United States Office of Air Quality EPA-450/3-84-007
Environmental Protection Planning and Standards January 1984
Agency Research Triangle Park NC 2771 1
Air
Evaluation of
Method 5B at an
Oil-Fired Boiler
-------
EPA-450/3-84-007
Evaluation of Method 5B
At an Oil-Fired Boiler
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Radiation
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
January 1984
-------
This report has been reviewed by the Emission Standards and Engineering Division of the Office of Air Quality Planning
and Standards, EPA, and approved for publication. Mention of trade names or commercial products is not intended to
constitute endorsement or recommendation for use. Copies of this report are available through the Library Services
Off ice (MD-35), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711; or, for a fee, from
the National Technical Information Services, 5285 Port Roya! Road, Springfield, Virginia 22161.
-------
CONTENTS
Figures iv
Tables v
Quality Assurance Element Finder vii
1. Introduction 1-1
2. Source Description 2-1
3. Sampling Plan and Procedures 3-1
3.1 Sample location 3-1
3.2 Sample methods 3-5
3.3 Sample analysis 3-9
4. Summary of Test Results 4-1
4.1 Sample data 4-1
4.2 Thermogravimetric analytical results 4-3
4.3 Water-soluble sulfate analytical results 4-25
4.4 Method 8 analytical results 4-27
5. Discussion of Results 5-1
6. Quality Assurance 6-1
7. References 7-1
Appendix A Computer printouts and example calculations A-l
Appendix B Field data B-l
Appendix C Laboratory data C-l
Appendix D Sampling and analytical procedures D-l
Appendix E Calibration procedures and results E-l
Appendix F Quality assurance summary F-l
Appendix G Project participants and sample log G-l
Appendix H Process data H-l
m
-------
FIGURES
Number Page
3-1 Four-Train Sampling System Showing Nozzle
Position 3-2
3-2 Sampling Site 3-3
3-3 Location of Sampling Ports in East Duct of
Unit 2 3-4
4-1 Average Filterable Particulate Concentration
for Similar Sample Types After Condi-
tioning at Indicated Temperature 4-13
4-2 Average Relative Percent Weight Loss After
Conditioning at Indicated Temperatures -
Ambient Weight Basis 4-24
6-la Audit Report Dry Gas Meter 6-4
6-lb Audit Report Dry Gas Meter 6-5
6-lc Audit Report Dry Gas Meter 6-6
6-ld Audit Report Dry Gas Meter 6-7
6-2a Thermocouple Digital Indicator Audit Data
Sheet 6-8
6-2b Thermocouple Digital Indicator Audit Data
Sheet 6-9
6-3a On-Site Audit Data Sheet 6-10
6-3b On-Site Audit Data Sheet 6-11
6-3c On-Site Audit Data Sheet 6-12
6-3d On-Site Audit Data Sheet 6-13
6-4 Isokinetic Calculations 6-14
IV
-------
TABLES
Number Page
2-1 Process Data Summary 2-2
3-1 Sample Matrix 3-6
3-2 Analytical Matrix 3-10
4-1 Summary of Sample Conditions 4-2
4-2 Summary of Thermogravimetric Analytical
Results 4-4
4-3 Net Sample Weights After Individual Heat
Treatments at the Indicated Temperature 4-7
4-4 Comparison of Filterable Particulate Con-
centration After Conditioning at Indicated
Temperatures 4-10
4-5 Statistical Data for Grouped Runs After
Conditioning at Indicated Temperatures 4-14
4-6 Summary of Precision Estimates After Condi-
tioning at Indicated Temperatures 4-16
4-7 Relative Percent Weight Loss for Filter
Samples After Conditioning at Indicated
Temperatures 4-18
4-8 Relative Percent Weight Loss for Probe
Rinse Samples After Conditioning at Indi-
cated Temperatures 4-20
4-9 Relative Percent Weight Loss for Total
Filterable Particulate Samples After Con-
tioning at Indicated Temperatures 4-22
4-10 Summary of Nonwater-Soluble Sulfate Particu-
late Results 4-26
4-11 Summary of Back-Half Analyses 4-28
-------
TABLE (continued)
Number page
6-1 Field Equipment Calibration 6-3
6-2 Thermogravimetric Reagent Blank Analysis 6-16
6-3 Audit Report SO- Analysis 6-17
6-4 S02 Reagent Blank Analysis 6-19
6-5 Nonwater-Soluble Sulfate Particulate Reagent
Blank Analysis 6-20
-------
QUALITY ASSURANCE ELEMENT FINDER
Title page
Table of contents
Project description
QA objective for measurement of data in
terms of precision, accuracy, completeness,
representativeness, and comparability
Sampling procedures
Sample custody
Calibration procedures and frequency
Analytical procedures
Data reduction, validation, and
reporting
Internal quality control checks and
frequency
Performance and system audits and
frequency
Preventive maintenance procedures and
schedules
Specific routine procedures used to
assess data precision, accuracy, and
completeness of specific measurement
parameters involved
Corrective action
Quality assurance reports to management
Location
Section Page
11
1 1-1
Appendix F F-2
Appendix D D-l
Appendix C C-l
Appendix E E-l
Appendix D D-l
Appendix F F-3
Appendix F F-4
Appendix F F-3
Appendix F F-5
Appendix F F-3
Appendix F F-5
Appendix F F-6
-------
SECTION 1
INTRODUCTION
On June 28, 1979, the U.S. Environmental Protection Agency
(EPA) issued an advance notice of proposed rulemaking to develop
New Source Performance Standards (NSPS) for fossil-fuel-fired
industrial steam generators.* Because these sources can emit
significant amounts of condensible sulfates that even the best
emission reduction systems are unable to control, particulate
emissions measured by Method 5, which is capable of collecting
condensible matter, could vary widely as a result of fuel sulfur
content or process changes. For this reason, the EPA decided
that condensible sulfates should not be included in particulate
emission standards or measurements. Therefore, the test program
undertaken by EPA to support development of the NSPS had two
objectives: 1) to obtain background emission data, and 2) to
evaluate sampling and analytical parameters designed to minimize
collection of condensible sulfate materials from these sources.
Background emission data have been collected at several coal-
fired facilities and at one oil-fired facility by use of both the
proposed Method 5B (to minimize collection of condensible sul-
fates) and Method 5.
*44 FR 37632.
1-1
-------
PEDCo Environmental, Inc., under contract to the Emission
Measurement Branch of the EPA, conducted an atmospheric emission
test program from February 7 through February 12, 1983, on the
exhaust gases of a 400-MW oil-fired utility boiler. Testing was
performed in an effort to determine the precision of proposed
Method 5B and to evaluate the effect of sampling and analysis
parameters on the collection of condensible sulfates.
All samples were collected by use of a four-train (quad)
sampling system stationed at a single point in the exit gas
stream. A total of 10 quad train tests were performed during the
test series. Paired trains in the quad system consisted of
similar sampling methods to allow within-run data comparisons as
well as comparisons between different sampling methods.
So that method precision could be estimated, most of the
samples were collected at Method 5B sampling conditions [filter
and probe heated to 160°C (320°F)], designated as MSB.
Other sampling parameter studies have shown generally that
1) a higher sampling temperature can minimize collection of
condensible matter, and 2) even a well-designed, well-con-
structed, and well-operated probe heating system can have cold
spots where the gas temperature is lower than the desired moni-
tored probe temperature. Consequently, several of the quad test
runs were conducted with the probe heated to 204°C (400°F) in an
effort to raise the temperature of any cold spots in the probe to
approximately 160°C (320°F), the desired filter temperature.
These samples were designated as M5B-P400.
1-2
-------
Probe rinse and filter sample fractions collected by Methods
5B and 5B-P400 were subjected to a series of thermogravimetric
analyses to assess sample weight loss as a function of heating
temperature between ambient conditions and 316°C (600°F).
In addition, several samples (designated M5BW) were col-
lected and analyzed by use of a modified version of Texas Air
Control Board (TACB) Method 5W.* The method incorporates deion-
ized water as the sample recovery solvent and a series of titri-
metric and gravimetric analyses to measure water-soluble sulfates
and subsequently derive the mass of nonwater-soluble sulfate
particulate (particulate matter that does not include any water-
soluble sulfates). The method was modified by sampling at 160°C
(320°F) and measuring the water-soluble sulfates by ion chroma-
tography (1C). These tests were conducted to determine the
suitability of this method for fossil-fuel-fired steam genera-
1 2
tors. Previous studies ' have confirmed the suitability of
Method 5W and the 1C analysis modification for use on fluid
catalytic cracking unit regenerators at petroleum refineries,
which also can emit significant amounts of condensible sulfates.
The filterable portion of each sample train was followed by
a modified EPA Method 8 impinger train; this permitted analysis
of sulfur dioxide (SCO and condensible sulfate [as sulfuric acid
(HjSCO] that passed through the particulate filter. Flue gas
temperature, moisture content, and composition [oxygen (CO
*
Texas Air Control Board - Laboratory Division. Determination of
Particulate in Stack Gases Containing Sulfur Dioxide. December
1979.
1-3
-------
and carbon dioxide (CO-)] were measured in conjunction with the
emission tests.
Ms. Jenna Sellers, the host plant's representative, recorded
process data and provided assistance on site. Mr. Gary
McAlister, the EPA Task Manager, and Mr. Andrew Kasprik, the
utility company's representative, provided overall project
coordination.
This report documents the activities and results of the test
program. Section 2 briefly describes the process and operating
conditions during the sampling periods. Section 3 describes the
sampling site and the sampling and analytical plan. Section 4
presents the test results, which are then discussed in Section 5.
Section 6 outlines quality assurance measures and audit results.
The appendices contain computer output and example calculations
(Appendix A), field data (Appendix B), analytical data (Appendix
C), standard sampling and analytical procedures (Appendix D),
calibration procedures and results (Appendix E), a quality assur-
ance summary (Appendix F), a list of project participants (Appen-
dix G), and process data (Appendix H).
1-4
-------
SECTION 2
PROCESS OPERATION
The source tested in this program is a 400-MW fossil-fuel-
fired utility boiler (designated Unit 2) located in the south-
eastern United States. The pressurized Foster Wheeler boiler,
which was placed in service in 1969, generates steam at 17.9 MPa
and 541°C (2590 psig and 1005°C). This unit normally fires a
mixture of heavy oil and gas, but it was operated on 100 percent
oil during the test program. Fly ash removed by the mechanical
dust collectors is automatically reinjected into the furnace.
Flue gases are exhausted through a 121-m (397-ft) stack. Typical
oil burned in the boiler contains 2.4 percent sulfur and 300 to
400 ppm vanadium. No fuel additives are used at this facility.
Table 2-1 summarizes process conditions during the sampling
periods. All tests were conducted at essentially the same boiler
load (380-MW), as the load did not vary by more than ±5 percent
at any time during the sampling periods. A sudden loss of air
flow occurred near the beginning of Run 4, but conditions stabi-
lized in about 10 minutes. The condensate blowdown valve was
opened during three runs because of high silica concentrations.
None of these relatively minor process variations should affect
the within-run data comparisons.
2-1
-------
TABLE 2-1. PROCESS DATA SUMMARY
Run
No.
1
2
3
4
5
6
7
8
9
10
Date
(1983)
2/7
2/7
2/8
2/8
2/11
2/11
2/11
2/11
2/12
2/12
Time,
24-h
0950-1150
1410-1610
0845-1045
1230-1430
0755-0925
1050-1220
1330-1500
1620-1650
0830-1000
1200-1330
Gross load, MW
Range
Steady
Steady
Steady
Steady
365-378
Steady
Steady
Steady
Steady
Steady
Average
380
380
380
380
375
380
380
375
385
385
Stack monitor
opacity
range, %
21
22-25
18
22-30
18
24
20
18
20
20
Oxygen range at
east economizer
exit, %
0.9-1.0
0.8-1.1
0.7-0.8
0.6-1.2
0.7
0.4-0.5
0.6-0.7
0.8
0.6-0.7
0.6
Operation
Normal
Normal
Normal
a
b
CBD openc
CBD openc
No rma 1
Normal
Normal
At 1250 hours there was a sudden loss of air flow. Conditions returned to normal in approxi-
mately 10 minutes.
3At 0820 hours the boiler pressure was decreased slightly and the condensate blowdown was opened
because of high silica concentrations.
'The condensate blowdown was open because of high silica concentrations; boiler at full pressure.
-------
Testing was not conducted on two days because the unit was
operating at reduced load (approximately 200-MW) as a result of a
malfunctioning condensate pump.
2-3
-------
SECTION 3
SAMPLING AND ANALYTICAL PLAN
All samples were collected with a four-train (quad) sample
system stationed at a single point in the exit gas stream. The
sample methodology was developed and validated in previous stu-
dies. The ability of the four trains to sample simultaneously
at essentially the same point in the gas stream (Figure 3-1)
reduces the effect of spatial and temporal variations in the
velocity and particulate profiles on the sampling results. It
also permits a statistically significant number of samples to be
taken in a short time. Further, because two of the four trains
are identical for every run, within-train precision can be deter-
mined while the relationship of the different trains is being
compared.
3.1 SAMPLE LOCATION
Testing took place in the east duct of Unit 2, as shown in
Figures 3-2 and 3-3. Two existing 7.6-cm (3-in.) diameter ports
were located 90 degrees apart in each of the horizontal ducts. A
new 15-cm (6-in.) I.D. sampling port for the quad-train samples
was installed in the side of the east duct above one of the
existing smaller ports. All of the ports were located approx-
imately 3 duct diameters downstream from the mechanical dust
3-1
-------
8 cm
15 cm
NOZZLE
T
4 cm
0.5 cm
" ft & NOZZLE
THERMOCOUPLE
3-
2 cm
4 cm
2 cm
3 cm
1.4 cm
S" TYPE PITOT TUBE
A-ft)- A
* 4 cm
Figure 3-1. Four-train sampling system showing nozzle position,
3-2
-------
.30
EAST DUCT
LADDER
NEW 15 cm (6 1n.) i.d. PORT
^% EXISTING PORTS
EXISTING CATWALK
MO.7 m (35 ft) ABOVE GRADE
WEST DUCT
PLAN VIEW
SEE VIEW A-A IN FIGURE 3-3
Figure 3-2. Sampling site.
GAS FLOW FROM
MULTICLONES
3-3
-------
NEW PORT
DUCT
CATWALK
64 on
•^•••I^B
3
3
0
f
n
<
*T25
'V
/ !
ih
;h
s
ir
A
K
c
0
0
•* RAILING
1
•v84 cm
(33 in.)
1
^EXISTING PORT
VIEW A-A
30 cm (12 in.)
15 cm (6 in.) i.d. PORT
23 cm (9 in.) THICK INSULATION
SECTION B-B
Figure 3-3. Location of sampling ports in east duct of Unit 2.
-------
collector outlets and 1 duct diameter upstream of a 45-degree
bend. Both ducts had an inside diameter of 4.11 m (13.5 ft)
surrounded by a 23-cm (9-in.) thick layer of insulation.
3.2 SAMPLE METHODS
The four trains collected flue gas samples simultaneously
from a single point in the gas stream. The nozzles of the four-
train assembly (Figure 3-1) were positioned 64 cm (25 in.) from
the stack wall for each test. The desired sample time was 120
minutes, and readings of stack flue gas and sampling train data
were recorded for each train at 10-minute intervals. A single
pitot tube and thermocouple located in the four-train nozzle
arrangement was used to set isokinetic sample rates for each
train. Sample rates were determined by use of programmable
calculators. Prior to sampling, the velocity and temperature
profile of the general sampling area was established to ensure
that all four nozzles could be positioned at points of equal
velocity to minimize spatial variations in emissions.
Table 3-1 presents the sample matrix performed during this
test series. The particular conditions for each train are de-
scribed briefly below:
0 Method 5B - Designation MSB
Filterable particulate was collected by use of a probe
and filter assembly heated to 160°C (320°F). Acetone
was used to rinse all sample train components prior to
the filter.
3-5
-------
TABLE 3-1. SAMPLE MATRIX
Run
No.
1
2
3
4
5
6
Sample
Train No.
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
58
5C
5D
6A
6B
6C
6D
Sample method5
MSB
160°C (320°F)
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
M5B-P400
160°-204°C (320°-400°F)
X
X
X
X
M5BW
160°C (320°F)
X
X
X
X
(continued)
3-6
-------
TABLE 3-1 (continued)
Run
No.
7
8
9
10
Sample
Train No.
7A
7B
7C
7D
8A
8B
8C
8D
9A
9B
9C
9D
10A
10B
IOC
10D
Sample method3
MSB
160°C (320°F)
X
X
X
X
X
X
X
X
X
X
M5B-P400
160°-204°C (320°-400°F)
X
X
X
X
M5BW
160°C (320°F)
X
X
TI5B - Probe and filter heated to 160°C.
M5B-P400 - Probe heated to 204°C; filter heated to 160°C.
M5BW - Probe and filter heated to 160°C; water rinse of nozzle, probe, and
front filter holder glassware.
3-7
-------
° Modified Method 5B - Designation M5B-P400
Filterable particulate was collected by use of a probe
heated to 204°C (400°F) and a filter assembly heated to
160°C (320°F). Acetone was used to rinse all sample
train components prior to the filter.
0 Method 5BW - Designation M5BW
Filterable particulate was collected by use of a probe
and filter assembly heated to 160°C (320°F). Deion-
ized, distilled water was used to rinse all sample
train components prior to the filter.
The purpose of heating the probe to 204°C while keeping the
filter at 160°C was to raise the temperature of any cold spots in
the probe to 160°C, and thereby minimize the quantity of condens-
ible sulfates collected.
For each train, the probe and filter temperatures were set
at the predetermined level and monitored throughout each test by
the use of multiterminal digital indicators with the thermocou-
ples located in the middle of each probe and immediately behind
the Method 5 filter frits.
The back half of each sample train represented a modified
Method 8 with five impingers. An unheated Method 5 filter as-
sembly was inserted between the second and third impingers to
preclude any sulfuric acid mist carryover. The contents of each
impinger are listed below:
Impinger Contents - All Runs
1 Empty
2 200 ml 80% IPA
3 100 ml 10% H202
4 100 ml 10% H202
5 400 grams silica gel
3-8
-------
All the filters were Whatman Reeve Angel 934AH. The filters
used in the Method 5 position were heated to 300°C prior to
identification and tare weighing.
The flue gas moisture content of each sample train was
determined gravimetrically by weighing each impinger before and
after every test. In addition, a flue gas grab sample collected
during each test was analyzed for oxygen (OO and carbon dioxide
(C02) by use of an Orsat analyzer, as described in Method 3* of
the Federal Register.
3.3 SAMPLE ANALYSIS
Table 3-2 presents the analytical matrix followed for this
test program.
Thermogravimetric Analysis
Initially, the filter particulate catch was placed in a
tared glass weighing dish, desiccated for 24 hours, and weighed
to a constant weight.** The probe rinse fraction was transferred
to a tared beaker, allowed to evaporate to dryness at ambient
temperature and pressure, desiccated for 24 hours, and weighed to
a constant weight. Because previous data have shown that samples
containing a significant amount of sulfuric acid may not come to
a constant weight, each sample received a maximum of three sepa-
rate weighings. In any case, the lowest weight achieved was
reported as the ambient weight.
*
40 CFR 60, Appendix A, Reference Method 3, July 1982.
**
Criteria as specified in 40 CFR 60, Appendix A, Reference
Method 5, July 1982.
3-9
-------
TABLE 3-2. ANALYTICAL MATRIX
Run
No.
1
2
3
4
5
6
Sample
Train No.
1A
IB
1C
ID
2A
2B
EC
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
6B
6C
6D
Sample
method
M5BW
M5BW
MSB
MSB
M5B
MSB
M5BW
M5BW
MSB
MSB
M5B-P400
M5B-P400
M5B-P400
M5B-P400
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
Thermogravimetric
conditioned
Ambient -»•
160° + 232°
-> 316°C
X
X
X (24)
X (24)
X
X
X
X
X
X
X
X
X
X
X (24)
X (24)
Ambient -»•
232° +
316°C
X (24)
X (24)
X
X
Ambient
+ 316°C
Water
soluble sulfate
determination
X
X
X
X
(continued)
3-10
-------
TABLE 3-2 (continued)
Run
No.
7
8
9
10
Sample
Train No.
7A
7B
7C
7D
8A
8B
8C
8D
9A
9B
9C
9D
IDA
10B
IOC
10D
Sample
method
M5BW
M5B
M5BW
MSB
MSB
M5B-P400
MSB
M5B-P400
MSB
MSB
MSB
MSB
MSB
M5B-P400
MSB
M5B-P400
Thermogravi metric
conditioning
Ambient -*•
160° -»• 232°
+ 316°C
X (24)
X
X (24)
X
Ambient ->•
232° +
316°C
X
X
X
X
X
X
Ambient
+ 316°C
X (24)
X (24)
X
X
Water
soluble sulfate
determination
X
X
Thermogravimetric conditioning of probe rinse and filter fractions at indi-
cated temperatures after initial desiccation and ambient weights were ob-
tained. The designation (24) for selected samples indicates a heat period of
24 hours. All other samples were heat-conditioned for 6 hours.
In this procedure, the mass of total water-soluble sulfates in the sample
was determined and subtracted from the total sample mass.
Note: All back halves represent a modified Method 8, with analysis for
sulfates as sulfuric acid and sulfur dioxide.
3-11
-------
After this initial gravimetric analysis at ambient condi-
tions, probe rinse and filter fractions were subjected to the
sequence of heat treatments outlined in Table 3-2. The samples
were heated in an oven at the specified temperature for either 6
or 24 hours, as indicated. Each sample fraction was cooled and
desiccated for 24 hours after removal from the oven and then
weighed to the nearest 0.1 mg. Each sample was then desiccated
for an additional 3 hours and weighed to the nearest 0.1 mg. The
lower weight obtained was reported.
Selected samples received additional heat treatments to
evaluate sample stability. For these samples, a heat treatment
was repeated at the same time and temperature condition until a
stable weight was obtained prior to advancing to the next step of
an analytical sequence. For this study, a stable weight was
defined as a difference of no more than 5.0 mg or 10 percent of
the net sample weight (whichever was greater) between successive
treatments at the same conditions. The number of treatments
required to achieve a stable weight was recorded for selected
sample fractions up to a maximum of three treatments. The lowest
weight achieved at a given treatment temperature was reported as
the weight for that temperature condition. Filter and acetone
blanks were treated in a similar manner as the actual samples.
Water-Soluble Sulfate Analysis
Sample Preparation—
Each sample fraction, including blanks, was handled and
analyzed as follows:
3-12
-------
Filter - The filter was cut into small pieces and placed in
a 125-ml Erlenmeyer flask with a standard taper joint
equipped with an air condenser. The shipping container was
rinsed into the flask. About 50 ml of distilled water was
added and gently refluxed for 6 to 8 hours. The solution
was then cooled and diluted to exactly 250 ml with water in
a volumetric flask. This was reserved for total soluble
sulfate analysis, which is described below.
Probe Rinse - The probe wash was poured into a 250-ml volu-
metric flask. The sample bottle was rinsed with distilled
water and the rinsings were added to the flask. The solu-
tion was then diluted to the mark with distilled water (or,
if greater than 250 ml, the volume was measured). This
solution was reserved for total soluble sulfate analysis,
which is described below.
Total Soluble Sulfate Analysis—
A 15-ml aliquot* was drawn from the settled samples (filter
and rinse) into separate sample containers with a clean, dry
pipet (only solution was transferred, no solids; if necessary, a
portion of the sample was centrifuged). The sulfate ion (S0.~)
concentration in each aliquot was determined by ion chromato-
graphy (1C) . A syringe was used to inject 1 ml of the aliquot
into the 100-pl sample loop of the 1C, thereby flushing the loop
with sample. The conductivity response of the sample was com-
pared with the calibration curve to obtain the SO ~ concentration
in mg/liter. Dilutions were prepared and reanalyzed if the
initial response was out of the linear calibration range (i.e.,
greater than 15 mg/liter). Blank filter and water samples were
prepared and analyzed in the same manner as the actual samples.
The pipet is not rinsed. This is a deviation from normal pro-
cedures, but is necessary because the volume removed from the
volumetric flask is required in the calculations.
3-13
-------
Mass Determination—
Filter and Rinse Solution Preparation - The remaining con-
tents of each volumetric flask (235 ml) were poured into
separate tared 250-ml beakers, and the flask was rinsed with
distilled water to transfer all particulate matter,, The
filter solution was in Beaker A and the rinse solution was
in Beaker B. This solution was evaporated to approximately
100 ml at 105°C and allowed to cool before proceeding with
the next analysis.
Filter and Rinse Solution Analysis - Five drops of phenol-
phthalein indicator were added to all the tared beakers.
Concentrated NH4OH was then added drop by drop until the
solution turned pink. The samples were returned to the oven
and evaporated to dryness at 105°C, then cooled in a desic-
cator and weighed to a constant weight. Results were re-
ported to the nearest 0.1 mg. For this method, "constant
weight" means a difference of no more than 0.5 mg or 1
percent of the total weight less beaker and/or filter tare,
whichever is greater, between two consecutive weighings,
with no less than 6 hours of desiccation time between weigh-
ings.
Calculations—
Nomenclature—
FP = weight of particulate* on the filter in Beaker A,
mg
PRP = weight of probe rinse particulate* in Beaker B,
mg
NWSSP = weight of nonwater-soluble sulfate particulate**,
mg
ASf = weight of ammonium sulfate in filter sample, mg
AS = weight of AS in probe rinse sample, mg
Vevap ~ volume of solution evaporated in Beaker A (filter)
p or Beaker B (probe rinse), ml
CSO = concentrati°n of sulfate in filter or probe rinse
4 solution aliquots, mg/liter
Particulate with H,SO. converted to (NHJ SO.,
** / 4 4 Z 4
Particulate excluding water-soluble sulfates.
3-14
-------
Equations —
FP(mg) = gross weight Beaker A - tare weight Eq. 1
Beaker A - filter tare weight
PRP(mg) = Gross weight Beaker B - tare weight Eq. 2
Beaker B
AS(mg) = C^^ (mg/liter) x V&vap (ml) x j[^grml Eq. 3
x 1.376
mg S04
Mass of Nonwater-Soluble Sulfate Particulate
The sum of the particulate* collected on the filter (FP) and
the particulate* collected in the probe rinse (PRP) is equal to
the sum of nonwater-soluble sulfate particulate (NWSSP) and
ammonium sulfate (AS) in both samples:
FP + PRP = NWSSP + AS- + AS Eq. 4
r pr ^
The NWSSP can be found by rearranging the equation and
substituting appropriate values determined by use of Equations 1,
2, and 3.
NWSSP = FP -I- PRP - AS, - AS Eq. 5
r pr
Sulfuric Acid Mist Analysis
The amount of sulfuric acid that passed through the particu-
late filter was determined by analyzing the IPA solution recov-
ered in the first two impingers and the backup filter. The
volume of the sample solution was recorded, and the pH of the
*
Particulate with H-SO. converted to (NHJ-SO..
3-15
-------
sample was determined. The sample volume was diluted to 500 ml
with 80 percent IPA. A 100-ml aliquot of this solution was
pipetted into a 250-ml Erlenmeyer flask with 2 to 3 drops of
thorin indicator and titrated to a pink end point by using 0.0100
N barium perchlorate. If the end point color was not correct,
the sample was passed through an ion exchange column and reti-
trated. A blank was titrated for each sample in the same manner.
Sulfur Dioxide Analysis
The hydrogen peroxide sample solution was diluted to 500 ml
with deionized, distilled water. A 20-ml aliquot of this solu-
tion was pipetted into a 250-Erlenmeyer flask with 80 ml of 100
percent IPA and 2 to 3 drops of thorin indicator. The solution
was then titrated to a pink end point by using 0.0100 N barium
perchlorate. A blank was titrated in the same manner.
3-16
-------
SECTION 4
SUMMARY OF TEST RESULTS
This section summarizes the results of the field sampling
program. These results are presented to allow both within-run
and between-run data comparisons, with emphasis on the thermo-
gravimetric and water-soluble sulfate test results.
4.1 SAMPLE DATA
Table 4-1 summarizes pertinent sample data. All tests were
conducted at a single point where the stack gas velocity profile
was relatively flat. The actual probe and filter temperatures,
stack temperature, and moisture content represent average values
from each individual sample train. Gas composition data (0- and
C02) are given in percent by volume on a dry basis. The isoki-
netic criteria defined in Reference Method 5* were met in almost
every case, as indicated by the values shown in the far right-
hand column. The isokinetic sampling rate for Run 3C reflects an
adjustment for the post-test leak rate.
The sampling time for Runs 1 through 4 was 120 minutes;
however, the sampling time for subsequent runs was shortened to
make up for delays incurred during boiler condensate pump mal-
functions. As indicated by the sample catch weights listed in
40 CFR 60, Appendix A, July 1982
4-1
-------
TABLE 4-1. SUMMARY OF SAMPLE CONDITIONS
I
ro
Test
No.
1
2
3
4
5
6
7
a
9
10
(1983)
and time
(24-h)
2/7
• 0950-
1150
2/7
1410-
1610
2/8
0845-
1045
2/8
1230-
1430
2/11
0755-
0925
2/11
1050-
1220
2/11
1330-
1500
2/11
1620-
1650
2/12
0830-
1000
2/12
1200-
1330
Train
I.D.
1A
IB
1C
ID
2A
2B
2C
20
3A
3B.
3Cd
3D
4A
4B
4C
4D
5A
58
5C
5D
6A
6B
6C
60
7A
7B
7C
70
8A
SB
8C
80
9A
9B
9C
9U
10A
10B
IOC
100
Sample'
type
M5BW
H5BW
H5B
H5B
MSB
MSB
M5BM
M5BW
MSB
MSB
M5B-P400
M5B-P400
M5B-P400
M5B-P400
MSB
MSB
MSB
MSB
MSB
H5B
MSB
MSB
MSB
MSB
MSBW
MSB
M5BU
MSB
MSB
M5B-P400
MSB
H5B-P400
MSB
MSB
MSB
MSB
MSB
M5B-P400
MSB
M5B-P400
Sample temperature, °C ("
Probe
Desired
160
160
160
160
160
160
160
160
160
160
204
204
(320)
(320)
(320)
(320)
(320)
(320)
320)
(320)
(320)
(320)
400
400)
204 (400)
204
160
160
160
160
160
160
400)
320)
320)
320)
320)
320)
320)
160 (320)
160 (320)
160 (320)
160 (320)
160
160
160
160
160
204
160
320)
320)
320)
320)
320)
400)
320
204 (400)
160 1
320)
160 (320)
160 (320)
160 (320)
160 (320)
204 (400)
160 (320)
204 (400)
Actual
162 (324)
159 (318)
158 (316)
161 (321)
160 (319)
162 (324)
165 (328)
163 (307)
163 (326)
162 (324)
209 (407)
211 (412)
209 (408)
211 (412)
164 (327)
161 (321)
165 (329)
160 (319)
161 (321)
161 (322)
160 (319)
164 (326)
161 (321)
162 (324)
167 (332)
161 (322)
161 (321)
158 (317)
153 (307)
207 (404)
154 (309)
206 (403)
168 (335)
165 (328)
161 (322)
163 (326)
163 (325)
210 (410)
161 (322)
213 (415)
F)
Filter0,
actual
161
158
161
162
163
161
162
163
163
166
164
162
167
163
163
160
(322)
(317)
(322)
(324)
(325)
322)
324)
325)
(326)
330)
327)
324)
332)
325)
325)
319)
168 (334)
167 (332)
164 (327)
160 (319)
166
330)
165 (329)
161 (321)
162 (324)
166
166
159
162
331
330
318
323
161 (321)
166 (331)
164 (327)
161 (321)
159 (318)
166 (331
160 (320)
163 (326)
168 (335)
170 (337)
161 (321)
163 (325)
Mete red
volume
dNm3 (dscf)
1.940 (68.52)
1.924 (67.93)
1.820 (64.26)
1.831 (64.66)
1.983 (70.04)
1.984 (70.07
1.715 (60.56
1.724 (60.88)
1.911 (67.50
1.891 (66.77
1.S88 (56.09
1.813 (64.02)
1.973 (69.69
2.052 (72.47
1.727 (61.00)
1.761 (62.19)
1.427 (50.39)
1.412 (49.88)
1.311 (46.32)
1.331 (46.99)
1.423 (50.26)
1.396 (49.31
1.211 (42.78
1.238 (43.72)
1.411 (49.84
1.396 (49.31
1.339 (47.29)
1.370 (48.40)
0.866 (30.59)
0.829 (29.29)
0.856 (30.22)
0.792 (27.99)
1.473 (52.00)
1.444 (50.99)
1.348 (47.59)
1.384 (48.86)
1.517 (53.59)
1.491 (52.64)
1.316 (46.48)
1.346 (47.52)
Average
stack tem-
perature,
°C (°F)
153 (307)
154 (310)
154 (310)
159 (317)
151 (304)
157 (314)
159 (319)
159 (319)
161 (321)
163 (326)
Moisture
content,
%
11.3
11.2
11.5
11.2
10.6
11.0
11.1
11.0
10.6
10.6
10.7
10.7
10.7
10.7
10.8
10.8
11.5
11.5
11.8
11.7
11.4
11.5
11.5
11.1
11.3
11.1
11.4
11.1
11.2
11.3
11.5
11.0
11.2
11.1
11.6
11.4
12.0
11.5
12.2
12.0
Average
mois-
ture, %
11.3
10.9
10.6
10.8
11.6
11.4
11.2
11.2
11.3
11.9
coz,
%
13.4
13.6
13.7
13.6
12.8
13.6
13.4
13.3
13.6
13.0
02.
2.4
3.0
2.4
2.3
3.2
2.5
2.6
2.7
2.5
3.0
Isokinetic
sampling
rate, %
103
104
99
104
103
100
100
102
102
102
86
104
100
102
99
102
102
103
96
103
in?
97
97
100
101
102
98
106
99
98
Qfl
95
103
103
96
104
102
97
100
8M5B - Probe and filter heated to 160°C.
2coMn" Probe and filter heated to 160°C; water rinse of nozzle, probe, and filter holder.
MSB-P400 - Probe heated to 204°C; filter heated to 160°C.
All desired filter temperatures were 160°C.
Sample volume in dry normal cubic meters (dNm') at 20°C and 760 mmHg and in dry standard cubic feet (dscf) at 68°F and 29.92 in.Hg.
The sample volume, moisture content, and Jsokinetic sampling rate were adjusted to reflect a post-test leak rate of 0.06 cfm.
-------
Table 4-2, an adequate amount of sample was still collected
during the 90-minute runs. This was also true for Run 8, which
was conducted with a larger nozzle size but stopped after approx-
imately 30 minutes because the isokinetic sampling rate could not
be maintained.
4.2 THERMOGRAVIMETRIC ANALYTICAL RESULTS
Table 4-2 presents the thermogravimetric analytical results.
The filterable particulate values represent material collected in
the sample probe and on the filter for each sample type (MSB,
M5B-P400). All weights are reported in milligrams and sample
concentrations in milligrams per dry normal cubic meter
(mg/dNm3).
The constant weight criteria described in Method 5* were
achieved within two or three weighings during the ambient weigh-
ing on approximately 75 percent of the filter and probe rinse
samples; however, the remaining samples did not meet the criteria
after three weighings.
As previously noted, several selected samples were heat-con-
ditioned at each temperature for either 6 or 24 hours (as indi-
cated in the table) and then reheated at the same conditions
until a stable weight was achieved prior to advancing to the next
temperature in the analytical sequence. All samples were heated
three times at 316°C (600°F). The stable weight criteria, which
were defined as a difference of 5.0 mg or less between consecu-
tive similar heat treatments (or 10 percent of the net sample
40 CFR 60, Appendix A, July 1982.
4-3
-------
TABLE 4-2. SUMMARY OF THERMOGRAVIMETRIC ANALYTICAL RESULTS
Test
No.
1
2
3
4
5
6
7
Train
I.D.
1Aa
IB3
1C
ID
2A?
2Bb
2Ca
2Da
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B,
s#
$
6C
6D
7Aa
7Ba
7Ca
7D
Sample
type
M5BW
M5BW
MSB
M5B
M5B
MSB
M5BW
M5BW
MSB
MSB
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
M5BW
MSB
M5BW
MSB
Filterable particulate following conditioning at
indicated temperatures. °C (°F). ma
Ambient
Probe
125.8
110.2
161.0
124.9
119.7
149.2
145.1
106.5
173.6
94.3
158.8
123.2
75.6
71.1
63.8
64.9
69.4
67.0
43.7
46.1
82.7
74.6
Filter
210.9
199.1
228.7
253.1
237.2
227.4
190.1
244.9
225.3
303.7
189.8
222.8
159.9
159.8
155.4
153.0
159.9
149.8
125.9
140.0
139.2
140.9
160°C (320°F)
Probe
102.3
95.0
141.3
103.6
108.7
137.1
134.3
96.4
165.7
87.0
150.8
117.6
64.0
58.3
52.9
51.1
-
-
Filter
181.3
170.6
196.6
224.1
202.4
195.3
162.5
217.9
203.4
278.6
169.0
199.9
137.2
137.7
133.2
132.4
-
-
232°C (450°F)
Probe
98.1
90.6
136.4
91.5
103.6
131.6
129.3
93.8
162.7
84.3
148.6
115.4
56.4
53.6
47.5
43.8
41.9
39.9
32.8
29.2
31.6
33.6
Filter
168.0
160.4
190.2
212.7
194.6
185.5
154.9
206.5
195.0
265.6
162.0
190.8
129.0
129.2
131.0
129.9
140.9
128.4
102.3
115.9
120.5
119.4
316°C (600°F)
Probe
62.4
84.1
41.2.
28.4
77.4
81.7
94.9
60.5
117.3
62.2
133.8
89.6
39.3
32.4
25.1
20.6
20.3
23.9
27.1
25.7
21.1
18.9
Filter
132.4
142.0
181.0
147.5
173.7
160.0
135.9
185.2
174.2
214.6
107.3
145.0
113.3
87.6
78.6
92.7
107.2
77.3 .
77.7
87.3
80.5
74.6
(continued)
4-4
-------
TABLE 4-2 (continued)
Test
No.
8
Q
10
Train
I.D.
8Ab
8B
8CD
8D
9Ah
9Bb
9C
9D
10A
10B
IOC
10D
Sample
type
MSB
M5B-P400
M5B
M5B-P400
M5B
MSB
MSB
M5B
M5B
M5B-P400
MSB
M5B-P400
Filterabl
inc
Ambient
Probe
50.6
23.8
20.6
21.6
84.9
94.6
60.8
64.7
108.8
66.9
66.6
64.8
Filter
106.2
87.7
92.0
83.9
168.0
166.6
143.9
159.9
151.8
159.2
143.4
149.0
e particulate following conditioning at
icated temperatures. °C (°F). ma
160°C (320°F)
Probe
17.9
12.5
12.3
10.5
_
-
-
-
..
-
-
—
Filter
87.7
75.4
77.5
74.8
_
-
-
-
_
-
-
—
232°C (450°F)
Probe
14.9
10.3
9.4
8.6
*.
-
-
-
72.8
46.6
58.9
53.1
Filter
85.3
69.0
75.5
65.6
•
-
_
-
130.3
133.3
117.9
128.5
316°C (600°F)
Probe
6.8
6.5
5.2
5.8
19.3
20.4
43.8
34.2
50.5
24.8
32.1
24.5
Filter
44.7
52.6
46.0
49.9
98.2
96.3
78.3
85.1
107.3
111.2
91.4
100.2
M5BW samples were analyzed for total water soluble sulfates and particulate
mass by modified Texas Air Board procedure described in Section 3 of this
report.
Cheated for 24 hours, all others heated for 6 hours.
4-5
-------
weight, whichever was greater), were achieved in two treatments
for selected samples heated at 160°C and 232°C. Several samples
heated at 316°C for two treatments appeared to be stable accord-
ing to the specified criteria, but others had significant weight
losses, up to approximately 25 percent (50 mg) in one case. Note
that this weight difference occurred between the first and second
heat treatments at 316°C, not between two different temperatures.
Because of this atypical behavior, all samples were heated a
third time at 316°C, even if the stability criteria had been met
after two treatments.
Table 4-3 presents the results of individual heatings at
316°C, including the sample weights after the last heating at
232°C as a reference. Approximately 25 percent of the samples
did not meet the stability criteria after three heatings at
316°C. In some cases, samples that had met the criteria, after
two heatings failed to meet it after three heatings. There was
no clear advantage to using a 24-h heating interval instead of a
6-h interval, based on the following observation: 14 of the 48
samples heated for 6-h intervals were classified unstable after
three heatings at 316°C, and 5 of the 20 samples heated for 24-h
intervals also were unstable.
Table 4-4 presents a comparison of total filterable particu-
late concentrations after heat conditioning at the indicated
temperatures for the MSB and M5B-P400 samples. For reporting
purposes, the results of similar sample types have been grouped
together. The average concentration and standard deviation are
4-6
-------
TABLE 4-3. NET SAMPLE WEIGHTS AFTER INDIVIDUAL HEAT
TREATMENTS AT THE INDICATED TEMPERATURE
Run
No.
1C
1C
ID
ID
3A
3A
3B
3B
3C
3C
3D
3D
4A
4A
4B
4B
4C
4C
4D
4D
5A
5A
5B
5B
Sample
fraction
PR
F
PR
F
PR
F
PR
F
PRb
F
PRb
F
PRb
F
PRb
F
PR
F
PR
F
PR
F
PR
F
Heating
interval , h
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
Weight after
last heating at
232°C (450°F), mg
98.1
168.0
90.6
160.4
103.6
194.6
131.6
185.5
129.3
154.9
93.8
206.5
162.7
195.0
• 84.3
265.6
148.6
62.0
115.4
190.8
56.4
129.0
53.6
129.2
Weight after indicated
heating at 316°C (600°F), mg
First
82.7
164.1
84.1
144.1
96.2
185.4
113.9
183.7
105.3
140.7
78.5
197.3
160.2
181.6
76.7
248.2
139.4
129.3
100.4
161.9
54.5
118.7
41.2
89.8
Second
69.9
136.5
86.1
142.0
95.2
184.0
100.1
176.9
97.6
139.8
65.8
186.9
135.3
175.3
71.7
236.3
135.5
118.3
96.7
148.1
45.0
113.8
37.4
87.6
Third
62.4
132.4
85.4
142.5
77.4
173.7
81.7
160.0
94.9
135.9
60.5
185.2
117.3
174.2
62.2
214.6
133.8
107.3
89.6
145.0
39.3
113.3
32.4
88.2
(continued)
4-7
-------
TABLE 4-3 (continued)
Run
No.
6C
6C
6D
6D
7B
7B
7D
7D
8B
8B
8D
8D
9C
9C
9D
9D
IDA
10A
10B
10B
IOC
IOC
10D
10D
2A
2A
2B
2B
Sample
fraction
PR
F
PR
F
PR
F
PR
F
PR5
F
PRb
F
PR
F
PR
F
PR
F
PRb
F
PR
F
PRb
F
PR
F
PR
F
Heating
interval , h
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
24
24
24
24
Weight after
last heating at
232°C (450°F), mg
32.8
102.3
29.2
115.9
31.6
120.5
33.6
119.4
10.3
69.0
8.6
65.6
c
c
c
c
72.8
130.3
46.6
133.3
58.9
117.9
53.1
128.5
136.1
190.2
91.5
213.1
Weight after indicated
heating at 316°C (600°F), mg
First
28.9
99.5
27.0
103.9
26.7
81.6
21.1
83.5
7.8
53.4
8.4
62.4
46.6
83.6
45.2
90.9
58.1
109.1
40.2
113.4
41.0
96.3
35.2
113.5
57.7
181.7
51.0
201.7
Second
31.2
80.8
29.1
97.5
24.2
80.7
23.4
75.1
9.9
52.6
9.7
54.2
44.7
78.4
47.1
85.3
59.7
107.3
28.3
111.7
35.6
91.4
27.7
100.5
51.2
181.9
32.0
151.8
Third
27.1
77.7
25.7
87.3
21.1
80.5
18.9
74.6
6.5
53.7
5.8
49.9
43.8
78.3
34.2
85.1
50.5
107.4
24.8
111.2
32.1
91.4
24.5
100.2
41.2
181.0
28.4
147.5
(continued)
4-8
-------
TABLE 4-3 (continued)
Run
No.
5C
5C
5D
5D
6A
6A
6B
6B
8A
8A
8C
8C
9A
9A
9B
9B
Sample
fraction
PR
F
PR
F
PR
F
PR
F
PR
F
PR
F
PR
F
PR
F
Heating
interval , h
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
Weight after
last heating at
232°C (450°F), mg
47.5
131.0
43.8
129.9
41.9
142.0
39.9
128.4
14.9
85.3
9.4
75.5
c
c
c
c
Weight after indicated
heating at 316°C (600°F)S mg
First
34.7
85.0
24.7
114.0
35.3
130.1
32.4
81.2
7.8
46.7
9.0
48.7
26.2
101.8
30.3
99.5
Second
25.6
79.8
22.5
105.4
34.2
126.6
31.6
77.3
6.8
44.8
5.2
47.3
20.6
98.9
22.0
97.2
Third
25.1
78.6
20.6
92.7
20.3
107.2
23.9
77.5
7.4
44.7
5.3
46.0
19.3
98.2
20.4
96.3
PR = Probe rinse; F = Filter.
DM5B-P400 run; all others are M5B runs.
:Samples were not heated at 232°C.
4-9
-------
TABLE 4-4. COMPARISON OF FILTERABLE PARTICULATE CONCENTRATION
AFTER HEAT CONDITIONING AT INDICATED TEMPERATURES6
Run No.
1C
ID
2Abh
2Bb
3A
3B
4C
4D
5A
5B.
5Cu
5Db
6Ah
6Bb
6C
6D
7B
70
8Ab
8Cb
9Ab
9Bb
9C
9D
Sample
type
M5B
M5B
M5B
MSB
M5B
M5B
M5B
M5B
MSB
M5B
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB j
MSB
MSB
MSB
MSB
MSB
MSB
Ambi
Total
weight,
mg
336.7
309.3
389.7
378.0
356.9
376.6
348.6
346.0
235.5
230.9
219.2
217.9
229.3
216.8
169.6
186.1
221.9
215.5
156.8
112.6
252.9
261.2
204.7
224.6
ent
Concen-
tration,
mg/dNm3
185.0
168.9
196.5
190.5
186.8
199.2
201.8
196.5
165.0
163.5
167.2
163.7
161.1
155.3
140.0
150.3
159.0
157.3
181.1
131.5
171.7
180.9
151.8
162.3
160°C
Total
weight,
mg
283.6
265.6
337.9
327.7
311.1
332.4
319.8
317.5
201.2
196.0
186.1
183.5
-
-
105.6
89.8
-
Concen-
tration,
mg/dNm3
155.8
145.1
170.4
165.2
162.8
175.8
185.2
180.3
141.0
138.8
142.0
137.9
-
_
121.9
104.9
-
232°C
Total
weight,
mg
266.1
251.0
326.6
304.2
298.2
317.1
310.6
306.2
185.4
182.8
178.5
173.7
182.8
168.3
135.1
145.1
152.1
153.0
100.2
84.9
-
Concen-
tration,
mg/dNm3
146.2
137.0
164.7
153.3
156.0
167.7
179.8
173.9
129.9
129.5
136.2
130.5
128.5
120.6
111.6
117.2
109.0
111.7
115.7
99.2
-
316°C
Total n
weight,
mg
194.8
226.1
222.2
175.9
251.1
241.7
241.1
234.6
152.6
120.0
103.7
113.3
127.5
101.2
104.8
113.0
101.6
93.5
51.5
51.2
117.5
116.7
122.1
119.3
Concen-
tration,
mg/dNm3
107.0
123.5
112.0
88.7
131.4
127.8
139.6
133.2
106.9
85.0
79.1
85.1
89.6
72.5
86.5
91.3
72.8
68.2
59.5
59.8
79.8
80.8
90.6
86.2
I
H
O
(continued)
-------
TABLE 4-4 (continued)
Run No.
10A
IOC
Sample
type
MSB
M5B
Average
3C
3D
4A
4B
SB
8D
10B
100
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
Average
Ambient
Total
weight,
mg
260.6
210.0
Concen-
tration,
mg/dNm3
171.8
159.6
169.9
oj = 18.3
N = 26
335.2
351.4
398.9
398.0
111.5
105.5
226.1
213.8
211.1
193.8
202.2
194.0
134.5
133.2
151.6
158.8
172.4
a = 31.4
N = 8
160°C
Total
weight,
mg
-
Concen-
tration,
mg/dNm3
_
151.9
o = 23.0
N = 14
296.8
314.3
369.1
365.6
87.9
85.3
-
186.9
173.4
187.1
178.2
106.0
107.7
-
156.5
0 = 38.8
N = 6
232°C
Total
weight,
mg
203.1
176.8
Concen-
tration,
mg/dNm3
133.9
134.4
135.7
o = 22.3
N = 22
284.2
300.3
357.7
349.9
79.3
74.2
179.9
181.6
179.0
165.6
181.3
170.5
95.7
93.7
120.7
134.9
142.7
0 = 36.4
N = 8
316°C
Total
weight,
mg
157.8
123.5
Concen-
tration,
mg/dNm3
104.0
93.8
94.4
o = 22.5
N = 26
230.8
245.7
291.5
276.8
59.1
55.7
136.0
124.7
145.3
135.5
147.7
134.9
71.3
70.3
91.2
92.6
111.1
o = 33.1
N = 8
Includes both filter and probe rinse fractions.
3Heat conditioning intervals for these samples were 24 hours, all others were 6 hours.
'Standard deviation with N-l weighing for sample data.
Number of data points.
-------
given in mg/dNm3 for all samples of a similar type and tempera-
ture. In addition, the number of data points at each temperature
condition is shown. Figure 4-1 is a graphical representation of
the average data.
Table 4-5 presents the statistical data for each set of
grouped runs. Each group represents two runs of the same sample
type conducted at the same time, except for run Groups 5, 6, and
9, which represent four similar samples. The MSB data are fol-
lowed by the M5B-P400 data. Presented for each run group and
temperature condition are the mean filterable particulate con-
centration, the standard deviation with N-l weighting for sample
data, and the relative standard deviation (RSD), which expresses
the standard deviation as a percent of the mean concentration.
Table 4-6 summarizes the estimated precision for Methods 5B
and 5B-P400 at each conditioning temperature. Method 5B preci-
sion data are presented on two bases; the first includes all
available data (Runs 1 through 10), and the second includes only
data from Runs 3, 4, 8, and 10 to allow a better comparison to
within-run M5B-P400 data. The mean filterable concentrations
were calculated by averaging grouped run values to weigh two- and
four-run groups egually. The mean standard deviations were
calculated by averaging standard deviation values for each set of
grouped runs (from Table 4-5) to minimize the effect of temporal
variation in emissions. In this way, the mean standard deviation
of the grouped runs (a in Table 4-6) more accurately reflects
method precision than does the standard deviation of individual
4-12
-------
180,
• MSB
O M5B-P400
AMBIENT
160 232 316
CONDITIONING TEMPERATURE, »C
Figure 4-1. Average filterable participate concentration for
similar sample types after conditioning at indicated temperature.
-------
TABLE 4-5. STATISTICAL DATA FOR GROUPED RUNS AFTER
CONDITIONING AT INDICATED TEMPERATURES
Run
No.
1-C.D
2-Ad,Bd
3-A.B
4-C.D
5-A.B, .
Cd,Dd
6-Ad,Bd
C,D
7-B.O
8-Ad,Cd
9-Ad,Bd
C,D
10-A.C
Sample
type
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
Ambient
x,a
mg/dNiu3
177.0
193.5
193.0
199. 2
165.0
151.7
158.1
156.3
166.7
165.7
b
mg/dNm3
11.4
4.2
8.8
3.8
1.7
8.9
1.2
35.0
12.5
8.6
RSD,C
%
6.4
2.2
4.5
1.9
1.0
5.9
0.7
22
7.5
5.2
160°C (320°F)
x,
mg/dNm3
150.4
167.8
169.3
182.7
139.9
-
113.4
-
-
Oi
mg/dNm3
7.6
3.7
9.2
3.5
1.9
-
12.0
-
-
RSD,
%
5.1
2.2
5.4
1.9
1.4
-
10.6
-
-
232°C (450°F)
x,
mg/dNm3
141.6
159.0
161.9
176.9
131.5
119.4
110.3
107.4
-
134.1
o»
mg/dNm3
6.5
8.0
8.2
4.2
3.1
7.1
1.9
11.7
-
1 0.3
RSD,
%
4.6
5.1
5.1
2.4
2.4
5.9
1.7
11
-
0.2
316°C (600°F)
x,
mg/dNm3
115.3
100.4
129.6
136.4
89.0
85.0
70.5
59.6
84.3
98.9
mg/dNm3
11.6
16.5
2.5
4.5
12.3
8.6
3.2
0.2
5.0
7.2
RSD,
%
10
16
2.0
3.3
14
10
4.5
0.4
6.0
7.3
(continued)
-------
TABLE 4-5 (continued)
I
H
Ul
Run
No.
3-C.O
4-A.B
8-B.D
10-B.D
Sample
type
M5B-
P400
M5B-
P400
M5B-
P400
M5B-
P400
Ambient
x.a
mg/dNm3
202.4
198.1
133.8
155.2
o,b
mg/dNm3
12.2
5.8
0.9
5.1
RSD,C
%
6.0
2.9
0.7
3.3
160°C (320°F)
x,
mg/dNm3
180.1
182.6
106.9
-
o,
mg/dNm3
9.6
6.3
1.2
-
RSD,
%
5.3
3.4
1.1
-
232°C (450°F)
X,
mg/dNm3
172.3
175.9
94.7
127.8
0,
mg/dNm3
9.4
7.6
1.4
10.1
RSD,
%
5.5
4.3
1.5
7.9
316°C (600°F
x,
mg/dNm3
140.4
141.3
70.8
91.9
0,
mg/dNm3
6.9
9.1
0.7
1.0
RSD,
%
4.9
6.4
1.0
1.1
aMean filterable concentration.
W1th1n-run standard deviation with N-l weighting for sample data.
GRelat1ve standard deviation 1s the standard deviation expressed as a percent of the mean concentration.
Samples heated for 24-hour Intervals; all others heated 6 hours.
-------
TABLE 4-6. SUMMARY OF PRECISION ESTIMATES AFTER
CONDITIONING AT INDICATED TEMPERATURES
i
M
cn
Run
No.
1+10
3,4,
8,10
3,4
8,10
Sample
type
MSB
MSB
M5B-
P400
Ambient
x,a
mg/dNm3
172.6
a,b
mg/dNm3
9.6
RSO,C
*
5.6
Nd = 10
178.5
14.1
7.9
N = 4
172.4
6.0
3.5
N = 4
160°C (320°F)
x,
mg/dNm3
153.9
°,
mg/dNm3
6.3
RSO,
%
4.1
N = 6
155.2
8.2
5.3
N = 3
156.5
5.7
3.6
N = 3
232°C (450°F)
x,
mg/dNm3
138.0
o,
mg/dNm3
5.7
RSD,
%
4.1
N = 9
145.1
6.1
4.2
N = 4
142.7
7.1
5.0
N = 4
316°C (600°F)
x,
mg/dNm3
96.9
a,
mg/dNm3
7.2
RSD,
%
7.4
N = 10
106.1
3.6
3.4
N = 4
111.1
4.4
4.0
N = 4
aMean filterable concentration based on grouped run values.
Mean standard deviation of grouped runs (-53—).
c "
Mean relative stanadard deviation (percent) calculated using the mean standard deviation and the mean filterable
concentration of grouped runs.
N = number of data points.
-------
run concentrations (a in Table 4-4). The mean relative standard
deviation expresses the mean standard deviation as a percent of
the mean concentration. The number of data points included in
each calculation is shown for consideration in evaluating the
precision estimates.
Table 4-7 presents the relative percent weight loss for the
filter samples after conditioning at the indicated temperatures.
Percent weight loss was calculated in two ways; 1) by use of the
ambient weight as the initial weight basis, and 2) by use of the
weight after conditioning at 160°C (320°F) as the initial weight
basis. The results of similar sample types have been grouped
together. Tables 4-8 and 4-9 present similar data for the probe
rinse samples and the total filterable samples, respectively.
Figure 4-2 is a graphical representation of the average weight
loss data on an ambient weight basis. The graph points out two
characteristics of the tabulated data: 1) the most significant
weight loss occurred during heating at 316°C (600°F), and 2) the
pattern of relative percent weight loss upon heating was similar
for all samples.
Because the fuel oil fired during the tests was known to
have a relatively high vanadium content ("400 ppm by weight),
vanadyl sulfate (VOSO.) was suspected to be one of the components
in the particulate matter. A sample of pure vanadyl sulfate was
placed in a tared beaker and subjected to a series of heat treat-
ments in the same manner as probe rinse samples. The resultant
weight loss data did not follow the same pattern as the samples
4-17
-------
TABLE 4-7. RELATIVE PERCENT WEIGHT LOSS FOR FILTER
SAMPLES AFTER CONDITIONING AT INDICATED TEMPERATURES
Run No.
1C
ID
2A
2B
3A
3B
4C
40
5A
SB.
5C£
5Db
6Ab
6Bb
6C
6D
7B
7D
8Ah
8Cb
9Ab
9Bb
9C
9D
Sample
type
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
Net filter weights, mq
Amb.
210.9
199.1
228.7
253.1
237.2
227.4
189.8
222.8
159.9
159.8
155.4
153.0
159.9
149.8
125.9
140.0
139.2
140.9
106.2
92.0
168.0
166.6
143.9
159.9
160°C
181.3
170.6
196.6
224.1
202.4
195.3
169.0
199.9
137.2
137.7
133.2
132.4
-
-
87.7
77.5
•*
232°C
168.0
160.4
190.2
212.7
194.6
185.5
162.0
190.8
129.0
129.2
131.0
129.9
140.9
128.4
102.3
115.9
120.5
119.4
85,3
75!5
-
316°C
132.4
142.0
181.0
147.5
173.7
160.0
107.3
145.0
113.3
87.6
78.6
92.7
107.2
77.3
77.7
87.3
80.5
74.6
44,7
46.0
98.2
96.3
78.3
85.1
Relative weight loss3, %
From ambient to:
160°C
14
14
14
11
15
14
11
10
14
14
14
13
-
_
17
16
-
232°C
20
19
17
16
18
18
15
14
19
19
16
15
12
14
19
17
13
15
20
18
—
316°C
37
29
21
42
27
30
43
35
29
45
49
39
33
48
38
38
42
47
58
50
42
42
46
47
From 160°C to:
232°C
7
6
3
5
4
5
4
5
6
6
2
2
«.
-
3
3
—
316°C
27
17
8
34
14
18
37
27
17
36
41
30
-
-
49
41
—
I
H
00
(continued)
-------
TABLE 4-7 (continued)
Run No.
10A
IOC
Sample
type
M5B
M5B
M5B average
3C
3D
4A
4B
8B
8D
10B
10D
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
average
Net filter weights,
Amb.
151.8
143.4
169.0
190.1
244.9
225.3
303.7
87.7
83.9
159.2
149.0
180.0
160°C
-
160.0
162.5
217.9
203.4
278.6
75.4
74.8
_
169.0
232°C
130.3
117.9
142.0
154.9
206.5
195.0
265.6
69.0
65.6
133.3
128.5
152.0
mg
316°C
107.3
91.4
104.0
135.9
185.2
174.2
214.6
52.6
49.9
111.2
100.2
128.0
Relative weight loss9, %
From ambient to:
160°C
-
14
15
11
10
8
14
11
_
11
232°C
14
18
17
19
16
13
13
21
22
16
14
17
316°C
29
36
39
29
24
23
29
40
41
30
33
31
From 160°C to:
232°C
-
3
5
5
4
5
8
12
_
5
316°C
-
15
16
15
14
23
30
33
_
17
I
H
VO
^Weight loss, % =
Weight @
Weight @
Weight
1
x 100; where T, < 1?'
Heat conditioning intervals for these samples were 24 hours, all others were 6 hours.
-------
TABLE 4-8. RELATIVE PERCENT WEIGHT LOSS FOR PROBE RINSE
SAMPLES AFTER CONDITIONING AT INDICATED TEMPERATURES
Run No.
1C
ID
2Ab
2Bb
3A
3B
4C
4D
5A
5B.
5Ch
5Db
6Ah
6Bb
6C
6D
7B
7D
8Ab
8Cb
9Ab
9Bb
9C
90
Sample
type
M5B
M5B
M5B
MSB
M5B
M5B
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
Net probe rinse weights, mg
Amb.
125.8
110.2
161.0
124.9
119.7
149.2
158.8
123.2
75.6
71.1
63.8
64.9
69.4
67.0
43.7
46.1
82.7
74.6
50.6
20.6
84.9
94.6
60.8
64.7
160°C
102.3
95.0
141.3
103.6
108.7
137.1
150.8
117.6
64.0
58.3
52.9
51.1
—
-
17.9
12.3
:
232°C
98.1
90.6
136.4
91.5
103.6
131.6
148.6
115.4
56.4
53.6
47.5
43.8
41.9
39.9
32.8
29.2
31.6
33.6
14.9
9.4
;
316°C
62.4
84.1
41.2
28.4
77.4
81.7
133.8
89.6
39.3
32.4
25.1
20.6
20.3
23.9
27.1
25.7
21.1
18.9
6.8
5.2
19.3
20.4
43.8
34.2
Relative weight lossa, %
From ambient to:
160°C
19
14
12
17
9
8
5
5
15
18
17
21
-
_
65
40
-
232°C
22
18
15
27
13
12
6
6
25
25
26
33
40
40
25
37
62
55
71
54
-
316°C
50
24
74
77
35
45
16
27
48
54
61
68
71
64
38
44
74
75
87
75
77
78
28
47
From 160°C to:
232°C
4
5
3
12
5
4
1
2
12
8
10
14
-
_
17
24
-
316°C
39
11
71
73
29
40
11
24
39
44
53
60
—
-
62
58
-
I
to
o
(continued)
-------
TABLE 4-8 (continued)
Run No.
10A
IOC
Sample
type
M5B
M5B
M5B average
3C
3D
4A
4B
8B
8D
10B
10D
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400 average
Net probe rinse weights, mg
Amb.
108.8
66.6
88
145.1
106.5
173.6
94.3
23.8
21.6
66.9
64.8
87
160°C
-
87
134.3
96.4
165.7
87.0
12.5
10.5
-
84
232°C
72.8
58.9
67
129.3
93.8
162.7
84.3
10.3
8.6
46.6
53.1
74
316°C
50.5
32.1
41
94.9
60.5
117.3
62.2
6.5
5.8
24.8
24.5
50
Relative weight loss , %
From ambient to:
160°C
_
19
7
9
5
8
47
51
-
21
232°C
33
12
30
11
12
6
11
57
60
30
18
26
316°C
54
52
56
35
43
32
34
73
73
63
62
52
From 160°C to:
232°C
_
5
4
3
2
3
18
18
_
6
316°C
-
24
29
37
29
29
48
45
..
27
I
K)
'Weight loss, % =
Weight @ Tj _ Weight @
Weight G> T
1
x 100; where T, < 1^.
Heat conditioning intervals for these samples were 24 hours, all others were 6 hours.
-------
TABLE 4-9. RELATIVE PERCENT WEIGHT LOSS FOR TOTAL FILTERABLE
PARTICULATE SAMPLES AFTER CONDITIONING AT INDICATED TEMPERATURES
Run No.
1C
ID
2Ab
2Bb
3A
3B
4C
4D
5A
5B.
5Ch
5Db
6Ab
6Bb
6C
6D
7B
7D
8Ab
8Cb
9Ab
9Bb
9C
9D
Sample
type
M5B
M5B
M5B
M5B
M5B
M5B
MSB
M5B
M5B
M5B
M5B
M5B
M5B
M5B
M5B
M5B
M5B
M5B
M5B
MSB
M5B
M5B
M5B
M5B
Total net weights, mg
Amb.
336.7
309.3
389.7
378.0
356.9
376.6
348.6
346.0
235.5
230.9
219.2
217.9
229.3
216.8
169.6
186.1
221.9
215.5
156,8
112.6
252.9
261.2
204.7
224.6
160°C
283.6
265.6
337.9
327.7
311.1
332.4
319.8
317.5
201.2
196.0
186.1
183.5
-
_
105.6
89.8
-
232°C
266.1
251.0
326.6
304.2
298.2
317.1
310.6
306.2
185.4
182.8
178.5
173.7
182.8
168.3
135.1
145.1
152.1
153.0
100.2
84.9
-
316°C
194.8
226.1
222.2
175.9
251.1
241.7
241.1
234.6
152.6
120.0
103.7
113.3
127.5
101.2
104.8
113.0
101.6
93.5
51.5
51.2
117.5
116.7
122.1
119.3
Relative weight lossa, %
From ambient to:
160°C
16
14
13
13
13
12
8
8
15
15
15
16
-
-
33
20
*"
232°C
21
19
16
20
16
16
11
12
21
21
19
20
20
22
20
22
31
29
36
25
-
316°C
42
27
43
53
30
36
31
32
35
48
53
48
44
53
38
39
54
57
67
55
54
55
40
47
From 160°C to:
232°C
6
5
3
7
4
5
3
4
8
7
4
5
-
-
5
5
-
316°C
31
15
34
46
19
27
25
26
24
39
44
38
-
_
51
43
-
I
to
N>
(continued)
-------
TABLE 4-9 (continued)
Run No.
10A
IOC
Sample
type
M5B
M5B
MSB average
3C
3D
4A
4B
8B
80
10B
10D
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400
M5B-P400 average
Total net weights, mg
Amb.
260.6
210.0
256
335.2
351.4
398.9
398.0
111.5
105.5
226.1
213.8
268
160°C
_
247.
296.8
314.3
369.1
365.6
87.9
85.3
_
253
232°C
203.1
176.8
209
284.2
300.3
357.7
349.9
79.3
74.2
179.9
181.6
226
316°C
157.8
123.5
145
230.8
245.7
291.5
276.8
59.1
55.7
136.0
124.7
178
Relative weight loss3, %
From ambient to:
160°C
_
15
11
11
7
8
21
19
_
13
232°C
22
16
21
15
15
10
12
29
30
20
15
18
316°C
39
41
45
31
30
27
30
47
47
40
42
37
From 160°C to:
232°C
__
3
4
4
3
4
10
13
-
5
316°C
w
18
22
22
21
24
33
35
-
20
I
N)
U)
Weight loss, % =
Weight @ Tj Weight
Weight @ T
1
x 100; where T, <
Heat conditioning intervals for these samples were 24 hours, all others were 6 hours.
-------
ex -n
rt ua
-i. C
o -j
3
3
LQ
ro
3 <
Q. O)
o o>
O) IQ
r+ 0>
ft)
O. -S
fO
rl- — '
n> 01
3 H-
-a ->•
o> <
-s n>
o>
0)
-J -t
fD O
in tt>
0> S.
3 fB
or -i.
_i. ia
rt> 3-
3 r+
S O
(D V
-J. to
ua
cr fD
Q> -5
t/>
-•• O
> O
• 3
I
COO
RELATIVE WEIGHT LOSS, %
ro
o
co
o
en
O
go
o
m
CO
en
o o n a
en en en en en en
oo oo co co co co
i i i
•o -o i i -o i
*» -Pi
§-n —« o 50
»-« o o •—«
co
m
o
o
•-• o m r~ »-H
r- — « TO z
— I > CO
-------
in this report, but typified other thermogravimetric analyses
that show that the most significant weight loss occurs upon the
initial heating at 160°C (320°C).
The filter and probe rinse samples underwent a series of
changes in appearance before and during thermogravimetric anal-
ysis. Upon recovery in the field, all filters were described as
having a green coating. Some filters also had black spots or
granular particulate matter. Prior to being desiccated in the
laboratory, the filters were described generally as having black
specks or black shining spots with a green perimeter. Some
filters also had green specks. One filter had a light green
glossy surface. During the heatings at 316°C the particulate on
the filters turned gradually to a yellow-colored material. The
probe rinse samples were basically dark initially, but after
heating at 316°C, some of the probe rinse beakers contained some
yellow powder along with a black granular particulate matter.
Vanadyl sulfate (VOSO.tnH-O) is a brillant blue; upon heat-
ing at 160°C it turned a dull bluish green; upon heating at 316°C
it gradually changed to a greenish yellow.
4.3 WATER-SOLUBLE SULFATE ANALYTICAL DATA
Table 4-10 summarizes the nonwater-soluble sulfate particu-
late (NWSSP) results of the Method 5BW tests. Since particulate
matter cannot be determined gravimetrically in the presence of
sulfuric acid because of the inexact amount of water retained by
the acid, the method is designed to convert the acid to a non-
hygroscopic, nonvolatile product, in this case ammonium sulfate.
4-25
-------
TABLE 4-10. SUMMARY OF NONWATER-SOLUBLE SULFATE PARTICULATE RESULTS'
Run
No.
1A
IB
2C
2D
7A
7C
Weight, mg
Filter
74.5
83.9
94.4
98.7
28.8
33.3
Probe
rinse
85.8
82.7
83.5
82.3
53.3
51.7
Total
160.3
166.6
177.9
181.0
82.1
85.0
Total
filterable
concentration,
mg/dNm3
82.6
86.6
103.7
105.0
58.2
63.5
Statistical data
for gaseous runs
x,
mg/dNm3
84.6
104.4
60.8
Average = 83.3
o,
mg/dNm3
2.8
0.9
3.7
RSD,
%
3.3
0.9
6.2
Comparison
grouped within-runs
M5B samples after
heating to 316°C
Run No.
1C, ID
2A, 2B
7B, 7D
x, mg/dNm3
115.3
100. 4b
70.5
Average = 95.4
NWSSP results of the Method 5BW tests using Texas Air Board procedures modified by the use
of ion chromatography to measure water-soluble sulfate concentrations.
'The samples for Runs 2A and 2B had a higher relative weight loss than similar samples
during the heatings at 316°C.
-------
The acid is measured as water-soluble sulfate and converted to
ammonium sulfate. The weight of ammonium sulfate formed is sub-
tracted from the total weight of ammonium sulfate and NWSSP
(particulate excluding water-soluble sulfates). Results of
within-run Method 5B samples are presented for comparison.
As shown in Table 4-10, the average Method 5BW results were
lower than the Method 5B results for samples that had been heated
to 316°C (600°F). Method precisions were comparable.
The difference in results between the two methods indicates
that the Method 5B samples contain water-soluble sulfates that
are not easily volatilized by heating at 316°C. It may be pos-
sible to identify any cations associated with the residual sul-
fate by analyzing water extracts of the samples by ion chromato-
graphy. Another approach would consist of heating several sam-
ples to a higher temperature to determine additional weight loss
and stability.
4.4 METHOD 8 ANALYTICAL RESULTS
Table 4-11 presents the results of back-half analyses for
sulfates as H2SO. and SO_. As expected, the H2SO4 data show a
higher degree of variability than the SO2 data, which show a high
degree of precision. There is no apparent difference in the
H-SO. data between the two methods.
4-27
-------
TABLE 4-11. SUMMARY OF BACK-HALF ANALYSES
Test
No.
1
9
3
4
5
g
7
Train
I.D.
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
6B
6C
6D
7A
7B
7C
7D
Sample
type
M5BW
M5BW
M5B
MbB
MSB
M5B
M5BW
M5BW
MBB
MSB
M5B-P400
M5B-P400
M5B-P400
M5B-P400
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
M5BW
MSB
M5BW
MSB
HoSO/
mg
66.2
62.6
58.9
58.5
36.6
29.7
44.0
24.2
49.3
49.3
58.9
53.4
25.9
24.8
24.8
18.8
35.5
36.8
28.6
29.8
38.0
36.5
53.0
24.6
52.4
42.6
47.6
53.6
' mg/dNm3
34.1
32.5
32.4
32.0
18.5
15.0
25.7
14.0
25.8
26.1
37.1
29.4
13.1
12.1
14.4
10.7
24.9
26.1
21.8
22.4
26.7
26.1
43.8
19.9
37.1
30.5
35.5
39.1
S0,b
mg
7224
7055
6652
6467
7135
7678
6376
6427
7124
7031
5827
6797
7362
7678
6667
6703
5398
5301
5008
5059
5278
5144
4546
4518
5087
5026
4800
4955
""mg/dNm3
3720
3670
3650
3530
3600
3870
3720
3730
3730
3720
3670
3750
3731
3740
3860
3810
3780
3750
3820
3800
3710
3680
3750
3650
3610
3600
3580
3620
(continued)
4-28
-------
TABLE 4-11 (continued)
Test
No.
8
9
10
Train
I.D.
8A
8B
8C
8D
9A
9B
9C
9D
10A
10B
IOC
10D
Sample
type
M5B
M5B-P400
M5B
M5B-P400
MSB
MSB
MSB
MSB
MSB
M5B-P400
MSB
M5B-P400
H.SO/
mg
31.9
62.8
71.6
46.8
102.1
84.3
104.1
99.9
77.5
81.9
92.8
70.7
rfig/dNm3
36.8
75.8
83.6
59.1
69.3
75.8
77.2
72.2
51.1
54.9
70.5
52.5
so,b
mg
3037
2967
3062
2763
5266
5198
4928
5001
5465
5121
4834
4916
""mg/dNm3
3510
3580
3580
3490
3580
3580
3660
3610
3600
3430
3670
3650
Sulfate analysis (as H2$04) per Method 8 (40 CFR 60, Appendix A, July 1,
1981) of IPA impinger contents, back-half filter, and rinse.
SOp analysis per Method 8 of peroxide impinger contents and rinse.
4-29
-------
SECTION 5
DISCUSSION OF TEST RESULTS
The data both differ and agree with previous studies that
characterize condensible sulfate bias of particulate measurements
at source emission streams containing sulfur oxides. ' ' '
These studies have shown that sample temperature is a parameter
that significantly affects the retention of condensible material
in the front half of the standard Method 5 sample train. In this
case, condensible matter is defined as probe rinse/filter residue
that can be removed by heating. Sulfate species will most likely
exist in sources containing sulfur oxides. Water-soluble sulfate
can exist in these sources in many different chemical forms.
Sulfuric acid (H-SO.) is the most common form, but salts of
ammonium, sodium, or other cations are also possible. Because
exit gas streams from boilers are known to contain sulfur triox-
ide and sulfur dioxide, sulfuric acid is the most probable form
of water-soluble sulfate. Vanadyl sulfate also can be formed
during the combustion of high-vanadium residual fuel oils, al-
though the precise effect of this compound on measurements of
particulate matter is not completely known.
Data presented in Tables 4-2 and 4-4 show that the use of a
higher probe sample temperature did not have a significant effect
on the measurement of particulate emissions from this source.
5-1
-------
The MSB samples collected at 160°C (320°F) were expected to have
a higher particulate catch in the probe rinse than the M5B-P400
samples, which were collected at a probe temperature of 204°C
(400°F) and a filter temperature of 160°C; however, this effect
was not exhibited. The MSB filterable particulate concentration
averaged 170 mg/dNm3 at ambient conditions and compared very well
with the M5B-P400 average of 172 mg/dNm3.
Data presented in Table 4-3 show that samples were atypi-
cally unstable (according to specified criteria) between heat
treatments at the higher temperatures. The variability in weight
loss between samples at the same temperature suggests that 316°C
may be close to the reaction or decomposition temperature of
materials present in the samples.
Effects of analytical temperature are shown graphically in
Figure 4-1. The average MSB and M5B-P400 particulate concentra-
tions are similar at each of the three stages of heat condition-
ing from 160°C (320°F) through 316°C (600°F). The MSB sample
concentrations averaged 152, 136, and 94 mg/dNm3 after condition-
ing at 160°, 232°, and 316°C, respectively. Corresponding re-
sults of the M5B-P400 runs at these three temperatures were 156,
143, and 111 mg/dNm3. These data differ from results presented
in previous studies in that the most significant sample weight
loss normally occurs during the initial heat treatment at 160°C,
with subsequent decreasing losses (i.e., the slope of the concen-
tration versus temperature curve becomes flatter). The sample in
this study showed a relatively small percent weight loss until
they were heated to 316°C, which results in a steeper curve.
5-2
-------
An examination of within-run samples (as presented in Table
4-6) shows a closer comparison between the two methods. For Runs
3, 4, 8, and 10, the MSB sample concentrations averaged 155, 145,
and 106 mg/dNm3 after conditioning at 160°, 232°, and 316°C,
respectively. Corresponding results of the M5B-P400 runs at
these three temperatures were 156, 143, and 111 mg/dNm3. The
apparent increasing difference between the two methods at higher
temperatures is probably related to the increasing instability of
the samples.
Weight loss data presented in Tables 4-7 through 4-9 and
Figure 4-2 show that both probe rinse and filter samples of each
method type lost significant percentages of their ambient weights
upon heating, although individual samples varied greatly. The
MSB and M5B-P400 filter samples had average weight losses of 39
and 31 percent after thermal treatment at 316°C. This close
comparison was expected because the sample filtration tempera-
tures were both 160°C. These percentage weight losses correspond
to approximately 65 and 52 mg, respectively.
The MSB and M5B-P400 probe rinse samples had average weight
losses of 56 and 52 percent after thermal treatment at 316°C.
These percentages correspond to approximately 47 and 37 mg,
respectively.
The sample weight loss curve shown in Figure 4-2 begins to
flatten out between 160°C and 232°C in a manner similar to previ-
ous studies. The abrupt departure from expected behavior at a
temperature of 316°C supports the possibility of being close to a
reaction temperature of components in the particulate matter.
5-3
-------
Statistical data for grouped runs in Tables 4-5 and 4-6 show
the precision estimates for Methods 5B and M5B-P400. For a given
group of two or four runs, the within-run precision generally
worsened between the heat treatments at 232° and 316°C, probably
as a result of increased instability of the samples. The mean
standard deviation for all 10 MSB run groups was 9.6 mg/dNm3 at
ambient conditions, which corresponds to a relative standard
deviation (RSD) of 5.6 percent. The four M5B-P400 run groups had
a mean standard deviation of 6.0 mg/dNm3 and a corresponding RSD
of 3.5 percent at ambient conditions.
The mean standard deviation for the six MSB run groups
heated to 160°C was 6.3 mg/dNm3, with a corresponding RSD of 4.1
percent, which indicated a slight improvement over results at
ambient conditions. For the three M5B-P400 run groups heated to
160°C, the mean standard deviation and RSD were 5.7 mg/dNm3 and
3.6 percent, respectively.
Precision data for the nine MSB run groups heated to 232°C
included a mean standard deviation of 5.7 mg/dNm3 and an RSD of
4.1 percent. For the four M5B-P400 run groups, the average
standard deviation and RSD were 7.1 mg/dNm3 and 5.0 percent, re-
spectively.
Precision data for the 10 MSB groups heated to 316°C in-
cluded a mean standard deviation of 7.2 mg/dNm3 and an RSD of 7.4
percent. For the four M5B-P400 samples, the mean standard devia-
tion and RSD were 4.4 mg/dNm3 and 4.0 percent, respectively.
5-4
-------
All of these statistical results indicate a high degree of
precision for the majority of samples.
Results of the six M5BW samples and within-run MSB samples
presented in Table 4-10 show the disparity between the two
methods. The reported nonwater-soluble sulfate particulate
(NWSSP) values represent particulate concentrations corrected for
water-soluble sulfates determined by ion chromatography (1C).
The average NWSSP concentration (83.3 mg/dNm3) is significantly
lower than the average particulate concentration of the within-
run MSB samples heated to 316°C (95.4 mg/dNm3).
A maximum bias of 6 percent (low) could be introduced to the
NWSSP value determined by the 1C analytical procedure if all of
the collected particulate was water-soluble. This is because the
aliquot removed for 1C analysis is equal to 6 percent of the
sample, and the NWSSP result is not corrected for particulate in
the aliquot that is water-soluble and nonsulfate. The actual
amount of bias is independent of the water-soluble sulfate, but
depends on the makeup of the NWSSP. The NWSSP can consist of
nonwater-soluble particulate (NWSP) and water-soluble particulate
that is not sulfate (WSPNS). Extreme examples of these types of
materials would be sand (NWSP) and sodium chloride (WSPNS). If
the NWSSP consisted of 75 percent sand and 25 percent salt, the
NWSSP results reported from the use of the 1C procedure would be
biased low by 1.5 percent (6 percent of the WSPNS). For most
boiler exhaust gases, the amount of WSPNS in the particulate and
the resultant bias to the reported NWSSP should be relatively
low.
5-5
-------
These NWSSP results indicate that a portion of the water-
soluble sulfate initially present in the ambient samples either
is not sulfuric acid or it effectively prevents sulfuric acid
from being released upon heating to 316°C. It is possible that
vanadium present in the fuel oil is responsible for the atypical
weight loss results.
As a test for residual sulfates or determination of inter-
fering cations, several of the MSB samples that have been heated
to 316°C can be extracted with water for subsequent analysis by
1C. Additionally, several of the remaining MSB samples can be
heated to 400°C to determine if any additional weight loss is
observed.
5-6
-------
SECTION 6
QUALITY ASSURANCE
Because the goal of testing is to produce representative
emission results, quality assurance is one of the main facets of
stack sampling. Quality assurance guidelines provide the de-
tailed procedures and actions necessary for defining and pro-
ducing acceptable data. Four such documents were used in this
test program to ensure the collection of acceptable data and to
provide a definition of unacceptable data. These documents are
1) the Source-Specific Test Plan prepared by PEDCo and reviewed
by Emission Measurement Branch; 2) the EPA Quality Assurance
Handbook Volume III, EPA-600/4-77-027, 3) the PEDCo Environmental
Emission Test Quality Assurance Plan, and 4) the PEDCo Environ-
mental Laboratory Quality Assurance Plan. The last two, which
are PEDCo's general guideline manuals, define the company's
standard operating procedures and are followed by the emission
testing groups and the laboratory groups.
Appendix F provides more detail on the quality assurance
procedures, such as QA objectives; data reduction; quality con-
trol checks; performance and system audits; preventive main-
tenance; precision, accuracy, and completeness; corrective ac-
tion; and quality assurance reports to management.
-------
Relative to this specific test program, the following steps
were taken to ensure that the testing and analytical procedures
produced quality data.
0 Calibration of all field sampling equipment. (Appendix
E describes calibration guidelines in more detail.)
0 Checks on train configuration and calculations.
0 Onsite quality assurance checks such as leak checks on
the sampling train, pitot tube, and Orsat line, and
quality assurance checks of all test equipment prior to
use.
0 Use of designated analytical equipment and sampling
reagents.
Table 6-1 lists the sampling equipment used for quad-train
particulate and SO- testing as well as the calibration guidelines
and limits. In addition to the pre- and post-test calibrations,
a field audit was performed on the meter boxes used for the
sampling. PEDCo constructed critical orifices for use in this
audit. Figures 6-la through 6-ld show audit runs for each dry
gas meter used for testing. Figures 6-2a and 6-2b show thermo-
couple digital indicator audit runs. Figures 6-3a through 6-3d
show thermometer and thermocouple audit data collected during
pretest equipment checks.
Between runs, onsite preliminary calculation checks were
performed to verify isokinetic sampling rates and to compare
moisture contents and other parameters with expected values.
These checks were used to ensure that the tests were conducted
properly. An example isokinetic calculation sheet is shown in
Figure 6-4.
-------
TABLE 6-1. FIELD EQUIPMENT CALIBRATION
Equipment
Meter boxes
Pilot tubes
Digital In-
dicators
Thermocouples
and stack
thermometer
Orsat ana-
lyzer
Impinger
thermometers
Balance
Barometer
Dry gas
thermometers
Probe nozzles
I.D.
No.
FB-4
FB-5
FB-6
FB-7
278
379
124
125
178
206
141
447
448
449
450
M-l
229
FB-4
FB-5
FB-6
FB-7
IA
IB
1C
ID
2A
2B
2C
20
8A
SB
8C
80
Calibrated
against
Wet test meter
Standard pi tot
tube
Millivolt signals
ASTM-2F or 3F
Standard gas
ASTM-2F or 3F
Type S weights
NBS traceable
barometer
ASTM-2F or 3F
Caliper
Allowable
error
Y tO.02 Y
AH 0 ±0.15
(Y ±0.05 Y post-test)
See Appendix E
0.5%
1.5*
±0.5%
±2°F
tO. 5 g
tO.10 In.Hg
(0.20 post-test)
±5°F
Dn ±0.004 in.
Actual
error
0.003
0.004
0.003
0.000
0.27%
0.11%
1.0*
1.0*
0.3*
2°F
1.5°F
1.5°F
2.0°F
0.27 g
0.01
In.Hg
1.0°F
2.2°F
1.1°F
2.5°F
0.002
0.001
0.001
0.003
0.001
0.001
0.001
0.001
0.002
0.002
0.000
0.002
Within
allowable
1 imits
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Comments
Y ±0.05 Y post-test
Inlet and outlet averaged
-------
1
J-
It* /j 5
AUDIT REPORT DRY GAS METER
CLIENT:
DATE:
BAROMETRIC PRESSURE (Pbar): 3o.Z in. Hg METER BOX NO. fF>, V 7ft?//u n
ORIFICE NO. »y PRETEST y: 7.050
ORIFICE K FACTOR: 5.Jcc*tc-"< AUDITOR:
Orifice
manometer
reading
AH
in H20
"7 ^ **
•"'
Dry gas
meter
reading
^i f
o
ft
£-?S. 1*>
I->UL> . }uo
Temperatures
Ambient
w
°F
it?
t>7
Dry gas meter
Inlet
^ii^if
°F
75
7V
Outlet
Toi/Tof
°F
7o
70
Duration
of
run
0
mm
/•).*,n ~ 3 7
.3 '•'set
Dry gas
meter
volume
Vm
ft3
/e w.
Average temperatures
Ambient
Ta
°F
L-?
Dry gas
meter
Tm
°F
7JL
v_
mstd
ft3
to ^7
v_
mact
ft3
/*. 7+r
Audit
Y
/. c 1 6-
Y
deviation
%
"•*-* ^ V
Vmstd
(17.647)( Vm )(Pbar + AH/13.6)
(Tm + 460)
/a. V77
Audit Y
\ ,
act.
Vmstd
/.o?C,
\»
(1203)( 0 )( K )(Pbar)
(T + 460)!^
a
/£:7
-------
DATE:
AUDIT REPORT DRY GAS METER
CLIENT:
BAROMETRIC PRESSURE (P
ORIFICE NO. £
hir): -^ -1
oar
in. Hg METER t
PRETES'
JOX NO. f&- 6' Tftfi^ C
r Y:
^•953
ORIFICE K FACTOR: S^'lf/o^ AUDITOR: £*( Ze,**.^..^
Orifice
manometer
reading
AH
in H20
,'.«*
Dry gas
meter
reading
ft3'
6JLL-. 7 '£"'-'
£-37 jo<>
Temperatures
Ambient
°F
^
M
Dry gas meter
Inlet
°F
77
18
Outlet
To/Tof
°F
7Z
7^-
Duration
of
run
0
min
3.S1'1 se<.
Dry gas
meter
volume
Vm
ft3
/c.^
Average temperatures
Ambient
Ta
°F
£y
Dry gas
meter
Tm
°F
7*
V V
mstd mact
ft3 ft3
,c*7 /o.i?
Audit
Y
e.w
Y
deviation
-°y%
Vmstd
(17.647M Vm )(Pbar + AH/13.6)
(Tm + 460)
/f.?2
Audit Y
""act
agt
Vmstd
o,1*\
Xct
(1203)( 0 )( K )(P )
(T + 460)1/2
a
/^.3^
Y deviation, %
(Y audit - Y pre- test) (100%)
(Y audit)
-*-P^
Audit Y niust be in the range, pre-test Y ±0.05 Y
Figure 6-1b. Audit report dry gas meter.
-------
DATE:
/<$ "3
AUDIT REPORT DRY GAS METER
CLIENT:
BAROMETRIC PRESSURE (Pbar): >7 * in. Hg METER BOX NO. P6
ORIFICE NO.
3
ORIFICE K FACTOR:
PRETEST Y:
AUDITOR:
<,.,,
Orifice
manometer
reading
AH
in H20
/ • ' .1
Dry gas
meter
reading
VY,
3
?; 7 - '
/?$ ^-~
Temperatures
Ambient
Tai/Taf
°F
x_ -,•
<*y
Dry gas meter
Inlet
°F
(/t-
73-
Outlet
VTof
°F
^- 1-
^5
Duration
of
run
0
mm
' 5. ->3-
Dry gas
meter
volume
V
•3
ft6
//. fci
Average temperatures
Ambient
Ta
°F
L-7
Dry gas
meter
Tm
°F
*?
Vm
mstd
•3
ft^
//, ?
V
mact
•3
ft"*
/^6
Audit
Y
c-^c
Y
deviation
%
O
Vmstd
(17.647)( Vm )(Pbar + AH/13.6)
(Tm + 460)
//-?/
\.t
(1203)( 0 )( K )(
(T + 460)^
a
Pbar>
/>. y^
Audit Y
Vm ,.
a«pt
Vmstd
^••firC
Y deviation, %
(Y audit - Y pre-test)
(100%)
(Y audit)
0
Audit Y roust be in the range, pre-test Y ±0.05 Y
Figure 6-1c. Audit report dry gas meter.
6-6
-------
DATE: .
BAROMETRIC PRESSURE (Pbar):
ORIFICE NO. iff
AUDIT REPORT DRY GAS METER
CLIENT:
ORIFICE K FACTOR: j. 757 «°
in. Hg METER BOX NO. ^/3 -7
PRETEST y:
AUDITOR: /
/.:?.
Orifice
manometer
reading
AH
in H20
/ >? -
Dry gas
meter
reading
v,/vf
o
ft
'-ill ooc-
*J }? ?-<-'
Temperatures
Ambient
Tai/Taf
°F
let
6 >
Dry gas meter
Inlet
VTif
°F
7L-
77
Outlet
VTof
°F
72-
72-
Duration
of
run
0
min
Dry gas
meter
vol ume
Vm
•5
ft6
Average temperatures
Ambient
Ta
°F
&•*
Dry gas
meter
Tm
°F
7V
Vm
mstd
^
ftJ
if. ^3
Vm
mact
•?
fr
/V. / '3
Audit
Y
*.?*/
Y
deviation
%
-/ .; -,
Vmstd
(17.647)( Vm )(Pbar+ AH/13.6)
(Tm + 460)
//. si 7
Audit Y
Vm .
act.
Vmstd
0.1*11
\ct
(1203)( 0 )( K )(Pbar)
(T + 460)1/2
Q
//. / 3
Y deviation, %
(Y audit - Y pre-test)(100%)
(Y audit)
-AJ%
Audit Y must be in the range, pre-test Y ±0.05 Y
Figure 6-ld. Audit report dry gas meter.
6-7
-------
THERMOCOUPLE DIGITAL INDICATOR
AUDIT DATA SHEET
Date
Indicator No.
Operator
Test Point
No.
1
2
3
4
=
Millivolt
signal*
=====
Equivalent
temperature,
°F*
32
/Oj 7-
W. I
a 21
..
Digital Indicator
temperature reading,
•F
Jrf
7r7
W 2~
//aj
========
Difference,
%
C,^
6 d
C "3
.0
Percent difference must be less than or equal to 0.5X.
Percent difference:
(Equivalent temperature °R- Digital Indicator temperature
reading °R)(100%)
(Equivalent temperature °R)
Where °R - °F + 460°F
These values are to be obtained from the calibration data sheet for the
calibration device.
Figure 6-2a. Thermocouple digital indicator audit data sheet.
6-8
-------
THERMOCOUPLE DIGITAL INDICATOR
AUDIT DATA SHEET
Date
Indicator No.
Operator
Test Point
No.
1
2
3
4
— - ' :nz
Millivolt
signal*
=====
Equivalent
temperature,
op*
3.7
/<*\! • 0-
*/5-/ /
/ .2 ''
Digital Indicator
temperature reading,
°F
33 d
10 1 ,^
V5A /
//2fr
• ' =assa
Difference,
X
<* VI
«•. c
C O
<•, 0
Percent difference must be less than or equal to 0.5%.
Percent difference:
(Equivalent temperature °R- Digital indicator temperature
reading
(Equivalent temperature °R)
Where °R « °F + 460°F
calibration device.
*° b"e Obtalned from the «»br«lcn dat. sheet for the
Figure 6-2b. Thermocouple digital indicator audit data sheet.
6-9
-------
Audit Name:
ON-SITE AUDIT DATA SHEET
ft/* /L
Date:
Auditor:
Equipment
Meter box
inlet thermo.
Meter box
outlet thermo.
Impinger ^"V1//1
thermometer
Stack £/?5
thermometer
or
Thermocouple
Orsat
analyzer
Trip
balance
Barometer
Reference
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
stack temp.
Jo 02 in
ambient air
IOLM std,
weight
Corrected*
NWS value
Reference
Value
^
M
(ef
«<-'
31-
20.8%
Value
Determined
tf
b?
•1 i
(f*
7>
-rrffc-
Deviation
/
D
6<
y
5"
Max. Allowable
Deviation
5°F
5°F
2°F
7°F
See table
0.7%
0.5 grams
0.20 in. Hg
Reference temp. °F
Max. deviation °F
32-140
7
141-273
9
274-406
11
407-540
13
541-673
15
674-760
17
* Correction factor:
NWS value (in. Hg) - [Altitude (ft)/1000(ft/in. Hg)] + 0.74 in. Hg**
** 0.74 in. Hg is the nominal correction factor for the reference barometer
against which the field barometer was calibrated.
If it is not feasible to perform the audit on any piece of equipment, record
"N/A" in the space provided for the data.
Figure 6-3a. On-Site audit data sheet.
6-10
-------
Audit Name: /~/3
ON-SITE AUDIT DATA SHEET
Date:
Auditor: p/2
Equipment
Meter box
inlet thermo.
Meter box
outlet thermo.
Impinger*3^1?
thermometer
Stack • 2GL-
thermometer
or
Thermocouple
Orsat
analyzer
Trip
balance
Barometer
Reference
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
stack temp.
% 02 in
ambient air
IOLM std.
weight
Corrected*
NWS value
Reference
Value
bl
(,$
6*
/?
?V
20.8%
Value
Determined
&b''
U-
^
-//
?7
Deviation
«-i
£
V
5
J>
Max. Allowable
Deviation
5°F
5°F
2°F
7°F
See table
0.7%
0.5 grams
0.20 in. Hg
Reference temp. °F .
Max. deviation °F
32-140
7
141-273
9
274-406
11
407-540
13
541-673
15
674-760
17
* Correction factor:
NWS value (in. Hg) - [Altitude (ft)/1000(ft/1n. Hg)] + 0.74 in. Hg**
** 0.74 in. Hg is the nominal correction factor for the reference barometer
against which the field barometer was calibrated.
If it is not feasible to perform the audit on any piece of equipment, record
"N/A" in the space provided for the data.
Figure 6-3b. On-site audit data sheet.
6-11
-------
ON-SITE AUDIT DATA SHEET
Audit Name:
Date: l,-
Auditor:
Equipment
Meter box
inlet thermo.
Meter box
outlet thermo.
Impinger 'feyy-
thermometer
Stack
thermometer
or
Thermocouple
Orsat
analyzer
Trip
balance
Barometer
Reference
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
stack temp.
% O^ in
ambient air
IOLM std.
weight
Corrected*
NWS value
Reference
Value
O
•
kx
Kn
20.8%
Value
Determined
l-V
L'^1
^
18
Deviation
C
1
*/
i
Max. Allowable
Deviation
5°F
5°F
2°F
7°F
See table
0.7%
0.5 grams
0.20 in. Hg
f ,
Reference temp. °F
Max. deviation °F
32-140
7
141-273
9
274-406
11
407-540
13
541-673
15
674-760
17
* Correction factor:
NWS value (in. Hg) - [Altitude (ft)/1000(ft/in. Hg)] + 0.74 in. Hg**
** 0.74 in. Hg is the nominal correction factor for the reference barometer
against which the field barometer was calibrated.
If it is not feasible to perform the audit on any piece of equipment, record
"N/A" in the space provided for the data.
Figure 6-3c. On-site audit data sheet.
-------
ON-SITE AUDIT DATA SHEET
Audit Name: /v? V 7XV,
A/
U
Date:
Auditor:
Equipment
Meter box
inlet thermo.
Meter box
outlet thermo.
Impinger^VYS
thermometer
Stack
thermometer
or
Thermocouple
Orsat
analyzer
Trip
balance
Barometer
Reference
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
stack temp.
% 03 in
ambient air
IOLM std.
weight
Corrected*
NWS value
Reference
Value
M
M
6,y
_ ?V
20.8%
Value
Determined
L (f V
U '?
L,l
^
Deviation
l_ .
2
6
0
Max. Allowable
Deviation
5°F
5°F
2°F
7°F
See table
0.7%
0.5 grams
0.20 in. Hg
Reference temp. °F
Max. deviation °F
32-140
7
141-273
9
274-406
11
407-540
13
541-673
15
674-760
17
* Correction factor:
NWS value (in. Hg) - [Altitude (ft)/1000(ft/in. Hg)] + 0.74 in. Hg**
** 0.74 in. Hg is the nominal correction factor for the reference barometer
against which the field barometer was calibrated.
If it is not feasible to perform the audit on any piece of equipment, record
"N/A" in the space provided for the data.
Figure 6-3d. On-site audit data sheet.
6-13
-------
ISOKINETIC CALCULATION
SITE
U.S. EPA
TEST MO.
i
1. Voluae of dry gas sampled correct** to
standard conditions. Nott: V «(0
l.-b
W.I
Jo.1-7
11.0?
"O.u
3n 7 *7
"'3 C-
777.3
*.m
&Ji
57^4
«>.2.2V
^0
/eo.-l
RUN~tn
IS44
1.L*
o.to~?
0,113
/$.<*
-2-3
W.t
3o,Z-~?
2%&?
*,L
0.52
777-3
c7.?^rc7
0.V4
S7 ?4
p-i?,?
120
M.g
RUN I ^
to-tt?
&.1S3
3t>3£
&.&9
& . 5
•777
o.f-O
<"-^
f7^
cZ/l
/^^
102...
Fiaure 6-4. Isokinetic calculat.inn<;.
-------
As a check on the reliability of the method used to analyze
particulate samples, sets of filters that had been preweighed in
the lab and acetone blanks were submitted for thermogravimetric
analysis in a manner similar to the actual samples. Table 6-2
summarizes the results of blank filter and reagent analyses.
Audit solutions prepared by EPA were used to check the
analytical procedures and reagents for S02 sampling analysis.
Table 6-3 presents the results of this analytical audit. Table
6-4 summarizes the results of S02 reagent blank analyses. The
audit test and blank analyses show that the analytical techniques
were good.
Filter and deionized water blanks were analyzed to check the
reliability of the analytical methods used to determine nonwater-
soluble sulfate particulate. Table 6-5 presents the results of
the blank reagent analyses.
The sampling equipment, reagents, and analytical procedures
for this test series were in compliance with all necessary guide-
lines set forth for accurate test results as described in Volume
III of the Quality Assurance Handbook.*
*
Quality Assurance Handbook for Air Pollution Measurement Sys-
tems, Volume III, EPA-600/4-77-027b, August 1977.
6-15
-------
TABLE 6-2. THERMOGRAVIMETRIC REAGENT BLANK ANALYSIS
Sample type
Filter -
(Whatman
RA 934AH)
Acetone
Acetone
I.D.
No.
CT341
CT832
CT881
CT882
Initial
volume, ml
NA
NA
368
372
Net blank weight, mg
Ambient
0.2
0.3
0.6
4.3
160°C
-0.3
NA
1.1
NA
232°C
-0.1
NA
0.2
NA
316°C
0.2
0.3
-0.3
0.5
NA = Not applicable
6-16
-------
TABLE 6-3. AUDIT REPORT S02 ANALYSIS
Plant < < i tTVi
PN Number
Date samples received i~ .6 fc? Date analyzed ^- i -fc ^
Samples analyzed by (Va,<-. t/t.)
Reviewed by Ju^,. 6x. AK
Date of Review ^ ?, fe
Sample
Number
-t iFcr
^••fc'r-ito
(cT^q ^
•tr^C':, '^
,,'r ^'-'irC
ICTMM^
mg S02/dscm
Determined
M3H 2-
£^^.5"
Source of
Sample
7T uOa^'iiu^r
i • (l]C^r^r
Accepted
Value
!li^L1
5%i 3
%
Difference
- O. (* V:
- / ^ °>:
/-O /D
(continued)
6-17
-------
TABLE 6-3 (continued)
P1 an t
PN Number
Date sample
Samples ana
Reviewed by
Sample
Number
~ - -j"
' ' • r
1' '. 1 -1
s received . ,f
lyzed by ,
7 •.-> • • ^ / '
mg S02/dscm
Determined
,u,)
Z ' i — •
c 'b Date a
:.r.//
Jc Date o
Source of
Sample
• ^'-^i '-<-•<'
^J^^/'Ur"
nalyzed
f Review
Accepted
Value
/ I-? ."• i
'6i-,3
j ^ t r.
- <- e -
Difference
"" " ' - ^ /;
6-18
-------
TABLE 6-4. S02 REAGENT BLANK ANALYSES
Sample type
80% I PA
80% I PA/ Filter
10% Hydrogen
peroxide
Water
I.D.
No.
CT944
CT943
CT991
CT992
CT901
CT902
Net blank weight, mg
as S02
-
-
<0.3
<0.3
<0.3
<0.2
as H2S04
<0.3
<0.2
-
-
6-19
-------
TABLE 6-5. NONWATER-SOLUBLE SULFATE PARTICULATE
REAGENT BLANK ANALYSIS
Sample type
Filter
Acetone
Filter
Acetone
Filter
Acetone
Filter
Acetone
Acetone
I.D.
No.
CT889
CT901
CT890
CT902
CT883
CT897
CT898
CT899
CT900
Net weight of
participate plus
ammonium sulfate, mg
2.8
0.8
1.1
1.3
3.6
3.1
2.8
2.7
3.1
CSO a
iU4»
mg/lTter
1.98
<1.00
1.91
<1.00
1.89
1.55
<1.00
<1.00
2.24
w
evap'
ml
235
305
235
215
235
235
235
235
235
NWSSP
blank
weight, mg
2.2
0.8
0.5
1.3
3.0
2.6
2.8
2.7
2.4
A 15-ml aliquot was removed from sample for ion chromatography analysis.
6-20
-------
SECTION 7
REFERENCES
1. PEDCo Environmental, Inc. Laboratory Evaluation Report -
Analytical Method for Determining the Particulate Weight of
EPA Method 5 Exclusive of Water-Soluble Particulate. Method
Development and Testing for FCCU Regenerators. EPA Contract
No. 68-02-3546, Work Assignment No. 14. October 1982.
2. PEDCo Environmental, Inc. Emission Test Report. Method
Development and Testing for FCCU Regenerators. EPA Contract
No. 68-02-3546, Work Assignment No. 14. December 1982.
3. Mitchell, W. J., and M. R. Midgett. A Means to Evaluate the
Performance of Stationary Source Test Methods. Environ-
mental Science and Technology, 10:85-88, 1976.
4. Oldaker, G. B. Condensibile Particulate and Its Impacts on
Particulate Measurements. Draft Report, EPA Contract No.
68-01-4148, Task No. 69. May 1980.
5. Peters, E. T., and J. W. Adams. Sulfur Dioxide Interaction
With Filters Used for Method 5 Stack Sampling. In: Work-
shop Proceedings on Primary Sulfate Emissions From Combus-
tion Sources, Volume I - Measurement Technology. EPA-600/9-
78-020a, 1978. pp. 199-202.
6. Gushing, K. W. Particulate Sampling in Process Streams in
the Presence of Sulfur Dioxide. In: Workshop Proceedings
on Primary Sulfate Emissions From Combustion Sources, Volume
I - Measurement Technology. EPA-600/9-78-020a, 1978. pp.
202-227.
7-1
-------
APPENDIX A
COMPUTER PRINTOUTS AND EXAMPLE CALCULATIONS
A-l
-------
FIELD DATA
I
ro
PLANT
SAMPLING LOCATION UNIT 2 EAST
SAMPLE TYPE PARTIC S03 SO?
OPERAIOR PR RA
AMBIENT TEMP. (DEC,. F) 63.
BAR. PRESS. f IN.HG) 30.06
STATIC PRESS. (IN. H?0) -.60
FILTER NUMBER(S) 3531017
STACK INSIDE DIM. (IN) 162.00 .00
PITOT TUBE COEEF. .84
THERM. NO.
LEAKAGE .000 CFM 9 10.
METER CALIB. FACTOR 1.003
READ ft RECORD DATA
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(HIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
CLOCK
TIME
(24-HR
950
0
0
0
0
0
0
0
0
0
0
0
1150
EVERY 10.0
GAS METER
READING
(CU.FT.)
436.809
442.715
448.212
453.974
459.541
464.999
471.123
476.434
482.099
487.859
493.419
498.932
504.527
MINUTES
VELOCITY
HEAD
(IN.H20)
.710
.710
.710
.650
.650
.680
.680
.680
.700
.650
.650
.650
0 IN.HG
ORIFICE
DATE 02/07/83
RUN NUMBER 1AM5BH
PROBE LENGTH A TYPE 5 FT GLASS
NOZZLE 1A : I.D. .223
ASSUMED MOISTURE 10.0
SAMPLE BOX NUMBER
METER BOX NUMBER FB7
METER HEAD OIFF. 1.72
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 1161.9
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
.08
.08
.08
.99
.98
.03
.03
.03
.06
.98
.98
.98
H20)
ACTUAL
.on
.on
.08
.99
.98
.03
.03
.08
.06
.98
.98
.98
STACK
TEMP
(DEG.F)
305.
30ft.
307.
305.
307.
308.
309.
307.
309.
308.
308.
308.
DRY GAS METER
TEMP
(OE6.F)
INLET OUTLET
63. 62.
64. 62.
67. 62.
70. 62.
72. 62.
72. 62.
74. 64.
74. 64.
74. 65.
74. 65.
73. 66.
74. 65.
PUMP
VACUUM
(IN.HG)
4.0
4.0
4.5
5.0
6.0
.0
.5
.5
.5
.0
.0
8.5
SAMPLE
BOX TEMP
(DEG.F)
330.
319.
330.
332.
310.
311.
319.
317.
325.
328.
328.
315.
IMPINGER
TEMP
(OEG.F)
49.
49.
49.
47.
47.
49.
48.
48.
48.
48.
48.
51.
TOTALS
AVERAGE
120.0
67.718
1.02
1.03 307,
71,
63.
6.2 322.
48.
-------
PAPTICULATE FIELD DATA * RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PR RA
TEST 1AMSBN
UNIT 2 EAST
TEST DATE
TB TIME-START
TF TIME-FINISH
TT NET TIME OF TEST, MIN.
NP NET SAMPLING POINTS
Y METER CALIBRATION FACTOR
ON SAMPLING NOZZLE DIAMETER
CP PITOT TUBE COEFFICIENT
PM AVERAGE ORIFICE PRESSURE
DROP
VM VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TFMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VWC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BWO PERCENT MOISTURE BV VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
FMO MOLE FRACTION DRV GAS
PC02 PERCENT C02 BY VOL., DRV
P02 PERCENT 02 BY VOL., DRV
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRV
MD MOLECULAR NT-DRY STACK GAS
ENGLISH UNITS
02/07/83
950
120.0
12
1.003
.223 IN
.84
1.03 IN-H20
67.718 CU-FT
METRIC UNITS
02/07/83
950
1150
120.0
12
1.003
5.7 MM
.84
26.1 MM-H20
1.918 CU-M
67.2 F
68.519 SCF
184.9
8.703 SCF
11.27
.887
13.35
2.15
.00
84.20
30.23
19
1
184
11
13
2
84
30
.5 C
.940 SCM
.9
.246 SCM
.27
.887
.35
.45
.00
.20
.23
-------
MHS MOLECULAR WT-STACK GAS
PB BAROMETRIC PRFS9URE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
09STD STACK FLOW RATE, DRV*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICIPATE
MG. EPA 5
CS AMBIENT PARTICIPATE
28.86
30.06 IN-HG
-.60 IN-H20
30.02 IN-HG
307. F
55.6 FPS
20612. Sn-IN
17546932. SCFH
28644978. ACFH
103.0
100.0
.0225 GR/DSCF*
2B.B6
763.52 MM-HG
-15.24 MM-H20
762.40 MM-HG
153. C
16.9 MPS
13.29* SO-M
496877. SCMH
811139. ACMH
103.0
100.0
51.545 MG/DSCM
* 68 DEG F, 39.92 IN.HG.
-------
EXAMPLF PARTICIPATE CALCULATIONS TFST NO.IAMSBM
UNIT 2 EAST
VOLUME OF DRV GAS SAMPLED AT STANDARD CONDITIONS
VMSTO s (17.647 * VM » V • (PB + PM / 13.6)) / (TM * 460.)
17.647 • 67.718 • 1.003 * ( 30.06 * 1.029 / 13.6)
VMSTO s ———.-......—......——........ ........ . = 6A.519 PSCF
( 67. » 460.)
VOLUME OF HATER VAPOR AT STANDARD CONDITIONS
VMC * .04707 * VLC
VMC » .04707 * 165. s 0.70 SCF
PERCENT MOISTURE IN STACK GAS
BHO • (100. * VMC) / (VMSTD » VMC)
100. * 8.70
BMO * — .............. a 11.27 PERCENT
68.519 + 8.70
MOLE FRACTION OF DRV STACK CAS
FMD s (100. - BMO) / 100.
100. - 11.3
FMD » — ........ x .887
100.
AVERAGE MOLECULAR HEIGHT OF DRV STACK 6AS
MD s (PC02 * .44) * (P02 * .32) » (PN2 * PCO) • .28
MO s (13.35*44/100) * ( 2.4*32/100) + ((84.2* .0) * 28/100 » 30.23
MOLECULAR WEIGHT OF STACK GAS
MWS s MO * (I. - (BWO/100)) » 18. * (BNO/100)
MMS c 30.23* (1. -(11.27/100)) * 18. * (11.27/100) = 28.86
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP s SUM. OF THE SORT(VH * (TS * 460.))
VS a 05.49 * CP * DELP / (SORT(HMS * PS) * PNTS)
VS = 85.49 * .84 * 273.377 / (SQRT( 26.86 * 30.02) * 12. = 55.59 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS * AS * 3600/144
OS = 55.59 * 20612. 3600/144 = 28644928. ACFH
STACK GAS VOLUMETRIC FLOM AT STANDARD CONDITIONS
OSSTD * 17.647 * OS * PS • (1. • (BMO/100)) / (TS » 460.)
17.647 * 21644928. * 30.02 * (1. - (11.27/100))
OSSTD « - — -.-——-——. — --—-- — — - — ---- — - ——...... x 17546932. SCFM
( 307. » 460.)
PERCENT ISOKINETIC
ISO * (305.58*(TS*460.))*((0.002669*VLC)+(VM*Y*(PB+(PM/13.6))/ (TM*460.)))/(TT*VS*PS*ON*ON)
(305.58*( 307.«460.))*((0.002669* 165.)»( 67.718*1.003*( 30.06+( I.029/13.6))/( 67.4460.)))
ISO a -• —-—— " — — * 103.05 PERCENT
120. * 55.59 * 30.02 • .223 * .223
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 * MN • 15.41 / VMSTD
CS * 0.001 * 100.0 * 15.43 / 68.519 = .0225 GR/OSCF
-------
F1ELO DATA
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(nEG.F)
BAR.PRESS.(IN.HG)
STATIC PRESS.(IN.H20)
FILTER NUMBER(S)
STACK INSIDE DIM.(IN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
UNIT 2 EAST
PART S04 SO?
PR RA
63.
30. Ob
-.60
3531016
162.00
.84
.00
.012 CFM 9 11.0 IN.HG
.960
DATE
RUN NUMBER
PROBE LENGTH ft TYPE
NOZZLE IB : I.D.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
METER HEAD DIFF.
PROBE HEATER SETTING
HEATER BOX SETTING
K FACTOR
02/07/B3
1BM5BM
6 FT GLASS
.221
10.0
FB6
1.50
320.
320.
977.4
READ & RECORD DATA EVERY 10.0 MINUTES
>
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
CLOCK
TIME
(24-HR
r»i rifif %
GAS METER VELOCITY ORIFICE PRESSURE STACK
READING HEAD DIFFERENTIAL TEMP
(CU.FT.) (IN.H20) (IN.H20) (DEG.F)
DESIRED
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
60. 0
90.0
100.0
110.0
120.0
9«50
0
0
0
0
0
0
0
0
0
0
0
mo
949.932
955.850
961.680
9b7.575
971.272
979.000
985.015
990.558
996.418
2.290
8.000
13.764
19.509
.710
.710
.710
.650
.650
.680
.680
.600
.700
.650
.650
.650
.91
.11
.90
.83
.83
.87
.86
.87
.89
.83
.83
.83
ACTUAL
.91
.91
.90
.83
.83
.87
.86
.87
.89
.83
.83
.63
DRY GAS METER PUMP SAMPLE
TEMP VACUUM BOX TEMP
(DEG.F) (IN.HG) (DE6.F)
IMPINGER
TEMP
(DEG.F)
INLET OUTLET
305.
306.
307.
305.
307.
308.
309.
307.
309.
308.
308.
306.
59.
59.
62.
64.
66.
67.
68.
68.
68.
66.
68.
67.
60.
60.
60.
60.
60.
60.
60.
61.
60.
60.
60.
60.
1.0
1.0
1.5
1.0
5.0
6.0
6.0
6.5
7.5
7.5
8.0
6.0
319.
310.
317.
320.
321.
313.
313.
306.
318.
319.
322.
324.
46.
46.
46.
47.
47.
46.
47.
47.
47.
47.
47.
57.
TOTALS
AVERAGE
120.0
69.577
.86
.86 307.
65.
60.
4.9 317.
48.
-------
PARTICULATE FIELD DATA * RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
tfl RA
TEST IBM5BN
UNIT 2 EAST
TEST
TB
TF
TT
NP
V
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
02/07/83
950
1150
120.0
12
.960
.221 IN
.84
.86 IN-H20
METRIC UNITS
02/07/83
950
1150
120.0
12
.960
5.6
.84
21.9
MM
MM-I
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VMC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BNO PERCENT MOISTURE BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
FMO MOLE FRACTION DRV GAS
PC02 PERCENT C02 BY VOL.* DRV
P02 PERCENT 02 BY VOL., DRV
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MD MOLECULAR NT-DRY STACK GAS
69.577 CU-FT
1.970 CU-M
62.7 F
67.929 SCF
182.1
8.571 SCF
11.20
.888
13.35
2.45
.00
84.20
30.23
17
1
182
11
13
2
84
30
.1 C
.924 SCM
.1
.243 SCM
.20
.H88
.35
.45
.00
.20
.23
-------
HNS MOLECULAR MT-STACK GAS
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
QSSTD STACK FLOW RATE, DRV*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICULATE
?8.86
30.06
-.60
30.03
307.
55.6
20612.
17557520.
28640920.
104.0
100.0
IN-HG
IN-H20
IN-HG
F
FPS
SO-IN
SCFH
ACFH
28. B6
763.52
-15.24
762.40
153.
16.9
13.298
497176.
811025.
104.0
100.0
MM-HG
MM-H20
MM-HG
C
MPS
StJ-M
SCMH
ACMH
.0227 GR/DSCF*
51.993 MG/OSCM
>
V£>
* 68 OE6 F, 29.92 TN.HG.
-------
EXAMPLE PARTICULATF CALCULATIONS TEST NU.IBM5BW
UNIT 2 EAST
VOLUME OF DRY GAS SAMPLER AT STANDARD CONDITIONS
VMSTO * (17.647 » VM « Y * (PB * PM / 13.6)) / (TM * 460.)
17.647 * 64.577 * .960 * ( 30.06 + .863 / 13.6)
VMSTD s —_-.... 3 67.929 OSCF
( 63. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC s .04707 * VLC
VWC * .04707 * 182. s 8.57 SCF
PERCENT MOISTURE IN STACK GAS
BMO * (100. • VWC) / (VMSTD * VNC)
•f 100. * 8.57
M BMO * —— .—.————— c 11.20 PERCENT
0 67.929 * 8.57
MOLE FRACTION OF DRV STACK GAS
FMO « (100. - BMO) / 100.
100. - 11.2
FMD s .————————— z .688
100.
AVERAGE MOLECULAR HEIGHT OF DRV STACK GAS
MB s (PC02 * .44) * (P02 * .32) * (PN2 * PCO) * .28
MD = (13.35*44/100) » ( 2.4*32/100) * ((84.2* .0) * 28/100 s 30.23
MOLECULAR WEIGHT OF STACK GAS
MMS s MD * (1. - (BMO/100)) * 18. * (RHO/100)
MNS z 30.23* (1. -(11.20/100)) * 18. * (11.20/100) = 28.86
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. OF THE SQRT(VH * (TS * 460.))
VS = 85.49 * CP • DELP / (SQRT(MMS * PS) * PNTS)
VS = 85.49 * .84 * 273.377 / (SORT( 28.86 » 30.02) * 1?. = 55.58 FP3
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS * AS * 3600/144
QS s 55.58 * 20612. 3600/144 s 286409ZO. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD * 17.647 * OS * PS * (1. - (BMO/100)) / (TS «• 460.)
17.647 * 28640920. * 30.02 * (1. - (11.20/100))
OSSTD B .—........ ... . s 17557520. SCFM
( 307. » 460.)
PERCENT ISOKINF.TIC
ISO s (305.58*(TS+460.))*((0.002669*VLC)+(VM*r*(PB+(PM/13.6))/(TM+460.)))/(TT*V3*PS*nN*DN)
(305.58*( 307.+460.))*((0.002669* 182.)»( 69.577* .960*( 30.06«( .863/13.6))/( 63.^460.)))
130 x [[[—...................—...._..._...—.... x 103.95 PFRCENT
120. * 55.58 * 30.02 * .221 * .221
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 » MN • 15.43 / VMSTD
-------
FIELD DATA
PLANT
SAMPLING LOCATION UN1I TWO EAST
SAMPLE TYPE M-5H
OPERATOR CLAHKE
AMBIENT TEMP. (DEG.F) 64.
BAR. PRESS. (IN.HG) 30.06
STATIC PRESS. (IN. H20) -.60
FILTER NUMBER(S) 3531015
STACK INSIDE DIM. (IN) 162.00 .00
PITOT TUBE COEFF. .84
THERM. NO. 206
LEAKAGE .000 CFM 9 10.0 IN.HG
METER CALIB. FACTOR .983
READ & RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICt PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NO. (MIN.) (24-HR (CO. FT.) UN.H20) (IN.H20) (DEG.F)
DESIRED ACTUAL
INIT 0
> 10.0
1 20.0
K 30.0
^ 40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
950
1000
1010
1020
1030
1040
1050
1100
1110
1120
1130
1140
1140
53.396
59.325
64.300
69.800
74.640
80.000
85.650
91.210
96.275
102.000
106.845
113.071
118.356
.710
.710
.710
.650
.650
.680
.680
.680
.700
.650
.650
.650
.09
.09
.09
.00
.00
.04
.04
.04
.07
.99
.99
.99
.10
.09
.09
.00
.00
.00
.00
.00
.10
.00
.00
.00
305.
306.
307.
305.
307.
308.
309.
307.
309.
308.
308.
308.
DATE 02/07/83
NUN NUMBER 1CM5B
PROBE LENGTH A TYPE 6FT GLASS
NOZZLE : I.U. .221
ASSUMED MOISTURE 10.0
SAMPLE BOX NUMBER
METER BOX NUMBER FB5
METER HEAD DIFF. 1.84
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 1174.2
DRY GAS METER PUMP SAMPLE IMPJN6EK
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.HG) (DEG.F) (DEG.F)
INLET OUTLET
62.
62.
67.
72.
74.
75.
76.
76.
78.
76.
76.
77.
62.
62.
62.
63.
64.
64.
65.
66.
66.
66.
66.
66.
5.0
5.0
5.5
6.0
6.5
7.0
7.0
7.5
6.5
9.0
9.5
9.5
315.
328.
323.
330.
332.
320.
315.
322.
325.
317.
321.
317.
51.
52.
52.
49.
49.
48.
49.
49.
50.
49.
50.
48.
TOTALS
AVERAGE
120.0
64.960
1.04
1.03 307.
73.
64.
7.2
322.
50.
-------
PARIICULATE FIELD DATA & RESULfS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADEN
CLARKE
TEST ICMSB
UNIT TWO EAST
TEST
TB
TF
TT
NP
Y
ON
CP
£""
tx)
DATE
TIME-START
TIME-FINISH
NET TIMt OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
ENGLISH UNITS
02/07/83
950
1140
120.0
12
.983
.221 IN
.84
1.03 IN-H20
METRIC UNITS
02/07/83
950
1140
120.0
12
.983
5.6 MM
.84
26.2 MM-l
VM VOLUME UF DRV GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPIN6ER3 AND SILICA GEL,ML.
VWC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BWO PERCENT MU1STURE BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRV
PN2 PERCENT N2 BY VOL., DRV
Ml) MOLECULAR MT-DRY STACK GAS
64.960 CU-FT
1.839 CU-M
68
64
177
8
11
13
2
84
30
.5 F
.260 SCF
.0
.331 SCF
.48
.885
.35
.45
.00
.20
.23
20
1
177
11
13
2
84
30
.3 C
.820 SCM
.0
.236 SCM
.48
.885
.35
.45
.00
.20
.23
-------
MWS MOLECULAR WT-STACK GAS
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PKES, AHS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
QSSTD STACK FLOW NATE, DRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICULATE
20.83
30.06 IN-HG
-.60 1N-H20
30.02 IN-HG
307. F
55.6 FPS
20612. SQ-IN
17513744. SCFH
28657476. ACFH
98.6
336.7
.0000 GR/DSCM
28.03
763.52 MM-HG
•15.24 MM-H20
762.40 MM-HG
153. C
17.0 MP5
13.298 SO-M
495937. SCMH
811494. ACMH
98.6
336.7
185.052 MG/OSCM
* 68 DE6 F, 29.92 IN.HG.
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NO. 1CM5B
UNIT TWO EAST
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTO s (17.647 * VM • Y * (PB * PM / 13.6)} / (TM » 460.)
17.647 * 64.960 • .983 * ( 30.06 + 1.032 / 13.6)
VM3TO « - 64.360 OSCF
( 68. + 460.)
VOLUME OF HATER VAPOR AT STANDARD CONDITIONS
VHC = .04707 * VLC
VWC * .04707 * 177. = 8.33 SCF
PERCENT MOISTURE IN STACK GAS
BWO * (100. • VHC) / (VMSTO * VWC)
100. * a.33
BWO » ..... s 11.48 PERCENT
64.260 + 8.33
MOLE FRACTION OF DRY STACK GAS
FMD s (100. > BWO) / 100.
100. - 11.5
FMD * ——. —... 3 .885
100.
AVERAGE MOLECULAR WEIGHT OF DRV STACK GAS
MD s (PC02 • .44) * (P02 * .J2) * (PN2 » PCO) * .28
MD a (13.35*44/100) » ( 2.4*32/100) <• ((84.2* .0) * 28/100 s 30.23
MOLECULAR HEIGHT OF STACK GAS
MWS s MO * (1. - (BHO/100)) * 18. • (BHO/100)
MWS a 30.23* (1. -(11.48/100)) + 18. * (11.48/100) 3 28.83
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. OF THE S(1RT(VH * (TS * 460.))
VS » 85.19 • CP * DELP / (SQRT(MWS * P5) » PUTS)
VS = 85.49 * .64 • 273.37? / (SQKU 28.83 * 30.02) * 12. = 55.bl FHS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS * AS * 3600/144
OS 3 55.61 * 20bl2. 3bOO/144 = 28b57476. ACFH
STACK 6AS VOLUMETRIC FLOW AT STANDARO CONDITIONS
OSSTD * 17.647 • OS * PS » (1. - (BHO/100)) / (TS + 4bU.)
17.647 * 28657476. * 30.02 » (1. - (11.48/100))
OSSTO a = 17513744. SCFH
( 307. * 460.)
PERCENT ISOKINETIC
ISO « (305.5»*(TS»460.))*((0.002669*VLC)»(VM*V*(PB*(PM/13.6))/(TM»460.)))/(TT*VS*PS*ON*DN)
(30S.58*( 307.+460.))*((0.002669* 177.)«( 64.960* .983*( 30.06+( 1.032/13.6))/( 68.«460.)))
ISO 3 ......... ................ . .. ..... ... -, a 98.59 PERCENT
120. * 55.61 * 30.02 * .221 * .221
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS « 0.001 * MN * 15.43 / VMSTO
CS = 0.001 * 336.7 * 15.43 / 64.260 = .0808 GR/DSCF
-------
FIELD DATA
PLANT
SAMPLING LOCATION UNIT TWO FAST
SAMPLE TYPE MSB
OPERATOR CLARKE
AMBIENT TEMP. (HER. ft 64.
BAR. PRESS. (IN.HG) 30.06
STATIC PRESS. ( IN. H?0) -.60
FILTER NUMRER(S) 353101*
STACK INSIDE DIM. (IN) 162.00 .00
PITOT TUBE COEFF. .84
THERM. NO. 206
LEAKAGE .000 CFM a 8.0 IN.HG
METER CALIB. FACTOR 1.030
READ & RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE PRESSURE STACK
POINT TIME TIME REAPING HFAD DIFFERENTIAL TEMP
NO. (MIN.) (24-HR (CU.FT.) (IN.H20) (IN.H20) (DEG.F)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
l*L.Ul*n 9
9«50
1000
1010
10?0
1030
1040
1050
1100
1110
1120
1130
1140
1150
DESIRED ACTUAL
622.701
629.125
633.433
638.490
643.625
648.656
654.150
659.210
663.750
669.100
674.125
679.815
684.453
.710
.710
.710
.650
.650
.680
.680
.680
.700
.650
.650
.650
.09
.09
.09
.00
.00
.04
.04
.04
.07
.99
.«>9
.99
.10
.10
.09
.00
.00
.00
.00
.00
.10
.00
.00
.00
305.
306.
307.
305.
307.
308.
309.
307.
309.
308.
308.
308.
DATE 02/07/83
RUN NUMBER 1DM5B
PROBE LENGTH S TYPE 5 FT GLASS
NOZZLE : 1.0. .215
ASSUMED MOISTURE 10.0
SAMPLE BOX NUMBER
METER BOX NUMBER FB4
METER HEAD DIFF. i.ee
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 1174.2
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.HG) (DEG.F) (DEG.F)
INLET OUTLET
58.
60.
62.
65.
68.
68.
68.
68.
68.
67.
67.
66.
60.
59.
59.
60.
60.
60.
62.
62.
62.
62.
62.
61.
2.0
2.5
3.0
3.5
3.5
4.0
4.5
5.0
6.0
6.5
6.5
7.0
307.
334.
304.
341.
315.
317.
328.
334.
319.
319.
332.
336.
«9.
50.
50.
48.
48.
48.
49.
51.
50.
49.
48.
48.
TOTALS
AVERAGE
120.0
61.752
1.04
1.03 307.
65.
61,
4.5
324,
49.
-------
PARTICIPATE FIELO RATA » RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
CLARKE
TEST 1DM5B
UNIT TWO EAST
TEST D
TB
TF
TT
NP
V
DN
CP
ATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
ENGLISH UNITS
02/07/83
950
1150
120.0
12
1.030
.215 IN
.84
METRIC UNITS
02/07/83
950
1150
120.0
12
1.030
5.5 MM
.84
00 VM
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE 6AS METER TEMP
VMSTO VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VWC VOLUME OF WATER VAPOR
AT STANDARD CONDITIONS*
BHO PERCENT MOISTURE RV VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE,}
FMD MOLE FRACTION DRV GAS
PC02 PEHCENT C02 BY VOL.. DRY
P02 PERCENT 02 BY VOL.. DRV
PCO PERCENT CO BY VOL.. DRV
PN2 PFRCENT N2 BY VOL.. DRY
MO MOLECULAR WT-DRY STACK GAS
1.03 IN-H20
61.752 CU-FT
26.2 MM-H?0
1.749 CU-M
63
64
172
8
11
13
2
84
30
.1 F
.665 SCF
.9
.138 SCF
...
.888
.35
.45
.00
.20
.23
17
1
172
11
13
2
84
30
.3 C
.831 SCM
.9
.230 SCM
.18
.888
.35
.45
.00
.20
.23
-------
MMS MOLECULAR WT-STACK GAS
PB BAROMETRIC PRFS3URE
PSI STATIC PRES OF STACK 6AS
PS STACK PRES, ABS.
T3 AVERAGE STACK TEMP
VS AV6 STACK GAS VFLOCITV
AS STACK AREA
OSSTO STACK FLOW RATE, DRV*
OS ACTUAL STACK FLOM RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICUI.ATE
MG. EPA 5
CS AMBIENT PARTICULATE
?6.B7
30.06 IN-HG
-.60 IN-H20
30.02 IN-HG
307. F
55.6 FPS
20612. SQ-IN
17561684. SCFH
28639348. ACFH
104.5
309.3
.0738 GR/OSCF*
763.52 MM-HG
-15.24 MM-H20
76?.40 MM-HG
153. C
16.9 MPS
13.298 SO-M
497294. SCMH
810981. ACMH
104.5
309.3
168.928 MG/DSCM
* 68 DE6 F, 29.92 IN.H6.
-------
EXAMPLF PARTTCULATF CALCULATIONS TFST NO
UNIT TWO FAST
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD = (IT. 647 • VM • Y * (PB * PM / 13.6)) / (TM » 460.)
17.647 * 61.752 • 1.030 • ( 30.06 * 1.033 / 13.6)
VMSTD = -------------------- — — — --------------- - ----------- •
( 63. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC * .04707 * VLC
VWC » .04707 * 173. s 8.1« SCF
PERCENT MOISTURE IN STACK GAS
BMO * (100. * VMC) / (VMSTO * VNC)
100. * 8.14
BMO . „_„.————————• s 11.18 PERCENT
64.665 * 8.14
MOLE FRACTION OF DRV STACK GAS
FMD « (100. - RNO) / 100.
100. - 11.2
FMD a —— ..—.—.— s .888
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MD = (PC02 * .44) * (P02 * .32) * (PN2 * PCO) * .28
MD = (13.35*44/100) * ( 2.4*32/100) * ((B4.2* .0) * 28/100 = 30.23
MOLECULAR WEIGHT OF STACK GAS
MHS * MD * (1. - (Bwn/100)) * '»• * (Bt»0/100)
MWS * 30.23* fl. -(11.1«/100)) * 16. * (11.18/100) = 28.87
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. OF THE SORTfVH * (TS » 460.))
VS = 85.49 * CP * DELP / (SORT(MWS • PS) * PNT5)
VS * 85.49 * .84 * 273.377 / (SQRT( 28.87 * 30.02) • 12. = 55.58 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS « VS * AS • 3600/144
OS s 55.58 • 20612. 3600/144 s 28639348. ACFH
STACK GAS VOLUMETRIC FLOM AT STANDARD CONDITIONS
OSSTD * 17.647 * OS • PS * (1. - (BMO/100)) / (TS * 460.)
17.647 • 2*639348. * 30.02 * (1. - (11.18/100))
OSSTD s — .................. ....... . . B 17561684. SCFH
( 307. * 460.)
PERCENT ISOKINETIC
ISO a (305.58*(TS«4bO.))*((0.002669*VLC)+(VM*V*(PB+(PM/13.6))/(TM+460.)))/(TT*VS*PS*DN*DN)
(305.58M 307.*460.))M(0.002669* 173.)*( 61.752*1.030*( 30.06+( 1.033/13.6))/( 63.*460.)))
ISO s — .....—. ... s 104.54 PERCENT
120. * 55.58 * 30.02 * .215 * .215
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 • MN * 15.43 / VMSTD
CS s 0.001 * 309.3 * 15.43 / 64.665 = .0738 GR/DSCF
-------
FIELD DAT*
to
to
PI iMT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP
UNIT
2 EAST
M5B 304 S02
(OER F)
BARlpHESS.riN.HG)
STATIC PRESS
.(TN.H20)
FILTER NUMBER(S)
STACK INSIDE
OTM.(IN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB.
FACTOR
PR RA
65.
30.07
-.60
PATE
RUN NUMBER
02/07/83
2AM5B
PROBE LENGTH & TYPE
NOZ/LE ?A
: I.D
5 FT
GLASS
.224
ASSUMED MOISTURE
SAMPLE BOX
NUMBER
METER BOX NUMBER
3531013
162.
.84
178
.000
1.003
READ & RECORD DATA EVERY 10.0
TRAVERSE SAMPLE CLOCK GAS METER
POINT TIME TIME READING
NO. (MIN.) (24-HR (CU.FT.)
INIT
0
10. 0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110. 0
120.0
CLOCK)
1410
0
0
0
0
0
0
0
0
0
0
0
0
504.942
510. 86*
516.599
522.411
528.144
533.875
539.638
545.535
551.392
557.213
563.067
566.934
574.595
00 .00
METER HEAD
DIFF.
PROBE HEATER SETTING
CFM a 10.0 IN.HG
MINUTES
VELOCITY ORIFICE PRESSURE STACK
HEAD DIFFERENTIAL TEMP
(IN.H20) (IN.H20) (OEG.F)
DESIRED
.700 .08
.700 .08
.700 .08
.680 .04
.680 .04
.6AO .04
.710 .09
.710 .09
.710 .09
.700 .08
.700 .08
.650 .00
ACTUAL
.08 305.
.08 309.
.08 309.
.04 310.
.04 310.
.04 309.
.09 310.
.09 311.
.09 311.
.08 310.
.08 311.
.00 310.
HEATER BOX
K FACTOR
DRY GAS METER
TEMP
(OEG.F)
INLET OUTLET
64. 63.
66. 64.
70. 64.
73. 65.
75. 66.
76. 67.
76. 67.
77. 68.
78. 68.
79. 69.
80. 70.
82. 70.
SETTING
PUMP
VACUUM
(IN.HG)
4.
4.
5.
5.
6.
6.
7.
7.
7.
8.
8.
8.
5
5
0
5
0
5
0
5
5
0
5
5
10.0
FB
1.72
320.
320.
1182.
SAMPLE
BOX TEMP
(OEG.F)
325
303
325
330
326
332
333
320
333
320
330
324
.
.
.
.
.
•
.
•
.
.
«
•
9
IMPINGER
TFMP
(OEG.F)
48.
48.
48.
53.
53.
52.
52.
62.
62.
52.
53.
62.
TOTALS
AVERAGE
120.0
69.653
1.07
1.07
310,
75.
67.
6.6 325.
54.
-------
PARTICIPATE FIELD OAT* & RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PR RA
TEST 2AM5B
UNIT 2 FAST
ENGLISH UNITS
TEST
TB
TF
TT
NP
v
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
02/07/83
1410
0
120
12
1
1
.0
.003
.224 IN
.04
.07 IN-H20
METRIC UNITS
02/07/H3
1410
0
120.
12
1.
5.
•
27.
0
003
7
84
1
MM
MM-I
DROP
VM VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILTCA GEL,ML,
VNC VOLUMF OF WATER VAPOR
AT STANDARD CONDITIONS*
BMO PERCENT MOISTURE BV VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
FMD MOLE FRACTION DRV GAS
PC02 PERCENT C02 BY VOL., DRV
P02 PERCENT 02 BV VOL.* 0»V
PCO PERCENT CO BV VOL., DRV
PN2 PERCENT N2 BV VOL.. DRV
MD MOLECULAR WT-DRV STACK GAS
69.653 CU-FT
1.972 CU-M
70
70
176
8
10
13
2
«3
30
.7 F
.036 SCF
.8
.322 SCF
.62
.894
.60
.95
.00
.4S
.29
21
1
176
10
11
2
83
30
.5 C
.983 SCM
.»
.236 SCM
.62
.894
.60
.95
.00
.45
.29
-------
MHS MOLECULAR WT-STACK GAS
PB BAROMETRIC PRESSURE
P3I STATIC PRFS OF STACK GAS
PS STACK PRES, ABS.
T3 AVERAGE STACK TEMP
VS AV6 STACK CAS VFLOCTTV
AS STACK AREA
OSSTO STACK FLO** RATE, DRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICULATE
10.07 IN-HG
-.60 IN-H20
30.03 IN-HG
310. F
56.i FPS
20612. Sfl-IN
17828276. SCFH
2B970800. ACFH
102.7
389.7
.0859 GR/DSCF*
28.99
763,78 MM-HG
-15.2« MM-H20
6 MM-HG
C
17.1 MPS
13.298 SO-M
S04A43. SCMH
B?0366. ACMH
102.7
389.7
196.520 MG/OSCM
• 68 OEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICULATF CALCULATIONS TFST NO. 2AM5R
UNIT 2 EAST
VOLUME OF DRV GAS SAMPLED AT STANDARD CONDITIONS
VMSTD « (17.647 * VM * Y * (PB » PM / 13.6)) / (TM * 460.)
17.647 * 69.653 * t.003 » ( 30.07 * 1.066 / 13.6)
VMSTD s --------------------- ................................. 70.036 DSCF
( 71. » 460.)
VOLUME OF HATER VAPOR AT STANDARD CONDITIONS
VWC « .04707 » VLC
VMC * .04707 * 177. * 8.32 SCF
PERCENT MOISTURE IN STACK GAS
BNO s (100. * VNC) / (VMSTD * VMC)
100. * ft. 3?
BMO * ——.—.... ----- ......... 3 10.62 PERCENT
70.036 * B. 32
MOLE FRACTION OF DRY STACK 6*3
FMD > (100. • B*0) / 100.
100. - 10.6
— ----- — ------- .....
100.
AVERAGE MOLECULAR METGHT OF DRV STACK GAS
MO a (PC02 • .44) * (P02 * .12) * (PN2 * PCO) • .28
MD a (13.60*44/100) * ( 2.9*32/100) * f(B3.4+ .0) • 20/100 a 30.29
MOLECULAR WEIGHT OF STACK GAS
MH9 * MD * (1. - (BWO/100)) » 18. • (BWO/100)
MWS * 30.29* (1. -(10.62/100)) » 18. * (10.62/100) = 28.99
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DEtP s SUM. OF THE SORT(VH * (TS * 460.))
VS s 85.49 » CP * OELP / (SQRT(MHS * PS) * PNTS)
VS s 85.49 * .84 • 277.170 / (SQRT( 28.99 • 30.03) • 12. = 56.22 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS * AS • 3600/144
OS * 56.22 * 20612. 3600/144 = 28970800. ACFH
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTD * 17.647 * OS * PS * (1. " (RHO/100)) / (TS * 460.)
17.647 * 28970000. * 30.03 * (1. • (10.62/100))
OSSTD * —— • s 17828276. SCFH
( 310. * 460.)
PERCENT ISOKINETTC
ISO * (305.5«*(TS+460.))«((0.002669*VLC)+(VM*Y*(PB+(PM/13.6))/(TM+460.)))/(TT*VS*PS*DN*ON)
(305.58*( 310.+460.))*((0.002669* 177.)+( 69.653*1.003*( 30.07*( 1.066/13.6))/( 71.+460.)))
180 a . ............ — — a 102.74 PFRCENT
120. * 56.22 * 30.03 * .224 * .224
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS a 0.001 * MN * 15.43 / VMSTO
CS s 0.001 « 389.7 * 15.43 / 70.036 a .0859 GR/DSCF
-------
FIELD DATA
NJ
PLANT
SAMPLING LOCATION UNIT 2 EAST
SAMPLE TYPE PM5B 304 302
OPERATOR PR RA
AMBIENT TEMP. (PER. F) 65.
BAR. PRESS. (IN. HG) 30.07
STATIC PRESS. (TN.H20) -.60
FILTER NUMBERCSJ 3531017
STACK INSIDE OTM.(IN) 162.00 .00
PITOT TUBE COEFF. .84
THFRM. NO. 117
LEAKAGE .020 CFM a 13.
METER CALIB. FACTOR .960
READ ft RECORD DATA
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
ao.o
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
CLOCK
TIMF
(24-HR
t* i rtf if i
CLOCK I
1410
0
0
0
0
0
0
0
0
0
0
0
0
EVERY 10.0
6AS METER
READING
(CU.FT.)
19.804
26.053
32.238
38.421
44.544
50.624
56.790
63.104
69.366
75.637
81.936
88.211
94.225
MINUTES
VELOCITY
HEAD
(IN.H20)
.700
.700
.700
.680
.660
.660
.710
.710
.710
.700
.700
.650
0 IN.HG
ORIFICE
DATE 02/07/83
RUN NUMBER 2BM5B
PHOBE LENGTH ft TYPE 6 FT GLASS
NOZZLE : I.D. .227
ASSUMED MOISTURE 10.0
SAMPLE BOX NUMBER
METER BOX NUMHFR FB6
METER HEAD OIFF. i.so
PROBE HEATER SETTING 320.
HEATER BOX SFTTING 320.
K FACTOR 1088.0
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
1.00
.99
.99
.96
.96
.96
1.00
1.00
1.00
.99
.99
.92
H20)
ACTUAL
1.00
.99
.99
.96
.96
.96
1.00
1.00
1.00
.99
.99
.92
STACK
TEMP
(OEG.F)
305.
309.
309.
310.
310.
110.
310.
311.
311.
310.
311.
310.
DRV GAS
METER
TEMP
(OF.G
INLET
59.
60.
65.
68.
69.
70.
70.
70.
70.
71.
72.
72.
.F)
OUTLET
59.
59.
60.
60.
60.
62.
62.
62.
63.
64.
64.
65.
PUMP
VACUUM
(IN.HG)
4.5
5.0
5.5
6.0
6.0
7.0
8.0
8.0
8.5
9.0
10.0
9.5
SAMPLE
BOX TEMP
(DEG.F)
331.
320.
324.
317.
331.
315.
325.
316.
325.
318.
322.
319.
IMPINGER
TEMP
(DEG.F)
48.
«8.
48.
49.
49.
53.
53.
59.
59.
53.
53.
59.
TOTALS
AVERAGE
120.0
72.021
.98
.98 310.
68.
62,
7.3 322.
53.
-------
PARTICIPATE
PLANT- NAME AND ADDRESS
DATA ft RESULTS TABULATION
TEST TEAM LEADER
PR RA
TEST 2BM5B
UNIT 2 FAST
TEST
TB
TF
TT
NP
Y
DN
CP
PM
DATE
TIME-START
TIME-FINISH
NET TTME OF TEST, HIM.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING N07ZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
02/07/83
1410
0
120.0
12
.960
.227 IN
.84
.98 IN-H20
METRIC UNITS
02/07/83
1410
0
120.0
12
.960
5.8 MM
.84
24.9 MM-
M
00 VM
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
72.021 CU-FT
TM AVERAGE GAS MFTFR TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINRERS AND SILICA GEL,ML,
VMC VOLUME OF WATER VAPOR
AT STANDARD CONDITIONS*
BMO PERCENT MOISTURE BY VOLUME
(CHECK AGAINST SATURATION
POINT MAS BEEN MADE*}
FMD MOLE FRACTION DRV GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRV
PCO PERCENT CO BY VOL., DRV
PN2 PERCENT N2 RY VOL., DRY
MD MOLECULAR WT-ORY STACK GAS
2.039 CU-M
64.8 F
70.073 SCF
183.8
8.651 SCF
10.99
.890
13.60
2.95
.00
83.45
30.29
18
1
183
10
13
2
83
30
.2 C
.984 SCM
.a
.245 SCM
.99
.890
.60
.95
.00
.45
.29
-------
MMS MOLECULAR WT-STACK GAS
PB BAROMETRIC PRESSURE
P3I STATIC PRES Of STACK GAS
PS STACK PPES, ARS.
T9 AVERAGE STACK TFMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTD STACK FLOW RATE. PRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICULATE
28.91
30.07 IN-HG
-.60 IN-H20
30.01 IN-HG
310. F
FPS
56.3
20612.
17767612.
28995052.
100. 4
378.0
SQ-IN
SCFH
ACFH
.0832 GR/DSCF*
28.94
763.78 MM-HG
-15.24 MM-H20
762.66 MM-HG
154. C
17.2 MPS
13.298 SQ-M
503126. SCMH
821053. ACMM
100.4
378.0
190.517 MG/DSCM
I * 68 DEB F, 29.92 IN.HG.
to
vo
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. 2BM58
UNIT ? EAST
VOLUME OF DRY GAS SAMPI £0 AT STANDARD CONDITIONS
VMSTD * (17.647 * VM * V • (PB » PM / 13.6)) / (TM » 460.)
17.647 • 72.021 * .960 • ( 30.07 * .980 / 13.6)
VMSTD * - ----------- - ---- — — — ---------------------------- = 70.073 DSCF
( 65. * 460.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VMC » .04707 * VLC
VHC * .04707 * 164. * 8.63 SCF
PERCENT MOISTURE IN STACK GAS
BHO r (100. • VWC) / (VMSTD * VHC)
100. * 8.65
..... r 10.99 PERCENT
70.073 * 6.65
MOLE FRACTION OF DRV STACK CAS
FMD * (100. - BHO) / 100.
100. - 11.0
FMD a —.——————•— s .890
100.
AVERAGE MOLECULAR WEIGHT OF DRV STACK GAS
MB = (PC02 * .44) * (P02 * .32) * CPN2 * PCO) • *2*
MD s (13.60*44/100) * ( 2.9*32/100) * ((K3.4* .0) * 26/100 s 30.29
MOLECULAR HEIGHT OF STACK GAS
MWS r MO • (1. - (BHO/100)) * 16. • (BHO/100)
MHS » 30.29* (1. -(10.99/100)) * 16. * (10.99/100) = 28.94
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP = SUM. OF THE SORT(VH * (TS » 460.))
VS = 85.49 • CP * DELP / (SORUMWS * PS) * PNTS)
VS s 85.49 • .84 * 277.185 X (SORT( ?8.94 • 30.03) * 12. s 56.27 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS « VS • AS • 3600/144
OS s 56.27 • 20612. 3600/144 a 2A99505?. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
QS3TD a 17.647 • OS • PS • (I. " (BMO/100)) / (TS * 460.)
17.647 * 29995052. * 30.03 * (1. - (10.99/100))
OSSTD » .——..— —— — —— s 17767612. SCFH
( 310. * 460.)
^ PERCENT ISOKINETIC
^ ISO * (305.58*(TS*460.))*((0.002669*VLC)*(VM*r*(PB*(PM/13.6))/(TM*460.)))/(TT*VS«P3*DN*ON)
(305.58*( 310.+460.))«((0.002669* 184.)*( 72.021* .960*( 30.07»( .980/13.6))/( 65.*460.)))
ISO * - ........ * 100.44 PFRfENT
120. * 56.27 * 30.03 * .227 • .227
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 * MN * 15.43 / VMSTD
CS s 0.001 « 378.0 • 15.43 / 70.073 e .0832 GR/DSCF
-------
FIELD DATA
U)
to
PLANT
SAMPLING LOCATION UNIT TWO EAST
SAMPLE TYPE M5BW
OPERATOR CLARKE
AMBIENT TEMP. (HER. F) 58.
BAR. PRESS. (IN. HG) 30.07
STATIC PRESS. (IN. H20) -.60
FILTER NUMBER(S) 3531070
STACK INSIDE OTM.(IN) 163.00 .00
PITOT TUBE COEFF. .84
THFRM. NO. 178
LEAKAGE .001 CFM 9 7.
METER CALIB. FACTOR .983
READ t RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
TTME
(24-HP
CLOCK)
1410
14?0
1410
jaoo
1450
1500
1510
15?0
1510
1540
1550
1600
1610
READING
(CU.FT.)
118.570
133.900
128.975
134.150
139.000
144.404
149.194
154.525
159.500
164.810
169.750
174.495
180.021
HFAD
(IN.H20)
.700
.700
.700
.680
.680
.680
.710
.710
.710
.700
.700
.650
0 IN.HG
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
.91
.90
.90
.88
.88
.88
.92
.92
.02
.90
.90
.84
H20)
ACTUAL
.91
.90
.90
.88
.88
.88
.92
.92
.92
.90
.90
.84
STACK
TEMP
(DEG.F)
305.
309.
309.
310.
310.
309.
310.
311.
311.
310.
311.
310.
DATE 02/07/83
RUN NUMBER 2CM5BM
PROBE LENGTH ft TYPE 6 FT GLASS
NOZZLE : I.D. .211
ASSUMED MOISTURE 10.0
SAMPLE BOX NUMBER
METER BOX NUMBER FBS
METER HEAD OIFF. I.B«
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 992.4
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP
(DEC
INLET
62.
64.
69.
73.
75.
77.
78.
78.
78.
80.
80.
80.
.F)
OUTLET
6?.
6?.
63.
64.
65.
68.
67.
68.
68.
69.
70.
70.
VACUUM
(IN.HG)
.0
.0
.0
.5
.5
5.0
5.5
5.5
6.0
6.0
6.5
6.5
BOX TEMP
(DEG.F)
316.
331.
320.
317.
328.
321.
324.
329.
322.
328.
326.
329.
TFMP
(DEG.F)
50.
«8.
48.
52.
54.
58.
56.
60.
62.
51.
51.
60.
TOTALS
AVERAGE
120.0
61.451
.90
.90 310.
75.
66.
5.2 324.
54.
-------
PARTICIPATE FIELD DATA & RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
CLARKE
TEST 2CM5BH
UNIT TWO FAST
TEST
TH
TF
TT
NP
v
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TF.ST, MIN.
NET SAMPLING POINTS
MF.TER CALIBRATION FACTOR
SAMPLING N07ZI.E DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
02/07/83
1410
1610
120.0
12
.983
.211 IN
.84
.90 IN-H20
METRIC UNITS
02/07/83
14|0
1610
120.0
12
.983
5.4
.84
22.8
MM
MM-
DROP
VM VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS MF.TFR TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTFO IN
IMPINGERS AND SILICA GEL,ML.
VWC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BHO PERCENT MOISTURE BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEFN MAOF.)
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MD MOLECULAR NT-DRY STACK GAS
61.451 CU-FT
1.740 CU-M
70
60
160
7
11
13
2
83
30
.4 F
.565 SCF
.1
.536 SCF
.07
.889
.60
.95
.00
.45
.29
21
1
160
11
13
2
83
30
.3 C
.715 SCM
.1
.213 SCM
.07
.889
.60
.95
.00
.45
.29
-------
MWS MOLECULAR WT-STAC* GAS
PB BAROMETRIC PRESSURE
PSI STATIC PHES Of STACK GAS
PS STACK PRES, A«3.
TS AVERAGE STACK TFMP
VS AVG STACK CAS VELOCITY
AS STACK AREA
OSSTD STACK FLOW RATE. OR»»
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
HN AMBIENT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICULATE
?6.93
30.07
-.60
30.03
310.
56.3
20612.
17756224.
2A996200.
100.5
100.0
IN-HG
1N-H30
IN-HG
F
FPS
SO-IN
SCFH
ACFH
28.93
763. 7B
•15.24
762.66
154.
17.2
13.29»
502003.
821142.
100.5
100.0
MM-HG
MM-H20
MM-HG
C
MPS
sn-M
SCMH
ACMH
.0255 GR/DSCF*
50.314 MG/DSCM
* 66 DEC F, 39.92 TN.HG.
-------
EXAMPLF PARTICIPATE CALCULATIONS TEST N0.2CM5BW
UNIT TWO CAST
VOLUME OF DRV RAS SAMPLED AT STANDARD CONDITIONS
VMSTD s (17.647 * VH * V * (PB * PM / 13.6)) / (TM «• 460.)
17.647 • 61.451 • .983 • ( 30.07 » .896 / 13.6)
VMSTO s —..————————-. — — --.---- — — -- — - — -- « 60.S6S D3CF
( 70. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC s .04707 * VLC
VWC * .04707 * 160. * 7.54 SCF
PERCENT MOISTURE IN STACK GAS
BNO * (100. * VMC) / (VMSTD * VMC)
100. * 7.54
BHO * — — ——— a 11.07 PERCENT
60.565 * 7.54
MOLE FRACTION OF DRV STACK GAS
FMD * (100. • BNO) / 100.
100. • 11.1
FMD * — —— * .B89
100.
AVERAGE MOLECULAR HEIGHT OF DRV STACK GAS
MO s (PC02 * .44) * (P02 * .32) * (PN2 * PCO) * .2fl
MD = (13.60*44/100) * ( 2.3*32/100) * ((«3.4» .0) * 28/100 * 30.29
MOLECULAR MEIGHT OF STACK RAS
MHS = MD * (i. - (RMi/ioon + ia. * (BMO/IOO)
MWS = 30.29* (I. "(11.07/100)) * 18. * (11.07/100) = 28.93
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. OF THE SORT(VH • (TS «• 460.))
VS s 85.«9 * CP * DELP / (SQRT(HMS * PS) * PNTS)
VS a 85.49 * .84 * 277.170 / (SORT( 28.93 * 30.03) * 12. s 56.27 FPS
STACK GAS VOLUMETRIC FLOM AT STACK CONDITIONS
OS r VS * AS * 3600/144
OS * 56.27 * 20612. 3600/144 s 28998200. ACFH
STACK GAS VOLUMETRIC FLOM AT STANDARD CONDITIONS
OSSTD * 17.647 * US * PS • (I. • (BWO/100)) / (TS * 460.)
17.647 • 2«998200. * 30.03 * (1. - (11.07/100))
OSSTD * .—.———....................................... s 17756224. SCFH
( 310. * 460.)
PERCENT ISOKTNETIC
ISO « (305.58*(TS«46A.))*((0.002669*VLC)+(VM*V*(PB+(PM/13.6))/(TM«460.)))/(TT*VS*PS*ON*DN)
(305.58*( 310.+460.))ft((0.002669* 160.) + ( 61.451* .9«3*( 30.07+( .S96/13.6))/( 70.+460.)))
ISO a ............... .—. . . . ... . ............. , 100.54 PERCENT
120. * 56.27 * 30.03 * .211 * .211
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN * 15.43 / VMSTD
CS * 0.001 « 100.0 * 15.41 / 60.565 s .0255 GR/OSCF
-------
FIELD DATA
U>
PLANT
SAMPLING LOCATION UNIT TWO FAST
SAMPLE TYPE M5BM
OPERATOR CLARKE
AMBIENT TEMP.(f)EG.F) 58.
BAR. PRESS. (IN.HG) 30.07
STATIC PRESS. (IN. H?0) -.60
FILTFR NUMBER(S) 3531069
STACK INSIDE DTM.(IN) 162.00 .00
PITOT TUBE COEFF. .84
THFRM. NO. 178
LEAKAGE .002 CFM 9 9.
METER CALIR. FACTOR i.oso
READ ft RECORD DATA
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
CLOCK
TIME
(24-HR
1410
14?0
1430
1440
1450
1500
1510
15?0
1530
1540
15SO
1600
1610
EVERY 10.0
CAS METER
READING
(CU.FT.)
684.704
689.725
694.200
699.800
704.174
709.097
713.445
718.99*
723.430
728.811
733.525
737.990
743.154
MINUTES
VELOCITY
HEAP
(IN.H20)
.700
.700
.700
.680
.680
.680
.710
.710
.710
.700
.700
.650
0 IN.HG
ORIFICE
DATE 02/07/83
RUN NUMBER 2DM5RM
PROBE LENGTH « TYPE 5 FT GLASS
NOZZLE ! I.D. .210
ASSUMED MOISTURE 10.0
SAMPLE BOX NUMBER
METER BOX NUMRFR FBA
METER HEAD DIFF. 1.88
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 992.4
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
.91
.90
.90
.86
.88
.88
.Og
.92
.92
.90
.90
.84
H20)
ACTUAL
.90
.90
.90
.88
.88
.88
.92
.92
.92
.90
.90
.84
STACK
TEMP
(DEG.F)
305.
309.
309.
310.
310.
309.
310.
311.
311.
310.
311.
310.
DRV GAS
METER
TEMP
(UEG
INLET
6?.
63.
65.
68.
69.
70.
70.
70.
70.
71.
71.
72.
.F)
OUTLET
61.
61.
61.
62.
62.
64.
64.
64.
64.
66.
65.
66.
PUMP
VACUUM
(IN.HG)
5.0
5.0
5.0
5.5
.0
.5
.0
.5
.0
.5
.0
.0
SAMPLE
BOX TEMP
(DEG.F)
317.
327.
312.
312.
331.
317.
313.
330.
326.
333.
342.
335.
IMPINGER
TEMP
(DEG.F)
49.
49.
48.
53.
57.
60.
61.
62.
60.
55.
54.
64.
TOTALS
AVERAGE
120.0
58.450
.90
.89
310.
68.
63.
6.8 325.
56.
-------
PARTICULATE FIELD DATA t RESULTS TABULATION
PLANT" NAME AND ADDRESS TEST TEAM LEADER
CLARKE
TEST 2DM5BW
UNIT TWO EAST
ENGLISH UNITS
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
>
OJ
oo VM
TM
VMSTD
VLC
VMC
BMO
FMO
pco2
P02
PCO
PN2
MO
TIME-START
TIME-FINISH
NET TIMF OF TEST. MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE CAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H?0 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF WATFR VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE RY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
MOLE FRACTION DRV GAS
PFRCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL.t DRY
PERCENT N2 BY VOL.. DRV
rXECULAR WT-ORY STACK GAS
02/07/83
1410
1610
120
12
1
58
65
60
160
7
11
13
2
83
SO
.0
.030
.210 IN
.84
.89 IN-H20
.450 CU-FT
.9 F
.883 SCF
.0
.531 SCF
.01
.890
.60
.95
.00
.45
.29
METRIC UNITS
02/07/83
1410
1610
120.
12
1.
5.
•
22.
1.
IB.
1.
160.
•
11.
*
13.
2.
•
83.
30.
0
030
3
84
7
655
8
724
0
213
01
890
60
95
00
45
29
MM
MM-H20
CU-M
C
SCM
SCM
-------
MMS MOLECULAR NT-STACK CAS
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ARS.
TS AVERAGE STACK TFMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTD STACK FLOW RATE, DRY*
OS ACTUAL STACK ELON RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICIPATE
MR. EPA 5
CS AMBIENT PARTICULATE
28. 14
30.07
-.60
30.03
310.
56.3
20612.
17765544.
28994660.
102.0
100.0
IN-HG
IN-M20
IN-HG
F
EPS
SO-IN
SCEH
ACFH
2B.94
763. 7»
-15.24
762.66
154.
17.2
13.29B
503067.
821042.
102.0
100.0
MM-HG
MM-H20
MM-HG
C
MPS
SO-M
SCMH
ACMH
.0253 GR/DSCF*
58.010 MG/DSCM
U> * 68 DEG f, 29.92 IN.HG.
VD
-------
F.XAMPLF PARTICULATF CALCULATIONS TF3T N0.2nM«5BW
UNIT TWO PAST
VOLUME OF DRY GAS SAMPIED AT STANDARD CONDITIONS
VMSTD s (17.A47 * VM * Y * (PB » PM / 13.6)) / (TM + 460.)
17.647 • 58.450 * 1.030 * ( 30.07 t .895 / 13.6)
VMSTD s ——————— —————— — — — — ....... > 60.8K3 DSCF
( 66. «• 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC s .04707 * VLC
VMC s .04707 * 160. s 7.53 SCF
PERCENT MOISTURE IN STACK GAS
> BMO s (100. * VMC) / (VMSTD » VMC)
I
O 100. * 7.53
BMO s —— —————— s 11.01 PERCENT
60.883 » 7.53
MOLE FRACTION OF DRV STACK GAS
FMD a (100. - RMO) / 100.
100. - 11.0
FMD a —————— > .890
100.
AVERAGE MOLECULAR WEIGHT OF DRV STACK GAS
MD * (PC02 * *4«) * CP02 * »32) * (PN2 * PCQ) • *28
MO s (13.60*44/100) + ( 2.9*32/100) * ((83.4* .0) * 28/100 a 30.29
MOLECULAR MEIGHT OF STACK GAS
MMS s MO * (1. - (flWfl/tOO)) + 18. * (BHO/100)
MWS > 30.29* (1. -(11.01/100)) + 18. * (11.01/100) a 28.94
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP = SUM. OF THE snRT(VH * (TS * 460.))
VS * 85.49 * CP * OELP / (SQRT(MWS * PS) * PNTS)
VS * 85.49 * .84 * 377.170 / (SORTf 28.94 * 30.03) * 12. = 56.27 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS * AS * 3600/144
OS * 56.27 • 20612. 3600/144 = 28994660. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD = 17.647 * OS • PS • (1. - (BNO/IOO)) / (TS * 460.)
17.647 * 28994660. * 30.03 * (1. • (11.01/100))
OSSTD * —— ............. . . i 17765544. SCFH
( 310. 4 460.)
PERCENT ISOKINETIC
ISO » (305.58*(TS+460.))*((0.002669*VLC)«(VM*V*(PB+(PM/13.6))/(TM*460.)))/(TT*VS*PS*DN*DN)
(305.58M 310.+460.))*((0.002669* 160.)*( 58.450*1.030*( 30.07+( .895/13.6))/( 66.«460.)))
ISO * —— ........ .... . . . ...... ... . ... - 101.98 PERCENT
120. * 56.27 « 30.03 * .210 * .210
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 * MN * 15.43 / VMSTO
CS = 0.001 * 100.0 * 15.43 / 60.883 = .0253 GR/DSCF
-------
FIELD DATA
I
*>
to
PLANT
SAMPLING LOCATION UNIT 2 EAST
SAMPLE TYPE PART SOI S04
OPERATOR PR RA JP
AMBIENT TEMP.(nEG.F) 45.
BAR. PRESS. (IN. HG) 30.34
STATIC PRESS. UN. H20) -.60
FILTER NUMBER(S) 3531010
STACK INSIDE DIM. (IN) 163.00 .00
PITOT TUBE COEFF. .84
THFRM. NO. 206
LEAKAGE .010 CFM 9 9.
METER CALIR. FACTOR 1.003
READ » RECORD DATA
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
TO.O
ao.o
90.0
100.0
110.0
120.0
CLOCK
TIMF
(24-H9
CLOCK)
8«5
0
0
0
0
0
0
0
0
0
0
0
1045
0 IN.HG
DATE 02/08/83
RUN NUMBER SAMSB
PROBE LENGTH ft TYPE 5 FT GLASS
NOZZLE 1A : 1.0. .223
ASSUMED MOISTURE 11.1
SAMPLE BOX NUMBER
METER BOX NUMBER FB4
METER HEAD DIFF. 1.72
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 1093.5
EVERT 10.0 MINUTES
6AS METER
READING
(CO. FT.)
574.939
580.299
585.673
590.978
596.377
601.740
607.148
612.600
617.950
623.286
628.650
634.100
639.502
VELOCITY
HEAD
(IN.H20)
.650
.650
.650
.670
.670
.670
.680
.650
.650
.650
.680
.680
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.H20)
DESIRED
.93
.93
.93
.95
.95
.95
.97
.92
.92
.92
.96
.96
ACTUAL
.93
.93
.93
.95
.95
.95
.97
.92
.92
.92
.96
.96
STACK
TEMP
(DEG.F)
303.
306.
30*.
307.
309.
310.
310.
311.
311.
312.
313.
314.
DRY GAS
METER
TEMP
(DEG
INLET
46.
48.
53.
56.
60.
62.
63.
64.
65.
66.
66.
66.
.F)
OUTLET
45.
«5.
46.
46.
48.
50.
51.
52.
5?.
54.
55.
56.
PUMP
VACUUM
(IN.HG)
3.5
4.0
4.5
5.0
5.0
5.5
6.0
6.5
7.0
7.0
7.5
8.0
SAMPLE
BOX TEMP
(DEG.F)
321.
324.
334.
316.
322.
336.
330.
327.
318.
330.
319.
339.
IMPINGER
TEMP
(DEG.F)
43.
43.
45.
45.
45.
46.
37.
38.
39.
«o.
40.
45.
TOTALS
AVERAGE
120.0
64.563
.94
.94 310.
60.
50,
5.8
326,
42.
-------
PARTICIPATE FIFLO DATA ft RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PR RA JP
TEST 3AM5B
UNIT 2 FAST
TEST DATE
TB
TF
TT
NP
V
ON
CP
>
U)
TIME-START
TIME-FINISH
NET TIME OF TFST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
ENGLISH UNITS
07/08/83
845
1045
120.0
12
1.003
.223 IN
.84
.94 IN-H20
METRIC UNITS
02/08/83
845
1045
120.0
12
1.003
5.7
.84
23.9
MM
MM-H20
VM VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VMC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BNO PERCENT MOISTURF BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
FMD MOLE FRACTION DRV GAS
PC02 PERCENT C02 BV VOL., DRV
P02 PERCENT 02 BV VOL., DRY
PCO PERCENT CO BV VOL., DRV
PN2 PFRCENT N2 BY VOL., DRV
MD MOLECULAR WT-ORY STACK GAS
64.563 CU-FT
1.828 CU-M
54.8 F
67.498 SCF
170.4
8.021 SCF
10.62
.894
13.70
2.35
.00
83.95
30.29
12.7
1.911
170.4
.227
10.62
.894
13.70
2.35
.00
83.95
30.29
C
SCM
SCM
-------
MWS MOLECULAR WT-STACK GAS
PB BAROMETRIC PRFS8URE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, AHS.
TS AVERAGE STACK TFMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTD STACK FLUN RATE, HRT*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICULATE
MR. EPA 5
CS AMBIENT PARTICULATE
2B.98
30.34 IN-HG
-.60 IN-H20
30.30 IN-HG
310. F
54.7 FPS
20612. SO-IN
17509204. SCFH
28195776. ACFH
101.7
356.9
.0816 GR/OSCF*
an.98
770.64 MM-HG
-15.24 MM-H20
769.52 MM-HG
154. C
16.7 MPS
13.298 SQ-M
495808. SCMH
798420. ACMH
101.7
356.9
186.744 MG/DSCM
* 68 DEG f, 29.92 IN.H6.
-------
EXAMPLE PARTICHLATF CALCULATIONS TEST NO. 3AM5B
UNIT 2 EAST
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD s (17.647 * VH * V * (PB * PM / 13.6)) / (TM «• 460.)
17.647 * 64.563 * 1.003 • ( 30.34 * .941 / 13.6)
VMSTD = ———.-.——........... —...... .... ....... - 67.498 OSCF
( SS. «• 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC s .04707 • VLC
VMC * .04707 * 170. * 8.02 SCF
PERCENT MOISTURE IN STACK GAS
> BNO * (100. * VMC) / (VMSTO * VMC)
I
*; 100. * 8.02
u BMO s — ———. * 10.62 PERCENT
67.498 * 8.02
MOLE FRACTION OF DRY STACK GAS
FMD * (100. - BHO) / 100.
100. - 10.6
FMD * - — - — —————. z .894
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
-*.
MD » (PC02 • .44) * (P02 * .32) * (PN2 * PCO) • .28
MO a (13.70*44/100) * ( 2.3*32/100) * ((A3.9+ .0) * 28/100 s 30.29
MOLECULAR WEIGHT OF STACK GAS
MMS = MD * (1. - (HMO/100)) «• 18. * (BMO/100)
MWS s 30.29* (1. -(10.62/100)) * 18. * (10.62/100) 3 28.98
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. OF THE SORT(VH * (TS •» 160.))
VS = 85.49 * CP * OELP / (9QRT(MHS * PS) * PNTS)
V3 s 85.49 * .84 • 270.992 / (SORT( 28. 9» • 30.30) * 12. a 54.72 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS * AS * 3600/144
OS * 54.72 * 20612. 3600/144 s 28195776. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD s 17.647 • OS • PS * (1. - (RWO/100)) / (TS «• 460.)
17.647 * 28195776. * 30.30 * (1. - (10.62/100))
OSSTD s ............ ................................ — ..... 3 17509204. SCFH
( 310. * 460.)
>
*• PERCENT ISOKINETIC
Oi
ISO * (305.58* (TS*460.))*((0.002669*VLC)*(VM*Y*(PB*(PM/1 3.6 ) ) / (TM*460.) ) ) / (TT*V3*PS*ON*DN)
(305.58*( 310. *460.))*((0. 002669* 170. ) + ( 64.563*1 .003* ( 30.34»( .941 /13.6) ) / ( 55.«460.)))
ISO * . ---------- - --- - ---- — — — — ------- - ------------------- — -------- .... . ------------------------ m 101.73 PERCENT
120. * 54.72 * 30.30 * .223 * .223
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS > 0.001 • MN * 15.43 / VMSTD
CS * 0.001 * 356.9 * 15.49 / 67.490 a .0816 GR/D3CF
-------
FIELO OAT*
ru«Ni
SAMPLING LOCATION UNIT 2 EAST
SAMPLE TYPE PART S03 802
OPERATOR PR RA JP
AMBIFNT TEMP.(nEG.F) 45.
BAR. PRESS. (IN.HG) 30.34
STATIC PRESS. ( IN. H?0) -.60
FILTER NUMBER(S) 3531009
STACK INSIDE DTM.(IN) 162.00 .00
PITOT TUBE COEFF. .84
THFRM. NO.
LEAKAGE .013 CFM a 9.5 IN.HG
METER CALIB. FACTOR .960
READ ft RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NO. (MIN.) (24-HB (CU.FT.) (IN.H20) (IN.H20) (DEG.F)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
845
0
0
0
0
0
0
0
0
0
0
0
1045
DESIRED
94.740
100.161
105.596
1I1.00A
116.514
122.076
127.591
133.181
138.664
144.100
149.581
155.196
160.804
.650
.650
.650
.670
.670
.670
.680
.650
.650
.650
.680
.680
.78
.78
.78
.80
.80
.80
.81
.77
.77
.77
.81
.81
ACTUAL
.78
.78
.78
.80
.80
.80
.81
.77
.77
.77
.68
.81
DATE 02/08/83
RUN NUMBER 1BM5B
PROBE LENGTH ft TYPF 6 FT GLASS
NOZZLE IB : I.D. .221
ASSUMED MOISTURE 11.1
SAMPLE BOX NUMBER
METER BOX NUMBER FB6
METER HEAD OIFF. 1.50
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 919.9
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.HG) (OEG.F) (DEG.F)
INLET OUTLET
303.
306.
308.
107.
309.
310.
310.
311.
311.
312.
312.
314.
40.
42.
46.
51.
54.
56.
57.
57.
58.
59.
59.
60.
42.
4ll
41.
41.
44.
45.
46.
46.
48.
49.
50.
50.
3.5
3.5
4.0
4.5
5.0
5.5
6.0
6.0
6.5
7.0
7.0
7.5
321.
328.
328.
329.
326.
312.
315.
339.
331.
337.
321.
335.
• 3.
43.
45.
45.
45.
46.
39.
39.
40.
40.
40.
43.
TOTALS
AVERAGE
120.0
66.064
.79
,78 309.
53.
46.
5.5 330.
42.
-------
PARTICIPATE FIFLO DATA 8. RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PR RA JP
TEST 3BM5B
UNIT 2 EAST
TEST DATE
TB
TF
TIME-START
TIME-FINISH
ENGLISH UNITS
02/08/03
805
1015
METRIC UNITS
02/00/H3
845
1005
NET TIME OF TFST, M1N.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS MFTER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VOLUME OF NATFR VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS SEEN MADE,!
MOLE FRACTION DRV GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR NT-DRY STACK GAS
120.0
12
.960
.221 IN
.64
.78 IN-H20
66.064 CU-FT
120.0
12
.960
5.6 MM
.84
19.« MM-H20
1.071 CU-M
«9.5 F
66.772 SCF
168.8
7.945 SCF
10.63
.894
13.70
2.35
.00
03.95
30.29
9
1
168
10
13
2
83
30
.7 C
.891 SCM
.0
.225 SCM
.63
.894
.70
.35
.00
.95
.29
-------
MM9 MOLECULAR WT-ST*C« GAS
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ARS.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
OSSTO STACK FLOW RATE, DRY*
OS ACTUAL STACK FLO* RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICULATE
30.51 IN-HG
-.60 IN-H?0
10.30 IN-HG
309. F
54.7 FPS
20612. SQ-IN
17508064. SCFH
28195020. ACFH
102.5
376.6
.0870 GR/DSCF*
770.64 MM-HG
-15.24 MM-H80
769.52 MM-HG
15«. C
16.7 MPS
13.298 SO-M
495776. SCMH
798398. ACMH
102.5
376.6
199.195 MG/OSCM
* 68 OEG F, 29.92 TN.HG.
-------
FKAMPLE PARTICULATF CALCULATIONS TFST NO. 3BM5B
UNIT 2 EAST
VOLUME OF DRV GAS SAMPLED AT STANDARD CONDITIONS
VM3TD a (17.647 • VM * V * (PB » PM / 13.6)) / (TM * 460.)
17.647 * 66.064 * .960 * ( 30.14 » .779 / 13.6)
VMSTD * .-..-...—...—.....——————.— ...... z 66.772 DSCF
( SO. * 460.)
VOLUME OF HATER VAPOR AT STANDARD CONDITIONS
VHC e .04707 * VLC
VHC * .04707 • 169. at 7.95 SCF
PERCENT MOISTURE IN STACK GAS
BHO = (100. * VHC) / (VMSTf) * VHC)
*? 100. * 7.95
Ui BWO » — — ..... s 10.63 PERCENT
O 66.772 * 7.95
MOLE FRACTION OF DRY STACK GAS
FMD * (100. - BHO) / 100.
100. - 10.6
FMD s ..... a .894
100.
AVERAGE MOLECULAR HEIGHT OF DRV STACK GAS
MO = (PC02 • ,«4) * CP02 * ,52) * CPN2 * PCO) * .28
MO * (13.70*44/100) + ( 2.3*32/100) » ((83.9+ .0) * 28/100 a 30.29
MOLECULAR HEIGHT OF STACK GAS
MHS s MO * (1. • (RWn/100)) » 18. * (BMO/100)
MHS s 30.29* (1. -(10.63/100)) * 18. * (10.63/100) = 28.98
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP = SUM. OF THE SORT(VH * (TS * 460.))
VS s 85.49 * CP * OELP / (SORTCMMS * PS) * PNTS)
VS s 85.49 * .84 « 270.917 / (30RT( 28. 9« * HO. 30) * 12. = 50.72 FPS
STACK 6AS VOLUMETRIC FLOW AT STACK CONDITIONS
OS a VS * AS • 3600/144
OS a 54.72 * 20b12. ^bOO/144 a 28195020. ACFH
STACK GAS VOLUMETRIC FLOM AT STANDARD CONDITIONS
USSTD = 17.647 * OS • PS • (1. - (BWO/IOO)) / (TS * 4bO.)
17.647 * 28(95020. * 30.30 • (1. - (10.63/100))
OSSTD a [[[ s 17508064. SCFM
( 309. * 460.)
* PERCENT ISOKINETIC
cn
H ISO * (305.58*(TS«4bO.))*((0.002b69*VLC)«(VM*Y*(PB>(PM/13.6))/(TM«4bO.)))/(TT*VS*PS*DN*DN)
(305.58*( 309.>4bO.))*((0.0026b9* Ib9.)*( 66.064* ,9bOM 30.34*( .779/1 3. b) )/( 50.»460.)))
ISO « ----------- - ------- — --- — --- • --- - --------- — --------------------------------------------------- c 102.47 PERCENT
120. • 54.72 * 30.30 * .221 * .221
PARTICIILATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS a 0.001 * MN * 15.41 / VMSTD
-------
FIELD DATA
i
Ui
NJ
PLANT
SAMPLING LOCATION UNIT TWO FAST
SAMPLE TYPE M5BP400
OPERATOR CLARKE
AMBIENT TEMP. (HER. F) 45.
BAR. PRESS. (IN. HG) 30.34
STATIC PRESS. (IN. H201 -.60
FILTER NUMBER(S) 3531008
STACK INSIDE DIM. (IN) 162.00 .00
PITOT TUBE COEFF. .84
THERM. NO. 206
LEAKAGE .060 CFM 3 7.
METER CALIR. FACTOR .983
READ » RECORD DATA EVERY to.o MINUTES
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
CLOC"
TIME
(24-HR
845
855
905
915
925
935
945
955
1005
1015
1025
1035
1045
GAS METER
READING
(CU.FT.)
180.494
18S. 825
190.865
195. 99S
201.050
206.245
211.499
216.595
221.715
226.891
232.150
237.277
242.544
VELOCITY
HEAP
(IN.H20)
.650
.650
.650
.670
.670
.670
.680
.650
.650
.650
.680
.680
0 IN.HG
ORIFICE
DATE 02/08/83
RUN NUMBER 3CM5BP
PROBE LENGTH ft TYPE 6 FT GLASS
NOZZLE : I.D. .221
ASSUMED MOISTURE 11.0
SAMPLE BOX NUMBER OAC
METER BOX NUMBER FB5
METER HEAD DIFF. i.«4
PROBE HEATER SETTING 400.
HEATER BOX SETTING 320.
K FACTOR 1089.1
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
.95
.92
.92
.95
.95
.95
.96
.92
.92
.92
.96
.96
H20)
ACTUAL
.93
.92
.92
.95
.95
.95
.96
.92
.92
.92
.96
.96
STACK
TEMP
(DEG.F)
303.
306.
308.
307.
309.
310.
310.
311.
311.
312.
313.
314.
DRV GAS
METER
TEMP
(OF.G
INLET
44.
47.
53.
58.
62.
64.
64.
65.
66.
67.
68.
68.
.F)
OUTLET
46.
46.
46.
48.
50.
51.
52.
54.
54.
55.
56.
56.
PUMP
VACUUM
(IN.HG)
4.5
5.0
5.5
5.0
.5
.0
.0
.5
.5
.5
7.0
7.0
SAMPLE
BOX TEMP
(OEG.F)
314.
3?0.
329.
323.
333.
330.
325.
335.
335.
330.
317.
328.
IMPINGER
TFMP
(OEG.F)
42.
44.
46.
45.
46.
44.
42.
38.
39.
40.
41.
44.
TOTALS
AVERAGE
120.0
54.850
.94
.94
310,
61,
51.
5.9 327.
43.
-------
PARTICIPATE FIELD DATA a RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
CLARKE
TEST 3CM5BP
UNIT TWO EAST
TEST DATE
TB
TF
TT
NP
V
ON
CP
PM
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
02/08/83
845
1005
120.0
12
.983
.221 IN
.84
.94 IN-H20
METRIC UNITS
02/08/83
845
1045
120.0
12
.983
5.6
.84
23.8
MM
MM-
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL.ML.
VMC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BMO PERCENT MOISTURE BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
FMD MOLE FRACTION DRV GAS
PC02 PERCENT C02 BY VOL., DRV
P02 PERCENT 02 BY VOL.. DRY
PCO PERCENT CO BY VOL.. DRV
PN2 PERCENT N? BY VOL.. DRY
MO MOLECULAR MT-ORY STACK GAS
54.850 CU-FT
1.553 CU-M
55.8 F
56.091 SCF
143.4
6.750 SCF
10.74
.893
13.70
2.35
.00
«3.95
30.2«>
13.2
1.588
143.4
.191
10.74
.893
13.70
2.35
.00
83.95
30.29
C
SCM
SCM
-------
MHS MOLECULAR WT-STACK GAS
PB BAROHFTRIC PRFSSURE
PSI STATIC PRFS OF STACK GAS
PS STACK PRES, A«S.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VFLHCTTY
AS STACK AREA
QSSTD STACK FLOW RATE, PRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICULATE
MR. EPA 5
CS AMBIENT PARTICULATE
28.97
30.34 IN-HG
-.60 IN-H20
30.30 IN-HG
310. F
54.7 FPS
20612. SQ-IN
17490092. SCFH
28202980. ACFH
«6.2
315.2
.0922 GR/OSCF*
28.97
770.64 MM-HG
-15.24 MM-H20
769. «52 MM-HG
154. C
16.7 MPS
11.298 SO-M
495267. SCMH
798624. ACMH
86.?
335.2
2H.060 MG/DSCM
Ul
* 68 DE6 F, 29.92 TN.HG.
-------
EXAMPLE PARTICULATF CALCULATIONS TFST NU.JCMSBP
UNIT TWO FAST
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD « (17.647 * VM * V * (PB * PM / 13.6)) / (TM + 460.)
17.647 * S4.8SO * .983 * ( 30.34 * .938 / 13.6)
VMSTD s ..................................... ...—........ c 56.091 DSCF
( 56. «• 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC s .04707 * VLC
VMC « .04707 * 143. * 6.7S SCF
PERCENT MOISTURE IN STACK GAS
BMO s (100. * VMC) / (VMSTO * VMC)
>
' 100. * 6.7«5
£| BMO a — ........ > 10.74 PERCENT
•56.091 * 6.75
MOLE FRACTION OF DRV STACK GAS
FMD = (100. - BMO) / 100.
ion. . 10.7
FMD s ....................... 3 .893
100.
AVERAGE MOLECULAR WEIGHT OF DRV STACK GAS
MD s (PC02 * .44) * CP02 * .32) * (PN2 + PCO) * .28
MD * (13.70*44/100) » ( 2.3*32/100) * ((83.9+ .0) * 28/100 * 30.29
MOLECULAR MEIGHT OF STACK GAS
MMS s MD • (1. - (RMO/IOft)) » 18. * (BMO/100)
MMS s 30.29* (1. .(10.74/100)) * 18. • (10.74/100) = 28.97
-------
STACK GAS VELOCITY AT STACK CONDITIONS
I
DELP s SUM. OF THE SORT(VH * (TS » 460.))
VS = 85.49 * CP * DELP / (SQRT(MWS * PS) * PNTS)
VS a 85.49 * .84 * 270.932 / (SQRU 28.97 * 30.30) * 12. = 54.73 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS * VS • AS * 3600/144
OS * 54.73 * 20612. 3600/144 a 28202980. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD r 17.647 • OS * PS * (1. - (RWO/100)) / (TS « 460.)
17.647 • 2*202980. • 30.30 * (1. - (10.74/100))
OSSTD = ............... s 17490092. SCFH
( 310. * 460.)
J, PERCENT ISOKINETIC
^ ISO * (305.5«*(T3*460.))*((0.002669«VLC)*(VM*Y*(PB*(PM/13.6))/(TM*460.)))/(TT«V3«P3*ON«DN)
(305.56*( 310.«460.))*((0.002669* 143.)*( S4.850* .983*( 30.34+( .939/13.6))/( 56.4460.)))
ISO • ... ..... ..... . .... ..... .— ... .. * 86.17 PFRCENT
120. * 54.73 * 30.30 * .221 * .221
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS a O.OOi * MN * 15.43 / VMSTO
CS a 0.001 • 335.2 * 15.43 / 56.091 a .0922 GR/DSCF
-------
FIELD DATA
PLANT
SAMPLING LOCATION UNIT TWO FAST
SAMPLE TYPE M5BP400
OPERATOR CLARKE
AMBIENT TEMP.(OEG.F) 45.
BAR. PRESS. (IN.HG) 30.34
STATIC PRESS. (TN.H20) -.60
FILTER NUMBER(S) 3531004
STACK INSIDE DIM.(TN) 162.00 .00
PITOT TUBE COEFF. .84
THFRM. NO.
LEAKAGE .002 CFM 9 6.
METER CALIB. FACTOR 1.030
READ S HFCORD DATA
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
CLOCK
TTMF
(24-HR
845
8S5
905
915
9?5
935
945
955
1005
1015
10?5
1035
1045
EVERY 10.0
GAS METER
READING
(CU.FT.)
743.598
748.454
753.323
758.195
763.125
768.125
773.186
777.999
782.935
787.855
792.690
797.725
802.746
MINUTES
VELOCITY
HEAD
(IN.H20)
.650
.650
.650
.670
.670
.670
.680
.650
.650
.650
.680
.680
0 IN.HG
ORIFICE
DATE 02/08/83
RUN NUMBER 30M5BP
PROBE LENGTH ft TYPE 5 FT GLASS
NO?ZLE : I.D. .215
ASSUMED MOISTURE 11.0
SAMPLE BOX NUMBER OAD
MFTER BOX NUMBER FB4
METER HEAD DIFF. 1.88
PROBE HEATER SETTING aoo.
HEATER BOX SETTING 320.
K FACTOR 1089.1
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
.93
.92
.92
.95
.95
.95
.96
.92
.92
.92
.96
.96
H20)
ACTUAL
.93
.92
.92
.95
.95
.95
.96
.92
.92
.9?
.96
.96
STACK
TEMP
(DEG.F)
303.
306.
308.
307.
309.
310.
310.
311.
311.
312.
313.
314.
DRY GAS
METER
TFMP
(DEG
INLET
42.
44.
49.
53.
56.
56.
57.
57.
58.
5«.
59.
60.
.F)
OUTLET
42.
42.
43.
44.
47.
47.
48.
49.
50.
51.
51.
52.
PUMP
VACUUM
(IN.HG)
2.0
2.5
2.5
3.0
3.5
4.0
4.5
4.5
5.0
5.0
5.5
6.0
SAMPLE
BOX TEMP
(DEG.F)
314.
333.
311.
326.
334.
320.
319.
336.
313.
328.
329.
319.
IMPINGER
TFMP
CDER.F)
42.
42.
40.
44.
46.
42.
40.
36.
38.
36.
38.
43.
TOTALS
AVERAGE
120.0
59.148
.94
,94 310.
54,
47,
4.0 324.
41.
-------
PARTICULATE FIELD DATA A RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
CLARKE
TEST 3DM5BP
UNIT TWO EAST
TEST DATE
TB
TF
TT
NP
Y
ON
CP
*f PM
Ul
00
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING N07ZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
ENGLISH UNITS METRIC UNITS
02/08/83 02/08/83
845 845
1045 1045
120.0 120.0
12 1?
1.010 1.030
.215 IN 5.5 MM
.84 .84
.94 IN-H20 23.8 MM-H20
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VMC VOLUMF OF NATFR VAPOR
AT STANDARD CONDITIONS*
BMO PERCENT MOISTURE BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
FMD MOLE FRACTION DRV GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 «Y VOL., DRY
MD MOLECULAR NT-DRY STACK GAS
59.148 CU-FT
I.fe75 CU-M
50.6 F
64.025 SCF
163.5
7.696 SCF
10.73
.893
13.70
2.35
.00
83.95
30.29
10
1
163
to
13
2
83
30
.3 C
.813 SCM
.5
.218 SCM
.73
.893
.70
.35
.00
.«»5
.29
-------
MMS MOLECULAR NT-STACK GAS
P8 BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ARS.
T3 AVERAGE STACK TFMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTO STACK FLOW RATE, DRY*
09 ACTUAL STACK FLON RATE
ISO PERCENT I30KINETIC
MN AMBIENT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICULATE
28.97
30.34
-.60
30.30
310.
54.7
20612.
17*91792.
28202336.
103.9
351.4
IN-HG
IN-H20
IN-HG
F
FPS
SU-IN
SCFH
ACFH
2*. 97
770.64
-15.24
769.52
154.
16.7
13.29ft
495315.
798606.
103.9
351.4
MM-HG
MM-H20
MM-HG
C
MPS
SO-M
SCMH
ACMH
.0047 GR/DSCF*
193.84? MG/OSCM
Ul
vo
* 68 OEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST
UNIT TWO EAST
VOLUME OF DRV GAS SAMPLED AT STANDARD CONDITIONS
VMSTD = (17.647 • VM * V • (PB * PM / 13. b) ) / (TM * 460.)
17.647 * 59. 146 * 1.030 * ( 30.34 » .936 / 13.6)
VMSTD a - ----- — - ------ — --------- • ------- * ---- * ----------- » 64.025 DSCF
( St. + 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VWC a .04707 • VLC
VMC a .04707 * 164. a 7.70 SCF
PERCENT MOISTURE IN STACK GAS
BWO a (100. • VWC) / (VMSTO * VWC)
100. * 7.70
BMO a —————— --- — — — s 10.73 PERCENT
64.025 + 7.70
MOLE FRACTION OF DRV STACK GAS
FMD * (100. - BWO) / 100.
100. - 10.7
FMD « - --- — — — — a .893
100.
AVERAGE MOLECULAR WEIGHT OF DRV STACK GAS
MB « (PC02 * .44) * (P02 * ,32) * CPN2 * PCO) • S2§
MO « (13.70*44/100) * ( 2.3«32/100) * ((B3.9* .0) * ?8/100 r 30.29
MOLECULAR WEIGHT OF STACK GAS
MWS s MO * (1. - (BWO/100)) * 18. * (BWO/100)
MWS a 30.29* (1. "(10.73/100)) * 18. « (10.73/100) = 28.97
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP * SUM. OF THE SORT(VH • (TS * 460.))
VS a 85.49 * CP * DELP / (SORT(MWS » PS) * PNTS)
VS s 85.49 * .84 * 370.912 / (SQRT( 28.97 * 10.30) • 12. = 54.73 FPS
STACK 6AS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS * AS * 3600/144
OS * 54.73 * 20612. 1600/144 s 28202336. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD « 17.647 * OS • PS * (1. - (BMO/100)) / (TS * 460.)
17.647 * 28302336. * 30.30 * (1. - (10.73/100))
OSSTD * ——. ... ........ . c 17491792. SCFH
( 310. » 460.)
>
cn PERCENT ISOKINETIC
M
ISO * (305.58*(TS+460.))*((0.002669*VLC)+(VM*Y*(PB+(PM/13.6))/(TM+460.)))/(TT*VS*PS*ON*DN)
(305.58M 310.+460.))*((0.002669* 164.)*( «59.14»*1.030*( 30.34+( .938/11.6))/{ 51.+460.)))
ISO s ........... _ .. . . ... r 101.91 PERCENT
120. * 54.73 * 30.30 * .215 * .215
PARTICIPATE LOADING » EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN * 15.43 / VMSTD
CS « 0.001 * 351.4 • 15.41 / 64.025 s .0847 GR/DSCF
-------
FIELD DATA
I
O\
to
PLANT
SAMPLING LOCATION UNIT 2 EAST
SAMPLE TYPF PART 801 304
OPERATOR PR RA JP
AMBIFNT TEMP.(nEG.F) 50.
BAR. PRESS. (IN.HG) 30.36
STATIC PRESS. (IN. H20) -.60
FILTER NUMBER (S) 3530458
STACK INSIDE OTM.(IN) 162.00 .00
PITOT TUBE COEFF. .84
THFRM. NO. 178
LEAKAGE .000 CFM d 9.0 IN.HG
METER CALIB. FACTOR 1.003
READ S RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NO. (MIN.) (24-HR (CU.FT.) (IN.H?0) (1N.H20) (OEG.F)
DESIRED ACTUAL
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
1230
0
0
0
0
0
0
0
0
0
0
0
1410
639.710
645.416
651.047
656.673
662.447
668.169
673.838
679.434
685.020
690.611
696.309
701.964
707.671
.720
.720
.720
.750
.750
.720
.720
.700
.700
.720
.720
.720
1.03
.03
.03
.07
.07
.03
.03
.00
.00
.03
.03
.03
.03
.01
.03
.07
.07
.03
.03
.00
.00
.01
.03
.03
314.
317.
318.
318.
317.
317.
317.
318.
118.
317.
318.
319.
DATE 02/08/83
RUN NUMBER 4AM5BP
PROBE LENGTH ft TYPE 5 FT GLASS
NOZZLE 2A : 1.0. .224
ASSUMED MOTSTURE 11.1
SAMPLE BOX NUMBER
METER BOX NUMBER F84
METER HEAD OIFF. 1.72
PROBE HEATER SETTING 400.
HEATER BOX SETTING 320.
K FACTOR 1112.4
DRY GAS METER PUMP SAMPLE IHPINGER
TFMP VACUUM BOX TEMP TEMP
(DFG.F) (IN.HG) (DEG.F) (DEG.F)
INLFT OUTLET
58.
60.
64.
68.
70.
71.
72.
73.
75.
76.
76.
77.
56.
56.
57.
5".
60.
60.
61.
62.
63.
64.
65.
66.
4.5
4.5
5.0
5.5
6.0
6.0
6.5
6.5
7.0
7.5
e.o
8.0
347.
318.
340.
327.
333.
341.
327.
338.
335.
335.
317.
330.
50.
50.
51.
51.
51.
50.
50.
52.
52.
51.
51.
51.
TOTALS
AVERAGE
120.0
67.961
1.03
1.03 317,
70.
61.
6.3 332.
51,
-------
PARTICULATE PIFLO DATA ft RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PR RA JP
TEST 4AM5RP
UNIT 2 FAST
ENGLISH UNITS
TEST
TB
TF
TT
NP
V
ON
CP
PM
DATE
TIME-START
TlMF-FINISH
NET TIME OF TFST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
02/08/83
1230
1430
120
12
1
1
.0
.003
.224 IN
.84
.03 IN-H20
METRIC UNITS
02/08/83
1230
1430
120
12
1
5
26
.0
.003
.7
.84
.2
MM
MM-I
DROP
VM VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
TN AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VWC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BMO PFRCENT MOISTURE RY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEFN MADE.)
FMD MOLE FRACTION DRV GAS
PC02 PERCENT C02 BV VOL.f DRV
P02 PERCENT 02 BY VOL., DRV
PCO PFRCENT CO BY VOL., DRV
PN2 PERCENT N2 BY VOL., DRY
MD MOLECULAR WT-ORV STACK GAS
67.961 CU-FT
1.924 CU-M
65.3 F
69.692 SCF
177.7
8.364 SCF
10.72
.893
13.60
2.30
.00
84.10
30.27
18
1
177
10
13
2
84
30
.5 C
.973 SCM
.7
.237 SCM
.72
.893
.60
.30
.00
.10
.27
-------
MNS MDLECULAK NT-STACK GAS
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
BSSTD STACK FLOW RATE, HRV*
OS ACTUAL STACK FLOM RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICULATE
28.9S
30.36 IN-HG
-.60 IN-H20
30.32 IN-HG
317. F
57.4 FPS
20612. SQ-IN
16177220. SCFH
29561420. ACFH
100.3
398.9
.0883 GR/DSCF*
28.95
771.14 MM-HG
-15.24 MM-H20
770.02 MM-HG
159. C
17.5 MPS
13.296 SO-M
514724. SCMH
637657. ACMH
100.3
396.9
202.151 MG/DSCM
* 66 DE6
29.92 IN.HG.
-------
EXAMPLE PARTICULATF. CALCULATIONS TEST N0.4AM5BP
UNIT 2 EAST
VOLUME OF DRV CAS SAMPLEO AT STANDARD CONDITIONS
VMSTO s (17.647 * VM * Y * (PB + PM / 13.6)) / (TM » 460.)
17.647 • 67.961 • 1.003 * ( 30.36 * 1.032 / 13.6)
VMSTD a - ------------------ — ------- . ------------------------ , 69.692 OSCF
( 65. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC • .04707 * VLC
VMC * .04707 * 178. s 8.36 SCF
PERCENT MOISTURE IN STACK GAS
BMO « (100. * VHC) / (VMSTD * VMC)
^ 100. * 8.36
•f BMO • — — ---- - ------ .......... * 10.72 PERCENT
crv 69.692 «• 8.36
ui
MOLE FRACTION OF DRY STACK GAS
FMD * (100. - BMO) / 100.
100. - 10.7
FMD *
100.
AVERAGE MOLECULAR WEIGHT OF DRV STACK GAS
MD s (PC02 * .44) + (P02 • ,*2) » (PN2 * PCO) * .28
MO s (13.60*44/100) * ( 2.3*32/100) + ((Kfl.l* .0) * 28/100 • 30.27
MOLECULAR HEIGHT OF STACK GAS
MMS s MD * (1. - (RMO/100)) «• 16. * (BWO/100)
MWS e 30.27* (1. -(10.72/100)) * 18. * (10.72/100) * 28.95
-------
STACK GAS VELOCITY AT STACK CONOTTTUNS
DF.LP = SUM. OF THE SQRT(VH » (TS * 160.))
VS = 85.49 * CP * DELP / (SORT(MWS * PS) * PNTS)
VS = 85.19 * .84 • 2X1.204 / (SQRT( 28.95 * 10.3?) * 12. = 57.11 FPS
STACK GAS VOLUMETRTC FLOW AT STACK CONDITIONS
OS = VS * AS * 3600/144
OS = 57.11 * 20612. 3600/144 = 295fll40. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OS3TO = 17.647 • OS * PS * (1. - (BWO/100)) / (TS « 460.)
17.647 * 295*1420. • 30.32 • (1. - (10.72/100))
OSSTD s = 18177220. SCFH
( 317. * 460.)
PERCENT ISOKINETIC
ISO = (305.5fl*(TS»460.))*((0.002669*VLC)»(VM*Y*(PB*(PM/13.6))/(TM*460.)))/(TT*VS*PS»nN*ON)
(305.58M 317.+4bO.))*((0.002fc69* 17«.)»( 67.961*1.003*( 30.36*( 1.032/I 3.6))/( 65.+ 460.)))
ISO s * 100.27 PFRfENT
120. * 57.41 * 30.3? * .224 * .224
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS z 0.001 * MN * 15.43 / VMSTO
CS = 0.001 * 398.9 • 15.43 / 69.69? = .0883 GR/DSCF
-------
FJFLD DATA
PLANT
SAMPLING LOCATION UNIT 2 FAST
SAMPLE TYPF PART 303 SU«
OPERATOR PR RA JP
AMBIFNT TEMP.(nER.F) 50.
BAR. PRFSS. (IN.HG) 30.36
STATIC PRESS. (TN.H20) -.60
FILTFR NUMBER(S) 0002530
STACK INSIDE DIM. (IN) 162.00 .00
PITOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .005 CFM a) 10.
METER CALIB. FACTOR .960
READ ft RECORR DATA
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
CL^CK
TIME
(24-HP
ft f\f'tf\
1. L "1* ™ /
1230
0
0
0
0
0
0
0
0
0
0
0
1430
EVERY 10.0
GAS METER
READING
(CU.FT.)
162.434
J6B.474
171.553
1A0.584
186. BOO
192.990
199.064
205.137
211.094
217.103
223.214
229.300
235.462
MINUTES
VELOCITY
HEAD
(IN.H20)
.720
.720
.720
.750
.750
.720
.720
.700
.700
.720
.720
.720
5 IN.HG
ORIFICE
DATE 02/OB/B3
RUN NUMBFR 4BM5BP
PROHF LKNbTH ft TYPE 6 FT GLASS
NOZZLE 2B : 1.0. .227
ASSUMED MOISTURE 11.1
SAMPLE BOX NIJMHER
METER BOX NUMBER FB6
MFTER HEAD OIFF. 1.50
PROBE HEATFH SETTING 400.
HFATFH BOX SETTING 320.
K FACTOR 1023.1
PRESSURE
DIFFERENTIAL
(IN.
DFSIHFD
.95
.95
.95
.99
.99
.95
.95
.92
.92
.95
.95
.95
H20)
ACTUAL
.95
.95
.95
.99
.99
.95
.95
.92
.92
.95
.95
.95
STACK
TEMP
(DFG.F)
314.
317.
318.
318.
317.
317.
317.
318.
318.
317.
318.
319.
DRV GAS
METFR
TFMP
(OFG
INLET
52.
52.
58.
61.
64.
65.
66.
66.
67.
68.
69.
69.
.F)
OUTLET
52.
52.
52.
52.
54.
56.
S6.
58.
59.
60.
60.
60.
PUMP
VACUUM
(IN.HG)
4.5
4.5
5.0
5.5
6.0
6.5
6.5
7.0
7.5
7.5
a.o
8.5
SAMPLE
BOX TEMP
(DEG.F)
320.
324.
323.
322.
322.
324.
327.
328.
330.
323.
327.
324.
IMPINGEB
TEMP
(OEG.F)
48.
48.
50.
so.
51.
50.
50.
50.
51.
50.
50.
50.
TOTALS
AVERAGE
120.0
73.028
.95
.95 317.
63.
56.
6.4
325.
50.
-------
PARTICIPATE FIELD DATA « RESULTS TAHIILAITUN
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PR RA JP
TEST 4BM5RP
UNIT 2 FAST
TEST
TB
TF
TT
NP
V
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF IFST, MTN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING N07ZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS METRIC UNITS
0?/08/83 02/Ofl/fll
1830 1?30
1430 1430
180.0 180.0
18 18
.960 .960
.887 IN 5.9 MM
.95 IN-H80 ?0.? MM-
TM
VMSTD
VLC
VWC
BMO
FMO
PC02
P02
PCO
PN?
MP
DROP
VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS MFTFR TFMP
VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H?0 COLLECTED IN
AND SILICA GEL, ML,
73.038 CU-FT
VOLUMF OF WATFR V»POR
AT STANDARD CONDITIONS*
PFRCtNT MOISTURE RV VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEFN MADE*)
MOLE FRACTION ORV GAS
PERCENT COa B* VOL., ORV
PERCENT 0? 8Y VOL., 0»Y
PERCENT C" «Y VOL., DRY
PERCENT N? BY VOL., 0*Y
MOLFCI'LA"? wT-DRY STACK GAS
2.06* CU-M
59
"
A4
8
10
13
8
M4
30
.5 F
.468 SCF
.4
.600 SCF
.70
.B<»3
.60
.30
.on
.10
.87
15.3 C
?.058 SCM
184. a
.846 SCM
10.70
.Ml
13.60
8.30
.no
84.10
30.87
-------
HWS MflLFCHLAR KT-SMCK GAS
PB BAROMETRIC PRFSSU"E
PSI STATIC PRES OF STACK GAS
PS STACK HRES, AUS.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VFLDCTTY
AS STACK AREA
QSSTO STACK FLOW RATE, RRV*
09 ACTUAL STACK FLOW RATE
ISO PERCENT I30KIMETIC
MN AMBIENT PARTICULATE
MR. EPA 5
C9 AM8TENT PARTICULATE
10.31,
-.80
30.3?
317.
57. «
20612.
181800*0.
295801flq.
101.5
398.0
IN-HG
IN-H20
IN-HG
F
FPS
SO- IN
SCFH
ACFH
771.10
-15. 24
770.02
159.
17.5
13.29*
51^16.
837622.
101.5
398.0
MM-HG
MM-H20
MM-HG
C
MPS
S(1-M
SCMH
ACPH
,0«a7 GR/OSCF*
193.9«,fl MG/OSCM
* 66 DEC F, 29.93 TN.HG.
-------
FXAMPLF PARTICI'LATF CALCULATIONS TFST NO.OPM5BP
UNIT ? EAST
VOLUME OF OHt RA8 SA»*PI fcf> »T STANDAHO CONllMlONS
VMSTf) = (17.t.47 * VM * V • (PB * PM / 13. 6)) / (TM + 460.)
17.6*7 * 73.0?8 * .960 * ( 30.36 » .9«>a / H.6)
VMSTD = ----------------------------------------------------- = 78.0f,ft OSCF
( f.0. * Of.0.)
VOLUME OF WATER VAPOR »T STANDARD CONDITIONS
VWC = .04707 * VLC
VWC = .04707 * 184. s 8.68 SCF
PERCENT MOISTURE IN STACK r,»s
PWO = (100. * VWC) / (VHSTO * VWC)
> 100. « 8.6*
' BWO = — = 10.70 PERCENT
O 72.468 * 8.6"
MOLE FRACTION OF DRY STACK G»S
FMO = (100. - BWO) / 100.
100. - 10.7
frMO = .893
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MO = (13.60*44/1001 * ( ?.1»^a/100) * ((«4.1» .0) * ?8/100 = 30.?7
MOLECULAR WEIGHT OF STACK BAS
MwS = MO * (1. - (RMD/100)) * 18. * (HWO/100)
MWS = 30.27* (1. -(10.70/100)) » 18. * (10.70/100) = 28.96
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP a SUM. (IF THE SHRT(VH * (TS * 460.))
VS = 85. 19 * CP * DEI P / (SORTCMWS * PS) * PNTS)
VS = 85.09 * .80 * 2*0.200 / (SOPH ?8.9* « 30.3?) * 12 . = 57.410 FPS
STACK GAS VOLUMETRIC PLOW AT STACK CONDITIONS
OS s VS * AS • 3*00/1
-------
FIELO OATA
PLANT
SAMPLING LOCATION UNIT TWO FAST
SAMPLE TYPF M5B
OPERATOR CLARKE
AM«IFNT TEMP. ("EG. F) 60.
BAR. PRESS. UN. HG) 30.36
STATIC PRESS. UN. H201 -.60
FILTER NUMBER(S) 3531066
STACK INSIDE DIM. (TN) 162.00 .00
PITOT TUBE COEFF. .84
THERM. NO. 178
I EAKAGE .000 CFM <•> 7.
METER CALIB. FACTO" .983
READ & RECORD DATA
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MTN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
CLOCK
TTMF.
(24-HR
CLOCK)
12*0
1240
1250
1300
1310
1320
13*0
13«0
13SQ
1400
1410
1420
1430
0 IN.HG
DATE 02/08/83
PUN NUMHFR 4CM5B
PROBE I.INGTH & TYPF 6 FT GLASS
NOZ7LE : I.D. .211
ASSUMED MOISTURE 11.0
SAMPLE BOX NUMBER OAR
METER B'OX NUMHFR
METER HEAD OIFF . i .84
PROBE HtATtR SETTING 320.
HFATFR BOX SETTING 320.
K FACTOR 957.5
EVERY 10.0 MINUTES
e»s METER
READING
(CU.FT.)
244.025
249.129
254.111
259.195
264.300
269.444
274.500
279.525
284.465
289.425
294.504
290.622
304.732
VELOCITY
HFAD
(IN.H20)
.720
.720
.720
.750
,7bO
.720
.720
.700
.700
.720
.720
.720
ORIFICE
PRESSURE
DIFFERENT! AL
UN.
DESIRED
.89
.89
.*9
.92
.92
.89
.89
.86
.86
.89
.89
.89
H20)
ACTUAL
.89
.89
.89
.92
.92
.89
.89
.86
.86
.89
.89
.89
STACK
TEMP
(OEG.F)
314.
317.
318.
318.
317.
317 .
317.
318.
318.
317.
318.
319.
DRY GAS
METER
TEMP
(PEG
INLFT
57.
58.
64.
68.
70.
72.
73.
74.
74.
75.
75.
76.
.F)
OUTLET
56.
56.
57.
58.
59.
60.
62.
62.
64.
65.
65.
66.
PUMP
VACUUM
UN.HG)
4.0
4.0
4.0
4.5
4.5
5.0
5.0
5.0
5.5
6.0
6.0
6.5
SAMPLE
BOX TEMP
(DEG.F)
331.
316.
324.
326.
325.
326.
324.
325.
324.
323.
326.
328.
IMPINGER
TfMP
(DEG.F)
55.
56.
5H.
58.
56.
54.
50.
50.
52.
52.
54.
5b.
TOTALS
AVERAGE
120.0
60.707
.89
.89
317.
70.
61,
5.0 325.
54.
-------
PARITCULATF FIFLD OATA
PLANT- NAMt AND ADDRESS
HFSULTS TABULATION
TFST TtAM I FAflfP
Cl AHKE
TEST
-------
MWS MIUFCIILAH wT-STACK GAS
PB BAROMFIRIP PRFS8URE
PSI STATIC PHES OF STACK GAS
PS STACK PRES, A*S.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
OSSTD STACK FLOW RATE, DRY*
OS ACTUAL STACK FLOW RATE
ISO PFRCENT ISOKINETIC
MN AMBIENT PARTICIPATE
MG. EPA 5
CS AMBIENT PARTKUI ATE
30.3f> IN-HG
-.60 IN-H?0
30.3? IN-HG
317. F
S7.0 FPS
SO-IN
1816909,;.
39580308.
99.0
308.6
SCFH
ACFH
510506.
837700.
99.0
30H.6
771.10 MM-HG
-JS.20 MM-HPO
770. 0^ MM-HG
159. t
17. S MPS
13.?9« SIJ-M
SCMH
ACMH
,0«8? GR/OSCF*
?01.831 MG/D9CM
* 68 DEC F, ?9.9? IN.HB.
-------
FXAMPLF PAWTICHLATF CAICUL»TIONS TFSt Nl). 4CMSR
UMIT TWO FAST
VOLUME OF ORr GAS SA«»PLEO AT STANDAHO CONDITIONS
VMSTO = (17.647 • VM * Y * (PB » PM / 13.6)) / (TM «• «60.)
17.647 • 60.707 * .983 • ( 30.36 » .890 / 13.6)
VMSTO r - 61.001 OSCF
( 65. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VWC = .U4707 * VLC
VHC = .04707 * 156. = 7.36 SCF
PERCENT MOISTURE IN STACK CAS
BWO = (100. * VWC) / (VMSTO » VWC)
100. * 7.36
BWO = ———. = 10.76 PERCENT
61.001 * 7.36
MOLE FRACTION OF DRY STACK GAS
FMD = (100. - RWO) / 100.
100. - 10.A
FMO = ......... - .8q2
100.
AVERAGE MOLECULAR WEIGHT OF DRV STACK GAS
MO = (PC12 * .44) * (PO? • .32) * (PN2 t PCO) * .2fl
MO = (13.60*44/100) * ( 2.3*32/100) * ((«4.1+ .0) * 28/100 = 30.?7
MOLECULAR WEIGHT OF STACK GAS
MWS = MO * (1. - (nwD/100)) + 18. * (RWO/100)
MWS = 30.?7* (1. -(10.76/100)) » 18. • (10.76/100) = 2fl.95
-------
STACK GAR VELOCITY AT STACK CONDITIONS
DELP = S"M. OF IHE SORT(WH * (TS * 460.))
VS = 85.49 * CP * HELP / (SORT(MWS * PS) * HNTS)
VS = 8S.49 » .84 * 284.204 / (SURT( ?8.9S « ^0.3?) * 12. = 57.41 FPS
STACK GAS VOLUMETRIC FLOW »T STACK CONDITIONS
OS = VS • AS • 3600/144
OS = 57.41 • 20612. 3600/144 s 29584348. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTO = 17.647 • OS « PS * (1. - (HWO/100)) / (IS + 460.)
17.647 * 29584348. * 30.32 * (1. - (10.76/100))
OSSTD - . .... . = 18169492. SCFH
( 317. * 460.)
I
ISOKINETIC
ISO = (505.5B*(T8*afc0.n*((0.002669*VLC)*(VM«V*(PB+(PM/13.6))/(TM*460.)))/(TT«VS»PS*nN*DN)
(305.58*( 317.»«60.))*((0.002669* 156.)*( 60.707* .9«3«( 30.3b+( ,890/13.6) )/ ( 6S.*460.)))
Ten _ __«________•___»_»«-•—------------•------••---••••----- — ----»---------------•---------------------"• - 98.96 PFHCENI
120. * 57.41 * 30.32 * .211 * .211
PARTICIPATE LOADING — EPA METHOD S (AT STANDARD CONDITIONS)
CS = 0.001 • MN * 15.4* / VMSTD
CS s 0.001 * 348.6 • 15.«3 / 61.001 = .0882 GR/OSCF
-------
FIELD D»T»
PLANT
SAMPLING LOCATION UNIT TWO EAST
SAMPLE TYPF M5B
OPERATOR CLARKE
AMBIENT TEMP.(riEG.F) 60.
BAR. PRESS. (IN. HG1 30.36
STATIC PRESS. (TN.H20) -.60
FILTER NI'MBkR(S) 3531068
STACK INSIPE DIM. (IN) 162.00 .00
PITOT TUPE COEFF. .84
THERM. NO. 178
LEAKAGE .001 CFM a) 9.
MI-TER CALIB. FACTOR J.03o
READ « RECORD OATA
TRAVFRSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
CLOCK
TIME
(24-HR
1230
1240
^"'O
13"0
1310
I3?0
13^0
1 340
13SO
1400
1410
l«?o
1430
EVERY 10.0
GAS METER
READING
(CU.FT.l
802.979
807.867
812.715
817.535
822.475
827.385
832.265
837.110
841 .925
846.725
851.621
856.475
861 .373
MINUTES
VELOCITY
HFAO
(IN.H20)
.720
.720
.720
.750
.750
.720
.720
.700
.700
.720
.720
.720
0 IN. HP,
ORIFICE
OATE 02/08/83
RUN NUI"HFH 4DM5B
PROHE LENGTH A IYPE 5 FT GLASS
N07Z.I.E i I.D. .210
ASSUMED MOISTURE n.o
SAMPLE BOX NUMBER QAD
METER ROX NU"HFR
METFR HEAD DIFF. I.BS
PROBE HEATER SETTING 320.
HEATFR BOX SETTING 320.
K FACTOR 957.5
PRESSURE
DIFFERENTIAL
(IN.
OESIPEO
.89
.89
.89
.92
.92
.89
.89
.86
.86
.89
.89
.89
M20)
ACTUAL
.89
.89
.69
.Q2
.92
.89
.89
.86
.86
.89
.89
.89
STACK
TEMP
(DEG.F)
314.
317.
318.
318.
317.
317.
317.
318.
318.
317.
318.
319.
DRY GAS
METER
TEMP
(DEC
INLET
54.
55.
58.
60.
62.
63.
63.
60.
65.
66.
66.
66.
.F)
OUTLET
54.
54.
54.
54.
56.
56.
57.
58.
58.
6".
60.
60.
PUMP
VACUUM
(IM.HG)
4.5
5.0
5.0
6.0
6.0
6.5
7.0
7.0
r.5
8.0
8.5
9.0
SAMPLE
BOX TEMP
(DEG.F)
327.
317.
312.
322.
325.
312.
309.
320.
326.
310.
318.
327.
I HP INKER
TEMP
(OER.F)
58.
58.
60.
58.
56.
52.
52.
50.
52.
54.
50.
51.
TOTALS
AVERAGE
120.0
58.394
.89
.89
317.
62.
57,
6.7
319.
54.
-------
PARTICIPATE FIFL" 0»TA & RESULTS TABULATION
PLANT- NAME ANO AODRESS TEST TF*M LFAOEH
CLARKE
TEST «OM5B
UNIT TWO FAST
ENGLISH UNITS
TEST DATE 02/08/83
TB
TF
TT
NP
Y
ON
CP
PM
VM
TM
VMSTD
VLC
VMC
BWO
FMD
PC02
P02
PCO
PN2
MO
TTMF-STABT 1230
TTCF-FINISH l«3U
NET TIME OF TFST, MIN. 120.0
NFT SAMPLING POTNTS 12
MFTER CALIBRATION FACTOR 1.030
SAMPLING NOZZLE DIAMETER .210 IN
PITOT TUBF COFFFiriFNT ,«fl
AVERAGE ORIFICE PRESSURE .«<> IN-H20
DROP
VOLUME OF DRY GAS SAMPLED 58.3<»a CU-FT
AT METER CONDITIONS
AVERAGE GAS MFTFR TPMP S9.3 F
VOLUME OF DRY GAS SAMPLED *2.1«7 SCF
AT STANDARD CONHITIONS*
TOTAL H20 COLLErTFD IN 1S9.4
IMPINGERS AND SILICA GEL, ML.
VOLUME OF HATFR VAPOR 7.503 SCF
AT STANOARD CONDITIONS*
PERCENT MOISTURE BY VOLUME 10.77
CCHFCK AGAINST SATURATION
POINT HAS BEFN MADF.)
MOLF FRACTION DRY GAS .892
PERCENT C02 BY VOL., ORY 13.60
PERCENT 02 BY VOL., D"»Y 2.30
PERCENT CO BY VOL., IlRY .00
PERCENT N? BY VOL., ORY 81.10
MOLECULAR ttT-DHY STACK GAS 30.27
MEIRIC UNITS
02/OB/83
1230
1«30
120.0
1?
1.030
5.3
.81
22.6
1.654
15.2
1.761
159.0
.212
10.77
.892
13.60
2.30
.00
HO. 10
30.27
MM
MM-H20
CU-M
c
SCM
SCM
-------
MWS MflLFCULAH hT-ST*CK C,AS
PB BAHOMFIRIC PRFSSURE
PSI STATIC PRFS OF <5T*CK RAS
PS STACK PRES, A^S.
TS AVERAGE STACK TFMP
VS AV6 STACK GAS VFLlCrTY
AS STACK AREA
OSSTD STACK FLOW RATE, "MY*
OS ACTUAL STACK FLHw RATE
ISO PFBCENT ISOKINtTIC
MN AMBIENT PARTKUIATE
MG. EPA b
CS AMBIENT PARTKULATE
?H.9'S
-.60 IN-WO
317.
57. «
?061^.
I816A904.
?958«5hH.
101.9
J46.0
F
FPS
Sll-IN
SCFH
ACFH
159.
17.5
15.?
5U««9.
8J77«6.
101.9
3«6.0
771.l
-------
FXAMPLF PARTICHLATF CALCULATIONS TFST NO. 40M5P
UNIT TWO FAST
VOLUMF. OF DRY GAS SAMRI F.n AT STANDARD CONDITIONS
VMSTD = (17.647 • VM * V * (PB + PM / 13.8)) / (TM * 460.)
17.647 • SB. 394 * 1.030 * ( 30.36 * .890 / 13.6)
VMSTO = [[[ = *2.1«7 OSCF
( S9. + 460.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VWC = .04707 • VtC
VHC s .04707 • 15<». s 7.50 SCF
PERCENT MOISTURE IN STACK GAS
BWO = (100. • VWC) / (VMSTD » VWC)
•f 100. * 7.50
m BWO ...................... ----- = »0.f7 PERCENT
O 62.187 * 7.50
MOLE FRACTION OF DRY STACK GAS
FMD s (100. - f*WO) / 100.
100. - 10.0
-----------------------
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MD - (Pcna * .4e) * (PO> • ,33) * (RN2 * Pro) * ,gn
MO s (13.60*44/100) * ( ?. 3*32/100) * ((14.1* .0) * ?B/100 = 30. ?7
MOLECULAR WEIGHT OF STACK RAS
MWS = MD • (1. - (RhO/100)) + 18. * (8WO/100)
-------
STACK PAS VELOCITY AT ST»CK CONDITIONS
DELP = SUM. OF THE SORT(VH * (TS + 160.))
VS = 85.49 * CP * OELP / (SU»T(MWS • PS) * PUTS)
VS = 85.49 * .84 • 284.204 / (SI1RT( 28.95 * 50.3?) * 1?. = 57. «J FPS
STACK GAS VOLUMETRIC Fl 0* AT STACK CONDITIONS
OS = VS * AS * 3600/144
OS = 57.41 • 30612. 3600/144 = 295845t>8. ACFM
STACK GAS VOLUMETHTC FI.OM AT STANDARD CONDITIONS
QSSTO = 17.647 * OS * »S • (1. • (RWO/100)) / (TS * 460.)
17.607 • 29584568. • 30.32 * (1. - (10.77/100))
QSSTO s .................................. --- .............. - 16168904. SCFH
( 317. * 460.)
| PERCENT TSOKINFTIC
00
M ISO s <305.5«*(TS*460.))M(0.00£669*VLC)»(VM*Y*(PB*(PM/13.6))/(TM + 460.
(30«;.S8«( 317. *460.))*((0. 00?669« 159. )»( 58. 3<*4* I .030* ( 30.36*( .890/ 1 3.6) ) / ( 59.*460.)))
ISO « --- - ---------- - --- — - — --------------- . ------- - --- --- ----------- ........ ------------------------- - 101.85 PFttrFNT
120. • 57.41 • 30.32 * .?10 • .210
PARTICULATF LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * MN * IS. 43 / VMSTD
CS s 0.001 * 346.0 * IS. 43 / 62.187 = .0858 GR/DSCF
-------
FIELD OATA
l
00
to
PLANT
SAMPLING LOCATION UNIT 2 EAS1
SAMPLE TYPE M5B
nPFWAHlR PR R*
AMRIFNT TEMP. (OEK.F) 60.
BAR.PRFSS.UN.HG) 30.05
STATIC PRESS. (TN.H20) -.80
Fll TFH NHMBER(S) 3531067
STACK INSIDE DTM.(IN1 162.00 .00
PITUT TUBE cntFF. .«<•
THFHM. NO. 206
LEAKAGE .000 CFM o) 7.
"ETER CALIB. FACTOR 1.003
READ » RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
CL«CK
TIMF
(24-HP
CLOCK)
755
805
B15
8?5
8*5
845
905
9t5
925
e»s METER
READING
(CU.FT.)
708.102
713.796
719.363
724.692
730. 18*
735.892
741.423
746.950
752.500
757.988
VELOCITY
HEAD
(IN.H20)
.700
.650
.650
.650
.700
.650
.650
.650
.650
0 IN.HG
DATE 02/11/83
RUN NUMHFR 5AMSB
PHOBE LFNGTH * TYPE 5 FT GLASS
MOZ/IE 1A : 1.0. .223
ASSUMF.O MOISTURE 11.0
SAMPLE BOX NUMBER
MFTER BOX NUMHFR FB4
METFR HEAD UIFF. 1.72
PROBE HFATER SETTING 320.
HFATFR BOX SFTTING 320.
K FACTOR 1116.0
ORIFICE PRESSURE
DIFFERENTIAL
(IN.H20)
DESIRED AC
1.03
,95
.95
.95
1 .02
.95
.95
.95
.95
TUAL
1.03
.95
.95
.95
1.02
.95
.95
.95
.95
STACK
TEMP
(OEli.F)
301.
303.
305.
305.
305.
304.
305.
304.
307.
DRY GAS
METER
TEMP
(OFG
INLET
63.
64.
68.
70.
73.
75.
77.
78.
7".
.F)
OUTLET
62.
62.
62.
62.
63.
64.
6S.
66.
68.
PUMP
VACUUM
(IN.MG)
4.0
4.0
4.0
5.0
5.5
5.5
6.0
6.0
6.5
SAMPLE
BOX TEMP
(OEG.F)
327.
341.
377.
321.
330.
331.
330.
323.
324.
IMPINGER
TEMP
(DEG.F)
52.
52.
53.
53.
54.
54.
52.
52.
52.
TOTALS
AVERAGE
90.0
49.886
.97
.97
304.
72.
64.
5.2
334.
53.
-------
PARTICIPATE
PLANT- NAME AND ADDRESS
DATA H, RESULTS TABULATION
TEST Te AM LEADER
PR RA
TEST 5AM5B
UNIT 2 FAST
TEST DATE
TB
TF
TT
NP
Y
ON
CP
> PM
00
W VM
TM
VMSTD
VLC
VWC
BNO
FMO
PC02
P02
PCO
PN2
MD
ENGLISH UNITS
02/11/83
TIME-START 755
TTMF-FINISH 925
NFT TIME OF TFST, MIN. 90.0
NFT SAMPLING POINTS 9
METER CALIBRATION FACTOR 1.003
SAMPLING NOZZLE DIAMETER .223 IN
PITOT TUBE COFFFICIFNT .84
AVERAGE ORIFICE PRESSURE .97 IN-H20
DROP
VOLUME OF DRY GAS SAMPLED 49.886 CU-FT
AT METER CONDITIONS
AVERAGE GAS MFTER TEMP 67.8 F
VOLUME OF DRY GAS SAMPLED 50.388 SCF
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN 138.6
IMPINGERS AND SILICA GEL, ML.
VOLUME OF KATFR VAPOR 6.524 SCF
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME 11.46
(CHECK AGAINST SATURATION
POINT HAS REFN MADE.)
MOLE FRACTION DRY GAS .885
PERCENT C02 BY VOL., DRY 12.80
PERCENT 0? RY VOL., DRY 3.25
PERCENT CO RY VOL., DRY .00
PERCENT N? HY VOL., DRY 83. 9S
MOLECULAR HT-ORY STACK GAS 30.18
METRIC UNITS
02/11/83
755
90.0
9
1.003
5.7
.84
24.6
1.413
19.9
1.427
138.6
.185
11.46
.885
12.80
3.?5
.00
83.95
30.18
MM
MM-H20
CU-M
c
SCM
SCM
-------
MWS MIUFCULAR W
PB BAHOMETRIC PRFSStlBE
PSI STATIC PRFS OF STACK GAS
PS STACK PRES, ARS.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
OSSTD STACK FLOW RATE. ORV*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICIPATE
MG. EPA 5
CS AMBIENT PARTICIPATE
30.OS IN-HG
-.80 IN-H20
?9.99 JN-HG
joa. f
5H.9 FPS
2061^. SO-1N
1755S016. SCFH
ACFH
JO?. 2
235.5
.0721 GR/OSCF*
2B.78
7h3.?7 MM-HG
-20.^2 MM-H?0
76J.78 MM-HG
151 . C
lf».T MPS
13.298 SQ-M
191002. SCMH
801M7. ACMH
102.2
235.5
165.067 MG/OSCM
I * 60 DEC F, 29.92 TN.HG.
CD
-------
EXAMPLF PARTICIPATE CALCULATIONS TEST Nil.
UMIT 2 EA«T
VOLUME OF DRY OAS SAMPLED AT STANDARD CONDITIONS
VMSTD = (17.*>47 • VM * V * (PH » PM / 13. b)) / (TM + 460.)
17.607 • 49.8fl6 * 1.003 * ( 30. OS + ,<»h7 / 13. f.)
VM8TD a ..................................... ---- .. --- . — .... - SO. 388 DSCF
( 68. ^ 460.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VWC s .04707 * VLC
VWC = .04707 * 13<>. = fc.5? 3CF
PERCFNT MOISTURE IN STACK GAS
BHO = (100. * VNC) / (VMSTD + VWC)
> 100. • 6.5?
cJ, BWO r ... ------- ..... --- ........ - J1.46 PERCENT
Ul S0.3B8 + 6.5?
HOLE FRACTION OF DRV STACK CAS
FMD = (100. > RWO) / 100.
100. - 11.5
FMD s ---- --- ----- .
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD = (PC02 » .44) * (P02 • .32) » (PN2 + PCO) * .28
MO = (12.00*44/100) + ( 3.1*32/100) * ((B3.9* .0) * ?8/100 = 30.18
MOLECULAR WEIGHT OF STACK HAS
MWS s MD * (i. - (nwn/too)) * ta. * (BWO/IOO)
MWS s 30. 1«* (1. -(11.46/100)) » 1«. * (11.46/100) = 28. 7B
-------
STACK GAS VtLOtlTY AT STACK CONDITIONS
HELP = SUM. OF THE SOHT(VH • (TS » 460.))
VS s 65.49 * CP * HELP / (SURT(MNS * PS) * PNTS)
VS s 85.«9 * .84 • 2<)2.2"b / (S(JRT( 28.78 • 29.99) * 9. = 51.tit FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS a VS * AS • 3f>00/144
OS s 54.94 * 20612. 1600/144 3 2A308684. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
QSSTD 3 17.647 * OS * PS • (1. - (RWO/100)) / (TS + 460.)
17.647 * 2«3I>BA84. * 29.99 * (I. - (11.46/100))
OSSTO c ....... ......... . -. = 17355016. SCFH
( 304. * 4bO.)
PERCENT ISOKINETIC
ISO = (305.58»(TS»46l.l)*((0.002fc69«VLC)»(VH*y*(PB»(PM/13.h))/(TM»460.)))/(TT«VS»PS*ON*ON)
(305.58*( 3«4.*460.))*((0.002669* 139.)»( 49.886*1.003* ( 30.05*( .967/13.6))/ ( 68.«460.)))
ISO = ——--- — --——-...-.....— ....... .. . — -—........ . - 102.16 PEHtENT
90. * 54.94 * 29.99 * .223 * .223
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN * 15.43 / VHSTD
CS = 0.001 * 235.S • 15.13 / 50.388 = .0721 GR/OSCF
-------
FIELO O»TA
i
CO
PLANT
SAMPLING LOCATION UNIT 2 FAS1
SAMPLE TYPE MSB
OPERATOR PR RA JP
AMBJENT TEMP. (HER. F) 60.
BA*>. PRESS. (IN. HG) 30.05
STATIC PRESS. (IN. H?0) -.80
FILTER NliMBER(S) 3531013
STACK INSIDE DIM. (TNI 162.00 .00
P1TQT TUBE COEFF. .84
THFRM. NO. 206
LEAKAGE .000 CFM n) 8.
METER CALIB. FACTOR .960
READ * RECORD DATA EVERY 10.0 MINUTES
TRAVFRSE SAMPLE
POINT TIMF
NO. (MIN.)
CLOCK
TIME
(24-HP
*• i nr> tf \
GAS METER
READING
(CU.FT.)
VELOCITY
HEAO
(IN.H20)
5 IN.HG
DATE 02/11/83
RUN NUMRFR 5BM5B
PROBF LENGTH ft TYPE 6 FT GLASS
NOZ7I.E 1H : I.D. .221
ASSUMED MOISTURE 11.0
SAMPLE PCX NUMBER
METER BOX NUMHER FB6
MF.TER HEAD oiFf . i .50
PROBE HEATER SFTTING 320.
HEATFR BOX SETTING 320.
K FACTOR 938.8
ORIFICE PRESSURE
OIFFERENTIAL
(IN.H20)
STACK
TEMP
(OEG.F)
OESIRFO ACTUAL
1NIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
755
805
815
8?5
8*5
845
855
905
915
9?5
236.455
242.410
247.969
253.558
259. 176
265.000
270.627
276.234
281.856
287.555
.700
.650
.6SO
.650
.700
.650
.650
.650
.650
.86
.80
.80
.80
.86
.80
.80
.80
.80
.86
.80
.80
.80
.86
.80
.80
.80
.60
301.
303.
305.
305.
305.
304.
305.
304.
307.
DRY GAS MFTFR
TEMP
(OEG.F]
1
PUMP
VACUUM
(IN.HR)
SAMPLE
BOX TEMP
(OEG.F)
IMPINRER
TEMP
(OEG.F)
INLFT OUTLET
56.
57.
62.
65.
67.
69.
70.
71.
72.
58.
58.
5" .
59.
59.
60.
M.
62.
63.
4.0
3.5
4.0
4.0
4.0
4.0
5.5
6.0
b.O
322.
340.
332.
336.
337.
329.
333.
329.
327.
52.
52.
52.
53.
53.
55.
50.
50.
51.
TOTALS
AVERAGE
90.0
51.100
.81
.81
304.
65.
60.
4.6 332.
52.
-------
PARTTCIILATF FIFLO DATA « HFSULTS TABULATION
PLANT- NAME AND ADDRESS TEST TMM LEADER
PR RA JP
TFST
UNIT P FAST
TEST DATE
TB
TF
TT
NP
Y
ON
CP
00
OOVM
TM
VMSTD
VLC
vwc
BMO
FMD
PC02
P02
PCO
PN2
MD
FNGLISH UNITS
02/1 1/83
TIME-START 755
TIPE-FINISH 925
NET TTMF OF TFST, MTN. 90.0
NET SAMPLING "OT.NTS 9
MFTER CALIBRATION FACTOR .9fiO
SAMPLING NOZZLE DIAMETER .221 IN
PTTOT TUBE COEFFICIENT .84
AVERAGE ORIFICE PRESSURE .81 IN-H20
DROP
VOLUME OF DRY GAS SAMPLED 51.100 CU-FT
AT METER CONDITIONS
AVERAGE GAS METER TEMP 62. b F
VOLUME OF DRY GAS SAMPLED 49.876 SCF
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN 137.2
IMPINGERS AND SILICA GEL, ML.
VOLUMF OF rtATFR VAPOR h.458 SCF
AT STANDARD CONDITIONS*
PERCENT MOISTHRF flv VOLUME 11.46
(CHECK AGAINST SATURATION
POINT HAS BEFN MADE.)
MOLE FRACTION DRY GAS .fl«5
PERCENT C02 BY VOL., DRY 12.80
PERCENT 02 BY VOL., DRY 3.25
PERCENT CO RY VOL., DRY .00
PERCENT N2 RY VOL., DRY 83.95
MOLFCULAR WT-DRV STACK GAS 30.18
METRIC UNITS
02/11
755
"25
90.0
9
.960
5.6
.84
20.7
1.447
17.0
1.412
137.2
.183
11.46
.885
12.80
3.25
.00
83.95
30.18
/83
MM
MM-H20
CU-M
c
SCM
SCM
-------
MWS MOLFCULAR hT-STAC* RAS
PB BAROMETRIC PRFSSU"E
PSI STATIC PRES 0* ST«CK GAS
PS STACK PRES, ARS.
TS AVERARE STACK TFMP
VS AV6 STACK GAS VFLOCTTY
AS STACK AREA
OSSTO STACK FLOW RATE, RRV*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMRIENT PARTICIPATE
MG. EPA 5
C3 AMBIENT PARTICIPATE
I * bfl DEC F, ?9.92 IN.HG.
CO
VO
?8.78
30.OS IN-HG
-.80 IN-H20
29.99 IN-HG
30/1. F
Stt.9 FPS
SQ-IM
SCFH
ACFH
103.0
230.9
763.27 MM-HR
-20.32 MM-H?0
761.7« MM-HR
151. C
16.7 MPS
13.298 9IJ-M
q014«0. SCMH
ACMH
103.0
230.9
,071« RR/USCF*
163.
-------
FXAMPLF PARTICUIMF CALCULATIONS TFST NO.
UNIT ? FA«T
VOLUME OF n«Y GAS SAMPLED AT STANDARD CONDITIONS
VMSTf) = (17.M7 * VM « Y * (PB * PM / 13. h)) / (TM » 4M>.)
17.647 * SI. 100 « .9*0 * { 30.05 + .813 / 13.6)
VMSIO = —— ——— ——— — — — .................. - 49.876 OSCF
( 63. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VWC = .00707 * VLC
VWC = .04707 * 137. = 6.46 SCF
PERCENT MOISTURE IN STACK GAS
BWO r (100. * VWC) / (VMSTO * VNC)
>
I 100. * 6.46
VO BWO r - — - ---- - --- - --- .......... s 11.46 PERCENT
0 49.876 + 6.46
MOLE FRACTION OF DRV STACK GAS
FMO s (100. - BWfl) / 100.
100. - 11.5
FMD = — - ---- — ---- - --- — — - = .885
100.
AVERAGF MOLECULAR WEIGHT OF DRY STACK GAS
MO = (Pen? » .44) * rpn? • .32) » (PN? * PCO) * .2«
MD = (ta. 80*44/100) * ( 3.3*32/100) » ((83.9* .0) * 28/100 = 30.18
MOLECULAR WEIGHT OF STACK GAS
MWS = MD * (i. - (Awn/too)) » 18. * (HMJ/IOO)
MWS = 30.18* (1. -(11.4f,/100)) * 18. * (11.46/100) = 28.78
-------
STACK GAS VELOCITY AT ST»C« CONDITIONS
OELP = SUM. OF THE SORT(VH • (TS + 160.))
VS = 8S.19 * CP * HELP / (SQRMMWS * PS) * PN1S)
VS = al.U') * .84 * 202.2*6 / (S(JRT( ?8.7fl * ?9.99) * 9. = 54.9OM 30.05»( .813/13.6))/( 61.+ 460.)))
tSO s = 102.96 PFRCENT
90. * 54.94 • 29.99 • .221 * .221
PARTICULATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * MN • 15.43 / VMSTD
CS = 0.001 • 230.9 • 15.43 / 49.876 = .0714 GR/DSCF
-------
DMA
>
K>
PLANT
SAMPLING LOCATION UNIT TWO EAST
SAMPLE TYPE M5H
OPERATOR CLARKE
AMBIENT TEMP. (HER. F) 60.
BAR.PRFSS.(IN.HG) 30.05
STATIC PRESS. (TN.H20) -.80
FII TER NUMBER(S) 3531124
STACK INSIDE PTM.(TN) 162.00 .00
PITUT TUBE COEFF. .84
THFKM. NO. 20fc
LEAKAGF .000 CFM i 11.
METER CALIB. FACTOR .983
READ & RECORD OAT* EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK 6AS METER VELOCITY
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
eo.o
90.0
TIME
(24-HP
755
805
615
8?5
835
815
855
905
915
9?5
READING
(ru.FT.)
306.333
31 1 .845
317.000
322.180
327.245
332.630
337.737
342.945
348.190
353.282
HEAP
(IN.H20)
.700
.650
.650
.650
.700
.650
.650
.650
.650
0 IN.HG
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIHFD
.98
.*M
.91
.91
,9H
.91
.91
.91
.91
M20)
ACTUAL
.98
.91
.91
.91
.98
.91
.91
.91
.91
STACK
TEMP
(OEG.F)
301 .
303.
303.
303.
305.
304.
305.
304.
307.
PATE 02/11/83
HUN NUMBER 5CM5B
PROHF LENGTH ft TYPF 6 FT GLASS
NU7JLE : I.D. .221
ASSUMED MOISTURE 11.0
SAMPLE HOX NUMBER UAC
METER POX NUMHFH FB5
METER HEAD OTFF. 1.54
PROBE HtATER SETTING 320.
HEATFR BOX SETTING 320.
K FACTOR 1070.1
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP
(DEG
INLET
62.
64.
/O.
74.
77.
79.
80.
80.
81.
.F)
OUTLFT
62.
62.
62.
63.
64.
69.
67.
68.
69.
VACUUM
(IN. MR)
5.0
4.5
5.0
5.5
6.0
6.5
6.5
7.0
7.0
BOX TEMP
(OEG.F)
327.
324.
322.
326.
329.
336.
336.
332.
312.
TFMP
(DEG.F)
56.
54.
52.
54.
50.
50.
52.
50.
48.
TOTALS
AVERAGE
90.0
46.949
.93
.93
304.
74.
65.
5.9 327.
52,
-------
PARTICULATF FIFLO OATA * HFSHLTS
PLANT- NAME ANO ADDRESS TEST HAM
CLARKF
TEST 5CM5B
UNIT TWO FAST
TEST DATE
TB
TF
TT
NP
Y
ON
CP
V£>
U)
VM
TM
VMSTD
VLC
VWC
BMO
FMO
PC02
P02
PCO
PN2
MO
TIMF-START
TIMF-FINISH
NFT TIMF OF TFST, MIN.
NFT SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING N07ZI.E DIAMETER
PtTOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS MFTFR TFMP
VOLUMF OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTFD IN
1MPINGERS AND SILICA GEL, ML.
VOLUMF. OF NATFR VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURF BY VOLUME
(CHFCK AGAINST SATURATION
POINT HAS BEEN MADE.)
MOLF FRACTION DRY GAS
PERCENT C02 8Y VOL., DRY
PERCENT 02 RV VOL., DRY
PFRCENT CO BY VOL., DRY
PFRCENT N? BY VOL., DRY
MOLECULAR rtT-r>RY STACK GAS
ENGLISH UNITS
0?/l 1/83
755
925
00.0
9
.983
.221 IN
.84
.93 IN-H20
46.949 CU-FT
69.6 F
46.315 SCF
131. fa
6.194 SCF
11.00
.«82
12.80
3.25
.00
83.95
30. IS
MF.TRIC UNITS
02/1 1/83
75S
90.0
9
.983
5.6 MM
.««
23.5 MM-H20
1.329 CU-M
20.9 C
1.311 SCM
131.6
.175 SCM
11. BO
.882
12.80
3.25
.00
83. <>5
30.18
-------
MWS MOLFCULAR WT-SIACK RAS
PR BAHOMFTRIC PRFSSURfc
PSI STATIC PRFS OF STACK GAS
PS STACK PRES, A1S.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VFLOCITY
AS STACK AREA
OSSTO STACK FLOW RATE, nuv«
OS ACTUAL STACK FLOW RATE
ISO PFRCENT ISOKINETIC
MN AMBIENT PARTICIPATE
MG. EPA 5
C3 AMBIENT PARTICIPATE
30.05 IN-Mi;
-.80 IN-H?0
F
S5.0 FPS
so-IN
17306912. SCFH
28320512. ACFH
219.2
.0730 GR/OSCF*
28.7«t
763.27 MM-HR
-20.32 MM-M20
7f>1.78 MM-HG
• 51. f
Ih.B MP3
13.29B SO-M
490080. SCMH
801952. ACMH
95.9
219.2
167.153 MG/OSCM
* 68 DEC F, 29.9? IN.HG.
-------
FXAMPLF PARTTC'IL»TF CALCULATIONS TFST NO. SC*>SR
UNIT TWO FAST
VOLUME OF DRY GAS SAMPLED AT STANDAHD CONDITIONS
VMSTO s (IT. 647 * VM * Y * (PB » PM / 13. h)) / (TM * 460.)
17.647 • 46.944 * .9*3 * ( 30.05 » .9?6 / 13.6)
VMSTO = ----------------- - ----------------------------------- r 46.315 OSCF
( 70. «• 460.)
VOLUME OF MATE" VAPOR AT STANDARD CONDITIONS
VWC = .04707 * VLC
VWC = .04707 * 13?. = 6.19 SCF
PERCENT MOISTURE IN STACK GAS
*p BWO = (100. • VWC) / (VMSTO •» VWC)
i
vo 100. * 6.19
01 BWO = ----- ---- - --- .......... --- - H.80 PFHCFNT
46.315 » 6.19
MOLE FRACTION OF DRY STACK GAS
FMO a (100. - BWO) / 100.
100. - 11. A
FMD =
100.
AVFRAGF MOIECULAR WETGHT OF DRY STACK GAS
MO = (PC02 • .44) * (POa * .33) * (PNa * PCU) * .88
MO = (I?. 80*44/100) » ( 3.3*33/100) * ((83.9+ .0) * i>8/100 s 30.18
MOLECULAR WEIGHT OF STACK GAS
MWS = Ml) * (I. - (HMO/ton)) » J8. * (BWO/JOO)
MWS s 30.18* (1. -(11.80/100)) » 18. * (11.80/100) = ?8.74
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DEIP = SUM. OF THE SQRT(VH * (TS + U6U.))
VS = 85.49 • CP * DtLP / (SQ«T(MWS * PS) * PNTS)
VS = 8S.a9 * .84 * 202.227 / (SflRTf 28.71 * 29.9") * <> . = 54.96 FPS
STACK PAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS • AS • 3600/144
OS = 54.96 • 20612. ^fcOO/l«« = 2«3?OS1?. ATFH
STACK KAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
QSSTD = «7.6«7 • OS * PS * (1. - (BHO/lOO)) / (TS * «60.)
IT.bOT * 3«3?0512. • ZV.W * (1. - (11. HO/100))
OSSTO = --------------------------------------------------- = 1730691?. SCFH
» 460.)
PERCENT ISOK1NETIC
ISO s (305. 5ft*(T.S+460.))*((0. 002669* VLt )» (VM»Y* (PB* (PM/ 1 3.6 ))/( TM+460 .)))/( TT*VS«PS*DN*DM)
(305.S8M 304. *«60.))*((0. 002660* 132. )*( 46.949* ,9B3*( 30.05*( .926/1 3 .6) )/( 70.*460.)))
jgo . _. ____ ....... ____ ..... ___ . _______________________ - -------------------- - ------------------------- - = 95. «7 PF.HCENT
90. * ^4.«>fe * 29.99 * .221 * .221
PARTICULATF LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
C3 = 0.001 * MN * 15.43 / VMSTO
CS s 0.001 * 219.? * 15.43 / 46.315 = .0730 GR/OSCF
-------
D«1A
PLANT .
SAMPLING LOCATION U*IT TWO EAS1
SAMpLt TYPE M5B
OPFRATOH CLARKE
AMBIENT TEMP. (MEK.F) 60.
BAR.PRFSS. UN.HGI 30.05
STATIC PRESS. (TN.H?01 -.80
FII TFH NUMBER(S) 3531123
S1ACK INSIDE DIM. (IN) 16?. 00 .00
PITOT TUBE COEFF. .84
THFRM. NO. 206
LEAKAGE .010 CFM n) H.
METER CALIB. FACTOR 1.030
READ & HECORO "ATA
TRAVERSE SAMPLE
POINr TIMF
NO. (MIN.)
w INIT 0
| 10.0
•0 20.0
^ 30.0
40.0
50.0
60.0
70.0
80.0
90.0
CLOCK
TTMF
(?4-HP
1*1 nfit \
Ll_ 1 H, H J
755
805
815
8?5
635
045
855
905
915
9?5
EVERY 10.0
GAS METER
READING
(CU.FT.)
863.797
«68.«>40
874.125
878.910
883. P33
889.000
893.845
898.939
003.900
908.861
MINUTES
VELOCITY
HFAD
(IN.H20)
.700
.650
.650
.650
.700
.650
.650
.650
.650
0 IN.HG
ORIFICE
DATE 02/11/83
BON NIJMHFK 50M5H
PROHE LENGTH * FYPF 5 FT GLASS
N07ZLE : 1.0. .215
ASSIIMEO MOISTURE n.o
SAMPLE BOX NUMBER HAD
METER BOX NUMBER FB4
METER HE AD OIFF . i ,e«
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 1070.1
PRESSURE
DIFFERENTIAL
f IN.
DESIRED
,9»
.91
.91
.91
.9B
.91
.91
.91
.91
"20)
ACTUAL
.98
.91
.91
.91
.98
.91
.91
.91
.91
STACK
TEMP
(OFG.F)
301 .
303.
305.
305.
305.
304.
305.
304.
^07.
PRY GAS
METER
TEMP
(OFG
INLET
58.
60.
66.
68.
70.
71.
72.
73.
74.
.F)
OUTLET
58.
58.
6?.
60.
62.
6?.
64.
66.
66.
PUMP
VACUUM
(TN.HR)
2.5
2.5
3.0
3.0
3.5
4.0
4.0
4.5
5.0
SAMPLE
BOX TEMP
(OEG.F)
311.
317.
322.
325.
321.
315.
319.
325.
314.
IMPINGER
TEMP
(DEG.F)
52.
52.
50.
50.
48.
52.
50.
52.
50.
TOTALS
AVERAGE
90.0
45.064
.93
.93 304.
68.
62.
3.6
319.
51.
-------
PAHTTCIILATF F
PLANT- NAME AND ADDRESS
OATA ft RESULTS TABULATION
TEST TE»M LEADER
CLARKF
TEST 5DM5B
UNIT TWO FAST
TEST
TB
TF
TT
NP
y
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NFT TIME OF TFST. MIN.
NFT SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING N07ZLE DIAMETER
PITOT TUBE COFFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNJ1S
02/1 1/83
755
9?5
10.0
9
t .030
.215 IN
.81
.93 IN-H30
METRIC UNITS
02/1 J
755
«?5
90.0
9
1 .030
5.5
.6«
23.5
/flj
MM
MM-I
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
IM AVERAGE GAS MFTFR TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H?0 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VHC VOLUME OF WATFR VAPOR
AT STANDARD CONDITIONS*
8WO PFHCENT MOISTURE HY VOLUME
(CHECK AGAINST SATURATION
POINT HAS REFN
FMD MOLE FRACTION DRV GAS
PCO? PERCENT C02 BY VOL., DRY
P02 PERCENT 0? BY VOL., DRY
PCO PFHfENT CO HY VOL., DRY
PN2 PFWPtf'T N2 nv VOL., DRY
MD MOLFCMLAH WT-HRV STACK GAS
«5.06« CU-ET
t.276 CU-M
65
46
32
b
11
12
3
B3
30
.0 F
.990 SCF
.B
.251 SCF
.71
.8.3
.80
.25
.uo
.95
.Ifl
18.3
t .331
132.8
.177
1 1 .74
.883
1?.«0
3.?5
.00
83.95
30.lfl
C
SCM
SCM
-------
MWS MDLFCULAR WT-STAC* CAS
P8 BAROMFTRIC PHFSS(J»f
PSI STATIC PHfS OF STACK GAS
PS STACK PPES, A^S.
TS AVERAGE STACK TFMP
V* AVG STACK GAS VFLOCTTY
AS STACK AREA
QSSTO STACK FLOW RATE, ORV*
OS ACTUAL STACK F|_nw RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICULATE
?B.7S
?O.OS IN-HG
-.80 IN-H2C1
?9.
-------
FXAMPLF PAHTTCHL»TF PAlCULA1 TONS TFST NO. SDM5B
UNIT TWO FAST
VOLUME OF PRY GAS SAMPLER AT STANDAWO PONDTTHINS
VMSTO = (17.647 * VM * Y • (P8 * RM / 1J.6)) / (TM * 460.)
1T.60T • 45.0*4 * j.oso * ( 30.05 * ,<»?b / is.t.)
VMSTO = —— — — — — — — ——— — .._._. —. ... = 46.940 03CF
( 65. » 460.)
VOLUME OF MATE" VAPOR AT STANDARD CONDITIONS
VWC s .00707 * VLC
VWC s .01707 * 133. x 6.25 SCF
PERCENT MOISTURE IN STACK GAS
BWO s (loo. * vwo / (VMSTn * vwo
M 100. * 6.2S
O BMO s ..-.- —--— r ll.7« PEHCtNT
0 46.990 + 6.?S
MOLE FRACTION OF DRV STACK GAS
FMD = (100. - PWO) / 100.
100. - 11.7
FMD = —«— = .8«3
too.
AVFRAGF MOLECULAR WEIGHT OF DRY STACK GAS
MD s (PC02 * .44) * (P02 * .38) » (PNa » PCO) * .2«
MD = (ia.eo*4a/ioo) » ( 3.3*32/100) + ((H3.9t .0) * ?B/IOO = 30.IB
MOLECULAR WEIRHT OF STACK GAS
M«S = MO * (1. - (R«0/100)1 » 18. * (BKO/100)
MWS = iO.lflo (1. -(11.74/100)) * 18. * (11.74/100) = ?8.7*
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. (IF THE SORT(WH * (TS + 4>>0.))
VS = 85.49 » CP * DELP / CSORTCMWS * PS) * PNTS)
VS = 85.49 * .84 * 202.2«6 / (Sl}HT( 28.75 • 29.99) * 9. = 5«.97 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS * AS * 3600/144
OS = 54.97 * 20612. 3600/144 = 28325324. ACFH
STACK GAS VOIUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD s 17.647 * OS * PS * Cl. • (BWO/100)) / (TS » «60.)
17.647 * 2«32S324. * 29.99 * Cl. - CM.74/100))
OSSTO s ....... r 17310776. SCFH
C 300. » 460.)
I
O PERCENT ISOKINFTIC
H
ISO = C305.5fl*CTS*460.))*CC0.002669*VLC)»CVM*Y*(PB*(PM/13.6))/(TM*460.)))/(TT*VS*PS*ON«DN)
(305.S8M 304.*160.1)*C(0.002669* 133.) + ( 45.064 * 1.030*C 30.05»( ,92h/13.6))/( 65.*460.)))
ISO r = 102.75 PERCENT
90. • S4.97 * 29.99 * .215 * .215
PARTICULATF LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS - 0.00] * MN • 15.43 / VMSTD
CS = 0.001 * 217.0 * 15.43 / 46.990 = .0716 GH/DSCF
-------
FIELD DAT*
PLANT
SAMPLING LOCATION UNIT 2 EAST
SAMPLE TYPE M5B
OPERATOR PR RA JP
AMHIFNT TEMP. (OEfi.F) 60.
BAR. PRESS. (IN.HG) 30.10
STATIC PRESS. (1M.H20) .25
FILTER NIlMRERCi) 3531061
STACK INSIDE DIM. (IN) 162.00 .00
PITOT TUHE COEFF. .84
THFRM. NO. 178
LEAKAGF .000 CFM a) H.
METER CAI.IB. FACTOR 1.003
READ ft RECORD DATA
TRAVFRSE SAMPLE
POINT TIME
NO. (MIN.)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
OTALS 90.0
CLOCK
TIMF
(24-HR
t* i i\i* v \
CLOCK )
10*0
1 100
1110
1 120
1 1*0
1140
1 ISO
1200
1210
1220
EVERY 10.0
GAS METER
READING
(CD. FT.)
758.131
763.876
769.397
774.920
780.453
786.057
791.653
797.273
802.831
808.399
50.268
MINUTES
VELOCITY
HEAD
(IN.H20)
.700
.650
.650
.650
.670
.670
.670
.650
.650
0 IN.HG
ORIFICE
DATE 02/11/83
HIIN NUMBER 6AMbP
PROBE LENGTH A TYPF b FT GLASS
NUZZLE 2A : I.D. .224
ASSUMED MOISTURE 11.0
SAMPLE BOX NUMBER
METER BOX NIIMHER FB4
METER HEAD DTFF. 1.72
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 1139.1
PRESSURE
DIFFERENTIAL
(IN.
DESIRFD
1.03
.96
.96
.96
.98
.98
.98
.96
.96
H20)
ACTUAL
1.03
.96
.96
.96
.98
.98
.98
.96
.96
STACK
TEMP
(OEG.F)
311.
513.
313.
315.
316.
314.
316.
315.
317.
DRY GAS
METFR
TFMP
(DEC
INLET
70.
71.
75.
78.
80.
Bl.
82.
82.
84.
.F)
OUTLFT
68.
68.
68.
6q.
70.
71.
72.
72.
73.
PUMP
VACUUM
(IN.HG)
4.5
4.5
5.0
5.5
6.0
6.5
7.0
7.0
7.5
SAMPLE
BOX TEMP
(OEG.F)
315.
328.
346.
316.
329.
321.
336.
338.
338.
IKPINGER
ItfP
(OEG.F)
66.
60.
60.
60.
60.
60.
59.
62.
6e?.
AVERAGE
.97
.97
314.
78.
70.
5.9
330.
61,
-------
PLANT- NAME AND ADDRESS
FIFLO DATA * RFSULTS TAMMLATTON
TFST TEAM LFADtP
PR PA JP
TEST 6AM5B
UNIT 2 FAST
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
VM
TM
VMSTD
VLC
VHC
BWO
FMD
PCO?
P02
PCU
PN2
MD
ENGLISH (/NITS
0?/1 1/83
TIME-START 10SO
TIME-FINISH 1220
NFT TIME OF TFST, MTN. 90.0
NET SAMPLING "OINTS 9
METER CALIBRATION FACTOR 1.003
SAMPLING N077.I E DIAMETER .224 IN
PITPI TUBE COEFFICIENT .flfl
AVERAGE ORIFICE PRESSURE .97 IN-H20
DROP
VOLUME OF DRY GAS SAMPLED 50.26A CU-FT
AT MFTE» CONDITIONS
AVERAGE GAS MFTFR TEMP 7a.l F
VOLUMF OF DRY GAS SAMPLED 50.261 SCF
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN 137.6
IMPINGERS AND SILICA GEL. ML.
VOLUME OF WATFR VAPOR 6.477 SCF
AT STANDARD CONDITIONS*
PERCENT MOISTI'RF RY VOLUME 11.4?
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
MOI.F FRACTION DRY GAS .8fl6
PERCENT C02 BY VOL., DRY 13.60
PERCENT 0? BY VOL.. DRY 2.50
PERCENT CO BY VOL., DRY .00
PFHCENT .N? BY VOL., DRY 83.90
MOLECULAR KT-ORY STACK GAS 30.2*
METRIC I/
02/11
1050
90.0
9
1 .003
5.7
.M
20.8
1.42,
23. «
!.•*)
137.6
.183
11.42
.886
13.60
2.50
.00
83.90
30.28
NITS
/83
MM
MM-H20
CU-M
C
SCM
SCM
-------
MWS MOLFCHLAR WT-S1ACK GAS
PB BAROMFTRIC PRFSSU"E
PSI STATIC P«FS OF STACK GAS
PS STACK PRES, A«S.
TS AVERAGE STACK TFMP
VS AV6 STACK GAS VELOCITY
A9 STACK AREA
OSSTD STACK FLUH RATE, ORY*
QS ACTUAL STACK FLOW RATE
130 PERCENT ISOKINETIC
MN AMBTEMT PARTKULATE
MG. EPA 5
C3 AMBIENT PARTICIPATE
.10 IN-Hf,
.I? IN-HG
.i FPS
761. SI MM-HP
b.35 MM-H?0
76"i.nt MM-HF
157. C
Ih.B MPS
13.29B SO-M
489170.
toi.s
. SCFH
. ACFH
101.5
,07(ta GR/OSCF* 161.127 MG/OSCM
M
O
• 68 OEG F, 29.92 IN.HH.
-------
FXAMPLF PARTICIILATF r ALCUL* I TUNS TFS1 Nil. 6AVSB
UNIT ? FAST
VOLUME OF DRY GAS SA^Pt £[> »T STANDARD CONDITIONS
VMSTO = (17.647 * VM * V * (PB * PM / 13.6)) / (TM + 460.)
17.647 * 50.268 * 1.003 * ( 30.10 * ,<»7+ .0) * 28/100 = 30.?8
MOLECULAR WEIGHT OF STACK GAS
MWS = MD • (i. - (flwn/too)) » is. * (BWO/IOO)
MWS = 30.?6* Cl. -(11.4P/100)) + 18. * (11.42/100) = 2S.87
-------
STACK GAS VtLOCITY AT STACK CONDITIONS
OELP = SUM. OF THE SORT(VH * (TS + «*>0.))
VS = 85.09 * CP * DE'-P / (SQRT(MWS * PS) * PNTS)
VS = BS.09 * .84 * 2«3. BOO / (SO»T( ?8.fl7 * 30.1?) * 9 .
FPS
STACK GAS VOLUMETRIC FLOW XI STACK CONDITIONS
OS = VS * AS * Sf.00/144
OS » 55.10 • 20bl2. *fcOO/144 = 2«0146J?. ACFH
STACK RAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
QSSTO = 17.b«7 * OS * PS • (I. - (HWO/JOO)) / (TS * IbO.)
t7.b«7 * 2««1«fc3?. * 30. t? * (1. - (ll.«2/|OOH
___________________________________________________
( 314. * 060.)
I727aT«0. SCFH
PERCENT ISOKINETIC
ISO = (305.5B
(305.S8M 314.»«bO.))*((0.00?6b«»«
••-•-•-—-•----•--—--------------
90. *
•en -
55.
,003» ( 30.IO*( ,974/ 13
---•---------•---------••-----—-•-
* 30.12 * .??4 * .224
74 . *
-------
FIELD DATA
o
-j
PLANT
SAMPl ING LOCATION UNIT ? FAST
SAMPLE TYPE M«JH
OPFHATOR PR RA JP
AMUIFNT TEMP. (DEC. F) 60.
BAP. PRESS. (IN. HG) 30.10
STATIC PRESS. 8.
METER CALIB. FACTOR .960
READ & RECORD HATA EVERY 10. 0 MINUTtS
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
POINT
NO.
INIT
TTMF
(MIN.)
0
10.0
20.0
30.0
00.0
50.0
60.0
70.0
80.0
90.0
TTMF
(20-HP
r i flr K t
t, H'L ™ 1
oso
too
110
1?0
I'O
iao
ISO
ieoo
taio
12?0
RFAOING
(CU.FT.)
P87.B08
?93.165
?9<».2I4
300. 890
310.07?
316.167
321. P7?
327. S92
333.200
338.850
HEAO
(IN.H?0)
.700
.650
.650
.650
.670
.670
.670
.650
.650
5 IN.HG
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
.85
.79
.79
.79
.81
.81
.81
.79
.79
H20)
ACTUAL
.85
.79
.7«
.79
.81
.«1
.81
.79
.79
STACK
TEMP
(OEG.F)
311.
313.
313.
31S.
316.
310.
316.
315.
317.
DATE 02/11/83
RUN NIJMHER 6BM5P
PHOHE LENGTH A TYPE 6 FT GLASS
NO/71E : I.n. .227
AssuMF_n MOISTURE 11.0
SAMPLE BOX NUMBER
MFTER BOX NIJMHER
METER HEAD DIFF. 1.50
PROBE HEATER SETTING 320.
HEATER BOX SFTTING 320.
K FACTOR 901.3
DRY GAS METER PUMP SAMPLE IMPINGES
TEMP
(OEG
INLET
63.
60.
68.
7?.
70.
75.
7*..
77.
77.
.F)
OUTLET
6^.
M.
h«.
60.
66.
«.7.
68.
6«>.
*•<».
VACUUM
(IN.HG)
0.0
o.o
0.5
0.5
5.0
6.0
6.0
6.5
7.0
BOX TEMP
(DEG.F)
319.
335.
332.
319.
329.
332.
326.
J30.
336.
TEMP
(OEG.F)
- 60.
56.
56.
56.
5H.
5B.
58.
60.
60.
TOTAI S
AVERAGE
90.0
51.042
.80
.80
310.
72.
66.
5.3
329.
58.
-------
PARTICIPATE F
PLANT- NAME AND ADDRESS
DATA ft RESULTS TABULATION
TEST TEAM LFAPEH
PR RA JP
TEST 6BM5B
UNIT ? FAST
TEST PATE
TB
TF
TT
NP
V
DN
CP
PM
TTME-STAWT
TIMF -FINISH
NET TIMF OF TFST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING N07ZL6 DIAMETER
PITOI TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
FNGLISM UNITS
02/11/83
1050
i2?o
00.0
9
.960
.227 IN
.64
.80 IN-H20
MFTRIC UNITS
02/1 1/83
1050
l?20
90.0
q
.960
5.B MM
.84
20.4 MM-
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS MF.TER 1FMP
VMSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H?0 COLLECTED IN
IMPINGERS AND StLTC* GELfML.
VWC VOLUME OF WATFR VAPOR
AT STANDARD CONDITIONS*
BWO PFRCENT MOISTHRF «Y VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
FMD MOLE FRACTION DRY GAS
PCO? PERCENT C02 BY VOL.. DRY
P02 PERCENT 0? BY VOL.. DRY
PCO PFRCENT CO BY VOL.. ORY
PN2 PFHCENT N? «Y VOL.. f»RY
MD MOLECULAR WT-OHY ST»CK GAS
51.012 CU-FT
1 ,«15 CU-M
68.
09.
136.
6.
11.
,
13.
2.
.
H3.
,„.
8 F
314 SCF
3
lib SCF
51
BB5
60
50
00
90
28
20.5
1 .396
136.3
.182
11.51
.«8S
13.60
2.50
.00
83.90
30.28
C
SCM
SCM
-------
HNS MOLrCULAH WT-ST«CK RAS
PB BAWOMETRir PHPSSU^E
PSI STATIC PHFS OF ST»CK GAS
PS STACK PRES, ARS.
TS AVERAGE STACK TFMP
VS AVC STACK GAS VFLOCtTY
AS STACK AREA
OSSTD STACK FLOW RATE, DRV*
OS ACTUAL STACK FLOW RATE
ISO PFHCENT ISOKINETIC
MN AHHTENT PARTICULATE
MG. fcPA 5
CS AMBIENT PARTICULATE
20612.
17259
-------
EXAMPLF PARIICMLATF CALCULAIIONS 1FST NO. 6HMSH
UNIT ? FA^T
VOLUME OF OKY KAS SAMPLER AT STANDARD CONDITIONS
VMSTD = (17.647 * VM • V * (PB » PM / 13.6)) / (TM + 460.)
17.6«7 * S|.0«2 * .960 * ( 30.10 » .803 / 13.6)
VMSTD = = 49.314 OSCF
( 69. * 460.)
VOLUME OF WATER VAPO* AT STANDARD CONDITIONS
VWC = .04707 * VLC
VWC = .04707 * 136. = 6.42 S»CF
PERCENT MOISTURE IN STACK RAS
RMO > (100. * VWC) / (VMSTO * VWC)
100. • 6.4?
BWO s - — -------——--- — — — -- s 11.SI PERCENT
49.314 * 6.4?
MOLE FRACTION OF DRV STACK GAS
FMD = (100. - RMO) / 100.
100. - 11.5
FMD = — = ,8«S
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK HAS
MD = (Pen? * .44) * (P02 * .38) * (PN? •» PCO) * .28
MO s (13.60»44/100) + ( ?.5»32/100) * ((«3.9+ .0) * 28/100 = 30.?«
MOLECULAR WEIGHT OF STACK GAS
MwS = Ml) • (1. - (*WO/100)) * 18. * (BKO/IOO)
MWS = 30.2B* (1. -(11.51/100)) » 18. * (11. SI/100) = 2H.86
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. OF THE SOHT(VH • (TS * ««.(».))
VS a H5.49 * CP * HELP / (SQRT(MWS * PS) • HNTS)
VS = 85.49 * .84 « 203.8f»l> / (SQRTJ ?8.H6 * 10.12) * «». = 5*5.IS FPS
STACK GAS VOLUMETRIC FlON AT STACK CONDITIONS
ns a VS * AS • 3600/taa
OS a 55.15 * 20613. 3600/144 = 2B4204B4. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTO = 17.647 * OS * PS * (J. - (RWO/100)) / (TS + 460.)
17.647 * 2A4?04a4. * 30.12 * (1. - (11.51/1001)
OSSTP a = 172S9472. SCFH
( 314. » 460.)
>
I
MPERCENT ISOKINETIC
H-
ISO a (305.5»«*(TS*460.1)»(f0.00266<»«VLC)*(VM*Y*(PB*(PM/I3.6))/(TM»a60.)))/{TT«VS«PS*ON*ON)
(30S.S8*( 314. + 460.))«((0.002669* 136.)»( 51.042* ,960*( 30.10»( .803/13.6))/ ( 69.»«60.)))
130 s a 97.02 PFRCENT
90. * 55.15 * 30.12 « .227 * .227
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS a 0.001 * MN * 15.43 / VMSTO
CS a 0.001 * 216.ft * 15.43 / 49.314 a .0678 GR/DSCF
-------
FIFLO DATA
>
I
PLANT
SAMPLING LOCATION UNIT TWO FAST
SAMPLE TYPF MSB
OPFKATNK CLARKE
AMQIFNT TEMP. (OER.F) 60.
PAR. PRESS. (IN. MG) 30.10
STATIC PRESS. (TN.HPO) .25
FIITFR NUMPER(S) 3531108
STACK INSIDE DTM.UN) 162.00 .00
PITOT TUBE COEFF. .PO
THFRM. NO. 178
LEAKAGE .000 CFM » .6 IN.HG
METER CALIB. FACTOR .983
READ & RFCOHO DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CL"CK GAS METER VELOCITY ORIFICE PRESSURE STACK
POINT TIMF TIMF RFAOING HFAO DIFFERENTIAL TEMP
NO. (WIN.) (20-HR (CU.FT.) (IN.H20) (IN.H20) (OEG.F)
INIT 0
10.0
20.0
30.0
00.0
50.0
60.0
70.0
80.0
90.0
CLOCK)
1050
1 100
1 MO
1 1?0
1 1*0
t 100
1200
1210
DESIRED
353.557
358.565
3b3.3o3
368.650
373.500
378.300
382.780
387.625
392.655
397.318
.700
.650
.650
.650
.670
.670
.670
.650
.650
.85
.79
.79
.79
.81
.81
.81
.79
.78
ACTUAL
.85
.79
.79
.79
.81
.81
.81
.79
.78
DATE 02/11/H3
RUN NUMBER 6CM5B
PROHF LENGTH * TYPE b FT GLASS
N'UZZLE : 1.0. .211
ASSUMED MOISTURE 11.0
SAMPLE BOX NUMBER [JAC
METER wux NUMUFQ FB5
METER HEAO OIFF. 1.80
PKHBE HEATER SETTING 320.
HEATER BOX SFTTING 320.
K FACTOR 937.0
ORY GAS METER PUMP SAMPLE IMPINGEP
TFMP VACUUM BOX TFMP 1FMP
(OEG.F) (IN. HP.) (OEG.F) (OEG.F)
INLFT OUTLET
311.
313.
313.
315.
316.
310.
316.
315.
317.
68.
70.
70.
80.
82.
00.
80.
85.
R6.
68.
68.
69.
70.
71.
72.
73.
71.
75.
3.5
3.5
4.0
0.0
0.5
0.5
5.0
5.0
S.5
313.
320.
319.
322.
316.
326.
323.
327.
326.
59.
58.
57.
60.
60.
59.
57.
60.
60.
TOTALS
AVFRAGF
90.0
a3.761
.80
.80
310.
79.
7t.
0.0
321.
59.
-------
PARTICIPATE FJFLH DATA & RESULTS TABULATION
PLANT- NAME ANO ADDRESS TEST TtAM LEADE"
CLARKF
TEST 6CM5B
UNIT TWO FAST
TEST
TB
TF
TT
NP
r
ON
CP
PM
DATE
TIME-START
TIMF-FINISH
NET TTMF OF TFST. MIN.
NET SAMPLING POINTS
METFR CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
02/1 1/81
10SO
12?0
90.0
9
.9B3
.ail IN
.84
.80 IN-H20
MFTRIC UNITS
02/1 t/flj
1050
1?20
90.0
9
.983
5.4 MM
.«4
20. a MM-I
DROP
VM VOLUME OF ORr G«S SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METFR TFMP
VMSTO VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H?0 COLLECTED IN
IMPTNGERS AND SILICA GEL.ML,
VWC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BWO PERCENT MOISTURE BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
FMQ MOLE FRACTION DRV GAS
PCO? PF.HCENT C02 Hr VOL., DRY
P02 PERCENT 0? BY VOL.. D"»Y
PCO PERCENT CO BY VOL.. DRY
PN2 PFRtENT N? BY VOL., DRY
MD MOLECULAR wT-OHY STACK GAS
CU-FT
1.239 CU-M
75.2 F
12.7HO SCF
117.7
5.5«0 SCF
11.17
.8»5
13.60
2.50
.00
"3.90
^o.a«
24.0
1.211
117.7
.157
11.47
.BBS
13.60
2. SO
.00
83.90
30.28
C
SCM
SCM
-------
MWS MOtFCULAH WT-STAC* GAS
PR HAHOMFTRIC P»FSSU»E
PSI STATIC PRFS OF STACK GAS
PS STACK P»ES, A^S.
T3 AVERAGE STACK TFMP
VS AVG STACK GAS VFLOCITY
AS STACK AREA
QSSTD STACK FLOW RATE. OR**
OS ACTUAL STACK FLOW RATE
ISO PFRCENT ISOKINETIC
MN AMBIENT PARTICIPATE
MR. EPA 5
CS AMBIENT PAHTirulATE
15.1
20612.
17266852.
26017676.
?8.M7
?0.10 IN-HG
.25 IN-H?0
30.1? IN-HG
3t4. F
FPS
SQ-IN
SCFH
ACFM
2B.B7
764.14 MM-HG
6.35 MM-H20
76S.01 MM-HG
157. C
16.« MPS
SQ-M
SCMH
804703.
97.4
.0613 GR/DSCF*
140.017 MG/DSCM
* 68 DEC F, ?9.<>? TN.HG.
-------
EXAMPLE PARTICIILATF CALCULATIONS TFST NO.
UNIT TWO FAST
VOLUME OF DRY GAS SA"PI EO AT STANDARD CONDITIONS
VMSTf) s (17.647 * VM * Y • (PH » PM / IJ.h)) / (TM «• 460.)
17.647 « aj.ffel • .983 * ( 30.10 » .80? / 11.6)
VMSTD = — — — -- ——. — — - — .-... — ................... — . - 43. mo DSCF
( 75. » 460.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VWC = .04707 * VLC
VWC s- .00707 * 118. s 5.50 SCF
PERCENT MOISTURE IN STACK GAS
BWO = (100. * VWC) / (VMSTO » VWC)
100. * 5.50
BWO s .......................... s 11.47 PFRCENT
4?.780 » 5.50
HOLE FRACTION OF DRY STACK GAS
FMO s (too. - BWO) / too.
100. - 11.5
FMD s ............. s .885
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MD = (PC02 * .44) » (P02 * .32) * (PN2 + PCO) * .28
MD s (13.60*44/100) » ( 2.5*32/100) » ((83.9* .0) * ?8/100 = 30.28
MOLECULAR WEIGHT OF STACK GAS
MWS = MO * (i. . (Ann/ton)) * is. * (HWO/IOU)
MWS = 30.28* (1. -(11.47/100)) * 18. * (11.07/100) = 28.87
-------
STACK GAS VELOCITY AT STACK CONDITIONS
HELP = SUM. OF THE S1HT(VH * (TS + 460.))
VS = 85.19 * CP * OEI.P / (SORHMWS * PS) * PNTS)
VS = 8S.a9 * .81 * 203.800 / (SQRH ?8.87 * 30.12) * 9. = 5S.15 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS * AS * 3600/144
OS = 55.15 * 20612. 3600/144 = 28417676. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
QS3TD r 17.647 * OS * »3 • (1. - (flWO/100)) / (TS * 460.)
17.647 * 2*417676. * 30.12 * (1. - (11.47/100))
OSSTD = .......... . . - 172668S2. SCFH
( 314. * 460.)
>
I
MPERCENT ISOKINEIIC
M
^ISO = (305.5A*(TSt460.))*((0.002669*VLC)+(VM»V*(PB+(PM/13.6))/(TM*460.)))/(TT*VS*PS*DN*ON)
(305.58*( 314.*460.))*((0.002669* llfl.) + ( 43.761* ,9«3*( 30.10+( .802/13.6))/ ( 75. + 460.)))
ISO s ..-.....---.............-..-...------—-.-.-.---.-.......-.....-........._........_......._..-.._ = 97.37 PERCENT
90. * 55.1«i * 30.12 * .211 • .211
PARTICULATF LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * MN * 15.43 / VMSTD
CS = 0.001 * 169.6 * 15.43 / 42.780 = .0612 GR/DSCF
-------
F i f L i) o A i A
PLANT
SAMPLING LOCATION UNIT T*0 EAST
SAMPLE TYPE M5H
OPERATOR CLARKE
AMBIENT TEMP.(nfG.F) 60.
BAR. PRESS. (IN.HG) 30.10
STATIC PRESS. (IN. H?0) .25
FILTER NUMBER(S) 3531090
STACK INSIDE DIM. (IN) 162.00 .00
PITOf TUBE COEFF. .84
THEHM. NO. 178
LEAKAGE .015 CFM * 7.
METER CALIB. FACTOR 1.030
HEAD * RECORD DATA EVERY 10.0 MINUTES
TRAVERSE
POINT
NO.
INIT
>
1
1 — '
I-1
-J
SAMPLE
T I ME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
60.0
90.0
CLOCK
TIME
(24-HR
PI fif K ^
i*L 'Jv. « f
1050
100
110
120
130
140
150
1200
1210
1220
GAS METER
READING
(CU.FT.)
VELOCITY
HF AD
(IN.H20)
0 IN.HG
DATF 02/1I/B3
RUN NIIMHtk 60M*)B
PROBE LtNGTH A TYPE 5 FT GLASS
NOZZLE : 1.0. .210
ASSUMED MOISTURE 11.0
SAMPLt BOX NUMBER OAO
MFTFR HIIX NUKHtW FB4
METER HEAD DIFF. i.sa
PROBE HfATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 937.4
ORIflCt PRESSURE
DIFFERENT
(IN.M20)
IAL
STACK
TEMP
(DEG.F)
DESIRED ACTUAL
909.442
914.580
919.165
924.225
928.600
933.490
937.937
942.445
947.200
951.818
.700
.650
.650
.650
.670
.670
.670
.650
.650
.85
.79
.79
.79
.HI
.HI
.at
.79
./B
.85
.79
.79
.79
.81
.81
.81
.79
.78
311.
313.
313.
315.
316.
314.
316.
315.
317.
DRY GAS ME
TEMP
(DEG.F)
TER
PUMP
VACUUM
(IN.HG)
SAMPLE
BOX TEMP
(OEG.F)
IMPINGER
TEMP
(DEG.F)
INLET UUTLET
66.
6B.
71.
74.
76.
77.
78.
76.
78.
65.
66.
66.
68.
69.
70.
71.
71.
72.
5.0
4.5
5.0
5.5
5.5
6.0
6.5
7.0
7.0
312.
32h.
332.
333.
326.
326.
309.
321.
331.
62.
60.
5«.
61.
60.
59.
58.
59.
60.
TOTALS
AVERAGE
90.0
43.376
.80
.80
314.
74.
69.
5.8
324.
60.
-------
PARTICIPATE FIELD DATA » HESULIS
PLANT- NAME AM) ADDRESS TEST U AM LFAOFk
CLAKKfc
TEST 60M5H
UNIT TWO FAST
TEST
TB
TF
TT
NP
V
ON
CP
PM
DATE
TIMt-START
TIMt-FINISM
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBHATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE URIFICE PRESSURE
ENGLISH UNITS
02/11/83
1050
I«i20
90.0
9
1.030
.210 IN
.80
.BO IN-H2U
MF. TRIC UNITS
02/11/83
1050
1220
90.0
9
1.030
5.3
.sa
20.1
MM
MM-'
DROP
VM VULUMt OF DRV GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VHC VOLUMt OF hATFR VAPOR
AT STANDARD CONDITIONS*
BWO PFRCENT MOISTURE RV VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
FMD MULt FRACTION DRY GAS
PC02 PERCENT C02 BY VOL.. DRY
P02 PERCENT 02 HY VOL.. f>HY
PCO PF.RCFNT CO BY VOL.. ORY
PN2 PERCENT N2 BY VOL., OHY
MO MOLECULAR MT-DRY STACK GAS
02.376 CU-FT
1.200 CU-M
71.3 F
«3.720 SCF
llfc.2
5.170 SCF
11.12
.8fl<»
13.60
2.50
.00
83.90
30. 2»
21
1
lib
11
13
2
»3
30
.9 C
.238 SCM
.2
.155 SP>
.12
.8»9
.60
.50
.00
.90
.28
-------
MWS MOLECULAR WT-ST»CK GAS
PB BAROMETRIC PRFSSIIRE
PSI STATIC PRES OF STACK GAS
PS SIACK PRES, ARS.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTU STACK FLOW RATE, PRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MM AMOUNT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICULATE
30. 10
.25
30.12
314.
55.1
20612.
17321612.
28396772.
100.1
186.1
IN-hr,
IN-H?U
IN-Hf,
F
FPS
SQ-1N
SCFH
ACFM
764. 5'l
h.35
76b.OI
157.
16.8
13.298
490496.
8041 11 .
100.1
186.1
MM-HG
MM-H20
MM-Hfi
C
MPS
Sf4-M
SCMH
ACMH
.0657 GR/USCF*
150.336 MG/OSCM
* 68 OEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS 1FST Ml). bDMSB
UNIT TWO EAST
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD = (17.617 * VM * Y * (PB + PM / 13.6)) / (TV » 160.)
17.647 * 4?.376 * 1.030 * ( 10.10 * ,*02 / 13.6)
VMSTD = = 43.720 DSCF
( 71. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VWC = .04707 * VLC
VWC = .04707 * 116. = 5.47 SCF
PERCENT MOISTURE IN STACK GAS
> BWO s (100. * VWC) / (VMSTD » VWC)
I
£ 100. » 5.47
O BWO s .....—....... —.. = 11.18 PERCENT
43.720 » 5.47
MOLE FRACTION OF DRY STACK GAS
FMD s (100. - BWO) / 100.
100. - 11.1
FMD = .---.—-- r .889
100.
AVERAGE MOLECULAR WEIGHT OF DRV STACK GAS
MD = (PC02 * .44) » (P02 * .32) * (PN2 + PCO) * .28
MD s (13.60*44/100) * ( 2.5*32/100) «• ((83.9» .0) • 28/100 = 30.28
MOLECULAR WEIGHT OF STACK GAS
MWS = MD * (1. > (BWO/IOO)) * 18. * (BhO/tOO)
MrtS = 30.26* (1. -(11.12/100)) * 16. * (11.12/100) = 2B.
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. OF THE SORT(VH * (TS »
I PERCENT ISOKINETIC
£i ISO = (305.58MTS*460.))*((0.002669*VLC)+(VM«Y*(PB«(PM/13.6))/(TM+«fcO.)))/(TT*VS«PS*DN*ON)
(305.58«( 314.+ 460.))•((0.002669* 116.)»( 42.376*1.030*( 30.10+( .802/13.6))/( 71.+ 460.)))
ISO = .. —— . . s 100.14 PERCENT
90. * 55.11 * 30.12 * .210 • .210
PARTICULATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * MN • 15.43 / VMSTD
CS = 0.001 * 186.1 * 15.43 / 43.720 = .0657 GR/DSCF
-------
DATA
NJ
to
PLANT
SAMPLING LOCATION UNIT ? FAST
SAMPLE TYPF M58W
OPFRATOH P» RA JP
AMBIFNT T£MP.(OER.F) 65.
BAR. PRFSS. (IN.HG) 30.11
SIATIC PRESS. (IN. H?0) .?()
FII.TFR NMMPER(S) 35310125
STACK INSIDE DTM.(TN) 162.00 .00
PITOT TUBE COEFF. .84
THFKM. NO. 206
LEAKAGF .000 CFM n) 8.
METER CAHB. FACTOR 1.003
READ d KFCORD DATA
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
BO.O
90.0
CLOCK
TTMF
(24-HP
CLOCK)
13*0
1340
1350
1400
1410
14?0
1430
1440
1450
1500
EVERY 10.0
GAS METER
READING
(CU.FT.)
BOB. 703
814.370
819.924
825.527
831 .125
836.570
842.295
847.913
853.352
859.095
MINUTES
VELOCITY
HEAD
(IN.H20)
.670
.650
.670
.670
.640
.700
.670
.670
.670
0 IN.HG
ORIFICE
DATE 02/M/B3
HUN NUMBER 7AM5HW
PHOBF LENGTH A TYPE 5 FT GLASS
N()7ZLf : 1.0. ,?23
ASSUMED MOISTURE 11.0
SAMPLE BOX NUMBER
MKTER BOX NIIMHFR FR4
METER HFAO DIFF. 1.72
PROBF HEATFR SETTING 320.
HFATFR BOX SETTING 320.
K FACTOR 1129.5
PRESSURE
DIFFERENTIAL
(IN.
DESIRFO
.98
.94
.98
.98
."3
1 .01
.97
.97
.97
"20)
ACTUAL
.98
.94
.9H
.98
.93
1.01
.97
.97
.97
STACK
TEMP
(DEG.F)
315.
317.
318.
318.
318.
320.
320.
321.
321.
DRY GAS METER
TFMP
(DEG.F)
INLFT OUTLET
76. 74.
79. 75.
80. 75.
83. 75.
86. 78.
87. 77.
88. 77.
88. 78.
88. 79.
PUMP
VACUUM
( T N . MB )
4.0
4.0
4.0
4.5
5.0
6.0
6.0
6.5
7.0
SAMPLE
BOX TEMP
(OEG.F)
325.
343.
330.
318.
332.
323.
3?7.
338.
339.
IMPINGER
TFMP
(OEG.F)
59.
60.
56.
57.
58.
60.
58.
58.
59.
TOTALS
AVERAGE
90.0
50.392
.97
.97 319.
84.
76.
5.2
331.
58.
-------
PARTICDLATF FIFLO DATA & HFSULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PR RA JP
TEST 7AM58M
UNIT 2 FAST
TEST DATE
TB
TF
TT
NP
Y
ON
CP
^ PM
H
to
W VM
TM
VMSTD
VLC
VHC
BMO
FMD
PC02
P02
PCO
PN2
MO
TIME-START
TIME-FINISH
NFT TIMF OF TFST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING N07/LE DIAMETER
PITOT TUBE COFFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS MFTFR TFMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H?0 CnH-ETTFO IN
IMPINRERS AND STLTCA GEL, ML.
VOLUME OF WATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTMRF BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
MOLF FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N? BY VOL., DRY
MOLECULAR WT-DRY STACK GAS
ENGLISH UNITS
02/1 1/H3
150(1
90.0
9
1.003
.223 IN
.64
.97 IN-H20
50.392 CU-FT
BO. 2 F
49.836 SCF
134.9
6.350 SCF
11.30
.887
13.40
2.60
.00
B4.00
JO. 25
METRIC U
02/11
1500
90.0
9
1.003
5.7
.84
24.6
1.427
26.8
1.411
134.9
.180
11.30
.887
13.40
2.60
.00
84.00
30. ?5
NITS
/83
MM
MM-H20
CU-M
C
SCM
SCM
-------
MWS MOLFCULAR WT-ST»C»< GAS
PB BAROMF1R1C PRFSSURE
PSI STATIC PRFS OF STACK GAS
PS STACK P»ES, A^S.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VFLOCITY
A3 STACK AREA
09STO STACK FLOW RATE, HRY*
OS ACTUAL STACK FLOW RATE
180 PERCENT ISOKINEHC
MN AMBIENT PARTICULATE
MG. EPA 5
C3 AMBIENT PARTICULATE
?ft.flf.
'0.11 IN-HG
.20 IN-H20
10.1? IN-HU
319. F
55.5 FPS
20612. SU-IN
1732765?. SCFH
28614128. ACFH
101.2
100.0
.0310 GR/DSCF*
761.79 MM-HG
5.08 MM-H20
765.17 MM-HG
159. C
16.9 MRS
13.29B SO-M
090667. SCMH
810266. ACMH
101.?
100.0
70.86* MG/DSCM
N)
* 68 DEC F, 29.92 IN.HG.
-------
FXAMPLF PARTICULUF CALCULATIONS TFST
UNIT ? EAST
VOLUME UF DRY GAS SAMPLED AT STANOAHD CONDITIONS
VMSTO = fl7.647 « VM * Y * (PR + PM / 13.6)) / (TM » 4hO.)
17.6«7 • 50.3«»2 * 1.003 * ( 30.11 + .970 / 11. fc)
VMSTO = ------------------------- ----- -- ------ ----- --- ... — .. s 49.836 OSCF
( 80. * 4hO.)
VOLUME OF HATER VAPOR AT STANDARD CONDITIONS
VWC s .04707 • VLC
VWC = .04707 * 135. = 6.55 SCF
PERCENT MOISTURE IN STACK GAS
BWO = (100. * VWC) / (VMSTO * VWC)
>
' 100. • 6.3S
J3 8*0 s --- -- --- ..... ----- .... . — . s 11.30 PERCENT
Ui 49.836 * 6.3S
MOLE FRACTION OF DRY STACK GAS
FMD = (100. - BWO) / 100.
100. - 11.3
FMD = - ------- --- ------- ..... s .887
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MD = (PC02 * .44) * (POa * .32) * (PN2 * PCO) * ,2B
MD s (13.40*44/100) » ( ?.*«32/100) » ((S4.0* .0) * ?8/100 = 30.25
MOLECULAR WEIGHT OF STACK GAS
MWS = MD • (1. - (Rwn/100)) + 1». * (BWO/100)
MWS = 30.25* (I. -(11.30/100)) » IB. * (11.30/100) = 28.86
-------
STACK RAR VELOCITY AT STACK CONDITIONS
DtLP s SUM. OF THE SOHT(VH • (TS » 460.))
VS = 85.49 * CP * r>ELP / (SORT(MWS * PS) * H^TS)
VS = H5.«9 • .84 * 205.214 / (SQRT{ ?8.fl6 * 30.1?) * 9. = 5S.51 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS • AS * 3600/1411
OS = 55.53 * 20612. ^600/144 s 2A614I2R. ATFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD = 17.647 * OS * PS * (I. - (RhO/100)) / (TS « 460.)
17.647 • 2*61412A. • 30.1? « (1. - (11.50/100))
OSSTD s . . r 17327652. SCFH
( 319. * 460.)
PERCENT ISOKINFIIC
ISO = (305.5fl*(T.S*46l.))«((0.002669*VLC)•(VM*T*(PB*(PM/|3.6))/(TM+460.)))/(TT*VS*PS*nN*ON)
(305.S8*( 319.+ 460.))«((0.002669* 135.) + ( 50.392*1.003*( 30.11 + f ,970/13.6))/ ( 60. + 460.)))
ISO = — ... . . ..—. — ... — .... . . .... . ,01>20
90. * 55.53 • 30.12 * .223 * .223
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * MN * 15.43 / VMSTD
CS = 0.001 * 100.0 * 15.43 / 49.836 = .0310 RR/OSCF
-------
F1ELO DATA
I
M
K>
PLANT
SAMPLING LOCATION UNIT 2 EAST
SAMPLE TYPE M5B
OPERATOR PR RA JP
AMHIFNT TEMP. ("EG. F) 65.
BAR. PRESS. (IN. HG1 30.11
STATIC PRESS. (IN. H?0) .20
FILTER NUMBER(S) 3531007?
STACK INSIDE DIM. (IN) 1b?.00 .00
PITOT TUBE COEFF. .84
THERM. NO. 206
LEAKAGE .015 CFM it 8.
METER CALIB. FACTOR .960
READ « RECORD DATA EVERY 10.0 MINUTES
TRAVEHSE SAMPLE
POINT TIME
NU. (M1N.)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
CLOCK
TIME
(24-HR
CLOCK )
1330
1340
1350
1400
1410
1420
14«0
14SO
1500
GAS METER
READING
(CU.FT.)
VELOCITY
HEAD
(IN.H?0)
5 IN.HG
DATE 02/11/83
RUN NUMBER 7BMSB
PHOBF LENGTH K TYPE b FT GLASS
N077LE : I.n. .221
ASSUMED MOISTURE 11.0
SAMPLE B"X NUMBER
MFTER BOX NU^HER FB6
MtTER MEAD OIFF. l.SO
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 950.2
ORIFICE PRESSURE
DIFFERENTIAL
UN.H20)
STACK
TEMP
(OEG.F)
OESIHEO ACTUAL
339.104
344.047
350.45?
356.187
361.878
367.536
373.376
370.100
384.671
390.580
.670
.650
.670
.670
.640
.700
.670
.670
.670
.82
.79
.82
.82
.78
.85
.82
.82
.82
.82
.79
.8?
.82
.78
.85
.8?
.82
.82
315.
317.
318.
318.
318.
320.
320.
321.
321.
DRY GAS METFR
TEMP
(OEG.F]
1
PUMP
VACUUM
(TN.HG)
SAMPLE
BOX TEMP
(OEG.F)
IMPINGES
TEMP
(DEG.F)
INLET OUTLET
6«.
70.
73.
76.
78.
79.
80.
80.
80.
70.
70.
70.
70.
71.
71.
7?.
73.
73.
4.0
3.5
4.0
4.5
4.5
6.0
5.5
6.0
6.5
304.
341.
339.
330.
327.
3?5.
337.
336.
329.
58.
59.
61.
61.
61.
61.
60.
60.
60.
TOTALS
AVERAGE
90.0
51.476
.82
.8?
319.
76.
71,
4.9
330.
60.
-------
PARTICIPATE FIELD DATA & HF3ULTS TABULATION
PLANT- NAME AND ADDRESS TEST TfcAM LEADER
PR RA JP
TEST 7PM5B
UNIT 2 FAST
TEST DATE
TR
TF
TT
NP
r
ON
CP
PM
VM
TM
VMSTD
VLC
VMC
BMO
FMD
PC02
P02
PCO
PN2
HR
TIMF-START
TIME-FINISH
NET TIMF OF TFST. MIN.
NET SAMPLING "OTNTS
MFTER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS MFTFR TFMP
VOLUMF OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTFD IN
IMPINGERS AND SILICA GEL. ML.
VOLUME OF WATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE «Y VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
MOLF FRACTION DRY GAS
PERCENT CO? BY VOL., ORY
PERCENT 02 BY VOL., DRY
PFRCtNT CO BY VOL., DRY
PERCENT N? *Y VOL., ORY
MOLECULAR M-ORY 3T»C« GAS
ENGLISH UNITS
02/1 1/83
1310
1500
90.0
9
.9hO
.221 IN
.81
.82 IN-H20
51.«T6 CU-FT
73. b F
49.306 SCF
130.7
6.152 SCF
11.09
.889
13.40
2.60
.00
HI). 00
30.25
METRIC UNITS
02/1 1
1330
1500
90.0
<)
.960
5.6
.«4
20.7
I.4SH
23.1
1.396
130.7
.174
11.09
.«89
13.40
2.60
.00
84.00
30.25
/Bi
MM
MM-H20
CU-M
C
SCM
SCM
-------
MWS MOLECULAR WT-STACK GAS
PB BAROMETRIC PRFSSURE
PSI STATIC PRFS OF STACK GAS
PS STACK PRES, ARS.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VFLOCTTY
AS STACK AREA
OSSTO STACK FLOW RATE. DRV*
OS ACTUAL STACK FLOW RATE
190 PERCENT ISOKINETIC
MN AMBIENT PARTICIPATE
MG. EPA 5
CS AMBIENT PARTICIPATE
?8.89
3U.1I
.20
30.1?
31«J.
55.5
ao6ia.
17360644.
?A60I504.
101.7
221.9
FN-HG
IN-H2U
IN-HG
F
FPS
SO-IN
SCFH
ACFH
?«.B9
764.79 MM-HG
5.08 MM-H?0
765.17 MM-HG
159. C
16.9 MPS
13.P9H SO-M
491601. SCMH
809909. ACMH
101.7
?ai,9
.0694 GR/OSCF*
15B.948 MG/DSCH
I
M
to
* 68 DEC F, ?9.92 TN.HG.
-------
FXAMPLF. PARUCMLMF CALCULATIONS TFST NO. 7RMSR
UNIT 3 FAST
VOLUME OF DRY GAS SA"PIEt> »T STANDAKD CONDITIONS
VMSTO = (17.647 • VM • Y • (PB + PM / 13.6)) / (TC » 4MJ.)
17.617 « 51.476 * .960 • ( 30. (I * .Bib / 13.6)
VMSTO = = 49.306 DSCF
( 74. » 460.1
VOLUME OF HATER VAPOR AT STANDARD CONDITIONS
VWC = .04707 * VLC
VWC = .04707 • 131. = 6.15 3CF
PERCENT MOISTURE IN STACK GAS
BWO s (100. * VKC) / {VMSTO * VWC)
> 100. * 6.IS
' BWO = ..._. — - - H.09 PERCENT
U) 49.306 * 6.IS
o
MOLE FRACTION OF DRV STACK GAS
FMO = (100. - BWO) / 100.
100. - 11.1
FMD s — —————.—.- e .889
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MD = (Pcoa * .44) * (pna * .33) » (PN2 » PCO) • .as
MD = (13.40*44/100) * ( 2.6<»3a/100) * ((fla.O* .0) * ?B/100 = 30.?5
MOLECULAR WEIGHT OF STACK GAS
MWS = MO * (1. - (flWO/101)) * 1«. * (BWO/100)
MWS = 30.?5* (1. -(11.09/100)) + 18. * fll.09/100) = 28.89
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP = SUM. OF THE SHRT(VH * (TS * flfeO.))
VS s 85.49 * CP * DELP / (SQRKMWS • PS) * PNTS)
VS = B5.49 * .80 * 205.211 /
-------
FIFLO DAT*
U)
N)
PLANT
SAMPLING LOCATTON UNIT TWO EAST
SAMPLE TYPE M5BW
OPFRATOR CLARKE
AMBIFNT TEMP. (HER. F) 65.
STATIC PRESS. (IN. H?0) .20
FILTER NUMBER(S) 3531132
STACK INSIDE OTM.(TN) 16?. 00 .00
PITOT TUBE COEFF. .84
THFRM. NO. 206
LEAKAGE .000 CFM 0> 7.
METER CALIB. FACTOR .983
READ ft RECORD DATA
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
CLOCK
TTMF
(24-HP
13*0
1340
1 3^0
1400
1410
14?0
!4»0
1440
1450
1500
EVERY 10.0
GAS METER
READING
(CU.FT.)
397.594
403.390
400.675
414.075
419.444
424.696
430.185
435.555
440.981
446.378
MINUTES
VELOCITY
HEAD
(IN.H20)
.670
.650
.670
.670
.640
.700
.670
.670
.670
0 TN.HG
ORIFICE
DATE 0?/11/B3
RUN NUMBER 7CM5BW
PROBF LEN(,TH ft TYPE 6 FT GLASS
NU7ZLE : 1.0. .2?!
ASSUMED MOISTURE 11.0
SAMPLE BOX NUMBER OAC
METER BOX NUMBER FB5
METER HFAO IMFF. i .84
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 1156.2
PRESSURE
DIFFERENTIAL
(IN.
Of SIRED
1.00
.97
1.00
1.00
.95
1 .04
.99
.99
.99
H20)
ACTUAL
1.00
.97
1.00
1.00
.95
1.04
.99
.99
.99
STACK
TEMP
(OEG.F)
315.
317.
318.
318.
318.
320.
320.
321.
321.
DRY GAS METFR
TEMP
(OEG.F)
INLFT OUTLFT
75. 74.
76. 74.
80. 74.
84. 74.
88. 75.
88. 76.
8«». 78.
90. 78.
90. 80.
PUMP
VACUUM
< TN.HG)
5.0
4.5
5.0
5.5
5.5
6.0
6.5
7.0
7.0
SAMPLE
BOX TEMP
(OEG.F)
306.
335.
318.
322.
315.
314.
318.
317.
317.
IMPINGER
TFMP
(OEG.F)
58.
60.
58.
54.
56.
58.
60.
62.
62.
TOTALS
AVERAGE
90.0
48.784
.99
.99 319.
84.
76.
5.8
318,
59.
-------
PARTICULATF FIFLD OATA K HF.SHUTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LFAdfR
CLARKF
TEST 7CM5BW
UNIT TWO FAST
TEST PATE
TB
TF
TT
NP
Y
ON
CP
PM
1
U> VM
U)
TM
VMSTD
VLC
VWC
BMO
FMD
PC02
P02
PCD
PN2
MD
ENGLISH UNITS
02/1 J/83
TIMF-START 1330
TIME-FINISH 1500
NET TIMF OF TEST, MIN. 90.0
NET SAMPLING POINTS 9
METER CALIBRATION FACTOR .983
SAMPLING N07ZLE DIAMETER .221 IN
PFTOT TUBE COEFFICIENT .84
AVERAGE ORIPICE PRESSURE .99 IN-H20
DROP
VOLUME OF DRY GAS SAMPLED 18.784 CII-FT
AT METER CONDITIONS
AVERAGE GAS MFTER TFMP 80.2 F
VOLUME OF DRY G*S SAMPLED 47.286 SCF
AT STANDARD CONDITIONS*
TOTAL H?0 COLLECTED IN 1P8.9
IMPINGERS AND SILICA GEL, ML.
VOLUME OF WATFR VAPOR 6.067 SCF
AT STANDARD CONDITIONS*
PERCENT MOISTURF BY VOLUME 11.37
(CHECK AGAINST SATURATION
POINT HAS REEN MADE.)
MOLE FRACTION DRV GAS .886
PERCENT C02 B* VOL., DRY 13.10
PERCENT OP BY VOL., DRY 2.60
PERCENT CO BY VOL., DRY .00
PERCENT N2 BY VOL., DRY Ha. 00
MOLECULAR M-DRY STICK GAS 30.25
MFTRIC UNITS
02/11/83
1330
1500
90.0
9
.983
5.6 MM
.81
25.? MM-H20
1.381 CU-M
26.8 C
1.339 SCM
128.9
.172 SCM
11 .37
.886
13.40
?.60
.00
84.00
30.25
-------
MWS MOLECULAR WT-STACK K*S
PB BAROMETRIC PKFSSUPE
PSI STATIC PRES OP STACK GAS
PS STACK PRES. A«S.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
QSSTO STACK FLOW RATE, ORY«
OS ACTUAL STACK FLOW RATE
130 PERCENT ISOKINETIC
MN AMBIENT PARTICULATE
MC. EPA 5
CS AMBIENT PARTKULATE
* 6fl DEC F, 29.9? IN.HG.
U)
^0.1! IN-HG
.20 IN-H^O
1(1.1? IN-HG
J19. F
55.5 FPS
SO-IN
SCFH
ACFH
97.8
lOOtO
?H.8h
7b4.79 MM-HG
5.08 MM-H?0
765.t7 MM-HG
C
MPS
SO-M
SCMH
*CMH
97.R
100.0
.032b Gfl/DSCF*
-------
FXAMPLF PARI ICHLATF CALCULATIONS rest
UNIT TWO FAST
VOLUME OF DRY GAS SA"PIE" AT STANDARD CONDITIONS
VMSTD = (17.647 * VM * Y « fPB » PM / 13. b)) / (TM * 4f.O.)
17.647 * 4A.7A4 » .983 • ( 30.11 » .99? / 13. h)
VMSTO s ----------------------------------------------------- =
' 100. * 6.07
£, BWO = -------------------------- = 11.37 PERCENT
Ul 47.2A6 » 6.07
MOLE FRACTION OF DRY STACK GAS
FMD s (100. - BWO) / 100.
100. - 11.4
FMO = -—---...--.
100.
AVERAGE MOLECULAR WEIGHT OF DRV STACK GAS
MO = (PCna * .44) + (P02 * .32) * (PN2 * PCO) • .28
MO = (13.40*44/100) » ( 2.6*32/100) » ((«4. 0+ .0) • 28/100 s 30.25
MOLECULAR WEIGHT OF STACK GAS
M«S = MO * (1. - (Hwn/100)) » IB. * (BHO/100)
MWS = 30.25* (1. -(11.37/100)) * 18. * (11.37/100) = 28.86
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SHM. OF THE SORT(VH * (TS + 00/M«
OS = 5S.5« • 20612. ^bOO/144 = 2Bb18«lh. ACFH
STACK PAS VOLUMETRTC FLOW AT STANDARD CONDITIONS
BSSTO = 17.b«7 » US * PS * C1. - (BWO/IOO)) / (TS * IbO.)
17.b«7 * 2«bt811l>. * 30.12 * (1. - (11.37/100))
OSSTD = -- __ - ___________ - --- — - --------------- • ----------- * = 1731fc«bO. SCFH
( 319. » 4bO.)
>
H
PERCENT ISOKINETIC
ISO = (305.5««(TS*flb".))«((0.002b69»VLC)*(VM*Y«(PH*(PM/13.6))/(TM+flbO.)))/(TT*VS*PS*DN«DN)
319.*abO.))*((0.002bb9* 129. )»( 48.7«fl* .9«3M 30.tl*( .99?/ 1 3.6) ) / ( 80.»fl60.)))
ISO s .._.--..---------.---------------------------- --- -------------------------- ----- ._-_.----- s 97. «3 PERCENT
90. » 55.59 * 30.12 • .?21 • .221
PARHCULATF LOAOINR — EPA METHOD S (AT STANDARD CONDITIONS)
CS = 0.001 * MN * 15. «1 / VMSTO
CS = 0.001 * 100.0 • 15.13 / 17.28* = .0126 GR/DSCF
-------
FIELD o»t*
M
U)
PL»NT
SAMPLING LOCATTOK! UNIT TWO FAST
SAMPLE TYPE MSh
npFRATOH CLARKE
AMBIENT TEMP.(ntG.F) 6S.
BA». PRESS. (IN. HG) 30.11
STATIC PRESS. (TN.H20) .20
FILTER NHMBER
-------
PARTICIPATE FIFLO DATA * RFSHLTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
CLARKF
TEST 7DM5B
UNIT T*»0 FAST
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
VM
TM
VMSTD
VLC
VWC
BMO
TIMF-START
TIME-FINISH
NET TIMF OF TFST, MIN.
NET SAMPLING POINTS
MFTER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COFFFICIFNT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METFR TEMP
VOLUME OF DRY G»S SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
AND STLTCA GEL, ML.
VOLUME OF WATFH VAPOR
AT STANDARD CONDITIONS*
PFRCENT MOISTURF BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEFN MADE.)
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PFRCENT 0? BY VOL., DRY
PCO PFRCENT CO HY VOL., DRY
PN2 PERCENT N? BY V"L.. DRY
MO MOLFCULAR WT-DHY STACK GAS
ENGLISH UNITS
02/11/83
1330
1500
90.0
9
1.030
.215 IN
.99 IN-H20
47.226 CU-FT
75.3 F
48.398 SCF
1?8.5
6.0«8 SCF
11.11
.889
13.40
2.60
.00
84.00
30.25
METRIC UMTS
02/11/83
1330
1500
90.0
9
1.030
5.5
25.2
1.337
24.1
1 .370
128.5
.171
11.11
.88"
13.40
2.60
.00
84.00
30.25
MM
MM-H20
CU-M
C
SCM
SCM
-------
MWS MOLFCULAR WT-STACK GAS
PB BAROMETRIC PRFSSUBF.
PSI STATIC PHES OF STACK GAS
PS STACK PRES, A*S.
TS AVERAGE STACK TFMP
VS AV6 STACK GAS VFLOCTTV
A9 STACK AREA
OSSTO STACK FLOW RATE, DRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICIPATE
MG. EPA 5
CS AMBIENT PARTICIPATE
V£>
• 6A DEC F, 29.9? TN.HG.
105.5
IN-HG
IN-HPO
I*-HG
F
FPS
SU-IN
SCFH
ACFH
7b«.79
5.0fl
765.1 7
159.
16.9
H.298
«91530.
8099J6.
105.5
215.5
MM-HG
MM-H?0
MM-MG
C
MPS
SO-M
SCMH
ACHH
.06»7 GR/OSCF*
157.259 MG/OSCM
-------
FXAMPLF PARTICHLATF CALCULATIONS TFST NO.
UNIT twn FAST
VOLUME OF DHY GAS SA^PI gn AT STANDARD CONDITIONS
VMSTD = (17.647 • VM • Y * (Pli + PM / 13.61) / (TM » 460.)
17.647 * 47.2?6 * 1.050 * ( 30.11 » .992 / 13.6)
VMSTO = -- — ......................................... — ...... - 46.348 OSCF
( 75. + 460.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VWC = .00707 • VLC
VWC = .04707 * 189. = 6.05 SCF
PERCENT MOISTURE IN STACK GAS
.p BWO = (100. * VWC) / (VMSTO •» VWC)
I
H !00. • 6.05
^ BWO * - --- - --- - — > ----- - — — .— = 11.11 PERCENT
0 48.3<»8 * 6.05
MOLE FRACTION OF DRY STACK GAS
FMP = (100. - BWO) / 100.
JOO. - 11.1
FMO =
100.
AVERAGF MOLECULAR WEIGHT OF DRY STACK GAS
MD = (PC02 * ,«4) * fP02 • ,3e) * (PN^ * PCO) * .26
MD = (13.40*44/100) * f ?.*«32/ioo) + ((84. o+ .0) * ?.a/\no = 30.
MOLECULAR WEIGHT OF ST»CK PAS
MWS = MO * (1. - (BWO/100)) * 18. * (BWU/IOO)
MWS : 30. ?5* (I. -(II. 11/100)) t 18. * (11.11/100) = ?8.8«»
-------
STACK RAS VELOCITY AT STACK CONDITIONS
DEIP = SUM. OF THE SORT(VH * (TS + <1M>.))
VS = 85.09 * CP • DELP / (SURT(MWS * PS) * PNTS)
VS s 85.09 • .80 • 205.210 / (SGRH ?8.8<» * 10.1?) • 9. = 55.51 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
ns = vs * AS * 3600/140
OS s 55.51 • 20612. 3600/144 = 28608468. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD = 17.6«7 * OS * «»S • {I. - (RWO/100)) / (TS » 460.)
17.647 * 28602068. * 30.12 * (1. - (11.11/100))
OSSTD = = 17358136. SCFH
( 319. » 060.)
PERCENT ISOKINETIC
ISO = (305.58*(TS«060.))«(ro.002669»VLC)+(VM*Y*(PB+(PM/13.6))/(TM+a60.)))/(TT*VS*PS*DN*DM)
(305.58«( 319.*060.))«((0.002669» 129.)*( 07.226*1.030*( 30.11»( .992/13.6))/( 75.«460.)))
ISO = . . ,- ..... . . 105.54 PFRTfNT
90. * 55.51 * 30.12 * .215 • .215
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN • 15.43 / VMSTD
CS = 0.001 * 215.S * 15.43 / 48.398 = .0687
-------
FIELD OAT*
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPFKATOR
AMBIENT TEMP.(OER.
BAR. PRESS. (IN. HG1
UNIT
M5B
PR RA
F) 70.
30.08
2 EAST
JP
STATIC PRESS. (IN. H?0) .02
FILTFH NUMBERC?)
STACK INSIDE OIM.(
PITOT TUBE COEFF.
THFRM. NO.
LEAKAGE
IN) 162.
.«<•
178
.000
00 .00
DATE
WUN NU"HFK
PROBE 1 ENGTH ft TYPF
NOZ71.E : I.D.
ASSIIMFD MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMHFR
METER HEAD DIFF.
02/1 1/83
8AM5B
5 FT GLASS
.305
11.0
FB4
1.72
PROBE HEATFR SETTING 320.
CFM 9 17.
0 IN. HP,
METER CALIH. FACTOR 1.003
READ ft RECORD DATA
TRAVERSE SAMPLE CLOCK
POINT TIME TTMF
NO. (MIN.) (24-HP
CLOCK )
> INIT 0 16?0
1 10.0 0
Jr" ao. o o
M 30.0 0
30.7 1650
EVERY 10.0
GAS METER
READING
(CU.FT.)
660.601
67 1 .024
680.663
690.491
691.157
MINUTES
VELOCITY
HEAD
(IN.H201
.650
.620
.590
,7«0
ORIFICE PRESSURE STACK
DIFFERENTIAL TEMP
(IN.H20) (DEG.F)
DESIRED ACTUAL
3.33 3.33 319.
3.IH 3.16 3IB.
3.02 3.02 320.
3.79 3.35 316.
HEATER BOX SETTING
K FACTOR
DRY GAS MFTER PUMP
TFMP VACUUM
(OFG.F) (IN.Hf;)
INLFT OUTLFT
76. 75. 9.0
76. 74. 8. 5
79. 74. 9.0
61. 73. 15.0
320.
3966.7
SAMPLE IMPINRER
BOX TEMP TFMP
(DEG.F) (OEG.F)
311. 60.
333. 62.
319. 56.
320. 56.
TOTALS
AVERAGE
30.7
30.556
3.33
3.22
319
10.4 321
59.
-------
PARTICIPATE FIFLt> HAT* * RESULTS TABULATION
PLANT- NAME AND ADDRESS TFST TEAM
PR RA JP
TEST 8AM5B
UNIT ? FA«!T
TEST DATE
TB
TF
TT
NP
Y
ON
CP
1 PM
CO
VM
TM
VMSTD
VLC
VHC
BNO
FMD
PC02
P02
PCO
PN2
MD
TIMF-START
TIME-FINISH
NFT TIMF OF TFST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING N07ZI E DIAMETER
PFTOT TUBE COEFFICIENT
AVERAGE ORIFKE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPTNGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURF BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PFRCENT 0? BY VOL., DRY
PEKCENT CO BY VOL., DRY
PFRCENT *g? BY VOL., D"»Y
MOLECULAR MT-ORY STACK GAS
ENGLISH UNITS
0?/I1/B3
1620
16SO
30.7
4
1 .003
.305 IN
.84
3.22 IN-H20
30.556 CU-FT
76.0 F
30.5<»| SCF
81 .6
3.841 SCF
11.16
.HftH
13.30
2.70
.00
fill. 00
30.24
MFTRIC llf
02/11,
1620
1650
30.7
4
1.003
7.7
."«
81. «
24. «
.866
Al .6
.10,
11.16
.888
13.30
2.70
.00
84.00
30. ?4
\IITS
'83
MM
MM-H20
CU-M
C
SCM
SCM
-------
MWS MDLFCULAR hT-STACK RAS
PB BAROMETRIC PRFSSURE
RSI STATIC PHES OF STACK GAS
PS STACK PRES, A«S.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
flSSTD STACK FLOW RATE, "R**
OS ACTUAL STACK FLOW RATE
ISO PERCENT 1SOK1NETIC
MN AMBIENT PARTICULATE
MR. EPA 5
CS AMBIENT PARTICULATE
?B.«7
10. OB
.Vi
30. OB
319.
5«.B
o 1 c •
J O •
DID*
«»8.7
15b.8
JN-HG
IN-H?n
IN-HG
F
FPS
SO- IN
SCFH
ACFH
?B.B7
7M.03 MM-HG
.SI MM-H?(I
7h«.07 MM-HG
159. C
lh.7 MPS
13.?9B SO-M
4B4057. SCMH
799237. ACMM
9B.7
ISb.B
.OT91 GR/OSCF*
181.031 MG/DSCM
* 68 DER F, 29.9? IN.HR.
-------
FXAMPLF PARTICULAR CALCULATIONS TFST NO. HAM«,H
UNIT ? FAST
VOLUME OF DRY KAS SAMPl£0 AT STANDARD CONDITIONS
VMS10 = (17.607 * VM * Y • (PH + PM / 13.6)) / (TM + 160.)
17.607 • 30.5S6 * 1.003 « ( 30.06 + 3.220 / 13.6)
VMST« = = 30.S91 DSCF
( 76. + 160.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VWC s .00707 * VLC
VWC = .00707 * 6?. a J.Bfl 3CF
PERCENT MOISTURE IN STACK GAS
BWO s (100. • VWC) / (VM^TD * VWC)
100. * 3.BO
BWO = .....—..... = 11.16 PEHCFNT
30.591 » 3.80
MOLE FRACTION OF DRV STACK GAS
FMD = (ino. - BWO) / 100.
100. - 11.2
FMD = ....................... - ,8«8
100.
AVERAGF MOLECULAR WEIGHT OF DRY STACK RAS
MD = (PC02 • .00) » fP02 * .32) * (PN2 » PCO) » .28
MO = (13.30«00/100) + ( 2.7*32/100) + ((««.(!» .0) * 28/100 = 30.20
MOLECULAR WEIGHT OF STACK RA3
MWS = MO * (1. - (Rwn/tOO)) + 18. « (BWO/100)
MWS = 30.20* (1. -(11 .16/100)) * 18. * Ml.16/100) = 2H.87
-------
STACK GAS VhLOCITY AT STACK CONDITIONS
DEI P = SUM. OF THE SHRT(VH * (TS * 460.))
VS = 65. 49 * CP * HELP / (SQBKMWS * PS) * PNTS)
VS = 85.49 * .80 * «9.91I / (SURT( ?8.87 * ^0.08) • 4 . = 54.77 fPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
QS s VS * AS * 3f>00/144
OS s 54. 11 * 20612. 3600/144 = 28224616. ACFM
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTO = 17.647 • OS • PS • (1. - lBWO/100)) / (TS * <»bO.)
17.647 * 28224616. • 30. OH * (1. - (11.16/100))
OSSTD s -• --- - — ----- --- .......... ------- - -------- - ------- - s 17093528. SCFH
( 319. + 460.)
PERCENT ISOKINETIC
ISO s <305.5«*(TS + 46(».l)*((0.0026b«»*VLC)*(VM*Y*(PB+(PM/13.M) /(TM*460.)) ) / ( TT*VS*PS*ON«ON )
(305.58*( 319. »460.1>*((0. 002669* 8?.)»( 10 .556* I .003* ( 30.08»( 3.2?0/ 1 3 .6) ) / ( 76.^460.)))
ISO s - ——-— — ———— — — — - — — ------ — .-.-_.--....- — ---_._.-_-_-.. — .. — .... ----- ----- - qp.68 PFHCENT
31. * 54.77 * 30.08 • .305 * .305
PAP.TICULATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 « MN * 15.43 / VMSTO
CS = 0.001 * 156.1 * 15.43 / 30.591 s .0791 GR/OSCF
-------
FIELD OAT*
PLANT
SAMPLING LOCATION
SAMPLE TYPE
npFRATOR
AMRIFNT TEMP.(OEG.F)
BAR.PRESS.(IN.HG)
STATIC PRESS.(TN.H?0)
FILTER NUMflER(S)
STACK INSIDE DTM.(TN)
P1TOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
UNIT 2 FAST
MSB P400
PR RA JP
?0.
30.08
.02
16?.00 .00
.84
170
.013 CFM a 23.0 IN.HP,
.960
READ » RECORD DATA EVERY 10.0 MINUTES
DATE
RUN NIJMHFH
PWOHF LfNGTH * TYPt
"'07ZLE : 1.0.
ASSUMED MOTSTIIPF
SAMPLE H0» NUMBER
METER BO* NUMBER
METER HtAD DIFF.
PROBE HEATER SETTING
HEATER BOX SETTING
K FACTOR
1/B3
KBM5BP
ft FT GLASS
.307
II .0
FB6
I .SO
400.
320.
3568.9
>
I
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
CLOCK
TTME
(2«-HR
CLOCK)
lb?0
0
0
1650
GAS METER
READING
(CU.
390
401
411
421
FT.)
904
.501
.562
.136
VELOCITY
HEAD
(IN.H20)
.650
.620
.S90
ORIFICE PRESSURE STACK
DIFFERENTIAL TEMP
(IN.
DESIRED
2.98
2.fl<4
?.75
M20)
(OEG.F)
ACTUAL
2.
2.
?.
9« 319.
75 31B.
50 320.
DRY GAS METER
TEMP
(DEG.F)
INLFT OUTLET
69. 71.
69. 70.
69. 6<».
PUMP
VACUUM
(TN.HG)
12.5
13.5
14.0
SAMPLE IMPIMGER
BOX TEMP TEMP
(OEG.F) (DEG.F)
322. 60.
350. 60.
320. *0.
TOTALS
AVERAGE
50.0
30.232
2.06
2.74
319.
69.
70.
13.3
331
60.
-------
PARTICIPATE FJFLO OATA & RFSULTS TAHIII ATTON
PLANT- NAME AND ADDRESS TEST TFAM LFAPFR
PR RA JP
TEST 8BMSBP
UNIT ? EAST
TEST DATE
TB
TF
TT
NP
Y
DN
CP
> PM
H
OO y M
TM
VMSTD
VLC
VWC
BMO
FMD
PC02
P02
PCO
PN2
MD
TIME-STAHT
TIME-FINISH
NET TIME OF TFST, MIN.
NFT SAMPLING °OINTS
MFTER CALIBRATION FACTOR
SAMPLING N07ZIE DIAMETER
PTTOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS MFTFR TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H?0 COLLECTFD IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF hATFR VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS REFN MADE.)
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., ORY
PERCENT 0? BY VOL., DRY
PFRCENT CO «Y VOL., ORY
PERCENT N2 BY VOL., ORY
MOLECULAR HT-ORY STACK GAS
ENGLISH UNITS
0?/1 1 /»3
30.0
3
.960
.407 IN
.84
2.74 IN-H20
30.232 CU-FT
69.5 F
29.290 SCF
79.5
3.742 SCF
11.33
.887
13.30
2.70
.00
84.00
30.24
METRIC UNITS
02/1 1,
1650
30.0
3
.960
7.8
.84
69.7
.856
20. a
.829
79. S
.106
11.33
.887
13.30
2.70
.00
84.00
30.24
'83
MM
MM-H20
CU-M
C
SCM
SCM
-------
MWS MOLFCHLAN WT-STACK KAS
PB BAROMETRIC PBFSSURE
PSI STATIC PRFS OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VELOCITY
A3 STACK AREA
flSSTD STACK FLOW RATE, DRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT I80KINETIC
MN AMBIENT PARTICIPATE
MG. EPA 5
CS AMBIENT PARTICIPATE
I
28
30
30
319
S3
20612
16677352
2760008(1
97
111
.85
. 08 J N-H
-------
EXAMPLE PARITCI'LATF CALCULATIONS TFSt N0.8HMSHP
UNIT 2 FAST
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD = (17.647 * VM * V • (PB * PM / 13.6)) / (TM + 4f>0.)
17.647 » 30.21? * .960 • { 30.08 * 2.743 / 13.6)
VM3TD = ------------------------ ---- - ------ - — ----- --- ....... = 29.290 DSCF
( 70. + 060.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VWC = .04707 * VLC
VWC = .0«707 * 80. s 3.74 SCF
PERCFNT MOISTURE IN STACK CAS
BWO s (100. * VWC) / (VMSTO » VWC)
>
' 100. * 3.7«
^ BWO = ----- ...... ----------- ..... 11.33 PFRCENT
O 29.290 * 3.7a
MOLE FRACTION OF DRY STACK GAS
FMD s (100. - BWO) / 100.
100. - 11.3
FMD a - — - — -- — ------------ s .887
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK
MO = (PC02 * .««) + fPf»2 * .32) * (PN2 * PCO) * .28
MO = (13.30*44/100) * ( 2.7*32/100) » ((M.O+ .0) * 28/100 = 30. 24
MOLECULAR WEIGHT OF STACK GAS
MWS = MD * (i. - (nun/loo)) + 18. • (BWO/IOO)
MWS = 3n.?4* (I. -(11. 3^/100)) * t». * (11.33/100) = ?8.fl5
-------
STACK KAS VELOCITY AT STACK CONDITIONS
DEI.P = SUM. OF THE SOHT(VH • (TS » 160.))
VS = 85.09 • CP * DELP / (SURKMWS * PS) * PNTS)
VS = 85.49 • .OH * f.5.917 / (SIJRT( ?8.8S * 30.0H) • 3. = 53.56 FPS
STACK RAS VOLUMETRIC Fl OW AT STACK CONDITIONS
os = vs * AS * 3600/144
OS = 53.56 * 20612. *<,00/14Q = 27600084. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTO = 17.607 * OS * PS * (I. - (RWO/100)) / (TS •» 060.)
17.607 • Z7600084. • 30.08 * II. - (11.93/100))
OSSTD = --------------------------------------------------- - 166773S2. SCFH
( 319. » 060.)
> PERCENT ISOKINETIC
I— i
U, ISO = (305.SB*(TS«060.))*((0.002669*VLC)'»(VM*Y*(PR*(PM/13.f>))/(TM«060.)))/(TT*VS*P9*DN*ON)
(305.58*( 319.«460.))*((0.00?66<>* 80.)»( 30.832* .o*0*( 30.0fl+( 2.703/1 3. ft) )/( 7
ISO x --- -- ----------- ....... ------------------- . — . ---------------------- _ ---------------------------- .
-------
FIELD DATA
PLANT
SAMPLING LOCATION UNIT TWO EAST
SAMPLE TVHF M5B
OPFHATOR CLARKE
AMBIENT TEMP. (OE^.F) 70.
BAR. PRESS. (IN. MR) 30.08
STATIC PRESS. (TN.H20) .02
F 1L1FH NUMBER(S)
STAC" INSIDE DTM.(TN) 162.00 .00
PITOT TUBE COEFF. .84
THERM. NO. 178
LEAKAGE .001 CFM a) M
METER CALIP. FACTOR .983
READ & RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CL"C"< GAS METER VELOCITY
POINT TIMF TTMF READING HEAD
NO. (MIN.) (24-HO (Ctl.FT.) (IN.H2U)
' INIT 0 16?0 446.569
U! 10.0 1630 457.000 .650
NJ 20.0 1640 467.350 .620
30.0 16^0 477.100 .590
30.8 1651 477.329 .740
DATE
RUN NUMREH
PWOBF LFNGTH * TVPF
N07/LE ! I.D.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
MFTER BUX NUMBER
METER HEAD OIFF.
02/11/83
«CM5B
6 FT GLASS
.305
11.0
QAC
FB5
1.04
PROBE HEATER SETTING 320.
.0 IN.HR
ORIFICE PRESSURE STACK
DIFFERENTIAL TEMP
(IN.H20) (DEG.F)
DESIRED ACTUAL
3.73 3.73 319.
3.57 3.57 318.
3.38 3.38 320.
4.?6 4.26 318.
HEATER BOX SETTING
K FACTOR
DRY GAS METEW PUMP
TEMP VACUUM
(OER.F) (IN.HG)
INLET OUTLET
74. 75. 8.0
76. 74. 9.0
79. 74. 10.5
81. 74. 12.5
320.
4473.6
SAMPLE 1MPINGER
BOX TEMP TFMP
(OEG.F) (DEG.F)
340. 62.
332. 58.
305. 58.
329. 50.
TOTALS
AVERAGE
30.
30.760
3.74
3.74
319.
76.
74.
10.0 327.
57,
-------
PARTICIILAIF
PLANT- NAME AND ADDRESS
DATA * MESULTS TAHULATTON
TEST HAM
CUARKF
TEST 8CM5B
UNIT Twn FAST
TEST DATE
TB
TF
TT
NP
Y
ON
> CP
t- PM
10
VM
TM
VMSTO
VLC
VNC
BMO
FMD
PC02
P02
PCO
PN2
MD
TIME-START
T IMF-FINISH
NET TIMF OF TFST, MIN.
NFT SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING N07ZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRV G«S SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF WATFR VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE HY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., ORY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR WT-OHY STACK GAS
ENGLISH UNITS
02/11/83
1620
I6S1
30.8
4
.983
.305 IN
.84
3.74 IN-H20
30.760 CU-FT
75.9 F
30.225 SCF
A3. 6
3.935 SCF
1 1.52
.8A5
13.30
2.70
.00
84.00
30.24
METRIC UNITS
02/11
1620
16S1
30.8
4
.983
7.7
.A4
94.9
.871
24.4
.856
83.6
.111
11.52
.A85
13.30
2.70
.00
84.00
30.24
/83
MM
MM-H20
CU-M
C
SCM
SCM
-------
MWS MOLFCULAR wT-STACK RAS
PB BAHDMFTRIC PRESSURE
PSI STATIC PRFS Of STACK GAS
P3 STACK PRES, AflS.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VFLOCTTY
AS STACK AREA
OSSTO STACK flow RATE, nnv*
OS ACTUAL STACK FLOW RATE
ISO PFRCENT ISOKINETIC
MN AMBIENT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICULATE
U1
* 60 OEG F, 29.93 IN.HC,.
30.0fl
.02
30.08
319.
54. «
O 1 i •
o 3c •
4?0.
97.5
112.6
1N-HG
IN-M20
jN-Hn
F
FPS
SO-IN
SCFH
ACFH
761
764
159
If.
13
4fl?426
799B54
97
112
.03
.51
.07
.
.7
.298
.
•
.5
.6
MM-HC
MM-H?()
MM-Hf,
C
MPS
SU-M
SCMH
ACMH
.0575 GR/OSCF*
131.571 MG/OSCM
-------
EXAMPLE PARTICULMF CALCULATIONS TEST NO. 8CMSH
UNIT TKO PAST
VOLUME OF DRY GAS SA"PIEH AT STANDARD CONDITIONS
VMSTD s (17.647 • VM * Y * (PB » PM / 13.b)) / (TM + 460.)
17.607 * 30.760 * .983 • ( 30.08 * 3.735 / 11.6)
VMSTD = = 30.225 I)3CF
( 76. * 460.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VWC = .00707 • VIC
VWC = .00707 • 80. = 3.90 SCF
PERCENT MOISTURE IN STACK GAS
I RWO s (100. * VWC) / (VMSTO * VWC)
^ 100. * 3.90
RWO s . ......... - i|.'52 PERCENT
30.225 «• 3.90
MOLE FRACTION OF DRY STACK GAS
FMD = (100. - BWO) / 100.
100. - 11.5
FMO = — — ...... = .885
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MO s (PC02 • .14) * (P02 • .32) + (PN2 * PCO) * .28
MO = (13.30*44/100) » ( 2.7*32/100) * ((84.0* .0) * 28/100 = 30.24
MOLECULAR WEIGHT OF STACK GAS
MWS = MD • (1. - (Bwn/100)) » 18. * (HWO/100)
MWS = 30.?4* (1. -(11.5P/100)) » 18. * (II.-52/100) = 28.83
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. OF THE SORT(VH • (T3 » 460.))
VS = 85.49 » CP * OELP / (SQt»T(MWS * PS) » PNTS)
VS = 85.49 * .84 * 89.911 / (SORTC 28.83 * 30.08) * 4. = 54.82 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS * AS * 3600/144
OS = 54.82 * 20612. 3600/144 = 28246420. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTO s 17.647 • 03 * PS • (1. - (BNO/100)) / (TS •» 460.)
17.647 * 282*6420. * 30.08 * (1. - (11.52/100))
03STD a . ——- — = 17036632. SCFM
( 319. * 460.)
I
M
£J PERCENT ISOKINeTIC
ISO =
319.•••460.))*((0.002669* 84.)4( 30.760* .9f)3*( 30.0fl+( 3. 735/1 3.6 ) ) / ( 76.«460.)))
ISO s — — - — - - = 97.51 PFRfENT
31. * 54.82 * 30.08 • .305 • .305
PARTICULATF LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS a 0.001 * MN • 15.43 / VMSTD
CS = 0.001 * 112.*• * 15.43 / 30.225 = .0575 GR/DSCF
-------
FIFLO I)»TA
I
t-1
(J\
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMRIFNT TEMP.(OEG.F)
RAR. PRESS. (IN.HG)
STATIC PRESS. ( IN. H20)
FILTFR NUMBER(S)
STACK TNSIOE OTM.HN)
PITOT TUBE COEFF.
THFHM. NO.
LEAKAGE
METER CALIB. FACTOR
UNIT
THO FAST
M5H-P400
CLARKE
/o.
30.06
.o^
16?.
.M
1T8
.Otb
1.030
READ ft RECORD OATA EVERY 10.0
TRAVERSE SAMPLE CL"CK GAS METER
POINT
NO.
INIT
1IMF TTMF
(MIN.) (24-HR
f i nr ir i
L-L "L ™ I
0 1620
10.0 lt>10
20.0 1640
30.0 1650
RFAOING
(CU.FT.)
999.81?
9.???
18.500
2*. 727
00 .00
DATE
RUN NUMHFH
PHOHE LLNGTH * TVPF
NOZ/tF : I.O.
ASSIIMFO MDISTURE
SAMPLE BOX NUMBER
MFTER BO» NUMHFR
METER HLAO UIFF.
02/1
1/83
8DMSHP
5 FT
GLASS
.30U
11.0
(JAO
FB«
1.88
PROBE HEATFR SETTING aoo.
CFM a) 18.0 IN.HG
MINUTES
VELOCITY ORIFICE HRESSURF STACK
HEAD OIFFEREMTTAL TEMP
IIN.H?0) (IN.H20) (OFG.F)
HESIKFU ACTUAL
.650 3.73 3.73 319.
.620 3.57 3.30 118.
.S90 3.38 2.70 320.
HEATFR BOX SFTTING
K FACTOR
DRY GAS METER PUMP
TFMP VACUUM
(OEG.F) (IN.HG)
INLFT OUTLET
70. 70. 13.0
70. 70. 16.5
71. 69. 17.0
320.
ia73.
SAMPLE
BOX TEMP
(DEG.F)
331.
317.
295.
6
IMPINGER
TFMP
(DEG.F)
6?.
bit.
*«.
TOTALS
AVERAGE
30.0
26.
3.24
319.
70.
70,
15.5
321.
-------
PAH1ICULATE FIFLO DATA K RFSULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
CLARKE
TEST 80M5BP
UNIT TWO FAST
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIA"ETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
0?/\ 1/81
1620
1650
10.0
3
1.010
.JOM IN
.81
3.21 IN-H20
METRIC UNITS
0
1620
1650
30
3
1
7
82
?/ll/«3
.0
.030
.7 MM
.81
.1 MM-I
DROP
I
JVM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS MF.TFR TEMP
VMSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VWC VOLUME OF MATFR VAPOR
AT STANDARD CONDITIONS*
BWO PERCENT MOISTURE BY VOLUME
(CHECK AGAINST SATURATION
PUINT HAS BEEN MADE.)
FMO MntE FRACTION DRY GAS
PC02 PERCENT C08 8* VOL., DRY
P02 PERCENT 0? PY VOL., DRY
PCO PFHCENT CO f»Y V"L., DRY
PN2 PERCENT N? BY VOL., DRY
MD MOLFCtJLAR WT-OBY STACK GAS
26.915 CU-F1
.76? CU-M
70.0 f
?7.986 SCF
73.3
3.150 SCF
10.98
.890
13.30
2.70
.00
*a.oo
30.2«
21.1
.792
73.3
.098
10.98
.890
11.30
2.70
.00
81.00
30.21
C
SCM
3CM
-------
MWS MOLECULAR WT-STOCK R
PB BAROMETRIC PHFSSU"»t
PSI STATIC PRFS OP STACK GAS
PS STACK PRES, A*S.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
QSSTO STACK FLOW RATE. ORV*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKP1ETIC
MN AMBIENT PARTICIPATE
MR. EPA 5
CS AMBIENT PARTICULATE
>
I
H
Ul
VO
DEG F, P9.92 IN.HG.
?B.B9
^O.Ofl 1N-HG
.Of 1N-H20
30. 0« IN-HG
319. F
53.5
SCFH
ACFH
95.0
7f>«.03 MM-HR
.SI MM-H30
7f>a.07 MM-HG
159. C
16.? MPS
13.?9ft SQ-M
«7377ft. SCMH
7H0967. ACMH
95.0
105. S
.05B2 GR/OSCF*
133.111 MG/OSCM
-------
EXAMPLF PAPTICHLATF CALCULATIONS TFST NO.BOMSHP
UNIT TWO FAST
VOLUME OF DRY GAS SA^PI FO *t STANDARD CONDITIONS
VMSTf) r (|7.f>47 • VH * V • (PB » PM / JS.h)) / (TM « 460.)
t7.b«r • ?6.915 * 1.030 * ( 30.08 » 3.243 / 13.6)
VMSTO = -- --------------------------------------------------- = 27.986 DSCF
{ 70. » 460.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VWC * .04707 • VLC
VHC a .04707 • 73. = 3.05 SCF
PERCENT MOISTURE IN STACK CAS
BWO f (100. * VWC) / (VMSTO * VWC)
100. * 3.45
BWO e --- ----- - --- — - — — — — = 10.98 PERCENT
27.986 * 3.«5
HOLE FRACTION OF DRY STACK GAS
FMP = (100. - Bwfl) / 100.
100. - II. 0
- ---- ....... s .$90
100.
AVERAGE MOLECULAR WEIGHT OF DHY STACK GAS
MD = (PCP2 • .44) •» fPOi • .32) * (PN2 + PCO) * .28
MD = (13.30M4/100) » ( ?.7*32/100) * ((84.0* .0) • 28/100 = 30.24
MOLECULAR WEIGHT OF STACK GAS
MWS s MD * (1. - (flWP/100)) + 18. * (BWO/100)
MWS = 30.24* (). -(10.98/100)) + 18. * (10.98/100) = 28.89
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP = SUM. OF THE SORT(VH * (TS » 060.))
VS = 65.09 * CP * DELP / (SfjRT(MWS * PS) * PNTS)
VS = 85.09 * .80 * 65.917 / (SORTf 28.89 * 30.08) * 3. = 53.S2 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS * AS * 3600/100
OS = 53.52 « 20612. ^600/100 s 27579000. ACFH
STACK GAS VOLUMETRIC FLU* AT STANDARD CONDITIONS
OSSTD s 17.607 • OS * PS * (1. - (BWO/100)) / (TS » 060.)
17.607 * 27579000. * 30.08 • (1. - (10.96/100))
OSSTO = — — = 16731220. SCFH
( 319. * 060.)
>
I
H-PERCENT ISOKINETIC
Ol
^ISO r (305.56*(TS*060.))*((0.002669*VLC)»(VM*V*(PB*(PM/13.6))/(TM»«60.)))/(TT*VS*PS*nN*DM)
(305.58*( 319.+060.))*((0.002669* 73.)+( 26.915*1.030*( 30.08»( 3.203/13.6))/( 70.+060.)))
ISO s = 95.01 PFKfENT
30. * 53.52 * 30.08 * .300 * .300
PARTICULATF LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN * IS.03 / VMSTO
CS = 0.001 * 10S.5 * 15.03 / 27.966 = .0582 GR/USCF
-------
FIELD DATA
PLANT
SAMPLING LOCATION UNIT 2 FAST
SAMPLE TYPE M5B
OPERATOR PR RA JP
AMBIENT TEMP.(OEP.F) 60.
BA«». PRESS. (IN. HG1 30.27
STATIC PRESS. (IN. H201 -.40
FILTER NIIMBER(S) 3531106
STACK INSIDE OIM.(TN) 16?. 00 .00
PIUIT TUBE COEFF. .*4
THERM. NO. 206
LEAKAGE .002 CFM o> 9.
METER CALIB. FACTOR 1.003
READ » RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELHCTTY
POINT
NO.
J> INIT
1
H1
KJ
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
TTME
(24-HR
r*i np v i
LLULK }
830
840
B50
900
910
9?0
9^0
900
9SQ
1000
READING
(CU.FT.)
891.537
897.300
902.930
90S. 540
914.173
919. B51
925.513
931.174
936.885
942.595
HEAD
(IN.H20)
.720
.690
.690
.690
.690
.700
.700
.710
.710
0 IN.HG
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
."5
.00
.00
.00
.00
.01
.01
.02
.02
H20)
ACTUAL
.05
.00
.00
.00
.00
.01
.01
.02
.02
STACK
TEMP
(OEG.F)
313.
319.
321.
321.
322.
323.
324.
324.
324.
DATE 02/12/83
HUN NIIMHFW 9AM5B
PROBE LENGTH * TYPE 5 FT GLASS
NOJ7LE t I.I). .223
ASSUMED MOISTURE 11.0
SAMPLE BOX NUMBER
METER BOX NUMHEH FB4
MLTER HEAD DIKF. 1.72
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 1126.6
DRY GAS MFTER PUMP SAMPLE IHPINGER
TEMP
(OEG
INLET
63.
64.
67.
70.
72.
74.
76.
76.
77.
.F)
OUTLET
62.
62.
62.
63.
63.
64.
65.
66.
66.
VACUUM
(IN.HG)
4.0
4^5
5.0
5.5
6.0
7.0
7.5
8.0
BOX TEMP
(DEG.F)
320.
334.
338.
334.
315.
314.
307.
305.
295.
TFMP
(OEG.F)
49.
«9.
49.
50.
50.
51.
53.
55.
55.
TOTALS
AVERAGE
90.0
51.058
1.01
1.01 321.
71
64.
5.7
318.
51.
-------
PARTICIPATE FIELD DATA n KFSIILTS TABULATION
PLANT- NAMt AND ADDRESS TFST TtAM LFAOfcR
PR RA JP
TEST 9AM5B
UNIT ? EAST
a\
UJ
TEST DATE
TB
TF
TT
NP
V
DN
CP
PM
TIME-START
TIME -FINISH
NET TIME OF TEST, MTN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
FNGLISH UNITS
02/12/83
830
1000
90.0
9
1 .003
.223 IN
.81
1.01 IN-H20
METRIC UNITS
02/12/83
B30
1000
90.0
9
1.003
5.7 MM
.8"
2.50
.00
B3.90
30.2fl
19.6
1.073
139.7
.186
11.23
.Ml
1 3.60
2.50
.00
83.90
30.28
C
SCM
SCM
-------
HMS MOLECULAR WT-ST*CK GAS
PB BAROMFTRIC PRESSURE
PSI STATIC PRFS OF STACK GAS
PS STACK PRE3, ARS.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
OSSTO STACK FLOW RATE, DRY*
OS ACTUAL STACK FLOW RATE
ISO PF.HCENT ISOKINETIC
MN AMBIENT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICUIATE
?8.90
30.27
-.ao
*o.a«
321.
Sb.8
20612.
177509hfl.
29271616.
103.1
252.9
IN-HG
IN-H20
IN-HG
F
FPS
SO- IN
SCFH
ACFH
28.90
768. 8b
-10. lb
7h8.1 J
Ibt.
17.3
13.298
50265*..
828884.
103.1
252.9
MM-HI
MM-H
MM-HI
c
MPS
SQ-M
SCMH
ACMH
.0750 GR/OSCF*
171.757 MG/DSCM
* b6 DEC F, 89.92 IN.HG.
-------
F.XAMPLF PARTICHL»TF CALCULATIONS TFST NO.
UNIT 2 EAST
VOLUME OF DRY GAS SA«PLEO AT STANDARD CONDITIONS
VMSID = (17.647 * VM • Y * (PB + PM / 13.6)) / (TM + 460.)
17.607 • M.05B * 1.003 * ( 30.27 + 1.012 / 13.6)
VMSTD = = S2.003 DSCF
( 67. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VWC s .04707 • VLC
VHC = .04707 * 140. s 6.58 3CF
PERCENT MOISTURE IN STACK GAS
^ BNO = (100. * VWC) / (VMSTf) + VWC)
H
cri 100. * 6.58
01 BWO r .-- —.... ....... = 11.?3 PERCENT
52.003 + 6.58
MOLE FRACTION OF DRY STACK GAS
FMD e (100. - BWO) / 100.
100. - 11.2
FMD s — ——— — —........ s .888
100.
AVFHAGF MOLECULAR WEIGHT OF DRY STACK GAS
MO = (PC02 » .44) * (P02 * .32) » (PN2 * PCO) * .28
MO s (13.60*44/100) » ( 2.5*52/100) * ((«3.9+ .0) * 28/100 = 30.28
MOLECUIAR WEIGHT OF STACK GAS
MWS r MO * (I. - (Bwn/100)) » 18. * (BhO/100)
MWS = 30.2B* (1. -dl.21/100)) » IB. * (11.23/100) = 28.90
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP = SUM. OF THE SfJRT(VH * (TS » 460.))
VS = 85.49 * CP * DELP / (SQRT(MWS * PS) * PNTS)
VS = 85.09 • .84 » 210.4S7 / (SllRTf ?8.90 • 30.24) * 9. = 56.«1 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = V3 * AS • 3600/144
OS = 56.PI * 20612. 1600/144 = 292716th. AtFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
QSSTD = 17.647 * OS * PS * (t. - (BWO/100)) / (TS * 460.)
17.647 • 29271616. * 30.24 * (1. - (11.23/100))
OSSTD = — — —————- — - — — — --- — .- — — — — — = 17750968. SCFM
( 3?1. * 460.)
>
»-" PERCENT ISOKINETIC
CTH
ISO = (305.5««(TS»460.1)«((0.002669«VLC)*(VM*Y*(PB*(PM/13.6))/(TM«460.)))/(TT*VS*PS*nN«ON)
(305.58*( 321.*460.))*((0.002669* 140.)*( 51.058*1.003*( 30.27*( 1.012/13.6))/( 67.*460.)))
ISO r -— .—.......... ... . . . . - 103.08 PFRCENT
90. * 56.81 • 30.24 * ,??3 * ,??3
PARTICIPATE LOADING — EPA METHOD S (AT STANDARD CONDITIONS)
CS = 0.001 * MN * 15.43 / VMSTO
CS = 0.001 * 252.9 * 15.43 / 52.003 = .0750 GR/DSCF
-------
FIFLO DATA
i
M
-j
PLANT
SAMPLING LOCATION UNIT 2 FAST
SAMPLE TYPF MSB
OPFHATOH PR RA JP
AMRIFNT TEMP. (HER. F) 60.
BAR. PRESS. (IN. HG) 30.27
STATIC PRESS. (IN. H?0) -.«0
FILTER NIIMHER(S) 3531105
STACK INSIDE DIM. (IN) 162.00 .00
PITQT TUBE COEFF. .84
THFRM. NO. 206
LEAKAGE .012 CFM «.
METER CALIB. FACTOR .960
READ ft ftECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CL^CK GAS METER VELOCITY
POINT TIMF
NO. (MIN.)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
TIMF
(24-HR
830
»«0
6*0
900
910
9?0
930
940
9SO
1000
READING
(CU.FT.)
421.579
4?7 .397
433.125
438.857
444.600
450.337
456.100
461.963
467.683
473.504
HFAO
(IN.H20)
.720
.690
.690
.690
.690
.700
.700
.710
.710
S IN.HR
ORIFICE PRESSURE
DIFFERENTIAL
(1N.M20)
DESIRED ACTUAL
.fld .88
.84 .84
.«« .84
,«4 .84
,«4 .84
."5 .BS
.85 .85
.86 .86
,«6 ,«6
STACK
TEMP
(DFG.F)
313.
319.
321.
321.
322.
323.
323.
324.
324.
DATE 02/12/83
RUN NUMHFH 9BP5R
PHOBF LfNGTH H TYPF b FT GLASS
NOZZLE : 1.0. .221
ASSUMED MOISTURE il.o
SAMPLE HOX NUMBER
MKTER H(IX Nl/MHFW FH6
METER HIAO DIFF. i.bo
PROBF HEATER SETTING 320.
HEATFH BOX SFTTING 320.
K FACTOR 947.8
DRY KAS METER PUMP SAMPLE IMPINGER
TFMP
(OEG
INLFT
57.
59.
62.
66.
6ft.
70.
70.
71.
71.
.F)
OUTLFT
5".
59.
59.
60.
60.
61.
62.
62.
64.
VACUUM
(IN.HG)
4.0
4.0
4.5
4.5
5.0
6.0
6.5
7.5
7.5
BOX TEMP
(DEG.F)
322.
330.
327.
32H.
334.
334.
336.
338.
332.
TFMP
(DEG.F)
48.
48.
49.
50.
50.
50.
51.
52.
12.
TOTALS
AVERAGE
90.0
51.925
.H5
.85
321,
66,
61,
5.5
331.
50.
-------
PARTICIPATE FIFLO n»TA & HFSULTS TABULATION
PLANT- NAME AND ADDRESS TFST TEAM LFADER
PR RA JP
TEST 9RM5H
UNIT 2 FAST
TEST DATE
TR
TF
TT
NP
Y
ON
CP
1 PM
00
VM
TM
VMSTD
VLC
VWC
BWO
FMD
PC02
P02
PCO
PN2
MD
TIME-START
TIMF-FIN1SH
NET TIME OF TFST, MIN.
NFT SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING N077LE DIAMETER
PITOT TUBF COFFFIflFNT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS MFTFR TEMP
VOLUME OF 0«Y GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPTNGERS AND SILICA GEL, ML.
VOLUME OF WATFR VAPOR
AT STANDARD CONDITIONS*
PFRCENT MOISTURF BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS REFN MAOF.)
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PFRCENT 0? RY VOL., ORY
PERCENT CO «Y VOL., ORY
PERCENT N? RY VOL., DRY
MOLECULAR wT-ORY STACK GAS
ENGLISH UNITS
OP/12/83
030
1000
90.0
9
.960
.221 IN
.6«
.« IN-H20
M.92S CU-FT,
63.3 F
S0.9R*. SCF
135. a
6.373 SCF
11.11
.8«9
13.60
2.50
.on
M.90
30.28
METRIC UNITS
02/12/83
830
1000
90.0
9
.960
S.6 MM
.84
21.6 MM-H20
1.4TO CU-M
17.4 C
1 .444 SCM
135.4
.180 SCM
11.11
.889
13.60
2.50
.00
83.90
30.28
-------
MWS
PB
PSI
PS
TS
VS
AS
OSSTO
OS
ISO
MN
CS
MOLECULAR WT-STACK KAS
BAROMFTRJC PRFSSU"E
STATIC PHFS OF STACK RAS
STACK PRES, ARS.
AVERAGE STACK TFMP
AVG STACK GAS VFLOCTTV
STACK AREA
STACK FLOW RATE, DRY*
ACTUAL STACK FLOM RATE
PERCENT
AMBIENT PARTICIPATE
MR. EPA 5
AMBIENT PARTICIPATE
^0.27 IN-Hf,
-.40 IN-H2D
30. gn IN-HG
Sh.8
20612.
17770760.
29?6?440.
102. 8
2M.2
F
FPS
IJ-IN
SCFH
ACFH
.0790 GR/USCF*
76B.flh MM-HC,
-10.lb MM-H?0
7N8.ll MM-HG
161. C
17.1 MPS
13.29B SQ-M
503?!";. SCMH
82tt62S. ACMH
102. »
261.?
180.953 MG/OSCM
* 68 OEG f, ?9.9? IN.H(5.
-------
EX»MPLF PARTTC"IL»TF CALCULATIONS TFST NO.
UNIT 2 FAST
VOLUME OF ORY GAS SA*PIEO AT STANDARD CONUIIIONS
VMSTO = (17.607 • VM * V * (PB * PM / IS.b)) / (TM » 060.)
17.647 • M. 925 • .960 * ( 30. ?7 * .8S1 / 13.6)
VMSTO = -------- . ---------- . --------------------------------- = 50.986 OSCF
( 63. » ObO.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VWC = .04707 * VLC
VWC = .04707 * 135. = 6.37 SCF
PERCENT MOISTURE IN STACK RAS
^ BHO = (100. * VWC) / (VMSTO » VWC)
M ICO. * 6.37
-J BWO s ... —-—— —-- = 11.11 PERCENT
0 50.986 * 6.37
MOLE FRACTION OF DRY STACK GAS
FMO s (100. - RWO) / ino.
100. - 11.1
FMO = — .._._.. r .889
100.
AVERAGE MOLECULAR WEIGHT OF ORY STACK GAS
MD = (Pcoa * .44) + (pna * .32) * (PN2 » pro) * .28
MO = (13.60*40/100) * ( ?.5*32/100) » ((83.9* .0) * ?8/100 = 30.28
MULECULAR WEIGHT OF STACK GAS
MWS = MO * (i. - c»wn/ioon * IB. * (HWO/IOO)
MWS = 30.28* (I. -(11.11/100)) + 18. * (11.11/100) = 2H.91
-------
STACK GAS VELOCITY AT STACK CONDITIONS
HELP = SUM. OF THE SOHT(VH * (TS » 460.))
VS = 85.19 * CP * DELP / (SQRT(MWS • PS) * PNTS)
vs = 85.a9 * .aa * 210.442 / (SURT( >a.9i * 3o.ai) • 9. = 56.79 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS * AS • 3600/144
OS = 56.79 * 20612. 3600/144 = 29262040. ACfH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONOITIONS
OSSTD = 17.647 * OS * PS * (I. - (BwO/100)) / (TS + 460.)
17.647 * 24262440. * 30.24 * (1. - (11.11/100))
OSSTO « --- - ------ - ----- — ------- - ------------------------- = 17770760. SCFH
( 321. * 460.)
PERCENT ISOKINETIC
ISO = (305.58*(TS*460.))*((0.002669*VLC)«(VH*Y*(PR«(PM/13.6) ) / ( TM + 460 . ) ) ) / (TT«VS*PS*DN*ON )
(305.58*( 3?l.»4j,0.))*((0. 002669* 135. )»( 51.925* ,960*( 30.27»( .851 /1 3.6) ) / ( 6
ISO = — — — ................................................. — ........___..-___... --- ................ - 102.79 PERCENT
90. * 56.79 • 30.24 * .221 * .221
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * MN * 15.43 / VMSTD
CS s 0.001 * 261.? • 15.43 / SO. 986 = .0790 GR/DSCF
-------
FIELD DATA
-J
NJ
PLANT
SAMPLING LOCATION UNIT TWO FAST
SAMPLE TYPE M5B
OPERATOR CLARKE
AMBIENT TEMP. (PER. F) 60.
BAR. PRESS. (IN. HG) 30.27
STATIC PPESS.(IN.H?01 -.40
FILTER NIIMBER(S) 3531104
STACK INSIDE DTM.(IN) 162.00 .00
PITllT TUBE COEFF. .84
THERM. NO. 206
LEAKAGE .000 CFM o) fl.O IN.HG
METER CALIB. FACTOR .9«3
READ & RECORD OATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK KAS METER VELOCITY ORIFICE PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NO. (MIN.) (24-HP (CU.FT.) (IN.H?U) (IN.H20) (DFG.F)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
Ul_uu*» *
8*0
840
850
9"0
910
9?0
9*0
940
950
1000
DFSIHED
477.734
482.700
488.160
493.440
498.775
504.1 10
509.666
515.015
520.480
525.793
.720
.690
.690
.690
.690
.700
.700
.710
.710
.06
.00
.00
.00
.00
.01
.01
.03
.03
ACTUAL
.06
.00
.00
.00
.00
.01
.01
.03
.01
DATE 02/12/W3
RUN NUMBER 9CM5B
PWOBF LFNfiTH * TYPE h FT GLASS
NUZZLE t I.D. .221
ASSUMED MOISTURE it.o
SAMPLE BOX NUMBER QAC
MKTER BOX NUfHER FB5
METER HEAD OTFF. i .8«
PROBE HEATER SETTING 320.
Hf ATFR BOX SETTING .120.
K FACTOR 1134.0
DRY GAS METER PUMP SAMPLE IMPINGER
TFMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.HG) (DEG.F) (DEG.F)
INLET OUTLET
113.
*19.
321.
121.
122.
123.
324.
124.
124.
65.
66.
70.
76.
7«.
81.
82.
84.
85.
64.
64.
60.
66.
66.
69.
70.
71.
7?.
4.5
5.5
5.5
6.0
6.5
7.0
7.5
8.0
8.0
328.
317.
317.
321.
322.
317.
322.
320.
117.
53.
54.
53.
50.
50.
52.
54.
54.
54.
TOTALS
AVERAGE
90.0
48.059
1 .02
1.02
321.
76,
67.
6.5
320.
53.
-------
PARTICIILMF FIF|_n DATA d RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
CLARKE
TEST 9CM5B
UNIT ThO FAST
ENGLISH UNITS
TEST DATE 02/12/83
TB
TF
TT
NP
Y
DN
CP
> PM
to VH
TM
VMSTD
VLC
VMC
BMO
FMO
PC02
P02
PCO
PN2
MO
TIME-START
TIME-FINISH
NET TIME OF TFST, MTN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
0"OP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
1MPINGERS ANO SILICA GEL, ML.
VOLUME OF WATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOIST'JRF BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
MOLF ENACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO RY VOL., DRY
PEkCENT N? BY VOL., DRY
MOLECULAR WT-ORY STACK GAS
1000
90.0
9
.983
.221 IN
.84
1.02 IN-H20
«8.059 CU-FT
71.6 F
«7.587 SCF
133.1
6.265 SCF
11.63
.884
13.60
2.50
.00
83.90
30.28
METRIC UNITS
02/12/83
8JO
1000
90.0
9
.983
5.6 MM
.84
25.8 MM-H20
1.361 CU-M
22.0 C
1.348 SCM
133.1
.177 SCM
11.63
.884
13.60
?.50
.00
83.90
30.28
-------
MWS MOLECULAR WT-STAC* RAS
PB BAROMETRIC PkFSSIlPE
PSI STATIC PRES UF STACK GAS
P8 STACK PPES, A«S.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VFLOCTTY
AS STACK APEA
QSSTO STACK FLOW RATE, PRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIr
MN AMBIENT PARTItULATE
MS. EPA 5
CS AMBIENT PARTICULATE
30.27
-.
-J
* 68 PEG F, ?9.9? TM.HP.
-------
FXAMPLF PARTICHLMF C ALCULA I TONS TFST NO. 9CI"bR
UNIT TWO FAST
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD = (17. M7 * VM » Y * (P» » PM / 13.61) / (TM *
17.647 * 48.059 * .9fl3 * ( 30.27 * 1.016 / 1?.M
VMSTD = - ---------------------------------------------------- = 47.587 OSCF
( 72. » 460.)
VOLUME OF WATER VAPOR »T STANDARD CONDITIONS
VNC = .04707 * VLC
VWC = .04707 * 133. s 6.27 SCF
PERCENT MOISTURE IN STACK GAS
BNO s (100. » VWC) / (VMSTD * VWC)
100. » 6.27
BWO = ----------- - ------ ..... --- = 11.63 PERCENT
47.587 + 6.27
MOLE FRACTION OF DRY STACK GAS
FMD r (100. - BWO) / 100.
100. - 11.6
FMD = --- ---- - — - ------- ..... s .684
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MD s (PC02 * .44) •» fP02 * .32) * (PHI » PCO) * .28
MO = (13. 60*44/100) » ( ?.5«32/|00) * ((«3.9+ .0) « 28/100 s 30.28
MOLECULAR WEIGHT OF STACK GAS
MWS = MO * (i. - own/ionn » is. * (HMO/IOO)
MWS = 30.28* (I. -(11.61/100)) + Ifl. * (11. hi/100) = 28. 81)
-------
STACK GAS VELOCITY «T STACK CONDITIONS
OELP s SUM. OF THE SQRT(VH * (TS » 460.))
VS = 85.49 * CP * OELH / (SQRT(MWS * PS) * PNTS)
VS = 85.49 • .60 • 210.4«?7 / (SORTf 28.85 * *0.24) * 9. r 56.B5 FPS
STACK GAS VOLUMETRIC FlON »T STACK CONDITIONS
OS s VS * AS « 3600/141
OS = 56.85 * 20612. 3600/144 = 29297040. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD r 17.647 * OS * PS • (t. - (flWO/100)) / {TS * 460.)
17.647 * 29^97040. * 30.24 * (1. - (M.63/100))
QSSTD s — -. — ....—..................._.... — . —.... s 17684652. SCFH
( 3?1. » 460.)
PERCENT ISOKINETIC
ISO « (305.58*fTS*460.))*((0.002669*VLC)»(VM*V*(PB*(PM/| 3.6))/(TM»460.)))/(TT*VS*PS*nN*DN)
(305.58*( 321.»460.))*((0.002669* 131.)+( 4S.059* .983*( 30.27*( 1.016/1^.6))/( 72.*460.)))
ISO s .......-...-...-...-.......——.-....-.—-.—._-..--. ——..................................... - Sfc.oo PFSfENT
90. * 56.85 * 30.24 * .221 * .221
PARTICULATF LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * MN * IS.43 / VMSTD
CS = 0.001 * 204.7 * 15.4* / 47.587 = .0664 GH/OSCF
-------
FIFLD DAT*
-J
-J
PLANT
SAMPl ING LOCATION UM T THO FAST
SAMPLE TYPF M5B
OPERATOR CLARKE
AMBIENT TEMP. (OEG.F) hO.
BAR. PRESS. (IN. MG1 30.27
STATIC PRESS. tlb.HZO) -.40
FILTER NUMBER(S) 3531103
STACK INSIOE DIM.(TN) 162.00 .00
PITOT TUBE COEFF. .84
THFRM. NO. 206
LEAKAGE .000 CFM a) 5.
METER CALIB. FACTOR 1.030
READ S RECORD DATA EVERY 10.0 MINUTES
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80. 0
90.0
CLICK
TIMF
(24-HR
n nr K i
u |» u I, n |
8*0
640
8«*0
900
910
9?0
9*0
9«0
9*0
100Q
GAS METER
READING
(CU.FT.)
27.215
31.819
37.300
42.380
47.620
52.815
58.138
63.425
68.560
73.756
VELOCITY
HEAD
(IN.H20)
.720
.690
.690
.690
.690
.700
.700
.710
.710
0 IN.HG
ORIFICE
DATE 02/12/H3
HUN NIJHbFK 9DM5B
PROBE LENGTH ft TYPE 5 FT GLASS
NOZZLE S I.I). .215
ASSUMED MOISTURE t i .0
SAMPLF BOX NUMBER OAD
MFTF.R BOX NUMHFR FB4
METER HLAO UIHF. 1.88
PROBE HFATFR SFTTING 320.
HEATER BOX SFTTING 320.
K FACTOR 1134.0
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
.06
.00
.00
.00
.00
.11
.01
.03
.03
H20)
ACTUAL
.06
.00
.00
.00
.00
.01
.01
.03
.03
STACK
TEMP
(DEG.F)
313.
319.
321.
321.
322.
323.
324.
324.
324.
DRY GAS METER
TFMP
(OEG.F)
INLET OUTLET
S9. 59.
60. 60.
64. 60.
68. 60.
70. 62.
73. 63.
74. 64.
74. 65.
75. 66.
PUMP
VACUUM
(IN.HG)
3.0
3.0
3.0
3.5
4.0
4.5
4.5
5.0
5.0
SAMPLE
BOX TEMP
(DEG.F)
320.
331.
325.
327.
321.
318.
322.
330.
336.
IMPINGER
TEMP
(DEG.F)
54.
53.
5?.
50.
50.
48.
48.
52.
56.
TOTALS
AVERAGE
90.0
46.541
1.02
1.02 321.
69.
65.
3.9
326.
51.
-------
PARTICIPATE FIELD 0»TA H RESULTS TABULATION
PLANT- NAME AND AOORESS TFST TFAM LFAPER
CLARKE
TEST 90M5B
UNIT TWO EAST
TEST
TB
If
TT
NP
V
ON
CP
PM
DATE
TIME-START
TIMF-FINISM
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
FNGLISH UNITS
0?/l?/«3
630
1000
90.0
9
1.030
.215 IN
.84
1.02 IN-H20
METRIC UNITS
02/12/83
MO
1000
90.0
9
1.030
5.5 MM
.»«
25.8 MM-
VM
TM
VMSTO
VLC
VHC
BMO
FMD
PC02
P02
PCO
PN2
MD
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H?0 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF nATER VAPOR
AT STANDARD C"NOITIONS«
PERCENT MOISTURE RY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEFN MADE.)
MOLE FRACTION DRY GAS
PFRCENT C02 BY VOL., DRY
PERCENT 0? BY VOL., DRY
PFRCENT CO BY VOL., ORY
PERCENT N? BY VOL., D»Y
MOLECULAR WT-flBY STACK GAS
Ob.511 CU-FT
1.318 CU-M
65.3 F
48.864 SCF
133.5
6.2R4 SCF
11.39
.886
13.60
2.50
.00
«3.90
30.28
IS. 5 C
1.384 SCM
133.5
.178 SCM
11.39
.886
13.60
?.50
.00
83.90
30.28
-------
MWS MOLECULAR WT-STACK RAS
•
PB 8AROMFTRIC PRFSSU&E
PSI STATIC PRES OF STACK GAS
PS STACK PPES, ARS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
RSSTD STACK FLOW RATE, ORV*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICIPATE
MG. EPA 5
CS AMBIENT PARTICIPATE
PH.8B
10. 27
-.40
30.2«
3?1.
56.8
20612.
1 7723520.
29282136.
104.4
IN-HG
1N-H20
IN-HG
F
FPS
SO-IN
SCFH
ACFH
2«.88
76A.86
-10.16
76B.1 1
161 .
17.3
13.298
501877.
629182.
104.4
MM-Hfi
MM-H20
MM-HG
C
MPS
SO-M
SCMH
ACMH
.0709 GR/OSCF*
162.335 MG/OSCM
* 68 OEG F, 29.92 IN.HG.
-------
EXAMPLF PAPT1CIILATF r ALCULAT IONS TFSI NO. 9DMSH
UNIT TWO FAST
VOLUME OF DRY GAS SAMPIEH AT STANDAHD CONDITIONS
VMSTO = (17.647 • VM * Y * PERCENT MOISTURE IN STACK GAS
I
I-1 BWO = (100. * VWC) / (VMSTO » VWC)
00
° 100. * 6.2«
BWO « ......... s 11.39 PFHCENT
48.864 * 6.2A
MOLE FRACTION OF DRY STACK GAS
FMO s (100. - RWO) / 100.
100. - 11.4
FMD s .....-...-----...------ s .886
100.
AVERAGF MOLECULAR WEIGHT OF DRY STACK GAS
MD = (PCOe * .44) * (P02 * .32) * (PN2 * PCO) * .28
MO = (13.60*44/100) * ( 2.S*32/100) * ((«!.<»» .0) • ?8/100 s 30.28
MOLECULAR WEIGHT OF STACK GAS
MWS = MO • (I. - (BWO/100)) » 18. * (BWU/100)
MwS = 30.?8* (1. »(11.34/100)) » 18. * (11.39/100) = ?8.88
-------
STACK GAS VfcLUCITY AT STACK CONDITIONS
OELP = SUM. OF THE SDRTfVH * (TS » IhO.))
VS = 85.09 * CP * DELP / (SQRT(MWS • PS) • PN1S)
VS = 85.19 * ,8fl * 210.457 / (SORT( 2H.B« • 10.20) * 9 . = 5h.83 FPS
STACK GAS VOLUMETRIC Fl OW AT STACK CONDITIONS
ns = vs * AS * 3bon/i44
OS s 5b.«3 * 20bl2. ^bOO/lfll = 29282l3b. ACFH
STACK GAS VOLUMETRIC Fl OW AT STANDARD CONDITIONS
OSSTO = 17.b07 * OS * PS • (1. - (BMO/100)) / (TS + 4bO.)
17.b«7 * 292«213b. • 30.24 * (1. - (11.39/100))
OSSTO = = 17723520. SCFH
( 3?1. * 4bO.)
I
M
C» PERCENT 1SOKINETTC
ISO =
(305.58«( 321.*flbO.))•((0.002660* 13«.) + ( 4b.541*1.030*( J0.27*( 1.01b/I 3.b))/( b5.*4bO.)))
ISO = ... . ._ . |04.3b PFRCENT
90. * 5b.B3 • 30.24 * .215 * .215
PARTICULATF LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS a 0.001 * MN * 15.43 / VMSTD
CS = 0.001 * ?24.fc * 15.43 /
-------
FIELD DATA
PLANT
SAMPLING LOCATION UNIT ? FAST
SAMPLE TYPE M5B
OPERATOR PR RA JP
AMRIFNT TEMP. (HER. F) 60.
HAP. PRESS. (IN. HG) 30. ?7
STATIC P»E3S. (TN.H?0) -.10
FILTER NUMRER(S) 3531028
STACK INSIDE DTM.(TN) 162.00 .00
PITOT TUBE COEFF. .84
THERM. NO. 178
LEAKAGE .000 CFM i> 8.
METER CALIfl. FACTOR 1.003
READ & RECORD DATA
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
1 INIT 0
Ul 10.0
00 •
N) 20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
CLOCK
TIMF
(24-HR
CLOCK)
1200
1220
1230
1210
12">0
1300
1310
13?0
1330
5 IN.HG
OATE 02/12/83
RUN NUMBER 10AM5B
PROBE LENGTH ft TYPE 5 FT GLASS
NOZ7LE : 1.0. .221
ASSUMED MOISTURE il.o
SAMPLE BOX NUMBER
MFTER BOX NUMMFR FBI
METER HEAD OIFF. 1.72
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 11U.5
EVERT 10.0 MINUTES
GAS METER
READING
(CU.FT.)
VELOCITY
HEAD
(IN.H20)
ORIFICE PRESSURE
DIFFERENT
(IN.H20)
IAL
STACK
TEMP
(DEG.F)
DESIRED ACTUAL
912.801
919.150
955.100
961.03*
966.760
972.650
978.111
981.250
990.061
995.879
.850
.770
.770
.750
.750
.730
.730
.730
.730
.24
.12
.12
.09
.09
.06
.06
.06
.06
.21
.12
.12
.09
.09
.06
.06
.06
1 .06
325.
326.
326.
326.
325.
326.
327.
327.
32B.
DRY GAS
METER
TEMP
(DEC
INLFT
67.
69.
72.
77.
81.
81.
81.
81.
«2.
.F)
OUTLFT
65.
65.
65.
66.
67.
6°.
69.
70.
71.
PUMP
VACUUM
(IN.HG)
5.0
5.0
5.5
6.0
6.0
7.0
7.5
8.0
8.5
SAMPLE
BOX TEMP
(OEG.F)
312.
327.
310.
331.
336.
337.
326.
337.
327.
IMPINGER
TEMP
(OEG.F)
50.
50.
50.
51.
51.
53.
53.
51.
51.
TOTALS
AVERAGE
90.0
51.078
1.10
1.10
326.
77.
67,
6.5
331.
52.
-------
PARTICIPATE
PLANT- NAME AND ADDRESS
OATA H RESULTS TABULATION
TEST TEAM
PR RA JP
TEST 10AMSB
UNIT 2 FAST
FNGLISH UNITS
TEST DATE
TB
TF
TT
NP
Y
DN
CP
PM
TIMF-START
TIMF -FINISH
NFT 1JMF OF TFST, MTN.
NFT SAMPLING POINTS
METFR CALIBRATION FACTOR
SAMPLING NOZZI E DIAMETER
PITOT TUBE COFFFICIFNT
AVERAGE ORIFICE PRESSURE
0?/12/83
1200
1 330
90
9
1
1
.0
.003
.221 IN
.sa
.10 IN-H20
MFTRIC UNITS
0,»/12/83
1200
1330
90
9
1
•5
27
.0
.003
.7
.80
.9
MM
MM-
DROP
VM VOLUMF "F DRV GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METFR TFMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLETTFD IN
IMRINGERS AND SILICA GEL,ML,
VHC VOLUME OF NATFR VAPOR
AT STANDARD CONDITIONS*
BHO PERCENT MOISTURF BV VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEFN MADE.)
FMO MOLF FRACTION DRY GAS
PC02 PERCENT C08 BY VOL.. DRY
P02 PFRCENT 0? BY VHL., DRY
PCO PFRfEMT CO HY VOL., DRY
PN2 PERCENT N? BY V"L., DRY
MD MOLFCULAR «T-nRY STACK HAS
53.07B CU-FT
1.501 CU-M
72
"
5fl
7
11
13
3
na
30
.1 F
.587 SCF
.9
.291 SCF
.98
.880
.00
.00
.00
.00
.20
22.3
1.517
15a.9
.20*.
11.98
.880
13.00
3.00
.00
80.00
30.20
C
SCM
SCM
-------
M
CO
MWS MOLFCIJLAR WT-ST»CK R*S
PB BAROMETRIC PRESSURE
PSI STATIC PRFS OF STACK GAS
PS STACK PRES, ATS.
TS AVERAGE STACK TFMP
VS AVG STACK GAS
AS STACK AREA
OSSTD STACK FLOW RATEf
OS ACTUAL STACK FLOW RATE
ISO PFRCENT ISOKINET1C
MN AMBIENT PARTICIPATE
MR. EPA 5
cs AMBIENT PARTICIPATE
?8.7a
30.27 IN-H6
-,?0. ACFH
.0750 GH/OSCF*
fe MM-HK
-10.16 MM-H?0
7bB.ll MM-HG
163. C
18.1 HPS
13.29B SQ-M
517B27. SCMH
866705. AC"H
102.2
260.6
171.757 MG/DSC*
* 60 PEG F, ?9.9? IN.HG.
-------
EXAMPLF PARTICIPATE CALCULATIONS TFST NO.JOAMSH
UNIT ? FAST
VOLUME OF DRY GAS SAMp|.En AT STANOAHO CONDITIONS
VMSTD = (17.647 • VM * Y * (PB » PM / 13. b)) / (TM + 060.)
17.647 * S3. 078 • 1.003 * ( 30. 27 + 1.100 / 13.6)
VMSTO = .................. — ................................. = 53.587 OSCF
( 72. » 460.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VMC « .04707 * VLC
VWC = .04707 * 155. = 7.29 SCF
PERCENT MOISTURE IN STACK GAS
H"
I flWO = (100. * VWC) / (VMSTO + VWC)
M
100. * 7.2«»
-
53.587 » 7.39
BWO a -- -------- - ------- ..... — . s 11.98 PERCENT
MOLE FRACTION OF DRY STACK GAS
FMD = (100. - BWO) / 100.
100. > 12.0
FMD = —. ..... = .880
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MD s (PC02 * .««) * (P02 * .32) •» (PN2 » PCO) • .2»
MD = (13.00*44/100) » ( 3.0*32/100) + ({«
-------
STACK GAS VfcLOCITY AT STACK CONDITIONS
OELP = SUM. OF THE SORT(VH * (TS + 460.))
VS a 85.49 * CP * OELP / (SORHMWS * PS) * PNTS)
VS - 85.49 * ,«4 * 219.4S3 / (SQRTC ?8.7« * 30.24) • 9. = 59.40 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS a VS • AS * 3600/144
OS a 59.40 * 20612. 3600/144 a 30607220. ACFH
STACK GAS VOLUMETRIC FLOM AT STANDARD CONDITIONS
OSSTD a 17.647 * OS * PS * (I. - (RWO/100)) / (TS » 460.)
17.647 * 30607220. * 30.24 * (1. - (11.9A/100))
OSSTD = — — — ————— — — ————— — — — — = 18286776. SCFH
lft ( 3?6. * 460.)
I
H1
00
^ PERCENT ISOKINETIC
ISO a (305.5fl*(T3+«60.))*((0.002669*VLC)+(VM*Y*(PB*(PM/13.6))/(TM+460.)))/(TT*VS*PS*ON*ON)
(305.58M 326.+«60.))*((0.002669* 155.) + ( 53.078*1 .003* ( 30.27+( 1.100/13.6))/( 72.+ 460.)))
ISO * — —......... . . .—. .. . . - 102.19 PERCENT
90. * S9.40 * 30.24 * .224 • .224
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS a 0.001 * MN * 15.43 / VMSTD
CS a 0.001 * 260.6 * 15.43 / 53.587 a .0750 GR/DSCF
-------
FIF.LH DATA
PLANT
SAMPLING LOCATION UNIT ? EAST
SAMPLE TYPE MSB PflOO
OPERATOR PR RA JP
AMBIENT TEMp.(nfG.F) bO.
BAR. PRESS. (IN. HG) 30.27
STATIC PRESS. (IN. H?0) -.40
Fll TER NUMBER(S) 3531027
STACK INSIDE DIM. (INI 162.00 .00
PITOT TUBE COEFF. .84
THERM. NO. 178
LEAKAGE .055 CFM ol 12.
METER CALIB. FACTOR .960
READ ft RECORD DATA
1
M
00
-J
TRAVERSE SAMPLE
POINT TIME
NO. (MIN.)
INIT 0
10.0
20.0
30.0
40.0
50.0
bO.O
70.0
80.0
90.0
CLOCK
TTMF.
(24-HR
n nric t
U L. UU P /
1200
1210
1220
12*0
1240
1250
1300
1310
1320
1330
EVERY 10.0
GAS METER
RFADING
(tU.FT.)
473.751
480.096
486.187
492.168
498.125
504.061
509.993
515.870
521.792
527.726
MINUTES
VELOCITY
HEAD
(IN.H20)
.«50
.770
.770
.750
.750
.730
.730
.730
.730
0 IN.HG
ORIFICE
DATE 02/12/83
BUN NUMRFR 10BM5P
PROBF IFNGTH H TYPF 6 FT GLASS
NOZ7LE : I.D. .227
ASSUMEP MOISTURE il.o
SAMPLE HOx NUMBER
MFTER BI>X NUMHFR FB6
METER HEAD OIFF. 1.50
PROBE HEATER SETTING 400.
HEATER BOX SETTING 320.
K FACTOR 948. b
PRESSURE
DIFFERENTIAL
(IN.
DESIHFD
t.03
.93
.93
.90
.90
.88
.88
.88
.88
H20)
ACTUAL
1.03
.93
.93
.90
.90
.88
.88
.88
.88
STACK
TEMP
(DEG.F)
325.
32b.
326.
326.
325.
326.
327.
327.
328.
DRY GAS MFTFH
TFMP
(DEG.F)
INLFT OUTLET
61. 62.
62. 63.
66. 6*.
70. 63.
73. 64.
74. 65.
74. b5.
74. bb.
74. 66.
PUMP
VACUUM
(TN.HG)
4,0
4.0
4.0
4.0
4.5
4.5
4.5
4.5
6.5
SAMPLE
BOX TEMP
(DEG.F)
331.
345.
342.
334.
3J5.
334.
338.
339.
339.
IMPINGER
TFMP
(DEG.F)
50.
50.
52.
52.
53.
53.
54.
•55.
57.
TOTALS
AVERAGE
90.0
53.975
.91
.91
326.
70.
b4
4.5 337.
53.
-------
PARTTCULATE FIELO OATA S RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
PP RA JP
TEST 10BM5P
UNIT 2 EAST
TEST OATE
TB
TF
TT
NP
Y
ON
'ft CP
1
£ PM
CO
VM
TM
VMSTD
VLC
VWC
BMO
FMD
PC02
P02
PCO
PN2
MD
TTMF-STAHT
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZ/LE DIAMfTER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUMF OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL HPO COLLECTED IN
IMPINGERS AND STLTCA GEL, ML.
VOLUME OF WATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N? HY VOL., DRY
MOLECULAR hT-ORY STACK GAS
ENGLISH UNITS
02/12/83
1200
1330
90.0
9
.960
.227 IN
.HI
.91 IN-H20
53.975 CU-ET
fc6.9 f
52.613 SCF
145.6
6.853 StF
11.52
.885
13.00
3.00
.00
R4.00
30.20
METRIC UNITS
02/12/83
1200
1330
90.0
9
.960
5.8
23.2
1 .528
19.4
1 .491
145.6
.194
11 .52
.885
13.00
3.00
.00
84.00
30.20
MM
MM-H20
CU-M
c
SCM
SCM
-------
MWS MOLECULAR wT-STACK GAS
PR BABOMFTR1C PRESSURE
P9I STATIC PRES OF STACK GAS
PS STACK PRES, ARS.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VFLOCITr
AS STACK AREA
OSSTO STACK FLOW RATE, PRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICIPATE
MG. EPA 5
C3 AMBIENT PARTICIPATE
M
00
* 68 DEG F, 29.9? IN.HR.
2H.79
30.27
-.
-------
FXAMPLF PARTTCULMF CALCULATIONS TF.ST N0.10HM«>P
UNIT 2 FAST
VOLUME OF DRY RAS SAMPLED »T STANDARD CONDITIONS
VMSTD = U7.b47 * VM * y « (PH + PM / 13.6)) / (TM * 4f>0.)
17.b«7 * 53.975 * .960 * { 30.?7 » .912 / 13.b)
VMSTO = = 5.643 DSCF
( 67. + «b0.1
VOLUME OF HATER VAPOR AT STANDARD CONDITIONS
VWC s .04707 * VIC
VWC = .04707 * 14b. = 6.85 SCF
_ PERCENT MOISTURE IN ST»C« RAS
M BWO = (100. • VWC) / (VMSTD * VWC)
VD
0 100. * 6.8«i
BwO = —— — = 11.52 PERCENT
52.643 + b.flS
MOLE FRACTION OF DRY STACK GAS
FMD = (100. - BWO) / ino.
100. - 11.5
FMfl a .———————- = .885
100.
AVERAGE MOLECULAR WEIGHT OF DRV STACK GAS
MO = (Pen? • S4ai » (POP * es?) * (PN? + pro) * -2«
MO = (13.00*44/100) * f 3.0*32/100) * ((A4.0+ .0) * 20/100 = 30.?0
MOLECULAR WEIGHT OF STACK GAS
MWS = MO » (1. - (Bwn/100)) » IB. * (HWO/100)
MW3 = 30.20* CI. -(M.5?/100)) + 18. * (11.S2/100) = 28.7<>
-------
STACK RAS VELOCITY AT ST»CK CONDITIONS
OELP = SUM. OF THE SORT(VM * (TS » 460.))
vs = 05.49 * CP * HELP / (SORTCMWS * PS) * PNTS)
VS = 85.49 • .84 • 219.453 / (SfJBTf 28.79 * 30.24) * 9. = 59.34 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = V8 * AS • 3600/144
OS x 59.34 * 20612. *bOO/144 s 30577524. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD * 17.b47 • OS * PS • (I. • (BWO/100)) / (TS » 460.)
17.b47 • 30577524. * 30.24 • (1. - (11.52/100))
OSSTD = —. r 18364048. SCFH
( 3?b. » 4bO.)
PERCENT ISOKINETIC
ISO = (305.58*(TS«4bO.))*((0.002f>b9*VLC)«(VM*V*(PB*(PM/13.b))/(TM>4bO.)))/(TT*VS*PS*DN*ON)
(305.58*( 3?6.»4bO.))»((0.002669* 14h.)*( S3.975* ,960*( 30.27*( .912/13.fc)) / ( 67. + 460.)))
ISO a ...... ... . .... — . . . „ _ 97,54 PFhCENT
90. • 59.34 * 30.24 * .227 * .227
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 » MN • 15.41 / VMSTD
CS = 0.001 « 226.1 * 15.43 / 5?.643 = .0663 GR/OSCF
-------
FIELD DATA
I
M
U3
to
PLANT
SAMPLING LOCATION UNIT TWO EAST
SAMPLE TYPE MSB
OPERATOR CLARKE
AMHIENT TEMP.(r>6G.F) 60.
(JAR. PRESS. (IN. HG) 30. 27
STATIC PRESS. (IN. H20) -.10
FILTER NUMBEH(S) 3531089
STACK INSIDE DIM. (IN) 162.00 .00
PITOT TUBE COEFF. .84
THERM. NO. i/»
LEAKAGE .000 CFM A b.
METER CALIB. FACTOR .983
HEAD ft RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY
POINT
NO.
INIT
TIME
(HIM.)
0
10.0
20.0
30.0
ao.o
50. 0
60. 0
70.0
no.o
90.0
TIME
(24-HR
I* 1 llf* V I
CLOCK }
1200
1210
1220
I2»0
1240
1250
1300
1310
1320
1330
READING
(CU.FT.)
526.000
531.595
536.820
542.160
547.370
552.600
557. 810
562.989
567.925
573.155
HEAD
(IN.H20)
.850
.770
.770
.750
.750
.73U
.730
.730
.730
0 IN.MG
ORIFICE
PRESSURE.
DIFFERENTIAL
(IN.
DESIKED
1.08
.9B
.98
.95
.95
.9?
.92
.92
.92
M20)
ACTUAL
1.08
.96
.98
.95
.95
.92
.92
.92
.92
STACK
UMP
(OEG.F)
325.
326.
326.
328.
325.
326.
327.
327.
328.
HATE 02/12/83
K1JN NIIMHKW IOCM5B
HKOBE LENGTH K TYPE fa FT GLASS
NOJZLF : 1. 1). .211
ASSUMED MOISTURE 11.0
SAMPLE BOX NUMHER OAC
MMER BOX NIIMHtR FB5
METER HMD DIFF. 1.84
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
K FACTOR 994.9
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP
(OEG
INLtT
60.
t>B.
If.
7tt.
82.
84.
85.
86.
86.
.F)
OUTLET
68.
68.
68.
6H.
70.
71.
72.
72.
73.
VACUUM
(IN.HG)
4.0
4.0
4.5
4.5
,5.0
5.0
5.5
6.0
6.0
BOX TEMP
(UEG.F)
317.
337.
314.
317.
319.
319.
321.
322.
323.
TEMP
(DEG.F)
50.
«8.
48.
50.
54.
52.
56.
58.
60.
TOTALS
AVERAGE
90.0
47.155
.96
.96
326,
78.
70.
4.9
321.
53.
-------
PARTICULATE FIELD OAIA * RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST HAM
CLANKE
TEST 10CM5B
UNIT TWO EAST
ENGLISH UNITS
TEST DATE 02/12/83
IB
TF
TT
NP
Y
DN
CP
TIME-START 1200
TIME-FINISH 1J30
NET TIME OF TEST, HIM. 90.0
NET SAMPLING POINTS 9
METER CALIBRATION FACTOR .983
SAMPLING NOZZLE DIAMETER .211 IN
PITOT TUBE COEFFICIENT .8-4
METRIC UNITS
02/12/83
1200
1330
90.0
9
.983
5.4 MM
.84
PM AVERAGE ORIFICE PRESSURE
> DROP
>
'VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VNC VOLUME OF WATER VAPOR
AT STANDARD CONDITIONS*
BNO PERCENT MOISTURE BY VOLUME
(CHECK AGAINST SATURATION
POINT HAS BEEN MADE.)
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 HY VOL., ORY
MD MOLECULAR WT-ORY STACK GAS
.96 IN-H2U
17.155 CU-FT
24.3 MM-H20
1.335 CU-M
73
46
137
6
12
13
3
84
30
.9 F
.481 SCF
.4
.467 SCF
.21
.878
.00
.00
.00
.00
.20
23
1
137
12
13
3
84
30
.3 C
.316 SCM
.4
.183 SCM
.21
.878
.00
.00
.00
.00
.20
-------
MWS MOLFCULAH WT-STACK GAS
PB BAKUMMRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS SIACK PRES, ASS.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTD STACK FLOW RATE, DRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN AMBIENT PARTICULATE
MG. EPA 5
CS AMBIENT PARTICULATE
30.£7 IN-HG
-,
-------
EXAMPLE PARTICULATF CALCULATIONS ttsi MO.IOCHSH
UNIT TWO EAST
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD s (17.647 * VH • Y * (PR » PM / 13.6)) / (TM » 460.)
17.607 * 07.155 * ,983 * ( 30.7 + .Q5fl / 13.6)
VMSTO = - 46.481 OSCF
( It. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VhC = .04707 * VLC
VWC = .04707 • 137. = 6.07 SCF
PERCENT MOISTURE IN STACK GAS
> BWO z (100. * VWC) / (VMSTO » VWC)
v£> 100. * 6.17
tn BWO = —....... z 12.il PERCENT
46.481 » 6.47
MOLE FRACTION OF DRY STACK GAS
FMD a (100. - BWO) / 100.
100. - \2.2
FMD — = .876
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MO = (PC02 * .44) + (P02 « .32) * (PN2 + PCO) * .28
MD = (13.00*44/100) » ( 3.0*32/100) » ((84.0* .0) * 2B/IOO = 30.SO
MOLECULAR HEIGHT OF STACK GAS
MWS = MD * (1. - (BMO/100)) » 18. * (BhO/100)
MWS = 30.20* (1. -(!?.21/100)) * 18. • (12.21/100) = 28.71
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. OF THE SQHT(VM * (IS » 460.))
VS = 85.09 « CP * DELP / (St)RT(MwS • PS) * PNTS)
VS = 85.49 • .81 * 219.484 / (SQRT( £8.71 * 30.24) * 9. = 59.,3 PERCENT
90. * 59.44 * 30.24 * .211 • .211
PARTICULATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * MN * 15.43 / VMSTD
CS = 0.001 * 210.0 * 15.43 / 46.481 = ,0b97 GR/DSCF
-------
FIELO DATA
PLANT
SAMPLING LOCATION UNIT TWO EAST
SAMPLE TYPE M5H P400
OPERATOR CLARKE
AMBIENT TEMP. (flEG.F) 60.
BAR. PRESS. (IN.HG) JO. ?7
STATIC PPESS. (TN.H?0) -.40
FILTER NUMBEH(S) 3531088
STACK INSIDE DIM. (IN) 163. 00 .00
PITOT TUBE COEFF. .84
THERM. NO. 178
LEAKAGE .010 CFM Si 9.
METER CALIB. FACTOR 1.0*0
READ & HECORO fUTA EVERY 10.0 MINUTES
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60. 0
70.0
80. 0
90.0
CLOCK
TIME
(24-HR
f 1 OP K 1
C. L. "\f I* )
1200
1210
12?0
1210
12«0
1250
1300
1310
1320
13*0
SAS METER
READING
(CU.FT.)
VFLOCITY
HEAD
(IN.H2U)
0 IN.HG
PATE 02/12/B3
PUN NIJMHFW lODM'bP
PHOBE LfNGTH K TYPE 5 FT GLASS
NUZZLE t I.D. .210
ASSUMED MOISTURE 11.0
SAMPLE HOX NUMBER 0*0
MFTER BOX NUMHER FHO
METER HEAD OIFF. i.es
PROBE HFATER SETTING 400.
HEATER BOX SETTING 320.
K FACTOR 994.9
ORIFICE PRESSURE
DIFFERENT
UN.H20)
IAL
STACK
TEMP
(DEG.F)
OESIRFO ACTUAL
74.H79
B0.?00
85.290
90.a?«
95.500
tOO.fcOO
10S.525
110.500
115.580
120.457
,fl50
.770
.770
.T50
.750
.730
.730
.730
.730
1 .08
.9B
.98
.95
.95
.92
.92
.92
.92
1.08
.98
.98
.95
.95
.92
.92
.9?
.9?
325.
326.
32h.
328.
?25.
326.
327.
327.
328.
DRY GAS METER
TFMP
(OEG.F)
INLET OUTLET
64. 63.
66. 64.
68. 64.
72. 6S.
74. 66.
7S. 67.
76. 68.
76. 68.
76. 68.
PUMP
VACUUM
(IN.HG)
5.0
5.5
6.0
6. B
7.0
7.5
8.0
8.5
9.0
SAMPLE
BOX TEMP
(OEG.F)
342.
326.
329.
330.
321.
3?4.
309.
320.
326.
IMPINGER
TEMP
(DEG.F)
48.
48.
50.
52.
54.
52.
56.
58.
60.
TOTALS
AVERAGE
90.0
45.578
.96
.96
326.
72.
66.
7.0
325.
53.
-------
PARTICDLMF FIFLO DATA K RESULTS TAHIILATlON
PLANT- NAME AND ADDRESS TEST TtAM LFAOER
CLARKE
TEST IODM5P
UNIT TWO FAST
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
VM
TM
VMSTD
VLC
VMC
BMO
FMD
PC02
P02
PCO
PN2
MD
TIME-START
TIME-FINISH
NET TIME OF TFST, MTN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PTTOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS MFTER TFMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
1MPINGERS AND STLICA «EL,ML.
VOLUME OF WATFK VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
(CHFCK AGAINST SATURATION
POINT HAS BEFN MADE.)
MOLF FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT 0? BY VOL., DRV
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR WT-ORY STACK GAS
ENGLISH UNITS
02/12/B3
1200
1330
00.0
9
1.030
.210 IN
.81
.96 IN-H20
45.578 CU-FT
h».9 F
47.5P5 SCF
137.5
6.472 SCF
11.99
.BBO
13.00
3.00
.00
84. 00
30.20
METRIC UNITS
02/12/83
1200
1 330
90.0
9
1.030
5.3
.84
24.3
1.291
20. •>
1 .346
137.5
.183
11.99
.880
13.00
3.00
.00
84.00
30.20
MM
MM-H20
CU-M
C
SCM
SCM
-------
MWS MOLECULAR WT-ST»CK GAS
PB BAROMETRIC PHFSSllOE
PSI STATIC PRFS OF STACK GAS
PS STACK P»ES, A«S.
TS AVERAGE STACK TFMP
VS AVG STACK GAS VFLOCITY
AS STACK A*>EA
QSSTD STACK FLOW RATE, DRY*
OS ACTUAL STACK FLOW RATE
130 PERCENT I.10KINETIC
MN AMBIENT PARTICULATE
MG. EPA 5
C9 AMBIENT PARTICULATE
Ptt.71
30. 27
-.10
30.20
326.
59.0
20612.
182H2600.
30613136.
103.1
213.8
1N-HG
IN-H20
IN-HG
F
FPS
SO-IN
SCFM
ACFH
28.71
768.86
-10.16
768. 1 1
161.
18.1
13.298
517709.
866840.
103.1
213.8
MM-HG
MM-H20
MM-HG
C
MPS
SO-M
SCMH
ACMH
.0690 GR/USCF*
158.885 MG/OSCM
* 60 DEC F, 29.9Z TN.HG.
-------
EXAMPLE PARIIC'ILMF CALCULATIONS TFST NIJ.100M5P
UNIT TWO FAST
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD = (17.647 • VM * V * (PB » PM / 13.6)) / (TM + «60.)
17.607 * 05.578 • 1.030 * ( 30.?7 * .958 / 13.6)
VMSTO = = 07.525 OSCF
( 69. + 160.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VHC = .00707 • VLC
VHC = .00707 * 138. = 6.07 SCF
PERCFNT MOISTURE IN STACK RAS
^ BWO a (100. • VWC) / (VMSTO * VWC)
N)
O 100. * 6.07
O BWO s — ——--._- = 11.99 PERCENT
«7.525 » 6.07
MOLE FRACTION OF DRY STACK GAS
FMD = (100. - BWO) / 100.
100. - 12.0
FMD s --.-------.-..--....... s .880
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MD = (Pcoa • .00) * (pna * .32) * (PN2 + PCO) • .28
MO = (13.00*04/100) * ( 3.0*32/100) + ((BO.O+ .0) * ?8/100 = 30.?0
MOLECULAR WEIGHT OF STACK GAS
MWS = Mil * (I. . (RWO/100)) * 1«. * (BMO/10U)
MWS = 30.?0* (1. -(11.99/100)) + 18. * (11.99/100) = 28.70
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP = SUM. OF THE SORTIVH • (TS + «*0.))
VS = 85.19 * CP * OELP / (SORHMWS * PS) * PNTS)
VS s S5.49 * .81 * 219. 4«4 / (SORT( ?8.7
I PERCENT ISOKINETIC
to
3 ISO = (305.5««(TS+460.))«((0.002h69«VLC)+(VM«V*(PB+(PM/13.6))/(TM+460.)))/(TT*VS»PS*ON*ON)
(305.58*( 326. *460.))«((0.002669* 138.) + ( «5.578«1.030* ( 30.27*( .958/11.h))/( 69. + «60.)))
ISO = - — ------------- — --.----- — .-. — -- — - —....................... —._.._......__._.__ —._.__....... - 103.14 PERCENT
90. * 59.41 * 30.24 * .210 * .210
PARTICIPATE LOADING •- EPA METHOD S (AT STANDARD CONDITIONS)
CS = 0.001 * MN • 15.43 / VMSTD
CS = 0.001 * 213.S * 15.43 / 47.525 = .0694 GR/DSCF
-------
X
a.
(V
#*
ft.
a
<«
z
z
»—
X
UJ
-------
APPENDIX B
FIELD DATA
B-l
-------
CAS VELOCITY AND VOLUME DATA
2.
PLANT AND CITY
RUN DATE
l&
SAMPLING LOCATION
2-
47
CLOCK
TIME
»4 37
40
*«
49
RON
NUMBER
v-i
OPERATOR
PC XA
AMB. TEMP.
(»F)
.5?
BAR. PRESS
(in. Hg)
STATIC PRESS
(in. HjO)
it
31
3i
1C
MOLECULAR
WT.
.S?^7
STACK INSIDE DIMENSION (in.)
DIAM OH SIDE 1
JJe 0- . . .
SIDE 2
, . • , i
PITOT
TUBE Cp
^.^
MOISTURE
-0
61
64
47
70
73
76
FIELD DATA
TRAVERSE
POINT
NUMBER
7.«.9 .10
/
2
1
V
3
L,
1
?
•?
to
i f
l2L
POSITION
(in.)
n .u.ia.u
1
i
0
x e
/"?
/ b
f f
j2J2_
5-r
J-if"
3/
J1/
VELOCITY
HEAD
(ip ) , in.HjO
?i.76«J7 . 78 .79
tfr-sr £?. ^3
t^.7J
< t.c'
o. •//
^. 7-J1
|O, ^6
/5 77
o,i?:(,-¥
0,73-
O.~7l
STACK
TEMP, »F
38,3 9 .40 .41
^^•v
Jc--/
Jir-f
JO"'
jt,"-/
jjtj^
JC'/
Jil't.
JoK
.?«.!
^26'i'
3C'4.
-
B-2
-------
EMISSION TESTING FIELD DATA
HWI 1 1
>|«|>l'l'l'ltl"l"l"l"l"llM't|"|n|"P'|"|u|ll|l.|l>|»|ll|ll|M|lo[ll|ll|ll
Mil
H|ll|l»ll.|ll|l1
Ai
SANPUNO IOCAIION
>l«lj«l|«i«l[MJll|l;|ll|vt|ll|ll[ll[ll|M|tll|tl[il|tl|l4|l>
JlL
.1 I I I I I I I I
..|..|,.|..|M|,,|..I,,|,.I..I;
Wl
•I* Ml.
OflMIM
I I I t I I
Ill*
I'M
MISS.
(IN. Hf)
sum
MISS
(IN. MZ0»
»h«l"H»
mill MMU*(S)
SMCI INSIM
DIMM. (INCHIS)
Si
H».i"i"h
11*11
MOM tucM ANP ?»n
no.
1.0
NO.
llll»llli»ll,
H,O, sANmJNrtii ' win
(I) ||OI NOlWINO. AM*
grgn
H|M|II
jp>
WIU Ut..
ItAK CHICK
CfH
IN. H«
FACTOR
NU1 Ml
mo?
IUU
IIIII II IllM
Uo.
^
NUt Ml
jlMjl,
« COM
OAIA
KINS
"tUf
-37?
or
1M
IP|30|?i 1 77f?3T7
roi«r
CUKft TIM
•AMMJN6X. (14 hr
TIMC,Bl*
CM Mcru
l».
VCLOClTf
PM£SSUM
DirrCUMTIAL
CAHI.in.HjOl
DC
(34 1
j 334 3
STAC!
TCNTCIUTUU
OHV CAS MCTCK
TrNPCKATURC
I NUT
IT. |.»F
OUTLET
. runr
VACUUM.
SAMPLE Mil
TOtftKAIUU
IHP1MCCB
tcnrcMiuM
•r
&
H3L
M
d£L
i j>#
Js
¥
3//
2H
/.OJ
A 01
7V
Jf'tff
/.of
3(^7
322.
1±
IK ,V/f
-------
EMISSION TESTING FIELD DATA
i cm
i|.|.|.|>i.|'|.|.|..h.|..|..|.4|.»|..|..|..iHM»'l»NM|.,|u|,,i,.N..RnTu
Mil
"N.*H»I4
SWUNG IOCAIION
4>|4l|44|4t|4lttl|u|l|»lHlt|l||ll|l.|»(M
I J I I I I M
ilZLt
IIM M.
OMMIM
|i|»l'i|ii|ii|u|i4[u|u|n|ii|npi[ii|»|ii|M|n[it|»'
I
1INT
CM
MISS.
(IN. •*)!
SIM It
MCSS
(IN. M^
Mild MMMI(S)
SMU IkSIM
DIMM. (INCUS)
mm
Mtf
1331
»l»["l"
H|4l{4l|4l|44|4t|4l|4l|4l|4«|t«|tt|tl|tl|%4|tt|ll|t
tl|it|tl(ll[l>[n I4flt}ll|ll(ll
IM
iiiuiir
\P\K i i i^i»i t i i i i i i i i i i i
I I I
1111*11
J_L
MOM lUlIM «• UK
iHI»l«|t|»l»|i|»H"hi|nH'M'«
-------
EMISSION TESTING FIELD DATA
t cm
i i i i I i
MIC
SMPIIN& IOU1ION
-L-L
>4|u|uH>o|n|'l|n|)4|ii|»i|i)|ii|n|»i
•M NO.
EH
OMMIM
>i'»i"i"i"i|[4l|44|4t|4l|4l|4l|4«|M|tl|»|>l|M|»[n|>
i i i i i
SIAfI INSIM
DIM*. (IKNtS)
;.hMt.|.,|,.|.4|.>M.,|..T
I i I
MOM IUCIN A» IW
r»i»l4l»l«l»l«l«H"N'»H'*|u|i»(up7
LO.
i i i
NOIIK.
1.0.
'I"!"!"
NO.
nil
|»|ii|»
till
H-0,
It)
SMVtl
•01 NO
NTKI
•01 W.
IE
H[M[»
u|n|ii
Will
» N t
Mill CM.
»«TO» I
4)Lu|4V |4IIII
LCM CHCCK
cr«
IN. H«
itbf M
• K
FACTO*
MOM
NUI Ml
riioi
IUM
c»
III II I? M
THIM
PMC
NUI U1
I4|H|||||I
it COM
Ml*
l-C
iiimniuLiiAi 1^1
IV|70i?l
•OlffT
CLOOl TIM
•AMTIJUCN. (24 k«
*IMB,(Ua
«M Mcna uuouc
IV. Ik'
vcuxriTV
omricc
DirrCRCNTIAL
IAHI.tn.MjOI
&±
DCso
4^49(501
J2|33 1 34
STACK
TENtCMATUU
DRV CAS
TtMPCftATURE
OUTLET
"''
VACUUM*
KANPLC BOI
TOWCMTUU
IMPINCU
i*rt
•s~t
? . g-oc?
SO 7
•><^ •
44
so
tf '/o
26.
x
// .'
SO Z.
/.o7
ii:30
.0
^71
" '-40
1 V x_ //I
-------
EMISSION TESTING FIELD DATA
n/un * cut
'I'l'l'l'l'l'l'l' l"l" l"l' )|'<|i>|'tl"l"l'« p"|''|"|ji|i4|i>[n|>i|n|n[ie[ n |n|ii
1 i
-. . . 1 I I 1 t I 1 I I
wit
SAMPLING IOUIION
I I I I I I
TIM
r|MNll|l.|il|ilHl>|ii|il|il|»|ll
' I I I 1 I ' ' I t
It* HO.
OPIMKM
i|i|ii{»|ii|ii|n|i>jii|n]ujn{n[ii|n|n|i4|»|iili7
> I I I > t 1 I I I I
UUP
Cf)
»Mi
MISi.
(1*. M«
StAIIC
MISS
(IN HO)
nun
Sf«I IMSIM
OINCN.
Illlflllll
>«m>i|tt[»i t«|n[>i|ii]ii
J_L
MOM lUtlM AM IWI
«l«l»l«l«l»l»l«l'l"l"H'»l"l'*l'«l"l'«l't
Mini.
I.D.
NO.
I.I 1 1
H.O. ISAW
II) W N
.{IWIII I Will
no!M>I to a H »
ii|n|ii ii|i4|n u|i(|n
Mill CM.
LUK CHICK
IN.
CFN
K
r*cTo*
MCltt
>;[n|>4Ji]
MOM
NUT UT
fllOT
tUM
TNIM
rut
NUT Ml
•It.
*r
n|n|iijti
1 1
ICCMft
MU
si
imolai
3i|39T40|4
4aJ43l44l45l4.il 4 7
4a|4vbo J5
521531 54
57
tBAVtkM
•OlVt
TIM
124 kr
vcuxrin
TIMC,*!*
I . I*
omricc russuu
OirrCMCMTIAL
UHl.in.MjO)
STAC!
TBMfCMTUU
DM* CAS NCTK*
TCMPtRATUMC
T/SXi
70
DESIRED
INLET
IT. i.»r
in
VACUUM.
CAMPLE MM
TCMTCIUTUU
X5UTLET
IT_ i.«r
IMTINCU
rc
•r
JO m
a .0
/o : (0
6O
2.5
62
J.o
40
t 0 '.
/ mD
68
3 .«>'
60
/• C?
£8
4 .0
52,7
*
3O7
ye
// :/&
663 -
/-o
7
// -
/.
.0
//•'Jo
674 .
*
61
O
t I
11 t
f-S
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant . ,
Sample location
Run number /^
Particulate samj
Particulate fill
Particulate fill
Probe rinse
*T$ddei~
lMS~tu}
)le type
,er number
:er sample
lLO
Purge train 20 min (check
Location of filter in bac
1st
impinger
Final wt £?£ ^ g
Initial wt J~&2, I g
Net wt
/#Z g
Sample date */ Jf, I .
<^ /L- Recovery date ^/7/y
Recovered by Jjt/r D.5
M5 M5-320 ' M5-450
£T2/0/7 ^
I.D. 4(?A3 8 ^
I.D. X?/JA '
when completed) \/
k half CznJGU^- i**0 "£•%-+'&'
«,1~V~*- J
MOISTURE
2nd 3rd 4th
impinger impinger impinger
/ ^^ / / ~7/\ /i / y/ P-
&£-/,? g (fAL\U g v'(p,\ g
#?,£ g ^Pf;^ g J77,^ g
-m g *,/ g Iff g
Total moisture Itfif g fW
J-
^
•^ M5W-^20
Silica gel
PO^/g
J^f, / g
/ff5"g
% spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IRA"
H202
H20
Acetone
RECOVERED SAMPLE
A ^
/ LIQUID LEVEL MARKED
A-^LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Samples store.d/jand lockec
Remarks
Received by
Remarks
LABORATORY CUSTODY
Date
B-7
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location sff-T[£r'
Run number //^-MST^
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse ft.-, 0
Purge train 20 min (check
Location of filter in bac
1st
impinger
Final wt Cf^fL- g
Initial wt 5G&J g
Net wt /P0> / g
Sample date ^Jlr>
-&2?^ Recovery date Zn/F .
Recovered by ~$&/}S
M5 M5-320 M5-450
m/o/£ /
I.D.
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant . ;
Sample local
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
:ion jAJ-f^r-
/CMrB-
sample type
filter number
filter sample
20 min (check
filter in bac
1st
impinger
WS'v
ftM 9
//,p, 1 g
Sample date £f ) ffl
- XJ«,^ Recovery date 2/7/f
Recovered by ~~&&fb$
M5 i/^ M5-320 ' M5-450
£T2/£/rX
I.D. V3J1 R '
I.D. 3/9A ^
when completed) \/
k half llb>&^ W ^/f^-
' T
MOISTURE
2nd 3rd 4th
impinger impinger impinger
7/7.7 9 J^9/ / 9 vZ$,2 9
ttt.3- g J79/ g LOIJ g
~"7ltY 9 ./V \a 9 /A / 9
Total moisture H7.0 g (0
Y
^
M5W
Silica gel
ttt.1 g
ft7.^ g
m g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H26
Acetone
Samples stored,and l,o^kejj
Remarks
43J-O A ^LIQUID LEVEL MARKED X
%$J-//t ^LIQUID LEVEL MARKED /
LIQUID LEVEL MARKED
¥2*7 A
Received by
Remarks
LABORATORY CUSTODY
Date
B-9
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant T
Sample location i&0]fcv
Run number / 1) fa5~~$
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse fttek^UL
/>. z^1 '
Rec
MS y
ZfZiOM
I.D. V3;
I.D
Purge train 20 min (check when completed)
Location of filter in back half i£h.jjt&
1st
impinger
Final wt vlvj g
Initial wt 7i^>) g
Net wt jllfr g
Sample date // //rs
Recovery date 2f')/f+
Pvered by J Q-fb5
M5-320 M5-450
^
^ J ^
^ZZl/h ^
>/
U i Vv^ W /? f- ^
i
MOISTURE
2nd 3rd 4th
impinger impinger impinger
(0sit2' g (fsf/tj^ g K/V/O g
^79 g
"Wl 9
Total moisture
r??^ g r?p^ g
52 »7 g /^ g
. /^x7 fl y0/*)
/ Ac, 7 g » v/
M5W
Silica gel
W.7 9
p-l-l 1
» 5j, / g
$YI* g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
/
y
Samples stored^and
Remarks
LABORATORY CUSTODY
Received by
Remarks
Date
B-10
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE_
SAMPLING TIME (24 hr CLOCK) 'm
SAMPLING LOCATION $£>.'
^
COMMENTS:
SAMPLE TYPE (BAG, INTEGRATE
ANALYTICAL METHOD
AMBIENT TEMPERAT
OPERATOR
iONTINUOUSX
ORSAT LEAK CHECKED
•4,
\^ RUN
GAS ^\
C02
02 (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N2(NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
111
/r.f
NET
&<(
,.v
ACTUAL
READING
/33
#.y
2
NET
//*
1*
ACTUAL
READING
5
NET
•
AVERAGE
NET
VOLUME
/3lS
i.tr
^
>
MULTIPLIER
«',00
32 '100
»/,.,
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Mrf, Ib Ib-mole
w
M
H1
-------
EMISSION TESTING FIELD DATA
HANI i CITl
Mil
»ld»N»N«l«
SAWIINC IOCAIIOH
I I I I I I I I I
Tin
M.,|Mh|..|n|,.|..M,»iOTra5
m?i
I I I
•IM M.
OHM1M
»]>|i|i> "|i'l"l'«li>i'tl"l"i"lj»l"i"l"l>4T^T"i
Ml I M I I I I
AM
Ml*
i'O
MliS.
UN. is)
li|ll[j)[:
SMI 1C
HISS
». MO)
Mill*
_L
J I I I I I
SIACI INSIOC
DIMM. (INCHtS)
>|[>1||«JH)U||1 44J«>[>l||l[ll
ruoT
TMM
M
r»6£
w.
HUM tutm AM u«
i|»|»|ii|ii|il|ii|u|i>|u|i»|iii|ii
M/lli.
1.0.
NO.
H,O. L-JTII Imicd NITII
(I) !iOI NOltOI M). « H •
WKI CAl
fACTM 1
LUK ChCCK
cm
IN. Kg
K
FACTOR
c
MCIOI
MUM
NUT Ml
MM
NUT SCI
•cr.
na»o
MIA
fliSi-
rl|ll|MJllj]l
nllil
iF\Tt
i i i i i i i
_££L
lllMllV
JJL
iiliili
^P
"»•»
M3
I4|lt[l||ll
A I 1
3-i
-1_L
4 \
"I"l3*
3«|39UO|4
42J43|44|4ST4AT4
S2|5 3 I 54
5sT5dF
CUJCt flM
|24 hr
CM NCTU MMIM
VELOC1TV
ORiricc russuu
OirrCUNTIAL
DCS I RED
STACK
TCMTCIUTUU
it^l.-r
OKV CAS MCTCB
TrMPLRATURE
INLCT
T-J'*F
. rtmr
VACUUM.
CAfVLC KOI
OUTLET
IT. I.-
out
IMTIHCU
TBHTCHA
•r
6
507
/.OS
/.or
70
-TP
-Zl
33o
-riil
53
3/7
1*7
6*5"
/f
7.°
Sb
JZ
2/3
i2L
/^I
3 if
78
1 o
JZL
^.70
^>
/JO
Jlf
-70
-------
in
* P>
t>
K
n
4)
H
•<
r\
ii
e
i
f 8
? 5
?R,
*5R
U M |A
0> V»
*i'
'.5
•-5
3*
If ill
1
IT
g-
s*
K!
•^ ^»
-t
n
V.
V.
*
K
CD
r
o
-------
EMISSION TESTING FIELD DATA
ri«Ni 4 cm
ai
'"I"!"!"
1 1
OAK
33
M » u 11'I ill up
UWPLINC IOCAIION
«>i«.H.tH4,HH*l"|wN*N».|»hN»o|^*
I I I I I I i I.
UMTli Tin
|.»|««N'o|M|n|"H"l'«l"l'H>«|.i
WTM
i i i i I I M .1.
2C.
KIM tO.
TTTTFR
OMMION
i i
•M
!•!
i i i i i i i i i i i
Cf)
MliS.
(IN. •*))
STA1IC
P«SS
(IN. M20)
»H"N"
rum
I « l^l>
i»*C« IKSIM
DIM*. (INCMfi)
1 I I/I^A I I I I I i I
»H»'I"I»
MOM lucm tm TIM
.|.|.M»l»|.|.|.N..h.|..M |.,|..j..
lft
1.0.
'I"!"!"!"
NO.
M|»t[»iti[»i
1 1 1 1
M.
(ti !i
SAWIC
•01 DO
ll|ll Il|l4|l%
Will
Will
6 H t
U|n[nlll|4«|4IJ4l
Mill CM..
IH.1M I
4lUl|4V |4|I«I
ItAK CHICK
CFN
IN. Hj
l|>l|u[t4[v
FACTO*
JEW
VMllHuKtMi
i \H>
t
MCltt
rnii
NU1 UI
rnoT
IUU
c»
TMIIM
Illlllll ll[/4JM
B^"*M*v4Hi~v*Sv
ruf
NUT Ml
<0|ll|H|ll
3H:
IICOU
MU
HIM
3]
3t|3»>40|.
"»33»^
tMVCKM
VOIHT
. cuxa »»«
tAMFUMCX. (14 kr
tlM*,NU* XXLOCKI
CM HCTU MUUtlM
!»!• «**
VELOCITY
omricc PUSSUW
OirrCRCNTIAt
(AHI.in.NjOl
STACK
mHFCMTUM
DRV CAS N£TCB
TrHPCKATURC
DCS I CD
IT. i.«r
in
rut*
VACUUM.
SAMfLC KM
TCMfCRATUU
OUTLET
-------
EMISSION TESTING FIELD DATA
IE
HIM * cm
•H»
QAI(
I4|)\|ulll|n[»j4o|«l
WiQ7./
SMVUINt 1 OCA 1ICIK
"l4)H«tll|ll|>4|M|.t|ll|>t|
''''Ml
OMMIM
i i iCtt-iaififeie'i t i n i i
IINP
iibilu
~
MISS.
(IN. Hal
?£L
SUIIC
MCSS
(IN M,0)
'Ml I I
run* NUMiu(S)
|.,|.;|.,h|.s|..|.,|<.Hv.|>.h
I I I I I I
SIAU INSIH
OIMH. (INCMS)
rnoi
IUM
IHIIM
MOM lucm AND it«
HHMItHliiMtiitliiHliil.ilitHui.tj,.
•OV/lf,
1.0.
'I"I"N"
NO.
n[ii|ni>i|ii
1 1 1 1
W-
. . (SJurtc
(i) !ioi no
writ
Ml M
H|ll|ll
II|M|H
H|II[II
NfTfl
6 N »
vh'1'J'.fl
I
Will Ml.
FMIW »
"H«*H«'
IUK CHICK
cm
IN. H,
u|>i|>i|n|it
K
FACTOR
it ^
MAT Ml
Mr.
*p
WOMO
Ml*
NIM
.CLOCK TIM
•AMPUHCN. |]4 hr
M|3IJ3?1
CM NCTU UAAU6
«*!. It*
VELOCITY
OKI rice PRCSSUU
DirrCUNTlAL
|«H) .In.NO)
/O
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample local
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
Sample date H Jll
:ion X&i£s- U* 7- Recovery date j£/7^
/^/i/Yf"^- Recovered by yft ffi S
sample type M5 S M5-320 / M5-450
filter number $5lf/0/"*/
filter sample I.D. *t&< A ^
ykl&l^L- I.D. i£-S£ f A ^
20 min (check when completed) \s
filter in back half fc^r. ,Lj , t±'&
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Iff2-i'oq fa(?i>Y g v
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant , ,
Sample location
Run number
Sample date
Recovery date
Particulate sample type _
Particulate filter number
Particulate filter sample I.D.
Probe rinse
M5
Recovered by
-320
Recovered
S MS-:
M5-450
M5W
o?/
I.D.
Purge train 20 min (check when completed)
/ M- \
Location of filter in back half g£T /W
MOISTURE
S
1st
impinger
Final wt
Initial wt
Net wt
IK?
g
g
2nd
impinger
(,10.1' g
g
g
3rd
impinger
4th
impinger
Silica gel
Total moisture
g
g
g
fcl.O
% spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
RECOVERED SAMPLE
A_iT
I A ^ LIQUID LEVEL MARKED
*S_ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Samples stored
Remarks
d locked
£k
Received by
Remarks
LABORATORY CUSTODY
Date
B-17
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant , ;.. ._ 4.
Sample location Ethi
Run number
Sample date
Recovery date
Particulate sample type _
Particulate filter number
Particulate filter sample I.D.
Probe rinse
M5
Recovered by
M5-320
M5-450
iamgl
I.D.
A
Purge train 20 min (check when completed)
Location of filter in back half
f
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Final wt
Initial wt
Net wt
111.1
Total moisture
g
g
g
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
LIQUID LEVEL MARKED
(/LIQUID LEVEL MARKED
, LIQUID LEVEL MARKED
^
'ZGJLA^ S
J&T
Samples stored, and
Remarks
-ed.and locked
^vDk
Received by (_
Remarks
LABflRAIQRY CUSTODY
Date
Silica gel
tf 7,/ g
% spent
UHX-
B-18
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
~* f ~7j
Sample location j£
Run number AJ) //
Particulate sample
Particulate filter
Particulate filter
_ . // Y
Probe rinse t\\s>
'*?/&--
£&ti
type
number
sample
Purge train 20 min (check
Location of filter in bac
1st
impinger
Final wt $1 It / g
Initial wt %!
Net wt /0(
fTtf g
', / g
Sample date Z/y/T
/.£ *** Recovery date ^/9
Recovered by ~~PQ/p$
M5 M5-320 ' M5-450
^TllCtf -^
I.D. V3^V fl S
I.D. 4y33i'-4 *^^
when completed) iX^
/ V/- I -7 -?
k half >CT, iVfl. ^^
MOISTURE
2nd 3rd 4th
impinger impinger impinger
Cl^l g J^Jkl^g ti&Tf g
P5^?/ g S^y/,1 g £/Z/5^g
-V15 g £/. g ^VT/ g
Total moisture /vO,0 g T1^
'2-
>*f/&
/^M5W
Silica gel
/%l/ g
/y g
% spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
RECOVERED SAMPLE
Ar ^^
''' LIQUID LEVEL MARKED
V3jfe A ^ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Samples stored and locked
Remarks
H,0, 9
H,0 V
Acetone
locked
'&G2-A S
' % rA u^ ,
i£~(j ' far., //•
y,
y
/
Received by ^
Remarks
LABORATORY CUSTODY
Date
. /
B-19
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
iY
.TEST NO
- AfiC.D
COMMENTS:
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG. INTEGI
ANALYTICAL METHOD
AMBIENT TEMPERATURE.
OPERATOR
ORSAT LEAK CHECKED//
^\^^ RUN
GAS ^\^
C02
02 (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
/3k
/4,C
NET
«t
J.t
2
ACTUAL
READING
13. to
&JT
NET
&(,
^
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
/J.b
**r
MULTIPLIER
44/100
32/lOO
-«
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib Ib-mole
-------
TEiiTiNU KiEL-U DATA
KMI I Oil
OAII
l4J|SJuJll[ll|llj4«|4l
SMPUM 10UIION
»|41|44|4% |.4|41|4«|4<|M|»[uftl[V4 J»[tl[il[s7|T> |to|n|>)|n|>
I I I I I I I
SAMPlf IlPf
>l|t.|M|.t|ll|ll[n|ll|l.|,>|..|,,|,,
'til' ' ' ' ' ' f I
•M Ml.
OPIIAIOl
...
IINP
CF)
i*Hi
(IN. M9)
H3i
SIA1IC
PICK
(l« M?0>
'^l"!"!"!"
ruui
4l|4l|4IJ4l|44[4t|4l|«>|«l|««|s«|>l|n|si|M|^|>|[t
I 1 I
INSIOf
DIMM. (IKtfS)
1 1 A 1 1
MMf lUtIN A« lf«
•Olltt.
I.O
NO.
:.?• !ri
Mitt* Mill
NQlsOI M. » H t
•£$»
»EE
J_L
Will CAi.
r«cioi i
'I'»H«
IUK CHCCK
CW
IN. H,
K
FACTOR
U|>l|>t[t'
f«CT«
PWM
UT
PHOT
1UM
mtw
04
PAtf
ii|n|n|i<
NUf SCI
III
Mr.
*p
U||>|)|||
ICOMO
OAIA
HIM
I^C
FT-
£>*:-/Z5
op-
DCSD
INLCT
IT_ i.»r
OUTLET
. PUHP
VACUUM.
U.«0
CAItfLC M>I
TCNTCM1UU
•f
INVIMCUI
TKMTCIU
•f
lo
71
6>,
o
±2L
o
T*
43
97?
3OZ.
e>
3^7
322-
33-7
7*
o
33°
37
J//
32-7
33I_
3?
3f/
5-3
3/9
323
/ft?
o
ILL
TV
//o
/£>&
o.
o.
3/3
311
33*7
Vs-
1 I
-------
EMISSION TESTING FIELD DATA
IMI i cm
MU
.|.>H..H»J»I..'
SAHCLIMO IOCAIIOM
IW MO.
FFFFP
i »' ' ' i ' 11 i
SAHCU tlfl
;*l»|MhN»|..|HN..ER«ra5
ONMIM
M'H'W*H"h5E
I
M 1 1 1
11 Hf
33!
mss
UN. H9)
lll»lll[]«
SMI 1C
wsi
(IN H.,01
is|»[ii|ji[ii
mill
4l|4l|4>[43|4«|tl|>»|il[i«|»|ilJ»
i i3
'I'll
SIACI IIISIH
OINCH. (IMCHfS)
MN.*.|.,M.4|.t|..i.,|n
PI 101
IUM
If
ThtM
it t
MOM tuciM A* im
'•
|t|.i|n|u|ii|.4|.t|.i|n|,ii,.
i i
NO/UI.
o|»i|u|tij>«
NO.
n|i»|ii|i
HjO. utwuiNrifi i HIIII
It) |WI NOJtOIM. a H •
EE
U|M||S
i 1
U|H[JI
35
Will Ul.
f*CT« V
4l|Ml<» hllll
EE
LUK CHCCX
cm
IN. Hfl
IIWllM il
K
FACIOK
till
I"I"M"
C
ttcm
llllllMllt
PWM
WAI ui
MUT Ml
""."FfF
iir.
I|M|H|II
ICCMO
Ml*
HIM
'»lnfM
n»\9\\o
"hJj?^
IV|30|7I I
»
fBAVCUS
toimr
^R"T
TIME,***
TIM!
(24 hr
«M HKTU MJUIIM
IV I. «t'
/*
VEUXITV
IAD
.i«.»jl
omricc russuM
DirrCfcCHTIAL
tANI.In.HjO)
.7
DESIRED
/w
3i|3»»4Q|
l3J43{44^
STACK
TEMFCHATUU
DIIV CAS HCT»
TtMPtRATUfcE
T l.»l
"in
303
VACUUM.
OUTLET
»T ».
"out
3.5"
CAMTLC »OI
TOtfCMTUU
-U
IHT1MCU
tswrcMiwM
•r
V3
00«
g».
.
.
307
V3
.?£»
Sf
£(*
3^o
3/2
*?.77
.77
f
/VV./oo
7V
3*1
ts
33/
3/3
.0.77
^.77
337
Vo
o.ll
£?.;
(,0
-------
EMISSION TESTING FIELD DATA
i CHI
H|lo|lt|»[ll
Mil
MNlillfrlM'
'if
SAMPLING IOCA1IOM
.>l4.[.4|.vH4,|..H.|s.|t.|»h.lV4ls>|>.t,^.h,Ht.|t,|t.|.4|.t
i i
IUN NO.
I I I I I I I
SAMfll Tlfl
UI.II..IUHI.I/MMII.IIH.IIIIII.I!
I I I I I
OflMIM
1
i i ic.n.ifliRiii
I I I I
ISAMPtf
!ioi NO
11 H|M|I>
Mill
T
lijllfll
rasl
Mill
0 M •
Mill CAl
fACTOt V
5E
LCAK CMCCt
IN.
cm
>I|>I|>I[M|V
x
FACTOR
c
fKIOI
MOM
NUT Ml
NUT MT
II » I
tt
HOMO
Ml*
NINS
yliltliq
Q»D3i
CUO T1NB
l»« kr
CM MTU WUBU6
IV. ft*
VEUXTITV
HEAD
ORiriCC PM.SSUM
DirrtRCNTIAL
IAH) .tn.N2OI
^^r
3i|3»l40|
52(53 (54
STACK
TEMrCMTUU
OH» CAS HCTCft
TEMPI. RATUHC
NCT
».»r
OUTUT
VACUUM,
•AMMX BOI
IMTINCU
TKNTCMttUM
330
9/.-PT
575
lo\o
: ? /
3
"
23 5k
S5T
67-
2.7V
JO!
±
-------
EMISSION TESTING FIELD DATA
i cm
i i i i i
0*11
lsluHll|llH"
SAMPIIN6 I OCA! 10*
«|ti[w|%l[Mfr>[>l]ll|v
»i|n[u|t4|«i
1 1 I I 1 I I i
im
i|n|i>[ii|n|»«|it|ti|ii|ii|if[i
, , , ,
tUM
Him
*M).yi!.iftPl i i i
OTtMIM
'|"l"H"l'4ll>l|tl"l"l"H"l"l'H"l"l'tl"
I I I I I M > I I
IIHP
CM
w
mss .
(IN H9)
»'N»I'«
SIM 1C
PUSS
(IN M20)
rum
4»[ll[4>|4l}44|4i|4t[4l|44[4t|i«|>l|
t I I I I M 1 1.
SIWI INSIOC
DIM*. (iNCMtS)
_L
"i"i" "i"i"r"i"t
I A 1 i
MOM lUtlN MB UK
i|i|il«|iUI»IiT«M'4iI«iM«*l'«T"hi|.t
i^T
i i i i
MIIll.
I.D.
Is!
NO-
i l l 1
M.O.
it)
DO
iiilli
/I/*
ll[n|lt
Nilil
•DIM.
±5
Mill Ut.
4l|44|«t |4>|4I
IEAK CHECK
CFN
IN. M9
K
FACTO*
c
racial
)|tlt4jlt
1 1
HUt UI
lull
M|ll|tl
mm
7l|/4|M
PACE
MU1 Ml
4*
14 IIIII I
A 1 1
ICUMO
MIA
HIM
*»»»3t34
IOJ70J2I j 33|33|>4
3«|3» UO|4"
»4ol«4l^
VCUXTITV
IV. It
omricc russuiui
DirrcncNTiAL
IAHI.ln.HjOI
•TACK
TEMTCIUTUM
If.!.'*
OKr CAS NETEK
TtMPEMATUHC
1MIXT
T. i.
In
. PIMP
VACUUM*
CAMTLC MU
TOtfEIATUU
OUTLET
IT_ ».
out
IMPIMCCB
TENTEMTUM
•4T
-740
12
323
UL.
f/15
JL2-.
JL±
S- -3D
J2L2.
•307
44
9/ 3"
67
77
JLL
77
4°
5-7
311
5O
2L2.
fz
—Ls
£>
"797
So Z
I I i
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant , Sam
pie date /-/ / ft /
Samcle location J^^y^^^~ Recovery date >2////^
i t r t r -» ' i\ ft ,
Run number JfifMSQ Recovered by //^, jj^.
Particulate sample type M5 u/ M5-320 ' VM5-450 M5W
Particulate filter number ~s*T&l 0 IO ^
Particulate filter sample I.D. Vvl^^ \^
Probe rinse Ai^fa^ I-D. VJ,?/^/) *
Purqe train 20 min (check when completed) ,/
Location of filter in back half Ge-tL?t&i) i tyfa- ^^£~.
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger Silica gel
Final wt vU,f§ CiZtf § v30,b§ Cof, 7 g rSTJT'g
Initial wt 5^577 g v/(e,0 g faOQtff
Net wt /Z0 g "'>.>g 5^iv
q 57/^ g ^5 g
g /O, g KT^g
Total moisture //^3 A ' iS
H?0? V?J?J- /•' '
H,0 V$t"J f- v'
Acetone *?(?/!>l ft ^'
Samples stored and locked
Remarks
^
^/
LS
, LABORATORY CUSTODY
Received by (~^c^f^7L^.-^ \^>^y^-^.^^:-'
Date /^? " : ^" /- /^/-^
Remarks A/£> . ~ff *ffifr/
B-25
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number <
Sample date
Particulate sample type
Particulate filter number _
Particulate filter sample I.D.
Probe rinse Aue-rt*i£^
M5
Recovery date ,. ^a
Recovered by KJ4^, /fl
M5-320 V//~M5-450
M5W
/
I.D.
Purge train 20 min (check when completed)
Location of filter in back half
™
MOISTURE
1st
impinger
Final wt
Initial wt
Net wt
2nd
impinger
63*f g
MU g
3rd
impinger
4th
impinger
Silica gel
Total moisture
60X2 g
. g
. g
6.0
_ g
. g
_ g
fir
fZH.l
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
AY
_/ LIQUID LEVEL MARKED
_/ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
ft
% spent
Received by
Remarks
LABORATORY CUSTODY
Date
B-26
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number
Sample date
Recovery date
Recovered by
Particulate sample type _
Particulate filter number
Particulate filter sample I.D.
Probe rinse
M5
H5-320 P00 HP TWO
M5W
43 ^
I.D.
43 11* ft
MOISTURE
Purge train 20 min (check when completed)
Location of filter in back half
1st
impinger
Final wt
Initial wt
Net wt
/
2nd
impinger
3rd
impinger
4th
impinger
Silica gel
/I7
Total moisture
spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
^/ LIQUID LEVEL MARKED
A i/LIQUID LEVEL MARKED
, LIQUID LEVEL MARKED
LOL
Samples stored and locked
Remarks
Received by
Remarks
LABORATORY CUSTODY
Date
B-27
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant Sample date . jL/r/jj'.?
Sample location &dL?&jL-, Recovery date '7/f
Run number Ihflffft-PtftfO Recovered by "bfrfoj
Particulate sample type M5 iX M5-320 P^O^ XBrtbQ
Particulate filter number 3$~;§JOQ'~) \/
Particulate filter sample I.D. 4^7 \ S
Probe rinse ^rr^^ I.D. 4^7 A ^
Purge train 20 min (check when completed) S
Location of filter in back half QpZ*>&*- Mitf-^ 2-^J^,
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
1-12*9 /J?tfxJ /" 4/ iS / si'*? P"
Final wt Vl?t2' q VS^O g Y*4>,y g 6>X Z/ g
initial wt V^'?, ^ g ^%A g >ST#£ g ^^^ g
Net wt //5\7 g -"I'/iJi g $•/•! g /r/A g
Total moisture /£/>!> g ^
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. V3 4"{ ^ ^
TPA TMP. CONTAINER I.D. 43^''- LIQUID LEVEL MARKED
H.O. IMP. CONTAINER I.D. if^^A S LIQUID LEVEL MARKED
y/y
1
M5W
Silica gel
tlvt'7 g
/^sTTT/ g
y/*^ g
f % spent
y
i/
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
Received by
Remarks
LABORATORY CUSTODY
Date
r~~t
B-28
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLAMI.
DATE_
COMMENTS:
SAMPLING TIME (24 hr CLOCKS
SAMPLING LOCATION
/ 6
j-_
* ' • jfT ~in T Fi - - W-—
SAMPLE TYPE (BAG, INTEGRATEO
ANALYTICAL METHOD OtefiTT
ANALYTICAL METHOD
AMBIENT TEMPERATURE
OPERATOR
.ORSAT LEAK CHECKED
\. RUN
GAS ^\^
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
/3,t>
/t»o
NET
x?t
•L^
2
ACTUAL
READING
/J?/
/Lt
NET
/It
Z.3
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
/J7
JL>3?
MULTIPLIER
44/100
32/100
^/lOO
^/lOO
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib Ib-mole
ro
NJ
U)
-------
EMISSION TESTING FIELD DATA
t cm
'M>M«M'I«
i|;i|io|n|»|n
OAII
SMtfllMG 10U1IOM
'I*'!"!"!*4!"
l4*l5|7T l i i i i i i i i |
»i]»Jn|»i|u|Mju|n|n|n|i>|n|ii[>tj(,
,5io,V, , ,
IIM NO.
VflAIOI
!/•£•
l|'4[l>|u|ll|ll|llp||»l|ll|ll|l4|li|n[77
I I I I I 1 i
CM
MISS
(IN. Hf)
"l"l»l
SIA1IC
MISS
(IN. H70)
»|n|ll|llfli
"I"I"H'
nuti Mfl|tl[ll'|t1
1111
MOM LUtlN AND llff
.|i|iM.|.|.|.|.M..|.»|.*^Ml.,hi.
1 iS tfin l6u.rtM.Ai I I I 1 1 I
WIHC.
I.D.
i»l»i|»|i
II it
NO.
N.O. luwnt HJH»
(i) ;ioi MltoiM
n|ii|ii
•E
,1 1
3no
Will
& N •
Mill Ul.
LUK CH(CK
cm
IN. H«
K
FACTW
'ACIM
NUT
MIDI
THIIH
II II
NUt Ul
'l|ll|U|ll
tt
'I'*'"!"
MCOKO
MIA
NINS
'»|M|M
- 3,1 #
TV£-
-c*^
no
?ITR*>
nliiliiiuLliATilT.!
"^"13
3<|39l40|.
I3J43J44|4
^rnr
ii
JtL
tKAVtIU
CU** TIN!
SAMTUMCS. <>« •»*
TIME.Bl*
CM NETU UAOIB6
W.I. I**
VEUxrin
HEAD
Miricc PHCSSUM
DirrtUNTiAL
IAHI .in.HOi
STACK
TXMFCHATUU
ifi.'r
DKY CAS HCTCft
TCMPtRATURC
I HUT
63?
Ol*a I N1.D
l.»r
OUTLET
VACUUM*
CAMFLC BOI
TOtfEKATUM
INNNCUI
nMTCMTUM
•r
1/1.
s?
A
-2*
.322.
-fc*
SI
0*
(*$
3*7
^feL
07
3/7
3/7
^L
^f .
^.72-
7P-
r oio
75
75"
63
^1°
.03
3/7
57
LZi
ill
^7.
ILL
77
-------
EMISSION TESTING FIELD DATA
7]ll»]lO
•01 WT
.X 1 1 1
PlAdl 1 CHI
«l«l»M»li
IIM •>.
.N.N.I.
P«
11 "l"
DAII
'H'1!"!"!'*!'0!" '
OfCiAHM
1 1 l/^ 1 1*1*1 1 I/I/* , M 1
HI tUCINAte
tfft "°"11-
rm i.o
-1 1 1 1 1 1 • • • 11-1-1 i --I—I--1— i— — 1--|- -i'T- ;
| J | r- k j j rf
^VCIOCK TIH«
SAMTUNCN. (14 kr
TIME,*!* ^sCLoatl
0
/ o.
Jo.
Vo.
4T>.
IPO.
TO.
frf
fa.
Ho .
yxo.
£_
•„
*
i I •
y.2 3c?
/V3£>
I . .
IV|70|2I 1 3J|23|j
CM MCTU UAOU6
/A»^ • yj^/
y&^ . ^/ ?V
/7V.*5-.T3
/^f .ofc>
2t>5Tr /37
2// ic'f'V
Z/7 . /<>3
223. a/V
£3-9 . 3oo
•^35'. V<»2
1 1 A 1
AM
CM
Lii
HO.
1 1^1
i6!
•
ii
i II M 1% H I'I»[»
iA/i (r/
•M. STATIC
PRISS. PHSS
(IN. H«) (IN. H^O)
Jr^it j r^e
•,0. IsAlTlI MTU
II ||OI NOllOIM.
io]«i
~T~1
!Ui!j
LLJ
4)
4>j«
•V |ll]ll
SAMPLING IOCA1ION SANPlf TIP! ptj
ilpt^i
1 fc>l/V|/,7T &
r?
ti
Hint
AH*
/*J5T<>I
?)|?Al27|26[;
VELOCITY
^.7^
^.73-
0.72-
t?.=^7«r
^.7^
0.72.
OJ3-
0*1°
0^0
o 72-
0,72-
^
•7
1
30|3ll3?J33j34(33
rum
1 | g |O | O|
MTU £A1.
» AC TO* V
*'H«*N«'
,3"
Okf^
0.<) ii ii
7,],,[,,
I4T4I371 i i^i^r^n i5pi?i iS|£>| >l|li|ll|»
3i|3Vl40|4
STACK
nNTCMATUU
3//
3/7
3^5"
3^
J/7
3/7
3
[£7
r
3/y
3/7
»>•
y
3/?
.1 • i
42J43|44 4i|46J4
D*y CAS HCTCR
TtHPtMATURE
kNLCT
IT, |.«f
3"P
5"^-
-$"$•
^/
«V/
6»S"
(*(*
6>&
4.71
W
£>"
7 o
7 5
#£>
& 5'
ii •
PHOT T
lulf
c»
n^,_
o&M
MW P
•0.
'«|i\ ii
IJ.. 1
001 tff
NUT Ml »f'
^|n Ninlnjii
5jj5 3 I 54
CAMTLC BOI
TOtfCRATUM
^ ' A7
J^V
j^Z
3i«-
3^7
3^^-
j3cp
3-*3
JU*i
i
4&
-------
EMISSION TESTING FIELD DATA
i cm
|4|>|l|ll»|t|ll|ll]llllllMll>|ltllllllil<|jo|»ll>l|>4l4JntH|ll|HlM|lo|lt|»|ll|l4|li|lilll|l«|»j4o|4l
tOCAIIOM
iflQ'&rrr i i i i i i i
SAMPLC im
n|4i|4i|n|>i>|n]iiln|i«|n|n|ti|ii|njii
ii i
IIM NO.
|'I'N»]
OfCMIM
[>|i[i4|ii|n|ii|u|n|u|ii[n|t»pe|»i|ii[ii[i4|n[u|ii
i i
I i.l I I M 1
1IHP
en
MISS.
(IN. N4)
»M"h
STMIC
WSS
(IN H20)
[l4]ll[ll[l1
nun
J_
J II I I I I
SUCK INSIOC
OIM1N. (IMCMSI
"l"l" *M*M"|M>
I I I I I i I
MUM LUCIM AM UK
i[»TiT«1«I«T'1«N"I"M'»H"l"M"l"
•01 HI.
1.0.
NO.
ukslUkl
1 I I i I ^AHTf I I
4ii I^j6>
•Mr
I I 1 /l/A
«M>. kAm
If) !aoi N
WIIK '
HO I KOI M
^"MniiM"
1 1
Will
AH*
Mill CM..
fAClM »
ifciJa:
IfAK CHICK
CFN
IN. H«
K
FACTO*
c
MCIO*
;|iit4Jtt
MUM
NUI UI
nioi
lUli
IHCM
HO.
1LJL
fAGC
Ml
NUI UI
4f
"I'*!"'"
Ml*
HIM
'A
27g
52153 I 34*
rUlvTio
22|23|2
3tl39l40l<
42[43U4l43l4«l47
roiirr
CUJCK TIH1
(14 ht
OUOC«|
nnca UAAIHC
I **'
vcuxirv
omricc rucssuM
STACK
DRY CAS NETCB
TCMPLDATUHC
DCS I RED ACTUAtV
IMUT
IT l.'r
in
TSOTLlT^
IT. i.«r
PUMf
VACUUM,
CAMPLC BOS
TUUtiVATUU
IMriNCU
TOtrCMTUM
-10
^Z.
rW,
/a.'
^5/
sre
^5
f
.72,
NJ
3/7
Jzsr
&L
.&?
72-
3/7
73
TV
3*7
.89
-jrr
7$-
r
J—«—t.
A-4-L
J—*.
J—L
-------
EMISSION TESTING FIELD DATA
HANI 1 CITt
TT-T;
I 1111 !• I > I • I > I 11 • |l»i"ln|u['4Jn|l»]lljlljnJlol>l[M[j|[l4]i
I I
"H"l"l"
Mill
MIC
m
SAWHNt IOUIION
;|.lH.tHH'MH"|"l"h'H"l"M"l"H"H"H"
I I ^K/|.
J_L
VWfll ll«
•H..|..|..N,.|..I..I..I»B
i i i I I i i.i L.
•M NO.
EFFFP
OMIAIO*
|t|«|'i|ii|n|ii[«4|itju|ii|ii|npt|n|n|n|»|»|n[ii
1 1
1 I I I I I I I I I
MNf
cn
33»
MISS.
(IN. M4)
SIM 1C
PiCSS
(IN. M
»N"I"I»
j:
FILUI MM*[«(l)
||4)|4)|4<|«S |4l|4t|4<|4t|M|tl|t>jtl[M|»[>||'
XJ-
1 I
SIAC* INSIM
DIMM. (INCMCS)
i I
FtOM lUttN
AMD 1»fl
'|l|l|4|t|l|l|t|t|ll|ll[u|ll|l4|l>iu|l|||||tt
• i in \F\T\
-l-i.
•omi.
w~r\
NO.
nljil:
,1111
HjO. |SA«*>U U re* I MH*
(I) |tOI NO I Ml N. AM*
•EE
ffi
II141
Si
Will CA1.
'ACID* »
IN. H9
LEAK CHCCK
CFN
K
FACTO*
li til
I \ I
4;|ij|t4Jit
nuti
NUI MI
fllOl
IMi
t»
n]n[n
TNIIM
NUI Ml
^MT
>l'»l"
_1_L
•[COAO
MIA
415*
it,'
H170|yi 1 ??|33|74
3Tr3»UOh
43f43H4|45fi
4 7
?ai?6hy
roiirr
TINS
•AMTUMCN. 114 kr
CM MCTU >IM)1»C
VKLOClTff
OBiriCC PftCSSUM
oirrcuNTiAL,
(AMI.in.HjOl
STACK
TEMTCMTUU
D*y CAS METCK
TrMPtRATUHE
•' SO
60 2. • 9 "7 9
DCSIRlD
IT. i.»r
In
. runr
VACUUM).
CANTLC BO<
TCMTCIUTUtt
OUTLCT
INMNCU
TCNTCMIUM
•r
.0
12.140
.7Z
J/6
.72.
T/7
-LO.
7 .
.72
311
A.
,£
&-
77
.a
jo ta
72L
J/7
v/?..
5"
22*.
S~7
T/7
ZL
72
J56
s-
7 .5-
/*»•<
35
72.
2?
60
.'3*0
e
^3"
32-?
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant _
Sample location
Run number -fiM^P)
Particulate sample type
Particulate filter number
Particulate filter sample I.D.
Probe rinse
Sample date
Recovery date
M5
Recovered by
M5-320
V3 V^W^
Date
M5W
Silica gel
g
g
spent
~
B-34
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number
Particulate sample type _
Particulate filter number
M5W
Particulate filter sample I.D.
Probe rinse
I.D.
MOISTURE
Purge train 20 min (check when completed)
Location of filter in back half
1st
impinger
Final wt
Initial wt
Net wt
\s
^T
2nd
impinger
3rd
impinger
4th
impinger
Total moisture
g
g
g
g
g
Silica gel
g
g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
L LIQUID LEVEL MARKED
j^LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
>/
LABORATORY CUSTODY
Received by
Remarks A
Date /t>
B-35
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant Sample date H/rfflr
Samole location $dL -&} — Recovery date 2/ff
Run number yc. /H^fi Recovered by )@/fa
Particulate sample type M5 u/MS-320 /M5-450
Particulate filter number fe3/ OL>b ^
/
Particulate filter sample I.D. */$& $
Probe rinse /LrZZ/yJL I.D. W$T A , iX
Purge train 20 min (check when completed) */
Location of filter in back half ^Q(iZ#HW~ jLi^Ad ^Cr'\5^ •
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Final wt V/fl-'L § ^2^.6 g (*%£? g W&5^g
Initial wt ffijfy g M,C g 5?/./ g blQ.f g
~/0/f3
/
M5W
Silica gel
Tf7,f g
N»twt filJs q -^i1/ a ^/ g ^.« g l/i3_g
Total moisture /S^.^" g ^f
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. */}?# A ^x
IPA IMP. CONTAINER I.D. V/H^J t LIQUID LEVEL MARKED _
H.O- IMP. CONTAINER I.D. «/7^ A J/LIQUID LEVEL MARKED
BLANK CONTAINER(S) I.D. LIQUID LEVEL MARKED
IPA (?<'
^///-5
B-36
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant _ r^. r Sample date /yr
Sample location /^/4»< "^P- Recovery date 2/
Run number ^/) /1/bR^ Recovered by J^^/^S
i
Particulate sample type M5 L/MS-aZO f M5-450 M5W
Particulate filter number %f~3SO&t
Particulate filter sample I.D. */3 bl Jj
Probe rinse M(~zfa*JL I-D. ^/3 &/ ,A I/'
Purge train 20 min (check when completed) v
Location of filter in back half J$asfo>&*j j^tt^**- t^^r^—i
,y~
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Final wt fTl'),?' g v2&tO g Sf?,*/ g £$/£// g
initial wt ^wfl g vC^.1/ g &2*6 g £X4f g
Netwt /^f g ~# 9
Total moisture '5/iyr g 7^ % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. ^?&/ A ^
IPA IMP. CONTAINER I.D. VJk3-/2 \XlIQUID LEVEL MARKED
H,0, IMP. CONTAINER I.D. */3&3 A ^LIQUID LEVEL MARKED
BLANK CONTAINER(S) I.D. LIQUID LEVEL MARKED
IPA 4<303 A -' t/
X
H90, Wt>± ft ^ ^
H20 */$oy A is ^
Acetone ^Al ft j/ \S
Samples stored and locked
Remarks,^ !^>£'h>t. r/nst^ C/((.r>r_ ^ 4-3-!5t>S\ <-'
i
, *, LABORATORY CUSTODY
Received by -^^^-^^^ \^*'^L- £^^ Date /^tr^-<#— - /<£3
Remarks /L£-h^ ^ ^£ k f
B-37
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
OATE_
SAMPLING TIME (24 hr CLOC
SAMPLING LOCATION
SAMPLE TYPE (BAG, INTEGRATED
ANALYTICAL METHOD
AMBIENT TEMPERA
OPERATOR
ORSAT LEAK CHECKED
TFSTNO
^
COMMENTS:
^^v.^^ RUN
GAS ^Svv^
C02
02 (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
/*«.
l.<*
NET
lib
2,3
2
ACTUAL
READING
n.t,
w
NET
xu
x?>
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
m
A. 3,
MULTIPLIER
44/100
32/100
ffl/100
a/ioo
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib Ib-mole
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
z>.
_TEST HO
COMMENTS:
SAMPLING TIME (24 ht CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG, INTEG
ANALYTICAL METHOD
AMBIENT TEMPER/MURE
OPERATOR
ORSAT LEAK CHECKED
""^v^^ RUN
GAS ^\
C02
02
-------
EMISSION TESTING FIELD DATA
KAMI 1 till
t|)>|»l|ll|)l|lo|ll|lt|l) 14|ls|liJll|ll|l1J4l|4l
DAK
SAMPLING lOCAIIOM
'H"l*h-l»h*
• l[n|>)|
11*41
I
I I I I
SMVLI TIPf
i|lo|ll|ll{ll[l4|ti|t|[ll[ll|n[|
I I I I I
IIW •>.
1
HI
• j«• •
WIUIM
'|l|«|ll||ll|ll|llpl|ll|»|ll|M|n|u|>)|ll|M|lO
MM I I I M I I I
1IMP
cn
(IN. H«)
Il|lljll|l4
SIA1IC
(IN. MO)
»|ll|ll{ll[l1
-L
nun i
l|4l[4l|4«|4t|4l|4t|4l|4»|M]>l|M|'
i i i3t5"i3i/|0|««7. i i i i i i
ifACl IKS 101
oinm.
IRi
' ' I i ' ^ ' i
MOH IUKTM kl* T»«
|i|i|i|i|ti|nhi|ii[n[it|u|iljii|n
1 1 I 1 1 1
muni.
M.O.
(t) !
(t) M>I no
miu
MI M.
M|nl»tllfl4|lt
NUII
AH*
,.|..|..|MM4.|»i
Will CAl.
fACIOi i
41 M|<* Hllll
l«» l"l«
ItAK CHCCK
CfN
IN. H9
K
FACTOR
MCTM
H[il|l4JI
Ml
A i i 13»2-A.
uiiW *K>/
fllOI
IUM
lljllju
mm
n]i4Jr
rue
II II Itl4
Hi
NUT U1
I"i i
ii|u|n
•tr.
AfCOW)
DAIA
NINS
H|nfH
-37?
"tztT
5?l53l 34*
I«il0|3l 1 73|73|7
3*139UO]'
nAVEMB
•OIHT
CM HCTCa WUDUC
IV I. lt«
vcuxm
otiricc russuu
DirrtUNTlAL
IAH|.ln.H2OI
STACK
TBMrCMATUU
BUY CAS MCTCft
TtNPCKATUH£
INLET
IT. i.»r
in
VACUUM,
OUTLKT^
a. i.«r
out
CAItfLC MU
MA
f
TCNPCM
•r
7/3.
J^.
^ZL
o.
Jo.
8.2
3-3
¥<>.
. /
62-
323
8:4?
735".
6*70
J02-
305
7.3
J30
7V/ .
75"
3/7
. 9^9
77
//S"
78
337
. f ?/
307
79
to
JT2L
J-»-
-------
EMISSION TESTING FIELD DATA
HIM t cm
'l'hH'l'l'l'l'l"l"l"l"l"hl"l"H"H"l"|.
|l>[u|>ljn[>l|lO|ll|ll|ll
MIC
SAMPlING IOC* II OK
l[4l|44|4>|4i]4l|4l|4t|M[>l|n|M[vi|ti}>l|
.a
,.,,,,,
TW
|II|M|IQ|..|H|H|'«|'I|.I|II|,I|>.|..
•UN M.
' ' ' ' I ' ' ' ' t
OMIAIM
i|ti|u|n|>«|u|i4ti»|ii|npi|»i|»|n|t4|it|it|n
I I I i i i I M M
UUP
Cf)
3BO
rwss.
MM. •*»)
n|n|ii|i
SIM 1C
PUSS
(I* H20»
»|n|ii[n[ii
NUMtl(S)
,|..|»|..H.>|..|..|..H^I>.|»l»hl»|>.h
i 1-i.fiol i JJT3./.
if«« INSIM
DIMM. (IKHfS)
*T»*|i'l*ih
.lilt
MOM ICNCTM AM lift
A
ljtl|ll|n[il|u|i»|n|it|llpt
,.,,,,,
Mini.
Mi"i"i"i
NO.
'»N»»|n|«
N,0.
II) !wVi6
m
V*
i)[n|n
NfTI* I MfTil
MI »o.| a N i
ii|)i|u|n|«|ii|
J * yl
Will CA1.
FACTOR V
4)lw|«t U||4I
LEAK CMCCK
cm
IN. H«
ll|»|M|t4|i'
K
r/kCTOR
lM""M|l
NUT UT
U}ll|ll{>1
mot
1UM
TMM
fME
NUT Ml
J2t!
KUMO
Ml*
HIM
>l|l»|n
xr-
TIM*
•AMTUMCS. (24 hr
TUtC,Bla
«M nrru MULDIIK
I . I*'
VEuxrirv
omricc rucssuM
DirrCRCMTlAL
|AHI.In.N}OI
51340 ,
3«|3»UO(4
449150 5
53 }4
57
STACK
TCNTCMTUM
OKV CAS HETC*
TCMPCRATURC
INLET
OUTLET
IT |.
. rmr
VACUUM.
CAMPUE BOI
mtfCRATUU
IMMNGU
TOtfCRATWM
•r
0.80
303
0.9°
33J
0.&*
337
S"3
3/f
7**
12
fo'Z,
^
90.
*>.*o
307
"72
-------
EMISSION TESTING FIELD DATA
cm
>}i4|n|uJitJnjit{>i|>i[M|ii|i4|i>|n|»ii»[n|i|»|ti
I I I I I I 1 I 1 I I
1INP
t't\
"Hi
jfeifl
MISS.
(U. H9»
SIM 1C
ratss
(I* M20)
>"
-Oi
Mild MMUR(S)
t'M
I
1 I I \ I
SIAtI IHSIM
DIMM. IIMCMS)
_L
|»|H H|4>[4»|»|||[|
MOM IUCTH MO IWf
«ii|i|«l«|i|i|«l«N»hl»M»»'
•PiTV
ASS,
NOIIlt.
1.0.
tte
1 1
MO. KAWtl
It) !l01 Ml
MCHK *
iOIW
i
nJMJn
Mill
AM*
Mill OU..
»«£!« »
IUK CHICK
IN. H91 COt
4J4.JV
//I
K
FACTO*
c
MCIOI
HUI ur
ritoi
IUU
n|iijn
TXIIM
»»|l«]H
'
NUI Ml
."M''
tr
ICCOMI
DMA
in
llplfll
itiTi.^
37J33 I 34*
I»J70|2I
3t|39l40[4
. cum »ina
TIMK,*Bl*
CM nctsa KUOUC
IWI. It1
VEUXITV
omricc
DirrtUNTIAL
IAHI.ln.HjO)
STACK
tOWCHATUM
t>KV CAS METEK
TtMPtHATURi:
INLCT
T_ |.
"in
nwr
VACUUM.
OUTLCT
IT. ».«f
out
SAMPLE MM
TOtfCaATUM
•4T
1IO1MGU
x
•r
1 O m
.84S"
0.7
30 I
Oo .
S '
.000
0 .
327
.96
17
3 31 7 ."73
71
So
So
.*?/
•314
j-4-t.
-------
EMISSION TESTING FIELD DATA
nun t cm
T^
«|it|»t|i>jn[n{»o|ii|ii]ii
Mil
»N'*J"H
VUtPlINO IOCAIION
l|M
J"I"I"H"
I I i l I I I
SAHPll ll«
n[ii[n]n|)i|ii[/i|iij>4{n[n|i)|ii|y
I I I I I M
TIFFHi
OMMIM
i'l*l'»l"l'»l"H'*j'*l"N'*N»ll"l"i"'N'»l*'
. i ,
i i i i i
1IHP
(•ri
gm
M*. SIMIC
MISS. "ISS
(IN. M,) (1* l*70)
ll|»l|ll[!4 I%[»t[ll|)l|l1
fllUI MMMI(S)
I I I I I
ilttl IMS 1 DC
DIMN.
I I i
MOM UKIN4
•M»M«M'M«I"M
UfC
i
111
•o/ni.
NO.
n|it|i>|ii[n
MM
H,0. |SA»uUlli I
(i) ;ioi M Iwno.
•0
ZxA
3EE
"i"i"
mm CAI.
U£L
ICAK CHECK
cm
IH. Hf
K
r«Twi
C
FACIM
A_u
MOM
NUI MI
moT
lull
c»
TMM
itliili; I)|MJH
1 ' j I ' ' '
PACE
NUT Sfl
Mr.
^RH
i I I
I(COM)
MIA
glij
"R
S.
^
2ft.*
-H-8
iE
3<|3PUQ|.
I2|43i44|<
J3ta<
JI
TJkAVlUC
VOIMT
CLOCK
|I4
kr
CM MEna nt>ai»6
IV.I. It1
VELOCITY
omricc russuM
DirrERCNTlAL
fAHt.in.M20)
STACK
nKTCMATUU
DRV CAS HCTCB
TCNPCRATUIIC
"rait"
.^97
DESIRED
In
. rUNP
VACUUM.
OUTLET
IT. l.'f
out
CA*VLC Mil
TCMftKATUU
•»
IHTINCU
TKNTCMIUM
•r
.78
i
X£
£SL
*<
J&
•w
g?g >
O. 6
3JZZ-
J£*.
£^2.
o.7
°
2,
-?3?
I^L
s
2^
?c
Z5
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number Jfr
/Co. £
Sample date 1-//t/j< 3
Recovery date
Particulate sample type
Particulate filter number
M5
Recovered by P6"f~bS
M5-320
M5-450
M5W
Particulate filter sample I.D.
/ ryT
Probe rinse ^>/>hA<£_
I.D.
Purge train 20 min (check when completed)
Location of filter in back half l£*-, ,
«/
MOISTURE
1st
impinger
2nd
impinger
Final wt
Initial wt
Net wt
3rd
impinger
(,1572
4th
impinger
IILZ
Total moisture
/Ifci
RECOVERED SAMPLE
PROBE'RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
HZ02 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored.and locked
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Silica gel
fttJ g
spent
Received by
Remarks
LABORATORY CUSTODY
Date
B-44
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number
Sample date 2/// /fo
Recovery date
Recovered by
-320
Recovered
iX M5-:
Particulate sample type M5
Particulate filter number "t^T^ 0 f l~ ^^3 )QI&
Particulate filter? sample I.D. ^3L7 B ^
Probe rinse FtCC+fy^- I-D.
Purge train 20 min (check when complected,)
Location of filter in back half
M5-450
M5W
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Final wt
Initial wt
Net wt
/?/
Total moisture
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored^nd locked
Remarks
RECOVERED SAMPLE
L7 Aj^
v_ LIQUID LEVEL MARKED
j/ LIQUID LEVEL MARKED
x LIQUID LEVEL MARKED
Silica gel
% spent
/ s
s
Received by
Remarks /f
LABORATORY CUSTODY
Date
B-45
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location "fytf&f
Run number jC^t^.^a
Particulate sample type
Particulate filter number
Particulate filtefr sample
Probe rinse 5fc£JN^<-£.
Purge train 20 min (check
Location of filter in bac
1st
impinger
Final wt 5~7^/ g
Initial wt tffttr g
Net wt I/// g
PROBE RINSE CONTAINER I.D
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
Sample date V"//
- •j^Z. Recovery date 3//V
Recovered by ^8f*b$
M5 */ M5-320 M5-450
fcrfy )£ ' S
I.D. S#70 £ ^
I.D. t/^&A */
when completed) v
k half £2eTi /Vs/ Z-4-^
1
MOISTURE
2nd 3rd 4th
impinger impinger impinger
U20 g m.Z g ^^9 g
vfajii g yfK'r I g r ^ A / g
'^>,7 g ^/. 1 g /7,f g
Total moisture /^/ȣ g >^T"
RECOVERED SAMPLE
^/M ^"
¥37t -A "/LIQUID LEVEL MARKED
V?7.L^ ^ LIQUID LEVEL MARKED
-3
'ts
M5W
Silica gel
P/V^ g
/yrry g
^.^ g
% spent
^
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks r\ kUr
LIQUID LEVEL MARKED
IffiTTt
Received by __
Remarks //
LABORATORY CUSTODY
Date
B-46
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location ~5kiCa- [Jo. Z
Run number
Sample date
Particulate sample type _
Particulate filter number
Particulate filter_s
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
COMMENTS:
SAMPLING TIME (24 hr CLQCJ().
SAMPLING LOCATION pft,
SAMPLE TYPE (BAG,
ANALYTICAL METHOD
AMBIENT TEMPERATURE
OPERATOR
ORSAT LEAK
_TESTNO.
a oo
\^ RUN
GAS ^\
C02
02
-------
EMISSION TESTING FIELD DATA
HANI i cm
«|i*[u|»iii|n|n|ii|ii|n n|n|u|nfnln[upi
Mil
VWtfllNb I OCA 11 ON
«)|«[si|»|M[v4|^s|il|M|ilJ»[to|tl|ti|u|t
,2,
I I I I I I I I I
H"H"i"l»N»N'TOE
i i i i i I I i i L
IU* NO.
OMMIM
|u|'«|u|'*l"l"l"N"l"N"N'»|"
M I 11 I I I I I I
UKi>
II M U
MliS
(IN. 114)
ll|»|ll|!«
S1A1IC
P«ISS
(IN N?0)
"H"N»
riLUI NUM(HIS)
«»|«l|4>|4l|4j[4l(if»)>j|>«|ti
r«TO«
•j Mliilt»h«M>i
/
^
c
MCIO*
lllllMIII
NUI UI
»l[l>[lll»
MUI MI
•If.
ICOMO
MU
't|n^M
3J
I»J20|2»
VBAVKMS
TIME,***
TIM
« hr
CM NCTU RIAB1W
MJ. li*
vcuxrin
omricc rwxssuu
OirrCKCMTIAL
(AHl.tn.M^OI
DCsuD
42(4344 43|4«|4
32(33 (34
3
STACK
!»,».*»
DDV CAS HCTCB
TtMptRATuw:
TSLTtf"
l.*r
OUTLET
IT |.
. PUMP
VACUUM.
&•.••
CAMPLC BOI
INTIMCU
TKMrCKATWM
a7cp
^.
To
3^3
nto
^y/ .t-*' i
•771. 120
JLZ1
°+k
o*
2/3
bo
it
SO.
0*1
&-
70
AJ>
bo
0.1*7
ft
32J
3/J&
7f7^7
^7
3/7
to.
5'.'
''"
3/7
73
-------
EMISSION TESTING FIELD DATA
t cm
i|«|»[i|'|'l'l"l"l"l"l"l'M"l"l"l'*pi'l"l"l"l'l»l"l"l"l"l"l"l'i
Mil
111 M«<"
UWPlINC IOCA1ION
U[4l|4l]lt |'t[4l|4
.A
7i[sl|tl|m|n|t;|tl[t4|iT
wmi UN
II[» 'i|n|n|n[i4|n|n|n|i
•UN «.
1 »
EG
VtMIM
33E
11 11111 * 11
IINT
CO
MISS.
7^
S1AIIC
P8CSS
(IN H
"I"I"N»
Mlltl MMMI(S)
4l[4l|4>(4l[44l4t|4l|t||4l|4«|t4l|M|tl|tl|M{tt[tl[lliii{ri(.^.l|»|ll[l4|l>|t|[4l[tl|t7
1 I I I ^
1 1 I
ilAC«
OIMN. (IHCMI)
Mill
I I I t I I I M J_
»MOT
lull
c»
mm
M.
MOM lUtTN MB UK
ami
J-L
*omc.
7&7
NO.
'I1*!"!"!"
1 1 1 1
M, . ..-.
(I) !lOI MO
&.
l\/f
iHH
1 1
MIM
•KTfl
A N t
30
Mill CAl.
fACTOR I
»»!•*
IN. H9
LUK CHCCK
cm
il|t)[t)|vi|t
K
FACTOR
tt M <
c
MCIM
MOM
NUT MI
NUt Ul
3»EE
tlf.
Ml
ICOMO
Ml*
MIM
'ii'tin
ID
IV|70|2I j 33|73|>4
30|3lt32J33J
3«|3»|40l
T?TTTT
it
-12.
VMVCItM
roiirr
MM«JNC
TIN!
124 hr
CM NCTU MUDtM
vctocirv
omricc russuu
DirrCtUNTIAL
STACK
TKMTCIIATUU
DKV CAS HCTCB
TEMPERATURE
DCS I HI.D AITTUAjV
IT. ».*r
t a
OUTLET
VAlOJIM,
(AMPLE MU
TCMftRATUM
IMTIMCEC
CR
•f
^^
-i^,
63
£3.
&&
£3±
£L
•«*-
J2T
i
o
73-
".?/
3/6
2/Z
SIS'
3*t
^^
3/V
2£-
23-2.
221
**r.
3/4
33.
7-i
3/7
7?
&3L
-------
EMISSION TESTING FIELD DATA
flMI 1 CIM
'I'(> l« I«I«I' I'I«l"l"l"1'»l'«l'>l'*l"l"i'«N"l>'l"T'«T»liil»iiii|M|io]nT»Tn
1 1
i i it
Mil
u|ll|)l|ll|4l|
SAMPllNb IOCA1ION
[<||<«[«S [««[4l[«l[4|M[>;[^l|s<^>|>l|si|^l|%<|Kljtl[n[t|[n|li
SAMPII Ilfl
-J—I 1.1 I I M"!'*!"!"!"!'*!"
lUN
ONIAIM
I I I lCllfllfill£ri I . i ! | i , , i
AMI.
1IHT
Cf)
MliS.
(IN. H)|
4IMIC
MISS
MLItl WMttR(S)
..H«.M*|MMuH»M».N..M»*l».
a^—.*« '•' • * —•• —J • • *-.-*. » • * | f • f. _ f *_. 1 4 f -* JL JL t * -*- . I
Afl i i i G.^^./^g i . i//;^. . . ...
SIA£I INSIM
OIHCN. (|NCH(S)
mot
1UU
num
PACC
HUM lUCTN MB UN
l|«|n|nh»|ll|l4|l>|u|ll|ll|n
NOMI.
1.0.
'»|n|ii|nj»4
NO.
t|it|i>jn[n
.1 I I
«,o.
It)
Urw I
IlOl NOlMIM
H||||||
ll|l<|lS
li|tl|n
Nf,»
4 N •
]l|«l|4l|«
&L
HI HI 01.
«tlO» »
4lk4|4t |4«l«l
LUK CHECK
JN.
CFN
FACTOR
rACIM
NttM
NUI Ul
Ml
NUT Ml
IOM ti )
IIF.
"N'»T"
•(COM)
MIA
NlNi
JCS
HiniiaAMhsluTTiIi
tBAVEKM
POINT
. cum TIMB
CM NETCa KCADU6
|V.». fi>
vcuxrirr
omricc russuM
|AH|.ln.H20)
3t|39l40|4
>|45|46]
5?|33 I 34*
37
STACK
TUWCMATUU
Our CAS NCT»
TtNPtKATUHC
iMDCT
IT »."r
OUTLET
VACUUM,
CANPUC BOI
TOtfCIUTUU
•f
IHP1MCU
TCNTCMTUM
y3
//<*>
7
J2CJ.
U-
w
t-
///Jo
7±
s/SJO
77
12:00
£7
_2U
£2
7?7 .7X#
^21£
-------
EMISSION TESTING FIELD DATA
i cm
l|l|l|4|t|i|l|l|t|ll|ll|ll|ll|l4Jn[u|ll|lljnpo|ll[?l|l||l4|l>[ltjlljn|lt|lo|ll|l)|ll
1 1
1 I 1 I I I II
SAWUM. tOCAIION
4l[4)|44|4t |«l|4l|4IJ4||s«[>
l|*l|tOJ>l|»|n|l4JI>
1111
LL.
im
H..|"N"l'.|nN,>hRTO;
•IN •>.
TTEEI
OMM1M
|*|"|"|"|il|'4[i>ju[ii[n|u|;o|ii[n|ii[n|n|it|li
llftf
CM
n{njn
(IN
n|il|i)[:
sum
PUSS
(IN M
»l»l"l"l"
mui
I I I I
I I I I I 1/lPNf I
SI At I IftSICK
OIKtN. (IMCHCS)
HEEE
i M i i
MOM 1UKTN MD IIH
|i|»l«|.|.|'l»l«N.4»|u|..|.M..|..|..i..
, •
1 1
•omi.
1.0.
MO.
i 1 I 1
SAWtllWIII
!ioi Noitoi 10
A/*
H[MJH
'«!"['
Will
6 H •
q^JR
Will CAl.
r*cioi t
IN. H»
tCAK CHCCI
cm
*
FACTOR
c
MCtW
l[tl[l4|ll
XJ_
NUI U1
rnoT
IUM
THIM
PAtf
MUI Ml
"l"l"l"
•If.
'hi"!"
* 11
ItCOW)
OAIA
«'•»
I9|70|7I \ ?7|73|7
3»|39>40|.
47J43[44|4j|46J47
tKAVCIM
roinT
MMUJHCN. (]« hr
CM MCTU MABUG
vcuxrin
omricc russuM
KTACI
TKMrCMATUU
OMV CAS HCTEB
TrMPLRATUR£
DCS I RE
JLCTUJli.
1NUT
IT. ».»F
in
OUTLET
T_ |.
"out
. 7
.Sb
I//
//
.7?
. 2.2XT
m
.79
6%
-76
ro
6.0
.9.1-7
7/
7/
3/7
J-4-
1 t >
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample local
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
:ion pjj^fe/—
£/wri
sample type
filter number
filter sample
*.J5«.
20 min (check
Sample date 'Z/t/ff'^
/Cfct ^ Recovery date l/ft/f?-
Recoyered by J>&f]>5
M5 S M5-320 M5-450
35%IO&I "x
I.D. ' ¥3ft B ^
I.D. Ufa fi,
when completed) \s
M5W
filter in back half G05r\ Atu fL,4^'
1st
impinger
mf g
MOISTURE
2nd 3rd 4th
impinger impinger impinger Si
/•rf/ O / *J*. ^** f fs*~'s\ ^
^•v,/ g £7372 g vALj g /
vntl g vl^l g S^fr,^, g /
-^? g ?«./ g /9,9 g
Total moisture /2/ip 9 K^"
lica gel
*Pi /
T/.b g
/^,7 9
% spent
PROBE RINSE CONTAINER I.D.
I PA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Samples stored/and locked
Remarks p> f+t
RECOVERED SAMPLE
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Acetone *f%
Received by
Remarks
LABORATOR CUSTODY
Date
B-53
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number
j&V
fey—
Sample date g///
Recovery date
M5
Particulate sample type _
Particulate filter number
Particulate filter sample I.D.
A/7 \\i
Probe rinse
Purge train 20 min (check when completed)
Location of filter in back half
Recovered by
S M5-320
M5-450
M5W
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Final wt
Initial wt
Net wt
g
g
g
M.I
g
g
g
Iff*
Total moisture
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples storgd/and locked _
Remarks T^Htf-^^e
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
**A£U
Silica gel
g
g
g
% spent
Received by
Remarks
LABORATORY CUSTODY
Date
B-54
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Recovered by
M5-320
Plant ;
Sample location
Run number (?(_
Particulate sample type
Particulate filter number
Particulate filter saynple I.D.
Probe rinse
Purge train 20 min (check when completed
Location of filter in back half
MOISTURE
1st
impinger
Final wt
Initial wt
Net wt
2nd
impinger
IUO g
g
3rd
impinger
4th
impinger
Silica gel
Total moisture
7/7.7
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
LIQUID LEVEL MARKED
L^U10 LEVEL MARKED
LIQUID LEVEL MARKED
Samples storej
Remarks
ind locked
Received by
Remarks
LABO
RATORY
USTODY
B-55
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number
Sample date
Recovery date
Particulate sample type
Particulate filter number
M5
Recovered by
^^ M5-320
M5-450
M5W
Particulate filtyerjample I.D.
Probe rinse
I.D.
Purge train 20 min (check when completed)
Location of filter in back half JEf^ /wJ.
MOISTURE
1st
impinger
2nd
impinger
Final wt
Initial wt
Net wt
0570
Total moisture
3rd
impinger
ffl.2 g
. g
. g
//£.Z g
4th
impinger
Silica gel
g
/t,Z
iz:
% spent
PROBE RINSE CONTAINER I.D.
I PA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Acetone
RECOVERED SAMPLE
/u-
IQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Samples
Remarks
stored/and locked
Received by
Remarks
B-56
-------
DRY MOLECULAR WEIGHT DETERMINATION
CD
Ul
PLANT.
DATE_
JTEST NO.
COMMENTS:
SAMPLING TIME (24 hr CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG, INTEGRATEOCCONTWyoysD $/fa
ANALYTICAL METHOD
AMBIENT TEMPERATURE
OPERATOR
"70
ORSAT LEAK CHECKED
^\ RUN
^^^^
GAS ^^\^
C02
02
-------
EMISSION TESTING FIELD DATA
KAMI t cm
ihlilMU«IMMH'»l'M'H|»l|M|)l"l|H'tl'«P«l''l'M>'l'M»N>M>MHH>'!'']'''H»l|tJ''i1«l»J'°l"
OAII
SAMCIING iOCAIIOH
SANPLi TIK
7-*
Pr 37?
"l4'l"l'sl"l<'l>'H'lMl»l"|"|>«HttIt'h'l>1Mt'lt'l"It.|"l"l"H"l"hl"|n|"l"l"l'i|K
i i i i i j i i i |
IIM •>.
EG
OMUIC*
»l"N"H'
£|0| *)Pt i I i i i t | ! . | t
11HF
7m
MUM.
(IN. H,|
SIA1IC
MISS
» H,0)
^TOi
4.H4,|..|,4|.V|..1.,|..|.,H>.(
»iii i3^i3i
SIAC«
OIWN. (IMNCS)
i[»|tojn|n[n
I I A I I
fllOT
luu
C.
THIW
Mtf
tijii
MUM IUKTM AND UK
'|»|»|«|»|»|'|»|»|"|"|U|.I|U|I>CTTR;
1 I ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' I
1.0.
NO.
M,0. SAW>U !W »(I
(I) !«01 MOllOlM
WHI
A H 1
Mill Ui.
(KIM »
IN.
IUK CHCCK
CFH
K
FACTO*
C
r«ctw
MUI Ut
MI
MUI Ul
Iff.
»f
KCMO
MIA
II|II[M
M|II|II ii|i4|n 13
1 I 1 I I I I
I I I
1 1
t|4«|4t|«>
«I|M|«V h«l«»
I"!"!"
t*!"!"
I»|20l2l j 22(23(24
»<*>»« < |^
At
. cum T»M«
•AMMJMV 124 kr
TIME, Ml* XSCLOCI>
vcuxrirv
om r ice riussuM
OirrEUMTIAL
UHI.ln.HjOI
STACK
TXMTCIIATUU
DMT CAS NCTCB
NLCT
DCs p
. runr
VACUUM.
CAIVLC Mil
TCNtCaATUU
OUTLET
IT l«
out
INMMCU
TEMTCAATWM
fit .3 7-0
7
7V
37/
Jto.
J£Z_
7J_
6.0
3 Jo
sz
67
2$:
£L
£32.
2SL
33Z
24L
32-0
22.
3/5
(00
g3J
2*
77
2ZL
0*17
7JL
m.
334
J-4-1-
-------
EMISSION TESTING HELD DATA
1MI » CII»
|.|.|.l.M.|.l..|..|.,|.,|..|.t|..|l.|..|.,|>.|,.|»N..|4.l»i..N..T71^T
Mil
S*MI>LIM lOCAIIOK
.|..|4,H>.Ht.HH^.hH..|».|..|».|.t
11 I I I I 1 1
n|ll|u|i*|H|n|>l|ll|l4[lt|ll|ll|ll|n[||
I I 1 I I M
lUM Ml.
ranTTTF
AASS
OMMIM
u|ii|i4|itju|ii|ii)iipi|»i)n|n|i4Jit|it|;7
CO
MISS.
(IN. N«)
i>|»|ii|)
SU1IC
MISS
(IN. M0)
7t|ll[il|MJM
MlHI NUMH(S)
503
4>l»|u|4t |4| 4>i««f«tlMlilll
«I"H!
J_L
SIACK INSIOf
OIMN. (INCMfS)
'I"!"!"!"!*'
ruoi
tuu
c»
I'"
nl'4\n
tut
/lOj^/
MOOf ItKTN AM lt«
.|.|.|.|.|.|.|.|.|..U.|nNni..|.,|,
J_L
Mini.
NO.
1 1 1 1
H.O. SAWU
(») !MI M
/VP
II[M|IS
Wilt
101 M).
Mill
* M t
Mlli CM..
fACIM «
ICAK CHICK
cm
IN. IS
T»Fi
K
FACTOR
M il|tl|
c
MCIM
MOM
NUT SCI
NUI SIT
"I"!"!"
IK
•if.
'4|lt[ll]ll
A I I
•CCOftO
Ml*
^»/-/i»V -fvlff. no !<*,&
rtWio
tya||3A(4^|i6|n
t^43[44\4
imn
11
12.
•OIMT
•AMMJMC
TINI
(24 Kr
vcuxrirv
»• *»
omricc riassuM
OirrEKCNTlAL
(AHI.ln.HjOl
STACK
TEMTCIUTUU
11,'F
O»V CAS MCTCB
TCMPCMTURE
inter
o
runr
VACUUM.
SA*0>LC BOX
TCNfCKATUU
OUTLET
IT. !.*»
IHTINCUI
TCMTEMtUM
•4T
XL
330
•f-
ojz-
7.3
3/o
212L.
70
3/
£L
..
2L
327
±L
JLZi.
2L
3
J25-
AL
IZU
72-
^1
73
73
323
bo
•* • •
-------
EMISSION TESTING FIELD DATA
HAM 4 cm
0*11
lOCAltON
4J 41 44 4S |4I 41
i i •fri/u/i/T
I I I I
WHfU !l«
I I I I I 1 I I I
IM n.
OMMIOB
'||ltl"l"l"i"l"l'M'*l"l"l"lJ'l"l"l"l"l'^l'*l»'
i «
III 11 I I I I I I
AM
IIW
•A*. SUIIt
MISS. MISS
(IN. H»|l
"N»N*l>«l"|i«F
HlHI MMMR(S)
Il4]l4ll44|4t I4«l4ll4l|4«fu|<
X-L
I I III.
SIACI INSIH
DIMM. (INCMS)
ES
rnoi
IUU
Th(M
rut
//PI f .7
MOM lUKTN AM> 1»«
urrn
t|ll|ll|ll|ll|l4|lt|ll|u|ll|H
i 161
, , , ,
KOffU.
1.0.
Mi
NO.
i.l 1
H.O, SAWIC «H« Mttll
(i) |(01 M.ltOI W. » M t
M|ll|»
u|l4|lt[u|ll|ll
<\tl
Affrfi
WUI Ui.
fACIOt V
LUK CHICK
CfH
IM. H«
K
fACTOR
note
NUf UI
HUT Ml
'«lll[llln
tcr.
ll»l'«I"
1 1
MCMO
0*1*
HIM
'•T»»ii
'A
AC-
±
yl«i»no
33|23l34
30l3li32l33l34{3
3113914014
4?J43t44i45|46|47
S2I53I 54
Sllial S7
tOINT
WUOSM6
vcuxrin
OKiricc rnxssuu
DlfTEKCNTIAL
STAC*
BUY CAS MCTCK
DCS 1WLD HCTlukb
ner
IT. i.«r
in
. rimr
VACUUM.
OUTLET
IT. ».•»
CAMMX BOI
TOtfCMTUU
•f
Fttn
HtflMCE*
/O
3/4
.45-
-31?
4 1
'7
. 67
ImO
9 .
24
s
£>
Mi
.V
ez
76
~?/J
/I !jo
/C
99
"3^0
97
Jo
-7.0
f
IT
.99
7,0
"3/7
.1 I
i i
L-I - 1
-------
EMISSION TESTING FIELD DATA
FIA»I i cm
» » • > •
[itH"|HH'lMHH»l»l"l"l"H»'l»I»j
Mil
>«]»l>i|ii[»|ii[4i>I«
'-*•- V L f .'
II t
SAMPLING IOCAIION
|o|.<|.s|..|.,|M|<.|s.|>.|»|s.|M|»l>.|!,[>.hMt.|»|tl|t.l.>
Ml
IIM tO.
I 1 I I M I I)
ywrn im
/i
l"l"hl"l"l"l^f'
M M M I
tfCMIO*
i|n[n|i«|n[i>|i)
' ' ' ' ' « ' « ' ' ' I \h?\
1INT
CF)
MISS.
(IN. »g)
)4||1|),|J||J||)1
1
SIMIC
MISS
(1*. HO)
FIIUI MMMI(S)
..|..H«iH.yH.i|..|<«N>.|>,|v»iq»
SIACt INSIOf
DINfN. (IKHfS)
ffRvTJ
I I 1 1 I A I
MOM LIKIH AW UK
i i i£F
]nhl|u|n|»t|ii|il|njiV
I I I I
i«|it|»}n|t<
NO.
nln
1"l"l»
»M>. SAWII
(t) 'MI M
HE
/A
ll[n|ll
NCTU
•01 M
l>|ll[ll
Mill
AM*
»}<»|4l|«>
Mill CAl.
FAC10I I
oEE
ICAK CNCCK
cm
III. H9
®
>I|»|>I|M(>
K
FACIO*
l^li
c
FACIO*
MOM
NUI Iff
moi
IUM
33
THIM
NUI Ml
lolnl
Mr.
u|n[ii|i
•IUMO
Ml*
"!•*
w
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant ._.
Sample location
Run number
Sample date 2-X/
Recovery date
Particulate sample type
Particulate filter number
Particulate filter sample I.D.
Probe rinse
M5
Recovered by
M5-320
M5-450
I.D.
Purge train 20 min (check when completed)
Location of filter in back half
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Silica gel
Final wt
Initial wt
Net wt
g
g
g
S97.Z
Total moisture
Ml
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Acetone
Samples stored^and locked
Remarks
RECOVERED SAMPLE
A /
7 LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
A
J
J
v/
CUSTODY
Received by
Remarks /f / ^
Date
spent
B-62
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample date
Sample location ^.-(.TTL 1
Run number 7 (;? ^6"B
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse T/c£-T&iJ£
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt StSTZ- 9
Initial wt £D7«^ 9
Net wt /\,0 g
1
PROBE RINSE CONTAINER I.D.
I PA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Acetone
Samples stored and locked
Remarks T7fl/£r~ - *&€£+
1 t*3
r\J
Received by - — *&S-~}i~4 f^*^VT
MOISTURE
2nd 3rd 4th
impinger impinger impinger Silica gel
^£y*"7 f tffi'?' f U P fy 2f P~
//^ £/ / /r'P" / P7/ (^
fpiffif g v/5it g ^ A>>7'g f/f0,Q g
-27/7 fl 15, C g /?,"/ g ^ g
otal moisture /$#•? 9 70 % spent
RECOVERED SAMPLE
tiff A v LIJQU ID LEVEL MARKED (X
YJ'?'?/! MTl QUID LEVEL MARKED ^^
x LIQUID LEVEL MARKED
4w7>f « 'x i/
4/'.?7 *? /{ -^ t^
v?r^ /I -x ^
^/VHtA/ Ctft^" «^5>£uC~-__
y^r^-4 y •W^L*^^U*——
LABORAJORY CUSTODY
'?S
B-63
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample date
Sample location
Run number 1
Recovery date. 'V////yl3
Particulate sample type
Particulate filter number
Particulate filter sample I.D.
Probe rinse
M5
Recovered by
M5-320
M5-450
Purge train 20 min (check when completed)
Location of filter in back half
MOISTURE
2nd
impinger
3rd
impinger
4th
impinger
Silica gel
n.o
Total moisture
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Samples store
Remarks
Received by
Remarks Si
LABORATORY CUSTODY
Date
•/
B-64
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number "7 tSfH^ R
Sample date
Recovery date
Particulate sample type _
Particulate filter number
Particulate filter sample I.D.
Probe rinse
M5
Recovered by
M5-320
M5-450
M5W
I-D.
Purge train 20 min (check when completed)
Location of filter in back half
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Silica gel
Final wt
Initial wt
Net wt
9
9
9
Total moisture fZ**$
RECOVERED SAMPLE
S97f g
9
9
g
spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stoj^ejf, and locked
Remarks
/ LIQUID LEVEL MARKED
\/_ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
«/e*7r/i-
/\
Received by
Remarks
LABORATORY CUSTODY
Date
B-65
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
COMMENTS:
)h
_TEST NO 7 u
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG. INTEGl
ANALYTICAL METHOD
AMBIENT TEMPER;
OPERATOR
ORSAT LEAK CHECKEET /
/
'^v^^ RUN
GAS ^^\^
C02
02 (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N2(NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
I3.i
lt>,o ,
NET
/?/
LL
2
ACTUAL
READING
/?y
/Lt
NET
/jY
3' ^
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
/J//
2-1*
MULTIPLIER
44 100
32 '100
M/100
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md. Ib Ib mole
ta
i
er»
-------
EMISSION TESTING FIELD DATA
7Jil9llO
POINT
w
— ffi —
IIM •
*&>]£>
HANI i cm
0.
«l
\\A\fa
l?|l
>l
MM
ii
1 fift l#^
M( IUK1N AM Iffl
j£t/i/?i£5i i |
l4|k)|lAl I'll
X.CUKK TIN!
BAJtfUMCX. |I4 hr
0
/o.
24
-fc'tl
"7&L
nr
m^
• '
T r
IP.
*
.
j.
*
.
Ifa^o
&>'7 Ne&
/7SO
oriMioi
itiiiliilniii
i *i**i"i *i"
h'fl 1 1 1
I
I i i p
Ifl"K"
AM»
Cfl
l7
Mf/lf.
I.D.
MO.
1 \ 1
I»|70|JIIJ3|23[J
4
EM NETU
IV
UA0U6
rt>
S*^^ • 6"/
;?7dT . <3J^v
tjCfto • J'^S
^^o .y^/
-
.
_j_
^
»
1
/I
ii i
ijiij
IAI.
P«SS
(IN. IK
1,0. Ivu
i) |ioi
M
35|}6i)7f?a|]
VELOCITY
^fftft
(Ap 1 • ltt*ll 4
^^,5-
^.62.
O^f
0 *9>-~?{
14
')
»
•^
i*
/
(Mil
llfll
M
i/iV
SIAIIC
(IN. HO)
*io
3O|3I
u
MIW.
t~
at
4IJ4I
cV.3
SAMPLING 1 OCA II ON
"
4)|44J4S |4IJ4I
«I]<»[M
M
t/|M|Mf)t
iyiM'|T1 |2| |^:»^i5^"|
NCUI
« H •
J7|33l34J3)
MlHI
WT{« Ul.
fACIM 1
,3^3
oairicc rucssuM
OirrcUXMTlAL
UHl.tn.NjO)
OESlI
S
LCD
,^3
3«/^
3.03-
3*1°)
9
a
JUMiUlL
•?
,37
^J#
3 °2-
3 3^
1 NUWCI
•IS)
, ,
1 1 1
ICAK CHECK
Id. Itg
"I**!"*
CFM
<\°ft±
3i|3»Uo|4
STACK
TCNTEIUTUU
3/^
3/5^
2Z&
?/^
M*
|M|»Hl.
1.1 1 1 1 1
1 |
iijn
M
Mil
it
L_
SAMfll Ilfl
U|ll}ll|t1
tf
UACI INSIDf
OINCN. (IMCNIS)
II j i i i i i — i ' i i
"MV
K
FACTO*
^|^
43J43|44
(
|
c
FACIM
LiUiJtU!!
45|4«l4
BKV CAS MCTER
TCNPCRATUHC
'\n»
.•r
7^
•7b
7
31
.
OUTLE1
*?£>
/3~G
ii|n
,
ii i
'«]ii
i i
MIDI 1
IUU
C»
^
Ml
NUf
frV
i
Ml
njn u|n
MW
M.
•(
*
n[t»
ii
r
Ii
ii
i nlii
fAtt
^IC
1
ll! !
£>/~t'~l
aa^
57|53 1 54
SAItfLC MU
TCMTHATUU
"3/7
J33
320
3/S*
?/
y
7
3J^
«j«|»;
ICOMO
OAIA
HIM
i II[N
' /^<
*.1-
*
pr - zitf
OS -/2^
„-*
3 5l 56 1 57
IMFINCC*
•r
(s?C>
b?~-
$1
<5~
-------
EMISSION TESTING FIELD DATA
t cm
.|i|»|i|»i.M«M.«|..PFF
Mil
|M|M|ll|ll|ll|ll|l»|l>I»[llfnJi
tout ION
SMVlf Tiff
lilU
F*™
»
iCrfi-StTT I I I I I I i i I
turn NO.
VCMIOI
.|il.j..|..|..|..|..h>|..h.|..|..Nt-l»|.^l»NM
I I M M M
UUP
CM
;i|;i|ic
PMSS.
(I*.
"l"l"l"
SIM 1C
WiS
(IN
i£l
f Hill NUNMa(S)
ll|«l|4)[4l|44[4S |»4|4l|44|n[s«|>l[w|M[v
M I I M I
SIACI IkSIOC
OIMN. (INCMS)
il|lt|ll >4{lt|tl|>l|n}l'
_L_L
i M I
fllOI
1UU
c»
n|/4|ii|i4|n|;i|n[
ri MM.
THiW
rue
pi-
NOH LtMTN AND Tiff
ED
wmi.
1.0.
114
NO.
'I"!"!
iiliilliltim
M 1
MMFlf
!wi no
WUR
Ml M.
•nn»
Il|l4|l>
1 1
33»
Will
ft N •
11404141
Will Ul.
1 CM CNCCK
CFN
IN. Kg
K
FACTO*
» tl '
t
MCtM
"<
MUM
NUT UT
NUT SIT
J_L
WUMO
MIA
NIM
M
3«|3»UQJ.
l»"»i^'
"»>al54
_ai
CtOCB TIM
MNrLINCS. 114 kc
CM NRCa UAAIM6
vcuxrirv
HE
<«»,).
ORiricc russuw
DirrCRXNTIAL
UH|.ln.N}0)
STACK
TUVCMTUU
MY CAS MCTCK
TrHPCRATURE
DCSUID
I HUT
IT i.
til
OUTIXT
runr
VACUUM,
CAMTLC 1O1
TCMTHATUU
•f
IMMNCCI
tCNrCM
•r
/o.
If
322
^^
4,0
s:
32*
J£.
-------
EMISSION TESTING FIELD DATA
1 CUV
"AH
n[n[)»|ii|li[»J«o[n
SAMPLING IOCAIION
"l<1l"l"f'«l«'l"HihNt'l«>ln|»i[>ijii[n|>o|n[n[n|i
i i i i i M I
....,, ,
k il'»l»l"l'>hl'»i"|»|"i'»Hlillllnl" 14 "I11
» " i
" » ••
" "l-l-t »
'
i»H<'l<'H«MHHH««HH"hHH*M^"H*«N"]*'
ifACt INSIH
OINCII. (INCHfS)
M|n|u|tl|lljn
MIDI
1UU
THlNt
fAtt
-------
EMISSION TESTING FIELD DATA
PlANI 1 CITl
11111
Mil
»|is|n|)H)iln
1 *—t j •'—i
UMPIING IOCAIION
3E
1 1
,6jpPiS,,4-, i i i i i
>i|>i|»i|n|io|ii|ii|ii|i<|n|uji([n|n7ii
i i
iu* NO.
OKMIM
i i i i
t M I I I I
IIIV
CO
MISS.
(IN. Mfl)
MAI 1C
PICS}
(IN. H0)
f ILIII MMIfl(S)
• t™ i •• • "T"i t T ""i" i r*
» 1 1 I I I I I I I I t I I t I I
S1*C« INSIM
OINCM. (IMCNU)
J_L
i|i>[>i|n|ii]>>
1 M 1 1
rnoi
iJEE
TKtM
M.
PMC
n|n[»t[
MOM lutn AMD tm
•ED
>|ll|ll[ll|ll|l4|lt|u|ll|ll|lt
I I I I I
Mint.
H"I"I"J"
NO.
n|ii[njn[»
till
HjO. IsAWi
(I) !lOl N
NCIII
no I WIM
zs
Jl[i<[l%
373]
Will
AH*
ilvlvl*
t*ri
NIKI CAl
FAdM »
II M 40 41 4J 4)Lul4t |4I II
IUK CHtCK
CFH
IN. H«
/(ft
l|>l|^l[t4|tt
K
FACTW
»bW
c
MCIM
I)lll|l4|lt
NOM
NUT UI
NUT Ml
•If.
•[COM
Ml*
HIM
>i[il|ll
7lilvho
•TBAVEHA
1
, J? _„
•All
nli3lniuL|i6l i?lii
tl|«41 |l J4 I«pj|l0| I/IIU
X. CUJCJl TIHI
UNTUHCX. l>4 hr
0
/.
2o.
-Si>f
5^0 .
ire.
t fs ,5^O
•^^ .^2,7
316.9/.1T
• • - ii
VEuxrm
HCAO
. 65^
. o *^
- ^T
1 « 1 «
ounce PHXSSUM
DirrCKCNTIAL
(AHI.tn.NjOI
DCS I M£D
3.73
1 • 1,
ACTUAA
?.7 ?
-? HT-
^SE&
vl^ — --
,
"3> 4v2L i.
•TACK
tlMPMATUM
5-/f
7fZ_4t>
^
il i 1
our CAS
TfMPtR
I NUT
IT. i.»r
III
~7£>
~)O
-jt
•
ATUMC
OUTUT
"out
f^^
~~}O
6-9
. PUMP
VACUUM,
1..1*
/^ -D
Ih g
(7.£>
I .
! f •
__—._.
CAMPLC BOX
TtMtTCUTUW
•r
3^X "
?J?
25*T
7^
"?4
— l — i
1
INTIMCUI
TCMTCKATUM
•r
£
&4
i .
4
«t
_ a i j\ ii J^
/ -'V /
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number j f
Particulate samp
Particulate filt
Particulate filt
Probe rinse
Purge train 20 n
Location of fill
Final wt
Initial wt
Net wt
Sample date T-fn f.
"J&i&f-wO "2- Recovery date 1//Z/.
?3>
fa
MC*"I^ Recovered by P&f&S
>le type M5 ^g
ft& g £7Z7 g ^GJ^-g ^,^-g
tf^fO g ^Z^Tg Z4/^- g /V^O g
Total moisture j/i^ g .^^
M5U
Silica gel
M6 g
-2£Z g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
I PA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Acetone
Samples sto/ed and locked
Remarks
A V LIQUID LEVEL MARKED
KlQUID LEVEL MARKED
/ LIQUID LEVEL MARKED
Received by
Remarks
Y CUSTODY
Date
B-71
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample local
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
:ion DtM&s-
f&f^Ijr?1
sample type
filter number
filter/ sample
HM&a
20 min (check
filter in back
1st
impinger
S&fff 9
ff/tti 9
Yd/ 7 9
//« '7e^
/vQi X.
Sample date Z/
Recovery date t
v//^?
Jl-L/fy.
/CO Recovered by }£} yfoS
M5 ^
ZczniLi
I.D. ^V0f
I.D
when completed)
half rH~
U C Q O O TlcA ^^ M U C
PI 3 ™" o t u ~ft v w n3 *
/
5 ^
yt/frfA ^
. /L>f. z^-"?-
1
MOISTURE
2nd 3rd 4th
impinger impinger impinger
&&0 g tiff 9 1,342.
tfl.3-9
Total moisture
^Tj/J -^ _ / -7^ ^
J 7*vX' 9 &At?i J
1ft 9 /^>
7fcTfl
-450 M5W
Silica gel
g /^£t? g
g /^7^ g
g %v$ 9
JT^ % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Samples stopE
Remarks
and locked
Received by
Remarks
LAORATORY CUSTODY
Date
B-72
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number
Jth.Z
_ Sample date Z/f/lfcr
Recovery dat
Particulate sample type _
Particulate filter number
M5
Recovered by
-X M5-320
M5-450
M5W
Particulate filter/sampje I.D.
Probe rinse
I.D.
Purge train 20 min (check when completed,)
Location of filter in back half
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Silica gel
Final wt
Initial wt
Net wt
9
*
Total moisture
g
g
spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stor&d/and locked
CJtN
Remarks /W&—''
LIQUID LEVEL MARKED
LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks
LABORATORY CUSTODY
Date
"f-
B-73
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Sample date
sample location |&Skr X^« 1^- Recovery date g/'z;
Run number £ f) A/C^PrW Recovered by W/bS
Particulate samel e type M5 */ M5-320"^/Ot; M5-450
Particulate filter number «^fl£//^T ^
Partirulate filtef- sample I.D. yy /$~/^ ^
Probe rinse /*l-C$lAc{^ !•&• OpJI^Qy
Purgp train 20 min (check when completed) ^
Location of filter in back half $k • '**^ >Cj£-.>-
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Final wt SDtf/ g LMZ 9 T7/.Z g _^S2. 9
Initial wt ^ / g _U£fI g SY^f 9 &/?J~ g
Net wt £7.0 9 -^i^g ^./ g /C7J^ g
Total moisture lf& g A>
RECOVERED SAMPLE
PRORE RINSE CONTAINER I.D. '^l^jk ^
TPA IMP. CONTAINER I.D. vfi^ *' LIQUID LEVEL MARKED -
H20_ IMP CONTAINER I.D. Vy /7A ^ LIQUID LEVEL MARKED
BLANK CONTAINER(S) I.D. LIQUID LEVEL MARKED
IPA ^77/T. ,
ii rv &''% "} r~ff ^^
U Q Y 2V7/^1'^
Acetone 7^7* "" *'
Sample? stored and locked
Remarks f/ ^fvr' ~~?£^i*- C-^«^r *-*£t<-*'x ^O^V^Wt^^ Date /*)Z7Zc
Remarks x£/^- ^ -/^^/ . — —
/«.
M5W
Silica gel
/^C^g
/W:^ g
Z?,/ g
+*
% spent
X
^
^
*/^
tX' V
•s
;^//0
B-74
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE_
COMMENTS:
_TEST N0_
SAMPLING TIME (24 hr CLO£K)
SAMPLING LOCATION
SAMPLE TYPE (BAG, INTEGRATE
ANALYTICAL METHOD _
AMBIENT TEMPERATURE
OPERATOR /)
ONTINUOUS)
£
70
ORSAT LEAK CHECKE)
-t^
^^-^^^ RUN
GAS ^\^
C02
D£ (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
13.3
/t,.e
NET
13.$
11
2
ACTUAL
READING
/?J
/M
NET
/? ^
1,1
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
fiA
t.7
MULTIPLIER
44 '100
32 '100
^/lOO
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
MJ, Ib Ib-mole
tt)
--J
Ul
-------
EMISSION TESTING FIELD DATA
flAMI 4 Cll«
MIC
|i>|ujii|ii|nJ4oJ4i
"N»H
T3Z
SAMPLING IOCAIION
>[4l[44|4t[4>]l|tl|M|>(l|n|ll|ll|44|«t
i^t- i^j/ft^rTi i i i i i i i i i
SAM>1( TIK
l|U|44|>l|)l)|M)ll|l|[M|M|)l|ll|;i|)t|l<
3 i i i i i i i i
tat *>.
OMIAIM
11
J I.I 1 I I-I
I i 1 I 1
I1H*1
>i[n|i«
(IN. »*))
SIAIIC
PI1SV
(IN. H20)
HLIli MfUM(S)
4»|«IJ4)[4l|«4|4* |«4|4l|44[4l|s«|>l[>;|si['
il«I INSIM
OIMH.
[ll]H >4|»|>||H|I|||
I 1 1 1 1
MHMf lUtTN MB
Wlili.
U|»IJI|J|1JM
»*l"|Mpt
11
H,0.
(t) !
(t) (01 NO
Will
J!l!^!i
»M I
Mill
AMI
11|4||4||«»
MtCl Ok
FAtfoi «
Ik. Htj
4l|M|4t |4»|4I
l(AK CHCCK
CFN
t
FACTOR
FACIM
MOM
NUI SIT
1UK
;o[n|n
rijujn
!uii
m
fAtf
n\>i\
NUT Ml
Mf.
*f
/°'
II COM
MIA
3T-
UlUH3iMh>ll6l >7|»t
32J7a|34
'^3|44J4
490 5
»oiirv
cum TIKI
114 t»C
CM NKTU WA01JI6
vcuxrin
0*1 rice rnxssuu
DirrCUMTIAL
STACK
tOVCHATUU
DUV CAS METKB
, TCMPCBATUIU:
"fiiIiT~
DCS IKED ACTUAL
In
VACUUM.
CANPLC BOX
TOtftlATUUI
OUTLET
out
TCMKM
•9
3/3
tfr\tt
/«g°
0
J£A
£L
Jo
•w
•S3-
^-^y
72-
112
60.
^L
70.
j^iSt.
^2
53
^y
#yr
JteL.
303
/
0Z-
"77
4-L
t I i I
.l 1
' '
i i
-------
f
EMISSION TESTING HELU DATA
KM! t till
•I«M«M«
'«|»l't|"i"l"l'°|i'|»|ii»|Hitji'|i»|iiJ»TTi'
OAK
I
SAWIING I OCA II ON
M«'H"MHHH"|"l"hHH"h>H"MHtllt'NH"
mm w.
u&
I I I I I »
SANPII HPf
u|ti|.i|M|i.|..|n|i1|i.|,t|,.|,,|,.|n|.;
' ' 'I
OMMIM
ifll iflft */F*i I I I I t I I I . i I I ,4pC
III*
I'M
M0j
MISS.
(IN. •*))
H»n
MISS
(IN M?
flllll MMItl(S)
EE
i i i
SIACI mSIH
OIMN. (IICMfS)
i_L
11*11
PHOT
IUU
Cp
Mtf
I lljllfK
/ro.^i
MOM LIKIM AW
11111111»|i»|iihi|n|'«|'t|ii|ii|ii|n
i i i i i i i i
MI/I I.
1.0.
'I"!'.'!'.1!"
NO.
i[it|ii|»i[>i
»»
i i i
",0. IsAWllJ
(t| [MI not
..mm
NOIIOIM.
•njF
Il|l4[u
J_L
Hlttl
6 M |
3-E
MUI CAl.
M** h*l4'
IUK CHICK
cm
IN. H«
E
M|»|»|M|^
fACTM
MhriuhtUolii
MCIM
r?77
MOM
NUI UI
MUI Ml
•w.
*p
,11 n
ICOWO
MIA
IM
jo.
3H
nni]
CLOU TIHt
124 hr
CM NCfE* UAAUC
l»l. It*
30|3lt3?|33l34J3ii3^3
VEU1C1TV
omricc PMCSSUM
OirrCKCNTlAL
|«H|.ln.N2oi
|3»l40l
m;
52l33l J4
STACK
TKHPCNATUkB
MV CAS NCTta
TCHPCKATURC
MLCT
T l.'r
"in
OUTLET
. PUMP
VACUUM.
i«.l»«
SAMPLE BOI
TUtPtlATVBC
IHP1HCUI
TCMTCMATUM
•r
out
JI1
3 $
'loo
333
^^
^i
It*
6,0
130
o 70
3ZJ
70
33
-------
EMISSION TESTING FIELD DATA
n«Ni i cm
l|>{lt|ll|lllll|l4|lt|lt|ll|llil>p8|»|»|«[M|M|lt|»ill|M|lo|>l|»jll|l4|l4|llJll|ll[llj4t[4l
I fll/l*
DAK
UMPIINC 10CA1ION
i i
i i i i
vmi
i|4i|4i|4<|)»|ii|n|ii|n|)i[i4|n|ii|n[ii
•UN NO.
T«1»M»I«
f.di-ittts-.g
VIMIM
|t|t|n|ll|ll|ll|l4|l>[lt|ll|tl|Hp
I 1 I I 1 I
HIM.
(IN. l*»)
l|lljll|l4
ilMIC
mis
(IN. M^
_c
4t|4l[4>[4l|44|«t
±!i
I K^Ifl/l/frjl I I I I I I
SIAC« INSIOC
OIMCN. (INCHCS)
I I I I A
fllOl
IUU
c.
mm
•0-
PAGE
Il|l4|n[n
/O.F,/
MOM LUtTN AM ItK
«111.1«I. I • I»I .M..T..M"M'*|.tN..|.»
i i
wini.
NO.
i i i i
N,0. UUVU NUII
(i) !l
llOl NOllOINO
1«[|\ it|ir[n
Will
A H •
H|4t|4l|4
Will CM.
MCIW «
Li!b
I UK CHICK
CFN
IN. Hg
K
FACTO*
c
flCIOl
l[tlt4JH
NUt MI
44J4)||||4'
NUT Ml
Iff.
Jit II
i i
•(COM)
MU
HI
J79
n*i9\\4
IVlaoUl j 7?|33l?4
30|3I
3t|3ff l40|4l
nr
fBAVCMt
•oiwr
TIMKr»ta>
cum TIM
(14 hr
CM MCTtt UAOUM
IWI. It*
VEuxrirv
omricc
OirrCUNTIAL
(AHI.ln.HjOl
STACK
OKV CAS METCB
TCNPLHATUM:
IT. I.'F
ill
runr
VACUUM,
SAMTLC MM
TOU>HATUU
OUTLET
INVIMCUI
TKNTtMIUM
•r
Z£.
is
•fq
2iZ
ML
413
-^a.
1/2.
222
^L
CO
,iL
Z^.
-2&
^•^/
<
-------
£
EMISSION TESTING FIELD DATA
cm
'"N4-H"]
SAMPLING IOCAIION
,|4.|<.|.>|..|.,|<.|4t|Mu.|wh|v.Ht.|»[..h.Mt.|.,|tl|t<|.t
IIM •).
i • un/rr,
H"l"l"l"l"l''l"l'«l>»|.||,i|,i|
1 I ftl
1 1 1 1 |
ONIAIM
H-M'-M'
III*
111' I I iAi°
iii»
MISS.
(IN. H9)
mi
SIAIIC
MISS
(IN HO)
is|i»|ir|ji|]i
rum
1111 ill—r i • • i i i—r
4? 41 44 4S 141 41 41 4«k«|ll[t>|M|V4 U
11111 VLJ * * "
i i7i/iji/ i/P?
INS 101
OlMt*. (INCNtS)
1 I / ifeM > I I 1 I A I I
IUII
PACE
MOM tfMIN MO Tiff
jn|n|»ilu|u|u)u|n|ii|iV
Illtl Illiljl*
NO.
nln
l"l»l'»
J_L.i 1
H,O. |SAM>IC|NCIII I win
(t) ;ioi MlwiNO. a M t
Ml»,'|»
K
33H
"i"i".
M.M*JS
Will Ul.
'*"<» *
•)|M«»
EE
IN .
L(AK CHICK
CfH
J.t£
'I"!"!**!4
K
FACTW
3@
MCIM
MOM
MAI Ml
lnlniuLiJiir
l2l
NU| Ml
lli II I
ICUMO
MIA
D
^ '
HAVE M«
»OIMT
CM MCTU UJU»U6
IVJ. It*
10|3IJ3?)33J
VELOCITY
omricc russuu
DirrCUMTlAL
UHI.ln.MjOI
72
3<|39
52(53 (54
TKItrCIUTUU
DRY CAS M£TU
TCNPCRATUIU:
IT i
in
OUTLET
JT I.
"out
. runr
VACUUM.
CANTLC BOI
TCIWCIUTUU
•»
w
<=>
? i ^3 e o
/ .0
s /
-J
<-Z.
63
.£>/
7 /
1
/ ' °
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number
Sample date ///-//J
Recovery date
Particulate sample type _
Particulate filter number
Particulate filter sample I.D.
Probe rinse
M5
Recovered by
^X^ M5-320
M5-450
M5W
Purge train 20 min (check when completed)
Location of filter in back half
"7
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Final wt
Initial wt
Net wt
9
9
9
9
9
Total moisture 1^1^ 9
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
'X
LIQUID LEVEL MARKED
^LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
_'(?&*-*'
(/V7L
Silica gel
0RAIRY CUSTODY
Received by
Remarks
Date
% spent"
B-80
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant .
Sample location
Run number
Sample date
Recovery date
Particulate sample type
Particulate filter number
Particulate filter sample I.D.
Probe rinse
M5
Recovered by
M5-320
M5-450
M5W
MOISTURE
Purge train 20 min (check when completed)
Location of filter in back half
Final wt
Initial wt
Net wt
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Pf.C
534
Total moisture
g
9
g
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Samples
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Silica gel
9
9
spent
Received by
Remarks
LABORATORY CUSTODY
B-81
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Sample date
Recovery date
Plant . .
Sample location _
Run number ^C/-/^ Recovered by _
Particulate sample type M5 __jX__ M5-320
Particulate filter number 3^^} IQy
Particulate filtflfr sample I.D. |££/7 V 6 \X
Probe rinse /rC£n4/t-g> I
Purge train 20 min (check when completed)
Location of filter in back half
M5-450
M5W
r ^
.D. 7 T C^ffa
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Final wt
Initial wt
Net wt
CUP
ft/7
Total moisture
g
J.9
lt.0
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
I PA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Acetone
Samples stored /pd locked
Remarks
^LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
\/
Silica gel
% spent
Received by
Remarks A
LABORATORY CUSTODY
Date
B-82
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location JU&ftLr
Run number iDM£~&
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse Jr^^/wC^
Purge train 20 min (check
Location of filter in bac
1st
impinger
Final wt 5l£*( 9
Initial wt ^Y/Li g
Net wt K^Y g
PROBE RINSE CONTAINER I.D
I PA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
Sample date Z//£/
Mo, T^ Recovery jdate, 'z/i2
Recovered by £Q/b$
M5 yX"M5-320 ' M5-450
2f-2f IO& ^
I.D. 9VZ-7B ^
I.D. ^¥2,74^
when completed) ^
k half |^y. futt . Z^-3-
MOISTURE
2nd 3rd 4th
impinger impinger impinger
£*,£ g Iflf g #B/ g
S^iiQ f*7O*A-£L. / A^Q-
y/vj g 5 la, Jr g Lffiti g
*~*/Ot(r g 5^/7 g ZPi^ g
Total moisture /&3-S g /^
RECOVERED SAMPLE
//Z/*?l LIQUID LEVEL MARKED
'V'ftZt A ^LIQUID LEVEL MARKED
'n
•/K
M5W
Silica gel
/^g>2 g
?}? a
% spent
^
./
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Acetone
Samples store/) and locked
Remarks
LIQUID LEVEL MARKED
s
Received by
Remarks
LABORATORY CUSTODY
Date
B-83
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE "2- ' / 2~ - cKS TFST Nn
SAMPLING TIME (24-hr CLOCK) /£>/ }~~~
SAMPLING LOCATION &•£>'/# jr. ^S-
SAMPLE TYPE (BAG, INTEGRATEDCtONrlNUOUS)
ANALYTICAL METHOD <^?/?:T#T^ '
AMBIENT TEMPERKtURE,, ^ ^ .
OPERATOR ^/ &2JJP
ORSAT LEAK CHECKEDX/ /X^
- f
•^)^3?£.
' x"'
*T
COMMENTS:
"\^^ RUN
GAS ^\
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
13.1-
/U
NET
tf.L
t^
2
ACTUAL
READING
13,1*
/£, /
NET
/,U
t-,S~
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
/3,L
z.tf
MULTIPLIER
4«100
3?'100
a/100
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib Ib-mole
m
i
CO
£>.
-------
EMISSION TESTING FIELD DATA
HAM t cm
|i|'l»ll»l"l|i|'>l"l1>l'«l"lltll«H"l''l"l'<|"l"l"l'»l''l>«|)'ii'|ii
Mil
i«Ni.|i.H»J.a|.
a?
SAJtfllNC IOUIION
«i|o|4»|«%|««|4)|<«|4i|^|>i[M[si[vi|s^|>i[>
t\m
3mm
MMPII im
H"Hn|'.H>.lni..rsi;
1 1 1 1 1
VIMIM
A*
ii|'i|n|?i|n|n|ii|i4|»|ii]7i
1 1
1
II*
Cfl
II|M|IO
MtSS.
(IN. H9)
"FR
SIMIC
P«SJ
(IN. M.,0)
»|l«|ll|n|»
-l_L
riLUI MMMR(S)
4l[4l[4>|4l|44{4t|4>)«'4lj4«.|s«Jn[n|ll|M|M|n['
, , . ,
l«.ot
OlMtH. (IICHtS)
1 1 1 1
TW«K
M6E
MOM ItKIN A«JD tlH
ll|»illjll|l||ll|l4|H||t|||[u'pr
203
>l|ll|M|tl|14
MO.
|I>[;I|II|M
nil
i i i
:«?•
HI M
EE
UM
n|i4|is
J_L
WTI*
•01 N.
ill HJI
Mill
AN*
4t|4l|4l
MTtl CAl
r*cii» v
lllwUt hilii
ICAK CHECK
CFH
IN. H,
»'l"l"l*
X
FACTWI
j>i[t> icfTi
t
r«CIW
MUM
MAT MI
l[tl[lll>'
MU! ttl
Mf
»r'
MU
HIM
-Z7S*
no
no
J320I
VKAVEMS
•OIVT
^'^^1
cum TINS
•AI»UM«N. (14 kr
CM NCTU M*ttllt^
W.I.
vKuxrin
omricc russuu
DirrCUCNTIAL
IAHI.ln.HjOI
y^"3^
52l53lS4
•TACK
TUtfCHATUU
DRV CAS KETH
TtMPtKATUM:
NLET
OUTLET
VACUUM*
•ANTLK MU
INTIMCU
TCN»CIUTWM
*&?
too
0,77
32
XiJL
&EL
7.2
±
77
J^3
52?.
336
7P
2L
0.73
^
^.73
a/
0
s
327
-------
EMISSION TESTING FIELD DATA
PIANI t cut
Mil
N'N'l'i'H'l'
n|ll|ll|»|ll|l4|li|u|ll|n|ll|4l|4l
•*-* If * - * / 1 !•!
SAMPLING IOCAIION
3E
M
ii»«i
111
SAHPtl TIN
.M..I..H,.l,.|M|,.h|,.|.,|,.|,,|..
_l_L
•IM NO.
035
ONMIM
|i|iiliilii]ti|ulitjiilu|iijiibi|>i|ii|ii|ji|)i|ii|ii
tf-m—^~J~— i^ —~-T - T i i I r
7^B jA ^ i 4}
I I I I I I I
UN*
m
MISS.
(IN. H,)
ll]»lll[)
SIM 1C
PUSS
(IN NO)
i
11 J/P»I i
MlHi MNMIHS)
t 1 M I.
ilAtl USIH
OIWN. (INCHCS)
Vl{t»|M{tl)lt|li >4[ll[n|ll|ll|t
1 1 I I A I
nOH IU61M MO 1«K
|.|.|.|.Nn|..|,.
MI ill.
NO.
.1111
H,0. IsMVl
It) !(OI N
n|ll|ll
/v*
Il|l4l«'
1 1
BOIM.
NCHI
t N •
Mill CM.
r«cioi »
lllll
iPF
tUK CHICK
CFN
IM. M«
ira
K
FMTOt
C
MCItt
na«
NUI Uf
ti n|ii|t'
rnoT
lUli
l»|ll|l>
IMtM
FACt
n|ii|n[
Ml
NUI Ml
II li[U|ll
•tr.
* I I
If COM
MIA
41Hi-
imotii r
3th9UO|4
4^3l4TT^
52J 53 I 54
57
nu.vtMa
•01HT
CUKII TIM
CAMTIJMCS. l>4 hr
VCUXITf
omricc russuM
OirrEDCMTIAL
UHl.tn.NjO)
STACK
niWCHATUU
DMV CAS MCTU
TtMPtRATUR£
V73 .7^7
DCS I MCD
. rmtr
VACUUM.
OUTLCT
out
CAMTLJE MM
TCIOCAATUU
iMMNGtt
TCNrCAATWM
lo.
, . /
0.13
.yo
Jo.
0.13
•¥-
70
*
sv.
475"
73
5-3
7V
559
t 1 I
i t
.it
-------
EMISSION TESTING FIELD DATA
PlMl i Cllt
yiIi|.|M«lMMM'M'4l>lL>IuIl»ll'Jllll'i'»Hl'l"l»M»l'»I''i'«N'«l>'l»'l»
wit
SMtfllNb IOCA1ION
MM|MM>.M>.HKU.I..MM|.>
>.l>,]..N.t|,.|.l|MH"|.t|».HM|..
1 1
I I I.I I I I
ItM HO.
MFP
WfUlM
i i i i i 161
11*
CO
MISS.
(IN.
«B3
MAI 1C
H?0»
i? i~P/*i
I Kill MMll(S)
«l|«l|4;|o|««jn|.l|4l|4l|4<|s«|M|w|M|M|^v|i»|>
1 I I 1 I
SIAC* msiot
OIM*. (l«CHt$)
I I I I I i
MOM LIK1M AM UN
t>l«l»l«IM'l»l'»l"M'»H"l"l"l^
it|ii|ii|iiji'
|i«|>i|ii|ii
nli«
HJ).
(J)
101 NO
iEE
Ml M
» M •
f *«• •
ID.
LUK CNfCK
cm
'f"i»i*«h
.07QQ
K
fACTOH
MCfM
nan
NU1 MI
IUU
tut
it|it|t'
ft
«"•
i4|M|»t|n
J_L
wu
HINS
I MM
bo.
-------
EMISSION TESTING FIELD DATA
t cm
|«|*l'l'IM'l"l"l"l"l"l"litl"l"l'»P°l"|")"l"l»l"l"i"hl"'[")"|"
1 1
> i i i i i i i .1 .
MIC
I M 40141
1WUNC 10UIIOM
4l|4l|44|4y|4l[4l|4o|4t|M|il[w|M[t4]s>|M[»(>t|il|to|u|u|t|[>4|o>
i i .toMl.TiTHOi
I I I I
Tin
>i)n|«i{n[io]n|ii|ii[i4|n|n|u|iif>
-Li.
IIM «.
OMIAIM
I'l«l"l"l'»l"|.4|.>|lt[ll|l0|.«Ju[il[M[M|»|n[i
I I I
-i_L
SUM IkSIM
OIWN. (I«CKS)
l°lSrl I
i i A i i
fllOI
IUU
c»
mm
lojnfii iiJi4Jn
fAtf
mr
iilio!
iZI
MUM lutn uo im
'I'l»i«l*l«l'l'l»H"N'»l"l'*H"i
-t i i
•or fit.
NO.
l 1 I I
1,0. urn
1) jtoi «
.. win
hOl»OI M).
Mill II
ZiLL
Mill
a H •
MICI CAt
rAC lot v
LEAK CHECK
CFH
IN. «9
TjHiHi
K
»CTOR
'i to '
MCIM
MOM
NUI Ul
HUI Ul
io{lt[u|ll
•tr.
I4|l>|ll|ll
^ ' '
If COM)
MIA
lUi-
"l«
33
'••I
/^^2>
ifc
. oof
tvjioia ija 3123124
30|3I
3t|3Vl40|4
43J43J44
S?| S3 I 54
s slat I 57
ClOCM. T1HB
•AMPIJKCX. (24 kr
CM METU MUBU6
IVI. «*'
VCLOCITV
HJEAO
<*!•,». U.ll
omricc PUXSSUM
DirrCUXNTIAL
STACK
mvciuttiu
OMV CAS HETCK
TCNPtRATURC
DCS I liCD
I HUT
TM ».
tn
VACUUM.
OUTLET
IT. |.
out
CAMPLE BOI
TCMPCRATUU
•»
TCMrCRATWM
•r
. -2.00
.op
1
6
*
.~77
32,8
so,
. 73
•y •
32.4
12)10
// o .
. 7.3
8,1
4^
?Zz
9d.
."?
40
iii
I t •
t I t
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample local
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
.ion fa)\
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample date
Sample local
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
:ion HhYer-'^'Z- "^ Recovery
/^
filter in back half k¥ '< /j*/, Z/-^
^
MOISTURE
1st 2nd 3rd
impinger impinger impinger
/te,7 g ^/ g T?^*Tg
' " ' g ^.;. • g -'" - g
Total moisture ' J g
date "2/sz /f5_
J$-ft>'. : g .;•• • g
£$ % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
I PA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H20
Acetone
Samples stored//and locked
Remarks
v ^LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
•77 ~77T~
Received by!
Remarks
LABORATORY CUSTODY
Date
B-90
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location uOf {&{"&/—
Run number /fi C J4 S&-
f
Particulate sample type M5
Particulate filter number j^F/£V
Sample date 1U/'2/f5
Recovery date t/rZ./f^'
Recovered by jb&-fT?£
^/ M5-320 ' M5-450 M5W
f^>X
Particulate filter sample I.D. W?7f? ^
fj (y
Probe rinse 1U.H4/J2—-
Purge train 20 min (check when comple
Location of filter in back half JA
I.D. //?7^X
ted) X
?/. /W. Zr>
\
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger Silica gel
Final wt Sfy.Fa £2?.C"g tfyj g fif/f g f ftf) g
initial wt SVt& g CbZ.Z- g S^U g CtQtf g fZtf.C g
Net wt > ' ' g " ; g "• "• / g ' ; '- g ': • • g
Total moisture \'' ' g 3& % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. 7/} 7 fi ^
IPA IMP. CONTAINER I.D. f'/jfr'A
H,0, IMP. CONTAINER I.D. faWh
BLANK CONTAINER(S) I.D.
IPA ^|?;X
H,0, Vfoft
H,O yl'Ajl
Acetone /^T^X
Samples stored, and locked
^ LIQUID LEVEL MARKED X
^ LIQUID LEVEL MARKED «X
LIQUID LEVEL MARKED
' ' «£=- iXx
*'"' t/
^- '' iX /
^ L/ I/
„ , /7
Remarks r^N^^-''~^f^v^ *u
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample locat
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
:ion fi^r^r
/ebn
-------
DRY MOLECULAR WEIGHT DETERMINATION
CO
I
PLANT.
DATE.
SAMPLING TIME (24 hr CLOCK).
SAMPLING LOCATION Rf>
_TESTNO/__/^2_
//^
COMMENTS:
SAMPLE TYPE (BAG, INTEGRATED, 0
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
13.0
J.O
MULTIPLIER
«100
3?'100
»/.
28 '100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md. Ib Ib-mole
-------
APPENDIX C
LABORATORY RESULTS
C-l
-------
o
NJ
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 353Q- <*
Plant
Sample location _
Relative humidity
Run No.
Analyst
Density of acetone (pa)
i <: in f B
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CT" 6B< '
CT WI s
CT f3l x
C;T ->CH s
Sample 1.0.
f\Wv* ^
1 C. rv» f 6 ^
RU.vK x
icrvi5R ^
Container No.
-i3c/ /-I x
*•/?/') M -"
3 /6 ^ ^
^3iq B ./
Initial Vol. (ml)
.3fc8
jt-r ,x-
/'. //cr * 333/^<-^ X/
/r, /K-r* J r.3fO/5" >;/
Tare Wt. (mg)
c/
-------
THERMOGRAV1METRIC PARTICIPATE ANALYSIS
PN 3S3P- rf
Plant
Run No. i £>rn i 3 ^
u
location ge ,i*'3 x
CT f3l ^
cF7|3 .X
BU.xK
Ior»i6 ^
Container No.
vjr//-l
S3 22 A '
f3/(>B '
y322 3 y
Initial Vol. (ml)
36B
J?S' ^
r.far* ^T>IC (j
?.#«*• jj-3/o/y xy
Tare Wt. (mg)
&&/. j -
/^^/.t X
315. 6 -
j^fr.^X /
n
i
OJ
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
crftf
cr fc-B ^
CT &3l ^
ci 9^' y
Initial wt.
(ambient)
* y
//£.J yV
O.o* x
/^9. / y ^
30^.3 ^ 4
Heat to
320°F
jk hours
cool ,
weigh
I.I '
7^.0 Jj
-c,3 ^
/7o(p^
_ ^^ y
Number of
treatments
/ ^
/ y /
,
/ ^S
Heat to
450°F
^ hours x
cool ,
weigh
0.3 .
5*.6/ /
-o. / ^
ILD.^/ V
o?3 / ^ Xy"
Number of
treatments
/ ^
/ / /
j
^ ^ y
Heat to
600° F
^, hours'
cool ,
weigh
-0.3 ^
S"/.; y ^
c 2 -^
/'AZ 6>/x
22k J ^
Number of
treatments
3 -
J x^
jf ^
^ >/
Remarks
Data reviewed by
V/3/ A '.!>
« *
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 3S3Q- /S
Plant
Run No. 3. H/>> 5 /3 ^
location
ve humidity
-y
gc . l« r Ac . 3
5C%
Analyst tfUftl
Density of acetone (pa)
TtO& ( g/ml )
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
t.T esi y
cr svy s
cr MI y
CT 799 ^
Sample 1.0.
[Maw*
M/ttfB >/
RWK x
^/m'sS s
Container No.
f3c/ 1\
V.?^5 /•? -^
V3 /6 £ /
5 -^
Initial Vol. (ml)
3L>B
3^' ^
r. //cr * 333/f tJ -^
/;//^ ** jj -3/0/3 /v'
Tare Wt. (mg)
c/7&et.3 -
//Gf-'J. C ^ ,
335. 6 ^
J3t=.
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total participate
Lab No.
C.T ev< ^
cr s-/y y
cT 8J| ^
cr 7^9 y
Initial wt.
(ambient)
O.b ^
/t/.C JJ
D.oi y
yjy.? //
3VV.7 y/
Heat to
320°F
2V hours
cool , "
weigh
/<".J //
/9^.^^/
3??-^//
Number of
treatments
a • J
3 s 1
Heat to
450°F
3^| hours ^
cool ,
weigh
|i(o.^ ^
jqC -±sJ
^fc.fc J^
Number of
treatments
<2 / y
^ / /
Heat to
600°F
^y hours
cool , -^
weigh
^l.iX /-
isi.o x/
J133.SI X
Number of
treatments
J ^ v/
3^ ,
/
Remarks
Data reviewed by
These are net weiahts (qross wt. avq. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530- /^
Plant
Run No. 3/S/"'JO ^
location
ve humidity
— y
gc.ler A-0.3
.5c^£
Analyst A'/?/?/
Density of acetone (pa)
-J9O8 (g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
<^T e&t -x
C.T W* '
CT f 31 „
CT ?00 •
Sample 1.0.
flW* /
Jiflsr?-}~8 •/
ft)*.**
1 8>m>'8 s
Container No.
v3cv /-I
V3.2S A x
V3 /6 5 ^
V3J"S'6 X
Initial Vol. (ml)
368
3^J . ,
/".//or *" 3i3/f < -J ^
/, /^r ^ ^'3/07/ /-J
Tare Ut. (mg)
97^8 /. J —
9 s> t V/K <:^ ^x-
3-?5. 6 -
.^7.9 -^ ^
n
i
en
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C-T ft( ^
CT £ W !>' y
cT &3l ^
CTT kvo /
Initial wt.
(ambient)
o. b^
/*"-/? x^
O.oi ^
J2b3./ ^/
3A'.0 7/
Heat to
320°F
£f hours
cool , ^
weigh
yr3 6xy
jjy / ^
327.? /
Number of
treatments
3. ' J
a ' /
Heat to
450°F
a4/ hours^
cool ,
weigh
91.*"
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530- '*
Plant
Sample location _
Relative humidity
a<.i«r Ao.a
.50%
Run No.
Analyst
Density of acetone (pa)
.7906
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
^r ee,i -
CT ?5# ^
R)/^3S'5 •/
Initial Vol. (ml)
368
3t> / ^
/", //cr *^ 3a3/^(-J -^
/"//<•' *" 3^^10/0 / /
Tare Ut. (mg)
97^6 /. J ^
x^.;y^6.^ ^
3-35. 6 -
J^"> • /X /
Analysis results (mg)*
o
I
en
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C.T Ml -
CT ff-te ./
CT 841 /
cr Wl j
Initial wt.
(ambient)
€>. b /
H<\-) si
O.oi S
lAl^//
3^-C' /
Heat to
320°F
£, hours "
cool ,
weigh
iJ -,
/ov-? sj
-C.3 ^
20)1 sJ
3HJ /
Number of
treatments
t /
I ' i
I ^
I " i
Heat to
450°F
^ hours ^
cool ,
weigh
o.^ ./
/o:3).^ s.
-C.I ^
i
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3S3Q- /^
Plant
Sample location _
Relative humidity
Ac.
.50%
Run No.
Analyst
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
fr MI x
ci §*/? ^
cTKil -
CT yc>2 s
Sample I.D.
RWK
3 &n)5 B
R)o,.vK
3RM8 /
Container No.
i3c/ i\
V--5V//J ^
13/68 '
Initial Vol. (ml)
.36tf
32-0 ^
/".//or * 3?V«J --
f.rf*'* ^3/OC-y,
Tare Wt. (mg)
?&&'. J '
9?393. fe X
335. 6 -
3Jiy.J X- /
o
I
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
crfrtf „
CT S^l -'
CT Scil
CT VC 1 J
Initial wt.
(ambient)
'
O.oi ^
21 1.4 Si
371. *> X
Heat to
320°F
t hours^
cool ,
weigh
/. ' x
AP./^,,
-r.3 x-
/f 5 ,-^ /rf
?W/x
Number of
treatments
/ X
; ^ /
/ ^
; 7
Heat to
450°F
6 hours-
cool ,
weigh
O.J /
/3y.^ ^ y
-c.X ^
/jj-.^V/
1/7./ X
Number of
treatments
/
/
/ ^ '
a -
.a-- ^
Heat to
600°F
(y hours x
cool ,
weigh
-0.3 ^
J7. 7 / ^
- j ^^
/^o.o^
JZV/.7/,
Number of
treatments
3 ^
jX
i-
3^
Remarks
Data reviewed by
* •
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3S3Q- t$
Plant
o
I
oo
Sample location _
Relative humidity
—o—
A-c. 3
Run No. j e,/>.'a
Analyst
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
^r e&i '
cr $>/$ /
CT KJI ^
crsoj s
Sample I.D.
PWxK
3c/m"/3 r"Jeo *
R)»«K
3t^v/3 /"V/o ,/
Container No.
vjr/ 1\ ^
y;3VV/y /
V3 76 & —
V3VV<3 ^
Initial Vol. (ml)
.368
y^.r ^
/".//or *" 3a3/£tJ —
/I//*.'* .H3IOO* S
Tare Wt. (mg)
Ci1&&t.3 -
/tficj.JL / '
3.35. 6 -
J3J.8-/ '
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cT f-.t ( /
CT tfV? ^
CT &3l ^
C7 St'-'j J
Initial wt.
(ambient)
^
/V.n./ //
O. oi
y^'./ ^y
33j,a y
Heat to
320°F
j^hours^
cool ,
weigh
/.> s
/3>/3jt
0.3^
jbJ.XSl
yib.Vy
Number of
treatments
/ ^
/ / /
/ ^
> ^ 1
Heat to
450°F
t hours _
cool ,
weigh
s J
3- -
A ^ ^
Heat to
600° F
t> hours ^
cool ,
weigh
- £'.3 /-
7Vc^/ /
^.J ^
/3o.^/y
230, fc^
Number of
treatments
1,
3^
^ ^
0 -*-
Remarks
Data reviewed by
ir
These are net weiqhts (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 3S3Q- rf
Plant
Sample location _
Relative humidity
flt.lcr Ao.3
Run No.
Analyst
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
<^r 8S/ /
c.r w*i /
CT Kil -
Cf SO"/ ^
Sample I.D.
P»^K
3Dtn?A -/V^x
B)//«-* 151100") " >
Tare Wt. (mg)
Vf&et. J ^
/eWt'l -^
3-35. 6 -
32*0 X" y
o
I
10
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cT fctf ^
CT jyy ^
cT 8JI X
C7 ?£V /
Initial wt.
(ambient)
'/./j^
Heat to
320°F
^ hour's
cool ,
weigh
/./ -
^Vy/
-C.J -
^/7.9- y /
3/^3^.
Number of
treatments
/ X
/ y J
/ x-
/ ^- /
Heat to
450°F
t hours'
cool ,
weigh
0 J -
^3.5 x /
-<9./ ^
yd-* / .
3^'^y .
Number of
treatments
/ ^
/ / /
^ -
3 -" 7
Heat to
600° F^
^ hours^
cool ,
weigh
-oJ /
£O.± / v
O.J ^
ys^'.^X'
jyj.? xy
Number of
treatments
^^
3 ^
5 .
3 -x
Remarks
Data reviewed by
'
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530- /S
Plant
Sample location _
Relative humidity
flt.Ur Ac. 3
Run No.
Analyst
Density of acetone (pa)
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CT ea» '
CT foP s
CT KJI ^
C7 «Jtf:f x
Sample I.D.
fllfcwK ^
WffA H*>'
R)& -?*e>0s
Container No.
HZeiA
Y33^ ^
13 /6 8 -
//?« R *,
Initial Vol. (ml)
3/>8
*&5" ^ :
r.ffcc * 3a3/ffrJ "
^/A. ^ ii3C-/ya//
Tare Wt. (mg)
97^6 1.3 ~-
x^,-j6Sy ^ .
3^5. 6 --
3b'9.-iV
Analysis results (mg)*
o
I
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C.T f-.tf /
cT f 5 ^ x
cT 8x31 x
cT yo^ y
Initial wt.
(ambient)
-
//7.J X'
^).^ ^
/ ?y.a //
3ff/.J~/ /
Number of
treatments
j£ ^
3 ^
>[ ,
3 ^
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETR1C PARTICIPATE ANALYSIS
PN 353Q- rt
Plant
Sample location _
Relative humidity
flc.ltr Ao.3
Run No.
Analyst
Density of acetone (pa)
.190B
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
^r 66)
c 7 y •> i v
CT f3l -
07" \C-(~ ,/
Sample I.D.
Plcvw*
x//i/^5^ ' A'^"2V
RU.xK
'//)/>/$ 8- A"/t"^
Container No.
v3f / A) x
Vj:V// x-
V3 /6 3 ^
yj ^ j" ^ uX
Initial Vol. (ml)
368 "
35 i ^ ,
/".//or * 3a3/f <-J --
/. //^^ orcv s ^' X
Tare Wt. (mg)
9f&6/- J -
,/^/J', 7 x-
3-35.6 -
3 J V. J s *
c,
I
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cT frtf
r 7 $••> 1 ^
CT 8.3 1 x
c: 7 H<"^ -/
Initial wt.
(ambient)
€>. fox
'/'/ 3 Xv
O.o* /
V<' 4 ? xy
-i?i^ //
Heat to
320°F
£ hours"
cool ,
weigh
/./ •
ff/^'/rf
• r . j -
) rt <- si
'it-'.** y
Number of
treatments
/ /
/ / J
t ^
/ ^-/
Heat to
450°F
(~ hours''
cool ,
weigh
-"..i /
c '/. y / /
- <• / ^<-
J/i.^- ^ /
1*1 *
Number of
treatments
! s
1 X '
a '
j ^ ,
Heat to
600° F ^
£ hours
cool ,
weigh
->\J
tj 1 - j
c 1 -
i/V.tx/
ot~?t)' t^ Jt/
Number of
treatments
J .
3 -
3 -
3 s
Remarks
Data reviewed by
i
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
n
i
M
K)
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 3530- /S
Plant
Sample location _
Relative humidity
Run No.
Analyst
Density of acetone (pa)
.7908
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
•/(. t ' / 5 ^ -^
Container No.
•i$ct i\
'/ '-i •) —
*/i\'ts ^
Initial Vol. (ml)
366
16 J X.
r,/Scr*3>vc
Initial wt.
(ambient)
6>. b ^
/ 1Y 5X y<5
O.oi >X
y s'v V / y
3'/^'^ X'
Heat to
320°F
6 hours"
cool ,
weigh
/./ y
/->c S1/'
-<-••] ^
;t-c/.<:>s j
Iftf'Ss
treatments
/ X
' x /
/ ^
/ ^ -j
Heat to
450°F
^ hours--
cool ,
weigh
r.J x
/VS.^y
• CJ ^
/t-l.rSi
'i/C- (- s
Number of
treatments
/ x
/ x /
JL x
2. x- /
Heat to
600°F
£. hours -^
cool ,
weigh
-«r -J ^
/3j,ex/
^.J -
//^-a ^
a50.0y/
Number of
treatments
i -
•3 /
^ /
Of "
Remarks
Data reviewed by
V/9///"3
' "
.iese are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
o
I
M
U)
Plant
Sample location _
Relative humidity
Bt • l« r Ac . 3
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3J3Q- /^
Run No.
Analyst
Density of acetone (pa)
(9/nl)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
ir?$& ^
R) yv? -"-
Container No.
v3r/ H ^
yjc-//v ^
V3 /6 &
3L-/g ^
Initial Vol. (ml)
.368 -
,27/ - /
/", //er *" 3a3/^<-J -
/' //tr* jti'Cty ^v
Tare Wt. (mg)
99&&'.J -
/OC 9/7. / .X v
375. 6 —
32 f . i ^ /
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cTfrt/ ,
C7 d 43 y
C-T 80il ^
cT bOX S
Initial wt.
(ambient)
o. t. x
/^3.^ y .,
O,o* -^
2J^.5" ^
?y/.^ yt
Heat to
320°F
£- hours^
cool ,
weigh
f-' ,
/'J.(s /J
c 3 -
/ffcfV/
3/7i' x
Number of
treatments
I /
I ' j
I ^
i ^ J
Heat to
450°F
£ hours^
cool,
weigh
0.3. ^
//5' */ -- /
-cJ ^
/CIC.¥ S j
_J06.1 /,
Number of
treatments
f ^
>' s
-X ^
3. s /
Heat to
600°F
_^ hours S
cool ,
weigh
-£>,-3 ^
rt.fc/y
^,5 x
y v<,o //
-13V. 6 /
Number of
treatments
3-
3 /
1 -
3 /
Remarks
Data reviewed by
* ' • . .
These are net weights (gross wt. avg. minus tare wt.) without'blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 353Q- /S
Plant
Sample location _
Relative humidity
flt.Ur Ac. 3
Run No.
Analyst
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
<^r e&i '
cT ?•>•/ ^
C.T fr3l ^
cT SC> ^
Sample I.D.
pWxK
I'H/t-'S /3 x
R)*.xK _-
4/j/>/f& ^
Container No.
*t$CII\
436/4 ^
V3/6B
WL'/K •-
Initial Vol. (ml)
368
3.20 ^
- r.far* 3*-vem ^
f.//ii* ^110^7 / j
Tare Wt. (mg)
<}9&8f.j '
/v/S $!.'//»
3-35. 6 -
339. 2 •
Analysis results (mg)*
o
I
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cT etf _.
cr/JiV --
cT 8cJ| x
cry«T9 y
Initial wt.
(ambient)
o. fc. ^
?i'.i y-/
O.oJ -^
;<>l/.1 SJ
m. 5"X/
Heat to
320°F
t hours,
cool ,
weigh
/./ ,
/^'/j
-^.3 /
/37.J -^
„?£>/. 3 x;
Number of
treatments
/ ^
/ y 7
/ •"
/ "' y
Heat to
450°F
b hours
cool ,
weigh
D.I ^
.ft.*/ / ^
-c,./ -
/2<).D Si
/5"i S ^
Number of
treatments
/ s
I / '
2 -
3^ i
Heat to
600°F
t, hours y
cool ,
weigh
- c\ i ^
^3 ;J
fi.Ji "
,//3.$/<
/,$3 6 ^t
Number of
treatments
$ ^
3 s
Z,
3/
Remarks
Data reviewed by
f
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
Plant
Sample location _
Relative humidity
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 353Q- /S
Run No.
Analyst
Density of acetone (pa)
.7908
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CJT e&i /
C7 $•) *i x
CT f 31 ^
cr b/v ^
Sample I.D.
3lcv»xK ^
:f/5/"-';>'/3 •
BU«K
iftwfti s
Container No.
t3c/ ri
!/?} ft ^
f3/(,3 -^
'i^lB ^
Initial Vol. (ml)
3bS
w - .
/". //cr * 3:>3/f <-J --
/"//Xv* JJi 3/0/y^- /
Tare Wt. (mg)
7&Bt.3 -
/6+&SJ ^ •'
335. (, ~-
33f.S^> /
n
i
(-•
Ul
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cTFH ^
C7 Sfj" -
CT SOJl /
C7Jf/C» y
Initial wt.
(ambient)
r x/
«2^>i9 ^^
Heat to
320°F
^ hours^.
cool ,
weigh
/./ --
5y--? >;
f . 3 ^
/T' 7 s<
/K. o^
Number of
treatments
/ s
' / 7
/
/ — J
Heat to
450°F
^ hours^
cool ,
weigh
C <3 '
Hi- s /
• C-./ ^
;2ct 3. St
/$3.?/'
Number of
treatments
/ /
/ / J
5- -
2 -^ y
Heat to
600°F
^, hours /
cool ,
weigh
-0,3 ^
32.V x '
&.} ^
S7.6X /
/2O.O XV
Number of
treatments
-
5 ^
3 x
Jt ^
J ^
Remarks
^ >
Data reviewed by
* ' ' ' *
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 353Q- /y
Plant
Run No. 3c/'M~/tf x
location
ve humidity
-y
Be . !« r Ac . 3
Analyst tfAPl
Density of acetone (pa) .7%?8
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
/5^ x
Container No.
vjr/ /^
>/3 70 /•? s
3/6 8 "
Initial Vol. (ml)
31,8
/".//cr ^333/^t-J -
A'M/^ 3i-3^jy^/
Tare Wt. (mg)
97#8/. J ^
/o^oy^^ •/
3-15. fe •"
jU'/6 ^ /
n
i
M
CTi
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
eJ"fVf x
cT Ssfe /
CT frcil >"
CTV// /
Initial wt.
(ambient)
-
cool ,
weigh
m.s"^ ^
I3I.C x/
I7?.^y
Number of
treatments
<3 ^ /
4 ^ /
Heat to
600° F
^y hours x
cool ,
weigh
ZS.I^,
1«>.(*SJ
If) -5 . 7 y /
Number of
treatments
3^
3 /
Remarks
Data reviewed by
/'V
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530- <5
Plant
Sample location _
Relative humidity
flt. l« r Ao . 3
Run No. £
Analyst
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
m/3 •
Blo-.xK
SOmS'O s
Container No.
*/3c/ Al x-
V373# /
V3/6 3 s-
13158 S
Initial Vol. (ml)
3L>$
3V/ • /
/',//cr ^333/f<-J ^
Fl/t ^
330. ^ /
n
i
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cTftf ^
^7"S57 ^
cT 831 ./
CT sa /
Initial wt.
(ambient)
€).(=>/
L+J si
O.oi '
/ 5" 3 j^ w^ ^/
_ .j ^
Heat to
320°F
iVhours
cool ,"
weigh
SJ<> ' i
f-tt.Ss*
/f-3.f>
Number of
treatments
SL ^ '
o? X 7
Heat to
450°F
jV hours
cool ,
weigh
H3.*O/
Ul.^x/
(73 l.y.
Number of
treatments
gi ^ /
5 x/
Heat to
600° F
w hours
cool , "
weigh
^O.fo- /
f^.7 x/
/M.3X/
Number of
treatments
-
jx
3 /
Remarks
Data reviewed by
* ' ' "
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
Plant
o
I
M
OO
Sample location _
Relative humidity
fl<.l«r Ac. 3
Run No.
Analyst
Density of acetone (pa)
.7108
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
<-.r e&i -
CT SfX s
CT fc3l ^
C 7 5V3 s
Sample 1.0.
f\WK
C- /-> /tfjr>5 i/
R)*£R x
Initial Vol. (ml)
.368
24tf , /
/-. //cr * 3a3/f<-J -^
f./Ser* )S1IO& / ^ /
Tare Wt. (mg)
97^8 /- J ^
/^-/V^/. ^ ^y
3-35.6 -
^c/:^^ -
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total participate
Lab No.
cr frt< _
cr sss y
cT 831 '
CT S'/3 >
Initial wt.
(ambient)
(D. b x
^-.y /i
O.oi ^
/5V. 7 •?
^r/-3 //
Heat to
320°F
_ hours
cool ,
weigh
Number of
treatments
Heat to
450°F
XL hours^
cool ,
weigh
Hlfl //
HO ci ^/
171. «r ,.
Number of
treatments
51 x/
ol ^^
/
Heat to
600° F
jtf hours^
cool ,
weigh
,20. J ^/
/o/.^y y
121.^" ^
Number of
treatments
3/
JX
Remarks
Data reviewed by
Ir
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
Plant
Sample location _
Relative humidity
fle. l« r Ao . 3
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 3530- tf
Run No.
Analyst
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
i*B s
Container No.
v3c/ 1\
V35'/W ^
V3 /6 ^ -"
'/3W/^ -
Initial Vol. (ml)
366
2i S^ ^ ,•
/", //cr * 3a3/f *J -^
f.'fttr* 3b 3/^.J ^-/
Tare Wt. (mg)
97&8'.J -
Jv7HC().. fo x
&7.0 yj
O.oi X"
/•/?- S7 ,/ ^
mr //
Heat to
320°F
hours
cool ,
weigh
Number of
treatments
Heat to
450°F
2V hours
cool , ~"
weigh
3fuV/
u? v/
|fcS.3^
Number of
treatments
.5 ^ /
3 x /
Heat to
600°F
^y hours ^
cool ,
weigh
23 9 /s
77.3/y
/c/Z^
Number of
treatments
-
3^
3 y
Remarks
Data reviewed by
* ' ' '
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 353Q- tf
Plant
Run No. £,( w *>&
V/
location jJ«.i«r Ac. 3
ve humidity j^Oc
Analyst
Density of acetone (pa)
tfRfl?
.790B
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CT e&l '
c7 StO x
CT fc31 -
cr s/f >/
Sample I.D.
PU«K /
6c^^a s
RUvxK -
6 ^ -irtSd
Container No.
>/3o/A
43*7 ff ^
V3/6B ^
3S?B s
Initial Vol. (ml)
368 -
«?y/ ^ /
/-. //or * 3^/C<-J --
S-.'/ttt* 3WJO& s.
Tare Wt. (mg)
976-8 /.J -
/<5d.esv. y ^ /
3?5. 6 ^
3/5.3 ^ /
Analysis results (mg)*
o
to
O
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total participate
Lab No.
or £;V{ ^
CT SiO x
CT 831 -
c7 «'*' /
Initial wt.
(ambient)
0. t. x
V3.7 y/
O.oi uX
/3S-.? Xy
/^f/-^ //
Heat to
320°F
_ hours
cool ,
weigh
Number of
treatments
Heat to
450°F
£ hours^
cool ,
weigh
O.TL s
32. y//
-O./ ^
/OJ.3 ^/
/3S- / ^
Number of
treatments
Is
t / y
a -
<2 X^'/'
Heat to
600° F ^
6 hours
cool ,
weigh
-£>.J x
57. / x/
^.J x
77. 7 / /
/oy.fc ^
Number of
treatments
1 '
3 /•
^ -
v3 ^
Remarks
Data reviewed by
r
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVMETRIC PARTICIPATE ANALYSIS
PN 3530- /S
Plant
Sample location _
Relative humidity
Run No.
Analyst
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
fr M,
C 7 S(? f x
CT Kil -^
t7 S/6> x
Sample I.D.
R^K
6 On) SB x-
Blo^K _x
COni SB /
Container No.
v3r/^
V^5/?^ -
V3 /6 5 ^
*/37o & ^
Initial Vol. (ml)
.368
J.5*^ /
^
/' //,,* 3*31036 ss
Tare Wt. (mg)
c/j&&(. 3 ^
/t>^39f.9 ^ ^
3-35. fe ^
n
i
KJ
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
CT £:Vf ^
£:r S'd,/ ^
CT 831 x
rrj-/^. y
Initial wt.
(ambient)
O. t> s
MJ ^
O.oi X
/ / /
/fr-f SJ
Heat to
320°F
hours
cool ,
weigh
Number of
treatments
Heat to
450°F
6 hours
cool , "
weigh
o.3i ^
3 9- J s /
- c\ 1 ^
//5. 9 x /
/y^'./ x>
Number of
treatments
/ /
/ X /
a ^
3. ^ j
Heat to
600°F
_6hour$
cool ,
weigh
-c.<3 x-
^5.7 y^
£>.J ^
5-7.3 Xy
//3.0 x/
Number of
treatments
^x
3 X
i -
-3 -^
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530- ,S
Plant
Run No. ")&)»')& *-"
location
ve humidity
Be l«r i
U
t>o. a
Analyst
Density of acetone (pa)
xtm
. T)O& ( g/ml )
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
B ^
R)
-------
THERMOGRAVIMETR1C PARTICULATE ANALYSIS
PN 3530- /S
Plant
Run No. 7 Orm ii --
location
ve humidity
Be . l< r Ac . 3
Analyst
Density of acetone (pa)
A^/?;
. 79C8
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
<^r esi -
c r £1-3 s
C' KJI ^
CT S/tf •/
Sample I.D.
fllcvwK
TOW/? *-
B)8 -
o2?5 ^ ,-
/", //cr * 3^3/f <-J -
^^A/ * 35-3 //3/ ^
Tare Mt. (mg)
97^8 /. J .-
^/^fti ^ ,/
3-35. fe '
J35. ^ x ^
o
I
K>
UJ
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cTH-t
CJ 5'tJ ^
cT 831 -^
c7 y/?y
Initial wt.
(ambient)
/. 9 /J
3'*.*^
Heat to
320°F
_ hours
cool ,
weigh
Number of
treatments
Heat to
450°F
jy hours
cool , "
weigh
0.1
.33.6 / /
-o.i
Itf.*// /
j53,CsS
Number of
treatments
/
/ x /
A
3 ^/
Heat to
600° F
G hours x
cool ,
weigh
-0.3 ^
JQ$ f J
0.3. '
7/^>X /
?3.5" ^V
Number of
treatments
1 „
3 s
$ -
v3 ^
Remarks
Data reviewed by
*
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
r.
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 3S3Q- t*
Plant
Sample location __
Relative humidity
flc.U
Run No. ?/-//»/!>'
Analyst
•50%
Density of acetone (pa)
.7908
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
f.r e&i -
f-T S'6//
CT f3l "
<-7 S/9 >/
Sample I.D.
PWvK ^
S-rtfli5'& •/
RU,xK
,?/»)7?*ft X
Container No.
•y jr/ /^
VV06/» X
V3 /6 5 -
Vvffr/3 ^
Initial Vol. (ml)
368
3/^ ,x /
/", //cr * 3:>3/£<'J ^
/://^^ WJ2JS- '
Tare Wt. (mg)
97^8 /. J -
/£j/6-Jl3L. >/ V
3.35. 6 -
jrSJ.yV •
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cFf.tr ^
CTUV /
cT 831 "-
CT §•( y
Initial wt.
(ambient)
-------
THERMOGRAVMETRIC PARTICULATE ANALYSIS
PN 3530- /S
Plant
Run No. y/3/','i^ pw& -~
u
location gt ,i«r AO. 3
ve humidity .50%
Analyst tfAfH
Density of acetone (pa) .?%>#
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
£/r e&t y
cTS^ x
CT fr3l ^
cr &2o y
Sample I.D.
PlevvxK s
*•
S&nrtA p^(X)
B)o«K ^
XftntsB pyco.
Container No.
v3f/ 1\
W^?/? -
V3/68 ^
yy^ 9 & .x
Initial Vol. (ml)
3L> 8
23JL ^ /
/', //cr * 3^3/^<-J --
F,/t« * J53>>/2/^ /
Tare Wt. (mg)
?&&/. 3 '
/^vi'/y'^"' *^
335. 6 ^
j^ * \r / /
n
i
NJ
(Jl
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
crttf ^
C-T $<:•} ^
cT 831 ^
. h ,
J3.^ ^ ;
b.Ji /
$1.7 y J
///^' Ss
Heat to
320°F
6 hours^
cool ,
weigh
/-/ ,
I3.SJ <
-C.3 ^
i^-1-/ s]
S7.9^^
Number of
treatments
/ s
i ' y
/ ^
/ x-r/
Heat to
450°F
t> hours ^
cool ,
weigh
£>.3 _
/^.3 / v
-o./ ^
^^x /
7f-3 ^^
Number of
treatments
/ X
/ / /
a_ ^
i ^- ^
Heat to
600°F
6 hours^.
cool ,
weigh
-£?.-3 ^
£.'> sj
C.3 ^
4~3.& / /
o"?./ x?
Number of
treatments
2 -
3 >"
^-
3^
Remarks
Data reviewed by
*. m
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAV [METRIC PARTICIPATE ANALYSIS
PN 353Q- /S
Plant
Sample location _
Relative humidity
flt. l« r Ao. 3
Run No.
_ Analyst
Density of acetone (pa)
.7908
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
>'/!> /
RWK
,$C/*>.3 ^
Container No.
v^r//^
-////2// ^
V3 /6 ^ ^
w/^^ ^
Initial Vol. (ml)
%8
J^ x /
/". //cr * 3^3/^f-J ^
f./t«* 151 1 13-0 / /
Tare Wt. (mg)
c/f&&t.3 ^
/,£'3JL?.? •'
335. fc
333 ? ^ •
Analysis results (mg)*
o
I
K>
CTl
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
c-T fct< ,
CT Sk-t* /
cT 831 ^
C7 «/ J
Initial wt.
(ambient)
&.(=> s
ao.fc ^j
D,oi -
».^> S*
/tj.t> //
Heat to
320°F
^ hours
cool , ""
weigh
/J.3sl
il.^yi
n? /,
Number of
treatments
•3 / /
5 //
Heat to
450°F
jj hours
cool , ^
weigh
9,V^y
T5^^/
s-y-9 ^
Number of
treatments
c2 / /
a / /
Heat to
600°F
tf hours^
cool ,
weigh
^>.9L^ j
Hd o ss
o- / 3L A
Number of
treatments
3^
3.
Remarks
Data reviewed by
t/ hi/ 4.3
npt weiahts iaross wt. ava. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 353Q- rf
Plant
location
ve humidity
_ g._ . .,
fti . \t c fro . 3
.50%
Run No. £
Analyst
Density of acetone (pa)
/)J7M/} P'/£0 --
A^/7/
.7%>8 (g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
8- PVCO.,
Container No.
/0"7 " l/
Tare Ut. (mg)
?&&'. J s
sot*^?.1/ ^
$35. b -
3J/6^
n
i
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
L-Ttei/
cTSk'7 ^
cT 80JI ^
CT S2.L S
Initial wt.
(ambient)
G.b/
31. t, S i
O.oi ^
J' 3. 9 y y
/O^ sj
Heat to
320°F
6 hours
cool , ~~
weigh
/.///
/^.5//
-0.3 -/
;vr xy
f^3 ^/
Number of
treatments
/ sJ
I s J
, - y
/ - j
Heat to
450°F
4_ hours
cool ,
weigh
^ J ^
S.t / /
-6\/ ^
^,5,6^-^
;v.j ,/.
Number of
treatments
/ -
X / /
a ^
a. -- /
Heat to
600° F
^ houri.
cool ,
weigh
-0,3 /
v5".B/y
0 cJ X-
V9.9 ,/ y
jy. ? ^
Number of
treatments
2^
3 /
1 -
3 ^
Remarks
Data reviewed by
ffirl*
* .
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN
Plant
location
ve humidity
J
*c%
Density
Run No.
Analyst
of acetone (pa)
5rin>s 8
Kfim
. 7*08
"
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C.T 6891 „
^rSfc*- ^
CT 8.3JI x-
cr ?W x
Sample I.D.
BI^K
9rt/wS'$ •/
Hi i/ -^
\j lO'WN ^^
-?^A>K3 ^
Container No.
V3** ^
W/^^ /
H3936 ^
Initial Vol. (ml)
3 7A , ^
26 •>" ^ /
F.Kcr* ^J//^6 ^
JJ-
Tare Wt. (mg)
/ClS^*. 8 ^ y
/ 66/77. & -X/
33k. S ^
3'52.0 x ^
n
i
M
CX3
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cl HU ^
cr StS^ '/
cT £3^ X
cr r« >
Initial wt.
(ambient)
1.3 ^
r/9 ^-'
<5«3 X
/<:*.<: xy
^^.? ^'
Heat to
320°F
hours
cool ,
weigh
Number of
treatments
Heat to
450°F
hours
cool ,
weigh
Number of
treatments
Heat to
600° F
M hours^
cool ,
weigh
/ci 3 •/ /
?B,&sj
in.Sjj
Number of
treatments
3X
3 X
Remarks
Data reviewed by
L •
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAV1METRIC PARTICIPATE ANALYSIS
PN
Plant
Sample location
Relative humidity
/W/«r
Run No.
Analyst
Density of acetone (pa)
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
c.r 689L _
cr$6£; IX
CT R.U ^
cT SjV >
Sample I.D.
Bi**h
^ /5 rny /3 x
Blo-vxK -^
W*/3 ^
Container No.
V3*4
vvii n ^
H3q3B ^
^/J/B ^
Initial Vol. (ml)
.37JI
") *f" */ x^ /
j * 1 * f r 1^J\3/^^-^* -^*"
/^y/tr* 3S3//Oi'^ /
Tare Wt. (mg)
/f/jr76.S -
/t>/TJ/.>' S ,
3)k.^ - /
.3J7. 3 _, x
n
i
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cl WU'
cr SY7 /
cT fc3^ /
c7 $)4 y
Initial wt.
(ambient)
^.3 /
X<^ / J
C-3 /
/^.<< x"y
^6/-? //
Heat to
320°F
_ hours
cool ,
weigh
Number of
treatments
Heat to
450°F
hours
cool ,
weigh
Number of
treatments
Heat to
600°F
5V hours
cool ,
weigh
^0.4//
n .3 ^;
llt-ls?
Number of
treatments
3 /
3 ^x
Remarks
Data reviewed by
* '
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
o
I
U)
o
Plant
Sample location _
Relative humidity
Run No.
Analyst
Density of acetone (pa)
. 710&
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C.T 6831 '
cr s~7& ^
ci B.JJL ^
C.T 5 1± /
Sample I.D.
R|*AK —
ycimti ./
Blo-wK -^
IC/nSB -^
Container No.
V 3 7£ A •"
VVJ^/' ^
H3936 •-
V/JV 8 -^
Initial Vol. (ml)
in
3'*>X ^ /
F.Mcf* qi3//^6 ^
r./tis-* 3'j3//oy ^ /
Tare Wt. (mg)
/c^s^*•& '
/07')t'/.JL -/ s
33t.' -^
337 6 i/ s
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
CT e>8JLx
cr sic s
z-~ b3^L
CT f^i'y
Initial wt.
(ambient)
^.3^
d^-Sr / i
c.3 x
/V3.9 /y
jcv.7 ^y
Heat to
320°F
_ hours
cool ,
weigh
Number of
treatments
Heat to
450°F
hours
cool ,
weigh
.
Number of
treatments
Heat to
600° F ^
6 hours
cool ,
weigh
o > ^
ys.e yy
X\ 3 ^>
t>.^> ^
7fl3,/ /
f^^'l^
Number of
treatments
5 -
3 x
I -
3 ^
Remarks
") d
JL '.' i . A A
>-/ . V.a / -^ 3
Data reviewed by
*Thes'e are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant
o
i
OJ
Sample location
Relative humidity
Run No.
Analyst
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C.T 889. /
cr 8ii ^
cTRU _
CJ 8U '
Sample l.D.
BI<«.«K
9/)ii>> A ^
B'o-wK —
5di»>d ^
Container No.
v-37£^ "
H<-n~iA s
H 3*13 6 -
HH21R ^
Initial Vol. (ml)
37A
110 s /
r.Nrr* -**3//J.(> ^
F. //if* -)'j"bttc 3 -^ •
Tare Wt. (mg)
scisit- 8 "
/£7/c/f. 7 ^ -/
33<:.*' -^
3V?. 6 c-"
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C7 t>8JL^
cr snl x
cT^i^ ^
c r vxt J
Initial wt.
(ambient)
f.3 x
L-'I-~>S \
6-3 -/
/y/y y /
W £ • s <
Heat to
320°F
_ hours
cool ,
weigh
Number of
treatments
Heat to
450°F
_ hours
cool ,
weigh
Number of
treatments
Heat to
600° F
6 hours^
cool ,
weigh
o.^ ~-
^,^/J
0.3 -
85, / y J
//9.3,xV
Number of
treatments
J -
3 /
^ -
3 ^
Remarks
Data reviewed by
/> .A /.v ?-/./
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
o
I
OJ
Plant
Sample location _
Relative humidity
5C%
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 353Q- tf
Run No.
^ Analyst
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
'
Cl S7J s
C~f fr.*l <
1 C7 frl? -^ _
Sample l.D.
ni * -
y6/-)">:> /3 ./
RKvnK
I0tf»n& s
Container No.
*t3c/ 1) _
VV3/W ^
13/6& ^
*miB ^
Initial Vol. (ml)
.3^8 -
-a>=* ^ /
/". //cr * 3a3/f *J --
/./^* JV3^^^^-/
Tare Wt. (mg)
9f^8/. J ^
/oS 9/3. if ^ •
335. 6 -^
^^7.!>'.SX ^^
O.oJ ^
/5"/.f / ^
_Jtt,0'd> y'
Heat to
320°F
hours
cool ,
weigh
Number of
treatments
Heat to
450°F
L, hours'
cool ,
weigh
o.l „
72-sr/y
-o./ ^
/30.3 / /
J20i./ ^^
Number of
treatments
I ^
< x /
X ,
a ^ /
Heat to
600°F
_£ hours^
cool ,
weigh
-C>.3 ix
>5£>.i / ;
d -2 '
/ci.zyJ
/m$//
Number of
treatments
^^
3 /
JL ^
J^
Remarks
r/A
fa iL*-tft
Data reviewed by t-fcf
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 353Q- rf
Plant
Sample location _
Relative humidity
flt. l« r
Run No.
Analyst
Density of acetone (pa)
.790ft
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
5 PVt-c^
R)
Initial wt.
(ambient)
€>.(=> ^
a-// v/j
D.oi /
/5^-J //
J^6./ ^,
Heat to
320°F
hours
cool ,
weigh
Number of
treatments
Heat to
450°F
(^ hours
cool , ~"
weigh
O.Ji -
4fc-£ ^ /
-O-/ ^
/ 3v^ 3 x7
171.1 .//
Number of
treatments
/ ^
/ > /
a -
a ^- /
Heat to
600°F
i hours/
cool ,
weigh
-0.3 ^
>1X ; /
C.2 -
/'/^ //
/3t.O Xy
Number of
treatments
1 ^
3 '
1 ^
3^
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 353Q- rf
n
i
Plant .
Sample location _
Relative humidity
Run No.
Analyst
Density of acetone (pa)
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
f.r e&i -
CT $~?y s
CT f3l '
CT yjz? S
Sample l.D.
P^«K
/cci»)ifl /
RU^K
jCC->r>SQ S
Container No.
v3r/Al -
VV3"?W^
t3/& B
LfJl?R ^
Initial Vol. (ml)
368 -
^ S-6 ^ y
/". //cr *" 3^/C < J /
/7//ft* ?J3/^J"9/ •
Tare Wt. (mg)
97^8 /. J -
Ml.m.1 ' '
335. 6 --
3 3-;. 7^ ^
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C.T frtf ^
r.T S?V /
CT 831 s
cr W9 /
Initial wt.
(ambient)
o. fc. s
£,6,. I S)
O.o/ ^
/•/?,yyy
J/e.o X,
Heat to
320°F
_ hours
cool ,
weigh
Number of
treatments
Heat to
450°F
6 hours^,
cool ,
weigh
o.J ^
^•^x/
-o./ ^
//7? /'
/76.r X,
Number of
treatments
/ <^
/ / y
^ /
J -^ /
Heat to
600°F
6 hours^
cool ,
weigh
-0.3 x
3-2. / //
o.J. ^
r/.y / /
I3&* yj
Number of
treatments
^
3 X
1 -
3 ^
Remarks
r.f.
LJ}liJL-dt
Data reviewed by /^
T'Thp<;p arp npt weiahts i'aross wt. ava. isinus tare wt.) without blank subtraction.
-------
THERMOGRAV1METRIC PARTICIPATE ANALYSIS
PN 3S3Q- tf
Plant
location
ve humidity
" — « — --tf •
j}£ . l« r flo . 3
Density
Run No. /£- /?/>'•; '
Analyst /VXW
of acetone (pa)
-5 / yc-t ^
1
7%>8 (g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C.T e&i ^
cT STS" /
CT fc3l --
CT $30 /
Sample I.D.
|/JI(V»\K S
/oOn^^B Y^OO /
RUvxK ^
yt)Df»Sii p*/t'C' ^X
Container No.
VJr//j ^
VWtf/^ s
13/68
WO B ^
Initial Vol. (ml)
368
a<>3 ^ /
/-.//cr ^333/^<-J ^
£Mr* 3/3/Cifx,/
Tare Wt. (mg)
99&et.J /
y^ i 5 ' 7. jl ^ ^
3-75. 6 -
332. /^ X
n
i
OJ
Ul
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cTfrfcf *
cr 5-?iV
cT 8-31 ^s
cr s-30 >
Initial wt.
(ambient)
O. b ^
^v s / /
O.oJ ^
/y^.^ /,/
J/3.^ ^y
Heat to
320°F
hours
cool ,
weigh
Number of
treatments
Heat to
450°F
4, hours^
cool , ^
weigh
0.2 ^
^"3 V//
-o./ -
yjs.5" y/
/*/ 6 ^
Number of
treatments
f ^
i y y
<3 ^
j ^ /
Heat to
600°F
^ hours
cool , ^
weigh
-0.3 ^
3* ?; y
£> J -
/^.J //
y^'/7 ^
Number of
treatments
-
5 ^
3 /
a -
3 ^
Remarks
Data reviewed by
fi.L^Ctt V/3///3
* .
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
Run No.
1AM5BW
1BM5BW
1CM5B
1DM5B
2AM5B
2BM5B
2CM5BW
2DM5BW
3AM5B
3BM5B
3CM5BP400
3DM5BP400
4AM5BP400
4BM5BP400
4CM5B
4DM5B
5AM5B
5BM5B
5CM5B
5DM5B
6AM5B
6BM5B
6CM5B
6DM5B
7AM5BW
7BM5B
7CM5BW
LABORATORY REPORT
PN 3530-15
Hydrogen Peroxide Impinger Solutions
PEDCo No.
Total sample
volume, ml
S02
total mg
CT 951
CT 952
CT 953
CT 954
CT 955
CT 956
CT 957
CT 958
CT 959
CT 960
CT 961
CT 962
CT 963
CT 964
CT 965
CT 966
CT 967
CT 968
CT 969
CT 970
CT 971
CT 972
CT 973
CT 974
CT 975
CT 976
CT 977
420
397
400
404
400
393
410
424
490
403
343
394
435
408
397
460
403
415
433
445
410
480
446
449
432
418
415
7224
7055
6652
6467
7135
7678
6376
6427
7124
7031
5827
6797
7362
7678
6667
6703
5398
5301
5008
5059
5278
5144
4546
4518
5087
5026
4800
C-36
-------
LABORATORY REPORT
PN 3530-15
Hydrogen Peroxide Impinger Solutions
Run No. PEDCo No.
7DM5B CT 978
8AM5B CT 979
8BM5BP400 CT 980
8CM5B CT 981
8DM5BP400 CT 982
9AM5B CT 983
9BM5B CT 984
9CM5B CT 985
9DM5B CT 986
10AM5B CT 987
10BM5BP400 CT 988
10CM5B CT 989
10DM5BP400 CT 990
10% H202 Blank, Runs 1-5 CT 991
10* H202 Blank, Runs 6-10 CT 992
Water Blank, Runs 1-5 CT 901
Water Blank, Runs 6-10 CT 902
Total sample
volume, ml
397
428
455
438
445
405
430
392
416
412
404
443
418
305
308
320
230
S02
total mg
4955
3037
2967
3062
2763
5266
5198
4928
5001
5465
5121
4834
4916
<0.3
<0.3
<0.3
<0.2
C-37
-------
RUN NO.
1AM5BW
1BM5BW
1 CM5B
1BM5B
2AM5B
2BM5B
2CM5BW
2DM5BW
2DM5BW
3AM5B
3AM5B
3BM5B
3BM5b
3CM5BP400
3DMtT.BP400
4AM5BP400
4BM5BP4G-J
4CM5Li
4DM5B
4DM5E<
5AM5B
5BM5B
53 MSB
5Dr-15B
5DM5B
6AM5B
6BM5P
6CM5E
6DM5B
6DM5B
7AM5BW
7BM5B
7CM5B^
7DM5B
SAM5B
8AM5B
SBM5BP40O
SBM5BP4'JO
SCM5B
8DM5BP400
9AM5B
9BM5B
9CM5B
9DM5B
1OAM5B
10BM5BP400
10CM5B
10DM5BP40O
10DM5BP400
BO'/. IPA/FLT-BLK
807. IPA
CT903
CT904
CT905
CT906
CT907
CT908
CT909
CT91O
CT910R
CT911
CT911R
CT912
CT912R
CT913
C79J4
CT915
CT9J6
CT917
CT918
CT91BR
CT9J9
CT920
CT921
CT922
CT922F.
CT923
CT924
CT925
CT926
CT926F
CT927
CT928
CT929
CT930
CT931
CT931R
CT932
CT932R
CT933
CT934
CT935
CT936
CT937
CT938
CT939
CT94O
CT941
CT942
CT942R
CT943
CT944
PN 3530-15 IPA IMPINGERS
L«B NO. SAMPLE VUL. ML TITRANT
MG H2SO4
489
485
50 O
519
479
493
475
513
513
504
504
490
496
493
495
495
5 1 0
5 1 0
465-
474
457
453'
45S-
474 -
463
475
465
465
455
430
456-
460
439
439
458
45B '
417.
424'
485
467
454
495
552
554
529
508
508
297
348
5.4
5. 15
4.7
. 05
.4
.7
.9
.87
.75
.75
.9
3.9
4.8
4.3
2. 1
1.5
1.43
3.05
3. 1
2.5
2.6 •
2.6 .
3. 15
4.45
2. 12-
2. 1 •
4.6
3.95
4. 15
4.65
2.9
2.9
5.45
5.5 .
6.85
4.4
8.4
7.2
9. 15
8.05
5.6
5.9
7
5. 55
5.55
<.05
< .05
66.2
62.6
58.9
58.5
36.6
29. 7
44. 0
24.4
24. O
49.3
49.3
49.3
49.3
58.9
53.4
25.9
24.8
24. &
19.2
18.3
35.5
36.8
28.6
29.8
29.8
38.0
•—'O • Cj
53.0
24.7
24.5
52.4
42.6
47.6
53.6
31.9
31.9
62.6
63. 1
71.6
46.8
102. 1
84.3
104. 1
99.9
77.5
81. 9
92.8
70. 7
70.7
< 0. 2
< 0.3
FORMALITY OF TITRANT= .O1022
C-38
-------
LABORATORY REPORT
PN 3530-15
APRIL 20, 1983
Run No.
1AM5BW-PR
1AM5BW-F
1BM5BW-PR
1BM5BW-F
2CM5BK-PR
2CM5BW-F
2DM5BW-PR
2DM5BW-F
7AM5BW-PR
7AM5BW-F
7CM5BW-PR
7CM5BW-F
Blank-PR
Blank-F
Blank-PR
Blank-F
Blank-F
lA-PR-Blank
IB-PR-Blank
2C-PR-Blank
2D-PR-Blank
Lab No.
CT891
CT883
CT892
CT884
CT893
CT885
CT894
CT886
CT895
CT887
CT896
CT888
CT901
CT889
CT902
CT890
CT833
CT897
CT898
CT899
CT900
Ambient
weight,
mg
228.9
221.1
188.8
191.6
148.4
146.8
0.3
0.2
0.1
-
Total
partic-
ulate
M5W, mg
120.0
224.0
132.3
218.3
120.0
187.1
137.2
190.5
95.8
155.5
93.1
154.7
0.8
2.8
1.3
1.1
3.6
3.1
2.8
2.7
3.1
Cso4,
mg/llter
112.8
427.4
120.8
419.6
51.08
320.4
84.24
334.6
152.2
316.1
111.7
318.5
<1.00
1.98
<1.00
1.91
1.89
1.55
<1.00
<1.00
2.24
Vevap,
ml
293
235
291
235
365
235
332
235
320
235
389
235
305
235
215
235
235
235
235
235
235
NWSSP,
mg
74.5
85.8
83.9
82.7
94.4
83.5
98.7
82.3
28.8
53.3
33.3
51.7
0.8
2.2
1.3
0.5
3.0
2.6
2.8
2.7
2.4
Reviewed by /r^£f->->~r-i' $ ' /fas, ,•:-_-
C-39
-------
CLIENf: USEPA
ATTENTION:
PEDCO ENVIRONMENTAL, INC.
11499 CHESTER ROAD
CI IMC T NNAT I , OH 10 A 5246
-ABORATORr' ANALYSIS REPORT
VANAD / L HE A T TRE A TM E f ITS
SAMPLE IL BLANI<
PROJECT NO; 3530-L5
REDUI5ITION:
RECEIVE.!':
SAMPLED BV:
REPORTED: 5 ' 17/83
PAPA' iii TL"I<
143,3 175.9 r-1.5 J09.2
1 6-"'T', 6 hF", „ M6
# OF TREATNEMTE
9S.7 J2O.3
126.5
74.6
232C. 6 HF", M6
tt OF TREATMENTS
-0. 1
1O2.4
7
63.S
31cC, 6 HP. MG
# OF TREATMENTS
99.3
97.6
61
10
i
33
1C
It
QUESTIONS CONCERNING ANALYTICAL
REBuiL T5 SHOULD BE REFERRED TO
IL)H J. BENNETT
(513y 782-4700
11
C-40
APPROVED BY;
INORGANIC GROUP
<-
-------
APPENDIX D
SAMPLING AND ANALYTICAL PROCEDURES
D-l
-------
SAMPLING AND ANALYTICAL PROCEDURES
A four-train (quad) sampling system was used in this test
program. This system allowed four samples to be collected simul-
taneously at essentially the same point in the gas strejam. Each
individual sampling train consisted of a Method 5* frorithalf and
a Method 8* backhalf. Method 5 sampling procedures were used for
all tests, except as noted.
SAMPLING APPARATUS
The sampling train(s) used in these tests met design speci-
fications established by the Federal EPA and was assembled by
PEDCo personnel. Each train, set up as shown in Figure D-l,
consisted of:
Nozzle - Stainless steel (316) with sharp, tapered leading
edge and accurately measured round opening.
Probe - Borosilicate glass with a heating system capable of
maintaining the desired gas temperature at the exit end
during sampling.
Filter Holder - Pyrex glass with heating system capable of
maintaining a filter temperature at desired levels.
Impingers - Five impingers connected in series with glass
ball joints. The first, fourth, and fifth impingers were of
the Greenburg-Smith design, modified by replacing the tip
with a 1/2 inch I.D. glass tube extending to 1/2 inch from
the bottom of the flask.
40 CFR 60, Appendix A, July 1981.
D-2
-------
STACK WALL
a
i
U)
/
THERMOMETER
FILTER HOLDER
HEATED AREA
CHECK
VALVE
GLASS PROBE
TEMPERATURE
SENSOR
LOCATION
IMPINGERS
ICE WATER BATH
THERMOMETERS
99
BY-PASS
VALVE
VACUUM GAUGE
MAIN VALVE
CIRY TEST
METER
VACUUM PUMP
VACUUM LINE
IMPINGER CONTENTS
RUNS 1-10
EMPTY
200 ml BOX I PA
100 ml 10% H202
100 ml 10% H?02
400 g SILICA GEL
Figure D-l. Methods 5 and 8 sampling train schematic.
-------
Back-Half Filter Holder - Unheated Pyrex glass inserted
between the second and third impingers to prevent carryover
of any sulfuric acid mist.
Metering System - Vacuum guage, leak-free pump, thermometers
capable of measuring temperature to within 5°P, calibrated
dry gas meter, and related equipment to maintain an
isokinetic sampling rate and to determine sample volume.
A single pitot-tube and thermocouple located as shown in
Figure D-2 were used to measure stack gas velocity. Equipment
consisted of:
Pitot Tube - Type S pitot tube that met all geometry stan-
dards was attached to the probe system to monitor stack gas
velocity pressure.
Temperature Gauge - A Chromel/Alumel Type-K thermocouple (or
equivalent) was attached to the pitot tube, in an interfer-
ence-free arrangement, to monitor stack gas temperature
within 5°F by the use of a digital indicator.
Draft Gauge - An inclined manometer made by Dwyer with a
readability of 0.01 inch H_0 in the 0 to 1 inch range was
used.
Barometer - Aneroid type to measure atmospheric pressures to
within +_0 .1 inch Hg.
Probe and filter temperatures were monitored using multi-
terminal digital indicators with thermocouple leads located in
the middle of each probe and immediately behind the Method 5
filter frits. Rheostat devices were used to control individual
probe temperatures. Filter temperatures were maintained at the
desired level by the use of individual temperature controllers.
SAMPLING PROCEDURE
After selecting the sampling site, the stack pressure,
temperature, molecular weight, moisture content, and range of
D-4
-------
8 cm
15 cm
NOZZLE
4 cm
0.5 cm
A hNOZZLE
I THERMOCOUPLE
3-
i-GF
2 cm
2 cm
3 cm
4 cm (f3~ "S" TYPE PITQT
A -(f)-
4 cm
1.4 cm
Figure D-2. Four-train sampling system showing nozzle,
pitot tube, and thermocouple position.
D-5
-------
velocity head in the general sampling area were measured accord-
ing to procedures described in the Federal Register.* A single
sampling point located approximately 0.6 m from the stack wall
was selected to allow all four nozzles to be positioned at points
of equal velocity.
Individual sampling train components were assembled and
labeled. Glass fiber filters** (3-in. diameter) used in the
Method 5 position were heated to 315 °C prior to identification
and tare weighing to the nearest 0.1 mg on an analytical balance.
Each sample train had a Method 8 backhalf, modified by adding a
fifth impinger behind the filter to minimize evaporation loss of
IPA by additional cooling of the hot sample gas prior to its
contacting the IPA. An unheated glass fiber filter** assembly
was inserted between the second and third impingers to preclude
any sulfuric acid mist carryover. The contents of each impinger
was as follows:
Impinger Contents - All Runs
1 Empty
2 200-ml 80% IPA
3 100-ml 10% H202
4 100-ml 10% H202
5 400-grams silica gel
The sampling train subassemblies (probes, filter holders,
impingers) were transported to the test site and assembled in the
quad train configuration as shown in Figure D-3. The sampling
trains were leak checked at the sampling site prior to each test
40 CFR 60, Appendix A, Reference Methods 2, 3, and 4, July 1,
1981.
Whatman RA 934AH.
D-6
-------
o
i
PROBES
D C B A
HEATED
FILTER
COMPARTMENTS
HEATED
FILTER
COMPARTMENTS
MMPINGER SECTIONS
QUAD TRAIN ASSEMBLY
n n
TOP VIEW
OF PROBE ASSEMBLY
IN HORIZONTAL DUCT
GAS FLOW
.GAS FLOW
BACK
ELEVATION
VIEW
OF PROBE ASSEMBLY
PROBE AND NOZZLE ORIENTATION
Figure D-3. Quad train configuration.
-------
run by plugging the inlet to the nozzle and pulling a 15 inch Hg
vacuum, and at the conclusion of the test by plugging the inlet
to the nozzle and pulling a vacuum equal to the highest vacuum
reached during the test run.
The pitot tube and lines were leak checked at the test site
prior to each test run. The check was made by blowing into the
impact opening of the pitot tube until 3 or more inches of water
were recorded on the manometer and then capping the impact open-
ing and holding it for 15 seconds to assure it was leak free.
The static pressure side of the pitot tube was leak checked using
the same procedure, except suction was used to obtain the 3 inch
H2O manometer reading. Crushed ice was placed around the im-
pingers to keep the temperature of the gases leaving the last
impinger at 20°C or less. For each train, the probe and filter
were preheated to the desired temperature prior to sampling and
maintained at that temperature throughout the run. The partic-
ular conditions for each type of train were:
Method 5B (Designated MSB) - probe and filter assembly
heated to 160°C (320°F).
Modified Method 5B (Designated M5B-P400) - probe heated to
204°C (400°F) to minimize cold spots and filter assembly
heated to 160°C (320°F).
Method 5BW (Designated M5BW) - probe and filter assembly
heated to 160°C (320°F).
During sampling, stack gas and sampling train data were
recorded at 10-minute intervals and when significant changes in
stack flow conditions occurred. Isokinetic sampling rates were
D-8
-------
set throughout the sampling period with the aid of a programmable
calculator. All sampling data were recorded on the Particulate
Field Data Sheet.
SAMPLE RECOVERY
The components of the quad train sample system were labeled
and disassembled at the stack for transport to the sample clean-
up/setup area. The filter and probe assemblies were recovered as
follows:
0 All filters were carefully removed from the filter
holder and placed in a petri dish. These filters were
sealed and labeled for shipment.
0 For Methods 5B and M5B-P400, loose particulate from all
sample exposed surfaces prior to the filter and acetone
washings were placed in a polyethylene container,
sealed, and labeled. For Method 5BW, deionized, dis-
tilled water was used for the probe rinse. Particulate
was removed from the nozzle and probe with a nylon
brush. The liquid level was marked after each con-
tainer was sealed.
The impinger section of each sample train (modified Method
8) was removed from its ice bath and purged with ambient air for
15 minutes before recovering the contents. The long glass con-
nector between the front filter holder and first impinger was not
purged.
The contents were recovered as follows:
0 After gravimetric weighing, the contents of the first
and second impingers (condensate and 80 percent IPA)
were placed in a polyethylene container. The impingers
and connecting glassware between the front and backhalf
filter were rinsed with 80 percent IPA and the rinse
was added to the container along with the backhalf
filter. The containers were then sealed, labeled, and
the liquid level marked.
D-9
-------
0 After gravimetric weighing, the contents of the third
and fourth impingers (10 percent H202) were placed in a
polyethlyene container. The impingers and connecting
glassware were rinsed with deionized, distilled water
and the rinse was added to the container. The con-
tainers were then sealed, labeled, and the liquid level
marked.
0 The color of the silica gel was noted on the sample
recovery sheet and the net weight gain determined
gravimetrically.
Blank samples were taken for each new batch (or a minimum of
two) of the following reagents: acetone; deionized, distilled
water; 80 percent IPA; 10 percent H-O-; and a filter. In addi-
tion, each probe was rinsed prior to initial use with either
water or acetone (depending on method type), and these rinses
were retained for probe rinse blank analysis.
SAMPLE LABELING
The sample label identifies the test run number, sample
train, and each component of the individual train. The run
numbers are consecutive from 1 to 10. Since each run consists of
four single trains, each train was identified by a letter A, B,
C, or D.
The last item of the label identifies the sample method and
the component of the recovered sample. For example, identifica-
tion No. 1C M5B-IPA indicates Test Run 1, Sample Train C, Method
5B sample method at 160°C (320°F) and the IPA impinger contents
and rinse. Another example is 4A M5B-P400-Probe indicatting Test
Run 4, Sample Train A, Modified Method 5B sample method (filter
at 160°C and probe at 204°C), and the probe rinse fraction.
D-10
-------
SAMPLE RECEIPT AND CHAIN OF CUSTODY
Every sample entering the lab for analysis was assigned a
unique alphanumeric identity on a Sample Receipt and Record Sheet
(log). In the sample log-in book, this number was correlated
with sample identification label and with the number of the
analysis requisition form. A copy of the analysis requisition
was kept with the samples and later with the raw data.
The samples remained in a locked sample storage room until
removed for analysis. Transfer was documented on a Sample Con-
trol Record which is maintained by the sample custodian. The
Sample Control Record documents all custody changes which occur
in the laboratory and each procedure performed on the sample.
Release of samples requires notation of the Sample Control
Record and verification of information and sample container
condition. If the sample is to be transferred between two per-
sons (i.e., two analysts), the transfer must take place through
the sample custodian. In other words, the sample will be re-
turned to the sample custodian and reissued.
SAMPLE ANALYSIS
Particulate Analysis
Initially, the filter particulate catch was placed in a
tared glass weighing dish, desiccated for 24 hours, and weighed
to the nearest 0.1 mg until a constant weight was achieved. The
probe rinse fraction was transferred to a tared beaker and evap-
orated to dryness at ambient temperature and pressure, desiccated
D-ll
-------
for 24 hours, and weighed to the nearest 0.1 mg until a constant
weight was achieved.
For this study a constant weight was defined as a difference
of no more than 0.5 mg or 1 percent of the net weight, whichever
was greater, between successive weighings, with at least 6 hours
of desiccation between weighings. This is the same definition as
for Method 5. Because previous data have shown that samples
containing a significant amount of sulfuric acid may not come to
a constant weight, each sample received a maximum of three sepa-
rate weighings. In any case, the lowest weight achieved was
reported as the ambient weight.
After this initial gravimetric analysis at ambient condi-
tions, probe rinse and filter fractions were subjected to the
sequence of heat treatments as outlined in the analytical matrix
(Table 3-2). The samples were heated in an oven at the specified
temperature for either 6 or 24 hours as indicated. Each sample
fraction was cooled and desiccated for 24 hours after removal
from the oven and weighed to the nearest 0.1 mg. Each sample was
desiccated from an additional 3 hours and weighed to the nearest
0.1 mg. The lower weight achieved was reported.
Selected samples received additional heat treatments in
order to evaluate sample stability. Prior to advancing to the
next step of an analytical sequence, a heat treatment was re-
peated at the same time and temperature condition until a stable
weight was obtained for these selected samples. For this study a
stable weight was defined as a difference of no more than 5.0 mg
D-12
-------
or 10 percent of the net sample weight, whichever was greater,
between successive treatments at the same conditions. The number
of treatments required to achieve a stable weight was recorded
for each sample fraction up to a maximum of three treatments.
The lowest weight achieved at a given treatment temperature was
reported as the weight for that temperature condition. Filter
and acetone blanks were treated in a similar manner as the sam-
ples.
Water-Soluble Sulfate Determination
Each sample fraction plus blanks were handled and analyzed
as follows:
0 Filter - The filter was cut into small pieces and
placed in a 125-ml Erlenmeyer flask with a standard
type joint equipped with an air condenser. The con-
tents of the shipping container were rinsed into the
flask. About 50 ml of distilled water was added and
the contents gently refluxed for 6 to 8 hours. The
solution was then cooled and diluted with water to
exactly 250 ml in a volumetric flask. This solution
was reserved for total soluble sulfate analysis, which
is described below.
0 Probe Rinse - The probe wash was poured into a 250 ml
volumetric flask. The sample bottle was rinsed with
distilled water and the rinsings were added to the
flask. The solution was then diluted to the mark with
distilled water (or, if greater than 250 ml, the volume
was measured). This solution was reserved for total
soluble sulfate analysis, which is described below.
Total Soluble Sulfate—
A 15-ml aliquot* was drawn from the settled samples (filter
and rinse) into separate sample containers with a clean, dry
pipet (only solution was transferred—no solid; if necessary, a
portion of the sample was centrifuged). The sulfate ion (SO =)
The pipet is not rinsed. This deviation from normal procedures
is necessary because the volume removed from the volumetric
flask is required in the calculations.
D-13
-------
concentration in each aliquot was determined by ion chromato-
graphy (1C). A syringe was used to inject 1 ml of the aliquot
into the 100-yl sample loop of the 1C, thereby flushing the loop
with sample. The conductivity response of the sample was com-
pared with the calibration curve to obtain SO." concentration in
mg/liter. Dilutions were prepared and reanalyzed if the initial
response was out of the linear calibration range (i.e., greater
than 15 mg/liter). Blank filter and water samples were prepared
and analyzed in the sane manner as the actual samples.
Mass Determination--
Filter and Rinse Solution Preparation - The remaining con-
tents of each volumetric flask (235 ml) were poured into
separate tared 250-ml beakers, and the flask was rinsed with
distilled water to transfer all particulate matter. The
filter solution was in Beaker A and the rinse solution was
in Beaker B. These solutions were evaporated to approxi-
mately 100 ml at 105°C and allowed to cool before the next
analysis was made.
Filter and Rinse Solution Analysis - Five drops of phenol-
phthalein indicator were added to all the tared beakers.
Concentrated NH.OH was then added drop by drop until the
solution turned pink. The samples were returned to the oven
and evaporated to dryness at 105°C, then cooled in a desic-
cator and weighed to a constant weight. Results were re-
ported to the nearest 0.1 mg. For this method, "constant
weight" means a difference of no more than 0.5 mg or I
percent of the total weight less beaker and/or filter tare,
whichever is greater, between two consecutive weighings,
with no less than 6 hours of desiccation time between weigh-
ings.
Calculations—
Nomenclature—
FP = weight of particulate* on the filter in Beaker A,
mg
PRP = weight of probe rinse particulate* in Beaker B, mg
*Particulate with H2SO4 converted to (NH4)2S04.
D-14
-------
NWSSP = weight of nonwater-soluble sulfate particulate* ,
mg
ASf = weight of ammonium sulfate in filter sample, mg
AS = weight of AS in probe rinse sample, mg
Vevap = volume of solution evaporated in Beaker A (filter)
p or Beaker B (probe rinse) , ml
C = concentration of sulfate in filter or probe rinse
4 solution aliquots, mg/liter
Equations--
FP(mg) = gross weight Beaker A - tare weight Eq. 1
Beaker A - filter tare weight
PRP(mg) = gross weight Beaker B - tare weight Eq. 2
Beaker B
AS(mg) = C (mg/liter) x V (ml) x llter — Eq. 3
4 evap 1000 ml
x 1.376 (m? AS )
mg S04
Mass of Nonwater-Soluble Sulfate Particulate
The sum of the particulate** collected on the filter (FP)
and the particulate* collected in the probe rinse (PRP) is equal
to the sum of nonwater-soluble sulfate particulate (NWSSP) and
ammonium sulfate (AS) in both samples:
FP + PRP = NWSSP + ASf + AS Eq . 4
The NWSSP can be found be rearranging the equation and
substituting appropriate values determined using Equations 1, 2,
and 3.
NWSSP = FP + PRP - AS- - AS Eq. 5
f pr 4
*
* *
Particulate excluding water-soluble sulfates.
Particulate with H2SC>4 converted to (NHJ-SO..
D-15
-------
Sulfuric Acid Mist Analysis
The volume of the sample solution was recorded and the pH of
the sample determined. The sample volume was diluted to 500 ml
with 80 percent IPA. A 100 ml aliquot of this solution was
pipetted into a 250 ml Erlenmeyer flask with 2 to 3 drops of
thorin indicator and titrated to a pink end point using 0.0100 N
barium perchlorate. If the end point color was not correct, the
sample was passed through an ion exchange resin and retitrated.
A blank was titrated for each sample in the same manner,.
Sulfur Dioxide Analysis
The sample was diluted to 500 ml with deionized, distilled
water. A 20 ml aliquot of this solution was pipetted into a 250
Erlenmeyer flask with 80 ml of 100 percent IPA and 2 to 3 drops
thorin indicator. The solution was then titrated to a pink end
point using 0.0100 N barium perchlorate. A blank was titrated in
the same manner.
D-16
-------
APPENDIX E
CALIBRATION PROCEDURES AND RESULTS
E-l
-------
CALIBRATION PROCEDURES AND RESULTS
All of the equipment used was calibrated according to the
procedures outlined in Maintenance, Calibration, and Operation of
Isokinetic Source-Sampling Equipment.*
NOZZLE DIAMETER
The nozzles were calibrated by making three separate measure-
ments using different inside diameters and calculating the aver-
age. If a deviation of more than 0.004 inches was found the
nozzle was either discarded or reamed out and remeasured. A
micrometer was used for measuring. These calibration data are
shown in Figures E-la and b.
PITOT TUBE CALIBRATION
The pitot tubes used in sampling were constructed by PEDCo
Environmental and met all requirements of Method 2, Section 4.1
of the Federal Register.** Therefore, a baseline coefficient of
0.84 was assigned to each pitot tube. See Figures E-2 and E-3
for alignment requirements of Method 2, and Figures E-4a and b
for actual inspection data of the pitot tubes used during the
test program.
*
Office of Air Programs Publication No. APTD-0576.
**
40 CFR 60, Appendix A, Reference Method 2, July 1981
E-2
-------
Calibrated by
Nozzle
identification
number
IK
/g
/ c
/ J)
/^ ft
rf ^M
2d
1$
D^t in.
r-ZZZ
,Z2Z
,n\
,2H
.132
12^
,ZK
.201
D2, in.
.U2
• 22}
/&(
.2/7
,22?
,£Z7
,2>i(
* ( /f}
• js \ v
D3/ in.
.2Z/
.2^-/
,220
.///
,2zY
•2Z7
>JAl
,zro
AD, in.
,002.
,00{
.Off]
,6$$
,001
,00 [
,001
tw
avg
. /CX-.
• Z2
/ /-^
,Z^
-------
Date 2 ' //' /3
Calibrated by
Nozzle
identification
number
£r? *~\
& 8
C--
B J)
* ^/JS & if / 0
D,, in.
•**"
,/D/
./*
D2, in.
,/^
" *3
^ ^
,^J
D3, in.
,»f
' 7 i?
,?of
.**<
AD, in.
s£>03-
/ O<£^
,6**
.*•>-
avg
,-?':
/ ^^
,?«^
v ^ f} I
where:
Dl 2 3
-L / *• i -5 »
AD
D
avg
nozzle diameter measured on a different diameter, in.
Tolerance = measure within 0.001 in.
maximum difference in any two measurements, in.
Tolerance = 0.004 in.
= average of D., D_, and D,.
Figure E-lb. Nozzle calibration data.
E-4
-------
TRANSVERSE
TUBE AXIS
FACE
*~ OPENING ~
PLANES '
(a) ENDVIEW
0.48 cm < Dt < 0.95 cm
(3/16 in.) (3/8 in.)
A-SIDE PLANE
LONGITUDINAL
TUBE AXIS (
J
{
Dt
^-" J
A ^
NOTE:
1.05 Dt < P < 1.50 Dt
B-SIDE PLANE
(b)
A or B
(c)
Figure E-2. Properly constructed Type S pitot tube, shown in: (a) end view,
face opening planes perpendicular to transverse axis; (b) top view; face open-
ing planes parallel to longitudinal axis; (c) side view; both legs of equal
length and center!ines coincident, when viewed from both sides. Baseline
coefficient values of 0.84 may be assigned to pitot tubes constructed this way.
E-5
-------
TRANSVERSE
TUBE AXIS
(a)
LONGITUDINAL
TUBE AXIS
(e)
(f)
82 (+ or -)
Bl (+ or -)
Figure E-3. Types of face-opening misalignment that can result from field
use or improper construction of Type S pitot tubes. These will not affect
Cp so long as a] and a2 <10°, BI and 62 <5°, z <0.32 (1/8 in.) and w <0.08
cm (1/32 in.).
E-6
-------
Pi tot Tube No.
l7
e-*-
Inspector £ A -. .,/o
1.05 Dt
-------
Pitot Tube No.
Date
Inspector £ . C" <:- :>. : I
/ /
al
Degrees
Hs
<10°
a2
Degrees
^"'
<10°
Degrees
T.T'
<5°
Degrees
7.^"°
<5°
Inches
ITS"
0.185 <_ Pt <0.380
P
Inches
/ ci 'So
-
1.05 Dt
Inches
.3--/3>
-
1.50 Dt
Inches
. ^ (.-<-'
-
Y
Degrees
& . ^ °
-
Degrees
J.5L
-
Inches
r Qr"'
» (- V i, X,
<0.125
Psin {$)
Inches
. C'c'.^-
<0. 03125
Inches
^~ \ c
1. 05 Dt
-------
DRY GAS METER AND ORIFICE METER
Figure E-5 was the set-up used for the initial and post-test
calibration. A wet test meter with a 2-cubic-feet-per-minute
capacity and +_l percent accuracy was used. The pump was run for
approximately 15 minutes at an orifice manometer setting of 0.5
inch of water to heat up the pump and wet the interior surface of
the wet test meter. The information on Figure E-6 (example
calculation sheet) was gathered for the initial calibration and
then, the ratio of accuracy of the wet test meter to the dry test
meter, and the AH@ were calculated.
POST-TEST METER CALIBRATION CHECK
A post-test meter calibration check was made on the meter
box used during the test to check its accuracy against its last
calibration check. This post-test calibration must be within +5
percent of the initial calibration. The initial calibration was
performed as described in APTD-0576. The post-test calibration
was performed using the same method as the initial calibration.
Three calibration runs were made using the average orifice
setting obtained during each test run and with the vacuum set at
the average value obtained during each test run. After running
the post-test calibration check all three runs were within the +5
percent range allowed by the Federal Register.*
The initial and post-test meter box calibration data are
presented in Figures E-7a through h.
40 CFR 60, Appendix A, Reference Method 2, July 1981.
E-9
-------
o
6LASS TUBE
THERMOMETER
UMBILICAL)
I
METER BOX v^
_ r
-^PRESSURE
CONTROL
VALVE
U - TUBE
MANOMETER
WET TEST METER
Figure E-5. Calibration setup.
DATE
UTTER BOX NO.
BAROMETRIC PRESSURE,Pb •
in. Mq.
DRY CAS METER HO.
Orifice
sonometer
setting
AH
in. HjO
0.5
1.0
1.5
2.0
3.0
4.0
Gas volume
wet test
•eter
V
"3
5
5
10
10
10
10
Gas volume
dry oas
•teter
V
ft3
Met te»t Dry «•• neter
••ter
V
•r
Inlet
^i'
•P
outlet
Sin'
•r
Av»r«qe
ld'
•r
Ti»e
e,
•in
T
AH?
AH
0.5
1.0
1.5
2.0
3.0
4.0
AH
0.0368
0.0737
0.110
0.147
0.221
0.2»4
Tf
Vw ph (td * 400)
V (P * *H ) (t + 4(0}
a*.
0.0317 AH [ lt»* 4"»
P. It. * 4(0) V
b d L w
•V
J
1 m tatio of »ccur»cy of wet test *eter to dry te»t neter. Tolerinee • + 0.01
M< • Orifice of pressure differential that gives 0.75 cf» of air at 70*r and 29.91 inches of
••rcury, in Hj). Tolerance • +0.15.
Figure E-6. Calibration data sheet.
E-10
-------
HTM
•».
MISSUW
_1n. Ng
leak Clwcks:
* »«»1t1ve (»1n1»jm S In. H?0)
~ Negative (within 3 1n. Ng of
to tacted O.OCft cfm.
?.
in.
Orifice
wnometer
MU1ng
AH
1n
Volume
Met test
•eter
ft
Volume
dry gas
•eter
ft
et teit
Mter
ratures
Dry g«s aeter
fc
tlet
\
Average
Td
•F
Duration
of
test
f
Vacuum
setting
1n
Ng
AHf
0.5
-Z.o
JJ
•f*
1.0
1.5
.0
2.0
3.0
/o o
/O.o
«*•
4.0
10
•'•fft.ttf
90.1
T *ist rat deviate by "ore than *0.02 >.
AH* Mtt not deviate by "ore than 0.15 In HjO.
Avertge
AMD
tH
)(Td*4«0)
)(Pb * AH/13.6)(TW * 460)
( 0.0317 )( AH )
(T, » 460) Off
0.5
»
•• *
^7.3 /
t.'?,"1)
1.0
if
.f
1.S
)(
.f
2.0
tf
1.0
±L
,t /r. e» U
4.0
Figure E-7a. Particulate sampling meter box initial calibration.
E-ll
-------
DATE:
METER BOX NO.
BAROMETRIC PRESSURE (Pfaar):
PLANT:
- *•/
H9 PRETEST Y: f-&3o AHP:
PROJECT NO.
PROJECT MANAGER:
Orifice
manometer
setting
*-
AH
in. H0
(•0
Wet test
meter
vol ume
ft
Dry gas
meter
volume
ft
r 73
Wet test
meter
Temperatures
w
°F
Dry gas meter
Inlet
Tdi
77
Outlet
Tdi
73
Average
""
°F
Vacuum
setting
**
in. Hg
(0
Duration
of run
min
t.o
S&. 222
73
(O
ZL
/Z-
73
8
77
Post-test average***
Td*460
(0.0317)( AH )
460)
(Tw+460)( 0 )
(/^>.732>)( tt.S/ )( ^33 )
//.
U>3/7)( ^
*To be the average AH used during the test series.
**To be the highest vacuum used during the test series
***Post-test Y must be within the range, pre-test Y +0.05Y
Post-test AH@ must be within the range, pre-test AH@ +0.15
Figure E-7b. Particulate sampling meter box post-test calibration.
E-12
-------
BATE: f&£
ICTER IOX HO.
IAROMETR1C PRESSURE
. Hg
leak Checks:
Positive (minimum 5 In. MjO):
Negative (within 3 In. Hg of absolute):
to exceed 0.005 cfm.
C ci i etm*
j>y' -^ in.
Orifice
Mnometer
setting
AH
1n
Volume
vet test
•eter
ft
Volume
dry gas
•eter
ft
Twperatures
et es
•eter
\
•F
Dry g«s meter
n e
T1
gt
ft
tlet
To
Average
Td
Duration
of
test
9
•in
Vacuum
setting
1n
Hg
In N20
0.5
!\ ^ '/•
I H'w' li
1.0
1.5
/C, <-"
2.0
fro
/1 0
/ C'
v
3.0
0
0,Q
4.0
iC.
II o
•y Must not deviate by wort than +0.02 Y.
AW «ust not deviate by more than 0.15 in HjO.
Average
AH*
AH
4 460)
460)
(0.0317)( AH )
( Pb )(7d * 460)
n?
0.5
f^frff
•«
2-i -,
c •
fed
1.0
f^i> 'O (^A '-^Y
( -5 •
1.5
{7-7
2.0
° H 21. £3 )(S.-S<; o)
{..•* ?)( 2 •
»12
X'-' ^
S.O
H
4.0
?5
< O .'^'
Figure E-7c. Particulate sampling meter box initial calibration.
E-13
-------
DATE: £-//3
BAROMETRIC PRESSURE (Pbap):
PLANT:
. Hg
PROJECT MANAGER: ~S. ??o«/ASir/4
METER BOX NO.
PRETEST Y: .9^3 AHE: /,
PROJECT NO. ^S3o-
CALIBRATOR:?
c-
Orifice
manometer
setting
*
AH
in. H«0
/ ^
/..->
/ , C-
Wet test
meter
volume
Vw
ft3
&
/O
10
Dry gas
meter
volume
Vd
ft3
m^
?P™
m.yrs
^oj7
^,037
o^.fe
Temperatures
wet test
meter
w
°F
7^
7J
73
7?
7^
ury gas meter
3nlet
Tdi
9o
2?V
?^
1b(c,
2G
?^7
Outle
Tdi
°F
7^
"7 *•/
7 ^
76.
7?
Average
°F
*^^l ~"/ ^^
/ r ^^^
fro
V*
• • !•••••••••
Vacuum
setting
**
in. Hg
10
( o
10
m^tm—ti+*^^^.
Durati
of ru
min
/7vr
Post-test average***
C-
w
(
Td+460
)(p
har
AH/13.6)(Tw + 460)
_^ W
(0.0317)( AH )
+ 460)
(Tw+460)( 0 )
(//O )(
) (5-33,
//-o
n 2
*To be the average AH used during the test series.
**To be the highest vacuum used during the test series.
***Post-test Y must be within the range, pre-test y +0.0'5y
Post-test AH? must be within the range, pre-test AH@ +0.15
Figure E-7d. Particulate sampling meter box post-test calibration.
E-14
-------
DATE: //'^> '#"—
CALIBRATOR: D. £*-/>£ '££rt, '
Leak Checks:
Positive (minimum 5 1n. H?0): ^/
Negative (wUtnn 3 in. Hg of absolute) :
METER BOX NO. ^/.^ " -'
BAROMETRIC PRESSURE (Pj 21 •<--(,
(i i<:<- cfm« f.f In. Hg
in. Hg
•hot to exceed O.OXK, cfm.
Orifice
nanometer
setting
AH
1n H.O
0.5
1.0
1.5
2.0
3.0
4.0
Volume
wet test
meter
V.
ft3
10
ID
0
0
0
Q
Volume
dry gas
meter
Vd
ft3
(•<•? 37.0
Ml!) OQ
67«U*-
Afa,*(5
t$/#
(,'iff.W
'lot. cat
7//.53I
•?-j.3c5
•71T,#&
7V- If!?
Vf^i
Temperatures
Wet test
meter
T.
•F
tt .
IS
75"
7_<
?r
75
7<
7f
1$
1$
1$
15
Dry gas meter
frilet
T1
•F
11-
??
$P
tt
ft
F-te
^
k
^U
^7
K#
e^
Outlet
To
•F
14-
1t>
»7L-
7u
7/-
iv;
•/^
71
jfo
6^
&>
^0
Average
Td
•F
1t.r
'/X.?o
^.7<
^;.^
13.^<
,VM
Duration
of
test
f
•in
i&
'^
tt*
t
L221
3.0
r--.'3'7u ;
( to v
4.0
M )f
w
<-i f
Figure E-7e. Particulate sampling meter box initial calibration.
E-15
-------
DATE: Z.//S/%3
BAROMETRIC PRESSURE (Pbap): £?.y&1n. Hg
PLANT: ____^_^_^__ '„.
PROJECT MANAGER: ~S
METER BOX NO. F&-&,
PRETEST Y:
PROJECT NO.
CALIBRATOR:
Orifice
manometer
setting
*-
AH
in. H20
(.a
I 0
' ^
Wet test
meter
vol ume
\
n3
/6
/» '
1C
Dry gas
meter
volume
vd
n3
37*3
&%•{%
<^St?' /& /
J fj-fj (_,?
ttfa
W*
MteS
Temperatures
wet test
meter
w
CF
73>
77
73
73
73
73
Dry gas meter
inlet
°F
7^
7^-
7^
^5?
TV
Outle
Tdi
°F
•—•—•»•«
7P
7<0
7JL
72-
73
Average
''d
°F
«M«B«HH^HMMH
15^
7$6
Vacuu
settl
**
in. H
/fe|
Duration
of run
min
(0
lo
Post-test average***
Al
*To be the average AH used during the test series.
**To be the highest vacuum used during the test series
***Post-test Y must be within the range, pre-test v +0.05v
Post-test AH9 must be within the range, pre-test AH(? +0.15
Figure E-7f. Particulate sampling meter box post-test calibration.
E-16
-------
DATE:
CAL1IRATOR:
NO. r&*i-
ICTCR BOX
BAROMETRIC PRESSURE (Pfc)
In. Kg
Leak Checks :
Positive
5 1n. M20):
Negative (within 3 In. Hg of absolute): ' c-
*Hot to exceed 0.005 cfm.
In. H9
Orifice
•anometer
letting
AH
in H?0
Volume
net test
•eter
ft
Volume
dry gas
•eter
ft
Temperatures
Uet est
wter
Dry gas Mter
ne
T1
fi
tlet
Average
Duration
of
test
Vacuum
setting
1n
MO
uw
0.5
1.0
1.5
/G.0
z-
5/1
2.0
3.0
Jo.
-'."2
00
'*
4.0
73
t awst not deviate by «ore than +0.02 y.
AW mst not deviate by acre than 0.15 In HjO.
Average
AH
( V )(P * AH/13.6)(T * 460)
(0.0317)( AH )
( »h )(T, * 460)
D 0
460)(ffr
0.5
Cc
c.5
a
1.0
-f
1.5
(A
2.0
.(
3.0
4.0
l/e e if
.f /<•'<•*
Figure E-7g. Particulate sampling meter box initial calibration.
E-17
-------
DATE: Z//6/93
METER BOX NO. t &- "7
BAROMETRIC PRESSURE (P^): 29.<^n. Hg pRETEST Y. /.
PLANT:
PROJECT MANAGER: ^ P?OHA '
PROJECT NO.
CALIBRATOR: ^
Orifice
manometer
setting
*-
AH
in. H20
(<&
t.O
/>n
Wet test
meter
vol ume
«'
(
/£> «
/o
/4 <
Dry gas
meter
volume
vd
n3
z/z.tio
oZl 13V
^g7 y *?u
Temperatures
wet test
meter
Tw
7J
73
-7?
?•?
73
73
Dr
Tdi
°F
77
Q 7
2J £_,
71
52-
<^e
3g
y gas meter
Outlet
Tdi
77,
7V
7ty
76
"76
72
Average
°F
?<
Vacuu
settl
**
in. H
(C
/o
Duration
of run
min
Post-test average
***
(tOOOS'l
Vw X
Vd ^Pbar * W13.6)(Tw + 460)
(0.0317M AH )
(T*460}( 0 )
Ji
(lO.OOfcH
)(5"3'7.2j>r
*To be the average AH used during the test series.
**To be the highest vacuum used during the test series.
***Post-test Y must be within the range, pre-test Y +0.05Y
Post-test AH0 must be within the range, pre-test AH9 +0.15
Figure E-7h. Particulate saripling meter box post-test calibration
E-18
-------
THERMOCOUPLES
Thermocouples were calibrated by comparison against an
ASTM-2F thermometer at approximately 32°F, ambient temperature,
100°F, and 500°F. The thermocouples read within 1.5 percent of
the reference thermometer throughout the entire range when ex-
pressed in degrees Rankine. If a thermocouple did not read
within 1.5 percent, a correction formula based on a least squares
analysis of the data was utilized. The correction formula cor-
rected the data to within 1.5 percent. Each thermocouple was
checked at ambient temperature at the test site to verify the
calibration. Calibration data are presented in Figures E-8a
and b.
DIGITAL INDICATOR FOR THERMOCOUPLE READOUT
A digital indicator was calibrated by feeding a series of
millivolt signals to the input, and comparing the indicator
reading with the reading the signal should have generated. Error
did not exceed 0.5 percent when the temperatures were expressed
in degrees Rankine. Calibration data are shown in Figures E-9a
and b.
DRY GAS THERMOMETERS
The dry gas thermometers were calibrated by comparison
against an ASTM-2F thermometer at approximately 32°F, at ambient
temperature, and at approximately 110°F. The thermometers agreed
within 5°F of the reference thermometer. The impinger thermom-
eters were calibrated by comparison against ASTM-2F thermometer
at approximately 32°F and ambient temperature. Calibration data
are included in Figures E-lOa through d and E-lla through d.
E-19
-------
'J hern oco'u; IL No. '•
L>ate :
Ambient ten
Calibrator :
Reference
point
No.
?
.n
/•
3
Correction
iperat-re: 7^ r'I Barometric \ >r essure '• J2*l • 3j !l
fT A ^ ,-L-,^-,,, Reference; -&, r" -^.^
* a ~ * o r * * * * :
Reference
point
Kc .
;
' ")
3
V
Slope: O. *?-23? Intercept: •/ ^
Reference Corrected
thermometer thermocouple
temperature, temperature, j Difference,
op ' op i**
7L \ •?/ S ^-'^
3<7 Y/ ^o.*/c;
^f*/ ^J 0.^
c,rf ft*? i o.oo
Critical test points are 32C, 100°, and 50CC.
*Source: 1) Ice bath
2) Ambient
3) Furnace
**Percent difference
Reference temp. CF - thermocouple temp. °F 10Q
(Reference temp. °F + 460°F)
Each percent difference must be less than or equal to 1.51:
***Reference thermometer must be ASTM.
****Correction factor must be determined if any percent difference
is >1.5%.
Figure E-8a. Thermocouple calibration data sheet.
E-20
-------
Date:
<-//
Thermocouple No.:
Ambient temperature: ~73 T Barometric pressure: ^fS-j " l\<;
Calibrator: *T ' T^es-r^-, Reference: A^T-^1—2.^
Reference
point
No.
/
-*
3
i
Source, *
(specify)
t
i
Reference
thermometer
temperature,
op* * *
?3
•3S~
3 /if
3 ; Y^
Thermocouple
temperature,
Op
-7^
Difference ,
I**
-c 'Sf
3<{ -o. 2C
Itl \ f.2l
sti
1 /^
Correction factor'
Slope:
Intercept:
Reference
point
No .
Reference
thermometer
temperature ,
°F
Corrected
thermocouple
temperature, Difference,
Op ?**
Critical test points are 32°, 100°, and 500C.
*Sourco: 1) Ice Lath
2} Ambient
3) Furnace
**Percent difference
Reference temp. °F - thermocouple_temp. °r nnr
(Reference temp. °F + 460°F) x 100x
Each percent difference must be less than or equal to 1.5r.
***Reference thermometer must be ASTM.
****Correction factor must be determined if any percent difference
is >1.5%.
Figure E-8b. Thermocouple calibration data sheet.
E-21
-------
Date
Wl'. A
Indicator Ho.
Opera
t, if
Test Point
No.
0
1
2
3
4
Millivolt
signal*
**
Equivalent
temperature,
•F*
1<*
J-Z-.-o
/0t*~Z
Kf.l
/P?-°
Digital Indicator
temperature reading,
•F
ft.*
2&.b
/06,l
f£0*l
fltf.5
Difference,
%
a
-------
Date
A'0 LA /£, tf
Indicetor Mo.
Test Point
No.
0
1
2
3
4
Hillivolt
signal*
**
Equivalent
temperature,
•F*
^"1 f*~
i ^~)
33'°
/Cp.a-
4£lJ
ntt-°
Digital Indicator
temperature reading,
•F
^A
2>\>te
/ootf
dcffi &
f(«3
Difference,
X
o.itf*
O.o%°?°
O.t-tf*
O- /37°
-0.01-*-
Percent difference must be less than or equal to 0.5%.
Percent difference:
(Equivalent temperature °R > Digital Indicator temperature reading *R)(1DO'Q
(Equivalent temperature *R}
Where *R « °F + 460°F
•See thermocouple digital Indicator calibration verification device calibra-
tion for these values.
**Th1s point 1s imblent temperature. The device 1s off and therefore 1s
supplying no signal other than ambient temperature.
Figure E-9b. Thermocouple digital indicator calibration data sheet.
E-23
-------
Date:
Calibrator; ^./A r^.^-r.
Inlet
Meter Box No.:
Reference: As
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
-?2.o
22.-?
n7.<=>
Dry gas
thermometer
temperature,
•F
72.
Iz
///
Difference,
•F**
o.o
(5,7
?.t^
Outlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
72.0
22.-?
l(6>. o
Dry gas
thermometer
temperature ,
•F
73
3Y
t/f
Difference,
»F**
/.o
f.3
/.o
•Source: 1) Ice bath
2) Ambient
3) Hater bath
"Difference must be less than or equal to +5°F.
Figure E-lOa. Dry gas thermometer calibration data sheet.
E-24
-------
Date:
Meter Box No.:
Calibrator; Q.
Reference;
Inlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
72.0
J2 ?
f 08.0
Dry gas
thermometer
temperature,
•F
-?&
IS-
/ o<=>
Difference,
•p **
y.o
7. ?
2.0
Outlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
~?2 0
32.7
K7. f
Dry gas
thermometer
temperature,
•F
73
3
Iff
Difference,
• p**
/. 0
/.3
.^r
•Source: 1) Ice bath
2) Ambient
3) Water bath
••Difference must be less than or equal to +5°F.
Figure E-lOb. Dry gas thermometer calibration data sheet.
E-25
-------
Date:
Meter Box No
Calibrator;
Inlet
Reference;
Reference
point
No.
1
2
3
:
Source *
2
1
3
=======
Reference
thermometer
temperature ,
•F
72. 0
32.7
Iff.O
Dry gas
thermometer
temperature ,
•F
•72
32.
i/y
Difference,
•F**
a. o
0.7
/. o
Outlet
Reference
point
No.
1
2
3
— =^=1^=^==^
Source *
2
1
3
Reference
thermometer
temperature ,
•F
72. o
?-? 7
Iff 0
•"•—..-•.M "
Dry gas
thermometer
temperature ,
•F
73
32
lt&
Difference,
• p>* *
/.o
0.7
5.0
•Source: 1) Ice bath
2) Ambient
3) Water bath
••Difference must be less than or equal to +5°F.
Figure E-lOc. Dry gas thermometer calibration data sheet.
E-26
-------
Date:
Calibrator; & A
Meter Box No. : f G> ~?
Reference:
Inlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
?2.o
3$. S~
// 9. &
Dry gas
thermometer
temperature ,
•F
76
38
jf-7
Difference,
•p**
y.o
v.y-
2.0
Outlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature,
•F
72.0
37.3
l (7-®
Dry gas
thermometer
temperature,
•F
72
^7
1/3
Difference,
• P**
0. O
0.3
y.o
*Source: 1) Ice bath
2) Ambient
3) Water bath
••Difference must be less than or equal to +5'F.
Figure E-IOd. Dry gas thermometer calibration data sheet.
E-27
-------
Date:
Thermometer No. :
Ambient temperature: 73° °F Implnger:
Calibrator:
NOX:
Reference
point
No.
1
2
Source *
2
1
Reference
thermometer
temperature,
CF
75°
3i°
Thermometer
temperature,
73°
32"
Difference,
op**
-------
Date:
Thermometer No.:
Ambient temperature: "7^°" °F Implnger:
Calibrator: p. /4/JT Reference:
Reference
point
No.
1
2
Source *
2
1
Reference
thermometer
temperature,
°F
-2£°
3V
Thermometer
temperature,
°F
V3°
33"
Difference,
op**
-z"
/°
*Source: 1) Ice Bath
2) Ambient
**Difference must be less than +2eF at both points
Figure E-llb. Thennometer calibration data sheet.
E-29
-------
Date:
Ambient temperature:
Thermometer No.:
F Impinger:
vv9
Calibrator: P /•?*;-, C-^.iJ^'>P .:=?> Reference:
NOX:
Reference
point
No.
1
2
Source *
2
1
Reference
thermometer
temperature,
CF
-7.^
-> D
• ====
Thermometer
temperature,
°F
>/°
•?-,-*
_ 2^
Difference,
f*
t-i
c
*Source: 1) Ice Bath
2) Ambient
**Difference must be less than +2°F at both points
Figure E-llc. Thermometer calibration data sheet.
E-30
-------
Date:
Thermometer No. :
Ambient temperature:
Calibrator:
Reference
point
No.
_°F Implnger:
Source *
Reference
thermometer
temperature,
°F
"°x:
Thermometer
temperature,
"F
Difference,
*Source: 1) Ice Bath
2) Ambient
**0ifference must be less than +2°F at both points
Figure E-lld. Thermometer calibration data sheet,
E-31
-------
BALANCE
The Mettler electronic balance was calibrated by comparison
with Class-S standard weights and agreed within 0.5 g. Calibra-
tion data are shown in Figure E-12.
BAROMETER
The field barometer was calibrated to within 0.1 in.Hg of an
NBS-traceable mercury-in-glass barometer before each test series.
The field barometer was checked against the mercury-in-glass
barometer after each test series to determine if it read within
0.2 in.Hg. If it did not reading within 0.2 in.Hg, a correction
factor was determined. Calibration data are included in Figure
E-13.
ORSAT ANALYZER
The orsat analyzer was calibrated before each test series by
determining the percentages of carbon dioxide and oxygen in a
calibration gas containing known percentages of each. The ana-
lyzer read within 0.5 percent of the known value for eeich gas.
Calibration data are shown in Figures E-14a through c.
E-32
-------
Balance
No.
Date
Calibrator
2CQ
Mass determined fnr
Error
•se-g
Error
•1 00"n
Error
M- 1
00,1
+0,1
'.i.
Error must not exceed 0.5 grams at each point.
Figure E-12. Trip balance calibration data sheet.
E-33
-------
BAROMETER
NO.
PRETEST
y2'
pl*'J
/•"
BAROMETER
READING
24.
REFERENCE
BAROMETER
READING
DIFFERENCE*
c,
£7.0*2-
0,0%
DATE
/-21-fb
Z/'2fo
CALIBRATOR
POST-TEST
BAROMETER
READING
REFERENCE
BAROMETER
READING
DIFFERENCE
**
.0*,
• ol
DATE
CALIBRATOR
*Barometer is adjusted so that difference does not exceed 0.05 in. Hg.
**Barometer is not_ adjusted. If difference exceed 0.10 in. Hg, inform project
manager immediately.
Figure E-13. Barometer calibration log.
E-34
-------
Reference Gas:
AGA Burdox
Cylinder No. 112704
Invoice No. 0382088
Lab Ref. No. VII:46-23
Orsat No. :
IUI
Gas (circle one): 02
/col1
CO
Calibrator
Date
Value Del.
4
5.5%
Figure E-14a. Orsat calibration data sheet -
co2.
E-35
-------
Reference Gas:
AGA Burdox
Cylinder No. 112704
Invoice No. 0382088
Lab Ref. No. VII:46-23
Orsat No.:
Gas (circle one): /02 C02
Calibrator
£
, 1
' ;
t.
/•£-Or
Date
Value Det.
5.0%
5.5%
±L^
Figure E-14b. Orsat calibration data sheet - 02-
E-36
-------
Reference Gas:
AGA Burdox
Cylinder No. 112704
Invoice No. 0382088
Lab Ref. No. VII:46-23
Orsat No.:
Gas (circle one): 02 C02
Calibrator
Oate
A
Value Del.
4.
5%
5.0%
5.5%
.J
HT1
•-1~
Figure E-14c. Orsat calibration data sheet - CO.
E-37
-------
APPENDIX F
QUALITY ASSURANCE SUMMARY
F-l
-------
QUALITY ASSURANCE
The following summary addresses the general steps taken to
insure data quality and accuracy for any given emission test
project.
PROJECT ORGANIZATION AND RESPONSIBILITIES
The project organization and responsibilities of the project
team are generally defined in the test plan. Specific responsi-
bilities for this field test are shown in Appendix G, Project
Participants.
QUALITY ASSURANCE OBJECTIVE
The primary objective of this program is to refine sampling
and analytical techniques of EPA Proposed Method 5B (or develop a
new method) that will minimize the collection of condensible
sulfate materials in the measurement of particulate emissions
from fossil fuel-fired boilers and to evaluate method precision.
Therefore, all procedures used in the collection and analysis of
emission samples were as outlined in applicable EPA reference
methods, where applicable. The sample methodology used for this
project (quad train - single point) has been previously validated
specifically for research and methods development type projects.
F-2
-------
Test results were presented in several units to allow for their
comparison with data from other organizations wishing access to
the data summary.
DATA REDUCTION, VALIDATION, AND REPORTING
Data reduction and reporting provide one of the greatest
potential sources of system error. To help minimize this source
of error, PEDCo performs most test method calculations by use of
a validated computer program. In addition, hand calculation on
standard computer cards to allow accurate input of data into the
computer by individuals unfamiliar with testing procedures. The
data printout is then validated by comparison with the field and
analytical data sheets. In addition, hand calculation checks
generally are made to validate the computer output. Other data
validations are made whenever possible.
PERFORMANCE AND SYSTEM AUDITS AND FREQUENCY
When feasible, PEDCo performs both performance and system
audits. Three types of performance audits were performed for
this test program. All dry gas meter systems were audited for
accuracy in the field by the use of a critical orifice. In
addition, the analytical procedure for sulfur dioxide was audited
for accuracy by the use of audit samples supplied by EPA prior to
sample analysis. Also, onsite calculations were used to check
the completeness and accuracy of the particulate test data.
The PEDCo Project Director was on-site February 11 and
performed a general system audit as an internal evaluation of
F-3
-------
sampling personnel and equipment. The EMB Task Manager was also
on-site during the major portion of the test series and performed
a separate system audit.
SPECIFIC ROUTINE PROCEDURES USED TO ASSESS DATA PRECISION,
ACCURACY, AND COMPLETENESS
Because the precision of the standard EPA reference methods
used had previously been determined, no further attempt was made
to assess data precision. These precision results are summarized
in "The EPA Program for the Standardization of Stationary Source
Emission Test Methodology, A Review," EPA-600/4-76-044. Preci-
sion estimates were calculated for within-run MSB and M5B-P400
samples using standard statistical analysis procedures. The mean
concentration and standard deviation (with N-l weightings for
sample data) were determined for each group of similar runs. The
standard deviations were expressed as a percentage of the mean
concentration for comparison purposes (called the relative
standard deviation).
Three audit procedures were used to determine accuracy.
Accuracy audit procedures used for the dry gas meter and sulfur
dioxide, analysis are the standardized written procedures used by
the EPA Quality Assurance Division program. The procedure for
determining data completeness is the same as that for New Source
Performance Standards, as documented in the Code of Federal
Registers 40 CFR 60, Section 60.8
F-4
-------
INTERNAL QUALITY CONTROL CHECKS
Several internal quality control checks are usually made for
each test. Normally, most of these checks deal with the field
sampling analysis. For this test series, control samples for the
sulfur dioxide analytical procedures were analyzed. Also, filter
and reagent blanks were returned to the laboratory for gravi-
metric analysis. A quality control check of both the initial and
final weighing was thus provided. Results of the control sample
checks are included in Section 6. Blanks were analyzed according
to procedures used for the M5BW and 1C analytical work.
CORRECTIVE ACTION
PEDCo has two methods for corrective action. The first
involves the use of control limits, such as audit sample results,
control sample results, and calibration results. When anv of
these limits show that the integrity of the data is questionable
the procedure is repeated, additional data are collected, or the
data are rejected. The second method involves the use of red
tags. Whenever any piece of equipment is suspected of producing
unacceptable data, the entire apparatus or malfunctioning com-
ponent is replaced and a red tag is placed on the item. That
piece of equipment is then rejected until its ability to perform
its function correctly is verified by the proper individuals.
The use of numerous control limits and the red tagging system
reduces the amount of unacceptable data and provides a system by
which to track and correct items and procedures that show an
unusally high occurrence of unacceptability.
F-5
-------
PREVENTIVE MAINTENANCE PROCEDURES AND SCHEDULES
PEDCo has a very comprehensive preventive maintenance pro-
gram. Many of the major components of test equipment have pre-
test checklists. These checklists ensure that all functions are
checked and action is taken to repair or replace any part that
shows probability of malfunction. The checks are made before
every field test series, however, only the control console (meter
box) check are recorded. Even though PEDCo's preventive mainte-
nance program and schedule are not in writing, our commitment of
three full-time experienced persons for the express purpose of
equipment construction, preparation, calibration, and maintenance
has created a program based on experience and skill that cannot
be matched by a written guideline.
QUALITY ASSURANCE REPORTS TO MANAGEMENT
The standard quality assurance procedures used in this test
program generated sufficient documentation to indicate the data
quality. All evidence of the execution of the quality assurance
guidelines is reviewed by management. In addition, during weekly
meetings of all PEDCo's EMB task managers and project managers,
all aspects of the project are discussed including the quality
assurance of each task. No written report results from this
meeting because all interested parties are verbally apprised of
the situation during each meeting.
F-6
-------
Two other reports are made to managements, which are not EMB
task related. PEDCo's emission test and laboratory groups par-
ticipants in all national audits by EPA's Quality Assurance
Division, and PEDCo's quality assurance coordinator, Tom Wagner,
makes several independent checks for management.
F-7
-------
APPENDIX G
PROJECT PARTICIPANTS AND 'SAMPLE LOG
G-l
-------
TABLE G-l. FIELD TEST CREW AND RESPONSIBILITIES
Name
J. Prohaska
P. Clarke
P. Reinermann
R. Antesberger
D. Osterhout
D. Scheffel
W. DeWees
6. McAlister
J. Sellers
A. Kasprik
Title
Project Manager
Engineer
Engineer
Technician
Engineer
Technician
Project Director
EPA Task Manager
Plant contact
Company contact
Field test assignment
Coordinate test activity; sample
train setup and disassembly
Site leader; participate tests meter
reader quad train
Particulate tests meter reader quad
train
Assist at sample site; quad train
assembly and disassembly
Site leader; clean up area; setup
and recover sample trains
Setup and recover sample trains;
Orsat analysis
System audit
Monitor test performance
Coordinate plant activities; provide
general on-site assistance; record
process data
Project coordination
G-2
-------
TABLE G-2. SAMPLE LOG
Date (1983)
Activities
February 5-6
February 7-8
February 9-10
February 11
February 12
Sample site and equipment setup. All initial
measurements were obtained. Sample recovery
and setup area organized.
Two test runs were performed daily.
No tests were performed. Boiler operated at re-
duced load because of malfunctioning condensate
pump.
Four test runs were performed. System audit
conducted.
Two test runs were performed. Packed equipment
and left site.
G-3
-------
APPENDIX H
PROCESS DATA
H-l
-------
- - r\
3*79
•: .-/-. -r of Oil r :•--.-5 rs
Opacity Monitor (6 nun. a\erage)
Oil
QS
y /.o .$•
H-2
-------
-...-•-.-: r of Cil r-.r-rs
Opacity Monitor (6 min. average)
;
si - / r ,;i\
5 T ^
1
\7
or-r^s-iMes (%)
o
" O
H-3
-------
"3
PLANT C: i ---.7 I I -~-L I '- If-.
_ \s
Opacity Monitor (6 irin. average) I y O /o
•2.=!
s f F.)
o
•3C-
, ^
•7
H-4
-------
--.- - rs
! Opacity Monitor (6 min. average)
/r
3*
(rr.)
V7
'Cj Si
H-5
-------
FIAKT CF£?--.TIC>?-L L -.7
;c .--." -r of Oil E-rr.ers
Opacity Monitor (6 min. average)
Oil 7-_r p. to ?Jir-irs C?.)
Oxycer: at Zccnr^i=er_Jbcit_(%)_
Cori^istibles (%)
-^ »-• ij »
iy-
I
' -^- -- r/.s
H-6
-------
p LA NT 0?£=-i-.TIC>?-L E -.TA
.r-2 c
jr-."=r of Oil E-rners
Opacity Monitor (6 min. average)^
Oil 7. ~. -o r-..-irs (CF.)
ycer. at Eco.nc---izer Sxit (%)
s (%)
Carbon Kor.rxice
".X"
H-7
-------
Nc.
:;--:-. er of Oil Surr.ers___
Opacity Monitor (6 min. average)
Oil 7-_rp. to Burr.ers (rF.)
7 -:.- tr>:s
f •.
H-8
-------
PLANT C.rI--VTICv?--L L-.TA
I-r-ac
•;---,. = r of Oil Brrer
Opacity Monitor (6 rain, average)
Oil 1^ •:. to ?.--~r
Oxycer. at Ecor.c-rizer 2xit (%)
Codb-^stibles (%)
Carbor. Hor.csrics
'T
1
H-9
-------
•;..-:-.-r of Oil B'-rr.er
Opacity Monitor (6 min. average)
fey-er. at r ?c~.c ~ij:erJ2xi_t_{%)_
Combustibles (%)
H-10
-------
"Ts^sr
S.r.ter of Oil r-rner
Opacity Monitor (6 min. average)
Oil
ro ; - :--rs
Cxyc=n at Ecc-.-.c^izer 2xit (%)
Corb-astibles (%)
Carbar. Korisxics
~ -ir irr.s
H-H
-------
FOWEF RESOURCES LAEORATORY
c/150 W FLAC-LEF STREET
F'O EOX 5IS-100
ANALYSIS Or FUEL OIL FIRED
JAN'JARY 19tl
r
DH"£ SAMPLE RECEIVED AT LADORATORY
;-'! GRAVITY
DENSITY , LL.'GAL
DENSITY.LE/EEL
•-IE A' OF COMDUSTION, E/LE
HEA" Oc COf.tL'STION, E/C-AL
i-EA' OF COfEUSTIONi Kt/EEL
kv-'E-.. '. LT VOLUME
:EtI"E':T. V. Li WEK-HT
S .'_c'.'Rr V. EY WEIC-HT
SU'.F'JR DIOXIDE EQUIVALENT, LE/ME
ASh. V. EY WEIGHT
FARTICULATE EQUIVALENTt LE/ME
Vftf.AIILi" IN Al>- AS Vlu5i V. EY WEIGHT
VANnllUf IN OIL A'l V105.
VA'^iDIU"! IN OIL AS Vi FC'M
VISCOSITY, S^P AT Hi F
ASFHALTENES, '/. EY WEIGHT
1/10/S!
i:.:
14'vOOC
0.10
O.Oi
700.
ANA.YSIS CERTIFIED E
OFICIKAL TO: E 0 JONES
COFIES TO: L L WILL1A"!
x E F GILEERT
A D SCHfHT
C D HENDERSON
JANUARY 17.
Figure H-l. Typical fuel oil analysis.
H-12
-------
TECHNICAL REPORT DATA
(Please read Insrructions on the reverse before completing)
EPA-450/3-84-007
3. RECIPIENT'S ACCESSION NO.
Evaluation of Method 5B at an Oil-Fired Boiler
5. REPORT DATE
January 1984
6. PERFORMING ORGANIZATION CODE
John Prohaska
a. PERFORMING ORGANIZATION REPORT NO,
3. PERFORMING ORGANIZATION NAME AND ADDRESS
PEDCo Environmental, Inc.
11499 Chester Road, Post Office Box 46100
Cincinnati, Ohio 45246 - 0100
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT
12 SPONSORING AGENCY NAMJE AND ADDRESS
Emission Measurement Brancfi
Emission Standards and Engineering Division
U.S. Environmental Protection Agency
Research Triangle Park, N.C. 27711
I'. SUPPLEMENTARY NOTES
13. TYPE OF REPORT AND PERIOD COVERED
14, SPONSORING AGENCY CODE
EPA/200/400
This report describes the development and evaluation of Method 5B at an oil-fired
boiler. Different sampling and analysis techniques for measuring nonsulfuric acid
particulate matter were compared and evaluated. Statistical analyses of the results
comparing the precision of the different techniques are presented.
KEYWORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
i l)i:.1 HIBUTION STATEMENT
b.lDENTIFIERS/OPEN ENDED TERMS
19. SECURITY CLASS (This Report*
ICURITY CLASS (This page)
c. COSATI Field/Croup
13 B
21. NO. OF PAGES
499
22. PRICE
------- |