper presented to the Air Pollution Control Assn., San Francisco, CA, October 1970. 31. Hirschler, D.A., and L.F. Gilbert, "Nature of Lead in Automobile Exhaust Gas," Arch. Environ. Health, 9_:297-3l3, 1964. 32. Kittelson, D.B., D.F. Dolan, and J.A. Verrant, Investigation of a Diesel Exhaust Aerosol, SAE Paper No. 780109, Detroit, MI, February 1978. R-3------- 33. Melton, C.W., R. Mitchell, D. Trayser, and J. Foster, Chemical and Physical Characterization of Automotive Exhaust Particulate Matter in the Atmosphere, Final Summary Report, prepared by Battelle Columbus Lab, Columbus, OH, to CRC (CRC-APRAC Project No. CAPE-19-70) and EPA (Contract No. 68-02-0205), June 1973. 34. Moran, J.B., 0. Manary, R. Fay, and M. Baldwin, Development of Particulate Emission Control Techniques for Spark-Ignition Engines, Final Report, prepared by Organic Chemicals Department, The Dow Chemical Company, Midland, MI, under Contract EHS70-101, EPA, Ann Arbor, MI, July 1971. 35. Ninomiya, J.S., W. Bergman, and B.H. Simpson, Automotive Particulate Emissions, paper presented to the Second Int'1 Clean Air Congress of the Int'l Union of Air Pollution Prevention Assn., Washington, D.C., December 1970. 36. Trayser, D.A., F.A. Creswick, E.R. Blosser, and D.F. Miller, Chemical and Physical Characterization of Automotive Exhaust Particulate Matter in the Atmosphere, Sixth and Final Summary Report, prepared by Battelle Columbus Laboratories, Cblumbus, OH, to Coordinating Research Council (CAPE-19-70), September 1976. 37. Vuk, C.T., M.A. Jones, and J.H. Johnson, The Measurement and Analysis of the Physical Character of Diesel Particulate Emissions, SAE Paper No. 760131, Detroit, MI, February 1976. 38. Duleep, K.G., Forecasts of Emission Control Technology 1983-1990, Task 5 of EPA Contract No. 68-01-6558 (Work Assignment No. 35), by Energy and Environmental Analysis, Inc., November 28, 1983. 39. Schneider, Eric W., "Detection of Leaded-Gasoline Usage in Catalyst- Equipped Vehicles: A Gamma-Ray Transmission Gauge for Measuring Catalytic Converter Lead Contamination," APCA Journal, Vol. 32, No. 5, May 1982. 40. Cha, Soyoung, Philip Carter, and Ronald L. Bradow, Simulation of Automobile Brake Wear Dynamics and Estimate of Emissions, SAE Paper No. 831036, Dearborn, MI, June 1983. 41. Cadle, S.H., and R.L. Williams, "Gas and Particle Emissions from Automobile Tires in Laboratory and Field Studies," J. Air Poll. Control Assoc. , 2_8( 5) :502-507, 1978. 42. Pierson, W.R., and W.W. Brachaczek, "Airborne Particulate Debris from Rubber Tires," Rubber Chem. Technol., 47_( 5)-.1275-1229, 1974. 43. The Highway Fuel Consumption Model; Tenth Quarterly Report, prepared for the U.S. Department of Energy, by Energy and Environmental Analysis, Inc., Arlington, VA, November 1983. R-4------- 44. User's Guide to MOBILE3 (Mobile Source Emissions Model), EPA 46013-84-002, June 1984, 45. Energy and Environmental Analysis, Inc., "Supplementary Guidelines for Lead Implementation Plans," prepared for the U.S. Environmental Protection Agency, August 1985. 46. Size Specific Particulate Emission Factors for Industrial and Rural Roads, draft report prepared for the Industrial Environmental Research Laboratory, U.S. EPA, EPA Contract No. 68-02-3158, by Midwest Research Institute, Kansas City, MO, June 7, 1984. 47. Paved Road Particulate Emissions — Source Category Report, draft report prepared for the Industrial Environmental Research Laboratory, U.S. EPA, EPA Contract No. 68-02-3158, by Midwest Research Institute, Kansas City, MO, May 7, 1984. R-5------- APPENDIX A A-i------- TABLE A-l AVERAGE ANNUAL MILEAGE BY VINTAGE FOR HEAVY-DUTY TRUCKS Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ Class 2-B 18,352 16,946 15,648 14,449 13,342 12,320 11,376 10,504 9,700 8,956 8,270 7,637 7,052 6,511 6,012 5,552 5,126 4,734 4,371 4,036 Light HDDV 45,544 39,671 34,558 30,092 26,213 22,834 19,898 17,332 15,098 13,152 11,456 9,979 8,693 7,572 6,596 5,746 5,005 4,360 3,798 3,308 Medium HDDV 53,370 46,901 41,190 36,206 31,812 27,948 24,556 21,575 18,956 16,655 14,632 12,856 11,296 9,925 8,719 7,661 6,728 5,913 5,196 4,565 Heavy HDDV 82,288 74,984 68,328 62,263 56,737 51,700 47,111 42,930 39,119 35,647 32,483 29,599 26,972 24,578 22,396 20,408 18,597 16,946 15,442 14,071 Source: MOBILES. A-l------- TABLE A-2 PROJECTIONS OF HEAVY-DUTY VEHICLES IN OPERATION Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 Class 2-B 0.000 0.000 0.049 0.014 0.185 0.274 0.370 0.475 0.588 0.707 0.831 0.960 1.092 1.225 1.354 1.480 1.600 1.712 1.816 1.912 1.999 Light HDDV 0.006 0.006 0.009 0.013 0.022 0.037 0.053 0.071 0.089 0.106 0.122 0.137 0.151 0.165 0.178 0.190 0.202 0.212 0.222 0.230 0.238 Medium HDDV 0.112 0.124 0.135 0.141 0.153 0.166 0.177 0.185 0.193 0.201 0.208 0.215 0.222 0.229 0.237 0.245 0.253 0.261 0.269 0.276 0.283 Heavy HDDV 1.521 1.581 1.599 1.592 1.641 1.719 1.816 1.927 2.041 2.151 2.258 2.362 2.471 2.581 2.693 2.807 2.914 3.015 3.108 3.194 3.273 Source: MOBILE3. A-2------- APPENDIX M SUPPLEMENTARY GUIDELINES FOR LEAD IMPLEMENTATION PLANS Updated Projections for Motor Vehicle Lead Emissions Final Report EPA Contract No. 68-03-1865 Work Assignment No. 1 DRAFT Prepared for: U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Mobile Source Air Pollution Control Ann Arbor, Michigan 48105 Prepared by: ENERGY AND ENVIRONMENTAL ANALYSIS, INC. 1655 North Fort Myer Drive, Suite 600 Arlington, Virginia 22209 August 1985------- TABLE OF CONTENTS Page 1. INTRODUCTION 1-1 2. PROJECTING MOTOR VEHICLE LEAD EMISSIONS 2-1 2.1 Overview of Lead Emission Calculations 2-1 2.2 Emission Factors for Light-Duty Vehicles and Light-Duty Trucks I and II 2-3 2.3 Lead Emissions from Other Gasoline-Powered Vehicles 2-10 3. EXAMPLE CALCULATION OF LIGHT-DUTY VEHICLE LEAD EMISSIONS 3-1 M i------- LIST OF TABLES Table No. Page 2-1 Fuel Economy Correction Factors at Various Speeds, Cs 2-12 2-2 Lead Content of Gasoline 2-13 2-3 Travel Weighting Factor Calculation Light-Duty Vehicles 2-14 2-4 Fleet Sales fractions Light-Duty Vehicles • 2-15 2-5 Travel Weighting Factor Calculation Light-Duty Gas Trucks I 2-16 2-6 Fleet Sales Fractions Light-Duty Trucks I 2-17 2-7 Travel Weighting Factor Calculation Light-Duty Gas Trucks II 1-28 2-8 Fleet Sales Fractions Light-Duty Trucks II 2-19 2-9 City/Highway Combined On-Road Fuel Economy 2-20 2-10 Travel Weighting Factor Calculation 2-21 2-11 Fleet Sales Fractions Heavy-Duty Gasoline Vehicles (HDGV) 2-22 2-12 Rates of Misfueling (r^) for Different Vehicle Classes 2-23 2-13 Fraction of Lead Burned that is Exhausted, as 2-25 2-14 Fraction of Catalyst Equipped Vehicles with Catalyst Removed, P^ 2-26 2-15 Fraction of Catalyst and Non-Catalyst Vehicles Built to Use Unleaded Fuel 2-27 3-1 Example Calculations Light-Duty Vehicle Particulate Emission Rate Less than 10 Microns for the Year 1985 3-4 M ±±------- LIST OF FIGURES Figure No. Page 2-1 Fuel Economy at Various Speeds 2-46 M ill------- 1. INTRODUCTION The following material was developed to predict lead emission factors for gasoline fueled on-road vehicles and trucks at various vehicle speeds. User inputs to the equations to determine these emission factors include area travel fractions by vehicle class, vehicle miles traveled and vehicle speed. Fleet sales fractions and travel fractions by model year are included for each vehicle class. The fractions within each vehicle class that are equipped with catalysts also are provided. For the benefit of the user, an example calculation of lead emissions from light-duty ve- hicles is provided. This document is an update to "Supplementary Guidelines for Lead Imple- mentation Plans Updated Projections For Motor Vehicle Lead Emissions," U.S. EPA, EPA-450/2-83-002, Research Triangle Par'<, North Carolina, March 1983. This document provides updated projections for automotive lead emissions to be used by those agencies developing State Implementa- tion Plans for lead. It has been revised to include estimates of travel fractions and fleet characterizations from the June 1984 EPA report, "User's Guide to MOBILES (Mobile Source Emissions Model)," EPA 460/3-84- 002. It also reflects the final rulemaking recently issued by EPA which requires refiners to lower the lead content of leaded gasoline to 0.5 g/gallon on July 1, 1985 and 0.1 g/gallon by January 1, 1986 (Federal Register. Vol. 50, No. 45, March 7, 1985). M 1-1------- 2. PROJECTING MOTOR VEHICLE LEAD EMISSIONS Lead emissions from mobile sources are calculated based on the percent- age of burned lead exhausted at different speeds, the lead content of gasoline, vehicle fuel economy and the model year mix of vehicles on the road. The lead content of gasoline and the model year vehicle mix are a function of the calendar year of interest. Fuel economy is averaged for all vehicles of the same model year in a given vehicle category. 2.1 OVERVIEW OF LEAD EMISSION CALCULATIONS 2.1.1 Individual Roadways or Areawide For any given year subsequent to 1974, the total population of automo- biles on the road consists of vehicles using either leaded or "non- leaded" (i.e., required to contain less than 0.050 gram/gallon lead) gasoline or diesel fuel. Diesel fuel is assumed to contain quantities of lead that are insignificant compared to gasoline fuel; therefore, only emissions from gasoline-powered vehicles are considered. The emission rate from automotive sources from an individual roadway (line source) is calculated by the following equation: EF = I . T(EF. ) (2-1) n,s rr i,n,s where: EF = total lead emission factor for calendar year ' n and speed s (g/road mile-day) EF. = lead emission factor for vehicle class i in calendar year n and vehicle speed s (g/mi) i,n,s M 2-1------- i = vehicle class designator; 1 = light-duty vehicles (LDV), 2 = light-duty trucks 1 (LDT1), 3 = light-duty trucks II (LDT2), and 4 = heavy- duty gas vehicles (HDGV) s = vehicle speed; avg. Federal Test Procedure (FTP) = 19.6, avg. Sulfate Emissions Test (SET) = 34.8 (miles/hr); (Note: The FTP and SET are driving cycles used for the determination of emission factors.) T = average daily traffic (vehicles/day) To calculate the emission rate in units of grams/meter-second, EF can 8 ' n,s be corrected by dividing by 1.39 x 10 . Equation (2-1) can be modified to calculate light-duty vehicle emissions as an area source rather than as specific line sources. The emission rate from automotive sources from an area source is calculated by the following equation: EF = n,s T^1. ' i,n,s In equation (2-2), the term "T" was replaced by the term "V", the vehicle miles traveled in the area on a daily, monthly, or greater time basis. When VMT data are used, the emission rate, EF . will be ex- n, s pressed in grams per day, month, etc. For both roadway and areawide emission calculations, the following generalized equation is used to compute emission factors for individual vehicle classes. n EF. i,n,s j=n-19 (EF. . T)(F. . .) (2-3) . . . L,L,J (EFifj,n,NL)(Vi,J) m. M 2-2------- where: j " model year j - n-19, n-18,...,n-2, n-1, n L « vehicles designed for use on leaded fuel ML = vehicles designed for use on unleaded fuel FT . . z fraction of the vehicle class i fleet designed *lfJ for use on leaded gasoline in model year j F . . = fraction of the vehicle class i fleet designed ' for use on unleaded gasoline in model year j m. . " travel fraction for all gasoline vehicles in class i in model year j In the discussion which follows, specific emission component (EF. . i, j,n,L and EF. . ._ ) factor equations are presented for each vehicle cate- i,j,n,NL gory. 2.2 EMISSION FACTORS FOR LIGHT-DUTY VEHICLES AND LIGHT-DUTY TRUCKS I AND II equations (2-4), (2-5), and (2-6). For unleaded vehicles (EF. . ) i,j,n,NL To compute emission factors for leaded vehicles (EF4 . n T) use equations (2-4), (2- use equation (2-7). LDV (Pre MY 1971) and LOT (Pre MY 1971): Leaded Fuel For i-1,2,3 j=n-19,...1970 C =from Table 2-1 a .=0.75 s si, j EF. . - [Pb. (0.887) + PbMT (0.113)] ,, °'7x,r x (2-4) i, j , n, L LL,n NL,n J(E ..;(C; c,i,j s where: a = fraction of lead burned that is exhausted: s - for all non-catalyst vehicles and for catalyst vehicles using unleaded gasoline a = 0.75 s - for catalyst vehicles using leaded gasoline in 1975-1980, ag2 . = .40 - for catalyst vehicles using leaded gasoline in 1981 and later, a . = .44 M2-3------- C = speed-dependent fuel economy correction factor 8 based on steady cruise or cyclic driving; avail- able from Table 2-1 (nondiraensional) Pb = lead content of unleaded gasoline in calendar >n year n from Table 2-2 (g/gal) PbT * average lead content of leaded gasoline in 'n calendar year n from Table 2-2 (g/gal) E . . = city/highway combined on-road fuel economy for ' model year j and vehicle class i from Table 2-9 (miles/gallon) LDV (MY 1971-1974) and LOT (MY 1971): Leaded Fuel For i-1,2 j=1971,...,1974 C =from Table 2-1 a .=0.75 and For i=3 j-1971,...,1978 S 'J EF T=OT (-916) + Pbm (0.084)] , °'7wr N (2-5) i,j,n,L *- L,n NL,n J \& . .)\C ) c,i,j s LDV (MY 1975+) and LOT (MY 1979+): Leaded Fuel For i=l,2 j=1975,...,n C =from Table 2-1 a .=0.75 and For i=3 j- S S >J EF. . T =[PbT (0.724) •*• Pb-_ (0.276)] 7- — °'7^^ . (2-6) i,j,n,L L L,n NL,n J (E . .)(C ) c, i, j s LDV (MY 1975+) and LOT (MY 1979+) : Unleaded Fuel For i"l,2 j«1975,...,n C =from Table 2-1 a =from Table 2-13 and For i=3 j-1979,...,n S S U-r.Ka J + Pb_ (r.) F. . MT „„._ .,, n x sl,j L,n i \ i,j,NL,NOCAT (a , .) l.J: 1 M 2-4------- where: r. = misfueling rate for vehicle class i from Table 2-12 P. = fraction of catalyst equipped vehicle in class i 1 with their catalysts removed, from Table 2-14 F. . = fraction of the unleaded vehicle class i fleet '-^' equipped with a catalyst in model year j F. . , ,.«^.m = fraction of the unleaded vehicle class i fleet i,j,NL,NOCAT ...... _ i .. • j , ' •" without a catalyst in model year j Equations (2-4), (2-5), and (2-6) collectively give the g lead/vehicle- road mile emitted by light-duty non-catalyst-equipped vehicles whereas equation (2-7) gives the g lead/vehicle-road mile emitted by catalyst- equipped vehicles. It should be noted that since 1975 a small number of non-catalyst-equipped vehicles (F. . Mr>rAT from Table 2-15) have been 1, j J j NL* j NUC/Ax certified for use on unleaded gasoline. Since these vehicles constitute such a small percentage of the total non-catalyst fleet, it will be assumed that the misfueling rate for these vehicles will be the same as that for catalyst equipped vehicles. Further discussion of selected variables used in the equations follows. 2.2.1 Speed Correction Factor Figure 2-1 compares steady cruise fuel economy and generalized cyclic driving fuel economy to vehicle speed. Figure 2-1 was generated using data from 1973, 1974, and 1975 model year vehicles. Using the cyclic driving fuel economy at 32.7 miles per hour as the basis for comparison (since this speed is the average speed for the EPA combined city/highway fuel economy), fuel economy correction factors (C ) for both steady cruise and cyclic driving can be calculated at various speeds. These calculations have been made and are presented in Table 2-1. Table 2-1 should be used to interpolate C for those speeds not listed in Table 2-1. The fuel economy correction factor for cyclic driving should be used for roadways that do not have steady speed. (The determination of how much variation in speed constitutes cyclic driving is judgmental. Questionable cases should be analyzed both ways.) Likewise, the fuel economy correction factor for steady cruise driving should be used if M 2-5------- Figure -2-1 FUEL ECONOMY AT VARIOUS SPEEDS* SPEED/ MPH " Passenger Car Fuel Economy: EPA and Road, September 1980 :S?A-460/3-80-010]. M2-6------- free-flow, steady speed driving is indicated (e.g., along a highway at a relatively constant speed). The correction factors for cyclic and steady cruise driving become similar at high speeds as the number of stops, accelerations, and decelerations during cyclic driving decrease. 2.2.2 Fleet Travel and Fleet Sales Fractions The fraction of annual travel by model year j (m. .) can be found in the 1f J last column of Tables 2-3, 2-5, and 2-7 for light-duty vehicles, light- duty trucks I, and light-duty trucks II. These values for (m. .) are L> J EPA's estimates of the national values. Local values should be used where available. The term, "m. ." accounts for all light-duty vehicles 1> J in a given model year. The travel weighting fractions were taken from EPA's Mobile Sources Inventory Model, MOBILES. (It should be noted that the travel weighting fractions reflect a January 1 evaluation date.) The fractions of the model year j fleet using unleaded and leaded gasoline, F . . and F . ., respectively, are given in Table 2-4. ML,1,J L,1,J Values for F.TT . . and FT . . account for the increasing dieselization NL,i,j L,i,j 5 of the light-duty vehicle fleet. Diesel-powered vehicles are assumed to emit quantities of lead that are insignificant compared Co gasoline- powered vehicles; therefore, sales fractions for diesel-powered vehicles are not included. Latest sales projections for diesel-powered vehicles were derived from MOBILE3 data. Estimates of the percentages of gaso- line vehicles requiring leaded and unleaded fuel were obtained from Energy and Environmental Analysis, Inc., "The Highway Fuel Consumption Model: Tenth Quarterly Report," November 1983. 2.2.3 Misfueling and Fuel Switching EPA has observed that misfueling rates (i.e., percentage of vehicles designed for use on unleaded gasoline that use leaded gasoline) are dependent on vehicle mileage and increase with vehicle mileage accumu- lation. Strictly speaking, this dependence on mileage should be M 2_7------- reflected in the calculation of lead emissions, with each model year receiving its own misfueling rate. However, this further complicates an already complex calculation. To give the user a choice, this report offers both the option of using a single average misfueling rate for all model years of a given vehicle class and exact misfueling rates for each vehicle class by vehicle age. The single average rates are determined for the weighted average mileage accumulated for each vehicle class and are listed in Table 2-12 for inspection and maintenance (I/M) and non- I/M areas. In other words, in the calculation of emission factors from 1975 on, the misfueling rate (r.) depends only on which vehicle class (i) is being considered and whether the area of interest has an I/M program. As a result, misfueling rates and lead emissions will be slightly overestimated, with the degree of overestimation declining with later evaluation years and essentially disappearing in 1995. For users who desire more accuracy, Table 2-12a gives exact misfueling rates for different vehicle ages and classes affected by misfueling. For mis- fueled vehicles with their catalysts removed, the fraction (P.) in Table 2-14 is applied to the fraction of vehicles with catalysts (F. . -,.„) in l,j,LAT Table 2-15. These misfueling rates have been derived from the December 1983 EPA Report, Anti-Tampering and Anti-Misfueling Programs to Reduce In-Use Emissions From Motor-Vehicles, EPA-AA-TSS-83-10. Discretionary fuel switching (i.e., percentage of vehicles designed for use on leaded gasoline that use unleaded gasoline) is assumed to equal 11.3 percent of the leaded fleet prior to 1971, and 3.4 percent from 1971 to 1974 for the LDV and LOT I categories. The discretionary rate for the LOT II class is 3.4 percent from 1971 to 1978, and 27.6 percent thereafter. For the LDV and LDT1 classes, discretionary switching is assumed to be 27.6 percent after 1974. The discretionary fuel switching rates were obtained from Energy and Environmental Analysis, Inc., Assessment of Current and Projected Trends in Light-Duty Vehicle Fuel Switching, June 1984. M 2-8------- The effect of discretionary fuel switching for vehicles designed for use on leaded fuel has been incorporated into equations (2-4), (2-5), and (2-6). 2.2.4 Fuel Economy and Fuel Lead Content Fuel economy is yet another factor affecting lead emission levels. The city/highway combined on-road fuel economies, E . . for model years c> L» J 1970 to 1988 are given in Table 2-9. LDV fuel economy estimates were taken from an internal EPA. memorandum by Karl Hellman to Ralph Stahman dated June 5, 1984. LDT fuel economies were obtained from Energy and Environmental Analysis, (EEA) Inc., "The Highway Fuel Consumption Model - Tenth Quarterly Report," November 1983. HDGV mpg estimates were drawn from an EPA memo to Mark Wolcott from Cooper Smith dated July 2, 1984. Area lead particulate emissions also are dependent upon the lead content of gasoline in a given calendar year. Values for the lead content of leaded (Pb. ) and unleaded gasoline (Pb._ ) are contained in Table L,n NL,n 2-2. Values for future years will be updated as new information becomes available. 2.2.5 Percent of Fuel Burned That is Exhausted (a )_ A value for a of 0.75 (i.e., 75 percent of the lead burned is ex- s hausted) should be used for non-catalyst-equipped, gasoline-powered vehicles operating on leaded fuel, and for all vehicles using unleaded fuel. For gasoline powered vehicles equipped with catalysts, a value of a - 0.40 for 1975 to 1980 and a == 0.44 for 1981 and later model year s s vehicles that have been misfueled, should be used. The value of a was computed from lead retention of monolithic and pelleted catalysts, respectively, and weighted for the sales mix of these catalysts in each M 2-9------- time frame. These values of a do not vary with speed, since a is more 3 S correlated with driving mode, e.g., acceleration, cruise or decelera- tion, rather than speed alone. 2.3 LEAD EMISSIONS FROM OTHER GASOLINE-POWERED VEHICLES In addition to light-duty gasoline-powered vehicles, other vehicles to consider include heavy-duty gasoline-powered trucks. (Motorcycles are assumed to emit quantities of lead that are insignificant compared to other gasoline-powered vehicles.) Heavy-duty gasoline-powered trucks are assumed to burn leaded gasoline until 1987. It is assumed that emission standards effective in 1987 will require all new heavy-duty gasoline-powered trucks under 14,001 Ibs GVW to use catalytic converters and thereby burn unleaded fuel. The emission rate for heavy-duty gasoline powered trucks prior to 1987 is calculated by using the following modification of equation (2-4): HDGV (Pre MY 1987): Leaded Fuel For i=4 j=n-19,...,1986 C =from Table 2-1 a .=0.75 s si, j a . . Pb. EF. - -fliJ ±± (2-8) l'n'8 E ° HDGV (Post MY 1986): Leaded Fuel For i=4 j=1987,...,n C =frora Table 2-1 a =from Table 2-13 s s Pb._ m. .(l-r.)(a .) PbT m. .(r.)(a , . ? - NL,n i,j i sl,j L,n i, j i s2, j i,n,s " E , .* (C ) E .. .** (C ) ' ' c,4a,i s c,4b,i s *4a represents the fuel economy for HDGV1 after 1986. **4b represents the fuel economy for HDGV2 after 1986. M 2-10------- Values for the variables used in equations (2-8) and (2-9) are given in the following tables/figures: Variable HDGV a Table 2-13 s C Table 2-1 s Pb._ ; PbT Table 2-2 NL,n L,n m. . Table 2-10 if J E . . Table 2-9 c,t,J R. Table 2-12 Fleet sales fractions for heavy-duty gasoline vehicles projected to 1995, are given in Table 2-11. Heavy-duty gasoline vehicles have a gross vehicle weight (GVW) rating of greater than 8,500 Ibs GVW. The fleet sales fractions are decreasing with model year, reflecting the increasing dieselization of the heavy-duty fleet. These estimated fleet sales fractions can be used when projecting T, the average daily traffic (heavy-duty gasoline trucks/day), for future years. M2-11------- TABLE 2-1 FUEL ECONOMY CORRECTION FACTORS AT VARIOUS SPEEDS, C( (Normalized to 32.7 miles/hour-cyclic driving) Speed (tnph) 5 10 15 25 30 32.7 oc _ J J— — — — — — 40 45 50 55 60 C Cyclic Driving 0.323 0.553 0.692 0.885 0.963 1.000 1 09? 1.053 1.073 1.078 1.063 1.023 C s Steady Cruise 0.467 0.709 0.997 i i si 1.248 1.294 1.303 _ i -irn 1.288 1.256 1.210 1.159 1.104 M 2-12------- TABLE 2-2 LEAD CONTENT OF GASOLINE Leaded Gasoline* Unleaded Gasoline Year (g/gal) PbL (g/gal) Pb^ 1974 1.79 0.014 1975 1.82 0.014 1976 2.02 0.014 1977 2.03 0.014 1978 1.94 0.014 1979 1.85 0.014 1980 1.38 0.014 1981 1.15 0.014 1982 1.24 0.014 1983 1.14 0.014 1984 1.10 0.014 1985 0.50 0.014 1986 0.10 0.014 1987 0.10 0.014 1988 0.10 0.014 1989 0.10 0.014 1990 0.10 0.014 *1974-1982: Lead content based upon data submitted to EPA on historical sales data for leaded gasoline and data indicating the actual pooled average lead content. The value for unleaded gasoline is based on recent MVMA fuel surveys. 1983-1990: Lead content based upon requirements for average lead content of leaded gasoline which were recently revised by EPA for 1985 and beyond and published in the Federal Register (Federal Register, Vol. 50, No. 45, March 7, 1985). M2-13------- TABLE 2-3 TRAVEL WEIGHTING FACTOR CALCULATION* Light-Duty Vehicles Vehicle Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ (a) January 1 Fraction Total Registration 0.028 0.107 0.100 0.094 0.088 0.080 0.075 0.069 0.062 0.056 0.050 0.043 0.037 0.031 0.024 0.018 0.012 0.008 0.006 0.008 (b) Annual Mileage Accumulation Rate [(a)(b)/(SUM)] Fraction of LDV Travel by Model Year, m ill 12,818 12,639 11,933 11,268 10,639 10,045 9,485 8,955 8,455 7,983 7,538 7,117 6,720 6,345 5,991 5,657 5,341 4,043 4,762 4,496 358.9 1,352.4 1,193.3 1,059.2 936.2 803.6 711.4 617.9 524.2 447.0 376.9 306.0 248.6 196.7 143.8 101.8 64.1 32.3 28.6 36.0 0.038 0.142 0.125 0.111 0.098 0.084 0.075 0.065 0.055 0.047 0.040 0.032 0.026 0.021 0.015 0.011 0.007 0.003 0.003 0.004 SUM: 9,538.9 *Data derived from MOBILE3. M2-14------- TABLE 2-4 FLEET SALES FRACTIONS Light-Duty Vehicles* Model Years Pre-1975 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 + Nonleaded Gasoline Fraction of LDV FNL.l.j** 0.000 0.869 0.863 0.838 0.865 0.875 0.966 0.939 0.954 0.947 0.940 0.934 0.927 0.920 0.910 0.900 0.887 0.887 0.886 0.886 0.885 0.885 Leaded Gasoline Fraction of LDV 1.000 0.128 0.134 0.158 0.126 0.097 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Where F. NL.l FL,1 Estimated fraction of the LDV model year fleet which use nonleaded gasoline Estimated fraction of the LDV model year fleet which use leaded gasoline *Percentages of gasoline vehicles requiring leaded and nonleaded fuel obtained from EPA Certification Data Base. **Diesel and gasoline sales projections were derived from MOBILE3. M 2-15------- TABLE 2-5 TRAVEL WEIGHTING FACTOR CALCULATION* Light-Duty Gas Trucks I** Vehicle Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (a) January 1 Fraction Total Registration 0.023 0.089 0.085 0.081 0.076 0.072 0.068 0.064 0.060 0.055 0.050 0.046 0.042 0.038 0.034 0.029 0.025 0.021 0.017 0.025 (b) Annual Mileage Accumulation Rate [(a)(b)/(SUM)] Fraction of LDV Travel by Model Year, m 2.J 17,394 17,079 15,839 14,690 13,624 12,636 11,719 10,868 10,080 9,348 8,670 8,041 7,457 6,916 6,415 5,949 5,517 5,117 4,746 4,402 400.1 1,520.0 1,346.3 1,189.9 1,035.4 909.8 796.9 695.6 604.8 514.1 433.5 369.9 313.2 262. 6 218.1 172.5 137.9 107.5 80.7 110.1 0.036 0.135 0.120 0.106 0.092 0.081 0.071 0.062 0.054 0.046 0.039 0.033 0.028 0.023 0.019 0.015 0.012 0.009 0.007 0.010 SUM: 11,219.1 *Data derived from MOBILE3. **Light-duty trucks I have a gross vehicle weight (GW) rating of 6,000 pounds or less. M2-16------- TABLE 2-6 FLEET SALES FRACTIONS Light-Duty Trucks I* Model Years Pre-1975 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 + Unleaded Gasoline Fraction of LDT1 0.000 0.810 0.909 0.957 0.964 0.942 0.945 0.914 0.899 0.878 0.870 0.840 0.820 0.790 0.760 0.730 0.706 0.697 0.688 0.679 0.670 0.661 Leaded Gasoline Fraction of LDT1 FL,2 1.000 0.188 0.088 0.038 0.027 0.030 0.021 0.026 0.021 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Where F ML, 2 Estimated fraction of the LDT1 model year fleet which use nonleaded gasoline. Estimated fraction of the LDTl model year fleet which use leaded gasoline. *Percentages of gasoline vehicles requiring leaded and unleaded fuel obtained from Energy and Environmental Analysis, Inc., "The Highway Fuel Consumption Model: Tenth Quarterly Report," November 1983. **Diesel and gasoline sales projections were derived from MOBILE3. M 2-17------- TABLE 2-7 TRAVEL WEIGHTING FACTOR CALCULATION* Light-Duty Gas Trucks II** Vehicle Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ (a) January 1 Fraction Total Registration 0.023 0.089 0.085 0.081 0.076 0.072 0.068 0.064 0.060 0.055 0.050 0.046 0.042 0.038 0.034 0.029 0.025 0.021 0.017 0.025 (b) Annual Mileage Accumulation Rate 18,352 18,001 16,622 15,348 14,172 13,087 12,084 11,158 10,303 9,514 8,785 8,112 7,491 6,917 6,386 5,897 5,446 5,028 4,643 4,287 (a)(b) 422.1 1,602.1 1,412.9 1,243.2 1,077.1 942.3 821.7 714.1 618.2 523.3 439.3 373.2 314. e 262. S 217.1 171.0 136.2 105.6 78.9 107.2 [(a)(b)/(SUM)] Fraction of LDT2 Travel by Model Year, m '3.1 0.036 0.138 0.122 0.107 0.093 0.081 0.071 0.062 0.053 0.045 0.038 0.032 0.027 0.023 0.019 0.015 0.012 0.009 0.007 0.009 SUM: 11,582.9 *Data derived from MOBILE3. **Light-duty trucks II have a gross vehicle weight (GVW) rating of 6,001 to 8,500 pounds. M 2-18------- TABLE 2-8 FLEET SALES FRACTIONS Light-Duty Trucks II* Unleaded Gasoline Leaded Gasoline * , Fraction of LDT2 Fraction of LDT2 Year's Fleet' FNL,3** Fleet' FL.3 Pre-1975 0.000 1.000 1975 0.000 0.998 1976 0.000 0.997 1977 0.000 0.995 1978 0.000 0.991 1979 0.972 0.000 1980 0.966 0.000 1981 0.940 0.000 1982 0.920 0.000 1983 0.900 0.000 1984 0.870 0.000 1985 0.840 0.000 1986 0.820 0.000 1987 0.790 0.000 1988 0.760 0.000 1989 0.730 0.000 1990 0.706 0.000 1991 0.697 0.000 1992 0.688 0.000 1993 0.679 0.000 1994 0.670 0.000 1995+ 0.661 0.000 WHERE F _ = Estimated fraction of the LDT2 model year fleet which use ' nonleaded gasoline. F _ = Estimated fraction of the LDT2 model year fleet which use ' leaded gasoline. *Percentages of gasoline vehicles requiring leaded and nonleaded fuel obtained from Energy and Environmental Analysis, Inc., "The Highway Fuel Consumption Model: Tenth Quarterly Report," November 1983. **Diesel and gasoline sales projections were derived from MOBILES. M2-19------- TABLE 2-9 CITY/HIGHWAY COMBINED ON-ROAD FUEL ECONOMY (miles/gallon) Fuel Economy, E c> LDV* LDT1** LDT2 HDGV1+ HDGV2 HDGV++ Pre-1970 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 and later 13.9 13.9 13.2 13.1 12.9 12.6 13.5 14.8 15.5 16.8 17.2 20.0 21.4 22.2 22.2 22.8 23.2 23.8 24.3 24.8 25.2 25.7 26.2 26.6 27.2 27.6 29.0 10.6 10.6 10.4 10.2 9.9 9.6 11.6 12.3 13.0 13.4 14.2 16.1 17.7 18.6 19.2 19.9 20.7 21.4 23.0 23.3 23.1 24.0 24.5 24.4 25.3 25.8 26.2 7.9 7.9 7.7 7.4 7.0 6.9 8.8 9.7 9.4 9.6 9.8 11.5 13.3 13.6 13.7 13.9 14.0 14.3 14.5 14.7 14.9 15.2 15.4 15.7 15.9 16.2 16.4 9.5 9.5 9.6 9.7 9.7 9.8 9.8 9.9 10.1 5.6 5.6 5.6 5.6 5.7 5.7 5.7 5.7 5.8 6.5 6.4 6.4 6.4 6.5 6.7 6.8 7.3 7.7 8.0 8.2 8.4 8.6 8.8 8.9 3.9 9.0 9.0 9.0 9.1 9.2 9.2 9.3 9.4 9.4 9.5 9.6 *Fuel economies for LDV's from MOBILE3 data based on EPA memo from Karl H. Hellman to Ralph C. Stahman regarding Light-Duty MPG, June 15, 1984. **Fuel economies for LDT's drawn from the input data used to generate "The Highway Fuel Consumption Model: Tenth Quarterly Report," prepared by Energy and Environmental Analysis, Inc. +Fuel economies for Heavy-duty gasoline vehicles (HDGV) were derived from figure presented in an EPA memo to Mark Wolcott from Cooper Smith, dated July 2, 1984. •n-Pre-1986 fuel economies are composites of HDGV1 and HDGV2. M2-20------- TABLE 2-10 TRAVEL WEIGHTING FACTOR CALCULATION* Heavy-Duty Gasoline Vehicle (HDGV)** Vehicle Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ (a) January 1 Fraction Total Registration 0.000 0.148 0.126 0.107 0.092 0.078 0.067 0.058 0.049 0.041 0.036 0.030 0.026 0.022 0.020 0.016 0.014 0.012 0.010 0.049 (b) Annual Mileage Accumulation Rate I(a)(b)/(SUM)] Fraction of HDGT Travel by Model Year, m. , 0 19,967 18,077 16,365 14,815 13,413 12,143 10,993 9,952 9,010 8,156 7,384 6,685 6,052 5,479 4,960 4,490 4,065 3,680 3,332 0.0 2,955.1 2,277.7 1,751.1 1,363.0 1,046.2 813.6 637.6 487.6 369.4 293.6 221.5 173.8 133.1 121.0 79.4 62.9 48.8 36.8 163.3 ---,_ f.Trf_ 0.000 0.227 0.175 0.134 0.105 0.080 0.062 0.049 0.037 0.028 0.023 0.017 0.013 0.010 0.009 0.006 0.005 0.004 0.003 0.013 SUM: 13,035.5 *Data derived from MOBILE3. **Heavy-duty gasoline vehicles have a gross vehicle weight (GVW) rating greater than 8,500 pounds. M 2-21------- TABLE 2-11 FLEET SALES FRACTIONS Heavy-Duty Gasoline Vehicles (HDGV)* Model Unleaded Fraction of Leaded Fraction of Years HDGV Fleet F. , .** HDGV Fleet F. . .** L,4,j L,4, j Pre-1977 0.000 1.000 1977 0.000 1.000 1978 0.000 1.000 1979 0.000 1.000 1980 0.000 1.000 1981 0.000 1.000 1982 0.000 1.000 1983 0.000 1.000 1984 0.000 1.000 1985 0.000 1.000 1986 0.000 1.000 1987 0.823 0.177 1988 0.824 0.176 1989 0.825 0.175 1990 0.826 0.174 1991 0.828 0.172 1992 0.829 0.171 1993 0.833 0.167 1994 0.837 0.163 1995 0.840 0.159 *Heavy-duty gasoline vehicles have a gross vehicle weight (GVW) rating greater than 8,500 pounds. **The estimated fractions of the HDGV model year fleets which are unleaded are based on figures from "Historical and Projected Emissions Conversion Factor and Fuel Economy for Heavy-Duty Trucks 1962-2002," prepared for MVMA by Energy and Environmental Analysis, Inc., December 1983. These estimates are consistent with the data presented in "Heavy-Duty Vehicle Emission Conversion Factors: 1962-1997 prepared by M.C. Smith IV, U.S. Environmental Protection Agency, August, 1984. M 2-22------- TABLE 2-12 3F MISFUELIb FOR DIFFERENT VEHICLE CLASSES* RATES OF MISFUELING (r ) I/M Non-I/M Light-Duty Vehicles (i=l) 0.09 0.20 Light-Duty Trucks I (i=2) 0.20 0.46 Light-Duty Trucks II (i=3) 0.21 0.47 Heavy-Duty Gasoline Vehicles I (i=4)** 0.19 0.40 *Values in this table are expressed as fractions of the total number of vehicles in each class. Misfueling rates are determined for the weighted average mileage accumulated for each vehicle class. **Misfueling rates for Heavy-Duty Gasoline Vehicles pertain only to those trucks made after model year 1986. SOURCES: The equations used to estimate misfueling as a function of mileage for I/M and non-I/M areas are drawn from "Anti- Tampering and Anti-Misfueling Programs to Reduce In-Use Emissions from Motor Vehicles," EPA-AA-TSS-83-10, Office of Mobile Sources, December 31, 1983. Weighted average mileages by vehicle category are calculated from data contained in MOBILE3. M 2-23------- TABLE 2-12a RATES OF MISFUELING (r.) FOR DIFFERENT VEHICLE AGES AND CLASSES* HDGV1 ** TT — U i «-* 1 a VG ulC LG Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ LDV NO--I/M .04 .07 .10 .13 .16 .18 .21 .23 .25 .27 .29 .31 .33 .34 .36 .37 .39 .40 .41 .42 I/M .04 .05 .06 .07 .08 .09 .09 .10 .11 .11 .12 .12 .13 .13 .14 .14 .15 .15 .15 .16 LOT I Non-I/M .22 .27 .31 .35 .38 .42 .45 .47 .50 .52 .55 .57 .59 .60 .62 .64 .65 .66 .68 .69 I/M .13 .14 .16 .17 .18 .19 .20 .21 .21 .22 .23 .24 .24 ,25 .25 .26 .26 .26 .27 .27 LDTII Non-I/M .23 .27 .32 .36 .39 .43 .46 .49 .51 .54 .56 .58 .60 .62 .63 .65 .66 .68 .69 .70 I/M .13 .15 .16 .17 .18 .19 .20 .21 .22 .23 .23 .24 .25 .25 .26 .26 .26 .27 .27 .28 Non-I/M I/M .18 .23 .28 .32 .36 .39 .42 .45 .48 .50 .52 .54 .56 .57 .59 .60 .61 .62 .63 .64 .12 .13 .15 .16 .17 .18 .19 .20 .21 .22 .22 .23 .23 .24 .24 .25 .25 .25 .25 .26 *Values in this table are expressed as fractions of the total number of vehicles in each class. Misfueling rates are determined for the average mileage in each class. Misfueling rates are determined for the average mileage accumulated by each vehicle class of each vehicle age group. **Misfueling rates for Heavy-Duty Gasoline Vehicles 1 (HDGV1) are estimates for 1987 and later calendar years. Currently all HDGVls use leaded fuel. (For example, for the year 1990, use the first three values in either the non-I/M or I/M HDGV1 column. All HDGVls greater than 3 years old in this case (i.e., pre-1987 vehicles) would have a misfueli \g rate of zero since they do not require use of unleaded fuel. SOURCES: The equations used to estimate misfueling as a function of mileage for I/M and non-I/M areas are drawn from "Anti- Tampering and Anti-Mis fueling Programs to Reduce In-Use Emissions from Motor Vehicles," EPA-AA-TSS-83-10, Office of Mobile Sources, December 31, 1983. Weighted average mileages by vehicle category are calculated from data contained in MOBILE3. M 2-24------- TABLE 2-13 FRACTION OF LEAD BURNED THAT IS EXHAUSTED, 3sl.j* All years .75 1975-1980 .40 1981+ .44 *a . is used for all vehicles using unleaded gasoline and for '^ vehicles without catalysts using leaded gasoline. **a ? . is used for catalyst equipped vehicles using leaded gasoline, s^> J M 2-25------- TABLE 2-14 FRACTION OF CATALYST EQUIPPED VEHICLES WITH CATALYST REMOVED, P * and I/M .017 .050 Non-I/M .045 .195 *Fractions obtained from "Anti-Tampering and Anti-Misfueling Programs to Reduce In-Use Emissions From Motor Vehicles," U.S. EPA, December 1983. M2-26------- U o I I co I I o I I I I I I I I oo- i CO CJN H a C 03 oo r— I o I I I JNOOOOOOOOO C-iOOOOOOOOO I OVOOOOOOOOO 3 CO oa U H < c_> o •t *1 z CN fsl oo vD m cN -H — i CN O O O O O O O O O O O O I I I I I I I I CN H Q CO CO % iH CO U § Q CN U O z •t rJ Z O O O O O O O —i o OO CN O O o" o 1 1 1 1 1 1 1 1 1 1 1 § h- 1 H U H CJ a\ocooooooooooo —'OOOOOOOOOOOOOO ON^OOOOOOOOOOOO (U O •a M 01 J-> b C o U C U O 4-1 i-t en en •H as 00 •!-( 01 a CC O •M 0) CO -O 0) 01 4-1 b n? < -H CU U U Cfl t/a <: •f CO CJN CO 01 o tJ 3 o C/3 M2-27------- 3. EXAMPLE CALCULATION OF LIGHT-DUTY VEHICLE LEAD EMISSIONS PROBLEM For an area characterized by light-duty vehicles driving under cyclic conditions with an average speed of 19.6 miles per hour, calculate the areawide lead emission rate for the year 1985. Assume an inspection and maintenance program has been implemented in this area. The simplified misfueling rates from Table 2-12 will be used. SOLUTION Use equations (2-4), (2-5), (2-6), and (2-7) to plug into equation (2-3) to get emission factors by vehicle class. Use individual class factors to plug into equation (2-2) for total areawide lead emissions in 1985. Tl,1985 - 1.0 n = 1985 i = 1 = LDV s = 19.6 mph PbL 1985 * l>l g/gal (Table 2-2) PbNL,1985 = 0>°14 g/gal (Table 2-2) Si, 1966-1985 = °-75 (Table 2-13) as2,1975-1980 =°-4° (Table 2-13) 3s2,1981-1985 ' °'44 CTable 2'13) C - 0.79 (Table 2-1) ?l - 0.017 (Table 2-14) t = 0.09 (Table 2-12) M3-1------- EF = > T (EF. ) n, s / ^ i»n,s (3-1) 1985 EF " 1,1985,19.6 j=1966 (EF, . ^^1 ; i Q«S T ^ x ^T i ;) i,j,iyoj,L L,i,j (F. x m, . (3-2) Use the following equations to plug into equation (3-2) and sum over the appropriate model years. For j=1966-1970 EF l,j,1985,L 1.1(0.887) -i- 0.014(0.113) V / .75 - .928 EC 1 ;(0'79) Ec , : c» *• t J c, i, j (3-3) EF l,j,1985,L For j-1971-1974 'l.1(0.916) + 0.014(0.084)\ .75 = .958 r .(0.79) c, i -c, i (3-4) EFl,j,1985,L For j=1975-1985 N .75 - .776 ; J c i ; c > 1 ? J (3-5) M3-2------- For j=1975-1985 EFi • IQOC MT "0.014(0.91X0.75) + 1.1(0.09) (3-6) 1 > J»19oj 9 NL I <*i • MT MOPAT + (0.017XF. • r._)(0.75) 1,j,NL,NOCAT 1,J,CAT + 1.1(0.09X0.983XF . r,T)U . .) i, J,LAI S j1j J 1 1 = xl EC l .(0.79) EC x^ 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 ?.i l,j jj. .0665 .06389 .06303 .06303 .06303 .06303 .06795 .06795 .06795 .06795 .06795 Plugging the appropriate values into equation (3-1), we arrive at the values shown in Section C of Table 3-1. Adding summation (1) and summation (2) we get: EF = 0.0132 (g/mi). i(oj jiy.o Note: This example is an estimate of lead emissions from light-duty vehicles only. Therefore, the total emission rate from all vehicle classes for an area in calendar year 1985 can be expected to be con- siderably higher. M3-3------- w I I I I I I oooooooooooooo oooooooooooooo co w w H PC in oo z CJN O —i !-! CO »S co <; M td coS^ 2 U3 o w 3: M H H H < < J ffS J 3 O 3 U fe U M J H W < OS 2 O < O 0- £ a u hJ W M |d* < M O X X -- w a > 2 SM^ H H Q W I oo H W a -j o co en u 0 1) O a B O a fa ooooooooooo ooooooooooo i i i i i i i i i I I O -t c\i CO O O I • • O O I I I I I I I I H < CJ OOOOOOOOOOO OOOOOOOOOCO—i OOOOOOOOOOOl I I I I I 1 I I t—I "H •—I —I—H^H 1.—I~JOO ^ •r u I I I I IOO—i — ->^-OOOOOOOOO • ••#•*••••••••« U- OOOOOO--i-^—i —. rt -- —i —. —i z ooooooooooo a I aooooooooooooooooooo + I T3 C8 O 3) M3-4------- 4J CO ca § •rt 4-1 a V- u en cu O C o •H CO 3 CO ^ O i 1 O CO tn C O , r^ en en •H E • 33 •a c CO en I f*1 CN 1 cn u c o 4J CO 3 a* bJ C •H C cu c o a. e o U t-l o 1^ U CO U-J C o •f-l CO en S cu 01 en cu CO i— < 3 O CO U C7 **-s C o •H 4J « g 0 3 e/s . I £2 c o •H CO 3 o- w c •H -a u en 3 CU ^d CO •a cu en 3 en •H 4-1 CO 4-1 in I en c 0 4-1 CO 3 cr w c •H 4-1 C 01 c 0 a. S o o (-, o U to in c 0 •H en en 'e cu j= w 01 CO rH 3 y CO CJ CN *^iS C O 4^ 03 E S 3 C/2 • •— •• 1 cn ^— ** c 0 • l-l 4J n 2 o- w M3.5------- i-H 1 CO W -J CQ ^J H CO 2 0 HH H <: 3 U nJ CJ Ci3 ,j O. 3 W U H £ 2 O 1— 1 CO CO 5 u3 M H »— 3 3 O HH H arf ^J cu DO J CJ M fij H a H 32 O [j ^rf-x ^j 4J O u ^•s in CO c^ ^H cd ^4 W r^ a t£* H pti O CO 2; O a: a M O ^ H CO U ,J CO c O •H ^J CO tH 3 O rH (0 U ^i O 4J U CO Et4 C O •H Ul tn •H e u u «N ~* * i— ^ in B 00 ^^ CTN /«*\ 1 'T! M «t i— * ^J (i4 Z Cd Cb ***s "***s /*" N X~s H-4 '^"1 M M LO •""* oo 6 I— 1 X" N • 'I—I - ,-H >-H M pj Ct4 •I—) #s W >-" •—* -^* CO CO CO CO CsJ CNi CM CN Csl OOOOOOOOOOO OOOOOOOOOOOI 1 1 1 1 1 I | | OOOOOOOOOOO OOOOOOOOOOO co ~3" ^3* co couo *~^ r^- uo CM CM co OOOOOrj— <— • i— lOOOOO 1 1 1 1 1 IOOOOOCIOOOOOOOO oooooooooooooo oooooooooooooo 1 in-a-cocM^oaNoof^-^r>in ------- APPENDIX N DIESEL POWERED TRANSIT BUSES INTRODUCTION This appendix presents an alternative methodology for calculating emission factors for full-size diesel powered transit buses. Because of the similarities between buses and trucks in terms of inertia weight and engine type, EPA combines buses and trucks in the heavy duty vehicle class. Chapter 7 describes the standard procedure for determining emission factors for diesel powered heavy duty vehicles. Both the certification and emission factor test procedures for bus engines involve the use of the EPA engine transient test which is described in Chapter 7. The resultant engine emission data can then be converted to gram per mile values through the use of conversion factors as discussed in the EPA report "Heavy Duty Vehicle Emission Conversion Factors, 1962-1997," EPA-AA-SDSB-84-1. This has been the standard methodology for calculating transit bus emission factors in previous AP-42 documents and can continue to be used if desired. Based on recent research and analysis, EPA believes that the application of the standard heavy-duty vehicle emission factor methodology for diesel powered transit buses is not completely accurate. Because transit buses operate exclusively in urban areas, typically on the most populated corridors, and emit pollution at ground level, public exposure to transit bus emissions is relatively high and EPA has begun to analyze the issue in greater depth. EPA has recently completed two test programs to identify the actual emissions from in-use transit buses. These programs involved buses which were temporarily removed from operating service and which were tested as-is (i.e., without additional maintenance) in their chassis configurations over test cycles designed specifically to simulate transit bus operation. The gram per mile emission factors obtained directly from these chassis test programs differ significantly from the emission factors which would be calculated indirectly from engine test data and conversion factors. It must be stressed that EPA's analysis of transit bus emissions is ongoing. The data base currently includes just 2 bus engine designs and a total of 7 transit buses. Transit bus emissions can be affected by many parameters such as engine type, design, age, and state of maintenance; vehicle size and transmission; type of test cycle utilized; whether No. 1 diesel fuel or No. 2 diesel fuel is used; etc. EPA is not now able to identify the exact contributions of the various parameters to the overall emission factor offsets, but is continuing to investigate these relationships. Despite the limited data base, EPA believes that, for buses, in-use chassis emissions data provide a more accurate estimate of actual emission factors than does the general heavy-duty methodology based on engine emission data and conversion factors. EPA will update AP-42 as more information becomes available on this issue.------- N-2 TEST PROCEDURES The EPA heavy-duty engine transient test procedure is used for certification purposes as well as for general emissions testing. This involves operating an engine over a test cycle that consists of engine speed and load transients. There are two primary issues with respect to the representativeness of the EPA engine transient test in characterizing transit bus emissions. One, recent analysis shows that generating emission factors from engine data and conversion factors is not as straightforward for transit buses as it is for heavy-duty trucks. This has encouraged EPA to utilize bus chassis emission testing which generates gram per mile values directly. Two, since the design of the EPA engine transient test was based on truck operation, it does not represent typical transit bus operation. Transit buses are known for their low average speed, stop-and-go operation and high acceleration and deceleration rates. Accordingly, in recent transit bus test programs EPA has utilized two chassis test cycles which simulate transit bus operation: 1) an EPA bus driving cycle generated at the same time and from a similar data base as the official certification engine test, and 2) the central business district phase of the SAE Type II Fuel Consumption Test Procedure for buses. Both of these are chassis transient cycles with low average speeds and high acceleration rates. Both cycles have yielded dynamometer fuel economies which are very near to in-use fuel economies, and EPA believes that these cycles yield emissions which are representative of actual emissions. EMISSIONS There are many different diesel engines which have been utilized in transit buses, but two engines designed and built by Detroit Diesel Allison (DDA) Division of General Motors have dominated the transit bus market. Until recently the standard bus engine was the DDA 71-series engine, typified by the DDA 6V-71N, a naturally-aspirated, two-stroke, six-cylinder diesel engine, and its eight-cylinder counterpart, the DDA 8V-71N. It has been estimated that the 71-series engines are installed in over 80 percent of the transit buses currently operating in the U.S. Recently, the 71-series engines have been replaced in most new bus applications by the DDA 6V-92TA, a turbocharged, two-stroke, six-cylinder diesel with lower fuel consumption and emissions. EPA bus testing programs have focused on these two engine designs and the first two subsections will give emission factors for exhaust hydrocarbons, carbon monoxide, nitrogen oxide, and particulate matter from buses equipped with these two engines. The third subsection will give guidance for buses with engines other than DDA designs.------- N-3 As discussed in Chapter 7, diesel powered heavy duty vehicles are considered to have insignificant crankcase and evaporative hydrocarbon emissions and thus no such emission factors are given. It is not possible at this time to disaggregate transit bus emission factors into zero mile emission levels and emission deterioration rates as is done throughout the rest of AP-42. This is because of the limited transit bus data base as well as the complications due to the fact that transit bus engines are typically rebuilt 2 or 3 times during the lifetime of the bus. The best indicator of expected emissions deterioration is engine mileage since the last rebuild rather than total bus mileage. Accordingly, aggregate emission factors are given below, for each major pollutant from individual engine designs, which EPA believes are representative of the average emissions from transit buses over their lifetimes. Finally, there are no speed or temperature correction factors available at this time for transit bus emissions. Buses with PDA 71-Series Engines EPA's Office of Research and Development has performed emission testing of four buses with 71-series engines as part of a larger overall test program described in the EPA report "Characterization of Heavy-Duty Motor Vehicle Emissions Under Transient Driving Conditions," (full report, dated October 1984, available as NTIS PB85-124154; project summary, dated December 1984, EPA-600/S3-84-104) . All four buses are CMC RTS II buses and are part of the San Antonio, Texas transit fleet. Three of the engines were sold in 1980 and the fourth was sold in 1978. The engines had accumulated between 137,000 and 247,000 miles prior to testing. Each of the buses was tested two times over the EPA bus cycle as received, without maintenance being performed, with No. 1 diesel fuel. No idle testing was performed. Table N-l gives the average emissions for these four buses equipped with DDA 71-series engines. Buses with PDA 6V-92TA Engines EPA's Office of Mobile Sources has tested three buses with 6V-92TA engines as one task of a contract described in the EPA report "Emissions Characterization of Heavy-Duty Diesel and Gasoline Engines and Vehicles" (EPA 460/3-85-001, March 1985). All three buses are CMC RTS II buses and were tested as received from the Houston, Texas bus fleet. Two of the engines were sold in 1983 while the third had been produced in 1982. Engine mileage ranged from 55,000 to 139,000 miles. Two of the buses were tested with No. 1 diesel fuel, while the third bus utilized No. 2 diesel fuel. One bus was tested twice over the EPA bus cycle only, the second bus was tested twice over both the EPA bus cycle and the SAE central business district cycle, and the third bus was tested once over both cycles. Emissions data for both the EPA and SAE cycles were similar and have been aggregated for the latter two buses, while only EPA bus cycle data are available for the first bus. Hot stabilized idle tests------- N-4 were performed on each bus with the transmission in drive and the air conditioning off. It should be noted that both the EPA bus and SAE central business district cycles include a fraction of time at idle. Thus, the idle emission factors need only be used in situations where idle is the only operating mode. Table N-l gives the average emissions for these three buses equipped with DDA 6V-92TA engines. Buses with Other Engines EPA has no bus chassis data on full-size buses with engines other than the DDA 71-series and 6V-92TA engines. The EPA recommendation is to use an average of the emission factors for the 71-series and 6V-92TA engines. These average values are also shown in Table N-l. SAMPLE CALCULATION Given the transit bus emission factors in Table N-l, the only other data needed to calculate aggregate annual transit bus emissions are a breakdown of the engines used in a particular transit fleet and associated annual mileage accumulation. According to the American Public Transit Association, there were 62,000 transit buses in the U.S. in 1982 which traveled approximately 1.67 billion miles. Thus, on average, transit buses accumulate 27,000 miles per year. In reality, newer buses typically have higher annual mileages while older buses, some of which are only used as substitutes, usually accumulate fewer miles. Annual vehicle miles traveled data are available from individual transit authorities. As an example, assume that an urban area has a transit fleet of 500 buses and that 300 of the buses utilize DDA 71-series engines and accumulate on average 25,000 miles per year, 100 of the buses utilize DDA 6V-92TA engines and average 35,000 miles per year, and the remaining 100 buses utilize other engines and average 28,000 miles per year. The total annual particulate emission loading from these buses, based on the emission factors in Table N-l, would be (300 x 25,000 x 6.27) + (100 x 35,000 x 4.77) + (100 x 28,000 x 5.52) = 79,200,000 grams per year or 87.2 standard tons per year.------- N-5 Table N-l Diesel Powered Transit Bus Emission Factors (grams per mile, except for idle) Bus Engines HC CO NOx PM DDA 6V-71N, 8V-71N 3.59 77.5 24.4 6.27 DDA 6V-92TA 3.10 26.2 27.7 4.77 Other engines(average) 3.35 51.9 26.1 5.52 All engines at idle 0.46 0.40 2.84 0.10 (grams per minute)------- Part II - OFF-HIGHWAY MOBILE SOURCES INTRODUCTION This section contains emission rates for eight types of off-highway mobile sources. The emissions of six of these types of sources are unchanged from the previous edition and supplements. Changes have been made inboard powered vessels and diesel powered heavy-duty construction equipment. The changes for these two sources are summarized below. Inboard Powered Vessels - Only one item has been changed since the previous edition. This change was the deletion of the 1550 horsepower diesel emission factors from Table II-3.3 because they were for a 1550 horsepower steam engine and not a diesel engine. Construction Equipment - The emission factors for heavy-duty diesel construction equipment are based on a recent study by Environmental Research and Technology, Inc. Some of the categories of construction equipment have changed. The emission factors for heavy-duty gas powered construction equipment are the same as in the previous edition. Comments on Other Studies - Recently there have been two studies undertaken for off-highway mobile sources. The first one deals strictly with inboard powered vessels, and is entitled "Emission Factor Documentation for AP-42: Section 3.2.3 Inboard Powered Vessels" (EPA 450/4-84-001). The second report discusses locomotives, construction equipment and inboard powered vessels, and is entitled "Recommended Revisions to Gaseous Emission Factors for Several Classes of Off-Highway Vehicles - Final Report" (EPA 460/3-85-004, March 1985). The following are EPA's comments on material presented in these reports relative to AP-42. Locomotives - The current emission factors for locomotives are based on tests of three in-use locomotives. The second report located data on at least fifteen new locomotives, and recommended updating the emissions to this new data set. The report also suggested that the duty cycle for locomotives include some engine shut-down in place of some engine idle, mostly based on the fact that fuel costs are higher and companies would encourage engine shut-down as a cost saving measure. The previous emission factors do not assume any engine shut-down during the duty cycle. EPA has not adopted the new emission factors, and instead has retained the previous emission factors for two reasons. First, there does not appear to be any verifiable basis for picking the percent of engine shut-down time during the duty cycle. Second, EPA has become aware of a larger data set of in-use locomotives with emission data. EPA intends to analyze these data in the near future, and feels it would be inappropriate to update the locomotive emission factors with the fifteen locomotives on an interim basis, only to change them at a later date. Inboard Powered Vessels - The first report compiled available data on inboard powered vessels and attempted to estimate the emission factors. Il-i------- The second report critiqued the first report, and found some inconsistencies in the manner in which the emission factors were estimated. The second report recommended only two changes to the existing emission factors — one was the removal of the 1550 horsepower emission rates from Table II-3.3. (This engine was a steam boiler, and not diesel powered as presented.) This we have done. The second was the addition of some new emission rates for diesel engines above 3000 horsepower, but at only one load setting and in units which were inconsistent with those in Table II-3.2. EPA investigated the possibility of converting the new data into the old units but had no basis for estimating the appropriate conversion factor. Therefore, the previous emission factors (at 3600 horsepower) are retained. Future Work - Beside locomotives, EPA may also soon undertake a study of emissions from new aircraft. Emission standards for new aircraft took effect in 1984; therefore, all 1984 and newer aircraft should have lower emissions than the rates presented herein. However, the present emission rates for aircraft are sufficient for now, since the majority of aircraft in use are pre-1984 uncontrolled technology.------- II- 1 AIRCRAFT II- 1.1 General Aircraft engines are of two major categories, reciprocating piston and gas turbine. In the piston engine, the basic element is the combustion chamber, or cylinder, in which mixtures of fuel and air are burned and from which energy is extracted by a piston and crank mechanism driving a propeller. The majority of aircraft piston engines have two or more cylinders and are generally classified according to their cylinder arrangement - either "opposed" or "radial". Opposed engines are installed in most light or utility aircraft, and radial engines are used mainly in large transport aircraft. Almost no singlerow inline or V-engines are used in current aircraft. The gas turbine engine usually consists of a compressor, a combus- tion chamber and a turbine. Air entering the forward end of the engine is compressed and then heated by burning fuel in the combustion chamber. The major portion of the energy in the heated air stream is used for aircraft propulsion. Part of the energy is expended in driving the turbine, which in turn drives the compressor. Turbofan and turboprop (or turboshaft) engines use energy from the turbine for propulsion, and turbojet engines use only the expanding exhaust stream for propulsion. The terms "propjet" and "fanjet" are sometimes used for turboprop and turbofan, respectively. The aircraft in the following tables include only those believed to be significant at present or over the next few years. Few piston engine aircraft data appear here. Military fixed wing piston aircraft, even trainers, are being phased out. One piston engine helicopter, the TH-55A "Osage", sees extensive use at one train- ing base at Ft. Rucker, AL (EPA Region IV), but engine emissions data are not available. Most civil piston engine aircraft are in general aviation service. The fact that a particular aircraft brand is not listed in the following tables does not mean the emission factors cannot be calculated. It is the engine emissions and the time-in-mode (TIM) category which 2/80 Internal ConihiiMion Ei^int* Sou «•«•!• II-I-1------- determine emissions. If these are known, emission factors can be calculated in the same way that the following tables are developed. The civil and military aircraft classification system used is shown in Tables II- 1-1 and II- 1-2. Aircraft have been classified by kind of aircraft and the most commonly used engine for that kind. Jumbo jets normally have a miximum of about 40,000 pounds thrust per engine, and medium range jets about 14,000 pounds thrust per engine. Small piston engines develop less than 500 horsepower. II- 1.2 The Landing/Takeoff Cycle and Times-in-Mode A landing/takeoff (LTO) cycle incorporates all of the normal flight and ground operation modes (at their respective times-in-mode), including: descent/approach from approximately 3000 feet (915 m) above ground level (AGL), touchdown, landing run, taxi in, idle and shutdown, startup and idle, checkout, taxi out, takeoff, and climbout to 3000 feet (915m) AGL. In order to make the available data manageable, and to facilitate comparisons, all of these operations are conventionally grouped into five standard modes: approach, taxi/idle in, taxi/idle out, takeoff and climbout. There are exceptions. The supersonic transport (SST) has a descent mode preceding approach. Helicopters omit the takeoff mode. Training exercises involve "touch and go" practice. These omit the taxi/idle modes, and the maximum altitude reached is much lower. Hence, the duration (TIM) of the approach and climbout modes will be shorter. Each class of aircraft has its own typical LTO cycle (set of TIMs). For major classes of aircraft, these are shown in Tables II- 1-3 and II-1-4. The TIM data appearing in these tables should be used for guidance only and in the absence of specific observations. The military data are inappropriate to primary training. The civil data apply to large, congested fields at times of heavy activity. All of the data assume a 3000 foot AGL inversion height and an average U.S. mixing depth. This may be inappropriate at specific localities and times, for which specific site and time inversion height data should be sought. Aircraft emissions of concern here are those released to the atmosphere below the inversion. If local conditions suggest higher or lower inversions, the duration (TIM) of the approach and climbout modes must be adjusted correspondingly. A more detailed discussion of the assumptions and limitations implicit in these data appears in Reference 1. Emission factors in Tables II- 1-9 and II- 1-10 were determined using the times-in-mode presented in Tables II- 1-3 and II- 1-4, and generally for the engine power settings given in Tables II- 1-5 and II- 1-6. II-1-2 EMISSION FVCTORS 2/80------- Table II- 1-1. CIVIL AIRCRAFT CLASSIFICATION*1 Aircraft Engine No. Mfg. Type Model/Series Supersonic transport BAC/Aerospatiale Concorde 4 Short, medium, long range and jumbo jets BAG 111-400 Boeing 707-320B Boeing 727-200 Boeing 737-200 Boeing 747-200B Boeing 747-200B Boeing 747-200B Lockheed L1011-200 Lockheed L1011-100 McDonnell-Douglas DC8-63 McDonnell-Douglas DC9-50 McDonnell-Douglas DC10-30 Air carrier turboprops - commuter, feeder line and freighters Beech 99 GD/Convair 580 DeHavilland Twin Otter Fairchild F27 and FH227 Grumman Goose Lockheed L188 Electra Lockhead L100 Hercules Swearingen Metro-2 Business jets Cessna Citation Dassault Falcon 20 Gates Learjet 24D Gates Learjet 35, 36 Rockwell International Shoreliner 75A RR P&W GE GE GE GE TF TF TF TJ TF TF Olymp. 593-610 2 4 3 2 4 4 4 3 3 4 2 3 RR P&W P&W P&W P&W P&W RR RR RR P&W P&W GE TF TF TF TF TF TF TF TF TF TF TF TF Spey 511 JT3D-7 JT8"D-17 JT8D-17 JT9D-7 JT9D-70 RB211-524 RB211-524 RB211-22B JT3D-7 JT8D-17 CF6-50C 2 2 2 2 2 4 4 2 PWC All PWC RR PWC All All GA TP TP TP TP TP TP TP TP PT6A-28 501 PT6A-27 R. Da. 7 PT6A-27 501 501 TPE 331-3 JT15D-1 CF700-2D CJ610-6 TPE 731-2 CF 700 Business turboprops (EPA Class P2) Beech B99 Airliner 2 DeHavilland Twin Otter 2 Shorts Skyvan-3 2 Swearingen Merlin IIIA 2 General aviation piston (EPA Class PI) Cessna 150 1 Piper Warrior 1 Cessna Pressurized Skymaster 2 Piper Navajo Chieftain 2 PWC fWC GA GA Con Lye Con Lyn TP TP TP TP PT6A-27 PT6A-27 TPE-331-2 TPE-331-3 0-200 0-320 TS10-360C T10-540 References 1 and 2. Abbreviations: TJ - tubojet, TF - turbofan, TP - turboprop, R - reciprocating piston, 0 - opposed piston. All - Detroit Diesel Allison Division of General Motors, Con - Teledyne/Continental, GA - Garrett AiResearch, GE - General Electric, Lye - Avco/Lycoming, P&W - Pratt & Whitney, PWC - Pratt & Whitney Aircraft of Canada, RR - Rolls Royce. 2/80 Interim! <'oml>u>lion EnSonnet- II- 1.3 ------- z o H ^f 7^ W E cfl C/3 _J S^ P^ fT_ ™*j •^£ &• U QS <*"" ^* C£ ^^ r^ zj s t fS I M «"• a c o rt 4j to c 00 'H 01 tu a 4J C J3 CO rt 00 a u- CU 3 o a. ej CU a. E- -3 O Z cu CJ ^ 1-1 CU en ^ cu u 3 i-l CJ co U-t 3 C S CU E 2 u CO 3 C. O a. e o to o c O OC a IH 01 cu a 4J it. C •—• to O 'Jl u -H tn u en nj < i ^ O f^l in fc. •n « i— t cs ^ cy* in in fc. r-~ co •-> f- "i -i 3 >4) a. j> IH ti tti a. < o u >-l U* "I i-j E- f- H H rt rt P4 C>J s: in 3 A 6u Eb z z < < en en en en 3 3 3 3 oo oo a 3 3 O 1 00 1 U a 3 a u CJ O O O £ > S Z cu -C 00 CN tN El. -*>-£ = 3 — 0 3 tO CO 4J ^ .C 01 C CU ^ k. to eu ji o jr u en cj a. CK« i i i i < < [4. U. u CO "s O CJ (-* 0 b- A O O O to o O Cb >-H i-4 E- U, U. 333 tx o. a. Ci.Ci.fc. E- E- E- tNCN- Cfc Cb z < < en en en =>=>=> 00 C 3 |S? IA5 u u a U X cj CN CU W so to tu E-> E 00 1 _O re -d- ^ vO ' ' r' • roCO 0 >, d. m 1-1 cu H E- S C to u • a* n •& •< « G f* in C*.ininCfain[*. Hco min in -03 "1 H H "1 H H H O."! p-E- t-" X E 1-1 ^a u to U CU u CJ • C co en cu i-i » • o a. 3 ^33—i CJ o ej3 0. CJ < ft, 0. < CJ 0- CJ j" CJ J~ I1' < tb 3 en ~» a. => O O • • en •a « to b u. to -i E- to 1-1 oo 3 C 3 « CJ Ii O P E-E-E-E-E-H E-H HH H 4Ji2 en •« ^ S-l rt to tu cj cj e c • 1 O 00 -»-»~J-T-3-fN r-ltN i-4fN IN en Q • TJ U = CU £ cu 1 -C 1 8CJ O CJ 00 CJ P O 3 en en en *J o => = 3 a i i . - > a z z cu cj u en z en o < z 3 en 3 )-i >J 3 o < • - • CL. ej 60 ll. EbCbCbb, b.*Cb C en encncnenenen enen encn en -HCOE 2 ?3=>=>=>=> =3 33 3 < 1- O o o en o -J 3 t 1 to ej rt U X • O [i. cu iJ u *j < c y-< u en cu « to tu 3 cj to j: O. >, > >r4 M O ^ • V4-i 00 O e cjcjeocjcj.c.c u. c ao ^ •H <<•-!<<< OU rtO 'H UiCcU 3 cu _: -j a) *J _: _j D x, rt^<: cu o o c H O UUOK!<< tuo eg— o CJ-HI a ccjeacjcjcj caz teen x en-? i cu -H tu c > a en •H -I X E- k. C J! CO cj • z c o a. •Jl X O J O en x — M • en v- cu t-i u tUrtC cn*Hi>a. V< CU O 3QCIJ -rtWO *j j^i-i 4-i x1-;-^ 3rtCJT3Ja >j ecu e — — c < ^en ej • LIU > -n 0 10 C CO O U lJ to Z Ui rt c; Ui in *-» ^ w c tN «c t"-i i— i *^ cj < $— ca cjcj34Cja.cn E-f- 3X cj cueu 1 — C C 1 z < y -i i. en ,n =- => i 5 ja ji ct; ^ u" 3 • C CJ CU Cfl rt Q 4-1 'l-H ••4 '-4 «• 4-1 O •J ii 11 ^J *— tl] ^ *JC CU UC04-IU-- a-^ 1- 0. CU > 0 6- rt CU 0 I- CU 3 1 cu vi o e cj tu i- i .0 c 14 .rt rt u- J2 . CJ Ouco ui cu a:<-E.£Mp- 3: e- — ("X co^e; II- 1-4 EMISSION FACTORS 2/80 ------- Table II-1-3. TYPICAL DURATION FOR CIVIL LTD CYCLES AT LARGE CONGESTED METROPOLITAN AIRPORTS* Aircraft Commercial carrier Jumbo, long and medium range jet*3 Turboprop Transport- piston General aviation Business jet Turboprop Piston Helicopter Taxi/ Idle out 19.0 19.0 6.5 6.5 19.0 12.0 3.5 Takeoff 0.7 0.5 0.6 0.4 0.5 0.3 - Mode Climbout 2.2 2.5 5.0 0.5 2.5 5.0 6.5 Approach 4.0 4.5 4.6 1.6 4.5 6.0 6.5 Taxi/ Idle in 7.0 7.0 6.5 6.5 7.0 4.0 3.5 Total 32.9 33.5 23.2 15.5 33.5 27.3 20.0 , Reference 3. Data given in minutes. Same times as EPA Classes T2, T3 and T4 (Note b, Table II-1-5) . ^Same times as EPA Classes Tl and P2 (Note b, Table II-1-5) . Same times as EPA Class PI (Note b, Table II- 1-5). 2/80 Internal ("oml>u>tion Ermine Sourre* II- 1-5------- Table II-1-4. TYPICAL DURATION FOR MILITARY LTO CYCLES' Aircraft Q Combat USAF USNd Trainer - Turbine USAF T-38 USAF general USNd Transport - Turbine6 USAF general USNf USAF B-52 and KC-135 Military - Piston Military - Helicopter TIMb Code 1 2 3 4 2 5 6 7 8 9 Taxi/ Takeoff Idle out 18.5 0.4 6.5 0.4 12.8 0.4 6.8 0.5 6.5 0.4 9.2 0.4 19.0 0.5 32.8 0.7 6.5 0.6 8.0 Mode Climbout 0.8 0.5 0.9 1.4 0.5 1.2 2.5 1.6 5.0 6.8 Approach 3.5 • 1.6 3.8 4.0 1.6 5.1 4.5 5.2 4.6 6.8 Taxi/ Idle in 11.3 6.5 6.4 4.4 6.5 6.7 7.0 14.9 6.5 7.0 Total 34.5 15.5 24.3 17.1 15.5 22.6 33.5 55.2 23.2 28.6 Reference 1. Data given in minutes. USAF - U.S. Air Force, USN - U.S. Navy. TIM Code defined in Table II-1-5. Q .Fighters and attack craft only. Time-in-mode is highly variable. Taxi/idle out and in times as high as 25 and 17 minutes, respectively, have been noted. Use local data base if possible. Includes all turbine craft not specified elsewhere (i.e., transport, fcargo, observation, patrol, antisubmarine, early warning, and utility). Same as EPA Class P2 for civil turboprops. 11-I-6 EMISSION FACTORS 2/80------- Table II-1-5. ENGINE POWER SETTINGS FOR TYPICAL EPA LTO COMMERCIAL CYCLES3 Mode Taxi/Idle (out) Takeoff Climbout Approach Taxi/Idle (in) Power Class Tl, Idle 100 90 30 Idle setting (% thrust P2b Class T2,T3 Idle 100 85 30 Idle or horsepower) , T4b Class Plb Idle 100 75 - 100 40 Idle Helicopter Undefined References 1 and 3. DAs defined by EPA (Reference 3): Class Tl is all aircraft turbofan or turbojet engines except Class T5 of rated power less than 8000 Ibs thrust. Class T2 is all turbofan or turbojet aircraft engines except Classes T3, T4 and T5 of rated power of 8000 Ibs thrust or greater. Class T3 is all aircraft gas turbine engines of the JT3D model family. Class T4 is all aircraft gas turbine engines of the JT8D model family. Class T5 is all aircraft gas turbine engines on aircraft designed to operate at supersonic speeds. Class PI is all aircraft piston engines, except radial. Class P2 is all aircraft turboprop engines. Table II- 1-6. ENGINE.POWER SETTINGS FOR A TYPICAL LTO MILITARY CYCLE3 Mode Taxi/Idle (out) Takeoff Climbout Approach Taxi/Idle (in) Power setting Military transport Idle Military 90 - 100 30 Idle (% thrust or Military jet horsepower) Military piston Idle 5-10 Military or Afterburner 100 Military 75 84 - 86 30 Idle 5-10 Military helicopter Idle 60 - 75 45 - 50 Idle Reference 1. 2/80 Internal ('omlui-tinn En^iin- Sourco II-1-7------- z 3 z U I V2 U z o 35 Q O -J _J S3 t*t IM ** ^ 0 — — 0 o o o o o rg eg o o o o o t» m f o lA O O ^ 0 0 O 0 pg o o T -" O O O -.^^^3 0 ?5 0 O 0 O O 0 r- •tf — o -« — o r- oo oo rj 0 — — ^s^^ CO -0 ^ ^ f"sJ i*O —•<•*"» f^ to m m Idle Takeoff Climbout Approach ESOB17B All. TP oo oo o eg M O O in o — — o — CO O •«• OO ^ o' o o o g — 2 ^ o o o o ••• ^ •"" in o o o o o o o o <» o o o 0 O 0 00 O O — oo o o o in — in ~i — 0..- o o m ^« ^j r~ o o ~0 0 0 — co m 1- in o 03 — o o o o — J"» O U"l -. -C 3 C u ^ '" ~ a U a< H O f^ 1 (Assume data) in co r- o o — -~ *~ o o o o --^M o o o o S£o3 •* o o o m — — in CT* O O O ^ O *vl o o o o oo *n 0s eg 0 — ~ 0 ^r so in oo 00 O O sO — o o o o ~- — in •V 0 0 — m *j m ? *o O <*"* O — » ^ CO 0s in co vO m O 0s t^ <*"» O cO OO f> -H co co m — — — 0^ O O O O — • M LO — • oo ui co ^ — — ' Idle Takeoff Cllmbout Approach ^j 3- < HU 332$ 0 — — 0 o <*g rg -• 2233 •* o O — — IM ^r r- 0> 0 0 -i U u o « 00 1/1 rg M — O T O — — o O rM eg o sO _ o 00 ^ O O O (^ M — r- o o in ^ • 00 ^* 00 >O oo r- o — C^rowm f~ M 00 0- •-* cO "^ ^ fM M — rM CO fNJ i>O O CO rj — CO ^ ^ o ^» in r- o *n ^ in o oo O f\J CO « S * "° 3 ^j ao PO <*n in ^r 'M •— • r*- ^0 in — • 3 ° S?3 ~ — ~ ^ » X ~0 J3 0 u c i. u j; S a, •5 4 - a 2 H U < •? H sO b. U] U 0 U. U If U1 f*- O O »rt m — ^ o co r- M •* o «a eo fSj O"- sO rNJ i^* co un in ^ CO P* fNJ •«• o o o o o o o ••* — ' — ' O .pooo !o m ,0 S — • -q* o ------- a u 8 cs V Particula V**t -*t ^» »n A] >O 00 '*-O •M r- — • 00 O O fN) « •* f*. t* O fM sO ^ ^ ao o^ m — o oo m o m >n «— • ••» CT* — « in ao ao *• X •M O <0 0X0 ai v £• o. — 19 — °- 2 HO < H J f. i^. 0 — — 0 X i w r* -o in Q m (M m ^« M ^ i*q 00 — « o r- m *M ao — .— vO r- o^ *r o o M ^j o — o r- O 00 ^* r- r- — ^» p- p-« rvi ro (M «j ao r- >o "-• f^> •f r— m vO •"* CO ^* •"•* -J* ^ in CO f- *M o oo oo m •^ o^ in in - X •*•» O 19 O X O a ^ c Q, — •« •_ a. 0 k TH So. o T r- -o *M NO in IM O 0 0 0 M — m oo IM •* IM •* 0 -« — O O- IM pn o o o 00 (7* •»r in P- O O -« m "^ -*f in — « IM •» - ' — T C"^ in in O •* -• IM O r- 03 NO m — i co o o m \o ~ • in in ON _ — ^ IM m pn NO PN| r- r- in oo — o •»• oo 'o x o u je .5 o. 2 HO < in (j lA ON CO O o — — — o o o o IM Pn O IM — f •» IM O O O O PN! P- IM O O O c- r- r- •* m o o o IM — r- — — in PO oo 00 IM O O IM Pi> 00 00 in oo fO ~* rvj IM (0 O O N PPI V 1" O- r- o o •» NO IM ~ oo •*• in PN! PO ~H fN. — PN! O — Sen) 0^0 « ^ C Q. S "* "" °" 0,0. p- fO — • IM O I*J PNJ *^ O O O O m — r- r- o o o o V m 00 O « — i r- •»• t oo NO O O PN) ON CO O- rj f O O NO IM NO PPV in IM r- — 03 NO m o- r- oo r- IM o in PN! o ^r pn — ' r- — — T m o r- o NO PNVP* CT- 3... 5^2:^ *r — r- r- » X N- 3 0 N.4 O Ifl 0X0 i) J: § a. =3 in 3 NH ~ W ^ cu a- i iM O (M O ^ O — • r* O O •* pvj NO O O <*1 (M •< m NO m o o-o r- (M o r*- in MI 0 •* «1 o c* o in o m o o CO — (M in oo oo NO m O CT* (M •- UT in 00 O r- f- oo o O NO NO NO PA «*1 O O r- r- o (M T ^ (9 )-i O* in f- (M PPt 00 —• NO •» T 0 — — 0 p>* in -*t o f* tM 00 O pg m IM o in o o PO 00 (M — O O NO oo NO r- rsi O T — — ' N M — ' oo r- NO f^ tM in o (M in en po pg PA NO O O** in ro tr < 2 in ~"" * OS IK 2/80 Internal Comi>(i!»tioii Enuinc S II- I -9 ------- u -3 I si Si ii UJ ' a o h j: O U ^S j< a K 3 U, a> •8 I 00 <-« ^" &> O NO m ~* c*i pg r* in IA PO PO ^<pg o m ro pg o^ P"> co pg pg „• o- r- ^« o oo m o ro PO m — • pg T pg s ^^n "9* PN! O PN! fM 00 C sO T ao o pg NO ^r oo tft — • r- ^ in ^. 3 U w3 O fl O J2 O « C U (JJ _^ C Q, 2 H U < "^, (M in ' — U. i a a a a: in a^ r^ in o — o o o' IM IM' o' -« in ^ r> I1 O O O o o o o •* o r- in INJ IM o in o o o o •* O -n O — in r\j r-- 3O OO O O CO o o ^" PO in o pg fM * IM r~ o f- ^« r* IM in a* o^-o — o o o in IM IM v. 3 u 1*4 0 iQ 0 J3 0 J) g b 2HU< 1 -0 o - U. o H a a K K \ 0 C C 0 o — — o m co r- r- vn o^ o o ^- rrt o O — rg in m rM fM c^ft («i j cvj un o f*^ "N! o ^J 00 o^ "^ in %o M tn m in d co m o* C - o S f«- f\J — QV ^?^* s* "^ •^ — — vQ ^O 3s NO iM — NO m \O iVl M PO NO O ^ r- — PO o ^» — i A4 O o Is- in 0s in m in •*• oo O o m oo >n t — O 0 PJ NO 0^ *M 03 in — r- JO O rsi pg -H V4 3 U O J3 0 u £ u 2nd< - x • f_t u >-B! •-H a; 1 i -i m CO IM » rg sO 0 IM ^ — ON ^ r™ PO O ^ • o-.— rg r»- oo co *o oo — co PO NDO m 1 ro NO O^1 tj« — ' m co ro ^" pg O o o o -H NO O O O M to P'J cr-tn o^ j ^j {j i2 o c a O 03 D O W C 0 h qj ,_« •• m £L, ;-* nj — D O. SHUQ <; "^. -^ ^"* °o "^ *i * .2 i ft.® u i gNO £ >.& fX -i o2«i- 1 1 1 1 o o o o 0000 o o' o o O rg IM CO -, v *r m O O O O o* oor- KI 0 rO 6 e- HU o o o o m 01 IM O 0 O O o o o o O >O IM O~- irt O rt O a o o o rt «-l r- go er ^ o — — — s -o 2p- O ^" *• — o o o o « OM *• fO O^ ••• 0s O 00 Ox <*^ o o o o — O"- O 00 pg r- o" m IM m — ao rO 0s ^"* CO o *^ NO oo i o ------- Q U Q U z 8 JT i .. u M! CO f ., H •^ J 9 u t s, "o" tA ^.j s 3 o uo* Z o u «J 05 •3 u< « 1 « i^ V u> 1 "i 2 JJ 3 A u A ^ •* X 5" ^ an jt . ^ - b A •* X ^ b j: ^ h •v^ J h x^ 00 •" hi ^ A °%. H ^ci 2 0000 o o o o IM — — o o o o o o o o ^^^^ in i^ f* o o o o o o ^ tn in in IM CT* "1 O 00 00 0—00 IM IM 00 O O O OO IM fM O O — O o o o o o- •4< m m ^t* oo in ^ oo "'SSS IM O O 00 O NO *O vO »•• O^ ^ in O m ^« 1*^ ^4 T O O — ^ **> IM CO » — r- in ^ 3* *O ^O 00 >O T "X Son o ja o _2 s •• S » — a SHU < o o IM . fO u ' > O J o o o o o o o o o o o o o o o o oo in r- oo IM r- -a o 0 0 O O m r- oo o IM o m ^f o —• o o — -o ^ in *c oo o p* in m o o -• O o o o o o^ r- » co O *O ^" ^iJ O —• f^ ~-> o o o o o m ^> ro IM in r- -« IM ff- ^- -O *• IM — « %o in r™ 03 d in in *f IM ^-» ^^-Mr- oo o ^ -O f^ ^- — ^ t— ^ O i*^ •w -C ^ 3 U *3 0 rt O -O O a c u •J * B a. — « S a. 2HU < Q 9o o " ^ 2 4 0 O O O o o o o IM -H M o o o o o o o o oo^in- o o o o oo m in c* i»i oo in m o in »•"» o — o o o o — — O O O 0 •* o o (M r- O 0 0 O o^ IM o o m "^s - NO fVJ m 1/1 on p— f! o i/l INJ r*- INJ CO <*> NO ^ NO •* ^ — ' CT. o o r^ xO oo 'vi — « NO O r- ro " ~A ^, 3 U C o < 0 J3 0 act. jj -11 .5 °- a0 o T U 9 j IM IM — 0 O O 0 O O O O « in ^ ^4 o o o o o o o o » 0 — — 0 -o o — * o ^ -mm - O ^" IM O O O O O O O O 0 r- — 0s *f 00 CC O 0 O — 0000 o -SmS ^H — 1 iM ^- m oo -NT fNl ^ O Ut f^ C— O rNl 1 **l ro — • m go r , — ' r* ^ \r\ — — ^ T NO o r- m ^r U-l Q S < V V Q Detroi 1 , J •^ o (J 1 X -< o c £ ao ocatir u O ., a. 0 LI a 0 A I 1 a. H p1 a •o « S. V Ll 31 V "E X 0 c 4) QO 0 •2 sfl 3 •3 C a. en a 30 b. C V3 C •3 •3 •u C 3 3 Sfl C •3 3 .S !O y ^ 00 « > .a r3 U •3 X ~ •^ E™ Calculated from fuel rate and 0.05 wt% sulfur in Jet A and Jet B fuel, or 0.01 wt% sulfur in aviation is therefore SOX (Ib/hr) -- 10'3 (fuel rate), and for piston engines, the conversion is SOX (Ib/hr) -- i x 1 r\i o ui x -o V U i V •d v 4ft "o u c c* o A 3 "3 u ^ c V "o c V) T3 ^T ^ r- 1 s 3 3 1 M y •j j \ ^z - •< (N 1) U U 2S C '§ ^J — •3 C fl. £ CJ £ 3 2/80 Inlrriial ( omlui-tion Eimitu1 Sonrct-?- II- 1-11 ------- z u < & s I UJ O 5S a o so < Paniculate* ' 'o" in 3 o H Y O U V 3 U. tl •§ 3 Model-Seriec u c •v \ 00 JC !• ^ -C u QC ~ JC ^k » . ••« i3 oo *r v t** *n m t^ C* O — 00 00 — — » fvj IN| ""sj (7* O- -M CO 00 — ^ r- r- r- r- aO 30 f*i - X ^ 3 u £ C rt O J3 O * -S § S. 2 HU < M *J '•*'-> ^1 0^" rsj .... •o o» a- v ^ — — o - -C 3 o — 0 « 0 £ 0 41 J< 5 °- 2n5< o I 0 IB i— r* o i~ CT- r- r* 0 0 •* -M "• ^ CO ~* o -^ ^ O 9^ O ^ -0 v o v a) 0030 13 a o v -^ - a o U i O "1 O 0 0 3J - - i^ 0 T - b o -•• — " T o r- t> - £ », 3 J "3 J I U JC 5 a- 30 H LJ ^ o T — d o o -n — j« — • O ^ O r- f*- — • ! „".. m ~* oO T in 0 O O O 'o i o « i E | i in U. is d^ *o ~ •j J) 0 C o r-' r- o QO 00 f^J O — — T sll O ^! 5 ; v jc ; a. : - H o < H "a1" O T O M •J V CT~ — * 0 o •-* — ^ O ao «*i — • — • o r*- <^J 00 O O *M *vj tn fv. -\j — ™ •M — 0 £!£:: i - ^ w- 3 ^ ..- 0 ffl C -C O ; 4, .£ ; c. 2 H J < < -T < «» T u, ^ u, ' H " i^1" O ^ tT1 •-• r- o tn o ^ «*i — b o r« ^" O O* 0* *J o o ^t o o* o »n. **> •• 322£ ,_ 3 u ^04 0 J3 0 ! i ^ = a f* fc H "a. 0 — — 0 « o o o r- — — o o a* n S o 4 0 .0 O u _* - a. SHU < o o Ul O U U HO II- 1-12 EMISSION FACTORS ------- Q Q _J O U op M H U ca H w V 91 V «. 3 W b 4 Q. •C > o U) u c n z o u b cc 3 U. •o 0 ut -. V 7) V ^ * M ao -< i* £ J3* ** M JS i* .c £ h S u < £ i* 96 Jt IM 5 •=• ;r u V S* ; n u > J..C. ^ "^ u'1 -00 vO -0 O r~ f*i m oc oo en M M — O O O P- 00 QO in M *A *o o in «J «» — — in in oo o in in — — o o ,0' «i - _; IM in ^ ff* ^ » 1^ r- « o- 6 o — -o -o rt - — ^ M •-> — > in go ^» ^" — f— O O 0 O 0 0 — •* f» r- — j: _ 3 0 ~ 0 it o J= o -•$1 a 2 HU •«; ^ u _ 51 H t™ ^ *~» H O a> -• — * * 0 <* •* «M — •* * o* i*> o »n in ^ r» — sO ^* ^r r— Q «• *• in 0s 0S (%] — ,-, — ^ o c *n r>J *J in •• 9 O O — 0 O 0 T O C 0 i" - -C 5 3 « 0 J3 O - fl — a ' — ^ ^* H< in o o« o oo w oo oe - o -a o o o oo — >n o r* * 0 S"~ — O IM 00 — •MOO IM ^> O — ^ 00 >O O — O r- in 'SS5 r* *• O IM l<^ — ^« « IT -xO 0 T — O O O O O IM V 0 M £ _ 3 'J •Son o ^) o «i S a. — K — a. SHU < o — ?^i t Q * Q . ^ x a. in o is o O IM ^ "• 0000 *M i*> O *M O O 0 O .O iM "M O 0 O f^ f- m O O o' — in IM ao O — — 0 00 "M O O ,0-M. *n o* s C1- •n m o in — 3 w 52 0 i 3 J2 0 u£ 5 a. — 4 — O. 5a. < .. ^ w 0.0. r- r- T v o — — — •* r* o o ^J O ^O ^) "J •M C O ^ o o ' — J -0 ... 3 '^ c n J 0 ti - a — — a. l ^ r ~ i ' H ^ ' *** _ j 'j ! ^ "" — o o » o o o * -« » -a -v co -a — 0 « U- - AJ M .— 1— 3 u c 5 ju 5 a. ^ "* ijr • r-" '"* \f>. J _ E-* — b •* * o o o -<*00 o o o 0 -f T o o o - <7- | rM ^^. O sO -* Jl 0 0 a" o o o ^" s 30 ^ 3 1 a o H u < i i r 1 ";' I 1*7— 1 i Cf 1 JHU — ' U 'J Referen s (VJ O Z OB ffl ^ V i. V V •D X 3 C 01 00 0 fc. z ^ — 3 O. 'M "o S. '= § •a c a c 0 a •3 C 3 3 •5 "y s" C s SO ^£ a ^ ;£ | g 2 •| 15 y acid reported as SO2. Calculated from fuel rate and 0.05 wt% sulfur in JP-4 or JP-5 fuel, or 0.01 wt% sulfur in aviati- n gasohr. onveraion is thtrefore SOX (Ib/hr) - IO'3 (fuel rate), and for piston engines, the conversion is SOX (Ib/hr) - Z x 10*4 (fuel rate). u 3 00 •o C (4 OB "2 'x o Sulfur 73 u V . CO V s c V c u, 3 u O parttculates." and thus may be much higher than solid particulatea alone (except as noted V 3 a e •D c a Z. ^d V '- C t* ited values assumed for calculational purposes. In the absence of experimental data. (-2 o a t .S fl ^ « 5 'i ^0 -D £ E O w >. c o V u '£ CL h. Q Qfl (-4 1 y £ S C ^ £ u -" ^ Cl 2 > V -3 i 2/80 Internal Comlxi.-lion Enuint* Soiir«'t> II- ------- JRCRAFT3 •% 0 1 u u. u. o UJ u. (J 7" 5 z OS UJ a. t- U ^ UJ m FACTOR Z O c/5 UJ i M UJ H Particulat Ul Z 0 H uo" Z o u c JS « o 0. £ « ac oa 5 V »« V WS V •8 2 oi d rcial carrier — ircraft " § s s * s ». « * « - ^o IM r- oo o o r- jo — •i3O— ' — O «*»**>»*> "^ (M ^-OAJ " "11/1 ^-r-»~o>o-oinaj-o»jji~. a.-^^-coo^^-o^-T oS^"S?:?Sr.;-3!o <•*«-«-« p-« •O^U"lO^<'sl-^P~ *TOOO r-' ^ ^J a< f- CT; » -o b a- ~i r^ ^ g, ^ e,5sg ***** ? * « « a. a. a. a a. s a a c. a. o V 3 •J -o 5S ? eg 'to l< (j 33 CT* «•* OS C O O U £ U 0 C « a • j — ^ "" — J2 JS £« (J "^OOOOCQQOOO li |=itt!!!?illi ll SsIlllII^lll "• sO 0 §*** A ^> ao « «*> r- oooooooo ooooo — — o r-*Mr**^r.rf»»n(^ o«ooo^^>-« ^0*1^--. •4 — ^ **4 f^ V f- 4J r^ « 00 >0 co r- r* .1 £-"£c£^ — i^ " o " • " o o ^ O O U Is si •« H« I4^!|5§| C^Jl ff^>— *^S^^ae OS* ^^J'a''Je5!5'Ii u, c v v^-H^auwti .- O *« vC^AhQO% <(U Ui fiuQU«O~3-J(/> II- M I EMISSION FACTORS 2/80------- u _ a _) o z 8 C^ 1 T M M 3 flQ ^J H • S ^5 3 U •^ £ V ^1 Aj * 3 o H u * O O e u« Power ( • . < C M ^" fl S £ Jf J3 ^* „ ^ .a 01 ji ^ V 'u V U) « •§ 2 s o Aircraft oo in oo fM in o o o o o O 00 ^ IM 00 ^ r* oo cj» r* o o o o o in -o »M o ^o o ^ QO r™ ^ m m m «. i*i IM O IM •«• O i>- » » r- •» •a r- 90 it r- — ^ IM CO v« d d o' — d O 00 00 » 00 O >o in r*- o M — — 1*1 — m -+~e — » oo in IM — in oo ^* o in v « » •*< O f >O >O » __ c-• o >• U J U 4 —1 ,-* ISJ I^J General Aviation Pis tor (EPA Class PI) Cessna ISO Piper Warrior Cessna Pressurized Sky master Piper Navajo Chieftain n hi 41 C tl O 1 U o o V a V « g* h . 01 V 1 o" < O ,2 — 'o s « 3« s « S" o • - a u^ | "jj- * ^ c 5 ® |u J TJ O '<« H ** , 13 £ 1 h X c o a. o .- 2 ^4 c .. 3 s s s 2fi .tS *o o S c 2 > a ** Sfl •s- 1 . *- « .0 U ^ t- C it « u u oa 2 •s ' 1 o* "2 .0. = |l 1 : •" ^ "3 -^ <- 1 | ^* (4 t*)i if §1 - ' ii!»tion En Sourr<'> II- 1-15 ------- on _J u u. CL, /TAKEO1 LNDING ^"H fe | O£ H MISSIONS FOR M o 1 i i— i M JU 01 01 •ticulat £ 01 X o w u E -H ill u 5 u X o z 8 V c CO i—4 - Q. 0) r2 Aircraft 00 x J3 (— 1 5 t— ( OC .* JO i—4 OC J^ -C ^H 01 Ji ^i a 3 'J 'Jl OJ <-l 0 en CM OCM 0 n o O <— i ^-* O oo i- CM oo ^r en 00 i-4 CM o m CM o*r <* -i en ox oo 0 0 -4 o CM vr m o OmcM -COO rx •-~. O in o 1 r-» | r* U *— CU CM U 1 O 1 1 1 O < 1 -J en <; 1 1 -3- 1 a. E- oo in b. in 141 Starlifter / )4C Turbo Mentor }8 Talon 1C Orion ' \ Viking icopters - Turbine -IH Iroquois/Huey i i i i m u x O S- r- 3- en = = 00 o o o o CM o o oo m en o 00 O r^ 1-4 tO CM r«. en en o 1-4 en CM 00 en vo -a- O vO O> •» •* in eft en o ^H CM o\ a\ in >-4 '. "* T T in in -3 Sea King/Jolly Creen Ciant . -47 Chinook i 5 en u 0 3 •o I* a Cfl •H i-H o lu a. u •H c b o <0 C O .a ijEMISSION FACTORS 2/80 ------- II- 1.3 Modal Emission Rates and Emission Factors per LTO Cycle The first step in the calculation of aircraft emission factors is the development of a set of modal emission rates. These represent the quantity of pollutant released per unit time in each of the standard modes. Each mode is characterized by an engine power setting (given in Tables II- 1-5 and II- 1-6) and a fuel rate (the quantity of fuel consumed per unit time). The following procedure is for calculation of aircraft emission factors per LTO cycle, starting with engine modal emission rates: 1) For a specific aircraft, determine the number and model of engines, using for example, Tables II- 1-1 or II-1-2. 2) Using Table II-1-7 or II- 1-8, locate the appropriate engine data, and prepare a list of modal emission rates -for each mode m and pollutant p: (—) vAt' m,p 3) Using known military assignment and mission, or civil aircraft type and application, use Table II-1-3 or II-1-4 to select an appropriate set of times-in-mode (TIM) . m 4) For each mode m and pollutant p, multiply the modal emission rate and TIM data for each mode and the sum over all modes. This will yield an emission factor per engine, which must be multiplied by the number of engines, N, to produce the emission factor per LTO cycle, E , for an aircraft: V N Z (f|) ' (TIM)m m,p On a conveniently laid out work sheet, this calculation can be set up easily on a hand calculator with one storage location. Emission factors calculated in exactly this way are presented in Tables II-1-9 and II-1-10. References for Section II— 1 I. D. R. Sears, Air Pollutant Emission Factors for Military and Civil Aircraft, EPA-450/3-78-117, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, October 1978. 2. R. G. Pace, "Technical Support Report - Aircraft Emission Factors", Office of Mobile Source Air Pollution Control, U.S. Environmental Protection Agency, Ann Arbor, MI, March 1977. 2/8() Interim! (.omhiiMion En ------- 3. Control of Air Pollution for Aircraft and Aircraft Engines, 38 FR 19088, July 17, 1973. 4. M. Platt, et al., The Potential Impact of Aircraft Emissions upon Air Quality. APTD-1085, U.S. Environmental Protection Agency, Research Triangle Park, NC, December 1971. II-1-18 EMISSION FACTORS 2, KO------- II- 2 Locomotives II- 2.1 General - Railroad locomotives generally follow one of two use patterns: railyard switching or road-haul service. Locomotives can be classified on the basis of engine configuration and use pattern into five categories: 2-stroke switch locomotive (supercharged), 4-stroke switch locomotive, 2-stroke road service locomotive (supercharged), 2-stroke road service locomotive (turbocharged), and 4-stroke road service locomotive. The engine duty cycle of locomotives is much simpler than many other applications involving diesel internal combustion engines because locomotives usually have only eight throttle positions in addition to idle and dynamic brake. Emission testing is made easier and the results are probably quite accurate because of the simplicity of the locomotive duty cycle. II-2.2 Emissions - Emissions from railroad locomotives are presented two ways in this section. Table EI-2-1 contains average factors based on the nationwide locomotive population breakdown by category. TableII-J-2 gives emission factors by locomotive category on the basis of fuel consumption and on the basis of \vork output (horsepower hour). The calculation of emissions using fuel-based emission factors is straightforward. Emissions are simply the product of the fuel usage and the emission factor. In order to apply the work output emission factor, however, an TableII-2-1. AVERAGE LOCOMOTIVE EMISSION FACTORS BASED ON NATIONWIDE STATISTICS3 Pollutant Particulatesc Sulfur oxidesd (SOX as SC>2) Carbon monoxide Hydrocarbons Nitrogen oxides (NOxasNO2) Aldehydes (as HCHO) Organic acids0 Average emissions6 lb/103gal 25 57 130 94 370 5.5 7 kg/103 liter 3.0 6.8 16 11 44 0.66 0.84 Reference 1. Based on emission data contained m Table n- 2-2 and the breakdown of locomotive use by engine category in the United States in Reference 1 Data based on highway diesel data from Reference 2 No actual locomotive paniculate test data are available. Based on a fueJ sulfur content of 0.4 percent from Reference 3. 4/73 Internal Combustion Engine Sources II-2-1------- TableII-2-2. EMISSION FACTORS BY LOCOMOTIVE ENGINE CATEGORY8 EMISSION FACTOR RATING: B Pollutant Carbon monoxide lb/103gal kg/103 liter g/hphr g/metric hphr Hydrocarbon Ib/I03gal kg/103 liter g/hphr g/metric hphr Nitrogen oxides (NOxasN02> Ib/ICPgal kg/103 liter g/hphr g/metric hphr Engine category 2-Stroke supercharged switch 84 10 3.9 3.9 190 23 8.9 8.9 250 30 11 11 4-Stroke switch 380 46 13 13 146 17 5.0 5.0 490 59 17 17 2-Stroke supercharged road 66 7.9 1.8 1.8 148 18 4.0 4.0 350 42 9.4 9.4 2-Stroke turbocharged road 160 19 4.0 4.0 28 3.4 0.70 0.70 330 40 8.2 8.2 4-Stroke road 180 22 4.1 4.1 99 12 2.2 2.2 470 56 10 10 a Use average factors (TableII-2-1) for pollutants not listed in this table. additional calculation is necessary. Horsepower hours can be obtained using the following equation: w=lph where: w = Work output (horsepower hour) 1 = Load factor (average power produced during operation divided by available power) p = Available horsepower h = Hours of usage at load factor (1) After the work output has been determined, emissions are simply the product of the work output and the emission factor. An approximate load factor for a line-haul locomotive (road service) is 0.4: a typical switch engine load factor is approximately 0 Ob.1 References for Section II- 2 1. Hare, C.T. and K.J. Springer Exhaust Emissions from Uncontrolled Vehicles and Related Equipment Using Internal Combustion Engines. Part 1. Locomotive Diesel Engines and Marine Counterparts. Final Report. Southwest Research Institute. San Antonio, Texas Prepared for the Environmental Protection Agency, Research Triangle Park, N.C., under Contract Number EHA 70-108. October 1972. 2. Young. T.C. Unpublished Data from the Engine Manufacturers Association. Chicago. 111. May 1970. 3. Hanley. G.P. Exhaust Emission Information on Electro-Motive Railroad Locomotives and Diesel Engines. General Motors Corp. Warren, Mich. October 1971. II- 2-2 EMISSION FACTORS 4/73------- II-3 Inboard-Powered Vessels II-3.1 General - Vessels classified on the basis of use will generally fall into one of three categories: commercial, pleasure, or military. Although usage and population data on vessels are, as a rule, relatively scarce, information on commercial and military vessels is more readily available than data on pleasure craft. Information on military vessels is available in several study reports,1"5 but data on pleasure craft are limited to sales-related facts and figures.6'10 Commercial vessel population and usage data have been further subdivided by a number of industrial and governmental researchers into waterway classifications11"16 (for example, Great Lakes vessels, river vessels, and coastal vessels). The vessels operating in each of these waterway classes have similar characteristics such as size, weight, speed, commodities transported, engine design (external or internal combustion), fuel used, and distance traveled. The wide variation between classes, however, necessitates the separate assessment of each of the waterway classes with respect to air pollution. Information on military vessels is available from both the U.S. Navy and the U.S. Coast Guard as a result of studies completed recently. The U.S. Navy has released several reports that summarize its air pollution assessment work.3"5 Emission data have been collected in addition to vessel population and usage information. Extensive study of the air pollutant emissions from U.S. Coast Guard watercraft has been completed by the U.S. Department of Transportation. The results of this study are summarized in two reports.1"2 The first report takes an in-depth look at population/usage of Coast Guard vessels. The second report, dealing with emission test results, forms the basis for the emission factors presented in this section for Coast Guard vessels as well as for non-military diesel vessels. Although a large portion of the pleasure craft in the U.S. are powered by gasoline outboard motors (see section 11-4 of this document), there are numerous larger pleasure craft that use inboard power either with or without "out-drive" (an outboard-like lower unit). Vessels falling into the inboard pleasure craft category utilize either Otto cycle (gasoline) or diesel cycle internal combustion engines. Engine horsepower varies appreciably from the small "auxiliary" engine used in sailboats to the larger diesels used in yachts. 11-3.2 Emissions Commercial vessels. Commercial vessels may emit air pollutants under two major modes of operation: underway and at dockside (auxiliary power). Emissions underway are influenced by a great variety of factors including power source (steam or diesel), engine size (in kilowatts or horsepower), fuel used (coal, residual oil, or diesel oil), and operating speed and load. Commercial vessels operating within or near the geographic boundaries of ihe L'ni'cd States fall into one of the three categories of use discussed above (Great Lakes, rivers, coastline). Table--II-3 ! andII-'3-2 contain emission information on commercial vessels falling into these three categories. Table 11-3-3 presents emission factors for diesel marine engines at various operating modes on the basis of horsepower. These dau aie applicable to any vessel having a similar size engine, not just to commercial vessels. Unless a ship receives auxiliary steam from dockside facilities, goes immediately into drydock, or is out of operation after arrival in port, she continues her emissions at dockside. Power must be made available for the ship's lighting, heating, pumps, refrigeration, ventilation, etc. A few steam ships use auxiliary engines (diesel) to supply power, but they generally operate one or more main boilers under reduced draft and lowered fuel rates-a very inefficient process. Motorships (ships powered by internal combustion engines) normally use diesel-powered generators to furnish auxiliary power.17 Emissions from these diesel-powered generators may also be a source of underway emissions if they are used away from port. Emissions from auxiliary power systems, in terms of the 1/75 Internal Combustion Engine Sources II- 3-1------- TableII-3-1. AVERAGE EMISSION FACTORS FOR COMMERCIAL MOTORSHIPS BY WATERWAY CLASSIFICATION EMISSION FACTOR RATING: C Emissions3 Sulfur oxidesb (SOxasS02) kg/103 liter lb/103 gal Carbon monoxide kg/103 liter lb/103 gal Hydrocarbons kg/103 liter lb/103 gal Nitrogen oxides (NOxasN02> kg/103 liter lb/103 gal ClassC River 3.2 27 12 100 6.0 50 33 280 Great Lakes 3.2 27 13 110 7.0 59 31 260 Coastal 3.2 27 13 110 6.0 50 32 270 aExpressed as function of fuel consumed (based on emission data from Reference 2 and popu'ation/usage data from References 11 through 16. ^Calculated, not measured. Based on 0.20 percent sulfur content fuel and density of 0.854 kg/liter (7.12 Ib/gal) from Reference 17. cVery approximate particulate emission factors from Reference 2 are 470 g/hr (1.04 Ib/hr). The reference does not contain sufficient information to calculate fuel-based factors. quantity of fuel consumed, are presented in Table II-3-4. In some instances, fuel quantities used may not be available, so calculation of emissions based on kilowatt hours (kWh ) produced may be necessary. For operating loads in excess of zero percent, the mass emissions ('.; j) in kilograms per hour (pounds per hour) are given by: ej = kief where: k = a constant that relates fuel consumption to kilowatt hours,- that is. 3.63 xlO'4 1000 liters fuel/kWh or 9.59 x 10'5 1000 gal fuel/kWh 1 = the load. kW ef = the fuel-specific emission factor from Table 3.2.3-4, kg/10^ liter (Ib/KP gal) 11-3-2 EMISSION FACTORS (1) 1/75------- CO a. O LU a 1° ^ CD U 2 feiE U. - w S oc LU g o O co co 1 LU CN I I—I M _a> .a 0) T3 O E u> c m E OJ O. 0 TJ to "3 u. o 'o CD _to r^i irt 5 ~^— '5 ^_ D 3 cT cc _ LLCD O — LL (U to 3 CJ O) "3i o I <— to 5 °> <— CD _S1- *O _ «— CD _ m 0 >- <— OJ 'o _ — 0 . *" 0) ^oi ~ •^ 0_ ^ a £ ro O i. |,= m O _ — ^ d ^ *~ -2- s ~ "d _ ^ Ct3 ~S — "d w «— cu 01 ^ c 2 ^ 1 00 m «- ^t ^r t- «j- co oo ^r r~- o in ^ co «-' r< d d in CO en in CN i- co . — *t co ^ CN (^* o in ^* co ^-' K d d CN 00 rsl in CN T ro . «- *r CN «- CN 00 CO co o in -q- co »-' r< d d CN *— 10 co CN r^- cq SOi r-.' i-' CO LO CO CN CO co oo r-. o co r-. «- cq CN CD CO Oi O d !"•• CN in oo o w ^- co cq d o> co d in CN in in ^ T CN O 00 i- CO O ^ T— oo r-» CN ^ O) ^ ^ - aj i d * o 0) QJ S y M _ w CN O C "^ O^ °S P oo o i '%Z 1 S S E 3 g !S 1 30X 1 2 EOX to ? ^ S > £ S 0_ 00 O I Z i I 1 8 = 283 S 7= S £ O c in §151 E i n '- §•= ir -p c 1/75 Internal Combustion Engine Sources II-3-3 ------- TableII-3-3. DIESEL VESSEL EMISSION FACTORS BY OPERATING MODE3 EMISSION FACTOR RATING: C Horsepower 200 300 500 600 700 900 1580 2500 3600 Mode Idle Slow Cruise Full Slow Cruise Full Idle Cruise Full Idle Slow Cruise Idle Cruise Idle 2/3 Cruise Slow Cruise Full Slow 2/3 Cruise Full Slow 2/3 Cruise Full Emissions Carbon monoxide lb/103 gal 210.3 145.4 126.3 142.1 59.0 47.3 58.5 282.5 99.7 84.2 171.7 50.8 77.6 293.2 36.0 223.7 62.2 80.9 122.4 44.6 237.7 59.8 126.5 78.3 95.9 148.5 28.1 41.4 62.4 kg/10J liter 25.2 17.4 15.1 17.0 7.1 5.7 7.0 33.8 11.9 10.1 20.6 ^ 6.1 9.3 35.1 4.3 26.8 7.5 9.7 14.7 5.3 28.5 7.2 15.2 9.4 11.5 17.8 3.4 5.0 7.5 Hydrocarbons lb/103 gal 391.2 103.2 170.2 60.0 56.7 51.1 21.0 118.1 44.5 22.8 68.0 16.6 24.1 95.8 8.8 249.1 16.8 17.1 16.8 22.6 14.7 16.8 21.3 60.0 25.4 32.8 29.5 kg/103 liter 46.9 12.4 20.4 7.2 6.8 6.1 2.5 14.1 5.3 2.7 8.2 2.0 2.9 11.5 1.1 29.8 2.0 2.1 2.0 2.7 1.8 2.0 2.6 7.2 3.0 4.0 3.5 Nitrogen oxides (NOxasN02) lb/103 gal 6.4 207.8 422.9 255.0 337.5 389.3 275.1 99.4 338.6 269.2 307.1 25-1.5 349.2 246.0 452.8 107.5 167.2 360.0 371.3 623.1 472.0 419.6 326.2 391.7 399.6 367.0 358.6 339.6 307.0 kg/103 liter 0.8 25.0 50.7 30.6 40.4 46.7 33.0 11.9 40.6 32.3 36.8 30.1 41.8 29.5 54.2 12.9 20.0 43.1 44.5 74.6 5.7 50.3 39.1 46.9 47.9 44.0 43.0 40.7 36.8 Reference 2 Participate and sulfur oxides data are not available 11-3-4 EMISSION FACTORS 1/75------- TableII-3-4. AVERAGE EMISSION FACTORS FOR DIESEL-POWERED ELECTRICAL GENERATORS IN VESSELSa EMISSION FACTOR RATING: C Rated output, b kW 20 40 200 500 Load,0 % rated output 0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75 Emissions Sulfur oxides (SOxasSO2)d lb/103 gal 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 kg/103 liter 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 Carbon monoxide lb/103 gal 150 79.7 53.4 28.5 153 89.0 67.6 64.1 134 97.9 62.3 26.7 58.4 53.4 48.1 43,7 kg/103 liter 18.0 9.55 6.40 3.42 18.3 10.7 8.10 7.68 16.1 11.7 7.47 3.20 7.00 6.40 5.76 5.24 Hydro- carbons lb/103 gal 263 204 144 84.7 584 370 285 231 135 33.5 17.8 17.5 209 109 81.9 59.1 kg/103 liter 31.5 24.4 17.3 10.2 70.0 44.3 34.2 27.7 16.2 4.01 2.13 2.10 25.0 13.0 9.8 7.08 Nitrogen oxides (NOxasNO2) lb/103 gal 434 444 477 495 214 219 226 233 142 141 140 137 153 222 293 364 kg/103 liter 52.0 53.2 57.2 59.3 25.6 26.2 27.1 27.9 17.0 16.9 16.8 16.4 18.3 26.6 35.1 43.6 Reference 2. Maximum rated output of the diesel-powered generator. ""Generator electrical output (for example, a 20 kW generator at 50 percent load equals 10 kW output). Calculated, not measured, based on 0.20 percent fuel sulfur content and density of 0.854 kg/liter (7.12 Ib/gal) from Reference 17. At zero load conditions, mass emission rates (ej,) may be approximated in terms of kg/hr (Ib/hr) using the following relationship: el - klratedef where, k = a constant that relates rated output and fuel consumption. that is. 6.93 x 10"5 1000 liters fuel/kW (2) or 1000 gal fuel/kW 1.83x 1CT5 'rated = the rated output. kW ef = the fuel-specific emission factor from TableII-3-4. kg/10^ liter (lb/10-5 gal) Pleasure craft. Many of the engine designs used in inboard pleasure craft are also used either in military vessels (diesel) or in highway vehicles (gasoline). Out of a total of 700,000 inboard pleasure craft registered in the United States in 1972, nearly 300,000 were inboard/outdrive. According to sales data. 60 to 70 percent of these 1/75 Internal Combustion Engine Sources II-3-S------- inboard/outdrive craft used gasoline-powered automotive engines rated at more than 130 horsepower.6 The remaining'400,000 pleasure craft used conventional inboard drives that were powered by a variety of powerplants, both gasoline and diesel. Because emission data are not available for pleasure craft. Coast Guard and automotive data2'19 are used to characterize emission factors for this class of vessels in Table 11-3-5. Military vessels. Military vessels are powered by a wide variety of both diesel and steam power plants. Many of the emission data used in this section are the result of emission testing programs conducted by the U.S. Navy and the U.S. Coast Guard.'"3'5 A separate table containing data on military vessels is not provided here, but the included tables should be sufficient to calculate approximate military vessel emissions. TABLEII-3.-5. AVERAGE EMISSION FACTORS FOR INBOARD PLEASURE CRAFT3 EMISSION FACTOR RATING: D Pollutant Sulfur oxides1^ (SOX as SO2> Carbon monoxide Hydrocarbons Nitrogen oxides (NOX as N02) Based on fuel consumption Diesel engine'3 kg/103 liter 3.2 17 22 41 lb/103 gal 27 140 180 340 Gasoline engine0 kg/103 liter 0.77 149 10.3 15.7 lb/103 gal 6.4 1240 86 131 Based on operating time Diesel engine'3 kg/hr - - - - Ib/hr - - - Gasoline enginec kg/hr 0.008 1.69 0.117 0.179 Ib/hr 0.019 3.73 0.258 0.394 aAverage emission factors are based on the duty cycle developed for large outboards (> 48 kilowatts or > 65 horsepower) from Refer- ence 7. The above factors take into account the impact of water scrubbing of underwater gasoline engine exhaust, also from Reference 7. All values given are for single engine craft and must be modified for multiple engine vessels. "Based on tests of diesel engines in Coast Guard vessels, Reference 2. C8ased on tests of automotive engines. Reference 19. Fuel consumption of 11.4 hter/hr (3 gal/hr) assumed The resulting factors are only rough estimates. ^Based on fuel sulfur content of 0.20 percent for diesel fuel and 0.043 percent for gasoline from References 7 and 17 Calculated using fuel density of 0.740 kg/liter (6.17 Ib/gal) for gasoline and 0 854 kg/liter (7.12 Ib/gal) for diesel fuel References for Section II-3 1. Walter. R. A.. A. J. Broderick, J. C. Sturm, and E. C. Klaubert. USCG Pollution Abatement Program: A Preliminary Study of Vessel and Boat Exhaust Emissions. U.S. Department of Transportation, Transportation Systems Center. Cambridge. Mass. Prepared for the United States Coast Guard. Washington, D.C. Report No. DOT-TSC-USCG-72-3. November 1971. 119 p. 11-3-6 EMISSION FACTORS 1/75------- 2. Souza, A. F. A Study of Emissions from Coast Guard Cutters. Final Report. Scott Research Laboratories, Inc. Plumsteadville, Pa. Prepared for the Department of Transportation, Transportation Systems Center, Cambridge, Mass., under Contract No. DOT-TSC-429. February 1973. 3. Wallace, B. L. Evaluation of Developed Methodology for Shipboard Steam Generator Systems. Department of the Navy. Naval Ship Research and Development Center. Materials Department. Annapolis, Md. Report No. 28-463. March 1973. 18 p. 4. Waldron, A. L. Sampling of Emission Products from Ships' Boiler Stacks. Department of the Navy. Naval Ship Research and Development Center. Annapolis, Md. Report No. 28-169. April 1972. 7 p. 5. Foernsler, R. 0. Naval Ship Systems Air Contamination Control and Environmental Data Base Programs; Progress Report. Department of the Navy. Naval Ship Research and Development Center. Annapolis, Md. Report No. 28-443. February 1973. 9 p. 6. The Boating Business 1972. The Boating Industry Magazine. Chicago, 111. 1973. 7. Hare. C. T. and K. J. Springer. Exhaust Emissions from Uncontrolled Vehicles and Related Equipment Using Internal Combustion Engines. Final Report Part 2. Outboard Motors. Southwest Research Institute. San Antonio, Tex. Prepared for the Environmental Protection Agency, Research Triangle Park, N.C., under Contract No. EHS 70-108. January 1973. 57 p. 8. Hurst, J. W. 1974 Chrysler Gasoline Marine Engines. Chrysler Corporation. Detroit, Mich. 9. Mercruiser Sterndrives/ Inboards 73. Mercury Marine, Division of the Brunswick Corporation. Fond du Lac, Wise. 1972. 10. Boating 1972. Marex. Chicago, Illinois, and the National Association of Engine and Boat Manufacturers. Greenwich, Conn. 1972. 8 p. 11. Transportation Lines on the Great Lakes System 1970. Transportation Series 3. Corps of Engineers, United States Army, Waterborne Commerce Statistics Center. New Orleans, La. 1970. 26 p. 12. Transportation Lines on the Mississippi and the Gulf Intracoastal Waterway 1970. Transportation Series 4. Corps of Engineers, United States Army, Waterborne Commerce Statistics Center. New Orleans, La. 1970. 232 P- 13. Transportation Lines on the Atlantic, Gulf and Pacific Coasts 1970. Transportation Series 5. Corps of Engineers. United States Army. Waterborne Commerce Statistics Center. New Orleans, La. 1970. 201 p. 14. Schueneman. J. J. Some Aspects of Marine Air Pollution Problems on the Great Lakes. J. Air Pol. Control Assoc. 74:23-29, September 1964. 15. 1971 Inland Waterborne Commerce Statistics. The American Waterways Operations, Inc. Washington, D.C. October 1972. 38 p. 16. Horsepower on the Inland Waterways. List No. 23. The Waterways Journal. St. Louis, Mo. 1972. 2 p. 17. Hare, C. T. and K. J. Springer. Exhaust Emissions from Uncontrolled Vehicles and Related Equipment Using Internal Combustion Engines. Part 1. Locomotive Diesel Engines and Marine Counterparts. Southwest Research Institute. San Antonio, Tex. Prepared for the Environmental Protection Agency, Research Triangle Park. N.C., under Contract No. EHS 70-108. October 1972. 39 p. 18. Pearson, J. R. Ships as Sources of Emissions. Puget Sound Air Pollution Control Agency. Seattle, Wash. (Presented at the Annual Meeting of the Pacific Northwest International Section of the Air Pollution Control Association. Portland. Ore. November 1969.) 19. Study of Emissions from Light-Duty Vehicles in Six Cities. Automotive Environmental Systems, Inc. San Bernardino. Calif. Prepared for the Environmental Protection Agency, Research Triangle Park, N.C., under Contract No. 68-04-0042. June 1971. 1/75 Internal Combustion Engine Sources II- 3-7------- II- 4 Outboard-Powered Vessels II-4.1 General - Most of the approximately 7 million outboard motors in use in the United States are 2-stroke engines with an average available horsepower of about 25. Because of the predominately leisure-time use of outboard motors, emissions related to their operation occur primarily during nonworking hours, in rural areas, and during the three summer months. Nearly 40 percent of the outboards are operated in the states of New York, Texas, Florida, Michigan, California, and Minnesota. This distribution results in the concentration of a large portion of total nationwide outboard emissions in these states.1 II- 4.2 Emissions — Because the vast majority of outboards h'ave underwater exhaust, emission measurement is very difficult. The values presented in TableII-4-1 are the approximate atmospheric emissions from outboards. These data are based on tests of four outboard motors ranging from 4 to 65 horsepower.1 The emission results from these motors are a composite based on the nationwide breakdown of outboards by horsepower. Emission factors are presented two ways in this section: in terms of fuel use and in terms of work output (horsepower hour). The selection of the factor used depends on the source inventory data available. Work output factors are used when the number of outboards in use is available. Fuel-specific emission factors are used when fuel consumption data are obtainable. TableII-4-1. AVERAGE EMISSION FACTORS FOR OUTBOARD MOTORS8 EMISSION FACTOR RATING: B Pollutant6 Sulfur oxidesd (SOxasS02) Carbon monoxide Hydrocarbons8 Nitrogen oxides (NOxasNO2) Based on fuel consumption lb/103gal 6.4 3300 1100 6.6 kg/103 liter 0.77 400 130 0.79 Based on work output0 g/|iphr 0.49 250 85 0.50 g/metric hphr 0.49 250 85 0.50 a Reference 1. Data m this table are emissions to the atmosphere. A portion of the exhaust remains behind in the water. Paniculate emission factors are not available because of the problems involved with measurement from an underwater exhaust system but are considered negligible. c Horsepower hours are calculated by multiplying the average power produced during the hours of usage by the population of outboards in a given area. In the absence of data specific to a given geographic area, the hphr value can be estimated using average nationwide values from Reference 1. Reference 1 reports the average power produced (not the available power) as 9.1 hp and the average annual usage per engine as 50 hours. Thus, hphr = (number of outboards) (9.1 hp) (50 hours/outboard-year) Metric hphr = 0.9863 hphr. d Based on fuel sulfur content of 0.043 percent from Reference 2 and on a density of 6.17 Ib/gal. e Includes exhaust hydrocarbons only. (VJo crankcase emissions occur because the majority of outboards are 2-stroke engines that use crankcase induction. Evaporative emissions are limited by the widespread use of unvented tanks. 4/73 Internal Combustion Engine Sources II- 4-1------- References for sections 11-4 1. Hare, C.T. and K.J. Springer. Exhaust Emissions from Uncontrolled Vehicles and Related Equipment Using Internal Combustion Engines. Part II, Outboard Motors. Final Report. Southwest Research Institute. San Antonio, Texas. Prepared for the Environmental Protection Agency, Research Triangle Park, N.C., under Contract Number EHS 70-108. January 1973. 2. Hare, C.T. and K.J. Springer. Study of Exhaust Emissions from Uncontrolled Vehicles and Related Equipment Using Internal Combustion Engines. Emission Factors and Impact Estimates for Light-Duty Air-Cooled Utility Engines and Motorcycles. Southwest Research Institute. San Antonio, Texas. Prepared for the Environmental Protection Agency, Research Triangle Park, N.C., under Contract Number EHS 70-108. January 1972. 11-4-2 EMISSION FACTORS 4/73------- II-5 Small, General Utility Engines ll—5.1 General—This category of engines comprises small 2-stroke and 4-stroke, air-cooled, gasoline-powered motors. Examples of the uses of these engines are: lawnmowers, small electric generators, compressors, pumps, minibikes, snowthrowers, and garden tractors. This category does not include motorcycles, outboard motors, chain saws, and snowmobiles, which are either included in other parts of this chapter or are not included because of the lack of emission data. Approximately 89 percent of the more than 44 million engines of this category in service in the United States are used in lawn and garden applications.1 II-5.2 Emissions-Emissions from these engines are reported in Table II-5-1. For the purpose of emission estimation, engines in this category have been divided into lawn and garden (2-stroke), lawn and garden (4-stroke), and miscellaneous (4-stroke). Emission factors are presented in terms of horsepower hours, annual usage, and fuel consumption. References for Section II- 5 1. Donohue, J. A., G. C. Hardwick, H. K. Newhall, K. S. Sanvordenker, and N. C. Woelffer. Small Engine Exhaust Emissions and Air Quality in the United States. (Presented at the Automotive Engineering Congress, Society of Automotive Engineers, Detroit. January 1972.) 2. Hare. C. T. and K. -J. Springer. Study of Exhaust Emissions from Uncontrolled Vehicles and Related Equipment Using Internal Combustion Engines. Part IV, Small Air-Cooled Spark Ignition Utility Engines. Final Report. Southwest Research Institute. San Antonio, Tex. Prepared for the Environmental Protection Agency, Research Triangle Park, N.C., under Contract No. EHS 70-108. May 1973. 1/75 Internal Combustion Engine Sources II-5-1------- TableII-5-1. EMISSION FACTORS FOR SMALL, GENERAL UTILITY ENGINESa>b EMISSION FACTOR RATING: B Engine 2-Stroke, lawn and garden g/hphr g/metric hphr g/gal of fuel g/unit- year 4-Stroke, lawn and garden g/hphr g/metric hphr g/gal of fuel g/umt- year 4-Stroke miscellaneous g/hphr g/metric hphr g/gal of fuel g/u nit- Sulfur oxidesc (SOX as S02) 0.54 0.54 1.80 38 0.37 0.37 2.37 26 0.39 0.39 2.45 30 year Particulate 7.1 7.1 23.6 470 0.44 0.44 2.82 31 0.44 0.44 2.77 34 Carbon monoxide 486 486 1,618 33,400 279 279 1,790 19,100 250 250 1,571 19,300 Hydrocarbons Exhaust 214 214 713 14,700 23.2 23.2 149 1,590 15.2 15.2 95.5 1,170 Evaporative — - - 113 — - — 113 — — — 290 Nitrogen oxides (NOX as NO2) 1.58 1.58 5.26 108 3.17 3.17 20.3 217 4.97 4.97 31.2 384 Alde- hydes (HCHO) 2.04 2.04 6.79 140 0.49 0.49 3.14 34 0.47 0.47 2.95 36 Reference 2. Values for g/unit-year were calculated assuming an annual usage of 50 hours and a 40 percent load factor. Factors for g/hphr can be used in instances where annual usages, load factors, and rated horsepower are known Horsepower hours are the product of the usage in hours, the load factor, and the rated horsepower. cValues calculated, not measured, based on the use of 0.043 percent sulfur content fuel. Values calculated from annual fuel consumption. Evaporative losses from storage and filling operations are not included (see Chapter 4). II- 5-2 EMISSION FACTORS 1/75------- II-6 Agricultural Equipment II-6.1 General — Farm equipment can be separated into two major categories: wheeled tractors and other farm machinery. In 1972, the wheeled tractor population on farms consisted of 4.5 million units with an average power of approximately 34 kilowatts (45 horsepower). Approximately 30 percent of the total population of these tractors is powered by diesel engines. The average diesel tractor is more powerful than the average gasoline tractor, that is, 52 kW (70 hp) versus 27 kW (36 hp).1 A considerable amount of population and usage data is available for farm tractors. For example, the Census of Agriculture reports the number of tractors in use for each county in the U.S.- Few data are available on the usage and numbers of non-tractor farm equipment, however. Self-propelled combines, forage harvesters, irrigation pumps, and auxiliary engines on pull-type combines and balers are examples of non-tractor agricultural uses of internal combustion engines. 'Table II-6-1 presents data on this equipment for the U.S. II- 6.2 Emissions — Emission factors for wheeled tractors and other farm machinery are presented in Table IL-b-2. Estimating emissions from the time-based emission factors—grams per hour (g/hr) and pounds per hour (lb''hr)—requires an average usage value in hours. An approximate figure of 550 hours per year may be used or, on the basis of power, the relationship, usage in hours = 450 + 5.24 (kW - 37.2) or usage in hours = 450 + 3.89 (hp - 50) may be employed.1 The best emissions estimates result from the use of "brake specific" emission factors (g/kWh or g/hphr). Emissions are the product of the brake specific emission factor, the usage in hours, the power available, and the load factor (power used divided by power available). Emissions are also reported in terms of fuel consumed. TableII-6-1. SERVICE CHARACTERISTICS OF FARM EQUIPMENT (OTHER THAN TRACTORS)3 Machine Combine, self- propelled Combine, pull type Corn pickers and picker- shellers Pick-up balers Forage harvesters Miscellaneous Units in service, x103 434 289 687 655 295 1205 Typical size 4.3m (14ft) 2.4m (8ft) 2-row 5400 kg/hr (6 ton/hr) 3.7m (12ft) or 3-row - Typical power kW 82 19 _b 30 104 22 hp 110 25 40 140 30 Percent gasoline 50 100 100 0 50 Percent diesel 50 0 0 100 50 Reference 1. Unpowered. 1/75 Internal Combustion Engine Sources II-6-1------- TableII-6-2. EMISSION FACTORS FOR WHEELED FARM TRACTORS AND NON-TRACTOR AGRICULTURAL EQUIPMENT* EMISSION FACTOR RATING: C Pollutant Carbon monoxide g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal Exhaust hydrocarbons g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal Crankcase hydrocarbons'3 g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal Evaporative hydrocarbons^ g/u nit-year Ib/unit-year Nitrogen oxides (NOxasNO2) g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal Aldehydes (RCHOasHCHO) g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal Sulfur oxides0 (SOX as S02) g/hr Ib/hr Diesel farm tractor 161 0.355 4.48 3.34 14.3 119 77.8 0.172 2.28 1.70 7.28 60.7 - — - _ — — - — 452 0.996 12.6 9.39 40.2 335 16.3 0.036 0.456 0.340 1.45 12.1 42.2 0.093 Gasoline farm tractor 3,380 7.46 192 143 391 3,260 128 0.282 7.36 5.49 15.0 125 26.0 0.057 1.47 1.10 3.01 25.1 15,600 34.4 157 0.346 8.88 6.62 18.1 151 7.07 0.016 0.402 0.300 0.821 6.84 5.56 0.012 Diesel farm equipment (non-tractor) 95.2 0.210 5.47 4.08 16.7 139 38.6 0.085 2.25 1.68 6.85 57.1 - — - _ — — ' - — • 210 0.463 12.11 9.03 36.8 307 7.23 0.016 0.402 0.30 1.22 10.2 21.7 0.048 Gasoline farm equipment (non-tractor) 4,360 9.62 292 218 492 4,100 143 0.315 9.63 7.18 16.2 135 28.6 0.063 1.93 1.44 3.25 27.1 1,600 3.53 105 0.231 7.03 5.24 11.8 98.5 4.76 0.010 0.295 0.220 0.497 4.14 6.34 0.014 II-6-2 EMISSION FACTORS 1/75------- TableII-6-2. (continued). EMISSION FACTORS FOR WHEELED FARM TRACTORS AND NON-TRACTOR AGRICULTURAL EQUIPMENT3 EMISSION FACTOR RATING: C Pollutant g/kWh g/hphr kg/103 liter lb/103 gal Paniculate g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal Diesel farm tractor 1.17 0.874 3.74 31.2 61.8 0.136 1.72 1.28 5.48 45.7 Gasoline farm tractor 0.312 0.233 0.637 5.31 8.33 0.018 0.471 0.361 0.960 8.00 Diesel farm equipment (non-tractor) 1.23 0.916 3.73 31.1 34.9 0.077 2.02 1.51 6.16 51.3 Gasoline farm equipment (non- tractor) 0.377 0.281 0.634 5.28 7.94 0.017 0.489 0.365 0.823 6.86 Reference 1. Crankcase and evaporative emissions from diesel engines are considered negligible. Not measured. Calculated from fuel sulfur content of 0.043 percent and 0.22 percent for gasoline-powered and diesel- powered equipment, respectively. References for Section 11-6 1. Hare. C. T. and K. J. Springer. Exhaust Emissions from Uncontrolled Vehicles and Related Equipment Using Internal Combustion Engines. Final Report. Part 5: Heavy-Duty Farm, Construction and Industrial Engines. Southwest Research Institute, San Antonio. Tex. Prepared for Environmental Protection Agency, Research Triangle Park, N.C., under Contract No. EHS 70-108. August 1973. 97 p. 2. County Farm Reports. U.S. Census of Agriculture. U.S. Department of Agriculture. Washington, D.C. 1/75 Internal Combustion Engine Sources 11-6-3------- II-7 Heavy-Duty Construction Equipment II-7.1 General - The useful life of construction equipment is fairly short because of the frequent and severe usage it must endure. The annual usage of tha various categories of equipment considered here ranges from 740 hours (wheeled tractors and rollers) to 2000 hours (scrapers and off-highway trucks). This high level of use results in average vehicle lifetimes of only 6 to 16 years. The equipment categories in this section include: track type tractors/ track type loaders, motor graders, wheel tractor scrapers, off-highway trucks (includes pavement cold planers and wheel dozers), wheeled loaders, wheeled tractors, rollers (static and vibratory), and miscellaneous machines. The latter category contains an array of less numerous mobile and semi-mobile machines used in construction such as log skidders, hydraulic excavatorg/crawlers, trenchers, concrete pavers, compact loaders, crane lattice booms, cranes, hydraulic excavator wheels, and bituminous pavers. Some of these categories are different from the Third Edition. II-7.2 Emissions - Recently, Environmental Research and Technology, Inc. prepared a report under the sponsorship of a consortium of industry groups. This report, referred to as the CAL/ERT report, provided a very comprehensive investigation of farm construction and industrial equipment emissions. The emissions of twenty different types of construction equipments are grouped roughly according to the categories in the Third Edition by their populations in California (based on a report prepared by the California Air Resources Board4). The updated emission factors on HC/CO/NOx for heavy-duty construction equipment for diesel engines are reported in Table II-7.1. No update has been done on other emissions (aldehydes, sulfur oxides, and particulates), and their values are carried over from the Third Edition. Less than five percent of the sales use gasoline engines, and the trend is toward complete dieselization. No update has been done oh the gasoline engine construction equipment emissions. Therefore, the emission factors for gasoline engines from the Third Edition are reprinted in Table II-7.2. The factors are reported in three different forms-on the basis of running time, fuel consumed, and power consumed. In order to estimate emissions from time-based emission factors, annual equipment usage in hours must be estimated. The following estimates of use for the equipment listed in the tables should permit reasonable emission calculations. II-7-1------- Category Annual operation, hours/year Tracklaying tractors 1050 Tracklaying shovel loaders 1100 Motor graders 830 Scrapers 2000 Off-highway trucks 4000 (including wheeled dozers) 2000 Wheeled loaders 1140 Wheeled tractors 740 Rollers 740 Miscellaneous 1000 The best method for calculating emissions, however, is on the basis of "brake specific" emission factors (g/kWh or g/hphr). Emissions are calculated by taking the product of the brake specific emission factor, the usage in hours, the power available (that is, rated power), and the load factor (the power actually used divided by the power available). II-7-2------- References for Section II-7 1. Hare, C.T. and K.J. Springer. Exhaust Emissions from Uncontrolled Vehicles and Related Equipment Using Internal Combustion Engines-Final Report. Part 5: Heavy-Duty Farm, Construction, and Industrial Engines. Southwest Research Institute, San Antonio, Tex. Prepared for Environmental Protection Agency, Research Triangle Park, N.C., under Contract No. EHS 70-108. October 1973. 105p. 2. Hare, C.T. Letter to C.C. Masser of Environmental Protection Agency, Research Triangle Park, N.C., concerning fuel-based emission rates for farm, construction, and industrial engines. San Antonio, Tex. January 14, 1974. 4p. 3. Ingalls, Melvin N. Recommended Revisions to Gaseous Emission Factors from Several Classes of Off-Highway Mobile Sources—Final Report. Southwest Research Institute, San Antonio, Texas. Prepared for Environmental Protection Agency, Office of Mobile Source Air Pollution Control, Ann Arbor, MI., under Contract NO. 68-03-3162 September 1984. 4. State of California Air Resources Board. Status Report: Emissions Inventory on Non-Farm (MS-1), Farm (MS-2), and Lawn and Garden (Utility) (MS-3) Equipment. July 1983. 87p. II-7-3------- Table II-7.1 Emission Factors for Heavy-Duty, Diesel-Powered Construction Equipment3 Emission Factor Rating: C Pollutant CARBON MONOXIDE g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal EXHAUST HYDROCARBONS g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal NITROGEN OXIDES (NOx as N02) g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal ALDEHYDES (RCHO as HCHO) g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal SULFUR OXIDES (SOX as SO2) g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal PARTICULATE g/hr Ib/hr g/kWh g/hphr kg/10" Track-type tractor 157.01 0.346 2.88 2.15 9.4 78.5 55.06 0.121 1.01 0.75 3.31 27.6 570.70 1.26 10.47 7.81 34.16 284.92 12.4 0.027 0.228 0.170 0.745 6.22 62.3 0.137 1.14 0.851 3.73 31.1 50.7 0.112 0.928 0.692 3.03 25.3 Wheeled tractor 1622.77 3.59 9.84 7.34 32.19 268.5 85.26 0.188 2.36 1.76 7.74 64.6 575.84 1.269 15.96 11.91 52.35 436.67 13.5 0.030 0.378 0.282 1.23 10.3 40.9 0.090 1.14 0.851 3.73 31.1 61.5 0.136 1.70 1.27 5.57 46.5 Wheeled dozer 29.5 0.065 0.215 0.160 0.690 5.76 158. 0.348 1.16 0.867 3.74 31.2 75. 0.165 0.551 0.411 1.77 14.8 Scraper 568.19 1.257 3.28 2.45 10.16 84.6 128.15 0.282 0.74 0.55 2.28 19.0 1740.74 3.840 10.00 7.46 30.99 258.6 65. 0.143 0.375 0.280 1.16 9.69 210. 0.463 1.21 0.901 3.74 31.2 184. 0.406 1.06 0.789 3.27 27.3 Motor grader 68.46 0.151 2.06 1.54 6.55 54.65 18.07 0.040 0.48 0.36 1.53 12.73 324.43 0.713 9.57 7.14 30.41 253.84 5.54 0.012 0.162 0.121 0.517 4.31 39.0 0.086 1.17 0.874 3.73 31.1 27.7 0.061 0.838 0.625 2.66 22.2 References 3 and 4 for the HC/CO/NOX emissions, and references 1 and 2 for other emissions. The wheeled dozer HC/CO/NOX emissions are included in the off-highway truck category. II-7-4------- Table II-7.1 (cont'd) Emission Factors for Heavy-Duty Diesel-Powered Construction Equipment Emission Factor Rating: C Off- Pollutant CARBON MONOXIDE g/hr Ib/hr g/kWh g/hphr kg/103 lb/103 EXHAUST HYDROCARBONS g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/10- gal NITROGEN OXIDES (NOX as NO2) g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal ALDEHYDES (RCHO as HCHO) g/hr Ib/hr g/kWh g/hphr kg/10~ SULFUR OXIDES (SOX as S02) g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal PARTICULATE g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 qal Wheeled loader 259.58 0.572 3.63 2.71 11.79 98.66 113.17 0.25 1.59 0.97 5.17 43.16 858.19 1.89 11.81 8.81 38.5 321.23 18.8 0.041 0.264 0.197 0.859 7.17 82.5 0.182 1.15 0.857 3.74 31.2 77.9 0.172 1.08 0.805 3.51 29.3 Tracktype loader 91.15 0.201 3.03 2.26 9.93 82.85 44.55 0.098 1.49 1.11 4.85 40.55 375.22 0.827 12.46 9.30 40.78 339.82 4.00 0.009 0.134 0.100 0.439 3.66 34.4 0.076 1.14 0.853 3.74 31.2 26.4 0.058 0.878 0.655 2.88 24.0 Highway truck 816.81 1.794 4.70 2.28 14.73 123.46 86.84 0.192 0.50 0.37 1.58 13.16 1889.16 4.166 10.92 8.15 34.29 286.10 51.0 0.112 0.295 0.220 0.928 7.74 206. 0.454 1.19 0.887 3.74 31.2 116. 0.256 0.673 0.502 2.12 17.7 Roller 137.97 0.304 8.08 6.03 22.64 188.37 30.58 0.067 1.30 0.97 3.60 30.09 392.90 0.862 17.49 13.05 48.49 404.51 7.43 0.016 0.263 0.196 0.731 6.10 30.5 0.067 1.34 1.00 3.73 31.1 22.7 0.050 1.04 0.778 2.90 24.2 Miscel- laneous 306.37 0.675 6.16 4.60 18.41 153.51 69.35 0.152 1.35 1.01 4.04 33.70 767.30 1.691 14.75 11.01 44.10 368.01 13.9 0.031 0.272 0.203 0.813 6.78 64.7 0.143 1.25 0.932 3.73 31.1 63.2 0.139 1.21 0.902 3.61 30.1 References 3 and 4 for the HC/CO/NO references 1 and 2 for other emissions. The off-highway truck category incudes emissions from the wheeled dozer. emissions and HC/CO/NO, II-7-5------- Table II-7.2 Emission Factors for Heavy-Duty, Gasoline-Powered Construction Equipment3 Emission Factor Rating: C Pollutant CARBON MONOXIDE g/hr Ib/hr g/kWh EXHAUST HYDROCARBONS g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal EVAPORATIVE HYDROCARBONS b g/hr Ib/hr CRANKCASE HYDROCARBONS" g/hr Ib/hr NITROGEN OXIDES (NOX as NO2) g/hr Ib/hr g/kWh g/hphr kg/103 lb/10: ALDEHYDES (RCHO as HCHO) g/hr Ib/hr 0.0198 g/kWh g/hphr kg/103 liter lb/103 gal SULFUR OXIDES (SOX as S02) g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/10- gal Wheeled tractor 4320. 9.52 190. 142. 389. 3250. 164. 0.362 7.16 5.34 14.6 122. 30.9 0.0681 32.6 0.0719 195. 0.430 8.54 6.37 17.5 146. 7.97 0.0176 0.341 0.254 0.697 5.82 7.03 0.0155 0.304 0.227 0.623 5.20 Motor grader 5490. 12.1 251. 187. 469. 3910. 186. 0.410 8.48 6.32 15.8 132. 30.0 0.0661 37.1 0.0818 145. 0.320 6.57 4.90 12.2 102. 8.80 0.0194 0.386 0.288 0.721 6.02 7.59 0.0167 0.341 0.254 0.636 5.31 Wheeled loader 7060. 15.6 219. 163. 435. 3630. 241. 0.531 7.46 5.56 14.9 124. 29.7 0.0655 48.2 0.106 235. 0.518 7.27 5.42 14.5 121. 9.65 0.0213 0.298 0.222 0.593 4.95 10.6 0.0234 0.319 0.238 0.636 5.31 Roller 6080. 13.4 271. 202 460. 3840. 277. 0.611 12.40 9.25 21.1 176. 28.2 0.0622 55.5 0.122 164. 0.362 7.08 5.28 12.0 100. 7.57 0.0167 0.343 0.256 0.582 4.86 8.38 0.0185 0.373 0.278 0.633 5.28 Miscel- laneous 7720. 17.0 266. 198. 475. 3960. 254. 0.560 8.70 6.49 15.6 130. 25.4 0.0560 50.7 0.112 187. 0.412 6.48 4.79 11.5 95.8 9.00 0.0198 0.298 0.222 0.532 4.44 10.6 0.0234 0.354 0.264 0.633 5.28 II-7-6------- Table II-7.2 (cont'd) Emission Factors for Heavy-Duty, Gasoline-Powered Construction Equipment3 Emission Factor Rating: C Wheeled tractor Motor grader Wheeled loader Roller Miscel- laneous Pollutant PARTICULATE g/hr Ib/hr g/kWh g/hphr kg/103 liter lb/103 gal References 1 and 2. Evaporative and crankcase hydrocarbons based on operating time only (Reference 1). 10.9 0.0240 0.484 0.361 0.991 8.27 9.40 0.0207 0.440 0.328 0.822 6.86 13.5 0.0298 0.421 0.314 0.839 7.00 11.8 0.0260 0.527 0.393 0.895 7.47 11.7 0.0258 0.406 0.303 0.726 6.06 ir-7-7------- 11-8 Snowmobiles II-8.1 General — In order to develop emission factors for snowmobiles, mass emission rates must be known, and operating cycles representative of usage in the field must be either known or assumed. Extending the applicability of data from tests of a few vehicles to the total snowmobile population requires additional information on the composition of the vehicle population by engine size and type. In addition, data on annual usage and total machine population are necessary when the effect of this source on national emission levels is estimated. An accurate determination of the number of snowmobiles in use is quite easily obtained because most states require registration of the vehicles. The most notable features of these registration data are that almost 1.5 million sleds are operated in the United States, that more than 70 percent of the snowmobiles are registered in just four states (Michigan, Minnesota, Wisconsin, and New York), and that only about 12 percent of all snowmobiles are found in areas outside the northeast and northern midwest. II-8.2 Emissions - Operating data on snowmobiles are somewhat limited, but enough are available so that an attempt can be made to construct a representative operating cycle. The required end products of this effort are time-based weighting factors for the speed/load conditions at which the test engines were operated; use of these factors will permit computation of "cycle composite" mass emissions, power consumption, fuel consumption, and specific pollutant emissions. Emission factors for snowmobiles were obtained through an EPA-contracted study1 in which a variety of snowmobile engines were tested to obtain exhaust emissions data. These emissions data along with annual usage data were used by the contractor to estimate emission factors and the nationwide emission impact of this pollutant source. To arrive at average emission factors for snowmobiles, a reasonable estimate of average engine size was necessary. Weighting the size of the engine to the degree to which each engine is assumed to be representative of the total population of engines in service resulted in an estimated average displacement of 362 cubic centimeters (cm3). The speed/load conditions at which the test engines were operated represented, as closely as possible, the normal operation of snowmobiles in the field. Calculations using the fuel consumption data obtained during the tests and the previously approximated average displacement of 362 cm-5 resulted in an estimated average fuel consumption of 0.94 gal/hr. To compute snowmobile emission factors on a gram per unit year basis, it is necessary to know not only the emission factors but also the annual operating time. Estimates of this usage are discussed in Reference 1. On a national basis, however, average snowmobile usage can be assumed to be 60 hours per year. Emission factors for snowmobiles are presented m Table 11-6-1. References for Section 11-8 1. Hare, C. T. and K. J. Springer. Study of Exhaust Emissions from Uncontrolled Vehicles and Related Equipment Using Internal Combustion Engines. Final Report. Part 7: Snowmobiles. Southwest Research Institute. San Antonio, Tex. Prepared for Environmental Protection Agency. Research Triangle Park. N.C.. under Contract No. EHS 70-108. April 1974. 1/75 Internal Combustion Engine Sources II-8-1------- TableII-8-1. EMISSION FACTORS FOR SNOWMOBILES EMISSION FACTOR RATING: B Pollutant Carbon monoxide Hydrocarbons Nitrogen oxides Sulfur oxides0 Solid particulate Aldehydes (RCHO) Emissions g/unit-yeara 58,700 37,800 600 51 1,670 552 g/gaib 1,040. 670. 10.6 0.90 29.7 9.8 g/literb 275. 177, 2.8 0.24 7.85 2.6 g/hrb 978. 630. 10.0 0.85 27.9 9.2 aBased on 60 hours of operation per year and 362 cm3 displacement. Based on 362 cm displacement and average fuel consumption of 0.94 gal/hr. cBased on sulfur content of 0.043 percent by weight. II-8-2 EMISSION FACTORS 1/75 •U.S. GOVERNMENT PRINTING OFFICEi 1985-641-346------- U.S. Environmental Protection Agency » Region 5, Library (PL-12J) 77 West Jackson Boulevard, 12th Flooi Chicago, IL 60604-3590--------------------- O) O UJ T- _J 1 CO -3 < H LOW ALTITUDE CO EMISSION FACTORS (GRAMS/MILE) AT 19.6 MPH Cold/Hot Start Cal . VMT Percentages LOGV LDGT -LDDV- -LDDT- -HDDV- HDGV year PCCN PCHC PCCC O' F 25' F SO' F 75' F 10O' F O' F 25' F 5O" F 75' F 100' F 0-1OOF O-1OOF O-1OOF O in o CM in *- ro CM 05 t O 0 0 CM co •— 05 CM CM *- o o o in in in in CD O CD ro in *- CM CO BO1 O) CD O *- — CM t- t-- co r- ^- O in o r- O *r r~ CO O5 in ro r- 05 ••- CM O O O O in in in in co 05 ro CD co o *- ••- CM CM CO CM O in 05 O •» CM co co 01 r- r- ro •t co p-CM •t co in Ol f- «- CD ro -^ ^ CO CD CM CM CO — CD *- CO CM Is- O in co in O O O O O O O O 0 0 °8° o o o °°8 o o o CO CO CO 05 O5 O5 O in -- in ro in 01 CD O in *- i- in CM 05 co in ro <- "- -- in co ro CM CO T 00 ci ^ •*- in co -r- CM r- t- CD O O i- CM — ro CM CM ro co in r- co CM in co O i- CD CM in CM CO f- CM f- 05 O O) O ro ^ 05 Ol CD in CD t- CD r- co r-- CD in in co co Is- CD ro T in in co CD T ro ro cn oo *- •— ro Is- co o in Is- 00 T 05 LO O in 01 O co CD r- in t- CM O) 1- CM -sf •* t*. i- *- Is- ro O 01 ro co co in co o O ^f •. CM CM in CO CM fl- CM CD o) co in ^- *- 01 in co CM co 01 co co co CD O •"- in ro o CM CM CN CD CM t- T CD CO CD CO CM in CD 05 CM t CO Tf ro O CM ro co o O o 01 CO CM "- O CO CM in CM T- f ^r CM ••- co CM •*- co CO O5 05 CO Is- O5 O T- o CM *- co CD ro rr co CD CD co 01 co CO *- "- O O O O O O CD O O O O O O O O in in CM O O O O O O co O O O O O O r- O in in CM O O O O O O CD O O O O O O O O in in CM in in in in in in in ro ro co ro co ro ro O5 O5 01 05 05 05 01 O in o in o CM in r- O 1- O O CD ro O 01 co o in co O O ••- -- CM T- o 01 in CO CO CO CO CO CO CO CD CD CD CD CD CD CD CD t 01 in ro CD co *- O ^ CD •* CM in ••- CM CM "- i- CM '- •^t co CD in in 01 CM O CD -- i CM ro co T- -^ CM i- T- i- *~ 05 O 01 ^- O5 O T cn ^r in in 01 in co CO CO CM CO CM in O) ro t~ in r- ro CD f- O CD in o CM ••- 01 in -^ 01 01 CD CM 05 CM K CD *- n CM O co to ro in co CD TT r^ O O r- in in CM CM q- Is- i O in t O Ol r- CD 01 co oo t co CD oo co O in CD r^ ••- co •*- f in CD O CM CO CO "- O O CM ro O CD O in in ^ 01 ^ ^t r^ co CM *- »- ID ^r T in in •» CN Is- CD ro •*- ^- CM tji T in O — CD co Is- CD <3 CM co in ro CM in CM CM v- ro *- t- ro co oi to 05 in CD T CD in ro 01 CD O in t- co CD CO CO CO CO CO CO CO Is- ro CD CD ro Is- o *- ^ ^- O CM *- CM CD O CD Is- Is- CO i- »- CM rf CM -- CO CM ••» ^t CO CD Ol Ol O ^t O Ol "*" T 01 ^J •>- CO CD CO -^ ^ 1 CM CN O in CN CD CO co CD O co in co CD ^- oi O ^ in 01 ro 01 CD ^- 01 r^ ro CM CM CM Ol CO CM O in «?• ro O oi co 01 co in CM t- co co 01 o O CM ••- in CD CD »- •^ co CM ^j co Is- ro co -^ *- O O O O O O CD O O O O O O O O in in CM O O O O O O co O 0 0 0 0 0 r- O in in CM O O O O O O CD O O O O O O O O in in CM co co co ro co ro co co ro co co co co ro O) 05 Ol 01 Ol Ol Ol U- U. U- U- O in O in CM in r~ 05 •*- co ro co in 05 ^ CM CM CO CD oi ro t- CD CD co 05 in - o •» CD "- CM CM "- •y m t~- w O CD "- 1 "»• CM CD in O O5 CO CD Is- t^ ro ^ Is- CD ^ CD — ro 05 ro O CM ro t^ ro co i*- in CM CO f- -7 •*- CM — 01 ••- ^T 03 O) CD CD CD 01 co co in 1s- ro co i- in co CD CD ro r- O *- CM •3- i ro co CM '- CM CM -- CD co CM ^t ro CO CD n O CD 1 Ol CM t CM O ro co O CM O CM CO *- o ro 01 CO CO CM CM CD *- O — CD o co r~- co ro >- co •^ •>- Tf CM CM co ro Is- CM r~ O CM Ol i- O 01 ••- CM O ^J *t CD ro co CD t~ CM Is- t^ cc ro co CM CM Is- ro ro CM t-- t~- •T in co CM O co r~ CD ^t co 01 co CM y- o o o o o o o o O in O O O O O O O O o O 0 0 0 o o o o O in o o o o 01 CD 0") 01 Ol Ol Ol 05 u. 8 o ro CD co ^j- CM in T~ CM •^~ in O CM CM Ol CO ro ^r CD Is- -- o •^ ro cn 1s- in CD 01 ro co CM in 01 01 in in CM in co in r~ t^ co CD in in CD to co 01 in •^ CM CM 1s- "- CM co ••- O ^ CD ro Ol CM ^T CO CO CM in O co in 1s- CM CM -r- •tf CD '- O) *- r~ Ol Ol Ol CM CM CM co in 19 Ol CD 1 •- in in CM ro Is- co TJ O CD CM 1 CM 05 CO CO *- i- CM in T- CM CM r~ y- -r- O 05 CO co in o ^ CD CM in r^ t^ ^ CM r-- ••- -r- ro ro co t in *- f~ 05 in O "^ ^ CO CD *- CM CD CO CM f CM CD ro T 05 oo CD in in -f T co ro 01 in ro •»- ^ Is- ro CM Tt CM co co CD CM ro •» ro •» in CM co T •» CD 01 *- co in O co ••- ro 1s- Is- CD co i- ^t co ^r -^ co *^ i^ CM — •>- ro ro »• CD o t O CD ro CD in CM CM CD -- ro co CM in CD in CD ^t ^t O in ^ -^ 1 CM CM ^ co ••- o in i O t O t CD ^f ro in i- t- O T 01 Is- CM ro co co fl- CM ro 01 01 co 01 CM •*- i^ in CD O ^ *T 01 •*- ^ ^ *- ^ CO f i- CM ••- in co in co in 05 CM »- t~- ro co o CM i- CD oj ro co 1s- T t- ••- t- ro •a- T- in CM ro ro co co r- CD CD CO "- CO t Ol CM *- in CD CD ^ T *- in CM CM in t- CM Ol TJ- CM i— in r- co CD Is- O ro CM CM 01 in o O ^" T O CD ^ •*- T co in CM co T t- CM •r- i- O O O O O O CD 0000000 O in in CM O O O O O O co O O O O O O r- O in in CM O O O O O O CO O O O O O O O O u~> in CM in in in in in in in 01 O5 O5 O5 Ol 01 05 Ol 01 Ol Ol 01 Ol 01 O in o in o CM in 1s- o CM o 1s- O O t~ -- CM *- •r- CM t~ CM ro CD •a- co co CM co ro ro ro ro ro ro ro O O O O O O O O O O O O O O O CO Ol ^ ^ CD Ol CM »- in Is- in co in v- CM CM -r- ^- CM -r- Is- Is- Is- *- O5 Is- CD O CD CM in CM 01 co •t Is- ro t CD r- in in ro ro CD o oo CD r- o t 01 ro CM ro CM CO CO CM CM CO CM ••- *t ^t Is- -r- Ol CM in T co ro co co in in ••- 05 Is- 1s- in f •^ CM t CM T- CO CM Ol ro O O CM -^ 05 CM CM O in T- CD o *r ro 01 01 in co 01 CM CM — in CM 1s- CO 01 f- ro O •* ro CD •*- ^ ro •»- ro •*- in ro Is- CM t- CD O in CO CO CM O CO CO CD CM ••- T- t -- i 01 01 CM in CM ro CM co in O CM O 01 ro O ^t 01 o CD •q- o 01 in CM i- ^ T- CM ^ 1s- 1^ CM T CO t *- •«* Is- co ro Is- in in co r~ co CD T O in co ^ in o ^ in CD in 01 oi ro 01 01 CD 01 CO "- 1s- O CM CO T- ro >- T- CM t- in o ^ Is- Is- i^ O CM ro 01 co •>- ro i in ro ^r T- CD " CD •*- -^ ro •» "- in CM O •* 1s- co t- CD ^f TJ- co in O O Ol CM t in ro •— i CD co CM CM •» 1^ CM TO ** O ^ CO O5 O CM Ol o> •» ro co CD co r- CO CO CO -»~ CO CO CD CM •— '- O O O O O O CD O 0 0 O O O 0 O in in CM O O O O O O CO O O O O O O Is- O in in CM O O O O O O CD O O O O O O O O in in CM O O O O O O O 80 o o o o o o o o o o o CM (N CM CN CM CM CN1
------- in CO en in tN o U CN T CM UJ _! CO a h- 2 Z 2S 1/1 i/i > uj o < UJ 1 1 X I . .co s. 01 10 »- c ITJ Oiu CO 0) ^~^..-- o)oioioio)Oioioicncno)Oio)O)cnoioioioioi - 010101O)O)O)0)O)010101010101010)010)0)01 01O)01010101010101O)O)O)01010101O)0)0101 0)OO>010101010101010)010>0101O101010)01 0)0)010101010>0)01010101010101010)010101 01010101O)OlO101Cn010101OlO10101O1010)CD OIOIOIOIOICOOIOIOIOIOIOIOICDOIOIOIOIOIOI TI'J-'T^TCNCNCNOlOOlOlOO'-OlCOintCNCM 0)O101010)O)010)010101010)01O)0101010101 i. (0 0) t- ?00 01 0) 01 ™ CJ fl -3 oioioioioioiaioioioioioioioioicncooioioi 01010)0)01010101010101010101010101010)01 oioio)0)oio>oioio)oicnoioio)O)0ioioicnoi - towu?u?icu3iou>ior^t^r»r-r-t»-p-r-r-t~co 0)0)0)0)0)0)0)0)0)0)0101010)0)010)0)0)0) cococncooocooioioioioioioioioioioooO oioioioioioioioioioioioioicyioioioooo •^^r-^»--^-^,--r-^»-»-»-^^-CNCNCNCN cocooocooooocooicnaioioioiaicnooiOOO coo)oioioicoo>o)oioioiaioicnoioio)OoO cococacocacocoooooioioioioioioioicooo — — T--^^^^-^-^^^^^»- — ^.^^{MCN COCOCOCOCOCOCOCOC001O10101010101O10)01 OIOIOIOIOIOICDOIOIOIOIOIOIOIOIOIOIOIOT O — CNP5tininr--oooiO'-cNntinu>t^oocn COCOCOCOCOOOCOOQCOG001CT)01CnO)01O}0)0)0) cnoioioicnoioioioioicnaioioioioicnoicio) r^COCOCOQOCOCOCOCOCOCQOlOlOlOlOlOOlOlOl Cn01O1010101d0)cicicncjioioioio}0}0)oicj) inTi^rrTt^-TnpiTT^ri^rtiPiDC') ininiiij-'T'T^T'TonrrrTTrTj-TT^Tncop) l^h-t^r^COCOQOCOCOCOQOCOCOCOOlOlOlOlOlO! cooioicDoioioioioioioioioicnoioioioioioi 01 w c 0) o K O) in • > L. « 10 W TJ C S ° 0) t- — w Oiu. 0) in £ 0) •H «) (. O 0) a C. II i« a S{ > 10 0) • •^ •» 0 _ .- 0) iil E C t- O I. U C o H- +* w c -(DO 01 +- > (U U 5) in in C « 0) O a t- IfllBI-COOlO'-CNC'JTrinCOt^COOlO'-CNCOT h>r^f«-r^i^-cooocococooocooococooi0)0ioicn oioioioioioioioicooioioioicnoioioioioioi w « E E - 3 • 10 3 o t. t. o o > CD O 01 Ol Ol •— 0) 0) <0 01 t c. 0) TJ 0) (0 — E <0 W E ** *• 0) > p- t_ in in a 0) 0) C 3 •H *• O C r»r»r-f-r-t-cocococotococbcoc6coo)oio)0) ouw"3 010101010101010101010)01010)0)0)0)0)0)01 >^*win •O TJ - 03 C C E J= OO}0)0)0)0)0)0)0)010)01010)0)O)0)O)O)0)
------- in oo 0) in CM o UJ Q -1 * < U 13 I- I Q UJ a oe o uj U U. 3 CM Q 1/1 a CM _i x uj uj o CM > 2 Z uj ** UJ _l -I _) O 03 Z 10 ? ss l/l l/l > is s j X Ol r~ oo O) t- oo s. at a " a -3 i^r^r-t^t^i^t^f-t^cocooocoeocococococooi t»-t~r-r-p-r~r~r--!~-(~-cococococococococooo MCMCMCNCMCMCNCMCMCNCNCM'-OICMCN^'-OO PHcjioi05(j)oiojO)cncT)cncnO)cy)Oi OOOO)Oio)0)O)^' i'--^'-(N-^'- icu5U)U3U3r-r~r-r-i-p-t^r-t^t^cocococoeo OOOOO>oioOJO)i*r ICMCNCSC^CV«fM cj5ij3f-.r^r^p*r^t^r^r^r*r-cocococo 0)010101001010101010101010101010101010) OOOOOoioioioicn^-cocj — tfs o - OT 1- Ol C fl -3 cococococococ)0)oia)oiaioio)O)0)OOOQ ^^-•^^•^ — •^- — ^-^»-->-»-^^i-CMCNCM cn(na)cn 0( CM CO n P5 CM CM o o OOCOCOOOCOCOCOOOCOCOOlOlOlOlOlOlOlOjOlO) CNCNCMC*)C")OCMCM o o ^GOcocococococQcocQcoo)oiO)GioioioiO)O) CNCMCMCMfO~nCMCN o o r-c-cocococoaooocooococoa>a)cncna) a>05 CNCNCMCMCMC'lOnCMCM- o o r~>f^r^cooococQcocococococoGioioioiO)O)O) Tco-"rmin'r--ooieMCMC')CMCM*-»-ooo)0) CMCMCMCMCMCNCT>nCMCMOI"- — '- — «-*- — OO t^f"-p^p~oococooococococococooiG)Oioioioi o)oio)oio)0icici)aioioioioioioioi £. Z JC T5 C 1- C Q) O O TO ^ T3 U U5 tt) C 6 <3 > — - OJ OlU. L (0 0) VI i. O O in in "i C. II to a 3 Z • C UJ •*•* <0 t- 1. -3 10 • -H C I in o a. s O > ic r V in o : •o — C CM ai u 10 — — d) in . — C nj ^ J3 O J3 01 (0 in 0) — in JZ — C Q c *- 0) in > CNCMO4OICMCNCNnCMO4CMCN O O t*-^r*-r**r*»cococQGQcocoGooocooo0iO)O)O)O) O10101O10101O10101O)O)0101O10101O)010101 '-cs — »-oooio> r-f-r--c-r-t~cocococoeococooooacoo>a!a>o] -- T3 E Q) in 03 i • 10 "5 i. i. O 01 ft > Q) O O) — 10 Q) 0) L. t- o > E « in QJ Q} H) r r > +J V <1) in in 0) Q) C +j •*-< O 10 TO *~ i- a Z (. > 3 O) SS C *- O in a • 3 t- 3 «J U T3 a - O) oioicnoioioioicioioioioioicooicnoioioicn -^"- IPlOTTr-OClCOCMOOOOC-*-"-*- CMCMCMCMCMCMOICMCMCMCMCMCMCM'- — o o 01 01 *• ^ ^ 6 6 T) T3 - - c c E c - t-t-f-t-r~r~r~coooeooooocoflOcocooooioicn O)OlO)OlO1010)0)OlOlOlO10)01Cf)Cl)0)0)O)0)
United States Environmental Protection Agency Motor Vehicle Emission Laboratory 2565 Plymouth Road ' Ann Arbor, MI 48105 September 1985 COMPILATION AIR POLLUTANT EMISSION FACTORS Volume II: Mobile Sources FOURTH EDITION ------- AP-42 Fourth Edition September 1985 COMPILATION OF AIR POLLUTANT EMISSION FACTORS Volume II: Mobile Sources U.S. Environmental Protection Agency ncy Region 5, Library (PL-12J) 77 West Jackson Boulevard, 12th Floor .Chicago, IL 60604-3590 U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Air and Radiation Office of Mobile Sources Test and Evaluation Branch Ann Arbor, MI 48105 ------- Protection r ------- This report has been reviewed by the Office of Mobile Sources, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names or commercial products is not intended to constitute endorsement or recommendation for use. Volume II ------- PREFACE TO THE FOURTH EDITION VOLUME II: MOBILE SOURCES Compilation of Air Pollutant Emission Factors, AP-42, reports data on emissions of atmospheric polutants for which sufficient information exists to establish realistic emission factors. The highway source data are based on MOBILE3, a computer program issued by the EPA in June 1984, which estimates fleet emission rates for hydrocarbons (HC), carbon monoxide (CO) and nitrous oxides (NOx) for any calendar year. One off-highway source has been updated from previous editions of AP-42. The off-highway source updated is diesel powered construction equipment. For the Fourth Edition, stationary point and area sources have been collected as Volume I. Mobile sources, formerly Chapter 3.0, are now separated into Volume II. Comments and suggestions regarding this document are appreciated and should be addressed to the AP-42 Project, Test and Evaluation Branch, Environmental Protection Agency, 2565 Plymouth Road, Ann Arbor, MI 48105. 111 ------- CONTENTS I. HIGHWAY MOBILE SOURCES Page/ Section Introduction 2 Light Duty Gasoline Powered Vehicles 14 Light Duty Gasoline Powered Trucks I 29 Light Duty Gasoline Powered Trucks II 33 Heavy Duty Gasoline Powered Vehicles 37 Light Duty Diesel Powered Vehicles 42 Light Duty Diesel Powered Trucks 46 Heavy Duty Diesel Powered Vehicles 49 Motorcycles 53 Appendix A - New Vehicle Emission Standards A-l Appendix B - Calculation of the VMT Mix B-l Appendix C - Calculation Procedure to Combine the Emission Results of the Two Light Duty Gasoline Powered Truck Classes C-l Appendix D - Methodology for Calculating January 1 Travel Weighting Information and Fleet Average Mileage Accumulation D-l Appendix E - Method for Determining Excess Emissions Due to Tampering and Misfueling E-l Appendix F - Calculation Procedure for VMT vs. Age Distribution for Heavy-Duty Diesel Trucks F-l Appendix G - Sample Calculations of Motor Vehicle Emissions G-l Appendix H - Highway Mobile Source Emission Factor Tables H-l Appendix I - Emission Sensitivity Tables - All Vehicles Combined . 1-1 Appendix J - Emission Sensitivity Tables - By Vehicle Type J-l Appendix K - Emission Sensitivity Tables - A/C and Load K-l Appendix L - Size Specific Total Particulate Emission Factors For Mobile Sources L-l Appendix M - Supplementary Guidelines for Lead Implementation Plans. M-l Appendix N - Emission Factors for Diesel Transit Buses N-l II. OFF HIGHWAY MOBILE SOURCES Introduction Aircraft II-l Locomotives II-2 Inboard Powered Vessels II-3 Outboard Powered Vessels II-4 Small General Utility Engines II-5 Agricultural Equipment II-6 Heavy Duty Construction Equipment II-7 Snowmobiles II-8 ------- Part I - HIGHWAY MOBILE SOURCES INTRODUCTION This document officially revises all previous factor (AP-42) documents for highway mobile sources. Also, this document will be periodically revised as the emissions and in-use vehicle operational characteristics vary from those presented. A. PURPOSE This document was generated to present more recent emission factor information for highway mobile sources. As such, the March 1981 Compilation of Air Pollutant Emission Factors; Highway Mobile Sources, EPA-460/3-81-005 document is outdated. Many of the emission rates contained in this document are found in EPA's mobile source emission model, MOBILES. B. MAJOR DIFFERENCES FROM 1981 COMPILATION DOCUMENT [1] The differences between the emission factors presented in this document and the March, 1981, Compilation Document are listed below: 1. Calculation Methodologies a. CO emissions at cold temperatures are predicted in part from an additive rather than a multiplicative model. b. Tampering offsets in g/mi are estimated from a number of inputs and added to basic untampered emission rates for the gasoline vehicle classes. The types of tampering included are misfueling (other than filler neck disablement), fuel inlet disablement, catalyst removal, EGR tampering, evaporative canister and PCV tampering, and air pump tampering. National average tampering rates for the above items are incorporated into the fleet emission rates. c. The heavy duty diesel mileage vs. age distribution is allowed to change with calendar year to account for the effects of more diesel sales in the light 2b (8,500-10,000 Ib. GVW) class. d. Nonmethane emissions are estimated from a subtractive rather than a multiplicative model. ------- 2. Emission Data a. The evaporative emission rates are based on a representative volatility commercial fuel instead of Indolene, a low volatility test fuel. b. More data for basic exhaust emissions for every vehicle type are incorporated, usually for the latest model years and across wider mileage ranges. This is especially true for the 1981 and later light duty gasoline vehicles. c. More representative fleet characterization data (registration and VMT vs. age distributions) are used for each vehicle type. d. The heavy duty vehicle emissions are based in part on new estimates of the factors which are used to convert emissions in g/bhp-hr to g/mi. These estimates are allowed to change in the future due to improved fuel economy of new trucks and increased sales in the lower weight classes. e. More temperature correction factor data have been incorporated for light-duty gasoline vehicles and trucks. f. More speed correction factor data have been incorporated for light duty gasoline vehicles and trucks. 3. Regulations The emission rates for the 1981 and later model year vehicles reflect the emission standards and regulations that are projected at the time of this update (see Appendix A). In summary, all of the changes have an impact on the calculated emission factors. To illustrate the differences, six figures are given. Each figure represents emissions at an average speed of 19.6 mph, a temperature of 75°F, and operating mode VMT percentages of 20.6% for cold start, 52.1% for stabilized, and 27.3% for hot start. The six figures are grouped into two sets: 1) low altitude, and 2) high altitude emissions for January 1 of calendar years 1970 through 2000. The figures represent the emission levels for all eight vehicle types combined. Each set of graphs is composed of the three pollutants: total HC, CO, and NOx. The emissions predicted by the 1981 Compilation methodology were generated by the MOBILE2 computer model. The emissions predicted by the 1984 AP-42 methodology were generated by the MOBILES computer model, as corrected on May 15, 1985. The update included corrections to temperature correction factors and the EGR tampering rate. ------- (M/O) SNOISSIW3 CM T-t I GO CO CM CM 1 I CM I o CO I CO I CM o o o CM O> o •s 2 w o o> If) O5 T~< o -O> o (IK/0) SNOISSIFta ------- (M/0) SNOISSIFia § o 00 o CO o in O CO I . I . I . I . I . I O CM I « O rH I CO 1 o o o CVJ _o> o Oi m • ^ Q • m O> iH O -Ol o o o o SNOISSIH3 ------- (M/D) sNoissma CO CM w J I—« 1 co in TJ« co CM (M/D) SNoissma o o o CM OJ O) o S OJ LOO OJ TH o LOJ ------- (W/D) SNOISSIW3 _J i i i O CV2 i i r T p , o (M/D) sNoissiwa CM I O § CV2 in 05 Oi 10 00 01 05 ^ o m 05 r-l O 05 ------- (IH/D) sNoissma o o o in 00 w § O O o m O> O) o Oi m 00 O) o GO in o> TH o O) o m r o o o m (m/o) SNoissma ------- (iw/o) SNOissiwa C\J w J I—1 § CVJ o o o CV2 10 Oi O> O Lcp o 00 Oi ^ CJ 05 t-« o r^- Oi (IH/O) SNOISSIH3 ------- C. VEHICLE INSPECTION AND MAINTENANCE PROGRAMS If a motor vehicle inspection and maintenance (I/M) program is in effect in the area for which emission factors are being calculated, emission reduction credits can be taken. The emission reduction credits attributable to an annual I/M program vary according to the type of program in effect. The MOBILE3 credits of an I/M program depend upon the following six factors. 1. The estimated first year failure rate (stringency factor) for the pre-1981 low altitude LDGVs (or other vehicle types with similar emission control technologies). The pre-1975 vehicles are referred to as Technology I vehicles and 1975-1980 vehicles are referred to as Technology II vehicles. 2. The test type and short test cutpoints used for 1981 and later light duty gasoline vehicles. 3. The vehicle types affected by the I/M program: LDGV; LDGV & LDGT1; LDGV & LDGT2; or LDGV, LDGT1, & LDGT2. 4. The calendar year being analyzed and the calendar year the I/M program is implemented. 5. The presence or absence of an adequate mechanic's training program. 6. The model years involved in the I/M program. These I/M reductions or credits are not tabulated in this document but can be applied through use of the MOBILES computer program. 10 ------- D. VEHICLE ANTI-TAMPERING PROGRAMS Emission reduction credits can also be taken if an anti-tampering program is in effect in the area for which emission factors are being calculated. The emission reduction credits attributable to an anti-tampering program vary according to the program type. The types of programs and percent reductions attributable to them are discussed in the December 31, 1983 technical report entitled "Anti-Tampering and Anti-Misfueling Programs to Reduce In-Use Emissions From Motor Vehicles", EPA-AA-TSS-83-10. The MOBILES credits of an anti-tampering program depend on the following: 1. The extent of the inspection (i.e., types of components inspected) and frequency of the check (annual, biennial, random road side, etc.). 2. The vehicle types affected: LDGVs, LDGTl's, LDGT2' s and HDGV's. 3. The calendar year being analyzed and the calendar year in which the program is implemented. 4. The model years involved in the anti-tampering program. These anti-tampering program credits are not tabulated in this document, but can be used with the MOBILES computer program. 11 ------- E. REACTIVE VERSUS NONREACTIVE HYDROCARBON EMISSIONS Available scientific evidence indicates that methane and a few other nonreactive organic compounds do not contribute significantly to ozone formations. EPA's Volatile Organic Compound policy, published in the Federal Register on July 8, 1977, allows a limited number of compounds, including methane, to be excluded from control actions. States have been advised that they should exclude these compounds from baseline emission inventories that are to be used for control strategy development for ozone. Although motor vehicles are regulated directly by the Clean Air Act on a total hydrocarbon basis (rather than on a "reactive" hydrocarbon basis), it is appropriate, when estimating ozone levels, to consider only those motor vehicle emissions which will react to form ozone. However, consideration must be given to the format of any associated stationary source emission inventory so that mobile source and stationary source emission inventories are consistent in their exclusions. For MOBILE2 it was assumed that the methane percentage of total hydrocarbon emissions was constant over mileage. The analysis for MOBILES, however, showed that there was practically no deterioration in methane like there was for total hydrocarbons. For MOBILES, nonmethane emissions are estimated by subtracting methane offsets from the total hydrocarbon emissions. These offsets are constant. Estimates of the composite FTP methane offsets applicable to each vehicle category are given in the following table. While the MOBILES computer program can calculate either total or nonmethane hydrocarbon emissions, all HC emission factors presented in this document are total hydrocarbons. 12 ------- Crank- case & Evap. FTP COMPOSITE METHANE OFFSETS FROM HIGHWAY MOBILE SOURCES Low Altitude High Altitude Vehicle Type LDGV LDGT1 LDGT2 HDGV LDDV LDDT HDDV MC Model Years Pre-1975 1975-79 1981 + Pre-1975 1975-78 1979-83 1984 + Pre-1979 1979-83 1984 + Pre-1979 1979-86 1987 + Pre-1975 1975 + Pre-1979 1979-82 1983 + Pre-1981 1981-86 1987 + Pre-1978 1978-79 1980 + Methane Offset (q/mi) 0.310 0.170 0.100 0.310 0.200 0.180 0.120 0.310 0.180 0.120 0.670 0.310 0.180 0.043 0.011 0.038 0.034 0.024 0.145 0.118 0.100 0.530 0.270 0.240 Model Years Pre-1975 1975-76 1977 1978-79 1980 + Pre-1975 1975-78 1979-83 1984 + Pre-1974 1974-78 1979-83 1984 + Pre-1979 1979-86 1987 + Pre-1975 1975+ Pre-1979 1979-82 1983 + Pre-1981 1981-86 1987 + Pre-1978 1978-79 1980 + Methane Offset (q/mi) 0.420 0.320 0.150 0.330 0.220 0.420 0.390 0.350 0.260 0.420 0.420 0.350 0.260 0.910 0.600 0.350 0.099 0.025 0,079 0.040 0.022 0.333 0.271 0.230 0.680 0.340 0.370 All 0.0 All 0.0 13 ------- Chapter 1 LIGHT DUTY GASOLINE POWERED VEHICLES l.A INTRODUCTION Because of their widespread use, light duty gasoline powered vehicles (LDGV) are responsible for a large share of air pollutant emissions in many areas of the United States. A LDGV is defined to be any gasoline fueled automobiles designated primarily for transportation of persons and having a capacity of 12 persons or fewer. Substantial research effort has been expended to accurately characterize emission data from these vehicles. EPA's on-going program to collect in-use vehicle emissions data was instituted a number of years ago in order to estimate emission levels. In addition to the methodologies presented for calculating the basic exhaust emission levels for HC, CO, and NOx, data are given in this chapter for crankcase and evaporative hydrocarbon emissions, and emissions in the idle mode. Information is also given regarding the emission correction factors and travel weighting fractions. All tables referenced in Chapters 1-8 are found in Appendix H. The first half of Appendix H applies to low altitude, the latter half to high altitude. I.A.I Test Procedure LDGV emissions testing is currently performed according to the procedures stipulated in the Federal Register (42 FR 32954, June 28, 1977) and the Code of Federal Regulations (40 CFR Part 86, Subpart B, July 1, 1984). The basic test conditions under which the LDGVs are tested are as follows: 1. Ambient temperature range is 68°F to 86°F. 2. Absolute humidity is adjusted to 75 grains of water per pound of dry air. 3. Average speed is 19.6 mph with 18% idle operation. 4. Average percent of vehicle-miles-traveled (VMT) in a cold start operation is 20.6%. 5. Average percent of VMT in a hot start operation is 27.3%. 6. Average percent of VMT in the stabilized operation is 52.1%. 7. Average trip length is 7.5 miles. 14 ------- Additional elements regarding the test procedure that are reflected in the emission estimates are as follows: 1. Air conditioning not in use. 2. Car contains driver and passenger — no additional passengers, luggage, etc. 3. Car is not pulling a trailer. The test sequence for LDGVs is summarized below: 1. Determine the weight of the vehicle. 2. Determine the road-load (assuming level road, no curves, no wind) which is a function of weight and frontal area. 3. Precondition the vehicle (i.e., vehicle is briefly driven). 4. Place the vehicle in an ambient temperature environment between 68°F and 86°F with its engine off for at least 12 hours. 5. Push the vehicle onto a dynamometer. 6. Start the engine and begin collecting exhaust emissions. 7. Emissions for the first 505 seconds are collected for test segment #1. The mileage driven is 3.59 miles with an average speed of 26 mph. This is the cold start portion of the test. 8. Test segment 12 collects emissions for the next 870 seconds. The engine is not turned off between Steps 7 and 8. The mileage driven is 3.91 miles and the average speed is 16 mph. This is the stabilized portion of the test. 9. The engine is turned off. s 10. The engine remains off for 10 minutes. 11. The car is restarted, the first 505 seconds are rerun, and emissions are collected for test segment #3. This is the hot start portion of the test. 12. The grams of each pollutant are determined for each test segment. 13. NOx emissions are adjusted for humidity. 14. The basic exhaust emission levels in grams per mile are computed. 15 ------- 1.A.2 General Emissions Calculation Equations The following generalized equations are used to calculate the LDGV emission factors (subscripts dropped from equations for clarity): a. HC: COMPEF where: CCEVERT = SALHCF = BEF = SUMfTF *(CCEVRT + SALHCF * BEF)] [ ( HS +TAMEVP1)*TPD +(DI+TAMEVP 2 ) ] /MPD + (CC + TAMEVP3) SCF * ACCF * XLCF * TWCF OMTTAM - OFFMTH + OMTCF * BER b. CO: COMPEF = SALHCF BEF = c. NOx: COMPEF SALHCF BEF And also where: COMPEFpn = SUMi TFin = CCEVRTin = SUM[TF * SALCHF * BEF] SCF * ACCF * XLCF * TWCF OMTTAM + OFFCO + OMTCF * BER SUM [TF * SALHCF * BEF] SCF * ACCF * XLCF * TWCF * HCF OMTTAM + OMTCF * BER The basic exhaust emission factor for pollutant p in g/mile on vJanuary 1 of calendar year n. The summation over 20 model years of i=n -19 to i=n, where n is the calendar year. The fraction of the total LDGV miles driven by model year i on January 1, of calendar year n. The crankcase and evaporative HC emission factor for model year i in calendar year n. SALHCFips = BEFin The composite speed, air conditioning, extra load and trailer towing correction factor for model year i, pollutant p and speed s. The basic exhaust emission rate for model year i in calendar year n. 16 ------- HSi The hot soak evaporative emission rate of model year i. TAMEVPlin TPD Dli TAMEVP2 in MPD CCi TAMEVP3in SCFips ACCFi XLCFi TWCFi OMTTAMipn OFFMTHi OMTCFi OFFCOt HCF The hot soak evaporative emission offset for model year i vehicles in calendar year n due to tampering. The trips per day value for LDGVs. The diurnal evaporative emission loss of model year i. The diurnal evaporative emission offset for model year i vehicles in calendar year n due to tampering. Miles per day. Crankcase emissions of model year i. The crankcase emission excess for model year i vehicles in calendar year n due to PCV tampering. The speed correction factor for model year i, pollutant p at speed s. The air conditioning correction factor for model year i. The extra load correction factor for model year i. The trailer towing correction factor for model year i. The emissions offset for model year i pollutant p in calendar year n due to all types of tampering, corrected for temperature and operating mode. The methane offset for model year i, used only if NMHC emissions are being estimated. The composite operating mode and temperature correction factor for model year i. The CO offset for Bag 1 at temperature t, corrected for operating mode. The humidity correction factor for NOX. 17 ------- The general equations for estimating hot stabilized idle emissions are as follows: lEFnp Where lEFnp SUMi[TFin*(IERinp-IDLMTHi)] The idle emission factor in g/minute for pollutant p in calendar year n. IDLMTHi = The idle methane offset in g/minute for model year i, applicable only to HC emissions. Tampering offsets are not added to idle emissions, furthermore, they are not corrected for temperature or operating mode. 18 ------- l.B EMISSIONS This section discusses the emission estimates for the LDGVs: Basic exhaust emission rates, tampering offsets, crankcase and evaporative HC emission levels, January 1 basic exhaust emission levels, and idle exhaust emission rates. The emission standards are given in Section A.1.1 of Appendix A. The emissions reflect vehicles which have received typical in-use maintenance. Further, the vehicles are not involved in an I/M or anti-tampering program. I.B.I Basic Exhaust Emission Rates The basic exhaust emission rates for LDGVs were derived for the most part from data on in-use vehicles with no observed tampering. The basic assumption in the derivation of the emission rates is that emission levels change linearly as vehicles accumulate mileage. The rates are dependent upon two estimated variables: (1) zero mile emission levels and (2) the emission deterioration rates. The zero mile emission levels are the average grams of pollutants emitted by the vehicles at zero miles. The emission deterioration rates adjust the zero mile levels as vehicles accumulate mileage. The basic exhaust emission levels are calculated from a linear function: BERipn = ZMLip + DRip * Min where the lower case letters are subscripts and BERipn = The basic exhaust emission level relecting no tampering, in g/mile, for model year i and pollutant p, on January 1 of calendar year n. ZMLip = The estimated zero mile emission level, in g/mile, for model year i and pollutant p. DRip = The estimated emission deterioration rate, in g/mile/ 10,000 miles, for model year i and pollutant p. Min = The model year i cumulative mileage, divided by 10,000 miles, on January 1 of calendar year n. The basic exhaust emission rates reflecting zero tampering are presented in Table 1.1.1A for the different LDGV model year groups and pollutants. 19 ------- 1.B.2 Tampering Offsets and Emission Rates With Tampering Tampering offsets in g/mi are added to the basic emission rates (which reflect no tampering) so that the overall fleet emissions reflect national average tampering. The exhaust emission rates including tampering are presented in Table 1.1.IB for the different LDGV model year groups and pollutants. Tampering effects are first estimated for each type of tampering and operating mode (cold start, stabilized and hot start). TAMPOFFipmn = TAMPipm * PEQUIPim * RATEimn Where: TAMPOFFipmn = The emission offset due to tampering in g/mi for model year i, pollutant p, and tampering type m in calendar year n. TAMPipm = The emission offset in g/mi for model year i, pollutant p, tampering type m. PEQUIPim = The percent of the model year i equipped with equipment type m. RATEimn = The tampering rate of model year i, equipment m in year n (dependent on mileage). After the offsets of each type of tampering are estimated, they are combined to form estimates of overall tampering for cold start, stabilized, and hot start modes. They are then corrected for temperature and combined in the following relationship: OMTTAMipn = TAMPOFFipnl * CS * TCF1 +• TAMPOFFipn2 * ST * TCF2 +• TAMPOFFipnB * HS * TCF3 where: OMTTAMipn = The composite tampering offset for model year i, pollutant p in calendar year n. TAMPOFFipnl,2,3 = The tampering offsets for each operating mode (cold start, stabilized, hot start). CS = Percent of VMT accumulated in cold start mode. ST = Percent of VMT accumulated in stabilized mode. HS = Percent of VMT accumulated in hot start mode. TCF1, TCF2, CF3 - Temperature correction factors for each mode of operation. 20 ------- 1.B.3 Crankcase and Evaporative HC Emission Levels In addition to the basic exhaust HC emission levels and tampering offsets, crankcase and evaporative HC emissions need to be included. Crankcase HC emissions result from the crankcase as the engine is running. The two major sources of evaporative HC emissions are hot soak and diurnal losses. Hot soak losses are generally produced as fuel evaporates from the carburetor system at the end of a trip. Changes in ambient temperature result in expansion of the air-fuel mixture in a partially filled fuel tank. As a result, diurnal HC emissions are expelled into the atmosphere. Crankcase and evaporative HC emission levels are calculated according to the equation in Section l.A.2. Crankcase and evaporative HC emission levels for untampered vehicles are summarized in Table 1.1.1C. The rates including tampering are presented in Table 1.1.ID. 1.B.4 January \ Basic Exhaust Emission Levels The basic exhaust emission levels for the latest 20 model years on January 1, 1980 through 2003, are given in Tables 1.1.2A through 1.1.2C for HC, CO, and NOx, respectively. The HC basic exhaust emission levels reflect total, rather than nonmethane HC emissions, and include crankcase and evaporative HC emission levels. Also, all emission rates include tampering. 1.B.5 Idle Exhaust Emission Rates (Hot Stabilized) Estimates of emissions from the automotive fleet during a vehicle's idle operating mode have become more of a concern in transportation control plans, environmental impact statements, and state implementation plans. Examples of extended idle time are waits at shopping centers, airports, sport complexes, and drive-in window service businesses. The emission estimates presented in this section reflect engines operating in a hot stabilized condition. The idle exhaust emission rates are expressed in units of grams per minute as opposed to the basic exhaust emission rate units of grams per mile. The LDGV idle exhaust emission levels are calculated from the estimated zero mile emission levels and emission deterioration rates given in Table 1.1.3. The idle emission level (in units of g/min) is calculated from a linear function similar to the basic exhaust emission level function given in Section I.B.I. The idle emission function is lERipn = ZMLIDLip + DRIDLip * Min. The definition of the terms in this equation are almost identical to those in Section I.B.I, except these are idle emissions and are expressed in grams/minute for the zero mile levels and grams/minute/10,000 miles for the idle emission deterioration rates. 21 ------- l.C TRAVEL WEIGHTING FRACTIONS The LDGV travel weighting fractions are the individual model year proportions of the total LDGV VMT. To generate the travel weighting fractions, three distributions are required: (1) the fleet annual mileage accumulation rate distribution, (2) the registration distribution, and (3) the estimated fleet sales fraction distribution (to account for the proportional increase of diesel powered vehicles). The travel weighting fractions in this document reflect a January 1 evaluation date. For the LDGVs, the model year is assumed to begin sales on the October 1 preceding the corresponding calendar year. Further, it is assumed that the vehicles are sold and accumulate mileage according to a uniform distribution. These assumptions permit the estimation of the January 1 fleet mileage accumulation rate distribution and the January 1 registration distribution from July 1 information. An example of the travel weighting fraction calculation is given in Table 1.1.5. I.C.I Fleet Annual Mileage Accumulation Rate Distribution A given vehicle is assumed to travel according to the annual mileage accumulation distribution given in Table 1.1.4. For example, the vehicle in its first year travels 12,818 miles at a uniform rate. In its second year, it travels 12,102 miles at a uniform rate. Finally in its 20th year, it travels 4,305 miles at a uniform rate. The annual fleet mileage accumulation rate distribution is derived from the annual mileage accumulation rate distribution for individual vehicles. This derivation averages out the effects of purchase date. The derivation is described in Appendix D, and the resulting distribution is given in Table 1.1.4. l.C.2 Model Year Registration Distribution Table 1.1.4 also presents the estimated LDGV model year registration distribution fractions. These fractions are the individual model year proportions of the entire LDV fleet (both gasoline and diesel powered vehicles combined). The registration distribution is based on July 1 figures and is transformed to January 1 figures according to the procedure in Appendix D. The January 1 LDV fleet registration distribution is also presented in Table 1.1.4. 22 ------- l.C.3 Fleet Sales Distribution Assuming that diesel powered vehicles will become more prominent, the travel weighting fractions need to account for them. It is estimated that gasoline powered vehicles will account for proportionately fewer of the future light duty vehicle model year sales according to the distribution given in Table 1.1.5 (Column B). The distribution is anticipated to stabilize in 1991, with about 90 percent of the LDV sales being gasoline powered vehicles. The fleet sales distribution is used in the travel weighting fractions to account for the influx of diesels. The travel weighting fractions change every January 1 in calendar years 1970 through 2010. Prior to 1975, diesels are considered to be an insignificant proportion of the LDV fleet. Further, even though the fleet sales distribution is predicted to stabilize in 1991, the travel weighting fractions require 20 years to stabilize. From that time on (2010+), the travel weighting fractions remain constant. l.D EMISSION CORRECTION FACTORS The LDGV basic exhaust emission levels are based on test results under the standardized conditions defined in Section I.A.I. However, the basic exhaust emission levels are affected by ambient and vehicle usage conditions which differ from the prescribed test procedure. The conditions under which emissions are known to vary are the average speed, ambient temperature, fraction of VMT in cold and hot start operating modes, use of air conditioning, carrying of an extra load, trailer towing, and humidity. Emission correction factors are available to compensate for variations in these conditions. I.D.I Speed Correction Factor The test procedure used for collecting the basic exhaust emissions is a driving cycle with an average speed of 19.6 mph. For those situations where the average speed of the vehicle deviates from this value, a speed correction factor is applied. The coefficients for the speed correction factors are given in Table 1.1.6. The speed correction factor is symbolized as SCFipsxw where the lower case letters are subscripts and SCFipsxw = The speed correction factor for model year i and pollutant p at the average speed of s. This is normalized to the speed associated with a cold start mode VMT fraction x and a hot start mode VMT fraction w. 23 ------- The user is cautioned that this correction factor is only valid for speeds in the 5 through 55 mph range since the regression equations were based on speed data in that range. Extrapolations to speeds beyond this range should not be made. 1.D.2 Emission Temperature Correction Factor and Bag 1 CO Offset The LDGV emission test procedure requires an ambient temperature of between 68°F and 86°F, and typically it* runs at about 75°F. For temperatures other than 75°F, a correction factor is needed. There are two correction factor models. The first is a multiplicative model which is applicable to all pollutants and bag segments except Bag 1 CO. The second model is an additive or offset model for Bag 1 CO. The multiplicative model uses a separate correction factor for each bag and pollutant. The equation is as follows: TCFipbt = EXP(TCipbtt(T - TT)) where the lower case letters are subscripts and TCFipbt EXP TCipbtt T TT = The emission temperature correction factor for model year i, pollutant p, test segment b, and ambient temperature t. = The exponential function. = The temperature correction factor coefficient for model year i, pollutant p, test segment b, and reference temperature tt. = Ambient temperature (Fahrenheit). = Reference temperature which equals 75.0°F. The offset model for Bag 1 CO emissions uses the following equation: Offset = (-1.3812)(T-75) The offset model is in effect only for all 1980 and later LDGVs. The temperature correction factor coefficients are found in Table 1.1.7A. 24 ------- 1.D.3 Temperature/Operating-Mode Emission Correction Factor For all conditions except where the CO offset model is in effect, a single emission correction factor called OMTCF adjusts for temperature and hot stabilized/cold start operating-mode conditions that differ from the basic test procedure. A vehicle will usually emit more emissions in a cold start mode than in a stabilized or a hot start mode. As such, vehicles will emit more pollution after an extended engine off period than vehicles that have not set long enough to be in the cold start mode. As a result, the operating mode is a necessary element of this correction factor. An integral part of the operating mode portion of OMTCF are the normalized bag fractions. The normalized bag fractions adjust OMTCF for emissions attributable to each operating mode. These fractions for LDGVs are given in Table 1.1.7B. The OMTCF correction factor is defined as follows: OMTCFiptwxn where OMTCFiptwxn TERM1 TERM2 TERMS DENOM Bipb Dipb ((TERM1 + TERM2 + TERMS)/DENOM) = The temperature operating-mode emission correction factor for model year i, pollutant p, ambient temperature t, fraction of VMT in a cold start operating mode w, and fraction of VMT in a hot start operating mode x; on January 1 of calendar year n. - W * TCFiplt *(Bipl + Dipl * Min) = (l-W-X)*TCFip2t * (Bip2 + Dip2 * Min) = X * TCFipSt *(Bip3 + DipS * Min) = BipO + DipO * Min = The normalized bag fraction intercept coefficient for model year i, pollutant p, and test segment b (test segment 0 is the entire basic test procedure). = The normalized bag fraction slope coefficient for model year i, pollutant p, and test segment b (test segment 0 is the entire basic test procedure). 25 ------- Min = The fleet cumulative mileage for model year i on January 1 of calendar year n. W = The fraction ' of VMT traveled in the cold start mode. X = The fraction of VMT traveled in the hot start mode. TCFipbt = The emission temperature correction factor for model year i, pollutant p, test segment b, and ambient temperature t. When the temperature is less than 75°F and when the percent cold start is greater than zero TCFiplt is taken out of TERM1. Then OMTCF reflects the temperature and operating mode correction factors for the stabilized and hot start operating modes, but only the operating mode correction factor for the cold start mode. The emissions of the cold start mode are corrected for temperature with the CO offset discussed in l.D.2. This offset is multiplied by the percent of VMT accumulated in the cold start (W) and added to the basic emission rate as presented in Section l.A.2. 1.D.4 Air Conditioning Correction Factor The LDGV emissions can be affected by the use of air conditioning. The air conditioning correction factor coefficients are based on data from vehicles tested at several different temperatures with the air conditioner on. These correction factors are given in Table 1.1. 8A. The general correction factor equation is as follows: ACCFipt = U*Vi ([Aip + Bip * (T - 75)] -1) +1 where the lower case letters are subscripts and ACCFipt = The air conditioning correction factor for model year i, pollutant p, and ambient temperature t. U = (DI - DILO)/(DIHI - DILO) = Of the vehicles equipped with an air conditioner, the estimated fraction that have it in use ( 0<_ DI = (DB + WB) * .4 + 15 = Discomfort index. DB = The dry bulb temperature in degrees Fahrenheit. 26 ------- WB = The wet bulb temperature in degrees Fahrenheit. DILO = The highest discomfort index where no air conditioners are in use (set to 70 in MOBILES). DIHI = The lowest discomfort index where all the air conditioners are in use (set to 80 in MOBILE3) . Vi = The fraction of model year i LDGVs equipped with an air conditioner. These fractions are given in Table 1.1.8B. Aip = The air conditioning correction factor intercept coefficient for model year i and pollutant p. Bip = The air conditioning correction factor slope coefficient for model year i and pollutant p. T = Ambient temperature in degrees Fahrenheit. 75 = The normalizing ambient temperature for the ACCF linear function. 1.D.5 Extra Load Correction Factor The basic exhaust emission rates are based on the "typical" vehicle weight with a driver and passenger, vehicle fuel/ and other liquids. There are, however, situations in which vehicles have extra weight due to additional passengers, luggage, etc. In these events, emissions are known to change. To apply the vehicle extra load correction factor found in Table 1.1.9 to a specific situation, it is necessary for a user to have an estimate of the percentage of LDGV VMT accumulated with an additional 500 pounds. The correction factor for extra load is computed according to the following equation: ELCFip = (XLCip -1) * U + 1 where the lower case letters are subscripts and ELCFip = The extra load correction factor for model year i and pollutant p. 27 ------- XLCip = The extra load correction factor coefficient for model year i and pollutant p. U = The fraction of LDGV VMT accumulated with an extra load (0------- Chapter 2 LIGHT DUTY GASOLINE POWERED TRUCKS I 2.A INTRODUCTION This chapter presents the emission factors for light duty gasoline powered trucks with a gross vehicle weight (GVW) rating of 6,000 pounds or less (LDGT1). Although LDGTls have a load carrying capability that exceeds that of passenger cars, they are typically used for personal transportation and light hauling. 2.A.I Test Procedure The test procedure used for determining the LDGT1 basic exhaust emissions is almost identical to the LDGV test procedure. The difference between the two test procedures is primarily the road-load horsepower setting. The summary of the test procedure in Chapter 1 is correct for LDGTls, therefore, refer to Chapter 1. 2.A.2 General Emissions Calculation Equations The eguations presented in Chapter 1 are also valid for the LDGTls. Although the emissions, travel weighting fractions, and emission correction factors levels for LDGTls are different from the LDGVs, the eguations are identical. 2.B EMISSIONS This section discusses the LDGT1 emission estimates: Basic exhaust emission rates, tampering offsets, crankcase and evaporative HC emission levels, January 1 basic exhaust emission levels, and idle exhaust emission rates. The emission standards are given in Section A.1.2 of Appendix A. The emissions reflect trucks which have received typical in-use maintenance. Further, the trucks are not involved in an I/M or anti-tampering program. The discussions of the different emissions in Chapter 1 are also valid for the LDGTls. 2.B.I Basic Exhaust Emission Rates The LDGT1 basic exhaust emission rates are given in Table 1.2.1A. This table presents the untampered LDGT1 zero mile emission levels and emission deterioration rates for every model year. The emissions are measured in grams per mile. 29------- 2.B.2 Tampering Offsets and Emission Rates With Tampering Emission offsets in g/mi due to tampering are added to the basic emission rates (which reflect no tampering) so that the fleet emission rates reflect national average tampering. The exhaust emission rates including tampering are presented in Table 1.2.IB for the different LDGT1 model year groups and pollutants. 2.B.3 Crankcase and Evaporative HC Emission Levels The LDGT1 crankcase and evaporative HC emission levels are presented in Table 1.2.1C. This table presents the emissions for every model year and crankcase and evaporative HC component: diurnal losses, hot soak losses, and crankcase losses. The evaporative and crankcase rates with tampering included are shown in Table 1.2.ID. 2.B.4 January 1 Basic Exhaust Emission Levels January 1, 1980 through 2003, LDGT1 exhaust emission levels with tampering are given in Tables 1.2.2A through 1.2.2C for HC, CO, and NOx, respectively. The HC basic exhaust emission levels reflect total, rather than non-methane, HC emissions and include crankcase and evaporative HC levels. 2.B.5 Idle Exhaust Emission Rates (Hot Stabilized) The LDGT1 hot stabilized idle exhaust emission rates are given in Table 1.2.3. These emission levels are measured in grams per minute and reflect engines operating in a hot stabilized condition. 2.C TRAVEL WEIGHTING FRACTIONS The LDGT1 travel weighting fractions are the individual model year proportions of the total LDGT1 VMT. To generate the travel weighting fractions, three distributions are required: (1) the fleet annual mileage accumulation rate distribution, (2) the registration distribution, and (3) the estimated fleet sales fraction distribution (to account for the proportional increase of diesel powered trucks). The first and second distributions are given in Table 1.2.4, and the third distribution is given in Table 1.2.5. More detailed information is available in Chapter 1 on these distributions. The travel weighting fractions in this document reflect a January 1 evaluation date. For the LDGTls, the model year is assumed to begin sales on the October 1 preceding the corresponding calendar year. Further, it is assumed that the trucks are sold and accumulate mileage according to a uniform distribution. These assumptions permit the estimation of the January 1 fleet mileage accumulation rate distribution and the January 1 registration distribution from July 1 information. An example of the travel weighting fraction calculation is givan in Table 1.2.5. 30------- 2.D EMISSION CORRECTION FACTORS The LDGT1 basic exhaust emission levels are based on test results under the standardized conditions defined in Chapter 1. However, the basic exhaust emission levels are affected by ambient and truck usage conditions which differ from the prescribed test procedure. The conditions under which emissions are known to vary are the average speed, ambient temperature, fraction of VMT in cold and hot start operating modes, use of air conditioning, carrying of an extra load, trailer towing, and humidity level. Emission correction factors are available to compensate for these conditions. The LDGTls correction factors are based on the LDGV information. Therefore, the LDGT1 correction factors are those from the LDGV's, and the LDGV discussions in Chapter 1 are valid for the LDGTls. 2.D.I Speed Correction Factor The test procedure used for collecting the basic exhaust emissions is a driving cycle with an average speed of 19.6 mph. For those situations where the average speed of the truck deviates from this value, a speed correction factor is applied. The LDGT1 speed correction factors are given in Table 1.2.6. 2.D.2 Emission Temperature Correction Factor For those situations where the ambient temperature is not 75°F, an emission temperature correction factor is applied. Table 1.2.7A presents these correction factors for the LDGTls. The CO offset model for Bag 1 is in effect for 1984 and later LDGTls. 2.D.3 Temperature/Operating-Mode Emission Correction Factor A single emission correction factor called OMTCF adjusts for temperature and operating-mode conditions that differ from the basic test procedure. As described in Chapter 1, OMTCF depends on normalized bag fractions. The LDGT1 normalized bag fractions are given in Table 1.2.7B. 2.D.4 Air Conditioning Correction Factor The LDGT1 emissions can be significantly affected by the use of 'air conditioning. These correction factors are given in Table 1.2.8A. The fractions of LDGTls equipped with an air conditioner, by model year, are given in Table 1.2.8B. 2.D.5 Extra Load Correction Factor The basic exhaust emission rates are based on the "typical" truck weight with a driver and passenger, fuel, and other liquids. There are, however, situations in which trucks have extra weight due to additional passengers, luggage, load, etc. In these events, emissions are known to change. 31------- To apply the truck extra load correction factor found in Table 1.2.9 to a specific situation, it is necessary for a user to have an estimate of the percentage of LDGT1 VMT accumulated with an additional 500 pounds. 2.D.6 Trailer Towing Correction Factor As with the extra load correction factor, the trailer towing correction factor will adjust LDGT1 emissions for usage conditions which differ from the basic test procedure. The correction factor coefficients given in Table 1.2.10 are valid for a trailer weight of 1000 pounds. 2.D.7 NOx Humidity Correction Factor The NOx humidity correction factor equation is the same as for LDGV's. 32------- Chapter 3 LIGHT DUTY GASOLINE POWERED TRUCKS II 3.A INTRODUCTION This chapter presents the emission factors for light duty gasoline powered trucks with a gross vehicle weight (GVW) rating between 6,001 and 8,500 pounds (LDGT2). This vehicle type is required since these trucks were classified as heavy duty vehicles through the 1978 model year. Beginning with the 1979 model year, these trucks have been considered light duty trucks. In general, every LDGV section and subsection discussion in Chapter 1 is valid for this chapter. 3.A.I Test Procedure The test procedure used for determining the LDGT2 basic exhaust emissions is almost identical to the LDGV test procedure. The difference between the two test procedures is primarily the road-load horsepower setting. The LDGV test procedure summarized in Chapter 1 is valid for the LDGT2s. 3.A.2 General Emissions Calculation Equations Chapter 1 also presents the equations that are valid for the LDGT2s. Although the emissions, travel weighting fractions, and emission correction factors for the LDGT2s are different from the LDGVs, the equations are identical. 3.B EMISSIONS This section presents the LDGT2 emissions: Basic exhaust emission rates, tampering offsets, crankcase and evaporative HC emission levels, January 1 basic exhaust emission levels, and idle exhaust emission rates. The pre-1979 model year LDGT2 were considered heavy duty vehicles; their emission standards are given in Section A.1.3 of Appendix A. The 1979 and later LDGT2 emission standards are given in Section A.1.2 of Appendix A. The emissions reflect trucks which have received typical in-use maintenance. Further, the trucks are not involved in an I/M or anti-tampering program. 3.B.I Basic Exhaust Emission Rates The LDGT2 basic exhaust emission rates are given in Table 1.3.1A. This table presents the LDGT2 untampered zero mile emission levels and emission deterioration rates for every model year. The emissions are 33------- measured in grams per mile. 3.B.2 Tampering Offsets and Emission Rates With Tampering Emission offsets in g/mi due to tampering are added to basic emission rates (which reflect zero tampering) so that the fleet emission rates reflect national average tampering. The exhaust emission rates including tampering are presented in Table 1.3.IB for the different LDGT2 model year groups and pollutants. 3.B.3 Crankcase and Evaporative HC Emission Levels The LDGT2 untampered crankcase and evaporative HC emission levels are given in Table 1.3.1C. This table presents the emissions for every model year and emission component: diurnal losses, hot soak losses, and crankcase losses. The emission rates with tampering included are shown in Table 1.3.ID. 3.B.4 January 1 Basic Exhaust Emission Levels January 1, 1980 through 2003, LDGT2 exhaust emission levels with tampering are given in Tables 1.3.2A through 1.3.2C for HC, CO, and NOx, respectively. The HC basic exhaust emission levels reflect total, rather than nonmethane, HC emissions and include crankcase and evaporative HC levels. 3.B.5 Idle Exhaust Emission Rates (Hot Stabilized) The LDGT2 hot stabilized idle exhaust emission rates are given in Table 1.3.3. These emissions are measured in grams per minute and reflect engines operating in a hot stabilized condition. 3.C TRAVEL WEIGHTING FRACTIONS The LDGT2 travel weighting fractions are the individual model year proportions of the total LDGT2 VMT. To generate the travel weighting fractions, three distributions are required: (1) the fleet annual mileage accumulation rate distribution, (2) the registration distribution, and (3) the estimated fleet sales fraction distribution (to account for the proportional increase of diesel powered trucks). The first and second distributions are given in Table 1.3.4, and the third distribution is given in Table 1.3.5. More detailed information is available in Chapter 1 on these three distributions. The travel weighting fractions in this document reflect a January 1 evaluation date. For the LDGT2s, the model year is assumed to begin sales on the October 1 preceding the corresponding calendar year. Further, it is assumed that the trucks are sold and accumulate mileage according to a uniform distribution. These assumptions permit the 34------- estimation of the January 1 fleet mileage accumulation rate distribution and the January 1 registration distribution from July 1 information. An example of the travel weighting fraction calculation is given in Table 1.3.5. 3.D EMISSION CORRECTION FACTORS The LDGT2 basic exhaust emission levels are based on test results under the standardized conditions defined in Chapter 1. However, the basic exhaust emission levels are affected by ambient and truck usage conditions which differ from the prescribed test procedure. The conditions under which emissions are known to vary are the average speed, ambient temperature, fraction of VMT in cold and hot start operating modes, use of air conditioning, carrying of an extra load, trailer towing, and humidity level. Emission correction factors are available to compensate for these conditions. The LDGT2 emission correction factors are based on the LDGV information. Therefore, the LDGT2 correction factors are those from the LDGVs, and the discussions in Chapter 1 are valid for the LDGT2s. 3.D.I Speed Correction Factor The test procedure used for collecting the basic exhaust emissions is a driving cycle with an average speed of 19.6 mph. For those situations where the average speed of the truck deviates from this value, a speed correction factor is applied. The LDGT2 average cycle speed emission correction factors are given in Table 1.3.6. 3.D.2 Emission Temperature Correction Factor For those situations where the ambient temperature is not 75°F, an emission temperature correction factor is applied. Table 1.3.7A presents these correction factor for the LDGT2s. The CO offset model for Bag 1 is in effect for 1984 and later LDGT2s. 3.D.3 Temperature/Operating-Mode Emission Correction Factor A single emission correction factor called OMTCF adjusts for speed, temperature and operating-mode conditions that differ from the basic test procedure. As described in Chapter 1, OMTCF depends on normalized bag fractions. The LDGT2 normalized bag fractions are given in Table 1.3.7B. 3.D.4 Air Conditioning Correction Factor The LDGT2 emissions can be significantly affected by the use of air conditioning. These correction factors are given in Table 1.3.8A. The fractions of LDGT2s equipped with an air conditioner, by model year, are given in Table 1.3.8B. 35------- 3.D.5 Extra Load Correction Factor The basic exhaust emission rates are based on the "typical" truck weight with a driver and passenger, fuel, and other liquids. There are, however, situations in which trucks have extra weight due to additional passengers, luggage, load, etc. In these events, emissions are known to change. To apply the truck extra load correction factor found in Table 1.3.9 to a specific situation, it is necessary for a user to have an estimate of the percentage of LDGT2 VMT accumulated with an additional 500 pounds. 3.D.6 Trailer Towing Correction Factor As with the extra load correction factor, the trailer towing correction factor will adjust LDGT2 emissions for usage conditions which differ from the basic test procedure. The correction factor coefficients given in Table 1.3.10 are valid for a trailer weight of 1000 pounds. 3.D.7 NOx Humidity Correction Factor The NOx humidity correction factor equation is the same as for LDGV's. 36------- Chapter 4 HEAVY DUTY GASOLINE POWERED VEHICLES 4. A INTRODUCTION This chapter presents the emission factors for the heavy duty gasoline powered vehicles (HDGV). A HDGV is defined to be any gasoline fueled motor vehicle designated primarily for the transportation of property and rated at more than 8,500 pounds gross vehicle weight (GVW), or designated primarily for transportation of persons and having a capacity of more than 12 persons. 4.A.I Test Procedure The HDGV basic exhaust emission rates are based on the engine dynamometer transient test procedure stipulated in the Federal Register (45 FR 4181, January 21, 1980) and the Code of Federal Regulations (40 CRF, Part 86, Subpart N, July 1, 1984). The basic test conditions under which the HDGVs are tested are as follows: 1. Ambient temperature range is 68°F through 86°F. 2. Absolute humidity is adjusted to 75 grains of water per pound of dry air. 3. Estimated cycle speed is 19.45 mph with 27% idle operation. 4. Average percent VMT in a cold start operation is 14.3%. 5. Average percent VMT in a hot start operation is 86.7%. 6. No average percent VMT in the stabilized operation. 7. Estimated trip length is 6.5 miles. The test procedure for the HDGVs can be briefly described by the following: 1. Generate the maximum torque vs. speed curve of the engine. 2. Precondition the engine with practice cycle runs. 3. With the engine off, let it sit for at least 12 hours between 68°F and 86°F. An optional procedure is the forced cool-down procedure, whereby cool water is circulated (and/or air directed onto the engine) through the engine's water coolant system until the engine oil is between 68°F and 75°F. 4. Conduct the cold start test. The estimated mileage is 6.5 miles and cycle speed is 19.9 mph. 37------- 5. Turn off the engine. 6. Keep the engine off for 20 minutes. 7. Conduct the hot start test. The cycle is the same as the cold start cycle. 8. Calculate the grams of pollutant and total brake horsepower-hour for each test cycle. 9. Correct NOx to 75 grains of water per pound of dry air. 10. Calculate the basic exhaust emissions in grams per brake horsepower-hour. 4.A.2 General Emissions Calculation Equations To calculate the HDGV emissions, the following generalized equations are used: a. COMPEFpnst = SUMi[TFin * ((BERipn * TCFipt-OFFMTHi + OMTTAMipn) * SCFps + CCEVERTin)] b. IEF = SUMi [TFi *(IERipn - IDLMTHi)] where: COMPEFpnst = The composite emission factor in g/mi of pollutant p in calendar year n at speed s and temperature t. SCFps = The speed correction factor for HDGV's for pollutant p and speed s. TCFipt = The temperature correction factor for model year i (not operating mode-dependent like light duty vehicles and trucks), pollutant p and temperature t. All other variables have the same definitions as for LDGV's. OFFMTH, CCEVERT, and IDLMTH apply only to HC emissions. 4.B EMISSIONS This section discusses the emission estimates for the HDGVs. The five subsections are (1) basic exhaust emission rates, (2) emission rates including tampering, (3) crankcase and evaporative HC emission levels, (4) January 1 basic exhaust 38------- emission levels, and (5) idle exhaust emission rates. The emission standards are given in Section A.1.3 of Appendix A. The emissions reflect vehicles which have received typical in-use maintenance. Further, the vehicles are not involved in an I/M or anti-tamper ing program. 4.B.I Basic Exhaust Emission Rates The HDGV basic untampered exhaust emission rates are given in Table 1.4.1A. This table presents the untampered HDGV zero mile emission levels and emission deterioration rates for every model year. The conversion factors which are used to convert the emissions in g/bhp-hr to emissions in g/mi were substantially updated from previous versions of mobile source emission factors. These conversion factors are dependent on projected sales in the different weight classes of the heavy duty gasoline vehicles and their respective fuel economies. A complete discussion of the development of these conversion factors is found in the EPA report "Heavy Duty Vehicle Emission Conversion Factors, 1962-1997", EPA-AA-SDSB-84-1. 4.B.2 Tampering Offsets and Emission Rates With Tampering Tampering offsets in gm/mi are added to basic emission rates (which reflect zero tampering) so that the fleet emission rates reflect national average tampering. The exhaust emission rates including tampering are presented in Table 1.4.IB for the different HDGV model year groups and pollutants. 4.B.3 Crankcase and Evaporative HC Emission Levels The HDGV untampered crankcase and evaporative HC emission levels are given in Table 1.4.1C. This table presents the emissions for every model year and emission component: diurnal losses, hot soak losses, and crankcase losses. The evaporative and crankcase emissions including tampering are shown in Table 1.4.ID. 4.B.4 January 1 Basic Exhaust Emission Levels The January 1, 1980 through 2003, HDGV basic exhaust emission levels are given in Tables 1.4.2A through 1.4.2C for HC, CO, and NOx, respectively. The HC basic exhaust emission levels reflect total, rather than nonmethane, HC emissions and include crankcase and evaporative HC emission levels. 4.B.5 Idle Exhaust Emission Rates (Hot Stabilized) The HDGV hot stabilized idle exhaust emission rates are given in Table 1.4.3. These emissions are measured in grams per minute and reflect engines operating in a hot stabilized condition. 39------- 4.C TRAVEL WEIGHTING FRACTIONS The HDGV travel weighting fractions are the individual model year proportions of the total HDGV VMT. To generate the HDGV travel weighting fractions, two distributions are required: (1) the fleet annual mileage accumulation rate distribution and (2) the registration distribution. These two distributions are given in Table 1.4.4. More detailed information is available in Chapter 1 on these distributions. The travel weighting fractions in this document reflect a January 1 evaluation date. For the HDGVs, the model years are assumed to begin sales on January 1. Further, it is assumed that the vehicles are sold and accumulate mileage according to a uniform distribution. These assumptions permit the estimation of the January 1 fleet mileage accumulation rate distribution and the January 1 registration distribution from July 1 information. The travel weighting fractions are given in Table 1.4.5. 4.D EMISSION CORRECTION FACTORS The HDGV basic exhaust emission levels are based on test results under the standardized conditions defined in Section 4.A.I. However, the basic exhaust emission levels are affected by ambient and vehicle usage conditions which differ from the prescribed test procedure. The conditions under which HDGV emissions are known to vary are the average speed and ambient temperature. Emission correction factors are available to compensate for these conditions. 4.D.I Speed Correction Factor The test procedure used for collecting the basic exhaust emissions is a transient, engine cycle with an estimated speed of 20.0 mph. For those situations where the average speed of the vehicle deviates from this value, a speed correction factor is applied. The HDGV speed correction factor equations are as follows: a. SCFips = EXP(Aip + Bip*s + Cip*s2) for HC and CO, and b. SCFips = Aip + Bip*s + Cip*s2 for NOx where SCFips = The correction factor for model year i and pollutant p at the average speed of s. EXP = The exponential function. Aip = The speed correction factor intercept coefficient for model year i and pollutant p. 40------- Bip = The speed correction factor first order coefficient for model year i and pollutant p. Cip = The speed correction factor second order coefficient for model year i and pollutant p. The coefficients for the speed correction factor equations are given in Table 1.4.6. The speed correction factors are only valid for speeds in the 5 through 55 mph range. 4.D.2 Emission Temperature Correction Factor For situations where the ambient temperature is not 75°F, an emission temperature correction factor is applied. This temperature correction factor differs slightly in form from the temperature correction factor given in Chapter 1. The HDGV temperature correction factor is for the entire transient test as opposed to the LDGV temperature correction factors for the individual test segments. The HDGV temperature correction factor is given in Table 1.4.7 and the equation is as follows: TCFipt = EXP(TCiptt(T - TT)) where the lower case letters are subscripts and TCFipt = The emission temperature correction factor for model year i, pollutant p, and ambient temperature t. EXP = The exponential function. TCiptt = The temperature correction factor coefficient for model year i, pollutant p, and reference temperature tt. T = Ambient temperature (Fahrenheit). TT = Reference temperature which equals 75°F. 41------- Chapter 5 LIGHT DUTY DIESEL POWERED VEHICLES 5.A INTRODUCTION Diesel powered passenger cars may become more prominent in the light duty vehicle fleet. As a result, emission factors are required for these light duty diesel powered vehicles (LDDV). A LDDV is defined to be any diesel fueled automobile designated primarily for transportation of persons and having a capacity of 12 persons or fewer. 5.A.I Test Procedure The test procedure used for determining the LDDV basic exhaust emissions is identical to the LDGV test procedure. Therefore, refer to Chapter 1 for a brief overview. 5.A.2 General Emissions Calculation Equations a. COMPEF = SUMi[(BERipn*OMTCF - OFFMTH) * TFin * SCF] b. lEFnp = SUMi[TFin*(IERipn - IDLMTHi)] c. OMTCF in the above equation does not include the temperature correction factors, and therefore is limited only to the operating mode correction factors. 5.B EMISSIONS This section discusses the LDDV emission estimates: Basic exhaust emission rates, crankcase and evaporative HC emission levels, January 1 basic exhaust emission levels, and idle exhaust emission rates. The emission standards are given in Section A.1.1 of Appendix A. The emissions reflect vehicles which have received typical in-use maintenance. Further, the vehicles are not involved in an I/M program. With the exception of the crankcase and evaporative HC emissions, the discussions of the different emissions in Chapter 1 are also valid for the LDDVs. 5.B.I Basic Exhaust Emission Rates The LDDV basic exhaust emission rates are given in Table 1.5.1. This table presents the LDDV zero mile emission levels and emission deterioration rates for every model year. The emissions are measured in grams per mile. EPA believes that diesel vehicles are subjected to very little tampering, therefore, tampering offsets are not added to any diesel vehicles. 42------- 5.B.2 Crankcase and Evaporative HC Emission Levels LDDVs are considered to have insignificant crankcase and evaporative HC emission levels. Therefore, no emission estimates are given. 5.B.3 January 1 Basic Exhaust Emission Levels January 1, 1980 through 2003, LDDV basic exhaust emission levels are given in Tables 1.5.2A through 1.5.2C for HC, CO, and NOx, respectively. The HC basic exhaust emission levels reflect total, rather than nonmethane, HC emissions. 5.B.4 Idle Exhaust Emission Rates (Hot Stabilized) The LDDV hot stabilized idle exhaust emission rates are given in Table 1.5.3. These emission levels are measured in grams per minute and reflect engines operating in a hot stabilized condition. 5.C TRAVEL WEIGHTING FRACTIONS The LDDV travel weighting fractions are individual model year proportions of the total LDDV VMT. To generate the travel weighting fractions, three distributions are required: (1) the fleet annual mileage accumulation rate distribution, (2) the registration distribution, and (3) the estimated fleet sales fraction distribution (to account for the proportional increase of diesel powered vehicles). The first and second distributions are given in Table 1.5.4, and the third distribution is given in Table 1.5.5. More detailed information is available in Chapter 1 on these distributions. The travel weighting fraction in this document reflect a January 1 evaluation date. For the LDDVs, the model year is assumed to begin sales on the October 1 preceding the corresponding calendar year. Further, it is assumed that the vehicles are sold and accumulate mileage according to a uniform distribution. These assumptions permit the estimation of the January 1 fleet mileage accumulation rate distribution and the January 1 registration distribution from July 1 information. An example of the travel weighting fraction calculation is given in Table 1.5.5. 5.D EMISSION CORRECTION FACTORS The LDDV basic exhaust emission levels are based on test results under the standardized conditions defined in Chapter 1. However, the basic exhaust emission levels are affected by ambient and vehicle usage conditions which differ from the prescribed test procedure. The conditions under which LDDV emissions are known to vary are the average speed, and fraction of VMT in cold and hot start operating modes. Emission correction factors are available to compensate for these conditions. Use of air conditioning, carrying of an extra load, trailer 43------- towing, and humidity levels may affect LDDV emissions, but no information is available to estimate the effects. 5.D.I Speed Correction Factor The test procedure used for collecting the basic exhaust emissions is a driving cycle with an average speed of 19.6 mph. For those situations where the average speed of the vehicle deviates from this value, a speed correction factor is applied. The LDDV speed correction factor equation and coefficients are given in Table 1.5.6. The speed correction factor for LDDVs is normalized to 19.6 mph. The LDDV speed correction factor equation is as follows: where: SCF = EXP[Ap(SPD-SADJ) +Bip(SPDZ-SADJ2 Aip = The speed first order term speed correction factor coefficient for pollutant p. SPD = The speed for which the correction factor is being estimated. SADJ = Speed, adjusted for cold start w and hot start x VMT fractions. 1/SADJ = ( (W + X/26)+ (( Bp = The second order term correction factor coefficent for pollutant p. The user is cautioned that the correction factor as given in Table 1.5.6 is only valid for speeds in the 5 through 55 mph range since the regression equations were based on speed data in that range. Extrapolations to speeds beyond this range should not be made. 5.D.2 Emission Temperature Correction Factor The emissions of LDDV's may be somewhat dependent on temperature, but that dependence is thought to be much less for diesel vehicles than for gasoline vehicles. Also, EPA has no data on emissions from diesel vehicles at different temperatures. Therefore, the temperature coefficients for LDDV's are all zeros, and result in a conversion factor of unity at all temperatures. 5.D.3 Speed/ Operating-Mode Emission Correction Factor A single emission correction factor called OMTCF adjusts for speed and operating-mode conditions that differ from the basic 44------- test procedure. As described in Chapter 1, OMTCF depends on normalized bag fractions. The LDDV normalized bag fractions are given in Table 1.5.7. 45------- Chapter 6 LIGHT DUTY DIESEL POWERED TRUCKS 6.A INTRODUCTION The light duty diesel powered trucks (LDDT) are becoming more prominent in the light duty truck fleet. Therefore, the LDDT emission factors are required. A LDDT is defined to be any diesel fueled motor vehicle designed primarily for transportation of property and rated at 8,500 pounds gross vehicle weight or less. 6.A.I Test Procedure The test procedure used for determining the LDDT basic exhaust emissions is almost identical to the LDGV test procedure. The difference between the two test procedures is primarily the road-load horsepower setting. The summary of the test procedure in Chapter 1 is correct for LDDTs. Therefore, refer to Chapter 1 for a brief overview. 6.A.2 General Emissions Calculation Equations The generalized calculating equations for the LDDTS are presented in Chapter 5. All of the equations are identical, although the emissions, travel weighting fractions, and emission correction factors levels for LDDTs are different from the LDDVs. 6.B EMISSIONS This section discusses the LDDT emission estimates: Basic exhaust emission rates, crankcase and evaporative HC emission levels, January 1 basic exhaust emission levels, and idle exhaust emission rates. The emission standards are given in Section A.1.2 of Appendix A. Prior to the 1978 model year, the number of LDDTs are considered insignificant. As a result, no emissions are measured prior to January 1, 1978. The emissions also reflect trucks which have received typical in-use maintenance. Further, the trucks are not involved in an I/M program. With the exception of the crankcase and evaporative HC emissions, the discussions of the different emissions in Chapter 1 are valid for the LDDTs. 6.B.I Basic Exhaust Emission Rates The LDDT basic exhaust emission rates are given in Table 1.6.1. This table presents the LDDT zero mile emission levels and emission deterioration rates for every model year. The emissions are measured in grams per mile. EPA believes that diesel vehicles are subjected to very little tampering, therefore, tampering offsets are not added to all diesel vehicles. 46------- 6.B.2 Crankcase and Evaporative HC Emission Levels LDDT are considered to have insignificant crankcase and evaporative HC emission levels. Therefore, no emission estimates are given. 6.B.3 January 1 Basic Exhaust Emission Levels January 1, 1980 through 2003, LDDT basic exhaust emission levels are given in Tables 1.6.2A through 1.6.2C for HC, CO, and NOx, respectively. The HC basic exhaust emission levels reflect total, rather than nonmethane, HC emissions. 6.B.4 Idle Exhaust Emission Rates (Hot Stabilized) The LDDT hot stabilized idle exhaust emission rates are given in Table 1.6.3. These emission levels are measured in grams per minute and reflect engines operating in a hot stabilized condition. 6.C TRAVEL WEIGHTING FRACTIONS The LDDT travel weighting fractions are the individual model year proportion of the total LDDT VMT. To generate the travel weighting fractions, three distributions are required: (1) the fleet annual mileage accumulation rate distribution, (2) the registration distribution, and (3) the estimated fleet sales fraction distribution (to account for the proportional increase of diesel powered trucks). The first and second distributions are given in Table 1.6.4, and the third distribution is given in Table 1.6.5. More detailed information is available in Chapter 1 on these distributions. The travel weighting fractions in this document reflect a January 1 evaluation date. For the LDDTs, the model year is assumed to begin sales on the October 1 preceding the corresponding calendar year. Further, it is assumed that the trucks are sold and accumulate mileage according to a uniform distribution. These assumptions permit the estimation of the January 1 fleet mileage accumulation rate distribution and the January 1 registration distribution from July 1 information. An example of the travel weighting fraction calculation is given in Table 1.6.5. 6.D EMISSION CORRECTION FACTORS The LDDT basic exhaust emission levels are based on test results under the standardized conditions defined in Chapter 1. However, the basic exhaust emission levels are affected by ambient and truck usage conditions which differ from the prescribed test procedure. The conditions under which LDDT emissions are known to vary are the average speed, and fraction of VMT in cold and hot start operating modes. Emission correction factors are available to compensate for these conditions. Use of air conditioning, carrying of an extra load, trailer 47------- towing, and humidity levels may affect LDDT emissions, but no information is available to estimate the effects. 6.D.I Speed Correction Factor The test procedure used for collecting the basic exhaust emissions is a driving cycle with an average speed of 19.6 mph. For those situations where the average speed of the truck deviates from this value, a speed correction factor is applied. The LDDT emission cycle speed correction factor equation and coefficients are given in Table 1.6.6. The LDDT speed correction factor is normalized to 19.6 and is identical to the LDDV speed correction factor. The user is cautioned that this correction factor is only valid for speeds in the 5 through 55 mph range since the regression equations were based on speed data in that range. Extrapolations to speeds beyond this range should not be made. 6.D.2 Emission Temperature Correction Factor The emissions of LDDV's may be somewhat dependent on temperature, but that dependence is thought to be much less for diesel vehicles than for gasoline vehicles. Also, EPA has no data on emissions from diesel vehicles at different temperatures. Therefore, the temperature coefficients for LDDV's are all zeros, and result in a conversion factor of unity at all temperatures. 6.D.3 Temperature/Operating-Mode Emission Correction Factor A single emission correction factor called OMTCF adjusts for speed, and operating-mode conditions that differ from the basic test procedure. As described in Chapter 1, OMTCF depends on normalized bag fractions. The LDDT normalized bag fractions are given in Table 1.6.7. 48------- Chapter 7 HEAVY DUTY DIESEL POWERED VEHICLES 7.A INTRODUCTION This chapter presents the emission factors for the heavy duty diesel powered vehicles (HDDV). A HDDV is defined to be any diesel fueled motor vehicle designated primarily for the transportation of property and rated at more than 8,500 pounds of gross vehicle weight (GVW). Supplementary emission factors for diesel transit buses are found in Appendix N. 7.A.I Test Procedure The test procedure used for determining the HDDV basic exhaust emissions is almost identical to the HDGV test procedure. The major difference between the two test procedures is the test cycle. The HDDV test procedure is similar to the one for HDGVs. Therefore, refer to Chapter 4 for a brief overview. The specific differences are as follows: 1. The HDDV test procedure estimated cycle speed is 19.45 mph with 36% idle operation. 2. The HDDV test procedure has the estimated trip length of 6.4 miles. 3. NOx is not corrected for humidity. 7.A.2 General Emissions Calculation Equations To calculate the HDDV emissions, the following generalized equations are used: a. COMPEF = SUMi[TFin * (BERipn - OFFMTHi) * SCFps] b. lEFnp = SUMi[(IERipn - OFFMTH) * TFin] where the lower case letters are subscripts, and: COMPEF = The basic fleet exhaust emission factors in grams per mile on January 1 of calendar year n for pollutant p and average speed s. SUMi [ ] = The summation over 20 model years from i=n-19 to i=n, where n is the calendar year. BERipn = The basic exhaust emission level in grams/mile for model year i and pollutant p on January 1 of calendar year n. 49------- OFFMTHi = The methane offset of total HC for model year i. This variable is only applied to HC emissions and is defined in Section E of the INTRODUCTION. TFin = The model year i fraction of the total HDDV miles driven on January 1 of calendar year n. SCFps = The speed correction factor for pollutant p at the average speed of s. lEFnp = The idle exhaust emission factors in grams/minute on January 1 of calendar year n for pollutant p. lERipn = The idle exhaust emission level in grams/minute for model year i and pollutant p on January 1 of calendar year n. 7.B EMISSIONS This section discusses the emission estimates for the HDDVs. The four subsections are (1) basic exhaust emission rates, (2) crankcase and evaporative HC emission levels, (3) January 1 basic exhaust emission levels, and (4) idle exhaust emission rates. The emission standards are given in Section A.1.4 of Appendix A. The emissions reflect vehicles which have received typical in-use maintenance. Further, the vehicles are not involved in an I/M program. The conversion factors which are used to convert the emissions in g/bhp-hr to emissions in g/mi were substantially updated from previous versions of mobile source emission factors. These conversion factors are dependent on projected sales in the different weight classes of the heavy duty gasoline vehicles and their respective fuel economies. A complete discussion of the development of these conversion factors is found in the EPA report "Heavy Duty Vehicle Emission Conversion Factors, 1962-1997", EPA-AA-SDSB-84-1 [3]. 7.B.I Basic Exhaust Emission Rates The HDDV basic emission rates are given in Table 1.7.1. This table presents the HDDV zero mile emission levels and emission deterioration rates for every model year. From the HDDV test procedure, emissions are measured in grams per brake horsepower-hour. However, the emissions in this section are given in grams per mile for consistency. 7.B.2 Crankcase and Evaporative HC Emission Levels HDDVs are considered to have insignificant crankcase and evaporative HC emission levels. Therefore, no emission estimates are given. 50------- 7.B.3 January 1 Basic Exhaust Emission Levels The January 1, 1980 through 2003, HDDV basic exhaust emission levels are given in Tables 1.7.2A through 1.7.2C for HC, CO, and NOx, respectively. The basic exhaust emission levels reflect total, rather than nonmethane, HC emissions. 7.B.4 Idle Exhaust Emission Rates (Hot Stabilized) The HDDV hot stabilized idle exhaust emission rates are given in Table 1.7.3. These emissions are measured in grams per minute and reflect engines operating in a hot stabilized condition. 7.C TRAVEL WEIGHTING FRACTIONS The HDDV travel weighting fractions are the individual model year proportions of the total HDDV VMT. To generate the HDDV travel weighting fractions, two distributions are required: (1) the fleet annual mileage accumulation rate distribution and (2) the registration distribution. The registration distribution and the VMT distribution for 1978 are given in Table 1.7.4. More detailed information is available in Chapter 1 and Appendix F on these distributions. The travel weighting fractions in this document reflect a January 1 evaluation date. For the HDDVs, the model years are assumed to begin sales on January 1. Further, it is assumed that the vehicles are sold and accumulate mileage according to a uniform distribution. These assumptions permit the estimation of the January 1 fleet mileage accumulation rate distribution and the January 1 registration distribution from July 1 information. The travel weighting fractions are given in Table 1.7.5. 7.D. EMISSION CORRECTION FACTORS The HDDV basic exhaust emission levels are based on test results under the standardized conditions defined in Section 4.A.I of Chapter 4 and Section 7.A.I. However, the basic exhaust emission levels are affected by ambient and vehicle usage conditions which differ from the prescribed test procedure. The conditions under which HDDV emissions are known to vary are the average speed and ambient temperature. Emission correction factors are available to compensate for these conditions. 7.D.I Speed Correction Factor The test procedure used for collecting the basic exhaust emissions is a transient engine cycle with an estimated speed of about 20.0 mph. For those situations where the average speed of the vehicle deviates from this value, a speed correction factor is applied. The HDDV speed 51------- correction factor equation is as follows: SCFips = EXP(Aip + Bip*s + Cip*sz) where SCFips = The correction factor for model year i and pollutant p at the average speed of s. EXP = The exponential function Aip = The speed correction factor intercept coefficient for model year i and pollutant p. Bip = The speed correction factor first order coefficient for model year i and pollutant p. Cip = The speed correction factor second order coefficient for model year i and pollutant p. The coefficients for the speed correction factor equations are given in Table 1.7.6. The speed correction factors are only valid for speeds in the 5 through 55 mph range. Further, the speed correction factors are normalized to 20.0 mph. 7.D.2 Emission Temperature Correction Factor The emissions of HDDVs may be somewhat dependent on temperature, but that dependence is thought to be much less for diesel vehicles than for gasoline vehicles. Also, EPA has no data on emissions from diesel vehicles at different temperatures. Therefore, the temperature coefficients for HDDVs are all zeros, and result in a conversion factor of unity at all temperatures. 52------- Chapter 8 MOTORCYCLES 8.A INTRODUCTION A motorcycle is defined as any motor vehicle designed to travel with not more than three wheels in contact with the ground, and weighing less than 1,500 pounds. The MC fleet is composed of six engine size-type combinations: small, medium, and large engine sizes, each size having two-stroke and four-stroke engine types. Small or Class I motorcycles have engine displacements in the 50 cubic centimeter (cc) through 169 cc range. Medium or Class II motorcycles have engine displacements in the 170 cc through 279 cc range. Large or Class III motorcycles have engine displacements in the 280 cc and over range. 8.A.I Test Procedure With the exception of the Class I motorcycles, the MC basic exhaust emission test procedure is similar to the LDGV test procedure. Therefore, with the one class exception, the summary of the test procedure in Chapter 1 is correct for the MCs. Given below is a list of Class I motorcycle test procedure summary statistics that differ from the LDGV test procedure. 1. Average speed is 17.8 mph. 2. Average percent VMT in cold start operation is 18.3%. 3. Average percent VMT in hot start operation is 24.2%. 4. Average percent VMT in the stabilized operation is 57.5% 5. Average trip length is 6.8 miles. 6. Test segment #1 (cold start) and #3 (cold start) each have an average trip length of 2.89 miles and speed of 20.6 mph. 7. Test segment #2 (stabilized) has the average trip length of 3.91 miles and speed of 16.2 mph. 8.A.2 General Emission Calculation Equations The MC generalized equations are almost identical to the LDGV equations. The differences are three optional emission correction factors that are not applicable for MCs: air conditioning, extra load, and trailer towing. Also, the effects of tampering are not included for motorcycles. With these four exceptions, the MC emission factors 53------- calculating equations are identical to the LDGV equations given in Chapter 1. 8.B EMISSIONS This section discusses the MC emission estimates: Basic exhaust emission rates, crankcase and evaporative HC emission levels, January 1 basic exhaust emission levels, and idle exhaust emission rates. The emission standards are given in Section A.1.5 of Appendix A. The emissions reflect motorcycles which have received typical in-use maintenance. Further, the motorcycles are not involved in an I/M program. With the exception of the six engine size-type combinations being sales weighted, the discussions of the different emissions in Chapter 1 are also valid for the MCs. Therefore, the discussions will not be reiterated. Refer to Chapter 1 for the discussions that correspond to the subsections below. Further, it is assumed that the MC emissions reflect exactly the standarized test conditions described in Chapter 1. 8.B.I Basic Exhaust Emission Rates The MC basic exhaust emission rates are given in Table 1.S.1A. This table presents the MC zero mile emission levels and emission deterioration rates for every model year. The emissions are measured in grams per mile. 8.B.2 Crankcase and Evaporative HC Emission Levels The MC crankcase and evaporative HC emission levels are given in Table 1.8.IB. This table presents the emissions for every model year and emission component: diurnal losses, hot soak losses, and crankcase losses. 8.B.3 January 1 Basic Exhaust Emission Levels January I, 1980 through 2003, MC basic exhaust emisson levels are given in Table 1.8.2A through 1.8.2C for HC, CO, and NOx, respectively. The HC basic exhaust emission levels reflect total rather than nonmethane HC emissions and include crankcase and evaporative HC levels. 8.B.4 Idle Exhaust Emission Rates (Hot Stabilized) The MC hot stabilized idle exhaust emission rates are given in Table 1.8.3. These emissions are measured in grams per minute and reflect engines operating in a hot stabilized condition. 8.C TRAVEL WEIGHTING FRACTIONS The MC travel weighting fractions are the individual model year proportions of the total MC VMT. To generate the MC travel weighting fractions, two distributions are required: (1) the fleet annual mileage accumulation rate distribution and (2) the registration distribution. 54------- These two distributions are given in Table 1.8.4. More detailed information is available in Chapter 1 on these distributions. The travel weighting fractions in this document reflect a January 1 evaluation date. For the MCs, the model year is assumed to begin sales on January 1. Further, it is assumed that the motorcycles are sold and accumulate mileage according to a uniform distribution. These assumptions permit the estimation of the January 1 fleet mileage accumulation rate distribution and the January 1 registration distribution from July 1 information. The travel weighting fractions are given in Table 1.8.5. 8.D EMISSION CORRECTION FACTORS The MC basic exhaust emission levels are typically based on test results under the standardized conditions defined in Chapter 1. However, the basic exhaust emission levels are affected by ambient and usage conditions which differ from the prescribed test procedure. The conditions under which emissions are known to vary are the average speed, ambient temperature, fraction of VMT in cold and hot start operating conditions, and humidity level. Emission correction factors are available to compensate for these varying conditions. The MC emission correction factors are based on the LDGV information and the discussions in Chapter 1 are valid for MCs. 8.D.I Speed Correction Factor The test procedure used for collecting the basic exhaust emissions is typically a driving cycle with an average speed of 17.8 mph. For those situations where the average speed of the MC deviates from this value, a speed correction factor is applied. The MC speed emission correction factor is given in Table 1.8.6. 8.D.2 Emission Temperature Correction Factor The established motorcycle emissions test procedure requires an ambient test temperature between 68°F and 86°F. For those situations where the ambient temperature is not 75°F, an emission temperature correction factor is applied. Table 1.8.7A presents this correction factor for the MCs. 8.D.3 Temperature/Operating-Mode Emission Correction Factor A single emission correction factor called OMTCF adjusts for temperature, and operating-mode conditions that differ from the basic test procedure. As described in Chapter 1, OMTCF depends on normalized bag fractions. The MC normalized bag fractions are given in Table 1.8.7B. 8.D.4 NOx Humidity Correction Factor The NOx humidity in correction factor equation is the same as for LDGVs. 55------- References for Part 1 1. "Compilation of Air Pollutant Emission Factors: Highway Mobile Sources", EPA 460/3-81-005, Office of Mobile Sources, U.S. Environmental Protection Agency, Ann Arbor, MI 48105, March 1981. 2. "Evapaporative HC Emissions for MOBILES", TEB-EF-85-01, Office of Mobile Sources, U.S. Environmental Protection Agency, Ann Arbor, MI 48105, August 1985. 3. "Heavy-Duty Vehicle Emission Conversion Factors 1962-1997", SDSB-84-01, Office of Mobile Sources, U.S. Environmental Protection Agency, Ann Arbor, MI 48105, August 1984. 4. "Fleet Characterization Data Used for MOBILES", TEB-EF-84-02, Office of Mobile Sources, U.S. Environmental Protection Agency, Ann Arbor, MI 48105, August 1984 5. Users Guide to MOBILES, EPA 460/3-84-002, Office of Mobile Sources, U.S. Environmental Protection Agency, Ann Arbor, MI 48105, June 1984. 6. "Anti-Tampering and Anti-Misfueling Programs to Reduce In-Use Emissions from Motor Vehicles", TSS-83-10, Office of Mobile Sources, U.S. Environmental Protection Agency, Ann Arbor, MI 48105, December 1983. 6. "Proposal for 1980 and Earlier Light-Duty Gas Vehicle Emission Factors for MOBILES", Office of Mobile Sources, Test and Evaluation Branch, U.S. Environmental Protection Agency, Ann Arbor, MI 48105, December 1983. 56------- Appendix A NEW VEHICLE EMISSION STANDARDS This appendix presents the emission standards assumed in this document. At the time of the MOBILE3 release, these standards represent current and projected standards. However, it is possible that some of the assumed standards are now different due to changes in regulations, waivers, etc. A.I LOW AND HIGH ALTITUDE NON-CALIFORNIA HIGHWAY VEHICLE EMISSION STANDARDS This section presents the emission standards for the eight low and high altitude non-California vehicle types. The standards are presented in five subsections. The light duty vehicle and light duty truck fleets are comprised of both diesel and gasoline powered vehicle types. The pre-1979 model year LDGT2s are heavy duty vehicles while the 1979 and later model years are light duty trucks. Finally, the high altitude standards are included in this section since there are few emission standards specific to the high altitude vehicle types. All hydrocarbon emission standards in this section are presented for total hydrocarbon emissions.------- A-2 A.1.1 Light Duty Vehicles The following standards, up through 1974, apply only to gaso. light duty vehicles. Standards for 1975 and later apply to be and diesel powered light duty vehicles1. Year Prior to controls 1968-69 1970 1971 1972 1973-74 1975-76 19776 1978-79 1980 1981 198210 198310 1984-861 1987 & ... 11 later Test Procedure2 7 -mode 7 -mode CVS-75 7 -mode 50-100 CID 101-140 CID over 140 CID 7 -mode 7 -mode CVS-72 CVS-72 CVS-75 CVS-75 CVS-75 CVS-75 CVS-75 CVS-75 CVS-75 1CVS-75 CVS-75 Hydro- carbons 850 ppm 11 gpm 8 . 8 gpm 410 ppm 350 ppm 275 ppm 2 . 2 gpm 2 . 2 gpm 3 . 4 gpm 3 . 4 gpm I . 5 gpm 1 . 5 gpm 1 . 5 gpm 0.41 gpm 0.41 gpm 0.41 gpm (0.57) 0.41 gpm (0.57) 0.41 gpm (.41) 0.41 gpm (.41) Carbon Monoxide 3.4% 80 gpm 87.0 gpm 2.3% 2.0% 1.5% 23 gpm 23 gpm 39 gpm 39 gpm 15 gpm 15 gpm 15 gpm 7 . 0 gpm 3 . 4 gpm 7 3.4 gpm7 (7.8) 3 . 4 gpm (7.8) 3 . 4 gpm (3.4) 3 . 4 gpm (3.4) Oxides of E Nitrogen i 1000 ppm 4 gpm 3 . 6 gpm - - - - 3 . 0 gpm 3 . 1 gpm 2 . 0 gpm 2 . 0 gpm 2 . 0 gpm 1.0 gpm8'9 1.0 gpm8'9 (1.0)' 1 . 0 gpm (l.O)8 1.0 gpm (1.0) 1 . 0 gpm (1.0) >artic- ilates3 - - - - - - - - - - - 0.6 (-) 0.6 (-) 0.6 (-) 0.2 (-) Evaporative Hydrocarbons' 6.0 g/test 2.0 g/test 2.0 g/test 2.0 g/test 2.0 g/test 6.0 g/test 6.0 g/test 2.0 g/test 0.6 gpm 2.0 g/test (2.6) 0.6 gpm 2.0 g/test (2.6) 0.6 gpm 2.0 g/test (2.0) 0.2 gpm 2.0 g/test (2.0)------- A-3 LIGHT DUTY VEHICLES 1 Standards do not apply to vehicles with engines less than 50 CID from 1968 through 1974. 2 Different test procedures have been used since the early years of emission control which vary in stringency. The appearance that the standards were relaxed from 1971 to 1972 is incorrect. The 1972 standards are actually more stringent because of the 1972 test procedure. 3 Applies only to diesels. 4 Evaporative emissions determined by carbon trap method through 1977, SHED procedure beginning in 1978. Applies only to gasoline-fueled vehicles. 5 Evaporative standard does not apply to off-road utility vehicles for 1971. 6 Cars sold in specified high altitude counties are required to meet standards at high altitude. 7 Carbon monoxide standard can be waived to 7.0 gpm for 1981-82 by the EPA Administrator. 8 Oxides of nitrogen standard can be waived to 1.5 gpm for innovative technology or diesel. 9 Oxides of nitrogen standard can be waived to 2.0 gpm for American Motors Corporation. 10 Standards in parentheses apply to vehicles sold in specified high altitude counties. Vehicles eligible for a carbon monoxide waiver to 7.0 gpm at low altitude are eligible for a waiver to 11 gpm at high altitude. 11 Standards in parentheses apply to vehicles sold in specified high altitude counties. gpm - grams per mile CID - cubic inch displacement CVS-72 - constant volume sample cold start test CVS-75 - constant volume sample test which includes cold and hot starts 7-mode - 137 second driving cycle test ppm - parts per million------- A-4 A.1.2 Light Duty Trucks The following standards, up through 1975, apply only to gasoline powered light duty trucks. Standards for 1976 and later apply to both gasoline and diesel powered light duty trucks1. Year Prior to controls 1968-69 1970 1971 1972 1973-74 1975-776 1978 1979-807 1981 1982-838 1984-869 1987 & later9 Test Hydro- Procedure2 carbons 7 -mode 850 7 -mode 11 CVS-75 8.8 7 -mode 50-100 CID 410 101-140 CID 350 over 140 CID 275 7 -mode 7 -mode CVS-72 CVS-72 CVS-75 CVS-75 CVS-75 CVS-75 CVS-75 CVS-75 CVS-75 2 2 3 3 2 2 I 1 1 0 0 .2 .2 .4 .4 .0 .0 .7 .7 .7 (2 .8 (1 .8 (1 ppm gpm gpm ppm ppm ppm gpm gpm gpm gpm gpm gpm gpm gpm gpm .0) gpm .0) gpm .0) Carbon Monoxide 3.4% 80 gpm 87 . 0 gpm 2.3% 2.0% 1.5% 23 23 39 39 20 20 18 18 gpm gpm gpm gpm gpm gpm gpm gpm 18 gpm (26) 10 ( 10 ( gpm 14) gpm 14) Oxides of Nitrogen 1000 ppm 4 gpm 3 . 6 gpm 3.0 3.1 3.1 2.3 2.3 2.3 (2 2.3 (2 1.2 (1 - - - gpm gpm gpm gpm gpm gpm .3) gpm .3) gpm .2) Partic- Evaporative ulates3 Hydrocarbon - - 6 2 2 2 6 6 2 0 . 6 gpm 2 (-) 0 . 6 gpm 2 (-) 0.26 gpm 2 (-) .0 .0 .0 .0 .0 .0 .0 .0 (2 .0 (2 .0 (2 - - g/tests g/test g/test g/test g/test g/test g/test g/test .6) g/test .6) g/test .6)------- A-5 LIGHT DUTY TRUCKS 1 Standards do not apply to trucks with engines less than 50 CID from 1968 through 1974. 2 Different test procedures have been used since the early years of emission control which vary in stringency. The appearance that the standards were relaxed from 1971 to 1972 is incorrect. The 1972 standards are actually more stringent because of the 1972 test procedure. 3 Applies only to diesels. 4 Evaporative emissions determined by carbon trap method through 1977, SHED procedure beginning in 1978. Applies only to gasoline fueled trucks, 5 Evaporative standard does not apply to off-road utility trucks for 1971. 6 Trucks sold in specified high altitude counties required to meet standards at high altitude (1977 only). 7 Effective in 1979, light duty truck classification was extended from 0-6,000 pounds GVWR to 0-8,500 pounds GVWR. 8 Standards in parentheses apply to trucks sold in specified high altitude counties. 9 Standards in parentheses apply to trucks sold in specified high altitude counties. gpm - grams per mile CID - cubic inch displacement , CVS-72 - constant volume sample cold start test CVS-75 - constant volume sample test which includes cold and hot starts 7-mode - 137 second driving cycle test ppm - parts per million GVWR - gross vehicle weight rating------- A-6 A.1.3 Heavy Duty Gasoline Powered Engines and Vehicles The following is a summary of gasoline powered heavy duty engine and vehicle standards1. Hydrocarbons Year 1970-73 1974-78 19793'"'5 1980-843 1985-86 1987 & later7 Hydro- carbons 275 ppm - 1.5 g/bhp-hr 1.0 g/bhp-hr 1.5 g/bhp-hr 2.5 g/bhp-hr 1.3 g/bhp-hr 2.5 g/bhp-hr Carbon Monoxide 1.5% 40 g/bhp-hr 25 g/bhp-hr 25 g/bhp-hr 25 g/bhp-hr 25 g/bhp-hr 25 g/bhp-hr 40.0 g/bhp-hr 15.5 g/bhp-hr 40.0 g/bhp-hr Oxides of Nitrogen - - - + Oxides of Nitrogen 16 g/bhp-hr 10 g/bhp-hr 9.5 g/bhp-hr 5 g/bhp-hr 10 g/bhp-hr 5 g/bhp-hr 10.7 g/bhp-hr 6.0 g/bhp-hr 6.0 b/bhp-hr Evaporative Hydrocarbons - - - 3.0 g/test 4.0 g/test6 3.0 g/test 4.0 g/test 1 Test procedure for 1970-1983 standards is the 9-mode test procedure. Test procedure for 1985 and later is the transient test procedure although manufacturers may use the 9-mode test with an alternate set of standards (not shown). 2 Evaporative emissions determined by the SHED procedure. 3 Manufacturers may chose among the set of standards listed. 4 Standards of 1.0 HC, 25 CO, and 9.5 NOx are used if NDIR HC measurement method is used. 5 Effective in 1979, heavy duty vehicle classification was changed from 6,001 pounds and greater GVWR to 8,501 pounds and greater GVWR. 6 3.0 g standard applies to HDGVs less than 14,000 Ibs. GVW, and 4.0 g standard applies to HDGV's over 14,000 Ibs. 7 The 1.3/15.5/6.0/3.0 standards apply to HDGV's less than 14,000 Ibs. GVW, the 2.5/40.0/6.0/4.0 standards apply to trucks over 14,000 Ibs. GVW. NOTE: g/bhp-hr = grams per brake horsepower-hour ppm = parts per milion------- A-7 A.1.4 Heavy Duty Diesel Powered Engines and Vehicles The following is a summary of diesel powered heavy duty engine and vehicle standards1. Year 1970-73 1974-78 1985-86' 1987 & later Hydro- carbons Carbon Monoxide Hydro- carbons +• Oxides, of Oxides of Nitrogen Nitrogen Partic- ulates 40g/bhp-hr 16g/bhp-hr 1979-842'3 1.5g/bhp-hr 25g/bhp-hr lOg/bhp-hr - 0.5g/bhp-hr 15.5g/bhp-hr 9.0g/bhp-hr 1.3g/bhp-hr 15.5g/bhp-hr 10.7g/bhp-hr - 1.3g/bhp-hr 15.5g/bhp-hr 6.0g/bhp-hr - Smoke ACCEL 40% LUG 20% opacity ACCEL 20% LUG 15% PEAK 20% opacity ACCEL 20% LUG 15% PEAK 50% opacity ACCEL20% LUG 15% PEAK 50% opacity ACCEL 20% LUG 15% PEAK 50% opacity 1 Test procedure for 1970-1983 standards is the 13-mode test procedure. Test procedure for 1985 and later is the transient test procedure. Both test procedures measure in grams per brake horsepower-hour. 2 Effective in 1979 the heavy duty vehicle classification was changed from 6,001 pounds and greater GVWR to 8,501 pounds and greater GVWR. 3 Standards of 0.5 HC, 15.5 CO, and 9.0 NOx are optional standards for 1984 diesels tested on the 13-mode test procedure. g/bhp-hr - grams per brake horsepower-hour ppm - parts per million------- A-8 A.1.5 Motorcycles The following is a summary of motorcycle standards. Carbon Year Displacement1 Hydrocarbons Monoxide 1978-79 50-169 5.0 g/km 17 g/km 170-749 5.0 + 0.0155(0-170) 17 g/km g/km2 750 & larger 14 g/km 17 g/km 1980 & All (50 & larger) 5.0 g/km 12 g/km later 1 Displacement shown in cubic centimeters 2 Motorcycle Hydrocarbon Formula D = engine displacement in cubic centimeters e.g., 300 cc engine -- HC Standard = (300-170) X .0155 + 5.0 = 7.0 g/km g/km - grams per kilometer------- Appendix B CALCULATION OF THE VMT MIX The proportion of the total vehicle-miles-traveled (VMT) driven by a given vehicle type depends entirely on (a) the number of vehicles, (b) the model year registration distribution, and (c) the mileage accumulation rate distribution. Also, as light duty diesel powered vehicles and trucks become a larger proportion of their respective fleets, their VMT proportions will increase. As the diesel powered vehicle type VMT fractions increase, the corresponding gasoline powered vehicle type VMT fractions will decrease. The MOBILES computer program calculates the VMT mix unless a user inputs locality specific information. The calculation procedure is based on the estimated number of vehicles and the average annual miles driven for each vehicle type. The product of these two variables estimates the total miles driven on January 1 of a calendar year for each vehicle type. By performing this calculation for each vehicle type and summing the results, the total miles driven on January 1 for the entire highway mobile source fleet are estimated. Finally, by normalizing the individual vehicle type total miles, the VMT fractions are estimated. Specifically, the MOBILES computer program performs the calculations in subprogram TFCALX with the following equations: MILES(IV) = VCOUNT(IV)*GSFVCT(IV)*TFNORM(IV) TOTVMT = SUMiv[MILES(IV)] VMTMIX(IV) = MILES(IV)/TOTVMT where TOTVMT = IV VMTMIX(IV) = VCOUNT(IV) = the total miles traveled by the entire highway mobile source fleet. the vehicle type index (1 = LDGV, 2 = LDGT1, 3 = LDGT2, 4 = HDGV, 5 = LDDV, 6 = LDDT, 7 = HDDV, and 8 = MC). the estimated VMT fraction for vehicle type IV. the estimated vehicle count for vehicle type IV based on 1981 registrations. To use the dieselization rates, VCOUNT(l) = VCOUNT(5) and VCOUNT(2) + VCOUNT(3) = VCOUNT(6). This implies that the LDDVs and LDGVs are combined------- B-2 GSFVCT(IV) = to become the light duty vehicle fleet. Similarly, the LDGTls, LDGT2s and LDDTs are combined to become the light duty truck fleet. Both the light duty vehicle and truck fleets are adjusted by fleet sales fractions to separate the diesel from the gasoline powered vehicles/trucks. fraction of each total (gas + diesel) vehicle counts that are either gas or diesel. GSFVCT (1) = DAF (1)/(DAF(1) + DAF(5)), where DAF is the fleet sum of the product of the registration distribution and the diesel sales fractions by model year in a given calendar year. The DAF values change with calendar year. For an example of how the DAF values are estimated, refer to the .5 tables in Appendix H. For the gas/diesel sales fractions for each model year of LDVs and LDTs refer to Table B.I. TFNORM(IV) = the registration weighted average of annual miles driven by each vehicle of vehicle type IV. The values are illustrated in each table .5 of Appendix H (denoted as TFNORM at the bottom of the C*D column). MILES(IV) = the estimated miles driven by vehicle type IV. SUMiv = the summation over the eight vehicle types. An example of the VMT mix calculation follows. This example is based on information readily available. Using the example travel weighting factor calculation tables and the 1981 registration counts1 example for January 1, 1988 is as follows: the VMT mix VCOUNT(l) = VCOUNT(2) = VCOUNT(3) = 105,839,000 18,072,000 11,506,000 EPA Report, August,1984, "Fleet Characterization EPA-AA-TEB-84-6 Data Used for MOBILES",------- B-3 VCOUNT(4) VCOUNT(5) VCOUNT ( 6 ) VCOUNT(7) VCOUNT(8) GSFVCT(l) GSFVCT(2) GSFVCT(3) GSFVCT(4) GSFVCT(5) GSFVCT(6) GSFVCT(7) GSFVCT(8) TFNORM(l) TFNORM(2) TFNORM(3) TFNORM(4) TFNORM(5) TFNORM(6) TFNORM(7) TFNORM(8) MILES(1)= MILES(2)= MILES(3)= MILES(4)= MILES{5)= MILES(6)= MILES(7)= MILES(8)= 4,650,000 = 105,839,000 29,578,000 1,640,000 5,600,000 = 0.902/(.902 + .044) = .954 = 0.876/(.876 + .080) = .916 = 0.876/(.876 + .080) = .916 = 1.000 = 0.044/(.902 + .044) = .046 = 0.080/(.876 + .080) = .083 = 1.000 = 1.000 = 9,518.0 = 10,909.0 = 11,245.4 = 13,015.0 = 10,871.3 = 14,765.6 = 45,860.0 = 1,924.0 (105,839,000)*( .954)*( 9,518. ( 18,072,000)*( .916)*(10,909. ( 11,506, 000)*( .916)*(11,245. ( 4,650,000)*(1.000)*(13,015. (105,839,000)*( .046)*(10,871. ( 29,578,000)*( .083)*(14,765. ( 1,640,000)*(1.000)*(45,860. ( 5,600,000)*(1.000)*( 1,924. 0) = 9.61 x 101 ' miles 0) = 1.81 x 101 ' miles 4) = 1.19 x 101 l miles 0) = 0.61 x 101 : miles 3) = 0.53 x 10l ' miles 6) = 0.36 x 101 l miles 0) = 0.75 x 10l : miles 0) = 0.11 x 1011 miles Total 14.97 x 10 ll miles VMTMIX(l) VMTMIX(2) VMTMIX(3) VMTMIX(4) VMTMIX(5) VMTMIX(6) VMTMIX(7) VMTMIX(8) = 9.61/14.97 = .648 = 1.81/14.97 = .122 = 1.19/14.97 = .080 = 0.61/14.97 = .041 = 0.53/14.97 = .036 = 0.36/14.97 = .021 = 0.75/14.97 = .050 = 0.11/14.83 = .008------- B-4 Table B.I Gasoline/Diesel Sales Fractions for LDVs and LDTs (used in MOBILES also) MODEL YEAR Pre-1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 LDGV 1.000 0.997 0.997 0.996 0.991 0.972 0.966 0.939 0.954 0.947 0.940 0.934 0.927 0.920 0.910 0.900 0.887 0.887 0.886 0.886 0.885 LDDV 0.000 0.003 0.003 0.004 0.009 0.028 0.034 0.061 0.046 0.053 0.060 0.066 0.073 0.080 0.090 0.100 0.113 0.113 0.114 0.114 0.115 LDGT (1&2) 1.000 0.998 0.997 0.995 0.991 0.972 0.966 0.940 0.920 0.900 0.870 0.840 0.820 0.790 0.760 0.730 0.706 0.697 0.688 0.679 0.670 LDDT 0.000 0.002 0.003 0.005 0.009 0.028 0.034 0.060 0.080 0.100 0.130 0.160 0.180 0.210 0.240 0.270 0.294 0.303 0.312 0.321 0.330 1995+ 0.885 0.115 0.661 0.339------- Appendix C CALCULATION PROCEDURE TO COMBINE THE EMISSION RESULTS OF THE TWO LIGHT DUTY GASOLINE POWERED TRUCK CLASSES Frequently air quality analyses require the use of one light duty gasoline powered truck vehicle type as opposed to two. However, emission factors are presented for two truck types: LDGT1 and LDGT2. As a result, a procedure has been developed which will combine the two truck types. This appendix describes this procedure. The procedure simply combines the calculated emission factors of each truck type on the basis of VMT. To illustrate this, a hypothetical example is used. Suppose that on January 1, 1988, the LDGT1 and LDGT2 calculated CO emission factors are 39.3 and 43.4 grams/mile; respectively. Further, assume that the LDGT1 and LDGT2 proportions of the total fleet VMT are 12.2 percent and 8.0 percent; respectively. Finally assume that the entire fleet travels 14.83 x 1011 miles. From this example the combined truck types travel the following miles on January 1, 1988: (14.83 x 1011 miles)*(.122) + (14.83 x 1011 miles) (.080) Further, the total grams emitted by the combined truck types are as follows: (1.81 x 1011 miles)(39.3 g/mi)-i-(l. 19 x 101 1miles)*(43.4g/mi) As a result, the calculated CO gram/mile emission factor estimate for the combined truck type is as follows (total grams/total miles): (14.83x10* ^iles) ( . 122 ) ( 39. 3g/mi ) + (14 . 83x101 ^ilesH . 080) (43 .g/mi) (14.83 x 1011 miles) (.122) + (14.83 x 10llmiles) (.080) or, (.122) (39.3 q/mi) + (.080) (43.4 g/mi) =40.9 gm/mi (.122) + (.080) After simplifying the equation it becomes obvious that the combined LDGT vehicle type is a function of the calculated emission factors and the VMT fractions. The more generalized formula is as follows: VMT(LDGTl) x EF(LDGTl) + VMT(LDGT2) x EF(LDGT2) VMT(LDGTl) + VMT(LDGT2)------- Appendix D METHODOLOGY FOR CALCULATING JANUARY 1 TRAVEL WEIGHTING INFORMATION AND FLEET AVERAGE MILEAGE ACCUMULATION This appendix describes the derivation of January 1 registration distributions, the annual rate of mileage accrual for the fleets, and the fleet average mileage accumulation distributions. The January 1 registration and annual rate of mileage accrual distributions are used in the calculation of travel weighting fractions. The fleet average mileage accumulation distributions are used to estimate the January 1 emission levels by model year. D.I JANUARY 1 TRAVEL WEIGHTING INFORMATION The travel weighting fractions for a given vehicle type are the individual model year proportions of the total VMT for the vehicle type. To generate the travel weighting fractions, typically three distributions are required: (1) the annual mileage accrual rate per vehicle by age distribution, (2) the registration distribution, and (3) the fleet sales fraction distribution (to account for the influx of diesels). D.I.I January 1 Registration Distribution Transformations A portion of the January 1 travel fraction calculation procedure is to estimate the January 1 model year registration distribution for each vehicle type. The model year registration distribution, frequently referred to as the registration mix, begins with all model years combined for a given vehicle type and apportions them into their appropriate model year index (except for model year index 20 which represents all model years that were built 20 or more model years ago). At this phase of the registration mix development, the LDV and LOT model year registration distributions are composed of both the gasoline and diesel powered vehicle types. For the EPA MOBILES computer program, the initial model year registration distributions are assumed to be based on July 1 data. This July 1 information is then transformed into January 1 model year registration distributions. For vehicle types where model year sales are assumed to begin on October 1 (light duty vehicles and trucks), the original July 1 model year registration distribution accounts for approximately 75 percent of the current model year fleet. Using the assumption of uniform sales throughout the year, approximately 25 percent would have been sold------- D-2 by January 1 (or one-third of the July 1 registration). The older model year registration figures are six months older on July 1 than they are on January 1. However, no direct adjustment are made to these older model year registration figures. Although the difference between January 1 and July 1 for the older model vehicles is primarily scrappage, the older model year registration figures are adjusted later. Denoting the July 1 registration fractions as R(l), R(2), R(3), . . ., R(20+), we can generalize the January 1 light duty adjustment equations as follows: FIRST MODEL YEAR INDEX: 1/3*R(1) SECOND AND LATER MODEL YEAR INDEX: R(i), i = 2, 3, . . ., 20+ The second type of adjustment for the January 1 model year registration distributions is to account for the fleet sales fractions: The separation of the model year sales into diesel and gasoline powered vehicle types. The fleet sales fractions are given in Table B.I of Appendix B. As a result, the January 1 model year registration distributions are adjusted according to the following formulation: FIRST MODEL YEAR INDEX: l/3*R(l)*F(my) SECOND AND LATER INDEX: R(i)*F(my-i+l) F(my) is the fraction of the model year sales which are gasoline powered, if calculating the LDGV or LDGT registration distributions. F(my) is the fraction of the model year sales which are diesel powered, if calculating the LDDV or LDDT registration distributions. The last adjustment to estimate the January I model year registration distributions is to normalize the distribution such that the fractions sum to one. To accomplish this adjustment, the following procedure is used: DAF = SUMi[P(i)*R(i)*F(my-i+l)] where P(l) = 1/3 P(i) =1 i = 2, 3, . . ., 20 + R(i) = July 1 registration figures i = 1, 2, 3, ...» 20+ F(my-i+l) = the fleet sales fraction for model year my-i+1 and SUMi = the summation over the 20 model years.------- D-3 Then each January 1 registration P(i)*R(i)*F(my-i+l) figure is divided by DAF to estimate the January 1 registration mix. For vehicles whose model year sales begins on January 1 (heavy duty vehicles and motorcycles), there are two changes to the above normalization procedure. P(l) should be set to zero and every F(my-i+l) term should be set to 1. D.I.2 January 1 Annual Rate of Mileage Accrual for the Fleet The last aspect of calculating the travel weighting fractions is determination of the January 1 annual rate of mileage accrual. The methodology for calculating the average mileage accumulation rate will be explained by the following example: Calculation of the average annual mileage accumulation rate for the 1985 model year (MY) vehicles on January 1 of 1985, 1986, 1987 and later years. First the average annual mileage accumulation rate of the 1985 MY light duty vehicles on January 1, 1985, will be calculated (the calendar year when the vehicle model year index is one). It is assumed that mileage accrual is uniform throughout the year and that 1985 light duty model year sales begin on October 1, 1984. Using these assumptions, it is obvious that by January 1, 1985, all 1985 MY vehicles are less than one year old and accumulate mileage at the first year rate. The annual rates of mileage accural are presented in table .4 of Appendix H for each vehicle type. For the light duty gasoline powered vehicles, the annual mileage accrual rate for vehicles during their first year is 12,818 miles. By January 1, 1986, those vehicles that had been sold by January 1, 1985 have been on the road for an additional year and accumulate mileage at the second year annual rate of 12,102 miles. In addition to the 1985 model year vehicles sold before January 1, 1985, those 1985 MY vehicles sold after January 1 and before October 1, 1985, must be considered. Again by assuming uniform sales, approximately 75 percent of the 1985 model year vehicles are sold after January 1, 1985. Further, on January 1, 1986 these vehicles are still in their first year of mileage accumulation and are accumulating mileage at a 12,818 mile annual rate. Since the first group represents three months of sales and the second group represents nine months of sales, the average annual mileage accrual rate of 1985 MY vehicles on January 1, 1986 can be expressed as follows: (.25)*(12,102) + (.75)*(12,818)------- D-4 By extension, the formula for the average mileage accumulation rate of the 1985 MY vehicles on January 1, 1987 is as follows: (.25)*(11,427) + (.75)*(12,102) Denoting the average annual rate of mileage accrual during the first, second, and third year as M(l), M(2), and M(3); respectively, the generalized average annual mileage accumulation rate equations on January 1 are as follows: FIRST MODEL YEAR INDEX: M(l) SECOND MODEL YEAR INDEX: .25*M(2) + .75*M(1) THIRD MODEL YEAR INDEX: .25*M(3) + .75*M(2) Ith MODEL YEAR INDEX: .25*M(i) + .75*M(i-l) For the vehicle types whose model year sales begin on January 1 (heavy duty vehicles and motorcycles) the generalized formulae are as follows: FIRST MODEL YEAR INDEX: 0 Ith MODEL YEAR INDEX: M(i-l) D.2 JANUARY 1 FLEET AVERAGE MILEAGE ACCUMULATION To estimate the emission levels on January 1 for each model year (as in tables . 2A through . 2C for each vehicle type), the annual mileage accrual rate per vehicle by age distribution is used to derive the fleet average mileage accumulation distribution. The methodology for calculating the average January 1 fleet cumulative mileages will be explained by example: Calculation of the average cumulative mileage for the 1985 model year (MY) vehicles on January 1 of 1985, 1986, 1987, and later years. First, we calculate the average fleet cumulative mileage of the 1985 MY LDGVs on January 1, 1985 (the calendar year when the vehicle model year index is defined as one). We assume vehicle sales are uniform throughout the year, the mileage accrual is uniform throughout the year, and the 1985 model year sales begin on October 1, 1984. Using these assumptions, it is obvious that by January 1, 1985 (25 percent of the way through the sales year), approximately 25% of the 1985 model year vehicles will be sold. These vehicles range in age from 0 to 3 months. Assuming uniform sales, their average age is 1.5 months. Therefore, the average mileage accrual for these 1985 MY vehicles which have been sold by January 1, 1985, is 1,5/12, or .125, times the annual------- D-5 rate of mileage accrual for the first year. The annual rates of mileage accrual are presented in table .4 and .5 for each vehicle type. For LDGVs the annual mileage accrual rate for vehicles during their first year is 12,818 miles. By January 1, 1986, those vehicles sold before January 1, 1985 have been on the road for an additional year.1 Therefore, those vehicles have accumulated mileage for 1+(1.5/12) years, or 1.125 years. Referring to table .4 for the annual rates of mileage accrual, we can calculate the average cumulative mileage of these vehicles as the sum of the first year's mileage (12,818 miles) plus .125 times the second year annual rate (12,102 miles). In addition to the 1985 model year vehicles sold before January 1, 1985, we must consider those 1985 MY vehicles sold between January 1, 1985 and September 30, 1985. If we again assume uniform sales, then by January 1, 1986 these vehicles range in age from 3 months to 12 months, with an average age of 7.5 months. Since these vehicles are still in their first year of use on January 1, 1986, their average mileage accumulation on that date is 7.5/12, or .625, times 12,818 miles. The average cumulative mileage of all 1985 MY vehicles on January 1, 1986 is the sales weighted average of the cumulative mileages for these two groups of vehicles (those sold before January 1 and those sold after January 1). Since the first group represents three months of sales and the second group represents nine months of sales, the weighted average cumulative mileage of 1985 MY vehicles on January 1, 1986 can be expressed as follows: .25*[12818 + .125*12102] + .75*[.625*12818] By extension, the formula for the cumulative mileage of 1985 model year vehicles on January 1, 1987 is given by: .25*[12818 + 12102 + .125*11427 + .75*[12818 + .625*12102]. Denoting the average rate of mileage accumulation during the first, second, and third years as M(l), M(2), and M(3), we can generalize the equations for cumulative mileage on January 1 as follows: FIRST YEAR: .125*M(1) SECOND YEAR: .25*[M(1) + ,125*M(2)] + .75*[.625*M(1)] THIRD YEAR: M( 1) -t-. 25* [M( 2 ) + . 125*M( 3 ) ] + . 75* [ . 625*M( 2 ) ] Ith YEAR: M(1)+M(2)+...+M(i-2)+.25*[M(i-1)+.125*M(i)]+.75*[.625*M(i-1)] For vehicles whose sales year begins on January 1 (heavy duty vehicles and motorcycles) the formulae are modified as follows:------- D-6 FIRST YEAR: 0 SECOND YEAR: .5*M(1) THIRD YEAR: M(l) + M(2) + ... + M(i-2) + .5*M(i-l)------- Appendix E METHOD FOR DETERMINING EXCESS EMISSIONS DUE TO TAMPERING AND MISFUELING E.I Background Since 1978, EPA has conducted surveys of in-use vehicles, passenger cars and trucks in over seventeen states. During these surveys, EPA collected data regarding emission component disablements and misfueling from over 8,000 vehicles. One of these surveys, completed in 1982, collected data from nearly 3,000 cars in ten states. This 1982 survey was chosen as the data base with which to calculate current and future tampering rates for MOBILES. In order to estimate the excess emissions caused by tampering and misfueling on a future date, it is necessary to predict the tampering and misfueling rates when the average age of the vehicles will be older than that observed in the 1982 survey. Examination of the data from the 1982 survey shows a marked increase in misfueling rates, and in the tampering rates of some components, as the average mileage of the sample increases. To examine this issue, a linear regression equation on mileage was fit to data from the 1982 EPA survey and this equation appears to reasonably explain the tampering and misfueling rates observed in the surveys. Each linear equation is defined by a zero mile rate and an increase in the rate for every 10,000 miles of fleet average mileage. Other non-linear equations did not seem to better explain the increase. It was decided, therefore, to use the linear equation to estimate the tampering and misfueling rates using standard EPA predictions of the average age in miles of each model year on that date. Least squares regression was used to estimate a line of the form Y = BX + A, where Y is the proportion of tampered vehicles at mileage X. The data used to generate estimates of the regression coefficients, A and B, were the mileage and whether the vehicle was tampered (Y=l) or not (Y=0) for each vehicle in the 1982 tampering survey. The regression coefficients for various types of tampering are shown in Table E-l. In Table E-l, some linear equations contain negative zero mile rates. Since these negative levels are small, no effort has been made to force the equation through zero. However, if a tampering or misfueling rate for a particular model year is calculated to be less than zero in the evaluation year, that rate is set to zero. Also in Table E-l, overlap among tampering types is ignored, thus one car can contribute to several of the regression equations. The overall tampering rate at a given mileage is therefore less than the sum of these equations. However, when estimating the excess emissions due to tampering, it is necessary to explicitly account for vehicles with more------- E-2 than one form of tampering, since tampering effects are not always additive. The following sections will describe how this was done for each case. E.2 Discussion of Method The approach used begins with a single model year's vehicles. The calculation described below is performed for each of the last 19 model years, resulting in a total emissions impact for each from all forms of tampering combined. These 19 model year-specific impacts are then added using age-based vehicle miles traveled (VMT) fractions as weighting factors to arrive at the impact on the composite emissions of, for example, passenger cars of all ages. The description below is for passenger cars, but the same procedure can be used for light-duty trucks by substituting any truck-specific tampering rates, emission impacts, etc. The calculation consists of the following steps for each model year: A. Separate the model year into subgroups with distinct combinations of equipment, such that all cars in a subgroup are susceptible to the same types of tampering. Specifically, cars with air pumps and catalysts must be separated from cars with only air pumps and cars with only catalysts, since simultaneous air pump and catalyst tampering is possible for one subgroup but not the others. The sales fraction for each of these subgroups must be known; the necessary fractions are given in Tables E-2a and 2b. Because in a single model year all cars either have or do not have PCV and evaporative controls, and because the impacts of PCV and evaporative tampering are strictly additive to the impacts of misfueling, catalyst removal, and air pump disablement, there is no need to define subgroups based on PCV and evaporative equipment. B. Identify all the unique combinations of tampering that can occur on cars in each subgroup. These are as follows: Catalyst Air Air Pump/Catalyst Only Pump Only 1. Air Pump/Catalyst 2. Air Pump/Misfueling(Inlet) 3. Air Pump/Misfueling(0ther) 4. Air Pump/Catalyst/Misfueling(Inlet) 5. Air Pump/Catalyst/Misfueling(0ther) 6. Catalyst/Misfueling(Inlet) X 7. Catalyst/Misfueling(0ther) X 8. Air Pump Only X 9. Catalyst Only X 10. Misfueling(Inlet) Only X 11. Misfueling(Other) Only X------- E-3 In the above list, "Inlet" designates habitual misfueling accompanied by tampering of the inlet restrictor. "Other" designates habitual misfueling accomplished by other means, such as a small pump nozzle or a funnel. As before, PCV and evaporative tampering can be kept separate. Find the percentage of vehicles with each of the above unique combinations of tampering on the evaluation date assuming no special program to reduce tampering and misfueling. Since the tampering rates derived in Table E-l depend on mileage, the odometer of the model year on the evaluation date (always January 1) must be known. The mileage accumulation rate for LDGVs is given in Table 1.1.4 (Appendix H). Given an odometer value, the equations from Table E-l can be used to calculate the overall air pump rate (AIR), catalyst removal rate (CAT), the rate of misfueling via inlet tampering (INLET), and the rate of misfueling via other means (OTHER). These overall tampering rates are the sum of the rates for two or more of the above unique combinations of tampering. To calculate the individual rate for each unique combination, additional assumptions are necessary. To fill this need, EPA has assumed that the rate for a given overlap combination is always proportional to the overall rate of one or the other of the forms of tampering that make up the overlap combination. For example, EPA has had to assume that the rate of simultaneous air pump and catalyst tampering is 6.6% of the overall air pump tampering rate, regardless of any local variation in overall air pump tampering rate or overall catalyst tampering rate. (The figure of 6.6% was determined from the 1982 Tampering Survey data.) An exception is made if necessary to prevent a logical contradiction; in the example given, the rate of simultaneous air pump and catalyst tampering is never assumed to be larger than the overall rate of catalyst or air pump tampering. Similar assumptions are made for other overlap combinations. The full set of assumptions is as follows: Rate (1) = .066 x AIR Rate (2) = .111 x AIR Rate (3) = .105 x AIR Rate (4) = .238 x CAT Rate (5) = .032 x CAT Rate (6) = .441 x CAT Rate (7) = .050 x CAT Rate (8) = AIR - (1,2,3,4,5) Rate (9) = CAT - (1,4,5,6,7) Rate (10) = INLET - (2,4,6) Rate (11) = OTHER - (3,5,7)------- E-4 As mentioned, alterations are made as necessary to prevent logical contradictions that would otherwise result in one or more of the last four rates being negative. PCV and evaporative tampering rates come directly from the equations in Table E-l. D. Assign each unique combination of tampering an emissions impact per vehicle. The impacts are taken from Table E-3a and E-3b, with the following further assumptions regarding cases of simultaneous tampering. The impact of simultaneous catalyst removal and of misfueling and/or air pump tampering is the same as stated in Table E-3a for catalyst removal alone. The impact of simultaneous misfueling and air pump tampering is the same as stated in Table 3a for misfueling alone. E. Multiply tampering rate by tampering impact for each unique combination, and add the result for all combinations taking into account the sales split between the air pump only subgroup, the air pump/catalyst-equipped subgroup and the catalyst-only subgroup. Add to this the rate-times-impact result for PCV and evaporative tampering. The sum is the excess emissions due to the tampering and misfueling. Composite excess emissions can be calculated by weighting each model year by its age based VMT fraction, also known as its travel fraction. The method described above assumes that the user of the result of the calculation is interested in a situation in which vehicles are driven under standard conditions of temperature, speed, etc. All of the emission impacts shown in this document assume such a situation as well. It is possible to analyze other situations if correction factors for non-standard conditions are applied at an appropriate step in the calculation. MOBILES does this automatically. E.3 Example Calculation This example will calculate the excess emissions due to tampering and misfueling for the 1977 model year. We will assume that the vehicles are located in a non-I/M area, and we will use the national average tampering and misfueling rates described in Table E-l. We will evaluate all excess emissions for January 1, 1988. On average, the 1977 model year is estimated to have accumulated 107,558 miles by January 1, 1988. Using this mileage and the rate equations from Table 1, the overall rates of tampering and misfueling can be estimated.------- E-5 Table A Example Calculation of Tampering and Misfuelinq Rates* Rate Equations** Increase/ Rate at Eval.*** System Zero-Mi Level(A) 10K miles(B) (107,558 mi (X)) Air Pump Catalyst Fuel Inlet Other Misfueling Evaporative PCV -0.0271 -0.0195 -0.0143 0.0165 -0.0048 -0.0002 0.02652 0.01611 0.02022 0.00559 0.00335 0.00248 0.2581 0.1538 0.2032 0.0766 0.0312 0.0265 * Non-I/M area LDGV ** From Table E-l ***Rate = A + B(X/10K) These overall rates are then used to estimate the size of the 11 overlap categories. Category 12 represents untampered vehicles. These categories do not include PCV and evaporative canister tampering, which are addressed later in this section. For HC and CO excess emissions there are three technology types of interest; air pump only, catalyst only and air pump with catalyst. Using the equations described in section (C), the 11 category sizes can be determined. These are presented in Table B. The category sizes for air pump only and catalyst only vehicles can be derived from the rates in Table E-l.------- E-6 Table B Example Calculation of Overlap Categories* Overall Category (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (ID Category Description** AIR/CAT AIR/INLET AIR/OTHER AIR/CAT/INLET AIR/CAT/OTHER CAT/ INLET CAT/OTHER AIR CAT INLET OTHER Equation*** .066*AIR .111*AIR .105*AIR .238*CAT .032*CAT .441*CAT .050*CAT AIH-(1,2,3,4,5) CAT-(1,4,5,6,7) INLET-(2,4,6) OTHER-(3,5,7) Category Size at Evaluation .0170 .0286 .0271 .0366 .0049 .0678 .0077 .1439 .0198 .0702 .0369 * Catalyst vehicles equipped with air pumps only ** AIR: Air Pump Disabled CAT: Catalyst Removed INLET: Misfueling by Enlarging Fuel Filler Inlet OTHER: Other Misfueling ***Rates for AIR, CAT, INLET, and OTHER from Table A The excess emissions from this model year (1977) can be estimated from the evaluation date estimates of tampering and misfueling rates from Table A. First, the emission impact of each of the categories must be determined. Since all of the 1977 model year vehicles use oxidation catalyst technology, the emission impact of air pump disablement, catalyst removal and misfueling can be taken directly from Table E-3a. For simplicity, only total HC emissions will be addressed in this example. It is assumed that the effect of catalyst removal supercedes all other tampering and misfueling effects, therefore the overlap categories 1, 4, 5, 6, 7, and 9 which all contain catalyst removal would experience the emission impact of air pump disablement. The overlap categories 2, 3, 10, and 11 which all contain misfueling but without catalyst removal would experience the emission impact of misfueling. Only category 8, which contains only air pump disablements, experiences the air pump disablement emission impact. These emission impact groups are summed in Table C.------- E-7 The excess emissions due to tampering and misfueling are determined by multiplying the size of each emission impact group times the appropriate excess emission estimate. The three technology types are then weighted by their fleet fractions from Table E-2 and summed for the combined excess emissions from air pump, catalyst, and misfueling. This calculation is presented in Table C.------- CO 4J C •H 0 CO -H O co ft CO € |