United States
 Environmental Protection
 Agency
Off ice of Water
Regulations and Standards
Criteria and Standards Divisior
Washington DC 20460
440586009
 Vate
Ambient
Water Quality
Criteria
for
Pentachlorophenol -  1986

-------
AMBIENT AQUATIC LIFE WATER QUALITY CRITERIA  FOR

               PENTACHLOROPHENOL
      U.S.  ENVIRONMENTAL PROTECTION AGENCY
       OFFICE OF RESEARCH AND DEVELOPMENT
      ENVIRONMENTAL RESEARCH LABORATORIES
               DULUTH,  MINNESOTA
           NARRAGANSETT, RHODE ISLAND
                                U.S.  Environmental Protection Agency
                                Region V, Library
                                230  South Dearborn Street
                                CMr.aen

-------
NOTICES
This document has been reviewed by the Criteria and Standards Uivision,
Office of Water Regulations and Standards, U.S. Environmental Protection
Agency, and approved for publication.

Mention of trade names or commercial products does not constitute
endorsement or recommendation for use:

This document is available to the public through the Na
Information Service (NTIS), 5285 Port Royal Road, Sprin
                               VA 22161.

-------
                                 FOREWORD
     Section 304(a)(l) of the Clean Water Act of 1977 (P.L. 95-217)
requires the Administrator of the Environmental Protection Agency to
publish water quality criteria that accurately reflect the latest scientific
knowledge on the kind and extent of all identifiable effects on health
and welfare that might be expected from the presence of pollutants in any
body of water, including ground water.  This document is a revision of
proposed criteria based upon consideration of comments received from
other Federal agencies, State agencies, special interest groups, and
individual scientists.  Criteria contained in this document replace any
previously published EPA aquatic life criteria for the same pollutant(s).

     The term "water quality criteria" is used in two sections of the
Clean Water Act,  section 304(a)(l) and section 303(c)(2).  The term has a
different program impact in each section.  In section 304, the term
represents a non-regulatory, scientific assessment of ecological effects.
Criteria presented in this document are such scientific assessments.
If water quality criteria associated with .specific stream uses are adopted
by a State as water quality standards under section 303, they become
enforceable maximum acceptable pollutant concentrations in ambient waters
within that State.  Water quality criteria adopted in State water quality.
standards could have the same numerical values as criteria developed
under section 304.  However, in many situations States might want to
adjust water quality criteria developed under section 304 to reflect local
environmental conditions and human exposure patterns before incorporation
into water quality standards.  It is not until their adoption as part of
State water quality standards that criteria become regulatory.

     Guidelines to assist States in the modification of criteria presented
in this document,  Ln the development of water quality standards, and in
other water-related programs of this Agency,  have been developed by EPA.
                                    William A.  Whittington
                                    Director
                                    Office of Water Regulations and Standards

-------
                            ACKNOWLEDGMENTS
Daniel J.  Call
(freshwater author)
University of Wisconsin-Superior
Superior,  Wisconsin
                            Jeffrey L. Hyland
                            Jerry M. Neff
                            (saltwater authors)
                            Battelle New England Laboratory
                            Duxbury, Massachusetts
Charles E. Stephan
(document coordinator)
Environmental Research Laboratory
Duluth, Minnesota
                             David  J.  Hansen
                             (saltwater  coordinator)
                             Environmental  Research Laboratory
                             Narragansett,  Rhode Island
 Clerical  Support:
Terry L. Highland
Shelley A. Heintz
Diane L. Spehar
                                       IV

-------
                                  CONTENTS
                                                                         Pae
 Foreword

 Acknowledgments

 Tables
Introduction  ............................       i

Acute Toxi.ci.ty to Aquatic Animals   .................       3

Chronic Toxic ity to Aquatic Animals   ................       5

Toxicity to Aquatic Plants  .....................       9

Bioaccumulat ion  ..................  ;  .......      IQ

Other Data .............................      12

Unused Data   ............................      15

Summary  ..............................      18

National Criteria  .........................      19
References
                                                                          76

-------
                                 TABLES

                                                                         Page




1.   Acute Toxicity  of  PentachlorophenoL to  Aquatic  Animals  	    21




2.   Chronic Toxicity of Pentachlorophenol To  Aquatic  Animals  .  	    <*3



3.   Ranked Genus Mean  Acute Values  with Species  Mean  Acute-Chronic



    „  .	    46
    Ratios   	'



4.   Toxicity of Pentachlorophenol to Aquatic  Plants  	    52



5.   Bioaccumulation of Pentachlorophenol  by Aquatic Organisms  	    54




6.   Other Data on Effects of Pentachlorophenol on Aquatic Organisms  .  .    56
                                     VI

-------
  Introduction*

       Pentachlorophenol  (PCP)  and  its sodium  salt,  sodium pentachLorophenate

  (NaPCP),  are collectively the  second most heavily  used pesticide  in the

  United  States  (Cirelli  1978).  The principal uses  of PCP and NaPCP are

  in  the  treatment of various wood  products and as a wide-spectrum  fungicide

  and bactericide.  PCP** has been  found in fresh and salt water at ng/L to

  mg/L  concentrations (Buhler et al. 1973; Fountaine et al. 1976, Fox and

  Joshi 1984; Murray et al. 1931; Pierce 1978; Pierce et al. 1977;  Renberg

  et al.  1983) with higher concentrations associated with point discharges.

  PCP has also been found in tissues of fish (De Vault 1985; Kuehl  et al.

  1980; Paasivirta et al. 1980,1983: Pierce 1978; Pierce et al. 1977; Veith

  et al.  1981; Zitko et al. 1974),  in plankton, invertebrates, and  sediment

  (DeLaune et al. 1983; Murray et al. 1980, Paasivirta et al.  1980; Pierce

  1978; Pierce et al.  1977; Ray et  al.  1983),  and in humans (Bevenue et al.

  1967; Dougherty 1978; Dougherty et al.  1980; Kuehl et al. 1980).

      Several impurities are present in commercial-grade PCP, including

  Lower chlorinated phenoLs (e.g.,  tetrachLorophenoLs) and chLoriaated

 dibenzodioxins, dibenzofurans, diphenyLethers,  and 2-phenoxyphenols

  (Ahlborg and Thunberg 1980;  Nilsson et  al.  L978).   The highly toxic

 2,3,7,8-tetrachLorodibenzo-p-dioxin has not  been found in PCP or NaPCP,

 and due to the methods of synthesis,  is not  expected to occur (AhLborg
 * An understanding of the "Guidelines for Deriving Numerical National Water
   Quality Criteria for the Protection of Aquatic Organisms and Their Uses"
   (Stephan et al.  1985),  hereafter referred to as the Guidelines, and the
   response to public comment (U.S. EPA 1985a) is necessary in order to
   understand the following text, tables, and calculations.

** "PCP" is often used in the text to refer to the total amount of un-ionized
   pentachlorophenol and the pentacnlorophenate ion that occurs in water
   regardless of whether PCP or NaPCP was initially added to water.

-------
and Thunberg 1980).   Cleveland  et  al.  (1932)  reported  that  a  composite  of




three commercial PCP formulations  concaved much  higher  concentrations




of hepta-, octa- and nonachlorophenoxyphenols,  heptachlorodibenzodioxin,




octachlorodibenzodioxin,  and octachlorodibenzofuran,  and was  more  toxic




to fish, than either purified PCP  (99% PCP)  or  Dowicide  EC-7  (91%  PCP).




Dowicide EC-7 contained less of the hepta-,  octa- and nonachlorophenoxy-




ohenols than purified PCP, and was less toxic than purified PCP.  Although




the  toxicities  of the individual  impurities  are unknown and their concentrations




apparently  vary from batch to batch of PCP,  Dow1Cide EC-7  seems to be  an




acceptable  source of PCP  for toxicity and bioconcentration tests.  A more




 recent  study has  shown that ultrapure PCP is considerably  less  toxic than




 a mixture of the  major impurities in  commercial  PCP,  consisting mainly of




 octa- and nonachlorophenoxyphenols  (Hamilton et  al.  1936).  Data-  concerning




 PCP should be  reassessed  as  more  information becomes  available  regarding




 the toxicities of various grades  of PCP  and  their impurities to various species




 and the composition of the PCP that is produced, used,  and discharged.




      The toxicity of PCP to animals is due  to  the uncoupling of oxidatwe




 ohosphoryiation in the mitochondria (Ishak  et  al. 1970; Weinbac.h 1954,1956)




  and  resultant  reduced production of ATP.  This  is accompanied  by an acceleration




  of  metabolic  rate  and the utilization of tissue  energy  reserves, causing  loss




  of  weight  (Cantelmo et al.  1973: Holmberg et  al.  1972;  Rao  et  al.  1979).




  Activities of  various enzymes  are  also  affected by PCP (Bostrom  and




  Johansson 1972;  Holmberg et  al.  1972; Rao et  al. ~1979).




       PCP is  a weak acid  with  a pKa of  about 10^ (Blackman  et  al.  1955;




  Callahan et  al.  1979: Cessna and Grover 1978; Mrak 1974).  Consequently,




   Us toxicity  and potential for uptake by organisms are pH-dependent




   (Crandall and Goodnight 1959; Kobayashi and Kishino 1980; Saarikoski and
                                      2

-------
 Viluksela  1981;  Spehar et  al.  1985).  Both bioconcentration  and  toxicity




 increase as  pH decreases,  due  to  the greater penetration of  cell membranes




 by  un-ionized PCP molecules  than  by the  pentachlorophenate ion.  Transfer




 of  PCP  from  water to  fish  is considered  to be mainly by passive diffusion




 of  the  un-ionized form across  the gill membrane  (Kishino and Kobayashi  1980).




     Unless  otherwise noted, all  concentrations  reported herein are




 expressed  as pentachlorophenol, not as the material tested.  The criteria




 presented  herein supersede previous aquatic life water quality criteria




 for PCP (U.S. EPA 1980) because these new criteria were derived using




 improved procedures and additional information.  Whenever adequately




 justified, a national criterion may be replaced by a site-specific criterion




 (U.S. EPA  1983a), which may  include not  only site-specific criterion




 concentrations (U.S. EPA 1983b),  but also site-specific durations of averaging




 periods and  site-specific  frequencies of allowed excursions  (U.S. EPA 1985b).




 The latest comprehensive literature search for information for this




 document was conducted in July, 1986;  some more recent information might have




 been included.






 Acute Toxicity to Aquatic Animals




     The acute toxicity of PCP to freshwater fish depends on the life stage




 of the fish and the pH,  temperature,  and concentration of dissolved oxygen




 in the water.  Van Leeuwen et al. (1985) found that fry of rainbow trout were




much more sensitive than embryos.  PCP was more toxic to the fathead




minnow (Crandall and Goodnight 1959)  and to a nonresident fish, Notopterus




 notopterus, (Gupta et  al.  1983b) at higher temperatures.   Also, Goodnight




 (1942) observed that fish succumbed more rapidly at higher temperatures




 (28-30°C)  than at cooler temperatures  (9-24'C).   Acute toxicity to Notopterus

-------
notopterus increased with a decrease in Che concentration of dissolved




oxygen (Gupta et al. 1983a).



     Of the variables studied,  however, pH is the only one for which




quantitative data are available for a variety of freshwater species.




The acute value increases and toxicity decreases as pH increases.  An




analysis of covariance (Dixon and Brown 1979; Neter and Wasserman 1974)




was performed using the natural logarithm of the acute value as the




dependent variable, species as the  treatment or grouping variable,  and




pH as  the covariate or independent  variable.  This analysis of covariance




model  was fit to the data  in Table  1  for  the five  freshwater  species  for




which  acute values  are available over  a range of pH.  The  slopes  for  all




five  species  are between 0.67  and  1.2  (see  end  of  Table  1).   An  F-test




showed that,  under  the assumption  of  equality of slopes,  the  probability




of obtaining  five  slopes as  dissimilar as these is P  - 0.28.   This  was




 interpreted  as  indicating  that it  is  not  unreasonable to assume  that  the




 slopes for  the  five species  are  the same.



      The pooled slope of 1.005 was used with the data Ln Table 1 to




 adjust the acute values  to pH - 6.5,  where possible.   Species Mean Acute




 Values were calculated as geometric means of the adjusted acute val.ues,




 and Genus Mean Acute Values at pH  - 6.5  (Table 3)  were then calculated




 as geometric means of the available freshwater Species Mean Acute  Values.




 Acute values are available for more than one species in each  of  three  genera




 and  the  range  of Species  Mean Acute Values within each  genus  is  less  than




 a factor of  2.3.   Of the  33 genera for which acute values  are available,




 the  most  sensitive genus, Cyprinus,  was  over  10,000  times  more  sensitive




 than the most  resistant,  Orconectts.   The freshwater Final Acute Value (FAV)




  for  PCP at  pH  = 6.5  was  calculated to be 10.97 ug/L  using the procedure

-------
 described in the Guidelines and the Genus Mean Acute- Values in Table 3.

 The only Species Mean Acute Value that is lower than the FAV is that for

 the common carp, Cyprinus carpio.  The freshwater Criterion Maximum

 Concentration (in ug/L) =» gU.005(pH)-4.830]


      Tests of the acute toxicity of PCP to resident North American

 saltwater animals have been performed with 13 species  of invertebrates

 and five species of fish (Table 1).   The range of acute values for


 invertebrates extends from 36.95 pg/L for embryos of the American oyster,

 Crassostrea  virginica (Borthwick and Schimmel 1978) to 18,000  ug/L for

 the adult stage  of the blue mussel,  Mytilus  edulis (Adema and  Vink 1981).

 The range of acute values for saltwater fish is narrower, extending from


 22.63  ug/L for late  yolk-sac  larvae  of the Pacific herring,  Clupea harengus

 pallasi  (Vigers  et al.  1978)  to 442  pg/L for juvenile  sheepshead  minnow,

 Cyprinodon variegatus (Parrish  et  al.  1978).   Fish appear to be generally

 more sensitive than  invertebrates  to PCP.


     Embryos  and  larvae  of  the  polychaete  worm,  Ophryotrocha diadema, and

 the mussel,  Mytilus  edulis, were more  sensitive  to PCP  than  adults  of the

 same species  (Aderaa  and  Vink  1981; Woelke  1972).   Tests  with Pacific

 herring,  Clupea harengus  pallasi,  (Vigers  et  al.  1978)  and the nonresident

 Plaice, Pleuronectes  platessa,  (Adema  and  Vink  1981) revealed  that

 sensitivity to PCP increases between  the newly hatched yolk-sac larval

 stage and the late larval premetamorphosis stage.   Juveniles and  adults
                                         »
 are slightly less  sensitive than larvae.


     Environmental factors, such as  temperature, pH, and  salinity, might

 have an effect on  the acute toxicity of PCP to some saltwater animals.

With the oligochaete worms, Limnottriloides verrucosus and Monophelephorus

cuticulatus.  sensitivity to PCP increased somewhat between 1°C and 10°C

-------
at pH - 7,  and between pH = 6  and  pH =  8  at  a temperature  of 10°C




(Chapman et al. 1982b).   Larvae  of the  blue  mussel,  Mytilus  edulis,  were




more sensitive to PCP at a salinity of  24 g/kg than  at  a salinity of 28




g/kg (Dimick and Breese 1965;  Woelke 1972).




     With some saltwater crustaceans, the stage of the  molt  cycle also




seems to affect sensitivity to PCP.  Late premolt and molting grass




shrimp, Palaemonetes pugjo, were more than five times as sensitive to PCP




as interraolt animals (Conklin and Rao 1978a,b; Rao and Doughtie 1984).  This




effect was attributed to the greater permeability of the integument of




the shrimp during molting.



     Of the 17 saltwater genera for which acute values are  available,  the




most sensitive genus, Clupea, is more than 247 times more sensitive than




the most resistant, Cr_e_£iduU_ (Table 3).  The  four most sensitive genera




include two fish  and  two  invertebrates and the range of the four Genus  Mean




Acute  Values  is  a  factor  of 3.5.   The saltwater  Final Acute Value  calculated




from the values  in  Table  3  is 25.05  ^g/L, which  is very close  to the  acute




value  for  the  most  sensitive  tested  saltwater  species.






Chronic Toxicity to Aquatic Animal^



     Of  the  freshwater  species  with which chronic tests  have been conducted




on PCP,  the  cladoceran, Ceriodaphnia ret^J£ul_at_a_, is  tne most sensitive




 (Table 2), with a reduction in  offspring occurring  at  4.1 ,Jg/L, the




 lowest concentration tested (Hedtke et  al.  1986).  Production of embryos.




 by the snail, Physa gyrina, was reduced at  a PCP concentration of 26




 ,jg/L,  the lowest concentration tested (Hedtke et al. 1986).  A chronic-




 value of 240 ,jg/L  for Dap_hn_i£ ma^na was based upon mortality  (Adema




  1978).  Similarly, survival was the endpoint that determined  the chronic-




 values of 177 and  221  Mg/L for Simocephalus vetulus_ (Hedtke et  al.  1986).




                                     6

-------
      Significant  increases  in mortality and  decreases  in length and weight




 occurred among  rainbow trout  at  19  Mg/L after  a  72-day exposure (Dominguez




 and Chapman  1984),  but the  trout  were  not  affected  at  11  pg/L.   Dominguez and




 Chapman used a  pure form  of PGP  (99+%)  and found  that  yolk  sac  edema  and




 cranial malformations  were  rare  as  compared  to their more common incidences




 in  studies with technical-grade  PGP.




      Several studies with the fathead  minnow in  the pH range  from 6.5 to




 8.5  resulted in chronic values from 24  to  144  ug/L  (Table 2).   Spehar et




 al.  (1985) studied  the relationship between  pH and  chronic  toxicity,  and




 obtained  chronic values of  24, 40,  49,  and 89  (jg/L  at  pH  =  6.5,  7.5,  8.0,




 and  8.5,  respectively.  A linear  regression  of ln(chronic value)  on pH




 resulted  in  a slope of 0.6174.  This slope is  similar  to  the  slope  of




 0.6782  obtained by  the  same investigators  in an acute  toxicity. study  with




 the  fathead  minnow.  However, because data are available  for  chronic




 toxicity  versus pH  for  only one species, the acute  pooled slope  of  1.005




 was  also  applied to the freshwater  chronic data in  Table  2, where  possible,




 to adjust the chronic  values  to pH  = 6.5,  to allow  a comparison  of  freshwater




 chronic values  at a common  pH.




     The  long-term sublethal  toxicity of PCP to fish has been shown to be




 affected by  temperature and concentration  of dissolved oxygen (Table  6).




Newly hatched rainbow  trout were  affected  more at 6°C  than  at 10°C,




whereas after yolk sac sorption,   a  greater effect on growth occurred  at




 20°C than at  12°C (Hodson and Blunt 1981).  They concluded  that,  if these




 laboratory data were applied  in the field  to wild trout populations,




temperature effects on PCP toxicity would be greatest  both during embryo




development and subsequent growtty of young trout.

-------
     Decreased  concentrations  of  dissolved  oxygen  in  the water  increased




the toxicity of PCP  to young  rainbow trout  (Chapman and  Shumway 1978).




After a 24-day  exposure to 37  Mg/L,  alevins reared at dissolved oxygen




concentrations  of 3, 5, and 10 mg/L  suffered 76,  20,  and 7% mortality,




respectively.  Also, the time required for  trout  to attain maximum growth




was prolonged at the two lower concentrations of  dissolved oxygen.




     Usable data, according to the Guidelines, on the chronic toxicity of




PCP are available for only two saltwater species, the polychaete worm,




Ophrvotrocha diadema,  (Table 6)  and the sheepshead minnow, Cyprinodon




variegatuA.  (Table  2).  Test populations of Ophrvotrocha diadema were




exposed to  PCP  in a renewal life-cycle  test extending from 2 to 3-day-old




larvae  to two-week-old second  generation larvae  (Hooftman  and  Vink  1980).




The  most  sensitive  effect  was  an apparent  inhibition of reproduction  at




 U Mg/T-  This value was  not  used in  Table 2  because Che  authors  did  not




 report  any  statistical analyses  of  the  data.   A  complete  life-cycle test




 was  conducted  with  the sheepshead minnow,  Cyprinodon variegatus (Parrish




 et ai.  1978).   The  most sensitive effect  was decreased  long-term survival




 of the first generation fish at 88 «/L.   At 195 Mg/L,  survival oc second




 generation embryos   and juveniles was reduced.



      The seven  available  Species Mean Acute-Chronic Ratios range from




 0.8945 to  over  15.79  (Table 3),  but  the two  highest  values are ooth  "greater




 than"  values  and were obtained  with  two freshwater  species  that  are  much




 raore  .cutely  resistant than  the other  four freshwater  species.   Therefore,




  the Final  Acute-Chronic  Ratio of 3.166 was calculated  as  the  geometric




  *aan of  the fxve Species Mean Acute-Chronic Ratios  racing from 0.8945  to




  6.873.  When  this  ratio is  used with the  freshwater Final AcuLe Value and




  the oooled .lope  for  the pH-t«icity relationship  (Table 3-,  the  resulting




                                      8

-------
 freshwater  Final Chronic Value  (in ,jg/L) = J1-005(pH)-5.290]^  Divj.si.0n


 o£  the  saltwater Final Acute Value by the Final Acute-Chronic Ratio

 results  in  a  saltwater Final Chronic Value of  7.912 ^g/L.  This is about

 a  factor of 8 below  the only available saltwater chronic value, but no

 chronic  test  on PCP  has been conducted with any of the  13 acutely most

 sensitive saltwater  species.



 Toxicity to Aquatic  Plants


     Freshwater plants are sensitive to PCP over a range of concentrations

 from 7.5 to 3,200 ,jg/L (Tables 4 and 6).  Blackraan et al. (1955) observed

 that the degree of chlorosis in a 48-hr exposure of Lemna minor was

 very sensitive to small changes in PCP concentrations.  Only a slight

 concentration increase was required to induce  502 chlorosis in all of the

 duckweed fronds as compared to 50 % induction  in none of the fronds.  In

 a prolonged exposure of the vascular plant, El odea canadensis, significant

 biomass reductions occurred at progressively lower concentrations of PCP

 as duration of exposure increased (Hedtke et al. 1986).   Biomass

 reductions were detected at 1,440 Jg/L atter 7 days,  810 ,Jg/L atter 14

days, and 380 ,jg/L after 21 days (Table 6).  Biomass  was not affected at

any time by the next lower concentration of 230 ,jg/L.    La contrast,

neither reduced frond production nor chlorosis was observed in Lemna

minor at the highest PCP concentration of 1,440 ,jg/L (Hedtke et al.

 1986).   The river water used in both of these tests might have had some

effect  upon the results.


     Complete destruction of chlorophyll in ChU^reU.^ pyrenoidosa_ occurred

at  a PCP concentration of 7.5 jg/L (Huang and Gloyna  1967).   In a 7-day
                                  »
study with Selenastrum capricornutum.  cell  numbers and population growth

rates were significantly  reduced by  50 ^ig/L,  but were  not affected by 10

-------
,jg/L (Adams et al.  1985).   Concent rat Lons near 300 ,jg/L resulted in 50%

reductions of Selenastrum populations in two separate studies (Crossland

and Wolff 1985;. Richter 1982).   The 4-day EC50 for Scenedesmus subspicatus

was 90 >Jg/L (Geyer et al.  1985).

     Usable data on the toxicity of PCP to saltwater plants are

available for eight phytoplankters, one macroalgal species, and one

vascular plant (Table 4).   The 96-hr EC50s, based on reduction of cell

population growth, range from 17.40 ,ag/L for the diatom, Skeletonema

costaturn (Walsh et al. 1982) to 3,600 ,jg/L for the green alga, Dunaliella

tertiolecta (Aderaa and Vink 1981).  Giant kelp, Macrocystis g2jri.fera,

and seagrass, Thalassia testudinum,  are  about as sensitive as  the

phytoplankters.  The  range of sensitivities of saltwater plants  to  PCP  is

similar  to that  for  saltwater animals and, therefore,  a criterion  that

protects  saltwater animals will probably also protect  saltwater  plants.



B i o ac c umu1 a t ion

     Bioconcentration of PCP  from water, like toxicity, has  been shown to

be  inversely  related to pH  (Kobayashi  and  Ki.shi.no  1980; Spehar et  al.

 1985).   PCP  bloconcentrated .in  tne tissues  of fish  from 7.3  to 1,066

 times  (Table  5),  with test  durations from 16  Lo  115 days.   The gall

 bladder  concentrated the highest  Levels of  PCP  (Glickman  et  al.  1977,

 Kobayashi and Akitake 1975b,  McKim et  al.,  Manuscript), wnereas muscle and

 skin  contained the lowest  concentrations of PCP  in rainbow trout exposed

 to  0.73  to 1.15 ^g/L (McKioi et  al., Manuscript).   The lowest bioconcent rat ion

 factor UCF) of 7.3 was obtained in bluegill muscle (Pierce  1973;  Pruilt

 -M-  al.   1977).  BCFs •;£ 320 and 378 weri estimated from uptake and  depuration
                                   1
 rates usi.ig tne rainoow trout  CM.-Kin et al., Manuscript)  and  the  non-resident

 xillifish, Ory_g_Lj^  latj.oes (Sugiura et  al. 1984).

-------
      Residues  of PGP  in  fish  drop  quite  rapidly  upon  termination  of




 exposure.  Ninety-six percent  of whole body  ^C-labelled  PGP was  eliminated




 by  fathead minnows within  3.5  days  (Huckins  and  Petty  1983), whereas




 about  85 percent of the  PGP residues  in  bluegill muscle were eliminated




 in  4  days (Pruitt et  al. 1977).  A  first-order simulation model developed




 from  empirical data indicated  a half-life of  2.7 days  in  rainbow  trout,




 with  95% elimination  in  11.7  days  (McKim et  al., Manuscript).




     McKim et  al. (1985) studied the  efficiency  of chemical uptake




 by  rainbow trout gills using  14 different chemicals including PGP.  They




 found  that PGP was in  a  group  of chemicals,  all  with  log  n-octanol/water




 partition coefficients (log P) between 2.84  and  6.18,  that were taken up




 more efficiently by gills  than chemicals with either  lower or higher




 partition coefficients.  The  rate of  elimination of the chemicals in this




 log P  range largely determined their  BCFs .   In this range, the elimination




 rates  decreased as log P increased.   PGP, with a log P of 3.32, would be




 expected to be eliminated  quite readily.  Indeed, this has been shown, as




 indicated above.




     Several studies have  shown that  PGP is conjugated with glucuronic




 acid in fish (Huckins and  Petty 1983; Kobayashi  1978,1979; Kobayashi and




Nakamura 1979b; Kobayashi  et al.  1977; Lech et al.  1978).   Reduced




glucuronidation occurred in fathead minnows exposed to industrial PGP, as




compared to  purified PGP,  and  it  was  suggested that this might play a




role in the  elevated toxicity of  the  impure form (Huckins  and Petty 1983).




Pentachlorophenylsulfate has been found  in goldfish exposed to PGP (Akitake




and Kobayashi 1975;  Kobayashi 1978,1979;  Kobayashi  and Nakamura 1979a,b;




Kobayashi et  al.  1984), but not ih rainbow trout  (Lech et  al. 1978) or




fathead minnows (Huckins  and Petty 1983).






                                    11

-------
     Probable steady-state  BCFs  for  PCP  are  available  for  the  eastern




oyster,  Crassostrea virginica (Schimmel  and  Garnas  1985; Schimmel  et  al.




1978), the sheepshead minnow, Cyprinodon variegatus  (Parrish et  al.  1978)




and the longnose killifish, Fundulus similis (Trujillo et  al.  1982).   In




tests with oysters, the steady-state BCF ranged from 34 to 82, and was




reached in 14 to 96 hours.   In a life-cycle  test with the  sheepshead




minnow, BCFs were 5 to 27 with adult fish, 13 to 22 with embryos,  and 16




to 48 with 28-day-old young  (Schimmel et al. 1978).   A steady-state BCF




of 64 was obtained in a 7-day test with the longnose killifish (Trujillo




et al.  1982).  In four-day acute toxicity tests, Schimmel et  al.  (1978)




found BCFs ranging from 0.26 for brown shrimp to 38.0  for striped mullet,




Mu^U cephalus.  Using radio-labeled PCP, Carr  and Neff (1981) reported a




14-day  BCF of 280 with the sand worm, Nereis virens.




      No U.S. FDA action  level or other maximum  acceptable concentration




in tissue  is available for pentac-hlorophenol,  and,  therefore, no  Final




Residue Value can  be  calculated.
 Other  Data
      Cleveland et  al.  (1982)  and  Hamilton et  al.  (1986)  studied the




 effects  of four samples of PCP en the survival  and growth of fathead




 minnows  for 90 days.   In the  range of 60 to 142 Mg/L,  both a purified PCP




 and an ultrapure PCP  reduced  growth by 10 to 25%, whereas Dowicide EC-7




 increased growth by 18 to 21%.  An industrial composite PCP was much




 more toxic; 13 pg/L reduced growth by 20%, 27 Mg/L reduced growth by 40%,




 and 67 pg/L killed all the fish.  Analyses of the four PCP samples  for




 fourteen  polychlorinated  impurities  and  a  test on the effects  of  a  mixture




 of  some of  the  impurities  indicated  that  some of  the effects  seen in  the




 tests on  PCP  were  probably due to  the measured impurities.
                                     12

-------
      Webb and Brett (1973) found that growth and food conversion of




 sockeye salmon (Oncorhynchus nerka) were affected in a 56-day exposure to




 PGP concentrations of 1.74 and 1.80 rig/L, respectively, at a pH of 6.8




 (Table 6).  These are the lowest effect concentrations that have been




 reported for any species.  Growth of salmonids was reduced by 10 to 27%




 at PCP concentrations ranging from 3.2 to 28 ,jg/L (Chapman 1969; Chapman




 and Shumway 1978; Matida et al.  1976).   The thresholds for reduction of




 growth of rainbow trout  exposed  to PCP through 4-week post swim-up were




 about  10 and 20 jg/L in  warm and cold regimes,  respectively (Hodson and




 Blunt  1981).   Reduced growth of  largemouth bass,  Micropj^e_rus salmoide_s,




 was observed at  50.4 ,jg/L after  7  days  of exposure  (Mathers et  al.  1985),




 of the guppy at  320  ,jg/L after 28  days  of exposure  and of  the amphibian,




 Xenogus  laevis,  at  100 ^g/L after  100 days  of  exposure (Slooff  and  Canton




 1983).





     Whit ley  (1968)  and  Kobayashi  and Kishino  (1980)  reported that  an




 increase  in  pH decreased  the  24-hr  LC50s  for both tubificid worms  and




 goldfish.  Some  reduction in  toxicity  appeared  to result from the  presence




 of  sediment  in acute  toxicity tests  conducted with several  species  of




 tubificid worms  (Chapman  et al.  1982a).   Similarly, Mibsissippi  River




 water  afforded some protection to various  invertebrate species when their




 LC50s were compared with  values obtained  in Lake Superior water  (Hedtke




 et al.  1986).  The tubificids, Limnodrilus hoffmeisteri and Tubifex




 tub ifex, were more resistant to PCP when tested as mixed species than




when each species was tested individually (Chapman et al. 1982a,b).




Schauerte et al.  (1982) found that 1,000 ^jg/L decreased daphnids and




autotrophic phytoplankton in compartments in a pond,  and Yount and  Richter
                                    13

-------
(1986) found chat periphyton biomass  Ln experimental streams was inversely




related to pentachlorophenol in the range from 48 to 432 jg/L.




     A wide variety of acute, chronic,  and sublethal effects of PGP have




been reported for saltwater organisms (Table 6).   Several effects of PGP




on polychaete worms have been reported such as reduced feeding activity by




Arenicola cristata (Rubinstein 1978). depletion of glycogen reserves,




increased tissue ascorbic acid concentrations, and disruption of osmoregulation




Nereijs virens (Carr and Neff 1981); and reproductive impairment  in 0£h_ry_p_t_r_ocjia




diadema (Hooftman and Vink  1980).  PGP induced developmental abnormalities




in embryos and larvae of the mussel,  Mytilus edulis, (Dimick and Breese




1965) and oyster, Crassostrea virginica,  (Davis and Hidu  1969)  and  inhibited




shell growth of  juvenile oysters (Schimmel et al.  1978).  Exposure  for  18




weeks to 460 ,Jg/L resulted  in  reduced  resistance of the  quahog  clam,




Mer£enaria, mercena^ia,  to  bacterial  infection (Anderson  et  al.  1981).




      The grass shrimp,  Palaemonetes  pugio,  exhibited  a  variety  of  sublethal




physiological effects during exposure  to  PCP  concentrations of  400 to




4,600 ,jg/L  (Brannon  and Conklin  1978:  Cantelmo et  al.  L973; Doughtie and




Rao  L978;  Rao and  Doughtie 1984; Rao et  al.  1973,1*79,1*81) such as hi.stoLogi.cal




damage  to  epithelia  of  the gills,  gut,  and hepatopancr-as,  increased




metabolic  rate,  decreased  rate of  limb regeneration,  and increased weight





of  Che  molted exoskeleton.




      Saltwater  fish  exposed to 50  to 200 ,jg/L exnibited elevation of me




 .-on-.: er.tr at ion.  of acid-soluble tniois in liv^r jt winter  tlounder (Thomas




 and Wofford 19^4)  and elevation of blood cortisol, leading to  hyperglycemia,




 depletion cc Livar glycoger. .reserves, and an increase  LP. liver  ascorbic




 acid concentration in T.U!  lee '.Thomas et al. 1931).
                                     14

-------
      In a series of benthic colonization studies conducted in the Laboratory

 under flow-through conditions, PGP concentrations of 55 to 140 ^ig/L reduced

 both species richness and total faunal abundances of benthic macrofauna

 (Hansen and Tagatz 1980; Tagatz et al. 1977,1980,1981).  At a concentration

 of 15.8 >Jg/L, PCP,  administered as Dowicide G-ST, reduced total faunal

 abundances, but not species richness.  Molluscs were generally most

 sensitive, but other phyla were also affected.


 Unused Data

      Some  data on the effects  of PCP on aquatic organisms were not used

 because  the studies were conducted with species that are not  resident  in

 North America (e.g.,  Adema and Vink 1981;  Dalela et  al. I980a,b,c, Dave

 1984;  Hanumante and Kulkarni 1979;  Goel and Prasad  1978; Gupta 1983; Gupta

 and Dalela 1986;  Gupta and Durve 1984a,b,  Gupta and  Rao 1982;  Gupta  et al.

 1982b,1983a,b;  Hattori et  al.  1984;  Kaila  ana  Saankoski 1977,  Khangarot

 et  al.  1985:  Kobayashi et  al.  1969,  Nagendran  and Shakuntala  1979: Rao et

 al.  1983;  Shim  and  Self  1973;  Slooff  1976;  Slooff et  al.  1983b;  Tomiyama

 et  al.  1962:  Van  Dijk  et  al.  1977;  Verma et  al.  19du,1931a,b,1982,1984).

 Results  (e.g.,  Adema  and  Vink  1981) of  tests conducted  with brine  shrimp,

 Artemia  s^.,  were not  used because  these species  are  From  a unique

 saltwater  environment.  Adelraan  et  al.  (1976b),  Ahlborg and Thurnberg

 (1980), Alexander et al.  (1983), Bevenue and Beckman  (1967), Buikema ec

al. (1979), Conklin and Fox  (1978), Hall and Kier U984a,b), Kocti  (1982),

Kozak et al.  (1979), National  Research  Council  of Canada (1982), Rao et

al. (1979), von Ruraker et al.  (1974), and Strufe  (1963)  only contain data

that have been published elsewhere.
                                  i
     Results were not used if either the test procedures or the test

material  was not adequately described (e.g., Benoit-Guyod et al. 1984a:

                                    15

-------
Canton and Slooff 1979;  Clemens  and  Sneed 1959;  Hashimoto  and Nishiuchi




1983: Klein et al. 1984; Knie et al.  1983;  Konemann and Musch 1981;  Wong




1984), or if PGP was a component of  a mixture (Hermens  et  al. 1985;  Statham




and Lech 1975).  Tests were not  used if POP comprised only eight percent




of the formulation (Batte and Swanson 1952; Inglis and Davis 1972).   Data




were not used  if PCP was a component of a sediment (e.g.,  D'Asaro and Wilkes




1982) or if the organisms were exposed by injection (e.g., Bose and Fujiwara




1978; Tripp et al.  1984) or  in food (e.g., Niimi and Cho 1983).  Anderson




et al. (1984), Bols et  al. (1985), Cantelrao and Rao (1978a), Fox and




Rao  (1978), and  Kwasniewska  et al. (1979) only exposed  enzymes, excised or




homogenized tissue, cell cultures, or  sewage bacteria.




      Tests conducted  with  too few test  organisms  (e.g., Coglianese  and




Neff 1982; McLeese  et  al.  1979)  and  tests  in which the concentrations




 fluctuated widely (e.g., Thomas  et  al.  1981) were  not  used.   The  60-day test




 reported by Verma et  al.  (1981c)  was  not used because  there were  no




 replicate test chambers.   The  early  life-stage  toxicity data of Juhansen




 et al.  (1985) were not  used  due to  high mortality of control fish and an




 interruption  in the exposure.   Results were not used if organisms were




 not  cultured  and tested in the same dilution water (Ber^Und and Dave  1934).




      Studies  with physiological endpoints only were not used (e.a., Bostrom




 and Johansson 1972; Chowdary et al. 1979; Gupta et al. 1933c,ct; Hanke  et al.




 1983; Holmberg et  al.  1972; Huber et al. 1932: Jayaweera at ai.  1932:




 Kaila 1982;  Kaila  and  Saarikoski 1980,1981; LeBlanc and Cochrane  1985.




 Liu 1981; Oikari and Nitcyla 1985: Oikan  et al.  1985; Peer et al.  1983:




 Saarikoski and  Kaila 1977;  Saro}ini  et  al.  1983;  Sloley  et  al.  198b;




 Tiedge  et  al. 1986;  Verma 1981b; Vfcrma et  al.  1982; Yousri and Hanke 1985).




 A study of histological  effects  on  bluegills was  not  used  (Owen and Rosso




                                      16

-------
  1981).  Toxicicy data were not used if they were only qualitative (Palmer




  and Maloney 1955) or were presented in graphic form (Norup 1972).  A




  study by Anderson and Weber (1975) was not used because acute toxicity




  results for the guppy were presented only as linear regressions on body
 s ize
      A study on the uptake and metabolism of PCP in rice plants (Weiss  et  al.




 1982) was not used, nor were uptake studies in which exposure was via the




 food (Niirai and Cho 1983)  or by gavage (Niimi and Palazzo 1985).   Bioconcentration




 studies were not used if the test  was  not flow-through or renewal (e.g.,




 Ernst 1979) or if the exposures were of insufficient duration for steady




 state to have been achieved  (Glickman  et  ai.  1977;  Kobasyahi  and  Akitake




 1975a,b;  Kobayashi et al.  1979; Kuehl  et  al.  1983;  Lech et  al.  1978:




 McKim et  al., Manuscript).   Reports  of the  concentrations of  PCP  in wild




 aquatic  organisms (e.g., Butte  et  al.  1983;  Faas  and Moore  1979;  Folke  et




 al.  1983:  Fox and Joshi  1984;  Kuehl  and Dougherty 1980;  Murray  et al.




 1980,1981:  Ray et  al.  1983)  were not used if  the  number  of  measurements




 of  the  concentration  in water was  too  small  or  if the  range of  the measured




 concentrations  in water was  too great.  Studies of  the  concent eat ion  or




 accumulation  of  PCP in organisms were  not used  if  th^ data  orovided were




 considered  insufficient  for  determination of  a b iocon^ent rat ioa or b uaccumuUt ion




 factor (Gotham and Rhee  1982; Hallas 1973;  Klein  et  al.  1984; Korte et al.




 1978; Oikari  1986; Oikari and Anas 1985;  Paasivirta  et  al.  1981),  if  the




data were being  reported secondarily (Branson 1980;  Davies  and Dobbs




 1984), if water  and biota samples were  not collected at the same  times




(Metcalfe et al.  1984), or if the measurements were of total  radiolabel




rather than PCP  itself (Fisher andiWadleigh 1986, Freitag et  al.  1985;




Geyer et al. 1981,1984; Gluth et al.  1985).   Bioaccumulation  and  fate  data




                                    17

-------
from model  ecosystems  or microcosm studies  were not  used (e.g.,  Brockway




et al.  1984;  Knowlton  and Huckins 1983;  Lu  and Metcalf 1975;  Robinson-Wilson





et al.  1983:  Tomizawa  and Kazano 1979).







Summary



     The acute and chronic toxicity of PCP  to freshwater animals increased




as pH and dissolved oxygen concentration of the water decreased.  Generally,




toxicity also increased with increased temperature.   The estimated acute




sensitivities of 36 species at pH - 6.5 ranged from 4.355 ^g/L  for larval




common carp to >43,920 ^g/L for a crayfish.  At PH = 6.5, the lowest and




highest estimated chronic values of <1.835 and 79.66 ^g/L, respectively,




were obtained with different cladoceran species.  Chronic toxicity to




fish was affected by  the  presence of  impurities, with  industrial-grade




PGP being more toxic  than purified samples.  Mean acute-chronic ratios




for six  freshwater species  ranged  from 0.8945  to >15.79,  but  the mean




ratios  for the  four most  acutely  sensitive  species  only ranged  from




0.8945  to  5.035.   Freshwater  algae were  affected by concentrations  as  low




as  7.5  .jg/L,  wnereas  vascular  plants  were  affected  at  189 Jg/L  and  above.




BioconcentratLon  factors ranged from  7.3 to 1,066  for three  species  of fish.




     Acute  acute  toxicUy values inm tests with  18 species  of  salt-




water  animals,  representing 1? ger.era,  rar.ge from 22.63 ,jg/L for late




yolk-sac larvae of the Pacific herring,  Ciugea tiaren£us paUasj,, to 18,000




 ,jg/L for adult  blue  mussels,  Mj^i^us. ^ouJ_Ls..  The enbryo ,nd larval




 stages of invertebrates  aad the iate larval oremetamorphosis stage of




 fish appear to be :lie ruse sensitive life stages to PCP.  With few exceptions,




 fisr. are more sensitive  than  inver-.ebrates 13 FCP.  Salinity,  temperature,




 and pH have a .Light  effect on  che coxiotry ofc PCP  t.o  sox.e saltwater  animals.

-------
      Life-cycle toxicity tests  have been conducted with the sheepshead


 minnow,  Cyprinodon variegatus,  and the  polychaete worm, Ophryotrocha


 diadema.   The chronic  value for the minnow is  64.31 ,Jg/L and the  acute-

 chronic  ratio is 6.873.   Unfortunately,  no statistical  analysis of  the

 data from the test with  the worm is available.


      The  EC50s for saltwater plants range from 17.40 >jg/L for the diatom,

 Skeletonema  costatum,  to 3,600  ,jg/L for  the green algae,  Dunaliella


 tertiolecta.   Apparent steady-state BCFs  are available  for  the eastern


 oyster, Crassostrea virginica,  and two  saltwater  fishes and range from 10

 to  82.



 National  Criteria


      The  procedures  described in  the "Guidelines  for  Deriving Numerical

 National  Water Quality Criteria  for the  Protection  of Aquatic Organisms


 and  Their Uses"  indicate  that,  except possibly where  a  locally important


 species is very  sensitive,  freshwater aquatic organisms  and  their uses


 should not be  affected unaceeptably  if the  four-day  average  concentration

 (in  rig/L) of  pentachlorophenol does not exceed the  numerical  value  given


 by e       P     '     more  than once every  three years  on the  average  and

 if the one-hour  average concentration (in ,Jg/L) does not  ^xceod the

 numerical value  given by gU .005(pH)-4.830] more chan onc^ evt;ry  Cnree


years on the average.  For example, at pH = 6.5, 7.8, and 9.0  the four-day


average concentrations  of pentachlorophenoL are 3.5, 13,  and 43 Jg/L,


 respectively, and the one-hour average concentrations are 5.5, 20, and 68


,jg/L.  At pH = 6.8, a pentachlorophenol concentration of  1.74  jg/L

caused a 50% reduction  in the growth of yearling sockeye salmon in a
                                  t
56-day test.
                                    19

-------
     The procedures described in the "Guidelines  for Deriving Numerical




National Water Quality Criteria for the Protection of Aquatic Organisms




and Their Uses" indicate that,  except possibly where a locally important




species is very sensitive,  saltwater aquatic organisms and their uses




should not be affected unacceptably if the four-day average concentration




of pentachlorophenol does not exceed 7.9 Mg/L more than once every three




years on the average and if the one-hour average concentration does not




exceed 13 Mg/L more than once every three years on the average.




     Three years is the Agency's best scientific judgment of the average




amount of time aquatic ecosystems should be provided between excursions




(U.S. EPA 1985b).  The resiliencies of ecosystems and their  abilities  to




recover differ greatly, however, and site-specific  allowed excursion




frequencies may be established  if  adequate  justification  is  provided.




     Use  of criteria  for developing water quality-based permit  limits  and




for  designing  waste treatment  facilities  requires  selection  of  an  appropriate




wasteload allocation  model.  Dynamic models  are  preferred for  the  application




of these  criteria  (U.S.  EPA  1985b).   Limited  data or other  considerations




might  make  their  use  impractical,  in which  case  one must  rely on a steady-state




model  (U.S.  EPA  1986).
                                      20

-------
                                   Table 1.   Acute Toxlclty  of  Pentachlorophenol  to Aquatic Animals
Species
  LC50                             Species Mean
or EC50        Adjusted LC50       Acute Value
     "                                    >•*•••
Hydra, S, U
Hydra ol iqactis
Tubificid worm, R, u
Branch iura sowerbyi
Tubificid worm, R, u
Limnodrilus hoftmeisteri
Tubificid worm, R, u
Limnodrilus hof fmeister i
Tubif icid worm, R, u
Limnodrilus hot fmei star!
Tubi f icid worm, fy ( O
Limnodrttus hot f meister i
Tubificid worm, R, u
Limnodrilus hotfmeisteri
Tub i t i ci d worm, R, u
Quistradr i lus multisetosus
Tubificid worm, R, u
Rhyacodrilus montana
Tubit icid worm, R, u
Spirosperma terox
Tubi f i ci d worm, H , II
Spirosperma nikolskyi
Tubif icid worm, R, u
Stylodrilus her inqi anus
Tubif icid worm, R, u
Stylodrilus herinqianus
Tubificid worm, R, u
Stylodrilus herinqianus
PCP
(>98*)
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NoPCP
NaPCP
NaPCP
FRESHWATER SPECIES
730
7.0 257.7
7.0 303.8
7.0 478. 7f
(I*C)
7.0 451. 0T
(20"C)
6.0 303. 8f
a. D 345. 2f
7.0 524.7
7.0 690.4
7.0 395.8
7.0 902.1
7.0 579.9
7.0 1,638*
7.0 681. 2T
(200C)
155.9
183.8
289.6
272.9
502. lft
76.45
317.5
417.7
239.5
545.8
350.8
991.0
412.1
\vnrt-i nererttnce
Slooff et al. 1983a
155.9 Chapman et al . I982a
Chapman et al. I982a,b,c
Chapman et al. 1982b
Chapman et al . 1982b
Chapman et al . 1982b
182.5 Chapman et al . 1982b
317.5 Chapman et al . I982a,b
417.7 Chapman et al . I982a
239.5 Chapman et al . 1982a
545.8 Chapman et al . 1982a
Chapman et al . 1982a,b
Chapman at al . I982b
Chapman et al . I982b

-------
Table i.  (CooMnuod)

Species

Tubificiii worm.
Stylodiilns 1 HIT jjvji anus
fui'i f fcid woirn.
bt^lodrilus herjjuji jnus
lubi H< id worm,
Tubifex tubifox

Tnbi NciJ worw.
Tubifnx tuoiff-x
Tutii ficid *orf«,
lubifex tubifex
Tub 1 1 ic.it} *or»i ,
hiLitex tut'itex

iubificid worm.
Tubi f ev tubl fax.
-*
T'lbi t if. id worm.
Vdrichaela pacitlc.a
5od M * rtdu it).
(dc.uin
ftp!t.xd hypnoruin

Ph^sV-i rind
Lymfltioii bt^linjl Ib
' r i i 1
G i 1 1 i o j 1 i i t i i>

Gnai 1 ,
Gi 1 1 ia alti 1 is

Method* Chemical** pH

Ri i WAt-*(""t* Ci 0
U HQ( Vji u« '^
(10°C)

R U UaPCP 8.0
/ i n°( • v
( IU L t
R. U UdPCP 7.0
/ \ r\ o. •• \
( 10 L)
; n
R U lilPCI «.U
/I **C^ \
( 1 C)
R, U NuPCP 7.0
(2°C)

R, U NdPCP o.O
/ 1 /\ ^l"1 \
( 10 L.)
Hi i u »H( 'P 3. 0
U HarL-r "• *-*
(10°C)

R, U NdCCP 7.0

K 11 Dowicide LC-7 7. I-
Wt, PU') 7.8
^ M Ixiwic i Jo l.C-7 7.1-
I8(j; IJCIJ) 7.8
r , M uowiciJo LC-7 7.2
(93.7# PCP)
I'CIJ
s, o t"^3 °- '
>'
R U I'CH ' 6.7
* ' | *^
*
LC50
or EC50
(uq/L)***
690. 4f


874. 5T

349.8

607. 5*


405. 0T

340. 6f

598. 3T


96.65

157
142

267

240
810

300 ,


Species Mean
Adjusted LC50 Acute Value
or EC50 (uq/L)»*»* (ug/L)»«««»

1.141"


193.7 408.2

211.6

367.6


245.0

563. Otf

132.5 224.2


58.47 58.47

63.54
57.47 o0.43

132.1 132.1

"
662.5

245.4 403.2



Reference

Chapman et


Chapman et

Chapman et

Chapman et


Chapman et

Chapman et

Chapman et


Chapman et

Phipps and
1985
Phipps and
1985

Hedtke et

Adema and
Stuart and



al . 1982b


al. 1982b

al. I982a,b.c

al. I982b


al. 1982b

al . I982b

dl . I982b


al. 1982a

Ho 1 combe
Hoi cunbe

al . 1 986

Vink 19bl
Roburtson 1985

Stuart and Kobertson iyos





-------
  >i v  i •   \wotii i in-

Spec 1 es
Cl adoceran (<4 hr) ,
Ceriodaphnia reticulata
Cladoceran (<6 hr) ,
Ceriodaphnia reticulata
Cladoceran (<6 hr) ,
Ceriodaphnia reticulata
Cladoceran (<6 hr) ,
Ceriodaphnia reticulata
Cladoceran (<6 hr) ,
Ceriodaphnia reticulata
Cladoceran (<24 hr) ,
Ceriodaphnia reticulata
Cladoceran (<24 hr) ,
Ceriodaphnia reticulata
Cladocefan (<24 hr) ,
Uaphnia magna

Cladoceran (<24 nr) ,
Daphnia magna

Cladoceran (<24 hr) ,
Daphnia mayna

Cladoceran (<24 hr) ,
Daphnia magna

Cladoceran (24 hr),
Daphnia manna

Ctadoceran (larva).
Daphnia magna

Method* Chemical** pH
S, U Dowicide EC-7 7.2-
(93.7* PCP) 7.4
S, U NaPCP 7.7

S, U NaPCP 7.7

S, U NaPCP 7.8

S, U NaPCP 7.8

S, U PCP B.O
(reagent grade)
F, M Dowicide EC-7 7.3
(93. 7> PCP)
S, U - 7.4-
9.4

S. U PCP


S, U PCP


S, U PCP -


S. M PCP


PCP

LC50 Species Mean
or EC50 Adjusted LC50 Acute Value
(MQ/L)**« or EC50 (uq/L)«*«* (ug/L )***«•
153.7 68.79

260 77.04

5)0 152.7

290 78.52

410 111.0

900 199.3

150 67.13 67.13

680 1 00. 7

ocr» . —
£30

A f\(\ f —
40U ^

u Ar\ ^ ™
oOU


600

Iric/\ . —
,Uj(J


Reference
Mount and Norberg

Hall et al. 1986

Hal 1 et al. 1986

Hal 1 et al. 198b

Hal 1 et al. 1986

Elnabarawy et dl .



1984









1986

Hedtke et al . 1986

LeBlanc 1980

Canton and Adema


Canton and Adema


Canton and Adema


Adema 1976





1978


1978


1978





Adema and V i nk 1981




Cladocordn  (adult),
Daphn ia magna
                                            PCP.
1,400
                                                                                                                      Adema and Vink 1981

-------
Table I.  (Continued)
Specie*
Cladoceran (<24 hr) ,
Daphnta magna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla magna
Cl adoceran (<24 hr) ,
Daphnla magna
Cladoceran «24 hr) ,
Daphnta roagna
Cladoceran (<24 hr) ,
Daphnla magna

Cladoceran «24 hr) ,
Daphnla roagna
Cladoceran (<24 hr) ,
Daphnla magna

Cladoceran (<24 hr) ,
Daphnta magna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) .
Daphnla magna
LC50
or EC50 Adjusted LC5O
nathod- Cht-'— •" r" irg/Ll«»« or EC50 (.oA)*""
s, u - - 28°
S, U DowlcldeEC-7 7.2- 134.0 59.97
(93.7$ PCP) 7.4
s> M pep 8.58 145 17.93
»"*• '
S. U PCP 8.5 300 40.20

S. U PCP 8.5 350 46.90
c ,i PPP 85 380 50.92
C 11 r\jf O» J .^w —
*ȣ \*

Sf u PCP 8.5 300 40.20
S. u PCP 8.5 350 46.90
... r^p 85 300 40.20
c ii r\*i °e J -*ww
J, U **
s> u PCP 8.5 280 37.52
c- .. PTP ft s 310 41.54
S, U PCr o.3 -"u
Sf u PCP 8.5 290 38.86
S, U PCP 8.5 370 , 49.58

Specie* Mean
Acute Value
Hermans et at . 1984
Mount and Nor berg 1984
Thurston et al . 1985

Lewis and Weber 1985

Lewis and Weber 1985
Lewis and Weber 1985


Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985

Lewis and Weber 1985
Lewis and Weber 1985

Lewis and Weber 1985
Lewis and Weber 1985


-------
        Table I.  (Continued)
ho
Ui


Species
Cladoceran (<24 hr) ,
Oaphnla magna
Cladoceran t<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla maqna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran «24 hr) ,
Daphnla magna
^
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran (<24 hr) ,
Daphnla maqna
Cladoceran (<24 hr) ,
Daphnla magna
Cladoceran «24 hr) ,
Daphnla maqna
Cl adoceran (6 d) ,
Daphnla magna

Cladoceran (<24 hr) ,
Daphnla pulex

Method* Chemical** pH
S, U PCP 8.5
S, U PCP 8.5
S, U PCP 8.5

S, U PCP 8.5
S, U PCP 8.5
•
S, U PCP 8.5

S, U NaPCP 7.7
S, U NaPCP 7.7

S, U NaPCP 7.8
Sf u NaPCP 7.8
S, U POP 8-°
(re<*jant grade)
S, M PUP 7.5
<99*J)
S. U PCP

LC50
or EC50
350
370
340

510
840

510

450
1,030

960
830
1,000
183

2,000


Adjusted LC50
46.90
49.58
45.56

68.33
112.6

68.33

134.7
308.4

259.9
224.7
221.5
66.99



Species Maen
Acute Value
(•a/L)*"*** Reference
Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985

Lewis and Weber 1985
Lewis and Weber 1985

Lewis and Weber 1985

Hall et al . 1986
Hal 1 et al . 1986

Hal 1 et al . 1986
Hall et la. 1986
Elnabarawy et al . 1986
55.03 Brooke et al .
Manuscript
Canton and Adema 1978



-------
         Table I.  ICoiiMmieo')
to


Scacle*

Cladocnran (<24 tu ) ,
Daphnta pulfax
Cladoceran (<24 l»r) ,
(:ladoceran (<24 hr) ,
Daphn JA pul**x

Cladoceran (<24 hr),
Daphnla pulex
Cladoreran (<-24 hr) ,
Daphnla pule*
Cl artoceran <*24 hr) ,
Daphnla pulex
Cladocai-an (<24 hr) ,
Daphnla pulex
Cl adocaran (<24 hr) ,
Daphnla pulex
Cladoceran <<24 hr) ,
Daphn la p_uigx_
Cladoceran (<24 hr) ,
Daphnla pulex
Cl adocaran (<24 hr) ,
Daphnla pulex
Cladoceran (<24 hr) ,
Daphn la pulex

Cladoceran (<24 hr) ,
Daphnla pulex

Cladoceran (<24 hr) ,
Daphnla pulex
LC50
or EC50
uatnod* Cne«lc«l*B JH *M
c ii H'P 8.2 260
*3, U r^r O'L
S. U reP 8.2 490
S. U TOP 8.2 480
e ii PCf 8 2 470
S, U rC" "•*
S, U reP 8.2 290
S, U TOP 8.2 170
c ii PPP 8.2 250
S, U r^r °"t
S, u TCP 8.2 390
c u PTP 8.2 190
S, U r^^ °»*
c u POP 8.2 330
S, U >^r °**
c u FTP 8.2 560
S, U rU^ ""^
S> u PCP 8.2 550

c ii PTP 82 560
S, U r\,r o.i

c „ pcp 8.2 440
bt U ror

Specie* Mean
Adjusted LCSO Acute Value
or EC50 (.q/L)««" C.g/L)*«"«
47.10

88.76
86.95
85.13

52.53
30.79
45.28

70.64
34.42

59.78

101.4

99.63

101.4

TO in "*
/7. /U



Reference
Lewis and Weber 1985

Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985

Lewis and Weber 1985
Lewis and Weber 1985
Lewis and Weber 1985

Lewis and Weber 1985
Lewis and Weber 1985

Lewis and Weber 1985

Lewis and Weber 1985

Lewis and Weber 1985
Lewis and Weber 1985


Lewis and Weber 1985




-------
          TabU I.   (Continued)
to
Sp«cU«
Cladoceran «24 hr) ,
Daphnla pulex
Cladoceran «24 hr) ,
Daphnla pulex
Cladoceran «24 hr) ,
Daphnla pulex
Cladoceran (<24 hr) ,
Oaphnla pulex
Cladoceran (<24 hr) ,
Daphnla pulex
Cladoceran (<24 hr) ,
Daphnla pulex
Cladocer'an «24 hr) ,
Oaphnla pulex
Cladoceran «24 hr) ,
Oaphnla pulex
Cladoceran (<24 hr) .
S Imocephalus vetulus
Cladoceran «24 hr) ,
Slmocephalus vetulus
Cladoceran «24 hr) ,
S Imocephalus vetulus
Cladoceran «24 hr) ,
Slmocephalus vet lulus
Cladoceran (<24 hr) ,
S Imocephalus vetulus
Cladoceran (<24 hr) ,
Slmocephalus vetulus
Am phi pod (juvenile),
Method* Cham leal"
S, U PCP
S, U PCP
S, U PCP
S, U PCP
S, U NaPCP
S, U NaPCP
S, U NaPCP
S, U PCP
(reagent grade)
S, U Dowlclde EC-7
(93. It EC50)
F, M Dowlclde EC-7
(93.7| PCP)
F, M Dowlclde EC-7
(93. It PCP)
F, M Dowlcldtt EC-7
(93. It PCP)
F, M Dowlclde EC-7
(93. It PCP)
F, M Dowlclde EC-7
(93. It PCP)
F, M Dowlclde EC-7
LC50
or ECSO Adjust** LC50
SH (tflA)*"* or ECSO (na/t)""»
8.2
8.2
8.2
8.2
7.7
7.8
7.8
8.0
7.2-
7.4
7.3
7.7
8.0
8.3
7.9-
8.4
6.5
590
550
680
350
1,000
960
1,050
1,100
203.3
160
250
255
364
196
139
106.9
99.63
123.2
63.40
299.4
259.9
284.3
243.6
91.00
71.61
74.85
56.47
59.63
35.50
139.0
Sp*cl«s M»m
Acut* Value
Lewis and
Lewis and
Lewis and
Lewis and
Hal 1 et al
Hal 1 et al
Hal 1 et al
90.83 Elnabarawy
Mount and
Hedtke et
Hedtke et
Hadtke et
Hedtke et
57.72 Hedtke et
Spehar et
Weber 1985
Weber 1985
Weber 1985
Weber 1985
. 1986
. 1986
. 1986
et al . 1986
Nor berg 1984
al . 1986
al . 1986
al . 1986
al . 1986
al . 1986
al . 1985
        Cranqonyx pseudograclI Is
(88$  PCP)

-------
         Table le  (Continued)
oo
Spec Us
Amphlpod I juvenile),
Cranqonyx pseudogr ac 1 1 Is
Amphtport l juvenile),
Cranqonyx psbudo^rnc Ills
Amphlpod ( juvanlla) .
Craogonyx pseudograc 1 1 i s
Amphlpod (1 1 mm) ,
Ga"itnarus psduool Imnaeus
Amphlpod (0.050 g) ,
Ganwnnrus psaudol Imnaeus
Amphlpod (juv«wiHe).
Gammarus pseudol Imnaeus
Amphlpoo 4 Juvenile) ,
Canwiaru;, ^soudol Imnaeus
Amphlpod (juvenile) ,
Gammarus j>»eudol Imnaeus
Arophlpod (Juvenile).
Gommarus gseudol Imnaeus
Hyaiel la aileca
Crayfish (0.4-2.0 q) ,
Orconectes Immunls
Mosquito (3rd Instar),
Aedes aeqyptl
Mosquito (3rd Instar) ,
Culex plplens
Midge (3rd, 4th Instar),
Tanytarsus dlsslmills
Mldgo (3rd, 41 h Instar) ,
Tanytarsus dlsslmllls
Method* Chemical** JH
F, M Uoxlclde EC-7 7.5
(ft8< PCP)
F, M Dowlcldu FC-7 8.0
(8183,000
7,200
34,000
31,300
19.000
Sp«cUc Nswi
Adjusted LC50 Acut* Value
or EC50 Ua/L>"*"" (nfl/L)""11*-
170.2
205.7
180.1 172.1
108.35
138.56
92.00
44.29 '
107.19
105.85 122.1
87.48 87.48
>43,920 >43,920
4,152
2,421
Reference
Spehar et al . 1985
Spehar et al . 1985
Spehar et al . 1985
Brooke et al . Manuscript
Cal 1 et al . 1983
Spehar et al . 1985
Spehar et al . 1985
Spehar et al . 1985
Spehar et al . 1985
Brooke et al .
Manuscript
Thurston et al . 1985
SI oof f et al . 1983a
Slooff et al . 1983a
Thurston et al . 1985
Thurston et al . 1985

-------
 Table 1.  (Continued)
Spec Us
Mldqe (3rd, 4th Instar),
Tanytarsus dlsslmllls
Sclomyzld (1st Instar),
Sepedon fusclpennls
Sclomyzld (1st Instar),
Sepedon fusclpennls
Coho salmon (1-3 g) ,
Oncorhynchus klsutch
Coho salmon ( J-3 g) ,
Oncorhynchus klsutch
Cono salmon (2.7 g, 6.2 on),
Oncorhynchus Klsutch
Sockey* salmon (yoatling),
Oncorhynchus nerka
Sockaye salmon (1-3 g) ,
Oncorhynchus nerka
Sockeya salmon (1-3 g) ,
Qncorhynchus nerka
Chinook salmon (1 g) ,
Oncorhynchus tshawytscha
Chinook salmon (1 g) ,
Oncorhynchus tshawytscha
Rainbow trout (1-3 g) ,
Salmo galrdner 1
Rainbow trout (1-3 g) ,
Salmo galrdner 1
Rainbow trout (1-3 g) ,
Salmo galrdner 1
Rainbow trout (1-3 g) ,
Method*
••••••••••V
F, M
S, U
s. u
s. u
s, u
F, U
f, U
s. u
s, u
s, u
s, u
s, u
s, u
s, u
s, u
Chaolcal"
PCP
(99+S)
NaPCP
(90S)
NaPCP
(90S)
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
PCP
(96J)
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
7.9
8
7
7.01
7.01
6.9-
7.5
6.8
7.19
7.70
7.2-
7.5
7.2-
7.5
6.96
7.0
7.0
7.02
LC50
or EC50
(naA)**"
46,000
28,000
30,000
89
34
60
58
46
120
65.28
56.53
85
89
46
92
Species Mean
Adjusted LC5O Acute Value
or EC50 <»g/L)"»* (»g/L )•»••»
'1,260 11,260
6,201
18,150 10,610
53.31
20.36
29.69 31.82
42.90
22.99
35.93 32.85
27.78
24.06 25.85
53.54
53.85
27.83
54.55
Reference
Cat 1 at al . 1983
McCoy and Joy 1977
McCoy and Joy 1977
Davis and Hoos 1975
Davis and Hoos 1975
Iwama and Greer 1980
Webb and Brett 1973
Davis and Hoos 1975
Davis and Hoos 1975
Johnson and F Inlay 1980
Johnson and Flnlay 1980
Davis and Hoos 1975
Dav Is and Hoos 1975
Dav Is and Hoos 1975
Davis and Hoos 1975
Salmo galrdnerI

-------
TabU I.  (Continued)

Method-
Ra Inbow trout ( 1 -3 g) , S, U
Salmo qalrdnerl
Rainbow trout (1-3 g) , S, U
S a 1 mo galrdner 1

Rainbow trout (1.0 g), S, U
Salmo qalrdnerl
Rainbow trout (1.0 g), S, U
Salmo qalrdnerl
Rainbow trout (0.3-0.4 g) , S, U
Salmo qalrdnerl
Ra Inbow trout ( 1 g) , S, U
Salmo qalrdnerj
Ra lnbow"*trout ( 1 g) , S, U
Sal mo qalrdnerl
Rainbow trout (10 wk) , F. U
Salmo qalrdnerl
Rainbow trout R. u
(embryo; 0 h) ,
Salmo qalrdnerl
rj l 1
Ra Inbow trout "• u

(embryo; 24 h) ,
S a 1 mo qalrdnerl
Ra Inbow trout ( ear 1 y R, u
eyed embryo; 14 d) ,
Salmo qalrdnerl
Rainbow trout (late R. u
eyed embryo; 28 d) ,
Salmo qalrdnerl

Ra Inbow trout ( sac R. u
fry; 42 d) ,
Salmo qalrdnerl

Cheolcal**
NaPCP
NaPCP




"
NaPCP
PCP
(96*)
NaPCP
(90*)
PCP
(99+*)
PCP
(97*)

PTP
t\^i
/ (» i * \
\ y i # *

PCP
*
PCP
»

ppp
(97*)


LC50
or EC50
On \ tfftf L *
5.7 44
7.0 69

70 75
/ « \J * •*
75 92
/ « J •**-
6.2- 83
6.8
7.2- 49.92
7.5
7.2- 45.72
7.5
7.4 66
7.2 3,000

7.2 1,300



7.2 3,000

7.2 48Q
'

7.2 32



Species Mean
Adjusted LC50 Acute Value
or EC50 («aA)«»" UoA. )•••••
98.32
41.75

45.38

33.68

83.00
21.25
19.46
26.71
1,485

643.3



1,485

237.5

1 f\ fiA —
1D.B4




Reference
Davis and Hoos 1975
Davis and Hoos 1975

Bentley et al . 1975

Bentl ey et al . 1975

Vlgers and Maynard 1977
Johnson and Flnley 1980
Johnson and Flnley 1980
Domlnguez and Chapman
1984
Van Leeuwen et al . 1985

Van Leeuwen et al . 1985



Van Leeuwen et al . 1985

Van Leeuwen et al . 1985

Van Leeuwen et al . 1985





-------
 Tabl* I.  (Continued)
Sp«cUs
Rainbow trout (early
fry; 77 d) ,
Salmo qalrdnerl
Rainbow trout (0.81 g) ,
Salmo galrdnerl
Rainbow trout (1.2-7.9 g) ,
Salmo galrdner 1
Ra In bow trout (1-4 g) ,
Salmo galrdnerl
Rainbow trout (0.6-8.0 g) ,
Salmo galrdner 1
Brook trout (adult) ,
Salve) Inus fontlnal Is
Goldfish (2.36 g) ,
Carasslus auratus
Goldfish (2.57 g) ,
Carasslus auratus
Goldfish ( 1.46 g) ,
Carasslus auratus
Goldfish (1.50 g),
Carasslus auratus
Goldfish (1.55 g),
Carasslus auratus
Goldfish (1.40 g),
Carasslus auratus
Goldfish (2.46 g) ,
Carasslus auratus
Goldfish (2.70 g) ,
Carasslus auratus
Goldfish (1.66 g) .
Method*
R, U
S, M
F, M
F, M
F. M
F, M
F. M
F, M
F. M
F, M
F, M
F, M
F. M
F, M
f, M
ChMlcal"
PCP
(91%)
PCP
(99+J)
NaPCP
PCP
PCP
(99*)
PCP
(99+* )
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
LC50
or EC50 Adjusted LC50
PH (»g/L)«" or EC50 <»q/L)BM»
7.2
7.5
8.0-
8.3
7.6-
8.2
7.85
7.89
7.81
7.78
7.77
7.75
7.62
7.68
7.54
7.59
7.58
18
47.2
210
160
115
138
210
220
230
210
170
170
220
230
240
8.907
17.28
38.04
39.18
29.61
34.13
56.29
60.78
64.18
59.79
55.16
51.93
77.36
76.91
81.06
Spec Us Mean
Acut* ValM
(»a/L >••••» R«fw«nc*

Van Leeuwen et al . 1985
Brook et al . Manuscript
Fog els and Sprague 1977
Hod son et al . 1984;
McCarty et al . 1985
35.34 Thurston st al . 1985
34.13 Cardwell et al . 1976
- Adelman and Smith 1976
Adelman and Smith 1976
Adelman and Smith 1976
Adelman and Smith 197b
Adelman and Smith 1976
Adelman and Smith 1976
Adelman and Smith 1976
Adelman and Smith 1976
Adetman and Smith 1976
Carasslus auratus

-------
TobU I.  



Sp«cl*s
Goldfish (1.74),
Carasslus auratus^
Goldfish (1.69 g).
Carasslus auratus

Goldfish (1.65 g) .
r.arasslus auratus
Goldf Ish (2.31 g) ,
Cuirass lus _aura1_us

Goldfish (2.M q> ,
Carasslu^ auratus
f<,|rtf tsl. ll .76 g) .
Harass >us_ ^auratus
Goldfish (1.54 9),
Calais lus at'ratus
Goldfish (t-2 -J),
r.aras^fi's auratus

uctdf i »n (2-4 g) ,
Cai ass lus auratus.
Goldfl&h (1.9 9),
Carasslus auratjjs
Goldfish (1.2 g) ,
Carasslus auratus
Goldfish (1.7 g) ,
Carasslus auratus
Goldfish (1.0-4.0 g),
Carasslus auratus
Goldfish (1.0-4.0 g).
Carasslus auratus


Common carp (8 mm) ,
Cyprlnus carplo


m . |IB
F, M NaPCP
F, M NaPCP

* * ™
F, M NaPCP

F M NaPCP

F. M MaPCP

F> H NaPCP

F, M NaPCP

- a NdPCp
r f M


F M Dowlcldrt EC-7
(8t)l PCP)
F M Qowlclde EC-7
(sal PCP)
F M Dowlclde EC-7
(88 % PCP)
F. M PCP*
(991 )
\ S J ft f
C It PCP
F , M '^'
(991)
\f * 1* r

R, u NaPCP




pH
7.59
7.58
7.60

7.83

7.84

7.73

7.76

—

_


7.1-
7.8
7.1-
7.8
7.1-
7.8
7.94
7.84



7.2


LC50
or EC50 Adjusted LC50

-------
 TabU I.   (Continued)
Species Method*
Fathead minnow (4-8 wk) , S, U
P 1 mepha 1 es prome 1 a s
Fathead minnow ( 1 . 1 g) , S, U
Plmpehales promelas
Fathead minnow (40 d) , F, U
P Imephales promelas
Fathead minnow (14-30 d) , S, U
P Imephales promelas
Fathead minnow (adult), F, M
P Imephales promelas
Fathead minnow (adult), F, M
P Imephales promelas
Fathead minnow (II wk) , F, M
P Imephales promelas
Fathead minnow (11 wk), F, M
P Imephales promelas
Fathead minnow (11 wk) , F, M
P 1 mepha 1 es prome 1 as
Fathead minnow (11 wk), F, M
P Imephales promelas
Fathead minnow (11 wk), F, M
P Imephales promelas
Fathead minnow ( 1 1 wk) , F, M
P 1 mepha 1 es prome 1 as
Fathead minnow (11 wk) , F, M
P Imephales promelas
Fathead minnow (11 wk) , F, M
P Imephales promelas
Fathead minnow (11 wk) , F, M
Chealcal**
PCP
PGP
(96*)
PCP
(99*)
NaPCP
-
-
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
NaPCP
_Ett_
7.
7.
7.
7.
7.
8.
7.
8.
7.
7.
7.
7.
7.
7.
7.
7.
7.
2-
5
4
7
92-
20
81-
20
82
83
72
72
69
68
86
78
59
LC50
or EC50 Adjusted LC50
iBfl/Ll**-*. or EC50 (»gA)»"»*
600
196.8
470
18
194
(15*C)
314
(25 *C)
200
180
220
180
190
210
220
180
190
-
83.
190.
5.
40.
69.
53.
47.
64.
52.
57.
64.
56.
49.
63.

76
2
389
45
54
08
29
56
82
46
15
08
73
53
Species Mean
Acute Value
(pg/L )•••** Reference
Mattson et al . 1976
Johnson
and
Flnley
1980
Cleveland et al . 1982
Hall et
Rueslnk
Rueslnk
Adelman
Adelman
Adelman
Adelman
- Adelman
Adelman
Adelman
Adelman
Adelman
al.
and
and
and
and
and
and
and
and
and
and
and
1986
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith
Smith

1975
1975
1976
1976
1976
1976
1976
1976
1976
1976
1976
PImephales promelas

-------
Table I.  (Continued)


Cn^^c ft Aft
Jf7^^f W9
Fathead minnow (11 wk) ,
Ptmephales proroelas
Fathead minnow (11 wk) ,
Plmephales promelas
Fathead minnow (11 wk) ,
Plmephales promelas
Fathead minnow (11 wk) ,
Plmephales promelas
Fathead minnow (11 wk) ,
Plmephales promelas
Fathead minnow (11 wk) ,
Ptmephales promelas
Fathead Hitnnow (11 wk) ,
Plmephales promelas
Fathead minnow (11 wk) ,
P 1 mepha 1 as proroe 1 as

Fathead minnow (11 wk) ,
Plmephales promelas
Fathead minnow (4 wk) ,
Ptmephales promelas

Fathead minnow (7 wk) ,
Plmephales promo las

Fathead minnow (11 wk) ,
Plmephales promelas

Fathead minnow (14 wk) ,
Ptmephales promelas
Fathead minnow ( 3 mo).
Plmephales promelas

Fathead minnow (30-35 d) ,
Plmephales promelas


Method*
^^••••••••MBM
F, M

F, M

F, M

F, M

F, M

F, M

F, M

F, M


F, M

F, M


f, M


F, M


F, M

F, M


F, M



Chemical*1
NaPCP

NaPCP

NaPCP

NaPCP

NaPCP

NaPCP

NaPCP

NaPCP


NaPCP

NaPCP


NaPCP


NaPCP


NaPCP

PCP
(99+f )

—



PH
7.62

7.65

7.65

7.63

7.58

7.83

7.82

-




-





"


~

7.83

1 At.
/.H 1 —
8-1 •»
. JJ
LC50 Specie* Mean
or EC50 Adjusted LC50 Acute Value
l^/i !••* or ECSO t|iqA)«**« 
-------
           Table I.  (Continued)
OJ
Ul
Spec let
Fathead minnow (30-35 d),
Plmephales promelas
Fathead minnow (30-35 d) ,
Plmephales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (0.5 g) ,
Plmephales promelas
Fathead minnow (0.4 g) ,
Plmephales promelas
Fathead minnow (0.4 g) ,
P Imepha 1 es prome 1 as
Fathead minnow (0.2-1.0 g) ,
Plmephales promelas
Channel catfish (0.8 g) ,
Ictalurus punctatus
Channel catfish (0.8 g) ,
Ictalurus punctatus
Channel catfish (1.4 g) ,
Ictalurus punctatus
Channel catfish (1.4 g) ,
Ictalurus punctatus
Channel catfish (1.9 g) ,
Ictalurus punctatus
Method*
•^MMMaHMMB
F, M
F, M
F, M
F, M
F, M
F, M
f. »
F, M
F. M
F. M
S, U
S, U
F, M
F. M
F. M
Che* leal'*
-
-
Oowlclde EC-7
(88< PCP)
Oowlcide EC-7
(88| PCP)
Oowlclde EC-7
(88| PCP)
Oowlclde EC-7
(88$ PCP)
Oowlclde EC-7
(88J PCP)
Uowlclde EC-7
(88JI PCP)
Oowlclde EC-7
(88* PCP)
PCP
(99jl)
PCP
(96*)
NaPCP
(90|)
towlclde EC-7
(88* PCP)
Oowlcldb EC-7
Dowlclde EC-7
(88* PCP)
7.41-
8.33
7.41-
8.33
6.5
7.5
8.0
8.5
7.1-
7.8
7.1-
7.8
7.1-
7.8
8.01
7.2-
7.5
7.2-
7.5
7.1-
7.8
7.1-
7.8
7.1-
7.8
LC50
or EC50
(,q/L)'"
230
232
95
218
261
378
223
286
244
266
65.28
64.01
<53 ,
54
54
Specie* Mean
Adjusted LC50 Acute Value
or EC50 ***««
58.05
58. 55
95.00
79.80
57.80
50.65
90.26
H5.76
98.76
58.32 63.11
27.78
27.24
<21.45tf
21.86
21.86
Reference
Ph 1 pps et al . 1981
Hal 1 et al . 1984
Spehar et al . 1985
Spehar et al . 1985
Spehar et at . 1985
Spehar et al . 1985
Phi pps and Holccmbe
1985
Ph 1 pps and Ho 1 con be
1985
Phi pps and Holccmbe
1985
Thurston et al . 1985
Johnson and F Inlay 1980
Johnson and Flnley 1980
Phi pps and Holccmbe
1985
Phi pps and Holccmbe
1985
Phi pps and Ho Icon be
IQrtS

-------
TabI* I.  (Continued)

Channel catfish (0.3-4.0 g) , F, M
Ictalurus punctatus
Flagflsh (0.1-0.3 g) , F, M
Jordanella florldae
Mosqultoflsh (0.1-1.0 g) , F, M
Gambusla afflnls
Mosqultoflsh (0.1-1.0 g) , F, M
Gambusla afflnls
Guppy ( young) ,
Poecll la retlculata
Guppy ( young) ,
Poecl 1 la retlculata
Guppy (adult) ,
Poecll la retlculata
Guppy, R- M
Poecll la ret Iculata
Guppy (0.04-0.06 g) , RF u
Poecll la retlculata
Guppy (0.04-0.06 g), R. U
Poecll la retlculata
Guppy (0.04-0.06 g), *. u
Poecl Ma retlculata^
Guppy (0.04-0.06 g), R. u
Poecl 1 la retlculata
Guppy (0.0875 9), R» u
Poecll la retlculata
Guppy (0.0875 g), R. u
Poecl 1 la retlculata
Chemical"*
' PCP
(99*)
NaPCP
(79*)
PCP
(99* )
PCP
(99<)
PCP
PCP
PCP
PCP
HCP
PCP
NaPCP
PCP
LC50 Specie* MMW
or EC50 Adjusted LC50 Acute Value
pH (,g/L)««* or ECM (.Q/L)«"« t.g/L)"«*«*
7.71 132 39.12 26.54
8.0- 1,610 291.6 291.6
8.3
8.05 288 60.62
8.02 278 60.34 60.50
720
880
450
7.0 400 242.0
5 42.6 192.4
6 117 «93.4
7 442 267.4
8 911 201.8
8.1 970 194.3
8.1 711 H2.4
7.7 204 6>.08
Reference
Thurston et al . 1985
Fogel s and Sprague 1977
Thurston et al . 1985
Thurston et al . 1985
Adema and Vlnk 1981
Adema and Vlnk 1981
Adema and Vlnk 1981
Sal klnoja-Sal onen et al
1981
Saarlkoskl and
Vlluksela 1981,1982
Saarlkoskl and
Vlluksela 1981,1982
Saarlkoskl and
Vlluksela 1981,1982
Saarlkoskl and
Vlluksela 1981, 1982
Gupta et al . 1982 a
Gupta et al . 1982 a
Khangarot 1983
  Poecllla retlculata

-------
           TabU I.  (Continued)
u>

Species
Guppy (juvenile) ,
Poecl 1 la retlculata
Blueglll <1.) g),
Leporels macrochlrus
Blueglll (1.1 g),
Lepomls raacrochlrus
Blueglll (6 mo) ,
Lepomls macrochlrus

Bluegll 1 (6 mo) ,
Lepomls macrochJrus

BluacjH 1 (0.4 gj ,
Lepomls macrocli h'us
Bluegll l-(0.4 g) ,
Lupomls macrochlrus
BluoglH (0.2 g) ,
1 epomls macroch ir us
Bloeyti 1 (0.3 g) .
1 epomls mnrrochlrus
aiueglll (0.4 g) .
Lepomls macrochlrus
Blueglll (0.3-2.0 g) ,
Lepomls roacrochlros
Largamouth bass (14 d) ,
Mlcropterus sal mo Ides
Largemouth bass (28 d) ,
Mlcropterus sal mo Ides
Largemouth bass (49 d) ,
Mlcropterus sal mo Ides
Largemouth bass (84 d) ,
Mlcropterus salmoldes
Bui 1 frog (tadpole),
Rana catesbelana

Method* Che* leal"
R, U PCP
s, u
s, u
R, U PCP

R, U PCP

s, u K:P
(961)
S, U NaPCP
(90J)
F, M Dowlclde EC-7
(88* PCP)
f, M Oo«lclde EC-7
(88* PCP)
F, M Oowlclda EC-7
(ddj PCP)
f, M PCP
(99{)
R. U PCP
(99*)
R, U PCP
<99jt)-'
R, U PCP
(99J)
R, U PCP
(99«)
F, M PCP
(99*)

_fitl_
7.2
7.0
7.5
7.2-
7 7
' • '
7.2-
7.7

7.2-
7.5
7.2-
7 5
t * J
7.1-
7.8
7.1-
7.8
7.1-
7.8
8.03
7.2
7.2
7.2
7.2
8.3
LC50
or EC50
(»g/L)«««
1,020
, 60
77
260

305

30.72
36.58
150
152
115
202
287
275
136
189
207
Sp«cUs MMA
Adjusted LC50 Acute Value
or EOO (iia/L>«"«« (fa/L !»*»••
504.7 195.4
36.30
28.19
105.23

123.5

13.07
15.57
60.71
61.52
46.55
43.41 56.41
142.0
136.1
67.30
93.53 105.0
44.48 44.48

Reference
Brown et al . 1985
Bentley et al . 1975
Bentley et al . 1975
Prultt et al . 1977;
Pierce 1978
Prultt et al . 1977;
Pierce 1978
Johnson and F Inlay 1980
Johnson and Flnley 1980
Phlpps and Ho Icon be
1985
Phlpps and Ho Icon be
1985
Phlpps and Hoi com be
1985
Thurston et al . 1985
Johansen et al . 1985
Johansan et al . 1985
Johansen et al . 1985
Johansan et al . 1985
Thurston et al . 1985

-------
TabU I.  (Continued)
Species Method*
Poiychaato worm (adult), S, U
Nereis ajenaceodentata
Polychaeta worm R, M
(V-d larva),
Opnryorrocha dladema
Holychaata warm (adult), R, M
()£hr^otroc.ha d^tadema
01 lgocha»fe worm (adult), R, U
L Imnodr 1 lo Idas verrucosus
0! lyociia«ta worm (adult), R, U
L JmnodrHoldas verrucosus
Ol tgochaata worm (adult), R, U
L Imnodr Moldes verruco»us
Ol igochaato worm (adult), R, U
L Imnodr Moldes verrucosus
01 lgo<:haate worm, R. U
Monnphele^horus cut leu tat us
01 Igoohaata worm, R. »
Monopnelephorus cu1 tculatus
Ol l
-------
Tabl* I.
                                                                    LC50
                                                      Salinity    or EC50
                     Acut* Valu*
Sp*cl«s
01 Igot haate worm,
Tublficoldes qabrlellae
Common Atlantic
si lpp6Tbh.il 1 (larva),
Ctefilduld tornlcata
Blue mussel (adult),
Mytllus eaul Is

Blue mussel (embryo),
Mytllus edul Is
Pacific oyster (embryo),
Crassostrea glyas
Editarn oyster (embryo),
Crassostrea v 1 rg 1 n 1 ca
Eastern oyster (embryo),
Crassostrea vlrglnlca
Eastern oyster (embryo),
Crassostrea virgin tea
Eastern oyster (embryo),
Crassostrea vlrglnlca
Eastern oyster { embryo) ,
Crassostrea vlrglnlca
Method* C
«M««»«IB* -»"
R, U
Averaged
results
from S, R, F; M
Averaged
results
from S, R, F; M
S, U
S, U
s. u
S. U
s, u
s, u
s, u
Cope pod (adult), S, U
Pseudod laptomus coronatus
Co pa pod (adult) ,
Temora longlcornus
Averaged
results
hAMlcal"
NaPCP
PCP
PCP
NaPCP
NaPCP
NaPCP
PCP
PCP
(98 »
PCP
(98J)
PCP
(961)
NaPCP
PCP
(Q/kq)
20
(10*C, pH 7)
'24
17
30
30
30
30
18
dig/Li*** (p<]/L)
423.4 423.4
1 , 200 1 , 200
18,000n
328.8tfttt 328.8
40.83ftttt 40.83
36.95
430
49
>I80
640 tttttf
62.81 62.81
170 170
i
R*f«r*nc«
Chapman et al . 1 982 a
Adema and Vlnk 1981
Adema and Vlnk 1981
Woe) ke 1972
rioelke 1972
Borthwlck and Schlmmel
1978
Zaroog Ian 1981
Zaroog Ian 1981
Zaroog Ian 1981
Zaroog Ian 1981
Hauch et al . 1980
Adema and Vlnk 1981
Brown  shr Imp  ( adul t),
Penaeus  aztecus
from S,  R,  F;  M

     F,
                                           NaPCP
26.5
                                                                      >195
                          >195
                                                                                                 Schlmmel et al .  1978

-------
TobJa I.

o „ • » Matlxxt*
S pact a* ""' nCr
Pink shrimp (adult), S, U
Peiiaaus duorarutn
• i • • • •" ' ' '
Grass shrimp R. u
(adult Intarwolt),
Palaamonetas pug to
Grass shrimp R» u
(adult aarty premol t) ,
Palaomonetes puglo
Grass shr Imp R. IJ
(adult latw premol t).
P a 1 aemonetes 'puglq
Grass shrimp (24-hr larva), S, U
P a 1 aeroonetas fuflto
-Grass ihr Imp ( Juvunlle) , F. M
Palaemonetes guglo
Pacific herring (day 1 S, U
yolk sac larva),
rinnua harenaus pa (last
Pacific- Iwrrlng (day 12 S, U
1 ar515.0ft 491.3

24-27 147.8t'tt


24-27 63.74f'ft


24-27 23.09f


24-27 27.71f 25.29

10 .329



Rataraflca
Bantlay at al . 1975

Conkl In and Rao 1978a


Conkl In and Rao I978a


Conkl In and Rao 1978a,b


Borthwlck and Schlmmel
1978

Schlmmel at al . 1978

Vlgars at al . 1978


Vlgers at al . 1978


Vlgars at al . 1978


Vlgers at a! . 1978

Borthwlck and Schlmmel
1978



-------
Table I.  (Continued)
Species
Sheepshead minnow
(2-week juvenile),
Cyprlnodon varlegatus
Sheepshead minnow
(4-week juvenl I e) ,
Cyprlnodon varlegatus
Sheepshead minnow
(6-week juvenile),
Cyprlnodon varlegatus
Sheepshead minnow
(2-week juvenile)
Cyprlnodon varleqatus
Sheepshead minnow
(juvenl le),
Qyprlnodon varieqatus
Lonqnose kl I I If i sh
( juvenl 1 e),
Fundulus slml 1 Is
Plnflsh ( larva) ,
Laqodon rhomboides
Pint ish ( larva),
Lagodon rhomboides
Plnflsh (adult),
Lagodon rhomboides
Striped mullet (juvenile),
Mugi 1 cephalus
Method* Chemical**
s. u PCP
s, u PCP
s, u PCP
S, U DowlciJe
(19% NaPCP)
F, M PCP
F, M NaPCP
S, U NaPCP
S, U Dowlclde
(791 NaPCP)
F, M NaPCP
F, M NdPCP
Salinity
306
35.10
48.16
53.2
112. 1
Species Mean
Acute Value
306
-
53.2
112. 1
                                                                                                Reference

                                                                                                Borthwick and Schlmmel
                                                                                                1978
                                                                                                Borthwick  and Schimmel
                                                                                                1978
                                                                                                Borthwick and Schlmmel
                                                                                                1978
                                                                                                Borthwick and Schimmel
                                                                                                1978
                                                                                                Parrish et al. 1978
                                                                                                Schlmmel et al . 1978
                                                                                                Borthwlck and Schimmel
                                                                                                1978

                                                                                                Borthwick and Schlmmel
                                                                                                1979

                                                                                                Schlmmel  et al . 1978
                                                                                                Schimmel  et al .  1978

-------
Table I.  (Continued)
*     b - static; R - renewal;  F  =  f low-through;  U  =  unmeasured.  M = measured.
».    PCP = pentachloropheno.;  NaPCP  = sodiun pentach.orophenate.  Percent purity is given in parentheses when availab.e.
«««»   Freshwater  LC50s  and  EC50s were adjusted to pH = 6.5 using the pooled slope of 1.005  (see  text).
*««**  Freshwater  Species  Mean Acute Values are at pH = 6.5.
t      Interpolated from graph.
tt     Not  used  in calculation of Species Mean Acute Value.
ttt    Mean of  three LC50b.
fttt   rtean Of  four LC50s.
ttttt calculated using moving average method  and author's  raw data.
          SpBcios Mean Acuto Value  calculated  because  *=ute values  are  too divergent for this species.
Results of Cov,

Species
Simocephalus votulus
Cranqonyx pseudocjraci 1 i s
Gammarus pseudol irnncujus
Fathead minnow
Guppy
All of abovo

ar lance

4
4
4
4
4
20

Analysis of
S lope
0. 7bO
1.164
1.129
0.678
1.052
1.005*

Freshwater /
"icute Toxic IT)
95f Confidence Limits
0.128,
0.844,
-0.319,
0.413.
0.710,
0.841,
1
1.393
1.484
2.578
0.943
1.394
1.169

i versus pn
Deqrees of Freedom
2
2
2
2
2
14

                            * P = 0.28 tor equality of  slopes.

-------
Tabl* 2.  Chronic Toxlclty of Pwitachlorophwtol  to Aquatic AnlMls
                                                               Adjusted
                                 LUIts     Chronic Valu*    Chronic Value
                                               (,0/L)
FRESHWATER SPECIES
Snail ,
Physa gyrlna
Cl adoceran.
Carlodaphn la retlculata
Cl adoceran.
Cerlodaphn la retlculata
Cl adoceran.
Daphnla magna
Cl adoceran.
Slmocephalus vetulus
Cl adoceran,
Slmocephalus vetulus
Rainbow trout.
S a 1 mo qalrdner 1
Fathead m Innow,
Plmephales promelas

Fathead minnow.
Plmeohales orome las
LC

LC

LC

LC

LC

LC

ELS

ELS


ELS

Dowlclde EC-7 7.4-
(93.7* PCP) 7.7
Oowlclde EC-7 7.3
(93.7* PCP)
Dowlclde EC-7 7.3
(93.7* PCP)
PCP

Dowlclde EC-7 7.3
(93.7* PCP)
Dowlclde EC-7 7.9-
(93.7* PCP) 8.4TT
PCP 7.4
(99+*)
PCP 7.2-
(Reagent 7.9
grade)
Dowlclde EC-7 6.5 ,
(88* PCP)
<26*

<22f

<4.1r

180-
320
119-
264
137-
357
11-
19
44.9-
73.0

16.5-
34.6
<26 <8.607

<22 <9.846

<4.1 <1.835

240

177.2 79.66

221.2 40.03

14.46 5.666

57.25 18.94


23.89 23.89

R«t*r*nc«
                                                                              Hedtka at al . 1986
                                                                              Hedtke at al . 1986
                                                                              Hadtka at al . 1986
                                                                              Adema 1978
                                                                              Hadtka at al . 1986
                                                                              Hadtka at al . 1986
                                                                              Domlnguaz and Chapman
                                                                              1984

                                                                              Hoi combe at  al . 1982
                                                                              Spahar  at  al .  1985

-------
Table 2.  (Continued)

falnead minnow,
P jnrwnna 1 es prom^ < ,wlcldo EC-7
(dtt# PCP)
ELS uowlc Ide EC-7
(68t PCP)

Limits Chronic Value
pH (iinaepshedd  minnow,
C ypr ! r.ooon  var )
                                LC
                                                PCP
                                                                      47-88
                                                                                    64.31
 .    LC  ^  Mte-oyrla or  pjrtlal lite-cycle; tLS - early  life-stage.
         «•
 «k   pep -.  penlochluruphenol .  PHrcent  purity  li qlven  In  parentheses when available.

 ***  Kesults are ba-jed mi mea&ured concentrations ot  pen tachlorophenol .

 «»»*Frosnwater chronic values wore  c.]).ist>>J  to  pH =  b.-> using  the pooled slope ot 1.005 (see text)

 t    ijncK-reptabie jMocts occurred  al all  cuncen Irat Ions tasted.

 tT   controlled dally pH fluctuation conslsllnq  ot Ib hours  at  8.4 and 8  hours at 7.9.
                                                                                                                  Parrlsh et  at .  1978

-------
Table 2.  (Continued)
Species
Snail,
Physa qyrlna
Cl adoceran ,
Cerlodaphnla retlculata
Cl adoceran ,
Cerlodaphnla retlculata
Cl adoceran,
Oaphn la roaqna
Cl adoceran ,
S Imocephalus vetulus
Cladoceran,
S Imocephalus votulus
Rainbow trout,
Salmo galrdrter 1
Fathead minnow,
P Imephales promelas
Fathead minnow,
P Imephales promelas
Fathead minnow,
Plmophales promelas
Fathead minnow,
P Imepha las promo las
Fathead minnow,
Plmephales promelas
Sheepshead minnow,
Cyprlnodon varleqatus

Acute-Chronic Ratio
Acute Value Chronic Value
1.2-1.1 267 <26
7.3 150 <22
7.3 150 <4.1
600 240
1.^> 160 177.2
7.9-d.4 196 221.2
7.4 66 14.46
7.1-8.3 224. 9» 57.25
6.5 95 23.89
7.5 218 40.08
8.0 261 48.99
8.i5 378 89.23
442 64.31
Ratio
>10.27
>6.8I8
>36.59
2.500
0.9029
0.8861
4.564
3.928
3.977
5.439
5.328
4.236
6.873
                            *   Geometric mean of 2  acute values  obtained by Phlpps at al.  (1981) (sea Table 1).

-------
Table 3.  Ranked Genus Mean  Acute Values with Species Mean  Acute-Chronic Ratios
lank*
33
32
31
30
29
28
27
26
23
22
21
Genus Mean
Acute Value
(Mq/L)
>43,920
11 ,260
10.610
417.7
408.2
403.2
361.6
M7.5
2*\ .6
182. 5
172.1
195.4
Species
FRESHWATER SPECIES
Crayfish,
Orconectes Immunls
Midge,
TanyTarsus dlsslmllls
Sc lomy z Id,
Sepedon fuse Ipennls
Tubltlcld worm,
Rhyacodrllus montana
Tubltlcld worm,
Stylodrllus herlnqlanus
Sna 1 1 ,
G 1 1 1 1 a a 1 1 1 1 1 s
Tublflcld worm,
Splrosperma ferox
Tublticld worm,
Splrosperma n Ikolsky 1
Tubltlcld worm,
Oulstradr 1 lus mu IT Isetosus
F 1 aq 1 1 sh ,
Jordotiel la t lor Idae
Tul>if)cJd worm,
Tubltex tubltex
TubHIcld worm,
L Imnodr 1 lus hot tine Ister 1
Amptilpod ,
Cranqonyx pseudoqrac 1 1 Is
Guppy,
Species Mean
Acute Value
d-q/L)**
>43,920
1 1 , 260
10,610
417.7
408.2
403.2
239.5
545.8
317.5
291.6
224.2
182.5
172.1
195.4
Species Mean
Acute-Chron Ic
Ratio***
-

-------
Table 3.  (Continued)
Rank*
20
19
18
17
16
14
13
12
1 1
10
9
8
Genus Mean
Acute Value
(pcj/L) Species
155.9 Tub! field worm,
Branchlura sowerbyl
132.1 Snail,
Physa qyrlna
1*1.1 Amph 1 pod ,
'jammorus pseurtol Imnaeus
105.0 Larqemouth bass,
Mlcropterus salmoldes
87.48 Amph 1 pod,
Hyalel la azteca
78.10 Cladoceran,
Oaphnla pulex
Cladoceran ,
Oaphnla magna
67.13 Cladoceran,
Cerlodaphnla retlculata
65.53 Goldfish,
CarassJus auratus
65.11 Fathead minnow,
PImephales promelas
60.50 Mosqul tot Ish,
Gambusla at t In Is
60.43 Snail,
Aplexa hypnorum
58.47 Tublflcld worm,
Var Ichaeta paclflca
57.72 Cladoceran,
S Imocephalus vutulus
Species Mean
Acute Value
"
155.9
132.1
122.1
105.0
87.48
90.83
67.15
67.13
65.53
63.11
60.50
60.43
58.47
57.72
Species Mean
Acute-Chron Ic
Ratlo»*»
>10.27
2.500
>15.79f
4.535"
0.8945f

-------
                                  Tabl* 3.  (Continued)
oo
Rank*
«MH«*«BW
7
6
5
4
i
2
I
17
16
15
6«nus Mean
Acut* Valu*
(ii9/L) Spacles
56.41 Blueglll,
Lapomls macrochlrus
44.48 Bullfrog,
Rana catesblana
35.54 Ra Into* trout,
balmo aalrdnerl
34. H Urook trout,
Sal vel Inus font Inal Is
JO, 01 Coho salmon,
Oncorhynchus klsutch
Sockeya salmon,
Oncorhynchus nerka
Chinook salmon,
Qncorhynchus tshawytscha
26.54 Channel catfish,
Ictalurus punctatus
4.3'.>5 Common carp,
Cynrlnus carplo
SALTWATER SPECIES
1,200 Common Atlantic
si Ippershal 1 , '
Crepldula fornlcata
>1,045 Brown shrimp,
Penaeus aztecus
Pink shr Imp,
Penaaus duorarum
862.6 Polychaate worm,
Ophryotrocha dladama
Sp^Us NMM
Acut* Valu*
(P9/L)M
56.41
44.48
35.34
54.13
31.82
32.85
25.85
26.54
4.355
1,200
>195
5,600
862.6
Sp«cl*s Naan
Acut*-Chr
-------
3.  (Continued)
R.nk»
,4
13
12
II
10
8
6
5
4
3
2
C*nus NMA
Acut* Valu*
598.2
491.3
442
435
423.4
397.2
328.8
>306
170
112.1
62.81
5i.2
40.83
S|»*cl** MM* Sp*cl*s HIM
So-clM **«*• ¥•'••• Acute-Chronic
"K^ • i»a/L)M R.+ !,**•»
01 Igochaata worm,
Monopylephorus cutlculatus
Grass shr Imp,
Palaemonetes pug to
Shaepshaad minnow,
Cyprlnodon varlecjatus
Pol ychaata worm.
Nereis arenaceodentata
01 Igochaata worm,
Jublficoldes gabrlellae
01 Igochaate worm,
L Imnodrlloldes varrucosus
Bl ue mussel ,
Mytllus adul Is
Longnosa kll 1 If Ish.
Fundulus slml 1 Is
Co pa pod,
Temora lonqlcornls
Str (pad mul let,
Mug II cephalus
Co pa pod,
Pseudodlaptomus coronatus
Plnflsh,
L agodon rhomboldas
Pacific oyster.
598.2
491.3
4« 6.873
435
423.4
397.2
328.8
>306
170
112.1
62.81
53.2
40.83

-------
Ul
o
                                 TabU 3.   (Cofltlnutd)
                                          GMIU* MMR                                   Sp«cl«s NMM     Sp*cl*s
                                          Ac«t. van-
                                             (».Q/t.)        Sfr«cl««
                                                 25.29     Pacific herring,                   25.29
                                                          Clupea harengus pa I last
                                     Ranked fran most  resistant  to most  sensitive  based  on Genus Mean Acute Value.
                                     Inclusion of "greater  than"  values  does  not necessarily  Imply a true ranking, but
                                     does allow use of all  genera for  which data are available  so  that  the Final Acute
                                     Valua Is not unnecessarily  lowered.
                                 •»  From Table 1.

                                 »*» From Table 2.

                                 *   Geometric mean of two values In  Table 2.

                                 **  Geometric mean of five values In Table 2.

-------
Table 3.  (Continued)
Fresh water
     Final  Acute Value =  10.97  pg/L  (at pH =  6.5)
     Criterion Maximum Concentrat Ion =  (10.97  ug/L)  /2  =  5.485  Mg/L  (at pH = 6.5)
          Pooled Slope =  1.005  (see  Table t)
          ln(Crlterlon Max Imun  Intercept) = ln(5.485)  -  I slope x6.5l
                                          = 1.702  - (1.005 x6.5)  =  -4.830
     Cr.terion MaxImu. Concentration =  a'».005(pH>-4.8501
          Final Acute-Chronic Ratio = 3.166 (see text)
     Final Chronic Value = (10.97 Pg/L) /3.166 - 3.465 pg/L (at pH = 6.5)
          ln(Flnal Chronic Intercept) = ln(3.465)  - Islope x 6.51
                                      = 1.243 - (1.005 x6.5) =« -5.290
     Final Chronic Value = en.005(pH)-5.290l

 Salt water
     Final  Acute  Value = 25.05 pg/L
     Criterion  Max Imun Concentration =  (25.05  wg/L) /2 =  12.52 n9/L
           Flnal  Acute-Chronic Ratio =  3.166  (see  text)
     Final  Chronic Value =  (25.05 pg/L)  / 3.166 = 7.912

-------
Tabla 4.  Toxic Ity of Pantachlorophanol  to Aquatic Plant*
                            Durst Ion
                                       Etfact
Concantrat Ion
   (»g/L)**    Rafaranca
Spaclas
• 1 _. _
Alga,
Chloral la vulgarls

Alga,
Chloral la pyrenoldosa
Alqa,
Chloral la pyrenoldosa

Alga,
Scenedesmus quadrlcauda

Alga,
Scenedesmus subsplcatus

Alga,
Selenastrum capr Icornutum
Alga,
Selenastrum capr Icornutum

Alga,
Selenastrum capr Icornutum

Alga,
AnMstrodesmus braunl I

Duckweed,
Lemna minor


Green alga.
Chlamydomonas sp.
Green alga,
Ounallella tertlolecta
Green alga,
Dunallella tertlolecta

Green alga.
Dunal lei la sp.
unaaicai-
NaPCP
(98*)


PCP

PCP


PCP
199%}
NaPCP


PCP

PCP


NaPCP
(98*)




VCP


PCP
PCP
PCP
rvj*

un » M*JW »» •» • • ^*~* 	
FRESHWATER SPECIES
1 1 EC50

7.0 3 ECIOO
(chlorosis)
4 EC50 (growth)

4 EC50 (growth)


7.0 4 EC50

7 Reduced growth


4 EC50 (growth)

4 EC50 (growth)


1 1 EC50

5.1 2 EC50
(chlorosis)

SALTWATER SPECIES
4 , EC50 (popula-
tion growth)

30»« 4 EC50 (popula-
tion growth)
30»»« 4 EC50 (popula-
tion growth)
4 EC50 (popula-
tion growth)


600

7.5

7,000

80


90

50


290

312


830

189.1



1,400


206
170
3,600



Burred et al. 1985

Huang and Gloyna 1967

Adema and Vlnk 1981

Adema and Vlnk 1981


Geyer et al . 1985

Adams et al . 1985


Cross! and and Wolff
1985

Rlchter 1982


Burrel 1 at al . 1985

B lac Km an et al . 1955



Adema and Vlnk 1981


Walsh et al. 1982
Walsh et al. 1982
Adema and Vlnk 1981



-------
                     Table 4.  (Continued)
bJ
c^^. Duration Concwttratloii
^P*0*** Chaja'cal' j«_ (day*) Effact (,g/l )•• Rafaraaca
Golden brown alga,
Monochrys Is sp.
01 atom,
SKeletnnoma cos tot am
0 1 atom ,
Skeltftonama cos tat urn
Olatom.
SKaletunema cost at urn
Diatom,
Tholoba los U a p:>oudnnana
01 a torn,
Thalasbloslra pseudonana
OUtom,
Thalasslos Ira psaudonana
LUatom,
Phaaodactylum trlcornutum
Glrtnt Kelp ( young fronds),
MacrccystJs £Yrl*era

HCP
PCP 30***
PCP 30***
PCP 30***
PCP 30***
PCP 30***
PCP 30***
PCP
NaPCP
(Santo-
brlta)
4 EC 50 (popula-
tion growth)
4 EC50 (popula-
t Ion growth)
4 EC50 (popula-
tion growth)
4 EC50 (popula-
tion growth)
4 EC 50 (popula-
tion growth)
4 EC 50 (popula-
tion growth)
4 EC50 (popula-
t Ion growth)
4 EC50 (popula-
tion growth)
4 EC50 (photo-
synthetic
activity)
200 Adema and Vlnk 1981
20.30 Walsh et al . 1982
17.40 Walsh et al . 1982
17.80 Walsh et al . 1982
205 Walsh et al . 1982
189 Walsh et al . 1982
179 Walsh et al . 1982
3,000 Adema and Vlnk 1981
277.1 Clendennlng and North
J959
                    *   PCP = pantaotilorophenol; NaPCP = sodium pen toe hi orophan ata.   Percent purity Is given In parentheses when available.


                    **  Results are expressed as pootachlorophenol.   If the concentrations  were not measured and  the published results
                        were not reported TO be aajustad tor purity, the  published  results  were multiplied  by the purity If It was reported
                        to be lass than 91%.                                                                                         ^^


                    **» Salinity (g/kg), not pH.

-------
Table 5.  Bloaccunulatlon  of Pentachlorophenol  by  Aquatic Organisms

Spec les

Rainbow trout (400 q) ,
Salmo qalrdner 1

Rainbow trout (400 g) ,
Salmo qalrdner 1

Fathead minnow (6 mo) ,
Plmephales promelas
Fathead minnow (0.5-1.5 q) ,
Plmephales promelas
Fathead minnow (0.5-1.5 q) ,
Plmefthales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (juvenile),
Plmephales promelas
Fathead minnow (juvenile).
Plmephales promelas
81 ueq HI (6 mo) ,
Lepomls macrochlrus

Eastern oyster (adult).
Crassostrea vlrqlnlca
Eastern oyster (adult).
Crassostrea v Irqlnlca

Chemical*

PCP
(Reaqent
grade)
PCP
(Reaqent
grade)
_

PCP
(99$)
PCP
(88$)
Dowlclde EC-7
(88$ PCP)
Dowlclde EC-7
(88$ PCP)
Oowlc Ida EC-7
(88$ PCP)
Oowlc Ida EC-7
(88$ PCP)
PCP


NaPCP

NaPCP

Concentration Duration
In Water Ug/L)** pH (days)
FRESHWATER SPECIES
0.035 - 115


0.660 - 115


7.49 32

50 31

50 31

3.1-34.6 6.5 32

5.0-58.2 7.5 32

12.7-161.0 8.0 32

29.3-125.0 8.5 32

100 7.2- 16
7~J
• /
SALTWATER SPECIES
25 - ' 28

2.5 - 28

BCF or
Tissue BAF"* Reference

«««» 406 Nllml and McFadden


**** 168 Nllml and McFadden
IQft?
1 7U£

Whole body 770 Velth et al . 1979

Whole body 163 Hucklns and Petty

Whole body 211 Hucklns and Petty
1983
Whole body 1,066 Spehar et al . 1985

Whole body 434 Spehar et al . 1985

Whole body 426 Spehar et al . 1985

Whole body 281 Spehar et al . 1985

Muscle 7.3 Prultt et al . 1977;
Pierce 1978


Soft tissue 41 Schlmmel et al .
1978

Soft tissue 78 Schlmmel et al .
1978


-------
  TabU 5.   (Continued)
                                             CoacaittratloN
!>p«ci*»
Eastern oyster (adult),
Crassostrea virgin lea

Eastern oyster (adult),
Crassostrea vlrglnlca
Eastern oyster (adult),
Crassostrea vlrglnlca
Shaepshead minnow (embryo),
C yprlnodon varlegatus


Shaepshead minnow (juvenile),
Cyprlnodon varleqatus

Sheepshead minnow (adult),
Cyprlnodon varleqatus
Long nose kll 1 If Ish,
Fundulus slmll Is


ChMlcal*
NaPCP

NaPCP
NaPCP
PCP


PCP
PCP
PCP


IN Water <»«/«.)*•
3. 7+J.4

9.5*3.4
11.3*1.7
18-195


18-195
18-195
57-120


•*w «• m^^m
pH (days)
Steady
state
Steady
state
Steady
state
Parents
exposed
133-142
days
28
151
7
(Steady
state)
T ISCIM
Soft tissue

Soft tissue
Soft tissue
Whole body


Whole body
Whole body
Whole body


our or
RAF***
DAr
•••^•••^-w
82

34
76
19.39*


3l.56f
10.75*
64



Reference
Schlmmel and
1985
Schlmmel and
1985
Schlmmel and
1985
Parr Ish et al
1978


Parr Ish at al
1978
Parr Ish et al
1976

Garnas

Garnas
Garnas
•


.
•
Truj II lo et al .
1982



•    PCP -  pentachlorophanol, NaPCH = sodium pentach.orophanata.  Percent purity  Is given  In parentheses *en available.
**   Measured concentration ot pantuchlorophauol .

                                                         tactors {BAFs) are
*»** Whole body minus Intestines, liver, and gall bladder.

     Geometric mean of values from four test concentrations.

-------
Table 6.  Other Data
                     on  Effects of Pentachlorophenol on Aquatic Organisms
                                                         Concentration
                                              Effect         Ug/L)**    Reference
Species

Alqa,
Scenedesmus pannonlcus
Pond phytoplankton
comniun Ity
Vascular plant,
E lodea canadensls
Duckweed,
Lemna minor
Duckweed,
Lemna minor
Bacter 1 urn.
Pseudomonas tluorescens
Cyanobacter Jum,
Mlcrocystls aeruqlnosa
Detritus mixed mlcroblal
commun Ity

Amot*t»i,
Amoeba prottnis

Cll late proto/oan,
Colpldlum campy lum

Hydra,
Hydra ol Iqactls

Hydra,
Hydra ol Iqactls

Planar Ian ,
Duoesla lugubrls
Chemical" pn uui »••»»" _-.—-- T „
FRESHWATER SPECIES
PCP

PCP

Uowlclde EC-7
(93.7* PCP)
PCP

Uowlclde EC-7
(93.?* PCP)
PCP

PCP
Oowlclde EC-7
(88* PCP)





PCP
098*)
PCP

PPP
r V_»r
(>9b*)
4 days

10 days

7.7- 21 days
8.2
7 days

7.7- 21 days
8.2
0.3 days

4 days
56 days
4.5 30 mln


43 hr

48 hr
21 days

48 hr


Reduced
blomass
Community
structural
change
Reduced growth
(river water)
Reduced
spec) f Ic
growth rate
100-
320
1,000

380
1 ,000-
3,200

j* " •
Reduced > 1,440
growth ( r Iver
water)
Reduced
spec) tic
growth rate
3" ™
Reduced
spec I f Ic
growth rate
Reduction In
blomass and
activity
Reduced
surv Ival

Minimal active
dose
' LC50
Reduced specific
growth rate
LC50


1 ,000-
3,200

1 ,000-
3,200
8,131
1,332


600

730
32-
100
130


Slooff and Canton 1983

Boyle et al . 1984

Hedtke et al . 1986
Slootf and Canton 1983

Hedtke et al . 1986
Slooff and Canton 1983

Slooft and Canton 1983
Falrchlld et al . 1984
Smith and Ord 1979


Dive et al . 1980

Slooff 1983
Slooff and Canton 1983

Slootf 1983



-------
TabU 6.  «
Sp*c l»s rh»i«.i* _., ^ . Concentration
^ Ch«.lcal» __pH_ Duration E»Uct <.aA>" ».*«-«,«
Rotifer,
Brachlonus rubens
Rotifer, pep
Brachlonus rubens
Rotifer, pep
Brachlonus rubens
Tublflcld worm, NaPCP
Branch lura sower by 1
Tublflcld worm, NaPCP
L Imnodrllus^ hof fmelsterl
Tublflcld worm, NaPCP
Qulstradr II us multlsetosus
••Tublflcld worm, NaPCP
Splrosperma nlkolskyl
Tublflcld worm, NaPCP
Stylodrllus heringlanus
Tub 1 field worm, NaPCP
Tublfex tublfex
Mixed tublflcld worms, NaPCP
Tub) fax tubltex and
LImnodrllus hof fmelsterl
Mixed tublflcld worms, NaPCP
Tublfex tublfex and
LImnodrllus hof fmelsterl
Mixed tublflcld worms, NaPCP
Tublfex tublfex and
L Imnodr 1 1 us hof f me > star 1
Mixed tublflcld worms, NaPCP
Tublfex tub) fax and

24 hr LC50
5 days LC100
23 days Reduced popula-
tion density
7.0 96 hr LC50 (with
sediment)
7.0 96 hr LC50 (with
sed Intent)
7.0 96 hr l£50 (with
sad Intent)
7.0 96 hr l£50 (with
sad Intent)
7.0 96 hr LC50 (with
sad Intent)
7.0 96 hr LC50 (with
SQQ IflQQO T)
7.0 96 hr LC50

7.5 24 hr i£50

8.5 24 hr LC50
,
9.5 24 hr LC50

160
200
50
515.5
1,150
846.9
3,314
1.243
754.8
533.9

290

620

1.290

Hal bach at al .
Hal bach 1984
Hal bach 1984
Chapman at al .
Chapman et al .
Chapman et a( .
Chapman at al .
Chapman at al .
Chapman at al .
Chapman et al .

Whltlay 1968

Whltley 1968

Mhlttey 1968

1983


1982 a
1982 a
1982 a
1982 a
1982 a
1982 a
1982c







-------
on
» —
1 0»
_ S.
RJ^
g ^
|S
oT
2.
3"
i/i
a.
c
cr
oT
0 O
e —
1 O
_ o.
as
5^
|S
ST*
a
3
in
a.
c
tr
oT
0 0
a> —
n a
— a.
R8
^^
3 a>
oT
a
J
v>
Q.
C
cr
aT
O m
~D O
— 1
"0 to
3- 3
< Ol
I/i —
Ol —
£1
3


~0 to
3- 3
•< Ol
I/I —
01 —
a
<



T5 to
•3 3
< 01
VI —
01 —
o
3


TJ to
3- 3
•< 01
0 ~
LO *
3


"D to
3- 3
< Ol
VI —
a —
a
3


"0 to
3- 3
K a
in —
3


-0 to
3- 3
< a
in —
a
3


T) to
3- 3
K Ol
in —
o —
a
3

•
T3 to
•< Ql
V —
01 —
UD
3


I— to
•e 3
3 Oi
o —
01 »
01
01
D
3
O
in
i- to
«< 3
3 O
O —
8*
a
a
3
01
in
                vC •




                •M ^

                    ** C.   W.O.

                    _  »   _ *
                «^  I     *-•
                                    vD •

                                    •  O
                                       *» Q.
                                          a
                                      m
                                      O
                                               vO C
                                                       S?
                                                           ~%   -S3
                                                           ^5 C   ^^ C
                                                 p      p
                                              •- o    ~ o
                                              vO X    <£> S.
                                                              «* o.
                                                                         *
                        i  m    o rn   O m
                        in    TJ o   TJ O

                                                      ^^ r>
                                                         e
                                                                                             o    £> 00    — vo
                               I        I
               CO CO

               K) O
               CD CO


                  I
                                                                              1
                                                             r*
   CO

   3-
»
CD
^

«j
O.
01
in
>£>
a
ar
T

a
&
n

a
3-
n

vC
3"
n

•£)
O>
3T
-1

a
3-
1

vO
a
3T
T

                                                                             KJ

                                                                             X
                                                         a

                                                         3
                                                         o
                                                         a
                                                                                                        CD
o> o   a o
-f Ul   ^. Ul
• o   • o
1      1
                Si
                    SB
SB
SB
SB
SB
SB
SB
           n
           <"
               i

               <"
                           a
   T

   ?
          1

          <"
          -\

          <
           -1

           ?
at
SB
Red
hat
                — c    ao   o c
                on    T      3-0
                = 8.   --   -a.
                a.         —ID

                5*8       i
                in TJ       "
       iH«*CDUlK>K)C^'»4KJ
       O^—•gDO^h^^^'Ul
       ZjOOOOOOOO
                                                                                  a
                                                                                              O K)
                                                                                                  I
           I      I
                                                       I    l\
                                                                                                         S
                   ff
A       0       a      a>
                                                                  a
                                                                  !
            S

                                                                              I
                                                                                  U)
                                                                                                 8       8
                                                                 I      I
                                                                  CD
                                                                  Ul
                                                                                          £-      o
                                                                                          •       01
                                                                                                 3
                                                                                                 VD
                                                                                                 CO

-------
Table 6.  (Continued)
apeoes
Cl adoceran ,
Cerlodaphnla retlculata

Cl adoceran,
Cerlodaphnla retlculata
Cl adoceran ,
Daphn la maqna
Cl adoceran ,
Paphn la maqna
Cl adoceran ,
Daphn la magna
Cl adoceran ,
Daphn la maqna
Cl adoceran,
Daphn la maqna
C 1 adoceran,
Daphnla magna
Cl adoceran ,
Daphn la magna
Cl adoceran,
Daphn la maqna
Cladoceran ,
Daphnla magna
Cl adoceran,
Daphnla maqna
Cl adoceran,
Daphn la magna
Cl adoceran ,
Daphn la magna

Chemical* PH
Dowlclde EC-7 7.8-
(93.7$ PCP) 7.9
Dowlclde EC-7 7.8-
(93. 1% PCP) 8.0
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP

Duration
4B hr
48 hr
21 days
21 days
21 days
21 days
2,1 days
21 days
21 days
21 days
14 days
14 days
21 days
21 days

V.
Effect
LC50 (river)
water)
LC50 (river
water)
LC50
LC50
LC50
LC50
LC50
LC50
LC50
LC50
LC50
LC50
, No effect on
reproduct Ion
Red uc ed
survival and
reproduction
• VIII.OTI II Ol 1
240
700
480
510
400
470
430
490
170
190
440
460
340
100-
320

on
Hedtke et al .
Hedtke et al .
Adema 1978
Adema 1978
Adema 1978
Adema 1978
Adema 1978
Adema 1978
Adema 1976
Adema 1978
Adema 1978
Adema 1978
Adema and Vlnk

1986
1986










1981
Slooff and Canton I1



-------
TabU 6.  I Continued)
Species
Clodoceran (<24 hr) ,
Daphnla maqna
Cladoceran (6 d) ,
Daphnla maqna
Cladoceran (6 d) ,
Daphnla magna
Cladoceran,
Slmocephalus vetulus
Cl adoceran.
Slmocephalus vetulus
Iso pod,
Asel lus racovltzal
' Iso pod,
Asel lus racovltzal
1 so pod ,
Asel lus racovltzal
Iso pod,
Asel lus racovltzal
Amphlpod,
Cranqonyx pseudoqracll Is
Am phi pod,
Cranqonyx pseudoqracl 1 |s
Amphlpod,
Cranqonyx pseudoqracl 1 Is
Amph 1 pod ,
Cranqonyx pseudoqracll Is
Amph 1 pod .
Cranqonyx pseudogracll Is
Chemical*
-

PCP
(99*$)
PCP
(99*$)
Dowlclde EC-7
(93.7$ PCP)
Dowlclde EC-7
(93.7$ PCP)
Dowlclde EC-7
(93.7$ PCP)
Oowlclde EC-7
(93.7$ PCP)
Oowlclde EC-7
(93.7$ PCP)
Oowlclde EC-7
(93.7$ PCP)
Dowlclde EC-7
(93.7$ PCP)
Dowlclde EC-7
(93.7$ PCP)
Uowlolde EC-7
(93.7$ PCP)
Dowlclde EC-7
(93.7$ PCP)
Oowlclde EC-7
(93.7$ PCP)
_£"_


7.9

7.6

7.8-
7.9
8.0

7.7-
7.9
7.6-
8.0
7.7-
8.1
7.8-
7.9
7.7-
7.9
7.7-
8.1
7.7-
8.1
8.2-
8.4
8.0-
8.1
Duration
16 days

48 hr

48 hr

48 hr
48 hr

96 hr
96 hr
96 hr

96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
Effect
••••••••IM^B
EC 50
(reproduction)
EC50 (river
water)
EC50 (river
water)
UC50 (river
water)
LC50 (river
water)
LC50 (river
water)
L£50 (river
water)
LC50 (river
water)
LC50 (river
water)
UC50 (river
water)
l£50 (river
water)
UC50 (river
water)
LC50 (river
water)
IC50 (river
water)
Conceit trat Ion
150
254
599
670
204
>7,770
4,320
2,370
3,400
3,120
2,770
1,890
500
320
Reference
Hermans et al . 1984
Brooke et al . Manuscript
Brooke et al . Manuscript
Hedtke and Arthur 1985;
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke and Arthur 1985;
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke and Arthur 1985;
Hedtke et al . 1986
Hedtke et al . 1986
Hedtke et al . 1986

-------
Tabl* 6.  (Continued)
Spec Us
Amph 1 pod ,
Cranqonyx psaudogracl 1 Is
Am phi pod,
Crangonyx psedograc His
Am phi pod,
Crangonyx pseudogracl 1 Is
Amph I pod (11 mm).
Gammarus pseudol Imnaeus
Amph 1 pod (It mm) ,
Gammarus pseudol Imnaeus
Amph 1 pod ,
Hyalel la azteca
^
Am phi pod,
Hyalel la azteca
Mayfly,
Cal 1 Ibaetls skoklanus
Mayfly,
Call Ibaetls skoklanus
Mayfly ( larvae),
Cloeon dlpterum
Caddlsfly,
Phllarctus quaarls
Sclomyzld fly (1st Instar),
Sepedon fusclpennls
Mosquito (1st Instar),
Culex plplens

ChMlcaf
Dowlclde EC-7
(93.71 PCP)
Dowlclde EC-7
(93. 1% PCP)
Dowlclde EC-7
(93.7J PCP)
PCP
(99+*)
PCP
(99+!)
PCP
(99+!)
PCP
Dowlclde EC-7
(93.7! PCP)
Dowlclde EC-7
(93.7! PCP)
PCP
O98!)
Dowlclde EC-7
(93.7! PCP)
NaPCP
(90!)
PCP
_£H_
8.0-
8.1
7.8-
7.9
7.7-
7.9
7.9
7.6
7.9
7.6
7.5-
7.7
7.8-
7.9
7.5-
7.7
-
Duration
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
48 hr
96 hr
96 hr
25 days
Effect
LC50 (river
water)
UC50 (river
water)
LC50 (rver
water)
LC50 (river
water)
LC50 (river
water)
LC50 (river
water)
LC50 (river
water)
LC50 (river
water)
LC50 (river
water)
LC50
LC50 (river
water)
LJC50 (fed)
, Reduced
survival and
devel opment
Concentration
220
1,550
2,000
451
450
286
353
1,780
1,300
5,900
1.260
2,200
3.200-
10,000
Refer an
Hedtke et al . 1986
Hedtke et al . 1985
Hedtke et al . 1986
Brooke et al . Manuscript
Brooke et al . Manuscript
Brooke et al . Manuscript
Brooke et al . Manuscript
Hedtke and Arthur 1985;
Hedtke et al . 1986
Hedtke et al . 1986
SI oof f 1983
Hedtka and Arthur 1985;
Hedtke et al . 1986
McCoy and Joy 1977
SI oof f and Canton 1983

-------
Table 6.  (ContlniMd)
                                                                              Concentration

Specie*
Midge (4th Instar),
Chlronomus rlparlus

Midge (4th Instar),
Chlronorous rlparlus
Sockeya salmon (<1 yr).
Oncorhynchus nerka
Sockeye salmon «1 yr),
Gncorhynchus nerka
Socneye salmon (<1 yr).
Oncorhynchus nerka
"*Sockeye salmon (<1 yr).
Oncoi hynchus nerka^
Chinook salmon (juvenile),
0 ncor hynchus tschawytscha
Chinook salmon (Juvenl(e),
OncorhyiiChus tschawytscho
Rainbow trout (al»n).
So Imo nalrdnert
Rjinbuw trout (aievln),
Salmo qalrdnerj^
Rainbow trout (aievln),
Sal mo qalrdnerl
Chen leal*
PCP
/ f\~) af \
(97*)

PCP
(reagent
grade)
NaPCP

NaPCP

NaPCP

NaPCP

NdPCP
-

Santobrlte
(>90* NaPCP)
Santobrlte
(>90* NaPCP)
Santobrlte
(>90< NaPCP)
pH
K i
7.0


4.0
6.0
9.0
6.8

6.8

6.8

6.8

7.0-
7.1
6.5-
6 9
\J • 7
-
-
-
Duration
24 hr
(25*C)
(35'C)
24 hr
21 days

42 days

56 days

56 days

96 hr
8 days

20 days
20 days
21 days
Effect
LC50


l£50
LC50

10* growth
Inhibition

EC50 (growth)

EC50 (food
conversion)

LC50 (high
load Ing)
LC100 (with bac-
terial disease
Inj ect Ion)
11* growth
Inhibition
18* growth
Inhibition
18* growth
Inhibition
(•
-------
TabI* 6.  (Continued)
Rainbow  trout  (alevln),
Salmo galrdnerl

RaInbow  trout
(embryo  and alevln),
Salmo galrdner)

RaInbow  trout,
Salmo galrdnerl
  Rainbow trout (alevln),
  Salmo galrdnerl

  Rainbow trout,
  Salmo galrdnerl
. Rainbow trout (2.1-11.4  g),
  Nlsqually strain,
  Salmo galrdnerl

 Rainbow trout  (2.1-11.4  g),
  Idaho  strain,
 Salmo  galrdnerl

 Rainbow  trout,
 Salmo  galrdnerl

 RaInbow  trout,
 Salmo  galrdnerl
 Rainbow trout,
 Salmo galrdnerl

 Rainbow trout (0.81  g),
 Salmo galrdnerl
                             Cfa+alcal"      pH

                             Santobrlte
                             (>90< NaPCP)

                             Santobrlte
                             (>90* NaPCP)
                             Santobrlte    7.8
                            (>90$ NaPCP)
                             Santobrlte    7.8
                            O90J NaPCP)
                                           7.4-
                                           7.7
                                          7.4
                                          7.7
                                          8.0
                              NaPCP
                              NaPCP
  Duration

   28 days


   41 days
                                                                       Effect

                                                                    12< growth
                                                                    Inhibition

                                                                    t£IOO
                                                                               Concentration
FertllIzatlon  25* mortal Ity
and yolk sac
resorptlon
                                          7.78-
                                          7.89
                                          7.96-
                                          8.08

                                          7.9
                                                      71  days


                                                      28  days


                                                    8.8  hr



                                                    7.1 hr



                                                     24 hr
                                                   4 wk post
                                                   sw lot- up


                                                   4 wk post
                                                   swim- up

                                                     '96 hr
               9. I* growth
               reduction

               211 growth
               Inhibition

               Median  survival
               time
               Mad Ian  sirvlval
               time
 Increased
respiration

Blomass reduc-
tion (lower
temperature)

Blomass reduc-
tion (higher
temperature)
LC50 (river
water)
                     28       Chapman 1969


                     46       Chapman 1969



                     18       Chapman and Shumway 1978



                     18       Chapman and Shinway 1978


                      7.4      Matlda et  al.  1976
                   250        Alexander  and  Clarke
                              1978
                   250       Alexander  and Clarke
                             1978
                                                                                    70       SI ooff  1979
                                  20-      Hod son and Blunt 1981
                                  80
                                           Hodson and Bl unt 1981
                                                                                    70.1     Brooke et al. Manuscript

-------
Table 6.  (Continued)
                                                                               ConcantratIon
C r%fxf lac
J|JOV» 1 Oa
Rainbow trout (0.81 g) ,
Salmo qalrdner 1
Atlantic salmon,
Salmo salar
Brown trout (4.5 g) ,
Salmo trutta
Central stonerol ler (10 g) ,
Campostoma anomalum
Goldfish (1.5 g) ,
Carasslus auratus
Goldfish (108.0 g) ,
Carasslus auratus
Goldfish (adult) ,
Carasslus auratus
Goldfish ( juvenile) ,
Carasslus auratus
Go 1 d f I sh ( j uv en 1 1 e) ,
Carasslus auratus
Goldfish ( juven 1 1 e) ,
Carasslus auratus
Goldfish (2 g) ,
Carasslus auratus
Goldfish (1.3 q>.
CarasbJus aurntus
Goldfish (1.3 q),
Carasslus auratus
ri^ Irl f 1 ch II ^ nl
Chora leal"
PCP
(99+J)
NaPCP

PCP
(99?)
NaPCP

PCP

PCP

PCP
(99+4)
NdPCP

NaPCP

NaPCP

-

-

-

_
pH Duration
r - .^^— •••—•—
7.6 96 hr
24 hr

24 hr

7.6 4.3 hr

24 hr

24 hr

7.59 46 hr

7.59 21 hr

7.59 120 hr

7.59 336 hr

24 hr

5.5 24 hr

6 24 hr

7 24 hr
Effect
LC50 (river
water)
Altered
temperature
pr G r or one o
LC50

LCI 00

LC90

LC90

LC50

LC50

LC50

LC50

LC50

LC50

• LC50

LC50
(n9/U)**
85.6
46

200

400

1,600

1,600

270

369

253

189

270

52

60

82
Reference
Brooke et a 1 . 1
Peterson 1976

Hattula et al .

Goodnight 1942

Lemma and Yau

Lemma and Yau

Card we 1 1 et al

Card we 1 1 et al

Card we 1 1 et al

Card we 1 1 et al


«tenuscr 1


1981



1974

1974

. 1976

. 1976

. 1976

. 1976

Kobayashl et al . 1979

Kobayashl and
1980

Kobayashl and
1980

Kobayashl and

Klshlno

Klshlno

Klshlno
 Carasslus auratus
                                                                                               1980

-------
Table 6.  (Continued)
Species
                                                                               ConcentratIon
Goldfish (1.3 q) ,
Carasslus auratus
Goldfish (1.3 q),
Carasslus auratus
Goldfish (1.3 g),
Carasslus auratus

Common carp (eyed anbryo),
Cyprlnus carplo
Common carp (1-3 days),
Cyprlnus carplo
Common carp (5-6 days)
Cyprlnus carplo
Common carp (9-10 days),
Cyprlnus carplo
Common carp (17-19 days),
Cyprlnus carplo
Common carp (25-3i days),
Cyprlnus carplo
Common carp (50-60 days),
Cyprlnus carplo
Common carp (70-80 days),
Cyprlnus carplo
Common carp (15.1-28.8 g) ,
Cyprlnus carplo
SI Iverjaw m Innow (2 q) ,
Er Icymba buccata
Radf In shiner (2 q) ,
Notropls umbratllls
-
-
-

PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
PCP
tePCP
NaPCP
» 24 hr
9 24 hr
10 24 hr

24 hr
24 hr
24 hr
24 hr
24 hr
24 hr
24 hr
24 hr
50 mln
7.6 6.25 hr
7.6 2.67 hr
" CUWCT
LC50
LC50
LC50

LC50
LC50
LC50
LC50
LC50
LC50
LC50
LC50
LT50
LCI 00
LCI 00
tug/Li"
250
2,200
16,000

ISO
140
150
130
110
100
no
110
3,000
400
600
Reference
Kobayashl and Kl

1980
Kobayashl and Klshlno
I960
Kobayashl and Klchlnn
1980
Hashimoto et al .
Hashimoto et al .
Hashimoto et al .
Hashimoto et al .
Hashimoto et al .
Hashimoto et al .
Hashimoto et al .
Hashimoto et al .
Peer et al . 1983
Goodnlqht 1942
Goodnlqht 1942

1982
1982
1982
1982
1982
1982
1982
1982




-------
Tab)* 6.  (Continued)
                                                                              Concentration
Species
Steal col or shiner (2 g) ,
Notropls ahlpplwl
Bluntnose minnow (3 g) ,
P Imephales notatus
Fathead minnow (2 Inches),
P tmephalas promelas
Fathead minnow (Juvenile),
Plmephales promelas
Fatiiead minnow,
P Imephales promelas
Fathead minnow,
P 1 mepha 1 es pr ome 1 a s
••Fathead minnow (adult),
PI manholes promelas
Fathead minnow (adult),
Plroephales promelas
Fdthaad minnow (adult),
P Imephales promelas
Fathead minnow (adult),
P Imephales promotes
Fathead minnow (adult),
P Imephales promelas
Fathead minnow (adult),
P Imephales promelas
Fathead minnow (adult),
P Imephales promelas
Fathead minnow (juvenile),
P Imephales promelas
Chealcal*
NaPCP
NaPCP
NaPCP

NaPCP

PCP

Dowlclde EC-7
(95. 1% PCP)
Dowlclde EC-7
(93.7* PCP)
Dowlclde EC-7
(93.7* PCP)
Dowlclde EC-7
(93.7* PCP)
Uowlclde EC-7
(93. 1% PCP)
Dowlclde EC-7
(93.7J PCP)
Dowlclde EC-7
(93. 1% PCP)
Dowlclde EC-7
(93. 11 PO1)
Dowlclde EC-7
(93.7J PCP)
_E"_
7.6
7.6
7.4-
7.5
7.83

-

7.7-
8.4
8.0-
8.1
7.9-
8.2
7.9-
8.1
a.o-
8.2
7.7-
8.1
7.9-
8.1
7.4-
7.9
7.8-
8.2
Duration
5.25 hr
7.45 hr
24 hr

336 hr

48 hr

12 wk
96 hr

96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
96 hr
Effect (
LC100
LC100
i£50

UC50

LC50

Reduced growth
and larval drift
l£50 (river
water)
LC50 (river
water)
LC50 (river
water)
UC50 (river
water)
LC50 (river
water)
LC50 (river
water)
LC50 (river
, water)
LC50 (river)
water)
•Q/L)M
400
400
300-
320
Jtr\J
153

210

111
300

190
170
160
120
208
120
396
Reference
Goodnight 1942
Goodnight 1942

Crandal 1 and Goodnight
1959

Card we) 1 et al

Slootf 1982

Zlschke et al .
Hedtke et al .

Hedtke et al .
Hedtke et al .
Hedtke et al .
Hedtke et al .

. 1976



1985
1986

1986
1986
1986
1986
Hedtke and Arthur 1985;
Hedtke et al . 1986
Hedtke et al .
Hedtke et al .
1986
1986

-------
TabU 6.  (CoNtlniMd)
apmcm
Fathead minnow (juvenile)
Plmephales promelas
Fathead minnow (fry),
Plmephales proreelas
Fathead minnow (embryo),
Plmephales promelas
Fathead minnow (embryo),
Plmephales promelas
Fathead minnow
(embryo, fry),
Plmephales promelas
Fathead minnow (<2 wk),
Plmephales promelas
Fathead minnow (<2 wk),
Plmephales promelas
Fathead minnow (<2 wk),
Plmephales promelas

Fathead minnow (7 day),
Plmephales promelas
Creek chub (12 g) ,
Semotllus atromaculatus
Wh 1 te sue ker ,
Catostomus commerson 1
CheMlcal* pH
, Dowlclde EC-7 7.8-
(93.7* PCP) 8.1
Dowlclde EC-7 7.9-
(93.7* PCP) 8.2
Dowlclde EC-7 7.8-
(93.7* PCP) 8.1
Oowlclde EC-7 8.0-
(93.7* PCP) 8.)
Dowlclde EC-7 7.8-
(93.7* PCP) 8.1
PCP 7.4
(purified; 99*)
Dowlclde EC-7 7.4
(91*)
PCP 7.4
( Industr lal
composite)
PCP 7.4
(ultrapure)
NaPCP 7.6
Dowlclde EC-7 7.7-
(93.7* PCP) 8.2
Duration
96 hr
96 hr
96 hr
96 hr
32 days
90 days
90 days
90 days

90 days
3.92 hr
96 hr
   Effact

LC50  (river
water)

LC50  (river
water)

LC50  (river
water)

LC50  (river
water)
                                                                               Concentration
                                                                                   (»gA)*«    Rafaranca
                                                                                    510


                                                                                    314


                                                                                    465


                                                                                    480
                                                                 Reduced sirv Ival   118-
                                                                 or growth (river   176
                                                                 wa tar )
                                                                 Decreased growth    85
                                                                 24|
                                                                 Decreased growth   142
                                                                 18*

                                                                 Increased growth    60
                                                                 18*
                                                                 Increased growth   139
                                                                 21*

                                                                 Decreased growth    13
                                                                 20*
                                                                 Decreased growth   27
                                                                 40*
                                                                 100*  mortal Ity       67

                                                                 Reduced growth      66
                                                                 10*
                                                                 Reduced growth      130
                                                                 17*

                                                                'LC100              600
                                                                LC50 (river         85
                                                                water)
 Hedtke et al . 1986


 Hedtka et al . 1986


 Hedtke et al . 1986


 Hedtke et al . 1986


 Hedtke et ai . 1986




 Cleveland et  al.  1982




 Cleveland at  al.  1982




 Cleveland at  al.  1982





Hamilton  et al. 1986




Goodnight 1942


Hadtke et al . 1986

-------
T«bl« 6.  (Continued)
                                                                              ConcMttrat Ion
S_p»c >•_«,.
Blackstripe topmlnnow (3 g) ,
Fundulus notal us
Guppy,
Poecll la retlculata

Guppy,
P oar. II la retlculata
Guppy
PoftdlM ratloilata

Guppy (2 -5 iro) ,
Poor 1 1 ra ret leu 1 atA
Threesplne stickleback (0.6
Gdstarlosteus aculeatus
JLlrangespotled sunllsn (2 g)
1 epomls hum II Is
ON
00 BlutKjIII (Juvenile),
Lepomis rodcrochlrus
Bliiegll 1 (juvenile) .
L_t»po»l.s macrochlrus
i a pooi 1 •» mocrochlrus

BlueglH, lros
fllueglli,
Lopomis macrochirus
Ch«Mlcal* Pn
NaPliP 7.6
NaPCP 8.4-
8.6

PCP ~

PCP

7.7
g), PCP
NdPCP 7.6

PCP 7.94
/ QO * 4 \
\ 77 ipt
PPP 7 94
r\^i ' • *^
(99*$)
Oowlclde EC-7 7.7-
(95. /* PCP) 7.9
Do^lc Ido E0~7 7 • o*"
(93. 1% PCP) 7.9
Dowiclda EC-7 7.6-
(93. 7J PCP) 8.6
uur«Tion
9.75 hr
180 days

60 days

28 days

24 hr
24 hr
6.75 hr
30 hr

336 hr
96 hr
96 hr

12 wk
LC100
Damaged liver
and kidney

No effect on
growth
Reduced growth


LC90
LCIOO
LC50

LC50
LC50 (river
water)
UC50 (river
water)
Red uc ad growf h
and larval drift
800
462

180

100-
320
40

370
400
303

215
200
270

40
Goodnight 1942
Grand a 1 1 and Goodnight
1962,1963

Adema and Vlnk 1981

Slooff and Canton 1983
Benolt^Guyod et al .
I984a
Lemma and Yau 1974
Goodnight 1942
Card we 1 1 et al . 1976

Cardwel 1 et al . 1976
Hedtke and Arthur 1985;
Hedtke et al . 1986
Hedtke et al . 1986

Zlschke et al . 1985

-------
                    Tabl* 6.
                                                                                                   Concentration
VD
Largemouth bass,
Mlcropterus sal mo Ides

Largemouth bass (4.1 g), pep
Mlcropterus sal mo Ides (99)1)


Mozarablqua tllapla (2.0 g), pep
Tllapla mossamblca
Leopard frog (tadpole), NaPCP
Rana plplens
African clawed toad (3-4 wk) ,
X enopus 1 aev 1 s

'African clawed toad «2 d) , PCP
X enopus 1 aev 1 s

|*1 UUTBTIOM
7.0 <4 hr

7.2 7 days


24 hr
7.6 9.5 hr
48 hr

100 days

tttect
Threshold oper-
cular rhythm
response
Reduced growth
rate and food
conversion
ef f Ic lency
LC90
LCI 00
LC50

Reduced survi-
val and growth
47
50

50.4


800
800
260

32-
100
Morgan 1976,1977

Mathers et al . 1985


Lemma and Yau 1974
Goodnight 1942
SI oof f 1982; Slootf and
Baerselman 1980
SI oof f and Canton 1983

SALTWATER SPECIES
Photol unlnescent bacterium, PCP
P hotobacter 1 urn phosphoreum
Photol unlnescent bacterium, PCP
P hotobacter I urn phosphoreum
Mlcrofunqal populations PCP
In microcosms



Golden brown alga, NaPCP
Monochrysls luthert
Diatom, POP
Skeletonema costatum
5 mln
5 mln
10-I7»»« a wk



28.9»»» 12-
15 daws
• -* **Q ya
25«»» 7 days
50 % reduction In
1 Ight output
50 % reduction In
1 Ight output
Success lonal
change In micro-
fungal species
con position
Decreased cell
numbers
EC50 (cell 2
division)
80
924
140



270.6
,000
Curtis et al. 1982
Rlbo and Kaiser 1983
Cook et al. 1980



Woelke 1965
Erlckson and Freemen
1978

-------
Table 6.  (Continued)
                                          Salinity
                                                                     Effect
                                                                                Concentration
 Mamatodes,                  Dowlcld« G-ST
 (Malobenlhlc communities)
 Polychaata worm.
 Nereis vlrens
                                  PCP
                                           32-35
                                                    9-13 Mk
                                                      48  hr
 Polychaate worm,
 Nereis vlrens
                                  PCP
                                           32-35
14 days
            Decrease  In
            blomass  and
            density;  shift
            In  spades
            composition

            Significant
            decrease  In
            coelomlc  fluid
            osmolal Ity,
            coupled  with
            taortal Ity

            BCF = 280
                                                                                               Reference
species
Diatom,
Thai ass los Ira pseudonana
fl 1 A trwn
Lf I Q H^ll ,
Thai ass los Ira pseudonana

The lass los Ira psgudonana
Dlno(lag«l late.
GlenodlKlum ha) 1 1
Microf logel late,
i «.ochrysls gal band

f>ea grass,
Thrtlassln testudlnuni
(Jldflt ktll p,
Macrocysl.ls pyrlfara
Giant Kelp,
Macrocystls pyrlfera
\j !• wew m *fim m
PCP
PCP

PCP

PCP
PCP
PCP

PCP
PCP
25 7 days
26-29 24 hr

26-29 48 hr

25 7 days
25 7 days
30 40 hr

4 days
2 days
EC50 (eel 1
d Ivlslon)
EC 50 (eel 1
d Ivlslon)
EC 50 (eel 1
d Ivlslon)
EC 50 (eel 1
d Ivlslon)
EC 50 (eel 1
d Ivlslon)
EC 50 (reduced
oxygen evolu-
Photosynthesls
Inhibition
Photosynthesis
Inhibition
500
250

300

1.000
250
740

2,660
1,000
Erlckson and Freeman
1978
Erlckson 1981

Erlckson 1981

Erlckson and Freeman
1978
Erlckson and Freeman
1978
Mai sh et al . 1982

Lammerlng and Bur bank
1960; reported In
Bulkema et al. 1979
Lammerlng and Bur bank
1960; reported In
Bulkema et al . 1979
                                                                                    >161       Cantelmo and Rao 1978b,c
                                                                                      720       Carr and Neff 1981
                                                                                                Carr  and  Neff  1981

-------
TabU 6.  (Continued)
                                           Unity
                              Ch««lcal*   (g/kq)    Duration
Concentration
Polychaata MOOD, p^p 32-35
Nereis vlrens


t



Polychaete worm, p98
tlon In repro-
duction
41 days EC50 23
(reproduction)
48 days Apparent reduc- >||
tlon In repro-
duction
6 days Reduced feeding >80
activity
120 days Lethal 100
24 hr BCF = 6 to J89
depending on
tissue
7 days LC50 460

48 hr 22. \% abnormal 369.5
1 arvae
48 hr 69. 1| abnormal 369.5
1 AI-W Kfk
RatWaaCa
Carr and Neff 1981






Hooftman and Vlnk 198

Adema and Vlnk 1981
Adema and Vlnk 1981

Rubinstein 1978

Tonlyama et al. 1962
Kobayashl et al . 1969

Adema and Vlnk 1981

Dlmlck and Breese 196!
Woelke 1972
Dlmlck and Breese 1965

-------
Table 6.  (Continued)
                                          SatInlty
                                                                                Concentration
Speclas
Bl ue mussel ,
M/tl lus edul Is
Eastern oyster (embryo),
Crasbostroa v Irgln lea
Fastern oyster ( larva) ,
Crassostrea vlrijlnlca
Lastarn oyster (rtdult),
Crassostraa vlrqlnlca
Mercanai la mar cen aria
Ouanog clam,
Jtercenarla murcenai io
Guahog cl*»,
Mercar.arla meroanarla
Cope pod ,
Pseudodlaptomus coronatus
Brown shrimp (adult),
Penaeus aztecus
Grass shrimp (adult),
P a 1 aemonetes puqlo
Chemical* (g/kg) Duration
PCP - 14 days
PCP - 48 hr
PCP - 14 days
NrtPCP 20.3 192 hr
NaPCP 28-50 18 wk
NaPCP 28-50 8 wk
NaPCP 28-30 18 wk
NaPCP IB 96 hr
NaPCP 26.5 96 hr
NaPCP 10 12 days
Effect
LC50
100% abnormal
1 arvae
100* mortal Ity
EC50 (growth)
Reduced resis-
tance to bacter-
ial Infection
BCF = 100
BCF = 54
Significant
Increase In
feed Ing rate
BCF = 0.2165
(geometric mean
of 4 values)
Hlstologlcal
changes (gill
necrosis; loss
<,,g/L>"
750
250-
5,000
100-
500
76.50
459.9
74.82
923.7
Reference
Ad em a and
Dav Is and
Dav 1 s and
Schlmmel
Anderson
Anderson
Anderson
Hauch et
Schlmmel
Doughtle
Rao and C
                                                                   of  mlcrov II I I
                                                                   and epithet lal
                                                                   rupture of  mldgut
                                                                   and hepatopancreas;
                                                                   and mitochondria
                                                                   ccmpartmental) zat Ion)

-------
  Table 6.  (Continued)
  Specie*

  Grass  shrimp  (adult),
  Palaemonetes  puqlo
 Grass  shrimp (post molt),
 Palaemonetes puqlo

 Grass  shrimp (adult),
 Palaemonetes puqlo
 Grass shrimp (adult),
 Palaemonates puglo
 Grass shrimp (adult),
 Palaemonetes puglo
Grass  shrimp (adult,  new
molt),
Palaemonetes puglo

Grass  shr Imp (adult,
Intermol t),
Palaemonetes puglo

Longnose  kl I I I fish,
(juven Me) ,
Fundulus  slmllIs

Striped mullet,
Mug 11 cephalus
           Salinity
Chemical*   (g/kg)    Durst Ion
                                      Effect
                                                                                 Concentration
 NaPCP       24.3      96
 NaPCP
 NaPCP
 NaPCP
 NaPCP
 PCP
 PCP
NaPCP
NaPCP
             10
             10
            10
             10
22.9
            25.5
                          hr
                       13 hr
                        9 days
                       96 hr
                    24-36  hr
                        1  hr
                        I hr
                      96 hr
          96 hr
                       BCF = 1.506
                       (geomatr Ic mean
                       of 4 val ues)

                       100* mortal Ity,   4,618
                       3 hrs after molt
                       50$ reduction
                       In I Imb ragen-
                       era t Ion

                       Slgnlf leant
                       Increase In
                       exuvlal  dry
                       MO Ight

                       Significant
                       Increase or
                       decrease In
                       oxygen consunp-
                       tlon  followed
                       by death

                       BCF =  150
                                  BCF = 30
BCF = 27.03
(geometrIc mean
of 4 val ues)

BCF = 7.446
(geometric mean
of lowest two
val ues)
                                                       436.9
                                                       521.9
                                                       923
                              Reference

                              Schlmmel et at . 1973



                              Cantelmo et al. 1978
                              Rao et al. 1978,1979,
                              1981
                                                                Brannon and Conk I In
                                                                1978
                                                        >_9.237  Cantelmo et al.  1978
                                                                Rao  et al.  1981
                                                               Rao  et al.  1981
                                                               Schlmmel  et  al .  1978
                                                               Schlmmel et  al.  1978

-------
Tab I* 6.  
Str !ped mu! let,
   U cepnalus
           Salinity
Chattlcat*   (q/kg)    Duration

             33     1-120 hr
                                                                     Eftact
              CoHcantratlc
                 (•a/I.)**
                                                                                               Rafaraaca
WSr.ier flounder,                 POP
P seu'io I uuroiiacte   amarIcanu*
Boothlc inacrotauria
                                  POP
 Bent hie  m*:rofauna
 Benlhlc macrotauria
 BenthIc m
-------
Table 6.  (Continued)
                              0-lc.l*
Benth.c *acrofauna
                           Do.lclde G-ST   22

    reported  to be less than

 »•  Sal Inlty  (g/kg), not pH.
Duration

 13 Mk
                                                                No significant
                                                                effect on
                                                                colonization
                                   .8    Han sen and  Tagatz 1980;
                                         Tagatz at  at.  1978. 1980
                                                   orophenate.  F^rcent pu-,ty Is g.ven  ,„  parentnasas
                                                                                                        =-'•

-------
                                 REFERENCES

Adams, N., K.H. Goulding and A.J. Dobbs. 1985. Toxicity of eight water-

soluble organic chemicals to Selanstrum capricornutuia; A study of methods for

calculating toxic values using different growth parameters. Arch. Environ.

Contam. Toxicol. 14:333-345.



Adelman, I.R. and L.L. Smith, Jr. 1976. Standard test fish development. Part

1. Fathead minnows (Pimephales promelas) and goldfish (Carassius auratus) as

standard fish in bioassays and their reaction to potential reference

toxicants. EPA-600/3-76-061a. National Technical Information Service,

Springfield, VA.



Adelman, I.R., L.L. Smith, Jr. and G.D. Seisennop.  1976a.  Effect of size  or

age of goldfish and fathead minnows on use of pentachlorophenol as a

reference toxicant, water Res. 10:685-687.



Adelnan, I.R., L.L. Smith, Jr. and G.D. Seisennop.  1976b.  Acute  toxicity  of
                                                               s
sodium chloride, pentachlorophenol, Guthion,  and hexavalent chromium  to

iattiead minnows  iPicephales  promelas)  and goldtisn  (Carassius  auratus) .  J.

Fish. Res. Board Can.  33:203-208.



Aderaa, D.M.M.  1978. Daphnid  magoa as A test  inmai  in  acute and  chronic

toxicity tests.  Hydrob iologia 59:i.25-134.

-------
  Adema, D.M.M. and C.J. Vink.  1981. A comparative  study  of  the  toxicity  of




  1,1,2-trichloroethane, dieldrin, pentachlorophenol and  3,4-dichloroaniline



  for marine and fresh water organisms. Chemosphere  10:533-554.









  Ahlborg,  U.G. and T.H. Thunberg. 1980.  Chlorinated phenols: Occurrence,




  toxicity, metabolism, and environmental impact. Grit. Rev. Toxicol. 7:1-35.









  Akitake,  H.  and  K.  Kobayashi.  1975.  Studies on the metabolism of




  chlorophenols in  fish-Ill.  Isolation  and identification of a conjugated PGP




  excreted  by goldfish.  Bull. Jpn.  Soc. Sci.  Fish.  41:321-327.









  Alexander, D.G. and R.M.V. Clarke. 1978. The  selection  and  liaitations  of




 phenol as a reference toxicant to detect differences  in  sensitivity  among




 groups of rainbow trout (Salmo aairdneri). Water Res. 12:1085-1090.









 Alexander, [I.e.,  K.M.  Sodner and M.A.  .Mayes. 1983. Evaluation of the UECD




 "fish prolonged toxicity study  at least  14 days".  Chemospnere 12:415-423.









 Anderson,  P.O.  and L.J.  Weber.  1975.  Toxic  response as a Quantitative




 function of body size.  Toxicol.  Appl.  Pharaacol.  3J:471-4«3.









Anderson, R.S., C.S. Giam, I.E. Ray and M.R.  Tripp.  1981.  Effects of




environmental pollutants on mmunological competency of  tne  clau Mercenaria




mercenaria: Impaired bacterial clearance. Aquat. Toxicol.  1:187-195.
                                     77

-------
Anderson, R.S., C.S.  Giam and L.E.  Ray.  1984.  Effects of hexachlorobenzene




and pentachlorophenol on cellular and humoral  immune parameters in Glycera




dibranchiata. Mar. Environ.  Res.  14:317-326.









Batte, E.G. and L.E.  Swanson. 1952. Laboratory evaluation of organic




compounds as raolluscicides and ovicides, II.  J. Parasitol. 38:65-68.









Benoit-Guyod, J.L., C. Andre and K. Clave!. 1984a. Chlorophenols: Degradation




and toxicity. J. Francais Hydrol.  15:249-263.









Benoit-Guyod, J.L., C. Andre, G. Taillandier,  J. Rochat and A. Boucherle.




1984b. Toxicity and QSAR of  chlorophenols on Lebistes reticulatus.




Ecotoxicol. Environ.  Safety  8:227-235.









Bentley,  R.E.,  T.  Heifnuller, B.H.  Sleight, III and  P.R.  Parrish.  1975.  Acute




toxicity  of  pentachlorophenol to bluegill  (Lepomis  macrochirus) ,  rainbow




trout  (Salmo  gairdneri),  and pink  shrimp  (Penaeus duorarum).  No.




WA-6-99-1414-B. Criteria  Branch, U.S. EPA, Washington,  DC.









Berglind, R.  and  G.  Dave.  1984.  Acute toxicity of chromate,  DDT,  PCP, TPBs,




and zinc  to  Daphnia  magna cultured in hard  and soft water.   Bull. Environ.




Contain.  Toxicol.  33:63-68.









Bevenue, A.  and H. Beckman.  1967.  Pentachlorophenol: A discussion of its




 properties and its occurrence as a residue in human and animal tissues.




 Residue Rev. 19:83-134.
                                     78

-------
   Bevenue,  A.,  J.  Wilson,  L.J.  Gasarett and H.W. Klemmer. 1967. A survey of
   pentachlorophenol  content  in  human urine. Bull.  Environ. Contain.  Toxicol.
   2:319-333.
  Blackman, G.E., M.H. Parke  and G.  Carton.  1955.  The  physiological  activity of
  substituted phenols. I. Relationships between chemical structure and
  physiological activity. Arch. Biochea. Biophys.  54:45-54.


  Bols.  N.C.,  S.A. Soliska,  D.G. Dixon, P.V. Hodson and K.L.E. Kaiser. 1985.
  The use of fish cell cultures as  an indication of contaminant toxicity to
  fish.  Aquat.  Toxicol.  6:147-155.


  Borthwick, P.W.  and  S.C. Schinunel.  1978.  Toxicity of  pentachlorophenol  and
  related compounds to early life stages of  selected estuarine animals.  In:
  Pentachlorophenol: Chemistry,  puarmacology  and environmental toxicology. Rao,
  K.R. (Ed.). Plenum Publishing  Company, New  York,  NY.  pp.  141-146.


 Bose,  A.K.  and H. Fujiwara. 1978.  Fate of pentac.lorophenol  in the blue crab,
 Callinectes sa^idus.  In:  Pentachlorophenol: Che.iscry, pharmacology and
 environmental  toxicology. Rao,  K.R.  (Ed.).  Plenum Publishing Company, :few
 York, NY. pp.  83-88.
       . S.L. and R.C. Johansson.  1972.  E££ects  „«  pen.ac^oropnenol on
        invoke, !„ «nergy netaboltsm lB ^
Physiol. 418:359-369.
                                     70

-------
Boyle, T.P., J.  Sebaugh and E.  Robinson-Wilson.  1984.  A hierarchical approach




to the measurement of changes in community structure induced by environmental




stress. J.  Test. Eval. 12:241-245.









Brannon, A.C. and P.J. Conklin.  1978.  Effect of  pentachlorophenate on




exoskeletal calcium in the grass shrimp,  Palaemonetes pugio. In:  Penta-




chlorophenol: Chemistry, pharmacology and environmental toxicology. Rao, K.R.




(Ed.). Plenum Publishing Company, New York, NY.  pp. 205-211.









Branson, D.R. 1980. Prioritization of chemicals  according to the degree of




hazard in the aquatic environment.  Environ. Health Perspect. 34:133-138.









Brockway, D.L.,  P.O. Smith and F.E. Stancil. 1984. Fate and effects of




pentachiorophenol in hard- and soft-water microcosms. Chemosphere




13:1363-1377.









Brooke, L.T., D.J. Call, D.E. Haramemeister, A.  Hoffman and C.E. Northcott.




Manuscript. Acute toxicities of  five chemicals in different natural waters.




Center for Lake Superior Environmental Studies,  University  of




Wisconsin-Superior, Superior, WI.









Brown, J.A., P.H. Johansen,  P.W. Colgan  and R.A. Mathers. 1985.  Changes  in




the predator-avoidance behaviour of juvenile guppies (Poecilia reticulata)




exposed  to  pentachlorophenol. Can. J. Zool. 63:2001-2005.
                                    80

-------
  Buhler, D.R., M.E. Rasmusson and H.S. Nakaue. 1973. Occurrence of




  hexachlorophene and pentachlorophenol in sewage and water. Environ. Sci.



  Technol.  7:929-939.









  Buikeraa,  A.L.,  Jr., M.J.  McGinnis and J.  Cairns,  Jr.  1979. Phenolics in




  aquatic ecosystems: A  selected  review of  recent  literature.  Mar.  Environ.



  Res. 2:87-101.










  Burreli,  R.E.,  W.E.  Inni9s and  C.I. Mayfield.  1985. Detection and  analysis  of




  interactions between atrazine and sodium  pentachlorophenate with single  and




 multiple  algal-bacterial populations. Arch. Environ. Contam.  Toxicol.



 14:167-177.










 Sutte,  W., M. Kirsch and J.  Denker.  1983.  The determination of




 pentachlorophenol  and tetrachlorophenol. in Wadden sediment and clams (M




 argnaria)  U3in*  triethylsulfonium hydroxide for extraction and pyrolytic



 ethylation.  Int. J.  Environ.  Anal.  Chem.  13:141-153.









 Call, D.J.,  L.T. Brooke,  N. Ahmad  and  J.E.  Richter.  1983.  Toxicity  and




metabolism studies with EPA priority pollutants and  related chemicals  in




 freshwater organisms. EPA-600/3-83-095 or PB83-263665. National Technical



Information Service, Springfield, VA.
                                   81

-------
Callahan, M.A., M.W. Slimak, N.W. Gabel,  I.P. Ilay, C.F.  Fowler, J.R.  Freed,




P. Jennings, R.L. Durfee, F.C. Whitmore,  B. Maestri, W.R. Mabey, B.R.  Holt




and, C. Gould.  1979. Water-related environmental fate of  129 priority




pollutants. Vol II. EPA-440/4-79-029b. National Technical Information




Service, Springfield, VA. pp. 37-1 to 87-13.









Cantelmo, A.C. and K.R. Rao. 1973a. The effects of pentachlorophenol  (PGP)




and 2,4-dinitrophenol (DNP) on the oxygen consumption of tissues from  the




blue crab, Callinect.es sapidus, under different osmotic  conditions. Comp.




Biochem. Physiol. 60C:215-219.









Cantelao, A.C. and K.R. Rao. 1978b. Effects of pentachlorophenol on the




meiobenthic nematodes in an experimental system. In: Pentachlorophenol:




Chemistry, pharmacology and environmental toxicology. Rao, K.R. (Ed.). Plenum




Publishing Company, New York., NY. pp. 165-174.









Cancelmo, F.R. and K.R. Rao. 1978c. Effect of pencachlorophenol (PCP)  on




meiobenthic communities established in an experimental system. Mar. Biol.




(3erl.) 46:17-22.









Cantelmo, A.C., P.J. Conklin, F.R. Fox and K.R. Rao. L1J78. Effects of  sodiuu




pentachlorophenate and 2,4-dinitrophenol on respiration  in crustaceans.  In:




Pentachlorophenol: Chemistry, pharmacology and environmental  toxicology.  Rao,




K.R. (cd.).  Plenum Publishing Company, New York, MY. pp. 251-263.

-------
   Canton, J.H. and D.M.M. Adema. 1973. Reproducibility of short-term and




   reproduction toxicity experiments with Daphnia magna and comparison of




   Daphnia 22*™ with Daphnia pulex and Daphnia cucullata in short-term



   experiments.  Hydrobiologia 59:135-140.









   Canton, J.H.  and W. Slooff .  1979.  A  proposal  to  classify compounds  and to




  establish water quality criteria based on laboratory data.  Ecotoxicol.



  Environ. Safety 3:126-132.
  Cardwell,  R.O.,  D.C.  For*,™, r.a. Payne and O.j. wubuc. m6.




  coxicity of  selected  toxicants  to six species of fish. PB-252483 or




  EPA-600/3-76-008.  National  Technical  Inforaatlon Service, Sprla.,1.1,. VA.
 C.rr. R.S. and J.M. Neff.      .   o                  of
          virens (5ars, . I. Responses  „ pen£achlort,phenol.  A,U3c.  loxicol.
 1:313-327.
 Cessna,  A.J.  and «. Crover. 1973. SpectropnotoQetric declination of




 dissociation  constants  of  selected acidic besides. J. ,.ric. Fooa chan.
 26:289-292.
     an, C.A.  I969. Ioxiclty o£





Chesis. ^8on Scate Univ.rsity, Corvallis, OR. Available  Cnm,  Unlverslty



Microfilms, Ann Arbor, :il. Order No. 69-19,906.
                                     83

-------
Chapman,  G.A.  and D.L.  Shumway.  1978.  Effects of sodium pentachlorophenate on




survival  and energy metabolism of embryonic and larval steelhead trout.  In:




Pentachlorophenol. Rao, K.R. (Ed.). Plenum, New York, NY.  pp. 285-299. Also




available as PB-287600 or EPA-600/J-78-051. National Technical Information




Service,  Springfield, VA.








Chapman,  P.M., M.A. Farrell and R.O. Brinkhurst. 1982a. Relative tolerance of




selected aquatic oligochaetes to individual pollutants and environmental




factors. Aquat- Toxicol. 2:47-67.                                          f








Chapman, P.M., M.A. Farrell and  R.O. Brinkhurst. 1982b. Relative  tolerances




of selected aquatic oligochaetes to combinations of  pollutants  and




environmental  factors.  Aquat. Toxicol.  2:69-78.








Chapman, P.M., M.A.  Farrell and  R.O.  Brinkhurst. 1982c. Effects of  species




interactions  on  the survival  and respiration of Limnodrilus  hoffmeiste.ri and




Tubifex  tubifex  (Oligochaeta,  Tubificidae) exposed  to various pollutants and




environmental factors. Water  Res.  16:1405-1408.








 Chowdary,  V.D.,  P.V.  Rao and  R.  Narayanan. 1979.  Effect of copper sulfate and




 sodium pentachlorophenate on adenine and  adenosine phosphacases in Lyanaea




 luteola  (Mollusca: Gastropoda).  Bull.  Environ. Contain. Toxicol. 23:615-619.
                                      84

-------
   Cirelli,  D.P.  1978.  Patterns  of  pentachlorophenol usage in the United States
   of America - an overview.  In:  Pentachlorophenol:  Chemistry,  pharmacology,  and
   environmental  toxicology.  Rao, K.R.  (Ed.).  Plenum Publishing Co.,  New York,
  NY. pp. 13-18.


  Clemens, H.P.  and K.E. Sneed. 1959. Lethal doses of several  commercial
  chemicals  for  fingerling channel  catfish. Special Scientific
  Report-Fisheries  No. 316.  U.S.  Fish and Wildlife Service> WashingCQn> Dc>


  Clendenning, K.A.  and W.J.  North.  1959.  Effects  of wastes  on  the giant kelp,
 ilacroc^stis j^v^ifera.  In : International  conference on  waste disposal in the
 marine environment. First Berkeley  California  1959  Proceedings,  Berkeley, CA.
 pp. 82-91.


 Cleveland,  L. ,  O.R. Buckler, F.L.  Mayer and D.R. Branson.  1982. Toxicity of
 three  preparations  of  pentachlorophenol to fathead minnows - a comparative
 study.  Environ.  Toxicol.  Chem.  1:205-212.
CogUanese, H.P. and J.M. *„.  1582.   ioc^ica!  responses
                                          .  !„ ,  P,,yslological  QecMoisms „,
                                          .  A. c,labrese,  P.P.
F.J.  Vernb.rg (Eds.). Academic Press. New vork, ;„. pp.  U7.143.
                                    85

-------
Conklin, P.J. and F.R. Fox. 1978. Environmental impacts of pentachlorophenoi




and its products - A round table discussion. In: Pentachlorophenoi:




Chemistry, pharmacology and environmental toxicology. Rao, K.R. (Ed.). Plenum




Publishing Company, New York, NY. pp. 389-394.









Conklin, P.J. and K.R. Rao. 1978a. Toxicity of sodium pentachlorophenate




(Na-PCP) to  the grass shrimp, Palaemonetes pugio. at different stages of the




molt cycle.  Bull. Environ. Contam. Toxicol. 20:275-279.









Conklin, P.J. and K.R. Rao. 1978b. Toxicity of sodium pentachlorophenate to




the grass shrimp, Palaemonetes pugio, in relation to the molt cycle.  In:




Pentachlorophenoi: Chemistry, pharmacology and environmental  toxicology. Rao,




K.R. (Ed.).  Plenum Publishing Company, New York, NY. pp.  lbi-L.92.









Cook, W.L. ,  D. Fielder and A.M.  iiourquin.  1930. Succession of inicrofungi in




estuarine microcosms  perturbed by carbaryl, methyl parathion  and  pentachloro-




phenoi. Bot. ;lar.  23:129-131.








Crandali,  C.A. and C.J. Goodnight.  1959.  The  effect  of  various,  factors  un  the




toxicity of  sodium pentachloropnenate to  fiih.  Liranol.  uceanogr.  4:53-56.









Crandali,  C.A. and C.J. Goodnigut.  1962.  effects of  sublethal concentrations




of several  toxicants  on growth of  the coumon  guppy,  Leoistes  reticulatus.




Licinol. Oceanogr.  7:231-239.
                                      86

-------
   Crandall,  C.A.  and  C.J.  Goodnight.  1963.  The effects of sublethal




   concentrations  of several  toxicants  to  the  common guppy,  Lebistes




   reticulatus.  Trans.  Am.  Microsc.  Soc. 82:59-73.









   Crossland, N.O. and  C.J.M. Wolff. 1985. Fate and  biological effects of




  pentachlorophenol in outdoor ponds. Environ. Toxicol. Chem. 4:73-86.









  Curtis,  G., A. Lina, S.J. Lozano and G.D.  Veith.  1982. Evaluation of a




  bacterial bioluminescence bioassay as a  method for predicting acute toxicity




  of  organic  chemicals to fish.  In:  Aquatic  toxicology and hazard




  Fifth  conference.  Pearson,  J.G.,  R.3.  Foster and W.E. Bishop (Eds.). ASTSI STP




  766. American  Society for Testing  and  Materials,  Philadelphia,  PA. pp.
  170-178.
 Dalela, R. C. , S. Rani, 5. *ani and S.R. Verma.  1980a.  Influence of  ptl on




 coxicity of phenol and ,ts two derivatives pentachloroph.no! and dinitro-




 phenol to sorae fresh water teleosts. Acta Hyarochia. HvaTobiol. 3:623-629.
       ,  R.C.,  S.  Rani and S.R.  Vema.  laaob.  Physiological stress induced by




 sublethal  concentrations of phenol and pe-^culorupaenol in Noco.terus




 not°Pterusi  ^P*6*  acii ***  a.kaline  paoschatises  ana sacci.Hc



 cehydrogenase.  Environ.  Polijt.  (Series  A)  2l:J-a.









 "alala, R.C., S. Rani and S.F, Vecoia.  ISdOc.  la vivo  subacute  physiological




scress induced by pnenoiic  compounds on add  and ai.ai.ae  phosphatases  in




serum of a fish, Noto^terus nol2£Orus. roxicsl. Lett.  7:1*1-186.
                                     37

-------
D'Asaro,  C.N.  and  F.G.  Wilkes.  1982.  Cycling  of  xenobiotics  through marine




and e3tuarine  sediments,  EPA-600/3-82-074  or  PB82-239252.  National  Technical




Information Service,  Springfield,  VA.








Dave,  G.  1984.  Effect of  pH on pentachlorophenol toxicity to embryos and




larvae of zebrafish (Brachydanio rerio).  Bull.  Environ.  Contam. Toxicol.




33:621-630.








Davies, R.P. and A.J. Dobbs. 1984. The prediction of bioconcentration in




fish.  Water Res. 18:1253-1262.









Davis, H.C. and H. Hidu.  1969. Effects of pesticides on embryonic development




of clams and oysters and on survival and growth of the larvae. Fish. Bull.




67:393-404.









Davis, J.C. and R.A.W. Hoos. 1975. Use of sodium pentachlorophenate  and




dehydroabietic  acid  as reference  toxicants for  salraonid bioassays.  J. Fish.




Res.  Board  Can. 32:411-416.








DeLaune, R.D.,  R.P.  Garabrell  and  K.S.  Reddy. 1983. Fate  of  pentachlorophenol




in estuarine sediment. Environ. Pollut. (Series  B).  6:297-308.









DeVault, D.S.  1985.  Contaminants  in  fish  from Great  Lakes harbors  and




tributary  mouths.  Arch.  Environ.  Contara.  Toxicol.  14:587-594.
                                     88

-------
   Dimick,  R.E.  and W.P.  Breese.  1965.  Bay mussel embryo bioassay. In:
   Proceedings  of  the  12th Pacific  Northwest Industrial  waste conference.
   University of Washington,  Seattle,  WA.  pp.  165-175.


   Dive,  D.,  H.  Leclerc and G. Persoone. 1980. Pesticide  toxicity  on  the  ciliate
   protozoan  Colpidium campylum:  Possible  consequences of  the  effect  of
.   pesticides in the aquatic environment.  Ecotoxicol. Environ.  Safety 4:129-133.


  Dixon, W.J. and M.B. Brown (Eds.). 1979.  BMDP  Bioraedical Computer  Programs,
  P-series. University of California, Berkeley,  CA. p. 521.


  Dominguez,  S.E.  and  G.A. Chapman. 1984.  Effect of pentachlorophenol on the
  growth and  mortality of embryonic and juvenile steelhead trout!  Arch.
  Environ.  Contam.  Toxicol.  13:739-743.


  Dougherty,  R.C.  1973. Human  exposure  to  pentachlorophenol.  In:  Pentachloro-
  phenol: Chemistry, pharmacology,  and  environmental  toxicology.  Rao,  K.R.
  (Ed.).  Plenum Publishing Co., New York,  NY.  pp.  351-361.


 Dougherty, R.C.,  M.J. Whitaker,  L.M. Smith,  D.L/ Stalling and D.W.  Kuehl.
 1980. Negative chemical  ionization studies of human and  food  chain
 contamination  with xenobiotic chemicals.  Environ. Health Perspect.
 36:103-118.
                                    89

-------
IJotightie, D.G. and K.R. Rao. 1978. Ulcrascructural changes  induced  by  sodium




pentachlorophenate in Che grass shrimp, Palaemonetes pugio, in relacion  to




che mole cycle. In: Pencachlorophenol: Chemistry, pharmacology and




environmental toxicology. Rao,  K.R. (Ed.). Plenum Publishing Company,  New




York., NY. pp. 213-249.









Elnabarawy, M., A.N. Welcer and R.R. Robideau. 1986. Relative sensitivity of




three daphnid species to selected organic and inorganic chemicals.  Environ.




Toxicol. Chem. 5:393-398.









Erickson, S.J. 1931. Jlanuscript.  Inhibition of photosynthesis in  estuarine




phytoplankton by mixtures of copper and pentachlorophenol.  U.S. EPA, Gulf




Breeze, FL.









Erickson, S.J. and A.E. Freeman.  1973. Toxicity screening  of fifteen chlori-




nated and brorainated compounds  using  four species of marine phytoplankton.




In: Water chiorination: Environmental  impact and health efrecta.  Vol.  2.




Jo 1 ley, R.L., !4. Gorcliev and D.H. Hamilton (Eds.). Ann Arbor science




Publishers, Ann Arbor, III. pp.  307-310.









Ernst, W. 1979. Factors affecting the  evaluation of chemicals in  laboratory




experiments using marine organisms. Ecotoxicol.  Lnviron.  Safety  3:90-9d.









Faas, L.t. and J.C. :iooce. 197^.  Deternination of pentachlorophenol in marine




bioca and sea water by gas-liquid  Jiiromategraphy and  hi^n-presbure liquid




     atrgraphy. .1.  Agric. Food Chen.  27:554-557.
                                      90

-------
   Fairchild,  J.F.,  T.P.  Boyle,  E.  Robinson-Wilson and  J.R.  Jones.  1984.  Effects




   of  inorganic nutrients  on microbial  leaf  decomposition  and  mitigation  of



   chemical  perturbation.  J. Freshwater  Ecol.  2:405-416.









   Fisher, S.W. 1986. Effects of temperature on the acute  toxicity of PCP  in the




  midge Chironomus _rJ£ariu3 Meigen. Bull. Environ. Contam. Toxicol.



  36:744-748.










  Fisher,  S.W. and R.W.  Wadleigh.  1986.  Effects of PH on the acute toxicity and




  uptake  of  [14C,  pentachlorophenoi in  the midge,  Chironomus ri



  Ecotoxicol.  Environ. Safety  11:1-8.









 Fogels, A.  and J.B. Sprague. 1977. Comparative short-term  tolerance of




 zebrafish,  flagfish, and rainbow  trout to  five poisons including potential



 reference toxicants. Water Res. 11:811-817.
        J.,  J.  Sirltlund>  A.K.
                                    and




 small marine  inlet.  Cheuosphere  12:1169-1131
      in,, j.... P.B. Joahipura and p ^ Ke




regarding pentachloropheno! UveU U ,,averjotd town9hip| Pennsylvania
Res. 10:185-188.
                                    91

-------
Fox, F.R.  and K.R.  Rao.  1978.  Effects  of sodium pentachlorophenate and




2,4-dinitrophenol on hepatopancreatic  enzymes  in the  blue  crab,  Callinectes-




9apidus. in:  Pentachlorophenol:  Chemistry,  pharmacology and environmental




toxicology. Rao, K.R. (Ed.).  Plenum Publishing Company.  New York,  NY. pp.





265-275.








Fox, M.E.  and S.R. Joshi. 1984.  The fate of pentachlorophenol in the Bay of




Quinte, Lake Ontario. J. Great Lakes Res. 10:190-196.








Freitag, D., L.  Ballhorn, H. Geyer and F. Korte. 1985. Environmental hazard




profile of organic chemicals. An experimental method  for the assessment  of




the behavior of  organic  chemicals  in  the ecosphere by oieans of  simple




laboratory tests with 14C labelled chemicals.  Chemosphere  14:1589-1616.









Geyer,  H., R. Viswanathan, D. Freitag  and  F.  Korte.  1981.  Relationship




between water  solubility of  organic chemicals and  their bioaccuraulation  by




the alga Chlorella.  Cheraosphere  10:1307-1313.








Geyer,  H. ,  G.  Politzki  and  D.  Freitag.  L984.  Prediction of ecotoxicological




behavior of  chemicals:  Relationship between n-octanol/water partition




coefficient  and bioaccumulation of organic chemicals by  alga Chlorella.




Cheraosphere  13:269-284.









Geyer, H., I.  Scheunert and F.  Korte. 1985. The effects of organic




 environmental chemicals on the growth of the alga Scenedesmus  subspicatus:




 contribution to environmental biology. Cheraosphere  14:1355-1369.
                                     92

-------
  Glickman,  A.H.,  C.N. Statham, A. Wu and J.J. Lech. 1977. Studies on the




  uptake, metabolism,  and disposition of pentachlorophenol and




  pentachloroanisole in rainbow trout. Toxicoi.  Appl.  Pharraacol.  41:649-658.









  Gluth,  G.,  D. Freitag,  W.  Hanke  and F.  Korte.  1985.  Accumulation of




  pollutants  in fish.  Corap.  Biochera.  Physio!.  81C:273-277.









  Goei, H.C.  and R.  Prasad.  1978.  Action  of molluscicides  on  freshly  laid  eggs




  of  the  snail Indoplanorbis exustus  (Deshayes).  Indian J.  Exp. Biol.



  16:620-622.









 Goodnight, C.J.  1942. Toxicity of sodium pentachlorophenate  and




 pentachlorophenol to fish.  Ind. Eng. Chem.  34:368-872.









 Gotham,  I.J. and  G.Y. Rhee. 1982. Effects of hexachlorobiphenyl  and




 pentachlorophenol  on  growth and photosynthesis  of phytoplankton. J.  Great



 Lakes  Res.  8:323-335.









 Gupta, P.K.  1983.  Acute  toxicity  of  pentachlorophenol  to  a freshwater




 teleost, Rasbora daniconius neilgeriensis (Hamilton).  Arch.  Hydrobiol.



 93:127-132.









Guot», P.K.  and 7.3.  Ourve. i9S4a. Evaluation of  :he toxicity of  sadium




pent«:hloropnen«te, pentachlcrophenol and phenol to the snail Vivi




bengalensla (L.).  \r:h. Hydrobiol. 101:469-475.
                                    93

-------
Gupta, P.K. and V.S. Durve. I984b. A study on the effect of temperature upon




the toxicity of sodium pentachlorophenate to the freshwater snail Viviparus




bengalenais L. Acta Hydrochira. Hydrobiol. 12:369-375.









Gupta, P.K. and P.S. Rao. 1982. Toxicity of phenol, pentachlorophenoi and




sodium pentachlorophenate to a freshwater pulmonate snail Lymnaea acuminata




(Lamarck). Arch. Hydrobiol. 94:210-217.









Gupta, P.K., V.S. Mujumdas, P.S.  Rao and V.S. Durve. 1982a. Toxicity of




phenol, pentachlorophenoi, and sodium pentachlorophenolate to a  freshwater




teleost Lebistes reticulatus (Peters). Acta Hydrochira. Hydrobiol.




10:177-181.









Gupta, S. and R.C. Oalela. 1986.  Liver damage to N_qtop_t.e_ru3_ notopterus




following exposure to phenolic compounds. J. Environ. Biol. 7:75-80.









Gupta, S., S.R. Verma and P.K. Saxena. I982b. Toxicity of  phenolic  compounds




in relation to  the size of a freshwater  fish, Hotopterus aotopterus  (Pallas)




Kcotoxicol. Environ. Safety 6:433-438.









Gupta, S., R.C. Dalela and P.tC. Saxer.a.  1983a.  Effect of phenolic  compounds




on in vivo activity of transaminases  in  certain tissues  of  the  ^i




Aotopterus notopterus. Environ. Res.  32:3-13.

-------
   Gupta, S.f R.C. Dalela and P.K. Saxena. 1983b. Effects of phenolic compounds
   on 5-nucleotidase activity in some tissues of Notopterus notopterus (Pallas);
   A biochemical study.  Toxicol. Lett. 17:167-173.


   Gupta,  S.,  R.C.  Dalela  and  P.K.  Saxena.  1983c.  Influence  of  dissolved  oxygen
   levels  on  acute  toxicity  of phenolic  compounds  to  fresh water  teleo.t
   Notopterus  notoperus  (Pallas). Water  Air Soil Pollut.  19:223-228.


  Gupta,  S.,  R.C. Dalela and  P.K. Saxena. 1983d. Influence of  temperature on
  the toxicity of phenol and  its chloro- and nitro-derivatives to the fish
  Noto^ten^ nc^terus  (Pallas). Acta Hydrochim.  Hydrobiol. 11:187-192.

  Halbach, u.  1984.  Population dynamics  of rotifers  and its  conse.uences  for
  ecotoxicology.  Hydrobiologia 109:79-96.
         , „., „. su^rt, „. We,t.raayer and C. wi,,.l.  1,83. Populatioa
         of rotifers a, . bioas,iy tool  foc scoto,icolo
 enviromients. Ecotoxicol. Environ. Safety 7:  484-513.
        .K.  an,  ,.5.  Kier.  1,8*..
 toxicity  to  fi,h.  Bull.  Environ.  Conta*.  Toxicol.  32:354-362

Hall. L.H. and UB.  KUr.  1984b.
          toxicity to
          . oE ,„. ,„
<".).  J.R.  prous pubnshing Co.,,Barcelona, Spain. „. 53-59
                                    95

-------
Hall, L.H., L.B.  Kier and G.  Phipps.  1984.  Structure-activity relationship




studies on the toxicities of  benzene  derivatives:  I.  An additivity model.




Environ. Toxicol. Chera. 3:355-365.








Hall, W.S., R.L.  Paulson, L.W. Hall,  Jr. and D.T.  Burton. 1986. Acute




tox-icity of cadmium and sodium pentachlorophenate  to daphnids and fish. Bull.




Environ. Contara.  Toxicol. 37:308-316.









Hallas, T. 1973.  On the accumulation and metabolization of pentachlorophenol




in fish. Medd. Dan. Fisk. Havunders.  7:75-84.









Hamilton,  S.J., L. Cleveland, L.M. Smith, J.A. Lebo and F.L. Mayer.  1986.




Toxicity of pure pentachlorophenol and chlorinated phenoxyphenol  impurities




to fathead minnows. Environ.  Toxicol. Chera. 5:543-552.









Hanke, W., G. Gluth, H. Bubel and R.  Muller.  1983. Physiological  changes  in




carps  induced by  pollution.  Ecotoxicol.  Environ.  Safety  7:229-241.









Haasen, D.J.  and H.E.  Tagatz. 1980.  A laboratory  test  for assessing  impacts




of substances on developing  communities  of  benthic  estuarine organisms.  In:




Aquatic toxicology.  Eaton, J.G., P.R. Parrish and A.C. Hendricks  (Eds-).  ASTM




STP  707.  American  Society for Testing  and Materials,  Philadelphia,  PA. pp.




40-57.
                                     96

-------
  Hanuraante, M.M. and S.S. Kulkarni. 1979. Acute toxicity of two raoHuscicides,




  mercuric chloride and pentachlorophenol to a freshwater fish (Channa gachua).




  Bull.  Environ. Contain.  Toxicol. 23:725-727.









  Hashimoto,  Y.  and Y.  Nishiuchi. 1983.  Effects of herbicides on aquatic




  animals.  In:  Pesticide  chemistry:  Human welfare and the environment.  Vol.  2.




  Takahashi,  N.,  H.  Yoshioka,  T.  Misato,  and  S.  Matsunaka (Eds.).  Pergamon



  Press, New  York,  NY.  pp.  355-358.









 Hashimoto,  Y.,  E.  Okubo,  T.  Ito, M. Yamaguchi  and S.  Tanaka.  1982.  Changes  in




 susceptibility of  carp to several  pesticides with growth. J.  Pestic.  Sci.



 7:457-461.










 Hattori,  M., K. Senoo, S. Harada, Y. Ishizu and M. Goto. 1984. The Daphnia




 reproduction test of some environmental chemicals. Seitai Kagaki 6:23-27.









 Hattula,  M.L.,  V.  Wasenius,  H.  Reunanen and  A.U.  Arstila.  1981.  Acute




 toxicity  of  some  chlorinated  phenols, catechols,  and cresols to  trout. Bull.



 Environ.  Contam.  Toxicol.  26:295-298.









Hauch, R.G., D.R. Norris  and  R.H. Pierce, Jr.  1980.  Acute and  chronic




toxicity of  sodium  pentachlorophenate to  the copepod,  Pseudodiaptomus



coronatus. Bull. Environ. Contam. Toxicol. 25:562-568.
                                   97

-------
Hedtke, S.F.  and J.W.  Arthur.  1985.  Evaluation of a site-specific water




quality criterion for  pentachlorophenol using outdoor experimental streams.




In: Aquatic toxicology and hazard assessment: Seventh symposium.  Cardwell,




R.D., R. Purdy and R.C.  Banner (Eds.). ASTM STP 854.  American Society for




Testing and Materials, Philadelphia, PA. pp. 551-564.









Hedtke, S.F., C.W. West, K.N.  Allen, T.J. Norberg-King and D.I. Mount. 1986.




Toxicity of pentachlorophenol  to aquatic organisms under naturally varying




and controlled environmental conditions. Environ. Toxicol. Chera.  5:531-542.









Herraens, J., H. Canton, N. Steyger  and  R. Wegraan. 1984. Joint  effects  of  a




mixture of 14 chemicals on mortality  and inhibition  of reproduction  of




Daphnia magna.  \quat. Toxicol. 5:315-322.









Herraens, J., P. Leeuwangh and A. Musch.  1985.  Joint  toxicity of  mixtures  of




groups  of  organic  aquatic pollutants  to the  guppy (Poecilia  reticulata).




Ecotoxicol.  Environ.  Safety 9:321-326.








Hodson,  P.V.  and  B.R.  Blunt.  1981.  Temperature-induced  changes in




pentachlorophenol  chronic  toxicity  to early life stages  of rainbow trout.




Aquat.  Toxicol.  1:113-127.









Hodson,  P.V.,  D.G.  Dixon and  K.L.E. Kaiser.  1984.  Measurement of median




 lethal dose  as a rapid  indication of contaminant toxicity to  fish. Environ.




 Toxicol. Chera. 3:243-254.
                                     98

-------
  Holcombe, G.W., G.L. Phipps and J.I.  Fiandt.  1982.  Effects  of  phenol,




  2, 4-diraethylphenol, 2,4-dichlorophenol, and pentachlorophenol  on  embryo,




  larval, and early- juvenile fathead minnows (PimephaJ.es proaelas) . Arcn.



  Environ.  Concam.  Toxicol. 11:73-78.









  Holmberg,  3.,  S.  Jensen,  A.  Larsson,  N.  Lewander and M. Olsson. 1972.




  Metabolic  effects  of  technical  pentachlorophenol (PGP)  on the eel Anguilla




  anguilla L.  Coiap .  Biochem.  Physio 1. 435:171-183.









  Hooftman,  R.N. and G.J. Vink. 1980. The determination of  toxic  effects  of




 pollutants with the marine polychaete  worm Uphrvotrocha diadgo^.  Ecotoxicol.



 Environ. Safety 4:252-262.










 Huang, J.  and E.F.  Gloyna. 1967. Effects of toxic organics on photosynthetic




 reoxygenation.  ?B  216749.  national Technical Information Service,



 Springfield,  VA.










 Huber,  M..  V. Schubert and C.  Sautter.  1.982.  Effects of  pentachloropuenol on




 the metabolism of the aquatic .acrophyte L^aa  oioor L.  Environ. Pollut.



 (Series A)  29:215-223.
       ,  J.N. and J.D. Petty. 1983. Dynamics of purifiea  and  industrial




 -ntachlorophenol in fathead ninnows. Arch. Environ. Contaa.  Toxicol.



12:667-672.
                                     99

-------
Inglis, A.  and E.L.  Davis.  1972.  Effects of water hardness on the toxicity of




several organic and  inorganic herbicides to fish. Technical Paper No. 67.




U.S. Bureau of Sport Fisheries and Wildlife, Washington, DC.









Ishak, M.M., A. A. Sharaf, A.M. Hohamed and A.H. Mousa. 1970. Studies on the




mode of action of some molluscicides on the snail, Biomphalaria alexandrina.




I. Effect of Bayluscide, sodium pentachlorophenate, and copper sulphate on




succinate, glutamate, and reduced TMPD oxidation. Comp. Gen. Pharraacol.




1:201-208.








Iwatna, G.K. and G.L. Greer.  1979. Toxicity  of  sodium  pentachlorophenate to




juvenile salmon under conditions of high  feeding density  and continuous-flow




exposure.  Bull. Environ. Contam. Toxicol. 23:711-716.









Iwama, G.K. and G.L. Greer.  1980. Effect  of a  bacterial  infection on the




toxicity of sodium  pentachlorophenate  to  juvenile  coho  salmon.  Trans.  Am.




Fish.  Soc.  109:290-292.








Iwama, G.K. and G.L. Greer.  1932. Mortality in juvenile Chinook salmon




exposed  to sodium pentachlorophenate  and  undergoing  progressively  symptomatic




bacterial  kidney disease.  Canadian  Technical  Report  of Fisheries and Aquatic




Sciences No.  1100.  Department of  Fisheries  and Oceans,  West Vancouver Lab,




West  Vancouver,  British Columbia,  Canada.
                                     100

-------
   Jayaweera,  R.,  R.  Peterson and  P.  Smejtetc.  1982.  Induced hydrogen ion
   transport in  lipid membranes  as  origin  of  toxic effect  of  pentachlorophenol
   in  an  alga. Pestic.  Biochem.  Physiol. 18:197-204.


  Johansen, P.H., R.A.S. Mathers,  J.A. Brown  and P.W. Colgan.  1985. Mortality
  of early life stages of largemouth bass, Micropterus salmoides. due  to
  pentachlorophenol exposure. Bull. Environ. Contain. Toxicol.  34:377-384.


  Johnson, W.W.  and M.T.  Finley. 1980.  Handbook of acute toxicity of chemicals
  to fish and  aquatic invertebrates.  Resource Publication 137. U.S.  Fish and
  Wildlife Service,  Washington,  DC. pp.  58.


  Kaila,  K. 1982.  Increase  in the  resting  potassium  permeability of  crayfish
  axons by pentachlorophenol  and  trinitrophenol  in the  absence of extracellular
  Ca + . Corap.  Biochem.  Physiol.  73C:353-356.


 Kaila, K. and J. Saarikoski. 1977. Toxicity of pentachlorophenol and  2,3,6-
 trichlorophenol to the crayfish (Astacus .fluviatilis L.). Environ. Pollut.
 12:119-123.


 Kaila, K.  and J.  Saarikoski. 1980. Inhibition of voltage-dependent potassium
 conductance by  convulsant  phenols  in the  medial giant  axon of the crayfish.
 Comp.  Biochem.  Physiol. 65C:17-24.
  ila, K. and J. Saarikoski.  1981. Membrane-potential  changes  caused  by
2,4-DNP and related phenols in resting crayfish  axons  are  not  due  to
uncoupling of mitochondria. Comp. Biochem. Physiol. 69C:235-242.
                                    101

-------
Khangarot,  B.S.  1983.  Acute coxicity of pentachlorophenol and antimycin to




common guppy (Lebistes retlculatus Peters). Indian J. Phys. Nat. Sci.





3:25-29.








Khangarot, B.S., A. Seagal and II. K. Bhasin. 1985. "Man and biosphere" -




studies on the Sikkia Himalayas. Part  6:' Toxicity of selected pesticides  to




frog tadpole Rana hexadactyla (Lesson). Acta Hydrochim.  Hydrobiol.




13:391-394.








Kishino, T. and K. Kobayashi. 1980. Studies on  the metabolism  of




chlorophenols in  fish - XIV. A  study on the absorption mechanism  of




pentachlorophenol  in  goldfish relating to  its distribution between solvents




and water.  Bull.  Jpn. Soc.  Sci.  Fish.  46:1165-1168.









Klein,  W.,  H. Geyer,  !).  Freitag and H. Rohleder. 1984.  Sensitivity of schemes




tor ecotoxicological  hazard ranking of chemicals.  Chemosphere  13:203-211.









Knie,  J.,  A.  Halke,  E.  Juhnte  and W.  Schiller.   1983. Results of studies  on




chemical substances  with four  biotests. Deutsche Gewasserkd. :iitt. 27:77-79.









 fciowlton, fl.F.  and J.N.  Huckins.  1983. Face of  radiolabeled sodium




 pentachlorophenate in littoral microcosms. Bull. Environ. Toxicol.  Che.a.





 30:206-213.
                                      102

-------
  Kobayashi, K. 1978. Metabolism of pentachlorophenol in  fishes.  In: Penta-
  chlorophenol: Chemistry, pharmacology and environmental toxicology. Rao, K.R.
  (Ed.). Plenum Publishing Company, New York, NY. pp. 89-105.


  Kobayashi,  K. 1979. Metabolism of pentachlorophenol in fish.  In: Pesticide
  and  xenobiotic metabolism in aquatic organisms. Khan,  M.A.Q.,  J.J.  Lech and
  J.J.   Menn  (Eds.).  ACS  Symposium Series  No.  99. American Chemical Society,
  Washington,  DC.  pp.  131-143.


  Kobayashi, K.  and H. Akitake.  1975a.  Studies  on the metabolism of
  chlorophenols  in fish -  I. Absorption and excretion of  PGP  by  goldfish.  Bull.
  Jpn. Soc. Sci. Fish. 41:87-92.


 Kobayashi, K. and H. Akitake. 1975b. Studies on  the metabolism  of chloro-
 phenols in fish - II. Turnover of absorbed PCP  in goldfish. Bull. Jpn. Soc.
 Sci.  Fish. 41:93-99.


 Kobayashi, K.  and T.  Kishino.  1980.  Effect of pH on the toxicity and
 accumulation  of pentachlorophenol  in  goldfish.  Bull.  Jpa.  Soc.  Sci.  Fish.
 46:167-170.


Kobayashi, K.  and N.  Nakamura.  1979a.  Studies  on the metabolism of
chlorophenols  in  fish - XI. Isolation  and  identification  of  a conjugated-PCP
in the urine of goldfish. Bull. Jpn.  Soc.  Sci. Fish. 45:1001-1003.
                                   103

-------
Kobayashi, K.  and N.  Nakaraura.  1979b.  Studies on the metabolism of




chlorophenols  in fish - XII.  Major detoxification pathways for




pentachlorophenol in goldfish.  Bull. Jpn.  Soc. Sci. Fish. 45:1185-1188.









Kobayashi, K. ,  H. Akitake and T. Tomiyama. 1969. Studies on the metabolism of




pentachlorophenol, a herbicide, in aquatic organisms - I. Turnover of




absorbed PGP in Tapes phillipinarum. Bull. Jpn. Soc. Sci. Fish. 35:1179-1183.









Kobayashi, K.,  S. Kiraura and E. Shiraizu. 1977. Studies on the metabolism of




chlorophenols  in fish - IX. Isolation and identification of pentachlorophenyl-




<*lucuronide accumulated in bile of goldfish. Bull. Jpn. Soc.  Sci.  Fish.




45:601-607.









Kobayashi, K. ,  H. Akitake  and K. Manabe. 1979. Relation between  toxicity and




accumulation of various chlorophenols in goldfish. Bull. Jpn. Soc. Sci. Fish.




45:173-175.









Kobayashi, K.,  S. Kiraura and Y. Oshiraa. 1984.  Sulfate conjugation  of  various




phenols by liver-soluble fraction of goldfish. Bull. Jpn. Soc. Sci. Fish.




50:833-837.









Koch, R.  1982.  Molecular connectivity and acute  toxicity  of  environmental




pollutants. Ghetnosphere  11:925-931.

-------
  Konemann,  H.  and  A.  Musch.  1981.  Quantitative structure-activity




  relationships  in  fish  toxicity studies.  Part  2:  The influence of pH on the




  QSAR of  chlorophenols.  Toxicology 19:223-228.









  Korte, P., D.  Freitag,  H. Geyer,  W.  Klein,  A.G.  Kraus  and  E.  Lohaniatus.




  1978. Ecotoxicologic profile  analysis: A concept for  establishing




  ecotoxicologic priority lists  for chemicals.  Cheaosphere 1:79-102.









 Kozak, V.P., G.V. Sirasiraan, G. Chester,  D.  Stensley and J.  Harkin.  1979.




 Reviews of environmental effects  of  pollutants.  XI. Chlorophenols.  EPA




 600/1-79-012.  National Technical  Information Service,  Springfield,  VA,









 Kuehl, D.W. and R.C.  Dougherty. 1980. Pentachlorophenol in  the environment.




 Evidence  for its  origin from commercial pentachiorophenol by negative




 chemical  ionization  mass spectrometry.  Environ. Sci. Technol. 14:447-449.









 Kuehl,  D.W., E.N.  Leonard,  K.J.  Welch and G.D.  Veith.  1980.  Identification of




 hazardous organic  chemicals  in fish  from  the Ashtabula River,''Ohio,  and




 Wabash River,  Indiana.  J. Assoc. Off. Anal.  Chera. 63:1238-1244.









Kuehl, D.W., E.N.   Leonard, B.C. Butterworth  and  K.L. Johnson.  1983.




Polychlorinated chemical residues  in  fish  from  major watersheds  near the



Great Lakes. Environ. Int. 9:293-299.
                                    105

-------
Kwasniewska,  K.,  D.  Liu and W.M.J.  Strachan.  1979.  Bioassay of relative




toxicity of 3ome  chlorophenols  using sewage bacteria.  Fisheries and Marine




Service Technical Report No. 862.  Fisheries and Marine Service, Pacific




Environment Institute,  West Vancouver,  British Columbia,  Canada, pp.




193-200.








LeBlanc, G.A. 1980.  Acute toxicity of priority pollutants to water  flea




(Daphnia magna).  Bull.  Environ. Contam. Toxicol. 24:684-691.









LeBlanc, G.A. and B.J.  Cochrane. 1985.  Modulation of  substrate-specific




glutathione S-transferase activity  in Daphnia magna with concomitant effects




on toxicity tolerance.  Corap. Biochera. Physiol. 82C:37-42.









Lech, J.J., A.H. Glickraan  and  C.N.  Slathara. 1978. Studies  on  the  uptake,




disposition and  metabolism  of.  pentachlorophenol  and pentachloroanisole in




rainbow trout. In:  Pentachlorophenol:  Chemistry, pharmacology,  and




environmental  toxicology.  Rao,  fC.R.  (Ed.).  Plenum Publishing  Company,  New




York, NY.  pp.  107-113.








Lemma.  A.  and  P.  Yau.  1974.  Studies on the molluscicidai  properties of endod




 (Phytolaeca  dodecandra);  II.  Comparative  toxicity  of  various  molluscicides to




 fish and snails. Ethiopian Med. J.  12:109-114.
                                      106

-------
  Lewis, P.A. and C.I. Weber. 1985. A study  of  the  reliability  of  Daphnia
  acute toxicity tests. In: Aquatic toxicology  and  hazard assessment:  Seventh
  symposium. Cardwell, R.D., R. Purdy and R.C.  Banner (Eds.). ASTM STP  854.
  American Society for Testing and Materials, Philadelphia, PA. pp. 73-86.

  Lipnick,  R.L.,  C.K.  Bickings, D.E.  Johnson and D.A. Eastmond. 1986.
  Comparison of  QSAR predictions  with  fish toxicity screening data for 110
  phenols.  In: Aquatic toxicology and  hazard assessment: Eighth symposium.  R.C.
  Bahner and  D.J. Hansen  (Eds.).  ASTM  STP  891.  American  Society for Testing and
  Materials,  Philadelphia,  PA.  pp.  153-176.


  Liu, D.H.W. 1981. A  radiorespiroraetric study of  the effects  of a  chemical
  substance on carbohydrate metabolism in  the  intact fish.  In:  Aquatic
  toxicology and  hazard assessment: Fourth conference. Branson,  D.R. and  K.L.
 Dickson (Eds.). ASTM STP 737. American Society for Testing  and Materials,
 Philadelphia,  PA.  pp. 449-458.


 Lu,  P.Y.  and R.L.  Ketcalf.  1975.  Environmental fate and biodegradability of
 benzene derivatives  as  studied  in a model aquatic ecosystem. Environ.  Health
 Perspect.  10:269-284.


Mathers, R.A., J.A. Brown  and P.H. Johansen.  1985.  The  growth and  feeding
behaviour responses of largemouth bass (Micrj^pj^rus ^almoides)  exposed  to
PCP.  Aquat. Toxicol. 6:157-164.
                                    107

-------
Matida, Y.. S. Kimura, H.  Tanaka and M.  Yokote .  1976. Effects of some

herbicides applied in the  forest to the  freshwater fishes and other aquatic

organisms. III. Experiments on the assessment of acute toxicity of herbicides

to aquatic organisms. Bull. Freshwater Fish. Res. Lab. (Tokyo) [Eng. Transl.

of Tansuika Suisan Kenkyusho Kenkyu Hokoku] 26:79-84.




Mattson,  V.R., J.W.  Arthur and C.T. Walbridge.  1976.  Acute  toxicity  of

selected  organic  compounds to  fathead minnow3 .  EPA-600/3-76-097 .  National


Technical Information Service,  Springfield, VA.




McCarty,  L.S.,  P.V.  Hodson,  G.R.  Craig  and K.L.E.  Kaiser.  1985.  The use of

quantitative  structure-activity relationships to predict the acute and

chronic toxicities of organic chemicals to fish. Environ.  Toxicol. Chem.


4:595-606.
McCoy, L.E. and J.E. Joy. 1977. Tolerance of
                                                      fuscipennis  and Dictvj.
 sp. larvae (Diptera: Sciomyzidae) to the molluscicides Bayer  73  and  sodium

 pentachlorophenate. Environ. Entoraol. 6:198-202.




 McKira, J., P.  Schmieder  and G. Veith. 1985.  Absorption dynamics  of organic

 chemical  transport  across  trout  gills as  related  to octanol-water partition


 coefficient.  Toxicol.  Appl. Phanaacol.  77:1-10.




 McKia,  J.M.,  P.K.  Schmieder and  R.J.  Erickson. Manuscript. The general

  pharnacoVtinetics of [ ^C]-?entachlorcphenol in the rainbow trout  (Salmo

                                   1
  gairineri).  U.S. SPA,  Duluth,  M<*.
                                      1C8

-------
  McLeese, D.W., V. Zitko  and H.R. Peterson.  1979.  Structure-lethality




  relationships for phenols, anilines and other aromatic compounds  in shrimp



  and clams. Cheraosphere 8:53-57.









  Metcalfe, J.L.,  M.E. Fox and J.H. Casey. 1984. Aquatic leeches (Hirudinea) as




  bioindicators of organic chemical contaminants in freshwater ecosystems.



  Cheraosphere 13:143-150.









  Morgan,  W.S.  1976.  Fishing  for toxicity:  Biological  automonitor for




  continuous  water  quality  control. Effluent  Water  Treat.  J.  16:471-475.









  Morgan,  W.S.G. 1977.  Biomonitoring with  fish:  An  aid  to  industrial effluent




  and surface water quality control. Prog. Water Technol. 9:703-711.









 Mount,  D.I.  and T.J.  Norberg.  1984.  A seven-day life-cycle  cladoceran




 toxicity test. Environ.  Toxicol. Chera.  3:425-434.









 Mrak,  E.M.  1974.  Herbicide Report -  Chemistry and  analysis,  environmental




 effects,  agricultural  and  other applied  uses.  EPA-SAB-74-001.  National



 Technical  Information  Service,  Springfield,  VA.









Murray, H.E.,  G.S. Neff, Y. Hrung  and C.S. Giam. 1980.  Determination of




benzo(a)pyrene, hexachlorobenzene  and pentachlorophenol  in oysters  from




Galveston Bay,  Texas.  Bull. Environ.  Conta.-a. Toxicol.  25:663-667.
                                    109

-------
Murray, H.E., L.E. Ray and C.S.  Giam. 1981.  Analysis of marine sediment,

water and biota for selected organic pollutants.  Chemosphere 10:1327-1334.



Nagendran, R. and K. Shakuntala. 1979. Studies on toxicity of biocides to

cyprinid forage fishes: Part I - Effects of sublethal concentrations of

sodium pentachlorophenate on the ecophysiology of Puntius ticto (Ham). Indian

J. Exp. Biol. 17:270-273.



National Research Council of Canada.  1982. Chlorinated phenols: Criteria  for

environmental quality. NRCC No. 18578. Environmental Secretariat, Ottawa,

Canada.



Neter, J. and W. Wasserman. 1974. Applied Linear Statistical  Models.  Irwin,

Inc., Homewood, IL.



Niimi, A.J.  and C.Y.  Cho. 1983. Laboratory and field analysis of

pentachlorophenol  (PCP)  accumulation by  salraonids.  Water  Res.  17:1791-1795.
                                                              :


Niirai,  A.J.  and C.A.  McFadden.  1982.  Uptake  of sodium  pentachlorophenate

(NaPCP)  from water  by rainbow  trout (Saleo gairdneri)  exposed to

concentrations  in tha ng/1  range.  3ull.  Environ.  Contain.  Tcxicol. 28:11-19.



Niiini,  A.J.  and V.  Palazzo.  1985.  Temperature effect  on  the elimination of

penr.achlorophenol,  hexachlorobeazene and rairex  by rainbow trout (Salmo

aairdr.eri') .  Water <*es . 19:205-207.
                                     110

-------
  Nilsson, C.A.,  A.  Norstrora, K. Andersson and C. Rappe. 1978. Impurities in
  commercial  products related to pentachlorophenol.  In: Pentachlorophenol:
  Chemistry,  pharmacology,  and environmental toxicology. Rao, K.R. (Ed.).
  Plenum Publishing  Company,  New York,  NY.  pp.  313-324.


  Norup,  B. 1972.  Toxicity  of chemicals in  paper factory effluents. Water Res.
  6:1585-1588.


  Oikari,  A.O.J. 1986. Metabolites  of xenobiotics in  the bile of  fish in
  waterways polluted by pulpmill effluents.  Bull.  Environ.  Contain.  Toxicol.
  36:429-436.


 Oikari, A. and E. Anas.  1985. Chlorinated phenols and  their  conjugates  in  the
 bile of trout (Salmo gairdneri) exposed to contaminated waters. Bull.
 Environ. Contain.  Toxicol.  35:802-809.


 Oikari,  A.O.J. and  J.  Niittyla. 1985.  Subacute physiological effects of
 bleached kraft mill  effluent (BKME)  on the liver of  trout, lalmo gairdneri.
 Ecotoxicol.  Environ.  Safety  10:159-172.


Oikari,  A.,  B. Holmbom, E. Anas, M. Miilunpalo,  G. Kruzynski and M.  Castren.
1985. Ecotoxicological aspects  of  pulp  and  paper mill  effluents  discharged  to
inland water systems: Distribution in  water and  toxicant  residues  and
physiological effects in caged  fish (Salmo gairdneri).  Aquat.  Toxicol.
6:219-239.
                                    Ill

-------
Owen, J.W. and S.W. Rosso. 1981. Effects of sublechal concencracions of




pencachlorophenol on Che liver of bluegill sunfish, Lepomis macrochirus.




Bull. Environ. Concam. Toxicol. 26:594-600.








Paasivirta, J., J. Sarkka, T. Leskijarvi and A. Roos. L980. Transporcation




and  enrichment of chlorinated phenolic compounds in differenc  aquacic  food




chains. Chemosphere 9:441-456.








Paasivirca, J., J.  Sarkka, M. Aho,  K.  Surma-Aho, J. Tarkanen  and A.  Roos.




1981; Recenc  trends of bloc ides  in  pikes of  the Lake  Paiganne.  Chemosphere




10:405-414.








Paasivirca, J. ,  J.  Sarkka, K.  Surma-Ano,  T.  tiumppi,  r.  .boiokkanen and M.




Marttinen.  1983.  Food chain  enrichment of  organochlorine compounds and




mercury in clean and  polluted lakes of Finland.  Chenosphere 12:239-252.









 Palmer, C.M.  and I.E. Maloney.  1955. Preliminary screening for  potential




 al^icides. Ohio J. Sci. 55:1-8.








 Parrish, P.R., E.E. Dyar, J.M. Enos and W.G. Wilson. U73. Chronic  toxic ity




 of chlordane, trifluralin, and pentachlorophenol  to saeepsliead  rainnows




 (Cyprinodon variegatus). EPA-600/3-73-010. National Tecimical Information




 Service, Springfield, VA.
                                      112

-------
  Peer,  M.M.,  J.  Nirmala and M.N.  Kutty.  1983.  Effects of pentachlorophenol




  (NaPCP)  on survival,  activity and  metabolism  in Rhinomugil corsula




  (Hamilton),  Cyprinus  carpio (Linnaeus)  and Tilapia mossambica (Peters) .




  Hydrobiologia  107:19-24.









  Peterson, R.H.  1976.  Temperature selection of  juvenile  Atlantic  salmon  (Salmo




  sala£> as influenced  by various toxic substances.  J.  Fish.  Res.  Board Can.



  33:1722-1730.









 Phipps, G.L.  and G.W. ttolcombe. 1985. A method  for aquatic  multiple  species




 toxicant testing: Acute toxicity of 10 chemicals to  5 vertebrates  and 2




 invertebrates.  Environ. Pollut. (Series A)  38:141-157.









 Phipps, G.L., G.W.  Holcombe and J.T. Fiandt. 1981.  Acute toxicity of phenol




 and substituted phenols to the fathead minnow. Bull. Environ. Contain.



 Toxicol.  26:585-593.









 Pierce,  R.H., Jr.  1978.  Fate and  impact  of pentachlorophenol in a freshwater




 ecosystem. EPA-600/3-78-063.  National  Technical Information Service,



 Springfield,  VA.









Pierce, R.H.,  Jr., C.R. Brent,  H.P.  Williams and  S.G.  Reeves.  1977.




Pentachlorophenol distribution  in a  fresh  water  ecosystem.  Bull.  Environ.



Contam. Toxicol. 18:251-258.
                                     113

-------
Pruitt, G.W.,  B.J.  Grantham and R.H.  Pierce,  Jr.  1977.  Accumulation and




elimination of pentachlorophenol by the bluegill,  Lepomis macrochirus. Trans.




Am. Fish. Soc. 106:462-465.








Rao, K..R. and D.G.  Doughtie. 1984. His to pathological changes in grass shrimp




exposed to chromium, pentachlorophenol and dithiocarbamates. tlar. Environ.




Res. 14:371-395.









Rao, K..R. , P.J. Conklin and A.C.  Brannon. 1978. Inhibition of limb




regeneration in the grass shrimp, Palaemonetes pugio, by sodium




pentachlorophenol.  In: Pentachlorophenol: Chemistry, pharmacology and




environmental toxicology. Rao,  K.R.  (Ed.). Plenum Publishing Company,  New




York,  NY. pp.  193-203.








Rao, K.R. , F.R. Fox,  P.J.  ConklLn, A.C.  Cantelmo ana A.C.  Brannon.  1979.




Physiological and biochemical  investigations of the  toxicity of  pentachloro-




plienol  to crustaceans.  In:  Marine pollution: Functional  responses.  Vernberg,




W.3.,  F.P. Thurberg,  A.  Calabrese and  F.J. Vernberg  (Eds.).  Academic  Press,




New  York, NY.








Rao, K.R., F.R. Fox,  P.J.  Conklin and  A.C. CanteLmo.  .Ml.  Comparative




toxicology and  pharmacology of chlorophenols:  Studies  on the ^rass  shrimp,




Palaemonetes  pugio. In:  Biological .nonitoring  of  marina pollutants. Vernberg,




J.,  A.  Calabrese,  F.P.  Thurberg and  W.b. Vernberg  (Eds.,.  Academic Press, New




York,  NY.  pp.  37-72.
                                      114

-------
   Rao, P.S.,  V.S.  Durve, 3.S.  Khangarot and S.S.  Shekhawac. 1983. Acute

   toxicity of  phenol,  pentachlorophenol and sodium pentachlorophenate to a

   freshwater  astracod  Cypris subfilobosa (Sowerby) . Acta Hydrochim.  Hydrobiol.

   11:457-465.



  Ray, L.E., H.E..Murray and C.S. Giam.  1983. Organic  pollutants  in  marine

  samples from Portland, Maine. Chemosphere  12:1031-1038.



  Renberg, L.,  E. Masell, G. Sundstrom and M. Adolfsson-Erici. 1983. Levels of

  chlorophenols in  natural  waters  and fish after an accidental discharge of a

  wood-impregnating  solution. Ambio  12:121-123.



  Ribo, J.M. and  K.L.E.  Kaiser.  1983.  Effects of selected  chemicals  to

  Photoluminescent bacteria  and  their  correlation with  acute and  sublethal

  effects on other organisms. Chemosphere  12:1421-1442.



 Richter, J.E. 1932. Results of algal toxicity tests with priority pollutants.

 University of  Wisconsin-Superior, Superior, wi. (Memorandum to" Charles

 Stephan, U.S.  EPA,  Duluth,  IM.  June 30.)



 Robinson-Wilson, E.F.,  T.P.  Boyle and j.o.  Petty.  1983. Effects  of  increasing

 levels of  priory production on pentachlorophenol  residues  in experimental

 pond ecosystems. In: Aquatic toxicology  and  hazard  assessment: Sixth

 symposium. Bishop,  W.E., R.D. Card.ell,  and  B.B. Heidolph (Eds.). ASTM  SIP

 802. American Society for Testing and Materials, Philadelphia, PA. pp.
 "> 1 n •* r i
239-251.
                                     115

-------
Rubinstein, N.I.  1978.  Effect of sodium pentachlorophenol on the feeding




activity of the lugworm,  Arenicola cristat* Stimpson.  In: Pentachlorophenol:




Chemistry, pharmacology and environmental toxicology.  Rao, K. R. (Ed.). Plenum




Publishing Company, New York, NY. pp.  175-179.








Rubinstein, N. 1981. U.S. EPA, Gulf Breeze, FL. (Memorandum  to S. Tagatz,




U.S. EPA, Gulf Breeze, FL.)








Ruesink,  R.G.  and L.L. Smith, Jr. 1975. The relationship of  the 96-hour LC50




to  the  lethal  threshold concentration  of hexavalent chromium,  phenol,  and




sodium  pentachlorophenate  for  fathead  minnows  (Pimephales promelas




Rafinesque).  Trans.  Am.  Fish.  Soc.  104:567-570.









Saarikoski,  J. and K.  Kaila.  1977.  Effects of two  chlorinated phenols on the




spontaneous  impulse activity of the abdominal tonic motor system in the




crayfish (Astacus  .fluviatilis L.).  Bull.  Environ.  Contam. Toxicol.  17:40-48.









 Saarikoski,  J. and M.  Viluksola. 1981. Influence of  pH on the toxicity of




 substituted phenols to fish. Arch.  Environ. Contam.  Toxicol.  10:747-753.









 Saarikoski, J. and M. Viluksela. 1982. Relation between  physicochemical




 properties of phenols and their toxicity  and  accumulation  in  fish.




 Ecotoxicol. Environ.  Safety 6:501-512.
                                      116

-------
  Salkinoja-Salonen,  M. ,  M.  Saxelin and  J.  Pere.  1981.  Analysis of toxicUy and




  biodegradability  of organochlorine compounds  released into the environment in




  bleaching  effluents of  kraft  pulping.  In:  Advances  in the identification and




  analysis of organic  pollutants  in water.  Vol..2.  Keith,  L.H.  (Ed.).




  Butterworth,  Stoneham,  MA.  pp.  1131-1164.









  Sarojini, R., A.K.  Khan, M.S. Mirajkar and R. Nagabhushanara.  1983. Effect  of




  sodium pentachlorophenate on  the  calcium  content  of the  freshwater prawn




  (Caridina rajadhari). J. Environ.  Biol. 4:77-80.









 Schauerte,  W., J.P.  Lay, W. Klein  and F.  Korte.  1982.  Influence of




 2,4,6-trichlorophenol and pentachlorophenol on the biota of aquatic systems.



 Chemosphere 11:71-79.









 Schimrael,  S.C.  and R.L.  Garnas.  1985.  Interlaboratory  comparison of the ASTM




 bioconcentration  test method using the  eastern oyster. In: Aquatic toxicology




 and  hazard  assessment.  Banner, R.C. and D.J.  Hansen  (Eds.). ASTM STP  891.




 American Society  for Testing and  Materials, Philadelphia,  PA.  pp.  277-287.









 Schimmel, S.C., J.M.  Patrick,  Jr.,  and  L.F. Faas.  1978.  Effects of sodium




 pentachlorophenate on several  estuarine animals: Toxicity,  uptake,  and




depuration. In: Pentachlorophenol:  Chemistry,  pharmacology and environmental




 toxicology.  Rao, K.R. (Ed.). Plenum Publishing Company,  New York,  NY. pp.



 147-155.
                                   117

-------
Shim,  J.C.  and L.S.  Self. 1973.  Toxicity of agricultural chemicals to

larvivorous fish in  Korean rice  fields.  Trop.  Med.  15:123-130.



Sloley, B.D., B.E. Hickie, D.G.  Dixon, R.G.bi.  Downer andR.J. Martin. 1986.

The effects of sodium pentachlorophenate, diet, and sampling procedure on

amine and  tryptophan concentrations in  Che brain of rainbow  trout, Salmo

zairdneri  Richardson. J. Fish. Biol. 28:267-277.



Slooff, W.  1978.  Biological monitoring  based on fish respiration  for

continuous  water  quality control.  In: Aquatic  pollutants: Transformation  and

biological effects.  Hutzinger, 0. ,  I.H.  VanLelyveld, and  B.C.J.  Zoeteman

(Eds.). Pergamon  Press,  Oxford, NY. pp.  501-505.



Slooff, W. 1979.  Detection limits of  a  biological  monitoring system based on

fish  respiration. Bull.  Environ.  Contam.  Toxicol.  23:517-523.



Slooff,  W. 1982.  A  comparative  study  of the short-tena effects of 15

chemicals  on fresh  water organisms of different trophic levels. PB83-200386.

National  Technical  Information Service, Springfield, VA.



 Slooff,  W. 1983.  Benthic rnacroinvertebrates and water  quality assessment:

 Some toxicological considerations. Aquae. Toxicol.  4:?3-8
-------
  Slooff,  W.  and  J.H.  Canton.  1983.  Comparison of  the  susceptibility of LI




  freshwater  species  to  8 chemical compounds.  II.  (Semi)chronic  toxicity  tests.




  Aquat. Toxicol.  4:277-282.









  Slooff,  W., J.H. Canton and J.L.M.. Hermens.  1983a. Comparison  of  the




  susceptibility of 22 freshwater species to 115 chemical compounds.  I.




  (Sub)acute  toxicity tests. Aquat. Toxicol. 4:113-128.









 Slooff,  W.,  D. DeZwart and J.M. Marquenie. 1983b. Detection limits of a




 biological monitoring system for chemical water pollution based on mussel




 activity. Bull.  Environ.  Contam.  Toxicol.  30:400-405.









 Smith, R.A.  and  M.J.  Ord.  1979.  Morphological alterations in the mitochondria




 of  Amoeba proteus induced  by  uncoupling  agents.  J.  Cell Sci.  37:217-229.









 Spehar, R.L.,  U.P. Nelson, M.J.  Swanson  and J.W.  Renoos.  1985.  Pentachloro-




 phenol toxicity  to araphipods and fathead minnows  at different  test  pH values.



 Environ.  Toxicol. Chem. 4:389-397.









Statham,   C.N. and J.J. Lech. 1975. Potentiation of the  acute toxicity  of




several pesticides and herbicides in trout by carbaryl. Toxicol. Appl.



Pharmacol. 34:83-87.
                                     119

-------
Stephan,  C.E.,  D.I.  Mount,  D.J.  Hansen,  J.H.  Gentile,  G.A.  Chapman and W.A.

Brungs.  L985.  Guidelines for deriving numerical national water quality

criteria for the protection of aquatic organisms and their uses. PB85-227049.

National Technical Information Service,  Springfield, VA.



Strufe,  R. 1968. Problems and results of residue studies-after application of

molluscicides. Residue Rev. 24:80-168.



Stuart, R.J. and J.B. Robertson. 1985. Acute toxicity of pentachlorophenol to

the freshwater snail, Gillia  altilis. Bull.  Environ. Contam.  Toxicol.

35:633-640.



Sugiura,  K. ,  II.  Aoki,  S.  Kaneko,  I.  Daisaku, Y.  Komatsu, tt.  Shibuya,  H.

Suzuki and M.  Goto.  1984.  Fate of  2,4,6-trichlorophenol, pentachlorophenol,

p-chlorobiphenyl,  and  hexachlorobenzene in  an  outdoor experimental pond:

Comparison between observations  and  predictions based on laboratory data.

Arch.  Environ. Cantata.  Toxicol.  13:745-758.
                                                               •.


 Tagatz,  M.E.,  J.M. Ivey, J.C. Moore  and M.  Tobia.  1977. Effects of

 pentachlorophenol on the development of estuarine communities. J.  Icxicol.

 Environ.  Health 3:501-506.



 Tagatz, M.E., J.M.  V/ay and  M. lobia.  1978. Effects  j£  Dowicide  J-SI on

 development of exper.aental  estuarine macrobenthic communities.  In:

 Pentachlorophenol:  Chemistry, pharmacology  and  environmental toxicology. Rao,

 K.R. (Ed.). Plenum  Publishing Company,  New  York,  MY.  pp.  157-163.
                                       120

-------
  Tagatz, M.E.,  J.M.  Ivey, H.K.  Lehman,  M. Tobia and J.L.  Oglesby. 1980.




  Effects of  drilling mud- on development of experimental estuarine macrobenthic




  communities.  In:  Symposium on  research on environmental  fate and effects of




  drilling fluids and cuttings.  Vol.  2.  American Petroleum Institute,




  Washington, DC. pp. 847-865.









  Tagatz,  M.E.,  J.M.  Ivey,  N.R.  Gregory  and J.L.  Oglesby.  1981.  Effects  of




  pentachlorophenol on field  and laboratory-developed estuarine  benthic




  communities. Bull.  Environ. Contam. Toxicol.  26:137-143.









  Tagatz, M.E.,  C.H.  Deans, G.R.  Plaia and  J.D. Pool. 1983. Impact on and




  recovery of experimental macrobenthic  communities exposed to pentachloro-



 phenol. Northeast  Gulf  Sci. 6:131-136.









 Thomas, P.  and  H.W.  Wofford. 1984. Elevated acid-soluble thiol content in




 fish hepatic tissue: A  response to pollutants. Mar.  Environ. Res. 14:486-488.









 Thomas, P.,  R.S. Carr and J.M.  Neff.  1981. Biochemical stress responses of




 mullet  Mu£il cephalus and  polychaete worms Neanches  virens  to pentachloro-




 phenol.  In:  Biological  monitoring  of marine pollutants. Vernberg, J.,  A.




 Calabrese, P.P. Thurberg  and W.B.  Vernberg (Eds.).  Academic  Press,  New  York,



 NY.  pp.  73-103.









Thurston, R.V.,  T.A.  Gilfoil, E.L. Meyn,  R.K.  Zajdel,  T.I. Aoki and G.D.




Veith. 1985.  Comparative toxicity of ten organic chemicals to common aquatic



species. Water Res.  19:1145-1155.*
                                    121

-------
Tiedge, H.,  R.  Nagel and K.  Urich.  1986.  Effect of 3ubstituted phenols on




transaminase activity in the fish,  Leuciscus idus melanotus. L. Bull.




Environ. Contain. Toxicol. 36:176-180.








Tomiyama, T., K.Kobayashi, N. Uyeda and K. Kawabe. 1962. The  toxic effect of




pentachlorophenate, a herbicide, on fishery organisms in coastal waters - IV.




The effect on Venerupis phillipinarum of PGP which is constantly supplied or




adsorbed to estuary mud. Bull. Jpn. Soc. Sci. Fish. 28:422-425.









Tomizawa, C. and H. Kazano.  1979.  Environmental  fate of  rice  pad
-------
  U.S.  EPA.  1983b. Water quality standards handbook. Office of Water




  Regulations  and Standards,  Washington,  DC.









  U.S.  EPA.  1985a.  Appendix  B - Response  to  public  comments on "Guidelines for




  deriving numerical  national  water  quality criteria for  the protection of




  aquatic organisms and  their  uses."  Fed.  Regist.  50:30793-30796.  July 29.









  U.S. EPA. 1985b. Technical support  document  for water-quality based  toxics




  control. Office of  Water, Washington, DC. September.









 U.S. EPA.  1986. Chapter 1 - Stream design flow for steady-state modeling. In:




 Book VI - Design conditions.  In: Technical guidance manual  for performing




 waste  load  allocations. Office of Water, Washington, DC.









 Van Dijk, J.J., C.  Van der  Meer and M.  Wijnana.  1977.  The  toxicity of sodium




 pentachlorophenolate for three species  of decapod crustaceans and their




 larvae.  Bull.  Environ.  Contain. Toxicol.  1:622-630.









 Van  Leeuwen, C.J., P.S.  Griffioen,  W.H.A. Vergouw and  J.L.  Maas-Diepeveen.




 1985. Differences  in susceptibility of early  life  stages of rainbow trout




 (Salmo gairdneri) to  environmental  pollutants. Aquat.  Toxicol.  7:59-78.









Veith,  G.D., D.L. DeFoe  and B.V. Bergstedt. 1979. Measuring and estimating




the bioconcentration  factor of chemicals in fish. J. Fish.  Res. Board  Can.



36:1040-1048.
                                     123

-------
Veith, G.D., D.W. Kuehl, E.N.  Leonard,  K.  Welch and G.  Pratt. 1981.




Polychlorinated biphenyls and other organic chemical residues in fish from




major United States watersheds near the Great Lakes, 1978. Pestic. Monit. J.




15:1-8.








Verraa, S.R., S. Rani, A.K. Tyagi and R.C.  Dalela. 1980. Evaluation of acute




toxicity of phenol and its chloro- and nitro-derivatives to certain teleosts .




Water Air Soil Pollut. 14:95-102.








Verraa, S.R., S. Rani and R.C. Dalela. 1981a. Effects of phenolic  compounds  on




in vivo blood  parameters of a fish Notopterus notopterus. J. Environ.  Sci.




Health 168:273-282.








Verraa, S.R., S.  Rani and R.C. Dalela. 1981b. Synergism, antagonism,  and




additivity  of  phenol, pentachlorophenol,  and dinitrophenol  to  a fish




(Notopterus notopterus) . Arch.  Environ. Contain.  Toxicol.  10:365-370.








Verraa, S.R., I.P.  Tonk  and  R.C.  Dalela. 1981c.  Deterraination of the  maximum




acceptable  toxicant  concentration  (MATC)  and  the safe  concentration  for




certain aquatic  pollutants.  Acta Hydrochira.  Hydrobiol. 9:247-234.








Verma,  S.R.,  S.  Rani and R.C.  Dalela.  1982.  Alterations in certain organic




components  and serum electrolytes  in Notopterus notopterus chronically




exposed  to phenolic  compounds.  Aota Hydrochim.  Hydrobiol. 10:31-40.

-------
Verma, S.R. ,  I.P.  Tonk, A.K.  Gupta and M.  Saxena. 1984.  Evaluation of an




application factor for determining the safe concentration of agricultural and




industrial chemicals. Water Res. 18:111-115.








Vigers, G.A.  and A.W. Maynard. 1977. The residual oxygen bioassay: A rapid




procedure to predict effluent toxicity to rainbow trout. Water Res.




11:343-346.









Vigers, G.A., J.B. Marleave, R.G. Janssen and P. Borgraann. 1978. Use of




larval herring in bioassays. In: Proceedings of the fourth annual aquatic




toxicology workshop. Davis, J.C., G.L. Greer and I.K. Birtwell (Eds.).




Canadian Fisheries and Marine Service Technical Report 818. Environmental




Protection Service, Ottawa, Canada, pp. 31-52.









von Rumker, R., E.W. Lawless, A.F. Meiners, K.A. Lawrence, G.L. Kelso and F.




Horay. 1974.  Production, distribution, use and  environmental  impact  potential




of selected pesticides. PB-238795 or EPA-540/I-74-001. National Technical




Information Service, Springfield, VA. pp. 308-319.









Walsh, G.E.,  D.L. Hansen and D.A. Lawrence. 1982. A flow-through  system  for




exposure of seagrass to pollutants. Mar. Environ. Res. 7:1-11.









Webb, P.W. and J.R. Brett. L973. Effects of sublethal concentrations of




sodium pentachlorophenate on growth rate,  food  conversion  efficiency, and




swimming performance in underyearling sockeye salmon  (Oncorhynchus  nerka). J.




Fish. Res. Board Can.  30:499-507.*
                                    125

-------
Weinbach, E.E. 1954.  The effect of pentachlorophenol on oxidative




phosphorylation. J. Biol. Chem. 210:545-550.








Weinbach, E.E. 1956.  The influence of pentachlorophenol on oxidative and




glycolytic phosphorylation in snail tissue. Arch. Biochem. Biophys.




64:129-143.








Weiss, U.M.,  P. Moza,  I. Scheunert, A.  Haque and F.  Korte.  1982.  Fate  of




pentachlorophenol-14C  in rice  plants  under  controlled  conditions. J.




Agric. Food  Chem.  30:1186-1190.








Whitley, L.S. 1963.  The resistance of tubificid worms  to three common




pollutants.  Hydrobiologia  32:193-205.








 Woelke,  C.E. 1965. Development o£ a bioassay method using tne marine algae




 Macrocystis lutheri. Progress Report - Shellfish research. Washington




 Department of Fisheries and Shellfish, Seattle, WA.








 Woelke,  C.E. 1972. Development of a  receiving water quality bioassay




 criterion based on  the  48-hour Pacific oyster  (Crassosc:3a £i&as)  embryo.




 Technical Report  No.  9. Washington Department  of  Fisheries,  Seattle,  WA.









 Wong, S.L.  1984.  Toxicity and water  quality:  A bioassay ntarprecatioti.




 J.  Environ.  Sci.  Health L9A:377-386.
                                       126

-------
  Yount,  J.D.  and J.E.  Richter.  1986.  Effects of pentachlorophenol on




  periphyton  communities  in outdoor  experimental streams.  Arch.  Environ.



  Contain.  Toxicol.  15:51-60.









  Yousri,  R. and  w. Hanke.  1985.  The effects  of  pentachlorophenol,  phenol  and




  other pollutants on the liver of carp (Cyprinus carpio L.). Comp.  Biochem.



  Biophys. 820:283-290.









 Zaroogian, G.E.  1981.  Results:   Interlaboratory comparison-acute toxicity




 tests using  the  48-hr oyster embryo-larval assay.  Contribution No. 223.  U.S.



 EPA,  Narragansett,  RI.









 Zischke,  J.A., J.W.  Arthur,  R.O. Hermanutz,  S.F.  Hedtke  and J.'c.  Helgen.




 1985. Effects of pentachlorophenol  on  invertebrates  and  fish in outdoor



 experimental  channels. Aquat. Toxicol. 7:37-58.









Zitko, V., 0. Hutzinger and P.M.K. Choi. 1974.  Determination of




pentachlorophenol and chlorobiphenyls in biological  samples. Bull.  Environ.



Contam.  Toxicol.  12:649-653.
                                    127

-------
U.S. Environmental  Protection Agency
Region V, Library
230 South Dearborn Street
Chicago,  Illinois  60604

-------