United States
Environmental Protection
Agency
Off ice of Water
Regulations and Standards
Criteria and Standards Divisior
Washington DC 20460
440586009
Vate
Ambient
Water Quality
Criteria
for
Pentachlorophenol - 1986
-------
AMBIENT AQUATIC LIFE WATER QUALITY CRITERIA FOR
PENTACHLOROPHENOL
U.S. ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF RESEARCH AND DEVELOPMENT
ENVIRONMENTAL RESEARCH LABORATORIES
DULUTH, MINNESOTA
NARRAGANSETT, RHODE ISLAND
U.S. Environmental Protection Agency
Region V, Library
230 South Dearborn Street
CMr.aen
-------
NOTICES
This document has been reviewed by the Criteria and Standards Uivision,
Office of Water Regulations and Standards, U.S. Environmental Protection
Agency, and approved for publication.
Mention of trade names or commercial products does not constitute
endorsement or recommendation for use:
This document is available to the public through the Na
Information Service (NTIS), 5285 Port Royal Road, Sprin
VA 22161.
-------
FOREWORD
Section 304(a)(l) of the Clean Water Act of 1977 (P.L. 95-217)
requires the Administrator of the Environmental Protection Agency to
publish water quality criteria that accurately reflect the latest scientific
knowledge on the kind and extent of all identifiable effects on health
and welfare that might be expected from the presence of pollutants in any
body of water, including ground water. This document is a revision of
proposed criteria based upon consideration of comments received from
other Federal agencies, State agencies, special interest groups, and
individual scientists. Criteria contained in this document replace any
previously published EPA aquatic life criteria for the same pollutant(s).
The term "water quality criteria" is used in two sections of the
Clean Water Act, section 304(a)(l) and section 303(c)(2). The term has a
different program impact in each section. In section 304, the term
represents a non-regulatory, scientific assessment of ecological effects.
Criteria presented in this document are such scientific assessments.
If water quality criteria associated with .specific stream uses are adopted
by a State as water quality standards under section 303, they become
enforceable maximum acceptable pollutant concentrations in ambient waters
within that State. Water quality criteria adopted in State water quality.
standards could have the same numerical values as criteria developed
under section 304. However, in many situations States might want to
adjust water quality criteria developed under section 304 to reflect local
environmental conditions and human exposure patterns before incorporation
into water quality standards. It is not until their adoption as part of
State water quality standards that criteria become regulatory.
Guidelines to assist States in the modification of criteria presented
in this document, Ln the development of water quality standards, and in
other water-related programs of this Agency, have been developed by EPA.
William A. Whittington
Director
Office of Water Regulations and Standards
-------
ACKNOWLEDGMENTS
Daniel J. Call
(freshwater author)
University of Wisconsin-Superior
Superior, Wisconsin
Jeffrey L. Hyland
Jerry M. Neff
(saltwater authors)
Battelle New England Laboratory
Duxbury, Massachusetts
Charles E. Stephan
(document coordinator)
Environmental Research Laboratory
Duluth, Minnesota
David J. Hansen
(saltwater coordinator)
Environmental Research Laboratory
Narragansett, Rhode Island
Clerical Support:
Terry L. Highland
Shelley A. Heintz
Diane L. Spehar
IV
-------
CONTENTS
Pae
Foreword
Acknowledgments
Tables
Introduction ............................ i
Acute Toxi.ci.ty to Aquatic Animals ................. 3
Chronic Toxic ity to Aquatic Animals ................ 5
Toxicity to Aquatic Plants ..................... 9
Bioaccumulat ion .................. ; ....... IQ
Other Data ............................. 12
Unused Data ............................ 15
Summary .............................. 18
National Criteria ......................... 19
References
76
-------
TABLES
Page
1. Acute Toxicity of PentachlorophenoL to Aquatic Animals 21
2. Chronic Toxicity of Pentachlorophenol To Aquatic Animals . <*3
3. Ranked Genus Mean Acute Values with Species Mean Acute-Chronic
„ . 46
Ratios '
4. Toxicity of Pentachlorophenol to Aquatic Plants 52
5. Bioaccumulation of Pentachlorophenol by Aquatic Organisms 54
6. Other Data on Effects of Pentachlorophenol on Aquatic Organisms . . 56
VI
-------
Introduction*
Pentachlorophenol (PCP) and its sodium salt, sodium pentachLorophenate
(NaPCP), are collectively the second most heavily used pesticide in the
United States (Cirelli 1978). The principal uses of PCP and NaPCP are
in the treatment of various wood products and as a wide-spectrum fungicide
and bactericide. PCP** has been found in fresh and salt water at ng/L to
mg/L concentrations (Buhler et al. 1973; Fountaine et al. 1976, Fox and
Joshi 1984; Murray et al. 1931; Pierce 1978; Pierce et al. 1977; Renberg
et al. 1983) with higher concentrations associated with point discharges.
PCP has also been found in tissues of fish (De Vault 1985; Kuehl et al.
1980; Paasivirta et al. 1980,1983: Pierce 1978; Pierce et al. 1977; Veith
et al. 1981; Zitko et al. 1974), in plankton, invertebrates, and sediment
(DeLaune et al. 1983; Murray et al. 1980, Paasivirta et al. 1980; Pierce
1978; Pierce et al. 1977; Ray et al. 1983), and in humans (Bevenue et al.
1967; Dougherty 1978; Dougherty et al. 1980; Kuehl et al. 1980).
Several impurities are present in commercial-grade PCP, including
Lower chlorinated phenoLs (e.g., tetrachLorophenoLs) and chLoriaated
dibenzodioxins, dibenzofurans, diphenyLethers, and 2-phenoxyphenols
(Ahlborg and Thunberg 1980; Nilsson et al. L978). The highly toxic
2,3,7,8-tetrachLorodibenzo-p-dioxin has not been found in PCP or NaPCP,
and due to the methods of synthesis, is not expected to occur (AhLborg
* An understanding of the "Guidelines for Deriving Numerical National Water
Quality Criteria for the Protection of Aquatic Organisms and Their Uses"
(Stephan et al. 1985), hereafter referred to as the Guidelines, and the
response to public comment (U.S. EPA 1985a) is necessary in order to
understand the following text, tables, and calculations.
** "PCP" is often used in the text to refer to the total amount of un-ionized
pentachlorophenol and the pentacnlorophenate ion that occurs in water
regardless of whether PCP or NaPCP was initially added to water.
-------
and Thunberg 1980). Cleveland et al. (1932) reported that a composite of
three commercial PCP formulations concaved much higher concentrations
of hepta-, octa- and nonachlorophenoxyphenols, heptachlorodibenzodioxin,
octachlorodibenzodioxin, and octachlorodibenzofuran, and was more toxic
to fish, than either purified PCP (99% PCP) or Dowicide EC-7 (91% PCP).
Dowicide EC-7 contained less of the hepta-, octa- and nonachlorophenoxy-
ohenols than purified PCP, and was less toxic than purified PCP. Although
the toxicities of the individual impurities are unknown and their concentrations
apparently vary from batch to batch of PCP, Dow1Cide EC-7 seems to be an
acceptable source of PCP for toxicity and bioconcentration tests. A more
recent study has shown that ultrapure PCP is considerably less toxic than
a mixture of the major impurities in commercial PCP, consisting mainly of
octa- and nonachlorophenoxyphenols (Hamilton et al. 1936). Data- concerning
PCP should be reassessed as more information becomes available regarding
the toxicities of various grades of PCP and their impurities to various species
and the composition of the PCP that is produced, used, and discharged.
The toxicity of PCP to animals is due to the uncoupling of oxidatwe
ohosphoryiation in the mitochondria (Ishak et al. 1970; Weinbac.h 1954,1956)
and resultant reduced production of ATP. This is accompanied by an acceleration
of metabolic rate and the utilization of tissue energy reserves, causing loss
of weight (Cantelmo et al. 1973: Holmberg et al. 1972; Rao et al. 1979).
Activities of various enzymes are also affected by PCP (Bostrom and
Johansson 1972; Holmberg et al. 1972; Rao et al. ~1979).
PCP is a weak acid with a pKa of about 10^ (Blackman et al. 1955;
Callahan et al. 1979: Cessna and Grover 1978; Mrak 1974). Consequently,
Us toxicity and potential for uptake by organisms are pH-dependent
(Crandall and Goodnight 1959; Kobayashi and Kishino 1980; Saarikoski and
2
-------
Viluksela 1981; Spehar et al. 1985). Both bioconcentration and toxicity
increase as pH decreases, due to the greater penetration of cell membranes
by un-ionized PCP molecules than by the pentachlorophenate ion. Transfer
of PCP from water to fish is considered to be mainly by passive diffusion
of the un-ionized form across the gill membrane (Kishino and Kobayashi 1980).
Unless otherwise noted, all concentrations reported herein are
expressed as pentachlorophenol, not as the material tested. The criteria
presented herein supersede previous aquatic life water quality criteria
for PCP (U.S. EPA 1980) because these new criteria were derived using
improved procedures and additional information. Whenever adequately
justified, a national criterion may be replaced by a site-specific criterion
(U.S. EPA 1983a), which may include not only site-specific criterion
concentrations (U.S. EPA 1983b), but also site-specific durations of averaging
periods and site-specific frequencies of allowed excursions (U.S. EPA 1985b).
The latest comprehensive literature search for information for this
document was conducted in July, 1986; some more recent information might have
been included.
Acute Toxicity to Aquatic Animals
The acute toxicity of PCP to freshwater fish depends on the life stage
of the fish and the pH, temperature, and concentration of dissolved oxygen
in the water. Van Leeuwen et al. (1985) found that fry of rainbow trout were
much more sensitive than embryos. PCP was more toxic to the fathead
minnow (Crandall and Goodnight 1959) and to a nonresident fish, Notopterus
notopterus, (Gupta et al. 1983b) at higher temperatures. Also, Goodnight
(1942) observed that fish succumbed more rapidly at higher temperatures
(28-30°C) than at cooler temperatures (9-24'C). Acute toxicity to Notopterus
-------
notopterus increased with a decrease in Che concentration of dissolved
oxygen (Gupta et al. 1983a).
Of the variables studied, however, pH is the only one for which
quantitative data are available for a variety of freshwater species.
The acute value increases and toxicity decreases as pH increases. An
analysis of covariance (Dixon and Brown 1979; Neter and Wasserman 1974)
was performed using the natural logarithm of the acute value as the
dependent variable, species as the treatment or grouping variable, and
pH as the covariate or independent variable. This analysis of covariance
model was fit to the data in Table 1 for the five freshwater species for
which acute values are available over a range of pH. The slopes for all
five species are between 0.67 and 1.2 (see end of Table 1). An F-test
showed that, under the assumption of equality of slopes, the probability
of obtaining five slopes as dissimilar as these is P - 0.28. This was
interpreted as indicating that it is not unreasonable to assume that the
slopes for the five species are the same.
The pooled slope of 1.005 was used with the data Ln Table 1 to
adjust the acute values to pH - 6.5, where possible. Species Mean Acute
Values were calculated as geometric means of the adjusted acute val.ues,
and Genus Mean Acute Values at pH - 6.5 (Table 3) were then calculated
as geometric means of the available freshwater Species Mean Acute Values.
Acute values are available for more than one species in each of three genera
and the range of Species Mean Acute Values within each genus is less than
a factor of 2.3. Of the 33 genera for which acute values are available,
the most sensitive genus, Cyprinus, was over 10,000 times more sensitive
than the most resistant, Orconectts. The freshwater Final Acute Value (FAV)
for PCP at pH = 6.5 was calculated to be 10.97 ug/L using the procedure
-------
described in the Guidelines and the Genus Mean Acute- Values in Table 3.
The only Species Mean Acute Value that is lower than the FAV is that for
the common carp, Cyprinus carpio. The freshwater Criterion Maximum
Concentration (in ug/L) =» gU.005(pH)-4.830]
Tests of the acute toxicity of PCP to resident North American
saltwater animals have been performed with 13 species of invertebrates
and five species of fish (Table 1). The range of acute values for
invertebrates extends from 36.95 pg/L for embryos of the American oyster,
Crassostrea virginica (Borthwick and Schimmel 1978) to 18,000 ug/L for
the adult stage of the blue mussel, Mytilus edulis (Adema and Vink 1981).
The range of acute values for saltwater fish is narrower, extending from
22.63 ug/L for late yolk-sac larvae of the Pacific herring, Clupea harengus
pallasi (Vigers et al. 1978) to 442 pg/L for juvenile sheepshead minnow,
Cyprinodon variegatus (Parrish et al. 1978). Fish appear to be generally
more sensitive than invertebrates to PCP.
Embryos and larvae of the polychaete worm, Ophryotrocha diadema, and
the mussel, Mytilus edulis, were more sensitive to PCP than adults of the
same species (Aderaa and Vink 1981; Woelke 1972). Tests with Pacific
herring, Clupea harengus pallasi, (Vigers et al. 1978) and the nonresident
Plaice, Pleuronectes platessa, (Adema and Vink 1981) revealed that
sensitivity to PCP increases between the newly hatched yolk-sac larval
stage and the late larval premetamorphosis stage. Juveniles and adults
»
are slightly less sensitive than larvae.
Environmental factors, such as temperature, pH, and salinity, might
have an effect on the acute toxicity of PCP to some saltwater animals.
With the oligochaete worms, Limnottriloides verrucosus and Monophelephorus
cuticulatus. sensitivity to PCP increased somewhat between 1°C and 10°C
-------
at pH - 7, and between pH = 6 and pH = 8 at a temperature of 10°C
(Chapman et al. 1982b). Larvae of the blue mussel, Mytilus edulis, were
more sensitive to PCP at a salinity of 24 g/kg than at a salinity of 28
g/kg (Dimick and Breese 1965; Woelke 1972).
With some saltwater crustaceans, the stage of the molt cycle also
seems to affect sensitivity to PCP. Late premolt and molting grass
shrimp, Palaemonetes pugjo, were more than five times as sensitive to PCP
as interraolt animals (Conklin and Rao 1978a,b; Rao and Doughtie 1984). This
effect was attributed to the greater permeability of the integument of
the shrimp during molting.
Of the 17 saltwater genera for which acute values are available, the
most sensitive genus, Clupea, is more than 247 times more sensitive than
the most resistant, Cr_e_£iduU_ (Table 3). The four most sensitive genera
include two fish and two invertebrates and the range of the four Genus Mean
Acute Values is a factor of 3.5. The saltwater Final Acute Value calculated
from the values in Table 3 is 25.05 ^g/L, which is very close to the acute
value for the most sensitive tested saltwater species.
Chronic Toxicity to Aquatic Animal^
Of the freshwater species with which chronic tests have been conducted
on PCP, the cladoceran, Ceriodaphnia ret^J£ul_at_a_, is tne most sensitive
(Table 2), with a reduction in offspring occurring at 4.1 ,Jg/L, the
lowest concentration tested (Hedtke et al. 1986). Production of embryos.
by the snail, Physa gyrina, was reduced at a PCP concentration of 26
,jg/L, the lowest concentration tested (Hedtke et al. 1986). A chronic-
value of 240 ,jg/L for Dap_hn_i£ ma^na was based upon mortality (Adema
1978). Similarly, survival was the endpoint that determined the chronic-
values of 177 and 221 Mg/L for Simocephalus vetulus_ (Hedtke et al. 1986).
6
-------
Significant increases in mortality and decreases in length and weight
occurred among rainbow trout at 19 Mg/L after a 72-day exposure (Dominguez
and Chapman 1984), but the trout were not affected at 11 pg/L. Dominguez and
Chapman used a pure form of PGP (99+%) and found that yolk sac edema and
cranial malformations were rare as compared to their more common incidences
in studies with technical-grade PGP.
Several studies with the fathead minnow in the pH range from 6.5 to
8.5 resulted in chronic values from 24 to 144 ug/L (Table 2). Spehar et
al. (1985) studied the relationship between pH and chronic toxicity, and
obtained chronic values of 24, 40, 49, and 89 (jg/L at pH = 6.5, 7.5, 8.0,
and 8.5, respectively. A linear regression of ln(chronic value) on pH
resulted in a slope of 0.6174. This slope is similar to the slope of
0.6782 obtained by the same investigators in an acute toxicity. study with
the fathead minnow. However, because data are available for chronic
toxicity versus pH for only one species, the acute pooled slope of 1.005
was also applied to the freshwater chronic data in Table 2, where possible,
to adjust the chronic values to pH = 6.5, to allow a comparison of freshwater
chronic values at a common pH.
The long-term sublethal toxicity of PCP to fish has been shown to be
affected by temperature and concentration of dissolved oxygen (Table 6).
Newly hatched rainbow trout were affected more at 6°C than at 10°C,
whereas after yolk sac sorption, a greater effect on growth occurred at
20°C than at 12°C (Hodson and Blunt 1981). They concluded that, if these
laboratory data were applied in the field to wild trout populations,
temperature effects on PCP toxicity would be greatest both during embryo
development and subsequent growtty of young trout.
-------
Decreased concentrations of dissolved oxygen in the water increased
the toxicity of PCP to young rainbow trout (Chapman and Shumway 1978).
After a 24-day exposure to 37 Mg/L, alevins reared at dissolved oxygen
concentrations of 3, 5, and 10 mg/L suffered 76, 20, and 7% mortality,
respectively. Also, the time required for trout to attain maximum growth
was prolonged at the two lower concentrations of dissolved oxygen.
Usable data, according to the Guidelines, on the chronic toxicity of
PCP are available for only two saltwater species, the polychaete worm,
Ophrvotrocha diadema, (Table 6) and the sheepshead minnow, Cyprinodon
variegatuA. (Table 2). Test populations of Ophrvotrocha diadema were
exposed to PCP in a renewal life-cycle test extending from 2 to 3-day-old
larvae to two-week-old second generation larvae (Hooftman and Vink 1980).
The most sensitive effect was an apparent inhibition of reproduction at
U Mg/T- This value was not used in Table 2 because Che authors did not
report any statistical analyses of the data. A complete life-cycle test
was conducted with the sheepshead minnow, Cyprinodon variegatus (Parrish
et ai. 1978). The most sensitive effect was decreased long-term survival
of the first generation fish at 88 «/L. At 195 Mg/L, survival oc second
generation embryos and juveniles was reduced.
The seven available Species Mean Acute-Chronic Ratios range from
0.8945 to over 15.79 (Table 3), but the two highest values are ooth "greater
than" values and were obtained with two freshwater species that are much
raore .cutely resistant than the other four freshwater species. Therefore,
the Final Acute-Chronic Ratio of 3.166 was calculated as the geometric
*aan of the fxve Species Mean Acute-Chronic Ratios racing from 0.8945 to
6.873. When this ratio is used with the freshwater Final AcuLe Value and
the oooled .lope for the pH-t«icity relationship (Table 3-, the resulting
8
-------
freshwater Final Chronic Value (in ,jg/L) = J1-005(pH)-5.290]^ Divj.si.0n
o£ the saltwater Final Acute Value by the Final Acute-Chronic Ratio
results in a saltwater Final Chronic Value of 7.912 ^g/L. This is about
a factor of 8 below the only available saltwater chronic value, but no
chronic test on PCP has been conducted with any of the 13 acutely most
sensitive saltwater species.
Toxicity to Aquatic Plants
Freshwater plants are sensitive to PCP over a range of concentrations
from 7.5 to 3,200 ,jg/L (Tables 4 and 6). Blackraan et al. (1955) observed
that the degree of chlorosis in a 48-hr exposure of Lemna minor was
very sensitive to small changes in PCP concentrations. Only a slight
concentration increase was required to induce 502 chlorosis in all of the
duckweed fronds as compared to 50 % induction in none of the fronds. In
a prolonged exposure of the vascular plant, El odea canadensis, significant
biomass reductions occurred at progressively lower concentrations of PCP
as duration of exposure increased (Hedtke et al. 1986). Biomass
reductions were detected at 1,440 Jg/L atter 7 days, 810 ,Jg/L atter 14
days, and 380 ,jg/L after 21 days (Table 6). Biomass was not affected at
any time by the next lower concentration of 230 ,jg/L. La contrast,
neither reduced frond production nor chlorosis was observed in Lemna
minor at the highest PCP concentration of 1,440 ,jg/L (Hedtke et al.
1986). The river water used in both of these tests might have had some
effect upon the results.
Complete destruction of chlorophyll in ChU^reU.^ pyrenoidosa_ occurred
at a PCP concentration of 7.5 jg/L (Huang and Gloyna 1967). In a 7-day
»
study with Selenastrum capricornutum. cell numbers and population growth
rates were significantly reduced by 50 ^ig/L, but were not affected by 10
-------
,jg/L (Adams et al. 1985). Concent rat Lons near 300 ,jg/L resulted in 50%
reductions of Selenastrum populations in two separate studies (Crossland
and Wolff 1985;. Richter 1982). The 4-day EC50 for Scenedesmus subspicatus
was 90 >Jg/L (Geyer et al. 1985).
Usable data on the toxicity of PCP to saltwater plants are
available for eight phytoplankters, one macroalgal species, and one
vascular plant (Table 4). The 96-hr EC50s, based on reduction of cell
population growth, range from 17.40 ,ag/L for the diatom, Skeletonema
costaturn (Walsh et al. 1982) to 3,600 ,jg/L for the green alga, Dunaliella
tertiolecta (Aderaa and Vink 1981). Giant kelp, Macrocystis g2jri.fera,
and seagrass, Thalassia testudinum, are about as sensitive as the
phytoplankters. The range of sensitivities of saltwater plants to PCP is
similar to that for saltwater animals and, therefore, a criterion that
protects saltwater animals will probably also protect saltwater plants.
B i o ac c umu1 a t ion
Bioconcentration of PCP from water, like toxicity, has been shown to
be inversely related to pH (Kobayashi and Ki.shi.no 1980; Spehar et al.
1985). PCP bloconcentrated .in tne tissues of fish from 7.3 to 1,066
times (Table 5), with test durations from 16 Lo 115 days. The gall
bladder concentrated the highest Levels of PCP (Glickman et al. 1977,
Kobayashi and Akitake 1975b, McKim et al., Manuscript), wnereas muscle and
skin contained the lowest concentrations of PCP in rainbow trout exposed
to 0.73 to 1.15 ^g/L (McKioi et al., Manuscript). The lowest bioconcent rat ion
factor UCF) of 7.3 was obtained in bluegill muscle (Pierce 1973; Pruilt
-M- al. 1977). BCFs •;£ 320 and 378 weri estimated from uptake and depuration
1
rates usi.ig tne rainoow trout CM.-Kin et al., Manuscript) and the non-resident
xillifish, Ory_g_Lj^ latj.oes (Sugiura et al. 1984).
-------
Residues of PGP in fish drop quite rapidly upon termination of
exposure. Ninety-six percent of whole body ^C-labelled PGP was eliminated
by fathead minnows within 3.5 days (Huckins and Petty 1983), whereas
about 85 percent of the PGP residues in bluegill muscle were eliminated
in 4 days (Pruitt et al. 1977). A first-order simulation model developed
from empirical data indicated a half-life of 2.7 days in rainbow trout,
with 95% elimination in 11.7 days (McKim et al., Manuscript).
McKim et al. (1985) studied the efficiency of chemical uptake
by rainbow trout gills using 14 different chemicals including PGP. They
found that PGP was in a group of chemicals, all with log n-octanol/water
partition coefficients (log P) between 2.84 and 6.18, that were taken up
more efficiently by gills than chemicals with either lower or higher
partition coefficients. The rate of elimination of the chemicals in this
log P range largely determined their BCFs . In this range, the elimination
rates decreased as log P increased. PGP, with a log P of 3.32, would be
expected to be eliminated quite readily. Indeed, this has been shown, as
indicated above.
Several studies have shown that PGP is conjugated with glucuronic
acid in fish (Huckins and Petty 1983; Kobayashi 1978,1979; Kobayashi and
Nakamura 1979b; Kobayashi et al. 1977; Lech et al. 1978). Reduced
glucuronidation occurred in fathead minnows exposed to industrial PGP, as
compared to purified PGP, and it was suggested that this might play a
role in the elevated toxicity of the impure form (Huckins and Petty 1983).
Pentachlorophenylsulfate has been found in goldfish exposed to PGP (Akitake
and Kobayashi 1975; Kobayashi 1978,1979; Kobayashi and Nakamura 1979a,b;
Kobayashi et al. 1984), but not ih rainbow trout (Lech et al. 1978) or
fathead minnows (Huckins and Petty 1983).
11
-------
Probable steady-state BCFs for PCP are available for the eastern
oyster, Crassostrea virginica (Schimmel and Garnas 1985; Schimmel et al.
1978), the sheepshead minnow, Cyprinodon variegatus (Parrish et al. 1978)
and the longnose killifish, Fundulus similis (Trujillo et al. 1982). In
tests with oysters, the steady-state BCF ranged from 34 to 82, and was
reached in 14 to 96 hours. In a life-cycle test with the sheepshead
minnow, BCFs were 5 to 27 with adult fish, 13 to 22 with embryos, and 16
to 48 with 28-day-old young (Schimmel et al. 1978). A steady-state BCF
of 64 was obtained in a 7-day test with the longnose killifish (Trujillo
et al. 1982). In four-day acute toxicity tests, Schimmel et al. (1978)
found BCFs ranging from 0.26 for brown shrimp to 38.0 for striped mullet,
Mu^U cephalus. Using radio-labeled PCP, Carr and Neff (1981) reported a
14-day BCF of 280 with the sand worm, Nereis virens.
No U.S. FDA action level or other maximum acceptable concentration
in tissue is available for pentac-hlorophenol, and, therefore, no Final
Residue Value can be calculated.
Other Data
Cleveland et al. (1982) and Hamilton et al. (1986) studied the
effects of four samples of PCP en the survival and growth of fathead
minnows for 90 days. In the range of 60 to 142 Mg/L, both a purified PCP
and an ultrapure PCP reduced growth by 10 to 25%, whereas Dowicide EC-7
increased growth by 18 to 21%. An industrial composite PCP was much
more toxic; 13 pg/L reduced growth by 20%, 27 Mg/L reduced growth by 40%,
and 67 pg/L killed all the fish. Analyses of the four PCP samples for
fourteen polychlorinated impurities and a test on the effects of a mixture
of some of the impurities indicated that some of the effects seen in the
tests on PCP were probably due to the measured impurities.
12
-------
Webb and Brett (1973) found that growth and food conversion of
sockeye salmon (Oncorhynchus nerka) were affected in a 56-day exposure to
PGP concentrations of 1.74 and 1.80 rig/L, respectively, at a pH of 6.8
(Table 6). These are the lowest effect concentrations that have been
reported for any species. Growth of salmonids was reduced by 10 to 27%
at PCP concentrations ranging from 3.2 to 28 ,jg/L (Chapman 1969; Chapman
and Shumway 1978; Matida et al. 1976). The thresholds for reduction of
growth of rainbow trout exposed to PCP through 4-week post swim-up were
about 10 and 20 jg/L in warm and cold regimes, respectively (Hodson and
Blunt 1981). Reduced growth of largemouth bass, Micropj^e_rus salmoide_s,
was observed at 50.4 ,jg/L after 7 days of exposure (Mathers et al. 1985),
of the guppy at 320 ,jg/L after 28 days of exposure and of the amphibian,
Xenogus laevis, at 100 ^g/L after 100 days of exposure (Slooff and Canton
1983).
Whit ley (1968) and Kobayashi and Kishino (1980) reported that an
increase in pH decreased the 24-hr LC50s for both tubificid worms and
goldfish. Some reduction in toxicity appeared to result from the presence
of sediment in acute toxicity tests conducted with several species of
tubificid worms (Chapman et al. 1982a). Similarly, Mibsissippi River
water afforded some protection to various invertebrate species when their
LC50s were compared with values obtained in Lake Superior water (Hedtke
et al. 1986). The tubificids, Limnodrilus hoffmeisteri and Tubifex
tub ifex, were more resistant to PCP when tested as mixed species than
when each species was tested individually (Chapman et al. 1982a,b).
Schauerte et al. (1982) found that 1,000 ^jg/L decreased daphnids and
autotrophic phytoplankton in compartments in a pond, and Yount and Richter
13
-------
(1986) found chat periphyton biomass Ln experimental streams was inversely
related to pentachlorophenol in the range from 48 to 432 jg/L.
A wide variety of acute, chronic, and sublethal effects of PGP have
been reported for saltwater organisms (Table 6). Several effects of PGP
on polychaete worms have been reported such as reduced feeding activity by
Arenicola cristata (Rubinstein 1978). depletion of glycogen reserves,
increased tissue ascorbic acid concentrations, and disruption of osmoregulation
Nereijs virens (Carr and Neff 1981); and reproductive impairment in 0£h_ry_p_t_r_ocjia
diadema (Hooftman and Vink 1980). PGP induced developmental abnormalities
in embryos and larvae of the mussel, Mytilus edulis, (Dimick and Breese
1965) and oyster, Crassostrea virginica, (Davis and Hidu 1969) and inhibited
shell growth of juvenile oysters (Schimmel et al. 1978). Exposure for 18
weeks to 460 ,Jg/L resulted in reduced resistance of the quahog clam,
Mer£enaria, mercena^ia, to bacterial infection (Anderson et al. 1981).
The grass shrimp, Palaemonetes pugio, exhibited a variety of sublethal
physiological effects during exposure to PCP concentrations of 400 to
4,600 ,jg/L (Brannon and Conklin 1978: Cantelmo et al. L973; Doughtie and
Rao L978; Rao and Doughtie 1984; Rao et al. 1973,1*79,1*81) such as hi.stoLogi.cal
damage to epithelia of the gills, gut, and hepatopancr-as, increased
metabolic rate, decreased rate of limb regeneration, and increased weight
of Che molted exoskeleton.
Saltwater fish exposed to 50 to 200 ,jg/L exnibited elevation of me
.-on-.: er.tr at ion. of acid-soluble tniois in liv^r jt winter tlounder (Thomas
and Wofford 19^4) and elevation of blood cortisol, leading to hyperglycemia,
depletion cc Livar glycoger. .reserves, and an increase LP. liver ascorbic
acid concentration in T.U! lee '.Thomas et al. 1931).
14
-------
In a series of benthic colonization studies conducted in the Laboratory
under flow-through conditions, PGP concentrations of 55 to 140 ^ig/L reduced
both species richness and total faunal abundances of benthic macrofauna
(Hansen and Tagatz 1980; Tagatz et al. 1977,1980,1981). At a concentration
of 15.8 >Jg/L, PCP, administered as Dowicide G-ST, reduced total faunal
abundances, but not species richness. Molluscs were generally most
sensitive, but other phyla were also affected.
Unused Data
Some data on the effects of PCP on aquatic organisms were not used
because the studies were conducted with species that are not resident in
North America (e.g., Adema and Vink 1981; Dalela et al. I980a,b,c, Dave
1984; Hanumante and Kulkarni 1979; Goel and Prasad 1978; Gupta 1983; Gupta
and Dalela 1986; Gupta and Durve 1984a,b, Gupta and Rao 1982; Gupta et al.
1982b,1983a,b; Hattori et al. 1984; Kaila ana Saankoski 1977, Khangarot
et al. 1985: Kobayashi et al. 1969, Nagendran and Shakuntala 1979: Rao et
al. 1983; Shim and Self 1973; Slooff 1976; Slooff et al. 1983b; Tomiyama
et al. 1962: Van Dijk et al. 1977; Verma et al. 19du,1931a,b,1982,1984).
Results (e.g., Adema and Vink 1981) of tests conducted with brine shrimp,
Artemia s^., were not used because these species are From a unique
saltwater environment. Adelraan et al. (1976b), Ahlborg and Thurnberg
(1980), Alexander et al. (1983), Bevenue and Beckman (1967), Buikema ec
al. (1979), Conklin and Fox (1978), Hall and Kier U984a,b), Kocti (1982),
Kozak et al. (1979), National Research Council of Canada (1982), Rao et
al. (1979), von Ruraker et al. (1974), and Strufe (1963) only contain data
that have been published elsewhere.
i
Results were not used if either the test procedures or the test
material was not adequately described (e.g., Benoit-Guyod et al. 1984a:
15
-------
Canton and Slooff 1979; Clemens and Sneed 1959; Hashimoto and Nishiuchi
1983: Klein et al. 1984; Knie et al. 1983; Konemann and Musch 1981; Wong
1984), or if PGP was a component of a mixture (Hermens et al. 1985; Statham
and Lech 1975). Tests were not used if POP comprised only eight percent
of the formulation (Batte and Swanson 1952; Inglis and Davis 1972). Data
were not used if PCP was a component of a sediment (e.g., D'Asaro and Wilkes
1982) or if the organisms were exposed by injection (e.g., Bose and Fujiwara
1978; Tripp et al. 1984) or in food (e.g., Niimi and Cho 1983). Anderson
et al. (1984), Bols et al. (1985), Cantelrao and Rao (1978a), Fox and
Rao (1978), and Kwasniewska et al. (1979) only exposed enzymes, excised or
homogenized tissue, cell cultures, or sewage bacteria.
Tests conducted with too few test organisms (e.g., Coglianese and
Neff 1982; McLeese et al. 1979) and tests in which the concentrations
fluctuated widely (e.g., Thomas et al. 1981) were not used. The 60-day test
reported by Verma et al. (1981c) was not used because there were no
replicate test chambers. The early life-stage toxicity data of Juhansen
et al. (1985) were not used due to high mortality of control fish and an
interruption in the exposure. Results were not used if organisms were
not cultured and tested in the same dilution water (Ber^Und and Dave 1934).
Studies with physiological endpoints only were not used (e.a., Bostrom
and Johansson 1972; Chowdary et al. 1979; Gupta et al. 1933c,ct; Hanke et al.
1983; Holmberg et al. 1972; Huber et al. 1932: Jayaweera at ai. 1932:
Kaila 1982; Kaila and Saarikoski 1980,1981; LeBlanc and Cochrane 1985.
Liu 1981; Oikari and Nitcyla 1985: Oikan et al. 1985; Peer et al. 1983:
Saarikoski and Kaila 1977; Saro}ini et al. 1983; Sloley et al. 198b;
Tiedge et al. 1986; Verma 1981b; Vfcrma et al. 1982; Yousri and Hanke 1985).
A study of histological effects on bluegills was not used (Owen and Rosso
16
-------
1981). Toxicicy data were not used if they were only qualitative (Palmer
and Maloney 1955) or were presented in graphic form (Norup 1972). A
study by Anderson and Weber (1975) was not used because acute toxicity
results for the guppy were presented only as linear regressions on body
s ize
A study on the uptake and metabolism of PCP in rice plants (Weiss et al.
1982) was not used, nor were uptake studies in which exposure was via the
food (Niirai and Cho 1983) or by gavage (Niimi and Palazzo 1985). Bioconcentration
studies were not used if the test was not flow-through or renewal (e.g.,
Ernst 1979) or if the exposures were of insufficient duration for steady
state to have been achieved (Glickman et ai. 1977; Kobasyahi and Akitake
1975a,b; Kobayashi et al. 1979; Kuehl et al. 1983; Lech et al. 1978:
McKim et al., Manuscript). Reports of the concentrations of PCP in wild
aquatic organisms (e.g., Butte et al. 1983; Faas and Moore 1979; Folke et
al. 1983: Fox and Joshi 1984; Kuehl and Dougherty 1980; Murray et al.
1980,1981: Ray et al. 1983) were not used if the number of measurements
of the concentration in water was too small or if the range of the measured
concentrations in water was too great. Studies of the concent eat ion or
accumulation of PCP in organisms were not used if th^ data orovided were
considered insufficient for determination of a b iocon^ent rat ioa or b uaccumuUt ion
factor (Gotham and Rhee 1982; Hallas 1973; Klein et al. 1984; Korte et al.
1978; Oikari 1986; Oikari and Anas 1985; Paasivirta et al. 1981), if the
data were being reported secondarily (Branson 1980; Davies and Dobbs
1984), if water and biota samples were not collected at the same times
(Metcalfe et al. 1984), or if the measurements were of total radiolabel
rather than PCP itself (Fisher andiWadleigh 1986, Freitag et al. 1985;
Geyer et al. 1981,1984; Gluth et al. 1985). Bioaccumulation and fate data
17
-------
from model ecosystems or microcosm studies were not used (e.g., Brockway
et al. 1984; Knowlton and Huckins 1983; Lu and Metcalf 1975; Robinson-Wilson
et al. 1983: Tomizawa and Kazano 1979).
Summary
The acute and chronic toxicity of PCP to freshwater animals increased
as pH and dissolved oxygen concentration of the water decreased. Generally,
toxicity also increased with increased temperature. The estimated acute
sensitivities of 36 species at pH - 6.5 ranged from 4.355 ^g/L for larval
common carp to >43,920 ^g/L for a crayfish. At PH = 6.5, the lowest and
highest estimated chronic values of <1.835 and 79.66 ^g/L, respectively,
were obtained with different cladoceran species. Chronic toxicity to
fish was affected by the presence of impurities, with industrial-grade
PGP being more toxic than purified samples. Mean acute-chronic ratios
for six freshwater species ranged from 0.8945 to >15.79, but the mean
ratios for the four most acutely sensitive species only ranged from
0.8945 to 5.035. Freshwater algae were affected by concentrations as low
as 7.5 .jg/L, wnereas vascular plants were affected at 189 Jg/L and above.
BioconcentratLon factors ranged from 7.3 to 1,066 for three species of fish.
Acute acute toxicUy values inm tests with 18 species of salt-
water animals, representing 1? ger.era, rar.ge from 22.63 ,jg/L for late
yolk-sac larvae of the Pacific herring, Ciugea tiaren£us paUasj,, to 18,000
,jg/L for adult blue mussels, Mj^i^us. ^ouJ_Ls.. The enbryo ,nd larval
stages of invertebrates aad the iate larval oremetamorphosis stage of
fish appear to be :lie ruse sensitive life stages to PCP. With few exceptions,
fisr. are more sensitive than inver-.ebrates 13 FCP. Salinity, temperature,
and pH have a .Light effect on che coxiotry ofc PCP t.o sox.e saltwater animals.
-------
Life-cycle toxicity tests have been conducted with the sheepshead
minnow, Cyprinodon variegatus, and the polychaete worm, Ophryotrocha
diadema. The chronic value for the minnow is 64.31 ,Jg/L and the acute-
chronic ratio is 6.873. Unfortunately, no statistical analysis of the
data from the test with the worm is available.
The EC50s for saltwater plants range from 17.40 >jg/L for the diatom,
Skeletonema costatum, to 3,600 ,jg/L for the green algae, Dunaliella
tertiolecta. Apparent steady-state BCFs are available for the eastern
oyster, Crassostrea virginica, and two saltwater fishes and range from 10
to 82.
National Criteria
The procedures described in the "Guidelines for Deriving Numerical
National Water Quality Criteria for the Protection of Aquatic Organisms
and Their Uses" indicate that, except possibly where a locally important
species is very sensitive, freshwater aquatic organisms and their uses
should not be affected unaceeptably if the four-day average concentration
(in rig/L) of pentachlorophenol does not exceed the numerical value given
by e P ' more than once every three years on the average and
if the one-hour average concentration (in ,Jg/L) does not ^xceod the
numerical value given by gU .005(pH)-4.830] more chan onc^ evt;ry Cnree
years on the average. For example, at pH = 6.5, 7.8, and 9.0 the four-day
average concentrations of pentachlorophenoL are 3.5, 13, and 43 Jg/L,
respectively, and the one-hour average concentrations are 5.5, 20, and 68
,jg/L. At pH = 6.8, a pentachlorophenol concentration of 1.74 jg/L
caused a 50% reduction in the growth of yearling sockeye salmon in a
t
56-day test.
19
-------
The procedures described in the "Guidelines for Deriving Numerical
National Water Quality Criteria for the Protection of Aquatic Organisms
and Their Uses" indicate that, except possibly where a locally important
species is very sensitive, saltwater aquatic organisms and their uses
should not be affected unacceptably if the four-day average concentration
of pentachlorophenol does not exceed 7.9 Mg/L more than once every three
years on the average and if the one-hour average concentration does not
exceed 13 Mg/L more than once every three years on the average.
Three years is the Agency's best scientific judgment of the average
amount of time aquatic ecosystems should be provided between excursions
(U.S. EPA 1985b). The resiliencies of ecosystems and their abilities to
recover differ greatly, however, and site-specific allowed excursion
frequencies may be established if adequate justification is provided.
Use of criteria for developing water quality-based permit limits and
for designing waste treatment facilities requires selection of an appropriate
wasteload allocation model. Dynamic models are preferred for the application
of these criteria (U.S. EPA 1985b). Limited data or other considerations
might make their use impractical, in which case one must rely on a steady-state
model (U.S. EPA 1986).
20
-------
Table 1. Acute Toxlclty of Pentachlorophenol to Aquatic Animals
Species
LC50 Species Mean
or EC50 Adjusted LC50 Acute Value
" >•*•••
Hydra, S, U
Hydra ol iqactis
Tubificid worm, R, u
Branch iura sowerbyi
Tubificid worm, R, u
Limnodrilus hoftmeisteri
Tubificid worm, R, u
Limnodrilus hof fmeister i
Tubif icid worm, R, u
Limnodrilus hot fmei star!
Tubi f icid worm, fy ( O
Limnodrttus hot f meister i
Tubificid worm, R, u
Limnodrilus hotfmeisteri
Tub i t i ci d worm, R, u
Quistradr i lus multisetosus
Tubificid worm, R, u
Rhyacodrilus montana
Tubit icid worm, R, u
Spirosperma terox
Tubi f i ci d worm, H , II
Spirosperma nikolskyi
Tubif icid worm, R, u
Stylodrilus her inqi anus
Tubif icid worm, R, u
Stylodrilus herinqianus
Tubificid worm, R, u
Stylodrilus herinqianus
PCP
(>98*)
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NoPCP
NaPCP
NaPCP
FRESHWATER SPECIES
730
7.0 257.7
7.0 303.8
7.0 478. 7f
(I*C)
7.0 451. 0T
(20"C)
6.0 303. 8f
a. D 345. 2f
7.0 524.7
7.0 690.4
7.0 395.8
7.0 902.1
7.0 579.9
7.0 1,638*
7.0 681. 2T
(200C)
155.9
183.8
289.6
272.9
502. lft
76.45
317.5
417.7
239.5
545.8
350.8
991.0
412.1
\vnrt-i nererttnce
Slooff et al. 1983a
155.9 Chapman et al . I982a
Chapman et al. I982a,b,c
Chapman et al. 1982b
Chapman et al . 1982b
Chapman et al . 1982b
182.5 Chapman et al . 1982b
317.5 Chapman et al . I982a,b
417.7 Chapman et al . I982a
239.5 Chapman et al . 1982a
545.8 Chapman et al . 1982a
Chapman et al . 1982a,b
Chapman at al . I982b
Chapman et al . I982b
-------
Table i. (CooMnuod)
Species
Tubificiii worm.
Stylodiilns 1 HIT jjvji anus
fui'i f fcid woirn.
bt^lodrilus herjjuji jnus
lubi H< id worm,
Tubifex tubifox
Tnbi NciJ worw.
Tubifnx tuoiff-x
Tutii ficid *orf«,
lubifex tubifex
Tub 1 1 ic.it} *or»i ,
hiLitex tut'itex
iubificid worm.
Tubi f ev tubl fax.
-*
T'lbi t if. id worm.
Vdrichaela pacitlc.a
5od M * rtdu it).
(dc.uin
ftp!t.xd hypnoruin
Ph^sV-i rind
Lymfltioii bt^linjl Ib
' r i i 1
G i 1 1 i o j 1 i i t i i>
Gnai 1 ,
Gi 1 1 ia alti 1 is
Method* Chemical** pH
Ri i WAt-*(""t* Ci 0
U HQ( Vji u« '^
(10°C)
R U UaPCP 8.0
/ i n°( • v
( IU L t
R. U UdPCP 7.0
/ \ r\ o. •• \
( 10 L)
; n
R U lilPCI «.U
/I **C^ \
( 1 C)
R, U NuPCP 7.0
(2°C)
R, U NdPCP o.O
/ 1 /\ ^l"1 \
( 10 L.)
Hi i u »H( 'P 3. 0
U HarL-r "• *-*
(10°C)
R, U NdCCP 7.0
K 11 Dowicide LC-7 7. I-
Wt, PU') 7.8
^ M Ixiwic i Jo l.C-7 7.1-
I8(j; IJCIJ) 7.8
r , M uowiciJo LC-7 7.2
(93.7# PCP)
I'CIJ
s, o t"^3 °- '
>'
R U I'CH ' 6.7
* ' | *^
*
LC50
or EC50
(uq/L)***
690. 4f
874. 5T
349.8
607. 5*
405. 0T
340. 6f
598. 3T
96.65
157
142
267
240
810
300 ,
Species Mean
Adjusted LC50 Acute Value
or EC50 (uq/L)»*»* (ug/L)»«««»
1.141"
193.7 408.2
211.6
367.6
245.0
563. Otf
132.5 224.2
58.47 58.47
63.54
57.47 o0.43
132.1 132.1
"
662.5
245.4 403.2
Reference
Chapman et
Chapman et
Chapman et
Chapman et
Chapman et
Chapman et
Chapman et
Chapman et
Phipps and
1985
Phipps and
1985
Hedtke et
Adema and
Stuart and
al . 1982b
al. 1982b
al. I982a,b.c
al. I982b
al. 1982b
al . I982b
dl . I982b
al. 1982a
Ho 1 combe
Hoi cunbe
al . 1 986
Vink 19bl
Roburtson 1985
Stuart and Kobertson iyos
-------
>i v i • \wotii i in-
Spec 1 es
Cl adoceran (<4 hr) ,
Ceriodaphnia reticulata
Cladoceran (<6 hr) ,
Ceriodaphnia reticulata
Cladoceran (<6 hr) ,
Ceriodaphnia reticulata
Cladoceran (<6 hr) ,
Ceriodaphnia reticulata
Cladoceran (<6 hr) ,
Ceriodaphnia reticulata
Cladoceran (<24 hr) ,
Ceriodaphnia reticulata
Cladoceran (<24 hr) ,
Ceriodaphnia reticulata
Cladocefan (<24 hr) ,
Uaphnia magna
Cladoceran (<24 nr) ,
Daphnia magna
Cladoceran (<24 hr) ,
Daphnia mayna
Cladoceran (<24 hr) ,
Daphnia magna
Cladoceran (24 hr),
Daphnia manna
Ctadoceran (larva).
Daphnia magna
Method* Chemical** pH
S, U Dowicide EC-7 7.2-
(93.7* PCP) 7.4
S, U NaPCP 7.7
S, U NaPCP 7.7
S, U NaPCP 7.8
S, U NaPCP 7.8
S, U PCP B.O
(reagent grade)
F, M Dowicide EC-7 7.3
(93. 7> PCP)
S, U - 7.4-
9.4
S. U PCP
S, U PCP
S, U PCP -
S. M PCP
PCP
LC50 Species Mean
or EC50 Adjusted LC50 Acute Value
(MQ/L)**« or EC50 (uq/L)«*«* (ug/L )***«•
153.7 68.79
260 77.04
5)0 152.7
290 78.52
410 111.0
900 199.3
150 67.13 67.13
680 1 00. 7
ocr» . —
£30
A f\(\ f —
40U ^
u Ar\ ^ ™
oOU
600
Iric/\ . —
,Uj(J
Reference
Mount and Norberg
Hall et al. 1986
Hal 1 et al. 1986
Hal 1 et al. 198b
Hal 1 et al. 1986
Elnabarawy et dl .
1984
1986
Hedtke et al . 1986
LeBlanc 1980
Canton and Adema
Canton and Adema
Canton and Adema
Adema 1976
1978
1978
1978
Adema and V i nk 1981
Cladocordn (adult),
Daphn ia magna
PCP.
1,400
Adema and Vink 1981
-------
Table I. (Continued)
Specie*
Cladoceran (<24 hr) ,
Daphnta magna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla magna
Cl adoceran (<24 hr) ,
Daphnla magna
Cladoceran «24 hr) ,
Daphnta roagna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran «24 hr) ,
Daphnla roagna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnta magna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) .
Daphnla magna
LC50
or EC50 Adjusted LC5O
nathod- Cht-'— •" r" irg/Ll«»« or EC50 (.oA)*""
s, u - - 28°
S, U DowlcldeEC-7 7.2- 134.0 59.97
(93.7$ PCP) 7.4
s> M pep 8.58 145 17.93
»"*• '
S. U PCP 8.5 300 40.20
S. U PCP 8.5 350 46.90
c ,i PPP 85 380 50.92
C 11 r\jf O» J .^w —
*ȣ \*
Sf u PCP 8.5 300 40.20
S. u PCP 8.5 350 46.90
... r^p 85 300 40.20
c ii r\*i °e J -*ww
J, U **
s> u PCP 8.5 280 37.52
c- .. PTP ft s 310 41.54
S, U PCr o.3 -"u
Sf u PCP 8.5 290 38.86
S, U PCP 8.5 370 , 49.58
Specie* Mean
Acute Value
Hermans et at . 1984
Mount and Nor berg 1984
Thurston et al . 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
-------
Table I. (Continued)
ho
Ui
Species
Cladoceran (<24 hr) ,
Oaphnla magna
Cladoceran t<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla maqna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran «24 hr) ,
Daphnla magna
^
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla maqna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran «24 hr) ,
Daphnla maqna
Cl adoceran (6 d) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla pulex
Method* Chemical** pH
S, U PCP 8.5
S, U PCP 8.5
S, U PCP 8.5
S, U PCP 8.5
S, U PCP 8.5
•
S, U PCP 8.5
S, U NaPCP 7.7
S, U NaPCP 7.7
S, U NaPCP 7.8
Sf u NaPCP 7.8
S, U POP 8-°
(re<*jant grade)
S, M PUP 7.5
<99*J)
S. U PCP
LC50
or EC50
350
370
340
510
840
510
450
1,030
960
830
1,000
183
2,000
Adjusted LC50
46.90
49.58
45.56
68.33
112.6
68.33
134.7
308.4
259.9
224.7
221.5
66.99
Species Maen
Acute Value
(•a/L)*"*** Reference
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Hall et al . 1986
Hal 1 et al . 1986
Hal 1 et al . 1986
Hall et la. 1986
Elnabarawy et al . 1986
55.03 Brooke et al .
Manuscript
Canton and Adema 1978
-------
Table I. ICoiiMmieo')
to
Scacle*
Cladocnran (<24 tu ) ,
Daphnta pulfax
Cladoceran (<24 l»r) ,
(:ladoceran (<24 hr) ,
Daphn JA pul**x
Cladoceran (<24 hr),
Daphnla pulex
Cladoreran (<-24 hr) ,
Daphnla pule*
Cl artoceran <*24 hr) ,
Daphnla pulex
Cladocai-an (<24 hr) ,
Daphnla pulex
Cl adocaran (<24 hr) ,
Daphnla pulex
Cladoceran <<24 hr) ,
Daphn la p_uigx_
Cladoceran (<24 hr) ,
Daphnla pulex
Cl adocaran (<24 hr) ,
Daphnla pulex
Cladoceran (<24 hr) ,
Daphn la pulex
Cladoceran (<24 hr) ,
Daphnla pulex
Cladoceran (<24 hr) ,
Daphnla pulex
LC50
or EC50
uatnod* Cne«lc«l*B JH *M
c ii H'P 8.2 260
*3, U r^r O'L
S. U reP 8.2 490
S. U TOP 8.2 480
e ii PCf 8 2 470
S, U rC" "•*
S, U reP 8.2 290
S, U TOP 8.2 170
c ii PPP 8.2 250
S, U r^r °"t
S, u TCP 8.2 390
c u PTP 8.2 190
S, U r^^ °»*
c u POP 8.2 330
S, U >^r °**
c u FTP 8.2 560
S, U rU^ ""^
S> u PCP 8.2 550
c ii PTP 82 560
S, U r\,r o.i
c „ pcp 8.2 440
bt U ror
Specie* Mean
Adjusted LCSO Acute Value
or EC50 (.q/L)««" C.g/L)*«"«
47.10
88.76
86.95
85.13
52.53
30.79
45.28
70.64
34.42
59.78
101.4
99.63
101.4
TO in "*
/7. /U
Reference
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985
-------
TabU I. (Continued)
to
Sp«cU«
Cladoceran «24 hr) ,
Daphnla pulex
Cladoceran «24 hr) ,
Daphnla pulex
Cladoceran «24 hr) ,
Daphnla pulex
Cladoceran (<24 hr) ,
Oaphnla pulex
Cladoceran (<24 hr) ,
Daphnla pulex
Cladoceran (<24 hr) ,
Daphnla pulex
Cladocer'an «24 hr) ,
Oaphnla pulex
Cladoceran «24 hr) ,
Oaphnla pulex
Cladoceran (<24 hr) .
S Imocephalus vetulus
Cladoceran «24 hr) ,
Slmocephalus vetulus
Cladoceran «24 hr) ,
S Imocephalus vetulus
Cladoceran «24 hr) ,
Slmocephalus vet lulus
Cladoceran (<24 hr) ,
S Imocephalus vetulus
Cladoceran (<24 hr) ,
Slmocephalus vetulus
Am phi pod (juvenile),
Method* Cham leal"
S, U PCP
S, U PCP
S, U PCP
S, U PCP
S, U NaPCP
S, U NaPCP
S, U NaPCP
S, U PCP
(reagent grade)
S, U Dowlclde EC-7
(93. It EC50)
F, M Dowlclde EC-7
(93.7| PCP)
F, M Dowlclde EC-7
(93. It PCP)
F, M Dowlcldtt EC-7
(93. It PCP)
F, M Dowlclde EC-7
(93. It PCP)
F, M Dowlclde EC-7
(93. It PCP)
F, M Dowlclde EC-7
LC50
or ECSO Adjust** LC50
SH (tflA)*"* or ECSO (na/t)""»
8.2
8.2
8.2
8.2
7.7
7.8
7.8
8.0
7.2-
7.4
7.3
7.7
8.0
8.3
7.9-
8.4
6.5
590
550
680
350
1,000
960
1,050
1,100
203.3
160
250
255
364
196
139
106.9
99.63
123.2
63.40
299.4
259.9
284.3
243.6
91.00
71.61
74.85
56.47
59.63
35.50
139.0
Sp*cl«s M»m
Acut* Value
Lewis and
Lewis and
Lewis and
Lewis and
Hal 1 et al
Hal 1 et al
Hal 1 et al
90.83 Elnabarawy
Mount and
Hedtke et
Hedtke et
Hadtke et
Hedtke et
57.72 Hedtke et
Spehar et
Weber 1985
Weber 1985
Weber 1985
Weber 1985
. 1986
. 1986
. 1986
et al . 1986
Nor berg 1984
al . 1986
al . 1986
al . 1986
al . 1986
al . 1986
al . 1985
Cranqonyx pseudograclI Is
(88$ PCP)
-------
Table le (Continued)
oo
Spec Us
Amphlpod I juvenile),
Cranqonyx pseudogr ac 1 1 Is
Amphtport l juvenile),
Cranqonyx psbudo^rnc Ills
Amphlpod ( juvanlla) .
Craogonyx pseudograc 1 1 i s
Amphlpod (1 1 mm) ,
Ga"itnarus psduool Imnaeus
Amphlpod (0.050 g) ,
Ganwnnrus psaudol Imnaeus
Amphlpod (juv«wiHe).
Gammarus pseudol Imnaeus
Amphlpoo 4 Juvenile) ,
Canwiaru;, ^soudol Imnaeus
Amphlpod (juvenile) ,
Gammarus j>»eudol Imnaeus
Arophlpod (Juvenile).
Gommarus gseudol Imnaeus
Hyaiel la aileca
Crayfish (0.4-2.0 q) ,
Orconectes Immunls
Mosquito (3rd Instar),
Aedes aeqyptl
Mosquito (3rd Instar) ,
Culex plplens
Midge (3rd, 4th Instar),
Tanytarsus dlsslmills
Mldgo (3rd, 41 h Instar) ,
Tanytarsus dlsslmllls
Method* Chemical** JH
F, M Uoxlclde EC-7 7.5
(ft8< PCP)
F, M Dowlcldu FC-7 8.0
(8183,000
7,200
34,000
31,300
19.000
Sp«cUc Nswi
Adjusted LC50 Acut* Value
or EC50 Ua/L>"*"" (nfl/L)""11*-
170.2
205.7
180.1 172.1
108.35
138.56
92.00
44.29 '
107.19
105.85 122.1
87.48 87.48
>43,920 >43,920
4,152
2,421
Reference
Spehar et al . 1985
Spehar et al . 1985
Spehar et al . 1985
Brooke et al . Manuscript
Cal 1 et al . 1983
Spehar et al . 1985
Spehar et al . 1985
Spehar et al . 1985
Spehar et al . 1985
Brooke et al .
Manuscript
Thurston et al . 1985
SI oof f et al . 1983a
Slooff et al . 1983a
Thurston et al . 1985
Thurston et al . 1985
-------
Table 1. (Continued)
Spec Us
Mldqe (3rd, 4th Instar),
Tanytarsus dlsslmllls
Sclomyzld (1st Instar),
Sepedon fusclpennls
Sclomyzld (1st Instar),
Sepedon fusclpennls
Coho salmon (1-3 g) ,
Oncorhynchus klsutch
Coho salmon ( J-3 g) ,
Oncorhynchus klsutch
Cono salmon (2.7 g, 6.2 on),
Oncorhynchus Klsutch
Sockey* salmon (yoatling),
Oncorhynchus nerka
Sockaye salmon (1-3 g) ,
Oncorhynchus nerka
Sockeya salmon (1-3 g) ,
Qncorhynchus nerka
Chinook salmon (1 g) ,
Oncorhynchus tshawytscha
Chinook salmon (1 g) ,
Oncorhynchus tshawytscha
Rainbow trout (1-3 g) ,
Salmo galrdner 1
Rainbow trout (1-3 g) ,
Salmo galrdner 1
Rainbow trout (1-3 g) ,
Salmo galrdner 1
Rainbow trout (1-3 g) ,
Method*
••••••••••V
F, M
S, U
s. u
s. u
s, u
F, U
f, U
s. u
s, u
s, u
s, u
s, u
s, u
s, u
s, u
Chaolcal"
PCP
(99+S)
NaPCP
(90S)
NaPCP
(90S)
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
PCP
(96J)
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
7.9
8
7
7.01
7.01
6.9-
7.5
6.8
7.19
7.70
7.2-
7.5
7.2-
7.5
6.96
7.0
7.0
7.02
LC50
or EC50
(naA)**"
46,000
28,000
30,000
89
34
60
58
46
120
65.28
56.53
85
89
46
92
Species Mean
Adjusted LC5O Acute Value
or EC50 <»g/L)"»* (»g/L )•»••»
'1,260 11,260
6,201
18,150 10,610
53.31
20.36
29.69 31.82
42.90
22.99
35.93 32.85
27.78
24.06 25.85
53.54
53.85
27.83
54.55
Reference
Cat 1 at al . 1983
McCoy and Joy 1977
McCoy and Joy 1977
Davis and Hoos 1975
Davis and Hoos 1975
Iwama and Greer 1980
Webb and Brett 1973
Davis and Hoos 1975
Davis and Hoos 1975
Johnson and F Inlay 1980
Johnson and Flnlay 1980
Davis and Hoos 1975
Dav Is and Hoos 1975
Dav Is and Hoos 1975
Davis and Hoos 1975
Salmo galrdnerI
-------
TabU I. (Continued)
Method-
Ra Inbow trout ( 1 -3 g) , S, U
Salmo qalrdnerl
Rainbow trout (1-3 g) , S, U
S a 1 mo galrdner 1
Rainbow trout (1.0 g), S, U
Salmo qalrdnerl
Rainbow trout (1.0 g), S, U
Salmo qalrdnerl
Rainbow trout (0.3-0.4 g) , S, U
Salmo qalrdnerl
Ra Inbow trout ( 1 g) , S, U
Salmo qalrdnerj
Ra lnbow"*trout ( 1 g) , S, U
Sal mo qalrdnerl
Rainbow trout (10 wk) , F. U
Salmo qalrdnerl
Rainbow trout R. u
(embryo; 0 h) ,
Salmo qalrdnerl
rj l 1
Ra Inbow trout "• u
(embryo; 24 h) ,
S a 1 mo qalrdnerl
Ra Inbow trout ( ear 1 y R, u
eyed embryo; 14 d) ,
Salmo qalrdnerl
Rainbow trout (late R. u
eyed embryo; 28 d) ,
Salmo qalrdnerl
Ra Inbow trout ( sac R. u
fry; 42 d) ,
Salmo qalrdnerl
Cheolcal**
NaPCP
NaPCP
"
NaPCP
PCP
(96*)
NaPCP
(90*)
PCP
(99+*)
PCP
(97*)
PTP
t\^i
/ (» i * \
\ y i # *
PCP
*
PCP
»
ppp
(97*)
LC50
or EC50
On \ tfftf L *
5.7 44
7.0 69
70 75
/ « \J * •*
75 92
/ « J •**-
6.2- 83
6.8
7.2- 49.92
7.5
7.2- 45.72
7.5
7.4 66
7.2 3,000
7.2 1,300
7.2 3,000
7.2 48Q
'
7.2 32
Species Mean
Adjusted LC50 Acute Value
or EC50 («aA)«»" UoA. )•••••
98.32
41.75
45.38
33.68
83.00
21.25
19.46
26.71
1,485
643.3
1,485
237.5
1 f\ fiA —
1D.B4
Reference
Davis and Hoos 1975
Davis and Hoos 1975
Bentley et al . 1975
Bentl ey et al . 1975
Vlgers and Maynard 1977
Johnson and Flnley 1980
Johnson and Flnley 1980
Domlnguez and Chapman
1984
Van Leeuwen et al . 1985
Van Leeuwen et al . 1985
Van Leeuwen et al . 1985
Van Leeuwen et al . 1985
Van Leeuwen et al . 1985
-------
Tabl* I. (Continued)
Sp«cUs
Rainbow trout (early
fry; 77 d) ,
Salmo qalrdnerl
Rainbow trout (0.81 g) ,
Salmo galrdnerl
Rainbow trout (1.2-7.9 g) ,
Salmo galrdner 1
Ra In bow trout (1-4 g) ,
Salmo galrdnerl
Rainbow trout (0.6-8.0 g) ,
Salmo galrdner 1
Brook trout (adult) ,
Salve) Inus fontlnal Is
Goldfish (2.36 g) ,
Carasslus auratus
Goldfish (2.57 g) ,
Carasslus auratus
Goldfish ( 1.46 g) ,
Carasslus auratus
Goldfish (1.50 g),
Carasslus auratus
Goldfish (1.55 g),
Carasslus auratus
Goldfish (1.40 g),
Carasslus auratus
Goldfish (2.46 g) ,
Carasslus auratus
Goldfish (2.70 g) ,
Carasslus auratus
Goldfish (1.66 g) .
Method*
R, U
S, M
F, M
F, M
F. M
F, M
F. M
F, M
F. M
F, M
F, M
F, M
F. M
F, M
f, M
ChMlcal"
PCP
(91%)
PCP
(99+J)
NaPCP
PCP
PCP
(99*)
PCP
(99+* )
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
LC50
or EC50 Adjusted LC50
PH (»g/L)«" or EC50 <»q/L)BM»
7.2
7.5
8.0-
8.3
7.6-
8.2
7.85
7.89
7.81
7.78
7.77
7.75
7.62
7.68
7.54
7.59
7.58
18
47.2
210
160
115
138
210
220
230
210
170
170
220
230
240
8.907
17.28
38.04
39.18
29.61
34.13
56.29
60.78
64.18
59.79
55.16
51.93
77.36
76.91
81.06
Spec Us Mean
Acut* ValM
(»a/L >••••» R«fw«nc*
Van Leeuwen et al . 1985
Brook et al . Manuscript
Fog els and Sprague 1977
Hod son et al . 1984;
McCarty et al . 1985
35.34 Thurston st al . 1985
34.13 Cardwell et al . 1976
- Adelman and Smith 1976
Adelman and Smith 1976
Adelman and Smith 1976
Adelman and Smith 197b
Adelman and Smith 1976
Adelman and Smith 1976
Adelman and Smith 1976
Adelman and Smith 1976
Adetman and Smith 1976
Carasslus auratus
-------
TobU I.
Sp«cl*s
Goldfish (1.74),
Carasslus auratus^
Goldfish (1.69 g).
Carasslus auratus
Goldfish (1.65 g) .
r.arasslus auratus
Goldf Ish (2.31 g) ,
Cuirass lus _aura1_us
Goldfish (2.M q> ,
Carasslu^ auratus
f<,|rtf tsl. ll .76 g) .
Harass >us_ ^auratus
Goldfish (1.54 9),
Calais lus at'ratus
Goldfish (t-2 -J),
r.aras^fi's auratus
uctdf i »n (2-4 g) ,
Cai ass lus auratus.
Goldfl&h (1.9 9),
Carasslus auratjjs
Goldfish (1.2 g) ,
Carasslus auratus
Goldfish (1.7 g) ,
Carasslus auratus
Goldfish (1.0-4.0 g),
Carasslus auratus
Goldfish (1.0-4.0 g).
Carasslus auratus
Common carp (8 mm) ,
Cyprlnus carplo
m . |IB
F, M NaPCP
F, M NaPCP
* * ™
F, M NaPCP
F M NaPCP
F. M MaPCP
F> H NaPCP
F, M NaPCP
- a NdPCp
r f M
F M Dowlcldrt EC-7
(8t)l PCP)
F M Qowlclde EC-7
(sal PCP)
F M Dowlclde EC-7
(88 % PCP)
F. M PCP*
(991 )
\ S J ft f
C It PCP
F , M '^'
(991)
\f * 1* r
R, u NaPCP
pH
7.59
7.58
7.60
7.83
7.84
7.73
7.76
—
_
7.1-
7.8
7.1-
7.8
7.1-
7.8
7.94
7.84
7.2
LC50
or EC50 Adjusted LC50
-------
TabU I. (Continued)
Species Method*
Fathead minnow (4-8 wk) , S, U
P 1 mepha 1 es prome 1 a s
Fathead minnow ( 1 . 1 g) , S, U
Plmpehales promelas
Fathead minnow (40 d) , F, U
P Imephales promelas
Fathead minnow (14-30 d) , S, U
P Imephales promelas
Fathead minnow (adult), F, M
P Imephales promelas
Fathead minnow (adult), F, M
P Imephales promelas
Fathead minnow (II wk) , F, M
P Imephales promelas
Fathead minnow (11 wk), F, M
P Imephales promelas
Fathead minnow (11 wk) , F, M
P 1 mepha 1 es prome 1 as
Fathead minnow (11 wk), F, M
P Imephales promelas
Fathead minnow (11 wk), F, M
P Imephales promelas
Fathead minnow ( 1 1 wk) , F, M
P 1 mepha 1 es prome 1 as
Fathead minnow (11 wk) , F, M
P Imephales promelas
Fathead minnow (11 wk) , F, M
P Imephales promelas
Fathead minnow (11 wk) , F, M
Chealcal**
PCP
PGP
(96*)
PCP
(99*)
NaPCP
-
-
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
_Ett_
7.
7.
7.
7.
7.
8.
7.
8.
7.
7.
7.
7.
7.
7.
7.
7.
7.
2-
5
4
7
92-
20
81-
20
82
83
72
72
69
68
86
78
59
LC50
or EC50 Adjusted LC50
iBfl/Ll**-*. or EC50 (»gA)»"»*
600
196.8
470
18
194
(15*C)
314
(25 *C)
200
180
220
180
190
210
220
180
190
-
83.
190.
5.
40.
69.
53.
47.
64.
52.
57.
64.
56.
49.
63.
76
2
389
45
54
08
29
56
82
46
15
08
73
53
Species Mean
Acute Value
(pg/L )•••** Reference
Mattson et al . 1976
Johnson
and
Flnley
1980
Cleveland et al . 1982
Hall et
Rueslnk
Rueslnk
Adelman
Adelman
Adelman
Adelman
- Adelman
Adelman
Adelman
Adelman
Adelman
al.
and
and
and
and
and
and
and
and
and
and
and
1986
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
1975
1975
1976
1976
1976
1976
1976
1976
1976
1976
1976
PImephales promelas
-------
Table I. (Continued)
Cn^^c ft Aft
Jf7^^f W9
Fathead minnow (11 wk) ,
Ptmephales proroelas
Fathead minnow (11 wk) ,
Plmephales promelas
Fathead minnow (11 wk) ,
Plmephales promelas
Fathead minnow (11 wk) ,
Plmephales promelas
Fathead minnow (11 wk) ,
Plmephales promelas
Fathead minnow (11 wk) ,
Ptmephales promelas
Fathead Hitnnow (11 wk) ,
Plmephales promelas
Fathead minnow (11 wk) ,
P 1 mepha 1 as proroe 1 as
Fathead minnow (11 wk) ,
Plmephales promelas
Fathead minnow (4 wk) ,
Ptmephales promelas
Fathead minnow (7 wk) ,
Plmephales promo las
Fathead minnow (11 wk) ,
Plmephales promelas
Fathead minnow (14 wk) ,
Ptmephales promelas
Fathead minnow ( 3 mo).
Plmephales promelas
Fathead minnow (30-35 d) ,
Plmephales promelas
Method*
^^••••••••MBM
F, M
F, M
F, M
F, M
F, M
F, M
F, M
F, M
F, M
F, M
f, M
F, M
F, M
F, M
F, M
Chemical*1
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
PCP
(99+f )
—
PH
7.62
7.65
7.65
7.63
7.58
7.83
7.82
-
-
"
~
7.83
1 At.
/.H 1 —
8-1 •»
. JJ
LC50 Specie* Mean
or EC50 Adjusted LC50 Acute Value
l^/i !••* or ECSO t|iqA)«**«
-------
Table I. (Continued)
OJ
Ul
Spec let
Fathead minnow (30-35 d),
Plmephales promelas
Fathead minnow (30-35 d) ,
Plmephales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (0.5 g) ,
Plmephales promelas
Fathead minnow (0.4 g) ,
Plmephales promelas
Fathead minnow (0.4 g) ,
P Imepha 1 es prome 1 as
Fathead minnow (0.2-1.0 g) ,
Plmephales promelas
Channel catfish (0.8 g) ,
Ictalurus punctatus
Channel catfish (0.8 g) ,
Ictalurus punctatus
Channel catfish (1.4 g) ,
Ictalurus punctatus
Channel catfish (1.4 g) ,
Ictalurus punctatus
Channel catfish (1.9 g) ,
Ictalurus punctatus
Method*
•^MMMaHMMB
F, M
F, M
F, M
F, M
F, M
F, M
f. »
F, M
F. M
F. M
S, U
S, U
F, M
F. M
F. M
Che* leal'*
-
-
Oowlclde EC-7
(88< PCP)
Oowlcide EC-7
(88| PCP)
Oowlclde EC-7
(88| PCP)
Oowlclde EC-7
(88$ PCP)
Oowlclde EC-7
(88J PCP)
Uowlclde EC-7
(88JI PCP)
Oowlclde EC-7
(88* PCP)
PCP
(99jl)
PCP
(96*)
NaPCP
(90|)
towlclde EC-7
(88* PCP)
Oowlcldb EC-7
Dowlclde EC-7
(88* PCP)
7.41-
8.33
7.41-
8.33
6.5
7.5
8.0
8.5
7.1-
7.8
7.1-
7.8
7.1-
7.8
8.01
7.2-
7.5
7.2-
7.5
7.1-
7.8
7.1-
7.8
7.1-
7.8
LC50
or EC50
(,q/L)'"
230
232
95
218
261
378
223
286
244
266
65.28
64.01
<53 ,
54
54
Specie* Mean
Adjusted LC50 Acute Value
or EC50 ***««
58.05
58. 55
95.00
79.80
57.80
50.65
90.26
H5.76
98.76
58.32 63.11
27.78
27.24
<21.45tf
21.86
21.86
Reference
Ph 1 pps et al . 1981
Hal 1 et al . 1984
Spehar et al . 1985
Spehar et al . 1985
Spehar et at . 1985
Spehar et al . 1985
Phi pps and Holccmbe
1985
Ph 1 pps and Ho 1 con be
1985
Phi pps and Holccmbe
1985
Thurston et al . 1985
Johnson and F Inlay 1980
Johnson and Flnley 1980
Phi pps and Holccmbe
1985
Phi pps and Holccmbe
1985
Phi pps and Ho Icon be
IQrtS
-------
TabI* I. (Continued)
Channel catfish (0.3-4.0 g) , F, M
Ictalurus punctatus
Flagflsh (0.1-0.3 g) , F, M
Jordanella florldae
Mosqultoflsh (0.1-1.0 g) , F, M
Gambusla afflnls
Mosqultoflsh (0.1-1.0 g) , F, M
Gambusla afflnls
Guppy ( young) ,
Poecll la retlculata
Guppy ( young) ,
Poecl 1 la retlculata
Guppy (adult) ,
Poecll la retlculata
Guppy, R- M
Poecll la ret Iculata
Guppy (0.04-0.06 g) , RF u
Poecll la retlculata
Guppy (0.04-0.06 g), R. U
Poecll la retlculata
Guppy (0.04-0.06 g), *. u
Poecl Ma retlculata^
Guppy (0.04-0.06 g), R. u
Poecl 1 la retlculata
Guppy (0.0875 9), R» u
Poecll la retlculata
Guppy (0.0875 g), R. u
Poecl 1 la retlculata
Chemical"*
' PCP
(99*)
NaPCP
(79*)
PCP
(99* )
PCP
(99<)
PCP
PCP
PCP
PCP
HCP
PCP
NaPCP
PCP
LC50 Specie* MMW
or EC50 Adjusted LC50 Acute Value
pH (,g/L)««* or ECM (.Q/L)«"« t.g/L)"«*«*
7.71 132 39.12 26.54
8.0- 1,610 291.6 291.6
8.3
8.05 288 60.62
8.02 278 60.34 60.50
720
880
450
7.0 400 242.0
5 42.6 192.4
6 117 «93.4
7 442 267.4
8 911 201.8
8.1 970 194.3
8.1 711 H2.4
7.7 204 6>.08
Reference
Thurston et al . 1985
Fogel s and Sprague 1977
Thurston et al . 1985
Thurston et al . 1985
Adema and Vlnk 1981
Adema and Vlnk 1981
Adema and Vlnk 1981
Sal klnoja-Sal onen et al
1981
Saarlkoskl and
Vlluksela 1981,1982
Saarlkoskl and
Vlluksela 1981,1982
Saarlkoskl and
Vlluksela 1981,1982
Saarlkoskl and
Vlluksela 1981, 1982
Gupta et al . 1982 a
Gupta et al . 1982 a
Khangarot 1983
Poecllla retlculata
-------
TabU I. (Continued)
u>
Species
Guppy (juvenile) ,
Poecl 1 la retlculata
Blueglll <1.) g),
Leporels macrochlrus
Blueglll (1.1 g),
Lepomls raacrochlrus
Blueglll (6 mo) ,
Lepomls macrochlrus
Bluegll 1 (6 mo) ,
Lepomls macrochJrus
BluacjH 1 (0.4 gj ,
Lepomls macrocli h'us
Bluegll l-(0.4 g) ,
Lupomls macrochlrus
BluoglH (0.2 g) ,
1 epomls macroch ir us
Bloeyti 1 (0.3 g) .
1 epomls mnrrochlrus
aiueglll (0.4 g) .
Lepomls macrochlrus
Blueglll (0.3-2.0 g) ,
Lepomls roacrochlros
Largamouth bass (14 d) ,
Mlcropterus sal mo Ides
Largemouth bass (28 d) ,
Mlcropterus sal mo Ides
Largemouth bass (49 d) ,
Mlcropterus sal mo Ides
Largemouth bass (84 d) ,
Mlcropterus salmoldes
Bui 1 frog (tadpole),
Rana catesbelana
Method* Che* leal"
R, U PCP
s, u
s, u
R, U PCP
R, U PCP
s, u K:P
(961)
S, U NaPCP
(90J)
F, M Dowlclde EC-7
(88* PCP)
f, M Oo«lclde EC-7
(88* PCP)
F, M Oowlclda EC-7
(ddj PCP)
f, M PCP
(99{)
R. U PCP
(99*)
R, U PCP
<99jt)-'
R, U PCP
(99J)
R, U PCP
(99«)
F, M PCP
(99*)
_fitl_
7.2
7.0
7.5
7.2-
7 7
' • '
7.2-
7.7
7.2-
7.5
7.2-
7 5
t * J
7.1-
7.8
7.1-
7.8
7.1-
7.8
8.03
7.2
7.2
7.2
7.2
8.3
LC50
or EC50
(»g/L)«««
1,020
, 60
77
260
305
30.72
36.58
150
152
115
202
287
275
136
189
207
Sp«cUs MMA
Adjusted LC50 Acute Value
or EOO (iia/L>«"«« (fa/L !»*»••
504.7 195.4
36.30
28.19
105.23
123.5
13.07
15.57
60.71
61.52
46.55
43.41 56.41
142.0
136.1
67.30
93.53 105.0
44.48 44.48
Reference
Brown et al . 1985
Bentley et al . 1975
Bentley et al . 1975
Prultt et al . 1977;
Pierce 1978
Prultt et al . 1977;
Pierce 1978
Johnson and F Inlay 1980
Johnson and Flnley 1980
Phlpps and Ho Icon be
1985
Phlpps and Ho Icon be
1985
Phlpps and Hoi com be
1985
Thurston et al . 1985
Johansen et al . 1985
Johansan et al . 1985
Johansen et al . 1985
Johansan et al . 1985
Thurston et al . 1985
-------
TabU I. (Continued)
Species Method*
Poiychaato worm (adult), S, U
Nereis ajenaceodentata
Polychaeta worm R, M
(V-d larva),
Opnryorrocha dladema
Holychaata warm (adult), R, M
()£hr^otroc.ha d^tadema
01 lgocha»fe worm (adult), R, U
L Imnodr 1 lo Idas verrucosus
0! lyociia«ta worm (adult), R, U
L JmnodrHoldas verrucosus
Ol tgochaata worm (adult), R, U
L Imnodr Moldes verruco»us
Ol igochaato worm (adult), R, U
L Imnodr Moldes verrucosus
01 lgo<:haate worm, R. U
Monnphele^horus cut leu tat us
01 Igoohaata worm, R. »
Monopnelephorus cu1 tculatus
Ol l
-------
Tabl* I.
LC50
Salinity or EC50
Acut* Valu*
Sp*cl«s
01 Igot haate worm,
Tublficoldes qabrlellae
Common Atlantic
si lpp6Tbh.il 1 (larva),
Ctefilduld tornlcata
Blue mussel (adult),
Mytllus eaul Is
Blue mussel (embryo),
Mytllus edul Is
Pacific oyster (embryo),
Crassostrea glyas
Editarn oyster (embryo),
Crassostrea v 1 rg 1 n 1 ca
Eastern oyster (embryo),
Crassostrea vlrglnlca
Eastern oyster (embryo),
Crassostrea virgin tea
Eastern oyster (embryo),
Crassostrea vlrglnlca
Eastern oyster { embryo) ,
Crassostrea vlrglnlca
Method* C
«M««»«IB* -»"
R, U
Averaged
results
from S, R, F; M
Averaged
results
from S, R, F; M
S, U
S, U
s. u
S. U
s, u
s, u
s, u
Cope pod (adult), S, U
Pseudod laptomus coronatus
Co pa pod (adult) ,
Temora longlcornus
Averaged
results
hAMlcal"
NaPCP
PCP
PCP
NaPCP
NaPCP
NaPCP
PCP
PCP
(98 »
PCP
(98J)
PCP
(961)
NaPCP
PCP
(Q/kq)
20
(10*C, pH 7)
'24
17
30
30
30
30
18
dig/Li*** (p<]/L)
423.4 423.4
1 , 200 1 , 200
18,000n
328.8tfttt 328.8
40.83ftttt 40.83
36.95
430
49
>I80
640 tttttf
62.81 62.81
170 170
i
R*f«r*nc«
Chapman et al . 1 982 a
Adema and Vlnk 1981
Adema and Vlnk 1981
Woe) ke 1972
rioelke 1972
Borthwlck and Schlmmel
1978
Zaroog Ian 1981
Zaroog Ian 1981
Zaroog Ian 1981
Zaroog Ian 1981
Hauch et al . 1980
Adema and Vlnk 1981
Brown shr Imp ( adul t),
Penaeus aztecus
from S, R, F; M
F,
NaPCP
26.5
>195
>195
Schlmmel et al . 1978
-------
TobJa I.
o „ • » Matlxxt*
S pact a* ""' nCr
Pink shrimp (adult), S, U
Peiiaaus duorarutn
• i • • • •" ' ' '
Grass shrimp R. u
(adult Intarwolt),
Palaamonetas pug to
Grass shrimp R» u
(adult aarty premol t) ,
Palaomonetes puglo
Grass shr Imp R. IJ
(adult latw premol t).
P a 1 aemonetes 'puglq
Grass shrimp (24-hr larva), S, U
P a 1 aeroonetas fuflto
-Grass ihr Imp ( Juvunlle) , F. M
Palaemonetes guglo
Pacific herring (day 1 S, U
yolk sac larva),
rinnua harenaus pa (last
Pacific- Iwrrlng (day 12 S, U
1 ar»).
U 1 upea harengus £al last
Pacific herrlriy (day 52 S, U
larva).
i: l_u£ea harengus pal last
Pacific herring (day 180 S, U
j uv en 1 1 a) ,
riunea harenqus pa II as. 1
Sheepshaad minnow s» u
(1-day juvenile).
Cyprlnodon varleqatus
ChMlcal*'
HCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
PCP
LC50 SpKl«« NMH
Salinity or EC50 Acut. V.lu.
(fl/kg) (»oA.)*"* *f3^L*
25 5,600 5,600.
10 2,431ft
10 2,534tf
10 402.7
24 599.5
24.3 >515.0ft 491.3
24-27 147.8t'tt
24-27 63.74f'ft
24-27 23.09f
24-27 27.71f 25.29
10 .329
Rataraflca
Bantlay at al . 1975
Conkl In and Rao 1978a
Conkl In and Rao I978a
Conkl In and Rao 1978a,b
Borthwlck and Schlmmel
1978
Schlmmel at al . 1978
Vlgars at al . 1978
Vlgers at al . 1978
Vlgars at al . 1978
Vlgers at a! . 1978
Borthwlck and Schlmmel
1978
-------
Table I. (Continued)
Species
Sheepshead minnow
(2-week juvenile),
Cyprlnodon varlegatus
Sheepshead minnow
(4-week juvenl I e) ,
Cyprlnodon varlegatus
Sheepshead minnow
(6-week juvenile),
Cyprlnodon varlegatus
Sheepshead minnow
(2-week juvenile)
Cyprlnodon varleqatus
Sheepshead minnow
(juvenl le),
Qyprlnodon varieqatus
Lonqnose kl I I If i sh
( juvenl 1 e),
Fundulus slml 1 Is
Plnflsh ( larva) ,
Laqodon rhomboides
Pint ish ( larva),
Lagodon rhomboides
Plnflsh (adult),
Lagodon rhomboides
Striped mullet (juvenile),
Mugi 1 cephalus
Method* Chemical**
s. u PCP
s, u PCP
s, u PCP
S, U DowlciJe
(19% NaPCP)
F, M PCP
F, M NaPCP
S, U NaPCP
S, U Dowlclde
(791 NaPCP)
F, M NaPCP
F, M NdPCP
Salinity
306
35.10
48.16
53.2
112. 1
Species Mean
Acute Value
306
-
53.2
112. 1
Reference
Borthwick and Schlmmel
1978
Borthwick and Schimmel
1978
Borthwick and Schlmmel
1978
Borthwick and Schimmel
1978
Parrish et al. 1978
Schlmmel et al . 1978
Borthwlck and Schimmel
1978
Borthwick and Schlmmel
1979
Schlmmel et al . 1978
Schimmel et al . 1978
-------
Table I. (Continued)
* b - static; R - renewal; F = f low-through; U = unmeasured. M = measured.
». PCP = pentachloropheno.; NaPCP = sodiun pentach.orophenate. Percent purity is given in parentheses when availab.e.
«««» Freshwater LC50s and EC50s were adjusted to pH = 6.5 using the pooled slope of 1.005 (see text).
*««** Freshwater Species Mean Acute Values are at pH = 6.5.
t Interpolated from graph.
tt Not used in calculation of Species Mean Acute Value.
ttt Mean of three LC50b.
fttt rtean Of four LC50s.
ttttt calculated using moving average method and author's raw data.
SpBcios Mean Acuto Value calculated because *=ute values are too divergent for this species.
Results of Cov,
Species
Simocephalus votulus
Cranqonyx pseudocjraci 1 i s
Gammarus pseudol irnncujus
Fathead minnow
Guppy
All of abovo
ar lance
4
4
4
4
4
20
Analysis of
S lope
0. 7bO
1.164
1.129
0.678
1.052
1.005*
Freshwater /
"icute Toxic IT)
95f Confidence Limits
0.128,
0.844,
-0.319,
0.413.
0.710,
0.841,
1
1.393
1.484
2.578
0.943
1.394
1.169
i versus pn
Deqrees of Freedom
2
2
2
2
2
14
* P = 0.28 tor equality of slopes.
-------
Tabl* 2. Chronic Toxlclty of Pwitachlorophwtol to Aquatic AnlMls
Adjusted
LUIts Chronic Valu* Chronic Value
(,0/L)
FRESHWATER SPECIES
Snail ,
Physa gyrlna
Cl adoceran.
Carlodaphn la retlculata
Cl adoceran.
Cerlodaphn la retlculata
Cl adoceran.
Daphnla magna
Cl adoceran.
Slmocephalus vetulus
Cl adoceran,
Slmocephalus vetulus
Rainbow trout.
S a 1 mo qalrdner 1
Fathead m Innow,
Plmephales promelas
Fathead minnow.
Plmeohales orome las
LC
LC
LC
LC
LC
LC
ELS
ELS
ELS
Dowlclde EC-7 7.4-
(93.7* PCP) 7.7
Oowlclde EC-7 7.3
(93.7* PCP)
Dowlclde EC-7 7.3
(93.7* PCP)
PCP
Dowlclde EC-7 7.3
(93.7* PCP)
Dowlclde EC-7 7.9-
(93.7* PCP) 8.4TT
PCP 7.4
(99+*)
PCP 7.2-
(Reagent 7.9
grade)
Dowlclde EC-7 6.5 ,
(88* PCP)
<26*
<22f
<4.1r
180-
320
119-
264
137-
357
11-
19
44.9-
73.0
16.5-
34.6
<26 <8.607
<22 <9.846
<4.1 <1.835
240
177.2 79.66
221.2 40.03
14.46 5.666
57.25 18.94
23.89 23.89
R«t*r*nc«
Hedtka at al . 1986
Hedtke at al . 1986
Hadtka at al . 1986
Adema 1978
Hadtka at al . 1986
Hadtka at al . 1986
Domlnguaz and Chapman
1984
Hoi combe at al . 1982
Spahar at al . 1985
-------
Table 2. (Continued)
falnead minnow,
P jnrwnna 1 es prom^ < ,wlcldo EC-7
(dtt# PCP)
ELS uowlc Ide EC-7
(68t PCP)
Limits Chronic Value
pH (iinaepshedd minnow,
C ypr ! r.ooon var )
LC
PCP
47-88
64.31
. LC ^ Mte-oyrla or pjrtlal lite-cycle; tLS - early life-stage.
«•
«k pep -. penlochluruphenol . PHrcent purity li qlven In parentheses when available.
*** Kesults are ba-jed mi mea&ured concentrations ot pen tachlorophenol .
«»»*Frosnwater chronic values wore c.]).ist>>J to pH = b.-> using the pooled slope ot 1.005 (see text)
t ijncK-reptabie jMocts occurred al all cuncen Irat Ions tasted.
tT controlled dally pH fluctuation conslsllnq ot Ib hours at 8.4 and 8 hours at 7.9.
Parrlsh et at . 1978
-------
Table 2. (Continued)
Species
Snail,
Physa qyrlna
Cl adoceran ,
Cerlodaphnla retlculata
Cl adoceran ,
Cerlodaphnla retlculata
Cl adoceran,
Oaphn la roaqna
Cl adoceran ,
S Imocephalus vetulus
Cladoceran,
S Imocephalus votulus
Rainbow trout,
Salmo galrdrter 1
Fathead minnow,
P Imephales promelas
Fathead minnow,
P Imephales promelas
Fathead minnow,
Plmophales promelas
Fathead minnow,
P Imepha las promo las
Fathead minnow,
Plmephales promelas
Sheepshead minnow,
Cyprlnodon varleqatus
Acute-Chronic Ratio
Acute Value Chronic Value
1.2-1.1 267 <26
7.3 150 <22
7.3 150 <4.1
600 240
1.^> 160 177.2
7.9-d.4 196 221.2
7.4 66 14.46
7.1-8.3 224. 9» 57.25
6.5 95 23.89
7.5 218 40.08
8.0 261 48.99
8.i5 378 89.23
442 64.31
Ratio
>10.27
>6.8I8
>36.59
2.500
0.9029
0.8861
4.564
3.928
3.977
5.439
5.328
4.236
6.873
* Geometric mean of 2 acute values obtained by Phlpps at al. (1981) (sea Table 1).
-------
Table 3. Ranked Genus Mean Acute Values with Species Mean Acute-Chronic Ratios
lank*
33
32
31
30
29
28
27
26
23
22
21
Genus Mean
Acute Value
(Mq/L)
>43,920
11 ,260
10.610
417.7
408.2
403.2
361.6
M7.5
2*\ .6
182. 5
172.1
195.4
Species
FRESHWATER SPECIES
Crayfish,
Orconectes Immunls
Midge,
TanyTarsus dlsslmllls
Sc lomy z Id,
Sepedon fuse Ipennls
Tubltlcld worm,
Rhyacodrllus montana
Tubltlcld worm,
Stylodrllus herlnqlanus
Sna 1 1 ,
G 1 1 1 1 a a 1 1 1 1 1 s
Tublflcld worm,
Splrosperma ferox
Tublticld worm,
Splrosperma n Ikolsky 1
Tubltlcld worm,
Oulstradr 1 lus mu IT Isetosus
F 1 aq 1 1 sh ,
Jordotiel la t lor Idae
Tul>if)cJd worm,
Tubltex tubltex
TubHIcld worm,
L Imnodr 1 lus hot tine Ister 1
Amptilpod ,
Cranqonyx pseudoqrac 1 1 Is
Guppy,
Species Mean
Acute Value
d-q/L)**
>43,920
1 1 , 260
10,610
417.7
408.2
403.2
239.5
545.8
317.5
291.6
224.2
182.5
172.1
195.4
Species Mean
Acute-Chron Ic
Ratio***
-
-------
Table 3. (Continued)
Rank*
20
19
18
17
16
14
13
12
1 1
10
9
8
Genus Mean
Acute Value
(pcj/L) Species
155.9 Tub! field worm,
Branchlura sowerbyl
132.1 Snail,
Physa qyrlna
1*1.1 Amph 1 pod ,
'jammorus pseurtol Imnaeus
105.0 Larqemouth bass,
Mlcropterus salmoldes
87.48 Amph 1 pod,
Hyalel la azteca
78.10 Cladoceran,
Oaphnla pulex
Cladoceran ,
Oaphnla magna
67.13 Cladoceran,
Cerlodaphnla retlculata
65.53 Goldfish,
CarassJus auratus
65.11 Fathead minnow,
PImephales promelas
60.50 Mosqul tot Ish,
Gambusla at t In Is
60.43 Snail,
Aplexa hypnorum
58.47 Tublflcld worm,
Var Ichaeta paclflca
57.72 Cladoceran,
S Imocephalus vutulus
Species Mean
Acute Value
"
155.9
132.1
122.1
105.0
87.48
90.83
67.15
67.13
65.53
63.11
60.50
60.43
58.47
57.72
Species Mean
Acute-Chron Ic
Ratlo»*»
>10.27
2.500
>15.79f
4.535"
0.8945f
-------
Tabl* 3. (Continued)
oo
Rank*
«MH«*«BW
7
6
5
4
i
2
I
17
16
15
6«nus Mean
Acut* Valu*
(ii9/L) Spacles
56.41 Blueglll,
Lapomls macrochlrus
44.48 Bullfrog,
Rana catesblana
35.54 Ra Into* trout,
balmo aalrdnerl
34. H Urook trout,
Sal vel Inus font Inal Is
JO, 01 Coho salmon,
Oncorhynchus klsutch
Sockeya salmon,
Oncorhynchus nerka
Chinook salmon,
Qncorhynchus tshawytscha
26.54 Channel catfish,
Ictalurus punctatus
4.3'.>5 Common carp,
Cynrlnus carplo
SALTWATER SPECIES
1,200 Common Atlantic
si Ippershal 1 , '
Crepldula fornlcata
>1,045 Brown shrimp,
Penaeus aztecus
Pink shr Imp,
Penaaus duorarum
862.6 Polychaate worm,
Ophryotrocha dladama
Sp^Us NMM
Acut* Valu*
(P9/L)M
56.41
44.48
35.34
54.13
31.82
32.85
25.85
26.54
4.355
1,200
>195
5,600
862.6
Sp«cl*s Naan
Acut*-Chr
-------
3. (Continued)
R.nk»
,4
13
12
II
10
8
6
5
4
3
2
C*nus NMA
Acut* Valu*
598.2
491.3
442
435
423.4
397.2
328.8
>306
170
112.1
62.81
5i.2
40.83
S|»*cl** MM* Sp*cl*s HIM
So-clM **«*• ¥•'••• Acute-Chronic
"K^ • i»a/L)M R.+ !,**•»
01 Igochaata worm,
Monopylephorus cutlculatus
Grass shr Imp,
Palaemonetes pug to
Shaepshaad minnow,
Cyprlnodon varlecjatus
Pol ychaata worm.
Nereis arenaceodentata
01 Igochaata worm,
Jublficoldes gabrlellae
01 Igochaate worm,
L Imnodrlloldes varrucosus
Bl ue mussel ,
Mytllus adul Is
Longnosa kll 1 If Ish.
Fundulus slml 1 Is
Co pa pod,
Temora lonqlcornls
Str (pad mul let,
Mug II cephalus
Co pa pod,
Pseudodlaptomus coronatus
Plnflsh,
L agodon rhomboldas
Pacific oyster.
598.2
491.3
4« 6.873
435
423.4
397.2
328.8
>306
170
112.1
62.81
53.2
40.83
-------
Ul
o
TabU 3. (Cofltlnutd)
GMIU* MMR Sp«cl«s NMM Sp*cl*s
Ac«t. van-
(».Q/t.) Sfr«cl««
25.29 Pacific herring, 25.29
Clupea harengus pa I last
Ranked fran most resistant to most sensitive based on Genus Mean Acute Value.
Inclusion of "greater than" values does not necessarily Imply a true ranking, but
does allow use of all genera for which data are available so that the Final Acute
Valua Is not unnecessarily lowered.
•» From Table 1.
»*» From Table 2.
* Geometric mean of two values In Table 2.
** Geometric mean of five values In Table 2.
-------
Table 3. (Continued)
Fresh water
Final Acute Value = 10.97 pg/L (at pH = 6.5)
Criterion Maximum Concentrat Ion = (10.97 ug/L) /2 = 5.485 Mg/L (at pH = 6.5)
Pooled Slope = 1.005 (see Table t)
ln(Crlterlon Max Imun Intercept) = ln(5.485) - I slope x6.5l
= 1.702 - (1.005 x6.5) = -4.830
Cr.terion MaxImu. Concentration = a'».005(pH>-4.8501
Final Acute-Chronic Ratio = 3.166 (see text)
Final Chronic Value = (10.97 Pg/L) /3.166 - 3.465 pg/L (at pH = 6.5)
ln(Flnal Chronic Intercept) = ln(3.465) - Islope x 6.51
= 1.243 - (1.005 x6.5) =« -5.290
Final Chronic Value = en.005(pH)-5.290l
Salt water
Final Acute Value = 25.05 pg/L
Criterion Max Imun Concentration = (25.05 wg/L) /2 = 12.52 n9/L
Flnal Acute-Chronic Ratio = 3.166 (see text)
Final Chronic Value = (25.05 pg/L) / 3.166 = 7.912
-------
Tabla 4. Toxic Ity of Pantachlorophanol to Aquatic Plant*
Durst Ion
Etfact
Concantrat Ion
(»g/L)** Rafaranca
Spaclas
• 1 _. _
Alga,
Chloral la vulgarls
Alga,
Chloral la pyrenoldosa
Alqa,
Chloral la pyrenoldosa
Alga,
Scenedesmus quadrlcauda
Alga,
Scenedesmus subsplcatus
Alga,
Selenastrum capr Icornutum
Alga,
Selenastrum capr Icornutum
Alga,
Selenastrum capr Icornutum
Alga,
AnMstrodesmus braunl I
Duckweed,
Lemna minor
Green alga.
Chlamydomonas sp.
Green alga,
Ounallella tertlolecta
Green alga,
Dunallella tertlolecta
Green alga.
Dunal lei la sp.
unaaicai-
NaPCP
(98*)
PCP
PCP
PCP
199%}
NaPCP
PCP
PCP
NaPCP
(98*)
VCP
PCP
PCP
PCP
rvj*
un » M*JW »» •» • • ^*~*
FRESHWATER SPECIES
1 1 EC50
7.0 3 ECIOO
(chlorosis)
4 EC50 (growth)
4 EC50 (growth)
7.0 4 EC50
7 Reduced growth
4 EC50 (growth)
4 EC50 (growth)
1 1 EC50
5.1 2 EC50
(chlorosis)
SALTWATER SPECIES
4 , EC50 (popula-
tion growth)
30»« 4 EC50 (popula-
tion growth)
30»»« 4 EC50 (popula-
tion growth)
4 EC50 (popula-
tion growth)
600
7.5
7,000
80
90
50
290
312
830
189.1
1,400
206
170
3,600
Burred et al. 1985
Huang and Gloyna 1967
Adema and Vlnk 1981
Adema and Vlnk 1981
Geyer et al . 1985
Adams et al . 1985
Cross! and and Wolff
1985
Rlchter 1982
Burrel 1 at al . 1985
B lac Km an et al . 1955
Adema and Vlnk 1981
Walsh et al. 1982
Walsh et al. 1982
Adema and Vlnk 1981
-------
Table 4. (Continued)
bJ
c^^. Duration Concwttratloii
^P*0*** Chaja'cal' j«_ (day*) Effact (,g/l )•• Rafaraaca
Golden brown alga,
Monochrys Is sp.
01 atom,
SKeletnnoma cos tot am
0 1 atom ,
Skeltftonama cos tat urn
Olatom.
SKaletunema cost at urn
Diatom,
Tholoba los U a p:>oudnnana
01 a torn,
Thalasbloslra pseudonana
OUtom,
Thalasslos Ira psaudonana
LUatom,
Phaaodactylum trlcornutum
Glrtnt Kelp ( young fronds),
MacrccystJs £Yrl*era
HCP
PCP 30***
PCP 30***
PCP 30***
PCP 30***
PCP 30***
PCP 30***
PCP
NaPCP
(Santo-
brlta)
4 EC 50 (popula-
tion growth)
4 EC50 (popula-
t Ion growth)
4 EC50 (popula-
tion growth)
4 EC50 (popula-
tion growth)
4 EC 50 (popula-
tion growth)
4 EC 50 (popula-
tion growth)
4 EC50 (popula-
t Ion growth)
4 EC50 (popula-
tion growth)
4 EC50 (photo-
synthetic
activity)
200 Adema and Vlnk 1981
20.30 Walsh et al . 1982
17.40 Walsh et al . 1982
17.80 Walsh et al . 1982
205 Walsh et al . 1982
189 Walsh et al . 1982
179 Walsh et al . 1982
3,000 Adema and Vlnk 1981
277.1 Clendennlng and North
J959
* PCP = pantaotilorophenol; NaPCP = sodium pen toe hi orophan ata. Percent purity Is given In parentheses when available.
** Results are expressed as pootachlorophenol. If the concentrations were not measured and the published results
were not reported TO be aajustad tor purity, the published results were multiplied by the purity If It was reported
to be lass than 91%. ^^
**» Salinity (g/kg), not pH.
-------
Table 5. Bloaccunulatlon of Pentachlorophenol by Aquatic Organisms
Spec les
Rainbow trout (400 q) ,
Salmo qalrdner 1
Rainbow trout (400 g) ,
Salmo qalrdner 1
Fathead minnow (6 mo) ,
Plmephales promelas
Fathead minnow (0.5-1.5 q) ,
Plmephales promelas
Fathead minnow (0.5-1.5 q) ,
Plmefthales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (juvenile).
Plmephales promelas
81 ueq HI (6 mo) ,
Lepomls macrochlrus
Eastern oyster (adult).
Crassostrea vlrqlnlca
Eastern oyster (adult).
Crassostrea v Irqlnlca
Chemical*
PCP
(Reaqent
grade)
PCP
(Reaqent
grade)
_
PCP
(99$)
PCP
(88$)
Dowlclde EC-7
(88$ PCP)
Dowlclde EC-7
(88$ PCP)
Oowlc Ida EC-7
(88$ PCP)
Oowlc Ida EC-7
(88$ PCP)
PCP
NaPCP
NaPCP
Concentration Duration
In Water Ug/L)** pH (days)
FRESHWATER SPECIES
0.035 - 115
0.660 - 115
7.49 32
50 31
50 31
3.1-34.6 6.5 32
5.0-58.2 7.5 32
12.7-161.0 8.0 32
29.3-125.0 8.5 32
100 7.2- 16
7~J
• /
SALTWATER SPECIES
25 - ' 28
2.5 - 28
BCF or
Tissue BAF"* Reference
«««» 406 Nllml and McFadden
**** 168 Nllml and McFadden
IQft?
1 7U£
Whole body 770 Velth et al . 1979
Whole body 163 Hucklns and Petty
Whole body 211 Hucklns and Petty
1983
Whole body 1,066 Spehar et al . 1985
Whole body 434 Spehar et al . 1985
Whole body 426 Spehar et al . 1985
Whole body 281 Spehar et al . 1985
Muscle 7.3 Prultt et al . 1977;
Pierce 1978
Soft tissue 41 Schlmmel et al .
1978
Soft tissue 78 Schlmmel et al .
1978
-------
TabU 5. (Continued)
CoacaittratloN
!>p«ci*»
Eastern oyster (adult),
Crassostrea virgin lea
Eastern oyster (adult),
Crassostrea vlrglnlca
Eastern oyster (adult),
Crassostrea vlrglnlca
Shaepshead minnow (embryo),
C yprlnodon varlegatus
Shaepshead minnow (juvenile),
Cyprlnodon varleqatus
Sheepshead minnow (adult),
Cyprlnodon varleqatus
Long nose kll 1 If Ish,
Fundulus slmll Is
ChMlcal*
NaPCP
NaPCP
NaPCP
PCP
PCP
PCP
PCP
IN Water <»«/«.)*•
3. 7+J.4
9.5*3.4
11.3*1.7
18-195
18-195
18-195
57-120
•*w «• m^^m
pH (days)
Steady
state
Steady
state
Steady
state
Parents
exposed
133-142
days
28
151
7
(Steady
state)
T ISCIM
Soft tissue
Soft tissue
Soft tissue
Whole body
Whole body
Whole body
Whole body
our or
RAF***
DAr
•••^•••^-w
82
34
76
19.39*
3l.56f
10.75*
64
Reference
Schlmmel and
1985
Schlmmel and
1985
Schlmmel and
1985
Parr Ish et al
1978
Parr Ish at al
1978
Parr Ish et al
1976
Garnas
Garnas
Garnas
•
.
•
Truj II lo et al .
1982
• PCP - pentachlorophanol, NaPCH = sodium pentach.orophanata. Percent purity Is given In parentheses *en available.
** Measured concentration ot pantuchlorophauol .
tactors {BAFs) are
*»** Whole body minus Intestines, liver, and gall bladder.
Geometric mean of values from four test concentrations.
-------
Table 6. Other Data
on Effects of Pentachlorophenol on Aquatic Organisms
Concentration
Effect Ug/L)** Reference
Species
Alqa,
Scenedesmus pannonlcus
Pond phytoplankton
comniun Ity
Vascular plant,
E lodea canadensls
Duckweed,
Lemna minor
Duckweed,
Lemna minor
Bacter 1 urn.
Pseudomonas tluorescens
Cyanobacter Jum,
Mlcrocystls aeruqlnosa
Detritus mixed mlcroblal
commun Ity
Amot*t»i,
Amoeba prottnis
Cll late proto/oan,
Colpldlum campy lum
Hydra,
Hydra ol Iqactls
Hydra,
Hydra ol Iqactls
Planar Ian ,
Duoesla lugubrls
Chemical" pn uui »••»»" _-.—-- T „
FRESHWATER SPECIES
PCP
PCP
Uowlclde EC-7
(93.7* PCP)
PCP
Uowlclde EC-7
(93.?* PCP)
PCP
PCP
Oowlclde EC-7
(88* PCP)
PCP
098*)
PCP
PPP
r V_»r
(>9b*)
4 days
10 days
7.7- 21 days
8.2
7 days
7.7- 21 days
8.2
0.3 days
4 days
56 days
4.5 30 mln
43 hr
48 hr
21 days
48 hr
Reduced
blomass
Community
structural
change
Reduced growth
(river water)
Reduced
spec) f Ic
growth rate
100-
320
1,000
380
1 ,000-
3,200
j* " •
Reduced > 1,440
growth ( r Iver
water)
Reduced
spec) tic
growth rate
3" ™
Reduced
spec I f Ic
growth rate
Reduction In
blomass and
activity
Reduced
surv Ival
Minimal active
dose
' LC50
Reduced specific
growth rate
LC50
1 ,000-
3,200
1 ,000-
3,200
8,131
1,332
600
730
32-
100
130
Slooff and Canton 1983
Boyle et al . 1984
Hedtke et al . 1986
Slootf and Canton 1983
Hedtke et al . 1986
Slooff and Canton 1983
Slooft and Canton 1983
Falrchlld et al . 1984
Smith and Ord 1979
Dive et al . 1980
Slooff 1983
Slooff and Canton 1983
Slootf 1983
-------
TabU 6. «
Sp*c l»s rh»i«.i* _., ^ . Concentration
^ Ch«.lcal» __pH_ Duration E»Uct <.aA>" ».*«-«,«
Rotifer,
Brachlonus rubens
Rotifer, pep
Brachlonus rubens
Rotifer, pep
Brachlonus rubens
Tublflcld worm, NaPCP
Branch lura sower by 1
Tublflcld worm, NaPCP
L Imnodrllus^ hof fmelsterl
Tublflcld worm, NaPCP
Qulstradr II us multlsetosus
••Tublflcld worm, NaPCP
Splrosperma nlkolskyl
Tublflcld worm, NaPCP
Stylodrllus heringlanus
Tub 1 field worm, NaPCP
Tublfex tublfex
Mixed tublflcld worms, NaPCP
Tub) fax tubltex and
LImnodrllus hof fmelsterl
Mixed tublflcld worms, NaPCP
Tublfex tublfex and
LImnodrllus hof fmelsterl
Mixed tublflcld worms, NaPCP
Tublfex tublfex and
L Imnodr 1 1 us hof f me > star 1
Mixed tublflcld worms, NaPCP
Tublfex tub) fax and
24 hr LC50
5 days LC100
23 days Reduced popula-
tion density
7.0 96 hr LC50 (with
sediment)
7.0 96 hr LC50 (with
sed Intent)
7.0 96 hr l£50 (with
sad Intent)
7.0 96 hr l£50 (with
sad Intent)
7.0 96 hr LC50 (with
sad Intent)
7.0 96 hr LC50 (with
SQQ IflQQO T)
7.0 96 hr LC50
7.5 24 hr i£50
8.5 24 hr LC50
,
9.5 24 hr LC50
160
200
50
515.5
1,150
846.9
3,314
1.243
754.8
533.9
290
620
1.290
Hal bach at al .
Hal bach 1984
Hal bach 1984
Chapman at al .
Chapman et al .
Chapman et a( .
Chapman at al .
Chapman at al .
Chapman at al .
Chapman et al .
Whltlay 1968
Whltley 1968
Mhlttey 1968
1983
1982 a
1982 a
1982 a
1982 a
1982 a
1982 a
1982c
-------
on
» —
1 0»
_ S.
RJ^
g ^
|S
oT
2.
3"
i/i
a.
c
cr
oT
0 O
e —
1 O
_ o.
as
5^
|S
ST*
a
3
in
a.
c
tr
oT
0 0
a> —
n a
— a.
R8
^^
3 a>
oT
a
J
v>
Q.
C
cr
aT
O m
~D O
— 1
"0 to
3- 3
< Ol
I/i —
Ol —
£1
3
~0 to
3- 3
•< Ol
I/I —
01 —
a
<
T5 to
•3 3
< 01
VI —
01 —
o
3
TJ to
3- 3
•< 01
0 ~
LO *
3
"D to
3- 3
< Ol
VI —
a —
a
3
"0 to
3- 3
K a
in —
3
-0 to
3- 3
< a
in —
a
3
T) to
3- 3
K Ol
in —
o —
a
3
•
T3 to
•< Ql
V —
01 —
UD
3
I— to
•e 3
3 Oi
o —
01 »
01
01
D
3
O
in
i- to
«< 3
3 O
O —
8*
a
a
3
01
in
vC •
•M ^
** C. W.O.
_ » _ *
«^ I *-•
vD •
• O
*» Q.
a
m
O
vO C
S?
~% -S3
^5 C ^^ C
p p
•- o ~ o
vO X <£> S.
«* o.
*
i m o rn O m
in TJ o TJ O
^^ r>
e
o £> 00 — vo
I I
CO CO
K) O
CD CO
I
1
r*
CO
3-
»
CD
^
«j
O.
01
in
>£>
a
ar
T
a
&
n
a
3-
n
vC
3"
n
•£)
O>
3T
-1
a
3-
1
vO
a
3T
T
KJ
X
a
3
o
a
CD
o> o a o
-f Ul ^. Ul
• o • o
1 1
Si
SB
SB
SB
SB
SB
SB
SB
n
<"
i
<"
a
T
?
1
<"
-\
<
-1
?
at
SB
Red
hat
— c ao o c
on T 3-0
= 8. -- -a.
a. —ID
5*8 i
in TJ "
iH«*CDUlK>K)C^'»4KJ
O^—•gDO^h^^^'Ul
ZjOOOOOOOO
a
O K)
I
I I
I l\
S
ff
A 0 a a>
a
!
S
I
U)
8 8
I I
CD
Ul
£- o
• 01
3
VD
CO
-------
Table 6. (Continued)
apeoes
Cl adoceran ,
Cerlodaphnla retlculata
Cl adoceran,
Cerlodaphnla retlculata
Cl adoceran ,
Daphn la maqna
Cl adoceran ,
Paphn la maqna
Cl adoceran ,
Daphn la magna
Cl adoceran ,
Daphn la maqna
Cl adoceran,
Daphn la maqna
C 1 adoceran,
Daphnla magna
Cl adoceran ,
Daphn la magna
Cl adoceran,
Daphn la maqna
Cladoceran ,
Daphnla magna
Cl adoceran,
Daphnla maqna
Cl adoceran,
Daphn la magna
Cl adoceran ,
Daphn la magna
Chemical* PH
Dowlclde EC-7 7.8-
(93.7$ PCP) 7.9
Dowlclde EC-7 7.8-
(93. 1% PCP) 8.0
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
Duration
4B hr
48 hr
21 days
21 days
21 days
21 days
2,1 days
21 days
21 days
21 days
14 days
14 days
21 days
21 days
V.
Effect
LC50 (river)
water)
LC50 (river
water)
LC50
LC50
LC50
LC50
LC50
LC50
LC50
LC50
LC50
LC50
, No effect on
reproduct Ion
Red uc ed
survival and
reproduction
• VIII.OTI II Ol 1
240
700
480
510
400
470
430
490
170
190
440
460
340
100-
320
on
Hedtke et al .
Hedtke et al .
Adema 1978
Adema 1978
Adema 1978
Adema 1978
Adema 1978
Adema 1978
Adema 1976
Adema 1978
Adema 1978
Adema 1978
Adema and Vlnk
1986
1986
1981
Slooff and Canton I1
-------
TabU 6. I Continued)
Species
Clodoceran (<24 hr) ,
Daphnla maqna
Cladoceran (6 d) ,
Daphnla maqna
Cladoceran (6 d) ,
Daphnla magna
Cladoceran,
Slmocephalus vetulus
Cl adoceran.
Slmocephalus vetulus
Iso pod,
Asel lus racovltzal
' Iso pod,
Asel lus racovltzal
1 so pod ,
Asel lus racovltzal
Iso pod,
Asel lus racovltzal
Amphlpod,
Cranqonyx pseudoqracll Is
Am phi pod,
Cranqonyx pseudoqracl 1 |s
Amphlpod,
Cranqonyx pseudoqracl 1 Is
Amph 1 pod ,
Cranqonyx pseudoqracll Is
Amph 1 pod .
Cranqonyx pseudogracll Is
Chemical*
-
PCP
(99*$)
PCP
(99*$)
Dowlclde EC-7
(93.7$ PCP)
Dowlclde EC-7
(93.7$ PCP)
Dowlclde EC-7
(93.7$ PCP)
Oowlclde EC-7
(93.7$ PCP)
Oowlclde EC-7
(93.7$ PCP)
Oowlclde EC-7
(93.7$ PCP)
Dowlclde EC-7
(93.7$ PCP)
Dowlclde EC-7
(93.7$ PCP)
Uowlolde EC-7
(93.7$ PCP)
Dowlclde EC-7
(93.7$ PCP)
Oowlclde EC-7
(93.7$ PCP)
_£"_
7.9
7.6
7.8-
7.9
8.0
7.7-
7.9
7.6-
8.0
7.7-
8.1
7.8-
7.9
7.7-
7.9
7.7-
8.1
7.7-
8.1
8.2-
8.4
8.0-
8.1
Duration
16 days
48 hr
48 hr
48 hr
48 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
Effect
••••••••IM^B
EC 50
(reproduction)
EC50 (river
water)
EC50 (river
water)
UC50 (river
water)
LC50 (river
water)
LC50 (river
water)
L£50 (river
water)
LC50 (river
water)
LC50 (river
water)
UC50 (river
water)
l£50 (river
water)
UC50 (river
water)
LC50 (river
water)
IC50 (river
water)
Conceit trat Ion
150
254
599
670
204
>7,770
4,320
2,370
3,400
3,120
2,770
1,890
500
320
Reference
Hermans et al . 1984
Brooke et al . Manuscript
Brooke et al . Manuscript
Hedtke and Arthur 1985;
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke and Arthur 1985;
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke and Arthur 1985;
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke et al . 1986
-------
Tabl* 6. (Continued)
Spec Us
Amph 1 pod ,
Cranqonyx psaudogracl 1 Is
Am phi pod,
Crangonyx psedograc His
Am phi pod,
Crangonyx pseudogracl 1 Is
Amph I pod (11 mm).
Gammarus pseudol Imnaeus
Amph 1 pod (It mm) ,
Gammarus pseudol Imnaeus
Amph 1 pod ,
Hyalel la azteca
^
Am phi pod,
Hyalel la azteca
Mayfly,
Cal 1 Ibaetls skoklanus
Mayfly,
Call Ibaetls skoklanus
Mayfly ( larvae),
Cloeon dlpterum
Caddlsfly,
Phllarctus quaarls
Sclomyzld fly (1st Instar),
Sepedon fusclpennls
Mosquito (1st Instar),
Culex plplens
ChMlcaf
Dowlclde EC-7
(93.71 PCP)
Dowlclde EC-7
(93. 1% PCP)
Dowlclde EC-7
(93.7J PCP)
PCP
(99+*)
PCP
(99+!)
PCP
(99+!)
PCP
Dowlclde EC-7
(93.7! PCP)
Dowlclde EC-7
(93.7! PCP)
PCP
O98!)
Dowlclde EC-7
(93.7! PCP)
NaPCP
(90!)
PCP
_£H_
8.0-
8.1
7.8-
7.9
7.7-
7.9
7.9
7.6
7.9
7.6
7.5-
7.7
7.8-
7.9
7.5-
7.7
-
Duration
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
48 hr
96 hr
96 hr
25 days
Effect
LC50 (river
water)
UC50 (river
water)
LC50 (rver
water)
LC50 (river
water)
LC50 (river
water)
LC50 (river
water)
LC50 (river
water)
LC50 (river
water)
LC50 (river
water)
LC50
LC50 (river
water)
LJC50 (fed)
, Reduced
survival and
devel opment
Concentration
220
1,550
2,000
451
450
286
353
1,780
1,300
5,900
1.260
2,200
3.200-
10,000
Refer an
Hedtke et al . 1986
Hedtke et al . 1985
Hedtke et al . 1986
Brooke et al . Manuscript
Brooke et al . Manuscript
Brooke et al . Manuscript
Brooke et al . Manuscript
Hedtke and Arthur 1985;
Hedtke et al . 1986
Hedtke et al . 1986
SI oof f 1983
Hedtka and Arthur 1985;
Hedtke et al . 1986
McCoy and Joy 1977
SI oof f and Canton 1983
-------
Table 6. (ContlniMd)
Concentration
Specie*
Midge (4th Instar),
Chlronomus rlparlus
Midge (4th Instar),
Chlronorous rlparlus
Sockeya salmon (<1 yr).
Oncorhynchus nerka
Sockeye salmon «1 yr),
Gncorhynchus nerka
Socneye salmon (<1 yr).
Oncorhynchus nerka
"*Sockeye salmon (<1 yr).
Oncoi hynchus nerka^
Chinook salmon (juvenile),
0 ncor hynchus tschawytscha
Chinook salmon (Juvenl(e),
OncorhyiiChus tschawytscho
Rainbow trout (al»>n).
So Imo nalrdnert
Rjinbuw trout (aievln),
Salmo qalrdnerj^
Rainbow trout (aievln),
Sal mo qalrdnerl
Chen leal*
PCP
/ f\~) af \
(97*)
PCP
(reagent
grade)
NaPCP
NaPCP
NaPCP
NaPCP
NdPCP
-
Santobrlte
(>90* NaPCP)
Santobrlte
(>90* NaPCP)
Santobrlte
(>90< NaPCP)
pH
K i
7.0
4.0
6.0
9.0
6.8
6.8
6.8
6.8
7.0-
7.1
6.5-
6 9
\J • 7
-
-
-
Duration
24 hr
(25*C)
(35'C)
24 hr
21 days
42 days
56 days
56 days
96 hr
8 days
20 days
20 days
21 days
Effect
LC50
l£50
LC50
10* growth
Inhibition
EC50 (growth)
EC50 (food
conversion)
LC50 (high
load Ing)
LC100 (with bac-
terial disease
Inj ect Ion)
11* growth
Inhibition
18* growth
Inhibition
18* growth
Inhibition
(•
-------
TabI* 6. (Continued)
Rainbow trout (alevln),
Salmo galrdnerl
RaInbow trout
(embryo and alevln),
Salmo galrdner)
RaInbow trout,
Salmo galrdnerl
Rainbow trout (alevln),
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
. Rainbow trout (2.1-11.4 g),
Nlsqually strain,
Salmo galrdnerl
Rainbow trout (2.1-11.4 g),
Idaho strain,
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
RaInbow trout,
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Rainbow trout (0.81 g),
Salmo galrdnerl
Cfa+alcal" pH
Santobrlte
(>90< NaPCP)
Santobrlte
(>90* NaPCP)
Santobrlte 7.8
(>90$ NaPCP)
Santobrlte 7.8
O90J NaPCP)
7.4-
7.7
7.4
7.7
8.0
NaPCP
NaPCP
Duration
28 days
41 days
Effect
12< growth
Inhibition
t£IOO
Concentration
FertllIzatlon 25* mortal Ity
and yolk sac
resorptlon
7.78-
7.89
7.96-
8.08
7.9
71 days
28 days
8.8 hr
7.1 hr
24 hr
4 wk post
sw lot- up
4 wk post
swim- up
'96 hr
9. I* growth
reduction
211 growth
Inhibition
Median survival
time
Mad Ian sirvlval
time
Increased
respiration
Blomass reduc-
tion (lower
temperature)
Blomass reduc-
tion (higher
temperature)
LC50 (river
water)
28 Chapman 1969
46 Chapman 1969
18 Chapman and Shumway 1978
18 Chapman and Shinway 1978
7.4 Matlda et al. 1976
250 Alexander and Clarke
1978
250 Alexander and Clarke
1978
70 SI ooff 1979
20- Hod son and Blunt 1981
80
Hodson and Bl unt 1981
70.1 Brooke et al. Manuscript
-------
Table 6. (Continued)
ConcantratIon
C r%fxf lac
J|JOV» 1 Oa
Rainbow trout (0.81 g) ,
Salmo qalrdner 1
Atlantic salmon,
Salmo salar
Brown trout (4.5 g) ,
Salmo trutta
Central stonerol ler (10 g) ,
Campostoma anomalum
Goldfish (1.5 g) ,
Carasslus auratus
Goldfish (108.0 g) ,
Carasslus auratus
Goldfish (adult) ,
Carasslus auratus
Goldfish ( juvenile) ,
Carasslus auratus
Go 1 d f I sh ( j uv en 1 1 e) ,
Carasslus auratus
Goldfish ( juven 1 1 e) ,
Carasslus auratus
Goldfish (2 g) ,
Carasslus auratus
Goldfish (1.3 q>.
CarasbJus aurntus
Goldfish (1.3 q),
Carasslus auratus
ri^ Irl f 1 ch II ^ nl
Chora leal"
PCP
(99+J)
NaPCP
PCP
(99?)
NaPCP
PCP
PCP
PCP
(99+4)
NdPCP
NaPCP
NaPCP
-
-
-
_
pH Duration
r - .^^— •••—•—
7.6 96 hr
24 hr
24 hr
7.6 4.3 hr
24 hr
24 hr
7.59 46 hr
7.59 21 hr
7.59 120 hr
7.59 336 hr
24 hr
5.5 24 hr
6 24 hr
7 24 hr
Effect
LC50 (river
water)
Altered
temperature
pr G r or one o
LC50
LCI 00
LC90
LC90
LC50
LC50
LC50
LC50
LC50
LC50
• LC50
LC50
(n9/U)**
85.6
46
200
400
1,600
1,600
270
369
253
189
270
52
60
82
Reference
Brooke et a 1 . 1
Peterson 1976
Hattula et al .
Goodnight 1942
Lemma and Yau
Lemma and Yau
Card we 1 1 et al
Card we 1 1 et al
Card we 1 1 et al
Card we 1 1 et al
«tenuscr 1
1981
1974
1974
. 1976
. 1976
. 1976
. 1976
Kobayashl et al . 1979
Kobayashl and
1980
Kobayashl and
1980
Kobayashl and
Klshlno
Klshlno
Klshlno
Carasslus auratus
1980
-------
Table 6. (Continued)
Species
ConcentratIon
Goldfish (1.3 q) ,
Carasslus auratus
Goldfish (1.3 q),
Carasslus auratus
Goldfish (1.3 g),
Carasslus auratus
Common carp (eyed anbryo),
Cyprlnus carplo
Common carp (1-3 days),
Cyprlnus carplo
Common carp (5-6 days)
Cyprlnus carplo
Common carp (9-10 days),
Cyprlnus carplo
Common carp (17-19 days),
Cyprlnus carplo
Common carp (25-3i days),
Cyprlnus carplo
Common carp (50-60 days),
Cyprlnus carplo
Common carp (70-80 days),
Cyprlnus carplo
Common carp (15.1-28.8 g) ,
Cyprlnus carplo
SI Iverjaw m Innow (2 q) ,
Er Icymba buccata
Radf In shiner (2 q) ,
Notropls umbratllls
-
-
-
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
tePCP
NaPCP
» 24 hr
9 24 hr
10 24 hr
24 hr
24 hr
24 hr
24 hr
24 hr
24 hr
24 hr
24 hr
50 mln
7.6 6.25 hr
7.6 2.67 hr
" CUWCT
LC50
LC50
LC50
LC50
LC50
LC50
LC50
LC50
LC50
LC50
LC50
LT50
LCI 00
LCI 00
tug/Li"
250
2,200
16,000
ISO
140
150
130
110
100
no
110
3,000
400
600
Reference
Kobayashl and Kl
1980
Kobayashl and Klshlno
I960
Kobayashl and Klchlnn
1980
Hashimoto et al .
Hashimoto et al .
Hashimoto et al .
Hashimoto et al .
Hashimoto et al .
Hashimoto et al .
Hashimoto et al .
Hashimoto et al .
Peer et al . 1983
Goodnlqht 1942
Goodnlqht 1942
1982
1982
1982
1982
1982
1982
1982
1982
-------
Tab)* 6. (Continued)
Concentration
Species
Steal col or shiner (2 g) ,
Notropls ahlpplwl
Bluntnose minnow (3 g) ,
P Imephales notatus
Fathead minnow (2 Inches),
P tmephalas promelas
Fathead minnow (Juvenile),
Plmephales promelas
Fatiiead minnow,
P Imephales promelas
Fathead minnow,
P 1 mepha 1 es pr ome 1 a s
••Fathead minnow (adult),
PI manholes promelas
Fathead minnow (adult),
Plroephales promelas
Fdthaad minnow (adult),
P Imephales promelas
Fathead minnow (adult),
P Imephales promotes
Fathead minnow (adult),
P Imephales promelas
Fathead minnow (adult),
P Imephales promelas
Fathead minnow (adult),
P Imephales promelas
Fathead minnow (juvenile),
P Imephales promelas
Chealcal*
NaPCP
NaPCP
NaPCP
NaPCP
PCP
Dowlclde EC-7
(95. 1% PCP)
Dowlclde EC-7
(93.7* PCP)
Dowlclde EC-7
(93.7* PCP)
Dowlclde EC-7
(93.7* PCP)
Uowlclde EC-7
(93. 1% PCP)
Dowlclde EC-7
(93.7J PCP)
Dowlclde EC-7
(93. 1% PCP)
Dowlclde EC-7
(93. 11 PO1)
Dowlclde EC-7
(93.7J PCP)
_E"_
7.6
7.6
7.4-
7.5
7.83
-
7.7-
8.4
8.0-
8.1
7.9-
8.2
7.9-
8.1
a.o-
8.2
7.7-
8.1
7.9-
8.1
7.4-
7.9
7.8-
8.2
Duration
5.25 hr
7.45 hr
24 hr
336 hr
48 hr
12 wk
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
Effect (
LC100
LC100
i£50
UC50
LC50
Reduced growth
and larval drift
l£50 (river
water)
LC50 (river
water)
LC50 (river
water)
UC50 (river
water)
LC50 (river
water)
LC50 (river
water)
LC50 (river
, water)
LC50 (river)
water)
•Q/L)M
400
400
300-
320
Jtr\J
153
210
111
300
190
170
160
120
208
120
396
Reference
Goodnight 1942
Goodnight 1942
Crandal 1 and Goodnight
1959
Card we) 1 et al
Slootf 1982
Zlschke et al .
Hedtke et al .
Hedtke et al .
Hedtke et al .
Hedtke et al .
Hedtke et al .
. 1976
1985
1986
1986
1986
1986
1986
Hedtke and Arthur 1985;
Hedtke et al . 1986
Hedtke et al .
Hedtke et al .
1986
1986
-------
TabU 6. (CoNtlniMd)
apmcm
Fathead minnow (juvenile)
Plmephales promelas
Fathead minnow (fry),
Plmephales proreelas
Fathead minnow (embryo),
Plmephales promelas
Fathead minnow (embryo),
Plmephales promelas
Fathead minnow
(embryo, fry),
Plmephales promelas
Fathead minnow (<2 wk),
Plmephales promelas
Fathead minnow (<2 wk),
Plmephales promelas
Fathead minnow (<2 wk),
Plmephales promelas
Fathead minnow (7 day),
Plmephales promelas
Creek chub (12 g) ,
Semotllus atromaculatus
Wh 1 te sue ker ,
Catostomus commerson 1
CheMlcal* pH
, Dowlclde EC-7 7.8-
(93.7* PCP) 8.1
Dowlclde EC-7 7.9-
(93.7* PCP) 8.2
Dowlclde EC-7 7.8-
(93.7* PCP) 8.1
Oowlclde EC-7 8.0-
(93.7* PCP) 8.)
Dowlclde EC-7 7.8-
(93.7* PCP) 8.1
PCP 7.4
(purified; 99*)
Dowlclde EC-7 7.4
(91*)
PCP 7.4
( Industr lal
composite)
PCP 7.4
(ultrapure)
NaPCP 7.6
Dowlclde EC-7 7.7-
(93.7* PCP) 8.2
Duration
96 hr
96 hr
96 hr
96 hr
32 days
90 days
90 days
90 days
90 days
3.92 hr
96 hr
Effact
LC50 (river
water)
LC50 (river
water)
LC50 (river
water)
LC50 (river
water)
Concentration
(»gA)*« Rafaranca
510
314
465
480
Reduced sirv Ival 118-
or growth (river 176
wa tar )
Decreased growth 85
24|
Decreased growth 142
18*
Increased growth 60
18*
Increased growth 139
21*
Decreased growth 13
20*
Decreased growth 27
40*
100* mortal Ity 67
Reduced growth 66
10*
Reduced growth 130
17*
'LC100 600
LC50 (river 85
water)
Hedtke et al . 1986
Hedtka et al . 1986
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke et ai . 1986
Cleveland et al. 1982
Cleveland at al. 1982
Cleveland at al. 1982
Hamilton et al. 1986
Goodnight 1942
Hadtke et al . 1986
-------
T«bl« 6. (Continued)
ConcMttrat Ion
S_p»c >•_«,.
Blackstripe topmlnnow (3 g) ,
Fundulus notal us
Guppy,
Poecll la retlculata
Guppy,
P oar. II la retlculata
Guppy
PoftdlM ratloilata
Guppy (2 -5 iro) ,
Poor 1 1 ra ret leu 1 atA
Threesplne stickleback (0.6
Gdstarlosteus aculeatus
JLlrangespotled sunllsn (2 g)
1 epomls hum II Is
ON
00 BlutKjIII (Juvenile),
Lepomis rodcrochlrus
Bliiegll 1 (juvenile) .
L_t»po»l.s macrochlrus
i a pooi 1 •» mocrochlrus
BlueglH, lros
fllueglli,
Lopomis macrochirus
Ch«Mlcal* Pn
NaPliP 7.6
NaPCP 8.4-
8.6
PCP ~
PCP
7.7
g), PCP
NdPCP 7.6
PCP 7.94
/ QO * 4 \
\ 77 ipt
PPP 7 94
r\^i ' • *^
(99*$)
Oowlclde EC-7 7.7-
(95. /* PCP) 7.9
Do^lc Ido E0~7 7 • o*"
(93. 1% PCP) 7.9
Dowiclda EC-7 7.6-
(93. 7J PCP) 8.6
uur«Tion
9.75 hr
180 days
60 days
28 days
24 hr
24 hr
6.75 hr
30 hr
336 hr
96 hr
96 hr
12 wk
LC100
Damaged liver
and kidney
No effect on
growth
Reduced growth
LC90
LCIOO
LC50
LC50
LC50 (river
water)
UC50 (river
water)
Red uc ad growf h
and larval drift
800
462
180
100-
320
40
370
400
303
215
200
270
40
Goodnight 1942
Grand a 1 1 and Goodnight
1962,1963
Adema and Vlnk 1981
Slooff and Canton 1983
Benolt^Guyod et al .
I984a
Lemma and Yau 1974
Goodnight 1942
Card we 1 1 et al . 1976
Cardwel 1 et al . 1976
Hedtke and Arthur 1985;
Hedtke et al . 1986
Hedtke et al . 1986
Zlschke et al . 1985
-------
Tabl* 6.
Concentration
VD
Largemouth bass,
Mlcropterus sal mo Ides
Largemouth bass (4.1 g), pep
Mlcropterus sal mo Ides (99)1)
Mozarablqua tllapla (2.0 g), pep
Tllapla mossamblca
Leopard frog (tadpole), NaPCP
Rana plplens
African clawed toad (3-4 wk) ,
X enopus 1 aev 1 s
'African clawed toad «2 d) , PCP
X enopus 1 aev 1 s
|*1 UUTBTIOM
7.0 <4 hr
7.2 7 days
24 hr
7.6 9.5 hr
48 hr
100 days
tttect
Threshold oper-
cular rhythm
response
Reduced growth
rate and food
conversion
ef f Ic lency
LC90
LCI 00
LC50
Reduced survi-
val and growth
47
50
50.4
800
800
260
32-
100
Morgan 1976,1977
Mathers et al . 1985
Lemma and Yau 1974
Goodnight 1942
SI oof f 1982; Slootf and
Baerselman 1980
SI oof f and Canton 1983
SALTWATER SPECIES
Photol unlnescent bacterium, PCP
P hotobacter 1 urn phosphoreum
Photol unlnescent bacterium, PCP
P hotobacter I urn phosphoreum
Mlcrofunqal populations PCP
In microcosms
Golden brown alga, NaPCP
Monochrysls luthert
Diatom, POP
Skeletonema costatum
5 mln
5 mln
10-I7»»« a wk
28.9»»» 12-
15 daws
• -* **Q ya
25«»» 7 days
50 % reduction In
1 Ight output
50 % reduction In
1 Ight output
Success lonal
change In micro-
fungal species
con position
Decreased cell
numbers
EC50 (cell 2
division)
80
924
140
270.6
,000
Curtis et al. 1982
Rlbo and Kaiser 1983
Cook et al. 1980
Woelke 1965
Erlckson and Freemen
1978
-------
Table 6. (Continued)
Salinity
Effect
Concentration
Mamatodes, Dowlcld« G-ST
(Malobenlhlc communities)
Polychaata worm.
Nereis vlrens
PCP
32-35
9-13 Mk
48 hr
Polychaate worm,
Nereis vlrens
PCP
32-35
14 days
Decrease In
blomass and
density; shift
In spades
composition
Significant
decrease In
coelomlc fluid
osmolal Ity,
coupled with
taortal Ity
BCF = 280
Reference
species
Diatom,
Thai ass los Ira pseudonana
fl 1 A trwn
Lf I Q H^ll ,
Thai ass los Ira pseudonana
The lass los Ira psgudonana
Dlno(lag«l late.
GlenodlKlum ha) 1 1
Microf logel late,
i «.ochrysls gal band
f>ea grass,
Thrtlassln testudlnuni
(Jldflt ktll p,
Macrocysl.ls pyrlfara
Giant Kelp,
Macrocystls pyrlfera
\j !• wew m *fim m
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
25 7 days
26-29 24 hr
26-29 48 hr
25 7 days
25 7 days
30 40 hr
4 days
2 days
EC50 (eel 1
d Ivlslon)
EC 50 (eel 1
d Ivlslon)
EC 50 (eel 1
d Ivlslon)
EC 50 (eel 1
d Ivlslon)
EC 50 (eel 1
d Ivlslon)
EC 50 (reduced
oxygen evolu-
Photosynthesls
Inhibition
Photosynthesis
Inhibition
500
250
300
1.000
250
740
2,660
1,000
Erlckson and Freeman
1978
Erlckson 1981
Erlckson 1981
Erlckson and Freeman
1978
Erlckson and Freeman
1978
Mai sh et al . 1982
Lammerlng and Bur bank
1960; reported In
Bulkema et al. 1979
Lammerlng and Bur bank
1960; reported In
Bulkema et al . 1979
>161 Cantelmo and Rao 1978b,c
720 Carr and Neff 1981
Carr and Neff 1981
-------
TabU 6. (Continued)
Unity
Ch««lcal* (g/kq) Duration
Concentration
Polychaata MOOD, p^p 32-35
Nereis vlrens
t
Polychaete worm, p98
tlon In repro-
duction
41 days EC50 23
(reproduction)
48 days Apparent reduc- >||
tlon In repro-
duction
6 days Reduced feeding >80
activity
120 days Lethal 100
24 hr BCF = 6 to J89
depending on
tissue
7 days LC50 460
48 hr 22. \% abnormal 369.5
1 arvae
48 hr 69. 1| abnormal 369.5
1 AI-W Kfk
RatWaaCa
Carr and Neff 1981
Hooftman and Vlnk 198
Adema and Vlnk 1981
Adema and Vlnk 1981
Rubinstein 1978
Tonlyama et al. 1962
Kobayashl et al . 1969
Adema and Vlnk 1981
Dlmlck and Breese 196!
Woelke 1972
Dlmlck and Breese 1965
-------
Table 6. (Continued)
SatInlty
Concentration
Speclas
Bl ue mussel ,
M/tl lus edul Is
Eastern oyster (embryo),
Crasbostroa v Irgln lea
Fastern oyster ( larva) ,
Crassostrea vlrijlnlca
Lastarn oyster (rtdult),
Crassostraa vlrqlnlca
Mercanai la mar cen aria
Ouanog clam,
Jtercenarla murcenai io
Guahog cl*»,
Mercar.arla meroanarla
Cope pod ,
Pseudodlaptomus coronatus
Brown shrimp (adult),
Penaeus aztecus
Grass shrimp (adult),
P a 1 aemonetes puqlo
Chemical* (g/kg) Duration
PCP - 14 days
PCP - 48 hr
PCP - 14 days
NrtPCP 20.3 192 hr
NaPCP 28-50 18 wk
NaPCP 28-50 8 wk
NaPCP 28-30 18 wk
NaPCP IB 96 hr
NaPCP 26.5 96 hr
NaPCP 10 12 days
Effect
LC50
100% abnormal
1 arvae
100* mortal Ity
EC50 (growth)
Reduced resis-
tance to bacter-
ial Infection
BCF = 100
BCF = 54
Significant
Increase In
feed Ing rate
BCF = 0.2165
(geometric mean
of 4 values)
Hlstologlcal
changes (gill
necrosis; loss
<,,g/L>"
750
250-
5,000
100-
500
76.50
459.9
74.82
923.7
Reference
Ad em a and
Dav Is and
Dav 1 s and
Schlmmel
Anderson
Anderson
Anderson
Hauch et
Schlmmel
Doughtle
Rao and C
of mlcrov II I I
and epithet lal
rupture of mldgut
and hepatopancreas;
and mitochondria
ccmpartmental) zat Ion)
-------
Table 6. (Continued)
Specie*
Grass shrimp (adult),
Palaemonetes puqlo
Grass shrimp (post molt),
Palaemonetes puqlo
Grass shrimp (adult),
Palaemonetes puqlo
Grass shrimp (adult),
Palaemonates puglo
Grass shrimp (adult),
Palaemonetes puglo
Grass shrimp (adult, new
molt),
Palaemonetes puglo
Grass shr Imp (adult,
Intermol t),
Palaemonetes puglo
Longnose kl I I I fish,
(juven Me) ,
Fundulus slmllIs
Striped mullet,
Mug 11 cephalus
Salinity
Chemical* (g/kg) Durst Ion
Effect
Concentration
NaPCP 24.3 96
NaPCP
NaPCP
NaPCP
NaPCP
PCP
PCP
NaPCP
NaPCP
10
10
10
10
22.9
25.5
hr
13 hr
9 days
96 hr
24-36 hr
1 hr
I hr
96 hr
96 hr
BCF = 1.506
(geomatr Ic mean
of 4 val ues)
100* mortal Ity, 4,618
3 hrs after molt
50$ reduction
In I Imb ragen-
era t Ion
Slgnlf leant
Increase In
exuvlal dry
MO Ight
Significant
Increase or
decrease In
oxygen consunp-
tlon followed
by death
BCF = 150
BCF = 30
BCF = 27.03
(geometrIc mean
of 4 val ues)
BCF = 7.446
(geometric mean
of lowest two
val ues)
436.9
521.9
923
Reference
Schlmmel et at . 1973
Cantelmo et al. 1978
Rao et al. 1978,1979,
1981
Brannon and Conk I In
1978
>_9.237 Cantelmo et al. 1978
Rao et al. 1981
Rao et al. 1981
Schlmmel et al . 1978
Schlmmel et al. 1978
-------
Tab I* 6.
Str !ped mu! let,
U cepnalus
Salinity
Chattlcat* (q/kg) Duration
33 1-120 hr
Eftact
CoHcantratlc
(•a/I.)**
Rafaraaca
WSr.ier flounder, POP
P seu'io I uuroiiacte amarIcanu*
Boothlc inacrotauria
POP
Bent hie m*:rofauna
Benlhlc macrotauria
BenthIc m
-------
Table 6. (Continued)
0-lc.l*
Benth.c *acrofauna
Do.lclde G-ST 22
reported to be less than
»• Sal Inlty (g/kg), not pH.
Duration
13 Mk
No significant
effect on
colonization
.8 Han sen and Tagatz 1980;
Tagatz at at. 1978. 1980
orophenate. F^rcent pu-,ty Is g.ven ,„ parentnasas
=-'•
-------
REFERENCES
Adams, N., K.H. Goulding and A.J. Dobbs. 1985. Toxicity of eight water-
soluble organic chemicals to Selanstrum capricornutuia; A study of methods for
calculating toxic values using different growth parameters. Arch. Environ.
Contam. Toxicol. 14:333-345.
Adelman, I.R. and L.L. Smith, Jr. 1976. Standard test fish development. Part
1. Fathead minnows (Pimephales promelas) and goldfish (Carassius auratus) as
standard fish in bioassays and their reaction to potential reference
toxicants. EPA-600/3-76-061a. National Technical Information Service,
Springfield, VA.
Adelman, I.R., L.L. Smith, Jr. and G.D. Seisennop. 1976a. Effect of size or
age of goldfish and fathead minnows on use of pentachlorophenol as a
reference toxicant, water Res. 10:685-687.
Adelnan, I.R., L.L. Smith, Jr. and G.D. Seisennop. 1976b. Acute toxicity of
s
sodium chloride, pentachlorophenol, Guthion, and hexavalent chromium to
iattiead minnows iPicephales promelas) and goldtisn (Carassius auratus) . J.
Fish. Res. Board Can. 33:203-208.
Aderaa, D.M.M. 1978. Daphnid magoa as A test inmai in acute and chronic
toxicity tests. Hydrob iologia 59:i.25-134.
-------
Adema, D.M.M. and C.J. Vink. 1981. A comparative study of the toxicity of
1,1,2-trichloroethane, dieldrin, pentachlorophenol and 3,4-dichloroaniline
for marine and fresh water organisms. Chemosphere 10:533-554.
Ahlborg, U.G. and T.H. Thunberg. 1980. Chlorinated phenols: Occurrence,
toxicity, metabolism, and environmental impact. Grit. Rev. Toxicol. 7:1-35.
Akitake, H. and K. Kobayashi. 1975. Studies on the metabolism of
chlorophenols in fish-Ill. Isolation and identification of a conjugated PGP
excreted by goldfish. Bull. Jpn. Soc. Sci. Fish. 41:321-327.
Alexander, D.G. and R.M.V. Clarke. 1978. The selection and liaitations of
phenol as a reference toxicant to detect differences in sensitivity among
groups of rainbow trout (Salmo aairdneri). Water Res. 12:1085-1090.
Alexander, [I.e., K.M. Sodner and M.A. .Mayes. 1983. Evaluation of the UECD
"fish prolonged toxicity study at least 14 days". Chemospnere 12:415-423.
Anderson, P.O. and L.J. Weber. 1975. Toxic response as a Quantitative
function of body size. Toxicol. Appl. Pharaacol. 3J:471-4«3.
Anderson, R.S., C.S. Giam, I.E. Ray and M.R. Tripp. 1981. Effects of
environmental pollutants on mmunological competency of tne clau Mercenaria
mercenaria: Impaired bacterial clearance. Aquat. Toxicol. 1:187-195.
77
-------
Anderson, R.S., C.S. Giam and L.E. Ray. 1984. Effects of hexachlorobenzene
and pentachlorophenol on cellular and humoral immune parameters in Glycera
dibranchiata. Mar. Environ. Res. 14:317-326.
Batte, E.G. and L.E. Swanson. 1952. Laboratory evaluation of organic
compounds as raolluscicides and ovicides, II. J. Parasitol. 38:65-68.
Benoit-Guyod, J.L., C. Andre and K. Clave!. 1984a. Chlorophenols: Degradation
and toxicity. J. Francais Hydrol. 15:249-263.
Benoit-Guyod, J.L., C. Andre, G. Taillandier, J. Rochat and A. Boucherle.
1984b. Toxicity and QSAR of chlorophenols on Lebistes reticulatus.
Ecotoxicol. Environ. Safety 8:227-235.
Bentley, R.E., T. Heifnuller, B.H. Sleight, III and P.R. Parrish. 1975. Acute
toxicity of pentachlorophenol to bluegill (Lepomis macrochirus) , rainbow
trout (Salmo gairdneri), and pink shrimp (Penaeus duorarum). No.
WA-6-99-1414-B. Criteria Branch, U.S. EPA, Washington, DC.
Berglind, R. and G. Dave. 1984. Acute toxicity of chromate, DDT, PCP, TPBs,
and zinc to Daphnia magna cultured in hard and soft water. Bull. Environ.
Contain. Toxicol. 33:63-68.
Bevenue, A. and H. Beckman. 1967. Pentachlorophenol: A discussion of its
properties and its occurrence as a residue in human and animal tissues.
Residue Rev. 19:83-134.
78
-------
Bevenue, A., J. Wilson, L.J. Gasarett and H.W. Klemmer. 1967. A survey of
pentachlorophenol content in human urine. Bull. Environ. Contain. Toxicol.
2:319-333.
Blackman, G.E., M.H. Parke and G. Carton. 1955. The physiological activity of
substituted phenols. I. Relationships between chemical structure and
physiological activity. Arch. Biochea. Biophys. 54:45-54.
Bols. N.C., S.A. Soliska, D.G. Dixon, P.V. Hodson and K.L.E. Kaiser. 1985.
The use of fish cell cultures as an indication of contaminant toxicity to
fish. Aquat. Toxicol. 6:147-155.
Borthwick, P.W. and S.C. Schinunel. 1978. Toxicity of pentachlorophenol and
related compounds to early life stages of selected estuarine animals. In:
Pentachlorophenol: Chemistry, puarmacology and environmental toxicology. Rao,
K.R. (Ed.). Plenum Publishing Company, New York, NY. pp. 141-146.
Bose, A.K. and H. Fujiwara. 1978. Fate of pentac.lorophenol in the blue crab,
Callinectes sa^idus. In: Pentachlorophenol: Che.iscry, pharmacology and
environmental toxicology. Rao, K.R. (Ed.). Plenum Publishing Company, :few
York, NY. pp. 83-88.
. S.L. and R.C. Johansson. 1972. E££ects „« pen.ac^oropnenol on
invoke, !„ «nergy netaboltsm lB ^
Physiol. 418:359-369.
70
-------
Boyle, T.P., J. Sebaugh and E. Robinson-Wilson. 1984. A hierarchical approach
to the measurement of changes in community structure induced by environmental
stress. J. Test. Eval. 12:241-245.
Brannon, A.C. and P.J. Conklin. 1978. Effect of pentachlorophenate on
exoskeletal calcium in the grass shrimp, Palaemonetes pugio. In: Penta-
chlorophenol: Chemistry, pharmacology and environmental toxicology. Rao, K.R.
(Ed.). Plenum Publishing Company, New York, NY. pp. 205-211.
Branson, D.R. 1980. Prioritization of chemicals according to the degree of
hazard in the aquatic environment. Environ. Health Perspect. 34:133-138.
Brockway, D.L., P.O. Smith and F.E. Stancil. 1984. Fate and effects of
pentachiorophenol in hard- and soft-water microcosms. Chemosphere
13:1363-1377.
Brooke, L.T., D.J. Call, D.E. Haramemeister, A. Hoffman and C.E. Northcott.
Manuscript. Acute toxicities of five chemicals in different natural waters.
Center for Lake Superior Environmental Studies, University of
Wisconsin-Superior, Superior, WI.
Brown, J.A., P.H. Johansen, P.W. Colgan and R.A. Mathers. 1985. Changes in
the predator-avoidance behaviour of juvenile guppies (Poecilia reticulata)
exposed to pentachlorophenol. Can. J. Zool. 63:2001-2005.
80
-------
Buhler, D.R., M.E. Rasmusson and H.S. Nakaue. 1973. Occurrence of
hexachlorophene and pentachlorophenol in sewage and water. Environ. Sci.
Technol. 7:929-939.
Buikeraa, A.L., Jr., M.J. McGinnis and J. Cairns, Jr. 1979. Phenolics in
aquatic ecosystems: A selected review of recent literature. Mar. Environ.
Res. 2:87-101.
Burreli, R.E., W.E. Inni9s and C.I. Mayfield. 1985. Detection and analysis of
interactions between atrazine and sodium pentachlorophenate with single and
multiple algal-bacterial populations. Arch. Environ. Contam. Toxicol.
14:167-177.
Sutte, W., M. Kirsch and J. Denker. 1983. The determination of
pentachlorophenol and tetrachlorophenol. in Wadden sediment and clams (M
argnaria) U3in* triethylsulfonium hydroxide for extraction and pyrolytic
ethylation. Int. J. Environ. Anal. Chem. 13:141-153.
Call, D.J., L.T. Brooke, N. Ahmad and J.E. Richter. 1983. Toxicity and
metabolism studies with EPA priority pollutants and related chemicals in
freshwater organisms. EPA-600/3-83-095 or PB83-263665. National Technical
Information Service, Springfield, VA.
81
-------
Callahan, M.A., M.W. Slimak, N.W. Gabel, I.P. Ilay, C.F. Fowler, J.R. Freed,
P. Jennings, R.L. Durfee, F.C. Whitmore, B. Maestri, W.R. Mabey, B.R. Holt
and, C. Gould. 1979. Water-related environmental fate of 129 priority
pollutants. Vol II. EPA-440/4-79-029b. National Technical Information
Service, Springfield, VA. pp. 37-1 to 87-13.
Cantelmo, A.C. and K.R. Rao. 1973a. The effects of pentachlorophenol (PGP)
and 2,4-dinitrophenol (DNP) on the oxygen consumption of tissues from the
blue crab, Callinect.es sapidus, under different osmotic conditions. Comp.
Biochem. Physiol. 60C:215-219.
Cantelao, A.C. and K.R. Rao. 1978b. Effects of pentachlorophenol on the
meiobenthic nematodes in an experimental system. In: Pentachlorophenol:
Chemistry, pharmacology and environmental toxicology. Rao, K.R. (Ed.). Plenum
Publishing Company, New York., NY. pp. 165-174.
Cancelmo, F.R. and K.R. Rao. 1978c. Effect of pencachlorophenol (PCP) on
meiobenthic communities established in an experimental system. Mar. Biol.
(3erl.) 46:17-22.
Cantelmo, A.C., P.J. Conklin, F.R. Fox and K.R. Rao. L1J78. Effects of sodiuu
pentachlorophenate and 2,4-dinitrophenol on respiration in crustaceans. In:
Pentachlorophenol: Chemistry, pharmacology and environmental toxicology. Rao,
K.R. (cd.). Plenum Publishing Company, New York, MY. pp. 251-263.
-------
Canton, J.H. and D.M.M. Adema. 1973. Reproducibility of short-term and
reproduction toxicity experiments with Daphnia magna and comparison of
Daphnia 22*™ with Daphnia pulex and Daphnia cucullata in short-term
experiments. Hydrobiologia 59:135-140.
Canton, J.H. and W. Slooff . 1979. A proposal to classify compounds and to
establish water quality criteria based on laboratory data. Ecotoxicol.
Environ. Safety 3:126-132.
Cardwell, R.O., D.C. For*,™, r.a. Payne and O.j. wubuc. m6.
coxicity of selected toxicants to six species of fish. PB-252483 or
EPA-600/3-76-008. National Technical Inforaatlon Service, Sprla.,1.1,. VA.
C.rr. R.S. and J.M. Neff. . o of
virens (5ars, . I. Responses „ pen£achlort,phenol. A,U3c. loxicol.
1:313-327.
Cessna, A.J. and «. Crover. 1973. SpectropnotoQetric declination of
dissociation constants of selected acidic besides. J. ,.ric. Fooa chan.
26:289-292.
an, C.A. I969. Ioxiclty o£
Chesis. ^8on Scate Univ.rsity, Corvallis, OR. Available Cnm, Unlverslty
Microfilms, Ann Arbor, :il. Order No. 69-19,906.
83
-------
Chapman, G.A. and D.L. Shumway. 1978. Effects of sodium pentachlorophenate on
survival and energy metabolism of embryonic and larval steelhead trout. In:
Pentachlorophenol. Rao, K.R. (Ed.). Plenum, New York, NY. pp. 285-299. Also
available as PB-287600 or EPA-600/J-78-051. National Technical Information
Service, Springfield, VA.
Chapman, P.M., M.A. Farrell and R.O. Brinkhurst. 1982a. Relative tolerance of
selected aquatic oligochaetes to individual pollutants and environmental
factors. Aquat- Toxicol. 2:47-67. f
Chapman, P.M., M.A. Farrell and R.O. Brinkhurst. 1982b. Relative tolerances
of selected aquatic oligochaetes to combinations of pollutants and
environmental factors. Aquat. Toxicol. 2:69-78.
Chapman, P.M., M.A. Farrell and R.O. Brinkhurst. 1982c. Effects of species
interactions on the survival and respiration of Limnodrilus hoffmeiste.ri and
Tubifex tubifex (Oligochaeta, Tubificidae) exposed to various pollutants and
environmental factors. Water Res. 16:1405-1408.
Chowdary, V.D., P.V. Rao and R. Narayanan. 1979. Effect of copper sulfate and
sodium pentachlorophenate on adenine and adenosine phosphacases in Lyanaea
luteola (Mollusca: Gastropoda). Bull. Environ. Contain. Toxicol. 23:615-619.
84
-------
Cirelli, D.P. 1978. Patterns of pentachlorophenol usage in the United States
of America - an overview. In: Pentachlorophenol: Chemistry, pharmacology, and
environmental toxicology. Rao, K.R. (Ed.). Plenum Publishing Co., New York,
NY. pp. 13-18.
Clemens, H.P. and K.E. Sneed. 1959. Lethal doses of several commercial
chemicals for fingerling channel catfish. Special Scientific
Report-Fisheries No. 316. U.S. Fish and Wildlife Service> WashingCQn> Dc>
Clendenning, K.A. and W.J. North. 1959. Effects of wastes on the giant kelp,
ilacroc^stis j^v^ifera. In : International conference on waste disposal in the
marine environment. First Berkeley California 1959 Proceedings, Berkeley, CA.
pp. 82-91.
Cleveland, L. , O.R. Buckler, F.L. Mayer and D.R. Branson. 1982. Toxicity of
three preparations of pentachlorophenol to fathead minnows - a comparative
study. Environ. Toxicol. Chem. 1:205-212.
CogUanese, H.P. and J.M. *„. 1582. ioc^ica! responses
. !„ , P,,yslological QecMoisms „,
. A. c,labrese, P.P.
F.J. Vernb.rg (Eds.). Academic Press. New vork, ;„. pp. U7.143.
85
-------
Conklin, P.J. and F.R. Fox. 1978. Environmental impacts of pentachlorophenoi
and its products - A round table discussion. In: Pentachlorophenoi:
Chemistry, pharmacology and environmental toxicology. Rao, K.R. (Ed.). Plenum
Publishing Company, New York, NY. pp. 389-394.
Conklin, P.J. and K.R. Rao. 1978a. Toxicity of sodium pentachlorophenate
(Na-PCP) to the grass shrimp, Palaemonetes pugio. at different stages of the
molt cycle. Bull. Environ. Contam. Toxicol. 20:275-279.
Conklin, P.J. and K.R. Rao. 1978b. Toxicity of sodium pentachlorophenate to
the grass shrimp, Palaemonetes pugio, in relation to the molt cycle. In:
Pentachlorophenoi: Chemistry, pharmacology and environmental toxicology. Rao,
K.R. (Ed.). Plenum Publishing Company, New York, NY. pp. lbi-L.92.
Cook, W.L. , D. Fielder and A.M. iiourquin. 1930. Succession of inicrofungi in
estuarine microcosms perturbed by carbaryl, methyl parathion and pentachloro-
phenoi. Bot. ;lar. 23:129-131.
Crandali, C.A. and C.J. Goodnight. 1959. The effect of various, factors un the
toxicity of sodium pentachloropnenate to fiih. Liranol. uceanogr. 4:53-56.
Crandali, C.A. and C.J. Goodnigut. 1962. effects of sublethal concentrations
of several toxicants on growth of the coumon guppy, Leoistes reticulatus.
Licinol. Oceanogr. 7:231-239.
86
-------
Crandall, C.A. and C.J. Goodnight. 1963. The effects of sublethal
concentrations of several toxicants to the common guppy, Lebistes
reticulatus. Trans. Am. Microsc. Soc. 82:59-73.
Crossland, N.O. and C.J.M. Wolff. 1985. Fate and biological effects of
pentachlorophenol in outdoor ponds. Environ. Toxicol. Chem. 4:73-86.
Curtis, G., A. Lina, S.J. Lozano and G.D. Veith. 1982. Evaluation of a
bacterial bioluminescence bioassay as a method for predicting acute toxicity
of organic chemicals to fish. In: Aquatic toxicology and hazard
Fifth conference. Pearson, J.G., R.3. Foster and W.E. Bishop (Eds.). ASTSI STP
766. American Society for Testing and Materials, Philadelphia, PA. pp.
170-178.
Dalela, R. C. , S. Rani, 5. *ani and S.R. Verma. 1980a. Influence of ptl on
coxicity of phenol and ,ts two derivatives pentachloroph.no! and dinitro-
phenol to sorae fresh water teleosts. Acta Hyarochia. HvaTobiol. 3:623-629.
, R.C., S. Rani and S.R. Vema. laaob. Physiological stress induced by
sublethal concentrations of phenol and pe-^culorupaenol in Noco.terus
not°Pterusi ^P*6* acii *** a.kaline paoschatises ana sacci.Hc
cehydrogenase. Environ. Polijt. (Series A) 2l:J-a.
"alala, R.C., S. Rani and S.F, Vecoia. ISdOc. la vivo subacute physiological
scress induced by pnenoiic compounds on add and ai.ai.ae phosphatases in
serum of a fish, Noto^terus nol2£Orus. roxicsl. Lett. 7:1*1-186.
37
-------
D'Asaro, C.N. and F.G. Wilkes. 1982. Cycling of xenobiotics through marine
and e3tuarine sediments, EPA-600/3-82-074 or PB82-239252. National Technical
Information Service, Springfield, VA.
Dave, G. 1984. Effect of pH on pentachlorophenol toxicity to embryos and
larvae of zebrafish (Brachydanio rerio). Bull. Environ. Contam. Toxicol.
33:621-630.
Davies, R.P. and A.J. Dobbs. 1984. The prediction of bioconcentration in
fish. Water Res. 18:1253-1262.
Davis, H.C. and H. Hidu. 1969. Effects of pesticides on embryonic development
of clams and oysters and on survival and growth of the larvae. Fish. Bull.
67:393-404.
Davis, J.C. and R.A.W. Hoos. 1975. Use of sodium pentachlorophenate and
dehydroabietic acid as reference toxicants for salraonid bioassays. J. Fish.
Res. Board Can. 32:411-416.
DeLaune, R.D., R.P. Garabrell and K.S. Reddy. 1983. Fate of pentachlorophenol
in estuarine sediment. Environ. Pollut. (Series B). 6:297-308.
DeVault, D.S. 1985. Contaminants in fish from Great Lakes harbors and
tributary mouths. Arch. Environ. Contara. Toxicol. 14:587-594.
88
-------
Dimick, R.E. and W.P. Breese. 1965. Bay mussel embryo bioassay. In:
Proceedings of the 12th Pacific Northwest Industrial waste conference.
University of Washington, Seattle, WA. pp. 165-175.
Dive, D., H. Leclerc and G. Persoone. 1980. Pesticide toxicity on the ciliate
protozoan Colpidium campylum: Possible consequences of the effect of
. pesticides in the aquatic environment. Ecotoxicol. Environ. Safety 4:129-133.
Dixon, W.J. and M.B. Brown (Eds.). 1979. BMDP Bioraedical Computer Programs,
P-series. University of California, Berkeley, CA. p. 521.
Dominguez, S.E. and G.A. Chapman. 1984. Effect of pentachlorophenol on the
growth and mortality of embryonic and juvenile steelhead trout! Arch.
Environ. Contam. Toxicol. 13:739-743.
Dougherty, R.C. 1973. Human exposure to pentachlorophenol. In: Pentachloro-
phenol: Chemistry, pharmacology, and environmental toxicology. Rao, K.R.
(Ed.). Plenum Publishing Co., New York, NY. pp. 351-361.
Dougherty, R.C., M.J. Whitaker, L.M. Smith, D.L/ Stalling and D.W. Kuehl.
1980. Negative chemical ionization studies of human and food chain
contamination with xenobiotic chemicals. Environ. Health Perspect.
36:103-118.
89
-------
IJotightie, D.G. and K.R. Rao. 1978. Ulcrascructural changes induced by sodium
pentachlorophenate in Che grass shrimp, Palaemonetes pugio, in relacion to
che mole cycle. In: Pencachlorophenol: Chemistry, pharmacology and
environmental toxicology. Rao, K.R. (Ed.). Plenum Publishing Company, New
York., NY. pp. 213-249.
Elnabarawy, M., A.N. Welcer and R.R. Robideau. 1986. Relative sensitivity of
three daphnid species to selected organic and inorganic chemicals. Environ.
Toxicol. Chem. 5:393-398.
Erickson, S.J. 1931. Jlanuscript. Inhibition of photosynthesis in estuarine
phytoplankton by mixtures of copper and pentachlorophenol. U.S. EPA, Gulf
Breeze, FL.
Erickson, S.J. and A.E. Freeman. 1973. Toxicity screening of fifteen chlori-
nated and brorainated compounds using four species of marine phytoplankton.
In: Water chiorination: Environmental impact and health efrecta. Vol. 2.
Jo 1 ley, R.L., !4. Gorcliev and D.H. Hamilton (Eds.). Ann Arbor science
Publishers, Ann Arbor, III. pp. 307-310.
Ernst, W. 1979. Factors affecting the evaluation of chemicals in laboratory
experiments using marine organisms. Ecotoxicol. Lnviron. Safety 3:90-9d.
Faas, L.t. and J.C. :iooce. 197^. Deternination of pentachlorophenol in marine
bioca and sea water by gas-liquid Jiiromategraphy and hi^n-presbure liquid
atrgraphy. .1. Agric. Food Chen. 27:554-557.
90
-------
Fairchild, J.F., T.P. Boyle, E. Robinson-Wilson and J.R. Jones. 1984. Effects
of inorganic nutrients on microbial leaf decomposition and mitigation of
chemical perturbation. J. Freshwater Ecol. 2:405-416.
Fisher, S.W. 1986. Effects of temperature on the acute toxicity of PCP in the
midge Chironomus _rJ£ariu3 Meigen. Bull. Environ. Contam. Toxicol.
36:744-748.
Fisher, S.W. and R.W. Wadleigh. 1986. Effects of PH on the acute toxicity and
uptake of [14C, pentachlorophenoi in the midge, Chironomus ri
Ecotoxicol. Environ. Safety 11:1-8.
Fogels, A. and J.B. Sprague. 1977. Comparative short-term tolerance of
zebrafish, flagfish, and rainbow trout to five poisons including potential
reference toxicants. Water Res. 11:811-817.
J., J. Sirltlund> A.K.
and
small marine inlet. Cheuosphere 12:1169-1131
in,, j.... P.B. Joahipura and p ^ Ke
regarding pentachloropheno! UveU U ,,averjotd town9hip| Pennsylvania
Res. 10:185-188.
91
-------
Fox, F.R. and K.R. Rao. 1978. Effects of sodium pentachlorophenate and
2,4-dinitrophenol on hepatopancreatic enzymes in the blue crab, Callinectes-
9apidus. in: Pentachlorophenol: Chemistry, pharmacology and environmental
toxicology. Rao, K.R. (Ed.). Plenum Publishing Company. New York, NY. pp.
265-275.
Fox, M.E. and S.R. Joshi. 1984. The fate of pentachlorophenol in the Bay of
Quinte, Lake Ontario. J. Great Lakes Res. 10:190-196.
Freitag, D., L. Ballhorn, H. Geyer and F. Korte. 1985. Environmental hazard
profile of organic chemicals. An experimental method for the assessment of
the behavior of organic chemicals in the ecosphere by oieans of simple
laboratory tests with 14C labelled chemicals. Chemosphere 14:1589-1616.
Geyer, H., R. Viswanathan, D. Freitag and F. Korte. 1981. Relationship
between water solubility of organic chemicals and their bioaccuraulation by
the alga Chlorella. Cheraosphere 10:1307-1313.
Geyer, H. , G. Politzki and D. Freitag. L984. Prediction of ecotoxicological
behavior of chemicals: Relationship between n-octanol/water partition
coefficient and bioaccumulation of organic chemicals by alga Chlorella.
Cheraosphere 13:269-284.
Geyer, H., I. Scheunert and F. Korte. 1985. The effects of organic
environmental chemicals on the growth of the alga Scenedesmus subspicatus:
contribution to environmental biology. Cheraosphere 14:1355-1369.
92
-------
Glickman, A.H., C.N. Statham, A. Wu and J.J. Lech. 1977. Studies on the
uptake, metabolism, and disposition of pentachlorophenol and
pentachloroanisole in rainbow trout. Toxicoi. Appl. Pharraacol. 41:649-658.
Gluth, G., D. Freitag, W. Hanke and F. Korte. 1985. Accumulation of
pollutants in fish. Corap. Biochera. Physio!. 81C:273-277.
Goei, H.C. and R. Prasad. 1978. Action of molluscicides on freshly laid eggs
of the snail Indoplanorbis exustus (Deshayes). Indian J. Exp. Biol.
16:620-622.
Goodnight, C.J. 1942. Toxicity of sodium pentachlorophenate and
pentachlorophenol to fish. Ind. Eng. Chem. 34:368-872.
Gotham, I.J. and G.Y. Rhee. 1982. Effects of hexachlorobiphenyl and
pentachlorophenol on growth and photosynthesis of phytoplankton. J. Great
Lakes Res. 8:323-335.
Gupta, P.K. 1983. Acute toxicity of pentachlorophenol to a freshwater
teleost, Rasbora daniconius neilgeriensis (Hamilton). Arch. Hydrobiol.
93:127-132.
Guot», P.K. and 7.3. Ourve. i9S4a. Evaluation of :he toxicity of sadium
pent«:hloropnen«te, pentachlcrophenol and phenol to the snail Vivi
bengalensla (L.). \r:h. Hydrobiol. 101:469-475.
93
-------
Gupta, P.K. and V.S. Durve. I984b. A study on the effect of temperature upon
the toxicity of sodium pentachlorophenate to the freshwater snail Viviparus
bengalenais L. Acta Hydrochira. Hydrobiol. 12:369-375.
Gupta, P.K. and P.S. Rao. 1982. Toxicity of phenol, pentachlorophenoi and
sodium pentachlorophenate to a freshwater pulmonate snail Lymnaea acuminata
(Lamarck). Arch. Hydrobiol. 94:210-217.
Gupta, P.K., V.S. Mujumdas, P.S. Rao and V.S. Durve. 1982a. Toxicity of
phenol, pentachlorophenoi, and sodium pentachlorophenolate to a freshwater
teleost Lebistes reticulatus (Peters). Acta Hydrochira. Hydrobiol.
10:177-181.
Gupta, S. and R.C. Oalela. 1986. Liver damage to N_qtop_t.e_ru3_ notopterus
following exposure to phenolic compounds. J. Environ. Biol. 7:75-80.
Gupta, S., S.R. Verma and P.K. Saxena. I982b. Toxicity of phenolic compounds
in relation to the size of a freshwater fish, Hotopterus aotopterus (Pallas)
Kcotoxicol. Environ. Safety 6:433-438.
Gupta, S., R.C. Dalela and P.tC. Saxer.a. 1983a. Effect of phenolic compounds
on in vivo activity of transaminases in certain tissues of the ^i
Aotopterus notopterus. Environ. Res. 32:3-13.
-------
Gupta, S.f R.C. Dalela and P.K. Saxena. 1983b. Effects of phenolic compounds
on 5-nucleotidase activity in some tissues of Notopterus notopterus (Pallas);
A biochemical study. Toxicol. Lett. 17:167-173.
Gupta, S., R.C. Dalela and P.K. Saxena. 1983c. Influence of dissolved oxygen
levels on acute toxicity of phenolic compounds to fresh water teleo.t
Notopterus notoperus (Pallas). Water Air Soil Pollut. 19:223-228.
Gupta, S., R.C. Dalela and P.K. Saxena. 1983d. Influence of temperature on
the toxicity of phenol and its chloro- and nitro-derivatives to the fish
Noto^ten^ nc^terus (Pallas). Acta Hydrochim. Hydrobiol. 11:187-192.
Halbach, u. 1984. Population dynamics of rotifers and its conse.uences for
ecotoxicology. Hydrobiologia 109:79-96.
, „., „. su^rt, „. We,t.raayer and C. wi,,.l. 1,83. Populatioa
of rotifers a, . bioas,iy tool foc scoto,icolo
enviromients. Ecotoxicol. Environ. Safety 7: 484-513.
.K. an, ,.5. Kier. 1,8*..
toxicity to fi,h. Bull. Environ. Conta*. Toxicol. 32:354-362
Hall. L.H. and UB. KUr. 1984b.
toxicity to
. oE ,„. ,„
<".). J.R. prous pubnshing Co.,,Barcelona, Spain. „. 53-59
95
-------
Hall, L.H., L.B. Kier and G. Phipps. 1984. Structure-activity relationship
studies on the toxicities of benzene derivatives: I. An additivity model.
Environ. Toxicol. Chera. 3:355-365.
Hall, W.S., R.L. Paulson, L.W. Hall, Jr. and D.T. Burton. 1986. Acute
tox-icity of cadmium and sodium pentachlorophenate to daphnids and fish. Bull.
Environ. Contara. Toxicol. 37:308-316.
Hallas, T. 1973. On the accumulation and metabolization of pentachlorophenol
in fish. Medd. Dan. Fisk. Havunders. 7:75-84.
Hamilton, S.J., L. Cleveland, L.M. Smith, J.A. Lebo and F.L. Mayer. 1986.
Toxicity of pure pentachlorophenol and chlorinated phenoxyphenol impurities
to fathead minnows. Environ. Toxicol. Chera. 5:543-552.
Hanke, W., G. Gluth, H. Bubel and R. Muller. 1983. Physiological changes in
carps induced by pollution. Ecotoxicol. Environ. Safety 7:229-241.
Haasen, D.J. and H.E. Tagatz. 1980. A laboratory test for assessing impacts
of substances on developing communities of benthic estuarine organisms. In:
Aquatic toxicology. Eaton, J.G., P.R. Parrish and A.C. Hendricks (Eds-). ASTM
STP 707. American Society for Testing and Materials, Philadelphia, PA. pp.
40-57.
96
-------
Hanuraante, M.M. and S.S. Kulkarni. 1979. Acute toxicity of two raoHuscicides,
mercuric chloride and pentachlorophenol to a freshwater fish (Channa gachua).
Bull. Environ. Contain. Toxicol. 23:725-727.
Hashimoto, Y. and Y. Nishiuchi. 1983. Effects of herbicides on aquatic
animals. In: Pesticide chemistry: Human welfare and the environment. Vol. 2.
Takahashi, N., H. Yoshioka, T. Misato, and S. Matsunaka (Eds.). Pergamon
Press, New York, NY. pp. 355-358.
Hashimoto, Y., E. Okubo, T. Ito, M. Yamaguchi and S. Tanaka. 1982. Changes in
susceptibility of carp to several pesticides with growth. J. Pestic. Sci.
7:457-461.
Hattori, M., K. Senoo, S. Harada, Y. Ishizu and M. Goto. 1984. The Daphnia
reproduction test of some environmental chemicals. Seitai Kagaki 6:23-27.
Hattula, M.L., V. Wasenius, H. Reunanen and A.U. Arstila. 1981. Acute
toxicity of some chlorinated phenols, catechols, and cresols to trout. Bull.
Environ. Contam. Toxicol. 26:295-298.
Hauch, R.G., D.R. Norris and R.H. Pierce, Jr. 1980. Acute and chronic
toxicity of sodium pentachlorophenate to the copepod, Pseudodiaptomus
coronatus. Bull. Environ. Contam. Toxicol. 25:562-568.
97
-------
Hedtke, S.F. and J.W. Arthur. 1985. Evaluation of a site-specific water
quality criterion for pentachlorophenol using outdoor experimental streams.
In: Aquatic toxicology and hazard assessment: Seventh symposium. Cardwell,
R.D., R. Purdy and R.C. Banner (Eds.). ASTM STP 854. American Society for
Testing and Materials, Philadelphia, PA. pp. 551-564.
Hedtke, S.F., C.W. West, K.N. Allen, T.J. Norberg-King and D.I. Mount. 1986.
Toxicity of pentachlorophenol to aquatic organisms under naturally varying
and controlled environmental conditions. Environ. Toxicol. Chera. 5:531-542.
Herraens, J., H. Canton, N. Steyger and R. Wegraan. 1984. Joint effects of a
mixture of 14 chemicals on mortality and inhibition of reproduction of
Daphnia magna. \quat. Toxicol. 5:315-322.
Herraens, J., P. Leeuwangh and A. Musch. 1985. Joint toxicity of mixtures of
groups of organic aquatic pollutants to the guppy (Poecilia reticulata).
Ecotoxicol. Environ. Safety 9:321-326.
Hodson, P.V. and B.R. Blunt. 1981. Temperature-induced changes in
pentachlorophenol chronic toxicity to early life stages of rainbow trout.
Aquat. Toxicol. 1:113-127.
Hodson, P.V., D.G. Dixon and K.L.E. Kaiser. 1984. Measurement of median
lethal dose as a rapid indication of contaminant toxicity to fish. Environ.
Toxicol. Chera. 3:243-254.
98
-------
Holcombe, G.W., G.L. Phipps and J.I. Fiandt. 1982. Effects of phenol,
2, 4-diraethylphenol, 2,4-dichlorophenol, and pentachlorophenol on embryo,
larval, and early- juvenile fathead minnows (PimephaJ.es proaelas) . Arcn.
Environ. Concam. Toxicol. 11:73-78.
Holmberg, 3., S. Jensen, A. Larsson, N. Lewander and M. Olsson. 1972.
Metabolic effects of technical pentachlorophenol (PGP) on the eel Anguilla
anguilla L. Coiap . Biochem. Physio 1. 435:171-183.
Hooftman, R.N. and G.J. Vink. 1980. The determination of toxic effects of
pollutants with the marine polychaete worm Uphrvotrocha diadgo^. Ecotoxicol.
Environ. Safety 4:252-262.
Huang, J. and E.F. Gloyna. 1967. Effects of toxic organics on photosynthetic
reoxygenation. ?B 216749. national Technical Information Service,
Springfield, VA.
Huber, M.. V. Schubert and C. Sautter. 1.982. Effects of pentachloropuenol on
the metabolism of the aquatic .acrophyte L^aa oioor L. Environ. Pollut.
(Series A) 29:215-223.
, J.N. and J.D. Petty. 1983. Dynamics of purifiea and industrial
-ntachlorophenol in fathead ninnows. Arch. Environ. Contaa. Toxicol.
12:667-672.
99
-------
Inglis, A. and E.L. Davis. 1972. Effects of water hardness on the toxicity of
several organic and inorganic herbicides to fish. Technical Paper No. 67.
U.S. Bureau of Sport Fisheries and Wildlife, Washington, DC.
Ishak, M.M., A. A. Sharaf, A.M. Hohamed and A.H. Mousa. 1970. Studies on the
mode of action of some molluscicides on the snail, Biomphalaria alexandrina.
I. Effect of Bayluscide, sodium pentachlorophenate, and copper sulphate on
succinate, glutamate, and reduced TMPD oxidation. Comp. Gen. Pharraacol.
1:201-208.
Iwatna, G.K. and G.L. Greer. 1979. Toxicity of sodium pentachlorophenate to
juvenile salmon under conditions of high feeding density and continuous-flow
exposure. Bull. Environ. Contam. Toxicol. 23:711-716.
Iwama, G.K. and G.L. Greer. 1980. Effect of a bacterial infection on the
toxicity of sodium pentachlorophenate to juvenile coho salmon. Trans. Am.
Fish. Soc. 109:290-292.
Iwama, G.K. and G.L. Greer. 1932. Mortality in juvenile Chinook salmon
exposed to sodium pentachlorophenate and undergoing progressively symptomatic
bacterial kidney disease. Canadian Technical Report of Fisheries and Aquatic
Sciences No. 1100. Department of Fisheries and Oceans, West Vancouver Lab,
West Vancouver, British Columbia, Canada.
100
-------
Jayaweera, R., R. Peterson and P. Smejtetc. 1982. Induced hydrogen ion
transport in lipid membranes as origin of toxic effect of pentachlorophenol
in an alga. Pestic. Biochem. Physiol. 18:197-204.
Johansen, P.H., R.A.S. Mathers, J.A. Brown and P.W. Colgan. 1985. Mortality
of early life stages of largemouth bass, Micropterus salmoides. due to
pentachlorophenol exposure. Bull. Environ. Contain. Toxicol. 34:377-384.
Johnson, W.W. and M.T. Finley. 1980. Handbook of acute toxicity of chemicals
to fish and aquatic invertebrates. Resource Publication 137. U.S. Fish and
Wildlife Service, Washington, DC. pp. 58.
Kaila, K. 1982. Increase in the resting potassium permeability of crayfish
axons by pentachlorophenol and trinitrophenol in the absence of extracellular
Ca + . Corap. Biochem. Physiol. 73C:353-356.
Kaila, K. and J. Saarikoski. 1977. Toxicity of pentachlorophenol and 2,3,6-
trichlorophenol to the crayfish (Astacus .fluviatilis L.). Environ. Pollut.
12:119-123.
Kaila, K. and J. Saarikoski. 1980. Inhibition of voltage-dependent potassium
conductance by convulsant phenols in the medial giant axon of the crayfish.
Comp. Biochem. Physiol. 65C:17-24.
ila, K. and J. Saarikoski. 1981. Membrane-potential changes caused by
2,4-DNP and related phenols in resting crayfish axons are not due to
uncoupling of mitochondria. Comp. Biochem. Physiol. 69C:235-242.
101
-------
Khangarot, B.S. 1983. Acute coxicity of pentachlorophenol and antimycin to
common guppy (Lebistes retlculatus Peters). Indian J. Phys. Nat. Sci.
3:25-29.
Khangarot, B.S., A. Seagal and II. K. Bhasin. 1985. "Man and biosphere" -
studies on the Sikkia Himalayas. Part 6:' Toxicity of selected pesticides to
frog tadpole Rana hexadactyla (Lesson). Acta Hydrochim. Hydrobiol.
13:391-394.
Kishino, T. and K. Kobayashi. 1980. Studies on the metabolism of
chlorophenols in fish - XIV. A study on the absorption mechanism of
pentachlorophenol in goldfish relating to its distribution between solvents
and water. Bull. Jpn. Soc. Sci. Fish. 46:1165-1168.
Klein, W., H. Geyer, !). Freitag and H. Rohleder. 1984. Sensitivity of schemes
tor ecotoxicological hazard ranking of chemicals. Chemosphere 13:203-211.
Knie, J., A. Halke, E. Juhnte and W. Schiller. 1983. Results of studies on
chemical substances with four biotests. Deutsche Gewasserkd. :iitt. 27:77-79.
fciowlton, fl.F. and J.N. Huckins. 1983. Face of radiolabeled sodium
pentachlorophenate in littoral microcosms. Bull. Environ. Toxicol. Che.a.
30:206-213.
102
-------
Kobayashi, K. 1978. Metabolism of pentachlorophenol in fishes. In: Penta-
chlorophenol: Chemistry, pharmacology and environmental toxicology. Rao, K.R.
(Ed.). Plenum Publishing Company, New York, NY. pp. 89-105.
Kobayashi, K. 1979. Metabolism of pentachlorophenol in fish. In: Pesticide
and xenobiotic metabolism in aquatic organisms. Khan, M.A.Q., J.J. Lech and
J.J. Menn (Eds.). ACS Symposium Series No. 99. American Chemical Society,
Washington, DC. pp. 131-143.
Kobayashi, K. and H. Akitake. 1975a. Studies on the metabolism of
chlorophenols in fish - I. Absorption and excretion of PGP by goldfish. Bull.
Jpn. Soc. Sci. Fish. 41:87-92.
Kobayashi, K. and H. Akitake. 1975b. Studies on the metabolism of chloro-
phenols in fish - II. Turnover of absorbed PCP in goldfish. Bull. Jpn. Soc.
Sci. Fish. 41:93-99.
Kobayashi, K. and T. Kishino. 1980. Effect of pH on the toxicity and
accumulation of pentachlorophenol in goldfish. Bull. Jpa. Soc. Sci. Fish.
46:167-170.
Kobayashi, K. and N. Nakamura. 1979a. Studies on the metabolism of
chlorophenols in fish - XI. Isolation and identification of a conjugated-PCP
in the urine of goldfish. Bull. Jpn. Soc. Sci. Fish. 45:1001-1003.
103
-------
Kobayashi, K. and N. Nakaraura. 1979b. Studies on the metabolism of
chlorophenols in fish - XII. Major detoxification pathways for
pentachlorophenol in goldfish. Bull. Jpn. Soc. Sci. Fish. 45:1185-1188.
Kobayashi, K. , H. Akitake and T. Tomiyama. 1969. Studies on the metabolism of
pentachlorophenol, a herbicide, in aquatic organisms - I. Turnover of
absorbed PGP in Tapes phillipinarum. Bull. Jpn. Soc. Sci. Fish. 35:1179-1183.
Kobayashi, K., S. Kiraura and E. Shiraizu. 1977. Studies on the metabolism of
chlorophenols in fish - IX. Isolation and identification of pentachlorophenyl-
<*lucuronide accumulated in bile of goldfish. Bull. Jpn. Soc. Sci. Fish.
45:601-607.
Kobayashi, K. , H. Akitake and K. Manabe. 1979. Relation between toxicity and
accumulation of various chlorophenols in goldfish. Bull. Jpn. Soc. Sci. Fish.
45:173-175.
Kobayashi, K., S. Kiraura and Y. Oshiraa. 1984. Sulfate conjugation of various
phenols by liver-soluble fraction of goldfish. Bull. Jpn. Soc. Sci. Fish.
50:833-837.
Koch, R. 1982. Molecular connectivity and acute toxicity of environmental
pollutants. Ghetnosphere 11:925-931.
-------
Konemann, H. and A. Musch. 1981. Quantitative structure-activity
relationships in fish toxicity studies. Part 2: The influence of pH on the
QSAR of chlorophenols. Toxicology 19:223-228.
Korte, P., D. Freitag, H. Geyer, W. Klein, A.G. Kraus and E. Lohaniatus.
1978. Ecotoxicologic profile analysis: A concept for establishing
ecotoxicologic priority lists for chemicals. Cheaosphere 1:79-102.
Kozak, V.P., G.V. Sirasiraan, G. Chester, D. Stensley and J. Harkin. 1979.
Reviews of environmental effects of pollutants. XI. Chlorophenols. EPA
600/1-79-012. National Technical Information Service, Springfield, VA,
Kuehl, D.W. and R.C. Dougherty. 1980. Pentachlorophenol in the environment.
Evidence for its origin from commercial pentachiorophenol by negative
chemical ionization mass spectrometry. Environ. Sci. Technol. 14:447-449.
Kuehl, D.W., E.N. Leonard, K.J. Welch and G.D. Veith. 1980. Identification of
hazardous organic chemicals in fish from the Ashtabula River,''Ohio, and
Wabash River, Indiana. J. Assoc. Off. Anal. Chera. 63:1238-1244.
Kuehl, D.W., E.N. Leonard, B.C. Butterworth and K.L. Johnson. 1983.
Polychlorinated chemical residues in fish from major watersheds near the
Great Lakes. Environ. Int. 9:293-299.
105
-------
Kwasniewska, K., D. Liu and W.M.J. Strachan. 1979. Bioassay of relative
toxicity of 3ome chlorophenols using sewage bacteria. Fisheries and Marine
Service Technical Report No. 862. Fisheries and Marine Service, Pacific
Environment Institute, West Vancouver, British Columbia, Canada, pp.
193-200.
LeBlanc, G.A. 1980. Acute toxicity of priority pollutants to water flea
(Daphnia magna). Bull. Environ. Contam. Toxicol. 24:684-691.
LeBlanc, G.A. and B.J. Cochrane. 1985. Modulation of substrate-specific
glutathione S-transferase activity in Daphnia magna with concomitant effects
on toxicity tolerance. Corap. Biochera. Physiol. 82C:37-42.
Lech, J.J., A.H. Glickraan and C.N. Slathara. 1978. Studies on the uptake,
disposition and metabolism of. pentachlorophenol and pentachloroanisole in
rainbow trout. In: Pentachlorophenol: Chemistry, pharmacology, and
environmental toxicology. Rao, fC.R. (Ed.). Plenum Publishing Company, New
York, NY. pp. 107-113.
Lemma. A. and P. Yau. 1974. Studies on the molluscicidai properties of endod
(Phytolaeca dodecandra); II. Comparative toxicity of various molluscicides to
fish and snails. Ethiopian Med. J. 12:109-114.
106
-------
Lewis, P.A. and C.I. Weber. 1985. A study of the reliability of Daphnia
acute toxicity tests. In: Aquatic toxicology and hazard assessment: Seventh
symposium. Cardwell, R.D., R. Purdy and R.C. Banner (Eds.). ASTM STP 854.
American Society for Testing and Materials, Philadelphia, PA. pp. 73-86.
Lipnick, R.L., C.K. Bickings, D.E. Johnson and D.A. Eastmond. 1986.
Comparison of QSAR predictions with fish toxicity screening data for 110
phenols. In: Aquatic toxicology and hazard assessment: Eighth symposium. R.C.
Bahner and D.J. Hansen (Eds.). ASTM STP 891. American Society for Testing and
Materials, Philadelphia, PA. pp. 153-176.
Liu, D.H.W. 1981. A radiorespiroraetric study of the effects of a chemical
substance on carbohydrate metabolism in the intact fish. In: Aquatic
toxicology and hazard assessment: Fourth conference. Branson, D.R. and K.L.
Dickson (Eds.). ASTM STP 737. American Society for Testing and Materials,
Philadelphia, PA. pp. 449-458.
Lu, P.Y. and R.L. Ketcalf. 1975. Environmental fate and biodegradability of
benzene derivatives as studied in a model aquatic ecosystem. Environ. Health
Perspect. 10:269-284.
Mathers, R.A., J.A. Brown and P.H. Johansen. 1985. The growth and feeding
behaviour responses of largemouth bass (Micrj^pj^rus ^almoides) exposed to
PCP. Aquat. Toxicol. 6:157-164.
107
-------
Matida, Y.. S. Kimura, H. Tanaka and M. Yokote . 1976. Effects of some
herbicides applied in the forest to the freshwater fishes and other aquatic
organisms. III. Experiments on the assessment of acute toxicity of herbicides
to aquatic organisms. Bull. Freshwater Fish. Res. Lab. (Tokyo) [Eng. Transl.
of Tansuika Suisan Kenkyusho Kenkyu Hokoku] 26:79-84.
Mattson, V.R., J.W. Arthur and C.T. Walbridge. 1976. Acute toxicity of
selected organic compounds to fathead minnow3 . EPA-600/3-76-097 . National
Technical Information Service, Springfield, VA.
McCarty, L.S., P.V. Hodson, G.R. Craig and K.L.E. Kaiser. 1985. The use of
quantitative structure-activity relationships to predict the acute and
chronic toxicities of organic chemicals to fish. Environ. Toxicol. Chem.
4:595-606.
McCoy, L.E. and J.E. Joy. 1977. Tolerance of
fuscipennis and Dictvj.
sp. larvae (Diptera: Sciomyzidae) to the molluscicides Bayer 73 and sodium
pentachlorophenate. Environ. Entoraol. 6:198-202.
McKira, J., P. Schmieder and G. Veith. 1985. Absorption dynamics of organic
chemical transport across trout gills as related to octanol-water partition
coefficient. Toxicol. Appl. Phanaacol. 77:1-10.
McKia, J.M., P.K. Schmieder and R.J. Erickson. Manuscript. The general
pharnacoVtinetics of [ ^C]-?entachlorcphenol in the rainbow trout (Salmo
1
gairineri). U.S. SPA, Duluth, M<*.
1C8
-------
McLeese, D.W., V. Zitko and H.R. Peterson. 1979. Structure-lethality
relationships for phenols, anilines and other aromatic compounds in shrimp
and clams. Cheraosphere 8:53-57.
Metcalfe, J.L., M.E. Fox and J.H. Casey. 1984. Aquatic leeches (Hirudinea) as
bioindicators of organic chemical contaminants in freshwater ecosystems.
Cheraosphere 13:143-150.
Morgan, W.S. 1976. Fishing for toxicity: Biological automonitor for
continuous water quality control. Effluent Water Treat. J. 16:471-475.
Morgan, W.S.G. 1977. Biomonitoring with fish: An aid to industrial effluent
and surface water quality control. Prog. Water Technol. 9:703-711.
Mount, D.I. and T.J. Norberg. 1984. A seven-day life-cycle cladoceran
toxicity test. Environ. Toxicol. Chera. 3:425-434.
Mrak, E.M. 1974. Herbicide Report - Chemistry and analysis, environmental
effects, agricultural and other applied uses. EPA-SAB-74-001. National
Technical Information Service, Springfield, VA.
Murray, H.E., G.S. Neff, Y. Hrung and C.S. Giam. 1980. Determination of
benzo(a)pyrene, hexachlorobenzene and pentachlorophenol in oysters from
Galveston Bay, Texas. Bull. Environ. Conta.-a. Toxicol. 25:663-667.
109
-------
Murray, H.E., L.E. Ray and C.S. Giam. 1981. Analysis of marine sediment,
water and biota for selected organic pollutants. Chemosphere 10:1327-1334.
Nagendran, R. and K. Shakuntala. 1979. Studies on toxicity of biocides to
cyprinid forage fishes: Part I - Effects of sublethal concentrations of
sodium pentachlorophenate on the ecophysiology of Puntius ticto (Ham). Indian
J. Exp. Biol. 17:270-273.
National Research Council of Canada. 1982. Chlorinated phenols: Criteria for
environmental quality. NRCC No. 18578. Environmental Secretariat, Ottawa,
Canada.
Neter, J. and W. Wasserman. 1974. Applied Linear Statistical Models. Irwin,
Inc., Homewood, IL.
Niimi, A.J. and C.Y. Cho. 1983. Laboratory and field analysis of
pentachlorophenol (PCP) accumulation by salraonids. Water Res. 17:1791-1795.
:
Niirai, A.J. and C.A. McFadden. 1982. Uptake of sodium pentachlorophenate
(NaPCP) from water by rainbow trout (Saleo gairdneri) exposed to
concentrations in tha ng/1 range. 3ull. Environ. Contain. Tcxicol. 28:11-19.
Niiini, A.J. and V. Palazzo. 1985. Temperature effect on the elimination of
penr.achlorophenol, hexachlorobeazene and rairex by rainbow trout (Salmo
aairdr.eri') . Water <*es . 19:205-207.
110
-------
Nilsson, C.A., A. Norstrora, K. Andersson and C. Rappe. 1978. Impurities in
commercial products related to pentachlorophenol. In: Pentachlorophenol:
Chemistry, pharmacology, and environmental toxicology. Rao, K.R. (Ed.).
Plenum Publishing Company, New York, NY. pp. 313-324.
Norup, B. 1972. Toxicity of chemicals in paper factory effluents. Water Res.
6:1585-1588.
Oikari, A.O.J. 1986. Metabolites of xenobiotics in the bile of fish in
waterways polluted by pulpmill effluents. Bull. Environ. Contain. Toxicol.
36:429-436.
Oikari, A. and E. Anas. 1985. Chlorinated phenols and their conjugates in the
bile of trout (Salmo gairdneri) exposed to contaminated waters. Bull.
Environ. Contain. Toxicol. 35:802-809.
Oikari, A.O.J. and J. Niittyla. 1985. Subacute physiological effects of
bleached kraft mill effluent (BKME) on the liver of trout, lalmo gairdneri.
Ecotoxicol. Environ. Safety 10:159-172.
Oikari, A., B. Holmbom, E. Anas, M. Miilunpalo, G. Kruzynski and M. Castren.
1985. Ecotoxicological aspects of pulp and paper mill effluents discharged to
inland water systems: Distribution in water and toxicant residues and
physiological effects in caged fish (Salmo gairdneri). Aquat. Toxicol.
6:219-239.
Ill
-------
Owen, J.W. and S.W. Rosso. 1981. Effects of sublechal concencracions of
pencachlorophenol on Che liver of bluegill sunfish, Lepomis macrochirus.
Bull. Environ. Concam. Toxicol. 26:594-600.
Paasivirta, J., J. Sarkka, T. Leskijarvi and A. Roos. L980. Transporcation
and enrichment of chlorinated phenolic compounds in differenc aquacic food
chains. Chemosphere 9:441-456.
Paasivirca, J., J. Sarkka, M. Aho, K. Surma-Aho, J. Tarkanen and A. Roos.
1981; Recenc trends of bloc ides in pikes of the Lake Paiganne. Chemosphere
10:405-414.
Paasivirca, J. , J. Sarkka, K. Surma-Ano, T. tiumppi, r. .boiokkanen and M.
Marttinen. 1983. Food chain enrichment of organochlorine compounds and
mercury in clean and polluted lakes of Finland. Chenosphere 12:239-252.
Palmer, C.M. and I.E. Maloney. 1955. Preliminary screening for potential
al^icides. Ohio J. Sci. 55:1-8.
Parrish, P.R., E.E. Dyar, J.M. Enos and W.G. Wilson. U73. Chronic toxic ity
of chlordane, trifluralin, and pentachlorophenol to saeepsliead rainnows
(Cyprinodon variegatus). EPA-600/3-73-010. National Tecimical Information
Service, Springfield, VA.
112
-------
Peer, M.M., J. Nirmala and M.N. Kutty. 1983. Effects of pentachlorophenol
(NaPCP) on survival, activity and metabolism in Rhinomugil corsula
(Hamilton), Cyprinus carpio (Linnaeus) and Tilapia mossambica (Peters) .
Hydrobiologia 107:19-24.
Peterson, R.H. 1976. Temperature selection of juvenile Atlantic salmon (Salmo
sala£> as influenced by various toxic substances. J. Fish. Res. Board Can.
33:1722-1730.
Phipps, G.L. and G.W. ttolcombe. 1985. A method for aquatic multiple species
toxicant testing: Acute toxicity of 10 chemicals to 5 vertebrates and 2
invertebrates. Environ. Pollut. (Series A) 38:141-157.
Phipps, G.L., G.W. Holcombe and J.T. Fiandt. 1981. Acute toxicity of phenol
and substituted phenols to the fathead minnow. Bull. Environ. Contain.
Toxicol. 26:585-593.
Pierce, R.H., Jr. 1978. Fate and impact of pentachlorophenol in a freshwater
ecosystem. EPA-600/3-78-063. National Technical Information Service,
Springfield, VA.
Pierce, R.H., Jr., C.R. Brent, H.P. Williams and S.G. Reeves. 1977.
Pentachlorophenol distribution in a fresh water ecosystem. Bull. Environ.
Contam. Toxicol. 18:251-258.
113
-------
Pruitt, G.W., B.J. Grantham and R.H. Pierce, Jr. 1977. Accumulation and
elimination of pentachlorophenol by the bluegill, Lepomis macrochirus. Trans.
Am. Fish. Soc. 106:462-465.
Rao, K..R. and D.G. Doughtie. 1984. His to pathological changes in grass shrimp
exposed to chromium, pentachlorophenol and dithiocarbamates. tlar. Environ.
Res. 14:371-395.
Rao, K..R. , P.J. Conklin and A.C. Brannon. 1978. Inhibition of limb
regeneration in the grass shrimp, Palaemonetes pugio, by sodium
pentachlorophenol. In: Pentachlorophenol: Chemistry, pharmacology and
environmental toxicology. Rao, K.R. (Ed.). Plenum Publishing Company, New
York, NY. pp. 193-203.
Rao, K.R. , F.R. Fox, P.J. ConklLn, A.C. Cantelmo ana A.C. Brannon. 1979.
Physiological and biochemical investigations of the toxicity of pentachloro-
plienol to crustaceans. In: Marine pollution: Functional responses. Vernberg,
W.3., F.P. Thurberg, A. Calabrese and F.J. Vernberg (Eds.). Academic Press,
New York, NY.
Rao, K.R., F.R. Fox, P.J. Conklin and A.C. CanteLmo. .Ml. Comparative
toxicology and pharmacology of chlorophenols: Studies on the ^rass shrimp,
Palaemonetes pugio. In: Biological .nonitoring of marina pollutants. Vernberg,
J., A. Calabrese, F.P. Thurberg and W.b. Vernberg (Eds.,. Academic Press, New
York, NY. pp. 37-72.
114
-------
Rao, P.S., V.S. Durve, 3.S. Khangarot and S.S. Shekhawac. 1983. Acute
toxicity of phenol, pentachlorophenol and sodium pentachlorophenate to a
freshwater astracod Cypris subfilobosa (Sowerby) . Acta Hydrochim. Hydrobiol.
11:457-465.
Ray, L.E., H.E..Murray and C.S. Giam. 1983. Organic pollutants in marine
samples from Portland, Maine. Chemosphere 12:1031-1038.
Renberg, L., E. Masell, G. Sundstrom and M. Adolfsson-Erici. 1983. Levels of
chlorophenols in natural waters and fish after an accidental discharge of a
wood-impregnating solution. Ambio 12:121-123.
Ribo, J.M. and K.L.E. Kaiser. 1983. Effects of selected chemicals to
Photoluminescent bacteria and their correlation with acute and sublethal
effects on other organisms. Chemosphere 12:1421-1442.
Richter, J.E. 1932. Results of algal toxicity tests with priority pollutants.
University of Wisconsin-Superior, Superior, wi. (Memorandum to" Charles
Stephan, U.S. EPA, Duluth, IM. June 30.)
Robinson-Wilson, E.F., T.P. Boyle and j.o. Petty. 1983. Effects of increasing
levels of priory production on pentachlorophenol residues in experimental
pond ecosystems. In: Aquatic toxicology and hazard assessment: Sixth
symposium. Bishop, W.E., R.D. Card.ell, and B.B. Heidolph (Eds.). ASTM SIP
802. American Society for Testing and Materials, Philadelphia, PA. pp.
"> 1 n •* r i
239-251.
115
-------
Rubinstein, N.I. 1978. Effect of sodium pentachlorophenol on the feeding
activity of the lugworm, Arenicola cristat* Stimpson. In: Pentachlorophenol:
Chemistry, pharmacology and environmental toxicology. Rao, K. R. (Ed.). Plenum
Publishing Company, New York, NY. pp. 175-179.
Rubinstein, N. 1981. U.S. EPA, Gulf Breeze, FL. (Memorandum to S. Tagatz,
U.S. EPA, Gulf Breeze, FL.)
Ruesink, R.G. and L.L. Smith, Jr. 1975. The relationship of the 96-hour LC50
to the lethal threshold concentration of hexavalent chromium, phenol, and
sodium pentachlorophenate for fathead minnows (Pimephales promelas
Rafinesque). Trans. Am. Fish. Soc. 104:567-570.
Saarikoski, J. and K. Kaila. 1977. Effects of two chlorinated phenols on the
spontaneous impulse activity of the abdominal tonic motor system in the
crayfish (Astacus .fluviatilis L.). Bull. Environ. Contam. Toxicol. 17:40-48.
Saarikoski, J. and M. Viluksola. 1981. Influence of pH on the toxicity of
substituted phenols to fish. Arch. Environ. Contam. Toxicol. 10:747-753.
Saarikoski, J. and M. Viluksela. 1982. Relation between physicochemical
properties of phenols and their toxicity and accumulation in fish.
Ecotoxicol. Environ. Safety 6:501-512.
116
-------
Salkinoja-Salonen, M. , M. Saxelin and J. Pere. 1981. Analysis of toxicUy and
biodegradability of organochlorine compounds released into the environment in
bleaching effluents of kraft pulping. In: Advances in the identification and
analysis of organic pollutants in water. Vol..2. Keith, L.H. (Ed.).
Butterworth, Stoneham, MA. pp. 1131-1164.
Sarojini, R., A.K. Khan, M.S. Mirajkar and R. Nagabhushanara. 1983. Effect of
sodium pentachlorophenate on the calcium content of the freshwater prawn
(Caridina rajadhari). J. Environ. Biol. 4:77-80.
Schauerte, W., J.P. Lay, W. Klein and F. Korte. 1982. Influence of
2,4,6-trichlorophenol and pentachlorophenol on the biota of aquatic systems.
Chemosphere 11:71-79.
Schimrael, S.C. and R.L. Garnas. 1985. Interlaboratory comparison of the ASTM
bioconcentration test method using the eastern oyster. In: Aquatic toxicology
and hazard assessment. Banner, R.C. and D.J. Hansen (Eds.). ASTM STP 891.
American Society for Testing and Materials, Philadelphia, PA. pp. 277-287.
Schimmel, S.C., J.M. Patrick, Jr., and L.F. Faas. 1978. Effects of sodium
pentachlorophenate on several estuarine animals: Toxicity, uptake, and
depuration. In: Pentachlorophenol: Chemistry, pharmacology and environmental
toxicology. Rao, K.R. (Ed.). Plenum Publishing Company, New York, NY. pp.
147-155.
117
-------
Shim, J.C. and L.S. Self. 1973. Toxicity of agricultural chemicals to
larvivorous fish in Korean rice fields. Trop. Med. 15:123-130.
Sloley, B.D., B.E. Hickie, D.G. Dixon, R.G.bi. Downer andR.J. Martin. 1986.
The effects of sodium pentachlorophenate, diet, and sampling procedure on
amine and tryptophan concentrations in Che brain of rainbow trout, Salmo
zairdneri Richardson. J. Fish. Biol. 28:267-277.
Slooff, W. 1978. Biological monitoring based on fish respiration for
continuous water quality control. In: Aquatic pollutants: Transformation and
biological effects. Hutzinger, 0. , I.H. VanLelyveld, and B.C.J. Zoeteman
(Eds.). Pergamon Press, Oxford, NY. pp. 501-505.
Slooff, W. 1979. Detection limits of a biological monitoring system based on
fish respiration. Bull. Environ. Contam. Toxicol. 23:517-523.
Slooff, W. 1982. A comparative study of the short-tena effects of 15
chemicals on fresh water organisms of different trophic levels. PB83-200386.
National Technical Information Service, Springfield, VA.
Slooff, W. 1983. Benthic rnacroinvertebrates and water quality assessment:
Some toxicological considerations. Aquae. Toxicol. 4:?3-8
-------
Slooff, W. and J.H. Canton. 1983. Comparison of the susceptibility of LI
freshwater species to 8 chemical compounds. II. (Semi)chronic toxicity tests.
Aquat. Toxicol. 4:277-282.
Slooff, W., J.H. Canton and J.L.M.. Hermens. 1983a. Comparison of the
susceptibility of 22 freshwater species to 115 chemical compounds. I.
(Sub)acute toxicity tests. Aquat. Toxicol. 4:113-128.
Slooff, W., D. DeZwart and J.M. Marquenie. 1983b. Detection limits of a
biological monitoring system for chemical water pollution based on mussel
activity. Bull. Environ. Contam. Toxicol. 30:400-405.
Smith, R.A. and M.J. Ord. 1979. Morphological alterations in the mitochondria
of Amoeba proteus induced by uncoupling agents. J. Cell Sci. 37:217-229.
Spehar, R.L., U.P. Nelson, M.J. Swanson and J.W. Renoos. 1985. Pentachloro-
phenol toxicity to araphipods and fathead minnows at different test pH values.
Environ. Toxicol. Chem. 4:389-397.
Statham, C.N. and J.J. Lech. 1975. Potentiation of the acute toxicity of
several pesticides and herbicides in trout by carbaryl. Toxicol. Appl.
Pharmacol. 34:83-87.
119
-------
Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A.
Brungs. L985. Guidelines for deriving numerical national water quality
criteria for the protection of aquatic organisms and their uses. PB85-227049.
National Technical Information Service, Springfield, VA.
Strufe, R. 1968. Problems and results of residue studies-after application of
molluscicides. Residue Rev. 24:80-168.
Stuart, R.J. and J.B. Robertson. 1985. Acute toxicity of pentachlorophenol to
the freshwater snail, Gillia altilis. Bull. Environ. Contam. Toxicol.
35:633-640.
Sugiura, K. , II. Aoki, S. Kaneko, I. Daisaku, Y. Komatsu, tt. Shibuya, H.
Suzuki and M. Goto. 1984. Fate of 2,4,6-trichlorophenol, pentachlorophenol,
p-chlorobiphenyl, and hexachlorobenzene in an outdoor experimental pond:
Comparison between observations and predictions based on laboratory data.
Arch. Environ. Cantata. Toxicol. 13:745-758.
•.
Tagatz, M.E., J.M. Ivey, J.C. Moore and M. Tobia. 1977. Effects of
pentachlorophenol on the development of estuarine communities. J. Icxicol.
Environ. Health 3:501-506.
Tagatz, M.E., J.M. V/ay and M. lobia. 1978. Effects j£ Dowicide J-SI on
development of exper.aental estuarine macrobenthic communities. In:
Pentachlorophenol: Chemistry, pharmacology and environmental toxicology. Rao,
K.R. (Ed.). Plenum Publishing Company, New York, MY. pp. 157-163.
120
-------
Tagatz, M.E., J.M. Ivey, H.K. Lehman, M. Tobia and J.L. Oglesby. 1980.
Effects of drilling mud- on development of experimental estuarine macrobenthic
communities. In: Symposium on research on environmental fate and effects of
drilling fluids and cuttings. Vol. 2. American Petroleum Institute,
Washington, DC. pp. 847-865.
Tagatz, M.E., J.M. Ivey, N.R. Gregory and J.L. Oglesby. 1981. Effects of
pentachlorophenol on field and laboratory-developed estuarine benthic
communities. Bull. Environ. Contam. Toxicol. 26:137-143.
Tagatz, M.E., C.H. Deans, G.R. Plaia and J.D. Pool. 1983. Impact on and
recovery of experimental macrobenthic communities exposed to pentachloro-
phenol. Northeast Gulf Sci. 6:131-136.
Thomas, P. and H.W. Wofford. 1984. Elevated acid-soluble thiol content in
fish hepatic tissue: A response to pollutants. Mar. Environ. Res. 14:486-488.
Thomas, P., R.S. Carr and J.M. Neff. 1981. Biochemical stress responses of
mullet Mu£il cephalus and polychaete worms Neanches virens to pentachloro-
phenol. In: Biological monitoring of marine pollutants. Vernberg, J., A.
Calabrese, P.P. Thurberg and W.B. Vernberg (Eds.). Academic Press, New York,
NY. pp. 73-103.
Thurston, R.V., T.A. Gilfoil, E.L. Meyn, R.K. Zajdel, T.I. Aoki and G.D.
Veith. 1985. Comparative toxicity of ten organic chemicals to common aquatic
species. Water Res. 19:1145-1155.*
121
-------
Tiedge, H., R. Nagel and K. Urich. 1986. Effect of 3ubstituted phenols on
transaminase activity in the fish, Leuciscus idus melanotus. L. Bull.
Environ. Contain. Toxicol. 36:176-180.
Tomiyama, T., K.Kobayashi, N. Uyeda and K. Kawabe. 1962. The toxic effect of
pentachlorophenate, a herbicide, on fishery organisms in coastal waters - IV.
The effect on Venerupis phillipinarum of PGP which is constantly supplied or
adsorbed to estuary mud. Bull. Jpn. Soc. Sci. Fish. 28:422-425.
Tomizawa, C. and H. Kazano. 1979. Environmental fate of rice pad
-------
U.S. EPA. 1983b. Water quality standards handbook. Office of Water
Regulations and Standards, Washington, DC.
U.S. EPA. 1985a. Appendix B - Response to public comments on "Guidelines for
deriving numerical national water quality criteria for the protection of
aquatic organisms and their uses." Fed. Regist. 50:30793-30796. July 29.
U.S. EPA. 1985b. Technical support document for water-quality based toxics
control. Office of Water, Washington, DC. September.
U.S. EPA. 1986. Chapter 1 - Stream design flow for steady-state modeling. In:
Book VI - Design conditions. In: Technical guidance manual for performing
waste load allocations. Office of Water, Washington, DC.
Van Dijk, J.J., C. Van der Meer and M. Wijnana. 1977. The toxicity of sodium
pentachlorophenolate for three species of decapod crustaceans and their
larvae. Bull. Environ. Contain. Toxicol. 1:622-630.
Van Leeuwen, C.J., P.S. Griffioen, W.H.A. Vergouw and J.L. Maas-Diepeveen.
1985. Differences in susceptibility of early life stages of rainbow trout
(Salmo gairdneri) to environmental pollutants. Aquat. Toxicol. 7:59-78.
Veith, G.D., D.L. DeFoe and B.V. Bergstedt. 1979. Measuring and estimating
the bioconcentration factor of chemicals in fish. J. Fish. Res. Board Can.
36:1040-1048.
123
-------
Veith, G.D., D.W. Kuehl, E.N. Leonard, K. Welch and G. Pratt. 1981.
Polychlorinated biphenyls and other organic chemical residues in fish from
major United States watersheds near the Great Lakes, 1978. Pestic. Monit. J.
15:1-8.
Verraa, S.R., S. Rani, A.K. Tyagi and R.C. Dalela. 1980. Evaluation of acute
toxicity of phenol and its chloro- and nitro-derivatives to certain teleosts .
Water Air Soil Pollut. 14:95-102.
Verraa, S.R., S. Rani and R.C. Dalela. 1981a. Effects of phenolic compounds on
in vivo blood parameters of a fish Notopterus notopterus. J. Environ. Sci.
Health 168:273-282.
Verraa, S.R., S. Rani and R.C. Dalela. 1981b. Synergism, antagonism, and
additivity of phenol, pentachlorophenol, and dinitrophenol to a fish
(Notopterus notopterus) . Arch. Environ. Contain. Toxicol. 10:365-370.
Verraa, S.R., I.P. Tonk and R.C. Dalela. 1981c. Deterraination of the maximum
acceptable toxicant concentration (MATC) and the safe concentration for
certain aquatic pollutants. Acta Hydrochira. Hydrobiol. 9:247-234.
Verma, S.R., S. Rani and R.C. Dalela. 1982. Alterations in certain organic
components and serum electrolytes in Notopterus notopterus chronically
exposed to phenolic compounds. Aota Hydrochim. Hydrobiol. 10:31-40.
-------
Verma, S.R. , I.P. Tonk, A.K. Gupta and M. Saxena. 1984. Evaluation of an
application factor for determining the safe concentration of agricultural and
industrial chemicals. Water Res. 18:111-115.
Vigers, G.A. and A.W. Maynard. 1977. The residual oxygen bioassay: A rapid
procedure to predict effluent toxicity to rainbow trout. Water Res.
11:343-346.
Vigers, G.A., J.B. Marleave, R.G. Janssen and P. Borgraann. 1978. Use of
larval herring in bioassays. In: Proceedings of the fourth annual aquatic
toxicology workshop. Davis, J.C., G.L. Greer and I.K. Birtwell (Eds.).
Canadian Fisheries and Marine Service Technical Report 818. Environmental
Protection Service, Ottawa, Canada, pp. 31-52.
von Rumker, R., E.W. Lawless, A.F. Meiners, K.A. Lawrence, G.L. Kelso and F.
Horay. 1974. Production, distribution, use and environmental impact potential
of selected pesticides. PB-238795 or EPA-540/I-74-001. National Technical
Information Service, Springfield, VA. pp. 308-319.
Walsh, G.E., D.L. Hansen and D.A. Lawrence. 1982. A flow-through system for
exposure of seagrass to pollutants. Mar. Environ. Res. 7:1-11.
Webb, P.W. and J.R. Brett. L973. Effects of sublethal concentrations of
sodium pentachlorophenate on growth rate, food conversion efficiency, and
swimming performance in underyearling sockeye salmon (Oncorhynchus nerka). J.
Fish. Res. Board Can. 30:499-507.*
125
-------
Weinbach, E.E. 1954. The effect of pentachlorophenol on oxidative
phosphorylation. J. Biol. Chem. 210:545-550.
Weinbach, E.E. 1956. The influence of pentachlorophenol on oxidative and
glycolytic phosphorylation in snail tissue. Arch. Biochem. Biophys.
64:129-143.
Weiss, U.M., P. Moza, I. Scheunert, A. Haque and F. Korte. 1982. Fate of
pentachlorophenol-14C in rice plants under controlled conditions. J.
Agric. Food Chem. 30:1186-1190.
Whitley, L.S. 1963. The resistance of tubificid worms to three common
pollutants. Hydrobiologia 32:193-205.
Woelke, C.E. 1965. Development o£ a bioassay method using tne marine algae
Macrocystis lutheri. Progress Report - Shellfish research. Washington
Department of Fisheries and Shellfish, Seattle, WA.
Woelke, C.E. 1972. Development of a receiving water quality bioassay
criterion based on the 48-hour Pacific oyster (Crassosc:3a £i&as) embryo.
Technical Report No. 9. Washington Department of Fisheries, Seattle, WA.
Wong, S.L. 1984. Toxicity and water quality: A bioassay ntarprecatioti.
J. Environ. Sci. Health L9A:377-386.
126
-------
Yount, J.D. and J.E. Richter. 1986. Effects of pentachlorophenol on
periphyton communities in outdoor experimental streams. Arch. Environ.
Contain. Toxicol. 15:51-60.
Yousri, R. and w. Hanke. 1985. The effects of pentachlorophenol, phenol and
other pollutants on the liver of carp (Cyprinus carpio L.). Comp. Biochem.
Biophys. 820:283-290.
Zaroogian, G.E. 1981. Results: Interlaboratory comparison-acute toxicity
tests using the 48-hr oyster embryo-larval assay. Contribution No. 223. U.S.
EPA, Narragansett, RI.
Zischke, J.A., J.W. Arthur, R.O. Hermanutz, S.F. Hedtke and J.'c. Helgen.
1985. Effects of pentachlorophenol on invertebrates and fish in outdoor
experimental channels. Aquat. Toxicol. 7:37-58.
Zitko, V., 0. Hutzinger and P.M.K. Choi. 1974. Determination of
pentachlorophenol and chlorobiphenyls in biological samples. Bull. Environ.
Contam. Toxicol. 12:649-653.
127
-------
U.S. Environmental Protection Agency
Region V, Library
230 South Dearborn Street
Chicago, Illinois 60604
------- |