£EPA
United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EPA-450/3-85-007
February 1985
Air
Physical —
Chemical
Properties and
Categorization of
RCRA Wastes
According to
Volatility
-------
EPA-450/3-85-007
Physical — Chemical Properties and
Categorization of RCRA Wastes
According to Volatility
Prepared by:
Versar, Incorporated
Under EPA Contract No. 68-03-3041
Prepared for:
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air Quality Planning and Standards
Emission Standards and Engineering Division
Research Triangle Park, North Carolina 27711
February 1985
-------
DISCLAIMER
This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental
Protection Agency, and approved for publication as received from Versar, Incorporated. Approval does not
signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection
Agency, nor does mention of trade names or commercial products constitute endorsement or
recommendation for use. Copies of this report are available from the National Technical Information
Services, 5285 Port Royal Road, Springfield, Virginia 22161.
-------
TABLE OF CONTENTS
Page No.
1. INTRODUCTION 1
1.1 Background 1
1.2 Purpose and Scope 2
2. METHODOLOGY 5
2.1 Physical-Chemical Properties 5
2.2 Data Gathering/Estimation Methods 8
3. DATA GATHERING AND CATEGORIZATION RESULTS 15
3.1 Physical-Chemical Properties and Relative
Soil Volatility 15
3.2 Categorization of RCRA Wastes According to
Vapor Pressure 15
3.3 Categorization of RCRA Wastes According to
Aqueous Volatility 16
3.4 Categorization of RCRA Wastes According to
Relative Soil Volatility 16
3.5 Diffusion Coefficients of Highly Volatile
RCRA Wastes 17
4. SUMMARY AND RECOMMENDATIONS 20
5. REFERENCES 22
APPENDIX A. Physical-Chemical Properties and Relative
Soil Volatility of RCRA Wastes 25
APPENDIX B. RCRA Waste Categorization Based on Vapor
Pressure 67
APPENDIX C. RCRA Waste Categorization Based on Aqueous
Volatility 76
APPENDIX D. RCRA Waste Categorization Based on Relative
Soil Volatility 85
APPENDIX E. Diffusion Coefficients In A1r and Water for
RCRA Wastes Identified as Highly Volatile
from Water 93
APPENDIX F. Diffusion Coefficients In A1r and Water for
RCRA Wastes Identified as Highly Volatile
from Soil 95
iii
-------
1. INTRODUCTION
1.1 Background
The U.S. Environmental Protection Agency (EPA) Office of A1r Quality
Planning and Standards (OAQPS) 1s currently Investigating the control of
volatile chemical air emissions from hazardous waste treatment, storage,
and disposal facilities (TSDFs). Waste handling practices at these
facilities Include storage and treatment tanks, containers, waste piles,
surface Impoundments, landfills, and land treatment. As part of this
Investigation OAQPS will assess the risks of volatile chemical air
emissions from TSDFs to human health and the environment and the costs
and benefits of controlling these releases. Initial technical
Investigations Include: (1) TSDF site assessments to collect engineering
data on volatile air emission control practices, (2) monitoring of
volatile air emissions from TSDFs, (3) identification and development of
volatile air emissions models for estimating airborne releases of
chemical substances from TSDFs, and (4) the gathering of health effects
data for volatile chemical wastes. The chemical substances and waste
streams which are being investigated are those considered hazardous under
the Resource Conservation and Recovery Act (RCRA) of 1976 and listed in
40 CFR Section 261 Subpart D.
Currently, almost 500 chemical substances and chemical waste streams
are "listed" as hazardous. Investigation of the potential air releases
and resulting health risks of all listed RCRA wastes would be an
extremely time consuming operation. Furthermore, the RCRA wastes span
many orders of magnitude in volatility (many of the wastes are
essentially non-volatile), making such an Investigation even more
cumbersome. EPA-OAQPS, therefore, must identify those RCRA wastes which
are highly volatile and for which further Investigation is required.
EPA-OAQPS also needs to have the physical-chemical properties related to
volatility of the RCRA wastes identified in order to support future
-------
modeling efforts. This document reports on the results "of gathering the
physical-chemical properties of the RCRA wastes and the Identification of
those wastes handled at the various types of TSDFs which can be
considered highly volatile.
1.2 £urpose and Scope
The purpose of this document 1s to present (1) the physical-chemical
properties of the RCRA wastes related to volatility and (2) a waste
categorization scheme based on the volatility of RCRA wastes from TSDFs.
The physical-chemical properties were gathered and/or estimated to
support the volatility categorization scheme. They are also presented to
support future EPA-OAQPS air emission modeling Investigations by
providing the basic necessary modeling input parameters.
Physical-chemical properties of RCRA wastes presented include:
Molecular weight
Boiling point
Vapor pressure
Solubility
Log P (i.e., octanol/water partition coefficient)
Henry's constant
Relative soil volatility
Diffusion coefficients in air and water and water phase mass transfer
coefficients are also presented for RCRA wastes which were identified as
being highly volatile.
The waste categorization scheme is presented to support EPA-OAQPS
efforts in identifying those RCRA wastes that are highly volatile and for
which future monitoring, modeling, and health effects information
gathering will be undertaken. The volatility categorization scheme is
divided into three parts as follows:
• Volatility of pure substances
• Volatility from aqueous solutions
Volatility from soil
This approach was necessary because a substance's volatility depends on
the conditions under which it is handled at a TSDF. While a pure
-------
chemical waste may be highly volatile, It's volatility may be
significantly reduced when present In an aqueous condition or in soil.
The three volatility categorizations are presented to represent the
various types of waste handling practices performed at TSDFs: storage
and treatment of pure substances 1n containers and storage tanks,
treatment and/or storage of wastes In lagoons or surface Impoundments,
and treatment, storage, and disposal of wastes 1n soil systems (e.g,
landfills, land treatment). Each categorization scheme 1s divided Into
four levels of chemical waste volatility as follows:
1. Highly volatile
2. Moderately volatile
3. Slightly volatile
4. Non-volatile
The RCRA wastes Investigated, as previously mentioned, are those
listed In 40 CFR Section 261 - Subpart D - List of Hazardous Wastes.
This 11st specifically Includes wastes that are coded as Ps and Us and
Individual metals that are coded as Ds. Generic waste streams that are
coded as Ks, Fs, and Ds are listed but no physical-chemical property data
is presented. Available information on the chemical constituents of
these waste streams, however, is presented. For physical-chemical
properties and volatility categorization of a chemical constituent in a
generic waste stream, the Investigator must refer to the chemical
specific information presented for its appropriate, P, U, or D waste
code. Chemical specific data may be used to approximate a chemicals'
volatility behavior in a complex waste solution. Actual volatility of a
chemical waste in complex solutions or mixtures is dependent on
physical-chemical interactions of solution constituents. Calculation of
the volatility of the generic waste stream constituents is a complex and
time consuming operation requiring the use of activity coefficients which
are generally unavailable for most RCRA wastes. Chemical-specific
volatility data (I.e., volatility of pure substance and volatility in
water and soil systems) must currently be used, therefore, to approximate
a constituent's behavior in complex generic waste streams.
-------
This report 1s divided Into six sections. Following this
Introduction, details on the methodology used for gathering and/or
estimating physical-chemical properties and for categorizing the RCRA
wastes are presented (I.e., Section 2). Data gathering and
categorization results are discussed 1n Section 3. Section 4 summarizes
the results and presents recommendations for additional Investigation,
and Section 5 lists all references used In the task effort. Finally, all
gathered data, physical-chemical property estimates, and waste
categorization results are presented 1n the Appendix to this report.
-------
2. METHODOLOGY
The following subsections describe the procedures used for gathering
and/or estimating the physical-chemical properties of the RCRA wastes
(Section 2.1) and the methodology used for categorizing the RCRA wastes
according to volatility (Section 2.2). An overview of the required
physical-chemical parameters including their relationship to volatility
is also provided in Section 2.1.
2.1 Physical-Chemical Properties
The primary physical-chemical properties of RCRA wastes required to
support a waste volatility categorization scheme are the waste's vapor
pressure, solubility in water, Henry's law constant, relative soil
volatility, and molecular weight. Following is a review of each of the
properties and their relationship to a substance's volatility:
Vapor Pressure - This is defined as the pressure exerted by a gas
when in equilibrium with Its non-gaseous phase. Vapor pressure
provides an Indication of the escaping tendency of molecules from
pure liquids or solids. A high vapor pressure implies low attractive
forces between molecules in the liquid or solid and a high number of
molecules being emitted into the vapor phase. These substances are
considered volatile. Liquids with strong attractive forces,
therefore, have low vapor pressures and are considered nonvolatile.
Consequently, vapor pressure 1s an excellent indicator of emissions
from pure substances. However, when liquids are mixed, vapor
pressure does not provide an accurate means of estimating emissions
of a single compound because of the additional interaction between
the various types of molecules.
Solubility - This is defined as the total mass of a substance that
will dissolve in a solvent (usually water) at a given temperature and
pressure. The solubility of a substance affects the rate at which
molecules of the substance will escape from a liquid via
vaporization. Substances with high vapor pressures and low
solubilities will readily vaporize from solution. Conversely,
substances with high water solubilities and low vapor pressures will
tend to remain in solution or be nonvolatile. The solubility of a
substance is a required input to the calculation of Henry's law
constant which is described below.
-------
Henry's Law Constant - This 1s defined as the ratio of the partial
pressure of the solute gas (I.e., the Impurity or pollutant) divided
by the mole fraction of the gas 1n solution (Slenko and Plane 1966).
By taking Into account partial pressure and solubility, Henry's law
constant (H) gives an Indication of the tendency of molecules to
escape from a solution.
Henry's law constants provide some Insight Into the volatilization
rate controlling processes. This constant is the best indicator of a
compound's volatility. Some generalizations on the relationship
between Henry's law constant and the emissions rate of compounds in
an aqueous solution are given below (Lyman et al 1982):
• H < 10"^ atm-mVmol. The substance 1s less volatile than
water, and its concentration will increase as water evaporates;
it is essentially nonvolatile.
• 10~7 < H < 10" 5 atm-m3/mol. The substance slowly
volatilizes; the rate 1s controlled by slow molecular diffusion
through air.
• 10,-5 < H < ID,-3 atm-m3/mol. Volatilization starts to
become a significant transfer mechanism; this range includes
most polycyclic aromatic hydrocarbons and halogenated aromatics.
• H >' 10~3 atm-m3/mol • Substances may be released in
significant quantities; resistance from the water film is the
rate controlling process.
These criteria will be the basis of the aqueous volatility
categorization of the RCRA wastes (see Section 3.3 and Appendix C).
Molecular Weight - The molecular weight is indicative of the size of
the molecule of a chemical waste. Molecular size affects the rate at
which a chemical will diffuse through a medium (I.e., air, water, and
soil). The molecular weight of a chemical waste is a required input
to the calculation of the waste's ability to volatilize from soil as
described below.
Relative Soil Volatility - The actual rate of volatilization of a
substance from soil (e.g., landfills) depends upon the amount of the
substance in the soil as well as soil type, soil water content, vapor
pressure, molecular weight, and diffusivity (described later) of the
substance, air flow rate over the surface, humidity, and
temperature. Assuming all factors being equal except molecular
weight and vapor pressure, a substance's relative volatility from
soil is controlled by the soil water content. Essentially two
different volatilization processes occur depending on whether the
-------
soil 1s dry or wet. In a dry soil column, the chemical waste Is
assumed to move up the soil column via the air pockets within the
soil. In a wet soil column, the chemical waste 1s transported from
the soil body to the surface by capillary action, sometimes referred
to as the wick effect. In other words, the soil column acts as a
wick, and water contaminated with a chemical waste moves up the
capillaries of the wick to replenish the contaminated water at the
top of the column that 1s lost by evaporation. These types of
transport mechanisms and methods for calculating relative wet and dry
soil volatility are further discussed In Section 2.2.
Diffusion Coefficient - The diffusion coefficient 1s a measure of the
molecular diffusion or net transport of a molecule In a liquid or gas
medium and 1s a result of Intermolecular collisions rather than
turbulence or bulk transport. The process Is promoted by gradients,
such as pressure, temperature, and concentration. The rate of
diffusion 1s a function of the properties of the chemical of interest
and the medium through which it is being transported. Diffusion
coefficients are not a required parameter for the categorization
scheme used 1n this report; however, they are required values for
actual calculation of a chemical's mass transfer from a TSDF site.
Diffusion coefficients will be required in future EPA-OAQPS air
emissions modeling efforts and are, therefore, provided in this
report for those compounds considered highly volatile from soil and
aqueous solutions (see Section 3.5 for further discussion).
Values for the above properties, except diffusion coefficients (as
discussed), were required for the categorization of the RCRA wastes
according to volatility. Additional properties were also required such
as boiling point and octanol/water partition coefficients (i.e., Log P)
when experimental values were not available in the literature; these
required estimation via the use of these properties. Data gathering and
estimation methods for the above properties are discussed in the next
subsection.
-------
2.2 Data Gathering/Estimation Methods
Experimental values for vapor pressure, solubility, and Henry's
constant for the approximately 500 "listed" RCRA wastes were gathered
from the readily available scientific literature. Literature sources
used to gather experimental property data are listed 1n the reference
section of this document. All the experimental data were normalized to
ambient temperature (I.e., at 25°C) before being recorded. Where
experimental data were lacking, property values were estimated via the
use of the EPA-Off1ce of Toxic Substance's Graphical Exposure Modeling
System (GEMS). GEMS 1s a computerized data base which Includes
physical-chemical property estimation methods. The principal component
of GEMS accessed for this effort was the CHEMEST system. CHEMEST Is a
computerized version of the estimation methods presented 1n the Handbook
of Chemical Property Estimation Methods (Lyman et al. 1982). The
specific approach for gathering and/or estimating values for
physical-chemical properties 1s discussed below according to the specific
property:
Vapor Pressure - Vapor pressures at 25°C of the RCRA wastes were
obtained from the experimental literature. Vapor pressures gathered
at temperatures other than 25°C were estimated at 25°C using the
Clauslus-Clapeyron equation:
in P2 = *Hv
-------
Correlation (for liquids and solids 1n the vapor pressure range of
10~7 to 760 mm of Hg) was used. Boiling points for estimating
vapor pressures were gathered from the experimental literature or
estimated via CHEMEST using the Miessner Method (Lyman et al. 1982).
The relative error 1n estimated vapor pressures using the methods of
Lyman et al. 1s reported as 0 to 3 percent. The approximate error in
boiling points estimated via the Miessner Method 1s 0 to 5 percent.
Solubility - Experimental solubility values were also gathered from
the scientific literature. Where experimental values were lacking,
the solubility of the RCRA wastes were estimated from Log Kow
(octanol-water partition coefficients) via standard regression
equations in CHEMEST. Log Kow's were obtained from Hansch and Leo
(1979) or estimated based on molecular structure using the CLOGP
program in GEMS. CLOGP is a computerized version of a fragment
additivlty method for Log Kow presented in Lyman et al. (1982).
The approximate error in estimated solubility values is reported as
between 0 and 10 percent. Estimated log Kow values have an
approximate error of ± 0.12 log Kow units.
Henry's Law Constant - Values for Henry's law constant (H) were also
gathered from the experimental literature. In general, however,
values were extremely limited and the majority of the RCRA wastes
required estimation of H values. The procedure used for estimating
values of H is as follows (Lyman et al. 1982);
H = Pvp
where
PVD = vapor pressure at 25°C 1n atm.
S = solubility in water at 25°C in mol/m3.
For compounds with extremely high solubilities or those compounds
described as "miscible", a solubility value of 106 mg/1 was assumed
when estimating H. In practical theory, the solubility of an
Infinitely miscible substance is the weight of one liter of the
substance. As most of the miscible RCRA wastes have densities close
to that of water (i.e., 0.8 to 1.2 g/ml), the use of 106 mg/1 is a
reasonable value for expressing mlscibility and estimating H.
Obviously, the use of this value will result in the introduction of
significant error in estimated H values., This indeterminate error,
however, is not considered to significantly affect the relative
categorization of the RCRA wastes.
-------
The methods discussed above are state-of-the-art procedures for
estimating solubility, vapor pressure, and Henry's constant. Calculation
of relative soil volatility required the development of a procedure
specific to available data. Calculation of actual soil volatilization
rates depends on concentrations of the waste 1n soil, data which 1s
unknown and specific to each TSDF. Relative volatility, however, from
both wet and dry soils, may be approximated by modifying standard
equations for calculating actual wet and dry soil chemical volatilization
rates. Several methods have been developed to estimate the volatility of
a compound from nonaqueous environments. They vary widely 1n application
and difficulty of calculation; however, most methods are based on a
diffusion coefficient (the measure of a compound's ability to migrate
through a vapor, liquid, or solid). Furthermore, as previously
discussed, these methods can be divided Into two major groups: (1) dry
soil column methods and (2) wet soil column methods with water flux
transport.
The methods selected for modification to calculate relative soil
volatility were extracted from Lyman et al. (1982). They are
straightforward and are also recommended above other methods evaluated by
Lyman et al. during development of the physical-chemical properties
estimation handbook. The methods and their modification to derive a
relative dry and wet soil volatility are as follows:
Method 1 (dry soil column) (Hamaker Method as presented In W. L.
Lyman et al. Handbook of Chemical Property Estimation Methods 1982):
Qt = 2c0%/Dt/ir (1)
where
Qt = total loss of chemical per unit area over some time t (M/l2)
c0 = Initial concentration of chemical in soil (M/L^)
D = diffusion coefficient of vapor through the soil (L2/T)
ir = 3.14159.
10
-------
In this equation, c 1s unknown; however, 1t can be assumed that
the soil air space 1s saturated with the vapor of the chemical
waste. By assuming the vapor behaves as an Ideal gas, one can apply
the Ideal gas law:
PV = nRT (2)
where
P = pressure (mm Hg)
V = volume (1)
n = number of moles
R = universal gas constant (mm Hg-l/mole-cK)
T = temperature (°K).
The expression for equilibrium vapor concentration with P , vapor
pressure at 25°C, as the only variable follows:
equilibrium = p (
vapor VP
concentration V RT
(EVC)
In this equation, R and T are constants; therefore,
N (or c0) = KPvp . (4)
V
Substituting equation (4) 1n equation (1) yields
Ot = 2Kpvp v/ Dt/ir • (5)
In this equation, 2, K, and t/ir are constants and are assumed to be
a common factor for all RCRA wastes. They can, therefore, be
eliminated from further calculation. Equation (5) then reduces to:
Qt « Kl pvpv/D
(relative)
Furthermore, according to Dalton's Law, diffusion coefficients are
Inversely proportional to the reciprocal of the square roots of
molecular weights under fixed conditions. This relationship can be
written:
11
-------
(7)
where
Dy = diffusion coefficient of RCRA waste
Dx = measured diffusion coefficient of compound x
MWX = molecular weight of compound x
HWV = molecular weight of compound y (I.e., the RCRA waste of
Interest).
In this equation, Ox and MWX are also constants, therefore:
D = 1C
8)
or
Dy = K2MW-1/2 .
Substituting the above Into equation (6) yields
Qt = K1pvp\/K2MW-1/2 . (10)
( relative)
or
Qt = K3Pvp MW-1/4 . (11)
(relative)
Finally, since 1(3 is constant for all RCRA wastes, equation (11)
reduces to:
Qt = Pvp MW-1/4 (12)
( relative)
This equation permits the calculation of the relative volatility of
RCRA wastes from dry soil.
Method 2 (wet soil column) (Hamaker Method as presented in W.J. Lyman
et al. Handbook of Chemical Property Estimation Methods, 1982):
Qt = PVP • °v (fu)v + c(f ) (13)
-* - w v w
U
0 H 0
12
-------
where
fw = loss of water per unit area (M/L2)
Pvp = vapor pressure of chemical
P^I2Q = vapor pressure of water
Dv = diffusion coefficient of chemical 1n air (L2/T)
OH20 = diffusion coefficient of water vapor 1n air (L2/T)
sub V = loss of vapor
sub L = loss of liquid
c = concentration of chemical 1n soil solution (M/M).
In this equation, the following parameters are assumed constant for
all RCRA wastes; P^, D^, fw, and c. Therefore,
equation (13) can be written as follows:
. A. =N Pvp • °v • K, + K. (K,) (14)
(relative) -rr-*- —z— 3 4 5'
Kl K2
or
Qt = KPvpDy -i- KX (15)
(relative)
According to Dalton's Law as discussed 1n the dry soil column method;
(see equations (7), (8), and (9));
Dv ' Kv
Therefore, via substitution, equation (14) can be written as:
Q. = K P K + KX ('
t vp __v
(relative)
or
)t . K P + K (17)
relative)
13
-------
Finally, since the constants are assumed to be the same for all RCRA
wastes, equation (17) reduces to:
This equation permits the calculation of the relative volatility of
RCRA wastes from wet soil.
Other approaches using soil volatilization estimation methods may also
have been developed; however, only minor refinements 1n relative soil
volatility estimates would be obtained. It is believed that the
approaches discussed essentially result in the identification of those
RCRA wastes which will be highly volatile from TSDF soil systems (e.g.,
landfills and land treatment).
Diffusion coefficients (in air and water) - Diffusion coefficients of
RCRA wastes in air and water were gathered or estimated for only
those chemicals considered highly volatile in water and soil systems
(see results in Section 3). As with the other physical-chemical
properties, experimental values for diffusion coefficients were
gathered from the scientific literature. Where experimental data
were lacking, coefficients were calculated via the methods presented
in Lyman et al. (1982). For diffusion coefficients in air, the
Fuller, Schettler, and Giddlngs Method was used. For diffusion
coefficients in water the Hayduk and Laudle method was used. Details
on both methods are described completely in Lyman et al. (1982).
14
-------
3. DATA GATHERING AND CATEGORIZATION RESULTS
3.1 Physical-Chemical Properties and Relative Soil Volatility
Experimental and estimated values for molecular weight, vapor
pressure, solubility, Henry's constant, and relative wet and dry soil
volatility of the "listed" RCRA wastes are presented 1n Appendix A.
Boiling points and octanol/water partition coefficients are also listed
1n Appendix A, however, only when required to estimate vapor pressure and
solubility, respectively. Literature references for experimental and/or
estimated values are listed 1n the footnote to Appendix A. The comments
section of the table for each chemical provides reasons where no data are
recorded.
No data are presented for generic waste streams coded K, F, and 0
(except Individual toxic metals and pesticides). Available Information
on the constituents of the generic waste streams 1s, however, presented
under comments. Physical-chemical properties of a specific waste stream
constituent can be obtained by referring to the data under the
chemical-specific P or U waste stream code.
3.2 Categorization of RCRA Wastes According to Vapor Pressure
The ambient vapor pressure, as discussed In Section 2.1, provides a
good indication of a pure substances volatility. Ambient vapor pressure,
therefore, may be used to Indicate relative waste volatility as a result
of spills and leaks of pure chemical wastes from storage tanks and
containers at TSDFs.
All RCRA wastes were ranked according to ambient vapor pressure and
then categorized into four volatility groups as follows:
• Highly volatile wastes - those with ambient vapor pressures above
10 torr.
• Moderately volatile wastes - those with ambient vapor pressures in
the 10~3 to 10 torr range.
• Slightly volatile wastes - those with ambient vapor pressures in
the 10-5 to 10-3 torr range.
15
-------
• Nonvolatile wastes - those with ambient vapor pressures below
10-5 torr.
Results of the categorization are presented 1n Appendix B.
3.3 Categorization of RCRA Wastes According to Aqueous Volatility
Values of Henry's constant were used to categorize the RCRA wastes
according to aqueous volatility. Henry's constant, as discussed 1n
Section 2.1, Indicates a chemical's propensity to volatilize from aqueous
solution. Henry's constant, therefore, may be used to Indicate relative
volatility of wastes under aqueous conditions, such as volatilization
from Impoundments, at TSDFs.
All RCRA wastes were ranked according to values of Henry's constant
and then categorized into four volatility groups as follows (Lyman et al.
1982):
• Highly volatile wastes - values of Henry's constant above 1C,-3
• Moderately volatile wastes - values of Henry's constant below
10-3 to 10-5
• Slightly volatile wastes - values of Henry's constant below Id-5
to 10-7
• Nonvolatile wastes - values of Henry's constant below 1Q-7
Results of the categorization are presented in Appendix C.
3.4 Categorization of RCRA Wastes According to Relative Soil
Volatility
Derivation of relative soil volatility values is discussed in Section
2.2. Relative soil volatility may be used to indicate a chemical wastes
propensity to volatilize from TSDF landfills and land treatment systems.
All RCRA wastes were ranked according to relative soil volatility values
and then categorized into four classes as follows:
16
-------
• Highly volatile - Relative soil volatility greater than 1
• Moderately volatile - Relative soil volatility from 1 to 10~3
• Slightly volatile - Relative soil volatility from 10"3 to 1C.-6
• Nonvolatile - Relative soil volatility below 1Q-6
Results of the relative soil volatility categorization are presented 1n
Appendix D.
3.5 Diffusion Coefficients of Highly Volatile RCRA Wastes
Diffusion coefficients 1n air and water for a subset of those RCRA
wastes identified as highly volatile from water and soil were gathered
from the scientific literature or estimated by the methods discussed in
Section 2.2. Diffusion coefficients are presented to support future
EPA-OAQPS air emission modeling efforts for TSDFs. Data were gathered
for only a subset of highly volatile RCRA wastes due to the financial and
manpower limitations of the task effort. Values for diffusion
coefficients in air and water for RCRA wastes identified as highly
volatile from water are presented in Appendix E.
Also presented in Appendix E are values for the estimated water phase
mass transfer coefficients. Overall water phase mass transfer
coefficients (K ) were calculated based on the values of Henry's
constant for the subset of highly volatile wastes. The values were
calculated using the Southworth Equation presented in Lyman et al .
(1982). In general, the Southworth equation can be used for calculating
the overall liquid-phase mass transfer coefficient of chemicals:
(H/RT) k k,
K, - g ] (1.1)
L
(H/RT) k
where
kg = gas-phase exchange coefficient
k-j = liquid-phase exchange coefficient
H = Henry's law constant at desired temperature
R = gas constant = 8.2 x 10~5 atm-m3/mol
T = desired temperature in °K.
17
-------
Equations for computing the values k and k, are presented 1n Lyman
et al. (1982). Different equations are recommended depending upon the
molecular weight and Henry's law constant of the chemical and wind speed
assumed to prevail at the site.
The value of the Henry's law constant for all chemicals for which
-3 3
K. was calculated was greater than 10 atm-m /mol. For chemicals
33
having a value for Henry's constant of 10 atm-m /mol or greater,
the resistance of the water film dominates by a factor of at least ten
and the mass transfer 1s liquid phase controlled (Lyman et al. 1982).
Therefore, the overall liquid-phase mass transfer coefficient, K is
equal to the liquid-phase exchange coefficient, k., or
KL = k] for H > 10~3 atm-m3/mol.
Consequently, only the liquid-phase exchange coefficients needed to be
calculated In order to determine the overall liquid-phase mass transfer
coefficient. Two equations were used to compute K (or k..). The
following equation was used to compute k, for chemicals having a value
for molecular weight of less than 65:
k] = 20 v/40/MW
where MW = molecular weight. The equation,
\
kl ' 23'51 Vcurr
0.969
0.673
0.526 (V. . „ - 1.9)
'32/MW eu-Jtu v wind
where
Vcurr = current velocity (m/sec)
Vw1nd = w'Snd velocity (m/sec)
Z = depth of water (m)
was used to compute k, for chemicals having a value for molecular
weight of greater than 65. For all calculations a wind speed,
of 3 meters/second, (I.e., average wind speed), a current velocity,
18
-------
V of 0.01 m/s (I.e., negligible current), and a depth, Z, of 1
meter, was assumed. These assumptions were considered to be a reasonable
simulation of a TSDF waste Impoundment or lagoon.
Values for diffusion coefficients 1n air and water for a subset of
RCRA wastes Identified as highly volatile from soil are presented in
Appendix F. Soil volatilization rates (i.e., mass transfer coefficients)
are not, however, presented. Calculation of soil volatilization rates
requires knowledge of the concentration of the RCRA waste in soil. The
rate, therefore, must be developed on a TSDF site-specific basis when
modeling volatile emissions. Methods for calculating soil volatilization
rates are presented in Lyman et al. (1982).
19
-------
4. SUMMARY AND RECOMMENDATIONS
This document 1s a comprehensive catalog of physical-chemical
properties of hazardous wastes currently regulated under RCRA. It
specifically provides waste properties related to potential air emissions
of the wastes from TSDFs. As a catalog of physical-chemical properties
related to volatile air emissions, this report should prove to be a
valuable reference guide for supplying required data 1n EPA-OAQPS's
future TSDF air emission modeling efforts. The waste volatility
categorization scheme also provides a useful guide for Identifying
whether a specific waste will volatilize from a TSDF and potentially
present a health risk to the surrounding community. Furthermore, the
waste volatility categorization scheme presents a format for the
development of future TSDF waste-specific regulatory controls.
The data presented 1n this report should be used with the knowledge
that a significant number of property values were estimated. In
particular, Henry's constant (H) required estimation for the majority of
the RCRA wastes. For certain wastes, estimation of boiling points, vapor
pressures, and solubilities was also required. While the estimation
procedures used are considered state-of-the-art, errors are inherent in
the estimated values. Values presented for relative soil volatilities
are unltless values; they should only be used for comparing relative
volatilities of RCRA wastes from wet and dry soil. They were derived
specifically for this task from documented soil volatilization rate
formulas. It should also be noted that other sources of experimental
property values are available; experimental values were not obtained as a
result of an exhaustive literature search. The experimental reference
sources used were those readily available or those that could be
Identified and accessed within the labor and financial resources
available to the task effort.
While the data presented 1n this report are essentially complete and
fulfill the requirements of the task objectives, several areas of future
work are recommended. Recommendations for future work include:
20
-------
Estimation of additional gas and liquid phase diffusion
coefficients and water phase mass transfer coefficients for highly
volatile and moderately volatile RCRA wastes. This report only
presents these values for a subset of the highly volatile RCRA
wastes because of the time and budgetary restraints of the task
effort.
Identify, gather, and estimate additional physical-chemical
properties (e.g., saturation vapor concentration, molar density of
chemical vapor, atomic diffusion volume) for the RCRA wastes
required as Input parameters for TSDF airborne emissions models.
This effort should follow final EPA-OAQPS selection of applicable
air dispersion models.
Investigate volatility of waste constituents from complex waste
streams (e.g., generic waste streams coded K, D, and F).
Intermolecular forces of waste stream constituents affect the
volatilization behavior of the constituents. This effort would
require the gathering and/or estimation of activity coefficients
for each of the RCRA wastes. The activity coefficient is a
correction factor compensating for non-Ideal behavior and is
invaluable in calculations involving multi-component phase
equilibria.
Identify and gather chemical constituent information, including
concentration ranges, of generic waste streams. Extremely useful
sources of Information on generic waste stream constituents are
the Hazardous Waste Background Documents prepared by EPA - Office
of Solid Waste as required under RCRA.
21
-------
5. REFERENCES
1. AldMch Catalog/Handbook of Fine Chemicals. 1982-1983. Milwaukee,
Wisconsin: Aldrlch Chemical Company.
2. Barr RF, Watts H. 1972. Diffusion of some organic and Inorganic
compounds 1n air. 3. Chem. Eng. Data, 17(l):45-46.
3. BoubHk T, Freld V, Hala E. 1973. The vapour pressures of pure
substances. New York, NY: Elsevler Publishing Company.
4. Brlggs GG. 1981. Theoretical and experimental relationship between
soil adsorption, octanol-water partitioning coefficients, water
solubilities, bloconcentratlon factors, and the parachor. J. Agrlc.
Food Chem. 29:1050-1059.
5. Callahan MA, Sllmak MW, Gabel NW, et al. 1979. Water-related
environmental fate of 129 priority pollutants. Volumes I and II.
Washington, DC: U.S. Environmental Protection Agency, Office of
Water Planning and Standards. EPA 440/4-79-029a and b.
6. D1ll1ng WL. 1977. Environmental Science and Technology.
11(4):405-409.
7. Farm Chemicals Handbook. 1983. Wllloughby, Ohio: Melster
Publishing Company.
8. G1le JD, Blllett JW. 1981. Transport and fate of organic phosphate
Insecticides 1n a laboratory model ecosystem. J. Agric. Food Chem.
129:616-621.
9. Handbook of Chemistry and Physics. 1971-1983. RC Weast (ed).
Cleveland, OH: The Chemical Rubber Company.
10. Handbook of Chemistry. 1949. Lange NA and G Forker, (eds). 7th
Edition. Sandusky, Ohio: Hanbook Publishers, Inc.
11. Hansch C, Leo A. 1979. Substituent constants for correlation
analysis in chemistry and biology. New York, NY: Wiley
Interscience.
12. Hawley GG. 1977. The condensed chemical dictionary, 9th edition.
New York, NY: Van Nostrand Publishing Company.
13. Hollifield HC. 1979. Rapid nephalometric estimate of water
solubility of highly Insoluble organic chemicals of environmental
interest. Bull. Environ. Contam. Toxicol. 23:579-586.
14. International Agency for Research in Cancer. 1978. IARC
monographs. The evaluation of the carcinogenic risk of chemicals to
humans, Vol. 17. Some n-nitroso compounds, IARC. Lyon, France.
22
-------
15. Kenaga EE, Goring C. 1978. Relationship between water solubility,
soil adsorption, octanol-water partitioning and concentration of
chemicals 1n biota. ASTM Philadelphia, PA: ASTM Spec. Tech. Pub.
707:78-109.
16. K1rk-0thmer Encyclopedia of Chemical Technology. 1978. 3rd
Edition. New York: WHey Intersdence.
17. Llnke WF. 1958. Solubilities of Inorganic and metal organic
compounds. Washington, DC: American Chemical Society.
18. Lugg GA. 1968. Diffusion coefficients of some organic and other
vapors 1n air. Anal. Chem., 40(7):1072-1077.
19. MacKay D, PJ Lelnonen. 1975. Rate of evaporation of low-solubility
contaminants from water bodies to atmosphere. Environmental Science
and Technology. 9(13)=1178-1180.
20. MacKay D, WY Shlu. 1981. A critical review of Henry's law
constants for chemicals of environmental Interest. J. Phys. Chem.
Ref. Data. 10(4).
21. Mackay D, Walkaff A. 1973. Rate of evaporation of low solubility
contaminants from water bodies to atmosphere. Envir. Sci. and
Techno!. 7(1). 611-613.
22. McAullfte C. 1966. Solubility 1n water of hydrocarbons. Journal
of Physical Chemistry 70(4). 1267-77.
23. Mellor JW. 1946. Comprehensive treatise on inorganic chemistry.
London: Longmans Green & Company.
24. Shen T. 1982. 3. Air Pollut. Control Fed. 32(l):79-82.
25. Slenko MJ, Plane RA. 1966. Chemistry: principles and properties.
New York, NY: McGraw-Hill Book Company.
26. Stefan H, Stefan T. 1965. Solubilities of Inorganic and organic
products, Volume 1 - Binary Systems. New York, NY: Pergamon Press.
27. The Merck Index. 1976. M. Wlndholz (ed). Rahway, NJ: Merck and
Company, Inc.
28. The Pesticide Manual. 1979. CR Worthing (ed). Croydon, England:
British Crop. Protection Council.
29. Timmermans J. 1960. The physio-chemical constants of binary
systems in concentrated solutions. New York, NY: Intersdence
Publishing Company.
30. USEPA. 1980. Ambient water quality criteria for chloroalkly
ethers. Washington, DC: Office of Water Regulations and Standards,
U.S. Environmental Protection Agency. EPA 440/5-80-030.
23
-------
31. Umweltbundesant. 1981. OECO Hazard Assessment Project - Collection
of minimum premarketlng sets of data Including environmental residue
data of existing chemicals, Berlin, Germany: Umweltbundesant.
32. Versar Inc. 1982. Exposure Assessment for DEHP. Washington, DC:
U.S. Environmental Protection Agency, Office of Toxic Substances.
EPA Contract No. 68-01-6271.
33. Verschueren K. 1977. Handbook of Environmental Data on Organic
Chemicals. New York, NY: Van Nostrand Relnhold Company.
34. WHson G, Deal C. 1962. Activity coefficients and molecular
structure. Ind. Eng. Chem. Fundam. 1:20-23.
24
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Waste
Code Waste Name
U001 Acetaldehyde
U002 Acetone
11003 Acetonitrile
U004 Acetophenone
U005 2-Acetylaminofluorene
U006 Acetyl chloride
U007 Acrylamide
U008 Acrylic acid
U009 Acrylonitrile
U010 Mitomycin C
1)011 Amilrole
UOI2 Aniline
11013 Asbestos
U014 Auraniine
. _ , _ —
Vapor
Molecular Boiling Pressure
Weight Point* 9 25°C
(g/mol) CC) (im Hg)
44 20.8 922.57
58 56.2 200.1
41 81.6 100
120 202 0 49
223 345 2.1x10-'
79 52 317
71 87 V 2m» 0.0328
72 141.6 4.24
53 77.4 97.2
334 377 4.1x10-*
84 V 159 HA
93 184 0.8537
See Note
304 HA HA
Solubility Relative Relative
in I^O Henry's Dry Soil Wet Soil
log P* f 25°C Constant Volatility Volatility
(mg/1) (aUiMirVmol) P^MM"'74 PwpMtr'/2
insoluble — 360 139
-0.24 2.3x10* 6.8x10-* 720 26.3
-0.34 2.2x10* 2.47x10"* 40 15.6
5,500 1.41XKT5 1.5x10-' 4.5x«r*
3.255 140 4.4x10-'° 5.4x10-* 1.4xl(r*
reacts — 108 35.7
with water
1.55 205,000 1 49x10-* l.lxW* 3.9xlO-3
misclble 4.0x10-' 1.4 5.0x10-'
-0.92 73.500 9.2XUT5 360 13.4
-0.38 72 2.5x10-'° 9.4xlO~9 2.2x10-*
See See — — —
Note Note
0.90 34,000 3.0710-* 2.7x10-' 8.9xUrz
HA
Reference/Comments
1
1.*
1.*
1, 4
2
1, 2, 5 (Reacts with water)
3. 6
1
4. 6
2
9, log P cannot be estimated
to derive solubility
1, 3, 6
Mineral of various compositions
and properties.
7, Solubility and vapor pressure
cannot be estimated for
or gano metal lies
«iw,.,,,.. r,,o,:.:,,,o a .''ST pstinvitcd via extrapolation from experimental value.
-------
Appendix A. Physical-Chemical properties and Relative Soil Volatility of RCRA Hastes
U.I-UC
Code Waste Name
U015 Azaserine
U016 3,4-Benzacridine
U017 Benzalchloride
UOI8 1,2 Benzanthracene
11019 Benzene
U020 Benzenes Ifonyl chloride
ro
CT> U021 Benzidme
U022 BenzoC a Jpyrene
U0?3 Benzotrichloride
U024 Bis(2-chloroethoxy)methane
U025 Oichloroethyl ether
U026 Chlornaphazine
11027 Bis(2-chloroisopropyl) ether
110,18 Bis(2 elhylhexyDphthatate
Vapor
Molecular Boiling Pressure
Weight Point* 3 25°C Log P*
(g/mol) ("C) (im Hg)
\n 290 O.lZSxlO-3 See
Note
229 419 8x10-'° 4.565
161 205 0.327 2.815
228 435 10-'° 5.61
78 80.1 101** 2.13
1JJ 252 0.04**
184 402 IxlO-5 1-34
252 310-312 « 1.9x10-'° 5.835
10m
196 221 0.157 2.92
,23 181 0.875 0.469
143 178 1.4
268 210 4.5xlO-6 3.69
eSnro
171 187 0.85 2.58
390 384 1.38XKT5 9.8
Solubility
in H^O Henry's
0 25°C Constant
(mg/1) (atm-nrVmol)
See
Note
0.035 7x10-'
410 1 7xUT4
S.BxlO'3 3.4x10-'
1.780 S.SxlO-3
Reacts
with water
1,550 1.91x10-°
0.047 1.38xlO~*to
4.16x10-'°
360 1.12x10-*
510.000 2.77x10-'
10,200 2.58xlfl-5
57 2 BxlO"8
19 1.03xl0^4
2.7xlO~5 26 6
Relative
Dry Soil
Volatility
PvpHr'/<
3.3X10-5
2.1x10"'°
9.2X10'2
2.6X10-1'
34.3
l.lxlO'2
2.7x10-*
4.8x10-"
4.2X10'2
2.6x10-'
4.1x10-'
l.lxlO-6
2.4x10''
3.2xlO-6
Relative
Wet Soil
VolalilUy
PvpT'/2
9.5x10-*
5.3x10-"
2.6x10-2
6.6xlfl-2
11.4
3.0xlO"3
7.4x10-'
1.2x10-"
1 . lxKr2
7.9xlQ-2
1.2x10-'
2.7x10-'
6.5xHT2
7.0x10-'
Reference/Comments
2. Log P cannot be estimated
to derive solubility
1
1
1
**VP = 76 f 20*C; 60 f 15*C
1, 6, 23. 30 (H * experimental)
**VP = 10 t \20°C
1 (Reacts with water)
3. 6
2, 30
2. 6
1
3
2
1
2
*Pre-Jcnti-d onlv if required for olher calculations.
*»Vapor pressure ^ 2b°C estiiruled via exl.apulalion (run experimental value.
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of ROW Hastes
Waste
Code Waste Name
U029 Bromomethane
U030 4-Bronophenyl phenyl ether
U031 n-Butanol
U032 Calcium chromate
U033 Carbonyl fluoride
U034 frichloroacetaldehyde
U035 Chlorambucil
11036 Chlorodane, tech.
U037 Chlorobenzene
U038 tthyl 4.4'-dichlorobenzilate
U039 4 Chloro m-cresol
U041 l-Chloro-2,3 epoxypropane
U042 2-Chloroethyl vinyl ether
11043 Elhene, chloro-
11044 Chloroform
- -
Vapor Solubility Relative Relative
Molecular Boiling Pressure in HjO Henry's Dry Soil Wet Soil
Weight Point* ? 25°C log p* 0 25°C Constant Volatility Volatility Reference/Comments
(g/mol) (°C) (rnn Hg) (mg/1) (atm-m3/mol ) PvpIW~1/4 fvpl%r*/2
95 3 56 5300** 900 5.26xlO'3 1,700 544 **VP - 761 t 3.6'C
1. 3. 6. 30
249 310 0.041 5.08 0.50 2.74xlO'3 l.lxlfl-* 2.6xlfl-3 1
74 117.25 6.5 0.88 91,000 7xUr* 2.2 7.6x10-' 1, 2. 3, S
156 lA,,=:200 HA 163,500 — — — 2, 1. Vapor pressure cannot be
9 20 estimated for Inorganic
compounds
66 _g3 (^ reacts — — '. Substance Is permanent gas at
room temperature
1«; 97.75 35 100,000 6.77xHTS 10.2 2.9 1. 3, 10
304 363 1.39x10-' 1.7 26.000 2.1xlO-'2 3.3xlQ-* 8.0x«r9 2, 6
410 175 P 2 IxlO'5 5.94 0.0541 4.8xlfl-5 2.2xHT* 4.9x10-' 6. 8. 31
torr
,,3 132 n.8 2.18 500 3.93xlO~3 3.6 1.11 3, 6. 23 (H = experimental). 30
325 146-148 2.2XUT6 4.812 l.« 5.89xHr' 5.3x»0-' 1.2x10-' 2
0 0.4 nra
M2 235 5.8xlO-3 3.10 3.846 2.83xKr' 1.7x10-3 4.9xlO~4 1.3
v66-8
92.5 116 5 18.8 60,000 3.8xKr5 6.02 1.96 1. 3
107 109 30.5 1.28 6,000 7.35xHT4 9.5 2.9 2
62.5 -13.9 2,660 1,100 0.199P20°C 958 336 3
0 023-0 69
H9 61 172.1 197 9,300 3 39xlO'3 51.6 15.8 1,3.6,23
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
oo
- Vapor Solubility
Molecular Boiling Pressure in HjO Henry's
Code Waste Name Weight Point* 9 25°C Log P* * 25«C Constant
(g/mol) CO (ran Hg) (mg/l) (alm-nrVmol)
U045 Chlormtt™. 50 -24.2 5(20)^ 0.91 4.000 0.38
U046 Chloro^thyl .ethyl ether 81 59.5 214 -0.17 2.5x10* 9. 12x10"*
U04/ B-Chloronaphthalene '62 236 5.15x10-3 ,.005 12.85 S.ISxlO'5
U048 o-Chlorophenol >28.5 174.9 0.787 28.500 4.1. W*
11049 4-Chloro-o-toluidine. MC 142 241 0.105 2.285 1.900 1.02x10-5
U050 Chrysene 228 488 MT» 0.0.7 1IT«
UOS1 Creosote See Note
UOSZ Cresols and cresylie acid 108 o: 0.192 o: 0.432 1.95 0=31,000 2x10-*
m: 0.202.8 m: 0.18 (all m: 23,500 IxlQ-*
p: 0.201.9 p: 0.16 isomers) p: 24,000 9.5x10-'
U053 Crotonaldehyde 70 99-104 19 '55.000 1. 13x10-5
U05b Cumene '20 153 4.507 3.66 50 1.46x10-2
UOK Cyclohexane 84 81 6.82 3.44 55 1.78x10-'
UObI Cyclohexanone 98 156 4.57 O.BI 23.000 2.56x10-5
U058 Cyclophospharaide 261 329 2.8xl0-* 063 4.000 237x10-'°
U059 Daunomycin 528 533 9.4xlO-« 1.83 30.000 2 ISxKT19
Relative Relative
Dry Soil Met Soil
Volatility Volatility Reference/Comnents
P Mj-1/4 p i«-"2
vp^ vp
1.8 7.1x10"' 1. 3, 6. 28
70.6 23.8 '. 3
1.4xW3 4.1XKT4 1. 30 (H « experimental)
23.6 6.9x10-2 1. 3
3.1x10-2 8.8x10-3 7
2.6x10-'* 6.6xlO"15 1. 13
Mixture of substances (cresylie
acids)
1.3x10'' 4.2x10-2 6, 3
5.6x10-2 1.7x10-2
5.0x10-2 1.5xlO"z
6.6 2.3 3
1.4 4.1x10"' 1, 6, 29
2.3 7.4x10-' 1. 3, 6. 30
1.5 4.6x10-' 1. 6
7.0x10-' 1.7x10-' 2
2.0xlO-'5 4.1x10-'* 2. 6
experimental value.
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of ROM Wastes
Wasle
Code Waste Name
11060 ODD
U061 DDI
U062 Diallate
U063 oibenztahlanthracene
U064 l,2:7,8-0ibenzopyrene
U066 l,2-Oibromo-3-ch1oropropane
U067 Elhylenedibromide
U068 Hethylene bromide
11069 Di-butyl phthalate
U0)0 o-Dichlorobenzene
UOM m Dichlorobenzene
U072 p -Dichlorobenzene
D073 3.3'-Dichlorobenzidine
1)074 1,4 Dichloro-2-butene
IKHS Dichlorodifluoromelhane
Molecular Boiling
Height Point*
(g/mol) («C)
320 365
354 260
V 109
270 150
0 9m
278 447
302 483
236 1%
186 131-132
V 3
174 97
278 340
147 180.5
147 173
147 174
253 334
V '33
125 154
121 -29.8
Vapor Solubility Relative
Pressure in HjO Henry's Dry Soil
4 25'C tog P* 9 2S°C Constant Volatility
(am Hg) (mg/1) (aU«v-m3/mol) Pvpr*r'/4
1.5x10-' 5xlO-6 0.0126 3.6x10-*
1.5x10-' 3.98 to 1.28x10-3 5.2xio-5 3.5x10-*
6.19
7.88X10-3 14 1.99x10-* 2.0xlO~3
5.2x10-"** 0.044 10-'° 1.3x10-"
10-'2 7.22 1.6xlO-5 2x10-* 2.4xlO-'3
0.513 1.000 1.593x10-* 1.3x10-'
11 4,310 6.25x10-* 3.0
45.8 12.000 3.16x10-* 12.8
10-3 400 1.09x10-' 2.4x10-*
1.45 3.38 145 1.94xlQ-3 4.2x10"'
2.1 3.38 123 2.63xlO-3 6.1x10-'
0.67 3 39 69 2.37X10'3 1.9x10-'
1.12x10-' 2.79 38.3 UT9 2.8xlQ-*
4.00 1.73 9.701 6.78xlO-5 1.2
4,830 280 0.40 to 0.43 1,450
Relative
Wet Soil
Volatility
8.4x10-'
8.0x10-'
4.8xlO~*
3.12X10-'2
5.8x10-'*
3.3XHT2
B.lxlO-'
3.47
e.oxio-5
1.2x10-'
1.7x10-'
5.5xlO-2
7.0x10-'
3.6x10"'
439
1 value.
Reference/Comments
2. 9
6, 8. 20. 30
2. 8
**VP * 4 * 275°C
1. 8
1. 3
1. 5
30
1
3. 6. 23. 30 (H * experimental)
3, 23. 30 (H « experimental)
1. 6. 21, 23. 30
(H * experimental)
1. 3
1
1, 3, 30
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Waste
Code Waste Name
U076 1,1-Dichloroethane
1)0)7 1,2-Oichloroethane
U078 1,1-Oichloroethylene
U079 1,2-Dichloroelhylene
U080 Nethylene chloride
U08I 2,4-Oichlorophenol
U082 2,6-Oichlorophenol
1)083 1,2-Dichloropropane
U084 1,3-Oichloropropane
U085 l,2:3,4-Diepoxybutane
UOB6 N,N-Oiethylhydraiine
U087 o,o-0iethyl-s-methyl-
dithiophosphate
UOOfl Oiethlylphthalate
U089 Diethylstilbestrol
Vapor Solubility Relative Relative
Molecular Boiling Pressure in H^ Henry's Dry Soil Wet Soil
Weight Point* P 25°C tog P* 9 25°C Constant Volatility Volatility
(g/mol) t'C) (mnllg) (mg/1) (»U»-m3/mol ) Ptfpt*r'/4 PvpMvr'/2
99 51 193.4 1.79 5.500 5.45xlQ-3 61.9 19.4
99 84 75.683 1.48 8.690 l.lOxHT3 24.2 7.6
97 31.9 630.1 3,200 I.SxMT2 202 64.0
97 48-60 cis « 217 ~ 700 6.60xlO-3 69.2 22.0
trans * 352 5.32x10-3 ,,3.3 35.7
85 41 427.8 1.25 16,700 3.19XUT3 141.1 46.4
163 210 0.118** 3.08 to 4.500 5.62x10-* 3.3xHT2 9.2xKr3
3.30
163 219-220 0.0165 2.895 172 2x«T5 4.6xlO-3 1.3x10-3
T0. 68-69
113 % 50 2,700 2.8x10-3 15 5 4.7
113 120.4 28 2.00 1.000 1.77xlO-3 8.68 2.6
86 138 7.52 -1.26 8.3xl07 1.02x10-° 2.48 8.1x10-'
88 99 See See See
Note Note Note
See Note See Note See See
Note Note
222 298 B.lxlO-3 3.58 50 4 75x«T5 2.1x«r3 5.4x10-*
268 418 2.1X10-'2 5.31 .015 507x10-" S.3x«r13 1.3x10-"
Reference/Comments
1. 6. 23 (H = experimental)
1, 3. 6, 23 (U * experimental)
1, 15. 23 (H = experimental),
30 (H « 0. 154 9 20*C)
2. 5. 23 (H . 6.falO-3)
30 (H « 5.32xUT3)
1. 3. 6, 23 (H * experimental)
**VP - 110 9 147°C
1, 3. 6
'.5
1, 3, 5. 23 (H ~ experimental)
1, 3. 6, 30
2
1. tog P cannot be estimated
to derive solubility.
Vapor pressure cannot be
estimated.
2, Properties cannot be
estimated for thiophosphates
3
7
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Waste
Code Waste Name
U090 Oihydrosafrole
U091 3,3'-Dimelhoxybenzidine
U092 Dimethylamine
Molecular
Weight
(g/mol)
164
244
48
Boiling
Point*
(°C)
198
331
7.4
Vapor
Pressure
0 25°C
(ran Hg)
0.269
1.9x10-'
2.1
Solubility
in H20
Log P* 9 25"C
(rog/1)
2.985 240
1.23 1.800
-0.3 2.3xl06
Henry's
Constant
(aUiMirVmol)
2.3x10-*
10-"
5.89xlO~°
Relative
Dry Soil
Volatility
PvpT'" _
7.5xlO-2
4.75x10-*
7. 9XUT1
Relative
Wet Soil
Volatility
Pvp"--"2
2.lxKr2
1.2x10-°
3.0x10-'
Reference/Comments
2
3
3. C
U093 Dimethylaminoazobenzene
225
sublimes NA
4.58 160
3, 6, Vapor pressure cannot be
estimated
U094 7.12-Oi^thylbenrfalanthracene 256 477 3.9xH>-'2 6.94 1.3x10-3 ,.03x,0-9 9.axl(r13 2.
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Waste
Code Waste Name
11106 2,6-Dinitrotoluene
0107 Oi-n-octyl phthalate
U108 1,4-Diethylene dioxide
UI09 1.2-Diphenylhydrazine
U1IO oipropylamine
Ulll oi-N-propylnitrosamine
f-0 UI12 Ethyl acetate
UI13 Ethyl acrylate
(JIM Ethylenebisldithiocarbamic acid)
UI15 Ethylene oxide
UI16 Ethylene thiourea
U1H Ethyl ether
U118 Ethylmelhacrylate
Vapor Solubility Relative Relative
Molecular Boiling Pressure in H^ Henry's Dry Soil Wet Soil
Weight Point* V 25°C log P* 9 25°C Constant Volatility Volatility Reference/Comments
(g/mol) (°C) (nrollg) (mg/1) (atnmrVmol) P^ltr"* P^HT1'2
182 157 1.71 2.525 550 7.42xlQ-* 4. 6x10'' 1.3x10-' 1
V66
391 384 6.8XHT8 5.22 0.4 3x10"' l.SxKT8 3.5x10-' 11
88 101 37 -0.42 6xlOJ 7.14x10-' 12.2 3.9 3, 6
184 178 5.23x10-5 2.95 180,000 Up" l.SxIO'5 3.9x10"* 1
V'3'
48 UO 30 1.46 to 12,000 3. 32x10'* 12.0 4.3 1, 5, 6
1.73
130 206 0.419** 10,000 7.2xHT6 l.3xHr' 3.7x«T2 **VP = 13 f 89«C
1 1 3t v
88 77 82.2 0.73 79,000 1.2xH>-* 27.1 8.8 1, 3, 6
114 |18 36.141 20,000 2.71x10'* 10.8 3.4 1. 3
212 319 3.67x10-* <-3 >10i
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Vapor
Haste Molecular Boiling Pressure
Code Waste Name Weight Point* * 25«C Log P*
(g/mol) (°C) (urn Hg)
UI19 Ethyl methanesulfonate 124 85-86 0.328 0.09
0 10 im
UI21 Trichloromonofluorcmethane 137 23.7 768
UI22 Formaldehyde 30 -21 4,433
UI23 Formic acid 46 100.7 33.4 -0.54
UI24 Furan 68 31.36 633.99
UI25 Furfural 96 161.7 2.39
UI26 Glycidylaldehyde 72 97 42.6 -0.529
OJ UI2J Hexachlorobenzene 285 322 l.25xlfl-5 4.13
V230
UI28 Mexachlorobuladiene 261 215 0.269 4.14
UI29 a-Hexachlorocyclohexane 291 323 3.3x10" 1.19
Tnr"3
U130 Hexachlorocyclopentadiene 273 239 0.08 4.3
UI3I llexachloroethane 237 Tsub= l8* "•'
UI32 Hoxachlorophene 407 412 Mr'2 7.54
Tm=l66-l67
U133 Hydrazine 32 113.5 14.38
U134 Hydrofluoric acid 20 19.7 800
Solubility Relative Relative
in (^0 Henry's Dry Soil Wet Soil
0 25"C Constant Volatility Volatility Reference/Comnents
(mg/1) (atnm.3/mol) Pvpltr'^ f^*rV2
I.7xl06 3.14X10-8 9.8X10-2 3.0xlO~2 7
1,100 5B3xlO-2 223 65.6 1,3.5,23
600,000 2. 92x10-* 1,906 809 1. 4
4.6xl06 4.4x10-' 1.5x10-* 4.9 1. 6
10,000 5.7xlO-3 222 76.9 1. 3
83,000 3.6x10-* 7.7XKT1 2.4x10-' 1. 3
7xl06 5.8x10-' 14.5 5.02 5
0.035 6xlO-5020°C 2.7x«r* 6.5xlO~' 1. 6, 16. 23, 30
I.7XKT3 (4.9xlO-5)
*25°C
10 9.14X10-3 6.7xlO-2 1.7X10-2 1. 23
«0°C
10.3xlO-3
W5°C
10 3.16x10-' 7.9x10-' 1.9x10-' 1. 3, 29 (H = 4.93x10-'). 30
6.4 0.0164 2.0x10-2 4.BxlO~3 1. 3, 23
50 9.85xlO-3 1.5x10-' 3.9x10-2 1, 3, 5, 23 28. 30
(H = 1.3x10-2)
410,000 10-'8 2.2xlO-'3 5.0xlO-'4 1. 3, 6
miscible 6 Oxlfl-' 6.1 2.5 '. 3
miscible 2.0xlQ-5 378 179 2
*PreicnU'd unly if required for other calculations.
**Vapor pressure @ 2b°C estimated via extrapolation from experimental value.
-------
Appendix A Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Waste
Code Waste Name
UBS Hydrogen sulfide
U136 Hydroxydimethylarsineoxide
U137 Indeno[l,2.3-cd]pyrene
U138 Methyl iodide
UI39 Iron dextran
U140 Isobutanol
11141 Isosafrole
U142 Kepone
UI43 Lasiocarpine
U144 Lead acetate
U145 Lead phosphate
U146 lead subacetate
U147 naleic anhydride
U148 naleic hydrazide
~~ Vapor solubility Relative Relative
Molecular Boiling Pressure in H20 Henry's Dry Soil Wet Soil
»«S ^oint* «25°C logf* * 25»C Constant Volatility Volatility Reference/Consents
(g/mol) CO fnrnllg) (»9/l) (atm-«i3/mol) P^"* V""
34 -85 5 20 4.000 8.2 3.4 1, 2
,-, I 196 NA tt'.OOO 1. Vapor pressure cannot be
138 lm-iw> N« estimated for
orgafio -metal lies
276 ^162.5 -10-'° 7.66 5xlO~5 7.2xHr' 2.5x10-" 6.0X1Q-'2 31
- 164
M2 42.4 400 14.000 5xKT3 116 33.6 I. 3
, ... c« unt* 2.
-------
Waste
Code
Waste Name
U149 Malononitrile
U1SO Nelphalan
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
UI57 3-Methylcholanthrene
Solubility Relative Relative
tolecular Boiling Pressure in M^ Henry's Dry Soil Wet Soil
Weight Point* 0 25"C log P* « 25°C Constant Volatility Volatility Reference/Coments
(g/mol) (°C) dim Hg) (rag/I) (aUimrVmol) P^p1**" ^vp1**"
Vapor
Molecular Boiling Pressure
66
219
0.148
130.000 10-' 5.2x10-z 1.82xKT2 1. 10
305 376 4X10-8 1.283 400 l
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of ROW Wastes
Vapor
gasje Molecular Boiling Pressure
Code Hasle Name Weight Point* 9 25'C
tg/mol) (»C) hm Hg)
U163 M-neUiyl-H'-nUro-H-nllrosoguani- 147 89 69.1
dine
U164 (tethylthiouracil 142 1^ 300 4.8xlfl-5
U165 Naphthalene 81 218 0.232**
U166 1,4-Naphthalenedione 158 213 0.201
U167 1-Naphthalamine 143 246 0.0559
UK* 2-Haphlhjlamine 143 246 0.0559
OJ — — • •
U169 Nitrobenzene 123 210.8 0.209
U170 4-NHrophenol 139 279 3.88xlO-5
Im - 115
UI71 2-Nitropropane 89 120 17.5
U172 N-Nitroso-di-n-butylamine 158 157 4.11
Ul)3 N-Nitrosodiethanolamine 124 128 14.2
U174 N-Nitrosodiethylamine . 102 175-177 1.73
UI76 N-Nitroso-N-ethylurea 117 125 16.3
UI77 N Nitroso-N-methylurea 103 107 33.5
«,„„ ,„.„,. ™.i., ii ™,.i.-..H i..r nlh,.r rAlriil*! inn<; **VHnnr nrpfuirp 0 :'S°C
SolubiUty Relative Relative
in 1130 Henry's Dry Soil Wet Soil
tog P* * 25*C Constant Volatility Volatility
(mg/1) (atnmrVmol) P^mr1'4 Pvpltr'/2
HA 20 5.7
0.22 51 1.8x10-' 1.4xMT5 4.0x10-*
3.06 to 30 4.8x10-* 7.7xlO'2 Z.6x10~2
330
1.78 11.695 3.6x10-* 5.6x«T2 ).6»10-2
1.71
2.24 2221 4.7x10-* 1.6xUr2 4.7xl(T3
2.28 1.958 5.4x10-* 1.6xlO'2 4.7xlO-3
1.900 2.4xlO-5 6.3x10'' 1.9X10"2
16,000 10-'° l.lSxHT5 3.3x10-*
17 0.121 5.8 1.6
2.5 1.100 7.9x10-* 1.15 3.3xlQ-'
-1.539 SxlO8 8x10-' 4.26 1.28
0.48 408.320 6x10"' 5.4x10'' 1.7xKr'
0.48 470.000 5 4x10'* 4.9 1.5
-0.03 2x10* 2 2xHT6 10.4 3.3
potimaled via extraoolat ion from exoerimental value.
Reference/Corments
5. Solubility cannot be
estimated for guanidine
compounds
2. 6
**VP = 1 9 53*C
4, 6, 30 (H - experimental)
4. 6
1. 5. 6
1. 5. *
1, 3, 23 (H * experimental)
1, 3
1. 3
4,
5
3. 6
5
5. 6
-------
Appendix A. Physical-Chemical properties and Relative Soil Volatility of RCRA Wastes
Waste
Code Waste Name
HUB N-Nitroso-N-methylurethane
U179 N-Nitrosopiperidine
UI80 N-Nilrosopyrrolidine
U18I 5-Nilro-o-toluidine
U182 Paraldehyde
U183 Pentachlorobenzene
11104 Pentachloroethane
U185 Pentachloronitrobenzene
UI86 1.3-Pentadiene
U18J Phenacetin
UI88 Phenol
U109 Phosphorus sulfide
U190 Phthalic anhydride
U191 2-Picoline
Vapor
Molecular Boiling Pressure
Weight Point* 9 25"C
(g/mol) (*C) (urn Hg)
132 109 31.2**
114 217 0.244
100 52 284
152 178 0.280
V 108
132 128 25.3
250 277 4.12x10-*
I., 86
202 162 3.5
295 240 2.38xlO-3
Tm -- 144
68 42 414
179 266 3.16xlO-3
V38
94 182 0.62
222 514 See Note
148 295.1 2x10-*
TUT 132 9 20"
93 128 8 10
Solubility
in MjO
tog P* 9 2S*C
(mg/1)
13,000
0.63 284,318
-0.19 3x10*
2.085 340
120,000
5.705 0.10
500
5.45 0.032
2.30 870
1.57 530
(no HC1)
1.48 82,000
See 1.17x10''
Note
-0.62 152,990
1.11 51,000
Relative Relative ~
Henry's Dry Soil Wet Soil
Constant Volatility Volatility
(alm-nrVmo!) P^l**-"* P^ltr"2
4.17x10-* 9.4 2.7
9.78xlO-5 7.6x10-2 2.3xlfl-2
1.13x10-5 7.6x10-2 33.4
1.67x10'* 7.8x10-2 3.3x10-2
3.66x10-5 7.6 2.2
1.3xlO-3 1.0x10-* 2.7x10-5
2.17x10-3 J.6xlO-3 2.5x10-'
0.0288 5.79x10-* 1.4x10-*
0.0424 145 50.2
1.4x10-* 8.5x10-* 2.6x10"*
1 3x10-* 2.0x10-' 6.4xlO-2
1 see
Note
-10-'° 5.4x10-5 I.2xl0-5
2 4x10^5 3.2 1.0
Reference/Ccmnents
**VP » 13 3 65*C
». 10. 20
6
5
1, 5
1. 2, 3, 4 (Substance Is a
formaldehyde polymer
and decomposes In gas
phase).
1
1, 3, 5, 28, 30
1. 5
1
1. . 5. 6
1, 6. 23
1, 12 (Substance slowly reacts
with water).
**VP * 0.001 9 30«C
1, 2, 3, 4 ,6 (Substance hydro-
lyzes in water)
>. *
*Presented only if required for other calculations
*+Vapor pressure 9 25°C estimated via extrapolation from experimental value.
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Hastes
Waste Molecular
Code Waste Name Weight
(g/mol)
1)192 Pronamide 256
U193 1.3 -Propane sultone '22
U194 1-Propanamine 59
U196 Pyridine "
U200 Reserpine 609
U201 Rcsorcinol '1°
11202 Saccharin and salts '83
U203 Safrole '62
U204 Selenium dioxide "1
11205 Sulfur selenide
11206 Streptozotocin 265
U207 1,2,4,5-Tetrachlorobenzene 216
U208 1,1,1, 2-letrachloroethane 168
(1209 1.1,2,2 letrachloroethane 168
i «ii«
Vapor
Boiling Pressure
Point* * 2S'C
(•C) (urn Hg)
321 4.02x10-*
180 9 30nm 6 37x10'*
1^ 30-33
49 280**
115.5 20
1,^115.7 0.09
\lf 265 > 1.02x10-3
280 1.2x10-5
V"
243 2.69x10-3
T4.1xHr5 1. 3
2.20xl06 10-'3 3.7x10-* MxKT5 1. 3
3.448 1.9x10-' 7.3x10-* 2.0x10"* 1. «
2.435 1.400 1.08x10-5 2.0xH>-2 5.6xlO-3 1
38400 6.0x10-' 4.9xlO-2 l.SxIO-2 **VP - 1 ? 157'C
1
See Hole • '2 (Su''1"" and selenium form
semi -continuous solid
solutions containing SeS.
SeS2 + SS62 as actual
constituents).
-1.45 4x10* 10-" 3.2x10-5 7.8xlO-* 2. 6
6 1.0x10-* 5.6x10-* 1.5x10-* '. '*
560 2 76xlO-3 2.8 7.7x10-' 1. <. 30
3.000 4 7x10 * 1.18 3.2x10-' I. 2. 5. 30
: estimated via extrapolation from experimental value.
-------
Waste
Code
Waste Name
U2IO letrachloroethylene
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
-vaporSolubility Relative Relative
Molecular Boiling Pressure in M^ Henry's Dry Soil Wet Soil
Weight Point* 9 25°C log P* 9 25°C Constant Volatility Volatility
(g/mol) CO (ran Hg) (mg/1) (atnmrVmol) P^ltr1'*
166 121
2-60
100 2.87x10-*
Reference/Garments
**VP . 10 0 14'C
1. 2, 6. 23, 30 (H - 0.012 9
20'C)
UZ11 Tetrachlorcmethane
154
76.54 115.3 2.70 500 2.I3X10'2 32.3 9.3
1. 5. 6. 12, 23, 30
(H x experimental)
U212
2,3,4.6-Tetrachlorophenol
232
150 1.55 4.10 W.6 4.46x10-' 4.0x10-' 1.0>
V"
(10-' 1, 6
U2I3 Tetrahydrofuran
67 149 0.73 130,988 1.08x10"* 50.7 17.6
1, 5. 6
11214 Ihallium(l)acelate
263
soluble
1, Properties cannot be
estimated for inorganic
ccnpounds
CO
lO
1)215 Thai lium(l) carbonate
468 Ta * 272 insignificant 52,000
(< 10-*)
**VP * 10 9 5I7°C
1, Properties cannot be
estimated for Inorganic
compounds
U216 thalliumlllchloride
240 720 insignificant 2,900
(< 10~5)
2.5
1, Properties cannot be
estimated for inorganic
compounds
1)217 Thai I iumlDni Irate
266 430 See
V206 Note
95.500
1, 12 (Substance decomposes to
TljOj = MOX, higher
temp, measurements may
Include contributions
from decomposition
products.
112 If] Thioacetdmide
75
NA
163,000
1,4, Vapor pressure cannot be
estimated because of the
thioacetamlde group
1)219 Ihiourea
loluene
*Pre5enled only if required for other calculations
76 V182 NA
92
91,600
110 6 26.8 2 69 515 6.64xlfl-3 8.6 2.8
**Vapor pressure P 25°C estimated via extrapolation from experimental value.
1, 3, Properties cannot be
estimated due to thio
fragment
1. 3, 6, 23, 30 (H ..
experimental)
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Waste Molecular
Code Waste Name Weight
U221 loluenediamine '22
U222 o-Toluidine hydrochloride 143
U223 loluenediisocyanate 174
U224 Toxaphene 258
U225 Brcmoform 253
U226 1,1,1-Trichloroethane 133
U227 1,1.2-Irichloroethane 187
1)228 Irichloroethylene 131
11230 2,4,5-lrichlorophenol 197
U231 2,4.6-Irichlorophenol 197
11232 2,4,5 I 255
U233 Silvex 269.5
Vapor Solubility
Boiling Pressure in HjO Henry's
Point* 9 2S°C tog P* * 25'C Constant
255 1.77x10-3 0.345 120.000 2.3x10-'
I, =61
242.2 1.19x10-3 ,5, 30 7.55xlQ-6
T.,,215 (no HCl)
251 0.0217** — reacts
V65-90 NA 0.40 4.89x10-3
149.5 5.6 3.190 5.32x«H
74.1 117** 2.49 950 4.92x10-3
113.67 22.4** 4.500 1.18x10-3
87 71.6 2 29 1.100 8.92x10-3
tsub=2S2 0.04% 3 72 <2,000 6x10"*
V*'
246 0.0149** 3.69 800 4.82x10-*
294 2 44x10-5 238 3.44X108
v50-
159
310 7.12x10'* 140 1 8xUT8
V181 *
Relative Relative
Dry Soil Wet Soil
Volatility Volatility
5.3xlO-4 1.6x10-3
3.5x10-* l.OxlO-4
6.1x10-3 1.65x10-3
Referenee/Connents
1
1
**VP - 11 t 126"C
2. 4 (Reacts with water)
1. 16. 5, 23 (H . experimental)
Vapor pressure cannot be
estimated
1.40 3.5x10-'
33.9 10.1
6.05 1.6
21.5 6.3
1.3xlO-z 3.5x10-3
4.0x10-3 1.06x10-3
6.1x10-* 1.5x10-*
1.8x10-* 4.3x10-'
1, 3. 5. 23. 30
(H .. 6.12X10'4)
**VP * 99.7 0 20*C
1. 4, 6, 23. 30 (H '
9 20'C)
**VP * 75.86 P 50«C
1. 3. 5. 30
1. Z. 6, 23, 30
(H = experimental
2, 3, 6
**VP » 1 9 76.5«C
1. 3, 6
8
2. 4
3.42xlO-2
- -
^Presented only if required for other calculations
**Vapor pressure 0 2b°C estimated via extrapolation from experimental value.
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Hastes
Vapor Solubility
Waste Molecular Boiling Pressure in HjO Henry's
Code Waste Name Height Point* * 25»C log P* 9 25«C Constant
(g/mol) CO (mm Hg) (mg/1) (atnmrVmol)
U234 Benzene. 1.3.5-trinitro- 213 315 2.86** 1.18 350 2.3xHT3
Tm=122
U235 Iris (2,3-dibromopropylphosphate) 697 1,^^ 255 -3
p. 3. 15 6.5 2-SlxlO-3
m « 3.20 6.0 2.55xlO-3
U240 2.4-D Salts t Esters See Note See Note See Note
U242 Pentachlorophenol 266 109-110 1.1x10-* 80 4.8x10-'
U243 Hexachloropropene 249 210 0.344 4.38 4.5 2.5xH>-2
U244 Bis(dimethyHhiocarbamoyldisulfide) NA NA NA NA
U216 Bromine cyanide 106 61.5 100 See Reacts —
Note with water
Relative Relative
Dry Soil Wet Soil
Volatility Volatility Reference/Comments
0.75 0.20 **VP - 2 9 17.5'C
1. 2, 6
1.9x10-* <3.8xlO~5 15
— 7. log P cannot be estimated to
derive solubility.
4.4xlO-2 l.lxHT2 1
1.2x10-' 3.8x10-2 1. 2. 6
2.05 2.7x10-' 3, 30 (H - experimental)
9.8x10-' 3.1x10-'
9.9x10-' 3.1x10-'
— Mixture of compounds
1.1x10-* 6.7x10-* I. 3
e.6x«r2 2.9xur2 2, 7
Properties cannot be estimated
for disul fides
31.1 9.7 1, 4 (Hydrolyzes in water to
HOCN f HBr)
*Presented only if required for other calculations.
**Vapor pressure P 25°C estimated via extrapolation from experimental value.
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Waste
Code
Waste Name
POOl Warfarin
— vaporSolubilityRelativeRelative
Holecular Boiling Pressure in H^ Henry's Dry Soli Wet Soil
Weight Point* 9 25«C log P* « 2S«C Constant Volatility Volatility
(g/mol) CO (millg) (mg/1) (atm-nrVmol) 4 '/2
306 432
Reference/Cements
10-11 0.05 to 860 10-'5 2.4xMT12 5.7xlO-'3 6. 8
P002 |_Acetyl-2-thiourea
206 O.M MA NA NA
4.ZxlO-2 1.3xlO-2
1, (Log P and solubility cannot
be estimated due to presence
of thlourea fragment)
P003 Acrolein
56 53
258
280.000 6.79XKT5 95.5 34.5
I. 3
P004 Aldrin
365
!„= 104 6x10-* 3.01 0.2 4.96xKT4 1.4x10"* 3.1xlfl-7
6. 20. 23 OM.96XUT4). 28.
30 (H*2.8xlO-5), 29
(II « 1.44x10-*)
P005 Allyl alcohol
58 97
28.10 0.1J 82.000 3.47x10-* 10.1 3.7
1. 5. «
P006 Aluminum phosphide
58
See Note See Note See Note Reacts See Note
12, (Substance has high melting
point (M.p. 1350«C). vapor
pressure negligible to n.p.
Reacts with water).
P007 5-(Aminonicthyl)-3-lsoxazol
114 258
1.4xlO-3 -1.815 6.4X108 UT13 4.3xlfl-4 1.3x«r*
POOS 4-Pyridinamine
94 108 25.8 0.26 730.000 4.4xlQ-6 8.3
0.28
2.7
I, 5. 6
P009 Anmonium picrate
P010 Arsenic acid
246 209 0.230
10.000 7.4xlO-6 5.8xlQ-2
142 decomposes See Note
167.000
12. (Arsenic acid decomposes
to ASjO; t lljO) in gas
phase.)
POll Arsenic V oxide
POI2 Arsenic [I oxide
230
198
See Note
457.2 8.3XUT8**
1.5x10*
17,000 -1.7xHT12 2.2x10"* 5.9x10-'
1, 3. (ASjOs decomposes to
AS2°3 t 02 in gas
phase.)
**VP = 2x10-' 9 60°C
1. 4, 12
*Presenled only if required for olher calculalions.
**«apor pressure 0 25°C eilimaled via extrapolation fr
-------
Waste
Code
Waste Name
P013 Barium cyanide
P014
Benzenethiol
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
VaporSolubilityRelativeRelative
Molecular Boiling Pressure in H20 Henry's Dry Soil Wet Soil
Weight Point* % 25«C Log P* 9 25"C Constant Volatility Volatility
(g/mol) (°C) him Hg)
189
110
MA
168.7
HA
800.000
-1.5 2.52 706 S.lxHT4 4.7x10-' 1.4x10-'
Reference/Conments
1, Boiling point and vapor
pressure cannot be estimated
for inorganic substances
1, 3, 6
P015 Beryl Hun dust
2.500 2.7x10-'**
1^1.287
insoluble
(<1 "9/0
1.6xKr7 9.0XHT8
1. **VP * 10-5 * 942*C
P016 BislchloronethyDether
115
104
36.3**
-0.38 22,000 2.5xUT< 11.3 3.4
**VP - 30 9 22°C
1. M
P0.7
Bronoacetone
137
136.5 5.51**
miscible 9.9x10-' 1.6 4.71x10-'
1. ** VP-8m«* 31.5'C
P0.8
Brucine
394
470
0.22 33.620 W
»
2.2x«r« 5.0X10''*
P020
P02I
P022
Oinoseb(2.4-dinitro-6-
sec-butylphenol)
Calcium cyanide
Carbon disulfide
240
92
76
223
0.0576
100
1.82xl0-« 1.4x10-2 3.7xlo-3
See »°te See Mote reacts See Hole
46.25
357
MA
2,940 0.012
\2\
4\.0
1, 12. (Substance decomposes to
carbon * calcium
cyanamide. Also reacts
with water to yield HCN.)
1. 3, 5, (log P cannot be
estimated due to
structure)
P023 Chloroacelaldehyde
78.5
85
317
0.5 7x10* 4.7xlQ-6 108
35.8
1. 3
P024 pChloroaniline
127.5 232
0.015
1.83 \.855 3x10-* 4.5xlQ-3 l.toUT3
1. 3, 6
P026 l-(o-Chlorophenyl) thiourea
P027 3 Chloropropionitrile
IWH Bcn/ylchloride
*PresenU>il imly if required for other calculations
181
275
90
174-176 1.33
1?6
"9
MA
4.0x10-4 1.19 3.800 2.51x10-8 l.lxUT4 3.0xlQ-5
45.000 3.5xlO--6 4.3xlQ-' 1.4x10-'
125 230 1,619 2 36xKH 3.8x10'' l.lxlQ-'
**Vapor pressure 9 K°C estimated via extrapolation from experimental value
1. 6
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Ujste Molecular Boiling
Code Waste Name Weight Point*
(9/mol) CO
POJ9 Copper cyanides 89 See Note
(CuCN;CuCN2) "5
P030 Cyanides
P031 Cyanogen 52 -21
P033 Cyanogen chloride 61 12.66
P034 2-Cyclohexyl-4,6-dinitrophenol 266 291.5
P035 2,4-D 221 278
P036 Oichlorophenylarsine 223 255
P037 Oieldrin 381 V1'5
P038 Oiethylarsine 134 105
P039 Disulfoton 274 108 *
0.01 mi
P040 0,0-Dielhyl o-pyrazinyl 248 80
Phosphorolhioatc
P041 Dielhyl-p nitrophenyl phosphate 275 169-170
F'0« 1.2-Benzencdiol. 4-[l-hydroxy-
2 (melhylaminolrthyll-epinephrine 211 306
--
V^or Solubility Relative Relative
Pressure in HjO Henry's Dry Soil Wet Soil
9 25°C log P* 9 25«C Constant Volatility Volatility
(mo Hg) (mg/1) (alm-m /mol) PVpHrf~ PVpfW
See Hole 2.6
1.8
3,980** 27.5 9.91 1,473 552
1,190 30,000 3.2xlO-3 428 152.4
reacts
slowly
2.87x10-3** 4 fl, ) 2 8.37xlfl-4 7.2xHT4 1.7x10'*
1.59x10-*** 620 7.5X10-8 4.1x10-5 l.lxKT5
2.7** hydrolyzes — 7.0x10-'
7.78x10-' 6.20 0.19 l.lxlQ-5 1.8x10-' 4.0X1Q-8
30 See See — 8.7 2.6
Note Note
1.8x10-* 25 2.59x10-* 4.5x10-5 i.ixHT5
3x10-3 loo 8.58xKT6 7.5x10-* 1.9x10-*
7 8xKT5 169 10.000 2.83x10 9 2.0xKr5 4.7x10-*
MA HA* 1.0x10-* 28x10-5
4x10'*
~ . * . , Q«r^ir.imon»al uAlllo
Reference/Ccmnents
25, 12, (Substance decomposes to
Cu t CjNj: in
equilibrium with these
products.)
See specific compound
**VP « 5 atmP 21.4
1. 2
1. 3, 4, (Hydrolyzes to HOCN «
HC1)
**VP . Inn 9 132. B6
1
**VP . 0.4 9 I60*C
1. B
**VP » 14 9 13I*C
1, Compound hydrolyzes In water
and wet soil
1, 7. 8. 15. 23. 30. 31
(H * experimental)
1, Solubility of inorganic
chemicals cannot be
estimated
2, 9
1. 8
2
2, Hog P cannot be estimated
due to epinephrine fragment
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Vapor Solubility Relative Relative
Waste Molecular Boiling Pressure in ty) Henry's Dry Soil Wet Soil
Code Waste Name Weight Point* 9 25«C tog P* 9 25«C Constant Volatility Volatility
(g/mol) (°C) (mn Hg) (mg/1) (atm-m3/mol) P^H*-"4 P^W"2
P043 Oiisopropylfluorophosphate 184 183 0.579 — 15.000 9.1x10'* l.6xlfl-' 4.3x10~2
P044 Dimelhoate 229 Tm = 52 8.5x10-* 0.5 25,000 10-'° 2.2x10-* 5.6xlfl-7
P045 Thiofanox 218 296 l.7xlfl-4 52.000 9.37x10-'° 4.4xKT5 1.2xlfl-4
P046 a,c.-Dimethylphenethylamifie 149 205 0.276 2.17 2,900 1.86xlO-5 7.9xHTZ 2.3x«T2
9 750nn
P047 4,6-Dinitro-o-cresol (and salts) 198 214 0.018 130 1.4xlfl-5 4.8x«>-3 1.3xHr3
T,,=e6.5
P048 2,4-Dinitrophenol 184 V116 MA 1.50 19.500 — —
-Ca
cn
P050 Endosulfan 407 V 7°- 'x'0"5 5'34 °'22 2.5xlO-5 2.2x10"* S.Oxlfl-7
100
P051 Endrin 381 V245 2x1fl-7 5.3 0.024 4.2XHT* 4.6x10-8 l.Oxlfl-8
POM Ethylenimine 43 56 200 miscible l.lxlQ-5 78 30
P056 Fluorine 19 permanent permanent reacts
gas gas
PCS/ Fluoroacetimide 77 181 0.875 -1.05 3.6xK>-7 2.33xKr9 3.0xlfl-' l.OxHT1
POSQ Fluoroacetic acid, sodium salt decomposes NA HA
P059 llcptachlor 373 Im = 96 SxlO'4 0.56 I.48xl0-3 6.9xlQ-5 1.6xUr5
TO60 ItewcMorohexahydro, exo, exo 365 379 I 4x10 4 -0.39 8.5x10* l.UxlQ-7 3.2xlQ-5 7.3xlfl-*
diniethanonaphthalene
Reference/Ccmnents
2
6. 8. 9
8
2
1, 9, 23 ( H = experimental)
1, 6, Boiling point and vapor
pressure cannot be
estimated due to presence
of nitro groups
8. 9
1. 2. 8, 16
**VP « 160 9 20'C & 250 9 30'C
1
1, (Reacts with water)
2,6.7
1 , (decomposes)
8. 28. 23
1
**Vaoor oressure 0 2S°C eslimdled via exlraootalion from experimental value
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of ROW Wastes
Waste
Code Waste Name
P062 ilexaethyltetraphosphate
P063 Hydrocyanic acid
P064 Methyl isocyanate
P065 Mercury fulminate
P066 Me thorny 1
Cr,
P067 2-hethylaziridine
P068 Methyl hydrazine
P069 2 -Methyl lactonitrile
P070 Aldicarb
P071 Methyl parathion
P073 Nickel carbonyl
POM Nickel cyanide
Vapor Solubility Relative Relative
Molecular Boiling Pressure in H^ Henry's Dry Soil Wet Soil
Weight Point* 9 25«C log P* 9 25'C Constant Volatility Volatility Reference/Cements
(g/mol) CO (muHg) (mg/1) (atnmrVmol ) Pvp«rT1/4 PypMH-'
See Note See Mote reacts — — — Boiling point and vapor pressure
, cannot be estimated
2, ;>5 , 730 -1.5 5.6x107 4.65x10-' 321 140 1. 3. 6
5, 59.6 201 Reacts — '2.3 26.6 1.4 (Reacts with water)
with water
284 explodes See Note 700** - - - TloH2 (Hg(ONC)2 detonates
at fairly low temp.
Gas phase contains
decomposition
products in addition
to chemical)
162 V J8-W 5x10-5 58.000 lO"'" l.«*W* 3.9x10-* 9. 8
57 20 92.0 -0.35 S.lxlO6 2.22xlQ-5 33.1 12.2 1
46 87.5 49.6 miscible 3.0x10"* 16.4 7.3 4
B5 251 0.0244 -0.508 T.TxlO6 IO"10 7.«xld onlv il required for other calculations.
"Vapor pressure 9 ?5°C estimated via extrapolation from experimental value
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Waste
Code Waste Name
P075 Nicotine
P076 Nitric oxide
P077 /j-Nitroaniline
P078 Nitrogen dioxide
PO8I 1.2,3-Propanelriol, trinitroate
P082 N-Nitrosodimethylamine
(Dimethylnitrosamine)
P084 N-Nitrosomethylvinylamine
P085 Octamelhylpyrophosphoramide
P087 Osmium telraoxide
P088 Endothall
P089 Parathion
P09J Phenylmercuric acetate
P093 N-Phenylthiourea
P094 Phorale
Vapor Solubility Relative Relative
Molecular Boiling Pressure in H^ Henry's Dry Soil Met Soil
Weight Point* 9 25°C tog P* 9 25°C Constant Volatility Volatility
(g/mol) CO (ma Hg) (mg/1) (atm-m3/mol) P^pMH"1'* PvpHT1/2
162 246 0.0557** 1.17 74,000 1.6x10-' 1.6XUT2 4.4xlQ-3
30 -151.7 permanent 4.6ml/
gas * 20°C lOOral 9 20
138 331.7 4xlO-3 BOO 10"* 1.2xKT3 3.4x1fl-*
TB = 149
46 21.0 BOO reacts — 307 118
227 256 0.26** 1.200 S.lBxUT5 8.8x«r2 l.I3xl(T2
1.800
74 153 4.87** -0.74 1.4xl07 3x10"* 1.6 5.7xlfl-'
86 16** 0.03 30,000 5.65xlO-5 5.3 1.7
286 154 9 2m. IQ-3 misclble 3.7x10-'° 2.4xlO~3 5.9xlfl-5
254 !„- 40 10 57.000 5.86xlO-5 2.5 6.3x10-'
230 See Note NA See 100.000
Note
297 113 3.78xlO-5 24 1.21x10-* 9.1xHT* 2.2x10"*
336 Tm« 149 9xlO-6 4,370 1Q-9 2.2x10-* 4.9xlfl-'
152 255 0.0162 0.73 2.200 1.47x10-' 4.5X10'3 1.3xlQ-3
260 15-78 8xUr4 50 5.47x10 6 2.0xlQ-4 5.0xlQ-5
9 01 am
Reference/Conments
**VP » 28.4 9 133.BT.
1. 5, 6
2
1. 3
1, 12 (reacts with water to
yield NO an nitric acid)
**VP * 2 9 125*C
1. 2. 3
**VP . 14 9 50eC
3
**VP « 30 ran 9 47"C
2. 3
2
1, 10
2. Boiling point and log P
cannot be estimated
1. 8. 30
2. 8
2, 6
2
*Prescnled only if required for other calculations.
**Vapor pressure 3 25°C estimated via extrapolation from experimental value
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatilily of RCRA Wastes
oo
Waste
Code Waste Name
P095 Phosgene
P096 Phosphine
P097 Oimcthylcarbamoyl chloride
P098 Potassium cyanide
P099 Potassium silver cyanide
P101 Propane nitrile
P102 2-Propyn-l~o1
P103 Selenourea
P104 Silver cyanide
P10S Sodium azide
PI06 Sodium cyanide
P10) Strontium sulfide
Vapor Solubility Relative Relative
Molecular Boiling Pressure in H^ Henry's Dry Soil Wet Soil
Weight Point* * Z5°C log P* 9 25°C Constant Volatility Volatility Reference/Comments
(g/mol) (°C) (ran Hg) (mg/1) (atnmrVmol) P^Wr"4 Pvpr»Tl/2
99 756 1.430 See slightly — 458 144 1. log P cannot be estimated
Note to derive solubility
34 -87. J 1.4x10-* 2.600 0.189 5.7xUr5 2.4x«T5 1
107 167-168 2.6 20,000 l.BlxUr3 8. 1x10"' 2.5x10-' 2
9 775 im
65 HA Insignificant 500.000 — — — «. Bolting points and vapor
(< 10"6) pressures cannot be estimated
for inorganic chemicals
199 See Note See Note 250.000** — — — **• 20"C
3, 10. Boiling point cannot be
estimated to derive
vapor pressure.
55 97.35 40 119,000 2.4xlO~5 14.8 5.4 2
56 U3.6 9.56 -1.09 3.2x10-' ZxUT8 3.5 1.28 1
123 T^.,-213 NA 100.000** — — — **19°C
*c 1. 10, (Decomposes)
134 t-^320 See Note 23 9 20°C — — — '. « (Substance decomposes to
060 Ag » C2N2.
Equilibrium with metal •
CjNj exists)
65 !_. 350 See Note 417,000 — — — '• 2' (Decomposes to N2 »
r sodium nitride in gas
phase)
49 14% insignificant 480,000 — — — 1, Boiling points and vapor
(< 1Q-6) pressures cannot be estimated
for inorganic chemicals
119 VZ-000 insignificant insoluble, See Note — — '. « (Substance reacts with
(<10-6) reacts at water or "loislure to
low ta*. »««W "2s " Sr«M2
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Uasle
Code
P108 Strychnine and salts
Vapor Solubility Relative Relative
Molecular Boiling Pressure in ll^ Henry's Dry Soil Met Soil
Weight Point* 0 25°C log P* 3 25°C Constant Volatility Volatility
(g/mol) («C) (irnitlg)
(mg/1) (atmV/mol)
PvprW-
|/7
334 463 1.2x10-"** 1.93 156 10~'* 2.76xlO-'Z 6.6xl
-------
Appendix A Physical Chemical Properties and Relative Soil Volatility of KCRA Wastes
Waste
Code
Waste Name
PI20 Vdnddium pentoxide
PI2I Zinc cyanide
PI?? Zinc phosphide
Molecular Boiling
Weight Point*
(g/nol) (*C)
Vapor
Pressure
0 25°C
(im llg)
Solubility
in I^O Henry's
log P* Q 25°C Constant
(mg/l) (atnnn3/mol)
Relative Relative
Dry Soil Wet Soil
Volatility Volatility
,, Mu-
1 vp™
l/2
I1123 Octachlorocamphene
182
117
insignificant
8,000
1,750
See Note See Note
SO
258 1100 See Note
reacts
Reference/Ccmnents
I, Vapor pressure and solubility
cannot be estimated for
Inorganic chemicals
4. 12 (Substance decomposes to
ZN • C2N2: in
equilibrium with those
products)
I. 12 (Substance reacts with
water to yield P«3 =
Zn(OH)2))
4,2 389 8.08x10-' 6.97 Z.lxKT3 2.07xH>-3 l.BxlO-6 4.0x10
•Pre'-enloil only il ifc|nirc(J (in other calculations
*«Va(wr pressure Q Z5°L pstmiated «ia exlra|K)lation from experimental value
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Waste
Code
DOOO
D001
0002
0003
0004
D005
D006
D007
D008
0009
DO 10
Vapor Solubility Relative Relative
Molecular Boiling Pressure in HyO Henry's Dry Soil Wet Soil
Waste Name Weight Point* 9 25«C log P* 9 25'C Constant Volatility Volatility
'« PvpMW-"2
Any combination of arsenic,
barium, cadmium, and
chromium waste.
Solid waste that exhibits the
characteristic of ignitability,
but is not listed as a hazardous
waste in Subpart D.
Solid waste that exhibits the
characteristic of corrosivity,
but is not listed as a hazardous
waste in Subpart 0.
Solid waste that exhibits the
characteristics of reactivity,
but is not listed as a hazardous
waste in Subpart 0.
Arsc|)jc ;S 75 if 372«c insoluble nonvolatile nonvolatile
Barium 137 1,600 NA reacts nonvolatile nonvolatile
slowly with
water
Cadmium 112 765 10r5 9 insoluble nonvolatile nonvolatile
148«C
Chromium 52 2,672 1Q-5 9 Insoluble nonvolatile nonvolatile
907«C
Lea<| 207 1,740 10~5 9 insoluble nonvolatile nonvolatile
483*C
Mercury 200 357 l.SxlO'3 3xH>-z l.MxIQ-2 3.5x10'* 1.2xUH
Selenium 79 685 NA insoluble nonvolatile nonvolatile
Reference/Comments
No information available on
wastestrean constituents
No information available on
wastestrean constituents
No information available on
wastestrean constituents
1
1, Vapor pressure cannot be
be estimated, however should
be less than lO"6 at 25°C
1
1
1
I, 29
1, Vapor pressure cannot be
estimated, however should be
less than 10-* at 25*C
Mil
Silver
108
2,060
NA
insoluble
nonvolatile nonvolatile
1, Vapor pressure cannot be
estimated, however should be
less than 1Q-6 at 25'C
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
en
ro
Haste Molecular
Code Waste Name Weight
(9/mol)
0012 Endrin (1.2,3,4,10.)0-hexachloro- 381
l,7-epoxy-l,4,4a,5.6,7.8.8a-
octahydro-l,4-endo,endo-5.8-
dimethane naphthalene).
0013 Lindane (1.2.3.4.5.6- 291
hexachlorocyclohexane,
gamma isomer)
0014 Methoxychlor (1.1,1-Trichloro- 346
2,2-bisCp-methoxy phenol])
ethane
0015 loxaphene (technical clorinated 343-517
camphene, 67-69 percent
chlorine) .
D016 2,4-0(2.4-Oichlorophenoxyacetic 221
acid)
0017 2,4.5-TP Silvex (2.4,5-Irichloro- 255
phenoxypropionic acid)
Vapor Solubility Relative Relative
Boiling Pressure in H^ Henry's Dry Soil Wet Soil
Point* f 25°C log P* * 25'C Constant Volatility Volatility Reference/Corments
CO (imi Hg) (mg/D (atmV/mol) PvphV-"* l>vp*r"2
T -PIS" 2x10-' 0.024 3.86x10-' 4.5x10-° 1.0x10-° 31
*" 0.26
V1I2.9' 9.4x10-* 7.3 4.93x10-' 2.3x10-* 5. SxHT1 29. 31
^ < 1 mg/1 — — — °. »«?«• pressure cannot be
gj. be estimated
I(tec = 0.2-B.4 ~ 3 -7.5X10-2 -3.0x10-' ~«.9xlO-z 31
120*
278 1.59x10-*** 620 7.5x10-8 4.IXHT5 l.lxlO-5 **VP - 0.4 m f 160*C
1^140.5' 8
T _)54. w 238 » 30* — — — 8. Vapor pressure cannot be
"~ estimated
*Presenled only if required for other calculations.
**Vapor pressure P 25'C estimated via extrapolation from experimental value.
-------
Appendix A. Physical-Chemical properties and Relative Soil Volatility of RCRA Wastes
Waste Molecular
Code Waste Name Weight
(g/mol)
Boiling
Point*
CC)
Vapor
Pressure
9 25°C
(nraHg)
Solubility
in H^ Henry's
log P* 9 2S*C Constant
(mg/1) (atm~m3/mol )
Relative
Dry Soil
Volatility
V*r"«
Relative
Wet Soil
Volatility
rvP*r"2
Reference/Comments
F001 Spent halogenated solvents used
in degreasing, tetrachloroethylene,
trichloroethylene. methylene
chloride. 1,1,1-trichloroethane,
carbon tetrachloride, and the
chlorinated fluorocarbons;
sludges from the recovery of
these solvents in degreasing
operations.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
F002 Spent halogenated solvents,
tetrachloroethylene, methylene
chloride, trichloroethylene,
1.1,1-trichlorocthane,
chlorobenzene, 1.1.2-
trichloro-l,2,2-trifluoro-
cthane, odichlorobenzene,
trichlorofluorome thane,
the still bottoms from the
recovery of these solvents.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
F003
Spent non halogenated solvents,
xylene, acetone, ethyl acetate,
ethyl benzene, ethyl ether,
n-butyl alcohol, cyclohexanone;
the still bottoms from the
recovery of these solvents.
F004
Spent non halogenated solvents:
cresols and cresylic acid,
nitrobenzene; and the still
bottoms from the recovery
of these solvents.
roos
Spent non halogenated solvents,
methanol, toluene, methyl
ethyl ketone, methyl isobutyl
ketone, carbon disulfide,
isubutanol, pyridine; the
still bottoms from the recovery
of these solvents.
F006
Wastewaler treatment sludges from
electroplating operations.
*Presented only if required for other calculations
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WAS1E UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODtS FOR PROPERTY DATA.
Wastestream includes cadmium,
hexavalent chromium, nickel,
and ccmplexed cyanide.
**Vapor pressure 0 25°C estimated via extrapolation from experimental value.
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of ROW Wastes
Waste
Code Waste Name
Molecular
Weight
(g/mol)
Boiling
Point*
CO
Vapor
Pressure
£ 25°C
OratHg)
Solubility
in Hf Henry's
log P* 9 25°C Constant
(mg/1) (atnmrVmol)
Relative
Dry Soil
Volatility
PvpMT'"
Relative
Wet Soil
Volatility
v-"2
Reference/Comments
FOOT
pooe
Spent plating bath solutions from
electroplating operations.
Plating bath sludges from the
bottom of plating baths from
electroplating operations.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY OAIA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestream includes cyanide
salts, copper, nickel, and other
heavy «etals depending on
plating operation.
Uastestrean includes cyanide
salts and heavy metals depending
on the operation.
F009 Spent stripping and cleaning
bath solutions from electro-
plating operations.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestream includes cyanide
salts and heavy metal salts.
F010 Quenching bath sludge from oil
baths from metal heat treating
operations where cyanides are
used in the process (except
for precious metals heat-
treating quenching bath
sludges).
F011 Spent cyanide solutions from
salt bath pot cleaning from
metal heat treating operations
(except for precious metals
heat treating spent cyanide
solutions from salt bath pot
cleaning).
FOI2
Quenching wastewater treatment
sludges from metal heat treating
operations.
F014
Cyaniddlion wastcwater treatment
tailing pond sediment from
mineral metals recovery operations.
FOI5
Spent cyanide bath solutions
from mineral metals recovery
operations.
FOI9
Udstowater treatment sludgi'i frun
chemical conversion codling of
aluminum
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestream Includes cyanide
salts and heavy metal salts.
Wastestrean Includes cyanide
salts and heavy metal salts.
Uastestream includes ccnplexed
cyanide.
Uastestream Includes ccnplexed
cyanide.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestream includes cyanide
salts
SEE SPECIFIC WASIE UNDER P OR U WASTE CODES rOR PROPERTY DATA.
Uastestream includes hexavalent
chromium, and ccnplexed cyanides
-------
Waste
Code
Waste N.imc
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Vapor Solubility
Molecular Boiling Pressure in HjO Henry's
Height Point* 9 25«C tog P* 9 25°C Constant
(g/mol) (°C) (nmHg) (mg/1) (atm-m3/mol)
Relative Relative
Dry Soil Wet Soil
Volatility Volatility
1/4
1/2
Reference/Comments
K001 Bottom sludge from the treatment
of wastewaters from wood
preserving processes that use
creosote and/or pentachlorophenol
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
K006
Wastcwater treatment sludge
(run the production of chrome
oxide green pigments (anhydrous
and hydrated).
K007
KOOS
Wastewater treatment sludge
from the production of iron
blue pigments.
Oven residue from the production
of chrome oxide green pigments
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestream Includes
pentachlorophenol, phenol,
2-chlorophenol,
p-chloro-w-cresol, 2,4-dimethyl-
phenyl, 2,4-dinltrophenol,
trlchlorophenots, tetrachloro-
phenols, 2.4-dinitrophenol.
creosote, chrysene,
naphthalene, fluoranthene,
benzoQOfluoranthene. benzo(a)-
pyrene, Indeno (1,2,3-cd)
pyrene, benz(a)anthracene,
dibenz(a)anthracene.
acenaphthalene.
K002 wastcwater treatment sludge fron
the production of chrome yellow SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
and orange pigments.
°" K003 Wastewater treatment sludge
01 fron the production of SEE SPECIFIC WASIE UNDER P OR U WASTE COOES FOR PROPERTY DATA.
molybdate orange pigments.
K004 Wastewater treatment sludge from
the production of zinc yellow SEE SPECIFIC WASTE UNDER P OR U WASTE COOES FOR PROPERTY DATA.
pijjnents.
KOOS Wastewater treatment sludge from
the production of chrome SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
green pigments.
Uastestream Includes
;>exava1ent chromium and lead.
Uastestream Includes
chromium and lead.
Uastestream includes
chromium.
Uastestream includes
chromium and lead.
hexavalent
hexavalent
hexavalent
Uastestream Includes hexavalent
chromium.
Uastestream Includes complexed
cyanide and hexavalent chromium.
Uastestream includes hexavalent
chromium.
presented only if required for other calculations.
"Vapor pressure 0 25°C estimated via extrapolation from experimental value
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Hastes
Waste
Code Waste Name
K009 Distillation bottoms from
the production of
acetaldehyde from ethylene.
Molecular Boiling
Weight Point*
(g/mol) (°C)
SEE
Vapor
Pressure
9 25«C Log P*
(mnHg)
SPECIHC WASTE UNDER
Solubility
in HjO
0 K'C
(mg/1)
Henry's
Constant
(atm-nrVmol)
P OR U WASTE CODES
Relative
Dry Soil
Volatility
. v""4 .
FOR PROPERTY
Relative
Wet Soil
Volatility
Vr"2
DATA.
Reference/Comments
Wistestream Includes chloroform
formaldehyde, nethylene chloride
methyl chloride, paraldehyde,
and formic acid.
K010 Distillation side cuts from the
production of acetaldehyde from
ethylene.
SEE SPECIFIC WASTt UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Wastestream includes chloroform,
formaldehyde, methylene
chloride, paraldehyde, methyl
chloride, formic acid, and
chloroacetaldehyde.
en
cr> -
KOI 1 Bottom stream from the wstewater
stripper in the production of
acrylonitrile
K013 Bottom stream from the acetonitrile
column in the production of acrylo-
nitrile.
K014 Bottoms from the acetonitrile
purification column in the
production of acrylonitrile.
KOI5 Still bottoms from the
distillation of benzyl
chloride.
K016 Heavy ends or distillation
residues from the production
of carbon tetrachloride.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASIE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR.U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestrea* includes
acryloottrile, acetonitrile, and
hydrocyanic acid.
Wastestream includes
acrylonitrile. acetonitrlle, and
hydrocyanic acid.
Wastestram Includes acetonitrile
and aery1 amide.
Wastestream includes benzyl
chloride, chlorobenzene,
toluene, and benzotrichlorlde.
Wastestream Includes
hexachlorobenzene, hexachloro-
butadlene, carbon tetrachloride,
hexachloroethane, and
perchloroethylene.
KOI7
Heavy ends from purification
in production of cpichlorohydrin
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES rOR PROPERTY DATA.
Wastestream Includes eplchloro-
hydrin, chloroethers,
(bls(chloromethyl) ether and bis
(2-chloroethyl) ethers], tri-
chloropropane,
dichloropropanols
K018
Heavy ends from the fractionation
column in ethyl chloride
product ion.
SEE SPECIFIC WASTE UNDER P OR U WASIE CODES FOR PROPERTY DATA.
Wastestream includes 1,2-dich-
loroethane, trlchloroethylene,
hexachlorobutadiene, hexachloro-
benzene
-------
Waste
Code
K019
Waste Name
Appendix A. Physical-Chemical properties and Relative Soil Volatility of RCRA Wastes
Vapor Solubility
Molecular Boiling Pressure in H^ Henry's
Weight Point* 9 25°C log P* 0 25°C Constant
(g/mol) (°C) (urn Hg) (mg/1) (atiiMirVmoI)
Relative Relative
Dry Soil Wet Soil
Volatility Volatility
Heavy ends from the distillation
of ethylene dichloride in
ethylene dichloride
production.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Reference/Comments
Wastestream Includes ethylene
dichlorlde; 1.1.1-trichloro-
e thane; 1.1,2-trlcMoroethane;
1,1.2,2-tetrachlorethane;
1,1.1,2-telrachloroethane;
trtchloroethylene, tetrachloro-
ethylene, carbon tetrachloride,
chloroform, vinyl chloride, and
vinyl(dene chloride.
K020 Heavy ends from the distillation
of vinyl chloride in vinyl chloride
monomer production.
K021 Aqueous spent antimony catalyst
wastes from fluoromethanes
production
K0?2
K023
K024
Distillation bottom tars from
the production of phenol/acetone
from cumene
Distillation light ends from
the production of phthalic
anhydride from naphthalene.
Distillation bottoms from the
production of phtlutic
anhydride from naphthalene.
K02b
Distillation bottoms from
the production of nitrobenzene
by the nitration of benzene.
K026
blripping still tails from
the production of methyl ethyl
pyridincs.
*Presented only if icquired fur other calculations.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE COOES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASIE UNDEK P OK U WASTE CODES FOR PROPERTY DAFA.
**Vapor pressure 9 25°C estimated via extrapolation from experimental value.
Wastestream Includes ethylene
dichloride, 1.1,1-lrlchloro-
ethane. 1.1,2-trichloroethane.
tetrachloroethanes (1.1.2.2-
tetrachloroethane and 1,1,1,2-
tetrachloroethane), trlchloro-
ethylene, tetrachloroethylene,
carbon tetracMorlde,
chloroform, vinyl chloride,
vinylidene chloride.
Wastestream includes antimony.
carbon tetrachloride, and
chloroform.
Wastestream includes phenol and
tars (polycycllc aromatic hydro-
carbons) .
Wastestream includes phthalic
anhydride and maletc anhydride.
Wastestream includes phthalic
anhydride and 1.4-naphthoqulnone
Wastestream includes
meta-dinitrobenzene and 2,4-
dinotrotoluene.
Wastestream includes
paraldehyde, pyridines, and
2-picoline.
-------
Appendix *. Physical-Chemical Properties and Relative Soil Volatility of ROW Wastes
W>i?>te Molecular
Code UdbtH Ndme Height
(g/mol)
Boiling
Point*
CO
V.ipor
Prfbsure
£ 25-C
(imiHg)
Solubility
in H^ Henry's
Log P* 0 2S*C Constant
(mg/1) (atmm^/mol)
Relative
Dry Soil
Volatility
Pvp" '" .
Relative
Uet Soil
Volatility
Reference/Conments
K021
K028
cr
00
K029
K030
K032
Centrifuge residue front toluene
diisocyanate production
Spent catalyst from the
hydrochlorinator reactor in
1,1,1 tCE prediction
Haste from production steam
stripper in 1,1,1-Trichloro-
elhane production.
Column bottoms or heavy ends
from the combined production
of trichloroethylwie and
perchloroethylene.
K031 By-products salts generated
in the production of NSMA
and cacodylic acid.
Uastewater treatment sludge
from chlordane production
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOK PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Wastestrean includes toluene
diisocyanate, and toluene-2.4-
diamlne
Uastestream includes 1,1,1-
trlchloroethane and vinyl
chloride
Uastestream includes
1,2-dichloroethane, 1,1.1-tri-
chloroethane, vinyl chloride,
vinylidene chloride, and chloro-
form
Uastestream includes hexachloro-
benzene, hexachlorobutadiene,
hexachloroethane, 1.1,2-tetra-
chloroethane; 1,1,2.2-tetra
chloroethane; ethylene
dichloride
Uastestream contains arsenic
Uastestream includes hexachloro-
cyclopentadiene
K033
Hastewater and scrub water
from the chloririrftion of
cyclopentadiene in the
production of chlordane.
K034
K035
Filter solids from filtration of
hexachlorocyclopentadiene
Wastcwater trealment sludges
generated in the production
of creosote
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
StE SPECIFIC WASTE UNDtR P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE COOES FOR PROPERTY DATA.
Uastestream includes hexachloro-
cyclopentadiene
Uastestream includes hexachloro-
cyclopentadiene
Uastestream includes creosote,
chrysene, naphthalene, fluoran-
thene, benzo(b)fluoranthene,
benzo(a)pyrene. indeno(l,2,3-cd)
pyrene, benzo(a)anthracene,
dibenzo(a)anthracene, acenaph-
thalene
i>«tr.iuoljtion trim experimental value.
-------
en _
1C
K039
Appendix A. physical-Chemical Properties and Relative Sol) Volatility of RCRA Wastes
Waste
Code Waste Name
K036 Still bottoms from toluene
reclamation distillation
in the production of
disulfoton.
K037 Wastewater treatment sludges
from the production of
disulfoton.
K038 Wastewater from the washing
and stripping of phorate
profltM tion.
Vapor
Molecular Boiling Pressure
weight Point* * 25°C log P*
(g/mol) (*C) (ran Hg)
SEE SPECIFIC WASTE UNDER P OR U
SEE SPECIFIC WASTE UNDER P OR U
SEE SPECIFIC WASTE UNDER P OR U
Solubility Relative Relative
in HjO Henry's Dry Soil Wet Soil
9 25'C Constant Volatility Volatility
(mg/1) (atnuirVmol) P^HT1'* Pvp«W 1/2
WASTE CODES FOR PROPERTY DATA.
WASTE CODES FOR PROPERTY DATA.
WASTE CODES FOR PROPERTY DATA.
Reference/Comments
Wastestream includes toluene,
phosphorodithioic and phosphoro-
thioic acid esters
Uastestream includes toluene,
phosphorodithioic and phosphoro-
thiolc acid esters
Uastestream includes phorate,
formaldehyde, phosphorodithioic
and phosphorothloic acid esters
Filter cake fum the
filtration of diethylphos-
phorodithioic acid in the
production of phorate.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
K040
Wastewater treatment sludge
from the production of phorate.
SEE SPECIFIC WASTE UNDEK P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
K042
Heavy ends or distillation
residues from the distillation
of tetrachlorobenzerie in the
production of 2,4,5-T.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
K043
2,6-Dichlorophenol waste fron the
production of 2,4-D
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Wastestream Includes phosphoro-
dithioic and phosphorothioic
acid esters
Wastestream Includes phorate,
formaldehyde, phosphorodithioic
and phosphorothloic acid esters
Uastestream includes toxaphene
Wastestream includes hexachloro-
benzene and ortho-
dichlorobenzene
Wastestream Includes
2.4-dichlorophenol,
2.6-dlchlorophenol, and 2.4.6-
trlchlorophenol
K044
Udstewater treatment sludges
from the manufacturing and
processing of explosives.
K04S
Spent carbon from Wastewater
treatment in explosives production
*Presented only if required for other calculations.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES rOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
**Vapor pressure 9 25°C estimated via extrapolation from experimental value.
Ho information on constituents.
No information on constituents.
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Waste
Code Waste Name
K046 Uastewater treatment sludges
from the manufacturing,
formulation, and loading
of lead-based initiating
compounds .
K047 Pink/red water from TNT operations.
K048 Dissolved air flotation (DAF)
float from the petroleum refining
industry.
K049 Slop oil emulsion solids from the
petroleum refining industry.
O
K050 Heat exchanger bundle cleaning
sludge from the petroleum
refining industry.
K051 API separator sludge from the
petroleum refining industry.
K052 Tank bottoms (leaded) from
the petroleum refining
industry.
K060 Anmonia still lime sludge
from coking operations.
Vapor Solubility Relative Relative
Molecular Boiling Pressure in H^ Henry's Dry Soil Met Soil
Height Point* * 25«C log P* * 25'C Constant Volatility Volatility
(g/mol) CO (nmHg) (mg/1) (atm^/mol ) P^Kr"4 V*r"2
SEE SPECIFIC HASTE UNDER P OR U WASTE CODES FOR PROPERTY.
StE SPECIFIC WASTE UNDER P OR U WASTE COOES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE COOES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WAS1E CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Reference/Cements
Wastestream contains lead
Wastestream includes
dinttrotoluene isomers and
dlnitrobenzoic acid isomers.
Uastestream Includes
bexavalent chromium and lead.
Uastestream includes
hexavalent chromium and lead.
Uastestream includes
hexavalent chromfun.
Wastestream Includes
hexavalent chromium and lead.
Uastestream includes lead.
Uastestrean contains cyanide,
naphthalene, phenolic compounds,
and arsenic
Presented only if tuquircd for other calculations.
**Vapor pressure ? 25"C estimated via extrapolation from experimental value.
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Waste
Code Waste Name
Molecular
Weight
(g/fflol)
Boiling
Point*
<°C)
Vapor
Pressure
0 K'C
(nmHg)
Solubility
in HjO
log P* « 25"C
(mg/1)
Henry's
Constant
(atnmrVmol)
Relative
Dry Soil
Volatility
pvp»H'«
Relative
Wet Soil
Volatility
•w-"2
Reference/Comments
K061 emission control dust/sludge from
the electric furnace production
of steel
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Wastestream Includes hexavalent
chromium, lead, cadmium, and
possibly nickel.
K062
Spent pickle liquor from steel
finishing operations
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestream includes hexavalent
chromium, lead, and dilute spent
HC1.
K069
Emission control dust/sludge
from secondary lead smelting.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestream Includes hexavalent
chromium, lead, and cadniun.
KO;I
cr>
K073
Brine purification muds from the
mercury cell process in
chlorine production, where
separately prcpurified brine
is not used.
Chlorinated hydrocarbon waste
from purification step of
diaphragm cell process using
graphite anodes in chlorine
production.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODtS FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestream includes mercury
Uastestream contains chloroform,
carbon tetrachloride,
hexachloroethane,
trichlorocthane,
tetrachloroethylene, dichloro-
ethylene, t.l.Z.Z-tetrachloro-
ethane
KOQ3 Still bottoms from aniline
production
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Wastestream contains aniline,
diphenylamine, nitrobenzene,
phenylenediamtne
K084
K085
Mdstowater treatment sludges
generated during the production
of veterinary Pharmaceuticals
from arsenic or organo-arsenic
compounds
Distillation or fractionation
column bottoms from the
production of chlorobenzenes
*Presented only if required for other calculations
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
**Vapor pressure 0 25°C estimated »ia extrapolation from experimental value.
Uastestream contains arsenic
Uastestream contains benzene,
dichlorobenzenes, trichloro-
benzenes, tetrachlorobenzenes,
pentachlorobenzene, hexachloro-
benzene. benzyl chloride
-------
Waste
Code
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Hastes
Waste Name
Molecular Boiling
Weight Point*
(g/mol) ("C)
Vapor
Pressure
P 25°C
(im> Hg)
Solubility Relative Relative
in HZ". Henry's Dry Soil Wet Soil
log P* t 2S*C Constant Volatility Volatility
(mg/1) (atm-nrVmol) Pyplir"4 «• -"-'/2
Reference/Comments
K087 Decanter tank tar sludge from
coking operations.
SEE SPECIFIC WASTE UNDER P OR U WASTE COOES FOR PROPERTV DATA.
Wastestreara Includes phenol,
naphthalene, and polynuclear
aromatic*
K093 Distillation light ends from
production of phthalic anhydride
frcm o-xylene
K094 Distillation bottoms from
production of phthalic anhydride
from o-xylene
K095 Distillation bottoms from the
production of 1,1,1-trichloroethane
SEE SPECIFIC WASTE UNDER P OR U WASTE COOES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestream contains phthalic
anhydride and maleic anhydride
Uastestream contains phthalic
anhydride
Uastestream contains 1,1,2-
trichloroethane. 1,1,1.2-
tetrachloroethane, 1,1.2.2-
tetrachloroethane
cr.
r-o
K096 Heavy ends from heavy ends column
from the production of 1,1,1-trichloroethane
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestream contains 1,2-
dichloroethane, 1.1.1-dlchloro-
ethane. 1.1.2-trichloroethane
K097 Vacuum stripper discharge from the chlordane
chlorinator in the production of chlordane
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestream contasln chlordane
and heptachlor
K098
Untreated process wastewater from
production of toxaphene
K099 Untreated wastewater from production
of 2,4 D
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Uastestream contains toxaphene
Uastestream contains
2,4-dichlorophenot and 2.4.5-
trichlorophenol
K100
Waste leaching solution from acid
leaching of emission control dust/
sludge from secondary lead smelting
KI01
Distillation tar residues from the
distillation of aniline-based
cuipounds in the production of
veterinary Pharmaceuticals front
arsenic or organo arsenic compounds
*Presented only if required for other calculations.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
**Vapor pressure ? 25°C estimated via extrapolation from experimental value.
Uastestream contains hexavalent
chromium, lead, and cadmium
Uastestream contains arsenic
-------
Appendix A. Physical-Chemical Properties and Relative Soil Volatility of RCRA Wastes
Waste Holecular
Code Waste Name Weight
(g/mol)
K102 Residue from the use of activated
carbon for decolor) zation in the
production of veterinary Pharmaceu-
ticals from arsenic or organo-
arsenic compounds
KI03 Process residues from aniline
extraction from the production
of aniline
K104 Combined wastewater streams
generated from nitrobenzene/
aniline production
Vapor
Boiling Pressure
Point* 9 ZS'C log P*
CO (ran Hg)
SEE SPECIFIC WASTE UNDER
SEE SPECIFIC WASTE UNDER
SEE SPECIFIC WASTE UNDER
Solubility Relative Relative
in HjO Henry's Dry Soil Wet Soil
0 25«C Constant Volatility Volatility
(mg/1) (atnmrVmol) Pvpl*r1/4 Pvp»rl/2
P OR U WASTE COOES FOR PROPERTY DATA.
P OR U WASTE CODES FOR PROPERTY DATA.
P OR U WASTE CODES FOR PROPERTY DATA.
Reference/Contents
Wastestream contains arsenic
Wastestream contains aniline,
nitrobenzene, and phenylene-
dfamlne
Wastestream contains aniline,
benzene, dlphenylamlne, nitro-
benzene, phenylenedlamine
K105 Separated aqueous stream from the
reactor product washing step In
the production of chlorobenzenes
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Wastestream contains benzene,
monochlorobenzene, dichloro-
benzenes, and 2,4,6-trichloro-
phenol
K106
Uastewater treatment sludge from
the mercury cell process in
chlorine production
SEE SPECIFIC WASTE UNDER P OR U WASTE CODES FOR PROPERTY DATA.
Wastestream contains mercury
Presented only if required for olher calculations.
**Vapor pressure P 25°C estimated via extrapolation from experimental value.
-------
Footnote to Appendix A
References used for Physical-Chemical Property Data
1. Handbook of Chemistry and Physics. 1971-1983. RC Weast (ed).
Cleveland, OH: The Chemical Rubber Company.
2. The Merck Index. 1976. M. Wlndholz (ed). Rahway, NJ: Merck and
Company, Inc.
3. Verschueren K. 1977. Handbook of Environmental Data on Organic
Chemicals. New York, NY: Van Nostrand Relnhold Company.
4. K1rk-0thmer. 1978. Encyclopedia of Chemical Technology. 3rd
Edition. New York, NY: WHey Intersclence.
5. BoubHk T, Freld V, Hala E. 1973. The vapour pressures of pure
substances. New York, NY: Elsevler Publishing Company.
6. Hansch C, Leo A. 1979. Substltuent constants for correlation
analysis 1n chemistry and biology. New York, NY: Wiley
Intersclence.
7. Aldrlch Catalog/Handbook of Fine Chemicals. 1982-1983. Milwaukee,
Wisconsin: Aldrlch Chemical Company.
8. The Pesticide Manual. 1979. CR Worthing (ed). Croydon, England:
British Crop. Protection Council.
9. Farm Chemicals Handbook. 1983. WHIoughby, Ohio: Meister
Publishing Company.
10. Handbook of Chemistry. 1949. Lange NA and G Forker, (eds). 7th
Edition. Sandusky, Ohio: Hanbook Publishers, Inc.
11. Versar Inc. 1982. Exposure Assessment for DEHP. Washington, DC:
U.S. Environmental Protection Agency, Office of Toxic Substances.
EPA Contract No. 68-01-6271.
12. Mellor JW. 1946. Comprehensive treatise on Inorganic chemistry.
London: Longmans Green & Company.
13. HolUfleld HC. 1979. Rapid nephalometrlc estimate of water
solubility of highly Insoluble organic chemicals of environmental
Interest. Bull. Environ. Contam. Toxlcol. 23:579-586.
14. Wilson G, Deal C. 1962. Activity coefficients and molecular
structure. Ind. Eng. Chem. Fundam. 1:20-23.
15. Umweltbundesant. 1981. OECD Hazard Assessment Project - Collection
of minimum premarketing sets of data including environmental residue
data of existing chemicals, Berlin: Umweltbundesant.
64
-------
16. Kenaga EE, Goring C. 1978. Relationship between water solubility,
soil adsorption, octanol-water partitioning and concentration of
chemicals 1n biota. ASTM Philadelphia, PA: ASTM Spec. Tech. Pub.
707:78-109.
17. Brlggs GG. 1981. Theoretical and experimental relationship between
soil adsorption, octanol-water partitioning coefficients, water
solubilities, bloconcentratlon factors, and the parachor. J. Agric.
Food Chem. 29:1050-1059.
18. G1le JD, Blllett JW. 1981. Transport and fate of organic phosphate
Insecticides 1n a laboratory model ecosystem. J. Agric. Food Chem.
129:616-621.
19. USEPA. 1980. Ambient Water Quality Criteria for chloroalkly
ethers. Washington, DC: Office of Water Regulations and Standards,
U.S. Environmental Protection Agency. EPA 440/5-80-030.
20. International Agency for Research 1n Cancer. 1978. IARC monographs
the evaluation of the carcinogenic risk of chemicals to humans,
V-ol. 17. Some n-n1troso compounds, IARC. Lyon, France.
21. Stefan H, Stefan T. 1965. Solubilities of Inorganic and organic
products, Volume 1 - Binary Systems. New York, NY: Pergamon Press.
22. McAulifte C. 1966. Solubility 1n water of hydrocarbons. Journal
of Physical Chemistry 70(4). 1267-77.
23. Shen T. 1982. J. A1r Pollut. Control Fed. 32(l):79-82
24. Mackay D, Walkaff A. 1973. Rate of evaporation of low solubility
contaminants from water bodies to atmosphere. Envir. Sci. and
Techno!. 7(1). 611-613.
25. L1nke WF. 1958. Solubilities of Inorganic and metal organic
compounds. Washington, DC: American Chemical Society.
26. Timmermans J. 1960. The physio-chemical constants of binary
systems 1n concentrated solutions. New York, NY: Interscience
Publishing Company.
27. Hawley GG. 1977. The condensed chemical dictionary, 9th edition.
New York, NY: Van Nostrand Publishing Company.
28. D1H1ng WL. 1977. Environmental Science and Technology.
11(4):405-409.
29. MacKay D, PJ Leinonen. 1975. Rate of evaporation of low-solubility
contaminants from water bodies to atmosphere. Environmental Science
and Technology. 9(13):1178-1180.
65
-------
30. MacKay D, WY Sh1u. 1981. A critical review of Henry's law
constants for chemicals of environmental Interest. J. Phys. Chem.
Ref. Data. 10(4).
31. Callahan MA, SUmak MW, Gabel NW, et al. 1979. Water-related
environmental fate of 129 priority pollutants. Volumes I and II.
Washington, DC: U.S. Environmental Protection Agency, Office of
Water Planning and Standards. EPA 440/4-79-029a and b.
66
-------
Appendix B. RCRA Waste Categorization Based on Vapor Pressure
(Volatility of Pure Substances)
Waste Name Ambient Vapor Presssure (torr)
@ 25°C
Highly Volatile Wastes - Those
Carbonyl fluoride
Fluorine
Phosphine
Nitric oxide
Hydrogen sulfide
Bromomethane
Di chlorodi f 1 uoromethane
Formaldehyde
Ethene, chloro
Dime thy 1 ami ne
Methanethiol
Ethyl ene oxide
Phosgene
Cyanogen chloride
Methyl ethyl ketone peroxide
Acetal dehyde
2-Methylaziridine
Hydrofluoric acid
Nitrogen dioxide
Tri chl oromonofl uoromethane
Nitrogen (IV) oxide
Hydrofluoric acid
Hydrogen cyanide
Furan
1,1-Oichloroethylene
Ethyl ether
Methylene chloride
1,3-Pentadiene
Nickel carbonyl
Methyl iodide
Carbon di sulfide
Methylene bromide
Acetyl chloride
Chl oroacetal dehyde
N-Ni trosopyrrol i di ne
1 -Propanami ne
Acrolein
1,2-Dichloroethylene
Chloromethyl methyl ether
Methyl isocyanate
Acetone
Ethyl en imine
1,1-Oichloroethane
with ambient vapor pressures
permanent gas @ 25°C
permanent gas @ 25°C
permanent gas @ 25°C
permanent gas @ 25°C
15,200
5,300
4,830
4,433
2,660
1,596
1,520
1,294
1,215
1,000
944 test)
922.6 (est)
920
800
800
768
760
760
730
634
630.1
439.8
427.8
414
400
400
357
340
317
317
284
280
220
217
214
201
200.1
200
193.4
Waste Code
above 10 torr
U033
P056
P096
P076
U135
U029
U075
1)122
U043
U092
U153
U115
P095
P033
U160
U001
P067
U134
P078
U121
P078
U134
P063
U124
U078
U117
U080
U186
P076
U138
P022
U068
U006
P023
U180
U194
POOS
U079
U046
P064
U002
P054
U076
67
-------
Appendix B. (Continued)
Waste Name
Ambient Vapor Presssure (torr)
@ 25°C
Waste Code
Highly Volatile Wastes - (continued)
Chloroform 172.1
1,1-Dimethylhydrazine 157
Tetrahydrofuran 149
Tetrachloromethane 115.3
Methanol 113.9
Methylchlorocarbonate 113
Acetonitrile 100
Cyanogen bromide 100
1,1,1-Trichloroethane 99.7
Acrylonitrile 97.2
Ethyl acetate 82.2
2-Butanone 77.5
Benzene 76
1,2-Dichloroethane 75.7
1,1,2-Trichloroethane 75
Trichloroethylene 70
N-Melhyl-N'-ni tro-N-ni troso-
guanidine 69.1
1,2-Dimethylhydrdzine 68
1,2-Dichloropropane 50
Methylhydrazine 49.6
Glycidylaldehyde 42.6
Propanenitrile 40
Ethyl aerylate 40
1,4-Dioxane 37
1,4-Diethylenedioxide 37
Trichloroacetaldehyde 35
N-Nitroso-N-methyl urea 33.5
Formic acid 33.4
Methyl methacrylate 32
N-nitroso-N-methyl urethane 31.2
Dipropylarsine 30
Diethylarsine 30
Bis(chloromethyl) ether 30
Allyl alcohol 28.1
1,3-Dichloropropane 28
U044
U098
U213
U211
U154
U156
U003
U246
U?.26
U009
U112
U159
U019
U077
U227
U228
U163
U099
U083
P068
U126
P101
U113
U152
U108
U034
U177
U123
U162
U178
U110
P038
P016
POOS
U084
68
-------
Appendix B. (Continued)
Waste Name Ambient Vapor Presssure (torr) Waste Code
@ 25°C
Highly Volatile Wastes - (continued)
Toluene 26.8 U220
4-Pyridinamine 25.8 POOS
Paraldehyde 25.3 U182
Pyridine 20 U196
Ethylmethacrylate 19 U118
Crotonaldehyde 19 U053
N-nitroso-N-ethylurea 16.3 UI76
N-Nitrosomethyl vinyl dmine 16 P084
Hydrazine 14.38 U133
N-nitrosodiethanolamine 14.2 U173
Tetranitromethane 13 P112
2-Nitropropane 13 U171
1-Chioro-2,3-epoxypropane 12 U041
Chlorobenzene 11.8 U037
Ethylene dibromide 11 U067
Osmium tetroxide 10 P087
Isobutanol 10 U140
4-Methyl-2-pentanone 10 U161
2-Picoline 10 U191
1,1,1,2-Tetrachloroethane 10 U209
2-Chloroethyl vinyl ether 10 U042
Tetrachloroethylene 10 U210
Moderately Volatile Wastes - Those with ambient vapor pressures in the
10~3 to 10 torr range
2-Propyn-l-ol 9.56 P012
Bromoacetone 8.0 P017
l,2:3,4-Diepoxybutane 7.52 U085
Cyclohexane 6.82 U056
o-xylene 6.60 U239
n-Butanol 6.50 U031
Trichloromethanethiol 5.78 P118
Bromoform 5.60 U225
Chloromethane 5.0 U045
Dimethylnitrosamine 4.87 P082
Cyclohexanone 4.57 U057
Cumene 4.50 U055
Acrylic acid 4.24 U008
69
-------
Appendix B. (Continued)
Waste Name Ambient Vapor Presssure (torr)
g 25°C
Moderately Volatile Wastes -
N-Ni troso-di -n-butylami ne
1 , 4-Di chl oro-2-Butene
Pentachloroethane
m-xylene
p-xylene
Furfural
Benzene, 1,3,5-trinitro
Di chlorophenylarsi ne
Dimethyl carbamoyl chloride
m-Di chlorobenzene
Methapyrilene
N-Ni trosodiethy 1 ami ne
2,3,4, 6-Te trach 1 oropheno 1
o-Dichlorobttn/ene
D i ch 1 oroethy 1 ether
3-Chloropropioni tri le
Benzyl chloride
Benzenethiol
Benzotri chloride
Fluoroacetamide
Bis (2-chloroethoxy)methane
Bi s (2-chl oroi sopropyl ) ether
Aniline
p-Di chlorobenzene
Phenol
Hexachloroethane
Di i sopropyl f 1 uorophosphate
1 ,2-Dibromo-3-chloropropane
Acetophenone
Cresol s
2 , 4-Di chl orophenoxyacet i c
acid
Toxaphene
Ethyl carbamate
Hexachloropropene
Ethylmethanesul fonate
Benzyl chloride
Nitrobenzene
5-Ni tro-o-tol u i di ne
a,a-Dimethylphenethylamine
Selenium dioxide
N-Nitrosopiperidine
Ammonium pi crate
(continued)
4.11
4.00
3.50
3.20
3.15
3.0
2.86
2.70
2.60
2.10
1.89
1.73
1.55
1.4b
1.40
1.33
1.25
1.0
1.0 «P 45.8°C)
0.88
0.88
0.85
0.85
0.67
0.62
0.60
0.58
0.513
0.49
0.43
0.40
0.40
0.36
0.34
0.33
0.30
0.30
0.28
0.28
0.16
0.244
0.23
Waste Code
U172
U074
U184
U239
U239
U125
U234
P036
U097
U071
U155
U174
U212
U070
U025
P027
P028
P014
U023
P057
U024
U027
U012
DO 72
U188
U131
P043
U066
U004
U052
P035
D015
U238
U243
U119
U017
U169
Ui81
P046
U204
UI79
P009
70
-------
Appendix B. (Continued)
Waste Name Ambient Vapor Presssure (torr)
$ 25°C
Moderately Volatile Wastes -
1 , 4-Naphthal enedi one
Tetraethyl lead
Hexach 1 orobutadi ene
Uracil ,5(bis-2-chloromethyl-
amino-)
Malononitrile
l-Acetyl-2-thiourea
2 , 4-Di chl orophenol
2. 4-Dimethyl phenol
4-Chl oro-o-tol u i di ne
p-Benzoquinone
Hexach 1 orocyc 1 opentadi ene
Safrole
Dinoseb
1-Naphthylamine
2-Naphthylamine
Nicotine
Naphthalene
2, 4, 5-Tri chl orophenol
p-Chloroaniline
Benzenesulfonyl chloride
Aery 1 amide
Isosafrole
Methyl parathion
2-Methyl acetonitrile
4 , 6-Di ni tro-o-cresol
2 ,6-Di chl orophenol
Tetraethyl dithiopyrophosphate
Dimethyl phthalate
Dial late
Diethylphthalate
4-Chl oro-m-cresol
B-Chloronaphthalene
Phenacetin
o.o-Diethyl (o-pyrazinyl)
phosphoroth i oate
2-Cydohexyl-4,6-
dinitrophenol
Saccharin
Pentachloronitrobenzene
(continued)
0.20
0.19
0.17
0.168
0.148
0.14
0.118
0.118
0.105
9 x 10~2
8 x 10~2
/ x 10-2
5.8 x 10~2
5.6 x 10~2
5.6 x 10~2
5.0 x 10~2
5.3 x 10-2
5.0 x 10~2
5.0 x 1CT2
4.0 x 10~2
3.0 x 10~2
2.6 x 10~2
2.5 x ID'2
2.4 x 10~2
1.8 x 10~2
1.7 x 10~2
1.5 x 10~2
1.0 x TO'2
8.8 x lO-3
8.1 x lO-3
5.8 x ID"3
5.6 x lO-3
3.2 x 10-3
3.0 x ID'3
2.9 x 10~3
2.7 x ID'3
2.4 x ID"3
Waste Code
U166
P110
U128
U237
U149
P002
U081
U101
U049
U197
U130
U203
P020
U167
U168
P075
U165
U230
P024
U020
U007
U141
P071
P069
P047
U082
P0109
U102
U062
U088
U039
U)47
U187
P040
U034
U202
U185
71
-------
Appendix B. (Continued)
Waste Name Ambient Vapor Presssure (torr)
@ 25°C
Moderately Volatile Wastes -
1,2,4, 5-Tetrachl orobenzene
Toluenediamine
N-Phenyl thiourea
p-Ni troaniline
5-Ami nomethy 1 -3-i soxazolol
Mercury
o-Toluidine hydrochloride
Octamethylpyrophosphorami de
Slightly Volatile Wastes -
(continued)
2.1 x 10~3
1.8 x 1(T3
1.6 x 10-3
1.5 x 10-3
1.4 x 10~3
1.3 x 1CT3
1.2 x 1CT3
1.0 x 10~3
Waste Code
U207
U221
P093
P077
P007
U151
U222
P085
Those with ambient vapor pressures in the
to 10~3 torr range
fteserpine <10"3 U200
Tris(2,3-dibromopropyl)
phosphate <10-3 U235
Phorate 8.0 x 10"4 P094
1,3-Propanesultone 6.4 x 10-4 U193
Tetraethylpyrophosphate 4.7 x 10~4 Pill
Pentachlorobenzene 4.1 x 10~4 U183
Pronamide 4.0 x 1Q-4 . U192
l-(c-Chlorophenyl)thiourea 4.0 x 10"4 P026
1,2-Benzenediol,4[l-hydroxy-
2(methylaminoethyl)- 4.0 x 10~4 P042
Ethylenebis(dithiocarbamic acid) 3.7 x 10~4 U114
Heptachlor 3.0 x 1Q-4 P081
Nitroglycerin 2.6 x 10~4 P081
Phthalic anhydride 2.0 x 10~4 U190
Disulfoton 1.8 x 10~4 P039
Thiofanax 1.7 x lO"4 P045
2,4-D 1.6 x 10-4 0016
Aldrin 1.4 x lO"4 P060
Azaserine 1.3 x 10~4 U015
Streptozotocin 1.3 x ID"4 U206
Pentachlorophenol 1.1 x 10~4 U242
ALdicarb 1-0 x 10"4 P070
Diethyl-p-nitrophenylphosphate 9.8 x 10~5 P041
2,4-Dinitrotoluene 8.5 x 10~5 U105
1,2-Diphenyl hydrazine 5.2 x 10~5 U109
Maleic anhydride 5.0 x 10~5 U147
72
-------
Appendix B. (Continued)
Waste Name Ambient Vapor Presssure (torr)
@ 25°C
Waste Code
Slightly Volatile Wastes - (continued)
Hethomyl
Methyl thiouracil
Parathion
2,4,5-T
Bi s (2-ethy 1 hexy 1 ) phthal ate
Resorcinol
Hexachlorobenzene
Chlordane
Endosulfan
Bcnzidine
Lindane
Nonvolatile Wastes - Those with
10~5 torr
Phenylmercuric acetate
Dimethoate
Octachl orocamphene
Silvex
Aldrin
4,4'-Methylene bis(2-ch1oro-
aniline)
3-Me thy 1 chol an th rene
Hexachlorocyclohexane
Cycl ophosphami de
Ethyl ,4,4'-Dichlorobenzilate
Dieldrin
a-Naphthylthiourea
3,3-Dimethylbenzidine
Beryllium dust
2-Acetyl -1 -ami nof 1 uorene
Endrin
3,3'-Dimethoxybenzidine
DDU
DDT
Chlorambucil
3,3'-Dichlorobenzidine
2 , 4-Di chl orophenoxyacet i c
acid
Arsenic (Til) oxide
5.0 x ID"5
4.8 x 10~5
3.8 x 10-5
2.4 x 10~5
1.4 x 10~5
1.2 x ID"5
1.1 x 10~5
1.0 x 10-5
1.0 x 10~5
1.0 x 10~5
9.4 x lO"6
ambient vapor pressures
range
9.0 x 10-6
8.5 x ID"6
8.1 x 10-6
7.1 x 10-6
6.0 x 10-6
6.0 x 10-6
3.8 x 10-6
3.3 x 10-6
?.8 x 10-6
2.2 x 10-6
7.8 x 10- 7
5.1 x 10-7
2.9 x 10-7
2.7 x 10~7
2.1 x 10~7
2.0 x 10~7
1.9 x 10~7
1.5 x 10~7
1.5 x 10~7
1.4 x 10~7
1.1 x 10~7
1.0 x 10~7
8.3 x 10-8
P066
U164
P089
U232
U028
U201
U127
U036
P050
U021
0013
below
P092
P044
P123
U233
P004
U158
U157
U129
U058
1)038
P037
P072
U095
P015
U005
P051
U091
U060
U061
U035
U073
U240
P012
73
-------
Appendix B. (Continued)
Waste Name
Ambient Vapor Presssure (torr) Waste Code
@ 25°C
Nonvolatile Wastes - (continued)
Di-n-oc Lylphthalate
Mytomycin C
Melphalan
3,4-Benzacridine
Benzo[a]pyrene
1,2-Benzanthracene
Dibenz[a,h]anthracene
Strychnine
Warfarin
7,12-Diemthylbenz[a,h]anthracene
Diethylstilbesterol
Hexachlorophene
Brucine
Chrysene
Daunomycin
4-Bromophenylphenylether
a,a-Dimethylbenzyl-
hydroperoxide
6.8 x 10-8
4.1 x 10-8
4.0 x 10-8
8.0 x 10-1°
1.8 x 10-1°
1.0 x 10-1°
5.2 x 10-H
1.2 x 10-H
1.0 x 10-H
3.9 x 10-12
2.1 x 10-12
1.0 x 10-12
1.0 x 10-12
1.0 x 10-13
9.4 x lO-l5
4.1 x 10-20
U107
U010
U150
U016
U022
U018
U063
P108
P001
U094
U089
U064
P018
U050
U059
U030
1.1 x 10
-24
U096
Compounds with Negligible (but undetermined) Vapor Pressures
Thallium carbonate
Thallium sulfate
Lead phosphate
Lead subacetate
Thallium nitrate
Strontium sulfide
Zinc phosphide
Thallium (I) chloride
Waste Code Evidence
U215 Melting point 273°C,
decomposes to TljO, the
product boils at 1080°C.
PI 15 Melts at 632°C.
U145 Melting point at 1014°C.
U146 MeHing point at 475°C.
U217 Decomposes at 800°C.
P107 Melting point at 2000°C.
P122 Melting point at 1100°C.
LJ216 Vapor pressure of 10 torr
at 507°C.
74
-------
Appendix B. (Continued)
Waste Name
Waste Code
Ev i dence
Coroounds with Negligible (but undetermined) Vapor Pressures - (continued)
Arsenic D004
Asbestos
Thallium selenite
Lead acetate
Calcium cyanide
Sodium cyanide
Aluminum phosphide
Copper cyanides
Zinc cydnide
Potassium cydnide
Vanadium pentoxidp
Thai lie oxide
Ammonium v.irwidate
S i 1 ver
Barium
Cadmi urn
Chromium
Ip.irt
'jo Ionium
Vapor pressure of 1 torr at
372°C
U013 Melting point above 1000°C.
PI 14 Melting point over 400°C.
Ill44 Decomposes to the oxide
above 280°C.
U032 Decomposes to nonvolatile
oxides at 200°C.
P106 Vapor pressure 150 torr at
800°C.
P006 Melting point at 1350°C.
P029 Melting point at 473°C.
P121 Melting point at 800°C.
P098 Melting point at 634°C.
PI20 Decomposes at 1750°C,
melting point at 690°C.
P113 Melting point at 717°C
PI 19 Melting point at 200°C
D011 Boiling point at 2000°C
0005 Boiling point at 1600°C
D006 Boiling point at 765°C
D007 Boiling point at 2672°C
D008 Boiling point at 1740°C
D010 Boiling point at 685°C
75
-------
Appendix C. RCRA Waste Categorization Based on Aqueous Volatility
(Henry's Constant)
Waste Name
Highly Volatile Wastes - Values of
Bis(2-ethyl hexyl phthalate)
Cyanogen
Reserpine
Nickel carbonyl
Di ch 1 orodi f 1 uoromethane
Chloromethane
Chloroethene
Phosphine
Cyclohexane
2-Ni tropropane
Tri chl oromonofl uoromethane
2.3,4, 6-Tetrachl orophenol
1,3-Pentadiene
Pentachloroni trobenzene
Tetrachl oroethy 1 ene
Hexachloropropene
Tetrach 1 oromethane
Hexach 1 orocyc 1 open tad i ene
1 , 1-Dichloroethylene
Cumene
ODD
Carbon disulfide
Mercury
Hexach loroethane
Hexach 1 orobutadi ene
Trichloroethylene
3-Methylcholanthrene
1,2-Dichloroethylene (CIS)
Tol uene
Furan
Benzene
1,1-Dichloroethane
1,2-Dichloroethylene (trans)
o-Xylene
Bromomethane
Methyl iodide
1 , 1 , 1-Trichloroethane
Toxaphene
Methanethiol
Chlorobenzene
Henry's Constant
(atrtm^/mole)
H above 10~3
26.6
9.91
4.28
0.5
0.415
0.38
0.199
0.19
0.18
0.12
5.8 x ID'2
4.5 x ID-2
4.2 x 1C-2
2.9 x ID-2
2.87 x 10~2
2.5 x 10-2
2.13 x ID-2
1.60 x 1C-2
1.50 x ID'2
1.40 x 10-2
1.26 x ID"2
1.2 x 10-2
1.14 x ID-2
9.85 x ID"3
9.14 x 10~3
8.92 x 10~3
7.7 x 10-3
6.6 x 1C-3
6.64 x ID"3
5.7 x ID"3
5.55 x 10-3
5.45 x ID"3
5.32 x ID-3
5.27 x 10-3
5.26 x TO'3
5.0 x ID'3
4.92 x lO-3
4.89 x 10~3
4.0 x lO-3
3.93 x lO-3
Waste Code
U028
P031
U200
P073
U075
U045
U043
P096
U056
U171
U121
U212
U186
U185
U210
U243
U211
U130
U078
U055
U060
P022
D009
U131
U128
U228
U157
U079
U220
U124
U019
U076
U079
U239
U029
U138
U226
U224
U153
U037
76
-------
Appendix C. (Continued)
Waste Name Henry's Constant Waste Code
(atm-m3/mole)
Hiqhlv Volatile Wastes - (continued)
Chloroform
Cyanogen chloride
Methylene chloride
1 ,2-Dichloropropane
1,1,1 ,2-Tetrachloroethane
4-Bromopropylphenylether
m-Dichlorobenzene
m-Xylene
p-Xylene
Hexach 1 orohexahydro-exo , exo-
dimethanonaphthal ene
p-Di chl orobenzene
Benzene, 1 ,3,5-trinitro
Pentachloroethane
Octachl orocamphene
c-Di chl orobenzene
Dimethyl carbamoylchloride
1 ,3-Dichloropropane
Hexachl orobenzene
Heptachlor
Pen tach 1 orobenzene
1 , 1 ,2-Trichloroethane
1 ,2-Dichloroethane
Moderately Volatile Wastes - Values of
Ethyl ether
2-Cyclohexyl , 4, 6-di ni trophenol
N-Ni troso-di -n-buty 1 ami ne
2,6-Dinitrotoluene
2-Chloroethyl vinyl ether
Ethyl ene di bromide
Bromoform
Aldrin
Naphthalene
1,1,2, 2-Tetrach 1 oroethane
N-nitroso-N-methyl urethane
Dipropylamine
Methyl ene bromide
B-Ch 1 oronaptha 1 ene
Methyl methacrylate
3.39 x 1CT3
3.2 x ICr3
3.19 x 10-3
2.8 x 10~3
2.76 x ID-3
2.74 x ID'3
2.63 x ID'3
2.55 x 10-3
2.51 x ICr3
2.49 x 10-3
2.37 x lO-3
2.3 x ID"3
2.17 x ID'3
2.01 x lO-3
1.94 x ID'3
1.8 x ID"3
1.77 x lO-3
1.7 x lO-3
1.48 x lO-3
1.3 x lO-3
1 . 18 x 10-3
1.10 x lO-3
H below ID"3 to 10~5
8.69 x 10-4
8.37 x 10-4
7.9 x 10-4
7.42 x 10-4
7.35 x 10-4
6.25 x 10-4
5.32 x 10~4
4.96 x 10-4
4.8 x 10-4
4.7 x ID"4
4.17 x lO"4
3.32 x 10-4
3.16 x 10-4
3.15 x 10-4
3.11 x ID'4
U044
P033
U080
U083
U208
U030
U071
U239
U239
P060
U072
U234
U184
P123
U070
P097
U084
U127
P059
U183
U227
U077
U117
P034
U172
U106
U042
U067
U225
P004
U165
U209
U178
U110
U068
U047
U162
77
-------
Appendix C. (Continued)
Waste Name Henry's Constant Waste Code
(atm-nrVmole)
Moderately Volatile Wastes - (continued)
Benzenethiol
Formaldehyde
Ethyl aery late
Bischloromethylether
Benzyl chloride
Dihydrosafrole
Dial late
Di noseb
Benzal chloride
5-Ni tro-o-tol u i di ne
1 ,2-Dibromo-3-Chloropropane
Ethyl Methacrylate
Tri s (2 , 3-di bromopropyl ) phosphate
4-Methyl -2-pentanone
Ethyl aery late
Benzotrichloride
Tetrahydrofuran
Tri chloromethylmercaptan
Bis-2-chloroisopropyl ether
1 ,2,4,5-Tetrachlorobenzene
N-Nitrosopiperidine
Acrylonitrile
Methapyri 1 i ne
Acrolein
1 , 4-Di ch 1 oro-2-butene
Tr i chl oroacetal dehyde
Osmium tetroxide
N-Ni trosomethyl vi ny 1 ami ne
Kepone
DDT
Nitroglycerin
Chlordane
Diethylphthalate
1 -Ch 1 oro-2 , 3-epoxypropane
Para! dehyde
Ethylene oxide
Di chl oroethy 1 ether
Cyclohexanone
Endosulfan
Propanenitrile
2-Butanone
3.10 x ID"4
2.92 x 10-4
2.71 x 10-4
2.50 x 10-4
2.36 x 10-4
2.30 x 10-4
1.99 x 10~4
1.82 x 10~4
1.70 x 10-4
1.67 x ID'4
1.59 x 10-4
1.49 x 10~4
1.46 x ID"4
1.32 x 10-4
1.20 x 10-4
1.12 x 10~4
1.08 x 10~4
1.04 x 10-4
1.03 x ID"4
1.0 x 10-4
9.78 x 10~5
9.2 x 10~5
7.6 x ID"5
6.79 x 10~5
6.78 x 10~5
6.77 x 10-4
5.86 x 10~5
5.65 x 10-5
5.6 x 10-5
5.2 x ID"5
5.18 x 10-5
4.8 x 10~5
4.75 x 10-5
3.8 x 10~5
3.66 x 10~5
3.63 x 10~5
2.58 x 10~5
2.56 x 10-5
2.5 x ID'5
2.4 x lO"5
2.4 x 10~5
P014
U122
U113
P016
P028
U090
U062
P020
U017
U181
U066
U118
U235
U161
U112
U023
U213
P118
U027
U207
U179
U009
U135
P003
U074
U034
P087
P084
U142
U061
P081
U036
U088
U041
U182
UU5
U025
U057
P050
P101
U159
78
-------
Appendix C. (Continued)
Waste Name
Moderately Volatile Wastes
2-Picoline
Ni trobenzene
Methyl aziridine
Hydrofluoric acid
1 -Propanami ne
2,6-Dichlorophenol
a,o-Dimethylphenethylamine
Acetophenone
2,4-Ditnethylphenol
Crotonaldehyde
N-Ni trosopyrrol i di ne
Dieldrin
Ethylenimine
Safrole
Isobutanol
4-Chloro-o-toluidine
Sliqhtly Volatile Wastes -
Chloromethyl methylether
Di i sop ropy 1 fl uorophosphate
Pronamide
oo-Di ethyl -o-pyraz i ny 1 -
phosphorothioate
a-Toluidine hydrochloride
Airmoniun Picrate
Oi -n-propyl ni trosami ne
n-Butanol
Acetone
Tetranitromethane
2,4,5-Trichlorophenol
2 , 4-Di chl orophenol
Phorate
N-Ni troso-N-ethylurea
2-Naphthalamine
2,4,6-Trichlorophenol
Ch 1 oroaceta 1 dehyde
o-Chlorophenol
4-Pyridinamine
Endrin
Henry's Constant Waste Code
(atnwr^Anole)
- (continued)
2.4 x ICr5
2.4 x 10~5
2.22 x ID-5
2.0 x 10-5
2.0 x ID"5
2.0 x 10~5
1.86 x 10~5
1.41 x ID"5
1 . 18 x 10~5
1 . 13 x 10~5
1.13 x 10~5
1.1 x 10-5
1.1 x lO-5
1.08 x 10~5
1.03 x 10-5
1.02 x 10-5
Values of H from 10~5 to 10~7
9.12 x 10-6
9.1 x 10-6
9.0 x 10-6
8.58 x 10-6
7.55 x 10-6
7.4 x 10-6
7.2 x 10-6
7.0 x 10~6
6.8 x 10-6
6.33 x 10-6
6.0 x 10-6
5.62 x 10-6
5.47 x 10~6
5.4 x ID'6
5.4 x 10-6
4.82 x ID"6
4.7 x 10-6
4.7 x 10-6
4.4 x 10~6
4.2 x 10-6
U191
U169
P067
U134
U194
U082
P046
U004
U101
U053
U180
P037
P054
U203
U140
U049
U046
P043
U192
P040
U?22
P009
Ulll
U031
U002
P112
U230
U081
P094
U176
U168
U231
P023
U048
POOS
P051
79
-------
Appendix C. (Continued)
Waste Name
Slightly Volatile Wastes -
1 -Naphtha 1 ami ne
Isosafrole
Furfural
1 ,4-Naph thai enedi one
3-Chloropropionitrile
Ally! alcohol
Dimethyl sulfate
Aniline
p-Chloroaniline
Methyl hydrazine
Disulfoton
Acetonitrile
N-Ni troso-N-methylurea
Cresols
Phenacetin
4 , 6-D i n i t ro-o-creso 1
Phenol
Parathion
Methanol
Di butyl phthal ate
p-Nitroaniline
Bromoacetone
Indeno [1,2,3,-cd] pyrene
1 ,4-Diethylenedioxide
1 ,4-Dioxane
N-Ni trosodi ethyl ami ne
Hydrazine
Selenium dioxide
Ethyl-4,4'-dichlorobenzilate
Glycidylaldeyde
p-Benzoquinone
Lindane
Pentachlorophenol
Hydrocyanic acid
Formic acid
Acrylic acid
a-Hexach 1 orocyc 1 ohexane
Di-n-octyl phthal ate
4-Chloro-m-cresol
Bi s-2-ch 1 oromethoxymethane
Dimethylphthalate
Henry's Constant
(atm-m^/mole)
(continued)
4.1 x 10-6
4.08 x 10-6
3.6 x 10-6
3.6 x 10-6
3.5 x 10-6
3.47 x 10-6
3.37 x 10-6
3.07 x 10-6
3.0 x 10-6
3.0 x 10-6
2.59 x 10-6
2.47 x 10-6
2.20 x 10-6
2.0 x 10-6
1.4 x 10-6
1.4 x 10-6
1.3 x lO-6
1.21 x 10-6
1.1 x 10-6
1.09 x 10-6
1.0 x 10-6
9.9 x 10~7
7.2 x 10-7
7.14 x 10-7
7.0 x 10-7
6.0 x 10-7
6.0 x 10-7
6.0 x 10-7
5.89 x 10~7
5.80 x 10-7
5.0 x 10~7
4.93 x 10-7
4.8 x ID'7
4.65 x 10-7
4.4 x 10-7
4.0 x 10~7
3.16 x 10~7
3.0 x ID"7
2.83 x 10-7
2.77 x 10-7
2.10 x 10-7
Waste Code
U167
U141
U125
U166
P027
POOS
U103
U012
P024
P068
P039
U003
U177
U052
U187
P047
U188
P089
U154
U069
P077
P017
U137
'U108
U152
U174
1)133
U204
U038
U126
U197
D013
U242
P063
U123
U008
U129
U107
U039
U024
UI02
80
-------
Appendix C. (Continued)
Waste Name Henry's Constant Waste Code
(atm-m^/mole)
Sliqhtly Volatile Wastes - (continued)
Methyl parathion
Sacchari n
Methylthiouracil
Nicotine
N-Phenylthiourea
4,4'-Methylenebis(2-chloroaniline)
Bromoacetone
Malononitrile
Nonvolatile Wastes - Values of H below
2 , 4-Di ni trotol uene
2,4-D
Dimethyl ami ne
2,4,5-T
Ethyltnethanesulfonate
Dimethyl nitrosamine
Chlornaphazine
1 - (a-Ch 1 oropheny 1 th i ourea)
Ethyl carbamate
1,2,7, 8-Di benzopyrene
2-Propyn-l-ol
Benzidine
Si 1 vex
Aery 1 amide
l,2:3,4-Diepoxybutene
n-Nitrosodiethanolamine
3,4-Benzacridine
Pyridine
1,2-Benzanthracene
Di ethyl -p-ni tropheny 1 phosphate
Fluoroacetamide
Toluenediamine
3,3'-Dimethylbenzidine
Benzo[a]pyrene
7, 12-Dimethylbenz[A]anthracene
3,3'-Dichlorobenzidine
Pheny Imercuri cacetate
Thiofanox
2-Acety 1 ami nof 1 uorene
Mitomycin C
Cyclophosphamide
1.97 x 10-7
1.90 x 10~7
1.80 x 10~7
1.6 x 10~7
1.47 x 10~7
1.40 x 10-7
1.17 x ID'7
1.0 x 10~7
io-7
7.6 x 10-*
7.5 x IO-8
5.9 x IO-8
3.44 x IO-8
3.14 x IO-8
3.0 x IO-8
2.8 x IO-8
2.51 x IO-8
2.0 x IO-8
2.0 x IO-8
2.0 x IO-8
1.91 x IO-8
1.80 x ID"8
1.49 x IO-8
1.02 x lO"8
8.0 x 10~9
7.0 x IO-9
7.0 x 10-9
3.4 x 10~9
2.83 x IO-9
2.33 x IO-9
2.30 x ID'9
1.75 x IO-9
1.38 x ID"9
1.03 x IO-9
1.0 x IO-9
1.0 x 10~9
9.37 x ID'10
4.4 x IO-10
2.5 x IO-10
2.37 x ID'10
P071
U202
U164
P075
P093
U158
P017
U149
U105
P035
U092
U232
U119
P082
U026
P026
U238
U064
P102
U021
U233
U007
U085
U173
U016
U196
U018
P041
P057
U221
U095
U022
U094
U073
P092
P045
U005
U101
U058
81
-------
Appendix C. (Continued)
Waste Name
Nonvolatile Wastes - (continued)
a-naphthyl thiourea
Urcil,5[Bis-2-chloromethylamino]
Aldicarb
Dibenz[AH]anthracene
Methomyl
Dimethoate
Etylenebis(dithiocarbamic acid)
2-Methylacetonitrile
4-Nitrophenol
Maleic anhydride
Phthalic anhydride
Diethylstilbesterol
2,4-0 salts and esters
3,3'-Dimethoxybenzidine
1,3-Propane sultone
1,2-Diphenylhydrazine
Strep tozotocin
Melphalan
Chlorambucil
Arsenic III oxide
Chrysene
5- (Ami nomethyl ) -3-i soxazolol
Resorcinol
Strychnine
Warfarin
Brucine
Hexachlorophene
Daunomycin
Henry's Constant
(atm-mS/mole)
2.26 x ID'10
1.0 x ID"10
1.0 x 10~10
1.0 x 10-10
1.0 x lO'10
1.0 x lO'10
1.0 x lO'10
1.0 x ID'10
1.0 x ID"10
1.0 x lO'10
1.0 x 10-10
5.1 x 10-11
•t i
3.6 x 10-'1
1.0 x 10'11
1.0 x lO'11
1.0 x 10'11
1.0 x lO'11
1.0 x lO'11
2.1 x 10'12
1.7 x 10~12
1.0 x ID'12
1.0 x lO'13
1.0 x lO'13
1.0 x lO"14
1.0 x 10~15
1.0 x 10-18
1.0 x 10-18
2.2 x 10~19
Waste Code
P072
U237
P070
U063
P066
P044
U114
P069
U170
U147
U190
U089
U240
U091
U193
U109
U206
U150
U035
P012
U050
P007
U201
P108
P001
P018
U132
U059
Wastes with no Henry's Constant Value Available
Chromium
Arsenic
Lead
Cadmium
Barium
Acetaldehyde
Selenium
Silver
Arsenic acid
Sodium cyanide
D007
0004
D008
D006
D004
U001
0010
0011
P010
P106
82
-------
Appendix C. (Continued)
Waste Name Henry's Constant Waste Code
(atm-m^/mole)
Wastes with no Henry's Constant Value Available - (continued)
2,4-Dinitrophenol P048
Benzenesulfonyl chloride U020
2.4.STP Silvex D017
Lindane D013
Aluminum phosphide P006
Copper cyanide P029
Dichlorophenyl arsine. P036
Zinc cyanide P121
Nickel cyanide P074
Potassium cyanide P098
Nitrogen dioxide P078
Tetraethyl lead PI 10
Tetraethyl pyrophosphate Pill
Bromine cyanide U246
Bis(dimethylthiocarbamoyldisulfide) U244
Silver cyanide P104
Nitric oxide P076
Calcium chromate U032
Calcium cyanide P021
Endothal1 P088
Acetyl chloride U006
Dimethyl aminoazobenzene U093
Auramine U014
Octamethylpyrophosphoramide P085
N,N-Diethylhydrazine U086
a,a-Diethyl-S-methyl-dithiophosphate U087
Azaserine DO15
Epinephrine P042
cx.a-Dimethylbenzeylhydroperoxide U096
Tetraethyl dithiopyrophosphate PI09
Arsenic V oxide . P011
Carbonyl fluoride U033
Mercuric fulminate P065
Strontiun sulfide P107
Potassium silver cyanide P099
Hexaethyl tetraphosphate P062
Diethyl arsine P038
Thallium selenate PI 14
Selenourea P'03
l-Acetyl-2-Thiourea P002
Toluenediisocyanate U223
Hydrogen sulfide U135
83
-------
Appendix C. (Continued)
Waste Name Henry's Constant Waste Code
(atm-itrVmole)
Wastes with no Henry's Constant Value Available - (continued)
Trypan blue U236
Zinc phosphide P122
1,2-Dimethylhydrazine U099
Methyl isocyanate P064
Amitrole U011
1,1-Dimethylhydrazine U098
Iron dextran U139
Thallium I acetate U214
Thiosemicarbazide PI 16
Thallium I carbonate U215
Thalloas sulfate PI 15
Ethylene thiourea U116
Dimethylcarbamoylchloride U097
Lasiocarpine U143
N-Methyl-N'-nitro-N-nitrosoguanidine U163
Amnoniun vanadate Pi 19
Sodium azide P105
Phosgene P095
Sulfur selenide U205
Hydroxydimethylarsineoxide U136
Phosphorus sulfide U189
Fluorine P056
Barium cyanide P013
Sodium fluoroacetate P058
Beryllium dust P015
Vanadium pentoxide PI20
MethyIchlorocarbonate U156
Lead phosphate U145
Maleic hydrazide U148
Lead subacetate U146
Thallium I nitrate U217
Thallium I chloride U216
Thioacetamide U218
Asbestos U013
Methylethyl ketone peroxide U160
Thiourea U219
Lead acetate U144
84
-------
Appendix D. RCRA Waste Categorization Based on Relative Soil Volatility
Waste Name
Waste Code
Highly Volatile Wastes - Those with relative soil
than
Formaldehyde
Cyanogen
Bromomethane
Di chl orodi f 1 uoromethane
Ethene, chloro
Methanethiol
Ethyl ene oxide
Hydrofluoric acid
Cyanogen chloride
Phosgene
Hydrocyanic acid
Acetaldehyde
Nitrogen dioxide
Furan
Tr i ch 1 oromonofl uoromethane
1 , 1 -D i ch 1 oroethy 1 ene
Ethyl ether
Pen tad i ene
Methylene chloride
Carbon disulfide
1 -Propanami ne
Ch 1 oroace ta 1 deny de
Acetyl chloride
Trans-1 ,2-dichloroet.>ylene
Acrolein
Methyl iodide
Nickel carbonyl
Ethylenimine
N-ni trosopyrrol i di ne
Methyl i socyanate
Acetone
Chloromethyl methylether
Cis-l,2-dichloroethylene
1 , 1 -Dimethyl hydrazi ne
Methanol
1,1-Dichloroethane
Tetrahydrofuran
Chloroform
Acetonitrile
Acrylonitrile
2-Methylaziridine
1
U1Z2
P031
U029
U075
U043
U153
U115
U134
P033
P095
P063
U001
P078
U124
U121
U078
U117
U186
U080
P022
U194
P023
U006
U079
P003
U138
P073
P054
U180
P064
U002
U046
U079
U098
U154
U076
U213
U044
U003
U009
P067
Relative Soil Volatility
volatility greater
809.4
551.9
544.0
439.1
336.5
219.4
195.1
179.0
152.4
143.7
140.5
139.1
118.0
76.9
65.6
64.0
62.8
50.2
46.4
41.0
36.0
35.8
35.7
35.7
34.5
33.6
30.6
30.0
28.4
26.7
26.3
23.8
22.0
20.3
20.1
19.4
17.6
15.8
15.6
13.4
12.2
85
-------
Appendix D. (Continued)
Waste Name Waste Code Relative Soil Volatility
Highly Volatile Wastes - (continued)
Methylchlorocarbonate U156 11.6
Benzene U019 11.4
2-Butanone U159 10.6
1,1,1-Trichloroethane U226 10.1
Bromine cyanide U246 9.71
Tetrachloromethane U211 9.29
1,2-Dimethylhydrazine U099 8.78
Ethyl acetate U112 8.76
1,2-Dichloroethane U077 7.61
Methyl hydrazine P068 7.31
Trichloroethylene U228 6.26
N-methyl-N'-nitro-N-
nitroso-isoguanidine U163 5.70
Propane nitrile P101 5.39
Glycidylaldehyde U126 5.02
Formic acid U123 4.93
1,2-Dichloropropane U083 4.70
Dipropylamine U110 4.33
1,4-Dioxane U152 3.99
1.4-Diethylene dioxide U108 3.94
Ally! alcohol POOS 3.69
Methyl methacrylate U162 3.55
Methylene bromide U068 3.47
Hydrogen sulfide U135 3.43
Ethyl acrylate U113 3.40
Bis(chloromethyl)ether P016 3.39
N-nitroso-N-rothylurea U177 3.30
2-Chloroethyl vinyl ether U042 2.95
Trichloroacety 1 aldehyde U034 2.89
Toluene U220 2.79
N-nitroso-n-methylurethane U178 2.72
4-Pyridinamine P008 2.66
1,3-Oichloropropane U084 2.63
Diethylarsine P038 2.59
Hydrazine U133 2.54
Crotonaldehyde U053 2.27
Pyridine U196 2.25
Paraldehyde U182 2.20
1-Chloro-2,3-epoxypropane U041 2.00
4-Methyl-2-pentanone U161 1.90
tthylmethacrylate U118 1.78
1,1,2-Trichloroethane U227 1.64
2-Nitropropane U171 1.60
86
-------
Appendix D. (Continued)
Waste Name Waste Code Relative Soil Volatility
Highly Volatile Wastes - (continued)
N-nitroso-N-ethylurea U176 1.51
2-Propyn-l-ol P102 1.28
N-Nitrosodiethanolamine U173 1.28
Isobutanol U140 1.16
Chlorobenzene U037 1.11
2-Picoline U191 1.04
Moderately Volatile Wastes - Those with relative soil volatility from 1
to 10-3
Tetranitromethane PI 12 9.3 x 1(H
1,2,3,4-Diepoxybutane 1)085 8.1 x 1CT1
Ethylene dibromide U067 8.1 x 10"1
1,1,1,2-Tetrachloroethane U208 7.7 x 10-1
n-Butanol U031 7.6 x 10'1
Cyclohexane U056 7.4 x 1CT1
Chloromethane U045 7.1 x 1(H
Osmiumtetraoxide P087 6.3 x 1(H
Dimethylnitrosamine P082 5.7 x 1(H
Acrylic acid U008 5.0 x lO"1
Bromoacetone P017 4.7 x 10'1
Trichloromethyl mercaptan PI 18 4.7 x 10-1
Cyclohexanone U057 4.6 x KT1
Cumene U055 4.1 x 1CT1
l,4-Dichloro-2-butene U074 3.6 x 1(H
Bromoform U225 3.5 x 10'1
N-nitroso-di-n-butylamine U172 3.3 x KT1
1,1,2,2-Tetrachloroethane U209 3.2 x 10'1
m-Xylene U239 3.1 x ID'1
p-Xylene U239 3.1 x KT1
Dimethylamine U092 3.0 x 1(H
o-Xylene U239 2.7 x ID"1
Pentachloroethane U184 2.5 x 1(H
Dimethyl carbonyl chloride P097 2.5 x 10"1
Furfural U125 2.4 x 10'1
Benzene, 1,3,5-trinitro U234 2.0 x 1(H
m-DiChlorobenzene U071 1.7 x 1(H
N-Ni trosodiethyl ami ne U174 1.7 x 1C)-1
Benzenethiol P014 1.4 x 1
-------
Appendix D. (Continued)
Waste Name
Moderately Volatile Wastes -
Benzylchloride
Fluoroacetimide
2,3,4,6-Tetrachlorophenol
Aniline
Toxaphene (technical
chlorinated canphene)
Bi s (2-chloroethoxy)methane
o-Chlorophenol
1 ,2-8enzanthracene
Bis (2-chl oroi sopropy 1 ) ether
Phenol
Dimethyl sulfate
p-Dichlorobenzene
Acetophenone
Di i sopropy 1 f 1 uorophosphate
o-Cresol s
Hexachloroethane
Ethyl carbamate
Di -N-propy 1 ni trosami ne
1 ,2-Dibromo-3-chloropropane
Ethylmethane sulfonate
Hexachl oropropene
Benzal chloride
Naphthalene
N-Ni trosopi peri di ne
5-Ni tro-o-tol ui di ne
a.a.-Dimethylphenethylen-
amine
Dihydrosafrole
Nitrobenzene
Malononitrile
1,2,3-Propanetriol ,
trinitroate
m-Cresol s
Hexach 1 orobu tad i ene
1 ,4-Napthalenedione
p-Cresol s
Amronium pi crate
Selenium dioxide
l-Acetyl-2-thiourea
Benzotrichloride
1,4-Dimethyl phenol
Uracil, 5[bis(2-chloromethyl)
ami no]
Waste Code
(continued)
P028
P057
U212
U012
D015
U024
U048
U018
U027
U188
U103
U072
U004
P043
U052
U131
U238
Ulll
U066
U119
U243
U017
U165
U179
U181
P046
U090
U169
U149
P081
U052
U128
U166
U052
P009
U204
P002
U023
U101
-
U237
Relative Soil Volatility
1.1 x 1
-------
Appendix D. (Continued)
Waste Name
Moderately Volatile Wastes
Tetraethyl lead
2 , 4 , -Di chlorophenol
4-Ch 1 oro-o-tol u i dene
p-Benzoquinone
Safrole
Hexachl orocycl opentadi ene
1-Napthalamine
2-Napthalamine
Nicotine
Aery 1 amide
Dinosob (2,4-dinitro-6-
secbutyl -phenol )
2, 4, 5-Tri chlorophenol
Benzene sulfonyl chloride
2-Methylacetonitrile
4-Brcmophenyl phenyl ether
Isosafrole
Toluene diisocyanate
Methyl parathion
Toluene diamine
p-Chloroanil ine
N-phenylthiourea
2,6-Dichlorophenyl
4,6-Dinitro-o-cresol
(and salts)
2, 4, 6-Tri chlorophenol
Slightly Volatile Wastes -
Waste Code
- (continued)
P110
U081
U049
U197
U203
U130
U167
U168
P075
U007
P020
U230
U020
P069
U030
U141
U223
P071
U221
P024
P093
U082
P047
U231
Those with relative
Relative Soil Volatility
1.1 x 1CT2
*.,. * IV
8.8 x 10-3
8.7 x 10~3
J>u * ,v
4.8 x 1C-3
4.7 x ID'3
,., « ,„
4.4 x 1CT3
3.9 x 10'3
3.7 x 10-3
3.5 x 1Q-3
3.0 x 10-3
2.6 x 1CT3
2.6 x 1(T3
2.0 x 10-3
1.7 x 10-3
1.6 x 10-3
,.„ - ,„
1.3 x ID'3
1.3 x 10~3
..^ * ,v
1.3 x 10'3
1.1 x ID'3
soil volatility below
10-3 to 10-6
Tetraethyldithiopyrophosphate P109 9.9 x 10~4
a, a-Dimethy1benzo-
hydroperoxide U096 8.9 x 10~4
Oiethyl phthalate U088 5.4 x 10~4
4-Chloro-m-cresol U039 4.9 x 10~4
Dial late U062 4.8 x 10~4
B-Chloronapthalene U047 4.1 x 1(T4
p-Nitroaniline P077 3.4 x 10'4
Phenacetin U187 2.6 x 10"4
Dimethylphthalate U102 2.6 x 10"4
Saccharin and salts U202 2.0 x 10~4
o,o-Di ethyl-o-pyraz i ny1phos-
phorothioate P040 1.9 x 10~4
89
-------
Appendix D. (Continued)
Waste Name
Waste Code
Relative Soil Volatility
Slightly Volatile Wastes - (continued)
2-Cyc1ohexy]-4,6-dinitropheno1
1,2,4,5-Tetrachlorobenzene
Pentachloroni trobenzene
5- (Ami nomethyl )-3-i soxazolol
o-Toluidine hydrochloride
Mercury
Di butyl phthalate
Octamethylpyrophosphoramide
1,3-Propane sultone
Phorate
Reserpine
Tris(2,3-dibrcmopropyl)
phosphate
1 - (o-Ch 1 oropheny 1 ) th i oruea
Tet raethy 1 py rophospate
1 ,2-Benzenediol , 4-[hydroxy-
2-(methylamino)ethyl)
Pentachlorobenzene
Ethylenebis(diethiocarbonic
acid)
Promami de
Phosphine
Heptachlor
Thiofanox
Phthalic anhydride
Disulfoton
Resorcinol
2,4-D
Azaserine
Strep tozotocin
Hexahc 1 orohexahydro , exo , exo
d i me thanonaph tha 1 ene
Aldicarb
Pentachlorophenol
2 , 4-Di ni trotol uene
Maleic anhydride
Diethyl-p-nitrophenyl
phosphate
Methyl thiouracil
1,2-Diphenylhydrazine
P034
U207
U185
P007
U222
U151
U069
P085
U193
P094
U200
U235
P026
Pill
P042
U183
U114
U192
P026
P059
P045
U190
P039
U201
P035
U015
U206
P060
P070
U242
U105
U147
P041
U164
U109
1.8 x 10-4
1.5 x lO-4
1.4 x 10-4
1.3 x 10-4
1.0 x 10-4
9.2 x 10-5
6.0 x 10-5
5.9 x 10-5
5.8 x 10-5
5.0 x 10-5
>4.1 x 10-5
<3.8 x 10-5
3.0 x 10-5
2.8 x ID'5
2.8 x 10~5
2.6 x 10-5
2.5 x 10-5
2.5 x 10-5
2.4 x 10~5
1.6 x ID'5
1.2 x 10-5
1.2 x 10~5
1.1 x 10-5
1.1 x 10-5
1.1 x 10~5
9.5 x 10-6
7.8 x 10-6
7.3 x ID'6
7.3 x 10-6
6.7 x 10~6
6.3 x ID"6
5.1 x ID'6
4.7 x 10~6
4.0 x ID"6
3.9 x ID'6
90
-------
Appendix D. (Continued)
Waste Name Waste Code - Relative Soil Volatility
Slightly Volatile Wastes - (continued)
Methomyl
4-Nitrophenol
Parathion
2,4,5'-T
Nonvolatile Wastes - Those with
Benzidine
Bis-(2-ethylhexyl)phthalate
Hexach 1 orobenzene
Dimethoate
Endosulfan
Phenyl mercuric acetate
Chlorodane, tech
Si 1 vex
Octachl orocamphene
4,4'-Methylenebis (2-
chloroaniline)
Aldrin
Chlornaphazine
3-Methchol anthrene
a-hexachlorocyclohexane
Cyclophosphamide
Ethyl 4,4'-dichlorobenzilate
Beryllium dust
Dieldrin
a-Naphthyl thiourea
3,3-Dimethylbenzidine
2-Acetylaminoflourene
3,3'-Dimethoxybenzidine
Endrin
ODD
Chloroambucil
DDT
3,3'-Dichlorobenzidine
Arsenic (III) oxide
Di-n-octylphthalate
Melphalan
Mitomycin C
P066 3.9 x 10~6
U170 3.3 x lO'6
P089 2.2 x 10~6
U232 1.5 x 10~6
relative soil volatility below 10"^
U021 7.4 x 10~7
U028 7.0 x 10"7
U127 6.5 x 10-7
P044 5.6 x 10~7
P050 5.0 x ID"7
P092 4.9 x 10-7
U036 4.9 x 10~7
U233 4.3 x 10~7
P123 3.9 x 10~7
U158 3.7 x 10~7
P004 3.1 x 10~7
U026 2.7 x 10-7
U157 2.3 x 10~7
U129 1.9 x 10~7
U058 1.7 x 10~7
U038 . 1.2 x 10-7
P015 9.0 x 10-8
P037 4.0 x 10-8
P072 3.6 x 10-8
U095 2.0 x 10-8
U005 1.4 x ID"8
U091 1.2 x 10-8
P051 1.0 x ID"8
U060 8.4 x lO-9
U035 8.0 X ID"9
U061 8.0 x 10-9
U073 7.0 x 10~9
P012 5.9 x ID'9
U107 3.5 x ID"9
U150 2.3 x 10-9
U010 2.2 x ID'9
91
-------
Appendix D. (Continued)
Waste Name Waste Code Relative Soil Volatility
Nonvolatile Wastes - (continued)
3,4-Benzacridine U016 5.3 x lO'11
Benzo(a)pyrene U022 1.2 x TO"11
1,2-Benzanthracene U108 6.6 x 10'12
Ideno[l,2,3-CD]pyrene U137 6.0 x 10~12
Dibenzo[a,h]anthracene U063 3.1 x 10"12
Strychnine and salts P018 6.6 x 10"13
Warfarin P001 5.7 x 1(T13
7,12-Dimethylbenz[a]anthracene U094 2.4 x 10~13
Diethylstilbestrol U089 LSxlO'13
l,2:7,8-Dibenzopyrene U064 5.8 x 10'14
Brucine P018 5.0 x 10~14
Hexachlorophene U132 5.0 x lO"14
Chrysene U050 6.6 x 10'15
Daunomycin U059 4.1 x 10~16
92
-------
Appendix E. Diffusion Coefficients in Air and Water For RCRA Wastes
Identified as Highly Volatile from Water
Waste Name
Bis(2-ethylhexy1 phthalate)
Cyanogen
Reserpine
Dichlorodi fluoromethane
Nickel Carbonyl
Chloromethane
Phosph i ne
Cyclohexane
2-Nitropropanc
Pentachloroethane
Hexach1orobu tad i cne
Trichlorofluoromethane
Hexachlorocthane
2,3,4,6-letrachlorophenol
1,3-Pentadiene
Tetrachloromethane
Pentachloroni trobenzene
Hexach 1 oropropoi ic
1,1,1-lrichloroethane
Hexach1orocyc1 open tad i ene
1,1-Dichloroethylene
Cumene
DOO
Carbon disulfidc
Trichloroethylcnc
3-Melhylcholanthrono
Toluene
1,2-Dichloroct-hyU'nc
Furan
Brumiinit't liiinr>
Benzene
Methyl iodide
Toxaphenc
Waste
Code
late) U028
P031
U200
2 U075
P073
U045
P096
U056
U171
U184
U128
U121
U131
fiol U212
U186
U211
2 U185
U243
U226
:ne U130
U078
U055
U060
P022
U228
U157
IJ220
U079
U124
U029
U019
U138
U224
Henry's Law 1
Constant
(atm-W/mol)
26.6
9.91
4.28
2.75
0.5
0.38
0.19
0.18
0.12
0.10
9. 14 x lO-2
5.8 x ur2
1.3 x 10'2
4.5 x lO'2
4.2 x ID"2
3.0 x lO-2
2.9 x ID'2
2.5 x 10-2
3.42 x 10~2
1.60 x 10-2
1.50 x 10 2
1.40 x lO-2
1.26 x lO-2
1.2 x lO-2
8.92 x lO-3
1.1 x IO-3
6.64 x 10~3
6.6 x lO-3
5.7 x 10'3
5.3 x lO-3
5.5 x lO-3
5.0 x lO-3
4.89 x ID"3
)if fusion Coefficient
in Air*
(arr'/sec)
0.0378
0.1144(2)
0.0339
0.0944(2)
ttt
0.1085
0.1570
0.0839
0.0884
0.0717
0.0614
0.0862
0.0674
0.0624
0.0912
0.0828(1)
0.0533
0.0636
0.0794(1)
0.0621
0.1144(2)
0.0702
0.0494
0.1045(1)
0.0875(1)
0.0501
0.0849(1)
0.1144(2)+
0.1070
0.1141
0.0932(1)
0.10?b
*•**
Diffusion Coefficient
in Water**
(on2/sec)
3.78 x 10-6
1.14 x 10~5
3.37 x 10~6
1.13 x 10-5
ttt
1 . 18 x 10~5
\.I1 x I0~5
9.10 x 10~6
9.90 x 10~6
8.20 x 10-6
6.78 x 10-6
1.02 x 10-5
7.64 x 10-6
6.88 x 10~6
9.84 x 10-6
1.00 x UT5
6.17 x 10~6
7.09 x 10~6
9.30 x 10~6
6.49 x 10-6
1.14 x 10-5
7.55 x 10'6
5.19 x ID"6
1.28 x 10-5
1.03 x 10'5tt
5.28 x 10-6
9. 10 x ID'6
. 14 x ID"5
.24 x 10'5
.46 x I0~5
.03 x 10'5
.:« x to~5
**•*•
Liquid-Phase
Mass Transfer Coefficient
(cm/hr)
0.138
18.40
0.111
0.248
0.217
18.76
22.75
0.298
0.289
0.192
0.169
0.233
0.177
0.179
0.331
0.220
0.159
0.173
0.236
0.165
0.277
0.249
0.152
0.313
0.238
0.167
0.284
0.277
0.331
0.280
0.309
0.229
0.170
-------
Appendix E. (Continued)
Waste Name
l.l-Dichloroethane
1 ,3-Oichloropropane
Methanethiol
Chlorobenzene
Chloroform
Methylene chloride
1,1,1 ,2-Tetrachloroethane
Waste
Code
U076
U084
U153
U037
U044
U080
U208
Henry's Law Diffusion Coefficient
Constant in Air*
(atm-m3/mol) (cm2/sec)
5.
4.
4.
3.
3.
3.
2.
45 x
2 x
0 x
93 x
39 x
19 x
76 x
i
-------
Appendix F. Diffusion Coefficients in Air and Water For RCRA Wastes
Identified as Highly Volatile from Soil
Waste Name
Formaldehyde
Cyanogen
Bromomethano
Dichlorodifluorcmethane
Chloroethene
Methanethiol
Ethylene oxide
Dimethyl ami ne
Hydrofluoric acid
Cyanogen chloride
Phosgene
Hydrocyanic acid
Acetaldehyde
Methylethylketone peroxide
Furan
Trichlorofluoromethane
1, 1-Dichloroethylene
Ethyl ether
1,3-Pentadiene
Methylene chloride
Carbon disulfide
Ch 1 oroaceta 1 dehydo
Acetyl chloride
1 -Propanamine
Acrolein
Methyl iodide
Waste
Code
U122
P031
U029
U075
U043
U153
U115
U092
U134
P033
P095
P063
U001
U160
U124
U121
U078
U117
U186
U080
P022
P023
U006
U194
P003
U138
Relative Soil Volatility
Dry
1906
1473
1700
1450
958
578
505
—
378
428
458
321
360
302
222
223
202
184
145
141
121
108
108
101
96
116
Wet
809
552
544
439
336
219
195
193
179
152
144
140
139
100
77
66
64
63
50
46
41
36
36
36
34
34
Diffusion Coefficient Diffusion Coefficient
in Air* in Water**
(cn^/sec) (cn^/sec)
0.1728 2.06 x 10-5
0.1185 1.33 x KT5
0.1139 1.46 x 10~5
0.0944(2)
0.1225(2)
0.1242
0.1329
0.0567
0.2553
0.1213
0.1010
0.1677
0.1415
0.0853 <
0.1070
0.0862
.13 x 10-5
.29 x 10-5
.43 x ID"5
.54 x 10~5
.07 x 10~5
1.44 x 10~5
.47 x 10~5
.23 x 10~5
.87 x 10~5
.71 x HT5
).50 x 10"6
.24 x 10~5
.02 x 10~5
0.1144(2) 1.14 x 10~5
0.0892 9.70 x 10"6
0.0912 9.84 x 10-6
0.1037(1) .29 x 10-5
0.1045(1) .28 x 10~5
0.1032 .21 x 10~5
0.1050 .24 x 10-5
0.0996 .08 x 10-5
0.1131 .29 x ID"5
0.1025 .32 x 10~5
(1) Experimental value obtained from Lugg (1968).
(2) Experimental value obtained from Barr and Watts (1972).
*Estimatcd via the Fuller, Schettler, and Giddings Method in Lyman et al. (1982).
**Estimaled via the Hayduk and Laudie Method in Lyman et al. (1982).
-------
TECHNICAL REPORT DATA
(Plcsse read fmimciior.s on I'm reverse before completing!
1. REPORT NO. 2.
EPA-450/3-85-007
4. TITLE AND SUBTITLE
Physical-Chemical Properties and Categorization of
RCRA Wastes According to Volatility
7. AUTHOR(S)
Douglas Dixon and Edwin Rissnann
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Versar Incorporated
6850 Versar Center
Springfield, Virginia 22151
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Emission Standards and Engineering Division
Research Triangle Park, North Carolina 27711
3. RECIPIENT'S ACCESSION NO.
5. REPORT DATE
Febrnarv 1935
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-03-3041
13. TYPE OF REPORT AND PERIOD COVER
14. SPONSORING ASENCY CODE
EPA/200/004
The purpose of this report is to present (1) the physical-chemical properties
of the RCRA wastes related to volatility and (2) a waste categorization scheme based
on the volatility of RCRA wastes from hazardous waste treatment, storage, and disposal
facilities. The physical-chemical properties include basic input parameters for
air emission modeling.
Physical-chemical properties of RCRA wastes presented include - molecular weight,
boiling point, vapor pressure, solubility, Henry's Law constant, diffusion coefficients
and mass transfer coefficients. RCRA wastes are categorized by vapor pressure,
aqueous volatility, and relative soil volatility.
*7. KEY WORDS AND DOCUMENT ANALvSiS
i. DESCRIPTORS
Air Pollution
RCRA Wastes (Hazardous Wastes)
Physical-Chemical Properties of RCRA Wastes
Volatility Ranking of RCRA Wastes
Volatile Organic Compounds (VOC)
IB. DISTRIBUTION STATEMENT
Release unlimited, Available from NTIS ,
5285 Port Royal Road, Springfield', Va. 22161
: IDENTI e IE RS/0°EN ENDED T£RV!G
Air Pollution Control
19. SECURITY CLASS (Tim Keporr,
UNCLASSIFIED
20. SECURITY CLASS iTms pcfej
UNCLASSIFIED
c CCSA-, riri'G::.?
21. NO. Oc ?AG£S
1^8
12. PRICE
Form 3270—1 (R»». 4—77} OBEVIOUS EDITION is OBSOLETE
-------
INSTRUCTIONS
Insert th
LEAVE
TITLE
s.
7.
Include ZI? code-
^
-- " ,,,k.
_ ^
on wlua, ,
'
t,v ,,,,,„ .;>.-.vrtvniiuv: >-r.uam-
........ _
— *"'-
. ^ „ ........ , -.
.......... "
M , fSiS,sS
«- '"""" "
,M - : < OS ^ -,;; i.-.';-,; , --,- .,.,
™ -v ": •••* ' ••-•• - "" .....
' Tic .ff,.:-"™
lh
.,, ,,/sr s, Of P^GES ^ ^^ ^^
21.
------- |