United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EPA-450/3-83-021
September 1983
Air
vvEPA
Evaluation
of Method 5B
at a Coal-Fired
Boiler
-------
EPA-450/3-83-021
Evaluation of Method 5B
at a Coal-Fired Boiler
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air, Noise, and Radiation
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
September 1983
-------
This report has been reviewed by the Emission Standards and Engineering Division of the Office of Air
Quality Planning and Standards, EPA, and approved for publication. Mention of trade names or commercial
products is not intended to constitute endorsement or recommendation for use. Copies of this report are
available through the Library Services Office (MD-35), U.S. Environmental Protection Agency, Research
Triangle Park, North Carolina 27711; or, for a fee, from the National Technical Information Services, 5285
Port Royal Road, Springfield, Virginia 22161.
ll
-------
CONTENTS
Paqe
Figures IV
Tables v
Quality Assurance Element Finder vii
1. Introduction 1-1
2. Source Description 2-1
3. Sampling Plan and Procedures 3-1
3.1 Sample location 3-1
3.2 Sample methods 3-4
3.3 Sample analysis 3-8
4. Summary of Test Results 4-1
4.1 Sample data 4-1
4.2 Thermogravimetric analytical results 4-1
4.3 Water-soluble sulfate analytical results 4-23
4.4 Method 8 analytical results 4-25
5. Discussion of Results 5-1
6. Quality Assurance 6-1
7. References 7-1
Appendix A Computer printouts and example calculations A-l
Appendix B Field data B-l
Appendix C Laboratory data C-l
Appendix D Sampling and analytical procedures D-l
Appendix E Calibration procedures and results E-l
Appendix F Quality assurance summary F-l
Appendix G Project participants and sample log (5-1
111
-------
FIGURES
Number Page
3-1 Four-Train Sampling System Showing Nozzle
Position 3-2
3-2 Pleasants No. 1 Sampling Site 3-3
4-1 Average Filterable Particulate Concentration
for Similar Sample Types After Condi-
tioning at Indicated Temperature 4-9
4-2 Average Relative Percent Weight Loss After
Conditioning at Indicated Temperatures -
Ambient Weight Basis 4-20
6-la Audit Report Dry Gas Meter 6-5
6-lb Audit Report Dry Gas Meter 6-6
6-lc Audit Report Dry Gas Meter 6-7
6-Id Audit Report Dry Gas Meter 6-8
6-2a Thermocouple Digital Indicator Audit Data
Sheet 6-9
6-2b Thermocouple Digital Indicator Audit Data
Sheet 6-10
6-3a On-Site Audit Data Sheet 6-11
6-3b On-Site Audit Data Sheet 6-12
6-4 Isokinetic Calculations 6-13
IV
-------
TABLES
Number Paqe
2-1 Process Data Summary 2-2
3-1 Sample Matrix 3-5
3-2 Analytical Matrix 3-9
4-1 Summary of Sample Conditions 4-2
4-2 Summary of Thermogravimetric Analytical
Results 4-3
4-3 Comparison of Filterable Particulate Con-
centration After Conditioning at Indicated
Temperatures 4-6
4-4 Statistical Data for Grouped Runs After
Conditioning at Indicated Temperatures 4-10
4-5 Summary of Precision Estimates After Condi-
tioning at Indicated Temperatures 4-12
4-6 Relative Percent Weight Loss for Filter
Samples After Conditioning at Indicated
Temperatures 4-14
4-7 Relative Percent Weight Loss for Probe
Rinse Samples After Conditioning at Indi-
cated Temperatures 4-16
4-8 Relative Percent Weight Loss for Total
Filterable Particulate Samples After Con-
tioning at Indicated Temperatures 4-18
4-9 Effects of Heat Conditioning Time on Weight
Loss of Filter Samples 4-21
4-10 Additional Weight Loss After Heating to 400°C 4-24
4-11 Summary of Nonwater-Soluble Sulfate Particu-
late Results 4-25
-------
TABLE (continued)
Number page
4-12 Water-Soluble Sulfate Detected in Samples
Heat-Conditioned to 316°C 4-27
4-13 Summary of Back-Half Analyses 4-29
6-1 Field Equipment Calibration 6-3
6-2 Thermogravimetric Reagent Blank Analysis 6-15
6-3 Audit Report SC»2 Analysis 6-16
6-4 S0_ Reagent Blank Analysis 6-17
6-5 Nonwater-Soluble Sulfate Particulate Reagent
Blank Analysis 6-18
VI
-------
QUALITY ASSURANCE ELEMENT FINDER
Title page
Table of contents
Project description
QA objective for measurement of data in
terms of precision, accuracy, completeness,
representativeness, and comparability
Sampling procedures
Sample custody
Calibration procedures and frequency
Analytical procedures
Data reduction, validation, and
reporting
Internal quality control checks and
frequency
Performance and system audits and
frequency
Preventive maintenance procedures and
schedules
Specific routine procedures used to
assess data precision, accuracy, and
completeness of specific measurement
parameters involved
Corrective action
Cuality assurance reports to management
Location
Section Page
11
1 1-1
Appendix F F-2
Appendix D D-l
Appendix C C-l
Appendix E E-l
Appendix D D-l
Appendix F F-3
Appendix F F-4
Appendix F F-3
Appendix F F-5
Appendix F F-3
Appendix F F-5
Appendix F F-6
-------
SECTION 1
INTRODUCTION
On June 28, 1979, the U.S. Environmental Protection Agency
(EPA) issued an advance notice of proposed rulemaking to develop'
New Source Performance Standards (NSPS) for fossil-fuel-fired
industrial steam generators.* Because these sources can emit
significant amounts of condensible sulfates that are not con-
trollable by even the best emission reduction systems, particu-
late emissions measured by Method 5, which is capable of col-
lecting condensible matter, could vary widely as a result of fuel
sulfur content or process changes. EPA decided that condensible
sulfates should not be included in particulate emission standards
or measurements. Therefore, the-test program undertaken by EPA
to support development of the NSPS had two objectives: 1) to
obtain background emission data, and 2) to evaluate sampling and
analytical parameters designed to minimize collection of con-
densible sulfate materials from these sources. Background emis-
sion data have been collected at several coal-fired facilities
and at one oil-fired facility using both proposed Method 5B (to
minimize collection of condensible sulfates) and Method 5.
44 FR 37632.
1-1
-------
PEDCo Environmental, Inc., under contract to the Emission
Measurement Branch of the EPA, conducted an atmospheric emission
test program from November 29 through December 2, 1982, at the
Monongahela Power Company (Mono Power) Pleasants Station in
s
Willow Island, West Virginia. Testing was performed in the exit
stack of Unit No. 1, a scrubbed 625-MW coal-fired utility boiler,
in an effort to determine the precision of proposed Method 5B and
to evaluate the effect of sampling and analysis parameters on the
collection of condensible sulfates.
All samples were collected by use of a four-train (quad)
sample system stationed at a single point in the exit stack. A
total of 10 quad train tests were performed during the test
series. Paired trains in the quad system consisted of similar
sample methods to allow within-run data comparisons as well as
comparisons between different sample methods.
To enable estimation of method precision, most of the sam-
ples were collected at Method 5B sampling conditions [filter and
probe heated to 160°C (320°F)], designated as MSB.
Other sampling parameter studies have shown generally that
1) a higher sampling temperature can minimize collection of
condensible matter, and 2) even a well designed, constructed, and
operated probe heating system can have cold spots where the gas
temperature is lower than the desired monitored probe tempera-
ture. Consequently, several of the quad test runs were conducted
with the probe heated to 204°C (4C00F; in an effort to raise the
temperature of any cold spots in the probe to approximately 160°C
1-2
-------
(320°F), the desired filter temperature. These samples were
designated as M5B-P400.
Probe rinse and filter sample fractions collected by Methods
5B and 5B-P400 were subjected to a series of thermogravimetric
analyses to assess sample weight loss as a function of heating
temperature between ambient conditions and 316°C (600°F).
In addition, several samples (designated M5BW) were col-
lected and analyzed by use of a modified version of Texas Air
Control Board (TACB) Method 5W.* The method incorporates deion-
ized water as the sample recovery solvent and a series of titri-
metric and gravimetric analyses to measure water-soluble sulfates
and subsequently derive the mass of nonwater-soluble sulfate
particulate (particulate matter that does not include any water-
soluble sulfates). The method was modified by sampling at 160°C
(320°F) and measuring the water-soluble sulfates by ion chroma-
tography (1C). These tests were conducted to determine the
suitability of the method on fossil-fuel-fired steam generators,
1 2
since previous studies ' have confirmed the suitability of
Method 5W and the 1C analysis modification for use on fluid
catalytic cracking unit regenerators at petroleum refineries
that also can emit significant amounts of condensible sulfates.
Ion chromatography was used to check the effectiveness of
sample heat conditioning in the elimination of condensible sul-
fates by analyzing water extracts of heat-conditioned MSB and
M5B-P400 probe rinse and filter samples.
Texas Air Control Board - Laboratory Division. Determination of
Particulate in Stack Gases Containing Sulfur Dioxide. December
1979.
1-3
-------
The filterable portion of each sample train was followed by
a modified EPA Method 8 impinger train to allow analysis of
condensible sulfate [as sulfuric acid (H-SO.)] that passed
through the particulate filter and sulfur dioxide (SO ). Flue
gas temperature, moisture content, and composition [oxygen (0,,)
and carbon dioxide (CO-)] were measured in conjunction with the
emission tests.
Mr. If. A. Ruckle of Mono Power provided assistance on site,
and Mr. Gary McAlister, the EPA Task Manager, provided overall
project coordination.
This report documents the activities and results of the test
program. Section 2 briefly describes the process and operating
conditions during the sampling periods. Section 3 describes the
sampling site and the sampling and analytical plan. Section 4
presents the test results and is followed by a discussion of
results in Section 5. Section 6 outlines quality assurance
measures and audit results. The appendices contain computer
output and example calculations (Appendix A), field data (Appen-
dix B) , analytical data (Appendix C) , standard sampling and
analytical procedures (Appendix D), calibration procedures and
results (Appendix E), a quality assurance summary (Appendix F),
and a list of project participants (Appendix G).
1-4
-------
SECTION 2
PROCESS OPERATION
The source tested in this program is a 625 net MW coal-fired
utility boiler (designated as Pleasants No. 1) operated by Mono
Power at the plant facility located near Parkersburg, West Vir-
ginia. The unit is equipped with two parallel electrostatic
precipitators (ESP's) with a combined total of four fields for
control of particulate matter and a flue gas desulfurization
(FGD) system for control of sulfur dioxide emissions. Treated
flue gases are exhausted through a 244-m (800-ft) tall stack.
Typical coal burned in the boiler contains 3.5 percent sulfur.
The FGD consists of four modules, a combination of which are
operated to treat a variable amount of flue gas. Operators
generally control the quantity of flue gas that is scrubbed by
monitoring the stack temperature. An increase in gas temperature
is an indication of an increase in stack SO- concentration.
Process conditions during the sampling periods are sum-
marized in Table 2-1. Although each quad test was not conducted
at the same boiler load, only Run 2 was conducted when the load
varied by more than ±10 percent over the sampling period. Opera-
tion of the ESP was considered normal throughout the test program
as no malfunctions were reported. The S02 scrubber operation was
generally consistent for the first five tests. During the last
2-1
-------
TABLE 2-1. PROCESS DATA SUMMARY
Run
No.
1
2
3
4
5
6
7
8
9
10
Date
(1982)
11/29
11/29
11/30
11/30
11/30
12/1
12/1
12/1
12/2
12/2
Time,
24-h
1130-1330
1525-1725
1018-1218
1328-1528
1636-1836
941-1141
1242-1442
1545-1810
931-1131
1304-1504
Net load, MW
Range
Steady
360-500
500-575
550-575
Steady
Steady
Steady
Steady
Steady
Steady
Average
500
400b
520C
570d
575
620
620
620
620
620
Stack monitor
SO,, ppm
Range
NRa
420-460
350-450
300-450
Steady
400-450
385-525
400-450
Steady
Steady
Average
NR
440
420
410
450
425
455
425
400
375
ESP
operation
Normal
Normal
Normal
Normal
No rma 1
Normal
Normal
Normal
Normal
Normal
Scrubber
operation
Normal
Normal
Normal
Normal
e
f
f
f
g,h
g,i
NR = Not recorded.
Load increased over a 1-hour span during test.
£
Load increased over a i-hour span during test.
Load decreased, then increased over a 1-hour span during test.
g
Prior to testing, the scrubber bypass was opened from 20 to 35 percent.
Minor adjustments being made to scrubber throughout the day.
^Scrubber pH meter broken; scrubber liquor feed on manual control.
Stack temperature was up about 11°C (20°F) over a 20-minute period durinq the
test.
The scrubber liquor feed was interrupted twice during the test for about 2
minutes each time. This caused the stack pressure to go positive and the stack
velocity and temperature to increase.
2-2
-------
five tests, there were periods of minor scrubber adjustments,
manual operation of liquor feed due to a malfunctioning pH meter,
and very brief interruptions of liquor feed. None of the rela-
tively minor process variations should affect the within-run data
comparisons.
2-3
-------
SECTION 3
SAMPLING AND ANALYTICAL PLAN
All samples were collected with a four-train (quad) sample
system stationed at a single point in the final exit stack.
This system allows four trains to sample simultaneously at
essentially the same point in the stack (see Figure 3-1). The
sample methodology was developed and validated in previous stu-
dies. The ability of the four trains to sample simultaneously
at essentially the same point in the stack reduces the effect of
spatial and temporal variations in the velocity and particulate
profiles on the sampling results. It also permits a statisti-
cally significant number of samples to be taken in a short time.
Further, because two of the four trains are identical for every
run, the within-train precision can be determined while the
relationship of the different trains is being compared.
This four-train sample system was used to perform 10 runs,
for a total of 40 individual samples.
3.1 SAMPLE LOCATION
Testing took place at the final exit stack, as depicted in
Figure 3-2. Six sample ports were located approximately 9.5 duct
diameters downstream and 25 duct diameters upstream from the
nearest flow disturbances. Only the 25.4-cm (10-in.) I.D. south-
3-1
-------
8 cm
15 cm
b NOZZTT
4 cm
0.5 cm
NOZZLE
T
.THERMOCOUPLE
3-
2 cm
4 cm
2 cm
3 cm
1.4 cm
S" TYPE PITOT TUBE
1
4 cm
Figure 3-1. Four-train sampling system showing nozzle position.
3-2
-------
244 m
(800 ft)
ABOVE GRADE
to
I
U)
91 m
(300 ft)
ABOVE GRADE -
-58 m
(190 ft)
GAS FLOW FROM
FGD ENTERS FROM
OPPOSITE SIDES
TWO 25.4 cm (10 in.)
I.D. PORTS 180° APART
SAMPLE
PORT
ACCESS
DOOR
OUTSIDE
ELEVATOR
FOUR 16.5 cm (6.5 in.)
I.D. PORTS 90° APART
S02 AND 02
MONITORS
180° APART
6.1 m
(20 ft)
I.D.
STACK
ELEVATOR
ACCESS DOOR
PLATFORM GRATING
4.6 m (15 ft) WIDE
LADDER
ACCESS
CROSS SECTION
AT SAMPLING
LOCATION
Figure 3-2. Pleasants No. 1 sampling site.
-------
west port was used in this study. All port nipples were 31.8 cm
(12.5 in.) long.
3.2 SAMPLE METHODS
The four trains collected flue gas samples simultaneously
from a single point in the stack. The nozzles of the four-train
assembly (Figure 3-1) were positioned 66 cm (26 in.) from the
stack wall for the first test and, after removing a barrier, 81
cm (32 in.) from the stack wall for each subsequent test. The
desired sample time was 120 minutes, and readings of stack flue
gas and sampling train data were recorded at 10-minute intervals
for each train. A single pitot tube and thermocouple located in
the four-train nozzle arrangement was used to set isokinetic
sample rates for each train. Sample rates were determined by use
of programmable calculators. Prior to sampling, the velocity and
temperature profile of the general sampling area was established
to ensure that all four nozzles could be positioned at points of
equal velocity to minimize spatial variations in emissions.
Table 3-1 presents the sample matrix performed during this
test series. The particular conditions for each train are de-
scribed briefly below:
° Method 5B - Designation MSB
Filterable particulate was collected by use of a probe
and filter assembly heated to 160°C (320°F). Acetone
wa? used to rinse all sample train components prior to
the filter.
3-4
-------
TABLE 3-1. SAMPLE MATRIX
Run
No.
1
2
3
4
5
6
Sample
Train No.
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
6B
6C
6D
Sample method3
M5B
160°C (320°F)
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M5B-P400
160°-204°C (320°-400°F)
X
X
X
X
M5BW
160°C (320°F)
X
X
X
X
X
X
(continued)
3-5
-------
TABLE 3-1 (continued)
Run
No.
7
8
9
10
Sample
Train No.
7A
7B
7C
7D
8A
8B
8C
8D
9A
9B
9C
9D
10A
10B
IOC
10D
Sample method3
M5B
160°C (320°F)
X
X
X
X
X
X
X
X
X
X
M5B-P400
160°-204°C (320°-400°F)
X.
X
X
X
M5BW
160°C (320°F)
X
X
MSB - Probe and filter heated to 160°C (320°F).
M5B-P400 - Probe heated to 204°C; filter heated to 160°C.
M5BW - Probe and filter heated to 160°C; water rinse of nozzle, probe, and
front filter holder glassware.
3-6
-------
0 Modified Method 5B - Designation M5B-P400
Filterable particulate was collected by use of a probe
heated to 204°C (400°F) and a filter assembly heated to
160°C (320°F). Acetone was used to rinse all sample
train components prior to the filter.
0 Method 5BW - Designation M5BW
Filterable particulate was collected by use of a probe
and filter assembly heated to 160°C (320°F). Deion-
ized, distilled water was used to rinse all sample
train components prior to the filter.
The purpose of heating the probe to 204°C while keeping the
filter at 160°C was an effort to raise the temperature of any
cold spots in the probe to 160°C, thus minimizing the quantity of
condensible sulfates collected.
For each train, the probe and filter temperatures were set
at the predetermined level and monitored throughout each test by
the use of multiterminal digital indicators with the thermocou-
ples located in the middle of each probe and immediately behind
the Method 5 filter frits.
The back half of each sample train represented a modified
Method 8 with five impingers. An unheated Method 5 filter as-
sembly was inserted between the second and third impingers to
preclude any sulfuric acid mist carryover. The contents of each
impinger are listed below:
Impinger Contents - All Runs
1 Empty
2 200 ml 80% IPA
3 100 ml 10% H202
4 100 ml 10% H202
5 400 grams silica gel
3-7
-------
All the filters were Whatman RA 934AH. The filters used in
the Method 5 position were heated to 300°C prior to identifica-
tion and tare weighing.
The flue gas moisture content of each sample train was
determined gravimetrically by weighing each impinger before and
after every test. In addition, a flue gas grab sample collected
during each test was analyzed for oxygen (0 ), and carbon dioxide
(C02) by use of an Orsat analyzer, as described in Method 3* of
the Federal Register.
3.3 SAMPLE ANALYSIS
Table 3-2 presents the analytical matrix followed for this
test program.
Thermogravimetric Analysis
Initially, the filter particulate catch was placed in a
tared glass weighing dish, desiccated for 24 hours, and weighed
to a constant weight.** The probe rinse fraction was transferred
to a tared beaker, allowed to evaporate to dryness at ambient
temperature and pressure, desiccated for 24 hours, and weighed to
a constant weight.
After this initial gravimetric analysis at ambient condi-
tions, probe rinse and filter fractions were subjected to the
sequence of heat treatments outlined in Table 3-2. The samples
*
40 CFR 60, Appendix A, Reference Method 3, July 1, 1981.
* *
Criteria as specified in 40 CFR 60, Appendix A, Reference
Method 5, July 1, 1981.
3-8
-------
TABLE 3-2. ANALYTICAL MATRIX
Run
Mo.
1
2
3
4
5
6
Sample
Train No.
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
c
4B°
4CC
4D
5AC
5BC
5CC
5D
6A
6B
6C
| 6D
Sample
method
MSB
MSB
M5BW
M5BW
M5B-P400
M5B-P400
MSB
MSB
M5BW
M5BW
MSB
MSB
MSB
MSB
M5B-P400
M5B-P400
MSB
MSB
MSB
MSB
MSB
MSB
M5BW
M5BU
Thermogravimetric
conditioning3
Ambient ->-
160° -»• 232°
+ 316°C
X
X
X (24)
X
X (24)
X
X
X (24)
X
X
Ambient -»•
232° +
316°C
X
X
X
X (24)
Ambient
H. 316°C
X
X (24)
X
X
Water
soluble sulfate
determination
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
(continued)
3-9
-------
TABLE 3-2 (continued)
Run
No.
7
8
9
10
• Sample
Train No.
?AC
7BC
7C
7D
8A
8B
8C
8D
9AC
9B
9CC
9DC
c
lOAr
10B
10C_
100
Sample
method
M5B-P400
M5B-P400
MSB
MSB
M5BW
M5BW
MSB
MSB
MSB
MSB
M5B-P400
M5B-P400
MSB
MSB
MSB
MSB
Thermogravimetric
conditioning3
Ambient -»•
160° + 232°
-». 316°C
X
X (24)
X
X (24)
X (24)
X (24)
X (24)
X
Ambient -»•
232° -»•
316°C
X (24)
X (24)
X (24)
X
Ambient
-*• 316°C
X (24)
X (24)
Water
soluble sulfate
determination
X
X
X
X
X
X
X
Thermogravimetric conditioning of probe rinse and filter fractions at indi-
cated temperatures after initial desiccation and ambient weights were ob-
tained. The designation (24) for selected samples indicates a heat period of
24 hours. All other samples were heat-conditioned for 6 hours.
In this procedure, the mass of total water soluble sulfates in the sample
was determined and subtracted from the total sample mass.
cThese samples subsequently were heated to 400°C for two 6 hour periods.
Note: All back halves represent a modified Method 8, with analysis for
sulfates as sulfuric acid and sulfur dioxide.
3-lo
-------
were heated in an oven at the specified temperature for either 6
or 24 hours as indicated. Each sample fraction was cooled and
desiccated for 24 hours after removal from the oven and then
weighed to the nearest 0.1 mg.
Prior to advancing to the next step of an analytical se-
quence, a heat treatment was repeated at the same time and tem-
perature condition until a stable weight was obtained. For this
study, a stable weight was defined as a difference of no more
than 5.0 mg or 10 percent of the net sample weight, whichever was
greater, between successive treatments at the same conditions.
The number of treatments required to achieve a stable weight was
recorded for each sample fraction up to a maximum of three treat-
ments. The average weight of the last two treatments was re-
ported as the weight for that temperature condition. Filter and
acetone blanks were treated in a similar manner as the actual
samples.
Water-Soluble Sulfate Analysis
Sample Preparation—
Each sample fraction, including blanks, was handled and
analyzed as follows:
Filter •- The filter was cut into small pieces and placed in
a 125-ml Erlenmeyer flask with a standard taper joint
equipped with an air condenser. The shipping container was
rinsed into the flask. About 50 ml of distilled water was
added and gently refluxed for G to 8 hours. The solution
was then cooled and diluted to exactly 250 ml with water in
a volumetric flask. This was reserved for total soluble
sulfate analysis, which is described below.
3-11
-------
Probe Rinse - The probe wash was poured into a 250-ml volu-
metric flask. The sample bottle was rinsed with distilled
water and the rinsings were added to the flask. The solu-
tion was then diluted to the mark with distilled water (or,
if greater than 250 ml, the volume was measured). This
solution was reserved for total soluble sulfate analysis,
which is described below.
Total Soluble Sulfate Analysis—
A 15-ml aliquot* was drawn from the settled samples (filter
and rinse) into separate sample containers with a clean, dry
pipet (only solution was transferred, no solids; if necessary, a
portion of the sample was centrifuged). The sulfate ion (S0. = )
concentration in each aliquot was determined by ion chromato-
graphy (1C). A syringe was used to inject 1 ml of the aliquot
into the 100-yl sample loop of the 1C, thereby flushing the loop
with sample. The conductivity response of the sample was
compared with the calibration curve to obtain SO = concentration
in mg/liter. Dilutions were prepared and reanalyzed if the
initial response was out of the linear calibration range (i.e.,
greater than 15 mg/liter). Blank filter and water samples were
prepared and analyzed in the same manner as the actual samples.
Mass Determination—
Filter and Rinse Solution Preparation - The remaining con-
tents of each volumetric flask (235 ml) were poured into
separate tared 250-ml beakers and the flask was rinsed with
distilled water to transfer all particulate matter. The
filter solution was in Beaker A and the rinse solution was
in Beaker E. This solution was evaporated to approximately
100 ml at 105°C and allowed to cool before proceeding with
the next analysis.
The pipet is not rinsed. This is a deviation from normal pro-
cedures, but is necessary because the volume removed from the
volumetric flask is required in the calculations.
3-12
-------
Filter and Rinse Solution Analysis - Five drops of phenol-
phthalein indicator were added to all the tared beakers.
Concentrated NH.OH was then added drop by drop until the
solution turned pink. The samples were returned to the oven
and evaporated to dryness at 105°C, then cooled in a desic-
cator and weighed to a constant weight. Results were re-
ported to the nearest 0.1 mg. For this method, "constant
weight" means a difference of no more than 0.5 mg or 1
percent of the total weight less beaker and/or filter tare,
whichever is greater, between two consecutive weighings,
with no less than 6 hours of desiccation time between weigh-
ings.
Calculations--
Nomenclature--
FP = weight of particulate* on the filter in Beaker A,
mg
PRP = weight of probe rinse particulate* in Beaker B,
mg
NWSSP = weight of nonwater-soluble sulfate particulate**,
mg
ASf = weight of ammonium sulfate in filter sample, mg
AS = weight of AS in probe rinse sample, mg
V = volume of solution evaporated in Beaker A (filter)
p or Beaker B (probe rinse), ml
C _ = concentration of sulfate in filter or probe rinse
4 solution aliquots, mg/liter
Equations—
FP(mg) = gross weight Beaker A - tare weight Eq. 1
Beaker A - filter tare weight
PRP (rag) = Gross weight Beaker B - tare weight Eq. 2
Beaker B
AS(mg) = Cc. (mg/liter) x V (ml) x llter— Eq. 3
S°4 evaP 1000 ml
x 1.376 (mg AS -)
mg S04
Particulate with H2S04 converted to
Particulate excluding water-soluble sulfates.
3-13
-------
Mass of Nonwater-Soluble Sulfate Particulate
The sum of the particulate* collected on the filter (FP) and
the particulate* collected in the probe rinse (PRP) is equal to
the sum of nonwater-soluble sulfate particulate (NWSSP) and
ammonium sulfate (AS) in both samples:
FP + PRP = NWSSP -I- AS, + AS Ea 4
f pr 4*
The NWSSP can be found by rearranging the equation and
substituting appropriate values determined using Equations 1, 2,
and 3.
NWSSP = FP + PRP - ASf - AS Eq. 5
Sulfate Analysis by Ion Chromatography
Selected within-run samples, heat-conditioned to 316°C, were
extracted with distilled water and aliquots were analyzed for
total sulfate by ion chromatography for comparison to Method 5BW
results.
Sulfuric Acid Mist Analysis
The amount of sulfuric acid that passed through the particu-
late filter was determined by analyzing the IPA solution recov-
ered in the first two impingers and the backup filter. The
volume of the sample solution was recorded and the pH of the
sample determined. The sample volume was diluted to 500 ml with
80 percent IPA. A 100-ml aliquot of this solution was pipetted
Particulate with H2S04 converted to (NH4)2S04
3-14
-------
into a 250-ml Erlenmeyer flask with 2 to 3 drops of thorin indi-
cator and titrated to a pink end point using 0.0100 N barium
perchlorate. If the end point color was not correct, the sample
was passed through an ion exchange column and retitrated. A
blank was titrated for each sample in the same manner.
Sulfur Dioxide Analysis
The hydrogen peroxide sample solution was diluted to 500 ml
with deionized, distilled water. A 20-ml aliquot of this solu-
tion was pipetted into a 250-Erlenmeyer flask with 80 ml of 100
percent IPA and 2 to 3 drops thorin indicator. The solution was
then titrated to a pink end point using 0.0100 N barium perchlo-
rate. A blank was titrated in the same manner.
3-15
-------
SECTION 4
SUMMARY OF TEST RESULTS
This section summarizes the results of the field sampling
program. They are presented to allow both within-run and between-
run data comparisons, with emphasis on the thermogravimetric and
water-soluble sulfate test results.
4.1 SAMPLE DATA
Table 4-1 summarizes pertinent sample data. All tests were
conducted at a single point where the stack gas velocity profile
was relatively flat. The actual probe and filter temperatures,
stack temperature, and moisture content represent average values
from each individual sample train. Gas composition data (0- and
CO-) are given in percent by volume on a dry basis. The isoki-
netic criteria defined in Reference Method 5* were met in each
case, as indicated by the values shown in the far right-hand
column.
4.2 THERMOGRAVIMETRIC ANALYTICAL RESULTS
Table 4-2 presents the thermogravimetric analytical results.
The filterable particulate values represent material collected in
the sample probe and on the filter for each sample type (MSB,
40 CFR 60, Appendix A, July 1, 1981.
4-1
-------
TABLE 4-1. SUMMARY OF SAMPLE CONDITIONS
Test
No.
l"
2
3
4
5
6
7
a
9
10
tut?
*nd t!M
(24-11)
11/29
11. 30-
13:30
11/29
15.25-
17-25
U/30
10:18-
12:18
11/30
13 28-
15:28
11/30
16:36-
18:36
12/01
9:41-
11:41
12/01
12:42-
14:42
12/01
15:45-
18:10
12/02
9:31-
11.31
12/02
13:04-
15:0*
Triln
1.0.
1A
IB
1C
10
2A
2B
2C
20
3A
38
3C
30
4A
41
4C
40
SI
58
5C
SO
6A
68
6C
60
7A
Swle'
type
MSB
M5B
MSBM
NSBU
M5B-P400
MS8-P400
MSB
MSB
MSBH
M5BH
MSB
MSB
MSB
MSB
M5B-P400
MS8-P400
MSB
MSB
MSB
MSB
MSB
MSB
MSBU
HSBH
M5B-P400
78 M5B-P400
7C ! MSB
70
8*
88
BC
80
9A
98
9C
90
IDA
108
IOC
100
MSB
MS8U
MSBU
MSB
MSB
MSB
MSB
MSB-P400
MSB-P400
MSB
MSB
MSB
MSB
Staple tevpenture, °C ("F)
Probe
Des 1 red
160 (320)
160 (320)
160 (320)
160 (320)
204 (400)
204 (400)
160 (320)
160 (320)
160 (320)
160 (320)
160 (320)
160 (320)
160 (320)
160 (320)
204 (400)
204 (400)
16(1 (320)
160 (320)
160 (320)
160 (320)
160 (320)
16C (320)
160 (320)
160 (320)
204
204
160
160
400)
400)
320)
320)
160 (320)
160 (320)
160 (320)
160 (320)
160 (320)
160 (320)
204 (400)
204 (400)
160
160
160
320)
320)
320)
160 (320)
Act
t'l
164 (327)
172 (342)
159 (319)
159 (318)
199 (390)'
174 (346)'
165 (329)
164 (327)
162 (323)
166 (330)
158 324)
157 (315)
167 (332)
157 (315)
206 (402)
206 (402)
163
163
162
160
326)
326)
324)
320)
163 (325)
158 (316)
168 (334
161 (322)
207 (404)
204 (400)
164 (327)
157 (314)
162 (324)
159 (319)
174 (346)
168 (335)
167 (332)
162 (325)
208 (407)
205 (402)
163
326)
151 (304)
168 (334)
164
327)
Filter ,
iCtuAl
161 (323)
157 (315)
159 (318)
163 (326)
168 (33S)
169 (336)
161 (322)
163 (326)
163 (325)
164 (327)
162 (324)
162 (324)
167 (332)
168 (335)
161 (322)
163 (326)
164 (328)
165 (329)
159 (319)
162 (323)
166 (331)
165 329)
1S9 (318)
158 (316)
167 (333)
167 (332)
162 (323)
160 (320)
162 (324)
163 (325)
158 (316)
159 (319)
166 (330)
166 (330)
160 (320)
161 (321)
169
168
157
336)
J3i|
315)
154 (309)
Metered
volunec
UN.' (dscf)
2.160 (76.3)
2.121 (74.9)
2.082 (73.5)
2.079 (73.4)
2.056 (72.6)
2 013 (71.1)
1.986 (70.1)
1.962 (69 3i
3.222 (113.8)
3.188 (112.6)
3.116 (110.0)
3. 158 (111.5)
3.440 (121.5)
3.398 (120.0)
3.391 (119.7)
3.454 (122.0)
3.343 (118.1)
3.332 (117.7)
3.250 (114.8)
3.250 (114.8)
3.178 (112.2)
3.172 (112.0)
3.138 (110.8)
3.210 (113.4)
3.292 (116.2)
3.276 (115.7)
3.132 (110.6)
3.262 (115.2)
3.199 (113.0)
3.159 (111.6)
3.125 (110 4)
3.251 (114.8)
3.298 (116.5)
3.261 (115.2)
3. 174 -(112.1)
3.251 (114.3)
3.326 (117 Si
3 302 (116.6)
3.243 (114.5)
3.3S2 (118 4)
Average
periture,
•C CF)
63.3 (146)
67.7 (154)
69.4 (157)
73.9 (165)
76.1 (169)
71.7 (161)
72.8 (163)
72.8 (163)
77.2 (171)
75.6 (168)
content,
1
12.25
15.79
11.47
8.61
9.70
12.11
12.20
12.32
10.93
10.39
12.21
11.97
10.28
10.45
12.87
12.43
11.19
11.06
11.67
11.67
12.46
12.85
13.32
13.02
12.13
12.87
12.76
12.16
13.68
11.96
12.43
12.64
12.18
12.57
12.54
12.89
13.22
13.06
13.37
13.30
Average
•01S-
ture, I
12.03
11.58
11.66
11.51
11.40
12.91
12.48
12.68
12.55
13.24
I C0;
12.10
11.75
12.60
12.90
11.90
12.87
12.53
12.75
12.90
12.60
1 0,
6.90
6.65
6.15
5.80
6.80
5.60
6.00
5.70
5.75
6.05
isoKinetic
s««pl 109
rite. I
102.4
102.9
94 9
95.4
100.5
105 B
101.6
98.3
98.1
97.4
98.8
98.8
97.7
95.8
98.5
98.1
97.8
98.2
97.2
97.2
100.4
99.7
100.0
100.1
99.0
100.1
96.5
99.9
101. 8
98.0
98.3
100.6
99.6
99.7
97.9
100.6
101.1
99.3
98.7
100.3
*H5B - Probe and filter heated to 160°C.
N5BH - Probe and filter heated to 160°C; water rinse of nozzle, probe, and filter holder.
N5B-P400 - Probe heated to 204°C; filter heated to 160°C.
bAll desired filter temperatures were 160°C.
cSample volume In dry normal cubic meters (dNm1) at 20°C and 760 mmHg and in dry standard
cubic feet (dscf) at 68°F and 29.92 in.Hg.
''the sampling nozzles were positioned 65 cm (26.5 in.) from the inside stack wall. For
subsequent run', the distance was 81 cm (32 In,).
"Ranged fro« 080* to 397'F.
'tanged fron 345* to 3S1"F.
4-2
-------
TABLE 4-2. SUMMARY OF THERMOGRAVIMETRIC ANALYTICAL RESULTS
Test
No.
•5
4
K
7
Train
I.D.
1A
IB =
1C3
lDa
2Ab
2Bk
2Cb
2D
3Aa
3Ba
3Cb
3D
4A
4B
4C
4D
5A.
5Bb
5Cb
5D
6A
6B
6Ca
6Da
7Ab
7BD
7C.
7Db
Sample
type
MSB
M5B
M5BW
M5BW
P400
P400
MSB
MSB
M5BW
M5BW
MSB
MSB
MSB
MSB
P400
P400
MSB
MSB
MSB
MSB
MSB
MSB
M5BW
M5BW
P400
P400
MSB
MSB
Filterable participate following conditioning at
indicated temperatures, °C (°F), mg
Ambient
Probe
21.7
75.8
mm
-
24.9
21.1
48.9
29.0
-
51.0
61.9
20.3
19.9
33.2
20.4
40.3
39.0
45.5
40.8
25.6
23.3
-
37.0
24.6
69.4
75.2
Filter
4.2
3.9
_
-
4.2
5.1
7.7
5.3
-
7.8
7.7
6.4
6.8
7.6
6.8
7.3
7.2
8.5
7.4
8.0
10.5
16C°C (320°F)
Probe
11.3
14.3
-
14.4
8.7
14.3
8.0
-
-
-
w
-
-
-
15.5
11.3
-
-
18.1
14.0
-
9.4 I 20.8
13.4 j 12.1
10.6 22.4
11.1 23.7
!
Filter
2.6
1.7
-
2.8
3.9
3.9
3.8
-
-
-
m
-
-
-
5.6
5.0
-
-
6.4
5.5
-
5.7
8.4
6.2
7.6
232°C (450°F)
Probe
6.8
9.2
-
14.9
5.4
16.3
5.6
-
-
-
7.4
-
13.3
-
12.4
13.3
11.9
12.3
15.4
10.5
-
' 17.0
12.6
17.6
23.4
Filter
2.0
1.1
-
2.4
3.3
3.1
3.5
-
-
-
4.7
-
5.3
-
4.7
4.6
5.2
4.1
5.5
5.0
-
5.0
6.7
4.8
7.0
316°C (600°F)
Probe
5.6
8.1
-
11.8
4.3
11.7
3.0
-
9.6
22.2
6.8
7.1
11.0
8.6
9.8
9.7
9.0
9.3
12.8
6.9
-
11.0
10.7
8.6
20.3
Filter
1.3
0.8
-
2.3
2.7
2.9
2.4
-
3.5
4.4
4.2
4.1
4.8
3.8
4.9
4.2
4.2
3.9
5.0
4.7
-
4.7
6.4
5.0
5.2
(continued)
4-3
-------
TABLE 4-2 (continued)
Test
No.
9
10
Train
I.D.
8A*
8B?
8Cb
8DD
9Ab
9B,
Qf
b
9DD
b
10A
10Bb
IOC
10D
Sample
type
M5BW
M5BW
MSB
M5B
MSB
MSB
P400
P400
MSB
M5B
M5B
MSB
Filterable particulate following conditioning at
indicated temperatures. °C (°F), mg
Ambient
Probe
_
-
79.2
74.4
45.9
47.1
23.4
29.4
27.0
20.9
68.4
59.3
Filter
—
-
13.1
14.4
11.2
11.1
8.2
9.6
18.0
17.6
17.0
18.0
160°C (320°F;
Probe
_
_
12.3
15.4
_
-
-
-
12.0
13.4
-
-
Filter
_
6.7
4.3
—
-
_
-
13.5
14.3
_
-
232°C
Probe
_
13.5
16.6
_
18.2
_
14.3
12.1
10.4
19.5
16.8
450°F)
Filter
_
6.2
1.9
. 7.2
«.
5.8
12.7
11.9
10.6
12.6
316°C (600°F)
Probe
_
10.4
11.0
13.5
14.0
10.8
12.7
9.4
8.0
15.9
11.8
Filter
5.1
1.3
5.0
6.5
4.6
5.2
11.8
11.2
10.0
10.8
M5BW samples were analyzed for total water soluble sulfates and particulate
mass by modified Texas Air Board procedure described in Section 3 of this
report.
Heated for 24 hours, all others heated for 6 hours.
4-4
-------
M5B-P400). All weights are reported in milligrams (mg) and
sample concentrations in milligrams per dry normal cubic meter
(mg/dNm3).
The constant weight criteria described in Method 5* were
achieved during the ambient weighing on all of the Method 5B and
Method 5B-P400 samples; however, several of the probe rinse
samples required up to four separate weighings before the crite-
ria were met.
As previously noted, the samples were heat-conditioned at
each temperature for either 6 or 24 hours as indicated in the
table, and then reheated at the same conditions until a stable
weight was achieved prior to advancing to the next temperature in
the analytical sequence. The stable weight criteria, which was
defined as a difference of 5.0 mg or less between consecutive,
similar heat treatments, was achieved for all of the filters and
most of the probe rinse samples in two treatments. All of the
samples met the criteria in three treatments.
Table 4-3 presents a comparison of total filterable particu-
late concentrations after heat conditioning at the indicated
temperatures for the MSB and M5B-P400 samples. For reporting
purposes, the results of similar sample types have been grouped
together. The average concentration and standard deviation are
given in mg/dNm3 for all samples of a similar type and tempera-
ture. In addition, the number of data points at each temperature
*
40 CFR 6C, Appendix A, July 1, 1981.
4-5
-------
TABLE 4-3. COMPARISON OF FILTERABLE PARTICIPATE CONCENTRATION
AFTER CONDITIONING AT INDICATED TEMPERATURES3
Run No.
1A
IB
2Cb
2C
3C.
3Db
4A
4B
5A,
5Bb
5C,
5Db
6A
6B
7C.
7Db
8Cb
8Db
9Ab
9Bb
10Ab
10B,
10Cb
10D
Sample
type
M5B
MSB
MSB
MSB
MSB
M5B
M5B
M5B
M5B
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
Ambient
Total
weight,
mg
25.9
79.7
56.6
34.3
58.8
69.6
26.7
26.7
47.6
46.2
54.0
48.2
33.6
33.8
80.0
86.3
92.3
88.8
57.1
58.2
45.0
38.5
85.4
77.3
Concen-
tration,
mg/dNm3
12.0
37.6
28.5
17.5
18.9
22.0
7.8
7.9
14.2
13.9
16.6
14.8
10.6
10.7
25.5
26.5
29.5
27.3
17.3
17.8
13.5
11.7
26.3
23.1
Average 18.8
o
-------
TABLE 4-3 (continued)
Run No.
2Ab
2B
4C
4D
7Ab
7BD
9Cb
h
9DD
Sample
type
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
Average
Ambient
Total
weight,
mg
29.1
26.2
40.8
27.2
46.4
38.0
31.6
39.0
Concen-
tration,
mg/dNm3
14.2
13.0
12.0
7.9
14.1
11.6
10.0
12.0
11.8
a = 2.1
N = 8
160°C
Total
weight,
mg
17.2
12.6
_
-
26.5
20.5
_
-
Concen-
tration,
mg/dNm3
8.4
6.3
.
-
8.0
6.3
_
-
7.2
o = 1.1
N = 4
232°C
Tota
weight,
mg
17.3
8.7
18.6
-
22.0
19.3
.
20.1
Concen-
tration,
mg/dNm3
8.4
4.3
5.5
6.7
5.9
6.2
6.2
o = 1.4
N = 6
315°C
Total
weight,
mg
14.1
7.0
15.8
12.4
15.7
17.1
15.4
17.9
Concen-
tration,
mg/dNm3
6.9
3.5
4.7
3.6
4.8
5.2
4.9
5.5
4.9
a = 1.1
N = 8
Includes both filter and probe rinse fractions.
Heat conditioning intervals for these samples were 24 hours; all others were 6
hours.
Standard deviation with N-1 weighting for sample data.
Number of data points.
4-7
-------
condition is shown. Figure 4-1 is a graphical representation of
the average data.
Table 4-4 presents the statistical data for each set of
grouped runs. Each group represents two runs of the same sample
type conducted at the same time except for run Groups 5 and 10,
which represent four similar samples. The MSB data are followed
by the M5B-P400 data. Presented for each run group and tempera-
ture condition are the mean filterable particulate concentration,
the standard deviation with N-l weighting for sample data, and
the percent coefficient of variation (CV), which expresses the
standard deviation as a percent of the mean concentration.
Table 4-5 summarizes the estimates of precision for Method
5B and Method 5B-P400 at each conditioning temperature. Method
5B precision data are presented on two bases; the first includes
all available data (Runs 1 through 10), and the second includes
only data from Runs 2, 4, 7, and 9 to allow a better comparison
to within-run M5B-P400 data. The mean filterable concentrations
were calculated by averaging the individual run data to minimize
round-off error. The mean standard deviations were calculated by
averaging standard deviation values for each set of grouped runs
(from Table 4-4) to minimize the effect of temporal variation in
emissions. In this way, the mean standard deviation of the
grouped runs (a in Table 4-5) more accurately reflects method
precision than does the standard deviation of individual run
concentrations (o in Table 4-3). The mean coefficient of varia-
tion expresses the mean standard deviation as a percent of the
4-8
-------
3
AVERAGE FILTERABLE PARTICULATE CONCENTRATION, mg/dNnT
I
VO
fa
-s
1/1
CU
3
-a
rt- <
«< 0)
-0 -S
ro a>
l/i (£3
ro
cu
fD —•
-S rt
fD
O -S
O Cu
3 cr
Q. —•
<•+'
-"•T3
O O>
3 -S
-"• rt-
3 -J.
l£) O
C
CU —'
rt OJ
r*-
-j. n>
3
D. O
-.. o
O 3
CU o
rt- fD
fD 3
O- <-*•
-s
fD r+
•a o
fD 3
Co -h
c-1- O
C -S
-S
fD
CD
O
o
CT>
O
ro
OJ
ro
-a
m
•73
O
O
co
«_j
cr>
-------
TABLE 4-4. STATISTICAL DATA FOR GROUPED RUNS AFTER
CONDITIONING AT INDICATED TEMPERATURES
I
M
O
Run
No.
1-A.B
2-Cd,D
3-C,Dd
4-A.B
5-A,Bd
C,0d
6-A.B
7-C,Dd
8-Cd,Dd
9-Ad,Bd
10-Ad B,
C°,D
2-Ad,B
4-C.D
Sample
type
MSB
MSB
M5B
MSB
MSB
MSB
MSB
MSB
MSB
MSB
M5B-
P400
M5B-
P400
Ambient
x,a
mg/dNm3
24.8
23.0
20.4
7.8
14.9
10.6
26.0
28.4
17.6
18.6
13.6
10.0
b
o,
mg/dNm3
18.1
7.8
2.2
0.1
1.2
0.1
0.7
1.6
0.4
7.1
0.8
2.9
CV,L
I
73
34
11
1
8
1
3
6
2
38
6
29
160°C (320°F)
x,
mg/dNm3
7.0
7.6
-
-
5.6f
6.9
9.4
6.1
-
8.0f
7.4
_
0,
mg/dNm3
0.8
2.3
-
-
1.0
1.1
0.4
0.0
-
0.5
1.5
.
cv,
%
11
30
-
-
18
16
4
0
-
6
20
232°C (450°F)
x,
mg/dNm3
4.5
7.2
-
3.5e
5.2
5.8
8.2
6.0
7.8e
8.1
6.4
5.5e
o,
mg/dNm3
0.6
3.7
-
-
0.2
1.2
1.5
0.4
_
1.2
2.9
cv.
1
13
51
-
_
4
21
18
7
_
15
45
316°C (600°F)
x ,
mg/dNm3
3.7
5.1
6.3
3.2
4.2
4.6
6.2
4.4
6.0
6.7
5.2
4.2
mg/dNm3
0.7
3.3
3.0 '
0.1
0.1
1.3
2.7
0.8
0.5
0.9
2.4
0.8
CV
*
19
65
48
3
2
28
44
18
8
13
46
19
-------
TABLE 4-4 (continued)
Run
No.
7-A,Bd
9-Cd,Dd
Sample
type
M5B-
P400
M5B-
P400
Ambient
x,a
mg/dNm3
12.8
11.0
o.b
mg/dNm3
1.8
1.4
CV,C
?
14
13
160°C (320°F)
x.
mg/dNm3
7.2
.
o,
mg/dNm3
1.2
cv.
%
17
232°C (450°F)
x,
mg/dNm3
6.3
6.2e
o.
mg/dNm3
0.6
CV,
%
10
316°C (600°F)
x,
mg/dNm3
5.0
5.2
o,
mg/dNm3
0.3
0.4
CV,
%
6
8
Mean filterable concentration.
Within-run standard deviation with N-l weighting for sample data.
Coefficient of variance is the standard deviation expressed as a percent of the mean concentration.
Samples heated for 24-hour intervals; all others heated 6 hours.
eOne sample only.
Two samples only.
-------
TABLE 4-5. SUMMARY OF PRECISION ESTIMATES AFTER
CONDITIONING AT INDICATED TEMPERATURES
Run
No.
1-10
2,4,
7,9
2,4
7,9
Sample
type
MSB
MSB
M5B-
P400
Ambient
x,a
mg/dNm3
18.8
Nd = 24
18.6
N = 8
11.8
N = 8
o,b
mg/dNm3
3.9
N = 10
2.2
N = 4
1.7
N = 4
CV,C
%
21
-
12
-
14
-
160°C (320°F)
x,
mg/dNm3
7.2
N = 14
8.5
N = 4
7.2
N = 4
o ,
mg/dNm3
0.9
N = 7
1.4
N = 2
1.4
N = 2
0,
%
12
-
16
-
19
-
232°C (450°F)
x,
mg/dNm3
6.4
N = 20
7.0
N = 6
6.2
N = 6
o ,
mg/dNm3
1.3
N = 7
2.6
N = 2
1.8
N = 2
TO,
%
20
-
37
-
29
-
316°C (600°F)
x,
mg/dNm3
5.1
N = 24
5.1
N = 8
4.9
N = 8
o ,
mg/dNm3
1.3
N = 10
1.6
N = 4
1.0
N = 4
rv,
%
25
_
31
-
20
-
Mean filterable concentration based on individual run values.
Mean standard deviation of grouped runs (-ip).
c
Mean coefficient of variance (percent) calculated using the mean standard deviation of grouped runs and the mean
filterable concentration based on individual run values.
N - number of data points.
-------
mean concentration. The number of data points included in each
calculation is shown for consideration in evaluating the preci-
sion estimates.
Table 4-6 presents the relative percent weight loss for the
filter samples after conditioning at the indicated temperatures.
Percent weight loss was calculated in two ways; first, using the
ambient weight as the initial weight basis, and secondly, using
the weight after conditioning at 160°C (320°F) as the initial
weight basis. The results of similar sample types have been
grouped together. Tables 4-7 and 4-8 present similar data for
the probe rinse samples and the total filterable samples, respec-
tively. Figure 4-2 is a graphical representation of the average
weight loss data on an ambient weight basis. The graph points
out two characteristics of the tabulated data: 1) the most
significant weight loss occurred during heating at 160°C (320°F),
and 2) the relative percent weight loss upon subsequent heating
at temperatures higher than 160°C was similar for all samples
(note that the curves are essentially parallel between 160° and
316°C).
Table 4-9 presents data used to evaluate the effect of heat
conditioning time on weight loss. Raw laboratory data for each
filter sample were examined to determine the weight loss between
the first and second heat treatment at a given conditioning
temperature. These weight losses are tabulated by sample type
and heating time. The filter sample results appear to favor the
24-hour heating interval (note the 6-h results for Runs 6B and 7C
4-13
-------
TABLE 4-6. RELATIVE PERCENT WEIGHT LOSS FOR FILTER
SAMPLES AFTER CONDITIONING AT INDICATED TEMPERATURES
Run No.
1A
IB
2Cb
2D
3C.
3Db
4A
4B
5A,
5Bb
5C.
5Db
6A
6B
7C,
7Db
8Cb
8Db
9Ab
9Bb
Sample
type
M5B
M5B
M5B
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
Net filter weights, mg
Amb.
4.2
3.9
7.7
5.3
7.8
7.7
6.4
6.8
7.3
7.2
8.5
7.4
8.0
10.5
10.6
11.1
13.1
14.4
11.2
11.1
160°C
2.6
1.7
3.9
3.8
-
5.6
5.0
6.4
5.5
6.2
7.6
6.7
4.3
-
232°C
2.0
1.1
3.1
3.5
-
4.7
4.7
4.6
5.2
4.1
5.5
5.0
4.8
7.0
6.2
1.9
7.2
316°C
1.3
0.8
2.9
2.4
3.5
4.4
4.2
4.1
4.9
4.2
4.2
3.9
5.0
4.7
5.0
6.2
5.1
1.3
5.0
6.5
Relative weight loss3, %
From ambient to:
160°C
38
56
49
28
-
-
23
31
20
48
42
32
49
70
-
232°C
52
72
60
34
-
27
36
36
39
45
31
52
55
37
53
87
35
316°C
69
79
62
55
55
43
34
40
33
42
51
47
38
55
53
44
61
91
55
41
From 160°C to:
232°C
23
35
21
8
-
_
16
8
14
9
23
8
7
56
-
316°C
50
53
26
37
_
_
12
16
22
15
19
18
24
70
-
(continued)
-------
TABLE 4-6 (continued)
Run No.
10Ab
10B.
10Cb
100
Sample
type
M5B
MSB
M5B
M5B
M5B average
2Ab
2B
4C
4D
7A.
7Bb
9Cb
9Db
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400 average
Net filter weights,
Amb.
18.0
17.6
17.0
18.0
160°C
13.5
14.3
232°C
12.7
11.9
10.6
12.6
mg
316°C
11.8
11.2
10.0
10.8
4.2
5.1
7.6
6.8
9.4
13.4
8.2
9.6
2.8
3.9
_
5.7
8.4
-
2.4
3.3
5.3
5.0
6.7
5.8
2.3
2.7
4.8
3.8
4.7
6.4
4.6
5.2
Relative weight loss3, %
From ambient to:
160°C
25
19
38
33
24
_
39
37
-
33
232°C
29
32
38
30
44
43
35
30
47
50
40
41
316°C
34
36
41
40
50
45
47
37
44
50
52
44
46
46
From 160°C to:
232°C
6
17
18
14
15
_
12
20
:
15
316°C
13
22
28
18
31
-
18
24
:
23
I
H
Ui
Weight @ T, Weight P T?
aWeight loss, % — — x 100; where T. < T?.
b Weight Q T,
Heat conditioning intervals for these samples were 24 hours; others were 6 hours.
-------
TABLE 4-7. RELATIVE PERCENT WEIGHT LOSS FOR PROBE RINSE
SAMPLES AFTER CONDITIONING AT INDICATED TEMPERATURES
Run No.
1A
IB
2Cb
2D
3C.
3Db
4A
4B
5A,
5Bb
5C.
5Db
6A
6B
7C.
7Db
8Cb
8Db
9Ab
9Bb
Sample
type
MSB
M5B
M5B
M5B
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
Net probe rinse weights, mq
Amb.
21.7
75.8
48.9
29.0
51.0
61.9
20.3
19.9
40.3
39.0
45.5
40.8
25.6
23.3
69.4
75.2
79.2
74.4
45.9
47.1
160°C
11.3
14.3
14.3
8.0
_
-
_
-
15.5
11.3
_
-
18.1
14.0
22.4
23.7
12.3
15.4
-
232°C
6.8
9.2
16.3
5.6
_
-
7.4
-
12.4
13.3
11.9
12.3
15.4
10.5
17.6
23.4
13.5
16.6
_
18.2
316°C
5.6
8.1
11.7
3.0
9.6
22.2
6.8
7.1
9.8
9.7
9.0
9.3
12.8
6.9
8.6
20.3
10.4
11.0
13.5
14.0
Relative weight loss , %
From ambient to:
160°C
48
81
71
72
_
-
_
-
62
71
-
-
29
40
68
68
84
79
_
-
232°C
69
88
67
81
_
-
64
-
69
66
74
70
40
55
75
69
83
78
—
61
316°C
74
89
76
90
81
64
67
64
76
75
80
77
50
70
88
73
87
85
71
70
From 160°C to:
232°C
40
36
-14
30
_
-
_
-
20
-18
-
-
15
25
21
1
-10
-8
_
—
316°C
50
43
18
62
_
-
-
-
37
14
-
-
29
51
62
14
15
29
_
—
I
H
CTl
(continued)
-------
TABLE 4-7 (continued)
Run No.
10Ab
10B.
10Cb
10D
Sample
type
MSB
M5B
MSB
MSB
Net probe rinse weights, mg
Amb.
27.0
20.9
68.4
59.3
160°C
12.0
13.4
232°C
12.1
10.4
19.5
16.8
316°C
9.4
8.0
15.9
11.8
M5B average
2Ab
2B
4C
4D
7A,
7Bb
9Cb
9Db
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
24.9
21.1
33.2
20.4
37.0
24.6
23.4
29.4
14.4
8.7
_
20.8
12.1
_
14.9
5.4
13.3
17.0
12.6
14.3
11.8
4.3
11.0
8.6
11.0
10.7
10.8
12.7
M5B-P400 average
Relative weight loss9, %
From ambient to:
160°C
56
36
62
42
59
_
44
51
_
49
232°C
55
50
71
72
68
40
74
60
54
49
51
55
316°C
65
62
77
80
75
53
80
67
58
70
57
54
57
62
From 160°C to:
232°C
-1
22
11
-3
38
;
18
-4
-
12
316°C
22
40
35
18
51
-
47
12
-
32
Weight @ T, Weight @ T?
Weight loss, % = - — - — x 100; where T. < T«
Weight P 1
Heat conditioning intervals for these samples were 24 hours; others were 6 hours.
-------
TABLE 4-8. RELATIVE PERCENT WEIGHT LOSS FOR TOTAL FILTERABLE
PARTICIPATE SAMPLES AFTER CONDITIONING AT INDICATED TEMPERATURES
Run No.
1A
IB
2Cb
2D
3C.
3Db
4A
4B
5A.
5Bb
5C.
5Db
6A
6B
7Ch
7Db
8Cb
8Db
9Ab
9Bb
Sample
type
M5B
M5B
M5B
MSB
M5B
M5B
M5B
M5B
M5B
M5B
M5B
M5B
M5B
M5B
M5B
M5B
M5B
MSB
MSB
M5B
Total net weights, me
Amb.
25.9
79.7
56.6
34.3
58.8
69.6
26.7
26.7
47.6
46.2
54.0
48.2
33.6
33.8
80.0
86.3
92.3
88.8
57.1
58.2
160°C
13.9
16.0
18.2
11.8
-
_
21.1
16.3
24.5
19.5
28.6
31.3
19.0
19.7
-
232°C
8.8
10.3
19.4
9.1
_
12.1
17.1
17.9
17.1
16.4
20.9
15.5
22.4
30.4
19.7
18.5
25.4
316°C
6.9
8.9
14.6
5.4
13.1
26.6
11.0
11.2
14.7
13.9
13.2
13.2
17.8
11.6
13.6
26.5
15.5
12.3
18.5
20.5
Relative weight loss3, %
From ambient to:
160°C
46
80
68
66
-
-
56
65
27
42
64
64
79
78
-
232°C
66
87
66
73
-
55
64
61
68
66
38
54
72
65
79
79
56
316°C
73
89
74
84
78
62
59
58
69
70
76
73
47
66
83
69
83
86
68
65
From 160°C to:
232°C
37
36
-7
23
_
-
19
-10
15
21
22
3
-4
6
_
316°C
50
44
20
54
_
-
30
15
27
41
52
15
18
38
-
I
M
CO
(continued)
-------
TABLE 4-8 (continued)
Run No.
10Ab
10B,
10Cb
10D
Sample
type
M5B
MSB
M5B
M5B
TotaT.net weights, mg
Amb.
45.0
38.5
85.4
77.3
160°C
25.5
27.7
232°C
24.8
22.3
30.1
29.4
316°C
21.2
19.2
25.9
22.6
M5B average
2Ab
2B
4C
4D
7Ah
7Bb
9Cb
9Db
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
29.1
26.2
40.8
27.2
46.4
38.0
31.6
39.0
17.2
12.6
-
26.5
20.5
-
17.3
8.7
18.6
22.0
19.3
20.1
14.1
7.0
15.8
12.4
15.7
17.1
15.4
17.9
M5B-P400 average
Relative weight loss9, %
From ambient to:
160°C
43
28
58
41
52
-
43
46
-
46
232°C
45
42
65
62
63
41
67
54
53
49
48
52
316°C
53
50
70
71
70
52
73
61
54
66
55
51
54
58
From 160°C to:
232°C
3
19
13
-1
31
_
17
6
-
13
316°C
17
31
32
18
44
-
41
17
-
30
I
M
10
Weight 0 T, Weight @ T?
Weight loss, % = - " - — x 100; where T, < T?.
Weight @ T
Heat conditioning intervals for these samples were 24 hours; others were 6 hours.
-------
Q. -n
I
to
o
-•• c
o -s
3 a>
3 -£»
CQ I
ro
QJ •
3 <
D. (t>
-'• "$
Ct QJ
OJ tQ
rt- 0)
n>
Q. -s
ro
3 c-f
"O -••
O) <
-S CD
O>
rf-TJ
C O)
~S -S
(T> O
to n>
3
I r+
SJ *
3 iT)
CT -J.
-J.IO
rt) 3-
3 <-*•
•s. o
CO 01
— i. (SI
(O
3" QJ
CT O)
Cu -s
(/)
-•• n
c/> o
• 3
RELATIVE WEIGHT LOSS, percent
-------
TABLE 4-9. EFFECT OF HEAT CONDITIONING TIME ON
WEIGHT LOSS OF FILTER SAMPLES
Run
No.
1A
IB
2D
3C
4A
4B
5A
5C'
6A
6B
7C
10B
10D
Sample
type
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
Heating
time per
treatment, h
6
6
6
6
6
6
6
6
6
6
6
6
6
Average
2C
3D
5B
5D
7D
8C
8D
9A
9B
10A
IOC
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
24
24
24
24
24
24
24
24
24
24
24
Average
2B
4C
40
7A
M5B-P400
M5B-P400
M5B-P400
M5B-P400
6
6
6
6
Average
Weight loss between heat treatments at
indicated temperatures , mq
160°C (320°F)
lst-2nd
Treatment
0.3
0.1
-0.2
-
-
-
0.0
-
0.3.
2.7^
1.8C
0.4
-
0.7d
-0.7e
_
0.1
-
0.4
0.1
0.1
_
_
0.4
-
0.1
0.2
_
-
0.2
0.2
232°C (450°F)
lst-2nd
Treatment
0.4
0.0
0.3
_
0.2
_
0.3
0.3
0.4
0.2
0.5
0.0
0.2
0.3
-0.2
_
-0.1
0.4
0.0,
1.0f
0.1
-
0.3
0.0
0.5
0.2
0.0
0.2
_
0.2
0.1
316°C (600°F)
lst-2nd
Treatment
0.2
0.0
0.4
0.2
0.1
0.0
0.1
0.3
0.2
0.2
-0.1
0.0
0.5
0.2
0.2
0.0
0.3
0.4
0.2
0.4
0.0
-0.1
0.2
0.0
0.3
0.2
0.3
0.3
0.3
0.2
0.3
(continued)
4-21
-------
TABLE 4-9 (continued)
Run
No.
2A
7B
9C
9D
Sample
type
M5B-P400
M5B-P400
M5B-P400
M5B-P400
Heating
time per
treatment, h
24
24
24
24
Average
Weight loss between heat treatments at
indicated temperatures , mg
160°C (320°F)
lst-2nd
Treatment
O.lq
1.49
_
-
0.8
232°C (450°F)
lst-2nd
Treatment
0.1
0.2
_
0.3
0.2
316°C (600°F)
lst-2nd
Treatment
0.2
-0.1
-0.2
0.3
0.1
Weight loss between individual weighings from raw lab data sheets.
No additional weight loss was observed after a third heat treatment.
^An additional loss of 0.1 mg was observed after a third heat treatment.
Similar probe rinse samples heated for 6 hours had an average weiqht loss
between treatments of 0.3 mg. All differences were less than 0.5 mg.
An additional loss of 0.2 mg was observed after a third heat treatment.
TMs sample did not show any weight loss on first heating at this tempera-
9An additional loss of 1.6 mg was observed after a third heat treatment.
4-22
-------
at 160°C) , but this is tempered by the results of Run 8C at 232°C
and Run 7B at 160°C. Data for probe rinse samples were examined
in a similar manner. All of the probe rinse samples heated for
6-h intervals had a weight loss of less than 0.5 mg between the
first and second treatments at 160°C. In total, these results do
not indicate a clear advantage of using a 24-h interval over a
6-h interval, in that two heat treatments at the same temperature
were required regardless of duration to assure weight stability.
Selected samples that had been heat-conditioned to 316°C
(600°F) were heated to 400°C (752°F) to determine if any addi-
tional weight loss would occur. Table 4-10 presents the net
sample weights after heat conditioning and the observed weight
loss. Very little additional weight was lost on an average
basis, although there was a high degree of variability among
individual samples.
4.3 WATER-SOLUBLE SULFATE ANALYTICAL DATA
Table 4-11 summarizes the nonwater-soluble sulfate particu-
late (NWSSP) results of the Method 5BW tests. Since particulate
matter cannot be determined gravimetrically in the presence of
sulfuric acid due to the inexact amount of water retained by the
acid, the method is designed to convert the acid to a non-
hygroscopic, non-volatile product, in this case ammonium sulfate.
The acid is measured as water-soluble sulfate and converted to
ammonium sulfate. The weight of ammonium sulfate formed is
subtracted from the total weight of ammonium sulfate and NWSSP
4-23
-------
TABLE 4-10. ADDITIONAL WEIGHT LOSS AFTER HEATING TO 400°C
Run No.
4A
4B
5B
5C
5D
7C
9A
10A
10B
10D
Sample
type
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
Average
4D
7A
7B
9C
9D
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
Average
Net filterable particu-
late remaining after heat-
conditioning to 400°C, mg
Probe
rinse
5.0
7.7
8.7
6.8
5.8
8.5
13.9
10.0
9.8
13.0
8.9
8.8
11.4
9.5
10.9
13.2
10.8
Filter
4.0
3.8
4.0
3.5
3.8
3.9
4.4
10.6
9.8
9.8
5.8
3.7
4.2
4.9
4.3
4.8
4.4
Weight loss observed
between heating from
316°C to 400°C, mq
Probe
rinse
1.8
-0.6a
1.0
2.2
3.5
0.1
0.4
-0.6
-1.8
-1.2
0.5
-0.2
-0.4
1.2
0.1
-0.5
0.0
Filter
0.2
0.3
0.2
0.7
0.1
1.1
0.6
1.2
1.4
1.0
0.7
0.1
0.5
1.5
0.3
0.4
0.6
Negative sign indicates a weight gain.
4-24
-------
TABLE 4-11 . SUMMARY OF NONWATER-SOLUBLE SULFATE
PARTICIPATE RESULTS3
Run
No.
1C
ID
3A
3B
6C
6D
8A
8B
Weight, mg
Filter
1.6
0.1
2.2
3.7
3.7
2.1
3.0
2.8
Probe
rinse
9.6
5.2
21.8
6.5
14.8
11.0
18.0
16.0
Total
11.2
5.3
24.0
10.2
18.5
13.1
21.0
18.8
Total
filterable
concentration,
mg/dNm3
5.4
2.5
7.4
3.2
5.9
4.1
6.6
6.0
Average = 5.1
a = 1.7
N = 8
Comparison to within-run
samples after heating to
indicated temperature
MSB
Run
No.
1A
IB
3C
3D
6A
6B
8C
8D
Filterable concen-
tration, mg/dNm3
232°C
4.1
4.9
_
-
6.6
4.9
6.3
5.7
Average = 5.4
a = 1.0
N = 6
316°C
3.2
4.2
4.2
8.4
5.6
3.7
5.0
3.8
4.8
1.7
8
NWSSP results of the Method 5BW tests using Texas Air Board procedures
modified by the use of ion chromatography to measure sulfate concentra-
tions.
4-25
-------
(particulate excluding water-soluble sulfates). Results of
within-run Method 5B samples are presented for comparison.
As shown in Table 4-11, the average Method 5BW results fell
between the Method 5B samples that had been heated to 232°C
(450°F) and 316°C (600°F). Method precisions were comparable.
The fact that the filterable concentration of samples heat-condi-
tioned to 316°C was lower than the NWSSP concentration may indi-
cate that a small quantity of volatile material other than water-
soluble sulfate was eliminated by thermal conditioning. Because
of the low absolute magnitude of these concentrations [approxi-
mately 5 mg/dNm3 (0.002 gr/dscf)], however, the apparent differ-
ence may be considered statistically insignificant (note the
standard deviation values).
Table 4-12 presents the results of selected Method 5B sam-
ples heat-conditioned to 316°C that were extracted with water and
analyzed for sulfate by 1C. Shown for each sample fraction are
the net filterable particulate weights after conditioning at
316°C and the weight of sulfate (SO.~) found in that sample.
Filter SO ~ results were adjusted for a blank weight of 0.8 mg.
The amount of SO ~ detected represents a significant portion of
the particulate remaining after heat-conditioning, especially for
the filter samples that apparently contain nothing but sulfates.
Again, because of the low absolute magnitude of sample weights,
the SO ~ results may not be as significant as they seem to be.
Because the emission source had a limestone scrubber, calcium is
the cation most likely associated with any residual water-soluble
sulfate.
4-26
-------
TABLE 4-12. WATER-SOLUBLE SULFATE DETECTED IN SAMPLES
HEAT-CONDITIONED TO 316°C
Run No.
1A
IB
2C
2D
3C
3D
5A
6A
6B
7D
8C
8D
98
IOC
Sample
type
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
Average
2A
2B
4C
M5B-P400
M5B-P400
M5B-P400
Average
Net filterable particu-
late remaining after heat-
conditioning to 316°C, mg
Probe
rinse
5.6
8.1
11.7
3.0
9.6
22.2
9.8
12.8
6.9
20.3
10.4
11.0
14.0
15.9
11.5
11.8
4.3
11.0
9.0
Filter
1.3
0.8
2.9
2.4
3.5
4.4
4.9
5.0
4.7
6.2
5.1
1.3
6.5
10.0
4.2
2.3
2.7
4.8
3.3
Weight of SO/
in sample, mg
Probe
rinse
4.7
3.3
3.7
1.9
4.9
8.0
4.1
4.8
2.5
7.9
3.7
4.8
5.0
6.3
4.7
2.5
1.7
3.0
2.4
Filter9
1.1
3.4
2.0
1.8
2.5
2.1
2.0
2.2
2.7
2.8
3.2
2.3
2.5
3.8
2.5
1.7
1.8
2.4
2.0
Adjusted for a blank weight of 0.8 mg.
4-27
-------
4.4 METHOD 8 ANALYTICAL RESULTS
Table 4-13 presents the results of back-half analyses for
sulfates as H2SO4 and S02. As expected, the H-SO. data show a
high degree of variability. Results for Runs 4 and 7 support the
filterable particulate data relative to the effect that a higher
sampling temperature can minimize retention of sulfate in the
front half of a sample train. The SO_ data show a high degree of
precision.
4-28
-------
TABLE 4-13, SUMMARY OF BACK-HALF ANALYSES
Test
No.
1
2
3
4
5
6
7
Train
I.D.
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
68
6C
6D
7A
7B
7C
7D
Sample
type
MSB
MSB
M5BW
M5BW
M5B-P400
M5B-P400
MSB
MSB
M5BW
M5BW
MSB
MSB
MSB
MSB
M5B-P400
M5B-P400
MSB
MSB
MSB
MSB
MSB
MSB
M5BW
M5BW
M5B-P400
M5B-P400
MSB
MSB
HoSO/
mg
18.3
49.5
107
6.9
33.9
81.8
190
81.7
78.5
64.9
104
71.7
28.3
98.5
107
105
73.8
84.4
134
74.0
74.3
114
44.9
82.4
110
118
67.3
78.4
^mg/dNm3
8.47
23.3
51.4
3.32
16.5
40.6
95.7
41.6
24.4
20.4
33.4
22.7
8.23
29.0
31.6
30.4
22.1
25.3
41.2
22.8
23.4
35.9
14.3
25.7
33.4
36.0
21.5
24.0
S00b
mg
1910
2020
1970
1990
1870
2310
2260
2370
4090
4080
3970
4080
4350
4360
4380
4340
4540
4420
4420
4400
3950
3910
3900
4050
4230
4240
4070
4210
*" mg/dNm3
884
952
946
957
910
1150
1140
1210
1270
1280
1270
1290
1260
1280
1290
1260
1360
1330
1360
1350
1240
1230
1240
1260
1280
1290
1300
1290
(continued)
4-29
-------
TABLE 4-13 (continued)
Test
Mo.
Q
Q
10
Train
I.D.
8A
8B
8C
8D
9A
9B
9C
9D
IDA
10B
IOC
10D
Sample
type
M5BW
M5BW
MSB
MSB
MSB
MSB
M5B-P400
M5B-P400
MSB
MSB
MSB
MSB
HoSO/
mg
87.7
120
58.6
62.6
87.8
101
98.8
85.6
92.0
104
75.8
58.6
'mg/dNrn3
27.4
38.0
18.8
19.3
26.6
31.0
31.1
26.3
27.7
31.5
23.4
17.5
S00b
mg
4070
330
3440
3960
4310
4270
4170
4290
4300
4210
4190
4340
t~mg/dNm3
1270
104C
1100
1220
1310
1310
1310
1320
1290
1280
1290
1290
Sulfate analyses (as HLSOJ per Method 8 (40 CFR 60, Appendix A , July 1,
1981) of IPA impinger contents, back-half filter, and rinse.
SOp analysis per Method 8 of peroxide impinger contents and rinse.
"Outlier.
4-30
-------
SECTION 5
^
DISCUSSION OF TEST RESULTS
The data support previous studies that characterize conden-
sible sulfate bias of particulate measurements at source emission
streams containing sulfur oxides. ' ' ' It is evident that
sample temperature is a parameter that significantly affects the
retention of condensible material in the front half of the stan-
dard Method 5 sample train. In this case, condensible matter is
defined as probe rinse/filter residue that can be removed by
heating. Sulfate species will most likely exist in sources
containing sulfur oxides. Water-soluble sulfate can exist in
these sources in many different chemical forms. Sulfuric acid
(HpSO.) is the most common form, but salts of ammonium, sodium,
or other cations are also possible. Because exit gas streams
from boilers are known to contain sulfur trioxide and sulfur
dioxide, sulfuric acid is the most probable form of water-soluble
sulfate.
Data presented in Tables 4-2 and 4-3 show the effects of
sample temperature on the measurement of particulate emissions
from this source. As expected, the MSB samples collected at
160°C (320°F) showed a slightly higher particulate catch in the
probe rinse than the M5B-P400 samples that were collected at a
5-1
-------
probe temperature of 204°C (400°F) and a filter temperature of
160°C. The MSB filterable particulate concentration averaged
18.8 mg/dNm3 at ambient conditions compared with the M5B-P400
average of 11.8 mg/dNm3.
Effects of analytical temperature are shown graphically in
Figure 4-1. The average MSB and M5B-P400 particulate concentra-
tions are essentially identical at each of the three stages of
heat conditioning from 160°C (320°F) through 316°C (600°F). The
MSB sample concentrations averaged 7.2, 6.4, and 5.1 mg/dNm3
after conditioning at 160°, 232°, and 316°C, respectively.
Corresponding results of the M5B-P400 runs at the three tempera-
tures were 7.2, 6.2, and 4.9 mg/dNm3.
A closer examination of within-run samples (as presented in
Table 4-5) shows a larger difference between the two methods
until the samples were heated at 316°C. For Runs 2, 4, 7, and 9,
the MSB sample concentrations averaged 8.5, 7.0, and 5.1 mg/dNm3
after conditioning at the three temperature stages. Correspond-
ing results of the M5B-P400 runs at the three temperatures were
7.2, 6.2, and 4.9 mg/dNm3. This apparent difference is probably
related more to the small number of data for comparison and to
the low absolute magnitude of results rather than to any factor
of significance.
Weight loss data presented in Tables 4-6 through 4-8 and
Figure 4-2 show that both probe rinse and filter samples of each
method type lost significant percentages of their ambient weights
upon heating, although there was a high degree of variability
5-2
-------
among individual samples. The MSB and M5B-P400 filter samples
had average weight losses of 50 and 46 percent after thermal
treatment at 316°C. This close comparison was expected because
the sample filtration temperatures were both 160°C. The apparent
high degree of weight loss is deceiving due to the low sample
weights; that is, a 50 percent weight loss corresponds to approx-
imately 5 mg.
The MSB and M5B-P400 probe rinse samples had average weight
losses of 75 and 62 percent after thermal treatment at 316°C.
These percentages correspond to approximately 30 and 15 mg,
respectively.
As shown in Figure 4-2, most of the sample weight loss
occurred during heat treatment at 160°C (320°F). During sub-
sequent heat treatments up to a temperature of 316°C (600°F), the
MSB and M5B-P400 filter samples had an average weight loss of
only 28 and 23 percent, respectively. Similarly, the MSB and
M5B-P400 probe rinse samples had subsequent average weight losses
of 35 and 32 percent, respectively.
The data in Table 4-10 indicate that very little additional
weight loss occurred between heat conditioning at 316°C and
400°C; in fact, several samples showed slight weight gains. The
small weight differences observed are probably related to the low
magnitude of net weights.
The data in Table 4-9 show the effect of heat conditioning
time on weight loss. Although the data suggest that in most
cases one 6-h heating interval was sufficient to remove material
5-3
-------
volatile at a given temperature, it may not be the case for other
emission sources or for larger sample catch weights.
Statistical data for grouped runs in Tables 4-4 and 4-5 show
the precision estimates for Methods 5B and M5B-P400. For a given
group of two or four runs, the within-run agreement was expected
to improve after each stage of heat treatment due to further
elimination of sulfate biases. Generally, the observed precision
was better after heating at 160°C, and for several samples, after
heating at subsequent temperatures. The precision worsened in
some cases, however, probably as a result of increased sample
handling or because of the low absolute magnitude of net sample
weights.
The mean standard deviation for all 10 MSB run groups was
3.9 mg/dNm3 at ambient conditions, which corresponds to a coef-
ficient of variation (CV) of 21 percent. Seven of the 10 groups
had a standard deviation equal to 2.2 mg/dNm3 or less, which
corresponds to a CV of 11 percent or less. The four M5B-P400 run
groups had a mean standard deviation of 1.7 mg/dNm3 and a corre-
sponding CV of 14 percent at ambient conditions. The enhanced
precision of the M5B-P400 run groups at ambient conditions was
expected due to the reduced bias of condensible sulfates in the
probe rinse samples.
The mean standard deviation for the seven MSB run groups
heated to 160°C (320°F) was 0.9 mg/dNm3 with a corresponding CV
of 12 percent, which indicated a significant improvement over
results at ambient conditions. For the two M5B-P400 run groups
5-4
-------
heated to 160°C, the mean standard deviation and CV were 1.4
mg/dNm3 and 19 percent, respectively.
Precision data for the seven MSB run groups heated to 232°C
(450°F) included a mean standard deviation of 1.3 mg/dNm3 and
a CV of 20 percent. For the two M5B-P400 run groups, the average
standard deviation and CV were 1.8 mg/dNm3 and 29 percent, re-
spectively.
Precision data for the 10 MSB groups heated to 316°C (600°F)
included a mean standard deviation of 1.3 mg/dNm3 and a CV of 25
percent. Seven of the 10 run groups had a mean standard devia-
tion of 0.6 mg/dNm3 and a corresponding CV of 13 percent. For
the four M5B-P400 samples, the mean standard deviation and CV
were 1.0 mg/dNm3 and 20 percent, respectively. Three of the four
M5B-P400 runs, however, had a mean standard deviation of 0.5
mg/dNm3 and a corresponding CV of 10 percent.
All of these statistical results indicate a high degree of
precision for the majority of samples.
Results of the eight M5BW samples and within-run MSB samples
presented in Table 4-11 show the similarity between the two
methods. The reported nonwater-soluble sulfate particulate
(NWSSP) values represent particulate concentrations corrected for
water-soluble sulfates determined by ion chromatography (1C).
The average NWSSP concentration (5.1 mg/dNm3) is essentially
identical to the average particulate concentration of the within-
run MSB samples heated to 316°C (4.8 mg/dNm3).
5-5
-------
A maximum bias of 6 percent (low) could be introduced to the
NWSSP value determined by the 1C analytical procedure if all of
the collected particulate was water-soluble. This is because the
aliquot removed for 1C analysis is equal to 6 percent of the
sample, and the NWSSP result is not corrected for particulate in
the aliquot that is water-soluble and non-sulfate. The actual
amount of bias is independent of the water-soluble sulfate, but
depends on the makeup of the NWSSP. The NWSSP can consist of
nonwater-soluble particulate (NWSP) and water-soluble particulate
that is not sulfate (WSPNS). Extreme examples of these types of
materials would be sand (NWSP) and sodium chloride (WSPNS). If
the NWSSP consisted of 75 percent sand and 25 percent salt, the
NWSSP results reported using the 1C procedure would be biased low
by 1.5 percent (6 percent of the WSPNS). For most boiler exhaust
gases the amount of WSPNS in the particulate, and the resultant
bias to the reported NWSSP, should be relatively low.
The close agreement between the MSB and M5BW samples sug-
gests that the volatile material lost during heating at 316°C is
also water-soluble sulfate, which for fossil-fuel-fired boilers
is most likely sulfuric acid.
This initial conclusion is altered by the results in Table
4-12. These results indicate that a significant portion of the
particulate remaining in samples heat-conditioned to 316°C is
water-soluble sulfate. Any adjustment to MSB results (at 316°C)
for residual water-soluble sulfate would make them lower than
corresponding M5BW results, thus indicating that a portion of the
5-6
-------
volatile material lost during heating was not water-soluble
sulfate. Because of the low absolute magnitude of sample weights
and the relatively large number of analyses performed to achieve
these results, the apparent differences may be insignificant. It
should be noted that these results are consistent with a similar
study at a fluid catalytic cracking unit regenerator with respect
to the occurrence of residual sulfates in samples heat-condi-
tioned to 316°C, yet inconsistent with the possibility that a
2
portion of the volatile matter was nonwater-soluble sulfate.
5-7
-------
SECTION 6
QUALITY ASSURANCE
Because the goal of testing is to produce representative
emission results, quality assurance is one of the main facets of
stack sampling. Quality assurance guidelines provide the de-
tailed procedures and actions necessary for defining and pro-
ducing acceptable data. Four such documents were used in this
test program to ensure the collection of acceptable data and to
provide a definition of unacceptable data. These documents are:
1) the source-specific Test Plan prepared by PEDCo and reviewed
by Emission Measurement Branch; 2) the EPA Quality Assurance
Handbook Volume III, EPA-600/4-77-027, 3) the PEDCo Environmental
Emission Test Quality Assurance Plan, and 4) the PEDCo Environ-
mental Laboratory Quality Assurance Plan. The last two, which
are PEDCo's general guideline manuals, define the company's
standard operating procedures and are followed by the emission
testing groups and the laboratory groups.
Appendix F provides more detail on the quality assurance
procedures, such as QA objective; data reduction; quality control
checks; performance and system audits; preventive maintenance;
precision, accuracy, and completeness; corrective action; and
quality assurance reports to management.
6-1
-------
Relative to this specific test program, the following steps
were taken to ensure that the testing and analytical procedures
produced quality data.
0 Calibration of all field sampling equipment. (Appendix
E describes calibration guidelines in more detail.)
0 Checks on train configuration and calculations.
0 Onsite quality assurance checks such as sampling train,
pitot tube, and Orsat line leak checks, and quality
assurance checks of all test equipment prior to use.
0 Use of designated analytical equipment and sampling
reagents.
Table 6-1 lists the sampling equipment used for quad train
particulate and S02 testing as well as the calibration guidelines
and limits. In addition to the pre- and post-test calibrations,
a field audit was performed on the meter boxes used for the
sampling. PEDCo constructed critical orifices for use in this
audit. Figures 6-la through 6-ld show audit runs for each dry
gas meter used for testing. Figures 6-2a and 6-2b show thermo-
couple digital indicator audit runs. Figures 6-3a and 6-3b show
thermometer and thermocouple audit data collected during pretest
equipment checks.
Between runs, onsite preliminary calculation checks were
performed to verify isokinetic sampling rates and to compare
moisture contents and other parameters with expected values.
These checks were used to ensure that the tests were conducted
properly. An example isokinetic calculation sheet is shown in
Figure 6-4.
As a check on the reliability of the method used, to analyze
particulate samples, sets of filters that had been preweighed in
6-2
-------
TABLE 6-1. FIELD EQUIPMENT CALIBRATION
Equipment
Meter box
Pi tot tube
Digital In-
dicator
Thermocouple
Orsat ana-
lyzer
Train
A
B
C
D
All
All
A&B
C&D
All
All
I.D.
No.
FB-4
FB-8
FB-3
FB-5
183
401
124
125
201
141
L. Calibrated
against
Wet test meter
Geometric spec-
ifications
Millivolt signals
ASTM-2F
Standard gas
Allowable
error
Y tO.02 Y
AH 0 tO. 15
(Y tO.05 Y post-test)
See Appendix E
0.5%
1.5%
±0.5*
Actual
error
+0.005
-0.09
-0.022
+0.009
-0.07
-0.012
+0.003
-0.09
+0.002
-0.002
+0.07
+0.002
OK
OK
-0.4%
-0.2%
+ 1.0%
+0.4%
Within
allowable
1 imi ts
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Comments
Visually Inspected on site
Visually inspected on site
en
-------
TABLE 6-1 (continued)
Equipment
Implnger
thermometers
Balance
Barometer
Dry gas ther-
meter
Probe nozzle
Train
A
B
C
D
All
All
A
B
C
D
A
B
C
D
l.D.
No.
Quad 1
Quad 2
Quad 3
Quad 4
M-l
317
FB-4 Inlet
FB-4 Outlet
FB-8 Inlet
FB-8 Outlet
FB-3 Inlet
FB-3 Outlet
FB-5 Inlet
FB-5 Outlet
1-08
1-06
2-11
2-03
1-11
1-02
2-10
2-01
1-12
1-01
2-09
2-02
1-09
1-04
2-12
2-07
Calibrated
against
ASTM-2F
Type S weights
NBS traceable
barometer
ASTM-2F
Caliper
Allowable
error
±2°F
*0.5 g
±0.10 in.Hg
(0.20 post-test)
±5°F
On ±0.004 in.
Actual
error
-6DF
-4°F
-10°F
-10°F
+0.4 g
0.00
In.Hg
-3°F
+ 1°F
+2°F
-3°F
-3°F
-3°F
+4°F
-2°F
0.000
0.003
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.001
0.001
Within
a 1 1 owab 1 e
limits
No
No
No
No
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Comments
Detected out-of-calibration
limits during field audit.
Correction noted on field data
sheets. Replaced after test
series.
-------
AUDIT REPORT DRY GAS METER
DATE:
BAROMETRIC PRESSURE (Pbar):
ORIFICE NO.
CLIENT:
ORIFICE K FACTOR:
S~i W £.
in. Hg METER BOX NO.
PRETEST Y: _
~V AUDITOR:
-~3
VP
Orifice
manometer
reading
AH
in H20
2,
-------
DATE:
AUDIT REPORT DRY GAS METER
CLIENT:
BAROMETRIC PRESSURE (Pbar): 2%',Qfar\. Hg V
ORIFICE NO. /O \
IETER BOX NO. f^ - ^
'RETEST Y: /ijP-^7
ORIFICE K FACTOR: V-7?f k/0'^ AUDITOR: f^e^t .
Orifice
manometer
reading
AH
in H20
M/
Dry gas
meter
reading
Yvf
n3
W.occ
'Z&ZQoo
Temperatures
Ambient
Tai/Taf
£ /
6>/
Dry gas meter
Inlet Outlet
VTif Toi/Tof
op op
VI LZ
In / 1
y i u? /"
Duration
of
run
0
min
fS'tO^S^
Dry gas
meter
volume
Vm
ft3
/I, ceo
Average temperatures
Ambient
Ta
°F
(*\
Dry gas
meter
Tm
°F
ft3
fV.r /Ot 7%
V Audit
mact
Y
ft3
H.ort i.ou
Y
deviation
~/:07
mstd
(17.647)( Vm )(Pbar + AH/13.6)
(Tm + 460)
Audit Y
Vm t
act
mstd
\ct
(1203)( 0 )( K )(Pbar)
(T + 460)!^
a
Y deviation, %
(Y audit - Y pre-test)(100%)
(Y audit)
Audit Y must be in the range, pre-test Y i.0.05 Y
Figure 6-1b. Audit report dry gas meter.
6-6
-------
DATE:
//- £J-
AUDIT REPORT DRY GAS METER
CLIENT:
BAROMETRIC PRESSURE (Pbar): ,2£0Jin. Hg METER BOX NO. /=ff-5~"
ORIFICE NO. // PRETEST Y: O> 9S V
~* AUDITOR: J1°
ORIFICE K FACTOR:
V**. = 2&" 4 +
Orifice
manometer
reading
AH
in H20
/.7J-
Dry gas
meter
reading
Vvf
ft3
74>£>o*
<7/Z,?oo
Temperatures
Ambient
Tai/Taf
°F
6t
&(
Dry gas meter
Inlet
°F
^9
6 &-
Outlet
T ./T r
or -of
°F
63
63
Duration
of
run
0
min
££*?
Dry gas
meter
volume
V
m
ft3
?.?»
Average temperatures
Ambient
a
°F
61
Dry gas
meter
m
°F
^r
Vmstd
ft3
f), 3"r
Vm t
act
ft3
?,O
Audit
Y
*,ffr
Y
deviation
/.o
\td-
(17.647)( Vm )(Pbar + AH/13.6)
(Tm + 460)
7.5T7
Audit Y
Vm
Vmstd
^.ftr
Vm t
act
(1203)( 0 )( K )(Pbar)
(T + 460)1/2
a
?,r?^
Y deviation, %
(Y audit - Y pre-test)(100cO
(Y audit)
/«>
Audit Y must be in the range, pre-test Y ±0.05 Y
Figure 6-lc. Audit report dry gas meter.
6-7
-------
DATE:
AUDIT REPORT DRY GAS METER
CLIENT:
BAROMETRIC PRESSURE (P
ORIFICE NO. /Jr
): >#4ihn
. Hq METER BOX NO. /^^
PRETEST y:
o.wr
ORIFICE K FACTOR: */,£*} I */0~Y AUDITOR: G^M^T
Orifice
manometer
reading
AH
in H20
W
Dry gas
meter
reading
Yvf
ft3
9ffaa
/kr /o L/V
Temperatures
Ambient
Tai/Taf
°F
; £/
} 6>/
Dry gas meter
Inlet
VTif
°F
U
(/Z
Outlet
VTof
°F
S~P
n
Duration
of
run
0
min
^rfr
Dry gas
meter
vol ume
Vm
ft3
/o,W
Average temperatures
Ambient
Ta
6/f
Dry gas
meter
Tn,
°F
V V
in m
std act
ft3 ft3
/ r\ 7 ^ If} / r~ i i /) f^-7/
(jUi/—j (^t&g i ( ^ f J f&
Audit
Y
/?W
Y
deviation
01
h
-,(?o
l^L
n,t
Vmstd
(17.647)( Vm )(Pbar + AH/13.6)
(Tm + 460)
Audit Y
m act
mstd
\ct
(1203)( 0 )( K )(Pbar)
(T + 460)!^
a
Y deviation, %
(Y audit - Y pre-test)(l
00%)
(Y audit)
Audit Y must be in the range, pre-test Y ±0.05 Y
Figure 6-1d. Audit report dry gas meter.
6-8
-------
THERMOCOUPLE DIGITAL INDICATOR
AUDIT DATA SHEET
Date
Indicator No.
Operator
Test Point
No.
1
2
3
4
Millivolt
signal*
Equivalent
temperature,
°F*
32.0
1&JL&
^M
HM
Digital indicator
temperature reading,
°F
fr
f(fr
it%
KM
Difference,
%
O.Oo
-0,ay
•rC.lo
+ o,tf
-0,11
Percent difference must be less than or equal to 0.5*.
Percent difference:
(Equivalent temperature °R- Digital indicator temperature reading °R)(100%)
(Equivalent temperature °R)
Where °R = *F + 460°F
These values are to be obtained from the calibration data sheet for the
calibration device.
Figure 6-2a. Thermocouple digital indicator audit data sheet.
6-9
-------
THERMOCOUPLE DIGITAL INDICATOR
AUDIT DATA SHEET
Date /AvZ.3-PJL Indicator No. 1
Operator \lf
Test Point
No.
1
2
3
4
Millivolt
signal*
Equivalent
temperature,
op*
7*;I,JL
H6-/.I
//*?
Digital indicator
temperature reading,
°F
3lf
/O^f
vr^.i
tIZf.J
Difference,
X
-0.37
^ -°<3?
^ -°,JT
2. -OJ?
Percent difference must be less than or equal to 0.5Z.
Percent difference:
(Equivalent temperature °R -Digital indicator temperature reading eR)(100%)
(Equivalent temperature °R)
Where °R = °F + 460°F
These values are to be obtained from the calibration data sheet for the
calibration device.
Figure 6-2b. Thermocouple digital indicator audit data sheet.
6-10
-------
Audit Name:
ON-SITE AUDIT DATA SHEET
Date: (l/fr/fr
Auditor:
Equipment
Meter box
inlet thermo.
Meter box
outlet thermo.
Impinger
thermometer
Stack
thermometer
or
Thermocouple
Orsat
analyzer
Trip
balance
Barometer
Reference
rt «-
ASTM-3F atrD
ambient temp.,, i
ASTM-3F at f$ '
ambient temo*.
ASTM-3F at &
ambient temp.-g.
ASTM-3F at
ambient temp.
ASTM-3F at
stack temp.
% Og in
ambient air
IOLM std.
weight
Corrected*
NWS value
Reference
Value
. Cl
- u
1 (,(
- w
-JA__
Ll
20.88
Value
Determined
^
rv
£o
n
ff
~~~?7
Deviation
+3
-i
-/
-/
-C
-V
Max. Allowable
Deviation
5°F
5°F
2°F
7°F
See table
0.7%
0.5 grams
0.20 in. Hg
Reference temp. °F
Max. deviation °F
32-140
7
141-273
9
274-406
11
407-540
13
541-673
15
674-760
17
* Correction factor:
NWS value (in. Hg) - [Altitude (ft)/1000(ft/in. Hg)] + 0.74 in. Hg**
** 0.74 in. Hg is the nominal correction factor for the reference barometer
against which the field barometer was calibrated.
If it is not feasible to perform the audit on any piece of equipment, record
"N/A" in the space provided for the data.
Figure 6-3a. On-site audit data sheet.
6-11
-------
ON-SITE AUDIT DATA SHEET
Audit Name:
Date: //- 23-32^ Auditor:
Equipment
Meter box
inlet thermo.
Meter box
outlet thermo.
Impinger
thermometer
— _ __ /V^-r*^
b t a CK VT^****
thermometeV^*'
ur
Thermocouple
Orsat
analyzer
T^p, M£77Le&
balance
Barometer
Reference
ASTM-3F at^"5
ambient temp..*
FP-*
ASTM-3F atfff~*
ambient temp.
f=9-f
ASTM-3F at <=-
ambient temp.p
•ASTM-3F at <=•
Ambient temp.p
ASTM-3F at
stack temp.
% 02 in
ambient air
IOLM std.
weight
Corrected*
NWS value
Reference
Value
i^
• 6?
^ _\
^
6Y
te
--i£~
66
20.8%
5"(TCV_
T
Value
Determined
^3
^r
6*
6i
&
-------
ISOKINETIC CALCULATION
SITE
TEST NO.
1. Voluae of dry gas sampled corrected to
standard conditions. Note: V *tst be
corrected for leakage 1f any leakage
rates etcted L4).
P *H 1
V_ • 17.65 i V. x T bar * TTT
std I T* J
I. Volume of water vapor at standard con-
ditions, ft .
V • 0.04707V.r •
"std 1C
1. Moisture content in stack gas.
B j • "std •
"std "std
Dry Molecular weight of stack gas,
1b/1b-eele.
Md - 0.440 (X C02) + 0.320 (S Oj)
* 0.280 (1 H2 * 1 CO) *
Molecular «elght of stack gas.
Stack velocity at stack conditions.
/ . \ / T
V » H5 49 rn l»vn Jt\f\ I—, •
»$ BS.»» tp ^avg. fAfy/
Fs "s
Isokinetlc variation
*• T.
I I • "ltd • ' i 17.32
¥. » 0_ • t i P. E (!-•„«)
•> n § v*
V., ft3
•>'
Y
Pbar. In.Hg
AH, 1n.H20
T °R
'in* R
V , dscf
"std
Vle. 9
V... .ft3
*std
Bws
l"Bws
% C02
^02
J N2 4 % CO
Md, Ib/lb-mole
Ms, Ib/lb-mole
Pstatic» 1n'H2°
Pe. In.Hg
5 *
TS, °R
yiF
CP
V$. fps
Dn, In.
0, Bin.
I I
RUN 1
tit*
A*37
;W?
T-f
1°
M
?n.t
IMS'
.13-2
.$95
/2.1
r.r
7^.^
^.7
-/.J—
•09 7O
*^ «*»t- •<.
ff)6^(
/.3-s-
6),^
tf.l
,HZ^
f&
77'?
RUN 2
//i< J
.f^S^
^X
//r^
*?<"? <2^
^J /,. ^
/6.^
./^
-??y
,^V
»/« ,«
RUN 3
//?'5"
Loot
^13-
1/1,0
JYCi
/£,••>
.izr
.^73"
,Z^
n.
RUN 4
^p
AT^^
^
JJ°<]
/ M - £ f
.13.1
•57 (
o.tt*
to, ,
Figure 6-4. Isokinetic calculations.
-------
the lab and acetone blanks were submitted for thermogravimetric
analysis in a manner similar to the actual samples. Table 6-2
summarizes the results of blank filter and reagent analysis.
Audit solutions prepared by EPA were used to check the
analytical procedures and reagents for SO- sampling analysis.
Table 6-3 presents the results of this analytical audit. Table
6-4 summarizes the results of S02 reagent blank analyses. The
audit test and blank analyses show that the analytical techniques
were good.
Filter and deionized water blanks were analyzed to check the
reliability of the analytical methods used to determine nonwater-
soluble sulfate particulate. Table 6-5 presents the results of
the blank reagent analyses.
The sampling equipment, reagents, and analytical procedures
for this test series were in compliance with all necessary guide-
lines set forth for accurate test results as described in Volume
III of the Quality Assurance Handbook.*
Quality Assurance Handbook for Air Pollution Measurement Sys-
tems, Volume III, EPA-600/4-77-027b, August 1977.
6-14
-------
TABLE 6-2. THERMOGRAVIMETRIC REAGENT BLANK ANALYSIS
Sample type
Filter -
(Whatman
RA 934AH)
Acetone
Acetone
Acetone
I.D.
No.
CR341
CR373
CR374
CR375
Initial
volume, ml
NA
272
208
316
Net blank weight, mg
Ambient
0.2
3.7
2.7
2.8
160°C
-0.1
1.1
0.5
1.9
232°C
0.0
1.6
0.4
1.4
316°C
-0.1
0.8
-1.5
0.8
NA = Not applicable
6-15
-------
TABLE 6-3. AUDIT REPORT S02 ANALYSIS
Plant
t f/!
PN Number
Date samples received y^-^-^3 Date analyzed
Samples analyzed by /V// JC//A/>V^
Reviewed by /
Date of Review
Sample
Number
5 cSS'/
'7f>f> 7
' /^ S'> y
j <-- **'
^2-/V
<: /C/ /
mg S02/dscm
Determined
/ 7^ 7 3
^3vy, ^
Source of
Sample
7". •»
-------
TABLE 6-4. S02 REAGENT BLANK ANALYSES
Sample type
80% I PA
10% Hydrogen
peroxide
I.D.
No.
CR446
CR447
CR448
CR449
CR490
CR491
CR492
CR493
Net blank weight, mg
as S02
_
_
-
-
<1
<1
<1
<1
as H2S04
<0.1
<0.1
<0.1
<0.1
_
-
-
-
6-17
-------
TABLE 6-5. NONWATER-SCLUBLE SULFATE PARTICULATE
REAGENT BLANK ANALYSIS
Sample type
Filter
Acetone
Filter
Acetone
Filter
Acetone
Filter
I.D.
No.
CR394
' CR403
CR497
CR404
CR498
CR405
CR499
Net weight
of participate plus
ammonium sulfate, mg
1.6
1.7
(-0.2)
1.5
1.3
0.7
2.6
CSO a
iU4 »
mg/lTter
3.63
0.29 .
2.75
0.13
2.71
0.30
2.81
v
evap'
ml
235
403
235
250
235
360
235
NWSSP,
mg
0.4
1.5
(-1.1)
1.5
0.4
0.6
1.7
A 15-ml aliquot was removed from sample for ion chromatography analysis.
6-18
-------
SECTION 7
REFERENCES
1. PEDCo Environmental, Inc. Laboratory Evaluation Report -
Analytical Method for Determining the Particulate Weight of
EPA Method 5 Exclusive of Water-Soluble Particulate. Method
Development and Testing for FCCU Regenerators. EPA Contract
No. 68-02-3546, Work Assignment Wo. 14, October 1982.
2. PEDCo Environmental, Inc. Emission Test Report. Method
Development and Testing for FCCU Regenerators. EPA Contract
No. 68-02-3546, Work Assignment No. 14, December 1982.
3. Mitchell, VI. J. , and M. R. Midgett. A Means to Evaluate the
Performance of Stationary Source Test Methods. Environ-
mental Science and Technology, 10:85-88, 1976.
4. Oldaker, G. B. Condensibile Particulate and Its Impacts on
Particulate Measurements. Draft Report, EPA Contract No.
68-01-4148, Task No. 69. May 1980.
5. Peters, E. T., and J. W. Adams. Sulfur Dioxide Interaction
With Filters Used for Method 5 Stack Sampling. In: Work-
shop Proceedings on Primary Sulfate Emissions From Combus-
tion Sources, Volume I - Measurement Technology. EPA-600/9-
78-020a, 1978. p. 199-202.
6. Gushing, K. W. Particulate Sampling in Process Streams in
the Presence of Sulfur Dioxide. In: Workshop Proceedings
on Primary Sulfate Emissions From Combustion Sources, Volume
I - Measurement Technology. EPA-600/9-78-020a, 1978. pp.
202-227.
7-1
-------
APPENDIX A
COMPUTER PRINTOUTS AND EXAMPLE CALCULATIONS
A-l
-------
FIELD DATA
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(OEG.
BAR. PRESS. (IN. HG)
MONO POWER-PLEASANTS
UN I I 1
MSB
00
n 50.
28.94
STATIC PRESS. (IN. H20) -1.50
FILTER NUMBER(S)
STACK INSIDE ()IM.(
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
OOQ2756
IN) 240.00 .00
.84
.006 CFM a 6.0 IN
DATE
RUN NUMBER
PROBE LENGTH & TYPE
NOZZLE 1-08 : I.D.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
METER HFAD OIFF.
PROBE HEATER SETTING
.HG
HEATER BOX SETTING
1 1/29/82
1AM5B
6' RLASS
.115
12.0
FB4
1.87
320.
320.
METER CALIB. FACTOR 1.037
READ ft RECORD DATA
TRAVERSE SAMPLE CLOCK
POINT
NO.
INIT
TIME TIME
(MIN.) (24-HR
CLOCK)
0 1130
10.0 0
20.0 0
30.0 0
40.0 0
SO.O 0
60.0 0
70.0 0
ao.o o
90.0 0
100.0 o
110.0 0
120.0 mo
EVERY 10.0 MINUTES
GAS METER VELOCITY ORIFICE PRESSURE STACK
READING HEAD DIFFERENTIAL TEMP
(CU.FT.) (IN.H20)
(IN.H20) (DEG.F)
DESIRED ACTUAL
256.564
262.800 .500
268.940 .500
275.120 .500
281.130 .400
287.410 .500
293.470 .400
299.680 .500
305.890 .500
312.220 .600
318.370 .500
324.600 .500
330.965 .600
.37 .37 145.
.38 .38 145.
.38 .38 147.
.29 .29 147.
.39 .39 147.
.30 .30 146.
.39 .39 146.
.39 .39 148.
.49 .49 146.
.40 .40 148.
.40 .40 146.
.49 .49 146.
DRY GAS METER PUMP
TEMP VACUUM
(DEG.F) (IN.HG)
INLET OUTLET
50. 50. 5.0
55. 50. 5.0
58. 51. 5.0
60. 53. 4.7
63. 54. 4.8
64. 55. 4.7
65. 56. 4.9
66. 56. 4.9
67. 57. 5.1
67. 57. 5.0
67. 57. 5.1
67. 58. 5.3
SAMPLE IMPINGER
BOX TEMP TEMP
(OEG.
327
324
313
319
327
334
334
323
313
316
313
327
F) (UEG.F)
06.
43.
43.
51.
72.
69.
68.
72.
62.
61.
61.
62.
TOTALS
AVERAGE
120.0
74.401
1.39
1.39
146.
62.
55.
5.0 323.
59.
-------
PARTICIPATE FIELO DATA ft RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
MONO POMER-PLEASANTS UO
TEST 1AM5B
UNIT 1
TEST DATE
TB
TF
TT
NP
r
ON
CP
> PM
1
to
VM
TM
VMSTD
VLC
vwc
BWO
FMO
PC 02
P02
PCO
PN2
MD
MWS
TIME-START
TIME-FINISH
NET TIME OF TEST. MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF WATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT CO? 8V VOL., DRY
PERCENT 02 BY VOL., DBY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR wT-HRY STACK GAS
MOLECULAR WT-STACK GAS
ENGL
1
1130
1330
120
12
1
1
74
58
76
226
10
12
12
6
SI
30
28
ISH UNITS
1/29/82
.0
.037
.185 IN
.8a
.39 IN-H20
.40! CU-FT
.5 F
.266 SCF
.3
.652 SCF
.25
.877
.10
.90
.00
.00
.21
.72
METRIC UNITS
1
1130
1330
120
12
1
4
35
2
14
2
226
12
12
6
81
30
28
1/29/B2
.0
.037
.7
.84
.3
.107
.7
.160
.3
.302
.25
.877
.10
.90
.00
.00
.21
.72
MM
MM-H20
CU-M
C
SCM
SCM
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRFS OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
V3 AVC STACK GAS VELOCITY
AS STACK AREA
QSSTO STACK FLOW RATE* DRV*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE PART
MG. EPA 5
CS FILTERABLE PART
PHR FILTERABLE PART
EMISSION RATE
MN SULFUR DIOXIDE
M6. EPA 5
CS SULFUR DIOXIDE
PMR SULFUR DIOXIDE
EMISSION RATE
MN SULFURIC ACID
MG. EPA 5
CS SULFURIC ACID
PMR SULFURIC ACID
EMISSION RATE
75.5
15239.
68658728.
85H7a40.
102.4
?5.9
28.94 IN-HG
-1.50 JN-H20
2B.83 IN-HG
lib. F
FPS
SO-IN
SCFH
ACFH
.0052 GR/DSCF*
46.910 LB/HR
1910.0
735.08 MM-HG
-38.10 MM-H20
M2.27 MM-HG
64. C
22.9 MPS
29.186 SQ-M
1774307. SCMH
2410271. ACMH
102.4
25.9
11.994 MG/DSCM
21.28 KG/HR
1910.0
.3864 GR/DSCF* 884.474 MG/OSCM
3459.384 LB/HR 1569.18 KG/HR
18.3
.0037 GR/DSCF*
33.145 LB/HR
18.3
8.474 MG/nSCM
15.03 KG/HR
* 68 OEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICULATF CALCULATIONS TFST NO. IAMSB
UNIT i
VOLUME OF DRV GAS SAMPLED AT STANDARD CONDITIONS
VM9TO * (17.647 * VM * Y • (PB + PM / 13.61) / (TM t 460.)
17.647 * 74.401 * 1.037 * ( 28.94 * 1.389 / 13.6)
WMSTO = 1 — ..... ... z 76.268 DSCF
( 58. » 160.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VWC * .04707 * VLC
VWC = .04707 * 226. = 10.65 SCF
PERCENT MOISTURE IN STACK GAS
8MO = (100. * VWC) / (VMSTD «• VWC)
100. * 10.65
BWO = = 12.25 PERCENT
76.26A » 10.65
MOLE FRACTION OF DRY STACK GAS
FMO = (100. - BNO) / 100.
100. - 12.3
FMO x ----.- — --------..-.--. z .877
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MD a (PC02 * .44) + (P02 * .32) + (PN2 + PCO) * .28
MD = (12.10*44/100) « ( 6.9*32/100) * ((81.0+ .0) * 28/100 = 30.21
MOLECULAR WEIGHT OF 9TACK GAS
MwS = MO * (1. - OftD/lOO)) + 18. * (HMO/100)
MwS = 30.21* (1. -(12.?'i/100)) + 18. * (12.25/100) = 2H.7?
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP * SUM. OF THE SOWTCVH * (TS + 460.))
VS = 85.49 • CP * OELP / (SORT(MWS * PS) * PNTS)
VS = 85.49 * .84 » 361.852 / (SORT( 28.72 • 28.83) * 12. = 75.2b FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS * AS * 3600/144
OS = 75.26 * 45239. 3600/144 = 85117440. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTO « 17.647 • OS * PS • (1. - (BwO/100)) / (TS + 4bO.)
17.647 * 85117440. * 26.63 * (1. - (12.25/100))
OSSTD s — — . = 62658788. SCFH
( 14b. « 460.)
PERCENT ISOKINETIC
ISO « (305.58•(TS+ObO.))•((0.002669*VLC)*(VM*V*(PB+(PM/13.6))/(TM»460.)))/(TT*VS*PS«ON*DN)
(305.58M |4b.*460.))*( (0.002bb9* 226.)t( 74.40 I * 1.037*( 28.9«+( 1.389/13 .6 ) ) / ( 58.*460.)))
ISO = — = 102.43 PERCENT
120. * 75.26 * 28.S3 * .185 * .185
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS a 0.001 » MN * 15.43 / VMSTD
CS = 0.001 * 25.9 * 15.43 / 76.2b8 = .0052 GR/DSCF
PARTICULATE LBS/HR — EPA METHOD 5
PMR = CS * OSSTD / (15.43 * 453.6)
PMR a .005? * 6?65«728. / (15.43 • 453.6) = 46.910
-------
UA1A
PLAHT
SAMPLING LOCATION
SAMPLE TYPE
OPEKATUH
AMBIENT TtMP.CDE6.FJ
BAR.PHEbS.(lN.H6)
STATIC PRESS. UN. H20)
F1LTEH NUMBtlUS)
STACK I Mb lOt DlM.CIiO
P1TUT Tout COtFF.
THEHM. NO.
LEAKAGE
MtTtH CAL1B. FACTUR
MUISU PUKtK-PLEAbAMS
UNIT 1
M5b
00
50.
2B.94
-1.50
0002755
240.00 .00
DATE
NUN NUMBER
PHUBE LENGTH ft TYPE
IVU22LE 1-1
l : l.D.
ASSUMED MOISTURE
SAMPLE BOX
METER BOX
METER HEAO
NUMBER
NUMBER
OIFF.
.04 PHOBE HEATER SETTING
.000 CFM • 5.0 IN
.990
.HG
HEATEH BOX
SETTING
1 1/29/82
1BM58
5* GLASS
.166
12.0
FB8
1.90
320.
320.
READ ft HECOKD DATA EVtRY 10.0 MINUTES
TKAVEKSt SAMPLt CLOCK GAb MtTtH VELOCITY UH1F1CE PHtSbUNE bTACK
POINT
NO.
IN1T
TIME (IME
(MlN.J C24-HH
CLOCK j
0 1131
10.0 0
20.0 o
30.0 0
40.0 0
50.0 0
bO.O 0
70.0 0
60.0 o
90 .0 o
loo.o o
110.0 0
120.0 1331
HEAOlNu HEAD DIFFERENTIAL TEMP
CCu. FT.) CIN.H2U)
(1N.H20J (DEG.F)
OESIrttU ACTUAL
9b9 45b
975^40 .500
961,890 .500
907.930 .500
993. 9bO .400
.300 .500
b.4<;0 .400
12.750 .500
19.120 .500
25.bbO .bOO
31.950 .500
38.300 .500
44.810 .bOO
.37 .37 145.
.37 .37 145.
.30 .36 147.
.29 .29 147.
.39 .39 147.
.30 .30 14b.
.39 .39 14b.
.39 .39 148.
.49 .49 14b.
.40 .40 148.
.40 .40 1Mb.
.49 .49 14b.
DNY GAS METER
TEMP
(OEG.F)
IftLET OUTLET
47. 4b.
50. 46.
54. 47.
57. 48.
59. 49.
bl. 50.
t>2. 51.
b2. 52.
b3. 52.
b3. 53.
b4. 54,
b4. 54.
PUMP
VACUUM
(IN.H6)
3.0
2.9
3.4
3.8
4.2
4.2
4.3
4.4
4.7
4.7
4,7
4.0
SAMPLE IMPINGES
BOX TEMP TEMP
(OEG.
318
316
311
316
319
317
316
313
313
313
310
312
F) (DEG.FJ
. 47.
• 44 9
. 44.
50.
63.
. 66.
. 69.
v 71 »
66.
66.
63,
57.
TOTALS
AVEHAGE
UO.o
75,354
1.39
1.39
146.
59.
50.
4.1
315.
59.
-------
PARTICIPATE FIELD DATA 4 HESULT;. TABULATION
PLANT- NAME AND ADDRESS 1EST TEAK LEADER
MONO POrttR-PLtASANTS UU
TEST IBMib
UNIT 1
TEST DATL
TB
TF
TT
NP
r
UN
CP
1 PM
CO
V.
(M
VMSTU
ENGLISH UNITS
1 1/29/B2
TIME-START 1131
TIME-FINISH 1331
NET TIME OF TEST, MIN. 1<»0.0
NET SAMPLING POINTS It!
METER CALIBRATION FACTOR .99(1
SAMPLING NUZ/Lt DIAMtTER .lt)b IN
PITOT TUbE COEFFICIENT .Bl
AVERAGE ORIFICE PHESSOHE 1.39 IN-HdU
DROP
VOLUME OF URY UAb SAMPLED 75.35« CU-FT
AT METER CONDITIONS
AVERAGE bA5 METER TEMP bO.b f
VOLUME OF DRY GAS SAMPLED 7«4.91
-------
PB
PSI
PS
TS
VS
A3
OSSTO
US
ISO
MN
CS
PHH
MN
cs
PNH
Ml*
CS
PMH
bAHOMtlHlC PKEibUKt
STATIC PHES uF S1ACK GAS
STACK PHtS, AH5.
AVERAGE STACK TEMP
AVG STACK GAS VELOCITY
STACK ARtA
STACK FLO* HATt, DKY«
ACTUAL STACK FLU* KAIE
PEKCENT
FILTEHABLE PAHI
MG. tPA b
FlLTtRABLE PART
PART
EMISSION HATE
SULFUR D10XIUE
MG. EPA i
SULFUR DIOXIDE
SULFUR DIOXlUt
LMI3SIUN HATE
SULFUKIC ACIU
MG. EPA b
SUUFUH1C ACIU
SULFuRIC ACIU
EMISSION RMt
26.83
14b.
79.7
IN-HdO
IN-Hb
t
FPS
U-IK
bCFH
ACFM
-iO.10 K
.27 KM-HG
l. C
29.1ttb Su-M
. ACPh
79.7
6<4.<4b KG/HH
GK/OSCF*
12 LB/HH
2020.0
.4161 GK/OSCF* 952.349 KG/OSCC
3b01.t)39 LB/HH 1633.79 KG/HH
49.5
49.5
.0102 GH/OSCF* 23.337 fb/DSO
Oa.2fa3 LB/HK 40.04 KG/hK
* btt OtG F, 29.92 IN.HG.
-------
fcXAMHLt PARIICULAlfc C ALLUL A T 1 UNS Hbl MJ.
OMT I
VULUMt UF OHY GAS SAMHLtl) Al blANiUAKU
VM3TU = (17.647 * VH * V * (Htt + PM / 13.6)) / ITH » 460.)
17.647 « 75,354 « ,99B * I 2fl.94 + 1.3fltt / 13.6)
VHSTD « - ------- - --- - ------- - -------------------------------- = /«*.«M«J USCF
I 5b. + 160.)
VOLUME OF NATtR VAPUR AT STANUAHO
VftC > .U4707 * VLC
VnC • .04707 * 3S9. = 14. ob SCF
PERCENT HUISTURE IN STALK GAS
^ BftO « (100. * VwCj / 1VHSTO » Vr»CJ
H 100. * 14.05
0 BnO * - ------------------------- = 15.7V PtkCtNT
74.91i? + 14.05
MOLE FRACTION OF DRY STACK GAS
FMU * (100. - BrtU) / 100.
100. > 15.0
F*D s ------ -
100.
AVERAGE HULtCULAR rttlbHl OF DKY S1ALK GAS
MU = (PtO<; * .44) * (PUt: » .3t!) » (PNd * PCO) * .iJ8
Ml) = U
-------
STACK GAS VtLUCHY AT blALK CUNulllUNb
DELP = bUM. OF THt bOrtUVH * lib * 4bU.J)
Vb = »5. / (SUKH att.itt * 26.03) * \« a99.)*( 75.3b4« ,998*( a8.94+( 1 . i«tt/ J 3 .6) ) / { 5
ISO s ----------------------------------------------------------------- . ------------------------ . ---- .. B 102. S<» PERCENT
120. * 7S.83 » 20.113 * .l«b * .IBb
PAHTICULAIE LOADING -- tPA METHOD 5 (AT STAM)AKU CONDITIONS)
Cb = U.U01 • MN * lb,4i / VHSTO
Cb = U.001 » 79.7 » lb.43 / 74. 912 = .Olbl GH/uSCF
PAHTICULATE LUS/Hh -- tHA MtTHOU b
PMH = Cb • UbbTu / tlb.43 * 4bl.b)
PMH = .Olb4 • bUbo93«!tt. / (15. 4i « 453. b) = 14.112
-------
MtLU DATA
HLAhl
iAMHLlNb
LUCAIION
0« 1 1
HOxtK
1
bAMPLt ItPt
UHtrfAIUH
AMbltNl ItMP.IDt&.F)
UAK.PKtbb.llit.HU)
blAllC PKtSS.(1N.HJO)
FlLftH ftUMbtMS)
blACK INblUt DIM.(IN)
f 1 IUI lUUt CUtFF .
iHtNM. NU.
LtAKAbt
MtltK LALio. FACIOh
KtAU ft HtCUHU UAlA
Mbbrt
CLAKlvt
-I .50
d40.00
.00
.004 OM oi 6.0 IN.Mb
1 .006
lo.u MlNUlhb
UAlt
KUN NUMHtK
PKObt LtublM 6 ITHt
NU//Lt i-ido; i.u.
ASbUMtL) MOlSIUKt
bAMHLt bUX NUMOtK
MtlEH bUX HUMtttK
Mt ItK HtAO 01FF .
HMubt MtAItK btl
ntATtM bUX bt I I lr,G
r FACIUK
ILHbdn
5* bLASb
.100
ia.o
F83
ic!0.
1.1
(KAVtrtbfc
HUlNl
NU.
INI 1
iAMHLt
llMt
(MlN.)
0
10.0
2o.o
3o.o
40.0
bo.u
bO.O
70.0
00.0
so.o
100. U
1 lo.o
Ido.u
CLUCK GAS MtltH VtLULlID UKUlLt KhtbbUKt
llrtt KtAUlNb HtAO UlFFbKtNllAL
(d«-hH (CU.FI.j (iN.hdUJ HN.MdO)
UtblHLU ALTUAL
1140 ddo. ubb
1140 d3c!. 100
llbo d44.007
IdOU d<4t>.100
IdlO db0.44b
l^dO <^b6«^db
1 d 30 dbd.400
IdMO d69.0 1 b
l«!bO c!7b.744
1300 dtto.144
1310 d«7 . 71 o
13do
-------
KAKllCULAIt MtLII UAlA & KtbOLIb lABULAllUH
PLAM- NAMt Af.O AUUKtbb ItSl ItAM LtAL/hn
MONO t'OWEK PLtAbANIb LLAMR.L
TtSJ ICMbbM
UM1 1
Itbl UAlt
Ib
Tf
1 1
NP
y
UN
ce
t*M
CO
VM
1M
VMSIU
LNbl Ibn ONI 1 b
1 1 /e: •*>«?
TIHt-STArtl u.iti
TlMt-MUlbM liiO
NtT IlMt 01- Ttbl, Mlu. IdU.U
NtT bAMHLINb HUiNlb 1^
MtltH CALldKATIUN FALIUK l.UUb
SAMPLlNb NU/ZLt OIAMtltM .Ittb IN
Pllul lUHfc CUtKHlLltiVI .OM
AVtKAbt UKUlCt PHLbbUKt I.4O lN>Htt! BY VUI., I/KY
MULtCuLAK Al-ljHY iilACiV L./\b
MULtCiJLAK /. 1-SlALIv I.Ao
U .a/
.bdb
1^. lu
b .^U
.uu
o 1 . (J u
.5(1.dl
£ N . M I
.«i7y btM
1 1 ,<4/
.ddb
11.10
b . 40
.UU
HI .UU
iU.cM
t?0.dl
-------
PB
PS1
pa
Ib
Vb
Ab
UbSIU
US
150
MN
CS
HMW
Hh
PMH
HN
CS
PhN
bAHUKtlKlC PHES50HE
blAllC fHtb Uh blACK bAb
S1ACK HKtb, Abb.
AVtKAbt SIALK rtMH
AVG blALK bAS VELOCITY
blACK AKtA
blALft hLOn HAlh, tl«T«
ALtUAL SIACK l-LOw WATt
PtKCtM
Mb. tHA
KMSSP
KAft
SUl>UH UlUXlOt
Mb.
SULI-UK UlUXlUE
tMlbSlON KAft
SULI-UKIC AC1U
Mb. tPA b
SULI-UKlt AtlU
dti.bl Kx-MG
mo. e
II.
,0(Jd<4 bk/UbCK
.lSB Lb/HK
1970.0
04.
Mb.Od MH"Hb
-id.lo MM-ri(!0
lid.dl MM-hb
L
MPb
bU-M
bLMh
ALMM
<*4.S
1 1 .
-------
EXAMPLE PANliCULATK IALCULA UONt) lEbl HU .
UK II 1
VOLUhE UF L/KT bAb bAMPLEU Al SIAnlJAKu UINU 1 I 1 <
-------
STACK bAS VtLULllY Al blACK LIII4U 1 1
UELP = SUh. Ul- THt bJkllVH * lib + I4b(l.)l
WS = Bi.41* * CP • UtLP / (bUHUMrti * PS) * Pulb)
VS s Bb.i9 * .tit * 3bl
STACK bA5 VULUMtlhIC ^LO»• AT STACK
US = VS * A!> • 3bUU/l(4<4
5IACK bAS VULUMtlKlC FLUA AT blAUUAKU
= It. bit * US * PS * (1. - (0NU/10U)) / CIS > .l>4 * do.ai * .100 * .too
PAKliCULATt LOAOlNb — tPA MtTHOO b (Al blAUUAKU
CS = U.UUI * MN * lb.4i / VMSTU
LS = O.OU1 • II. c? * lb.41 / 7
PAhflCULAIt Lbt)/MH — tHA Mt I HOU b
PMh = .UUt!^ * t>31 l£J3*d. / lib. 43 * 4*)3.«>J =
-------
^ItLU UAl A
PLAN!
LUCAI 1UN
I-1UNU t't
UN 1 I 1
PLtAbANlS
CLAitKb
bO.
-I .bO
bAMPLt llHb
UPtHAI UK
AMbltNl ItMP.(UtG.F)
bAK.PHtSb.UM.hG)
blAUC PKtbb. ( 1N.H2UJI
ULltW NUMbtH(b)
SUCK INblUt DIM.(IN)
P 1 Mi I I Uot CUbFf- .
IritKM. NU.
LbAKA&t
MtltK CALlb. FACIOK
KbAO & KtLOKU UAl A tVLHY 10.0 MlnUltb
id .00
201
.000 Cf-M ol 0.0 IN.Mb
UA Ib
NUN IMUMbtK
PkUdt LbNGlH * (»Pb
MUJLt 1092 : l.U.
AbbUMtU MUlMUKt
SAMPLt bUX NUMbbK
MtltK bUX NUMritH
Mt ItK HbAU Ult-> .
PKUbb HtAttK b'LIIlKG
HtAlbH bUX btlllNb
b' bLAbb
.lob
.0
Fbb
520.
320.
1.1
IHAVtHbt SAMPLb
PulNI Ilrtt
NU. (Hii^.J
1^11 0
10.0
20.0
30.0
4U.O
bO.O
bO.O
70.0
80. O
90.0
100.0
110.0
120.0
CLULK
1 1Mb
f | 1 )p K |
CL UL ^ )
1 150
1 14U
1 150
1200
1210
1220
1250
1240
12bo
1300
1510
1 32o
1330
bAb MblbK VbLUUlIt UKlMLb PHbibUKb
KbAUlNb HtAU LI IHt- tKtNT 1 AL
(UU.I-I.J (Ii
PUMP
VACUUM
UN.Hb)
5>AMPLb
BUX TtMP
(UtG.M
IMPlNbtK
TtMP
(Ubb.t- )
IhLbT UUTLbT
14b.
14i.
147 .
147.
14/ .
140.
14b.
140.
140.
140.
140.
140.
54.
bb.
b2.
bO.
/2.
75.
Ib.
10.
70.
00.
00.
00.
54.
55.
54.
55.
57.
60.
bl.
b3.
b4.
b5.
bb.
bb.
5.0
5.0
5.5
5.5
b.O
b.O
b.O
b.O
b.O
b.O
b.O
b.O
346.
320.
341.
321 .
339.
502.
555.
349.
312.
324.
310.
310.
52.
40.
40.
52.
b4.
bb.
bO.
b2.
b4.
bt.
50.
54.
lulALb
AVtHAbb
Ido.o
1.39
1 .40
14b.
bO.
5.a
32b,
bb.
-------
PAKliLULAlt HltLU UAlA & NtbULlb JAbuLAllUN
PLANI- NAME Al»0 AUUKtbb Itbl ILAM LLAL/tK
MONO PUrttH PLtASAMb LLAKKt
Ttbl
UN II t
.Ibrt
00
Itbl LIAIt
Ttt
JF
II
NP
Y
UU
LP
PM
VM
IM
VMS I U
VLC
BflU
FMU
PLO«i
PLU
ML)
HMt-aiAHi
TIMt-F lulbH
Nt I 11 Mt UF Itbl, .1lN.
Mt I bAMPLlHb PUlUlb
MtltK CALIBKAlIUN FACIUH
SAhPLlNb HbllLt LllAhtltH
PIlUl lUUt LUtFF ILUMI
AVtHAbt UKlFlCt PHtbSUHt
UHOP
VULUMt uF L)KY bAS bAMPLtO
Al Mt ILK CUNUl I iU'.S
AVtKAbE GAb MtltK ItMP
VULUMt UF UKY bAb bAMPLtU
Al blANOAKU CUIML) 1 I 1 U^S*
lUlAL HdO LULLtLItU IN
IMPlNbtKb Ai^U blLlCA btL.ML.
VULUkt UF AATtH VAPUH
AI blAUUAKU
HtKCtNl MUlblUht hT VULUMt
MULt FhALTIUU Uh 1 bAb
PtKLtNl LU
1 150
I .0
Ic
. lab
1 .<4o
bb./
1M/.0
b.bl
It .10
b .^0
.00
bl .00
ill .dl
crS. lo
.91<< bLF
MtlKlL UNlIb
1 !
1 1 JO
lijo
.0
<4. / MM
Jb.b MM-HdU
d.lbO LU-M
Itt. / L
tJ.O/1* bCM
14/.0
bLH
b.bl
Id.10
b . **U
.00
til .00
JO.dl
-------
J
E
i
^
z
c
3
Jl
«O
r
i
-
y
£
\j
3
•y
E
1
T
£
3
—
O
•*!
1
•u
C
1
*
?
„
1
J
E
1
£
Z
*^.
•u
M
•<-!
<^
J
r
i
^
v>
C
s
M
£
J) 1
a. j
_J £ />
O
X!
•o —
T "VJ T
-O M "U
2
'.O *^
1. 1
"
^
o y y
T ~- f\
— -u
J1
31
r E
X £
u ;->
o <
» -0
7 7 ^i n
"u — y
a a
o -o
E E
.*. ^
J -J
» 1
O U ./I J>
-n -o y
/i *
o J^
O O
X
u
•,/J
3
X
•J
£
y.
^
f
•v
«
X
u
N.
X
J
~
3
*
X
E
•x
J
*
^^
3
3
^
x
fi
«J
Jl
•n
J
.^
£
U
J
3
r
^
O
y-
•
•o
U
a. 3
z _i
J3 —
oj y?
x
a. -J
O "X
« -u
« «
< a
x -•
£ 3
3 -•
u
«
«
— x -n £
•j jj *
< a. z
n
O. a.-<
«S
ZZ
x
3
r/J
3-*
x
3
3 -3 <
-. -. X
'J U
<. «. z
3
zx/5
3 3 —
3
-O
33
iO /)
J
JJ
VI
a.
(O »J
0. »-
-------
tXAMKLt HAHllLULAtt C ALCUL A I 1 Ut.b Itbl
UNI I 1
VOLUMt Ul- UKT bAb bAMPLtU Al SIAiMUAKU CUHUlliUinb
VM5>IU = U7.t>47 * VM « t * (fti + PM / M.bJJ / II* * «bO.)
17. 647 * 7b.«>2b * .loo * ( do.^tt » 1.<4UU / 15.6)
— ..............................
( bh.
VULUMt Oh nAltH VAHUX Al btAMUAKU UUNUHiUNb
= .04707 * VLC
= .0«707 *
HtKCtNI MUlSlUKt IN dlAl>
BrtU = UUO. * VWCJ / (VMblU +
^ 100. * 6.<*a
", bhU = -------- --- -- --- --- ---- - — = O.bl PtKLtHl
N) 7
O
MOLt FHACUUN UF UKY b'lACK I, AS
hMU = (100. - bttU) / 100.
100. - O.b
FMU = -----------------------
100.
AVtWAbt MULtLULAK rtt H«H I OP UKI bUCK bAb
MU = IPtOd * .44J + (HUti * .ieJJ * IHN«^
rtu = (!<;. lu*4<4/iuuj + I b.V« J
-------
IjAS VtLuLlfU Al blAC* LUNUlllUl.b
UtLP = iUKi. i^ Tut bUNKVM * (15 + <4bO.M
VS = bb.MV * CH * utLH / (bUk I lH.»b « Hb) * Hula)
VS = ttb.«*S » ,B<4 * Jbl
M.brt
STACK bAb VULUHtfKIC FLUM AT SlALK
US = VJ> * AS * -idOU/ I <4AS VULUMtlKlC H-UK Al SlftuUAKU
UbblU = 17.b<«7 • (Jb « Pb * (1. - (Ur.U/lUU)) / lib
17.b<»7 * tt<*<4bbbi<;. * db.«i * 11. - C
KtKCtNC ISUKlNttlC
I TS + «bO. ) J * I (O.
l
-------
ZZ-Y
z >
» r-
CT tf
m
rv. ru —
o o c
c co
ru
tr, c
o ru LT
ru — e
c o
o o
ru -X —
e rv. e
rv. «j «j
e ru c
!lS « r£
i* trir
TV 14 W
9 O' Uri
i/l if C
Ul M *
z
-<
c^a— FUk*
»-awrvr\jfvjiVfrr\jt
££:;£££££ £S
•c
2 O
C •-
X -
»"« »•*
• m
***•
n rv
r* * -*
O 1 —
r*. i i
> z rr-
^v-
— X
c »
« o
-H 2
• C"
^»
*••
y 3T
ru c
C
^
c
fT>
CP C
rr r -n
C • rr,
ru rr
C Z
» «- -H
(-) *.
-< >
c r-
»
(—
c
ei rr
•r, -o
^
rr, <«.
rr m
cn T
e • -e
c ""
-< «—
r~
rr.
•-. <
y o
• c
i cr
^- a
0 C
cn
• ^
>- X
f*
o
m -<
• I
*•
KAVEWSt
cn
r
n
r
c
(-.
z
-*
rr
Z
rr
r~
•<
C
X
^1
O
rr.
z
rr
tr
c
m
cr
n
c
a-
>
a
T
m
rr
C
T
T
T
rr
•c
z
m
z
z
»
c
»
rr
o
0
o
>•
n-
•<
c-
•
e
z
c
tr.
Z
^
rr
z
o
f
•
o
c
•
c
u*
•^J
r-
»
»
m
c
c
m
Z
Ul
•
o
z
tr
-t T) C«
m -. »
z c r,
z -< »
•
^ !••
O CX cn
C
n n-
0
rr C
•n Z
^
z
• £
£ •
O
C
0
T T
> cr
-. cr
m rr
z
1
tB tr
e >
rr
ce z
rr,
-4 tr
-4 rr
*« ««
en •-
2
er
u. e
ru c
o c
• •
•n en
r- »
m _
C Z
a cn
rr cr
z •
«- z
3
O
C •
ru kP
a e
a
rv.
» x
z z
T a>
n- c
> K
NUMBER
J Olff.
f ^i
• IE
a 6
•«j
«
z
•
z
m
V
•
i
0
•
CD
T
r-
tr
c
z
c
z
s
rr
» C tf.
X rr z
•- Z t
m K r-
•H C
T
O
Cl
•
•n
c. c
• i
e
c-
» * -e
c r^ a
z r* m
o r-
«• rr
ilH ft T
Ub : l.l
UlSTUkE
» ti
rr.
— cr
e • •
e a cr
ru r"
»
Z >
r- -«
*-
z
c
2 C
-< c
— -c
c
r-
rr
»
cr.
Z 0
rr
cr
ru —
» —
Z V
LP rv,
ex 43
ct
-------
PAHIlLULAIt FltLO UAlA 6 RESULTS FAbULATlUN
PLANT- NAML ANO ADDRESS rtsT TEAK LEADER
MONO PUKtH-PLEASANTS Ul)
TEST 2AM5bP
UNIT 1
TEST OATt
IB
TF
TT
V
UN
CP
to
U)
If
VMSTD
VLL
VhL
bhU
PCUc?
H0«!
PCO
MD
MhS
TIME-START
TIME-FINISH
NET TIME OF TEST, Mlu.
NET SAMPLING PUIMS
METER CALIBRATION FACTOR
SAMPLING NUZ/LE DIAMEUR
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
VOLUME UF DhY GAS SAMPLED
AT MtTtW CUNU1T1UNS
AVtHAGE GAS MEIER TEMP
VOLUME OF UWT GAS SAMPLED
AT STANOAHU CONOlTIUuS*
TOTAL ri^O LOLLECTEU IN
IMPINGLRS ANU SILICA
VOLUME UF nATEH VAPOH
AT STANUAHU CONDITIONS*
PEHCENT M01STUHE BY VOLUME
MOLE FRACTION UKY GAS
PEHCLNI CUe: d Y VUL.. I)KY
PERCENT Ut til VOL., DRY
PEKCtNJ CO BY VUL., DRY
PtKCLNI N«» HY vUL.. URT
MOLECULAR rtT-IJHY S1ALK (iAS
MULtLtJLAK rtl-STAL^
ENGLISH UNlIb
1.037
1.C1 1N-H.JO
7o.b<)ij CU-FT
59.<4 F
7
-------
PB 0ARUMETRK PKESSUHt
pai STATIC PKES UF STACK GAS
PS STACK PRtS, AB5.
TS AtftMAbt STACK TEMP
VS AVG STACK bAS VELOCITY
A3 STACK AREA
USSTU STACK FLOW KATt, DRY*
US ACTUAL STACK FLUrt RAIE
I3U PERCENT iSUMNtTIC
UK FILTERABLE PART
MG. EPA b
CS FILTERABLE PART
PCK FILTERABLE P*RT
EMiSSlUM NATt
HN SULFUR OIOXIuE
MG. EPA b
CS SULFUR DIOAluE
Pfh SULFUR OlUXluE
EM1SSIUN RATt
MN SULFURK ACIU
MG. EPA t>
CS SULFURK ACIU
PCR SULFuRlC ACIU
EM1SSIUN RATE
-l.bl) It
iftt.ab 1N-HC
74.1 FPS
SU-IN
SCFM
ACFH
100.b
GR/USCF*
Sb.SUU LB/HH
167U.O
-3U.10 K
/13.0« KK-HG
btt. C
^^.6 KPS
SU-M
ACHH
100.5
KG/hR
1070.0
.3975 GR/USCF* 909.B30 KG/DSC*
3bb7.00V LB/HR lbltt.00 KG/hR
33.9
33.9
,007«! GR/USCF* 16.494
64.664 LB/HR c!9.33 KG/HR
6t> Otb F,
IN.HG.
-------
tXAMPtfc PAHIlCULAIfc C ALLUL A1 I UNb ItbT NU.t!AM5bP
UNIT 1
VULUMt OF UkY bAS SAMPLtl) Al bTANUAHU CUNUI1IUN5
VHSIO = (17.647 * VM * Y * (Pb t pM / 13.6)) / UM + 4bO.)
17.647 * 70.892 * 1.037 * I 28.97 * 1.230 / 13.6)
VHSIO = " = 72.590 03CF
I b9. + 4bO.)
VULUMt UF NATtR VAPUH Al STANUAHU CUNUIlIUNb
VrtC = .U47U7 * VLL
VAC = .04707 * 166. = 7.BO SCF
PtRCtNT MOlbTuRt IN STACK bAS
BMO = (100. * VMCJ / (VMSTD + VnCJ
^ 100. * 7.ttO
I 6»«0 = = 9.70 PtKCtNT
N> 72.b90 » 7.«0
CT.
MQLt FRACTIUN OF UHY bTACK bAb
FHD = (100. - BrtU) / 100.
100. - 9.7
FMD = - — — — - — — - — — = ,S03
100.
AVtKAbt MuLtCuLAH MtlbHl UF UKY SIACK GAS
MU = (PCOi * .44) + (H()<; * .3^) + (PN«: » PCU) * ,«;8
MU = (11.75*44/100) » ( b.b*3d/100) + (IHl.b* .0) * 20/100 = 30.15
MULtCULAR WblGHI UF SIACK GAS
WrtS = Ho * (I. - iMnU/lUU)) » to. * (HAU/lOU)
S = 40.Jb* (1. -t 4.70/lyuj) + 10. * ( S.70/100) = 20.47
-------
STACK GAS VtLuClTY AT SlACK
OtLH = !>UM. UF IMt 5QKTIVH • ITb * <4bU.J)
VS = B5.49 • CP * DtLP / lbuHT(M*»b * HSJ » PMS)
VS = 85.49 • .at « 157.999 / CSukTf 2JJ.97 * 2tt.ab) *
74.1u FP3
STACK GAS VUtUMtTHIC FtO" AT STACK CONDITIONS
05 = VS • »b • JbUO/lM^
OS = 74. 1U * 45c!iS. jbUU/144 - dJtJOU^Ufl. ACFH
SlACK GAS VULUHtTHIC FLUM AT bTANUAHl) CUNUITIUNb
USSTO = I7.b47 • US * PS * (1. • (8*0/100)) / (IS t 4bO.)
17.647 * OJHOU2UB. * io.8b *(!.-( 9.7U/10U))
- --- • — ---- - -----
. * 4bO.)
OSSTD
bi?a07520.))*UO.UU«!bt><**VLC)»(V>'«r«(Pb*(PM/l3.b) )/CTM»4bO.) J)/ t f I * VS*HS*I>N*OM
lbb.)*( 70.a<»«>*l .037* ( 28,'J7+( 1 .236/1 3.b) ) /
--------------- ....... ------- .....
* 74.10 * 26.86 * .162 * .1K2
ISO s
« 100.
-------
1 l/£9/8<
2BM5BP
UJ
3
Z
UJ
<
UJ
_l
X
£
X —
3 •-
Z
3
•^
<
3
J
Z
H«
»- -1
Z X
_l <
x a>
n
<
j i-
19 *- O 3 • •
** • 99 3 O
» • a A • o fv
in «• u. — » »»
UJ Z
a. « — j
>- 3 Z t- Z
* 3 1 33 u. s/J •-
• • f- 3 i. •- UJ
X 9» Z 3 3 It —
3 »• to s. •- >- 3 «
~
z
in
•
o *l 3 (J —
7 CO X
i. r- 3 0 • » TJO
1 *^mOiJ39 v*9*3
j^ ^ jn ^ «• o ^\j • • o
*•
x
^j
-». -, >
— > O Z UJ
u. o» — z
• X -• 3 <
(J5 <•*» » • • ^ H-
uJtAZ^Xu. (-)<
Q X i-»OT — U. «3
• Z • Z 3 O
UJ X^V)3!3 3D O
X JJ • -kl X — Jj • — • O
>- ^9>Z39330O ^UJ
3 >•• UJ w« ^ UJ U
J — Z X ;j X • J 4
-j-CJ3X*jJ3
«xx««--«»--»rujujjj
coo«z
Z X •
a. »- uj
X 3
»* *^
0.
UJ X ->
a. ^ •
^ ^
< X UJ
(0 O O
o «•*
^
X U)
Q. 3 I
X « —
> w
JJ UJ
•— -J
UJ -» t-
a. u. 3
X • 3
< UJ UJ
•^ uj
>- _J
X 2
3 —
^«
UJ ^ •
^3 3
«^
UJ -1
X «
« •- O
jJ ^ -^ <
Z Z 3
X lU OJ
Z X
J uj • 3
O U. Z UJ
— 3 ^5
X UJ
3 3
>• ^*
i- 3
— 3 <\J
-i r 2
jj p^
^ — '
a: *%
r- Z »-
X O •
< 3
(/> UJ O
••%
x v*j ar *
o i r •->
3 — 1 O
CJ <%J U
^
JJ -s
U UJ •
X — M
« >- X
— 3
« O Z
Z X
«S5SSS5S555.5 ^
-»»ii».3rui»i»ininoi»-f^ -\i
^SSSSSSSS'JiJIS S
So3l333°.S:; = 2? 5
inoB.:> rxj3,n-3Tj =r
:
•
oooooooooooo
I *\ n
— O333OOOOO33U1 9
a - UJ
Z -1 «
-• « Z
A-27
-------
PAHTICOLATE FIELD UATA &
PLANT- NAMt ANu ADoRESb
MONO
FEbT
b UBOLATION
TtbT TtAM LEADER
uu
UNIT I
TEbT OATt
TB
IF
TT
NP
r
UN
CP
to
00 VC
TK
V^bTU
VLC
ENGLlbH ON1TS
1 1/2V/B2
TIME-START Ib2b
TlME-FlNlbH 1726
NET TIME OF lEbT, MIN. 120.7
NET SAMPLING PolMb 12
METER CALIBRATION FACTOR .99B
SAMPLING N021LE UlAMEtER .177 IN
PHUT TOBE COEFFICIENT .64
AVERAGE ORIFICE PRESbOKE 1.21 1M-H20
OROP
VOLUME OF DRY bAb bAMPLEU 71.924 CU-F (
AT METER CONOITIONb
AVERAGt bAb METEK TEMP 57.7 f
VOLUME OF URY b*S bA^4PLEO Tl.lOb aCF
AT blANOAHU LONOlTlONb*
TOTAL M20 COLLtCTEU IN 200.1
METRIC bNITS
11/2S/JJ2
1726
120.7
I*
.99B
«.5 KM
.84
31.4 PM-H2U
2.037 CO-M
14.3 C
2.013 SCf
20B.1
vhC
BKO
FCU
PCO
MU
MMb
IMPI^GERb ANU blLlCA GEL,ML.
I/OLOML OF ^AIEK VAPOR
AT S1ANOAHU
PtRCtNT Ml) I SI UKt BY VOLOMt
HOLE FRACTION UHY bAJ>
PERCENT C02 dY VOL., OHY
PERCENT 02 BY VOL., ORY
PERCENT CO BY VOL., UKV
PERCENT 1*2 UY VOL., U*
-------
I
NJ
PB
HS1
PS
IS
vs
AS
U3STU
US
130
MN
CS
PPk
CS
PCK
MN
CS
bAHUMETHIC PHtbSuHt
STATIC PKtS UF STACK GAS
5TACK PHtS, ABS.
AVEHAGt STACK (tMP
AVb STACK GAS VELOCITY
STACK AHtA
STACK FLUM W*Tt, UHY*
ACTUAL STACK FLUM HATE
PEHCENT 13UK1NETIC
FlLTtHAbLt PAHT
MG. tPA b
FILTERABLE PART
FlLTtHABLE PAHT
E.HISSIUN NATt
SULFUR UJUXIUE
MG. EPA 5
SULFUR DIOXIDE
SULFUH DIOXIDE
EMISSION HATE
SULFURIC ACIO
MG. EPA b
SULFuRJC ACIU
SULFUHIC ACID
HATE
* «>8 DtG F, 29.92 IN.MG.
-l.bO I
<;a.t>b iN-
Ibl. F
7«.b FPS
SCFH
ACFH
lUb.tl
-36.10
733.04 fM-HG
22.7 I»PS
29.1Mb SO-M
173993b.
238b030.
lUb.tt
2b.2
13.014 KG/DSC*
22.b<4 KG/HH
2310.0
,b013 GK/USCF* 1147.377
4000.720 Lb/HR 1996.17 KG/hK
.U057 GH/OSCF*
49.913 LB/HK
01 .6
.0170 GK/USCF*
15b.63b LB/HH
ttl.tt
40.b30 Cb/OSCC
70.69 KG/HH
-------
EXAMPLE HAKIltULAlE C ALL UL A 1 I UN6 ItbT NU.
YMSIO = (17.b47 • VM • t • IPH * PM / 1.5. b)J / UM * 4bO.)
I7.b47 • 71.934 * .99B * I iJB.S7 * 1.238 / 13. b)
VMSID = - _________________ - -------------------------- "•• — ••' = 71.1Ub USCF
( Stt. *
VULUHt UF nAltW VAPuR AI 5TANUAHU CUNUITIUNi)
V»C » .0<4707 * VLC
Vi»C « .04707 * aoB. = 9.00 3CF
PtHCENT MUISTUHt IN STACK GAS
B*iO » (100. • Vi»C) / (VMSTU t
too. • v.tto
BnU » — — — — — ----- — — — - — - = 12.11
71.10b t 4. BO
MOLE FRACTION UF UHT bTACK, OAS
FHO = (10U. - BnUJ / 100.
too. - !<;.!
- --- — -.. = .679
100.
AVEKAbE MULtCuLAK Mtlbhf UF UKT SIACK GAS
MO s (PLO«! « .41) » (H0«! « .1^) + (PN«! + HCO) * ,<;fl
MO = (1 1 .7S*44/lUu) » ( b.b*3c:/lGO) t (iHl.b* .0) * ^M/100 = 40.
MULtCULAK rttlbMi uF SIALK UAb
= Mj * (1. - IbrtD/luUj) * It). * (bnu/100)
= 30.1b« (1. -llc!.l 1/lUOj) » Itt. * (l
-------
SULK GAS VtLuCJTI A! STACK
OtLP = iUM. OF THt bUHllVh * I T i>
Vi = B5.49 * CP * OtLP /
Vb = 55. 0*
I305.5tt«i I54.t4b0.) J*l(0.00ibb9* ?08.)t( 71.924* .99a*(
121. • 74.47 • 2(t.0b * .177 •
/(T T»VS*PS»UN*UN)
( 1 ,d30/ 1 3 .6) ) / ( 56. + 460.)))
.....
.177
z 105.77 PERCENT
PARTICIPATE LOAUINU -- EPA METHOD 5 (AT STANDARD CONDITIONS)
Ci = 0.001 * MM * 15.43 / VHSTO
C3 = 0.001 * tib^ * 15.43 / 71.105 = .0057 UK/UbCF
PARTICULATE LbS/nw -- EPA MLTHUU 5
PM« = C3 » uSbTu / (15.43 * 4bi.bJ
.0057 * bl444
-------
FltLU DATA
I
to
NJ
PLANT
SAMPLING LOCATION
SAMPLE IYPL
UPEHATUH
AMBIENT TtMP. IDEG.F)
BAR.PHESS.(IN.HG)
STATIC PRESS. (IN. H20)
FILTER NUMBER(S)
STACK 1NS1UL DIM. (IN)
PITuT TUBE COEFF.
THERM. NO.
LEAKAGE
MtTER CAUB. FACTOR
MUMiU
UNIT
MbB
PUftEK PLEASANTS
1
CLAHKE
' 50.
20. 9b
-1.50
OUOc!b04
240 .
00 .00
UATE
HUN NUMBER
PHOUE LENbTH tt TYPt
NU/^Lt 1-01 : 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METtH BOX NUMBER
MtTtR htAU OIFF.
.04 PRUbE HEAIER SETTING
dOl
.015
l.UOb
RtAD & HECORD DATA EVERY 10.0
ThAVEHSE SAMPLE CLOCK GAS MtTLH
POINT
NO.
INIT
TIME TIME
(MIN.) (24-HR
CLOCK;
0 Ib2b
10.0 153b
20.0 1545
30.0 Ibbb
40.0 IbOb
bO.O Iblb
60. 0 Ib2b
70.0 Ib35
00.0 164b
90.0 lobb
100.0 I/Ob
110.0 1 71b
UO.O 1725
HEADlNb
(CU.FT.)
300.104
3ub.0bl
312.002
317.525
323.91 7
320. 120
333.675
339. U7
345.355
351.110
3b7.753
363, bib
371.025
CFM •! 4.0 IN.HG
MINUTES
VELOCITY uRIFlCt
PRESSURE STACK
HEAD OlFFkRENTlAL TtMP
(!N.h20) (IN.H20) (OEG.F)
UESIREU
.bOO .27
.200 ,19
.300 .12
.200 .00
.200 .00
.200 .00
.200 .00
.300 .10
.600 .40
.900 .60
2.000 .70
2.000 .70
ACTUAL
.30 151.
.20 153.
.10 156.
.00 157.
.00 155.
.00 153.
.00 153.
.10 155.
.40 155.
.60 155.
,70 152.
.70 140.
HEATER BOX SETTING
K FACTOR
UHY bAS METtH PUMP
TEMP VACUUM
(UEb.F) (IN.HG)
INLET OUTLET
50. 52. 3.0
54. 52. 3,0
60. 54. 3.0
to4. 54. 3.0
60. 54. 3.0
60. 54. 3.0
70. 54. 3,0
72. 54. 3.0
73. 56. 3.5
75. 58. 4.0
75. 50. 4,0
76. 60. 4.0
1 1/29/82
2CM5B
b* GLASS
,100
10.0
FB3
2.00
320,
320.
1.0
SAMPLE IMPINGEH
BOX TEMP TEMP
COE6.
298
329
313
331
319
320
328
330
322
320
320
321
F> (OE6.F)
• 42.
t 40,
! 40!
42.
. 42.
. 42.
40,
40.
42.
40,
42.
TOTALS
AvEKAbE
uo.o
70.841
1.2b
154.
b7,
5b.
3.3 322.
41.
-------
PARTICULAR FltLU DATA & MEMJLTij TAbULATlUtv
PLANT- NAME ANU ADDRESS TEST TtAf LEADER
MONGU POMER PLEASANTb CLARKE
UMT 1
TEST UATE
IB
IF
IT
NP
Y
UN
CP
> PM
1
U)
U)
v*
IN
VNSTU
VLC
VHC
a*u
F*0
PC02
P02
PCU
PN2
MD
MWb
ENGLISH UNITS METRIC UNITS
11/2^02 11/2S/02
TIME-START 1525 1525
TlME-FlNISh 1725 1725
NET TIME OF TEbT, MIN. 120.0 120.0
NET SAMPLING POINTb 12 12
METER CALIBRATION FALTUR l.OOb l.UOb
SAMPLING NOZ/LE DIAMETER .100 IN «.b KM
PITOT TUdE COEFFICIENT .0.bO 01. bO
MOLECULAR rtT-UKY blALK GAb 30.15 30. lb
MULEtULAK wr-blALK GAb 0.bfa tfO.fab
-------
PB
PSI
PS
T3
VS
A3
USSTu
U3
130
MK
CS
PMrt
CS
ttAHOMEfRK
STATIC PKES UF STACK GAS
STACK PRES, xaa.
AVtRAUt STACK TEMP
AVG STACK GAS VELOCITY
STACK AhtA
STACK FLUH HAlt, UHY*
ACTUAL STACK FtOft HATE
PEHCtNT ISOKl^tHC
FILURAbLE PAHI
MG. fcPA i
FlLTtHAbLE PART
FlLTtHABLfc PAR[
EMISSION HATt
SULFUR UIOXluE
MG. tPA b
SULFUR DIOXIUE
SULFUR 01UXIOE
EMISSION RATE
SULFuRIC ACIU
MG. EPA b
SULFuKIC ACIU
SULFURIC ACIU
EMISSION RATE
c"B.4b IN-hb
b IN-HG
F
7«.b FPS
61379104. SCFH
ACFh
101. 6
bb.b
.Uldb GR/USCF.
LB/HH
.4973 GR/USCF*
43bl.049 LB/HR
190.0
.0410 GR/USCF*
3bb.b37 LB/HH
a ("M-HG
-3B.10 KM-Mit)
732.70 KM-HG
bB. C
. tab SU-M
101. b
bb.b
20.507 fG/DSCP
49.b4 KG/HH
2260.0
1130.251 KG/DSC*
1970.17 KG/HR
190.0
95.b94
lbb.31 KG/HH
* oO UtG F, 29. <*2 Iiv.riG.
-------
EXAMPLE PAKHLULATE CALCULAI IUNS TEST r\u. 2CCbb
UNIT l
VULUMt UF UKY GAS SAMPLED AT iTAMlAKt) CUNUIUUNS
VMSTD s (17.607 * VM • V • IPb » PM / 13.6)) / (TM + 460. J
17,617 * 70.841 * 1.U06 * I 26.96 » 1,250 / 13.6)
VMSTD = ----------------------------------------------------- = 70. lit UbCF
( 61. +
VOLUME UF MATER VAHUH AT bTANUAHU CUNOITIUNb
VMC = .U47U7 » VLL
V*«C = ,0«»707 • ^07. = <*.7i StF
PERCENT MOlbTUHt IN STACK GAS
BMU = (10U. * VMC) / (VMSTU » ViCJ
100. * S.75
BMO = -------------------------- = 12.20 PEKCEMT
70.1i« » 9.75
MULE FRACTION OF ORT STACK bAS
FMD = (100. - HftOj / 10U.
100. - Ic.i!
FMD = —————— »..—»..
100.
AVEHAbE MULECULAH rttlGHl UF DKY STACK GAS
MU = tPCOi * .f4J * (HOd * ,3
-------
STACK GAS VtlUCUY AT SIAtK CONDlllONb
OtLP = SUM. OF THt bQNllVH * (Tb t 460.))
VS s «5.49 * tP * UtLP / ISl/HHMWb * PS) • HMb)
WS = b5.49 « .04 « 357.999 / ibukU ao.bb * £0.65) * It. - 74.50 FPS
S1ACK GAS VULUMfcTHIC FLO" AT STAC* CONDITIONS
OS = VS • A5 * JbOO/144
OS = 71.50 * 45.tt5 * (1. - (12.2U/10U))
U5>S10 = - --------------- - ----- •--• ----------- - -------- " --- - = blJ79104. SCFH
( Ib4. + 4bO.)
• Pt»CENT I30KINETIC
U)
0\ ISO = (30b.bO«(T5*4bO.)>* I (u . OOibb9*VLC ) » ( V^*»* iPb* (PM/l3.bJ ) / ( TMt4bO. ) ) } / 1 TT »VS*PS*ON*ON )
l305.bU«( lb4.«4bU.))*((U.OOdbb9» 207. )»( 70 .04 1 * 1 . OOb* I ^0.9b«( 1 ,d5B/ 1 3 .b) ) / ( 6l.t4bO.)))
ISO s ------------------------------------------------------------------------------------ - --------- — » 101.56 PERCENT
120. * 74. bO * 20. 65 * .100 * .100
PAHIICULAU LUAUING — tPA ME THUD 5 (AT bTAi-OAHU CONDITIONS)
Cb = 0.001 * HN • Ib.flJ / VMSTO
Cb = 0.001 * bb.b * lb.43 / 70.1<:4 = ,0l(!5 bH/USCF
PARIlCUuATE LbS/HK — fcPA MtTHOU b
PHH = Cb * uSbTu / lib. 43 • 4bi.b)
PHR = .Ol«;5 * 613/4104. / (15.43 * t53.b) =
-------
I- 1ELU DAT A
>
U)
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.tDEG.F]
BAH. PHEbS. (IN.HG)
STATIC PRESb.UN.H20)
FILTER NUMbER(S)
STACK INSIDE UlM.UN)
PITyT TUBE COEFF.
THEHM. NO.
LEAKAGE
METER CALiB. FACTOR
MUNGU
UNIT
PUwEH HLEAbAIJlb
1
UATE
RUN NUPBER
MbH PRUbE LENGTH & TYPE
CLAKKE
51.
«iH.9b
-1.50
0002b
240.
05
00 .00
NOZZLE 1-04 : l,g.
ASSUMED MU
SAMPLE bOX
PETER BOX
PETER HEAD
ISTURE
NUMBER
NUPBER
DIFF.
.04 PHUbE HEATER SETTING
201
.OOb
.960
REAO a RECORO DATA EVERY 10.0
TRAVERSE SAMPLE CLOCK GAS MtTER
POINT
NU.
1N1T
UTALb
TIME TIME
(MIN.J 124-HR
r i nr K i
I- L.UL ** >
0 1525
10.0 1535
20.0 1545
30.0 1555
40.0 loob
50.0 Iblb
bO.O Ib2b
70.0 Ib35
00.0 Ib45
90.0 Ib5b
100.0 170b
110.0 1 71b
120.0 172b
120.0
HEADING
ICU.FT.)
992. 3b5
999.190
3.975
a. aoo
14.2*4
20.0b5
2b.450
31.300
37.310
44.000
50.250
57 .201
b.4.545
7Z.100
CFM ol b.O IN.HG
MINUTES
VELOCITY UR1F1CE
PREbbUKE blACK
HEAO DIFFERENTIAL TEMP
(IN.H20) (1N.H20) (UEG.F)
UEblREO
.500 .30
.200 .00
.300 .10
.200 .03
.200 .00
.200 .00
.200 .00
.300 .10
.bOO .40
.900 .bb
2.000 ,7b
2.000 .70
ACTUAL
.30 151.
.00 153.
.10 15b.
.00 157.
.00 155.
.00 153.
.00 153.
.10 155.
.40 155.
.bO 155.
,00 152.
.00 140.
HEATER BOX
K FACTOR
DRY GAb METEK
TEMP
(UEG.F)
INLET OUTLET
bO. bO.
bO. bO,
bO. bO.
70. bO.
72. bO.
74. 62.
7b. b4.
77. b5.
70. bb.
79. bb.
00, b7.
01. 60.
SETTING
PUPP
VACUUM
(IN.HG)
4.5
4.0
4.0
4.0
4,0
4.0
4.5
5,0
5.0
5.0
5.0
6.0
11/29/82
2DM5B
6* GLASS
.102
10. 0
FB5
1 .95
320.
320.
1.0
SAMPLE IPPINGER
BOX TEMP TEMP
(DEC.
319
338
325
310
328
331
331
319
317
325
329
326
FJ (OE6.F)
40.
t 40(
42.
44.
» 48t
4d.
52.
54.
50.
50.
52.
4«.
AVERAGE
1.2b
154.
72.
b3.
4.b 32b.
47.
-------
PARTlCOLAlE FltLO DATA & hEbULTb UbULAHUN
PLANT- NAME AND AOORESb TEbT TEA* LEADER
MONGO POrtEH PLEASANTS CLARltE
TEbT 2DM5U
UMT J
TEST
IB
IF
TT
NP
»
ON
CP
PM
DATE
TIME-STAHT
TIME-FINISH
NET TIME OF TEbT, MIN.
NET SAMPLING PolNTa
ME TEH CALIbRATION FACTUH
SAMPLING NOZZLE DIAMETER
PITOI TOBE COEFFICIENT
AVERAGE ORIFICE PRESSUKE
ENGLISH UNI IS
11/29/02
1525
1725
120.0
12
.986
.182 IK
.*>«
1.26 IN-H20
METRIC UNITS
1
1525
1725
120
12
«
32
1/29/82
.0
.908
.6 PM
.«<•
.0 MM-I
U)
CD
VP
VMSTU
VLC
VKL
FPD
PC02
P02
PCO
PN2
MO
MUb
DROP
VOLUME OF DRY UAi> SAMPLED
AT METER CONDITIONS
AVERAGE bAS MEIER TEMP
72.180 CO-F1
VOLUME OF URr bAS
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPIuGERS ANu SILICA GEL«ML,
VOLUME OF ftAUH VAPOR
AT STANDARD CONDITIONS*
PERCENT MUlSrUHt bY VOLUME
MOLE FRACTION DRY bAb
PEHCtNT C0<; bY VuL.» OHY
PEKCENT 02 bY vUL.t DRY
PERCENT LO bY VOL., DRY
PEKCENT N2 01 vOu., U«r
MOLECOLAH rtT-DWY STACK GAS
MOLtCULAK rtl-STACK
2.0M4 CU-M
67
69
206
9
12
11
6
81
30
20
.7 F
.28H SCF
.9
.739 bCF
.32
.877
./5
.65
.00
.bO
.15
.65
19.
1.
206.
•
12.
*)
11.
6.
•
01.
30.
20.
8 C
9b2 SCC
9
276 SCK
32
877
75
65
00
60
15
65
-------
ee-v
O
u>
Cl
u>
Cl
u>
X •-
c
en
tr
-• -o
ai co
•c
er V.
*• ftM rrt n <^ <^
r x r z -i > >
^ ci •« o c o n
r- m
«-o o -on «-
e > e i
o r
3D — «
»• C C
irn
o -DO ••
H- » «— c
O cz
a -ca
r »f
m m
tr
-D 1J
» »
z X
C/l f » O
-H c n> »
> to cr
< -^ -H
f > >
z n -•
rr -e —
Z T Z
U- rr z •-
^ ec rr o
^ * cr
n -e
* > c z
•x
ci
r
c
n o
z z
o -o
o
Cft C/J
— C
c-
>
cr
a> a
ru ui
IN O
o —
a a
£
o-
ru
a
x
z
IV
IN
•«rf
C
a
a
LT 'J
o-
Cl
z
•£>
rv
— tr
rv rv *-
c o« -J LT
a -c * *
ru
a
a
tr
i
LT
rv
a
cr
n
I
Z
O
^1
I
tn
r.
I
T
c-
I
I
n.
o
rv, »
c iv
ru •- •-
LN a
C £
I* .C
£ a
a tw
o- o-
o. tr
o —
rv
rv
O-
a
a
tr
IV
a
i
(M
a
tr
a
•x
z
C
UI
V Cl
T >.
Z O
en
o
Tt
Cfl
n
O
en
n
T
I
Z
I
-3.
ru
i
3
-------
EXAMPLE PAHTICOLAIE CALCULA!IONS TEST No,
UNIT i
VOLUME UP UKY GAS SAMPLED AT iiTANOAHU CUNOIlIUNb
VhSTO * ill. 047 • VM • Y * IPb * PK / 13.6)) / (TM t 460.)
17.617 « Ta.180 • .980 • I 2B.96 + l.dSO / U. 6)
VMSTO « ----------------------------------------------------- = 6«».«!B<4 USCF
C bb. t tbU.j
VOLUMt UF HATth VAPUR AI STANUAHD CONDITIONS)
VnC * .01707 • VLC
VnC » .04707 * 307. = 9.74 SCF
PtRCENT MUIbTuHL IN STACK bAS
8*0 • (100. * VNCJ / IVMSIO * VnC)
> 100. * 9.74
I BnO » — — --------------- --- --- = 15. 3c! PEkCtNT
bV.c!tt4 » 9.74
MOLE FRACTION OF DRY STACK
FMD • (100. - BMO) / 100.
100. - Id.i
FMO = - ------------------- — = .«77
100.
AVENAbE MULtCULAH HtlbMl UF OKY blALK bAS
MU = (PCOii * .44) * CPOd * .3
-------
STACK GAS VtLUClTY AT STACK CONDITIONS
DELH = SUM. OF THE SQHHVH * (15 * 4bU.))
V5 = B5.49 » CP » OtlP / (SuRUMWS * PS) » PNTS)
VS = B5.49 • .OH * 357. 99S / ISUHK 2b.b5 * 20.B5) * 12. = /4.5«: FPS
STACK 6AS VULUMETHIC FLUX AT STACK CONDITIONS
05 = VS * Aa * 3bUO/l44
OS = 74.52 • <«S239. JbUU/144 = tt
-------
MLLU UAIA
PLANT
SAMPLiNb
LUC A I ION
bAMPLt ITPt
UPtrtAl UK
AHbltNI ItMH
bAM.PKtbb. UN.
5IAIK PhtSb. (1N.H2U)
f ILltN NUMbtKlS)
blACIV INblUt UlM.tlU)
PIIUI lubt cutf-»-.
ThtWM. hu.
LtAKAGt
MtltK LALlb. (-ALIUK
HtAU & KtClJKU OAIA fcVtWY
MUliU PUnt*
UIM I I t
Mbun
UU
bo.
,^.19
-1 .bo
PLtAbAHliJ
c:<4u .00
.ou
UAlt
KUN
PHUbt LtNGIh & FYPt
NU/ZLt 2-H : l.U.
AbbUMEU MuiblUHt
bAMPLt HUX NUMbtK
MtltK DUX NDMdLH
MtTEK HtAO U1K> .
PMUrtt MtAltK Stl
MhAItK UUX btlllNG
11/jU/tte:
6* bLAbb
.Hi
I c! . 0
Kb 4
1.07
CI-M a 10. 0 IN. Kb
l.Ui?
1U.U MlNUI tb
IHAVtKbt bAMPLE
PulNT tlMt
MJ. (MJN.J I
1N1T U
10.0
i>0.0
3o.u
40.0
bo.o
60.0
/U.O
Oo. u
90.U
100.0
1 lu.u
Ido.o
CLUCK
T IMt
«J4-rtK
f~ 1 t 1 f ' M 1
CLUCK J
1010
0
0
0
U
U
U
U
0
0
U
0
leflo
bAb MtltW VtLULlll UHH-ltt PKtbbUKt 3I«C*
KtAUlHb MtAU UUt-tKtNllAL ItMP
(LU.M.) UiV.Hc^Uj llN.H^u) lUtb.f-J
413
4cfl
43u
439
449
4b/
4bb
4/b
40b
494
504
bli
b
-------
X X
s- c
cr.
•c
z
rv
X
r
c
X X
C O
IV C
a
»
c
< —
X 3
en
r;
T
in
c-
3
r
r
c
r
?
?•
—
i
o~
_
J»
<~
y.
c~
>
Z
f"
c
r-
T
>
_
i
c
X
-<
cr
— .
i>
<~
C"
>
c/
T
*•
J
— •
rv
3
^
X
C
f
~
^
C
^.
...
•»•
c
z
,
<
r~
c
x
(T
T
^
>
«•
pr
f
^
^
X
C
x;
•-
x
c
jr
^
2
0
cr
^>
r
^
n
^
m
r
«
x
r-
—
~
T
rv
r-
c
p-
r
n-
f*.
•^
rr
cr
> <
^ c
tf C
» rr
Cf
W
x
c c
X
n -<
c
r cr.
cr >
^ cr.
_
^^ cr.
C >
2- X
> p-
fr
c
>•
m
x
c.
f
c
ff
3
pr,
—4
pr
X
M*
PP.
I
> <
— C
r
x e
rr
JJ £
r-
C 0
Z X
c -<
»H
^ «^
k~ ^
C cr
^
cr. cr.
^
X
r~
rr
c
«r >
o rr
X X
pr
e
x
^
T
^«
0
n-
X
X
m
v>
cr.
x.
rr
x
c
—
a
rr
r
c
pr
^
Ti
^»
f.
»»«
m
Z
cr.
X
X
w-
«•
^
C
^
f
pr
c
•^
^
X
pr
rr
X
X
rr
x
n
r-
t-n
o
x
^
— *
*—
c
?
T
^
n
c
2
r
-
Cr
X
f-
^«
^
C
X
c
^^
X
^
cr
r
-
^
x
c
T
^
rr
cr
««
*
X
•—
z
X X
IT rr
f 1
•- -*
— X
V —
2
U
>
3
z x
c r
c z
x i
c
2 2
rr >
X 2
rr
X T
r > >
rr 7 x
> c —
tr i-
» » rr
< C c
— o r-
cr. x »
f —i
cr rr
cr.
c —
c rr
cr
0
rv
C"
n.
c
—
n.
u
c
c
c
V
rv
o
c
ct
X
c
X
PC
X
ff
— rv c
•• rv »• <—
•- rv c- a a —
x
cr
e'-
er
r
c
c
c
i
rv
rv
i
r
rv
C
a rv c
c. rv u
rv -«
cr.
T
cr
c
a
c
a
rv
rv t>.
o c
rv
o-
rv
•c
a
c
c
•- o
O* C
tr
cr
n
X
rv
rv.
rv
cr
(-,
X
ff
•
rv
r
c
x
X
I
a
rv
c
X
X
•• rv c
«- rv, f —
•- rv c a a >-
a
TV
X
rr
X
r;
c
-------
i jf'^'V f xo x»-cc
z Zcr. y 1 if. Stetftr
I zee*
-.-c
tfitf
-B
tf.
a
a
if
ui *- ~- r* *- u> rr tfl
t\ >- r- n -on •- c c -t c .-
* C > c k- •> » »- c
2»> >zec cz
•c nrirr; xxu-x
er>
c c-,
*• c
c c
»cr
> c
— c
o
C T
r>
cr. cr
— C
> X
c
o
^
c
r
^
trc
CLT —
rv -
t n.
rv. —
LT i
rv. 1
5
5
xc
5
tit
a i s
^ c
-------
tXAMPLt PAKllCULATt L ALL JL A I 1 tmb Itbl HU
UN II 1
VULUHt Uh UKT bAb bAMHLtU AT SIAMJAKU LUNll i I IDI.b
VMblO = 117,647 • vM * V * (Hb * PM / 13. bj) / IIH * ttoO.)
17.6<47 * 110.104 * 1.03/ * I i^.lV t 3.£i>«! / 13. to)
VMbTo = ----------------------------------------------------- = 113. /77
I ol . * <«bu. J
t/ULUHt Uh WAltK VAPUH Al SlAHOAHU C
VVtC = .U47u} * VLC
= .0*4707 * cJV7. = 13.*>/ ^)C^
IN STACK GAb
d«U = (100. * VftC) / (VMSIU t
10U. * 13.47
BrtU = --- — — — ..... ------- ..
113. /7/ + 13. V7
MULE FHALUUN Op OHY STALK bAb
I-MU = (1UO. - HMO) / 100.
100. - 10. V
--- - --- .......
1UU.
AVtHAbt MULtLULAK rttlbHT IJh UK I blALK
MD = (PCU«? » .'•aj » (P0<2 * .3iiJ + iPl^e! + PLOJ • .cJU
MO = I lc!.bO««»«4/ 10U J t t h.l*3t?/lUOJ + llol.3* .Uj » ib/lOO = 30.«Jb
MULtLULAk rttibhl Ut- b I A C A L>Ab
Mttb = Ml) • (1. - IbrtU/lUO)) + Ib. * (hnU/lUOj
Cirtb = JU.tb* (1. -( 10.9 J/100) j t Irt. • U0.43/100J = dQ.^ti
-------
T. t T
X 5 >
T Z T
.^
II II •-
P)
P1 C
cr r
^
» •••
fr
C'
3
x I
>
— 1
— 1
vr
f . rr
— £ T
~- v*> >
X
V» rr
vr £ —
rv vr 3
• v» c
. c
x, o
>- tr
^~
M*
vr
•
£
»
£
VT
i*
O
^-
II
i
•
vr
rv.
~M
pi
cr
n
c
•
c
c
»»
»
rv
£
•
C
»
*-
vr
£
V*
x.
••*
»d
l»
•
"^
II
•
c
t
V.
er
z
x
c
V
r,
T
P.
cr
n
c
•
c
e
•»
»
T
Z
•
^
vn
•
£
tM
X.
X
C/;
^
C
T »
> C
i e
•*
•• i
n
c
r-
>
^
r
p
c
^
c
t—
^
c^
1
1
rr
T
>
X
rr
**
3
C
C
vr
^
«- rv
> e
~
2
C
z a
c o
t
P: <
C £
^
C »
*•
l«4
c rv
i. *£
tr. •
«- c
a
m
rv
rv
rv
*
rv
rv
rv
:
I
^fc
u.
e
vr
t
IT
a
*
*H.
*~
\f
•^
•
4
£
9
c-
^
3
»
^
^
e
•
c
c
rv
a
a-
*
rv.
^
~
L
^
^.
*«
^>
c
c
^
»
^»
•
c
7
^
rv
*
*••
•e
*
*~
•
rv>
rv
rv
V
V-
•
^^
^»
^.
cr.
C
II
^
bk
c
vft
•
vr
a
»
^~
^
cr
^
£
CT
C
•
w
^^
»
—
C
•
C
c
rv
ct
o-
^
^
c
p-
p
^
X
*
'J
^.
t
X
+
^1^
•c
I
v*.
«
o
«l^
w.
V
X
£
CT
C
^
>—
^
«4
^
VI
»
^
cr
C
z
c
z
T
ft
Jf
P)
f*1
Z
^
^
en
C
7
to-
y
rf
M4
^
P)
C
c
c
c
1
*—
»"
LT
•^g
•
*
£
a
c
•
^
/i
r
i
^
•
o-
£
«•
»
X
•-
iT
£
*-
*-
a
£
•
»
a-
>c
•
c
o
Jt
^*
•—
•
t
d—
*—
c
^
^B
^
c
c
^»
c
1f
ff
^
c
II
•»
^
a
^
•*<
»
c
cr
»
T
Cf
*
^~
»•
•
1
,—.
a
3
c
x
»•
C
c
«_•
^
X
^fc
^
cr
*
£
o-
C
t_
cr
^
^
pi
•7.
c
^
er
c
p
c
z
—
X
^H
O
^
p
c
1
>
•M
cr
«-
>
*
^
^
x.
c
p
c
^
c
*•
—
»•
c
?
IT;
C
cr.
II
a
c
•
t
»
£
vr
rv
t»
i
•
vw
o-
c
c
x
*•
£
£
II
X
^>
vr
^
*M
a
£
•
^
P
-r
3
C
cn
II
c
Cr.
»
en
»
v>
9
c-
C
x
1^
£
£
cr
•4
^
P>
^
c^
^
er
c
r
c
x
(T
w
Z
^
PI
•n
r
c
*
^
^
CO
«*
>
p-
31
r-
C
?
c
^*
«
te.
C
2
cr
<;
cr.
n
a
vr
•
£
•D
f
t
a
£
»
u
X
rv
•
rv
£
£
X
,~
cr
C
Z
—
^.
rv
a
»
^
rv
»
rv
^
•
c
o
»
V*
rv
«
er
H
a
^
•
£
*
,
p)
^
»
C
rr
r
•c
X
t-.
cr
z
_
^K
J
2
tr
»
T
cr
^v
»
T
2
^
tr
^
C
^"
r
n
tr.
C
Z
*
c
w
a
p-
V:
Z.
T
^
^^
^
^
4.
^H,
...
cr
^
£
a
e
^,
^.
CR
-*
>
n.
»
er
er.
IT
P
C
p
_4
^
^
«,
cr
^
p
5C
^
C
c
»~
^
^^
c
^
tr
IV
cr
p,
T
3
a
c
-c
V.
o-
c
a
•«
P!
m
-------
MtLO UAIA
HLAM
MUlMU f'UrttN HLtAbAMb
SAMPLING LULAllUN UN 1 1 1
bAMPLt 1 1 Pt Mbbn
UPtKAIUH UU
AHUltNl ItMp. (Otb.F) bO.
bAK.HHtSb. (iN.HG) 24.19
blAllC PKtbS. (IN.H20) -l.iO
MLttN txUHbtH(S) OU02bbb
blACr INblUt DIM. (IN) eilu.UU .UU
Pilot luat CutFi-. .o<«
iMtMM. NU.
LtAHAlit .014 CI-M 01 12. U
MtltK CALlb. FAC1UH .446
KtAU & KtCUKU OAlA tVtrtY 10. 0 MNUltb
(KAVtKbt bAhHLt CLOCK GAb MtltH VtLUCllT C
PUlNl UMt llMt KtAUlNG ntAu
NO. CMiN.) (24-HK (CU.F1.) (Ift.hcfU)
* t i *r~ is \
1N1I U
10.0
20.0
3u.u
4U.U
bo.o
bO.O
/o.o
00.0
90.0
loo.o
1 lu.O
12u.O
i-l_L/v,r\ j
1014
U
0
U
U
U
U
0
0
U
U
0
1214
L
1<4/ .U4U
tbb.£bU
Ibb.blO
1 7<4.blU
1U1.40U
143. «il 0
2u2. /bu
i!\d . MO
221 .000
til .b<40
.boo
. /UU
. /uu
. /uu
.bOO
. /uu
. /uu
.duo
. /UU
.BOO
,4UU
241.524 li.oUU
IN.Hb
(HlUCt HK
Ul^^tKtl
11N.M21
3.11
3.12
3. Ib
2.47
3.1b
3. Ib
3.3b
3.20
3.37
3.bb
3./b
ItbbUrtt blALK
(UAL ItMP
)) lutu.M
AC 1 UAL
3.11 Ib7.
3.12 Ib/ .
3.13 Ibo.
2.S/ Ib7 .
3. lo 154.
3.1o Ib4.
3.3o Ib4.
3.2U Ibb.
3.3/ Ibo.
3.bb 154.
3.b2 Ibb.
KUH HUMbtK 3bM^)BA
PKUbt LtNblH 14 lYPt b' bLAba
AbbUMtU MUIblUKt 12.0
bAMPLt bUX NUrtbth
MtltK bUX NUMUtH Fbtt
MtlEK MfcAO IUFF . 1 .SO
KKUdt nEAltK StlllKtb 3^0.
MtAltW dUX btTllNG 320.
OKI GAb MtTtK HuMP bAhHLt iMPjNbtH
ItMH VACUUM dUX ItMH ItMH
lUtb.F) UN. Ho) (Utb.M (UEb.F)
INLtl UUlLtl
<4tt.
5j!
54.
bl.
63.
b4.
ob.
bi.
bb.
bb.
bb.
4/.
40.
44.
51.
52.
53.
54.
bb.
bb.
57.
b/.
4.7
10.2
10.2
4.4
10.2
10.0
10.4
10.2
10.7
11.2
11.5
317.
327.
3
-------
h-ANULULA It FltLL) UAIA & KtbuLIb (AoULAlJUU
T- NAML AND AOUKtbb Ubl ILAH LcAUtK
MONO PuwtK PLtAbAmlb Uu
JBMbow
TtSI UAIt
UNI I 1
Tb
II-
TT
HP
r
UN
CP
PM
1 IMt-STAHl
1 iMt-F IHlbH
NtT HMfc UF 1ES1, MIN
Wt 1 SAMPLING PUIMb
MtTtH CALlBKAlION F AC
SAMPLlNb NU/^Lt UlAMt
PHUl lUbt LUtFFICltH
AVtHAbt UKlFlCt PrttSS
UKUP
•
IUN
ItK
1
UHt
CO VM
TH
VMS 11)
VLC
VnC
UwU
F'MO
PLUd
PU
PLU
MU
MK»b
VULUMt UF UHT UAS SAMPLLL*
Al MtltK LUNUIT1UIMS
AVtHAbt GAS MtttH ItMP
VULUMt UF UHY UAS b'AMPLtl)
Al dlANUAKU LUNUlllUNb*
IU1AL Mi>0 LULLtCrtO IN
iMPirJbtHb Al«0 61L1LA btL.ML.
VULUMt UF nAltk VAPUK
Al blANUAKU LiINO 1 I lUNb*
PtkLtWl HUlblUKt OY VULUMt
MULt FKAcIiUlM UHY bA5
PtKLtM LUU
Uci.l II CU-h I
lU.btti bLF
MtTKlC UNilb
1 1/lO/Oii
1019
.0
b.O MM
.04
ttl.i MM-HdU
3.17b LU-M
11.1 C
i.iaa bCM
It-
6
01
iu
crn
.046
.bO
• 1 J
.00
.(•b
.94
lo.iS
.tt9o
U.oO
b. ib
.00
J0.c!b
-------
Pt>
PSl
PS
TS
VS
AS
USSIU
us
1 30
MU
CS
PMK
UANUMtlKlt PKtSbUHt
bl Al 1C PKtb Uf blACK
SlACK PNtb, AdS.
AVtNAbE SlACK IbHP
AVb SlACK bAS VtLUCl
blACK AKtA
L.AS
IT
SlACK PLUrt KAft, OKV*
ACfUAC SlACK t-LUn HA
PtkCtNT ISUK1NLT1C
.^SbH
Mb. tPA b
NnSSP
H«SbP
It
PMH
MN
Cb
PMh
KAlt
SULl-UK OlUXlut
Mb. tPA b
OlUXlUt
ulUXiUt
NAIE
SULI-UKIC AC1U
Mb. tHA b
bULl-UKlU AC ill
KATt
bbl 4160U.
t;v.n lu-tib
-l.bu IN-n^U
<;s.oo lu-hb
ib7. ^
o u. o ^ \' b
bLKH
lo.
M.fautt Lb/HK
MUfiU.U
bK/ObCh*
Lu/MK
bH/Ubl;^*
Bb.bOb Ld/HH
Ml.<43 MM-Hb
-40. iO MM-hc!U
Mb.Oc! NM-Hb
/U. t
bU"M
ACMM
lU.d
J.tfUU Mb/USCH
O.I/ Kb/hH
"406U.U
.Siil Mb/l>bCM
.U1* Kb/hK
o'*.'*
.JS.
-------
tXAMPLt HAKliCULAlt t ALC uL A 1J Uub IL5I
UN II 1
VULUHt Uh UKt bAb bAMPLtU Al SlANUAHU LONIl 1 I lllltb
VMbtO = (17.b<4? * VM * T • (Pb » HM / M.bJ) / t I f. » 160. J
1/.61/ * 112.1/7 * ,S98 « I ^'^.\<^ » 3.^10 / ll.bj
YMSTU = -----------------------------------------------------
t ib . + 4bU . )
VOLUMt Ul- nAltW VAPUK AT SIANUANU LUNUlllUNb
= .U4/U7 * VLC
= .U«707 * till. - 1J.0
PtHCtNF MUlSIUKt 1U
UWU = (100. * VwC) / (VHSTU + VHC)
>
I 100. • 13.05
^ bMO = ----- - ------------------- - =
ll^.bOi t 13. Ob
MULt t-HACriUlM UP UNY SlACK bAS
= 1100. - BrtOJ / 100.
100. - 10. M
= ----------------- --- .-- =
100.
AVtHAbt HULtUULAh ntlbhl Uh UKT SlACK
ML» = (rLUt * .4MJ + (PUc^ * .JrfJ * IHUe! t HtUJ « ,e?b
MU = I ItJ.bO'lM/ IOOJ t I t.. 1 •J.VlUOJ « l(ol.i» .uj « rftt/100 = iO.iib
MOLttULAK mtlbnl (J(- 51 AC* (.A5
Mif.b = MU • II. - UiAtl/tOiJi) » lO. • (bnU/loOJ
iu.db* 11. -( 1 0.3S/10UJ J + Id. * 110.4
-------
(,Ab VtLUCllY AI STACK COriU 1 1
UtLP = bUM. ut- iHt MJKllVri * US t 4t>U.)J
WS = tti.49 * CP * UtLP / IblJitllMAb » Pbl • Hi*Tbl
vs> = «b.<49 • .at »
SIACK bAS VULUMtlKiC F-LOW AT 31ACK
Ub = Vb « Ab * 3bUU/14<4
US s bo.tti • 4i«;j9. 3buu/l<44 =
SIACK UAb VULUHtlKlL FLOn AI b'lANUAHL) CUUU1I1UNS
= I7.b<47 • US * PS * (1. - (UrtU/lUUlJ / 115
* VMibaua. • ^9.oe * 11. - U
1 I'll. * -46U.1
"4bO.J
USblU =
5CI-H
U1
ISO = (JUS.ia*(rS»'4b0.1 )• ((O.Uoat>bS«VLClt lvM«Y«(Hb*(HM/13.b) ) /t
IbO =
IT I *VS*H5>*ON«UN)
i.b) ) / I bb.t"4bO.)ll
ttO.ttb
PtHCENT
HAKIltULAtt LUAU1NG — tPA MtThOO b IA| blAHOAhU CUi^Ul
Cs = O.ool * MN * 15. «3 / VMSTO
tS = U.OUl » 10. £ * 15.43 / lltf.bHi = .OU14
PAKIlCULAlt Lbb/HK -- tHA MtlMUU "3
PMK = Lb • UbSIU / lib. 43 • Mbi.bl
PMK = .0014 « bttMlbi/u. / lib.
-------
HELO DATA
tn
N)
pLAN| MUNGO POwEH PLEASANTS
SAMPLING LOLA1ION UNIT 1
SAMPLE TYPE M5b
OPERATOR CLARKE
AMBIENT TEMP. (OEG.F) 50.
STATIC PRESb.UN.HiU) -1.5o
FILTER NUMBtfllS) 0002629
STACK INSIDE UIM.HN) 240. oo .00
PITUT TUBE COLFF. ,6<4
THERM. NO. 201
LEAKAGE .000 CFM a 6.5 IN.HG
METER CALIB. FACTOR 1.006
READ fc RECOMO DATA EVtRY 10.0 MINUTtS
TRAVERSE SAMPLE
POINT TIME
NO. (MlN.)
IN1T 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
60. 0
90.0
100.0
110.0
120.0
CLOCK
TIME
124-HR
CLOCK)
1030
1040
100
110
130
14u
15U
120U
1220
GAS MLUR
READING
(CO. FT.)
303.047
392.174
400.000
409.625
418.455
428.620
436.245
445.910
454.735
464.275
473.728
403.055
493.098
VtLOCIl Y
HEAD
(IN.H20)
.500
.700
.700
.700
.600
.700
.700
,600
.700
.600
.900
2.000
ORIFICE PRESbORt
DIFFERENTIAL
(IN.H20)
OESIRED AC
2.68
3.01
3.00
3.05
2.90
3.07
3.07
3.26
3.12
3.30
3.46
3.70
TUAL
2.70
3.00
3.00
3.05
2.90
3.10
3.10
3.30
3.10
3.30
3.50
3.70
STACK
(DEG.F)
152.
157.
157.
158.
157.
15S.
159.
159.
155.
156.
159.
156.
UATt 11/30/82
RON NUMBER 3CM5B
PKObE LENGTH ft TYPE 5* GLASS
NOi/LE 2-09: 1.0. .220
ASSUMED MOISTURE 12.0
SAMPLE BOX NUMBER coc
METER BOX NUMBER FB3
MtTER HtAD UIFF. 2.00
C FACIOH 2.14
PROBE HtATER SETTING 320,
HEATER BOX SETTING 320.
REFERENCE PRESS. OIFF. .00
DM GAS MfclER
TEMP
(DEC
INLET
50.
54.
60.
66.
71.
74.
76.
78.
00.
80.
02.
82.
.F)
OUTLE T
50.
48.
46.
49.
50.
51.
54.
55.
56.
58.
59,
64.
PUMP
VACUUM
(IN.HG)
4.0
4.0
5.0
5.0
5.0
5.5
6.0
6.0
6.0
6.u
6,0
6. 5
SAMPLE
BOX TEMP
(OEG.F)
319.
321.
326.
329.
346.
320.
327.
329.
326.
305.
323,
313.
IMPINGER
TEMP
(UEG.F)
34.
36,
44.
78.
68.
64.
54.
49.
46.
44.
40,
40.
TOTALS
AvEkAbE
120.0
HO. 051
3.14
3.15 157.
71.
54.
5.4 324.
50.
-------
PAHTICULAlt FIELD DATA & KtoULTb lAdULATIUN
PLANI- NAMt ANU ADuRESb TEbT TEA* LEADER
KONGO POllEH PLEASANT!. CLARKE
TEST 3CMbb
UMT I
TEbT DATt
IB
TF
IT
NP
r
UN
CP
> HH
|
Ul
U)
T*
VfbTU
VLC
VftL
UMU
FKU
PCU2
P0«!
PCO
PKa
MD
M*b
ENGLlbH UNITS
ii/3o/oa
TIME-STAKT 1020
TIME-FINISH iaao
NET TIME OF lEbT, MIN. UU.O
NET SAMPLING POlNTb Id
METER CALlbRATlUN FACTOR l.OOb
bAMPLlNG NU/ZLE UIAMETER .2U IN
PITOT TUttE COEFFlCiENT .01
AVERAGE ORIFICE PRESbORE 3.15 IN-H£0
VOLUME OF ORY GAb bAMPLEU 110.051 CU-FT
AT METER CuNUlTIUNb
AVERAGE GAb METEK TEMP b«i.M F
VOLUME OF DRY bAb bAMPLEU 110.030 bCF
AT STANDARD CONDITIONS*
TOTAL tl£u COLLECTED IN i^b.O
IMPlNGERS ANU SILICA GEL, ML.
VOLUME OF nAIEH VAPOR Ib.tJ'Jo bCF
AT STAHDARU LUNDITIONS*
PERCENT MOISTURE UY VOLUME Icf.c!!
MOLE FRACTION DRY GAb .670
PEHCEN1 LU<: oY VUL., OKY It.bU
PERCENT ua B» VOL., URY b.lb
PERCENT co b» VOL.* UM .00
PEHCENl Na til VUL., UHY Ol.cr5
MOLECULAK wT-UKf blALK UAb 30. fb
MOLELULAK nT-S|ALK GAb ^0.77
METRIC UNITS
H/30/ad
iaao
lao.o
»-i
l.OOb
b.b *H
.•4
79.9 >>M-H
3. lib CU-M
lfa.9 C
3. lib SCC
3ab.o
.133 SCt'
ia.ai
.070
U.bU
b.lb
.ou
01. ab
30.ae>
«;tt.7/
-------
I
U1
PB bAKOMETRIC PRESSURE
PSl STATIC PKtS UF SIALK bAb
PS STACK PRES, AUS.
TS AVERAGE STACK ItMP
V3 AVb STACK bAS VELOCITY
AS STACK AREA
USSTU STACK FLOM RATE, OHY*
US ACTUAL STACK FLOW KAIt
ISO PERCENT ISOKINEUC
MN FILTERABLE PART
MG, tPA b
CS FILTERABLE PART
PHR FILTERABLE PART
EMISSION RATE
MN SULFUR DIOXIDE
MG. EPA b
CS SULFUR DlOXIuE
PMH SULFUR DIOXIDE
EMISSION RATE
MN SULFURIC ACIU
HG. tPA b
CS SULFURIC ACIU
PCH SULFUHIC ACID
EMISSION RATE
29.0(1 1N-HG
157. F-
81.t FPS
45139. SU-1N
b70UbbOO. SCFH
ACFH
97.7
5B.B
.0062 GR/USCF*
7B.937 LB/HR
3970.0
GR/USCF*
5329.b73 LB/hk
104.0
,01<»b GK/USCF*
139.bib LB/HK
741. «3 >»K-hG
"3B.1U KM-Hc!U
7ib.b«i CM-MG
7U. C
•J9.1B6 SU-M
97.7
btt.tt
16.«7£ CG/USCK
3b.Bl KG/HR
3970.0
.49 KG/HR
104.0
33.3BO
b3.33 KG/HH
60 OEG
IN.HG.
-------
EXAMPLE HARMCULAU CALCULATIONS TEST NO.
UNIT 1
VULUMt OF OHY GAS SAMPLED AT STANUAHU CONDITIONS
VMSII) = (17.647 • VH « T * IPU + HM / li.b)) / UM + 460.)
17.647 * 110.051 * l.UUb * I 19.19 t 5.14b / 13.6)
— — — — .— — ..—......-_ — — — — — — -.- — .—
( t>2. + 4bO.)
VMSTO =
110.038
VOLUME OF WATtR VAPUH AT STANDAKD CUNOIIIONb
VMC = .04707 * VLL
VMC = .04707 * Jc!5. = lb.30 SCF
tn
PERCENT MOISTURE IN STACK GAS
= (100. * VftC) / (VMSTD * VftC)
100. • 15.30
110.038 * Ib.iO
BnO =
PthCtNT
MULE FRACTIUN OF UKY STACK
FMU = (100. - BnOJ / 100.
100. - Id.ci
- ---------- - --- -
100.
FMO =
.B7B
AVtHAbt HULtCuLAR rttlbhl UF UKY STALK GAS
MO = (PCO«i * .44) » (HUd * .3^) * (fUd * PCU) * .lie
MU = (lc:.bO*44/10U) » ( 6.1*3^/100) + (IHl.it .0) * ^ti/HHt
30.^6
MULtCULAH MtlGHT UF 5IACK GAS
MnS = Mo « (1. - (brtG/luUj) t It). * (UriU/100)
= 30.
-------
nt
•O
o -»
« -a
z •
3 K>
« •*
m x,
a. «
a.
ik
J9
Z
Ik
0 9
f.
3 « «
3 -t -A
W» « —
(A CO
)
a
z ~
3
O ->
Z O «
3 3
(_> — S
X 3
3 O •
Z * <*
4 A ry
3 —
E
3
U
Z
X
3 c-
-I 9
3 O
O) —
u) n
H
a
ic a
u> •-
< 0) CO
»-») J?
CO O O
u
"•
!u
z
^
o
at
to4
Z
Ul
u
oc
(^
^^
^^
£
.
n
•1.
X
X.
a.
^
*
a
0.
T
j
a.
»
— *
^
«
»
-o
M
3
3
^
^
— H
3
O
9
+
**
n
3
J)
v
•«
*
••«
in
3
•
3
^
««
•^
~
in
•^
m
«
|
-u
o
o
3
^
i
*7
8
*
.
f«»
in
•«
^
03
m
»
in
3
fO
•*
«
3 -^
. m
o> z
fg 3
•*
t-
V*
« O
Z
« o
— (J
•
^4 «J
a x
o
z
«
« n
* ^
3 <
IM —
•*
in
3
3
Z
Ul
X
^
a.
i
i
CJ
z
*~
^
3
_J
aj
»•
<
•J
3
u <-
»»
3 Z
J3 ^
O
TL
^
9
•
in
»•
*
z
X
«
•*
3
3
3
It
in
•j>
3
X
Z
J
>M
a
3
3
•
ii
•o
.,*
•^
—
X
9
m
**
*
^
.
a
ji
«
•^
3
3
3
II
to
ff1
•
9
in -<
4}
3 •
3 -^
3
3
'VJ
3 O
c- 3
J) 3
75 •
3
U
II II
3C X
X. S.
a. a
A-56
-------
DATA
U1
-J
PLANT MUNGU PU*EH PLE
SAMPLING LUCATIUN UNIT i
SAMPLE TYPE M5b
OPEHA10K CLAHKt
AMBIENT UMH.IOEG.F) 50.
BAR.PHESS.UN.HG)
-------
PART1CULA1E FIELD UAlA A KEMJLlb T AbUL A1 lllK
PLANT- NAME AND ADDRESS 1EST TEAM LEADER
MOMGU POWER PLEASANTS CLARKE
TEST 3DM5t»
TEST DATE
UNIT 1
ENGLISH UNITS
11/30/62
METRIC OMTS
1 l/30/8«!
IB
TF
TT
NP
1
UN
CP
s *-
TM
VfSTU
VLC
VhC
B»0
FMU
PC02
P02
PCu
PI.2
MU
MfcS
TIME-START 102U
TIME-FINISH 1220
NET TIME OF TEST, MIN. 120.0
NET SAMPLING POINTS 12
METEH CALIBRATION FACTOR .<*8tt
SAMPLING NOZZLE DIAMETER .220 IN
P1TOT TUBE COEFFICIENT .o«
AVERAGE ORIFICE PRESSURE 3.16 IN-M20
DROP
VOLUME OF DRY GAS SAMPLED 11*4.439 CU-FT
AT METER CONDITIONS
AVERAGE GAS MEIER TEMP 66.6 F
VOLUME OF DRY GAS SAMPLED 111.536 SCF
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN 322.2
1MP1NGERS ANO SILICA GEL, ML.
VOLUME OF nATEK VAPOR It). 166 SCF
AT STANDARD CONDITIONS*
PEHCENT MOISTURE BY VOLUME 11. S7
MOLE FRACTION DRY GAS .660
PERCENT LU2 bY VOL., DrtY 12. bO
PEHCENT U2 BY VOL., uRY 6.15
PEKCLNT CO BY VOL., URY .00
HEHCENT N2 bY VOL., UKY Bl.
-------
6S-V
•c <">
TK 0>
•X.
•9 Cl
T U>
X
(0
c
c
u>
ta
•B
to
e
a
o
P"
cn
(V
x
X
re
tf Ul U- V If V> Tl ^1 TlT>lf. t/>»»irl/>a
cc c cc c »•• «mo-i-«<<-.-.».
rn r- r if r* r r- x r fi~ f x r- x -< » > «n f > > x
x^^c^^x^^co^x^^^cn^r^coo xo-^c
»-c c «c»-c c»C'-rrm«rnrr>x^cA> »•- x
cexx xcexx xccxx xzr- -t F, nm
^-oo^o^^oo'VOi—CDCfi^cB inr*xo XTX
z»» »zoo czmrn mce»»»- -4«/>rnri
or)i/*r> KXI/K 1/1 co cr>»*c£
Xi-ii— «X>- > > >*- > tr*>cz
—4 "^mrti rrt^^xx xy^i^ ct^r^i
c
a
x
t:
r>
•c
z
rr
cc
C£
C
r-
9<
c-
o- o
-J X
a
v
T
X
x
V
C
t/>
n
e n.
ix rv
c
cn
o
a cn
v x
x x
X C
cn
T!
»
n. "
c rv
LT X
9 —
C) 1
V C1
T X
X O
u>
n
•c
IV
a>
>»
i
X
e
•c
o-
en
x
x
c
ce
n
a
o-
o
a
o
a
a
ur
M
cr
£
CT
i/t
ru
w OD
c
a
I
o-
rv
x
o
a
e
£ rv
— rv
;*
cr
rv
x
cr
rv
c
i
\*
ae
IV
C
•r
X
i
x
C!
-------
EXAMPLE PAHTILULAlt C ALtUL A llONi ItbT NU. 3DM5B
UNIT 1
VOLUME UP OUT GAS SAMPLED AI STANUAKU
VM3TD s (17.647 * VM * V * IPB + PM / 13.6)} / (TM +
17.647 * 114.939 * .986 * I 34.19 * 3.15U / 13. b)
VM3IO s --------------------- ................................ = 111.536 USCF
I 69. » 060.)
VOLUME OF MATER VAPOR AT STANOAMO CONDITIONS
VitC = .04707 * VLC
V*C = .04707 • 32<2. = 15.17 SCF
PERCENT MulSTuRE IN STACK
UNO = (100. * VMCJ / (VMSTU * VftC)
> 100. * lb.17
I BftO = — — -------- - — --- ---- --- = 11.97 PEhCtNT
111.53U * 15.17
MULE FRACTION OF DRY STACK GAS
FMO = (100. - UnO) / 10U.
100. - Id.O
FMO = ------------- -- --- — -- s ,U80
100.
AVEHAGE MULtCULAR WtlbHl OF DHY STACK GAS
MO = IPC02 * .44) « (HOa * . 3* (1. -(I 1 .97/100) ) » 10. * (11.47/100)
-------
STACK GAS VtLUClTr AT SIALK CUNUIIiUNb
DtLP = SUM. OF TMt 5UHHVH * (Tb « «bO.))
VS = US. 49 • CP * DtLP / lSUNT(MMii * PS) * PNTS)
VS = 05. 4V * .04 * 392. £44 / ISURU 20.79 * 29.00) * 12. = 0 1 . 1 t FPS
STACK GAS VOLUMtTKIQ FLO" AT STACK CONDITIONS
OS = VS • AS * 3bOO/144
US = 81.12 * 45239. 3bOu/144 = 91743080. ACFH
STACK GAS VOLUMETRIC FLON AT STANUAHO CUNOIUUNS
05STO s 17.047 • US * Pb * 11. - (BwO/100)) / (TS « 4bO.)
17.647 * 91743000. t 29.08 • (1. - (11.97/100))
OSSTO » — .. — . — — . ---- - --- ... --- - --- . — ----- — ... -. — -- s b71b204a. SCFH
I 157. t 4bO.)
" PfcHCtNT ISOKINETIC
a\
M ISO = (305.b8«(TS+4oO.))*l(0.002bb9*VLC)»(VM*T* tPB»lPM/l3.bJ )/(TM»4bO.) J)/(TT*VS»PS«UN«ON)
lS7.t4bO.))*((0.002bb9* Jt!2.)»( 114.939* .988«( 29.19«( 3. 158/ 1 3.6) ) / ( b9.+46U.j))
J30 a ---------------------------- - ------------------- - ---------------- — ......... ------ — ----- -— — > 9A.A4 PEKCEM
12U. * 61.12 * 29.00 * .220 • .220
PARTICIPATE LOADING -- EPA METHOD b (AT SUNOAKU CONDITIONS)
C3 * 0.001 « MN • 15.43 / VM8TO , . _ ____
CS = U.001 » 69. b * IS. 43 / 111. bib = .009b GK/USCF
PARTICULATE LUS/HH -- EPA MtTMOU 5
PHR = Ci> • uSi,TU / C15.M3 *
-------
FJELL) UA1A
>
a\
PLANT HONU PuwtR PLEASAMS
SAMPLING LOCATION UNIT 1
SAMPLE TYPE Mbb
OPERATOR UU
AMUIENT TEMP.IOEG.F) bb.
BAR. PRESS. (IN. HG) 29.15
STATIC PRESS. UN. M20) -1.50
FILTER NUMBbR(S) 0002690
STACK INSIDE DIM. (IN) 240.00 .00
P1TOT TuflE COEFF. ,»4
THERM. NO.
LEAKAGE .002 CFM at 9.0 IN.HG
METER CAL1B. FACTOR 1.037
REAU ft RECORD DATA EVERY 10.0 MINUTES
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MlN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
00.0
90.0
100.0
110.0
120.0
CLOCK
TIME
124-HH
PI r\ r* M \
CLOCK j
1328
0
0
0
0
0
u
0
0
0
0
0
ib2a
GAS MtUK
READING
(CO. FT.)
VELOC11Y
HEAD
UN.H20)
UR1FICE PRESfjUKE
DIFFERENT
(IN.H20)
IAL
blACK
DATE 11/30/82
NUN NUKbER 4AM5B
HRObE LENGTH tt TYPE 6* GLASS
NU21LE 2-03 : 1.0. .219
ASSUMED MOISTURE 12.0
SAMPLE bOX NUMBER
FETER BOX NUMBER FB4
KETER HEAO DIFF. i.e7
PROBE HEATER SETTING 320.
HtATER BOX SETTING 320.
DM bAS
CETEH
TE*P TEMP
(DEb.F)
UESIREO ACTUAL
523.858
533.520
543,320
553.000
562.810
572. BIO
582.880
592.930
603.000
612.800
bdZ.BOO
b32,940
642.746
2.000
2.100
2.000
2.000
2.100
2.200
2.200
2.200
2.100
2.100
2.200
2.100
.57
.75
.59
.58
.77
.95
.94
.96
.78
.78
3.95
3.78
3.57
3.75
3.59
3. be
3.77
3.95
3.94
3.96
3.78
3.78
3.95
3.78
159.
159.
158.
165.
165.
166.
169.
166.
166.
168.
169.
168.
(DEC
ULET
59.
61.
72.
72.
73.
72.
73.
74.
74.
75.
75.
76.
.F)
OUTLET
59.
58.
59.
62.
64.
63.
63.
63.
64.
65.
65.
66.
PUCP
VACUUM
(IN.HG)
7.1
8,5
8.6
e. a
8.6
8,8
8.4
8.3
7.9
7.9
8,2
7.8
SAKPLE
BOX TEMP
(OEG.F)
313.
336,
330.
343.
329.
343.
328.
342.
328.
335.
325,
531.
JfPINGER
TEMP
(DE6.F)
54.
5*.
96.
125.
99,
76.
63.
37.
52.
48.
47 ,
*5.
TOTALS
AvEHAbE
120,0
118.aaa
3.7a
3.7B 165.
71,
63.
8.2 332.
68.
-------
PART1CULA1E FIELD DATA « NESULTa lAbULAlION
PLANT- NAME AND ADDRESS UST TEAM LEADER
HONO PONtR PLEASANTS UU
IEST 4AM5B
UNIT 1
ENGLISH UNITS
TEST DATE 11/30/B2
TB
IF
TT
NP
1
UN
CP
1
0-1 VM
U) ¥
TM
VM3TO
VLC
VMC
b*u
FMU
PC02
P02
PCU
PN2
MO
M*S
TIME-START 1328
TIME-FINISH 1528
NET TIME OF TEST, MIN. 120.0
NET SAMPLING POINTS 12
METER CALIBRATION FACTOR 1.037
SAMPLING NOZ2LE DIAMETER .219 IN
PITOT TUBE COEFFICIENT .64
AVERAGE ORIFICE PRESSURE 3.78 IN-H20
PROP
VOLUME OF URY bAb SAMPLED 118.88(1 CU-FI
AT METER CONDITIONS
AVERAGE GAS METEH TEMP 67.0 f
VOLUME OF DRY GAS SAMPLED 121. 500 SCF
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN 295.7
IMPINGERS AND SILICA GEL. ML.
VOLUME OF MATER VAPOR 13.919 SCF
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME lO.cfa
MOLE FRACTION DRY GAS .B97
PErtCENT C02 BY VUL.i l)KY 12.90
PERCENT 02 bY VOL., URY 5.00
PERCENT CO BY VOL.. DRY .00
PERCENT h2 UV VOL.i UKY 01. .10
MOLECULAR rtT-UHY STACK GAb 30. .30
MOLtcoLAK MT-SIACK GAS 29.U3
METRIC bNITS
11/30/62
1326
1526
120.0
12
1.037
5.6
.64
96.1
3.367
19.4
3.440
295.7
.394
10.26
.697
12.90
5. BO
.00
U1.3U
30.30
d9.03
CM
CM-H20
CU-M
C
sec
sec
-------
I
CTl
PB
PS1
P3
T9
V9
AS
USSIU
US
ISO
MN
ca
PNR
MN
CS
PPk
MN
CS
PM«
bAKUMETRIC PRESSURE 29.15 IN-Hb
STATIC PREb OF STACK GAb -1.50 1K-H21
STACK PRtS, ABb. 29.01 1M-HG
AVERAGt bTACK TEMP Ibb. P
AVG STACK bAS VELOCITY 89.6 FPS
STACK AREA 45239. SU-1N
STACK FLU* RATt, OHY* 7<4b«*b«9b. SCI-H
ACTUAL STALK FLOn HATt 101509312. ACFH
PERCENT 13UK1NEUC 97.7
FlLTtRABLE PART 2b.7
MG. £PA t>
FILTERABLE PART
FILTERABLE PART
EMISSION HATE
SULFUR OIOXIUE
MG. EPA S
SULFUR DIOXIDE
SULFUR UIUXIUE
EMISSION HATt
SULFUH1C ACID
MG. tPA t>
SULFuRK ALIU
SULFURIC AGIO
tMiSSION HATE
.0034 GR/DSCF*
3b.lBtt LB/HR
«350.0
GR/USCF*
5695.UU LB/MR
26.3
.0036 GH/USLF*
36.357 LB/MR
710.41 KM-HG
-36.10 CM-MiO
737.bl t»M-MG
7«. C
£7.4 CPS
29.106 SO-M
97.7
7.761
16.41 KG/HR
4350.0
1264.472
£!b7U.3<4 KG/HR
20.3
6.226 PG/OSC*
17.40 KG/HR
* b6 DEG f, 29.92 1N.MG.
-------
ti- Ml
. -PI * (mm/nun) - *n » nw = S«»H
SVO X1V1S JO
not/9? » (o* »fifli) * (ooi/?r»»*<; i + (oot/t7h»ob*?n
B?* » (03d + 7Nd) + (?f • ?OH)
MOV IS AHO JO
•not
9*01 - '«
•001 / fOMfl . *001)
JO
IMIDHId 9?*0t =
?6*f! » *00!
(D»A » 01SHA) / (DMA » *«OI) = 0»B
SV9 HIVIS N!
JDS ?6*Fl = *<»6? » /fHhO* s
D1A » ZO/bO* s DMA
•JNOIIIONOD OMVOMVIS 1* HOdVA 8ll¥«l JO
JDSn 005M?l = --- --- - --- - ----------------------- - ------ - — - ------ — s 01SHA
(9'fl / 99/*f * SI'b? 1 » /ffl't » 909'ftlt •
4 Mil / f(P*9t / Hd » Bd) • 1 « HA • itr<»*/U : 01SHA
D o»»nN»i<; iv ondnvs s»9 AHO jn
i UNO
-------
STACK GAS VtLUClTY AT STACK CUNUlllUNS
OtLP = bUM. OF THt bUKMVH * CTb + 460.))
V3 = 05.49 • CP • OtLP / lSuRT(M*b * HS) * HNTS)
Wb = 05.49 * .0 09. 7S • 1S239. 3t>00/14 • (1. - (UrtO/100)) / (TS + <4bO.)
17.647 * 101509312. * 29.04 * (1. • (10.20/100))
— — . — - — - — . — — - — — — - — — . — — — — -.- — .
( Ibb. * 4bO.)
USSTl)
7<4b9b09b. SCFH
PtRCENT ISOKINETIC
150 = (305.58»(T3 + «t>0.))*{(0.002bb9«VLC)*(VH*»*(Pb*lPI'/13.b) )
(305.56*( Ib5.«4b0.))*((u.002bb9« 29b.) + ( 1 Itt.flfta* 1 .037* I 29.1b«( 3. 7«3/ 1 3.b)
-
120. • 89.75 • 29.04 * .219 * .219
ISO »
» 97.6tt PEKCENT
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * HN » 15.43 / VMSTO
Cb = O.U01 * dt.l * 15.43 / Ul.buO = .0034 bH/USCF
PARTICULATE LBS/HH -- tPA MtTHOU 5
PMH = Cb * UbbTD / tli.43 * 453.6)
PMH s .O0i4 * 74b9b«9b. / (lb.43 * 453. b) = 3b.lbtt
-------
FIELD UATA
CT.
PLANT MUNO PUWEK-PLEASANTS
SAMPLING LOCATION UNIT i
SAMPLt TYPE M5b
OPEHATUN UO
AMBIENT TEMP.(OES.F) 55.
BAH.PHESS. (1N.H6) 29.15
STATIC PRESS. (IN. H20) -1.50
FILTEH NUMBERIS) ooo269<:
STACK INSIDE DIM. (IN) 240.00 .00
PITOT TUBE COLFF. .64
THEHM. NO.
LEAKAGE .010 CFM « 7.0 IN.HG
METER CALI8. FACTOR .990
READ * RECOHD DATA
THAVEHSE
POINT
NO.
INIT
UTALS
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50,0
60.0
70.0
00.0
90.0
100.0
1 10.0
120.0
120.0
CLOCK
TIME
(24-HR
f I DP K k
L l.Uln J
1329
0
0
0
0
0
0
0
0
0
0
u
1529
EVEHY 10.0
GAS METEN
HEADING
(CU.FT.)
242.256
252.140
262.230
272.100
281.910
291.970
3V2.190
312.500
322.890
313.000
343.290
353.660
363.819
U1.563
MINUTES
VELULITY
HEAD
(1N.H2U)
2.000
2.100
2.000
2.000
2.100
2.200
2.200
2.200
2.100
2.100
2.200
2.100
UH1F1CE
PREbbUKE
MACK
DIFFERENTIAL TE'P
(IN.
UESIKEU
3.57
3.75
3.59
.58
.77
.95
.94
,96
.78
.70
3.95
3.78
H20)
ACTUAL
3.57
3.75
3.59
3.58
3.77
3.95
3.94
3.96
3.78
3.78
3.95
3.78
(DEG.F)
159.
159.
158.
165.
165.
166.
169.
166.
166.
168.
169.
168.
UATE 11/30/82
HUN NUPUEK 4BM5B
PKUBE LENGTH « TYPE 5* GLASS
NU21LE 2-01 : I.D, ,220
AbSUHED MUISTUhE 12.0
SAMPLE BOX NUMBER
KETEH BOX NUMBER FB8
ftltH HEAD UIFF. 1.90
PHObE HEA1EH GETTING 320.
HEATER bOX SETTING 320.
UM GAJ> ft IEH
TEfP
(DEG.F)
INLET OUTLET
57. 55.
60. 55.
65. 56.
69. 59.
71. 60.
72. 61.
72. 61.
73. 62.
73. 63.
74. 64.
74. 64.
74. 65.
HlfP
VACUUM
(IN.HG)
5.7
.7
.8
.7
.8
.9
.8
,0
.5
.5
.7
.6
SAfHLE
bOX TEMP
(DEG.F)
343.
332,
331.
327.
328.
340.
342.
342,
338.
33*.
328,
334.
IPPINGEK
TEMP
(OEC.F)
43.
52t
72.
124.
102,
77.
61.
54,
49.
48.
47,
47.
AVERAGE
3.70
3.78 165.
70.
60.
6.6
335.
65.
-------
PART1LULATE FIELD DATA 4 KtbUlTb TAbULATlUIS
PLANT- NAME AND AOURtSb ItbT TtAH LEADER
MONO PUHER-PLEASANTS uu
TEST
TEST OATL
UNIT J
ENGLISH UNITS
II
METRIC UNITS
18
TF
IT
NP
1
ON
CP
CTi
ocj VH
TM
VfSTD
VLt
VHC
UMU
FMO
PC02
P02
PCO
PN2
MU
MM 3
TIME-START 1329
TIME-FINISH 1529
NET TIME OF TEST, MIN. 120.0
NET SAMPLING PUINTS 12
METER CALIBRATION FACTOR .990
SAMPLING NUZ/Lt OIAMEUR .220 IN
PITOT TUbE COEFFICIENT .on
AVERAGE ORIFICE PRESSURE 3.76 IN-H2U
DROP
VOLUME OF DRY GAS SAMPLED 121.563 CU-FT
AT Mtun CONDITIONS
AVERAGE GAS METER TEMP 65.0 F
VOLUME OF DRY GAb SAMPLED 120.017 SCF
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN 297.5
IMPINGtRS ANU SILICA GEL, ML.
VULUME OF WATER VAPOR 14.003 SCF
AT STANDARD CONDITIONS*
PERCENT M01SIUHE BY VOLUME 10.45
MOLE FKALT10N DRY GAS .096
PEKCtM CUt! bY VUL.» OKY 12.90
PERCENT U2 BY VUL.t DRY 5.00
PERCENT CO BY VOL., DRY .00
PfcRCtNT N2 OY VOL.. D«Y 01.30
MOLECULAK »»T-DKY SIACK GAb 10.30
MULECULAK «T-S(AUK b A t> 2S.01
!52J
120.0
>2
.990
5.6
.04
96.1
10.3
3.390
297.5
.397
10.45
,09b
12.90
5. BO
.00
01.30
30.30
29.01
KM
KM-M2U
CU-M
C
3CK
SCP
-------
PB bAHOMETHIC PnESSuRt
PSI STATIC PHES OF STACK GAS
P3 STACK PRES, ABS.
TS AVbHAGt STACK TEMP
VS AVG STACK GAS VELOCITY
A3 STACK AREA
USSTU STACK FLOW RAlt, DRY*
US ACTUAL STACK FLOM RATE
130 PERCENT ISUKlNtUC
MN FILTERABLE PAK1
MG. EPA 5
CS FILTERABLE PART
PNH FILTERABLE PART
EMISSION HATE
MN SULFUR D10XIUE
J> MG. EPA 5
^ CS SULFUR OIUXIUE
PMM SULFUR DIOXIUE
EMISSION HATE
MN SULFURIC ACID
MG. EPA 5
CS SULFuHIC ACIU
PNR SULFURIC ACIO
EMISblUN HATfc
£9.15 iN-hb
-J.bO !
29.04 IN-M1,
Ibb. f
89. b FPS
45«!39. SU-IN
SCFH
ACFH
745B1920.
101545960.
95.6
740.41 KM-Hb
-30.10 K
737.61 CM-HG
74. C
£7.4 KPS
£9.106 SU-M
£111937. SCKM
£075477. ACKM
95.0
£6.7
.0034 GH/USCF* 7.057 »>G
36.579 LB/MH 16.59 KG/HH
4360.0 4360.0
.5605 GH/USCF* I£e3.030
5973.179 LB/HH £709.43 KG/hR
90.5
98.5
,01£7 GK/USCF* £0.906 PG/USC*
134.945 LB/HH 6l.£l KG/HH
* 60 DtG F, £9.9£ IN.HG.
-------
EXAMPLE PARHCULAlfc CALCULATIONS IbbT NO. 4UH5B
UNIT 1
VOLUMt UF DKY GAS SAMPLED AT STANUAKO CUNUHIONS
VMSTD 3 (17. 617 * VM • Y • (Pb «• PM / 13.6)) / (TM * 160.)
17.647 * U1.563 » ,99tt « I a9.1b * 3.763 / 13.6)
VMSIO = - ------- - — - ---- - — ----------------------- - --- •- ----- = U0.017 USCF
I bb. + <4bO.)
VOLUMt OF NATfcH VAPUR AT STANUAHO CUNUITION5
VisC = .U4707 * VLC
VMC = .U4707 * 296. = 14. 00 SCF
PtMCtNT MUIbTuMt IN S1ACK GA!>
8nO = (100. * VMC) / (VHSTO * VwC)
> 100. • m.oo
— -— ---- - -------------- -- = lo.ob PtkCtNT
O U0.017 » 11.00
MULt FRACTION OF DRY STACK GAS
FMO s (10U. - bwU) / 10U.
1UO. - lu.4
FHD = —-—..- — ...
100.
AVENAbE MOLtCuLAW ntlbHT UF DKY STACK GAS
MU = (PCO^ * .44) * (P0«! • .3
-------
STACK GAS VtLuClTT AT STALK
OtLP = bOM. OF IHt bUKT(Vl) * (Tb * 460.))
VS = ttS. 49 * CP * OtLP / ISuHKMMb * PS) * PMS)
VS = *»5.49 • ,»4 *
-------
FjtLU DATA
>
to
PLANT MUNGU PUWEH PLEASAHTS
SAMPLING LOLATIUN UNIT 1
SAMPLE TYPE M5oP40o
OPERATOR CLAHKE
AMBIENT TEMP.IOEG.F) 5b.
BAR. PRESS. UN. HG) 29.19
STATIC PRESS. UN. H2U) -1.50
FILTER NUMHER(S) ooo2b9i
STACK INSIDE DIM. UN) 240.00 .00
P1TUT TuBt COEFF. .64
THERM. NO. 201
LEAKAGE .006 CFM • 7.5 IN.HG
METER CAL1B. FACTOR 1.006
RtAD A RECORD DATA
TRAVERSE
POINT
NO.
1NIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
CLOCK
IIME
(24-HR
1330
1340
135o
1400
1410
1420
1430
1440
1450
1500
1510
1 52 0
1 5 3o
tVtWY 10.0
GAS MtUR
READING
(CU.FT.)
493.363
503.136
513.200
523.664
533.136
543.765
553.725
563.895
574.280
584.813
594.436
604,555
615.114
MINuTtS
VELOCITY
HEAD
UN.H2D)
2.000
2.100
2.000
2.000
2.100
2.200
2.200
2.200
2.100
2.100
2.200
2.100
ORIFICE
PRtSbUKE
DIFFERENTIAL
(IN.
DESIRED
3.60
3.80
3.60
3.60
3.8,;
4.00
4.00
4.00
3.64
3.85
4.00
3.85
H20)
ACTUAL
3.60
3.60
3.70
3.60
3.60
4.00
4.00
4.00
3.00
3.90
4.00
3.90
STACK
TEMP
(DEG.F J
159.
159.
158.
165.
165.
Ibb.
169.
166.
166.
168.
Ib9.
168.
DATE 11/30/62
RUN NUMBER 4CM5BP
PKCbE LENGTH & TYPE 5* GLASS
KUHLE 2-02: l.D. .219
ASSUMED MOISTURE 12.0
SAMPLE BOX NUMBER
PETER BOX NUMBER FB3
MEIER HEAD DIFF. 2.00
C FAC10R 2.14
PMliBE HtATEH SETTING 400.
HEATER BOX SETTING 320.
REFERENCE PRE53. DIFF. S00
DKY GAS
METER
1EMP
(DEG
INLET
o2.
65.
75.
78.
80.
82.
84.
85.
85.
Ob.
Ob.
88.
.K)
OUTLET
62.
61.
61.
62.
62.
63.
64.
64.
65.
69.
69.
70.
PUMP
VACUUM
(IN.HG)
7.5
7.0
7.0
7.0
7.0
7.5
7.5
7.5
7.0
7.0
7.5
7.5
SAMf-LE
BOX TEMP
(OEG.FJ
325.
330.
336.
316.
325.
313.
319.
326.
314.
316.
324.
321.
IMPINGER
TEMP
(OEG.F)
40.
39.
40.
44.
46.
44.
48.
48.
52.
50.
56.
50.
TOTALS
AVERAGE
120.0
UI.751
3.83
3.84
165.
00.
64,
7.3 322.
46.
-------
PAKUCULATE FltLO DATA & KtiULli TAUULA1IUN
PLAM- NAME AND ADDRESS TtST TtAM LEADER
MOH6U POHEH PLtASANTS CLARKfc
TEST ICMbBP
UNIT 1
TEST DATE
TB
TF
TT
NP
If
UN
CP
> PM
U)
VM
TC
VMSTU
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NUZ/Lt DIAMEUR
PITOI TUBE CUEFF1C1ENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DKY GAS SAMPLED
AT METER CONDITIONS
AVERAGE 6AS METER TEMP
VULUMt UF URY bAS SAMPLED
ENGLISH UNITS
11/30/02
1330
120.0
1*
1.006
.219 IN
.01
3. BO IN-H20
121.751 CU-FT
72.0 F
119.702 5CF
METRIC UNITS
1
1330
1530
120
12
1
5
97
3
22
3
1/30/02
.0
.006
• O r M
.0<«
.6 PM-H20
.000 CU-M
.2 C
.391 SC*
VLC
vhC
UMU
pcu2
PCO
HD
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS ANU SILICA GEL*ML.
VOLUME UF MATEK VAPOR
AT STANDARD CONDITIONS*
PEHCLNT MOISIUHE BY VOLUME
MOLE FRACTION UHY bAb
PERCENT L02 BY VUL., UKY
PERCENT 02 bY VOL.. URY
PERCENT CO BY VOL., UHY
PEHCtNl N2 BY VOL., UHV
MOLECULAR wT-OHY STACK GAS
MOLtCULAH nT-bI*LK bAS
.6
17.679 5CF
.6
.bOl SCK
12. 87
.071
12.90
b.bO
.00
01.30
30.30
20. n
12.07
.071
12.90
b.BO
.00
01. 3U
30.30
20.71
-------
>
HB
PS1
P8
IS
VS
A3
USSTU
US
ISO
MM
C3
HN
C9
PCk
MN
CS
PMR
bAROMEIHIC PRESSURE
STATIC PRES UF STACK GAS
STACK HUES, ABS.
AVERAGt STACK TEMP
AVI> STACK t>AS VELOCITY
3TACK AREA
STACK FLOW HATfc. DRY*
ACTUAL STACK FLO* RATE
PERCENT ISOMNtUC
FILTERABLE PART
HG. tPA b
FILTERABLE PANT
FlLTtMABLt PART
EMISSION HATt
SULFUW U1UXIUE
MG. EPA 5
SULFUH DIOXIDE
SULFUR OlOXluE
EMISSION RATE
SOLFuHlC ACIO
MG. EPA 5
SULFUHIC ACIU
SULFURIC AGIO
EMISSION RATE
* 00 OEb F, 29.
IM.HG.
«?9.19 IN-hG
-l.bO I
29,06 1N-HU
90. i. FPS
. SU-1N
SCFH
ACFH
40.0
741.4J CM-ht
-30.10 ft
730. b2 fM-HG
74. C
27.S KPS
SU-M
SCCH
GH/OSCF*
54.031 LH/HH
4300.0
90. S
40.0
U.034
24.07 KG/HR
4300.0
GR/OSCF* 1291.000
500b.300 LB/HR 2b70.03 KG/hR
107.0
31.5bO CU/USCK
bS.23 KG/HR
107.0
.0138 GK/USCF*
143.790 LB/hR
-------
EXAMPLE PAHTItULATfc C ALCIIL A I IUM5> ItbT NU.4CM5UH
UNIT 1
VULUMt OF DMT GAS SAMPLED Af STANDARD CuNUIlIUNS
VMSIO = (17.647 * VM * T * (fti * PM / li.o)J / ITH «• 460.)
17.647 * 121,751 * l.OOb * I «>9.19 * .5.042 / 13.6)
VM3TO = — — - ---- --- --------- - ------------- --- -------- - ----- = 119.74«i USLF
I 7«J. » <460.)
VULUMt OF KATES VAPUH AT 5TANOAHD CONDITIONS
VnC = .04707 * VLL
V*C * .04707 * 376. = 17.60 SCF
PtRCENT MUIiTUHt IN SIACR GAS
BrtU = (100. * VMCJ / (VHSTD « VwC)
>
^, 100. * 17,6*
tn B*0 a -------------------------- = li.B7 PENCENT
119.74,e » 17.60
MULE FRACTION OF UHY dTACK GAS
FMD = dou. - tinot / too.
loo. - !«:. 9
FMO a -- ------------ ......... s ,b71
100.
AVEHAGE MULtCuLAH ntlbHT UF UHY STALK GAS
MU s iPCOci • .44) » (PO«J « .3
-------
STACK GAS VLLOCITI AT STACK CUNUlTlUNb
DiLP = SUM. OF Tht SOHTIVH * (Ib * 460.))
Vi = »5.4* * CP * OtLP / (SuHHMwb * PS) * PNTS)
VS = US. 49 * .64 * 43b.4Btt / (SUHT( 2U.71 * 29.0tt) • 12. = 90.19 Ff-S
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
Ob = VS * As * 36UO/144
OS = 90.19 * 45239. 3600/144 = 101999792. ACFH
STACK GAS VOLUMETRIC FLO" Al STANDAHD CuNUIUONb
QSSIO * 17.647 • US * PS * (1. - 16*0/100)) / (TS * 460.)
17,647 * 10199979a. • 29.08 • 11. - (12.87/100))
QSSTO * ---------- -- ------------------------ ...-.-. — . --- .. s 72994096. SCFH
( Ibb. + 4t>0.)
PERCENT ISOKlNETIC
ISO = <30b.ba*US*4bO.)J*t(O.UO * uSbTu / lib. 43 * 4b3.6)
PMR = .0053 * 7^994u9o. / (15.43 » <*53.b) = 5«.B31
-------
F1ELU UAIA
PLANT MUNGO POWER PLLASANTS
SAMPLlNb LOCATION UNIT 1
SAMPLE TYPE Mbn-H4oo
OPEKAIOK CLARKE
AMBIENT TEMP. (OEG.F) 56.
BAR. PRESS. (IN. HG) 29.19
STATIC PRESS. (IN. H*0) -1.50
FILTER NOMBER(S) 0002093
STACK INSIDE DIM. (IN) 240.00 .00
PITOT TUBE COEFF. .84
THERM. NO. 201
LEAKAbE .000 CFM 4 9.0 IN.HG
METER CALIB. FACTOR .988
READ * RECORD DATA
TRAVERSE
POINT
NO.
IN1T
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
loo.o
1 10.0
1*0.0
CLOCK
TIME
124-HR
1330
1340
1350
1400
1410
1420
1430
1440
1450
1500
1510
1520
1530
EVERY 10.0
GAS MtUR
READING
ICO. FT.)
192.382
201.736
211.900
223.415
233.037
244.271
254,835
265.900
276.375
287.7i;0
298.325
309,110
319.624
MINUTES
VELOCITY
HEAO
(IN.H2U)
2.000
2.100
2.000
2.000
2.100
2.200
2.200
2.200
2.100
2.100
2.200
2.100
ORIFICE PRESSURE
DIFFERENTIAL
(1N.H20)
DESIRED ACTUAL
3.69 3.60
3,80 3.80
3.65 3.70
3.66 3.70
3,86 3.90
4.05 4.10
4.03 4.00
4.06 4.70
3.88 3.90
3.88 3.90
4.06 4,10
3.88 3,90
STACK
TEPP
(OEG.F)
DATE 11/30/82
RUN NUPBEK 40M5BP
PROBE LENGTH ft TYPE 6* GLASS
KO/ZLE 2-07: 1,0. .221
ASSUMED P01STUKE 12.0
SAPPLE BOX NUMBER
PETER BOX NUMBER FB5
PETER HEAD DIFF. 1.95
C FACTOR 2.14
PROBE HEATEH SETTING 400,
HEATER BOX SETTING 320.
REFERENCE PRESS. DIFF. .00
ORY GAS
TEMP
(OEG.
PE1EK
F)
PUPP
VACUUM
(IN.HG)
SAMPLE
BOX TEMP
(OEG.F)
IPPINGEH
TEMP
(OEG.F)
HLET OUTLET
159.
159.
158.
165.
165.
166.
169.
166.
166.
168.
169,
168.
66.
68.
67.
82.
t»5.
87.
87.
88.
88.
90.
90.
90.
66.
67.
67.
67.
68.
*«.
70.
72.
72.
74.
74.
75.
4.5
7.0
7.5
7.5
7.5
B.O
8.0
8.0
8.0
8.0
8,0
8.0
335.
335.
334.
324.
316.
318,
335.
324.
319.
326.
319.
326.
40.
36.
40.
44.
48.
, SO.
49.
54,
58.
52.
50,
50.
TOTALS
AVERAGE
120,0
127.242
3.87
3.94 165.
82.
70.
7.5 326.
48.
-------
00
PAHHCULAIE FIELD DATA t RESULTS tAbULAUUK
PLANT- NAME ANU ADDRESS IEST TtAH LEADER
MON6U POWER PLEASANTS CLARKE
TEST 4UM5BP
UNIT 1
TEST
IB
TF
TT
NP
Y
UN
CP
PP
OATt
TIME-START
TIME-FINISH
NET TIME OF TEST, MlN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NUZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
11/30/62
1330
1530
120.0
1*
.968
.221 IN
.64
3.94 1N-H20
METRIC UNITS
1 1/30/62
1330
1530
120.0
12
.9Ab
127. ^«2 CU-FT
3.603 CU-M
7b.2 F
121.969 SCF
367.7
17.30U SCF
12.43
.676
12.90
5.60
.00
U1.30
30. iU
20.77
24.
3.
367.
•
12.
•
12.
5.
t
ttl.
30.
2tt.
6 C
454 SC»
7
490 SCP
43
676
90
60
00
30
30
77
-------
I
-J
PB UAHOHETR1C PRESSURE
PS1 STATIC PHEb OF SIACK GAS
PS STACK PRES, AB8.
TS AVERAGE bTACK TEMP
VS AVb STACK CAS VELOCITY
A3 STACK AREA
USSTO STACK FLU* HATE, OkY*
BS ACTUAL STACK FLOW HATE
ISO PERCENT ISUKJNEUC
MK FILTERABLE PART
MG. EPA b
CS FILTERABLE PART
PKR FILTERABLE PART
EMISSION RATE
Mh SULFUR OIOXIUE
M6. EPA b
CS SULFUR OIOXIUE
PMN bULFuR UIUXIUE
EMISSION RATE
MN SULFuRIC ACID
MG. EPA b
CS SULFUH1C ACIU
PMH SULFUH1C ACIU
EMISSION RATE
a9.19 IN-hb
-l.bO IN-HdU
29.00 1N-H(>
Ibb. e
90.1 FPS
3U-IM
101904160. ACFH
90.1
2/.2
.0034 GH/USCF*
36.033 LB/HH
4340.0
.b490 GK/USCF*
5749.45b LB/HH
105.0
.0133 GH/USCF*
139.100 LB/HH
/Ml. 43 KM-HG
-3d. 10 CM-H2U
73tt.bi> CM-Ht,
74. C
27. b KP3
SU-M
7.tt7b KG/OSCf
lb.34 KG/HH
4340.0
*5 KG/HH
105.0
30.404
63.10 KG/HR
* btt UEG f, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULAI IUNS Tts>T Nu.4UMbbP
UNIT i
VULUMt OF ORT GAS SAMPLED AT STAMUAHD CONUIlIUNb
VMSTO = (17.647 * VM * V • IPb » HM / 13.6)) / (TM «• 460.)
17.647 * 127.244 * .9tttt * I 29.19 » 3.942 / 13.6)
VMSTO = ---- - --- — — - ------ --- — -"- --- - ---- - -------- " ----- --• = 121.969 OStF
( 76. » 4t>0.)
VOLUMt OF NATtR VAPOR AT STANDARD CONDITION*
VisC = .UU7U7 • VLC
VNC = .04707 * 368. = 17.31 SCF
PERCENT HUIbTURL IN STACK
BMO = (100. • VNCJ / (VMSTD » VnC)
>
I 100. * 17.31
00 BNO = -------------- - ----------- = 12.13 PtRCtNT
0 121.969 * 17.31
MULE FRACTION OF DRY STACK bAi
FMD = lioo. - HMO) / loo.
100. - 1<>.4
FMD s — — — ————.... 3 ,«76
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MD = (PCU2 * .14) » (P02 * .3cJ) » (PN2 * PCO) * ,iiO
MD = 112.90*44/100) * 1 5.tt*3c:/100) » ((81. 3+ .0) * 2a/100 = 30. 30
MULECOLAR MEIGHT (Jf STACK GAS
= MU * (1. - tbnO/100)) + la. • (bnu/ioo)
= 30.30* (1. -112.43/100 j ) t Id. * (12.41/100) = 20.77
-------
STACK GAS VtLUClTY AT SIACK LUNUlllUNi
DtLH - SUM. OF IMt OUKTIVM * (Tb * IbO.j)
VS s »5.49 « CP * OELP / lSuHT(HKb * PS) * HMS)
VS = »5.
-------
KltLU UA1A
I
CD
ro
PLANT ' MUNO PUHER-PLt AS AN TS
SAMPLING LOCATION UNIT 1
SAMPLE TYPE M5B
OPERATOR UU
AMBIENT TEMP. (DEC. F) 55.
BAR. PRESS. (IN. M6) 29.15
STATIC PHtSS.HN.H20) -1.50
FILTER NUMBER(S) 0002694
STACK INSIDE DIM. (IN) 240. UU .UU
PITOT TUBE COEFF. .04
THERM. NO.
LEAKAGE .000 CFM 4 10.0 IN.HG
MtTtR CALIB. FACTOR 1.037
READ ft RECORD DATA
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.j
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
00.0
90.0
100. 0
110.0
120.0
CLOCK
TIME
124-HR
1636
0
0
0
0
u
0
0
0
0
u
0
1836
tVEKY 10.0
GAS MtTtR
READING
ICU.FT.)
643.067
652.020
6b2.320
672.130
601.670
691.240
700.000
710.530
720.240
730.070
739.750
749.430
759.021
MINUTES
VtLUtllY URlFlCt
PRESSURE
HEAD DIFFERENTIAL
(IN.H2U) (IN.
DEMREU
2.000
.900
.900
.900
.900
.900
.900
.900
2.000
.900
.900
.67
.48
.51
.51
.51
.53
.53
.54
.73
.54
.55
.900 3.53
H20)
ACTUAL
3.67
3.46
3.51
3.51
3.51
3.53
3.53
3.54
3.73
3.54
3.55
3.53
STACK
TEfP
(DtG.F)
168.
170.
169.
169.
169.
168.
169.
167.
169.
169.
167.
170.
UAlt 11/30/02
HUN NUMBER 5AM5B
PROBE LENG1H ft TYPE 6* GLASS
NU2/LE 2-11 : l.U, ,222
ASSUMED MUISTUHE 12.0
SAKPLE BOX NUMBER
METER BOX NUMBER FB4
CtTtH HEAD OIFF. 1.87
PKOBt HtAfER btlTJNG 32U.
HEATER BOX SETTING 320.
OKI GAS
KEltM
TEMP
(OEG
1KLET
62.
64.
74.
70.
72.
74.
75.
76.
76.
/b.
7b.
76.
.F)
OuTLfcT
62.
62.
63.
64.
63.
64.
65.
65.
66.
67.
67.
67.
PUCP
VACUUM
(IN.HG)
8.7
9.2
9,0
a.l
0.2
0.2
7.9
7.8
8.2
7.0
7 fy
7.7
SAfHLE
BOX TEMP
(DEG.F)
322.
335,
321.
319.
334.
330.
322.
325.
33fc.
337.
321 ,
331.
IMPINGLR
TEMP
(OEG.F)
52.
40,
106.
102.
76.
61.
54.
50.
48.
47.
48,
48.
TOTALS
AVERAGE
120.0
115.954
3.55
3.55 169.
73.
65.
8.2 320.
62.
-------
PLANT- NAMt AND AOORLSS
NONO PUHtH-PLEASANTS
FIELD DATA & RESULTS IAOULATION
UST TLA* LEADEN
[)U
TEST bAM5U
UNIT I
ENGLISH UNITS
TEST DATE 11/30/02
TB
TF
TT
NP
Y
ON
CP
PM
1 VM
00
U)
TH
VMSTO
VLC
V*C
UMU
FMD
PC02
P02
PCU
PN2
MO
MMS
TIME-START Ib3b
TIME-FINISH 1036
NET TIME OF TEST, MIN. 120.0
NET SAMPLING POINTS 1 «!
METER CALlbRATIUN FACTOR 1.037
SAMPLING NUZZLE OlAMiTER ,«;22 IN
P1TOT TUbE COEFFICIENT .04
AVERAGE ORIFICE PRESSURE 3.b5 1N-H20
DROP
VOLUME OF ORY GAS SAMPLED 115. 954 CU-F T
AT METER CONDITIONS
AVERAGE GAS METER TEMP 60. fa F
VOLUME OF DRY bAS SAMPLED lib. 069 SCF
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN 31b.O
iMPlNGtRS ANO SILICA GEL, ML.
VOLUMt OF MATER VAPOH 14.674 SCF
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VULUMt 11.19
MOLE FRACTION DRY GAS .000
PEKCtNT C02 dY VUL., OHY 11.90
PERCENT 02 BY VOL., DRY b.bO
PERCtNT CO UY VOL., L»H» ,UO
HEKCtNl Nd bY VOL., OK» 01.30
MULbLULAK rtT-OHt S'tALK GAS 30.10
MOLECUI.AK «T-STALK I.AS 20.01
METRIC UNITS
11/30/02
1636
1036
120.0
12
1.037
5.6
.04
90.2
3.203
20.3
3.343
316.0
.421
11.19
.000
11.90
6. BO
.00
01 .30
30.10
20.01
PM
I»M-H2U
CU-M
C
sec
sec
-------
>
CO
PB BAROMETRIC PHESSURb
PSI STATIC PrtES OF STACK GAS
PS STACK PNES, ABS.
TS AVERAGE STACK TEMP
V3 AVli STACK GAS VELOCITY
AS STACK AREA
U3STU STACK FLO" RATE* DRY*
U9 ACTUAL STACK FLOW RATE
150 PERCENT 130MNET1C
MN FILTERABLE PART
MG. EPA 5
CS FILTERABLE PART
PPH FILTERABLE PART
EMISSION HATE
MN SULFUR DIOXIDE
HG. EPA 5
CS SULFUR DIOXIDE
PKH SULFUR DIOXIDE
EMISSION RATE
MM SULFURIC ACID
MG. tPA b
CS SULFURIC ACID
P*H SULFURIC ACID
EMISSION RATE
* 68 OEG f,
1N.HG.
29.15 IN-HG
-l.bO IN-H.JU
39. 01 IN-Hb
US. F
6b.c! FPS
SU-1N
. <41 f
•30.10 K
717.61 »»H-HG
76. C
^b.3 PPS
^9.10ti SU-M
1997901. SCfH
ACFH
ACKH
97. «
07. b
.00t>2 GR/DSCF*
b
-------
EXAMPLE PAHTICULAIt C ALUIL»T IUN6 ItSl NU.
UNIT 1
VULUME UF OHY GAS SAMPLED AT 5TANDAKU CUNUIHUNS
VMSTD a (17.607 * VM • V * IPtt * PM / 13.6)) / tTM + 460.)
17.647 • US. 954 » 1.037 * I £9.1!> * 3,b53 / 13. 6J
VMSID = ----------------------------------------------------- s lla.oe'*
I 6• BNO s — .-- — .--- — ... ------ .... - u. IV HEKCENT
1 118.069 » 14.U7
CD
U1
MULE FRACTION OF URT STACK
FHO = (100. - BwU) / 100.
100. - 11.2
100,
AVEHAGE MULECULAH MEIbHf UF DKr STACK GAS
MU = (PCUcJ * .44) * (PO«J * .3d) + (HNi + PCO) * ,«!8
MU = (11.90*44/100) » ( 6.tt*3t:/100) + (Ittl.J* .0) « dd/100 = 30. IB
MULECULAH MEIGHI UF SUCK GAb
MwS = MU * 11. - (BrtO/luOJJ + Itt. * (bkvU/100)
MwS = 30.1U* (1. -111.19/lUOn t la. * (11.19/100) = eJB.ttl
-------
STACK GAS VtLUCjTY AT STACK CUNUltluNb
OELP = SUM. OF THt SOHTIVM * (Tb + 4bU.)}
V3 = «5.49 * CP * OtLP / (SgHHMKb * PS) * HMS)
VS ' 05.49 * .04 * 41b.52tt / (bUKti 20.H1 * 29.04) * 12. = tit.
STACK CAS VOtUMtTHJC FLO* AT STACK CONDITIONS
OS = WS * AS • 3bOO/i44
OS = ttb.17 * 45239. 3bOU/14. * 29.04 * (1. - (11. IS/100))
USSTO = -- — - ------ - -------------- --- -------- - ---- - ------- - = 7u554e3d. SCFH
( 169. * «bO.)
^ PtHCCNT ISOKJNtTIC
I
00 ISO = (iOb.bfl* (TS*4bO.) ) * ( (0 . 00^bb9* VLC ) » I VM *Y • (PU» (PH/l i.b) )/ (TM«4bO.) ) )/ ( T T * VS»PS«ON*ON)
a«( 169.t4bO.))*t(O.OOib6«J« 316. )*( llb.954* 1 .037 * I 29.1b*( 3.553/1 3.6) ) / { 69.+460.)))
ISO = ------------------------------------------------------------------------------------------- . --- -- = 97.80 PtHCEM
120. * 0b.l7 * 29.04 * .222 * .222
PAKTICULATE LUAulNG -- tPA METHOD 5 (AT STANUAKO CONDITIONS)
CS = 0.001 * MN • 15, «3 / VMSTD
CS = U.U01 * 47. b * 15.43 / Ilb.0b9 = .OUb2 GH/USCF
PAKIICULATE LBS/Hk -• EPA MtTHOU b
PMR = CS * USSTO / 115.43 * 4b3.b)
PMR = .U0b2 * 70554U32. / (15.43 • 453. b) = fa«?.70tt
-------
DATA
00
PLANT MONO PU*EH-PLEASAMS
SAMPLING LOCATION UNIT 1
SAMPLE TYPt MSB
OPEHATOH DO
AMBIENT TEMP. (OEG.F) 55.
BAR. PRESS. (IN. HC) 29.15
STATIC PRESS, UN.H20) -1.50
FILTER NUMBER(S) 0002t>9S
STACK INSIDE DIM. (IN) 240.00 .00
PITOT TUBE COEFF. .04
THERM. NO.
LEAKAGE .014 CFM ol 9.0 IN.HG
METER CAL1B. FACTOR .990
READ * RECOHO DATA
THAVEMSE SAMPLE
POINT TIME
NO. (MlN.)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
loo.o
110.0
120.0
CLOCK
TIME
(24-HR
f 1 fif tf I
I* I. V v " 9
1637
0
0
0
0
0
0
0
0
0
0
0
1037
EVtHY 10.0
GAS MtTEH
HEADING
(CO. FT.)
364.038
373.990
3B3.010
393.750
403.660
413.500
423.600
433.560
443.600
453.710
463.660
473.560
403.433
MINUTtS
VELOCITY
HEAD
(IN.H20)
2.000
.900
.900
.900
.900
.900
.900
.900
.000
.900
.900
.900
UH1FICE
PHtSaUHE
DIFFERENTIAL
(IN.
DESIHED
.67
.40
.51
.51
.51
.53
3.53
3.54
3.73
3.54
3.55
3.53
H20)
ACTUAL
3.67
3.40
3.51
3.51
3.51
3.53
3.53
3.54
3.73
3.54
3.55
3.53
STACK
TEMP
(OEG.F)
168.
170.
169.
169.
169.
160.
169.
167.
169.
169.
167.
170.
DATE 11/30/B2
NUN NUCbtK 5BM5B
PHOBE LENGTH ft TYPE 5* GLASS
KUl/LE 2-10 : 1.0. ,221
ASSUMED MUISTUNE 12.0
SAMPLE BOX NUMBER
MEIEH BUX NUMBER FBO
MtTEH HtAD 01FF. 1.90
PHOBE HtATER SETTING 320,
HEATER BOX SETTING 320.
DHY GAS
MEIEH
TEMP
(DEG
IIVLET
61.
62.
65.
69.
70.
71.
71.
72.
72.
72.
73.
73.
.F)
OUTLET
60.
60.
59.
61.
61.
62.
62.
63.
63.
64.
64.
64.
POMP
VACUUM
(IN.HG)
0.6
0.0
9.0
0.7
0.7
8.7
0.5
8.4
0.0
0.6
0,5
8.6
SAMPLE
BOX TEMP
(OEG.F)
308.
335.
335.
337.
334.
336.
330.
330,
328.
320.
324,
324.
IMPINGER
TEMP
(OEG.F)
53.
48.
36.
102.
86.
61.
73.
61 1
57.
56.
54,
54,
TOTALS
AvEHAbE
120.0
m.395
3.55
3.55
169.
69.
62.
8.7
329.
65.
-------
PAR1ICULATE FIELD DATA &
PLANT- NAME AMD ADDRESS
MONO PUWER-PLtASANTS
TAbULAMUN
TEST TtAM LEADER
UU
TEST 58M5B
UNIT 1
TEST DATE
TB
TF
TT
NP
Y
UN
tP
1
00
oo w||
TM
VfSTO
VLC
V*C
B*U
FMD
PCu2
PU2
PCU
PN2
MO
Mfcsi-
TIME-START
TIME-FINISH
NET TIME OF TEST, MlN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
PROP
VOLUME OF DRY UAb SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H2U COLLECTED IN
IMP1NGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MU13TURE BY VULUME
MOLE FRACTION DRY UAb
PERCENT CUt dY VOL., UKY
PERCENT U2 BY VOL., UHY
PERCENT LU BY VOL., UHY
PERCENT N2 bY VOL., UW»
MULECULAK rtT-UKY STALK GAb
MULECULAH *T-S|ALK GAS
ENGLISH UNITS
11/30/02
1637
1637
120.0
12
.996
.221 IN
.04
3.b5 1N-H20
119. 39i CU-FI
65.6 F
117.666 SCF
310.9
14.634 SCF
1 1.06
.069
1 1.90
6.60
.00
HI. 30
30. 18
fb.O J
METRIC UNITS
1 1/30/02
1637
1637
120.0
12
.996
5.6 KM
.64
90.2 PM-H20
3.301 CU-M
10.7 C
3.332 SCK
310.9
.414 SCI*
11.06
.069
11 .90
6.00
.00
01 .30
30. 10
20.03
-------
Pb
PS1
PS
T3
V9
AS
USSTU
US
ISO
MN
cs
PHH
MN
S"
PPH
MN
CS
PNM
(JAkOMETHIC PNtbSUHt
STATIC PHES UF STACK UAS
STACK PRES, ABS.
AVEHAGt STACK TEMP
AV6 STACK CAS VELOCITY
STACK AREA
STACK FLU* RATE* DRY*
ACTUAL STACK FLOW KATt
PERCtNT 1SUK1NET1C
FILTERABLE PARl
MG. tPA b
FILTERABLE PART
FlLTtRABLE PART
EMISSION RATE
SULFUR DIUXIUE
MG. EPA 5
SULFUR DIUXIUE
SULFUR UIOXluE
EMISSIUN RATE
SULFURIC ACIO
MG. tPA b
SULFUHIC ACIU
SULFURIC ACIO
b« DtG F,
IN.HG.
IK-NO
->
,•9
Ib9
86
£39
9^
OOt)
46
bl
.bO IN-McfU
,04 IN-HU
f
.1 FPS
. SU-IN
SCFH
ACFH
.«:
.UObl GH/OSCF
.142 LB/HH
-3U.IO KM-M
737. bl *M-h
7b. C
tib.j KPS
c!9.1U6 SU-M
200UO.U
,b79b GH/USCF* 132b.bbb
5B49.54b LB/HK <>bb3.35 KG/HH
84.4 84.4
.Ulll GK/USCF*
111.697 LB/HK
ib.333 t-b/OSCK
SU.b7 KG/HK
-------
EXAMPLE PAKTICULATE CALCULAI IONS TEST NO.
UNIT i
vuLuMt UF DRT GAS SAMPLED AT STANUAHU CONDITIONS
VMSTO = (17.647 * VM * V • (Pb » PM / 11. b)) / ITM * 460.)
17.647 * 119.395 * .99(1 * ( «>9.15 * 3,b53 / 13.6)
VMSTO = — — — --- - --- ......... ------- . --- --- — - ---- ....... = 117.660 USCF
( 66. «• 160.)
VOLUME UF NATE.R VAPOR AT STANDARD CONDITIONS
VHC = .04707 * VLL
VNC = .04707 * 311. s 14.63 SCF
PERCENT MOISTURE IN STACK GAS
BnO 3 (100. * VNC) / (VMS 1 1) «• VWC)
t£> 1UO. * 14,63
O BNU * ............. — . — . — — . s 11.06 PERCENT
117.660 t 14-.63
MULE FRACTIUN OF DRY STACK bAS
FMD : (100. - HMO) / lOu.
100. - 11.1
FMD = —. — . — —
1UO.
AVERAGE MULECOLAR HEIGHT OF DHY STACK GAS
MO s (PCOi * .44) » (POi * ,3
-------
SIACK GAS VtLUCITT AT blACK tUNDlIlUNb
OtLP = SUM. OF THt SOHHVM * ITS t <4bO.))
VS * 85,49 » CP • DELP / (SuKUMKS * PS) * PMS)
VS = 65.49 * .04 • 41b.52« / ISUHU 2tt.t»3 * 29.04) * I 2 . = ttb.lb FPS
STACK GAS VOLOMETKIC FLO* AT STACK CONDITIONS
OS = VS • AS • 3bUO/l44
Ob = flb.ib * 45239. 3b(IU/144 = 97431000. ACFH
STACK GAS VULUMtTHIC FLUM AT STANOAMD CUNU1HUNS
OSSTO = 17.047 • US * PS * 11. - (BnO/lbO)) / (TS * 4bO.)
17.b47 * 974310UB. * 39.04 * (1. • (11.0b/100)J
OSSTD = — — ----- — - ------------------- --- --- - — - ---- - ---- = 70b3b91<>. SCFH
( Ib9. » 4oO.)
PtWCEwT ISOKINETIC
ISO > (30i.bB* (TS»4bO.) )»tlU.OO«;bb9*VLC)'»(VH*r*lPU* lPM/13.b))/(TM'»4bO.)))/lTT*VS*HS*()N*ON)
(305.56«{ Ib9.t4b0.) J«((U.OO^bb9« 311. )t( llS.39b* .990«( 2S.l^«l 3.553X 1 3.b) ) / ( bb.*4bO.)))
ISO = ------------------------------------------------ • ------------------------------------ - ----- - --- — * 90.24 PERCENT
120. * ttb.15 * 29. 04 • .221 • .221
PARIICULATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0,001 * MN * 15.43 / VM3TO
CS = 0.001 * 4b.2 * 15.43 / 117.668 = .0061 bK/USCF
PARIICULATE LHSXHH -- EPA MLTHUU b
PMR = Ct> * USSTO / tlb.43 * 4b3.b)
PNH = .OObl * 70b3b
-------
FlELO DATA
I
U3
NJ
PLANT MONGU POWEK PLEASANT*
SAMPLING LOCATION UNIT 1
SAMPLE TYPE *5b
OPEKATUR CLARKE
AMBIENT TtMP.lOE6.FJ 5b.
BAR. PRESS. (IN. H6) 29.19
STATIC P»tSS.tIN.H*0) -1.50
FILTER NUMBER(S) 0002696
STACK INSlOt DIM. UN) 240.00 .CO
PHUT TUBt COtFF. .04
THEHM. NO. 125
LEAMbt .0*" CFM .ooo
.900
.900
,9uO
PRESSURE
DIFFERENTIAL
(IN.
OESIREU
3.5t»
3.40
3.40
3.44
3.4b
3.46
3.46
3.50
3.65
3.50
3.50
3.47
H20)
ACTUAL
3.60
3.40
3.40
3.40
3.50
3.50
3.50
3.50
3.70
3.50
J.bO
3.50
STACK
TEfP
(OEG.F)
168.
170.
169.
160.
169.
166.
169.
167.
169.
169.
167.
170.
DATE 11/31/02
RUN NUKUEH SCMbB
HHObt LtNblH & TYPE b* GLASS
^U//LE 2-09: 1.0. .220
ASSUMED MOISTURE 12.0
SAMPLE bOX NUMBER
CE1ER t)UX NUMBER FB3
MbTEH HEAU OlFF. 2.00
C FACTOR 2.14
PROUE HEATER SETTING 320.
HEATER BOX SETTING 320.
REFERENCE PRESS. OlFF. .00
DRY UAS Ktitw PUKP SAMPLE IMPINGER
TEMP
(OEG
1KLET
66.
60.
74.
ao.
02.
«4.
05.
05.
06.
06.
06.
07.
.F)
OUTLET
66.
65.
64.
b5.
65.
66.
66.
67.
67.
60.
60.
60.
VACUUM
(IN.HG)
e.b
"».o
9.5
10.0
9.0
•J.o
9.0
«.5
10.0
9.5
',5
S.5
BOX TEMP
(OEG.F)
324.
327.
329.
319.
313.
315.
316.
315.
316.
315.
315.
319.
TEMP
(OEG.F)
50.
«.
85.
84.
60.
54.
SO.
48.
40.
46.
44,
«6.
TOTALS
AVERAGE
120.0
117.114
3.40
3.bO
169,
01.
66.
9.3 319.
55.
-------
PARTICULATE FltLO UAIA 4 HEiULTS lAbULAIIUN
PLANT- NAMt ANU ADDRESS TEST TEAM LEADER
MON6U POKER PLEASANTS CLARKE
TEST 5CM5B
UNIT 1
TEST DATE
TB
TF
TT
NP
y
UN
CP
>> PM
1
vo
w v»
TM
VHSTU
VLC
vntC
U»0
ENGLISH UNITS
11/31/02
TIME-START Ie36
TIME-FINISH 1»36
NET TIME OF TEST, MlN. 120.0
NET SAMPLING PUlNTS \
-------
PB BAROMETRIC PKESSUHt
PSI STATIC PKES UF SIACK GAS
PS STACK PRES, A8S. .
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
USSTO STACK FLU* RATE. OKY*
US ACTUAL STACK FLOn HATE
1SU PERCENT ISOK1NET1C
MM FILTERABLE PART
MG, tPA b
CS FILURA8LE PART
PMR FlLTtRABLE PART
tMlSSION RATE
Mfc SULFUR OIOXIUE
MG. EPA b
CS SULFUR OIOXIOE
PKK SULFUR OlUXlOE
EMISSION RATE
NN SULFuRIC ACID
MG. EPA b
CS SULFUKIC ACIU
PMK SULFuDIC ACIO
EMISSION RATE
29.19 1N-HG 741.43 KM-HG
-l.bO 1N-H20 -38.10 KM-H20
29.06 1K-HG 73tt.b2 PM-HU
Ib9. F 7b. C
Bb.2 FPS 2b.3 ^PS
>. SU-IN 29.1ttb 3Q-M
SCFM !V9ob42.
974»3bOO. ACFH 27b0443.
97.^ 97.2
.0073 GR/OSCF* Ib.bl9 PG/OSCP
72.921 LB/HR 33.00 KG/hK
4420.U
4420.0
.b943 GK/OSCF. 1360.277
5S6B.753 Lb/HH 2707.43 KG/hH
134.0
134.0
.0100 GK/OSCF* 41.239 PG/OSCf
190.953 LB/HM 02.Oa KG/HH
• b8 OEG f, 29.
iN.hG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO.
UNIT t
VOLUME OF UKY (iAS SAMPLED AT STANUARl) CUNUITIUN5
VM3IO - (17.047 • VM • Y * IPU * PM / 13.6)) / (TM t 460.)
17.647 * 117.114 * 1.006 * ( 29.19 + 3.bOO / 13.6)
VMSTD = -- — - — — — ----- - --- - ----------- -- -------- --- --- --- = 114.760 OSCF
I 74. * 460.)
VOLUME OF WATER VAPUR AT STANDARD CUNQITIUN5
VnC = .04707 • VLC
VNC ' .04707 * 322. = lb.17 SCF
PERCENT MulMURE IN STACK UAS
BMO z (100. * VNC) / (VMSTD « VMCJ
100, * 15,17
BftO = -------------------------- = 11.67 PERCENT
114.760 * 15.17
MULE FRACTION OF DRY STACK GAS
FMD = (100. - uno) / too.
100. - 11.7
FMD = — — --- -- --- --——--- s .683
100.
AVERAbE MULECOLAR MEIGHT OF DRY 5TACK GAS
MO = IPCOi » .1*4) + (P0«i * ,3
-------
STACK GAS VELOCITY AT STACK CONDITION!)
DELP = SUM. OF TMt SQNTIVH * (T5 + 460.))
VS = 65.49 * CP * OELP / ISUHHMKS * PS) * HNT3)
VS = 55.49 * .04 * 416.501 / IbuHH 2B.75 * 29.08) * 12. - 8b.l9 FPS
STACK GAS VOLUME TKICflQK AT STACK CONDITIONS
OS = VS * AS * 3bUO/l44
OS s 66.19 * 45239. 3600/144 = 974B36UO. ACFh
STACK GAS VOLUMETKIC FLUM AT STANUAHO CUNUIUUNS
OSSTO * 17.647 * OS * PS * (1. - (BwU/IOO)) / (TS » 460.)
17,647 * 97463600. * 39.0(4 * (1. - (11.67/100))
QSSTO s — - — - — — — — — — — — ------- - — ---- — — — s 7oa949i?0. SCFH
( 169. * 460.)
>
10 PERCENT ISOKINETIC
cr\
ISO = (30S.b8« (TS+460.) )•( (U.00^669«VLC)+ lVH»r* IPb* IPH/13.6) )/( TMt4bO .)))/( T T * VS*PS*DN*DM
(305.5a«( lb9.»460.)J»((0. 00^669* 3^^.)*( 1 I 7 . 1 1 4* 1 . OOb* ( 29.19+( 3. SOU/ 1 3.6 ) ) / I 74.+460.JJJ
ISO * -------------- - --------------------------------------------- — -------------------------------- — a 97.15 PtkCENT
120. * 86.19 * 2V. OB * .220 * .
PAHTICULATE LUA01N& -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN • 15.43 / VMSTO
CS = 0.001 * S4.0 • 15.43 / 114.760 = .0073 GK/USCF
PARTICULATE LUS/HH -- EPA METHOD 5
PMH = C!> * uSbTU / 115.43 * 4bl.b)
PMH = .0073 * 7029492B. / (lb.43 * 453. b) = 72.
-------
KULLt DATA
PLANT
SAMPLING LOCAIION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(OEC.F)
BAR. PRESS. (IN. HO
STATIC PHtS5.dN.M20)
FILTER NUMBERIS)
STACK INSIDE DIM. UN)
PITuT TUBE COEFF.
THERM. NO.
LEAKAGE
ME TEH CALIB. FACTOR
MUNGU PO*EK PLEASANTS
UNIT i
CLARKE
55.
at.lt
-1.50
240.00 .00
.8*4
125
.008 CFH « 13.5 IN.HG
.988
UAlt 11/30/82
KUIV NUMBER 5DM5B
PHOUE LENGTH ft TYPE 6' GLASS
MJZZtt 2-12: 1.0, ,220
ASSUMED MOISTURE 12.0
SAMPLE box NUMBER
PETEN BOX NUMBER FB5
METER HEAO D1FF. 1.95
C FACTOR 2.14
PHUBE HEATER SETTING 320.
HEATER BOX SETTING 320.
REFERENCE PRESS. UIFF. .00
READ * RECORD DATA EVtNY 10.0 MINUTES
THAVEMSE SAMPLE
POINT TIME
NO. (MIN.J
CLOCK
TIME
(24-MR
r* nrw i
GAS MtUR VELOCITY UR1F1CE PRESSURE STACK
HEADING HEAD DIFFERENTIAL TEMP
(CU.FT.) (IN.H2U) UN.H20) (DEG.F)
UESIREU
IN1T 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
40.0
100.0
110.0
120.0
1638
1648
1658
1708
1718
1728
1738
1748
1758
1808
1818
1828
1838
320.033
329.500 2.000
338.315
351.273
359.525
369.998
379.000
387.915
398.750
408.880 <
418.450
428,700
440.182
.900
.900
.900
.900
.900
.900
.900
.000
.900
.900
.900
3.60
3.40
3.45
3.46
3.48
3.50
3.50
3.50
3.70
3.50
3.50
3.50
ACTUAL
3.60
3.40
3.50
3.50
3.50
3.50
3.50
3.50
3.70
3.50
3.50
3.50
OKY GAS MEIER PUMP SAMPLE
TEMP VACUUM BOX TEMP
(DEG.F) (IN.HG) (DEG.FJ
IMP1NGER
TEMP
(OEG.F)
ULET OUTLET
168.
170.
169.
169.
169.
168.
169.
167.
169.
169.
167.
170.
70.
71.
79.
83.
86.
87.
88.
88.
88.
88.
87.
87.
70.
68.
68.
70.
70.
72.
72.
73.
74.
74.
74.
74.
6.0
9,0
s.o
9.0
9.0
10.0
10.5
12.0
13.0
13.5
13,0
13.5
323.
329,
344.
335.
313.
314.
317.
321.
324.
317.
314.
319.
50.
40,
74.
7*.
58.
50.
SO.
48.
40.
42.
42.
44.
TOTALS
AVERAGE
120.0
120,149
3.51
3.52
169.
84.
72.
10.8
323.
52.
-------
PARTICIPATE FIELD DATA & HE&ULTS
PLANT- NAME AND AUUHESS TEST TEAK LtAOtK
HON60 POWER PLEASANTS CLARKE
TEST 50M5B
UNIT
TEST DATE
TB
TF
TT
NP
Y
UN
CP
PM
%
TM
VMSTO
VLC
VKC
UNO
FMU
pcu2
P02
PCo
PNc!
MO
MhS
ENGLISH UNITS METKIC UMTS
11/30/62 11/30/62
TIME-STAKT l6Jtt 1636
TIME-FINISH IU3B IS 3d
NET IIME OF TEST, MIN. 110. 0 120.0
NET SAMPLING POINTS 12 12
METER CALIBRATION FACTUH ,9«6 .988
SAMPLING NUZZLE DIAMETER .£20 IN 5.6 KM
PITOT TU<»E COEFFICIENT .«« .01
AVERAGE ORIFICE PRESSURE 3. 52 1N-H20 09.3 PM-H
URUP
VOLUME OF DRY GAS SAMPLED 120.119 CU-FT 3.402 CU-M
AT MtTEH CUNUITIUNS
AVERAGE GAS METER TEMP 77.5 F 25.3 C
VOLUME OF DRY (.AS SAMPLED 114.763 SCF 3.250 SC*
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN 322. 0 322.0
IMPINGERS AMD SILICA G£L«*L.
VOLUME OF MATER VAPOH lb.157 SCF .429 3CK
AT STANDARD CONDITIONS*
PEHCENT MUlSTUKt BY VOLUME 11. b7 11.67
MOLE FHACT10N DRY GAb .663 .U03
PERCENT LU2 BY VUL.. DKY 11.90 11.90
PERCENT D2 BY VUL., uKY b.ttO o.ttO
PEKCENT CU BY VOL.i DRY .00 .00
HEKCtNT N2 BY VUL., OHf 81.30 U1.3U
MULECULAK nT-DKY STACK GAb 30.10 30.10
MOLECUL*K r.T-SIACK GAS 2B./6 2d.7o
-------
PB BAHUMETHIC PRESSURE
PS1 STATIC PKES UF STACK GAS
PS STACK PRES, ABS.
T3 AVERAGE STACK ItMP
V8 AV6 STACK GAS VELOCITY
AS STACK AREA
USSTU STACK FLOW RATE* OHY*
US ACTUAL STACK FLU* KATE
ISO PERCENT ISUKlNfcUC
Mfc FILTERABLE PART
H6. tPA "3
CS FILTERABLE PART
PPM FILTERABLE. PART
EMISSION RATE
MN SULFUR DIOXIDE
MG. EPA 5
cs SULFUR DIOXIDE
PKH SULFUR DIOXIDE
EMISSION RATE
MN SULFUHK ACID
MG. EPA b
CS SULFUR1C ALIU
PHK SULFURIC ACID
EMISSION RATE
c!9.l9
-l.SO
169. F
Bb.d FPS
. SU-1N
ACFH
741. <4i t'M-Mii
-JB.10
7jU.bi> KM-MG
76. C
iJb.i KPS
29.166 SU-M
SCKM
8760506.
40.d 46.2
.0065 GR/DSCF* 14.633
65.067 LB/HK 29
4400.0 4400.0
.5916 GK/OSCF* 1354.069
5941.570 LB/HK 2695.10 KG/HH
KG/HH
74.0
74.0
,0099 GK/USCF* «iS.773 t'b/DSC»'
99.926 LB/HK 45.33 KG/HH
* 68 DEG F. 29.92 IM.HG.
-------
EXAMPLE PAWIICULATE CALLULAlIUNb TtM NU.
UNIT 1
VOLUME uF OHY GAS SAMPLED AT STANUAHU CUNUIIIUNS
VHSIU = (17.647 * VM * T * IPO + PM / 13. b)) / (IM * 460.)
17,647 * 1*0.149 * .988 * ( ^9.19 » 5.517 / 13.6)
VKSTD * .-._.--.---- — ....... --------- ... ------ .. ---- ........ = 114.764 OSCF
( 78. * 160.)
VOLUME UF NATEH VAPUH AT STANDARD CONDITIONS
VwC = .04707 * VLC
VMC = .04707 * 32Z. = Ib.lb SCF
PtHCtNT MUISTUHt IN STACK bAS
BNO « (100. * VMC) / IVMSTD »
^ 100. * 15.16
I UnU « — — -- ---- — -- --- .-.---.- s 11.67 PERCENT
M 1 14.763 * 15.16
o
o
MULE FRACTION UF DRY STACK UAb
FMO * (100. - BNU) / 100.
100. - 11.7
FHU = --- ----------- - — — — • s ,B83
100.
AVEMAGE HULtCULAH MblbHt UF OHY STACK GAS
Ml) = (PLO8
MU = (11.90*44/100) * ( 6.0*3cV100) + ((81.3* .0) * <>8/lOO = 30. IS
MULbCULAR WtlbHT UF STACK GAS
MMS = MO « (1. - (HnO/luo)) + 10. * (Hwu/lOU)
M»S = 30.10* (1. -11 1 .b7/luO) ) + 1U. * (11.67/100) =
-------
STACK GAS VtLOClTY AT STACK CONDITIONS
DtLP = SUM. OF THt 5QHHVH • US * 4bO.J)
VS s 05.49 • CP * DtLP / ISURTlMaS * PS) * PMb)
Vb : a5.49 * .04 * 41b.52b / ISUHH 2a.7b * 29.00) * 12. = bb.20 FPS
STACK GAS VOLUMETRIC fLON AT STACK CONDITIONS
Ob s VS * AS » 3600/144
QS = Bb.20 * 45c!39. 3bOO/144 = 974fi5ba4. ACKH
31ACK GAS VULUMtlHIC FLU* Al bTANUAHD
05STD s 17.647 • US • PS • II. - iBnO/100)) / (TS * 4bO.)
17.b47 * 974aBb
-------
FIELO DATA
I
M
O
PLANT MUNO PUWEH-PLEASAMS
SAMPLING LOCATION UNIT 1
SAMPLE TYPE M5b
OPEKATON UO
AMBIENT TEMP. (OEG.F) 55.
BAR. PRESS. (IN. HC) 29.10
STATIC PRESS. (IN. H20J -1.50
FILTER NOMUtRlS) 0002696
STACK INSIDE DIM. UN) 240.00 .00
PITUT TUBE COtFF. ,6<»
THEKM. NO.
LEAKAGE .002 CFM •! 6.0 IN.HG
METER CALIB. FACTOR 1.037
READ t HECOHO DATA EVERY 10.0 MINUTES
THAVEKSE SAMPLE CLOCK GAS MtTtH VELOCHY UR1FICE PHtSSOKt STACK
POINT TIME TIME HEADING HEAO DIFFERENTIAL TE*P
NO. (MlN.) (24-HR (CU.FT.) (1N.H2U) (1N.H20) (OEG.F)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
60.0
90.0
100. 0
110.0
140.0
VV.UVHJ
941
0
0
0
0
0
0
0
0
0
0
0
1141
DESIrtED
759.746
769.060
777.910
766. 900
795.660
804.660
013.660
622.770
632.060
641.550
6b0.860
660.190
669.461
.900
.700
.700
.600
.700
.700
.700
.800
.900
.800
,600
.600
3.37
3.02
3.03
2.66
3.05
3.07
3.09
3.27
3.43
3.27
3.28
3.26
ACTUAL
3.37
3.02
3.03
if. 88
3.05
3.07
3.09
3.27
3.43
3.27
3,28
3.26
OATt 12/01/82
HUN NUPbEH 6AM5B
PHOUt LENGTH ft TYPE 6' GLASS
NUllLE 2-03 : 1.0. .219
ASSUMED MOISTURE 12.0
SAMPLE box NUMBER
CETEK BOX NUMBER F04
MtTER MEAO OIFF. 1.87
PHOdE HEATER SETTING 320,
HEATEH BOX SETTING 320.
OKY GAS KEIEH PUCP SAMPLE IMPINGER
TEMP VACUUM BOX TEMP TEMP
(OEG.F) (IN.HG) (OEG.F) (OEG.F)
INLET OUTLET
156.
159.
161.
160.
163.
160.
159.
160.
164.
162.
160.
164.
57.
60.
66.
/U.
72.
73.
74.
74.
75.
76.
76.
76.
56.
56.
57.
59.
60.
62.
63.
64.
65.
65.
66.
66.
5.3
5.5
5.4
5.0
5.2
5.2
5.2
5.6
5.6
5.7
5,6
5.7
321.
337.
325.
335.
339.
330.
320.
332,
339.
335.
323,
331.
42.
40,
59.
59.
57.
58.
57.
54,
52.
52.
SI,
so.
TOTALS
AVEHAbE
109.713
3.17
3.17
161,
71,
61,
5.5 331.
53.
-------
PAHTICULAIE FIELD DATA 6 RESULTS TAbULAIIUN
PLANT- NAMt AND ADDRESS JEST TEAM LEADEN
MONO POWER-PLEASANT3 oo
TEST bAHSb
UNIT 1
TEST DATE
TB
TF
TT
NP
V
UK
CP
> PM
1
O yp
U)
TM
VMSTU
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING N02ZLE DlAMtTER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CUNDITIUNS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
ENGLISH UNITS
12/01/a2
941
1141
120.0
12
1.037
.219 IK
.04
3.17 1K-H.JO
109.713 CO-FT
66.2 F
112.234 SCF
METRIC UNITS
12/01/B2
941
1141
120.0
12
1.037
i.6
.04
00.5
3.107
19.0
3.170
CM
"""•
CO-M
C
sec
VLC
VftC
UNO
FPD
PCU2
POd
PCU
PNd
MD
AT STANDARD CONDITIONS*
TOTAL H£0 COLLECTED IN
IMPINGERS AND SILICA GEL, ML,
VOLOME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT LOd BY VOL., DHY
PEHCLNT 02 BY VOL., DRY
PERCENT CO HY VOL.» URY
PERCENT Nt? BY VUL., URY
MOLECULAR rtT-DHY SIA(,I\ (,AS
MOLECULAH nT-SIAUK bAS
339.4
SCF
339.4
.452
Id. 46
.675
Id. 67
5.t>0
.00
ttl.bJ
Ju.td
26.75
12.46
.»75
U.B7
5.60
.00
01.53
.10. c! a
2B.75
-------
PB
PSI
P3
TS
vs
AS
USSTO
as
ISO
MK
cs
PPR
Mh
PMH
MK
CS
BAROMETRIC PKESSURE
STATIC PRES OF SIACK bAS
STACK PRES, ABS.
AVERAGE STACK TEMP
AVb STACK bAS VELOCITY
STACK AREA
STACK FLU" HATti DRY*
ACTUAL STACK FLOn HATE
PEKCENI ISUKlNETiC
FILTERABLE PART
MG. EPA b
FILTERABLE PARI
FILTERABLE PART
EMISSION HATE
SULFUR DIOXIDE
HC. EPA -3
SULFUR DIOXIDE
SULFUR UlUxIuk
EMISSION RATE
SULFURIC ACID
MG. EPA i
SULFUKIC ACIU
SULFOHIC ACIU
EMISSION RATE
29.18 IN-Hb
-l.bO 1N-H20
29.07 1N-HG
Ibl. F
ttti.U FPS
45239. SU-IK
6711795^. SCFH
ACFH
100.4
33.6
.U046 GK/USCF*
44.^90 LB/HR
3950.U
741.17 *M-HG
-30.10 CM-h^O
73B.37 *M-HG
72. C
25.0 fPS
29, lab SU-M
1900579. aCt-M
2627517. ACPH
100.4
33.6
10.573
20.09 KG/HR
3950.0
.5430 GR/USCF* 1242.992 KG/DSC"
5207.62
-------
EXAMPLE PAHTlLULAle CALCULATIONS TEST NU.
UNIT t
VOLUMt OF OHY GAS SAMPLED AT STANUANO CUNUIIlUNS
VMSTD a (17.647 » VM * T * (PB » PM / 13.b)J / CTM t 4bO.)
17.647 « 109,711 * 1.037 • I <>9.1b * J.16B / l3.b)
VMSIO = ----------------------------------------------------- = H«!.
I 100. * lb.98
BwO » — — .-.-. ----- - ------- .. — s 12. 4b PEKCENT
MULE FRACIIUN UF UHr 5TACK bAS
FMO = (100. - bwOj / lOu.
100. - li.S
FMO = ---------------------- - c .875
100.
AVEHAUE MULECULAH MtlbHT UF OKY STACK bAS
MO = IPCUi * .44) t (PUd * ,3i) * (PN«J + PCU) • ,<2B
UO) » ((dl.b* .0) • 2t»/100 = 30.
MULECULAR IfitlbHT uF S1ALK GAS
Mlr»S = MU * 11. - COnU/lOOJ) » lb. * (BWU/lOU)
(1. -I I<;.4b/lu0) ) * Id. * (12.40/100)
-------
SIACK GAS VLLOCITY AT STACK CONDITIONS
DtLP = SUM. OF THt SGKTIVH * (Ts * <4bO.))
VS * ttb.49 « CP • OtLP / ISUHI(MWS * PS) * PMS)
VS = 05.49 * .04 * 39t>.3b2 I (bGJRH 20.75 * 29. 07) * 12. = 02.04 FPS
STACK GAS VOLOMtTKIC FtON AT STACK CONDITIONS
Ob = VS * A3 * JbUO/l. SCFH
I Ibl. » 4t>0.)
>
ji, PS.HCENT ISOKINETIC
o
CT. ibO - (JOb.b8«(TS»460.))<»l(U.002bb9*VLC)*(VH«Y*lPb+(P«/l J.b) ) / ( TM«>4bO . ) ) ) / ( T T • VS*PS*ON*OK )
(30S.Sa*l lbl.*4bO.))*( (0.002bb9* 339. )t{ 109 . 7 1 3* 1 .037* C 29.1ttt( 3. Ib0/ I 3.b) ) / ( bb.+460.)))
ISO s ------------------------------------------------------------------------------------- -- ---- ...... * 100.42 PERCENT
120. • 82.04 * 29.07 * .219 * .219
PAHTICULATE LOADING — tPA METHOD 5 (AT STANOAHO CONDITIONS)
CS = 0.001 * MN « 15.43 / VMSTD
Cb = 0.001 • 33. b * IS. 43 / 112.234 = .004b bK/UbCF
PARTICULAR LbS/Hh — EPA MtTriOU 5
PMK = Cb * JSSTU / lib. 43 * 4bJ.b)
PMR x .UOOb * b71179Sc!. / (15.43 * 453. b) = 44.29U
-------
FIELD UAIA
PLANT MONO PUHER-PLEASAMS
SAMPLING LOLAIIUN UNIT t
SAMPLE TYPE M5b
OPERATOR UO
AMBIENT TtMP.lDE6.FJ 55.
BAR. PRESS. UN. HG) it. 10
S1ATIC PRE3i.CJN.H20) -1.50
FILTER NUMdtR(S) 0002699
STACK iNSiot uiM.dN) 240.00 .uo
P1TOT TuBt COtFF. .04
THERM. NO.
LEAKAGE .000 CFM «l 0.0 IN.HG
METER CALIB. FACTOR .990
READ 4 RECORD DATA EVERY 10. U MINuTtS
TRAVERSE SAMPLE CLOCK GAS MtTtw VELOCIIY ORIFICE PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NO. (MlN.) 134-HR ICU.FT.) (IN.H2U) (1N.H20) IDEG.FJ
INIT 0
10.0
£0.0
30.0
40.0
50,0
60.0
70.0
00. 0
90.0
100.0
110.0
UO. 0
^* v ****** /
942
0
0
0
0
0
0
0
0
0
0
0
1142
DESIRED
494.232
503.690
512.910
522.140
531.190
540.450
549.740
559.160
560.740
570.540
500.090
597.720
607.315
.900
.700
.700
.600
.700
.700
.700
.aoo
.900
.000
.000
.000
.37
.02
.03
.«8
.05
.07
3.09
3.27
3.43
3.27
3.20
3.26
ACTUAL
3.37
3.02
3.03
2.00
3.05
3.07
3.0<>
3.27
3.43
3.27
3.20
3.26
DATE 12/01/62
RON NUfbtH 6BM5B
PROBE LENGTH ft TYPE b' GLASS
NUllLE 2-01 : 1.0, .220
ASSUMED MOISTURE 12.0
SAKPLE BOX NUMBER
METER BOX NUMBER FB0
KbTEH HEAD D1FF. 1.90
PRObE HEATER SETTING 320,
HEATER BOX SETTING 320.
UhY GAS PETER PUFP SAHPLE IMPINbER
TEMP VACUUM BOX TEMP TEMP
(DEG.F) IIN.HGJ (DEG.FJ (DEC.FJ
^LET OUTLET
150.
159.
161.
160.
163.
160.
159.
160.
164.
162.
160.
164.
51.
57.
61.
66.
60.
70.
71.
72.
73.
73.
/3.
74.
52.
52.
53.
55.
56.
50.
60.
61,
62.
63.
64,
64.
7.1
1,*
6.0
6.4
6.6
6.5
6.6
6.8
7.2
6.9
7.0
7.0
325.
323,
335.
334.
337,
328.
325.
325,
322.
331.
327,
330.
«•».
«5,
59.
50.
50.
60.
59.
5«,
54,
53.
52.
52.
TUTALb
AVERAGE
120.0
113.003
3.17
3.17
161.
60.
50.
6.9 329.
55.
-------
PARTICULAIE FIELD DATA 4 hEbULTS JAbULATIUN
PLANT- NAME AND AUORLSb lEbT TtAH LEADER
MONO PUMCR-PLEASANTS uu
TEST 6BM5b
TEST DATE
UNIT 1
ENGLISH ONUS
METRIC UNITS
1
M
O
00
T8
TF
TT
NP
Y
UN
CP
PH
VH
T*
VHSTU
VLC
VftC
bfco
F*D
PCU2
P0«:
PCo
PN2
MD
MUtS
TIME-START 942
TIME-FINISH 1142
NET TIME UF TEST, MIN. 120.0
NET SAMPLING POINTS 12
METEH CALIURATION FACTOR .990
SAMPLING NUZILE DIAMETER .220 IN
PITOT TUbE COEFFICIENT .04
AVERAGE UR1F1CE PRESSURE 3.17 1N-H20
DROP
VOLUME OF DRY GAS SAMPLED 113.063 CU-FT
AT METER CONDITIONS
AVERAGE GAS METEH TEMP 63.0 F
VOLUME UF DRV bAb SAMPLED 112.005 SCF
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN 350.7
IMPINGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOR Ib.b07 SCF
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME 12.05
MULE FRACTION DRY GAS .072
PERCENT C02 BY VOL., DRY 12.07
PERCENT 02 BY VOL., DRY 5.60
PERCENT CO BY VOL., DRY .00
PERCtNT N2 BY VUL.« ORY 01.53
MOLECULAR wl-OKY STALK bAb 30.20
MOLECULAK rtT-SIACK bAb 20.71
Q « i
1 1 41 ^
120.0
12
.998
5.6 >
-------
60T-V
•B
T
X
r>
ce
o
C0
ee
C
c
ce
ec
•c
01
er
ct
(V
.C
Z
«
X
ce CA ce tf u. ce TI TI TT>cnc«:»>cnceex
cc c cc c »•» .-mn-<-<<<-,-«»
r-r- r 11- m r r xr n-r r- x r x -i >• >• r rr > > x.
jt^^ien^x^\Tic>TiT-*«*eO'HOcrori x n ^ c
•- c c • c ^ c c • c *- m m«rr fi > x * er > » »- i
ccxx xcnxx x co x x xzr- -t c. n n-
>—oo^o«^oo^o**occ^oc cer"xn x"T3X
e > c»-«-»».er-r->r»--> » Z C o ozmrn m co » a » -< en n- o
ofi/>fi xxirx u1 or^ er>«c/>
I « _ _aj.«_ >MXT)T) TIX3IX »O -D
>cc c>cc c»>> >•*• > C«*>CT
^^ *^ fri tr^ ^i ^4 x X X Tf ^ ^^ CP "Tl 1^1
fi rr rr-.^.^.^rrr''^ <«4> •
•^C.* flfn«CCCfi
•-a f- T — c
D C O T > X
xx o n r-
^ »
ev
>
CO
i/>
c
•
c
CE
V.
I
X
c
o
X
-4
C
•a er
n. o
a 9
ff ~J X5
i/i a ir
•j e ru
u» -c — •<> M CE
u. -c r\j a * rv
rv
x
en
x
•v
C
ce
n
IT
LM
Ct
en
x
O
ce
c c
•e o
Qv D
^ X
T X
X C
ce
e* •»*
o
•^i
X
cr.
O
a
e
i
i
en
er
a>
i
x
C
ce
n
\ft
u
c
•
o-
en
x
ru
u.
ru
C
ce
n
•o
»•
o
•
e
ru —
o c
• •
•- a
a ir
a
Tf.
en •»
x er.
T V
X C
ce
n
ru •-
o a
re x
« i*
o -*
-^ ct
i
a
ce
n
— e
a
ce
c
I
z
en
i
x
er
-------
tXAMPLt PARTICIPATE C ALCUL A I IUNS ItbT NU.
UNIT I
VULUMt UF OHY GAS SAHPLED At ijTANUAHO CONDITIONS
VMSID = (17.647 • VM * Y • IP» » PM / 13. b)) / (TH * 460.)
17.047 * 115*065 * .S«Ja * ( as. IB t 3.160 / 15.6)
VMSTO = — -------------- - — - ----------- •-- ---- --• -------- -•-- = ii«J.ooa ustF
I 63. » 4oC.)
VOLUME UF WATER VAPUR AT STANUAHD CONDITIONS
V«C » .04707 * VLL
V«C s .04707 • 351. = 16.51 SCF
PERCENT MOISTURE IN STACK GAS
. BNO f (100. * VMC) / (VMSTO * VnC)
H-> 100. * 10.51
M BMO = = 12.8b PERCENT
0 lli.OOS » 10.bl
MULb FRACTION OF DRY STACK GAS
FMO = (100. - HnOJ / 100.
100. - lc!.0
- — --- -------- — .... ...
100.
AVtHAUE HULtCULAR NLIbH) UF UHY STACK GAS
MO = IPCO£ * .44) » (P0
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OfeLP = bOM. OF THt bOHUVH * ITS + 4bO.))
VS = 05.49 • CP * DtLP / lSuKI(MHb * PS) * HNTS)
VS = BS. 49 * .64 * 39c>.3b39. JbUU/144 = SaobbTU. ACFH
STACK GAS VULUMtTHK FLUn AT 6TANUAHO CONDITIONS
OSS10 » 17.b47 « US • P5 • 11. - (BwO/100)) / (TS » 4bO.)
17.b47 * 9a0bb7U. * Z9.U7 * (1. -
.- — -. — .. — .- — ............. — . —
I Ibl. * 4oO.)
03STD s
bbb7«OSt>. SCFM
PtHCENT I30KINETK
130 =
lPU«(PH/l3.b))/(TM»4bO.)))/lTT*VS*PS*ON*OK)
3M.)t( 113. 083* .99d*( i9.1»+( 3. Ib8/ 13. b) ) / ( b3.»4bl.J)}
— ------------- - ----------- - --- — —
aa.ll * £9. 07 * ,2iO *
. bb PERCENT
PARTICULATE LUAUINU -- EPA METHOD 5 (AT STANDARD CONDITIONS)
Cb = U.OOl • MN • lb,4i / VM3TD
Cb = l/.OOl * 33. « * lb.43 / lia.OUb = .0047 bK/USCF
PARIICULATE LBS/Hk -- tPA MtTHOU b
PMR = Cb » USbTu / lib. 43 * 4ij.bJ
PMK = ,00<47 « bo«7Bu9o. / lib. 43 « 453. 0) = 44.493
-------
« c
r —
x >•
> r
r cr.
c c e c c
c c c- c e
e c e e
c c c c
— — — — — ceeece.c.c
•£u-iv — Qir.euhfv — GLr.fc
occceceecccc'O
•- tr i o. iv —
>-~C -C
rv
IV
O££J--~LT*^ — O ^ C —
•-.o — rv.oarvi/'e rv .£ e .c
o&&^tt~M«i«.~»cr^^gx
eececcc-ccccc
cccccccccccc
ccrceecece—icre
l«Ullsk»k«U.Wl*IV-b«O>t»
ccccccccc ccc
•c-caaaaaa—.-"
~ t»-
e- i
o rr
r
it
— > rr^
c. c cr
• rr, —
I n
— » X T » >• I-
> x o rr x X >
•XT T Z
• > r r —
n x z — rr •-
n- — e z
XV— ^
fr • fn "C p~
cr. ~ x rr c
c »~ ,-. • ^«
— a — 3 c
O I
c :
u
3
— s — C •
• r r" •
•— x c
X
— rr Z
C
rr
(f
C
X
•-— n.
X •
IV ^1
o «-
c i rv n 3 c
ocrvtr— • xa —
£ • •*< c a *
e- c rr —
c c
3
rr
c p-
c
X
£ X
z
e
t
c
i
X
r
3
cr.
> en
r- c
c
c
c
rr
cr
X r
I T *
C
X
C — C!
rr rr >
CD X en
. T.
— rr
z ri c
• ex
3 C T
tr 3
« a
c c cr
c- z
• -t T
T. rr r
— x rr
T
C X
m — -c
tr r- •-
• z z
•n x C
x c
c >
m x — m rr, m c
Z 3C3O C r X
fc> »xczrvz rr
n— c xce-r x
•e rr z .- rv —
» cr. x ccztn 3
rr rr — I C — ••
to — u T axe v
cr, — rr -rrrax —
• — -i • X rr rr . —
r — x c -«
c e- •-. . -c
w u rv rv
»- IP a —
iv • • . r iv
« rv x ^
c — «• 1/1 c
< r a —
V ft
cr rv
-------
n
— M
-4 O
Z ^
3
J X
— M
Z - 3 3
X
Z
•U
r
i
r
z
i
3
X
U
o
3
3
T
O
z
u
•v
•o
3
3
.n
o
Jj
£
f •» -
— 3
•C •*!
3
a
3
r
3
3
M
r
•u
'U
3 3
» »
3
'VJ
y
•
3
a
•
3
•u
3
-O ~
•a -c
3
c
n
u
•a
•g
jj
*
a
-j
in
n
jj Ji
^ 2
3 <
« -Jl
Z Z
X
Z
3
a.
i- O
o
—
z
<
—
1
jj
z
^
—
z
10
^
T
-"
1
jj
Z
-«
—
.
z
^
•—
in
jj
*—
j.
3
jj
Z
_
^
jj
Z
_
_
2
-*
3
1.
J
2
•^
-1
X
Z
^
in
—
jj
Z
£
£
U
«
"*"
2
O
«•<
fc—
<
Z
B
-^
-1
<
(_>
Z
jj
^
jj
X
z
if
uj
z
_
a
jj
_j
•^
^
a
2
^
^
j
X
z
n
_
^
jj
^
««
^
u.
jj
3
jj
a
—
,„
_3
»_
•^
X
jj
*
;n
en
z
X
jj
u
w^
J^
•^
z
J4
<
Z X
jj O
> X
< a
a
jj
J
X
X
<
Jl
<
'-9
^
Z
a
^
3
.1
Z
3
J
3
>
^
a
•*
H-
M«
a
z
3
z
VU
UJ
X
»»
<
X
z
Jj
z
Jj
^
Jj
z
en
^
j
JJ
<
z
JJ
<
a
jj
«j
X
z
<
•jy
<
J
^
Z
a
,j_
a
i
3
-I
>
^
^
3
^.
h^
a
2
3
3
Z
a
2
_
'•fi
_
<
z
H*
a
jj
u
_t
3
3
M
r
j
^
M.
3
«
J
j
<
^
_j
IH(
en
a
^
<
^5
Z
2
^
X
s
z
3
1.
>
^£
^
M.
^
5
a.
O
•hi
3
3
•>
r>
z
3
^
•^
3
z
^
j
j
Z
4
3
_
yj
_
<
5
3
J
3
>
C
^j
Z
o
M
/}
-^
3
Z
-
jj
j
Z
u
X
y5
<
"™*
>.
jt
.•^
^
^
.^
..
j
^
je
jj
^j
3
r
>•
a
«
_j
3
>
>.
-2
M
3
j
—
jj
J
Z
jj
X
z
a
.
_j
3
^
^
a
M
3
—
jj
J
Z
JJ
X
r
a
,
_j
0
:>
^
0
3
;J
—
JJ
•_j
Z
jj
X
r
ji
.
^
3
^
^
0
V
—
-U
J
z
Jj
X
4
J5
^
j
<
n
^«
z
a
1
_
<
z
•9
-J
•_>
JJ
_j
3
X
/,
<
J
,,
-J
<
^~
iO
1
-*
2
Z
<
^
j
ij
-J
O
£.
X X
"VJ
a o
I ->
U. X
-u
3
X
•u
V
X
tn
£
£
-------
x n
Z en
x
X
i
X
-D
X
n
fa
z ~
7 CR
C
o
V.
V
X
cr
T
^
IX
^
•
_
rr
C
r
c
r
^
r
>
r-.
c
c
r
T
c
te~
r
>
c-
c-
^
z r
« c
2
IT _
X r-.
>
^
tr o
c
P-
Z ^r*
•- C
tr i
if
** C
C —
2 C
»
> =
— rr
r"
en
^
r
c
x
c
**
c
x
c
rr
cr
£•
z r
• c
TT
f»l
X C
> •-
C
LT X
c
m
V
rr. cr
— X
cr
cr.
»-
C
2
>
_
IT
2 f
cn z en
cr f u
X • X
IT
X
>
tr
t
x
r
fT
r
^
•H
cr
C
_
2
rr.
—
•-*
<~,
>
C
>
r-
Cr.
^
^
r.
•n
r-
C
Z
x
cr
r
7
T.
r-
C
>
«,
m
*
c
31
Cft
r
7
»
X
r"
»
>
Cr>
•V
^.
r.
?c
C"
cn
c;
*r
r-
c
o
>
X
^
c
rr
tr
•*rf
p- j
M
IT
I
X
Cr
r
yt
X
X
rr
tr
•
>
3
cr
•
cr.
*-
r-
T.
^
IT
cr
C
T
cr.
—i
>
n
a
x
c
r
n
Mq
X
*_
n
x
IT
cr.
cr
^
z
r-
£ C
— C
e c
T
X
X
>>
C
O
LT
I-
O
3
X
•f,
C
C
•c o
rv a
tr a *
^ u tr
•- c a £ b> a o
a c a. c f rv —
rv i
.c —
c
cr
cr
n n
X X
2 I
Or
a
i
z
a a —
-« c ~
X
cr
Z 3
Z Z
I I
a a
r n.
e
X
I
x
-------
tXAMPLt PAKlKULAft CALUULA I lUNb Itbl Nll.bLMiblH
UHll 1
VULUMt Of UHT bAb bAMPLtU A I SlANUAHU
VMblO = (17.647 * VM • Y * (HU » PM / I 5 . b J ) / (IM *
* lia.671 • 1. UUb * I dV.lh » S.dll / 13. b)
VMblU = ----------------------------------------------------- = HO.ttci?
( 7). t IbU.j
VOLUMt U»- MAlLH VAHUW AI 31AKOAKU C
Vnl = .04/07 * VLC
s .U47U7 * ifai. = J7.05 5Lh
HtKLtiJl MUlblUHt in blACK itAb
BhU = IIUO. * VWC) / (VMSIU t VWL)
1CU. • 17.05
BMU = -------------------------- = 13.3ii PtkttNl
Uo.0
-------
SIALU l»Ab VtUILiTr Al bTACK
UtLP = SUM. l^ IHt SUHI(VH * (13 t 4t>U.)j
VS a db.«»9 * CP * UtLP / ISUKflMrtS * Pb) » HNIb)
VS = ttS.t49 • ,tt« »
SIACK UAJj VULUMtlMIC KLUN AT STACK C
US = VS * Ab » 5bUU/lM<4
US = Oc!.19
. ALl-h
bAS VOLUrttlrtlL HUrt Al S I AUUAKU tUNUJIlUnb
uSSIu = I7.b«7 * US * PS * (1. - (onvu/lUO)J / US »
l/.b<*7 • 9^•^'J'*^IBtt. * ^9.07 * 11. - U .!..)£/ 1 00 J )
--------------------- - ----------- - ------- -------
( 161. * -JbU.J
USilU =
. 5OH
CTi
PtMCtNl ISUKlNtTIC
ISO =
ISO
J/lT I
3.21 7/ 1 3.b J
71. +460.)))
= 9V. 96 PtHCfcNT
PAKllCULAIt LUAUlUb -- kPA MtTMUU b lAl blANUAKU CUNUlllUNS)
CS = O.OUt * MN * Ib.aj / VHSTU
tS = u.UUl » \0."3 * Jb.li / ll
PAKllCULATt Lb3/hW — fcPA Mt I MUU
P»-lK =
.Ul/tib »
-------
^ ItLU UA1 A
>
I
PLAN) MUfJbU KU.ItK ^LtAbANIb
bAMPLllMb LUCAIIUN null 1
bAMPLt lYPt Mauw
UPtKAlUH CLAnKt
AMbitNl ItMP. IDtb.F) bb.
ttAK.PKtbb. (IN.hb) 29.10
blAUC PKtbb. (1N.H2U) -l.bO
MLltM MUMOtKlS) 000«i70b
blACK INblUt UlM.(lN) d40.00 .00
PlIOI lUOt LtitFF. .04
IMtHM. HU. 201
LtAKAbt .002 CfM ol 0.0 IN. Mb
MtltK CALlb. I-ACIUK ,98a
KtAO ft KtLUKU OAlA tVtKY 10.0 MINUltb
IKAVtHbt bAMPLt LLUL* bAb MtltK VtLUL 1 I Y UKlMLt PKEbbUKt b 1 AUK
PUlml llMt llMc KtAUlftb MtAU 1) IF F t Kt W 1 1 AL ItMP
NO. (MlN.) (u) tUtb.FJ
INI 1 0
10. 0
2o. o
30.0
40.0
50.0
60.0
70.0
bo.o
9o.O
loo.o
1 lu.o
120.0
UlALb 120.0
u Luun i
940
950
1000
lulU
1020
0 id
040
050
100
110
120
1 3u
140
UtblKtU
443. bb/
445. 725
4b3. l«Jb
473. bib
4H3.400
•49«;.4£;9
bOo.70o
510.47^
bcfo./lO
53c!.bOO
^ 1 ti • 0 0 U
3^ 1 * U 1 U
5bl.U44
.900
. /OO
. /OO
.OOO
. /OO
.7oo
.700
.000
.900
.000
.OOO
.000
118.107
3.40
3.07
3.00
«!.90
3.10
3.<;o
3.M5bW
PKUbt LtUblH & TYPt b' bLASb
>^U//Lt d-\il- l.U. .2<:1
ASbUMtU MUlblUKE ld.0
bAMPLE HUX NUMbtK
MtltK BUX NUMtitK FU5
' ht ItK HtAU U1FF . 1.95
L FALIUK 2.14
PKUbt rttATtH StlllNb 3^0.
iltAItK HUX btl 1 INb 320.
KEFEKENCt PNtSS. 01FF. .00
UKY bAS MtltK PUMP SAMPLt IMPlNbEK
ItMP VACUUM bUX ItMP TtMP
IDtb.F) UN. lib) (UEb.H (Utb.l-)
INLtl UUlLtT
150.
159.
161.
IbO.
Ib3.
IbO.
159.
IbO.
164.
Ib2.
IbO.
164.
bO.
bb.
72.
HO.
»2.
07.
bb.
HO.
90.
90.
90.
90.
bO.
bO.
bO.
63.
bb.
b/.
b9.
72.
72.
74.
74.
74.
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.5
H.O
7.5
7.5
a.o
317.
315.
316.
319.
315.
312.
319.
315.
312.
321.
319.
315.
44.
40.
40.
45.
4tt.
40.
4B.
50.
52.
50.
4b.
44.
AVtKAbt
3.
-------
PAHllCULAlt MtLU UAU K HtbULlS UbULAIlUix
PLANI- NAMb ANU AUUKtbS Itbl It. AM LtAUtK
MONtiU Puhtrt PLtAbANIS CLANKt
It SI
UNI T 1
1
M
00
TtSI UAIt
ib
TF
TI
NP
1
ON
CP
PM
VM
IM
VnblO
tNbL IbM UNI 1 b
Id/u./ad
llMt-blAKf S«U
UMt-FlNlSH ll<40
NtT 11 Mt UF Itbl, KIN. IdU.U
Ntl SAMPLlNb PUlNlb Id
MtltK CALidHATlUN f At 1 UK .Sab
SAMPLlNb NU/ZLt UlAMtltK .ddl IN
P1IUT TUbt LUEFF1L1ENI ,d«»
AVLKAbE UKlFlCt PHtSSUHt i.db iN-hdU
VULUMt UF UK* bAS SAMPLEU 1IB.IO/ LU-(- I
Al MtltK CUNDIIlUNb
AVtHAbt bAS MtltK ItMP M.tt F
VULUMt UF UKY bAS bAMPLtU lM.3bh b'CF
MtlKlt Ul
Id/01,
S<40
1 14U
IdU.U
I*
.sao
b.b
.««
Bd.O
,.«,
di.O
i.dlu
ms
/bd
MM
MM-HdU
»-
C
bCM
VLC
VwC
BMU
FMU
PLOc!
Pcu
PNd
MU
Mirtb
A I SIANUAKO
IUTAL HdU CULLtCItU IN
5IL1CA bEL,ML.
VULUMt UF ftAltW VAPUH
Al SIANUAKU LUIMU1 I 10MS«
PtUCtHT MUlblUKt rtT VULUMt
MULt FKALIlUN ilXt (.AS
PtKCtuI tUd bf VOL., OR*
HtKCtnl Ud by VOL., UKY
etKCtiMi Co b» vui.f uny
HtKLti^l Ut; Dy VOL., UKV
HuLtCliLAK rtl-IJWr
,iui_tCULAh Al-hlAO
SLF
ibU.O
bCM
M.Ud
.rt/U
Id.d/
b.bU
. UU
ol .bi
30. do
do .utt
13. Od
.t)7u
ld.0/
b.ou
.UU
B 1 . 'j 3
io. dd
do . oo
-------
6TT-Y
x- n
x cr
X
X
x
x
n
if
x
X
X
Z V.
c
— -o
en cr.
X
cr
x
a
a
o
c
(T
r
Cn
C
H- C
o- i
or •-
n
x —
> c
er.
C
r-
T.
C
z
n
i-
c
CO
C
X
n
i»
c
cr.
c
*- c
(r X
cr.
— C
C •-
2 C
cr
c
f
tr.
c
x r-
i C «-
C
X
•Z 2
7 3
m en cr
X cr cr
i- -0 T
cr
cr
2 X > If
S r» (-! —
X en z — >
c er o co
• x n- > ?t
2 r-
n- — T
x cr i-
> — — C
cr > s
tr C r.
:« * z
CD
»
O
C"
en
z
>
sr
X
-c
— c
•- X
r rr
T a
n- r
u
C Z
T. rr
cr.
tr cc
— C
C
»
er.
o-
•
j.
o
2
Z
o
rv
tr
cr
c
z
C
er
tr
w
rv
c-
c
cr
o
c c
c c
•c ••
o
r-
a cr
•s. z
1 X
z c
rv
•c
c
c
— X
>- C »
T
z
rv.
a
x
cr.
>*
c
er
o
X
c
c.
tr
c
rv, «-
o- a
i* ^
e e
•- et a
e — LT
c o c
X
-c
rv,
u
x
x
x
cr.
o
cr
> cr
n n
X X
a i
ct
o
cr
c.
I
— e -.
X
X
cr
X
X
I
I
cr
X X
X X
I I
•s. z
rv.
-------
tXAMPLt PAKIK'ILAlt CALCULAI lUNi 1 1 1> I
I
VDLUHt 01- UKY bAS 5AHPLLD Al SIAuOAKU LUMUl I lUKb
VMilO = 117. 647 • VM * T • (HB * PM / 13. bj) / UH + <4bO.)
17.647 * 110.167 * .SOB * 1 d4.1tt + i.dbtt / 14. b)
VOLUME Ut- MAltH VAHUH Al STAlMDAHU
VrtL = .U<4/U7 * VLC
VMC = .04707 * -Jbl. = lb.9/ iCh
HtKCtM MUlSIUwt Ini bTACK OAb
ttftU = (100. * VftC) / (VHblU t VMC)
L IOU. • lb.97
to
O lli.ibb t lb.47
HULE FKAttlUH UF UKY STACK GAS
FMU = 11UU. - brtUj / 100.
1UU. - 13.0
-------------- = .6/0
100.
114
AVtKAbt MULtLULAM rttibhl (J^ UHV blACK
MU = tt'CU*: * .4«J + (Pui * ,4t!J * (HNti + HLUJ * ,i
MU = lU.b7«4M/UUJ *• I b.6*4
-------
SIACK. bAb VtLOUJlY AT STACK
UtLP = bllM. of Iht bUKllVM * lib » <4bO.JJ
VS = Bb.«lV * LH * OtLP / ISUitllMrtb • Pb) * HNlb)
VS = bb.<«V • . B<4 * J9b.3b / (buKll c^tt.bo « C4.U/) * Id. = ad. 1*4
SlACK bAb VULUMtlhtC FLUM AT SlACK
US : V5 * AS * ibOU/14-4
US = tt^.l<4
bAb VOLUMtTKlC FLOW AT 5IAUUAKU C
* Ub * HS * Cl. "
* dS.O/ • 11. - U
USblO = ---- ---- - --- - -------- .... ----- ... --------- ..... ---- = ob/bMU<4. 6CI-H
( lol . * <4t>0.)
>
M PtKCtNl ISOKiNtTIC
M
M ISO = Iiu5.5o«l ISf4bO. ) ) •((O.OUcfOoS.YLC J t ( VM* T * (Ptt* (HM/ I i .b ) J/l IM + <4bO.J) J/H I « VS«Hb*UN*UN )
Jbl .+4bO.) )*( lo.uoabbl** ibl.J + l Ilb.ltt7* ,Sod*( ^4.10*1 i.cfbtt/ 1 J ,b J
ISO = ------------------------------------------------------------------------------------------------- = 100.13 PtHCENT
uu. * 6^.^t * i *
HAHIlLOLAlt LOAUlNb -- tHA Mt THOU b lAl 5TANUAKU
Cb = U.OUl . MN « Ib.Mj / VMblO
Cb = O.Uut * M.I * ib.4J / 113. ibb = .UOlb
FArtI ICOLAlt Lbb/HK -- tPA MtlHUU b
= Lb * ubblu / I 1 b . "4 3 « <4b.l.b)
= .UOlo * bb/b/iua. / Hb.ai • MbJ.bJ = 1/.UOV
-------
HELO UATA
I
M
K)
PLANT MUNU PUWER-PLEASANTS
SAMPLING LOCATION UNIT 1
SAMPLE TYPE M5B-P400
OPERATOR UU
AMBIENT TEMP. (DEC. F) 55.
BAR. PKESS. (IN.HG) «!9.14
STATIC PRtSb.(IN.H20) -1.50
FILTER NOMBER(S) 000270<>
SIACK INSIDE DIM. (IN) 240.00 .00
P1TUT TUBE COtFF. .84
THERM. NO.
LEAKAGE .OOb CFM a) 7.0 IN.HG
METER CAL1B. FACTUR 1.037
READ * RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE C|_OCK GAS METtR VELOCITY uRlFlCE PRESSURE SiTACK
POINT TIME TIME HEADING HEAD DIFFERENTIAL TEPP
NO. (HIN.) (24-HR (CU.FT.) (IN.H2U) (1N.H20) (OEG.F)
DESIRED
IN1T 0
10.0
20.0
30.0
40.0
50.0
bO.O
70.0
80.0
90.0
loo.o
110.0
110. 0
0
0
0
u
0
u
0
u
0
u
0
8b9 bb5
a/eiaoo
888. ISO
897. bOO
9o7.3cfO
91 7.040
9<*b.6c;0
93b.3bO
9«b.llO
9b5.610
9b5.1cJO
974.630
984.300
.700
.800
.800
.900
.900
.900
.800
.900
.800
.800
.800
.900
3.1b
3.34
3.3b
3.5b
3.5b
3.58
3.40
3.59
3.40
3.39
3.39
3.55
ACTUAL
3.16
3.34
3.36
.4.56
3.56
3.58
3.40
3.59
3.40
J.39
3.39
3.55
DATE 12/01/82
HUN NUMBER 7AM5BP
PROBE LENGTH « TYPE 6* GLASS
NU2/LE 2-11 : I.D. .222
ASSUMED MOISTURE 12.0
SAMPLE BOX NUMBER
PETER BOX NUMBER FB4
PETER HEAD D1FF. 1.87
PHUBE HEATER SETTING 400.
HEATER BOX SETTING 32*J.
DHY GAS PETER PUPP SAPPLE IPPINGER
TEMP VACUUM BOX TEMP TEMP
(OEG.F) (IN.HG) (DEG.F) (OEG.F)
IKLtT OUTLET
161.
163.
162.
162.
163.
162.
161.
162.
163.
165.
164.
170.
63.
65.
70.
73.
76.
n.
78.
78.
79.
'9.
79.
79.
63.
63.
63.
63.
65.
66.
67.
66.
68.
69.
69.
70.
5.5
.0
.2
.6
.5
.6
.2
.5
.2
.2
.2
.5
324.
345.
325.
340.
328.
341.
326.
340.
326.
336.
341.
325.
43.
40.
48.
57.
63.
61.
63.
61.
57.
54.
54.
56.
TOTALS
AVEHAGE
120.0
114.635
3.44
3.44
163.
75.
66.
6.3 333.
55.
-------
PAR1ICULATE FItLO DATA & RESULTS TAbULAIlUN
PLANT* NAME AND ADDRESS TEST TEAM LEAUER
MONO PUWtR-PLEASANTS UO
TEST 7AMitfP
TEST DATE
UNIT 1
ENGLISH UNITS
12/01/02
METRIC UNITS
TB
TF
TT
NP
\r
UN
CP
PH
1
M VM
N?
CO
TH
VHSTD
VLL
v*c
Bhu
FCD
PCU2
P02
PCU
PN2
MD
Mh5
• •
TIME-START 1242
TIME-FINISH 1442
NET TIME OF TEST, MIN. 120.0
NET SAMPLING PulftTS 12
METER CALIBRATION FACTuR 1.037
SAMPLING N021LE DIAMETER .222 IN
PITOT TUBE COEFFICIENT ,b4
AVERAGE ORIFICE PRESSURE 3.44 1N-H20
DROP
VOLUME OF URY GAS SAMPLED 114. 635 CU-FT
AT METER CUNUITIUNS
AVERAGE GAS METER TEMP 70.4 F
VOLUME 01- DRY bAS SAMPLED llb.^50 SCF
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN 340.9
IMPlNGERa ANU SILICA GEL, ML.
VOLUME OF MATER VAPOR lb.04b SCF
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME 12.13
MOLE FRACTION DRY bAS .to79
PERCEN1 C02 bY VOL., DRY 12.53
HERCENl U2 bY VOL., DRY b.OO
PERCENT CO BY VOL., URY .00
PERCENT h«! HT VOL., 1>I
-------
>
N)
PB BAHOMtTRlC PwESSUHt
PSl STATIC PRE6 UF SIACK GAS
PS STACK PHtS, ABS.
IS AVtRAGb STACK TEMP
VS AVti STACK GAS VELOCITY
AS STACK AREA
USSTU STACK FLUN RATE. DRY*
US ACTUAL 3TACK FtOw HATE
ISO PERCENT ISOKJNtUC
M* FILTERABLE PART
HG. EPA b
CS FILTERABLE PART
PfH FILTERABLE PAH1
EMISSION HATE
MN SULFUR OIUXIUE
MG. EPA i
CS SULFUR U10XIUE
P»«H SULFUH OIUXIUE
EMISSION HATE
MM SULFURIC ACIU
MG. EPA b
CS SULFUHIC ACID
P»H SULFURIC ACIU
EMISSION RATE
29.1« IN-HG
-i.bfl IN-M«;U
?9.U3 IN-Hb
163. f
6H.il FPS
45
64.93 KG/HH
* bit UEG F(
1N.HG.
-------
to
Ui
EXAMPLE PAHTILULAIE CALCULAI IONS
UNIT t
VULuMt UF UKY GAS SAMPLED AT bTANUAND CONDITIONS
VMS1D = (I7.to47 • VM • t * IPU * PM / 13. to)) / ITM * 160.)
17.047 • 114, b35 • 1.037 * ( £<).14 * 3.440 / 13. o)
VMSTD s ---- — - ------------ - ------------ - ------- .-. — -. ------ = llb.<>50 OSCF
I 70. » 4bO.)
VOLUME UF NATfcR VAPuH AT STANUAKO CONUH10NS
V«C s .U4707 * VLC
VnC > .04707 * 341. = lb.05 SCF
PERCENT MUlbTuRt IN STACK GAb
BMO > (100. * VNC) / (VMSTO »
100. * lb.U5
B*U * -------------------------- = 12.13 PEHCtNT
116.^50 » Ib.uS
MULE FRACTIUN OF DRY STACK
FMD & (ioo. - HMUJ / iou.
100. - ld.1
— — ....... s .679
100.
AVEHAGE MULECULAH MEIbHT UF DHY STACK GAS
MO = IPCOci » .44) + CPU*; * .3c!) * (PNi t PCu) * .«»«
MU = U^.b3*<(4/10U) t ( b.U«3cV100) t ((61. bt .0) * ^d/100
MULtCuLAR rttlbhl OF STACK GAS
MMS = MU " 11. - (BnO/lUUJ) + lo. * (brtU/100)
M«S = 30^^* (1. -I l
-------
STACK GAS VELOCITY AT MACK CuNlMTlUNb
OELP = SUM. OF THt bQKTlVH • ITS * 460.))
VS * «5.<49 « CP • OtLP / ISuKHMKb * H3J * PMS)
V!> s tt5.«9 * .54 * 00/l<»4 = •*«»99 * uSiTu / lib. 43 * 4b3.b)
PMK = .0062 * 6U610160. / (15.43 * 453. b) = b0.3ttl
-------
FltLU DATA
>
H
KJ
PLANT MONO PUKER-PLEASANFS
SAMPLlNb LUCA1IUN UNIT 1
SAMPLt ITPE M5B-P400
OPEHATOH UU
AMBIENT TEMP. (0£G. FJ 55.
BAR. PKESS. (IN.HG) £9.14
STATIC PHtSS.UN.H2Q) -1.50
FILTER NUMBER(S) 0002703
STACK iNSlDt UlM.llN) 240.00 .00
PITUT TUBE tOtFF. ,«<4
THERM. NO.
LEAKAGE .OOB CFH « 9.0 IN.HG
METER CALIb. FACTUH .990
READ • RECOhO DATA EVtHT 10.0 HINUTES
TRAVERSE SAMHLt CLOCK GAS MtTtR VELOCITY URIFlCt PRESSURE SUCK
POINT TIME TIME HEADING HEAD DIFFERENTIAL TEMP
NO. (MlN.) 124-HR (CU.FT.) IIN.H20) (IN.H^U) (UEG.F)
1NIT 0
10.0
20.0
30.0
40.0
bO.O
00. 0
70.0
00. 0
90.0
100. 0
110.0
IdO.O
\* L « If " /
1243
0
0
0
0
u
u
0
0
u
u
u
1443
OESIHEU
607.517
616.850
66
3.^)8
3.40
3.59
3.40
3.39
3.39
3.55
DATE 12/01/62
NUN NUHBER 7UM5BP
PrtUUE LtNbTH ft TYPE 5' GLASS
NU2/LE d-10 : I.D. .221
ASSUMED POISTUKE 12. 0
SAMPLE BOX NUMBER
METER BOX NUMBER FB8
MtTEH HEAD DIFF. 1.90
PHOBE HtAIEH SETTING 400.
HbATEH BOX SETTING 320.
\
UKY GAS ME1EH PUMP SAMPLE IMPINGER
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.HG) (OEG.FJ IOEG.F)
1KLET OUTLET
161.
163.
162.
162.
163.
162.
161.
162.
163.
165.
164.
170.
62.
64.
67.
/O.
72.
?3.
73.
71.
/«.
/5.
75.
75.
61.
61.
61.
61.
63.
63.
64.
65.
66.
66.
67.
67.
7.3
8.2
8.2
8. 6
8.7
8.6
8.5
8.8
8.6
8.5
8.5
0.8
327.
337.
323.
328.
332.
340.
340.
326.
324.
333.
334.
339.
««.
42.
«3.
47.
51.
S2.
55.
38.
60.
60.
57.
Sb.
TuTALS
AVERAGE
120.0
117.890
3.44
3.44
163.
71,
64,
8.5 332.
52.
-------
PARTICULATE FIELD DATA 4 htbULTb lAbULATIUN
PLANT- NAME AND ADDRESS ftST TEAM LEADER
MONO PUWtR-PLEASANTS OU
TEST 7UMS8P
TEST DATE
UNIT 1
ENGLISH UNITS
METRIC UNITS
TB
TF
TT
HP
t
UN
CP
PM
1
M Vt»
to
00
TH
VMSTD
VLC
VhC
»»U
FMU
PC02
P02
PCO
PN«!
MO
M*b
UME-STAHT 1243
TIME-FINISH 1443
NET TIME OF TEST, MIN. 120. 0
NET SAMPLING PUlNTb 12
METER CALIBRATION FACTUR .990
SAMPLING NUZZLE DlAMtTER .«:21 IN
PITOT TUBE COEFFICIENT .04
AVERAGE ORIFICE PRESSURE 3.44 JN-M20
ORUP
VOLUME OF bRY GAb SAMPLED 117. 69U CU-FT
AT METER CuNDlTIONS
AVERAGE GAS METER TEMP 67. i F
VOLUME OF DRY GAS SAMPLED llb.70U 5CF
AT 9IANOARD CONDITIONS*
TOTAL H20 COLLECTED IN 363.1
1MPINGERS AND SILICA GEL, ML.
VOLUME OF nATEK VAPOR 17.091 SCF
AT SIANDAHU LOnUlTlONS*
PERCENT MOISIUKE BY VULUME 12.07
MOLE FRACTION DRY GAS .071
PEHCtNT CU«2 dY VUL., OHY I
-------
K)
UD
PB
PS1
PS
T9
va
AS
U8STD
US
ISO
Hfc
CS
PHR
MM
CS
PHK
MM
CS
bAROMETHIC PHESSUKt
STATIC PKES UF STACK GAS
STACK PHtS, AttS.
AVERAGE STACK TEMP
AVG STACK GAS VELOCITY
STACK AREA
STACK FLU" RATE« OrtY»
ACTUAL STACK FLO* HATE
PERCENT 1SUK1NET1C
FILTERABLE PANT
MG. EPA b
FILTERABLE P*HI
FlLTtRAULE PART
EMISSION RATE
SULFUR DIOXIDE
MG. EPA b
SULFUR OIOXIuE
SULFUR UIOXIUE
EMISSION RATE
3ULFURIC ALIU
Mb. EPA b
SULFUHIC ACIU
ACIU
KATE
IN-Hb
29,03 IK-Ml,
163. F
84.1 FPb
SU-IN
SCFH
9S14440U. ACFH
100.1
3tt.O
.OObl GR/USCF*
4V. 344 LB/HH
4
-------
EXAMPLE PAKJKULATE CALCULAI IUN:> TEST Nu.7BM5bP
UNIT l
VOLUME OF OKY GAS SAMPLED AT bTANUAhU CuNDIHUNb
VMSTD » (I7.b47 * VM * T * (Ptf » PM / 13. b)) / (TM » 4bO.)
17.047 * 117,890 * ,99tt * I 1*9.14 * 3.440 / 13. b)
VMSTO * — . — — .-. — — — - — ---•---• — .. — —— — ----- — — = lib. 700 USCF
( t>7.
UF NATfcR VAPUK Al STANDARD CONUIUUNb
VnC = .04707 * VLC
VMC « .04707 * 3b3. = 17. 09 SCF
PERCENT HUISTUHt IN STACK UA5
•^ BftO • (100. * V«CJ / IVMSTD » VWCJ
H
(.o 100. * 17.09
0 BwO « — — --------- - --- --- --- -- = Id. 87 PEKCtNT
lib. 700 + 17.09
MULE FRACTION OF DRY STACK
FHO s (100. • BwUJ / 100.
100. - lc>.<4
— ............ x ,571
100.
AVEHAUE MULECULAH MEIGHI OF DRY STACK bAS
MU = (PCO
-------
SUCK UAS VtLuClTT AT STACK CUNDIHUNS
DtLP = SUM. UF THE SUHHVH * (TS •» 4toO.))
VS = ttS.49 * CP * DtLP / lSuHT(MWS * PS) * PNTS)
VS = 65.49 * .64 • 405. 550 / CSuRH 26. b7 • 29.03) * 12. = 84.13 FP3
3IACK GAS VULUMtTHIC FLU* AT STACK CONDITIONS
Ui = VS • AS * 3bOO/l44
US = 64.13 * 45<>3<*. 3bUU/144 = 9S1444UO. ACFN
STACK GAS VULUMtTHIC FLU* AT STANDARD CUNDIT iUNS
OSSTU s 17.647 * US * PS * (1. - IBAU/IUO)) / (TS t 4bO.)
17.b47 * 95144400. * 29.03 * (1. - (12.07/tOU)}
OSSTO » .—. — — . — ... --------- .... --- .................... s bai48b7£. 5CFH
I IbJ. * 4bO.)
PERCENT ISOKINETIC
ISO * (30i.bU* (TS»4bO.) J*l(O.OOcibb9«VLC)*CVM*r* (Ptt* lPM/l3.bJ )/(TM»4bO.) ) )/(TT*V3*PS*ON«ON)
(305. 58«( Ib3.«4b0.)j*l(0.002bb9* 3b3.)t( 117.090* .99(1*1 29.|7c!. / (15.43 * 453. b) = 49.344
-------
FIELD UATA
U)
to
PLANT
MUNGU PUMEH PLEAiANTb
SAMPLING LUCA1 1UN
SAMPLE IYPE
OPEHATUK
AMBIENT TtMP.lOEG.FJ
BAN. PRESS. (
1N.HG)
STATIC PNtb5.UN,M20)
FILTER NUMBER(S)
STACK INSIDt UIH.llN)
PITUT TUBE
THEHM. NO.
LEAKAGE
METER CAL1B
COtFF.
. FACTOR
REAO * RECORD DATA tVtKY
TRAVERSE SAMHLt
POINT
NO.
IN1T
TIME
(MIN.)
0
10.0
20.0
30.0
40. 0
SO.O
60.0
70.0
so.o
90.0
100. U
110.0
120.0
UNIT I
M5B
CLARKE
55.
29.14
-1.50
0002704
240.00 .00
.84
201
.003 CFM « 10
1.000
10.0 MINUTES
CLUCK GAS MtTtR VELOCITY
TIME
(24-HR
CLOCK )
1240
1250
1300
1310
I32u
1330
1340
1350
1<400
141U
142u
143u
1440
HEADING HEAD
ICU.
FT.) 11N.H20)
DATE
RUN NUPbEH
PHUBE LENGTH 6 TYPE
NUZZLE 2-09: I.D,
ASSUMED MOISTURE
SAMPLE BOX NUMBER
PETER BOX NUMBER
PETER HEAD D1FF.
C FACTOR
12/01/82
7CM5B
5* GLASS
,220
PHUUE HEATER SETTING
.0 IN.HG
HEATER BOX SETTING
REFERENCE PRESS. DIFF.
UR1F1CE PRESSURE
DIFFERENTIAL
(1N.H20)
STACK
T£l»f»
(UEG.F)
DESIREU ACTUAL
854
Bol
870
600
090
899
910
919
928
937
947
9i8
967
.012
.700 .700
.870 .800
.780 .800
.7«!b .900
.800 .900
.245 .900
.191 .800
.858 .900
.474 .800
.078 .800
.130 .800
.794 .900
.10 3.
.2b 3.
.30 3.
.50 3.
.50 3.
.50 3.
.30 3.
.50 3.
.30 3.
.30 3.
.30 3.
3.50 3.
10
30
30
50
50
50
30
50
30
30
30
50
161.
163.
162.
162.
163.
162.
162.
162.
lt>3.
165.
164.
170.
UMY bAS PETER PUPP
TEMP VACUUM
(OEG.F) UN.HGJ
INLET OUTLET
68. 66. 4.0
72. 64. 7.0
80. 65. 8.0
85. 65. 8.0
87. 67. 8.0
88. 68. a.O
90. 68. 8.0
90. 70. «.5
90. 70. 8.0
91. 71. 8.0
91. 71. 8.0
91. 71. fl.5
12.0
FB3
2.00
2.14
320,
320.
,00
SAPPLE
BOX TEMP
(OEG.
323
316
325
325
331
330
328
317
316
320
322
323
FJ
•
»
•
•
•
•
•
•
•
•
•
»
IMP1NGEH
TEMP
(OEG.F)
40.
38.
40.
42.
«8.
52.
52.
56.
so.
50.
54.
54.
TOTALS.
AvEhAGE
120.0
113.782
3.36
3.37
163.
85.
68.
7.7 323.
48.
-------
cei-v
c
r
m
r:
c
r
»
x
2
I
t
m
X
r>
x
o
X
rr
n
t)
o
rv.
z z
T
i.
I
O
X
ru
a
o
CT
<
c
c
I
O
rr
z
c
IV
X
r>
X
r>-
x-
o
a
i
c
z
c
r»
rr
c
X
c -<
n. *-
c.
a ?
c-
>
e/
-io
r
Cr C
— z
X
c s
»
r- -.
cm
r x
o
c o
r x
z c
x -H
r r
X (VI
ce c
> r:
Z O
c r
r-
c/ r-
>-i n
<
*
t»
-i o
-« z
» fti
C C
X
c c
o
2 e
o >
e
>
r z z -• -«
r? - -• zz
v -> it
z z •- -•
X fl Z »
r ». z
o if ->
c »-
c
z
t/l t!
» p-
> > < O > X cr
< -« C X < — >
m r c rr -« z
x zc xx o x m
> r^ z > -i r x
rr> rr (T> —< z O
X O C F! > X
c TI c a r r
» r> x rr z <-« •-
crcc »• c B z •x
? 3D ^1 O ^ 33 Cl
ZC-< ^.CN-> —
m^« orrr^-^xrri
_, _ C- rr.^nifc-CCr
m — > -n o — -«
xccr. x»-czr«
z x n 1-1 -^
-T1crZ
rn > cr. rr Z > •«
z z cr r n- n s
X X C -< -" -< •
r x r* c
^H fl 33 3D
o
z
in
O!
x -c
e r-
z >
ff! Z
e -.
i
r- z x
rr c -i
> > o
> o c
z c r
-4 X »
«/> rr
cr
r-
D
»
—4
>
rv
o
C *~
(V «
o- -J
o
cr
O
n
c
u. a
ru
o
e
o
— (-
ru •-
v cr
c i
a x
ru —
z a
o ~
n- c
rx.
o
o
a.
a •*
•« o-
ru
IT
a
CA
O
•• a
u
n.
CB n
ru
ru
ru
n
c
i
cr
T
<
e
c
o-
— z
ru ••«
>. r>
e
ru -•
en
-------
I
M
U)
PU BAKUMtlHIC PKESbUHt
PS1 STATIC Prtt;> UF 3IACK bAS
PS STACK PRtS, ABS.
IS AVtRAGt bTACK TEMP
VS AVb STACK OAS VELOCITY
AS STACK ARtA
USSTU STACK FLO* HATti UKY*
U9 ACTOAL STACK Ft 0*1 HATE
ISO PERCENT ISUK1NETIC
M* FlLTERAdLE PAH!
MG. EPA S
C3 FILTERABLE PART
FILTERABLE PART
EMISSION HATt
SOLFUR OIOXIOE
MG. tPA t>
SOLFOR OIOXIOE
SULFUR 010X1UE
EMISSION RATE
MN SULFUR1C ACIO
MG. EPA b
CS SULFUHIC ACIU
PPR SOLFUH1C ACIO
EMISSION RATE
H*
CS
it.Ui IN-Mb
IbJ. F
84.1 FPS
45139. SU-1N
SCFh
ACFh
Sb.5
BO.O
.011^ GH/DSLF*
10&.77U LB/HK
4U7U.O
740. lb CM-MG
-.18.10
737. 3b fM-HG
73. C
lib. 6
193lSb<>.
9b.5
ttO.O
SU-M
Stf'H
ACKM
CG/OSCK
49.34 KG/HK
4070.0
,bb76 GH/OSCF* 1299.b3b Pb/OSCP
Sb33.b9b Lb/HH ciblO.OH KG/hH
b7.3
.0094 GH/USCF*
91.503 LB/MH
b7.3
at.490
41,51 KG/HR
* oB OEG F,
IN.HG.
-------
EXAMPLE PAKTILULAtt CALUILAHUNb TEbT NU.
UNIT 1
VOLUME UF UKV GAS SAMPLED AT bTANUAHO
VM3TO = (17.b47 * VM * T * IPb t PM / 13. b)) / (TM * 460. )
17.647 * |l.).7ti2 « l.OOb * I
100.
AvEHAbE MULtCULAH htlGHI UF OHY STACK GAS
MU = IPCO^ * .44) * (HU«; • ,3«>) + (PHZ •» PCU) * .
-------
SIACK GAS VtLuClTr AT STACK CONDITIONS
DtLP s SUM. (if THt SUKUVH * ITS * <4t>(i.))
VS = 65.49 * CP » OtLP / (SgRKMNS * PS) * HM5)
VS = 65.49 * .64 * 405.577 / IblrfKH 2B.d6 * 29.U3) * 12. = U4.ll FPs
STACK GAS VULUMtTKIC FLU" AT STACK CONDITIONS
OS = VS * A5 * 3bOO/l44
QS = ai.ll * 45239. 3bOO/144 = 95129066. ACFH
STACK GAS VULUMtTKIC FLO* Al bTANDAKD CONDITIONS
QSSTO = 17.647 * US * PS * 11. - (BnO/100)) / (TS + 4bO.)
17.b47 * 95129U6B. • 29.03 * 11. • (I2.7b/100))
OSSTD s —— .-- . —. ..... . — .--. — ---. s b6212060. 5CFM
. + 4bO.)
PtRCENT ISOKINETIC
ISO = (30i.56«(TS^IoO.))* I (0.002bb9*vtC)*lVH*r*tPb»IPK/13.b))/(TM + «bO.)))/(TT*VS*PS*DN*DN)
(305.56M Ib3.»4b0.))*((0.002bb9* 344.)»( 113.762*1.OOb*( 29.14*( 3.367/13.6))/ ( 77.t4bO.)))
ISO s ...... . ...........—......... . — . ..... — ...................................... * 96.49 PERCENT
120. * 04.11 • 29.03 * .220 * .220
PARTICULATE LOADING -- tPA METHOD 5 (AT STANDARD CONDITIONS)
CS = U.001 * MN • 15.43 / VMSTD
CS s 0.001 * 00.0 * 15.43 / 110.bu3 = .0112 GK/oSCF
PAHIICOLATE LbS/HK -- EPA MtTMUU 5
PMN s CS * jSblU / U^.43 * 4b3.bJ
PMK = .0112 * b»2120ttU. / (15.4J * 453.b) s 106.770
-------
FIELD DATA
PLANT MUM.U POKER HLtAbANTi
SAMPLING LOCAIIUN UNIT t
SAMPLE TYPE M5B
OPERATON CLARKE
AMBIENT 1EMH.COEG.F) 55.
BAR. PRESS. UN. HG) 29.14
STATIC PRESS. UN,H20) -1.50
FILTER NUMBERO) 0002705
STALK INSIDE UIM. UN) 240.00 .00
PITUT TUBE COEFF, .84
THERM. NO. 201
LEAKAbE .002 CFM ol 8.0 1N.HG
METER CAL1B. FACTUH .98B
READ * HECDRD DATA EVERY 10.0 MINUTES
TKAVERSE SAMPLE CLUCK GAS METER VELOCITY ORIFICE
POINT TIME
NU. (MIN.J
^ INIT 0
7 10.0
M 20.0
L-J 30.0
--1 40.0
50.0
bO.O
70.0
80.0
90.0
100.0
110.0
120.0
TIME
r t nr K i
LL.UL K j
1240
1250
1300
1310
1320
1330
134u
1350
1400
1410
1420
1430
1440
READING HEAD
(CU.FT.) UN.H20)
562.046
570.925
581.270
591.450
buO.525
bit. 000
622.351
640.700
641.525
b50.620
661 .b
-------
PARHCULATE FIELD DATA «. RESULTS IAHULAIIUN
PLANT- NAMt ANu ADDRtSS IEST UAM LEADtR
MONGO POwEH PLEASANTS CLARKE
IEiT
TEST UATt
UNIT 1
ENGLISH UNITS
METRIC UNITS
Tb
TF
TT
NP
1
UN
CP
PN
1
i f
U) VH
00
TM
VMSTD
VLC
V*C
d*u
FHO
PC02
PU2
PCU
PN,:
MU
Mfci,
TIME-STAKT 1240
TIME-FINISH 1440
NET TIME UF TEST, MIN. 120.0
NET SAMPLING PUlNTb 1 2
METER CALIBRATION FACTOR .900
SAMPLING NUZZLE DIAMETER .220 IK
PITOT TUbE COEFFICIENT .04
AVERAGE ORIFICE PRESSURE 3.40 1N-H2CI
DROP
VOLUME UF DRY GAS SAMPLED 121. 47b CU-FT
AT METER CONDITIONS
AVERAGE GAS METER TEMP 80.3 F
VOLUME UF DRY GAS SAMPLED lib. 201 bCF
AT STANDARD CONDITIONS*
TOTAL H2u COLLbCTEO IN 33D.7
1MPINGERS ANU SILICA GEL»ML.
VDLOfft OF NATEK VAPOR lb.S43 SCF
AT STANDARD CONDITIONS*
PERCENT HU1STUKE bY VOLUME 12. Ib
MOLE FRACTION DRY GAS ,o7o
PERCENT CU<; uY VOL.. ORY 12. t>3
PERCENT 02 bY VUL.» U*Y b.OO
PERCbNI CO BY VUu./ DRY .00
PtWCLNT l»2 BY VOL.. UHY Bl.47
MULEtOLAK rtl-OKY SIACK GAS 30.<;4
MOLECULAM ftT-SIALK GAb «Jt).7b
1240
1440
120.0
\a
.906
S.b fM
,B4
ttb.4 KM-H
3.440 CU-H
2b.V C
3.2b2 SCK
330.7
,4M SCf
12. Ib
.B70
12.53
b.OO
.00
01.47
30.2<4
20. 7b
-------
OJ
VD
HB
PS1
P8
IS
vs
AS
US&Tu
US
ISO
MN
CS
PCH
MN
CS
CS
BAROMETRIC PKESSuRt
STATIC PHES uF STALK GAS
STACK PHtS, AdS.
AVERAGE STACK TEMP
AVfi STACK GAS VELOCITY
STACK AREA
STACK FLUft RATE* DKT«
ACTUAL STACK FLO* MATE
PERCENT I3UK1NEUC
FILTERABLE PART
MG. EPA b
FILTERABLE PART
FILTERABLE PART
EMISSION RATE
SULFUR OIOXIUE
MG. EPA 5
SULFUR OIUXIUE
SULFUR OlOXlbE
EMISSION RATE
SULFUR1C ALIU
MG. EPA b
SULFuRIC ALIU
SULFUR1C ACIU
EMISSIUN RATE
IN-Hb
-I.bO
7«U.lo KH-HG
-ib.lU CM-MiO
29
161
04
45239
b«S90000
9bOOb01b
99
0b
113
.03 IN-Hb
f
.0 FPb
SU-1N
SCFH 19
. ACFH 2b
.9
.3
.Ullb bK/USCF*
.290 LB/HK
737. Jb CM-H
71. C
2b.b FPS
29.100 SU-M
42490. SCMH
9026b. ACKH
99.9
ttb.3
2b.4bfl *G/U:
bl .39 KG/UK
4210.0
.5639 GR/UbCF*
5b2b.o8b LB/HK
70.4
.UlOb bK/USCF*
102.920 LB/HK
4210.0
1290.b07
<^50b.90 KG/HR
70.4
24.03b Kli
4b.b0 KG/HR
« b8 OEG F, 29.92 IN.HG.
-------
EXAMPLE PANllCULATE CALCULATIONS ItST NO. 7U*bB
UNIT 1
VOLUME UF OMV GAS SAMPLED AT STANUAKI) CUNU1T1UNS
VMS1D = (17.647 » VM * t * IPb * PM / 13.6)) / (TM » 460.)
17.617 • |21.«7to * .SBU * ( 29.14 * 3.400 / 13.6)
VHSTO , .. ....... ~
t 60. + 4bO.)
VOLUME UF MATfck VAPUR AT 3TANUAHU CUNOI1IUN&
VnC > .04707 * VLC
VwC » .04707 * J39. = lb.««4 SCF
PEKCENT MUlilUHt IN STACK (,AS
bMO * (100. * V«C) / IVMSTD + VnC)
100. • lb.<<4
B»iO = -------------------------- - 12.10 PEKCtNT
lib. 201 * lb.<<4
MULE FRAC1IUN OF UHY STACK
FHD = (loo. - BrtU) / loo.
100. - 1
-------
SIACK GAS VtLuClTT AT MACK
OEtP = SUM. Ut- THt tUMUVll * Ifi, t 460. J)
Vi = 65.49 * CP * DtLP / (SgKHMWb * PS) * PNTS)
V5 = b5.<(9 * .t>4 * 405.577 / (SURll 2b.7b * 29.03J * 12. = B4.0U
STACK GAS VuLUMtTNlC FLO" AT bTACa, CONDITIONS
OS s VS • A5 * JbUU/144
OS = (14.00 * 45£3S. 3bOU/144 = 95bOb01b. ACFH
SIACK GAS VULUMtTKIC FLUft AT bTANUAKO CUNUIlIUNb
OSSTD = 17.647 « u3 • Pa * (1. - (flrtO/JOO)) / (TS » 4bO.)
17.b47 . 95006016. * 29. 03 * (1. •
— — — — . — - — - — -- — — — — —
I Ib3. » IbO.)
OSSTD =
babSBOOO. SCFH
PfcHCENT ISOKINETIC
150 »
ISO * (30i.5tt« (TSt4bO.) J« l(U.OOVLC)»CVM»Y* (Pb* (PM/ 1 3.b) )/CTM*4bO.) ))/ ( T T * VS*PS*UN*t)N)
1305. 50*( Ibi.t4o0.)j«l(0.00^bb9* 3i9.)t( U1.47b* .9Ua*( £9.14*1 3.400/ 13.6) j /
iao. * 84,oo * a9.o3 *
s 99.94 PERCENT
PAKTICULAIE LOADING -- EPA METHOD 5 (AT STANDARD COuDlllONSJ
CS = 0.001 * MN « 15.43 / VMSTO
Ci, = 0.001 * 86.3 * 15.43 / llS.aol = .0116 GM/USCF
PARIICULATE LbS/HH -- EPA MtTHOU 5
PuR s C5 * USbTu / lib. 43 * 4b3.b)
PMH s .0116 * 66590000. / (15.43 * 453. b) = 113.290
-------
ItHl 0A I A
I
M
K)
PL AIM 1
bAMPLlub LUC AT l(Jl-
bAhPLt ItKt
UPLKAl UK
AMbltM UMP.(l)Lb.t-
bAK.Ptftbb. I iK.Hb)
blAHC PKtbi. ( IN.Ha
ULltK HUMbtK(b)
blAClV lUblUt 01*. II
PlIUl lUbt COtFH.
IhtKH. NU.
LEAKAbt
Mtlth LALlb. FAClOW
KtAO & KtCUKU UATA
iKAVtUbt bAMPLt LLULK
PUlHf HMt HMh
(MO. IM1N.J (d4-hK
L L UC K )
Iwl 1 u Ib4b
1 u.u u
do .0 u
3o .0 u
lu.u 0
bo.u 0
bO.O U
7o.o o
ou .u u
90.0 0
1 uo.o u
1 1 u.u u
lc?0.0 1 B 1 0
HUHu Ku>\th-PLt AbAitl b
UUl 1 1
Mtltl.v
DIJ
) 00 .
dS. 14
0} -l.bO
OUUd / 0 ?
It) c?4U.UU .00
.54
.OOb OM 01 b.O iN.Hb
1.037
tVLKY lu.O MlNUltb
bAb MtlL" VtLULllV UKlt-lLt HHtbbUKt
KLALtlNb HtAU UlFFtKtNllAL
(LU.FI.J H,M.h^U> lllM.M^UJ
DtSlWtl) ALlUAL
964 ^303
993. b7o .10(1 3. Ob 3.Ub
d.44U .boo d.e7 c?.ti/
1 1 .d40 .buy d.t>9 d.t)9
liu.dbo ,/OU 3.09 3.09
d9.44o .«JUO £.91 d.91
3d.7^o .600 3.db i.b .
Ib3.
UA It
KUN NUMdtH
PKtlbt LtHb
I^U/^Lt t!-0
AbbUMtll Ml)
dAMPLt BOX
MtltK bUA
fit. ItM ht AU
PKObt MLAT
ntAltK bOX
l)K» bAb MtltW
ItMP
ILttG.F)
ll.Ltl UUlLtl
bb. bb.
b/. bb.
Id. bb.
7b. bb.
70. b7.
70. bl.
73. b7.
/ / . b / .
79. bB.
(10. b9.
rtO. 70.
01. 71.
Id/
BAM
IM d 1 »Ht b'
3 : l.u. ,i
IblUHh Id.
NOMbtH
HlJMbtK Fb4
01FF . 1 ,tt
tK St I 1 iHb 3dO
bt 1 1 lub 3dO
PUMP bAMPLt
VACUUM bOX ItMP
ll"i.rlt>) (Utb.l- )
4.H 31d.
1.1 318.
1.1 3dl .
4.7 31b.
4.b 3dd.
b.O 3d7.
b.O 3dO.
b.3 3dl.
b.b 3d3.
b.ti 3db.
b.7 3d/.
b.tt 3d4.
Ol/dd
bbM
bLAbb
19
0
7
.
.
IhPiUbtK
TLMP
(Utb.F J
1b.
10.
41 .
Id.
11 .
13.
17.
bl.
bb.
bO.
bb.
b9.
IUIALS
HVtKAbt
Ic^U.O
lll.bttd
Ib3
7b.
bl .
b.l
bO.
-------
PAhllLULAlt f-
PLANI- NAMt ANU AUOhtbb
MUNU POntH-KLt AbA>«lb
OA1A
KtbUlIb
Itbl ItAM
hu
ttbl
Uul I i
Ttbl UAlb
10
Tf
I I
Hf
r
ON
ce
I
j-
>t
to
1H
VMblU
VLC
ti*(J
Frtb
HLU«i
1 iMt-bl AM 1
i\t I lint uF lEbT, Mil'..
iMt I bAMf-Ljhb PUlMb
MtltK CALlttKAIlON hAClUK
SArtHLl^b No^/Lfc UlAMtltK
Hi lui luht LUt^^ icitM
AVtNAbt UKUlCt HhtSSOKk
UhUP
VULUMt Uf UKY GAS bAMPLtU
Al MtltK LUi.lj 1 I lOnb
AVtKAbt bAb MtltH ItMP
vOLUMt UK UKY bAb bAnfLtU
Al blANUANU tUNUI 1 lUHb*
luTAL MdO LULLtLltLi In
iMHINbtNo Al,u biLlLA btL.ML,
VULUN.t Uh /.Altk VAHUk
A I blANUAKU
PtKCtM MulblUKt i) » VULUHt
MuLt ^^h Al-jlALr l.Ab
tNbLlbM UKilTb
ll/bc!
1010
Ic'U.U
l£?
1 .
i.cJJ II'
1 1 1 .bO
-------
•c
i
x
n
v.
Z
7
•C
Z
X —
r v
c c
cr er
•e
cr
X
a
a
a
c
pr
c-
•f
rv
crcr. cr crcr. en 27 r'X»crcr»>crera
cc c cc c >3 sn pi — — «<- — — »
ft r r~ IP- rr r r arr- n-cr en z cr x — >• > f rr > > ^
IT T p-T IT- TFT>xty(fCCrr>c ("•<•> X r — c
.- C C • C •- C C«C—Xt«Xrr>> 7V. »• * •-!
crxxxerxxxcr sr — c <~ rt
Cr — t— rr »— cr r^ cr r^ — T>>fT"T —•
— <-rxr«-ccxc«- x crrxr XXT
c > c«->->—c > •--.cf-xcfr^xi-
Z>> >ZCC cr cr»s> — cr rr r
pi o IT n XXI/M cr CP" e">«ir
X— — ^ T •- — »- Z >7X >T X
»ec c>cc c> — >• cr»>cx
_ _rrrrrr-_ 2""" 3. T- rr
rr, rn rr rrr~rr<.«crcr
— C* rrrr»(/cr
- > r i - c
r. c ex t- T.
XX f P- rr
> -« >— ?
LT
rv
£
C
U"
a
LT
Lo. C
a iv
IT
x
C
cr
a c
•v X
3 'V
X ~
Cr
3
X
C
cr
n
r\
c
c
a
er x
— rv
a
r
3
ct
LT
LT
O
(-
Tt
LT
rv —
o. o a
<£ L> 0.
C
C/
1 X
••• cr
£
n.
-c
c
t*
*
i
IT
1
\J
C
*
1
IV
c
n.
^
"i
c~
-. £
LT —
3
x
I
cr
>.
c
cr
O
I
(V —
£ IV
e -J
•- n.
• •
£ U
C -C
7
(T I
x r
cr
r-
I
rv —
o a
i/ c
•- «- c
rv c u >c
.- i- — o
i
u
o
C
c
3
X
IT
a
LT
I
C,
•v
C
cr.
I
3
(X
O
C/
c
I
I
3-
X
3
2.
I
3
cr
I
3
n.
2
I
3
-------
tXAMPLt HAK I 1LIILA It C ALL UL A 1 1 Uxi> 11 b I
Uivll I
VULUMt U> UM» bAJ> bAMHLtl* AF SIAfvUAliU LuulJillUivo
VM!>IU = ll/.OM/ * VM * Y * IHb + PM / li.bJJ / UM t MbO.J
• Hl.bB « 1.1/4/ * 1 «?V.l« + i.«e4M / 14.b)
VMSlO = — ------ _ _ _ = lld.SM Ubt>
VULUMt Ue MAltK VAHUK A! SUf^UAKU L
VvtL = .(JH/o; * VLC
WWL = ,U4?U7 * 400. = 17.SO SO
MUlilUKt IN b'lAClV bA5
Unu = llUO. * VrtCJ / (VMb'ID * ViVL)
^ 100. • 17.90
!_!_, drtU = ..... = li.bd HtKLtM
^. llt.VIl + 17.40
Ul
MOLL FMACllUN Uf UKY blACK bAb
(-MU = lioo. - bfttlj / loo.
100. - 14.7
t-Mt) =
loo.
AVtWAbt MOLtCULAh fttll.Hl Ul- UK » olAlr
MU = l^LLnf • .14) + IHU^ * ,4./*.!/1UOJ * Itbl.bt ,o> « efH/lOU = JO.cJb
MULhCULAK ftblbhT Ut^ SlACl* bAi)
f-invb = Mu * 11. - lutul/lOOJJ + lo. » (n»d/looj
h.nb = 4u.db* 11. -1 1 4,bh/ 1 uo I 1 + Itt. • 113.00/100)
-------
u
ac
jj
x
3
•4
II
z
•a
3
•
*1
o
o
3-
/I
J1
o
o
0
o
— -. O
• /J \J
y> 3 x
: o —
— T « —
UNU
3 3
J — O
2 3 •
.r £ 3-
« B \J
O —
1
3
3
X
3
3 j.
-I 3
II
•X
4
y>
•c
3
Z
3 —
a
n
•yj
-j
3
J
U
3
ft
a
O •
z s
Jj >
X —
O
5
U
/>
V.
•VJ
3
3
•o
n
T
3-
•
•y
rax
m ft
z y
r
z
«
3-
3
"U
r r
X 3 XI
y) ^ 3
a y) 3
_i n •
3
-J
3
-------
t L U I) A I A
HLANl
bAMHLlNb LOCAIIUN
bAMHLt ITHt
AMrtltM ItMH. lUtb.F )
oAK.PHtbb.I IN.Mb)
bl Al1C PKtbb.(If
MLltK HUMutKlS)
b'TACK irablut Ul<-1.(l
Hllul loot CUthF.
iMtKh. UU.
LtAKAbt
MtltK LALlb. MClUh
KtAi) & KtLUklj UAlA
I KAVtKbt
PUlNl
NO.
llwt
LtOLN
1 iMt
MUM) PUrttK-PLt AbAul b
UN II 1
MiHrt
(JU
6U.
t:^. IM
-1 .bu
ouu«;7uo
c!4U . UU .UU
.04
.OUtt 1>M ai 7.0 IN.hb
lu.u Muultb
bAb MtltK VtLULllY tlKlhlCt PhtbSUKt blALh
htAUliMb MtAU 0 IF I-tKt l« I J AL ItMP
ILU.f-l.) ll^.H^OJ ilN.rlcfU) lUtb.F)
UA It
hllM UOMlttW
ld/U
.U
.0
.u
.0
.0
.u
.u
.u
.0
.0
.b
. u
lb«b
U
U
(1
u
u
U
U
U
U
11
u
Ittlu
734. d ,tb(j
771. 3bU
70U.06U
7Su.HbU
SOU .^7u
o 1 u .dOg
ae!U. 1 3U
o30 .ibu
a3**.bri.J
1 . 7uu
1 .buu
1 . b U U
1 . / UU
1 .bl.U
1 .bUU
1 .buu
1 ,vuu
I .vuu
<: . uou
1 ,VUU
1 .^uu
3.ub 3.ub lb<4.
cf.o7 d.al 163.
ji.t« /* M *^ 1HS
3.0V 3 . UV Ibti .
«i.^l i?.^l lb«;.
3.e:b 3,
-------
PAKHLULAFt HHLO I)A(A tl KLbULIS UttULAlUJft
PLANI- NAMt AKl) AuUHtob Itbl ItAN LLAuch
MONU PUrttK-HLt AJ>AN I b UU
Ul.l I 1
trtbL Ibh UNI Ib
ItSI UAlt Ici/Ul/ltd
ItSI ObM'jbrt
TM
VMS IU
VLC
VML
rtnil
KhD
HLU
MU
MrtS
VULUMt UH UKY bAb bAMHLtU
A I Mt I tH LlMU 1 I lul«b
AVtHAUt bAS MtltK ItMP
VULUMt Uh i)KY bAb bAMHLtU
Al blANUAKLI LUNUi I il)No«
TulAL
LULLtCTtU IH
Aral) SILICA btL,HL,
VULUMt Uh rtAltK VAHUH
Al blAIMUAKU
HLKLtixf MUlbTUHt HY VULUMt
MULt hKALllUlj UhY bAb
l LU£ h» Vol., uKY
! U«i Of VUL., UhY
HtKttl.l Lu t)Y VUL., UHY
r'tKLti«l IMC; DY V(IL., UKY
MULtLULAK Al-lJWY ft I A(,iv OAS
1'iULtLUI.AK ftl-blALt\ bAb
10 IlMt-blAHl
IF IlMt-flUlbM 101U
Tl Ntl UMt Oh Itbl, Mil*. IcJO.U
HP i^tl bAHPLlNb Hi) IN It) \d
Y MtltK CALlbKAI1UN
UN bAMKLlNb UU/ILt
tP P1IUI lUbt LOth h 1C Itlg I
AVtKAbt UKlhlCE PKtbbUHt
1 1<4. UJ<4 LU-h 1
bO.O
l-J.lb?
1 1 .^b
.000
MtlKlL UMIb
Jolo
Icf
5.0 MM
.04
i.ii^1* LU-M
dU.b L
\ I "^ W ^» I M
3 • i j 7 o L n
t 1 .^b
.000
•3. n>
.00
O 1 . tJ/
lo.tib
<; o. fi u
-------
Pb
PSI
PS
TS
vs
AS
UbblU
US
ISO
Ml*
Cb
HMK
MN
JL Cb
«£> Pink
Ml«
CS
PMH
bAKOMtlKlC HhfcSbUKt t^.l«4 lU-Mb
SlAllt K«tb OF S1ALK bAb -l.bu Jn-Hill
5IALIV PKkb, Abb. iJ^.UJ li*-nb
AVEKAbL blACK ItMP lf>3. F
AVG blACK GAS VtLOClIT et.l F^b
blAtK AMtA >4b
-------
PAKI1LULAIL L ALL'UL A I I uub Itbl
l 1
WULUht Ufr OKI UAb oAMFLtU Al SlAUUAKU LllnU 1 I 1 Hub
VMOlU = 117. OHI * WM « If * IHB » PM / M.OJ) / (IM t Ht>\>.)
1/.04/ * lltt.UJH * .940 * ( 4.14 t 3.di<« / 15.0)
VHilU = ..... ..... —... ...... = in
VULUht Uh AAILK VAHOI< AT STANOAKu LUrtU 1 I 1 lllxb
VrtL = .U4707 * VLC
VrtL = .
MUlblllKt IN b
= (100. * VAC) / (VMblU » Vr.L)
100. * Ib.ib
---- = - = U,
Q lll.bb/ + Ib.lb
MIJLt KKAtllON Of UKY blALu I.Ab
»-Ho = I 100. - brtU) / 100.
100. - ItJ.O
•MO =
lou.
AVthAbt MULtLULAK AtiUHl (||- LIKT blAlix bAb
MlJ = (lA.'>
M..b - i-iu * II. - li)/.il/I Hi/) J t Jo. • liiniJ/lou)
Mrtb = i0.to« U. -111.40/100)) + IH. » UI.4b/10U) = drt.ttO
-------
bAb VtLOLllr A( blALK LUul) t I
UfcLP = SUM. U(- Int bUKIlvrt * (IS
VS = a~3.it1) • IIH « utLH / IbuNllMrtb * l-bj * r'Hl
VS = o!s.a<* • .f»4 * 3V9./UO / (iurtll ctt.ftu •
* Id. = 0«i.M l-Hb
blACR UAb VULUHtTKlC hLUW AT StALK L
yb = Vb • Ab « JoOU/144
US = Od.M » <4t><;39. ibUO/ia-4 s
t>Ab VULUMtlKlC H LUrt Al blANUAKu L ONI) 1 I 1 U.»i>
= It.bHI * ua * Pb * (1. - (b,-,u/!UU)j / (Ib t
ll.b<4l • 43bblb^0. * tJS.OJ « II. - ( 1 1 ,Sb/ 1 0 1) J )
= ------ ------------------------------------ --- — ---
( Ib j. + *4bU. j
. ^)C^M
Ul
HthCtMl. ISUMNtT IL
ISO =
ISO =
bS.f4bO.jJ)
= 9tt.0i» PtKltNT
HAhllCULATt LUAlJl!Mb -- tHA MttMUU b IAI blANUAMU COhUll
C!> = 0.001 » MN * lb.«3 / VMSTU
LS = U.Ol/l • 10.1 * Ib.MJ / 111. bo/ - .Uuelb
HAKUCULAIt Lbb/MK -- tKA ML I MOO b
HHK = Lb * iwbblu / (Ib.ai * <*-Di.t>)
Hlth =
-------
FJELU DATA
Ul
u>
PLANT MUKGU HO«EK t'Lt
SAMPL1NU LULATluN UNIT 1
SAMPLt TYPE Mbb
UPfcKAIUH CLAMKt
AMBIENT TEMP.IUEG.F) 55.
bAK.PNESS. UN.HG) 29.14
STATIC PHESb. CIN.H2U) -1.50
FlLfErt NUMbEHlS) 0002709
STACK INSIDE UIM.IIN) 240.00 .00
PITgT TUBE tOtFF. .04
TMEHM. NO. 201
LtAKAbE .015 CFM w 10.
METEH CALlb. FAUuK l.OOb
REAU A KECUHO DATA EVtKY 10.0 MINUTES
TNAVEKSE SAMPLE CLOCK GAS MLHH VELOCITY
POINT TIME
NO. (MlN.J
TIME HEADING HEAU
124-rlH ICU.FT.) 1IN.H20)
CLOCK)
AbANT
0 IN.
URIF
HG
ICE PRLSbUKE
UIFFEHENT1AL
(
1N.H2U)
UtblKEU AC
1N1T 0
10.0
20.0
30.0
40.0
iO.O
bO.O
70.0
60.0
VO.O
1 00.0
no.o
120.0
900
Ib5b 970.415
Ib05 905.825
lolb 993.920
|625 3.4C7
700 14.220
710 22.222
720 31.bll
73o 42.424
/<40 M.2SO
/5o oO.JoO
000 7 1 .340
1010 Ol.2bO
.700
.bOO
.600
.700
.600
.000
.000
.900
.900
'.000
.900
.900
3
2
2
3
2
3
3
3
3
3
3
3
.00
.90
.<»0
.10
.95
.20
.Jo
.47
.50
.70
.50
.50
IUAL
3.10
2.90
2.90
3.10
3.00
3.30
3.30
3.50
3.50
3.70
3.50
3.50
blACK
TE*P
(UEG.F)
164.
163.
163.
162.
162 .
Ib3.
161.
165.
162.
162.
Ibb.
Ifa3.
DATE 12/01/02
KUK NUHbEK 8CM5H
PKObE LENGTH ft TYPE 5* GLASS
NUI/LE 2-02: 1.0. .219
ASSOMED KUlSTUht 12.0
SAMPLE bOX NUKOEH
CETEK BOX NUMBEH FBJ
CETEK HEAO OIFF. 2.00
C FACTOK 2.14
HKUbt HtAltH SETTING 320.
hEATEK bOX SETTING 320.
KEFEKENCE PHEbS. OIFF. .00
Oht GA5 CETEH POHP SAKHLE IMPINGEH
TEMP
(UEG
HLET
bO.
74.
00.
01.
Ob.
71.
79.
Ob.
90.
*M .
92.
94.
.F)
OUTLET
bO.
64.
b5.
b5.
bb.
• b4.
bb.
bb.
bO.
b9.
70.
71.
VACOUM
HN.hG)
b.O
5.5
5.5
b.O
b.O
b.O
b.O
7.0
7.0
7.0
7.0
7.0
BOX TEMP
(DEG.FJ
320.
300.
310.
324.
313.
327.
300.
320.
309.
319.
319.
312.
TEMP
(DEG.F)
50.
40.
40.
44.
50.
48.
40.
54.
bO.
bO.
bO.
62.
TOTALb
AvEKAbE
120.0
113.100
3.26
3.27
163,
03.
b7
6.3 316.
51.
-------
Ul
PAKIKULAlE FltLO DATA & (lEbllLTb lAbULAllUN
PLANT- NAHt ANo AUUKtSb lEbT UAf LEAUth
MONGU POWfcH PLEAbANTb CLAHKE
TEbT
TEbT OATE
IB
TF
TT
NP
r
Of.
CP
UNIT 1
Vf
If
VKbTU
VLC
vKe
Feu
P0
-------
r.
CD
o
CO
X v
7 £/>
e
c.
(A
Cf
< -.
u> o>
o
fT
cr
IV
-c
cr cr C/ u if
C C. C C C
n- r- r xr rrr r-
«-c c • c •- c c
cr. x x x cr x x
c/i ••- •- r^ •••« en
i-*O O TO »•« C O
c »• c — *.
Z » » > 7 C C
v.
C
C »-
v- x
c/> »
«- x
C
•o a
> r
m
tr
X
O
rr
CO
c
r> > > x
x n -. c
r
c
3
r- x
c f
C
X
-c
x
•o x
(^ ^
T3
^ tf ^
cr > •« c-
> n
cr. ? > c
x
o rv rr
LT
a
•W O
n.
cr
^
i
x
en
x
£
cr
a
v
i
x
c
a
c
cr,
x
•x
c
v>
o
»
IX
x cr
u> —i
er is
tr u £
IT -J IT
a * rv
e rv ui cc
e c « rv
ru
e
rv rv
*
cr en
x x
I X
X C
en
«-.
cr.
C •»!
I -D
•- Cf
I
1
cr
tr
o
I
1
a
o
a
e-
tr a
• •
cr -i
•• IT
rv
7
ci •»
x. er.
T X
X C
en
o
a
•
er
* -<
c a
er
en T
x er
T X
X C
cr,
o
I/I
cr
T
x
rv —
cr •£
IT e
rv -c
c cr
o
•- rv
a
er
CB as T o
r-. c TJ
T I cr
•x x
c
o
I
T
en
i
T
rv
c
T
I
-------
E*AMF-Lt PAkHCULAft CALCULAHuNb HbT NU.
UNIT 1
VOLUME OF OUT UAS bAMPLtU AT bTAIYUAKO CUNUlllUNi)
VHS10 = (l/.b<*7 • VM * V • tPtl t PM / 13.0)) / ITM t <4bU.)
I/. 647 * 113.180 * l.UOb * I d9.11 t 3.«J75 / 13. b)
VKSIO = ----------------------------------------------------- = H0.37U UbCF
VuLOMt OF WATtH VAPurt At bTAI,UAMU CUNUITIUN6
V*»C = .01707 * VLC
VwC = .OM707 » 313. = Ii.o7 SLF
Pt«CtNT MUlbTUHt IN STALK b
OnO = (10U. * VrtCj / IVMSTO + VrtCJ
M 100. * Iti.b?
Ui HisO = -------------------------- = 12. «3 HEKCtM
°^ 110.370 » lb.67
MuLt FRACTION UF UKt 5TACK GAb
Fnl) = (100. - BrtUJ / lou.
100. - lt.t
FMD = -------------- - ------- - = ,B7b
100.
AVEKAkE MoLtCULAK fttlbHF UF OHY STACK UAb
HU = (PCutr « .i<4) + (rud * .ic;) + (Prod *
MO = t Icf. /3*44/ 10U ) t ( b.7*3c!/10U) + (KM. b» .0) » 2b/lUO z 30
MultCuLAM rttlbhl uF SIALK
= MU > ll. - titnU/lOOJ) + Ib. *
= 30.i»b» (1. -1 ld.^3/ JuU J ) + 16. *
-------
STACK GAS VtLuClIV «T bTALK CUNUlTIUNb
OtLH = bUH. OF Iht aUKltVM * (Tb * MbD.J)
Vb = B5. 49 * CH * UtLH / (SuKUMftS * Pb) * PMS)
Vb = U5.49 * .01 * 399.700 / lauHH 26.71 • £9. OS) * 12. = 02.81 FPb
S1ACK GAS VULUHtTKK FLU* AT STACK CONDITIONS
Qb = VS • Ab • 3bUO/l44
OS = 62.81 * 1^c!39. ibOO/111 = 93bSbtt<)0. ACFH
SlACK GAS VULUHtTKIC FLUX AT bTANUAKD CUNUITIUNb
ObSTD = 17.647 * US • Pb * (1. - (BrtO/100)) / (TS + ObO.)
17.047 * 93b55i)<10. * ^9.uB * (1. - (12.43/100))
OSSIO = — ------------------ - ------- - --------- - ------- --- — = t>74379dO. SCFH
C 163. + 4bO.)
^ PtRLENT liOMNETIC
Ln
^j ISO = (30b.i8«lTS»460. ) j«((0.00
-------
UATA
M
Ui
00
PLANT MUNGU PUAEK PLEA&Ar«T;>
SAMPLlNb LULATIUN UNIT 1
SAMRLt TYPt *bd
OPEHATOK LLAKKE
AMBIENT TtHP.COEt.F) 55.
BAH.PhtbS.UN.Hb) 29.14
STATIC PHt-55. IIN.H20) -1.50
F1LTEK NUMttEHlS) 0002710
STALK iNMUt UlM.tlN) 240.00 .00
P1TOT Tout LOLFF. .84
ThErtM. NO. 201
LEAKAGE .002 CFM 01 8.0 IN.HG
METEH CALIb. MCTuK .998
RtAu » KECUHO DATA tvtKY 10.0 MINUTLS
ThAVEMSt SAMPLE CLOLK GAS MtTtK VELOCITY OHIF1CE PtitSSUKt
POINT TIME
NO. (MlN.J
1NIT 0
10.0
20.0
30.0
40.0
50.0
bO.O
70.0
BO.O
90.0
100.0
1 10.0
120.0
IIHE
124-rtH
CLOCK)
1545
1555
1605
Iol5
lt>2i
700
710
720
730
/4y
l/5u
1000
lolo
KEAUING HEAD
(Cu.FT.) (1N.H20)
663 746
694.5U5
702.225
711.315
721.300
733.700
741.610
750.895
7t>2. 150
771 .800'
701.315
793.000
603.637
.700
.600
.600
.700
.600
.800
.800
.900
.900
.000
.900
.900
UIFFtRtNTlAL
(1N.H20)
OEblKEO AC
3.10
2.90
2.9o
3.10
3.00
3.30
3.35
3.50
3.56
3.7b
3.55
3.60
TUAL
3.10
2.90
3.00
3.20
3.00
3.30
3.40
3.50
3.60
3.80
3.60
3.60
i.1 ACK
TtfP
(OEG.F)
164.
163.
163.
162.
U2.
163.
161.
l<>5.
162.
162.
166.
Ib3.
UATE 12/01/82
KuN NUCbtK 8UM5B
PMOBE LENGTH & TYPE 6' GLASS
NU//LE 2-07: 1.0. .221
AbSUPEO fOISTUKE 12.0
SACPLE BOX NUMBER
CETEH bux NOMBEN FB5
KtTEH HEAU OIFF. 1.95
C FACTOh 2.14
PKOBE HtATEK SETTING 320.
HtATEK BOX SETTING 320.
HtFEHEKCE PRESS. OIFF. .00
UNY GAb MEIEH PUKP SAMPLE IMP1NGEH
TEMP
(OEG
INLET
73.
76.
82.
87.
90.
78.
84.
08.
92.
94.
94.
95.
.F)
OUTLET
73.
72.
72.
72.
74.
74.
74.
74.
76.
78.
76.
80.
VACUUM
IIN.HG)
5.0
5.0
5.0
5.0
5.0
5.0
5.5
7.0
7.0
7.5
7.0
a.o
BOX TEMP
IOEG.F)
333.
312.
317.
322.
318.
308.
317.
322.
324.
322.
320.
322.
TEMP
(OEG.F)
44.
40.
40.
40.
40.
42.
40.
45.
48.
48.
54.
64.
TUTALi>
AVEHAbE
120.0
119,691
3.31
3.33 163.
t>6.
75.
6.0
319.
45.
-------
PAK1ICULA1E FltLU DATA « heiULTb TAbULATIUN
PLANT- NAME ANO AOOHEbb TtbT TEAN LEAUEH
MONGU POKfcH PLEAsANTi CLAKKE
ItbT
-------
09T-V
•^ n
T CD
X
9
•n
•«
x
X •-
c
U>
UI
tr
•c
01
a
a
o
rr
C:
n.
•O
tf tr V- tr & &j "*"
C C C C C C «-
n- r r x f r> t~ r- xr m r-
»- c c • c •- c c «c +• rr
in x x x en r x: xcnx
c/**— •"•rr**cc fri cr>
•MO O TO ^— C O TO "-iff
c » c — i- > ^ c r-
r>> »?cc czn-
f r- u o xxvrx
z — — «.x~— M x- -v
>cc c>-cc- c->>
_, _, rr, rn m —i x
Ti > tf tr
X -- > >•
o c o r>
». -. c
to » 2
C (~
x •* x
n- r rr
-. C
o c
X X
m rr
I- X
o -c
n
tr
—4
O
X
rr
v>
a
u.
c
tl
X
c
X
•o
X
a
c
•
.c
o
rv
v.
i
x
o-
c
a
a
4> O «
ru £ ui
.
C
V
o
> c- c ">•>
o n i TE
•n ^ »- c-.
T 1 7
I
T
I
I
rv
c
•C
•
tr
c
en
r>
ff
rv
rv »
u rv
fv »-
— o
•c
a
o
ei
x
3
C
Ul
n
i/i rv
rv x
O
C0
o
rv —
» x
un e
vu ur
c a
rv
-------
tXAMPLt PAHlICULAIt I ALCUL A 1 I uNb ItbT NU. 8U»"jb
UNIT I
VOLUME OF 0X1 UAS SAMPLED Al bTANUAKU CUNUIHUNS
VMSTD = (I7.b<»7 « VM * Y * IPtt » HM / 13. b)) / ITM + USCF
I 60.' » 4bO.)
VOLUME. OF NATtK VAfuN AT bTANOAKO CUNUITIONi
s .04707 * VLC
= .04707 * 3t>3. = Ib.bl SCF
PtKCENT MUlblUHt IN SlALK bAS
U»tU c (10U. * VnCJ / (VMSTO » VMCJ
>
!_, 100. * lo.bl
CD BwO s ------------------------ -- = U.64 PEkCtNT
^ 114. 61^ t Ib.bl
MOLt FRACTION OF QHY dTACK
= (100. - ttnOJ / 100.
100. - l<^.b
---- — — — • s .074
100.
AVEHAbE MOLtCULAk MtlbH! UF UWY STACK L.AS
MO = (PCD*! * ,4M) » (HUc! * .ieij * IPN2 » PCU) * .lib
MU = (l
-------
STALK GAS VtiuCiTr AT SUCK
DELP = SUM. OF TMt iUKTCVH * ITS + 4bO.))
VS = a5. 49 • CP * OtLP / tSuKHMKb » HS) • PMS)
Vi = B5.49 * ,b4 * 199. 70U /
1 2 . =
«2.04
STACK GAS VULUMETHIC FLU* AT STACK CONDITIONS
OS s VS • AS • JbOO/144
US = a2.B4 * «S3S. 3bOU/144 = 93b92b72. ACFH
STACK GAS VULUMtTKIU FLUh A] bTANUAHD CuNUIIIUNS
OSSIO = 17.b47 • uS * PS * 11. - (BrtO/lUO)) / (IS * 4bO.)
17.b47 * 93b9<^b?a. * £9.1)3 * (1. • ( 12.bU.)
OSSTO =
b73049U. SCFH
M
CTi
PtRCENT ISOKINETIC
ISO
I30
TM*4bO .
T T
.) J«((U.OO«;bb9«
3 .
6)
* 100. 60 PERCENT
29.03
PAHTICULATE LUAolUU -- tPA METHOO 5 (AT STANDAHU CONDITIONS)
CS = U.U01 • MN * lb.43 / VMSTD
Cb = U.UOJ » Ott.d » li.43 / 114.812 = .0119 GH/UbLF
PAHTICOLAlfc LbS/MH -- tHA MtlhDU 5
PMK = CS * uSSlU / llb.^J * 4bl.bJ
114.7to3
-------
F1ELO DATA
PLArtT MUNU PUWEH-HLE AbAN T S
SAMPLING LULAIIUN uMT i
SAMPLE TYPE M5b
OPEKAIOH UO
AMBIENT TtMP.iOEG.F) bO.
BAH.PHES5.dN.Hb) 29.33
STATIC PRESS. UN, H2Q) -1.50
FILTER NUMBERlS) 0002711
STALK INSIDE UIM.UN) 240.00 .00
PITuT TUBE COEFF. .84
THERM. NO.
LEAKAGE .OOb CFM a 7.0 IN.HG
METER CALIB. FACTOR 1.037
REAU a RECOKD DATA EVEWY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAb MLUk VELOCITY uRIFICE PRESSURE
POINT TIME
NO. (MIN.)
1N1T 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
60.0
90.0
loo.o
1 10.0
120.0
UTALS lc:0.0
T 1ME
124-HR
CLOCK)
931
0
0
0
0
0
u
0
0
u
0
y
1131
HEADING HEAD
ICU.FT.) (IN.H2U)
96.377
105. bbO
115.120
124.490
133.720
143.240
152.930
Ib2.430
1/2.130
161 .650
191.290
200.660
210.393
.800
.900
.800
.700
.600
.900
.600
.900
.800
.900
.6uO
.900
114.016
STACK
UlFFtRtNTlAL TEMP
(1N.H20)
UEblHEU AC
3.30
3.49
3.32
3.15
3.3b
3.54
3.35
3.55
3.34
3.50
3.28
3.54
TUAL
3.30
3.49
3.32
3.15
3.35
3.54
3.35
3.t»5
3.34
3.50
3.28
3.i4
(UEG.F)
165.
166.
166.
168.
166.
Io8.
169.
169.
174.
179.
166.
173.
OATE 12/02/82
HUN NUMBER 9AM5B
PRUbE LENGTH 4 IVPE 6' GLASS
NOllLE c-11 : 1.0. .222
ASSUMED MOISTURE 12.0
SAMPLE BOX NUMBER
METER BOX NUMBER FB4
METER HEAD OIFF. 1.87
PHOBE HEATER SETTING 320.
htATEh BUX bETTING 320.
UhY GAS METEH PUMP SAMPLE IMPINGEH
TEMP
IUEG
^LET
60.
63.
68.
73.
75.
77.
78.
79.
79.
80.
60.
61.
.F)
OUTLET
60.
60.
60.
b2.
63.
65.
67.
67.
69.
69.
70.
71.
VACUUM
UN.HG)
5.7
6.3
6.2
5.8
6.2
6.3
5.9
6.2
5.9
6.1
5.6
6.2
BUX TEMP
IOEG.FJ
315.
327.
334.
335.
338.
336.
340.
336.
333.
319.
314.
326.
TEMP
IDEG.F)
11 .
10.
61.
79.
73.
70.
68.
65.
61.
57.
54.
54.
3.39
3.39
171,
74.
65.
6.0
330.
60.
-------
cr<
PAKI1CULAIE F'lELD UATA & HEbULfb lAUULAIIUN
PLANT- NAME ANu AODKtbb IEbT TtAK LEAOEH
MONO PUWEH-PLEASANTS oo
|E5»T
TEST DATt
UNIT 1
VM
1*
VPSTO
VLC
VMC
PC02
PO«J
KCU
MU
Mhb
UROP
VOLUME OF UHT bAb SAMPLED
AT METEM
AVERAGt GAS METEH TEMP
VOLOME OF LiHY bAb SAMPLED
AT STANOAHU CONDITIONS*
lOfAL MdU COLLtCTEO IN
ANu SILICA GEL,ML,
VOLUME OF rtAlEK VAPOK
AT SIANOAHu CONDITIONS*
PEHCENT MUlSTUHfc BY VOLUME
MOLE FMALT10N UHT bAb
HEKCENl COt! oY VOL.. UKY
PEKCtNf i>2 bY VUL., UKY
PEKCtNT LO bY VOL., UKY
HthCENl n«? br VOL., utfY
MOLEtOLAh rtl-DKY SIALK
MOLH-ULAK rtl-blALK (,Ab
ENGLISH OMITS
U/Oii/Oc!
Id
TF
IT
NH
Y
UK
CP
PH
TIME-SIAKT
IIME-F INISh
ttt I TIME OF TEaT, M1N.
NET SAMPLING PulNTS
MtTEK CALlbHATlOU FACTOR
SAMPLING NU21LE OlAMETtR
PITOT TUbE COEFFICIENT
AVERAGE ORIFICE PRESbUKE
931
1131
120
Id
1
3
1.037
.d£d IN
.04
3.39 1N-H.JO
114.016 CU-FT
69.a F
llo.4B4 bCF
343.1
lb.150 bCF
.070
Id.HO
b.75
.00
30.d4
METM1C UMIS
1131
IdO.O
1.037
5.6
KM-H20
CO-M
343.1
SCI*
.070
.00
01 . Ib
30.d4
dO.00
-------
HB
PSI
PS
IS
VS
AS
USSTU
US
130
MN
CS
PCH
> HN
I
I-1
CS
UN
CS
PHM
UAKUHETK1C HKESSuHt
STATIC PkEb UF STACK bAb
STACK PKtti, ABb.
AVtKAGt SlACK IEMP
AVb STACK bA5 VELOCITY
STACK ARtA
aTACK FLUM RATt, OHY*
ACTUAL STACK FLOw HATt
PERCENT ISOK1NETJC
^ ILTEKABLE PAHI
MG, EPA t>
FlLTtKABlE PART
FlLTkRAUtt
EMISSION HATE
SULFUR DIOXIUE
HG. EPA b
SULFUR UlOXloE
SULFUR
EMISSION KATE
SULFURIC ALIU
HG. EPA i
SULFuRlC AC1U
5ULFUKIC ACIU
EMISSION HATE
btt OEG F,
IlM.HG.
IN-Hb
^9.<;a IN-hb
171. F
a<4.t; FPS
. SU-IN
. bCFH
ld. ACFh
99. b
M2.10 KH-MG
77. L
SU-M
SCKH
99.6
.007b GR/USCF* 17.313
73.661 LB/HK 33.50 KG/UK
431U.U
431U.U
.S709 GK/USCF* 130b,790
5b7b.l«l LB/HH «Jb£8.9o KG/hK
07.b
.Ullb GK/USCF*
113.b73 LB/HH
07.6
KG/HK
-------
t»AMPi_t PAWTKULATE CALCULAI IUN:> rt^r NU.
UNIT 1
VOLUME UF DKT GAS SAHHLED Al bTAMUAKD CUNUIl
VMSTD = (17.647 * VM * Y * IPB » HM / 13.6)) / ITM + 460.)
17. 647 . Jia.OJb « 1.U37 * I as. 33 *
VMSTO = — — — .-..--. — .-. — .... — — .-.--. — — — — . — ..-.. s nt>.«4e<4 OSCF
I /O. » <4t>0.)
VOLUHt UF HAlfcH VAPUH AT blANDAHU CUNUIIIUN5
VnC = .04707 * VLC
VNC = .04707 • 343. = 16.15 SCF
PERCENT MJIbTuRt IN SIACK
BnO - (100. * VwC) / IVMSTO + VnC)
100. » 16.15
B*0 = — — -------- - --------- --- = U.IU PtKCLNT
116.464 » 16.15
HOLE FRACTION OF Dkr STACK
FHD = (100. - BnUj / 100.
100. - \d.t
FMO = ——.—----.--—— 3 ,a7fl
100.
AVtKAbt MULtCULAH MtlbHT UF UKY blACK GAS
MU = tPCO«i • .44) * (HOd * .3ii) * (PN2 » PCU) * ,ii«
MO = tlci.<*U*44/lUU) » ( 5.B*3d/lOU) + ((«1.4» .0) * i?b/10o = 30.£<>
MOLECULAR MEIGHT UF SIACK
MwS = CO « (1. - ItlftO/lUO)) + \ti. *
= 30..J4* (1. - 1 \tt. Itt/ 100 J ) + Ib. • (!«?. IB/100) = «?«.BU
-------
STACK GAS VELOCITY AT STACK CuNUllIuNa
otLP = SUM. OF THL bunTiVM * ITS * tbu.))
VS = tt5.<*9 • CP * OtLP / iSuNHMKb • PS) * PMS)
* 12. =
STACK GAS VuLUMtTNlC FLQM AT STACK CONDITIONS
Ub = VS • Ai * 3bUU/144
OS = 04.17 * . * ^<^.^^ * d. - (U
OSSTD = ------------------------------------------ - --- --- — = bd347<>4a. SCFH
I 171 . t «bl). )
>
M PEHCENT ISOKlNETIC
Oi
~^ ISO = (30b.btt«(IS»'«bO.))* t (O.U0^6b«*«VLC)»lVf * f * IPo* IPC / 1 3 .6) ) / ( TMt<4bO . ) ) ) / I T T * VS*PS*DN*UN )
1305.56*1 J71.*(»bO.))«l(U.OO^bb9* 3«3.)*( 1 U.Ulb* 1 .037 * ( c!9.33*l 3.392X 1 3.6) ) / (
ISO = ------------------------------------------------------------------------------------------------ . s 99. bO PERCENT
120. * 64.17 * 24.22 * .222 * .222
PAKTICULATE LOADING -- EPA METHOD 5 (AT STANUAHU CONDITIONS)
CS = O.UOl * MN • 15.43 / VMSTD
CS = O.U01 * 'j7.l * 15. «3 / Ilb.4tt4 = ,007b
PAHTICULAIE LbS/HK — EPA MtTMOU b
PhN = Cb « USbTO / 11^1.43 • t^3.b)
PMh = ,007b * b«3<47(!«tt. / (lb.«i * 4b3.b) = 73. Obi
-------
F1ELU DATA
PLANT mi MI PUWEH-PUASAMS
SAMPLlNb LOCATION uM 1 1
SAMPLt TYPE M5b
OPEHATUK UU
AMblENT TtHP.lOEG.Fj bO.
BAR.PKESS. UN.Hb) 29.33
STATIC PHtSfc. (1N.H20) -1.5U
F1LTEH NUMHEK1SJ
STACK INSIDE uIH.UN) 240.00 .00
PITUT TUBE COEFF. .04
THEHM. NO.
LEAKAGE .000 CFM ol 9.0 IN.HG
MtTEH CALlb. KACTuH .990
RtAU & NELOkD DATA tVtHY 10.0 flNUTtb
TNAVEKSE SAMHLt CLOCK bAS MtTEH VELOLI1Y UH1F1CE
POINT
NO.
p IN1T
1
I—1
932
0
0
0
0
0
0
U
0
0
0
0
1132
HEADING HEAD
ICU.FT.) UN.H2U)
BJ4.9B8
449.490
059.240
6b6.790
o/o. loo
007.000
B97.670
9u7.350
917.240
9^6. 9JO
93b.770
9<4b.4gO
956.299
.000
.900
.000
.700
.800
.900
.000
.900
.000
.400
.OuO
.900
116.311
PHtSbUKt
blACK
DlfFtKtNT lAL TtHP
(IN.
UEblHEU
3.30
3.49
3.32
3.15
3.35
3.54
3.35
3.55
3.34
3.50
3.20
3.54
M2U)
ACTUAL
3.30
3.49
3.32
3.15
3.35
3.54
3.35
3.55
3.34
3.50
3.20
3.54
IUEG.F)
U5.
166.
166.
loo.
166.
160.
169.
169.
174.
179.
tttb.
»73.
DATE 12/02/02
RUN NUPbEH 9bM5U
PKObt LtNbTH & TYPE 5' ULASS
NUZZLE 2-10 : I.D, .221
ASSUMED MUISTUNE 12.0
SAfPLE bOX NUKUEH
HtTtn box NUCBEH pua
>*tTEH htAD 01FF. 1,90
PKUbt HEATEH SETTING 320.
HtAIEH bUX StITINb 320.
UhT bAS CETEK PUKH SAKf-LE ICPlNGEH
TEMP
IDEG
ULET
57.
60.
65.
69.
71.
73.
74.
74.
75.
76.
76.
77.
.F)
OUTLET
56.
56.
57.
50.
60.
61.
63.
64.
65.
66.
67.
67.
VACUUM
IIN.HG)
7.3
7.9
7.0
7.5
7.0
a. 2
7.0
a. 2
a.o
a. 2
7,9
a. 3
BOX TEMP
(OEG.F }
324.
33B.
331.
326.
320.
31S.
324.
333.
330.
334.
339.
339.
TEMP
(OEG.F)
41.
39.
44.
52.
54.
55.
62.
bb.
bb.
69.
65.
65.
AvEKAbE
3.39
3.39 171.
71
62.
7.9 330.
57.
-------
PARI1CULATE FltLU DATA a KfcsllLTa TABULATION
PLANT- NAME AND AODRtSb TEbT TEAM LEADER
MONO PUWtR-PLEASANTS 00
TEJ>T 9BM5b
IEST DATE
UNIT 1
ENGLISH UNITS
METRIC UNITS
TB
TF
TT
NP
y
UN
CP
,L P*
en
V*
T*
VfSTD
VLC
""•
ttMU
FKU
PCU«>
P04
PCU
PKc!
MD
M*;,
TIHE-STAHT 93i
TIME-FINISH 113«:
NET TIME OF TEbT, M1N. 120.0
NET SAMPLING POINTS 1 i.
METER CALIBRATION FACTuR .998
SAMPLING NUli.lt OIAMtTtR ,tl\ IN
PITUT TUUE COEFFICIENT .««
AVERAGE ORIFICE PRESSURE 3.39 U-H^O
ORUP
VOLUME OF DRY GAS SAMPLED lib. 311 CU-FT
AT METER cuNuiiiuNb
AVERAGE GAS METER TEMP bb.l F
VOLUME OF URY bAb SAMPLED llb.lbb SCF
AT STANDARD CONDITIONS*
TOTAL M^U COLLECTED IN 351.0
IMPlNGERb ANU blLlCA GEL, ML.
VOLUME UF AATEH VAPOR lb.559 SCF
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME ia.57
MOLE FRACTION URY bAb .074
PERCENT LOc! 6Y VOL., DRY It!. 90
PERCENT 0«J bY VOL., ORY 5.75
PEHCLNT CO BY VOL., DRY .00
PERCtNI ua 61 VOL., DRY 01. .55
MOLtCULArt rtT-l)KY SIAUK GAS 30.«!9
MOLtCULAK AT-blACK l.Ab t?tt.75
lisa
uo.o
12
.998
5.6 KM
.««
06.
-------
CUT-V
T
T
Z
n
ce
n
ce
x
•r
T
T
r>
CD
* •-
Ul
tf.
»
(0
•c
(A
•0
B
O
a
(X,
-c
,c
n.
Cr
C
^- c
1C Z
»- o
c
> c
cr V
C C
r x r-
c
r
V
c
r
c —
x r rr r
Cl Tl 1-4
• c «- n-
ZJ V> X
c • c »- c
z x cn z
O TO i-ic O TO —CC
> c«- «- >»- c r-
> » z c c o z IT.
r i/o x x ir x
c c > c. c c
zi
>•
a
I r
C5 -<
. r
z
rr »
•c a
> r-
IT
LT
•c
>
z
rn
z
O
n
-<
c
(/
-H
>
o
c
>
z
cr.
-«
>
n
?
rr
c.
o
f
c
o
> cr
< ^
n- »
z o
> 7
n- -c
cr rr
a.
— cr
-> C
— 2
o m
-c
z
rr,
z
•-
o
•c
C I
TI rr
V
V (SI
— c
> z
f- rr
cr
>
cr
o
o
rv
rv
•^j
e
CD
X
Z
z
o
z
c
en
o
LT
•
o-
3
Z
cy ^^ L/I
c >* rv
<£ LM O W
^> rv c -c
Z
N.
ce
o
C£
V C
O I
Tl M
3 ^
rv.
IV
a
c
i
LT
i
2
n.
c
i
X
O T
>. C
T ^
Z C
en
a
LT
T
Z
C
.C
•
£
a
rv
c
Ul
LT
a
rv —
cr «
•c ru
-w a
* £ — rv
a
£
a
c
ce
o
a
o
cn cn
O c
t I
Z I
-------
txAMPct PAHTlCUCAIt C ALCllL A 1 IllNb ItbT NU. Sb*SH
UNIT 1
VOLUME uF UKY GAS SAMPLED AT
VHSTO = (17.6<47 • VM • t • IPb » PM / 13. b)) / (TH «• 460.)
t/.o«7 « lib. 311 * ,.8*Jc!/lOO) * UB1.1* .0) *
MULtCULAK WtlbHl (jf STACK
Mnb = HU * 11. - (b/iU/lOOjJ * lu. * (bnu/100)
io.av* (1. -I ld.^7/luu) ) + 10. *
-------
STALK GAS UtLUClTY AT S1ACK CuNOlliUNb
OELP = 5UM. OF iHt bUHTlVH • (Tb » <4bU.J)
V!> = 05. US « CP * UtLP / (SgRUMWb * HS) • HNTS)
V3 = »5.<*9 * .o<4 « <40tt.yOb / (buHI( c?tj.7b « at
FPb
STACK GAS VULUMt. IKIC FLUH AT STACK CONDITIONS
OS = VS * Ab * jbUO/l4M
. ACFH
SIACK GAS VOLuMtTrfIC FLUM Al blANUAhU
QbSTO = 17.647 • uS * Ps * II. - (HnO/lUU)) / (IS « 460.)
I7.b<47 « 9'Jd7«>'43<». * ^<^.^^ * (I. - (I.b7/10u) J
---------------- — ----.----....-- — ................
I 171. * «tbO.)
bdOS7JbO. SCFH
PtRCENT ISOKINETIt
(TS*««oO.)j*l
171 ,
150 s
+ i llb.jtl* ,
b) ) / t
UU. *
z 99. 7J PERCENT
PAKTICULAft LUAUING — tPA METHUD 5 (AT STANOAKU CONDITIONS)
Cb = U.U01 * MN * lb.<43 / VMSTO
Cb = U.U01 • iB.d * lb.43 / 115. Ibb = ,007tt GH/USCF
PAHIICULATE LbS/riM -- tPA MtTHOU b
PMK = Ca * USbTU / Ub.13 « <4bJ.b)
PMH = .OU/tt » boUSMbU. / (15.«3 *
7S.dbU
-------
^ ItLU DATA
-J
U>
PLANT HUKGU PO*ER PLEASANT^
SAMPLING LOCATION UNIT 1
SAMPLE TYPE M5a-P40o
OPERATOR CLARKE
AMBIENT TtMP.lUEG.F) bo.
BAH. PRESS. UN. HG) d9.33
STATIC PRESS. UN. H2U) -1.50
FILTER NUMBER(S) 0002/13
STACK IHSIUE UIM.UN) 240.00 .00
P1TUT TUBE CUEFF. .84
TriERM. NO. «J01
LEAKAGE ' .000 LFM o> 9.0 IN.HG
METtR CAL1B. FACTOR l.OOb
RtAo a HECURU DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY URIFICE
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
bO.O
60. 0
70.0
00.0
90.0
loo.o
110.0
120.0
TIME
124-nH
930
940
95u
looo
1010
Iu2u
1030
104g
1050
1100
1110
1 120
1 130
READING HEAD
ICU.FT.) (IN.H2U)
93.bbb
102. bOO
111.390
121 .525
131. d4b
1 39.3c!0
149. 3b5
159.555
IbO.bbb
1 /B.020
107 .045
197. b77
207.159
.000
,9oO
.000
.700
.BoO
.900
.000
.900
.000
.900
.000
.900
PRESSURE
SlACK
UlFFEHbNTlAL TEMP
UN.
UESIREU
3.20
3.30
3.20
3. Ob
3.2b
3.44
3.30
3.4b
3.25
3.40
3.20
3.50
H20)
ACTUAL
3.20
3.40
3.20
3.10
3.30
3.40
3.30
3.50
3.30
3.40
3.20
3.50
lUEG.F)
Ib5.
Ibb.
Ibb.
IbO.
Ibb.
IbB.
169.
169.
174.
179.
lOb.
173.
UATE 12/02/62
NUN NUMBER 9CM5BP
PRUBE LENGTH A 1 YPE 5' GLASS
MJ/*LE 2-09: 1.0. .220
AS3UMEU MUISTUKE 12.0
SAMPLE BOX NUMBER
METER BbX NUMBER FB3
METER HEAU UIFF. 2.00
C FACIllR 2.14
PRUBE HEATER SETTING 400.
HEATER BUX SETTING 320.
REFERENCE PRESS. 01FF. .00
URY GAS MEIER PUMP SAMPLE IMPINGER
TEMP
CUEG
ll^LET
bO.
63.
70.
70.
00.
02.
64.
06.
Ob.
07.
bO.
09.
.F)
OUTLET
bO.
50.
50.
69.
b2.
62.
64.
b5.
65.
bO.
b7.
bO.
VACUUM
UN.HGJ
0.0
8.5
0.0
0.0
0.0
e.o
a.o
a.o
e.o
0.0
0.0
a.o
BOX TEMP
IDEG.F)
310.
324.
314.
319.
326.
314.
319.
325.
31b.
319.
327.
320.
TEMP
(OEG.F)
56.
40.
44.
64.
64.
60.
50.
56.
52.
55.
56.
52.
TOTALS
AVERAGE
120.0
113.493
3.30
3.32
171,
79.
b4
a.o
320.
55.
-------
I
z
z
j
I
u
•n
a
•
in
9
"U
•M
M
3- J-l
OJ >-
•o
M
z
3
ru
a
•u
3
X
I
o
u. n
Z
3
/>
• .r z
z -«
« z
I/) U.
I I
a. Z
3 —
a.
X
« a.
z o
a.
i
tJ 3
— z
u
Z
z _j
u CL
n
3
ac
3
z a.
/>
z
3
*• 3
Z Z
3 3
U
U.
3 Z
Z jj
3 Z
3 >-
» •*
a.
i
UJ
« 3
n -<
•Jl
Z Z
00
< 3 U — 3
j .£ jj -o z 2
3 _J UJ 3
*• U ~j 3 "- sj
Z 3 Z <
32 _> •« C 3
Z Z
U. < =-0 J. <
33 -VI Z 33
Z X JJ Z
JJ < 'J LU <
I N- -1 Z Z I-
3 1O < "^ 3 ^
j >- a. j
3>- 3 Z 3 •-
> « •— —• > «
Z
3
J3
jJ
Z
z
3
2
3
3 3
r- Z -3 >- *-
3
Z
JT
aJ
a.
— M
«- 3
U '-J
<
Z i-
u. Z
3
Z
Z
O
»
a.
z >•
a. >
A-174
"U
333
c a. u
a j. a.
•a
\j
z
jj
a.
•u
a
a
3
Z 3
jj J
X -J
oj 3
X Z
r.
I
3
_)
3
U
o.
-------
en
HB UAHOMETHIC HKtabUKt
PS1 STATIC PWES uF SULK GAb
PS STACK, PktS, AdS.
TS AVtHAGL STACK TEMP
VS AVtt STACK OAs VELOCITY
AS STACK AREA
USSTU STACK FLU* HATt, OHY«
US ACTUAL STACK FLUn MATE
ISO HfcKCtNT I9UK1NET1C
MK
CS
PPk
MN
CS
FlLTtRABLE PART
MG. EPA S
FlLTtRABLE PART
FlLTtRABLt PAHf
LM1SSIUN WATt
SULFUK DIOXIDE
H6. EPA "3
SULFuH OlOxlUE
SULFuM
EMISSION RATt
SOLFURIC ACID
HG. EPA b
ALlU
SULFUKJC AL10
EMISSION HATE
cJV.JJ IN-hb 711.4t»
-l.iO IN-h«iO -38.10
^'^.d^ IN-HU /aa.la CM-H
171. f 77. C
6*4.i: FPb ib.7 fPS
. SU-IN <>9.tUb 5U-M
. bCFH 19^0«79. SCfH
952b99tt<4. ACFH 5b977bO. ACHM
97.9 97.9
31. b Jl.b
.UO
-------
tXAMPLt HAWdLULATfc C ALCUL A I lUNb TtbT NU.9CMbbP
UNIT 1
VULUMt UF OUT GAS SAMPLtD Al bTANuAKU CUMUlTIUNb
VKSTD = (17.647 * VM • Y * IPB » HM / 14.6)) / (TM * 160.)
17.617 * 113.493 • l.UOb * ( 24.J4 * 3.417 / 13.6)
VMSTD = ------------- --- -.-_--. ------ . — ......._--.--.-.-.--- = ll«J.Ob4 ObCF
I Id. * 4bO.)
UF MATER VAPUK AT STANUAHU
VMC = .04707 * VLC
VHC = .04707 * 341. = 16. 07 SCF
PtRLENT MUISTuHt IN STACK GAS
= (100. * VnC) / IVHSTU * V*C)
' 100, * 16. 07
.Ij 6nU = — — - ------------- - ---- --- = 12.5<4 PtKCtNT
Ch lU.Ufli + lt>.07
MOLt FRACUUN OF UHY bTACK GAb
FHO = (100. - BnU) / 100.
100. - l^.'3
FHU = ----------------------- = .tt7b
100.
AVtKAGt MULtCULAK Mtlbhl UF UKT S1ACK GAb
MU = (PC02 » .«<») » IPOd * .Jii) * (ftid » HCU) • .26
MU = (!
-------
SIACK GAS VtLUClTY AT SFACK LUNUllIUNi
OtLP = bUM. OF THt bUkTIVM * tTb * <*bU.))
vs = t»b.49 • CP * otLP / isukUMKb • HS) * HMbj
Vb = B5.49 » .b4 * 4Ub.UOi / IbuKIl 2«.7b * 29.«!2) * \^. - b4.c!4 FPb
STACK GAS VULUMtTHIC FLUH AT bTACK CUNU1T10US
Ob = vS • Ab • 3buO/la4
US = 04.24 * 45i?39. 3bOU/t44 = S5£b99(54. ACFH
STACK GAS VULUMtTKlt FLU" AT bTANUAHU CuNUITIUNb
QbSTO = J7.b47 * uS * PS * II. - IBrtU/lOO)) / (13 « 4bO.)
17.b47 * 9b«!b99a4. » W.da * (1. - U£. 54/100))
ObSIO = --------------------------------------- -- ---------- = bbll7344. SCFH
t 171 . t 4bO.)
>
* PkRCENT IbOMNtTIt
^j
^J IbO = (30^>.bB« (TS*4bO.) ) • I ( y . U0clbb9« VLC ) * ( VC * T • IPb* lPC/13.b) )/ lTM»4bO.) ) )/ ( IT * VS*PS*UN*l)N )
(3u5.bt»*( 17l.t(lbO.)j*l(U.OO£bb9* 3<4l.)t( 1 1 3.494* 1 .UOb* t ^9.33+( 3. 3 17 / 1 3 .b ) ) / (
U.O - ----------------------------------------------------------------------------------------------- -- a 97. <)i PtHCtNT
I2u. * aa.dt * 29. a^ * .220 *
PAHTICULATt LUAUlNG -- hPA METHOD 5 (AT STAMOAHu CONDITIONS)
CS = U.U01 • HN • li.43 / VMSTO
Cb = O.U01 * 31. b • lb.<43 / 11^.053 = ,UU4<4 bK/USCF
PAHIICULATt LHS/MK -- tPA MtThOU b
PMk = Cb * uSbTu / lib. 43 « 4b3.fa)
PMH = .UU44 * 60llM«<4. / (Ib.t3 * 4b3.b) = 4^.338
-------
8Z.T-Y
x >•
> r-
c v
T) T
Z C >
O •- «
rv,
•
e
e c c. o
• • • • <
c c c o
c c o c o o
c c o e o o
CCCC
CCCC.CC
.-. CD
X — »
z x -o
• m p-
_ n^
t~
n rv n
r* £ *^ r~
O 1 — C
r> 3 x r.
C
f
z
m
rr
c
x
c
c
>
rr pr 3 _. _. to. -. » X T > >r
-«>rn-i>r-»zccrri z»
rr-»XCri-<^« •« Z t T Z
XJ>x-«*fr.to.'^fr;>r- r*-*
IT* X <-> Z 2 —. rr to-
- - z n
o m -4 to. rr, —
> z c z z TJ (r
r~ o a en c z* en -«
to- • rr to. z rr • rr
TI to. cr. "-I I o
> r- TI T «- z er rr
• z
: — C
tv »• c .c a — o LT c o» rv
£l*.£lM£fVCTkjtf&l*£
^) a rv *urc'C»urfiiw-^ct
-ocr.ccr.ccx-ca~ia
c-cc-eeeee-cc
occooocceo
LT. iMLPi*ji/iuiirwM»»fv£
eceeeceeeee
'l»O.UUb.b>Uk>U
trw.LTO.Lr. k» IT U» •- l» f ft,
cocccocccocc
a
o-
oc ccctrcectpcce
c
m
v
z
rr
c
o
•^
c
>
r-
»•
?
r
rr
^
c
c
^
r-
rr.
•4
n
c
•
to.
Z
.
T
ru
c
^«
to>
Z
.
3
rv
e
c
rr
f
T)
««^
C
rr
c*.
.
^1
w
^^
toi
y
.
I
e-
^^
^iH
C
fr
tr>
.
^]
w>
c
»™
a
rr.
^
C
C
•r.
TI
rr
z
rr
z
to.
>
r-
«^
n*
•c
~4
rr
1
T
^
»
o
c
c
X
tt
c
•4
rr
X
•o
c- <
> rr
en z
-<
X
Z 0 <
c
«C to"
rr y
r- c
c -<
n n-
to. W.
«4
•<
C
X
^
to.
n
rr
T
Z
t/1
V
c
rr
If
(-;
*
^
c^
>
cr
^
rr
^
pn
Z
tJ
C
T
^
cn
T
•c
p—
rr
fv c I rv ^' x
DC—, ce. « c»a
ee fceruinw* zi
L£ £ • -4 C OK 7T;
e — rr t
0 C C C
•n e
X
e
•
cr
X 0
o
••
z
z
d
ZTtnTTO!»yx
rrp-x rrrr»t/:cz
Ti>c*r..^— ^TOlrwC'
rr^o»rrirr'XCr«a
zmrr. nzzr-Trrr
rr a- _, pr rr rr
1» T C 1 OJ C f
ocertzrrcct rr
rro> »xcirvz
X — C X C 1 C-
•0 rr 7 to. » _
z c/-. z cczwrvi
rr rr _ T c ^ >.
in -• . o-
• f\^C..C£ fu* •
C T
Z C
to. r
-• c-
c.
-c
^ ^*
c >
-« rr
r- z
rr
— -c
r-
>
cr
•s
V
z c
c >
rr
Z
C
T
a
rr
z
•£ "
o rv'
c
c
tr
IV
O T
m ^ T>
o rr. *.
• X Z
• re x v
o ro n IT c
c r- ce rx,
» -o >.
en tt
en n.
-------
PAHIICULAlt FltLO UAlA ft HtbULlb lAbULAHUIS
PLANT- NAMt AND AOuKtbb IEbT HA* LEAUtH
MONGU PUnEM PLtAbANTb CLAKnE
TEbT
TEST DATt
i OUTLET
ENGLlbH UN1IS
VLC
V*»L
ffU
PCLli*
PCu
Hf»«i
MO
AT STANUARU CONUlTlONb*
TOTAL hdO CUuLtCTED IN
AND bltlCA GtL»ML,
ibO.S
VOLUMt OF rtAItk VAPOK
AT SI AND AND CONDITIONS*
PEKCENI MUlblUKt 01 VOLUME
MOLE FRALTlOlM UKY GAb
PtHCtNI C0<; of VUL.» DKY
HtHCtNl U«? HT VOL., DKY
PEHCtNI CO ttl VOL. i Uklr
PtKCtNT hd bY v(JL.» uKY
MULECULAK rtl-DKY blALK l,Ab
MULtLULAK nT-SIALK l.Ab
bCF
.4)71
it;.90
i.75
.00
METRIC UNITS
TB
TF
TT
NP
Y
at,
CP
P,
V,
TX
VPbTu
TIME-START 930
TIHE-F1N13H 1130
NET TIME OF TEaT, MlN. 120.0
NET SAMPLING PulNTa Id
METEM CALlbRATION FACTOR .98b
SAMPLING NuJ/Lt UlAMtTtR .20 IN
PITOT TObE COEFFICIENT ,b
-------
,3
r
i
s.
"VI
X
I
£
a.
r
i
U]
a.
I
3
(O
.o
o
u
o
X
J
a
9-
V
i.
o
/>
I
-s.
'-3
Z
£
M M
•O 43
in
•VI
^ ^ ""VI O
•VI "VI f. .3
45 *. —
M W
Al Cf
•s
a-
if
a
J
X
I
•VI
£
I
•n —• u. u.
a. i u u
"VI
M
o-
m
M
» J>
'Vl 3
O O
43 —
y »
o z
>. I
9
•
3
in
IT
(\J
a
•
in
2 z
^ i
Z -v
in
— o
— -c
3 J"l
U -U
-• z
z a.
/J
•a
a:
a.
u
•3 •-
UJ UJ >-
-O
-I
U
<<
Z
<
-n
<
/>
•<
u
yi in
so.
< Jj
Z
_u •
^-C9
-II
<
(Z
a. z ~
« y>
jj 2 O
_l 3 -• •«
B —• o a.
Z
3
J I J
3 3
en in
-• 3 «
3 — U O.
7) — jj
ac in z
3 -• 3 •
u. Z u. u
-J Uj -II
33
Jt at
z
3
-J
3
3 <
-. z
3 •»
u. Z
r
•
2
•vi
0. ^
s>
in
in
u
X oa.
A-180
2
X
m
u
-------
E»AMPLfc PAHllLUtATt CALCULAI lUNb
UNIT 1 UuUtF
VOLUME UF OWY GAS SAMHLEU AT JjlANUAKl) CONDITION*
VhSlO = (17.647 * VM * Y * (Co * HM / 13. b)) / (TM * 460.)
17.647 • 119. 670 « .9B6 * I «>9.3J » i.JbO / 13.6)
VMSTD s —--------------------_------------------------------ = 114.Ue!4 OSCF
t 70.
VULOMt OF NAT£R VAPuR AT 5FANUAKO CUNUIIIUNb
VMC = .U4707 * VLt
VnC = .04707 * 3bl. = 16.94 SCF
PtHCENT MulbTUKt IN SULK
s (100. * VwC) / IVMbTO * VrtC)
100. * to.99
BhU = - ------------------------- = 12.89 PthCtM
114. oa-4 t ID. 99
MULt FRACTION OF DMT STACK bAS
FMU = (100. - BnO) / lOu.
100. - It!. 9
FHD = ----------- —
loo.
AVENAbE MuLtCULAH ntlbhl OF UKY blALK GAS
MO = iPtOi • .44) » (nod * .it:) + (PN«; » PCO) * ,<;8
MU = Cl«;.90*44/lUO) * ( 5.d*i<:/10U) * ((bl.4t ,u) * «/10o
MoLtCoLAR «tlC.MT UF SJALK bAb
MrtS = MO • U. - (HftU/lUU)) + Id. * (UKU/100)
11. -U<;.o4/loU) ) * IB. * U2.H9/10U) =
-------
STACK GAS VtLUCITt AT STACK CUNDIIIUNS
DELP = aUH. OF IMt oUHllVrt « ( T b * 4btl.))
VS = U5.49 * CP • DtLH / ISDNHMKb « HS) • PMS)
vs = U5.49 « .at * 40t).oOb / ibuKK «.M * ^<^.<:^)
a4.3u
SIACK GAS VULUMtTKIC FLOW AT STACK CONDITIONS
OS = U4.3U *
. 3bUU/14<4 = SS3410Urt. ACFh
SIACK GA5 VOLUWtlKlL t^LUM Al bTANOAKD CUMUIIIUMb
U3S10 = 17.o47 « US • P5 * (1. - (HnU/lUOj) / (IS * 460.)
17.647 • Y5441008. * ^
-------
HELD UATA
PLANT MONO PUWEH-PLEASANTS
SAMPLING LOCA1IUN UMT 1
SAMPLE TYPE Mbb
OPEMATOK 00
AMBIENT TEMP. (OEG.F) bb.
BAK.PHEi>S.( 1N.HG) e!9.30
STATIC PHESS. UN.H20) -1.50
FlLTEK NOMBEHIS) 0002Mb
STACK INS10E OIM.(IN) 240.00 .00
PITuT TUBE COEFF. .84
THEHH. NO.
LEAKAGE .000 CFM 10-°
1 «JO,0
t-1 30.0
CO «,o.O
00 bO.O
60.0
70.0
00. 0
90.0
100.0
1 10.0
120.0
CLOCK
T IME
f 1 1 1 P M 1
LLOCK )
1304
0
0
0
U
U
0
0
0
0
0
U
Ib04
EVEKY 10.0 MINUTES
bAS METEK VELOCITY
KEAOlNb HEAO
ICO. FT.) (1N.H20)
211.623
221.200 1.900
230.690 1.900
240. OiO 1 .OoO
249. 7bO 2.000
2b9.3bO 1.9oO
269.140 2.000
278.940 2.000
200. 5bO 1.900
297.940 1.000
4u7.b20 1.900
317. 560 2.000
327.690 2.100
UK1FICE
PKESbOHE
bTACK
OlFFEKtNTlAL TE*P
(IN.
UtblKtU
3.40
3.39
3.24
3.61
3.42
3.61
3.63
3.44
3.33
3.49
3.69
3. Ob
H20)
ACTUAL
3.40
3.39
3.24
3.61
3.42
3.61
3.63
3.44
3.33
3.49
3.69
3.06
(OEG.F)
DATE 12/02/02
HUN MlKbtK 10AM5B
PHObt LtNblH & TYPE 6* GLASS
N02/LE 2-03 : 1.0. .219
ASSOPEO ^OlSTOHE 12.0
SAHPLE box NOMBEN
CETEN BOX NOHBEK FB4
KETEK hEAO 01FF . 1 .87
PKObE htAIEK bETTINb 320.
HEATEK bOX SETTING 320.
UhY bAS HE
TEfP
(OEG.F)
IEK
PUf P
VACOOM
(IN.HG)
SAfPLE
bOX TEMP
(OEG.F)
IPPINGEH
TEMP
(OEG.F)
INLET OUTLEI
166.
170.
16t).
169.
172.
170.
170.
171.
IbU.
164.
170.
167.
60.
71.
76.
79.
00.
01.
02.
03.
05.
05.
07.
07.
67.
67.
60.
69.
70.
71.
72.
73.
74.
75.
/e.
77.
5.1
5.1
1.9
5.3
5.2
5.6
5.0
5.5
5.2
5.7
6.0
6.3
344.
334.
34(J.
337.
336.
329,
332.
330.
337.
336.
333.
331.
57.
45.
|j Q
H ~t
40.
St.
54.
59.
63.
66.
72.
75.
TOTAL*
AVtHAbE
120.0
116.075
3.51
3.bl
160.
00.
72.
5.5 336.
57
-------
oo
PAKTICULAIE FIELD OAFA &
PLANl- NAMt AND AUONtSS
MONO PUKtR-PUEASANTS
TEST
TEST DATt
UNIT 1
PH
vc
TM
VKSTU
VLC
VWL
bKO
FMD
POii
PCU
AVERAGt ORlFlCt PRESSUKE
OkuP
VOLOME OF DRY bAS SAMPLED
AT MtlER CUMUIIlONj
AVERAGE GAS METEH TEMP
VOLUME OF ORY GAS SAMPLED
AT SlANDAhD CONDITIONS*
ftST TtA* LEAUEH
UO
ENGLISH UNITS
IOIAL M^O COLLtCIEO IN
iHPlNGtHS ANU SlLlCA
MU
VOLUME OF 1A1E.K VAPUH
AT SIANOAHU LONU1TIONS*
PEKCENT HOISIUHE BY VOLUME
MOLE FKACTION U«Y GAS
PEKCENl LOcr oY VuL., OKY
PEWCtNT Ucf BY VOL.. LlKY
PEHCtNT CO BY VUL.» UKY
PEKCtNT HcJ dY i/Uu.i U*Y
MULtCOLAk wT-UKY SIALK bAS
MULtCULAH rtT-SFACK l.AS
IB
IF
IT
NP
Y
UN
CP
TIHE-STAHT 1300
TIME-FINISH lbO
-------
00
Ln
PB
PS1
PS
TS
VS
AS
USbTU
US
ISO
MN
CS
PPH
MN
CS
PfH
MN
CS
PMH
BAHUMtlHIC PhtbbUHt
bTATIC PKtb UF blACK GAb
MACK PKtb, Abb.
AVtHAlit bTACK ItMP
AVli STACK GAb VELOCITY
bTACK AHtA
STAC* FLOW hATti DKY*
ACTUAL STACK FLUn HATt
HEHCtNl IbUKlNtUC
HANI
Hb. tPA "3
FlLTtRAttLE PANT
FlLlthAbLt PART
HATt
bULFUH DIUXlUE
MG. tPA b
DIOKlUt
bULFUk UlOAlUt
LM1SS1UN HATt
bULFUHIC AL1U
MG. tPA b
bULFUHIC ALlO
bULFUHIC AL1U
tMlSblUN HATE
btt PEG
li«.HG.
1N-HG
-l.bO 1N-H20
Ibtt. ^
»b.<4 FPb
239. biJ-lN
bOO. bCFH 19
b44. ACFH 27
101.1
,oOb9 GK/USCF*
5b.9U4 LB/HK
-3«J
743
7o
b7493
101
4b
13
2b
.10 fM-Hi
,4b CM-MI
C
.Ittb SU-M
.1
.0
.530 Kb/0
.72 KG/Hk
4300.U 4300.0
.bb40 GK/USCF* 1292.B7b fG/USCK
bb2B.b9U LB/HH «;bb3.13 KG/hH.
92.0 92.0
GH/USLF*
120.4£b LB/HK
b<4.b3 KG/hH
-------
fXAMPut PAkl 1UILAU CALCl/LA I luNb ItbT
UNI I 1
VULUMt OF UiVT GAS SAMPLtO AI ilANUAKU CONDITIONS
VHSIO = (17.6<4T * VM • V * IPb » FH / li.b)) / ItM + 4bU.)
I7.b«7 « lib. 0/5 » 1.U3/ • (. tt. SO «• J.iOS / 13. b)
VHSIO = ------------------------------ - ---------------- • ----- = 117.<4b<» UbCF
I 7t,.
VOLUMt OF MATtR VAPUH AT bTANUAWU CUNUITlUNb
VnC = .U<47U7 * VLL
VNC = .U4707 * 3au. = 1/.9U SCF
PtKCENT MuISTUKt IN SIACK UAS
HMO = (100. * V»CJ / IVMSIU »
*?* 100. » 17.90
H> BnO = - ------------------------- = U.2* PtHCtNI
CX> 117.<«b4 » 1 /.9U
CTi
MULt FRACTION OF DHT bTACK
FMO = (100. - BttOJ / 100.
100. - M.«J
FMO = ----------------------- = .db«
100.
AVtHAbt MULtCuLAW MtlbHl UF OKY bTALK GAb
CU = (PCOci • .«^) » IPU<; » .Id) » (PNi> * PCU) * .c
MU = Ilc;.00«t<4/I0u) » ( b.l»3d/10U) t (IB1.4+ .0)
MOLtCULAH NtlGHT UF SIACK GAS
KU • II. - lnn()/10U)) + 16. *
i0.t?D» (1. - I I i.dt1/ I UO J J + |
-------
S1ACK GAS VtLUCJTY AT SIACK CUNUlllUNb
OELP = bOM. UF THt oUKTlVrl * lib + IbO.J)
VS = B5.49 • CP • OtLP / ISuNUMwb • Hb) * PMb)
VS = bS.lV * . d<4 * 410.06tt / (bUNM 20. bU * iH.tl) * 12. = bb.41 FPb
STACK GAS VULUHtTHIC FLO* AT bTACK CONDITIONS
Ob = VS » Ab « 3bUO/144
Qb = 06.41 • n'idW. )t>UU/144 = 97732544. ACFH
STACK GAS VULUMtTHIC FLUft AT bTANUAHU CUNUlllONb
USSIO = I7.b47 * uS • Pb « U. - (brtU/100)) / US * 4bO.)
l/.b47 * 9773d544. * 29.«;7 • (1. - ( 1 3.i«>/ 1 00) )
UbSTO a — — — ..._.- — _ — ..._... — ........__.......__._. - b9744bUtt. bCFH
I lbt>. » 4bO.)
PtRCENT ISOKlNtTIC
ISO = (JO^.b0.)j«l(0.0012bb9« 3«0.)»( 1 Ib.07b« I .037 • I i9.3t»*l 3.b09/ I 3.6) ) / ( 7b.#460.J)J
ISO s -------------------------------------------------------------------------------------------- ..... s 101.14 KEHCENT
li?U. * 86.41 » <»9.i!7 * ,e!l9 • ,«Jl9
PAHTItULATE LOADING -- tPA METHOD 5 (AT STANDAHU CONDITIONS)
Cb s U.U01 * MM * 15.43 / VMSTD
Cb = 0.001 • 45.0 * 15.43 / 117. 4b4 = .0059 Gk/OSCF
PAWTILULATE LBS/MH -- EPA MtTHOO 5
PMW = Cb * uSbTu / 115.43 * 4b3.b)
PUN = .0059 * t>47i44oUO. / (15.43 * 453. b) = 5«.9o4
-------
I- ULO UA I A
CD
CO
PLANT MONO POKER-PttASAMS
SAMPLING LOCAIION UNIT 1
SAMPLE ItPE M5b
OPERATOR UU
AMBIENT TEMP. (OEG.FJ b5.
BAR. PRESS. UN. Mb) 29.30
STATIC PRESS. (IN. H2U) -1.50
F1LTEK NUMbtH(S) 0002/lb
STACK iNSlUt UIM.(IN) 240.00 .00
PUuT TUBE COEFF. .64
THERM. NO.
LEAKAGE .OOo CFM » 8.0 IN.HG
METER CALIB. FACTOR .990
REAO & HELURO DATA
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.J
IN1T 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
00.0
9o.O
loo.o
110.0
120.0
CLOCK
1 IME
(2*-MH
CLOCK )
1 305
0
0
0
0
U
U
0
0
0
0
0
1505
tVERY 10.0 MINUTES
GAS MtTER VELOCITY
READING MEAO
(CU.FT.) (1N.H2U)
956.543
966.200 1.900
975.940 1.900
9tt5.5cO 1.000
995.530 2.000
5.3bO 1.900
15.420 2.000
25.490 2.000
35.370 1.9UO
45.070 1.600
55.0JO 1 .900
65.200 2.000
75.570 2.100
UR1F ICE
PRESSUHE
OIFFERENT1AL
(IN.
OESIHEO
3.40
3.39
3.24
3.61
3.42
3.61
3.63
3.44
3.33
3.49
3.b9
3.06
H20)
ACTUAL
3.40
3.39
3.24
3.bl
3.42
3.bl
3.b3
3.44
3.33
3.49
3.b9
3.06
STACK
TEfP
(OEG.F)
166.
170.
160.
169.
172 .
170.
170.
171.
IbO.
164.
170.
167.
UAlt 12/02/02
RUN NUPbER 10BM5U
HRObE LENGTH ft TYPE 5* GLASS
ASSUfEO MOISTURE 12.0
SAKPLE BOX NUPdER
KETER BOX NUMBER FB8
ftTER HEAD OIFF. 1.90
PRtBt HEATER SETTING 320.
HEATER BOX SETTING 320.
Oh Y GAS
KETER
TEfP
(UEG
INLET
65.
60.
72.
76.
77.
70.
70.
00.
01.
02 .
03.
03.
.F)
OUlLEI
64.
64.
65.
60.
67.
60.
69.
70.
71.
73.
73.
/4.
F-UKP
VACUUM
(IN.HGJ
5.9
.1
.1
.6
.4
. 7
.0
.6
.5
.0
7.0
7.3
SAKPLE
BOX TEMP
(OEG.FJ
341.
341.
330.
334.
338.
327.
327.
330.
340.
329.
333.
341.
IMPINGER
TEMP
(OEG.FJ
50.
47 .
45.
49.
52.
56.
55.
SB.
62.
64.
67.
69.
TOTALS
AVERAGE
120.0
119.027
3.51
3.51
IbO.
77,
b9.
6.6
335,
57.
-------
00
VD
PAHIIUULAU FltLO DATA a KtSULTS
PLANT- NAMt ANU AOUKLSb TtST TLA* LtAOtK
MONO PUHtH-PtEASAMS UU
TEST IUHM5n
UNIT 1
TEST DATE
IB
IF
II
NP
T
UK
CP
PV
VM
IH
«»1U
VLC
VMC
«*0
FCU
PC02
P0<>
PCU
P^
HU
MhS
ENGLISH UNITS
u/o^/Bd
TIHE-bTAnT I30b
TIME-FINISH Ibob
NET 1IME OF IEST, Mil*. 120.0
NEI SAMPLING PUlNTa It!
METEN CALIBRATION FACTUR .990
SAMPLING NUZ/Lt UlAMtTtH .«;20 IN
PITUT TUoE COEFFICIENT .tiH
AVEHAGt OHIFlCt PHtSSUKE 3.bl IN-H<>0
ORUP
VOLUME OF UkY bAS iAMPLEU 119.0^7 CO-FT
AT MtTtR CuNUITluNb
AVtHAGt bAS METEN TEMP 7«J.b F
VOLUME OF UHY oAb SAMPLED llb.bll SCF
AT STANOAKU CONDITIONS*
TOTAL H^O LOLLtCTEO IN 614.2
IMPlNGtHS ANU SILICA GEL«ML.
VOLUME OF «A1EK VAPUK 17,bl9 bCF
A I SIAMJANU CONDITIONS*
PEKCtNT MOlSIUHk BY VULUME 13. Ob
MOLE FKACTION uHi GAS .bb9
PEKCtNT U0 BY VuL.» UHY l«J.bO
PEHCENT U2 BY VOL.» UHY b.05
PtKCtNJ tU BY i/UL.i LlHY .00
KEKCtNl Ni? MY VOL.. L)Hr B1.J5
MOLfctOLAH nT-OHY SIACK bAS SO.c^b
MHcELULAK rtT-SIALK (,Ab ^d.bb
METH1C LNITS
Id/O^/bc!
I30b
IdO.O
1^
.99«
b.b I»M
.M
a9.1 KM-H^U
3.370 CU-M
ii.l C
3.3o<; SCC
37a-'
.<4Vb SCM
13. Ob
.Bb9
Id.bO
b.Ob
.00
61. 3b
30. £b
cfti.bb
-------
PB
P3I
PS
TS
VS
AS
USSTO
US
ISO
HK
CS
HN
>
^ «
VD
O Pt»H
MN
CS
Pt»H
dAKUMEIHlC Phtb'bUKL
STATIC PKEi uF SULK GAb
STACK PHtb. ABb.
AVtBAUt STACK TEMP
AVb bTACK bAb VELOCITY
STACK AKtA
STACK FUOl* KATt, UHY*
ACTUAL SFACK FLOA KATE
PERCENT IbOMNtUC
FltTtHAttLt PAHI
MG. tHA b
FlLTEHAdLE PAHf
FILTERABLE PAKt
EH1SS1UN HATE
UlUxlUE
H6. EPA b
DIOXluE
EMISSION KATE
SULFUH1C ALIU
MG. EPA "3
ALIO
bULFUHIC ALlO
EHISSIUN HATE
b8 UEG F,
lU.HG.
t?4.id 1N-MG
-l.bO U
£S.ef7 IN-Mb
lob. F
ttb.M FPb
SU-1N
bCFH
ACFH
JU.b
UObl GM/OSCF*
LB/HH
b KM-HG
lU fM-H«>0
4b KH-HG
76. C
-------
EXAMPLE PAHIUULAIE CALUILAI 1UN5 Ttsi
1
VULUHt OF [MY bAb SAMPLED Al bTAMJAKU CONUITIUNS
VHSTO = (I7.b47 • VM * r • (PC » PM / 13. b)) / IT* * 4bO.)
17.647 * 119.027 • .S9a * ( c!9.3o * 3. SOS / 13. b)
VMSID = -------------------------------- - ------- - ------------ = llb.bll UbLF
I 73. + 4bO.)
UF NATtK VAPuft Al bTANuAND CUNUItlUNb
V«C = .01707 • VLC
.00707 • 3/a. = 17. aa SCF
PENCENT MOl^TuHt IN S1ALK bAb
0MO = (100. * VnCJ / (VMSTD »
>
I 100. * 17. b^
1-1 B*0 = ---- - ------------------- -- = 13. Ob PEKCEM
L llb.bll + 17. Sd
HOLE FRACTION OF UKT 6TACK
FHD = (100. - BrtOJ / 100.
100. - 13.1
FMD = — - — -
10U.
AvEKAbE MULtCuLAK rttlbHl UF UKY blACK bAS
MU = (PCO«i • .44) * IPOt! * ,3«i) + (P.Vt; + PCU) • .db
MU = (l«!.bO»44/10u J » ( b.l*3d/lUO) * ((U1.4+ .0) * 0/lV(j = 3U.Cb
HuLtCUlAH MtlbHT UF STALK [>Ab
HrtS = MU * 11. - IM..1J/ I UUI ) t Jo. « (UwU/100)
il).c!o* (1. -11 3.Ob/100 j ) + 10. • (13.Ob/100) = «fb.bb
-------
STACK GAS VtLuCjTt AT blALK CUNOlllUNb
OtLP = bUM. OF I ML bUWTlVH * (\o * <4bU.))
Vb = *»5.<49 * CP * OtLP / (buNMMKb * Pb) * PNTSJ
Vb = «5.<49 * .01 * 41B.ObB / (buKH 2(J.ob * 29.27) * 12. = bt.JO
STACK GAS VULUMETNIC FLUM AT blACK CUNDIT1UNS
OS = VS » Ai « 3bUU/l<4<4
OS = db.3tt * I5c!39. 5bUU/ia<4 = 97fa905bO. ACFH
STACK GAS VULUMtlKlL FLUM Al bTANUAHU CUNU1TIUNS
UbSTO = 17.607 • US • Pi * (1. - IbnU/lOOJ) / (TS * 4bO.)
17. ba? * 97b9a5bO. * 29.27 * (1. - (13.06/100))
OSSTD = ------------------------------ - --------- ........ --- s b9H509c!t>. SCFM
* 4oO.)
PERCENT IbOMNEUC
I»0 = (30^.^0* (TS»«bO.J )• I (y .U02bb9«VLL)»lVl'*r« (Pu* (PP/M.b) )/( rM*<4bU.) ))/( IT • VS*PS«UN*DM
1305. 5d»( Ibb.t^bO.) )« ( (u.00«!bb9* 37£. ) + ( 119.027* .99tt»( 29.3a«( J.509/ 1 3. to) ) / ( 73. + 460. ) ) )
ISO = ----------------------------------------------------------------------------------------------- — = 99. 3b PtKCtM
120. * Sb.ia * 29. 27 * .<:20 * .<:20
PAkTICULAlt LUAUlNb -- tPA METHOD 5 (AT STANUAHU CONDITIONS)
Cb = 0.001 « UN * lb.43 / VHSTO
Cb = 0.001 « ie.b * lb.13 / llb.bll = .OOil GH/UbCF
PAKHCULAlt LbS/Hrt — EPA MtTHOU b
PMh = Cb » ubbTu / Hb.143 * «b3.b)
) = 50.tt«2
-------
MtLU UAFA
PLAWT MUNbu POrttK PLtASANTS
SAMPLING LUCAIIUN UNIT i
SAMPLt lYHt M5B
GPErtATOH LLANi^t
AMBIENT TtMP.lDtG.F) bO.
BAH.PNESS.(IN.HIi) 29.3U
STATIC PMtSb.CIN.H2U) -1.50
FILltK NUMBtHlS) 0002717
STACK iNSlOt UlH.UN) 240.00 .1/0
PITuI TuBt COtFF. .84
THEHM. NU. 201
LtAKAGE .Old CFM o, 10.0 1H.HG
HtTtN CALIB. FACTUH i.oob
RtAU * HtCUKO UATA
THAvEHSt
PU1NI
NU.
1N1T
SAMPLt
1IME
(MIN.)
0
10.0
cfO.O
30.0
40.0
50.0
bO.O
70.0
80.0
90.0
100.0
1 10.0
120.0
CLOCK
I IMt
r- . nf* \
CLUCK I
300
310
320
330
340
350
1400
1410
1420
1430
1440
1450
1500
tVtNY 10.0
bAS MtUR
KtAOINb
(Cu.M.)
207.427
217.190
22b.4l7
235.595
245. 9MO
255.555
2b5.450
2/5.325
205.635
294. 4b4
3o4.b<;5
314.144
324.450
MINuTtS
VELUL11Y
HtAO
IIN.H2U)
1.900
1.900
1.800
2.000
1 .900
2.000
2.000
t .900
1 .800
1.900
2.000
2.100
UHlFJCt PHtSbUKt
UIFFtfttNTlAL
(1N.H2U)
UtblKtU ACTUAL
3.40 3.40
3.40 3.40
3.20 3.20
3.b5 3.70
3.46 3.50
3.b7 3.70
3.70 3.70
3.50 3.50
3.3b 3.40
3.50 3.50
3.70 3.70
3.89 3.90
bT ACK
TEPP
(Utb.F)
UATt 12/02/82
HUN MjCbtH 10CM5B
PHObt LtNblH A TYPE 5' GLASS
i\U//Lt £-09: I.U. .219
AbSUPED CUISTUHE 12.0
SAPPLt bUX NUMbtK
CtTEH bOX NUKbtR FB3
VtUH htAU UIFF . 2.00
C FACIUK 2.14
PHOBt HEATEN btTTING 320.
HtATEh bUX SETTING 320.
HtFtHENCE PNtSS. D1FF. .00
UHY bAb ft
TtMP
(Utb.F)
ItK
HUPP
VACUUM
lIN.hb)
bAKPLt
bOX TEMP
(DEG.F)
IHPIUGEH
TEMP
(UEG.F)
INLET UUTLET
Ibb.
170.
»6fl.
Ib9.
172.
170.
170.
171.
IbO.
Ib4.
170.
Ib7.
bb.
72.
79 .
83.
87 .
89.
90.
91.
91.
92.
9c!.
93.
bb.
bb.
bb.
b9.
b9.
/O.
71.
71.
71.
73.
73.
73.
6.5
6.5
b.O
7.0
7.0
7.5
7.0
7.0
7.0
7.5
7.5
8.5
322.
308.
316.
317.
318.
31e.
313.
313.
3U.
313.
313.
319.
52.
54.
4b.
46.
50.
50.
54.
52.
5b.
5b.
54.
58.
TOTALS
AvtHAbb
120.0
117.023
3.54
3.55
Ib8,
85.
70.
7.1 315.
53.
-------
PAHIlCULAIt FitLU OATA & hEbULTb lAbULAtluK
PLANT- NAMt ANo AUOHtbb ItbT TtAH LtADtK
MONGO POwEW PLtAbANTb CLAHHE
TEbT lOCMbti
TEST OATE
UNIT I
ENGLlbH UNITS
V*L
FHU
pcoa
POcJ
PCu
MO
Mhb
IHPlNGtKb ANu blLlCA GEL, ML,
VOLUME UF nATEK VAPOK
AT SIANUARU
17.b7b bCF
PENCfcNT MOlblUKE BY VOLUME
M0|_t FKACTIOU URY UAj
PEHCtNl co«; or VUL., IJHY
PEKCENl U«J bY VUL., U«Y
PEHCLNT CO BY VUL.,
HERCtNl ^<,^ tlY VUL.,
MULbCULAh ftl-OKY blACK bAb
MOLtLULAK nt-blALK l,Ab
METRIC UNII5
>
1
H
^
IB
TF
TT
NP
»
U*
CP
p.
Vf
TF
VFbTO
VLC
TIME-START 1300
TIME-FINISH Iboo
NET TIME OF lEbT, MIN. 120.0
NET bAMPLli«G PuIrtTb \
-------
HB
PS1
PS
TS
VS
AS
USSTU
US
ISO
MK
CS
MN
vr>CS
Ui
HHH
MN
CS
UANOMtFHIC PKEiSUHt
STATIC PWtS uF SIAUK GAS
STACK P«t3, ABa.
AVtHAGt STACK TEMP
AVfa STACK GAS VELOCITY
STACK AHEA
STACK FLUM HATt, OKY*
ACTUAL S1AIK FLU*
PEHCENT ISUKlNtUC
FILTERABLE PANT
HG. EPA "3
FILTERABLE PAHT
FlLTEHABLE HAH I
EMISSlUN HAlt
SULFUH OIOXIUE
MG. EPA i
SULFUR DlUXIuE
SULFUH OlUXluE
EMISSION HATE
bULFuHIC ACIU
MG. tPA b
SULFUHIC ACIU
SULFuRIC AtlO
EMISSION HATE
IN-hb
-l.bO
160.
64b<4«97o.
IN-Hb
f
FPS
SU-1N
SCFH
ACPh
.Ollb GH/USCF*
LB/HH
1190.0
GH/USCF*
bb!7.t>3b LB/Hk
.Olo£ GH/USLF*
101.631 LB/Hk
7Mb. tfl KM-Mb
-iB.10 KM-HcJO
7«i.«b Kh-HG
76. C
db.i KPS
t!9.1ttb Su-M
9B.7
ab.337 KG/USC*
bl.9t KG/HH
4190.0
.1/7
,2b KG/hH
75.U
^3.1/b Kb/USLf
<4b.lO KG/hH
* bB UtG F,
IN.HG.
-------
tXAMPU PAHULULAIt C ALCUL A J I UNb ttbT
UNIT 1
VUl UHt OF UMY GAS SAMPLtO AT bTANOAKl) CUNUIIlUNb
VHSIO = U7.b .Ua707 * 37b. = 17. b7 SLF
PtRCENT HUlblUKt IN SIACK GAS
BnO : (100. * V*C) / (VHSTU * VMC)
>
I 100. * 17. b7
J BMO = ------------------ - ------- = 13.37 PthCtNT
» 17. b7
HULt FRACTION OF DRY bTACK UAb
FHO = (100. - UnUJ / 10U.
1UU. - 13.4
FMD = - ---- - ------- - — - --- --- = .Bbb
100.
AVtKAGE MOLtCuLAH ntlbHI UF UKY S1ALK GAS
MO = (PtO«i * .«
M«S = MO * Cl. - (bnU/lOOJ) * IB. * (b«U/lUO)
M«S = 30. ab* (1. -U3.37/1UVJ) t IB. * (13.37/100) = titt.bt?
-------
STACK GAS VtLUtlTr AT STACK CUNullIUNb
OtLP = SUM. OF THt bUKHVH * ITb * 4bO.))
VS = B5.49 • CP * UtLP / ISuNUMwS * PS) • HMS)
VS = 05.49 * .tit * -4l«.0btt / ISUHK ib.b2 * 7) *
tit, 44 FPS
SIACK GAS VULUMtTHlC FLO* AT STACK CONDITIONS
OS = VS * AS * 3bOU/l44
OS = ttb.4<4 * 45«>3V. 3bOO/144 = 977b3l«!0. ACF M
STACK GAS VULUMtTKIC FLUN AT STANUAKU CUNUITIUNS
QSSTO = 17.047 * US * Pi. » (1. - (BnU/lUOj) / (IS » ObO.)
17. bar * S77biUO. * e9.a? • (I. - (13.37/10U)j
---------- — ------------ — .__.-.......-.-----.--
( IbB. * 4bO.)
OSSTO =
b464B97b. SCFM
PERCENT ISOKIMETIC
ISO s (iOb.58»(TSt4bO.)
(3oS.5«*t
121).
Bb.44 *
J/(TM»4bO.)
.00b*l £9
-
*
1 3.6)) / ( 7B.«4bU.J))
= 9B.7b PERCENT
PAttTICULATE LOADING -- EPA HLTHUO 5 (AT STANUAMU CUNUlTIONSJ
CS = U.U01 • MN » IS. 43 / VKSTO
Cs = 0.001 * ob. 4 * lb.43 / H4.5«;l = .Ollb Uh/USCF
PAHIICULATt LUS/hN — EHA MtTHUU b
PMM = CS * USblU / lib. 43 * 4bi.bJ
PHH = .Ollb * b9b4BS7b. / (lb.43 * 4b3.b) = 114. bO
-------
FltLU UA1A
PLANT MONGU PU*EK HttAbA^Tb
SAMPLING LOCAUUN UNIT i
SAMPLE TYPE M5b
OPtHATOH LLAHKt
AMBIENT TEMP.IOE6.FJ bo.
BAR.PHESS.UN.Hb) 29.30
STATIC PRtSb.llN.H20) -1.5U
F1LTEH NUMBtHlSJ 0002718
STACK iNSlDt U1M.UN) 240.00 .00
P1TOT TuBt COtFF. .84
THEHM. r.o. 201
LEAKAGE .004 CFM « 10.0 IN.HG
METER CAL1B. FACTOR .980
KtAO * HECUHO OATA
THAVEHSt
POINT
NU.
INIT
!>
1
H-J
vo
00
UTALb
SAMPLt
TIME
(MIN.J
0
10.0
20.0
30.0
40.0
50.0
oO.O
70.0
00.0
90.0
100.0
110.0
120.0
IdO.O
CLOCK
T I ME
124-nH
CLOCK j
1300
1310
132o
133o
1340
1350
1400
1410
1420
143u
1 440
1450
IbOO
tvtNt 10.0
GAS MtUH
HEADING
(CU.M.J
935. b84
946.222
95b.B20
9bb.275
97b!340
907.010
997. bOl
7.b53
18.780
28.528
38.758
49,049
t>0.9bl
125.297
MINUTES
VELOC11Y
HEAO
(IN.H2U)
1 .900
1.900
1 .800
2.000
1.900
2.000
2.000
1.900
1 .800
1.900
2.000
2.100
UHJF1LE
PHtSbUHE
bl ACK
DIFFERENTIAL 1E*P
(IN.
UtblHEO
.47
.45
.30
.70
.50
.70
.70
3.50
3.40
3.bO
3.70
4.00
H20J
ACTUAL
3.50
3.50
3.30
3.70
3.50
3.70
3.70
3.50
3.40
3.bO
3.70
4.00
(OEG.F)
Ibb.
170.
168.
Ib9.
172.
170.
170.
171.
160.
Ib4.
170.
Ib7.
UAlt 12/02/82
HUN NOKbtK lOUHbb
HHUbt LENbTH & TYPE 6' GLASS
NLUILE 2-0/: 1.0. .221
AbSUPEO KUISTUNE 12.0
SAPPLE box NUMBER
KtTtN BOX NOPBER FB5
t-tTtH htAO 01FF. 1.97
L FACTCH 2.14
PHOBt HtAltH SETTING 320.
HtATtH bOX SETTING 320.
HtFEHENCE PRESS. UIFF. .00
OhY bAb CtTtH
TEMP
(UEG.F)
INLET OUTLET
74. 74.
77. 73.
05. 73.
90. 75.
95. 76.
9b. 78.
98. 80.
98. 80.
99. 82.
100. 04.
100. 83.
100. 05.
PUCP
VACUUM
(IN.HG)
8.0
8.0
7.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
9.0
SAPt-LE
BOX TEMP
(OEG.F)
320.
318.
301.
302.
305.
307.
309.
310.
310.
309.
308.
309.
ICPINGtM
TEMP
(OEG.F)
56.
42.
44.
48.
48.
52.
48.
54.
54.
56.
58.
6*.
AvEHAbE
3.59
3.b9
Ib8,
93.
79.
8.0 309.
52.
-------
vo
HAHlICULATt FltLU UATA & IttbllLTb
PLANT- NAHt ANU ADUKLSb ItbT TtAK LtAUtM
MONGO RUMEN PLtAbANTb LLAHKE
TEST IOOM5b
TEiT DATt
UNIT I
ENGLISH UNITS
METH1C LM1S
IB
TF
TT
NP
r
ON
CP
PH
Vf
If
VMSTU
VLC
VHC
unu
FMD
PCg*
PC*
pcu
^
MO
MMb
TIME-STAHT 1300
TIME-FINISH 1500
NET TIME UF TEbT, MIN. 1£0.0
NET SAMPLING PulMS 12
METEH CALIBRATION FACTUR .906
SAMPLING NuZ/LE UlAMtTtR ,ct\ IN
HIT01 TUBE CuEFFlCltMT .B
-------
I
to
o
o
t>B
CSl
PS
IS
VS
AS
USSTU
US
130
HN
CS
PHH
CS
MN
CS
PPN
BAROMETRIC PHESbUHE
STATIC PHES UF SIACK GAS
STACK PRES, ABS.
AVERAGE STACK TEMP
AVI, STACK UAS VELOCITY
STACK AREA
STACK FLU" HATE. UHY*
ACTUAL STALK FLUn HATE
PERCENT ISUKlfcEUC
FILTERABLE PART
Mb. EPA b
FILTERABLE PART
FILTERABLE PAHT
EMISSION RATE
SULFUR 010XIUE
MG. EPA b
SULFUR DIUXloE
OlOXluE
EMISSION RATE
SULFOR1C ACIU
MG. EPA b
5ULFUR1C ALIO
SULFuRIC AC10
EMISSION RATE
•JS.iU IN-Hb
-l.bO IN-M«;0
£4.19 1N-MO
Ibt). F
ttb.b (-PS
<4b«JJ9. SU-IIS
b'ibUO'Mc!. SCFh
97BB1B7£. ACFh
100. J
77.3
7
-------
EXAMPLt PARTICULAR CALCULA1 IUNb ItbT
UNIT 1
VOLUMt UF UKY GAS SAMPLtO A) MANUAKl) CUNUIllUNb
VMSTD = (17.647 * VM « T • IPb » HM / 13. b)) / (TM «• ObU.)
17.b«7 • lib. 497 * .980 * ( £9. Jo + 3.b9e: / 11. 6J
VMSIO = -- ------------------ -- ---------------- - ------------- - = lltt.JbS DSLF
I ttb. » <4bO.)
VULUMt OF MATtK VAPUH AT bTANUAHD CUNUITIUNb
VrtC = .0«707 * VLL
VMC * .04707 * 30b. = ltt.15 SCF
PtWCENl MUlblUkt IN SIACK bAS
BM() = (100. « VnC) / (VMSTO t vnCJ
;> 100. • IB.lb
I 8*0 = --- -- --------------- - --- -- = 13.30 PthCtNT
16.15
MULt FRACTION UF UHY bTACK
FHU = (100. - BftOJ / 10U.
100. - 13.3
-- --- — — = .«b7
100.
AVtKAbt MULtCULAH WtlUHT UF UKY SlAQK GAS
HO = IPCO^ * .44) + (POd * .id) * (PNi » PLU) « .
-------
SIACK GAS VELOCITY AT SUCK CONUIMONb
UtLP = SUM. OF THt bUWTlVH * lib * <»bO.J)
VS = 05.49 • CP • OtLH / lSU«l(fc«b * Hb) * HMb)
V5 = 05.19 « .0« * mo.obo / (SURU
-------
APPENDIX B
FIELD DATA
B-l
-------
EMISSION TESTING FIELD DATA
HANI I Clll
WMl^'Wi''^'''''^^
2
S
i i i
DAK
II » It II 11 H 40 41
SAMPLING 10CAIION
41 4144 4S 141 41
Itl I) III4I
1 3BI W /tl 1 ' "' * 'I *^Jt" • " All * I.. ... J..._ ^ I I J ^i^-Jy '
li/Kifi/fi/t-Mtki'iTt ih i i i i i i i i i i i i i i i i I iH-fUfi
WUtflE
kl|>'|>lUl|'o|ll!>l|M|'4|/iL|ii|(||n|M
j * ' ji * i i
M II I I M I
IW M.
4
ONMIOI
I
«|'»|"H'i|i4|<>|n|i)|.i|njjii|n|n|ii|i4|)>|it|ii
1 1 I i i I I i i i i i M ' ' ' Swl^
AM
II HC
Cf>
ii[n{.
cms.
(IN. Hf)
II Hill 54
SIM 1C
MISi
(IN H^
is|n[ii|ii|ii
rum
1 I M I I I I I |
SIAU INSIH
OlMtN. (INCMS)
M|\tUoilljllUj|t<|li|il|ll|ll|t
jrf J • I I * I I I I
I I i I I
rnoT
IUU
fust
jM
nliilnl
HUM IU6IM AM> UN
|.|.|4M.|.l.|tl..|..hi|..|..|.M..|.,|..i.t
I i M I I I I I
Ml IH.
1.0.
io|n|ii|iijii
NO.
r^m.
H.O. |sAM>t{Ulll I
(t) ;BOI Mikono AM*
M 111 II
J_L
MUI
Mlll CA1
f AC 101 »
fi?y>
ICAK CHECK
cm
IN. H«
£0
FACTOR
' ' ' i 4
MCIOI
tltlt4|lt
MOM
MUI $41
ti ti it tt
&
jHjt
•01
MUI Ml
"I'tfh,
HF.
ititSt
iccou
OAIA
HIM
>l«T?Ti5
ifc
EQzEi
•MiiEiE
4a(4»bo }a
vcuxrinr
oairicc r us SUM
DirrtUNTIAL
STACK
VXMTCIUTUU
DAY CAS M£TCK
TCMPtRATUKT
IN£CT
CHJTLtT
IT »«
ruwr
VACUUM,
CAMPLE MI
TCMfCKATUU
1
c
TZZ
m
/v
32
ZI"TJ
2
7 •/
22
•77
ZS
ZZZ
H
ICO.
sa
S2
4970A&B RUN. NO. IA-
-------
EMISSION TESTING FIELD DATA
-------
EMISSION TESTING FIELD DATA
HA»I t cm
J'|i|i|ii|ii|ii|n|i«|ii|it[njii|n};fl[»i|»|n|].|n|n|»|ti|»|>o[ii|u|»
MM
OAlf
>4|n|)t|l>|)i|»|l|»|M[t«jSi|>|[>l[>|[M|Ki(u|n{»[M|l>
i i
iTl I'l I I I I I I I I I ! I I I
tM
SMPLt TtH
"|l'|llM'o|tl|>l|>l|f4|ls|ll|l
1..' ;*» nV ' I I I I I-
JL
OMMIM
IINP
(•f)
II II 10
CiiSS.
(IN M,))
£GE
2/1 U If t 111111 -i--i- --1--1— '"'""j"i"i'i'*i" ••i-'i"i-']'~i-'i-*i»'i"r'ijji"i"i"i>*i"ijir
-iQfWi I M I I I I M I I I I I ^•plAgi?^ . T/A I i .0.00^7.5^. | . , . , . M
SIAIIC
PUSS
(i« M?O)
IS lllll M 11
mill iotju(s)
IftSIM
OIMN. (IkCHtS)
l"IH>.|»l>.|M|l>|>.|.,|..T
1 I A I I
I M I I
1
'''''''''I
rnoi
IUM
c»
MMC IUCTM AW ll«
*Jtl«i>l|ltl"l"h»l'»lulltl'»l"l"I'«
_£li
Mini
I0|ll|»|lljt4
NO.
itlitUiui |Ji
jȣ
M,
k4|4t U.J4I
LUK CHICK
crn
IN. Hg
l|Si{Sl|S4|sT
n|si|si[s«].o[r
rwiai
rwu
MUI UT
IM
Mtf
l|'l|»l|»
HUI Ml
333JT
Af
>i|n)u|n
KOMO
OAIA
-------
EMISSION TESTING FIELD DATA
HANI t cm
|"|"|"I"H'>I|>I"I"I"H"I';I"I'I"I"I"IMI'°|||I"I"
Mlt
IOCAIIOM
i i i i i i i i i i W&ft&rt I i .4u>/.rT ./.... . . ..
SMtflt TIN
1 I I I I I
It* NO.
OflMIOl
'I.I
. i i i . i . i ....
AN*.
UlV
WSS.
(in Hql
STATIC
WSS
(IN. M?0)
Him
I'lVl I I «?|0|0|Zr?l5gl I I I I i I I I I I I j I I I I I A j I
SIAC( INSIOC
OlttN.
MOH tiMTN AM HM
1 I I6ll
..,.,,,
Nome.
i.o
a|n|;i|nji4
NO.
M.
(i)
BOl NO
n[n|u
WT(I I NCUI
KOI M. 4 M •
Will CAl
f«TM V
4t 41
IU1 CHECK
IN. Ng
K
FACTOR
NUI ui
>4[4(|4l|t1
rnoi
TUli
c»
an
)olii|i; »|MII
m
PMC
•01
NUT SCI
HI.
tt
•[COM
MIA
N|*$
ill
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant jjt
Sample location
Run number /.-/•-
•£ ///*r^vITS*Sample date ///e?/^o
/
C^c~rj-i7-7~ Recovery date
Particulate sample type y^s M5<3
Particulate filter number
Particulate filter sample I.D.
Probe rinse
Recovered by
Mfr 3£0-
V970
rro^ vr I.D.
Purge train 20 min (check when completed)
Location of filter in back half
MOISTURE
Final wt
Initial wt
Net wt
1st 2nd 3rd
impinger impinger impinger
557. b"g ^°l-^ g CM.
y$ST. <§ g bbO-^Q ScfZ.'
9/, g -if.« g #,*/
Total moisture ^-^,3
1 9
i g
g
• g
4th
impinger Silica gel
63-^.7 g V^^-g
^/r, o g 2-
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /'Cv£>
Sample locat
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
-2
:ion **"" /
sample type
filter number
filter sample
20 min (check
filter in bacl
1st
impinger
5T7.5g
#V.6 g
*X7 g
• ~P /j*L^<*£> 4'^7-^ Sample date / / /"Zc~t / * ~Z—
c>Lr-rj-j=-r Recoverv date if/Z'^j'S^—
Recovered by /ViZ-L./ P^€Lzi
x,fe_5. M5 ^> M5-3SO H-£4SO M5»<3cu
3F Occi^j^T''' ' i3 ^^
I.D. 4^1 "7^^ ^
vi«- I.D. ^/Q?^1^"
when completed) v^
< half r^T-cVif^-O 2.^ t- -\ ^^ -
MOISTURE
2nd 3rd 4th
impinger impinger impinger Silica gel
63) ^ g ^^r.6 g ^"^ • ' g ?^3g g
, -^- / «c-~ a -^"S'-f. T a ('-jCDO.xV Q 7 "7 S~. (^ g
•y?. ^ g /7^' g 5"?,^ g /^-^ g
Total moisture 2-f ^. j^ g ^5^ * spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
4- '
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by ^
Remarks /-z.J*
LABORATORY CUSTODY
Date
B-7
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /k^vAtA 1+1=^4 Axe, m/P^+^hJ-r^TA Sample date ///-?./
i=s. _.. ^ , i
Samole location CU-TLJ^T Recovery date / / AS
r _ •-• /
Run number /f /vS'&nJ Recovered by 'PH, LL, TX / A
J
Particulate sample type M55 MS-S20 M5-4J&C
^"$£-ftiii
Particulate filter number ^ ,
4 -'
Probe rinse H--? o I.D. ^9 ^3
Purge train 20 min (check when completed) -^
Location of filter in back half fe^FTcot^kTrO ^ ~^ -r- *
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Final wt 5^^-Lo g L ZD T g 602.. 1 g 637. / g
Initial wt v9c?,£p g (=>7/. V g .S"7^-? g -V^D.'?. g
Net wt 'f^fl g -,T/U? g 5"5~,3 g 5 »/3 g
Total moisture ^05-7 g VO
^Z.
•9/?z:
r07t?5?,r€(
I V^ M5«-
.rg?
TAi^.
Silica gel
,?V7..i g
^/ jTg
nr g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Or
~
LABORATORY CUSTODY
Received by
Remarks '-/
Date
B-8
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
S7/4 Sample date / //cQ/?
sample type M5 B M5-32fl M£=450
Particulate filter number ^ OCo *2.~?-^_ B> _ — -
Particulate filter sample I.D. ^T-i "
I/ ^^^ T n ^V*"7' "7 <•/ ^
Prohprin^e rr ^O 1 . U. ^ __^_
Purae train 20 min (rhpr.k when completed) ^
\ ?ci
Lnration nf filter in back half BsTUJcT^ro e^v -r- ^ j:-^(
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
o ^ i 3 ^^ >Jl 9
Initial wt £/£7 Z- g ££> £ 5" g ^7^-if g 6 g 7
RECOVERED SAMPLE
~ 4 ,'
ppnpF RTN-^F CONTAINER I.D. ^9~7S' '
TPA IMP r.nNTATNER I.D. ?£?/? ^ LIQUID LEVEL MARKED
wnn, IMP. rnNTAINER I.D. Y'/^ /? - LIQUID LEVEL MARKED
BLANK CONTAINER(S) I.D. LIQUID LEVEL MARKED
IPA yy?z.# ,
H,0, V?*lft X ^
H?0 VQ?^^ x- -"
Acetone V^r?/ ^ ^ -1
Sample4? stored and locked
Rpmarks
t - LABORATORY CUSTODY
' ' S/ '\ ' ""'' ' /-
Received bv ^ • *.'• ~>-< *'^ ( /' -' ( ' ^< "^ — Date ^' -'
Remarks . >/-"-. •'• .^ '-'&'-> j .
7/3^
-*J-Tt?S3c8
^^iM5a3
^>
Silica gel
? 7 3 J g
^0 5"^^ g
7^/ g
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE.
/OL<.
COMMENTS:
.TEST NO.
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION -S W. JC_
SAMPLETYPE<
SAJplNTEGRATED, CONTINUOUS).
ANALYTICAL METHOD.
AMBIENT TEMPERATURE
OPERATOR
.ORSAT LEAK CHECKED
^^\^ RUN
GAS ^\^
C02
02 (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
IZ.O
Af.?
NET
/Z-o
6.?
2
ACTUAL
READING
IZ.I
/9-o
NET
/z-/
6.7
3
ACTUAL
READING
/z.f
/9-o
NET
/z../
6.9
AVERAGE
NET
VOLUME
/2./
c,:J
MULTIPLIER
44/100
32/100
^/lOO
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md. Ib Ib-mole
CD
I
-------
EMISSION TESTING FIELD DATA
VBAVKKM
•VINT
CLOCK TIMg
•AMFUM6X. (24 kr
TMK,iU* XXUJCE)
j&L
CM METE* urmiac
IV.I. It*
VELOCITY
omricc PMCSSUU
DirrCRCMTIAL
UHl.tn.HjOl
iTACK
TtMTCMATVU
DAY CAS HETEB
TEMPERATURE
"fiflif"
OUTLET
runr
VACUUM.
CANPLC VOX
TCNTCtUTUU
IHTINCU
RNTCMniM
±L
1*
M.
LZ
l*n&
ML
S
£L
&
J&
SA'II
w
-y*?*
S
M
5
s
/.
m
/.^
22
£2x.
jt^/Z-
h
r
S
•77
7?r
Ml
22
%
337
Z.O
J2
499'. A&B RUN.
J L,
nrt • . I 41\
-------
EMISSION TESTING FIELD DATA
n.Mi i cm
^'J:!!!^';^;^^^^?^1^1^^!)'1!"!"!"!''!"!"!'-!''!"!-!
•I;I"H"'"H
I I M I I I I I I
OAK
VAMPliMC, IOCAIION
4;[4iJ44J4t |u|4i]4iji'i|s«|si[s;[s)[s4hs|iiTsi|silsiUa|ii|ij[ij|i4Jts
—i i .'r J>J» ' i' '—i—'—' ' ' '—*—•—'—I ' '—•—•—'—
3
i in i i i i i i i i i i i i i i 11
'ulimijHHiiliiliilMmiiiliil.ili.lii
IM MO.
m
OfdUlM
!uh.|..|.i|..|.>|.t|.i|.i|.iHf|»l»l»l''TOT
i 11
1 i i > t i I i I >
AMI
IIW>
CF)
WiS.
(IN. M«)
SUTIC
C81SS
"I'«N"I"
\A n/i-T
rum
4i|4i|4i|4i|M|4s|4i[ii|ii|4$|sa|si|silsi|M|ss|si|si si|si|iglii|il[ii[i4|is|ti|ii|li[ii
».ii <»»4^»»A—^—g^. • *—J imAm iii 1 ll i I I * * * *--- l 1 t I -L- |__
m \ i .1. M > t i i
SIACI IHSIW
OIMXK. (INCNCS)
Milt
VlX^f I Mill
»IIOT
IUM
50^3
TMIM
Mil S
-i-L
tux
^XLtef
' lit
-------
EMISSION TESTING FIELD DATA
HAM t cm
t|i|i|«|i|«|'|«l«l'»l"l'i|"l'«l'M^I"l"|"po|"|^|'i|M|n|n|n|)i|n|io|il|»|i
..
U 11)1 It 40 41
•yAMCUHG IOCAIION
«|«.|M|..|..Mu|4.NM|M|*«MMMMh,H*.|..M*«h
IMtfU IIP!
*.|4,|..|ttH..|»l|,l|,.|M|,.|,,|,.[,
M M 1 1 1 Li i
•l« NO.
f£k±
0««AION
Hu|ul>>|i«li>|it|ii|n|n|ii|ii|»|ii|>4|ii|n[ii
i i , , , |MM p,j?
IINP
CO
"Hi
MliS.
(IN HI)
Il|ll|ll[i4
SUIIC
Mtii
(IN M,0)
l>[ll]ll|llfll
T\l&
fHUI MJWU(S)
4>|4l[4j|4l|44}4t|4l|4l|4«|4t[M^l|w|»|v||i
M 1 I M
UAC« INSIH
OlMtN.
|ll|t(^u|ll[7) >4|l>[t|||l[n)tt
J_L
Mill
riTOT
TUli
Dt(W
(J0.
MOM lUtlM MO
nni«>tmniiiH.ihHn|u|.*i.iinT^pr
i i 6Vi
I 1 Mill
MIIK.
i.o
O|ll|ll|lljl4
NO.
it|i>|;ipi[ii
tfi
. . iAWlf
(i) ||OI M)
H »l»i
II|M|I>
HfllR
•01 NO
ltlulll
MUI
11[40|4||4I
MTU CAl.
4lU4|4t |4||4I
LUK CHECK
CfN
IN. M«
"I"I"N"
\tiSL
FACTOR
tihifiihiltolti
m
Ml
MAT SIT
•i"i"i"
iff.
'*I»N"
•CCORO
DATA
?l»i»no
IP|20|2I I 22|23|2
VBAVEMS
•ourr
I^RHI;
SAMMJNC
TIMK,Bta
TIMt
(]« kr
CUJCIJ
CM Mcna mu>i»6
VEUX1TV
omricc PRCSSUM
UH).ln.M20)
ocso
52|53 I 94
STACK
tCMFtlUTUMI
DAY CAS MCTCM
TtHPCRATUHC
TSCef"
. »••*
SAMPLE BOX
OUTLET
VACUUM.
IHTIMCU
•3*
' . 12-
00
-4-
/. 0
2.
*»
£
7o
-I « "0
3"°
-^£_
/ <9 •
<$ ?
7 y .02. <^
a.o
4997A&B RUN. NO.
.- 7
-------
EMISSION TESTING FIELD DATA
CIII
E
111) i > •»11 u u u u u >t u u ui.tb, nn,
i|>t|ii|ii|n|io|n|u[i)
I I I I
(Mil
|ll|l>jll[lljll|4o|4l
UWUM. 10CAIIUN
ifrMH"l»N*M»iflH"M*'l"l"N"
J\ MiU/th f/i i i i i | i i i i i
SAMPlI Tiff
4lJtl|u|tt[lo|MJt||ll|l4|n||,|,|[,,[M^
.-I . I/I
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Dl anf Irf/^A i—i fv-M i • — f> / r\ i~ A^AjtfT—V ^ '
Camnl o Inratinn ^^ / O c/7"X- fc* ~/~
/vr,oJ Sample date ///W^
Rprovery date /l/Zd/Z ~^
pun niiphor T-^J- ^^-PMc-o Recovered by /n.fi/ tr/4
Dar-Hmlatp <;amo1e type M5S
Dav-t-TruiatP filtpr number o oo Lo
Da^fTmiAtp filtpr samel e I.D. H^
Pv*nhp ri n^P £i s cJp> tJO^s
Purge train 20 min (check when complete
i nratinn nf filtpr in back half fjf.
Mgirjgy ^^ -MSH5> M5W
f '^/^'/^^OO
6
[ . D . 41 11 /V ^
vn ^X
-. j ^_.
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger Silica gel
Final wt 5$0 - 8 g _6^Li_ g ^3/-?g C3o ? g ?g^ 9
T n i t i a 1 wt • H^f 2^Z_ q (">"^ • «i 9
Npt wt ^it0 q "5Zo g
"S ^/^ . *-/ q bOO , (^ g <^-i / • o g
Hl.1 g 7Q.3 g £7? ^ g
Total moisture /^T,*? g' &£> % sPent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
t A
"11 ft-
Received by
Remarks £
LABORATORY CUSTODY
Date
B-15
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant ^o>Jc
Sample local
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
?ou^/.\
.. /
:ion "P /
7i3>- .vijs-^- •
sample type
filter number
filter sample
20 min (check
filter in bac
1st
impinger
6llo g
SZS.& g
/^Y g
^AV^I/P^ Tr4T>o*J Sample date ///Zf/l
Ocm c="7~ Recovery date ///3^/^"^
^wco Recovered by n]-f> j £*,4
M53 M^^O ws^ MS^90
0^-io0^3 ^ ' "* '^r0
I.D. *Vr?Ns6 /
I.D. ^77 V ^T "
when completed) /
khalf 15 -4- 1 7U<-) .». 'x''3' ~T~r^- -^ -. . -
ild 1 T Jj tfl '-O tf c N ^-- " T i--1 —i-' v>i»Or r^
' O
MOISTURE
2nd 3rd 4th
impinger impinger impinger Sili
6/^5^^ /^ -i C^f'V-l' 9;
-^//° g /?. 6 g V//3 g ^/
Total moisture 2-o?,( g /5> ^
/
M5W
ca gel
^ g
:^ g
» spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
fr"
rfV i/ LIQUID LEVEL MARKED
'6/V-. LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
7,fK
11 A- *
Received by
Remarks
LABORATORY CUSTODY
Date
B-16
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Kiant i <-*
Sample locat
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
^(_J ICJV"<— "C / I «-
ion ^ / C
sample type
filter number
filter sample
20 min (check
filter in bacl
1st
impinger
y 9 k ~") g
/ 17 3- g
>TTt_c^ Recovery
„, Recovered by /
S£>A M5Q> M5J3&Q
O-JA-'J H
I.D. y??7v5 .
I.D. V9?"7.^
when completed) ^X
< half ^fi~hj<.'ejJ Z^'^5
MOISTURE
2nd 3rd
impinger impinger
^b"^."z-^'g 60,^. C> g
b~l7. 1 g -^65"— ^g
./tr q vi.? g
Total moisture 2~°7.\ g
date Ifl&faz^
f\c.P/Rfi
PjL9V^^^J riD W
/v^rf-HWJO
v
LT^/J/^^r^
4th
impinger Silica gel
6/3.8 g ?sC2).r g
69o 5^ g S3V.O g
j~/.:2_g ^?^g
' ° % spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
ft "
/V
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
> ft i-
Received by
Remarks /•'_/
LABORATORY CUSTODY
• \ x ,' /. /
Date
B-17
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant A1»«->o TotUuf^/^LtfASA^T ^4 Sample date /(/*•"/«
Samole location fTf' ^irr, ^r Recovery date ///£?/
Run number ?.& - mZ'Z Recovered by AlcP /ffr
Particulate sample type v^vi M&~^ MO* WtT ~nb*J4*
Particulate filter number Ooo ZLoX^ v/
Particulate filter sample I.D. £'<>'• >z>&> •'
Probe rinse rfceTorJ-^ — - I.D. oca on"
Purgp train 20 min (check when completed) ^
location of filter in back half JBxtfVjte'O 7^J f 3' ~Ar*p\"j\
- % spent
X
/
/
H?6 4*1-7 s~fr <- ^
Acetone M1")) fV " ""
Samples stored and locked
Remarks
,r ' LABORATORY CUSTODY
'W^> - V ^A •',<(•
Received by •..AT/«- ^- xi-^
/- . }'• '
B-18
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE //79/ffZ-
COMMENTS:
TEST HO.
SAMPLING TIME (24 hr CLOCK
SAMPLING LOCATION
SAMPLE TYPE (BAG) INTEGRATED. CONTINUOUS).
ANALYTICAL METHOD Or±oT
AMBIENT TEMPERAT
OPERATOR
.ORSAT LEAK CHECKED
\^ RUN
GAS ^\
C02
02 (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
//• 1
/l^
NET
m
67
2
ACTUAL
READING
ll.i
l&.^
NET
11.8
L(*
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
/'.?'
1.4
MULTIPLIER
44/100
32 '100
^/lOO
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md. Ib Ib-mole
VO
-------
EMISSION TESTING FIELD DATA
""* 5JOG A&B RUN. No.3/W\P>Q
-------
EMISSION TESTING FIELD DATA
5 j ;j § A&B RUN. NO.
4 /I X
-------
EMISSION TESTING FIELD DATA
KAMI t CIM
H»IM«l»IMU.|H'.|"|n|n|..|.>|..|u|..i..M»l>Hn|MN,.|,,i..hR^nTu
,
' ' ' i I I
DAI(
IM IB.
OMM1M
•i u|u|i4|i>ju[ii|iijn)it[ii]»|n|i4|»[u|ii
I I i I I I I I I I I
AMI
tiw
Cf)
n{n|io
(IN.
II|H[II[M
SAWlINd lOt-AII UN
N"H*l'>o|"J"hilv'l"h'lt'l"lttHtilt'lt'lt
I/I
II III
4AWU TIN
>i|i>|..|.i|,.|,.|,,|,l|,.|,t|,.|,,|,.|tt|,l
SIAIIC
»|u[ii|ii|ii
flllll MtMll(S)
4«||>«|>l|w|si[M[iv|M|iM|KlUojn|u|t)|M[t>[t,|t,[(,|t,
I I M I I
DIMM. (IMCHfS)
i I I I I * I I
riioi
IUU
I0|ll|lf
IMM
no.
fAtf
»l|)l[)l[M
MOM IU6TN AM KM
H
'''
fiT
|ll|ll|ujl l|u|n juji llllpl"
1 . 1 1 I 1
Mini.
i[n|iij>4
NO.
J»i
H.O. hunt
(I) |iOl MO
>»l 11 In
"EE
WIU I Will
«OI M> I « M •
Mill CAl
fACIM I
U.
IUK CHCCK
CFN
FACTOR
"IH*'I
n|«UJn
fMIM
ll|ll[l4JI>'
UI
MUI UI
'*]>lj»?|H
>4JH[)||||
•CCMO
MIA
HIM
3«g
yTii»no
•^^•"•J mm i •" 11 i i i I •
I»J30|3I | 22|23|2
1382
IBAVEftU
•AMMJMC
ChOC* TIM
CM Men*
I .
VELOCITY
HTAP
U^i.U.N^O
OKiricc russuM
OirriUNTIAL
(AHI.in.MjOl
Pt.»I HLD
42|43J44h
52
| 5 3 I
54
STAC*
TKMrClUTUU
DMV CAS M£TC«
TtMPtRATUR£
iNiiir
OUTLET
VACUUM.
in.MM
CAKPLX BOX
TCNTCIUTUM
•»
INT1MCU
0
z.
0
7
? .0
'O
4*
"5 »o<
/ . 6
JV'
«^
,0")
76
/s
J/ 7
< i : so
a.-?'
i ~7S* ~7 2.
8
//O .0
yz .' /
y
to
493 .099
2_i2.
/
-------
D
EMISSION TESTING FIELD DATA
i JltOtMioi i
IAN* t cm
ijlMli*li*JiM'ti'>HH"NH'>l'*l»i"NM[iil"T»
-l_L
111
MIC
i|it{i>jii[ii[iTr
UkHPUM. LOCAIION
4l[4l[44|«t |««|«l|««|^|^[si|w|M|v«|s',|u|^(^<|to)n|tj|u|t4|li
i i&ii>i/irT)/L
I I I I 1 I I I I I I I I I I
>i|njujn|io|ii]ii|n|i4|i>]7if
I I I I I I I I I I I
II* W.
I 1 lit
ortuioi
'*l"l"i'>Hi>i'»i"i"i'«|>«i»'i"l"li
CO
n|n|u
MR.
Ml 44.
(IN.
ii|ii|ij[;.
itAIIC
^ronff
HUH »UW(R(S)
40|4l|4|«l[«4[4t|s4|>l[w|si|n|u|M|^
I I \°\°(°\'
1 I I
ilACI IMSIH
OIMCN. (IKNiS)
M
iiID HitUiumiui
ns
rnoi
IUM
mm
FAtf
ii|ii|n[t<
MOM IU&TM AW UK
|l|l|.|.|.|.|.|.|'.|Hh.|n|..|.H,t|,,[^7
' '»« l
''''''''
NOI/K.
i.o.
NO.
V- ^wif
(t) |«0l MO
l«|lljll Ij|l4|l>
I I Fh
tOIW)
lll)l[ll
WHI
AM*
mui CAI
fACIOR I
41U4|4t I
1M.
LCAK CHECK
cm
FACTOR
r^Toi
gnRir
5OTTJ
MOM
NUI SI I
]Ti|>i[n
Ml
NUf Ml
"l"l"l'»
•Cf.
if
»M!
•(COW)
MU
M
HiT^TToJ
33
•01 NT
TIN*
(14 kr
vcuxrirv
omricc PUSSUM
OirrCRXNTIAL
UH).in.H}0)
o 76 .
OL51 H1.U
»liO 1 5
53 | }4
STACK
BUY CAS M£TCB
TENPCRATUH£
1NLCT
OUTLCT
"1'
VACUUM,
SAMPLE IOI
TCMtCMATUU
•F
IMMNCUI
^*Z
fro-0
Jt»4
/r?
BT
iai
8
111
^7
4-
K)
4M-
3
7"
:/&
-*•<=*
7&
/?•?
3"
7 V
s
7/w
3" ,33
"3" . /
/.g
64
w
2O
3.73
\ J /J A&B RUN. NO.
J - 1— L
»/ ' /.^
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
m a. /V/
Plant //lev
Sample locat
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
P V
:ion ^/^<-£-~
.^r\ MS R\J
sample type
filter number
filter sample I
Sample date ///*»A
Recovery date ///^°
2^
/^ "^"
Recovered by A(^r///f
M5
M5-320 M5-450
.X M5W1
^4- -Cnro Z <-"? 1 v"
.D. 5103-
I.D
20 min (check when completed)
filter in back half £?tij
1st
impinger
Hf 1 . " g
//0,7 g
13 •
5 I o 5 n v
y
zt-*~> Is f O ' — P'^^
MOISTURE
2nd 3rd 4th
impinger impinger impinger
d^.3 g £69 & g &<&.! g
6-71.6 g
/2.9 g
Total moisture
6/^^g 5^1 7 g
r/y q ^^ g
3-?£7g ^?^
*'_<>
Silica gel
O C? "^
?i 0^5 - 3 g
5^3.7 g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
SI z-O F>
Received by
Remarks t
- LABORATORY CUSTODY
^ / / -^~
•J^ ^ ^-^/^'K.Tc.- Date
B-24
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Sample date // /?0
Sample location v5/*c/^ Recovery date // f<3o t
Run number 3I3M S 6v7 Recovered by /jf £/"/£#
Particulate sample type M5 M5-320 M5-450
Particulate filter number ^<^rv ~?~f-,^Co y
Parti r.ul ate filter sample I.D. ^5lO>E> /
Probe rinse W^Tdr" I-D- o'^^n ^
Purgp train 20 min (check when completed) ^"
Location of filter in back half 3^"^^° "^"^•3r JL^oi^cTs
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
tf/T-i 573.7 c?/,1^
Final wt > C»i /.Z-yg i (jjki -* y -_ ) " o*-. / g / U~\ -c g
Initial wt ^^> • ° g 666-^ g 6o/-T g kr>?-2_g
Net wt 7.9 g -74:^ g 1?t? g /s~r,(> g
/tl^
y MS*
Silica gel
£57.4 g
?/ g
Total moisture ^7*2
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
i I **• \ ">" ^ T
Remarks I -*^ -J-^p'
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
X'
% spent
Received by
Remarks /^:
LABORATORY CUSTODY
Date
B-25
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number J
Sample date
Recovery date ///3o/o
Particulate sample type _
Particulate filter number
Particulate filter sample I.D. x5loc?
Probe rinse /Jctf
Recovered by
M56 M5-320
M5-450
M5W
I.D.
Purge train 20 min (check when completed) */
Location of filter in back half 6>r.~t"
. ~f£
d- J>
MOISTURE
Final wt
Initial wt
Net wt
1st
2nd
impinger impinger
6t/ -*
i O .
5^/ • ^ g
g 05"7-O g
g -5.7 g
Total moisture
3rd
impinger
L>^2.-0 g
5W. i g
S-y,7 g
3^r g
4th •
impinger Silica gel
6^"^g "/O^ g
6~^^.O g Q2-3.O g
y-Z-Z. g cf^i / g
7O % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
ft ,
PC
- LABORATORY CUSTODY
Received by
Remarks / ••
Date
B-26
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant ff\od
Sample locat
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
r^odf"''
:ion j^-r-o.ck--'
J? 1) fA1^ p
sample type
filter number
filter sample
/-T <_£,To N *
20 min (check
filter in bad
1st
impinger
H^-^ g
/•?** g
Sample date /r/3? '
Recovery date /I I3of
Recovered by f/\tP /£n
vX m£> • M5-320 ' M5-450
^(UzrOS^:.?^? K
I.D. 5 n^Q .
1^ I.D. £>/ l~i^ PC v
when completed)
k half />>t^^/o -/"/^, Z"J * 3ro) J>p
MOISTURE
2nd 3rd 4th
impinger impinger impinger
675.9 q 633.^ 6/3- S^g
CTr-Z^q 556-^ g 5"?6.0 g
^7 q V^g" g 77.JT g
(""* r*
Total moisture 1H.2. g ^_>
ar *^
i$i"
M5W
A,a.:/0
Silica gel
^9^7,5 g
f7,/ g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
-113
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
<: I
Received by
Remarks i.Ct,
CUSTODY
Date
B-27
-------
DRY MOLECULAR WEIGHT DETERMINATION
da
i
ro
oo
PLANT.
DATE.
COMMENTS:
TFSTHO
SAMPLING TIME (24-hr CLOCK).
SAMPLING LOCATION _^5tccUr
SAMPLE TYPE (@INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD
AMBIENT TEMPERATURE
OPERATOR
.ORSAT LEAK CHECKED
^^^^^ RUN
GAS ^^-^
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
!<.(*
/$•$
NET
JZ-L
L.^
2
ACTUAL
READING
/ZG
- /i-7
NET
/z-k
6./
i
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
MULTIPLIER
44/100
32 '100
a/wo
28 '100
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Mjj, Ib Ib-mole
TOTAL
-------
-------
EMISSION TESTING FIELD DATA
52l S3 I 54
SAMTLC MUI
TfMPCMTUU
~> n
-------
ID
EMISSION TESTING FIELD DATA
flA*I 1 Clll
E
I I > < *
ii|iihiNi«|ii|iii|ii|iiiiiN"i»iiiii«i'»|M|"i»i|'«i'«i»'ra
I I I I I I
OAII
)4|l%|)t[ll|ll|)l[4o|.l
—*—•—r -I v—ri'rv
/.A/.W.0.Z
$
%/
SAMPLING 1001 ION
4l|4)|44|4S |4l{4l}4l}4'l[M|M|w[%l|>4|n[>l[>l[>l|M[to{uJi;[t)Jt4[li
I/I I 1 I 1 I I 1 I I I I I 1 I
SANK! I If!
t'|MH'o|n|u|ii|i.|i>|ul,i|,.|,,|..
' .vji X i' .It.1 I ' I I I I
'l I I I I I
IM Ml.
H
• i >«> i
OTtMIM
i i
Cf)
lijn[i»
fltSS.
(IN.
"I"I»I3<
SIAIIC
f«(SS
(IN HO)
^n«?
i-y^i 11
MlHI
11
StACl INSIH
OHKH. |IKN(S)
H,*.|.,|..u.t|i.|.,|t.|,r
rnoi
IUM
c»
TMM
&£
A* S
MOM I.U6IN AW lift
1.1.I.I.I.1.1.1.1,.!.,!.!,.!,.! |..|..i..
i i
''I'll
•oini.
1.0.
1811 1
NO.
»l»l"l»l»l
M,0.
;»oi no
•Will
BOI M).
ill n in
ii|i.[i>
it|ii[n'
Wlfl
AN*
"EEE
Will CAl
r AC ioi i
VELOCITY
ounce PMCSSUM
oirrcncNTiAL
|AH|.in.H2OI
STACK
tCMrCMATUU
Ollir CAS H£TCB
TFHPCRATUR£
INLCT
DCSlD
OUTLET
PUMP
VACUUM,
SAMPLE BOI
TOUtBATUM
•r
INP1MCU
i° -°
1 3 '• 4 0
6 2-
7
U
w
-50.0
3 .<:'<
I
LQ.
X
O
166
' ~
5" .'
AL
2,
ZJ
c
y/o
O
J^
168
$-0
51
07 A&B
L. I
RUN NO
-pi/o*
U 1
• • t
, /
-------
EMISSION TESTING FIELD DATA
PlANI t Clll
i i I i i
Mil
tOCAIION
41 4) 44 4t |4I I
I 1 1 I I I I I II I I I I I
SMtflf UK
' ' '
IUH
• 1
m
OfiMIM
i i i i i i i i i i i i
AM
II HP
en
U«.
Pilii.
UN iq)
S1A1IC
fMM
(m. M
rillfl MMt(«(S)
I I I I I I I I
ilACI INSIM
DIMM.
I I I I I i I I
rnoi
luu
DtllN
MOM 11*41* AND IW
i ! i i , I
To
IO|1|[|1JHJ»4
So.
MO, wtl
i i
m»« MIU
"|4
IUK
,?
K
FACTO*
TM
»i 111 U4llt
PKM
NU1 SIT
•01
NUT Ml
•».
i4[itju|n
I I
KCOM
OAIA
I»130|3I i 33(33(34
3»l3»f40l4
4J4»UO 1>
531 S31 34
5 sl 361 sy
toiwr
Tine,*!*
ClOO TIM
114 hr
CLOCSI
CM MTU »«M>li»6
|¥. 1*"
VELOCITY
omricc PRCSSUM
OirrCUMTIAL
IAHI.tn.MjOI
STACK
TCMTCIUTUU
Itl.'f
PHY CAS MCTCM
TEMPtHATtiaE
DCS I RED
IHLCT
T_ I.
"in
VACUUM,
SAMPLE BOX
TCMfCKATUU
IHT1NCU
TCMTCMTUM
6UTLCT
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /f \ofjo
Sample locat
Run number
•Particulate
Particulate
Particulate
Probe rinse
Purge train'
Location of
Final wt
Initial wt
Net wt
/^r- Sample date /'/^V
:ion ^5h,,.|C_ Recovery
V/^5^3 Recovered by /Vf<
sample type X M5£ M5-320
•*/" — * /
filter number -^'-> CO CtJ-^C) *
filter sample I.D. ^jtlL>& „
flcefo***^ I.D. ^//£ # '
^ft min (check when completed) ^^
filter in back half i&fu>*zo Z^'Jcf3rd
MOISTURE
1st 2nd 3rd
impinger impinger impinger
^.-^ g 6/£'L'
— /p /) -
C. / /^•'i
M5-450 M5W
Zr-.p^^rj
4th
impinger Silica gel
/ s/4/ J? o / < /
C/ ' ' • o n / G ---* / Q
3 r " i ^
_^/L/"q R"7o.^g
3J. ? q ^Kf g
A" "
IPA IMP. CONTAINER I.D. s5M"] ft
H202 IMP. CONTAINER I.D. 6">llfft
BLANK CONTAINER(S) I.D.
IPA
H20
Acetone
Samples stored and locked _
Remarks ^__
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
ft
Pi
A
Received by
Remarks ,^ /
7
LABORATORY CUSTODY
'
Date
B-33
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample date
Sample locat
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
VSJ 1 flULI^.-
:ion ^d~A.<-\(^~ '
V5/As/3^
sample type •
filter number'
filter sample
20 min (check
filter in bad
1st
impinger
(jy Z> j -v g
_53 M g
Recovery date /V/_?6
"&< Recovered by /fcP /£fr
/ mS M5-320 M5-450
^-/^•^ '? (->Q "7 U
I.D. 6~'/9J5 "
^ I.D. sS'l*?/^ "
when completed) ~^""
i i_ 1 r T3 -+* -sNld i, -7("~<^ "" I — '_^.^ _ ,
K half vD^luJedVJ I •* O UrOp'MO£.ru
MOISTURE
2nd 3rd 4th
impinger impinger impinger
L7Le'3g 66"7.6g 63o-^g
660. t g 6/6. ^ g 5*77.7 g
/T.7 g r"o.7g 3.1,,? g
Total moisture 3-^7 5 g 7>
/f2^
M5W
Silica gel
%3.3 g
7/r/ g
ff
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. 5\\°( ft •>
IPA IMP. CONTAINER I.D. ^7,0 ft- »
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H2o2 ;
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by '
Remarks .>'
LABORATORY CUSTODY
Date
B-34
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
// p .
Plant //(o/7, 1 g
Sample date |)/3c-A>-'
Recovery date II IJ>v /%'
(/
I.D. ^17."? A '7
'hen completed) -^^
half BtfhueciO "^^ ^ ^ -Hr^p«^<7^
MOISTURE
- 2nd 3rd 4th
impinger impinger impinger
6 ^ iT. L? g /js*-) " / • O g (+> 1 ^ , / g
673. 0>q 5"?L>-"^g 5Xo-^ g
-/f.a q 5^,5 g J7.Q g
Total moisture -&£r g / 3
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
RECOVERED SAMPLE
5ivier -
5/Z,£fl iX/ LIQUID LEVEL MARKED
vS/Z?/^ ^ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
^cLift '' y
oi^fv - /
snxft x
^ITLCA •/ — '
1
M5W
)0
•3
Silica gel
o 1 1 . I--' g
#t d g
^
% spent
/
y
/
/
•
Received by I ^ . ^T^ ?.,.,_^
Remarks £,',_- ••* ". t? 'AI<
LABORATORY CUSTODY
; -.., 'A /v Zc- Date ^ -'/ ^ ,
';
/^
B-35
-------
1 t
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /Pl*)in foMe.t*' Sample date ///5oA
Sample location Cfhdt-' Recovery date /J/3o/Y'
Run number <-lblA5&"P^t) Recovered by /<(CP/tft
Particulate sample type M5 M5-320 ^/ MG-45©
Particulate filter number ^ crcr& Z.<*&\ '•'
Parti rul ate filter sample I.D. J)l3oB
Probe rinse /TC^ToNd-1 I.D. o ' Jo n
Purgp train 20 min (check when completed) ^/
• x> i -~> /"* )
Location of filter in back half vDetofctxJ Z^ <^ 0 J/'-P/A^r^
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Final wt llO-lq 6^7-.*] q 6>^.)g 6^-•^g
Initial wt Szrt .% g 1*71- o g 5^-°g c i 9
~ /r./ g /
Net wt ,2o5^3 g -*=*fr^g oH.o g ^7.6 g
•? / ~\ n ^^
Total moisture 7% /. / g / J
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. s5/3oft >/
TPA TMP. CONTAINER I.D. 513' ^ * LIQUID LEVEL MARKED
H.O. IMP. CONTAINER I.D. 5)32,f\ • LIQUID LEVEL MARKED
BLANK CONTAINER(S) I.D. LIQUID LEVEL MARKED
IPA 6" / ^3 fir /
H?0? ^-/7^fl ^' /
H?O 5"i?«r^ • / ^
Acetone ^24,4 ; ^
Samples stored and locked
Remarks
LABORATORY CUSTODY
Received bv 'A r^v^^' ^- /^ -l<. &- Date =-' ^/
Remarks / ^^,. fr C'3
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
COMMENTS:
_TEST NO.
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION 6
/'* i
SAMPLE TYPE<{0Sjr)NTEGRATEp, CONTINUOUS).
ANALYTICAL METHOD O ^>vT
AMBIENT TEMPERATURE
OPERATOR
.ORSAT LEAK CHECKED
^\^^ RUN
GAS ^\^
C02
02
-------
KMISSION TESTING FIELD DATA
flA*I 1 Oil
nln Ii ill )|i4|it lull iliii ii bo|;i|n|))|ii|»|u|ji|ji|j»|)o|)i lulu
Jk\e 'ni'^fJj. VJ ' ' '—i i i i—•—i—i i i
I I I 1 I I I I I II
OAU
)«|>l|)«|jl|)l|ll|«o|4l
I i * J W * tV\ ' M
SAMPLING tOCAIIOM
4t[4l|444l|4>|<)[4l[«»[M>[ll[tj|si[t4|ll|tl|n|tl|t»|Kl{n|n[n{>4[lt
M.
!
J (i i I i i I 1 I M I I i I M I
tin
>l|ll|MN>0|ll|H|ll|l4|H|l||ll|»l|^}i;
I 1 I I I I I I .L
-------
EMISSION TESTING FIELD DATA
-------
EMISSION TESTING FIELD DATA
i cm
Illllllllj I I I 1 I I '1 I I I I I II
OAK
14|n[lljll|ll[llj4o[4l
iAWCtllK, t OCA! 1C*
4l|4l]44[4t|4l)4l{4l|4l|M|>l[>/|tl|^}t>|i|[tl[tl[t«[lo|n[n[ll{l4Jlt
J_L
J I I I I I I I I I 1 I I
UMPU tin
U|i'[n|»|)o|ll|ll|ll[l4|)t|ll|l)|ll|n|l|
I I I I I M |
I1M Ml.
E
OMUIM
1 I
i » i » ' » I M t '
1IHP
CM
ll|n{l«
fit iS.
{IN.
II|»|II[M
sum
PiCSS
(U H2
flllll MNIU(S)
4l|4l[4l|4l|44J4t [4t[4l|4l|4»|»|tl|tl|tl[S4|tt|tl|tl
SIUI INSIM
OIMt«. (INCHiS)
tl[tl|n{n|tl[t| t4Jll[ll|ll[tl|l
I I I I I A I I
IUM
'J-ZL
PMC
H:
II II
HUM lUtTN MO UK
ih|i|«|t|«|i|«|«H..bi|.i|..|.t|..|.,T.T
-L.i i i 1 i I I
Momi.
I.D.
NO
it n iiiii »i
H.O, IsAwirUn* I win
It) |aOI NO I KOI »0 | AH*
s
0il
11 M
lt{»l{ll|M|40|4l)41
MHI CAl.
f*CIM V
4l|44|4t]4l]«l
LUK CHICK
CFN
IN. Hg
w^
I
FACTM
X
rtC
llfll[ll It
MUM
MUI UI
H]ll[ll{ll
KU
HUI UI
•if.
Af
14jn|u|l
AS I I
It COM
OAIA
ia»
L
'<**
7|||V|IO
3tT39MOr
*^\^\'
TQ7
H>I*T
CUKI TIW
VELOCITV
TMC,aU>
I
omricc russuM
OirrCUMTIAL
IAHI.ln.HjO)
STACK
tCNFCMTUU
CAS H£TCB
TtMPtRATUW:
OCSIMCD
. ; 70
^TT<
5 .
OUTLET
(T. |.
out
runr
VACUUH,
CAMPLE BOX
TCMltUTUU
•F
IMTIMCU
TCNTCIUTUM
•r
2.0
•*±
sr
n'.oc
IA2.
&
ML
12LL
j&L
So
r ' . *_ t
6
its'/
7/4/3Z
fr
^.
1 k~l
e <>'
1 6'.
7
7
JO
7 ,
JO
//O'fr
L2LL
t*>7
^-/^ / *i /
•','!' •
J ,° y A&B RUN. NO.
-TJ
-------
t I.kJ-,U DATA
KAMI t CMl
>'l|'l'l'l!'l'.'l"'!!l'lrt.l."l"i!'N>l|"l"l'l"l"l"N">1"1"111
)4|ls|)>[ll|ll[n|40|4
SAMClINC IOCAIION
4>|4l[44|4tf4l|4l|4«|4«[M[M|»|si[*M>|{^|[>l[lo[il[li[ll|l4|l>
SAMPU Tin
>l]lljlljll|lo[ll|ll|n|l4|li|u|ll|n||«[ii
I I I t I I I I I I I
IM
OflMIM
i ii a n
i I^M^^^TI 11 11 i 11 i . i I igBTaiii iffl r-i/^l i^aQ.?
AM.
1CHP
CD
ii[n[ia
fdliS.
(IN. H«l
SIAIIC
WSi
(U M.OI
is|u[ii|»|»
..|..|4l|«lH.tHJ«.|..H»|u|»|t4R^
l i 1 1 |
INSIM
GIMCN. (IMCHCS)
.
i .
rnoi
IUU
TMtlN
i2L
fAtf
ii « itjti
NMi LU6IM AM IIK
i rfi'i
[EIDj
11 i 11 11
1.0.
NO.
M n
jitiiiin
i2r
:«?•
BOl M
•nnn
Il|l4|lt
±_L
Will
KOI M.
".''I".
AH*
ll|4l|ll|4>
p • »4 •}
Z2S.
Mill CAl.
fACTM »
"Hy..*;
LUK CHCCK
CFN
IN. H9
vi*1!"!^
K
FACTOR
is ti|ti|MhiUe((i
2.0*
jt
F^
IOt
r«M(
HUI «l
ill I lull'
HUT U!
10 II II111
•^on
"D/
14)|lt|ll[ll
•(COW
MIA
HiT^
—^—^—•* f* i i i j
VBAVKMB
•OIMT
TIN*
MMTUMCS. 114 hr
CM MCTU K1ABJB6
ULI. It*
VCUXITY
OKI r ice rnxssuM
DirrCftENTIAL
|ANI.ln.H2OI
DESlO
3«|39«40|4
42J43|44|4i|46J4
4^49^0 Ii
52| 53 1 34
STACK
OKV CAS M£TCK
TfMPlRATUfU:
I NUT
OUTIXT
VACUUM.
ia.Hf
SAMTLC KOI
TCMtTCIUTUU
•r
JH7T
57
IHP1MCU
/ .
?2? .;
o
12
i±
T
4.
W
/ 7-ve
7 *
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant/n^a PtuMf'
Sample location jSfa.cK,
Run number *5flfl(£R
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse noi.Ta\j£_-
Purge train 20 min (check
Location of filter in bad
1st
impinger
Final wt 63Z-.O g
Initial wt V9/ / g
Net wt g
Sample date )l/3oA 7-"
Recovery
Recovered by Al<
y M56 M5-320
^oo^CyH v/
I.D. v5/3Ov^5 "
I.D. v5/3,^A !/
when completed) ^X
k half ,B«dtoc*u Z^^ 3^-
MOISTURE
2nd 3rd
impinger impinger
6~7/'7 g ^Vc>'^ g
^>73>,c^ g ^73;^ g
g g
Total moisture MM g
date /2-/I,
CP/W
M5-450
-J-^JxwtftrvJ
~ cj
4th
impinger
6^.79
(z>&& ,7 g
g
*'
/^^^
M5W
Silica gel
937. ^g
-8«.-rg
g
^> % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. _
IPA IMP. CONTAINER I.D. Si
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
'
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
/
ft .
Samples stored and locked
Remarks
Received by
Remarks 't
LABORATORY CUSTODY
Date
**
B-42
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /VsAfo
Sample locat
Run number .
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
rot^ec^
:ion ^S't'A-J/L-,
sample type
filter number
filter sample
20 min (check
filter in bacl
1st
impinger
(^1. 4.6? g
Hlo.z-S
g
Sample date ///-><•' A"
Recovery date H/5t>/%T'
Recovered by /Y\CP /£fr
S M56 M5-320 M5-450
rt&5?5"/3<;ft Y
when completed) <^
k half TVftLw^j 2,wJ
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /Me/
p
Sample location .5 f«.<./(—
Run number
Sample date _
Recovery date
Particulate sample type X
Particulate filter number
Particulate filter sample I.D.
Probe rinse frceh
Recovered by AfcP/Ufa
M56M5-320 M5-450
M5W
5/31
I.D.
Purge train 20 min (check when completed)
Location of filter in back half BeJW^o
r
MOISTURE
1st
impinger
6b'8.3
^$5.7
2nd
impinger
g m-3g
q 6 1 2, . I g
q g
Total moisture
3rd
impinger
M.I g
5$ 2^ g
g
5Z-W- g
4th
impinger
Crz^
6>I0.1
g
g
g
Silica gel
fVf.V'g
?6---g
g
^ % spent
Final wt
Initial wt
Net wt
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. 5)3^ ft v
IPA IMP. CONTAINER I.D. j
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202 _
H20
Acetone _
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks /t
. LABORATORY CUSTODY
^~~>'t,(.^^ ^ ^ x^- ••'i~<- -C <- " Date / -^
B.-44
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /rLk
Sample locat
Run number ,
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
Yy ^^— »
:ion v5Yc,<_ h-
^7\/Yl /
I.D. «5I^~Z- ft "
comoleted) ^^
t T5 -I-1 x —) ^O sT ~\r<^ i~/>^ Pn m -. ^/- <
t .rV T uv^ A. 1 /^ do --^ P'^Of/o
1 O
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
V'P -T g 6
g
Total
"7 1-*' "7 r~ /o/— " /~-^7//iO
/^ • / g 586.5 g Sii-l g
g g g
•^*? ^ /5 cT^
moisture ^'^ g 7O
/jz^
M5W
Silica gel
^fo-^ g
g
% spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D. 5^3 f\ K
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
f\ __
LIQUID LEVEL MARKED
^ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by ^ '::._ +
LABORATORY CUSTODY
/ •
Date
Remarks
B-45
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
COMMENTS:
SAMPLING TIME (24 hr CLOCK)
SAMPLING LOCATION vT)-fciJ^
SAMPLE nPE(52?INTEGRATED,j;ONTINUOUS).
ANALYTICAL METHOD.
AMBIENT TEMPERATURE
OPERATOR
.ORSAT LEAK CHECKED
\^ RUN
GAS ^^\
C02
02(NET IS ACTUAL Oz
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
I2..0
/&•<*
NET
(1.0
(*.L
2
ACTUAL
READING
II. g
111
NET
It. I
iL,.°i
3
ACTUAL
READING
//•!
(..-)
NET
AVERAGE
NET
VOLUME
//.I
(../
<— ,
^ ^
MULTIPLIER
44/100
32 100
^/lOO
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Mj. Ib Ib-mole
-------
EMISSION TESTING FIELD DATA
1 CIK
I'Jii'j^'iTS «l'«l!'l|'l|'|i«|')Hi'l''i'«N''i"|i>i'«i»M»»l»'i''li«lH>iM|'i
OAH
Mllt|)l|ll|M[MUo|ll
m — A., J,., * • i - J . .J -.J
VMPLlNb IOUIION
4/|4)l4«|*U«»|4iUi|^|'»flUi|s;h)|s4KiK|K/KiKilko(n|4;|i]|M|iv
• I i.. lilM . J> J ' *
sa
i i i i i i t i i i i i
SMtfU Il«
>i|i.|iiHio|M|ii|n|i.|,n,.|,,|,.|,,;.
imi
IUH M.
.JiJ.|«|»|.
f ri jj-HT,
OMIAIM
i|t|»|ii|u|u|n|i4|nju|u|iijii{)i|ii|njn|H|it|it|ii
» I I I I t I i t i i i i i i i | »
HUP
CM
Jilnlio
•M.
Mlii.
(IN.
»i{ii Ti|
J4
SMMC
PiliS
(I* H
"H"N
zs
-r«/^i
nun
4B|4lI«]|4)l44|«%|4ft|4l|«4|4«|MKl|w|M|MKvK|U
in ii^*- i. * '^r*wrr*e. < •"•*•-*—1»«^-*•!• * i
i i i i i i i i i i Wffi
MACI INSIM
OINCN. (IKHfS)
t»lt«jn[n}ti 44]ll[4l|tl|tl[l1
M
Mi
J_L
1 1 A I I
i i i i i I I i i J
ruoT
1UM
c»
t'\7\ I I
not
MOM lUtlN AW UK
EEE
Mi|iJ..|..h.|..|..|.t|..|.,|..|,
i i i i » i « M
HOt/U.
o|li|il|iijl
1 t i \ t
sis
NO.
HO.
It)
(OJ M
313E
-l_L
WUI
W)IM>
mui
a M •
Will CM.
»
i
wt ki 41
ICAK CHCCK
IN. Hg
cm
il[ti[tl[>4jit
K
Mcron
ti|tijtt|ti[te(ti
1 I I
U|tl|t4Jll
4S I I
MUM
HUT ui
•01
nut MI
•Cf.
I4[ll|)l|ll
* ' I
KCOW
MIA
»'«*
TO
MM
>lji2|l3iuks|l6| \J\\t
Mi
3S|?&l?7J3i|2
30)31 i33J33|34J35J
3«|3»UO|.
l2J43|44|4i|46J
53 I 3
CUKM. T1M1
•AMMJMTV (14 hr
TMB,«la
CM MCTU MJU>I»6
IW. ft*
VELOCITY
OKI rice
OirrCKCNTIAI.
IAHI.ln.NjOI
STACK
TCNtCJUTUU
DKV CAS MCTCM
TCMPCRATUR£
DES
IMLCT
IT. |.»F
OUTLET
VACUUM.
SAMPLE BOX
TCMTtMTUM
TMrcitA
•r
4S-
^a
Z?
Jl^
r
r
5Q51 A&B RUN. NO. <£
i»ii[i«iti«il .1 ii lii
i i
t 1. V
I (
-------
EMISSION TESTING FIELD DATA
I > >
-
A
PlANI t CII»
|i|ll|u|ll|ll'i^l4jll|t«|ltpo[>l[>>{n|Mj»[l4|lljll|>»|lo|ll|ll(l)j
II I ' I I 'I I I I
OAU
)41)11)4 II111 11 40)41
UMPlING IOCA1ION
4;[4l|44|«>|«4l4l|4l|4»|MJil|u|%l[i4[st[v|[il{i||M|tlljn[t>[n[44[n
I/
1 1 I I I I I I I J t 1 I I |
UNCLE tm
ffl^
•UN NO.
®
OflMIM
|ll[u|ii|l>ili|ll]lllllpo|ll|»|||{|4|lt|>l}ll
- i i i i i i i i i i i i i i
IIHf
Cf)
»Mi
PliSS.
(IN Hg)
S3:
SIM ic
MISS
(IN M
it|u|n[»(iT
-L3J
MLUI
«»|H'
M
i i i i i
SIACt INSIM
OIMN. (INCHfS)
»1 U(il II || 14 It 41 IIIII It
EM
rnoi
IUM
c»
mm
-L_L
HUM LUMN AW 1lH
II Hill
10lulu ii »4
NO.
Jt J4111
M2°-
(tl |i
;aoi no
u[n|)i
I|()4[|S
Hilf* * Mill
DOIIO.
llllllll
jf^fn
& H •
Hj40J4li
Alt
WUI (Al.
M
IN.
LEAK CHICK
CFN
ffl^
K
FACTO*
t4[tlju|»|to{4l
fAtltt
"I*;!**.
NUl Ml
ii|ii|ii]i
mm 1
HUI Ml
io|)i[i>|n
•?M
Ujl>|ll|ll
•CUMO
MU
/
&
^
fBAVEM*
»oimr
.9J30|3I I 33|33|3
TtHB
•uutnancN. 124 kr
VELOC1TV
I . ft
ounce POSSUM
DirrCNXNTIAL
DCS I ftCD
3a|3Vf40|.
43J43|44J<
STACK
1CNPCIUTUU
OKV CAS MCTCB
TIMPLRATUW:
1NCCT
OUTLET
IT. ».»r
•out
53
nn
54
PUMP
VACUUM.
SAMPLE 4>OI
TCNfCIUTUU
IHPIMCUI
TKNPCMntM
•f
23
£Z
o
00
^p
JW
tit'
J3J-
*-
'to.
m
5054A&B RUM
NQ
-------
EMISSION TESTING FIELD DATA
CIM
.|»|i|i|i|>|.i|ii|.i|.iH.>|.>|.i|i.|,.|,c|,,|»|n|i4|n|,t|,,|,.|,,|,.|,7[nj
I I I I I I U|V|fl|/
DAU
i4|is|u|n|)i|»No[«i
VMflING 10CAIIUN
4j[4l|44[4s|4IJ4l{4l|4'l|s«|si|si[s>[v4]ss|»l[s)[si|>l[ni|u[n[tljt4[lS
J_L
uH
iAWU TW
.l|4l[tl{lO MJ)l|l||l4|l>|u|ll[n|n]tl
IIM
OflAMOi
i i ei
' ' ' ' ' ' ' ' ' ' ' I fm;
IIW
CO
"H"
WiS.
UN M«)
ll[ll|ll[>4
SIM 1C
mss
"I"!"!"!'*
flllli MfttC8(S)
40|4l|4l|4l|44|4i|4t)4l|4l|4>[s«|il|st|si|t«|ss|t|[iMl[si]lo|illn|njt4[»[4l|ll{l||t1
iQiPi»ili7pP
i I I I I I I I I
SIAU INSIDi
DIM*. (IKMfS)
_L_1_
i I i I 1
rtioT
lUli
33
10 n u
mm
•o.
/rfivv,
Wi
MOW ItMTM AMD IIH
«|l|»i«l»l«i»l«l«|il|"|n|"l'*N'«|il|uilt
' I tK'l
I I I I I
no/Hi.
I.D.
W"l
l"l»i»
j2|it|i)|ii|;i
D. pAtvu
) IBOI NO
Hlnli;
1|||4J1S
1 .1
T
wiii
801 10. AH*
lt|li|ll
1140
EE
MKI CAL.
FACTO* 1
4>U4|4t |4||4I
IM.
LUK CHCCK
CfN
K
FACTO*
silsnsilsilkolii
I 1 1 1 *
WIM
NUT UJ
"F'f"!"
Ml
MUT Ul
aiui
ilf.
J»M
ICCOW)
OAIA
HIM
^•TvTTo
»\»\»l4'
[161 l?|l
TT2121TT
Ml^r"!
voiwr
cuiai VIM
O4 kr
CM MCTU IHTAOUI6
IV. It1
VELOCITY
OKI rice russutx
OirrCUNTIAL
DCSo
3a|3ffUoj
52| 53 I 34
1
STACK
tCNTCMTUU
ORV CAS M£TCB
TFHPLRATUliE
TSltT
OUTLiT"
runr
VACUUM,
IHT1NCUI
•
5V
3 1> /
6?
-f*
rs
/r??
/O ; 37)
a.
t,?
g'o
UD
10 '
3/6/723
63
?.
£1
^_§.
8 7
i/O
-2.
s
8/S^
_ 5061 A&B RUN. NO.
i . . . I .
1
\, I
-71
-:... fCl -
-------
EMISSION TESTING FIELD DATA
cm
E
|i4|li|ll|ll[u[il|it|ll|l4|n[;o|li[;||))|M|»|lt|»|ll|jl|lo|ll|ll|))
I I I
Mil
>4|li|)»|jl|)l])l|«ohl
-J—I J I—I—J—I—
SAM>1 ING 10CAIIOM
'4)441
1/I I I I I I I I 1 1 I M I I
i i i
•UN tt.
an
''*'
OHIAICM
U I t I I 1 I I I I I
MM
11 hC
CM
10
MUSS.
(I*. *)l
SIM 1C
miss
v»
"l'«h'N"
FI11U NUMU(S)
4l|4»|4l|44|4t|4»|4l[4»J4«JM|tl[w|ll|M|l>|n)l
I I I I I I
SIACK INSIOt
OIMN. flNCMfS)
I I I I I * I I
moi
IUM
c>
IH£W
i£l
? Z
Nktf
MOM LUCIM AM I»M
• |.|.|«|»|i|»|.|.|..|..Nn|"N'*l4^
Nome.
1.0.
NO.
jiiai
N20. UM>U|Nffll I Mill
(i) ItOI NQlMIIO. & H •
ll[ll|ll
J_L
ll|4l|4l|4l
Mlfl C*t.
fACIM »
Ik. Hfl
IUK CHICK
cm
K
FACTOR
I I I I A
IM
il.
MOM
NUT S11
MU1 Sfl
M
Lk£L
•If.
"I"!"!"
_l_L
ICOMA
MU
HIM
'«|»«[M
/iA.
"ftlcatTU. /'
>TiTm5
±i
49 M J
"i»3i^
U
-il
•OIMT
TINE,***
tiia
124 Kr
CM ncna
VELOCITY
omricr PUSSUM
OirrKUNTIAL
IAHI.ln.HjOI
STACK
TUOEKATUU
o*y CAS KETCM
TCMPCKATURe
TiiUT
/f 3 • ^ 5-7
DCSInC
in
OUTLET
PUMP
VACUUM
itt.Jlf
CAMfLC BOI
TEJtrtRATUU
•r
IMMMGUI
rcu
•4T
/g«*
tl
7 .
p
. 475-
5 .
fit
^L
ZA1
*>
°:7f
i-«
^±
•o
JJLL
12.
/l /?/&
3.
2±
LL
74
55 /
H2
iMB^bMiMiVHI
77T
H
•r/j/f
H
5-064 A&B RUN. NO.
.* 1
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location s
Run number
&
_>£
n
Sample date )L/\/^
Recovery date
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /Uc
Sample locat
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
<^ f?<+Jt-f Sample date \ ~L l\ It 2-
ion v5~kx_l^~ Recovery date lz./1/f
4BrA$"C> Recovered by Sf(CP/£.fl
sample type S M5J5 M5-320 M5-450
filter number (jooZ-^9 /
filter sample I.D. ^^T&
£s-\~ *J2>(*-J g
^^•/ g £rj ^g 6/V.6 g 5^./g
g g g g
Total moisture 7^0 H g / ^
•*
L-
M5W
Silica gel
9 'Z- ' • 0 g
g
-••-
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Samples
Remarks
H202 -^°^"9 f^ *'" — ^
H?0 5of^p
Acetone .5'^i^ft ^ ' -•
stored and locked
Received by
Remarks X ?<-
LABORATORY CUSTODY
' \
'
<. - <;
Date
B-52
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location C
Run number PC/AS"
Sample date
Recovery date /_
i *•/1A
fz_
A
Particulate sample type M5
Particulate filter number £>ooZ/7oo >/
Recovered by
M5-320
M5-450
Particulate filter sample I.D.
Probe rinse
,5o k
I.D.
Purge train 20 min (check when completed)
Location of filter in back half
MOISTURE
Final wt
Initial wt
Net wt
1st
impinger
Tz.5.1
2nd
impinger
3rd
impinger
4th
impinger
Silica gel
g
g
Total moisture
SILlg
g
g
5~6/./g F//.C,
.7
spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
ft '-x
50 ^ 2-ft r ' LIQUID LEVEL MARKED
_^_ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
X
X
Received by l— '- - - - - •
Remarks 'a's^. ^/^B^--
LABORATORY CUSTODY
-* '
Date
B-53
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant //
Sample locat
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
loMO /d^jeJ'
:ion tft5~5V/
sample type
filter number
filter sample
H^o
20 min (check
Sample date /£/!/*
^ Recovery date /Z// /
Recovered by /i\Cf/£f\
M5 M5-320 M5-450
OGOl1c>U> *'
I.D. vSoO'f ^-'^
I.D. -^^ "^^' ' '- '
when completed) ^^
'^—
(^
^X M5W!
filter in back half l^dtuje^jo Zw cr3 -Lr-p/^^rA
1st
impinger
j
l^o- g
5ol-0g
g
! Vj
MOISTURE
2nd 3rd 4th
impinger impinger impinger
(f(j> j.S g ^ 7 / • 7 9 -_)^'' "9"
0 / -) • ^ g Jo D • O g $ I ' ' ' g
g g g
Total moisture 7y^ly g /
Silica gel
^/.6»g
$1I>3 g
g
'y^% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
x
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by _,
Remarks /v
LABORATORY CUSTODY
Date
B-54
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT_
DATE
TEST NO
(a
COMMENTS:
M3o
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION
SAMPLE TYPEtf "
^G) INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD
AMBIENT TEMPERATURE.
OPERATOR
.ORSAT LEAK CHECKED
\. RUN
GAS ^^\
C02
02
MULTIPLIER
44/100
32/100
^/lOO
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md. Ib Ib-mole
I
U1
en
-------OCR error (C:\Conversion\JobRoot\000005XW\tiff\2000LS96.tif): Saving image to "C:\Conversion\JobRoot\000005XW\tiff\2000LS96.T$F.T$F" failed.
-------
EMISSION TESTING FIELD DATA
Mh
FlANI t Clll
.J..|.l|.^.4|.4t|..|.l|..poJl.|»|ll|l4|lt|l||t.i»lNlo|lCTI
1 I I I I I I I I I
OAlf
|lt|ll|)l|ll|40]4l
i* ft * —t i J •» •
.LI
SAMPLING IOCAIIOH
4>|4)]44J4t[4l|4l|4«U«|M|>l|>ih)lM|»U|Mu|u|ta(tl|lj[l][44ll
ai.. J..A..J.JJ... i | i a i ^ A i ^ i j f... 1. 1 _4 1
-t'i I I I I I 1 I I I I 1 I I I 1 I
TIPf
MH"N'o|n|it|M|..|.»|»i|».|i.|»«|ii
\LV\ I I
ll« M).
OflMIM
fijii«htiniiii.4|itmi»i.,l.,i,i|i.iHiiiiiTFasnr
' »« * * '' '» * * 111 i 11
•*»
IINP
•Ml.
(IN.
ll|)l|ll[)4
• •f 1+ \—3
/lV
SMI 1C
(I* NO)
»l"l"l»l"
Mltil NUH«(fl(S)
4ll4IJ4l|4ll44]4%[4l]ll[4l|l«|M|tl|tlhl|Mht|M|tl
••'*•••* jgl j»A~^~»r*** jff * iJ-au^i^ * ' f B '
I I I
STACt INSIM
DIMCN. (INCHfS)
|M|to(tl|ll[t
I M tOltl II tl t4 It tl IIIII II
na
11111 * i
fltOI
lull
MM
ii in i
HUM itttm AW> tm
'I»h['l»l«l'l'|.|..|..|u|n|l.|ni,.-Rr^7
"'J»r '/fi'r JV" 'I'' I I I I
M M I I I I
NOI/K.
I.D.
4VWI
NO.
VWU
(01 M>
u nil
33"
WliR
WHO
Will
AM*
T^n
'_'
Ul.
IN.
l(AK CHECK
cm
FACTM
M|il|n[t<|njtl
1 1 I
MClOi
nou
NUI sir
MUf Stl
•cr.
Af
Ml'*l"l"
MCMO
DAIA
Nltf
te&nm
?
re
0?
»<170|2I j 23|33|7
7i|26l37|7Bj
3031
•OIMT
TIMB,«1*
»1M«
|>4 kr
VELOCITY
ivl. ft
OBI flCC PRESSUM
DirriUNTIAL
(ANI.tn.H^O)
DCS
53|53l54
STACK
TtMfCNATUU
OKV CAS H£TCa
TEMPtRATUkE
I NUT
OUTLET
rivir
VACUUM,
4..II0
SAMPLE »OI
TOtfCKATUU
T-| ^
?i
53V
(*/
y
K
n
4-
no
E
22
LD
m
60
ttt-
T1
22
at
2
F
U
E
7(
E2
2T
rs
no
5070 A&B RUN. No76fAsB-Woo u
. /•"/ /^J
-------
EMISSION TESTING FIELD DATA
i cm
I I >
I 14111 IIIII I
|i>|it|n|n|.»[iii|ii|i)[)i
,i ji fc i* • * i j I fc. .
I I I I I I |
OAH
I II 40 41
!
SAMPLING lOtAIIOM
ti[><[ti|t.|m|n[t)[ti[t4|it
1 I I lfll'4/lN /I I I I I I I I I I i I I I I I 1/h.Cigi i . i i i I i i i |
UMPK TIM
MJt'|uH'o|"[n|n|l4|n|l«|ll|.i|n|;
-------
EMISSION TESTING FIELD DATA
KAMI t cm
|i|i|«|»|ih|il«Jii|n|i»Nu||)i[n[«o|«i
.'—*.y », * y^> i
SAMPLING IOCAIIOM
«j|4)|44|44|4i]4)|4l|4l|4«j4l[4;[4l[M[44{4l]4lj'T[4l[to|tl[tl|t||t4Jit
EZ_kZteZjS
SAWLE TIN
l|t/|M|tl|ll|)l|n[n|<4|n|,||l||;.|nj|,
I I I I I I I I I I
IUN H.
till I
OMIUIOI
'|«l'l"l"l'»|u|'«l;»|u|..|"l'i^|i<|)i|n|M|n|a|i7
line
CO
S
MfiS.
UN.
SE
SIM 1C
MISS
flLHl M*M(8(S)
4l[4l]4l|41J44|44|4l|4l|4l|4«.|4«|4l|4i|4l|44|44|4IJ4l
1 1 I I I
STACK INS IDC
OINU. (INtHCS)
4l[4l[n(tl[»7JtT t4JI4|tl)tl|ll[tl'
I I A I
rnoi
luu
TMM
fAtf
II[II|H[K
NOM lutu AW> im
M l I I I
NOJUl.
NO.
•N"i»»l«
it a
N,0. SAWU
(t) 'tOt NO
Il|l4|l4
J_L
Nilil
MM 10.
ItI III
Will
AN*
iiUoUilii
MH* CAl.
f AC lOt *
LUK CHECK
CfH
IN. Ng
41 41 41 44 44 41
FACTOR
Mil*
fKTM
EC
MUM
NUT UI
Ml
NUT U1
Mf.
i4|i>)u]n
±
Utout
DATA
n»i9\io
~^E
*>\"M
roiwr
CLOCK TIN*
ftAMMJNtTV |>4 hr
LOCK)
CM MCTU "MUttC
VELOCITY
oai rice
OirrCNXNTIAL
(«H| .In.MO)
. o
DC
3«|39»40|.
42J43|44^
liO 5
52| 53 1 54
STAC!
TENTCIUTUU
OMV CAS MCTCK
TrMPLRATURE
IMUT
OUTLET
rimr
VACUUM.
SAMPLE MI
TOtfCMTUM
INMMCC*
TCMTCKA
•r
€
3
11* 10
3.3
9/
221
-ft
1 ll
6
TJe%
iD
L2-
ja^
32.')
i*&.
^
i*JL
4 '-
13
6 Crt>
HZ
S 3L3
5076 A&B RUN. NO
*;
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number
Sample date
Recovery date
/2./I /I
/f
Particulate sample type
Particulate filter number
Particulate filter sample I.D.
Probe rinse ncp\^>£*•
M5
Recovered by
M5-320
M5*45Q
M5W
I.D.
MOISTURE
Purge train 20 min (check when completed)
Location of filter in back half T
1st
impinger
Final wt
Initial wt
Net wt
2nd
impinger
3rd
impinger
4th
impinger
67Z..9 g
g -//.? g
Total moisture
^ ^ / • fl
60 "2- • !> g
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
RECOVERED SAMPLE
/Soilft '
j_ LIQUID LEVEL MARKED
_ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
H202
Acetone
Samples stored and locked _
Remarks
Silica gel
spent
Received by v- * -
Remarks /bf <^- ^
LABORATORY CUSTODY
Date
B-60
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location v
Particulate sample type M5
Particulate filter number oooZjo3
Recovered by
M5-320
Particulate filter sample I.D.
Probe rinse
I.D.
Purge train 20 min (check when completed)
Location of filter in back half &etog*jJ
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Final wt
Initial wt
Net wt
g
g
66 r.
g
g
1 V
g
g
g
Total moisture
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
5oloft '
SollR
Is'
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
M5W
Silica gel
spent
Received by
Remarks /
LABORATORY CUSTODY
/'y -' • "
\- -/^--.''i-<_,CL ^ Date
B-61
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /f fj
Sample local
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
filo ffttjjf-f
tion v5"fik<-^—
~7cMSiLfi
Sample date i^f i
Recovery date JL/t /%
Recovered by /ntP/fcn
sample type ^^ M5& M5-320 M5-450
filter number 6oo?-~iOl
filter sample I.D. <5<
ficA^^
20 min (check when comp
filter in back half ~PS
\ '
I.D. 5o7^A ^/^^rJ
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
—i _ "> | / vZ "1 X / c/ •? / / "* 'i
1 ' / g w T / -^ g w» 7 t* • / g 6 J)O . ^ ) g
*/fe"1 g <*U.L
^^1 q _y7
^ q >5^1 J g 577,7 ^
/r ^
i~
M5W
Silica gel
*d/i 8 g
» I ^J *y *7 ^ ^^ ^^ ^^ J^^ — .
n ^^^ ~/ A Q j *^ • ^r Q / / » Q T
Total moisture ^^3,^ g / O
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks , x'
LABORATORY CUSTODY
/ .4
Date
B-62
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Sample date
Sample location J5f"<»-tr—
Run number ~"]j)fAb.J3
Parti cul ate sample type
Recovery date /2.//AZ-'
Recovered by /(
S M5S M5-320
*lcp/efl
M5-450 M5W
Particulate filter number
Particulate filter sample I.D. 5o~7l 3
Probe rinse
J07£
Purge train 20 min (check when completed)
Location of filter in back half ^£t
3
re
MOISTURE
1st
impinger
2nd
impinger
Final wt
Initial wt
Net wt
(j 7b".
3rd
impinger
g 6/0.Q g
5-11 -"?
- ''• / 9
4th
impinger
Silica gel
Total moisture
. g
76
g
g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
50
H202
H20
Acetone
Samples stored and locked _
Remarks
LABORATORY CUSTODY
Received by
Remarks A.
— Date
B-63
-------
DRY MOLECULAR WEIGHT DETERMINATION
M P
/I[G*JQ i a
PLANT__/
DATE l-L/l/8*
SAMPLING TIME (24-hr CLOCK;
SAMPLING LOCATION.
COMMENTS:
.TEST NO.
SAMPLE TYPE (^INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD O r^cT
AMBIENT TEMPERATURE.
OPERATOR __
.ORSAT LEAK CHECKED
"^^^ RUN
GAS ^\^
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
Y 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
n-y
/f.s-
NET
M
6.1
2
ACTUAL
READING
/Z..C
//•V
NET
/Z-6
5.&
3
ACTUAL
READING
n^
/!•<>
NET
12-6
6-D
AVERAGE
NET
VOLUME
/a//
fe,-^
MULTIPLIER
44/100
32 '100
28/100
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md. Ib Ib-mole
Cd
I
0%
-------
EMISSION TESTING FIELD DATA
HANI 4 CIII
'Hi,1^^^^'11'!!"1^1''1'^^0!''1''1"1"1"1"1"'"1"1"1''1"1"
i i i i i i i i i i i
DAK
>4||t|)l|lt[ll|ll|4o|
i i y i i j ••
SAWlING IDC* HOW
4JJ4l]44 4tj>lj«l|4lj4l|>o|ilJtl[tl|Mytt[tl{t)jtl|tl|to{n{ll[n|l4
H
I It 1 /I I I i I I I I I I I l i I M i
>l|i.|llH.O|..|lt|Mi,.|lt|,.|,,|,.|,.|M
IIM •>.
Of (Ml 01
|i|»|u|ii|u[ii|i4|itju|iiJii|n{io|n|iiJn|i4J>t|u|i~
1 I I I i i i i i j i i M 1 M..
AMI.
Illtf
Cf)
lljlljlO
MISS.
(IN. H4)
11 H 11 14
ilAHC
CiliS
(IN H
it|n[ii|n[i7
fILIU MMIU(S)
4l|4l|4>|4l|44[4t |4l|4l]4l|4«|M|tl|tl|tl|M|tt|tl|tl
' Mf n' Jl'jl1^' **t I I I I I 1 I I I
3
i i i i i i i ! i |
SIA£« INSIM
OIHt». (INCHCS)
ww
I I i
^l ' I I ' ''' I
rnoT
IUM
10 Ilfll
!
i/lV
mm
»1 Mill
PAtf
MOM IfMIM AM KM
«l»l»l«l«l«l»l«l»NnM'iN'*i.»Mth.'
..i.i .1 '/'ji'ji.iy i i i i i i i i i
rtMio
I I I I i I LI
•aim.
I0|ll{ll|lljl4'
r%tl
NO.
H
•M). SAM>1[
(i) IBOI NO
TW
^J
mat
001 M. 4 H •
MKI (Al.
fACTOt »
4)|44J4t
LUK CHICK
IN. M9 CfH
44|4t(sO tl]tl|tl[t4Jtt
^ttiAtt
K
FACTOR
MIH^
I I I I 4
fACICM
now
NUI UT
W'^
5iW
Ml
MUI UI
I0|ll It
t I '
Uf.
"l"H"
J_L
ICUMO
0*1*
NINS
7^
I9J70|?I
30|3IJ3
»OI»T
CLOCK TIHK
114 hr
CM NRU MUDUC
vcuxriTV
0*1 rice PRCSSUM
DirrCRCMTIAL
(AHI.ln.H^Ot
£
DESIRED
3»|3»|40|.
42J43J44 45J46J4
49
150
STACK
TEMTCIUTUM
BKV CAS HETCft
TCHPtRATURE
INLET
T_ |.»F
OUTLET
run*
VACUUM,
1..I*
z
S
^
-------
EMISSION TESTING FIELD DATA
1 CITI
ii|ii|illil|i4|it|it|ii|iijiibo[li|>l|i>li<|)t|it|iijii|it|io|ii|ii|ii
I 1-J '•'tyf \f\ J J I I I I I II I I I I I—I I
I I I I I I I I I I I
DAK
HuliiHitfiopT
f _^f f *•**•' /J. • J.
SAMPLING I OLA HOW
'i » ' I i I ' ' ' ' M ' I I I >
SMtflt TW
«llll]lllltllolllIll[l]]l4|lt]lt|ll|ll|l«|H
—'—J ' Vj'i ' ' ' ''ill I
I 1 I 1 J 1 II ,L
IM «.
QPilAIM
|.l|..|nill|.4|.tiu|ll|.l|.tH»'l"l'»l»l»l»»l»'
' ' I I ' I I I 1 I I I
1IHP
cn
niss.
(IN. H4>
llll
WMT
STATIC
PUSS
(K M2
^N"N"
mill Nuw(«(s)
41.1
1 I 1 I 1.1 I 1
ilACK INSIM
DIMM. (INCHCS)
^MJt^UJlTfij t4Jll)njtl[tl
I I 1 I I A I 1
PHOT
IUU
nttm
1 1
PAtf
f-d o?
-------
EMISSION TESTING FIELD DATA
lAftl A Clll
|l|i|«h|i|iii|tl.i|..|u|..|.4|l>|.i|.,|..|..po|,.|7,|nH,>|,t|n|l.Nlo|,.|,lT7J
Mil
14|)i[l»[ll[n|i1J4o|ll
i OCA ii OK
4j[4)]44]4i|4tJ4||4l|4t|M[il{w[il[V4|>i|nJi)[il|t»|>o|n|»|t)|l4|l>
IIM M>.
I/I I I I I I I I I I I I i I I I M I iHKi/> i i i I I I i i !
ywru TIM
U|t/|ll|»|)j|ll|ll|ll|(4|n|ll|ll|)l|nll
' *iu' .yVf I I I I I I I I I,
Off (AIM
tii|u|ii|ii|it|it|ii|iijiijin|nj»|n|»|i>[n}»
Cf)
MISS.
(1*.
*t"l»l"
SU1IC
(U H.,0)
»I»I|)»NM,
riLUI MMtl(S)
J»|4l|4l[4)|44|»S [«l|<>|44|4«|>«Jit[»|si|M[u|M|r/
i I M I I
JO. ™J^rt
spK
STACK INSIM
DIMM. (l»CMtS)
i
rnoT
lute
fom n
TMM
PAGE
M
MUM IIMIM MO UK
|u|n|il|il|i4|i>|u|ii|ii)i7
1 1 I I.
•oinc.
JOlllll lllll
MO.
Jt 111
l"l»l"
M,0. lsAM>tC INdU I Mill
(t) 'BO! NOltOlM. AN*
"I"l»
H|K|I>
J_L
Si
31
m
m$
n|«»|4i|4i
MUI CAl.
f«CT(N »
4i|44|4t Hllll
IUK CHICK
CfH
IN. Hg
"l"l"l
Mlii tl
FACTOR
«ClO*
"I"!"!"
»UM
NUT Ul
H[l)|ll|f
NUT Ml
•Cf.
Ml»l'«l"
KC4MO
OAIA
HIM
lltJIj
y|«i»no
»li»»»J'^^
moH'I'
tftAVEM*
»01MT
w^T
TUC,»l*
cum tua
hr
CM NCTU UAouc
IV* lfc>
vcuxrin
ounce
DirrCftCNTlAL
(AHI.ln.HjO)
DClCD
TT
54
S
STACK
TtMftNATUU
DftV CAS MCTCa
TEMPLRATURE
IT_ i.»r
OUTLET
VACUUM,
SAMPLE MUI
TCNfCMTUU
•r
JLI
2
/^5
^/>«a
o 6 7. <» g-7
-*»/
/r'^y
0^2,. 2.X
-?7 "7,
-74
O ^
^Z.
/.*?
O£T,
"?^>'9'/
Q6o
'
O.
J>7
4 154 A&B RUN. NO.
/^7
3
A
___ -.-i-^r- 771
-------
EMISSION TESTING FIELD DATA
HANI t cm
.|.i»i«i«i.i.i.i.i.»i..|..|..|u|.*i.»i..i..i..Hn|,ii.j..i»N»l..i,.|MiTn5iir
>4|)>|>»|)f|)»l)l|4o|4l
111 J I—I—J—I—
UWtfllMb 1 OCA 1 10*
4l[4)[44[4t1
im
i i i i i i i i i i
IIM M>.
OPtMlOl
•I.N..I..I..I..M.
1 1
1 1 i I i 1 I il
1INP
M
MISS.
(IN Kg)
s
II 111 II 34
SIAIIC
MISS
(IN. MO)
HUH
40|4||4J|.
|.l|4ll
SIACI IMSIOf
OIMN. (IMCMCS)
M|M|.o|u|tl|ri M|lt|ti|t>|ll|t
1 I I I * I I I Ml
moi
IUU
loliilu
mm
MOM lUKTN MO UN
'i'l»M«M»M'M.«l
1 1 1 1
MOM i.
1.0.
NO.
M,0.
It) [«01 MO
_l_L
Will
MUM
Mill
AM*
'"M«j*'|
WUI CM.
Egjffi
LUK CHCCK
CFH
IN. MS
K
FACTOR
I I I I
CIM
MOM
NUI Ul
HUT Ul
iel)i|>i|)i
•if.
'I'M"!"
_LJ.
WOMfi
MIA
"It
ll|H|l3il4ft5|lAl 17|li
^Q|»ill^3h
30|3IJ33|33l34|3S]
3i|3»UQ|
42J43[44|4i|4AJ
4.jJ4»lso|3
K>INT
TIMC.iBl*
cuxai tiiu
o« hr
VCUXITV
omricc PUSSUU
OirfEUNTlAL
|AM).tn.H}0|
STACK
TCMPCMTUU
O*V CAS METCft
TCNPtftATUM:
DCSIU.O
IMLCT
IT i.»r
in
OOTLET
runr
VACUUM,
CAMPLE MX
TCMPtBATUU
•f
IMJHMCUI
10 .0
Z3.
76
-43S-
oo
73.7.\ 10°
7f / .
£L
1- ?
5.5
m
•^
ii / i
77 -lit
2±
JjSZ
-?<'?
/ /
IL
i2i/i/&
S
RUN. NO.
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Sample date
Sample location <^rfatc K.
Run number £flfl\5Rv/
Particulate sample type
Recovery date
Recovered by rfC-P
M5 M5-320
/L/l/fls
M5-450 X M5W
Particulate filter number OQOZlo'7
Particulate filter sample I.D.
Probe rinse
-5<3%Z.JR. <-
I.D.
.5o
l3fl
Purge train 20 min (check when completed)
Location of filter in back half .fi»-fcygj
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Final wt
Initial wt
Net wt
"73 I .^ g L/LaO
- ^ g
3JLf
g
g
g
Total moisture
n^g
Zg
_ g
Silica gel
g / (00 • / g
^-,, ; ?
g
S Q % spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
RECOVERED SAMPLE
LIQUID LEVEL MARKED X
5b3*fr
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
*7 '1 ft
H202
H20
Acetone
Samples stored and locked _
Remarks /PA- XM/J
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number
Sample date
Recovery date
Particulate sample type _ M5
Particulate filter numberfl6QZ"?Q%
Recovered by
M5-320
M5-450
Particulate filter sample I.D.
Probe rinse
I.D.
Purge train 20 min (check when completed)
Location of filter in back half
2SJ<*r
MOISTURE
Final wt
Initial wt
Net wt
1st
impinger
"7(1?Q.7
2nd
impinger
3rd
impinger
4th
impinger
Silica gel
Total moisture 3TJL.Q g
RECOVERED SAMPLE
75
% spent
PROBE RINSE CONTAINER I.D. SoK^ft
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
X
X
Received by
Remarks
LABORATORY CUSTODY
RATO
Date
B-70
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant 4>,,A /2cJ
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. ^ISHft ^
TPA IMP. CONTAINER I.D. 4l 5"Tft " LIQUID LEVEL MARKED x
H_0. IMP. CONTAINER I.D. 4fS"fefr > LIQUID LEVEL MARKED -
BLANK CONTAINER(S) I.D. LIQUID LEVEL MARKED
TPA ^Ql'lfi •
i r r\ w i Mt -
H?0? 5f?'5°^, ^
H?0 5or^ft ^
Acetone <,oi>of\ t, ^
Samples stored and locked
Remarks
LABORATORY CUSTODY
Received by ! ^'•'.-S*?'. '.,'" ,' - /l-'^ -^ Date '' *-'-'/-
Remarks , t^"-z - '^ ^'3 yJ-^-£J
C f
'-^
M5W
Silica gel
o i G -O g
(PC-/ g
% spent
/
X
^
^^
•^ s
s~
^/ '
B-71
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /lie
Sample locat
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
'tJO /OoO*-<
:ion ^"f~ax-
^JVAS'vB
sample type
filter number
filter sample
20 min (check
filter in bacl
1st
impinger
~7 2 d 3.
i Oo • -j g
5o3-%
^-5-5 . / g
Sample dc
,)C- Recovery
Recovered by
^M5e> M5-320
OC>T? 2-~U^ ,.'
I.D. 4K1B v'
L^ I.D. L(I5'7^ •/
when completed) i— -^
. •, ,• -r? -J- ~) *-xJ _i "*ry
< half vjDtfToj^ixJ ^- ^^>
MOISTURE
2nd 3rd
impinger impinger
/.14 ^ -5 g ^ ''"^ • ^ g
£75- 3g 57*3.79
"3 0 . *k g ^ i « / g
Total moisture 35~l-.cj g
ite !"l^ll<>^
date /2-A /i ~L~"
/y\cp
M5-450 M5W
X^v^^rS
4th
impinger Silica gel
/ . - o Q *t fl tJL
u3/-^ * 0 Q /• / ' / g
J) j£ • (0 q O 7 6». / g
7 / -7 027
Lsl • i- q / _;> . o g
^ % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
x-
Acetone .504,0
Samples stored and locked
Remarks
Received by
Remarks /•
LABORATORY CUSTODY
Date
B-72
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
COMMENTS:
.TESTNO.
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION
k=-
SAMPLE TYPE((BAG)lNTEGRATED, CONTINUOUS).
ANALYTICAL METfiOD.
AMBIENT TEMPERATURE.
OPERATOR Mcf
.ORSAT LEAK CHECKED
^-v. RUN
GAS ^\
C02
02 (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
IZ.g
//•J
NET
/•a
5.7
2
ACTUAL
READING
H -1
//.v
NET
/Z.I
s.?
3
ACTUAL
READING
/i.l
//.
NET
IZ.1
5.1
AVERAGE
NET
VOLUME
/P. 73
5T7
MULTIPLIER
44/100
32 '100
a/wo
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib Ib-mole
\
ca
i
^j
u>
-------
EMISSION TESTING FIELD DATA
1MI 4 Oil
i||l|lll'|lMl"l"l"liJhl"l"l"H"l"l"l"l'ili»l"i"M'°l>'i»li>
VJA. -vufcn1 *• i,1 JW '«' . ' J.I ' » '—I ' '—''III
1 I 1 I I I I I I I I
DA1(
.4i.tU.iM.iU
rmjf f - *••*" J •*
UWlING 10CAIION
.l|4.|4.|.t|..|..|..H^.|»h.|>«|»|>.|>.h. .|t.Ntl|.4|.t
i i'i i i i i i i i i i i i i i i i
S«MPl( TIM
tiHi|ii|ti|i.|i.|u|,i|,.|,t|,.|,,|,.N|.<
I I I I I I I I I
•UN NO.
OTtMIOl
]l|l|l||ll|ll|ll|l4|ltill|ll|lljllbl|ll|ll|ll|l4|)t[lt|ll
^^^L-^^—^^f^fmiL^f*ffm^m^fi^L^^^^^.^^^L^^,^^^I~f^-^—^^—.
i i i i i i i i i i i i i i i i i I 6iQ2%33 n4fi
AMI.
1INP
CO
Hi.
(IN
JTA1IC
PiliS
FWS
rilUI MMtU(S)
MOM IUCTM UC UN
1 II 1 1 1 1 1
NO.
^T!A
M.O, KAWtc
It) !«01 MO
[» lllMll
J_L
NffU
M)IM.
Will
AH*
l|4l[4l|t«jtl[tl|tl|i4|tt|tl|il M
' < ' I ' ' I
SIACl INSIH
DIMM. (ItfMS)
i
tilulnlMlMMtilJlE
1_L
» I A I I
>IIOT
luu
t»
IMM
35i
oa.
FAtf
l"!"^
Ml
MUR CAl
FACTO* V
LUK CHECK
CFN
IM. Hg
4ll4»[v
K
FACTOR
MM
c
fACIOt
_L_L
nan
HUI UI
"EM;
NUI UI
/O|M|U|M
UF.
A?
Mjlljlljll
0_L
RCCOM
OAIA
*'•*
of
ill|l3ll4L|l6h7ITi
^
I2|43[44h
"133134
*ahal "
•oimr
VEuxrirv
OKiricc rtxssuu
OlFfEUMTIAL
STACK
TUtfCMATUU
BUY CAS MCTCa
TtNPCRATUlUC
IMtXT
DESllD
VACUUM
CAMTLC tOX
TOtfCMTUU
OUTLET
IT ».
out
HNPCMIUM
•f
fO
.57
-OXi
w
-h-
^
TL
E
o.
S
TV
ASB RUN. NO.
a., i
1 n 1
J L
-------
IV
fc
H*
a*
:;«
1
-------
EMISSION TESTING FIELD DATA
''
lartflna
i cm
'I'M4.I4.|.»I4.M
iDiM
OAlf
)«|i>|i>J|t)]i[iii
SAMPLING 10CAIIUN
MtiW
>•»
i.i i i i i i i liiVi^VA^ki i girt/1-i h i . . . i i . i i i , i ! .
SMtfLf TIM
"|"l"l"I"l"i't|»lM|>lT
i—L A i-' ' ^ -4-.. J- I i
i i i i i
OHMIM
i i i i t t i i i i i
Hi*
CO
(IN.
ii|i>|iih4
SUHC
»css
(I*. M.,0)
is|n|ir[ii|i
flllU MUM(R(S)
li|4l{4f|4l|44|4i|
WUI Ul.
aciot »
l«l
LCAK CHCCK
CFN
IN. ng
£&
FACTO*
uten
rkio*
»|n[t4JI>
J./J.
MOM
NU1 UI
n|t)|n|n
•01
MU1 Ul
'C|)l|)l[)l
•cr.
"I"!"]"
•(COM
DMA
MM
33*
IE
}MM
I9J30|3I 1 3JIT3
tOINT
TIMK,Ml«
C1
1JLL
X-JL
y
(
12,0
16 &
'2
SZJQ
/^7 "
-------
t-M.Lbb.LUN Tt.bT.LNlj t I fcL-U UATA
1 CIII
«iihl«h|i|»|i|i|it|Hhi|iiNiM'M'M»l«iM"l"|ii|>«l»N»iHM'i|»|ii|ii
, ,
IM NB.
E
it.it i
i M I I I
OAK
"I"H»N»H
SAMTllNb 10CAIIOM
.>|.l|«4|.tH.l|4.Hvi|t.|»hl|t4Htl|>,h.[tlHtl|t;|.l|>4|.t
lOi^J/ih i/i
1 1 M I
SAHfU
u|tt|u|>i[io|ii|ii|ii|i4|n|u|n|ii|n|u
1 I I I I
ONMIM
I I I I I I I I I I I
AMI
HUP
m
HMi
PdCii.
(IN.
li|n[li[:4
M*1 1C
MISS
(IN. M
Itiihtiiii
MUU MMtM(S)
4o[4l[4l|4l)44|4t |4l|.l|4l[4«|t.|tl[tl|tl[t4|tt[tl|tI
4^
i I i ' I I I
SIACI INSIH
DIM(N. (INCHIS)
tl[ll|>a(n}ll[i| 44[lt|4l)tl[J7
1 I i I
MOM L(KIM MO ll«
'|"I"H"H|>I'*I"I"M»
I 1*1 I
' ' ' ' ' ' ' '
001 ni.
1.0
lo|ll|l)jllj>4
NO.
H,0. hUfll
(tl !
1101 NO
III II III
l&lill
TIR
J_L
Mua i MUI
Ml M. AH*
HRI;
ll|4«|4l|4I
LL
Mild CAl
fACIM I
LCAK CHICK
CFH
IK. H«
gnR
VI i
K
FACTO*
t I M
"N"i"
noti
MAI ui
4llll|ll[t1
rnoi
IUM
IMM
II I4|li
a/fot^
no.
tj[ui»«[ij
MUI UI
in
•ir.
I4[lt|lt|ll
y»»wo
AJ-
KCOM
OA1A
4SHi-
30|3IJ32|33J34|35l
3«|3V|40|.
HI
ftAVtfcU
»OINT
vcuxriTV
Quince
OirrCRENTIAL
|AH).tn.N20)
STACK
DKV CAS MCTCa
TtMPLRATUHE
9/Jo
DC IK
"fiflif"
IT_ I.»F
runr
VACUUM,
CAMPLC BOX
TOtfMATUM
OUTLET
|T_ ».«F
IMT1MCU
nNTCM
•4T
l±.
?^/^7
y^>^
r^"
3 o .o
JLt-
i
TSL
7 /
J^
701°
/0±
1A
-f-*
ll-''*>
±±°
224/4
.p
-fn
3 .
T/9
ft
4702
RUN. NO.
{00
111
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /y}
fltM
Sample location l^+&Jc_\<
Run number
Sample date
Recovery date
Particulate sample type
M56
Recovered by
M5-320
M5-450
M5W
Particulate filter number aooZL7ll
Particulate filter sample I.D.
Probe rinse
4"7QS'C) "
I.D.
MOISTURE
Purge train 20 min (check when completed) """
Location of filter in back half 3Vtuv,?jo Z^
Final wt
Initial wt
Netwt
1st
impinger
^r? i y
O
2nd
impinger
3rd
impinger
4th
impinger
Silica gel
g
g
Total moisture
g
g
. I g
*43.1 g
. /
-7
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
ft "
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Acetone ^
Samples stored and locked
Remarks
Received by
Remarks £
LABORATORY CUSTODY
Date /~-^/;~v
B-78
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant Ma*.
Sample locat
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
:ion vJf'AC.K.
?£M5"s6
sample type
filter number
filter sample
20 min (check
filter in bad
1st
impinger
6^3 ,0g
¥90 3 g
Zoz. } g
Sample date /z-/*£7
Recovery date /2/2/j
Recovered by /^\CP
^ M56 M5-320 M5-450
Ann 2-~7 / ^ ^
I.D. 4lo2B '
I.D. tfl^A •'
when completed) ^
ki_ i ^ ^j ^U / ^J o i^* ^^ f<^ A j^. ^^ r
n3 1 1 I jg T ' >J^ ^>~) ^1^ ^^ ^ — L^-^piw^ cr-j
MOISTURE
2nd 3rd 4th
impinger impinger impinger
GU^-tf q 57?.>"1 6/y.i_g
-^•^ q ^L,.^ g 3?-^"g
Total moisture 351.0 g o'3
6t~-
1^
M5W
Silica gel
/3/- / g
25Z.O g
^•7 g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D. i= -^
B-79
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample date
Sample location <5"kck —
Recovery date /^/W/Z-'
Run number £/V|1v£ -PM-oo Recovered by McP
Particulate sample type M5
M5-320 ^ M&-450 M5W
Particulate filter number (3o£>2~"7)3
Particulate filter sample I.D.
Probe rinse <<
H-l/IB
I.D.
Purge train 20 min (check when completed)
Location of filter in back half j^gt
1st
impinger
/^o/vcg
MOISTURE
2nd
impinger
3rd
impinger
4th
impinger
Final wt
Initial wt
Net wt
cm-k g
-31-
Total moisture
q
q
q
q
q
q
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Pf •
Silica gel
q
q
spent
Received by
Remarks ><
LABORATORY CUSTODY
Date
B-80
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
/?oodr"
Plant
Sample location
Run number £/<( S"£ -PHoQ
Sample date
Recovery date I*-/*-/ %
M5
Particulate sample type _
Particulate filter number
Particulate filter sample I.D. ^lolB
Probe rinse
Recovered by
MJ-320
M5-*50
M5W
Purge train 20 min (check when completed)
Location of filter in back half
3rc
MOISTURE
Final wt
Initial wt
Net wt
1st 2nd
impinger impinger
3rd 4th
impinger impinger Silica gel
L-fS.i-Q 676. Dg ^
^-i
/V;?.<
', 677. £
^q -1.2
g 5$^
g X^
Total moisture ok
U g £
••7 g 5(
'•7 g
o.9 g
-» , j 3 „ — Q
'JCp'l g i <^~ "^'/ g
S / • 7 g £5o -^ g
SV-^ g 7J o g
a ^ % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
ft ^ LIQUID LEVEL MARKED
A" X LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
^
H202
Acetone
Samples stored and locked _
Remarks
Received by
Remarks ^,
LABORATORY CUSTODY
Date
B-81
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE.
COMMENTS:
_TEST NO.
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION
SAMPLE nPE4&KblNTEGRATED^CONTINUOUS).
ANALYTICAL METHOD _ "
AMBIENT TEMPERATURE.
OPERATOR
1*0
.ORSAT LEAK CHECKED
\^ RUN
GAS ^\
C02
02(NET IS ACTUAL Oz
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N2(NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
/?.«
19. <*
NET
W
s*
2
ACTUAL
READING
/3.0
18,7
NET
/3,o
^
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
VJ
S.iS
MULTIPLIER
44 100
32 '100
^/lOO
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md. Ib Ib mole
03
I
00
ro
-------
DATA
i cm
VJMJ'l'l,'l*H''j'>l'>l'*l'>l'^
ffifiUfl rfii^Ut^^rr ^L£^^Mju^\ \ \ \ \ \ \ \ \ \ \
OAK
>l|lt|lt|ll[lll)l[lolll
i iai ii ai i J-..A .J ffr^~JI
ID
.!i|.|«l*|.
i* '«'..'.A
tV(MIM
'|i|t ii|ii|ii|ii|'4|[4l}44|4t {«IJ4l|4l}4l|t«|tl[t;{tl|t4|tt|tl|tl|u|tt[ltl{4l|ll[lljl4[li
I I I I 1 I I I I I I I M '
SMPU UN
>i|i.jiiN.o|n|.ilii|,.|,t|..|u|,.|>.|;
NUHtUR(S)
4llll|4)]4)|u|4t l4l|4l|4l|4l|M|tl|tl|tl|t4|tt|tl|tl
J 'jgj'j' Jl t\ /'->* ' 'I''—Illl
1 1 I
SMf« INSIM
DIMM. (INCMS)
|»|H I4|lt|t4|tl|ll[t1
' I I II i I
nan lutm uo im
ilijt
i|ljll*|ii|iihl|il|ii|it|iili
r*~f^+-^^*^**ti+-^^^~t*~±~^A~—A*.
J ' M ' ' I
I.D.
w
iy i'
NO.
M.
(i) |i
M,O. SJWPU
«0l M
n(i4|is
J_L
MMIR I MKR «»• ««..
Ml M. AH* FAC10R I
III 111II
ICAK CHICK
I*, hfl CFH
m
"i»i"i
FACTOR
J-L
MC1M
4\ I I
HUI U!
fllOl
luu
IKtRK
35
PMC
n\>i\n[
NUT SI1
"I't'J"
•If.
Jntit
^' i
RfUMO
MU
HI*S
0?
id
tvjaolar
i|3li37|33|34|3Sl
3i|30l4Q|.
»a|ol«4N
^TTTT
34
•OIKT
SAMTUHC
tint
|2« kr
CM NCTU HtU>ill6
IV. Ik*
vcuxrin
omricc PUSSUU
OirrCKCNTlAL
STACK
tUWCMATUU
OKV CAS HCTCB
TtMPtRATURC
I NUT
Dl>a I HX.D
VACUUM.
OUTLCT
SAMPLC BOI
TCM/CAATUW
T'
IkL
•*"•
a
£
2S
S2
r
tt
X
7^:
00
fZ
S
25
"5r
3C
222
M
4730 ASB RUN. NO.
I 1
iWr
-------
EMISSION TESTING FIELD DATA
1 CIII
t I I I I Illlllll
It
|itliijiijiibo|ii|ii|n[)4ln|it|>i|M|M|io|ii|ii|ii
>/r*.]'.l ' oA> * ' ' ' '—'—' ' '—L-*—
ItS I I I I I I I I I 1
Mil
14In u iiho n 40 4i
SANCLING IOCAIION
«'|«l|4<|«S |«l|«l|44Uljb«|si|i;|ijIv4ks|Mklkl|s«llo)kl|lj|n|nill
II t f I \-J— I '—'—*—•—L—'—L-'—'—L-•—l * '—I—
2
I/I » I I I I I I I I I I I I I I I
TIM
i>]4>|ii|n|n|ti)ii|n|i4|n|ii|ii|ii|;tjM
Illlllll
I1M M.
E
l£i<
OflMIM
i[i|»|u|ii|n|ii|»4|i>|u|i>jl|n[ll[41
I I I I I A I I
moi
lelii it M
mm
M.
-U.
urn
iMi
MUM! LUtlH AM UPf
iiM'Jtl»j'l>J'Jt,l"i"i"l"l"l'M"l"l'i'
^T^
11111 11 11
•owl.
1.0
»i»'i"i;
•i *•* •>
MO.
HjO. liAHPU IH(tl« I
(I) '»OI MltOlM
•LH»
3«E
1 1
6 M •
20
£
MKI CAl.
ftflW 1
V i'»'
LEA* CHECK
CFN
IN. Hg
1?^
K
FACTW
I I I I
fACIU
ljn|MJIt
HUM
HUI UI
W'^
MUI Ml
•It.
if
•I"!"!'
J_L
tfCORO
OA1A
HIM
?
m^i
f%
I»|30|2I
4aJ43|44|4a|4AJ.
444
nnn
•01MY
TIM
CM Menu
I . It
VELOCITY
ounct rucssuM
DIFfERCNTlAL
1ANI.ln.NjOI
STACK
TCNTCIUTUU
OKI CAS HETCB
TCNPCRATURC
TiDTf"
rr^.^
DCS I RED
IT l.»r
in
VACUUN
OUTLCT
2£
t
a
r, thr
03
•^T7
00
n
tS"
^
X^a.
sz
Oi
t.
Z
C,i
^
J—&.
^
4733
A&B RUN. NO.
-------
EMISSION TESTING FIELD DATA
Pi A* I 1 CHI
|i|.|»lM»lH«»»N.4.|.iM.*l4.|..i.«M»l»«N».Mul»i»»l..|JT^ra
i i i i i i i i
OAK
•«H"J"I»I»H
SAmiNt 10CAIION
41 4)44 4t lit 41
EE
«|M|s)|si|w[n[»i|si|si[»|tci|n|n[t1[>4|4s
I I I I I I I I I I I I I I I
SMVlf I If I
tlllllll|HI10 II
tM H.
ViMIM
1 M I I I I I I I I
Illtf
Cf)
»
MISS.
(IN. Mg)
>i|iiii)[)<
STAIIC
wss
(!•• H?0»
^m
fllUI MM8C«(S)
l|4l|4l]44[4t[4t|4l|4t|4l|M|tl[tl|tl|t4|tt|il|tMt[>l[to{tl|n[tljt4|n[4t|tl|tt|t1
Mil
i(A£I INSID1
OIHtN. (INCMS)
1 till
rnoT
lUli
II II II II 1411
TH£M
PMC
ii|)t[it[t<
HOM KMTN MO IIM
lit itht i
1 I I I I I I
Mine.
1.0
NO.
«,0. SA*»U MIU Mill
(I) 601 MlttOl 10. 1 B M •
J_L
H|ll[ltjll|4o|«l[4?
Will CAl
r«ciM *
4)M|4t]«l|tl
LCAK CMCK
CfN
IM. Hg
FACTOR
tl|il|tl|t«[it tt|tl|tl|tt[to[tl
J_L
C1M
."M**!**
MOM
NUI ill
ttjtlltt]tt
Ml
NUT Ml
III
w.
lt]lt)llllt
MCMO
OAIA
HIM
m
^nTTio
iiii3H3iMft«.i'*i \j\\i
22|23|74
87
30l3IJ32|33|34J33l
TIME,i»l*
CUJOt f Ml
()4 fcr
CM METU
vcuxirv
ounce rwtssuM
DirrCRCMTIAL
(AHI.in.NjOl
Dcsco
34|3»|40|.
>3|44J4al4t3T
57
STACM
TKMFCIUTUU
OH* CAS HCTEA
TFNPtftATUM:
INUCT
OUTLET
runr
VACUUM,
CAMTLX BOX
TCMfEMTUM
•4T
IMMMCC*
TKNrCKAlUM
_g73 f O
•4-
71-
Tt
_ii
J2-
7?
68
-L
~
?
'/&/ Z A 7
z
10
•/•?/
-------
EMISSION TESTING FIELD DATA
i cm
I i > « > I
|n|n|ii|ii|'4|i>|it|i)|ii|n|;o|)i[ij[n|i4|M|)t|i>|)i|ji[)o|ii|i)|))
Mil
..HitHnN»|«7
SAMPLING I OCA IIOH
I I H M)l/ TrTl/iiilililliiiM'
UMPLf
l.Mu|>,H"l'.-|MN.»|..|..N»K
i ' ' ' ' ' M 1
IIM HO.
OHkAIM
' ' '. ' ' ' ' ' ' ' ' '
Ml
UUP
rri
10
(U. itgl
•MI
suite
CilSS
(IN. M
it
IILIII MfMU(S)
»|..M"H"H"H"H"I"H'
i i 6-1001*474 i.
4 kr
VEuxrirv
I
OKI rice rwssuu
OirriMCNTIAL
UHI.in.NjOI
STACK
TtM»CNATUU
DKV CAS M£TEB
TFMPtKATUfct
I NUT
IT l.»f
in
OOTLtT
. rum*
VACUUM.
i..tt«
CAMFLC »OI
TCMKMTUU
INNMCCB
TCMTCMIUM
•»
J.
h
77
8
tf
zz^.
2Z.
. 275""
7. 7
/69
€
CO
* &l O
£
-g
sr
ff ? .
zs:
2
t /«>
z^
a?
EIzM
?8
e.
/a*
A.
3.
S/4.0
1+tfO
11*
££LL
4739A&B RUN. NO.
-4 1 1
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /l[r,k>h /ooj-c_r-"
Sample location OV/acK
Run number /Q^f^Sj^
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse / 1 c«d"« N/£J
Purge train 20 min (check
Location of filter in bac
1st
impinger
Final wt fi^f -o g
Initial wt >5o3 • O g
Net wt g
PROBE RINSE CONTAINER I.D
IPA IMP. CONTAINER I.D.
H,0, IMP. CONTAINER I.D.
Sample date /Z-fl /&
Recovery date /Z/2-/
Recovered by n^JP
^ MSE M5-320 M5-450
ru-^-lX" "
T H *-r 1 "^ r\ f~~) v
I.D. 4-"l3o-A ^
when completed) _//
r *—. —
< half .fy^tuwjo 7-u <^Z J-^piw«t-i
MOISTURE
2nd 3rd 4th
impinger impinger impinger
k^.^g ^39.^ g ^ < ^ ' / g
bl^-3 q 5?^-gg 6(0.? g
g g g
~ + -7 9f>
Total moisture ^A^- S 9 '
RECOVERED SAMPLE
. ^H3oA -''
4~)3 ) (V - LIQUID LEVEL MARKED
^•"/32-(\ ^X LIQUID LEVEL MARKED
L^
'52^-
M5W
Silica gel
^^7-Z^g
g
1 % spent
^
y
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
Received by _
Remarks /r/4
LABORATORY CUSTODY
Date
./, 1
J
57-
B-87
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample date
Sample location ^"au
Run number l£>\*>lf\'ZB
, £__, Recovery date iz/Z^AfZ--^
Recovered
by /YfcP
partimlatP sample type S M5/5 M5-320 M5-450
M5W
Particulate filter number no-i?J7/6
Particulate filter sample I.D.
Probe rinse nce
I.D. ^ 4131A^x
Purge train 20 min (check when completed) ^
Location of filter in back half .Scltco^o "2J° c/- 3
m
p /.
f r
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
Final wt
Initial wt
Net wt
g
g
4th
impinger
Silica gel
g
g
g
g
g
Total moisture
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. ^133 ft /
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Sample date
s?mpip inratinn ,5f«.c \<- Recovery date /l-fl-/^
Run number /ocM^A Recovered by //jcP
Particulate sample type M& M5-320 M5-450
Participate filter number ooo7."7l'7 {/ —
p^rtirulate filter sample I.D. (735^3 \/
xi _L, T n Li"1 ~^/ ft •'
Probe rinse /-/CtzToM-^-' i.u. "-r ob n . — _ —
Purge train ?0 mi" (rhprk when completed) -
location nf filt.pr in back half ."R^fLj^kj ^ "^3r -Jyvp/^r J
/ ^"^
MOISTURE
1st 2nd 3rd 4th
impinges impinger impinger impinge* Si^
• > ^ / «4<-l ^/ / "7 "^1 .JL / / i--n AJ
Final wt . ~) T>I — ^n Lr'''"'q -M* 'iU / ' c/ q C^-r5r- c g /T1
Initial wt -5^O>3.o g C»7 7 -cO g ^L->.(j> g 5? 1 >(s g 0_
Net wt g g 9 , g —
x K7 S^
Total moisture "JfJT. ? g o ^
RECOVERED SAMPLE
PRORF RTNKF CONTAINER I.D. ^13^ R "
TPA IMP. CONTAINER I.D. 4~I3"7 A X LIQUID LEVEL MARKED
Hln. IMP. rnNTAINER I.D. M"?3gfrv LIQUID LEVEL MARKED
BLANK CONTAINER(S) I.D. LIQUID LEVEL MARKED
H,0, .^ofnft * ^
H?0 *5&&f\ , , ^ ' '
Acetone £t>(ac>ft •' ^
Sample^ stored and locked
Remarks . — — —
LABORATORY CUSTODY
,s / \ ^ s .y ,^, X,
Rpceived bv ,' V', s- , <. -• ^ --:^'^/<-'_ -* - Date x^" ,,f
. / t • i /
Remarks * ^ s-/>Z" ~>, ^\ /.* /^. ^ :/^ ^ /-.- t^: - " 4"^.x ^ *V ;<•<•.-'. .^ <• _
x /; ' £ */ jie -*5~ 9- a 5)4*«*'* •'- '"' x><- ^ * r)
// N-*^-^''ir -^
M5W
Tjpf if1
Ur g
5?.^ g
g
% spent
V r>
.- ,. ..L
B-89
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
/oil
Sample date
Sample location ->5~fac
Run number lcjj\n,
Particulate sample typ
Particulate filter num
Particulate filter sam
Probe rinse Actta*
Recovery date }'t
i/z/fa
T_D Recovered by Me?
e ^ M55
ber CXM\T~(
pie I.D. 4*739
M5-320 M5-450 M5W
0 ^
^LJ *'
e_ I.D. M13"? A -X
Purge train 20 min (check when completed
Location of filter in back half JBeitujd
) ^
e.U 'L''" ^ ^ c XfY-,p
Harrt
^w' / _j
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger Silica gel
Final wt TJO-fg Ct> nO-^g G"L3'T g £ ^ 5"* g fri**- g
Initial wt J5o/.f
Net wt
^g 6-73 Dg
g g
Total moisture
57?. ?g s^o-t
g
?fr; ? g
^g ^17. 1 g
g g
8 ^ % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
/A '
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
1 A *'
Received by
Remarks />/••;
<'.-<,>.
LABORATORY CUSTODY
Date
B-90
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE_
ro
COMMENTS:
JTESTNO.
/fl
SAMPLING TIME (24-hr CLOCK
SAMPLING LOCATION
SAMPLE TYPE (^INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD _
AMBIENT TEMPERATURE.
OPERATOR
.ORSAT LEAK
\^ RUN
GAS ^^\j
C02
02,U
£<
MULTIPLIER
44/100
32 '100
a/ioo
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib Ib mole
-------
GAS VELOCITY AND VOLUME DATA
2.
PLANT AND CITY
'P/Wwk $k ,
* *
CLOCK
SAMPLING LOCATION TIME
L/C
PI TOT
TUBE Cp
//
MOISTURE
%
*£.
40
«l
FIELD DATA
70
TRAVERSE
POINT
NUMBER
7 . 1 . 9 .10
0_
\
Y
c^
^
POSITION
(in.)
1 ,13 ,!3«H
>v
3-
3 ^.L''
-«Tv^
W
VELOCITY
HEAD
(Ap ) , in.HjO
75.26.77, 28 .29
/•*?
i,<2
'i'$
7/f
/.4
R-<-
STACK
TEMP, °F
38,39,40,41
/*/V
/?V.
/yy.
/•/.Y
IVf
-
2
76
T
-------
APPENDIX C
LABORATORY RESULTS
C-l
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3
Plant
o
to
Sample location
Relative humidity 6*•'/<-
Run No.
Analyst C> .
Density of acetone (pa) - 7^c-fc|_.
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
£f?373 -
CtWZ;
Ct*»4i .•
cezotA
Sample I.D.
6/HCHA -
lAf»6t>
8l'A/K „
IAM6&
Container No.
^7/ A -
43 70 A s
- -
t/4706 ^
Initial Vol. (ml)
A7^mX's --
a^^o^'s ^
OOO3-(t'j -'
Coo2~TB(~
Tare Wt. (mg)
\0!?> y
C£3<+3. ,
CtZ+i ,
C/C3C- '/
Number of
treatments
required
to achieve
a stable
weight
A s
A /
£,
«i-'
Heat to
450°F
i?yhours
cool ,
weigh
l>(0 ;
b-9 y
c, o s
},C /
8-3 -
Number of
treatments
required
to achieve
a stable
weight
cA -
A X
2- .
ta/
Heat to
600° F
6'nours
cool ,
weigh
0.6 --
5-4? -'
-o./ -.
/..3 ^
fc-9 >
Number of
treatments
requ i red
to achieve
a stable
weight
a x
Jl X'
J-
3. '
Remarks
Data reviewed by
*
Tiioco a ro
nun. minu<; tarp wt.} without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant
Run No.
o
I
U)
Sample location
Relative humidity 5Q'~/?
Analyst 0 • -J one.
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
£/e?>73^
C/?343 s
C£34-/ ,-
C£3i0A x
Sample I.D.
A//C /+A ^
I&W6& •
BKW<
I6'tt56 x
Container No.
'-/rr 7/ A .,-
^9731 A -^
.
4^7A6 ^
Initial Vol. (ml)
^J^.mJi'6 -
^9^'5 ^
ooo£-i\q _
0002755 /
Tare Wt. (mg)
IO(c490,-J -
/07335.3 ^>
346-5 -^
355- / ^ x
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
<2£373 ,
6/?343 s
C£34~/ „
C^SiCA.
Initial wt.
(ambient)
3-"7 ,
75. 8 '
0. 31 ^
3-9 X
Tf.?/
Heat to
320°F
6liours^
cool ,"
weigh
M ^
/*f.3 -^
"O./ X
•7^
/6.0 X
Number of
treatments
required
to achieve
a stable
weight
^ ^
£ y
^ /
A^
Heat to
450°F
fc^hours
cool ,
weigh
/•6 ^
^•A -
o.o ^
/./ x
10.3 x
Number of
treatments
required
to achieve
a stable
weight
A ''
P. -
$~ -
A ^
Heat to
600°F
fe^hours
cool ,
weigh
o.g -
8-1 ^
'O.I ^
C?,0 ^
8.9 x
Number of
treatments
required
to achieve
a stable
weight
P~ x
A x
^ ^
A '
Remarks
Data reviewed by _Sj'.v,_i .. I..1' _.'.v- t
* ' *
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3f>'.-to -16
Plant if-S. £.A3- /7?CA/o
Run No. ^f\K\5&-
Sample location
Relative humidity 6oe(c
Analyst d- Oo/\/fc5
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
(2*373 -
££344,,
C£3>4l .
C£3itA -
Sample I.D.
£/+3 ^
3AM56-P^oO'
Biafjtt ^
J-bW^fr-pilGO'
Container No.
Mil A /
<-W//? „
W/6 ^
Initial Vol. (ml)
P7tlm£'5 --
355 -TilS -'
000^1 itf
0003^9,^. "•'
Tare Wt. (mg)
I06V-&0.7 ^
/tf734'0,p. ^
3^?'^ ^
347-0 S
Analysis results (mg)*
r.
i
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
£/Ca/3 -
6'/?344 -
6J£3*n ,
C/^3il A „
Initial wt.
(ambient)
3-7 -
c^-9 ,
o-a u
^•3- y
M>\ /
Heat to
3^0 °F
^*f hours
cool , *"
weigh
'•/ x
/4.4,
-£)J X
^•8y
/zay
Number of
treatments
required
to achieve
a stable
weight
<^ /
3 -
P- >-
^./
Heat to
450°F
Pffhours
cool ,
weigh
(.(i,
M3^
G,O
2.+ .
/7.3 /
Number of
treatments
required
to achieve
a stable
weight
JL,
^X
^ .
JL ,
Heat to
600°F
^ fiours
cool ,
weigh
0-6 -
//,e /
'O,( ^
^.3 x
/4./x
Number of
treatments
required
to achieve
a stable
weight
A ''
^.x
^^
P.X
Remarks
Data reviewed by
•
'ihese are net weights (qross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
Plant U>$ CPr\ -
Run No.
Sample location
Relative humidity 50%
Analyst C-
Density of acetone (pa) .l°iO8
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
6^373 ^
C£346s
C£3<41 ^
ce$\zf\ .
Sample I.D.
6iK K3L ^
2&m56 Pico
6/<0 .
S-4,
<9.O -'
3-3 x
gr? >
Number of
treatments
required
to achieve
a stable
weight
^^
^,
A,
5LX
Heat to
600° F
6 nours
cool ,
weigh
0,8 .-
4-3 .
"<9.| .
^,7 x
-J-0 /
Number of
treatments
required
to achieve
a stable
weight
J.
^^
a ^
^^
Remarks
Data reviewed by
K
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVMETRIC PARTICULATE ANALYSIS
PN
n
cr>
Plant 60S
- /Vlo/N/0 feo
Sample location
Relative humidity
Run No.
Analyst C •
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
££573^
££346
C/^34'
££3/34'
Sample 1.0.
6/K fO /
2C#\6e>
&(o*lk
2Cm$e> s
Container No.
^7//\
^•77^ ^
4^7/5i /
Initial Vol. (ml)
21^rtJL<<> x-
336 m£ '5 /
COO 27 (£]
OooZbS* -
Tare Wt. (mg)
lOb4?0>7 ^
•
\o3-b51.6 / -
348-5 .--
35^.^. - "
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C£373 -
6/C34<2> -
C*34-i
Initial wt.
(ambient)
3:7 /
464 '
o. a „
7-7 .
£>(c>(0 (/
Heat to
320°F
A4fiours
cool ,
weigh
/•I .
/if. 3 y
-CM./
34 /
/8-a. /
Number of
treatments
requ i red
to achieve
a stable
weight
^ y
3 J
3L s
3V
Heat to
450°F
^u/Tiours
cool ,
weigh
/•6
/fc-3 ^
0-0 • .
3-1 ,
ir z -••
Data reviewed by
*
npf
(orn«;«; wt. avci. minus tare wt.) without blank subtraction
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3
Plant g.6.
- Mono fi
Sample location
Relative humidity
Run No.
Analyst
Density of acetone (pa) , T-1Q&
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
<2£2>73^
££347 -
C£ 34 i ^
C/e3/4A-
Sample I.D.
6/K KA '
<2D/ri56 •
ftldA)*
^EtflSrf ^
Container No.
&^> •/
Tare Wt. (mg)
IO(y4&O.7 ^
lOSMb-Z. -
346-5 ^
340.3^ "
0
I
Analysis results (ing)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
££373 ~
CZM-7 -
C£34| -
c2/?3i<-M..
Initial wt.
(ambient)
3-7 X
s^.O •
0.3L x
5-3.'
34.3 /
Heat to
320°F
fcliours
cool ,
weigh
/'I -
0.0 /
'O.I x
3-8/
n&s
Number of
treatments
requ i red
to achieve
a stable
weight
A ,-
a y
^ ;
^/
Heat to
450 °F
fcliours
cool ,
weigh
/•6 y
5-6 x
o.o ,
3-5 ,
^?./y
Number of
treatments
required
to achieve
a stable
weight
2-J
^^
a -
«P-/
Heat to
600° F
(c hours
cool ,
weigh
0-6 ,-
3.O x
~0.t ^
2>±/
s.±y
Number of
treatments
required
to achieve
a stable
weight
^
^/
£ -
^^^
Remarks
Data reviewed by
r
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
n
CX3
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant U'5. £7^ ->
Run NO.
Sample location
Relative humidity
Analyst ^.Tt
Density of acetone (pa) .7^/\ /
5I03A ^
,
6 104 fi ^
Initial Vol. (ml)
^CBmJt'5 •'
33$ t*J- 's *
OoO 3-~l l^f ~~
oootett^ ^
Tare Wt. (mg)
106183.4- ^>
I0b5ii.4- ^
346-6 X
3
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3S
Plant
Run No.
o
I
Sample location
Relative humidity 5°A?
Analyst 6 - Jo/ve.5
Density of acetone (pa) .
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
ce$i+
(2/C34? -'
C£34/
££3/6,4 -
Sample l.D.
&IK 3+4 x
3D/V156 -
6i**>K ^
53)^50
v-
Container No.
5/^/1 ^
5/aA ^
5//^6
Initial Vol. (ml)
P-00.nl. '5 ^
337-^ '-5
OOO^~?l£f "
ooote g$ s
Tare Wt. (mg)
/ 06 <£««/- -^
I02i8~?.3 *
3^-6-5 -^
3*f^o .
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
<2£cW- x
£/?34<9 y
at am y
£/e3(k4 .
Initial wt.
(ambient)
*».7 '
tol.<] ;
0.3L ,
"7-7 -
fcrt.fc /
Heat to
320°F
"cool ,
weigh
(9-5 ~-
•o, I ^
/
Number of
treatments
required
to achieve
a stable
weight
P- -
2- s
j
Heat to
4y50°F
cool ,
weigh
O.^f /
^
i9-O .
^x
_. —
Number of
treatments
required
to achieve
a stable
weight
A- '
"
3- *
. y
Heat to
600°F
^/xhours
""cool ,
weigh
- /•£ x
Si-P. 3- x
'0, t _
4.^ y
P^.^y
Number of
treatments
required
to achieve
a stable
weight
P- '
^> ^^
3^ ^
d^/'
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
o
I
H
O
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 3530-/5
Plant U,$,CPft
Sample location
Relative humidity 60%
Run No. *'A M68
Analyst &
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
<2£374-
C/C35O „
C£$m -
££3<74
Sample 1.0.
6//<3*4-.
4AM S& /
6/<«Aj£ ^
4Aw$s ^
Container No.
5/A6/4 -
SlItoA s
StlbG ^
Initial Vol. (ml)
ZoGnJl's '
LlWrtL'S ^
O002~7l^
Ooo^^io ^
Tare Wt. (mg)
{OSl^^'4- -•
104<*63.I '-
3^8-5 -
3^0- 4- ^
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total participate
Lab No.
<^374.
C£ 360 <
6£34l ,
C-£2>nA J
Initial wt.
(ambient)
2-7 x
20,$ /
0.3. ,
6-<-f /
^6-7 >
Heat to
3y20°F
fe 'hours
cool ,
weigh
<9,5 ^
/
'0. | ^
• y
Number of
treatments
required
to achieve
a stable
weight
£ '
, j
2* '
j
Heat to
4^0 °F
fe hours
cool ,
weigh
tf.if /
?-•/ -
0-0 „
^.7 .
/A. /^
Number of
treatments
required
to achieve
a stable
weight
^ /
JL^
^ -
3- ;
Heat to
600 °F
fc ''hours
cool ,
weigh
- 1-5 /
(*.<&/
-a i /
*f.^L X
n,o/
Number of
treatments
required
to achieve
a stable
weight
3*. x
A x
A --
JL/
Remarks
Data reviewed by
npt wr»inht<; (nrnc.s. wt
minus tare wt.) without blank subtraction.
-------
Plant UiS. CPft - A!OA/O
Sample location
Relative humidity
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530 IS
Run No.
Analyst
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
££374- ,
C£35/ x
f'£34/ -
6£ 3/6/4 .
Sample I.D.
6//C 3+4- ^
£//g/n5i3 ^
6/a/v>/( ^
& ,
Container No.
5a<^/i x
5//44 ^
S//46 „
Initial Vol. (ml)
P-<9£3 t'nJi ' S _^
^f V?- 3 TU/ 'i ^-
Oco2~?i^ -^
\O(0%1'1>S J^
34-6-S ^
3«v-4,«? ^-
Analysis results (mg)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
.
Acetone rinse
Filter blank
mfrpr
Total particulate
Lab No.
dt 374^^
-. n 'if- ,
C, K. <_*O I '
^3tf/ ,
/? P ~^.\0 &
C'tO 1 Dft /
Initial wt.
(ambient)
£•7 /
m tf j
0.3- ,
/ CA
/
Heat to
320°F
^hours
cool ,
weigh
(9,5 x
^
'O.l „
s
Number of
treatments
required
to achieve
a stable
weight
^ /
j
2- s
s
Heat to
450°F
"cool ,
weigh
0.4- x
^
6>-o .^
^
Number of
treatments
required
to achieve
a stable
weight
P- ''
/
5- /
X
Heat to
600°F
£/fiours
cool ,
weigh
- ( • 6 /
7 /
' X
-(9. I -
, . ,
T" / ( ^
//•P. ,/
Number of
treatments
requ i red
to achieve
a stable
weight
3- "'
.-* /
er~- **•
JL x
Cr*- /
Remarks
Data reviewed by
K
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN JS30-/5
Plant a,S.£W-M?/\/o A?u)?£
Sample location
Relative humidity 'So^o
Run No. t+CWSS-pyet
Analyst Q-To/\)£S
Density of acetone (pa) -*7 *?£?£>
->
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C* 374 ,
C/f352./
C£34( -
C£3tff\ .
Sample I.D.
i3//t 3+4 -
ttcmsA-pjco *
$/tf/0/( ^
- tCrtSfc -Pwo ^
Container No.
6/^fc/? ^
S<>74 _.
—
S/3-?6 ^
Initial Vol. (ml)
2O&^<3 ^
3-53 rnJL '5 ,
GGO27'4
Ooo3-(j'j< ^
Tare Wt. (mg)
leS/Wx*- -x-
I&r4/S,b J.
346'S ^
3*7 -4- >
Analysis results (mg)*
n
i
M
to
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
CO>7^- s
C&3S2-S
01 341 .x
<2/3/«jd -
Initial wt.
(ambient)
P-7 /
33-^x"
O,2- ,
' -],to /
yc. B >
Heat to
320°F
6' hours
cool ,
weigh
C.5 ,-
'
-0. { ^
" ;
.
Number of
treatments
required
to achieve
a stable
weight
PL ,
. -
2- ^
y
Heat to
450°F
^fiours
cool ,
weigh
£>•«-/- ''
/3,3 ./
0,0 /
5-5 -
/0.6 y
Number of
treatments
required
to achieve
a stable
weight
3-7
^- y
5L ;
A ^
Heat to
600°F
4/fiours
cool ,
weigh
- / • 6 /
//.O -'
'(C?. ( .
^ft s
/6.0 ^/
Number of
treatments
required
to achieve
a stable
weight
a
a. x
5. -^
P>.y
Remarks
Data reviewed tjy •• ^'
i.ininhlc ^
av/ri niinnc
wl
withnill'
<;ilht r^P 1 1 nn .
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3^3^ -is
Plant (JLiS-cPfl - Mono
Sample location
Relative humidity 5Q°/o
Run No.
Analyst (2- X-
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
c/e-574-..
ce 353 .
££341 -
^315£ 'P4CO;
Container No.
6iJbA .-
5f3cM ^
.
S/J£>6 .x-
Initial Vol. (ml)
POg^'S -'
P-,?5,n/'i -.
j?(90J7/^
c^^o^&^S /
Tare Wt. (mg)
I OS i 9-1,4- ~"
I04&I&.0 ^
b<4V-S ^
5+S-8 ^
o
I
I-1
U)
Analysis results (mg)"
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone nnbc
Filter blank
Fi 1 tpr
Total particulate
Lab No.
££ 374 ^
n 0 y*^^
C'Y'C co ^) •/
C£34l .
OR ^1f A
'C- P~ O ZrO l\ -r
Initial wt.
(ambient)
^•7 x
'1/1 U- '
<7'-CV • t-f
0.3L ;
/ ,.
(£/ 1 <_) S
ll.Z'S
Heat to
320°F
cool ,
weigh
O.S »
-'
-""
-<9. i x
"
Number of
treatments
required
to achieve
a stable
weight
2- /
j'
^ s
~ '
Heat to
450°F
(# hours
cool ,
weigh
(9.4- •'
(9,0 ,
-'
Number of
treatments
required
to achieve
a stable
weight
«P~ /
7
^-
Heat to
6pO°F
~cool ,
weigh
~1>S
Q\ f /
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN .3530 IS
Plant
'S. CPft -
Run No.
Sample location
Relative humidity 5O °/o
Analyst £?- JcA/'c5
Density of acetone (pa) ,73o
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
££376 '
d£35^-
C/^34/ -
<2£3P-'^
Sample I.D.
6/fc S-/0 /
5#/tt56 -
6 /6M> £
5ri/^Sg •
Container No.
SofroA. y
Slid ft y
5/336 ^
Initial Vol. (ml)
3/6^t-/'«5 -^
4
nP ~^i\-\
Hi 321 ^
Initial wt.
(ambient)
CT~ ' 7^ /
^T/") i ;
0,31 ^
7-3 .-
4-7, fc ^
Heat to
3^0° F
(o hours/
cool ,
weigh
M V
/5.5 y
-O.i x
6-6 y
^/•/ /^
Number of
treatments
required
to achieve
a stable
weight
d~ s
2. <
cr*~ /
^ /
Heat to
450°F
^^hours
cool ,
weigh
/<4 '>
/A. 4 X
dP.O ,
^•7 „
/7-/^
Number of
treatments
required
to achieve
a stable
weight
^ '
2-s
3~ '
2~s
Heat to
6pO°F
(o hours
cool ,
weigh
0. 6 y.
.0 ^
'0. I ^
*4 ity •/
/4-7>-
Number of
treatments
required
to achieve
a stable
weight
, 3- x
5L/-
. /
cX^ ^
Remarks
Data reviewed by
These are net weights (qross wt. avq. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530-/S
Plant
. CPA-
Sample location
Relative humidity
Run No.
Analyst C. Jb/v/e.
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
c/e 375 -
££356 >
££34f x
6'£33P^-
Sample I.D.
/8/fc 5-/o „
S£/r?5-3 ^
£//C x
S&nsX --
Container No.
6060 A ^
5ib/3 x
Initial Vol. (ml)
3/fcMjC-'5 ^
P-7a^'^ ^
oooj~?t? -
C7oo^fc'^5 --
Tare Wt. (mg)
1034-10. 0 /
10541$. t* ^
T>H4»6 ^
$4-0- (0 -'
n
Ul
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
•Lab No.
6^-576^
Ce 355 --
(LL 3+t -/
6< 3^^ ,
Initial wt.
(ambient)
Pr£J X"
3^.0 /
0-^ /
7'P~ y
^.^ ^
Heat to
320° F
Wiours'
cool ,
weigh
M -
//•3 /
-o. ( ,
5'O x
Ho. 3 x
Number of
treatments
required
to achieve
a stable
weight
^x
3 >
;LX-
a /
Heat to
450°F
^fhours
cool ,
weigh
/•^ ,
/3-3 ^
^,O -
<4-<(# '
n^ ;
Number of
treatments
required
to achieve
a stable
weight
^ '
^-x
C^ X
^ /
Heat to
600°F
3^/fiours
cool ,
weigh
0.& ^
in x-
-O.i ^
<4>^ x
/3- /
Number of
treatments
required
to achieve
a stable
weight
JL ^
3k^ -
2~ ^
^/ '
Remarks
Ddta reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
o
I
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN
Plant (JL.S
Sample location
Relative humidity 50%
Run No. 6C
Analyst (\. Jc'/y)&6
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
d(- ^75 --
C.t 3^6^
££341 /
C£?P3y
Sample I.D.
/I i t/ £ i f^t .X
« ) I |Vr /J * \ ^"*
6CM5> •--
6/flA) K. '
£>Cf"S&
Container No.
£,ObO A x
5/3^ /? •-
. — •
5/34 fl ,"
Initial Vol. (ml
3/fcM/'a -'
3^^'i -
0002113 ^
OooMto ,
Tare Wt. (mg)
IOMIO.O .-•
lo(oW'4- .- -
34^-5 -^
3if6.0 ^
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
#£376 s
C£ 366-'
£3P--3
Initial wt.
(ambient)
.><£ -'
4S-5 J
0,3- ,
0.6 /
5^-. O /'
Heat to
3^20° F
^'hours
cool ,
weigh
(A
_ — -
'0. 1 .-
./'
•
Number of
treatments
required
to achieve
a stable
weight
rX ^
• '
A X
„
Heat to
450°F
(^ hours
cool ,
weigh
/ • *"f~ *"
//•^ x
o.o .
5'P> -
_/?.»./_
Number of
treatments
required
to achieve
a stable
weight
JL /
A x'
<^- -
3-x-
Heat to
600° F
"cool ,
weigh
O.& /
4*0 x
-D. 1 ^
^/.^.
/3.£Ljr
Number of
treatments
required
to achieve
a stable
weight
A s
A ' -
3- /
3- / -
Remarks
Data reviewed by •'_ •, >•. L__i.__^- —
*Ihese are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 3530-/5
Plant ti.S
PQ.JUC*.
Run No.
Sample location
Relative humidity 50%
Analyst C. TOA)C.S
Density of acetone (pa) .7^ £'6
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
££ 375 .
6C367/
C£ 2)4-1 .,-
£/e 3*4 --
Sample I.D.
6//C S-/o '
5Dr*i56 ^
6/756 .x
Container No.
^OleO l\ ,
6 if 2- ft '
.
b'iv^6 ,/
Initial Vol. (ml)
S / 6 m/ -s /
^3W'i /
CW.^7'
O<9O Jfcf 7 ^
Tare Wt. (mg)
105410.0 '
/07^3-^ ~^
3^6-5 ^
BVS-'/ ->
o
H
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
(Li 375
££2>S7 x
L.'£^4I -'
Ct 324 .
Initial wt.
(ambient)
J* X
40. & X
o.a- y
1 * s
t8>Z ?
Heat to
320 °F
cool ,
weigh
M -
-C. ( x
_y
Number of
treatments
required
to achieve
a stable
weight
3- y
— —
P- X
. /
Heat to
450°F
>f ''hours
cool ,
weigh
/ ^ x
/P'3 .-
ao
¥•/ x
/^.4-X
Number of
treatments
required
to achieve
a stable
weight
3- /
2- X
^L x
3L /'
Heat to
600°F
,u/ 'hours
cool ,
weigh
O> & '
3'5 x
'0. 1 ^
3.^? •'
/3..1. y
Number of
treatments
required
to achieve
a stable
weight
^ /'
3- S >
2-^
2~s '
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant a.S. 6TA- r^e/vjc ?ouoc /
6'£3*/-l ..-
C£3?-6s
Sample I.D.
6/K. 6-10 ^
fe/Vn5£ --
&ICJKL
M^S6 ''
Container No.
£c?£>c># x
5^5 //I x-
soS/0 „••
Initial Vol. (ml)
ZibrtJL'S -
65/C3-f( ,
6-ca,^6 .
Initial wt.
(ambient)
P-g /
J5.^ y
O>2- s
&0/
tt.(*_j_
Heat to
320°F
^ hours
cool ,
weigh
M y
16-1 /
- a i ^
(c- <4 /
d
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN
Plant l('S. Clp(\ -
Sample location
Relative humidity t>oc7o
Run No.
Analyst
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
££375 -
ce 35^ s
CiC34'l ,
CeSZto.'
Sample I.D.
* &/C5-/0 ^
<0AiK6& -"
6/*/o£
6£>o4 -^
So 5^- ft /
50St/6 y
Initial Vol. (ml)
3ffo"U'$ -
334W '5 .
coo }~1 1 3 -
OOCWcfl ~-
Tare Wt. (mg)
IOSHIO<€> x
/
Heat to
600°F
6' hours
cool ,
weigh
0.0 ^
fa-6? -.-
't?. 1 ,,
^•7y
n.t*-S
Number of
treatments
required
to achieve
a stable
weight
P- -^
a x "-
^ /
«?. y -
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
plant U> S. C
o
to
o
Sample location
Relative humidity
Run No.
Analyst
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
££375
C£$bO/
f'£34/ -
£/?3P-7 ,
Sample I.D.
e>iitf>-to ^
7/-W5/3 Ptjoc
6/^AjK
•jtms* Puoo^
Container No.
SOtoO A
SO&lft ^
.
66^76 x
Initial Vol. (ml
3/fc*U's -
P-5C5 «J. 'o ^
ODOJ7I5
^oP?-U „
Tare Wt. (mg)
103+10-0 ^
ICto$oO,<* ^
3^6-5 ,
3f &.£_-'
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C£?>76 /
££?>toOs
tje$w
CIZ327 .
Initial wt.
(ambient)
^>-£ /
37.0 /
O. 2- /
°t>^
4fc.4 V
Heat to
320°F
k hours
cool ,
weigh
/•I s
20.£ ,
- O.I y
s;?y
^•5;
Number of
treatments
required
to achieve
a stable
weight
;L ^
^ '
3~ S
^ '
Heat to
450°F
(^'hours
cool ,
weigh
l"4
n o .
o.o x
5,0 s
23.0;
Number of
treatments
required
to achieve
a stable
weight
3~ i
2- S
3- -
3- /
Heat to
600°F
"cool ,
weigh
0.0 ^
It.O s
-o. i ./
4 .-7 ^
/5-7 V
Number of
treatments
required
to achieve
a stable
weight
A- ^
«a / -
P. x
a ^
,x
Remarks
Data reviewed by
(t\rc\^^ wt .
. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 3530 '5
Plant
Run No.
Sample location
Relative humidity
Analyst <2-
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
6>£37S x
<2£3kl /
Ct2>4\ -
C£3ie> .-•
Sample I.D.
6//c S-/C? s
16tn$e>' P<-t-i&~O s-
1 10 SOI' 3 j£
3^?'5" -
3^-S j?
o
I
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
££375 ,
C/63(c/ /
<2£34-( /
(2 £326 .
Initial wt.
(ambient)
£•6 /
^.fc '
o. ^ ,
- /3.«f ^
*r
Heat to
320°F
"cool ,
weigh
M ^
/p,| ^
-0.1 ^
^•4-y
>•
Number of
treatments
required
to achieve
a stable
weight
A^
3* y
c^-X
3V
Heat to
450°F
"cool ,
weigh
/ » *'/-
/ <^ *" CtP */^
<9. o . ,
4?.7 /
1
Number of
treatments
required
to achieve
a stable
weight
P./
^ /
d -
«?- y
Heat to
600° F
"cool ,
weigh
o,a ^
/<5."7 s
- Oil ^
(e.+ /
/?'/ y
Number of
treatments
required
to achieve
a stable
weight
3- /
3* '
<2~ /
ay -•
Remarks
Data reviewed by
t
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
o
M
ro
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant U.S. LPA- tfwo
Run No. ^c
Sample location
Relative humidity 6O
Analyst C JorieS
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C/C'375 ,
C/O^A,
Cd $m -
cezw-
Sample I.D.
6//c 5-10 .
1C-MS& „
y|/j,0/C «•
70M56 -
Container No.
SObO A x'
£073 d ^
—
S£736 ^
Initial Vol. (ml)
3/6? mJi'S ^
3-3&tnl's -•
c'^c?J7^ '
rci 370^4 ^
Tare Wt. (mg)
(o'*>m&>o /•
ic5os&,o * -"
3w-^-5 -
3V/'6 ^
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
(•£.575.
££3^3- '
C/O4L
GZ3M .
Initial wt.
(ambient)
P<#.
fc'/W ^
(9.3- ,
/6.fc -'
gatf/'
Heat to
320°F
k'hours
cool ,
weigh
1,4 •
J-J-4 s
- O. l -x
to. 3- /
^#-& V
Number of
treatments
required
to achieve
a stable
weight
3- x
ta '
^/
3^
Heat to
4£0°F
t'hours
cool ,
weigh
/,cf .'
/ 7'0s ^
O.O .
^/.^ .
^-^y
Number of
treatments
required
to achieve
a stable
weight
P- /
J-y
<^ ,
A- ^
Heat to
600°F
^ 'hours
cool ,
weigh
O'S ,
%.(* .
- c. i ^
6.0 y
/3-^y
Number of
treatments
required
to achieve
a stable
weight
3- <
•
P^' "
P-/
^-
if <*>
Remarks
Data reviewed by _'. y. 1 ' • . ... T .
/ • "
*Thp«;p arp net weiahts (aross wt. avq. minus tare wt.) without blank subtraction.
r.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN v>*>-.'5
Plant U
Run No. 7DrnS6
o
i
M
U>
Sample location
Relative humidity
Analyst d •
Density of acetone (pa) .7*7 C'_8_
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C/C37S .
C£3b3 /
Ct2*t ,
£/C33£ ,
Sample l.D.
£/£ 5-/o .
7t>m5^ -^
fi/cUJlt -^
IDmse /
Container No.
5O&yf) A -^
5D76A -•
6o7(t>& ^
Initial Vol. (ml)
3 (t> rtJ •$ /
2>3£>nJ-'5
CDO^fi^
O002105 ^
Tare Wt. (mg)
ICZ4IO>0 /
1055 1 7-1 '„
3^-5 ^
3^' 5 ^
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C£375 '
6£3fe3 ^
e/e 34 i -
£/e 330 ,,
Initial wt.
(ambient)
^'^5 x
75.0. X
O.3L ,
//•/ -
86-3 "y
Heat to
320°F
aWhours
cool ,
weigh
/'*? x
^3-7/
-0. ( ^
7-6 /
3I-3V/'
Number of
treatments
required
to achieve
a stable
weight
•^ -
5 ^
P- /
<^^'
Heat to
450° F
jtf hours
cool ,
weigh
l-<-h -
A3.^- .
£.C .
7.0 ^^
3d? .4 w/
Number of
treatments
required
to achieve
a stable
weight
A /
^ -^
JL -
A. -'
Heat to
600° F
^^"fiours
cool ,
weigh
<9.# .
^0,3 /
-C'i ^
fc-0- -/
A6.6 •
Number of
treatments
required
to achieve
a stable
weight
5i ^
a ^
A .x
ay "
Remarks
Data reviewed by
k- i.
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant d
Run No. &ZM5&
Sample location
Relative humidity
Analyst C • -
Density of acetone (pa) .?<
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
£t 375 -
££364- ^
C£34-j /
C/C33/ x
Sample I.D.
f>iKi 5- to y
VCrt6& ./
g/Wit ^
2>Cm6£ ^
Container No.
£>0&O A -"'
4/S4/3 /
.---
415^6 •"
Initial Vol. (ml)
3/&rrt£'£> ^
P«?-3*i£'s •
Ooo ^H^ ^-
O002 ~?oq ^
Tare Wt. (mg)
\O$t±tO'0 ^
IO$S43,O ^
U6.S ^
W&.I ^
Analysis results (mg)*
n
i
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
Qt 375 ,
C£ 2&<4~y
<2£34-/ .x
<2£33i _
Initial wt.
(ambient)
«?-•£/
7^-P. s
o,& /
15-1 .
W3 x/
Heat to
320°F
.J4 "hours
cool ,
weigh
/. -
Q-3 x
-<9. / •
(ff.7 J
1^0 J
Number of
treatments
required
to achieve
a stable
weight
2- -
3 /
- /
a /
Heat to
450°F
>f"nours
cool ,
weigh
/•^ s
/3-5 v
<9.O ^
.?~^
M>7 I/
Number of
treatments
required
to achieve
a stable
weight
3~ /
3* /
^ -
P- y
Heat to
600°F
^/-'hours
cool ,
weigh
o.$ /
/o,4 ^
-O.I ^
6'i /
15.5 /
Number of
treatments
required
to achieve
a stable
weight
A ^
J^S
3*s
J J \.
1,**^ •*
Remarks
Data reviewed by
nt>t wpinhl-; Cnrn<;<; wt. avn. niinu<; t.arp wt. \ without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530/5
plant
(i
Sample location
Relative humidity
Run No.
Analyst C
Density of acetone (pa) _1
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
£/f 376,
C'^3^5 x
C/C3W-/ -^
££33a.
Sample I.D.
&ULS-IO -
&l>in6& ,-
6/cMjK
80^7 $£ ^
Container No.
6cfco/{ ^
W/S74 /
4/576 ^
Initial Vol. (ml)
3/6^'j.
J-l8sx4'3 ^
ooo^fi'i -'
OO027/0 ^'
Tare Wt. (mg)
(03-(O.O ,
lomss,% ^
548'S ^
3^7 -/ ^
o
to
en
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C£?)7f~)
C/c3^5
C(t 24 1 ,
£^33P- ,
Initial wt.
(ambient)
P.8 /
74- 4-7
t~> "^
C/- i?*- /
/4-'
/6^6 y
0,0 /
/'^ -
/6-5>'
Number of
treatments
required
to achieve
a stable
weight
3L /
JL/
3~ X
J. ,
Heat to
600°F
j^fiours
cool ,
weigh
0,6 „-
//-O „
-0,1 ^
/'5 y
/3--SS
Number of
treatments
required
to achieve
a stable
weight
cX S
3. ^
A /
2. / "
Remarks
Data reviewed by
c
These are net weights (gross wt, avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant U.S.
Sample location
Relative humidity 5O
Run No.
Analyst C • To*) c} 5
Density of acetone (pa)
(g/ml)
Sample type
Lab No.
Sample I.D.
Container No.
Initial Vol. (ml)
Tare Wt. (mg)
Acetone blank
/C 375
Acetone blank (2)
Acetone blank (3)
n
M
en
Acetone rinse
Filter blank
Filter
££333,,
cool-in
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
££37£/
ces^tc /
e* 34/ ^
6^335 -
Initial wt.
(ambient)
2-8 /
^5,«?/
<9,P- x
//•A /
67,i :/
Heat to
320°F
hours
cool ,
weigh
/' /
. '
-O. / ^
^
Number of
treatments
required
to achieve
a stable
weight
A/
/
* /
~^~~ j
Heat to
450°F
nours
cool ,
weigh
/.4- /
,-
^,0 -
s
Number of
treatments
required
to achieve
a stable
weight
^/
_ -'
^ ,
>
Heat to
600°F
31/ "hours
cool ,
weigh
0,3 -
13-5 -"
-O. I ^
5,0 ;
/B-5 >
Number of
treatments
required
to achieve
a stable
weight
A /
^x ^
O. x
^-^
Remarks
Data reviewed by
"
forn<;<; wt. ava. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant U-S.CPA- Mo*
Sample location
Relative humidity
Run No.
Analyst C_
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
££375
££3k7
££34/ .
/"/C334'-
Sample I.D.
AIK.S-/O
W6& v
Container No.
Svbo A
U-to8t\ ^
ty~)ij?& ^
Initial Vol. (ml)
3 ' k r*-l '.5
ZjbZrtJt'S S
ooo 2n i <7 ^
OoO27fJ^ ^
Tare Wt. (mg)
Io2>4/O>o -"
fo7f63,J2, ^
549 ;._, ._. : •.' • ^ .
,r < •
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
i -y
-------
o
K
cc
THERMOGRAV1METRIC PARTICULATE ANALYSIS
PN 35-ic? -IS
Plant U'S' <
Sample location
Relative humidity 6D°/c,
Run No. 4£/rts&-
Analyst (L • .Ttw/g.5
Density of acetone (pa)
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
6/C37S x
£/C3<*£ -
fl£2>4! -
££336,
Sample I.D.
6/K6-CC? ^
eiC-M5t>'fae~,
Al**llL~-
''iCfn$e> P^oo ^
Container No.
SoboA
flu A „
V7//4 ^
Initial Vol. (ml)
Sl^ml'S
30$^'* -^
OOO^fl^ ^
oooj-?i3 .-
Tare Wt. (mg)
IC34IO,O
lO
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN $510 is
Plant U>S.CPA
Run No. 4V/»Sft
Sample location
Relative humidity £>Q°(o
Analyst C • Tories
Density of acetone (pa) /~7v'oP
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
i ' f *"*l — 7 jg"
*—' *^ *-^ r C? .X
(Jt^3>^ /
f>P 2)ms& -P<+oo.
/t i * ± \ If
*ic,,n->e>-P*c^
Container No.
eoboA -
V705L/q -
.
^/7o.96 ^
Initial Vol. (ml)
3 /<£> /rt/ 'i> -^"
ZLtf'J'™-^ '$ '
0003-71*1 ^
Goon m- k^
Tare Wt. (mg)
IOMio-0 /
lObTbl.bS'
*>+$>$ ^
^6"A >
o
I
M
vr
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C>£376 x
CtebQs
CtMi,
<2£m>^
Initial wt.
(ambient)
P-? ^
^•4/
.?-
^'fc x
3^,0 V
Heat to
320°F
_ hours
cool ,
weigh
M -
^
~C. i ^
- y
Number of
treatments
requ i red
to achieve
a stable
weight
«?. -
/
P- x
~~ /
Heat to
,450^
>/ hours
cool ,
weigh
/•4- x
/^•3 ,
O.CJ
5-^
±0,1 /
Number of
treatments
required
to achieve
a stable
weight
A. x
a /
«L ,
^ y
Heat to
y600°F
^ hours
cool ,
weigh
a 6 .
/P. 7 x
' 0- 1 ^
5. 3- y
/?< /
Number of
treatments
required
to achieve
a stable
weight
3~ '-
^^ "
^ /
^.J '
Remarks
Data reviewed by
v
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 35-k? is
o
I
CO
o
Plant M'5
Sample location _
Relative humidity
Run No. IOf\fY)£>&
Analyst C_
Density of acetone (pa) .
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
6^375 „
££37CX
C£34/ ^
e,e337-
Sample I.D.
fl/K 5-/0 ^
toAW56 x
£//?o/£ —
/0/4/T7S6 "-'
Container No.
6obo A '
47.*>oA s
U110& -
Initial Vol. (ml)
^/C?r*-£'5 /
2'l$ml'$ ^
00021 «i ^
OOO}7($ ¥-
Tare Wt. (mg)
l02>t^io,O ^
/03SS5-4 ^
3 0 y
' 0. I ^
/3-S x
^5'5y
Number of
treatments
requ i red
to achieve
a stable
weight
A ^
3*-/
,X -
A- /
Heat to
450°F
J4 'hours
cool ,
weigh
/>3-S
Number of
treatments
required
to achieve
a stable
weight
A /'
a X"x
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 35.30 15
Plant ti'S. Lpf\ - Mono
Run No.
Sample location
Relative humidity __£>Cc/o
Analyst Q .
Density of acetone (pa) .7f£>?
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
^376
C£'b1\ x
ce?>m „
C/esiSx-
Sample I.D.
/?/£ 6 10 *
lo&msB -s
BlArik. ^
loA/wSg /
Container No.
SOboA. ^
47334 -x
— _ —
^7336 x
Initial Vol. (ml)
3 (U- tut'* x
Ib3rt£'s ^'
000^71^1 —
OOO37I (a S
Tare Wt. (mg)
lo*>t+io.c ^
1 '034-53, <& £
&?.£ ^
&&»? ^>
Analysis results (mg)*
o
I
U)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C£ 376 -
CKZ7I <
C*34/ .
0£ 5SB x
Initial wt.
(ambient)
2<$ ,"
20.3 /
o,^ .
/7»fc >
3£,5 /
Heat to
320°F
6xhours
cool ,
weigh
14 ^
l*»± s
-Ott ^
/•f-3 J
zin 'J
Number of
treatments
required
to achieve
a stable
weight
^ /
^ /
^ /
2*s
Heat to
450° F
(0 hours
cool ,
weigh
/•<-/ ;
tc. 4 ^
(9'C -
//•*? ,
^-3 V
Number of
treatments
required
to achieve
a stable
weight
3- ;
3L/
P^x
5L ,
Heat to
600°F
kyhours
cool ,
weigh
0.0 ^
0.0 X
-c9. / ^
lt'?~ /
13'^?
Number of
treatments
required
to achieve
a stable
weight
3L -"
3/ -
2- '
2-S -
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
/v.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
n
i
co
to
Plant U'S. (
Sample location
Relative humidity 60%
Run No.
Analyst (2 •
Density of acetone (pa) .
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CR 375 x
C/C664/
Ct^\ ^
CZSMs
Sample I.D.
6/< S'/o /
loCM5ff> /
&lun)K.
lcCms& •/
Container No.
5oboA /
47-^/4 S
_ —
<+!*><*>& ^
Initial Vol. (ml)
3 l&m£ 'i x
t$Ortl '* .--
ceo 3-7 tq --
Ccel~~>i~l ^
Tare Wt. (mg)
103,^ -
\O<(* s
60,1 ./
Number of
treatments
required
to achieve
a stable
weight
^ /
2- /
- -
c^ /
Heat to
600° F
>/^ours
cool ,
weigh
&•& /
lS>1 /
'0.\ ^
lo.O .
^5^y
Number of
treatments
required
to achieve
a stable
weight
JL x
A x
cP- /
«?-/ ^
Remarks
Data reviewed by
A
,,4. ..„ •;„!,«
ai/n mimic
wt . \ without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant U>5.
Sample location
Relative humidity
Run No.
Analyst Q.
Density of acetone (pa) .7^?is£ s
fii**)K ^
ICVWS& s
Container No.
6obo A --
<+~lMA •
— ... _
W3& .-
Initial Vol. (ml)
3 ( fo w-d 'S ^
iS&'nl's ./"
OOD^t^ -
OOO + 1t& „-
Tare Wt. (mg)
iOWl&o ^-
to-J4oQ.i ^
34 £ -5 ^
*>
"^- * ^
Number of
treatments
requ i red
to achieve
a stable
weight
^ ,
j
^..^
s
Heat to
450°F
^liours
cool ,
weigh
/.4- s
lto>6 .
£?. O .
/^'G? /
M-'U-
Number of
treatments
required
to achieve
a stable
weight
^. J
^ /
^x
ci
Heat to
600°F
^iiours
cool ,
weigh
aB •
II, b /
-o.i ^
(0,0 s
2-2. 6 /
Number of
treatments
required
to achieve
a stable
weight
a /
3L' x
SL ^
3L^>
Remarks
Data revie\>/ed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
LABORATORY REPORT
U.S. EPA
PN 3530-14
1-7-83
Mono Power Samples
S02/H2SO4 Determinations
Run No.
1AM5B
1BM5B
1CM5BW
1DM5BW
2AM5B-P400
2BM5B-P400
2CM5B
2DM5B
3AM5BW
3BM5BW
3CM5B
3DM5B
4AM5B
4BM5B
4CM5B-P400
4DM5B-P400
5AM5B
5BM5B
5CM5B
5DM5B
6AM5B
6BM5B
6CM5BW
6DM5BW
7AM5B-P400
7BM5B-P400
7CM5B
7DM5B
PEDCo Lab Nos.
CR
CR
CR
CR
406/450
407/451
408/452
409/453
CR 410/454
CR 411/455
CR 412/456
CR 413/457
CR 414/458
CR 415/459
CR 416/460
CR 417/461
CR 418/462
CR 419/463
CR 420/464
CR 421/465
CR 422/466
CR 423/467
CR 424/468
CR 425/469
CR 426/470
CR 427/471
CR 428/472
CR 429/473
CR 430/474
CR 431/475
CR 432/476
CR 433/477
mg H2SO4
18.3
49.5
107
6.9
33.9
81.8
190
81.7
78.5
64.9
104
71.7
28.3
98.5
107
105
73.8
84.4
134
74.0
74.3
114
44.9
82.4
110
118
67.3
78.4
mg S02
1910
2020
1970
1990
1870
2310
2260
2370
4090
4080
3970
4080
4350
4360
4380
4340
4540
4420
4420
4400
3950
3910
3900
4050
4230
4240
4070
4210
C-34
-------
Run No.
PEDCo Lab Nos,
mg H2S04
mg S02
8AM5BW
8BM5BW
8CM5B
8DM5B
9AM5B
9BM5B
9CM5B-P400
9DM5B-P400
10AM5B
10BM5B
10CM5B
10DM5B
Blank 1, 2
Blank 3, 4
Blank 5, 6, 7
Blank 8, 9, 10
CR 434/478
CR 435/479
CR 436/480
CR 437/481
CR 438/482
CR 439/483
CR 440/484
CR 441/485
CR 442/486
CR 443/487
CR 444/488
CR 445/489
CR 446/490
CR 447/491
CR 448/492
CR 449/493
87.7
120
58.6
62.6
87.8
101
98.8
85.6
92.0
104
75.8
58.6
4070
330*
3440
3960
4310
4270
4170
4290
4300
4210
4190
4340
*This sample has been analyzed twice and gave the same
results.
1-15-83
T.J.W.
C-35
-------
LABORATORY REPORT
U.S. EPA PN: 3530-15 1-28-83
Mono Power
Nonwater Soluble Sulfate Particulate Analysis
Run No .
1CM5BW-F
1CM5BW-PR
1DM5BW-F
1DM5BW-PR
3AM5BW-F
3 AM 5 BW- PR
3BM5BW-F
3BM5BW-PR
6CM5BW-F
6CM5BW-PR
6DM5BW-F
6DM5BW-PR
8AM5BW-F
8AM5BW-PR
8BM5BW-F
8BM5BW-PR
Blank-F
Blank-PR
Blank-F
Blank-PR
Blank-F
Blank-PR
Blank-F
*15 ml
Net Weight
Lab No . mg
CR386
CR395
CR387
CR396
CR388
CR397
CR389
CR398
CR390
CR399
CR391
CR400
CR392
CR401
CR393
CR402
CR394
CR403
CR497
CR404
CR498
CR405
CR499
were removed
9.4
43.4
5.1
16.2
6.9
56.0
6.3
44.6
10.7
87. 9
7.1
46.0
10.2
32.1
8.1
31. 7
1. 6
1.7
(-0.2)
1.5
1.3
0.7
2.6
for ion
S04'
mg/1
24.20
79.75
15.36
19.58
14.58
45.18
15.14
87.34
21.70
163.5
15.39
79.60
22.12
42.35
16.48
50.16
3.63
0.29
2.75
0.13
2.71
0.30
2.81
chroma tography
Reviewed by: /,^f-^>
vuj. Luiie
Evaporated*
ml
235
308
235
407
235
550
235
317
235
325
235
320
235
242
235
228
235
403
235
250
235
360
235
analysis .
/* /*s
•T~€<^ / /*• /«r ^T-t.
NWSSP ,
mg
1.6
9.6
0.1
5.2
2.2
21.8
3.7
6.5
3.7
14.8
2.1
11.0
3.0
18.0
2.8
16.0
0.4
1.5
(-1.1)
1.5
0.4
0.6
1.7
-£-c-X <2 -^
C-36
-------
LABORATORY REPORT
U.S. EPA; PN 3530-15
MARCH 8, 1983
MONO POWER SAMPLES
Run No.
1AM5B-PR
1AM5B-F
1BM5B-PR
1BM5B-F
2AM5B-P400-PR
2AM5B-P400-F
2BM5B-P400-PR
2BM5B-P400-F
2CM5B-PR
2CM5B-F
2DM5B-PR
2DM5B-F
3CM5B-PR
3CM5B-F
3DM5B-PR
3DM5B-F
4CH5B-P400-PR
4CM5B-P400-F
5AM5B-PR
5AM5B-F
6AM5B-PR
6AM5B-F
6BM5B-PR
6BM5B-F
Lab No.
CR342
CR309
CR343
CR310
CR344
CR311
CR345
CR312
CR346
CR313
CR347
CR314
CR348
CR315
CR349
CR316
CR352
CR319
CR354
CR321
CR358
CR325
CR359
CR326
Cso4'
ml/liter
18.84
7.67
13.35
16.93
10.02
9.94
6.64
10.53
14.98
11.10
'7.62
10.26
19.42
13.21
31.94
11.50
12.12
12.78
16.33
11.32
19.29
12.16
10.01
14.16
Volume, ml
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
Blank
corrected
S04, mg
4.7
1.1
3.3
3.4
2.5
1.7
1.7
1.8
3.7
2.0
1.9
1.8
4.9
2.5
8.0
2.1
3.0
2.4
4.1
2.0
4.8
2.2
2.5
2.7
(continued)
C-37
-------
MONO POWER SAMPLES (continued)
Run No.
7DM5B-PR
7DM5B-F
8CM5B-PR
8CM5B-F
8DM5B-PR
8DM5B-F
9BM5B-PR
9BM5B-F
10CM5B-PR
10CM5B-F
Blank-PR
Blank-F
Lab No.
CR363
CR330
CR364
CR331
CR365
CR332
CR367
CR334
CR664
CR339
CR373
CR341
SO,,
ml/liter
31.77
14.31
14.98
16.03
19.00
12.20
19.98
13.31
25.19
18.43
<1.00
3.27
X'
ml/liter
31.77
14.31
14.98
16.03
19.00
12.20
19.98
13.31
25.19
18.43
<1.00
3.27
!wed by /^^^
Volume, ml
250
250
250
250
250
250
250
250
250
250
250
250
~ /Xi,^
Blank
corrected
S04, mg
7.9
2.8
3.7
3.2
4.8
2.3
5.0
2.5
6.3
3.8
<0.2
0.8
3/9/&~t>
C-38
-------
APPENDIX D
SAMPLING AND ANALYTICAL PROCEDURES
D-l
-------
SAMPLING AND ANALYTICAL PROCEDURES
A four-train (quad) sampling system was used in this test
program. This system allowed four samples to be collected simul-
taneously at essentially the same point in the gas stream. Each
individual sampling train consisted of a Method 5* fronthalf and
a Method 8* backhalf. Method 5 sampling procedures were used for
all tests, except as noted.
SAMPLING APPARATUS
The sampling train(s) used in these tests met design speci-
fications established by the Federal EPA and was assembled by
PEDCo personnel. Each train, set up as shown in Figure D-l,
consisted of:
Nozzle - Stainless steel (316) with sharp, tapered leading
edge and accurately measured round opening.
Probe - Borosilicate glass with a heating system capable of
maintaining the desired gas temperature at the exit end
during sampling.
Filter Holder - Pyrex glass with heating system capable of
maintaining a filter temperature at desired levels.
Impingers - Five impingers connected in series with glass
ball joints. The first, fourth, and fifth impingers were of
the Greenburg-Smith design, modified by replacing the tip
with a 1/2 inch I.D. glass tube extending to 1/2 inch from
the bottom of the flask.
40 CFR 60, Appendix A, July 1981.
D-2
-------
STACK WALL
D
U)
HEATED AREA
•FILTER HOLDER
/
THERMOMETER
GLASS PROBE
TEMPERATURE -
SENSOR
LOCATION
IMPINGERS
I L_
THERMOMETERS
AIHll1\Jl_l\*J »
ICE WATER BATH -^
BY-PASS
VALVE
VACUUM GAUGE
£..
VACUUM LINE
IMPINGER CONTENTS
RUNS 1-10
VACUUM PUMP
1 .
2.
3.
4.
5.
EMPTY
200 ml 80% I PA
100 ml 10% H202
100 ml 10% H202
400 g SILICA GEL
Figure D-l. Methods 5 and 8 sampling train schematic.
-------
Back-Half Filter Holder - Unheated Pyrex glass inserted
between the second and third impingers to prevent carryover
of any sulfuric acid mist.
Metering System - Vacuum guage, leak-free pump, thermometers
capable of measuring temperature to within 5°F, calibrated
dry gas meter, and related equipment to maintain an
isokinetic sampling rate and to determine sample volume.
A single pitot-tube and thermocouple located as shown in
Figure D-2 were used to measure stack gas velocity. Equipment
consisted of:
Pitot Tube - Type S pitot tube that met all geometry stan-
dards was attached to the probe system to monitor stack gas
velocity pressure.
Temperature Gauge - A Chrome1/Alumel Type-K thermocouple (or
equivalent) was attached to the pitot tube, in an interfer-
ence-free arrangement, to monitor stack gas temperature
within 5°F by the use of a digital indicator.
Draft Gauge - An inclined manometer made by Dwyer with a
readability of 0.01 inch HnO in the 0 to 10 inch range was
used. ^
Barometer - Aneroid type to measure atmospheric pressures to
within jfO.l inch Hg.
Probe and filter temperatures were monitored using multi-
terminal digital indicators with thermocouple leads located in
the middle of each probe and immediately behind the Method 5
filter frits. Rheostat devices were used to control individual
probe temperatures. Filter temperatures were maintained at the
desired level by the use of individual temperature controllers.
SAMPLING PROCEDURE
After selecting the sampling site, the stack pressure,
temperature, molecular weight, moisture content, and range of
D-4
-------
8 cm
15 cm
NOZZLE
4 cm
0.5 cm
NOZZLE
THERMOCOUPLE
4 cm
•3- A-e
2 cm *
* 2 cm *
k}~~ h
3 cm
i
i
1.4 cm
r
S" TYPE PITOT TUBE
*-(->-
4 cm
Figure D-2. Four-train sampling system showing nozzle,
pi tot tube, and thermocouple position.
D-5
-------
velocity head in the general sampling area were measured accord-
ing to procedures described in the Federal Register.* A single
sampling point located approximately 1 meter from the stack wall
was selected to allow all four nozzles to be positioned at points
of equal velocity.
Individual sampling train components were assembled and
labeled. Glass fiber filters** (3-in. diameter) used in the
Method 5 position were heated to 315°C prior to identification
and tare weighing to the nearest 0.1 mg on an analytical balance.
Each sample train had a Method 8 backhalf, modified by adding a
fifth impinger behind the filter to minimize evaporation loss of
IPA by additional cooling of the hot sample gas prior to its
contacting the IPA. An unheated glass fiber filter** assembly
was inserted between the second and third impingers to preclude
any sulfuric acid mist carryover. The contents of each impinger
was as follows:
Impinger Contents - All Runs
1 Empty
2 200-ml 80% IPA
3 100-ml 10% H202
4 100-ml 10% H202
5 400-grams silica gel
The sampling train subassemblies (probes, filter holders,
impingers) were transported to the test site and assembled in the
quad train configuration as shown in Figure D-3. The sampling
trains were leak checked at the sampling site prior to each test
40 CFR 60, Appendix A, Reference Methods 2, 3, and 4, July 1,
1981.
**
Whatman RA 934AH.
D-6
-------
HEATED FILTER COMPARTMENTS
\
B A D C
PROBES
QUAD TRAIN ASSEMBLY
DO OA
CO OB
BACK
VIEW
PROBE
AND
1
NOZZLE
pr-fTl
C
c V-
k-— J 01
ORIENTATION
-
fll
Figure D-3. Quad train configuration,
D-7
-------
run by plugging the inlet to the nozzle and pulling a 15 inch Hg
vacuum, and at the conclusion of the test by plugging the inlet
to the nozzle and pulling a vacuum equal to the highest vacuum
reached during the test run.
The pitot tube and lines were leak checked at the test site
prior to each test run. The check was made by blowing into the
impact opening of the pitot tube until 3 or more inches of water
were recorded on the manometer and then capping the impact open-
ing and holding it for 15 seconds to assure it was leak free.
The static pressure side of the pitot tube was leak checked using
the same procedure, except suction was used to obtain the 3 inch
H20 manometer reading. Crushed ice was placed around the im-
pingers to keep the temperature of the gases leaving the last
impinger at 68°F or less. For each train, the probe and filter
were preheated to the desired temperature prior to sampling and
maintained at that temperature throughout the run. The partic-
ular conditions for each type of train were:
Method 5B (Designated MSB) - probe and filter assembly
heated to 160°C (320°F).
Modified Method 5B (Designated M5B-P400) - probe heated to
204°C (400°F) to minimize cold spots and filter assembly
heated to 160°C (320°F).
Method 5BW (Designated M5BW) - probe and filter assembly
heated to 160°C (320°F).
During sampling, stack gas and sampling train data were
recorded at 10-minute intervals and when significant changes in
stack flow conditions occurred. Isokinetic sampling rates were
D-8
-------
set throughout the sampling period with the aid of a programmable
calculator. All sampling data were recorded on the Particulate
Field Data Sheet.
SAMPLE RECOVERY
The components of the quad train sample system were labeled
and disassembled at the stack for transport to the sample clean-
up/setup area. The filter and probe assemblies were recovered as
follows:
0 All filters were carefully removed from the filter
holder and placed in a petri dish. These filters were
sealed and labeled for shipment.
For Methods 5B and M5B-P400, loose particulate from all
sample exposed surfaces prior to the filter and acetone
washings were placed in a polyethylene container,
sealed, and labeled. For Method 5BW, deionized, dis-
tilled water was used for the probe rinse. Particulate
was removed from the nozzle and probe with a nylon
brush. The liquid level was marked after each con-
tainer was sealed.
The impinger section of each sample train (modified Method
8) was removed from its ice bath and purged with ambient air for
15 minutes before recovering the contents.
The contents were recovered as follows:
0 After gravimetric weighing, the contents of the first
and second impingers (condensate and 80 percent IPA)
were placed in a polyethylene container. The impingers
and connecting glassware prior to the backhalf filter
were rinsed with 80 percent IPA and the rinse was added
to the container along with the backhalf filter. The
containers were then sealed, labeled, and the liquid
level marked.
0 After gravimetric weighing, the contents of the third
and fourth impingers (10 percent H202) were placed in a
polyethlyene container. The impingers and connecting
glassware were rinsed with deionized, distilled water
D-9
-------
and the rinse was added to the container. The con-
tainers were then sealed, labeled, and the liquid level
marked.
0 The color of the silica gel was noted on the sample
recovery sheet and the net weight gain determined
gravimetrically.
Blank samples were taken for each new batch (or a minimum of
two) of the following reagents: acetone; deionized, distilled
water; 80 percent IPA; 10 percent ^2°2' and a filter' In addi-
tion, each probe was rinsed prior to initial use with either
water or acetone (depending on method type), and these rinses
were retained for probe rinse blank analysis.
SAMPLE LABELING
The sample label identifies the test run number, sample
train, and each component of the individual train. The run
numbers are consecutive from 1 to 10. Since each run consists of
four single trains, each train was identified by a letter A, B,
C, or D.
The last item of the label identifies the sample method and
the component of the recovered sample. For example, identifica-
tion No. 1A M5B-IPA indicates Test Run 1, Sample Train A, Method
5B sample method at 160°C (320°F) and the IPA impinger contents
and rinse. Another example is 4C M5B-P400-Probe indicating Test
Run 4, Sample Train C, Modified Method 5B sample method (filter
at 160°C and probe at 204°C), and the probe rinse fraction.
SAMPLE RECEIPT AND CHAIN OF CUSTODY
Every sample entering the lab for analysis was assigned a
unique alphanumeric identity on a Sample Receipt and Record Sheet
D-10
-------
(log). In the sample log-in book, this number was correlated
with sample identification label and with the number of the
analysis requisition form. A copy of the analysis requisition
was kept with the samples and later with the raw data.
.»
The samples remained in a locked sample storage room until
removed for analysis. Transfer was documented on a Sample Con-
trol Record which is maintained by the sample custodian. The
Sample Control Record documents all custody changes which occur
in the laboratory and each procedure performed on the sample.
Release of samples requires notation of the Sample Control
Record and verification of information and sample container
condition. If the sample is to be transferred between two per-
sons (i.e., two analysts), the transfer must take place through
the sample custodian. In other words, the sample will be re-
turned to the sample custodian and reissued.
SAMPLE ANALYSIS
Particulate Analysis
Initially, the filter particulate catch was placed in a
tared glass weighing dish, desiccated for 24 hours, and weighed
to the nearest 0.1 mg until a constant weight was achieved. The
probe rinse fraction was transferred to a tared beaker and evap-
orated to dryness at ambient temperature and pressure, desiccated
for 24 hours, and weighed to the nearest 0.1 mg until a constant
weight was achieved.
D-ll
-------
For the purpose of this study a constant weight was defined
as a difference of no more than 0.5 mg or 1 percent of the net
weight, whichever was greater, between successive weighings, with
at least 6 hours of desiccation between weighings. This is the
same definition as for Method 5. Because previous data have
shown that samples containing a significant amount of sulfuric
acid may not come to a constant weight, the following alternate
procedure was used, if necessary: at least three separate weigh-
ings were obtained, and the lowest weight achieved was reported
as the ambient weight.
After this initial gravimetric analysis at ambient condi-
tions, probe rinse and filter fractions were subjected to the
sequence of heat treatments as outlined in the analytical matrix
(Table 3-2). The samples were heated in an oven at the specified
temperature for either 6 or 24 hours as indicated. Each sample
fraction was cooled and desiccated for 24 hours after removal
from the oven and weighed to the nearest 0.1 mg.
Prior to advancing to the next step of an analytical se-
quence, a heat treatment was repeated at the same time and tem-
perature condition until a stable weight was obtained. For the
purpose of this study a stable weight was defined as a difference
of no more than 5.0 mg or 10 percent of the net sample weight,
whichever was greater, between successive treatments at the same
conditions. The number of treatments required to achieve a
stable weight was recorded for each sample fraction. A maximum
of three treatments was performed at the same conditions.
D-12
-------
Water-Soluble Sulfate Determination
Each sample fraction plus blanks were handled and analyzed
as follows:
0 Filter - The filter was cut into small pieces and
placed in a 125-ml Erlenmeyer flask with a standard
type joint equipped with an air condenser. The con-
tents of the shipping container were rinsed into the
flask. About 50 ml of distilled water was added and
the contents gently refluxed for 6 to 8 hours. The
solution was then cooled and diluted with water to
exactly 250 ml in a volumetric flask. This solution
was reserved for total soluble sulfate analysis, which
is described below.
0 Probe Rinse - The probe wash was poured into a 250 ml
volumetric flask. The sample bottle was rinsed with
distilled water and the rinsings were added to the
flask. The solution was then diluted to the mark with
distilled water (or, if greater than 250 ml, the volume
was measured). This solution was reserved for total
soluble sulfate analysis, which is described below.
Total Soluble Sulfate—
A 15-ml aliquot* was drawn from the settled samples (filter
and rinse) into separate sample containers with a clean, dry
pipet (only solution was transferred—no solid; if necessary, a
portion of the sample was centrifuged). The sulfate ion (S0.=)
concentration in each aliquot was determined by ion chromato-
graphy (1C). A syringe was used to inject 1 ml of the aliquot
into the 100-yl sample loop of the 1C flushing the loop with the
sample. The conductivity response of the sample was compared
with the calibration curve to obtain SO ~ concentration in
mg/liter. Dilutions were prepared and reanalyzed if the initial
*
The pipet is not rinsed. This deviation from normal procedures
is necessary because the volume removed from the volumetric
flask is required in the calculations.
D-13
-------
response was out of the linear calibration range (i.e., greater
than 15 mg/liter). Blank filter and water samples were prepared
and analyzed in the same manner as the actual samples.
Mass Determination—
Filter and Rinse Solution Preparation - The remaining con-
tents of each volumetric flask (235 ml) were poured into
separate tared 250-ml beakers, and the flask was rinsed with
distilled water to transfer all particulate matter. The
filter solution was in Beaker A and the rinse solution was
in Beaker B. These solutions were evaporated to approxi-
mately 100 ml at 105°C and allowed to cool before the next
analysis was made.
Filter and Rinse Solution Analysis - Five drops of phenol-
phthalein indicator were added to all the tared beakers.
Concentrated NH.OH was then added drop by drop until the
solution turned pink. The samples were returned to the oven
and evaporated to dryness at 105°C, then cooled in a desic-
cator and weighed to a constant weight. Results were re-
ported to the nearest 0.1 mg. For this method, "constant
weight" means a difference of no more than 0.5 mg or 1
percent of the total weight less beaker and/or filter tare,
whichever is greater, between two consecutive weighings,
with no less than 6 hours of desiccation time between weigh-
ings .
Calculations—
Nomenclature—
FP = weight of particulate* on the filter in Beaker A,
mg
PRP = weight of probe rinse particulate* in Beaker B, mg
NWSSP = weight of nonwater-soluble sulfate particulate**,
mg
ASf = weight of ammonium sulfate in filter sample, mg
AS = weight of AS in probe rinse sample, mg
V = volume of solution evaporated in Beaker A (filter)
evaP or Beaker B (probe rinse), ml
*Particulate with H2S04 converted to
Particulate excluding water-soluble sulfates
D-14
-------
Cqo = concentration of sulfate in filter or probe rinse
4 solution aliquots, ing/liter
Equations—
FP(mg) = gross weight Beaker A - tare weight Eq. I
Beaker A - filter tare weight
PRP(mg) = gross weight Beaker B - tare weight Eq. 2
Beaker B
AS(mg) = Ccn (mg/liter) x V _ (ml) x llter— Eq. 3
S°4 evap 1000 ml
i -,-ic /m<3 AS .
x 1.376 (—2 )
mg S04
Mass of Nonwater-Soluble Sulfate Particulate
The sum of the particulate* collected on the filter (FP) and
the particulate* collected in the probe rinse (PRP) is equal to
the sum of nonwater-soluble sulfate particulate (NWSSP) and
ammonium sulfate (AS) in both samples:
FP + PRP = NWSSP + AS, + AS Eq. 4
r pr ^
The NWSSP can be found by rearranging the equation and
substituting appropriate values determined using Equations 1, 2,
and 3.
NWSSP = FP + PRP - AS- - AS Eq. 5
r pr ^
Sulfuric Acid Mist Analysis
The volume of the sample solution was recorded and the pH of
the sample determined. The sample volume was diluted to 500 ml
with 80 percent IPA. A 100 ml aliquot of this solution was
pipetted into a 250 ml Erlenmeyer flask with 2 to 3 drops of
*
Particulate with H-SO. converted to (NHJ-SO..
D-15
-------
thorin indicator and titrated to a pink end point using 0.0100 N
barium perchlorate. If the end point color was not correct, the
sample was passed through an ion exchange column and retitrated.
A blank was titrated for each sample in the same manner.
Sulfur Dioxide Analysis
The sample was diluted to 500 ml with deionized, distilled
water. A 20 ml aliquot of this solution was pipetted into a 250
Erlenmeyer flask with 80 ml of 100 percent IPA and 2 to 3 drops
thorin indicator. The solution was then titrated to a pink end
point using 0.0100 N barium perchlorate. A blank was titrated in
the same manner.
D-16
-------
APPENDIX E
CALIBRATION PROCEDURES AND RESULTS
E-l
-------
CALIBRATION PROCEDURES^AND RESULTS
All of the equipment used was calibrated according to the
procedures outlined in Maintenance, Calibration, and Operation of
Isokinetic Source-Sampling Equipment.*
NOZZLE DIAMETER
The nozzles were calibrated by making three separate measure-
ments using different inside diameters and calculating the aver-
age. If a deviation of more than 0.004 inches was found the
nozzle was either discarded or reamed out and remeasured. A
micrometer was used for measuring. These calibration data are
shown in Figures E-la through c.
PITOT TUBE CALIBRATION
The pitot tubes used in sampling were constructed by PEDCo
Environmental and met all requirements of Method 2, Section 4.1
of the Federal Register.** Therefore, a baseline coefficient of
0.84 was assigned to each pitot tube. See Figures E-2 and E-3
for alignment requirements of Method 2, and Figures E-4a and b
for actual inspection data of the pitot tubes used during the
test program.
*
Office of Air Programs Publication No. APTD-0576.
**
40 CFR 60, Appendix A, Reference Method 2, July 1981.
E-2
-------
Date
Calibrated by
> A \^I^ / — O? C1-)
r /-T -^ / ^ (,
„, I— ' 1 *-~^
lL-r } - 0 \ ($)
7^1 '/-wdi
/ B --> / ~ / / k}
/ c —j> / — / ? 0^>
D,, in.
. iS-A
. /?6"
..7T
..-?«•
» f?Z-
,/^r
-/^?
D2, in.
, /&/
d I9:T~
,/-7?
tf /^l
.f^
^(9C.
.1-^?
D3, in.
/CX "^
c c_
clg^-
.n-?
c(^
..BO
"fc"1
,1^-3
AD, in.
. 003,
, c-co
,00,
i ^— ^ C^ I
j^N f*-. 7*
t ^^ ^— * ^^
.«ot
.OC 1
. o o
D
avg
. / 2 c
. l?0
*m
.12
. / ?
• ' ^
. /Z-
where:
D. - - = nozzle diameter measured on a different diameter, in.
if 'J' Tolerance = measure within 0.001 in.
AD = maximum difference in any two measurements, in.
Tolerance = 0.004 in.
avg
= average of D,, D_
and
Figure E-la. Nozzle calibration data.
E-3
-------
Date f//^0/6fO /t^j&rt fcV^T
/ ~
Nozzle
identification
number
3B - Z -10
3A- Z -ii
""""
D,, in.
:«
• ^c-/
.»
D2, in.
.«.o
.z^^
^ZoO
D3, in.
'.«,
.«=•
*
AD, in.
t OcD 1
»•
avg
, ^^- 1
.Z2.Z.
.z^c
where:
AD =
nozzle diameter measured on a different diameter, in,
Tolerance = measure within 0.001 in.
maximum difference in any two measurements, in.
Tolerance = 0.004 in.
avg
= average of D,, D-, and
Figure E-lb. Nozzle calibration data.
E-4
-------
Date
Calibrated by (T • /4
-------
TRANSVERSE
TUBE AXIS
\
FACE
*~ OPENING"
PLANES
(a) ENDVIEW
LONGITUDINAL
TUBE AXIS Q
A-SIDE PLANE
i
NOTE:
0.48 cm < Dt < 0.95 cm
(3/16 in.) l (3/8 in.)
T
1.05 Dt < P < 1.50 Dt
PA=PB
B-SIDE PLANE
(b)
A or B
(c)
Figure E-2. Properly constructed Type S pitot tube, shown in: (a) end view,
face opening planes perpendicular to transverse axis; (b) top view; face open-
ing planes parallel to longitudinal axis; (c) side view; both legs of equal
length and centerlines coincident, when viewed from both sides. Baseline
coefficient values of 0.84 may be assigned to pitot tubes constructed this way.
E-6
-------
al/
TRANSVERSE
TUBE AXIS
RSE i;
"LJ/
(a)
LONGITUDINAL
TUBE AXIS
\ B
FLOW i
(c)
(e)
(f)
or -)
Bl (+ or -)
Figure E-3. Types of face-opening misalignment that can result from field
use or improper construction of Type S pitot tubes. These will not affect
Cp so long as a] and a2 <10°, BI and B2 <5°, z <0.32 (1/8 in.) and w <0.08
cm (1/32 in.).
E-7
-------
Pilot Tube No.
Date
Inspector
' 1 / SJ
al
Degrees
y- *
<10°
a2
Degrees
J^°
<10°
Degrees
^ *
<5°
Degrees
j?^
<5°
Dt
Inches
. _?-^T"
0.185 £ P <0.380
P
Inches
• 9%/
-
1.05 Dt
Inches
-s'^y
-
1.50 Dt
Inches
,±r^-:s
-
V
Degrees
^ *'
-
Degrees
/*
-
P • (Y)
sin VT;
Inches
{lo^
<0.125
P . ((i)
sin vy;
Inches
,0(7
<0. 03125
.. Inches
,(.no
1. 05 Dt
1.05 Dt
-------
Pitot Tube No.
al
Degrees
H&
<10°
a2
Degrees
1°
<10°
Degrees
/ ^
<5°
Degrees
yc>
<5°
Dt
Inches
. 3~7~1
0.185 < Pt <0.380
P
Inches
,Q>SO
-
1.05 Dt
Inches
. S^sS"
-
1.50 Dt
Inches
.^c,^-
-
Y
Degrees
~~ 0
-
4>
Degrees
^.O°
-
P • (Y)
sin vr'
Inches
,03V?
<0.125
P • (c)
sin vv;
Inches
f^\ *5 ^_y 5r /
X ^^^ ^^ |T O 1
<0. 03125
Inches
. ^7 Co
1. 05 Df
-------
DRY GAS METER AND ORIFICE METER
Figure E-5 was the set-up used for the initial and post-test
calibration. A wet test meter with a 2-cubic-feet-per-minute
capacity and + 1 percent accuracy was used. The pump was run for
approximately 15 minutes at an orifice manometer setting of 0.5
inch of water to heat up the pump and wet the interior surface of
the wet test meter. The information on Figure E-6 (example
calculation sheet) was gathered for the initial calibration arid
then, the ratio of accuracy of the wet test meter to the dry test
meter, and the AH@ were calculated.
POST-TEST METER CALIBRATION CHECK
A post-test meter calibration check was made on the meter
box used during the test to check its accuracy against its last
calibration check. This post-test calibration must be within +5
percent of the initial calibration. The initial calibration was
performed as described in APTD-0576. The post-test calibration
was performed using the same method as the initial calibration.
Three calibration runs were made using the average orifice
setting obtained during each test run and with the vacuum set at
the average value obtained during each test run. After running
the post-test calibration check all three runs were within the +5
percent range allowed by the Federal Register.*
The initial and post-test meter box calibration data are
presented in Figures E-7a through h.
*40 CFR 60, Appendix A, Reference Method 2, July 1981.
E-10
-------
/'CLASS TUBE
I THERMOMETER
N
UMBILICAL^
I
METER BOX v^ _
_ f
-^PRESSURE
CONTROL
VALVE
U - TUBE
MANOMETER
MET TEST METER
Figure E-5. Calibration setup.
DATE
METER BOX NO.
BAROMETRIC PRESSURES.
in. Hq.
DRY GAS METER NO.
Orifice
Manometer
•etting
6H
in. HjO
0.5
1.0
1.5
2.0
3.0
4.0
Ca* volume
wet te»t
•eter
V
ft3
5
5
10
10
10
10
Gas volume
dry gac
•eter
V
"3
Wet te»t Dry qa« Meter
•eter
V
•T
Inlet
'di'
•r
outlet
*dn'
•T
Average
V
•r
Ti»e
6,
•in
Y
AH*
Average.
AH
0.5
1.0
1.5
2.0
3.0
4.0
AH
lit
0.0366
0.0737
0.110
0.147
0.221
0.2»4
T
vw ph (td 4 400>
vd ""b * nri' (t- * "0)
»H*
0.0317 4B [ "w* 460) 812
Pb (t,, * 460) [ V- J
V • Ratio of accuracy of wet te»t Meter to dry Met Meter. Tolerance • * 0.01
»•* • Orifice of preaaure differential that give* 0.75 etm of air at 70T and 29.92 inchea of
Mercury, In Hj). Tolerance • »0.15.
Figure E-6. Calibration data sheet.
E-ll
-------
DATE:
CALIBRATOR:
METER BOX NO.
BAROMETRIC PRESSURE (PJ 2 %
D r^
1n. Hg
Leak Checks:
Positive (minimum 5 in. HjO): __^___^
Negative (within 3 in. Hg of absolute):
*Not to exceed 0.005 cfn.
cfm*
27.0
1n. Hg
Orifice
manometer
setting
AH
1n
Volume
wet test
meter
ft
Volume
dry gas
meter
ft
Temperatures
Wet test
meter
°F
Dry gas meter
Inlet
Outlet
To
°F
Average
Td
Duration
of
test
9
min
Vacuum
setting
1n
Hg
In H20
0.5
'. -
.Z2.
1.0
. Yoc
7JT
f.17
1.5
£. Soo
•7 /. -
y.5-
2.07-
2.0
76
3.0
76
2*S-
-71*
4.0
£7.0
y must not deviate by more than +0.02 Y-
AHI? must not deviate by more than 0.15 1n H20.
Average
AHP
AH
)(T + 460)
( Vd )(Pb + AH/13. 6) (Tw + 460)
¥
(0.0317)( AH )
( Pb )(Td + 460)
(T
0.5
1.0
2.°,. 650
l.i
(jo.ooo M £<). £30
}( s.f
*U
J=!
J.O
3.0
21.
4.0
f ooo \.
Figure E-7a. Particulate sampling meter box initial calibration.
E-12
-------
DATE: /ZA/'?'2-
BAROMETRIC PRESSURE (Pbflr):
PLANT:
PROJECT
METER BOX NO.
H9 PRETEST Y: /
PROJECT NO. __
CALIBRATOR:
- 3
AHG»:
Orifice
manometer
setting
*
AH
in. H20
Wet test
meter
vol ume
ft
Dry gas
meter
volume
Vd
ft3
Wet test
meter
w
Temperatures
Dry gas meter
^Inlet
Tdi
Outle
Tdi
°F
Averag
""d
Vacuum
setting
**
in. Hg
Duration
of run
0
min
Y
AHP
7Y
XL
la
l-o
/C9
?y
10
t(* 3®.
7V
13.?;
i©
Post-test average***
w
( Vd )(Phar+AH/13.6)(Tw+460)
(0.0317)( AH )
460)
(Tw+460)(
//.97
7S)
3.0
*To be the average AH used during the test series.
**To be the highest vacuum used during the test series.
***Post-test Y must be within the range, pre-test Y +0.05Y
Post-test AH@ must be within the range, pre-test AH@ +0.15
Figure E-7b. Particulate sampling meter box post-test calibration.
E-13
-------
DATE:
CALIBRATOR:
Leak Checks:
Positive (minimum 5 in. HjO):
Negative (within 3 in. Hg of absolute):
*Not to exceed 0.001 cfm.
METER BOX NO.
- y
BAROMETRIC PRESSURE (Pb)
cfm*
j2 InTHg
In. Hg
Orifice
manometer
setting
AH
1n H20
0.5
1.0
1.5
2.0
3.0
4.0
Volume
wet test
meter
\
ft3
,y oOO
11.00°
l3,OL>0
ft, DOt>
!$. 0° °
I^,oo0
Volume
dry gas
meter
Vd
ft3
(2. TOO
ii. y/r
tf.Ze*
il. 0**
2T.9co
z&.ttz.
n. oos
24. 7*0
9S, too
a. tio
sir. £»Y
fff. 3=>W
Temperatures
Wet test
meter
\
•F
7f. 0
T.o
7 1,0
7<.o
ir.o
It.o
~)i.O
•)t..C
7/. o
-)f 0
It. 0
7(.o
Dry gas meter
Inlet
T1
•F
Kfe
M«
£*
BB
»&
38
38
es
&7
«7
$f
61
Outlet
'To
•F
7ri
77
7^
7B
?a
78
•>7
?y
•)(,
77
74
7*"
Average
Td
•F
52. S
650
83 o
S2.£
&/.S
g/.3
Duration
Of
test
0
•tin
5T«
^3^f
;?5'/
n AC
*•%
#&]
v*Z
Vacuum
setting
in
Hg
/o.O
K.O
1.$-
10,0
(O.O
tf.G
Y must not deviate by more than +0.02 Y. Average
AH@ must not deviate by more than 0.15 in H-0.
Y
l.o fi
l.rtff
(.o&
i.c?7
t>*&
1.0-33
Abi7
AHP
In H20
i.az
\.7B
/.89
l.fo
i.ir
/.&t
;,y?
AHI?
AH
)(T + 460)
( Vd }(Pb + AH/13. 6)(TW + 460)
(0.0317)( AH )
460)(0
0.5
•;SQO)
1.0
( .'2. 780 H 2 9. 72V
/,o
L{ n.
1.5
2.0
« /7H
Lf
4.0
u ^
)L
Figure E-7c. Particulate sampling meter box initial calibration
E-14
-------
DATE:
BAROMETRIC'PRESSURE (PKar)= g?.??1n. Hg
PLANT:
METER BOX NO.
PRETEST Y:
PROJECT NO.
PRn.iFfT MANAGER: y f^tfA^A CALIBRATOR: V^ A*3TeS S^G^R.
Orifice
manometer
setting
*
AH
in. H20
3.o
3- o
Wet test
meter
volume
Vw
ft3
z.
V
10
Dry gas
meter
volume
Vd
ft3
^^
p6Z-(S£
$6£,'.5o
57/ £3^
57X.92&
5?! .72^
Temperatures
Met test
meter
Tw
°f
-ti.sr
7V^
7V.5
7-/-S
?yr
•W-s1
Dry qas meter
Inlet
Tdi
°F
7?
?^
^r
2s
^5
*1
Outlet
Tdi
°F
-7C/
7L
7(?
77
77
7^
Average
°F
77.^
Sb
^?r
Vacuum
setting
in. Hg
,0
(0
10
Duration
of run
min
17 7Z.
•0^
Post-test average***
Y
(tOZ,~l
/
-------
DATE:
CALIBRATOR:
v/f&t-
METER BOX NO.
BAROMETRIC PRESSURE (?b)
Leak Checks:
Positive (minimum 5 1n. HjO): _
Negative (within 3 in. Hg of absolute): //
*Not to exceed 0.005 cfm.
crm*
InTHg
1n. Hg
Orifice
nanometer
setting
AH
In H20
Volume
wet test
meter
ft
Volume
dry gas
meter
• Vd
ft3
Temperatures
Wet test
meter
Dry gas meter
Inlet
T1
•F
*
tlet
To
Average
Td
Duration
of
test
9
min
Vacuum
setting
1n
Hg
in H20
0.5
Si
1.0
/o.o
1.5
/o.
Jo.Z
•53
/o
ff1
2.0
536
fo.o
3.0
,««**
4.0
. 6
lc.6
t must not deviate by more than +0.02 >.
AMI? must not deviate by more than" 0.15 In H.O.
Average
AH
)(T + 460)
( Vd )(Pb + AH/13. 6)(Tw + 460)
(0.0317)( AH )
( Pk )(T. + 460)
riT
0.5
1.0
H
(-5.
/ ?
1.5
( /f .0 )( ,27, /O
2.0
11*1
3.0
4.0
M
Figure E-7e. Participate sampling meter box initial calibration.
E-16
-------
DATE:
METER BOX NO.
BAROMETRIC PRESSURE (P^'.&MV In. Hg PRETEST Y: ,9?? AH(J»: /
PLANT: J^PO "Pnt^g^ /&£*SAxrrs »S^ PROJECT NO.
PROJECT MANAGER: CS~.
CALIBRATOR: £. A^J^^S^SQ^^
*To be the average AH used during the test series.
**To be the highest vacuum used during the test series
***Post-test Y must be within the range, pre-test v +0 05y
Post-test AH0 must be within the range, pre-test AH@ +0.15
Figure E-7f. Particulate sampling meter box post-Test calibration
E-17
-------
DATE:
CAL I BRATOR:
'62-
..*- A
METER BOX NO. pft - g
BAROMETRIC PRESSURE (Pfc) 2 ?.
1n. Hg
Leak Checks:
Positive (minimum 5 In. H20): ^_^__^
Negative (within 3 in. Hg of absolute): £.
*Not to exceed 0.005 cfm.
cfm«
in, Hg
Orifice
manometer
setting
AH
1n
Volume
wet test
meter
ft
Volume
dry gas
meter
Vd
ft3
Temperatures
Wet test
meter
Dry gas meter
Inlet
T1
•F
*
tlet
To.
Average
Td
Duration
of
test
f
min
Vacuum
setting
1n
Hg
AHP
in
0.5
70. 3
7 y
70,3
76
1.0
802.130
/e.O
1.5
•70
77^
2.0
70,3
7Y
77^
//.o
3.0
11, ooo
SL
?y
76
4.0
It-
70-3
76
•y roust not deviate by more than +0.02 Y.
AH@ must not deviate by more than 0.15 in
Average
AHI?
AH
)(T + 460)
( Vd )(Pb + AH/13. 6)(Tw + 460)
(0.0317)( AH )
( Pb )(Td + 460)
+ 460) (P
0.5
>. /77
?.P3/^( O.f)
I'i.'Wd(si?. £ )
1.0
JL
/.C
( -0:', 3 ) ULQ-10
J.
1.5
J_
2.0
yt/^ ( 5^7.
3.0
(II,
4.0
Figure E-7g. Participate sampling meter box initial calibration.
E-18
-------
DATE:
BAROMETRIC PRESSURE (Pbar):
PLANT:
. Hg
PROJECT MANAGER :STT»gt>HASicr A
METER BOX NO.'
PRETEST Y:
PROJECT NO.
CALIBRATOR:
Ffc-8.
AHs,.^
7^^"
75
ury qas meter
inlet
Tdi
°F
70
7^
77
7G
7^
7?
Outle
Tdi
°F
6G
U?
^2
7o
7o
7p
Average
^
°F
69.ZS
~lln
Ifc
Vacuum
setting
**
in. Hg
(0
(CO
fo
Duration
of run
0
min
/U3(o
)O^M
r^>,7/
Post-test average***
^•«iB^Ha«K«B^^
^—^••••^^••1^
Y
(fO02_
.QQ^
•09^
/,<300
=-'
AH(3
A9Z
^/9zr
A9l
A 92.
(0.0317)( AH )
)(Pbar* *H/13;6)(TM+460)
*To be the average AH used during the test series. ^
*To be the highest vacuum used during the test series
***Post-test Y must be within the range, pre-test Y +0 05Y
Post-test AH& must be within the range, pre-test AH@ +0.15 _c
Figure E-7h. Particulate sampling meter box po"st-test call
E-19
-------
THERMOCOUPLES
Thermocouples were calibrated by comparison against an
ASTM-2F thermometer at approximately 32°F, ambient temperature,
100°F, and 500°F. The thermocouples read within 1.5 percent of
the reference thermometer throughout the entire range when ex-
pressed in degrees Rankine. If a thermocouple did not read
within 1.5 percent, a correction formula based on a least squares
analysis of the data was utilized. The correction formula cor-
rected the data 1.5 percent. Each thermocouple was checked at
ambient temperature at the test site to verify the calibration.
Calibration data are presented in Figure E-8.
DIGITAL INDICATOR FOR THERMOCOUPLE READOUT
A digital indicator was calibrated by feeding a series of
millivolt signals to the input, and comparing the indicator
reading with the reading the signal should have generated. Error
did not exceed 0.5 percent when the temperatures were expressed
in degrees Rankine. Calibration data are shown in Figures E-9a
and b.
DRY GAS THERMOMETERS
The dry gas thermometers were calibrated by comparison
against an ASTM-2F thermometer at approximately 32°F, at ambient
temperature, and at approximately 110°F. The thermometers agreed
within 5°F of the reference thermometer. The impinger thermom-
eters failed to calibrate after the test series. The greater
deviation was -10°F which exceeded the tolerance level of -5°F.
E-20
-------
Date: jT//jA°
Ambient temperature:
Calibrator
Reference
point
No .
/
2.
i
•f
Thermocouple No. :
~7G ° L Li -i •*•
f \ t D.I r wn1
^?c>/
t. trie: pressure: j?
Reference
thermometer
temperature ,
°P* * *
?$
Thermocouple
temperature, Difference,
Op c * *
77 ^/9
' ^?5" ? 4 - o. 2.C
3
/o^ /° 7
,? ! ft L r
Correction factor****:
5-^y
-r./S,"
-6.-?y
Slope: 0- *<•' Vr" Intercept: 3. oO
Reference
point
1
2
?
y
Reference
thermometer
temperature,
°F
7/
3f
l&i
110
Corrected
thermocouple
temperature, Difference,
76 0-J7
f^c -/,*/
/«4 C.7/
V"7 / - C. / /
Critical test points are 32°, 100°, and 500C.
*Source: 1) Ice bath
2) Ambient
3) Furnace
**Percent difference
Reference terp. °F - thermocouple temp. °F
(Reference terap. °F 4 uoo°r; x °°l
Each percent difference must be less than or equal to 1.5-;
***Reference thermometer must be ASTM.
****Correction factor must be determined if any percent difference
is >1.5%.
Figure E-8. Thermocouple calibration data sheet.
E-21
-------
Date
Wl'. A
Indicator Ho. if'/Z.*/- Operal
Test Point
No.
0
1
2
3
4
Millivolt
signal*
**
Equivalent
temperature,
°F*
?e.
3-Z..O
/ 0^-7
K/.l
/&£o
Digital Indicator
temperature reading,
•F
73.*
3^.6
_/00,l
*feoJ
Jltf.S
Difference,
%
Ml%
O.tt>%
^jn
^ // x
o,/t>?*
Percent difference must be less than or equal to 0.5%.
Percent difference:
(Equivalent temperature °R- Digital indicator temperature reading
(Equivalent temperature °R)
Where *R « °F + 460°F
*See thermocouple digital indicator calibration verification device calibra
tion for these values.
**Th1s point 1s ambient temperature. The device 1s off and therefore is
supplying no signal other than ambient temperature.
Figure E-9a. Thermocouple digital indicator calibration
data sheet.
E-22
-------
Date
/%/ (^Indicator Ho.
Operat
Test Point
No.
0
1
2
3
4
Millivolt
signal*
**
Equivalent
temperature,
°F*
1$
33.°
/32,a-
fclJ
/1 2-^-0
Digital Indicator
temperature reading,
•F
3-4,4
3/.fc
/oo$
4W
/(^.3
Difference,
%
d?. / ^o
0. 0% °1°
O+1^a
O- /37^
-0.0Z*-
Percent difference must be less than or equal to 0.52.
Percent difference:
(Equivalent temperature °R- Digital Indicator temperature reading °R)(100?-)
(Equivalent temperature °R)
Where °R « °F * 460°F
*See thermocouple digital Indicator calibration verification device calibra-
tion for these values.
**Th1s point 1s ambient temperature. The device 1s off and therefore 1s
supplying no signal other than ambient temperature.
Figure E-9b. Thermocouple digital indicator calibration
data sheet.
2-23
-------
Calibration data are included in Figures E-lOa through d and
E-lla through d.
BALANCE
The Mettler electronic balance was calibrated by comparison
with Class-S standard weights and agreed within 0.5 g. Calibra-
tion data are shown in Figure E-12.
BAROMETER
The field barometer was calibrated to within 0.1 in.Hg of an
NBS-traceable mercury-in-glass barometer before each test series.
The field barometer was checked against the mercury-in-glass
barometer after each test series to determine if it read within
0.2 in.Hg. If it did not reading within 0.2 in.Hg, a correction
factor was determined. Calibration data are included in Figure
E-13.
ORSAT ANALYZER
The orsat analyzer was calibrated before each test series by
determining the percentages of carbon dioxide and oxygen in a
calibration gas containing known percentages of each. The ana-
lyzer read within 0.5 percent of the known value for each gas.
Calibration data are shown in Figures E-14a and b.
-------
Date:
Meter Box No.:
Calibrator; 13.
Reference: A5T/v? -
Inlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
72.G
12.~?
/^"6. 6
Dry gas
thermometer
temperature ,
•F
72
1^
1/3
Difference,
•F**
A. O
0.7
.2.0
Outlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
7^.o
J?P. 7
//ySo
Dry gas
thermometer
temperature ,
•F
•7/
3o
//JZ-
Difference,
•p**
/. o
5-7
;?.tf
•Source: 1) Ice bath
2) Ambient
3) Water bath
••Difference must be less than or equal to +5°F.
Figure E-lOa. Dry gas thermometer calibration data sheet.
E-24
-------
Date:
Meter Box No.:
£ g - V
Calibrator; 8. Ar,*.
Inlet
**.
Reference;
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
•720
?2. 7
1 f7.&
Dry gas
thermometer
temperature ,
•F
72,
^Z
///
Difference,
•p.*
o.o
6,7
3.o
Outlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
~?2.0
12.-)
1(6. o
Dry gas
thermometer
temperature ,
•F
73
T/
//f
Difference,
• p**
/.o
(.3
/.o
•Source: 1) Ice bath
2) Ambient
3) Hater bath
••Difference must be less than or equal to HK5°F.
Figure E-lOb. Dry gas thermometer calibration data sheet,
E-25
-------
Date:
Calibrator; 8. A'<-^s T
Inlet
Meter Box No.:
Reference; Asr/* -2.
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
•72. o
72.7
/ 08.0
Dry gas
thermometer
temperature ,
•T
-?&
*
-------
Date:
Meter Box No.:
Calibrator
Inlet
-> .'z •*
Reference : A s r/* -
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
36
73
/OS
Dry gas
thermometer
temperature ,
•F
3&
?-/
/c?Sr
Difference,
•F**
2.
/
&
Outlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
3(,
73
Dry gas
thermometer
temperature ,
•F
33
7*
/<*"
Difference,
•F**
3
,
3
•Source: 1) Ice bath
2) Ambient
3) Water bath
••Difference must be less than or equal to +5*F.
Figure E-lOd. Dry gas thermometer calibration data sheet.
E-27
-------
Date:
Thermometer No.:
'/CK-
Ambient temperature:
Calibrator: !? ^^
'A.
F Impinger:
Reference:
'
NO:
A
-
Reference
point
No.
1
2
Source *
2
1
Reference
thermometer
temperature,
°F
7v^
3t-'/-
Thermometer
temperature,
°F
•7^
^'r~
Difference,
op**
-*c^
fc"-'' ^
*Source: 1) Ice Bath
2) Ambient
**Difference must be less than +2°F at both points
Figure E-lla. Thermometer calibration data sheet.
E-28
-------
Date:
Thermometer No. :
g><
Ambient temperature: "?.: •'
*"""> f
Calibrator: j . A.*j~rr V^'f (:•-'•
'F Impinger:
Reference:
NOX:
Reference
point
No.
1
2
Source *
2
1
Reference
thermometer
temperature,
°F
-?yc-
•9 / <-- -
Thermometer
temperature,
op
7/c>
Difference,
op**
-^~-
-/ v-
*Source: 1) Ice Bath
2) Ambient
**Difference must be less than +2°F at both points
Figure E-llb. Thermometer calibration data sheet.
E-29
-------
Date: -2
_ f - - j- -
Ambient temperature:
Calibrator: s d^
Thermometer No.:
_°F Impinger:
.v" Reference:
NOX:
Reference
point
No.
1
2
Source *
2
1
Reference
thermometer
temperature,
°F
-7y^
••? • >." *•-
Thermometer
temperature,
°F
MS?
Z6cr-
Difference,
op**
?P
i o^'p
*Source: 1) Ice Bath
2) Ambient
**Difference must be less than +2°F at both points
Figure E-llc. Thermometer calibration data sheet.
E-30
-------
Date:
, ^ / /cy re
t temperature:
a tor: '{. AjT,—^
Thermometer No.t
~1L~ °F Impinger: Vt ^
"iiZTl^'^ Reference: A.V7 /i
V of C>
NO^: ^'rj
x — t-=-i —
^(-3P
Reference
point
No.
1
2
Source *•
2
1
Reference
thermometer
temperature,
°F
7VV
J6l>
Thermometer
temperature,
°F
69V
SU-.C'P
Difference,
op**
vS'r
1 '••'!• •
*Source: 1) Ice Bath
2) Ambient
**Difference must be less than +2°F at both points
Figure E-lld. Thermometer calibration data sheet.
E-31
-------
Balance
No.
H-l*
Date
uhlfz
Calibrator
f
J.Q&M
Mass determined for
^9
:'(%>,/
Error
rO-.l
•se-g
CP(?
craZ
Error
fcU
•100"o
/OffC
IMQ.i
Error
ft?y
Error must not exceed 0.5 grams at each point.
-f
Figure E-12. Balance calibration data sheet.
E-32
-------
BAROMETER
NO.
^^
&)
•
PRETEST
-/$
«***
BAROMETER
READING
So. oo
REFERENCE
BAROMETER
READING
DIFFERENCE*
0,02-
DATE
CALIBRATOR
POST-TEST
BAROMETER
READING
REFERENCE
BAROMETER
READING
DIFFERENCE**
DATE
CALIBRATOR
*Barometer is adjusted so that difference does not exceed 0.05 in. Hg.
**Barometer is np_t adjusted. If difference exceed 0.10 in. Hg, inform project
manager imnediately.
Figure E-13. Barometer calibration log.
E-33
-------
Reference Gas:
A6A Burdox
Cylinder No. 112704
Invoice No. 0382088
Lab Ref. No. VII:46-23
Orsat No.:
/t/.'
Gas (circle one): 02 /C02
co
Calibrator
Date
Value Det.
4.5%
5.0%
- — . 4
._).
5.5%
•T
J
( —
-J—
Figure E-14a. Orsat calibration data sheet -
co2.
E-34
-------
Reference Gas:
AGA Burdox
Cylinder No. 112704
Invoice No. 0382088
Lab Ref. No. VII:46-23
Orsat No.:
'L' /
Gas (circle one):
CO, CO
Calibrator
A
Date
/•//• h
Value Det.
5.0%
1
i
1
. j—
—I-
Figure E-14b. Orsat calibration data sheet -
E-35
-------
APPENDIX F
QUALITY ASSURANCE SUMMARY
F-l
-------
QUALITY ASSURANCE
The following summary addresses the general steps taken to
insure data quality and accuracy for any given emission test
project.
PROJECT ORGANIZATION AND RESPONSIBILITIES
The project organization and responsibilities of the project
team are generally defined in the test plan. Specific responsi-
bilities for this field test are shown in Appendix G, Project
Participants.
QUALITY ASSURANCE OBJECTIVE
The primary objective of this program is to refine sampling
and analytical techniques of EPA Proposed Method 5B (or develop a
new method) that will minimize the collection of condensible
sulfate materials in the measurement of particulate emissions
from fossil fuel-fired boilers and to evaluate method precision.
Therefore, all procedures used in the collection and analysis of
emission samples were as outlined in applicable EPA reference
methods, where applicable. The sample methodology used for this
project (quad train - single point) has been previously validated
specifically for research and methods development type projects.
F-2
-------
Test results were presented in several units to allow for their
comparison with data from other organizations wishing access to
the data summary.
DATA REDUCTION, VALIDATION, AND REPORTING
Data reduction and reporting provide one of the greatest
potential sources of system error. To help minimize this source
of error, PEDCo performs most test method calculations by use of
a validated computer program. In addition, hand calculation on
standard computer cards to allow accurate input of data into the
computer by individuals unfamiliar with testing procedures. The
data printout is then validated by comparison with the field and
analytical data sheets. In addition, hand calculation checks
generally are made to validate the computer output. Other data
validations are made whenever possible.
PERFORMANCE AND SYSTEM AUDITS AND FREQUENCY
When feasible, PEDCo performs both performance and system
audits. Three types of performance audits were performed for
this test program. All dry gas meter systems were audited for
accuracy in the field by the use of a critical orifice. In
addition, the analytical procedure for sulfur dioxide was audited
for accuracy by the use of audit samples supplied by EPA prior to
sample analysis. Also, onsite calculations were used to check
the completeness and accuracy of the particulate test data.
F-3
-------
SPECIFIC ROUTINE PROCEDURES USED TO ASSESS DATA PRECISION,
ACCURACY, AND COMPLETENESS
Because the precision of the standard EPA reference methods
used had previously been determined, no further attempt was made
to assess data precision. These precision results are summarized
in "The EPA Program for the Standardization of Stationary Source
Emission Test Methodology, A Review," EPA-600/4-76-044. Preci-
sion estimates were calculated for within-run MSB and M5B-P400
samples using standard statistical analysis procedures. The mean
concentration and standard deviation (with N-l weightings for
sample data) were determined for each group of similar runs. The
standard deviations were expressed as a percentage of the mean
concentration for comparison purposes (in this form the standard
deviation was called a coefficient of variance).
Three audit procedures were used to determine accuracy.
Accuracy audit procedures used for the dry gas meter and sulfur
dioxide, analysis are the standardized written procedures used by
the EPA Quality Assurance Division program. The procedure for
determining data completeness is the same as that for New Source
Performance Standards, as documented in the Code of Federal
Registers 40 CFR 60, Section 60.8.
INTERNAL QUALITY CONTROL CHECKS
Several internal quality control checks are usually made for
each test. Normally, most of these checks deal with the field
sampling analysis. For this test series, control samples for the
sulfur dioxide analytical procedures were analyzed. Also, filter
F-4
-------
and reagent blanks were returned to the laboratory for gravi-
metric analysis. A quality control check of both the initial and
final weighing was thus provided. Results of the control sample
checks are included in Section 6. Blanks were analyzed according
to procedures used for the M5BW and 1C analytical work.
CORRECTIVE ACTION
PEDCo has two methods for corrective action. The first
involves the use of control limits, such as audit sample results,
control sample results, and calibration results. When any of
these limits show that the integrity of the data is questionable
the procedure'is repeated, additional data are collected, or the
data are rejected. The second method involves the use of red
tags. Whenever any piece of equipment is suspected of producing
unacceptable data, the entire apparatus or malfunctioning con-
ponent is replaced and a red tag is placed on the item. Thar
piece of equipment is then rejected until its ability to perform
its function correctly is verified by the proper individuals.
The use of numerous control limits and the red tagging system
reduces the amount of unacceptable data and provides a system by
which to track and correct items and procedures that show an
unusally high occurrence of unacceptability.
PREVENTIVE MAINTENANCE PROCEDURES AND SCHEDULES
PEDCo has a very comprehensive preventive maintenance pro-
gram. Many of the major components of test equipment have pre-
test checklists. These checklists ensure that all functions are
F-5
-------
checked and action is taken to repair or replace any part that
shows probability of malfunction. The checks are made before
every field test series, however, only the control console (meter
box) check are recorded. Even though PEDCo's preventive mainte-
nance program and schedule are not in writing, our commitment of
three full-time experienced persons for the express purpose of
equipr.ert con:.r;r a 3 tion , preparation, calibration, and maintenance
has created a program based on experience and skill that cannot
be matched by a written guideline.
QUALITY ASSURANCE REPORTS TO MANAGEMENT
The standard quality assurance procedures used in this test
program generated sufficient documentation to indicate the data
quality. All evidence of the execution of the quality assurance
guidelines is reviewed by management. In addition, during weekly
meetings of all PEDCo's EMB task managers and project managers,
all aspects of the project are discussed including the quality
assurance of each task. No written report results from this
meeting because all interested parties are verbally apprised of
the situation during each meeting.
Two other reports are made to managements, which are not EMB
task related. PEDCo's emission test and laboratory groups par-
ticipants in all national audits by EPA's Quality Assurance
Division, and PEDCo's quality assurance coordinator, Tom Wagner,
makes several independent checks for management.
F-6
-------
APPENDIX G
PROJECT PARTICIPANTS AND SAMPLE LOG
G-l
-------
TABLE G-l. FIELD TEST CREW AND RESPONSIBILITIES
Name
Title
Field test assignment
J. Prohaska*
D. Osterhout*
M. Phillips
R. Antesberger*
P. Clarke
Project Manager
Engineer
Engineer
Technician
Engineer
Coordinate test activity; sample
train setup and disassembly
Site leader; paniculate tests at
outlet stack; meter reader, quad
train assembly and disassembly
Site leader; clean up area; setup
and recover sample trains, orsat
analysis
Setup and recover sample trains;
assist in quad train assembly and
disassembly
Particulate tests; meter reader,
quad train assembly and disassembly
Denotes site setup crew.
G-2
-------
TABLE G-2. SAMPLE LOG
Date (1982)
Activities
November 22-23
November 29
November 30-December 1
December 2
Sample site and equipment setup. All initial
measurements were obtained. Sample recovery
and setup area organized.
Two test runs were performed.
Three test runs per day were performed.
Two test runs were performed. Packed equipment
and left site.
G-3
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO. 2. 3. RECIF
EPA-450/3-83-021
4. TITLE AND SUBTITLE 5. REPO
Fvnl iiat inn of7 MrthnH ^R at a foal -firpd Boi 1 £T SPD
6. P t Rr
7. AUTHOR(S) 8. PERF
John Prohaska
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PRO
PEDCo Environmental, Inc.
11499 Chester Road, P. U. box 4b!uu 11. CON
Cincinnati, Ohio 45246 - 0100
12. SPONSORING AGENCY NAME AND ADDRESS 13. TYP
Emission Measurement Branch
Emission Standards and Engineering Division IA.SPO
U.S. Environmental Protection Agency
Research Triangle Park, N.C. 27711 EP
'lENT'S ACCESSION NO.
RT DATE
tember 198^
ORMING ORGANIZATION CODE
ORMING ORGANIZATION REPORT NO.
GRAM ELEMENT NO.
TRACT/GRANT NO.
£ OF REPORT AND PERIOD COVERED
NSORING AGENCY CODE
A 200/04
15. SUPPLEMENTARY NOTES
16. ABSTRACT
The report describes the development and evaluation of Method 5B at a coal -fired
boiler. Different sampling and analysis techniques for measuring nonsulfuric acid
particulate were compared and evaluated. Statistical analyses of the results
comparing the precision of the different techniques are presented.
17. KEY WORDS AND DOCUMENT ANALYSIS
a. DESCRIPTORS b. IDENTIFIERS/OPEN ENDI
18. DISTRIBUTION STATEMENT 19. SECURITY CLASS (This
Unclassified
Release unlimited 20. SECURITY CLASS (TMs
Unclassified
ED TERMS c. COS ATI Field/Group
Report) 21 . NO. OF PAGES
477
page) 22. PRICE
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION is OBSOLETE
------- |
|