United States     Office of Air Quality      EPA-450/3-80-027
Environmental Protection  Planning and Standards     December 1980
Agency        Research Triangle Park NC 27711
Air
Organic Chemical
Manufacturing
Volume  5: Adsorption,
Condensation, and
Absorption Devices

-------
                                   EPA-450/3-80-027
   Organic Chemical Manufacturing
Volume 5:  Adsorption,  Condensation,
          and Absorption Devices
             Emission Standards and Engineering Division
              U.S. Environmental Protection Agency
                   Library (PH2J)
             U.S. ENVIRONMENTAL PROTECTION AGENCY
                Office of Air, Noise, and Radiation
              Office of Air Quality Planning and Standards
             Research Triangle Park, North Carolina 27711

                     December 1 980

-------
U.S. Environmental  Protection

-------
                                         Ill
    This report was furnished to the Environmental Protection Agency by IT Enviro-
    science, 9041 Executive Park Drive, Knoxville, Tennessee 37923, in fulfillment
    of Contract No. 68-02-2577.  The contents of this report are reproduced herein
    as received from IT Enviroscience.  The opinions, findings, and conclusions
    expressed are those of the authors and not necessarily those of the Environmen-
    tal Protection Agency.  Mention of trade names or commercial products is not
    intended to constitute endorsement or recommendation for use.  Copies of this
    report are available, as supplies permit, through the Library Services Office
    (MD-35), U.S. Environmental Protection Agency, Research Triangle Park, North
    Carolina  27711, or from National Technical Information Services, 5285 Port
    Royal Road, Springfield, Virginia 22161.
D124R

-------
                                    V






                                CONTENTS





                                                            Page





     INTRODUCTION                                            vii






     Report                                                 Page







1.   CONTROL DEVICE EVALUATION CARBON ADSORPTION             1-i





2.   CONTROL DEVICE EVALUATION CONDENSATION                  2-i





3.   CONTROL DEVICE EVALUATION GAS ABSORPTION                3-i

-------
                                          VI1
                                    INTRODUCTION

A.   SOCMI PROGRAM
     Concern over widespread violation of the national ambient air quality standard
     for ozone (formerly photochemical oxidants) and over the presence of a number
     of toxic and potentially toxic chemicals in the atmosphere led the Environ-
     mental Protection Agency to initiate standards development programs for the
     control of volatile organic compound (VOC) emissions.   The program goals were
     to reduce emissions through three mechanisms:   (1) publication of Control Tech-
     niques Guidelines to be used by state and local air pollution control agencies
     in developing and revising regulations for existing sources; (2) promulgation
     of New Source Performance Standards according to Section lll(b) of the Clean
     Air Act; and (3) promulgation, as appropriate, of National Emission Standards
     for Hazardous Air Pollutants under Section 112 of the Clean Air Act.  Most of
     the effort was to center on the development of New Source Performance Stan-
     dards .

     One program in particular focused on the synthetic organic chemical manufactur-
     ing industry (SOCMI), that is, the industry consisting of those facilities
     primarily producing basic and intermediate organics from petroleum feedstock
     meterials.  The potentially broad program scope was reduced by concentrating on
     the production of the nearly 400 higher volume, higher volatility chemicals
     estimated to account for a great majority of overall industry emissions.  EPA
     anticipated developing generic regulations, applicable across chemical and
     process lines, since it would be practically impossible to develop separate
     regulations for 400 chemicals within a reasonable time frame.

     To handle the considerable task of gathering,  assembling, and analyzing data to
     support standards for this diverse and complex industry, EPA solicited the
     technical assistance of IT Enviroscience, Inc., of Knoxville, Tennessee (EPA
     Contract No. 68-02-2577).  IT Enviroscience was asked to investigate emissions
     and emission controls for a wide range of important organic chemicals.  Their
     efforts focused on the four major chemical plant emission areas:  process
     vents, storage tanks, fugitive sources, and secondary sources  (i.e., liquid,
     solid, and aqueous waste treatment facilities that can emit VOC).

121G

-------
                                          IX
B.    REPORTS
     To develop reasonable support for regulations,  IT Enviroscience gathered data
     on about 150 major chemicals and studied in-depth the manufacture of about
     40 chemical products and product families.   These chemicals were chosen consid-
     ering their total VOC emissions from production,  the potential toxicity of
     emissions, and to encompass the significant unit processes and operations used
     by the industry.  From the in-depth studies and related investigations, IT
     Enviroscience prepared 53 individual reports that were assembled into 10 vol-
     umes.  These ten volumes are listed below:
          Volume 1
          Volume 2
          Volume 3
          Volume 4
          Volume 5
          Volume 6-10
Study Summary
Process Sources
Storage, Fugitive, and Secondary Sources
Combustion Control Devices
Adsorption, Condensation, and Absorption Devices
Selected Processes
     Volumes 4 and 5 are dedicated to the evaluation of control devices used as add-
     on controls to reduce VOC emissions.  These add-on controls are discussed general-
     ly in Volumes 2 and 3 as emission control options for the control of VOC emis-
     sions from generic sources.  The use of these add-on controls in specific applica-
     tions is demonstrated in the process studies covered in Volumes 6 through 10.

     This volume covers the application of carbon adsorption, gas absorption, and
     condensation as add-on VOC emission control devices.  These reports discuss the
     practical use of each control device, describe the systems, and discuss key
     design considerations.  Data, tables, and curves are presented to enable pre-
     liminary cost and energy impacts to be determined for a wide range of potential
     applications.  These control device evaluation reports were used to develop the
     cost effectiveness and energy impact determinations presented in the process
     reports of Volumes 6 through 10.  The focus of these reports is on control of
     new sources rather than on existing sources in keeping with the main program
     objective of developing new source performance standards for the industry.  The
     reports do not outline regulations  and are not intended for that purpose, but
     they do provide a data base for  regulation development by  the EPA.

-------
                                     REPORT 1
                             CONTROL DEVICE EVALUATION
                                 CARBON ADSORPTION

                                  H. S. Basdekis
                                   C. S. Parmele

                                 IT Enviroscience
                             9041 Executive Park Drive
                            Knoxville, Tennessee  37923
                                   Prepared for
                    Emission Standards and Engineering Division
                   Office  of Air Quality Planning and Standards
                           ENVIRONMENTAL PROTECTION AGENCY
                      Research  Triangle Park, North Carolina
                                    January 1981
D122A

-------
                                CONTENTS OF REPORT 1
  I.  INTRODUCTION                                                           1-1
 II.  CARBON ADSORPTION SYSTEMS AND FACTORS INFLUENCING PERFORMANCE         II-l
     AND DESIGN
     A.    Fixed-Bed Adsorption                                             II-l
     B.    Alternative Carbon Adsorption Systems                            11-22
III.  CONSIDERATIONS FOR INSTALLING NEW CARBON ADSORPTION EQUIPMENT        III-l
     A.    New Plants                                                      III-l
     B.    Existing Plants                                                 III-l
 IV.  COST AND ENERGY IMPACTS OF CARBON ADSORPTION                          IV-1
     A.    Base-Case Adsorber Design Summary                                IV-1
     B.    Cost Basis                                                       IV-1
     C.    Annual Costs                                                     IV-5
     D.    Cost and Energy Effectiveness                                    IV-5
  V.  SUMMARY AND CONCLUSIONS                                                V-l
 VI.  REFERENCES                                                            VI-1
                                 APPENDIX OF  REPORT 1
     A.   ANNUAL COST DATA                                                  A-l

-------
                                         1-v
                                TABLES OF REPORT 1
Number
 II-l   Important Properties for Design of Adsorption System for           II-6
        Selected Organics
 IV-1   Factors Used for Estimating Total Installed Costs                  IV-3
 IV-2   Annual Cost Parameters                                             IV-6
 IV-3   Cost Effect of Varying Carbon Life and Steam Price                 IV-11
 IV-4   Cost Effectiveness of Carbon Adsorption for Removal of VOC         IV-12
 IV-5   Energy Effectiveness of Carbon Adsorption for VOC Removal          IV-14
 IV-6   Change in Cost Effectiveness and Energy Effectiveness with         IV-20
        Increasing Regeneration Steam Usage

-------
                                         1-vid
                                 FIGURES OF REPORT  1

Number

  1-1   Activated-Carbon Adsorption System                                  1-2
 II-l   Nomograph for Determining Carbon Requirement                       II-4
 II-2   Bed Pressure Drop for BPL Carbon                                   II-9
 II-3   Loading Time for Various Carbon Requirements and Bed Depths at     11-10
        100-fpm Velocity and a Carbon Density of 30 lb/ft3
 II-4   Adsorbed-Phase Profile for Trichloroethene Service Time When       11-13
        Vapor Starts to Penetrate Bed; BPL V Type Carbon
 II-5   Adsorbed-Phase Profiles for Trichloroethane at Various Stages      11-13
        of Regeneration; BPL V Type Carbon
 II-6   Desorption Efficiency Based on Steam Usage                         11-14
 II-7   Effluent VOC Concentration Based on Steam Usage                    11-16
 II-8   Condenser Area Based on Steam Usage                                11-19
 II-9   Vacuum Regeneration System                                         11-21
 11-10  Fluid-Bed Carbon Adsorption System                                 11-24
 IV-1   Installed Capital Cost of Carbon Adsorption Systems                IV-4
 IV-2   Net Annual Cost vs Flow Rate for Carbon Adsorption at a Steam      IV-7
        Rate of 0.3 Ib of Steam/Ib of Carbon
 IV-3   Net Annual Cost vs Flow Rate for Carbon Adsorption at a Steam      IV-8
        Rate of 0.6 Ib of Steam/Ib of Carbon
 IV-4   Net Annual Cost vs Flow Rate for Carbon Adsorption at a Steam      IV-9
        Rate of 1 Ib of Steam/Ib of Carbon
 IV-5   Net Annual Cost vs Flow Rate for Carbon Adsorption at a Steam      IV-10
        Rate of 2 Ib of Steam/lb of Carbon
 IV-6   Cost Effectiveness vs Feed Rate at 1.393 and 6.96 Ib of            IV-15
        Carbon/1000 scf
 IV-7   Cost Effectiveness vs Steam Regeneration Rates at 1000 scfm        IV-16
 IV-8   Cost Effectiveness vs Steam Regeneration Rates at 20,000 scfm      IV-17
 IV-9   Cost Effectiveness vs Steam Regeneration Rates at 100,000  scfm     IV-18

-------
                                    1-1
                             I.   INTRODUCTION

Vapor-phase carbon adsorption is currently used by many industries as an
emission control or solvent recovery technique.1*  As a control technique for
volatile organic compound (VOC)  emissions it can be used on waste-gas streams
of low VOC concentration when such devices as condensers or scrubbers are
ineffective or uneconomical.  The main function of a vapor-phase carbon adsorp-
tion system is to contain and concentrate the dilute organic vapors.  Once
the organics are in a concentrated form, they can be recovered or disposed of.

Carbon adsorption is usually a batch operation involving two main steps,
adsorption and regeneration.  The system usually includes multiple beds so
that at least one bed is adsorbing the organics from the gas stream while at
least one other bed is being regenerated, thereby ensuring that the emissions
will be continually controlled.   The system shown in Fig. 1-1 is a typical
fixed-bed carbon adsorption system that uses steam to regenerate the spent
beds.  A blower is usually required to overcome the pressure drop across the
carbon bed.  The VOC-laden gas is passed down through the fixed carbon bed and
the cleaned gas is exhausted to the atmosphere.  When the VOC concentration
of the exhausted gas starts to increase from its baseline effluent concentration
level, that bed is shut off and the VOC-laden gas is routed to another carbon
bed.  The amount of material adsorbed per unit weight of carbon is called the
operating capacity.

The spent carbon bed is usually regenerated with low-pressure steam that is
passed up through the bed.  The steam and VOC vapors leaving the bed are
condensed, and VOC is separated from the water by decantation or distillation.
After regeneration the carbon bed is cooled and dried to improve adsorption.

This report deals mainly with the design and cost of a  fixed-bed adsorber with
steam regeneration.  However, there are alternative designs for carbon adsorp-
tion systems, such as those making use  of hot  inert gas or vacuum  regeneration
instead  of  steam  regeneration and those employing fluidized instead of  fixed
carbon beds.  The alternative designs are briefly discussed in Sect. II.
 *See Sect.  VII  for  references  cited in this  report.

-------
                      1-2
                                        EXHAUST
UOW- PRE
 PROCESS
  ro


         -
VAPOR -1_ADEIO
AIR STREAM
              --(XJ--
              —cxj--
                        rt!y!^



                        p*»""i
                              i
                    •ex
                                  -00-
                                  IX-
                     COOUUG AK1O
                     DRY! MQ BUOWEP,
                              ^COMDELMSEP.
                      COOLIKJ<5



              AM61EUTT        4
                                           RECOVEREO
                                WASTE.
                                VA/AJE.K
     Fig. i-l. Activated-Carbon Adsorption System

-------
                                    1-3
Carbon adsorption for control of VOC gas streams has several limitations.
The gas entering the adsorber must be free of particles or liquid; particles
in the feed gas would build up on the bed surface and cause an excessive
pressure drop across the adsorber.  Liquid in the feed gas may cause excessive
temperature increases in the carbon bed due to heat of adsorption.  Liquids
and solids may cause loss of efficiency by blocking adsorption sites.  If the
feed gas contains particulates or liquid, it must be pretreated.  Humidity
control will be necessary for feed gas streams that have above 50% relative
humidity so that the water vapors will not affect the adsorption capacity of
the carbon.

The inlet VOC concentrations may be limited to comply with insurance codes
requiring that the concentration be maintained below some percent of the lower
explosion limit (LEL) or to prevent the possibility of temperature increases
due to the heat of adsorption.

Since carbon is a very good insulator, undissipated heat may cause hot spots
to develop, and a condenser may have to be used to remove those VOC with high
boiling points.  Dilution air may also be added to reduce the VOC concentration.

The adsorption and regeneration limitations of a carbon system prohibit the
effective control of many VOC by carbon adsorption.   For example, very low
molecular weight VOC do not adsorb well on carbon and very high molecular
weight compounds are difficult to remove during regeneration.

The temperature of the feed-gas stream should be below 100°F.   Lower temperatures
give higher operating capacities if the gas stream is dry.  However, if moisture
is present, lower temperatures give higher relative  humidities and these
higher humidities can decrease operating capacities.  This decrease becomes
pronounced at relative humidities of over 50%.  The  optimum feed-gas temperature
must therefore be determined on a case-by-case basis.

-------
                                         II-l
               II.   CARBON ADSORPTION SYSTEMS  AND FACTORS  INFLUENCING
                               PERFORMANCE  AND DESIGN

     In this section the  main elements of a carbon adsorption system are discussed
     and factors influencing system design  and performance are analyzed.  The analysis
     is directed toward development of a design for a typical or base-case adsorption
     system.  It is this  base-case system and  variations of it that form the basis
     for the cost estimation given in Sect. IV.

     Fixed-bed adsorption with steam regeneration is the only system examined in
     depth here.  This system includes carbon  beds, blowers,  condenser,  condensate
     decanter, piping, valves, and instrumentation.  For some carbon systems,
     however, additional  equipment may be required for pretreatment of the gas
     stream or for additional treatment of  the VOC recovered during regeneration.
     These considerations are briefly discussed but design and cost details are not
     presented.  Fluid-bed adsorption systems  are also mentioned but not analyzed.

A.   FIXED-BED ADSORPTION

1.   Pretreatment
     A VOC emission stream may have to be treated before it can be sent to the
     carbon adsorber.  Stream conditions or contaminants that adversely affect
     carbon adsorber performance are excessively high temperatures, high humidity,
     entrained solids, entrained liquids, and high-boiling organics.  The effect
     and subsequent additional cost of these conditions or contaminants on a
     particular carbon adsorption system must be dealt with for each individual
     application.  The various types of inlet-stream conditions or contaminants
     that might be encountered are discussed and the steps that might be required to
     deal with the situation are outlined.

a.   Temperature	The adsorption capacity of the carbon and the effluent concentration
     of the adsorber  are directly related  to the temperature of the inlet stream  to
     the adsorber.  Normally  the temperature of the  inlet stream should be below
     100°F  or  else the adsorption capacity will be affected.  Inlet-stream coolers
     are normally  required when the waste-gas temperatures are  in  excess of  100°F.
     Water-cooled  finned-tube  types of heat exchangers  are usually provided  to  cool

-------
                                          II-2
      the inlet stream.   Costs associated with cooling the  inlet stream  depend on the
      inlet temperature,  flow rate,  and temperature  of the  cooling water available.

 b.    Humidity	Relative humidities  greater  than  50%  can have  a significant  effect
      on  the  operating capacity of carbon.  The effect of relative humidity on the
      system  should be dealt  with for each individual  application, but systems in
      which the  relative  humidity approaches  100%  will require  additional equipment
      to  reduce  the water content.  The  equipment  required  for  humidity  control is
      usually a  series of coolers (to remove  water)  and reheaters.  However,  a single
      heater  could be  used if the temperature  of the inlet  stream is significantly
      low,  and the increase in  temperature will not  greatly affect adsorption  efficiency.
      Another alternative  to  decrease the relative humidity of  a stream  is to  add
      dilution air to  the  system.  This method will work if the dilution-air humidity
      is  significantly less than the inlet stream humidity.   Adding dilution air will
      increase the size and thus the cost of the adsorber required.  The installed
      cost  of humidity control by a series of heaters  and coolers or a single heater
      will be $l/cfm to $2/cfm for a 5000-scfm carbon  adsorption unit.

c-    Entrained Solids	Entrained solids such as airborne dust, lint, and other
      general particulates may cause the carbon bed to plug over a period of time.
      The particulates that could affect adsorption performance are usually controlled
     by a cloth or fiberglass filter.  Depending on the application,  either a simple
      throw-away filter or a fabric  filter can be used.  A throw-away type of filter
      costs in the range  of $100/1000 cfm.  Information on fabric filters can be
      found in ref 2,  and cost data  can  be found in ref 3.   Electrostatic precipitators
     are not usually  reocmmended for pretreatment  of carbon adsorption inlet  streams,
     because there is a  possible safety problem of electric arc in the duct with
     organic vapors  in the explosive range.   Normally the inlet stream concentration
     to the adsorption unit is less  than 25% of the  LEL but upsets could cause the
     concentration to rise into the  LEL range.

d-   Entrained Liquids	Entrained  liquids can cause operational problems for carbon
     adsorption.  If  the entrained  liquid is  water,  it should be removed for  the
     same reason discussed for relatively humidity.   If the entrained liquid is a
     volatile organic, it will also  consume  adsorption capacity needlessly.   A
     number of mist  eliminators are  available, and one should be used if this problem

-------
                                           II-3
     exists.   For  droplets  greater  than  5  to  10  pm  in  diameter  a  cyclone  or  zigzag
     baffle  can be used, which,  if  properly designed,  will  result in  efficiencies  of
     greater than  95%.  To  control  droplets in the  1-  to  5-(jm range a small-mesh screen
     would be required.  For  droplets  less than  I \Jm a packed filter  device  would  be
     necessary.  A packed filter device  has a high  pressure drop  (15  to 20 in.  H20)
     compared to the  pressure drop  (less than 1  in. H20)  across the cyclone  or
     zigzag  baffle or the screen.   For further information  on mist eliminators  refer
     to ref  4. The cost of a mesh-type  mist  eliminator  is  in the range of $150/1000  cfm.

e.   High Boilers	A high  percentage  of high boilers  in the off-gas  feed stream
     will be adsorbed on  the carbon and will  not be removed during steam  regeneration.
     This constant buildup  of high boilers remaining on  the carbon will greatly
     reduce  the operating capacity and will  require frequent replacement  of  the
     carbon.  Also, plasticizers or resins should be prevented  from  entering the
     carbon bed since they may react chemically  on the carbon  to  form a  solid that
     cannot be removed from the bed during steaming.   To prevent  frequent replacement
     of the carbon a condenser may be necessary  to reduce the  high-boiler concentration.
     If the high boilers  are in the form of entrained liquids,  such as oil droplets,
     a mist eliminator will reduce the buildup.   If the high boilers cannot be
     removed  from the inlet stream to the adsorber, a carbon guard bed in the adsorber
     may  result in less carbon being replaced periodically.  The guard bed would be
     considered as a sacrificial device and would be  replaced more often than the
     entire bed.

 2.   Adsorption

     Defining the VOC content and  the operating capacity as explained below will
     reduce  the number of  variables required to cover the  necessary  range of flows,
     concentrations, and VOC molecular  weights  and will  simplify the presentation of
     cost and environmental  impacts.

 a.   VOC Content	In  this study the  VOC  content of the  gas to be treated is defined
      in the units of Ib of VOC/1000  scf.  The conversion from  ppm (volume)  can be
     made by using the first part  of  Fig. II-l  or  by  the following  relationship:

-------
       10r
                                II-4
                                             OPERATING CAPACITY:


                                                Ib of VOC
10,OOO - .01
         .001
    a
    a
     -1OOO
    O
    o
    o

    o
    o
100
        10
                 .01             O.1              1-0



                      VOC CONTENT (ib of VOC/1OOO scf)
     Fig.  II-l.  Nomograph  for Determining  Carbon Requirement

-------
                                         II-5
          Ib of VOC/1000 scf = PP"V * VOC molecular weight (Ib/lb-mole)
                                             359 X 1000

b.   Operating Capacity	The determination of the actual operating capacity (also
     commonly referred to as working capacity) of carbon is considered to be beyond
     the scope of this study, since it is affected by a multitude of factors.  These
     factors include the properties of the carbon, the properties of the feed stream,
     such as humidity and multiple components, and the percent of containment that
     must be removed.  Consideration of the theoretical aspects can be found in the
     literature.5—12  For the purpose of this study it is assumed that for a particular
     VOC feed stream the operating capacity can be determined from operating industrial
     units, carbon manufacturers, carbon equipment vendors, or pilot-plant studies.
     Pilot tests should be continued through enough cycles to determine the residual
     constant VOC.  It is important that the operating capacity used includes all
     the factors that occur  in actual practice and for each specific case that the
     operating capacity is considered to be less than the saturated adsorption
     capacity that may be reported.  (Some reported operating capacities are shown
     in Table II-l.)

 c.   Carbon Requirement	Carbon requirement in this study is defined  as Ib of
     carbon/1000 scf and is  a function of the VOC content of the gas to be treated
     and the operating capacity of the carbon:

                        Ib of carbon _    VOC content  (Ib of VOC/1000  scf) X 100
     Carbon requirement   1000 scf   - operating capacity  (Ib of VOC/100 Ib carbon)   '

     Figure II-l is a nomograph for determining the carbon requirement for systems
     with  a variety of VOC concentrations, molecular weights, and operating capacities.
     Systems with high VOC operating capacities per Ib of  carbon and high concentrations
     of VOC in  the process waste gas can have the  same carbon requirement as systems
     with  low VOC operating  capacities per Ib of  carbon  and  low  concentrations of
     VOC in the waste gas.

      In this  study  costs were  determined for  nine  different  carbon  requirements,
      ranging  from 0.1  to  10.0  Ib  of  carbon/1000  scf.

-------
                                          II-6
                     Table II-l.  Important Properties for Design of
                         Adsorption System for Selected Organics
Compound
Benzene
Butyl acetate
n-Butyl alcohol
Cyclohexane
Ethyl acetate
Ethyl alcohol
Heptane
Hexane
Isopropyl acetate
Methyl acetate
Methyl alcohol
Toluene
Trichlorotrifluoroethane
Xylene
Boiling
Point
(°P)
176
260
210
178
171
173
208
154
199
135
149
231
118
291
Liquid
Molar
Volume3
(cm^/mole)
95
152
105
118
106
61
163
140
129
83
42
118
120
140
Lower
Explosion
Limit3
(ppm)
14,000
14,000
17,000
13,000
25,000
33,000
12,000
13,000
18,000
31,000
60,000
14,000

10,000
Reported .
Operating Capaicity
(lb/100 Ib of carbon)
6
8
8
6
8
8
6
6
8
7
7
7
8
10














See ref 7.

See ref 12.  Capacities are for relatively dry compounds (or simple mixtures of compounds)
that are particulate-free at 100°F.   The effluent concentration achievable with these
capacities is not reported.

-------
                                         II-7
d.   Flow Rate (of Gas To Be Treated)	In this study base-case costs were determined
     for six different flow rates,  ranging from 300 to 100,000 scfm.
e.
     Temperature	The  feed-gas  temperature  is  assumed  to be  100°F  for  the base
     case.   Carbon adsorption  units  operate  most  effectively  in  the temperature
     range  of 60  to 130°F.   Most current  carbon adsorption  units are operated at  75
     to 100°F/  with a few units  being operated  at 60°F  and  a  few as high as  200°F.
     Increase or  decrease of temperature  within the  range of  90  to  110°F will have
     little effect on adsorption.

f.    Gas Velocity (Superficial)	Linear  velocities  of  50  to  100 fpm are normally
     used in bed designs.  At higher velocities the  bed pressure drop becomes too
     high for standard blowers.   At lower velocities the bed  becomes too large and
     expensive.  If inlet concentrations  are low  (as is expected in the SOCMI industry),
     the bed area required for the volume of carbon  needed usually permits  a velocity
     at the high end of this range.   Therefore  a  superficial  velocity of 100 fpm is
     used in the base case.

g.   Bed Depth	Fixed-bed carbon adsorption systems normally have bed depths of 1.5
     to 3 ft, although under certain conditions the  depth may be as small as a few
     inches.  The minimum bed depth of 1.5 ft is  assigned for the adsorption zone.
     The maximum bed depth of 3 ft is considered to be reasonable with regard to the
     pressure developed by standard blowers.

     The difference in capital  cost between a 1.5-ft-deep bed and a 3-ft-deep bed
     arises  from  the cost of  the additional carbon and the larger-pressure-drop
     blower.  The  carbon bed  containers  are usually large enough for the extra
     1.5 ft  to be  added  to  the  bed at minimal cost,  and therefore  there  is little
     capital cost  difference  between  the 1.5-ft bed and the  3.0-ft  bed.  Since the
     incremental  cost  of adding more  carbon to a  large vessel is more  than offset by
     the added flexibility  that a longer adsorption cycle  gives, a  bed depth of  3 ft
     is used in  the  base case.

 h.   Pressure  Drop	The pressure  of the feed  gas will affect the  design of  the
      system in terms of  the power  requirements of the  blower.   A pressure drop  of
      2.5 to 10 in. H20/ft of carbon bed  is  normally experienced with a flow  velocity

-------
1.
                                         II-8
      of 50  to 100  fpm  through  the  carbon bed.   If  the  feed-gas pressure  is  high
      enough to permit  a  reasonable superficial  velocity,  then no blower  is  required.
      The base-case  system  is assumed  to require a  blower  to develop  the  necessary
      pressure.

      The base-case  adsorber uses 4 X  10 mesh BPL carbon,  which at the base  case
      velocity of 100 fpm has a pressure drop of 6.5 in. H20/ft of carbon bed.  With
      the base-case  bed depth of 3  ft  the total  pressure drop is 19.5 in. H20.  (Bed
      pressure drop  vs  superficial  velocity for  two different BPL carbons is shown in
      Fig. II-2.)  This differential pressure can be developed efficiently by standard
      blowers.

      Loading  Time (per Bed)	Loading time is calculated  from bed depth, carbon
      density, gas velocity (superficial),  and carbon requirement:

          loading time (hr) =
               .	bed depth  (ft) X density  (lb/ft3) X 1000	
               velocity (fpm) X 60  (min/hr) X carbon required (lb/1000 ft3)

      Figure II-3 shows the loading time for various carbon requirements and bed
      depths for a bed with a carbon density of 30 lb/ft3 and a superficial gas
     velocity of 100 fpm.

j-   Bed Area and Pounds of Carbon (per Bed)	The bed area (per bed) is calculated
     by dividing the flow rate  (scfm)  by the  superficial gas velocity through the
     bed (for the base-case,  100 fpm).  The pounds of carbon (per bed)  are most
     conveniently determined by calculating the bed volume and multiplying by the
     bed density.  In the base  case the bed depth is 3 ft and the bed density is
     30 lb/ft3:

          bed area (ft2)  = flow rate (acfm)/gas velocity (ppm).
          carbon (Ib) = bed area (ft2) X bed  depth (ft) X bed density (lb/ft3).

k-   Minimum Cycle Time	The minimum  cycle time for the system is normally dependent
     on the time required to regenerate,  dry,  and cool the bed.   Steam regeneration
     rates are typically 0.5 to 1  (Ib  of steam/min)/ft2 but can be as high as 4 (Ib

-------
                       II-9
a.
O
cc
O
Ul
cc
D
V)

ai
£C
o.
15      2O          30      40    50

             SUPERFICIAL VELOCITY
                                               60  70  80  9O 1OO
            Fig.  11-2.  Bed Pressure Drop  for  BPL Carbon

-------
           3 f-
     Q.
     Ill
     Q


     O
     LU
     CD
2  —
Minimum  —>
Bed  Depth
                                             LOADING  TIME  (hr)
                                                             i    i   i    i  i i i
            .02
                 0.1                     1.0                     10

             CARBON  REQUIREMENT  (ib of carbon/1000  set)
20
                                                                                  i
                                                                                  H
                                                                                  O
               Fig. II-3.  Loading Time  for Various Carbon Requirements and Bed Depths at
                          100-fpm Velocity and a Carbon Density of 30

-------
                                         11-11
     of steam/min)/ft2.  These  rates  correspond  to  regeneration  times  of  30  to
     90 min at  steam  regeneration  ratios  of  0.3  or  1  Ib  of  steam/lb  of carbon.
     Cooling and drying  the  beds can  normally  be done in 15 min.   The  minimum possible
     time  for regeneration,  drying, and cooling  used  in  this study is  1 hr.   Since
     the bed is loaded for the  same period of  time, the  total minimum  cycle  for  one
     bed takes  2 hr.   Since  two beds  are  usually employed,  each  carbon bed must  have
     enough adsorption capacity to allow  sufficient time for the other bed to be
     regenerated, dried, cooled, and  placed  back in adsorption service before break-
     through .

1.   Bed Configuration	In  the base  case for  carbon  systems handling  flows  below
     10,000 scfm two  vertical tanks are used so  that  one bed can be  regenerated
     while the  other  bed is  adsorbing the VOC  from  the off-gas  stream.  For  flows
     above 10,000 scfm vertical tanks would  have diameters  greater than 12 ft, which
     is above transportation limits;  therefore horizontal tanks  are  required. For
     flows above 20,000  scfm three or more tanks are  used in order to  reduce capital
     cost  by reducing the  tank size  and reducing carbon inventory.  When three beds
     are used,  one will  be regenerating while  the other two are  adsorbing with
     parallel waste-gas  flow.  A sequence procedure must be established to prevent
     two tanks from being  ready for regeneration at the same time.

3.   Regeneration

a.   Steam Requirements	Regeneration of a carbon bed saturated with VOC is most
     often accomplished by the use of steam.  In regenerating a bed a certain amount
     of steam  is required to heat the carbon bed from its operating temperature  to
     the regeneration temperature and to provide the  heat of desorption.  However,
     most of the steam flow is needed to provide a sufficient concentration gradient
     to promote  mass transfer of  the adsorbate  from  the carbon bed.  Even with
     extensive  steam regeneration some VOC will be left on  the bed.  The adsorbate
     left on the carbon (the heel) after  regeneration accounts  for most of the
     difference  between the saturated adsorption capacity  and the operating  capacity.
     For a  given compound-carbon  combination  the amount of heel  is determined by the
     amount  of steam used during  the regeneration  cycle.

-------
                                    11-12
Figures II-4 and II-5 illustrate the effect of regeneration on the concentration
of the adsorbate left on the carbon.  Figure II-4 is the adsorption profile of
a single compound just before a breakthrough occurs on the bed.   This is the
usual or desired status of the system just before regeneration.   Figure II-5
shows the progression of the desorption profiles with increasingly larger
amounts of steam passing through the bed.  Profiles 1 and 2 are  achieved with
relatively small amounts of steam; profiles 3, 4, and 5 are the  results of
increasingly larger amounts of steam.8

Figure II-6 shows the effect that varying the steam regeneration ratio (Ib of
steam per Ib of carbon) will have on the desorption efficiency.   The S-shaped
curve in Fig. II-613 indicates that a large amount of steam is required to
achieve nearly 100% desorption efficiency (minimum heel) but that a relatively
smaller amount is required to achieve 90% desorption efficiency  (10% plus
minimum heel left).  If the designer is not limited by the effluent VOC concen-
tration required, he has a choice of how much heel to leave on the bed.  Based
on Fig. II-6 an adsorption designer might choose between 0.25 and 0.35 Ib of
steam/lb of carbon as the preferred design condition, which will provide the
greatest amount of operating capacity for the amount of steam used.

The desorption efficiency curve in Fig. II-6 is a function of the compound(s)
adsorbed on the carbon, of the operating capacity of the adsorbent, and of the
temperature and pressure of the regeneration steam.  It may also be a weak
function of steam regeneration rate [(Ib of steam/min)/ft2], but there are very
little data in this area.  A strongly adsorbed compound would have a curve
skewed more to the right, since more steam would be required to  remove it.  A
compound with a high loading capacity may require more steam per pound of
carbon to account for the extra heat needed for the heats of desorption and the
greater amount of material to be desorbed.  Higher temperature regeneration
steam may decrease the amount of steam required per pound of VOC removed (steam
regeneration ratio) and may increase the amount of material desorbed.  The net
effect is that the curve will be skewed to the left and the heel remaining on
the carbon will be less.  The steam regeneration ratio may have an effect on
the shape of the curve but will be most important when determining cycle times.

-------
B) &
(T •

< H

R V
en &
ft 01
cu O
iQ H
n> d*
w m
O
Ml
(D (0
iQ (D
(V
3 t)
(D H
H O
3 cn

  H)
w o
V h
n> o
  8
  BED VOC
CONCENTRATION
   (lb/ In. )
                                  QJ
                                  r+
                                  c
                                  -I
                                  0)
                            0)
                                   0)
    hd
    H-
    vQ
    •

    H
    H
  to I
  ft 0*
    •
  W
1-3 n>
p* H >
R < &
  H- tn
  o o
                                 o
                                 |.(0
                                   ^
                                 ft
                                 IT
    n
    ff
    CX
    2
ff$fi
O> (D (D

S§£8
                                                ^•g
                                                <
                                     HI
                                     H-
                                   M H
                                     (D
                                 1-3 CO
                                 S ft H)
                                 1 J8
                                 O M H3
                                 S ctH
                                 s°g-
                                   Wfe.
                                   3
                                   R-
                                                    ft

                                                    S
                                                    M
                                                    It
                                                    S
   BED  VOC

CONCENTRATION   =

    (lb/ in.)
                                                                                   0>
                                                                              ro
                                                                              o
                                                           N
                                                           O
                                                              0) (D
                                                              (A O
                                                              r* «-*

                                                              • o
                                                              (O =>
                                                              0)
                                                                             o
                                                                        OJ
                                                                        o

-------
W H
Mi H
Mi I
H- a\
o •

jo'

o o>
CO (D
 3
& fl>

o o
3 y

en o
(i r^
(D H-

§ (D

G D
CQ (D
(U Ifl
~ O
*
S'
                             DESORPTION   EFFICIENCY (%)


                 Cumulative  Desorbed  /  Total  Maximum   Desorbed
                                              g
                                                       g
                                                                   o
                                                                   o
         en
         H
         m
        o
        m
      o-

      o^


      J2.
      S"
      o>
      3
      g^

      s
        o
        3
            CO
                                                                                     H
                                                                                     I

-------
                                        11-15
    Figure II-7 shows a generalized relationship between the amount of steam used
    for regeneration and the outlet VOC concentration during the next adsorption
    cycle.  The exact relationship will depend on the type of VOC being removed and
    the operating characteristics of the system.  In accordance with state-of-the-art
    carbon adsorption systems for solvent recovery, the outlet concentrations are
    usually in the range of 50 to 100 ppmv-6  This level may correspond to a steam
    regeneration ratio of 0.3 Ib of steam/lb of carbon, the ratio normally required
    for solvent recovery adsorption systems.  The lower achievable effluent concentra-
    tion levels are in the range of 10 to 20 ppmv,14 which would correspond to a
    higher steam ratio.  However, for some compounds effluent levels are achievable
    below 1 ppm .  Figure II-7 shows that reduced effluent concentration is obtained
    by increasing the steam ratio and that very low effluent concentration levels
    may be obtained with high steam ratios.  Figure II-7 is not meant to correspond
    to any one particular compound or adsorption condition but is used to illustrate
    a general  trend.  It shows that the position of the effluent concentration
    curve for  each particular compound is a function of the adsorption temperature,
    regeneration temperature, and carbon operating capacity.  The effluent concentration
    curve is relatively independent of inlet VOC concentrations.  When the adsorp-
    tion  temperature  increases,  the effluent outlet concentration curve baseline
    may increase.  Higher regeneration temperatures may shift the effluent outlet
    concentration curve downward.  A different  operating capacity may shift  the curve
    laterally,  since  different amounts of  steam may be  required  to  regenerate  the
    carbon.  Data in  this area are not readily  available but could  be generated in
    pilot-plant  studies.

    The achievable  effluent  quality values  assumed for  the  purpose  of evaluating
    adsorption systems  in this study are the  following:   0.3  Ib  of  steam/lb  of
    carbon  will achieve an  effluent  quality of  70  ppmv, and 1.0  Ib  of steam/lb of
    carobn  will achieve an  effluent  quality of  12  ppny   Although these values may
    not be  realized for all VOC  compounds,  they are appropriate  for those compounds
     that  are normally controlled by  carbon adsorption.

b.   Blower—For the base-case carbon adsorption system a  blower is used following
     regeneration to provide drying and cooling air to sweep some VOC from the
     regenerated bed.  To  achieve the highest  possible removal efficiency, regenera-
     tion should be started before an unacceptably effluent concentration occurs and

-------
                         11-16
 E
 Q.
 a
13
o
UJ
u.
u.
LU
f  (capacity, type of compound

    adsorption  temperature, and

    regeneration  temperature)
       012



               STEAM  USAGE (Ib  of steam / Ib of carbon )
  Fig. II-7.  Effluent VOC Concentration Based on Steam Usage.

               (Not for Any Actual Compound)

-------
                                    11-17
the drying and cooling air should be sent to the adsorbing bed.   Routing the
drying and cooling air through the adsorbing bed requires a larger pressure
drop for the drying and cooling air blower and main blower, additional valves
and controls, and a slightly larger carbon bed.  When additional air enters the
adsorbing bed, no additional carbon capacity will be required since the concentra-
tion is low; however, a slightly larger cross-sectional area will be required
because of the increased flow rate.  This practice of routing the drying and
cooling gas may not be practical for all cases since additional water will be
brought into the adsorbing bed, which may affect the operating capacity of the
carbon and cause operational problems.

The flow rate of the drying and cooling air blower is assumed to be about 30%
of the off-gas flow  rate.  The pressure drop for the blower will be the total
of the pressure drop for the regeneration bed  and adsorbing bed, since the air
is routed through both beds.  For pressure-drop calculations it is assumed that
4 X 10 mesh  carbon is used, that the bed depth is 3 ft, and that the superficial
gas velicty  is 100 fpm for the total cooling air and gas  flow. The drying and
cooling time is 15 min per cycle.

Condenser—All the steam  required  to regenerate the carbon has  to be condensed
and cooled  to 100°F.  Some of  the  heat will  stay with  the bed and be removed by
the drying  and cooling air, but most of  it has to be removed by  the condenser.
The reduction in  heat duty for the condenser  is not significant;  so the heat
duty  for  the condenser is based on the amount  of  steam required to  regenerate
the bed.   For the base-case design it  is  assumed  that  the steam will be used
during 75%  of the regeneration time;  therefore the  condenser will have to  be
sized to  handle  instantaneous  heat duty,  which is  33%  more than the average
 steam consumption.

 For the base-case design,  atmospheric steam at 212°F  and 970  Btu/lb of heat of
 vaporization was used.   The  condenser was designed to  condensate the  steam and
 VOC,  cool the condensate mixture to 100°F,  and raise  the cooling water from
 85°F to 120°F.

 The overall heat transfer coefficient for the condenser was assumed to be 150
 Btu/(hr)(ft2)(°F) (ref 15).  The area of the  condenser per pound of carbon  as

-------
                                         11-18
     shown in Fig. II-8 was based on various steam requirements and on a log-mean
     (or conservative) At of 42.4°F.

     Although a decanter to separate the organic from the water is included in the
     battery limits of the carbon adsorption system,  no additional equipment is
     included to separate water-soluble organics.  Some separation option must be
     considered when large quantities of organics enter the condensate since most
     local authorities will not allow such water to be discharged into municipal
     sewage treatment systems.   A complex distillation system may be required to
     fractionate the mixture into separate components, or a simple system can be
     designed to merely strip out the organics.

     Other options for separation of the water-soluble compounds from the condensate
     include liquid extraction or liquid-phase carbon adsorption with solvent regenera-
     tion.

d-   Alternatives to Steam Regeneration	Hot inert-gas regeneration and vacuum
     regeneration can be used as alternatives to steam regeneration.   With the first
     method,  after hot gas is used to regenerate the  carbon bed, the VOC-laden gas
     can be incinerated.  Another method is to recirculate the inert gas through a
     preheater,  into the adsorber,  and through a condenser.   Each pass through the
     bed with the hot inert gas will pick up additional VOC of higher molecular
     weights.   Removal from the adsorber and condensation of the VOC will continue
     until an equilibrium is reached between the bed,  the hot inert gas,  and the
     condenser.   Higher gas temperatures or lower condenser temperatures will
     improve the recovery efficiency of the system.

     In the second method,  which involves indirect heating and a vacuum applied to
     the carbon bed,  the boiling points of the VOC will be lowered and the VOC will
     be more easily removed from the bed.  The vacuum regeneration cycle begins with
     the bed being heated with recirculating heated air or inert gas.  Auxiliary
     heating coils within the bed are sometimes  used.   When the bed reaches the
     specified temperature, a vacuum pump then reduces the pressure in the bed to
     about 0.2 in. H20.  The high boilers thereby removed are condensed with a
     chilled-water condenser, and the low-boiling VOC are condensed with a Freon-
     cooled condenser (-40°C).   After the desorption step is complete, the bed is

-------
                            11-19
c
o
JO
k.
(0
o
o

JQ
UJ
£C
 DC
 UJ
 (/)
 z
 UJ
 a
 z
 o
 o
The instantaneous steaming rate

of 33% more than the average

rate was used to calculate the

condenser area.
                          1              2              3

                  STEAM  USAGE  ( Ib of steam / Ib of  carbon)


                  Fig. II-8.  Condenser Area Based on Steam Usage

-------
                                     11-20
 restored to atmospheric pressure and is cooled by recirculating air.  A flow
 diagram of a vacuum regeneration system is shown in Fig. II-9.

 The advantages of vacuum regeneration with indirect heating are that some
 high-boiling-point VOC can be recovered without the use of superheated steam.
 Also,  since the desorbed VOC that are recovered are mostly free of water,
 distillation may not be needed for separation of the water-soluble organics.

 Efficiency and effluent concentration data for vacuum regeneration are limited.
 Commercial vacuum units used for solvent recovery with high solvent concentration
 have reported efficiencies of 90 to  99%,  depending on the  specific hydrocarbon
 adsorbed and the regeneration conditions  used.16

 High boilers  in the  off-gas  feed stream will  be adsorbed on the  carbon and will
 not be  removed during steam  regeneration.   This constant buildup of high boilers
 in the  heel will greatly  reduce  the  operating capacity and  require  frequent
 replacement of the carbon.   Disposable carbon beds preceding the regular carbon
 beds may be required to reduce the high-boiler content  of the process  off-gas
 and thereby reduce the carbon  replacement  frequency of  the main beds.

 Achieving High  Carbon Adsorption Efficiencies
 High removal efficiencies  require the close control of  influent gas quality.
 Performance can be impaired by particulates or a high water content in the inlet
 stream  or by high temperature in the inlet stream.  "Unexpected" compounds
 (those  for which the adsorber was not designed) may pass through the carbon bed
without being removed or may accumulate in the bed and reduce the operating
capacity.

Prevention of premature breakthrough (unacceptable effluent concentration)
requires a favorable balance between the adsorption capacity dictated by the
mass flow rate of VOC and the speed and effectiveness with which the adsorber
can be  desorbed, cooled, and dried.

To avert the discharge of VOC from a hot,  wet adsorber, piping must be arranged
so that the adsorber can be dried and cooled and the drying cooling gas recycled
to an on-line adsorber.  There must be sufficient time in the total adsorption
cycle for the bed to be dried and cooled.

-------
                11-21
Fig. II-9.  Vacuvim Regeneration System

-------
                                         11-22
 5.    Safety  Considerations
      Spontaneous combustion of fixed beds of carbon can occur whenever the gas
      stream  contains oxygen and compounds easily oxidized in the presence of carbon,
      such as ketones, aldehydes, and/or organic acids.  Heat generated by adsorption
      or by oxidation of VOC in the bed is usually transported from the bed by convec-
      tion.   If less convection heat is removed than is generated, the bed temperature
      will rise.  Higher temperatures will further increase the oxidation decomposition,
      and hot spots exceeding the autoignition temperature of the carbon may develop
      in the  bed.  The hot spots will develop in a shorter time and the condition
      will be aggravated if a limited amount of steam is accidentally admitted to the
      bed from a leak or from a valve being opened at the wrong time.  A number of
      bed fires have occurred after the adsorber was shut down for a long period and
      then not regenerated sufficiently.  When the VOC-laden stream was reintroduced,
      bed combustion occurred.   Hot spots may also form rapidly under abnormal bed
      conditions, such as uneven bed depth due to carbon movement and stagnant bed
      areas.14  When ketones, aldehydes, or organic acids are involved in the opera-
      tion of a bed, safety precautions are especially important.

     When the bed is adsorbing ketones, it should not be dried completely after
      regeneration,  because the water present provides a heat sink to dissipate the
     heat of adsorption and oxidation.   Bed fires are much more likely when the bed
      is permitted to dry.   To  ensure safe operation with ketones it is necessary to
     have an on-line monitoring of CO and C02 concentrations in the effluent stream.
     At shutdown the bed should be regenerated and cooled before it is left idle.
     The valves should be  routinely inspected to ensure against steam leaks.   Also,
     the exclusion  of oxygen from the bed will help to control hot spots.   This
     discussion does not imply that safe operation is impossible,-  on the  contrary,
     there are several examples of ketones having been successfully recovered via
     carbon adsorption.   It does  mean,  however,  that there are potential  hazards
     that should be considered.14

B.   ALTERNATIVE CARBON ADSORPTION SYSTEMS

1.   Fluidized-Bed  Carbon  Adsorption
     Currently a fluidized-bed carbon adsorption process is commerically  available
     from Union Carbide Corporation, who licensed the process from a Japanese company.

-------
                                    11-23
The carbon particles are designed to have a high attrition resistance so that
they can withstand the abrasive action in the fluidized bed.  The carbon particles
are manufactured from shaped molten petroleum pitch.  Being thermoplastic in
nature, the material is formed into microspherical particles by its own surface
tension.  The particles are then carbonized and activated by steam.  Because
they are formed from molten material, they are almost spherical and their
structure is homogeneous and strong.17

Figure 11-10 is a basic flow sheet for the fluidized-bed carbon adsorption
system.  The system consists of a multistage countercurrent fluidized-bed
adsorption section, a pressure-sealing section, a moving-bed desorption system,
and another sealing section with carbon recycle.  The regenerated carbon is
swept by carrier gas from the bottom to the top of the column.  In the adsorp-
tion section the carbon is fluidized and moves across perforated plates and
down the column by a system of overflow weirs.  The adsorption section design
allows the carbon to contact the gas homogeneously, resulting in high mass-transfer
efficiency.  The pressure drop per stage normally ranges from 0.4 to 0.9 in.
H20, with six to eight stages required, depending on the application.  The gas
velocity through the adsorption section is as high as 200 fpm, which is 2 to 4
times  that required for fixed beds.  This high gas velocity allows the cross-
sectional area of the bed to be smaller, with the pressure drop across the
entire bed being 2.4 to 7.2 in. H20.17

The regeneration section is a dense-phase gravity-flow bed with indirect heating.
The VOC are  removed from the bed by  an inert-gas  regeneration fluid being
passed through the bed or by only  direct steaming of the bed.  The desorption
temperature  is normally around 250°F but can be raised to 500°F to remove
high-boiling-point materials.  By  using  a continuous system of regeneration  no
heat  is  lost due to the bed being  cycled; so  the  heating  requirements  are
reported  to  be less than those for fixed-bed  adsorption systems.15

For the solvent  recovery systems  in commercial  operation  the  treated gas  effluent
concentration is  typically around 50 ppm of VOC.   Effluent  concentration  data
 show that outlet  levels  of 10  ppm have been achieved for  some  applications.15

-------
                    11-24
                              TREATED AIR  TO  VEVJT
                                        AD6CRSEWT   FLOW
                                          TRAY
                                          GA5 UFT  LI WE
                                          RE
-------
                                         11-25
2.    Activated-Carbon Fiber Systems
     Currently a fixed-bed carbon adsorption system that uses a fibrous activated
     carbon instead of granular activated carbon is commerically available.  Toyobo
     New York, Inc., is involved in marketing the carbon adsorption equipment in the
     United States.  Their technology was developed and is currently being used in
     Japan.  The fibrous carbon can be supplied in various forms, such as mats,
     corrugated paper, or honeycombs.  The advantages of the fibrous carbon, as
     stated by Toyobo, over granular activated carbon are a greater apparent surface
     area, shorter adsorption paths, greater adsorption capacity, and lower pressure
     drops.  The reason given for these advantages is that the fibrous carbon has a
     more uniform pore distributed with an average diameter in the range of 20 A  .
     The fibrous carbon can be used  for such applications as recovery of solvents,
     pollution  control, and gas masks.

 3.   Rotary  Carbon  Adsorption Systems
     Cargo Caire Engineering Corporation  is currently developing a rotary  carbon
     adsorption system, which  is  designed to function as  a concentrator  of low-con-
     centration high-flow VOC  emissions.   The  system operates  by passing a high
     volume  of low-concentration  VOC stream through  the carbon rotors.   The carbon
      rotor slowly  turns  into a  regeneration section, where hot gas  is  passed through
      the carbon rotor to  desorb the organic.   This lower volume regeneration gas
      then can be sent to  a smaller volume incinerator  or fixed-bed adsorber.

-------
                                         III-l
           III.   CONSIDERATIONS FOR INSTALLING CARBON ADSORPTION EQUIPMENT

A.   NEW PLANTS
     Carbon adsorption systems are not normally placed in a building for protection
     from the elements of weather but are usually placed outside, near the process
     vents.  The units are usually put on foundations on the ground, but can be
     elevated to accommodate other processing requirements.  There should be enough
     room around the units to allow for the replacement of the carbon when necessary.

     Utilities must be supplied to the carbon adsorption site.  Electricity is
     needed for the blower motors, timers, relays, and recording equipment.  Steam
     is required at a specified pressure and flow rate.  The steam requirements are
     not continuous since steam is used for only part of the regeneration period.
     The steam should not contain any material that will affect  the adsorption
     quality of the carbon or affect the recoverability of the organic.  Cooling
     water is required for condensing and cooling of steam and organic.  The temp-
     erature of the water must be low enough for the organic to  be condensed, which
     may require the use of  two condensers.  The valves for the  carbon adsorption
     unit  are often automatic and require instrument air.  Since adsorption units
     are usually located outside, the instrument air must be dry to prevent condensa-
     tion  and  freezing of water.  After  the condensed  steam has  been  separated  form
     the organics,  it may have to go  to  a wastewater treatment  facility.  The waste
     load  on the wastewater  treatment facility will depend on the  steam  flow rate
     and the amount of organics carried  along with the  condensed steam.

     Carbon  adsorption units are  normally  located  in an area where solvent  is used
     and follow  the building safety  codes  required for solvent  use applications;  no
     additional  safety precautions are normally  necessary.

 B.  EXISTING  PLANTS
     All  considerations  for a new plant  discussed here also apply to retrofitting
      carbon adsorption units in an existing plant.   However,  installation costs may
      be substantially higher since utility distribution systems and load capacities
      may not be adequate to accommodate the adsorption unit.   If an additional steam
      boiler is required, it may be better to use hot inert-gas regeneration or

-------
                                    III-2
vacuum regeneration.  The cost and cost-effectiveness data presented in this
report are not intended to apply to retrofitted carbon adsorption systems.  In
retrofitted systems additional costs may be encountered because of such items
as demolition requirements,  crowded construction working conditions,  construction
activities scheduled with production activities, and longer interconnecting
piping.  These factors are site-specific and no attempt has been made to provide
costs.  For specific retrofit cases rough costs may be obtained by using the
new-site data and adding as  required for a specific retrofit situation.

-------
                                          IV-1
                  IV.  COST AND ENERGY IMPACTS OF CARBON ADSORPTION

A.   BASE-CASE ADSORBER DESIGN SUMMARY
     Results are given here of the cost and energy-effectiveness calculations for
     the typical or base-case carbon adsorption systems discussed in the previous
     section.  Operating costs have been calculated for the combinations of variables
     listed below and are itemized in the computer printouts attached to Appendix A.
     The variables are based on standard conditions at 32°F.

     Steam costs (per million Btu):  $2.50, $5.00, $10.00; carbon requirement (Ib
     of carbon/1000 scf):  0.10, 0.50, 1.00, 1.39, 2.00, 5.00, 6.96, 8.00, 10.00;
     steam regeneration ratio (Ib of steam/lb of carbon):   0.3, 0.6, 1.0, 2.0;
     credit:  Five different recovery credits are costed.   The amount of credit
     depends on the pound of VOC recovered from each 1000  scf of off-gas and the
     dollar value assigned to each pound and is expressed  as $/1000 scf.  The pounds
     of VOC recovered are approximately equal to the VOC content into the adsorber
     less the VOC content out of the adsorber (if the recovered VOC is insoluble in
     water).  The conversion from ppm  to VOC content can  be done conveniently with
     the use of Fig. II-l.  The method of calculating the  credit value is shown in
     the annual cost sample calculation in Appendix A.  Off-gas flow (scfm):  300,
     1,000, 5,000,  20,000, 50,000, 100,000.  The fixed factors are as follows:
     temperature, 100°F; gas velocity (superficial), 100 fpm; bed depth, 3 ft;
     pressure drop, 6.5 in. H20/ft; carbon, 4 X 16 mesh BPL carbon, 30 lb/ft3; bed
     configuration, see Sect. 1.7.A.2.1; all capital and operating costs other than
     steam cost.

B.   COST BASIS
     The estimated capital costs for the carbon adsorption systems presented in this
     section represent the total investment required for purchase and installation
     of all equipment and material to provide a facility as described in Sect. II.
     Included are all indirect costs such as engineering and contractors' fees and
     overheads.  These are battery-limits costs and do not include provision for
     bringing utilities, services, or roads to the site, backup facilities,  land,
     research and development required, or process piping  and instrumentation inter-
     connections that may be required within the process generating the waste-gas
     feed to the carbon adsorption system.

-------
                                    IV-2
The method used to develop these estimated capital costs was based on applying
factors to the purchase prices of equipment to arrive at an installed capital
cost.  The major portion of equipment and material costs was obtained from
Richardson Rapid Construction Cost Estimating System, 1978—1980 edition.
Ductwork purchase costs were obtained from Capital and Operating Costs of
Selected Air Pollution Control Systems by M. L. Kinkley and R. B. Neveril of
Gard, Inc. (EPA Report No. 450/3-76-014).  Table IV-1 gives the factor ranges
used for factoring up the purchased price of equipment to the installed cost
and is based on historical data of IT Enviroscience.   The expected accuracy of
the total installed cost with this degree of engineering detail using this
factor method is in the range of ±30%.  This method of obtaining total installed
capital costs is suitable for study or screening estimates.

For carbon adsorption systems a 20% allowance was added to the major equipment
purchase cost to compensate for unspecified items.   Adding 20% allowance to the;
estimated major equipment cost yielded the estimated equipment purchase cost (A).
This established the basis for the application of all installed capital cost
factors shown in Table IV-1.

The installation costs accounting for foundations,  structures, equipment erection,
piping, insulation,  paint,  fire protection,  and instruments were made approximately
2.1 to 2.3 times the total equipment purchase cost  to arrive at the base cost (B).
Additional percentages were then applied to the base  case as shown in Table IV--1
(sales tax,  freight,  contractor's fees,  engineering,  contingencies) to arrive
at a total installed cost.   The initial  carbon charge based on Sl.OO/lb was
added to this total  to give a total battery-limit installed cost.  The overall
ratio of total installed cost to major equipment purchase (excluding the 20%
allowance for unspecified items) is 3.8  for vertical  package units and 4.3 for
the larger horizontal systems.

Capital costs of carbon adsorption systems are shown  in Fig. IV-1.  The curves
represent the total  estimated capital cost based on a carbon adsorption system
with a superficial velocity of 100 fpm and a pressure drop of 6.5 in. H20/ft of
carbon bed at carbon bed depths of 1.5 and 3 ft.  The basic pieces of equipment
as shown in Fig. 1-1 are carbon adsorption vessels, process-waste-gas and
ambient-air blowers,  condenser, and decanter.  Also included are the purchase

-------
                                        IV-3
            Table IV-1.  Factors Used for Estimating Total Installed Costs
   Major Equipment Purchase

   Installation Costs

     Foundations

     Structures
     Equipment Erection

     Piping
     Insulation


     Paint
     Fire Protection

     Instruments


     Electrical
                           Cost Plus 0.1 to 0.35 Allowance


                                0.06A + $100 X number of pumps
                                0.15A  (no structures) to  0.30A (multideck structures)

                                0.15A to 0.30A  (depending on  complexity)

                                0.40A  (package  units) to  1.10A (rat's  nest)

                                0.06A or 0.15 X piping  (normal)  to  0.30  X piping
                                   (bulk hot or  cold)

                                0.05A
                                0.01A to 0.06A  (depending on  requirements)

                                0.10A to 0.30A  or  0.01A to  0.25A +  $50,000 to
                                   $300,000  for  process  control computer

                                0.15A or 0.05A  +  $500 per motor
    Base Cost

    Sales Tax

    Freight

    Contractor's Fees
   .^————————-^———
C = Total Contract
               a
    Engineering
              .   b
    Contingencies
                                 A + Sum of Installation Costs

                                 0.025A + 0.025B

                                 0.16A

                                 0.30 (B-A)
                                 B + Taxes, Freight, and Fees

                                 0.01C to 0.20C

                                 0.15C
D = Process Unit Installed Cost   C + Engineering + Contingencies
E = Total Subestimates
                                 Sum of semidetailed subestimates  (buildings, site
                                   development, cooling towers, etc.).  Each subesti-
                                   mate should include taxes,  freight, fees, engi-
                                   neering and contingency, and should be escalated
                                   to date of expenditure  for  that  cost component.
                                   Engineering costs, contingencies,  and escalation
                                   factors for these subestimates will vary according
                                   to the type of  job.                           	
 F = Total Project Cost

 a
                                  D +  E
 includes cost from capital project teams,  process engineering, engineering,
 purchasing,  and other  support groups.
Contingency should not be applied to any cost component that has been committed by
 either purchase order  or contract.

-------
     2000
o
oc
UJ
m
S
UJ
O
UJ
Q


O
O
O
H
E
<
o

Q
UJ
1000
                                                          1      I    T
                                                                                                                r~TT
A- 2 beds, vertical:




B- 2 beds, vertical:




C- 3 beds, horizontal:
O 900 Ib of carbon;  bed, 4-ft Ji -im by 3 ft deep

A 450 Ib carbon; bed, 4-ft diam by ij ft deep


O 4500 Ib of carbon; bed, S-ft diam by 3 ft deep

A 2250 Ib of carbon; bed, 8-ft diam by U ft deep


O 9000 Ib of carbon; bed, 8-ft diam, 15 ft long, 3 ft deep

A 4500 Ib of carbon; bed, 8-ft diam, 15 ft long, U ft deep
              D- 3 beds, horizontal:   O r>,500  Jb of carbon; bed, 11-ft diam, 26 ft long, 3 ft deep

                                 A 11,250  Ib of carbon; bed, 11-ft diam, 26 ft long, 1} ft deep


              E- 4 beds, horizontal:   O 30,000  ]b of carbon; bed, 12-ft diam, 30 ft long, 3 ft deep

                                 A 15,000  Ib of carbon; bod, 12-ft diam, 30 ft long, IJ ft deep
                                                                                                           TT
                                                                                                           E
       100
            0.3
                              1
                              1.0
                                                                    Small  skid-mounted units are

                                                                    available for systems  smaller
                                                                    than 1,000  scfm.   All  larger

                                                                    systems are costed as  assembled

                                                                    in place.
                                                                10
                                                                                          100
                                                    FLOW  (1000   scfm)
                              Fig.  IV-1.   Installed Capital Cost of  Carbon Adsorption Systems

-------
                                         IV-5
     costs of automatic butterfly valves,  interconnecting ducts,  and steam control
     valves and a minimum allowance for piping or ducts required to get the vapors
     and utilities to the system.

C.   ANNUAL COSTS
     Annual costs for various operating conditions are presented in Appendix A.
     These costs are the bases for the cost-effectiveness graphs included in the
     report.  The parameters used in calculating these annual costs are defined in
     Table IV-2.  The capital cost of the carbon adsorption system was based on a
     bed depth of 3 ft.  Figures IV-2 through IV-5 represent the annual cost of
     using a carbon adsorption system for four different steam regeneration require-
     ments.  The cost estimating variance for systems smaller than 1000 scfm (noted
     on Fig. IV-1) causes a discontinuity at 1000 scfm for all curves shown on
     Figs. IV-2 through IV-5.  Table IV-3 shows the effect on annual cost of varying
     the carbon life from 5 to 2 years and the cost of steam from $2.50/million Btu
     to $5.00/million Btu.

D.   COST AND ENERGY EFFECTIVENESS
     The cost effectiveness and energy effectiveness were calculated by dividing the
     annual cost for a particular option (Appendix A) or the fuel usage in Btu/yr by
     the total annual amount of VOC removed with adsorption removal efficiencies
     assumed as discussed in Sect. II.A.3.  In this analysis the steam regeneration
     rate of 0.3 Ib/lb of carbon will correspond to an effluent quality of 70 ppm^.
     For steam regeneration rates of 1 Ib of steam/lb of carbon the corresponding
     effluent quality will be 12 ppm  .  It is assumed that these effluent concentra-
     tions will not change for different feed concentrations.

     The cost effectiveness is given in Table IV-4 and the energy effectiveness in
     Table  IV-5.  Figure IV-6 shows the relationship of flow rate vs cost effective-
     ness  for two carbon requirements* at two steam regeneration requirements.
     Figures IV-7, 8, and 9 show the effect of increased steam regeneration rates at
     different  carbon  requirements and various flow rates.
     *For  all  cost-effectiveness calculations in  this  report a  carbon  operating
      capacity of  0.10  Ib  of VOC/lb of  carbon is  assumed.  The  carbon  requirement
      of waste gas is therefore dependent  entirely  on  the VOC concentration  in the
      process  waste gas.

-------
                                        IV-6
                         Table IV-2.  Annual Cost Parameters
Operating factor                                        8760 hr/yr
Fixed costs
  Maintenance labor plus materials, 6%          1
  Capital recovery, 18%*                        >       29% installed capital
  Taxes, insurances, administration charges, 5% J
Utilities
  Electric power                                        $0.03/kWh
  Steam                                                 $2,50, $5.00, and
                                                          $10.00/million Btu
  Cooling water                                         $0.10/1000 gal
Carbon adsorption cost  (5-yr replacement)                $1.17/lb
*                                 _______  ,  .__     _______
 Based on 10-year life and 12% interest.

-------
u
(0
tn
o
o
<
z
Ul
                                           Carbon  Requirement
                                         (lb  of carbon/1000 set
       100
1,000                    10,000

    FEED  FLOW RATE   (scfm)
                                                                                100,000
                                                                                                           •-J
                 Fig. IV-2.  Net Annual Cost vs Flow Rate for Carbon Adsorption at
                  a Steam Rate of 0.3 lb of Steam/lb of Carbon, No Credit for
                     Recovered VOC, and a Steam Cost of $2.50/Million Btu

-------
70
                                        Carbon  Requirement
                                     lib  of  carbon/1000 scf
   100
1,000                    10,000


    FEED FLOW  RATE  (scfm)
                                                                             100,000
                                                                                                   f
                                                                                                   CD
      Fig. IV-3.  Net Annual Cost vs Flow Rate for Carbon Adsorption at a

 Steam Rate of 0.6 Ib of Steam/lb of Carbon, Steam Cost of $2.50/Million Btu,
                        and No Credit for Recovered VOC

-------
70
                                      Carbon Requirement
                                    b of carbon/1000 set)
  100
1,000                    10,000

   FEED  FLOW RATE   (scfm)
                                                                            100,000
       Fig. IV-4.   Net Annual Cost vs Flow Rate for Carbon Adsorption at a
       Steam Rate  of 1 Ib of  Steam/lb of Carbon, No Credit  for Recovered VOC,
                       and a  Steam Cost of  $2.50/Million Btu

-------
                                         NET  ANNUAL  COST    ($/ scfm)
  in
  rt
  (B
  ft <
   I
     l_n
  O •
  HI
     *^t

     fD
& O  §

  Hi 3
Ql    P
  W O1

en rt ^
rt ro

"> S  n
n> t3  U

S ^ W

3
en  O
rt  H,
•o> tr
ro O
o
     Hi

     O
   n
w
rt HI


   O  pj
                      o
                      o
•n
m
m
o
      o
      o
      o
                H
                m
O
•4t

3
                      o
                      "o
                      o
                      o
                      o
                      _o
                      "o
                      o
                      o
                                              OT-AI

-------
                                   IV-11
       Table IV-3.   Cost  Effect  of Varying  Carbon Life  and Steam Price
Fixed
Utilities
  Total
 rate of 5000 scfm.
Veam cost, $2.50/million Btu; carbon life, 5 years.
GSteam cost, $5.00/million Btu; carbon life, 5 years.
dSteam cost, $2.50/million Btu; carbon life, 2 years.

-------
Table IV-4.  Cost Effectiveness of Carbon Adsorption for Removal of VOC
                    (Steam Cost, $2.50/Million Btu)
Cost Effectiveness (per Ib of VOC removed)
70-ppmv Effluent
Carbon Requirement Flow Rate
(Ib of carbon/1000 scf) (scfm)
0.5 (^359 ppuXy.) 300
1,000
5,000
20,000
50,000
100,000
1.393 (VLOOO ppmv)a 300
1,000
5,000
20,000
50,000
100,000
6.96 (^5000 ppnv)a 300
1,000
5,000
20,000
50,000
100,000
VOC
Removal
(lb/hr)a'b
0.72
2.41
12.07
48.30
120.75
241.50
2.33
7.77
38.86
155.43
388.57
777.16
12.36
41.20
206.00
823.96
2059.89
4119.78
VOC
Removal
(lb/hr)a'c
0.87
2.90
14.50
58.00
144.99
289.97
2.47
8.25
41.28
165.13
412.81
825.62
12.50
41.68
208.41
833.65
2084.12
4168.24
No VOC
Credit
$2.74
2.04
0.83
0.48
0.33
0.30
0.85
0.64
0.26
0.16
0.11
0.10
0.17
0.13
0.06
0.04
0.03
0.03
$0.05/lb
of VOC
Credit
$2.69
1.99
0.77
0.43
0.27
0.25
0.80
0.59
0.21
0.11
0.06
0.05
0.12
0.08
0.006
+0.01
+0.02
+0.02
$0.10/lb
of VOC
Credit
$2.64
1.94
0.72
0.38
0.22
0.20
0.75
0.54
0.16
0.05
0.01
+0.008
0.07
0.03
+0.04
+0.06
+0.07
0.07
12-ppmv Effluent0
No VOC
Credit
$2.29
1.73
0.71
0.43
0.30
0.27
0.83
0.63
0.27
0.17
0.12
0.11
0.19
0.15
0.08
0.06
0.05
0.05
$0.05/lb
of VOC
Credit
$2.24
1.68
0.66
0.37
0.25
0.22
0.78
0.58
0.22
0.12
0.07
0.06
0.14
0.10
0.03
0.01
+0.001
+0.004
$0.10/lb
of VOC
Credit
$2.19
1.63
0.61
0.32
0.20
0.17 <
0.73 w
0.53
0.17
0.07
0.02
0.01
0.09
0.05
+0.02
+0.04
+0.05
+0.05

-------
                                                 Table IV-4.  (Continued)
Cost Effectiveness (per Ib of VOC removed)
b
70~ppmv Effluent

Carbon Requirement Flow Rate
(Ib of carbon/1000 scf) (scfm)
10 (V7180 ppm )a 300
1,000
5,000
20,000
50,000
100,000
VOC
Removal
(lb/hr)a'b
17.82
59.42
297.08
1188.3
2970.75
5941.50
VOC
Removal
(lb/hr)a'c
17.97
59.90
299.50
1198.00
2994.99
5989.97

No VOC
Credit
§ 0.12
0.09
0.04
0.03
0.02
0.02
$0.05/lb
of VOC
Credit
$ 0.07
0.04
+0.008
+0.02
+0.03
+0.03
$0.10/lb
of VOC
Credit
$ 0.02
+0.01
+0.06
+0.07
+0.08
+0.08
12-ppmv Effluent

No VOC
Credit
$ 0.14
0.11
0.06
0.05
0.04
0.04
$0.05/lb
of VOC
Credit
$ 0.09
0.06
0.01
+ 0.001
+0.007
+0.009
$0.10/lb
of VOC
Credit
$ 0.04
0.01
+0.04
+0.05
+0.06
+0.06
aAssumes a VOC molecular weight of 50 and carbon operating capacity of 0.10 Ib of VOC/lb of carbon.
bAssumes that a baseline effluent of 70 ppm  can be  achieved with  0.3  Ib of steam/lb of carbon.
CAssumes that a baseline effluent of 12 ppm  can be  achieved with  1  Ib of  steam/lb of carbon.

-------
                                          IV-14
         Table IV-5 •  Energy Effectiveness of Carbon Adsorption for VOC Removal
                             Steam Energy Usage
                            	(Btu/scf)  at
  Energy Effectiveness   a
(Btu/lb  of  VOC  removed) at
 Carbon Requirement    0.3 lb of steam/  1.0 lb of Steam/  0.3 lb of steam/  I.Q lb of Steam/
(lb of carbon/1000 scf)   lb of Carbonb    it, ofCarbonc    lb of carbonb    lb of Carbonc
0.5 (^359 ppmy.) d
1.393 (VLOOO ppm. ) d
6.96 (^5000 ppmv) d
10 CW180 ppm )d
0.146
0.405
2.03
2.91
0.485
1.35
6.75
9.70
3,627
3,127
2,957
2,939
10,035
9,809
9,722
9,716
 Does not include power requirements for blower.
 Assumes  that  a baseline effluent of 70 ppm  can be achieved with 0.3 lb of steam/lb of
 carbon.
 "'Assumes  that  a baseline effluent of 12 ppm  can be achieved with 1.0 lb of steam/lb of
 carbon.
 Assumes  a VOC molecular weight of  50 and a carbon operating capacity of 0.10 lb of
 VOC/lb of carbon.

-------
.70
                                                  Carbon Requirement
                                                  1.393 Ib  of carbon/1000 scf)
          Carbon  Requirement
          6.96 Ib  of  carbon /1000 scf
                     i  i   i i i i
                    0.3 Ib of steam/lb of carbon
                        1.0 Ib  of steam/lb of
   100
                                 0.3 Ib of steam/lb of  carbon)
                                    1.0 Ib  of  steam/lb of  carbon)
                                                                         f
1,000                      10,000

    FEED  FLOW RATE   (scfm)
                                                                              100,000
 (For all cost-effectiveness calculations in  this  report  a  carbon capacity of 0.10
  Ib of VOC/lb of carbon is assumed.  The carbon requirement per  scf of waste gas is
  therefore dependent entirely on the VOC concentration in  the process  waste gas.
  Adsorption effluent at 0.3 Ib of steam/lb of  carbon = 70  ppm  of VOC.
  Adsorption effluent at 1.0 Ib of steam/lb of  carbon = 12  ppmv of VOC.)
      Fig. IV-6.  Cost Effectiveness vs Feed Rate at 1.393 and 6.96 Ib of
          Carbon/1000 scf and a Steam Cost of $2.50 per Million Btu

-------
^ 0.7
•o
0)
o
E
(U r* s*
o in t w CNJ *". o "'
3 6 0 0 0 °
a OOA *o qi /$) SS3N3AI103JJ3 JLSOO







.393




6.96
10






«
_ 	 	 	 . 	






— "
_.












Carbon Requirement (see Fig.
(ib of carbon /1000 scf )


— ... - •-
•• "~


	
— — 	




—




-— — — — —




IV-6 Cap


—
— — — — —

tion)
>.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
              STEAM  USAGE  (ib of  steam/Ib  of  carbon)

Fig. IV-7.   Cost Effectiveness  vs  Steam Regeneration Rates at
      1000  scfm and a Steam Cost of $2.50/Million Btu
                                                                                      en

-------
0.7
^T
0)
> <-. e?
COST EFFECTIVENESS ($/ Ib of VOC remo
o o o o o ^ ?
0 ° "-*• M 'w "*• w rr °

— v^aruon
of carl





Require
jon /100C
0.5


1.393
6.96
10

I SCf)
	





	 • —

(See Fig
— • 	





j 	 ,

IV-6 Ca
	 	 	 -_




	 • —
_

:>tion)
— 	 	




•.I,
in—


	 	 —




„——————-
• —


	 . 	





j[__ 	 	


	 • — 	 	 —





i 	
.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.C
                                                                                          f
                STEAM RATE   (Ib  of  steam/Ib  of carbon)
Fig.  IV-8. Cost Effectiveness vs Steam Regeneration Rates at 20,000 scfm
                 and a Steam Cost of $2.50/Million Btu

-------
U. f
'•o
0)
> 0.6
E
o
i_
0
0 0.5
"o
~ 0.4
CO
uj 0.3
Z
at
o
UJ 0.2
u.
UJ
CO
O 0.1
o
0

Cs
— (IB o





irbon Re
f carbon
0.5

1 393
6.96
10

quiremen
/1000 s


i
.

t (See F:
, \
Cf)




.

g. IV-6.





	 — —

Caption)





	 - — 	 	







. 	
















                                                                                              H

                                                                                              f
                                                                                              M
                                                                                              oo
0.1     0.2      0.3     0.4      0.5      0.6      0.7     0.8


                   STEAM  RATE  (tb  of steam/Ib of  carbon)
                                                                  0.9
1.0
Fia. IV-9.  Cost Effectiveness vs  Steam Regeneration Rates at 100,000 scfm

                   and  a Steam Cost of $2.50/Million Btu

-------
                                    IV-19
Table IV-6 shows the effect that increasing the steam regeneration required
will have on cost and energy effectiveness.  Data on cases not shown in the
cited tables and figures can be easily developed by use of Appendix A.
Table IV-6 also shows the percent change in cost effectiveness or energy effec-
tiveness that results when the VOC removal efficiency is increased by increasing
the steam regeneration usage from 0.3 Ib of steam/lb of carbon regenerated to
1.0 Ib of steam/lb of carbon regenerated for each waste-gas feed condition
listed.  It is assumed that a 70-ppm  effluent concentration is achieved at a
regeneration rate of 0.3 Ib of steam/lb of carbon and that a 12-ppmv effluent
concentration is obtained at a regeneration rate of 1.0 Ib of steam/lb of carbon.

This study does not quantitatively assess the impacts of the additional
operations required to recover or treat the materials removed from the carbon
adsorption system.  When additional operations are required, secondary emissions,
as well  as increased capital costs and energy consumption, will have to be
considered.

-------
                                         IV-20
                  Table IV-6.   Change in Cost Effectiveness  and  Energy
                 Effectiveness with increasing Regeneration  Steam Usage
Carbon Requirement
(Ib of carbon/1000 scf)
0.5 (^359 ppiriy.)
1.393 CV'1000 ppmv)
6.96 Cv-5000 ppm )b
10 Cv/7180 ppmv)b
Change in

1,000 scfm
-15
-16
15
22
Cost Effectiveness

20,000 scfm 100
-10
6
50
67
a (%) at

,000 scfm
-7
10
67
100
Change in
Energy Effectiveness3
(%)
177
213
229
231
Change in regeneration steam requirement  from 0.3  Ib of  steam/lb of  carbon  to  1.0  Ifo of
steam/lb of carbon.   The energy effectiveness (steam usage/lb of VOC removed)  is indepen-
dent of waste-gas flow rate.

Assumes a carbon operating capacity of 0.1  Ib of VOC/lb  of  carbon.

-------
                                    V-l
                        V.   SUMMARY AND CONCLUSIONS

Carbon adsorption is a widely used control technique for VOC emissions.  This
evaluation describes the limits and design principles of carbon adsorption.  A
design criterion and design procedures are presented that allow for a pre-
liminary carbon adsorption design.  A carbon adsorption system with two bed
depths and various steam regeneration rates is considered.  Capital and operating
costs are developed, and the annual cost of carbon adsorption is calculated as
a function of the characteristics of the waste gas.  Cost effectiveness and
energy effectiveness of two VOC removal efficiencies and regeneration  levels
are developed.

The conclusions  of  the cost  evaluation are as  follows:

The feed flow rate  is  a highly sensitive  variable  in determining the annual
cost  and cost effectiveness  (see  Fig.  IV-6).   Energy effectiveness  is  indepen-
dent  of  the  flow rate.  As  the feed flow  rate  increases,  the  annual costs
 increase but the annual cost per  scfm decreases.   The  annual  cost per  scfm
 decreases quickly between  300 and 5000 scfm.   The  ratio decreases moderately
 between  5,000  and 50,000  scfm and is almost  constant above  50,000  scfm.   The
 cost-effectiveness curve  has the  same shape  as noted above.

 The carbon requirement,  wh.ch is  established by the waste-gas VOC  concentration
 and the  operating capacity of the carbon, is a very sensitive variable in
 determining cost effectiveness (see Fig.  IV-6).  As the carbon requirement (VOC
 content) increases, the annual cost decreases with a corresponding reduction in
 the cost per pound of VOC removed.  The energy effectiveness is fairly insensitive
 to changes  in carbon requirements.

 The cost effectiveness is strongly  dependent  on the value  of the recovered
 material  (see Table  IV-3 and Appendix A).  The fact that the VOC removed might
 be recycled or  burned as a  fuel  is  an important factor when  carbon adsorption
 is considered  as an  emission control  device candidate.

 Annual  cost and cost effectiveness are slightly  sensitive  to steam regeneration
  requirements  (see Fig.s  IV-6 through IV-9).   The  effect of the steam  requirement

-------
                                    V-2
on VOC removal cost is dependent on the carbon requirement.   The higher the
carbon requirement the more sensitive the steam regeneration rate is to VOC
removal costs.  At very low carbon requirements (low concentration of VOC in
the process waste gas) a higher steam rate per pound of carbon may improve the
adsorber emission enough so that the cost per pound of VOC removed is reduced.

-------
                                         VI-1
                                 VI.  REFERENCES

 1.  F. D. Hobbs, C. S. Parmele, and D. A. Barton, IT Enviroscience,  Inc., Survey
    of Industrial Applications of Vapor-Phase Activated-Carbon Adsorption for
    Control of Pollutant Compounds from Manufacture of Organic Compounds, Contract
    No. 68-03-2568, Task No. T7009, EPA, Cincinnati, OH (January 1981).

 2.  GCA Corporation, Bedford, MA, Handbook of Fabric Fiber Technology, PB 2001
    648 (1970).

 3.  Card, Inc., Niles, IL, Capital and Operating Costs of Selected Air Pollution
    Control Systems, EPA-450/3-76-014 (1976).

 4.  A.P.T., Inc., Riverside, CA, Entrainment Separators for Scrubbers, PB 241 189
     (1974).

 5.  Calgon Corporation, Pittsburgh, PA, Basic Concepts of Adsorption on Activated
    Carbon (unpublished).

 6.  S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption Gases in Multimolecular
    Layers,"  Journal of  the  American  Chemical Society 60, 309  (1938).

 7.  MSA Research Corporation, Evans City, PA, Package Sorption Device  System Study,
    PB 221 138  (NTIS)  (April 1973).

 8.   J. L. Kovach,  "Gas-Phase Adsorption and Air  Purification," Chap. 9 in Carbon
    Adsorption  Handbook,  edited by D. N. Cheremisinoff and F.  Ellerbusch, Ann
    Arbor Science  Publishers, Ann Arbor, MI, 1978.

 9.  M. Smisek and  S.  Cerny,  Active  Carbon, Elsevier, Amsterdam-London-New York,
     1970.

10.   R. J. Grant, M. Manes,  and  £.  B.  Smith,  "Adsorption of Normal Paraffins and
     Sulfur Compounds  on  Activated  Carbon," Journal  of the American Institute of
     Chemical  Engineers 8(3), 403—406 (1962).

11.   Vic  Manufacturing Company,  Minneapolis, MN,  Carbon Adsorption/Emission Control
     Benefits  and Limitations (unpublished).

12.   R.  R. Manzone  and D.  W.  Oakes,  "Profitably  Recycling  Solvents from Process
     Systems," Pollution  Engineering 5(10), 23,  24  (October  1973).

13.   C.  S.  Parmele,  W.  L.  OConnell,  and H.  S. Basdekis,  IT Enviroscience,  Inc.,
     "Vapor-Phase Adsorption Cuts  Pollution,  Recovers Solvents,"  Chemical Engineering
     86,  58—70  (Dec.  31,  1979).

14.   W.  M.  Edwards and W. R. Anderson, Applicability and Cost of  Carbon Adsorption
     for Paint Spray Booth VOC Abatement,  Contract No.  68-02-2619, Work Assignment
     No.  8,  EPA, Research Triangle Park, NC (Feb. 9, 1979).

 15.  J.  Happel and D.  G.  Jordan, Chemical Process Economics,  2d ed.  Marcel Dekker,
     Inc., New York City, 1975.

-------
                                         VI-2
16.   Oxy-Catalyst/Research-Cottrell,  West Chester,  PA,  Activated Carbon Adsorption
     Vapor Recovery (unpublished)  (November 1975).

17.   Y.  Sakaguchi,  "Development on Continuous  Solvent Recovery Technology Using
     Activated Carbon,"  Chemical Economy and Engineering Review 8,  37  (December
     1976).
    ^Usually,  when a reference is  located at  the  end of a  paragraph,  it  refers  to
     the entire paragraph.   If another reference  relates to  certain portions  of
     that paragraph, that reference  number is indicated on the  material  involved.
     When the  reference appears on a heading,  it  refers to all  the  text  covered by
     that heading.

-------
   APPENDIX A



ANNUAL COST DATA

-------
                                    A-3
                             ANNUAL COST DATA

The annual costs of carbon adsorption systems are presented in the following
computer printouts showing costs for a specific carbon requirement and steam
regeneration rate at various flow rates, steam costs, and recovery credits.  The
five credit levels shown correspond to the value of the VOC recovered at a
specific carbon requirement.  With a carbon operating capacity of 10 Ib of
VOC/100 Ib of carbon assumed, the five credit levels correspond to $0.00/lb of
VOC, $0.05/lb of VOC, $0.10/lb of VOC, $0.20/lb of VOC, and $0.40/lb of VOC.

The following sample calculation is for a stream with a carbon requirement of
1.0 Ib of carbon/1000 scf, a steam regeneration rate of 0.3 Ib of steam/lb of
carbon, a flow rate of 5000 scfm, and a credit value of $0.05/lb of VOC at a
carbon capacity of 0.10 Ib of VOC/lb of carbon:

     Capital cost = $273,000 (from Fig. IV-1) at 5000 scfm with a 3-ft-deep bed.
     Fixed cost =  ($273,000 X 0.29*) +  carbon replacement cost ($2,106) =
                =  $81,276/yr.
     Carbon replacement cost =  ($1.17*/lb of carbon) X
           (5000 scfm) X (3  ft deep) X  (30 lb/ft3) X  2 beds  = $2/106/yr_
                    (100 fpm) X  (5*-yr  replacement*)

     Utilities  =  steam  ($]  912)  +  electricity  ($4,925) + cooling water
           ($331)  =  $7,167//r.
     Steam =  (0.3  Ib of sttam/lb of carbon)  X  (1 Ib  of carbon/1000  scf) X
           X  (5000  scfm) X ($2.50*/million Btu)  X  (970 Btu/lb  of  steam)  X
           X  (60 min/hr) X (8760 hr/yr)  =  $l,912/yr
     Blower  electricity = (19.2 in. H20)  X  [0.000157 hp/(in.  H20)(scfm)] X
           X  (1/0.60 efficiency) X  [0.746(kWh/hr)/hp]  X  (5000  scfm)  X ($0.03*/kWh)  X
           X  (8760 hr/yr = $4,925/yr.
      Condenser  cooling water =  (4.2  gal/lb  of  steam) X (0.3  Ib  of steam/lb
           of carbon)  X (1 Ib of carbon/1000 scf)  X  (5000  scfm)  X ($0.10/1000  gal*) X
           X (60 min/hr) X (8760 hr/yr) =  $331/yr.
      Credit = ($0.05/lb of VOC) X (1  Ib of carbon/1000 scf)  X (0.10 Ib of
           VOC/lb of carbon) X (5000 scfm) X (60 min/hr)  X (8760 hr/yr) =
           = $13,140/yr.
      *See Table IV-2.

-------
                               A-4
Annual cost - fixed cost ($81,276) + utilities ($7,167) - credit ($13,140)
     = $75,303/yr.
Net cost = annual cost ($75,303)/flow rate (5000 scfm)  = $15.06/scfm.

-------
          OFFGAS OARPON  REQUIREMENT 0.10  LB CARBON/1000 SCF
          STEAM REGENERATION  RATIO 0.3 LB STEAH/ LB CARBON
                                                                      AT  *2.50/MILLION BTU
    CREDIT
0.0000$/1000 SCF
0.00054/1000 SCF
O.OOlOt/1000 SCF
0.0020$/1000 SCF
0.0040$/1000 SCF
                   OFFOAS
                     FLOW

                   SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000,
100000.
                CAPITAL
                 COST

                (000)
  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594,
 955,
1671 .

  58.
 144.
 273.
 5V4.
 955.
1671 ,

  58.
 144,
 273.
 594.
 955.
1671 .

  58.
 144,
 273.
 594.
 955.
1671.
                     OPERATING COST-OR-CRETUT
               FIXFD        UTILITIES         RECOVERY
               COST                           CREDIT
               (000)           (000)           (000)
 17.
 42.
 81 .
179.
293.
513,

 17 .
 42.
 81 .
179.
293.
513.

 17.
 42.
 81 .
179.
293.
513.

 17,
 42.
 81 ,
1 79.
293.
513.

 17.
 42,
 81 .
179.
293.
513.
  0,
  1 .
  5 ,
 21 ,
 51 .
103.

  0,
  ] ,
  5.
 21 .
 51 .
103.

  0.
  1 ,
  5 ,
 21 .
 51 .
103.

  0.
  1 ,
  U *
 21 .
 51 .
103.

  0 ,
  1 .
  *J »
 21 .
 51 .
103.
  0,
  0.
  0.
  0,
  0,
  0,

  0.
  0,
  1 .
  5.
 13,
 26.

  0.
  1 .
  3.
 11 .
 26,
 53.

  0.
  1 .
  5 ,
 21 ,
 53,
105.

  1 .
  2 ,
 11 .
 42.
105,
210.
                                             NET
                                          ANNUALIZEH
                                       COST OR CREDIT(-)
                                             (000)
 17.
 43.
 86.
199 ,
344.
615 .

 17.
 43.
 85,
194.
331 .
589.

 17.
 43.
 84 .
189,
318.
563.

 17,
 42.
 81 .
178,
291 .
510.

 17.
 41 ,
 76,
157,
239,
405,
                                              NET COST
                                            OR S A UING P(
                                              PER SCFM
                                               $/SCFM
57.51
43.21
17.28
 9.9'.
 6.88
 6, 15

57.25
42.94
17,02
 9.69
 6.62
 5.89

56.99
42.68
16 .75
 9,43
 6.35
 5.63

56,46
42.16
16.23
 8.90
 5,83
 5.10

55.41
41.10
15.18
 7. 85
 4.78
 4.05

-------
          OFFGAS  CARBON  REQUIREMENT 0.10  LB CARBON/1000  SCF
          STEAM REGENERATION RATIO O.A LB STEAM/ L& CARBON
                                                                      AT $2.50/MILLION BTU
    CKEDTT
0.0000*/1000 SCF
0.0005$/1000  SCF
0.0010*/1000  SCF
0,0020$/1000  SCF
0.0040$/1000  SCF-
 OFFOAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000 .
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000,

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 1 44 ,
 273.
 594,
 955.
1671 .

  58.
 144.
 273,
 594,
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1 671 .

  58.
 144.
 273.
 594.
 955.
1671.
      OF'FRATING  COST-OR-CREHIT               NET
FIXED         UTILITIES         RECOVERY    ANNUALIZEB
COST                           CREDIT   COST OR CREDIT(-)
(000)           (000)           (000)           (000)
  17.
  42.
  81 .
 179,
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17,
  42.
  81 .
 179.
 293.
 513.

  17,
  42.
  81 .
 1 79.
 293.
 513.

  17.
  42,
  81 .
 179.
 293.
 513.
 2 1
 53,
107.

  0.
  t ,
  5 <
 21 ,
 53.
107.

  0.
  1 .
  5.
 21 ,
 53,
107.

  0.
  1 .
  5,
 21 ,
 53.
1 07.

  0.
                                                                    21 .
                                                                    53.
                                                                   107.
  0.
  0.
  0.
  0,
  0.
  0.

  0.
  0.
  1 .
  5 .
 13.
 26.

  0.
  1 .
  3.
 1 ] .
 26.
 53.
  5,
 21 .
 53.
105.

  1 .
  T
 1 1 .
 42.
105.
210.
 17.
 43.
 87.
200.
346.
620,

 17.
 43 .
 85.
195.
333.
593.

 17.
 43.
 84.
189.
320.
567.

 17.
 42.
 81.
] 79.
294.
514.

 17.
 41 ,
 76.
158.
241 .
409.
                                                                                                                 NET COST
                                                                                                               OR SAVINGS (--)
                                                                                                                 PER SCFM
                                                                                                                  $/SCFM
57.56
43.25
17.33
10.00
 6 . 92
 6 .20

5"1 . 30
^ "\ t I^Q
17.06

 6.66
 5. "3

57.03
4 2 . "•' 3
16.80
 9.47
 6.40
 5.6-7

56.51
42 . 20
16,27
 8 . 95
 5.87
 5. 14

55 . 46
41.15
15.22
 7.90
 4.82
 4.09

-------
          OFFGAS CARBON REQUIREMENT  0.10   LB  CARBON/1000  SCF
          STEAM REGENERATION  RATIO  1.0  LB  STEAM/  LB  CARBON
                                                   AT  *2.50/MILLION  BTU
    CKEDIT
0.0000*/1000 SCF
0.0005$/1000 SCF
0.0010$/1000 SCF
0,0020t/1000  SCF
 0.0040*/1000  SCF
 OFFGAS
  FLOW

 SCf-M
   300.
  1000.
  5000.
 20000.
 50000,
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000,
100000.
CAPITAL
 COST

(000)
                                     58.
                                    1 44.
                                    273.
                                    594,
                                    955,
                                   1671 ,
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671 .
                                    144.
                                    273.
                                    594.
                                    955.
                                   1671.
                                    144.
                                    273.
                                    594.
                                    955.
                                   1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES         RECOVERY
COST                           CREDIT
(000)           (000)           (000)
  17.              0.              0.
  42.              1.              0,
  61 .              6,              0.
 179.             23.              0.
 293.             56,              0.
 513.            113.              0.

  17.              0.              0.
  42.              1 •              0>
  81.              6.              1.
 179,             23.              5.
 293.             56.             13.
 513.            113.             26.

  17.              0.              0.
  42.              1.              i >
  81.              6.              3.
 179,             23,             11,
 293.             56.             26,
 513.            113.             53,

  17.              0.              0.
  42.              1.              1,
  81 .              6.              5.
 179.             23.             21.
 :'93.             56.             53.
 513.            113.            105.

  17.              0.              1 .
  42.              1.              2.
  81.              6.             11.
 179.             23.             42.
 293.             56.            105.
 , 513.            113.            210.
      NET
   ANNUALIZEti
COST OR CREDIT(-)
      (000)
        17.
        43.
        87,
       201 ,
       349.
       626.

        17.
        43.
        86,
       196.
       336.
       599.

        17.
        43.
        84.
       191 .
       323.
       573.

        17.
        42.
        82.
        180.
       297.
       520.

        17.
        41 .
        76.
        159 .
        244.
        415.
  NET COST
OR SAVINl3S(->
  PER SCFM
   t/SCFM
   57.62
   43.31
   17,38
   10 . 0 h
    6.98
    6.26

   57.35
   43.05
   17,12
    9.80
    6.72
    5.99

   57 .09
   42.79
   16.86
    9.53
    6.46
    5.73

   56.57
   42.26
    16.33
    9.01
    5.93
    5.20

    55.52
    41 ,21
    15 ,28
    7.96
    4.88
    4.15

-------
          OFFGAS CARBON REQUIREMENT 0.10  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT $2.50/MILLION BTU
    CREDIT
0.0000*/1000 SCF
O.OOOSt/1000 SCF
0.0010$/1000 SCF
 0,0020t/1000  SCF
 O.Q040$/1000  SCF
 0 F F G A S
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
                                     58.
                                    144.
                                    273 .
                                    594,
                                    955.
                                   1671 ,
 144.
 273,
 594,
 955.
1671 .

  58.
 144,
 273.
 594 .
 955.
1671 .
  144.
  273.
  594.
  955.
 1671 .

   58.
  144.
  273.
  594,
  955.
 1671 ,
      OPERATING CUST-OR-CREDIT                NET
FIXED        UTILITIES        RECOVERY     ANNUALIZED
COST                          CREDIT   COST OR  CREDIT(-)
(000)          (000)          (000)           (000)
  17.
  42.
  61 .
 179.
 293.
 513.

  17.
  42,
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513,

  17.
  42.
  81 ,
 179.
 293.
 513.

  17.
  42.
  81 .
 179,
 293.
 513.
  0.
  1 ,
  6.
 26 .
 64.
128.

  0.
  1 .
  6.
 26.
 64.
128.

  0.
  1 .
  6.
 26.
 64.
128,

  0.
  1.
  6,
 26,
 64.
128.

  0.
   1 ,
  6.
 26.
 64.
128.
 0.
 0.
 0.
 0.
 0.
 0,

 0.
 0.
 1 .
 5 »
 13.
 26,

 0.
  1 ,
 3.
 11 .
 26 .
 53.

 0.
  1 ,
 5 .
 2 1 .
 53.
105.
                                                                                   11.
                                                                                   42,
                                                                                  105.
                                                                                  210.
 17.
 43.
 88.
204.
357.
641 .

 17.
 43.
 86.
199.
344.
614.

 17.
 43.
 85.
194.
330.
588.

 17.
 42.
 82.
193.
304.
535.

 17.
 41 .
 77.
162.
252.
430.
                                             NET COST
                                           OR SfWINGS(-)
                                             PER SCFM
                                              $/SCFM
57.77
43.46
1 7.53
10 . 2 I
 7,13
 6.41

57.50
43.20
17.27
 9.95
 6.87
 6.14

57.24
42 ,93
17,01
 9 .68
 6.61
 5.88

56.72
42.41
16.48
 9.16
 6.08
 5.35

55.66
41 .36
15.43
 8. it
 5.03
 4.30

-------
          OFFGAS CARBON REQUIREMENT 0.50  LB CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3 LB STEAH/  LB  CARBON
                                                  AT *2.50/MILLION BTU
    CREDIT
0.0000*71000 SCF
0.0025*71000 SCF
0.0050*71000  SCF
 0.0100*71000  SCF
 0.0200*71000 SCF
 OFFGAS
  FLOW

 SCFh
   300.
  1000.
  5000.
 20000,
 50000.
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
 100000.
CAPITAL
 COST

(000)
                                    144.
                                    273.
                                    594.
                                    955.
                                   1671 .
  144.
  273.
  594.
  955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.

   58.
  144.
  273.
  594,
  955.
 1671 .

   58.
  1 44.
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT
FIXED        UTIIITIES        RECOVERY
COST                          CREDIT
(000)           (000)           (000)
  17.             0.              0.
  42.             1.              0.
  81.             6-              <>•
 179.             24.              0.
 293.             60.              0.
 513.            120.              0.

  17.             0.              0.
  42.             1.              1'
  81.             6.              7.
 179,             24.             26.
 293.             60.             66.
 513.            120.            131.

  17.             0.              1.
  42.              1.              3,
  81.             6.             13.
 ]79,             24,             53.
 293.             60.            131.
 513,            120.            263.

  17.              0,              2.
  42,              1>              ^•
  81.              6.             26.
  179.             24.            105.
 293,             60.            263.
 513,            120.            526.

   17.              0.              3.
   42.              1.              11.
  81.              6.              53.
  179.             24.            210.
  293.             60.            526.
 , 513,            120.            1051.
      NET
   ANNUALIZEti
COST OR CREDIT(-)
      (000)
        17.
        43.
        97.
       203.
       353.
       633.

        17.
        42.
        81 .
       176.
       287.
       502.

         17,
         41 .
         74.
        150,
        ITT
        370.

         16.
         38.
         61 .
         98.
         90.
        107 .

         14.
         33.
         35.
         -8.
       -173.
       -418.
  NET COST
OR SAVINGS^--)
  PER SCFM
   4/SCFM
   57.69
   43.39
   17.46
   10.13
    7.06
    6.33

   56,38
   42 . 07
   16.15
    8.82
    5.75
    5.02

   55 .06
   40.76
   14,83
    7.51
    4.43
    3.70

   52.44
   38.13
   12.20
     4.88
     1.80
     1 .07
                                                                                                                  47.18
                                                                                                                  32.8,'
                                                                                                                   6.95
                                                                                                                  -0.38
                                                                                                                  -3.45
                                                                                                                  -4.18

-------
          OFFGAS CARBON REQUIREMENT 0.50  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT *2.50/MILLION BTU
    CREDIT
0.0000$/1000 SCF
0.0025$/1000 SCF
0.0050$/1000 SCF
0.0100$/1000 SCF
 0.0200$/1000  SCF
 OFFGAS
  FLOU

 SCFM
   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAF'ITAL
 COST

(000)
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671.

  53.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671 .

  58.
 144.
 273.
 594,
 955.
1671,
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
CUST                          CREDIT
(000)          (000)          (000)
  17.             0.             0.
  42.             1.             0.
  81.             7.             0.
 179.            29.             0.
 293.            71.             0,
 513.           143.             0.

  17.             0.             0.
  42.             1.             1 •
  81.             7.             7.
 179.            29.            26.
 293.            71.            66.
 513.           143,            131.

  17.             0.             1 .
  42.             1.             3.
  81.             7.            13.
 179.            29,            53,
 293.            71.            131.
 513.           143.            263,

  17.             0.             2.
  42,             1.             5-
  81.             7.            26,
 179.            29.            105,
 293.            71.            263.
 513.           143.            526.

  17.             0.             3.
  42.             1.            11.
  81.             7.            53.
 179.            29.            21.0.
 293.            71.            526.
 ,513.           143.           1051.
      NLT
   ANNUALIZED
COST OR CREDIT(-)
      (000)
        17.
        44 .
        88.
       207.
       364.
       655.

        17.
        42.
        82.
       181.
       298.
       524,

        17.
        41 ,
        75.
       155.
       1>33.
       393,

        16.
        38.
        62 .
       102.
       101 .
       130,

        14,
        33.
        36.
        — "^
      -161 .
      -396.
  NET COST
OR SAVINGS(-)
  PER SCFM
   */SCFM
   57.92
   43.61
   17.69
   10,36
    7.28
    6.55

   56.60
   42.30
   16.37
    9.04
    5.97
    5.24

   55.29
   40.9B
   15.06
    7,73
    4.66
    3.93

   52. 6A
   38,3'.;
   12,43
    5.10
    2.03
    1 .30

   47.40
   33,10
    7. 17
   -0.15
   -3,23
   -3.96

-------
          OFFGAS CARBON REQUIREMENT 0.50  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/ LB CARBON
                                                  AT f2.50/MILLION BTU
    CREDIT
 OFFGAS
  FLOU

 SCFM
CAPITAL
 COST

(000)
                                                 FIXED
                                                 COST
                                                 (000)
     OPERATING COST-OR-CREDIT
            UTILITIES
              (000)
                             NET
              RECOVERY     ANNUALIZED
              CktniT    COST  OR CREHIT(-)
              (000)           (000)
                              NET COST
                            OR SAVINGS(-)
                              PER SCFM
                               4/SCFM
0.00004/1000 SCF
0.00254/1000 SCF
0.00504/1000  SCF
 0,01004/1000  SCF
 0.02004/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.

   ,500.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
  20000.
  50000,
 100000,
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
  144.
 273.
 594.
 955.
 1671.

   58.
  144.
  273,
  594.
  955.
 1671.
 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293,
513.

 17.
 4?.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
 179.
293.
513,
  9.
 35.
 86.
173.

  1 ,
  n
  9.
 35,
 86.
173,

  1 .
  2.
  9.
 35.
 86.
173.

  1 .
  T
  9.
 35.
 86.
173.
                                                                    9.
                                                                   35.
                                                                   86.
                                                                   173.
  0.             17.
  0-             44.
  0.             90.
  0.            213.
  0.            379.
  0.            685.

  0.             17.
  1.             43.
  7.             83.
 26.            1S7.
 66.            313.
131.            554.

  1.             17.
  3.             41.
 13.             77.
 53.            161.
131.           248.
263.           423.

  2.             16.
  5.             39.
 26.             64.
 105.            108.
263.            116.
526.            160.

  3.             14,
  11.             33,
  53.             37.
 210.              3.
 526.           -146,
1051.           -366,
b8.22
43,9 I
17,98
10,66
 7,58
 6.85

56.90
42.60
16.67
 9. 34
 6.27
 5.54

55.59
41 .28
15.36
 8.03
 4.95
 4.23

52.96
38.6 ',-J
12.73
 5,40
 2,33
 1 .60

47,70
33.40
 7.47
 0.14
 -2.93
 -3.66

-------
          OFFGAS CARBON REQUTREMENT 0.50  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAh/ LB CARBON
                                                  AT J2.50/MILLION BTU
    CREDI T
0.0000*/1000 SCF
0.0025*/1000 SCF
0.00504/1000 SCF
0.0100*/1000  SCF
 0.0200*/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000,
100000,
CAPITAL
 COST

(000)
                                     58.
                                    144.
                                    273.
                                    594.
                                    955.
                                   1671 .
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955 .
1671.

  58.
 144.
 273.
 594.
 955.
1671.
                                                 FIXED
                                                 OUST
                                                 (000)
 17.
 42 .
 81 .
179.
293 .
513.

 17.
 42.
 81.
179.
293.
513,

 17.
 42.
 8] .
179.
293.
513.

 17.
 42.
 81 .
179,
293.
513.

 17,
 42.
 81 .
179.
293.
513.
     OPERATING COST-UR-CRF-IHT
            UTILITIES
              (000)
  1 .
  2.
 12.
 50.
124.
248.

  1 .
  2.
 12.
 50.
124,
248,

  1 .
  O
 12,
 50.
124.
248.

  1 .
  2,
 12.
 50,
124.
248,

  1 .
  2,
 12.
 50.
124.
248.
                             NF.T
              RECOVERY    ANNUALIZELi
              CREDIT   COST OR CREDIT(-)
              (000)           (000)
  0,
  0,
  0.
  0.
  0 .
  0.

  0.
  1.
  7.
  26.
  66.
 131.

  1.
  3.
  13.
  53.
 131.
 263.
  26.
 105.
 263.
 526,

   3.
  11.
  53.
 210,
 526.
1051.
  18,
  45.
  94.
 228.
 417,
 760.

  17.
  43.
  87.
 202.
 351.
 629.

  17.
  42.
  81.
 176.
 285.
 497.

  16,
  39.
  67.
 123.
 154.
 235.

  15.
  34.
  41.
  18.
-109.
-291.
                NET  COST
              OR SAVINGS(->
                PER  SCFM
                 $/SCFM
58.96
44.66
18.73
11 .40
 8.33
 7.60

57,65
43.34
17.42
10.0-?
 7.02
 6.29

56.34
42.03
16.10
 8.78
 5.70
 4.97

53. 71
39.40
13.47
 6.1 *
 3.07
 2.35

48.45
34 . 1 4
 8.22
 0.89
-2.18
-2.91

-------
          OFFGAS CARBON REQUIREMENT 1.00  LB CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3 LB STEAh/ LB CARBON
                                                  AT  *2.50/MILLION BTU
    CREDIT
0.0000*71000 SCF
0.0050*71000 SCF
O.OlOOt/1000 SCF
0.0200*71000  SCF
 0.0400*71000  SCF
 OFFGAS
  FLOU

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273,
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 1 44.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 , 513.
  0.
  1.
  7.
 29.
 71 .
143.

  0.
  1.
  7.
 29.
 71 .
143.

  0.
  1 .
  7.
 29.
 71 .
143.

  0.
  1.
  7.
 29.
 71 .
143.

  0.
  1 .
  7.
 29.
 71 .
143.
  0.
  0.
  0.
  0.
  0.
  0.

  1 ,
  3.
  13.
  53.
 131.
 263.
   5.
  26.
 105.
 263.
 526.

   3.
  11 .
  53.
 210.
 526.
1051.

   6.
  21 .
 105.
 420.
1051.
2102.
  17.
  44.
  88.
 207.
 364.
 655.

  17.
  41 .
  75.
 155.
 233.
 393.

  16.
  38.
  62.
 102.
 101.
 130.

  14,
  33.
  36.
  -3.
 -161.
 -396.

  11 .
  23.
 -17.
 -2)3.
 -687.
-1447.
                                             NET  COST
                                           OR SAVINGS(-)
                                             PER  SCFM
                                              *7SCFM
57.9?
43.61
17.68
10.36
 7.28
 6*55

55.29
40.98
15.06
 7.73
 4.66
 3.93

52.66
38.;<5
12.43
 5.10
 2.03
 1 .30

47.40
33.10
 7.17
-0.15
-3.23
-3.96

36.89
22.59
-3.34
-10,67
-13.74
-14.47

-------
          OFFGAS CARBON REQUIREMENT 1.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT *2.50/HILLION  BTU
    CREDIT
0.0000*/1000 SCF
0.00504/1000 SCF
0.0100*/1000 SCF
0,0200*/1000 SCF
0.0400*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
                                    58.
                                   144.
                                   273.
                                   594.
                                   955.
                                  1671.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREHIT(-)
(000)          (000)          (000)           (000)
  17.
  42.
  81 ,
 179.
 293.
 513.

  17,
  42.
  81 .
 179,
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179,
 293.
,513.
                                 1 .
                                 2.
                                 9.
                                38.
                                94.
                               188.
  9.
 38.
 94.
188,

  1 .
  2 f
  9.
 38.
 94.
188.

  1.
  2.
  9.
 39.
 94.
188.

  1 ,
  2 t
  9.
 38.
 94,
188.
   0.
   0.
   0.
   0.
   0.
   0.

   1 ,
   3.
  13.
  53.
 131 .
 263.

   2.
   5.
  26.
 105.
 263.
 526.

   3.
  11.
  53.
 210.
 526.
1051.

   6.
  21 .
 105.
 420.
1051.
2102.
   18.
   44.
   91.
  216.
  387.
  700.

   17.
   41 .
   78.
  164.
  255.
  438.

   16.
   39.
   64,
  111 .
  124.
  175.

   14.
   34.
   38.
    6.
 -139.
 -351 ,

   11 .
   23.
  -14.
 -204.
 -665.
-1402,
                                             NET  COST
                                           OR SAYINGS(-)
                                             PER  SCFh
                                              $/SCFM
 58.37
 44.06
 18.13
 10.81
  7.73
  7.00

 55.74
 41.43
 15.50
  8.18
  5.10
  4.38

 53. 11
 38.80
 12.88
  5.55
  2.48
  1 .75

 47.85
 33.55
  7.62
  0.29
 -2. 78
 -3.51

 37.34
 23.03
 -2.89
-10.22
-13.29
-14.02

-------
          OFFGAS  CARPON  REQUIREMENT  1.00   LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/  LB  CARBON
                                                 AT *2.50/MILLION BTU
    CREDIT
0.00004/1000 SCF
0.0050*/1000 SCF
0.0100S/1000 SCF
 0.0200$/1000  SCF
 0.0400*/1000  SCF
OFFGAS
 FLOW

SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
   5000.
 20000.
 50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
 1671.

  58.
 144.
 273.
 594.
 955.
 1671 .

  58.
 144.
 273.
 594 .
 955.
 1671 .

  58.
  144.
 273.
 594.
 955.
 1671.

  58.
  144.
  273.
  594,
  955,
 1671,
                                                 FIXED
                                                 COST
                                                 (000)
 17.
 42.
 81 .
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81 .
179.
293.
513.

 17.
 42.
 81 .
 179.
293.
513.

 17.
 42.
 81 .
 179.
 293.
. 513.
     OPERATING COST-OR-CREDIT
            UTILITIES
              (000)
                                                                  12.
                                                                  50.
                                                                 124.
                                                                 248.
 12.
 50.
124.
248.

  1 .
  11
 12.
 50,
124,
248.

  1 .
  2 t
 12.
 50.
124.
248.

  1 .
  i ^
 12.
 50.
124.
248.
                            NET
             RECOVERY    ANNUALIZED
             CREDIT   COST OR CREDIT(-)
             (000)          (000)
  0.            18.
  0.            45.
  0.            94.
  0.           228.
  0.           417.
  0.           760.

  1.            17.
  3.            42.
  13.            81.
  53.           176.
 131.           285.
 263.           497.

  2.            16.
  5.            39.
  26.            67.
 105.            123.
 263.            154.
 526.            235.

  3.             15.
  11.             34.
  53.             41.
 210.             18.
 526.           -109.
1051.           -291.

   6.             11.
  21.             24.
 105.            -11.
 420.           -192.
1051.           -635.
2102.          -1342.
                              NET COST
                            OR SAVINGS(-)
                              PER SCFM
                               t/SCFM
58.96
44.66
18,73
11 .40
 8.33
 7.60

56.34
42.03
16.10
 8,78
 5. 70
 4.97

53,71
39. 40
13.47
  6.15
  3.07
  2.35

48.45
34.14
  8.22
  0.89
-2. 18
-2.91

37.94
23.63
-2.29
-9.62
-12.69
-13.42

-------
          OFFGAS CARBON REQUIREMENT 1.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  $2.50/«ILLION  BTU
    CREDIT
0,0000*/1000 SCF
0,0050$/1000 SCF
0.0100*/1000 SCF
0.0200$/1000 SCF
0.0400$/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671 .
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)           (000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42,
  81.
 179.
 293.
 513.

  17.
  42 .
  81 .
 179.
 293.
 513.

  17.
  42.
  8t .
 179.
 293.
 513,
  1 .
  4.
 20.
 79.
199.
397.

  1.
  4.
 20.
 79.
199.
397.

  1 .
  4.
 20.
 79.
199.
397.

  1.
  4.
 20.
 79.
199.
397.

  1 .
  4.
 20.
 79.
199.
397.
   0.
   0.
   0.
   0.
   0.
   0,

   1 .
   3,
  13.
  53,
 131 .
 263,
   5.
  26.
 105.
 263.
 526,

   3.
  11 .
  53.
 210.
 526,
1051 .

   6.
  21 .
 105.
 420.
1051.
2102,
   18.
   46.
  101 .
  258.
  491 .
  910.

   17.
   44,
   88.
  205.
  360.
  647.

   17.
   41.
   75.
  153.
  228.
  384.

   15.
   36.
   49,
   48.
  -34.
 -142.

   12.
   25.
   -4.
 -162.
 -560.
-1193.
                                             NET COST
                                           OR SAVINGS(-)
                                             PER SCFM
                                              $/SCFM
 60.46
 46.15
 20.23
 12.90
  9.83
  9. 10

 57.83
 43.52
 17.60
 10.27
  7.20
  6.47

 55.20
 40.90
 14.97
  7.64
  4.57
  3.84

 49.95
 35.64
  9.71
  2.39
 -0.69
 -1 .42

 39.43
 25. 13
 -0.80
 -8.i:>
-11.20
-11 .93

-------
          OFFGAS CARBON REQUIREMENT 1.39  LB CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3 LB STEAM/ LB CARBON
                                                 AT  $2.50/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0070*/1000 SCF
0.01394/1000 SCF
 0.0279$/1000  SCF
 0.0557*/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000,

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
 20000.
 50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
 1671.

   58.
  144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          <000)          <000)          <000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 513.

   17.
   42.
   81 .
  179.
  293.
  513.
  0.
  2.
  8.
 32.
 80.
161.

  0.
  21
  8.
 32.
 80.
161.
  8.
 32.
 80.
161 .

  0.
  2 ,
  8.
 32.
 80.
161.

  0.
  2.
  8.
 32.
 80.
161.
  0.
  0.
  0.
  0,
  0.
  0.

  1.
  4.
  18.
  73.
 183.
 366,
   7.
  37.
 146.
 366.
 732.

   4.
  15.
  73.
 293.
 732.
1464.

   9.
  29.
 146.
 586.
1464.
2929.
  17.
  44.
  89.
 211 .
 373.
 673.

  16.
  40.
  71 .
 137.
 190.
 307.

  15.
  36.
  53.
  64.
    7.
 -59.

  13.
  29.
  16.
 -82.
 -359.
 -791 .

    9.
  14.
 -57,
 -375.
-1091 .
-2256.
                                             NET  COST
                                           OR SAVINGS(-)
                                             PER  SCFh
                                              t/SCFM
58.09
43.7V
17.86
10.53
 7.46
 6.73

54.43
40.13
14.20
 6.87
 3.80
 3.07

50.77
36.46
10.54
 3.21
 0.14
-0.59

43.45
29.14
  3.22
-4.11
-7.IB
-7.91

 28.81
 14.50
-11 .43
-18.75
-21.83
-22.56

-------
          OFFGAS CARBON REQUIREMENT 1.39  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                                    AT $2.50/MILLION BTU
    CREDIT
0.00004/1000 SCF
Q.0070$/1000 SCF
0.0139$/1000 SCF
0.0279*/1000 SCF
0.0557$/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
 144,
 273.
 594,
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671.
                                                       OPERATING COST-OR-CREDIT               NET
                                                 FIXED        UTILITIES        RECOVERY    ANNUALIZED
                                                 COST                          CREDIT   COST OR CREDIT(-)
                                                 (000)          (000)          (000)          (000)
 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81 .
179.
293.
513.

 17.
 42.
 81 .
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179,
293.
513.
  1 .
  2.
 11.
 45.
112.
223.

  1 .
  2.
 11 .
 45.
112.
223.
 11.
 45.
112.
223.

  1 .
  2.
 11 .
 45.
112.
223.

  1 .
  2.
 11 .
 45.
112.
223.
   0.
   0.
   0.
   0.
   0.
   0.

   1,
   4.
  18.
  73.
 183.
 366.

   2.
   7.
  37.
 146.
 366.
 732.

   4.
  15.
  73.
 293.
 732.
1464.

   9.
  29.
 146.
 586.
1464.
2929.
   18.
   44.
   92.
  223.
  404.
  736.

   17.
   41,
   74.
  150.
  221.
  370.

   15.
   37.
   56.
   77.
   38.
    3.

   13.
   30.
   19,
  -70.
 -328.
 -729.

    9,
   15.
  -54.
 -363.
-1060.
-2193.
                                                            NET COST
                                                          OR SAYINGSC-)
                                                            PER SCFM
                                                             */SCFM
 58.72
 44.41
 18.49
 11.16
  8.08
  7.36

 55.06
 40.75
 14.82
  7.50
  4.42
  3.70

 51.40
 37.09
 Id . 16
  3.84
  0.76
  0.03

 44.07
 29.77
  3.84
 -3.4ft
 -6.56
 -7.29

 29.43
 15.12
-10.80
-18,13
-21.20
-21.93

-------
          OFFGAS CARBON REQUIREMENT 1.39  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/ LB CARBON
                                                  AT  *2.50/MILLION  BTLI
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

(000)
      OPERATING COST-OR-CREIHT               NET
FIXED        UTILITIF-S        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
                                             NET COST
                                           OR SAYINGS(-)
                                             PER SCFM
                                              $/SCFM
0.0000*/1000 SCF
0.0070*/1000 SCF
0.01394/1000 SCF
0.0279*/1000 SCF
0.0557$/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
  58.
 144.
 273.
 594,
 955.
1671 .

  58.
 144.
 273,
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
1671.
  17.
  42,
  81 ,
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
  1 .
  3.
 15.
 61 .
153.
306.

  1 .
  3.
 15.
 61 .
153.
306.

  1 .
  3.
 15.
 61.
153.
306.

  1 .
  3.
 15,
 61 .
153.
306.

  1 .
  3.
 15.
 61.
153,
306.
   0.
   0.
   0.
   0.
   0.
   0.

   1 .
   4,
  18.
  73.
 183.
 366.
   7.
  37.
 146.
 366.
 732.

   4.
  15.
  73.
 293.
 732.
1464.

   9.
  29.
 146.
 586.
1464.
2929.
  18.
  45.
  97.
 240.
 446.
 819.

  17.
  42.
  78.
 167.
 263.
 453.

  16.
  38,
  60,
  93.
  BO.
  87.

  13.
  31 .
  23.
 -53.
 -286.
 -645.

    9.
  16.
 -50.
 -346.
-1018.
-2110.
59.55
45.24
19.32
11 .99
 8.92
 8.19

55.89
41 .58
15.66
 8.37
 5.26
 4.53

52.23
37.91'
12.00
 4.67
 1 .60
 O.B7

44.91
30.60
 4.68
-2.65
-5.73
                                                                                                                30.26
                                                                                                                15.96
                                                                                                                -9.97
                                                                                                               -17.29
                                                                                                               -20.37
                                                                                                               -21.10

-------
          OFFGAS CARBON REQUIREMENT 1.39  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  *2.50/MILLION  BTU
    CREDIT
0.0000*/1000 SCF
0.0070*/1000 SCF
0.0139$/1000 SCF
0,0279*/1000 SCF
 0.0557S/1000  SCF
 OFFQAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300,
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58,
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZEB
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179,
 293.
 513.

  17,
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179,
 293.
 513.
  2,
  5.
 26.
103.
257.
515.

  2.
  5.
 26.
103.
257.
515.
                                                                  26,
                                                                 103,
                                                                 257.
                                                                 515,
                                                                  26.
                                                                 103.
                                                                 257.
                                                                 515.
                                                                  26,
                                                                 103.
                                                                 257.
                                                                 515.
   0.
   0.
   0.
   0.
   0.
   0.

   1 .
   4,
  13.
  73.
 183.
 366.

   2.
   7.
  37.
 146.
 366.
 732.

   4.
  15.
  73.
 293.
 732.
1464.

   9.
  29.
 146.
 586.
1464.
2929.
   18.
   47.
  107.
  282 ,
  550.
 1027.

   17,
   44,
   89.
  208.
  367.
  661.

   16.
   40.
   70.
  135.
  184.
  295.

   14.
   33.
   34.
  -11.
 -182.
 -437.

   10.
   18,
  -39.
 -304,
 -914.
-1901.
                                             NET COST
                                           OR SAYINGS(-)
                                             PER SCFM
                                              $/SCFM
 61 .63
 47.33
 21 .40
 14.08
 11.00
 10.27

 57,97
 43.67
 17.74
 10.41
  7.34
  6.61

 54.31
 40.01
 14.08
  6.75
  3.68
  2.95

 46.99
 32.68
  6.76
 -0.57
 -3.64
 -4.37

 32.35
 18.04
 -7.88
-15.21
-18.29
-19,01

-------
          OFFGAS CARBON REQUIREMENT 2.00  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3 LB STEAM/  LB  CARBON
                                                 AT *2.50/MILLION BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

(000)
                                                 FIXED
                                                 COST
                                                 (000)
      OPERATING  COST-OR-CREDIT
             UTILITIES
               (000)
                             NET
              RECOVERY     ANNUALIZEO
              CREDIT    COST  OR  CREDIT(-)
              <000)           (000)
                               NET  COST
                             OR SAVINGS <--)
                               PER  SCFM
                                t/SCFM
0.0000*/1000 SCF
0.0100$/1000 SCF
0.0200*/1000 SCF
0.0400$/1000 SCF
 0.0800t/1000  SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300,
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
                                    58.
                                   144.
                                   273.
                                   594.
                                   955.
                                  1671 .
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671,

  58.
 144.
 273.
 594.
 955,
1671.

  58.
 144.
 273,
 594.
 955.
1671.
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42,
  81.
 179,
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293,
 513.

  17.
  42.
  81 .
 179,
 293.
, 513.
  1.
  2.
  9.
 38.
 94.
188.

  1 .
  2,
  9.
 38.
 94.
188.
                                                                   9.
                                                                  38.
                                                                  94.
                                                                 188.
  9.
 38.
 94,
188.

  1 .
  2,
  9.
 38.
 94.
188,
   0.
   0.
   0.
   0.
   0.
   0.

   2.
   5.
  26.
 105.
 263.
 526.

   3.
  11.
  53.
 210.
 526.
1051.

   6.
  21.
 105.
 420.
1051 .
2102.

  13.
  42.
 210.
 841.
2102.
4205.
   18.
   44.
   91 .
 216.
 387.
 700.

   16.
   39.
   64.
 Ill .
 124.
 175.

   14.
   34.
   38.
    6.
 -139.
 -351 .

   11 .
   23.
 -14,
 -204.
 -665.
-1402.
                                                                                                 2,
                                                                                              -120.
                                                                                              -625.
                                                                                              -1716.
                                                                                              -3504.
 58.37
 44.06
 18.13
 10.81
  7.73
  7.00

 53.11
 38.80
 12.88
  5.55
  2.48
  1.75

 47.85
 33.55
  7.62
  0,29
 -2.78
 -3.51

 37,34
 23.03
 -2.89
-10.22
-13.29
-14.02

 16.32
  2.01
-23.92
-31.24
-34.32
-35.04

-------
          OFFGAS CARBON REQUIREMENT 2.00  LB CARBON/1000 SCF
          STEAh REGENERATION RATIO 0.6 LB STEAH/ LB CARBON
                                                                    AT *2.50/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0100*/1000 SCF
0.0200*71000 SCF
0.0400*/1000 SCF
o.oeoot/iooo SCF
                   OFFGAS
                    FLOW

                   SCFH
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
                CAPITAL
                 COST

                (000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
                                   144.
                                   273.
                                   594.
                                   955.
                                  1671.
                     OPERATING COST-OR-CREDIT               NET
               FIXED        UTILITIES        RECOVERY    ANNUALIZED
               COST                           CREDIT    COST  OR CREDIT(-)
               (000)          (000)           (000)           (000)
 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293,
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.
  1,
  3,
 14.
 55.
139.
277.

  1 .
  3.
 14.
 55.
139.
277.

  1.
  3.
 14.
 55.
139.
277.

  1.
  3.
 14.
 55.
139.
277.

  1.
  3.
 14.
 55.
139.
277.
                                                                                  0.
                                                                                  0.
                                                                                  0.
                                                                                  0.
                                                                                  0.
                                                                                  0.
  26.
 105.
 263.
 526.

   3.
  11.
  53.
 210.
 526.
1051.

   6.
  21,
 105.
 420.
1051 ,
2102.

  13.
  42.
 210.
 841.
2102.
4205.
   18.
   45.
   95.
  234.
  431 .
  790.

   16.
   40.
   69.
  129.
  169.
  264.

   15.
   34.
   43.
   24.
  -94.
 -261 .

   11 .
   24.
  -10.
 -186.
 -620.
-1312.

    5.
    3,
 -115.
 -607.
-1671.
-3415.
                                                             NET  COST
                                                           OR  SAVINGS(-)
                                                             PER  SCFM
                                                              */SCFH
 59.26
 44.96
 19.03
 11.70
  8.63
  7.90

 54,01
 39.70
 13.77
  6.45
  3.37
  2.64

 48.75
 34.44
  8.52
  1.19
 -1 .88
 -2.61

 38.24
 23.93
 -1.99
 -9.32
-12.39
-13. 12

 17.21
  2.91
-23.02
-30.34
-33.42
-34. 15

-------
          OFFGAS  CARBON  REQUIREMENT 2.00  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/  LB  CARBON
                                                  AT  *2.50/MILLION BTU
    CREDIT
0.0000*/1000 SCF
O.OlOOt/1000 SCF
0.0200*/1000 SCF
 0.0400*/1000 SCF
 0.0800*/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CREIHT
FIXFD        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.             1.             0.
  42.             4.             0.
  81.            20.             0.
 179.            79.             0.
 293.           199.             0.
 513.           397.             0.

  17.             1.             2.
  42.             •*.             5.
  81.            20.            26.
 179.            79.           105.
 293.           199.           263.
 513.           397.           526.

  17.             1.             3.
  42.             4.            11.
  81.            20.            53.
 179.            79.           210.
 293.           199.           526.
 513.           397.           1051.

  17.             1.             6.
  42.             4.            21.
  81.            20.           105.
 179.            79.           420.
 293.           199.           1051.
 513.           397.           2102.

  17.              1.             13.
  42.             4.             42.
  81 .            20.           210.
  179.            79.           841.
 293.            199,           2102.
 513.           397.           4205.
      NF:T
   ANNUALIZED
COST OR CREDIT<-)
      (000)
        18.
        46.
       101 .
       258.
       491 .
       910.

        17.
        41 .
        75.
       153.
       228.
       384.

        15.
        36.
        49.
        48.
       -34.
       -142.

        12.
        25.
        -4.
       -162.
       -560.
      -1193.

          6.
          4.
       -109 .
       -583 .
      -1611.
      -3295.
  NET COST
OR SAVINGS(-)
  PER SCFM
   $/SCFM
   60,46
   46. 15
   20.23
   12.90
    9.83
    9 . 10

   55.20
   40.90
   14.97
    7.64
    4.57
    3.84

   49.95
   35,64
    9.71
    2.39
   -0.69
   -1 .42

   39.43
   25.13
   -0.80
   -8.1?
   -11.20
   -11.93

    18.41
     4.10
   -21.82
   -29.15
   -32.22
   -32.95

-------
          OFFGAS CARBON REQUIREMENT 2,00  LB CARSON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT $2.50/MILLION  BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

(000)
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)           (000)
                                             NET COST
                                           OR SAVINGS(-)
                                             PER SCFM
                                              $/SCFM
0.0000$/1000 SCF
0.0100$/1000 SCF
0.0200$/1000 SCF
0.0400*/1000 SCF
0.08001/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000,

   300.
  1000.
  5000.
 20000.
 50000.
100000.
  58.
 144.
 273.
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
1671,

  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671.
  17,
  42 ,
  81 .
 179.
 293.
 513.

  17.
  42,
  81.
 179.
 293.
 513.

  17.
  42,
  81 .
 179.
 293.
 513.

  17.
  42,
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.
  7.
 35.
139.
348.
696.

  2.
  7.
 35.
139.
348.
696.
  7.
 35.
139.
348.
696,

  2.
  7.
 35.
139.
348.
696.
                                                                   7.
                                                                  35.
                                                                 139.
                                                                 348.
                                                                 696.
   0.
   0.
   0.
   0.
   0.
   0.

   2.
   5.
  26.
 105.
 263.
 526.

   3.
  11 .
  53.
 210.
 526.
1051 ,

   6.
  21.
 105.
 420.
1051.
2102.

  13.
  42.
 210.
 841 .
2102.
4205.
   19.
   49.
  116.
  318.
  641 .
 1209.

   17.
   44.
   90.
  213.
  378.
  683.

   16.
   39.
   64.
  108.
  115.
  158.

   13.
   28.
   11 .
 -103.
 -410.
 -894.

    6.
    7.
  -94.
 -523,
-1462.
-2996.
63.45
49. 14
23.22
15.89
12.82
12.09

58. 19
43.89
17.96
10.63
 7.56
 6.83

52.94
38.63
12.70
 5.38
 2.30
 1 ,58

42.43
28.12
 2. 19
-5.13
-8.21
-8.94
                                                                                                               21
                                                                                                                7
                                                 40
                                                 09
                                              18.83
                                              26,16
                                              29.23
                                              29.96

-------
          OFFGAS  CARBON  REQUIREMENT  5.00   LB  CARBON/1000  SCF
          STEAM  REGENERATION  RATIO  0.3  LB  STEAM/  LB  CARBON
                                                 AT $2.50/MILLION BTU
    CREDIT
0.0000$/1000 SCF
0.0250*/1000 SCF
0.0500*/1000 SCF
 0.1000*/1000 SCF
 0.2000*/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREOIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42,
  81.
 179,
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 , 513.
  1.
  3.
 16.
 64.
161 .
322.

  1.
  3.
 16.
 64.
161 .
322.

  1.
  3.
 16.
 64.
161.
322.

  1 .
  3.
 16.
 64.
161 .
322.

   1.
   3.
 16.
 64.
161.
322.
   0.
   0.
   0.
   0.
   0.
   0.

   4,
  13.
  66.
 263.
 657.
 1314.

   8.
  26.
 131.
 526.
 1314.
 2628.

  16.
  53.
 263.
 1051.
 2628.
 5256.

  32.
  105.
 526.
 2102.
 5256.
10512.
   18.
   45.
   97.
 243.
 454.
 835.

   14.
   32.
   32.
 -20.
 -203.
 -479.

   10.
   19.
 -34.
 -283.
 -860.
-1793.
   -7.
 -165.
 -808.
-2174.
-4421.

  -14.
  -60.
 -428.
-1859.
-4802,
-9677,
                                             NET  COST
                                           OR SAVINGS(-)
                                             PER  SCFM
                                              */SCFM
 59.71
 45.40
 19.48
 12.15
  9,08
  8,35

 46.57
 32.26
  6.34
 -0.99
 -4.06
 -4.79

 33.43
 19.12
 -6.80
-14.13
-17.20
-17.93

  7,15
 -7.16
-33.08
-40.41
-43.48
-44.21

-45.41
-59.72
-85.64
-92.97
-96.04
-96.77

-------
          OFFGAS CARBON REQUIREMENT 5.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                                    AT *2.50/MILLION BTU
    CREDIT
0.0000$/1000 SCF
0.0250*/1000 SCF
0.0500$/1000 SCF
0.10004/1000 SCF
0.2000*/1000 SCF
 OFFGAS
  FLOU

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
                                  CAPITAL
                                   COST

                                  (000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671.

  58,
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
                     OPERATING COST-OR-CREDIT                NET
               FIXED        UTILITIES        RECOVERY    ANNUALIZED
               COST                           CREDIT    COST  OR CREDIT(-)
               (000)          (000)           (000)           (000)
 17.
 42.
 81.
179.
293.
513.

 17,
 42.
 81.
179.
293.
513.

 17.
 42.
 81 .
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81 ,
179.
293,
513.
  2.
  5.
 27.
109.
273.
547.

  2.
  5.
 27.
109.
273.
547.

  2.
  5,
 27,
109.
273.
547.

  2.
  5.
 27.
109.
273.
547.
                                                                   5.
                                                                  27.
                                                                 109.
                                                                 273.
                                                                 547.
    0.
    0.
    0.
    0.
    0.
    0.

    4.
   13.
   66.
  263.
  657.
 1314.

    8.
   26,
  131.
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.
   19.
   48.
  109.
  288.
  566.
 1059.

   15.
   35.
   43.
   25.
  -91.
 -255.

   11.
   21.
  -23.
 -238.
 -748.
-1569.

    3.
   -5.
 -154.
 -763.
-2062.
-4197.

  -13.
  -57.
 -417.
-1814.
-4690.
-9453.
                                                            NET COST
                                                          OR SAUINGS(-)
                                                            PER SCFM
                                                             */SCFM
 61.95
 47.65
 21.72
 14.40
 11.32
 10.59

 48.81
 34.51
  8.58
  1.26
 -1 .82
 -2.55

 35.67
 21.37
 -4.56
-11 .88
-14.96
-15.69

  9.39
 -4.91
-30.84
-38.16
-41.24
-41.97

-43.17
-57.47
-83.40
-90.7:?
-93.80
-94.53

-------
          OFFGAS CARBON REQUIREMENT  5.00  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/  LB  CARBON
                                                 AT $2.50/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0250*/1000 SCF
0.0500*/1000 SCF
 0.1000*/1000  SCF
 0.2000*/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CREDIT               NET
FIXEC        UTILITIES        RECOVERY    ANNUALI7.E0
COST                          CREDIT   COST OR CREDITC-)
(000)          <000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
  179.
 293.
 , 513.
  3.
  8.
 42.
169.
423.
846.

  3.
  8.
 42.
169.
423.
846.

  3.
  8.
 42,
169.
423.
846.

  3.
  8.
 42.
169.
423.
846.

  3.
  8.
 42.
169.
423.
846.
   0.
   0.
   0.
   0.
   0.
   0.

   4.
   13.
   66.
 263,
 657.
 1314.

   8.
   26.
 131.
 526.
 1314.
 2628.

   16.
   53.
 263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.
   19.
   51.
  124.
  348.
  716.
 1358.

   16.
   37.
   58.
   85.
   59.
   44.

   12.
   24.
   -8.
 -178.
 -598.
-1270.

    4.
   -2,
 -139.
 -703.
-1912.
-3898.

  -12.
  -54.
 -402.
-1755.
-4540.
-9154,
                                             NET  COST
                                           OR SAUINGS(-
                                             PER  SCFM
                                              */SCFM
 64.94
 50.64
 24.71
 17.39
 14.31
 13.58

 51.80
 37,50
 11.57
  4.25
  1.17
  0.44

 38.66
 24.36
 -1.57
 -8.89
-11.97
-12.70

 12.38
 -1.92
-27,85
-35.17
-38.25
-38.98

-40.18
-54.48
-80.41
-87.73
-90.81
-91.54

-------
          OFFGAS CARBON REQUIREMENT 5.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT *2.50/MILLION  BTU
    CREDIT
0.0000$/1000 SCF
0.0250*/1000 SCF
O.OSOOt/1000 SCF
0.1000*/1000 SCF
0.2000$/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREIHT
FIXEH        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513,

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.
   5.              0.
  16,              0.
  80.              0.
 319.              0.
 797.              0.
1593.              0.

   5.              4.
  16.             13.
  80.             66.
 319,            263.
 797.            657.
1593.           1314.

   5.              8.
  16.             26.
  80.            131,
 319.            526.
 797.           1314.
1593.           2628.

   5.             16.
  16.             53.
  80.            263.
 319.           1051.
 797,           2628.
1593,           5256,
                                                                   5.
                                                                  16.
                                                                  80.
                                                                 319.
                                                                 797.
                                                                1593.
                 32.
                105.
                526.
               2102.
               5256.
              10512.
                              NET
                           ANNUALIZED
                        COST OR CREniT(-)
                              (000)
   22.
   58.
  161.
  497.
 1089.
 2106.

   18.
   45.
   95.
  234.
  432.
  792.

   14.
   32.
   30.
  -28.
 -225.
 -522.

    6.
    6.
 -102.
 -554.
-1539.
-3150.

  -10.
  -47.
 -365.
-1605.
-4167.
-8406.
                 NET  COST
               OR SAVINGS(-)
                 PER  SCFM
                  $/SCFM
 72.42
 58.11
 32.19
 24.86
 21 .79
 21.06

 59.28
 44.97
 19.05
 11.72
  8.65
  7.92

 46. 14
 31 .83
  5.91
 -1.42
 -4.49
 -5.22

 19.86
  5.55
-20.37
-27.70
-30,77
-31.50

-32.70
-47.01
-72.93
-80.26
-83.33
-84.06

-------
          OFFGAS  CARBON  REQUIREMENT  6.96   LB  CARBON/1000  SCF
          STEAM  REGENERATION RATIO 0.3 LB STEAM/  LB  CARBON
                                                 AT *2.50/HILLION BTU
    CREDIT
0.0000*/1000 SCF
0.03484/1000 SCF
0,0696$/1000 SCF
 0.1392*/1000  SCF
 0.2784J/1000 SCF
OFFGAS
  FLOW

SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
   5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

<000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955,
 1671.

  58.
  144.
 273.
  594.
 955.
 1671 .

   58.
  144.
  273.
  594.
  955.
 1671.
      OF'EKATINfi COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

   17.
   42.
   81 .
  179.
 293.
 513.

   17.
   42.
   81.
  179.
  293.
  513.
  1 .
  4.
 21.
 82.
205.
410.

  1 .
  4.
 21.
 82.
205.
410.

  1 .
  4.
 21.
 82.
205.
410.

  1 .
  4.
 21.
 82.
205.
410.

  1 .
  4.
 21 .
 82.
205.
410.
   0.
   0.
   0.
   0.
   0.
   0.

   5.
  18.
  91.
 366.
 915.
1829.

  11.
  37.
 183.
 732.
1829.
3658.

  22.
  73.
 366.
1463.
3658.
7316.

  44.
  146.
  732.
2927.
7316.
14633.
                             NET
                          ANNUALIZED
                       COST  OR  CREDIT(-)
                             (000)
   18.
   46.
  102.
  261.
  498.
  923.

   13.
   28.
   10.
 -105.
 -417.
 -906.

    7.
   10.
  -81 .
 -471 ,
-1331.
-2735.

   -4.
  -27.
 -264.
-1203.
-3160.
-6394.

  -26.
 -100.
 -630.
-2666.
-6818.
-13710.
                               NET COST
                             OR SAVINGS(-)
                               PER SCFM
                                */SCFM
 60,59
 46.28
 20.36
 13.03
  9.96
  9,23

 42.30
 27.99
  2.07
 -5.26
 -8.33
 -9.06

 24.01
  9.70
 -16.22
 -23.55
 -26.62
 -27.35

 -12.57
 -26.88
 -52.81
 -60.13
 -63,21
 -63.94

 -85.74
-100.04
-125.97
-133.30
-136.37
-137.10

-------
          OFFGAS CARBON REQUIREMENT 6.96  LB CARBON/1000 SCF
          STEAH REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT  *2.50/MILLION  BTU
    CREDIT
0.0000*/1000 SCF
0.0348$/1000 SCF
0.0696*/1000 SCF
0.1392*/1000 SCF
0.2784*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955,
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)           (000)           (000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42,
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
  2.
  7.
 36.
144.
361 .
722.

  2.
  7.
 36.
144.
361.
722.

  2.
  7.
 36.
144.
361,
722.
  7.
 36.
144.
361.
722.

  2.
  7.
 36.
144.
361.
722.
    0.
    0.
    0.
    0.
    0.
    0.

    5,
   18,
   91,
  366.
  915.
 1829.

   11 .
   37.
  183.
  732.
 1829.
 3658.

   22.
   73.
  366.
 1463.
 3658.
 7316.

   44.
  146.
  732.
 2927.
 7316.
14633.
    19.
    49.
   117.
   323.
   654.
  1235.

    14.
    31 .
    26.
   -43.
  -261 .
  -594.

     8.
    13.
   -66.
  -409.
 -1175.
 -2423.

    -3.
   -24.
  -248.
 -1140.
 -3004.
 -6081 .

   -25.
   -97,
  -614.
 -2603.
 -6662.
-13398.
                                                                                                              NET COST
                                                                                                            OR SAVINGS(-)
                                                                                                              PER SCFM
                                                                                                               $/SCFM
  63.71
  49.41
  23.48
  16.15
  13.08
  12.35

  45.42
  31.1?
   5.19
  -2.14
  -5.21
  -5.94

  27.13
  12.82
 -13.10
 -20.43
 -23.50
 -24.23

  -9.45
 -23.76
 -49.68
 -57.01
 -60.08
 -60.81

 -82.61
 -96.9?
-122.85
-130.17
-133.25
-133.98

-------
          OFFGAS  CARBON  REQUIREMENT  6.96   LB  CARBON/1000 SCF
          STEAM REGENERATION  RATIO  1.0  LB  STEAM/  LB  CARBON
                                                 AT *2.50/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0348$/1000 SCF
0.0696*/1000 SCF
 0.1392J/1000  SCF
 0,2784*/1000 SCF
OFFGAS
  FLOW

SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.

   300.
   1000.
   5000.
  20000.
  50000.
 100000.

   300.
   1000.
   5000.
  20000,
  50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
 1671.

   58.
  144.
 273.
  594.
 955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
  513.

   17.
   42.
   81 .
  179.
  293.
  513.

   17.
   42.
   81 .
  179.
  293.
 ,513.
   3.
  11.
  57.
 228.
 569.
1139.

   3.
  11.
  57.
 228.
 569.
1139.

   3.
  11.
  57.
 228.
 569.
1139.

   3.
  11.
  57.
 228.
 569.
1139.

   3.
   11.
  57.
  228.
  569.
 1139.
   0.
   0.
   0.
   0.
   0.
   0.

   5.
  18.
  91.
 366.
 915.
1829.

  11 .
  37.
 183.
 732.
1829.
3658.

  22.
  73.
 366.
 1463.
 3658.
 7316.

  44.
  146.
  732.
 2927.
 7316.
14633.
                             NET
                          ANNUALIZED
                       COST OR CREDIT(-)
                              (000)
   20.
   54.
  138.
  406.
  862.
 1651.

   15.
   35.
   47.
   41 .
  -52.
 -178.

    9.
   17.
  -45.
 -325.
 -967.
-2007.

   -2.
  -20.
 -228.
-1057.
-2796.
-5665.

  -24.
  -93.
 -593.
 -2520.
 -6454.
-12981.
                               NET  COST
                             OR SfWINGS(-)
                               PER  SCFM
                                $/SCFM
 67.88
 53.57
 27.64
 20.32
 17.24
 16.51

 49.58
 35.28
  9.35
  2.03
 -1.05
 -1.78

 31.29
 16.99
 -8.94
-16.27
-19.34
-20.07

 -5.29
-19.59
-45.52
-52.85
-55.92
-56.65

-78.45
-92.76
-118.68
-126.01
-129.08
-129.81
                                                               I

-------
          OFF6AS CARBON REQUIREMENT 6,96  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  $2.50/MILLION  BTU
    CREDIT
O.OOOOt/1000 SCF
0.0348*/1000 SCF
0.0696*/1000 SCF
0.1392*/1000 SCF
 0.2784$/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                           CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
, 513.
   7.
  22.
 109.
 436.
1090.
2180.

   7.
  22,
 109.
 436.
1090.
2180.

   7.
  22,
 109.
 436.
1090.
2180.

   7.
  22.
 109.
 436.
1090.
2180.

   7.
  22,
 109.
 436.
1090.
2180.
    0.
    0.
    0.
    0.
    0.
    0.

    5.
   18.
   91.
  366.
  915.
 1829.

   11 .
   37.
  183.
  732.
 1829.
 3658.

   22.
   73.
  366.
 1463.
 3658.
 7316.

   44.
  146.
  732.
 2927.
 7316.
14633.
                              NET
                           ANNUALIZED
                        COST OR CREHIT(-)
                              (000)
    23.
    64.
   190.
   614,
  1383.
  2692.

    18.
    46.
    99.
   249.
   468.
   863.

    13.
    27,
     7.
  -117.
  -447,
  -966.

     2.
    -9.
  -176.
  -849.
 -2276.
 -4624.

   -20.
   -82.
  -541 .
 -2312.
 -5934.
-11941.
                                NET  COST
                              OR SAVINGS(-)
                                PER  SCFM
                                 */SCFM
  78.28
  63.98
  38.05
  30.72
  27.65
  26.92

  59.99
  45.69
  19.76
  12.43
   9.36
   8.63

  41 .70
  27.39
   1.47
  -5.86
  -8.93
  -9.66

   5.12
  -9.19
 -35.11
 -42.44
 -45.51
 -46.24

 -68.04
 -82.35
-108.28
-115,60
-118.68
-119.41

-------
          OFFGAS  CARBON  REQUIREMENT  8.00   LB CARBON/1000 SCF
          STEAM  REGENERATION RATIO 0.3  LB  STEAM/  LB CARBON
                                                 AT *2.50/MILLION BTU
    CREIHT
0.0000*/1000 SCF
0.0400t/1000 SCF
0.0800t/1000 SCF
 0.1600*/1000  SCF
 0.32004/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300,
  1000.
  5000.
 20000.
 50000.
100000.

   300,
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
 20000.
 50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
  144.
 273.
 594.
 955,
 1671.

  58.
  144,
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 513.

  17.
  42.
  81.
  179.
  293.
  513.

   17.
   42.
   81.
  179.
  293.
  513.
                                                                   1 .
                                                                   5.
                                                                  23.
                                                                  91.
                                                                 228.
                                                                 457.
 23.
 91.
228.
457.

  1 .
  5.
 23.
 91.
228.
457.

  1 .
  5.
 23.
 91.
228.
457.

  1 ,
  5.
 23.
 91.
228.
457.
   0,
   0.
   0.
   0.
   0.
   0.

   6.
  21.
 105.
 420.
1051.
2102.

  13.
  42.
 210.
 841.
2102.
4205.

  25.
  84.
 420.
1682.
4205.
8410.

  50.
  168.
  841 .
3364.
8410.
16819.
                            NET
                         ANNUALIZED
                      COST OR CREDIT(-)
                            (000)
   18.
   47.
  104.
  270.
  521.
  970.

   12.
   26.
   -1 .
 -151.
 -530.
-1133.

    6.
    5 .
 -106.
 -571 .
-1581.
-3235.

   -7.
   -37.
 -316.
-1412,
-3684.
-7440.

   -32.
 -121.
 -737.
-3094.
-7888.
-15850,
                               NET  COST
                             OR SAVINGS(-)
                               PER  SCFM
                                */SCFM
 61 .06
 46.75
 20.82
 13.50
 10.42
  9.70

 40.03
 25.73
 -0,20
 -7.53
 -10.60
 -11.33

 19.01
   4.70
 -21.22
 -28.55
 -31.62
 -32.35

 -23.04
 -37.35
 -63.27
 -70.60
 -73.67
 -74.40

-107.14
-121.44
-147.37
-154.69
-157.77
-158.50

-------
          OFFGAS CARBON REQUIREMENT 8.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAh/ LB CARBON
                                                  AT  $2.SO/MILLION BTU
    CREDIT
 OFFGAS
  FLOW

 SCFh
CAPITAL
 COST

(000)
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST  OR CREDIT(-)
<000)          <000)           (000)           (000)
                                             NET COST
                                           OR SAVINGS(-)
                                             PER SCFM
                                              t/SCFM
0.0000*71000 SCF
0.0400*71000 SCF
0.0800*71000 SCF
0.1600*71000 SCF
 0.3200*71000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300,
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
  58.
 144.
 273.
 594.
 955.
1671.

  38.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
  17.
  42.
  81.
 179.
 293.
 513,

  17.
  42.
  81.
 179.
 293.
 513.

  17,
  42,
  81.
 179.
 293.
 513.

  17.
  42.
  81,
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.
  8.
 41.
163.
408.
816,

  2.
  8.
 41 .
163.
408.
816.

  2.
  8.
 41 .
163,
408.
816.

  2.
  8.
 41 ,
163,
408.
816.

  2.
  8.
 41 .
163.
408.
816.
    0.
    0.
    0.
    0.
    0.
    0.

    6.
   21.
  105.
  420.
 1051 .
 2102.

   13.
   42.
  210.
  841 .
 2102.
 4205.

   25.
   84.
  420.
 1682,
 4205.
 8410.

   50.
  168.
  841.
 3364,
 8410.
16819.
    19.
    50.
   122.
   342.
   701 .
  1328.

    13.
    29.
    17.
   -79.
  -351 .
  -774.

     7.
     8.
   -88.
  -499.
 -1402.
 -2876.

    -6.
   -34.
  -298.
 -1340.
 -3504.
 -7081.

   -31 .
  -118.
  -719.
 -3022.
 -7709.
-15491.
  64.65
  50.34
  24.41
  17.09
  14.01
  13.28

  43.62
  29.32
   3.39
  -3.94
  -7.01
  -7.74

  22.60
   8.29
 -17.63
 -24.96
 -28.04
 -28,76

 -19.45
 -33.76
 -59.68
 -67.01
 -70.08
 -70.81

-103.55
-117.85
-143.78
-151.11
-154.18
-154.91

-------
          OFFGAS CARBON REQUIREMENT  8.00   LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 1,0 LB  STEAM/  LB  CARBON
                                                 AT *2.50/MILLION BTU
    CREniT
0,00004/1000 SCF
0.0400*/1000 SCF
0.0800*/1000 SCF
0.1600$/1000 SCF
 0.3200J/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17,
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.
   4.
  13.
  65.
 259.
 647.
1294.

   4.
  13.
  65.
 259.
 647.
1294.

   4.
  13.
  65.
 259.
 647.
1294.

   4.
  13.
  65.
 259.
 647.
1294.

   4.
  13.
  65.
 259.
 647.
1294,
   0.
   0.
   0.
   0.
   0.
   0.

   6.
   21.
  105.
  420.
 1051 .
 2102.

   13.
   42.
  210.
  841.
 2102.
 4205.

   25.
   84.
  420.
 1682.
 4205.
 8410.

   50.
  168.
  841 ,
 3364.
 8410.
16819.
   21.
   55.
  146.
  437.
  940.
 1807.

   15.
   34,
   41 .
   17.
 -Ill .
 -296.

    8.
   13.
  -64.
 -404.
-1163.
-2398.

   -4.
  -29.
 -274,
-1244.
-3265.
-6603.

  -30.
 -113.
 -695.
-2926.
-7470.
-15012.
                                              NET  COST
                                            OR SAVINGS(-)
                                              PER  SCFM
                                               */SCFM
                                                                                                               69.43
                                                                                                               55.12
                                                                                                               29.20
                                                                                                               21.87
                                                                                                               18.80
                                                                                                               18.07
 48.41
 34.10
  8. 17
  0.85
 -2.23
 -2.96

 27.38
 13.08
 -12.85
 -20.18
 -23.25
 -23.98

 -14.67
 -28.97
 -54.90
 -62.22
 -65.30
 -66.03

 -98.76
-113.07
-138.99
-146.32
-149.39
-150,12

-------
          OFFGAS CARBON REQUIREMENT 8.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  $2.50/MILLION  BTU
    CREDIT
O.OOOOt/1000 SCF
0.0400*/1000 SCF
0.0800t/1000 SCF
0.1600$/1000 SCF
 0.3200$/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300,
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

<000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)           <000)
  17.
  42.
  81.
 179.
 293,
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179,
 293.
 513.

  17.
  42.
  81.
 179.
 293,
 513.

  17.
  42.
  81.
 179.
 293,
 513.
   7.
  25.
 125.
 498.
1245.
2491.

   7.
  25.
 125.
 498.
1245.
2491.

   7.
  25.
 125.
 498.
1245.
2491.

   7.
  25.
 125.
 498.
1245.
2491.

   7.
  25.
 125.
 498.
1245.
2491.
    0.
    0.
    0.
    0.
    0.
    0.

    6.
   21.
  105.
  420.
 1051 .
 2102.

   13.
   42.
  210.
  841.
 2102.
 4205.

   25.
   84.
  420.
 1682.
 4205.
 8410.

   50.
  168.
  841.
 3364.
 8410.
16819.
                              NET
                           ANNUALIZED
                        COST OR CREDIT<->
                              (000)
   24.
   67.
   206.
   677.
  1538.
  3003.

   18.
   46.
   101.
   256.
   487.
   901.

   12.
   25.
   -4.
  -164.
  -564.
 -1202.

   -1.
   -17.
  -215.
 -1005.
 -2667.
 -5406.

   -26.
  -101.
  -635.
 -2687.
 -6872.
-13816.
                                NET  COST
                              OR SAVINGS(-)
                                PER  SCFM
                                 $/SCFM
 81 .39
 67.09
 41 . 16
 33.83
 30.76
 30.03

 60.37
 46.06
 20.14
 12.81
   9.74
   9.01

 39.35
 25.04
 -0.89
 -8.21
 -11.29
 -12.02

 -2.70
 -17.01
 -42.94
 -50.26
 -53.34
 -54.06

 -86.80
-101.11
-127.03
-134.36
-137.43
-138.16

-------
          OFFGAS  CARBON REQUIREMENT 10.00  LB  CARBON/1000  SCF
          STEAM  REGENERATION RATIO 0.3  LB STEAM/  LB  CARBON
                                                 AT »2.50/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0500*/1000 SCF
0.1000*/1000 SCF
 0,2000*/1000  SCF
 0.4000S/1000 SCF
 OFFGAS
  FLOU

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
 20000.
 50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
  144.
  273.
  594.
  955.
 1671 .

   58.
  144.
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179,
 293.
 513.

   17.
   42.
   81 .
  179.
  293,
  513.
                                                                   2.
                                                                   5.
                                                                  27.
                                                                 109.
                                                                 273.
                                                                 547.
 27.
109.
273.
547.

  2.
  5.
 27.
t09,
273.
547.

  2.
  5.
 27.
109.
273.
547.
                                                                   27.
                                                                  109.
                                                                  273.
                                                                  547.
   0.
   0.
   0.
   0.
   0.
   0.

   8.
  26,
  131.
  526.
 1314.
 2628.

  16.
  53.
  263.
 1051.
 2628.
 5256.

  32.
  105.
  526.
 2102,
 5256.
10512.

   63.
  210.
 1051 .
 4205.
10512.
21024,
                            NET
                         ANNUALIZED
                      COST OR CREDIT(-)
                            (000)
   19.
   48.
  109.
  288.
  566.
 1059.

   11 .
   21 .
  -23.
 -238.
 -748.
-1569.

     3.
   -5.
 -154 .
 -763.
-2062.
-4197.

  -13.
  -57.
 -417.
-1814.
-4690.
-9453.

  -44.
  -163.
  -943.
 -3917.
 -9946.
-19965.
                               NET COST
                             OR SAVINGS(-)
                               PER SCFM
                                $/SCFM
 61.95
 47.65
 21 .72
 14.40
 11.32
 10.59

 35.67
 21.37
 -4.56
 -11.88
 -14.96
 -15,69

   9.39
 -4.91
 -30.84
 -38, 16
 -41.24
 -41.97

 -43.17
 -57.47
 -83.40
 -90.72
 -93.80
 -94.53

-148.29
-162.59
-188.52
-195.84
-198.92
-199.65

-------
          OFFGAS CARBON REQUIREHENTIO,00  LB CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT  *2.50/MILLION  BTU
    CREDIT
0.0000$/1000 SCF
0,0500*/1000 SCF
0.1000*/1000 SCF
0.2000*/1000 SCF
 0.4000*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000.
 20000,
 50000.
100000,

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT    COST OR CREDIT(-)
(000)          (000)          (000)           (000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81,
 179.
 293.
 513.

  17.
  42,
  81 ,
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17,
  42.
  81.
 179,
 293.
; 513.
  3.
 10.
 50.
199.
498.
995.

  3.
 10.
 50.
199.
498,
995.

  3.
 10.
 50.
199.
498.
995.

  3.
 10.
 50.
199.
498.
995.

  3.
 10.
 50.
199.
498.
995.
    0.
    0,
    0,
    0.
    0.
    0.

    8.
   26.
  131.
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.

   63.
  210.
 1051.
 4205.
10512.
21024.
   20.
   52.
   131.
   378.
   790.
  1508.

   12.
   26.
   -0.
  -148.
  -524.
 -1120.

     4.
   -0.
  -132.
  -674,
 -1838.
 -3748.

   -12.
   -53.
  -395.
 -1725.
 -4466.
 -9004.

   -43.
  -158.
  -920.
 -3827.
 -9722.
-19516.
                                             NET COST
                                           OR SAVINGS(-)
                                             PER SCFM
                                              $/SCFM
  66.44
  52.13
  26.21
  18.88
  15.81
  15.08

  40.16
  25.85
  -0.07
  -7.40
 -10.47
 -11.20

  13.88
  -0.43
 -26.35
 -33.68
 -36.75
 -37.48

 -38.68
 -52.99
 -78.91
 -86.24
 -89.31
 -90.04

-143.80
-158.11
-184.03
-191.36
-194,43
-195.16

-------
          OFFGAS  CARBON REQUIREMENT10.00   LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/  LB  CARBON
                                                 AT *2.50/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0500$/1000 SCF
0.1000*/1000 SCF
 0.20004/1000  SCF
 0.40001/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CfiEDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17,
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
  179.
 293.
 , 513.
   5.
  16.
  80.
 319.
 797.
1593,

   5.
  16.
  80.
 319.
 797.
1593.

   5.
  16.
  80.
 319.
 797.
1593.

   5.
  16.
  80,
 319.
 797,
1593.

   5.
  16.
  80.
 319.
 797 .
1593.
   0.
   0.
   0.
   0.
   0.
   0.

   8.
   26.
  131.
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.

   63.
  210.
 1051.
 4205.
10512.
21024.
   22.
   58.
  161 .
  497.
 1089.
 2106.

   14.
   32.
   30.
  -28.
 -225.
 -522.

     6.
     6.
 -102.
 -554.
-1539.
-3150.

  -10.
  -47.
 -365,
-1605.
-4167,
-8406.

  -41 .
 -152.
 -890.
-3708,
-9423.
-18918.
                                              NET  COST
                                            OR SAVINGS!-)
                                              PER  SCFM
                                               */SCFh
 72.42
 58.11
 32.19
 24.86
 21 .79
 21.06

 46. 14
 31.83
  5.91
 -1.42
 -4.49
 -5.22

 19.86
  5.55
-20.37
-27.70
-30.77
-31.50

-32.70
-47.01
-72.93
-80.26
-83.33
-84.06

-137.82
-152.13
-178.05
-185.38
-188.45
-189.18

-------
          OFFGAS CARBON REQUIREMENTIO.OO  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT $2.50/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0500*/1000 SCF
0.1000$/1000 SCF
0.2000$/1000 SCF
0.4000*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CRECHT(-)
(000)          (000)          (000)           (000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
, 513.
   9.
  31.
 154.
 618.
1544.
3089.

   9.
  31.
 154.
 618.
1544.
3089.

   9.
  31.
 154.
 618.
1544.
3089.

   9.
  31.
 154.
 618.
1544.
3089.

   9.
  31.
 154.
 618.
1544.
3089.
    0.
    0.
    0.
    0.
    0.
    0.

    8.
   26.
  131.
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.

   63.
  210.
 1051.
 4205.
10512.
21024.
    26.
    73.
   236.
   796.
  1837.
  3601.

    18,
    47.
   104.
   271.
   523.
   973.

    10.
    21.
   -27.
  -255.
  -791 .
 -1655.

    -5.
   -32.
  -290.
 -1306.
 -3419.
 -6911.

   -37.
  -137.
  -815.
 -3408.
 -8675.
-17423.
                                                                                                              NET COST
                                                                                                            OR SAVINGS(-)
                                                                                                              PER SCFM
                                                                                                               */SCFM
  87.37
  73.07
  47. 14
  39.82
  36.74
  36.01

  61 .09
  46.79
  20.86
  13.54
  10.46
   9.73

  34.81
  20.51
  -5.42
 -12.74
 -15.82
 -16.55

 -17.75
 -32.05
 -57.98
 -65.30
 -68.38
 -69.11

-122.87
-137. 17
-163.10
-170.42
-173.50
-174.23

-------
          OFFOAS  CARBON REQUIREMENT  0,10   LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3  LB  STEAM/  LB  CARBON
                                                 AT *5.00/MILLir)N BTU
    CREDIT
0.0000*/1000 SCF
0.0005*/1000 SCF
0.0010*71000 SCF
 0.0020*/1000  SCF
 0.0040*/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZEC
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293,
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 513.
  0.
  1.
  5.
 21.
 53.
106.

  0.
  1.
  5.
 21.
 53.
106.

  0.
  1 .
  5.
 21 .
 53.
106.

  0.
  1.
  5.
 21.
 53.
106.

  0.
  1.
  5.
 21.
 53.
106.
 0.
 0.
 0.
 0.
 0.
 0.

 0.
 0.
 1.
 5.
 13.
 26.

 0.
 1.
 3.
 11.
 26.
 53.

 0.
  1.
 5.
 21.
 53.
105.

  1 ,
  2.
 11 .
 42.
105.
210.
 17.
 43.
 97.
200.
346.
619.

 17.
 43.
 85.
195.
333.
593.

 17.
 43.
 84.
189.
320.
566.

 17.
 42.
 81 .
179.
293.
514.

 17.
 41 .
 76.
158.
241.
409.
                                             NET  COST
                                           OR SAVINGS(-)
                                             PER  SCFM
                                              t/SCFM
57.55
43.24
17.32
 9.99
 6.92
 6.19

57.29
42.98
17.06
 9,73
 6,66
 5.93

57.03
42.72
16.79
 9.47
 6.39
 5.66

56.50
42.19
16.27
 8.94
 5.87
 5.14

55.45
41,14
15.22
 7.89
 4.82
 4.09

-------
          OFFGAS CARBON REQUIREMENT 0.10  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT *5.00/MILLION BTll
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

(000)
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)           (000)           (000)
                                                                                                              NET COST
                                                                                                            OR SAVINGS(-)
                                                                                                              PER SCFM
                                                                                                               t/SCFM
O.OOOOt/1000 SCF
0.0005$/1000 SCF
0.0010*/1000 SCF
0.0020$/1000 SCF
0.0040*/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
  0.
  1.
  6.
 23.
 57.
115.

  0.
  1.
  6.
 23.
 57.
115.

  0.
  1,
  6.
 23.
 57.
115.

  0.
  1.
  6.
 23.
 57.
115.

  0.
  1.
  6.
 23.
 57.
115.
  0.
  0.
  0.
  0.
  0.
  0.

  0.
  0.
  1 .
  5.
 13.
 26.

  0.
  1.
  3.
 11.
 26.
 53.

  0.
  1 .
  5.
 21,
 53.
105.

  1 .
  2,
 11.
 42.
105.
210.
 17.
 43.
 87.
202.
350.
627.

 17.
 43.
 86.
196.
337.
601 .

 17.
 43.
 84.
191.
324.
575.

 17.
 42.
 82.
180.
298.
522.

 17.
 41.
 76.
159.
245.
417.
57.63
43.33
17.40
10.08
 7.00
 6.27

57.37
43.06
17.14
 9.81
 6.74
 6.01

57.11
42.80
16.88
 9.55
 6.48
 5.75

56.58
42.28
16.35
 9.02
 5.95
 5.22

55.53
41 .2:1
15.30
 7.97
 4.90
 4.17

-------
          OFFGAS  CARBON  REQUIREMENT  0.10   LB CARBON/1000 SCF
          STEAM  REGENERATION RATIO  1.0  LB  STEAM/ LB  CARBON
                                                 AT $5.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0005$/1000 SCF
 0.0010*/1000  SCF
 0.0020*/1000 SCF
 0.0040*/1000 SCF
OFFGAS
 FLOW

SCFM
   300.
  1000.
  5000,
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
 100000.

   300.
   1000.
   5000.
  20000.
  50000.
 100000.

   300.
   1000.
   5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

(000)
  58,
 144.
 273.
 594.
 955.
 1671.

  58.
 144.
 273.
 594.
 955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES
"
               (000)
                                                 (000)
 17.
 42.
 81.
179.
293.
513.

 17.
 42,
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
 179.
293.
 513.

  17.
  42.
  81 .
 179.
 293.
, 513.
                  0.
                  1.
                  6.
                 25.
                 63.
                126,

                  0.
                  1.
                  6.
                 25.
                 63.
                126.

                  0.
                   1.
                  6.
                  25.
                  63.
                 126.

                   0.
                   1.
                   6.
                  25.
                  63.
                 126.

                   0.
                   1.
                   6.
                  25.
                  63.
                 126.
                                            NET
                             RECOVERY     ANNUALIZED
                             CREDIT    COST  OR  CREDIT(-)
                             <000)           (000)
 0.
 0.
 0.
 0.
 0.
 0.

 0.
 0,
 1.
 5.
13.
26.

 0.
 1.
 3.
 11.
 26.
 53.

 0.
  1 .
 5,
 21.
 53.
105.

  1 .
  2.
 11.
 42.
105.
210,
 17.
 43.
 88.
204.
356.
638.

 17.
 43.
 86.
198.
342.
612.

 17.
 43.
 85.
193.
329.
586.

  17.
  42.
  82.
 183.
 303.
 533.

  17.
  41.
  77.
 162.
 250.
 428.
                             NET COST
                           OR SAVINGS(-)
                             PER SCFM
                              */SCFM
57.75
43.44
17.51
10.19
 7.11
 6.38

57.48
43.18
17.25
 9.92
 6.85
 6.12

57.22
42.9t
16.99
 9.66
 6.59
 5.86

56.69
42.39
 16.46
  9.13
  6.06
  5.33

 55.64
 41.34
 15.41
  8.08
  5.01
  4.28

-------
          OFFGAS CARBON REQUIREMENT 0.10  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  $5.00/MILLION  BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

(000)
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)           (000)
                                             NET  COST
                                           OR SAVINGS<->
                                             PER  SCFM
                                              */SCFM
0.0000*/1000 SCF
0.0005*/1000 SCF
0.0010*/1000 SCF
0.0020*/1000 SCF
0.0040*/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000,
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58,
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
  17.
  42.
  81.
 179,
 293.
 513.

  17.
  42.
  81.
 179,
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179,
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
  0.
  2.
  8.
 31.
 77.
153.

  0.
  2.
  8.
 31.
 77.
153.

  0.
  2.
  8.
 31.
 77.
153.

  0.
  2.
  8.
 31.
 77.
153.

  0.
  2.
  8.
 31.
 77.
153.
  0.
  0,
  0.
  0.
  0.
  0.

  0.
  0,
  1.
  5.
 13.
 26.

  0.
  1.
  3.
 11 .
 26.
 53.

  0.
  1.
  5 *
 21 .
 53.
105.

  1.
  2.
 11.
 42.
105.
210.
 17.
 44.
 89.
209.
369.
666.

 17.
 43.
 88.
204.
356.
640.

 17.
 43,
 86.
199.
343.
613.

 17.
 43.
 84.
188.
317.
561.

 17.
 42.
 78.
167.
264.
456.
58.02
43.72
17.79
10.46
 7.39
 6.66

57.76
43,45
17.53
10.20
 7.13
 6.40

57.50
43.19
17.26
 9.94
 6.86
 6.13

56.97
42.66
16.74
 9.41
 6.34
 5.61

55,92
41.61
15.69
 8.36
 5.29
 4.56

-------
          OFFGAS  CARBON  REQUIREMENT  0.50   LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.3  LB  STEAM/  LB CARBON
                                                 AT *5.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0025*/1000 SCF
0.0050*/1000 SCF
 0.0100*/1000 SCF
 0.0200t/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671 .

  58.
  144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CREIHT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17,
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 513.

  17.
  42.
  81.
  179.
  293.
 , 513.
  0.
  1.
  7.
 28.
 70.
]40.

  0.
  1.
  7.
 28.
 70.
140.

  0.
  1,
  7.
 28,
 70.
140.

  0.
  1.
  7.
 28.
 70.
140.

  0.
  1.
  7.
 28.
 70.
140.
  0.
  0.
  0.
  0.
  0.
  0.

  0.
  1.
  7.
 26.
 66.
131.

  1.
  3.
 13.
 53.
131.
263.

  2.
  5.
 26,
 105.
263.
526,

  3.
  11.
  53.
 210.
 526.
1051.
                             NET
                          ANNUALIZED
                       COST  OR  CREDIT(-)
                             (000)
 17.
 44.
 88.
206.
363.
652.

 17.
 42.
 82.
180.
297.
521.

 17.
 41.
 75.
154.
231.
389.

 16.
 38.
 62.
101.
100.
127.

  14.
  33,
  36.
  -4.
-163.
-399.
                              NET COST
                            OR SAYINGS(-)
                              PER SCFM
                               t/SCFM
57.88
43.58
17.65
10.32
 7.25
 6.52

56.57
42.26
16.34
 9.01
 5.94
 5.21

55.26
40.95
15.02
 7.70
 4.62
 3.89

52.63
38.32
12.39
 5.07
 1.99
 1.27

47.37
33.06
 7. 14
-0.19
-3.26
-3,99

-------
          OFFGAS CARBON REQUIREMENT 0.50  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                                    AT *5.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0025*/1000 SCF
0.0050$/1000 SCF
0.0100$/1000 SCF
0.0200$/1000 SCF
 OFFGAS
  FLOU

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300,
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58,
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.
                                                       OPERATING COST-OR-CREDIT               NET
                                                 FIXED        UTILITIES        RECOVERY    ANNUALIZED
                                                 COST                           CREDIT   COST OR CREDIT(-)
                                                 (000)          (000)           (000)           (000)
 17.
 42.
 81 .
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81 .
179.
293.
513.
  1 .
  2.
  9.
 36.
 91 .
181.

  1.
  2.
  9.
 36.
 91.
181.

  1.
  2.
  9.
 36.
 91.
181.

  1,
  2.
  9.
 36.
 91.
181.

  1.
  2.
  9.
 36.
 91.
181.
   0.
   0.
   0.
   0.
   0.
   0.

   0.
   1.
   7.
  26.
  66.
 131.

   1 .
   3.
  13.
  53.
 131.
 263.

   2.
   5.
  26.
 105.
 263.
 526.

   3.
  11 .
  53.
 210.
 526.
1051.
  17.
  44.
  90.
 215.
 383.
 694.

  17.
  43,
  84.
 189.
 318.
 562.

  17.
  41 .
  77.
 162.
 252.
 431.

  16.
  39.
  64.
 110,
 121 .
 168.

  14.
  33.
  38.
   5.
-142,
-357.
                                                            NET COST
                                                          OR SAVINGS(-)
                                                            PER SCFM
                                                             $/SCFM
58.30
43.99
18.07
10.74
 7.67
 6.94

56.99
42.68
16.75
 9.43
 6.35
 5.62

55.67
41 .36
15.44
 8.11
 5.04
 4.31

53.04
38.74
12.81
 5.48
 2.41
 1.68

47.79
33.48
 7.55
 0.23
-2,85
-3.57

-------
          OFFGAS  CARBON  REQUIREMENT  0.50   LB  CARBON/1000  SCF
          STEAM  REGENERATION RATIO 1.0 LB  STEAM/  LB  CARBON
                                                 AT *5.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0025*/1000 SCF
0.0050*/1000 SCF
0.0100*/1000 SCF
 0.0200J/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000,
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955,
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179,
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 , 513.
                                                                   1 .
                                                                   2.
                                                                  12.
                                                                  47.
                                                                 118.
                                                                 237.
                                                                  12.
                                                                  47.
                                                                 118.
                                                                 237.
                                                                  12.
                                                                  47.
                                                                 118.
                                                                 237.
 12.
 47.
118.
237.

  1.
  2 t
 12.
 47.
118.
237.
                0.
                0.
                0.
                0.
                0.
                0.

                0.
                1 ,
                7.
                26.
                66.
               131.

                1 .
                3.
                13.
                53.
               131.
               263.
   5.
  26.
 105.
 263.
 526.

   3.
  11.
  53.
 210.
 526.
1051.
 18.
 45.
 93.
226.
411 .
749.

 17.
 43.
 87.
200.
345.
618.

 17.
 42.
 80.
 173.
280.
486.

  16.
  39.
  67.
 121 .
 148.
 224.

  15.
  34.
  41 .
  16.
-115.
-302,
                                            NET COST
                                          OR SAVINGS*-)
                                            PER SCFM
                                             */SCFM
58.85
44.55
18.62
11.29
 8.22
 7.49

57.54
43.23
17.31
 9.98
 6.91
 6.18

56.23
41.92
15.99
 8.67
 5.59
 4.86

53.60
39.29
13.36
 6.04
 2.96
 2.24

48.34
34.03
 8.11
 0.78
— 2,29
-3.02

-------
          OFFGAS CARBON REQUIREMENT 0,50  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT *5,00/MILLION BTU
    CREDIT
0,0000*/1000 SCF
0.0025$/1000 SCF
0.0050*/1000 SCF
0.0100*/1000 SCF
0.0200*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955,
1671.
                                                       OPERATING COST-OR-CREDIT               NET
                                                 FIXED        UTILITIES        RECOVERY    ANNUALIZED
                                                 COST                          CREDIT   COST OR CREDIT(-)
                                                 (000)          (000)           (000)           (000)
 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42,
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81,
179.
293.
513.
  1 .
  4.
 19.
 75.
188.
375.

  1.
  4.
 19.
 75.
188.
375,

  1.
  4,
 19.
 75.
188.
375.

  1.
  4.
 19.
 75,
188.
375.

  1.
  4,
 19.
 75,
188.
375.
   0.
   0.
   0.
   0.
   0.
   0,

   0.
   1 .
   7.
  26.
  66.
 131.

   1 .
   3.
  13.
  53.
 131 .
 263.
   5.
  26.
 105,
 263.
 526.

   3.
  11.
  53.
 210.
 526.
1051.
  18.
  46.
 100.
 254.
 480.
 888.

  18.
  45,
  93.
 227.
 415.
 756.

  17.
  43.
  87.
 201 .
 349.
 625.

  16.
  41.
  74.
 148.
 217.
 362.

  15.
  35.
  47,
  43.
 -45.
-164.
                                                            NET COST
                                                          OR SAVINGS(-)
                                                            PER SCFM
                                                             */SCFM
60.24
45.93
20.01
12.68
 9.61
 8.88

58.92
44,62
18.69
11.37
 8.29
 7.56

57.61
43.30
17.38
10.05
 6.98
 6.25

54.98
40.68
14.75
 7.42
 4.35
 3.62

49.73
35.42
 9.49
 2.17
-0.91
-1 .64

-------
          OFFGAS CARBON REQUIREMENT 1,00  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3 LB STEAM/  LB  CARBON
                                                  AT  tS.OO/MILLION  BTU
    CREDIT
0.0000$/1000 SCF
0.0050*/1000 SCF
0.0100*/1000 SCF
0.0200$/1000 SCF
 0.0400*/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000,
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREHIT   COST OR CREIHT(-)
(000)          (000>          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42,
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
  1.
  2.
  9.
 36.
 91 .
181.

  1.
  2.
  9.
 36,
 91.
181.

  1 .
  2.
  9.
 36.
 91 .
181 .

  1.
  2.
  9.
 36.
 91.
181 .

  1.
  1
  9.
 36,
 91.
181.
  0.
  0.
  0.
  0.
  0.
  0,

  1 .
  3.
  13.
  53.
 131.
 263.

  2.
  5.
  26.
 105.
 263.
 526.

  3.
  11.
  53.
 210.
 526.
1051.

  6.
  21 .
 105.
 420.
1051.
2102.
  17.
  44.
  90.
 215.
 383.
 694.

  17.
  41 .
  77.
 162.
 252.
 431 .

  16.
  39.
  64.
 110.
 121.
 168.

  14.
  33.
  38.
    5.
 -142.
 -357.

  11 .
  23.
 -15.
 -206.
 -668.
-1409.
                                             NET COST
                                           OR SAVINGS(-)
                                             PER SCFM
                                              */SCFM
58.30
43.99
18.07
10.74
  7.67
  6.94

55.67
41 .36
15.44
  8.11
  5.04
  4.31

53.04
38.74
12.81
  5.48
  2.41
  1.68

47.79
33.48
  7.55
  0.23
-2.85
-3.57

37.28
 22.97
 -2.96
-10.28
-13.36
-14.09

-------
          OFFGAS CARBON REQUIREMENT 1.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                                    AT *5.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0050*/1000 SCF
0.0100*/1000 SCF
0.0200$/1000 SCF
0.0400$/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300,
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81,
 179.
 293.
 513.
  1.
  3.
 13.
 53.
132,
264.

  1.
  3.
 13.
 53,
132.
264.

  1.
  3.
 13.
 53.
132.
264.

  1.
  3.
 13.
 53.
132.
264.

  1 .
  3.
 13.
 53.
132.
264.
   0.
   0.
   0.
   0.
   0.
   0.

   1 .
   3.
  13.
  53,
 131 .
 263.
   5.
  26.
 105.
 263.
 526.

   3.
  11 .
  53.
 210,
 526.
1051.

   6.
  21.
 105,
 420.
1051.
2102.
   18.
   45.
   94.
  231 .
  425.
  777,

   17.
   42.
   81 .
  179.
  293.
  514.

   16.
   40.
   68.
  126.
  162.
  251.

   15.
   34.
   42.
   21.
 -101 .
 -274.

   11.
   24.
  -11 .
 -189.
 -626.
-1326,
                                                                                                              NET COST
                                                                                                            OR SAVINGS(-)
                                                                                                              PER SCFM
                                                                                                               */SCFM
 59.13
 44.82
 18.90
 11 .57
  8.50
  7.77

 56.50
 42.20
 16.27
  8.94
  5.87
  5.14

 53.87
 39.57
 13.64
  6.32
  3.24
  2.51

 48.62
 34.31
  8.39
  1,06
 -2.01
 -2.74

 38. 11
 23.80
 -2. 13
 -9.45
-12.53
-13.26

-------
          OFFGAS CARBON REQUIREMENT 1.00  LB CARBON/1000  SCF
          STEAM REGENERATION RATIO 1,0 LB STEAM/ LB  CARBON
                                                  AT  $5,00/MILLION  BTU
    CREDIT
0.0000$/1000 SCF
0.00504/1000 SCF
0.0100$/1000 SCF
0.0200$/1000 SCF
0.0400t/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671,

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671 .
      OPERATING COST-OR-CREPIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513,

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  61 .
 179.
 293.
 513.
  1.
  4.
 19.
 75.
188.
375.

  1 .
  4,
 19.
 75.
188.
375.

  1.
  4.
 19.
 75.
188.
375.

  1 .
  4.
 19.
 75.
188.
375.

  1.
  4.
 19.
 75.
188.
375.
   0.
   0.
   0.
   0.
   0.
   0.

   1.
   3.
  13.
  53.
 131.
 263.
   5.
  26.
 105.
 263.
 526.

   3.
  11 .
  53.
 210.
 526.
1051.

   6.
  21 .
 105.
 420.
1051.
2102.
   18.
   46.
  100.
  254.
  480.
  888.

   17.
   43.
   87,
  201.
  349.
  625.

   16.
   41 .
   74.
  148.
  217.
  362.

   15.
   35.
   47.
   43.
  -45.
 -164.

   12.
   25.
   ~ \J *
 -167.
 -571 .
-1215.
                                             NET COST
                                           OR SAYINGS(-)
                                             PER SCFM
                                              */SCFM
 60.24
 45.93
 20.01
 12.68
  9.61
  8.88

 57.61
 43.30
 17.38
 10.05
  6.98
  6.25

 54.98
 40.68
 14.75
  7.42
  4,35
  3.62

 49.73
 35.42
  9.49
  2.17
 -0.91
 -1 .64

 39.21
 24.91
 -1 .02
 -8.34
-11.42
-12.15

-------
          OFFGAS CARBON REQUIREMENT 1,00  LB CARBON/1000  SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB  CARBON
                                                  AT  $5.00/MILLION  BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

(000)
      OPERATING COST-OR-CREIHT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
                                             NET COST
                                           OR SAYINGS(-)
                                             PER SCFM
                                              $/SCFM
0.0000*/1000 SCF
0.0050*/1000 SCF
0.0100*/1000 SCF
0.0200$/1000 SCF
0.0400$/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000,
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671 .
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513,

  17,
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.
  2.
  7.
 33.
130.
326.
652.

  2.
  7.
 33.
130.
326.
652.

  2.
  7.
 33.
130.
326.
652.

  2.
  7,
 33,
130.
326.
652.

  2.
  7.
 33.
130,
326,
652.
   0.
   0.
   0.
   0.
   0.
   0.

   1.
   3.
  13.
  53.
 131,
 263.

   2.
   5.
  26.
 105.
 263.
 526.

   3.
  11.
  53,
 210.
 526.
1051 ,

   6.
  21.
 105.
 420.
1051 ,
2102.
  19.
  49.
 114.
 309.
 619.
1165.

  18.
  46.
 101 .
 256.
 487.
 902.

  17.
  43,
  88.
 204.
 356.
 639.

  16.
  38.
  61.
  99.
  93.
 113.

  13.
  28.
   9.
-112.
-432.
-938.
63.01
48.70
22.78
15.45
12.37
11 .65

60.38
46.07
20.15
12.82
 9.75
 9.02

57.75
43.45
17.52
10.19
 7.12
 6.39

52.50
38.19
12.26
 4.94
 1 .86
 1.13

41 .98
27.68
 1 .75
-5.58
-8.65
-9.38

-------
          OFFGAS  CARBON REQUIREMENT  1.39   LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 0,3 LB  STEAM/  LB  CARBON
                                                 AT tS.OO/MILLION BTU
    CREDIT
0.0000$/1000 SCF
0.0070*/1000 SCF
0.0139*/1000 SCF
0.0279*/1000 SCF
 0.0557$/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREUIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513,

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
  1.
  2.
 11.
 43.
107.
214.

  1.
  2.
 11.
 43.
107.
214.
 11 .
 43.
107.
214.

  1 .
  2.
 11 .
 43.
107.
214.

  1 .
  2,
 11 .
 43.
107.
214.
  0.
  0.
  0.
  0.
  0.
  0.

  1 .
  4.
  18.
  73.
 183.
 366.

  2.
  7.
  37.
 146.
 366.
 732.

  4.
  15.
  73.
 293.
 732.
1464.

   9.
  29.
 146.
 586.
1464.
2929.
  18.
  44.
  92.
 221.
 400.
 726.

  16.
  41 .
  74.
 148.
 217.
 360.

  15.
  37.
  55.
  75.
  34.
  -6.

  13.
  30.
  19.
 -72,
 -333.
 -738.

    9.
  15.
 -54.
 -364.
-1065,
-2202.
                                             NET COST
                                           OR SAVINGS(-)
                                             PER SCFM
                                              $/SCFM
58.63
44.32
18.39
11 .07
  7.99
  7.26

54.96
40.66
14.73
  7.41
  4.33
  3.60

51.30
37.00
11.07
  3.75
  0.67
-0.06

43.98
29.68
  3.75
-3.58
-6.65
-7.38

29.34
 15.03
-10.89
-18.22
-21.29
-22.02

-------
          OFFGAS CARBON REQUIREMENT 1.39  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT »5.00/MILLION  BTU
    CREDIT
0.0000$/1000 SCF
0.0070$/1000 SCF
0.0139*/1000 SCF
0.0279*/1000 SCF
0.0557*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
                                                       OPERATING COST-OR-CREDIT
                                                 FIXED        UTILITIES        RECOVERY
                                                 COST                          CREDIT
                                                 (000)          (000)           (000)
 17.             1.             0.
 42.             3.             0.
 81,            16.             0.
179.            66,             0.
293.           165.             0.
513.           330.             0.

 17.             1.             1.
 42.             3.             4.
 81.            16.            18.
179.            66.            73.
293.           165.           183.
513.           330.           366.

 17.             1.             2.
 42.             3.             7.
 81.            16.            37.
179.            66.           146.
293.           165,           366.
513.           330.           732.

 17.             1.             4.
 42.             3.            15.
 81.            16.            73,
179.            66.           293.
293,           165.           732.
513.           330.          1464.

 17.             1,             9.
 42.             3.            29.
 81.            16.           146.
179.            66.           586.
293,           165.          1464.
513.           330.          2929.
                                            NET
                                         ANNUALIZED
                                      COST OR CREDIT(-)
                                            (000)
   18.
   45.
   98.
  244.
  458.
  842.

   17.
   42.
   79.
  171.
  274.
  476.

   16.
   38.
   61.
   98.
   91 .
  110.

   14.
   31.
   25.
  -48.
 -275.
 -622.

    9.
   16.
  -49.
 -341.
-1007.
-2087.
                 NET COST
               OR SAWINGS(-)
                 PER SCFM
                  */SCFM
 59.78
 45.48
 19.55
 12.22
  9. 15
  8.42

 56. 12
 41 .82
 15.89
  8.56
  5.49
  4.76

 52.46
 38.15
 12.23
  4.90
  1.83
  1 .10

 45.14
 30.83
  4.91
 -2.42
 -5.49
 -6.22

 30.50
 16.19
 -9.74
-17.06
-20.14
-20.87

-------
          OFFGAS CARBON REQUIREMENT  1.39   LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/  LB  CARBON
                                                 AT *5.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0070*/1000 SCF
0.0139$/1000 SCF
0.0279*/1000 SCF
 0.0557$/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000,

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000,
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81,
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
  1.
  5.
 24.
 97.
242.
484.

  1 .
  5,
 24.
 97.
242.
484.

  1.
  5.
 24.
 97.
242.
484.

  1.
  5.
 24.
 97.
242.
484.

  1.
  5.
 24.
 97.
242.
484.
  0.
  0.
  0.
  0.
  0.
  0.

  1 .
  4.
  18.
  73.
 183.
 366.

  2.
  7.
  37.
 146.
 366.
 732.

  4.
  15.
  73.
 293.
 732.
1464.

  9.
  29.
 146.
 586.
1464.
2929.
                             NET
                          ANNUALIZED
                       COST OR CREDIT(-)
                             (000)
  18,
  47.
 105.
 275.
 535.
 996.

  17.
  43.
  87.
 202.
 352.
 630.

  16.
  40.
  69.
 129.
 169.
 264.

  14.
  32.
  32.
 -18.
 -197.
 -468.

  10.
  18.
 -41 .
 -310.
 -930,
-1932,
                              NET COST
                            OR SAVINGS(-)
                              PER SCFM
                               */SCFM
61.33
47.02
21 .09
13.77
10.69
 9.96

57.67
43.36
17.43
10.11
 7.03
 6.30

54.00
39.70
13.77
 6.45
 3.37
 2.64

46.68
32.38
 6.45
-0.88
-3.95
-4.68

32.04
 17.73
-8.19
-15.52
-18.59
-19.32

-------
          OFFGAS CARBON REQUIREMENT 1.39  LB CARBON/1000 SCF
          STEAh REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT *5.00/MILLION  BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

(000)
                                                 FIXED
                                                 COST
                                                 (000)
      OPERATING COST-OR-CREDIT
             UTILITIES
                                                                (000)
                             NET
              RECOVERY    ANNUALIZED
              CREDIT   COST OR CREDIT(-)
              (000)          (000)
                               NET COST
                             OR SAVINGS(-)
                               PER SCFM
                                J/SCFM
0.0000$/1000 SCF
0.0070$/1000 SCF
0.0139*/1000 SCF
0.0279$/1000 SCF
0.0557$/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000,
100000.
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
  17.
  42.
  81 .
 179,
 293.
 513.

  17.
  42,
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513,

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
. 513.
  3.
  9.
 43.
174,
435.
870.

  3.
  9.
 43.
174.
435.
870.

  3.
  9.
 43.
174.
435.
870.

  3.
  9.
 43.
174.
435.
870.

  3.
  9.
 43.
174.
435.
870.
   0.
   0.
   0.
   0.
   0.
   0.

   1.
   4.
  18.
  73.
 183.
 366.

   2.
   7.
  37.
 146.
 366.
 732.

   4.
  15.
  73,
 293.
 732.
1464.

   9.
  29.
 146.
 586.
1464.
2929.
   20.
   51 .
  125.
  353.
  728.
 1382.

   16.
   47,
  106.
  279.
  545.
 1016.

   17.
   44.
   88.
  206.
  362.
  650.

   15.
   36.
   52.
   60.
   -5.
  -82.

   11 .
   22.
  -22.
 -233.
 -737.
-1546,
 65.19
 50.88
 24.95
 17.63
 14.55
 13.82

 61 .52
 47.22
 21.29
 13,97
 10.89
 10.16

 57.86
 43.56
 17.63
 10.30
  7.23
  6.50

 50.54
 36.24
 10.31
  2.96
 -0.09
 -0.82

 35.90
 21 .59
 -4.33
-11.66
-14.73
-15.46

-------
          OFFGAS  CARBON REQUIREMENT  2.00   LB  CARBON/1000  SCF
          STEAM  REGENERATION RATIO 0.3  LB  STEAM/  LB  CARBON
                                                 AT *5.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0100*/1000 SCF
0.0200*/1000 SCF
 0.0400*/1000  SCF
 0.0800*/1000 SCF
OFFGAS
  FLOW

SCFM
   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.

   300.
   1000.
   5000.
 20000.
 50000.
 100000.

   300.
   1000.
   5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
 1671.

  58.
  144.
 273.
  594.
 955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CRFDIT(-)
(000)          (000)          <000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179,
 293.
 513.

  17.
  42.
  81,
  179.
 293.
  513.

   17.
   42.
   81.
  179.
  293.
  513.

   17.
   42.
   81.
  179,
  293,
 , 513.
  1 .
  3.
 13.
 53.
132.
264.

  1 .
  3.
 13.
 53.
132.
264.

  1 .
  3.
 13.
 53.
132.
264.

  1.
  3.
 13.
 53.
132.
264.

  1.
  3.
  13.
  53.
 132.
 264.
  0.
  0.
  0.
  0.
  0.
  0.

  2.
  5,
  26.
 105.
 263.
 526.

  3.
  11 .
  53.
 210.
 526.
1051.

   6.
  21.
 105.
 420.
1051.
2102.

  13.
  42.
 210.
 841 .
2102.
4205.
  18.
  45.
  94.
 231.
 425.
 777.

  16.
  40.
  68.
 126.
 162.
 251.

  15.
  34,
  42.
  21.
 -101 .
 -274,

   11 .
   24,
  -11.
 -189.
 -626.
-1326.

    5.
    3.
 -116.
 -610,
-1678.
-3428.
                                             NET  COST
                                           OR SAVINGS(-)
                                             PER  SCFM
                                              */SCF«
59.13
44.82
18.90
11 .57
 8.50
 7.77

53.87
39.57
13.64
 6.32
 3.24
 2.51

48.62
34.31
  8.39
  1.06
-2.01
-2.74

38.11
23.80
 -2.13
 -9.45
-12.53
-13.26

 17.08
  2.78
-23,15
-30.48
-33.55
-34.28

-------
          OFFGAS CARBON REQUIREMENT 2,00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                                    AT *5.00/MILLION BTU
    CREDIT
0.0000$/1000 SCF
0.0100$/1000 SCF
0.0200*/1000 SCF
0.04004/1000 SCF
0.0800$/1000 SCF
                   OFFGAS
                    FLOW

                   SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
                CAPITAL
                 COST

                <000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
                     OPERATING COST-OR-CREniT               NET
               FIXED        UTILITIES        RECOVERY    ANNUALIZED
               COST                          CREDIT   COST OR CREDIT(-)
               (000)          <000)           (000)          (000)
 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81 .
179.
293.
513.
  1.
  4.
 22.
 86.
215.
430,

  1 ,
  4.
 22.
 86.
215.
430.

  1 .
  4.
 22.
 86,
215.
430.

  1 .
  4.
 22,
 86.
215,
430.

  1.
  4.
 22.
 86.
215.
430.
   0.
   0.
   0.
   0.
   0.
   0.

   2.
   5.
  26.
 105.
 263.
 526.

   3.
  11.
  53.
 210.
 526.
1051.

   6.
  21.
 105,
 420.
1051.
2102.

  13.
  42.
 210.
 841.
2102.
4205.
   18.
   46.
  103.
  265.
  508.
  943.

   17,
   41 .
   77.
  160.
  245.
  417.

   15.
   36.
   50.
   54.
  -18.
 -108.

   12.
   25.
   -2.
 -156.
 -543.
-1159.

    6.
    4.
 -107.
 -576.
-1594.
-3262.
                                                            NET COST
                                                          OR SAVINGS(-)
                                                            PER SCFM
                                                             */SCFM
 60,79
 46.49
 20.56
 13.23
 10. 16
  9.43

 55.54
 41 .23
 15.30
  7.98
  4.90
  4.17

 50.28
 35.97
 10.05
  2.72
 -0.35
 -1 .08

 39.77
 25.46
 -0.46
 -7.79
-10.86
-11.59

 18.74
  4.44
-21.49
-28.81
-31.89
-32.62

-------
          OFFGAS  CARBON  REQUIREMENT  2.00   LB  CARBON/1000 SCF
          STEAH REGENERATION  RATIO  1.0  LB  STEAH/  LB CARBON
                                                 AT *5.00/MILLION BTU
    CREDIT
0,0000*71000 SCF
0.0100*71000 SCF
0.0200*71000 SCF
 0.0400*71000  SCF
 0.0800*71000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

<000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
 1671.

  58.
  144,
 273.
 594.
 955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671,
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          <000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17,
  42,
  81.
  179.
 293.
 513.

   17.
   42.
   81.
  179.
  293.
 > 513,
  2.
  7.
 33.
130.
326.
652.

  2.
  7.
 33.
130.
326.
652.

  2.
  7.
 33.
130.
326.
652.

  2.
  7.
 33.
130.
326,
652.

  2.
  7,
 33,
 130.
326.
652.
                                                                                  0.
                                                                                  0.
                                                                                  0.
                                                                                  0.
                                                                                  0.
                                                                                  0.
   5.
  26.
 105.
 263,
 526.

   3.
  11 .
  53.
 210.
 526.
1051.

   6.
  21.
 105.
 420.
1051.
2102.

  13.
  42.
 210.
 841,
2102.
4205,
                             NET
                          ANNUALIZED
                       COST  OR  CREDIT(-)
                             (000)
  19.
  49.
 114.
 309.
 619.
1165.

  17.
  43.
  88.
 204.
 356.
 639.

  16.
  38.
  61 .
  99.
  93.
  113.

  13.
  28.
    9.
 -112.
 -432.
 -938.

    6.
    7.
  -96.
 -532.
-1484.
-3040.
                              NET COST
                            OR SAVINGS(-)
                              PER SCFM
                               */SCFM
63.01
48.70
22.78
15.45
12.37
11.65

57.75
43.45
17.52
10.19
 7.12
 6.39

52.50
38.19
12.26
 4.94
 1.86
 1.13

41.98
27.68
  1.75
-5.58
-8.65
-9.38

20.96
  6.65
-19.27
-26.60
-29.67
-30.40

-------
          OFFGAS CARBON REQUIREMENT 2.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                                    AT *5.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0100*/1000 SCF
0.0200$/1000 SCF
0.0400*/1000 SCF
0.0800*/1000 SCF
 OFFGAS
  FLOU

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
                                                       OPERATING COST-OR-CREDIT               NET
                                                 FIXED        UTILITIES        RECOVERY    ANNUALIZED
                                                 COST                          CREDIT    COST  OR CREDIT(-)
                                                 (000)          (000)           (000)           (000)
 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513,

 17.
 42.
 81 .
179.
293.
513.
   4.
  12.
  60.
 241.
 603.
1206.

   4.
  12,
  60.
 241.
 603.
1206.

   4.
  12.
  60.
 241.
 603.
1206.

   4,
  12.
  60.
 241.
 603.
1206.

   4.
  12.
  60.
 241.
 603.
1206.
   0.
   0.
   0.
   0.
   0.
   0.

   2,
   5.
  26.
 105.
 263.
 526.

   3.
  11.
  53.
 210.
 526.
1051.

   6.
  21.
 105.
 420.
1051 .
2102.

  13.
  42.
 210.
 841.
2102.
4205.
   21.
   54.
  142.
  420.
  896.
 1719.

   19.
   49.
  115.
  315.
  633.
 1193.

   17.
   44.
   89,
  210,
  370,
  667,

   14,
   33,
   36,
   -1.
 -155.
 -384.

    8.
   12.
  -69.
 -421.
-1207.
-2486.
                                                            NET COST
                                                          OR SAVINGS(-)
                                                            PER SCFM
                                                             */SCFM
 68.55
 54.24
 28.32
 20.99
 17.91
 17.19

 63.29
 48.99
 23.06
 15.73
 12.66
 11 .93

 58.04
 43.73
 17.80
 10.48
  7.40
  6.67

 47.52
 33.22
  7.29
 -0.04
 -3.11
 -3.84

 26.50
 12.19
-13.73
-21.06
-24.13
-24.86

-------
          OFFGAS  CARBON REQUIREMENT  5.00   LB  CARBON/1000  SCF
          STEAM  REGENERATION RATIO 0.3 LB  STEAh/  LB  CARBON
                                                 AT $5.00/MILLION BTU
    CREDIT
O.OOOOt/1000 SCF
0.0250*/1000 SCF
0.0500*/1000 SCF
 0.1000*71000  SCF
 0.2000*71000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
 20000,
 50000.
100000,

   300.
   1000.
   5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

(000)
  58,
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
  144.
 273.
  594.
 955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT               NET
FIX£D        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 513.

   17.
   42.
   81 .
  179.
  293.
 , 513.
  2.
  5.
 26.
103.
257.
514.

  2.
  5.
 26.
103.
257.
514,

  2.
  5.
 26.
103.
257.
514.

  2.
  5.
 26.
103.
257.
514.

  2.
  5.
 26.
 103.
257.
514.
   0.
   0.
   0.
   0.
   0.
   0.

   4.
  13.
  66.
 263.
 657.
1314.

   8.
  26.
 131.
 526.
1314.
2628.

  16.
  53.
 263.
1051.
2628.
5256.

  32.
  105.
  526.
2102.
5256.
10512.
   18.
   47.
  107.
  281.
  550.
 1026.

   15.
   34.
   41.
   18.
 -107.
 -288.

   11.
   21 .
  -24.
 -244.
 -764.
-1602.

    3.
   — 5.
 -156.
 -770.
-2078.
-4230.

  -13.
  -58.
 -419.
-1821 .
-4706.
-9486,
                                             NET  COST
                                           OR SAVINGS(-)
                                             PER  SCFM
                                              */SCFM
61.62
47.32
21.39
14.06
10.99
10.26

48.48
34.18
  8.25
  0.92
-2.15
-2.88

 35.34
 21.04
 -4.89
-12.22
-15.29
-16.02

  9.06
 -5.24
-31.17
-38.50
-41.57
-42.30

-43.50
-57.80
-83.73
-91.06
-94.13
-94.86

-------
          OFFGAS CARBON REQUIREMENT 5.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT  *5.00/MILLION  BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

(000)
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
                             NET
                          ANNUALIZED
                       COST  OR CREDIT(-)
                             (000)
                                NET  COST
                              OR  SAVINGS(-)
                                PER  SCFM
                                 */SCFM
0.0000$/1000 SCF
0.0250*/1000 SCF
0.0500*/1000 SCF
0,1000*/1000 SCF
 0.2000*/1000  SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000,

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179,
 293.
 , 513.
  3.
  9.
 46.
186.
464,
929.

  3.
  9.
 46.
186.
464.
929.

  3.
  9.
 46.
186.
464,
929.

  3.
  9.
 46.
186.
464.
929.

  3.
  9.
 46.
186,
464.
929.
   0.
   0.
   0.
   0.
   0.
   0.

   4.
   13.
   66.
  263.
  657.
 1314.

   8.
   26.
  131.
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.
   20.
   51.
  128.
  364.
  757.
 1442.

   16.
   38,
   62.
  102.
  100.
  128.

   12.
   25.
   -4.
 -161 .
 -557.
-1186.

    4.
   -1.
 -135.
 -687.
-1871 .
-3814.

  -12.
  -54.
 -398.
-1738.
-4499.
-9070.
 65.78
 51 .47
 25.55
 18.22
 15.14
 14.42

 52.64
 38.33
 12.41
  5.08
  2.00
  1.28

 39.50
 25.19
 -0.73
 -8.06
-11.14
-11.86

 13.22
 -1.09
-27.01
-34.34
-37.42
-38.14

-39.34
-53.65
-79.57
-86.90
-89.98
-90.70

-------
          OFFGAS  CARBON REQUIREMENT  5.00  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/  LB  CARBON
                                                 AT *5.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0250*/1000 SCF
0.0500t/1000 SCF
 0.10004/1000  SCF
 0,2000$/1000  SCF
 OFFGAS
  FLOU

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671 .

  58.
  144.
 273.
  594.
 955.
 1671 .
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 > 513.
   4.
  15.
  74.
 297 .
 741 .
1483.

   4.
  15.
  74.
 297.
 741.
1483.

   4.
  15.
  74,
 297.
 741.
1483.

   4.
  15,
  74.
 297.
 741 ,
1483.

   4.
  15.
  74.
 297.
 741,
1483.
   0.
   0.
   0.
   0.
   0.
   0.

   4.
   13.
   66.
 263.
 657.
 1314.

   8.
   26.
 131.
 526.
 1314.
 2628.

   16.
   53,
 263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.
   21 .
   57.
  155.
  475.
 1034.
 1996.

   17.
   44.
   90.
  212.
  377.
  682.

   14.
   31.
   24.
  -50.
 -280.
 -632,

    6,
    4.
 -107.
 -576.
-1594.
-3260.

  -10.
  -48.
 -370.
-1627.
-4222.
-8516.
                                              NET  COST
                                            OR SAVINGS(-)
                                              PER  SCFM
                                               t/SCFM
71.32
57.01
31.09
23.76
20.68
19.96

58. 18
43.87
17.95
10.62
  7.54
  6.82

45.04
30.73
  4,81
- ° * 52
-5.60
-6.32

 18.76
  4.45
-21.47
-28.80
-31.88
-32.60

-33.80
-48. 11
-74.03
-81 .36
-84.44
-85.16

-------
          OFFGAS CARBON REQUIREMENT 5.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                                    AT *5.00/MILLION BTU
    CREDIT
0.0000$/1000 SCF
0,0250*/1000 SCF
0.0500$/1000 SCF
0.1000*/1000 SCF
0.2000*/1000 SCF
                   OFFGAS
                    FLOW

                   SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.
                CAPITAL
                 COST

                (000)
  58.
 144.
 273.
 594.
 955.
1671.

  58,
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955,
1671.

  58.
 144.
 273.
 594.
 955,
1671.
                     OPERATING COST-OR-CREDIT               NET
               FIXED        UTILITIES        RECOVERY    ANNUALIZED
               COST                          CREDIT   COST OR CREDIT(-)
               (000)          (000)           (000)           (000)
 17.
 42.
 81.
 179.
 293,
 513.

 17,
 42.
 81,
 179,
 293.
 513.

 17.
 42.
 81.
 179.
 293.
 513.

 17.
 42.
 81.
 179.
 293,
 513.

 17,
 42.
 81,
 179.
293,
 513,
   9,
  29.
 143.
 574.
1434.
2868.

   9.
  29.
 143.
 574.
1434.
2868.

   9.
  29.
 143.
 574.
1434.
2868.

   9.
  29.
 143.
 574.
1434.
2868.

   9.
  29.
 143.
 574.
1434.
2868.
    0.
    0.
    0.
    0.
    0.
    0.

    4.
   13.
   66.
  263.
  657.
 1314.

    8.
   26.
  131.
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051 .
 2628.
 5256.

   32,
  105.
  526.
 2102.
 5256.
10512.
   26.
   71.
  225.
  752.
 1727.
 3381.

   22.
   58.
  159.
  489.
 1070.
 2067.

   18.
   45.
   93.
  227.
  413.
  753.

   10.
   18.
  -38.
 -299.
 -901 .
-1875.

   -6.
  -34.
 -301.
-1350.
-3529.
-7131.
                                                             NET  COST
                                                           OR  SAVINGS(-)
                                                             PER  SCFM
                                                              $/SCFM
 85.17
 70.86
 44.93
 37.61
 34.53
 33.81

 72.03
 57.72
 31.79
 24.47
 21.39
 20.67

 58.89
 44.58
 18.65
 11.33
  8.25
  7.53

 32.61
 18.30
 -7,63
-14.95
-18.03
-18.75

-19.95
-34. 2*
-60.19
-67.51
-70.59
-71.31

-------
          OFFGAS  CARBON  REQUIREMENT  6.96   LB  CARBON/1000 SCF
          STEAM REOENERATION RATIO 0,3 LB  STEAM/  LB  CARBON
                                                 AT $5.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0348*/1000 SCF
0.0696*/1000 SCF
0,1392*/1000 SCF
 0.2784J/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000,

   300.
  1000.
  5000,
 20000,
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREIHT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179,
 293.
 513.

  17,
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 , 513.
  2.
  7.
 34,
135.
338.
676.

  2.
  7.
 34.
135.
338.
676.

  2.
  7.
 34,
135.
338.
676.

  2.
  7.
 34.
135.
338.
676.

  2.
  7,
 34,
135.
338,
676.
   0.
   0.
   0.
   0.
   0.
   0.

   5.
   18.
   91.
  366.
  915.
 1829.

   11.
   37.
  183.
  732.
 1829.
 3658.

   22.
   73,
  366.
 1463.
 3658.
 7316.

   44.
  146.
  732.
 2927.
 7316.
14633.
   19.
   49.
  115.
  314,
  631.
  1189.

   13.
   31.
   24.
  -52.
  -284.
  -640.

     8.
   12.
  -68.
  -418.
 -1198.
 -2469,

   -3.
  -24.
  -251.
 -1149.
 -3027.
 -6127.

  -25.
  -97,
  -617,
 -2613,
 -6685,
-13444,
                                             NET COST
                                           OR SAUINGS(-)
                                             PER SCFM
                                              $/SCFM
 63.25
 48.95
 23.02
 15.69
 12.62
 11.89

 44.96
 30.65
   4.73
 -2,60
 -5.67
 -6.40

 26.67
 12.36
 -13.56
 -20.89
 -23.96
 -24.69

 -9.91
 -24.22
 -50.14
 -57.47
 -60.54
 -61.27

 -83.08
 -97.38
-123.31
-130.63
-133.71
-134.44

-------
          OFFGAS CARBON REQUIREMENT 6.96  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT *5.00/MILLION  BTU
    CREDIT
0,0000$/1000 SCF
0.0348*/1000 SCF
0.0696S/1000 SCF
0.1392*/1000 SCF
0,2784*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
,513.
   4.
  13.
  63.
 251.
 627.
1255.

   4.
  13.
  63.
 251.
 627.
1255.

   4.
  13,
  63.
 251.
 627.
1255.

   4.
  13.
  63.
 251.
 627.
1255.

   4.
  13.
  63.
 251.
 627.
1255.
    0.
    0.
    0.
    0.
    0.
    0.

    5.
   18.
   91.
  366.
  915.
 1829.

   11.
   37.
  183.
  732.
 1829.
 3658.

   22.
   73.
  366.
 1463.
 3658.
 7316.

   44.
  146.
  732.
 2927,
 7316.
14633.
    21.
    55.
   144.
   430.
   920.
  1767.

    15.
    36.
    53.
    64.
     6.
   -62.

    10.
    18,
   -39.
  -302.
  -909.
 -1891.

    -1 .
   -18.
  -222.
 -1034.
 -2738.
 -5549.

   -23.
   -92.
  -588.
 -2497.
 -6396.
-12865.
                                                                                                              NET COST
                                                                                                            OR SAVINGS(-)
                                                                                                              PER SCFM
                                                                                                               $/SCFM
  69.04
  54.73
  28.80
  21 .48
  18.40
  17.67

  50.74
  36.44
  10.51
   3.19
   0.11
  -0.62

  32.45
  18.15
  -7.78
 -15.11
 -18. 18
 -18.91

  -4.13
 -18.43
 -44.36
 -51.69
 -54.76
 -55.49

 -77.29
 -91.60
-117.52
-124.85
-127.92
-128.65

-------
          OFFGAS CARBON REQUIREMENT 6.96  LB  CARBON/1000  BCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/ LB CARBON
                                                 AT *5.00/MILLION BTU
    CREDIT
0.0000$/1000 SCF
0.0348*/1000 SCF
0.0696*/1000 SCF
0.1392t/1000  SCF
 0.2784$/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)           (000)
                                                                                                              NET COST
                                                                                                            OR
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 > 513.
   6.
  20.
 101.
 405.
1013.
2026.

   6.
  20.
 101.
 405.
1013.
2026.

   6.
  20.
 101.
 405.
1013.
2026.

   6.
  20.
 101.
 405,
1013.
2026.

   6.
  20.
 101 .
 405.
1013,
2026.
   0.
   0.
   0.
   0.
   0.
   0.

   5.
   18.
   91.
 366.
 915.
 1829.

   11.
   37.
 183.
 732.
 1829.
 3658.

   22.
   73.
 366.
 1463.
 3658.
 7316.

   44.
  146.
  732.
 2927.
 7316.
14633.
   23.
   62.
  183.
  584.
 1306.
 2538.

   18.
   44.
   91 .
  218.
  391.
  709.

   12.
   26.
   -0.
 -148.
 -523.
 -1120.

     1 ,
  -11.
 -183.
 -880.
 -2352.
 -4778.

  -21.
  -84.
 -549.
 -2343.
 -6011.
-12094,
                                                                                                              PER SCFM
                                                                                                               */SCFM
 76.75
 62.44
 36.51
 29.19
 26.11
 25.38

 58.46
 44,15
 18.22
 10.90
   7.82
   7.09

 40.16
 25.86
 -0.07
 -7.39
 -10.47
 -11.20

   3.58
 -10.72
 -36.65
 -43.98
 -47.05
 -47.78

 -69.58
 -83.89
-109.81
-117.14
-120.21
-120.94

-------
          OFFGAS CARBON REQUIREMENT 6.96  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  *5.00/MILLION  BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

<000)
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
                              NET
                           ANNUALIZED
                        COST OR CREDIT(-)
                              (000)
                                NET COST
                              OR SAVINGS(-)
                                PER SCFM
                                 »/SCFM
0,0000*/1000 SCF
0.0348*/1000 SCF
0.0696*/1000 SCF
0.1392*/1000 SCF
0.2784$/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000,

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000,

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955,
1671.
  17.
  42.
  81,
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513,
  12.
  40.
 198.
 791.
1977.
3954.

  12.
  40.
 198.
 791.
1977 .
3954.

  12.
  40.
 198.
 791.
1977.
3954.

  12.
  40.
 198.
 791.
1977.
3954.

  12.
  40.
 198.
 791.
1977.
3954.
    0.
    0.
    0.
    0.
    0.
    0.

    5.
   18.
   91.
  366.
  915.
 1829.

   11.
   37.
  183.
  732.
 1829.
 3658.

   22.
   73.
  366.
 1463.
 3658.
 7316.

   44.
  146.
  732.
 2927,
 7316.
14633.
    29.
    82.
   279,
   969.
  2270.
  4466.

    23.
    63.
   188.
   604.
  1355.
  2637.

    18.
    45.
    96.
   238.
   441 .
   808.

     7.
     9.
   -87.
  -494.
 -1389.
 -2850.

   -15.
   -65.
  -453.
 -1957.
 -5047.
-10166.
  96.03
  81.72
  55.79
  48.47
  45.39
  44.66

  77.73
  63.43
  37.50
  30.18
  27.10
  26.37

  59.44
  45.14
  19.21
  11 .88
   8.81
   8.08

  22.86
   8.56
 -17.37
 -24.70
 -27.77
 -28.50

 -50.30
 -64.61
 -90.53
 -97.86
-100.93
-101,66

-------
          OFFGAS  CARBON  REQUIREMENT  8.00   LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3 LB STEAM/  LB  CARBON
                                                 AT tS.OO/MILLION BTU
    CREDIT
0.0000$/1000 SCF
0.0400*/1000 SCF
0.0800*/1000 SCF
 0.1600*/1000  SCF
 0.3200*/1000 SCF
OFFGAS
  FLOW

SCFM
   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
  20000,
  50000.
 100000.

   300.
   1000.
   5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
  144.
 273.
 594.
 955.
 1671.

  58.
  144.
  273.
  594.
  955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293,
 513.

  17.
  42.
  81.
 179.
 293.
 513.

   17.
   42.
   81.
  179.
  293.
  513.

   17.
   42.
   81.
  179.
  293.
 , 513.
  2.
  8.
 38.
153.
381.
763.

  2.
  8.
 38.
153.
381.
763.

  2.
  8.
 38.
153.
381.
763.

  2.
  8.
 38.
 153.
381 .
 763.
                                                                    8.
                                                                   38.
                                                                  153.
                                                                  381.
                                                                  763.
   0.
   0.
   0.
   0.
   0.
   0.

   6.
  21.
 105.
 420.
1051.
2102.

  13.
  42.
 210.
 841.
2102.
4205.

  25.
  84.
 420.
 1682.
4205.
8410.

  50.
  168.
  841.
 3364.
 8410.
16819.
                             NET
                          ANNUALIZED
                       COST  OR  CREDIT(-)
                             (000)
   19.
   50.
  119.
  331.
  674.
 1275.

   13.
   29.
   14.
  -89.
 -377.
 -827.

    7.
    8.
  -91.
 -510.
-1428.
-2929.

   -6.
  -34.
 -301.
-1351.
-3531.
-7134.

  -31 ,
  -118.
  -722.
-3033.
-7735.
-15544.
                               NET COST
                             OR SAVINGS(-)
                               PER SCFM
                                */SCFM
 64.12
 49.81
 23.88
 16.56
 13.48
 12.75

 43,09
 28.79
  2.86
 -4.47
 -7.54
 -8.27

 22.07
  7.76
-18. 16
-25.49
-28.57
-29 ,29

-19.98
-34.29
-60.21
-67.54
-70.61
-71.34

-104.08
-118.38
-144.31
-151.64
-154.71
-155.44

-------
          OFFGAS CARBON REQUIREMENT 8.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                                    AT *5.00/MILLION BTU
    CREDIT
0.0000$/1000 SCF
0.0400*/1000 SCF
0.0800$/1000 SCF
0.1600*/1000 SCF
0.3200*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
                                                       OPERATING COST-OR-CREDIT               NET
                                                 FIXED        UTILITIES        RECOVERY    ANNUALIZED
                                                 COST                          CREDIT   COST OR CREDIT(-)
                                                 (000)          <000)          (000)           <000)
 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81,
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.
   4.
  14.
  71.
 286.
 714.
1428.

   4.
  14.
  71.
 286.
 714.
1428.

   4,
  14.
  71.
 286.
 714.
1428.

   4.
  14.
  71.
 286.
 714.
1428.

   4.
  14.
  71.
 286.
 714.
1428.
    0.
    0.
    0,
    0.
    0.
    0.

    6.
   21.
  105.
  420.
 1051.
 2102.

   13.
   42.
  210.
  841.
 2102.
 4205.

   25.
   84.
  420.
 1682.
 4205.
 8410.

   50.
  168.
  841.
 3364.
 8410.
16819,
    21.
    56.
   153.
   464.
  1007.
  1940.

    15.
    35.
    48.
    44.
   -45.
  -162.

     9.
    14.
   -58.
  -377.
 -1096.
 -2265.

    -4.
   -28.
  -268.
 -1218.
 -3198.
 -6469.

   -29.
  -112.
  -688,
 -2900.
 -7403.
-14879,
                                                            NET COST
                                                          OR SfWINGS(-)
                                                            PER SCFM
                                                             $/SCFM
  70.76
  56.46
  30.53
  23.20
  20.13
  19.40

  49.74
  35.43
   9.51
   2.18
  -0.89
  -1.62

  28.72
  14.41
 -11.52
 -18.84
 -21.92
 -22.65

 -13.33
 -27.64
 -53,56
 -60.89
 -63.97
 -64.69

 -97.43
-111.73
-137.66
-144.99
-148.06
-148.79

-------
          OFFGAS CARBON REQUIREMENT 8.00  LB  CARBON/1000 SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/ LB CARBON
                                                 AT *5,00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0400*/1000 SCF
0.0800*/1000 SCF
0.1600*/1000 SCF
 0.3200$/1000  SCF
 OFFGAS
  FLOW

 SCFh
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293,
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179,
 293.
 513.
   7.
  23.
 116.
 463.
1157.
2314.

   7.
  23.
 116.
 463.
1157.
2314.

   7.
  23.
 116,
 463.
1157,
2314.

   7.
  23.
 116.
 463.
1157.
2314.

   7.
  23.
 116.
 463.
1157.
2314.
   0.
   0.
   0.
   0.
   0.
   0.

   6.
  21.
  105.
  420.
 1051.
 2102.

  13.
  42.
  210.
  841.
 2102.
 4205.

  25.
  84.
  420.
 1682.
 4205.
 8410.

  50.
  168.
  841.
 3364.
 8410.
16817,
                              NET
                           ANNUALIZED
                        COST OR CREDIT(-)
                              (000)
   24.
   65.
  197.
  641.
 1450.
 2827.

   18.
   44,
   92.
  221.
  399.
  724,

   11.
   23.
  -13.
 -200.
 -653.
 -1378.

   -1 .
  -19.
 -224.
 -1041.
 -2755.
 -5583.

  -27.
 -103.
 -644.
 -2722.
 -6960.
-13993.
                               NET COST
                             OR SAVINGS(-)
                               PER SCFM
                                */SCFM
 79,63
 65.32
 39.39
 32.07
 28.99
 28.27

 58.60
 44.30
 18.37
 11.04
  7.97
  7.24

 37.58
 23.27
 -2.65
 -9.98
-13.05
-13.78

 -4.47
-18.78
-44.70
-52.03
-55.10
-55.83

-88.56
-102.87
-128.80
-136. 12
-139.20
-139.93

-------
          OFFGAS CARBON REQUIREMENT 8,00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  $5.00/MILLION  BTU
    CREDIT
0.0000*/1000 SCF
0.0400J/1000 SCF
0.0800t/1000 SCF
0.1600J/1000 SCF
0.3200*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671 .

  58.
 144.
 273,
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955,
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)           (000)
  17.
  42,
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293,
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
  14.
  45.
 226.
 906.
2265,
4530.

  14,
  45.
 226.
 906.
2265.
4530.

  14.
  45.
 226.
 906.
2265.
4530.

  14.
  45.
 226.
 906.
2265.
4530.

  14.
  45.
 226.
 906.
2265.
4530,
    0.
    0,
    0.
    0.
    0.
    0.

    6.
   21.
  105.
  420.
 1051.
 2102,

   13.
   42.
  210.
  841.
 2102,
 4205.

   25.
   84.
  420,
 1682.
 4205.
 8410.

   50.
  168.
  841.
 3364.
 8410.
16819.
    31 .
    87.
   308.
  1085.
  2558.
  5042.

    24.
    66.
   203.
   664.
  1506.
  2940.

    18.
    45.
    98.
   244.
   455.
   838.

     5.
     3.
  -113.
  -597.
 -1647.
 -3367.

   -20.
  •-81.
  -533.
 -2279.
 -5852.
-11777.
                                                                                                              NET COST
                                                                                                            OR SAVINGS(-)
                                                                                                              PER SCFM
                                                                                                               */SCFM
 101.79
  87.48
  61.55
  54.23
  51 .15
  50.42

  80.76
  66.46
  40.53
  33.20
  30.13
  29.40

  59.74
  45.43
  19.51
  12.18
   9,11
   8.38

  17.69
   3.38
 -22,54
 -29.87
 -32.94
 -33.67

 -66.41
 -80.71
-106.64
-113.96
-117.04
-117.77

-------
          OFFGAS  CARBON REQUIREMENTIO.00  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3 LB STEAM/  LB  CARBON
                                                 AT  $5,00/MILLION BTU
    CREDIT
O.OOOOt/1000 SCF
0.0500*/1000 SCF
0.1000*/1000 SCF
0.2000*/1000 SCF
 0.4000t/1000  SCF
 OFFGAS
  FLOU

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293,
 , 513.
  3.
  9.
 46.
186.
464.
929.

  3.
  9.
 46.
186,
464.
929.

  3.
  9.
 46.
186.
464.
929.

  3.
  9.
 46.
186.
464.
929.

  3.
  9.
 46.
186.
464.
929,
   0.
   0.
   0.
   0.
   0.
   0.

   8.
   26.
  131 .
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.

   63.
  210.
 1051,
 4205,
10512.
21024.
   20.
   51.
  128.
  364.
  757.
 1442.

   12.
   25.
   -4.
 -161.
 -557.
 -1186.
    -1,
 -135.
 -687,
-1871 ,
-3814.

   -12.
   -54.
 -398.
-1738.
-4499.
-9070.

   -43.
 -159.
 -923.
-3840,
-9755.
-19582.
                                             NET COST
                                           OR SAVINGS(-)
                                             PER SCFM
                                              */SCFM
  65.78
  51.47
  25.55
  18.22
  15.14
  14.42

  39.50
  25,19
  -0.73
  -8.06
 -11.14
 -11.86

  13.22
  -1.09
 -27.01
 -34.34
 -37.42
 -38.14

 -39.34
 -53.65
 -79.57
 -86.90
 -89.98
 -90.70

-144.46
-158.77
-184.69
-192.02
-195.10
-195.82

-------
          OFFGAS CARBON REQUIREMENTIO.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT  *5.00/MILLION  BTU
    CREDIT
0.0000*/1000 SCF
0.0500*/1000 SCF
0.1000$/1000 SCF
0,2000*/1000 SCF
 0.4000$/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.

  58.
 1.44.
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)           (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
   5.
  18.
  88.
 352.
 880.
1760.

   5.
  18.
  88.
 352.
 880.
1760.

   5.
  18.
  88.
 352.
 880.
1760.

   5.
  18.
  88.
 352.
 880.
1760.

   5.
  18.
  88.
 352.
 880.
1760.
    0.
    0.
    0.
    0.
    0.
    0.

    8.
   26.
  131.
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.

   63.
  210.
 1051.
 4205.
10512.
21024.
    22.
    60.
   169.
   531.
  1173.
  2273.

    14.
    34.
    38.
     5.
  -141.
  -355.

     6.
     7,
   -94.
  -521.
 -1455.
 -2983.

    -9.
   -45.
  -356.
 -1572.
 -4083.
 -8239.

   -41.
  -150.
  -882,
 -3674.
 -9339.
-18751.
                                              NET  COST
                                            OR SAVINGS(-)
                                              PER  SCFM
                                               $/SCFM
  74.09
  59.78
  33.85
  26.53
  23.45
  22.73

  47.81
  33.50
   7.57
   0,25
  -2.83
  -3.55

  21 .53
   7.22
 -18.71
 -26.03
 -29. 11
 -29.83

 -31.03
 -45.34
 -71.27
 -78.59
 -81.67
 -82.39

-136. 15
-150.46
-176.39
-183,71
-186.79
-187.51

-------
          QFFGAS  CARBON REQUIREMENT!0.00   LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 1.0 LB  STEAM/  LB  CARBON
                                                 AT *5.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0500*/1000 SCF
0.1000*/1000 SCF
 0.2000*/1000 SCF
 0.4000t/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 > 513.
   9.
  29.
 143.
 574.
1434.
2868.

   9.
  29.
 143,
 574.
1434.
2868.

   9.
  29.
 143.
 574,
1434.
2868.

   9.
  29.
 143.
 574.
1434.
2868.

   9.
  29.
 143.
 574.
1434.
2869.
   0.
   0.
   0.
   0.
   0.
   0.

   8.
   26.
  131.
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.

   63.
  210.
 1051.
 4205.
10512.
21024.
   26.
   71.
  225.
  752.
 1727.
 3381.

   18.
   45.
   93.
  227.
  413.
  753.

   10.
   18.
  -38.
 -299.
 -901 .
 -1875.
   -34.
  -301.
 -1350.
 -3529.
 -7131.

   -38.
  -139.
  -827.
 -3453.
 -8785.
-17643.
                                              NET COST
                                            OR SAYINGS(-)
                                              PER SCFM
                                               $/SCFM
 85.17
 70.86
 44.93
 37.61
 34.53
 33.81

 58.89
 44.58
 18.65
 11.33
   8.25
   7.53

 32.61
 18.30
 -7.63
 -14.95
 -18.03
 -18.75

 -19.95
 -34.26
 -60.19
 -67.51
 -70.59
 -71.31

-125.07
-139.38
-165.31
-172.63
-175.71
-176.43

-------
          OFFGAS CARBON REQUIREHENTIO.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  *5.00/MILLION  BTU
    CREDIT
0.0000$/1000 SCF
0.0500*/1000 SCF
0.1000$/1000 SCF
0,2000*/10QO SCF
0.40001>/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671,

  58.
 144.
 273,
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          <000)          (000)          (000)
  17.
  42.
  81.
 179.
 293,
 513.

  17,
  42.
  81.
 179.
 293.
 513.

  17,
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.
  17.
  56.
 282.
1128.
2819.
5638.

  17.
  56.
 282.
1128.
2819.
5638.

  17.
  56.
 282.
1128.
2819.
5638.

  17.
  56.
 282.
1128,
2819.
5638.

  17.
  56.
 282.
1128.
2819,
5638.
    0.
    0.
    0.
    0.
    0.
    0,

    8.
   26.
  131.
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.

   63.
  210.
 1051 .
 4205.
10512,
21024.
    34.
    99.
   363.
  1306.
  3112.
  6150.

    26.
    72.
   232.
   781.
  1798.
  3522.

    18.
    46.
   100.
   255.
   484.
   894.

     2.
    -7.
  -162.
  -796.
 -2144.
 -4362.

   -29.
  -112.
  -688.
 -2899.
 -7400.
-14874,
                                                                                                              NET COST
                                                                                                            OR SAUINGS(-)
                                                                                                              PER SCFM
                                                                                                               */SCFM
 112.87
  98.56
  72.63
  65.31
  62.23
  61 .50

  86.59
  72.28
  46.35
  39.03
  35.95
  35.22

  60.31
  46.00
  20.07
  12.75
   9.67
   8.94

   7.75
  -6.56
 -32.49
 -39.81
 -42.89
 -43.62

 -97.37
-111.68
-137.61
-144.93
-148,01
-148.74

-------
          OFFGAS  CARBON  REQUIREMENT  0.10   LB  CARBON/1000  SCF
          STEAM  REGENERATION  RATIO  0,3  LB  STEAM/  LB  CARBON
                                                 AT *10.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0005*/1000 SCF
 0.0010*/1000 SCF
 0.0020t/1000  SCF
 0.0040*/1000 SCF
OFFGAS
  FLOW

SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
 20000.
 50000.
 100000.

   300.
   1000.
   5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
[-OST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          <000)          <000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
  179.
 293.
 513.

   17.
   42.
   81.
  179.
  293.
 v 513.
  0.
  1.
  6.
 23.
 57.
114.

  0.
  1.
  6.
 23.
 57.
114.

  0.
  1.
  6.
 23.
 57.
114.

  0.
  1.
  6.
 23.
 57.
114.

  0.
  1.
  6.
  23.
  57.
 114.
 0.
 0.
 0.
 0.
 0.
 0.

 0.
 0.
 1.
 5.
 13.
 26.

 0.
 1.
 3.
 11.
 26.
 53.

 0.
  1 .
 5.
 21.
 53.
105,

  1.
  2.
 11.
 42.
105.
210.
 17,
 43.
 87.
201.
350.
627.

 17.
 43.
 86.
196.
337.
600.

 17.
 43.
 84.
191.
323.
574.

 17.
 42.
 82.
180.
297.
521.

  17.
  41.
  76.
 159.
245.
416.
                                             NET  COST
                                           OR SAYINGS(-)
                                             PER  SCFM
                                              */SCFM
57.63
43.32
17.40
10.07
 6.99
 6.27

57.36
43.06
17.13
 9.81
 6.73
 6.00

57. 10
42.80
16.87
 9.54
 6.47
 5.74

56.58
42.27
16.34
 9.02
 5,94
 5.21

55.53
41.22
 15.29
  7.97
  4.89
  4.16

-------
          OFFGAS CARBON REQUIREHENT 0.10  LB CARBON/1000 SCF
          STEAH REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT  *10.00/MILLION  BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

<000>
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
                                                                                                              NET COST
                                                                                                            OR SAVINGS(-)
                                                                                                              PER SCFH
                                                                                                               */SCFM
0.0000*/1000 SCF
0.0005*/1000 SCF
0.0010$/1000 SCF
0.0020*/1000 SCF
0.0040*/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513,

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
, 513.
  0.
  1,
  6.
 26.
 65.
130.

  0.
  1.
  6.
 26.
 65.
130.

  0.
  1.
  6.
 26.
 65.
130.

  0.
  1,
  6.
 26.
 65.
130.

  0.
  1.
  6.
 26.
 65.
130.
  0.
  0.
  0.
  0,
  0.
  0.

  0.
  0,
  1.
  5.
 13.
 26.

  0.
  1.
  3.
 11.
 26.
 53.

  0.
  1.
  5.
 21.
 53.
105.

  1.
  2.
 11 .
 42.
105.
210.
 17.
 43.
 88.
205.
358.
643.

 17.
 43.
 86.
199.
345.
616.

 17.
 43.
 85.
194.
331.
590.

 17.
 42.
 83.
184.
305.
537.

 17.
 41.
 77.
163.
253.
432.
57.79
43.48
17.55
10.23
 7.15
 6.43

57.52
43.22
17.29
 9.97
 6.89
 6.16

57.26
42.95
17.03
 9.70
 6.63
 5.90

56.74
42.43
16.50
 9.18
 6.10
 5.37

55.68
41.38
15.45
 8.13
 5.05
 4.32

-------
          OFFGAS CARBON REQUIREMENT 0.10  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/ LB  CARBON
                                                  AT  *10.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0005*/1000 SCF
O.OOlOt/1000 SCF
0.0020*/1000 SCF
 0.0040*/1000  SCF
 OFFGAS
  FLOU

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 , 513.
  0.
  2.
  8.
 30.
 76.
151.

  0.
  2.
  8.
 30.
 76.
151.

  0.
  2.
  8.
 30.
 76.
151.

  0.
  2.
  8.
 30.
 76.
151.

  0.
  2.
  8.
 30.
 76.
151.
  0.
  0.
  0.
  0.
  0.
  0.

  0.
  0.
  1.
  5.
 13.
 26.

  0.
  1.
  3.
 11.
 26.
 53.

  0.
  1.
  5.
 21.
 53.
105.

  1.
  2,
 11.
 42.
105.
210.
 17.
 44.
 89.
209.
368.
664.

 17.
 43.
 88.
204.
355.
638.

 17.
 43.
 86.
198.
342.
611.

 17.
 43.
 84.
188.
316.
559.

 17.
 42.
 78.
167.
263.
454,
                                             NET  COST
                                           OR SAVINGS(-)
                                             PER  SCFM
                                              t/SCFM
58.00
43.69
17.77
10.44
 7.37
 6.64

57.74
43.43
17.50
10.18
 7.10
 6.38

57.47
43.17
17.24
 9.92
 6.84
 6.11

56.95
42.64
16.72
 9.39
 6.32
 5.59

55.90
41.59
15.66
 8.34
 5.26
 4,54

-------
          QFFGAS CARBON REQUIREMENT 0.10  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  $10.00/MILLION  BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

(000)
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
<000>          <000>          (000)          (000)
                                             NET COST
                                           OR SAVINGS(-)
                                             PER SCFM
                                              */SCFM
0.00004/1000 SCF
0.0005t/1000 SCF
0.0010$/1000 SCF
0.0020$/1000 SCF
0.0040*/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179,
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81,
 179.
 293.
, 513.
  1,
  2.
 10.
 41.
102.
204.

  1.
  2.
 10.
 41.
102.
204.

  1.
  2.
 10.
 41.
102.
204.

  1 .
  2.
 10.
 41.
102.
204.

  1.
  2.
 10.
 41,
102.
204.
  0.
  0.
  0.
  0.
  0.
  0.

  0.
  0.
  1.
  5.
 13.
 26.

  0.
  1.
  3.
 11.
 26.
 53.

  0.
  1.
  5»
 21.
 53.
105.

  1.
  2.
 11 .
 42.
105.
210.
 18.
 44.
 91 .
219.
395.
717.

 17.
 44.
 90,
214.
382.
691.

 17.
 44.
 89.
209.
369.
664.

 17.
 43.
 86.
198,
342.
612.

 17.
 42.
 81.
177.
290.
507.
                                                                                                               58.53
                                                                                                               44.23
                                                                                                               18.30
                                                                                                               10.97
                                                                                                                7.90
                                                                                                                7.17
58.27
43.96
18.04
10.71
 7.64
 6.91

58.01
43.70
17.77
10.45
 7.37
 6.64

57.48
43. 17
17.25
 9.92
 6.85
 6.12

56.43
42.12
16.20
 8.87
 5.80
 5,07

-------
          OFFGAS  CARBON  REQUIREMENT  0.50   LB  CARBON/1000  SCF
          STEAH REGENERATION RATIO 0.3 LB STEAM/  LB  CARBON
                                                 AT $10.00/MILLION BTU
    CREDIT
OFFGAS
  FLOW

SCFM
CAPITAL
 COST

(000)
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
                                             NET  COST
                                           OR  SAUINGS(-)
                                             PER  SCFM
                                              $/SCFM
0.0000*/1000 SCF
0.0025*/1000 SCF
0.0050«/1000 SCF
 0.0100*/1000  SCF
 0.0200*/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300,
   1000.
   5000.
 20000.
 50000.
100000.

   300.
   1000.
   5000.
  20000.
  50000.
 100000.
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
 1671.

  58.
  144.
  273.
  594.
  955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

   17.
   42.
   81.
  179.
 293.
 513.

   17.
   42.
   81.
  179.
  293.
 , 513.
  1 .
  2.
  9.
 36.
 89.
178.

  1 .
  2.
  9.
 36.
 89.
178.

  1.
  2.
  9.
 36.
 89.
178.

  1.
  2.
  9.
 36.
 89.
178.

  1.
  2.
  9.
  36.
  89.
 178.
  0.
  0.
  0.
  0.
  0.
  0.

  0.
  1.
  7.
 26.
 66.
131.

  1.
  3.
 13.
 53.
131.
263.

  2.
  5.
 26.
 105.
263.
526.

  3.
  11.
  53.
 210.
 526.
1051.
 17.
 44.
 90.
214.
382.
690.

 17.
 43.
 84.
188.
316.
559.

 17.
 41.
 77.
162.
250.
428.

  16.
  39.
  64.
 109.
 119.
 165.

  14.
  33.
  38.
   4.
-144.
-361.
58.27
43.96
18.03
10.71
 7.63
 6.90

56.95
42.65
16.72
 9.39
 6.32
 5.59

55.64
41.33
15.41
 8.08
 5.01
 4.28

53.01
38.70
12.78
 5.45
 2.38
  1.65

 47.75
 33.45
  7.52
  0.20
 -2.88
 -3.61

-------
          OFFGAS CARBON REQUIREMENT 0.50  LB CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT  $10.00/MILLION BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

(000)
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
                                             NET COST
                                           OR SAVINGS(-)
                                             PER SCFM
                                              */SCFM
0,0000$/1000 SCF
0.0025*/1000 SCF
0.0050*/1000 SCF
0.0100*/1000 SCF
 0.0200t/1000  SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671,
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179,
 293.
, 513.
  1 .
  3.
 13.
 52.
129.
258.

  1 .
  3.
 13.
 52.
129.
258.

  1,
  3.
 13.
 52.
129.
258.

  1 .
  3.
 13.
 52.
129.
258.

  1 .
  3.
 13.
 52.
129.
258.
  0.
  0.
  0.
  0.
  0.
  0.

  0.
  1.
  7.
  26.
  66.
 131.

  1 .
  3.
  13.
  53.
 131 .
 263.

  2.
  5.
  26.
 105.
 263.
 526.

  3.
  11.
  53.
 210.
 526.
1051.
  18.
  45.
  94.
 230.
 422.
 770.

  17.
  43.
  88.
 204.
 356.
 639.

  17.
  42.
  81 .
 178.
 290.
 507.

  16.
  40.
  68.
 125.
 159.
 245.

  15.
  34.
  42.
  20.
-104.
-281.
59.06
44.76
18.83
11.50
 8.43
 7.70

57.75
43.44
17.52
10.19
 7.12
 6.39

56.44
42.13
16.20
 8.88
 5.80
 5.07

53.81
39.50
13.58
 6.25
 3.17
 2.45

48.55
34.25
 8.32
 0.99
-2.08
-2.81

-------
          QFFGAS CARBON REQUIREMENT 0.50  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/  LB  CARBON
                                                 AT  *10.00/MILLION BTU
    CREDIT
0.0000$/1000 SCF
0,0025*/1000 SCF
0.0050*/1000 SCF
0.0100*/1000 SCF
0.0200t/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT<->
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
, 513.
  1.
  4.
 18.
 73.
182.
364.

  1.
  4.
 18.
 73.
182.
364.

  1.
  4.
 18.
 73.
182.
364.

  1 ,
  4.
 18.
 73.
182.
364.

  1.
  4.
 18.
 73.
182.
364.
   0.
   0.
   0.
   0.
   0.
   0.

   0,
   1.
   7.
  26.
  66.
 131.

   1 .
   3.
  13.
  53.
 131.
 263.

   2.
   5.
  26.
 105.
 263.
 526.

   3.
  11 .
  53.
 210.
 526.
1051.
  18.
  46.
  99.
 251.
 475.
 877.

  18.
  45.
  93.
 225.
 409.
 745.

  17.
  43.
  86.
 199.
 343.
 614.

  16.
  41.
  73.
 146.
 212.
 351.

  15.
  35.
  47.
  41.
 -51.
-175.
                                             NET  COST
                                           OR SAVINGS(-)
                                             PER  SCFM
                                              */SCFM
60.13
45.82
19.89
12.57
 9.49
 8.77

58.81
44.51
18.58
11.25
 8.18
 7.45

57.50
43. 19
17.27
 9.94
 6.87
 6.14

54.87
40.56
14.64
 7.31
 4.24
 3.51

49.62
35.31
 9.38
 2,06
-1.02
-1.75

-------
          OFFGAS CARBON REQUIREMENT 0.50  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                                    AT *10.00/MILLION BTU
    CREDIT
O.OOOOt/1000 SCF
0.00251/1000 SCF
0,0050*/1000 SCF
0.0100*/1000 SCF
0.0200*/1000 SCF
 OFF6AS
  FLOU

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955,
1671 .

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
                                                       OPERATING COST-OR-CREDIT               NET
                                                 FIXED        UTILITIES        RECOVERY    ANNUALIZED
                                                 (-OST                          CREDIT   COST OR CREDIT(-)
                                                 (000)          <000)          (000)          (000)
 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17,
 42.
 81.
179.
293.
513.
  2.
  6.
 31 .
126.
315.
630,

  2,
  6.
 31.
126.
315.
630.

  2.
  6.
 31 .
126.
315.
630.

  2.
  6.
 31.
126.
315.
630.

  2.
  6.
 31.
126.
315.
630.
   0.
   0.
   0.
   0,
   0.
   0.

   0.
   1.
   7.
  26.
  66.
 131.

   1.
   3.
  13.
  53.
 131.
 263.

   2.
   5.
  26.
 105.
 263.
 526.

   3.
  11.
  53.
 210.
 526.
1051.
  19.
  48.
 113.
 305.
 608.
1143.

  18.
  47.
 106.
 278.
 542.
1011.

  18.
  46,
 100.
 252.
 476.
 880.

  17.
  43.
  86.
 199.
 345.
 617.

  16.
  38.
  60.
  94.
  82.
  91.
                                                            NET COST
                                                          OR SAYINGS(-)
                                                            PER SCFM
                                                             */SCFM
62.79
48.48
22.55
15.23
12.15
11.43

61 .47
47.17
21.24
13.91
10.84
10.11

60. 16
45.85
19.93
12.60
 9.53
 8.80

57.53
43.22
17.30
 9.97
 6.90
 6.17

52.28
37.97
12.04
 4.72
 1.64
 0.91

-------
          OFFGAS CARBON REQUIREMENT 1.00  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3 LB STEAM/  LB  CARBON
                                                  AT  $10.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0050*/1000 SCF
0.0100*/1000 SCF
 0.0200*/1000  SCF
 0.0400*/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
 1671.

  58.
 144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT<->
(000)          (000)          (000)          (000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179,
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 , 513.
  1.
  3.
 13.
 52.
129.
258.

  1.
  3.
 13.
 52.
129.
258.

  1.
  3.
 13.
 52.
129.
258.

  1.
  3.
 13.
 52.
129.
258.

  1.
  3.
 13.
 52.
129.
258.
  0.
  0.
  0.
  0.
  0.
  0.

  1.
  3.
  13.
  53.
 131.
 263.

  2.
  5.
  26.
 105.
 263.
 526.

  3.
  11 .
  53.
 210.
 526.
1051.

  6.
  21.
 105,
 420.
1051.
2102.
  18.
  45.
  94.
 230.
 422.
 770.

  17.
  42.
  81,
 178.
 290.
 507.

  16.
  40.
  68.
 125.
 159.
 245.

  15.
  34.
  42.
  20.
 -104.
 -281.

  11 .
  24.
 -11.
 -190.
 -630,
-1332,
                                             NET  COST
                                           OR SAYINGS(-)
                                             PER  SCFM
                                              */SCFM
59.06
44.76
18.83
11.50
 8.43
 7.70

56.44
42.13
16.20
 8.88
 5.80
 5.07

53.81
39.50
13.58
 6.25
 3.17
 2.45

48.55
34.25
 8.32
 0,99
-2.08
-2.81
                                                                                                                38.04
                                                                                                                23,73
                                                                                                                -2.19
                                                                                                                -9.52
                                                                                                               -12.59
                                                                                                               -13.32

-------
          OFFGAS CARBON REQUIREMENT 1.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                                    AT *10.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0050t/1000 SCF
0.0100*/1000 SCF
0.0200$/1000 SCF
0.0400*/1000 SCF
                   OFFGAS
                    FLOW

                   SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
                CAPITAL
                 COST

                (000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
                     OPERATING COST-OR-CREIUT                NET
               FIXED         UTILITIES        RECOVERY     ANNUALIZED
               COST                           CREDIT    COST  OR  CREDIT(-)
               (000)           (000)           (000)           (000)
 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.
  1,
  4.
 21 .
 83.
209.
417.

  1.
  4.
 21,
 83.
209.
417.

  1.
  4,
 21.
 83.
209.
417.

  1.
  4,
 21.
 83.
209,
417.

  1.
  4.
 21 .
 83.
209.
417.
   0.
   0,
   0,
   0.
   0.
   0.

   1.
   3.
  13.
  53.
 131.
 263.

   2.
   5.
  26.
 105.
 263.
 526.

   3,
  11.
  53.
 210,
 526.
1051.

   6.
  21.
 105.
 420.
1051 .
2102.
   18.
   46.
  102.
  262.
  501 .
  930.

   17.
   44.
   89.
  209.
  370.
  667.

   17.
   41.
   76.
  157.
  239.
  404.

   15.
   36.
   50.
   52.
  -24.
 -121.

   12.
   25.
   -3.
 -158.
 -550.
-1173.
                                                            NET COST
                                                          OR SAYINGS(-)
                                                            PER SCFM
                                                             $/SCFM
 60.66
 46.35
 20.43
 13.10
 10.03
  9.30

 58.03
 43.72
 17.80
 10.47
  7.40
  6.67

 55.40
 41.10
 15.17
  7.84
  A,77
  4.04

 50.15
 35.84
  9.91
  2.59
 -0.49
 -1.21

 39.64
 25.33
 -0.60
 -7.92
-11.00
-11.73

-------
          OFFGAS CARBON REQUIREMENT 1.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 1,0 LB STEAM/ LB CARBON
                                                  AT  *10.00/MILLION  BTU
    CREDIT
0.00004/1000 SCF
0.0050*/1000 SCF
0.0100$/1000 SCF
0.0200*/1000 SCF
0.0400*/1000 SCF
                   OFFGAS
                    FLOU

                   SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000,
100000.
                CAPITAL
                 COST

                (000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.
                     OPERATING  COST-OR-CREIUT                NET
               FIXED         UTILITIES        RECOVERY     ANNUALIZED
               COST                          CREDIT    COST  OR  CREDIT(-)
               (000)           (000)          (000)           (000)
 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81,
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293,
513.
  6.
 31.
126.
315,
630.

  2.
  6.
 31 ,
126.
315.
630.

  2.
  6.
 31.
126.
315.
630.

  2.
  6.
 31.
126.
315.
630.

  2.
  6.
 31.
126.
315.
630.
   0.
   0.
   0.
   0.
   0.
   0.

   1.
   3.
  13.
  53.
 131.
 263.

   2.
   5.
  26,
 105,
 263.
 526.

   3.
  11.
  53.
 210.
 526.
1051.

   6.
  21 .
 105.
 420.
1051,
2102.
  19.
  48.
 113.
 305.
 608.
1143.

  18.
  46.
 100.
 252.
 476.
 880.

  17.
  43.
  86,
 199.
 345.
 617.

  16.
  38.
  60.
  94.
  82.
  91.

  13.
  27.
   8.
-116.
-443.
-960.
                                                            NET COST
                                                          OR SAVINGS(-)
                                                            PER SCFM
                                                             t/SCFM
62.79
48.48
22.55
15.23
12.15
11.43

60. 16
45.85
19,93
12.60
 9.53
 8.80

57.53
43.22
17.30
 9.97
 6.90
 6.17

52.28
37.97
12.04
 4.72
 1.64
 0.91

41.76
27.46
 1.53
-5,80
-8.87
-9.60
                                                             f

-------
          OFFGAS CARBON REQUIREMENT 1.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                                    AT *10.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0050*/1000 SCF
0.0100*/1000 SCF
0.0200*/1000 SCF
0.0400*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
                                  CAPITAL
                                   COST

                                  (000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671 .

  58.
 144.
 273,
 594.
 955.
1671 .

  58.
 144.
 273.
 594.
 955.
1671.
                     OPERATING COST-OR-CREDIT                NET
               FIXED        UTILITIES       RECOVERY     ANNUALIZED
               COST                          CREDIT    COST  OR  CREDIT(-)
               (000)          (000)           (000)           (000)
 17.
 42.
 81 .
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.
   3.
  12.
  58.
 232.
 581 .
1162.

   3.
  12.
  58.
 232.
 581.
1162.

   3.
  12.
  58.
 232.
 581.
1162.

   3.
  12.
  58.
 232.
 581 .
1162.

   3.
  12.
  58.
 232.
 581 .
1162.
   0.
   0.
   0.
   0.
   0.
   0.

   1 ,
   3.
  13.
  53.
 131.
 263.

   2.
   5.
  26.
 105.
 263.
 526.

   3.
  11.
  53,
 210.
 526.
1051.

   6.
  21.
 105.
 420.
1051.
2102.
  20.
  54,
 139,
 411,
 874.
1674.

  20.
  51.
 126.
 358.
 742.
1412.

  19.
  49.
 113.
 306.
 611 .
1149.

  17.
  43.
  87.
 201.
 348.
 623.

  14.
  33.
  34.
 -10.
-178.
-428.
                                                            NET COST
                                                          OR SAMINGS(-)
                                                            PER SCFM
                                                             */SCFM
68.11
53.80
27.87
20.55
17.47
16.74

65.48
51 .17
25.25
17.92
14.85
14.12

62.85
48.54
22.62
15.29
12.22
11.49

57.59
43.29
17.36
10.04
 6.96
 6.23

47.08
32.78
 6.85
-0.48
-3.55
-4.28

-------
          OFFGAS  CARHON REQUIREMENT 1.39  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3 LB STEAM/  LB  CARBON
                                                 AT *10.00/MILLION BTU
    CREDIT
0,0000*/1000 SCF
0.0070«/1000 SCF
0.0139$/1000 SCF
 0.0279*/1000  SCF
 0.0557*/1000  SCF
 OFFGAS
  FLOU

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  56.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          <000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 , 513.
  1.
  3.
 16.
 64.
160.
320.

  1.
  3.
 16.
 64.
160.
320.

  1.
  3.
 16.
 64.
160.
320.

  1 .
  3.
 16.
 64.
160.
320.

  1 .
  3.
 16.
 64.
160.
320.
  0.
  0.
  0.
  0.
  0.
  0.

  1 .
  4.
  18.
  73.
 183.
 366.

  2.
  7.
  37.
 146.
 366.
 732.

  4.
  15.
  73.
 293.
 732.
1464.

   9.
  29.
 146.
 586.
1464.
2729.
                             NET
                          ANNUALIZED
                       COST  OR  CREDIT(-)
                             (000)
  18.
  45.
  97.
 243.
 453.
 833.

  17.
  42.
  79.
 169.
 270.
 467.

  16.
  38.
  61.
  96.
  87.
 101.

  14,
  31.
  24.
 -50.
 -279.
 -631.

    9.
   16.
 -49.
 -343.
-1011 ,
-2096.
                              NET COST
                            OR SAUINGS(-)
                              PER SCFM
                               $/SCFM
59.69
45.38
19.46
12.13
 9.06
 8.33

56.03
41.72
15.80
 8.47
 5.40
 4.67

52.37
38.06
12.14
 4.81
 1.74
 1.01

45.05
30.74
 4.82
-2.51
-5.59
-6.31

30.40
 16.10
 -9.83
-17.15
-20.23
-20,96

-------
          OFFGAS CARBON REQUIREMENT 1.39  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT  $10.00/MILLION  BTU
    CREDIT
0.0000$/1000 SCF
0.0070*/1000 SCF
0.0139*/1000 SCF
0.0279*/1000 SCF
0.0557*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000,
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

<000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)           (000)           (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81,
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81,
 179,
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
  5.
 27.
109.
271.
543.

  2.
  5.
 27.
109.
271.
543.

  2.
  5.
 27.
109.
271.
543.

  2.
  5.
 27,
109.
271.
543.
                                                                   5.
                                                                  27.
                                                                 109.
                                                                 271.
                                                                 543.
   0.
   0.
   0.
   0.
   0.
   0.

   1.
   4.
  18.
  73.
 183.
 366.

   2.
   7.
  37.
 146.
 366.
 732.

   4.
  15.
  73,
 293.
 732.
1464.

   9.
  29.
 146.
 586.
1464,
2929,
   19.
   48.
  108.
  287.
  564.
 1055,

   17.
   44.
   90.
  214.
  381 .
  689.

   16.
   40.
   72.
  141.
  198.
  323.

   14.
   33.
   35,
   -6.
 -168.
 -409.

   10.
   18.
  -38.
 -299.
 -900.
-1873.
                                                                                                              NET COST
                                                                                                            OR SAVINGS(-)
                                                                                                              PER SCFM
                                                                                                               */SCFM
 61.91
 47.61
 21.68
 14.35
 11.28
 10.55

 58.25
 43.95
 18.02
 10.69
  7.62
  6.89

 54.59
 40.29
 14.36
  7.03
  3.96
  3.23

 47.27
 32.96
  7.04
 -0.29
 -3.36
 -4.09

 32.63
 18.32
 -7.61
-14.93
-18.01
-18.73

-------
          OFFGAS CARBON REQUIREMENT 1.39  LB  CARBON/1000  SCF
          STEAM  REGENERATION RATIO 1.0 LB STEAM/  LB  CARBON
                                                 AT tlO.OO/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0070*/1000 SCF
0.0139*/1000 SCF
 0.0279*/1000  SCF
 0.0557*/1000  SCF
 OFFGAS
  FLOW

 SCFh
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

<000)
  58.
 144.
 273.
 594.
 955,
1671.

  58.
 144.
 273,
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
  144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CKEDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
<000>          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 > 513.
  3.
  8.
 42.
168.
419.
839.

  3.
  8.
 42.
168.
419.
839.

  3.
  8.
 42.
168.
419.
839.

  3.
  8.
 42.
168.
419.
839.

  3.
  8.
 42.
168.
419.
839,
  0.
  0.
  0.
  0.
  0.
  0.

  1 .
  4,
  18.
  73.
 183.
 366.

  2.
  7.
  37.
 146.
 366.
 732,

  4.
  15.
  73,
 293.
 732.
1464.

   9.
  29.
 146.
 586.
1464.
2929.
  19.
  51.
 123.
 346.
 712.
1352.

  18.
  47.
 105.
 273.
 529.
 985.

  17.
  43.
  87.
 200.
 346.
 619.

  15.
  36.
  50.
  54.
 -20.
 -113.

   11.
  21.
  -23.
 -239.
 -752.
-1577.
                                             NET  COST
                                           OR SAVINGS(-)
                                             PER  SCFM
                                              */SCFM
64.88
50.57
24.64
17.32
14.24
13.52

61.22
46.91
20.98
13.66
10.58
 9.85

57.56
43.25
17.32
10.00
 6.92
 6. 19

50.23
35.93
 10.00
 2.68
-0.40
-1.13

35.59
 21.28
 -4.64
-11.97
-15.04
-15.77

-------
          OFFGAS CARBON REQUIREMENT 1.39  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  $10.00/MILLION  BTU
    CREDIT
0.0000*/1000 SCF
0.0070$/1000 SCF
0.0139*/1000 SCF
0.0279*/1000 SCF
0.0557$/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58,
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
<000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
   5.
  16.
  79.
 316.
 790.
1580.

   5.
  16.
  79.
 316.
 790.
1580.
  16.
  79,
 316.
 790.
1580.

   5.
  16.
  79.
 316.
 790.
1580.

   5.
  16.
  79,
 316.
 790.
1580.
   0.
   0.
   0.
   0.
   0.
   0.

   1.
   4,
  18.
  73.
 183.
 366.

   2.
   7.
  37.
 146.
 366.
 732.

   4,
  15,
  73.
 293,
 732.
1464.

   9.
  29.
 146.
 586.
1464.
2929.
  22.
  58.
 160.
 495.
1083.
2093.

  21.
  54.
 142.
 421.
 900.
1726.

  19.
  51.
 124.
 348.
 717.
1360.

  17.
  43.
  87,
 202.
 351 .
 628.

  13.
  29.
  14.
 -91 .
-382.
-836.
                                              NET COST
                                            OR SAVINGS(-)
                                              PER SCFM
                                               $/SCFM
72.29
57.98
32.05
24.73
21.65
20.93

68.63
54.32
28.39
21.07
17.99
17.26

64.97
50.66
24.73
17.41
14.33
13.60

57.64
43.34
17.41
10.08
 7.01
 6.28

43.00
28.69
 2.77
-4.56
-7.63
-8.36

-------
          OFFGAS CARBON REQUIREMENT 2.00  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3 LB STEAM/  LB  CARBON
                                                 AT *10.00/MILLION BTU
    CREDIT
O.OOOOt/1000 SCF
0.0100*/1000 SCF
0.02001/1000 SCF
 0.0400*/1000  SCF
 0.0800*/1000 SCF
OFFGAS
  FLOW

SCFM
   300.
  1000,
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955,
1671.

  58.
 144.
 273.
 594.
 955.
 1671.

  58.
  144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CREOIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          <000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 513.

   17.
   42.
  81 .
  179.
  293.
 , 513.
  1.
  4.
 21.
 83.
209.
417.

  1 .
  4.
 21.
 83.
209.
417.

  1 .
  4.
 21.
 83.
209.
417.

  1.
  4.
 21.
 83.
209.
417.

   1 .
   4.
 21.
 83.
209.
417.
  0.
  0.
  0.
  0.
  0.
  0.

  2.
  5.
  26.
 105.
 263.
 526.

  3.
  11.
  53.
 210.
 526.
1051.

   6.
  21.
 105.
 420.
1051.
2102.

  13.
  42.
 210.
 841.
2102,
4205.
  18.
  46.
 102.
 262.
 501.
 930.

  17.
  41,
  76.
 157.
 239.
 404.

  15.
  36.
  50.
  52.
 -24.
 -121.

   12.
   25.
   -3.
 -158.
 -550.
-1173.

    6.
    4.
 -108.
 -579.
-1601.
-3275.
                                             NET  COST
                                           OR SAVINGS(-)
                                             PER  SCFM
                                              */SCFM
60.66
46.35
20.43
13.10
10.03
 9.30

55.40
41,10
15.17
 7.84
 4.77
 4.04

50.15
35.84
 9.91
 2.59
-0.49
-1.21

39.64
25.33
-0.60
 -7.92
-11.00
-11.73

 18.61
  4.30
-21.62
-28.95
-32.02
-32.75

-------
          OFFGAS CARBON REQUIREMENT 2.00  LB CARBON71000 SCF
          STEAM REGENERATION RATIO 0,6 LB STEAM7 LB CARBON
                                                  AT *10.007MILLION  BTU
    CREDIT
0.0000*71000 SCF
0.0100*71000 SCF
0.0200*71000 SCF
0.0400*71000 SCF
0.0800*71000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000,
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955,
1671.

  58.
 144.
 273.
 594,
 955.
1671.
      OPERATING COST-OR-CREIHT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)           (000)
  17.
  42.
  81.
 179.
 293.
 513,

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42,
  81.
 179.
 293,
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17,
  42.
  81 .
 179,
 293.
 513.
  2.
  7.
 37.
147.
368.
736.

  2.
  7.
 37.
147.
368.
736.

  2.
  7.
 37.
147.
368.
736.

  2.
  7.
 37.
147,
368.
736.

  2.
  7.
 37.
147.
368.
736.
   0.
   0.
   0.
   0.
   0.
   0.

   2.
   5.
  26.
 105.
 263.
 526.

   3.
  11.
  53.
 210.
 526.
1051.

   6.
  21.
 105,
 420.
1051.
2102.

  13.
  42.
 210.
 841.
2102.
4205.
   19.
   50.
  118.
  326.
  661 .
 1249.

   18.
   44.
   92.
  221.
  398.
  723.

   16.
   39.
   66.
  116.
  135.
  198.

   13.
   29.
   13.
  -95.
 -390.
 -853.

    7.
    7.
  -92.
 -515.
-1441,
-2956.
                                                                                                              NET COST
                                                                                                            OR SAVINGS(-)
                                                                                                              PER SCFh
                                                                                                               */SCFM
 63.85
 49.54
 23.62
 16.29
 13.22
 12.49

 58.59
 44.29
 18.36
 11.04
  7.96
  7.23

 53.34
 39.03
 13.11
  5.78
  2.71
  1.98

 42.83
 28.52
  2.59
 -4.73
 -7.81
 -8.53

 21.80
  7.50
-18.43
-25.76
-28.83
-29.56

-------
          OFFGAS  CARBON  REQUIREMENT 2.00  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 1.0 LB STEAh/  LB  CARBON
                                                 AT $10.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0100*/1000 SCF
0.0200*/1000 SCF
 0.0400*/1000  SCF
 0.0800*71000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000,
100000.

   300.
   1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
   5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

(000)
  58.
  144.
 273.
 594.
 955.
1671.

  58.
  144.
 273.
 594.
 955.
1671.

  58.
  144.
  273.
  594.
  955.
 1671.

  58.
  144.
  273.
  594.
  955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
  513.

   17.
   42.
   81.
  179.
  293.
 > 513.
   3.
  12.
  58.
 232.
 581.
1162.

   3.
  12.
  58.
 232.
 581.
1162.

   3.
  12.
  58.
 232.
 581.
1162.

   3.
  12.
  58.
 232.
 581 .
1162.

   3.
  12.
  58.
 232.
 5B1.
1162.
  0.
  0.
  0.
  0.
  0.
  0.

  2.
  5.
  26.
 105.
 263.
 526.

  3.
  11.
  53.
 210.
 526.
1051.

   6.
  21.
 105.
 420.
1051.
2102.

  13.
  42.
 210.
 841.
2102.
4205.
                              NET
                           ANNUALIZED
                        COST  OR  CREDIT(-)
                              (000)
  20.
  54.
 139.
 411.
 874.
1674.

  19.
  49.
 113.
 306.
 611.
1149.

  17.
  43.
  87.
 201.
 348.
 623.

  14.
  33.
  34.
 -10.
 -178.
 -428.

    8.
   12.
  -71.
 -430.
-1229,
-2530.
                              NET COST
                            OR SAVINGS(-)
                              PER SCFM
                               $/SCFM
68.11
53.80
27.87
20.55
17.47
16.74

62.85
48.54
22.62
15.29
12.22
11.49

57.59
43.29
17.36
10.04
  6.96
  6.23

47.08
32.78
  6.85
-0.48
-3,55
-4.28

26.06
 11.75
-14.17
-21.50
-24.57
-25.30

-------
          OFFGAS CARBON REQUIREMENT 2.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  *10.00/MILLION  BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

(000)
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREBIT(-)
<000)          (000)          (000)          (000)
                                              NET COST
                                            OR SAVINGS(-)
                                              PER SCFM
                                               */SCFM
0.0000*/1000 SCF
0.0100*/1000 SCF
0.0200*/1000 SCF
0.0400*/1000 SCF
 0.0800*/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671,
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
   7.
  22.
 111.
 445.
1113.
2226.

   7.
  22.
 111.
 445.
1113.
2226.

   7.
  22.
 Ill .
 445.
1113.
2226.

   7.
  22.
 Ill .
 445.
1113.
2226.

   7.
  22.
 111.
 445.
1113.
2226.
   0.
   0.
   0.
   0.
   0,
   0.

   2.
   5.
  26.
 105.
 263.
 526.

   3.
  11.
  53.
 210.
 526.
1051.

   6.
  21.
 105.
 420.
1051.
2102.

  13.
  42.
 210.
 941.
2102.
4205.
   24.
   64,
  193.
  624.
 1406.
 2738.

   22.
   59.
  166.
  519.
 1143.
 2213.

   20.
   54.
  140.
  413.
  880.
 1687.

   17.
   43.
   87.
  203.
  354.
  636.

   11 .
   22.
  -18.
 -217.
 -697.
-1467.
 78.74
 64.44
 38.51
 31.19
 28.11
 27.38

 73.49
 59.18
 33.26
 25.93
 22.86
 22.13

 68.23
 53.93
 28.00
 20.67
 17.60
 16.87

 57.72
 43.41
 17.49
 10.16
  7.09
  6.36

 36.70
 22.39
 -3.54
-10.86
-13,94
-14.67

-------
          OFFGAS CARBON REQUIREMENT  5.00  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3 LB STEAM/  LB  CARBON
                                                 AT *10.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0250*/1000 SCF
0.0500*/1000 SCF
 0.1000*/1000  SCF
 0.2000t/1000  SCF
 OFFGAS
  FLOU

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
  144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 , 513.
  3.
  9.
 45.
179.
448.
896.

  3.
  9.
 45.
179.
448.
896.

  3.
  9.
 45.
179.
448.
896.

  3.
  9.
 45.
179.
448.
896.

  3.
  9.
 45.
179.
448.
896.
   0.
   0.
   0.
   0.
   0.
   0.

   4.
   13.
   66.
 263.
 657.
 1314.

   8.
   26.
 131 .
 526.
 1314.
 2628.

   16.
   53.
 263.
 1051.
 2628.
 5256.

   32.
  105.
 526.
 2102.
 5256.
10512.
  20.
  51.
  126.
  358.
  741.
 1408.

  16.
  38.
  60.
  95.
  84.
  94.

   12.
   25.
   -5.
 -168.
 -573.
-1220.

    4.
   -1.
 -137.
 -693.
-1887.
-3848.

  -12.
  -54.
 -400.
-1745.
-4515,
-9104.
                                             NET  COST
                                           OR SAVINGS(-)
                                             PER  SCFM
                                              */SCFM
 65.45
 51.14
 25.21
 17.89
 14.81
 14.08

 52.31
 38.00
 12.07
  4.75
  1.67
  0.94

 39. 17
 24.86
 -1.07
 -8.39
-11.47
-12.20

 12.89
 -1.42
-27.35
-34.67
-37.75
-38.48

-39.67
-53.98
-79.91
-87.23
-90.31
-91.04

-------
          OFFGAS CARBON REQUIREMENT 5.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT *10.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0250*/1000 SCF
0.0500*/1000 SCF
0.1000$/1000 SCF
0.2000*/1000 SCF
 OFFGAS
  FLOU

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

<000)
  58.
 144.
 273.
 594.
 955.
1671.

  58,
 144.
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREBIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42,
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42,
  81.
 179.
 293.
< 513.
   5.
  17.
  85.
 339.
 847.
1694.

   5.
  17.
  85.
 339.
 847.
1694.

   5.
  17.
  85.
 339.
 847.
1694.

   5.
  17.
  85.
 339.
 847.
1694.

   5.
  17.
  85.
 339.
 847.
1694.
    0.
    0.
    0.
    0.
    0.
    0.

    4,
   13.
   66.
  263.
  657.
 1314.

    8.
   26.
  131.
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.
   22.
   59.
  166.
  517.
 1140.
 2206.

   18.
   46.
  100.
  255.
  483.
  892.

   14.
   33,
   35.
   -8.
 -174.
 -422.

    6.
    7.
  -97.
 -534.
-1488.
-3050.

  -10.
  -46.
 -360.
-1585.
-4116.
-8306.
                                                                                                              NET COST
                                                                                                            OR SAVINGS(-)
                                                                                                              PER SCFM
                                                                                                               «/SCFM
 73.43
 59.12
 33.19
 25.87
 22.79
 22.06

 60.29
 45.98
 20.05
 12.73
  9.65
  8.92

 47.15
 32.84
  6.91
 -0.41
 -3.49
 -4.22

 20.87
  6.56
-19.37
-26.69
-29.77
-30.50

-31.69
-46.00
-71.93
-79.25
-82.33
-83.06

-------
          OFFGAS CARBON REQUIREMENT 5.00  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/  LB  CARBON
                                                 AT *iO.OO/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0250*/1000 SCF
0.0500*/1000 SCF
0.1000*/1000 SCF
0.2000*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000,
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144,
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273,
 594.
 9S5.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          <000)
  17,
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513,

  17.
  42,
  81.
 179.
 293.
 513.
  16.
  54.
 271.
1083.
2709.
5417.

  16.
  54.
 271.
1083.
2709.
5417.

  16.
  54.
 271.
1083.
2709.
5417.

  16.
  54.
 271,
1083.
2709.
5417,

  16.
  54.
 271.
1083.
2709.
5417.
   0.
   0.
   0.
   0.
   0.
   0.

   4.
   13.
   66.
  263.
  657.
 1314.

   8.
   26.
  131.
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051,
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.
   33.
   96.
  352.
 1262.
 3001 .
 5930.

   29.
   83.
  286,
  999.
 2344.
 4616.

   25.
   70.
  221.
  736.
 1687.
 3302.

   17.
   44.
   89,
  211.
  373.
  674.

    2.
   -9.
 -173,
 -840,
-2255.
-4582.
                                              NET COST
                                            OR SAVINGS(-)
                                              PER SCFM
                                               */SCFM
110.66
 96.35
 70.43
 63.10
 60.03
 59.30

 97.52
 83.21
 57,29
 49.96
 46.89
 46.16

 84.38
 70.07
 44.15
 36.82
 33.75
 33.02

 58.10
 43.79
 17.87
 10.54
  7.47
  6.74

  5.54
 -8.77
-34.69
-42.02
-45.09
-45.82

-------
          OFFGAS  CARBON  REQUIREMENT  5.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/  LB  CARBON
                                                 AT  $10.00/MILLION BTU
    CREDIT
0.0000*71000 SCF
0.0250*/1000 SCF
0.0500*/1000 SCF
 0.1000*/1000  SCF
 0.2000*/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
 20000.
 50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
  144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          <000)          <000)           (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 , 513.
   8.
  28.
 138.
 552.
1379.
2758.

   8.
  28.
 138.
 552.
1379.
2758.

   8.
  28.
 138.
 552.
1379.
2758.

   8.
  28.
 138.
 552.
1379.
2758.

   8.
  28.
 138.
 552.
1379.
2758.
   0.
   0.
   0.
   0.
   0.
   0.

   4.
   13.
   66.
 263.
 657.
 1314.

   8.
   26.
 131.
 526.
 1314.
 2628.

   16.
   53.
 263.
 1051.
 2628.
 5256.

   32.
  105.
  526,
 2102.
 5256.
10512.
  25.
  70.
 219.
 730.
 1672.
 3270.

  21 .
  57.
 153.
 467.
 1015.
 1956.

  17.
  43.
  88.
 204,
 358.
 642.

    9.
   17.
 -44.
 -321.
 -956,
-1986.

   -6.
  -35.
 -306.
-1372.
-3584.
-7242.
                                              NET  COST
                                            OR SAVINGS(-)
                                              PER  SCFM
                                               */SCFM
84.06
69.76
43.83
36.50
33.43
32.70

70.92
56.62
30.69
23.36
20.29
19.56

57.78
43.48
17.55
 10.22
  7.15
  6.42

31.50
 17.20
 -8.73
-16.06
-19.13
-19.86

-21.06
-35.36
-61.29
-68.62
-71.69
-72.42

-------
          OFFGAS CARBON REQUIREMENT 6.96  LB  CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.3 LB STEAM/  LB  CARBON
                                                 AT $10.00/MILLION BTU
    CREtUT
0.0000*/1000 SCF
0.0348*/1000 SCF
0.0696*/1000 SCF
0.1392*/1000 SCF
 0.2784S/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 , 513.
   4.
  12.
  60.
 242.
 604.
1209.

   4.
  12,
  60.
 242.
 604.
1209.

   4.
  12.
  60.
 242.
 604.
1209.

   4.
  12.
  60.
 242.
 604.
1209.

   4.
  12.
  60.
 242.
 604.
120?.
   0.
   0.
   0.
   0.
   0.
   0.

   5.
   18.
   91.
  366.
  915.
 1829,

   11 .
   37.
  183,
  732.
 1829.
 3658.

   22.
   73.
  366.
 1463.
 3658.
 7316.

   44.
  146.
  732.
 2927.
 7316.
14633.
   21.
   54.
  142.
  420.
  897.
  1721.

   15.
   36.
   50.
   54.
  -17.
  -108.

   10.
   18.
  -41.
  -311.
  -932.
 -1937.

   -1 .
  -19.
  -224.
 -1043.
 -2761.
 -5595.

  -23.
  -92.
  -590.
 -2506.
 -6419.
-12911,
                                              NET  COST
                                            OR SAVINGS(-)
                                              PER  SCFM
                                               */SCFh
 68.57
 54.27
 28.34
 21.02
 17.94
 17.21

 50.28
 35,98
 10.05
   2.72
 -0.35
 -1.08

 31.99
 17.69
 -8.24
 -15.57
 -18.64
 -19.37

 -4.59
 -18.90
 -44.82
 -52.15
 -55.22
 -55.95

 -77.75
 -92.06
-117.99
-125.31
-128.39
-129.11

-------
          OFFGAS CARBON REQUIREMENT 6.96  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                  AT  tlO.OO/MILLION  BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

(000)
      OPERATING COST-OR-CREIUT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
                                                                                                              NET COST
                                                                                                            OR SAVINGS(-)
                                                                                                              PER SCFM
                                                                                                               */SCFM
0.0000*/1000 SCF
0.0348*/1000 SCF
0.0696*/1000 SCF
0.1392$/1000 SCF
0.2784*/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
   7.
  23.
 116.
 464.
1160.
2319.

   7.
  23.
 116.
 464.
1160.
2319.

   7.
  23.
 116.
 464.
1160.
2319.

   7.
  23.
 116.
 464.
1160.
2319.

   7.
  23.
 116.
 464.
1160.
2319.
    0.
    0.
    0.
    0.
    0.
    0.

    5.
   18.
   91.
  366.
  915.
 1829.

   11.
   37.
  183.
  732.
 1829.
 3658.

   22.
   73.
  366.
 1463.
 3658.
 7316.

   44.
  146.
  732.
 2927.
 7316.
14633.
    24.
    65.
   197.
   642.
  1452.
  2832.

    IB.
    47.
   106.
   277.
   538.
  1003.

    13.
    29.
    14.
   -89.
  -377.
  -826.

     2.
    -8.
  -169.
  -821.
 -2206.
 -4484.

   -20.
   -81.
  -534.
 -2284.
 -5864.
-11801.
  79.68
  65.37
  39.45
  32.12
  29.05
  28.32

  61.39
  47.08
  21.16
  13.83
  10.76
  10.03

  43.10
  28.79
   2.87
  -4.46
  -7.53
  -8.26

   6.52
  -7.79
 -33.72
 -41.04
 -44.12
 -44.84

 -66.65
 -80.95
-106.88
-114.21
-117.28
-118.01

-------
          OFFGAS CARBON REQUIREMENT 6.96  LB CARBON/1000  SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/ LB  CARBON
                                                  AT  *10.00/MILLION BTU
    CREDIT
0.0000$/1000 SCF
0.0348S/1000 SCF
0.0696*/1000 SCF
0.1392t/1000 SCF
0.2784*/1000 SCF
                   OFFGAS
                    FLOU

                   SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
                CAPITAL
                 COST

                (000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
                    OPERATING  COST-OR-CREDIT               NET
               FIXED         UTILITIES        RECOVERY    ANNUALIZED
               COST                          CREDIT   COST OR CREDIT<->
               (000)           (000)          (000)          (000)
 17,
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.

 17.
 42.
 81.
179.
293.
513.
•  11.
  38.
 190,
 760.
1900.
3800.

  11.
  38.
 190.
 760.
1900.
3800.

  11.
  38.
 190.
 760.
1900.
3800.

  11 .
  38.
 190.
 760.
1900.
3800.

  11.
  38.
 190.
 760.
1900.
3800.
    0.
    0.
    0.
    0.
    0.
    0.

    5.
   18.
   91.
  366.
  915.
 1829.

   11 .
   37.
  183.
  732.
 1829.
 3658.

   22.
   73.
  366.
 1463.
 3658.
 7316.

   44.
  146.
  732.
 2927.
 7316.
14633,
    28,
    80.
   271.
   939.
  2193.
  4313.

    23.
    62.
   180.
   573.
  1278.
  2484.

    17.
    44.
    88.
   207.
   364.
   655.

     6.
     7.
   -95.
  -525.
 -1465.
 -3004.

   -16.
   ""OO *
  -460.
 -1988.
 -5124.
-10320.
                                                            NET COST
                                                          OR SAYINGS(-)
                                                            PER SCFM
                                                             */SCFM
  94.49
  80.18
  54.26
  46.93
  43.86
  43.13

  76.20
  61.89
  35.97
  28.64
  25.57
  24.84

  57.91
  43.60
  17.67
  10.35
   7.27
   6.55

  21.33
   7.02
 -18.91
 -26.23
 -29.31
 -30.04

 -51.84
 -66.14
 -92.07
 -99,40
-102.47
-103.20

-------
          OFFGAS CARBON REQUIREMENT 6.96  LB CARBON/1000  SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  $10.00/MILLION  BTU
    CREIHT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

<000>
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
                                              NET COST
                                            OR SAVINGS(-)
                                              PER SCFM
                                               */SCFM
0.0000*/1000 SCF
0,0348$/1000 SCF
0.0696*/1000 SCF
0.1392*/1000 SCF
0,2784*/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
•  23,
  75.
 375.
1500.
3751.
7502.

  23.
  75.
 375.
1500.
3751.
7502.

  23.
  75.
 375.
1500.
3751.
7502.

  23.
  75.
 375.
1500.
3751.
7502.

  23.
  75.
 375.
1500.
3751.
7502.
    0.
    0.
    0.
    0.
    0.
    0.

    5.
   18.
   91.
  366.
  915.
 1829,

   11.
   37.
  183.
  732.
 1829.
 3658.

   22.
   73.
  366.
 1463.
 3658.
 7316.

   44.
  146.
  732.
 2927.
 7316.
14633.
  39.
 117.
 456.
1679.
4044.
8015.

  34.
  99.
 365.
1313.
3129.
6186.

  28.
  81.
 273.
 947.
2215.
4357.

  18.
  44.
  91.
 216.
 386.
 698.
                                                                                               -29.
                                                                                              -275.
                                                                                             -1248.
                                                                                             -3273.
                                                                                             -6618.
131.51
117.20
 91.28
 83.95
 80.88
 80.15

113.22
 98.91
 72.99
 65.66
 62.59
 61.86

 94.93
 80.62
 54.70
 47.37
 44.29
 43.57

 58.35
 44.04
 18.11
 10.79
  7.71
  6.98

-14.82
-29.12
-55.05
-62.38
-65.45
-66.18

-------
          OFF6AS CARBON REQUIREMENT 8,00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 0.3 LB STEAM/ LB CARBON
                                                  AT  *10.00/MILLION  BTU
    CREDIT
 OFFGAS
  FLOW

 SCFM
CAPITAL
 COST

<000)
      OPERATING COST-OR-CREDIT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          (000)          (000)
                                              NET COST
                                            OR SAVINGS(-)
                                              PER SCFM
                                               t/SCFM
0.0000$/1000 SCF
0.0400*/1000 SCF
0.0800t/1000 SCF
0.1600*/1000 SCF
0.3200J/1000 SCF
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000,
  5000.
 20000,
 50000,
100000,

   300.
  1000.
  5000,
 20000,
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000,
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.
   4.
  14.
  69.
 275,
 687.
1375.

   4.
  14,
  69.
 275.
 687.
1375.

   4,
  14.
  69.
 275,
 687.
1375.

   4.
  14.
  69.
 275.
 687.
1375.

   4.
  14.
  69,
 275.
 687.
1375.
    0,
    0.
    0.
    0.
    0.
    0.

    6.
   21.
  105,
  420,
 1051.
 2102.

   13.
   42.
  210.
  841,
 2102.
 4205.
   84.
  420.
 1682.
 4205.
 8410.

   50.
  168.
  841 .
 3364.
 8410.
16819,
    21 .
    56.
   150.
   453.
   980.
  1887.

    15,
    35,
    45.
    33,
   -71 .
  -215.

     8.
    14.
   -60.
  -387.
 -1122.
 -2318.

    -4.
   -28.
  -270.
 -1228.
 -3225.
 -6522.

   -29.
  -112.
  -691 .
 -2910.
 -7430.
-14932,
  70.23
  55.93
  30.00
  22.67
  19.60
  18.87

  49.21
  34.90
   8.98
   1.65
  -1.42
  -2.15

  28.19
  13.88
 -12.05
 -19,37
 -22.45
 -23.18

 -13.86
 -28.17
 -54.09
 -61.42
 -64.50
 -65.22

 -97.96
-112.26
-138, 19
-145.52
-148.59
-149,32

-------
          OFFGAS CARBON  REQUIREMENT 8.00  LB CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB CARBON
                                                 AT *10.00/MILLION BTU
    CREDIT
0,00004/1000 SCF
0.0400*/1000 SCF
0.0800*/1000  SCF
 0.1600*/1000  SCF
 0.32004/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
  144.
 273.
  594,
 955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 , 513.
   8.
  27.
 133.
 530.
1326.
2651.

   8.
  27.
 133.
 530.
1326.
2651,

   8.
  27,
 133.
 530.
1326.
2651.

   8.
  27.
 133.
 530.
1326.
2651.

   8.
  27.
 133.
 530,
1326.
2651.
   0.
   0.
   0.
   0.
   0.
   0.

   6.
  21.
  105.
  420.
 1051.
 2102.

  13.
  42.
  210.
  841.
 2102.
 4205.

  25.
  84.
  420.
 1682.
 4205.
 8410.

  50.
  168.
  841.
 3364.
 8410.
16819.
                              NET
                           ANNUALIZED
                        COST  OR  CREDIT(-)
                              (000)
   25.
   69.
  214.
  709.
 1618.
 3164.

   19.
   48.
  109.
  288.
  567.
 1061.

   12.
   27.
     4.
 -132.
 -484.
 -1041.

   -0.
  -15.
 -207.
 -973.
 -2586.
 -5246.

   -26.
   -99.
 -627.
 -2655.
 -6791.
-13655.
                               NET COST
                             OR SAYINGS(-)
                               PER SCFM
                                */SCFM
 83.00
 68.69
 42.77
 35.44
 32.37
 31.64

 61.98
 47.67
 21.74
 14.42
 11.34
 10.61

 40.95
 26.64
   0.72
 -6.61
 -9.68
 -10.41

 -1. 10
 -15.40
 -41.33
 -48.66
 -51.73
 -52.46

 -85.19
 -99.50
-125.43
-132.75
-135.83
-136.55

-------
          OFFGAS  CARBON REQUIREMENT 8.00  LB CARBON/1000  SCF
          STEAM  REGENERATION RATIO 1.0 LB STEAM/  LB  CARBON
                                                 AT tlO.OO/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0400$/1000 SCF
0.0800*/1000 SCF
0.1600*/1000 SCF
 0.3200t/1000 SCF
 DFFGAS
  FLOW

 SCFh
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

(000)
  58,
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594,
 955.
1671,

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293,
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293,
 513.

  17.
  42.
  81.
 179.
 293.
, 513.
  13.
  44.
 218.
 871.
2177.
4353.

  13.
  44.
 218.
 871.
2177.
4353.

  13.
  44.
 218.
 871.
2177.
4353.

  13.
  44.
 218.
 871.
2177.
4353.

  13.
  44,
 218.
 871.
2177.
4353.
   0.
   0.
   0.
   0.
   0.
   0.

   6.
   21.
  105.
  420.
 1051.
 2102.

   13.
   42.
  210.
  841.
 2102.
 4205.

   25.
   84.
  420.
 1682.
 4205.
 8410.

   50.
  168.
  841.
 3364.
 8410.
16819.
                              NET
                           ANNUALIZED
                        COST  OR  CREDIT(-)
                              (000)
   30.
   86.
  299.
  1049.
  2469.
  4866.

   24.
   65.
  194.
  629.
  1418.
  2763.

   17.
   44.
   89.
  208.
  367.
  661 .

     5.
     2.
  -122.
  -633.
 -1735.
 -3544.

  -20.
  -82.
  -542.
 -2315.
 -5940.
-11953.
                               NET COST
                             OR SAVINGS(-)
                               PER SCFM
                                */SCFM
 100.02
  85.71
  59.79
  52.46
  49.39
  48.66

  79.00
  64.69
  38.76
  31.44
  28.36
  27.63

  57.97
  43.67
  17.74
  10.41
   7.34
   6.61

  15.92
   1.62
 -24.31
 -31.63
 -34.71
 -35.44

 -68. 17
 -82.48
-108.40
-115.73
-118.80
-119.53

-------
          OFFGAS CARBON REQUIREMENT 8.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  410.00/MILLION  BTU
    CREDIT
0.00004/1000 SCF
0.04004/1000 SCF
 0.08004/1000  SCF
 0.16004/1000 SCF
 0.32004/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
 20000.
 50000,
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
 1671.

  58.
 144.
 273.
 594.
 955.
 1671.

  58.
  144.
 273.
 594.
 V55.
 1671.
      OPERATING COST-OR-CREIUT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT(-)
(000)          (000)          <000)          <000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179,
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 513.
  26.
  86.
 430.
1722.
4304.
8609.

  26.
  86.
 430.
1722.
4304.
8609.

  26.
  86.
 430.
1722.
4304.
8609.

  26.
  86.
 430.
1722,
4304.
8609.

  26.
  86.
 430.
1722.
4304.
8609.
   0.
   0.
   0.
   0.
   0.
   0.

   6.
  21.
 105.
 420.
1051.
2102.

  13.
  42.
 210.
 841.
2102.
4205.

  25.
  84.
 420.
1682.
4205.
8410.

  50.
  168.
 841.
3364.
8410.
16819.
  43.
  128.
  512.
 1900.
 4597.
 9121.

  36.
  107.
  407.
 1480.
 3546.
 7019.

  30.
  86.
  301.
 1059.
 2495.
 4916.

   18.
   44.
   91.
  218.
  392.
  712.

   -8.
  -40.
 -329.
-1464.
-3813.
-7698.
                                              NET  COST
                                            OR SAVINGS(-)
                                              PER  SCFM
                                               4/SCFM
142.57
128.27
102.34
 95.01
 91 .94
 91.21

121.55
107.24
 81.32
 73.99
 70.92
 70.19

100.53
 86.22
 60.29
 52.97
 49.89
 49.16

 58.48
 44, 17
 18.24
 10.92
   7.84
   7.12

-25.62
-39.93
-65.85
-73.18
-76.25
-76.98

-------
          OFFGAS  CARBON  REQUIREMENT 10.00  LB CARBON/1000 SCF
          STEAM REGENERATION  RATIO  0.3 LB STEAM/ LB CARBON
                                                 AT *10.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0500*/1000 SCF
 0.1000$/1000 SCF
 0.2000*/1000 SCF
 0.4000t/1000 SCF
OFFGAS
  FLOW

SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
   5000.
  20000.
  50000.
 100000.

    300.
   1000.
   5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
 1671.

  58.
 144.
 273.
 594.
 955.
 1671.

  58.
  144.
  273.
  594.
  955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST
(000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
  513.

   17.
   42.
   81.
  179.
  293.
  513.

   17.
   42.
   81 .
  179.
  293.
 , 513.
   5.
  17.
  85.
 339.
 847.
1694.

   5.
  17.
  85.
 339.
 847.
1694,

   5.
  17.
  85.
 339.
 847.
1694.

   5.
   17.
   85.
  339.
  847.
 1694.

   5.
   17.
   85.
  339.
  847.
 1694.
                                                                              CREDIT
                                                                              (000)
   0.
   0.
   0.
   0.
   0.
   0.

   8.
  26.
 131.
 526.
1314.
2628.

  16.
  53.
 263.
1051.
2628.
5256.

  32.
  105.
  526.
2102.
5256.
10512.

   63.
  210.
 1051.
 4205.
10512.
21024.
                             NET
                          ANNUALIZED
                       COST OR CREDIT(-)
                             (000)
   22.
   59.
  166.
  517.
 1140.
 2206.

   14.
   33.
   35.
   -8.
 -174.
 -422.

    6.
    7.
  -97.
 -534.
-1488.
-3050.

  -10.
  -46.
 -360.
-1585.
-4116.
-8306.

   -41.
  -151.
  -885.
 -3687.
 -9372.
-18818.
                               NET  COST
                             OR SAVINGS(-)
                               PER  SCFM
                                */SCFM
 73.43
 59.12
 33.19
 25.87
 22.79
 22.06

 47.15
 32.84
  6.91
 -0.41
 -3.49
 -4.22

 20.87
  6.56
 -19.37
 -26.69
 -29.77
 -30.50

 -31.69
 -46.00
 -71.93
 -79.25
 -82.33
 -83.06

-136.81
-151.12
-177.05
-184.37
-187.45
-188.18

-------
          OFFGAS  CARBON  REQUIREMENTIO.00  LB CARBON/1000  SCF
          STEAM REGENERATION RATIO 0.6 LB STEAM/ LB  CARBON
                                                 AT $10.00/MILLION BTU
    CREDIT
O.OOOOt/1000 SCF
0.0500*/1000 SCF
 0.1000*/1000 SCF
 0.2000*/1000 SCF
 0.4000*/1000 SCF
OFFGAS
  FLOW

SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
 20000.
 50000.
 100000.

   300.
   1000.
   5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594.
 955.
 1671.

  58.
  144.
 273.
 594.
 955.
 1671.

   58.
  144.
  273.
  594.
  955.
 1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
  179.
 293.
 513.

   17.
   42.
   81.
  179.
  293.
 , 513.
  10.
  33.
 164.
 658.
1645.
3289.

  10.
  33.
 164.
 658.
1645.
3289.

  10.
  33.
 164.
 658.
1645.
3289.

  10.
  33.
 164.
 658.
1645.
3289.

  10.
  33.
 164.
 658.
 1645.
 3289.
   0.
   0.
   0.
   0.
   0.
   0.

   8.
  26.
 131.
 526.
 1314.
 2628.

  16.
  53.
 263.
 1051.
 2628.
 5256.

  32.
  105.
 526.
 2102.
 5256.
10512.

   63.
  210.
 1051.
 4205.
10512.
21024.
                              NET
                           ANNUALIZED
                        COST  OR  CREDIT(-)
                              (000)
   27.
   75.
  246.
  836.
 1937.
 3S02.

   19.
   49.
  114.
  311.
  623.
 1174.

   11 .
   23.
  -17.
 -215.
 -691 .
 -1454.

   -5.
  -30.
 -280.
 -1266.
 -3319.
 -6710.

  -36.
  -135.
  -805.
 -3368.
 -8575.
-17222.
                               NET COST
                             OR SAUINGS(-)
                               PER SCFM
                                */SCFM
 89.38
 75.08
 49.15
 41.82
 38.75
 38.02

 63.10
 48.80
 22.87
 15.54
 12.47
 11.74

 36.82
 22.52
 -3.41
-10.74
-13.81
-14.54

-15.74
-30.04
-55.97
-63.30
-66.37
-67.10

-120.86
-135.16
-161.09
-168.42
-171.49
-172.22

-------
          OFFGAS  CARBON REQUIREMENTS.00   LB  CARBON/1000 SCF
          STEAM REGENERATION RATIO 1.0 LB STEAM/  LB  CARBON
                                                 AT *10.00/MILLION BTU
    CREDIT
O.OOOOt/1000 SCF
0.0500*/1000 SCF
0.1000$/1000 SCF
 0.2000*/1000  SCF
 0.4000*/1000  SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
   5000.
  20000.
  50000.
 100000.
CAPITAL
 COST

(000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144,
 273.
 594,
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
  144.
 273.
  594.
 955,
 1671.
      OPERATING COST-OR-CREDIT
FIXED        UTILITIES        RECOVERY
COST                          CREDIT
(000)          (000)          (000)
  17.
  42.
  81 .
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179,
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

   17.
   42.
   81.
  179.
  293.
 > 513,
•  16.
  54.
 271.
1083.
2709.
5417.

  16.
  54.
 271.
1083.
2709.
5417.

  16.
  54.
 271.
1083.
2709.
5417.

   16.
  54.
 271.
 1083.
2709.
5417.

   16.
   54.
  271.
 1083.
 2709.
 5417.
   0.
   0.
   0.
   0.
   0.
   0.

   8.
  26.
  131.
  526.
 1314.
 2628.

  16.
  53.
  263.
 1051.
 2628.
 5256.

  32.
  105.
  526.
 2102.
 5256.
10512.

  63.
  210.
 1051 .
 4205.
10512.
21024.
                              NET
                           ANNUALIZED
                        COST OR CREDIT(-)
                              (000)
   33.
   96.
  352.
 1262.
 3001.
 5930.

   25.
   70.
  221.
  736.
 1687.
 3302.

   17.
   44.
   89.
  211.
  373.
  674.

    2.
   -9.
 -173.
 -840.
 -2255.
 -4582.

  -30.
 -114.
 -699.
 -2943.
 -7511.
-15094.
                               NET COST
                             OR SAVINGS(-)
                               PER SCFM
                                */SCFM
110.66
 96.35
 70.43
 63.10
 60.03
 59.30

 84.38
 70.07
 44.15
 36.82
 33.75
 33.02

 58.10
 43.79
 17.87
 10.54
   7.47
   6.74

   5.54
 -8.77
 -34.69
 -42.02
 -45.09
 -45.82

 -99.58
-113.89
-139,81
-147.14
-150.21
-150.94

-------
          OFFGAS CARBON REQUIREMENTIO.00  LB CARBON/1000 SCF
          STEAM REGENERATION RATIO 2.0 LB STEAM/ LB CARBON
                                                  AT  *10.00/MILLION BTU
    CREDIT
0.0000*/1000 SCF
0.0500*/1000 SCF
0.1000*/1000 SCF
 0.2000*/1000  SCF
 0.4000*/1000 SCF
 OFFGAS
  FLOW

 SCFM
   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
  1000.
  5000.
 20000.
 50000.
100000.

   300.
   1000.
  5000.
 20000.
 50000.
100000.
CAPITAL
 COST

<000)
  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
1671.

  58.
 144.
 273.
 594.
 955.
 1671.
      OPERATING COST-OR-CREIHT               NET
FIXED        UTILITIES        RECOVERY    ANNUALIZED
COST                          CREDIT   COST OR CREDIT<->
(000)          (000)          (000)          (000)
  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 513.

  17.
  42.
  81.
 179.
 293.
 , 513.
                                                                  32.
                                                                 107.
                                                                 537.
                                                                2147.
                                                                5368.
  32.
 107.
 537.
2147.
5368.
*****

  32.
 107.
 537.
2147.
5368.
*****

  32.
 107.
 537.
2147.
5368.
*****

  32.
 107.
 537.
2147.
5368.
*****
   0.
   0.
   0.
   0.
   0.
   0.

   8.
   26.
  131.
  526.
 1314.
 2628.

   16.
   53.
  263.
 1051.
 2628.
 5256.

   32.
  105.
  526.
 2102.
 5256.
10512.

   63.
  210.
 1051.
 4205.
10512.
21024.
   49.
  150.
  618.
 2326,
 5661.
11249.

   41 .
  123.
  487.
 1800.
 4347.
 8621.

   33.
   97.
  355.
 1275.
 3033.
 5993.

   18.
   44.
   92.
  223.
  405.
  737.

  -14.
  -61.
 -433.
-1879.
-4B51.
-9775.
                                              NET  COST
                                            OR SAVINGS(-)
                                              PER  SCFM
                                               */SCFM
163.85
149.54
123.62
116.29
113.22
112.49

137.57
123.26
 97.34
 90.01
 86.94
 86.21

111.29
 96.98
 71.06
 63.73
 60.66
 59.93

 58.73
 44.42
 18.50
 11.17
  8.10
  7.37

-46.39
-60.70
-86.62
-93.95
-97.02
-97.75

-------
                                         2-i
                                     REPORT 2
                             CONTROL DEVICE EVALUATION
                                   CONDENSATION

                                   D. G. Erikson

                                 IT Enviroscience
                             9041 Executive Park Drive
                               Knoxville, Tennessee
                                   Prepared for
                    Emission Standards and Engineering Division
                   Office of Air Quality Planning and Standards
                          Environmental Protection Agency
                      Research Triangle Park, North Carolina
                                    December  1980
D103R

-------
                                         2-iii
                                CONTENTS OF REPORT  2
  I. INTRODUCTION                                                           1-1
     A.   General                                                           1-1

 II. SYSTEM DESCRIPTION                                                    II-l
     A.   General                                                          II-l
     B.   Condensation Equipment                                           II-l

III. FACTORS INFLUENCING PERFORMANCE AND MODEL SYSTEMS                    III-l
     A.   System Efficiencies                                             III-l
     B.   Base Case Model Condenser System                                III-4

 IV. DESIGN CONSIDERATIONS                                                 IV-1
     A.   General                                                          IV-1
     B.   Capital Cost Parameters                                          IV-1
     C.   Operating Cost Parameters                                        IV-2

  V. COST AND ENERGY IMPACTS OF CONDENSER SYSTEMS                           V-l
     A.   Capital Cost Estimates                                            V-l
     B.   Annual Costs                                                      V-6
     C.   Cost Effectiveness and Energy Effectiveness                       V-6

 VI. SUMMARY AND CONCLUSIONS                                               VI-1

VII. REFERENCES                                                           VII-1
                                APPENDICES OF REPORT 2

A.   BREAKDOWN OF CAPITAL COSTS FOR CONDENSER SECTION AND REFRIGERATION UNIT
B.   SAMPLE CALCULATIONS

-------
                                          2-v
                                  TABLES  OF  REPORT  2
Number

III-l  Parameters for Condenser System Recovery Efficiencies              III-3
  V-l  Capital Cost Summary for Complete Condenser Systems                  V-2
  V-2  Annual Cost Summary for 50% VOC Removal                              v'7
  V-3  Annual Cost Summary for 80% VOC Removal                              v~8
  V-4  Annual Cost Summary for 95% VOC Removal                              v"9
  V-5  Annual Cost Parameters                                               v~17
                                                                            \7  1 ft
  V-6  Cost-Effectiveness Summary
  V-7  Energy-Effectiveness Summary                                         V-25

-------
                                        2-vii
                                 FIGURES OF REPORT 2
Number
 II-l   Schematic  Diagram  of  a  Shell  and Tube  Surface Condenser
 II-2   Schematic  Diagram  of  a  Contact  Condenser
 II-3   Basic Surface  Condenser System
III-l   Vapor Pressures of Selected Compounds  vs  Temperature
  V-l   Installed Capital  Cost  vs Flow  Rate  for  Complete  Condenser
       System with a  VOC  Removal Efficiency of  50%
  V-2   Installed Capital  Cost  vs Flow  Rate  for  Complete  Condenser
       System with a  VOC  Removal Efficiency of  80%
  V-3   Installed Capital  Cost  vs Flow  Rate  for  Complete  Condenser
       System with a  VOC  Removal Efficiency of  95%
  V-4  Annual Cost vs Flow Rate for Complete Condenser System with
       VOC Recovery Efficiency of 50% and No VOC Recovery Credit
  V-5  Annual Cost vs Flow Rate for Complete Condenser System with
       VOC Removal Efficiency of 80% and No VOC Recovery Credit
  V-6  Annual Cost vs Flow Rate for Complete Condenser System with
       VOC Removal Efficiency of 95% and No VOC Recovery Credit
  V-7  Net Annual Cost vs Flow Rate for Complete Condenser System with
       50% VOC Removal and $0.10/lb Credit for Recovered VOC
  V-8  Net Annual Cost vs Flow Rate for Complete Condenser System with
       50% VOC removal and $0.20/lb Credit for Recovered VOC
  V-9  Net Annual Cost vs Flow Rate for Complete Condenser System with
       95% VOC Removal and  $0.10/lb Credit for Recovered VOC
  V-10 Net Annual Cost vs Flow Rate for Complete Condenser System with
       95%  VOC Removal and  $0.20/lb Credit for Recovered VOC
  V-ll Cost  Effectiveness vs  Flow  Rate for Condenser  System with
       50%  VOC Removal Efficiency  and No VOC Recovery Credit
  V-12 Cost Effectiveness vs  Flow  Rate for Condenser  System with  50%
         VOC Removal  Efficiency and $0.10/lb  Credit  for  Recovered  VOC
  V-13 Cost Effectiveness vs  Flow Rate for Condenser  System with  50%
       VOC  Removal Efficiency and $0.20/lb Credit for Recovered VOC
   V-14 Cost Effectiveness vs  Flow Rate  for Condenser  System with  95%
        VOC  Removal Efficiency and No  VOC  Recovery Credit
   V-15 Cost Effectiveness vs  Flow Rate  for Condenser  System  with  95%
        Removal Efficiency and $0.10/lb  VOC Recovery Credit
   V-16 Cost Effectiveness vs Flow Rate  for Condenser  System with 95%
        Removal Efficiency and $0.20/lb VOC Recovery Credit
   A-l  Installed Capital Cost vs Condenser Area for Various Materials
        of Construction  for a Complete Condenser Section
   A-2 Installed Capital Costs vs Refrigeration Capacity at Various
        Coolant  Temperatures  for a Complete  Refrigeration Section
                                                                           II-2
                                                                           II-2
                                                                           II-4
                                                                          III-2
                                                                            V-3
                                                                            V-4

                                                                            V-5

                                                                            V-10

                                                                            V-ll

                                                                            V-12

                                                                            V-13

                                                                            V-14

                                                                            V-15

                                                                            V-16

                                                                            V-19

                                                                            V-20

                                                                            V-21

                                                                             V-22

                                                                             V-23

                                                                             V-24

                                                                             A-4

                                                                             A-5

-------
                                         1-1
                                  I.   INTRODUCTION

A.    GENERAL
     Condensation is an operation in which one or more volatile components of a
     vapor mixture are separated from the remaining vapor by being changed to the
     liquid phase through extraction of the heat of condensation.  In a two-com-
     ponent vapor stream, where one of the components is considered to be noncon-
     densible (e.g., air), condensation occurs when the partial pressure of the
     condensible component (e.g., VOC) is equal to the component's vapor pressure.
     To achieve this condition the system pressure may be increased at a given
     temperature or the temperature of the vapors may be reduced at constant pressure.

     Condensation as an emission control method is often used with auxiliary air
     pollution control equipment.1*  For example, condensers can be located before
      (upstream of)  absorbers,  incinerators, or carbon beds  to reduce  the VOC load on
      the  more expensive control device,  thereby possibly reducing the size and  cost
      of the  other control  device.  The condenser  can  also remove vapor components
      that might  adversely  affect the operation of other equipment or  cause corrosion
      problems or  can be used to  simply recover valuable material that would otherwise
      be destroyed.  When  condensers  are  used  alone,  as  in gasoline vapor  control
      from bulk  terminals,  refrigeration  is  often  employed to obtain  the  low  tempera-
      tures necessary  for  acceptable  VOC  removal  efficiencies.

      The  suitability  of  condensation for VOC  emission control  is generally dependent
      on the following factors:  the  VOC  concentration in the  inlet  (usually above
      1%); the VOC removal efficiency required;  the  recovery value  of the contained
      VOC; and the condenser size required for handling the  gas flow rate.
     *See Sect. VII for the references cited in this report.

-------
                                       II-l
                               II.  SYSTEM DESCRIPTION

A.    GENERAL
     When a condenser is used to control emissions, it is usually operated at the
     constant pressure of the control source,  which is normally atmospheric.   This
     report is limited to the evaluation of condensation as a VOC control method at
     atmospheric pressure.

B.    CONDENSATION EQUIPMENT
     The two most common types of condensers that operate at atmospheric pressure
     are surface and contact condensers.

I.    Surface Condensers
     Most surface condensers are of the shell  and tube type shown in Fig. II-l.2
     The coolant ususally flows through the tubes,  and the vapors condense on the
     outside (shell) tube surface.  The condensed vapor forms a film on the cool
     tube and drains away to a collection tank for storage or disposal.

     The coolant used depends on the temperature required for condensation.  Chilled
     water, brine, and refigerants are normally used in surface condenser operation.
     Air-cooled surface condensers are also available and are usually constructed
     with extended surface fins.  When the cool air passes over the finned tubes,
     the vapors condense inside the tubes.

2.    Contact Condensers
     In contrast to surface condensers, where  the coolant does not contact the
     vapors or the condensate, contact condensers usually cool the vapor by spraying
     an ambient-temperature or slightly chilled liquid directly into the gas stream.
     The coolant is usually water, although in some situations a material used in
     the process can be used as the coolant.  These devices are relatively uncompli-
     cated, as is shown by the typical design  in Fig. II-2.2  Most contact condensers
     are simple spray chambers that are usually baffled to ensure good contact.

3.    Comparison of Surface and Contact Condensers
     Both devices have advantages and disadvantages for a given operation.  Final
     selection will usually be based on the following comparative information.

-------
                          II-2
         COOLANT
            INLET
 VAPOR
 OUTLET
VAPOR
INLET
        COOLANT
        OUTLET
CONDENSED
VOC
Fig.  II-l.  Schematic Diagram of a Shell and Tube  Surface Condenser
         VAPOR  INLET
                                      VAPOR  OUTLET
                                        WATER
                                        INLET
                                  CONDENSATE
                                  OUTLET
       Fig.  II-2.  Schematic Diagram of a Contact Condenser

-------
                                        II-3
    1.   Contact condensers are more flexible, are more simple in design, and are
         less expensive to install than surface condensers.  They have advantages
         in corrosive situations, when particulates have to be removed, and when
         the coolant is the process liquid condensed.
    2.   Contact condensers can be more efficient than surface condensers in remov-
         ing VOC from a vent gas stream because they act as an absorber as well as
         a condenser when the VOC is soluble in the coolant.
    3.   Spent coolant from contact condensers cannot usually be reused directly
         and therefore can be a secondary emission source or a wastewater disposal
         problem.
    4.   The coolant from surface condensers is not contaminated and normally can
         be recycled.
    5.   Surface condensers may be equipped with more auxiliary equipment, such as
         a refrigeration unit, to supply the coolant and consequently generally
         require more maintenance than contact condensers.
    6.   Surface condensers can be used to directly recover valuable and marketable
         VOC from  the gas stream.

    Although contact condensers can be highly efficient in  removing VOC from a
    vapor  stream,  as in vacuum jet service,  they can create additional wastewater
     emission control problems downstream.  Unless  the VOC-contaminated water discharged
     from the condenser is treated  (e.g., stripped, absorbed,  extracted),  secondary
     emissions  will result from evaporation.  Because of this  liability, only surface
     condensers are evaluated  in  this  report.

4.   Condenser  System Flow Sheet
     Figure II-3 illustrates  one  of  the  configurations  that  can be  utilized for  a
     surface  condenser  as  an  emission control device.   The  coolant  is  supplied  to
     the condenser  by a  refrigeration unit.   Temperatures  as low as -80°F  may be
     required in order  to  obtain  the  high VOC removal efficiencies  needed.   The
     major equipment required for the condenser system includes a she11-and-tube
     heat exchanger, a  coolant supply,  a recovery tank for the condensed VOC,  and a
     pump to discharge  the recovered VOC to storage or disposal.

-------
                             II-4
INCOMING
VAPOR
           CONDENSER
                                                COOLANT
                                                RETURN
                                    «	£&
                   RECOVERY
                       TANK
COOLANT
SUPPLY
                                                          REFRIGERATION
                                                          UNIT
                                      VENT
                                                   ©
          RECOVERED VOC
          TO STORAGE
                                                   PUMP
                  Fig. II-3.  Basic Surface  Condenser System

-------
                                        III-l
               III.   FACTORS INFLUENCING PERFORMANCE AND MODEL SYSTEMS

A.   SYSTEM EFFICIENCIES
     The VOC removal efficiency of a condenser system is determined by the amount of
     reduction in the VOC partial pressure in the gas stream as it passes through
     the condenser.   This is accomplished by reducing the temperature of the gas
     stream and condensing out some of the VOC.

     Any component of any vapor mixture can be recovered (condensed) if brought to
     equilibrium at a low enough temperature.  The temperature necessary to obtain a
     particular VOC vapor concentration or removal efficiency is dependent on the
     vapor pressure of the components.  When a two-component vapor mixture, in which
     one of the components is considered to be noncondensible, is to be cooled,
     condensation will begin when  the temperature reached is  such that the vapor
     pressure of the volatile component is equal to  its partial pressure.  The point
     at which condensation first occurs is called the dew point.  As  the vapor is
     cooled further, condensation  continues as long  as  the partial pressure stays equal
     to the vapor pressure.  The less volatile a compound, that is,  the higher the
     normal boiling point,  the  smaller  the amount that  can remain as  vapor at a
     given temperature.   Figure III-l3  shows  the vapor  pressure dependence on tempera-
     tures for  selected compounds.

     Table III-l4 gives the  estimated temperatures  required  to  reduce the  VOC vapor
     pressures  in the  gas stream to obtain  50, 80,  and  95%  removal  efficiencies  at
     VOC  concentrations of 20,  10, 5,  2,  1,  and  0.5 vol % in the  gas inlet stream at
      saturation conditions.   The temperature  and vapor  pressure values represent the
      pressure and temperature  relationships  of the  aliphatic and  halogenated aliphatic
      hydrocarbon families of the synthetic  organic  chemicals manufacturing industry
      and were the basis for condenser and refrigeration system sizing for this
      report.   A temperature of 80°F was selected for the gas stream feed to the
      condenser.

      The calculation methods for  a gas stream containing multiple VOCs are complex,
      particularly when  there are  significant departures from the ideal behavior of
      gases and liquids.  As a  simplification, the temperature necessary for control

-------
                             III-2
  1000.0
   100.0 —
tn
x
E
ui
K



I
UJ
ee
e.
    0.1 —
    0.01
      441
141
  55.2     -9      -59


TEMPERATURE(°F)
•99
-131.7
           Fig. III-I.  Vapor Pressures of Selected

                    Compounds  vs Temperature

-------
                        Table III-l.  Parameters for Condenser System Recovery Efficienciesa'
VOC Concentration
(vol %)
20
10
5
2
1
0.5
Vapor
Feed to
Condenser
152
76
38
15.2
7.6
3.8
Pressure (mm Hg) Required for
50%
Removal
76
38
19
7.6
3.8
1.9
80%
Removal
30.4
15.2
7.6
3.0
1.5
0.8
95%
Removal
7.6
3.8
1.9
0.8
0.4
0.2
Temperature (°F) Required for
Feed to
Condenser
80.0
80.0
80.0
80.0
80.0
80.0
50%
Removal
53.6
55.6
56.7
57.9
59.4
60.3
80%
Removal
24.1
26.2
28.8
31.5
33.6
36.9
95%
Removal
-15.9
-11.9
-8.0
-2.4
1.8
5.0
These vapor pressure and temperature relationships represent the aliphatic hydrocarbon family and were used because
they represent an average model compound in the SOCMI.                                                                   £j

See ref 4.                                                                                                              w

-------
                                        111-4
     by condensation can be roughly approximated by the weighted average of the tem-
     peratures necessary for condensation of each condensible VOC in the gas stream
     at concentrations equal to the total organic concentration.

     If water is present in the treated gas stream or if the VOC has a high freezing
     point (e.g. benzene),  normal design practice will require the use of an intermit-
     tent heating cycle for removal of ice or frozen hydrocarbons in a continuous
     system operated at low temperatures.  Intermittently operated systems may simply
     be allowed to heat up, with ambient heat used for de-icing.

B.   BASE-CASE MODEL CONDENSER SYSTEM
     Condenser design calculations are based on heat transfer that is affected by
     the overall heat transfer coefficient, on the temperatures of the coolant and
     the gas stream, and on the surface area.  A mathematical solution to the problem
     is usually achieved by the expression

                    Q = UA AT

     where
          Q = total heat transferred (Btu/hr),
          U = overa]! heat transfer coefficient  [Btu/(hr)(ft2)(°F)],
          A = heat transfer surface area (ft2),
        AT  = mean temperature Difference between coolant and gas stream  (°F).
          m

     In condenser design calculations A  is the unknown parameter to be solved for or
     determined as follows:

                    A = -2-   '
                    A   UAT
                           m
     For  the base-case  design  of  the condenser and  refrigeration  systems  used in
     this  report  the  following conditions  were assumed:

     1.    The  temperature  of  the  initial gas stream entering the  condenser  is 80°F,
           and the stream contains only VOC and air  (two components).
     2.    The  gas stream outlet  temperatures are those shown in Table III-l for
           specific VOC concentrations  and removal efficiencies.

-------
                                   II1-5
3.   The air specific heat is 0.24 Btu/(Ib)(°F); the VOC specific heat is 0.50
     Btu/(lb)(°F); and the VOC latent heat is 200 Btu/lb.
4.   The molecular weight of the VOC is 60.
5.   The overall heat transfer coefficient is 5.0.
6.   The coolant inlet temperature is 10°F less than the gas stream final
     temperature.
7.   The coolant temperature rise through the condenser in all cases is 25°F.
8.   The system heat losses, which are dependent on insulation thickness,
     length of pipe, and ambient temperature, were  assumed to be negligible.

The major variables evaluated for the base-case model condenser system in this
report are as follows:

1.   Flow rates of 100,  500, 1000, and 2000 cfm were selected as representative
     of the normal or typical range for condenser emission-control-device
     applications.  Flows in excess of 2000 cfm of  primarily noncondensible
     gases require prohibitively large-size condenser systems.
2.   Removal efficiencies used were 50,  80, and 95%.  An efficiency of 50% can
     normally be expected when the condenser system is used in conjunction with
     (usually before) another control device.  An efficiency of 80% is an
     average or typical  efficiency reported in the  literature5 and 95% is close
     to the maximum efficiency reported.5
3.   VOC concentrations  in the gas stream to the condenser at 20,  10,  5,  2,  I,
     and 0.5% were chosen.  High concentrations of  10 and 20% VOC would most
     likely occur from intermittent operations such as loading or unloading to
     or from storage facilities.   The annual operating time for only these two
     concentrations was  estimated to be  just 20% of the total annual operating
     time.6  Other VOC concentrations were selected to enable cost comparisions
     with the other control devices evaluated in similar reports.   The applica-
     tion of condensers  on streams with  less than 0.5% of VOC would be very
     limited.

-------
                                        IV-1
                             IV.   DESIGN CONSIDERATIONS

A.   GENERAL
     The design of an optimum condenser system for a given emission control applica-
     tion is relatively complex.   An optimum design requires the selection of a
     combination of equipment and operating conditions that will satisfy emission
     control requirements at minimum overall cost.  Often a change that reduces the
     cost of one element (i.e., condenser size) must be balanced against the effect
     it has on other costs (i.e., refrigeration requirements).  Although detailed
     design procedures are beyond the scope of this report, some of the more signi-
     ficant design considerations and the relationships between them are discussed
     briefly in this section.  For simplicity, these factors are discussed specifi-
     cally as they apply to a condenser system using a surface condenser with a
     mechanical refrigeration unit designed to control VOC  emissions at various
     concentrations  in air.  All design and cost  considerations apply  to condensa-
     tion as a method of VOC emission control, and may not  be proportionately appli-
     cable  to condensation used  as part of the normal  operating process.

 B.   CAPITAL COST PARAMETERS

 1.   Condenser
     The capital  cost  of  condensers  is  primarily  a  function of  the total heat  transfer-
      red and  the  temperature  required.   When  the  heat-transfer  coefficients  and the
      required  temperature  remain relatively constant,  the required areas will  be
      approximately proportional  to the  required heat-transfer rates and to the
      corresponding flow rates, which in turn  are  functions of the emission flow rate
      and the  amount of VOC to be condensed.

 2.   Refrigeration Unit
      The capital cost of the refrigeration unit is primarily a function of the
      heat-transfer rates and the temperatures required.  The type of coolant chosen
    '  for a refrigeration unit depends on the minimum temperature  required:  chilled
      water is normally used for temperatures as  low as 40°F; brine is normally used
      for temperatures of -30°F; and direct-expansion coolants such as Freons are
      used at temperatures below -30°F.

-------
                                        IV-2
3.   Recovery Tank
     The capital cost of the VOC recovery tank primarily depends on the gas stream
     flow rate and VOC composition.

4.   Other Capital Requirements
     Most of the other capital items to be considered,  including piping,  instrumen-
     tation, and pumps,  are independent of other design considerations.

C.   OPERATING COST (CREDIT) PARAMETERS
     Certain operating costs are determined by the equipment design for condenser
     systems, and are briefly discussed.

1.   Electrical Power
     Electrical power is used mainly for the refrigeration unit that provides coolant
     to the condenser and for the pumps.  The power required for the refrigeration
     unit is determined by the amount of refrigeration (tons) needed and the coolant
     temperatures required.  These are, in turn, a function of heat transfer rate
     and temperatures required.  Electrical power usage must be considered in arriv-
     ing at the optimum condenser system design.

     The power required for pump operation will be roughly proportional to the gas
     flow rate through the system and will therefore vary with the concentration
     and removal efficiencies selected.  For the purpose of this evaluation, electri-
     cal power requirements for pump operations were considered to be negligible,
     compared with those for the refrigeration unit.

2.   Product Recovery Credits
     Product recovery credit is a function of the amount of VOC recovered and its
     value.  The VOC recovered is a function of the emission stream size, the VOC
     concentration, and the recovery efficiency.  The value of the VOC recovered is
     process specific.  In this study values of $0.10/lb and $0.20/lb were assumed
     as typical product values for the synthetic organic chemicals manufacturing
     industry.

-------
                                        IV-3
3.   Operating Labor
     The only other operating cost of significance is labor.   Operating labor is
     relatively constant regardless of the size of the system, and consists mainly
     of monitoring the operation of the condenser and refrigeration systems.  Operat-
     ing labor is estimated to be 10% of the total operating time, or 876 hr annually,
     and probably represents a higher or maximum value.

-------
                                        V-l
                  V.   COST AND ENERGY IMPACTS OF CONDENSER SYSTEMS

A.   CAPITAL COST ESTIMATES

1.   General
     The estimated capital costs for a complete condenser system such as that de-
     scribed in Sect. II represent the total investment, including all indirect
     costs such as engineering and contractors' fees and overheads required for the
     purchase and installation of all equipment and material to provide a facility
     as described.  These are battery-limit costs and do not include provisions for
     bringing utilities, services, or roads to the site; backup facilities; land;
     required research and development; or process piping interconnections that may
     be required within the process  generating the waste gas flow to the condenser
     system.

     The  estimated costs  are  based on a new-plant  installation,- retrofit costs are
     not  included.   Such  costs  are usually higher  than  those for  a new-site instal-
      lation for a similar system and include,  for  example,  demolition,  crowded
      construction working conditions, scheduling construction  activities with pro-
      duction activities,  and longer  runs  of  interconnecting piping.  These  factors
      are  so site specific that no attempt was made to provide  costs.   For  specific
      cases rough costs can be obtained  by using the  new-site  cost data and adding
      additional costs as  required for a specific retrofit situation.

      Capital cost estimates represent the total installed capital costs for the
      condenser section and its refrigeration unit (see  Appendix A for the breakdown
      of these costs).  These costs are based on IT Enviroscience experience adjusted
      to a December 1979 basis.  In addition to the capital costs a contingency
      allowance of 30% is included in the overall capital cost estimates.

  2.   Model  Systems
      Estimated capital costs for the complete condenser system described in  Sect. II
      are  given in Table V-l.   The installed  capital  cost,  shown  in Figs. V-l through
      V-3,  were developed for the model system  illustrated  in  Fig. II-3, in which the
      condenser is a common  she11-and-tube type  with  a  mechanical refrigeration
       system for providing the  coolant.

-------
Table V-l.  Capital Cost Summary for Complete  Condenser  Systems
Capital
20*


Cost (10 S) at VOC Concentrations
of
10%
At Gas Flow Rates (cfrn)
Equipment
sn» \JTV- .-<.n*-,ir:i'l
Condenser section
Refrigeration unit
Total
80% VOC removal
Condenser section
Refrigeration unit
Total
95* VOC removal
Condenser section
Total
100

77.
5.
82.

70.
10.
80.

63.
26.
89.

.0
.4
.4

.0
.7
.7

.0
.0
.0
500

195.
18.


.0
.0
213.0

175.
37.
212

158.
87
245

.0
.0
.0

.0
.0
.0
1000

302 .
32.
334.

270.
2000

0
0
0

0
62.0
332.

240.
145.
385.
0

0
0
0

475.
52.
527.


0
0
0

420.0
107.0
527.

380.
250.
63O.
0

0
0
0
100

59.0
3.8
62.8

53.0
7.0
60.0

50.0
15.8
65.8
500

145.0
11.5
156.5

127.0
24.0
151.0

118.0
57.0
175.0
1000

222.0
20.0
242.0

192.0
36,0
230.0

179.0
90.0
269.0
of
2000

342.
32.

.0
.0
374.0

300.
67.
367

275.
165
440

.0
.0
.0

.0
.0
.0
Capital Cost (10
5»
2%
At Gas
100


47.0
3.
50.

43
4
47

41.
11
52
.8
.8

.0
.5
.5

.0
.1
.1
500

110.0
8.0
118.0

98.0
15.4
113.4

94.0
• 36.5
130.4
1000

165.0
13.0
178.0

145.0
26.2
172..2

140.0
63.0
203.0
2000

254.
21.

.0
.0
275.0

225.
44.
269


.0
.0
.0

215.0
107.0
322
.0
100

38.0
3.8
41.8

36.0
4.5
40.5

36.0
8.7
44.7
500

85.0
5.3
90.3

77.0
11.7
88.7

76.0
31.7
107.7
1000

125.0
8.7
133.7

115.0
20.0
135.0

112.0
49.8
161.8
2000

190
15
205

171
34
205

170
84
254

.0
.1
.1

.0
.3
.3

.0
.8
.8
100

35.
3.

.0
.8
38.8

33,
3.
36

34.
7
41

.0
.8
.8

.0
.2
.2
3 S) at VOC



1%
Flow Rates (<
500

75.0
4.1
79.1

69.0
9.8
78.8

70.0
22.6
92.6
1000

111.
7.
118.

102.
17.

0
2
2

.0
,3
119.3

103.
38
141

.0
.1
.1

2000

170.
12.
182.




100

0
4
4

150.0
28
178

.3
.3

151.0
64.8
215
.8

34.
3.
37.

32.
3.
35.


0
8
8

.0
.8
.8

32.0
6.0
38
.0



0.5*

500

72.0
3.8
75.8

64.0
8.3
72. 3

65.0
18.9
83.9

1000

105.0
6.0
111.0

94.0
13.6
107.6

96.0
32.8
128.8

2000

158.0
10.2
168.2

140.0
. 23.4
163.4

145.0
56.6
201.6
f
(0

-------
   700
=5- 600
c
o
(/>

1
I- 500
O
O
t! 300
r-
o>
 
-------
  700
  600
c
o
(/>

o
  500
g- 400

O

T3
c


en


CT>



0>


E
0)
   300
   200
   100
20%VOC
10%VOC
5%VOC



2% VOC

1%VOC

0.5% VOC
                           _L
                                                                               j	L
             200     400   600    800   1000    1200   1400    1600   1800   2000   2200   2400


                                     Gas  Flow to Condenser (scfm)




            Fig.  V-2.  Installed Capital  Cost vs Flow Rate for Complete Condenser

                         System with a VOC Removal Efficiency of 80%
                                                                                                         f

-------
  700
•$  600
c
o
tn
3
O
H  500
 g-400
 O
 •g
   300
   200
 s
                                                                           20% VOC
                                                                            10% VOC
                                                                   5% VOC

                                                                   2% VOC
                                                                   1%VOC
                                                                   0.5% VOC
                                        J	L
    200
Fig. V-3.
                   400    600    800   1000   1200   1400   1600
                                    Gas Flow to Condenser fecfm)
                                                          1800   2000  2200   2400
                   Installed Capital Cost vs Flow Rate for Complete Condenser
                     System with a VOC Removal Efficiency of 95%
                                                                                                   f
                                                                                                   Ul

-------
                                        V-6
     Costs were developed for the model system for gas flow rates of 100, 500, 1000,
     and 2000 scfm, for VOC removal efficiencies of 50, 80, and 95%, for  VOC concen-
     trations in the gas stream of 20, 10, 5, 2, 1, and 0.5 vol %, and for the tem-
     perature—vapor-pressure relationships given in Table III-l.

3.   Criteria and Limitations
     Costs for other system configurations and special requirements, including cor-
     rosive conditions and high humidity,  can be estimated by the procedures that
     were used in the development of these estimates.   If corrosive conditions were
     present, more stringent materials of construction would be required and the
     capital costs would be correspondingly higher.  Sample calculations are shown
     in Appendix B.

B.   ANNUAL COSTS
     Annual costs for various operating conditions are given in Tables V-2 through
     V-4 and Figs.  V-4 through V-10.   These costs were the basis for all the cost-
     effectiveness graphs included in this report.  The basis for calculating annual
     costs is defined in Table V-5.

     Product recovery values used in  the calculation of net annual cost were zero,
     IOC,  and 20C per pound of VOC recovered.

C.   COST  EFFECTIVENESS AND ENERGY EFFECTIVENESS
     The cost effectiveness and energy effectiveness were  calculated by dividing the
     annual cost for a particular operating condition  (Tables V-2,  3,  and 4)  or
     energy consumption (e.g.,  electrical  power)  by the total annual amount  of VOC
     recovered with the indicated removal  efficiencies.

     Typical cost-effectiveness values are presented in Table V-6 and in Figs. V-ll
     through V-16,  and energy effectiveness values are given  in Table V-7.   Values
     for conditions that are not given in  the cited tables or graphs can be  deter-
     mined by the methods given in Appendix B.

-------
                                      Table V-2.   Annual  Cost Summary for  50% VOC  Removal




Fixed costs (29% of capital)
Electricity (50.03/kWh)
Labor (515/hr)
Total annual cost
VOC recovery credit
8 SO.lO/lb
9S0.20/lb
8 SO.lO/lb
3 S0.20/U)





100
23.9
0.1
13.1
37.1

16.6
33.3
20.5
3.8



20ta

500 1000 2000
61.8 96.9 152.8
0.5 1.0 2.0
13.1 13.1 13.1
75.4 111.0 167.9

83.2 166.4 332.9
166.4 332.9 665. fl
(7.8) (55.4) (165.0)
(91.0) (211.9) (497.9)


Annual Cost

At
100
18.2
0.1
13.1
31.4

8.3
16.6
23.1
14.3


(103 S) at VOC Concentrations of

Gas Flow
500
45.4
0.3
13.1
58.8

41.6
83.2
17.2
(24.4)


Annual Cost (103 S)

Fixed costs (29% of capital)
Electricity ($0.03/kwh)
labor ($15/hr)

VOC recovery credit
9 SO.lO/lb
§ $0.20/lb
9 SO.lO/lb
9 $0.20/lb


100
12.1
0.1
13.1


8,3
16.6
16.9
8.6
2*

500 1000 2000
26.2 38.8 59.5
0.5 0.9 1.8
13.1 13.1 13.1


41.6 83.2 166.4
83.2 166.4 332.9
(1.8) (30.4) (92.0)
(43.4) (113.6) (258.5)

At
100
11.3
0.1
13.1


4.2
8.3
20.2
16.1

Gas Flow
500
22.9
O.3
13.1


20.8
41.6
15.5
(5.3)
10%a
Rates (cfin) of
1000
70 t2
0.5
13.1
83.8

83.2
166.4
0.6
(82.6)




2000 100
108.5 14.7
1.1 0.2
13.1 • 13.1
122.7 28.0

166.4 20.8
332.9 41.6
(43.7) 7.2
(200.2) (13.6)


5%

500 1000 2000
34.2 51.6 79.8
0.8 1.6 3.2
13.1 13.1 13.1
48.1 66.3 96.1

104.0 208.1 416.1
208.1 416.1 832.2
(55.9) (141.8) (320.0)
(160.0) (349.8) (736.1)
<
1
at VOC Concentrations of
1%
Rates (cfm) of
1000
34.3
0.6
13.1


41.6
83.2
6.4
(35.2)


2000 100
52.9 11.0
1.3 0.1
13.1 13.1


83.2 2.1
166.4 4.2
(15.9) 22.0
(99.1) 19.9
0.5»

500 1000 2000
22.0 32.2 48.8
0.3 0.6 1.1
13.1 13.1 13.1


10.4 20.8 41.6
20.8 41.6 83.2
25.0 25.1 21.4
14.6 4.3 (20.2)
Based on 1752-hr/yr operation.

-------
Table V-3.  Annual Cost Summary for 80% VOC Removal


t»,«/* ^nct-c r?q* of caoital)
Electricity (S0.03A«M
Labor (515/hr)
Total annual cost
VOC recovery credit
a SO.lO/lb
3 $0.20/lb
9 $0.10/lb
g 50.20/lb

Fixed costs (29t of capital)
Electricity ($0.03/kWh)
Labor (S15/hr)
VOC recovery credit
8 50.10/lb
ia S0.20/lb
Net annual cost (credit)
9 $0.10/lb
a $0.20/lb

20»a

100 500 1000 2000
23.4 61.5 96.3 152.8
0.2 1-1 2-2 4-5
13 1 13.1 13.1 13.1
36.7 75.7 111.6 170.4
26.6 133.2 266.3 532.6
53.3 266.3 532.6 1065.2
1Q.1 (57.5) (154.7) (362.2)
(16.6) (190.6) (421.0) (894.8)
2*

100 500 1000 2000
11.7 25.7 39.2 59.5
0.2 1.2 2.4 4.8
13.1 13.1 "-I I3'1
25.0 40.0 54.7 77.4
13.3 66.6 133.2 266.3
26.6 133.2 266.3 532.6
H.7 (26.6) (78.5) (188.9)
(1.6) (93.2) (211.6) (455.2)

Annual Cost (103 $1
At Gas Flow
100 500
17.4 43.8
0.1 0.6
13.1 13.1
30.6 57.5
13.3 66.6
26.6 133.2
17.3 (9.1)
4.0 (75.7)
Rnnual Cost (10 5)
ftt Gas Flow
100 500
10.7 22.9
0.1 1.0
13.1 13.1
23.9 37.0
6.7 33.3
13.4 66.6
17.2 3.7
10.5 (29.6)

10%a
Rates (cfm) of
1000
66.7
1.3
13.1
81.1
133.2
266.3
(52.1)
(185.2)

5»
	
2000 100 500 1000 2000
106.4 13.8 32.9 49.9 78.0
2.5 0.4 2.0 3.9 7.8
13.1 13.1 13.1 13.1 13.1
122.0 27.3 48.0 66.9 98.9
266.3 33.3 166.4 332.9 665.8
532.6 66.6 332.9 665.8 1331.6
(144.3) (6.0) (118.4) (266.0) (566.9)
(410.6) (39.3) (284.9) (598.9) (1232.7)
f
00
at VOC Concentrations ot
1% 0-5*
Rates (cfm) of
1000
34.6
1.9
13.1
48.9
66.6
133.2
(17.7)
(84.3)

2000 100 500 1000 2000
51.7 10.4 21.0 31.2 47.4
3.5 0.2 0.8 1.5 3.1
13.1 13.1 13.1 13.1 13-1
68.6 23.7 34.9 45.8 63.6
133.2 3.3 16.6 33.3 66.6
266.3 6.6 33.3 66.6 133.2
(64.6) 20.4 18.3 12.5 (3.0)
(197.7) 17.1 1.6 (20.8) (69.6)

-------
                                        Table V-4.   Annual Cost Summary for  95% VOC  Removal


100
Fixed costs (29% of capital) 25.8
Electricity ($0.03/kwh) o.S
Total annual cost 39.4
VOC recovery credit
3 $0.10/Lb 31.6
@ S0.20/lb 63.3
Net annual cost (credit)
8 SO.lO/lb 7.8
& $0.20/lb (23.9)

100
Fixed costs (29* of capital) 13.0
Electricity <$0.03Avrti) 0.7
Total annual cost 26.8
VOC recovery credit
3 $0.10/lb 15.8
9 $0.20/lb 31.6
§ SO.lO/lb 11.0
? S0.20/Lb (4-8)


20%a
500 1000 2000
71.1 111.7 182.7
2.7 5.4 10.8
13.1 13.1 13.1
86.9 130.2 206.6
158.1 316.2 632.5
316.2 632.5 1T65.0
(71.2) (186.0) <425.9)
(229.3) (502.3) (1058.4)
2*
500 1000 2000
31.2 46.9 73.9
3.4 6.7 13.4
13 1 13.1 13.1
47.7 66.7 100.4
79.1 158.1 316.2
158.1 316.2 632.4
(31.4) (91.4) (215.9)
(110.4) (249.5) (532.0)

Annual Cost (103 $) a
At Gas Flow
100 500
19.1 50.8
0.3 1.6
13.1 13.1
32.5 65.5
15.8 79.1
31.6 158.1
16.7 (13.6)
0.9 (92.6)
Annual Cost (103 $)
At Gas Flov
100 500
11.9 26.8
0.5 2.7
13.1 13.1
25. S 42.6
7.9 39.5
15.8 79.1
17.6 3.1
9.7 (36.5)

,t VOC Concent
10*a
Rates (cfm) o
1000
78.0
3.2
13.1
94.3
158.1
316.2
(63.8)
(221.9)
at VOC Co nee r
1%
rf Rates (cfm)
1000
40.9
5.4
13.1
59.4
79.1
158.1
(19.7)
(98.7)

rations of 	 	 	
5»
f 	 	 	 . 	 ___ 	 — 	
2000 100 500 1000 2000
127.6 15.1 37.8 58.9 93.4
6.4 1.0 5.1 10.2 20.5
13 1 ' 13.1 13.1 13-1 I'-l
147.1 29.2 56.0 82.2 127.0
316.2 39.5 197.6 395.3 790.6
632.4 79.1 395.3 790.6 1581.2
(169.1) (10.3) (141.6) (313.1) (663.6)
(485.3) (49.9) (339.3) (708.4) (1454.2)
f
U)
itrations of 	
0.5%_ 	
of - 	 	
2000 100 500 1000 2000
62.6 11.0 24.3 37.4 58.5
10.7 0.5 2.4 4.7 9.4
11 i n.l 13.1 13.1 13-1
86.4 24.6 39.8 55.2 81.0
158.1 4.0 19.8 39.5 79.1
316.2 7.9 39.5 79.1 158. 1
(71.7) 20.6 20.0 15-7 1.9
(229.8) 16.7 0.3 (23.9) (77.1)

BaseJ on 1752-hr/yr operation.

-------
300
                                                                                             5%VOC

                                                                                             2%VOC
                                                                                             1%VOC
                                                                                             0.5%VOC
            200
                     400
600
                                      800
 1000      1200     1400

Gas Flow to Condenser (scfm)
                                                                        1600
                                                    1800
                                                                                          2000
                                                     2200
2400
                 Fig  V-4.   Annual  Cost vs Flow Rate for Complete Condenser  System with
                        VOC Recovery Efficiency of 50% and No VOC Recovery Credit

-------
  300
  250
o
Q)
  200
TJ




I
O
.C
   150
o
o


§  100
c
c
    50
                                                           JL
                                                                                     _L
                                                                                                20%VOC
                                                                                                10%VOC
                                                                                                5%VOC


                                                                                                2%VOC
                                                                                                1%VOC
                                                                                                0.5%VOC
          ±
          J_
      0
              200      400      600     800   '   1000      1200     1400

                                               Gas Flow to Condenser (scfm)
                                                                           1600
1800
2000
2200
2400
                 Fig.  V-5.  Annual Cost vs Flow Rate for Complete Condenser System with

                        VOC Removal Efficiency of 80% and No VOC Recovery Credit

-------
  300
  250
  200
•o

o
to

o
   150

-------
W. I/)
O O
0) 0

at
o
O
200


100


— 0


100


200


300


400


500


600


700


800
                                           J_
_L
               0.5% VOC
               1% VOC
               10% VOC
               2% VOC

               20% VOC
                                                                                5% VOC
        0     200    400    600    800    1000   1200   1400   1600

                                      Gas Flow to Condenser (cfm)
                                                                  1800
             2000
         Fig. V-7.  Net Annual Cost vs Flow Rate  for  Complete Condenser System with

                    50% VOC Removal and  $0.10/lb  Credit  for Recovered VOC
                                                                                         j_
                                                                                                           f
2200   2400

-------
200
400
               600
                            800    1000   1200   1400   1600
                               Gas Flow to Condenser (cfm )
                                                         1800    2000    2200   2400
Fig.
V-8.  Net Annual Cost vs Flow Rate  for  Complete Condenser System with
      50% VOC Removal and $0.20/lb  Credit  for Recovered VOC
                                                                                                    f

-------
200
1000
                                                                                                       f
                                                                                                       M
                                                                                                       Ul
           200
                  400
600
800    1000    1200   1400   1600
    Gas Flow to Condenser (cfm)
                                          1800   2000    2200  2400
      Fig  V-9.  Net Annual Cost vs Flow Rate for Complete Condenser System with
                 95% VOC Removal and $0.10/lb Credit for Recovered VOC

-------
  O
TJ
     100

     200

     300

     400

     500

 8    600
 o
f    700
**
~    800
 o
^    900
 o
 |   1000

•5   1100
2
    1200

    1300

    1400

    1500

    1600
                                     10% VOC
                                     2% VOC
                                                                                  20% VOC
                                                                                  5% VOC
                                     I
I
I
I
I
I
               200    400    600    800  .  1000   1200   1400   1600
                                        Gas Flow to Condenser (cfm)
                           1800
                           2000   2200
                                                                                                            f
                                  2400
        Fig. V-10.  Net Annual Cost vs  Flow Rate for Complete Condenser System with
                   95% VOC Removal and  $0.20/lb Credit for Recovered  VOC

-------
                                   V-17
                      Table V-5.   Annual Cost Parameters
Operating factor for 0.5, 1.0, 2.0 and 5.0%
  VOC streams
Operating factor for 10.0 and 20.0% VOC streams

Operating labor

Fixed costs
  Maintenance labor plus materials, 6%
                      c
  Capital recovery 18%
  Taxes, insurance, administrative charges, 5%

Utilities

  Electric power
8760 hr/yra


1752 hr/yrb

$15/man-hour
29% installed capital
$0.03/kWh
Process downtime is normally expected to range from 5 to 15%.  If the hourly
 rate remains constant, the annual production and annual VOC emissions will be
 correspondingly reduced.  Control devices will usually operate on the same
 cycle as the process.  From the standpoint of cost-effectiveness calculations
 the error introduced by assuming continuous operation is negligible.

bHigh concentrations of VOC, i.e., 10 and 20%, would most likely occur from
 intermittent operations such as loading and unloading into and from storage
 facilities.  Total annual operating time for these operating conditions was
 estimated to be 20% of the year, or 1752 hr.

°Based on 10-year life and 12% interest.

-------
                                               Table V-6.  Cost-Effectiveness  Summary





Cost Effectiveness
(S/lb) of VOC Removed at VOC
20%a

Recovery Credit
@ 95 * recovery
No credit
SO.lO/lb
S0.20/lb
@ 80% recovery
No credit
SO.lO/lb
S0.20/lb
@ 50% recovery
No credit
$0.10/lb
?0.20/lb




Recovery Credit
@ 95% recovery
No credit
SO.lO/lb
S0.20/lb
a ao% recovery
No credit
$0.10/lb
S0.20/lb
@ 50% recovery
Ho credit
SO.lO/lb
S0.20/lb

100

0.125
0.025
(0.076)

0.138
0.038
(0.062)

0.223
0.123
0.023





100

0.169
0.070
(0.030)

0.188
0.088
(0.012)

0.303
0.203
0.103

500

0.055
(0.045)
(0.145)

0.057
(0.043)
(0.143)

0.091
(0.009)
(0.109)





500

0.060
(0.040)
(0.140)

0.060
(0.040)
(0.140)

0.096
(0.004)
(0.104)

1000

0.041
(0.059)
(0.159)

0.042
(0.058)
(0.158)

0.067
(0.033)
(0.127)



2%

1000

0.042
(0.058)
(0.158)

0.041
(0.059)
(0.159)

0.063
(0.037)
(0.137)

2000

0.032
(0.067)
(0.167)

0.032
(0.068)
(0.168)

0.050
(0.050)
(0.150)





2000

0.032
(0.068)
(0.168)

0.029
(0.071)
(0.171)

0.045
(0.055)
(0.155)

100

0.206
0.106
0.006

0.230
0.130
0.030

0.377
0.278
0.178


Cost Effectiveness


100

0.322
0.223
0.123

0.359
0.258
0.158

0.586
0.485
0.387
At Gas
500

0.083
(0.017)
(0.117)

0.086
(0.014)
(0.114)

0.141
0.041
(0.059)


(S/lb)

At Gas
500

0.108
0.008
(0.092)

0.111
0.011
(0.089)

0.174
0.075
(0.025)
io%a
Flow Rates (cfm) of
1000

0.060
(0.040)
(0.140)

0.061
(0.039)
(0.139)

0.101
0.001
(0.099)


of VOC Removed at VOC
1%
Flow Rates (cfm) of
1000

0.075
(0.025)
(0.125)

0.073
(0.027)
(0.127)

0.115
0.015
(0.085)
Concentrations


2000

0.047
(0.053) •
(0.153)

0.046
(0.054)
(0.154)

0.074
(0.026)
(0.120)


Concentrations


2000

0.055
(0.045)
(0.145)

0.052
(0.049)
(0.148)

0.081
(0.019)
(0.119)
of


100

0.074
(0.026)
(0.126)

0.082
(0.018)
(0.118)

0.135
0.035
(0.065)


of


100

0.622
0.521
0.422

0.712
0.613
0.514

1.158
1.057
0.957



500

0.028
(0.072)
(0.172)

0.029
(0.071)
(0.171)

0.046
(0.054)
(0.154)





500

0.201
0.101
(0.002)

0.210
0.110
0.010

0.340
0.240
0.140

5%

1000

0.021
(0.079)
(0.179)

0.020
(0.080)
(0.180)

0.032
(0.068)
(0.168)



0.5%

1000

0.140
0.040
(0.060)

0.138
0.038
(0.062)

0.221
0.121
0.021



2000

0.016
(0.084)
(0.184)

0.015
(0.085)
(0.185)

0.023
(0.077)
(0.177)
1
oo



2000

0.102
0.002
(0.098)

0.096
(0.005)
(0.105V

0.151
0.051
(0.049)
Based on 1752-hr/yr operation.

-------
                                                                                                   f
                                                                                                   M
                                                                                                   vo
0
200
             400
600    800    1000    1200   1400   1600
     Gas Flow Rate to Condenser (cfm)
                                                               1800
                                                                2000   2200
 Fig.  V-ll.   Cost Effectiveness vs Flow Rate  for  Condenser System with
           50% VOC Removal Efficiency and No VOC Recovery Credit

-------
TJ



1





&


O
o>
 )
0>
o
o
  1.2



  1.1



  1.0



 0.9



 0.8



 0.7



 0.6



 0.5



 0.4



 0.3



 0.2



 0.1



— 0







 0.2



 0.3
          VOC


         "0.5%
                                                                                                             f
                                  _L
J	L
J	I    i    I
               200    400    600     800   1000    1200   1400    1600

                                   Gas Flow Rate  to Condenser  (cfm)
                                                                      1800   2000
                                               2200
        Fig.  V-12.  Cost Effectiveness vs Flow Rate for Condenser System with

           50% VOC Removal Efficiency and $0.10/lb Credit for  Recovered VOC

-------
1.1  I—
                                                                                                          f
          200
400
600    800   1000    1200    1400   1600
     Gas Row Rate to Condenser (cfm)
                                                                  1800   2000    2200
         Fig. V-13.  Cost Effectiveness vs Flow Rate  for Condenser System with
           50% VOC Removal Efficiency and $0.20/lb  Credit for Recovered VOC

-------
0.70
                                                                                                         f
     0
200
                  400
600    800    1000    1200    1400
     Gas Flow Rate to Condenser (cfm)
                                                            1600
                                                        1800   2000    2200
         Fig. V-14.  Cost Effectiveness vs Flow Rate  for Condenser System with
                 95% VOC Removal Efficiency and No  VOC Recovery Credit

-------
                                                                                                f
                                                                                                M
                                                                                                CO
     200
400
600    8OO    1000   1200   1400    1600


     Gas Flow  Rate to Condenser (cfm)
                                                             1800
                                                         2000   2200
Fig. V-15.  Cost Effectiveness vs Flow  Rate for Condenser System with

       95% Removal Efficiency and $0.10/lb VOC Recovery Credit

-------
     0.5
     0.4
     0.3
O    Oo
o    u^
>
     0.1
in
w


II
  .
  TJ
  O)
o    o 1
o
     0.2
         5°/c
            I   I    1
                                                        I   I	_L
              200    400    600     800   1000    1200    1400    1600    1800    2000   2200

                                  Gas  Flow Rate to Condenser (cfm)
                                                                                                          <:

                                                                                                          to
      Fig. V-16.   Cost Effectiveness  vs Flow Rate  for  Condenser System with

              95%  Removal Efficiency and $0.20/lb VOC Recovery Credit

-------
Table V-7.  Energy-Effectiveness Summary
Energy Effectiveness (Btu/lb of
VOC Concentrations of
VOC Removal Efficiency
50%
80%
95%
20%
67.0
95.9
194.7
10%
72.9
108.9
229.4
5%
86.9
133.4
294.5
2%
123.3
206.0
483.5
VOC) at
1%
176.9
324.9
773.0

0.5%
311.0
529.3
1359.7

-------
                                   VI-1
                       VI.  SUMMARY AND CONCLUSIONS

Condensation as an emission control method is currently most widely used as a
preliminary or auxiliary step for other control devices.  When condensation
only is used for control of VOC emissions at atmospheric pressures, it is done
in conjunction with a refrigeration unit to supply coolant at temperatures that
will allow acceptable VOC recovery efficiencies.

The suitability of condensation as a VOC emission control method compared to
other alternatives (primarily carbon adsorption and thermal oxidation) depends
on the concentration of the VOC in the treated stream, the flow rate of the
treated stream, and the value of the recovered VOC components.

Estimates of capital costs, operating costs, and cost effectiveness were de-
veloped for a number of combinations of conditions or variables to illustrate
the effects that changes in these variables would have on the costs.  Some of
the conclusions derived from the cost evaluation are as follows:

1.   At low VOC concentrations the cost effectiveness of condensation is very
     sensitive to the gas flow rate.
2.   In general condensation systems are economical as an emission control
     provided that the gas stream contains high concentrations of VOC that have
     a value of at least $0.1Q/lb.
3.   The cost effectiveness of condensation at low flow rates and low VOC
     concentrations is usually uneconomical regardless of the recovery effi-
     ciencies achieved.

-------
                                        VI I-1
                                  VII.   REFERENCES*

1.    Control Techniques for Volatile Organic  Emissions  from Stationary Sources,  EPA,
     OAQPS,  Research Triangle Park,  NC,  Final Draft (February 1978).

2.    J.  H.  Danielson, Air Pollution  Engineering Manual,  2d ed.,  Air Pollution Control
     District,  County of Los Angeles.

3.    Control of Volatile Organic Emissions from Existing Stationary Source.
     Vol.  1.  Control Methods for Surface-Coating Operations.   Guideline Series,
     EPA-450/2-76-028 (OAQPS No. 1.2-067)  (November 1976).

4.    Robert R.  Dreisbach, Pressure-Volume-Temperature Relationships of Organic
     Compounds,  3d ed., Handbook Publishers,  Inc.,  Sandusky, OH, 1952.

5.    Control of Hydrocarbons from Tank Truck  Gasoline Loading Terminals, Guideline
     Series, EPA-450/2-77-026 (OAQPS No. 1.2-082) (October 1977).

6.    Marine Hydrocarbon Vapor Recovery Units  for Loading Gasoline  Into:  Tankers,
     Barges, and Fixed Roof Storage  Tanks, Edwards Engineering Corp.,  Pompton
     Plains, NJ.
    *When a reference number is used at the end of a paragraph or on a heading,
     it usually refers to the entire paragraph or material under the heading.
     When, however, an additional reference is required for only a certain portion
     of the paragraph or captioned material, the earlier reference number may not
     apply to that particular portion.

-------
               APPENDIX A

     BREAKDOWN OF CAPITAL COSTS FOR
CONDENSER SECTION AND REFRIGERATION UNIT

-------
                                   A-3
  BREAKDOWN OF CAPITAL COSTS FOR CONDENSER SECTION AND REFRIGERATION UNIT

The installed capital costs for the condenser section, which includes a shell-
and-tube condenser, a storage tank, a pump and the necessary piping and instru-
ments, are plotted in Fig. A-l as a function of the condenser area, with the
tank, pump, pipes, and instruments sized accordingly.  A 30% allowance for
contingencies is included in these costs.  The installed capital costs for the
refrigeration unit, which includes the compressor, the condenser expension
valve, the evaporator, controls, foundations, and all auxiliary components
except extensive runs of piping for the product or coolant lines, are plotted
in Fig. A~2 as a function of the amount of refrigeration required (tons) at
coolant temperatures ranging from +40°F to -60°F.

The costs plotted in Fig. A-l are for carbon steel, type 304 stainless steel,
and Monel, but the equipment cost estimates given in Sect. V are based on the
use of carbon steel construction throughout.

Other criteria used in the selection of equipment parameters and cost estimates
are as follows:

1.   Condensers:  carbon steel; 150 psig; fixed-tube sheet; l-in.-diam tubes
     8 ft long; piping, same material as tubes and shell,- include foundation or
     share of structure
2.   Storage tank:  50 psi  vertical type, ASME; concrete foundation,- platform,
     dike, and transfer piping at tank
3.   Pump.-  ductile iron, single-stage centrifugal pump, includes 200 ft of
     conduit run, standard valuing, and 100 ft of carbon steel; suction plus
     discharge piping
4.   Instruments:  temperature indicator, temperature transmitter, control
     valve, and level transmitter with hi-lo start-stop operation of pump

-------
                               A-4
10,000
     10
100                   1,000
 Condenser System  Area (Ft2)
10,000
      Fig. A-l.   Installed Capital Cost vs Condenser  Area for Various
        Materials of Construction for a. Complete  Condenser Section

-------
                                        December  1979  Installed Capital (8  Thousand)
   H-
O t£)
01  >
O   I
H- to
ft •
O pJ H
3 ft 3
^0    in
H < rt
CD pi p)
rt H H
CD P- M
   O CD

(D in
Hi    O
HOP)
H- 0 'O
GQ 0 p-
CD M rt
H pi P)
QJ 3 \—I
rt rt
H-    O
O H O
3 CD in
   3 rt
en n3 in
CD CD
o n <
rt pi in
!-•• rt
O c; 

-------
    APPENDIX B
SAMPLE CALCULATIONS

-------
                                   B-3
                            SAMPLE CALCULATIONS


The following sample calculations are based on a vent gas stream flowing at a

rate of 1000 cfm and having a VOC content of 1.0%.   The recovery rate required

is 95%.  The cost effectiveness is determined for a recovered-product value of

$0.10/lb.


Capital cost

     $141,000 (from Fig. V-3)


Fixed cost
     Capital cost X 0.293 = $141,000 X 0.29 = $40,900


Labor cost
     (876 hr X 15 $/hr)a = $13,100


Power cost
In  order to estimate the power cost  for  refrigeration  the total heat transfer  (Q)

required must be determined.  The total  heat transfer  required is a summation

of  the  specific heat of air, the  specific heat of the  VOC, and the latent

heat of vaporization of the VOC at the temperatures  required for 95% recovery

efficiency.


     Material Balance:
     Gas flow =  1000 cfm -r 379 ft3/lb-mole  X 60  min/hr =  158.311 Ib-moles/hr
          VOC =  158.311 Ib-moles/hr  X 1.0%  = 1.583  Ib-moles X 60 AMWT =  95  Ib/hr
          Air =  158.311 Ib-moles/hr  X 99% = 156.73  Ib-moles X 29 AMVT =  4,550  Ib/hr

     Energy Balance:
     Total  heat  transferred  (Q) = air specific heat +  VOC specific heat  +
                                     VOC  latent heat         ,
     Air =  4,550 Ib/hr X 0.24  Btu/(lb)(°F)C X  (80°F -  1.8°F)  =  85,400 Btu/hr
     VOC =  95  Ib/hr X  0.50 Btu/(lb)(°F)  X  (80°F -  1.8°F) = 3,710 Btu/hr
     VOC =  95  Ib/hr X  200 Btu/lb° X  95%  recovered = 18,040 Btu/hr
        Q =  85,400 Btu/hr + 3,710  Btu/hr  +  18,040 Btu/hr  = 107,150 Btu/hr
 aSee Table V-2.

  Average molecular weight.
 CBased on assumptions given in Sect. III-B.

 dSee Table III-l.

-------
                                   B-4
     r, ^ •                     Q              107,150 Btu/hr      „ n ^    ,,
     Refrigeration = 12fOQ0 (Btu/hr)/ton = 12,000 (Btu/hr)/ton = 8'9 tOns/hr

     Power = —	8.9 tons/hr X 2.23 hp/ton6       	
             0.85 compressor efficiency X 0.85 motor efficiency
          =27.4 hp/hr X 0.746 kWh/hp X 8760 hr/yr = 179,058 kWh/yr
          = 179,058 kWh/yr X $0.03/kWha = $5,400/yr

Credit
     Ib of VOC recovered X $0.10/lb

     Flow = 1000 cfm = 158.311 Ib-moles/hr
          = 158.311 Ib-moles/hr X 1.0% = 1.583 Ib-moles of VOC X 60 AMW*3 = 95 Ib/hr
          = 95 Ib/hr X 95% X 365 days/yr X 24 hr/day = 790,590 Ib/yr
          = 790,590 Ib/yr X $0.10/lb = $79,100

Net annual cost
     $40,900 + $13,100 + $5,400 - $79,100 = $19,700 (credit)

Cost effectiveness
     $19,700 4- 790,590 Ib = $0.025/lb (credit)
6See Fig. A-2.

-------
                                        3-i
                                     REPORT  3
                             CONTROL DEVICE EVALUATION
                                  GAS ABSORPTION

                                   R. L.  Standifer

                                 IT Enviroscience
                             9041 Executive Park Drive
                               Knoxville, Tennessee
                                   Prepared for
                    Emission Standards and Engineering Division
                   Office of Air Quality Planning and Standards
                          ENVIRONMENTAL PROTECTION AGENCY
                      Research Triangle Park, North Carolina
                                    October  1980
D96A

-------
                                       3-iii
                               CONTENTS OF REPORT  3
  I.  INTRODUCTION                                                            I~1





 II.  SYSTEM DESCRIPTION                                                     IJ~


     A.    Absorption Equipment


     B.    Solvent  Requirements

                                                                           TT — ft
     C.    System Flowsheets





III.  SYSTEM EFFICIENCIES                                                  III-l

                ,                                                          III-l
     A.    General


     B.    System with Once-Through Solvent Usage                          III-6


     C.    Systems  with Solvent Recycle                                    III-6




                                                                           TV-1
  IV. DESIGN CONSIDERATIONS


     A.   General

                                                                           IV-1
     B.   Capital Costs Parameters


     C.   Operating Cost  (Credit) Parameters                               IV~3
  V.  COST AND ENERGY IMPACTS OF GAS ABSORPTION SYSTEMS                      V-l

                                                                            V-l


                                                                            V-29
                                                                       V-l
A.   Capital Cost Estimates
      B.   Annual  Costs


      C.   Cost  Effectiveness  and Energy Effectiveness                       v"31





  VI.  SUMMARY AND  CONCLUSIONS                                                VI"1
                                 APPENDICES OF REPORT 3





 A   ADDITIONAL CAPITAL AND COST SUMMARY CASES AND COST-EFFECTIVE TABLES     A-l


                                                                             B-l
 B   SAMPLE CALCULATIONS

-------
                                         3-v
                                 TABLES OF REPORT 3
Number                                                                     Page

 V-l    Capital Cost Summary for Absorber and Stripper Systems             V-2
 V-2    Annual Cost Parameters                                             V-30
 V-3    Cost Effectiveness Summary                                         V-32
 V-4    Energy Effectiveness Summary                                       V-33
 A-l    Capital Cost Summary for 99% VOC Removal and with Stripping        A-3
 A-2    Capital Cost Summary for 99.9% Removal and No Stripping            A-4
 A-3    Capital Cost Summary for 90% VOC Removal and No Stripping          A-5
 A-4    Capital Cost Summary for 99% VOC Removal and No Stripping          A-6
 A-5    Annual Cost Summary for 99% VOC Removal and No Stripping           A-7
 A-6    Annual Cost Summary for 99.9% VOC Removal and No Stripping         A-8
 A-7    Annual Cost Summary for 90% VOC Removal and No Stripping           A-9
 A-8    Annual Cost Summary for 99% VOC Removal, with Stripping and        A-10
        Steam Ratio of 0.1
 A-9    Annual Cost Summary for 99% VOC Removal, with Stripping and        A-ll
        Steam Ratio of 0.2
A-10    Cost Effectiveness Summary for 99% VOC Removal for Tray Column,     A-12
        with Water Discharged without Stripping and No VOC Recovered
A-ll    Cost Effectiveness Summary for 99.9% VOC Removal for Tray Column,   A-13
        with Water Discharged without Stripping and No VOC Recovered
A-12    Cost Effectiveness Sumi!i.~r} for 90% VOC Removal for Absorber,       A-14
        with Water Discharged without Stripping and No VOC Recovered
A-13    Cost Effectiveness Summary for 99% VOC Removal and Steam Ratio     A-15
        of 0.1
 B-l    Flooding Constants, C^                                             B-7
 B-2    Constants for Use in Determining Gas Film's Height of              B-13
        Transfer Units
 B-3    Diffusion Coefficients of Gases and Vapors in Air at 25°C and      B-15
        1 atm
 B-4    Constants for Use in Determining Liquid Film's Height of           B-17
        Transfer Units
 B-5    Diffusion Coefficients in Liquids at 20°C                          B-18
 B-6    Pressure-Drop Constants for Tower Packing                          B-21

-------
                                         3-vii
                                  FIGURES OF  REPORT  3
Number
 II-l   Schematic Diagram of a Packed Tower                                II-2

 II-2   Common Tower Packing Materials                                     II-4

 II-3   Schematic Diagram of a Bubble-Cap Tray Tower                       II-5

 II-4   Simple Absorption System                                           II-9

 II-5   Absorption System with Stripping Tower (Once-Through Solvent       11-10
        Usage)

 II-6   Absorption System with Stripping Tower (Solvent Recycled to        11-12
        Absorber)
III-l
III-2
III-3
V-l
V-2
V-3
V-4
Typical Vapor-Liquid Equilibrium Curve for an Absorption System
Number of Transfer Units in an Absorption Column for Constant
mVLM
Number of Theoretical Plates in an Absorption Column for
Constant mG__/L,,
M M
Installed Capital Cost vs Flow Rate for Complete Absorption
System (No Stripper) with a VOC Removal Efficiency of 90.0%
Installed Capital Cost vs Flow Rate for Complete Adsorption
System (No Stripper) with a VOC Removal Efficiency of 99.0%
Installed Capital Cost vs Flow Rate for Complete Absorption
System (No Stripper) with a VOC Removal Efficiency of 99.9%
Installed Capital Cost vs Flow Rate for Complete Absorption
III-2
III-3
III-4
V-3
V-4
V-5
V-6
        System (No Stripper) with a Solute-Solvent System Having an
        Equilibrium Curve Slope of 2.0
  V-5   Installed Capital Cost vs Flow Rate for Complete Absorption and     V-7
        Stripping System with a VOC Removal Efficiency of 99.0%
  V-6   Annual Cost vs Flow Rate for Absorber Only (No Stripper) with       V-8
        5.0 wt % VOC in Waste Gas and 99% VOC Removal Efficiency
  V-7   Annual Cost vs Flow Rate for Absorber Only (No Stripper) with       V-9
        0.5 wt % VOC in the Waste Gas and 99% VOC Removal Efficiency

  V-8   Annual Cost vs Flow Rate for Absorber Only (No Stripper) with       V-10
        0.05 wt % VOC in the Waste Gas and a VOC Removal Efficiency of
        99.0%

  V-9   Annual Cost vs Flow Rate for Absorber Only (No Stripper) with a     V-ll
        Solute-Solvent System Having an Equilibrium Curve Slope of 2.0
        and 99% VOC Removal Efficiency

  V-10  Annual Cost (Excluding BOD Surcharge) vs Flow Rate for Absorber     V-12
        Only (No Stripper) with a Solute-Solvent System Having an
        Equilibrium Curve Slope of 2.0

-------
                                      3-ix
V-ll  Annual Cost (Excluding BOD Surcharge)  vs Flow Rate for Absorber    V-13
      Only (No Stripper) with 99.9% VOC Removal Efficiency
V-12  Annual Cost (Excluding BOD Surcharge)  vs Flow Rate for Absorber    V-14
      Only (No Stripper) with 99% VOC Removal Efficiency
V-13  Annual Cost (Excluding BOD Surcharge)  vs Flow Rate for             V-15
      Absorber Only (No Stripper) with 90% VOC Removal Efficiency
V-14  Annual Cost (Excluding BOD Charge and VOC Recovery Credit) vs      V-16
      Flow Rate for Absorber and Stripper with 99.0% VOC Removal
      Efficiency.
V-15  Annual Cost vs Flow Rate for Absorber and Stripper with 99% VOC    V-17
      Removal and $0.10/lb Credit for Recovered VOC.
V-16  Annual Cost vs Flow Rate for Absorber and Stripper with 99%        V-18
      VOC Removal and Zero Credit for Recovered VOC
V-17  Cost Effectiveness vs Flow Rate for Absorber and Stripper with     V-19
      99% VOC Removal and Zero Credit for Recovered VOC
V-18  Cost Effectiveness vs Flow Rate for Absorber and Stripper with     V-20
      99% VOC Removal Efficiency and $0.10/lb Credit for Recovered VOC
V-19  Cost Effectiveness vs Flow Rate for Absorber and Stripper with     V-21
      99% VOC Removal Efficiency and $0.20/lb Credit for Recovered VOC
V-20  Cost Effectiveness vs Flow Rate for Absorber Only (No Stripper)    V-22
      with 99.9% VOC Removal Efficiency
V-21  Cost Effectiveness vs Flow Rate for Absorber Only (No Stripper)    V-23
      with 99% VOC Removal Efficiency
V-22  Cost Effectiveness vs Flow Rate for Absorber Only (No Stripper)    V-24
      with a  Solute-Solvent System Having an Equilibrium Curve
      Slope of 2.0
V-23  Cost Effectiveness vs Flow Rate for Absorber Only (No Striper)    V-25
      with 90% VOC Removal Efficiency
B-l  Number  of Theoretical Plates in an Absorption Column for           B-5
      Constant mG /L
B-2  Correlation for  Flooding Rate  in Randomly Packed Towers  (from      B-9
      ref 4)
B-3  Packing Factors  for Raschig Rings and Saddles                      B-10
B-4  Number  of  Transfer Units  in an Absorption Column  for Constant      B-12

B-5  Tray-Spacing  Constants  to  Estimate Bubble-Cap Tray  Tower's         B-26
      Superficial Vapor Velocity
B-6  Sample  Flowsheet, Material Balance, and Energy  Balance             B-31

-------
                                     1-1
                              I.   INTRODUCTION

 Gas absorption is  an operation  in which one  or  more  soluble  components  of a  gas
 mixture are  separated from the  mixture  by selective  dissolution in a  liquid,
 termed the  solvent.   The  reverse  operation,  termed stripping or desorption,  is
 frequently  used for  recovery of the  absorbed components  from the solvent. Gas
 absorption  is  widely used within  the chemical industry for the  separation and
 purification of gaseous process streams and  is  treated extensively in basic
 chemical engineering textbooks.1—4

 Gas absorption as  an emission control method is currently most  widely used for
 the removal  of water-soluble inorganic  contaminants  (e.g., sulfur dioxide,
 hydrogen sulfide,  hydrogen chloride, and ammonia)  from air streams, with water
 being the most common solvent or  scrubbing fluid used.   Water may also  be used
 for the absorption of organic compounds that have  relatively high water solu-
 bilities (e.g., most alcohols,  organic  acids, aldehydes,  ketones,  amines, and
 glycols).  For organic compounds  that have low  water solubilities,  other solvents
 (usually organic liquids  with low vapor pressures) are used.  The  suitability
 of gas absorption  as a VOC emission  control  method is generally dependent on
 the following  factors:  (1)  availability of  a suitable solvent  (solvent properties
 are discussed  in Sect. II-C), (2) VOC  removal  efficiency required,  (3) recovery
 value or terminal  disposal cost of the  contained VOC,  (4) capacity required  for
 handling vapors, and (5)  VOC concentration in the  inlet  vapor (absorption is
 usually considered when  the  VOC concentration is above 200—300 ppmv).   Once it
 is determined  that absorption is  technically feasible, it can be compared (for
 efficiency  and cost  effectiveness) with other VOC  controls  (primarily carbon
 adsorption  and thermal oxidation).
1T.  K.  Sherwood and R.  L.  Pigford,  Absorption and Extraction,  McGraw-Hill,  New
 York,  1952.
2R.  E.  Treybal, Mass Transfer Operations,  2d ed.,  McGraw-Hill, New York,  1968.
3R.  H.  Perry and C. H.  Chilton,  Chemical Engineers Handbook,  5th ed.,  McGraw-Hill,
 New York, 1973.
4W.  L.  McCabe and J. C. Smith, Unit Operations of Chemical Engineering,  2nd ed.,
 McGraw-Hill, New York, 1967.

-------
                                          II-l
                               II.  SYSTEM DESCRIPTION

A.   ABSORPTION EQUIPMENT

1.   General
     Gas absorption equipment is designed to provide thorough contact between the
     gas and the liquid solvent in order to permit interphase diffusion of the
     material.  The rate of mass transfer between the two phases is largely dependent
     on the surface area exposed.  Other factors governing the absorption rate, such
     as the solubility of the gas in the particular solvent and the degree of chemical
     reaction, are characteristic of the constituents involved and are more or less
     independent of the equipment used.  The types of equipment that are commonly
     used for gas-liquid contact operations include packed towers, plate or tray
     towers, spray chambers, venturi absorbers, and vessels with sparging equipment.
     The use of venturi absorbers, spray chambers, and sparging is generally limited
     to the control of particulate matter and highly soluble gases requiring very
     few transfer units.  They are infrequently used for the control of VOC emissions
     in dilute concentration.  The following discussion is therefore limited to
     packed and tray towers.

 2.   Packed Towers
     A schematic diagram of a typical packed tower is shown in Fig. II-l.1  The
     packing  is designed to expose a large surface area.  When the packing surface
     is wetted by the solvent, it presents a large area of liquid film for contact
     by the solute gas.

     Usually  the flow through a  packed  column  is  countercurrent, with the liquid
     introduced at the  top  to trickle down through the packing while gas is intro-
     duced  at the bottom to pass upward through the packing.  This results in  the
     highest  possible efficiency,  since,  as  the solute concentration in the gas
     stream decreases  as it  rises through the  tower,  fresher  solvent is constantly
     available  for contact.   Consequently maximum average  driving force is obtained
      for  the  diffusion  process  throughout the  entire  column.
     1J. A. Danielson,  Air Pollution Engineering Manual,  2d ed.,  Air Pollution
      Control District, County of Los Angeles.

-------
                                 II-2
                                     , GAS OUT
                        LIQUID-
                        IN
                                             LIQUID DISTRIBUTOR
                                             LIQUID
                                             RE-DISTRIBUTOR
                                             PACKING SUPPORT

                                                GAS IN
                                                LIQUID OUT
Fig. II-l.   Schematic Diagran  of a  Packed Tower  (from ref 1).

-------
                                          II-3
     The packing used should be able to provide a large surface area,  should be
     shaped to give a large void space when packed,  should be strong enough to be
     handled and installed without excessive breakage,  and should be chemically
     inert and inexpensive.  Although materials such as rock, gravel,  and coke are
     occasionally used,  most packing consists of various manufactured shapes.  The
     most common type is Raschig rings, which consist of hollow cylinders having an
     external diameter equal to their length.  Other shapes include Berl  saddles,
            ®              ®              ®
     Intalox  saddles, Pall  rings,  Hypak,  and spiral-type rings.   Although slotted
     rings such as Pall rings or Hypak are generally higher in unit cost than
     Rashchig rings,  their superior performance may  permit the use of smaller columns
     with correspondingly lower capital costs.   Figure  II-21 shows several of these
     common shapes.

3.   Plate or Tray Tower
     In contrast to packed towers, where gas and solvent are in continuous contact
     throughout the packed bed, plate towers employ  stepwise contact by means of a
     number of trays or plates that are arranged so  that the gas is dispersed through
     a layer of liquid on each plate.  Each plate is more or less a separate stage,
     and the number of plates required is dependent  on  the difficulty of the mass-
     transfer operation and the degree of separation required.

     The bubble-cap plate or tray has been the  most  common type used in the past,  and
     most general references deal primarily with it  in  discussions  of plate towers.
     Other types of plates, including perforated trays  and valve trays,  are currently
     being widely used in new installations because  they are less expensive and
     their performance is about equal to bubble-cap  tray performance.

     A schematic section of a bubble-cap tray tower  is  shown in Fig.  II-3.1  Each
     plate is equipped with openings (vapor risers)  surmounted by bubble caps.   The
     gas rises through the tower and passes through  the openings in the plate and
     through slots in the periphery of the bubble caps  which are submerged in liquid.
     The liquid enters at the top of the tower  and then flows across each plate and
     downward from plate to plate through down  spouts.   The depth of liquid on the
     plate and the liquid flow patterns across  the plate are controlled by various
     weir arrangements.

-------
                            II-4
                                           BERL SADDLE
             RASCHIG RING
                PALL RING
                                            INTALOX SADDLE
                                              TELLERETU
Fig.  II-2.   Common Tower Packing Materials  (from ref 1),

-------
                                      II-5
                             SHELL —

                             TRAY

                            DOWNSPOUT
                          TRAY
                          SUPPORT RING
                           TRAY
                           STIFFENER-
~-LI QUID IN
                                                   BUBBLE CAP
                                                   INTERMEDIATE
                                                   FEED
                                                 ,- LIQUID OUT
Fig.  II-3.   Schematic  Diagram of a  Bubble-Cap Tray Tower  (from  ref 1).

-------
                                          II-6
4.   Comparision of Packed and Plate Tower
     While devices such as sparged vessels,  spray chambers,  and venturi absorbers
     have limited application for gas absorption, the choice of equipment is usually
     between a packed tower and a plate tower.   Both devices have advantages and
     disadvantages for a given operation,  depending on many factors,  such as gas and
     liquid flow rates and degree of corrosiveness of the streams. Final selection
     will usually be based on the following comparative information:

      1.  Packed towers are generally less expensive than plate towers when the
          materials of construction must be corrosion resistant.
      2.  Packed towers have a smaller pressure drop than plate towers designed for
          the same throughput and thus are more suitable for vacuum operation.
      3.  Packed towers are preferred for foamy liquids.
      4.  The liquid holdup is usually less in a packed tower.
      5.  Plate towers are preferable when the liquid contains suspended solids
          since they can be more easily cleaned.  Packed towers tend to plug more
          readily.
      6.  Plate towers are preferable for large diameters, to minimize channeling
          and reduce weight.  Channeling may be corrected in tall, large-diameter
          packed towers by the installation of redistribution trays at given in-
          tervals .
      7.  Plate towers are more suitable when the operation involves appreciable
          temperature variation since expansion and contraction due to temperature
          change may crush the packing.
      8.  Plate towers are superior when the heat of solution must be removed at an
          intermediate location in the tower.  The liquid downflow can be collected,
          cooled externally, and returned more simply in a plate  column.
      9.  Mass-transfer capabilities of packed towers can be predicted with less
          accuracy  than plate towers, often requiring larger safety factors with
          correspondingly higher capital costs.
      10.  With  other conditions being equal, economic considerations generally  favor
          packed towers of  diameters of up to 2  ft and  plate  towers with diameters
          of  greater  than 4  ft.

-------
                                          II-7
B.   SOLVENT REQUIREMENTS

1.   Treybal2 lists some important aspects that should be considered in selecting
     absorption solvents:

     1.   The gas solubility should be relatively high so as to enhance the rate of
          absorption and decrease the quantity of solvent required.   Solvents chemi-
          cally similar to the solute generally provide good solubility.
     2.   The solvent should have relativly low volatility so as to reduce solvent
          loss.  (This is particularly important in emission control applications as
          solvent losses may result in additional VOC emissions.)
     3.   If possible, the solvents should be noncorrosive so as to reduce con-
          struction costs of the equipment.
     4.   The solvents should be inexpensive and readily available.
     5.   The solvent should have relatively low viscosity for suitable
          mass-transfer rates and flooding characteristics.
     6.   Ideally, the solvent should be nontoxic, nonflammable, and chemically
          stable and have a low freezing point.

     When applicable, water offers certain distinct advantages over other solvents.
     Because the actual cost of the solvent is very low, water can frequently be
     used on a once-through basis, with the effluent water being discharged to
     wastewater treatment either directly from the absorber or after a subsequent
     stripping operation.  The discharge of absorber effluent water without stripping
     is usually practiced only when the absorbed VOC components are present in very
     low concentrations and/or have little or no recovery value.  It is not considered
     to be an acceptable practice if significant secondary emissions or degradation
     in the quality of discharged water results.

     When water is stripped before being discharged to wastewater treatment, once-
     through use may  result in less stringent  stripping  requirements than those
     involved with solvent recycle.   (When the solvent is  recycled, incomplete
     stripping reduces subsequent absorption efficiency.)  Once-through use of water
     also usually  reduces cooling requirements and the corresponding heat-exchanger
     capital costs.

     2R. E. Treybal, Mass Transfer Operations,  McGraw-Hill, New  York, 1955.

-------
                                         II-8
     An additional advantage in using water  as  a solvent compared to  the  use  of
     organic solvents is that solvent losses do not result  in additional  VOC
     emissions or organic concentration in wastewater.   Although organic  solvents
     are selected to minimize these  losses (i.e.,  low vapor pressure),  some losses
     will result.

C.   SYSTEM FLOWSHEETS
     Absorption system requirements  for VOC  control applications and  the  corresponding
     equipment configurations may vary significantly, depending on specific applica-
     tions and control requirements.  The flow  sheets discussed below illustrate
     several examples.

     Figure II-4 illustrates the simplest configuration, in which the solvent
     (usually water) is used on a once-through  basis and is then either discharged
     to a waste-water treatment system or introduced as a process water stream.  The
     possibility of using organic solvents on a single-pass basis may exist  in those;
     few situations where fresh solvent is available in large quantity as a process
     raw material or fuel. For instance, a small vent stream might be scrubbed with
     oil on a single-pass basis before being burned as  fuel.  With this system the
     only major equipment items required in addition to the absorption tower  are,
     possibly, a blower to provide for tower pressure drop and a pump to discharge
     the effluent solvent.

     In the system  shown in Fig. II-5 the solvent  (usually water) is used on a
     single-pass basis but is stripped before being discharged. Additional major
     equipment items, compared to those shown in Fig. II-4, include a stripping
     tower, an additional pump, and  a number of heat exchangers.  Heat exchangers
     may include  a  feed-effluent exchanger, a steam-heated  feed preheater, and a
     water-cooled reflux condenser.  The  effluent  liquid from  the absorber is  usually
     preheated to near  its boiling point  before it is introduced  into the stripping
     tower.   The feed-effluent heat  exchanger  reduces steam requirements in  the
     steam preheater and cools  the  stripped solvent  to  well below its boiling  point
     before it  is discharged.  As is shown,  the heat required for vaporization in
     the  stripper may be introduced by steam being directly sparged  into the base
     and the condensed steam being  discharged  with the  stripped solvent.

-------
   .AlP.
   iULET"
                 II-9
              CR
                            SCUVE.KJT
                                       "E.FFLUEU"
                                PUMF
Fig. II-4.   Simple Absorption System.

-------
             Alp
 AB<60i=eEH
 ( PACKED  OR
TPA^ COLUMKI)
AIR
                         GOLVEkit
                                                                 6TEAVA
                          PUMP
                                        FEED' EFFIVJEKTT
                                        HEAT
                                 SOLVE SAT
STEAM
                                                      6T«PP£D
                           C PA.CKE-P OK
                                  CDLUMKJ")
                                                                                                                  H
                                                                                                                  H
                                                                                                                  I
                                                                                                                  M
                                                                                                                  O
           Fig.  II-5.  Absorption System with Stripping Tower (Once-Through Solvent Usage).

-------
                                     11-11
The last flow sheet (Fig. II-6) depicts a typical absorption-stripping system
that uses an organic-liquid solvent and recycles the stripped solvent to the
absorber.  Additional equipment items required (compared to those in Fig.  II-5)
include a steam-heated reboiler and a water-cooled solvent cooler.   Because
solvent usage and losses must be minimized,  both absorber and stripper operating
requirements are generally more stringent than when water is used,  with correspond-
ingly higher capital and operating costs.  For example,  in order to attain very
low VOC concentration in the air discharged from the absorber, the equilibrium
concentration of residual VOC in the recycled solvent must be reduced to a very
low level.  With once-through usage of water as the solvent the initial equilibrium
VOC concentration of the solvent is nil, and the stripping efficiency has no
effect on absorber performance.

Other absorption-stripping system variations (not shown) that may significantly
affect capital and operating costs include requirements for low-temperature
conditions  (requiring refrigeration equipment and additional heat exchangers),
vacuum stripping, and operation at elevated pressures.  Corrosive conditions,
if present, will result in more stringent construction material requirements
and in correspondingly higher capital costs.

-------
                      PL'Mf
                                  HEAT S/.CHAV^S~
                                                         COklCEN^ATC.
                                                 6TR'.?PED
                                                                                        CCLUhAKi)
                                                                       PUMP
                                                                                                             H
                                                                                                             H
Fig.  II-6.  Absorption System with Stripping Tower  (Solvent Recycled to Absorber)

-------
                                          III-l
                              III.  SYSTEM EFFICIENCIES

A.    GENERAL
     The VOC removal efficiencies of absorption systems are limited by the driving
     force available to transfer the VOC from the gas stream to the liquid solvent.
     The available driving force at each point within a countercurrent absorption
     tower is determined by the difference between the actual VOC concentrations in
     the gas stream and solvent at that point and the corresponding equilibrium
     concentrations.  The equilibrium relationships are unique for each VOC-solvent
     system, and the equilibrium values at various concentrations are generally
     determined experimentally and displayed as an equilibrium curve.  Figure III-l
     shows a typical equilibrium curve, in which x, the concentration of VOC in the
     solvent, expressed as the mole fraction, is plotted versus the corresponding
     equilibrium concentration (mole fraction) in the gas.  As is illustrated by
     Fig. III-l, the equilibrium curve typically approximates a straight line
     (constant slope, m) near the origin, where VOC concentrations in the solvent
     and the gas are low, and increasingly diverges from a straight line at increas-
     ing concentrations.

     The relationships between attainable VOC removal efficiency, the equilibrium
     curve slope, and the required liquid-gas mole ratio and/or the corresponding
     absorption tower height (number of transfer units in a packed column or
     theoretical trays in a tray column) are shown by Figs. III-2 and III-3 respec-
     tively.

     Figure  III-2, which applies to packed columns, is based on the following
     equation:x
                 In
           NOG
1 -
                                                                                 (III-l)
     XA.  P.  Colburn,  Trans.  Am.  Inst.  Chem.  Engrs.  3§,  211  (1939)  (cited in:
      "Absorption and Extraction,"  T.  K.  Sherwood and R.  L.  Pigford,  p 133,  Chemical
      Engineering Series,  McGraw-Hill,  New York,  1952).

-------
                                III-2
  M
  •rH
      0.10
      0.9  _
     0.08  _
     0.07  _
•H %  0.06  _
r-
o ft
Tj o
" i
(TJ ">
.M M-l
fa o

3 w
^ 0)
O  i
S o
0.05  —
                                             Equilibrium Curve
                0.01  0.02  0.03  0.04  0.05  0.06  0.07   0.08   0.09
                         x (Mole Fraction VOC in Solvent)


                  Fig. III-l.  Typical Vapor-Liquid Equilibrium
                         Curve for an Absorption System .

-------
                   Number of Transfer Units, N
                                                    OG
tr
w
0
hi
I—
O
O
0
   tr
   CD
  o
Hi Hi
0
M i-3
  H
O fa
0 3
3 tn
01 Hi
rt CD
pJ h{

rio
^ 3
  H-
  rt
 O
   in
                                                                                         H
                                                                                         H


                                                                                         Ul

-------
H
H
H

OJ
            Number of Theoretical Plates, N
                                                                      H
                                                                      H

-------
                                     III-5
The terms used in Eq. (III-l) and Fig. III-2 are defined below:

     N-_ = number of overall gas-phase transfer units,
      OG
       m = slope of equilibrium curve,
      G  = superficial molar mass velocity of gas, lb-moles/(hr)(ft2),
       M
      L  = superficial molar mass velocity of liquid, lb-moles/(hr)(ft2),
      yt = mole fraction of VOC in inlet gas,
      y2 = mole fraction of VOC in outlet gas,
      xx = mole fraction of VOC in effluent liquid,
      x2 = mole fraction of VOC in inlet liquid.

The analagous equation for tray columns,1 which is the basis for Fig. III-3, is
as follows:
          In
                                                                           (III-2)
     "P ~          In (LM/mGM)

in which N  is the number of theoretical trays.  All other terms in Eq. (III-2)
and Fig. III-3 are the same as those used in Eq. (III-l) and Fig. III-2.

The relationships shown in Figs. III-2 and III-3 apply to the condition of
constant mG /L  (the equilibrium curve is a straight line).  This condition is
           n  M
usually approached closely only with dilute solutions, and more complex and
accurate calculations are usually necessary for actual design requirements.
However, the relationships shown are useful for order-of-magnitude estimates
and for illustrating the relationships between variables.

Equation (III-l) or Fig. III-2 may be used to estimate the number of transfer
units  required in a packed tower.  In order to estimate  the total packed height
required, the equivalent height of a transfer unit must  also be determined.
Similarly, in order to estimate the actual number of trays required in a tray
tower  from the number of theoretical trays predicted by  Eq.  (III-2) or Fig. III-3,
the tray efficiency must be estimated.   Sample calculations  that  illustrate the
estimation of transfer-unit height and tray efficiency are given  in Appendix B.
Examples that illustrate the  use of Fig.  III-3  to estimate VOC  removal efficiency
are given  in Sects. III-B and III-C.

-------
                                          III-6
B.   SYSTEM WITH ONCE-THROUGH SOLVENT USAGE
     As is discussed in Sect. II, for systems in which the solvent is used on a
     once-through basis (Figs. II-4 and II-5), which is frequently the case when the
     solvent is water, the initial VOC concentration of the solvent is usually nil
     and VOC stripping efficiency has no effect on the VOC removal efficiency of the
     absorber.  Referring to Figs. III-2 and III-3, with once-through solvent usage
     x2 becomes 0 and the ordinate (yx - mx2)/(y2 - mx2) becomes simply yj7y2.  The
     VOC removal efficiency in percent is then expressed as (1 - y2/yi) X 100.  As
     an example, if a plate absorption column containing 16 theoretical plates is
     operated with a gas/liquid mole ratio (GM/L ) of 0.35 and if the equilibrium
     curve slope, m, for the VOC solvent system is approximately 2.0 over the operat-
     ing range, the value of ">GM/LM becomes 0.7 (i.e., 2.0 X 0.35).  Then,  referring
     to Fig. III-2, the corresponding value of (yx - mx2)/(y2 - mx2) is read as
     approximately 1000 and the corresponding VOC removal efficiency is estimated as
     (1 - 1/1000) X 100, or 99.9%.

C.   SYSTEMS WITH SOLVENT RECYCLE
     Systems that utilize organic liquids as solvents usually include the stripping
     and recycle of the solvent to the absorber (Fig. II-6).   In this case  the VOC
     removal efficiency of the absorber is dependent on the solvent stripping effi-
     ciency.

     Based on the same criteria used in the example in Sect.  III-B (i.e., m = 2.0,
     GM/LM = 0.35, and 16 theoretical plates), on a concentration of 1.0 mole % VOC
     in the inlet gas, and on a solvent stripping efficiency of 98.0%, the  value of
     (Y! - mx2)/(y2 - mx2) is again determined as 1000 from Fig. III-2; however, in
     this case the VOC removal efficiency is less because the mole fraction of VOC
     in the inlet solvent, x2, is greater than 0.  The value of x2 must be  determined
     to solve for y2 in the expression

               Yi - m*2
               	 = 1000.                                                 (HI-3)
               y2 - mx2                                                               '

     The value of x2 may be determined from a VOC material balance across the absorber
     expressed as

-------
                                     III-7

-------
                                    III-?
then Xj = 0.00352, and x2 = 0.0000703.

This example illustrates the effect of the stripping efficiency on the VOC
removal efficiency.

-------
                                          IV-1
                             IV.   DESIGN CONSIDERATIONS

A.    GENERAL
     The actual design of an optimum absorption or absorption-stripping system for a
     given emission control application is relatively complex.  An optimum design
     requires the selection of a combination of equipment and operating conditions
     that will satisfy emission control requirements at minimum overall cost.  Often
     a change that reduces the cost of one element must be balanced against the
     effect it has on other costs.  Although detailed design procedures are beyond
     the scope of this report, some of the most significant design considerations
     and the relationships between them are discussed briefly in this section.1  For
     simplicity, these factors are discussed specifically as they apply to absorp-
     tion-stripping systems using plate or tray towers and designed to control VOC
     emissions at relatively  low concentrations in air, with water used as the
     solvent on a once-through basis  (flowsheet, Fig. II-5).

 B.   CAPITAL COSTS PARAMETERS

 1.   Absorber
     The  diameter of  the  absorber  is  primarily a  function of  the total gas flow
     rate,  and the height is  determined primarily by the number of  trays  required.
     The  number  of trays  is,  in  turn,  determined by  the  solvent/gas mole  ratio used,
      the  slope of  the equilibrium curve for  each  specific VOC-solvent  system, and
      the  VOC  removal  efficiency  required.  Thus the  combination of  the tower height
      and  the  solvent  rate selected must be balanced  for  optimum operation.   The
      relationships between the  number of  trays, the  solvent-gas ratio, the operating
      curve slope,  and the VOC removal efficiency  are shown  by Fig.  III-2.

 2.    Stripping Tower
      As with the absorber, the height of the stripper is determined primarily by the
      number of trays  required.   The number of trays is,  in turn,  determined by the
      relative volatilities of the solvent and the contained VOC (equilibrium curve
      slope), the reflux  ratio used, and the degree of separation (or stripping
      efficiency) required.   A relationship of variables for the stripper similar to

     iFor a detailed  study of wet scrubber systems see:  S. Calvert et al., Wet
      Scrubber System Study.  Vol.1.  Scrubber Handbook, PB—213 016, NTIS  (July 1972)

-------
                                         IV-2
     that described for the absorber exists  (see Fig. III-2); however, because more con-
     centrated gas mixtures occur, the deviation of the actual equilibrium curve from
     a  straight  line generally becomes much  greater and the assumption of constant
     mG /L   introduces greater error.  As with the absorber, the combination of
     stripping tower height and  reflux ratio must be balanced for optimum cost.

     The required tower diameter is primarily a function  of the vapor flow rate.
     The vapor flow rate  is,  in  turn, determined by the reflux ratio used and by the
     solvent flow rate  from the  absorber.   Therefore  the  required diameter becomes
     dependent on the height  selected, and,  as  the liquid rate is dependent  on  the
     absorber design parameters, the  absorber and  stripper parameters become inter-
     dependent  and must be balanced for  optimum cost.

3.   Blower
     Blower capital  costs are primarily  dependent  on  horsepower  requirements.   The
     required horsepower  is  determined by the air  flow rate  and by  the  pressure
     increase (AP) that must be developed to overcome the pressure  drop through the
     absorber and inlet duct.  The absorber pressure drop is roughly proportional to
     the number of trays in the absorber tower, and therefore the effect of changes
     on blower capital costs and energy requirements must be considered in selecting
     the optimum number of trays in the absorber.   (The pressure drop is usually
     significantly less in packed towers than in tray towers and may be a significant
     factor  in  the type of tower selected).

 4.   Heat  Exchangers
 a.   General	The capital cost of heat exchangers is primarily a function  of  the
     heat-transfer surface area required.   For a specific application in which the
     heat-transfer coefficients and  the required temperatures remain relatively
     constant,  the required  areas will be  approximately  proportional to the required
     heat-transfer rates  and to the  corresponding flow rates of  fluids  that are
      heated, cooled, vaporized, or condensed.

 b.   Feed-Effluent  Heat  Exchanger	The required areas  and the  corresponding capital
      costs are primarily dependent on the solvent flow rates.
 c.
      Steam Preheater	The capital cost primarily depends on the solvent flow rate.

-------
                                          IV-3
d.   Stripper Condenser	The capital cost primarily depends on the vapor rate in
     the stripper,  which in turn is determined by the solvent flow rate and the
     reflux ratio selected.

5.   Other Capital Requirements
     Most of the other capital items to be considered,  including piping and instrumen-
     tation, are either relatively minor,  remain relatively constant,  or are indepen-
     dent of other design considerations.

C.  OPERATING COST (CREDIT) PARAMETERS

1.   General
     Certain operating cost components are interdependent with the equipment design
     parameters and must be considered in arriving at an optimum design for an
     absorption-stripping system.  Following is a brief discussion of primary operat-
     ing cost components.

2.   Solvent Cost
     For the flow sheet shown in Fig. II-5 in which the solvent (water) is used on a
     once-through basis, the cost of using process water must be considered in the
     design of the absorber tower.  The combination of the number of trays, or the
     height of the absorber tower, and the corresponding liquid rate required must
     be balanced for optimum cost.

3.   Electrical Power
     Electrical power is used primarily for operation of blowers and pumps.  Blower
     power  requirements are primarily determined by the quantity of gas passing
     through the absorber and by the absorber-tower pressure drop.  Since pressure
     drop is primarily dependent on the type of tower selected  (plate or packed) and
     on the number of plates or height of packing required, electrical power usage
     must be considered in arriving at the optimum absorber tower design.

     Power  requirements for pump operation are generally relatively small compared
     to requirements for blower operation.  The power required  for pump operation
     will be roughly proportional  to the  liquid rate through the system and will
     therefore vary with the  liquid/gas ratio  selected.

-------
                                         IV-4
4.   Process Steam
     Steam is used for heating the stripper feed (feed preheater)  and for vapori-
     zation in the stripper tower, by direct injection or by means of a reboiler.
     Preheater steam requirements are determined primarily by the  liquid flow rate
     to the stripper.

     The quantity of steam for vaporization is determined primarily by the liquid
     flow rate and by the reflux ratio selected in the design of the stripping
     tower, and thus vaporization steam usage is influenced by both absorber and
     stripper design.

5.   Cooling Water
     The primary use of cooling water is in the stripper condenser.  The quantity
     used will depend on the liquid flow rate and on the stripping-tower reflux
     ratio.
6.   Wastewater Treatment
     Wastewater treatment costs are usually dependent on both the quantity of waste-
     water discharged and the VOC concentration (usually measured as BOD or COD). For
     a once-through absorber-stripper system in which the solvent (water) is dis-
     charged to wastewater treatment, treatment costs will be dependent on the
     liquid flow rate to the absorber and on the VOC removal efficiency obtained by
     the stripper.  Treatment costs will therefore be influenced by the design of
     both the absorber and the stripper.

7.   Product Recovery Credits
     Product recovery credits will be determined by the volume of gas treated and
     the corresponding VOC concentration, by the unit value of the specific organic
     compounds  (either as process materials or as fuel), and by the removal effi-
     ciencies of the absorber and stripping towers.  As  removal efficiencies are
     influenced by  specific  design parameters  (e.g., tower height, reflux ratio)
     they must  be considered in  the  design of  an optimum system.

-------
                                          V-l
               V.  COST AND ENERGY IMPACTS OF GAS ABSORPTION SYSTEMS

A.   CAPITAL COST ESTIMATES

1.   General
     Estimated capital costs for total system combinations are presented here (Table
     V-I) and in Appendix A.  The estimated costs represent the total investment,
     including all indirect costs such as engineering and contractors'  fees and
     overheads, required for the purchase and installation of all equipment and
     material to provide a facility as described.  These are battery-limit costs and
     do not include provisions for bringing utilities, services, or roads to the
     site; backup facilities; land; required research and development;  or process
     piping interconnections that may be required within the process(es) that generate
     the waste gas fed to the absorber systems.

     The estimated costs are based on a new-plant installation; no retrofit cost
     considerations are included.  Such costs are usually higher than those for a
     new-site installation for a similar system and include, for example, demoli-
     tion, crowded construction working conditions,  scheduling construction activi-
     ties with production activities,  and longer interconnecting piping.  These
     factors are so site-specific that no attempt has been made to provide costs.
     For specific cases,  rough costs  can be obtained by using the new-site data and
     adding as required for a specific retrofit  situation.

     Capital cost estimates were developed by the summation of installed capital
     costs for the major individual components of each system.   These installed
     capital costs are based on IT Enviroscience experience adjusted to a December
     1979 basis.   In addition to the  sum of the  itemized capital costs  an allowance
     of 30% is included in overall capital cost  estimates to cover the  cost of
     miscellaneous items that were not included  in the simplified flowsheets used.

2.   Model Systems
     The capital cost, annualized cost,  and cost-effectiveness curves given in
     Figs. V-l through V-23 were developed for two model systems illustrated by the
     process flow sheets of Figs. II-4 and II-5, in which the solvent is used on a
     once-through basis,  either without (Fig. II-4)  or with (Fig. II-5) a stripping
     step included.

-------
\bsorber Conditions:
Stripper Conditions:
      Table V-l.  Capital Cost Summary for Absorber and Stripper Systems

VOC removal, 99%; L_M/mGM = 1.4; VOC in air = 0.05, 0.5, and 5.0 wt %.
Organic removal, 99%; steam ratio *  0.2 mole of steam/mole of air in.
Capital Cost


0.28

(10 $) at Equilibrium Curve

2.02

At Air Flow Rates (cfm X 10 )
Equipment
Absorber System
Tower and trays (packing)
Blower
Duct
Pump
Piping
Instrumentation
Stripper system
Tower and trays (packing)
Pump
Piping
Instruments
Heat exchangers
Feed-effluent
Steam preheater
Stripper condenser
Subtotal capital cost
Total capital cost (+30%)
1.0

33.6
29.7
8.0
5.7
1.0
14.8

9.1
5.7
3.0
14.8

11.5
1.5
13.7
152.1
197.7
10

133.8
100.2
16.0
5.7
1.0
14.8

28.8
5.7
3.0
14.8

55.1
5.7
65.8
450.4
585.5
100

741.1
293.5
27.5
9.7
3.4
14.8

151.7
9.7
10.2
14.8

308.1
25.0
315.5
1925
2502.5
1.0

42.2
34.5
8.0
5.7
1.0
14.8

11.9
5.7
3.0
14.8

52.3
5.0
17.8
216.7
281.7
10

165.6
117.4
16.0
8.7
3.4
14.8

41.2
8.7
10.2
14.8

290.2
21.3
85.3
197.6
1037
103

870.9
358.0
27.5
25.5
9.7
14.8

266.1
25.5
29.1
14.8

1752.9
103.7
507.8
4006.3
5208
Slopes (m)

of
1.0

48.2
37.8
8.0
6.0
1.6
14.8

20.5
6.0
4.8
14.8

125.0
13.8
37.7
339.0
440.7
of
5.74

10

188.2
129.4
16.0
12.8
4.5
14.8

76.5
12.8
135
14.8

755.0
66.4
199.3
1504
1955



100

965.8
403.5
27.5
45.6 f
KJ
17.4
14.8

452.7
45.6
52.2
14.8

4560
381.1
1204
8185
10640

-------
                                      V-3
  1.5
  1.0
a
-u
   0.5
                                                        Slope of equil.  curve, 5.74
                                                        Slope of equil. curve,  2.02
                                                        Slope of equil. curve,  0.28
      1000
10,000                    100,000


      Waste-Gas Flow Rate (scfra)
      Fig.  V-l.  Installed Capital Cost vs Flow Rate  for Complete Absorption

            System  (No Stripper) with a VOC Removal Efficiency of 90.0%.

-------
                                    V-4
  2.0
   1.5
o

-------
                                                                                December 1970  Installed Capital  ($ Million)
       H-

s
O
    fD
    ft
    CD  H
       ft
       fu
» O
(D  M  H1
3  *rJ  (D
o  fl"  &

fu  O  O
Hi *<  ft
Hi  l/l  p)
H-  rt H
O  (D
p-  3  O
fD    ' O

^S^
y-  O

O  cn w
    H- H

    s i
    (D
    H »
    -p,

    « (D
    H-
    ft Hi
    3- O
       H
    fu
                                                                                                                                                                                                f
                                                                                                                                                                                                Ul

-------
                              V-6
2.0
                                                 99.9% VOC Removal Efficiency
                                                99.0% VOC Removal Efficiency
                                                90.0% VOC Removal Efficiency
  1000
                       10,000                 100,000

                          Waste-Gas Flow Rate (sct'm)
                                                                1,000,000
  Fig.  V-4.   Installed Capital Cost vs  Flow Rate for  Complete
     Absorption System  (No  Stripper) with a Solute-SoIvent
        System Having an Equilibrium Curve Slope of 2.0.

-------
                                  V-7
10.0
 8.0
 6.0
                                                       Slope of equil. curve, 5.7-3
                                                       Slope of equil. curve, 2.02
                                                       Slope of equil. curve, 0.28
    loou
                          10,000
                         Waste-Gas Flow Rate (scfm)
                                                    100,000
                                                                        1,000,000
 Fig.  V-5.  Installed  Capital  Cost vs  Flow Rate for Complete Absorption and
          Stripping System with a VOC Removal Efficiency of 99.0%.

-------
                                      V-8
JJ
0)
0
u
    20.0
    16.0
    12.0
      3.0
      4.f
       0
                                                           Slope of equil. curve, 5.74
                                                          I Slope of equil. curve, 0.28
        1000
10,000                   100,000

   Waste-Gas Flow Rate (scfm)
                                                                              1,000,000
         Fig. V-6.  Annual Cost vs. Flow Rate  for Absorber Only  (No  Stripper)

            with 5.0 wt % VOC  in Waste  Gas and 99% VOC Removal Efficiency.

-------
                                     V-9
5.0
                                                        lope of equil. curve, 5.74
                                                        Slope of equal, curve, 2.02
                                                        Slope of equil. curve, 0.28
      1000
10,000 - "                 100<000
   Waste-Gas Flow Rate (scfm)
                                                                          1,000,000
             Fig. V-7.   Annual Cost  vs Flow  Rate  for Absorber Only
               (No Stripper) with 0.5 wt % VOC in  the Waste  Gas and
                              99% VOC Removal Efficiency.

-------
                       V-10
                                            slope of eauxl. curve. 2.02
                                            Slope of equil. curve,  0.28
                 10,000                  100,000
                    Waste-Gas Flow Rate (scfm)
                                                          1,000,000
Fig.  V-8.  Annual Cost vs  Flow Rate for Absorber  Only
 (No Stripper)  with  0.05 wt % VOC  in the Waste Gas and a
             VOC Removal Efficiency of 99.0%

-------
                                                                                      Annual  Cost  ($ Million/Year)
                                                                                                                                          ON


                                                                                                                                          o
ft)
3
W
hQ
       H-
       ^
 H-    <
 c;  en  i
 §  rt 
 <  0) 3
 CD  H 3
 O  H-
 W  rt  n
 CD  3-  O
        M
 O  ft)  Ct

 Hi
    en  <
 w O  en
     rt  H
     CD  O
     I   £
 vD  H ft>
 O  <  rt
 tfP  CD  CD
o     o
o en  n
   K
V M  >
CD ft  cr
g CD  en
030
  M H-
  H, 3  O

  Hi LQ  3
  H-     M
  O     <<
  H-
  CD

  3
  O
                s  -
                m  c
                01  o
                If  O
                c
                 i
                                o

                                o
                     -       8
                                                                                                                                                                             g
                                                                                                                                                                             n

-------
                                        V-12
   2.0
o
u
   1.5
    1.0
    0.5
        1000
                                                          99.9% VOC Removal Efficiency
                                                          99.0% VOC Removal Efficiency
                                                          90.0% VOC Removal Efficiency
10,000
  Waste-Gas Flow Rate (scfm)
         Fig  V-10.   Annual  Cost  (Excluding BOD Surcharge)  vs Flow Rate  for
          Absorber Only  (No  Stripper)  with a Solute-Solvent System Having  an
                              Equilibrium Curve  Slope of  2.0.

-------
                                                 Slope of equil. curve, 2.02
                                                 Slope of equili.  curve, 0.2
                       10,000                 100,000
                          Waste-Gas Flow Rate (scfm)
                                                                1,000,000
Fig.  V-ll.   Annual  Cost  (Excluding  BOD Surcharge)  vs Flow Rate  for
  Absorber Only  (No Stripper)  with  99.9% VOC Removal Efficiency.

-------
                             V-14
 2.5
                                                  Slope of equil. curve, 5.74
                                                  Slope of equil. curve, 2.02
                                                   Slope of equil. curve, 0.28
     1000
                        10,000
                            Waste-Gas Flow Rate (scfm)
Fig   V-12    Annual Cost  (Excluding BOD  Surcharge) vs Flow  Rate  for
   Absorber Only  (No Stripper)  with  99% VOC  Removal  Efficiency.

-------
                                       V-15
   2.0
   1.5
   1.0
Q
O
ca
o
X
a
o
o
   0.5
                                                           Slope of equil. curve, 5.7
                                                          Slope of equil. curve, 2.02
                                                          Slope of equil. curve, 0.28
      1000
                            10,000                   100,000

                               Waste-Gas Flow Rate (scfm)
1,000,000
       Fig.  V-13.   Annual  Cost  (Excluding BOD Surcharge)  vs Flow Rate  for

          Absorber  Only  (No Stripper)  with 90% VOC Removal Efficiency.

-------
                                  V-16
                                                       Slope of equil. curve, 5.74
                                                       Slope of eouil. curve. 2.0
                                                       Slope of equil. curve, 0.28
    1000
                           10,000                   100,000

                              Waste-Gas Flow Rate (scfm)
                                                                        1,000,000
  Fig.  V-14.  Annual Cost (Excluding BOD  Charge and VOC Recovery Credit)
vs Flow Rate  for Absorber and Stripper with 99.0%  VOC Removal Efficiency.

-------
                         V-17
                                                5.0 wt % VOC, slope, 5.74
                                                5.0 wt % VOC, slope, 2.02
                                                5.0 wt * VOC, slops, 0.23
                          Waste-Gas Flow Rate (seta)
Fig   V-15.  Annual Cost vs Flow Rate  for Absorber and Stripper with
        99% VOC Removal and $0.10/1* Credit for  Recovered VOC.

-------
Annual Cost ($ Million/Year)
                                                                                                        f
                                                                                                        M
                                                                                                        00

-------
                                V-19
10.0
                                    slope of oquil. cur
                                    slope of equil. cu
                                    slope of equil. cur
                                     u.i
                                     slope of equil. cur1
                                     slope of equil. cur'
                                     slope of equil. cur1
                                     5.0 wt % VOC in was
                                     Slope of equil.  cur
                                     Slope of equil.  cu
                                     Slope of equil.  cur
                           10,000
                              Waste-Gas Flow R.itu  (scfm)
     Fig   V-17   Cost Effectiveness  vs Flow  Rate  for  Absorber  and
    Stripper with  99% VOC  Removal and Zero Credit for Recovered VOC

-------
                                  V-20
 3.0
                                    }. 5 wt * VOC 1 -l w.ib
                                    slope of equ.il. ^ur'
                                    slope of equil. cur^
                                    Slope Of CqUll. C'-LT'


                                    5.0 wt 4 VOC xn was
                                                   e gas
           Slope of equil. cur-
           Slope of equil. cur
                                                   •e 5.74
                                                     2.08
                                03   Slope of equll. curve 0.28
 6.0
2.0
    1000
10,000                   100,000
   Waste-Gas Flow Rate (scfm)
                                                                    1,000,000
      Fig. V-18.   Cost Effectiveness  vs Flow Rate  for Absorber and
                Stripper with 99%  VOC Removal Efficiency  and
                      $0.10/lb Credit for Recovered VOC.

-------
                                      V-21
    11.0
    10. n
                                      As.  0.05 wt * VOC in wa
                                      AI:  slope of equll. cur
                                      A..:  :;lope OL eqUll.. CU
                                      Aa.  slope o( 'jqull. fur
te qas
a, S.74
K, 2.08
  0.28
                                      Bi:  slope of equll.  cur
                                      B^:  slope of equil.  cur
                                      33:  slope of equll.  cur1

                                     -C3.  5.0 wt % VOC in  was
                                      Cj:  slope of equll.  cur
                                      C;;  slope of equll.  cur
                                      C3:  slope of equil.  cur
e gas
   5.74
   2.08
   0.28
     8.0
     6.0
                                                            . C2lC3
                               10,000                  100,000

                                 Waste-Gas Flow Rate (scfm)
                                                                            1,000,000
Fig. V-19.   Cost Effectiveness  vs Flow  Rate  for  Absorber and Stripper with
      99% VOC Removal Efficiency and  $0.20/lb Credit  for  Recovered VOC.

-------
                                   V-22
                               AI —A3 :
                                  Al
                                  A2
                                  Aj

                               BI	S3
                                  %
                                  B2
0.05 wt 1. VOC in WJ|
slope of equil. cur
Slope of equil. cur
Slope or equil. cur:

0.5 wt ^ VOC in was
slope of equil. cur
slope of equil. cur
slope of equxl. cur
                                       5.0 wt % VOC in was;e-gas
                                       slope of equil. cur/e, 5.74
 te-gas
ue, 5.74
 •e, 2.02
vs, 0.28

:e-gas
/e, 5.74
/e, 2.08
/e, 0.28
4.0
                                       slope or equil. cur
                                       slope of equil. cur
                    2.08
                    0.28
3.0
 1.0
                                                         BI
                                                          B2
                                                          B3
                                                         Cl.C2.C3
                            10,000                    11)0,000
                              Waste-Gas Flow Rate  (^cfm)
       Fig.  V-20.   Cost  Effectiveness  vs  Flow Rate  for  Absorber  Only
               (No  Stripper) with 99.9%  VOC Removal Efficiency.

-------
                                    V-23
                                       0.05 wt % VOC in wa
                                       slope of equil.  cur
                                       slope of equil.  cur
                                       slope of equil.  cur
                             ;te gas
                             •e, 5.74
                             •e, 2.02
                             •e, 0.28
                                       0.5 wt % VOC in waste gas
                                       slope of equil. curve, 5.74
                                       slope of equil. cur
                                       slope of equil. cur
                                       5.0 wt % VOC in was'
                                       slope of equil. cur-
                                        lope 01 equi.
                                       slope of equil. cur-
1.0
   1000
10,000                      100,000
Waste-Gas Flow Rate (scfm)
          Fig.  V-21.   Cost Effectiveness  vs Flow Rate  for Absorber Only
                   (No  Stripper)  with 99% VOC Removal Efficiency.  -

-------
                                         V-24
  4.0
  3.0
u
§
  2.0
  1.0
                                         0.05 wt % VOC in wab
                                         99.9% VOC removal ef
                                         99% VOC removal effi
                                         90% VOC removal effi
                       :e gas
                       Eiciency
                       ;iency
                       lency
                                         0.5 wt % VOC in wast
                                         99.9% VOC removal ef
                                         99% VOC removal effi
                                         90% VOC removal effi
                       ^ gas
                       ficiency
                       =iency
                       ~iency
                                         5.0 wt  % VOC in wast
                                         99.9% VOC removal ef
                                         99% VOC removal effi
                       -gas
                       iciency
                       iency
                                         90% VOC removal effi
     100U
                            10,000
                 100,000
Waste-Gas Flow Rate  (scfm)
                                                                              1,000,000
        Fig. V-22.   Cost Effectiveness vs Flow Rate for Absorber  Only
        (No Stripper)  with a Solute-Solvent System  Having and Equilibrium
                                   Curve Slope of  2.0.

-------
                                      V-25
   4.0
   3.0
                                  1—A3:
                                    -B3:
          0.05 wt % VOC in wast
          AI:  slope of equil.
          A2:  slope of equil.
          A3:  slope of equil.

          0.5 wt % VOC in waste
          B-L:  slope of equil.
          B2:  slope of equil.
          83:  slope of equil.
e gas
curve, 5.74
curve, 2.08
curve, 0.28

 gas
curve, 5.74
curve, 2.08
curve, 0.28
                                             wt % VOC in waste
                                              slope of equil
                                              slope of equil.
                                              slope of equil.
                              gas
                              :urve_,  5. 74
                              :urve,  2.02
                              :urve,  0.28
   2.0
w
4J
01  1.0
o
o
                                                             A2
                                                             Bl
      1000
10,000                     100,000
    Waste-Gas  Flow Rate  (scfm)
                                                                                 1,000,000
         Fig. V-23.   Cost Effectiveness vs Flow Rate  for Absorber Only
                   (No  Stripper)  with 90% VOC Removal Efficiency.

-------
                                         V-26
     Costs were developed for both models for gas flow rates of 1,000,  10,000,  and
     100,000 scfm,  for VOC removal efficiencies of 90.0,  99.0,  and 99.9%,  and for
     values of m (equilibrium curve slope) of 0.28,  2.02,  and 5.74.   These slopes
     correspond respectively to those for methanol-water,  acetone-water,  and acet-
     aldehyde-water systems.

3.   Criteria and Limitations
     The primary absorption and stripping tower parameters (height,  diameter,  and
     liquid/gas ratio) and corresponding capital costs are dependent on the in-
     dividual vapor/liquid equilibrium relationships for  the specific VOC-solvent
     systems and cannot readily be presented in simple generic  terms (i.e., expres-
     sed in terms of simply defined and measurable physical, chemical,  or thermo-
     dynamic properties).  To illustrate the effect of the variations in the vapor/
     liquid equilibrum relationships and to permit the curves to be used for order-
     of-magnitude estimates of costs for VOC-solvent systems for which  vapor/liquid
     data are available, the curves were developed for three specific VOC-solvent
     systems that span a comparatively wide range of relative volatilities:  metha-
     nol-water, acetone-water, and acetaldehyde-water. The effect of the vapor/
     liquid equilibrium relationship is presented in simplified terms as the slope
     of the equilibrium curve for very dilute solutions,  at ambient temperature and
     pressure.

     The estimated tower parameters (height, diameter, and liquid/gas ratio) were
     obtained by use of simplified calculations in which  it is assumed  that the
     value of  m is constant within the operating range of the tower (i.e., the
     equilibrium curves are straight lines).  Although this assumption  generally
     holds reasonably well for dilute solutions, rigorous calculations  requiring
     complete vapor-liquid equilibrium data for the specific system are generally
     required for actual design calculations; so the cited cost curves  should be
     used only for order-of-magnitude estimates or comparisons.

     The calculated absorber-tower parameters  (height, diameter) are based on a
     value of 0.7 for mG /L  .  This value, although commonly assumed in making
                        M  M
     first-pass design  calculations for economic studies, is not necessarily optimum.
     Optimum design requires  the balancing of mGM/LM with the corresponding required
     tower parameters for minimum  overall cost.

-------
                                          V-27
      Cost  calculations and  the corresponding curves were based on the following
      criteria  for  selecting the type of tower to be used (packed or tray):  a dia-
      meter of  less than 2 ft for packed towers and a diameter of greater  than 4 ft
      for tray  towers.  When tower diameters between 2 and 4 ft were required, cost
      calculations were made for both types of towers and the lower cost alternative
      was used.

      All equipment cost estimates were based on the use of carbon-steel construction
      throughout.  For applications in which corrosive conditions are present (vapor
      or solvent) corrosion-resistant construction materials may be required, with
      correspondingly higher capital costs. Other criteria used in the selection
      of equipment parameters and cost estimates are the following:

a.    Towers	Tray spacing,  18 in.; packing, 1-in.  porcelain Raschig rings;
      overall height for <2.5-ft-diam towers, add 4X diameter to tray or packed
      tower height; for 2.5-  to 4-ft-diam towers,  add 3X diameter,-  for >4-ft-diam
      towers, add 2X diameter,-  operating pressure,  atmospheric (50  psig design pressure)

b.    Inlet Duct	Carbon steel,  150-ft long, 1/8  in.  in wall thickness,  flanged,
     4 ells, 1 damper or valve and control,  1 expansion joint.

c.   Piping	Welded carbon-steel pipe with normal  number of fittings  per 100 ft.

d-   Blowers (Compressors)	Electric drive,- installation complete,  including
     inter- and after-coolers  if  required; includes prorata  building if  required.

e-   Pumps	Ductile  iron, single-stage centrifugal pumps,-  includes  200  ft of
     conduit run,  standard valving,  and 100  ft  of steel  suction plus discharge
     piping.

f-   Heat Exchangers	Carbon  steel,  150-psig,  fixed  tube  sheet; 1-in. tubes 8
     ft long; piping,  same materials  as tubes and shell,  includes  foundation or
     share  of structure.

-------
                                         V-28
4.   System Variations

a.   General	The most common variations from the model absorption systems include
     the use of organic liquids as solvents,  the use of refrigerated coolers or
     condensers, the use of vacuum stripping,  and requirements for corrosion-resis-
     tant materials.  These variations and their effects on costs and cost effec-
     tiveness are discussed briefly in the following sections.

b.   Organic Solvents	Absorption systems that are used for the removal of VOC
     components having low water solubilities typically require the use of organic
     solvents.   The contained VOC is generally stripped from the solvent and the
     solvent is recycled to the absorber (see Fig. II-6).  Capital and operating
     costs are generally somewhat higher than for the model systems because of the
     following factors:

     1.   More complete stripping is usually required, resulting in higher stripper
          capital costs and/or steam requirements.
     2.   The solvent usually must be cooled to a lower temperature before recycle,
          requiring greater heat exchanger capacity and cooling water usage than
          when the solvent is discharged.
     3.   Solvent losses in the outlet gas must be much lower, which may require
          greater absorber capacity and possibly refrigerated cooling of the
          solvent.
     4.   Solvent unit costs are higher.
     5.   Residual VOC in the solvent recycled to the absorber will require higher
          solvent usage and/or higher absorber capacity than with once-through
          solvent usage for the same absorber VOC removal efficiency.

 c.   Refrigerated Coolers and Condensers	Mechanical refrigeration equipment may be
     required  to attain temperatures necessary for  adequate solubility  of VOC in the
     solvent and/or  to minimize the loss of organic  solvent from  the absorber or the
     stripper.   Cost data on  refrigerated  systems are presented in a separate report.
     Requirements  for refrigerated  coolers or  condensers will usually  result  in
     higher capital and operating costs because  of  the  following factors-.

     *D.  G.  Erikson,  Control Device  Evaluation.   Condensation  (July  1980)  (EPA/ESED
      report,  Research Triangle  Park,  NC).
*- i

-------
                                          V-29
      1.   The cost of refrigeration compressors and auxiliary equipment  (i.e.,
          condensers, heat exchangers) will increase capital costs significantly.
      2.   The power required for compression will increase operating costs.

 d-    Vacuum Stripping	Vacuum stripping is frequently used as an alternative to
      steam stripping for reducing VOC concentration in wastewater.  The generally
      higher capital costs of vacuum stripping systems (e.g., additional costs of
      vacuum-producing equipment, larger-diameter towers) may be offset by lower
      operating costs resulting primarily from a reduction in steam requirements.
      Vacuum stripping may also be preferable when VOC components that have high
      boiling points are stripped.

 e-    Corrosion-Resistant Materials	Corrosive conditions requiring the use of
      special corrosion-resistant materials will usually result in significantly
      higher capital costs compared to the cost of carbon steel equipment.  Corro-
      sive conditions occur most frequently in absorption systems used for VOC
      emission control when the VOC components include halogenated organic compounds,
      organic acids, and amines and in systems that provide concurrent scrubbing
      of corrosive inorganic components (e.g.,  inorganic acid vapors,  acid,  and salt
     particulates).

     A few of the many specific materials used for corrosion control  include a
     variety of stainless steels, Monel ,  the Hastelloys®, nickel,  and a variety of
     plastics used for the fabrication or lining of equipment and piping.  Compara-
     tive capital costs  for condensers fabricated from Monel,  type  304 stainless steel,
     and carbon steel are presented in a separate report.1  These costs exemplify
     the effect that special material  requirements may have  on capital costs.

B.   ANNUAL COSTS
     Annual costs for various operating conditions are presented in Appendix A.
     These costs were the basis for all the cost-effectiveness graphs included in
     the report.   The basis used in calculating annual costs  is  defined in  Table
     V-2.

-------
                                     V-30
                       Table V-2.  Annual Cost Parameters
Operating factor
Operating labor
Fixed costs
  Maintenance labor plus materials, 6%
  Capital recovery, 18%
  Taxes, insurances, administrative charges, 5%.
Utilities
  Electric power
  Steam
  Wastewater treatment

Cooling water
8760 hr/yr
$15/man-hour
29% installed capital
$0.03/kWh
$2.50/M Btu
$0.25/1000 gal +
  $0.10/lb of BOD
$0.10/1000 gal
aprocess downtime is normally expected to range from 5 to 15%.  If the hourly
 rate remains constant, the annual production and annual VOC emissions will be
 correspondingly reduced.  Control devices will usually operate on the same
 cycle as the process.  From the standpoint of cost-effectiveness calculations,
 the error introduced by assuming continuous operation is negligible.
 Based on 10-year life and 12% interest.

-------
                                          V-31
C.  COST EFFECTIVENESS AND ENERGY EFFECTIVENESS
     The cost effectivenss and energy effectiveness are calculated by dividing the
     annual cost for a particular option (Appendix A)  or energy consumption (e.g.,
     steam or electric power)  by the  total annual  amount of VOC,  with the  assumed
     removal efficiencies.

     Typical cost-effectiveness  values  are given in Table V-3,  and the  corresponding
     values for energy effectiveness  are presented in  Table  V-4.   Additional cost-
     effectiveness  values  for  other conditions  are given in  Appendix  A.  Values  for
     other conditions  that  are not given in the cited  tables or graphs  can  be  deter-
     mined by the methods  described in  Appendix B.

-------
                                    Table V-3.   Cost Effectiveness Summary


Absorber Conditions:  VOC removal, 99%; LM/mGM = 1.4.
Stripper Conditions:  Organic removal, 99%; steam ratio =0.2 mole of steam/mole of air in.
Cost Effectiveness (10
Operating Parameters
VOC recovery credit = 0 for
air containing -.
0.05 wt % VOC
0.50 wt % VOC
5.0 wt % VOC
VOC recovery credit = $0.10/lb
air containing
0.05 wt % VOC
0.50 wt % VOC
5.0 wt % VOC
VOC recovery credit = $0.20/lb
air containing
0.05 wt % VOC
0.50 wt % VOC
5.0 wt % VOC


1.


12.
1.
0.
for

12.
1.
(0.
for

12.
0.
(0.


0


4
24
13


2
03
09)


0
82
31)
0.28

10


4.41
0.44
0.046


4.19
0.22
(0.17)


3.97
0.01
(0.39)
$/Mg of VOC) at Equilibrium Curve Slopes
2.02
At
100


3.34
0.34
0.036


3.12
0.12
(0.18)


2.90
(0.10)
(0.40)
Air Flow Rates (cfm X 1Q3)
1.0


16.1
1.61
0.16


15.9
1.39
(0.06)


15.6
1.17
(0.27)
10


6
0
0


6
0
(0


6
0
10



.78
.68
.07


.56
.46
.15)


.34
.24
.37)
100


4.66
0.47
0.049


4.45
0.25
(0.17)


4.23
0.03
(0.39)
of
1.0


23.6
2.36
0.24


23.3
2.14
(0.02)


23.1
1.92
(0.20)
5.74

10


12.1
I. 21
0.12


11.8
0.99
(0.10)


11.62
0.77
(0.31)
(m) of


100


8.71
0.87
0 089


8.48
0.65
(0.13)


8.27
0.44
(0.35)
                                                                                                                   OJ
                                                                                                                   (O

-------
                                   Table V-4.   Energy Effectiveness  Summary
Absorber Conditions:
Stripper Conditions:
VOC removal, 99%;  LM/mGM = 1.4-
Organic removal, 99%; steam ratio =0.2 mole of  steam/mole of air in.
Enerqy Effectiveness (10 Btu/Mg of VOC) at Equilibrium Curve Slopes (m) of


Operating Parameters
For air containing
0.05 wt % VOC
0.50 wt % VOC
5.0 wt % VOC
0.28

1.0 10

622.1 623.3
62.2 62.3
6.2 6.2

At Air
100 1.0

615.8 773.0
61.6 77.3
6.2 7.7
2.02
Flow Rates
10

771.9
77.2
7.7

(cfm X 103) of
100 1.0

763.9 1084.1
76.4 108.4
7.6 10.8
5.74

10

1086.4
108.6
10.9


100

1079.2
107.9
10.8
                                                                                                                  f

-------
                                    VI-1
                       VI.  SUMMARY AND CONCLUSIONS

Gas absorption as an emission control method is currently most widely used for
the removal of water-soluble compounds from air streams,  with water as the
solvent or scrubbing fluid.  When absorption is used for  the control of VOC
components that have low water solubility,  other solvents (primarily organic
liquids with very low vapor pressures) are  used.

The suitability of gas absorption as a VOC  emission control method compared to
other alternatives (primarily thermal oxidation and carbon adsorption) is
dependent on the availability of a suitable solvent, the  concentration of VOC
in the treated steam, and the value of the  recovered VOC  components.

Estimates of capital costs, operating costs, and cost effectiveness were dev-
eloped for a number of combinations of conditions or variables to illustrate
the effects of changes in these variables on costs.   Some of the conclusions
derived from the cost evaluations are as follows.-

1.    At low VOC concentrations the cost effectivenss of absorption is very
     sensitive to the vapor equilibrium properties of the VOC-solvent system
     used (expressed as m, the equilibrium curve slope)
2.    Compared to other control methods, cost effectiveness of absorption is
     relatively insensitive to the degree of control attained within the ranges
     explored (90% to 99.9% VOC removal)
3.    The incremental cost effectiveness of stripping absorber effluent water
     before it is discharged is very sensitive to the volume of gas treated and
     the concentration of VOC.  From the standpoint of cost effectivensss alone
     the discharge of absorber effluent water without stripping may well appear
     to be preferable for control of emission sources containing low VOC concen-
     trations; however, the effect on secondary emissions and water quality
     must also be considered.

-------
                 APPENDIX A

ADDITIONAL CAPITAL AND COST SUMMARY CASES AND
            COST-EFFECTIVE TABLES

-------
                   Table A-l.  Capital Cost Summary for 99% VOC Removal and with Stripping
Absorber Conditions: 
-------
                           Table A-2.  Capital Cost Summary  for  99.9% Removal and No Stripping
Absorber Conditions:  L /mG  = 1.4; VOC in air = 0.05, 0-5, 5.0 wt %.
                      M   M
Capital Cost (10° $) at Equilibrium Curve Slopes (m) of


0.28


2.02


5.74

At Air Flow Rates (cfm X 10 ) of
Equipment
Absorber system
Tower and trays (packing)
Blower
Duct
Pump
Piping
Instrumentation
Subtotal capital cost
Total capital cost (+30%)
1.0

44.1
35.6
8.0
5.7
1.0
14.8
109.2
142.0
10

172.9
121.5
16.0
5.7
1.0
14.8
331.9
431.5
100

901.2
373.6
27.5
9.7
3.4
14.8
1330.2
1729.3
1.0

56.6
42.4
8.0
5.7
1.0
14.8
128.5
167.1
10

219.9
146.5
16.0
8.8
3.4
14.8
409.4
532.2
100

1103.2
468.3
27.5
25.5
9.7
14.8
1649.0
2143.7
1.0

65.4
47.3
8.0
6.0
1.6
14.8
143.1
186.0
10

254.0
164.8
16.0
12.8
4.5
14.8
466.9
607.0
100

1253.9
537.9
27.5
45.6 *?
s±
17.4
14.8
1897.1
1466.2

-------
                          Table A-3.  Capital Cost Summary for 90%  VOC  Removal  and No Stripping
Absorber Conditions:  LM/mGM = 1'4; VOC in air = °-05' °-5' 5-° wt
Capital Cost (103 $)


0.28


at Equilibrium Curve
2.20

At Air Flow Rates (cfm X 103 )
Equipment
Absorber system
Tower and trays (packing)
Blower
Duct
Pump
Piping
Instrumentation
Subtotal capital cost
Total capital cost (+30%)
1.0

22.7
23.8
8.0
5.7
1.0
14.8
76.0
98.8
10

94.5
79.1
16.0
5.7
1.0
14.8
211.1
274.4
100

558.3
213.8
27.5
9.7
3.4
14.8
857.5
1114.8
1.0

26.5
25.9
8.0
5.7
1.0
14.8
81.9
106.5
10

108.0
86.4
16.0
8.8
3.4
14.8
237.4
308.6
100

639.5
241.3
27.5
25.5
9.7
14.8
958.3
1245.8
Slopes (m) of

of
1.0

29.0
27.2
8.0
6.0
1.6
14.8
86.6
112.6
5.74

10

116.7
91.2
16.0
12.8
4.5
14.8
256.0
332.8


100

673.1
259.5
27.5
45.6
17.4
14.8
1037.9
1349.3

-------
Absorber Conditions:
                          Table A-4.  Capital Cost Summary for 99% VOC Removal and No Stripping




                             =  1.4;  VOC in  air = 0.05, 0.5, 5.0 wt  %.
Capital Cost (10 J $) at Equilibrium Curve


0.28


2.02

Slopes (m)

of
5.74


At Air Flow Rates (cfm X 10 ) of

Absorber System
Tower and trays (packing)
Blower
Duct

Pump
Piping
Instrumentation
Subtotal capital cost
Total capital cost (+30%)
1.0

33.6
29.7
8.0
5 7

1.0
14.8
92.8
120.6
10

133.8
100.2
16.0
5.7

1.0
14.8
271.5
353.0
100

741.1
293.5
27.5
9.7

3.4
14.8
1090.0
1417.0
1.0

42.2
34.5
8.0
5.7

1.0
14.8
106.2
138.1
10

165.6
117.4
16.0
8.7

3.4
14.8
325.9
423.7
100

870.9
358.0
27.5
25.5

9.7
14.8
1306.4
1698.3
1.0

48.2
37.8
8.0
6.0

1.6
14.8
116.4
151.3
10

188.2
129.4
16.0
12.8

4.5
14.8
365.7
475.4
100

965.8
403.5
27.5
45.6

17.4
14.8
1474.6
1917.0
                                                                                                                          cr>

-------
                          Table A-5.  Annual Cost Summary for 99% VOC Removal and No Stripping




Absorber Conditions:  99% VOC Removal; LM/mGM = 1.4; VOC in air = 0.05, 0.5, 5.0 wt %.
Annual Cost

Fixed costs (29% of capital)
Process water ($0.25/1000 gal)
Electricity ($0.03/kWh)
Steam ($2.50/1000 Ib)
Wastewater treat. ($0.25/1000 gal)
Cooling water ($0.10/1000 gal)
Operating Labor ($15/hr)
Total annual cost excluding BOD
surcharge and recovery credit
BOD Surcharge
0.05 wt % VOC in air
0.50 wt % VOC in air
5.0 wt % VOC in air
Net annual cost (credit)
VOC recovery credit = 0 for
air containing
0.05 wt % VOC
0.5 wt % VOC
5.0 wt % VOC


1.0
35.0
0.3
3.6
0.3

13.1
52.3

1.9
19.3
193

54.2
71.6
245.3
0.28

10
102.4
2.9
36.0
2.9

13.1
157.3

19.3
193
1930

176.6
350.3
2087.3

At
100
410.9
28.8
302.8
28.8

13.1
784.4

193
1,930
19,300

977.4
2,714.4
20,080
do3 $)

Air Flow
1.0
40.0
2.1
4.6
2.1

13.1
61.9

1.9
19.3
193

63.8
81.2
254.9
at Equilibrium Curve Slopes (m) of
2.02
Rates (cfm X 103)
10 100
122.9 492.5
20.7 207.2
47.2 416.1
20.7 207.2

13.1 13.1
224.6 1,336
"
19.3 193
193 1,930
19,300

243.9 1,529
417.6 3,266
2154.6 20,640

of
1.0
43.9
5.9
5.5
5.9

13.1
74.3
—
1.9
19.3
193

76.2
93.6
267.3
5.74

10
137.9
58.9
56.7
58.9

13.1
325.5
	 _
19.3
193
1930

344.8
518.5
2255.5


100
555.9
588.7
510.8
S
588.7

13.1
2,257

193
1,930
19,300

2,450
4,187
21,560

-------
                         Table A-6.  Annual Cost Summary for 99.9% VOC  Removal  and No  Stripping





Absorber Conditions:  LM/mGM = 1.4;_VOC in air = 0.05,  0.5,  5.0 wt %.
Annual Cost (1Q3 $) at Equilibrium Curve
Equipment
Fixed costs (29% of capital)
Process water ($0.25/1000 gal)
Electricity ($0.03/kWh)
Steam ($2.50/1000 Ib)
Wastewater treat ($0.25/1000 gal)
Cooling water ($0.10/1000 gal)
Operating labor ($15/hr)
Total annual cost exluding BOD
surcharge and recovery credit
BOD surcharge
0.05 wt % VOC in air
0.50 wt % VOC in air
5.0 wt % VOC in air
Net annual cost (credit)
VOC recovery, credit = 0 for
air containing
0.05 wt % VOC
0.5 wt % VOC
5.0 vt % VOC


1.0
41.2
0.3
4.9

0.3

13.1
59.8


1.9
19.5
194.6



61.7
79.3
254,4
0.28

10
125.2
2.9
49.3

2.9

13.1
193.4


19.5
194.6
1946



212.9
388.0
2739,4

At
100
501.5
28.8
435.8

28.8

13.1
1,008.0


194.6
1,946
19,460



1,202.6
2,954
20 , 470

2.02

Slopes (m) of

5.74

Air Flow Rates (cfm X 10 ) of
1.0
48.5
2.1
6.6

2.1

13.1
72.4


1.9
19.5
194.6



74.3
91.9
267.0
10
154.3
20.7
67.0

20.7

13.1
275.8


19.5
194.6
1946



295.3
470.4
2221.8
100
621.7
207.2
613.9

207.2

13.1
1,663.1


194.6
1,946
19,460



1,857.7
3,601.9
21,120
1.0
54.0
5.9
8.0

5.9

13.1
86.9


1.9
19.5
194.6



88.8
106.4
281.5
10
176.1
58.9
81.9

58.9

13.1
388.9


19.5
194.6
1946



408.4
583.5
2334.9
100
715.2
588.7
762.3

588.7 I

13.1
2,668


194.6
1,946
19,460



2,862.9
4,614.0
22,130

-------
                          Table A-7.  Annual Cost Summary for 90% VOC Removal and No Stripping




Absorber Conditions:  LM/mGM = 1.4; VOC in air = 0.05,  0.5,  5.0 wt %.



Annual
0.28
Cost

(io3 $)

at Equilibrium
2.02
... .. At Air Flow Rates (cfm

Fixed costs (29% of capital)
Process water ($0.25/1000 gal)
Electricity ($0.03/kWh)
Steam ($2.50/1000 Ib)
Wastewater treat. ($0.25/1000 gal)
Cooling water ($0.10/1000 gal)
Operating labor ($15/hr)
Total annual cost excluding BOD
surcharge and recovery credit
BOD surcharge
0.05 wt % VOC in air
0.50 wt % VOC in air
5.0 wt % VOC in air
Net annual cost (credit)
VOC recovery credit = 0 for
air containing
0.05 wt % VOC
0.5 wt % VOC
5.0 wt % VOC
1.0
28.6
0.3
2.4

0.3

13.1
44.7


1.8
17.5
175.3



46.5
62.2
220.0
10
79.5
2.9
24.1

2.9

13.1
122.5


17.5
175.3 1,
1753 17,



140.0
297.8 2,
1875.5 18,
100
323.3
28.8
184.3

28.8

13.1
578.3


175.3
753
530



753.4
331.1
110
1.0
30.8
2.1
2.8

2.1

13.1
50.9


1.8
17.5
175.3



52.7
68.4
226.2
10
89.5
20.7
28.7

20.7

13.1
172.7 1,


17.5
175.3 1,
1753 17,



190.2 11,
348.0 2,
1925.7 18,
Curve

X 10 )
100
361.3
207.2
230.5

207.2

13.1
019.1


175.3
753
530



944
772.1
550
Slopes (m)

of
1.0
32.7
5.9
3.1

5.9

13.1
60.7


1.8
17.5
175.3



62.5
78.2
236.0
of
5.74

10
96.5
58.9
32.9

58.9

13.1
260.3


17.5
175.3
1753



277.8
435.6
2013.3



100
391.3
588.7
272.7

588.7 >
VO
13.1
1,854.5


175.3
1,753
17,530



2,029.8
3,607.5
19,380

-------
                    Table A-8.  Annual Cost Summary for 99%  VOC Removal,  with

                                   Stripping and Steam Ratio of 0.1
Absorber Conditions:  LM/mGM = 1.4;  VOC in air = 0.05, 0.5, 5.0 wt %.

Stripper Conditions:  Steam ratio =0.1 mole of steam/mole of air in.



Annual Cost
0.28
(10 $) at Equilibrium Curve Slopes (m) of

At Air Flow Rates

Fixed costs (29% of capital)
Process water ($0.25/ra gal)
Electricity ($0.03/kWh)
Steam ($2.50/1000 Ib)
Wastewater treat ($0.25/1000 gal)
Cooling water ($0.10/1000 gal)
Operating labor ($15/hr)
Total annual cost excluding BOD
Surcharge and recovery credit
BOD surcharge
0.05 wt % VOC in air
0.50 wt % VOC in air
5.0 wt % VOC in air
Net annual cost: (credit)
VOC recovery credit - 0
0.05 wt % VOC
0.5 wt % VOC
5.0 wt % VOC
VOC recovery credit - $0.10/lb
0.05 wt % VOC
0.50 wt % VOC
5.0 wt % VOC
VOC recovery credit - $0.20/lb
0.05 wt % VOC
0.50 wt % VOC

5.0 wt % VOC
1.0
55.7
0.3
j.8
6.5
0.4
0.7
32.9

100.3

0.02
0.2
1.9


100.3
100.5
102.2

98.4
81.4
(88.7)

96.5
62.3
'270 6)
\t. i j • 
-------
Table A-9.  Annual Cost Summary for 99%  VOC  Removal, with
             Stripping, and Steam Ratio of  0.2
Annual Cost (10 5) at Equilibrium Curve Slopes
I qui pp^rn.t
Fixed costs (29% of capital)
Process water ($0.25/m gal)
tlcctrxcity ($0.03/kWh)
Steam ($2.50/1000 Ib)
Wastewater treat ($0.25/1000 gal)
Cooling water ($0.10/1000 gal)
Operating labor ($15/hr)
Total annual cost excluding BOD
surcharge and recovery credit
BOD surcharge
0.05 wt % VOC in air
0.50 wt % VOC in air
5.0 wt % VOC in air
Net annual coat (credit)
VOC recovery credit 0
0.05 wt % VOC
0.5 wt t VOC
5.0 wt % VOC
VOC recovery credit $0.10/lb
0.05 wt % VOC
0.50 wt % VOC
5.0 wt % VOC
Voc recovery credit $0.20/lb
0.05 wt * VOC
0.50 wt 1 VOC
5.0 v,t % VOC


1 .0
57.3
0.3
3.8
12.5
0.4
1.5
32.9
108.7

0.02
0.2
1.9


108,7
108.9
110.6

106.8
89.8
(80.3)

104.9
70.7
(271.7)
0.28

10
169.
2.
36.
125.
4.
14.
32.
385.

0.
1.
19.


385.
387.
404.

366.
196.
(1504.

347.
5.
(3412)



8
9
2
0
3
5
9
6

2
9
3


8
5
9

7
6
1)

6
8



100
725.7
28.8
304.0
1,250
433.0
145.1
32.9
2,919.5

1.9
19.3
193


2,921.4
2,938.8
3,112.5

2,730.5
1,030
(15,980)

2,539
(878.2)
(35,060)

At Air
1.0
81.7
2.1
4.8
15.4
2.2
1.5
32.9
140.6

0.02
0.2
1.9


140.6
140.8
142.5

138.7
121.7
(48.4)

136.8
102.6
(239.2)
2.02

(m) of


5.74




Flow Rates (cfm X 10 ) of
10
300.7
20.7
48.0
153.7
22.2
14.5
32.9
592.7

0.2
1.9
19.3


592.9
594.6
612.0

573.8
403.7
(1297.0)

554.7
212.9
(3205)
100
1,510
207.2
424.5
1,537
221.7
145.1
32.9
4,078

1.9
19.3
193


4,079.9
4,097.3
4,271

3,889
2,188.3
(14,820)

3,698.2
280.3
(33,900)
1.0
127.8
5.9
5.7
21.9
6.0
5.8
32.9
206.0

0.02
0.2
1.9


206.0
206.2
207.9

204.1
187.1
(17.0)

202.2
168.0
(173.8)
10
567.
58.
59.
219.
60.
58.
32.
1,055

0.
1.
19.


1055.
1056.
1074.

1036,

0
9
1
0
3
0
9


2
9
3


.2
9
,3

.1
866.0
(834

1017
675
.7)

.0
.2
(2742)
100
3086
589
534.5
2,190
603
580
32.9
7,615.4

1.9
19.3
193


7,617
7,635
7,808

7,416
5,726
(11,280)

7,235
3,818
(30,360)

-------
                             Table A-10.  Cost Effectiveness Summary for 99% VOC Removal for
                        Tray Column with Water Discharged without stripping and No VOC Recovered
Absorber Conditions:
L /mG  = 1.4; VOC in air = 0.05,  0.5,  5.0 wt %.
 M   M
Cost Effectiveness (10 $/Mg






0.28





of VOC) at
2.02

Equilibrium Curve Slopes (m) of

T,


5.74





At Air Flow Rates (cfm X 10 ) of


1.0
10
100
1.0
10
100
1.0
10
100

VOC Recovery Credit = 0
0.05 wt
0.50 wt
5.0 wt \
% VOC
% VOC
fe VOC
6.19
0.82
0.28
2.02
0.40
0.24
1.12
0.31
0.23
7.29
0.93
0.29
2.79
0.48
0.25
1.75
0.37
0.24
8.71
1.07
0.31
3.94
0.59
0.26
2.80
0.48
0.25


I
	 — — • i— •
(O

-------
                    Table A-ll.  Cost Effectiveness Summary for 99.9% VOC Removal for Tray  Column, with

                                Water Discharged without Stripping and No VOC  Recovered



Absorber Conditions:  L  /mGM  =  1.4; VOC in air = 0.05, 0.5, 5.0 wt %.
                      M   M
Cost Effectiveness (10 $/Mg






0.28





of VOC) at
2.02

Equilibrium Curve Slopes (m) of

1




5.74



At Air Flow Rates (cfm X 10 ) of

VOC Recovery
0.05 wt %
0.50 wt %

Credit = 0
VOC
VOC
5.0 wt % VOC
1.0

6.99
0.90
0.29
10

2.41
0.44
0.24
100

1.36
0.33
0.23
1.0

8.42
1.04
0.30
10

3.35
0.53
0.25
100

2.10
0.41
0.24
1

10
1
0
.0

.1
.21
.32
10

4.63
0.66
0.26
100

3.24
0.52
0.25 f
M

-------
                             Table A-12.  Cost Effectiveness Summary for 90% VOC Removal for
                         Absorber, with'Water Discharged without Stripping and No VOC Recovered

Absorber Conditions:  VOC removal, 90%;  LM/mGM =  1.4; VOC in air =  0.05,  0.5,  5.0 wt  %.

0.28


1.0 10
VOC Recovery Credit = 0
0.05 wt % VOC 5.85 1.76
0.50 wt % VOC 0-78 0.37
5.0 wt % VOC 0.28 0.24
Cost



100

0.95
0.29
0.23
(10 $) at Equilibrium Curve Slopes


At Air
1.0

6.63
0.86
0.28
2.02

Flow Rates (cfm
10

2.39
0.44
0.24

3
x 10 ) of
100

1.50
0.35
0.23
(m) of



1.0

7.86
0.98
0.30

5.74


10 100

3.49 2.55
0.55 0.45
0.25 0.24

-------
                  Table A-13.  Cost Effectiveness Summary for 99% VOC Removal and Steam Ratio of  0.1
Absorber Conditions:   VOC removal, 99%; L^/mG^ - 1.4%;  VOC in air  - 0.05,  0.5,  5.0 wf %.
Stripper Conditions:   Organic removal, 99%;  steam ratio =0.1 mole of steam/mole  of  air  in.
Cost Effectiveness (10



VOC
0.
0.
5.
VOC
0.
0.
5.
VOC
0.
0.
5.

%

Recovery Credit = 0
05 wt % VOC
50 wt % VOC
0 wt % VOC
Recovery Credit = $0.10/lb
05 wt % VOC
50 wt % VOC
0 wt % VOC
Recovery Credit = $0.20/lb
05 wt % VOC
50 wt % VOC
0 wt % VOC


1

11
1
0

11
0
(0

11
0
(0


.0

.5
.15
.12

.3
.93
.10)

.0
.11
.32)


10

3.
0.
0.

3.
0.
(0.

3.
(0.
(0.
0.28
At Air


50
35
037

28
13
18)

06
08)
40)
3 $/Mg of

Flow Rates
100

2.05
0.21
0.023

1.84
(0.01)
(0.20)

1.62
(0.23)
(0.41)
VOC) at Equilibrium

(cfm X
1

15
1
0

14
1
(0

14
1
(0

103) of
.0

.1
.51
.15

.9
.29
.07)

.7
.08
.28)
Curve Slopes
2.

10

5.
0.
0.

5.
0.
(0.

5.
0.
(0.
02



88
59
061

67
37
16)

45
15
38)
(m) of


100

3.78
0.38
0.039

3.56
0.16
(0.18)

3.34
(0.06)
(0.40)
                                                                                                                        Ul

-------
    APPENDIX B
SAMPLE CALCULATIONS

-------
                                           B-3
                                    SAMPLE CALCULATIONS
I .     Capital Cost Parameters

       Basis
       10,000 SCFM of air at 25 °C containing 0.5 wt %  acetone.
       VOC  (acetone) removal efficiency of absorber, 99.0%.
       Solvent:  water at 25 °C, single-pass usage.
A.     Tray-Column Parameters

1.     Liquid Rate
       For a dilute solution (ref 1) :
            m -       _ (6.7)  (229 mm)
                ~~     ~       ~        -2.02,
       where
            m  = equilibrium curve slope,
            y  = activity coefficient of acetone at 25 °C,
            PI = pure component vapor pressure, mm Hg, at 25 °C,
            P  = total pressure, mm Hg;

       if we let
            mG
              M
       where
            LM
            —- = liquid-to-gas mole ratio,
            GM
               = PV _ (14.7)  (10,000)  (60)  _ 1534 Ib-moles of air
             M   RT   (10.71)  (460 + 77)    ~         hr          ;
       then

            L  = 1.4 mGM = (1.4)  (2.02)  (1534)  - 434° lb-mo^s o£
             M         M                                   hr

-------
                                           B-4
       or
            (4340)  (18)
            (8.33)  (60)


2.     Number of Theoretical Trays,  Np

       Using Fig. B-I to estimate the number of theoretical trays required,  at a VOC

       removal efficiency of 99%, Y^Y;,  = 100 and ™GM/LM = 0.71.   From Fig.  B-l,

       N  =10.0, where YI = mole fraction of VOC in scrubber inlet gas, Y2  = mole
        p
       fraction of VOC in scrubber outlet gas, and Np = number of theorectical plates

       required.



3.     Tray Efficiency
                                              9
       The tray efficiency can be expressed as



               	0.377	0.377	
            Eo " /mM p /p  \OJ209    [(2.02)  (18)  (1.0) /62.4] 0 .20 9
                 \  L L  L )
       where
            E  = tray efficiency,

            m  = equilibrium curve slope,

            M  = molecular weight of liquid,
             L
            y  = viscosity of liquid, centipoise ,
             L                           3
            p  = density of liquid, Ib/ft  .
             L
 4.     Actual Number of Trays, N
                  o
 5.      Tower Diameter
        The superficial  gas  velocity  in a bubble-cap  tray  tower  at flooding is  estimated
        by3

-------
  W
   I
               Number of Theoretical Plates,
  Q
  h
  0
  HI
§ s
  rt
rt H-
s s
w
3
O
3
   ro
   W
   o
CO

en
   rt
   H-
   O
   3

   O
   0

-------
                                          B-6
    where
         V  = superficial flooding velocity, fps,

         p  = liquid density, Ib/ft ,
          L                     3
         p  = gas density, Ib/ft ,
          G
         C  = a constant determined by the following equation
          F
C  =
                     _
          F =  [S 10g (WG-) (PG/PL)0'5 +
    where
         a and b = constants whose values are given in Table B 1, in which t, the
                     tray spacing, is given in inches,



          (LVG') :
                 =  (4340 X 18) /(1534 X 29) X  [ (0.0749/62.4)]°'5

                 =  0.0608.
    From Table B-l, with a tray spacing of  18  in.,  a  =  (0.041  X  18)  + 0.0135  = 0.0873,

    and b =  (0.0047 X  18) + 0.068 = 0.1526; then with a  surface  tension of 72.0
    an    =    .               .        .
                                    /               1            i  / 72 0
    dynes/cm  (water  at  250C) , Cp  =  ^0.0873  log ^^g  + 0.1526J  --     = 0.334,
     and
            _  0  334  (62.4-  0.0749-   =
          p  -  U.JJt  ^    0.0749     /             ^
     Assuming the actual  superficial vapor velocity to be a conservative 50% of

     flooding velocity, V = (0.5)  (9.63)  = 4.82 fps, the tower cross -sectional area

     = 10,000 cfm X (min/60 sec)  X min X (sec/4.82 ft) = 34.5 ft2, and the diameter

     = [ (4 X 34.5)/n]°'5  = 6.63 ft.



6.   Tower Height

     With 18-in. tray spacing the overall height =  [18 X  (ft/12 in.) X no. of trays +

      (2 X diam) = 18 X 24)/(12) + (2 X 6.6) = 49.2  ft.




7.   Tower Pressure Drop

     With a Ap of 3 in. H20 per tray the total tower  pressure drop  =  (3 X  24)  =


      72.0 in. H20.

-------
                                          B-7
                        Table  B-l.   Flooding Constants,
0.01-0.03 use values
  at 0.03
0.03-0.2
0.2-1.0
Flooding constant C
Range of
0.01-0.1 use values
  at 0.1
0.1-1.0
aFrom ref 3.
                                  0.0041t +  0.0135
                                  0.0068t +  0.049
                                 Perforated  Trays
                                  0.0062t + 0.0385
0.0047t + 0.068
0.0028t + 0.044
                                                                 0.00253t + 0.05

-------
                                          B-8
B.    Packed-Column Parameters

      Basis :   1-in. porcelain Raschig rings; other criteria the same as those for
      the tray column.

1.    Tower Diameter
Using the correlation shown in Fig. B-2, we calculated the factor  (L'/V") X
                                                                            c
      (PG/PI,)°° ,  where L' = liquid flow rate, Ib/hr, V^ = gas flow rate, Ib/hr, p
      gas density, lb/ft3 , and pL = liquid density, lb/ft3, to be:

           (4340)  (18)   /0.0749\ °'5 _
           (1534)  (29)   l~6274~/     ~ °-0608-
      Then, from Fig. B-2,
                              .2
      where
           G    = gas flow rate at flooding conditions, lb/sec-ft2 tower cross-section,
           A/e3 = packing factor from Fig.  B-3 = 170,
                                    o
           PQ   = gas density,  lb/ft ,
           PL   = liquid density,  lb/ft3,
           \i'   - liquid viscosity,  centipoises,
           gc   = gravitation constant,  32.2 ft/sec2:
           G' =
           (0.13)  (32.2)  (0.0749)  (62.4)
                   (170)  (1.0)0-2
      Designed for 60% of flooding velocity the design rate, G _, = (0.6) (0.339)
      0.204 lb/sec-ft2.
      The tower cross-sectional area is

           1534 Ib-moles    29 Ib      sec-ft2      hr             2
                hr         Ib-moles   0.204 Ib   3600 sec

-------
 0 1
 0 01
                           B-9
0 001
  0 01
                    0 I
                         U' 'V
                                      I 0
                                                        10 0
         Fig.  B-2.   Correlation for Flooding  Rate
          in Randomly Packed Towers  (from ref 4)

-------
                         B-10






000







100
50
40
30
20
10








\
, 	 U 	
\\
V.
\
\























X
\\
\\J
\*






















^
,V^






PACKING FACT3P FOR 1 m IN
SJSDOLES ? <' 90

0 (


















"^~ '
"^>^





ALOX




















^^-~-^

























~---^_





























5 to IS 2025 30 3 '
NOMINAL PACKING SIZE (in.)
Fig. B-3.  Packing Factors for Raschig Rings and Saddles

-------
                                          B-ll





      The tower diameter was  then calculated as


               F(60.6)  (4)
           D  =
                     n
                          To.s
                         -     =8.8 ft.
2.    Number of Transfer Units,  NQG

      Using Fig. B-4 to estimate the number of transfer units required,  at a VOC removal

      efficiency of 99.0%,  y.,/y2 = 100,  and mG /L  = 0.71:   N0r
                                                               =
3.     Height of a Transfer Unit

      The height of a transfer unit,  H  ,  is obtained by the following relationships

      between H  (the height,  in feet, of  a gas-transfer unit)  and H  (the height, in

      feet, of a liquid-transfer unit) :
                         G \
           H   = H  + m  -^  H
      where
                    \PGPG
      and
      in which

           m  = equilibrium curve slope,
                                              n
           G  = superficial gas rate, Ib/hr-ft ,

           L  = superficial liquid rate,  Ib/hr-ft ,

           a  -a packing constant from Table B-2,

           g  = a packing constant from Table B-2,

           y  = a packing constant from Table B-2,
                                         n
           y,, = a gas viscosity, Ib/hr-ft
            u

           pG = gas density, Ib/ft ,
                                   ry
           DG = gas diffusivity, ft /hr

-------
                   B-12
                                    10,000
                    y2-mx2
Fig. B-4.  Number of Transfer Units in  an
 Absorption Column for Constant mG /LM

-------
                                   B-13
          Table B-2.  Constants for Use in Determining Gas Film's
                         Height of Transfer Units
Packing
Raschig rings
3/8 in.
1 in
JL -LJ.I •
1-1/2 in.
2 in.
Berl saddles
1/2 in.

1 in.
1-1/2 in.
3-in. partition rings
Spiral rings (stacked
staggered)
3 in. single spiral
3 in. triple spiral
Drip-point grids
No. 6146
No. 6295
Packing Constants
a
2
7
6
17
2
3

32
0
1
5
650

2
15
3
4
.32
.00
.41
.30
.58
.82

.40
.81
.97
.05


.38
.60
.91
.56
P
0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.
0.

45
39
32
38
38
41

30
30
36
32
58

35
38
37
,17
Y
0.47
0.58
0.51
0.66
0.40
0.45

0.74
0.24
0.40
0.45
1.06

0.29
0.60
0.39
0.27
Mass

200
200
200
200
200
200

200
200
200
200
150

130
200
130
100
Flow Rates [lb/(hr)
Gas
to
to
to
to
to
to

to
to
to
to
to

to
to
to
to
(ft2)]
Liquid
500
800
600
700
700
800

700
700
800
1,000
900

700
1,000
1,000
1,000
500
400
500
500
1,500
500

500
1,500
400
400
3,000

3,000
500
3,000
2,000
to
to
to
to
to
to

to
to
to
to
to

to
to
to
to
1,500
500
4,500
1,500
4,500
4,500

1,500
4,500
4,500
4,500
10,000

10,000
3,000
6,500
11,500
Adapted from ref  4.

-------
                                     B-14
(values for the group known  as the Schmidt number  are given in Table B-3)

     yT = liquid viscosity, Ib/hr-ft,
      LI
     <}>  = a packing constant from Table B-4,

     H  = a packing constant from Table B-4,

     PL = liquid density, Ib/ft ,

     DL = liquid diffusivity, ft2/hr

(the values for the group  U/pLDL , the Schmidt number, are given in Table B-5).



The values for the group UG/PGDG, als° kn°Wn aS th& Schmidt number' are 9iven  in
Table B-3; the values for the group y/PLDL are given in Table B-5; and the values

for G and L are, respectively,


     1534 Ib-moles    29 Ib        1    =  734 ^
          hr         Ib-mole   60.6 ft2


and


     4340 Ib-moles   _18 Ib        1    _  1289 i
          hr         Ib-mole   60.6  ftz


Then


                         -s	 (1.60)0*5  = 1.82  ft.
              (1289.1)
 and
      H  =
= (0.01)
                           il	V"" (767)°-5 = 1.13 ft,
                           0.894)y     ^   /
      HOG "        2°           '    = 2'63

-------
                        B-15
Table B-3.  Diffusion Coefficients of Gases and Vapors
               in Air at 25 °C and 1 atm
Substance
Ammonia
Carbon dioxide
Hydrogen
Oxygen
Water
Carbon disulfide
Ethyl ether
Methanol
Ethyl alcohol
Propyl alcohol
Butyl alcohol
Amyl alcohol
Hexyl alcohol
Formic acid
Acetic acid
Propionic acid
i-Butyric acid
Valeric acid
i-Caproic acid
Diethyl amine
Butyl amine
Aniline
Chlorobenzene
Chlorotoluene
Propyl bromide
Propyl iodide
Benzene
Toluene
Xylene
Dif fusivity
o
(cm /sec)
0.236
0.164
0.410
0.206
0.256
0.107
0.093
0.159
0.119
0.100
0.090
0.070
0.059
0.159
0.133
0.099
0.081
0.067
0.060
0.105
0.101
0.072
0.073
0.065
0.105
0.096
0.888
0.084
0.071
Schmidt No. ,
PD
0.66
0.94
0.22
0.75
0.60
1.45
1.66
0.97
1.30
1.55
1.72
2.21
2.60
0.97
1.16
1.56
1.91
2.31
2.58
1.47
1.53
2.14
2.12
2.38
1.47
1.61
1.76
1.84
2.18

-------
                                       B-16
                                Table B-3  (Cont'd)
Substance
Ethyl benzene
Propyl benzene
Diphenyl
n-Octane
Mesitylene
b
Acetone
Dif fusivity
(cm /sec)
0.077
0.059
0.068
0.060
0.067

Schmidt No. ,
~D
2.01
2.62
2.28
2.58
2.31
1.60 32 °F
a
 LAdapted from ref 4.

-------
                              B-17
                 Table B-4.  Constants for Use in
                Determining Liquid Film's Height of
                          Transfer Unitsa
Packing
Raschig rings
3/8 in.
1/2 in.
1 in.
1-1/2 in.
2 in.
Berl saddles
1/2 in.
1 in.
1-1/2 in.
3- in. partition rings
Spiral rings (stacked
staggered)
3 in. single spiral
3 in. triple spiral
Drip-point grids
No. 6146
No. 6295


0
0
0
0
0

0
0
0
0


0
0

0
0
*

.00182
.00357
.0100
.0111
.0125

.00666
.00588
.00625
.0625


.00909
.0116

.0154
.00725
n

0.
0.
0.
0.
0.

0.
0.
0.
0.


0.
0.

0.
0.
Liquid Mass Flow Rate
[lb/(hr) (ft2)]

46
35
22
22
22

28
28
28
09


28
28

23
31

400
400
400
400
400

400
400
400
3,000


400
3,000

3,500
2,500

to
to
to
to
to

to
to
to
to


to
to

to
to

15,
15,
15,
15,
15,

15,
15,
15,
14,


15,
14,

30,
22,

000
000
000
000
000

000
000
000
000


000
000

000
000
Adapted from ref  4.

-------
                B-18
Table B-5.  Diffusion Coefficients in
          Liquids at 20°Ca
b
Solute
°2
C02
N2O
NH3
CI2
Br2
H2
N2
HC1
H2S
H2SO4
HNO3
Acetone
Acetylene
Acetic acid
Methanol
Ethanol
Propanol
Butanol
Allyl alcohol
Phenol
Glycerol
Pyrogallol
Hydroquinone
Urea
Resorcinol
Urethane
Lactose
Maltose
Glucose
D X 10 5
(cm2 /sec) X 10s
1.80
1.77
1.51
1.76
1.22
1.20
5.13
1.64
2.64
1.41
1.73
2.60
1.56
0.88
1.28
1.00
0.87
0.77
0.93
0.84
0.72
0.70
0.77
1.06
0.80
0.92
0.43
0.43
0.60
V-
PD
558
559
665
570
824
840
196
613
381
712
580
390
c
767
645
1,140
785
1,005
1,150
1,310
1,080
1,200
1,400
1,440
1,300
946
1,260
1,090
2,340
2,340
-

-------
                                      B-19
                               Table B-5.  (Cont'd)
Solute
Mannitol
Raffinose
Sucrose
Sodium chloride
Sodium hydroxide
cod
Phenol
Chloroform
Phenol6
e
Chloroform
Acetic acid
Ethylene dichloride
D X 105
(cm2 /sec) X 105
0.58
0.37
0.45
1.35
1.51
3.40
0.80
1.23
1.54
2.11
1.92
2.45
y
po
1,730
2,720
2,230
745
665
445
1,900
1,230
479
350
384
301
 Adapted from ref 4.
 Solvent is water except where indicated.
GValue calculated by method in ref 5.
 Solvent is ethanol.
 Solvent is benzene.

-------
                                           B-20
4.    Tower Height1*

      The packed height, Z, = N_ X IT   = (11.8)  (2.63) = 31.0 ft.  The total tower
                               UG    OG
      height, Z +  (2. X diam), = 31.0 + (2)   (8.8) = 48.6 ft.



5.    Tower Pressure Drop, AP (ref 4.)
                    10  " ^      'PS
      where

           AP = pressure drop, Ib/ft,

           Z  = packed height of tower, ft,

           m  = pressure drop constant (Table B-6),

           r\  = pressure drop constant (Table B-6),
                                                          o
           L^ = superficial mass-liquid velocity, Ib/hr-ft ,
                                                       n
           G" = superifical mass-gas velocity, Ib/hr-ft ,

           p  = liquid density, Ib/ft ,
            J-i

           PG = gas density Ib/ft .
      Then



           AP = (32.1)

      or
           AP = 38.0 Ib/ft2
                 = 16.9 in. H20-
II.   Stripping Tower Parameters
      Basis

      Absorber — 10,000 scfm of air at 25 °C containing 0.5 wt % acetone; VOC  (acetone)

      removal efficiency, 99.0%; solvent, water; single-pass usage, mGj4/LM =0.7



      Stripper- — VOC  (acetone) removal efficiency from water, 99.0%; heat  supplied  by

      direct injection of steam  (no reboiler) ,- steam usage, 0.1 mole of steam/mole of

      air treated in absorber.

-------
                                          B-21
                 Table B-6.  Pressure-Drop Constants for Tower Packing'
Packing
Raschig rings



Berl saddles



Intalo,x saddles

Drip-point grid
tiles





Nominal
Size
(in.)
1/2
3/4
1
1-1/2
2
1/2
3/4
1
1-1/2
1
1-1/2
No. 6146
continuous
flue
Cross flue
No. 6295
continuous
flue
Cross flue
m
139
32
32
12
11
60
24
16
8
12
5
1
1
1


1
.90
.10
.08
.13
.40
.10
.01
.01
.44
.66
.045
.218
.088


.435
0
0
0
0
0
0
0
0
0
0
0
0
0
0


0
n
.00720
.00450
.00434
.00398
.00295
.00340
.00295
.00295
.00225
.00277
.00225
.00214
.00227
.00224


.00167
Liquid Mass
Flow Rate
[ (lb/(hr)(ft2)]
300
1,800
360
720
720
300
360
720
720
2,520
2,520
3,000
300
850


900
to
to
to
to
to
to
to
to
to
to
to
to
to
to


to
8,600
10,800
27
18
21
14
14
78
21
14
14
17
17
13


12
,000
,000
,000
,100
,400
,800
,600
,000
,400
,000
,500
,500


,500
Range
of P/Z
tlb/(ft2)(ft)]
0 to
0 to
0 to
0 to
0 to
0 to
0 to
0 to
0 to
0 to
0 to
0 to
0 to
0 to


0 to
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6
0.5
0.5
0.5


0.5
"Adapted from ref 4.

-------
                                           B-22
A.    Tray Column Parameters
1.    Number of Theoretical Trays (Np)

      Estimating N  by the equation*5
           NP =
                            in
      where

           N  = number of theoretical plates,
            P
            m = slope of equilibrium curve at liquid-discharge conditions,

           L  = liquid rate, mole/hr,

           G  = vapor rate, mole/hr,
            M
           x  = mole fraction of VOC in liquid in,

           x  = mole fraction of VOC in liquid out,

           y  = mole fraction of VOC in vapor in.


      With sparged steam as the inlet vapor Y2 is 0 and at a removal efficiency of

      99.0%, x /x  is 100.


      For a dilute aqueous solution of acetone at 212°F, the value of m at the origin

      is 36.9  (ref 5).  Then


           LM = 4340 Ib-moles/hr of water  (from absorber calculation),

                [     Ib-moles of air \   /    Ib-mole of stearin  ,,--,„,,_   i    4.  „ n,^.
           GM = 1534	)   10.1 —rr	;	7	:	)= 153.4 Ib-moles steam/hr,
            M   \*->Jt      h          /   \     Ib-mole of air /
  This  equation  assumes  straight-line  equilibrium and  operating lines,  conditions
  that  are generally  approached  closely only with very dilute  solutions.   The  equation
  can generally  be  used  only  for determining the  number of plates  in  the  stripping
  section in  actual design  calculations.   (Other  calculations  are  used  for determin-
  ing the number of plates  in the  enriching section.)   However, as most of the trays
  are usually required in the stripping section,  the equation  can  be  used for  rough
  estimates of the  total number  of trays,  which are of sufficient  accuracy for the
  purposes of this  report.

-------
                                          B-23
      and
                            (4340)    \  (-LOO]  (    (4340)

               InLV1"  (36.9)  (153.4) /  V 1 I +\(36.9)  (153.4)/| =11<9<

          NP "      ~~           "(36.9)  (153.4)
                              ln       (4340)
2.    Number of Actual Trays

      From Fig. 15-10 of ref 2,  in which yp =0.28 cp and Y = V/x  is conservatively

      assumed to be 36.9, E0 = 0.27,  where E0 = tray efficiency and Y = relative


      volatiles of key components:


              N       g
          N = — =	— = 44 trays.
              E0   0.27



3.    Tower Diameter

                 6
      The equation
           V = K
PL - PG

   PG
      where

           V  = superficial vapor velocity,  fps,
                                    2
           pL = liquid density, Ib/ft ,
                                   Q
           PG = vapor density, Ib/ft ,

           K  = empirical constant determined from Fig. B-5,



      is used to determine the superficial gas velocity that will prevent excessive

      entrainment.



      From Fig. B-5,  using 18-in. tray spacing and a liquid seal depth of 1 in.,  K =  0.14


      and


                   /59.8 - 0.0373V'5   , , f

           v = °-i4i~T^B—;    =5-6 fps-

-------
                         B-24
     0 12
                 10   12  U  16
                    IBM SP'ClhG (t I i in.)
  Fig. B-5,  Tray-Spacing Constants to Estimate
Bubble-Cap Tray Tower's Superficial Vapor Velocity
                    (from ref 4)

-------
                                            B-25
      The  volumetric  vapor  flow  rate  is
           1534  Ib-moles     18  Ib      26.8  Ib       hr    = 20  6  cfs
                hr          Ib-mole       ft3      3600  sec
      The  cross-sectional  area is
                        sec
             sec      5.6 ft

      The tower diameter is

                 ^  (3.68)  '
                                = 2.16ft.
4.    Tower Height
      With 18-in.  tray spacing and 44 trays the total height is
           44 X v^   + (4 X 2.16 ft)  = 74.6 ft.
5.    Tower Pressure Drop
      With a AP of 3 in. H2O per tray the total tower presure drop = (3)  (44)  = 132 in. HzO.

B.    Packed-Column Parameters
      The types of calculations used to determine the parameters for packed stripping
      towers are essentially the same as those used to determine packed absorber
      parameters  (using the same conditions and physical properties that were used to
      determine plate-stripping-tower parameters);  specific sample calculations for
      packed-stripping-tower parameters are not included.

C.    Absorber Inlet Air Duct*

      Basis
      Approximate linear gas velocity = 4000 fprn; flow-rate = 10,000 cfm at 77°F; duct
      components  = 150-ft duct, 4 ells, 1 butterfly valve, and 1 expansion joint.

      *The remaining sample calculations will be given  for the plate tower example only,
        as the calculation methods for the packed-column case are the same.

-------
                                             B-26
1.    Duct Diameter, D
           10,000 ft3    min   =  2  5  ft2

              min      4000 ft
D = IfLJL} — (41 I    = 1>
                                     ft (use 20-in. duct)
2.    Pressure Drop
                 3.36 X  10  6  fLW2  V
           Ap = 	 	
      where


           Ap  = pressure drop,  psi,


           f   = friction factor,


           L   = length of pipe, ft,


           W   = rate of flow, Ib/hr,


           V   = specific volume,  ft


           d   = internal diameter, in.




               P\TM   14 7 Ib   10,000 ft     60 min
               •C V J- -I   _4_ T • / J-J-^   -»- V JT v        V	
       and
                                                                     46077
            V - ^ - 10>71 X  (460 + 77) =          3/lb>

            V ~ PM ~      14.7 X 29
       To determine f




                 6.31 w
            Re = —	  ,
                  dp





       where Re = Reynolds  number  and y = viscosity, centipoise.





               _  (6.31)  (44,470)  =

            Re ""   (20)  (0.018)

-------
                                           B-27
    From ref 7, the friction factor,  f,  is  0.0137.
    The values of the equivalent lengths, L,  are  as  follows:
                                               No._     L/D             L (ft)

                      Straight-run pipe                          =     150.0
                      Elbows                   4        20        =     133.3
                      Butterfly valve          1        18        =      30.0
                      •Expansion joint  (est.)   1        50        =      84.0
                      Entrance and exit  loss   1       109        =     183.0
                        Total                                          580-°
          AP
               (3.36 X 10 6)  (.0137)  (580)  (44470) 2  (13.5) = Q 22    ._  *
                                    20s
D.   Blower Requirements


     Basis
     Efficiency =0.7

                  Ib                                      „
          hp = AP ^--2X    f'  Xflow rate — X ^-^ X -550  ft_lb


          hp = 0.00623  (AP psi)  (flow scfm)
                        144 in 2            ft3     min  „  sec-hp      1
                        144'              — X   -    X -         X
     Absorber tower AP = 72 in. H20 X 27-7     H20 = 2"6

         inlet duct AP =                             1.0 psi

              total AP =                             3.6 psi


          hp = (0.00623) (3.6)  (10,000) = 224.


E.   Pump Requirements


     Basis
     Efficiency = 0.65, AP =  30 psi.

*From thir^cIlcTOation the duct pressure drop was  found to be  relatively  small
 compared to the plate-tower  pressure drop, and a  constant conservative estimate
 of 1-psi duct AP was used for  all cases.

-------
                                           B-28
                  gpm X psi X 56   156 X 30 X 1.0     .  .
     Horsepower = gPP  .65   =   1715 X .65    = 4'2'
F.   Heat Exchangers

     Basis
     The criteria used to estimate heat exchanger requirements are summarized  in  the
     accompanying combined flowsheet and heat and material balance, Fig. B-6.

2.   Feed Effluent Heat Exchanger

          Q = UA Atm,

     where
          Q   = heat transfer rate, Btu/hr,
          U   = overall heat transfer coefficient Btu/(hr)  (ft2)  (°F),
          A   = heat exchanger surface area, ft  ,
              = log mean temperature difference, °F.

              - (100 " 77) -  (212 - 193)
            m ~         100 - 77
                     In
                        212 - 193

               	
                  hr
Btu/hr.
                      (50.0)  (20.9)
3.   Steam Preheater
          At  -  (267 - 193) -  (267 -  212)
            m ~             267 -  193         b4'U   *
                            267 -  212

          Q = (78,300 Ibj      _           =  1>5 x  1Q6  Btu/hr.
              \   hr    /
             	Q_ =  1.5 X  10°    =       2
             ~  UAtm   (100)  (64.0)

-------
99<7o VOC p.EMOVAl
        VOC

        QI ~
                                                                                                    \>\OO
                            _^.7=-n°F
                                                                               ZLiT'
                                                "ESD- E
                                 To, 500 \b|hr
                                                                          R£ HEATER
                                                EFFUWEUT
                                                                                                    T-120T
/   X'.
                                                                                                          CO-'JHtj')
                                                                                                                             W
                                                                                                                             I
                      Fig. B-6.   Sample  Flowsheet,  Material Balance,  and Energy Balance

-------
                                          B-30
 4.    Stripper Condenser




                 (135  - 80)  -  (135 -  120)
                      i   135  -  80

                      ln  135  -  120
                                          =  30.8°F.
                2760  Ib of  steam \(  1000 Btu\    _  _, v  in6 Btu
                - II  - I  =  *- • /D A  1U  ~ -
                      hr        y\    Ib   /              hr
                2'76
              (100)  (30.8)




G,   Piping Requirements




     Piping diameter basis  = approx. 10-fps velocity.



                                        80,000 Ib    ft3       hr       sec  _         2
     Approximate cross-sectional area = - ^ - X 6Q lb X 36QO sec X 1Q ffc - O.OJ/ tt





     Diameter
               -  0.037 ft2  X ^^  X |     =2.6 in.
      (Use 3-in.  sch.  40 pipe.)




 H.    Capital Cost Estimates




      Capital costs for all components were estimated from the parameters as calculated


      in the previous  sections and from IT Enviroscience  installed cost data expressed in


      terms of these parameters.   Coat data compiled from previous years were adjusted


      to a December 1979 basis.



II.    Annual Cost



 A.    Process Water




      Basis^


      $0.25/1000 gal

                    156 gal   60 min   8760 hr     $0.25
      Annual Cost = —^~ * — ^~ * ~£ - X iQOO gal



 B.   Electricity



      Basis


      $0.03/kWh.

      Total hp required =  224 (blower) +4.2  (pump) =228.

-------
                                         B-31



     Annual cost = 228 hp X "'^ nr X 1 ^ hr, X ~f^  =  $44,700/yr.




C.   Wastewater Treatment
     Basis
     1 Ib of BOD/lb of organics in wastewater; 0.05 wt  % VOC  in untreated air;  99.0%


     VOC removal in absorber; 99% organic removal in  stripper.


     Treatment cost = $25/1000 gal + $0.10 Ib/BOD.




                44,500 Ib of air   8760 hr
     BOD cost = 	'-	 X 	
                      hr             yr                               AJ->



                       80,900 Ib      gal  „  8760 hr    $0.25            .
     Wastewater cost = 	'—	 X 0 ., .,,  X 	  X  - • • •      = $21,270/yr.
                          nir       o. o o J~D     yi       J.L/UU y O.JL




     Total annual treatment cost = $21,270 +  $190 = $21,460/yr.





D.   Steam Cost





     Steam Requirements





     Q = We,, At = 	'-
           p
                      1.48 X 106 Btu v    Ib         .       3
               .    ,    .             v               .
     Steam required = - - - X 100Q Btu = 1.48 X  10  —





     Stripper = 2760 Ib/hr.
     Steam Preheater


     Total steam requirements = 1.48 X 103 +  2.76 X  103  =  4.24  X  103 ~




          i    <-   4.24 X 103 Ib   8760 hr     $2.50
     Annual cost = - — - X — ^ - X  10QO lb =  $92,900/yr.
E.   Cooling Water
     Basis


     $0.10/1000 gal


     Cooling water requirements  for stripper  condenser:




          w = _^_ = 2.76 X 106  Btu    lb_!F   	1_^ =

              c AT        hr           1 Btu    (120  - 80)  °F

-------
                                         B-32
                           4 lb      gal    8760 hr     $0.10    e-7">cr> /
     Annual cost = 6.9 X 104 — X ^-^ X -^j— X 555^5; = $7260/yr.
F.   Operating Labor





     Basis


     $15/man-hour; 25% of one operator's time required.
     Annual cost =      hr X     X 0.25 = $32,900/yr.
III. Cost Effectiveness





     Cost effectiveness is defined as the net annual cost per unit  (Mg) of VOC


     emissions removed.





     Basis


     10,000 cfm of air containing 0.05 wt % VOC;  99% VOC removal  by  absorber  system;


     $0.10/lb recovery credit for recovered VOC.





     From Table  A-8, the net annual cost is $495,000.





     The annual VOC removed  is:




          44,500 "r , 0.0005           X 0.99 X      ^  X  ^_  - 37.7 ^
      and  the  cost effectivenss  is  -Q1  ^  Mg = $5650/Mg.

-------
                                          B-33
                                       REFERENCES


1.   Perry and Chilton,  Chemical Engineers'  Handbook,  5th ed.,  pp   14 and  15.


2.   M. S. Peters,  and K.  D.  Timmerhaus,  Plant  Design  and Economics  for  Chemical
     Engineers, 2d ed.,  p.2.

3.   R. E. Treybal, Mass Transfer Operations, 2d ed.,  pp  131—135, McGraw-Hill,
     New York, 1968.

4.   J. A. Danielson,  Air Pollution Engineering Manual, 2d ed., Air  Pollution Control
     District, County  of Los  Angeles.

5.   T. K. Sherwood and  R.  L. Pigford,  Absorption  and  Extraction ,  pp 135—140 McGraw-Hill,
     New York, 1952.

6.   Ibid., p 225.

7.   Crane Co., Flow of  Fluids Through  Valves,  Fittings,  and Pipe, Technical Paper
     No. 410, 1965.

-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions or, the revere before completing)
EPA-45Q/3-8Q-027
4 7. , _£ AND SUBTITLE
Organic Chemical Manufacturing
Volume 5: Adsorption, Condensation, and Absorption
Devices
7 A'JTHOR(S)
H. S. Basdekis D. G. Erikson
C. S. Parmele R. L. Standifer
a PERFORMING ORGANIZATION NAME AND ADDRESS
IT Enviroscience, Inc.
9041 Executive Park Drive
Suite 226
Knoxville, Tennessee 37923
12. SPONSORING AGENCY NAME AND ADDRESS
DAA for Air Quality Planning and Standards
Office of Air, Noise, and Radiation
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
3. RECIPIENT'S ACCESSION NO.
5. REPORT DATE
December 1980
f
6. PERFORMING ORGANIZATION CODE 1
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO. j
11. CONTRACT/GRANT NO.
68-02-2577 j
13. TYPE OF REPORT AND PERIOD COVERED j
Final 1
14. SPONSORING AGENCY CODE I
!,
EPA/200/04 |
!lE SUPPLEMENTARY NOTES 	 	 	 	 — 	 -|
      EPA  is  developing new source  performance standards  under Section 111 of
 the Clean Air  Act and national emission  standards for hazardous  air pollutants
 under Section  112 for volatile organic compound emissions  (VOC)  from organic
 chemical manufacturing facilities.   In support of this effort,  data were gathered
 on chemical  processing routes, VOC emissions, control techniques,  control costs
 and environmental  impacts resulting  from control.  These data have been analyzed
 and assimilated  into the ten volumes  comprising this report.

   _   This volume  covers the following devices that can be  used  to  control VOC
 emissions:   carbon  adsorbers, condensers,  and absorbers.
                               KEY WORDS AND DOCUMENT ANALYSIS
                 DESCRIPTORS
                                              b. IDENTIFIERS/OPEN ENDED TERMS   C.  COSATI Held/Group
                                                                             13B
J'S . R'E'JTiQN STATEMENT

Unlimited  Distribution



£ Fer-i 2220-1 (Rev. ^-77)
19 SECURITY CLASS iTnis Reoonj
 Unclassified
! 21. NO. OF PAGES

!     335
20 SECURITY CLASS (This page)
 Unclassified
i22. PRICE
                       E vioui EDITION'S OBSOLETE

-------