-------
O
O
a;
o
oo
•c:
CL.
ID r-.
CO 00
"•g
s
a
§
cr
a
CO
c
I
*-* in ^ r^
3 co T ^H (T> CM
cc tr —i r^ c*> n
Z3 < n n co co
o ^
LLC3
rH Q- • • • •
a LU oo T-H r^ co
;z QZ H- o ID oo oo
o —
en H- LT) r^ co ^-<
CE CC (~- 00 CM 00
— < CM co o a CD o
) o co csi oo
: o o ,-t rt
F-5
-------
TABLE F.6 HEBDOMADAL AND DIURNAL PATTERNS FOR ALUMINUM.
HEBDOMADAL VARIATION OF DICHOTOMOUS TOTAL ALUfllNUPI IN NANOGRAHS PER CUBIC METER
i
CTl
STATION 103
FIRST SECOND THIRD FOURTH
DAY
SUN
SUN
SUN
SUN
now
noN
(ION
noN
TUE
TUE
TUE
TUE
WED
UED
WED
UED
THU
THU
THU
THU
FRI
FR1
FRI
FRI
SAT
SAT
SAT
SAT
HOUR QUARTER QUARTER
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
1442.
1817.
1223.
1003.
543.
811.
842.
713.
883.
1221.
2516.
1428.
318.
1742.
1335.
1833.
915.
1660.
1466.
1301.
1144.
2403.
1180.
1689.
715.
918.
1643.
1384.
1033.
345.
909.
2158.
1357.
1503,
1639.
1818.
1615.
1807.
1723.
2457.
1210.
1540.
1508.
1682.
1202.
1582.
1829.
1637.
1166.
1459.
13SG.
1570.
1105.
1167.
1241.
1480.
DIURNAL VARIATION OF
HOUR
0000
0600
1200
1800
FIRST
QUARTER
944.
1488.
1481.
1331.
SECOND
QUARTER
1243.
1432.
1475.
1822.
STATION
THIRD
QUARTER QUARTER
2000.
1505.
1876.
1615.
1696.
1353.
1681.
1843.
1888.
2018.
2139.
2637.
2136.
2261.
1929.
1502.
1602.
2043.
1823.
2200.
2066.
1960.
1707.
1708.
1709.
1716.
1380.
1631.
1461.
1173.
1100.
1183.
1354.
1514.
1484.
1750.
1337.
1786.
1303.
1342.
1380.
1632.
2001.
1451.
1275.
1443.
1430.
1343.
1663.
2128.
1357.
1773.
1523.
1611.
1348.
1899.
D1CHOTDMOUS TOTAL
103
FOURTH
QUARTER QUARTER
1854
1925
1811
1905
1432.
1648.
1469.
1536.
STATION 105
FIRST SECOND THIRD FOURTH
ANNUAL QUARTER QUARTER QUARTER QUARTER ANNUAL
1421.
1375.
1249.
1508.
1176.
1377.
1438.
1541.
1429.
1696.
1909.
1333.
1336.
1763.
1719.
1602.
1279.
1699.
1667.
1629.
1509.
1960.
1400.
1683.
1237.
1302.
1409.
1572.
ALUMINUM IN
654.
401.
507.
376.
669.
864.
826.
421.
736.
941.
1062.
908.
663.
1111.
882.
962.
630.
935.
1001.
811.
596.
1183.
1187.
1057.
623.
851.
1134.
907.
NANOGRAMS
805.
892.
615.
1056.
396.
1400.
1171.
1271.
1055.
1333.
1010.
1337.
1033.
1348.
1238.
1218.
1052.
1200.
1208.
1386.
359.
1437.
1335.
1126.
793.
859.
1012.
884.
PER CUBIC
1085.
1146.
970.
1020.
1085.
1153.
1424.
1376.
1279.
1935.
1835.
1960.
1752.
2275.
1705.
1331.
1248.
1816.
1698.
1606.
1357.
1570.
1412.
1433.
1151.
1322.
1071.
1230.
METER
1051.
350.
852.
1023.
1071.
1087.
1132.
1211.
869.
1526.
1183.
915.
942.
1356.
1495.
1080.
1049.
1186.
1121.
1059.
1725.
1849.
1871.
2055.
1414.
1584.
1174.
1277.
880.
821.
712.
1017.
925.
1124.
1141.
104G.
993.
1430.
1253.
1291.
1083.
1490.
1320.
1144.
1008.
1305.
1268.
1234.
1096.
1486.
1433.
1367.
956.
1114.
1032.
1053.
STATION 105
FIRST
ANNUAL QUARTER
1345
1603
1556
1647
660.
302.
943.
862.
SECOND
QUARTER
965.
1212.
1098.
1198.
THIRD
QUARTER
1277.
1605.
1452.
1432.
FOURTH
QUARTER
1141.
1378.
1281.
1209.
ANNUAL
992.
1256.
1182.
1166.
-------
C_3
cc
o
a:
LU
a:
ZD
Q
Q
el.
Q
O
Q
DO
CO
or
£
U
^'-^N
>—ooco-3-or^cMCMf-tcMcnu>r*.cncncocoocnoroLnvr3'cn'.j-CO^rLncr>r'5CMC'1
O 13
u_ a
zori
o —
or
o
a
LU
XLuoacncMr^oooor-LncncocDO'-i
_. — , -
09 — — "- — .°\fl.
52
Pi
t—
en
cn
^oocjooooocDooooooooocaaoooooooo
3c3oooooooooooocDoooocDaooaocDOoa
aoCDCMOOOCD(MOOOCDCNJOOOCOCMOOaCOCMOOOfJ3CMoaaCOCMOO
T-^--
cr
LU
u
5
^>
o
or
o
o
01
n
o
o
u.
o
) O —i 00
: n en r^ oo
: (N CNJ CNJ CN
x ai -* r~ in n
i— i— co en ^r en
or en in oo en en
o < CM CM CM CM
r-l CC -...
a LU o -H co en
z cc t- o (v r*.
a —• cr en en r^. CM
— x < CM co CM n
1—1—13
< a
en
or • • • •
a LU in CM r
o- en
co ^H
CM n CM n
) a: in CM co
) <
cr . . . .
I— LU '-I C"> CO -3-
CD h- 01 CO CO v}-
tr cr n cn ui rn
—t < -I CM CM CM
< co en o r-.
3 CO L/> O 00
"z en CM en en
Z CM 00 CMCO
xui in -H m co
H- *~ *& ^H CO O
cr or o co en en
ro co CM co
„-
o
O LU I/} t
z or i—3- ca r
o — c
cc - • • •
a LU r~* -3- CM ~-i
Z t— CM CO CD CM
o or oo sr oo cn
u < en cncM -j-
LU 3
en a
CC ' • • •
t~ L1J •* LO TH ~H
cn h- en I-H o co
or or co -3- oo oo
~ < ^H CM CM CM
F-7
-------
rcooor^oocor^r^f-H
ssssssis'gsss^sgggg
•"* *-» rH f~l rH
ID r-* CM cxj co oo
O
<
a:
o
oo
C£
LU
<:
Q_
<:
o:
r>
»—i
Q
O
<
a
< CM LD eg a
2 ^)- en u) LD
2 oo CJD cr) oo
cr
x LU r
i— t- ca n us vr
or or CT oo -— in tr> oo co
cr i-v in CM r-~.
CE . . . .
I— LU 00 OO 00 !-.
cn *— r^ CH co cn
oc a: r--in m rv
>-zz:
^ ~^ ~~i *
o en en i
j ai LU a a a c
33 ^zi —— — — >
rxcccrorcr'
•i— U-U-Lt-U-cncncnco
F-8
-------
TABLE F.9 HEBDOMADAL AND DIURNAL PATTERNS FOR VANADIUM.
HEBOOriADAL VARIATION OF DICHOTOMOUS TOTAL VANADIUM IN NANOGRAI1S PER CUBIC METER
STATION 103
FIRST SECOND THIRD FOURTH
DAY
SUN
SUN
SUN
SUN
noN
noN
MON
MON
TUE
TUE
TUE
TUE
UED
UED
UED
UED
THU
THU
THU
THU
FRI
FRI
FRI
FRI
SAT
SAT
SAT
SAT
HOUR QUARTER QUARTER QUARTER QUARTER
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.82
1.01
0.49
0.00
0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
6.80
5.30
6.55
7.60
7.30
11.89
7.02
10.57
10.48
3.13
7.15
10.53
10.99
3.66
4.91
8.54
9.00
11.50
8.18
7.84
7.30
12.22
5.75
8.82
6.19
3.62
4.16
5.73
DIURNAL VARIATION OF
15.66
9.84
8.07
6.33
7.09
9.83
8.67
9.85
11.71
10.69
10.85
15.55
13.40
18.50
3.98
8.17
9.62
15.75
9.22
16.32
11.85
9.17
6.37
14.65
10.63
8.19
6.81
6.21
6.27
4.68
1.81
11.80
11.44
8.58
7.71
14.64
8.09
10.52
4.72
5.97
6.09
8.88
12.56
8.44
11.52
3.93
9.58
7.88
11.35
15.33
9.52
14.23
14.44
12.87
8.11
10.93
DICHOTOMOUS TOTAL
STATION 105
FIRST SECOND THIRD FOURTH
ANNUAL QUARTER QUARTER QUARTER QUARTER ANNUAL
6.19
4.61
4.04
5.83
5.83
7.17
6.05
8.61
7.61
7.44
5.86
8.07
7.06
8.34
7.36
6.63
7.99
9.79
7.11
8.18
7.77
3.84
5.48
9.51
7.61
5.68
4.33
5.27
VANADIUM IN
5.65
4.62
2.88
6.48
14.72
9.93
6.38
6.73
6.05
9.55
9.81
8.02
6.27
9.98
6.54
10.77
9.02
9.17
6.50
8.22
7.60
6.52
8.18
7.25
4.56
4.91
3.57
6.24
1.84
3.32
2.22
4.90
8.02
7.51
7.57
6.96
6.58
5.72
1.91
6.22
7.27
5.91
2.67
3.98
7.56
4.32
6.63
5.07
8.39
12.28
8.37
4.62
3.62
1.98
3.28
2.02
NANOGRAMS PER CUBIC
STATION 103
HOUR
0000
0600
1200
1800
FIRST
QUARTER
0.08
0.00
0.15
0.16
SECOND
QUARTER
8.30
8.95
6.27
8.56
THIRD
QUARTER
11.28
11.93
8.74
11.54
FOURTH
QUARTER
9.88
10.41
8.13
10.27
ANNUAL
7.22
7.60
5.83
7.55
FIRST
QUARTER
7.72
7.73
6.27
7.63
SECOND
QUARTER
6.18
5.92
4.68
4.84
STATION 105
THIRD
QUARTER
4.82
4.20
2.30
5.37
5.33
3.42
0.69
2.03
3.54
4.76
1.30
5.86
4.23
5.31
2.75
9.65
4.22
8.63
3.98
2.84
3.78
1.57
2.31
5.42
6.70
3.47
2.88
4.32
5.47
2.23
1.29
6.39
METER
FOURTH
QUARTER
8.22
8.33
7.30
8.47
8.90
7.79
3.43
6.11
2.16
7.53
8.40
5.98
7.23
12.73
7.03
7.37
8.37
3.13
7.71
7.82
10.78
8.73
7.24
3.28
5.84
5.01
10.51
13.83
12.57
6.79
5.26
9.86
ANNUAL
6.68
6.48
5.03
6.49
5.13
4.54
2.24
4.91
8.16
7.69
6.02
6.41
6.01
8.23
5.41
7.75
6.55
8.41
5.07
6.33
7.66
5.73
5.70
6.83
7.26
7.06
7.23
6.33
6.12
3.72
3.15
5.36
-------
OI-d
H- >-• o o X
oo ro en o o
o o o o d
o o o o 3
c/>cr>cncn~nTn-n—i—i—i—i
xx .
ccoooommmm:
13 en en en to a
3 o o c c c c >
---'' •
CD ooooooooooooooooooooooooooooc
01 J> Cn 4> 3) 33 —.
ro ro i— ro —t en p ^
4> oo en -f* x "* c g^g
en en o »-> :c o -< oococowcoOT4>coooooocnco(/iH*ho^cn^c0^erico^oi\)cn33 ^
• - • • m O 33 r-t fn ^-
0^0,4,3 ^ - Oft g
_, ._(
i-» i-* ro M > En •-• :z r ^" i~ I" l" r r i ~ r' .^ r" ." r~ ." ™ . r' ™ ." ~ r '. "r. . . rrio ^
coenoi^—i ED z o ^9
• * • • m o ~n <-» ^Z
roocnex,3 ~ o ^ ^^^^.j^^^^^^^^^^^^^^^l^S $
!-»>-. ro IsJ 3> C^ (D "***"m"*(D:Sl~^i-'' O
i^P^Psi i "icn--11-0^w^hoooo"cnc;lo"tn-i)-.^ o * m"1* ^
yy?S| > rsJoo^-oo-cnco^cocntnoroooencD-vjencocD^ro-o ^
4> *- en oo r- j> >
» • - •- —
^|2 |
ro o co *-* 3 3 zz
oo i— o ^j —^ en
.... m —i — „
o t-' en o 3 'z. c "n
K- i— ro M j> n o m —i
er. -c- ec ^i 3 o ID
~j co en ro —i "z. 3
rr"-3 § ocn o
co en er m 3
c -H —i m 4Nroenoo4>oj>^ieocn-p-ooi—encocoooooeD->rororo-xjeoeD-HZ 175
ro^jco4>>xt— 3 • mo
en en ~4 eo —i 3 z n u> tS
• • • • m o ez _ rj ^
co oo en *-3 >-• CD D .5 ^
O ^-* t-* CZ —I —4 O
en o rot-^enroro1—'roixJCDH^rorororo^J^jroH^rot-*!—' »-• t-*ro3>x*—• ez
^jt-»co4>j>ez m mo o
oo oo co en —i -H m J= zi
. . . . mx 3 en m
cnc/iroco3 ^ gg ffj
_ " m x
oocoenoz
o enu) 4> ez
CO
CJ
O
O
O
•73
-------
TT-J
1— 1— O O X
00 Is) Cn O O
o o o o c
O O O O 33
cnc/)cntnT]-n-nT)—(—i—t—icnzrr:- ,
^ ^ ^ ^ -0 zo 3) 33 T* i3T T* ~T~ m m m m <~ t
-I -i -I -H C C C £ y y O y m I
i cn cn to cn o
: 2 2 2 2 -<
*• CO CO O 33 33
CO -vl CO CO —I CO
oo cn -p> co m —i
.... 33
IS) ^ IS) Is) ^ O
co cn o o 33 o
~j o co -e- —i 2
cn cn co -c* m a
• • • • 33
CO
£^5
IS] >- Is) Is) > X —
CO VI Is) CO 33 — O
Is) O o 00 —I 33 "Z.
-t- co i— is) m a
.... 3, ,_
o
co
D -n
cz o
tO 4^ 00 CO 33 33
CO JN O CO —I —)
o cn -p- to mx
• • • • 33
^1—^1-2
O tn oo 00 2
»-• c j -e* 4> c
co cn *xj co >
o
o
a
o
o
gggggggggggggggggggggggi
o CD
c -n a
• >- — o
DO
33
D en
a
<
S^^Sffiy H^f:r; t°. s ^e t?N»^c'5t?-S;y cn5S5cn5z >
O 3>
^^=! S?
fs»->rs>ts>hO"-'ls)t
m
DO
a
O
a
a
8-n -
o CO i-' ~~1 33 3J
rs> cn cn en —i to
*^J co co cn rn —i
- • • . 33
cn i— cn is) 33
is) >-• *- cn —i
c»co -^i co m
- • • • 33
!-• ^ 1— 1— > X —
co f oo tn 33 — o
-C- to o vl —I 33 2
co oo .r- o m a
. . . . 33 t-.
o
cn
c o
I-' O *• ^ 33 33
cn en vi cn —i —i
cn cn to o m x
.... 33
N> o cn »-- 2
cn cn to ^j ez
oo vj i-' cn >
>
zs
cn
•a
m
33
o
cr
CD
O
3
m
—i
m
33
D cn
cncoco33O
D 3>
»-• i— ' 3> X •— '
>— oj-cooocn— i
m
33
1*— IS) ^*
--vv-
cococotoc»cnocnvicn-p--jcncocDcococnioooooocncDoocncnvim
............................ 33
s
33
m
33
73
-------
APPENDIX G
WEEKEND-WEEKDAY DIFFERENCES OF TWELVE PARTICULATE
PARAMETERS AT THE TEN RAMS SITES.
CONTENTS
TABLE PAGE
G.I AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS OF TSP
(MICROGRAMS PER CUBIC METER) G-l
G.2 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS OF IP
(MICROGRAMS PER CUBIC METER) G-l
G.3 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS OF FINE
(MICROGRAMS PER CUBIC METER) G-2
G.4 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS OF COARSE
(MICROGRAMS PER CUBIC METER) G-2
G.5 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS OF SULFUR
(NANOGRAMS PER CUBIC METER) G-3
G.6 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS OF SILICON
(NANOGRAMS PER CUBIC METER) G-3
G.7 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS OF ALUMINUM
(NANOGRAMS PER CUBIC METER) G-4
G.8 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS OF CALCIUM
(NANOGRAMS PER CUBIC METER) G-4
G.9 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS OF LEAD
(NANOGRAMS PER CUBIC METER) G-5
G.10 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS OF VANADIUM
(NANOGRAMS PER CUBIC METER) G-5
G.ll AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS OF TITANIUM
(NANOGRAMS PER CUBIC METER) G-6
G.12 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS OF IRON
(NANOGRAMS PER CUBIC METER) G-6
-------
TABLf fi.l AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS
OF FSP (MICROGRAMS PER CUBIC METER).
Station
103
105
106
108
112
115
118
120
122
124
Mean
37.742
33.050
81.713
80.353
78.343
63.031
64.068
54.085
57.501
54.561
Weekday
Stand. Dev
37.003
33.263
32.436
36.028
33,343
23.128
25.110
21.378
26.105
27.543
. N
72
76
75
72
77
72
72
73
70
72
Mean
30.813
75.734
66.682
73.550
80.341
52.530
70.056
43.050
43.594
43.313
Weekend
T-Test
D.F
Stand. Dev. N
36.673
30.725
27.116
40.708
80.373
22.106
38.645
13.534
24.427
25.745
31
33
33
28
32
33
27
30
32
32
0.874
2.545**
2.323*
0.036
-0.182
1 . 840*
-0.304
1.112
1.448
0.914
101
107
106
98
107
103
97
101
100
102
* An average weekday is significantly greater than an average weekend
day at the 35th percent level (1.645).
** An average weekday is significantly greater than an average weekend
day at the 33th percent level (2.326).
TABLE G.2 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS
OF IP (MICROGRAMS PER CUBIC METER).
Station
103
105
106
108
112
115
118
120
122
124
Mean
62.235
48.355
51.864
51.194
45.414
38.636
35.655
38.055
34.071
29.115
Weekday
Stand. Dev
30.078
26.312
24.056
24.523
23.035
19.967
17.172
17.815
18.715
13.741
. N
202
203
127
159
189
158
197
164
171
121
Mean
53.684
38.856
38.830
41.103
39.685
35.744
33.034
34.241
30.716
27.158
Weekend
Stand. Dev.
27.794
20.687
20.375
20.415
20.738
15.301
14.138
13.392
17.616
10.845
N
73
79
56
62
68
63
77
63
69
50
T-Test
2.138*
2.880**
3.533**
2.873**
1.803*
1.027
1.190
1.527
1.278
0.838
n F
LJ • r
273
£» / w
280
£.Uu
181
219
255
219
272
(~ 1 t*
225
£.£.w
238
£» wQj
163
* An average weekday is significantly greater than an average weekend
day at the 95th percent level (1.645).
** An average weekday is significantly greater than an average weekend
day at the 33th percent level (2.326).
G-l
-------
TABLE G.3 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS
OF FINE (MICROGRAMS PER CUBIC METER).
Station
103
105
106
108
112
115
118
120
122
124
Mean
28.568
24.174
25.507
25.064
21.338
19.625
18.600
20.271
17.440
16.150
Weekday
Stand. Dev.
16.144
14.783
13.222
13.354
12.065
10.291
11.674
11.110
10.764
9.461
N
204
212
149
176
224
196
208
185
190
129
Mean
26.032
13.872
20.523
20.549
19.287
18.543
16.760
18.975
15.162
14.461
Weekend
Stand. Dev,
15.694
11.677
11.766
10.076
10.270
9.465
8.172
9.730
9.146
6.690
N
76
82
62
67
84
76
80
69
71
52
T-fest
1.178
2.365**
2.574**
2.508**
1.382
0.795
1.293
0.854
1.582
1.173
D.F
278
292
209
241
306
270
286
252
259
179
** An average weekday is significantly greater than an average weekend
day at the 99th percent level (2.326).
TABLE G.4 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS
OF COARSE (MICROGRAMS PER CUBIC METER).
Station
103
105
106
108
112
115
113
120
122
124
Mean
33.463
24.376
27.052
25.848
23.784
19.407
17.366
17.170
16.960
12.338
Weekday
Stand. Dev
17.204
13.245
12.637
14.385
14.405
11.714
8.856
8.645
10.363
8.196
. N
213
209
132
172
192
164
204
185
184
130
Mean
28.320
19.154
18.807
20.716
20.466
16.933
17.257
14.618
16.023
12.492
Weekend
Stand. Dev.
IB. 121
11.063
10.603
11.654
12.424
9.484
9.310
7.254
11.290
7.934
N
75
82
59
68
71
66
83
72
75
52
T-Test
2.263*
3. 163**
4.370**
2.620**
1.718*
1.526
0.094
2.219*
0.643
0.260
n F
LJ • 1
28S
289
189
238
261
228
285
255
257
180
*
An average weekday is significantly greater than an average weekend
day at the 95th percent level C1.545).
** An average weekday is significantly greater than an average weekend
day at the 99th percent level [2.326).
G-2
-------
TABLE G.5 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS
OF SULFUR (NANOGRAMS PER CUBIC METER).
stat;
ion
Weekday
Mean
103
105
106
IDS
112
115
113
120
122
124
3703.
3266.
3726.
3483.
3044.
2857.
2770.
2840.
2676.
2545.
503
278
309
733
735
356
657
563
534
314
Stand. Dev. N
2677.
2637.
2944.
2451.
2387.
1863.
2195.
2144.
2103.
2268.
665
450
281
688
999
086
493
614
179
709
212
222
153
188
225
207
203
190
191
136
Mean
3018.
2733.
2948.
2664.
2696.
2547.
2540.
2496.
2188.
1393.
678
933
129
952
754
790
787
172
539
896
Weekend
Stand. Dev
2038.
1661.
2031.
1610.
1823.
1306.
1542.
1746.
1464.
1208.
938
518
026
563
582
707
285
549
462
185
. N
75
87
65
72
86
84
81
73
77
54
T-Teat
2.017*
1.731*
1.942ft
2.624**
222
392
0.861
224
861*
1.692*
D.F.
285
307
216
258
309
289
282
261
268
188
* An average weekday is significantly greater than an average weekend
day at the 95th percent level (1.645).
** An average weekday is significantly greater than an average weekend
day at the 99th percent level (2.326).
TABLE G.6 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS
OF SILICON (NANOGRAMS PER CUBIC METER).
Stat
103
105
106
108
112
115
118
120
122
124
ion
Mean
4835.812
3821.521
4631.646
4322.317
4336.197
3599.662
2313.721
2850.045
3073.956
2232.745
Weekday
Stand. Dev
2771.723
1969.344
2214.229
3011.003
3251.507
2712.325
1311.414
1595.735
2032.920
2007.925
. N
212
222
153
188
212
207
203
190
171
126
Mean
4628.670
3057.079
3179.269
3604.287
4163.654
3274.702
2962.123
2440.744
2916.046
2187.437
Weekend
Stand. Dev. N
3219.714 75
1948.820 87
1993.536 65
2346.651 72
3576.936 82
2328.559 84
2016.452 81
1712.163 73
2019.577 67
2191.890 54
T-Test
D.F.
0.533
3.078**
4.560**
1.822*
0.523
0.963
-0.603
1.825*
0.557
0.137
285
307
216
258
292
289
282
261
236
188
* An average weekday is significantly greater than an average weekend
day at the 95th percent level (1.645).
** An average weekday is significantly greater than an average weekend
day at the 99th percent level (2.32S).
G-3
-------
TABLE G.7 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS
OF ALUMINUM (NANOGRAMS PER CUBIC METER).
Stati
103
105
106
108
112
115
118
120
122
124
on
Mean
1568.088
1212.016
1228.813
1280.146
1329.908
980.719
814.137
843.714
802.837
610.910
Ueekday
Stand. Dev.
826.437
563.316
538.427
776.804
943.304
653.724
516.747
433.038
473.156
451.670
N
212
222
153
188
212
207
203
190
171
136
Mean
1417.384
950.948
913.268
988.378
1229.989
869.296
791.312
685.716
739.692
569.328
Weekend
Stand. Dev.
931.715
520.517
490.758
559.839
1022.464
528.177
460.790
423.024
476.426
483.856
N
75
87
65
72
82
84
81
73
67
54
T-Test
D.F.
1.312
3.741**
4.061**
2.909**
0.795
1.389
0.346
2.666**
0.924
0.561
285
307
216
258
292
289
282
261
236
188
ft* An average weekday is significantly greater than an average weekend
day at the 99th percent level (2.326).
TABLE G.8 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS
OF CALCIUM (NANOGRAMS PER CUBIC METER).
Stat
103
105
106
108
112
115
118
120
122
124
ion
Mean
3446.448
2948.647
2805.426
3100.284
2043.435
1729.192
2207.576
1558.375
1872.328
1036.920
Ueekday
Stand. Dev.
1985.804
1544.673
1261.151
2057.601
1173.099
1187.432
1581.731
936.680
1515.410
890.073
N
212
222
153
188
225
207
203
190
191
138
Mean
2842.306
2021.289
1704.924
2340.466
1738.688
1551.458
1741.211
1202.701
1889.961
876.681
Weekend
Stand. Dev. N
2068.830 75
1437.538 87
914.175 65
1702.790 72
1116.003 86
1183.577 84
1120.759 81
755.810 73
1550.105 77
731.771 54
T-Test
D.F.
2.240*
4.838**
6.358**
2.788**
2.076*
1.158
2.421**
2.300**
-0.086
1.157
285
307
216
258
309
289
282
261
266
188
* An average weekday is significantly greater than an average weekend
day at the 95th'percent leva I (1.645),
** An average weekday is significantly greater than an average weekend
day at the 39th percent level (2.326).
G-4
-------
TABLE G.9 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS
OF LEAD (NAN06RAMS PER CUBIC METER).
Stati
103
105
106
108
112
115
118
120
122
124
on
Mean
704.456
830.486
947.364
803.530
328.656
406.290
332.747
706.481
224.590
175.113
Ueekday
Stand. Dev
591.466
621.170
433.922
1025.211
536.471
259.773
308.275
378.391
178.001
203.087
. N
212
222
153
187
225
207
203
187
191
133
Mean
623.239
610.978
683.359
621.660
792.808
370.449
341.443
510.722
173.352
220.424
Ueekend
Stand. Dev.
591.370
414.794
294.659
703.885
591.592
241.913
228.118
305.867
153.084
328.766
N
75
87
64
72
86
84
81
71
77
54
T-Test D.F.
1.022
3.871**
4.454**
1.384
1.941*
1.087
1.092
3.901**
2.000*
-1.142
285
307
215
257
309
289
282
256
266
185
* An average ueekday is significantly greater than an average weekend
day at the 95th percent level (1.645).
** An average weekday is significantly greater than an average weekend
day at the 99th percent level (2.326).
TABLE G.10 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS
OF VANADIUM (NANOGRAMS PER CUBIC METER).
Station
103
105
106
108
112
115
118
120
122
124
Mean
7.682
6.779
6.672
11.467
6.996
,095
,064
,010
.314
5.
3.
3.
2.
Ueekday
Stand. Dev.
7.
5.
1.948
.366
.904
5.297
10.170
.465
.598
.290
.299
3.321
2.119
5.
4.
3.
3.
N
212
222
153
187
225
207
203
137
191
133
Mean
5.612
4.275
4.637
7.522
6.194
5.495
2.631
1.939
2.092
1.891
Ueekend
Stand. Dev.
7.076
4.410
3.739
6.389
6.117
5.198
3.241
2.966
3.145
1.762
N
75
87
64
72
86
84
81
71
77
54
T-Test D.F.
2.113*
3.582**
2.794**
3.064**
1.120
-0.648
1.
2.
,006
,392**
0.501
0.176
285
307
215
257
309
289
282
256
266
185
* S?Sday iS Si9niflcant|y greater than an average weekend
day at the 95th percent level (1.645).
** An average weekday is significantly greater than an average weekend
day at the 99th percent level (2.326).
G-5
-------
TABLE G.ll AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS
OF TITANIUM (NANOGRAMS PER CUBIC METER).
ion
Mean
171.679
234.863
575.795
145. 475
227.138
97.651
171.538
94.897
64.845
44.922
Weekday
Stand. Dev
258.401
365.777
813.272
153.584
331.790
89.671
247.642
115.613
56.149
44.737
. N
212
222
153
187
225
207
203
187
191
133
Mean
136.396
191.323
434.922
102.879
232.246
78.355
173.281
81.749
64.454
42.028
Weekend
Stand. Dev.
192.903
368.884
821 . 487
105.813
350.907
69.515
195.887
110.983
62.772
41.816
N
75
87
64
72
86
84
81
71
77
54
T-Teet D.F.
1.080
0.939
1.
2.
160
163*
-0.120
1.768*
-0.057
0.825
0.050
0.408
285
307
215
257
309
289
282
256
266
185
* 5° aT?Ee Qc!ud3y iS Si9nificantly greater than an average weekend
day at the 95th percent level [1.645).
TABLE G.12 AVERAGE WEEKDAY AND WEEKEND CONCENTRATIONS
OF IRON (NANOGRAMS PER CUBIC METER).
Station
103
105
106
108
112
115
118
120
122
124
Mean
1888.531
1393.919
1517.305
1931.591
1122.624
792.904
692.605
671 . 865
659.540
422.789
Weekday
Stand. Dev
1022.545
780.332
758.668
1553.666
757.862
482.715
357.345
357.873
350.867
306.860
. N
212
222
153
187-
225
207
203
187
191
133
Mean
1615.611
868.458
975.800
1161.329
978.050
691.478
670.054
497.401
588.715
383.896
Weekend
Stand. Dev.
1060.541
570.937
702.738
966.925
835.369
355.185
377.856
296.076
390.972
302.809
ij
75
87
64
72
86
wu
84
81
71
77
54
T-Test D.F.
l,967,v
5.708**
4.. 898**
3.911**
1.462'
1.743*
0.472
3.659**
1.446
0.788
285
307
215
257
309
289
282
256
266
185
**
than an averase usekend
G-6
-------
APPENDIX H
DECISION-TREES RELATING FINE AND IP
TO ELEMENTAL CONCENTRATIONS
CONTENTS
Figure Page
H.I Decision-tree relating FINE at station 103 to
elemental concentrations H-l
H.2 Decision-tree relating FINE at station 105 to
elemental concentrations H-2
H.3 Decision-tree relating FINE at station 124 to
elemental concentrations H-3
H.4 Decision-tree relating IP at station 103 to
elemental concentrations H-4
H.5 Decision-tree relating IP at station 105 to
elemental concentrations H-5
H.6 Decision-tree relating IP at station 124 to
elemental concentrations H-6
-------
N'
11-
S"
b55
27.50
16.97
Figure H.I Decision-tree relating FINE at station 103 to elemental concentrations.
-------
I
ro
<- 3093.00
N- 32
M- 30. (id
S> 6.72
<=
N-
fl-
S-
2520
33
50
1G
12
>
N-
S-
2520
12
,na.
/j
Figure H.2 Decision-tree relating FINE at station 105 to elemental concentrations,
-------
N= 394
M- 16.02
S= 9.51
<= 1811.50
1814.50
N-
M=
S-
210
10.29
4.27
N-
f1=
S-
184
22.56
9.62
*RflNK
co
SULFUR
3307.40
> 3307.40
N=
M-
S=
17.
4.
B9
82
N=
S=
29
9.
85
81
*RflNK= 5*
SULFUR
<= 4965.30
4965.30
N-
n-
s-
24
b.
44
43
N-
n=
s-
34.
10.
41
?8
/3
*RflNK= 4*
° 6290.70
6230.70
N=
M-
S=
26
4
?l
.84
.38
N=
M-
S=
42
9
?0
.11
.82
*RRNK= 3*
SULFUR
<= 8437.60
8437.60
N=
n=
s-
10
3C crQ
D . wO
5.81
N-
n=
s-
10
47.65
10. 10
*RflNK-
Figure H.3 Decision-tree relating FINE at station 124 to elemental concentrations.
-------
»IWNK=
Figure H.4 Decision-tree relating IP at station 103 to elemental concentrations.
-------
N- C5 N- (
II- 53.J9 II- 63. t,
S- 14.53 <> 2fl.;
"•;_!!U.fcLD0 > 14i0.3d
fl~l FN
11- 03.7;? tl 05.77
U- 17.VI U- 20.02
Figure H.5 Decision-tree relating IP at station 105 to elemental concentrations.
-------
CT)
51U8.30
23
.7?
5.65
N>
h-
S-
22
59.83
15.16
«RRNK
Figure H.6 Decision-tree relating IP at station 124 to elemental concentrations.
-------
APPENDIX I
DECISION-TREES RELATING TSP, IP, FINE, COARSE, AND EIGHT
ELEMENTAL CONCENTRATIONS TO METEOROLOGICAL VARIABLES.
CONTENTS
Figure Page
I.I Decision-tree relating TSP at station 103
to meteorological variables 1-1
1.2 Decision-tree relating TSP at station 105
to meteorological variables 1-2
1.3 Decision-tree relating TSP at station 124
to meteorological variables 1-3
1.4 Decision-tree relating IP at station 103
to meteorological variables 1-4
1.5 Decision-tree relating IP at station 105
to meteorological variables 1-5
1.6 Decision-tree relating IP at station 124
to meteorological variables 1-6
1.7 Decision-tree relating FINE at station 103
to meteorological variables 1-7
1.8 Decision-tree relating FINE at station 105
to meteorological variables 1-8
1.9 Decision-tree relating FINE at station 124
to meteorological variables 1-9
I.10 Decision-tree relating COARSE at station 103
to meteorological variables 1-10
I.11 Decision-tree relating COARSE at station 105
to meteorological variables I-ll
1.12 Decision-tree relating COARSE at station 124
to meteorological variables 1-12
1.13 Decision-tree relating sulfur at station 103
to meteorological variables 1-13
1.14 Decision-tree relating sulfur at station 105
to meteorological variables 1-14
1.15 Decision-tree relating sulfur at station 124
to meteorological variables I_15
1.16 Decision-tree relating silicon at station 103
to meteorological variables I_16
1.17 Decision-tree relating silicon at station 105
to meteorological variables I_17
-------
Figure Page
1.18 Decision-tree relating silicon at station 124
to meteorological variables 1-18
1.19 Decision-tree relating aluminum at station 103
to meteorological variables 1-19
1.20 Decision-tree relating aluminum at station 105
to meteorological variables 1-20
1.21 Decision-tree relating aluminum at station 124
to meteorological variables 1-21
1.22 Decision-tree relating calcium at station 103
to meteorological variables 1-22
1.23 Decision-tree relating calcium at station 105
to meteorological variables 1-23
1.24 Decision-tree relating calcium at station 124
to meteorological variables 1-24
1.25 Decision-tree relating lead at station 103
to meteorological variables 1-25
1.26 Decision-tree relating lead at station 105
to meteorological variables 1-26
1.27 Decision-tree relating lead at station 124
to meteorological variables 1-27
1.28 Decision-tree relating vanadium at station 103
to meteorological variables 1-28
1.29 Decision-tree relating vanadium at station 105
to meteorological variables 1-29
1.30 Decision-tree relating vanadium at station 124
to meteorological variables 1-30
1.31 Decision-tree relating titanium at station 103
to meteorological variables 1-31
1.32 Decision-tree relating titanium at station 105
to meteorological variables 1-32
1.33 Decision-tree relating titanium at station 124
to meteorological variables 1-33
1.34 Decision-tree relating iron at station 103
to meteorological variables 1-34
1.35 Decision-tree relating iron at station 105
to meteorological variables 1-35
1.36 Decision-tree relating iron at station 124
to meteorological variables 1-36
-------
N=
n=
s-
108
38
53
.SB
J2
N=
M=
S-
81
29.
^0
53
02
*RflNK
*RHNK= 2*
Figure I.I Decision-tree relating TSP at station 103 to meteorological variables.
-------
<=
N= 103
M- 87.83
S= 33.34
SDflYS PP
3.00
N-
M=
S=
73
24
51
.IR
.83
N-
h=
g=
IPIfl.
34.
58
70
/i
*RflNK= 2*
Figure 1.2 Decision-tree relating TSP at station 105 to meteorological variables,
-------
N= 104
M- 52.95
S= 26.99
MflX TEHP
18.30
18.30
N=
M=
S-
39
ib'
49
99
94
N-
f1=
S-
55
61.43
29.09
*RflNK= 5*
HUM
64.80
-1.00
-1.00
7.00
*RflNK
7.00
N=
M-
S=
63.
16.
7
57
59
N=
M=
S=
1 II
28
7
fit
.87
= 2*
*RflNK=
4.80
N=
K-
S=
X4
30
?B
HI
.61
N=
M=
g=
Fi3
23.
?7
RF1
36
N-
n=
s-
8/.
33.
14
hH
6G
N-
ri=
S=
14
62.23
21.62
Figure 1.3 Decision-tree relating TSP at station 124 to meteorological variables.
-------
N=
P1=
S-
135
45.49
19.74
N-
11=
S=
140
74.01
30.97
4.22
4.22
3.32
3.32
N= 66
M- 53.72
S= 21.61
N= 69
IS- 37.61
S= 13.90
N= 68
M- 85.61
S= 35.16
N= 72
(1- 63.05
S= 21.45
*RflNK=
*RflNK= 6*
*RflNK= 4*
N-
n=
s=
Bfl.
26.
40
5?
24
N-
M=
S-
108.
33.
?a
R0
77
3*
<-
67.50
67.50
N=
M-
S-
l?/
36
14
B4
62
N=
M-
S=
14
83.67
15.99
1*
*RflNK
Figure 1.4 Decision-tree relating IP at station 103 to meteorological variables,
-------
N=
M-
S=
282
45.63
25.19
N-
M=
S-
142
35.58
16.35
HV
3.55
*RF)NK= 7*
SP
3.55
N=
M-
b'=
42
I/
76
.35
.35
N=
M-
S=
?7
10
68
.79
.85
*RflNK= 8-
It
S=
S0
46.13
17.48
fi:
S=
50
73.62
34.97
N=
f-i=
S=
32
62.82
28.62
MIXHI RM
N-
H=
S=
20
89.83
37.97
MIXHT Pfl
° 286.43
> 286.43
N=
11=
S=
13
82.32
28.52
N=
M-
S=
17
47.91
18.15
<- 1391.62
*RHNK= 4*
> 1331.62
N=
M-
S=
bM
14
6
.b3
.38
N=
M-
8=
106
31
14
R8
.77
*RflNK=
57.00
N-
M=
S"
64
18
7
.76
.26
N-
n=
s-
102
24
6
.80
.83
-xRRNK- 3*
Figure 1.5 Decision-tree relating IP at station 105 to meteorological variables,
-------
Figure 1.6 Decision-tree relating IP at station 124 to meteorological variables.
-------
1.31
i> 75
11- 2'l.59
•> 10.59
IT- "/hi
M- IC.fi?
S- 6.90
11-
S-=
?7.80
67
29.8!']
1M.57
- r(HNK= 7"
fi:
ti.36
19.11
1.H3
a 1.84
13.'II
51.17
13.52
FSE TO s sy TO E <- 2.00
N- 13
M- ia.06
S- 12.67
N> ?3
M- 28. H3
S- 15.02
N» 11
M- 13.35
S= 13.11
«RF1NK= G«
N-
M-
b=
11
G3.71
16.09
Figure 1.7 Decision-tree relating FINE at station 103 to meteorological variables.
-------
I
CD
1.00
N=
M-
51
30.62
la.eu
<- 1 71 > 1.71 S FIND SW U TO SE
N= 12
M- 56.9?
S= 20.36
N- 13
M- 35.32
S= 13.85
fi: 39. A3 1
S= 16.53
N= 12
fl- 22. «2
S= 10.31
-2.70
«RflNK=
-2.70
JIDY
n- 12.ox
S- IB.79
3.03
tRRNK- 1* *RflNK- 6*
3.0a
N- y
n= 7i.i7
!i- 11.03
N- 7
H= 33.07
S- 6.01
N- 7
fl- 1G.7I
S- 20.90
ZRELJIUC1
59.00
59.03
[N-
n-
"
3
62.13
21.43
N=
M-
£u
MS
12
1
I/
39
Figure 1.8 Decision-tree relating FINE at station 105 to meteorological variables,
-------
N-
M=
S-
94
12.59
5.67
N-
M=
S-
87
18.99
10.23
N=
M=
S=
56
11.93
6.38
N-
M=
S-
16
20.69
6.73
MIN TEMP
16.10
16.10
= 5*
*RfiNK= 3*
N=
M-
s=
31
26.33
11.79
3.00
N=
h=
S»
15
32.35
13.20
*DY CfiLh
N=
M-
y=
16
4
R
.34
.92
N=
M-
S=
25
5
8
04
4.00
*RfiNK
1.00
N=
M-
S=
20.
8.
R
7S
27
N=
M-
S=
9
40.09
9.68
<=
N-
M=a
S"
34.
4.
Fi
40
19
N-
n=
s-
47,
10.
4
?PI
24
*RRNK= 2*
Figure 1.9 Decision-tree relating FINE at station 124 to meteorological variables,
-------
i
1—1
o
N= 288
M= 32.12
S= 17.05
N-
P1=
S=
P4
13
14,1
.70
.50
N-
11=
S-
147
3fl.I
17.
?4
ii
4.22
3.33
HflX TEMP
11.70
*RRNK= 7*
11.70
3.33
N= 70
M- 28 . 53
S= 15.07
N= 71
M- 20.94
S= 10.55
N= 71
M- 45.31
S= 19.88
N= 76
M- 33.57
S= 11.55
SDHYS PP
-»RflNK= 5-*
N- 38
f1= 23.09
S- 12.00
N= 32
M= 34.37
S- 15.97
N= 33
N= 37.42
S= 16.24
N- 38
M= 52.16
S- 20.40
*RRNK= 6*
*RflN«=
3*
1.95
N=
M-
S=
61
20
IB
33
94
N=
M-
S=
20
43.90
16.32
*RflNK= 2*
Figure 1.10 Decision-tree relating COARSE at station 103 to meteorological variables,
-------
N= 29 i
M" 22.90
S= 12.87
N=
ri=
s-
143
18.13
9.16
<=
N-
M=
S-
148
27.51
14.21
#DY CflLM
10.03
N=
M=
S=
68
14.70
7.07
N=
M-
S=
75
21.25
9.75
1.00
1.00
RV WD SP
N=
H=
S=
23
10
H4
b4
27
N=
M-
S=
34
17.
54
44
27
*RfiNK= 6*
HIXH
2.99
2.99
N-
M=
b=
26
y.
3R
b0
N-
M=
b-
1R.
7.
39
7fi
68
<= 286.43
286.43
= 7*
N-
f1=
b=
M4
I/
24
03
24
N-
M=
S=
PR.
13.
30
77
13
flV WID SP
4*
2.13
2.13
N=
M-
S=
bi.
19.
t?
03
91
N=
M-
S=
12
37.03
10.88
SP
1.46
*RRNK= 3*
1.46
N=
n=
s=
63.
14.
fi
R?
04
N-
n=
s-
nfl.
16.
fi
IS
62
*RHNK- 2*
Figure I.11 Decision-tree relating COARSE at station 105 to meteorological variables.
-------
i
i—•
ro
<=
18.90
N=
M-
b'=
182
12.74
8.10
N-
n=
a-
94
14.49
8.75
<= 64.90
N=
n=
s-
88
10.87
6.92
64.90
5.G0
5.60
N= 44
M= 17.95
S= 10.07
N= 50
M= 11. 45
S= 6.01
N= 44
M- 13.01
S= 4.91
N= 44
M= 8.72
S= 7.96
= 6*
= 5*
XRELJHUM
N-
n=
s-
23
21.56
8.42
N-
h=
s-
21
14.01
10.42
68.10
D7HM PRS
18.90
-0.80
-0.80
16.70
16.70
= 4*
tt= 3*
= 8*
«DflYS FP
*RfiNK= 10*
3.00
N-
n=
s-
10.
2.
5
flfi
98
N-
n=
6
7.11
K= 2*
60.10
N=
(1=
S-
13
10
17
W
42
N=
ri=
s=
27
5.71
3.68
N= 11
PI- 15.71
S= 5.01
N= 12
M- 26.92
S= 7.32
N= 8
M- 21.17
S= 8.83
N= 13
M= 9.60
S= 8.95
N= 11
M- 18.75
S= 9.19
N= 6
M- 3 . 88
S= 2.68
Figure 1.12 Decision-tree relating COARSE at station 124 to meteorological variables.
-------
N= 287
M= 3524.51
S= 2510.83
153
f1= 2455.21
S= 1337.25
*RflNK
67
N= 3653.28
S= 2331.89
N= 67
H= 5337.66
S= 3210.54
SP
#DY
3.01
3.81
1.00
1,00
N- 32
M= 4816.47
S- 2613.70
M= 35
11= 2589.79
S= 1384.33
N= 43
f1= 4717.63
S= 2558.53
N- 24
M= 7844.40
S- 3328.23
flLM
2.00
N= 11
M= 5605.81
S= 1926.27
N= 13
M- 9738.61
S= 3107.76
Figure 1.13 Decision-tree relating sulfur at station 103 to meteorological variables,
-------
N= 309
M= 3118.05
S= 2412.12
<=
9.40
9.40
N- 165
N= 2123.17
S- 1175.04
N- 144
M= 4258.05
S- 2315.05
fcCY CflLM
1.
1.00
N= S2
M= 3146.49
S= 1708.08
N= 52
M- 6224.71
S= 3528.19
*RF)NK= 5*
3.00
*RRNrt
3.00
N- 31
11= 5202.64
S- 2337.42
N- 21
N= 7733.49
S- 4371.70
5.00
5.00
N= 11
M" 5659.42
S= 3309.49
N= 10
["H10014.96
S= 4388.58
= 3*
MIN IEMP
<=
17.80
17.80
N-
ri=
s-
6963.
1813. i
5
1?
34
N-
S-
3Plf
40J
5
36.62
34.23
*RflNK- 2*
*RflNK-
i-x
Figure 1.14 Decision-tree relating sulfur at station 105 to meteorological variables,
-------
N= 190
M- 2388.58
S= 2036.67
#OY CflLM
<=
...0.00
N- 38
(1= 1765.41
S- 1039.16
N= 92
M= 3052.41
S- 2569.10
#OY CflLM
<=
1.
N= 60
M- 1932.08
S= 986.54
N= 32
M- 5040.52
S= 3358.57
*RRNK= 4*
*RflNK= 2*
3.00
N- 17
M= 3564.86
S- 1553.66
N- 15
M= 6712.34
S- 4067.88
<-
N=
M-
S=
4.
3361.
2471.
00
6
80
11
>
N=
M-
S=
4.
8947.
3332.
00
04
30
*RflNK= 3*
= 1*
Figure 1.15 Decision-tree relating sulfur at station 124 to meteorological variables.
-------
N= 287
M= 4781.63
S= 2891.ii
N- 116
n= 6082.21
S- 2760.08
N= 111
M= 3434.95
S- 2365.23
ZRELJ-iUM
78.70
N= 77
M- 5180.73
8= 2433.34
flfiX TEMP
N= 69
M- 7088.31
S= 2771.14
78.70
MIXHI PM
N= 72
M= 4266.64
8= 2446.65
N= 63
M= 2567.11
S= 1941.89
SDflY
21.10
21.10
<= 1485.37
> 1485.37
3.03
*Rfli\rt=
3.02
cr>
I i\= 35
!'i= 33*31.18
S= 18^4.61
N- 42
M= 6247.03
8= 2330.13
*RflNK=
N= 26
n= 6227.94
S- 3293.19
N- 43
(1= 7608.55
8= 2289.60
N= 40
Pl= 3295.84
S= 1646.21
N- 32
[1= 5480.17
S- 2750.35
59.60
59.60
56.90
*RflNK= 2*
56.90
*RRNK- 9*
N= 21
M= 7437.07
S= 2137.24
N= 21
M- 5056.99
S= 2041.88
N= 12
M= 8022.09
S= 4033.98
N= 14
M= 4690.10
S= 1235.81
*RflNK=
RV
SP
<=
4.14
*Rf)NK= 7*
4.14
N- 5
11=10987.36
S- 4458.61
N- 7
M= 5904.05
S- 2026.33
*RfiNK= 1*
*RflNK
Figure 1.16 Decision-tree relating silicon at station 103 to meteorological variables,
-------
N= 309
M- 3606.25
S= 1990.16
<=
67.00
67.00
N- 153
n= 4410.15
S- 1954.05
N- 150
F1= 2751.16
S- 1649.29
D7HMJ3RS
MHX TENP
0.10
0.10
13.90
13.90
*RflNK= 2*
mx IEMP
N= 77
M- 4944.22
S= 2049.57
N= 82
M- 3908.67
S= 1726.51
N= 71
M- 2067.86
S= 1140.43
N= 79
M- 3370.97
S= 1793.03
*RfiNK= 9*
SDRYS PP
22.20
22.20
2.00
*RflNK-= 3*
2.00
N= 36
M= 3186.14
S- 1502.68
N= 46
f1= 4474.15
S- 1692.55
N= 40
H= 2705.23
S- 1529.66
N- 33
P1= 4053.80
3= 1803.50
7*
N= 19
M- 2295.26
S= 560.11
N= 17
M- 4181.83
S= 1609.56
*RflNK= 8*
2.86
2.86
*RflNK=
N= 21
M- 4840.30
S= 1942.87
N= 18
M- 3136.22
3= 1083.54
MflX TEMP
28.30
*RflNK= 6*
28.30
N- 11
M= 3617.07
S- 835.07
N- 10
H= 6185.86
S- 1942.41
= 5*
1*
Figure 1.17 Decision-tree relating silicon at station 105 to meteorological variables,
-------
N= 130
M- 2219.85
S= 2056.09
XREL^UM
64.90
64.90
N-
11=
S-
2931
24b'4
94
.24
./I
N-
n=
s-
i5?r
121:
96
3.30
).50
N= 54
M- 3831.81
S= 2332.36
«DRYS PP
oo
N- 30
M= 3013.80
S- 1568.42
N- 24
M= 4854.33
S= 2734.30
*RfiNK=
HUM
<=
52.60
52.60
*RflNK= 3*
N= 40
M- 1715.48
S= 2103.65
UINDJIR
E TO S
SW TO NE
N" 18
f1= 2601.58
S= 2134.26
N- 22
N= 990.49
S- 1831.49
N= 11
M- 6312.78
S= 2630.65
N= 13
M= 3620.27
S= 2227.82
N= 10
M- 1343.93
S= 1702.78
= 6*
*RflNK= 2*
Figure 1.18 Decision-tree relating silicon at station 124 to meteorological variables,
-------
N= 287
M= 1528.69
S= 856.11
N- 146
h= 1841.95
S- 812.13
mx TEMP
24.40
24.40
*RflNK= 1*
<=
N-
M=
c_
58
1946
826
.70 >
35
.22
.17
N-
S=
58
1323
602
.70
38
.24
.80
*RflNK= 2*
*RHNK= 4*
N- 141
H= 1284.34
S= 778.44
N= 73
M- 1621.93
S= 779.27
N= 73
M- 2061.98
S= 789.20
78.70
*RflNK=
78.70
N'=
M=
S=
1472.
768.
1?
?4
63
N=
M-
S=*
924.
689.
69
79
52
Figure 1.19 Decision-tree relating aluminum at station 103 to meteorological variables.
-------
i
ro
2UJ
IB
M- !G21.fi5
S= 192.'I'I
3»
0.10
N= 21
M- 2001.33
S= 623.53
M- 1510.66
S- 703.79
N- ?2
M- 1191.26
S= 351.71
Figure 1.20 Decision-tree relating aluminum at station 105 to meteorological variables,
-------
ro
N= 190
M- 599.09
S= 460.14
N-
n-
s-
135
720.21
432.32
XREL^HUM
G7.10
67.10
HINDJDIR
C 2. 51
*RfiNK= 5*
N- 23
M= 1J41.04
S- 493.39
i n n
zzrcn
756.62
339.05
*RflNK= 1*
= 2*
N-
11=
S=
85
449.47
451.65
WIND rilR
N=
M-
S=
940
4b8
48
.8?
.60
N=
M-
S=
534.
306.
57
44
17
E TO S
SWTONE
N=
M-
S=
blld
^/2.
40
41
18
N=
M-
Q—
30F!
383.
45
4?
85
*RflNK= 3*
60.90
60.90
N-
ri=
s"
bH4.
bi/.
16
BI
N-
S-
23
152.77
138.90
*RflNK= 4*
Figure 1.21 Decision-tree relating aluminum at station 124 to meteorological variables.
-------
N= 287
fl- 3288.51
S= 2021.75
N- 129
F1- 2277.46
S- 1413.03
N- 158
M= 41H.07
S- 2071.78
XRELJHUM
<- 75.
N= 70
M- 2899.68
S= 1375.27
*RflNK= 7*
i
ro
75.00
23.30
N= 59
M- 1539.25
S= 1065.21
N= 79
M- 3452.31
S= 1834.58
N= 79
M- 4775.85
S= 2094.46
*RflNK= 10*
feCRY
EHP
6.00
6.00
<= 15.60
15.60
N- 37
M= 2775.30
S- 1418.35
N- 42
P1= M048.66
S= 1964.38
N- 40
M= 5642.52
S- 2348.94
N- 33
M= 3886.96
S- 1319.11
*RflNK- 8*
HV
SP
4.22
4.22
3.05
3.05
N- 22
M- 4737.21
S- 2337.17
N= 20
M- 3291.26
S= 1066.16
N= 20
M- 6512.17
S= 2611.60
N= 20
M- 4772.88
S= 1706.72
MIXH
<= 600.00
*RflNK= 6*
flV WD SP
> 600.00
<=
1.36
*RRNK= 4*
1.96
N- 10
M- 2734.71
S- 1142.29
N- 12
M= 6405.97
S- 1636.20
N- 10
PI- 8245.68
S- 1945.41
N- 10
n- 4778.67
S- 1983.99
- 9*
*RfiNK- 2*
*RflNK- 1*
*RflNK- 3«
Figure 1.22 Decision-tree relating calcium at station 103 to meteorological variables,
-------
I
ro
GO
N= 3'l I I N
11- 3295.'Jl M- 1767.3'!
S- 1077.51 I I S- 551.77
Figure 1.23 Decision-tree relating calcium at station 105 to meteorological variables,
-------
i
ro
N= 190
M- 991.37
S= 861.69
MIN
<=
8.30
8.30
N=
M=
S-
12S5.
8G9.
97
53
21
N-
f1=
S-
R74
733
93
.30
2.00
N=
M-
S=
8R5.
424.
43
49
56
N=
M- 1637.
S= 977.
54
98
83
*RflNK=
HflX TEMP
13.30
*RflNK
13.30
N- 27
M= 1174.44
S- 535.25
N- 27
11= 2101.52
S- 1102.86
flv wn SP
4.42
4.42
N=
M-
g=
25G1
a/t)
ifi
59
29
N=
M=
S=
1432.
358.
1 |
34
61
*RflNK= 2*
Figure 1.24 Decision-tree relating calcium at station 124 to meteorological variables,
-------
<=
N= 287
M- 683.23
S= 591.43
flV UO SP
3.83
*RflNK
i»
ro
en
3.83
N-
n-
s-
134
902.10
738.41
N-
n=
S-
153
491.54
323.35
*RflNr<;= 2*
Figure 1.25 Decision-tree relating lead at station 103 to meteorological variables,
-------
N= 309
M- 811.78
S= 583.75
nv «o SP
<=
3.41
3.
N-
n=
s-
150
961.09
707.00
N-
M=
S=
159
670.93
389.56
RV WO SP
2.25
*RRNK= 7*
2.25
N=
M-
S=
1202
907
70
.43
.40
N=
M-
S=
749
356
80
93
14
*DY CflLII
<=
rt= 6*
1.
1.00
N=
n=
s-
97
54£
43
.94
3.68
N-
M=
S-
1569.
1214.
?7
50
32
*RflNK= 5*
-2.40
-2.40
*RRNK
MflX TEMP
N= 14
M- 1105.75
S= 384.62
N= 13
M- 2068.92
S= 1585.42
28.30
*RflNK
28.30
N=
n=
s-
1371
493
8
54
79
N-
n=
s-
3184.
2141.
5
74
25
*RflNK= 1*
4.00
N= 2
M- 5343.30
S= 980.90
N- 3
M- 1745.70
S= 960.81
*RRNK= 2*
Figure 1.26
Decision-tree relating lead at station 105
to meteorological variables.
1-26
-------
I
r\>
SOUIIIWE
N-
ri-
'•''
;"'3
1 /9
— -\
~f . WtJT_
5
litl
U/
N-
M • 9M1
SJ= /i'l.
"fi
tiu
/(';
nix'ii ?-n
-j..llf^.OP_
I!- 5
'!• :-?T.?n
c;- 'i-'i fij
-__! 10?. nn
N- " 'f
N- I'I;T>. ir>
P- (v'l.B'l
X
-3.55'
N- ;?
n- «I;M 5rj
S' 5'i:"'.^.'
U/Url ilib
X \
.
K . vKi
Figure 1.27 Decision-tree relating lead at station 124 to meteorological variables,
-------
N= 287
M- 7.if
S= 7.34
MIN TEMP
<=
8.30
*RflNK= 3*
8.30
N-
H=
S-
153
5.00
6.0S
N=
M=
S-
134
9.59
7.90
flV WD SP
3.32
oo
*RflNK= 1 *
3.32
N=
M=
S=
12.
8.
fiS
58
92
N=
M=
g=
fi
5
69
.76
.52
= 2*
Figure 1.28 Decision-tree relating vanadium at station 103 to meteorological variables,
-------
N= 30S
M= 6.07
S= 5.63
MflX TEMP
21.70
21.70
N-
M=
b%=
158
7.70
6.14
N=
n=
s-
153
4.42
4.52
*RflNK= 1*
MIN IEMP
15.60
*RflKK= 2*
15.60
N=
M-
S=
Si
5.83
5.07
N=
M=
S=
72
2.76
3.08
*RHNK=
Figure 1.29 Decision-tree relating vanadium at station 105 to meteorological variables,
-------
<=
187
1.33
2.02
f1IN JEM?
13.03
10.03
N=
M=
5=
103
2.56
2.05
s i
fi= 1
S_ i
~~ i
84
16
69
oo
o
Figure 1.30 Decision-tree relating vanadium at station 124 to meteorological variables,
-------
u>
Figure 1.31 Decision-tree relating titanium at station 103 to meteorological variables
-------
N= 309
r,= 222.60
S= 366.58
WINDJJIR
SETOSy
W TO E
N-
M=
S-
365
511
sW
b«
N=
n=
s-
184
1?5 73
159. 72
3.70
*RRNK= 7*
3.70
N=
M-
S=
514.
657.
R5
83
N=
M=
S=
203
1/0
60
06
92
HflX TEMP
27.20
*RflNK=
27.20
N-
n=
s=
3^2.
255.
30
53
77
N=
M=
S-
H/9
835
35
. /h-
.54
*RflNK
D7flf1_PRS
-1.90
-1.90
N=
M-
Q —
375
249.
18
31
86
N=
M= If
S= if
17
102.10
596.60
-»RflNK= 4*
<=
13.90
13.90
N-
M=
S-
1771
1470
fi
17
17
N=
f1=
S-
5R?
543
II
B!
06
MIN IEMP
<=
11.70
*RflNK= 2*
11.70
N=
M-
S=
3034.
653.
3
11
N=
M-
S=
508.
436.
3
10
93
*RflNK= 1*
*RRNK= 3*
Figure 1.32
Decision-tree relating titanium at station 105
to meteorological variables.
1-32
-------
i
u>
u>
187
44.B3
43.32
13.30
*RfiNK= i*
13.33
= 3*
<=
N-
S-
64
56
52
.80 >
92
.78
.75
N=
M=
S-
64
3!
90
S5
8Z
21
N=
M-
S=
/e.
53.
53
HH
02
N=
M=
Q
33
30. 13
44.43
Figure 1.33 Decision-tree relating titanium at station 124 to meteorological variables,
-------
CO
<- man.00.
" 1675.28
S- 662.59
N=
M» 2201.
>
N-
t
R
3738
1541
•RHNK-
00 <-
08
22
COIZZ
n i «
5
5G63
2081
3« «RF\NK"
00 .
0b
.30
1"
If
>
N-
M-
G=
«H
5.00
3H08.56
871.38
1Nrt= 2«
Figure 1.34
Decision-tree relating iron at station 103 to meteorological variables.
-------
en
N- 309
M- 1245.96
S= 764.10
HflX TEMP
20.60
20.60
N=
M= J
S- E
1-45
334.83
386.8!
N=
M=
y-
164
1476.85
827.62
3*
1.
*RflNK= 2*
flLM
N= 108
M- 1255.58
S= 548.68
N= 56
N- 1303.61
S= 1078.28
*RflNK= 1*
Figure 1.35 Decision-tree relating iron at station 105 to meteorological variables,
-------
01
Figure 1.36 Decision-tree relating iron at station 124 to meteorological variables.
-------
APPENDIX J
DECISION-TREES RELATING IP/TSP RATIO TO
ELEMENTAL CONCENTRATIONS AND METEOROLOGY
CONTENTS
Figure Page
J.I Decision-tree analysis of IP/TSP ratio at site 103
versus elemental concentrations J-l
J.2 Decision-tree analysis of IP/TSP ratio at site 105
versus elemental concentrations J-2
J.3 Decision-tree analysis of IP/TSP ratio at site 124
versus elemental concentrations J-3
J.4 Decision-tree analysis of IP/TSP ratio at site 103
versus meteorological parameters J-4
J.5 Decision-tree analysis of IP/TSP ratio at site 105
versus meteorological parameters J-5
J.6 Decision-tree analysis of IP/TSP ratio at site 124
versus meteorological parameters J-6
-------
<= 2582.10
> 2582.10
N=
K=
s-
\JM=
39
0.54
0.20
0.50
N=
n=
s-
WM=
39
0.71
0.28
0.68
Figure J.I Decision-tree analysis of IP/TSP ratio at site 103 versus elemental concentrations.
-------
84
0.H3
0.20
0.50
<= 2352.40
> 2350.40
un=
42
0.33
0.16
0.38
N=
n=
s=
WM=
42
0.60
0.19
0.60
SULFUR
<= 3907.70
> 3907.70
N=
M-
S=
UM=
22
0.53
0.18
0.51
N= 20
M- 0.67
Q— W t Q
*RflNK= 4*
I
ro
<= 5453.70
> 5453.70
II
it ii n E:
Z5TC03:
10
0.58
0.18
0.57
wri=
10
0.76
0.16
0.75
*RflNK= 3*
- 6960.70
6960.70
N=
M=
3=
WM=
5
0.64
0.11
0.62
N=
M-
S=
WM-
5
0.88
0.10
0.87
= 2*
*RflNK= 1*
Figure J.2 Decision-tree analysis of IP/TSP ratio at site 105 versus elemental concentrations.
-------
C-i
CO
N=
LERD
53
0.81
0.31
0.52
N=
M=
28
G.55
G.29
CHLCIUH
N-
M=
\;T1=
25
0.67
0.32
0.61
<= 821.40
821.
<= 441.10
N=
f-l=
\;'1=
7
G . 66
0 . 23
0.55
N= 8
i1= 8.40
S= 0.30
\/i-]= 0.28
N= 15
2.52
! S= 0.31
i_j.r= 3.38
[r
S=
13
G.53
0.2S
0.54
Figure J.3 Decision-tree analysis of IP/TSP ratio at site 124 versus elemental concentrations,
-------
N=
M=
S=
78
0.63
0.26
0.60
ilflX TEMP
18.S3
18.S3
N=
n=
wn=
37
3.52
G.13
G.~3
N=
n=
S-
wn=
ill
0.72
£]. 28
0.69
*Rfii\K= I*
Figure J.4 Decision-tree analysis of IP/TSP ratio at site 103 versus meteorological parameters
-------
i
tn
M=
M=
g=
\;'M=
84
0.43
0.20
0.50
MIN TEMP
8.30
N-
Il=
g=
j/n=
44
0.42
0.16
0.40
N=
r\=
s-
Wi1=
4Z
0.58
0.22
0.59
i*
Figure J.5 Decision-tree analysis of IP/TSP ratio at site 105 versus meteorological parameters,
-------
en
V/M-
53
0.81
0.31
0.52
68.60
68.60
N=
n=
s=
V,'M=
29
0.49
0.23
0.44
N-
n=
s-
Wh=
24
0.76
0.33
0.67
<=
0.G0
TEMP
<=
7.80
7.83
-7.10
-7.10
N=
S=
un=
3
1.22
0.21
1. 19
N=
i"H
g=
V.'M=
4
0.G2
0.25
M r" i"1
W . DO
p, i
[•] =
S=
\/M=
12
0.S8
M.38
3.54
N=
M-
S=
12
0.83
0 2b
0.80
n=
s=
Ui1=
7
0.87
0.39
0.74
n
« n n 2:
Z2ZCQ3:
5
0.41
0.17
0.34
Figure J.6 Decision-tree analysis of IP/JSP ratio at site 124 versus meteorological parameters,
-------
(l'l<-a\f re
TECHNICAL REPORT DATA
on\ on the rrvi-r\c hfforr f
1 REPORT NO
__E^A-_450_/4-_8(J-0(J6b
4. TITLE ANDSUBTITLE
Analysis of the St. Louis RAMS Ambient Particulate
Data, Volume II: Technical Appendices
3 RLCIPIF NT'S ACCESSION NO
5 REPORT DATE
February 1980
6. PERFORMING ORGANIZATION CODE
7 AUTHOR(S)
John Trijonis etal.
8. PERFORMING ORGANIZATION REPORT NO
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Technology Service Corp.
2811 Wilshire Boulevard
Santa Monica, California 90403
10 PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO
12. SPONSORING AGENCY NAME AND ADDRESS
US Environmental Protection Agency
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
14. SPONSORING AGENCY CODE
15 SUPPLEMENTARY NOTES
Project Officer: Thompson G. Pace
16. ABSTRACT
In this report, a variety of data analysis methods are used to study the
1976 particulate data from the Regional Air Monitoring System (RAMS) in St. Louis.
The aerosol data, collected at ten sites, include hi-vol measurements of total sus-
pended particulate mass (TSP), as well as dichotomous sampler measurements of inhalabl
particulate mass (IP). IP is subdivided into fine particles (less than 2.4 vim in
diameter) and coarse particles (between 2.4 and 20 ym in diameter). This study also
includes dichotomous sampler data for eight trace elements (S, Si, Al, Ca, Pb, V, Ti,
and Fe) and data for 11 meteorological parameters.
The analyses characterize the spatial pattern of particulate matter in and near
St. Louis; background aerosol concentrations and particulate transport; temporal pat-
terns of particulate concentrations, the dependence of aerosol concentrations on
meteorology; and the relationship between hi-vol data and dichotomous data.
This document contains the technical bases for Volume I, Final Report
(EPA-450/4-80-006a).
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
particulate matter
aerosol characterization
Inhalable Particulate
b.IDENTIFIERS/OPEN ENDED TERMS
hi-volume sampler
dichotomous sampler
RAPS
sources
spatial patterns
temporal patterns
COSATl I'leltl/Group
19. SECURITY CLASS (This Report)
21. NO. OF PAGES
Unlimited
20. SECURITY CLASS (This page)
22. PRICE
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION is OBSOLETE
-------