United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EPA-450/4-90-011
May 1990
Air
vvEPA
1989 NONMETHANE ORGANIC
COMPOUND MONITORING
PROGRAM
AND
THREE-HOUR
AIR TOXICS MONITORING
PROGRAM
-------
EPA-450/4-90-011
1989 NONMETHANE ORGANIC
COMPOUND MONITORING PROGRAM
AND
THREE-HOUR
AIR TOXICS MONITORING
PROGRAM
By
Robert A. McAllister
Bradley W. Nelson
Wendy H. Moore
Dave-Paul Dayton
JoannRice
Robert F. Jongleux
Raymond G. Merrill, Jr.
Joan T. Bursey
Phyllis L. O'Hara
Radian Corporation
Research Triangle Park, NC 27709
EPA Contract No. 68D80014
EPA Contract Officer Neil J. Berg, Jr.
Office Of Air Quality Planning And Standards
Office Of Air And Radiation
U. S. Environmental Protection Agency
Research Triangle Park, NC 27711
May 1990
-------
This report has been reviewed by the Office Of Air Quality Planning And Standards, U. S. Environmental
Protection Agency, and has been approved for publication as received from the contractor. Approval does
not signify that the contents necessarily reflect the views and policies of the Agency, neither does mention
of trade names or commercial products constitute endorsement or recommendation for use.
EPA-450/4-90-011
-------
TABLE OF CONTENTS
Section Page
LIST OF FIGURES vii
LIST OF TABLES xiii
SYMBOLS AND ABBREVIATIONS xvii
1.0 SUMMARY AND CONCLUSIONS 1-1
1.1 NMOC MONITORING PROGRAM 1-2
1.1.1 Introduction and Data Summary 1-2
1.1.2 Calibration and Drift 1-4
1.1.3 Precision 1-4
1.1.4 Accuracy 1-6
1.1.5 Other Quality Assurance Measurements 1-13
1.2 THREE-HOUR AIR TOXICS MONITORING PROGRAM 1-13
1.2.1 Overall Data Summary 1-18
1.2.2 Site Results 1-18
1.2.3 Gas Chromatography/Mass Spectrometry
Confirmation Results 1-18
1.2.4 Precision 1-18
1.2.5 External Audit 1-19
2.0 NMOC DATA SUMMARY 2-1
3.0 NMOC TECHNICAL NOTES 3-1
3.1 NMOC FIELD SAMPLING EQUIPMENT 3-1
3.1.1 Installation 3-1
3.1.2 Operation 3-3
3.1.3 Troubleshooting Instructions 3-4
3.1.4 Sampler Performance for 1989 3-6
3.1.5 Field Documentation 3-7
3.2 NMOC ANALYSIS 3-7
3.2.1 Instrumentation 3-7
3.2.2 Hewlett-Packard Model 5880 Gas Chromatograph
Operating Conditions 3-9
3.2.3 NMOC Analytical Technique 3-9
3.3 CANISTER CLEANUP SYSTEM 3-10
3.3.1 Canister Cleanup Equipment 3-10
3.3.2 Canister Clanup Procedures 3-14
cah.!69f
-------
TABLE OF CONTENTS (Continued)
Section Page
4.0 NMOC QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES 4-1
4.1 INTRODUCTION AND CONCLUSIONS 4-1
4.2 CALIBRATION AND INSTRUMENT PERFORMANCE 4-2
4.2.1 Performance Assessment 4-2
4.2.2 Calibration Zero, Span, and Drift 4-2
4.2.3 Calibration Drift 4-8
4.3 IN-HOUSE QC SAMPLES 4-22
4.4 REPEATED ANALYSES 4-28
4.4.1 Site Sample Results 4-33
4.4.2 Quality Control Chart 4-49
4.4.3 Precision Profile 4-49
4.4.4 Local Ambient Samples 4-52
4.5 DUPLICATE SAMPLE RESULTS 4-60
4.5.1 Sampling and Analysis Precision 4-60
4.5.2 Quality Control Chart 4-74
4.5.3 Precision Profile 4-76
4.6 CANISTER PRESSURE RESULTS 4-76
4.7 CANISTER CLEANUP RESULTS 4-83
4.8 EXTERNAL AUDIT RESULTS 4-83
4.9 DATA VALIDATION 4-86
4.10 NMOC MONITORING PROGRAM 4-92
4.10.1 Archives 4-92
4.10.2 Magnetic Disks 4-93
5.0 NMOC DATA ANALYSIS AND CHARACTERIZATION 5-1
5.1 OVERALL CHARACTERIZATION 5-1
5.2 MONTHLY VARIATIONS, 1984 - 1989 5-3
5.3 SPECIAL STUDY 5-8
5.3.1 Task 1 5-15
5.3.2 Task 2 5-38
5.3.3 Task 3 , 5-52
cah.!69f iii
-------
TABLE OF CONTENTS (Continued)
Section Page
6.0 RECOMMENDATIONS 6-1
6.1 OPERATING PROCEDURE CHANGES 6-1
6.2 VERTICAL STRATIFICATION STUDY 6-1
6.3 SEASONAL NMOC STUDIES 6-1
6.4 DIURNAL STUDIES 6-2
6.5 CANISTER CLEANUP STUDIES 6-2
6.6 COORDINATED SAMPLING AT NMOC SITES 6-3
6.7 FIELD AUDIT 6-3
6.8 DUPLICATE SAMPLE AND REPLICATE ANALYSES 6-3
7.0 THREE-HOUR AIR TOXICS DATA SUMMARY 7-1
7.1 OVERALL RESULTS 7-1
7.2 SITE RESULTS 7-4
8.0 THREE-HOUR AIR TOXICS TECHNICAL NOTES 8-1
8.1 SAMPLING EQUIPMENT AND INTERFACE 8-1
8.2 THREE-HOUR AIR TOXICS SAMPLING CERTIFICATION .... 8-1
8.2.1 Certification Blanks - Humidified
Zero Air 8-3
8.2.2 Sampler Certification Selected Target
Compound Challenge 8-3
cah.!69f iv
-------
TABLE OF CONTENTS (Continued)
Section Page
8.3 STANDARDS GENERATION 8-3
8.4 CALIBRATION ZERO AND SPAN 8-8
8.5 GAS CHROMATOGRAPH/MULTIDETECTOR ANALYSIS AND
COMPOUND IDENTIFICATION 8-8
8.6 GAS CHROMATOGRAPH/MASS SPECTROMETER ANALYSIS AND
COMPOUND IDENTIFICATION CONFIRMATION 8-8
8.7 QA/QC DATA 8-10
8.7.1 GC/MD and GC/MS Method Detection Limits . . . 8-10
8.7.2 Repeated Analyses 8-10
8.7.3 Duplicate Sample Results 8-13
8.7.4 GC/MS Confirmation Results 8-20
8.7.5 External Audits 8-20
8.8 DATA RECORDS 8-20
9.0 RECOMMENDATIONS, THREE-HOUR AIR TOXICS PROGRAM 9-1
9.1 COMPOUND STABILITY STUDIES 9-1
9.2 CANISTER CLEANUP STUDIES 9-1
9.3 SAMPLER CERTIFICATION 9-2
9.4 REPLICATE AND DUPLICATE ANALYSES 9-2
10.0 REFERENCES 10-1
cah.!59f
-------
TABLE OF CONTENTS (Continued)
APPENDICES
APPENDIX A: SAMPLING SITES FOR 1989 NMOC MONITORING PROGRAM
APPENDIX B: CRYOGENIC PRECONCENTRATION AND DIRECT FLAME
IONIZATION DETECTION (PDFID) METHOD
APPENDIX C: 1989 NMOC MONITORING PROGRAM SITE DATA
APPENDIX D: 1989 NMOC MONITORING PROGRAM INVALIDATED AND MISSING
SAMPLES
APPENDIX E: PDFID INTEGRATOR PROGRAMMING INSTRUCTIONS
APPENDIX F: 1989 NMOC DAILY CALIBRATION DATA
APPENDIX G: 1989 NMOC IN-HOUSE QUALITY CONTROL SAMPLES
APPENDIX H: MULTIPLE DETECTOR SPECIATED THREE-HOUR SITE DATA SUMMARIES
cah.!69f vi
-------
LIST OF FIGURES
Number Page
1-1 In-house quality control, linear regression for
Channel A 1-7
1-2 In-House quality control, linear regression for
Channel B 1-8
1-3 In-house quality control, linear regression for
Channel C 1-9
1-4 In-House quality control, linear regression for
Channel D 1-10
1-5 Orthogonal regression comparing QAD with Radian NMOC
analyses 1-15
1-6 Orthogonal regression comparing QAD with AREAL
NMOC analyses 1-16
3-1 Sampling system for collecting 3-hour integrated
ambient air samples 3-2
3-2 NMOC sampling field data form 3-5
3-3 NMOC invalid sample form 3-8
3-4 NMOC analytical equipment 3-11
3-5 Canister cleanup apparatus 3-12
4-1 NMOC performance results, Channel A 4-4
4-2 NMOC performance results, Channel B 4-5
4-3 NMOC performance results, Channel C 4-6
4-4 NMOC performance results, Channel D 4-7
4-5 Daily calibration zero, Channel A 4-9
4-6 Daily calibration zero, Channel B 4-10
4-7 Daily calibration zero, Channel C 4-11
4-8 Daily calibration zero, Channel D 4-12
4-9 Daily calibration span, Channel A 4-13
cah.!69f vii
-------
LIST OF FIGURES (Continued)
Number
4-10 Daily calibration span, Channel B 4-14
4-11 Daily calibration span, Channel C 4-15
4-12 Daily calibration span, Channel D 4-16
4-13 Daily calibration percent drift, Channel A 4-17
4-14 Daily calibration percent drift, Channel B 4-18
4-15 Daily calibration percent drift, Channel C 4-19
4-16 Daily calibration percent drift, Channel D 4-20
4-17 In-house quality control results, Channel A ... 4-23
4-18 In-house quality control results, Channel B ... 4-24
4-19 In-house quality control results, Channel C 4-25
4-20 In-house quality control results, Channel D 4-26
4-21 Stem-and-leaf plot of in-house quality control
differences 4-31
4-22 Orthogonal regression comparing QAD with Radian
NMOC analyses 4-34
4-23 Orthogonal regression comparing AREAL with Radian
NMOC analyses 4-35
4-24 Orthogonal regression comparing QAD with AREAL
NMOC analyses 4-36
4-25 95% Confidence intervals for mean NMOC difference .... 4-48
4-26 Quality control chart of percent difference for
replicate NMOC analysis 4-50
4-27 Replicate NMOC analysis results comparing average
concentration with percent difference 4-51
*
4-28 Replicate NMOC analysis results comparing average
concentration with average percent difference 4-54
cah.!69f viii
-------
LIST OF FIGURES (Continued)
Number Page
4-29 Replicate NMOC analysis results comparing average
concentration with average absolute percent
difference 4-55
4-30 95% Confidence intervals for mean NMOC difference .... 4-62
4-31 Quality control chart of percent difference for
duplicate NMOC analysis 4-75
4-32 Duplicate NMOC sample results comparing average
concentration with percent difference 4-77
4-33 Duplicate NMOC sample results comparing average
concentration with average percent difference 4-79
4-34 Duplicate NMOC sample results comparing average
concentration with average absolute percent
difference 4-80
4-35 Audit bias, Radian Channel A vs. EPA-QAD 4-87
4-36 Audit bias, Radian Channel B vs. EPA-QAD 4-88
4-37 Audit bias, Radian Channel C vs. EPA-QAD 4-89
4-38 Audit bias, Radian Channel D vs. EPA-QAD 4-90
4-39 Audit bias, EPA-AREAL vs. EPA-QAD 4-91
5-1 Stem-and-leaf plot of the 1989 morning NMOC data .... 5-2
5-2 Stem-and-leaf plot for the morning In(NMOC) data .... 5-4
5-3 Cumulative frequency distribution for 1989 NMOC data . . 5-5
5-4 Cumulative frequency distribution for 1989 In(NMOC)
data 5-6
5-5 Stem-and-leaf plot of the morning NMOC data for
April, 1989 5-9
5-6 Stem-and-leaf plot of the morning NMOC data for
May, 1989 5-10
cah.!69f ix
-------
LIST OF FIGURES (Continued)
Number
5-7 Stem-and-leaf plot of the morning NMOC data for
June, 1989 5-11
5-8 Stem-and-leaf plot of the morning NMOC data for
July, 1989 5-12
5-9 Stem-and-leaf plot of the morning NMOC data for
August, 1989 . .- 5-13
5-10 Monthly average NMOC concentrations for Beaumont, TX site 5-20
5-11 Monthly average NMOC concentrations for Dallas, TX site . 5-21
5-12 Monthly average NMOC concentrations for El Paso, TX site 5-22
5-13 Monthly average NMOC concentrations for Philadelphia, PA
site 5-23
5-14 Monthly average NMOC concentrations for Washington, DC
site 5-24
5-15 Monthly average NMOC concentrations for Houston, TX
site 5-25
5-16 Monthly average NMOC concentrations for Baltimore, MD
site 5-26
5-17 Monthly average NMOC concentrations for New York, NY
site 5-27
5-18 Monthly average NMOC concentrations for Richmond, VA
site 5-28
5-19 Monthly average NMOC concentrations for St. Louis, MO
site 5-29
5-20 Monthly average NMOC concentrations for Charlotte, NC
site 5-30
5-21 Monthly average NMOC concentrations for Memphis, TN
site 5-31
5-22 Monthly average NMOC concentrations for Miami, FL
site 5-32
cah.!69f
-------
LIST OF FIGURES (Continued)
Number Page
5-23 Monthly average NMOC concentrations for Cleveland, OH
site 5-33
5-24 Monthly average NMOC concentrations for second
Phildelphia, PA site 5-34
5-25 Monthly average NMOC concentrations for Arlington, VA
site 5-35
5-26 Monthly average NMOC concentrations for Boston, MA
site 5-36
5-27 Monthly average NMOC concentrations for Newark, NJ
site 5-37
5-28 Maximum ozone versus NMOC concentration for New York, NY
site 5-41
5-29 Maximum ozone versus NMOC concentration for Newark, NJ
site 5-42
5-30 Maximum ozone versus NMOC concentration for Plainfield, NJ
site 5-43
5-31 Maximum ozone versus NMOC concentration for Houston, TX
site 5-44
5-32 Maximum ozone versus NMOC concentration for Chicago, IL
site 5-45
5-33 Maximum ozone vs NMOC concentration for Newark, NJ and
Plainfield, NJ site 5-46
5-34 Maximum ozone versus NMOC concentration for pooled
Plainfield, NJ, Newark, NJ, and New York, NY 5-47
5-35 Maximum ozone versus NMOC concentration for pooled
Plainfield, NJ, Newark, NJ, and New York, NY 5-48
5-36 Percent NMOC as a function of canister age difference, by
chronological analysis number 5-53
5-37 Percent NMOC as a function of canister age difference, by
canister age 5-55
cah,169f xi
-------
LIST OF FIGURES (Continued)
Number Page
8-1 Gas chromatographic multidetector system .... 8-2
8-2 Dynamic flow dilution apparatus 8-7
8-3 Air toxics multiple detector system 8-9
8-4 Percent coefficient of variation of 3-hour air toxics
replicate analyses as a function of mean
concentration 8-14
8-5 Percent coefficient of variation of 3-hour air toxics
duplicate samples as a function of mean
concentration 8-17
cah.!69f xii
-------
LIST OF TABLES
Number Page
1-1
1-.2
1-3
1-4
1-5
1-6
2-1
2-2
2-3
3-1
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
cah.!69f
1989 COMPLETENESS RESULTS
1989 NMOC SITE STATISTICS
LINEAR REGRESSION PARAMETERS FOR IN-HOUSE QUALITY
CONTROL DATA
AUDIT SAMPLE RESULTS, PERCENT BIAS
AUDIT SAMPLE RESULTS, ABSOLUTE PERCENT BIAS
ORTHOGONAL REGRESSION PARAMETERS FOR REPEATED
ANALYSES OF SITE SAMPLES
1989 NMOC COMPLETENESS RESULTS
1989 NMOC SITE STATISTICS
1989 NMOC LOGNORMAL STATISTICS
SUPPORT GAS OPERATING CONDITIONS
1989 PERFORMANCE ASSESSMENT SUMMARY, RADIAN CHANNELS . .
SUMMARY NMOC CALIBRATION FACTOR DRIFT RESULTS
LINEAR REGRESSION PARAMETERS FOR IN-HOUSE QUALITY
CONTROL DATA
IN-HOUSE QUALITY CONTROL STATISTICS, BY RADIAN
CHANNEL
OVERALL IN-HOUSE QUALITY CONTROL STATISTICS
ORTHOGONAL REGRESSION PARAMETERS FOR REPEATED
ANALYSES OF SITE SAMPLES
SUMMARY STATISTICS OF COMPARATIVE ANALYSES FOR
RADIAN VS. QAD CHANNELS
SUMMARY STATISTICS OF COMPARATIVE ANALYSES FOR RADIAN
VS. QAD CHANNELS, BY RADIAN CHANNELS
SUMMARY STATISTICS OF COMPARATIVE ANALYSES FOR
RADIAN VS. AREAL CHANNELS
xiii
1-3
1-5
1-11
1-12
1-14
1-17
2-2
2-4
2-5
3-9
4-3
4-21
4-27
4-29
4-30
4-37
4-38
4-40
4-41
-------
LIST OF TABLES (Continued)
Number Page
4-10 SUMMARY STATISTICS OF COMPARATIVE ANALYSES FOR
RADIAN VS. AREAL CHANNELS, BY RADIAN CHANNELS .... 4-42
4-11 SUMMARY STATISTICS OF COMPARATIVE ANALYSES FOR
QAD VS. AREAL CHANNELS 4-43
4-12 SUMMARY STATISTICS FOR COMPARATIVE ANALYSES
ON RADIAN CHANNELS 4-44
4-13 SUMMARY STATISTICS FOR COMPARATIVE ANALYSES ON
RADIAN CHANNELS, BY CHANNEL PAIRS 4-45
4-14 95% CONFIDENCE INTERVALS FOR MEAN DELTA,
REPEATED ANALYSES 4-47
4-15 1989 NMOC REPLICATE IMPRECISION 4-53
4-16 OVERALL STATISTICS FOR LOCAL AMBIENT SAMPLES 4-56
4-17 STATISTICS FOR LOCAL AMBIENT SAMPLES, BY CHANNEL PAIR . . 4-57
4-18 LOCAL AMBIENT SAMPLES CONFIDENCE INTERVALS 4-61
4-19 COMPARISON OF PERCENT DIFFERENCE IN NMOC CONCENTRATION
BETWEEN CHANNEL PAIRS 4-63
4-20 STATISTICS FOR DUPLICATE ANALYSIS 4-64
4-21 DUPLICATE ANALYSES STATISTICS, BY SITE 4-65
4-22 REPLICATE ANALYSIS OF DUPLICATE SAMPLES FOR 1989 4-67
4-23 ANOVA FOR DUPLICATE - REPLICATE SETS 4-71
4-24 EXPECTED MEAN SQUARES FOR NESTED EXPERIMENT 4-72
4-25 1989 NMOC DUPLICATE IMPRECISION 4-78
4-26 NMOC PRESSURE STATISTICS 4-81
cah.!69f xiv
-------
LIST OF TABLES (Continued)
Number Page
4-27 PRESSURE DISTRIBUTION OF NMOC AMBIENT AIR SAMPLES .... 4-82
4-28 1989 NMOC AUDIT SAMPLE RESULTS 4-84
4-29 AUDIT SAMPLES, RELATIVE TO EPA-QUALITY ASSURANCE
DIVISION (QAD) RESULTS 4-85
5-1 SUMMARY STATISTICS FOR 1989 MORNING NMOC SITES,
BY MONTH 5-7
5-2 MONTHLY AVERAGE NONMETHANE ORGANIC COMPOUND CONCENTRATIONS 5-16
5-3 COMPARISON OF MONTHLY AVERAGE NMOC CONCENTRATIONS .... 5-39
5-4 SITES FOR JUNE AND JULY OZONE-NMOC CORRELATION 5-40
5-5 MAXIMUM OZONE VS. NMOC CORRELATIONS 5-49
7-1 THREE-HOUR AMBIENT AIR SAMPLES AND ANALYSES 7-2
7-2 COMPOUND IDENTIFICATION WITH GC/MD FOR ALL
3-HOUR SITES 7-3
7-3 FREQUENCY OF OCCURRENCE OF TARGET COMPOUNDS IN
3-HOUR AMBIENT AIR SAMPLES 7-5
7-4 COMPOUND IDENTIFICATIONS WITH GC/MD BY SITE CODE 7-6
8-1 ZERO CERTIFICATION RESULTS 8-4
8-2 CHALLENGE CERTIFICATION RESULTS 8-5
8-3 METHOD DETECTION LIMITS FOR 3-HOUR AIR TOXICS
COMPOUNDS 8-11
8-4 3-HOUR AIR TOXICS REPLICATE ANALYSES BY GC/MD 8-12
8-5 GC/MD COMPOUND IDENTIFICATIONS IN ONLY ONE REPLICATE
ANALYSIS 8-15
8-6 THREE-HOUR AIR TOXICS DUPLICATE SAMPLE ANALYSES BY GC/MD . 8-16
8-7 GC/MD 3-HOUR AIR TOXICS DUPLICATE PRECISION BY COMPOUND . 8-18
cah.!69f xv
-------
LIST OF TABLES (Continued)
Number
8-8 SINGLE COMPOUND IDENTIFICATIONS OF GC/MD DUPLICATE
SAMPLE ANALYSES 8-19
8-9 COMPOUND IDENTIFICATION CONFIRMATION 8-21
8-10 3-HOUR AIR TOXICS AUDIT NO. 3 RESULTS FOR GC/MD
AND GC/MS • 8-22
cah.!69f xvi
-------
SYMBOLS AND ABBREVIATIONS
AC, or
A.C.
ADELTA
ADIF
ADIFF
AIRS
ALCA
a.m.
APDIFF
APDIF
APR
AREAL
Aug
area counts, generated from a gas chromatograph
absolute value of DELTA
absolute value of DIF
absolute value of DIFF
Aerometric Information Retrieval System
Alpine, CA - AIRS No. 29-510-0072
ante meridiem
absolute value of PDIFF
absolute value of PDIF
April
Atmospheric Research and Exposure Assessment Laboratory
August
BACA
Bldg.
BMTX
Bakersfield, CA - AIRS No. 06-029-0004
building
Beaumont, TX - AIRS No. 48-245-0009
C3IL
C6IL
Cal., or
Calib.
cm
Chicago,
Chicago,
Illinois
Illinois
AIRS No. 17-031-0042
AIRS No. 17-031-0063
calibration
centimeter
DELTA
DIF
DIFF
DLTX
Dup.
Radian NMOC concentration - QAD NMOC concentration, ppmC;
Radian NMOC concentration - ASRL concentration, ppmC; or
AREAL NMOC concentration - QAD NMOC concentration, ppmC
(NMOC concentration for the second channel) - (NMOC
concentration for the first channel
measured NMOC concentration - calculated NMOC concentration
ppmC for in-house quality control samples
Dallas, TX - AIRS No. 48-113-0069
duplicate
e
ECD
ELCA
ELTX
EPA
base of natural logarithm, 2.71828...
electron capture detector
El Cajon, CA - AIRS No. 06-073-0003
El Paso, TX - AIRS No. 48-141-0037
United States Environmental Protection Agency
(Continued)
cah.!69f
xvn
-------
SYMBOLS AND ABBREVIATIONS (continued)
F Friday
FID flame ionization detector
FECA Fremont, CA - AIRS No. 06-001-1001
GC/ECD gas chromatography electron capture detection
GC/FID gas chromatography flame ionization detection
GC/MD gas chromatography multidetection
GC/MS gas chromatography mass spectrometry
GRMI Grand Rapids, MI - AIRS No. 26-081-0020
H Thursday
H1TX Houston, TX - AIRS No. 48-201-1034
Hg mercury
i.d. inside diameter
ID identification
INST. instrument
Jul July
Jun June
L liter
LBCA Long Beach, CA - AIRS No. 06-037-4002
Lpm liters per minute
LXKY Lexington, KY - AIRS No. 21-067-0012
m meter
M Monday
M1NY New York, NY - AIRS No. 36-061-0056
MAX maximum
MGAL Montgomery, AL - AIRS No. 01-101-0008
MID multiple ion detection
MIN minimum
min. minute
mL milliliter
mm millimeter
MNY New York, NY - AIRS No. 36-061-0010
MU mean of In(NMOC)
(Continued)
cah.!69f xviii
-------
SYMBOLS AND ABBREVIATIONS (continued)
NC North Carolina
NIST National Institute of Standards and Technology
NMOC Nonmethane organic compound
NOx oxides of nitrogen
NWNJ Newark, NJ - AIRS No. 34-013-011
Oct October
o.d. outside diameter
Off. Office
PCDIFF percent difference = DIFF/calculated NMOC concentration x- 100,
for in-house QC samples
PDELTA DELTA x 100;
[(Radian NMOC concentration + QAD NMOC concentration)/2]
DELTA x 100;
[(Radian NMOC concentration + AREAL NMOC concentration)/^]
or,
DELTA x 100
[(AREAL NMOC concentration + QAD NMOC concentration)/2]
PDFID preconcentration, direct flame ionization detection
PDIF DIF/([(NMOC concentration, 1st channel) + (NMOC concentration,
2nd channel)]/2) x 100
PLNJ Plainfield, NJ - AIRS No. 34-035-1001
p.m. post meridiem
ppb parts per billion
ppbv parts per billion by volume
ppm parts per million
ppmC parts per million by volume as carbon
ppmv parts per million by volume
psi pounds (force) per square inch
psig pounds (force) per square inch gauge
QA quality assurance
QAD Quality Assurance Division (EPA)
QAPP Quality Assurance Project Plan
QC quality control
RAO Radian analysis order: RAO = 1 for the local ambient duplicate
sample analyzed first by Radian; RAO = 2 for the local ambient
duplicate sample analyzed first by EPA
RT retention time
RTP Research Triangle Park
(Continued)
cah.!69f xix
-------
SYMBOLS AND ABBREVIATIONS (continued)
S2MO St. Louis, MO - AIRS No. 29-510-0072
SAROAD Storage and Retrieval of Aerometric Data
Sep September
SOP standard operating procedure
SOx oxides of sulfur
SRM Standard Reference Material
SIGMA standard deviation of In(NMOC)
STD. DEV.,
SD standard deviation
Tuesday
UATMP Urban Air Toxics Monitoring Program
U.S. United States
UTM Universal Transverse Mercator
W Wednesday
CC degrees Celsius
°F degrees Fahrenheit
%CV percent coefficient of variation
cah.!69f xx
-------
1.0 SUMMARY AND CONCLUSIONS
In certain areas of the country where the National Ambient Air Quality
Standard (NAAQS) for ozone is being exceeded, additional measurements of
ambient nonmethane organic compounds (NMOC) are needed to assist the affected
states in developing revised ozone control strategies. Because of previous
difficulty in obtaining accurate NMOC measurements, the U.S. Environmental
Protection Agency (EPA) has provided monitoring and analytical assistance to
these states through Radian Corporation. This assistance began in 1984 and
continues through the 1989 NMOC Monitoring Program.
Between June 5 and September 29, 1989, Radian analyzed 1,956 ambient
air samples, including 194 duplicate samples, collected in SUMMA® polished
stainless steel canisters at 23 sites. These NMOC analyses were performed by
the cryogenic preconcentration, direct flame ionization detection (PDFID)
method.1 Based on the 1984 through 1988 studies, the method was shown to be
precise, accurate, and cost effective relative to the capillary column gas
chromatographic, flame ionization detection (GC/FID) method (see Appendix B).
The 1989 study confirmed these findings and supported the conclusion that the
PDFID method is the method of choice to measure NMOC concentration in ambient
air.
In 1986 specific toxic compounds, primarily aromatics and halocarbons,
were also determined in the ambient air samples used for the NMOC analyses.
In 1987 Radian Corporation developed a gas chromatographic multidetector
(GC/MD) method to determine the concentration of 38 selected toxic organic
compounds in ambient air. In 1988, air toxic analyses were conducted by GC/MD
on ambient air samples taken at 13 sites at which NMOC samples were taken. In
1989, air toxic analyses were conducted on ambient air samples taken at
seven sites at which NMOC samples were taken. These samples were called
3-hour air toxics samples because the sampling period was three hours, from
6:00 a.m. to 9:00 a.m. The 1989 Urban Air Toxics Monitoring Program (UATMP)
began in January 1989 at 13 urban sites and extended through December 1989.
The samples from the latter program were 24-hour integrated ambient air
samples and are referred to as UATMP samples throughout this report.
The Final Report for the 1989 Nonmethane Organic Compound and
Three-Hour Air Toxics Monitoring program are included in Sections 1.0 through
-------
10.0. Sections 1.0 through 6.0 report the data, procedures, and assessment of
the NMOC portion of the monitoring program. Sections 7.0 through 9.0 report
the data, procedures, and assessment of the 3-hour air toxics portion of the
monitoring program. Section 10.0 lists references.
The sampling sites for the 1989 NMOC Monitoring Program are listed in
Appendix A. Appendix A also gives the EPA Regions for each site, the Radian
Site Code, the Storage and Retrieval of Aerometric Data (SAROAD) numbers, the
Aerometric Information Retrieval System (AIRS) numbers, and whether or not
3-hour air toxics analyses were performed on selected ambient air samples from
the site.
Appendix B contains the detailed instructions on the Cryogenic
Preconcentration and Direct Flame lonization Detection (PDFID) method.
Appendix C lists the 1989 NMOC Monitoring Program Site Data. Appendix D lists
the 1989 NMOC Monitoring Program Invalidated and Missing Samples information.
Appendix E gives PDFID Integrator Programming Instructions. Appendix F gives
1989 NMOC Daily Calibration Data. Appendix G gives 1989 In-House Quality
Control Samples, and Appendix H gives Multiple Detector Speciated Three-Hour
Site Data Summaries.
The UATMP data and results will be reported under separate cover in a
final report for the UATMP.
1.1 NMOC MONITORING PROGRAM
1.1.1 Introduction and Data Summary
Table 1-1 gives details of the sample completeness results. Percent
completeness, a quality measure is shown in Table 1-1. Completeness, which
ratios the number of valid samples to the number of scheduled samples,
averaged 95.5% in 1989 compared to 93.4% in 1988, 95.0% in 1987, 96.8% in
1986, 95.8% in 1985, and 90.6% in 1984. Percent completeness for 1989 ranged
from 86.81 at S3CA (AIRS No. 66-067-0010, Sacramento, CA) to 101.10 for ELTX
(AIRS No. 48-141-0037, El Paso, TX). During the last week of the 1989 NMOC
Monitoring Program, the ELTX site had one more cleaned canister than was
needed to complete its scheduled samples,, so an extra duplicate was collected.
cah.!69f 1-2
-------
TABLE 1-1. 1989 COMPLETENESS RESULTS
Radian
Site
Code
Complete
ALCA
BACA
BMTX
C3IL
C6IL
DLTX
ELCA
ELTX
FECA
GRMI
H1TX
LBCA
LXKY
M1NY
MGAL
NMY
NWNJ
PLNJ
RLNC
RSCA
S2MO
S3CA
S4CA
Overall
Scheduled
Sampling
Days
83
83
83
83
83
83
83
83
83
83
82
67
83
82
83
83
83
83
83
59
82
83
83
1866
Total
Scheduled
Duplicate
Samples
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
7
8
8
8
183
Total
Scheduled
Samples
91
91
91
91
91
91
91
91
91
91
90
75
91
90
91
91
91
91
91
66
90
91
91
2049
Total
Valid
Duplicate
Samples
11
10
10
8
7
8
7
8
8
7
9
7
9
9
8
8
8
10
7
9
8
10
8
194
Total
Valid
Samples
89
83
90
84
85
91
85
92
87
88
83
71
91
89
86
85
88
87
90
59
88
79
86
1956
Percent
97.80
91.21
98.90
92.31
93.41
100.00
93.41
101.10
95.60
96.70
92.22
94.67
100.00
98.89
94.51
93.41
96.70
95.60
98.90
89.39
97.78
86.81
94.51
95.46
cah.!69f
1-3
-------
Statistics for the NMOC concentrations in parts per million carbon (ppmC) by
volume are listed in Table 1-2. In Table 1-2, the sites are divided into
I'Morning Sites," "Late Morning Sites," and "Above-300-m-Altitude Sites." The
Morning Sites are those that collected samples from 6:00 a.m. to 9:00 a.m.;
Late Morning Sites sampled from 9:00 a.m. to noon; the Above-300-m-Altitude
Sites sampled from 6:00 a.m. to 9:00 a.m. at an altitude above 300 meters.
The sites were separated into these classifications because experience
has shown3 the average NMOC concentrations to be different for the three
groups. The overall mean NMOC concentration for the Morning Sites was 0.577
ppmC, while for the Late Morning Sites, the mean was 0.158 ppmC. The mean for
the Above-300-m-Altitude Site was 0.267 ppmC.
1.1.2 Calibration and Drift
Each Radian PDFID channel was calibrated twice daily, using propane
standards referenced to the National Institute of Science and Technology
(NIST) Reference Material No. 1666B propane. Daily, before zero and
calibration checks were performed, the analytical systems were purged with
cleaned, dried air that had been humidified. Zero reading:; were determined
with cleaned, dried air. Daily percent drift of the calibration factor ranged
from -4.5% to +4.5%, averaging -0.375 percent. The absolute value of the
percent drift of the daily calibration factors ranged from zero to 4.5%,
averaging 0.61 percent.
1.1.3 Precision
Analytical precision was determined by repeated analyses of 156 site
samples. Percent differences between the second and the first analysis
averaged -0.019 percent. The average of the absolute values of the percent
difference was 8.2% with a standard deviation of 12.1. The analytical
precision includes the variability between Radian channels and within Radian
channels. The data quality objective for this measurement as published in the
1989 Quality Assurance Project Plan (QAPP)2 was 9.8%, based on previous NMOC
program experience3 with this measurement.
Overall precision, including sampling and analysis variability, was
determined by analysis of 181 duplicate site samples, simultaneously collected
in two canisters from a common sampling system. Percent difference for
Radian's analyses of the duplicates averaged 4.2 percent. The average
cah.!69f 1-4
-------
TABLE 1-2. 1989 NMOC SITE STATISTICS
Radian
Site Code
Minimum
Mornina Sites (Samel i no
BACA
BMTX
C6IL
DLTX
ELCA
ELTX
FECA
GRMI
H1TX
LBCA
LXKY
M1NY
MGAL
MNY
NWNJ
PLNJ
RLNC
RSCA
S2MO
S3CA
S4CA
Overall
Late Mornina
0.150
0.220
0.126
0.114
0.088
0.093
0.124
0.203
0.180
0.242
0.082
0.211
0.087
0.127
0.158
0.073
0.137
0.210
0.187
0.075
0.061
0.043
Site (Samol
Median
Mean
6:00 to 9:00 a.m.
0.799
0.655
0.764
0.421
0.305
0.381
0.371
0.517
0.632
0.697
0.270
0.527
0.192
0.515
0.519
0.407
0.137
1.113
0.607
0.205
0.179
0.434
inq 9:00
0.809
0.830
0.851
0.474
0.452
0.498
0.519
0.641
0.791
0.881
0.377
0.601
0.221
0.555
0.652
0.529
0.162
1.224
0.747
0.310
0.262
0.577
a.m. to
NMOC, DDmC
Standard
Maximum Deviation Skewness
Kurtosis
, . local time)
2.499
4.047
2.663
1.612
1.733
2.442
2.491
1.880
2.614
2.855
1.796
2.043
1.133
1.609
3.693
1.796
0.551
3.993
5.013
2.452
1.534
5.013
noon, local
0.409
0.631
0.506
0.285
0.366
0.402
0.411
0.387
0.479
0.573
0.342
0.336
0.156
0.286
0.539
0.384
0.162
0.796
0.640
0.340
0.266
0.493
t i me )
0.917
2.880
1.233
1.548
1.644
2.375
2.068
1.234
1.251
1.606
2.547
1.935
4.299
1.222
2.944
1.354
1.368
1.278
3.941
3.920
3.192
2.461
2.185
10.367
2.013
3.111
2.260
6.917
5.795
0.739
1.639
1.922
6.574
5.180
21.667
1.819
11.375
1.316
1.916
1.666
21.229
19.325
11.112
10.334
ALCA 0.037 0.117 0.158 0.867 0.151
3.560 12.838
Above-300-m-Altitude Site (Sampling 6:00 to 9:00 a.m.. local time)
C3IL 0.042 0.228 0.267 0.954 0.172 1.481 2.721
cah.!69f
1-5
-------
absolute percent difference was 10.6% with a standard deviation of 14.2. The
data quality objective for this measurement was 12.2%, based on previous
experience.2
1.1.4 Accuracy
Because the NMOC measurements encompass a range of mixtures of unknown
compounds, it was not possible to define absolute accuracy. Instead, accuracy
was determined relative to propane standards with internal and external audit
samples.
Accuracy was monitored internally throughout the program by the use of
in-house propane standards. Four days per week an in-house propane quality
control (QC) sample was prepared with a flow dilution apparatus and analyzed
by the PDFID method. The propane used to prepare the in-house QC standards
was certified by the EPA Quality Assurance Division (QAD) and was referenced
to NIST No. 1666B.
Figures 1-1 through 1-4 show the in-house quality control results for
Radian Channels A, B, C, and D. Measured propane values are plotted against
calculated propane standards. Table 1-3 shows the linear regression
parameters for the Radian in-house quality control data. Daily quality
control samples of propane were mixed from a propane standard certified by
EPA-QAD and referenced to NIST propane Standard No. 1666B. The regression
used the propane concentration calculated from the mixing operation as the
independent variable and concentration measured by each Radian channel as the
dependent variable. The concentration range of the in-house quality control
samples was 0.020 to 18.000 ppmC. Table 1-3 indicates excellent quality
control for each channel since, as expected, the intercepts are all near zero,
and the slopes and coefficients of correlation are all near 1.0.
External oropane audit samples were provided by EPA-QAD. The propane
samples were referenced to NIST propane Standard No. 1666B. Table 1-4
summarizes the percent bias of the Radian channels and the EPA Atmospheric
Research and Exposure Assessment Laboratory (AREAL) channel relative to the
EPA-QAD channel. The audit samples were given Radian ID Numbers upon receipt.
Radian ID No. 1004 was received in May 1989, and the other two audit samples
were received in September 1989. The average percent bias for the Radian
cah.!69f . 1-6
-------
DC
CL
LLJ
CO
O
I
CO
CO
LU
DC
O
0
LU <
2 5
<
(0
L
o
o
co
8
CO
O
o
8
c\i
O
o -ii
O c
O 5=
.8
Ls
OJ
1 1
1 1
0
CC
6
CO*
CO
0
r~
~~
o
_ o
CO
—
_
CD
-
«J
"£
CD
o
O
0
8
2
z
T3
^
^
CO
o
•g
O
0
§
ZJ
cr
0
CO
o
i
I
0)
zl
g>
LL
8888888888888888888
(Oiudd) uo^BJ^uaouoo
1-7
-------
CD
"O
CO
6
CO
o
o
o
15
0)
>
o
I
c
-------
CL
O
o:
CL
UJ
CO
O
CO
h-
CO
LU
CC.
-------
Q
c
CO
6
CO
Q)
o
o
cc
cr
0
CO
o
0
o>
IT
8888888888888888888
(Qiudd) uo^BJjueouoo OOl^N
1-10
-------
TABLE 1-3. LINEAR REGRESSION PARAMETERS FOR
IN-HOUSE QUALITY CONTROL DATA
Radian
Channel Cases
Intercept
Coefficient of
Slope Correlation
A
B
C
D
51
51
51
51
-0.000182
0.005195
0.010023
0.001783
1.007578
1.004650
0.997043
1.002389
0.999184
0.999457
0.998786
0.998910
cah.!69f
1-11
-------
TABLE 1-4. AUDIT SAMPLE RESULTS, PERCENT BIAS"
Channels
Radian
ID
Number
1005
1006
1647
1648
1969
2290
3020
3021
Average
Std. Dev.
A
Percent
Bias
0.00
-0.96
3.30
0.86
2.21
-2.40
1.72
-3.26
0.78
2.24
B
Percent
Bias
-1.13
-3.23
5.50
1.26
4.70
-3.41
-0.69
-1.68
0.16
3.39
C
Percent
Bias
-1.04
1.05
3.85
0.93
0.41
1.01
-0.86
-10.15
0.80
4.14
D
Percent
Bias
-1.04
0.99
2.75
1.26
-0.69
-5.18
-3.78
-3.16
-1.11
2.75
Radian
Percent
Bias
-0.34
3.22
'Percent Bias = [(Measured NMOC - QAD NMOC) / QAD NMOC] x 100,
cah.!69f
1-12
-------
channels was 0.84%, ranging from 0.30% for Channel B to 1.29% for Channel C.
Absolute percent biases are listed in Table 1-5 and range from 1.84% for
Channel A to 2.70% for Channel B, averag-ing 2.33% overall for the Radian
channels.
1.1.5 Other Quality Assurance Measurements
The results of other quality assurance measurements are discussed
below. Canister cleanup studies established that there was little carryover
of NMOC from one sample to the next, using the canister cleanup apparatus and
procedure developed for this study. In 206 separate determinations, percent
cleanup averaged 99.742%, ranging from 92.12% to 100 percent. Cleanup was
defined in terms of the percent of the NMOC concentration that was removed in
the cleanup cycle. Figure 1-5 shows a between-laboratory comparison of
site sample analyses involving Radian channels and the EPA-QAD channel for the
PDFID method. Figure 1-6 shows comparisons of EPA-ASRL and EPA-QAD channels.
Table 1-6 gives the orthogonal regression parameters, assuming a linear
relationship, for Figures 1-5 and 1-6 and other possible comparisons. The
results show good agreement because the intercepts are very close to zero, the
slopes are within 10% of 1.0, and the coefficients of correlation are within
3% of 1.0. Approximately 14.6% of the NMOC data base was validated by
checking data transcriptions from original data sheets for 36 entries per
sample. The errors found equal a data base error rate of 0.369 percent. The
data validation included 100% of the reported NMOC concentration values. All
errors that were found were corrected.
1.2 THREE-HOUR AIR TOXICS MONITORING PROGRAM
At seven sites, 3-hour NMOC samples were speciated by a GC/MD
analytical system for 38 UATMP target compounds for a total of 64 NMOC ambient
air samples. After NMOC analysis, the NMOC sample canisters were bled to
atmospheric pressure, stored at least 18 hours for equilibration, and then
analyzed by GC/MD. Duplicate samples were collected at all seven of the sites
simultaneously and analyzed individually by GC/MD. Replicate analyses were
performed on one duplicate sample per site. A total of 78 GC/MD analyses were
performed, including duplicate samples and replicate analyses.
cah.!69f 1-13
-------
TABLE 1-5. AUDIT SAMPLE RESULTS, ABSOLUTE PERCENT BIAS
Radian
ID
Number
1005
1006
1647
1648
1969
2290
3020
3021
Average
Std. Dev.
A
Percent
Bias
0.00
• 0.96
3.30
0.86
2.21
2.40
1.72
3.26
1.84 •
1.18
Channel
B
Percent
Bias
1.13
3.24
5.50
1.26
4.70
3.41
0.69
1.68
2.70
1.79
i
s
C
Percent
Bias
1.04
1.06
3.85
0.93
0.41
1.01
0.86
10.15
2.41
3.30
D
Percent
Bia.s
1.04
0.99
2.75
1.26
0.69
5.18
3.78
3.16
2.35776
1.62150
Radian
Absolute
Percent
Bias
2.32761
2.12701
cah.!69f
1-14
-------
2
0
CO
CD
CO
>>
CO
c
CO
o
o
c
CO
••O
CO
QC
<
o
O)
CO
Q.
o
o
'co
CO
0
75
O)
o
o
ID
I
0>
^
g>
LJ_
(Qiudd) uoflBJjueouoc GOWN
1-15
-------
o:
CD
O
DC
O
O
O)
00
O)
Q_ a
o
o
O
c\
8
r
:• t
a
o I
O «o
'*" o>
LS §
Q
Q O
U§
O
-------
TABLE 1-6. ORTHOGONAL REGRESSION PARAMETERS FOR COMPARATIVE
ANALYSES OF SITE SAMPLES
Channel
Pair
(X-Y)
Coefficient of
Cases Intercept Slope Correlation
QAD-Radian
Radian-QAD
AREAL-Radian
Radian-AREAL
QAD-AREAL
AREAL-QAD
202
202
20
20
12
12
-0.038190
0.037260
-0.136310
0.124140
0.069707
-0.074660
1.025019
0.975590
1.098092
0.910670
0.933637
1.071079
0.995887
0.995887
0.995908
0.995908
0.975807
0.975807
cah.!69f
1-17
-------
1.2.1 Overall Data Summary
Twenty-seven target compounds were identified in the 78 analyses.
Benzene, m/p-xylene, toluene, ethyl benzene, styrene/o-xylene, carbon
tetrachloride, and 1,1,1-trichloroethane were the most frequently identified
compounds. Concentrations of the target compounds identified ranged from
0.01 ppbv for 1,1,2-trichloroethane to 88.90 ppbv for m/p-xylene. The overall
average concentration of the target compounds identified was 2.28 ppbv.
1.2.2 Site Results
Overall site mean concentrations ranged from 0.92 ppbv for. C3IL to
5.34 ppbv for C6IL for the target compounds identified. These data are
presented in Section 7.0.
1.2.3 Gas Chromatoqraphv/Mass Soectrometrv Confirmation Results
Fourteen 3-hour air toxics ambient air samples were analyzed by Gas
Chromatography/Mass Spectrometry (GC/MS) for compound identification
confirmation of the GC/MD analyses. The GC/MS analyses were performed after
the GC/MD analyses. The GC/MS analyses confirmed 93.9% of the GC/MD analyses.
For the 3-hour air toxics samples the negative GC/MD-positive GC/MS
analyses were 3.57 percent. The positive GC/MD-negative GC/MS analyses were
2.52 percent.
1.2.4 Precision
Sampling and analytical precision of 3-hour air toxics samples was
estimated by analyzing duplicate samples. In terms of overall average
absolute percent difference, the sampling and analysis precision was
8.72 percent.
Analytical precision was estimated by repeated analyses of seven
duplicate samples. The analytical precision measured by the overall average
absolute percent difference was 9.12 percent. Both the sampling and
analytical precision results are excellent in view of the concentration range
found in this study.
The data analyses showed that both for the duplicate and replicate
results, the imprecision was significantly higher at concentrations less than
2 ppbv. Both the duplicate sa jle and repeated analyses results are discussed
in Section 8.0.
cah.!69f 1-18
-------
1.2.5 External Audit
UATMP External Audit Sample No. 3 was received from the EPA-QAD and
analyzed prior to the analyses of the 3-hour air toxics samples. The sample
was analyzed by both the GC/MD and the GC/MS analytical systems. An average
bias of 0.84% was found for the GC/MD analyses and an average bias of -20.5%
was found for the GC/MS analyses. In view of the fact that the GC/MS analyses
were used as a qualitative screening tool for compound identification
confirmation (and not for quantisation), these are excellent results and well
within the data quality objectives of the program.
cah.!69f 1-19
-------
2.0 NMOC DATA SUMMARY
This section presents the data summary for the 1989 NMOC Monitoring
Program conducted during June, July, August, and September. Daily NMOC
concentrations and other pertinent monitoring data are given by site in
Appendix C. The majority of the data presented in this section summarize the
NMOC concentrations measured for samples collected at 23 sites throughout the
continental United States. Sites were selected in urban and/or industrial
locations; they are described in Appendix A. The site codes for the 1989 NMOC
Monitoring Program are listed in Appendix A and are used throughout the report
to identify the sites. Samples were collected in 6-liter (L) stainless steel
canisters by local site operators trained by Radian Corporation personnel.
The sampling procedure was described in detailed written instructions and
given to the site operators. The sampling procedure instructions also appear
in Section 3.1.2. Analytical concentration measurements of NMOC were made in
the Radian Corporation Research Triangle Park (North Carolina) laboratory
according to the PDFID method TO-12.1 The complete procedure is described in
Appendix B.
The concentration of oxides of nitrogen (NOJ, site temperature,
barometric pressure, wind direction, and weather conditions were provided on
the field sampling forms by site personnel at the time of sampling. These
data were recorded in the 1989 NMOC data base, but are not presented in this
report because they were not measured by Radian equipment or personnel, nor
were the data subjected to project quality assurance procedures.
Table 2-1 lists the NMOC Monitoring Program completeness results by
site code. The scheduling of sample days and the scheduling of duplicate
analyses is given in the QAPP.2 One site, ELTX (El Paso, TX), produced over
100% completeness by taking an unscheduled duplicate in addition to all other
scheduled samples. For the remainder of the 1989 NMOC sites, completeness was
over 80%, and generally very near to 100 percent. A complete listing of
invalid samples and the reasons for the invalidation are given in Appendi.. D.
Overall completeness figures for the 1989 NMOC Program show 95.5/1
complete. This compares with 93.4% in 1988, 95.0% complete in 1987, 96.8%
complete in 1986, 95.8% complete in 1985 and 90.6% complete in 1984.2'3'4'5
-------
TABLE 2-1. 1989 COMPLETENESS RESULTS
Radian
Site
Code
Complete
ALCA
BACA
BMTX
C3IL
C6IL
DLTX
ELCA
ELTX
FECA
GRMI
H1TX
LBCA
LXKY
M1NY
MGAL
NMY
NWNJ
PLNJ
RLNC
RSCA
S2MO
S3CA
S4CA
Overall
Scheduled
Sampling
Days
83
83
83
83
83
83
83
83
83
83
82
67
83
82
83
83
83
83
83
59
82
83
83
1866
Total
Scheduled
Duplicate
Samples
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
7
8
8
8
183
Total
Scheduled
Samples
91
91
91
91
91
91
91
91
91
91
90
75
91
90
91
91
91
91
91
66
90
91
91
2049
Total
Valid
Duplicate
Samples
11
10
10
8
7
8
7
8
8
7
9
7
9
9
8
8
8
10
7
9
8
10
8
194
Total
Valid
Samples
89
83
90
84
85
91
85
92
87
88
83
71
91
89
86
85
88
87
90
59
88
79
86
1956
Percent
97.80
91.21
98.90
92.31
93.41
100.00
93.41
101.10
95.60
96.70
92.22
94.67
100.00
98.89
94.51
93.41
96.70
95.60
98.90
89.39
97.78
86.81
94.51
95.46
cah.!69f • 2-2
-------
Completeness was defined as the percentage of samples, scheduled in the QAPP,1
that were collected and analyzed as valid samples, beginning with the first
valid sample and ending with the last scheduled sample.
Table 2-2 summarizes statistics by sites into three classifications,
Morning Site, Late Morning Site, and Above-300-m-Altitude site. "Morning
Sites" were those where an integrated sample was collected from 6:00 a.m. to
9:00 a.m. "Late Morning Site" collected samples 9:00 a.m. to noon. The
"Above 300-m-Altitude Site" collected ambient air samples from 6:00 a.m. to
9:00 a.m. at an altitude above 300 meters from ground level. Morning and Late
Morning Site samples were collected at 3 to 10 meters above ground level. The
subclassifications of the NMOC monitoring sites were made because the mean
NMOC values were expected3 to be different in the Morning and Late Morning
Sites, and at the higher elevations above ground level. It is not known
whether the difference between the Morning Sites and the Late Morning Sites is
because of their locations, because of the difference in time of the
collection of the sample, or both.
The overall average of the Morning Site NMOC concentration is seen
to be 0.577 ppmC, while the Late Morning Site NMOC concentration average is
0.158 ppmC, about 27% of the morning concentration average. The higher
altitude site averaged 0.267 ppmC, only 46% of the morning concentration
average. The averages given here are not intended to be characteristic of all
possible sites, sampling times, or altitudes. The averages pertain only to
the sites for the 1989 Monitoring Program.
In Table 2-2, the means are the arithmetic averages of the NMOC
concentrations at each site. The numbers given for standard deviation,
skewness, and kurtosis are the second, third, and fourth moments, respectively
about the arithmetic means. A skewness value greater than zero applies to
distributions having a longer tail to the right. A distribution that is
normally distributed would have a kurtosis of 3.0. A distribution more peaked
(or pointed) than a normal distribution, having the same variance, would have
a kurtosis greater than 3.0.
NMOC monitoring data can be better characterized by a lognormal
distribution than by a normal distribution, following the findings of previous
years.3'*>5/6>7 Table 2-3 summarizes the 1989 NMOC data using the definitions
cah.!69f 2-3 .
-------
TABLE 2-2. 1989 NMOC SITE STATISTICS
Radian
Site Code
Minimum
Morninq Sites (Samolinq
BACA
BMTX
C6IL
DLTX '
ELCA
ELTX
FECA
GRMI
H1TX
LBCA
LXKY
M1NY
MGAL
MNY
NWNJ
PLNJ
RLNC
RSCA
S2MO
S3CA
S4CA
Overall
Late Morninq
0.150
0.220
0.126
0.114
0.088
0.093
0.124
0.203
0.180
0.242
0.082
0.211
0.087
0.127
0.158
0.073
0.137
0.210
0.187
0.075
0.061
0.043
Site (Sampl
Median
Mean
6:00 to 9:00 a.m.
0.799
0.655
U.764
0.421
0.305
0.381
0.371
0.517
0.632
0.697
0.270
0.527
0.192
0.515
0.519
0.407
0.137
1.113
0.607
0.205
0.179
0.434
ina 9:00
0.809
0.830
0.851
0.474
0.452
0.498
0.519
0.641
0.791
0.881
0.377
0.601
0.221
0.555
0.652
0.529
0.162
1.224
0.747
0.310
0.262
0.577
a.m. to
NMOC. DDmC
Standard
Maximum Deviation
Skewness
Kurtosis
., local timel
2.499
4.047
2.663
1.612
1.733
2.442
2.491
1.880
2.614
2.855
1.796
2.043
1.133
1.609
3.693
1.796
0.551
3.993
5.013
2.452
1.534
5.013
noon, local
0.409
0.631
0.506
0.285
0.366
0.402
0.411
0.387
0.479
0.573
0.342
0.336
0.156
0.286
0.539
0.384
0.162
0.796
0.640
0.340
0.266
0.493
time)
0.917
2.880
1.233
1.548
1.644
2.375
2.068
1.234
1.251
1.606
2.547
1.935
4.299
1.222
2.944
1.354
1.368
1.278
3.941
3.920
3.192
2.461
2.185
10.367
2.013
3.111
2.260
6.917
5.795
0.739
1.639
1.922
6.574
5.180
21.667
1.819
11.375
1.316
1.916
1.666
21.229
19.325
11.112
10.334
ALCA 0.037 0.117 0.158 0.867 0.151 3.560 12.838
Above-300-m-A1titude Site (Sampling 6:00 to 9:00 a.m., local time)
C3IL 0.042 0.228 0.267 0.954 0.172 1.481 2.721
cah.!69f
2-4
-------
TABLE 2-3. 1989 NMOC LOGNORMAL STATISTICS
Loaarithmic Normal Distribution of NMOC
Radian
Site Code
Morninq Sites
BACA
BMTX
C6IL
DLTX
ELCA
ELTX
FECA
GRMI
H1TX
LBCA
LXKY
M1NY
MGAL
MNY
NWNJ
PLNJ
RLNC
RSCA
S2MO
S3CA
S4CA
Overall
Late Morninq
Minimum
(Samel ina 6
0.150
0.220
0.126
"0.114
0.088
0.093
0.124
0.203
0.180
0.242
0.082
0.211
0.087
0.127
0.158
0.073
0.043
0.210
0.187
0.075
0.061
0.043
Site (Sampli
Mode
:00 to 9
0.502
0.486
0.469
0.289
0.206
0.247
0.252
0.401
0.468
0.550
0.188
0.419
0.158
0.377
0.357
0.247
0.087
0.644
0.431
0.143
0.127
0.228
no 9:00
Median
:00 a.m.
0.799
0.655
0.764
0.421
0.305
0.381
0.371
0.517
0.632
0.697
0.270
0.532
0.192
0.515
0.519
0.407
0.137
1.113
0.607
0.205
0.179
0.434
a.m. to
Mean
, local
0.828
0.816
0.871
0.476
0.448
0.494
0.514
0.638
0.795
0.871
0.365
0.598
0.216
0.559
0.638
0.535
0.162
1.243
0.726
0.293
0.249
0.583
noon, 1
Maximum
time)
2.499
4.047
2.663
1.612
1.733
2.442
2.491
1.880
2.614
2.856
1.796
2.043
1.133
1.609
3.693
1.796
0.551
3.993
5.013
2.452
1.534
5.013
ocal time)
MIT
-0.356
-0.376
-0.344 .
-0.908
-1.061
-0.936
-0.903
-0.604
-0.406
-0.292
-1.230
-0.633
-1.636
-0.713
-0.644
-0.882
-2.026
-0.002
-0.494
-1.467
-1.615
-0.853
SIGMA*
0.577
0.58S
0.643
0.577
0.719
0.677
0.690
0.557
0.594
0.553
0.666
0.487
0.456
0.512
0.622
0.717
0.644
0.663
0.589
0.689
0.670
0.792
ALCA 0.037 0.092 0.117 0.150 0.867 -2.061 0.575
Above-300-tn-A1titude Site (Sampling 6:00 to 9:00 a.m.. local time)
C3IL 0.042 0.144 0.228 0.271 0.954 -1.517 0.649
aMU is the mean of In(NMOC). e™ is the geometric mean.
"SIGMA is the standard deviation of In (NMOC). eSIGMA is called the
geometric standard deviation.
cah.!69f
2-5
-------
that characterize a lognormal distribution overall and for each site. Mil and
SIGMA are the mean and standard deviation, respectively, of the logarithm of
NMOC to the Napierian base e. The geometric mean is e raised to the power Mil;
the geometric standard deviation is e raised to the power SIGMA. The mode is
the most frequently occurring logarithm of NMOC value for a continuous
probability distribution function.
Information listed in Appendix A includes the location of the site,
street address as well as the Universal Transverse Mercator (UTM) coordinates
for the site (where available), the site code used throughout this report, the
Storage and Retrieval of Aerometric Data (SAROAD) Number, and the Aerometric
Information Retrieval System (AIRS) Number. Appendix A gives the AIRS
printouts for all the sites that are in the system for 1989.
Appendix C gives the daily NMOC concentration data listed
chronologically for the entire sampling season. In addition, figures are
given for each site in which NMOC concentrations in ppmC are plotted versus
the 1989 Julian date on which the sample was taken. Data tables for each site
include the following:
calendar date sampled;
Julian date samples;
weekday sample (M, T, W, H, F);
sample ID number, assigned consecutively upon receipt of the
sample;
sample canister number;
Radian analysis channel;
NMOC concentration in ppmC, determined by Radian;
NMOC concentration in ppmC, determined by U.S. EPA, Quality
Assurance Division; and
NMOC concentration in ppmC, determined by U. S. EPA, Atmospheric
Research and Exposure Assessment Laboratory.
Appendix D lists invalidated or missing samples. Table D-l lists
these data chronologically, while Table D-2 groups the listings by site code.
For each sample, the tables list the site code, the date of the missing or
invalid sample, a brief description of the possible cause of the invalid or
missing sample, and the assigned cause for the failure.
cah.!69f 2-6
-------
3.0 NMOC TECHNICAL NOTES
This section summarizes descriptions of the installation and operation
of the field sampling equipment, a summary of the analytical equipment and
procedures for NMOC measurement, and a description of the canister cleanup
equipment and procedures.
3.1 NMOC FIELD SAMPLING EQUIPMENT
The field sampling equipment used to collect ambient air samples for
NMOC measurement is relatively simple to operate. Ambient air is drawn
through a sintered stainless steel filter (2 micron) and critical orifice by a
Metal lows® pump and delivered to a SUMMA® canister. The sampler
compont...s are made of nonbiasing stainless steel. Figure 3-1 is a schematic
diagram of the NMOC sampling system.
3.1.1 Installation
NMOC sampler installation configurations were site dependent. All
field sites were installed by or under the direction of Radian personnel.
Installation requirements included a temperature-controlled environment (70°
to 86°F), close proximity to the atmosphere to be sampled, and
noncontaminating sampler connections. Glass and/or gas-chromatographic-grade
stainless steel tubing are the preferred materials of construction for all
connections contacting the sample. Typical sampler installations involved
three configurations including direct connections to a ventilated glass
manifold, a slipstream connection prior to the station NOX analyzer with a
bypass pump, or collocated NMOC and NOX sample inlet lines. For sites where
the distance between the sample inlet and the stainless steel post was greater
than 8 feet, an auxiliary pump, as shown in Figure 3-1, was used. The
auxiliary pump helps ensure that the air in the sample line is representative
of the ambient air. The critical orifice was sized to maintain a constant
flow rate and to fill a 6-L stainless steel canister from the 5 mm Hg vacuum
to about 15 psig in 3 hours. When duplicate samples were taken, the critical
orifice used for single sample collection was replaced with an orifice sized
to fill two canisters during the 3-hour sampling period.
-------
CO
CD
CO
CD
4-1
.3?
'<~v
"p
CO
o
k_
C!
CO
a
_c
*j
o
o
a
0)
00
>
CO
CD
CO
03
cah.!75f
3-2
-------
3.1.2 Operation
Presamplinq
The following instructions pertain to the sampling operation prior to
collection of the field sample.
1. Verify timer program (see timer instructions). Set to MANUAL
position to leak check sampling system. Once the system passes
the leak check, turn timer to AUTO position.
2. With no canisters connected to the sampling system, turn the
timer switch to the MANUAL position.
3. Disconnect the sample inlet from the top of the orifice/filter
assembly mounted on the pump inlet. Connect the rotameter to
the top of the orifice/filter assembly. Tighten Swage!ok»
(1/4") fitting securely with a wrench. Do not overtighten.
4. Turn timer switch ON. Do not turn the power off and on rapidly.
Wait 20 seconds between cycles to prevent premature
timer/solenoid failure. The pump should run and the latching
valve should open (audible click with 2 to 5 seconds delay).
Verify that the rotameter reading is approximately the same
(±15%) as the reading obtained during installation as
recommended on the orifice tag. If the rotarieter reading is not
correct, see the troubleshooting instructions.
5. Allow the pump to run for at least 20 seconds, then press the
timer OFF button.
6. Connect a cleaned, evacuated canister to the sampling system.
If duplicate samples are to be collected, remove the plug from
the second port of the tee and connect a second canister to the
sampling system. Remove the orifice assembly marked with an
"S," denoting a single orifice. Install the orifice assembly
marked with a "D," denoting a double orifice. Replace the
filter holder on the "D" orifice. After obtaining scheduled
duplicate samples, replace the plug and the "S" orifice assembly
to return to single sample collection status.
7. With the pump off, open completely the valve on the canister (or
on one of the canisters if two are connected) and verify that no
flow is registered on the rotameter. If any flow is detected by
the rotameter, immediately close the canister valve and see the
troubleshooting instructions.
8. If no flow is observed, disconnect the rotameter and reconnect
the inlet sample line to the filter assembly. If two canisters
are connected, completely open the valve on the second canister.
cah.!69f 3-3
-------
9. Reverify that the canister valve(s) is (are) completely open and
the timer is properly set for sampling from 6 a.m. to 9 a.m. the
next weekday. Set timer to AUTO mode.
10. Reset the elapsed time counter.
Postsamplinq
The instructions that follow outline the NMOC postsampling operation
procedures in the field.
1. Close the canister valve(s) firmly. Disconnect the canisier(s)
from the sampling "system.
2. Connect the pressure gauge to the canister inlet and open the
canister valve. Record the canister pressure on the field
sampling data form. Close the canister valve and remove the
pressure gauge. Repeat pressure measurement for second canister
if collecting a duplicate sample. If the pressure reading is
not at least 11 psig, see the troubleshooting instructions.
3. Fill in the required information on the NMOC SAMPLING FIELD DATA
FORM. PLEASE PRESS HARD AND WRITE WITH A BALLPOINT PEN; YOU ARE
MAKING THREE COPIES, (see Figure 3-2).
4. Verify elapsed time counter reading equals 3 hours.
5. Verify that the timer shows the correct time setting. If not,
note that fact on the sample form along with any information
pertaining to the possible cause. Reset the timer to the
correct time, if necessary.
6. Verify that the canister valves are closed firmly. Do not
overtighten them. Put the protective cap(s) on the valve(s) and
prepare the canister(s) for shipment to Radian, RTP.
3.1.3 Troubleshooting Instructions
A list of troubleshooting instructions was given to each field site
during the site installation and operator training. Typical problems
encountered with the field sampling apparatus included: loose fittings,
misprogrammed timer, or clogged orifices. To minimize downtime, field site
operators were encouraged to relay sampling problems to the Radian laboratory
daily, by telephone. Most sampling problems were addressed promptly through
these telephone discussions.
cah.!69f 3-4
-------
NMOC SAMPLING FIELD DATA FORM
Site Code: SAROAD#:_ • •
Site Location : City: State:
Sample Collection Date : Sampling Period :
Operator:
Final Canister Pressure (psig):
Sample Canister Number: Side :
Sample Duplicate for this Date : YesG NoD
!f yes. Duplicate Canister Numoer:
NOx Analyzer Operating? Yesu NoC
if yes. Average Reading (ppmv as NOx):
Average Wind Speed : Average Wind Direction : __
Rotameter Indicated Flow Rate: Orifice Number:
Average Barometric Pressure (mm Hg or inches Hg):
Ambient Temperature (*F): Relative Humidity:
THC Model (if available): Average THC :
Sky/Weather Conditions:
Site Conditions/Remarks:
Canister Number:
Initial Canister Vacuum
Received By:
Date:
Sample Validity: |
If Invalid. Reason :
33
Figure 3-2. NMOC Sampling field data form,
cah.!75f 3.5
-------
3.1.4 Sampler Performance for 1989
The NMOC sampler was modified in 1989 to improve performance. This
modification involved replacing the mechanical timer previously used with an
electronic version. The electronic timer improves sample integration. An
elapsed time counter was added to the sampler to verify sample duration. This
modified system was used during the 1989 program. In addition, all sampler
orifice(s) and canisters were subjected to a preseason QC check to ensure
field performance. All orifices were checked against the rotameter enclosed
in each sampling kit, and referenced to a transfer standard (bubble
flowmeter). Prior to field installation, all samplers were operated in the
laboratory to establish an expected final pressure range for the canister
samples. Two single orifices and one double orifice were tested for each
sampler kit.
Due to the preseason checks and modifications, the NMOC sampler
performance was improved for the 1989 sampling season. This assessment is
based on the consistency of the final sample pressures on a site-specific
basis (see Section 4.6). The sampler performance in terms of successful
sample collection (i.e., completeness) was comparable to previous years.
Overall completeness from all sites averaged 95.5 percent. The site-specific
completeness ranged from 86.5% for S3CA to 101.1% for ELTX.
Invalidated or missing samples were primarily due to the operator or
the site rather than to equipment. Completeness can be improved at certain
sites through greater attention to sampling procedure, and by ensuring that
trained site personnel are available. Those samples that were invalidated due
to equipment failure were assigned to three major categories: timer, canister,
and miscellaneous.
A total of 93 missing or invalidated samples was recorded in the 1989
NMOC Monitoring Program. There were nine invalidated samples related to timer
problems, 12 invalidated samples related to canister problems, and 83
remaining invalidated samples. Appendix D lists a total of 86 invalidated
samples. In addition to invalidated samples there were seven missed samples.
Missed samples resulted from a number of problems at the site -- the operator
was locked out of the sampling station, a site operator was not available on
the day the sample was to be collected, etc. Avoidable operator error
accounts for 43.0% of invalidated samples. No invalid samples were
cah.!69f 3-6
-------
attributable to timer malfunctions. The operator's failure to open the
canister valve accounted fnr 91.7% of the canister-related invalidated
samples, and 8.3% were attributable to canister leaks. Of the remaining 83
invalidated samples, 45.8% were caused by loose or broken sample lines, or
leaking solenoid valves; 54.2% were attributable to missad samples, power
outages, or consecutive samples collected into the same canister. A listing
of invalidated or missing samples is contained, chronologically and by site,
in Appendix D.
A further improvement in completeness may be possible as site
operators gain familiarity with the electronic timer. Revised sampler
operating instructions will focus additional attention on timer programming
and operation, and will include a daily checklist to eliminate common operator
errors.
3.1.5 Field Doc^rgntation
The field sample collection information was documented by the site
operator on Dented forms. Figure 3-2 is an example NMOC Sampling Field Data
Form. Each canister sent to the field was accompanied by this form. The
field data form is a multiple part unit. A copy of the field data form was
retained by the site operator for the site notebook. Figure 3-3 is the
Invalid Sample Form. This form was completed by the site operator to document
the reasons for a missed or invalid field sample collections.
3.2 NMOC ANALYSIS
The NMOC analysis equipment and analysis procedure are described in
greater detail in Appendix A. A brief description of the equipment and
operating procedure used in this study follows.
3.? 1 Instrumentation
Two gas chromatographs were used by .iian. Each was a dual-channel
Hewlett-Packard Model 5880 (HP-5880) using flame ionization detection (FID).
NMOC instrument Channels A and B refer to the two FIDs on one HP-5880 unit,
and Channels C and D refer to the two FIDs on the other HP-5880 unit. These
chromatographs were modified to be similar to the prototype unit (EPA-QAD
cah.!69f 3-7
-------
V-
C Ki fi f C K 4k T t O K '
NMOC INVALID SAMPLE FORM
Site Code: SAROAD#: • •
City: State :
Sample Collection Date : Operator :
Sample Canister Number:
Sample Duplicate for this Date : YesQ NoQ
If Yes, Duplicate Canister Number:
Reason for Invalid or Missed Sample :
Average NOx Analyzer Reading for this Collection Date :
Wind Speed : Wind Direction : _
Average Barometric Pressure (mm Hg or inches Hg):
Ambient Temperature (°F): Relative Humidity
Sky/Weather Conditions:
Received By:
Date:
Action Taken:
Resolution :
cc
3
Field Invalid or In-house Invalid 3
Figure 3-3. NMOC Invalid sample form.
cah.!75f 3.3
-------
instrument), which is described in Appendix B. The EPA-QAD instrument was
used as a reference during this program. In addition, an HP-5880 gas
chromatograph located at EPA and equipped with a 60 m x 0.32 mm inside
diameter (i.d.), DB-1, fused silica capillary column was used as the gas
speciation method and as a quality assurance check. This capillary column
instrument is called EPA-ASRL channel in subsequer sections of this report.
3.2.2 Hewlett-Packard. Model 5880. Gas ChromatC' aph Operating Conditions
The sample trap consisted of 30 cm of 1/8-inch outside diameter (o.d.)
stainless steel tubing, packed with 60/80 mesh glass beads.
Three support gases were used in this analysis: helium, hydrogen, and
hydrocarbon-free air. Details of their use are given below in Table 3-1.
TABLE 3-1. SUPPORT GAS OPERATING CONDITIONS
Purpose
Carrier Gas
FID Air
FID Fuel
Cylinder
Composition
Helium
Hydrocarbon-
free air
Hydrogen
Pressure
30 psig
30 psig
32 psig
Mean
Flow Rate3
29.4 mL/miri
300.1 mL/min
31.1 mL/min
"Flow rates corrected to standard conditions (1 atmosphere pressure, 208C).
The operating temperatures of the HP-5880 were controlled for the NMOC
analysis. The FID and auxiliary area were controlled at 250°C and 90°C,
respectively. The oven temperatur was programmed from 30'C to 90"C at a rate
of 30°C per minute for 4 minutes, holding at 90°C for the fourth minute. Oven
and integration parameters were controlled by HP Level 4 programmable
integrators. A complete listing of the integrator programming sequence for
NMOC measurement by the PDFID method is given in Appendix E.
3.2.3 NMQC Analytical Technique
The modified HP-5880, dual-FID chromatographs were operated during the
1989 study according to a project specific Standard Operating Procedure (SOP).
cah.!69f
3-9
-------
Further description is given below to help explain the analytical apparatus
and procedure.
The six-port valve shown in Figure 3-4 was installed in the auxiliary
heated zone of the HP-5880 and was pneumatically actuated using
chromatographic valve control signals to apply either compressed air or vacuum
to the valve. The sample trap itself was located inside the chromatograph's
column oven. A section of 1/16-inch o.d. stainless steel tubing was sized to
a length that prevented pressure and flow surges from extinguishing the FID
flame. This length was determined experimentally and differs for each
chromatograph and for each channel within chromatographs. Although the length
of tubing effectively substitutes for the pressure restriction provided by a
column, it does not perform the separation function of a column.
During sample trapping, a slight excess of sample gas flow was main-
tained. A pressure change of 80 mm Hg in a 1.7-L vacuum reservoir was used to
gauge and control the volume of sample gas cryogenically trapped. After the
trapping cycle was complete, the HP-5880 program shown in Appendix B was
initiated. When the program triggered a horn emitting an audible beep, the
cryogen was removed from the trap and the oven door was closed. The
chromatographic program then assumed control of raising the oven temperature,
at the preset rate, to release the trapped sample to the FID, and set up the
integration parameters.
3.3 CANISTER CLEANUP SYSTEM
A cleanup cycle consisted of first pulling a vacuum of 5 mm Hg
absolute pressure in the canister, followed by pressurizing the canister to 20
psig with cleaned, dried air that had been humidified. This cycle was
repeated two more times during the canister cleanup procedure. The cleanness
of the canister was qualified by PDFID analysis. Upon meeting the cleanness
criterion, the canister was evacuated to 5 mm Hg absolute pressure a fourth
time, in preparation for shipment to the site.
3.3.1 Canister Cleanup Equipment
A canister cleanup system was developed and used to prepare sample
canisters for reuse after analysis. A diagram of the system is shown in
Figure 3-5. An oil-free compressor with a 12-gallon reservoir provided source
cah.!69f 3-10
-------
b99EO/89
.9=
<=a>
CT
a
"as
ro
U
O
0
u
cah.!75f
3-11
-------
atoieees
(0
be Cleaned
s
OJ
I j
"" O
^ (D
« C
cc o
e O
I £
$ c
I £
2222
,0,000
c c 'c 'c
Q Q O Q
5 2 2 2
< m b Q
Q.
<0
a
I
o
03
$
'c
(C
O
•9
CO
I
O)
il
3-12
-------
air for the system. The oil-free compressor was chosen to minimize
hydrocarbon contamination. The compressor reservoir was drained of condensed
water each morning. A coalescing filter provided water mist and participate
matter removal down to a particle size of one micron. Permeation dryers
removed water vapor from the compressor source air. These permeation dryers
were followed by moisture indicators to show detectable moisture in the air
leaving the dryer. The moisture indicators never showed any water, indicating
that the permeation dryers effectively removed all of the water vapor.
Air was then passed through catalytic oxidizers to destroy residual
hydrocarbons. The oxidizers were followed by inline filters for secondary
particulate matter removal, and by a cryogenic trap to condense any water
formed in the catalytic oxidizers and any organic compound not destroyed by
the catalytic oxidizer. A single-stage regulator controlled the final air
pressure in the canisters and a metering valve was used to control the flow
rate at which the canisters were filled during the cleanup cycle. The flow
was indicated with a rotameter installed in the clean, dried air line. There
was a shutoff valve between the rotameters and the humidifier system. The
.humidifier system consisted of a SUMMA* treated 6-L canister partially filled
with high performance liquid chromatographic-grade 'HPLC-grade) water. One
flowmeter and flow-control valve routed the cleane dried air into the 6-L
canister where it was bubbled through the HPLC-grade water. A second flow-
control valve and flowmeter allowed air to bypass the canister/bubbler. By
setting the flow-control valves separately, the downstream relative humidity
was regulated. For the 1989 study, 80% relative humidity was used for
canister cleaning. There was another shutoff valve between the humidifier and
the 8-port manifold where the canisters were connected for cleanup.
The vacuum system consisted of a Precision Model DD-310 turbomolecular
vacuum pump, a cryogenic trap, an absolute pressure gauge, and a bellows valve
connected as shown in Figure 3-5. The cryogenic trap prevented the sample
canisters from being contaminated by back diffusion of hydrocarbons from the
vacuum pump into the cleanup system. There are no oil-free high vacuum Dumps
currently available at a competitive cost. The bellows valves enabled
isolation of the vacuum pump from the system without shutting off the vacuu.n
pump.
cah.!69f 3-13
-------
3.3.2 Canister Cleanup Procedures
After NMOC analyses were completed, a bank of eight canisters was
connected to each manifold shown in Figure 3-5. The valve on each canister
was opened, with the shutoff valves and the bellows valves closed. The vacuum
pump was started and one of the bellows valves was opened, drawing a vacuum on
the canisters connected to the corresponding manifold. After reaching 5 mm Hg
absolute pressure as indicated by the absolute pressure gauge, the vacuum was
maintained for 30 minutes on-the eight canisters connected to the manifold.
The bellows valve was then closed and the cleaned, dried air that had been
humidified was introduced into the evacuated canisters until the pressure
reached 20 psig. The canisters were filled from the clean air system at the
rate of 7.0 L/min. This flow rate was recommended by the manufacturer as the
highest flow rate at which the catalytic oxidizers could handle elimination of
hydrocarbons with a minimum 99.7% efficiency.
When the first manifold had completed the evacuation phase and was
being pressurized, the second manifold was then subjected to vacuum by opening
its bellows valve. After 30 minutes, the second manifold was isolated from
the vacuum and connected to the clean, dried air that had been humidified.
The first manifold of canisters was then taken through a second cycle of
evacuation and pressurization. Each manifold bank of eight canisters was
subjected to three cleanup cycles.
During the third cleanup cycle, the canisters were pressurized to
20 psig with clean, dried air that had been humidified. For each bank of
eight canisters, the canister having the highest precleanup NMOC concentration
was selected for NMOC analysis to determine potential hydrocarbon residues.
If the analysis measured less than 0.030 ppmC, then the eight canisters on the
manifold were considered to be clean. Finally the canisters were again
evacuated to 5 mm Hg pressure absolute; they were capped under vacuum and then
packed in the containers used for shipping to the field sites.
cah.!69f 3-14
-------
4.0 NMOC QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES
This section details the steps taken in the 1989 NMOC Monitoring
Program to ensure that the data taken were of known quality and were well
documented. Analysis results are given in terms of precision, completeness,
and accuracy. Repeated analyses provided analytical precision. Duplicate
samples provided sampling and analysis precision. Completeness was measured
in terms of percent of scheduled samples that resulted in valid samples,
beginning with the first valid site-specific sample collected and ending with
the last scheduled site-specific sample. Accuracy of NMOC concentrations was
reported as percent bias of audit samples referenced to an NIST SRM propane by
EPA-QAD.
4.1 INTRODUCTION AND CONCLUSIONS
Completeness for the 1989 NMOC study was 95.5 percent. This value
indicates that good communication and planning were maintained between the
site personnel and the laboratory personnel. Precision for the 1989 NMOC
study averaged 14.2% absolute percent difference of repeated analysis and
compared to 10.1% for the 1988 study, 9.61% for the 1987 study, 9.01% for the
1986 study, and 10% for the 1985 study. The absolute percent difference in
1989 was higher than in previous years and probably related to the fact that
the overall average NMOC concentration for 1989 was lower than in previous
years. For smaller values of NMOC concentrations, imprecision increases.
Bias of the Radian channels for the 1989 audit results ranged from
+1.3% to +4.5 percent. In 1987 the accuracy determined from the external
audit samples ranged from -2.9% to -0.06% and from 1.3% to 4.5% in 1988. In
1986 bias ranged from -0.52% to -3.3% and in 1985 bias ranged from -2.3% to
+5.2 percent.
An initial multipoint performance evaluation was done with propane
responses for each Radian channel. Twice daily calibration checks and daily
in-house propane QC samples monitored instrument and operator performance.
Duplicate site samples showed good overall sampling and analysis precision.
Data validation was performed on 14.5% of the 1989 NMOC data base, as
described later in this section.
Calibration and drift determinations showed that the instrumentation
was stable and that the calibration procedures were consistent. Canister
-------
cleanup results showed there was negligible carryover from one sample to the
next. In-house QC samples of propane demonstrated that the analytical systems
were in control.
Precision, accuracy, and completeness results for 1989 are comparar
to results from previous years and indicate that the data quality are good _.,u
meet all of the data quality objectives of the QAPP.2
4.2 CALIBRATION AND INSTRUMENT PERFORMANCE
Initial performance assessments for NMOC were conducted with propane.
Daily calibrations were checked with about-3.0 ppmC propane for the NMOC
measurements.
4.2.1 Performance Assessment
An initial performance assessment was done on each Radian channel,
using propane certified by EPA-QAD. EPA-QAD referenced the certified propane
to an NIST SRM No. 1666B propane. The concentration of the propane used in
the performance assessment ranged from 0.117 to 17.559 ppmC. The "zero" value
was determined using cleaned, dried air from the canister cleanup system
described in Section 3.0. Table 4-1 summarizes the performance assessments
below. The FID responses for propane are linear, having coefficients of
correlation from 0.999742 to 0.999998. Figures 4-1 through 4-4 show plots of
the NMOC performance results for Radian Channels A, B, C, and D, respectively.
The plots show the regression line.
4.2.2 Calibration Zero. Span, and Drift
Radian PDFID channels were tested twice daily for zero and span. Zero
readings were measured using cleaned, dried air. The zero air was supplied by
the same system that cleans air for the canister cleanup system. Span
readings used a mixture of about 3.0 ppmC propane in dry air. Calibration
factors were calculated from the span and zero readings for each Radian
channel. Initial calibration factors were determined in the morning before
any site samples were analyzed and final calibration factors were determir
in the afternoon after all the ambient air samples had been analyzed. Per
cah,171f 4-2
-------
TABLE 4-1. 1989 PERFORMANCE ASSESSMENT SUMMARY, RADIAN CHANNELS
Radian
Channel
A
B
C
D
Linear
Cases Intercept
5 1.0327
5 5.0703
5 -0.6076
5 0.4108
Rearession
Slope
3283.350
3245.779
3270.644
3271.665
Results*
Coefficient of
Correlation
0.999998
0.999944
0.999916
0.999742
'Figures 4-1 through 4-4 plot propane area counts vs. concentration in ppmC,
cah.Ulf 4.3
-------
! O
\
a:
£Q
LLJ
<
o
z I
o f
"11
LS
O o>
\J op
O
I
CO
Js
O
O
o
0>
C
CO
6
CO
o
CD
O
co
E
CL
O
O
O)
O
a.
QC
O
LL
O
CM
I
"tf
0
3
O)
LL
8
o
(O
CM
O
•
-------
CD
LU
™^
<
0
—» E
^7 CO
0 1
^^
-------
o\
\
0
1 ' x->
B
\
\
2 \
^f \>
\
O
"^ (D
Q !
1_ O)
<•§
^J
QC §
9|
\
\
\
\
X
\
\
\.
< i
0 3
0) 1
f- "
O
f^
• ! \
DC ^
— \
^ -,
0 : \
u_ . \
j \
; "\
\ \ \ i \ I ; i i ; i 1 i
d
O
"35
_s i
s
o
•t
W
-*— »
CO
0
*— K. ^~
9
-------
—I
LU
2
<^.
<
O
_ £
Z 2
Q !
1- 1
< 1
QC 1
DQ 2
i 8
— 1 o
< 1
O §
H -
21
o
QL
1
DC
O
LL
\
\
\
v v
\
>\
\
'\
\s
-\
\
\
\
\
\
\
^
! \
\
"\
1 ) j n i j p | r : - : —
111
L_J
0
E
CO
6
CO*
1— *-•
3
CO
o o
I
a o
^° 5 1
o | 1
8 o
C •*_
O 1—
o o
o a.
i 0
z O
rf^B
O
_ cvj
0 ^t
1
r-(-
^^
1 O
^
L co
LL
1
1
I
is
r' .
O
SSS888S8888S88
c,cvJcJcvJ^T:^T:T.doo-oci
(spussnom)
(sjunoo B9JV) euBdoj^ JQ| esuodsey
4-7
-------
calibration factor drifts were determined based on the initial calibration
factor. The data for zeros, calibration factors, and calibration factor
drifts are given in Appendix F for each Radian channel and each calendar day
of the analysis season. Figures 4-5 through 4-8 show plots for daily
calibration zeros for Radian Channels A, B, C, and D. Figures 4-9 through
4-12 show the daily calibration span data as a function of the 1989 Julian
date. Figures 4-13 through 4-16 show daily percent drift figures for the 1989
Julian dates. Inspection of the percent drift figures shows that the maximum
percent drift was 4.54. The average absolute % drift ranged from 0.483 for
Channel A to 0.673 for Channel D.
4.2.3 Calibration Drift
Summary calibration factor drift data are given in Table 4-2. The
table presents calibration factor drift, percent calibration factor drift, and
absolute percent calibration factor drift. Calibration factors were
calculated from an analysis of a propane-air mixture whose concentration was
known and was referenced by the EPA-QAD to an NIST SRM No. 1666B propane
reference standard as follows:
calibration = concentration of propane standard (ppm) x 3 ppmC/ppm
factor - (propane standard response (area counts) - zero response
(area counts))
Daily calibration factors ranged from 0.000293 ppmC/area count to
0.000334 ppmC/area count, depending on the channel. Maxima, minima, and mean
values are given in Table 4-2 for calibration factor drift and percent
calibration factor drift. If drift and percent drift are random variables and
normally distributed, the mean values would be expected to be zero. The means
shown in Table 4-2 for the drift and percent drift are approximately zero,
showing little bias overall, or for any channel. The overall mean values
shown in Table 4-2 were weighted according to the number of calibration drift
data for each channel. The last two columns of Table 4-2 show the means and
standard deviations of the absolute percent calibration factor drifts. The
fact that the standard deviations are the same order of magnitude as the means
indicates that the mean calibration factor drifts are not significantly
different from zero.
cah.!71f 4-8
-------
o
DC
LLJ
N
I
O
h-
<
QC
CO
O
Q
8
CM
O
6
g
o
CJ
\ o
r co
CM
8
O
CD
O
— CJ
3
03
CO
OJ
«
CM -2
g
0
c
§
CO
Q)
D)
LL
uoijejjueouoo
4-9
-------
1
- ! i
O
i
1
O CD
: "~ o
fc— C
r^. £
< 5
DC ?
O 1
• *0
-J C
<^
0
S-
x^
-J
<
Q
i
<
<3
<;
c
<
i
I
1
1
t
j
^
^
1
c
1
1
'
-8
CO
-8
CV1
r
1
8 8 o 8 5 g 5
0 d d d o o <
8-
m
eg UJ
"o
c
c^
2 *
"s 6
o"
O Q)
u C\| ftj
CM '^
c» §
co .2
/-T\ ^_^
o 2 -g
"8 1 .^
Q CO
i o
us
.8 ^ ^
i- CC
Q
o co
-£ i
^t
CD
- -^ D>
iZ
-
0
- CM
-8
\*^
3" .
?
uoiyejjueouoo
4-10
-------
0
OC
LJLJ
N
1
O o
H- I
< £
QC 2
am
1
i ™
1 flc
o
I
WHM
<;
Q
|
*
i
i
i
^
o
i
^
^
^
N>
1
^>
/V"*"^
^>
>
*
*
-
!
I
i
-8
CO
-8
Osl
h
O f*
r J >^^
OJ Q
0
^^
/1\
O >1)
-CM N
CM
O3 O
CO V-.
C * S
~ CM 5" rQ
€0 ^^^
o co
- c O
CO
« "S >i
O •=•> r^
l~ $5 co
Q
i
! o K
rs 4
h £
L° S
r- E
-
0
- C\J
-8
\*ft
T~
8 ° S S 5 8 g
o o 9 o
4-11
-------
O
QC
LU
N
I
O o
P I
< -^
QC =
O
Q
18
CO
L§
CM
- CO
CM
r
o>
CO
o>
(0
eo
0
o
c"
0
.g
"co
o
>>
'co
00
0
u.
D)
-8
§
CM
o
o
CO
o
o
4-12
-------
CL
CO
1
Q ?
*~ i
gj |
• ^ '
«M^J cr*
O
>
Q
*
j <
j
<&
1
^
«
1
<&
i
if
r
>
$
J5
^
-8
CO
-8
CM
-§ ^
eg ^
"o 1
- i co
cvj ^r
u O
c
o co
- CVI Q.
CVJ w
- 1 .i
-s :• £
^ to ^5
O 1=
c CO
.2 Q
o -^ -^
- co .£.*
"~ 'co
Q
-CD O)
^ 1
I
0 ^
^- O)
L.
T™
8
10
o o
(;unoo BQJB /
CVJ
o o o
esuodsaj
4-13
-------
^^^
Q.
CO
1
^
O eo
P 1
< g
DC =
CD -S
MM gg
I fr*
^-
O
^
^^™
.j
Q
<
^
^
j
^
i
*
I
f
1
J
^
j
i
>
>
a
%
I
%
X
^
0
- 00
; CNJ
-8 m
CM L"
CD
C
C
O CO
"s 6
c
~ CM 8"
oo .2
O) •«-•
2 " 2
- o c i=r
r ™ "I :g
Q CO
1 °
O -^ j^1
r ~ "jg
Q
O
h CO T-
•^ l
^
o 3
- 5 o>
L.
—
-§
R
CO
CM
o o
(;unoo eaJB /
o o o
JOJOBA asucxJsaj
4-14
-------
o
Q
Q.
CO
I
O
H-
<
rn 5
LU v
~~! m
—J cr
^§
CM
O
r «O
CM
-
o
- CM
CM
O)
CO
o
8 4
o
00
f-
I
O
o
CM
o
"55
c
6
CO
Q.
CO
.2
"cc
« O
g>
LL
co
CVJ
CM
(lunoo eajB /
esuodsej
4-15
-------
, i
z
CL
CO
I
z
0 o
F i
ct ^
eg 1
^•H! ^
O
-J
Q
j
<
<
1
1
^
-*,;
!
<^
i
i
^
^
<>
^
/
1
(
>
j
-8
CO
o
.
-5 ^
Q
O CM
_co ;jj
1
u 4
uo §
"~ O)
u_
O
8
(;unoo B8JB /
ssuodssj
4-16
-------
h-
LL
QC
Q
1-
21
LU
O
QC
LU
Q. <
1 c
c
z -^
Q |
< *
QC
GO
_i
O
^—
i
<"~""
Q
(
<
<
:>
o
*3
i
O <
0 <
<
>
j
\
V
1
-
D <
D <
^
UIJQV
4-
ks
c/
r
^>
^
=<>
s=^>
?
P**
>
t>
^^
^
r
Si
i
1
D <
D <
4
uaojsd
17
I
I
D <
O <
r- <
1
r CM
• —
O
- - O
1
o
- 00
1
1
0
i
o
?
1 —
o
- CM
\—
§
t ¥•
D 0
D 6
N CO
i i
^^
0)
C
CD
6
•>
*^r
•b
•s
0
o
k.
g Q-
2? c
. o
Q} ^3
5 CO
^J ^MB
C ^M
f "CD
~= o
-^»
'cc
Q
CO
T—
1
^
O
3
O)
IT
-------
; |
i
1
!
i
1 !
1
f_ I :
QC
0 i
K
Z
O
QC
LU
CL mi
' 1 i
^~™ o i
Q g
*™ IE '
^^
QC
£Q
^
O
^-
_J
< !
Q ;
i '
i
o o
o o
CO CM
*
4
s
<*
<;
<
i;
,'i
y
$>
u
Sf> i
%^:>
N^ '
\
f
x>
f
U;
^ i
>
1
>
j-
|e>
P
fc
1 :
|
1
1
0 O
o c>
T—
1
1
L 8
U
i
1
i O
- oo
CM
I
-
i O
1— CO
i CM
1
O
CM
I
; o
- CM
• CM
,
i O5
~ 00
C3
LS :•
i ^ "a
; Q
(0
o 3
I ~ °°
o
- CD
—
: °
•^
O
- CM
1 —
8
; i "
O 0
CM CO
1 1
CD
"0
c
CO
.C
O
•4— "
-4— '
CD
0
Q
Q.
.0
^•*
n
CC
o
_>.
'ca
Q
J
i
o
3
O)
LL
4-18
-------
LL.
or
Q
LU
O
or
LU
CL
I
o
<
Q
o
"53
a
o ?
CO
HT3
CO
< *
cc
CQ
L
u§
CM
O
CM
CM
1 O
- 00
o
- CD
o
CM
co
jD
to
O
to
o
o
i- CO
CM
—
O
1 — ^r
CM
0
C
c
CO
6
.
^
C
O
o
c
CO
o
'CO
Q
ID
I
^t
o
1_
3
O)
8
o
CO
o
CM
O
0
o
6
p
o
I
o
CM
I
O
co
4-19
-------
1
1
1 1 * i
cn
Q
h-
LU
O
QC
LJJ
Q. Q
1 1 '
o si
; — •«
f~" CE
^^
QC
CO
~
~™J
^^r
O
^^m
1
^•^
^^
Q
0
8
1
t
1
1
1
1
1
I
0
o
CM
C
f.
$
A
*
<^
^
t
^
^-*
f
_.__i
•^ =^ — .
O
o
T™
?o
*>
5
•v
{
f
^-A
2
?•
J3^
r
y>
'
&'
•
u
r
P>
>
I-:
'
\
\
o
o
!
i
0
0
1
Lg
1 CM
i-
1 0
CM
j
i
O
"~ CM
O
^ CM
O5
~ g
U8 rf
°" S
1 O
«- c
.2
0 ^
- 00
'r~
o
- ,
'CO
Q
•
CD
1
u_
3
O>
L.
4-20
-------
GO
_J
GO
UJ
U_
»— H
ce
o
ex:
o
0
>
GO cy
o
c
(0
(V
z
X
z:
c
f8
O)
C
•^
3^
) ^
t^. 4-
•— o
Q ""
X
o +->
(J 3
fQ O
Li. g_i
{H fQ
O OJ
-i- S_
*j .
VO "tJ" VO 1O
• • • •
0000
•o- in in m
10 in en o
rt CM CO VO
« o ^ «!r
to
Cn *S" CO ""^
CO CO ^f CO
o o o o
till
^s- in o CM
o o -i r-~
vo o <• m
en vo in co
CO CO ^- CM
itii
«r co *r ^r
,_^
r*H f— 1 1—4 f«4
till
CM — H CO !-•»
1-^ r«H !•_« |
1 1 1
VO VO CO CO
CO CO CO CO
< CQ O Q
^.
VO
r^
^.
•
0
^H
f^
0
VO
o
m
o
VO
**"
0
m
co
o
t
o
t— H
^»
in
^
i
,-j.
^^
^_,
t
co
i
00
co
,_
ro
s-
O)
o
cah.!71f
4-21
-------
Calibration factor drift was defined as final calibration factor for
the day, minus initial calibration factor. Percent calibration factor drift
was defined as the calibration factor drift divided by the initial calibration
factor, expressed as a percentage. The absolute percent calibration factor
drift is a measure of the calibration drift variability and averaged 0.607%
overall. The mean absolute percent calibration drift ranged from 0.484% for
Radian Channel B to 0.673% for Radian Channel D.
4.3 IN-HOUSE QC SAMPLES
In-house quality control samples were prepared daily except for one
day during the week on which duplicate local ambient samples were collected
for "round-robin" analyses. The local ambient samples were analyzed not only
by all Radian PDFID channels, but by the EPA-QAD instrument. Local ambient
sample results are presented and discussed in Section 4.4.4. In-house qua" ty
control samples were prepared by diluting dry propane with cleaned, dried air
using calibrated flowmeters. The propane used for the in-house quality
control samples was certified by the EPA-QAD against an NIST Reference
Standard. The concentration of the in-house standard ranged from about
0.020 ppmC to 18.000 ppmC, but was set to average near the concentration
levels that were being analyzed (0.100 to 3.000 ppmC). The analyst did not
know the concentration of the in-house standard prior to analysis.
The daily in-house QC data for each Radian channel are given in
Appendix G, and include:
Calendar date analyzed;
Julian -date for 1989;
Radian ID Number;
Calculated NMOC concentration in ppmC;
Measured NMOC concentration in ppmC;
Bias (measured NMOC-calculated NMOC); and
% Bias (Bias * 100 / calculated NMOC).
Measured versus calculated NMOC concentrations in Figures 4-17 th -ough
4-20 show excellent agreement. Table 4-3 summarizes the results of the linear
regressions for the Radian in-house quality control data, showing regression
intercepts near zero, and slopes and coefficients of correlation all near 1.0.
cah.Ulf 4-22
-------
o
o
CO
\
,-J \
\
\
\
\
CO
HI \
\
1 \
3 •
CO
LLJ
QC
0
O \
\
yj <
4HW O
CL S \
0
QC
CL
LJJ
CO
O
1
=
\
i X§L
i i ! 1 i i 1 i i i i t i i i i i i
888888888888888888
od'i^dinTfcocvir^doJodi^cbid^cocviT^
_
_8
CO
-
o ***
o —
- Q)
*~ C
CO
P"
_8 °.
CM -^2
o co
~ E 0
o ^-
_ ° c 0
o 5 J=
T~ eo C
'-So
1 ° 6 ^
T CO 0 "§
|^ s| CT
0 1 co
8 -^ =
•~ 2 1 5
0 1
-8 K
^ 1
-------
8
CO
8
PS2
8
CO
CO
LU
DC
O
O
DC
CL
LU
CO
CM
O
8 !
• o
o
g
8 3
o
_o
CO
o
CD
to
o
C/J
o
"o
0
°
CO
en
o
I
-9
CM
888888888888
88888
(Oiudd) uoj
3OWN
4-24
-------
IN-HOUSE PROPANE QC RESULTS
00
vy T
; \ _
\ L s
CO
1 \
\
_8
\ •<*•
\ i—
\
_ 8
CM
\ *-
[<
O
1 ' \°
1 1 o\ L- 8
6 1 \ ®
o
- o
1 to
,8
' -fl-
X\ . 8
^ CM
\
\"
\l §
i i i i i i 1 i , i i i i i ! i : , •
8888888888888888888
cor^coio^woj^ooicorsicoio^cocMi-o
Calculated NMOC Concentration (ppmC)
6
"o5
c
03
6
w
"5
co
O
"o
-t— '
o
o
>,
:n!
&
0)
CO
0
1
.C
0)
1
M-
0
0)
LL
(Qtudd) uo^BJiuaouoo QQNN
4-25
-------
00
LS
CO
h-
-J
CO
UJ
QC
o
a
QC
CL
LLJ
CO
a
CB
: 8
cv
L§
; 6
b"
I
CO
L8 o
<0
co
0
CD
C
c
03
6
"co
V
_8
o
CM
!
Tf
-------
TABLE 4-3. LINEAR REGRESSION PARAMETERS FOR IN-HOUSE
QUALITY CONTROL DATA
Radian
Channel
Cases
Intercept
Slope
Coefficient of
Correlation
A
B
C
D
51
51
51
51
-0.000182
0.005195
0.010023
0.001783
1.007578
1.004650
0.997043
1.002389
0.999184
0.999451
0.998786
0.998910
cah.!71f
4-27
-------
Tables 4-4 and 4-5 give statistics for in-house quality control
measurements. DIFF is the ppmC difference between the measured and the
calculated NMOC concentrations, and PCDIFF is the percentage of the difference
relative to the calculated value. Both DIFF and PCDIFF may be considered to
be bias terms, assuming that the calculated value is the correct NMOC
concentration for the in-house QC sample. Overall, PCDIFF shows a mean bias
of +1.27%, and ranges from -18.59% for Channel D to +31.45% for Channel B.
ADIFF and APCDIFF, absolute values of DIFF and PCDIFF, respectively, were used
as measures of precision. The absolute percent difference ranged from 4.69%
for Channel B to 5.46% for Channel D and averaged 5.02 percent. These figures
show excellent agreement and consistency for the in-house quality control data
and include variability not only in the instrumental analysis but also in the
apparatus and method used to generate the QC samples.
Figure 4-21 shows a stem-and-leaf plot of DIFF, the NMOC difference
between the calculated and measured in-house quality control samples. The
figure shows little skewness, and shows the differences to be approximately
normally distributed, which supports the assertion that DIFF is a random
variable. The normal distribution of DIFF also implies that there is no
significant bias among instrument channels.
4.4 REPEATED ANALYSES
Two types of repeated analyses were conducted in this study. The
first type of repeated analysis was conducted primarily to establish
precision, and to determine if significant differences in precision existed
among Radian (PDFID) channels, the EPA-QAD (PDFID) channel, and the EPA-AREAL
(GC/FID) channel. Two samples were selected daily from the received site
samples for a second analysis on a Radian channel on the following workday.
The second replicate analysis was performed on the day after the first
analysis to allow time for the ambient air sample in the canister to
equilibrate between analyses. At the beginning of the first analysis, the
pressure in the canister is typically about 15 psig. At the beginning of the
second analysis, the canister pressure is typically 9 psig.
cah.!71f 4-28
-------
TABLE 4-4. IN-HOUSE QUALITY CONTROL STATISTICS, BY RADIAN CHANNEL
Variables
Channel Statistics
A Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
B Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
C Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
D Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
DIFF*
50
-0.366000
0.794000
0.014020
0.157111
0.022219
2.131025
11.872723
50
-0.363000
0.582000
0.013920
0.127542
0.01037
1.322336
8.400402
50
-0.624000
0.590000
0.004480
0.187379
0.026499
-0.425886
5.955488
50
-0.566000
0.845000
0.006260
0.177757
0.025139
1.321056
10.808134
ADIFF6
50
0.000000
0.794000
0.069708
0.141160
0.019963
3.391473
12.754924
50
0.000000
0.582000
0.061368
0.112348
0.015888
2.897890
8.709848
50
0.000000
0.624000
0.084248
0.166999
0.023617
2.450505
4.513826
50
0.000000
0.845000
0.079188
0.158869
0.022467
3.244163
10.828937
aDIFF = Measured NMOC concentration - Calculated NMOC
bADIFF = Absolute value
CPCDIFF = DIFF/calculated
dAPCDIFF = Absolute value
of DIFF.
NMOC concentrati
of PCDIFF.
on x 100.
PCDIFFC
50
-10.345000
28.390000
1.024200
6.701800
0.947778
1.641115
4.359463
50
-11.077000
31.453000
1.560380
7.485092
1.058552
1.696878
4.414086
50
-9.677000
28.936000
1.320620
7.300220
1.032407
1.588367
3.862143
50
-18.593000
25.828000
1.207040
7.722464
1.092121
0.841692
2.023071
concentrati
APCDIFFd
50
0.000000
28.389830
4.698099
4.843689
2.846198
2.846198
10.374671
50
0.000000
31.453360
4.919399
5.815267
0.822403
2.664036
7.989274
50
0.000000
28.936170
5.000242
5.436925
0.768897
2.604469
8.131657
50
0.000000
25.827810
5.458642
5.542515
0.783830
1.956190
3.797688
on, ppmC.
cah.!71f
4-29
-------
TABLE 4-5. OVERALL IN-HOUSE QUALITY CONTROL STATISTICS
Statistics
UIFF"
ADIFFb
PCDIFFC
APCDIFFd
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
200
-0.624000
0.845000
0.009670
0.162874
0.011517
0.864308
9.773681
200
0.000000
0.845000
0.073628
0.145512
0.010289
3.068350
9.571014
200
200
-18.593000 0.000000
31.453000 31.453360
1.278060
7.259442
0.513320
].417151
3.620947
5.019096
5.387349
0.380943
2.508747
7.379894
aDIFF
"ADIFF
CPCDIFF
dAPCDIFF
Measured NMOC concentration - Calculated NMOC concentration, cpiC
Absolute value of DIFF.
DIFF/calculated NMOC concentration x 100.
Absolute value of PCDIFF.
cah.!71f
4-30
-------
•56
-38
-33
-11
-6
-5
-4
-3
-2
-1 H
-0 M
0
1
2 H
3
4
5
6
7
8
8
9
10
13
14
19
22
25
31
37
38
56
58
59
79
84
6666
9899
6666
1
3
8543
99320
98776411
9976544442
99999866443222111100
99999999998888777665444443333332211 111
0000001112222345689
00001 22222 33333 35555 799
0112444456899
06999999
03788889
027
7
17
11114
5
8
3
46
56
2
34
2
8
2
3
4
2
0
4
5
Cases
Minimum
Maximum
Mean
DIFF. ppmC
200
-0.566
0.845
0.007
Standard Deviation 0. 1 67
Standard Error
Skewness
Kurtosis
Lower Hinge (H)
Median (M)
Upper Hinge (H)
0.012
0.708
9.041
-0.014
0.000
0.026
EC
CO
m
o
Figure 4-21. Stem-and-leaf plot of in-house quality control differences.
4-31
-------
The QAPP2 specified which Radian channels were selected for the
repeated analyses, so that all combinations of channel pairs, i.e., A-A, B-B,
B-C, A-D, etc., would be salected randomly. The EPA-QAD and the EPA-AREAL
channels randomly repeated analyses of the site samples already analyzed once
by Radian. Shortly after the beginning of the 1988 NMOC Monitoring Program,
the decision was made by Radian and the EPA to do repeatec analyses only on
duplicate samples, and to have the second analysis, not only on the day after
the first analysis, but also on the same Radian channel as the first analysis.
The purpose of the latter specification on replicate analyses was to avoid any
bias that may be caused by a different analysis channel. None of the site
samples selected for repeated analyses by Radian channels was analyzed a third
time by an EPA channel.
All replicate analyses were performed on duplicate samples, but not
all the analyses on duplicate samples were replicated. Each analysis
consisted of two or three consecutive injections from a canister that was
connected to the GC. After the first analysis, the canister valve was close"
the canister was disconnected from the GC, and the canister was stored at
laboratory temperature overnight. The second replicate analysis on the sample
in the canister was performed on the next day, or the following Monday if the
first analysis was on Friday. Replicate analyses were performed on the same
analytical channel, i.e., Radian Channel A, B, C, or D, for a given duplicate
sample. By conducting repeated analyses of the duplicate samples it was
possible to investigate the relative magnitude of the duplicate sampling
precision and the analytical precision. The results for this investigation
are given in Section 4.5.3.
The second type of comparative analysis was done on local - Dient
samples collected by EPA-QAD personnel in Raleigh, in Research Tri gle Park,
or near Research Triangle Park, North Carolina. These samples were taken once
weekly in duplicate at an initial pressure of about 35 psig. Each local
ambient sample, called a round-robin sample, was analyzed by all four Radian
channels and the EPA-QAD channel. One of the duplicate round-robin samples
was analyzed first in the Radian laboratory while the other duplicate round-
robin sample was analyzed first in the EPA laboratories. Upon completion of
cah.l/lf 4-32
-------
the analyses, the laboratories exchanged canisters and analyzed the other
duplicate sample on all channels. The purposes of these studies were:
to determine if the order of analysis by one laboratory or
channel made a significant difference in the measured NMOC
value;
to compare the precision of all the channels;
to compare the PDFID method of analysis with the GC/FID
speciated method of analysis; and
to compare the results among Radian channels.
4.4.1 Site Sample Results
Figure 4-22 compares the EPA-QAD analyses with Radian analyses of the
same site samples. Figure 4-23 compares the EPA-AREAL analyses with Radian
analyses. Figure 4-24 compares AREAL analyses with QAD analyses. Orthogonal
regression parameters for the three data sets are summarized in Table 4-6.
Summary statistics of the comparative analyses for Radian channels
versus the EPA-QAD channel are given in Table 4-7. The table gives DIFF, the
difference between the Radian NMOC concentration and the QAD NMOC
concentration in ppmC; and PDIFF, the percent difference relative to the mean
of the Radian and QAD analyses. ADIFF and APDIFF are the absolute values of
DIFF and PDIFF, respectively. The mean percent difference shows Radian NMOC
concentrations to average 11.11% higher than the QAD NMOC concentration. This
is an average bias figure for the Radian analyses relative to a mean NMOC
concentration. The average absolute percent difference is 13.92, which is a
measure of the precision.
In 1985, the mean percent difference showed Radian NMOC concentrations
to average 0.49% higher than QAD, and 3.77 lower in 1986. In 1987, the mean
percent differences showed Radian concentrations to average 4.48% lower than
the QAD NMOC concentration. In 1988, the difference was shown to be
1.674 percent. The average absolute percent difference was 10.5% in 1985,
14.8% in 1986, 14.07% in 1987 and 11.76% in 1988. The agreement among the
precision results is good, and shows that the instruments and operating
procedures were consistent for those years.
cah.Ulf 4-33
-------
8
o
CO
CD
CO
_>
CO
CO
O
O
DC
O
O .i
o
O i
O I
•^ £
O)
00
8
CO
_ o "5
_8
o
in
CO
8
CO
8
cvi
8
CM
.CO
CO
DC
^—»
Q
a
Q.
O
O
g
'co
CO
Q)
O)
co
O
05
O
CM
CM
4
O
2>
u_
UOIJBJVJSOUOO OOWN
4-34
-------
o
o
r
o
_ p
I CO
CO
0)
co
>>
CO
CO
c
CO
'o
en
(T
DC
O
/^M
DC
O
V— /
O
co
O)
00
GD
o
a
c
.g
"3
-------
CO
O
CO
J>t
CO
CO
O
O
00
G)
QC
O
o .si
r*- « !
QC si
Q. bi
o
O I,
o ii
T.
O
\o
c
O
(•"I
5
^
o
c\
T~
o
^
§
o
o
CD
O
O
TT
o
o"
I
J
"ra
O
Q
D
^
0
LLJ
QC
-------
TABLE 4-6. ORTHOGONAL REGRESSION PARAMETERS FOR
REPEATED ANALYSES OF SITE SAMPLES
Channel
Pair
(X-Y)
Cases
Intercept
Slope
Coefficient of
Correlation
QAD-Radian
Radian-QAD
ASRL-Radian
Radian-ASRL
QAO-ASRL
ASRL-QAD
265
265
20
20
12
12
•0.041230
0.040208
•0.136310
0.124140
0.069707
•0.074660
1.025452
0.975179
1.098092
0.910670
0.933637
1.091079
0.995083
0.995083
0.995908
0.995908
0.9075807
0.975807
cah.!71f
4-37
-------
TABLE 4-7. SUMMARY STATISTICS OF COMPARITIVE ANALYSES
FOR RADIAN vs. QAD CHANNELS
Variables
Statistics
Cases
Minimum
Maximum
Mean
Standard
Standard
Skewness
Kurtosis
DIFF =
ADIFF =
RDIFF =
APDIFF =
Dev.
Error
Radian NMOC
Absolute val
DIFF
265
-0.44600
0.24200
-0.02736
0.05834
0.00358
-1.79171
15.79171
concentrati
ue of DIFF.
DIFF/ ((Radian NMOC cone
Absolute value of PDIFF
ADIFF
265
0.00000
0.44600
0.04281
0.04812
0.00296
4.25502
26.35624
on - QAD NMOC
. + QAD NMOC
PDIFF
265
-113.20750
48.27590
-11.11275
16.83605
1.03423
-1.54763
7.94459
cocentrati
conc.)/2) x
APDIFF
265
0.00000
113.20750
13.92022
14.59133
0.89634
2.65780
12.16767
on., ppmC.
100.
cah.Ulf
4-38
-------
Summary statistics are given for the same data in Table 4-8 by Radian
channel. The data show a mean absolute percent difference ranging from
10.12% for Channel A to 20.29% for Channel B. The mean percent differences
range from -18.05% for Channel B to -6.16% for Channel C.
Table 4-9 summarizes statistics for comparative analyses for Radian
channels versus AREAL channels. DIFF is the difference between the NMOC
values determined by Radian channels and the NMOC values determined by AREAL.
PDIFF averages 12.17%, although DIFF appears to be symmetrical about
zero. APDIFF is 0.07%, which is lower than the APDELTA mean of 16.75% for
1988 and 15.88% for 1987. Table 4-10 compares Radian NMOC analyses with AREAL
NMOC analyses, by Radian channels. APCOIFF values are 0.08%, 0.07%, 0.06%,
and 0.07% comparing the AREAL channel with Radian Channels A, B, C, and D,
respectively. PCDIFF averages are 19.06%, 11.46%, 8.17%, and 11.60% for AREAL
versus Radian Channels A, B, C, and D, respectively.
Table 4-11 compares repeated analyses of site samples by the EPA-
AREAL GC/FID instrument and the EPA-QAD PDFID instrument. The results show
that PDELTA averaged 1.97%, while APDIFF averaged 7.85 percent. The table
shows that the AREAL concentrations average 1.97% lower than the QAD
concentrations. Radian concentrations were 11.11% higher than QAD
concentrations. APDIFF between AREAL and QAD concentrations averaged 7.85%,
whereas APDIFF for Radian and QAD concentrations averaged 13.92 percent.
Of NMOC concentration measurements, the comparison between Radian and
the EPA-QAD channel represents between-laboratory comparisons for the PDFID
method. Comparisons between the Radian channels and the EPA-AREAL channel are
between-laboratory and between-method comparisons.
Table 4-12 summarizes statistics for repeated analyses on Radian
channels. The QAPP2 specified the channel pair to be involved with the
repeated analysis each day. The mean APDIFF was the average percent
difference between the second and the first analysis and was 8.24% for the
overall data set. Table 4-13 shows the statistics for repeated analyses by
Radian channel pairs. Table 4-14 gives the 95% confidence intervals for the
mean differences by channel pairs. Figure 4-25 plots the means and 95%
confidence intervals listed in Table 4-14. The circles on Figure 4-25 locate
the mean difference for each channel pair. The vertical lines span the 95%
confidence intervals of the mean differences.
cah.!71f 4-39
-------
TABLE 4-8. SUMMARY STATISTICS OF COMPARITIVE ANALYSES
FOR RADIAN vs. QAD CHANNELS, BY RADIAN CHANNELS
Variables
Channel
A
B
C
D
DIFF
ADIFF
PDIFF
APDIFF
Statistics
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
DIFF
60
-0.10100
0.04200
-0.02549
0.02940
0.00380
-0.21880
-0.09862
61
-0.44600
0.18700
-0.04782
0.09045
0.01158
-1.99550
7.26511
72
-0.10900
0.24200
-0.00757
0.05563
0.00656
1.71269
4.83983
72
-0.11800
0.12400
-0.03136
0.03395
0.00400
1.26306
5.17016
ADIFF
60
0.00000
0.10100
0.03033
0.02429
0.00314
0.78384
-0.00006
61
0.00100
0.44600
0.06251
0.08083
0.01035
2.93039
9.40849
72
0.00200
0.24200
0.04021
0.03891
0.00459
2.40902
8.62397
72
0.00200
0.12400
0.03914
0.02443
0.00288
1.19681
1.99452
PCDIFF
60
-43.98340
33.96230
-8.21561
12.37010
1.59697
-0.32503
2.09816
61
-113.20750
24.00000
-18.05073
23.91893
3.06250
-1.80325
4.64537
72
-45.16130
48.27590
-6.16318
14.86087
1.75137
0.12394
2.2.5045
72
-41.69180
24.00000
-12.59858
12.12244
1.42864
-0.08203
0.15337
APCDIFF
60
0.00000
43.98340
10.11860
10.84151
1.39963
1.32669
0.92462
61
0.54790
113.20750
20.28806
22.02065
2.81946
2.26822
6.23438
72
0.47960
48.27590
11.64860
11.03469
1.30045
1.59574
2.29043
72
0.65250
41.69180
13.96490
10.49516
1.23687
0.66097
-0.48202
= Radian NMOC concentration - QAD concentration, ppmC.
= Absolute value of DIFF.
= DIFF/( (Radian NMOC
= Absolute value of
cone. + QAD
PDIFF.
NMOC cone.
)/2) x 100.
cah.!71f
4-40
-------
TABLE 4-9. SUMMARY STATISTICS OF COMPARATIVE ANALYSES
FOR RADIAN VS. AREAL CHANNELS
Variables
Statistics
Cases
Minimum
Maximum
Mean
Standard Dev.
Standard Error
Skewness
Kurtosis
DIFF
29
-0.08800
0.14200
0.05245
0.06287
0.01168
-0.54910
-0.91669
ADIFF
29
0.00000
0.14200
0.07114
0.03951
0.00734
-0.11230
-1.12904
PDIFF
29
-5.55560
63.67710
12.17135
15.58129
2.89337
1.42100
2.49849
APDIFF
29
0.00000
63.67710
13.95619
13.94552
2.58962
1.90813
4.06895
DIFF - Radian NMOC concentration - AREAL NMOC cocentration, ppmC.
ADIFF = Absolute value of DIFF.
PDIFF = DIFF/((Radian NMOC cone. + AREAL NMOC conc.)/2) x 100.
APDIFF = Absolute value of PDIFF.
cah.Ulf
4-41
-------
TABLE 4-10.
SUMMARY STATISTICS OF COMPARATIVE ANALYSES
FOR RADIAN vs. AREAL CHANNELS, BY RADIAN CHANNELS
Variables
Channel Statistics DIFF
A
B
C
D
Cases 6
Minimum -0.03200
Maximum 0.14200
Mean 0.06000
Std. Dev. 0.07009
Std. Error 0.02862
Skewness -0.35565
Kurtosis -1.40392
Cases 6
Minimum -0.03500
Maximum 0.11800
Mean 0.05117
Std. Dev. 0.06679
Std. Error 0.02727
Skewness -0.27044
Kurtosis -1.60276
Cases 8
Minimum -0.04400
Maximum 0.11200
Mean 0.04988
Std. Dev. 0.05614
Std. Error 0.01985
Skewness -0.62645
Kurtosis -1.03630
Cases 9
Minimum -0.08800
Maximum 0.13200
Mean 0.05056
Std. Dev. 0.07187
Std. Error 0.02396
Skewness -0.77532
Kurtosis -0.54871
AD IFF
6
0.01800
0.14200
0.07667
0.04669
0.01906
0.05469
-1.21784
6
0.01800
0.11800
0.06883
0.04378
0.01787
0.05503
-1.75274
8
0.01700
0.11200
0.06513
0.03388
0.01198
-0.12212
-1.35774
9
0.00000
0.13200
0.07433
0.04271
0.01424
-0.53598
-0.73919
PCDIFF
6
-5.55560
63.67710
19.06332
25.50778
10.41351
0.87667
-0.42442
6
-3.37020
43.90240
11.46360
17.64351
7.20293
1.08985
-0.01560
8
-2.99030
27.25880
8.17445
9.88906
3.49631
0.72587
-0.20380
9
-4.79300
20.81130
11.60134
10.51643
3.50548
-0.69804
-1.38054
APCDIFF
6
1.74760
63.67710
21.49772
23.06852
9.41768
1.12737
-0.11732
6
3.16340
43.90240
13.64147
15.67428
6.39900
1.39529
0.46362
8
2.41630
27.25880
9..52610
8,,39349
2. ,96755
1.24650
0.48578
9
0.00000
20.81130
13.07619
8.34567
2.78189
-0.69006
-1.32778
DIFF = Radian NMOC concentration - AREAL concentration, ppmC.
ADIFF = Absolute value-of DIFF.
PDIFF = DIFF/((Radian NMOC cone. + AREAL NMOC conc.)/2) x 100.
APDIFF = Absolute value of PDIFF.
cah.!71f
4-42
-------
TABLE 4-11. SUMMARY STATISTICS OF COMPARATIVE ANALYSES
FOR QAD VS. AREAL CHANNELS
Variables
Statistics
Cases
Minimum
Maximum
Mean
Standard Dev.
Standard Error
Skewness
Kurtosis
DIFF
12
-0.21000
0.19900
0.00483
0.11364
0.03281
-0.50045
-0.10199
ADIFF
12
0.00900
0.21000
0.08250
0.07426
0.02144
0.75914
-0.94496
PDIFF
12
-16.74640
16.19860
1.96783
9.57992
2.76549
-0.37075
-0.52788
APDIFF
12
0.88890
16.74640
7.84682
5.36929
1.54998
0.55157
-1.12745
DIFF = QAD NMOC concentration - AREAL NMOC cocentration, ppmC.
ADIFF = Absolute value of DIFF.
PDIFF = DIFF/((QAD NMOC cone. + AREAL NMOC conc.)/2) x 100.
APDIFF = Absolute value of PDIFF.
cah.!71f
4-43
-------
TABLE 4-12. SUMMARY STATISTICS FOR COMPARATIVE ANALYSES
ON RADIAN CHANNELS
Statistics
.Variables
DIFF
AD IFF
PDIFF
APDIFF
Cases
Minimum
Maximum
Mean
Standard Dev.
Standard Error
Skewness
Kurtosis
156
-0.18600
0.26800
0.00174
0.05571
0.00446
0.98957
8.08381
156
0.00000
0.26800
0.03172
0.04576
0.00366
3.01029
10.12834
156
-76.99115
57.09156
-0.01912
14.68051
1.17538
-0.40132
9.41101
156
C. 00000
76.99115
8.24163
12.13075
0.97124
3.26699
11.71517
DIFF = NMOC concentration on Channel Y - NMOC concentration on
Channel X, ppmC.
ADIFF = Absolute value of DIFF.
PDIFF = DIFF/((NMOC concentration on Channel Y + NMOC concentration
on Channel X)/2) x 100.
APDIFF = Absolute value of PDIFF.
cah.l71f
4-44
-------
TABLE 4-13.
SUMMARY STATISTICS FOR COMPARATIVE ANALYSES
ON RADIAN CHANNELS, BY CHANNEL PAIRS
Variables
Channel
Pair Statistics
DIFF
ADIFF
PCDIFF
APCDIFF
A-A
B-A
B-B
C-C
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
32
-0
0
0
0
0
2
10
1
-0
-0
-0
42
-0
0
0
0
0
0
4
45
-0
0
-0
0
0
-0
0
.03500
.20100
.00947
.04263
.00754
.94114
.83975
.02200
.02200
.02200
_
-
-
-
.18600
.26800
.00219
.08292
.01280
.73208
.07878
.12900
.07700
.01024
.04070
.00607
.65008
.96431
32
0
0
0
0
0
3
16
1
0
0
0
42
0
0
0
0
0
2
3
45
0
0
0
0
0
1
1
.00100
.20100
.02484
.03567
.00631
.92627
.89304
.02200
.02200
.02200
_
-
.
-
.00100
.26800
.04490
.06939
.01071
.10357
.33338
.00100
.12900
.02900
.03007
.00448
.42338
.69111
32
-18.
54.
1.
11.
2.
2.
10.
1
-14.
-14.
-14.
42
-76.
57.
-1.
22.
3.
-1.
3.
45
-24.
16.
-1.
8.
1.
-0.
0.
68512
25101
55887
91380
10608
62901
17673
37908
37908
37908
.
-
.
-
99115
02128
00282
30106
44113
01309
67384
73118
11805
37861
68004
29394
39580
30422
•
32
0
54
7
9
1
4
17
1
14
14
14
42
0
76
12
18
2
1
3
45
0
24
6
5
0
1
0
.19066
.25101
.33285
.43090
.66716
.03023
.52028
.37908
.37908
.37908
.
-
.
-
.22247
.99115
.19596
.60102
.87020
.99297
.06927
.31104
.73118
.48480
.85478
.87278
.10550
.88705
(Continued)
cah.Ulf
4-45
-------
TABLE 4-13. (Continued)
Variables
Channel
Pair Statistics DIFF
ADIFF
PCDIFF
APCDIFF
C-D
D-B
D-D
DIFF
ADIFF
PDIFF
APDIFF
Cases 1 1
Minimum -0.01800 0.01800
Maximum -0.01800 0.01800
Mean -0.01800 0.01800
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases 1 1
Minimum 0.15900 0.15900
Maximum 0.15900 0.15900
Mean 0.15900 0.15900
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases 34 34
Minimum -0.05200 0.00000
Maximum 0.09700 0.09700
Mean 0.00641 0.02247
Std. Dev. 0.03260 0.02419
Std. Error 0.00559 0.00415
Skewness 0.98416 1.54196
Kurtosis 1.02816 1.74113
1
-2.52809
-2.52809
-2.52809
-
-
-
-
1
57.09156
57.09156
57.09156
-
.
.
-
34
17.87709
19.67621
0.32662
7.00108
1.20068
0.22654
1.10642
1
2.52809
2.52809
2.52809
-
-
-
-
1
57.09156
57.09156
57.09156
-
-
-
-
34
0.00000
19.67621
5.08818
4.73824
0.81260
1.43498
2.04483
= NMOC concentration on Channel X - NMOC concentration on
Channel Y, ppmC.
= Absolute value of DIFF.
= DIFF/((NMOC concentration on Channel
Channel Y)/2) x 100.
= Absolute value of PDIFF.
X + NMOC
concentration on
cah.Hlf
4-46
-------
TABLE 4-14. 95% CONFIDENCE INTERVALS FOR MEAN DELTA,
REPEATED ANALYSES
Channel
Pair
A-A
B-B
C-C
D-D
Mean
Difference
(ppmC)
0.00947
0.00219
-0.01024
0.00641
Standard
Deviation
(ppmC)
0.04263
0.08292
0.04070
0.03260
95% Confidence
Intervals
Cases
32
42
45
34
*0.975,n-l
2.040
2.020
2.017
2.036
Upper Lower
0.02484
0.02804
0.00200
0.01779
-0.00590
-0.02366
-0.02248
-0.00497
to.9?5,n-i = Student's t-statistic for 95% confidence interval,
where n = the number of cases in mean DIFF.
cah.!71f
4-47
-------
.£2
~CO C
^ CO CM »-
D 0 O 0 O €
D d d d d c
I I i i
3 5 g S S
30000
<
o>
o
9
5
O
O
c
CO
>
O —
CD
O
CD
O
O
ID
C\J
Z3
O>
u.
(Qtudd)
4-48
-------
4.4.2 Quality Control Chart
A quality control chart was developed for the 1989 replicate analyses
and is shown in Figure 4-26. The control chart plots percent difference for
the replicate analyses versus Julian date, 1989. The mean line, /x, which is
nearly coincident with zero, and two sets of horizontal control lines are
shown. Control lines at ^±2a and /i±3a are shown on the quality control chart.
The percent difference for the control chart is defined as:
% difference = ((NMOC for 2nd analysis - NMOC for 1st analysis) /
(Mean NMOC for both analyses)) * 100.
The 2-a limits, i.e., M±2a, are termed the warning limits; the 3-a
limits, ju±3ff, are called the control limits. The control chart was consulted
frequently to see if consecutive replicate determinations were outside the
warning or control limits. In only one instance, about 1989 Julian date 270,
did consecutive determinations occur outside the warning limits or control
limits. More than two consecutive determinations outside the warning limits
or the 3-a limits give some cause for concern and may indicate that something
is out of control in the sampling and/or analytical system. As seen in the
control chart, in no case was the sampling and/or analytical system out of
control. To investigate the nature of the imprecision, or percent difference,
the data were examined to determine if percent difference was a function of
the average NMOC concentration level. This analysis is given in
Section 4.4.3.
4.4.3 Precision Profile
The replicate percent differences were plotted against average NMOC
concentration for the replicate pair, and are shown in Figure 4-27. It is
clear from the figure that as the NMOC concentration decreases, the
imprecision increases. One of the major causes of imprecision at lower
concentrations is instrument noise. Since instrument noise is essentially
independent of NMOC concentration, the portion of response attributed to noise
increases at lower NMOC concentrations. These facts combine to show an
increased imprecision at lower NMOC concentrations.
cah.Ulf 4-49
-------
888888888888888888888
Soddo'ddddoddddcioodddcJ
ooor^toio^-cocvjf- •^,
CO
CO
O
O
I I I I I I I I I T-
I
_o
II
CD
CD
O
P
CD
TJ
+->
o
CD
Q.
CO
JZ
O
"5
O
o
CO
a
CD
CM
I
^r
CD
D
O)
4-50
-------
u
o
o
O>
CO
l_
CD
>
co
D)
~
CO
Q.
I O
8 g
w £
S^
CO .**=
CO C
15 CD
c Q.
CO ^
o ••§
o $
CD £?
•*-> -»5
CO ^
O CD
QC 5
c\j
i
o
O)
L.
4-51
-------
The NMOC concentration and percent difference for 156 replicate
analyses were sorted by NMOC concentration and divided into the eleven NMOC
size groups shown in Table 4-15. In the table, below 1.0 ppmC, the size
increments are 0.100 ppmC, and show average NMOC concentration (assuming
random variable, normally distributed), minimum percent difference, average
percent difference, average absolute percent difference, and maximum percent
difference for each NMOC size group. The data in the table are plotted in
Figures 4-28 and 4-29.
Figure 4-28 shows large fluctuations of average percent difference at
the lower NMOC concentrations. At higher NMOC concentrations, the average
percent difference is below 2.0 percent. A more striking profile of the
replicate precision is seen in Figure 4-29 in which average absolute percent
difference is shown to decrease dramatically as the NMOC concentration
increases. When the NMOC concentration increases above 0..75 ppmC, the average
absolute percent difference levels off at about 3 to 4 percent. Overall
average absolute percent difference for all 156 replicates is seen
(Figure 4-29) to be about 8.24 percent, which is a very good precision.
This analysis shows that as the NMOC concentration decreases the
imprecision of the measurement increases dramatically. Similar results are
universally found in analytical instrumentation.
4.4.4 Local Ambient Samples
Table 4-16 presents the overall statistics for local ambient samples.
These data include comparisons among Radian channels and EPA channels. The
mean differences and the mean percent differences are both relatively small,
which indicates that they are random variables. The overall mean absolute
percent difference (APDIFF) is 11.05%, which is slightly higher than the
precision for repeated analyses (8.24%).
Table 4-17 presents the same information comparing each Radian channel
to the QAD results and to other Radian channels. Note from the definition of
percent difference, PCDIFF, in this table that the Radian-QAD comparisons are
different from a definition of bias, using QAD as the reference. The
statistic used to normalize PCDIFF in Table 4-17 is the average of the Radian
NMOC and the QAD NMOC, whereas for a bias term, the QAD NMOC is used to
normalize the PCDIFF.
cah.Ulf 4-52
-------
TABLE 4-15. 1989 NMOC REPLICATE IMPRECISION
Cases
9
31
18
21
17
17
8
11
5
12
7
Overall
NMOC
Range
0.000-0.099
0.100-0.199
0.200-0.299
0.300-0.399
0.400-0.499
0.500-0.599
0.600-0.699
0.700-0.799
0.800-0.999
1.000-1.499
1.500-1.999
Average
NMOC
ppmC
0.050
0.150
0.250
0.350
0.450
0.550
0.650
0.750
0.900
1.250
1.750
Minimum
% DIFF
-30.168
-24.731
-76.991
-55.689
-18.667
-26.170
-10.353
-2.667
-6.460
-10.267
-5.938
-76.991
Average
%DIFF
-0.265
-2.005
-0.564
-1.888
5.284
-0.908
3.951
2.402
-1.397
-0.852
-0.552
-0.019
Absolute
%DIFF
9.788
7.953
12.651
12.446
10.832
5.120
10.117
4.084
2.108
3.191
2.302
8.242
Maximum
%DIFF
15.873
24.289
57.092
54.251
57.021
13.169
42.718
10.837
0.620
6.664
3.126
57.092
cah.!71f 4-53
-------
CD
CD
>
CD CD
.S
i_
r
0
L_
0;
si
«a
CO O)
'« 2
>« CD
"co >
c CD
CD
C
.O
'•+—'
CD
CD "S
O CD
^ g
CD §
oc 8
00
C\J
4
CD
g>
LL
%
4-54
-------
0
0
=
0-3
« "o
^ w
s-g
Q TO
>- 0
CO O)
'co 2
>i Q
CO >
C CO
o
-*-•
CO
CO "c
O 0
CNJ
i
0
D)
LL
% sjnpsqv
4-55
-------
TABLE 4-16. OVERALL STATISTICS FOR LOCAL AMBIENT SAMPLES
Statistics
Variables
DIFF
ADIFF
PDIFF
APDIFF
Cases
Minimum
Maximum
Mean
Standard Dev.
Standard Error
Skewness
Kurtosis
280
-0.14600
0.12850
-0.00495
0.03593
0.00217
0.36379
3.86291
280
0.00000
0.14600
0.02390
0.02724
0.00164
2.11966
4.82087
280
-63.47830
53.. 95350
-3.23343
15.68687
0.94595
0.10861
2.45216
280
0.00000
63.47830
11.05245
11.57448
0.69797
1.74367
2.96128
DIFF = NMOC concentration on Channel Y - NMOC concentration on
Channel X, ppmC.
ADIFF = Absolute value of DIFF.
PDIFF = DIFF/((NMOC concentration on Channel Y + NMOC concentration on
Channel X)/2) x 100.
APDIFF = Absolute value of PDIFF.
cah.!71f
4-56
-------
TABLE 4-17.
STATISTICS FOR LOCAL AMBIENT SAMPLES,
BY CHANNEL PAIR
Variables
Channel
Pair
(X-Y) Statistics
DIFF
ADIFF
PCDIFF
APCDIFF
A-QAD
B-QAD
C-QAD
-
D-QAD
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
28
-0.
0.
-0.
0.
0.
-1.
1.
28
-0.
0.
-0.
0.
0.
-1.
2.
28
-0.
0.
-0.
0.
0.
2.
5.
28
-0.
0.
-0.
0.
0.
0.
2.
10100
00900
02130
02596
00491
36534
65481
14600
05400
02886
04050
00765
33754
32637
06200
10400
01146
03115
00589
02745
33011
06600
04390
02561
02186
00413
89638
15813
28
0.
0.
0.
0.
0.
1.
2.
28
0.
0.
0.
0.
0.
1.
2.
28
0.
0.
0.
0.
0.
1.
4.
28
0.
0.
0.
0.
0.
0.
-0.
00000
10100
02288
02454
00464
57932
19975
00100
14600
03314
03695
00698
86631
73998
00200
10400
02482
02162
00409
88683
60223
00200
06600
02932
01634
00309
38031
25904
28
-48.
33.
-8.
15.
2.
-0.
1.
28
-63.
24.
-13.
17.
3.
-0.
1.
28
-43.
48.
-7.
16.
3.
0.
3.
28
-30.
24.
-11.
12.
2.
0.
1.
98340
96230
83435
14308
86177
12444
62467
47830
00000
89000
58961
32412
82276
26396
35660
27590
32042
52604
12313
95764
24719
53440
00000
53140
02604
27271
73319
08097
28
0.
43.
11.
12.
2.
1.
0.
28
0.
63.
16.
15.
2.
1.
1.
28
0.
48.
13.
12.
2.
1.
1.
28
2.
30.
14.
8.
1.
0.
-1.
00000
98340
67844
99276
45540
18721
14101
54790
47830
12552
48576
92653
41816
63055
47960
27590
14589
22573
31045
41498
47351
11360
53440
18255
59821
62491
48702
13109
(Continued)
cah.Hlf
4-57
-------
TABLE 4-17. (Continued)
Channel
Pair
(X-Y) Statistics
Variables
DIFF
AD IFF
PCDIFF
APCDIFF
B-A
C-A
C-B
C-D
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
28
-0
0
-0
0
0
-1
3
28
-0
0
0
0
0
1
3
28
-0
0
0
0
0
1
0
28
-0
0
0
0
0
0
0
.13500
.06850
.00859
.03882
.00734
.54903
.89048
.04100
.12850
.01150
.03638
.00700
.78022
.19496
.03900
.11800
.02070
.04107
.00790
.28062
.77340
.02500
.06900
.01549
.02152
.00414
.65930
.32845
28
0
0
0
0
0
2
4
28
0
0
0
0
0
2
4
28
0
0
0
0
0
1
1
28
0
0
0
0
0
1
0
.00100
.13500
.02184
.03299
.00624
.26453
.42489
.00100
.12850
.02217
.03083
.00593
.27091
.52118
.00100
.11800
.02826
.03609
.00694
.58497
.22859
.00000
.06900
.01911
.01823
.00351
.19026
.78246
28
-46
18
-5
13
2
-1
2
28
-30
29
2
12
2
-0
1
28
-29
53
8
18
3
0
0
28
-20
25
4
8
1
-0
2
.48190
.35750
.69156
.97553
.64113
.50969
.39299
.94340
.89470
.25764
.18073
.34418
.43356
.05317
.65780
.95350
.17945
.46039
.55270
.86639
.88956
.08030
.00000
.83526
.54536
.64456
.72347
.20795
28
0
46
9
11
2
2
3
28
0
30
8
8
1
1
0
28
0
53
12
15
2
1
0
28
0
25
7
5
1
1
1
.21460
.48190
.11804
.94535
.25746
.05067
.41904
.20960
.94340
.96954
.37355
.61149
.19267
.86967
.47060
.95350
.88185
.42525
.96859
,,46501
,,92616
.00000
.00000
.74036
.92323
.13993
.18709
.34482
(Continued)
cah,171f
4-58
-------
TABLE 4-17. (Continued)
Channel
Pair
(X-Y) Statistics
Variables
DIFF
ADIFF
PCDIFF
APCDIFF
D-A
D-B
DIFF
ADIFF
PDIFF
APDIFF
Cases 28 28
Minimum -0.03600 0.00000
Maximum 0.05950 0.05950
Mean -0.00399 0.01661
Std. Dev. 0.02186 0.01443
Std. Error 0.00421 0.00278
Skewness 1.19512 1.12369
Kurtosis 1.36664 1.02858
Cases 28 28
Minimum -0.03200 0.00000
Maximum 0.11000 0.11000
Mean 0.00522 0.02907
Std. Dev. 0.03534 0.02907
Std. Error 0.00680 0.00559
Skewness 1.87203 1.96331
Kurtosis 2.46241 2.74915
= NMOC concentration on Channel Y -
Channel X, ppmC.
= Absolute value of DIFF.
28
-19.54890
20.09570
-2.58031
8.87573
1.70813
0.68968
0.46638
28
-9.72220
40.60910
3.39327
14.87646
2.86298
1.69810
1.46388
28
0.00000
20.09570
7.33664
5.45857
1.05050
0.81149
0.03207
28
0.00000
40.60910
9.01275
12.20297
2.34846
1.82801
1.84601
NMOC concentration on
= DIFF/((NMOC concentration on Channel X + NMOC
concentration on Channel Y)/2) x
= Absolute value of PDIFF.
100.
cah.Ulf
4-59
-------
Table 4-18 adds the 95% confidence intervals for the local ambient
sample comparisons of the mean values of DIFF (from Table 4-17). Figure 4-30
displays the results of Table 4-18 graphically. Table 4-19 compares the
percent differences for the several channel pairs for the site samples and the
local ambient samples. For all comparisons, with the exception of C-B, A-QAD,
and C-QAD, the percent differences appear to be slightly greater for the site
samples than for the local ambient samples.
4.5 DUPLICATE SAMPLE RESULTS
Throughout the 1989 NMOC Monitoring Program, duplicate samples were
collected once every two weeks at each site. Each duplicate was analyzed by
Radian for its NMOC content.
Table 4-20 summarizes the duplicate sample statistics for NMOC, DIFF,
ADIFF, PDIFF, and APDIFF. The mean absolute percent difference between the
duplicate samples was 10.62 percent. The absolute percent difference ranged
from zero to 80.5 percent. Table 4-21 summarizes the statistics for duplicate
analyses by site code. The mean absolute percentage differences between
duplicates ranged from 2.88% for LXKY to 29.15% for ELCA.
These results are higher than those found in 1988, but still represent
good overall precision. The analytical error in 1988 for repeated analys
was 10.06%, while the precision for duplicates was 8.72 percent. Because .ne
duplicate results include sampling and analysis precision, while the replicate
(or repeated analysis) precision relates only to analytical error, the
duplicate absolute percent difference is expected to be greater than the
replicate absolute percent difference.
4.5.1 Sampling and Analysis Precision
For 75 duplicate ambient air samples, replicate analyses were
performed. Each reported analysis was the average -f two or three injections
of sample into the PDFID instrument. For the determination described below,
each injection (rather than the average of two or three injections) was used
as a statistic for determining analytical error. The replicate analyses of
the duplicate samples were performed on sucessive days. That is, the first
analysis, consisting of two or three injections from a duplicate canister, was
performed on the day the duplicate canisters were received from a particular
cah.Ulf 4-60
-------
TABLE 4-18. LOCAL AMBIENT SAMPLES CONFIDENCE INTERVALS
Channel
Pair
(X-Y)
A-QAD
B-QAD
C-QAD
D-QAD
B-A
C-A
C-B
C-D
D-A
D-B
Mean
Difference
(ppmC)
-0.02130
-0.02886
. -0.01146
-0.02561
-0.00859
0.01150
0.02070
0.01549
-0.00399
0.00522
Standard
Deviation
(ppmC)
0.02596
0.04050
0.03115
0.02186
0.03882
0.03638
0.04107
0.02152
0.02186
0.03534
Cases
28
28
28
28
28
28
28
28
28
28
95% Confidence
Intervals
to.97s.n-i Upper Lower
2.052
2.052
2.052
2.052
2.052
2.052
2.052
2.052
2.052
2.052
-0.01123
-0.01315
-0.00062
-0.01713
0.00643
0.02558
0.03660
0.02382
0.00447
0.01890
-0.03137
-0.04457
-0.02354
-0.03409
-0.02361
-0.00258
0.00480
0.00716
-0.01245
-0.00846
to.97s,n-i = Student's t-statistic for 95% confidence interval,
where n = the number of cases in mean DIFF.
cah.l71f
4-61
-------
CO
0
Q.
&
CO
•E
.S>
^**
_Q
<
15
o
o
I
c
r-\
\J -
I ^
1 U
O 1
^ 1
i r"i
1 LJ
i
1
I i I
n TJ- co cvj i-
D O O O O C
3 6 o 6 o c
»
o 1
ij 1
/~\ 1
\J 1
! 'sV 1
1 ^-1
1 ^
1 C~\
1 vj
1 (^ 1
1 U 1
1 1 1
T- CM CO ^ V
5 O O O O C
:> 6 o d o <
°P
a
Q
o
? s
0 5
«*—
"T5
9 0
o O
z
CD C
T m
o g
^ .ta •§
L_ ' rrt
° 2 «
i !
_i I -1
14 5 .-=
o
9 %
^Q -o
^ ~
5
-->
Q 8*
% §
-i Si
s
^
< 0)
2 3
o .5?
LJL
o
3
4-62
-------
TABLE 4-19. COMPARISON OF PERCENT DIFFERENCE IN NMOC
CONCENTRATION BETWEEN CHANNEL PAIRS
Site Samoles
Channel
Pair
(X-Y)
B-A
C-A
C-B
C-D
D-A
D-B
A-QAD
B-QAD
C-QAD
D-QAD
Percent Difference
Standard
Mean Deviation Cases
-13.25688
4.44166
8.08086
5.42850
2.15075
3.08943
-8.21561
-18.05073
-6.16318
-12.59858
23.64949
19.90356
14.29609
14.18093
14.25620
17.41362
12.37010
23.91893
14.86087
12.12244
13
17
27
21
16
23
60
61
72
72
Local Ambient Samples
Percent Difference
Standard
Mean Deviation Cases
-5.69156
2.25764
8.17945
4.83526
-2.58031
3.39327
-8.83435
-13.89000
-7.32042
-11.53140
13.97553
12.18073
18.46039
8.54536
8.87573
14.87646
15.14308
17.58961
16.52604
12.02604
28
28
28
28
28
28
28
28
28
28
% Difference = (NMOC (X) - NMOC (Y)) / ((NMOC (X) + NMOC (Y)) / 2) * 100
cah.!71f
4-63
-------
TABLE 4-20. STATISTICS FOR DUPLICATE ANALYSIS
Statistics
NMOC
DIFF
Variables^
ADIFF
PDIFF APDIFF
Cases.
Minimum
Maximum
Mean
Standard Dev.
181 181 181 181 181
0.04850 -0.37600 0.00000 -80.51390 0.00000
2.81950 0.41300 0.41300 71.54470 80.51390
0.54618 0.01505 0.04448 4.24458 10.62149
0.44515 0.07811 0.06588 17.22531 14.19102
Standard Error 0.03309 0.00581 0.00490
Skewness
Kurtosis
1.83473 0.65604 3.11126
4.22508 9.29811 11.36843
1.28035 1.05481
0.65214 2.52250
5.77036 6.97082
NMOC = Average NMOC concentration of duplicate samples, ppmC.
DIFF = Difference between NMOC concentrations for duplicate samples, ppmC,
ADIFF = Absolute value of DIFF.
PDIFF = DIFF/((NMOC concentration for duplicate 1 + NMOC concentration for
duplicate 2)/2) x 100.
APDIFF = Absolute value of PDIFF.
cah.l71f
4-64
-------
TABLE 4-21. DUPLICATE ANALYSES STATISTICS, BY SITE
Site
Code
ALCA
BACA
BMTX
C3IL
C6IL
DLTX
ELCA
ELTX
FECA
GRMI
H1TX
LBCA
LXKY
M1NY
MGAL
MNY
NWNJ
PLNJ
RLNC
RSCA
S2MO
S3CA
S4CA
ADIFF
APDIFF
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
= The
= ADI
NMOC
Mean
.19033
.71422
.85522
.22596
.98136
.46469
.59596
.31621
.44213
.54258
.81843
.94786
.46431
.47006
.23471
.55985
.47671
.59845
.17717
.28519
.49364
.24430
.42913
absol
FF/((N:
, ppmC
SD
0.23943
0.37356
0.50058
0.14825
0.54669
0.22671
0.34278
0.16184
0.19251
0.21330
0.55971
0.63284
0.54815
0.19207
0.10354
0.22494
0.21336
0.41449
0.12827
0.74066
0.15982
0.16460
0.46157
ute value
MOC dupli
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
of
cate
ADIFF
Mean
02111
09733
05467
01219
04786
06688
09493
02471
06800
03917
07257
06286
01263
02688
03886
04890
04514
03970
01933
02913
03643
02140
03375
the di
. DomC
SD
0.02848
0.13456
0.04629
0.00902
0.06376
0.11841
0.14461
0.02666
0.05870
0.04976
0.09379
0.09184
0.01004
0.02406
0.02706
0.04696
0.02898
0.04496
0.01869
0.03072
0.04311
0.02512
0.05370
fference
1 + NMOC dupl
APDIFF. DDmC
13.
14.
7.
7.
7.
14.
17.
8.
15.
6.
13.
11.
3.
6.
19.
8.
11.
9.
13.
3.
9.
7.
11.
Mean
96249
82464
60719
91159
00376
06729
07223
72313
28104
96135
90359
85637
81114
42121
76096
88094
80123
79536
20125
43878
69097
72415
83333
Dup.
SD Pairs
13.
17.
7.
6.
10.
23.
29.
8.
14.
6.
23.
20.
2.
5.
17.
7.
10.
12.
10.
5.
16.
6.
19.
86315
20990
88346
94458
59426
79612
14641
91677
24468
14543
59036
47535
88262
27519
55192
47697
54608
82757
86335
51916
22818
08258
22213
between dupl icates,
icate
2)/21
1*100
9
9
9
7
7
8
8
8
8
6
7
7
8
8
7
10
7
10
6
8
7
10
8
ppmC.
cah.Ulf
4-65
-------
site. After the first replicate analysis, the canister was disconnected from
the PDFID instrument and set aside in the laboratory and analyzed for the
second replicate analysis on the next day, or within 72 hours if the first
analysis occurred on Friday.
Duplicate samples were taken simultaneously in 6-L stainless steel
canisters connected to a tee, the stem of which was connected to the NMOC
sampler manifold. All of the duplicate samples for which there were
replicated analyses are listed in Table 4-22.
The number of injections per analysis was governed by the standard
deviation of the NMOC results of the first two injections during each
analysis. If the standard deviation was 0.02 ppmC or greater, a third
injection was performed, otherwise only two injections were performed for each
analysis.
The analyses of variance (ANOVAs) discussed in Tables 4-23 and 4-24
were designed to differentiate between the analytical error of the PDFID NMOC
measurement, the effect of the replicate analyses, and the duplicate sample
effect. The model for the ANOVA is given below:
Ujta = M + SL + Dj(i) + Rkuj) + ei(ijk)>
Where:
Yijkl = NMOC concentration by PDFID analysis, ppmC;
At = overall average NMOC concentration, ppmC;
Sj. = ambient air sample effect, i=l,2...75 samples;
Dj(i) = duplicate sample number for each ambient air sample,
i, j = duplicate number = 1 or 2;
Rkuj) = replicate sample number, k, for each duplicate j and
each ambient air sample i, r = replicate number =
1, 2; and
euijio = residual error, or analytical error, where 1 is the
number of injections.
Variable effects Dj(i), Rk(ij), and e1(ijk) are all nested effects, and in this
experiemental design there are no interaction terms. The residual mean-square
Qrror term is equal to the analytical error variance. The replicate
cah.!71f 4-66
-------
TABLE 4-22. REPLICATE ANALYSIS OF DUPLICATE SAMPLES FOR 1989
Sample
No.
1
2
w
4
5
6
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Jul ian
Site Date
Code Sampl ed
ALCA
ALCA
C6IL
C6IL
ELCA
ELCA
PLNJ
PLNJ
MGAL
MGAL
DLTX
DLTX
S3CA
S3CA
S4CA
S4CA
C6IL
C6IL
BACA
BACA
ELCA
EICA
LBCA
LBCA
ELTX
ELTX
RSCA
RSCA
MNY
MNY
NWNJ
NWNJ
ELCA
ELCA
PLNJ
PLNJ
ALCA
ALCA
RLNC
RLNC
S4CA
S4CA
156
156
157
157
158
158
159
159
160
160
160
160
164
164
165
165
166
166
167
167
170
17C
171
171
172
172
173
173
174
174
178
178
179
179
179
179
181
181
186
186
186
186
Sample
I.D.
Number
1016
1017
1041
1042
1066
1067
1076
1077
1113
1114
1131
1132
1159
1160
1191
1192
1207
1208
1242
1243
1258
1259
1275
1276
1303
1304
1335
1336
1357
1358
1376
1377
1423
1424
1450
1451
1478
1479
1506
1547
1531
1532
Mean
NMOC
ppmC
0.069
0.065
0.542
0.553
0.152
0.148
0.377
0.370
0.207
0.184
0.802
0.760
0.164
0.155
0.205
0.217
0.270
0.362
0.204
0.170
0.738
0.486
1.732
1.786
0.416
0.389
1.102
1.102
1.010
1.140
0.636
0.640
1.321
1.205
0.235
0.287
0.101
0.079
0.110
0.116
0.244
0.273
Mean
NMOC Overall
ppmC Mean
0.078
0.067
0.569
0.547
0.146
0.159
0.408
0.371
0.198
0.180
0.782
0.740
0.142
0.177
0.192
0.219
0.471
0.441
0.235
0.217
0.787
0.750
1.787
1.683
0.431
0.420
1.123
1.053
1.016
1.129
0.598
0.577
1.192
1.160
0.242
0.284
0.094
0.073
0.109
0.118
0.266
0.261
0.0735
0.0660
0.5555
0.5500
0.1490
0.1535
0.3925
0.3705
0.2025
0.1820
0.7920
0.7500
0.1530
0.1660
0.1985
0.2180
0.3705
0.4015
0.2195
0.1935
0.7625
0.6180
1.7595
1.7345
0.4235
0.4045
1.1125
1.0775
1.0130
1.1345
0.6170
0.6085
1.2565
1.1825
0.2385
0.2855
0.0975
0.0760
0.1095
0.1170
0.2550
0.2670
%
Diff
12.24490
3.03030
4.86049
-1.09091
-4.02685
7.16612
7.89809
0.26991
-4.44444
-2.19780
-2.52525
-2.66667
-14.37908
13.25301
-6.54912
0.91743
54.25101
19.67621
14.12301
24.28941
6.42623
42.71845
3.12589
-5.93831
3.54191
7.66378
1.88764
-4.54756
0.59230
-0.96959
-6.15883
-10.35333
-10.26661
-3.80550
2.93501
-1.05079
-7.17949
-7.89474
-0.91324
1.70940
8.62745
-4.49438
Absolute
%
Diff
12.24490
3.03030
4.86049
1.09091
4.02685
7.16612
7.89809
0.26991
4.44444
2.19780
2.52525
2.66667
14.37908
13.25301
6.54912
0.91743
54.25101
19.67621
14.12301
24.28941
6.42623
42.71845
3.12589
5.93831
3.54191
7.66378
1.88764
4.54756
0.59230
0.96959
6.15883
10.35333
10.26661
3.80550
2.93501
1.05079
7.17949
7.89474
0.91324
1.70940
8.62745
4.49438
Sample
Overall
Mean
0.06975
0.55275
0.15125
0.38150
0.19225
0.77100
0.15950
0.20825
0.38600
0.20650
0.69025
1.74700
0.41400
1.09500
1.07375
0.61275
1.21950
0.26200
0.08675
0.11325
0.26100
Dupl icate
%
Diff.
-10.75269
-0.99502
2.97521
-5.76671
-10.66320
-5.44747
8.15047
9.36375
8.03109
-12.59080
-20.93444
-1.43102
-4.58937
-3.19635
11.31548
-1.38719
-6.06806
17.93893
-24.78386
6.62252
4.59770
Duplicate
Abs. %
Oiff.
10.7526S
:. 99502
2.97521
5.76671
10.66320
5.44747
8.15047
S. 36375
8.03109
12.59080
2C.S34<^
i 43102
4.5893?
3 19635
11.31548
1.38719
6 . 06806
17.93893
24.78386
6.62252
4.5977C
4-67
-------
TABLE 4-22. (CONTINUED)
Sample
No.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Jul Ian
Site Date
Code Sampled
C3IL
C3IL
LXKY
LXKY
GRMI
GRMI
ELTX
ELTX
ELCA
ELCA
LBCA
LBCA
ALCA
ALCA
BACA
BACA
DLTX
DLTX
S3CA
S3CA
S4CA
S4CA
LXKY
LXKY
FECA
FECA
S4CA
S4CA
C3IL
C3IL
MNY
MNY
DLTX
DLTX
BMTX
BMTX
FECA
FECA
S2MO
S2MO
ALCA
ALCA
186
186
188
188
191
191
194
194
198
198
200
200
201
201
202
202
202
202
206
206
207
207
208
208
209
209
212
212
213
213
214
214
215
215
216
216
219
219
220
220
221
221
Sampl e
I.D.
Number
1554
1555
1585
1586
1603
1604
1702
1703
1750
1751
1800
1801
1817
1818
1851
1852
1887
1888
1909
1910
1929
1930
1956
1957
1985
1986
1989
1990
2018
2019
2062
2063
2115
2116
2089
2090
2128
2129
2149
2150
2177
2178
Mean
NMOC
ppmC
0.070
0.058
0.502
0.516
0.213
0.243
0.340
0.348
0.219
0.197
0.336
0.597
0.771
0.862
1.090
1.121
0.316
0.668
0.186
0.206
0.190
0.195
0.362
0.361
0.396
0.343
0.101
0.092
0.138
0.142
0.710
0.715
0.114
0.116
0.966
0.965
0.592
0.441
0.470
0.508
0.158
0.155
Mean
NMOC Overal 1
ppmC Mean
0.071
0.068
0.485
0.483
0.209
0.226
0.357
0.374
0.222
0.195
0.604
0.629
0.773
0.867
1.081
1.109
0.320
0.674
0.203
0.192
0.180
0.180
0.327
0.338
0.428
0.439
0.109
0.092
0.141
0.131
0.725
0.659
0.121
0.109
0.944
0.971
0.455
0.433
0.461
0.510
0.131
0.152
0.0705
0.0630
0.4935
0.5005
0.2110
0.2345
0.3485
0.3610
0.2205
0.1960
0.4700
0.6130
0.7720
0.8645
1.0855
1.1150
0.3180
0.6710
0.1945
0.1990
0.1850
0.1875
0.3445
0.3495
0.4120
0.3910
0.1050
0.0920
0.1395
0.1365
0.7175
0.6870
0.1175
0.1125
0.9550
0.9680
0.5235
0.4370
0.4655
0.5090
0.1445
0.1535
X
Diff
1.41844
15.87302
-3.44478
-6.99301
-1.89573
-7.24947
4.87805
7.20222
1.36504
-1.02041
57.02128
5.22023
0.25907
0.57837
-0.82911
-1.07623
1.25786
0.8941S
8.74036
-7.03518
-5.40541
-8.00000
-10.15965
-6.58083
7.76699
24.55243
7.61905
0.00000
2.15054
-8.05861
2.09059
-8.15138
5.95745
-6.22222
-2.30366
0.61983
-26.17001
-1.83066
-1.93340
0.39293
-18.68512
-1.95440
Absol ute
%
Diff
1.41844
15.87302
3.44478
6.99301
1.89573
7.24947
4.87805
7.20222
7.20222
1.02041
57.02128
5.22023
0.25907
0.57837
0.82911
1.07623
'.25786
.89419
;. 74036
7.03518
5.40541
8.00000
10.15965
6.58083
7.76699
24.55243
7.61905
0.00000
2.15054
8.05861
2.09059
8.15138
5.95745
6.22222
2.30366
0.61983
26.17001
1.83066
1.93340
0.39293
18.68512
1.95440
Sampl e
Overall
Mean
0.06675
0.49700
0.22275
0.35475
0.20825
0.54150
0.81825
1.10025
0.4945C
0.19675
0.18625
0.34700
0.40150
0-. 09850
0.13800
0.70225
0.11500
0.96150
0.48025
0.48725
0.14900
Oupl icate
%
Diff.
-11.23596
i. 40845
10.54994
3.52361
-11.76471
26.40813
11.30461
2.68121
71.38524
2.28717
1.34228
1.44092
-5.23039
-
-13.19797
-2.17391
-4.34318
-4.34783
1.35205
-18.01145
3.92766
6.04027
Dupl icate
Abs. %
Diff.
11.23596
1.40845
10.54994
3.52361
11.76471
26.40813
11.30461
2.68121
71.38524
2.28717
1.34228
1 44092
5.23039
13.19797
2 17391
4.34318
4.34783
1.35205
18.01145
8.92766
6.04027
4-68
-------
TABLE 4-22. (CONTINUED)
Sample
No.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
Jul ian
Site Date
Code Sampl ed
BACA
BACA
ELCA
ELCA
S4CA
S4CA
BMTX
BMTX
LXKY
LXKY
S3CA
S3CA
LBCA
LBCA .
S2MO
S2MO
GRMI
GRMI
S3CA
S3CA
ELTX
ELTX
LBCA
LBCA
ELCA
ELCA
S4CA
S4CA
FECA
FECA
ELTX
ELTX
H1TX
H1TX
S2MO
S2MO
GRMI
GRMI
MGAL
MGAL
LXKY
LXKY
222
222
223
223
226
226
227
227
227
227
229
229
230
230
233
233
234
234
235
235
236
236
240
241
241
241
243
243
244
244
248
248
250
250
250
250
254
254
254
254
255
255
Sample
I.D.
Number
2194
2195
2225
2226
2261
2262
2280
2281
2312
2313
2346
2347
2360
2361
2372
2373
2397
2398
2438
2439
2444
2445
2482
2483
2515
2516
2577
2578
2617
2618
2642
2643
2646
2647
2682
2683
2707
2708
2736
2737
2783
2784
Mean
NMOC
ppmC
0.670
0.723
0.370
0.376
0.571
0.552
0.831
0.863
1.771
1.796
0.103
0.105
0.394
0.475
0.412
0.419
0.520
0.532
0.163
0.163
0.357
0.358
0.741
0.747
0.595
0.595
0.364
0.199
0.727
0.672
0.403
0.464
1.303
1.357
0.546
0.524
0.462
0.405
0.185
0.195
0.194
0.184
Mean
NMOC Overall
ppmC Mean
0.704
0.712
0.386
0.369
0.550
0.500
0.779
0.868
1.806
1.800
0.076
0.114
0.433
0.433
0.443
0.454
0.531
0.607
0.161
0.174
0.331
0.368
0.799
0.796
0.603
0.610
0.322
0.358
0.743
0.749
0.405
0.441
1.340
1.320
0.528
0.525
0.431
0.476
0.164
0.163
0.201
0.177
0.6870
0.7175
0.3780
0.3725
0.5605
0.5260
0.8050
0.8655
1 . 7885
1.7980
0.0895
0.1095
0.4135
0.4540
0.4275
0.4365
0.5255
0.5695
0.1620
0.1685
0.3440
0.3630
0.7700
0.7715
0.5990
0,6025
0.3430
0.2785
0.7350
0.7105
0.4040
0.4525
1.3215
1.3385
0.5370
0.5245
0.4465
0.4405
0.1745
0.1790
0.1975
0.1805
%
Diff
4.94905
-1.53310
4.23280
-1.87919
-3.74665
-9.88593
-6.45963
0.57770
1.95695
0.22247
-30.16760
8.21918
9.43168
-9.25110
7.25146
8.01833
2.09324
13.16945
-1.23457
6.52819
-7.55814
2.75482
7.53247
6.35126
1.33556
2.48963
-12.24490
57.09156
2.17687
10.83744
0.49505
-5.08287
2.79985
-2.76429
-3.35196
0.19066
-6.94289
16.11805
-12.03438
-17.87709
3.54430
-3.87812
Absolute
%
Diff
4.94905
1.53310
4.23280
1.87919
3.74665
9.88593
6.45963
0.57770
1.95695
0.22247
30.16760
8.21918
9.43168
9.25110
7.25146
8.01833
2.09324
13.16945
1. 23457
6.52819
7.55814
2.75482
7.53247
6.35126
1.33556
2.48963
12.24490
57.09156
2.17687
10.83744
0.49505
5.08287
2.79985
2.76429
3.35196
0.19066
6.94289
16.11805
12.03438
17.87709
3.54430
3.87812
Sample
Overall
Mean
0.70225
0.37525
0.54325
0.83525
1.79325
0.09950
0.43375
0.43200
0.54750
0.16525
0.35350
0.77075
0.60075
0.31075
0.72275
0.42825
1.33000
0.53075
0.44350
0.17675
0.18900
Duplicate
%
Diff.
4.34318
-1.46569
-6.35067
7.24334
.0.52976
20.10050
9.33718
2.08333
8.03653
3.93343
5.37482
0.19462
0.58261
-20.75623
-3.38983
11.32516
1.27820
-2.35516
-1.35287
2.54597
-8.99471
Dupl icate
Abs. %
Diff.
4.34318
i. 46569
6.35067
7.24334
0.52976
20.10050
9.33718
2.08333
8.03653
3.93343
5.37482
0.19462
0.58261
20.75623
3.38983
11.32516
1.27820
2.35516
1.35287
2.54597
8.9947!
4-69
-------
TABLE 4-22. (CONTINUED)
Julian
Sample Site Date
No . Code Sampl ed
64 RLNC
RLNC
65 S4CA
S4CA
66 MNY
MNY
67 LBCA
LBCA
68 ELCA
ELCA
69 MGAL
MGAL
70 LXKY
LXKY
71 S2MO
S2MO
72 ELCA
ELCA
73 C3IL
C3IL
74 RSCA
RSCA
75 PLNJ
PLNJ
256
256
258
258
261
261
263
263
263
263
265
265
268
268
269
269
270
270
272
111
272
272
272
272
Sample
I.D.
Number
2758
2759
2838
2839
2863
2864
2879
2880
2938
2939
2953
2954
2977
2978
3003
3004
3024
3025
3048
3049
3089
3090
3110
3111
Mean
NMOC
ppmC
0.083
0.098
0.313
0.306
0.322
0.273
1.945
1.961
0.538
0.531
0.258
0.271
0.298
0.308
0.367
0.367
0.427
0.427
0.190
0.209
1.420
1.407
0.542
0.557
Mean
NMOC Overall
ppmC Mean
0.092
0.101
0.139
0.307
0.321
0.288
1.961
1.961
0.572
0.566
0.286
0.263
0.297
0.313
0.352
0.373
0.251
0.241
0.214
0.163
1.450
1.504
0.546
0.557
0.0875
0.0995
0.2260
0.3065
0.3215
0.2805
1.9530
1.9610
0.5550
0.5485
0.2770
0.2670
0.2975
0.3105
0.3595
0.3700
0.3390
0.3340
0.2020
0.1860
1.4350
1.4555
0.5440
0.5570
X
Dlff
10.
3.
-76.
0.
-0.
5.
0.
0.
6.
6.
6.
-2.
-0.
1.
-4.
1.
-51.
-55.
11.
-24.
2.
6.
0.
0.
2c :
01508
99115
32626
31104
34759
81925
00000
12613
38104
49819
99625
33613
61031
17246
62162
91740
68862
88119
73118
09059
66438
73529
,00000
Absol ute
%
Diff
10.28571
3.01508
76.99115
0.32626
0.31104
5.34759
0.81925
0.00000
6.12613
6.38104
6.49819
2.99625
0.33613
1.61031
4.17246
1.62162
51.91740
55.68862
11.88119
24.73118
2.09059
6.66438
0.73529
0.00000
Sample
Overal 1
Mean
0.09350
0.26625
0.30100
1.95700
0.55175
0.27200
0.30400
0.36475
0.3365.0
0.19400
1.44525
0.55050
Dupl Icate
%
Diff.
12.33422
30.23474
-13.52126
0.40879
-1.17807
-3.67647
4.27632
2.87868
-1.48588
-8.24742
1.41844
2.36149
Dupl icate
Abs. %
Diff.
12.83422
30.2347^
13.62125
0.40879
1 . 17807
3.67647
4,27532
2.87868
1.48588
8.24742
1.41844
2.36149
Overall Average
0.5019
0.34232 8.24108 0.50189
1.29576
8.01005
4-70
-------
TABLE 4-23. ANOVA FOR DUPLICATE - REPLICATE SETS.
Sum-of-
Source Squares
Replicate Set No. 1
SL 0.678345E+02
DJU) ' 0.012204354
Rk(l) 0.002064966
euuk) 1.028955822
ReoKcate Set No. 2
Si 0.710466E+02
Dj(1) 0.026215439
Rk(i) 0.002803749
elujlo 0.828567488
DF
49
1
1
376
50
1
1
382
Mean-
Square
1.384377820
0.012204354
0.002064966
0.002736585
1.420932589
0.026215439
0.002803749
0.02169025
F-
Ratio
0.505878E+03
4.459702798
0.754577701
0.655102E+03
0.120863E+02
1.292630981
P
0.000000000
0.035362692
0.385584881
0.000000000
0.000566336
0.256276338
cah.Ulf
4-71
-------
TABLE 4-24. EXPECTED MEAN SQUARES FOR NESTED EXPERIMENT
Model EMS
St ffe2 + 2.147 cR2 + 4.293 aD2 + 107.35 as2
DJ(l) ae2 + 2.147 aR2 + 4.293 aD2
D ae2 + 2.147 aR2
°e
cah.Hlf 4-72
-------
mean-square is the between-replicate term and contains both analyical error
and the error associated with removing the sample from the canister. The
duplicate mean-square contains both analytical error, the error in removing
the sample from the canister, and the error between duplicate samples. The
ambient sample mean-square term contains all the previous errors and the
effect of different sites and sampling days from sample to sample.
The data set was divided into two overlapping sets of 50 (50 in
Replicate Set No. 1 and 51 in Replicate Set No. 2) each. This was done
because running the entire data set resulted in a matrix that was not solvable
in SYSTAT*. The ANOVA tables for the two sets are given in Tables 4-23 and 4-
24. Probabilities less than 0.05 are taken to be significant. Therefore, in
both data sets, Dj(i) and Si are significant. The latter, or the ambient
sample term, was expected to be significant. The duplicate term was
significant, which implies that the sample within the canister on the average
has a significantly different concentration upon analysis.
On the other hand, the replicate effect, Rk(ij), was not significant in
either data set. Table 4-24 reflects the fact that there were, on the
average, two replicates, two duplicates, and 75 ambient air samples. There
were a total of 644 injections, or 2.147 injections per ambient air
sampler per duplicate per replicate. From the ANOVA tables it was concluded
that the replicate mean-square was not significantly different from zero.
The variance of the analytical precision is ae2, which may be pooled
between replicate sets in Table 4-23 to give 0.002450558. The duplicate
variance is calculated from a pooled value of mean-square for duplicates equal
to 0.019209897.
0.019209897 = ae2 + 4.293 aD2
aD2 = (0.019209897 - 0.002450558) / 4.293
aD2 = 0.003903876
Therefore, a standard deviation for analysis is equal to:
se = Jo2 = yo.002450558 = 0.0495.
cah.Hlf 4-73
-------
The standard deviation for duplicates is equal to:
SD = Jo? = 70.003903876 = 0.0625,
or about 25% higher.
The fact that the duplicate effect is significant means that, on the
average, there is a difference in the concentration between duplicates that is
greater than can be attributed to analytical error. This means that on the
average there is a significant difference between the concentration of the
samples in the duplicate canisters when they are analyzed.
A possible'explanation for this phenomenon is that carryover of
adsorbed organic material is different between duplicate canisters. In or^er
to test this hypothesis further, it is recommended that: (1) during the 1990
NMOC Monitoring Program a record be kept of the NMOC concentration in a
duplicate canister before cleanup, and the zero-air NMOC concentration ai. ne
time of the third pressurization with clean humidified air during cleanup; and
(2) the duplicate sample schedule be so arranged that the same amount of time
elapses between sampling and analysis for all duplicate samples. The latter
specification may require that duplicate samples, for which replicate analyses
are performed, will be taken only on Mondays and Tuesdays so that the time
between the first and second replicate analyses is 24 hours.
4.5.2 Quality Control Chart
The duplicate quality control chart showing the 2-a warning limits and
the 3-a control limits is shown in Figure 4-31. The chart was updated daily
in order to monitor whether the NMOC program sampling and analytical systems
were in control. From 1989 Julian date 240 through about 265 the control
chart shows a number of excursions outside either the warning limits (/i±2a) or
the control limits (/J±3a). There was, however, no indication (more than two
successive points outside either the warning limits or the control limits) of
loss of control. It is necessary to keep in mind that although the analytical
systems were centrally located, the sampling systems, which contributed
significantly to the overall system variability, were located at 45 sites
across the country.
cah.!71f 4-74
-------
CO
LU
C/D
O
O
LU
o
CL
Q
888888888888888888888
8O O O O O O O O d
C5COI^COir>TfCOC\Ji-
o o o o
I I I I
I I
CO
CO
O
O
CO
O
o
o
o>
0
O
O.
Vf_
O
•+•*
CO
o
"o
u.
O
o
co
O
CO
4
.
O)
LL
4-75
-------
4.5.3 Precision Profile
As in the case of replicate analyses, the data show that at lower NMOC
concentrations, percent difference between duplicate analyses increases.
Figure 4-32 shows percent difference plotted against average NMOC
concentration. Table 4-25 summarizes the duplicate imprecision into eleven
data sets summarized by average NMOC concentrations ranging from 0.050 to
2.25. Average percent difference and average absolute percent difference
from Table 4-25 are plotted in Figures 4-33 and 4-34, respectively. The trend
of increasing imprecision at NMOC concentration levels below 1.0 ppmC is
clear.
4.6 CANISTER PRESSURE RESULTS
Canister pressure results for the NMOC Monitoring Program are
important to be sure that the ambient air samples obtained are representative.
The NMOC sampling systems are designed to obtain an integrated ambient air
sample between 6:00 a.m. and 9:00 a.m., or at other programmed intervals. The
flow rate of the sample into the 6-L canister is controlled by a critical
orifice, which requires a pressure drop across the orifice sufficiently high
to maintain sonic velocity in the orifice. If sonic velocity can be
maintained in the orifice for the entire sampling period, then the flow rate
into the canister is constant and the sample is properly integrated. The
temperature must also be assumed to remain constant over the sampling period.
As the final canister pressure increases, there is a pressure
downstream of the sonic orifice at which the sonic velocity can no longer be
maintained. Canister pressures are being measured to obtain a better
understanding of the range and magnitude of pressures being generated by the
NMOC sampling systems. Canister pressure data are given in Tables 4-26 and
4-27 for both single canister samples and duplicate samples. The pressures
reported in Tables 4-26 and 4-27 are the canister sampling pressures measured
immediately before analysis in the laboratory. A significant decrease between
the field sampling pressure and the laboratory value might indicate a leak.
The canister was leak tested when this occurred.
Table 4-26 gives statistics for single and duplicate samples. All
sample canisters averaged 14.9 psig, while duplicate samples averaged
cah.Ulf 4-76
-------
CO
_J
Z>
CO
LJJ
DC g
III °<5
1 ~
BL |
^ 6
< 8
co 1
"J 3
r"~ ®
<^ "~
Q
i
Q_
Q
.
1
Br
•
1
•
• • M
•
• 1.
f
." X
• VTl1 *
• • iMb
%. ^Ab|M *
• • % TB TP^' M
• •• "* ttf!"
• •J^ktf^^B •
• * ^^•HB" % *
f %*• ^^ •
— "^
0
0)
co
o
CO
0)
•§
&s
£ c
0 m
O u.
^ CO *2
o ±i .t
« O "c
.i *" ^
"CB O O
- " 1 f 1
O j»/\ -*^
o w -•«
iOw
^ ••— ' -*— •
< CO C
.2
/5 o
Q o
.
C\J
CO
1
^"
o
3
0)
LL
— ft
8OOOOOOO
O300S.CDlO1CO
OOOOOOOOOOOO
'- T-CVJCOTIOCOKOOOJO
I I I I I I I I I t-
4-77
-------
TABLE 4-25. 1989 NMOC DUPLICATE IMPRECISION
Cases
12
25
22
25
19
24
12
9
8
15
10
Overall
NMOC
Range
0.000-0.099
0.100-0.199
0.200-0.299
0.300-0.399
0.400-0.499
0.500-0.599
0.600-0.699
0.700-0.799
0.800-0.999
1.000-0.499
1.500-3.000
NMOC
ppmC
0.050
0.150
0.250
0.350
0.450
0.550
0.650
0.750
0.900
1.250
2.250
Minimum
% Diff.
-18.750
-30.471
-9.881
-14.344
-80.514
-14.925
-41.176
-4.664
-14.475
-20.271
-6.459
-80.514
Average
% Diff.
9.553
1.521
12.611
2.512
8.281
0.714
-0.579
8.430
2.281
1.445
-0.796
4.179
Absolute
% Diff.
16.432
10.167
15.042
8.765
22.018
6.662
8.274
9.641
6.844
5.281
2.282
10.128
Maximum
%Diff.
35.714
56.151
58.615
43.968
71.545
29.235
18.474
57.163
16.336
12.442
4.361
71.545
cah.!71f 4-78
-------
o
w
o
LU
£
LU
<
O
CL
Q
CD
O)
CO
0 •
> CD
03 O
if I
•c 0
CO ItZ
o -g
O CD
.2 £
a. CD o
5^0)
g _0 co
? 9-®
^ £ >
CO CO
CO ,-
<
O =|
CO "c
0 0
8
CO
co
i
^~
0
L_
O)
% 06BJ9AV
4-79
-------
CD
8,1
O) CD
.£ o
CO CD
Q. 0-
£ CD
0 "3
o -g
CO CO
1 «
CD O
>- cn
^ 2
e >
CO W
CO ^3
o =|
*
-------
TABLE 4-26. NMOC PRESSURE STATISTICS
Duplicate
All Sample
Statistics Samples Canisters
Number of Cases 1956 388
Minimum Pressure, psig 5.0 6.0
Maximum Pressure, psig 29.0 29.0
Mean Pressure, psig 14.867 16.846
Median Pressure, psig 15.0 16.0
Standard Deviation, psig 3.031 3.450
Skewness 0.398 0.749
Kurtosis 1.714 2.020
cah.!71f 4-81
-------
TABLE 4-27. PRESSURE DISTRIBUTION OF NMOC AMBIENT AIR SAMPLES
Pressure
Range, psig
Blank*
4.0 to 4.9
5.0 to 5.9
6.0 to 6.9
7.0 to 7.9
8.0 to 8.9
9.0 to 9.9
10.0 to 10.9
11.0 to 11.9
12.0 to 12.9
13.0 to 13.9
14.0 to 14.9
15.0 to 15.9
16.0 to 16.9
17.0 to 17.9
18.0 to 18.9
19.0 to 19.9
20.0 to 20.9
21.0 to 21.9
22.0 to 22.9
23.0 to 23.9
24.0 to 24.9
25.0 to 25.9
26.0 to 26.9
27.0 to 27.9
28.0 to 28.9
29.0 to 29.9
TOTAL
Single
Sample
Cases
1
0
1
7
2
20
22
116
73
158
148
338
235
340
170
165
55
50
8
21
2
12
0
2
2
7
1
1956
Duplicate
Sample
Canister Cases
1
0
0
1
0
4
1
4
2
13
21
36
40
72
45
64
26
19
4
11
2
10
0
2
2
7
1
388b
aBlank indicates no pressure reading given for sample.
bEquals 194 duplicate samples.
cah.Ulf 4-82
-------
16.8 psig. The column entitled "All Samples" includes pressures from both
single samples and duplicate samples. Standard deviations were 3.031 and
3.450 psig, respectively. The data show little skewness, so the distribution
is approximately symetrical.
4.7 CANISTER CLEANUP RESULTS
Prior to the start of the 1989 NMOC Sampling and Analysis Program all
of the canisters were cleaned and analyzed for their NMOC content to establish
canister initial conditions. The resulting analysis with cleaned, dried air
that had been humidified averaged 5.5 area counts (0.0017 ppmC), ranging from
zero to 66.69 area counts (0.021 ppmC). Any canisters that produced more than
0.025 ppmC were recleaned.
Continual monitoring of the cleanup was important to ensure that there
was negligible carryover from one site sample to the next. The daily canister
cleanup procedure is described in detail in Section 3.4. The NMOC content was
below 0.030 ppmC and cleanup was considered to be satisfactory.
Percent recoveries, or percent cleanup, in 1989 averaged 99.742%,
(99.689% in 1988, 99.374% in 1987, 99.891% in 1986, and 99.898% in 1985),
ranging from 92.12% to 100 percent. The reported percent cleanup figures
should be considered minimunrvalues. The actual percent cleanup was greater
than the reported values because, after the percent cleanup was measured, the
canister was evacuated a third time before being shipped to the site.
4.8 EXTERNAL AUDIT RESULTS
Primary measures of accuracy were calculated from the results of the
analysis of audit samples provided by EPA-QAD. Results are reported in terms
of percent bias, relative to the EPA standards.
Audit samples of propane provided by EPA-QAD were referenced to NBS
SRM propane No. 1668B. Each Radian channel and the EPA-AREAL channel analyzed
each audit sample. The results of these analyses are given in Table 4-28.
Audit sample bias, percent bias, and absolute percent bias are shown in
Table 4-29. In Table 4-29, all bias measurements are relative to the QAD
results. Overall Radian average bias was 0.84%, indicating Radian channels
averaged 0.84% lower than the EPA-QAD reference values. Radian mean bias
ranged from 0.38% for Channel B to 1.29% for Channel C. The overall average
cah.!71f . 4-83
-------
TABLE 4-28. 1989 NMOC AUDIT SAMPLE RESULTS
Channel
Analyzed
Julian
Date Date
06/05/89
06/05/89
07/13/89
07/13/89
07/31/89
08/17/89
09/28/89
09/28/89
156
156
194
194
212
229
271
271
Radian
ID
Number
1005
1006
1647
1648
1969
2290
3020
3021
A
NMOC
ppmC
1.154
3.090
0.563
1.525
0.740
0.772
0.592
1.039
B
NMOC
ppmC
1.141
3.019
0.575
1.531
0.758
0.764
0.578
1.056
C
NMOC
ppmC
1.142
3.153
0.566
1.526
0.727
0.799
0.577
0.965
D
NMOC
ppmC
1.142:
3.151
0.560
1.531
0.719
0.750
0.560
1.040
QAD
NMOC
ppmC
1.154
3.120
0.545
1.512
0.724
0.791
0.582
1.074
AREAL
NMOC
ppmC
--
*
--
--
--
0.882
0.550
I.u21
cah.Ulf 4-84
-------
to
h~"
^
CO
UJ
O
o*
o
M-*
CO
— ,
UJ
o
•C
23
to
h-
— (
I
a.
UJ
UJ
^^
>—
^^
UJ
a:
CO
UJ
^j
Q-
5
CO
h-
2
cn
CM
1
*
UJ
CO
UJ 4J
C en
C o —
* l_ CO
J= 0)
o o-
o *J
c tn
e g .2
V i— Q3
J= CU
u a.
CJ +•*
c in
• cu m
c o —
JZ 0)
o a.
CO ^
C (A
• L i ro co ft^ •"H co
cococMen-roro — cn
oococn«roco— <
»^^rodd-^dd
i i ~*
t
cMcocn'-roocnco
to P*^ tr to to co r^ in
•^CMmcMCOVCOCO
^^coin^^^-roo^^
ii ill
ovuienwcM — LO
§m rv f^ en o CM co
— CM en en CM co co
ocoomoo — in
OOroocMCM-.ro
i i i
o o o
m in o
O CM ro
i i i i i co CM in
o o o
odd
i
oooooooo
oooooooo
oooooooo
oooooooo
1 1 1 1 1
oooooooo
oooooooo
ooooooo —
odoodddo
i i i
oooooooo
oooooooo
O—iOOOOOO
oooooooo
II III
oooooooo
oooooooo
Oocorotocnoin
oooooooo
oooooooo
1 1 1
en o
en co
ro -*
ro CM
c? ro
i
•
— en
CO <7>
Cft CO
in -*
d W
i
CM O
to o
^- en
CO CO
— < ro
O ro
,»• ,_
LO ro
CO co
~* CM
O CM
O O
O CO
in in
0 r-
o o
o o
i
CO -H
— O
to to
O CM
O O
o d
CO CO
CO 0
LO ••T
O XT
o o
d d
o en
O ^H
O ro
O O
d d
co ro
ro in
ro ~*
e3 CNJ
0 O
o d
cu >
en cu
IO £3
i-
-a
10
10
m
c
eu
cu
a.
o
en
0)
3
$
cu
^
O
to
-Q
O
rt
t
^H in
to r~ «»•
CM CO O
*-t CM iO
-« ro LO
O «• LO
§LO r»
-^ CM
O CO O
O O) ro
O O ro
O
O
_H
o-
t
ex
<£
UJ
.-
c
1
u
01 4->
c *•> c
uj 3 cu m
— — 0 10
•o o u t-
10 en cu CD
£X J2 O-
^
— H CO CM
CM en co
— < LO rr
^r to ro
«• co
it ...
— « CO V
*>>4
co to ro o r^
to o ro o in
LO en co co to
CM to —« f^. — «
— * O in ro ro
ro CO CO -- CO
en ro ro ^^ en
LO v — en co
CM —< — H in «
cn 0)
(D O
a>
> T3
t<0
4-85
-------
absolute percent bias for the Radian channels was 2.33 percent. These
accuracy measurements show excellent agreement with the reference values, and
lend confidence to the 1989 NMOC concentration results determined on all the
Radian channels.
The EPA-AREAL channel averaged -0.9% bias, relative to EPA-QAD.
Figures 4-35, 4-36, 4-37, and 4-38 show the audit bias results for the Radian
channels versus the reference values provided by EPA-QAD. Figure 4-39 shows
the audit bias results for EPA-AREAL versus EPA-QAD.
4.9 DATA VALIDATION
The secondary backup disks were updated daily on 20 megabyte hard
disks. At the completion of the sampling and analysis phase 26.4% of the data
base was checked to verify its validity. Items checked included original data
sheets, checks of all the calculations, and data transfers. In making the
calculations for the final report and other reports, corrections were made to
the data base as errors or omissions were encountered.
A total of 2,576 NMOC concentration measurements were performed by
Radian in June through September 1989. For the regular 1989 NMOC Monitoring
Program, there were 2,495 NMOC concentration measurements wh^h included 1,965
sample analyses, 150 repeated analyses, 38 local ambient samp ;s (x 4 analyses
each), and 8 audit samples (x 4 analyses each). The remaining 81 analyses
included analyses from the 1989 Raleigh diurnal study, the Maryland NMOC
Monitoring Program, and the Portland Monitoring Program.
A percentage of the data base (14.6%, 373 cases out of 2,560 data
points) was selected at random and validated according to the procedure
outlined below.
A. Calibration factors were checked.
1. The area count from the strip chart that was used to
determine the calibration factor was examined to verify
that the data had been properly transferred to the
calibration form.
2. The calibration form was examined to verify that the
calculations had been correctly made.
3. Each datum on the disk was compared to the corresponding
datum on the calibration sheet for accuracy.
cah.!71f ' 4-86
-------
o
CO o
< co-
ca <
b 1
§ 1
B^J C
^^* SB
CC
c
<~
V
<
c
^
i 1 I 1 1 1 [ 1 i
3OOOOOOOOOC
DOCOh-COiO'^-eOCSji-C
9
>
o
o
1 1 I 1 1 1 1 1 !
3OOOOOOOOOC
3^C\ICO^"U5CON-COO)C
a'
o
R <
- 9 CL
co LU
CO
C
c
5
u8 g g
W a '-6
0 .g
S co
cc
k 25
g
o
-.9 •
co
1
•^J-
1 §
CT
IT
8
•
o
3
T-oooco
oooo'-
i i i i i i i i i
(QLUdd)
4-87
-------
CO §
<
CD
co
a
05
o
o
I I I I
o o o o
o
o
o
Lo
CO
O
Q
<
a
8
OO
I I
o o
i
o
8 8
T-OOOOOOOOOOO
o o
o
o o o -r-
Q
o
CO
QQ
"0
c
CO
C
"•6
co
CC
25
CD
co
I
o
u.
C3)
4-f
-------
a
CO eS
55 o
H 1
B §
m^J C.
cc
$
,
c
X
<>
! 1 ! 1 1 1 I 1 !
POOOOOOOOOC
>0
'
1 1 ! 1 1 1 1 1 1
O
o
CO
-S g
^
0
<
O
r
0
_ 0
-
8
6
5
Q
O
<
a.
LU
CO
O
"Q
CO
CO
CO
in
co
i
^t
O)
uZ
r- O O O O O O
oooooooooooo
I I I I I I I I
O -r-
I I
(Ooidd) SBi
4-89
-------
CO o
55 1
t 1
< 1
^ CO
Qu
c
c
1 i 1 1 1 1 1 1 1
DOOOOOOOOO<
3 O) CO h^ CO lO ^" CO C^ ^" '
0
o
i 1 1 I 1 1 1 1 1
DOOOOOOOOOj
8
•<*•
.8
eo
^^
^^
O4
_8
8
0
D
a
Q.
LU
CO
a>
g I
i 6
{J ^**
§ «
eo
a:
CO
CO
S5
oo
CO
T-OOOOOOOOOOOOOOOOOOO^-
(Qiudd)
4-90
-------
CO
< <
3 °
H- f
q g
-JS <
^
c
o
o
I i 1 1 1 1 1 1 1
3OOOOOOOOOC
^ O) co ^* co ^} **>r co ^^ ^™* c
o
.
i ! i i i i 1 i 1
3 O O O O O O O O O C
a'
8 °
co <;
a.
LLJ
CO
1
LLJ
DC
-* I 3
w t &
Q
< CO
O CO
m
g
<
o
_ o O5
CO
1
CD
D)
LE
8
o
§
4-91
-------
B. Analysis data were checked.
1. Area counts were verified from the appropriate strip
chart.
2. Calculations were reverified on the analysis forms.
3. Each datum on the disk was compared to the corresponding
item on the analysis form.
C. Field data sheet was checked.
1. Each datum on the disk was coi.^ared to the corresponding
datum on the field data sheet.
The error rate was calculated in terms of the number of items transferred from
the original data sources. For each NMOC value in the 1989 data set, 36 items
were transferred from original sources to the magnetic disks. In the data
validation study each item on the disk was compared with the corresponding
value on the original source of data. Seventy-nine errors were found (and
corrected) for an expected error percentage of 0.369.
Each time the data file was opened and a suspected error found, the
error was checked against the original archived documents, and corrected where
appropriate.
4.10 NMOC MONITORING PROGRAM RECORDS
The quality assurance records developed by Radian for this project are
extensive and will be preserved as archives. One of the most important
objectives of the study was to develop a data base that is well planned and
documented and contains NMOC data of known and verifiable quality. Achieving
that objective has involved keeping and preserving a number of records that
•
trace the project from planning through reporting.
4.10.1 Archives
In order to keep detailed records that document the quality of the
measurements made, Radian developed the following original material:
Quality Assurance Project Plan (QAPP);
Notebooks;
Field Data Sheets;
Laboratory Calibration Sheets;
Laboratory Analysis Sheets;
cah.!71f 4-92
-------
Chromatographic Strip Charts;
EPA-AREAL and EPA-QAD NMOC Results;
Bi-weekly, Monthly Reports to EPA;
Memoranda and Correspondence; and
• Final Report.
In addition to the above items, several papers to be presented at
technical meetings and symposia and published in technical journals will be
added to the archives.
The QAPP2 was the Quality Assurance Project Plan and the workplan.
The QAPP was designed according to the EPA Quality Assurance Guidelines, and
set the pattern of steps necessary to document and control the quality of the
data obtained throughout the study.
Several notebooks were necessary to maintain day-to-day records of the
project. Field and laboratory data sheets were designed in advance, so that
the data recorded appeared in a logical sequence and filled in blanks on the
sheet. Additional space was provided for other comments. Each NMOC analysis
was assigned a unique Radian Identification Number. Field datasheets and
shipping records accompanied the canisters in transit.
4.10.2 Magnetic Disks
In order to manage the data base for report generation and data
analysis, pertinent data from the various data sheets and notebooks were
transferred to 20 megabyte magnetic disks. The following software was used in
the construction of the data base: Paradox 3®, Lotus 1-2-3®, and PC File+®.
Statistical calculations were done using SYSTAT® software. The data access is
rapid and in a convenient form. The primary 20 megabyte magnetic disk has
three backup disks.
cah.!71f 4-93
-------
5.0 NMOC DATA ANALYSIS AND CHARACTERIZATION
The purpose of this section is to characterize the NMOC data
qualitatively as well as quantitatively. The NMOC data are shown to fit a
two-parameter lognormal distribution better than a normal Gaussian
distribution. The summary NMOC data for the sites of the 1989 study are given
in Appendix E.
5.1 OVERALL CHARACTERIZATION
Figure 5-1 gives a stem-and-leaf plot of the 1989 Morning Site NMOC
data along with statistics for NMOC. The stem-and-leaf plots show the actual
NMOC concentrations truncated to two or three decimal points. The digits to
the left of the vertical open space are called stems and the digits to the
right of the open space are the leaves. The data are sorted from the smallest
at the top of the graph to the largest at the bottom of the graph. The
minimum NMOC value measured was 0.043 ppmC and is shown as "0 4" on the
first row at the top of the plot. The maximum NMOC concentration measured was
5.013, shown as "50 1" in the bottom row of the chart. The plot shows 1,784
leaves, one for each NMOC Morning Site datum in the 1989 program. The H's in
the open vertical space locate the stem and leaf for the upper and lower
hinges, and the M locates the stem and leaf for the median. The median
separates the sorted NMOC concentrations into two equal halves; the hinges (or
quartiles) separate each half into quarters. The "H spread" or inter-quartile
range is the difference between the NMOC values of the two hinges.
Statistics shown for NMOC are number of cases, minimum, maximum, mean,
median, standard deviation, standard error, skewness, kurtosis, and the two
hinges. Each NMOC determination is the average of two or three injections of
the site sample.
The standard error is the standard deviation divided by the square
root of the number of cases. Positive skewness is a third moment about the
mean value, and characterizes a tail to the right of the mean value. A normal
Gaussian distribution has a skewness of zero. The skewness of 2.46 for the
1989 NMOC data suggests a lognormal frequency distribution; that is supported
-------
0
0
0
1
1
1
1
1
2
2
2
2
3
3
3
3
3
4
4
4
4
4
5
5
5
5
5
6
6
6
6
6
7
7
7
7
7
e
e
8
8
8
8
9
9
9
9
10
10
10
10
10
11
11
11
11
11
12
12
12
12
12
13
13
13
13
13
14
14
14
14
14
15
15
16
17
IB
19
20
21
22
23
24
25
26
27
28
29
31
32
34
36
39
40
50
44444 55555 555SS
666666677777777
88688688888888890909909908800099
0000000000000000000011111 11111 11111 11
<14«4 4 9>va^ 9^97 mw wxn »9M fqy» innsa vtfftn 9f>Bfvt g
H«l«iHIH«««il««ililil444<4«44
-------
Dy the fact that for the logarithm of the NMOC value (In(NMOC)) (see
Figure 5-2), skewness equals -0.087, which is close to zero. Kurtosis is the
fourth moment about the mean and relates to the pointedness of the
distribution. A distribution more pointed than a normal distribution, having
the same standard deviation, has a kurtosis greater than 3.0.
Figure 5-2 is a stem-and-leaf plot of the 1989 In(NMOC) data. The
plot shows an approximately symmetrical distribution (skewness * -0.087). The
kurtosis equal to -0.274 indicates the In(NMOC) distribution to be less
pointed than a normal distribution.
The shape of the stem-and-leaf plots suggests a lognormal
distribution. Figures 5-3 and 5-4 support the lognormal distribution
hypothesis for NMOC. The vertical scales in Figures 5-3 and 5-4 are arranged
so that if the cumulative frequency of occurrence of NMOC were normally
distributed, the numbers would plot into a straight line. The line in
Figure 5-3 has a noticeable concave downward trend, indicating that the data
do not fit a normal distribution well. Figure 5-4 plots the logarithm of NMOC
on the same vertical scale. The fact that the digits on the graph plot into
approximately a straight line supports the hypothesis that the NMOC data are
approximately lognormally distributed. An asterisk on the graph indicates the
location of a single datum. Integers, such as 2, 6, 'or 9, show the location
of the corresponding number of data points. The number 999 shows the
approximate location of either 27 data points or 99 + 9 data points. The
results, although qualitative, show a dramatic difference between the normal
and lognormal hypotheses, and suggest that the latter more nearly describes
the NMOC data. Figure 5-4 is labeled a "Normal Probability Plot," but since
the independent variable is the logarithm (to the base e) of NMOC, if the
relation between the EXPECTED VALUE and Tn(NMOC) is linear, a lognormal
distribution is obtained.
5.2 MONTHLY VARIATIONS, 1984 - 1989
Table 5-1 partitions the NMOC data for the summer of 1989 into groups
which correspond to monthly intervals.
The median, mean, and maximum NMOC concentration for September appear
higher than for June, July, or August, but no clear trend is seen for the
summer of 1989. Arithmetic means are used in Table 5-1 in spite of the
cah.!72f 5-3
-------
-31
•30
•29
•28
•27
-26
-25
-24
•23
-22
-21
-20
-18
-18
-17
-16
-15
-14
•13
-12
11
-10
-9
•8 M
-7
-6
-5
-4
-3
H
-2
-1
-0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
16
H
4
7610
663220
9883
943321
83220
97431 10
988654443311
9988888766
99987 7665S 55444 42111
99888 87776 65554 22110 00
99888 88877 77766 55554 43221 11000 0
9888877766555544443332221 1111000
9999888888877776666655544444433222222211 1110000000
99999 99988 77777 77776 55544 43333 9999911100 0
999999999999888888777766666666665555555544333333333222222221 11111000000
9999999999888888777777777766666555544444443333333322221 11111 110000000000
99998888807777666666666554444433332222222222211111 111100000
99999998887777776666655554433333333332222222211111 1110000000000000
99999888877777776666666666655555444444333332222211 11111000000
99999 99998 88888 88888 87777 77777 77766 66666 65555 55555 55544 44433 33333 32222 21111 11111 10000 00000
99999 99999 98888 88887 77777 77776 66655 55554 44443 33333 33222 22222 22111 11111 11110 00000
99999 99998 88887 77777 77777 77666 65555 44444 33333 33333 33333 32222 9??99 22221 11110 00000 000
99999999888888877777777666666555555555554444333333333333322222111 10000000000
99999 99888 88887 77777 77665 55554 44444 44433 33332 22222 22211 11100 000
99999 99999 99888 88777 77766 66666 66666 66666 55555 55555 55554 44444 44444 44333 33333 333333 33222 22221 11111 11100 00000 0
999999999999999888888888777777766666666666666666555554444433333333222222221 11111 1110000000000000000000
999999999888888777777766666666555555554444444333333322222211 11111 111100000000000
99999888888777777776665555555444444333333322222211 11111 11111 100000
99999 99888 87777 77666 66666 55555 55555 44444 33333 33322 22222 21111 11100 0
9999988888877776666666554444444444333333333332222221111 00000000
99999 99998 88877 77777 77777 66666 55555 55444 44443 33333 33333 2221111110
00000 00001 11111 22233 34444 44566 67777 77888 88889 99999 99
00000 00112 22223 33444 44445 55666 66778 88899 99
00001 11111 22222 33333 44445 55567 77889 99
00000 00000 11112 23344 44444 55666 6899
00011 23333 55566 67789 99
00011 112334455567778899
122233355667777789
1355679
134499
112367
2449
46
3
089
1
Cases
Minimum
Maximum
Mean
Standard Deviation
Standard Error
Skewness
Kurtosis
Lower Hinge (H)
Median (M)
Upper Hinge (H)
In(NMOC)
1784
-3.147
1.612
-0.853
0.792
0.019
-0.087
-0.274
-1.420
-0.836
-0.292
Figure 5-2. Stem-and-leaf plot for the morning In(NMOC) data.
CM
in
5-4
-------
«
CM
CM
CM
05
CM N
O5
O)
3
O) CO
O)
§1
in
O)
o>
o
m o>
O)
§
§1
O) O> (O
to
- in
o
o
n 2
CM
CO
*M*
CO
•o
Z
O)
c
.o
"3
J3
CD
3
CT
CD
CD
JO
3
|
(3
CO
in
CD
3
O)
iZ
CM
CVI
pejoedxg
5-5
-------
U6CSC6ZZ
I-CM
CO
CM
m
CM
CO
O5
O)
*
0)
O)
a>
0)
O)
0)
05
CO
O)
O)
O)
05
l-o
0)
O)
O)
0)
0)
O)
O)
0)
O)
o>
CO
O)
O)
O)
O) CO
O)
O)
O)
O5
O5
O5
O) CM
O)
CO
(O
CM
CO TJ-
CM
*S
"co
•D
o'
O
CO
o>
c
.g
'•^
.g
CD
3
O
u
1
O)
u.
CM
T"
CM
5-6
-------
3=
•z.
o
z
CD
„
oo
LU
1—
OO
0
o
*>~
z
C3
»-»4
•z.
C£
i
cr>
00
en
i—H
ce:
O
u_
oo
oo
1—
oo
ce
<£
s:
2:
i
LTJ
cc
t—
ID
CO
O
c
o
ro
CD
O 0 0
O E
•o s: Q.
s- z a.
-2
ro
oo
E
3 0 O
BOS
•-SO.
X Z O.
rO
coo
en
E c oo
re O O>
oo z: i-*
t— (
*f
co
o
•
o
CO
cr>
vo
co
o
I— ^
m
•
o
<£>
CM
CO
0
cr>
0
o
0)
c
o
10 CO
CM O
*3- Lf>
O ^H
CM m
^^ ^f
• •
0 0
CO *3-
*r co
^^ 1-^
« •
co co
CM O
*a- -d-
in in
C> 0
oo in
CM O
^^ *3"
* .
O 0
CM CO
0 0
0 0
-M
to
•— O1
3 3
"™3 *C
10
CO
^~
^^
co
.
0
CO
I—I
0
LT>
00
,
O
o
CO
LO
o
VD
O
O
s_
0)
E
O)
Q.
CD
oo
CM
5-7
-------
observations given in Section 5.1 which conclude that the frequency
distribution of NMOC concentrations in ambient air are logarithmic normal
distributed. Comparison of Tables 2-2 and 2-3 containing site average
concentrations for the Gaussian and lognormal distributions, respectively,
emphasize that the lognormal means may be less than, equal to, or greater than
the respective arithmetic means. In all cases the means are within 10% of one
another. Either the arithmetic means, or the mean of the lognormal
distribution may be used as a measure of central tendency of the data.
Table 5-1 also gives monthly minima, medians, and maxima. These latter three
statistics are independent of the probability distribution from which they
derive.
Figures 5-5 through 5-8 give the stem-and ^af r" ts of the NMOC data
for June, July, August, and September 1989, resr .ivel All the plots show
the general shape of lognormal distribution. The data or June, July, August,
and September may be considered typical of the sites tested during the
indicated time period. Monthly mean NMOC emissions are plotted in Figure 5-9
for 1984, 1985, 1986, 1987, 1988, and 1989. No general trends are evident for
the years shown. For five of the six years, September means are higher than
August means, and for four of the six years, July means are less-than June
means. At present, however, it must be concluded that random behavior is
responsible for apparent month-to-month changes.
During the six years of the NMOC Monitoring Program, three sites
participated in the program for all six years. Two sites have been in the
program 4 years; 7 sites for 3 years; 18 sites for 2 years;; and 61 sites for
only 1 year. In all cases the sites were urban sites, but it is difficult to
draw conclusions from year to year because of the difference in yearly site
participation.
The April and May NMOC monitoring data for 1988 were from only four
Florida sites, MIFL, M2FL, T1FL, and T2FL. The remainder of the points
located on the 1988 trend line included data from 45 NMOC Monitoring Program
sites.
5.3 SPECIAL STUDY
This section summarizes the results of a special study designed to
characterize, compare, and qualify NMOC monitoring data from 1984 through
cah'.172f 5-8
-------
0
1
2 H
3 M
4
5
6 H
7
8
9
10
11
12
13
13
14
15
16
17
18
19
21
22
36
56677999
00000 11111 22222 22333 33344 44445 55555 55555 55566 66666 77777 77888 88888 88999 99999 9
00000 00000 11111 22222 22222 33333 33344 44445 55566 66777 78888 88999 999
00000 00000 0111112222 22333 33334 44455 56666 66666 77777 77886 89999
00011 11223 33333 33445 55556 77777 88899
00011 11111 122222223334444555556666799
00000 01112 23333 44455 56666 67778 88999
00111 22222 23345 55566 77889 9999
000022445677788
00111 22233455566
0011334479
0001478
0368
23567
8
28
9
1
348
7
69
4
5
9
NMOC, ppmC
Cases
Minimum
Maximum
Mean
Standard Deviation
Standard Error
Skewness
Kurtosis
Lower Hinge (H)
Median (M)
Upper Hinge (H)
419
0.058
3.693
0.510
0.402
0.019
2.414
10.890
0.220
0.395
0.684
IT
S
Figure 5-5. Stem-and-leaf plot of the morning NMOC data for June, 1989.
5-9
-------
0 56888 88990
1 00011 11222 22222 33344 45555 66667 77778 88888 88888 89999 99999 9999
2 H 00000 00000 01111 11111 22222 22333 34444 44444 44555 55566 66667 77788 88888 88899 9
3 00000 00001 11111 22222 23333 33444 44444 45566 66777 78889 99999 99999 99
4 M 00011 11122 22333 33344 44444 45567 77788 88899 99999 9
5 000001111111112222222344455556667777788888999999
6 00000 11223 34555 56788 9
7 H 0011122334477778899
8 0012245556667788999
9 000222344555666788
10 0034457778999
11 11123555678
12 033466789
13 355
14 119
15 347
16 4568
17 59
21 3
24 49
34 4
NMOG, ppmC
Cases
Minimum
Maximum
Mean
Standard Deviation
Standard Error
Skewness
Kurtosis
Lower Hinge (H)
Median (M)
Upper Hinge (H)
426
0.051
3.443
0.542
0.419
0.020
2.138
7.596
0.245
0.427
0.712
Figure 5-6. Stem-and-leaf plot of the morning NMOC data for July, 1989.
5-10
-------
H
M
0
1
2
3
4
5
6 H
7
8
9
10
11
12
13
13
14
15
16
17
16
19
20
23
24
26
31
44555 56777 77888 88889 999
00000 00000 11111 11222 22233 33333 44444 44455 55556 66666 66666 77777 77888 88889 99999 9
00000 00000 00111 11122 22233 33333 44444 44455 55555 56666 66666 77777 77777 78888 88999 99999
00000 000111111111111 22223 33333 33344 45555 55555 66666 66777 77788 88999 9999
0000000001 11111 1122222223344444555566777777889999
00001 12222 22333 33445 55566 66666 67777 88889 99
00000 01111 22223 33333 34444 44455 66777 889
00011 22333 33444 55556 67779 99
00012 33346 66666 77777 89
01111 134566666789
000117789999
024569
11467
44578
9
001449
499
47
034789
014678
58
49
2
9
6
3
NMOC, ppmC
Cases
Minimum
Maximum
Mean
Standard Deviation
Standard Error
Skewness
Kurtosis
Lower Hinge (H)
Median (M)
Upper Hinge (H)
503
0.043
3.134
0.540
0.450
0.020
1.929
4.792
0.233
0.404
0.697
cc
CO
CM
\f>
8
Figure 5-7. Stem-and-ieaf plot of the morning NMOC data for August, 1989.
5-11
-------
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
21
22
23
24
25
26
27
28
29
32
39
40
50
44455 55666 78889 99999 9
00122 22333 33444 44555 55666 66666 66666 67788 88999
H 00011111112222222333444444666666667777777788999
00000 01111 22222 22333 33334 44555 55666 66677 77778 99999 99
00000 12222 33335 55566 66677 88889 9
M 01111 11112 22222 33333 33344 44444 55555 55556 66677 78099 99
00000 00011 22335 56666 66788 889
00012 22344 66667 77883 6
011233334577889
H 0011222333346667888
01112234467899
11223345566779
01222223444556789
012255555779
0134477
0013468
0345567
03
68
2345667
28
1
2
5
15
1
9
35
9
2
9
NMOC, ppmC
Cases
Minimum
Maximum
Mean
Standard Deviation
Standard Error
Skewness •
Kurtosis
Lower Hinge (H)
Median (M)
Upper Hinge (H)
436
0.046
5.012
0.717
0.637
0.03C
2.316
8.416
0.282
0.538
0.973
Figure 5-8. Stem-and-leaf plot of the morning NMOC data for September, 1989.
5-12
-------
h 01
or
CD
O
DC
CL
E
O
O
O
O
h oo
m
2
-
rj- in CD 1^ 00 O5
CO CO CO CO CO 00
O5 O> O O) (J> O)
• + O < X O
1 i
8 §
»- d
C*l
i/
Q) /
***/
/
i i i
O 0 O C
00 h- CO U
o o 6 c
-,
?
3
O)
00
OD
O)
Z5
o
00
O)
CO
o
'co
O
O
c
co
0)
o
O)
I
LO
O
<2
LL
5-13
-------
1988. Task 1 compared monthly average NMOC concentrations for 1988 with
monthly average NMOC concentrations at the same site for years 1984 through
1987. A total of 18 sites participated in the NMOC Monitoring Program for the
specified time periods.
Thirty-two monthly average NMOC concentrations were availeble for
comparing 1984 data with 1988 data. In 28 out of 32 comparisons, monthly
averages in 1988 were less than corresponding monthly averages in 1984.
Thirty-nine monthly averages were available to compare 1985 with 1988; 34 out
of 39 monthly averages in 1988 were less than corresponding monthly averages
in 1985. Conclusions reached in Task 1 are that NMOC monthly average
concentrations in 1988 were lower than corresponding monthly averages in
1984and 1985. The magnitude and pattern of the decreases for the 1988 data
are site specific and specific to the years of the comparisons. It should be
emphasized that even though the locations of the sites are the same from year
to year, site average concentrations given in this study do not reflect the
effects of meterological variables, wind speed and direction, solar radiation
(presence of clouds), temperature, humidity, and changes in the topography
that surrounds the site. Drawing conclusions relative to "average" site NMOC
concentrations should be avoided without taking into account all of the
meterological and topographical factors.
Comparison of 1988 monthly average NMOC concentrations with monthly
average concentrations at the same site in 1986 and 1987 showed that no trends
were discernable at the sites tested. Twenty-nine monthly comparisons were
possible in 1986 and 48 in 1987.
Task 2 investigated correlation of maximum daily ozone concentrations
with 6 a.m. to 9 a.m. NMOC concentrations for June and July 1988 at five urban
centers -- New York, Newark, Plainfield, Houston, and Chicago. Maximum daily
ozone concentrations at the urban site and at selected ozone receptor sites
were plotted versus NMOC concentration at the urban source. Linear,
quadratic, and cubic polynomial correlations were tested. Data involving
Chicago were not useful in this study because there were insufficient data for
the chosen time period. The remainder of the correlations showed significant
linear relationships despite linear coefficients of regression lower than
0.550.
cah.!72f 5-14
-------
TESK 3 was designed to relate canister age to NMOC concentration, at
urban sites, and subsequently to maximum ozone at receptor sites, should
measured NMOC concentration be a function of canister age. However, analysis
of NMOC concentrations measured from duplicate sample canisters confirmed that
no correlation existed between NMOC concentration and canister age.
5.3.1 Task 1
Task 1 compared monthly averages of NMOC concentrations for sites in
the 1988 program with corresponding monthly averages for the same site that
participated in the programs one or more previous years. Table 5-2 gives
monthly NMOC concentration averages for June, July, August, and September for
each site listed, showing the years the site participated in the monitoring
program. Table 5-2 also shows the number of cases included in each monthly
average. The number of cases at each site differed from year to year. For
some sites there were considerable differences in the number of cases.
Certain of the monthly averages were derived from data obtained by
Region III12'13 and these data are flagged in Table 5-2. The remainder of the
results in Table 1 were derived from data obtained by Radian
Corporation.3'5'6-7
The Arlington, Virginia site data for 198713 were modified upon the
recommendation of Region III.1* There were three values of NMOC reported to
be greater than 3.0 ppmC (3.621 on July 28, 9.061 on August 3, and 4.599 on
September 23). Region III personnel have reason to believe that the sampling
system was contaminated with acetone on those three days and recommended14
that the values be removed from the data base for that reason.
Figures 5-10 through 5-27 display graphically the averages listed in
Table 5-2. In general, the monthly average NMOC concentrations in 1985 are
higher than the averages for 1988. The monthly averages for 1986 and 1987, on
the other hand, show few trends when compared to the 1988 monthly averages.
It is clear that any trends in the 1984 through 1988 monthly average NMOC
concentrations are site specific. For example 1984 monthly averages for
Beaumont, TX; Dallas, TX; El Paso, TX; Philadelphia, PA; and Washington, DC
are clearly higher than 1988 monthly averages. Richmond, VA; Charlotte, NC;
and Miami, FL on the other hand show a mixed comparison between 1984 and 1988.
cah.!72f 5-15
-------
GO
O
<
L—
^^
Z
LU
^^
O
'-'
Q
Z
O
c_
•z.
C-3
O
Z
z
1—
LU
o
z
UJ
o
a:
LjJ
~,"I
^-
— 1
Z
o
CM
LO
LU
CO
^
O)
^2
E
CD
+J
a
oo
4^
00
O
3
"^
r__
3
^
O)
£T
3
o "o
SUE
^^ ^ ^5_
Av tv- 1— *•
O CL
a>
>
^c
(/)
0)
00
re
V-}
0
O -
E • 0
z a E
C^^
U.
. o Q.
cno
,>
0)
£
o -
2: • o
Z 0 E
^— ^^
• o a.
<
00
O>
00
03
0
o -
z J *E
c o.
. o a.
CTK-J
«*
t/1
0)
00
re
s..
re
OJ
LO CO VO "— 1 LO
CM CM co en cn
CT> CO O OO ^
o o — < — • o
vo r*» •— 1 1— i en
CM CM CM CM <— I
^^ 00 ^Z) 00 ^D
vo «sr •— i LO oo
VO LO 00 LO O
0 0 0 ~ ~
0 CO ^S- LOCM
CM CM CM CM CM
LO ^. CM CO LO
CO LO LO O CO
vo r^ LO *-i r~*
O O O CM O
^s- vo CM LO r»-
CM CM CM CM •-<
CM O VO CM ^~
vo en en en CM
vo LO f-. en LO
CD O O i— i ^H
. — ,
X
K~ ^~>
2: ^< LO CM CM OO X
CQ CM CM CM CM I—
•^ - 1
- ~-^
a
X —
h—
X
1—
c
O oo
E fB
3 00 h~- VO LO T3- i —
re CO CO OO OO 00 *""
o en en en en en re
CO !""» !— •« *"^ <"M I-H ^^
en r-. co LO CM
LO 00 LO CO CO
LO vo LO r~- oo
o o o o o
•^ »*~i ^^ en CD
CM CM CVJ i— i CM
co 00 to CM en
en f— i p*~ en LO
^9- LO 00 O
o o o o •—>
VO O CM CM CO
CM CM CM CM CM
LO i— 1 CO t*» O
CM CO 00 CO 00
•<9- LO LO r*. oo
o o o o o
«3- CO rt CM O
CM CM -^ CM CM
CO VO CM «ef
•«• CO ^H 00
VO 00 ~ ^^
O O > i— « r-l
^«M
X
CM -^ i en ^H i —
CM CM I i— i 1—1 — 1
Lxj
X
i—
o
00
re
CO r» vo LO *r Q.
CO CO 00 00 00
i— 1 i— 1 i— I i-^ i— 1 LU
^^ en en LO oo
o oo co co vc
VO LO LO 1 — C
0 CD O 0 <—
co co o •— < en
CM CM CM CM i— I
— < O VO OO VO
Tj- ^S- LO LO CO
CD O O O O
CO CO CM LO •— I
CM CM CM CM CM
CO CM r-l CO LO
r-^ vo CM i-.. co
CO CO LO VO 00
o o o o o
^" CO CO CO O
CM CM CM OO CM
^^ en oo CM co
en vo •«• vo oo
CO CO CO 00 CD
o o o o f-« o:
CU
ex.
^ ' *™^
C^j pj — < LO VO
pri ^. CM LO en
O' o o o o
^^
^J- «a- «a-
„ ^ CM CM CM
^ t^CQ ~ <=>
LO VO * ^ °.
0 0 °* <=> "^
CO -^ CM LO O
r^-fl CM ^ CVJ C^
TJ. ,_, co co o
^ **" *" '"' CT>
C>CD ° <=> ==>
r^ — , CO O CM
„ 2 CM CM
CO
-------
LO
C2
i.
a
a
•4—
a
O'
-M
CO
3
0
3
o
<1J
c
3
^^
J
0 -
o • «_>
s: o E
^y C O.
) 0 0.
) • O
= o>
) >
<
t
CO
a>
CO
(0
o
C_5
O -
s • 0
Z 0 E
c ex
• O Q.
C7>O
>
<£
CO
o;
CO
to
C_>
O
o -
S • <_>
Z U E
c ex
• o ex
C7)t_>
>
<:
CO
o>
CO
fO
O
S-
fB
O)
^
en VT> CM LO ^i-
vo o CM vo co
LO LO CM CO CO
0 O O 0 O
I-H r-^ CM co oo
^H »— < 1--I
OO VD O CO Cfl
VO l*v CO LO VO
"3- «• CO VD CO
0 0 0 O O
CM O CM LO CM
CM CM CM CM CM
O 00 ~i 00 CO
o r-- LO o LO
LO ^- co vo r~»
O O O O O
CT» CM LO *3- •— i
^H CM CM CM CM
LO Cfl LO O O
r»~ i— i co cr> VD
co LO co CO r~
o o o o o
*•"• *
o
Q <—
3 X
• — O CM CM •— i CM I—-
CM CM CM 1—1 1— 1
8 5
X
C h—
O
4-> -
a c
c o
•1— 4_>
-C 00 r~- vo LO «3- oo
(/i CO 00 CO CO CO =
(73 CT* O"i CTi CTN Cft O
2£ I™H r— i i*-i i«— t I-H 33
cocnco«3- —.0 LO^TCO
•— i co co oo «f« cncMrs.
*-< CM co r*. 2 vo f-^ r^ vo
__,_io dd1 ooo
CO«S-COCM CVI^H' cocnco
CM CM CM CM ...JcM1 r- 11— ICM
CMVOLOr^- en en ** O\ tt- \o
roio— -
CMVOCMCM CQ—,^.,!"^ zrv.r-.co
—1 CM CM — 1 ^ CM CM rt XT ^H ^H CM
Q *""
^^ >-
CU
S_ -^
O S-
E 0
*^~ to co ^~
COr^vOLO -«->cOr~vo O0r~-vo
COCOCOCO r— 000000 2OOCOCO
CTvCf»CftCJ> fOCTiCftCft OJ CT) CTl CTl
^H F— 4 l— 1 I-H CQ I-H i-H r^t ^* i-~l i-H f-H
•o
(V
3
c
•+->
c
o
vo
CM
5-17
-------
-o
O)
3
C
C
O
^^
OJ
1
in
UJ
_J
CO
s-
O)
E
^j
O
O)
CO
w
3
a
3
0 -
O • 0
S 0 E
Z C Q.
o a.
• o
cn
^
IV
V)
n
0
o -
^ST* . ^_J
Z (J E
c a.
• O Q.
cno
<
0)
CJ
0 -
Z J *E
c a.
• o a.
"*
OJ
«o
(0
o
i-
rtJ
u
>-
__, in roojcn co vo co »»• co •— i co^
e> ^ vo^-vo ^r — H co •-* moo •— i co
Jjj in vovoio ^-r^ co vo — ^ •— « »^cn
O'io oo'o o'o o^< — -H oo
i— i i CO CO IO CO CM O ^ >"^ r«« Cn ^ CM
JS I ^^ OJCMCM CM CM CMCM CM i— l CMCM
Q—HCO cMojun CMO incM ooj ojcn
^f»f cn ^^ ^j^ tpi ^^ fio ^y% ^n ^^ cvi CM t^> co
~L ^* in vo vo vo ^x* *sf" CO ^^ co *o co CO
^•* ••• •• •• »• ••
ejoo ooo oo OI-H •— IF— i oo
-.inin ^•^j-r—i cMin oo COCM coio
JgCMCM CMCMOJ CMCM CMCM CMi-^ CMCM
fj\ co co in i-^ co cn r*«» f** CP ^^ o co
irt m *^ co co cn in r** r^» ^r C3 <•"' CM
X;^-Ln inor^ ^-co cn i— i co ot^-
• • ••• •• •• • ••
Q O O O •— i O OO O i— ' Oi •— i O
eococn co co •— • •— < m o-^ cni CMCM
JiJ CM i— i CSJ CM CM i— l r—t CM i— ' i— < 1 CM CM
^,CnO COVDCO VO VO CO ^^OO
fyj cnm co "— < m cn ^- r>« co •— •
f^\ vo cn f"1** co ^^ ^^ *"** cn vo co
• • ••• • • • ••
o'oo o^^o 01 ^11 o i oo
z
--. f H- —
O O t—i 2!
ji i* ^i ^"" ^^^ ^i
^._.cneM wicncooj <_>o< ZOi - i V_>COCM
Oipyj'— " >— 1— 1 OJ OJ — 1— II (_f\J| _ | *_,_,,_,
*" O o — — • z
< z 5
i_
• ) 0} -J ^j
C 3 *^ I/) «O
O O O ••- • r—
E o — 1 i — J= -i- OJ
-ccomTT coi — m s-co^r ace's- Eco«a- >com
' O CO CO CO • CO CO CO ^ CO CO E CO CO f& CO CO Q3 CO CO
•*— cn cn o*> •4-) cn cn cn ^z cn cn o^ cn cn •**- cn cr> r— cn cn
C£ •— 1 r— < r— I OO •— 1 ""^ •"• O >— < 1-H 21 1— I 1— 1 J£ l— I ^1 <_) i— ( l— I
• — •
O)
3
•i-
C
O
t1^
CSJ
* f"**o
r*-*
.
JZ,
c$
O
5-18
-------
s_
OJ
-Q
OJ
•4-)
a
oj
co
o • o
s: u s
zee.
o c.
•
CO
<»
CO 00
en r^
««• oo
o o
e\j o
r«. co
O O
_
O -
a.
a.
3
CT
3
Csj
-H IT)
r-. r->
CM CM
vo in
CM CM
LO f\J
CO ro
o
cr> cri
^- CO
d d
in r»~
in co
r^ co
O d
cu
I/)
P8
.
ro co
d d
10 co
^- o>
10 r«^
O d
co vo
i£> ^r
co 10
d d
0}
oo
s
CO ^H
LO *3-
CO LO
o d
CO LO
r-1 CSJ
CO r-~
CO CO
en en
vo LO
r^» -a-
CO <£>
d d
i—i co
CM CM
co r-.
CO CO
en en
f
C
o
cu
CTJ
-M
05
Q
CSJ
-------
(0
0
0>
o
o
O
O
O
o>
U3
03
0>
o
CM
co
CO I
e i
x
X !
I
C3 i
co N- co in ^t
CO CO CO GO CO
O3 CD O OJ O)
-r O <] X
CO
I
<
•3
O
CC
CO
c
CD
o
o
£ °
I °
2 O
CD
OJ
C3
CD
03
_>,
i
i
O
r-°
I
m
03
CM
CM
O CO CO ^
CM i- i- T-
O
CM
8 §
T- T- C>
o
CO
o
CM
L
cah.!72f
5-20
-------
co s. co in -t
CO CO CO CO 00
O) O) O> Ol O)
0)
(
0)
1
CO
Monthly Average NMOC Concen
O) !
CO |
1
CO '
CO
T
i
CO
£
<
x"
s
X
I— '
erf
— i
15 '
0
1
O 0 O
U3 T CO
//
/
< '• < 4fl
\
\\ : \
\ \ \ ' \
x. \ \ ! \
\
/ ^ ^/ •
/ / / /
7 < - •
i i ;
S2888SSg§§S28
a
"55
X
I-
_co
"CO
Q
03
C
O
c
CD
O
C
O
O
O
O
O)
CO
o
>
CO
>>
I
in
O)
(Quudd) uof
cah.!72f
5-21
-------
00 N. <3> O3
CO
-CDU3<^-«CM-^O
OOI/MN
cah.!72f
5-22
-------
0)
utm m
•^
(0
i_
j^
0)
0
c
0
O
O
O
0>
O)
CO
u.
0)
<
33
c
o
tfC
A
't
O
o
1
o
1
OJ
^f
>i
0
CO
2 >i
• '' ,*^f ta «— ^i»
~ CM — & /•«
^ £
c
o
CO
1
LH
**«/
L
oooooooooo ^
cncON-toio^eocvi^o .^'
r-ir- >r-iri(— ir-ir^r-if~i(-i LL.
(QUJdd)
cah.!72f
5-23
-------
0)
c
B
< I
I
O3 OJ
0 CD
£ £
co r^ CD m -«fr
CO CO CO CO CO
03 O O) O) O)
Q.
1)
CO
- a
0)
•4— <
°w
O
Q
^O
"5
CO
eo
c
QJ
O
C
o
cc
>,
O
O 0
m T
0
CD
0
C\J
0
8
0
a>
. o
0
CO
o
o
r^
o
O
CD
n
O
in
o
O
Tf
O
O
CD
(-1
O
CJ
o
0
o
O
O
O
I
LO
O)
LL
(Quudd) uoi;Bj^iaouoo
cah.!72f
5-24
-------
1 I 1 I
3
m - «
) — 5 X
C - - • < I H
O ~ -2 ,-•
— Q. C
^ -• o>
> i - «
££ u.
i , §
03
O
I
ID
o
i_
oooooooooooooooo S>
iO'3-cocv'~oo>oo^-cDio-«-coojT-o en
oooooooooo
UO!}BJ}U80UOO
cah.!72f 5.25
L
-------
CO
c
.o
"cS
0)
o
c
o
O
O
O
00
o
o
IO
CVJ
CO
I
5
1
w
- &
D) a
-KB
0)
O
75
CO
en
.g
*£
o"
fc
.i
CD
CD
a
CD
O)
CD
!__
CO
>,
O
CO
CO
O3
CO
a>
CD
co
a>
CD
I
°§sas8gggsg?g°o
o o o
0
k_
uo[;Bjyjaouoo
cah.!72f
5-26
-------
3
"co
% 2
W | vf
^ • -r -4 — o> TT
§ 1 £
i_ o>
*3 o: z
is o
Ms i s
o - •'• -| .1
OS 12
O -§ §
o |; e |
< ! -'; S o
Z ST: i , O
2
u. z CD
0) ^ O3
^ o CO
5 >
O CO
£ >,
•- -| 2
•^ •4H
-------
D)
§ -1^_ • - I
I? w E
to •§
•• cr
^ S
- & |
< "5
-
u,
S: 8
O CO ^r =
*5T Q: •= O
1 *: « o
ft I: ' :: ' -* I
2 > «
« ? S1
I I
.U CD
E >>
c
o
oooooooooooooooo
••- — i-1-T-i-oooooooooo
uoj}Bj;ueouoo QOINN
cah.!72f 5-28
I
in
.21
n
-------
CO
«
CO
c
o
CO
O
o
o
i
0>
O o
c 5
X »
(J CM
o i
o 2
«
o
en
oo
CO
CD
00
in
CO
03
"3.
0)
CO
CO
o
oooooooooo
mTCOCM-'-OOOOh-CO
o
CO
o
CM
2 8
0
*£f
'w
o
CO
o
_l
CO
03
C
.g
"cc
0
O
C
O
O
O
O
D)
CD
CD
>
cc
>.
- 1 E
O)
I
in
o>
3
O)
LL
(QUJdd) UO|1BJ^J90UOO
cah.!72f
5-29
-------
§ s
O) 05
05 • £ °w
CD
g
0) 8 g
4 % I ^
O i
O M. -^
s < « ®
€ < g o
2 O 2 §
o> i . >. °
O) o ~ •? O
5 o 9
fe 2- i
5*: o -*1-
> 75 <3>
<•= O)
ra CO
^ §
ooooooooooooooo
'•i-ooJoors-cow^TCOCM^o
o
c\j
i
cocM-^-oojoor^cDid^rcooj-^o 23
r-T-T--r-ooOOOOOOOC> -P5
u_
(Qiudd) uoijBj^jaouo:
cah.UZf 5.30
-------
CO
00
o
CO
O)
c/
c
mo
'£*
03
L
"c
0)
o
o
o
O
O
0)
o>
2
5
<
CNJ
I
0)
c
o
".
0)
CO
03
c;
o
-3
0
_=:
D.
3
05
C
.0
"co
i_
.(—•
0)
o
c
o
o
o
O
o
O)
CO
CD
CO
>,
o
C\J
I
o o o o o o o
r^. co in T co c\j -r-
o o o o o o o
r- CD 10 -^ cr> CNJ -r-
o o o o o
o o
D)
(Qiudd) uoj;BJ^j90uoo
cah.!72f
5-31
-------
00
oo
o
00
O)
•x
co
CO
O
O
'J
I
in
CM
O
I
CM
O
CO
0) 3
O) fe
co s.
9 -
> £
-------
lf\
\lt
f»
.2
*3
cc
js
c
Q>
^^F^
O
O
O
O
^^
z
0)
D)
CO
0)
>
<
*^
•>»
^»
i3
c
o
^tm
•-^
CO
CO
8
(
IT)
CO
o
1
C)
V^'
CO
o
CO
DC
<
s:
o
•tf
0)
>
05
o
*
0 O O O O O
U7 ^T TO CM i- O
to m to
00 00 __
O5 O) X
" " 1 °
• _ g TJ
• < •§. c
§• co
rn ^"r
\JJ 0
>
0
o
o
>*—
w C/3
- 1 §
* -g
L_
•g
0
o
— c
0 °
1 0
-t o
z
O)
CO
^^
0
>
CO
® ^>s
• - = ^
•5 5
c
o
CO
CsJ
1
IO
0
1—
OOOOOOOOOO 3
ojeof^cow'^rcocj-^o Q
r>(~>(— i (— i (~ ir^r-ii— >r- ir-i IT"
(Oiudd) uoi^Bj;ueouoo
cah.!72f 5-33
-------
O
-4— '
'co
(A
C
.0
ts
^B
M^
C
0)
o
c
o
o
O
Ttf-
1
T—
0
1
CM
•^p
i
CO
0) cxj
O) ±»
<
Q.
CD
0)
"o.
o
CO
- 5>
J3.
CD
T3
CO
•c
o
o
o
CO
CO
.0
"CO
i_
"c
0)
o
c
o
o
o
O
0
O)
CO
1_
0
>
CO
>,
c
o
8
8 2
(QLUdd) uo!;ej}u9ouoo
C\J
I
&
0
1_
O>
LL
cah.!72f
5-34
-------
c
.o
*3
CO
0)
0)
o
o
1
o
CM
O
o
O co
C
O
O 5
O i
O CO
Q> >
ffl'
_o
C3
5
§
"3.
o
CO
o
CD
c
oo
co
QC
r^.
CC
i_
O
>
CO
>,
O
o o o o
^ -
-------
(
a
03
CO
_o
°CO
O
cc
c
0)
o
o
CM
I
vn
CNJ
i
o>
B) c\j
ro B
k. <
- C2
o
CO
CO
i_
"c
CD
O
o
o
o
O
o
O>
co
i_
CD
>
CO
05
CD
CO
OJ
N.
CO
O5
cah.!72f
5-36
CD
Q)
0 0
in ^r
O
CO
0
CM
O
SO
O
0 0
CO !>-
O
0
10
t~l
o
T
0
O
CO
<—>
o
CM
0
o
T-*
o
8
o
D)
Li.
-------
CO
I 8
o
O
O
O
o
CO
s
03
CO
C\J
\
LO
CD
u_
O)
cah.!72f
5.37
-------
Comparing the 1985 results with the 1988 results emphasizes the strongly site-
specific nature of the data.
The 1986 and 1987 data show virtually random behavior with respect to
the 1988 data. These observations are summarized in Table 5-3, which shows a
comoarison of monthly average NMOC concentrations between 1988 and comparison
years 1984, 1985, 1986, and 1987. Table 5-3 shows the number of months in
1988 for which the corresponding month in the comparison year showed a higher
(or lower) monthly average NMOC concentration. The final column in Table 5-3
shows the probability that y or fewer months in 1988 had higner average
monthly NMOC concentrations in the comparison year by random processes. It
shows that in 1984, the four (or fewer) lower monthly average NMu«,
concentrations could not have occurred at random, with a 99.99903%
probability. Similarly the fact that in 1985, the monthly average NMOC
concentration occurred 5 (or fewer) times out of 37 comparisons could noi have
happened at random, with a 99.999987% probability.
Comparing 1986 data with 1988 and 1987 data with 1988 shows about an
equal probability, so that no trends are readily apparent among the 1986,
1987, and 1988 monthly average NMOC concentrations.
5.3.2 Task 2
The purpose of this task was to correlate the daily maximum ozone
concentration at a receptor site to the 6 a.m. to 9 a.m. NMOC integrated
average concentration at a source site for June and July 1988. NMOC source
and ozone receptor sites used for this study are listed in Table 5-4. Maximum
daily ozone concentrations in ppmv were used as the dependent variable, while
NMOC concentration in ppmC (and/or its square, and/or its cube) was used as
the independent variable. Correlations tested were:
(Oa)^ - ax + b, (NMOC), (1)
(Os)*** = a2 + b2 (NMOC) + c2 (NMOC)2, and (2)
(CMmax " a3 + b3 (NMOC) + c3 (NMOC)2 + d3 (NMOC)3. (3)
The results of the data analysis are given in Figures 5-28 through
5-35 and in Table 5-5. The figures plot daily maximum ozone concentration
(ppmv) as the ordinate and the 6 a.m. to 9 a.m. integrated average NMOC
cah,172f 5-38
-------
TABLE 5-3. COMPARISON OF MONTHLY AVERAGE NMOC CONCENTRATIONS
Comparison
Year
1984
1985
1986
1987
No. Months in 1988
< Corresponding Month
in Comparison year,
X
28
34
13
25
No. Months in 1988
> Corresponding Month
in Comparison year,
y
4
5
16
23
n=
x+y P(z
-------
TABLE 5-4. SITES FOR JUNE AND JULY 1988 OZONE-NMOC CORRELATION
NMOC
Site
Code
C6IL
H1TX
MNY
NWNJ
PLNJ
PLNJ & NWNJ
& MNYa
»
NMOC Site Location
Chicago, IL
Houston, TX (Mae Drive)
New York, NY (Mable Dean)
Newark, NJ
Plainfield, NJ
Plainfield, NJ,
Newark, NJ, and
Modeled Ozone
Receptor Site
Evanston, IL
Waukegan, IL
Aldine, TX
NW Harris Co.
Mae Drive
Greenwich, CT
Bayonne, NJ
Mable Dean
Bayonne, NJ
Plainfield, NJ
Newark, NJ
Bayonne, NJ
Newark, NJ
Plainfield, NJ
Greenwich, CT
Bayonne, NJ
Receptor
Site AIRS
Number
17-031-7002
17-097-1002
48-201-0024
48-201-0029
48-201-1034
09-001-0017
34-017-0006
36-061-0010
34-017-0006
34-035-1001
34-013-0011
34-017-0006
34-013-0011
34-035-1001
09-001-0017
34-017-0006
New York, NY
NWNJ & PLNJbNewark and
Plainfield, NJ
Bayonne, NJ
34-017-0006
aNMOC daily concentrations are averaged for Plainfield, Newark, and New York.
bNMOC daily concentrations are averaged for Newark and Plainfield, NJ.
cah,172f
5-40
-------
o
o
2
z
ff\
Vt ^
> 1
o i
c >
o z,
31
1 l
^^
•V
3> --
r— 1 .
U o ~
0
.^ /^v
1 D o + ^ °
<£>CD •*• -i-
! o . -
1
1
i
1 -
0 [3 15> - - -
- sv> -=. -
' ' ' ' ' i " i i i 1 ; — ; ~ — —
8»;2t«2«2;£«w_oeftcBis.
- CO C
"=*••.
C i \^
I [| 1
>
T- >
o _ ®
8 c5
~ ? «2
.0
! 8 2
- w •}-
, " O
i O
r c
§o
'fc? °
- 1 O
,"70
" 8 i
8?2
- "« »
i 0 D
CO
"- : s §
a>
c- c
O
N
8O
^^
_ -* E
c 5
.E
_ X
-i I
, -^
o
co
i ^3 /K t
5? ,
« IT5
<* - o ° ^
Of~» rS a5
W SH/ Vir
odd b
O)
(mdd) uoflejyjaouoo euozo
cah.!72f
5-41
-------
CM
oo
°
«
CO
CD
Z
O
o
I
C^ ^ T* ^ i*1* *»^ ^^ ^™ *" ^ *••" O O O O O O O O O O
o o c> o d o o o o o o o d o ci o o o d o o'
co
^
C/5
^ -^ !
0) 1
C 5i
0 31
N 5;
O li
5 o
E zf
3
.25
X
CO
1
8 §
- c\ O
c.
0 o~ - "~ °
- 0
°- -1 | 8
- " d Z
i 8 | §
-r ^ r °° co
Or I - i_
0^0- i 0 CD
0 - - ^
co* - :• 8 S
•: ro-^- -to O
- - <-, N
O - ' •-> O - ^ O
£
-1 1
.--_"•- 0 X
^ CO
o -o- - ^
<^-f^ i- CM
i 0 O5
i CNJ
1
1 0 IO
1 § m
(mdd)
euozo
cah.!72f
5-42
-------
1
i
o
o
s
V)
> i
2 £
•• —1
O i
N Tf
O |
.£
Ere
Q-
3
E
mmm
X
65
' *F
,
? ! 2
^J JC
n O
"- t~ CD
^,^ff 1 W^
2 ® ^~
0} £
= 5 _
~ 5, i
1 £ « R
D_ m O
i h ^
'
— ^r
- _
c o
o
~- CNJ
,.
•
r
o ! 8 o
"- « hi i
r" 2
i
'f'1 - *"
• " - ' 8
" §
— — CD
° ~ . 0
"*" 'J1
0 00 — '
o _ ,-, ~o 5
— ^T
~^ ^~~ ^ — - /"^
** ~~ . ±. ^
v — » -, _
O O-^ O
o - ^ S
!— CNJ
o - o- ^ °
"^ "
^2»^5S«3«S!^oggfet0inscocvj^_o
o'o'ortX • • -^^r°0°ooSooo8
oooooooooooodooo'ooodd
CO
-D
•D
.0
^^B
c
'co
CL
L.
£
.0
'•4—>
CO
i_
"c
0)
o
o
0
o
o
^
CO
Z3
CO
o
>
0
o
N
o
1
E
in.
'x
CO
2
^C«
.
o
CO
1
IO
r^i
D.
IT
(ludd) uq;ejyjeouoo euozo
cah.!72f
5-43
-------
X
I—
:J—
;r
3
"eo
X
o
o
* E
§ f
N =
o
X
CO
!
CD
6
o
.«
<
8
CM
O
O E
O "^
S -
= 8
(M
- CM
- CO
C5
O
_o
"co
o
c
o
c
Q)
O
o
o
O
O
V)
CO
CD
O
N
O
- o
o E
o E
o o eo r- «o m
*- o o o o o
ooodddddddddddddddddd
X
CO
CO
10
O
(tucid) uo!jB4uaouoo auozo
cah.!72f
5-44
-------
CM
CO
CC
LU
re
D)
o
CO
- CO
8
O
C
o
N
O
|
1
X
CO
CO CM i-
o o o
CM
o
6 o d = o o o o o o o o o = ° S 6 o o d I
CM
CO
I
IO
O
i_
9U020
cah.!72f
5-45
-------
0
o
(/)
a
OJ 1- T
- — • o
C\J
I ; 8 -D
'5 - o Z
:>s .
! c'S " *
ca
: 0 - §
E ^
0 g •«
^ -te 5"
' > X~v>^ " W ^ fc^^
oo , o X
O CO ~
~ ^ ^ £
0 ^ «°
^' ^. '• *^r\
v ^ • o ^
V ff^
0> - O CO
/; ~ CM |
0 10
s
• — -— § o>
^SS»5S?S888B8888858d ""
ooooooooooooooooooooo
uoftf»4uaouoo euozo
cah.!72f
5-46
-------
o
o
C/>
'
z ;
2 :
z ;
•X ;
O i
>
5
Q) •
Z
•o i
co i
^'
|i
-3 !
If
•c !
« !
5 1
O !
5" '
^.
-3 •
z ;
•tf '
_Q>
IE
"CO
a. ;
o a> oo r* co
o o o o o
— — — _ o
CM
8 ' i 8
§ - CO
>» 1 ! T-
ffl
: a !
^§
, r-
•~~
o
- ^r
v*
g
- CM
••-
—
c- o
8 o
: " - |
oo g 2
<^> "™" CD ^^
^ i
c ' o
- CD
O
r-
'' §
— •!
^1
§1
N ro
o ->
r- -^
c *-
J - ^
p -s
ll
"i ®
^z
'^
CO
1
in
(mdd) uof^BJjueouoo euozo
cah.!72f
5-47
-------
CM
o
o
s
Cfl
•^
o>
c
o
N
O
E
3
p
••w
X
CO
1 8
§3 - oo
"> "~
> i 8
z : ~ •*
o i ';' _
* 8
z.
•o . "~
. . ! co io
5 i ' § y
si r~ • E.
S-! ^ "
! ' [si
« ! ° o °°
5 i ^ • o
z :
^ - -- " 8
Z - co
i'
-5 '
^y ' _
T? "' O
.2 ~ "^
"E ; °
CL ^ o V ' ~
: 8
<& - OJ
r
§'
ii i • i •
Srs.coinjtcocMi-o0
ooooooooooooooooooooo
.iz.
M—
.£
o:
"D
Q)
"o
c
r^,
£
C
.0
"cc
"3
c
O Q^
° 1J5
O v
O ^
i|
co ^
m ^
> 2
n^
c "^
N ^
o -o
P ~^
ss
Js
>
^
-------
z
<— '
p
<
u)
a.
c
o
*
^.
u
z
o
o
£
§
X
m
m
W
H
C C
a, _
u « cd
U-l 0 L-
**4 40
0 tt
u
o
o
•w
a.
0
o
tf
o
6.
0
o
ji
£
~
0
It
CM
•c
tf)
4J
£
u
>H u
u
u
irt
in
t
ee
ft
V
in
4J
M «
u o 3
ONg
w O -i
0. X
01 K «
U 0 £
a
II
U U V
O Ij 4J
z: s -<
Z 0 W
vO
O
m
I i O
,s. (^
•H O
00 O
O ON
i O O
CO rH CD
O *H CO
o o o
o m r-
in c*i ffi
O rH r-<
O O O
*v .a- *9
J
0
m
C
ft
w
fcj
o
CMONf- mco^ ^. « «s- QDCMT, oc,^- ^(Mr- cMr>a ovoo mvor^ N - f-
OOO OOO OOO OOO OOO OOO OOO O O O OOO OOO
coorx cn locho-fffnrH
ONvocsi r* ooo*nco-»
cocsieg -* cOr-trHvomcrv
•* fn (N vO cM»ncMr».rHr^
rHOrH O rHtnCMrHfnO
liO (10 IIO iiO 1 1 O I I O 110 110 110 110
*nco VOON -JON coco envo mr^ OVD CMC r-m CMC
•^•cri cg-s coo ejtn corn rnr^ *y ^ rnrg vC~H iin e>j
Cslr-4 -JC VD«-C mO ^*r-l ONm COCM r-(^-I O«-H OO
lOC 'OC 100 lOC lOO IOC IOC iOC IOC iOO
CT**CM o^^co
egoin OO*H rg*?co ejin^n ^Hincv o tn co fninco oo*IO '1C iiO t'O itO )!O
OVVD mm r-o f*o* «*n vo ** r^rn r^ «^ csj o CM tn co O
^in -CM««> in««r r^ch co -31 c^ct> «TVD coin o*n «?*n
CM** fH CO OrH O«T O"* OCSI O-C^ rHCT' fnQO rH C^
OfM OrH OrH OrH OC\J OrH OrH OO OO OO
tOO lOO 1OO lOO lOO lOO lOO lOO IOO lOO
o^rvc f- X (t 2
.3 < Z S O CO Z CQ Cu 2
X *-i
t- >- 2
K z Z
5-49
-------
*c
OJ
c
r
c
»-2
u-i
m
W
"4
CQ
^
H
4J C
C C
0) — *
) w o:
( 0 U
> «
0 O£
u
0
o
II
•o
a.
o
0
II
u
z
o
o
II
a.
o
o
II
rt
0.
•C
V)
C
V
u
-4
VH 0
01
o
u
e
0
«
V)
01
(U
a:
n
r
VV
M
tl
U
•
*J
M «
C E
u o 3
ONE
u O -5
a x
vV H el
0 0 X
(S ***
V
U U Ii
§ 3 -*
Z 0 M
V)
00 00 vo
•» •» in
o o o
o
en
in
en
0 VO -i
O O vO
O O rj
o o o
vO
00
0
0
1 1 O
rH *O
0 00
eM tN
o es>
1 O 0
1 '
«•* *~* 00
«j o en
0 r-l (M
o o o
•c en O
\o 00 rT
vo -y evi
000
o o o
vO vo vo
z
g
0
CO
z
Cu
o m r^
-» ^ »n
o o o
r^
*n
CO
o
1 < O
m o*
^ o
m c
1 O O
r. vor^
o o to
O r- (M
o o o
o o o
0 C* CO
O -T O
O O m
O 0 *-.
O O 0
I_H
fSf
Oh
0
1 I 0
o *n
o« in
rH fN
o eg
1 0 0
' '
VO (M O
O O C«J
o o o
en >y vD
>ff m co
m •» ^i
000
o o o
O tO tO
^
z
u
flt
5
V
z
o n »H
-* in »o
o o o
CM
^
m
I I O
m cj
00 CD
CM CO
o «->
1 0 0
m ri -»
CO O f*»
o o *n
o o o
o o o
O vD *-(
O CD O
0 0 -»
0 0 O
in
^
C^1
o
1 ' o
»-* *n
o c^
tn ,-<
m c?
o rw
1 0 O
' '
o ^ «s
o o o
*n f*- CD
\o m oo
vD en ,-i
O O C?
0 O O
vO *O tO
^5
Z
a.
CO fM vO
s s s
o o o
1-1
m
m
1 1 O
•-* P*
o -a-
CD 0*
en CO
XD OJ
1 O 0
vfi^
O
in o> Oh
000
o o o
o* o* o»
H
u
.
u
!
V
V
u
z«
£
rf
a*
mom
5 S S
o o o
o
o
f-
1 1 O
00 P"
r- -^
O -9
n
O 0 0
o o o
O »H P^
O 0 vo
0 0 -H
o o *n
o o o
(M
f^
O
m
o
I I O
rH ,"»•
-T VO
co m
r-« m
O rM
1 0 O
1
•3 •-» m
O O rH
O O O
m co m
o n
•c
c
el
tH rl
e -i
ii
CO
f
V
CO
a
5-50
-------
concentration in ppmC as tne aoscissa. For Figures 5-33. 5-34. and 5-35, the
daily average NMOC concentrations were averaged for the NMOC source sites
shown. Table 5-5 lists the correlation statistics for equations (1), (2), and
(3) for the various site combinations shown. NMOC source sites are symbolized
in the first column. The second column shows the ozone receptor sites tested.
Column 3 gives the number of days in June and July 1988 for which both ozone
and NMOC data were available. The next four columns give the regression
coefficients for equations (1), (2), and (3).
The first row in Table 5-5 (C6IL vs. Evanston, IL) gives a and b for
equation I; the second row, a, b, and c for equation 2; and the third row, a,
b, c, and d for equation 3. Columns 8 through 11 give probabilities that the
constants indicated are zero, i.e., in the first row P(a=0.0) = 0.03150
indicates that the probability that a is zero equals 0.03150; and P(b=0.0) =
0.57966 indicates that the probability that b is zero equals 0.57966. A
regression coefficient is taken to be "significant" (i.e., significantly
different frorr, zero), if the probabilities are equal to or less than 0.05.
For the correlation (between ozone and NMOC) to be significant, a, b,
c, or d needs to be different from zero. Therefore, for the Chicago-Evanston
data, the first three rows in Table 5-5, none of the correlations is
significant. On the other hand, there is a good linear correlation between
ozone and NMOC concentrations for the MNY-Greenwich, CT, site pair [P(a=0.0) =
0.00165, and P(b-O.O) = 0.00241].
The final column in Table 5-5 gives the coefficient of regression, R,
for each combination tested. The values of R range from 0.162 to 0.687. Even
for the MNY-Greenwich, CT, data pair cited above, the correlation coefficient
for the linear regression is only 0.490, despite the significance of the
regression coefficients a and b. This information emphasizes the fact that
NMOC alone explains only about 49% of the variation of maximum ozone with NMOC
concentration. This fact implies that other independent variables, in
addition to NMOC concentration, are required adequately to predict ozone
concentrations—possibly parameters involving NOX concentration,
meteorological data, temperature, and/or radiation intensity.
The data for the Chicago, Illinois, NMOC source site (C6IL) for June
and July 1988 are spotty and do not follow the pattern evident in the
remaining sites. The pattern shows that in virtually all other combinations
cah.!72f 5-51
-------
tested, a significant linear relationship exists between maximum ozone
concentration at a receptor site (or a NMOC source site) and NMOC
concentration at a source site. Quadratic and cubic relations (equations 2
and 3) do not show significant correlations. As explained above, significant
relationships are obtained where the probabilities that the regression
coefficients, a, b, c, and/or d are equal to or less than 0.05.
Conclusions reached in Task 2 are:
• The C6IL NMOC source data for June and July 1988 are not useful
in this study because of the limited data;
• A linear relationship exists between daily maximum ozone
concentration and 6 a.m. to 9 a.m. NMOC ambient air
concentration for the sites studied in June and July 1988; and
• No significant quadratic or cubic trend exists between daily
maximum ozone concentration and 6 a.m. to 9 a.m. NMOC
concentration for the sites studied using the June and July 1988
monitoring data.
5.3.3 Task 3
The purpose of this task was to investigate whether canister age
affected the measured NMOC concentration. If such a correlation could be
discerned, it would then be possible to correct the measured NMOC
concentration to remove the canister age effect, and, in turn, to improve the
correlation between maximum ozone at a receptor site and the NMOC
concentration at an urban site.
To explore the effect of canister age on measured NMOC concentration,
the 1988 duplicate sample NMOC concentration results were used. For each
duplicate sample, a difference in the measured NMOC concentration from samples
taken from each canister was paired with the difference between the ages of
the duplicate canisters. If canister age affected the measured NMOC
concentration significantly, a plot of NMOC concentration difference (or
percent difference) between duplicate would show a trend when plotted versus
the paired differences in canister age for the duplicate canisters.
Figure 5-36 shows a plot of NMOC percent difference versus canister
age for the 1988 duplicate sample canisters. The age difference is shown to
be positive and negative indicating that the age difference was calculated by
cah.!72f 5-52
-------
•X"XO
h-
o
UJ
u.
LL
UJ
LL!
rr
E
C/>
<
o
1
: t COOK; OQBDj OOOS>
, !
1
r.A-i — drmar> ^ , , r.
0
O
C
_ en p
• 0
"D
0
D)
- CM CC
j£
"5
CO
,_ 0
„_ T^
CO
1 59?
*^» ^"^ _^J
I 1 i
- *!! &
5 « 'w
05 CO >•
< rc cc
T- £. 5=J CO
~ i « O —
i ¥ co
0 g .0
-- ,0'
53 o
-T £ o
°- o
: CD
un °°
~ " 1
O
cn
, T "-
I I
I I
OOINN
5-53
-------
chronological analysis number rather than by canister age. The same data were
replotted in Figure 5-37 using for canister age difference the older canister
age minus the younger canister age. The NMOC % difference was calculated in
the same "direction" as the canister age.
Both these plots show that there is no significant correlation between
measured NMOC concentration difference and canister age difference. These
data implies that the internal surfaces of the SUMMA*-treated canisters
remains passivated for at least four years, and probably longer when the
canisters are used for ambient air samples.
•cah.l72f 5-54
-------
OOINN
cu
o
53
•_
CD
LU
Z
I
D
Of
^^ o
h- ?
0>
w
IL 1
LU
* t
CO
CO
cr
LU
C-Q
CM
c;
o
D)
_c
"Z
"c
CD
O
CO
O CO
\ '^^
cc
o
O
00000
OOOOOOOOOOO
OOOOO
CDCOI^OJUJ
OOOOOOOOOQ
•^cjco^inorvcoao
i i i i i i i i i i—
i
CO
I
LO
o
05
u_
5-55
-------
6.0 RECOMMENDATIONS, NMOC MONITORING PROGRAM
Based on the experiences and results of the 1989 NMOC Monitoring
Study, certain recommendations can be made with respect to equipment design
and validation procedures.
6.1 OPERATING PROCEDURE CHANGES
Current operating procedures call for the use of dry propane standards
and external audit samples. The experimental design recommended would cover
the present NMOC span of 0 to 9 ppmC, and at least 3 levels of humidity: zero,
low (-10%), and medium (-30%) relative humidity. The effect of humidity on
propane calibration (and audit) results is currently unknown and should be
determined.
6.2 VERTICAL STRATIFICATION STUDY
In 1987, 1988, and 1989 ambient air samples were taken at ground level
(3 to 10 meters) and at the 1197-foot (364.9 meter) level. In 1988, an
additional site was located on top of the World Trade Center in New York, a
height of over 1000 ft. It is recommended that the study be continued at
these sampling locations and that at least one more level (at 100 meters or
some other appropriate height above ground level) be sampled at the same
location. At the same time, barometric pressure and wind velocity and
direction data should be obtained at each sampling level. These samples
should be analyzed for NMOC content as well as for the air toxics compound
concentrations. The information gained from such a study would be useful in
validating various atmospheric model predictions.
6.3 SEASONAL NMOC STUDIES
Data derived in a study qualifying NMOC and NOX in seasons other than
summer could be useful in understanding the relationship of NMOC to NOX and
meteorological conditions. Currently a year-round study for 24-hour air
toxics ambient air samples is being conducted. No study is currently in
progress to determine seasonal NMOC concentration changes.
-------
6.4 DIURNAL STUDIES
It is proposed that a diurnal study be made at an appropriate
monitoring site to measure NMOC concentrations 24-hours per day, seven days
per week, for at least four weeks. An appropriate site for such a study would
be one at which the NMOC concentration aver: ^d 0.800 ppmC or greater, and one
at which meterological as well as NOX data were available. Sampling plans
could include both continuous NMOC measurement, and collection of integrated
samples at various times through the day.
6.5 CANISTER CLEANUP STUDIES
Additional cleanup studies are proposed to determine more specifically
the carryover of organic material after cleaning, and to determine how storage
of cleaned, evacuated canisters affects NMOC concentration of a sample.
Storage effects up to three months under vacuum and under pressure should be
included in the study.
Additional studies are proposed to compare cleanup procedures at room
temperature with cleanup procedures involving heating of the canisters.
After July 14, 1988, the canister procedure was revised to eliminate
steps 4 and 5. If in Stf 6 for either of the cleanup procedure? the N'' 1
concentration was greater than 0.030 ppmC, tne cleaning procedur. is re .ted
until the acceptance criterion was met.
Radian has proposed7 initiation of several studies to determine
whether the present canister cleanur -ocedure is adequate to prevent
significant carryover of organic co' unds from one canister to the next.
These studies are needed since equil loration in a canister may take a week or
longer.
The effect of sample pressure on the measured NMOC concentration is
not clear. Ambient air .amples as ufficier y humid so that at 15 psig,
liquid water condenses inside the canister. Migration of liquid water to the
canister walls affects the adsorption equilibrium, and at the same time,
provides a medium for further depletion of the vapor phase organic compounds
because of the solubility of the organics in water. Equilibration under these
conditions would take longer, perhaps 30 days or more, and the effect on the
measured air sample NMOC (and UATMP target compound) concentration has not
cah.!72f 6-2
-------
Deen determined. These effects, however, are probably not significant" for the
NMOC measurements, but could affect 3-hour air toxics measurements.
Radian has proposed undertaking a study to ensure a better
understanding and measurement of the effectiveness of the canister cleanup
procedure. The present canister cleanup procedure appears to be adequate for
the NMOC program, since the concentrations of interest are at the ppmC level.
However, the 3-Hour Air Toxics and UATMP, the concentration levels are at the
ppbv levels, i.e., 0.01 to 50 ppbv, and the present canister cleanup procedure
may not be sufficient to prevent significant carryover of target compounds
from one sample to the next.
6.6 COORDINATED SAMPLING AT NMOC SITES
It is recommended that where possible the following sampling take
place at NMOC sites for the 1990 monitoring programs:
NMOC samples;
Aldehyde samples;
3-hour air toxics compounds; and
UATMP sampling (at least 38 target compounds).
This kind of program would effect some economy in setting up and monitoring
the sampling program, and also provide some opportunity for cross-correlation
of the results.
Coordinated sampling would be most meaningful at sites where NMOC
and/or UATMP monitoring occurred the previous year (or years).
6.7 FIELD AUDIT
It is recommended that a field audit be designed and conducted at
several NMOC sites during the 1990 Monitoring Program. It is suggested that
one field audit per month be performed at an NMOC site during June, July,
August, and September 1989. The field audit should use at least one standard
of known NMOC concentration and should collect duplicate samples plus a zero-
air blank for each site.
6.8 DUPLICATE SAMPLE AND REPLICATE ANALYSIS
During the 1990 NMOC Monitoring Program records should be kept of
(1) the NMOC concentration in a duplicate canister before cleanup, and (2) the
zero-air NMOC concentration at the time of the third pressurization with
clean, humidified zero air. The duplicate samples should be scheduled so that
cah.!72f 6-3
-------
the same amount of time elapses between sampling and analysis for all
duplicate samples.
cah.!72f 6-4
-------
7.0 THREE-HOUR AIR TOXICS DATA SUMMARY
The 1989 NMOC Program included three-hour air toxics samples at 7 NMOC
urban sites (See Table 7-1) located in the contiguous United States. Overall
concentration results are reported in parts per billion by volume (ppbv) in
Section 7.1, and site-specific results are given in Section 7.2.
Analyses were done by a GC/MD system using flame ionization detection
(FID), photoionization detection (PID), and electron capture detection (ECD).
Compound identification was made using a combination of retention time, ratios
of PID/FID and/or ECD/FID responses, and analyst experience and judgment.
Quantitation was done using the FID response, with the exception of
halogenated compounds that were quantitated using the ECD. If there was an
indication that the quantitation detector response for the target compound had
interference from an unknown source quantitation was performed on one of the
alternate detectors if applicable. Table 7-1 indicates the number of 3-hour
samples taken for GC/MD analyses to speciate for 38 UATMP compounds. About 11
analyses were performed on samples from each site. One duplicate sample was
collected from each site, and the analysis of one of the samples from each
site was replicated. Two of the samples from each site were analyzed by gas
chromatography/mass spectrometry (GC/MS) for confirmation of compound
identification.
Three-hour air toxics samples were regular NMOC Monitoring Program
samples that were collected in 6-L stainless steel canisters from 6:00 a.m. to
9:00 a.m. The final canister pressure was about 12 psig. The NMOC samples
that were speciated by GC/MD were selected at random during the summer. Each
selected sample was first analyzed by the PDFID method for its NMOC
concentration. Then the canister pressure was bled to atmospheric pressure
and the canister bellows valve was closed. The canister was allowed to
equilibrate at least 18 hours before the GC/MD analysis was performed.
7.1 OVERALL RESULTS
Concentrations of the air toxic compounds detected are summarized in
Table 7-2 for the 1989 3-hour ambient air samples that were speciated. The
table shows the number of cases (samples), the percent of cases in which the
-------
TABLE 7-1. THREE-HOUR AMBIENT AIR SAMPLES AND ANALYSES
Site
Code
C3IL
C6IL
GRM!
M1NY
MNY
NWNJ
PLNJ
Total
No.
10
9
9
9
9
9
9
64
Duplicate
Pairs
1
1
1
1
1
1
1
7
GC/MD Anal
Replicate
1
1
1
1
1
1
j
7
vses
Total
12
11
11
11
11
11
11
78
GC/MS
Analyses
f
L.
2
2
2
2
2
2
14
cah.!72f
7-2
-------
TABLE
'-2.
COMPOUND IDENTIFICATION WITH GC/MD FOR ALL 3-HOUR SITES
Cases
Compounds
Acetylene
Propylene
1,3 -Butadiene
Chloroethane
Bromomethane
Methyl ene chloride
Chloroprene
Chloroform
1 , 1 , 1-Trichl oroethane
Carbon tetrachloride
Benzene
Trichloroethylene
1,2-Dichloropropane
Bromodichl oromethane
Toluene
n-Octane/trans-1,3-
dichloropropylene
cis-l,3-Dichloropropylene
1, 1, 2 -Tri chloroethane
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
m-Dichlorobenzene
p-Dichlorobenzene
o-Dichlorobenzene
%
14
19
67
€
5
17
44
5
98
100
100
80
14
2
100
6
11
13
59
16
100
100
IOC
19
44
14
No.
9
12
43
4
3
11
28
3
63
64
64
51
9
1
64
4
7
8
38
10
64
64
64
12
28
9
Minimum
ppbv
1.02
1.52
0.05
0.05
0.05
0.93
0.03
0.09
0.28
0.11
0.13
0.03
0.07
0.08
0.24
0.12
0.22
0.01
0.04
0.03
0.04
0.18
0.06
0.01
0.05
0.07
Maximum
ppbv
17.33
19.46
1.58
1.49
0.07
9.94
1.30
0.10
6.87
0.23
8.78
7.56
1.64
0.08
54.31
1.87
0.92
0.51
4.85
1.29
16.48
88.90
18.64.
0.13
2.54
0.40
Mean
ppbv
5.09
6.70
0.42
0.60
0.06
2.89
0.24
0.10
1.66
0.15
2.66
0.73
0.80
0.08
8.22
1.03
0.43
0.12
1.31
0.31
1.07
5.86
1.82
0.03
0.61
0.20
cah.!72f
7-3
-------
compound was identified, the minimum, maximum, and mean (arithmetic average)
concentrations of the compound in ppbv. The target compounds identified fall
into at least four categories: (1) those occurring in more; than 70% of the
samples tested, (2) those occurring in from 10% to 27% of the samples,
(3) those occurring in less than 10% of the samples, and (4) those not
identified in any of the 3-hour air samples at concentrations above their
method detection limits. These results are summarized in Table 7-3.
Overall concentrations ranged -rom 0.01 ppbv for 1,1,2-trichloroethane
and m-dichlorobenzene to 88.90 ppbv -t jr m/p-xylene.
7.2 SITE RESULTS
Table 7-4 gives 3-hour ambient air concentrations by site code for the
38 target air toxics compounds. The overall site means range from 0.92 ppbv
f r C3IL to 5.34 for C6IL. Appendi> tabulates the complete analytical
results and includes the NMOC concenirations for each of the 3-hour air toxics
samples. There appeared to be little correlation between the NMOC
concentrations and the 38 target air toxics compound concentrations under
investigation.
cah.!72f • 7-4
-------
TABLE 7-3. FREQUENCY OF OCCURRENCE OF TARGET COMPOUNDS
IN 3-HOUR AMBIENT AIR SAMPLES
Range for
Frequency of
Occurrence
Target Compounds
100% to 70%
69% to 40%
20% to >0%
Zero
1,1,1-Tri chloroethane
Benzene
Toluene
m/p-Xylene
1,3-Butadiene
Tetrachloroethylene
Acetylene
Chloroethane
Methylene chloride
1,2-Dichloropropane
n-Octane/
t-l,3-dichloropropylene
1,1,2-Trichloroethane
m-Dichlorobenzene
Vinyl chloride
trans -1,2-Di chloroethylene
Bromochloromethane
Di bromochloromethane
Carbon tetrachloride
Trichloroethylene
Ethyl benzene
Styrene/o-xylene
Chloroprene
p-Dichlorobenzene
Propylene
Bromomethane
Chloroform
Bromodichloromethane
cis-i,3-Dichloropropylene
Chlorobenzene
o-Dichlorobenzene
Chloromethane
1,1.-Dichloroethane
1,2-Dichloroethane
Bromoform
cah.!72f
7-5
-------
TABLE 7-4. COMPOUND IDENTIFICATIONS WITH GC/MD BY SITE CODE
Site
Code Compound Cases
C3IL Acetylene
1,3-Butadiene
Chloroethane
Bromomethane
Methylene chloride
Chloroprene
1,1, 1-Trichloroethane
Carbon tetrachloride
Benzene
Tri chl oroethyl ene
1 ,2-Dichloropropane
Bromodichloromethane
Toluene
cis-l,3-Dichloropropylene
Tetrachl oroethyl ene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
m-Dichlorobenzene
p-Dichlorobenzene
o-Di chl orobenzene
C6IL Acetylene
1,3-Butadiene
Methylene chloride
Chloroprene
1,1, 1 -Tri chl oroethane
Carbon tetrachloride
Benzene
Trichloroethylene
1,2-Dichloropropane
Toluene
n -Octane/trans -1-3-
dichloropropylene
1 , 1 ,2-Trichloroethane
Tetrachl oroethyl ene
Chl orobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
m-Dichlorobenzene
p-Dichlorobenzene
o-Dichlorobenzene
Propylene
2
1
1
1
3
5
9
10
10
8
1
1
10
2
5
10
10
10
2
3
1
2
7
1
7
9
9
9
9
3
9
1
3
3
2
9
9
9
1
4
2
1
Minimum Maximum
ppbv ppbv
1.73
0.05
0.05
0.07
1.32
0.06
0.75
0.13
0.25
0.14
0.46
0.08
0.24
0.22
0.09
0.04
0.18
0.06
0
0
0
1.75
0.31
2.78
0.03
0.98
0.11
2.20
0.37
1.04
9.05
1.53
0.03
1.76
0.03
1.05
5.64
1.80
0.02
0.82
0.12
19.46
3.27
0.05
0.05
0.07
2.07
0.13
3.13
0.15
2.44
0.74
0.46
0.08
6.59
0.31
1.82
0.67
3.59
1.09
0.03
0.84
0.07
17.33
1.58
2.78
1.30
6.87
0.21
8.78
1.76
1.64
54.31
1.53
0.08
2.98
0.95
16.48
88.90
18.64
0.02
1.21
0.40
19.46
Mean
ppbv
2.50
0.05
0.05
0.07
1.67
0.10
1.41
0.14
1.19
0.43
0.46
0.08
2.81
0.27
1 05
0.27
1.37
0.43
0.03
0.37
0.07
9.54
0.91
2.78
0.35
2.89
0.16
5.63
0.93
1.34
19.52
1.53
0.06
2.17
0.49
3.57
19.19
5.24
0.02
1.08
0.26
19.46
(Continued)
cah.!72f 7-6
-------
TABLE 7-4. (Continued)
Site
Code Compound Cases
GRMI 1,3-Butadiene
Chloroprene
1,1,1-Trichloroethane
Carbon tetrachloride
Benzene
Trichloroethylene
1,2-Dichloropropane
Toluene
n-Octane/trans-1,3-
dichloropropylene
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
p-Dichlorobenzene
Propylene
M1NY 1,3-Butadiene
Chloroethane
Bromomethane
Methylene chloride
Chloroprene
Chloroform
1,1,1 -Tri chl oroethane
Carbon tetrachloride
Benzene
Trichloroethylene
Toluene
n-Octane/trans-1,3-
dichloropropylene
ci s- 1 , 3-Di chl oropropyl ene
1,1, 2 -Tri chl oroethane
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
m-Di Chlorobenzene
p-Dichlorobenzene
Propylene
7
3
9
9
9
9
2
9
1
6
1
9
9
9
3
1
8
2
I
1
2
1
9
9
9
7
9
!
1
1
4
1
9
9
9
3
5
5
Minimum Maximum
ppbv ppbv
0.10
0.10
0.76
0.13
1.16
0.12
0.07
2.07
1.87
0.07
0.04
0.41
2.07
0.64
0.21
9.58
0.14
0.74
0.05
2.51
0.09
0.09
0.62
0.13
0.13
0.06
2.84
0.12
0.25
0.11
0.61
0.13
0.28
1.54
0.14
0.01
0.16
3.41
0.96
0.13
3.50
0.20
5.99
7.56
1.14
17.79
1.87
0.38
0.04
2.17
11.83
3.58
0.67
9.58
0.54
1.49
0.05
2.51
0.18
0.09
4.87
0.23
7.80
0.57
25.01
0.12
0.25
0.11
1.91
0.13
2.06
12.01
4.55
0.02
1.41
14.19
Mean
ppbv
0.52
0.12
2.14
0.15
2.91
1.81
0.61
7.92
1.87
0.21
0.04
0.97
5.42
1.67
0.35
9.58
0.31
1.12
0.05
2.51
0.14
0.09
1.79
0.16
2.78
0.21
7.70
0.12
0.25
0.11
1.50
0.13
0.75
4.35
1.51
0.01
0.64
6.96
(Continued)
cah.!72f
7-7
-------
TABLE 7-4. (Continued)
Site
Code Compound Cases
MNY Acetylene
1,3-Butadiene
Chl oroethane
Methyl ene chloride
Chloroprene
Chlorofo -i
1,1,1-Tnchloroethane
Carbon tetrachloride
Benzene
Trichloroethylene
Toluene
cis-l,3-Dichloropropylene
1,1,2 -Tri chl oroethane
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
m-Di Chlorobenzene
p-Dichlorobenzene
o-Dichlorobenzene
Propylene
NWNJ 1,3-Butadiene
Methyl ene chloride
Chloroprene
1,1,1-Trichloroethane
Carbon tetrachloride
Benzene
Trichloroethylene
1,2-Dichloropropane
Toluene
n-Octane/trans-1,3-
dichloropropylene
cis-l,3-Dichloropropylene
1 , 1 , 2 -Tri chl oroethane
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
m-Dichlorobenzene
p-Dichlorobenzene
o-Dichlorobenzene
4
9
1
1
5
2
9
9
9
}
I
1
7
1
9
9
9
2
4
2
4
7
3
2
9
9
9
7
2
9
1
1
1
7
2
9
9
9
3
4
1
Minimum Maximum
ppbv ppbv
1.02
0.10
0.11
1.87
0.08
0.10
0.56
0.14
0.94
0.03
2.01
0.29
0.11
1.07
0.20
0.19
1.16
0.44
0.01
0.13
0.23
2.39
0.08
0.93
0.07
0.49
0.13
0.92
0.11
0.29
2.40
0.61
0.92
0.51
0.15
0.26
0.33
2.02
0.66
0.02
0.08
0.09
8.69
0.62
0.11
1.87
0.52
0.10
1.79
0.17
4.18
0.22
13.38
0.29
0.11
4.85
0.20
1.24
6.86
2.52
0.03
0.30
0.30
6.22
0.96
5.57
0.56
2.57
0.21
5.98
1.95
0.93
23.67
0.61
0.92
0.51
1.78
1.29
2.44
14.04
5.06
0.13
2.54
0.09
Mean
ppbv
4.47
0.24
0.11
1.87
0.28
0.10
1.03
C.15
1.88
0.12
5.10
0.29
0.11
3.01
0.20
0.50
2.83
1.08
0.02
0.19
0.27
3.75
0.32
2.60
0.31
1.33
0.15
2.47
0.80
0.61
10.27
0.61
0.92
0.51
1.00
0.78
1.03
5.80
1.91
0.06
0.71
0.09
(Continued)
cah.!72f
7-8
-------
TABLE 7-4. (Continued)
Site
Code Compound Cases
PLNJ Acetylene
1,3-Butadiene
Bromomethane
Methylene chloride
Chloroprene
1 . 1 , 1 -Tri chl oroethane
Carbon tetrachloride
Benzene
Trichloroethylene
1 , 2-Di chl oropropane
Toluene
cis-l,3-Dichloropropylene
1 , 1 ,2 -Tri chl oroethane
Tetrachloroethylene
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
m-Di chlorobenzene
p-Dichlorobenzene
o-Di chlorobenzene
Propylene
1
4
1
2
4
9
9
9
4
1
9
2
2
6
3
9
9
9
1
5
3
1
Minimum Maximum
ppbv ppbv
3.89
0.14
0.06
1.87
0.10
0.28
0.13
0.49
0.16
0.26
1.04
0.30
0.01
0.04
0.04
0.08
0.40
0.18
0.01
0.05
0.10
1.52
3.89
0.46
0.06
9.94
0.47
2.04
0.17
3.48
0.47
0.26
8.95
0.71
0.07
1.30
0.06
0.99
5.35
1.89
0.01
1.86
0.26
1.52
Mean
ppbv
3.89
0.31
0.06
5.91
0.25
1.02
0.15
1.91
0.27
0.26
4.85
0.51
0.04
0.47
0.05
0.47
2.56
1.06
0.01
0.73
0.19
1.52
cah.!72f
7-9
-------
8.0 THREE-HOUR AIR TOXICS TECHNICAL NOTES
This section describes the equipment used to sample and analyze the
3-hour air toxics samples. Also described are sample handling procedures,
sampler certification procedures, standards generation and instrument
calibration procedures, compound identification procedures, GC/MS compound
identification confirmation, quality assurance/quality control procedures, anc
data records for the 3-hour air toxics compounds.
8.1 SAMPLING EQUIPMENT AND INTERFACE
The sampling equipment for the 3-hour air toxics samples was the NMOC
Monitoring Program sampling equipment described in Section 3.1. The original
sample was collected as an integrated ambient air sample from 6:00 a.m. to
9:00 a.m. with a final sample pressure of about 16 psig. As stated above,
after NMOC analysis the canister was bled to atmospheric pressure and allowed
to stand at least 18 hours before being analyzed by GC/MD.
An interface system was designed and built by Radian Corporation to
take a sample from the canister and inject it into the gas chromatograph for
analysis.
Figure 8-1 shows the GC/MD system including the Sample Interface
System, Analytical System, and Data System. The sample interface takes a
250-mL sample approximately from the canister, draws it through Trap Assembly
1 and condenses all the water and organic compounds, with the exception of
methane, in the air sample drawn from the canister. Trap Assembly lisa
cryogenic, liquid argon trap packed with glass beads. The cryogen is removed,
and an electrical heater quickly heats Trap Assembly 1, vaporizing the water
and organic compounds condensed from the canister sample.
8.2 THREE-HOUR AIR TOXICS SAMPLING SYSTEMS CERTIFICATION
The sampling systems used to collect 3-hour air toxics samples were
certified for use per the specifications described in U.S. EPA Compendium of
Methods TO-14.16
-------
£
05
In
CD
Q
03
in
>.
(S)
CO
c
CD
w
0)
u
_
a
CD
CO
d88/L83L
0>
CO
>s
(0
o
o
£L
"<5
E
o
Ic
Q.
CO
O)
o
05
c
o
o
cc
CO
O
CO
I
O)
u_
-------
&.2.1 Certification Blanks - Humidified Zero Air
Zero certification consisted of purging the sampler with cleaned,
humidified air, followed by collecting a sample of the cleaned, dried air that
had been humidified through the purged NMOC samplers for GC/MD analysis. The
purpose of the wet purge was to help remove any adherent contaminants from the
sampler. The chromatograms from these certification sample analyses were
archived for each sampler. Results presented in Table 8-1 showed a range of
0.00 ppmC to 0.013 ppmC of NMOC, with an average of 0.006 ppmC. The sampling
systems were determined to be very clean and showed no characteristics of
additive bias.
8.2.2 Sampler Certification Selected Target Compound Challenge
Following the NMOC sampler blank certification, a challenge gas
containing seven selected target compounds was passed through the samplers.
The average concentration of the compounds in the challenge gas was
15.3 ppbv/species. Table 8-2 shows the average system percent bias calculated
with the analysis of the challenge gas being used as a reference
concentration.
System percent bias ranged from -6.4% to 3.2% with an overall average
of 0.5 percent. The systems showed acceptable subtract!ve bias
characteristics.
8.3 STANDARDS GENERATION
The GC/MD analytical equipment was calibrated daily with a gas mixture
that averaged 5 ppbv of each of the 38 target compounds at 70% relative
humidity.
The standard gas mixtures were generated by dynamic flow dilutions of
Scott certified gas mixtures with cleaned, dried air that had been humidified
with HPLC-grade water. The Scott gas mixtures were dry and contained in
cylinders under pressure at a concentration of about 120 ppbv per compound for
two of the standards, and about 500 ppbv for one of the standards. The
concentration for each target gas in the 120 ppbv Scott cylinders was
certified to ±5% with the exception of the bromoform which was certified to
±20 percent. The concentration for each target gas in the 500 ppbv Scott
cylinder was certified to within ±10 percent.
cah.!72f 8-3
-------
TABLE 8-1. ZERO CERTIFICATION RESULTS
Canister Bl'" Sample
Canister Blank Concentration
Number Date (ppmC)
041
104
902
858
643
401
180
071
5-18-89
5-18-89
5-18-89
5-18-89
5-18-89
5-18-89
5-18-89
5-18-89
0.005
0.002
0.005
0.003
0.000
0.004
0.016
0.000
Sampler
System
Number
31
22
27
21
23
44
17
1
Sampler Sampler
Zero Zero
Collection Sample
Date (ppmC)
5 -'20 -89
5-20-89
5-20-89
5-20-89
5-20-89
5-20-89
5-20-89
5-20-89
Average
0.003
0.007
0.000
0.010
0.006
0.002
C.013
0.009
0.006
Differenc"
(ppmC
-0.002
C.005
-0.005
0.007
0.006
-0.002
-0.003
0.009
cah.!72f
8-4
-------
TABLE 6-2. CHALLENGE CERTIFICATION RESULTS
System
Number
31
22
27
21
23
44
17
1
Percent
Average Compound
Recovery
101.9
101.6
103.2
93.6
102.9
100.4
98.9
101.7
Average 100.5
System
Bias
1.9
1.6
3.2
-6.4
2.9
0.4
-1.1
1.7
0.5
cah.!72f 8-5
-------
Figure 8-2 diagrams the dynamic flow dilution apparatus. One Scott
cylinder contains 18 of the air toxics target compounds, a second Scott
cylinder contains 11 target compounds, while the third Scott cylinder contains
the remaining 9 target compounds. The three Scott cylinders were connected to
Channels 1, 2, and 3 of the flew dilution apparatus. The fourth channel was
connected to a cylinder of zero-grade air by way of a catalytic oxidizer that
oxidized all of the hydrocarbon material in the zero-grade air. The four mass
flow controllers were set to flow rates that would give the desired final
concentration of the diluted gas.
The cleaned zero-grade air was partially humidified by bubbling part
of the air stream through HPLC-grade water contained in a stainless steel
canister. The wet and dry rotameters and all the mass flow controllers were
calibrated with a bubble flowmeter before being connected to the flow dilution
apparatus. All of the flow controllers, the connecting lines, and the mixing
flask were heat traced to reduce adsorption of the target compounds. The
temperature controller that regulated electrical current flow to the heat
tracing was set for 100°C.
To generate a standard, the following proc jure is used. The canister
into which the standard is being mixed is connecteo. to the flow dilution
apparatus at the bellows valve shown in Figure 8-2. The temperature
controller for the heat tracing is activated. The mass flow controllers are
then set for the appropriate flow rate to obtain the desired dilution and the
humidifier, lines, and mixing flask are purged for at least 10 minutes. The
isolation valve is closed and the vacuum pump turned on. The tubing, the
canister, and the absolute pressure gauge are all evacuated initially to about
5 mm Hg absolute pressure. The vacuum pump is then isolated from ne system
and the isolation valve is opened to the diluted gas mixture. The standard
mixture fills the canister at a controlled rate until atmospheric pressure is
reached. The canister with the diluted standard is disconnected from the flow
dilution apparatus and allowed to equilibrate before use. The barometric
pressure and room temperature are also recorded.
In order to calculate the exact concentration of each target compound
in the standard mixture, a correction is made for the residual gas in the
cah.!72f 8-6
-------
5 JK
eu
.£
re
U
T3
05
TO
0>
H
^
02
1IJ
•O
03
0
CO
f—
ra
0)
*
I
V V
^o5
1
mS
^^^Nl^^^N^^^N
>
CO
>
IK
to
&>
(V-^-
a, 2 J>
I So
f= o> is
" a. c
< P O
o3U
8-7
-------
standard canister before the filling with the diluted gas is begun. A
correction also is made for the water vapor added to the dilution air.
8.4 CALIBRATION ZERO AND SPAN
Most of the compound quantitation is performed with the calibrated
response of the FID detector. For purposes of compound identification and
quantitation (when there may be interference on the FID detector) it is also
necessary to calibrate the PID and ECD responses. Initial calibration curves
for each compound were generated on all three detectors with calibration
standards at I, 5, and 10 ppbv. In additu to the usual sponse (area
counts) versus concentration curves, response times and response ratios for
PID/FID and ECD/FID were determined for each target compound.
8.5 GAS CHROMATOGRAPH/MULTIDETECTOR ANALYSIS AND COMPOUND IDENTIFICATION
A Varian® 3^00 gas chromatograph, configured with a PID in series with
an FID and an ECD operating in parallel, performed the air toxics analyses.
Fused silica was used for the detector-to-detector connections. The Air
Toxics Multiple Detector System is shown in Figure 8-3 and diagrams the
effluent splitter and multidetectors connected to the end of the Megabore®
DB-624 capillary column.
The entire GC/MD system is shown in Figure 8-1, including the sample
interface, the gas chromatograph/multidetector analytical system, and the data
handling system. Sample volumes for the GC/MD analyses were about 250-mL.
Compound identification was performed using measured retention times
and ratios of PID/FID and ECD/FID responses. The analyst's skill and
experience was also needed in making a judgment about the oresence or absence
of a target compound because of the variability of response times, and t ,e
presence of interfering compounds.
8.6 GAS CHROMATOGRAPH/MASS SPECTROMETER ANALYSIS AND COMPOUND
IDENTIFICATION CONFIRMATION
Fourteen of the 3-hour air toxics samples were analyzed by GC/MS for
compound identification confirmation following completion of the GC/MD
analyses. So that the sensitivity of the GC/MS compared favorably with that
of the GC/MD, the GC/MS war. operated in the multiple ion detection (MID) mode,
cah.!72f 8-8
-------
E
E
r-
CM
•
O
x
E
u
u a®
£ * »
» .2 -DO
£ ** T7 O 'J *-
ils I Sj
"• E
X
• 1M
U.
^^
0)
•3 i.
£<
o
c
0)
8)
0 -
h.
•o
»
•i
j
*
•
L ^
^
i
3
£
c»
u
c
eo
k
•
5
•
>
L
a
y
e a
V 5
O) J. M
•* — o 2 «
iiC3
5 **
5 o
o .»-
^
E
o
*
X
E
o
•
CD
a
o
en
>
® -
O o C a;
oO £ -D
w
o
05
i_
D
O3
IT
0
o
in
8-9
-------
ana the sample volume was about 500-mL (compared to 250-mL for the GC/MD
analyses).
No comparison of the quantitative results for GC/MS and GC/MD was
made, because the purpose of the GC/MS analyses was compouna identification
confirmation only. This comparison is discussed below in Section 8.7.4.
8.7 QA/QC DATA
Quality assurance and quality control in the 3-hour air toxics data
included a determination of method detection limits (MDL) for both the GC/MD
and the GC/MS analytical methods.
One of the objectives of the UATMP was to make the MDLs as low as
possible, recognizing that the lower MDLs may increase the number of false
positive or false negative identifications. Other quality measures reported
here involved analytical precision results from repeated analyses, and
sampling and analysis precision from duplicate samples. Accuracy was assessed
for both the GC/MD and GC/MS using external audits supplied by the EPA-QAD.
8.7.1 GC/MD and GC/MS Minimum Detection Limits
MDLs for the GC/MD and GC/MS analytical systems used in this study are
given in Table 8-3. MDLs for the GC/MD analytical system are estimated from
the minimum area count that reflects approximately three times noise for every
compound and are based on a sample approximately 250-mL in volume. The sample
volume for the GC/MS system was about 500-mL. The GC/MS was operated in the
MID mode, which detected specific ions representative of the 38 air toxics
target compounds.
8.7.2 Repeated Analyses
Repeated analyses were performed on seven ^ite samples by GC/MD. The
analyses were performed on consecutive days with at least 24 hours between
removing samples from the canister. From these analyses there were 70 cases •
in which a concentration for a target compound was found in both replicate
analyses. Statistics for these data are summarized in Table 8-4, showing the
overall minima, maxima, and means of the mean concentrations, standard
deviations, coefficients of variation, and absolute percent differences for
the 55 replicate pairs. The absolute percent difference averages 8.542%,
which is excellent agreement.
cah.!72f 8-10
-------
TABLE 8-2. METHOD DETECTION LIMITS FOR 3-HOUR AIR TOXICS COMPOUNDS
Compound
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3-Butadiene
Bromomethane
Chloroethane
Methylene chloride
trans- 1 , 2-Di chl oroethyl ene
1,1-Dichloroethane
Chloroprene
Bromochl oromethane
Chloroform
1,1, I -Tri chloroethane
Carbon tetrachloride
1,2-Dichloroethane
Benzene
Trichloroethylene
1,2-Dichloropropane
Bromodi chl oromethane
trans-l,3-Dichloropropylene
Toluene
n-Octane
cis-i.3-Dichloropropylene
1,1, 2 -Tri chloroethane
Tetrachl oroethyl ene
Di bromochl oromethane
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
Styrene
o-Xylene
Bromoform
1,1,2 , 2 -Tetrachl oroethane
m-Di Chlorobenzene
p-Dichlorobenzene
o-Dichlorobenzene
GC/MD
MDL
ppbv
1.00
0.10
0.20
0.20
0.10
0.20
0.10
0.11
0.04
0.04
0.06
0.01
0.01
0.02
0.01
0.04
0.04
0.01
0.04
0.01
0.04
0.02
0.03
0.04
0.02
0.07
0.01
0.02
0.02
0.04
0.02
-
-
0.01
0.01
0.02
0.09
0.02
GC/MS
MDL
ppbv
a
0.40
0.56
0.44
0.57
0.25
0.38
0.31
0.39
0.53
0.57
0.48
0.27
0.70
0.37
0.59
0.34
0.37
0.44
0.22
0.50
0.50
0.29
0.80
0.22
0.32
0.25
0.57
0.72
0.46
0.46
0.39
0.27
0.37
0.28
0.56
0.37
*Below mass spectrometry range.
cah.!72f
8-11
-------
TABLE 8-4. 3-HOU, .R TOXICS REPLICATE ANALYSES BY GC/MD
Statistics
Minimum
Maximum
Overal
Mean
Mean Concentration, ppbv
StandLrd Deviation, ppbv
Percent Coefficient of Variation
Absolute Percent Difference
0.050
-0.686
-43.889
0.000
21.055
0.594
".421
62.069
2.445
-0.016
-0.347
9.118
cah.!72f
8-12
-------
The percent coefficients of variation are plotted against the
replicate sample means in Figure 8-4 and show that the largest contributions
to the overall variance occurs in the samples having means less than 2 ppbv.
Table 8-5 lists the cases in which a target compound was found in only
one of the replicate analyses. For all cases, the concentration was below
1.0 ppbv, which suggests that the variability of the analyses at the lower
concentration levels may explain in part why one compound was seen in one
replicate analysis, but not in the other. Although the list of single
compound identifications is not long, no pattern to the behavior emerges.
8.7.3 Duplicate Sample Results
Fourteen duplicate 3-hour ambient air samples were analyzed by GC/MD
for the 38 target compounds. Summary precision results are given in Table 8-6
in terms of mean concentration and concentration range in ppbv. Other
precision statistics are given in terms of standard deviation, percent
coefficients of variation, and absolute percent difference. The data in
Table 8-6 are accumulated over all compounds and site locations.
The percent coefficients of variation ranged from -64.282% to
101.015%, averaging -0.814 percent. These data are also plotted in Figure 8-
5 and show that the larger values of percent coefficient of variation are at
the duplicate mean concentrations below 2 ppbv.
Table 8-7 also shows that the imprecision is also compound specific.
Mean absolute percent difference for m-dichlorobenzene is 142.857%; the
concentration range is 0.01 ppbv to 0.06 ppbv. For the other selected
compounds in Table 8-7, the absolute percent difference means ranged from
0.433% to 57.464 percent. The precision for the 3-hour air toxics compounds
is good with an overall average absolute percent difference of 12.9 percent.
Table 8-8 lists the compounds that were identified in only one of the
duplicate sample analyses. Except for one case, the concentration was below
1.0 ppbv for the compound identified in only one duplicate sample analysis.
It may be argued that some of the identifications were false positives, but
such an hypothesis is not reasonable for cases in which the concentration was
greater than 1.0 ppbv. In the case of p-dichlorobenzene, a concentration of
1.14 ppbv was verified on the chromatographic traces for one of the
duplicates, and was completely absent on the traces for the other duplicate.
cah.!72f 8-13
-------
r r\
L/ .J
[V]
CO
^*™*
.-3
"^C
p^
c
o
1*3
o
'IT
_«
cn -
a c
• 0*^ p
0 C
*-> a
^
L ^ .fa c
^ ed c
c
!M
- ^ C
: c cc
-SH a
<
r >
O
x_
D_
K •£
x
o
CTi
OD
cn
c
V
'u
(D
O
CJ
O
L.
d)
O
III!
I I I
CO
o.;
ooooooooooooooooooooo
*" ~ " T i i i i i i i
a
QL
>r
1
r-
_
— 00
!
;
O
"o
^
"c
a;
o
c
0
o
5
a;
2
P-^
"d
0)
•-^
•«-<
u_<
^-H
0)
o
J
1
«M^
— *
M
u
SH
QJ
cd
r/3
_-/
L
en
^
15
fl
cd
0)
"5
•^
&
C'
03
0)
UOI}DUD/\
8-14
-------
TABLE 8-5. GC/MD COMPOUND IDENTIFICATIONS IN ONLY ONE REPLICATE ANALYSIS
Compound
Chloroprene
Trichloroethylene
Trichloroethylene
cis-l,3-Dich1oropropylene
1,1,2-Trichloroethane
Tetrachloroethylene
Tetrachloroethylene
Chlorobenzene
Chlorobenzene
Chlorobenzene
m-Di Chlorobenzene
m-Dichlorobenzene
m-Di Chlorobenzene
p-Dichlorobenzene
p-Dichlorobenzene
o-Dichlorobenzene
Concentration
ppbv
0.05
0.60
0.04
0.25
0.06
0.53
0.73
0.27
0.04
0.03
0.01
0.02
0.02
0.97
0.08
0.09
Radian
ID
2348 R2
2314 R2
2284 R2
2348 R2
2388 R2
2093 R2
2314 R2
2284 R2
2093 Rl
2314 R2
2169 Rl
2388 R2
2348 R2
2348 R2
2169 R2
2169 R2
cah.!72f
8-15
-------
TABLE 8-6. THREE-HOUR AIR TOXICS DUPLICATE SAMPLE ANALYSES BY GC/MD
Statistics
Minimun
Maximum
Overall
Mean
Mean Concentration, ppbv
Standard deviation, ppbv
Percent Coefficient of Variation
Absolute Percent Difference
0.035
-0.721
-64.282
0.000
21.380
0.481
101.015
142.857
2.3"
-0.0c7
-C.814
11.149
cah.!72f
8-16
-------
CO
OH
CO
CJ
o
HH
MH
L_
CJi
C
Q
XCJ>
oo
O 2
I
c
_0
O
'k_
C
c
0)
CD
O
O
CD
I-
ooooooooooooooooo
CM
ocnoor^cDin-^-rocN
*- CM rO
CO O
^ M
O cO
rj Q;
>
a cC
S °
CO r«
CO
o l
'-= O cn
S fl w
o CD CD
O fj Q^
I S*
0 GJ
CJ '~<
i^ CL*
a; ^
CUT3
I I I
— 1 —
1
o
m
I
JLJL
1 1
o a c
CD r^ o
1 I
ao
0)
D be
3 .^H
fe
UOI}DUD/\ JO
8-17
-------
TABLE 8-7. GC/MD 3-HOUR AIR TOXICS DUPLICATE PRECISION BY COMPOUND
Compound
Propylene
1,3-Butadiene
Methylene chloride
Chloroprene
1 , 1 , 1 -Tri chl oroethane
Carbon tetrachloride
Benzene
Trichloroethylene
Toluene
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
m-Di chlorobenzene
p-Dichlorobenzene
Cases
1
6
3
3
7
7
7
5
7
1
1
7
7
7
1
2
Mean
SO
0.014
-0.011
0.125
-0.061
-0.034
-0.005
-0.074
0.051
0.005
0.410
0.007
-0.017
-0.180
-0.025
0.035
-0.223
Mean
% CV
0.305
-4.854
0..336
-40.633
-2.735
-3.349
-1.640
5.542
-0.091
17.909
15.713
-0.271
-1.934
2.997
101.015
-13.540
Mean
Absolute
% Diff
0.433
7.470
2.826
57.464
4.930
4.966
5.427
21.230
3.785
25.3?8
22.".-
3.^8
3.667
7.440
142.857
19.149
cah.!72f
8-18
-------
TABLE 8-8. SINGLE COMPOUND IDENTIFICATIONS OF GC/MD DUPLICATE SAMPLE ANALYSES
Compound
Bromomethane
Chloroprene
Chloroprene
Chloroprene
Trichloroethylene
cis-l,3-Dichloropropylene
1,1,2-Trichloroethane
1 , 1 , 2-Trichloroethane
Tetrachl oroethyl ene
Tetrachloroethylene
Chlorobenzene
Chlorobenzene
Chlorobenzene
m-Dichlorobenzene
p-Dichlorobenzene
o-Dichlorobenzene
Concentration
ppbv
0.05
0.10
0.18
0.05
0.34
0.71
0.71
0.05
.0.22
0.78
0.03
0.13
0.07
0.03
1.14
0.12
Radian
ID
2348 D
2314 D
2388 D
2349 D
2315 D
2315 D
2315 D
2388 D
2094 D
2314 D
2389 D
2285 D
2315 D
2284 D
2348 D
2389 D
cah.!72f
8-19
-------
8.7.4 GC/MS Confirmation Results
Based on 14 GC/MS analyses of the 3-hour air toxics samples, one from
each site location, the following results were obtained. The GC/MS analyses
confirmed 93.90% of the GC/MD analyses. The results are summarized in
Table 8-9, showing 31.56% positive GC/MD-positive GC/MS confirmation, 2.52%
positive GC/MD-negative GC/MS confirmation, 3.57% negative GC/MD-positive
GC/MS comparisons, and 62.39% negative GC/MD-negative GC/MS comparisons.
8.7.5 External Audits
Bi-monthly external audits were conducted for the 3-hour air toxics
and UATMP by the EPA-QAD. The results for Audit No. 3, performed prior to the
3-hour air toxics analysis period,8 are reported in Table 8-10. The bias
ranged from -32 to +18%, averaging -7.3% bias, for the GC/MD analyses. The
bias ranged from -46 to -2.9%, averaging -20.5% bias, for the GC/MS analyses.
These are excellent results for the GC/MD analytical procedure since that
instrument was to be used for primary quantification in the UATMP. The GC/MS
analyses are done primarily for compound identification confirmation c: the
GC/MD identifir on.
8.8 DATA RECORDS
Data records for e 3-hour air toxics samples include:
NMOC concentration of the sample;
Copies of the gas chromatographic trace for FID, PID, and ECD;
Response data on Bernoulli disk;
Retention time for each compound; and
Area counts for each detector.
In addition, daily calibration response factors are recorded on
magnetic disk along with the retention time and area counts for each compound
in the standard.
cah,172f 8-20
-------
TABLE 8-9. COMPOUND IDENTIFICATION CONFIRMATION
GC/MD versus GC/MS comparison
Positive GC/MD
Positive GC/MD
Negative GC/MD
Negative GC/MD
Total compound
- Positive GC/MS
- Negative GC/MS
- Positive GC/MS
- Negative GC/MS
Total
identification confirmation =
Cases
150
12
17
297
476
31.51% + 62.39% =
Percentage
31.51
2.52
3.57
62.39
99.99%
93 . 90%
cah.!72f 8-21
-------
TABLE 8-10. 3-HOUR AIR TOXICS AUDIT NO. 3 RES IS FOR GC/MD AND GC/MS
Vinyl chloride
Bromomethane
Carbon tetrachloride
Methylene chloride
Chloroform
1,1,1-Trichloroethane
1,2-Dichloroethane
Benzene
Toluene
Tetrachl oroethyl ene
Chlorobenzene
o-Xylene
Trichloroethylene
1 ,2-Dichloropropane
Ethyl benzene
interference reported.
Bias, % = reported - actual
Spiked
ppb
4.1
8.5
3.8
3.9
3.4
8.1
4.3
4.4
8.2
3.8
8.1
7.2
4.4
8.0
7.5
x 100
Reported
GC/MD
3.5
7.2
3.7
4.61
3.4
7.7
3.6
3.8
7.7
2.6
8.4
7.8
3.7
7.6
5.8
ppb
GC/MS
3.4
7.0
3.4
2.1
3.3
6.7
3.1
2.9
6.5
3.1
6.9
6.7
3.3
6.7
5.0
Bias
GC/MD
-15
-15
-2.6
78
\0
-4.9
-16
-14
-6.1
-32
3.7
8.3
-16
-5.0
-23
%
GC/MS
-17
-18
-10
-46
-2.9
-17
-28
-34
-21
-18
-15
-6.9
-25
-16
-33
actual
cah.!72f
8-22
-------
9.0 RECOMMENDATIONS, THREE-HOUR AIR TOXICS PROGRAM
The following recommendations derive from the 3-hour Air Toxics
Monitoring Program. The studies (Sections 9.1, 9.2, and 9.3) are directed
toward areas in which additional information is needed to validate further the
air toxics results. The final suggestion (Sections 9.4) is designed to give
additional information useful to the project without increasing the overall
number of analyses.
9.1 COMPOUND STABILITY STUDIES
Compound stability in this context refers to whether the apparent
concentration of a compound in a sample taken from a canister is changing over
time. The apparent change in concentration may result from a chemical
reaction of the compound while it is in the canister, or result from a change
in the gas phase concentration caused by adsorption of the compound on the
interior canister surfaces.
A study needed to investigate this phenomenon would take several
canisters — at least three from each initial concentration—ranging in target
compound concentration from zero to 20 ppbv. The canisters would be analyzed
24 hours after mixing, 72 hours after mixing, 30 days after mixing, and
60 days after mixing to determine any concentration changes. It is also
recommended that the same concentrations be mixed in canisters, but that
equilibration times of 7 days and 30 days be assigned before the first samples
are drawn from the canisters to determine the effect of equilibration time on
the concentration samples withdrawn from the canisters.
9.2 CANISTER CLEANUP STUDIES
The present canister cleanup procedure has not been studied in
sufficient detail to determine the amount of carryover for each of the air
toxics compounds. Experience has shown3'9'15 that the present cleanup
procedure is satisfactory so long as a period less than a week elapses between
sampling and analysis.
A study needs to be conducted to determine the effects of:
Additional pressurization/vacuum cycles on cleanup;
Heating the canisters during cleanup;
-------
Vacuum holding time during cleanup; and
Holding time between cleanup and sampling
on the carryover for each air toxics target compound.
The present can-i ~ter Cleanup procedure is described in Section 3.3.2
and consists of three vacuum/pressurization cycles with cleaned, dried air
that has been humidified. These cycles are followed by a final vacuum step to
5 mm Hg vacuum. Preliminary measurements" have indicated that after this
cleaning procedure has been completed, there may be sufficient organic
compounds still adsorbed on the canister interior surfaces to be desorbed and
measured in the 0.05 to 0.50 ppbv range, especially for long holding times.
9.3 SAMPLER CERTIFICATION
Blank and challenge certification of all samplers used to collect
ambient air samples on which GC/MD analyses are to be performed should be
continued. This certification ensures that the sampler is not changing the
actual organic compound concentration of the ambient air being sampled, either
by adding or removing target compounds.
9.4 REPLICATE AND DUPLICATE ANALYSES
In future studies, replicate analyses on th duplicate - ,-ples are
recommended. In this way it would be possible to separate sampling precision
from analytical precision.
cah.!72f ' 9-2
-------
10.0 REFERENCES
1. Compendium Method TO-12, "Determination of Non-Methane Organic
Compounds (NMOC) in Ambient Air Using Cryogenic Pre-Concentration and
Direct Flame lonization Detection (PDFID)," Quality Assurance
Division, Environmental Monitoring Systems Laboratory, U.S.
Environmental Protection Agency, Research Triangle Park, NC, 27711,
May 1988.
2. Radian Corporation. 1989 Nonmethane Organic Compound Monitoring and
Three-Hour Urban Air Toxics Monitoring Programs, Work Plan and Quality
Assurance Project Plan. DCN No. 88-262-045-67. Prepared for the U.S.
Environmental Protection Agency, Research Triangle Park, NC. EPA
Contract No. 68D80014, August 7, 1989.
3. McAllister, Robert A., Phyllis L. O'Hara, Wendy H. Moore,
Dave-Paul Dayton, Joann Rice, Robert F. Jongleux, Raymond G. Merrill,
Jr., Joan T. Bursey, "1988 Nonmethane Organic Compound and Urban Air
Toxics Monitoring Program. Final Report. Volume I. Nonmethane
Organic Compound and Three-Hour Air Toxics Monitoring Program."
Radian Corporation, DCN No. 88-262-045-25. Prepared for Dr. Harold G.
Richter, Office of Air Quality Planning and Standards, U.S.
Environmental Protection Agency, Research Triangle Park, NC, 27709,
EPA Contract No. 68D80014, December 1988.
4. Radian Corporation. 1987 Nonmethane Organic Compound and Air Toxics
Monitoring Programs. Final Report Volume 1 - Hydrocarbons, U.S.
Environmental Protection Agency, Research Triangle Park, NC. EPA-
450/4-88-011. August 19, 1988.
5. McAllister, R. A., R. F. Jongleux, D-P Dayton, P. L. O'Hara, and
D. E. Wagoner (Radian Corporation). Nonmethane Organic Compound
Monitoring. Final Report. Prepared for U.S. Environmental Protection
Agency, Research Triangle Park, NC. EPA Contract No. 68-02-3889,
July 1987.
6. McAllister, R. A., D-P, Dayton and D. E. Wagoner (Radian Corporation).
Nonmethane Organic Compound Monitoring. Final Project Report.
Prepared for U.S. Environmental Protection Agency, Research Triangle
Park, NC. EPA Contract No. No. 68-02-3889, January 1986.
7. Radian Corporation. Nonmethane Organic Compounds Monitoring
Assistance for Certain States in EPA Regions III, IV, V, VI, and VII,
Phase II. Final Project Report. Prepared for the U.S. Environmental
Protection Agency, Research Triangle Park, NC. EPA Contract No. 38-
02-3513, February 1985.
8. Radian Corporation. Proposed Diurnal Nonmethane Organic Compound
Sampling Plan. DCN No. 88-262-045-11. Prepared for U.S.
Environmental Protection Agency, Research Triangle Park, NC. EPA
Contract No. 68D80014. September 30, 1988.
-------
9. McAllister, R. A., Radian Corporation. Letter and Proposal, entitled
"Wet Zero Study", to Frank F. McElroy, Quality Assurance Division,
Environmental Systems Monitoring Laboratory, U.S. Environmental
Protection Agency, Research Triangle Park, NC. November 15, 1988.
10. Radian Corporation. Urban Air Toxics Monitoring Program. Third
Quarterly Report. Second Quarter 1988. DCN No. 88-262-045-08.
Prepared for Office of Air Quality Planning and Standards, U. S,
Environmental Pr"action Agency, Research Triangle Park, NC. August
31, 1988.
11. McAllister, Robe . A., Phyllis L. O'Hara, Denny E. Wagoner, Dave-
Paul Dayton, Robert F. Jongleux, "1987 Nonmethane Organic Compound and
Air Toxics Monitoring Program. Volume I, Final Report, Radian
Corporation, DCN No. 88-203-080-03-05, prepared for Dr. Harold G.
Richter, Office of Air Quality and Standards, U.S. Environmental
Protection Aaency, Research Triangle Park, NC, 27711, £ 1 1988.
.2. "1988 U.S. A Region III Nonmethane Organic pound ML itoring,"
Maryland Deportment of the Environment, Air K ..agement Administration,
Baltimore, Maryland 21224.
13. "1987 U.S. EPA Region III Nonmethane Organic Compounds Monitoring,"
Maryland Department of the Environment, Air Minagement A ;nistration,
Baltimore, Maryland 21224 (November 16,198£
14. Telecon. Erdman, Ted, U.S. EPA Region III, with McAllister, R. A.,
Radian Corporation, June 19, 1989. Verification of AIRS Nos. for NMOC
Monitoring Sites for Region III, 1987 and 1988 Programs. Discussed
apparent problems with Arlington, VA, monitoring data.
15. McAllister, Robert A., Memorandum to Vinson L. Thompson, Frank
F. McElroy, U.S. Environmental Protection Agency, AREAL,
"Vince Thompson Canister Cleanup Study Results," dated July 10, 1989.
16. Compendium Method TO-14, "The Determination of Volatile Oroanic
Compounds (VOCs) in Ambient Air Using SUMMA® Passivated Cc ister
Sampling and Gas Chromatographic Analysis," Quality Assurance
Division, Environmental Monitoring Systems Laboratory, U.S.
Environmental Protection Agency, Research Triangle Park, NC 27711,
May 1988.
cah.!72f 10-2
-------
APPENDICES
APPENDIX A: SAMPLING SITES FOR 1989 NMOC MONITORING PROGRAM
APPENDIX B: CRYOGENIC PRECONCENTRATION AND DIRECT FLAME
IONIZATION DETECTION (PDFID) METHOD
APPENDIX C: 1989 NMOC MONITORING PROGRAM SITE DATA
APPENDIX D: 1989 NMOC MONITORING PROGRAM INVALIDATED AND MISSING
SAMPLES
APPENDIX E: PDFID INTEGRATOR PROGRAMMING INSTRUCTIONS
APPENDIX F: 1989 NMOC DAILY CALIBRATION DATA
APPENDIX G: 1989 NMOC IN-HOUSE QUALITY CONTROL SAMPLES
APPENDIX H: MULTIPLE DETECTOR SPECIATED THREE-HOUR SITE DATA SUMMARIES
-------
APPENDIX A
SAMPLING SITES FOR 1989 NMOC MONITORING PROGRAM
-------
,
*
\S i
LU
f~*
t/?
*•
J^p
CX
O
cc
G~
O
^
_^
1
^
/— -j
i
(I
j^
X
o
ce
<
a:
3
t—
o
^r
^
_,^
no
S
*^
^^
LU
JTT
~ip
^«
r~"
c/)
U
S- i. •*-
Z -i- X
i CU
"O ^^ ^3
rt? f^ O
Q£ (-O <_?
>-,
^>
•f—
CM)
O
oo <: "-
• a. en
3 LU CU
cc
cu
•r- O
00 ^S.
CO
cu
o
o
o
1
r-H
0
t
VD
ro
CM
LT>
0
1
o
00
vo
I
ro
ro
>—
^^
E
*™N,
c
re
a>
O
r™*
cu
f"*)
*'
;^
2T
»*
J^£
^
0
^M
^
OJ
Z
N— t
fr""4
^H
V^ V)
cu cu
VD •*•*
LO — t
0 O
o o
1 (
— H ro
VD — *
0 O
1 f
ro ro
VD — "^
Lfl — <
O O
1 1
o o
CO CO
VD 0-
I 1
OO *— (
ro ro
>- ^
Z! ^Z
^••f ^^
r: z
*•—• V
•^
^) ^2
C
l^ fTJ
^-^. a>
O^ r— "O
to i. i-
«J ro
* -C
t/) fj_^ ^y
* iw-^1
C- •
— •*-> T>
OO Z
!^ **^
Z
••3 -0
^ «S r^*
•^ CU
L #k *^
O Jii U-
>- i- C
S 5 - O
<£ vx z
OX — 1
E _J Q£
*£•
o
^•*b
C J^
O O
ift O
C S-
^^ r"~
u i—
O E
•^^>
•
-J LU
^£ ^^ *^i_j
^^
** *i_^
>> -Z
s- c
CU O -
E ^^ ^z
o en en
en c -t-
+J *^ Q)
C Xi—
E — J Of
^^
M^
in VD r«.
CO CO 00
O) CU CU
CM ro o
^f VO CM
O O O
o o o
1 1 1
r— t 1— 1 i— 1
ro ro CO
000
< ' (
r— . r — VD
*-* <- ' CM
CM ro O
«3- VD CM
o o o
i 1 1
o o o
CM CM CM
CM CM CO
I I 1
^t* ^s^ ro
••* -H CM
_J _J »—
1—4 »-4 y
ro VD cr
v_> o ezj
CO *— »
re z
cu «-»
00 C -
•i^- QJ
S- •— 0
O ^i i-
o c c
r— ^ ^T"
cr> LJ
~, i^- - ^
to
_J _l T2
*-^ l~^ *P>0
Q.
0 OOC
en en
u u c
*p» »^» fQ
-C jC i.
V^) tj C9
^^
CO tf> O
o o
en r--.
vo ro
o O
0 O
i i
ro -H
*— ' *!T
f— 1 —4
CO 00
O r~-
VD ro
O O
i i
0 0
—i O
ro i-v
i ,
in in
*• ^^
X X
h- (—
— I — 1
O LU
*!• ^^ O
•4-> "O
oo re
o
c a:
o
*J E
C f-
•^ Q£
•C '' ^
*.^
X
X h—
p-
- 0
CO CO
re re
i— a.
pMM
re r—
O uu
*>4
o^
— « CM
f— I i— I
0 0
O"> ^*
O ro
o o
O 1-1
1 1
ir> .— i
«- o
CVI CM
I (
OO 00
«- *9-
CM «a-
O ro
O 0
i i
0 0
ro vD
O tr>
VM? CM
l i
ir> in
^- ^~
X X
i — t—
^^ *— <
CD Z
***v
^5
**^
S- S_
re o
E
re cu
— i re
*^^S-
*,^^
X
t— X
r-
*>.
^J ^
C C
o o
3 CO
(0 3
~. Lf>
VD CM ^f ^^ ir> CM G^
1 ! 1 1 III
ir> in to in ir> to to
o o o ore o o o
<: V^) f_^ (O t_} ^J f_^ ^_5
— i _ J CO txi ro *- LU <
•euj — iccoocou-ca
—o O CU
•"-• ^3 co >
O Q) f— *> Cu
> CO 00 -^ S-
« «t i — >•> OJ
•— • t— cu re •»->
S- T3 CO <-o O 3 CO
O O • •(-> CM ' CU
•!-> O — IOOO Or— j:
o 5 ro re cu o
••- -o z •<-> — i oo a.—-
s> cu >^f— « — •*-" re
ce = -c Vi_
cu ''"^ co re E E £• ^o
c
-------
M
C\J
C - X
-. ^ o 11
O CM ••* O
m ^ x
co »• o
o co co Z
-I Q
10 LU
LU O
> a. g
O 2 -J O
CD « N.
cs
01 LU UJ
f *- "Z <• tO
i- z o -i o <
tO O ** LU 00 K»
< i- O CE CO <
LU • < CX < O
u. > o i- a.
Z LU LU U 01 Z L-
—. —* —j LU « O UJ
Z O LU CL -1 LJ Z
X
X
x
to cr- co x
O M LA
I U1 «
x
a
5
Z> C u > t-
O i — t- X
tO UJ CS l-l i-i t,'
I -J Z CE CE M
— « « LJ LJ LU
Z u cx i n
< to O CS C3 l
Z : f Z Z UJ
Z « Z 1^ " §
O LU O >•* *"^ CE
Q Z Z CO IT O.
LU
O
LU
•t t-
— <
l-l LJ LJ LU
c:
•a to C CS C5 i
Z i t- Z Z UJ
_ CO k- — «H £0
z < z i- •- o
O LU O l-l w CX
C Z Z Cl 01 C.
LU
LU « t-
U 1 *" <
CX CO CE O
S~" O LU I U.
I I- I- =
00 LU CS m >M CS
i _i 2 cx cx i-i
•— < NH LJ LJ LU
Z LJ CX ! IS
2 to o cs cr i
»-i to t-t M i-i CD
z < z <- — o
O LU O l-l i-i S.
o Z Z to to a
O C -i
T Z f\ c
*1 -v X
>C fN. O ^
-* K\ ^* O
K\ l-l X X
CO & O
O CO CO
LU C ^
c -5
CS £ - ^ U
Z -1 UJ u,'
l-l k- 2 « 01
i- z o j cy <
co ts i-^ LU oo H-
< t- o c; to <
LU • « CX «3 O
u, > o '- a.
Z Lu LU U r Z V-
co
O CO C -s
N> r^ Kl
PJ « ^ X
CM o cr-
f CM O •• ••
-. -« CD LU
Z. < o -
ex to LU :x
— > > C
u- to Z *—
ex eo >i —
^ ^j
Z CO Z <
O O o
— CJ to
Z — ' u.
— CX C. —
^S
<
tJ tO
^
u
M
IX
—
tl
ta*
c
*—
x-
o
CO
•f
fc-t
Cu
LU
j^
f~
t— j
tn
o
i.
LU
>
<5
: 60/06/10
f / /
z o
«3 UJ
C2 O
u: Z!
Q LU
i l
U U
r* *-»
— > .J
a. a
z z
• o
Z « CX
< a a.
x
5
to
- x;
LU U < V-
. — f- Z
01 "S 1 LU
> O t— o;
« CX LJ LU
O CU < U.
^.
^
V
-n ~* C2 LU ^-
~ « u
LU ^ O
LU ."2 LU »— LU
C Z3 Z — -J LJ
o
co
LJ
CE
LJ
O
O « <
O UJ *^ (/I
i- < < Z -•
" o c: uj *
O LU *— O CJ
^ ~ ~H ^
lij ^ .,3 to
d _i o. LU ID
y. < cn tr z
•—
o ^^ o ^^ LU
C 0 ^ - 01
0 O O
>D — — UJ Z
W C.T O
— > 2 l-t
^— •—
> Z tr D <
^ ^ Lrf ~" LpJ
« o o < o
LJ LJ « -J _J
o in
> UJ «
o
X
*H
X
^^
^
o
4—
LU
O CO
r^
1 LU
CO 1-
LU in
>
~t tn
L> •«
U —
< 1-
*B O
PO CE
to
z^
<
01
z
•M
<
•H
t-
<
CO CO
c o
Q^ ff*
CO
CO <
< —
_J 1
Nl U
>- UJ
_, _i
< ^
•z. o
< U
X
X
LU
Q
CS 1
CE H-
o u
' LU
a u-
O LU
CU 1
LU O
CE ce
5
CS
cx
o
LU
^
— "
•—
LU
1
s
u.
o
>•
Si
D
to
m (c
c^ o-
to
2 CO
< CO <
to 2 T1
Z Nl u
l-l >• LU
^ ^ — J
i- Z O
X
X
L-J
a
CS I
a *••
0 U
1 LU
^ t^
c: u.
o LU
CL. I
LU O
LU
5
01
0
=;
S
5
_i
_1
^
«I
CD
cx
O
LU
2
s
-
|B^
c
'"?
T*
1-4
•C
!•
t—
•4
CO CO
c o
C" C~
CO
CO a
_i
i w-
rM tj
>- LU
_i — j
< — j
Z C
X
X
LU
O
CS i
B u
LU
SL u.
O UJ
a. i
u 0
UJ
^j
fcl
O
s;
5
~
u
CJ
z
? <
l -XXCL.«OOO
•* in O 2
_ O M O U O
ZZLUOMOZU ••
OOSLU^-TUJ O
CM
o
X
-J3
O
a
u
X LU
X
CM
O
Kl
•f
X
O
CD
Kl CO
X
X
CM
X
£
o
X
o
i CO
UJ
x i
X ~"
« < -J Z < M
— —i CO « ^_- < CS I
LU S- CE *" "~ =?5~
COU r- O O O
CE t— < O l LJ
LU I S S S I
i- er i <- — CE
LU C LU LU LU O
LU UJ
LU I— Z
C. LU *- Q a o
t— < o j_ u
CE I — — CX
O LU LU LU C
LU UJ
LU — Z
O. LU « Z
>- t- O O O
:x «- « O i u
LU i a z s i
cx i t— — o:
LU O L>. LU LU O
to o c LU — e
K_— OPI-J (/)«
H;£ztl~- LJ«
Zerg«««»--»
•" o cs « o cc 5 i
LJ l_> « — — uj - O J)
— o u.
•f CO -U l-l LU
O Lfl O UJ U —1 >
o to in — !— . Ul
O O U n
ZZLUOZCOZtt
O O = LU O sD LU
_i ^ as M •• < ts
Z2Q:UJUJUJ
-------
to
^
to
^ ^H C. —
— ^ ^" —
IT — U.
— e c, —
— <=:
^ « UJ —
O
O
O-
CO
X
9-
O
87/07/17 DOM II IAHF -SOURCE :
/ / MEAS-SCAIE i
z o
•C LU
U C
LU Z
C UJ
S '£
— **
= CL
2 2
to to
o
C;
c-
'"_;
Z
« CD
V —
«• >-
p— <
•— ~
< <
tsj
J3
-H
vy »-<
K
— j
LJ
<
ll
v
X
/ / iron i lUKiriu-uBJ i
SI HUG-CRITERIA i
SItlllG CRir-DATE :
o to
LU tO
LU Z — 1
< CJ ~~
^ X. >-
^ u o
M tfl -)
a > o
3 < a:
•Q C C.
\
o x
o
ff*
LU
~
C C.
« cr i
k- I LU
LU g It
Z3 -^ .
S LU C
U C C£
fs»
FH
\
r*..
o
X
m co
LU
& UJ
> k- Q
k- < C
S£ 1 1-
O - UJ
-. LU T
Izi
5
i
£
i
jj
c
a.
x
o
to
LU
cr
LU
**
I Q
k- Z
t_J -3
« O
i.
5
u
u
— m
^
CO
0
UJ
5
A
—
s
u.
>.
C
^,
to
J
:
« to O CD C£
Z : — Z Z 1
— to i— i— — i i
Z < Z i— — '
O LJ O k- k* 1
= Z Z to to I
(M
XXX
o
XXX
fN.
CO
z s
« UJ C tO
CO m ol
u- Z 0 <
a tu uj ^ —
'J C5 < (_> '
"^ ** w *" U
c. a. « co ">
z r a > o
• LU cr u.
*- Z O UJ O
ff*
CJ
X
f\l rs.
O O
"i X
UJ
c. uj
> — o
cr k- « o
-J ^ O Z
JJ C u. uj
S ^ LU T
« 5 5 = i
•s
•4
JJ
JJ
D
KEH/REAGOH:
AS POCI
1 UJ
u to
a. i-i
™
2
N
<
C
UJ
^
<
t/)
S
fi;
C
O
u
*a
cr
C
UJ
^
^
~
^_
UJ
!
N^ ^
Q
^
x
to
UJ UJ
»^ T"
si
I U
— cr
uj O
T —
si
87/08/15 OOltJIIAIir -SOURCE ;
t£
UJ
z
•"
=
<
to
co
Z
«
to
-
k_
<
fj
o
?
cr
UJ
c
1
x
LU
< t-
o cr o
O LU 1 j-
JJ CS k-i i— i CD
-J Z £T CT k-l
Q i-i U tJ UJ
D cr i i s
to D cs c; i
: — Z Z LU
[/) I-I H M IB
< Z k- — C
LU o M 11 cr
Z Z to to c.
X X
X
X X
5
o w
LU c to «
O LU tO UJ
i i— -J u Z
CD ^ t_ , i LtJ
« I LU U - o k-
« 2 « cr o
to < o — <
X
O CO X
? ?
LU
—
c S
CD < CD i
2 T o u
1 k— i LU
>- LU C U.
«£ «J £. 1
Z O LU C
K^
•^
X X
CO
o
X X
m tn co
LU
UJ —
C. LU <
> w Q a
k- < O i
O U. LU UJ
-- LU 1
O O ^ LU *«
to
CANISTER A
•-
LU
cr
LU
U.
Lk.
O
J
c
LJ
<
to
o
a
^
£
£
LJ
LJ
«
5
LU
— *
^
—
k—
UJ
2
Q
^
"
to
LU
™
5
a:
O
—
£
M o- eo
o Z 1-1 ~
c s. x
C ^ O CJ
C -HO
K! XX
CO 0-0
O CO CO Z
-i a
to uj
Z«
UJ Q -
> o. cr <
CO < k—
CS < t- > u
Z to LU uj Z
•H i— Z < to u
t— Z O — i CT « <
tO CD *-l LU CO k- UJ
< k- CS CS tO « CJ
LU • < cr O k- Q. U
— u-iuutOZt-Z
— — c"
"" "" O w
Lfl ^ sT X LU
ou « O CD
0- k^ ^ N 5
•^ f^j r^
•• •• KI to
M CO O
— •-< CD UJ .- ~"
LU ^ C O
UJ C UJ k- UJ CO
«t3>hJ*~uj'*5~" ^v•
i- Z Z Z to < -r
u.
C
eft
CE
LU
tO k- >
UJ U ^
_! NX |—
UJ CC *-*
cs —to
z to o
LU — Z -*
4 O a cj x
CS C£ k-l — > —
z to k- to z —
— CC _5 w
Or-C-r-iujCCZ~ 5
O w> rj _ CO Z D C
O O C O 4 M LU
— — • cs to to
*~ IP CJ Z CJ ^ O O to i— *
k— O C? *£ C ^ ^ ^* ^ — '
j ^ U^ ^ — ^ LU ' *5 ^
tO S k-
c\j z uj ^ LU Z
o ^ cj cj «j Z Z O
O r/> CM < UJ Q »
\yf*ic^ LuCDtOujUv
i - - ca z o
N.-*«XX <••«*
M >O O CS — CC k-
OKltM Z CO « — <
i - x x o o >» a
J2 M -4 _J O -J
O •* — to t\)
^ ^ ^ = 0
-. . v ° O U X
22^S!SIS5£
H" *^ I'H 4 Kl w 4 U. ~*
-crujujuj5ctz —
cou«xaaf!Btouto
70 '01/01 DOtlllinril SOURCE :
s
LJ
""
i
^
to
to
z
c«l-e :
/ / IIOniTORIIIG-OB ) :
SlTItlG CRIJERIA i
OJ SI lltin CRIf-OAlE :
/ PROOfc -HEIGHT
C 1
UJ Cl CO «7
C2 UJ CA UJ
^ ci < a
UJ UJ ^ _ X
ti* ^ LJ i Uj
z s x i- x
•• 1 LU LJ <
— J ki» 1 LU k*
C. l-i CO -5 1
Z C > O t-
• LU CC LK
^ " ? ^
Z O UJ O
« u sc. cc
*•*
a
^^
o
X N
CO
<-> o t*.
UJ
UI —
a uj *t
> >- o a
k- < O i
l C Z Z
O U- LU LU
-^ LU T T
£ Z E a cr
^
^^
••
to
UJ
5
LJ
ce
O
^^
5
-------
CM sD CD
sC z CM CM
LO Kl O to
a 4- « a
in r-i x x
co cr o
o CO 9 Z
-i a
to uj
Z t-
X
X
X
X
Uit M
> O,
O Z> -J
CD < to
O « to > U
Z 00 LU IU
CO Cd to uj tO •*•
< to a cc e/j <
LU • < cc < o
u, > o i- c.
Z u. uj LJ to Z to
to to to UJ ^ O LLJ
*"" ^ '
Ch o
CM m
X
CO
LU
to
a
UJ « to
U ~5 to «
§o cc a
O UJ ' to
(/) UJ CD to to o
I to Z CC CC to
< CO O C5 U T
Z ' i- Z Z UJ
to CO to to to CD
a z Z to to a
UJ
UJ < to
u -; to <
cc CD ce e
Z> O UJ I to
tO LU —i Z CC CC to
•— < to UJ O UJ
< to o cb ci ~
Z i to z Z UJ
to CO to to to CD
Z < Z to to O
O LU O to to CC
a z z (/) co o.
ID
U.I « to
O ~> to <
c: CD cc a
LV I to * _
to UJ O to - ^>
V to- Z BC L. to
L- « to LJ L* LU
Z U C i =
a oo o o tr i
to CO to to to CO
Z < Z to to O
C UJ O *™l M CC
a z Z to to c.
to
<
to to O UJ to
Z to to
LU s a o
UJ a LU to uj CM
— — M Z > < Z —
-ZZZ^o"*"*
3
XXX
-0
e
XXX
c: to LU s:
— > > O
LU tO Z —
sc m « -
Z M Z «
SOU
—4 > tot
u
cc
o
XXX
a
XXX
X
XXX
NO
a
XXX
<
cs
— 5
p o < to
LU to LJ ••
to to CC ~
a a LU CM
1 CO
z I
C? CM
5
— O t/)
< uj e en <
CO UJ (/i iu
u. 2 o « cr
££) UJ UJ ,2 — ' \
' • - -j (J Z
CD O ^ U ' ii*-*
Z — C X t- *
t-< « I UJ (J «l
-J -J f- 1 UJ t—
C. P- ^H t^ ^ t O
ii§Sg|- =
co to « a a. « o
c.
5
z a to
< UJ O 00 < to
U a LU CO LU U
LU Z O « CC O
CD UJ IU 5 — ' X C.
ts ca «t u i Iu to
Z Z C X to jc <
MM 1 LU LJ <
-j _j to i LU to ce
C. C. *-< I/I ~? t LU
Z Z a ^ o to to
• O to 0£
< < Z « CC LJ LU
f; CO «I a C. « to
—
co eo x
c o
o
o
CO CO
o a
O CD X
a o
c o-
o*
CO
tsi
=
X
— 0.
< z
a <
— ^ CM _ tft
ri*rKa x —
(M C^, D O O LU
> Z cc a < u O
to 3 L> Z LJ O to
~" a o
e CM in * o Z a
a c* in uj cs < co
a co *o > iu to
i • • < to ce
^ f*. ui a — a
O CO 3 Z -* Z
i - x x o < fi z>
-o M z en o z
a a -
LU •• LU
ce — v to
o a u M
ZZujQincMZin
O O * uj in tf* LU
^ «j CO to
Z 3 < =
'-•-Oto'-— OC.Z
— toO<«itoC!:ZO
n u « o a w 3 L-. u
to co a z
< CO < U i
— « to CC to Z
tO -J i O U O
' to I LU Z
Z NJ U to to
to >• LU CC U. L_
< _I to a UJ C
to < _1 O. I
to Z O IU O >
< < o ec ec e
o u
X X UJ
o x«
LU C
2 « Z
— e a o
< CO «I CB I U
to «l to C to
to _i i o u u
I I to ' UJ to
Z N U — n. -
to > UJ C Li. <
< —J ^ O UJ O
to « _j c, I CC
— Z C UJ O O
• UJ CC IL. <
< to _J C LU C
to « _i i. i £
to Z O iu O C
«t «l (J CC CC
M
o
N X
-n
a
x x
z o
X X Z
s s
X X
to M eo
•f eg K» CO
m MI co
UJ UJ
UJ to Z
a. LU < 2
> to a o o
ce to < o i u
vu i a = ~ i
— cc i — — ce
UJ O U- LJ LU C
e u z i u. u. z
< O O to LU iu O
III UJ
UJ to Z
a uj < Z
> to e o o
ec to a o _ u
— e i — Z ce
i ' i Q u^ 11 i I. ] Q
< to LU T T to
CC LJ Z : U. to Z
e O O to LU LU O
& s. Z Z s: e r
LU LU
LU — Z
C. UJ < Z
> — a es o
ee to < o _ u
OJ C to LU LU O
cc u Z i u, u. Z
< O O ^^ uj uj O
c. c. z Z si c Z
-------
5^5 u
w> « U. •—
cs
X
<^
a-
O
CM C
c^ Z ~J
UI CM O
Kl CM X X
CO CO
O CO
-I 0
oo uj
UJ O
C 3 — i O u
cs < t- > u
Z co uj uj ~
-* i— Z < 01 O
- z c -t a •*. <.
00 CS *•* u; 00 *— uj
« — Q C.oO < CD
uj • < c: < o
-. > C t- 0. CS
•b.*M.U*LJOlZ*-Z
~SwtS°~o
1
co
Z Z uj
^ -J
CO O Kl X Ltl
in o •« cs
.. .. tn z
— CM CO X <.
•iK) rs.
j- CO •• O
*f\ »« ^» •• •• ^ ^j
— — CS tu •-
— « U "•'
LU = a o
UJ O UJ »— UJ CO
§-io«zol
*-» CS JJ *- ** X'
« SHE £2 og S
O
<
a
UJ
«/) >
UJ IH
UJ H
CS 00
Z O
1 C.
co Z _ = <
C - I? = S LU
>• U 15 D w >
— Z Z Z Z <
"-" 00 < S „ O ^
w — .. < Jo z "~ o
< UJ — l-» ^ LU CO
z z — — ••' 5 o "
—• ^ C uj CM ** CO X
•K w » ^ •* ^*
— oo •- z c. a
COfOCS —LUUJ
= J > 0
•- OT U U.
O Kl CM w oi »
= OO < CC U
0^ OO — Zw
— ^ 3 n ^ uj CO
-iSzSol *«
UU< — -JOOCC Or-
uj 3 C
•* cc o Z
O •« tM Z O O
CM CM * 4 f^ CC
1 • ^ Z CC
r^ "^ X X tO n •• UJ ^
Kl 0 — O h-
O CM ^ fc- O Z <
•*> - 3 Z 0 Z
O — < _ CM
CS •• UJ O
— V *• Z
__ __, a o o (j w
— — ««" — «csz
< < _i Z « 1-1
_ _ co « •• < cs i
Z3«zccujz -ce
o s c rt _i 5 S — — 01
uj>-ceujujuji = -uj
tou«ocsM3ioutf5
^ Lfl
= Z C
tM v X
CM CO O
3« ^
O CO
-I O
00 UI
*" <
UJ O
> a. cc
O 3 -J O
CO «I <—
cs « »- > u
Z to uj uj
«* 1- Z < 00
t- Z O -i 0 <
00 C9 M LU C/5 I—
< «- 0 CC CO <
UJ • < CC CO
w > O >- C.
Z U- UJ U CO Z >-
~S~J£! 1
uj Z O
_ < Z CM
— ' CS Z i
D < cc g CM
— ' CO 2
0 0 0 < D Z Z
z z z ^ _, o
z z z u — 5 «
« « < 0 CM -< CE
LJ u u oo c. a.
•i S 5 C- ~ S °
NN OJ O
^- 01 UJ
= r^- co i uj A z
O ^ CM ^ CO UJ
= 00 Z
J- u. Z O Z
-s -.0 O — O
— > 3 11 Z u
— — UJ
> Z cc n < Z a;
— D (_: Z u < < un LJ
(JCJ^Ml^tJ CVX
« » 0 to
o r^ o^ cc • co
o CM tn zucszuj
•£> i-l J tO O Z CS
0 « _ «
> j» UJ UJ
» — ° O U (I
5 5 = uj o 0" uj o
< < -i z «. S
j _J CD f-i •• < CS i
33-CCUJUJUJ«C.ZUJ
oi u < Q a n 3 to u to
cc —
p- Z O
Kl X X
Kl Kl O
CM O i-l
tn -c x x
CO N-
o co
CO tU "*
UJ Q
> Q. CC
O 3 _> O
CO 1 t-
C5 « t- > u
Z co uj uj
•* •- Z — O CC 00 <
LU • « CC < O
u, > O >- c.
Z U. UJ LJ CO Z *—
— jS^cr"10 — <
"•^*"p
z z
f<- O
O O J- X CD
*• » CM H
O UI Kl X O
tn <»• -J5 _
CM vD <
N% rt ^^ •• •• >• C".
" •-< ca uj >-
s < tj ~
ui s. a o
UJ O UJ t— UJ CM
«SrSJ""ujS=.~
>- z z r oi <
=
V -J C
— o « z
•^ CJ -J CC «
u o o 2 cc 5
< o is _ _
Z ^-< ^^ uj — O
i-c O O C Kl -•
— Z Z to ~ CL •
"~ Zj LJ 1
— • 00 *«
O K> cr <^ tu o »—
o r^ CM — to cc
o o o < <
O — — UJ Z uj *-
o LI O c: co
— > 3 w uj i
> Z CC o « w Z
>-3uZu>a.« co
u u « — — < c: -«
3 O
vO O
O i-l UI • Z O
o in cc a co
i >£ a
i Z ce
Kl O-XX
-------
=>
~ p-c
• X
- co
(CO
-i a
v> uj
—
u a
> a. K
o n _i o
CO < w
u < »- > u
•- Cl UJ UJ
2 - 5 < ">
j- r o -j o <
W CS w uj V) !_
« i- a a n «x
• «
_ u. > o »- 5
— U. UJ o C"! ~
UJ
0- X
O
X
.1
•5
u
i3
U
cc
•" Q. —
« p—i r-*
< C —
I
m
S a
o
s:
C - r^
O N1 O
= 00
— 1/3
BIS LU
•H ^
~ —
U
o
= sy
u u « ^ _
>0 M O^
O f^ O
- O 1-1
I (t (k
—« lf\ fv
fO O ^
= o er
S — UJ ts
O « LU
= 11
- C. Q.
O _l
(M • _J
MOW
« 5 u — «t
a M .. «r m
< = a: LU S
^ K a a: w i
co uj a < »• .
— Q.
< C
— — o
- -i c»
:•> u «
LU UJ UJ < C.
•"•••— O £.
< «I >. c —
a a in 3 « ,
A-6
-------
e> LU i-
^ «i u, —
— oo
c o u
i5 U Cj £S
O UJ O C5 Z <:
coo _ z co c
- >• _;' « c S z
o
CN;
^ CJ
O
0
D L. Z U 00 O f)
OCJcOcrZw
u — <
a a c: o
Z O LU 1 *—
O ' — u. =
CO UJ O i-. *- CD
1 « *~ ~ 5 w
Z CJ or , i r
- _J C, Z
CS O < u> ' u;
z z a x i- *
C. C. i-i H ~> 1 O
Z Z = > O L_ z
<: < D c c: (J 2
w.0 00 < e £- « G
S
u
CJ
—
X Z
**
to co x c:
00 0
cr cr-
UJ
LU ~
0
— CC O Z
« CO < d i
Z N/ (J — u.
"^ ^ UJ C U. — .
< -J -J O LU C
«- 2 O uj o >
« «i CJ ex cx £
tfi
-j
O u
N X uJ
O O CO
^ \ \
0"rt N> .*
•^ ••I K* CO
01
UJ S
uj — Z
3. UJ < Z
> f a o o
K l- < O i U
UJ 1 2 K A 1
— z i «- — o;
LU C U. LU LU O
UJ
LU — <
C£ ££ CC O
Z O UJ < i-
o — i- _:
CO UJ CD i-i i^ O
i — z tr a w
_; co o o u ~
-, oo <-• — — CD
Z < Z i- — O
C. LU o •- — tr
= Z Z 00 00 C.
o
XXX
-0 X
o
XXX
rs.
CO
5
Z 0 10
• UJ CC U. — e s O
Si *— < O ' CJ
LU 1 » Z? — J
— ex i — — ts
LU
LU < I—
U ~l i-i <
~ ca a o
17 O UJ 1 u.
00 UJ CD i^ •-« CD
i -j z a: z M
5 <7) 5 u cr .
>— i CO •-« ^^ -* C
z < z i- — o
O LU o i-i i-i ce
c s Z o-o oo a
.
XXX
o
XXX
CO "*
CO
§ tr
Z O co uj
Ci Q LU CO LU CO
Cj H,1 UJ Z — ' ^ Z
i i i- — i w Z <
CD CS < U i LU U
r z a x i- x
C. S. l-< CO " 5 1 LU
Z Z £ >• O •- CE
oo co « a el 5 —
i—
2
5
^
x
LU
o eo x S
3 O CO
t-
e
LU C
i e 5 1
«I CD « CD T u
CO — I : O CJ OJ
1 I ^ i LU »- •
Z M CJ •- u. Z
I— < ^ LU d U. <3
« — -J O UJ C
L- a —i i. i a:
— z O uj o o
< 4 u c o:
UJ
5
^—
UJ
* Z
»4 i
w Ji O
0 0 Z
-- X N
Ki r^ ..
•f M JO CO
(.1
UJ LU
a. LU *- Q O O
cs *- S 2 _. V
»- K T Ht — cs
UJ CO Lw LU LU O
— Z =: u
= 55i
A-7
-------
O CO i-l
-C M X X
— a
to ui
uj a
> a. ex
a D _i O
2: < >-
a < i- > u
Z to u jj
•• *- Z < co
- Z C ~i 0 <
CO CD M LU CO t—
< r- O C CO <
LU • •« cr «t o
u. > O >- C. —
— >-LU(_t"Z>-Z
— — — UJ c O —
Z S3 LU LT _ i_ Z -
CO
_ a
in co
o M
D
in \
in x
a.
<
X Ifl
UJ « t-
- LU o
a w Z a: _: u -o
LT, o
O r"
x x
ja e-
o c
X X
c^ c-
CO C
e co u <
— > > a
~ a £ =
CS
LU
u
a
s
«a uj o co <
CD D UJ (/J U_»
LU C d o L-
*» < Z < CX CJ
co to « c c. «
z <
sJ CO
O —
O
X
>D
O
o -o e x
= O C 5-
r- O =• C
C O C\J —
^ CO
LU O U*
— z> u z u - LU K U.
• o u
a o o u
ZZ—jao*oz^* ••
A
3
J5
O
*
M m O
M> « « U I
M ^ 4 B d UJ ^ •• *** py
c. M ^ d 3 c *N ^ u L^i
> •- Q
M < o
o 5
t U
-------
= c I/)
-— "" <
U «s u- —
s
x
(SI
X
r- "1 O IT,
"- — C
.1 xx
in cr so S
a e 03 to Z
-J O
tO UI
UI O
> a. cr
CO < •-
CJ •» u. > O
"• •- Z « tO
- z c -i o <
tO tB >-< uj to t—
< — a cc co <
uj • < ct < a
_ u. > O k- g.
~ -* — 1 UJ «Z O UJ
M eo c x « a:
i
-• C9 UJ *—
uj r a > o
uj a uj *— LU *
Z — cg«zain
— O_~UJ — S~
LJ
— . ^
0 > O 03
•» u. a; r-- x
i- i- a. < in
O u N-I CM
uj -J C X
Z c: z « S in
> -j 2 c « ""
UJ « 3 CO M
O to 1-1 — o O
UJSCCK-— z a -
a; u, i— — to uj o -
a x - ,o - z NI «e>
•z uj 3 — Z — — — .
Z to z C r -5 c: o •
— — < sT ~ CO «C CO L- h— CO
2 C O «l « • x
Ul .0 O — = tO O ~l
-j- Z •- 3 — —x
— ^ — to cr >• uj KI
— O CT o* in \ x a s- •• cc u
*• CM CM — 4 •— ^ M
« •• -* Q.
a LJ M* o ^*
w O •— UJ • vD UJ W O
N4 M^ CO *» U» LO CD UB
- — to
tou«toat03touco
x
UJ
LU «3 •—
U ~> — «t
c a cc o
§O UJ i fc-
" *" =
5 to 5 c? C5 T
Z C Z u. — C
S uj O 11 i-< CC
a z z to to a
XXX
~0 X
o
xxx
£
ffi
Z a to
•c uj a to <
u a LJ co LU
— Z a < c
uv UJ UJ 3 — ' X
C^ CD 4 l_J ' UJ
1-^ *^ 1 LU U 4
c. c. M co -> i o
z z a > o t- z
« «t 3 < e u 3
to co « a u. « p
LJ
x Z
CD CO .X ~
= 0 O
c- o-
UJ
UJ Z
to — —
— e a Z
< ca « cr i
— < -j c i— z
— i ui Z
Z Nl u «- u.
— ^ UJ CC w U.
« _: — O UJ S
•— "~ ~* uj C ^~
< S u cc a a
pg M
O O
X X UI
rj ,0 el.
a a to
« X X
r n *n CD
to
UI UJ
u. ui < Z
> — o s 5
C (- < O I U
uj C^ u. uj uj O
<1 r-< UJ '' ' _^
o x
xxx
CO
z s to
•c ui a to « •-«
U C LJ CO LU (J
4^ Z a 4 cc O
a uj ui 3 — • x cv
C. C_ HI CO "1 i UJ
Z Z a > o i- —
< <£ 3 < CC u! CO
CO tO «t O — « «
u
X
X ""
SO CO X <
o a co
s
to — c.
— c: a c
< CO 4 CD I LJ
I- « _J CC 1-
— J- UI CC U. <
< _ — O u.1 C
— Z — UJ O C
< < u cc cc
LU
LU
&• z
X X Z
c^J *£> O
0 3 Z
-" XX
N"> J^ ••
>T M K\ «J
to
UJ LU
s. uj < r
> *- Q Q O
Si »— «rf o i u
•- c: i — «- cs
LU C U- UJ UJ C
- Z Z UJ
— to "••-•- co
r < z u. ^ c
O UJ O I-l i— CC
O Z Z tl CO Q.
>0
a
xxx
J> X
o
xxx
•s>
o
Z 0 to
« ui a to <
co a LJ to LU
u- Z o « c
C LU LU Z — ^
»— MM 1 LJ UJ <
e. o. i-i in ~> i
Z Z a > o *-
to co 3 a ct 5
x
CO CO
~ a
UI
a. CD S C5 T
i- « _i t= >-
1 . b. 1 UJ
Z M U — —
*~ >- uj tr u.
< — — J O uj
i— Z 3 ui O
< « u Z cc
a
x x
Cd ~B
o a
-< XX
xj- m K\ co
UI
C. UJ <
> «- a a
e i- < o i
— cr i — —
UJ O Lw LU UJ
C — LU .
< O O *— LU UJ
r^ cc c
i xx
in o~
a co
-10 Z
to ui
— *~ —
ui O O
> a cs a
CO < H» LU
Z ^ 0 ul uj Z
£ Z S -J 17 *" < =
tO C5 « UJ CO t- i
< — O CC CO < >—
— J • < cr <% a iu
- > O u. c. .0
— ~-Juj«OUJUJ
_ c"
0- X
r •< o- x uj
O fo t^ cO
KI tsi -j- a
.. .. j. a
0 xT —
- tv. CO •• " >• Z
^^ O UI *~
~ < u —
uj ut a in
LJ a LU >— uj *-«
< O^-*—Crt-tJtO
c
3 x
u ru
•- in
u!
UJ U.
5 J2
o o
1 CM
* ' O
£ to
C2 T _: £ !H C
a LJ >- «i 3 z -
. lu i-< CO 3 >
w — to >- _ = is
«ZZto~ c- — co
r"^c«lii5r ,^2^
" ri 2 H
CN-ixT — COCO — — —
—• O O «— 4 UJ •>
uo :", o uj tr —
— >• Zi-icc« ex
— — — co —
>Zcsa«toz ~o
UU«-J-IUJC -~
-« cc co to
a in « wZ x z
c m o a < in <
« m r- _
a uo. >— o i—
i -XXQOOCOtO
rr •• rj m
t- — >• — o
__ _ O 0 U O
•-«•"•« t/J *- LU O C_Q .V.
ll§_=~ujii^i
S M C W W O ^ ^ •" CO
'.*. u «i a a t". 3 co u oo
A-9
-------
^
!/}
—
2
•—
—
MJ
Li
£.0
_ >
> — C
U- UJ *—
SI I/") LU £L"
*"•--"> —
^ 5 ^ _
~ 0" Z UJ
o o r
*•* >• ••*
^ «• >— ••
-J Q
CO UJ
Z t—
UJ Q
> O. K
O*^ i c-i
^ *u LJ
-T* ^ ••>
U «l 1— > CJ
— CO UJ U
"« *- Z < co
•- Z S — CT <
«J — O c CO <
uj • «t c: «i a
_ u. > O V- C.
— U. UJ LJ C". Z *-
""" — • — uj < O UJ
Z a uj £. _ ^ Z
-JS CM »
O O K> O
— X 0 >
C IT, O O
• r CD —
C uj
C~ f^ X ....>. 1C
••••-.-« o -
uj —a > o
UJ C UJ V LU O
£ Z- Z 2: -: cj •• ~o
z — o o «s z a ut
•^ CI .*J *- •"
^ Z Z Z co ^
^2zz:2_:;=;i2
> CO 1M
Z ~ r-. o
(_) V LU X *•<
— »- co in
— — z x a.
U l_ O W CO
UJ u» ^
Z CC CM •
Z uj — O >
O «- « CO uj
cj z ^ * ^
i uj Z ^ uj
X CJ — J ^" •
~ Z X CM
B Z § X X
__ <3 C£ O C"
-• ~ 5 ~ o e-
- o ~ _ g Z w
— ~ 15 u. o
^ ^ CO ^" "" ~
^ s: a: r -- —
O C .M HU *"• • — -' ff
>->-~;^ — yJ 7__ *• ^
wJ LU 1-^1 m^' ta ^ . "- LU
•— ~ * fc » fc, v — • " CX
^^.^.^.^cJCt^tf)
O^f^*N^O*^ON.X
c >o r — co j- to cm
O O o cs; < u ""
^ ^ ^ UJ Z3 LJ »» X. M
u-, __ jo c - = « — O
Z^~"~^S"~:'
"Oc? o «
So- U » -r ~ °i.
o M o i: uj ^ a
o>of«. s =: z — Z
J, " - 'JO «z ce
*C ^ CM C ~ CO UJ
O O u^ Z ** *• Z
JJ^-JJ 2ZOC5O
"> >^ LJ — i CO
O •• Wl ^
, .. .. — >. o- «
— .. s -i " y O
S3 — 2SSuj«o
— — iSSSjfjgs^z
— 2 5' S -• « cs = "^
ZZ4ZSCUJZ "tt
— C S CO u. C « — — '-0
V
N
X
UJ
UJ 1 »-
a: ceo
Z C LU t 1—
o i - - r
CO UJ CD M NH CD
i -i .Z ff £r M
•» *E ^H CJ wi LLJ
~ w d ' i ~
< CO C C£ ^ t
Z. tA (-. C^ S CD
g2iS=g
s Z z co co a.
ru
o
XXX
~D X
O
XXX
•^
o
o
z a to
a uj a CO d
C£ O LU CO UJ
O UJ UJ IP — ' V
O U < CJ 1 UJ
H-( •* t UJ u <
.. -J u, ' UJ t—
a. a. M co *? ' o
•" z a ^ o t^ ^ *
« < Z r
' ^- ' LU ^
Z M U t- u.
« >- uj e u- —
•a _ _ 3 uj C
— «J _J C. 1
H- ~ O UJ O >
< i u c cr Q
^
^.
to
^
^«J »H
9 L>
X X UJ
CM J O.
0 S> CO
« XX
r^ J9 ••
N? "-" IO CO
CO
2
UJ UJ
uj — Z
a. uj f Z
> — o o O
- 7 * s ^. y
— 2: i *- — e
u, C U- UJ LU O
Z •- w. Z Z r-
•— « t-1 (_J U> LU
™* LJ C ' ™"
« co o o eg i
-^ co NH Z i— i co
Z < Z f- — O
S UJ O <-r « CC
in
o
XXX
•0 X
o
XXX
»fi
CO
5
Z O un
O 2 U- 00 LU £_j
2 UJ UJ ^> _' vx CL
U U ^ O ' UJ t>0
Z Z a x >- a: <
— "• > UJ U ce
C. C. l-t CO ""} ' UJ
Z Z a > O t- —
- LU cr u. <:
< — *mi O " ' L2
^» ^ -u a> i 3z
— Z C uj O C
« < u a: a:
LU
^
=
LU
O i
x \ z
CM 0 O
o a z
-« XX
>± M M CO
CO
—
UJ UJ
UJ — Z
a. uj « z
> — o o o
a: i- < o i u
UJ ' Q ~ ^ '
— e i >- — ce
LU w ^ UJ UJ O
< w UJ * 1 •*
X
X ""
UJ
LU < 1-
se. cs a: o
13 O UJ t N-
a i *- i- _t
CO uj O >— ' «-J d
•^ ^ HJ U UJ UJ
Z LJ CX -7
« co o CJ ti i
z < z ~ r o
O LU O l-l «- CC
a z Z co co a.
en
o
J5 X
O
xxx
CO
CO
^ O >- CC
« c z c c; u —
co co « a i- «- c a o
— •" S 2 — u
i— g 1 — — C
i = ^ ^^ z
c ^ .-.
-1 Z CM C-J
C« v
^ un a ~f
CO f-t ^^ C3
^ . c> x
a co co z Z
-i a
co uj
Z t-
UJ Q
> a, a:
C Z J O
a -3 —
'^ « U> > t_)
Z .0 uJ uj
•« t- 2 o u- a
•"• *^ ^ UJ *I O LU
ZCtus;_JL,Z^
" 2 x
r^i ^ r/i 2i
.... CM — . O
Ul f^ ^ X O
>T if\ LO O
" •• >T —
r *-* CD -.••>. ^
M^ «t O •""
UJ O UJ f— UJ O
« 5 "" i M. £ ~
— z ir r '." <
< c
> c
D c:
o >• uj a
t-i •— c^ a
LJ CJ O C.
LU tj Z
Z tr
O 5 < ^
1 yj ^ (\
S ° = — -
9 S = H ~
^3 £ 5 c/
"*• t z > ~ —
— o .3 — 5 c
w — — _ ...
* a: i.' - 0 (M ~
~ a: ct _> •• c u
CCu,_;— — Z C
-•- j- -5 LU <~ Z C
255Sg«z"^c •
•• •—«££. - ^
ZJ5O- — coStO 3CC
sea _^z• Zi M •- •- — a CO
— — UJ CC t/> — —
> Z o « iu o a
<-•
UU«— i -J C05-CZ —
^ ^ & *^
o • """ *™
U?) ff* **H k*> * • * 4
C Kl O N-^UJaCC
' » - 'Z O "" — G.
— ,-4 IT! \ , >. .. —
^ ^ c^ r- LU ^ * uj
o o in o z^ou.
i --xxesujaM
^r*»sfiu^ COZOILU
Kt »^ CO (M «— m *—
0- IH
- — V O CO
_ _^ a o- -« u r^
S^Zujainoz*"
O .— •— vO uj C
< < -j z "" z S
ZZ *~> <-> co
A-10
-------
a -» xi
•S Z CJ xl
c- „ x
J3 xi x X
0 CO CO
-i a
ti ui
= 5
£2 =
r+> ^ i »-«i
(.",
•
> r 5
^j ijy "-
c: (/i uj
~ co n L^
^ > M
< M Q. —
™ _J r^ C
^ CT ^
— cr .r. *
^ d w --
— t~
^
u.
D
Z tO LU UJ
XI X- Z < tO
x. z c - 1 a t
tO CB xi tu to k-
< >- o ex to «
u > o x. a
Z U. UJ LJ tO Z k-
— x< ^ i LU «t O LU
*
-r a r x *"
KI in c •
0- -* to X <
* in js ^
CM s£ •• <
x* CT> ^ ^
— « u —
LJ r: a >- a
uu a LU »— LU CM
O
to in
— _j
— —
a c
.. ..
O K1
C ^^
O xt
? ^
^^
— ^
- 5
xi O
u u
tf~
•o co
e r^
a e
w >^
••« a
xi (71
CO
•y
•• ••
_
5
d
1?
a o
x. a.
LJ >•
to u
C£ x>
s n
*- c:
c: uj
C *—
i UJ
CO U
-- £
S <
a _
IT £
• x x to
LH
:— s
2
•M
" " " M
Z Uj O LTl
O S x^ ^"*
« O ^» -T
^ tt 2 "
s < Z s:
— ^* c a
O tl u O
(•. UJ f— <
O. LU UJ UJ
CT ^ "^ *N
< e a to
"x.
x
LU
LU < x>
g e c a
0 — -• =
to LU CD xi x« CO
i _ z c cr M
x« 4 X4 LJ LJ LU
« 00 xi M n CO
Z « Z x. — 0
C2 LU O XI x« CX
= Z Z 00 tO C.
•
r^ X
p
CC
c
z a to
< LU a in <
_ ;_• a < ct
20 Uj UJ w — ' X
i . <— _J LJ Z
CD t? ^ O ' LU
Z Z a X k- a:
-
^
O
~ — f.
CS ? LU
i_J C" O
CO O UJ
LJ a u.
X k^
X- XI UJ
UO —
* >? XI
— C".
x. UJ _
D x* uJ
u- o »
tx cx a
O XI LU
U. CO >
J, S=>
tl Z Z
4 •• xa
— ~ ^ tl
— J a u LU
< CJ Q LJ
~ LU
> Lu
- >- w 0
a u a:
o- LU z a
xl CJ CX W
«I 'J 1
LU Z •• K
a: k-i co LU
"•• •• W
S C- = -
§35-.
Z f; LJ CO
CL CL xi c/7 -)
z z a ^ o
« « _j < tx
to to « e o.
x
CO CO X
c e
O C7"
UJ
CO x-
Zj 4
— cc a
« £O «J CS i
•— < -j c: i—
co — i i a u
I x> 1 LU
Z N (J X. u.
« — J _J O LU
x- «J J £. 1
x- ._ C2 LU O
< « LJ tx c
*
X*
X
CM K.
a e
x< X
•r •* ** to
UJ
tV LU
> — a
c; x. < o
uj i a s
— Ci 1 I-
LJ C U. UJ
< •- UJ 1
< w D k^ UJ
' O
uS
« p
LJ
u
S
o
tX
O
LU
,2
•^
•—
UJ
1
•*
^
^
LU
O
a
2
to
^j
X4
U
X uu
11
X
in
m*
LU UJ
If
J. u
— c
uj O
-;- •""
uj O
X
06/07/50 POMIIIAMI- SOURCE
/ / tIEAS SCAIE
/ / MONIfOHIflG-OBJ
SITING CRIIERIA
SUING CRIT-DAIE
/ PROBE-HEIGHT
i
z a uo
•- a
es x- « o
LU i a =
x- CX I x.
LLJ O LW LU
s ,. = ^ 7
3 S 3 k- LU
< LU
ACI
E DAY/CANISI
*•
<
to
a
—
c
c.
5
u
u
~
— ce
uj O
UJ O
^
x^
C^ Z CM xl
CO NX
r~ KI o o
Kl x< X X
fX X4 O x(
a co co >
tO LU
^•> "^ 1 ^-x
LU
LU « x.
2 22S
Z) O LU 1 L-
CO LU O « XI S
. -J Z tX tX -i
u> < IX LJ LJ LU
z u tx i . r
< tO O CD CD t
-^ CO x< » « CO
Z a LU to LU tn
Gj LU LU Zj x» X Z
' ' X- _J tv Z <
C? CD ^ LJ ' LU LJ
a. a >-> ! ->
« « 3 < cr
to to « a c.
x
co eo x
a a
LU
CO —
IT: <
— a a
< CO « C3 i
X. « ^ £2 X-
fcO -J i O U
I t k- 1 LU
Z !M LJ x. L.
x* >• UJ tX U.
•a -J — O LU
k- Z O LU O
•X < U tX CX
r^
^^
X
(M f^.
a a
* x
»T K> to CO
LU
CL LU
> t- a
CX x- < C
LU < a =
i— CS I x.
LU C U. LU
*: x< LU i
•« O 2 k- LU
1 LU
^ C£
wJ LU
a
UJ
5
to
a
s
s
i.
5
u
LJ
™
CT
g
LU
2
»
x*
UJ
X —
2
\
to
•X
LU U
J ^)
— tr
uj O
T 13
«2
W^ vj ••* ^
CO < k—
U « k. > (J
Z CO uj LU
XI x. Z < tO
x- Z C _) Or <
tO O tx LU tO k-
< x- O CC tO <
LU • < rz « a
L. > O k- O.
Z Lw UJ LJ tO Z k-
— x( » j LJ « O LJ
_? a LU LX _i LJ z
_ _ X
-J3 CM Ifl X
a a tn o
•• •• Ltl (/>
-j a xi x <
•3- rf\ tfi Q.
•• •• K>
K> a K» •• •• -*• LU
xi X4 C5 UJ X.
« < LJ —
LU = a > o
uu' a UJ x. LU rj
AHOGORDO l
<
CO
LAS CRUCES-
3 O O
to to to
xJ LU LU
.. .. ..
O x« *1
-t ^r LT,
O x< x<
» ^ ^
CM
— >
•> ~ K
k- o a
u u «
^
o in e
a - e
t/) U <
_J
U « UJ
c — u
UJ n
_T o a:
£ = u §
•^ •— f^~
•• - 3 ~
CM LU a c
— 01 t- IX
bw
LU Z k- Z
CO O X O
D l-l LU LJ
a « a;
Z LJ UJ **
« O Z • e
a e e u NO
^ S ^ r/( LU tfl
x. < ec — < S
-i z u
CO x« .. < CS
< H CX LU Z "
to LU a « 2 —
UJ x> tf «- x>
Z O u3
LU LU UJ « C. Z
a a co _o co LJ
A-ll
-------
u. to Z
=: ca 1-1
•CMC. -
o
o
e-
a
x
OJ fO
~ =
a 5
\
X
.. •• .. •. .. ..
UJ
UJ < f—
CJ . M ^t
c: e CC a
Z O UJ i u.
O i i- t- Z
tO UJ CD i-> 1-1 CD
— Z C C: M
*™ ^ *•* ^ ^ ^
Z U c: : z
£ to D CD CD 1
Z < Z " £ §
O UJ O M M QC
— Z Z to to n.
o
XXX
o N
XXX
-c
CO
2 a to
a uu e> en <
CB o LU co uj
u. Z c: c c:
£D uj uj 3 «: X
' ' — -J u Z
CT CD < O i UJ "
r 2 o x - *
• •* * uj <
— J u. i _, ^»
__- S. l-i tO 'ID
Z _ 2 5* — M z
w co « e Z « o
o
u
u
M
X Z
CD
O 03 X c
= 0 o
Q- CTS
*a
uj z
to *— M
S> «* uj
— o o z
« O « CD l i
£ 2 ^ o u 5
Z N O l— u. ""
— >- LU o: u. u.
« — i _ o u O
u- « .j Q. i
u- Z O LU O >•
•a. i u si a o
^
CO
-J
O LJ
X X UJ
^J >o a
o o to
w? V N
J- M M CO
10
2
UJ U
&So2g
CS t- < O l u
UJ ^ S Z Z i
~j C u. uj uj O
s: u Z i u, u. z
<*I O O W LU UJ O
- - Z z = a: z
^
X
UJ
UJ «t u.
(J ~) M «
S e z o
Z O UJ i u.
O ' — u. Z
CO UJ CD M M CD
1 — Z £r C M
5 m o cb (i ~
— i •- Z Z UJ
— in M •• M CD
Z 1 UJ
Z Z 2 >- O t- •-
«E « 3 < CC LJ tO
tO CO -
^
c
X
if
to eo x <
CO to
a- a-
a
5
UJ O
co •- &
M CD O S
< CD < CB 1 u
(,". -l i O U U
Z M CJ t- u. Z
—i >• uj e u. <
« -j -j o uj u
— Z O uj O O
^ a L] pg ry
*
^
—
UJ
2 T
M ^ \ 2
0 0 §
fO XX
-r csi K> co
CO
— '
UJ UJ
uj — z
Q. UJ < Z
>• — o a o
K t- < O l U
UJ i S Z Z I
LJ O Uv LU UJ O
< M LU 1 1 M
— u Z i u. u. z
2 S S = ££ =
V
X
LU
UJ < M
Li) ™) M. ^
s. Q ce o
Z C uj i —
tO UJ CD M «M O
— Z s: c: M
Z (J e: i . z
2 CO O C3 CB i
z < z n — o
C LU O M •- CC
=. Z Z tO tO Q.
o
XXX
iS x
XXX
* CO
5 K
z a to LU
« UJ O CO < •-
CB o uj to uj en
u. Z D « C M
a uj uj Z — x Z
U C5 < u i LU u
- z a x t- x.
"• l-l 1 UJ O < *—
— _j t- i uj r- Z
Z Z S > O H- a:
<3 < Z "C CT LJ UJ
to to « o c. « u.
c
^
4{
a
x
Ui
o eo x 5
s e to
o~ a-
a
uj C
IS < =
1- CO O O
« C < CB l U
tO -J i O U U
1 i — 1 UJ —
Z M U t- u. Z
M >- UJ CC U. <
« -J — | O U CB
— Z 5 UJ CO O
ty
5
UJ
o "i"
X X 2
(SI -0 O
O 9 2
M XX
>T M tfl CO
V)
2
UJ UJ
uJ — Z
Q. u - — O O O
Si t- < 0 i U
**j C u* uj uJ O
4f Ml UJ 1 1 Ml
s: CJ Z : a. u. Z
< C O ^ LU uj O
C J3 Kl
u- Z csi o
— XX
If «3- O K1
ce M M o
O CO CO >•
-- Q
UJ "
. h.
uj O
> a. ee
C Z1 J O
C «l M
CB «» u. > tj
Z CO UJ UJ
>•" h, 2 < tO
i- Z O -J ff o •- t.
H ^ ^ CJ L^ ~ ^
*•• ^^ —* ijW ^ O LJ
ZD S ^J d ^ W »
22 2
f~ O -f X
M ca MI z
.... in o
•£ tn o- x "-
•3" M CW tO
c- m c
«H CD LU •— ~"
M ~ o
UJ O UJ H- LU sC
3Poo z (—
U1 .. — UJ Z C Z tO
NI to O O C
— :- 3 M LJ CB
•- — UJ —
v2tsa«« e-i
1-1 C5 CT 1 C « D.
U U < — -J M Z
-ji x en - LU CO
M M csi Z Z t— j
i . . o O <
oo^rS?l~'uJ
CSI Ul (M Z 3 -H Z
i • • x x uj o e
CO »H Kl W Z O UJ
j- uj — o
to — >• or
_. ., a »i o CJ (—
K. ^ UJ Q fil ~ _
wOZujfi:- uj^
^4M«tOM. CE UJ UJ LU C C. Z
__.<_) — 0^5
X
z
X •£
UJ
UJ < H-
LJ — } ^^ — — tr
a Z Z ) w a.
o
v X X
-> X
XXX
r- 0
Z O to
«C UJ C CO <
CS O uj to uj
uj Z sac
O uJ uj 3 -* x
CS CB < LJ i uj
z z a x i- x
MM 1 LU U <
s! c. 1-1 en — :
Z Z a > o i-
« « 3 «a z o
to to « o i <
X
s^
UJ
to —
3 <
< CO < C9 ~
." -J 1 O U
1 — p UJ
Z rsi LJ i— u.
— > LU Ct U.
•» -J -J O uj
- Z O UJ O
•a a u EC c
O
X X
fsj *>^ ^H
o o •<
M XX
xT •* O rv
CO
z
UJ UJ
uj — Z
c. uj < Z
> — o a o
a: *- < o i u
LU ^ C Z Z i
^' O «^ UJ L_J C5
£ U Z > L. U. Z
«S O 3 M uj uj O
c. c. Z 2 a: s: r
-------
03 Z
•"•»
CO
t— 1
4
LU
00
>-
00
_J 9-
> z o
LU LU P-
ce to ui
r- > >
LU 00 Z 00
CC CO l-l 4
2 X
Z 00 Z LU
0 0 i-
r-l >• l-l
M fc» fe— ••
4 <-l Q. —
Z -J r* to
ce 4 ce >r
a 3 u -
u. O 00
Z LU LU
— i cc a —
i-l 4
LJ 4 UJ 1—
-1 r- 00
ce i-i
— 01
'M
5
fy
_J
<
<
^
LU
O^ ^O
CD 3
x
CJ
? i
*H r^
O _J
3 —
.JJ fO '
— a. <
4 Z C.
a 4 _i
X
X
UI
UI 4 r-
U T r-l 4
cc co ce a
3 o ui i i—
O i r- 1— I
00 UI CD HI w CD
i -j z ce cc M
h— 4 M CJ CJ UJ
Z cj ce • ix
4 tO O CD CD 1
Z ' t— Z Z UJ
M to i-i i-i i-i co
Z 4 Z h- t— O
O LU O M l-l CC
a z z to to o.
-3-
XXX
xO X
a
XXX
on
CO
5
z a to
4 LU a tO 4
CD a LU oo LU
at z a 4 ce
CQ UJ UJ D — I X
i i t- _i o Z
CD CD 4 OJ i UJ
z z a x i- *
I-i *-i 1 UJ OJ 4
— 1 — 1 t- 1 LU I—
c. D. >-! oo -> i a
z z a 9- o H- z
4 4 3 4 CC OJ 3
00 00 4 0 Q. 4 O
o.
o
u
OJ
r-l
X Z
4
C5
CO CO X CX
o a o
cr cr
LU
„ .. .. .. .. — *•
' ^,
4
LU Z
00 r- r-
H a g z
4 CO 4 CD 1 i
p— 4 J CT &— Z
00 -J I O U O
i 1 ^ 1 LU Z
Z M OJ t- u-
i-i >• ui ce u. u*
4 — J — J O UJ O
t- 4 -J O. 1
I- Z O LU O >
4 4 oj cc ce a
3
r»
00
-J
4
-T l-l
r-l OJ
X X UI
M -o a.
•3- o a to
K> p-l XX
O Kl LT\
PH sr CM ro CO
1 00
= z
C\J LU UI
1 LU •— Z
S3 Q. UI 4 Z
? > r- a a a
cr r- 4 o i oj
LU 1 C X X 1
a — cr i i- .- ce
f-t uj O U. IU LU O
Z. 1— u- Z Z r—
LU 4 l-l LU 1 1 1-4
— £T U Z 1 U. U. Z
-4 4 O O p- OU UJ O
X
X
LU
UJ 4 r-
U -> l-l 4
cr co cc a
3 O tu 1 t-
O 1 r- r- X
01 UJ CD r-l i-l CD
1 -J Z CC CC M
k— 4 1-4 OJ OJ UI
Z CJ CC I IX
4 OO O CD CD 1
Z 1 h- Z Z UJ
—i oo i-i M i-i co
Z «t Z r- V- O
o LU o »-i i-i ce
a z z to to Q.
a
CM
XXX
•JJ X
a
XXX
on
CO
o
Z o co CM
4 UJ a (0 4
CD O LU 00 LU OJ
LU Z a 4 CC Q
CO UJ LU 3 -J X Q.
i ' i— — j CJ Z
CD O 4 OJ I LU 00
Z Z O X r- * 4
—4 f— I 1 UJ tj 4
_1 —1 p— 1 LU r— CC
Q. Q. M tO ~) 1 UI
z z a >- o r- t—
4 4 3 4 CC OJ 00
00 CO 4 O Q. 4 l-l
z
4
OJ
X
>
4
a
X
UJ
CO CO X 4
o o oo
cr cr
a
B—
10 r- CL
3 4 X
r- ca a o
4 CO 4 CD I CJ
r- 4 ^ CC P—
00 -1 I O U OJ
1 1 p— 1 LU l-l
Z N O r- U. —
i-i > LU ce u. 4
4 -J *J O LJJ CD
r- 4 -U CL 1 CC
p- z o LU o o
4 4 U CC CC
UJ
z
4
^
r-
LU
a z
CM 1
X X Z
CM ,O O
a a z
*•« XX
Ki LX>
-T M M CO
to
z
UI UJ
ui p- z
C. UI 4 Z
> p- a a o
CC 1— 4 O 1 U
LU i a x z i
i- cr i p- i- ce
LU O U. LU LU O
Z p- u. Z Z t-
4 1-4 UJ 1 1 t^
cc u Z i u. u. z
4 O O p- UJ UI O
o. c. z Z cc ce z
X
X
UI
UJ 4 r-
O "5 PH 4
cc a cc o
3 O UJ 1 P-
O , r- P- X
00 UJ CD M l-l CD
i -i z ce ce M
1— 4 p-l U CJ LU
Z u ce i ix
4 tO O CD CD 1
Z i (- Z Z ui
** OO r-l PH l-l CO.
Z -
4
a
X
UJ
CO CO X 4
o a co
cr cr
a
3
LU O
to r- a.
3** -^
4 „
r- co a o
4 CO 4 CD 1 CJ
-- 4 _ i ce p—
00 -J J O OJ OJ
1 1 I— 1 LU l-l
Z N OJ I- u. ^
p* >- UI CC U. 4
4 -J -J O UI CD
p- 4 _J Q. 1 CC
p- Z O UJ O O
4 4 oj ce ce
UJ
z.
XX
K> UI ••
•? •» M CO
00
UJ LU
ui p- Z
a. uj 4 Z
> p- a a o
ce p- 4 o i oJ
LU i a z z i
r- CC 1 r- 1- CB
LU C U. UJ UJ O
Z P- U, Z Z r-
4 *^ UJ 1 1 1-4
cr u Z > u. u. Z
4 O O P- LU UJ O
— a. z Z cc ce Z
N> XX
jj roe
cr i-i -<
tfi XX
M5 er
0 CO
.. .. .. .. ,. .. ,.
-J O
00 UI _
Z r-
4
> Q. CC
O^ i n
W — * *iJ
ca 4 p- x
C9 4 t- > O t-
Z 00 LU UJ
K-1 t- Z 4 00
t- Z O -1 & 4 CC
C/5 IS l-l LU tO f- 3
< I- a cc to 4 x
UJ • 4 Ce 4 a r-
U. > O r- Q. 2:
ZU.LUOJtOZr-4
P— rH «l UJ 4 O UJ
3aujce_iojzp-
cc
o
z z o.
CM 1
CM O- -J5 X p-
CM CM vT Z
• • — M O
(VJ sj- CM X Z
O 0 rO 3
• • -• M 4
o •» ui
ro cr ID ....>- ca
rH CD UJ p—
Z r- l-l
i-l 4 U —
UJ X O O
UJ Q Ut h- UJ ?
O3ZCC_IOJ -CO
3r-oo4Zaa
t-i-lNZ>4Z —
h^ CD LU f— rH
p- Z Z Z OO 4
4Op-r-07r-ICJCO
-i-i33zaxz
r-
p-
00
4
UJ
X
p-
to
4
2
5 z
l-l 4
00 CO
•-I CC
03 3
oj o _i ca
-J43
z «to
i- 0 Z p-
Z to ce z ••
O CC UI UI ~
z uj z a CM
3 u. p- p-i — > a
4 u. 3 to ce
oi ~> to cc z I— O
rl CO
a un vo i-i ui z o
o -3- o — oo o cr
O CM pH ^ r* CO
r- — _ uj Z 3 Z 3
O CT O 4 O CL
— >• 3 HI UJ CJ Z
1— — tO 4
>- z cc a 4 cc oj
p- 3 CJ Z U •• -i
-HOC74OZ 41— >-
OJOJ4-U—J4X OOp-
X t- 00 M
Cr CD 4 4 00
acMco z-xiice
aaco i-i *— uj z ui
a l-t LO ZZr-l-l>
i - - Z O CS p-l
oneortxxsz --cez
sJ-i-ICM U3 — I-I3
CM l-l CT 4 -4 >
I « X X p- UJ O CC
CO K\ 4 CD O Z 4
J- — O Z
4 •• CC 4
.. .. .. .. .. t-l — >- U. —I
a cs cr u
ZZuiaccfoza ••
OOZUJOCOLULUO
p-ii-ioop— ujacD>u_
p- — --4C3— HI 4
cc m ce a
§O ui i p-
l p- u. Z
00 UI CD l-l » CD
i -J z cc ce M
t— 4 PH OJ OJ UJ
Z oj ce i i z
4 00 O CD CD I
Z i I- Z Z UJ
P* (/) p-l l-l PH CO
z < z t- *- a
O ui O p-i p-i cc
a z Z to to o.
~o
o
XXX
NO X
o
XXX
CO
CO
-y
o
z o to
4 uj a to <
CD a LU to LU
LU Z O 4 CC
CQ uj UJ 3 -1 X
i i p- -J cj Z
CD CD 4 C! i ui
Z Z a x r- ^:
l-l fH t UJ OJ 4
— J «J r— 1 UJ P—
Q. CL M to — ) i a
Z Z a >- o p- z
4 4 3 4 CC OJ 3
00 (/) 4 a CL 4 O
3-
5
OJ
CJ
X Z
4
eo co x z
a o o
cr cr
LU
S
LU Z
00 i- p-
3 4 UJ
*- co a z
4 CO 4 CD 1
p— 4 — j ce p— z
00 -J 1 O OJ O
1 1 p— 1 LU Z
Z N OJ p- u.
r-l ^ UJ CC U. U.
4 ^ ^ O UJ O
-- 4 — J £- >
1— Z O UJ O 9-
4 4 oj ce ir a
3
H>
00
—J
4
J3 M
o cj
X X UJ
CM ^0 CL
a o oo
•* XX
rO CO
tf. I-l rA CO
00
z
UJ UI
UI •— Z
CL UJ 4 Z
> t- a a o
ce i— 4 o i oj
LU i a z z i
r- CC 1 r- r- CC
LJ O U. UI UJ O
Z r- U. Z Z 1—
cr u Z i u. u. z
4 O O P— UJ LU O
CL a. z Z c: ce z
A-13
-------
J3
-O
cn
N N
o in
u-i o
— a
l/> 01
Z t—
> a. a:
o 3 -i o
O < h-
CS « (— > (J
Z (.0 uj ui
i-i *- 2 «t CO
t- S O -i O
co c> t-i LU to *
< t— a K v
LU • < o: >•
U. > O I- I
Z u. UJ u z
< cr
> r o
LU LU I—
i-i t- 2
CX CO LU «S
i- >• > Z
LU CO Z **
* •? — "
o ' ^ <
r+ •>• I—
LU S Q O
LU Q CU I— LU vT
Q3ZK.JCJ "fM
— i-oo«iZ-
CO •*.
M CJ CO
o x r
< O t- —
-1-133
O -
i— C7 CO
^ LU
i-i a Q
O Z
U LU
co
cs
O
LU
<
a.
> >- Q. _I O
ce o: i <« co
LU LU CO I-l
r ~ — x ••
o o a i- —
U C3 Z tO eg
B 5 5 z ts
Z Z U i-i Z
9
i
S ;
u i
CO
O F-*
O O
O i-l
•-1
Ltl
- s-
M O
U CJ
CO
O f"*
o in
o eo
c\j ts\ LU ;
O — CO
o <
— LU Z UJ
ci O cr
i Z
> uj
u
a o <
u Z u
& «s o
a *
m x
OL X
• 3 *
t- *
CO Z *
< x
c; *
u ^- o o:
X. LU o o
0s
CO
CO
LU Kl
•« a.
•« Z
o <
5
3
Z - >• Q
_ O O U LU
Z LJ a cn o z t-
O « LU >O O UJ <
i-i ) t- r^ o CJ U
— —««_< O
t _J Z -i
-J CD *•* •• < O
3 «i z a: LU z ••
a. i— cr Q tr I-H co
O cO LU o < H- ^>
c. LU >- «t 2; z
Z O LU
o i- — >— to o. z
cy <» < i-i c 3 o
-------
o
a
r-
0"
CO
=0
-i O
n LU
> a. cz
C D -i O
ca < L.
ca u
Z wl LU LU
1-1 £ Z < (/) >
11 6 M LU l/l I—
O L- Q. i—
SU-LUUtlZL-l—
•— i-i^uj
'.1
<
co
01
_! >-
<1 Ct
> z o
LU UJ H-
5 CO LU *
— > > o
LU tO Z O
Z (/) Z UJ
^
O CM
.. .. ,y
CO *
Kl CO J> •• •• >
r-^ O UJ ^
5 < u
LU =3
LU O UJ ^ LU
c 3 r 2: -j u ••
3 t- o g < z a
t- — e I-H o co
-.(TO —
<
O
a;
i O — 3
Z U ^ S
LU « _ Z C3
«i u. a i-i Z
O O rH ~ _^
XT no
> z ec a «i
— o ey < o
o -a &•
O r* **
o o >r
o c\i in
o
2.
HH
u
LU
o
z *
*t X
a *
D. X
3 *
X
Z *
« Z
X
O
N
0 = 0 Z
o
X
— a.
< Z
2 <
O
5
Z 2 UJ Q
C C = UJ
ti « (/) l—
-- 1 a «
Z 3 < Z
=. a. i— a:
c o O en LU
— a. a. _j i—
LU > Of UJ UJ
O Z
in o o
•• < cs
a LU z
Q C HH
o < >-
z o
LU < C.
— e c.
o
• b.
> z
•• e:
CO UJ
n u «i o a cl 3 1,1
O M
U U5
A-15
-------
CO
CO
X
-T CO
un o
"X
CT-
CO
— O
i~l UJ
"~ <
uj a
> a
Q 3
03
cr
I O
> u
(/) UJ UJ
z o -i cr <
U i-i u) } h-
t— Q c& in <
• O t- C. _l
u. uj LJ oi ~ h— *H
•^ ^ uj ^ o uj i
o uj a: —i u z o
Z T
co
CM
CO
« X
J3
CO -H
'- X O
CM O
1.1
<
« «i u ~
uj =: a > o
UJ O UJ r— uj s?
3i^oo- > 3
LU (/I ~2. O
s: m »-i n
3 01
3: n z u r
O O O CM LU
o FH r- _ (/)
= in o
in — — u Z
•O -TO
- ^ 3 M
> z a o «i
i— 3 LJ Z L>
-c O C3- « O
U U < —I _J
o
'.1
t—t
>
M
3
>
o co r^
= o r^.
o tfi m x x
*H Ul CM
U1 C- -T
i «\x
ff* CM
CM
C C = UJ
•-> 1-1 (/) (-•
3 CO
O
• ro
* t- o
K in o
< —
-i •-
U ~ >•
3 U
CM J- Z
CM O UJ
-H f>- IS
•H — <
O
(J
i Q M
3 3 < C
=. c. >— a
= C O C/1 UJ
*H a. o. ui H-
LU >• C UJ UJ
•• < u
~ uj Z
o cr 1-1
a < ^-
« a:
Z O
uj a c.
— m a.
>-> c: 3
in 3 w
A-16
-------
o
in
ui
o
X X
S3
O
X X
UJ O
> a cc
O 3 -i O
co < K
U < I- > O
Z CO UJ uj
>-« I- Z < CO
t- z: o -i o <
CO U w iu 01 I—
< H- Q CC 00 <
UJ - «t CC <* O
u. > o t- a
S u. uj u oO Z I—
I— •* -J UJ < O UJ
3 a LU cc -j u z
03 X
(M
Z Z
f\J O
cj m
-i o f- x
\i\-t o-
•• •• ro
in co
M r^ f-- ••••>.
00
—I >•
r o
UJ UJ t—
>~ t- Z
a en uj
i- >- >
UJ CO IZ
s: m M
— < u
UJ — Q >-
UJ O UJ H- U1
C 3 Z S -J O ••
O I— O O < Z £3
I- 11 M Z > < Z
*^ O iu f- t-i
I- Z Z Z CO
< O >- «- CT M (J
J -l 3 3 = (3 Z
o
a:
c:
5
< M a. —
Z -J 1-1 ^
cr < cr ««
S 3 (J —
u. cy vo
Z iu LU
i
Z
m
5
u
M
CO
UJ
U
a:
O
oo
= O Z
u (j c:
*-i ui
UJ UJ H-
— Si i/1
1 < <
c: 2 u
uj — Q
a cu ce
*^ —
UO h-
UJ U 00
t£ z u
>i a:
>- O
<
- V)
o 4
Z u »-t
-i cr 3
Q O 00 3 00
\
A-17
-------
-------
APPENDIX B
CRYOGENIC PRECONCENTRATION AND DIRECT FLAME
IONIZATION DETECTION (PDFID) METHOD
*. -- I
u - \
-------
r.
-------
COMPENDIUM METHOD TO-12
DETERMINATION OF NON-METHANE- ORGANIC
COMPOUNDS (NMOC) IN AMBIENT AIR USING
CRYOGENIC PRE-CONCENTRATION AND
DIRECT FLAME IONIZATION DETECTION
(PDFID)
QUALITY ASSURANCE DIVISION
ENVIRONMENTAL MONITORING SYSTEMS LABORATORY
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711
MAY, 1988
-------
Revision 1.0
June, 1987
METHOD T012
METHOD FOR THE DETERMINATION OF NON-METHANE ORGANIC COMPOUNDS (NMOC)
IN AMBIENT AIR USING CRYOGENIC PRECONCENTRATION AND DIRECT FLAME
IONIZATION DETECTION (PDFID)
1. Scope
1.1 In recent years, the relationship between ambient concentrations
of precursor organic compounds and subsequent downwind concentra-
tions of ozone has been described by a variety of photochemical
dispersion models. The most important application of such models
is to determine the degree of control of precursor organic com-
pounds that is necessary in an urban area to achieve compliance
with applicable ambient air quality standards for ozone (1,2).
1.2 The more elaborate theoretical models generally require detailed
organic species data obtained by multicomponent gas chromatography (
The Empirical Kinetic Modeling Approach (EKMA), however, requires
only the total non-methane organic compound (NMOC) concentration
data; specifically, the average total NMOC concentration from 6
a.m. to 9 a.m. daily at the sampling location. The use of total
NMOC concentration data in the EKMA substantially reduces the
cost and complexity of the sampling and analysis system by not
requiring qualitative and quantitative species identification.
1.3 Method T01, "Method for The Determination of Volatile Organic
Compounds in Ambient Air Using Tenax« Adsorption and Gas
Chromatography/Mass Spectrometry (GC/MS)", employs collection
of certain volatile organic compounds on Tenax* GC with subse-
quent analysis by thermal desorption/cryogenic preconcentration
and GC/MS identification. This method (T012) combines the same
type of cryogenic concentration technique used in Method T01
for high sensitivity with the simple flame ionization detector
(FID) of the GC for total NMOC measurements, without the GC
columns and complex procedures necessary for species separation.
-------
T012-2
1.4 In a flame ionization detector, the sample is injected irito a
hydrogen-rich flame where the organic vapors burn producing
ionized molecular fragments. The resulting ion fragments are
then collected and detected. The FID is nearly a universal
detector. However, the detector response varies with the species
of [functional group in] the o^anic compound in an oxygen atmos-
phere. Because this method employs a helium or argon carrier
gas, the detector response is nearly one for all compounds.
Thus, the historical short-coming of the FID involving varying
detector response to different organic functional groups is
minimized.
1.5 The method can be used either for direct, in situ ambient
measurements or (more commonly) for analysis of integrated
samples collected in specially treated stainless steel canisters.
EKMA models generally ri -;ire 3-hour integrated NMOC measurements
over tr c a.m :o 9 a eriod end are used by State or local
agencies .0 pre..-re St. implementation Plans (SIPs) for ozone
control to achieve compliance with the National Ambient Air
Quality Standards (NAAQS) for ozone. For direct, in situ ambient
measurements, the analyst must be present during the 6 a.m. to
9 a.m. period, and repeat measurements (approximately six per
hour) must be taken to obtain the 6 a.m. to 9 a.m. average
NMOC concentration. The use of sample canisters allows the
collection of integrated air samples over the 6 a.m. to 9 a.m.
period by unattended, automated samplers. This method has
incorporated both sampling approaches.
2. Applicable Documents
2.1 ASTM Standards
D1356 - Definition of Terms Related to Atmospheric
Sampling and Analysis
£260 - Recommended Practice for General Gas Chromato-
graphy Procedures
£355 - Practice for Gas Chromatography Terms and
Relationships
-------
T012-3
2.2 Other Documents
U. S. Environmental Protection Agency Technical Assistance
Documents (4,5)
Laboratory and Ambient Air Studies (6-10)
3. Summary of Method
3.1 A whole air sample is either extracted directly from the ambient
air and analyzed on site by the GC system or collected into a
precleaned sample canister and analyzed off site.
3.2 The analysis requires drawing a fixed-volume portion of the
sample air at a low flow rate through a glass-bead filled trap
that is cooled to approximately -186°C with liquid argon. The
cryogenic trap simultaneously collects and concentrates the
NMOC (either via condensation or adsorption) while allowing
the methane, nitrogen, oxygen, etc. to pass through the trap
without retention. The system is dynamically calibrated so
that the volume of sample passing through the trap does not
have to be quantitatively measured, but must be precisely
repeatable between the calibration and the analytical phases.
3.3 After the fixed-volume air sample has been drawn through the
trap, a helium carrier gas flow is diverted to pass through
the trap, in the opposite direction to the sample flow, and
into an FID. When the residual air and methane have been
flushed from the trap and the FID baseline restabilizes,
the cryogen is removed and the temperature of the trap is
raised to approximately 90°C.
3.4 The organic compounds previously collected in the trap revol-
atilize due to the increase in temperature and are carried into
the FID, resulting in a response peak or peaks from the FID.
The area of the peak or peaks is integrated, and the integrated
value is translated to concentration units via a previously-
obtained calibration curve relating integrated peak areas with
known concentrations of propane.
3.5 By convention, concentrations of NMOC are reported in units of
parts per million carbon (ppmC), which, for a specific compound,
is the concentration by volume (ppmV) multiplied by the number
of carbon atoms in the compound.
-------
T012-4
3.6 The cryogenic trap simultaneously concentrates the NMOC while
separating and removing the methane from air samples. The
technique is thus direct reading for NMOC and, because of
the concentration step, is more sensitive than conventional
continuous NMOC analyzers.
Significance
4.1 Accurate measurements of ambient concentrations of NMOC
are important for the control of photochemical smog because
these organic compounds are primary precursors of atmospheric
ozone and other oxidants. Achieving and maintaining compliance
with the NAAQS for ozone thus depends largely on control of
ambient levels of NMOC.
4.2 The NMOC concentrations typically found at urban tes may
range up to 5-7 ppmC or higher. In order to determine transport
of precursors into an area, measurement of NMOC upwind of the
area may be necessary. Upwind NMOC concentrations are likely
to be less than a few tenths of 1 ppm.
4.3 Conventional methods that depend on gas chromatography and
qualitative and quantitative species evaluation are excessively
difficult and expensive to o- rate and maintain when sp--. ated
measurements are not needed. The method described here -volves
a simple, cryogenic preconcentration procedure with subsequent,
direct, flame ionization detection. The method is sensitive and
provides accurate measurements of ambient NMOC concentrations
where speciated data are not required as applicable to the
EKMA.
Definitions
[Note: Definitions used in this document and in any user-prepared
Standard Operating Procedures (SOPs) should be consistent with ASTM
Methods D1356 and E355. All abbreviations and symbols are defined
within this document at point of use.]
-------
T012-5
5.1 Absolute pressure - Pressure measured with reference to absolute
zero pressure (as opposed to atmospheric pressure), usually ex-
pressed as pounds-force per square inch absolute (psla).
5.2 Cryogen - A substance used to obtain very low trap temperatures
in the NMOC analysis system. Typical cryogens are liquid argon
(bp -185.7) and liquid oxygen (bp-183.0).
5.3 Dynamic calibration - Calibration of an analytical system with
pollutant concentrations that are generated in a dynamic, flow-
ing system, such as by quantitative, flow-rate dilution of a
high concentration gas standard with zero gas.
5.4 EKMA - Empirical Kinetics Modeling Approach; an empirical model
that attempts to relate morning ambient concentrations of non-
methane organic compounds (NMOC) and NOX with subsequent peak,
downwind ambient ozone concentrations; used by pollution control
agencies to estimate the degree of hydrocarbon emission reduction
needed to achieve compliance with national ambient air quality
standards for ozone.
5.5 Gauge pressure - Pressure measured with reference to atmospheric
pressure (as opposed to absolute pressure). Zero gauge pressure
(0 psig) is equal to atmospheric pressure, or 14.7 psia (101 kPa).
5.6 in situ - In place; in situ measurements are obtained by direct,
on-the-spot analysis, as opposed to subsequent, remote analysis
of a collected sample.
5.7 Integrated sample - A sample obtained uniformly over a specified
time period and representative of the average levels of pollutants
during the time period.
5.8 NMOC - Nonmethane organic compounds; total organic compounds as
measured by a flame ionization detector, excluding methane.
5.9 ppmC - Concentration unit of parts per million carbon; for a spe-
cific compound, ppmC is equivalent to parts per million by volume
(ppmv) multiplied by the number of carbon atoms in the compound.
5.10 Sampling - The process of withdrawing or isolating a representative
portion of an ambient atmosphere, with or without the simultaneous
isolation of selected components for subsequent analysis.
-------
T012-6
6. Interferences
6.1 In field and laboratory evaluation, water was found to cause a
positive shift in the FID baseline. The effect of this shift
is minimized by carefully selecting the integration termination
point and adjusted baseline used for calculating the area of
the NMOC peak(s).
6.2 When using helium as a carrier gas, FID response is quite
uniform for most hydrocarbon compounds, but the response can
vary considerably for other types of organic compounds.
7. Apparatus
7.1 Direct Air Sampling (Figure 1)
7.1.1 Sample manifold or sample inlet li - to bring
sample air into the analytical system.
7.1.2 Vacuum pump or blower - to draw sample air through a
sample manifold or long inlet line to reduce inlet
residence time. Maximum residence time should be no
greater than 1 minute.
7.2 Remote Sample Collection in Pressurized Canisters (Figure 2)
7.2.1 Sample canister(s) - stainless steel, Summa»-polished
vessel(s) of 4-6 L capacity (Scientific Instrumentation
Specialists, Inc., °.0. Box 8941, Moscow, ID 83843), used
for automatic collection of 3-hour integrated field
air samples. Each canister should have a unique identi-
fication number stamped on its frame.
7.2.2 Sample pump - stainless steel, metal bellows type
(Model MB-151, Met Bellows Corp,., 1075 Providence
Highway, "haron, 02067) capable of 2 atmospheres
minimum output pre -jre. Pump must be free of leaks,
clean, and uncontamlnated by oil or organic compounds.
7.2.3 Pressure gauge - 0-30 psig (0-240 kPa).
7.2.4 Solenoid valve - special electrically-operated, bistable
solenoid valve (Skinner Magnelatch Valve, New Britain,
-------
T012-7
CT), to control sample flow to the canister with negligi-
ble temperature rise (Figure 3). The use of the Skinner
Magnelatch valve avoids any substantial temperature rise
that would occur with a conventional, normally closed
solenoid valve, which would have to be^ energized during
the entire sample period. This temperature rise in the
valve could cause outgasing of organics from the Viton
valve seat material. The Skinner Magnelatch valve
requires only a brief electrical pulse to open or close
at the appropriate start and stop times and therefore
experiences no temperature increase. The pulses may
be obtained with an electronic timer that can be pro-
grammed for short (5 to 60 seconds) ON periods or with
a conventional mechanical timer and a special pulse
circuit. Figure 3 [a] illustrates a simple electrical
pulse circuit for operating the Skinner Magnelatch
solenoid valve with a conventional mechanical timer.
However, with this simple circuit, the valve may
operate unpredictably during brief power interruptions
or if the timer is manually switched on and off too
fast. A better circuit incorporating a time-delay
relay to provide more reliable valve operation is
shown in Figure 3[b].
7.2.5 Stainless steel orifice (or short capillary) - capable
of maintaining a substantially constant flow over the
sampling period (see Figure 4).
7.2.6 Particulate matter filter - 2 micron stainless steel
sintered In-line type (see Figure 4).
7.2.7 Timer * used for unattended sample collection. Capable
of controlling pump(s) and solenoid valve.
7.3 Sample Canister Cleaning (Figure 5)
7.3.1 Vacuum pump - capable of evacuating sample canister(s)
to an absolute pressure of <5 mm Hg.
7.3.2 Manifold - stainless steel manifold with connections
for simultaneously cleaning several canisters.
7.3.3 Shut off valve(s) - seven required.
7.3.4 Vacuum gauge - capable of measuring vacuum in the manifold
to an absolute pressure of 5 mm Hg or less.
-------
T012-8
7.3.5 Cryogenic trap (2 required) - U-shaped open tubular trap
cooled with liquid nitrogen or argon used to prevent con-
tamination fr m back diffusion of oil from vacuum pump,
and to provide clean, zero air to samr°e canister(s).
7.3.6 Pressure gauge - 0-50 psig (0-345 kPa),-to monitor
zero air pressure.
7.3.7 Flow control valve - to regulate flow of zero air into
canister(s).
7.3.8 Humidifier - water bubbler or other system capable of
providing moisture to the zero air supply.
7.4 Analytical System (Figure 1)
7.4.1 FID detector system - including flow controls for the
FID fuel and air, temperature control for the FID, and
signal processing electronics. The FID burner air,
hydrogen, and helium carrier flow rates should be set
according to the manufacturer's instructions to obtain an
adequate FID response while maintaining as stable a flame
as possl* le throughout all phases of the analytical cycle.
7.4.2 Chart recorder - compatible wi~h the FID output signal,
to record FID response.
7.4.3 Electronic integrator - capable of integrating the area
of one .r more !D response peaks and calculating peak
area corrected ror baseline drift. If a separate inte-
grator and chart recorder are used, care must be exer-
cised to be sure that these components do not interfere
with each other electrically. Range selector controls
on both the integ ~or and t FID analyzer may not pro-
vide accurate range ratios, .~ individual calibration
curves should be prepared for each range to be used.
The integrator should be capaoie of marking the beginning
and ending of peaks, constructing the appropriate base-
line between the start and end of the integration period,
and calculating the peak area.
-------
T012-9
Note: The FID (7.4.1), chart recorder (7.4.2), inte-
grator (7.4.3), valve heater (7.4.5), and a trap heat-
ing system are conveniently provided by a standard lab-
oratory chromatograph and associated integrator. EPA
has adapted two such systems for the PDFID method: a
Hewlett-Packard model 5880 (Hewlett-Packard Corp., Avon-
dale, PA) and a Shimadzu model GC8APF (Shimadzu Scientific
Instruments Inc., Columbia, MD; see Reference 5). Other
similar systems may also be applicable.
7.4.4 Trap - the trap should be carefully constructed from a
single piece of chromatographic-grade stainless steel
tubing (0.32 cm O.D, 0.21 cm I.D.) as shown in Figure 6.
The central portion of the trap (7-10 cm) is packed with
60/80 mesh glass beads, with small glass wool (dimethyldi-
chlorosilane-treated) plugs to retain the beads. The
trap must fit conveniently into the Dewar flask (7.4.9),
and the arms must be of an appropriate length to allow
the beaded portion of the trap to be submerged below
the level of liquid cryogen in the Dewar. The trap should
connect directly to the six-port valve, if possible,
to minimize line length between the trap and the FID. The
trap must be mounted to allow the Dewar to be slipped
conveniently on and off the trap and also to facilitate
heating of the trap (see 7.4.13).
7.4.5 Six-port chromatographic valve - Seiscor Model VIII
(Seismograph Service Corp., Tulsa, OK), Valco Model 9110
(Valco Instruments Co., Houston, TX), or equivalent.
The six-port valve and as much of the interconnecting
tubing as practical should be located inside an oven or
otherwise heated to 80 - 90°C to minimize wall losses
or adsorption/desorption in the connecting tubing. All
lines should be as short as practical.
7.4.6 Multistage pressure regulators - standard two-stage,
stainless steel diaphram regulators with pressure gauges,
for helium, air, and hydrogen cylinders.
7.4.7 Pressure regulators - optional single stage, stainless
steel, with pressure gauge, if needed, to maintain
constant helium carrier and hydrogen flow rates.
-------
T012-10
7.4.8 Fine needle valve - to adjust sample flow rate through
trap.
7.4.9 Dewar flask - to hold liquid cryogen to cool the trap,
sized to contain submerged portion of^trap.
7.4.10 Absolute pressure gauge - 0-450 mm Hg,(2 mm Hg [scale
divisions indicating units]), to monitor repeatable
volumes of sample air through cryogenic trap (Wallace
and Tiernan, Model 61C-ID-0410, 25 Main Street, Belle-
ville, NO).
7.4.11 Vacuum reservoir - 1-2 L capacity, typically 1 L.
7.4.12 Gas purifiers - gas scrubbers containing Drierite* or
silica gel and 5A molecular sieve to remove moisture
and organic impurities in the helium, air, and hydrogen
gas flows (Alltech Associates,, Deerfield, IL). Note:
Check purity of gas purifiers prior to use by passing
zero-air through the unit and analyzing according -o
Section 11.4. Gas purifiers are clean if produce
[contain] less than 0.02 ppmC hydrocarbons.
7.4.13 Trap heating system - chromatographic oven, hot water,
or other means to heat the trap to 80° to 90°C. A simpl
heating source for the trap is a beaker or Dewar filled
with water maintained at 80-90°C. More r seatable types
of heat sources are recommended, including a temperature
programmed chromatograph oven, electrical heating of
the trap itself, or any type of heater that brings the
temperature of the trap up to 80-90°C in 1-2 minutes.
7.4.14 Toggle shut-off valves (2) - leak free, for vacuum valve
and sample valve.
7.4.15 Vacuum pump - general purpose laboratory pump capable
of evacuating the vacuum reservoir to an appropriate
vacuum that allows the desired sample volume to be
drawn through the trap.
7.4.16 Vent - to keep the trap at atmospheric pressure during
trapping when using pressurized canisters.
7.4.17 Rotameter - to verify vent flow.
-------
T012-11
7.4.18 Fine needle valve (optional) - to adjust flow rate of
sample from canister during analysis.
7.4.19 Chromatographic-grade stainless steel tubing (Alltech
Applied Science, 2051 Waukegan Road, Deerfield, IL, 60015,
(312) 948-8600) and stainless steel plumbing fittings -
for interconnections. All such materials in contact
with the sample, analyte, or support gases prior to
analysis should be stainless steel or other inert
metal. Do not use plastic or Teflon* tubing or fittings.
7.5 Commercially Available PDFID System (5)
7.5.1 A convenient and cost-effective modular PDFID system suit-
able for use with a conventional laboratory chromatograph
is commercially available (NuTech Corporation, Model 8548,
2806 Cheek Road, Durham, NC, 27704, (919) 682-0402).
7.5.2 This modular system contains almost all of the apparatus
Items needed to convert the chromatograph into a PDFID
analytical system and has been designed to be readily
available and easy to assemble.
8. Reagents and Materials
8.1 Gas cylinders of helium and hydrogen - ultrahigh purity grade.
8.2 Combustion air - cylinder containing less than 0.02 ppm hydro-
carbons, or equivalent air source.
8.3 Propane calibration standard - cylinder containing 1-100 ppm
(3-300 ppmC) propane in air. The cylinder assay should be
traceable to a National Bureau of Standards (NBS) Standard Refer-
ence Material (SRM) or to a NBS/EPA-approved Certified Reference
Material (CRM).
8.4 Zero air - cylinder containing less than 0.02 ppmC hydrocar-
bons. Zero air may be obtained from a cylinder of zero-grade
compressed air scrubbed with Drier!te» or silica gel and 5A
molecular sieve or activated charcoal, or by catalytic cleanup
-------
T012-12
of ambient air. All zero air should be passed through a liquid •
argon cold trap for final cleanup, then passed through a hyrdo-
carbon-free water bubbler (or other device) for humidification.
8.5 Liquid cryogen - liquid argon (bp -185.7°C) or. liquid oxygen,
(bp -183°C) may be used as the cryogen. Experiments have shown
no differences in trapping efficiency between liquid argon and
liquid oxygen. However, appropriate safety precautions must be
taken if liquid oxygen is used. Liquid nitrogen (bp -195°C)
should not be used because it causes condensation of oxygen and
methane in the trap.
9. Direct Sampling
9.1 For direct ambient air sampling, the cryogenic trapping system
draws the air sample directly from a pump-ventilated distribution
manifold or sample line (see Figure 1). The connecting line shoul
be of small diameter (1/8" 0.0.) stainless steel tubing and as
short as possible to minimize its dead volume.
9.2 Multiple analyses over the sampling period must be made to estab-
lish hourly or 3-hour NMOC concentration averages.
10. Sample lect .n v Pressurized Canister(s)
For inte^.-atea pressurized canister sampling, ambient air is sampled
by a metal bellows pump through a critical orifice (to maintain
constant flow), and pressurized into a clean, evacuated, Summa*-
polished sample canister. The critical orifice size is chosen so
that the canister is pressurized to approximately one atmosphere above
ambient pressure, at a constant flow rate over the desired sample
period. Two canisters are connected in parallel for duplicate samples
The canister(s are then returned to the laboratory for analysis,
using the PDFID analytical system. Collection of ambient air samples
in pressurized canisters provides the following advantages:
o Convenient integration of ambient samples over a specific
time period
o Capability of remote sampling with subsequent central
laboratory analysis
o Ability to ship and store samples, if necessary
-------
T012-13
o Unattended sample collection
o Analysis of samples from multiple sites with one analytical
system
o Collection of replicate samples for assessment of measurement
precision
With canister sampling, however, great care must be exercised in
selecting, cleaning, and handling the sample canister(s) and sampling
apparatus to avoid losses or contamination of the samples.
10.1 Canister Cleanup and Preparation
10.1.1 All canisters must be clean and free of any contaminants
before sample collection.
10.1.2 Leak test all canisters by pressurizing them to approxi-
mately 30 psig [200 kPa (gauge)] with zero air. The
use of the canister cleaning system (see Figure 5) may
be adequate for this task. Measure the final pressure -
close the canister valve, then check the pressure after
24 hours. If leak tight, the pressure should not vary
more than +_ 2 psig over the 24-hour period. Note leak
check result on sampling data sheet, Figure 7.
10.1.3 Assemble a canister cleaning system, as illustrated in
Figure 5. Add cryogen to both the vacuum pump and zero
air supply traps. Connect the canister(s) to the mani-
fold. Open the vent shut off valve and the canister
valve(s) to release any remaining pressure in the canis-
ter. Now close the vent shut off valve and open the
vacuum shut off valve. Start the vacuum pump and evacuate
the canister(s) to £ 5.0 mm Hg (for at least one hour).
[Note: On a daily basis or more often if necessary, blow-
out the cryogenic traps with zero air to remove any
trapped water from previous canister cleaning cycles.]
10.1.4 Close the vacuum and vacuum gauge shut off valves and
open the zero air shut off valve to pressurize the canis-
ter(s) with moist zero air to approximately 30 psig [200
kPa (gauge)]. If a zero gas generator system is used,
-------
T012-1'
the flow rate may nee be limited to maintain the
zero air quality.
10.1.5 Close the zero shut off valve and allow canister(s) to
vent down to atmospheric pressure through the vent shut
off valve. Close the vent shut off valve. Repeat steps
10.1.3 through 10.1.5 two additional times for a total of
three (3) evacuation/pressurization cycles for each set o
canisters.
10.1.6 As a "blank" check of the canister(s) and cleanup proce-
dure, analyze the final zero-air fill of 100% of the
canisters until the cleanup system and canisters are
proven reV :ble. Th check can then be reduced to a
lower perct-itage of canisters. Any canister that does
not test clean (compared to direct analysis of humidified
zero air of less than 0.02 ppmG) should not be utilized.
10.1.7 The canister is then re-evacuated to £5.0 mm Hg, using
the canister cleaning system, and remains in this con-
dition until use. Close the canister valve, remove the
canister from the canister cleaning system and cap
canister connection with a stainless steel fitting. The
canister is now ready for collection of an air sample.
Attach an identification t o the neck of each
canister for field notes ar .nain-of-custody purposes.
10.2 Collection of Integrated Whole-Air Samples
10.2.1 Assemble the sampling apparatus as shown in Figure 2.
The connecting lines between the sample pump and the
canister(s) should be as short as possible to minimize
their volume. A second canister is used when a duplicate
sample is desired for quality assurance (QA) purposes
(see Section 12.2.4). The small auxiliary vacuum pump
purges the inlet manifold or lines with a flow of
several L/min to minimize the sample residence time.
The larger metal bellows pump takes a small portion of
this sample to fill and pressurize the sample canister(s]
Both pumps should be shock-mounted to minimize vibration
Prior to field use, each sampling system should be leak
-------
T012-15
tested. The outlet side of the metal bellows pump can
be checked for leaks by attaching the 0-30 psig pressure
gauge to the canister(s) Inlet via connecting tubing and
pressurizing to 2 atmospheres or approximately 29.4 psig.
If pump and connecting lines are leak free pressure should
remain at +2 psig for 15 minutes. To check the inlet
side, plug the sample inlet and insure that there is no
flow at the outlet of the pump.
10.2.2 Calculate the flow rate needed so that the canister(s)
are pressurized to approximately one atmosphere above
ambient pressure (2 atmospheres absolute pressure)
over the desired sample period, utilizing the following
equation:
11)160)
where:
F * flow rate (cm^/min)
P « final canister pressure (atmospheres absolute)
s (Pg/Pa) + 1
V « volume of the canister (cm3)
N « number of canisters connected together for
simultaneous sample collection
T * sample period (hours)
Pg « gauge pressure in canister, psig (kPa)
Pa « standard atmospheric pressure, 14.7 psig (101 kPa)
For example, if one 6-L canister 1s to be filled to 2
atmospheres absolute pressure (14.7 psig) in 3 hours,
the flow rate would be calculated as follows:
F « 2 x 6000 x 1 « 67 cm3/min
3 x 60
10.2.3 Select a critical orifice or hypodermic needle suitable
to maintain a substantially constant flow at the cal-
culated flow rate into the canister(s) over the desired
sample period. A 30-gauge hypodermic needle, 2.5 cm
-------
T012-16
long, provides a flow of approximately 65 cm3/min with
the Metal Bellows Model MBV-151 pump (see Figure 4).
Such a needle will maintain approximately constant flow
up to a canister pressure of about IQ-psig (71 kPa),
after which the flow drops with increasing pressure.
At 14.7 psig (2 atmospheres absolute pressure), the
flow is about 10% below the original flow.
-10.2.4 Assemble the 2.0 micron stainless steel in-line particu-
late filter and position it in front of the critical
orifice. A suggested filter-hypodermic needle assembly
can be fabricated as illustrated in Figure 4.
10.2.5 Check the sampling system for contamination by filling
two evacuated, cleaned canister(s) (See Sect--n 10.1)
with humidified zero air through the sampli system.
Analyze the canisters according to Section A*.4. The
sampling system is free of contamination if the canister:
contain less than 0.02 ppmC hydrocarbons, similar to
that of humidified zero air.
10.2.6 During the system contamination check procedure, check
the critical orifice flow rate on the sampling system
to insure that sample flow rate remains relatively con-
stant (+10%) up to about 2 atmospheres abso'iute pressure
(101 kPa). Note: A drop in the flow rate may occur
near the end of the sampling period as the canister
pressure approaches two atmospheres.
10.2.7 Reassemble the sampling system. If the inlet sample lin<
is longer than 3 meters, install an auxiliary pump to
ventilate the sample line, as illustrated in Figure 2.
10.2.8 Verify that the timer, pump(sl and solenoid valve are
connected and operating properly.
10.2.9 Verify that the timer is correctly set for the desired
sample period, and that the solenoid valve is closed.
10.2.10 Connect a cleaned, evacuated canister(s) (Section 10.1)
to the non- itaminated sampling system, by way of the
solenoid valve, for sample collection.
-------
T012-17
10.2.11 Make sure the solenoid valve Is closed. Open the
canister valve(s). Temporarily connect a small rotameter
to the sample inlet to verify that there is no flow.
Note: Flow detection would indicate a leaking (or open)
solenoid valve. Remove the rotameter after leak de-
tection procedure.
10.2.12 Fill out the necessary information on the Field Data
Sheet (Figure 7).
10.2.13 Set the automatic timer to start and stop the pump
or pumps to open and close the solenoid valve at the
appropriate time for the intended sample period.
Sampling will begin at the pre-determined time.
10.2.14 After the sample period, close the canister valve(s) and
disconnect the canister(s) from the sampling system.
Connect a pressure gauge to the canister(s) and briefly
open and close the canister valve. Note the canister
pressure on the Field Data Sheet (see Figure 7). The
canister pressure should be approximately 2 atmospheres
absolute [1 atmosphere or 101 kPa (gauge)]. Note: If
the canister pressure is not approximately 2 atmospheres
absolute (14.7 psig), determine and correct the cause be-
fore next sample. Re-cap canister valve.
10.2.15 Fill out the identification tag on the sample canister(s)
and complete the Field Data Sheet as necessary. Note
any activities or special conditions in the area (rain,
smoke* etc.) that may affect the sample contents on the
sampling data sheet.
10.2.16 Return the canister(s) to the analytical system for
analysis.
11. Sample Analysis
11.1 Analytical System Leak Check
11.1.1 Before sample analysis, the analytical system is assemble
(see Figure 1) and leak checked.
-------
T012-18
11.1.2 To leak check the analytical system, place the six-port
gas valve in the trapping position. Disconnect and cap
the absolute pressure gauge. Insert a pressure gauge
capable of recording up to 60 psig at the vacuum valve
outlet.
11.1.3 Attach a valve and a zero air supply to the sample
inlet port. Pressurize the system to about 50 psig
(350 kPa) and close the valve.
11.1.4 Wait approximately 3 hrs. and re-check pressure. If
the pressure did not vary more than +_ 2 psig, the
system is considered leak tight.
11.1.5 If the system is leak free, de-pressurize and reconnect
absolute pressure gauge.
11.1.6 The analytical system leak check procedure needs to
be performed during the system checkout, during a serie
of analysis or if leaks are suspected. This should be
part of the user-prepared SOP manual (see Section 12.1}
11.2 Sample Volume Determination
11.2.1 The vacuum reservoir and absolute pressure gauge are
used to meter a precisely repeatable volume of sample
air through the cryogenically-co"1ed trao, as follows:
With the sample valve closed ana ie vacuum valve open
the reservoir is first evacuated with the vacuum pump
to a predetermined pressure (e.g., 100 mm Hg). Then
the vacuum valve is closed and the sample valve is
opened to allow sample air to be drawn through the
cryogenic trap and into the evacuated reservoir until
a second predetermined reservoir pressure is reached
(e.g., 300 mm Hg). The (fixed) volume of air thus
sampled is determined by the pressure rise in the
vacuum reservoir (difference between the predetermined
pressures) as measured by the absolute pressure gauge
(see Section 12.2.1).
-------
T012-19
11.2.2 The sample volume can be calculated by:
s (Ps)
where:
Vs = volume of air sampled (standard on3)
AP = pressure difference measured by gauge (mm Hg)
Vr = volume of vacuum reservoir (cm3)
usually 1 L
Ps = standard pressure (760 mm Hg)
For example, with a vacuum reservoir of 1000 cm3 and a
pressure change of 200 mm Hg (100 to 300 mm Hg), the volume
sampled would be 263 cm3. [Note: Typical sample volume
using this procedure is between 200-300 cm3.]
11.2.3 The sample volume determination need only be performed once
during the system check-out and shall be part of the
user-prepared SOP Manual (see Section 12.1).
11.3 Analytical System Dynamic Calibration
11.3.1 Before sample analysis, a complete dynamic calibration
of the analytical system should be carried out at five or
more concentrations on each range to define the calibra-
tion curve. This should be carried out initially and
periodically thereafter [may be done only once during
a series of analyses]. This should be part of the
user-prepared SOP Manual (See Section 12.1). The
calibration should be verified with two or three-point
calibration checks (including zero) each day the analyt-
ical system is used to analyze samples.
11.3.2 Concentration standards of propane are used to calibrate
the analytical system. Propane calibration standards
may be obtained directly from low concentration cylinder
standards or by dilution of high concentration cylinder
-------
T012-20
standards vrith zero air (see Section 8.3). Dilution
flow rates must be measured accurately, and the combined
gas stream must be mixed thoroughly for successful cali-
bration of the analyzer. Calibration standards should
be sampled directly from a vented manifold or tee. Note:
Remember that a propane NMOC concentration in ppmC is
three times the volumetric concentration in ppm.
11.3.3 Select one or more combinations of the following parameters
to provide the desired range cr ranges (e.g., 0-1.0 ppmC
or 0-5.0 ppmC): FID attenuator setting, output voltage
setting, integrator resolution (if applicable), and sample
volume. Each individual range should be calibrated sep-
arately and should have a separate calibration curve.
Note: Modern GC integrators may provide automatic ranging
such that several decades of concentration may be covered
in a single range. The user-prepared SOP manual should
address variations applicable to a specific system design
(see Section 12.1).
11.3.4 Analyze each calibration standard three times according
to the procedure in Section 11.4,. Insure that flow
rates, pressure gauge start id stop readings, initial
cryogen liquid level in the .awar, timing, heating, inte-
grator settings, and other enables are the same as
those that will be used dur analysis of ambient
samples. Typical flow rates jr the gases are: hydrogen,
30 cm-*/minute; helium carrier, 30 cm3/minute; burner
air, 400 cm^/minute.
11.3.5 Average the three analv«es for each concentration standard
and plot the calibrate curve(s) as average integrated pea
area reading versus concentration in ppmC. The relative
standard deviation for the three analyses should be less
-------
T012-21
than 3% (except for zero concentration). Linearity should
be expected; points that appear to deviate abnormally
should be repeated. Response has been shown to be linear
over a wide range (0-10,000 ppbC). If nonlinearity is
observed, an effort should be made to identify and correct
the problem. If the problem cannot be corrected, addi-
tional points in the nonlinear region may be needed to
define the calibration curve adequately.
11.4 Analysis Procedure
11.4.1 Insure the analytical system has been assembled properly,
leaked checked, and properly calibrated through a dynamic
standard calibration. Light the FID detector and allow to
stabilize.
11.4.2 Check and adjust the helium carrier pressure to provide the
correct carrier flow rate for the system. Helium is used
to purge residual air and methane from the trap at the
end of the sampling phase and to carry the re-volatilized
NMOC from the trap into the FID. A single-stage auxiliary
regulator between the cylinder and the analyzer may not
be necessary, but is recommended to regulate the helium
pressure better than the multistage cylinder regulator.
When an auxiliary regulator is used, the secondary stage
of the two-stage regulator must be set at a pressure
higher than the pressure setting of the single-stage
regulator. Also check the FID hydrogen and burner air
flow rates (see 11.3.4).
11.4.3 Close the sample valve and open the vacuum valve to
evacuate the vacuum reservoir to a specific predetermined
value (e.g., 100 mm Hg).
11.4.4 With the trap at room temperature, place the six-port
valve in the inject position.
11.4.5 Open the sample valve and adjust the sample flow rate
needle valve for an appropriate trap flow of 50-100
cm3/min. Note: The flow will be lower later, when the
trap is cold.
-------
T012-22
11.4.6 Check the sample canister pressure before attaching it
to the analytical system and record on Field Data
Sheet (see Figure 7). Connect the sample canister or
direct sample inlet to the six-port valve, as shown in
Figure 1. For a canister, either the canister valve
or an optional fine needle valve installed between the
canister and the vent is used to adjust the canister
flow rate to a value slightly higher than the trap
flow rate set by the sample flow rate needle valve.
The excess flow exhausts through the vent, which
assures that the sample air flowing through the trap
is at atmospheric pressure. The vent is connected to
a flow indicator such £ rotair, -;er as an indication of
vent flow to assist in adjusting the flow control
valve. Open the canister valve and adjust the canister
valve or the sample flow needle valve to obtain a
moderate vent flow as indicated by the rotameter. The
sample flow rate will be lower (and hence the vent
flow rate will be higher) when the the trap is cold.
11.4.7 Close the sample valve and open the vacuum valve (if
not already open) to evacuate the vacuum reservoir.
With the six-port valve in the inject position and the
vacuum valve open, open the sample valve for 2-3 minutes
[with both valves open, the pressure reading won't
change] to flush and condition the inlet lines.
11.4.8 Close the sample valve and evacuate the reservoir to
the predetermined sanr'e startinc pressure (typically
100 mm Hg) as indicated by the absolute pressure gauge.
11.4.9 Switch the six-port valve to the sample position.
11.4.10 Submerge the trap in the cryogen. Allow a few minutes
for the trap to cool completely (indicated when the
cryogen stops boiling). Add cryogen to the initial
level used during system dynamic calibration. The level
of the cryogenic liquid should remain constant with
respect to the trap and should completely cover the
beaded portion of the trap.
-------
T012-23
11.4.11 Open the sample valve and observe the increasing pressure
on the pressure gauge. When it reaches the specific pre-
determined pressure (typically 300 mm Hg) representative
of the desired sample volume (Section 11.2), close the
sample valve.
11.4.12 Add a little cryogen or elevate the Dewar to raise the
liquid level to a point slightly higher (3-15 mm) than
the initial level at the beginning of the trapping.
Note: This insures that organics do not bleed from the
trap and are counted as part of the NMOC peak(s).
11.4.13 Switch the 6-port valve to the inject position, keeping
the cryogenic liquid on the trap until the methane and
upset peaks have deminished (10-20 seconds). Now close
the canister valve to conserve the remaining sample in
the canister.
11.4.14 Start the integrator and remove the Dewar flask containing
the cryogenic liquid from the trap.
11.4.15 Close the GC oven door and allow the GC oven (or alter-
nate trap heating system) to heat the trap at a predeter-
mined rate (typically, 30°C/min) to 90°. Heating the trap
volatilizes the concentrated NMOC such that the FID pro-
duces integrated peaks. A uniform trap temperature rise
rate (above 0°C) helps to reduce variability and facili-
tates more accurate correction for the moisture-shifted
baseline. With a chromatograph oven to heat the trap,
the following parameters have been found to be acceptable:
initial temperature, 30°C; initial time, 0.20 minutes
(following start of the integrator); heat rate, 30°/minute;
final temperature, 90°C.
11.4.16 Use the same heating process and temperatures for both
calibration and sample analysis. Heating the trap too
quickly may cause an initial negative response that
could hamper accurate integration. Some initial exper-
imentation may be necessary to determine the optimal
heating procedure for each system. Once established,
the procedure should be consistent for each analysis
as outlined in the user-prepared SOP Manual.
-------
T012-24
11.4.17 Continue the integration (generally, in the range of
1-2 minutes is adequate) only long enough to include
all of the organic compound peaks and to establish the
end ooint FID baseline, as illustrated tn Figure 8.
The integrator should be capable of marking the begin-
ning and ending of peaks, constructing the appropriate
operational baseline between the start and end of the
integration period, and calculating the resulting
corrected peak area. This ability is necessary because
the moisture in the sample, which is also concentrated
in the trap, will cause a slight positive baseline
shift. This baseline shift starts as the trap warms
and continues until all of the moisture is swept from
the trap, at which time the baseline returns to its
normal level. The shift always continues longer than
;he ambient organic peak(s). The integrator should be
programmed to correct for this shifted baseline by
ending the integration at a point: after the last NMOC
peak and prior to the return of the shifted baseline to
normal (see Figure 8) so that the calculated operational
baseline effectively compensates for the water-shifted
baseline. Electronic integrators either do this auto-
matically or they should be programmed to make this cor-
rection. Alternatively, analyses of humidified zero air
prior to sample analyses should be performed to determine
the water envelope and the proper blank value for
correcting the ambient air concentration measurements
accordingly. Heating and flushing of the trap should
continue after the integration period has ended to
insure all water has been removed to prevent buildup of
water in the trap. Therefore, be sure that the 6-port
valve remains 1n the inject position unt*l all moisture
has purged from the trap (3 minutes or longer).
-------
T012-25
11.4.18 Use the dynamic calibration curve (see Section 11.3)
to convert the integrated peak area reading into
concentration units (ppmC). Note that the NMOC peak
shape may not be precisely reproducible due to vari-
ations in heating the trap, but the total NMOC peak
area should be reproducible.
11.4.19 Analyze each canister sample at least twice and report
the average NMOC concentration. Problems during an
analysis occasionally will cause erratic or incon-
sistent results. If the first two analyses do not
agree within +_ 5% relative standard deviation (RSD),
additional analyses should be made to identify in-
accurate measurements and produce a more accurate
average (see also Section 12.2.).
12. Performance Criteria and Quality Assurance
This section summarizes required quality assurance measures and pro-
vides guidance concerning performance criteria that should be achieved
within each laboratory.
12.1 Standard Operating Procedures (SOPs)
12.1.1 Users should generate SOPs describing and documenting
the following activities in their laboratory: (1)
assembly, calibration, leak check, and operation of the
specific sampling system and equipment used; (2) prepara-
tion, storage, shipment, and handling of samples; (3)
assembly, leak-check, calibration, and operation of the
analytical system, addressing the specific equipment used;
(4) canister storage and cleaning; and (5) all aspects of
of data recording and processing, including lists of
computer hardware and software used.
12.1.2 SOPs should provide specific stepwise instructions and
should be readily available to, and understood by, the
laboratory personnel conducting the work.
-------
T012-26
12.2 Method Sensitivity, Accuracy, Precision and Linearity
12.2.1 The sensitivity and precision of the method is proportional
to the sample volume. However, ice formation in the
trap may reduce or stop the sample flow "during trapping
if the sample volume exceeds 500 em3. Sample volumes
below about 100-150 cm3 may cause increased measurement
variability due to dead volume in lines and valves. r
most typical ambient NMOC concentrations, sample vol -S
in the range of 200-400 cm3 appear to be appropriate.
If a response peak obtain--i with a 400 cm3 sample is
off scale or exceeds the calibration range, a second
analysis can be carried out with a smaller volume. The
actual sample volume used need not be accuratelv known
if it is precisely repeatable during both calit .tion
and analysis. Similarly, the actual volume of the
vacuum reservoir need not oe accurately known. But the
reservoir volume should be matched to the pressure
range and resolution of the absolute pressure gauge so
that the measurement of the pressure change in the reser-
voir, hence the sample volume, is repeatable within 1%.
A 1000 cm3 vacuum reservoir and a pressure change of
200 mm Hg, measured with the specified pressure gauge,
have provided a sampling precision of +_ 1.31 cm3. A
smaller volume reservoir may be used with a greater
pressure change to accommodate absolute pressure gauges
with lower resolution, and vice versa.
12.2.2 Some FID detector systems associated with laboratory
chromatographs may have autoranging. Others may
provide attenuator control and internal full-scale
output voltage selectors. An appropriate combination
should be chosen so that an adequate output level for
accurate integration is obtained down to the detection
limit; however, the electrometer or Integrator must not
be driven into saturation at the upper end of the
calibration. Saturation of the ele *-ometer may be
indicated by flattening of the calibration curve at
-------
T012-27
high concentrations. Additional adjustments of range
and sensitivity can be provided by adjusting the sample
volume used, as discussed in Section 12.2.1.
12.2.3 System linearity has been documented (6) from 0 to 10,000
ppbC.
12.2.4 Some organic compounds contained in ambient air are
"sticky" and may require repeated analyses before they
fully appear in the FID output. Also, some adjustment
may have to be made in the Integrator off time setting
to accommodate compounds that reach the FID late in the
analysis cycle. Similarly, "sticky" compounds from
ambient samples or from contaminated propane standards
may temporarily contaminate the analytical system and
can affect subsequent analyses. Such temporary contam-
ination can usually be removed by repeated analyses of
humidified zero air.
12.2.5 Simultaneous collection of duplicate samples decreases
the possibility of lost measurement data from samples
lost due to leakage or contamination 1n either of the
canisters. Two (or more) canisters can be filled simul-
taneously by connecting them in parallel (see Figure 2(a))
and selecting an appropriate flow rate to accommodate
the number of canisters (Section 10.2.2). Duplicate (or
replicate) samples also allow assessment of measurement
precision based on the differences between duplicate samples
(or the standard deviations among replicate samples).
13. Method Modification
13.1 Sample Metering System
13.1.1 Although the vacuum reservoir and absolute pressure gauge
technique for metering the sample volume during analysis is
efficient and convenient, other techniques should work also.
13.1.2 A constant sample flow could be established with a vacuum
pump and a critical orifice, with the six-port valve being
switched to the sample position for a measured time period.
-------
T012-28
A gas volume meter, such as a wet test meter, could
also be used to measure the total volume of sample air
drawn through the trap. These a1*'"native techniques
should be tested and evaluated a: -art of. a user-prepared
SOP manual.
13.2 FID Detector System
13.2.1 A variety of FID detector systems should be adaptable to
the method.
13.2.2 The specific flow rates and necessary modifications for
the helium carrier for any alternative FID instrument
should be evaluated prior to use as part of the user-
prepared SOP manual.
13.3 Range
13.3.1 It may be possible to crease the sensitivity of the
method by increasing i..e sample volume. However,
limitations may arise such as plugging of the trap by ice.
13.3.2 Any attempt to increase sensitivity should be evaluated
as part of the user-prepared SOP manual.
13.4 Sub-Atmos-^eric P-»ssure Canister Sampling
13.4.1 Collection ..id analysis of canister air samples at sub-
atmospheric pressure is also possible with minor modifi-
cations to the sampling and analytical procedures.
13.4.2 Method TO-14, "Integrate Canister Sampling for Selective
Organics: Pressurized and Sub-atmospheric Collection
Mechanism," addresses sub-atmospheric pressure canister
sampling. Additional information can be found in the
literature (11-17).
-------
T012-29
1. Uses, Limitations, and Technical Basis of Procedures for Quantifying
Relationships Between Photochemical Oxidants and Precursors.. ETA"-
450/2-77-21a, U.S. Environmental Protection Agency, Research Triangle
Park, NC, November 1977.
2. Guidance for Collection of Ambient Non-Methane Organic Compound
(NHOC) Data for Use in 1982 Ozone SIP Development, EPA-450/4-80-011.
U.S. Environmental Protection Agency, Research Triangle Park, NC,
June 1980.
3. H. B. Singh, Guidance for the Collection and Use of Ambient Hydrocarbons
Species Data in Development of Ozone Control Strategies, EPA-45Q/480-008.
U.S. Environmental Protection Agency, Research Triangle Park, NC,
April 1980.
4. R. M. Riggin, Technical Assistance Document for Sampling and Analysis
of Toxic Organic Compounds in Ambient Air. EPA-600/483-027, U.S.
Environmental Protection Agency, Research Triangle Park, NC, 1983.
5. M. J. Jackson, et^,al_., Technical Assistance Document for Assembly and
Operation of the Suggested Preconcentration Direct Flame lonization
Detection (PDFID) Analytical System, publication scheduled for late
1987; currently available in draft form from the Qualilty Assurance
Division, MD-77, U.S. Environmental Protection Agency, Research
Triangle Park, NC 27711.
6. R. K. M. Jayanty, et^^l_., Laboratory Evaluation of Non-Methane Organic
Carbon Determination in Ambient Air by Cryogenic Preconcentration and
Flame lonization Detection, EPA-600/54-82-019, U.S. Evirontnental Protec-
tion Agency, Research Triangle Park, NC, July 1982.
7. R. D. Cox, et_ al_., "Determination of Low Levels of Total Non-Methane
Hydrocarbon Content 1n Ambient Air", Environ. Sci. Technol., 1£ (1):57,
1982.
8. F. F. McElroy, £t£l_., A Cryogenic Preconcentration - Direct FID (PDFID)
Method for Measurement of NMOC in the Ambient Air. EPA-600/4-85-063,
U.S. Environmental Protection Agency, Research Triangle Park, NC,
August 1985.
9. F. W. Sexton, et_ jil_., A Comparative Evaluation of Seven Automated
Ambient Non-Methane Organic Compound Analyzers. EPA-600/54B2-046,
U.S. Environmental Protection Agency, Research Triangle Park, NC,
August 1982.
10. H. 6. Richter, Analysis of Organic Compound Data Gathered During 1980
in Northeast Corridor Cities. EPA-450/4-83-017, U.S. Environmental
Protection Agency, Research Triangle Park, NC, April 1983.
-------
T012-30
11. Cox, R. D. "Sample Collection and Analytical Techniques for Volatile
Organic* in Air," presented at APCA Speciality Conference, Chicago, II,
March 22-24, 1983.
12. Rasmussen, R. A. and Khalil, rt.K. " Atr-ipher . .alocarbons:
Measurements and Analyses of -elected Trace Gase^,'1 Proc. NATO ASI on
Atmospheric Ozone, 1980, 209-231.
13. Oliver, K. D., Pleil J.D. and McClenny, W.A. "Sample Intergrity of
Trace Level Volatile Organic Compounds in Ambient Air Stored in
"SUMMA*" Polished Canisters," accepted for publication in Atmospheric
Environment as of January 1986. Draft available from W. A. McClenny,
MD-44, EMSL, EPA, Research Triangle Park, NC 27711.
14. McClenny, W. A. Pleil J.D. Holdren, J.W.; and Smith, R.N.; 1984.
" Automated Cryogenic Preconcentration and Gas Chromatographic
Determination of Volatile Organic Compounds," Anal. Chem. 56:2947.
15. Pleil, J. D. and Oliver, K. D., 1985, "Evaluation of Various Config-
urations of Nafion Dryers: Water Removal from Air Samples Prior to
Gas Chromatographic Analysis". EPA Contract No. 68-02-4035.
16. Oliver, K. D.; ~Tei1, and McClenny, W. A.; 1986. "Sample Integrity
of Trace Level .latile Organic Compounds in Ambient Air Stored in
Summa* Poll shea Canisters," Atmospheric Environ. 20:1403.
17. Oliver, K. D. Pleil. J. D., 1985, "Automated Cryogenic Sampling and
Gas Chromatographic Analysis of Ambient Vapor-Phase Organic Compounds:
Procedures and Comparison Tests," EPA Contract No. 68-02-4035,
Research Triangle Park, NC, Northrop Services, Inc. - Environmental
Sciences.
-------
T012-31
CANISTER
VALVE
CANSfTER
ABSOLUTE
PRESSURE GAUGE
ft} SAMPLE
VACUUM O . /
CANISTER i
SAMPLE jjj]
frj ROTAMETER
RA, Q> ^ ~~ '
V9 (OPTIONAL RNE
x-S. NEEDLE VALVE) FK
LVE ' ' I-LAS>K
^. + \ U-- GLASS
f A J^ BEADS
l^r
TRAP ^=^
^~~^^ CRYOGENIC
TRAP COOLER
(LIQUID ARGON)
PRESSURE
GAS REGULATOR
\S^ rn
> | [^ X^\
___ GAS
PURIFIER H2
INTEGRATOR PRESSURE
RECORDER ____ REGULATOR
1 _] fo**ff)
L~^ L^-£
AIR
FIGURE 1. SCHEMATIC OF ANALYTICAL SYSTEM FOR
NMOC—TWO SAMPLING MODES
-------
T012-32
SAMPLE
IN
CRITICAL
ORIFICE
AUXILIARY IN
VACUUM
PUMP
PRESSURE
GAUGE
MET, -
BELLOWS
PUMP
CANISTER(S)
FIGLfRE 2. SAMPLE SYSTEM FOR AUTOMATIC COLLECTION
OF 3-HOUR INTEGRATED AIR SAMPLES
-------
T012-33
R 100K
TIMER 1/V^^^.
SWITBH 1^]
115 VAC | R:
0— -t
d, 450 V [
f 100K
yvwv
-i i +1
A Czl1
.() 40Lild,450V
Y
RED r
TO
Di
BLACK
H4-
DC DJ
WHITE
MAGNELATCH
SOLENOID
VALVE
COMPQNEVTS
Cwwcnor C\ and Cj - 40 ut 450 VDC (Sorogu* AMI* TVA in: or
i ind «j - OS
RED
/ 9 °2
| , / I ^ BLACK
+
BRIDGE
RECTIFIER
AC
12.7K 2.7K / ^
R1 R» /*M.
ci f j RELAY
"*"vlx200uf TioK
- -p 200 von COIL
C2
I/-
1^
COMPQNEffTS 2P ^
Br«et f)K««f - 200 PRV. 1 J A (RCA. SK HOS or •QumMrtf) 400 Vo
0«XM D1 «na O: . 1000 PflV. 2J A (RCA, SK X61 or >qM»oloin| NOr
WMTTE
t
J-POLARI2!
MAGNELATCH
SOLENOID
VALVE
•D
Atom* TVAN US2 or
Rtlty - 10.000 Ohm coil. IS m* IAMF "oMr ond BrumMM. KCP I.
flmswr MI «na BZ • 0.4 wan. SH lOMrone*
FIGURE 3[b], IMPROVED CIRCUIT DESIGNED TO HANDLE POWER INTERRUPTIONS
FIGURE 3. ELECTRICAL PULSE CIRCUITS FOR DRIVING
SKINNER MAGNELATCH SOLENOID VALVE
WITH A MECHANICAL TIMER
-------
TO12-34
•P SERIES COMPACT. INLINE FILTER
W/2 urn SS SINTERED ELEMENT
FEMALE CONNECTOR, 0.25 in O.D. TUBE TO
0.25 in FEMALE NPT
HEX NIPPLE. 0.25 in MALE NPT BOTH ENDS
30 GAUGE x 1.0 in LONG HYPODERMIC
NEEDLE (ORIFICE)
F= MALE CONNECTOR. 0.25 in O.D. TUBE TO
O.JS in FEMALE NPT
THERMOGREEN LSI 6 mm (0.25 in)
SEPTUM (LOW BLEED)
0.25 in PORT CONNECTOR W/TWO 0.25 in NUTS
FIGURE 4. FILTER AND HYPODERMIC NEEDLE
ASSEMBLY FOR SAMPLE INLET FLOW
CONTROL
-------
T012-35
3-PORT
GAS
VALVE
ZERO AIR
SUPPLY
V
VENT VALVE
CHECK VALVE
CRYOGENIC
TRAP
VACUUM VACUUM PUMP
PUMP SHUT OFF VALVE VENT VALVE
ZERO AIR
SUPPLY
VENT SHUT OFF
VALVE
X
/
CRYOGENIC
TRAP
VENT SHUT OFF
VALVE
HUMIDIFIER
— PRESSURE
GAUGE
VACUUM SHUT OFF
VALVE
VENT
&
ZERO SHUT OFF
VALVE
VACUUM
GAUGE
VACUUM GAUGE
SHUT OFF VALVE
FLOW
I CONTROL
tVALVE
VENT SHUT OFF
VALVE
MANIFOLD
A A
CANISTER VALVE
SAMPLE CANISTERS
FIGURE 5. CANISTER CLEANING SYSTEM
-------
T012-36
TUBE LENGTH: -30 cm
O.D.: 0.32 cm
I.D.: 021 cm
CRYOGENIC LIQUID LEVEL
60/80 MESH GLASS BEADS
(TO FIT DEWAR)
FIGURE 6. CRYOGENIC SAMPLE TRAP DIMENSIONS
-------
T012-37
oo
<:
««
o
ca
00
ee.
LU
»—
oo
o
UJ
OO
oo
i
QC I
O UJ •
f— u oe ce i
c£ — CO
a: u- :r "-«
uj »— o —i <
a. a: -j «t i
o o u. o .
UJ
•£
as
OS UJ
—• o oo
-3 LU «s «-i
O H-O Z
Q£ •— O O
a. oo «j z
c
0
o
3 O
I/I 4J
I/I IO
0) L.
1- 0
Q.J3
IO
C 1
4-> *
I/I I—
•^ IO
c c
o u.
c
o
£j
•o
o
u
u
01
f*.
B
£
^J
<
s,
10
u
O)
«J
1
;::
1
IO
oo
1
3
a>
^
ra
"aJ
a>
L.
un
a
u
a.
V
=
1C
0)
t
a
c
V,
1C
4,.
OO
(U t.
f— a
10 -
u.
*J r- U
I/I ID 0
•0 0) S
O 00 Z
a
c
0)
3
M
IO
C
a>
tt)
u>
UJ
UJ
u>
<
<
a
CL
<
CO
UJ
0.
<
X
UJ
UJ
c
01
M
IO
-------
T012-38
NMOC
PEAK
Ill
CO
1
(0
cc
o
END
INTEGRATION
CONTINUED HEATING
OF TRAP
WATER-SHIFTED
BASELINE
OPERATIONAL BASELINE
CONSTRUCTED BY INTEGRATOR
TO DETERMINE CORRECTED AREA
NORMAL BASELINE
TIME (MINUTES)
FIGURE 8. CONSTRUCTION OF OPERATIONAL BASELINE
AND CORRESPONDING CORRECTION OF
PEAK AREA
-------
APPENDIX C
1989 NMOC MONITORING PROGRAM SITE DATA
-------
APPENDIX C -- LIST OF FIGURES
Figure Page
C-l Plot of NMOC concentration for Alpine, CA C-l
C-2 Plot of NMOC concentration for Bakersfield, CA C-4
C-3 Plot of NMOC concentration for Beaumont, TX C-7
C-4 Plot of NMOC concentration for Chicago, IL (Sears Tower) . . . C-10
C-5 Plot of NMOC concentration for Chicago, IL (CTA) C-13
C-6 Plot of NMOC concentration for Dallas, TX C-16
C-7 Plot of NMOC concentration for El Cajon, CA C-19
C-8 Plot of NMOC concentration for El Paso, TX C-22
C-9 Plot of NMOC concentration for Fremont, CA C-25
C-10 Plot of NMOC concentration for Grand Rapids, MI C-28
C-ll Plot of NMOC concentration for Houston, TX C-31
C-12 Plot of NMOC concentration for Long Beach, CA C-34
C-13 Plot of NMOC concentration for Lexington, KY C-37
C-14 Plot of NMOC concentration for New York, NY (P.S. 59) C-40
C-15 Plot of NMOC concentration for Montgomery, AL C-43
C-16 Plet of NMOC concentration for New York, NY (Mabel Dean) . . . C-46
C-17 Plot of NMOC concentration for Newark, NO C-49
C-18 Plot of NMOC concentration for Plainfield, NJ C-52
C-19 Plot of NMOC concentration for Raleigh, NC C-55
C-20 Plot of NMOC concentration for Reseda, CA C-58
C-21 Plot of NMOC concentration for St. Louis, MO C-61
C-22 Plot of NMOC concentration for Sacramento, CA (T St) C-64
C-23 Plot of NMOC concentration for Sacramento, CA (Avalon Dr) . . . C-67
cah.!74f
-------
APPENDIX C -- LIST OF TABLES
Table
C-l
C-2
C-3
C-4
C-5
C-6
C-7
Page
SUMMARY
SUMMARY
SUMMARY
SUMMARY
SUMMARY
SUMMARY
SUMMARY
C-8 SUMMARY
C-9 SUMMARY
C-10 SUMMARY
C-ll SUMMARY
C-l2 SUMMARY
C-13 SUMMARY
C-14 SUMMARY
C-15 SUMMARY
C-l6 SUMMARY
C-l7 SUMMARY
C-18 SUMMARY
C-l9 SUMMARY
C-20 SUMMARY
C-21 SUMMARY
C-22 SUMMARY
C-23 SUMMARY
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
OF THE 1989 NMOC DATA
FOR ALPINE, CA (ALCA) C-2
FOR BAKERSFIELD, CA (BACA) ... C-5
FOR BEAUMONT, TX (BMTX) C-8
FOR CHICAGO, IL (C3IL.) C-ll
FOR CHICAGO, IL (C6IL) C-14
FOR DALLAS, TX (DLTX) C-17
FOR EL CAJON, CA (ELCA) C-°0
FOR EL PASO, TX (ELTX) 23
FOR.FREMONT, CA (FECA) C-26
FOR GRAND RAPIDS, MI (GRMI) . . . C-29
FOR HOUSTON, TX (H1TX) C-32
FOR LONG BEACH, CA (LiBCA) .... C-35
FOR LEXINGTON, KY (LXKY) .... 8
FOR NEW YORK, NY (M1NY) C-41
FOR MONTGOMERY, AL (MGAL) .... C-44
FOR NEW
-------
O
- s.
%
8
id
8
8
CO
8
8
O
.0
U-«
CO
O
O
O
O
O
6
CM
c-i
-------
TABLE C-1. SUMMARY OF THE 1989 NMOC DATA FOR ALPINE, CA (ALCA)
Sampling Period: 9:00 a.m. to Noon
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
05-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
H-Jun-89
15-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
30-Jun-89
03-Jul-89
05-Jut-89
07-Jul-89
10-Jul-89
11-JUI-89
12-Jul-89
13-JUI-89
H-Jul-89
17-Jul-89
18-JUI-89
19-Jul-89
20-Jul-89
20-Jul-89
21-Jul-89
24- Jut -89
25-Jul-89
26- Jut -89
28-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
156
156
157
158
159
160
163
164
165
166
166
167
170
171
172
173
174
177
177
178
179
180
181
181
184
186
188
191
192
193
194
195
198
199
200
201
201
202
205
206
207
209
212
213
214
215
1016
1017
1033
1060
1091
1109
1133
1181
1183
1231
1232
1240
1270
1273
1301
1359
1365
1385
1386
1400
1426
1453
1478
1479
1516
1510
1594
1609
1628
1681
1701
1725
1742
1784
1807
1817
1818
1861
1884
1906
1927
1984
1994
2024
2059
2086
98
72
825
672
97
899
645
407
87
406
707
726
75
39
718
899
155
53
850
640
672
914
36
501
136
765
921
773
307
775
770
13
833
626
804
123
153
924
84
713
406
698
857
27
109
640
15.9
15.9
15.0
16.0
14.5
15.0
16.0
15.0
15.0
16.5
16.5
16.0
14.2
15.0
15.5
15.0
15.0
17.0
17.0
11.0
15.5
15.5
16.0
16.0
15.0
15.0
14.0
14.0
14.0
14.5
15.0
14.0
15.0
14.5
14.5
16.5
16.5
10.5
14.0
16.0
15.0
15.5
15.0
15.0
16.5
16.0
15.0
16.0
14.0
16.0
14.0
14.0
15.0
14.0
14.0
13.5
13.5
12.0
10.0
14.0
15.0
14.0
14.0
16.0
16.0
12.0
15.0
15.0
15.0
15.0
13.0
14.0
12.0
12.0
15.0
12.0
14.0
14.0
14.0
14.0
20.0
16.0
16.0
10.0
15.0
14.0
15.0
16.0
15.0
14.0
16.0
16.0
B
C
B
B
B
D
A
D
D
A
A
A
C
D
B
C
D
B
C
D
C
A
A
A
B
C
C
B
D
A
B
A
A
A
A
8
C
D
D
D
C
0
D
A
C
D
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.069
0.065
0.101
0.101
0.080
0.163 0.203
0.093
0.155
0.112
0.196
0.195
0.201
0.414
0.115
0.087
0.203
0.097
0.046
0.066
0.109
0.163
0.115
0.101
0.079
0.209
0.242
0.180
0.121
0.117 0.160
0.262
0.110
0.081
0.155
0.156
0.269
0.771
0.862
0.281
0.122
0.162
0.172
0.115
0.123
0.093
0.390
0.171
C-2
-------
TABLE C-1. SUMMARY OF THE 1989 NMOC DATA FOR ALPINE, CA (ALCA)
Sampling Period: 9:00 a.m. to Noon
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
04-Aug-89
07-Aug-89
08-Aug-89
09-Aug-89
09-Aug-89
10-Aug-89
11-Aug-89
H-Aug-89
15-Aug-89
15-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
28-Aug-89
28-Aug-89
30-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
06-Sep-89
07- Sep-89
08-Sep-89
1 Sep-89
12-Sep-89
13- Sep-89
14- Sep-89
19- Sep-89
20-Sep-89
21 -Sep-89
22-Sep-89
25 -Sep-89
25 -Sep-89
26-Sep-89
27-Sep-89
28- Sep-89
29-Sep-89
29- Sep-89
216
219
220
221
221
222
223
226
227
227
229
230
233
234
234
235
236
237
240
240
242
243
244
248
249
250
251
254
255
256
257
262
263
264
265
268
268
269
270
271
276
276
2112
2124
2155
2178
2177
2200
2232
2260
2309
2279
2344
2341
2391
2418
2417
2440
2452
2487
2563
2526
2538
2591
2627
2635
2654
2730
2728
2743
2773
2795
2807
2903
2898
2944
2974
2984
2983
3019
3028
3075
3098
3097
825
669
878
304
677
148
786
618
11
837
774
661
815
38
146
675
671
104
97
793
916
126
89
11
43
718
84
71
801
16
31
22
50
801
25
62
652
767
52
639
697
872
15.0
16.0
15.0
16.0
16.0
9.0
16.0
10.0
14.5
15.0
15.5
15.5
15.0
15.0
15.0
14.5
15.0
14.0
14.5
15.5
14.5
14.5
14.5
14.5
15.0
15.5
13.0
15.0
15.0
14.0
14.5
14.0
14.5
15.0
14.0
15.0
15.0
15.0
14.0
15.3
15.5
15.5
14.0
15.0
14.0
15.0
16.0
9.0
16.0
10.0
14.0
14.0
14.0
14.0
14.5
14.0
14.0
14.0
15.0
14.0
14.0
15.0
14.0
12.0
14.0
14.0
14.0
15.0
14.0
14.0
14.0
13.0
14.0
14.0
14.0
14.0
14.0
14.0
15.0
14.0
14.0
15.0
16.0
16.0
C
D
A
A
A
D
D
C
A
A
A
C
D
D
D
D
D
B
C
C
D
A
D
B
B
B
C
B
D
C
B
A
B
C
B
B
A
C
A
D
D
B
Mean OAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.096
0.152
0.104 0.128
0.155
0.158
0.164
0.111
0.147
0.163
0.191
0.141
0.124
0.074
0.078
0.081
0.096
0.067
0.102
0.122
0.193
0.154
0.111
0.097
0.082
0.080
0.056
0.090
0.144
0.123
0.118
0.070
0.063
0.091
0.038
0.080
0.147
0.159
0.068
0.122
0.098
0.116
0.082
C-3
-------
i
05
o
TD
.£
«*—
co
CD
.o
"5
"E
CD
o
o
o
O
O
o
E
CM
6
CD
CO
IT
C-4
-------
TABLE C-2. SUMMARY OF THE 1989 NMOC DATA FOR BAKERSFIELD, CA (BACA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
16-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
06-Jul-89
07-Jul-89
07-Jul-89
10-JM-89
11-Jul-89
12-Jul-89
13-Jul-89
14-Jul-89
17-Jul-89
18-Jul-89
19-Jul-89
20-Jul-89
21-Jul-89
21-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
04-Aug-89
156
157
157
158
159
160
163
164
167
167
170
171
172
173
174
177
178
178
179
180
181
184
187
188
188
191
192
193
194
195
198
199
200
201
202
202
205
206
207
208
209
212
213
214
215
216
1013
1048
1047
1061
1095
1116
1157
1170
1242
1243
1267
1286
1321
1344
1368
1382
1407
1408
1436
1448
1493
1537
1564
1574
1536
1614
1643
1653
1691
1714
1739
1768
1787
1830
1851
1852
1868
1890
1923
1949
1979
1998
2020
2040
2075
2101
25
814
43
857
39
303
123
19
18
105
854
79
704
50
929
198
140
715
126
129
187
30
793
92
762
. 409
868
190
713
148
169
21
38
689
74
815
17
659
403
677
828
789
642
306
705
924
16.5
9.0
9.0
9.0
10.0
9.0
14.0
14.0
10.0
8.5
9.5
9.5
10.0
10.0
12.0
12.0
10.0
10.0
10.0
10.0
10.5
10.0
10.5
10.0
10.0
10.0
11.0
10.0
10.0
10.0
10.0
11.0
13.0
13.0
10.0
10.0
10.0
10.0
10.0
11.0
11.0
10.0
10.5
10.0
19.0
13.5
11.0
10.0
11.0
12.0
19.0
14.0
14.0
9.5
10.0
12.0
11.0
12.0
12.0
14.0
14.0
10.0
12.0
10.0
10.0
13.0
12.0
10.0
10.0
11.0
10.0
11.0
12.0
12.0
12.0
11.0
11.0
15.0
15.0
12.0
12.0
9.0
13.0
12.0
12.0
13.0
10.0
12.0
12.0
C
c
D
D
B
C
B
B
B
B
D
B
C
D
C
D
C
C
B
B
B
C
B
B
B
D
D
A
B
B
A
D
C
D
D
B
C
B
C
C
D
C
A
C
A
0
Mean
NMOC
ppmC
0.801
0.256
0.224
0.847
0.621
0.910
0.904
1.337
0.204
0.170
1.359
0.565
0.916
0.781
0.993
0.332
0.556
0.533
0.366
0.380
0.342
0.771
1.071
0.861
0.863
0.909
0.238
0.497
0.528
0.690
0.775
0.655
1.290
1.053
1.090
1.121
0.575
0.898
0.494
0.947
0.985
0.336
0.479
0.950
0.868
1.746
QAD AREAL
NMOC NMOC
ppmc ppmc
0.727
0.447
0.920
0.556
1.068
1.008
C-5
-------
TABLE C-2. SUMMARY OF THE 1989 NMOC DATA FOR BAKERSFIELD, CA (BACA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
07-Aug-89
08-Aug-89
09-Aug-89
10-Aug-89
10-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
28-Aug-89
2£ jg-89
31-Aug-89
01-Sep-89
05-Sep-89
06-Sep-89
07-Sep-89
11-Sep-89
11-Sep-89
12-Sep-89
13-Sep-89
14-Sep-89
15-Sep-89
18-Sep-89
20-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
26-Sep-89
27-Sep-89
28-Sep-89
29-Sep-89
29-Sep-89
219
220
221
222
222
227
228
229
230
233
234
235
236
237
240
24C
243
244
248
249
250
254
254
255
256
257
258
261
263
265
268
269
269
270
271
272
272
2133
2160
2183
2194
2195
2273
2305
2321
2357
2383
2407
2423
2463
2473
2568
2300
2585
2612
2633
2669
2687
2755
2754
2763
2791
2825
2833
2874
2919
2972
2992
3006
3005
3038
3058
3105
3106
66
17
118
84
37
635
634
53
400
691
15
808
720
770
109
9C
H~
672
681
842
839
46
51
705
850
309
665
669
21
691
131
659
673
623
63
665
123
13.0
10.0
10.0
13.5
13.5
13.0
11.0
10.0
10.0
12.0
10.0
11.0
11.5
11.0
8.0
7.5
10.0
10.0
10.0
14.0
14.0
10.5
10.0
10.0
10.0
10.5
9.5
10.0
10.0
15.5
15.5
9.0
9.0
13.5
13.5
14.0
11.0
11.0
16.0
16.5
12.0
13.0
12.0
12.0
14.0
12.0
13.0
13.0
13.0
15.0
16.0
10.0
9.0
12.0
12.0
13.0
16.0
16.0
12.0
11.0
11. -0
12.0
11.0
12.0
13.0
12.0
16.0
16.0
12.0
11.0
14.0
16.0
A
C
D
C
C
B
B
B
C
A
B
B
C
D
A
D
C
A
A
A
A
C
A
C
D
D
A
D
D
A
C
D
A
D
C
B
D
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
2.498
1.070
0.756
0.670
0.723
1.019
1.548
0.279
0.645 0.699
0.478
0.876
0.222
0.544
0.799
1.217
0.993
1.591
0.949
1.155
1.440
0.304
0.929
0.516
1.262
1.242
0.935
1.129
0.150
o.?-?
1. 1
0.. i
1.23-
1.222
0.697
0.763
0.624
0.572
C-6
-------
X
8
o>
eo
o
(0
.o
"3
Q)
O
I
O
O
JO
a.
CO
6
0)
C-7
-------
TABLE C-3. SUMMARY OF THE 1989 NMOC DATA FOR BEAUMONT, TX (BMTX)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
U-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
05-Jul-89
06-Jul-89
07-Jul-89
10-Jul-89
12-Jul-89
12-Jul-89
13-Jul-89
K-Jul-89
17-Jul-89
18-JUI-89
19-Jul-89
20-Jul-89
21-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
156
157
158
159
159
160
163
164
165
166
167
170
170
171
172
173
174
177
178
179
180
181
184
186
187
188
191
193
193
194
195
198
199
200
201
202
205
206
207
207
208
209
212
213
214
215
1020
1036
1052
1084
1083
1074
1149
1173
1196
1228
1220
1277
1278
1291
1311
1323
1340
1396
1415
1431
1433
1463
1519
1535
1560
1575
1625
1674
1675
1686
1711
1746
1769
1793
1839
1838
1855
1899
1932
1931
1942
1953
1995
2045
2043
2072
642
718
765
192
722
872
145
306
797
642
114
60
689
765
624
794
112
181
407
685
93
148
928
50
21
842
404
852
6
878
853
726
638
131
630
45
823
43
115
669
148
501
671
96
53
166
16.0
16.0
16.0
23.0
23.0
15.0
15.0
17.0
17.0
18.0
17.0
22.0
22.0
17.0
17.0
17.0
16.0
16.0
16.0
17.0
16.0
17.0
17.0
16.0
17.0
17.0
17.0
23.0
23.0
16.0
16.0
17.0
17.0
19.0
16.0
16.0
16.0
24.0
24.0
17.0
16.0
17.0
16.0
16.0
16.0
16.0
16.0
16.0
22.0
22.0
15.0
15.0
16.0
17.0
15.0
14.0
24.0
24.0
17.0
16.0
16.0
16.0
16.0
16.0
17.0
15.0
16.0
18.0
14.0
14.0
14.0
15.0
21.0
22.0
14.0
16.0
17.0
17.0
16.0
18.0
16.0
16.0
16.0
24.0
24.0
15.0
16.0
17.0
16.0
15.0
17.0
D
A
C
D
C
C
C
B
B
D
D
A
B
C
A
B
C
C
D
D
A
A
C
D
D
C
D
C
C
C
C
B
C
D
D
A
C
D
D
D
A
C
A
D
C
A
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.529
0.909
0.348
0.332
0.307
0.355 0.369
0.451
0.515
1.015
0.427
1.592
0.406
0.454
0.776
0.647
0.546
0.754
0.252
0.529
0.219
0.872
0.310
0.440
1.669
0.571
0.926
0.743
1.648
1.758
0.703
0.392 0.467
0.363
0.513
0.614
3.443 3.319
0.952
1.096
0.608
0.348
0.341
0.341 0.400
0.948
0.423
0.254 0.298 0.313
0.232
0.503
C-8
-------
TABLE C-3. SUMMARY OF THE 1989 NMOC DATA FOR BEAUMONT, TX (BMTX)
Sampling Period: 6:00 a.m. to 9:00 a
.m.
Julian Sample Sample Sai, .. Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
04-Aug-89
04-Aug-89
07-Aug-89
08-Aug-89
09-Aug-89
10-Aug-89
11-Aug-89
U-Aug-89
15-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
25-Aug-89
25-Aug-89
28-Aug-89
29-Aug-89
30-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
06-Sep-89
07-Sep-89
08-Sep-89
08-Sep-89
11-Sep-89
12-Sep-89
13-Sep-89
H-Sep-89
15-Sep-89
18-Sep-89
19-Sep-89
19-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
27-Sep-89
29-Sep-89
29-Sep-89
216
216
219
220
221
222
223
226
22"
227
228
229
230
233
234
235
237
237
240
241
242
243
244
248
249
250
251
251
254
255
256
257
258
261
262
262
263
264
265
268
269
270
272
272
2090
2089
2103
2162
2187
2220
2204
2249
2281
2280
2266
2325
2333
2375
2396
2434
2485
2484
2566
2512
2543
2592
2613
263-
265J
2684
2690
2691
2753
2746
2768
2805
2847
2861
2886
2885
2918
2923
2958
2989
3015
3030
3108
3065
151
162
685
622
765
189
86
20
32
142
156
145
656
620
17
25
99
897
188
894
680
686
825
100
165
649
176
192
929
774
77
99
6
814
644
108
679
90
166
705
689
678
786
804
22.0
22.0
17.0
18.0
17.0
16.0
16.0
16.0
21.0
21.0
15.0
16.0
17.0
16.0
15.0
22.0
22.0
17.0
16.0
18.0
18.0
16.0
17.0
16.0
18.0
23.0
23.0
17.0
18.0
16.0
16.0
17.0
18.0
22.0
22.0
18.0
17.0
17.0
18.0
18.0
18.0
24.0
24.0
22.0
22.0
16.0
16.0
17.0
16.0
16.0
16.0
21.0
21.0
14.0
16.0
16.0
16.0
16.0
15.0
22.0
22.0
17.0
16.0
17.0
17.0
16.0
16.0
16.0
18.0
23.0
23.0
17.0
17.0
16.0
16.0
16.0
16.5
20.0
22.0
18.0
16.0
16.0
18.0
18.0
18.0
24.0
24.0
C
c
C
B
C
B
B
B
B
B
C
A
D
B
C
D
C
A
D
B
A
D
B
B
D
D
A
B
D
D
C
C
A
C
D
C
A
D
A
B
A
A
B
A
Mean QAD
NMOC NMOC
ppmC ppmc
0.965
0.966
0.663
0.586
0.902
0.569
0.454
0.730
0.863
0.831
0.681 0.755
0.752
1.093
1.162
0.809
1.275
1.443 1.410
1.349
1.157
0.708
3.134
0.930
0.980
0.802
0.484
0.621
1.223
1.179
0.910
0.566 0.590
0.820
0.282
0.318
0.545
0.425
0.556
0.537
0.556
4.047
0.608
0.519
1.657
1.355
1.322
AREAL
NMOC
ppmc
0.793
1.018
0.916
0.589
0.676
0.848
0.371
C-9
-------
CO
o
o
05
CO •
Q «
O
o
8
in
8
8
CO
8
O)
CO
o>
CO
o
0)
CO
.o
6
.o
"5
o
o
o
o
O
O
o
•5
CD
8 a
S LL
C-10
-------
TABLE C-4. SUMMARY OF THE 1989 NMOC DATA FOR CHICAGO, IL (C3IL)
Sampling Period: 6:00 a.m. to 9:00 a.m. Sampling Location: 90th Floor, Sears Tower
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
05-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
U-Jun-89
U-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
05-Jul-89
05-Jul-89
07-Jul-89
10-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
U-Jul-89
17-Jul-89
18-Jul-89
19-Jul-89
20-Jul-89
21-Jul-89
24-Jul-89
26-Jul-89
26- Jut -89
27-Jul-89
28-Jul-89
31-JUI-89
01-Aug-89
01-Aug-89
02-Aug-89
03-Aug-89
04-Aug-89
156
156
158
159
160
163
164
165
165
166
167
170
171
172
173
174
177
178
179
180
181
184
186
186
188
W
l»2
193
194
195
198
199
200
201
202
205
207
207
208
209
212
213
213
214
215
216
1043
1044
1073
1094
1085
1136
1174
1194
1193
1216
1255
1252
1280
1326
1334
1332
1384
1402
1421
1476
1473
1496
1555
1554
1593
1601
1632
1699
1696
1754
1748
1804
1797
1816
1871
1870
1934
1933
1951
1964
2028
2018
2019
2046
2088
2123
115
171
679
91
17
883
8
649
685
307
928
814
676
17
13
813
627
147
176
675
783
897
165
661
837
621
20
105
673
766
675
96
825
774
661
775
71
720
925
622
666
45
658
36
783
630
17.0
17.0
12.0
12.0
12.0
12.0
12.0
19.0
19.0
12.0
12.0
12.0
12.0
11.0
11.8
12.0
12.0
11.0
11.0
12.0
12.0
12.0
18.0
18.0
11.0
12.0
10.0
11.0
12.0
13.0
12.0
11.0
11.0
12.0
12.0
12.0
18.0
18.0
12.0
12.0
12.0
20.0
20.0
11.0
12.0
13.0
16.0
16.0
11.0
11.0
10.0
10.0
10.0
18.0
18.0
8.0
8.0
8.0
10.0
9.0
9.0
10.0
10.0
10.0
9.0
10.0
12.0
8.0
16.0
16.0
10.0
8.0
8.0
8.0
8.0
10.0
10.0
10.0
10.0
12.0
11.0
11.0
16.0
17.0
11.0
11.0
11.0
17.0
17.0
10.0
11.0
12.5
B
C
D
A
D
D
A
A
C
C
B
D
C
C
C
C
A
C
D
C
D
C
C
A
B
C
B
B
C
C
C
D
C
A
C
C
D
D
B
D
C
B
B
D
B
D
Mean
NMOC
ppmC
0.493
0.504
0.454
0.448
0.369
0.214
0.343
0.171
0.199
0.296
0.676
0.268
0.142
0.140
0.363
0.460
0.354
0.359
0.393
0.076
0.265
0.104
0.058
0.070
0.175
0.312
0.332
0.271
0.200
0.147
0.417
0.224
0.217
0.103
0.084
0.248
0.350
0.348
0.294
0.098
0.225
0.138
0.142
0.352
0.291
0.953
QAD AREAL
NMOC NMOC
ppmc ppmc
0.390
0.357
0.254
0.133
C-ll
-------
TABLE C-4. SUMMARY OF THE 1989 NMOC DATA FOR CHICAGO, IL (C3IL)
Sampling Period: 6:00 a.m. to 9:00 a.m. Sampling Location: 90th Floor, Sears Tower
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
07-Aug-89
08-Aug-89
09-Aug-89
10-Aug-89
11-Aug-89
14-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
28-Aug-89
29-Aug-89
30-Aug-89
31-Aug-89
01 • --'0-89
06-3ep-89
06-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
12-Sep-89
13-Sep-89
H-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
27-Sep-89
28-Sep-89
29-Sep-89
.9-Sep-89
219
220
221
222
223
226
227
228
229
229
230
233
234
235
236
237
240
241
242
243
244
249
249
250
251
254
255
256
257
263
264
265
268
269
270
271
272
272
2120
2119
2174
2234
2223
2283
2277
2316
2338
2339
2416
2378
2400
2436
2446
2561
2558
2517
2536
2582
2605
2638
2663
2699
2722
2738
2774
2788
2828
2908
2935
2964
2981
3027
3044
3064
3048
3049
815
165
61
810
804
713
925
102
57
638
715
1
130
914
724
810
86
790
654
631
138
726
93
723
122
793
302
175
162
899
722
181
162
121
698
57
890
38
12.0
12.0
11.0
14.0
12.0
12.0
12.0
11.0
18.0
18.0
12.0
11.0
11.0
11.0
12.0
13.0
11.0
12.0
12.0
12.0
11.0
13.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
15.0
13.0
12.0
14.0
13.0
14.0
10.0
10.0
9.0
10.0
10.0
12.0
12.0
10.0
17.0
18.0
11.0
10.0
10.0
10.0
11.0
9.5
10.0
10.0
10.5
10.0
9.0
12.0
10.0
11.0
10.0
10.0
12.0
10.0
10.0
10.0
15.0
10.0
12.0
10.0
12.0
15.0
17.0
18.0
c
A
D
C
D
D
D
A
8
D
A
D
A
C
C
D
B
A
A
C
A
D
C
C
C
D
B
A
B
C
C
D
D
C
B
A
A
C
Mean QAD AREAL
NMOC NMOC NMOC
ppmC pr""- ppmc
0.330
0.187 244
0.232
0.764
0.211
0.242
0.252
0.304
0.141
0.150
0.080
0.542
0.233
0.093
0.075
0.160
0.159
0.274
0.244
0.182
0.154
0.574
0.160
0.221
0.260
0.561
0.114
0.045
0.042
0.130
0.720
0.198
0.239
0.141
0.078
0.409
0.190
0.209
C-12
-------
8
o>
o
a
c
<
o
o
O)
cd
.y
6
g
15
-------
TABLE C-5. SUMMARY OF THE 1989 NMOC DATA FOR CHICAGO, IL (C6IL)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
14-Jun-89
15-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
OS-Jul-89
06-Jul-89
06-JUI-89
07-Jul-89
10-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
14-Jul-89
17-Jul-89
18-Jul-89
19-Jul-89
21-Jul-89
24-Jul-89
26-Jul-89
27-Jul-89
27-Jul-89
28-Jul-89
31-Jul-89
OI-Aug-89
02-Aug-89
02-Aug-89
03-Aug-89
156
157
157
158
159
160
163
164
165
166
166
167
170
171
172
173
174
177
178
179
180
181
184
186
187
187
188
191
192
193
194
195
198
199
200
202
205
207
208
208
209
212
213
214
214
215
1026
1041
1042
1072
1093
1089
1135
1175
1180
1207
1208
1254
1253
1279
1327
1333
1331
1383
1401
1422
1477
1472
1495
1566
1587
1588
1592
1602
1633
1698
1697
1755
1749
1805
1796
1876
1869
1918
1963
1962
1965
2027
2037
2061
2060
2085
646
871
644
10
916
305
914
119
670
405
678
833
43
831
837
106
12
924
178
720
121
46
819
400
172
704
850
823
126
670
678
848
46
60
303
93
129
118
180
198
188
780
895
193
788
178
14.0
15.0
16.0
11.0
10.0
14.0
13.0
13.5
14.0
15.0
15.0
14.0
13.5
15.0
14.0
14.0
14.0
13.0
15.0
14.0
14.0
14.0
13.0
14.0
16.0
16.0
14.0
14.0
14.0
14.0
14.0
14.0
13.0
14.0
14.0
14.0
14.0
14.0
15.0
15.0
14.0
14.0
14.0
15.0
15.0
11.0
11.5
15.0
15.0
10.5
10.0
14.0
14.0
13.0
14.0
15.0
15.0
11.0
11.0
14.5
14.0
14.0
13.5
13.0
15.0
14.0
11.0
14.0
12.0
12.0
14.0
14.0
12.0
12.0
13.0
12.0
12.0
14.0
13.0
14.0
14.0
14.0
14.0
14.0
15.0
15.0
14.0
15.0
14.0
15.0
15.0
11.0
C
B
D
C
B
A
C
A
C
A
D
C
B .
B
D
A
A
A
D
C
D
C
D
C
A
B
*
D
A
D
D
D
B
A
A
D
C
C
B
D
B
A
C
C
B
B
Mean
NMOC
ppmC
1.290
0.542
0.553
0.729
1.741
0.546
0.221
1.046
0.531
0.270
0.362
0.499
1.378
0.764
0.460
1.030
0.790
1.178
2.147
1.013
0.473
0.658
0.449
0.880
1.155
1.157
0.791
0.294
1.175
1.356
1.573
0.728
0.973
0,676
0.713
0.226
0.686
0.958
0.473
0.485
0.532
0.326
0.836
1.494
1.319
0.617
QAD AREAL
NMOC NMOC
ppmc ppmc
1.048
0.537
0.719
\
0.365
014
-------
TABLE C-5. SUMMARY OF THE 1989 NMOC DATA FOR CHICAGO, U (C6IL)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
04-Aug-89
07-Aug-89
08-Aug-89
09-Aug-89
10-Aug-89
11-Aug-89
H-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
28-Aug-89
29-Aug-89
30-Aug-89
31-Aug-89
01-Sep-89
01-Sep-89
06-Sep-89
07-Sep-89
08-Sep- -9
11-Sep-89
12-Sep-89
K-Sep-89
18-Sep-89
19-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
2. 5ep-89
26-Sep-89
27-Sep-89
28-Sep-89
29-Sep-89
29-Sep-89
216
219
220
221
222
223
226
227
228
229
230
233
234
235
236
237
240
241
242
243
244
244
249
250
251
254
255
257
261
262
263
264
265
268
269
270
271
272
272
2122
2121
2118
2173
2231
2224
2282
2276
2317
2331
2415
2389
2401
2437
2447
2560
2557
2518
2535
2581
2606
2661
2637
2695
272J
2739
2776
2818
2877
2902
2907
2926
2971
2982
3041
3043
3073
3071
3072
692
153
113
697
673
50
27
928
406
853
839
807
630
868
302
929
687
46
673
691
19
129
796
644
178
786
104
301
161
17
184
626
188
301
306
667
51
628
702
11.0
11.0
14.0
15.0
15.0
14.0
14.0
14.0
14.0
14.0
13.0
16.0
17.0
13.0
14.0
14.0
17.0
13.0
14.0
14.0
13.0
13.0
14.0
14.0
15.0
14.0
14.0
14.0
14.0
14.0
14.0
13.0
14.0
14.0
12.0
14.0
14.0
14.0
14.0
11.0
10.0
12.0
15.0
15.0
12.0
14.0
13.0
15.0
14.0
14.0
16.0
16.0
14.0
14.0
15.0
17.0
14.0
15.0
14.0
12.0
14.0
15.0
15.0
15.0
14.0
14.0
14.0
13.5
14.0
14.0
11.0
14.0
15.0
15.0
16.0
11.0
17.0
17.0
B
D
C
c
B
D
C
C
C
D
B
D
C
C
D
A
B
D
D
B
A
A
B
D
B
D
C
C
D
B
D
C
A
A
A
B
D
B
D
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.489
0.868
0.659 0.718
0.960
0.234
1.442
0.645
0.628
0.963
1.952
0.397
1.781
2.663
0.733
0.225 0.271
0.182
0.394
0.811
0.889
0.732
0.859
0.901
0.833
1.200
1.227
2.520
0.771
0.164
1.113
0.664
1.290
0.126
0.896
0.596
0.730
0.268
0.170
1.175
1.162
C-15
-------
X
co
CO
"03
Q
I
(0
o
£
8
8
8
CO
8
CM
8
CM
8
CM
O
CO
CM
CM
-8
8
0
8
o>
CO
=s
CO
Q
CO
0)
58 §
I o
18
O
E
O
o>
O)
LL
C-16
-------
TABLE C-6. SUMMARY OF THE 1989 NMOC DATA FOR DALLAS, TX (DLTX)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
H-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-.lun-89
03-Jul-89
05-Jul-89
06-Jul-89
07-Jul-89
10-Jul-89
11-Jul-89
12-Jul-89
12-Jul-89
13-Jul-89
U-Jut-89
17-Jul-89
18-Jul-89
19-Jul-89
20-Jul-89
21-Jul-89
21-Jul-89
24-Jul-89
25-JUI-89
26-Jul-89
27-Jul-89
28-Jul-89
31-Jul-89
01-AU9-89
02-AU9-89
156
157
158
159
160
160
163
164
165
166
167
170
171
171
172
173
174
177
178
179
180
181
184
186
187
188
191
192
193
193
194
195
198
199
200
201
202
202
205
206
207
208
209
212
213
214
1028
1062
1098
1117
1132
1131
1201
1190
1217
1234
1268
1294
1309
1310
1328
1367
1390
1428
1430
1467
1499
1521
1545
1556
1583
1620
1639
1670
1705
1704
1717
1738
1767
1789
1829
1854
1888
1887
1891
1920
1943
1987
1997
2036
2044
2065
56
620
924
193
93
900
618
768
668
157
56
162
30
622
143
724
679
669
33
623
137
162
4
899
659
100
22
788
686
894
42
723
39
72
808
920
3
126
98
635
91
181
156
786
104
823
15.0
16.0
16.0
15.0
15.0
15.0
16.0
17.0
17.0
15.0
15.0
17.0
17.0
17.0
16.0
17.0
16.0
17.0
16.0
18.0
15.0
16.0
16.0
16.0
18.0
15.0
15.0
>F.O
16.0
16.0
15.0
16.5
15.0
16.0
17.0
15.5
15.0
15.0
15.0
17.0
16.0
16.0
16.0
16.0
15.0
16.0
16.0
16.0
15.5
15.5
16.0
16.0
17.0
16.5
14.0
14.0
14.0
16.0
17.0
17.0
16.0
16.0
18.0
17.0
16.0
18.0
15.0
16.0
15.0
15.0
16.0
14.0
14.0
17.0
18.0
18.0
16.0
17.0
16.0
16.0
17.0
16.0
16.0
16.0
16.0
18.0
15.0
16.5
16.0
17.0
16.0
15.0
A
A
A
A
D
D
D
D
C
C
A
D
A
C
A
D
D
A
D
B
D
B
A
D
C
C
A
D
C
C
C
B
B
B
C
A
D
B
A
D
B
C
B
A
A
A
Mean OAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.734
0.967
0.477
0.302
0.760
0.802
0.222
0.178
0.605
0.423 0.450
1.611
1.486
0.673
0.672
0.541
0.179
0.361
0.488
0.271
0.375
0.292
0.271
0.514
0.522
0.876
0.651
0.252
0.244
0.190
0.215
0.494
0.366
0.301
0.158
0.266
0.394
0.668
0.316
0.446
0.549
0.390
0.296
0.426
0.411
0.421
0.151
C-17
-------
TABLE C-6. SUMMARY OF THE 1989 NMOC DATA FOR DALLAS, TX (DLTX)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
03-Aug-89
03-Aug-89
04-Aug-89
07-AU9-89
08-Aug-89
09-Aug-89
10-Aug-89
H-Aug-89
H-Aug-89
15-Aug-89
1; jg-89
1 .g-89
18-«ug-89
21-Aug-89
22-Aug-d9
23-Aug-89
23-Aug-89
24- '-j-89
25-Aug-89
28-Aug-89
29-Aug-89
30-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
06-Sep-89
07-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
12-Sep-89
13-Sep-89
14-Sep-89
15-Sep-89
18-Sep-89
18-Sep-89
19-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
27-Sep-89
28-Sep-89
29-Sep-89
215
215
216
219
220
221
222
223
226
227
228
229
230
233
234
235
235
236
237
240
241
242
243
244
248
249
250
250
251
254
255
256
257
258
261
261
262
263
264
265
268
269
270
271
272
2116
2115
2137
2166
2186
2206
2238
2245
2268
2293
2335
2355
2385
2402
2424
2456
2455
2475
2493
2507
2548
2589
2622
2644
2656
2692
2711
2712
2745
2767
2787
2804
2830
2858
2889
2888
2917
2920
2965
2993
3016
3035
3070
3099
3116
670
704
656
628
197
42
71
644
140
652
788
658
77
870
864
702
789
185
684
192
72
77
114
792
189
838
97
184
L3
837
137
113
19
193
164
91
304
11
45
107
309
857
800
670
305
1/.0
17.0
16.0
16.0
16.0
16.5
17.0
18.0
16.0
17.0
17.5
17.0
16.0
'".0
.0
1o.5
16.5
16.0
16.0
16.0
16.0
15.0
16.0
17.0
15.0
15.0
15.0
15.0
15.0
16.0
15.0
15.0
16.0
17.0
16.0
16.0
17.0
16.0
16.0
16.0
16.0
17.0
17.0
17.5
16.0
17.5
18.0
17.0
17.0
16.0
17.0
16.0
18.0
16.0
17.0
17.0
17.0
16.0
16.0
16.0
18.0
18.0
14.0
17.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
17.0
17.0
14.0
16.0
16.0
16.0
16.0
16.0
16.1
16.4
17.0
16.0
16.0
16.0
16.0
16.0
18.0
18.0
16.0
D
B
C
D
C
C
B
B
C
D
C
B
C
C
A
A
A
D
B
C
A
B
D
A
A
D
A
A
C
A
A
B
B
D
C
C
B
C
C
D
D
D
C
D
D
Mean OAD AREAL
NMOC ~C K«—
ppmC IK pp c
0.116
0.114
0.141
.247
0.260
0.808
1.009
0.173
0.433
0.487
0.452
0.284
0.732
0.202
0.280
0.530 O.H5
0.515
0.523
0.420
0.577
0.675
0.427
0.307
0.227
0.518
0.378 0.443
0.369
1.356
.243 0.284
0.152
0.334
0.160
0.160
0.393
0.612
0.527
0.651
0.540
1.074
0.484
0.832
0.408
0.598
1.097
1.129
0.312
0.591
0.459
0.294
0.250
0.468
C-18
-------
o
CO
O
QJ
o
UJ
i
tO
o>
8
8
8
eo
8
oi
8
C-19
-------
TABLE C-7. SUMMARY OF THE 1989 NMOC DATA FOR EL CAJON, CA (ELCA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
07-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
K-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
05-Jul-89
06-Jul-89
07-Jul-89
10-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
K-Jul-89
17-Jul-89
17-Jul-89
19-Jul-89
20-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
27-JUI-89
28-Jul-89
31-JUI-89
02-Aug-89
03-Aug-89
W-Aug-89
07-Aug-89
156
157
158
158
159
160
163
164
165
166
167
170
170
171
172
173
174
177
178
179
179
180
181
184
186
187
188
191
192
193
194
195
198
198
200
201
205
206
207
208
209
212
214
215
216
219
1011
1037
1066
1067
1092
1110
1134
1182
1184
1218
1241
1259
1258
1274
1302
1351
1366
1387
1399
1424
1423
1452
1486
1517
1511
" 1549
1595
1610
1627
1680
1700
1724
1751
1750
1806
1827
1877
1905
1928
1926
1983
1992
2058
2087
2111
2125
666
623
676
780
790
663
182
680
772
828
674
806
644
844
309
22
860
663
894
49
164
770
43
645
638
193
929
900
173
672
64
63
8
838
618
100
719
31
165
107
400
60
772
92
722
129
14.0
14.2
16.0
16.2
13.5
11.0
13.0
14.2
14.0
13.0
14.0
16.0
16.0
14.0
14.5
14.0
13.5
14.2
13.0
19.0
19.0
17.0
16.0
16.2
16.5
15.5
16.5
16.0
16.0
16.5
16.0
15.5
15.0
15.0
19.0
15.0
16.0
15.5
16.0
15.5
15.5
15.0
16.5
15.0
16.5
16.5
14.0
15.0
16.0
16.0
14.0
11.0
14.0
14.0
14.0
11.0
12.0
12.0
14.0
14.0
15.0
14.0
14.0
14.0
14.0
20.0
20.0
18.0
16.0
17.0
18.0
15.0
15.0
15.0
15.0
17.0
15.0
16.0
16.0
16.0
14.0
14.0
17.0
16.0
16.0
16.0
16.0
16.0
17.0
16.0
17.0
16.0
D
A
C
c
B
C
C
A
B
C
D
B
A
A
A
D
C
A
C
D
C
C
B
B
D
A
D
A
C
D
B
A
C
A
C
C
D
B
A
A
C
D
D
D
D
A
Mean
NMOC
ppmC
0.147
0.152
0.152
0.148
0.092
0.194
0.187
0.287
0.497
0.315
0.225
0.486
0.738
1.008
0.699
0.397
0.101
0.169
0.286
1.205
1.321
0.411
0.165
0.528
0.746
0.282
0.245
0.088
0.122
0.262
0.592
0.587
0.197
0.219
0.202
0.437
0.195
0.174
0.301
0.330
0.429
0.189
0.328
0.271
0.305
0.342
QAD AREAL
NMOC NMOC
ppmc ppmc
0.241
0.430
OJ1»
0.134
0.357
0.230
C-20
-------
TABLE C-7. SUMMARY OF THE 1989 NMOC DATA FOR EL CAJON, CA (ELCA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
08-Aug-89
09-Aug-89
10-Aug-89
11-Aug-89
11-Aug-89
U-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
25-Aug-89
28-Aug-89
29-Aug-89
29-Aug-89
30-Aug-89
31-Aug-89
01-S°o-89
05-i -89
06-Sep-39
07-Sep-89
08-Sep-89
08-Sep-89
11-Sep-89
12-Sep-89
13-Sep-89
U-Sep-89
15-Sep-89
19-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
26-Sep-89
27-Sep-89
27-Sep-89
28-Sep-89
29-Sep-89
29-Sep-89
220
221
222
223
223
226
227
228
229
230
233
234
237
240
241
241
242
243
244
248
249
250
251
251
254
255
256
257
258
262
263
264
265
269
270
270
272
276
276
2154
2188
2201
2225
2226
2259
2278
2310
2345
2340
2390
2399
2486
2562
-315
2516
2537
2590
'628
36
>2
i.,-29
2710
2709
2742
2772
2796
2808
2849
2901
2897
2943
2975
3018
3025
3024
3074
3095
3096
770
864
1
18
674
856
719
176
654
680
916
624
123
831
14
784
711
75
161
38
63
642
831
894
153
916*
148
79
765
146
723
-'6
:4
642
676
925
618
765
823
16.5
15.0
15.5
15.0
15.0
15.0
16.5
16.0
16.0
16.0
16.0
17.0
15.0
16.0
15.0
15.0
15.5
15.0
14.0
21.0
15.5
15.0
15.0
15.8
15.5
15.5
16.0
16.5
15.5
17.0
16.5
15.5
16.5
16.0
16.0
16.5
15.0
15.0
16.0
16.0
16.0
1o.O
16.0
16.0
17.0
16.0
17.0
17.0
16.0
18.0
16.0
17.0
16.0
16.0
17.0
16.0
16.0
22.0
17.0
18.0
15.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
18.0
17.0
16.0
16.0
16.0
16.0
18.0
16.0
16.0
C
A
D
A
A
C
D
D
A
B
D
B
B
B
B
B
C
C
B
A
D
D
B
A
A
D
A
C
B
B
A
A
D
B
B
B
D
B
D
Mean OAD AREAL
NMOC NMOC NMOC
ppnC ppmc ppmc
0.147 0.164
0.166
0.274
0.370
0.376
0.285
0.263
0.185
0.203
0.196
0.128
0.567
C.115 0.41;
0.208
0.595
0.595
0.250
0.512
0.355
1.280
0.926
0.726
0.279
0.655
0.265
0.184
0.665
1.733
1.280
0.229
0.395
0.632
1.654
1.358
0.427
0.427
1.077
0.883
0.883
C-21
-------
X
CO
CO
QL
UJ
o
H—
§
13
o
g
o
o
O
O
.g
a.
CO
6
CD
o>
C-22
-------
TABLE C-8. SUMMARY OF THE 1989 NMOC DATA FOR EL PASO, TX (ELTX)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
12-Jun-89
13-Jun-89
K-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
04-Jul-89
05-Jul-89
06-Jul-89
07-Jjfl-M
10-JOI-89
11-Jul-89
12-Jul-89
13-Jul-89
13-Jul-89
14-Jul-89
17-JUI-89
18-Jul-89
19-Jul-89
20- Jut -89
20-Jul-89
21-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
31-Jul-89
01-Aug-89
156
157
158
159
160
163
163
164
165
166
167
170
171
172
172
173
174
177
178
179
180
181
184
185
186
187
188
191
192
193
194
194
195
198
199
200
201
201
202
205
206
207
208
209
212
213
1038
1030
1055
1080
1104
1146
1145
1155
1198
1238
1237
1269
1284
1304
1303
1347
1348
1388
1414
1427
1465
1489
1505
1533
1534
1538
1598
1618
1640
1659
1702
1703
1718
1747
1766
1786
1823
1824
1840
1867
1898
1897
1971
1982
1999
2032
60
114
131
789
181
112
197
705
501
770
662
675
864
774
895
1
96
900
768
189
105
662
112
634
184
68
309
7
777
197
304
796
75
161
780
162
409
772
20
875
113
806
776
42
804
686
11.0
11.0
10.0
11.0
9.5
14.0
14.0
11.0
10.0
10.5
10.0
10.0
11.0
14.5
14.5
11.0
11.0
11.0
12.0
11.0
11.0
11.0
11.0
12.0
11.0
13.0
11.0
11.0
12.0
11.0
14.5
14.5
11.0
8.0
12.0
11.0
15.0
15.0
11.0
12.0
8.0
12.0
9.0
13.0
12.0
12.0
9.0
9.0
8.0
10.0
8.0
13.0
13.0
9.0
10.0
6.0
6.0
7.0
10.0
13.0
13.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
9.0
10.0
13.0
10.0
8.0
10.0
11.0
14.0
14.0
10.0
10.0
10.5
9.5
14.0
15.0
10.0
10.0
10.0
13.0
12.0
11.0
10.5
11.0
A
A
D
B
C
A
A
B
C
C
D
C
A
C
B
D
C
D
D
D
C
D
D
C
D
A
A
C
A
D
C
D
C
0
C
D
B
C
C
D
C
C
B
D
A
C
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.331
0.579
0.165
0.826
0.209
0.125
0.126
0.551
0.310
0.355
0.293
0.655
0.661
0.389
0.416
0.176
0.324
0.453
0.141
0.262
0.440
0.309
0.242 0.360
0.434
0.339
0.134
1.247 1.306
0.549
0.488
0.227
0.340
0.348
1.266
0.144
0.195
0.283 0.345
0.230
0.292
0.436
0.248
0.194
2.442
0.396
1.683
0.303
0.271
C-23
-------
TABLE C-8. SUMMARY OF THE 1989 NMOC DATA FOR EL PASO, T)< (ELTX)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
02-Aug-89
03-Aug-89
04-Aug-89
04-Aug-89
07-Aug-89
08-Aug-89
09-Aug-89
10-Aug-89
11-Aug-89
14-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
24-Aug-89
25-Aug-89
26-Aug-89
29-Aug-89
30-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
05-Sep-89
06-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
12-Sep-89
13-Sep-89
14-Sep-89
15-Sep-89
18-Sep-89
19-Sep-89
20-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
27-Sep-89
28-Sep-89
29-Sep-89
214
215
216
216
219
220
221
222
223
226
227
228
229
230
233
234
235
236
236
237
?40
241
242
243
244
248
248
249
250
251
254
255
256
257
258
261
262
263
263
264
265
268
269
270
271
276
2049
2042
2092
2091
2140
2148
2161
2216
2215
2251
2274
2294
2328
2353
2380
2386
2430
2445
2444
2476
2495
2511
2546
2602
2615
2643
2642
2652
2678
2685
2748
2762
2797
2826
2823
2859
2904
2939
2938
2921
2960
3001
3008
3034
3060
3092
135
108
303
626
180
803
801
780
169
309
123
665
899
12
164
711
150
162
148
309
674
652
640
137
661
695
914
772
108
171
711
75
138
685
631
697
15
84
684
929
680
900
668
178
837
108
11.0
12.0
14.0
14.0
12.0
12.0
13.0
12.5
11.0
12.0
12.0
12.0
12.0
12.0
11.5
12.5
11.5
14.5
14.5
12.0
12.5
12.5
12.0
11.5
12.0
15.0
15.0
12.5
11.5
12.0
12.0
11.0
12.0
12.5
12.5
12.0
11.0
15.0
15.0
12.0
12.0
12.0
12.0
13.0
12.0
12.0
10.0
11.0
13.0
13.0
10.0
11.0
10.0
11.0
10.0
10.0
10.0
10.0
10.0
10.5
10.0
12.0
10.0
12.5
13.0
10.0
12.0
10.5
10.5
10.0
10.0
13.0
13.0
14.0
10.0
10.0
10.0
10.0
10.0
11.0
11.0
10.0
10.0
13.0
13.0
10.0
11.0
10.0
11.0
12.0
11.0
10.0
c
D
C
C
D
D
D
C
A
D
C
C
D
A
D
C
C
B
A
D
C
C
C
C
D
D
C
C
D
B
B
D
C
B
A
D
A
D
D
0
C
A
D
C
A
C
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.308
0.612
0.092
0.106
0.295
0.186
0.365
0.918
0.201
0.191
0.661
0.339
0.869
0.568
0.105
0.375
0.775
0.358
0.357
0.601
0.601
0.333
0.387
0.578
0.458
0.464
0.403
0.555
0.395
0.763
1.029
0.433
0.204
0.148
0.937
0.687
0.770
0.531
0.538
0.669
0.184
1.430
0.331
0.585
1.950
1.359
C-24
-------
8
8
8
to
o>
CO
O>
<
O
o
-------
TABLE C-9. SUMMARY OF THE 1989 NMOC DATA FOR FREMONT, CA (FECA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) channel
05-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
U-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
29-Jun-89
30-Jun-89
03-JUI-89
OS-Jul-89
06-JUI-89
07-Jul-89
10-Jul-89
11-JUI-89
12-Jul-89
13-Jul-89
U-Jul-89
17-Jul-89
18-Jul-89
18-Jul-89
19-Jul-89
20-Jul-89
21-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
28-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
156
157
158
159
160
160
163
164
165
166
167
170
172
173
174
177
178
179
180
180
181
184
186
187
188
191
192
193
194
195
198
199
199
200
201
202
205
206
207
208
209
209
212
213
214
215
1031
1035
1051
1122
1101
1100
1152
1172
1200
1223
1209
1293
1345
1329
1324
1374
1464
1461
1457
1456
1485
1518
1542
1540
1578
1615
1638
1657
1692
1719
1734
1781
1780
1795
1842
1834
1874
1894
1922
1946
1985
1986
1993
2035
2054
2074
30
50
897
838
74
89
68
13
852
137
31
857
784
146
305
848
63
809
118
18
831
833
674
925
38
153
37
657
631
25
637
674
914
10
104
819
687
102
854
171
157
305
660
839
618
719
22.5
18.0
18.0
18.0
16.0
16.0
20.0
18.0
18.0
18.0
18.0
20.0
18.0
17.0
17.0
20.0
18.0
19.0
16.0
16.0
20.0
20.0
20.0
18.0
17.5
*.o
17.5
19.0
18.5
17.0
20.5
16.0
16.0
17.5
17.5
17.5
21.0
17.5
17.5
17.5
13.0
16.0
21.0
18.0
19.0
18.5
24.0
18.0
18.0
18.0
17.0
17.0
22.0
20.0
19.0
16.0
19.5
22.0
16.0
17.5
15.0
19.0
19.0
20.0
16.0
17.0
21.0
22.0
20.0
18.0
16.0
20.0
15.0
19.0
18.0
19.0
22.0
18.0
18.0
18.0
18.0
18.0
22.0
18.0
19.0
19.0
14.0
17.0
21.0
19.0
20.0
20.0
B
D
D
A
D
D
C
B
B
B
A
A
A
A
D
A
D
C
D
C
B
C
D
B
A
C
C
B
D
A
A
D
A
A
B
A
B
B
A
B
A
B
C
0
A
D
Mean DAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.701
0.153
0.196 0.192
0.198
0.199
0.198
0.319
0.286
0.408
0.304
0.306 0.394
0.389
0.930
1.267
0.777
0.371 0.378
0.131
0.139
0.291
0.455
0.636
0.925
1.078
2.490 2.303
0.519
0.713
0.232
0.124
0.498
0.283
0.245 0.300
0.283
0.307
0.240
0.189
0.268
0.581
0.189
0.206
0.190
0.396
0.343
0.434 0.407
0.176
0.534
0.393
C-26
-------
TABLE C-9. SUMMARY OF THE 1989 NMOC DATA FOR FREMONT, CA (FECA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
04-Aug-89
07-Aug-89
07-Aug-89
08-Aug-89
09-Aug-89
10-Aug-89
ll-Aug-89
14-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
24-*jg-89
25-«ug-89
28-Aug-89
29-Aug-89
30-Aug-89
31 -Aug-89
0*-Sep-89
01-Sep-89
05-Sep-89
06-Sep-89
Or-Sep-89
08-Sep-89
13-Sep-89
H-Sep-89
15-Sep-89
18-Sep-89
19-Sep-89
19-Sep-89
20-Sep-B9
21-Sep-89
22-Sep-89
2S-Sep-89
26-Sep-89
27-Sep-89
28-Sep-89
28-Sep-89
29-Sep-89
216
219
219
220
221
222
223
226
228
229
230
233
234
235
236
237
240
241
242
243
244
244
248
249
250
251
256
257
258
261
262
262
263
264
265
268
269
270
271
271
272
2099
2129
21:3
2164
2179
2202
2229
2243
2299
2336
2359
2379
2406
2443
2465
2569
2529
2504
2550
2588
2617
2618
2623
2664
:689
2715
2800
2821
2841
2867
2883
2884
2922
2924
2973
2990
3031
3063
3113
3112
3117
68
403
775
776
150
894
157
707
45
409
14
628
64
662
722
122
707
667
804
660
22
627
146
768
96
674
c:40
27
885
409
176
697
790
61
773
86
631
660
677
677
897
17.0
18.0
18.0
18.0
17.5
17.5
17.5
21.0
17.0
18.0
17.5
20.5
17.5
18.0
18.5
17.0
20.5
18.0
.18.0
18.0
15.5
15.5
21.0
18.5
17.5
18.0
18.0
17.0
17.5
20.0
16.0
16.0
18.0
17.5
18.0
13.5
17.0
18.0
17.0
17.0
18.0
18.0
19.0
19.0
19.0
18.0
19.0
19.0
20.0
19.0
19.0
19.0
20.5
18.0
20.0
20.0
18. C
22.0
20.0
18.0
20.0
15.0
16.0
22.0
20.0
19.0
20.0
18.0
18.0
18.0
20.0
18.0
18.0
20.0
19.0
20.0
14.0
20.0
20.0
17.0
18.0
19.0
B
8
B
C
A
C
D
C
C
B
D
B
A
C
D
D
A
A
D
B
C
C
C
C
D
D
B
D
A
D
C
D
C
C
C
C
D
B
C
B
A
Mean
NMOC
ppmC
0.361
0.441
0.592
0.216
0.217
0.246
0.152
1.141
0.267
0.185
0.289
0.312
0.259
0.142
0.769
0.948
0.414
0.214
0.147
0.709
0.~27
0.672
0.776
1.217
1.920
0.601
1.001
1.011
0.462
0.329
0.769
0.707
0.164
1.158
1.376
1.224
0.502
0.783
0.364
0.330
0.537
QAD AREAL
NMOC NHOC
ppmc ppmc
0.447
1.112
0.273
0.659
C-27
-------
CO
.— E
Q. 2
CO c?
* H
"° i
2 1
o *
8
m
8
8
CO
8
CM
8
8
6
§
o>
CO
0.
cd
QC
cc
o
o
o
O
O
JD
a.
6
C-28
-------
TABLE C-10. SUMMARY OF THE 1989 NMOC DATA FOR GRAND RAPIDS, MI (GRMI)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
07-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
14-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
05-Jul-89
06-Jul-89
07-Jul-89
10-Jul-89
10-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
14-Jul-89
17-Jul-89
18-JUI-89
19-Jul-89
20-Jul-89
21-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
28-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
03-Aug-89
04-Aug-89
156
157
158
158
159
160
163
164
165
166
167
170
171
172
173
174
177
178
179
180
181
184
186
187
188
191
191
192
193
194
195
198
199
200
201
202
205
206
207
209
212
213
214
215
215
216
1015
1059
1068
1069
1081
1102
1141
1158
1202
1205
1215
1263
1285
1320
1330
1325
1392
1398
1435
1425
1462
1522
1544
1557
1582
t603
^504
1634
1658
1685
1720
1761
1776
1790
1825
1836
1881
1889
1915
1945
2000
2029
2053
2093
2094
2077
687
75
79
813
147
894
686
791
130
728
77
656
667
812
722
109
856
686
797
631
654
872
618
895
45 %
640
182
93
874
12
305
711
715
783
900
79
777
662
304
673
674
644
907
850
138
143
11.0
14.0
18.0
18.0
14.0
14.0
15.0
14.0
14.0
14.0
18.0
14.0
14.0
15.0
15.0
14.0
14.0
14.0
15.0
15.0
15.0
14.0
15.0
14.0
14.0
18.0.
18.0
14.0
14.0
14.0
14.0
15.0
15.0
15.0
14.0
14.0
15.0
15.0
14.0
14.0
15.0
15.0
14.0
20.0
20.5
14.0
10.0
13.0
18.0
18.0
14.0
13.0
14.0
14.0
13.0
14.0
16.0
12.0
14.0
13.0
15.0
13.0
14.0
14.0
15.0
15.0
15.0
14.0
15.0
13.0
12.0
17.0
18.0
14.0
14.0
12.0
14.0
15.0
14.0
15.0
14.0
14.0
15.0
14.5
14.0
15.0
15.0
14.0
14.0
21.0
22.0
14.0
D
A
C
C
B
D
B
A
D
C
0
C
D
A
B
A
D
B
A
D
D
D
D
B
D
B
C
C
D
C
C
B
B
C
A
D
C
C
A
A
A
A
D
B
D
A
Mean QAO AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.456
0.432
0.661
0.644
0.607
0.396
0.666
0.312 0.389
0.271
0.362
0.432
0.602
0.265
0.327
0.554
0.916
1.181
0.529 0.472
0.513
0.203
0.924
0.548
0.460
0.905
0.585
£,213
ft. 243
0.269
0.206
0.473
0.449
1.001
0.966
0.344
0.375
0.236
0.925 1.008 1.017
0.968 0.948
1.080 1.115
0.376
0.714
1.213
0.503
0.586
0.567
1.408 1.370
C-29
-------
TABLE C-10. SUMMARY OF THE 1989 NMOC DATA FOR GRAND RAPIDS, MI (GRMI)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
07-Aug-89
08-Aug-89
09-Aug-89
10-Aug-89
11-Aug-89
H-Aug-89
H-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
21-Aug-89
22-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
28-Aug-89
29-Aug-89
30-Aug-89
31-Aug-.9
01-Sep-89
05-Sep-0?
06- Se
07- Se .,
08-Sep-89
11-Sep-89
11-Sep-89
12-Sep-89
13-Sep-89
U-Sep-89
15-Sep-89
18-Sep-89
19-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
27-Sep-89
28-Sep-89
28-Sep-89
29-Sep-89
219
220
221
222
223
226
226
227
228
229
233
234
234
235
236-
237
240
241
242
243
244
248
249
250
251
254
254
255
256
257
258
261
262
263
264
265
268
269
270
271
271
272
2104
2163
2180
2214
2208
2257
2258
2272
2295
2337
2387
2398
2397
2429
2461
2468
2565
2506
;7
2598
2621
2634
2651
2679
2702
2707
2708
2777
2801
2819
2840
2873
2878
2905
2928
2967
2969
2997
3017
3046
3045
3061
929
91
175
64
75
728
797
705
179
198
625
118
129
172
644
140
783
786
775
656
90
150
41
848
3
659
784
107
62
819
98
683
842
41
838
834
883
6
126
806
797
169
15.0
14.0
15.0
14.0
14.0
17.5
17.5
14.0
12.0
12.0
14.0
18.0
18.0
14.5
14.5
14.5
16.0
15.5
16.0
15.8
14.0
14.5
14.5
14.5
14.2
20.0
20.0
14.5
15.0
15.0
15.0
16.0
15.0
14.5
15.0
14.5
14.5
14.5
16.0
21.0
21.0
15.0
15.0
14.0
14.0
13.0
14.0
19.0
19.0
14.0
13.0
12.0
14.0
17.0
18.0
14.0
15.0
14.0
15.0
14.0
14.0
14.0
13.0
14.0
14.0
14.0
14.0
19.0
19.0
15.0
14.0
15.0
14.0
14.0
14.0
14.0
14.0
14.0
15.0
14.0
14.0
19.0
20.0
15.0
C
A
C
C
D
A
D
A
C
A
D
D
D
B
D
D
A
D
D
D
A
A
D
C
D
A.
C
D
C
C
D
D
A
A
D
D
C
D
C
C
B
D
Mean QAD AF ,L
NMOC NMOC . .oC
ppmC ppmc ppmc
0.263
1.880
1.394
0.552
1.414
0.407
0.424
0.218
0.636
0.701
0.364
0.532
0.520
0.622
0.409
0.384
0.405
0.270
0.288
1.405
0.37C
0.31:
0.5E
0.40:
0.374
0.462
0.405
0.263
0.483
0.436
0.876
1.253
1.582
1.445
1.669
1.319
0.588
0.337
1.088
0.927
0.787
0.462
C-30
-------
X
O
fc
.g
"S
-------
TABLE C-11. SUMMARY OF THE 1989 NMOC DATA FOR HOUSTON, TX (H1TX)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
13-Jun-89
14-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
05-Jul-89
06-Jul-89
07-Jul-89
1«-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
14-Jul-89
14-Jul-89
17-Jul-89
18-Jul-89
19-Jul-89
20-Jul-89
21-Jul-89
24-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
03-Aug-89
04-Aug-89
07-AU9-89
08-Aug-89
10-Aug-89
11-Aug-89
157
158
159
160
163
164
164
165
166
167
170
171
172
173
173
174
177
178
179
180
181
184
186
187
188
191
192
193
194
195
195
198
199
200
201
202
205
207
208
209
215
216
219
220
222
223
1025
1053
1103
1123
1151
1162
1161
1197
1222
1224
1260
1283
1317
1306
1305
1339
1389
1410
1429
1460
1501
1523
1539
1562
1580
1623
1635
1636
1693
1728
1729
1736
1771
1770
1841
1831
1880
1917
1954
1944
2076
2079
2105
2152
2213
2218
691
635
652
658
96
46
657
796
15
786
166
870
74
643
108
780
182
.927
874
697
25
825
883
161
667
104
807
669
86
114
650
501
691
7
658
705
628
784
150
14
72
112
172
688
161
90
11.5
12.0
13.0
13.0
12.0
19.0
19.0
13.0
12.0
13.0
12.0
12.0
12.0
19.0
19.0
13.0
12.0
12.0
12.0
13.0
13.0
12.0
12.0
12.0
13.0
If
13.0
13.0
12.0
19.0
19.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
19.0
12.0
12.0
10.0
13.0
13.0
13.0
12.0
18.0
18.0
13.0
10.0
11.0
10.0
12.0
12.0
18.0
20.0
13.0
12.0
12.0
12.0
13.0
13.0
12.0
10.0
12.0
11.0
12.0
13.0
13.0
12.0
19.0
20.0
12.0
14.0
12.0
14.0
13.0
14.0
14.0
12.0
12.0
13.0
11.0
13.0
20.0
13.0
13.0
D
C
A
D
B
B
A
D
D
C
D
C
D
B
B
D
A
A
B
D
C
D
D
A
B
A
D
D
A
C
D
D
A
C
D
A
C
A
C
8
C
A
0
D
B
C
Mean OAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.550 0.566
0.712
0.363
0.882
0.241
0.516 0.549
0.538
0.398
0.413
0.599
0.365
0.437
0.612
0.889
0.769
1.998
0.482
0.180
0.307
0.358
0.473
0.444
0.631
1.113
1.074
1.044
1.353
0.518
0.379
0.254
0.251
1.156
0.438
0.594
0.499
0.961
0.809
0.514
0.817
1.495
1.390
1.248
0.446
0.244
0.298
0.640
C-32
-------
TABLE C-11. SUMMARY Of THE 1989 NMOC DATA FOR HOUSTON, TX (H1TX)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID r-nister F assure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
U-Aug-89
K-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
25-Aug-89
28-Aug-89
29-Aug-89
30-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
07-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
12-Sep-89
12-Sep-89
U-Sep-89
15-Sep-89
18-Sep-89
19-Sep-89
20-Sep-89
21-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
27-Sep-89
27-Sep-89
28-Sep-89
29-Sep-89
226
226
228
229
230
233
234
235
236
237
237
240
241
242
243
244
248
250
250
251
254
255
255
257
258
261
262
263
264
264
265
268
269
270
270
271
272
2246
2270
2300
2323
2332
2370
2404
2428
2426
2469
2470
2564
2501
2549
2580
2594
2631
2646
2647
2700
2752
2769
2749
2799
2835
2856
2899
2913
2936
2937
2959
2999
3010
3023
3022
3037
3076
185
814
178
920
900
68
688
765
780
20
182
635
676
71
927
828
21
637
696
854
618
45
776
783
660
625
106
43
724
854
770
407
794
645
672
683
175
12.0
12.0
12.0
12.0
12.0
'.2.0
;3.o
12.0
12.0
19.0
19.0
12.0
12.0
12.0
12.0
12.0
20.0
20.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
11.0
19.0
19.0
12.0
12.0
12.0
19.0
19.0
12.0
12.0
12.0
12.0
12.5
12.0
12.5
13.0
14.0
14.0
13.0
19.0
19.0
13.0
13.0
12.0
12.0
12.0
12.0
20.0
20.0
12.0
14.0
11.0
12.0
12.0
12.0
12.0
12.0
12.0
20.0
20.0
13.0
13.0
12.0
18.0
19.0
13.0
12.0
D
D
C
C
D
D
C
A
D
A
C
C
A
C
B
B
C
A
C
D
B
D
C
D
A
D
B
B
A
A
B
B
A
B
B
C
C
Mean QAD AREAL
NMOC NMOC -Z
ppmC ppmc ppmc
1.093
0.873
1.449
1.193
1.643
1.880 1.973 1.792
0.873
0.655
0.497
1.811
1.807
1.084
0.834 0.869
0.401
0.470
0.933
1.024
1.303
1.357
2.614 2. -7
1.247
1.063
0.741
0.329
0.545
0.939
0.244
0.746
0.532
0.267
0.982
0.227
0.497
0.602
0.562
0.986
0.461
C-33
-------
<
o
o
CO
O)
o
o
"5
o
o
o
O
O
o
51
6
o
S
g>
LL
C-34
-------
TABLE C-12. SUMMARY OF THE 1989 NMOC DATA FOR LONG BEACH, CA (LBCA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
13-Jun-89
13-Jun-89
U-Jun-89
15-Jun-89
16-Jun-89
20-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
05-Jul-89
06-Jul-89
07-Jul-89
10-Jul-89
13-Jul-89
U-Jul-89
17-Jul-89
19-Jul-89
19-Jul-89
20-Jul-89
21-Jul-89
24-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
28- Jut -89
31-Jul-89
02-Aug-89
03-Aug-89
04-Aug-89
07-Aug-89
09-Aug-89
H-Aug-89
U-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
18-Aug-89
156
158
159
160
164
164
165
166
167
171
171
172
173
174
178
179
180
181
186
187
188
191
194
195
198
200
200
201
202
205
207
208
209
209
212
214
215
216
219
221
223
226
228
229
230
230
1039
1057
1082
1106
1165
1163
1195
1226
1244
1276
1275
1318
1355
1346
1409
1432
1459
1488
1543
1565
1577
1619
1688
1712
1737
1801
1800
1833
1853
1875
1916
1950
1974
1973
1996
2052
2069
2095
2134
2182
2212
2252
2298
2330
2360
2361
776
92
107
155
54
839
61
118
129
107
762
171
10
84
907
99
64
197
630
166
138
920
90
839
171
106
306
183
166
11
874
70
189
928
25
689
123
868
680
668
89
696
666
28
860
828
6.0
14.0
16.0
16.0
9.0
19.0
12.0
12.0
13.0
17.0
19.0
13.0
13.5
13.5
17.5
13.0
16.3
15.0
22.0
12.0
12.0
12.7
12.4
13.0
12.5
13.0
13.0
11.7
11.5
15.0
15.0
13.5
17.0
17.0
13.0
12.5
11.5
11.7
12.0
12.0
14.0
13.0
12.5
11.5
13.0
13.0
5.0
14.0
16.0
10.0
9.0
18.0
12.0
14.0
10.0
17.0
19.0
12.0
10.0
13.0
17.0
13.0
16.0
14.0
20.0
12.0
12.0
14.0
12.0
14.0
16.0
16.0
16.0
13.0
12.0
15.0
15.0
14.0
16.5
16.5
16.0
14.0
13.0
14.0
14.0
13.0
14.0
16.0
15.0
11.0
14.0
16.0
C
B
A
B
B
A
D
B
D
C
A
D
A
C
A
A
C
D
C
D
B
A
A
D
C
B
B
A
D
D
B
C
B
A
C
A
D
D
C
D
A
A
C
B
C
C
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.797
0.606
0.746
2.253
0.700
0.697
1.112
0.932
0.875
1.786
1.732
0.639
0.851 0.921
0.377
0.785
0.391
1.101
0.443
1.538
0.527
0.587
0.472
0.982
0.789 0.841
0.394
0.597
0.336
0.625
1.001
0.475
0.508
0.564
0.570
0.589
0.340
0.775
0.401
0.630 0.684
0.564
0.701
0.877
0.694
0.427
0.313
0.394
0.475
C-35
-------
TABLE C-12. SUMMARY OF THE 1989 NMOC DATA FOR LONG BEACH, CA (LBCA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psip Channel
21-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
28-Aug-89
28-Aug-89
31-Aug-89
01-Sep-89
06-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
13-Sep-89
U-Sep-89
15-Sep-89
18-Sep-89
20-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
27-Sep-89
28-Sep-89
29-Sep-89
02-Oct-89
233
235
236
237
240
240
243
244
249
250
251
254
256
257
258
261
263
263
264
265
268
270
271
272
275
2382
2432
2460
2494
2483
2482
2595
..r.3
_-i5
2703
2698
2753
2813
2820
2822
2868
2880
2879
'48
2966
2995
3042
3069
3101
3115
767
165
621
854
178
157
663
121
155
17
180
407
37
156
900
686
702
620
856
792
14
895
807
147
607
15.0
14.0
13.0
13.0
18.9
18.9
12.0
11.5
20.0
11.5
11.5
12.5
12.0
11.9
11.5
12.7
17.0
17.0
11.5
12.0
12.0
12.0
12.0
11.5
12.8
16.0
14.0
12.0
13.0
17.0
18.0
14.0
12.0
22.0
13.0
13.0
13.0
13.0
12.0
13.0
15.0
17.0
18.0
11.0
14.0
15.0
14.0
14.0
13.0
16.0
c
B
B
A
D
A
D
D
A
D
C
D
C
D
C
A
D
D
C
B
C
A
A
C
C
Mean QAD AREAL
NMOC NMC. NMb.
ppmC ppmc ppmc
0.670
0.479
0.242
0.397
0.747
0.741
0.464
0.846
2.860
0.903
0.718
0.554
0.778
1.541
2.181
0.514
1.961
1.945
2.557
1.645
1.970
0.579
1.240
1.373
0.661
C-36
-------
>•
<—" £
*— (0
O b
•§ 8
X I
8
10
8
8
CO
8
cvi
8
00
en
(0
o
re
CD
£
o
0)
O
O
O
O
O
.O
Q.
CO
6
0)
UL
C-37
-------
TABLE C-13. SUMMARY OF THE 1989 NMOC DATA FOR LEXINGTON, ICY (LXKY)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
12-Jun-89
13-Jun-89
14-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
05-Jul-89
06- Jut -89
07- Jut -89
07-Jul-89
AO-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
H-Jul-89
17-Jul-89
18-Jul-89
19-Jul-89
20-Jul-89
21-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
27-Jul-89
27-Jul-89
28-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
156
157
158
159
160
163
163
164
165
166
167
170
171
172
173
174
177
178
179
180
181
184
186
187
188
188
191
192
193
194
195
198
199
200
201
202
205
206
207
208
208
209
212
213
214
215
1012
1075
1099
1156
1153
1144
1143
1167
1199
1210
1264
1262
1287
1322
1362
1393
1394
1466
1446
1484
1494
1524
1546
1591
1586
1585
1613
1641
1673
1684
1741
1775
1785
1792
1826
1848
1893
1919
1955
1956
1957
1981
1991
2033
2071
2073
15
853
622
630
100
654
677
640
179
Tib
165
672
136
652
51
119
687
775
169
844
662
780
301
695
10
663
813
3
98
681
188
50
793
872
404
704
778
22
32
894
41
142
38
114
621
819
13.0
13.0
14.0
15.0
13.0
18.0
19.0
14.0
13.0
14.0
13.0
14.0
13.0
13.0
13.0
13.0
14.0
14.0
13.0
13.0
14.0
14.0
13.0
14.0
18.0
18.0
14.0
13.0
13.0
14.0
13.0
13.0
14.0
13.0
13.0
14.0
14.0
13.0
13.0
18.0
18.0
13.0
13.0
13.0
14.0
13.0
13.0
13.0
14.0
14.0
11.0
19.0
19.0
13.0
12.5
14.0
10.0
11.0
12.0
13.0
13.5
12.0
14.0
13.0
13.0
13.0
14.0
12.0
11.0
12.0
16.0
16.0
12.0
12.0
12.0
12.0
13.0
13.0
14.0
12.5
12.0
14.0
14.0
12.0
14.0
17.0
18.0
12.5
13.0
12.0
14.0
13.0
B
D
A
A
C
A
A
D
C
B
C
A
D
C
C
C
D
D
A
D
C
A
B
D
B
B
D
B
A
D
C
B
A
0
C
A
D
B
D
A
A
C
B
D
A
D
Mean
NMOC
ppmC
0.249
0.192
1.032
0.723
0.123
0.184
0.191
0.335
0.216
0.113
0.138
0.213
0.240
0.157
0.309
0.432
0.808
0.473
0.232
0.119
0.201
0.113
0.081
0.512
0.518
0.502
0.267
0.281
0.183
0.207
0.204
0.425
1.545
0.192
0.288
0.322
0.188
0.866
0.892
0.362
0.361
0.270
0.248
0.185
0.426
0.587
QAD AREAL
NMOC NMOC
ppmc ppmc
0.240
0.165
0.279
0.253
1.601
0.335
C-38
-------
TABLE C-13. SUMMARY OF THE 1989 NMOC DATA FOR LEXINGTON, ICY (LXKY)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
04-Aug-89
07-Aug-89
07-Aug-89
08-Aug-89
09-Aug-89
IO-Aug-89
11-Aug-89
U-Aug-89
15-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
28-Aug-89
29-Aug-89
30-Aug-89
30-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
06-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
12-Sep-89
12-Sep-89
13-S-0-89
H-Sep-89
15-Sep-89
18-Sep-89
19-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
25-Sep-89
26-Sep-89
27-Sep-89
28-Sep-89
29-Sep-89
216
219
219
220
221
222
223
226
227
227
228
229
230
233
234
235
236
237
240
241
242
242
243
244
248
249
250
251
254
255
255
256
257
258
261
262
262
264
265
268
268
269
270
271
277
2107
2131
2130
2165
2184
2203
2235
2244
2313
2312
2306
2326
2352
2384
2427
2467
2478
2474
2567
2510
2533
2534
2576
2641
2632
2717
2720
2724
2770
2784
2783
2806
2829
2842
2857
2915
2916
2962
2963
2978
2977
3009
3029
3062
3094
100
98
687
97
501
671
25
637
10
301
642
66
60
631
166
407
18
96
642
84
175
722
620
669
172
870
823
677
724
186
778
147
68
726
109
695
115
64
303
675
129
32
625
715
899
13.0
18.0
18.0
13.0
13.0
14.0
13.0
14.0
18.0
18.0
14.0
13.5
13.0
14.0
13.0
13.0
13.0
13.0
14.0
13.0
18.0
18.0
14.0
13.0
14.0
13.0
13.0
14.0
14.0
18.0
18.0
13.0
12.0
14.0
17.0
14.0
13.0
13.0
13.0
18.0
18.0
13.0
14.0
14.0
13.0
12.0
18.0
18.0
12.0
12.5
14.0
13.0
14.0
18.0
18.0
14.0
12.5
12.5
13.0
13.0
13.0
12.0
12.0
14.0
13.0
18.0
18.0
14.0
13.0
13.0
13.0
13.0
14.0
13.0
18.0
18.0
12.0
12.0
14.0
11.0
14.0
14.0
13.0
13.0
18.0
19.0
12.0
14.0
15.0
14.0
D
D
C
D
D
D
C
C
B
B
D
C
D
D
D
D
C
C
C
C
C
B
A
C
B
C
A
B
D
D
A
D
B
B
A
C
D
B
A
0
C
C
B
A
C
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.203
0.085
0.088
0.320
1.010
0.331
0.477
1.091
1.796
1.771
0.409
0.372
0.195 0.217
0.256
0.369
0.312
0.413
0.166
0.449
0.332
0.279
0.308
0.315
0.220
0.213 0.659
0.346
0.399
0.213
0.111
0.184
0.194
0.169
0.222
0.242
1.397
0.170
0.221
0.152
0.134
0.308
0.298
0.325
0.126
0.322
0.359
C-39
-------
s
CM
O
IT)
CVJ
CNJ
o>
o
to
CO
O
CD
.0
"3
o
o
o
o
O
o
Ql
6
0
C-40
-------
TABLE C-14. SUMMARY OF THE 1989 NMOC DATA FOR NEW YORK, NY (M1NY)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
06-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
H-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
26-Jun-89
27-Jtm-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
OS-Jul-89
07-Jul-89
07-Jul-89
10-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
14-Jul-89
17-Jul-89
18-Jul-89
19-Jul-89
20-Jul-89
21-Jul-89
21-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
04-Aug-89
157
157
158
159
160
163
164
165
166
167
170
171
172
173
174
177
177
178
179
180
181
184
186
188
188
191
192
193
194
195
198
199
200
201
202
202
205
206
207
208
209
212
213
214
215
216
1045
1046
1065
1090
1119
1139
1166
1186
1213
1235
1251
1282
1316
1337
1360
1378
1379
1405
1420
1445
1487
1509
1528
1589
1590
1612
1629
1678
1695
1722
1758
1752
1799
1835
1862
1863
1872
1904
1938
1960
1976
2011
2013
2055
2081
2110
812
921
165
810
794
304
927
36
920
720
875
925
72
883
789
404
621
788
406
31
306
303
72
53
688
774
687
35
784
623
146
870
895
112
92
807
33
921
765
770
695
8
678
637
807
404
23.0
23.0
13.0
14.0
14.0
14.0
16.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
26.0
26.0
14.0
14.0
14.0
14.0
14.0
14.0
25.0
25.0
14.5
18.0
17.0
17.5
17.5
17.0
17.0
16.5
17.0
24.0
24.0
14.0
14.0
14.5
14.5
14.0
14.0
14.0
14.0
14.0
22.0
22.0
13.0
14.0
14.5
14.0
14.0
13.0
14.0
12.0
12.0
15.0
13.0
14.0
14.0
26.0
26.0
14.0
13.0
14.0
14.0
14.0
14.0
24.0
24.0
16.0
16.0
17.0
17.0
18.0
18.0
18.0
17.0
17.0
24.0
24.0
15.0
14.0
14.0
15.0
14.0
14.0
14.0
15.0
15.0
14.0
B
D
B
D
B
C
B
C
D
C
D
D
C
D
A
B
C
A
B
C
A
D
C
B
A
D
B
A
B
B
A
C
B
C
B
D
C
C
A
0
C
C
B
D
B
B
Mean
NMOC
ppmC
0.630
0.608
0.515
1.387
0.727
0.594
0.803
0.307
0.262
0.864
0.751
1.235
0.570
0.944
0.928
0.791
0.799
0.822
0.515
0.255
0.414
0.601
0.339
0.603
0.526
0.397
0.394
0.392
0.775
1.114
0.309
0.681
0.721
0.573
0.282
0.301
0.554
0.850
0.417
0.873
0.645
0.520
0.353
0.630
0.640
0.773
QAD AREAL
NMOC NMOC
ppmc pprcc
0.785
0.567
0.670
0.403
C-41
-------
TABLE C-14. SUMMARY OF THE 1989 NMOC DATA FOR NEW YORK, MY (M1NY)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pre .-e Radian
Sampled Sampled Number Number (psig) ( 3) Channel
07-Aug-89
08-Aug-89
08-Aug-89
09-Aug-89
10-Aug-89
11-Aug-89
14-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
28-Aug-89
29-Aug-89
30-Aug-89
31-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
06-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
12-Sep-89
13-Sep-89
H-Sep-89
18-Sep-89
19-Sep-89
19-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
27-Sep-89
28-Sep-89
28-Sep-89
29-Sep-89
219
220
220
221
222
223
226
227
228
229
229
230
233
234
235
236
237
240
241
242
243
243
244
248
249
250
251
254
255
256
257
261
262
262
263
264
265
268
269
270
271
271
272
2126
2157
2156
2175
2196
2236
2254
2287
2301
2348
2349
2363
2377
2411
2442
2450
2488
2528
2522
2553
2603
2604
2626
2620
2659
2697
2723
2740
2771
2782
2810
2869
2882
2881
2912
2931
2957
2988
3012
3039
3055
3054
3103
6
766
848
19
181
137
686
52
135
692
670
651
834
197
93
659
646
848
668
66
113
45
91
70
25
305
634
689
777
112
860
825
171
305
624
707
632
75
96
72
669
842
924
14.0
27.0
27.0
17.0
17.0
16.5
18.0
16.0
16.0
28.0
28.0
15.0
14.0
14.0
14.0
14.0
14.5
14.0
14.0
14.0
27.0
27.0
14.0
14.0
14.0
14.0
14.5
14.0
12.0
14.0
13.0
14.0
28.0
28.0
18.0
18.0
16.0
18.0
16.0
17.5
27.0
27.0
14.0
13.0
27.0
27.0
17.0
17.0
17.0
18.0
17.0
17.0
28.0
28.0
14.0
13.0
14.0
14.0
15.0
15.0
14.0
15.0
14.0
28.0
29.0
14.0
14.0
14.0
15.0
15.0
14.0
13.0
14.0
13.0
14.0
28.0
28.0
19.0
18.0
16.0
18.0
16.0
18.0
28.0
28.0
14.0
C
D
D
C
C
C
A
A
D
B
D
A
C
A
D
C
C
B
D
D
B
D
A
B
B
D
B
D
C
C
B
B
D
C
B
D
D
0
C
C
C
0
A
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.308
0.345
0.342
0.356
0.799
0.220
1.107
2.043
0.795
0.359
0.312
0.318
0.739
0.456
0.614
0.315 0.333
0.258
0.596
0.538
0.807
0.335
0.334
0.912
0.406
0.211
0.967
1.329
0.524
0.339
0.471
0.349
0.392
0.263
0.241
0.434
1.968
0.416
0.398
0.513
0.360
0.5 J.
0.568
0.780
C-42
-------
s
8
8
8
CO
8
cvi
8
o>
0)
O
o>
.O
2
"S
O
O
O
O
o
s
Q_
6
£
D)
IT
C-43
-------
TABLE C-15. SUMMARY OF THE 1989 NMOC DATA FOR MONTGOMERY, AL (MGAL)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
U-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
05-Jul-89
06-Jul-89
07- Jut -89
10-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
U-Jul-89
17-Jul-89
18-Jul-89
19-Jul-89
19-Jul-89
20-Jul-89
ZI-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
28-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
(W-Aug-89
07-Aug-89
156
157
158
159
160
160
163
164
165
167
170
171
172
173
178
179
180
180
181
184
186
187
188
191
192
193
194
195
198
199
200
200
201
202
205
206
207
208
209
209
212
213
214
215
216
219
1014
1032
1063
1128
1114
1113
1164
1171
1219
1225
1300
1314
1313
1342
1468
1443
1454
1455
1520
1526
1527
1576
1622
1642
1671
1683
1690
1764
1773
1763
1808
1809
1832
1849
1883
1924
1914
1952
2022
2021
2023
2068
2066
2106
2102
2135
406
856
777
807
621
641
629
848
659
773
638
138
808
400
670
680
791
814
786
131
96
70
28
705
99
62
302
121
634
301
36
857
663
640
868
57
796
645
176
726
131
808
28
767
774
102
14.0
14.0
14.5
14.5
14.5
14.5
14.5
14.0
14.4
14.3
18.0
14.0
14.2
14.1
13.9
14.1
13.9
14.0
14.1
15.5
16.9
16.0
16.0
16.2
16.0
16.0
15.9
16.0
16.1
15.9
12.6
12.6
16.0
16.2
16.0
16.1
16.0
16.2
14.0
14.0
16.2
16.7
16.3
16.5
16.3
16.1
14.0
12.0
14.0
14.0
14.0
14.0
14.0
13.0
10.0
10.0
15.5
12.0
13.0
12.0
12.0
12.0
13.0
13.0
16.0
12.0
14.0
13.0
15.0
15.0
14.0
13.0
12.0
12.5
16.0
15.0
12.0
12.0
15.0
16.0
16.0
16.0
16.0
14.0
13.0
13.0
16.0
16.0
16.0
16.0
16.0
15.0
A
A
A
C
D
D
B
C
C
B
A
A
D
A
C
B
C
D
C
B
0
D
C
A
B »
C
D
B
D
D
B
B
D
D
D
C
C
A
C
D
0
0
B
B
A
D
Mean
NMOC
ppmC
0.186
0.231
0.220
0.181
0.184
0.207
0.232
0.197
0.198
0.190
0.144
0.197
0.189
0.299
0.221
0.292
0.201
0.159
0.238
0.124
0.187
0.170
0.222
0.210
0.378
0.349
0.191
0.395
0.153
0.186
0.203
0.144
0.216
0.146
0.113
0.316
0.122
0.184
0.446
0.397
0.252
0.158
0.260
0.280
0.262
0.190
QAD AREAL
NMOC NMOC
ppmc pproc
0.240
0.405
0.453
0.225
0.154
0.214
C-44
-------
TABLE C-15. SUMMARY OF THE 1989 NHOC DATA FOR MONTGOMERY, AL (MGAL)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
08-Aug-89
09-Aug-89
10-Aug-89
11-Aug-89
11-Aug-89
H-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
28-Aug-89
29-Aug-89
29-Aug-89
30-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
06-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
11-Sep-89
12-Sep-89
13-Sep-89
H-Sep-89
15-Sep-89
18-Sep-89
19-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
22-Sep-89
25-Sep-89
28-Sep-89
29-Sep-89
220
221
222
223
223
226
227
228
229
230
233
234
235
236
237
240
241
241
242
243
244
248
249
250
251
254
254
255
256
257
258
261
262
263
264
265
265
268
276
272
2172
2205
2221
2228
2227
2271
2275
2304
2334
2354
2408
2403
2471
2462
2570
502
^523
2524
2579
2600
2704
2726
2719
2713
2716
2736
2737
2786
2846
2815
2811
2896
2914
2934
2932
2953
2954
2996
3091
3104
663
646
806
726
660
689
667
783
645
871
33
305
63
637
131
27
61
3
767
857
164
868
33
807
36
131
18
656
126
828
183
192
661
93
916
138
157
186
921
21
16.0
16.4
17.3
14.0
14.0
16.3
16.8
16.3
16.4
16.1
16.0
16.0
14.0
16.8
15.9
16.0
13.1
13.3
16.1
16.1
16.3
16.3
16.0
16.0
16.9
13.2
13.3
15.2
14.5
14.5
15.0
15.0
15.5
13.9
13.5
13.5
13.5
15.6
15.0
15.0
16.0
16.0
16.0
12.0
14.0
15.0
16.0
15.0
15.0
15.0
15.0
15.0
14.0
15.0
15.0
14.5
13.0
13.0
15.0
14.0
16.0
16.0
15.0
15.0
14.0
8.0
11.0
14.0
14.0
15.0
13.0
14.0
15.0
13.0
13.0
12.0
12.0
14.0
15.0
14.0
c
D
D
C
A
B
C
D
A
B
B
D
C
C
B
C
B
A
D
D
B
B
D
D
C
C
D
C
C
B
A
A
C
C
D
B
C
C
A
C
Mean QAD AREAL
NMOC NMOC n.--,*~
ppmC ppmc ppmc
0.089 0.135
0.133
1.075
0.106
0.130
0.100
0.134
0.231
0.315
0.104
0.124
0.243
0.206
0.230
0.240
0.142 0.178
->9
0.321
0.220
0.219 0.247
1.133
0.164
0.093
0.166
0.167 »
0.185
0.195
0.126
0.138
0.238
0.193
0.098
0.149
0.147
0.124
0.268
0.271
0.087
0.091
0.143
C-45
-------
5 i
o> i
o
N.
CM
CM
CM
O
8
8
in
8
8
CO
8
CM*
8
•
o
CO
O
Q
"o
J3
cr
O
O
a 1
o> Co
CD
O
O
O
O
O
o
ZE
CD
6
£
O)
u.
C-46
-------
TABLE C-16. SUMMARY OF THE 1989 NMOC DATA FOR NEW YORK, NY (MNY)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
05-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
U-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
23-Jun-89
23-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
30-Jun-89
03-Jul-89
OS-Jul-89
06-Jul-89
07-Jul-89
10-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
U-Jut-89
17-Jul-89
18-Jul-89
19-Jul-89
20-Jul-89
20-Jul-89
21-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
04-Aug-89
07-Aug-89
08-Aug-89
09-Aug-89
156
156
160
163
164
165
166
167
170
171
172
174
174
178
179
180
181
181
184
186
187
188
191
192
193
194
195
198
199
200
201
201
202
205
206
207
208
209
212
213
214
215
216
219
220
221
1018
1019
1112
1140
1168
1185
1214
1236
1250
1281
1312
1357
1358
1406
1419
1448
1497
1498
1508
1548
1551
1581
1611
1630
1679
1694
1723
1757
1753
1798
1821
1822
1828
1885
1903
1937
1961
1975
2010
2012
2062
2083
2109
2127
2159
2176
172
45
84
856
106
687
169
635
89
807
161
100
823
150
828
776
188
15
660
870
834
646
97
907
864
698
677
87
883
722
147
834
767
37
182
814
878
1
860
184
10
853
409
147
182
171
19.5
19.5
16.0
16.0
15.0
16.5
16.0
16.0
16.0
17.0
16.0
18.0
18.0
16.0
16.0
17.0
20.0
20.0
16.0
14.0
14.0
15.0
14.0
14.5
14.5
16.0
16.0
14.0
14.0
15.0
18.0
18.0
16.0
15. S
16.0
16.0
16.0
15.0
16.0
15.0
18.0
24.0
15.0
14.0
16.0
15.0
18.0
19.0
15.0
16.0
15.0
16.5
16.0
14.0
13.0
16.0
16.0
18.0
18.0
14.0
15.0
16.0
17.0
18.0
16.0
14.0
12.0
12.0
14.0
14.0
14.0
16.0
16.0
14.0
14.0
16.0
18.0
18.0
16.0
16.0
16.0
16.0
15.0
15.0
16.0
15.0
18.0
24.0
14.0
14.0
14.0
14.0
8
C
C
D
C
B
C
D
C
D
B
B
C
D
A
D
A
A
D
C
C
A
A
B
B
A
D
D
D
D
B
D
D
A
B
B
C
D
D
C
B
B
B
A
C
B
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.618
0.620
0.568
0.658
0.716
0.312
0.436
0.687 0.718
0.718 0.736
0.951
1.424
1.010
1.140
0.514
0.518 0.476
0.222
0.447
0.378
0.553
0.316
0.492
0.789
0.568
0.628
0.407
0.606
0.793
0.216
0.515
0.778
0.409
0.447
0.393
0.730
0.886
0.306
0.803
0.511
0.448
0.236 0.332
0.710
0.529
0.295
0.333
0.279
0.127
C-47
-------
TABLE C-16. SUMMARY OF THE 1989 NMOC DATA FOR NEW YORK, NY (MNY)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
10-Aug-89
11-Aug-89
H-Aug-89
15-Aug-89
16-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
25-AU9-89
28-AUS-39
29-Aug-89
30-Aug-89
30-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
06-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
12-Sep-89
13-Sep-89
H-Sep-89
18-Sep-89
18-Sep-89
19-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
27- ep-89
28-Sep-89
28-Sep-89
29-Sep-89
222
223
226
227
228
228
229
230
233
234
235
236
237
240
241
242
242
243
244
248
249
250
251
254
255
256
257
261
261
262
263
264
265
268
269
270
271
271
272
2197
2230
2253
2286
2285
2284
2358
2362
2376
2412
2441
2451
2489
2559
2521
2532
2531
2593
2625
2619
2666
2696
2725
2741
2775
3785
2809
2864
2863
2895
2911
2929
2976
2987
3013
"32
^i53
3052
3102
3
681
718
186
112
151
813
92
91
41
105
30
677
689
31
181
794
860
645
814
105
50
635
687
722
188
875
649
715
100
180
718
772
31
16
143
155
825
43
15.0
16.0
16.0
14.0
17.0
17.0
15.0
14.0
14.0
14.0
13.5
13.0
14.0
14.0
13.0
15.0
15.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
13.0
13.0
16.0
16.0
12.0
12.0
12.0
13.0
13.0
12.0
14.0
16.0
16.0
12.0
15.0
14.0
15.0
14.0
15.0
17.0
15.0
14.0
13.0
13.0
12.0
12.5
14.0
14.0
12.0
12.5
14.0
13.0
• - -
13.0
n.o
12.0
13.0
12.0
12.0
14.5
14.5
12.0
12.0
12.0
13.0
12.0
11.0
12.0
16.0
16.0
12.0
D
C
D
D
C
B
D
D
B
B
C
B
D
C
C
C
B
D
B
D
D
C *
D
C
C
C
D
C
C
B
C
C
A
A
C
C
C
B
D
Mean QAD AREAL
NMOC )C NMOC
r TC .TIC ppmc
0.603
0.281
0.912
1 .OCW>
0.556
0.566
0.405
0.259
0.826
0.230
0.617
0.376
0.192
0.305
0.433
0.571
0.501
0.301
0.377
0.328
0.453
1.210
1.609
0.538
0.336
0.528
0.605
0.273
0.322
0.154
0.378
1.164
0.458
0.355
0.318
1.032
0.680
0.565
0.706
C-48
-------
C-49
-------
TABLE C-17. SUMMARY OF THE 1989 NMOC DATA FOR NEWARK, NJ
Sampling Period: 6:00 a.m. to 9:00 a-.m.
Julian Sample Sample Sample Analysis
: Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (pstg) Channel
05-Jun-89
06-Jun-89
07-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
U-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
05-Jul-89
06-Jul-89
07-Jul-89
10-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
U-Jul-89
17-Jul-89
18-Jul-89
19-Jul-89
20-Jul-89
21-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
04-Aug-89
156
157
158
158
159
160
163
164
165
166
167
170
171
172
173
174
177
178
178
179
180
181
184
186
187
188
191
192
193
194
195
198
199
200
201
202
205
206
207
208
209
212
213
214
215
216
1034
1054
1078
1079
1096
1137
1138
1188
1189
1211
1212
1271
1308
1307
1341
1380
1381
1376
1377
1482
1480
1512
1553
1552
1607
1608
1677
1707
1706
1759
1760
1779
1802
1803
1857
1902
1901
1935
1936
2008
2009
2014
2026
2057
2113
2114
162
689
1
831
823
400
62
164
7
11
121
660
131
838
145
658
104
175
698
122
719
39
691
305
143
175
66
198
707
407
768
30
109
53
773
185
179
164
631
52
838
691
301
899
623
885
15.4
15.6
6.5
17.2
14.5
15.0
15.2
18.4
15.0
14.5
15.2
16.4
15.0
14.9
15.0
16.0
15.0
18.5
18.5
14.2
16.0
15.5
15.9
16.2
15.6
15.0
16.8
15.2
15.9
15.0
16.0
16.0
16.2
14.8
16.0
15.2
16.0
17.3
16.1
14.6
15.0
16.1
15.0
14.9
15.3
14.5
14.0
15.0
6.0
16.0
14.0
15.0
15.0
18.0
14.0
15.0
14.0
16.0
14.0
14.0
14.0
16.0
14.0
18.0
18.0
14.0
14.0
15.0
14.0
14.0
10.0
15.0
14.0
14.0
16.0
15.0
16.0
16.0
16.0
14.0
15.0
15.0
16.0
18.0
16.0
14.0
14.0
16.0
15.0
14.5
16.0
14.0
B
B
C
C
A
C
B
B
D
A
B
B
0
C
C
D
D
C
C
C
C
D
D
D
D
A
D
B
A
C
D
C
C
C
D
D
A
B
B
D
D
B
A
A
C
A
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.297
0.562
0.607
0.521
0.678
0.720
0.624
3.699
0.240
0.305
1.090
0.505 0.844
1.361
0.379
0.505
0.507
0.363
0.636
0.640
0.433
0.158
0.239
0.630
0.255
0.282
0.569
0.658
0.509
0.353
0.417
1.112
0.197
2.302 2.174
0.606
0.524
0.235
1.167 , '^
0.594
0.852
0.935
0.417
0.510 0.555
0.337
0.917
0.520
0.637
C-50
-------
TABLE C-17. SUMMARY OF THE 1989 NMOC DATA FOR NEWARK, NJ (NUNJ)
Sampling Period: 6:00 a.m. to 9:00 a.~
"
Julian Sample Sample Sample Analysis
Date Date 10 Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
08-Aug-89
09-Aug-89
09-Aug-89
10-Aug-89
11-Aug-89
U-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
18-*ug-89
21 ^jg-89
22-Aug-89
23-Aug-89
24-Aug-89 .
25-Aug-89
25-Aug-89
28-Aug-89
29-AU9-89
30-Aug-89
31-Aug-89
01-Sep-89
01-Sep-89
05-Sep-89
06-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
12-Sep-89
13-Sep-89
15-Sep-89
18-Sep-89
19-Sep-89
20-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
27-Sep-89
29-Sep-89
29-Sep-89
220
221
221
222
223
226
227
228
229
230
230
233
234
235
236
237
237
240
241
242
243
244
244
248
249
250
251
254
255
256
258
261
262
263
263
264
265
268
269
270
272
272
2199
2169
2170
2263
2264
2265
2297
2364
2365
2419
2420
2388
2448
2449
2433
2480
2479
2503
2542
2541
2587
2649
2648
2655
2688
2686
2780
2794
2793
2834
2860
2909
2910
2941
2940
2980
2979
3014
3077
3079
3114
3118
875
126
927
857
22
36
872
404
685
83
669
501
766
878
42
890
153
852
788
774
107
666
74
657
688
109
833
680
652
676
172
924
890
70
831
777
783
778
885
671
624
686
15.0
18.2
18.2
15.0
15.0
14.5
15.0
15.5
15.9
17.6
17.6
15.6
14.9
14.4
15.7
17.9
17.9
15.0
16.0
15.8
15.0
19.0
19.0
16.5
16.7
17.1
15.4
16.0
16.2
16.1
15.0
15.0
15.8
18.0
18.0
15.8
15.8
17.5
15.2
17.0
16.1
17.2
15.0
17.0
18.0
16.0
15.0
14.0
14.5
15.0
16.0
17.5
18.0
14.0
15.0
14.0
15,0
17.0
18.0
14.5
15.0
15.0
14.0
16.0
19.0
17.0
17
13.
15.0
15.0
16.0
16.0
13.0
15.0
16.0
18.0
18.0
16.0
15.0
16.0
14.5
17.0
16.0
17.0
C
B
0
B
C
B
D
C
A
C
C
C
D
0
B
C
A
0 .
C
A
A
C
C
0
C
C
D
0
C
C
C
A
A
0
0
i
B
D
D
A
C
0
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.254
0.319
0.298
1.097
0.263
1.356
1.981
0.551
0.586
0.324
0.296
0.216
0.307
0.497
0.315
0.248
0.177
0.979
0.450
0.740
0.370
0.788
0.839
0.272
0.600
1.708
1.679
0.470
0.329
0.491
0.532
0.614
0.299
0.463
0.518
2.124
1.042
0.270
0.602
0.205
0.522
0.814
051
-------
-
CL
s
8
8 8
CO CM
o=
^
o
i^
CM
CM
8
o
CO
.Q
•s
O
CO XN
OJ O
o g O
5 S O
00
6
-------
TABLE C-18. SUMMARY OF THE 1989 NMOC DATA FOR PLAINFIELO, NJ (PLNJ)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
09-Aug-89
10-Aug-89
11-Aug-89
14-Aug-89
14-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
25-Aug-89
28-Aug-89
28 jg-89
29-Aug-89
30-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
06-Sep-89
07-Sep-89
08-Sep-89
12-Sep-89
13-Sep-89
U-Sep-89
15-Sep-89
18-Sep-89
19-Sep-89
20-Sep-89
21-Sep-89
21-Sep-89
22-Sep-89
26-Sep-89
27-Sep-89
27-Sep-89
28-Sep-89
28-Sep-89
29-Sep-89
29-Sep-89
221
222
223
226
226
227
228
229
230
233
233
234
235
237
240
240
241
242
243
244
248
249
250
251
"5
<:56
257
258
261
262
263
264
264
265
269
270
270
271
271
272
272
2193
2255
2256
2314
2315
2303
2343
2342
2409
2413
2414
2453
2454
2525
2513
2514
2607
2608
2586
2660
2670
2680
2681
2781
2789
2824
2872
2875
2927
2933
2930
2985
2986
3026
3040
3051
3050
3056
3057
3110
3111
698
684
895
777
184
193
885
121
655
6
304
704
803
79
53
176
856
87
875
815
773
662
624
142
303
713
52
663
150
66
696
848
102
165
189
643
656
819
852
692
640
15.8
15.8
14.1
13.9
13.9
14.2
14.0
14.1
15.7
13.3
13.3
13.0
14.8
14.3
13.6
13.6
14.2
13.9
14.3
14.2
14.8
15.9
15.9
14.2
14.3
15.5
13.9
15.0
14.2
15.3
15.4
13.5
13.6
14.0
14.3
14.8
14.8
14.2
14.4
15.2
15.2
15.0
19.0
17.0
16.0
17.0
17.0
14.0
12.0
18.0
16.0
16.0
16.0
18.0
17.0
16.0
16.0
17.0
16.0
15.0
17.0
18.0
18.0
18.0
16.0
16.0
15.0
16.0
16.0
16.0
16.0
18.0
15.0
16.0
16.0
17.0
18.0
18.0
18.0
18.0
17.0
18.0
B
B
D
A
D
C
C
i
C
D
D
C
C
A
D
A
C
A
C
D
C
B
A
D
C
A
C
D
D
C
B
C
C
C
B
B
B
C
B
D
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.525
0.969
0.160
0.764
0.758
0.888
0.405
0.274
0.294
0.353
0.351
0.161
0.425
0.152
0.607
0.638
0.565
0.371
0.105
1.147
0.268
0.540
1.508
1.479
0.168
0.359
0.451
0.267
0.163
0.513
0.431
0.982
1.018
1.134
0.541
0.162
0.134
1.503
1.570
0.542
0.557
C-54
-------
TABLE C-18. SUMMARY OF THE 1989 MMOC DATA FOR PLAINFIELD. NJ (PLNJ)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
07-Jun-89
OS-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
H-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
OS-Jul-89
10-Jul-89
11-JUI-89
12-JUI-89
14-JUI-89
17-Jul-89
18-JUI-89
18-Jul-89
19-Jul-89
20-Jul-89
21-JUI-89
24-Jul-89
25-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
04-Aug-89
07-Aug-89
08-Aug-89
156
157
158
159
159
160
163
164
165
166
167
170
171
172
173
174
177
178
179
179
180
181
184
186
191
192
193
195
198
199
199
200
201
202
205
206
207
208
209
212
213
214
215
216
219
220
1040
1097
1105
1076
1077
1148
1147
1179
1178
1256
1257
1272
1349
1350
1343
1403
1404
1475
1451
1450
1474
1513
1530
1529
1631
1676
1646
1756
1858
1783
1782
1859
1860
• 1907
1908
1959
1958
2006
2007
2015
2025
2056
2151
2153
2167
2198
806
198
715
895
176
890
842
33
719
834
777
825
897
646
172
839
115
8
666
723
11
676
808
106
57
119
778
801
676
4
724
186
28
143
652
790
697
137
681
872
18
920
914
834
629
35
15.4
14.0
15.4
13.4
13.4
14.1
14.1
13.9
15.4
14.4
15.2
14.2
14.4
15.5
14.7
14.2
14.0
13.5
14.0
14.0
14.2
15.9
15.1
14.8
14.1
14.1
15.3
15.3
14.1
14.1
14.3
15.6
15.6
15.7
15.5
15.2
14.0
15.0
14.1
14.1
14.0
14.0
14.0
14.8
14.3
18.0
16.0
17.0
16.0
16.0
16.0
16.0
11.0
15.0
14.0
15.0
16.5
17.0
18.0
16.0
16.0
16.0
16.0
17.0
17.0
15.0
18.0
18.0
18.0
14.0
16.0
18.0
18.0
17.5
17.0
17.0
17.0
17.5
18.0
14.5
18.0
18.0
14.0
18.0
17.0
17.0
16.0
16.0
16.0
17.0
15.0
A
B
C
C
D
B
D
C
D
A
D
A
D
C
0
A
D
A
C
D
C
C
B
A
A
B
C
C
D
D
A
A
A
A
C
D
B
A
C
D
C
D
C
A
A
D
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.407
0.384
0.438
0.377
0.370
0.524
0.184
0.524
0.249 0.297
0.368
1.077
0.723 0.721
0.686
0.327
6.664
0.968
0.241
0.757
0.287
0.235
0.072
0.170
0.273
0.288
0.316
0.128
0.218
0.550
0.104
0.457
0.304
0.610
1.796
1.334
0.734
1.189
0.203
0.327
0.226
0.500
0.201
0.753
0.493
0.359
0.290
0.104
C-53
-------
~
12
co
a:
o
6
g>
LL
C-55
-------
TABLE C-19. SUMMARY OF THE 1989 NMOC DATA FOR RALEIGH, NC (RLNC)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date 10 Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
13-Jun-89
14-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
29-Jun-89
30-Jun-89
05-Jul-89
05-Jul-89
06-Jul-89
07-Jul-89
10-Jul-89
11-Jul-89
12-Jul-89
13-Jul-fl9
14-Jul-89
17-Jul-89
18-Jul-89
19-Jul-89
20-Jul-89
21-Jul-89
24-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
27-Jul-89
31-Jul-89
01-Aug-89
01-Aug-89
02-Aug-89
03-Aug-89
04-Aug-89
05-Aug-89
156
157
158
159
160
163
164
164
165
166
167
170
171
172
173
174
177
178
180
181
186
186
187
188
191
192
193
194
195
198
199
200
201
202
205
205
206
207
208
212
213
213
214
215
216
217
1009
1010
1049
1050
1071
1125
1126
1127
1176
1177
1249
1246
1248
1295
1296
1370
1371
1372
1502
1503
1506
1547
1571
1570
1597
1650
1651
1649
1730
1731
1732
1777
1812
1815
1864
1865
1886
1896
1913
1970
2004
2005
2038
2041
2080
2082
698
179
136
12
833
878
697
809
913
192
916
914
801
810
179
671
834
45
74
108
767
804
84
684
33
52
685
875
91
136
184
138
667
309
899
135
803
649
192
185
84
684
192
57
107
198
17.0
16.0
15.0
17.0
17.0
17.0
16.0
16.0
18.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
16.0
16.0
17.0
16.0
16.0
15.0
17.0
16.0
17.0
17.0
17.0
16.0
16.0
16.0
17.0
18.0
16.0
0.0
14.0
16.0
15.0
18.0
16.5
15.0
15.0
16.0
15.0
15.0
16.0
17.0
16.0
15.0
17.0
17.0
17.0
15.0
15.0
19.0
17.0
14.0
14.0
15.0
18.0
16.5
17.0
16.0
16.0
17.0
17.0
16.0
16.0
14.0
17.0
14.0
16.0
17.0
15.0
16.0
16.0
16.0
17.0
16.0
15.0
15.0
14.0
16.0
16.0
16.0
16.0
15.0
15.0
16.0
16.0
16.0
16.0
C
0
B
D
D
D
A
A
C
B
C
D
A
C
B
A
B
D
A
C
C
A
C
D
D
D
B
C
C
D
B
A
A
C
C
A
C
D
A
B
B
B
B
D
C
D
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.286 0.291
0.166
0.190
0.108
0.158
0.150
0.252
0.228
0.344
0.177
0.228
0.206
0.138
0.110
0.193 0.279
0.104
0.551
0.321
0.158
0.059
0.110
0.116
0.136
0.156
0.276
0.325
0.268
0.126
0.097
0.052
0.066 0.101
0.169
0.087
-0.386 0.419
0.153
0.208
0.258
0.386
0.089
0.204 0.249
0.054
0.043
0.113
0.277
0.269
0.120 0.175
C-56
-------
TABLE C-19. SUMMARY OF THE 1989 NMOC DATA FOR RALEIGH, NC (RLNC)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
06-Aug-89
07-Aug-89
08-Aug-89
09-Aug-89
11-Aug-&9
12-Aug-89
14-Aug-89
15-Aug-89
16-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
28-Aug-89
29-Aug-89
30-Aug-89
31-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
06-Sep-89
06-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
12-Sep-89
13-Sep-89
13-Sep-89
14-Sep-89
15-Sep-89
18-Sep-89
19-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
27-Sep-89
28-Sep-89
29-Sep-89
218
219
220
221
223
224
226
227
228
228
229
230
233
234
235
236
2".~
240
241
242
243
243
• 244
248
249
249
250
251
254
255
256
256
257
258
261
262
263
264
265
268
269
270
271
272
2084
2141
2142
2147
2189
2191
2241
2242
2288
2289
2311
2319
2393
2394
2395
2571
2671
2672
2572
2573
2575
2574
2597
2673
3085
2674
2675
2676
2751
2750
2759
2758
2852
2853
2851
2855
3084
3080
3086
3083
3087
3088
3082
3081
38
14
130
720
162
166
627
72
46
100
37
157
857
180
667
\&
395
'06
871
900
658
698
98
622
839
790
899
890
61
86
834
871
794
72
169
197
36
635
868
37
894
68
27
875
16.0
16.0
16.0
18.0
16.0
16.0
16.0
16.0
15.0
15.0
16.0
16.0
17.0
19.0
17.0
19.0
17.0
17.0
17.0
17.0
17.0
17.0
18.0
19.0
16.0
18.0
ia.o
18.0
17.0
17.0
16.0
16.0
17.0
17.0
17.0
17.0
16.0
17.0
17.0
17.0
16.0
17.0
18.0
16.0
15.0
13.0
12.5
17.0
16.0
16.0
16.0
15.0
15.0
16.0
16.0
16.0
18.0
17.0
18.0
17.0
17.0
16.0
16.0
16.0
16.0
16.0
19.0
16.0
18.0
18.0
17.0
17.0
17.0
14.0
15.0
17.0
17;0
17.0
14.5
16.0
18.0
16.0
16.0
16.0
18.0
18.0
17.0
A
A
B
D
0
D
A
B
B
C
C
D
A
C
B
A
B
A
A
B
D
B
B
B
C
D
C
A
D
C
B
B
D
A
A
A
C
A
A
D
C
B
D
D
Mean QAD AREAL
NMOC • • NMOC NMOC
ppmC ppmc ppmc
0.079
0.099
0.054
0.046
0.074
0.083
0.201
0.056 0.075
0.405
0.391
0.116
0.056
0.146
0.198
0.176
0.183
0.083
0.142
0.220
0.210
;\080
0.086
0.265 0.310
0.052
0.050
0.054
0.092
0.226
0.525
0.163
0.098
0.083
0.135
0.137
0.092
0.065
0.068
0.053
0.065
0.046
0.086
0.049
0.056
0.232
C-57
-------
o
co"
•o
CD
CO
0)
QC
O
•5
CD
O
8 o
0> O
5 8
TO
.g
Q.
O
CM
6
CD
•5
O)
LL
OUJdd '
C-58
-------
TABLE C-20. SUMMARY OF THE 1989 NMOC DATA FOR RESEDA, CA (RSCA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
20-Jun-89
22-Jun-89
22-Jun-89
23-Jun-89
04-Jul-89
06-Jul-89
07-Jul-89
07-Jul-89
10-Jul-89
11-Jul-89
13-JUI-89
14- Jut -89
17- Jut -89
18-Jul-89
20-Jul-89
21-Jul-89
21-Jul-89
24-Jul-89
25-Jul-89
27-Jul-89
28-JUI-89
31-Jul-89
01-Aug-89
03-Aug-89
04-Aug-89
07-Aug-89
08-Aug-89
10-Aug-89
11-Aug-89
14-Aug-89
15-Aug-89
17-Aug-89
18-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
24-Aug-89
28-Aug-89
29-Aug-89
29-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
171
173
173
174
185
187
188
188
191
192
194
195
198
199
201
202
202
205
206
208
209
212
213
215
216
219
220
222
223
226
227
229
230
230
233
234
236
240
241
241
243
244
248
250
251
254
1292
1336
1335
1356
1561
1559
1596
1579
1616
1645
1687
1716
1735
1765
1837
1819
1820
1879
1895
1941
1980
2002
2030
2078
2108
2132
2146
2207
2211
2248
2267
2329
2366
2367
2381
2410
2457
2490
2519
2520
2599
2614
2640
2677
2718
2747
4
193
853
113
642
123
658
924
135
79
181
806
107
860
122
99
119
684
172
646
916
718
86
833
121
145
183
662
70
43
114
56
113
155
722
842
921
718
145
899
32
806
183
697
56
403
18.0
18.0
18.0
18.0
18.0
17.0
14.0
14.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
13.0
13.0
18.0
17.0
17.0
17.0
18.0
17.0
17.0
17.0
17.0
17.0
18.0
17.0
16.5
18.0
19.0
12.5
13.0
19.5
19.0
19.0
19.5
18.0
18.0
18.0
25.0
17.0
19.0
18.0
19.0
14.0
14.0
14.0
12.0
12.0
12.0
8.0
10.0
12.0
14.0
12.0
15.0
14.0
14.0
14.0
13.0
13.0
15.0
14.0
14.0
14.0
15.0
16.0
14.0
14.0
14.0
13.0
15.0
14.0
14.0
15.0
15.0
10.0
12.0
19.0
16.0
16.0
16.0
15.0
15.0
15.0
21.0
14.0
16.0
15.0
15.0
C
B
8
B
B
D
C
B
C
D
A
D
0
D
C
B
D
A
C
D
D
B
D
D
D
C
A
D
D
D
A
C
C
C
C
A
B
A
B
0
C
A
B
D
C
C
Mean OAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
1.876
1.102
1.102
0.340 0.408
1.134
1.238
0.842
0.820
0.323
0.314
1.236
1.414
0.483
0.571
1.289
1.262
1.275
0.399 0.446
0.555
1.100 1.143
1.209
0.904
0.912
1.125
1.260
0.863
0.417
0.455
0.913
1.002
0.648 0.666
0.417
0.635
0.536
0.209
0.879
0.380
1.370
1.735
1.703
1.843 1.729 1.799
3.990
1.930
1.630
1.258
1.470
C-59
-------
TABLE C-20. SUMMARY OF THE 1989 NMOC DATA FOR RESEDA, CA (RSCA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure
Radian
Sampled Sampled Number Number (psig) (psig) Channel
12-Sep-89
12-Sep-89
U-Sep-89
15-Sep-89
18-Sep-89
18-Sep-89
21-Sep-89
21-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
28-Sep-89
29-Sep-89
29-Sep-89
255
255
257
258
261
261
264
264
265
268
269
271
272
272
2766
2765
2816
2848
2871
2866
2946
2945
2970
2991
3011
3107
3089
3090
185
770
140
810
852
698
10
634
788
762
928
657
403
145
18.0
18.0
18.0
19.0
19.0
19.0
18.0
18.0
19.0
19.0
19.0
19.0
18.0
18.0
14.0
14.0
15.0
15.0
14.0
15.0
15.0
15.0
16.0
16.0
16.0
16.0
15.0
17.0
D
A
A
C
C
B
B
B
C
D
B
C
B
0
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.550
0.535
1.867
3.000
0.593
0.424
2.839
2.800
3.222
1.890
2.327
2.216
1.420
1.407
C-60
-------
O
o
CD
03
OJ
ro
o
m
o
CO
b
c
o
O
O
O
O
O
_o
D_
CM
6
£
•5
D)
LL
U5
C-61
-------
TABLE C-21. SUMMARY OF THE 1989 NMOC DATA FOR ST. LOUIS, HO (S2MO)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
14-Jun-89
H-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
03-Jul-89
05-Jul-89
06-Jul-89
07-Jul-89
10-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
13-Jul-89
14-Jul-89
17-Jul-89
18-Jut-89
19-Jul-89
19-Jul-89
20-Jul-89
21-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
04-Aug-89
157
158
159
160
163
164
165
165
166
167
170
171
172
173
174
174
177
178
179
180
184
186
187
188
191
192
193
194
194
195
198
199
200
200
201
202
205
206
207
208
209
212
213
214
215
216
1027
1056
1120
1121
1129
1187
1203
1204
1227
1247
1266
1288
1319
1361
1369
1368
1397
K13
1458
1444
1525
1541
1558
1621
1617
1652
1656
1727
1726
1713
1744
1772
1810
1811
1843
1850
1878
1900
1925
1948
1972
2003
2051
2048
2067
2100
166
650
864
184
774
183
90
696
775
666
661
135
872
778
68
842
304
801
657
916
17
56
185
789
627
405
15
776
828
.854
157
400
696
786
688
685
657
680
90
723
696
15
106
186
652
631
16.0
16.0
15.0
15.0
16.0
15.0
16.0
16.0
15.0
16.0
16.0
14.0
14.0
16.0
16.0
16.0
14.0
15.0
14.0
10.5
16.0
16.0
17.0
17.0
16.0
16.0
15.0
16.0
16.0
16.5
16.5
16.5
17.0
17.0
16.5
16.5
17.0
17.5
16.0
17.0
16.5
16.0
16.0
16.0
17.0
17.0
16.0
15.0
15.0
15.0
16.0
14.0
16.0
16.0
12.0
12.0
12.0
14.0
14.0
16.0
14.0
15.0
13.0
14.0
13.0
11.0
15.0
15.0
16.0
16.0
16.0
14.0
15.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
17.0
17.0
16.0
17.0
16.5
15.0
15.0
16.0
16.0
16.0
A
A
B
D
0
C
A
C
B
C
0
0
0
D
C
B
A
A
D
A
C
0
A
0
C
B
A
D
C
A
C
C
B
B
D
B
B
A
B
C
C
C
D
C
C
A
Mean
NMOC
ppmC
0.951
1 .967
0.870
0.240
0.269
0.303
0.519
0.524
0.303
0.848
0.364
0.661
0.791
1.048
0.691
0.724
0.932
0.338
0.682
0.334
0.187
0.490
1.415
1.034
0.388
0.900
0.481
0.659
0.706
0.432
1.049
2.132
0.335
0.210
0.350
0.498
0.596
0.850
0.821
0.453
0.404
1.653
0.685
2.090
0.622
0.447
QAD AREAL
NMOC NMOC
ppmc ppmc
0.345
0.964
0.805
0.434
C-62
-------
TABLE C-21. SUMMARY OF THE 1989 NMOC DATA FOR ST. LOUIS, MO
-------
<
o
o
CO
CO
o
"5
8
o
o
o
o
O
O
o
I)
-------
TABLE C-22. SUMMARY OF THE 1989 NMOC DATA FOR SACRAMENTO. CA (S3CA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
13-Jun-89
U-Jun-89
16-Jun-89
19-Jun-89
20-Jun-89
21-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
03-Jul-89
03-Jul-89
05-Jul-89
10-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
H-Jul-89
17-Jul-89
18-Jul-89
19-Jul-89
24-Jul-89
25-Jul-89
25-Jul-89
26-Jul-89
28-Jul-89
31-Jul-89
OI-Aug-89
01-Aug-89
02-Aug-89
04-Aug-89
08-Aug-89
08-Aug-89
09-Aug-89
10-Aug-89
11-Aug-89
U-Aug-89
156
157
158
159
160
163
164
164
165
167
170
171
172
174
177
178
179
180
181
184
184
186
191
192
193
194
195
198
199
200
205
206
206
207
209
212
213
213
214
216
220
220
221
222
223
226
1022
1029
1070
1124
1115
1150
1159
1160
1206
1245
1261
1289
1299
1395
1375
1411
1434
1491
1492
1515
1514
1563
1624
1637
1655
1689
1745
1740
1774
1794
1882
1909
1910
1921
1978
2034
2017
2016
2047
2117
2144
2145
2171
2217
2237
2250
157
661
784
673
793
126
42
188
671
776
793
692
62
705
766
773
864
183
635
186
696
60
772
652
644
406
656
813
789
642
623
61
668
620
62
638
56
831
11
762
119
39
30
789
407
773
9.5
10.0
10.0
18.5
13.5
12.0
18.0
18.0
17.5
9.8
10.0
16.0
9.8
9.8
20.0
8.0
8.8
8.0
8.2
18.0
18.0
8.0
18.0
8.0
8.0
7.8
10.6
19.0
8.0
9.0
11.0
18.0
9.0
18.0
8.5
7.0
7.0
8.0
19.0
18.0
18.0
7.8
18.0
8.0
8.0
10.0
11.0
11.0
20.0
14.0
14.0
18.0
18.0
17.0
8.0
9.0
18.0
10.0
10.0
20.0
8.0
8.0
9.0
8.0
20.0
20.0
6.0
18.0
9.0
9.0
7.0
13.0
20.0
10.0
10.0
13.0
20.0
19.0
11.0
18.5
10.0
8.0
8.0
9.0
20.0
16.0
18.0
9.0
20.0
9.0
10.0
B
C
A
C
C
C
A
A
0
C
A
D
B
C
B
B
B
B
D
C
A
C
B
C
0
0
B
0
B
0
A
C
0
A
C
D
B
B
C
C
B
C
0
B
C
C
Mean QAO AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.333
0.221
0.208
0.161
0.180
0.115
0.164
0.155
0.236
0.199
0.198
0.166
0.129 0.173
0.329
0.097 0.128
0.101
0.097
0.322
0.116
0.224
0.216
0.958 -.
I
0.281
0.121
0.095
0.248
0.242
0.302
0.183
0.311
0.171
0.186
0.206
0.170
0.191
0.164
0.264
0.310
0.299
0.204
0.207
0.212
0.134 0.175
0.150
0.162
0.547
C-65
-------
TABLE C-22. SUMMARY OF THE 1989 NMOC DATA FOR SACRAMENTO, CA (S3CA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Nuioer (psig) (psig) Channel
IS-Aug-89
16-AU9-89
17-Aufl-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
28-Aug-89
29-AU9-89
30-Aug-89
30-Aug-89
31-AU9-89
01-Sep-89
05-Sep-89
06-Sep-89
06-Sep-89
07-Sep-89
08-Sep-89
11-Sep-89
14-Sep-89
15-Sep-89
18-Sep-89
19-Sep-89
20-Sep-89
20-Sep-89
26-Sep-89
27-Sep-89
28-Sep-89
29-Sep-89
227
228
229
229
230
233
234
235
235
236
237
240
241
242
242
243
244
248
249
249
250
251
254
257
258
261
262
263
263
269
270
271
272
2269
2296
2346
2347
2320
2371
2435
2439
2438
2459
2477
2497
2544
2540
2539
2551
2596
2616
2658
2657
2701
2693
2778
2827
2837
2870
2887
2891
2892
3047
3033
3066
3068
790
188
672
794
;>#
107
695
49
838
723
778
37
719
678
762
28
301
143
304
35
10
924
64
675
306
671
35
628
728
627
774
71
406
8.8
18.0
18.3
18.3
8.0
8.0
20.0
20.0
20.0
11.0
11.0
20.0
11.0
20.0
20.0
11.5
23.0
12.0
19.0
19.0
20.0
6.0
18.0
20.0
7.0
20.0
7.0
20.0
20.0
14.0
20.0
12.5
12.0
9.0
18.0
20.0
20.0
10.0
8.0
20.0
17.0
19.0
11.0
11.0
19.0
10.0
20.0
20.0
10.5
22.0
11.0
17.0
19.0
1...0
6.0
19.0
20.0
6.0
19.0
6.0
20.0
20.0
15.0
20.0
14.0
15.0
A
D
B
•\
C
c
A
A
B
C
B
C
C
0
0
A
0
D
0
B
C
A
A
0
C
C
0
D
D
D
C
D
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppnic ppmc
0.340
0.111
0.103
0.105
0.178 0.233
0.177
0.092
0.163
0.163
0.128
0.647
0.160
0.075
0.354
0.382
0.986
0.223
2.452 2.434
0.079
0.094
0.600
0.174
1.357
1.046
0.348
0.150
0.374
0.690
0.609
0.392
0.382
0.729
0.297
C-66
-------
O
•t
o
£ *
2 I
03 8
CO 2
8
8
Tt
8
CO
8
cxi
O>
00
o>
CO
Q
jO
CO
O
CD
2
O
CO
CO
CD
O
O
O
O
O
.0
Q_
CO
OJ
O
CD
0)
LL
OUJdd -
C-67
-------
TABLE C-23. SUMMARY OF THE 1989 NMOC DATA FOR SACRAMENTO, CA (S4CA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
05-Jun-89
06-Jun-89
07-Jun-89
08-Jun-89
09-Jun-89
12-Jun-89
13-Jun-89
U-Jun-89
14-Jun-89
15-Jun-89
16-Jun-89
19-Jun-89
21-Jun-89
22-Jun-89
23-Jun-89
26-Jun-89
27-Jun-89
28-Jun-89
29-Jun-89
30-Jun-89
05-JUI-89
OS-Jul-89
06-Jul-89
07-Jul-89
10-Jul-89
11-Jul-89
12-Jul-89
13-Jul-89
U-Jut-89
17-Jul-89
19-Jul-89
20-Jul-89
21-Jul-89
24-Jul-89
25-Jul-89
26-Jul-89
26-Jul-89
27-Jul-89
28-Jul-89
31-Jul-89
31-Jul-89
01-Aug-89
02-Aug-89
03-Aug-89
(K-Aug-89
07-Aug-89
156
157
158
159
160
163
164
165
165
166
167
170
172
173
174
177
178
179
180
181
186
186
187
188
191
192
193
194
195
198
200
201
202
205
206
207
207
208
209
212
212
213
214
215
216
219
1024
1023
1064
1142
1154
1130
1169
1192
1191
1221
1239
1265
1315
1338
1364
1391
1412
1481
1483
1500
1531
1532
1567
1584
1626
1644
1672
1721
1715
1743
1791
1814
1856
1873
1892
1929
1930
1947
1977
1990
1989
2031
2050
2070
2136
2138
121
788
870
684
66
860
53
63
148
623
723
91
691
819
677
7
302
726
157
854
626
637
12
718
689
115
692
791
666
108
97
627
929
692
842
64
105
169
75
83
813
79
665
842
406
645
12.0
16.0
16.0
16.0
14.0
15.5
15.5
17.0
17.0
16.0
16.0
16.0
16.5
15.0
16.0
15.0
15.0
16.0
15.5
16.0
18.0
18.0
15.0
16.0
16.0
15.0
16.0
16.0
16.0
15.0
15.0
16.0
16.0
16.0
15.0
17.0
17.0
15.0
16.0
17.0
17.0
15.0
16.0
15.0
16.0
16.0
12.0
18.0
16.0
18.0
12.0
17.0
18.0
18.0
18.0
12.0
17.0
14.0
18.0
17.0
17.0
17.0
17.0
18.0
17.0
16.0
18.0
19.0
15.0
16.0
16.0
18.0
17.0
18.0
18.0
17.0
17.0
15.0
17.0
19.0
17.0
19.0
19.0
17.0
17.0
17.0
19.0
17.0
17.0
16.0
17.0
17.0
A
B
B
B
D
C
C
C
A
D
C
C
D
B
D
B
B
B
8
D
A
C
B
C
D
C
C
B
B
A
D
D
C
A
B
0
D
C
B
0
A
C
C
C
D
C
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.180
0.154
0.152 0.256
0.125
0.210
0.127 0.135
0.153
0.217
0.205
0.144
0.156
0.114
0.120
0.281
0.182
0.066
0.076
0.064
0.131
0.138
0.244
0.273
0.487
0.591
0.199
0.124
0.081
0.172
0.190
0.202
1.610
0.131 0.200
0.225
0.142
0.176
0.190
0.195
0.327
0.416
0.092
0.101
0.129
0.181
0.274
0.146
0.166
068
-------
TABLE C-23. SUMMARY OF THE 1989 NMOC DATA FOR SACRAMENTO, CA (S4CA)
Sampling Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure Radian
Sampled Sampled Number Number (psig) (psig) Channel
08-Aug-89
09-Aug-89
10-Aug-89
11-Aug-89
U-Aug-89
U-Aug-89
15-Aug-89
16-Aug-89
17-Aug-89
18-Aug-89
21-Aug-89
22-Aug-89
23-Aug-89
24-Aug-89
25-Aug-89
28-Aug-89
29-Aug-89
30-Aug-89
31-Aug-89
31-Aug-89
01-Sep-89
05-Sep-89
06-Sep-89
07-Sep-89
08-Sep-89
12-Sep-89
13-Sep-89
H-Sep-89
15-Sep-89
15-Sep-89
18-Sep-89
20-Sep-89
21-Sep-89
22-Sep-89
22-Sep-89
25-Sep-89
26-Sep-89
27-Sep-89
28-Sep-89
29-Sep-89
220
221
222
223
226
226
227
228
229
230
233
234
235
236
237
240
241
242
243
243
244
248
249
250
251
255
256
257
258
258
261
263
264
265
265
268
269
270
271
272
2158
2181
2210
2233
2262
2261
2291
2302
2356
2368
2374
2421
2431
2464
2472
2491
2509
2552
2577
2578
2611
2650
2667
2694
2714
2764
2798
2817
2838
2839
2865
2925
2947
2956
2955
2998
3007
3036
3078
3100
155
305
778
643
106
772
104
122
62
775
21
90
657
696
801
823
171
5U1
197
683
720
715
646
632
673
925
74
105
155
914
122
833
850
646
137
53
302
99
15.0
15.0
16.0
16.0
17.0
17.0
15.0
15.0
15.0
16.0
16.0
16.0
16.0
16.0
16.0
15.0
15.0
18.0
18.0
15.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
17.0
17.0
16.0
16.0
16.0
17.0
17.0
16.0
16.0
16. a
16.0
15.0
17.0
16.0
18.0
14.0
19.0
19.0
17.0
14.0
15.0
18. C
17
1;
18. „
18.0
18.0
14.0
18.0
16.5
17.0
17.0
16.0
18.0
18.0
18.0
18.0
17.0
18.0
16.0
18.0
18.0
9.0
17.0
17.0
18.0
18.0
18.0
16.0
17.0
18.0
18.0
C
C
D
D
D
A
D
A
A
A
A
B
C
C
C
D
D
D
C
B
C
B
B
C
D
B
B
D
D
B
B
A
B
B
A
A
C
Mean QAD AREAL
NMOC NMOC NMOC
ppmC ppmc ppmc
0.239
0.139
" 1C
.6
0.552
0.571
0.362
0.165
0.072
0.122
0.093
0.072
0.106
0.139
0.414
0.178
0.062
0.139
0.364
0.199
0.310
0.233
0.109
0.213
0.203
0.277
0.700
1.098
0.313
0.306
0.103
0.336
0.967
1.510
1.534
0.166
0.211
0.155
0.596
0.248
C-69
-------
V..
-------
-------
APPENDIX D
1989 NMOC MONITORING PROGRAM
INVALIDATED AND MISSING SAMPLES
-------
I "
-------
APPENDIX D
1989 NMOC PROGRAM
VOID OR INVALIDATED SAMPLES - CHRONOLOGIAL
#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Site
S2MO
M1NY
C3IL
MNY
MNY
MNY
H1TX
RSCA
RSCA
RSCA
RSCA
BACA
MGAL
RSCA
GRMI
BACA
RSCA
S3CA
MGAL
MNY
MGAL
S2MO
RSCA
S4CA
RSCA
M1NY
S3CA
C3IL
PLNJ
PLNJ
LBCA
PLNJ
NWNJ
ELCA
S4CA
S3CA
C6IL
ELCA
H1TX
S3CA
C6IL
ALCA
C3IL
BACA
H1TX
ELCA
GRMI
Date
06/05/89
06/05/89
06/06/89
06/06/89
06/08/89
06/06/89
06/05/89
06/09/89
06/12/89
06/12/89
06/13/89
06/14/89
06/15/89
06/15/89
06/16/89
06/15/89
06/16/89
06/09/89
06/23/89
06/28/89
06/26/89
06/30/89
06/30/89
07/03/89
07/03/89
07/06/89
07/07/89
07/06/89
07/07/89
07/06/89
07/12/89
07/13/89
07/17/89
07/18/89
07/18/89
07/19/89
07/20/89
07/21/89
07/25/89
07/27/89
07/25/89
07/27/89
07/25/89
07/25/89
07/31/89
08/01/89
07/27/89
Description
Canister leak
Solenoid failure
Pump not connected to system
Leak in system
Leak in system
Leak in system
Pressure too high
Bad fitting on pump
Bad fitting on pump
Bad fitting on pump
Bad fitting on pump
Defective orifice
Power outage
Bad fitting on pump
Sampled room air
Collection missed
Bad fitting on pump
Wrong orifice used
Sampled room air
No pressure
Pump malfunction
Pump malfunction
No pressure
Timer misprogrammed
Canister valve not opened
Canister valve not opened
Sampled room air
Defective orifice
Double collection
Double collection
Timer left in manual mode
No pressure
Unknown
Canister valve not opened
Timer misprogrammed
Orifice improperly installed
Timer in manual mode
Defective orifice
No pressure
Canister valve not opened
Collection missed
Rotameter improperly installed
Collection missed
Unknown
Canister valve not opened
Canister valve not opened
No pressure
Assigned
Canister
Equipment
Operator
Equipment
Equipment
Equipment
Equipment
Equipment
Equipment
Equipment
Equipment
Equipment
Equipment
Equipment
Operator
Operator
Equipment
Operator
Operator
Canister
Equipment
Equipment
Canister
Operator
Operator
Operator
Operator
Equipment
Operator
Operator
Operator
Canister
Unknown
Operator
Operator
Operator
Operator
Equipment
Canister
Operator
Operator
Operator
Operator
Unknown
Operator
Operator
Equipment
D-l
-------
APPENDIX D
1989 NMOC PROGRAM
VOID OR INVALIDATED SAMPLES - CHRONOLOGIAL
#
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
Site
H1TX
S3CA
S3CA
NWNJ
H1TX
RLNC
H1TX
ELCA
BMTX
BACA
BACA
FECA
BACA
BACA
GRMI
H1TX
FECA
FECA
C6IL
S3CA
S3CA
M1NY
C3IL
C3IL
C6IL
C6IL
C6IL
S4CA
BACA
C6IL
S3CA
S2MO
S3CA
S3CA
FECA
PLNJ
BMTX
MGAL
MGAL
Date
08/02/89
08/03/89
08/07/89
08/07/89
08/08/89
08/10/89
08/09/89
08/29/89
08/24/89
08/29/89
08/30/89
08/15/89
08/14/89
08/11/89
08/18/89
09/06/89
09/11/89
09/12/89
09/13/89
09/13/89
09/13/89
09/15/89
09/15/89
09/15/89
09/15/89
09/15/89
09/18/89
09/19/89
09/19/89
09/19/89
09/22/89
09/21/89
09/21/89
09/25/89
09/25/89
09/25/89
09/28/89
09/26/89
09/27/89
Description
No pressure
Timer in manual mode
Canister not connected
Power outage
No pressure
Final pressure to high
Final pressure to high
Timer misprogrammed
Cracked fitting
Defective orifice
Canister not connected
Sampled room air
Timer malfunction
Canister valve not opened
Canister valve not opened
Power outage
Timer misprogrammed
Timer in manual mode
Canister valve not opened
Unknown
Unknown
Power outage
Duplicate orifice not used
Duplicate orifice not used
Duplicate orifice not used
Duplicate orifice not used
Canister valve not opened
No pressure
No pressure
Canister valve not opened
Oriface cleaned with alcohol
Stripped thread on canister valve
Oriface cleaned with alcohol
Oriface cleaned with alcohol
No pressure
Power outage
Defective fitting
Double collection
Double collection
Assigned
Equipment
Operator
Operator
Equipment
Operator
Equipment
Equipment
Operator
Canister
Equipment
Operator
Operator
Operator
Operator
Operator
Equipment
Operator
Operator
Operator
Unknown
Unknown
Equipment
Operator
Operator
Operator
Operator
Operator
Canister
Canister
Operator
Operator
Canister
Operator
Operator
Operator
Equi •iient
Equipment
Operator
Operator
D-2
-------
APPENDIX E
PDFID INTEGRATOR PROGRAMMING INSTRUCTIONS
/•
-------
-------
INTEGRATOR PROGRAMMING INSTRUCTIONS
Instructions for programming the integrators are as foljows,
Be sure to press ENTER after each key sequence.
Control Integrator
Oven Temp 90
Oven Temp Limit 405
Oven Temp ON
Oven Temp OFF
List Oven Temp
(A listing should say OvenTemp X°C Setpt 90°C Limit 405°C)
Oven Temp Initial Time 0.20
Oven Temp Initial Value 90
Oven Temp Pgrm Rate 30.00
Oven Temp Final Value 90.00
Oven Temp Final Time 4.00
Oven Temp Equil Time 1.00
Detector A ON
Signal A
Chart speed 4.00
%0ffset 10
Zero
Attn 2A 4
Run Time Annotation ON
Run Table Annotation ON
Clock Table Annotation OFF
Program Annotation OFF
Oven Temp Annotation OFF
Report Annotation OFF
Slave Integrator
Detector 8 ON
Signal B
Chart speed 4.00
%0ffset 10
Zero
Attn 2A 4
Run Time Annotation ON
Run Table Annotation ON
Clock Table Annotation OFF
Program Annotation OFF
Oven Temp Annotation OFF
(should say ***Warning***Oven Temp now owned by Chnl 2)
Report Annotation OFF
E-l
-------
INTEGRATOR PROGRAMMING INSTRUCTIONS (Continued)
Control Integrator
Oven Temp Annotation OFF
(should say ***Warning***Oven Temp now owned by Chnl 1)
Run Time 0.01 Intg OFF
Run Time 0.01 Valve 5 ON
Run Time 0.01 Page
Run Time 0.02 List Attn2A
Run Time 0.04 Oven Temp ON
Run Time 0.20 Valve 2 ON
Run Time 0.21 Valve 2 OFF
Run Time 0.22 Intg ON
Run Time 0.23 Set BL
Run Time 0.23 List Intg
Rum Time 1.87 Set BL
Run Time 1.88 Intg OFF
Run Time 1.89 List Intg
Run Time 1.90 Chart Spped 1.5
Run Time 3.44 Valve 2 ON
Run Time 3.45 Valve 2 OFF
Run Time 3.46 Valve 2 ON
Run Time 3.47 Valve 2 OFF
Run Time 3.48 Valve 2 ON
Run Time 3.49 Valve 2 OFF
Run Time 3.50 STOP
Slave Integrator
Run Time 0.01 Intg OFF
Run Time 0.01 Page
Run Time 0.02 List Attn2A
Run Time 0.22 Intg ON
Run Time 0.23 Set BL
Run Time 0.23 List Intg
Rum Time 1.87 Set BL
Run Time 1.88 Intg OFF
Run Time 1.89 List Intg
Run Time 1.90 Chart Spped 1.5
Run Time 3.50 STOP
Control Integrator
Det 1 Temp 250
Det 1 Temp Limit 405
Inj 1 Temp 31
Inj 1 Temp Limit 405
Aux 1 Temp 90
Aux 1 Temp Limit 405
Flow A 30
Flow A Limit 500
E-2
-------
INTEGRATOR PROGRAMMING INSTRUCTIONS (Continued)
Slave Integrator
Flow B 30
Flow B Limit 500
Control Integrator
Valve 1 OFF
Valve 2 OFF
Valve 3 OFF
Valve 4 OFF
Valve 5 ON
Valve 6 OFF
Valve 7 OFF
Valve 8 OFF
Valve 9 OFF
Valve 10 OFF
Valve 11 OFF
Valve 12 OFF
Threshold 1
Peak Width 0.04
Slave Integrator
Threshold 1
Peak Width 0.04
Control Integrator
20 Valve 5 OFF
25 List Valve 5
30 Oven Temp Initial Value 30
35 Oven Temp OFF
40 Wait 2
60 Start
70 Oven Temp 90
80 Vale 5 ON
Sync ON
E-3
-------
-•*
-------
APPENDIX F
1989 NMOC DAILY CALIBRATION DATA
-------
f
-------
TABLE F-l. DAILY CALIBRATION DATA SUMMARY (CHANNEL A)
Julian
Cal Cal
Date Date
06/05/89
06/06/89
06/07/89
06/08/89
06/09/89
06/12/89
06/13/89
06/14/89
06/15/89
06/16/89
06/19/89
06/20/89
06/21/89
06/22/89
06/23/89
06/26/89
06/27/89
06/28/89
06/29/89
06/30/89
07/03/89
07/05/89
07/06/89
07/07/89
07/10/89
07/11/89
07/12/89
07/13/89
07/14/89
07/17/89
07/18/89
07/19/89
07/20/89
07/21/89
07/24/89
07/25/89
07/26/89
07/27/89
07/28/89
07/31/89
08/01/89
08/02/89
156
157
158
159
160
163
164
165
166
167
170
171
172
173
174
177
178
179
180
181
184
186
187
188
191
192
193
194
195
198
199
200
201
202
205
206
207
208
209
212
213
214
Intial
Zero
A.C.
10.900
10.615
2.935
14.190
10.275
5.070
3.995
5.985
4.860
9.130
5.070
8.210
7.725
2.275
6.410
7.850
4.670
4.140
4.560
7.510
5.380
6.295
5.250
4.215
5.925
7.380
4.455
3.410
6.090
0.000
4.550
4.685
4.250
2.950
5.275
6.325
2.800
3.660
3.430
3.885
4.015
5.575
Final
Zero
A.C.
10.900
10.615
10.930
6.055
10.000
5.070
6.170
9.890
4.335
9.130
7.480
8.875
7.725
10.215
6.410
3.765
4.565
4.140
3.090
6.325
0.000
4.485
3.910
6.250
5.950
7.380
0.000
3.410
5.655
0.000
4.390
7.490
3.590
7.275
5.225
4.930
11.280
4.245
3.430
3.645
7.330
10.705
Initial
Zero
ppmC
0.003284
0.003226
0.000889
0.004325
0.003107
0.001551
0.001212
0.001825
0.001489
0.002809
0.001535
0.002487
0.002309
0.000686
0.001923
0.002361
0.001389
0.001240
0.001364
0.002264
0.001608
0.001865
0.001546
0.001238
0.001742
0.002169
0.001305
0.000997
0.001783
0.000000
0.001332
0.001370
0.001244
0.000865
0.001546
0.001856
0.000819
0.001072
0.001021
0.001157
0.001204
0.001674
Final
Zero
ppmC
0.003284
0.003226
0.003290
0.001844
0.003037
0.001551
0.001878
0.003049
0.001333
0.002809
0.002268
0.002691
0.002334
0.003079
0.001923
0.001128
0.001388
0.001240
0.000932
0.001909
0.000000
0.001317
0.001149
0.001838
0.001759
0.002193
0.000000
0.000997
0.001670
0.000000
0.001286
0.002217
0.001061
0.002148
0.001542
0.001473
0.003320
0.001259
0.001021
0.001090
0.002196
0.003173
Initial
Cal
Factor
0.000301
0.000304
0.000303
0.000305
0.000302
0.000306
0.000303
0.000305
0.000306
0.000308
0.000303
0.000303
0.000299
0.000302
0.000300
0.000301
0.000297
0.000300
0.000299
0.000302
0.000299
0.000296
0.000294
0.000294
0.000294
0.000294
0.000293
0.000292
0.000293
0.000293
0.000293
0.000293
0.000293
0.000293
0.000293
0.000293
0.000292
0.000293
0.000298
0.000298
0.000300
0.000300
Final
Cal
Factor
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.000301
.000304
. 000301
.000304
.000304
.000306
.000304
.000308
.000307
.000308
.000303
.000303
. 000302
.000301
.000300
.000300
.000304
.000300
.000302
.000302
.000298
. 000294
.000294
.000294
.000296
.000297
.000295
.000292
.000295
.000291
.000293
.000296
.000296
.000295
0.000295
0
0
0
0
0
0
0
. 000299
.000294
.000297
.000298
.000299
.000300
.000296
Cal
Factor
Drift
0
0
0
0
-0
0
-0
-0
-0
0
-0
-0
-0
0
0
0
-0
0
-0
-0
0
0
0
-0
-0
-0
-0
0
-0
0
0
-0
-0
-0
-0
-0
-0
-0
0
-0
0
0
.000000
.000000
.000002
.000000
.000001
.000000
.000001
.000003
.000001
.000000
.000000
. 000000
.000003
.000000
.000000
.000001
.000007
.000000
.000003
.000000
.000001
.000003
. 000001
.000000
.000002
.000003
.000002
.000000
. 000003
. 000001
.000000
. 000003
.000003
.000002
.000002
.000005
.000002
.000004
.000000
.000001
.000000
.000004
Cal
Factor
X Drift
0.000000
0.000000
0.561268
0.097962
-0.435600
0.000000
-0.341099
-1.088544
-0.329681
0.000000
-0.129774
-0.080692
-1.110452
0.105912
0.000000
0.360888
-2.194403
0.000000
-0.867026
-0.108887
0.435590
0.846345
0.244776
-0.162985
-0.553429
-1.099212
-0.714895
0.000000
-0.891716
0.459737
0.001611
-1.195837
-0.998934
-0.669453
-0.696826
-1.802933
-0.671883
-1.255266
0.000000
-0.430754
0.086014
1.273258
F-l
-------
TABLE F-l. DAILY CALIBRATION DATA SUMMARY (CHANNEL A)
Julian
Cal Cal
Date Date
08/03/89
08/04/89
08/07/89
08/08/89
08/09/89
08/10/89
08/11/89
08/14/89
08/15/89
08/16/89
08/17/89
08/18/89
08/21/89
08/22/89
08/23/89
08/24/89
08/25/89
08/28/89
08/29/89
08/30/89
08/31/89
09/01/89
09/05/89
09/06/89
09/07/89
09/08/89
09/11/89
09/12/89
09/13/89
09/14/89
09/15/89
09/18/89
09/19/89
09/20/89
09/21/89
09/22/89
09/25/89
09/26/89
09/27/89
09/28/89
09/29/89
10/02/89
215
216
219
220
221
222
223
226
227
228
229
230
233
234
235
236
237
240
241
242
243
244
248
249
250
251
254
255
256
257
258
261
262
263
264
265
268
269
270
271
272
275
Intlal
Zero
A.C.
4.460
5.820
3.090
4.975
0.785
2.325
3.325
0.000
0.000
3.930
3.600
3.900
4.770
5.250
13.950
3.855
3.250
2.670
4.535
3.750
2.195
3.620
2.740
2.880
3.615
4.350
5.050
4.770
4.880
3.700
2.675
2.150
3.620
5.835
4.135
3.440
4.205
3.530
2.520
4.890
3.475
3.795
Final
Zero
A.C.
5.645
0.690
3.980
0.000
8.595
7.900
12.075
9.525
4.165
5.585
7.395
5.480
4.580
8.670
11.420
4.915
0.000
0.000
4.835
3.750
1.990
3.620
6.005
15.565
0.000
4.350
5.050
3.965
4.775
3.700
5.630
0.000
5.835
3.345
0.000
3.440
4.205
3.530
0.000
4.890
3.475
3.795
Initial
Zero
ppnC
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
001325
001701
000898
001444
000230
000680
000972
000000
000000
001154
001055
001154
001423
001533
004193
001136
000962
000798
001325
001118
000645
001064
000808
000853
001061
0.001287
0.001485
0.001394
0.001431
0.001084
0.000785
0.000624
0.001048
0.001694
0.001192
0.000990
0.001208
0.001022
0.000734
0.001415
0
0
.001010
.001092
Final
Zero
ppmC
0.001680
0.000201
0.001165
0.000000
0.002524
0.002402
0.003500
0.002793
0.001223
0.001647
0.002199
0.001647
0.001349
0.002575
0.003404
0.001492
0.000000
0.000000
0.001434
0.001118
0.000593
0.001064
0.001783
0.004587
0.000000
0.001287
0.001485
0.001170
0.001407
0.001084
0.001645
0,000000
0.001694
0.000968
0.000000
0.000990
0.001208
0.001022
0.000000
0.001415
0.001010
0.001092
Initial
Cal
Factor
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
000297
000292
000291
000290
000293
000293
000292
000291
000291
000294
000293
000296
000298
000292
000301
000295
000296
000299
000292
000298
000294
000294
000295
,000296
,000294
0.000296
0.
,000294
0.000292
0.000293
0.000293
0.000293
0.000290
0.000290
0.000290
0.000288
0
.000288
0.000287
0
0
0
0
0
.000290
.000291
.000289
.000291
.000288
Final
Cal
Factor
0.000298
0.000291
0.000293
0.000295
0.000294
0.000304
0.000290
0.000293
0.000294
0.000295
0.000297
0.000301
0.000295
0.000297
0.000298
0.000303
0.000297
0.000295
0.000297
0.000298
0.000298
0.000294
0.000297
0.000295
0.000296
0.000296
0.000294
0.000295
0.000295
0.000293
0.000292
0.000292
0.000290
0.000289
0.000292
0.000288
0.000287
0.000290
0.000295
0.000289
0.000291
0.000288
Cal
Factor
Drift
-0.000001
0.000002
-0.000002
-0.000005
-0.000000
•-0. 00001 2
0.000003
-0.000002
-•0.000003
-•0.000001
-0.000004
-0.000005
0.000004
-0.000005
0.000002
-0.000009
-0.000001
0.000004
-0.000004
0.000000
-0.000004
0.000000
-0.000002
0.000001
-0.000003
0.000000
0.000000
-0.000003
-0.000001
0.000000
0.000001
-0.000002
-0.000001
0.000001
-0.000004
0.000000
0.000000
0.000000
-0.000003
0.000000
0.000000
G . 000000
Cal
Factor
% Drift
-0.188203
0.581712
-0.666674
-1.633820
-0.059249
-3.960407
0.875000
-0.698089
-0.957405
-0.395674
-1.474376
-1.541833
1.280209
-1.739579
0.828477
-2.989675
-0.464852
1.416399
-1.516439
0.000000
-1.501712
0.000000
-0.634905
0.495894
-0.931626
0.000000
0.000000
-0.981665
-0.475028
0.000000
0.437559
-0.687442
-0.279998
0.381854
-1.402463
0.000000
0.000000
0.000000
-1.165454
0.000000
0.000000
0.000000
F-2
-------
TABLE F-l. DAILY CALIBRATION DATA SUMMARY (CHANNEL A)
Cal
Date
10/03/89
10/04/89
Julian
Cal
Date
276
277
Intial
Zero
A.C.
3.490
2.360
Final
Zero
A.C.
0.000
2.360
Initial
Zero
ppmC
0.001011
0.000680
Final
Zero
ppmC
0.000000
0.000680
Initial
Cal
Factor
0
0
.000290
.000288
0
0
Final
Cal
Factor
.000291
.000288
Cal
Factor
Drift
-0.000002
0.000000
Cal
Factor
% Drift
-0.595562
0.000000
F-3
-------
TABLE F-2. DAILY CALIBRATION DATA SUMMARY (CHANNEL B)
Julian
Cal Cal
Date Date
06/05/89
06/06/89
06/07/89
06/08/89
06/09/89
06/12/89
06/13/89
06/14/89
06/15/89
06/16/89
06/19/89
06/20/89
06/21/89
06/22/89
06/23/89
06/26/89
06/27/89
06/28/89
06/29/89
06/30/89
07/03/89
07/05/89
07/06/89
07/07/89
07/10/89
07/11/89
07/12/89
07/13/89
07/14/89
07/17/89
07/18/89
07/19/89
07/20/89
07/21/89
07/24/89
07/25/89
07/26/89
07/27/89
07/28/89
07/31/89
08/01/89
08/02/89
156
157
158
159
160
163
164
165
166
167
170
171
172
173
174
177
178
179
180
181
184
186
187
188
191
192
193
194
195
198
199
200
201
202
205
206
207
208
209
212
213
214
Intial
Zero
A.C.
0.000
0.000
0.000
0.000
0.525
1.540
0.000
0.000
0.000
0.000
0.000
0.865
0.315
2.800
1.285
0.120
0.000
0.000
0.000
8.245
1.775
0.000
0.000
0.000
2.875
0.000
0.450
1.630
0.000
1.520
0.000
1.820
0.000
1.310
0.940
0.000
0.000
0.935
1.025
0.000
1.365
0.000
Final
Zero
A.C.
0.000
0.000
1.480
0.000
0.000
1.540
0.000
0.000
0.000
0.000
0.000
2.175
0.315
5.910
1.285
0.000
0.000
0.000
0.000
7.635
0.000
0.000
0.000
0.000
5.750
0.000
0.000
1.630
0.000
0.000
0.000
3.235
1.890
1.515
2.375
0.000
0.000
0.000
1.025
0.000
3.160
2.675
Initial
Zero
ppmC
0.000000
0.000000
0.000000
0.000000
0.000162
0.000477
0.000000
0.000000
0.000000
0.000000
0.000188
0.000270
0.000097
0.000000
0.000397
0.000037
0.000000
0.000000
0.000000
0.001848
0.000546
0.000000
0.000000
0.000000
0.000000
0.000000
0.000137
0.000497
0.000000
0.000932
0.000000
0.000553
0.000000
0.000398
0.000288
0.000000
0.000000
0.000285
0.000316
0.000000
0.000420
0.000000
Final
Zero
ppmC
0.000000
0.000000
0.000452
0.000000
0.000000
0.000477
0.000000
0.000000
0.000000
0.000000
0.000000
0.000681
0.000098
0.001837
0.000397
0.000000
0.000000
0.000000
0.000000
0.002377
0.000000
0.000000
0.000000
0.000000
0.001747
0.000000
0.000000
0.000497
0.000000
0.000000
0.000000
0.000987
0.000579
0.000464
0.000725
0.000000
0.000000
0.000000
0.000316
0.000000
0.000973
0.000827
Initial
Cal
Factor
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.000305
.000305
.000305
.000310
.000308
.000309
.000309
.000311
.000309
.000311
.000313
.000313
.000309
.000310
.000309
.000308
.000309
.000309
.000309
.000310
.000307
.000307
.000304
.000305
.000304
.000305
.000305
.000305
.000302
.000303
.000303
.000304
.000303
.000304
.000306
.000305
.000303
.000304
.000308
.000307
.000307
.000309
Final
Cal
Factor
0.000305
0.000305
0.000305
0.000311
0.000308
0.000309
0.000310
0.000309
0.000310
0.000311
0.000312
0.000313
0.000312
0.000311
0.000309
0.000310
0.000314
0.000309
0.000311
0.000311
0.000308
0.000304
0.000302
0.000304
0.000304
0.000308
0.000307
0.000305
0.000303
0.000305
0.000303
0.000305
0.000306
0.000307
0.000305
0.000307
0.000306
0.000307
0.000308
0.000309
0.000308
0.000309
Cal
Factor
Dri ft
0.
0.
-0.
-0.
0.
0.
-0.
0.
-0.
0.
0.
-0.
-0.
-0.
0.
-0.
-0.
0.
-0.
-0.
-0.
0.
0.
0.
0.
-0.
-0.
0.
-0.
-0.
0.
-0.
-0.
000000
000000
000000
000001
000000
000000
000002
000001
000001
000000
000001
000001
000003
000000
000000
000002
000005
000000
000002
000001
000000
000003
000002
000000
000000
000003
000002
000000
000001
000002
000000
000002
000003
-0.000003
0.
-0.
-0.
-0.
0.
-0.
-0.
-0.
000001
000002
000003
000003
000000
000002
000001
000000
Cal
Factor
% Drift
0.000000
0.000000
-0.032930
-0.267073
0.005440
0.000000
-0.587934
0.467012
-0.202326
0.000000
0.409948
-0.249473
-1.066989
-0.114349
0.000000
-0.681143
-1.520471
0.000000
-0.686530
-0.420167
-0.146081
0.888594
0.597033
0.052633
0.059573
-0.828714
-0.726438
0.000000
-0.454025
-0.770036
0.000000
-0.526010
-0.895876
-0.996205
0.226881
-0.516808
-1.023768
-0.831039
0.000000
-0.594243
-0.176448
-0.060981
F-4
-------
TABLE F-2. DAILY CALIBRATION DATA SUMMARY (CHANNEL 8)
Julian Intial
Cal Cal Zero
Date Date A.C.
08/03/89
08/04/89
08/07/89
08/08/89
08/09/89
08/10/89
08/11/89
08/14/89
08/15/89
08/16/89
08/17/89
08/18/89
08/21/89
08/22/89
08/23/89
08/24/89
08/25/89
08/28/89
08/29/89
08/30/89
08/31/89
09/01/89
09/05/89
09/06/89
09/07/89
09/08/89
09/11/89
09/12/89
09/13/89
09/14/89
09/15/89
09/18/89
09/19/89
09/20/89
09/21/89
09/22/89
09/25/89
09/26/89
09/27/89
09/28/89
09/29/89
10/02/89
215
216
219
220
221
222
223
226
227
228
229
230
233
234
235
236
237
240
241
242
243
244
248
249
250
251
254
255
256
257
258
261
262
263
264
265
268
269
270
271
272
275
0.000
0.000
0.000
1.640
0.000
0.375
0.910
0.000
0.000
0.000
0.905
0.000
0.000
0.825
3.055
0.000
0.000
0.585
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.870
0.000
0.000
3.825
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Final
Zero
A.C.
0.000
0.000
2.735
1.640
0.000
0.000
2.440
0.000
0.000
0.000
4.405
0.000
2.225
1.855
5.540
0.000
0.595
0.000
2.030
0.000
0.000
0.000
2.000
2.530
0.000
0.870
0.000
0.000
5.335
0.000
0.905
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Initial
Zero
ppmC
0.000000
0.000000
0.000000
0.000000
0.000000
0.000113
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000190
0.000424
0.000000
0.000000
0.000604
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000264
0.000000
O.OOOQQO
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Final
Zero
ppmC
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
000000
000000
000830
000498
000000
000000
000734
000000
000000
000000
001328
000000
000686
000571
001695
000000
000183
000000
000619
000000
000000
000000
000612
0.000779
0.000000
0.
000264
0.000000
0.000000
0.001624
0.000000
0.000277
0.000000
0.000000
0.000000
0.000000
0
.000000
0.000000
0
0
0
0
0
.000000
.000000
.000000
.000000
. 000000
Initial
Cal
Factor
0.000308
0.000305
0.000301
0.000299
0.000301
0.000301
0.000301
0.000302
0.000301
0.000301
0.000302
0.000298
0.000304
0.000303
0.000304
0.000303
0.000310
0.000304
0.000305
0.000304
0.000304
0.000303
0.000305
0.000304
0.000304
0.000304
0.000304
0.000304
0.000303
0.000303
0.000303
0.000299
0.000299
0.000298
0.000299
0.000299
0.000298
0.000301
0.000304
0.000300
0.000300
0.000297
Final
Cal
Factor
0.000309
0.000302
0.000303
0.000304
0.000304
0.000302
0.000301
0.000303
0.000306
0.000302
0.000302
0.000297
0.000308
0.000308
0.000306
0.000314
0.000308
0.000308
0.000305
0.000304
0.000303
C ^00303
0.; 30306
0.000308
0.000304
0.000304
0.000304
0.000306
0.000304
0.000303
0.000306
0.000299
0.000298
0.000301
0.000300
0.000299
0.000298
0.000301
0.000303
0.000300
0.000300
0.000297
Cal
Factor
Drift
-0.
0.
-0.
-0.
-0.
-0.
0.
-0.
-0.
-0.
0.
000001
000003
000003
000005
000003
000001
000000
000002
000005
000001
000001
0.000001
-0.
-0.
-0.
-0.
0.
000004
000005
000002
000011
,000001
-0.000004
-0.
0.
0.
0.
-0.
-0.
-0.
0,
0.
-0
••0,
,000000
,000000
,000001
, 000000
.000001
, 000004
.000000
,000000
.000000
.000002
.000001
0.000000
-0.
0
0
-0
-•0
0
0
0
0
0
0
0
. 000003
.000000
.000002
.000003
.000001
.000000
.000000
.000000
.000001
.000000
.000000
.000000
Cal
Factor
X Drift
-0.220733
0.925512
-0.883351
-1.553606
-1.011834
-0.327116
0.102413
-0.646297
-1.596068
-0.365781
0.231768
0.330627
-1.447874
-1.499200
-0.695325
-3.600472
0.408081
-1.190001
-0.061877
0.000000
0.213428
0.000000
-0.320421
-1.166536
-0.031004
0.000000
0.000000
-0.648759
-0.384231
0.000000
-1.078605
0.099762
0.503915
-1.115485
-0.302059
0.000000
0. 000000
0.000000
0.294636
0.000000
0.000000
0.000000
F-5
-------
TABLE F-2. DAILY CALIBRATION DATA SUMMARY (CHANNEL B)
Cal
Date
10/03/89
10/04/89
Julian
Cal
Date
276
277
Intial
Zero
A.C.
0.000
0.000
Final
Zero
A.C.
0.000
0.000
Initial
Zero
ppmC
0.000000
0.000000
Final
Zero
ppmC
0.000000
0.000000
Initial
Cal
Factor
0
0
.000297
.000299
0
0
Final
Cal
Factor
.000301
.000299
Cal
Factor
Drift
-0.000004
0.000000
Cal
Factor
X Drift
-1.253519
0.000000
F-6
-------
TABLE F-3. DAILY CALIBRATION DATA SUMMARY (CHANNEL C)
Julian
Cal Cal
Date Date
06/05/89
06/06/89
06/07/89
06/08/89
06/09/89
06/12/89
06/13/89
06/14/89
06/15/89
06/16/89
06/19/89
06/20/89
06/21/89
06/22/89
06/23/89
06/26/89
06/27/89
06/28/89
06/29/89
06/30/89
07/03/89
07/05/89
07/06/89
07/07/89
07/10/89
07/11/89
07/12/89
07/13/89
07/14/89
07/17/89
07/18/89
07/19/89
07/20/89
07/21/89
07/24/89
07/25/89
07/26/89
07/27/89
07/28/89
07/31/89
08/01/89
08/02/89
156
157
158
159
160
163
164
165
166
167
170
171
172
173
174
177
178
179
180
181
184
186
187
188
191
192
193
194
195
198
199
200
201
202
205
206
207
208
209
212
213
214
Intial
Zero
A.C.
0.000
0.000
0.925
0.000
0.000
6.510
0.000
2.075
0.000
0.000
0.720
0.000
0.000
0.000
0.000
1.880
0.-000
7.075
1.855
10.560
0.310
3.495
0.380
1.315
0.000
0.000
0.730
0.000
0.000
1.225
0.000
0.000
0.000
1.235
0.950
0.865
1.395
0.000
0.000
0.000
0.000
0.000
Final
Zero
A.C.
0.000
0.000
0.000
0.865
0.000
6.510
0.000
0.000
0.000
0.000
0.000
4.880
0.000
1.765
0.000
0.000
0.000
7.075
3.505
0.000
0.000
4.735
0.000
0.340
8.300
0.000
0.000
0.000
0.855
4.970
0.000
0.000
0.000
0.000
3.830
3.895
4.095
2.250
0.000
0.000
1.420
0.000
Initial
Zero
ppmC
0.000000
0.000000
0.000287
0.000000
0.000000
0.002016
0.000000
0.000643
0.000000
0.000000
0.000224
0.000000
0.000000
0.000000
0.000000
0.000581
0.000000
0.002196
0.000573
0.003310
0.000096
0.001076
0.000117
0.000400
0.000000
0.000000
0.000222
0.000000
0.000000
0.000372
0.000000
0.000000
0.000000
0.000377
0.000288
0.000265
0.000426
0.000000
0.000000
0.000000
0.000000
0.000000
Final
Zero
ppmC
0.000000
0.000000
0.000000
0.000267
0.000000
0.002016
0.000000
0.000000
0.000000
0.000000
0.000000
0.001519
0.000000
0.000549
0.000000
0.000000
0.000000
0.002196
0.001093
0.000000
0.000000
0.001456
0.000000
0.000104
0.002556
0.000000
0.000000
0.000000
0.000262
0.001526
0.000000
0.000000
0.000000
0.000000
0.001166
0.001192
0.001256
0.000682
0.000000
0.000000
0.000436
0.000000
Initial
Cal
Factor
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
000307
000303
000310
000305
000309
000310
000309
000310
000309
000309
000311
000311
000311
000311
000311
000309
000307
000310
000309
000313
000311
000308
000307
000304
000305
000307
000304
000303
000305
000304
000301
000306
000306
000305
000303
000307
000305
000305
000310
000310
000310
000310
Final
Cal
Factor
0.000307
0.000303
0.000306
0.000309
0.000308
0.000310
0.000309
0.000311
0.000313
0.000309
0.000311
0.000311
0.000311
0.000311
0.000311
0.000311
0.000309
0.000310
0.000312
0.000315
0.000309
0.000307
0.000307
0.000306
0.000308
0.000306
0.000306
0.000303
0.000306
0.000307
0.000301
0.000306
0.000307
0.000307
0.000305
0.000306
0.000307
0.000303
0.000310
0.000311
0.000307
0.000312
Cal
Factor
Drift
0
0
0
-0
0
0
-0
-0
-0
0
0
-0
-0
0
0
-0
-0
0
-0
-0
0
0
-0
-0
-0
0
-0
0
-0
-0
0
-0
-0
-0
-0
0
-0
0
0
-0
0
-0
.000000
.000000
.000004
.000005
.000000
.000000
.000000
.000001
.000004
. 000000
.000001
.000001
.000000
.000000
.000000
.000002
.000001
.000000
.000003
.000001
.000002
.000000
.000000
.000002
.000003
.000001
.000002
.000000
.000001
.000003
.000000
.000000
.000001
.000002
.000001
.000001
.000001
.000002
.000000
.000001
.000003
.000002
Cal
Factor
% Drift
0.000000
0.000000
1.162502
-1.523787
0.112705
0.000000
-0.108095
-0.300575
-1.397509
0.000000
0.227065
-0.210027
-0.003374
0.014707
0.000000
-0.666836
-0.470070
0.000000
-1.009925
-0.360721
0.620594
0.137097
-0.037251
-0.593701
-0.922116
0.226307
-0.614882
0.000000
-0.459346
-1.127941
0.000000
-0.002155
-0.258112
-0.705133
-0.400412
0.214445
-0.488261
0.641400
0.002075
-0.455049
0.889591
-0.720842
F-7
-------
TABLE F-3. DAILY CALIBRATION DATA SUMMARY (CHANNEL C)
Julian
Cal Cal
Date Date
08/03/89
08/04/89
08/06/89
08/07/89
08/08/89
08/09/89
08/10/89
08/11/89
08/14/89
08/15/89
08/16/89
08/17/89
08/18/89
08/21/89
08/22/89
08/23/89
08/24/89
08/25/89
08/28/89
08/29/89
08/30/89
08/31/89
09/01/89
09/05/89
09/06/89
09/07/89
09/08/89
09/11/89
09/12/89
09/13/89
09/14/89
09/15/89
09/18/89
09/19/89
09/20/89
09/21/89
09/22/89
09/24/89
09/25/89
09/26/89
09/27/89
09/28/89
215
216
218
219
220
221
222
223
226
227
228
229
230
233
234
235
236
237
240
241
242
243
244
248
249
250
251
254
255
256
257
258
261
262
263
264
265
267
268
269
270
271
Intial
Zero
A.C.
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.395
0.000
0.000
3.885
0.000
0.000
0.605
0.000
3.445
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Final
Zero
A.C.
0.000
8.880
0.000
0.565
2.260
0.000
0.000
0.000
2.860
1.040
0.000
5.655
0.295
0.000
0.000
1.075
0.000
5.750
0.000
0.000
3.445
0.000
0.000
17.805
0.855
0.000
0.000
0.000
0.000
0.000
0.000
1.315
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Initial
Zero
ppmC
0.000000
0.000000
0.000000
0.000000
0.000000
o.cooooo
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000117
0.000000
0.000000
0.001187
0.000000
0.000000
0.000187
0.000000
0.001056
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Final
Zero
ppmC
0.000000
0.002743
0.000000
0.000172
0.000691
0.000000
0.000000
0.000000
0.000875
0.000316
0.000000
0.001721
0.000091
0.000000
0.000000
0.000335
0.000000
0.001823
0.000000
0.000000
0.001056
0.000000
0.000000
0.005563
0.000266
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000400
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Initial
Cal
Factor
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
000310
000303
000301
000304
000302
000306
000303
000302
000302
000302
000303
000303
000295
000306
000311
000306
000311
000307
000309
000307
000306
000305
000307
000308
000303
000307
000307
000304
000307
000303
000303
000305
000299
000302
,000301
,000301
,000300
,000299
.000298
0.000301
0.000302
0.000300
il
al
Factor
0.000311
0.000309
0.000301
0.000304
0.000306
0.000307
0.000299
0.000303
0.000306
0.000304
0.000302
0.000304
0.000308
0.000312
0.000315
0.000312
0.000322
0.000317
0.000310
0.000304
0.000306
0.000311
0.000307
0.000312
0.000311
0.000308
0.000307
0.000304
0.000307
0.000304
0.000303
0.000304
0.000305
0.000301
0.000302
0.000300
0.000300
0.000299
0.000298
0.000301
0.000305
0.000300
Cal
Factor
Drift
-0.
-0.
0.
0.
-0.
•-0.
0.
-•0.
-•0.
-0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
0.
0.
-0.
0.
-0.
-0.
-0.
0.
0.
0.
-0.
0.
0.
-0.
0.
-0.
0.
0.
Cl.
0.
0.
-0.
0'.
000001
000006
000000
000000
000004
000001
000004
000001
000003
000002
000001
000001
000013
000006
000005
000006
000011
000010
000001
000003
000000
000006
000000
000005
000008
000000
000000
000000
000000
000001
000000
000001
000005
000001
000001
000001
000000
000000
000000
000000
000002
000000
Cal
Factor
X Drift
-0.476143
-1.975971
0.000000
0.116014
-1.403917
-0.282915
1.279521
-0.337705
-1.106086
-0.753107
0.373168
-0.406379
-4.541017
-1.886510
-1.467086
-1.981042
-3.505237
-3.373133
-0.208303
1.016790
0.000000
-2.105117
0.000000
-1.505648
-2.778766
-0.022856
0.000000
0.000000
0.055230
-0.364337
0.000000
0.202849
-1.751838
0.434796
-0.397107
0.410038
0.000000
0.000000
0.000000
0.000000
-0.807703
0.000000
F-8
-------
TABLE F-3. DAILY CALIBRATION DATA SUMMARY (CHANNEL C)
Cal
Date
09/29/89
10/02/89
10/03/89
10/04/89
Julian
Cal
Date
272
275
276
277
Intial
Zero
A.C.
0.000
0.000
0.000
0.000
Final
Zero
A.C.
0.000
0.000
0.000
0.000
Initial
0.
0.
0.
0.
Zero
ppmC
000000
000000
000000
000000
0
0
0
0
Final
Zero
ppmC
.000000
.000000
.000000
.000000
Initial
Cal
Factor
0.000302
0.000299
0.000301
0.000300
Final
Cal
Factor
0.000302
0.000299
0.000302
0.000300
Cal
Factor
Drift
0.000000
0.000000
-0.000002
0.000000
Cal
Factor
% Drift
0.000000
0.000000
-0.534528
0.000000
F-9
-------
TABLE F-4. DAILY CALIBRATION DATA SUMMARY (CHANNEL D)
Julian
Cal Cal
Date Date
06/05/89
06/06/89
06/07/89
06/08/89
06/09/89
06/12/89
06/13/89
06/14/89
06/15/89
06/16/89
06/19/89
06/20/89
06/21/89
06/22/89
06/23/89
06/26/89
06/27/89
06/28/89
06/29/89
06/30/89
07/03/89
07/05/89
07/06/89
07/07/89
07/10/89
07/11/89
07/12/89
07/13/89
07/14/89
07/17/89
07/18/89
07/19/89
07/20/89
07/21/89
07/24/89
07/25/89
07/26/89
07/27/89
07/28/89
07/31/89
08/01/89
08/02/89
156
157
158
159
160
163
164
165
166
167
170
171
172
173
174
177
178
179
180
181
184
186
187
188
191
192
193
194
195
198
199
200
201
202
205
206
207
208
209
212
213
214
Intial
Zero
A.C.
0.000
0.000
4.395
0.000
0.000
7.320
4.375
0.000
0.000
0.000
0.000
2.995
0.000
0.000
0.000
0.000
0.000
6.840
0.035
0.710
0.000
2.255
5.350
0.000
0.000
0.000
0.000
0.220
0.000
0.540
0.000
7.030
0.000
0.000
0.000
0.000
4.515
0.000
0.000
0.000
0.000
5.865
Final Initial Final Initial Final Cal Cal
Zero Zero Zero Cal Cal Factor Factor
A.C. ppmC ppmC Factor Factor Drift % Drift
0.000 0.000000 0.000000 0.000304 0.000304 0.000000 0.000000
0.000 0.000000 0.000000 0.000299 0.000299 0.000000 0.000000
0.000 0.001374 0.000000 0.000313 0.000302 0.000010 3.350653
0.000 0.000000 0.000000 0.000304 0.000304 0.000001 0.272276
0.450 0.000000 0.000135 0.000302 0.000300 0.000002 0.671377
7.320 0.002253 0.002253 0.000308 0.000308 0.000000 0.000000
0.000 0.001342 0.000000 0.000307 0.000311 -0.000005 -1.509456
0.000 0.000000 0.000000 0.000307 0.000308 -0.000001 -0.294841
0.480 0.000000 0.000149 0.000307 0.000310 -0.000003 -0.942282
0.000 0.000000 0.000000 0.000306 0.000306 0.000000 0.000000
0.000 0.000000 0.000000 0.000310 0.000309 0.000000 0.111115
2.480 0.000920 0.000763 0.000307 0.000307 -0.000000 -0.149677
0.000 0.000000 0.000000 0.000305 0.000309 -0.000004 -1.298378
2.015 0.000000 0.000618 0.000307 0.000307 0.000000 0.136536
0.000 0.000000 0.000000 0.000308 0.000308 0.000000 0.000000
0.000 0.000000 0.000000 0.000308 0.000307 0.000001 0.196775
0.0000.0000000.0000000.0003010.000296 0.000005 1.782288
6.840 0.002105 0.002105 0.000308 0.000308 0.000000 0.000000
1.175 0.000011 0.000363 0.000306 0.000309 -0.000003 -1.003048
1.715 0.000220 0.000533 0.000310 0.000310 -0.000001 -0.310233
0.000 0.000000 0.000000 0.000306 0.000305 0.000001 0.307133
5.075 0.000689 0.001542 0.000305 0.000304 0.000002 0.540610
7.640 0.001627 0.002320 0.000304 0.000304 0.000000 0.131631
2.235 0.000000 0.000676 0.000302 0.000302 -0.000001 -0.271935
0.000 0.000000 0.000000 0.000302 0.000304 -0.000002 -0.638951
0.000 0.000000 0.000000 0.000303 0.000303 0.000001 0.195601
0.000 0.000000 0.000000 0.000302 0.000303 -0.000001 -0.416619
0.220 0.000066 0.000066 0.000300 0.000300 0.000000 0.000000
0.000 0.000000 0.000000 0.000303 0.000303 0.000000 0.113669
4.695 0.000163 0.001426 0.000302 0.000304 -0.000001 -0.475004
0.000 0.000000 0.000000 0.000302 0.000302 0.000000 0.000000
1.535 0.002123 0.000462 0.000302 0.000301 0.000001 0.216507
0.115 0.000000 0.000035 0.000301 0.000302 -0.000000 -0.144582
3.890 0.000000 0.001186 0.000301 0.000305 -0.000004 -1.201915
6.175 0.000000 0.001895 0.000305 0.000307 -0.000001 -0.441588
4.885 0.000000 0.001479 0.000303 0.000303 0.000000 0.083444
2.670 0.001357 0.000812 0.000301 0.000304 -0.000003 -1.164375
6.160 0.000000 0.001852 0.000301 0.000301 0.000001 0.277864
0.000 0.000000 0.000000 0.000307 0.000307 0.000000 0.000000
0.000 0.000000 0.000000 0.000307 0.000310 -0.000003 -0.901830
3.620 0.000000 0.001132 0.000306 0.000313 -0.000006 -1.993076
0.000 0.001788 0.000000 0.000305 0.000307 -0.000002 -0.657493
F-10
-------
TABLE F-4. DAILY CALIBRATION DATA SUMMARY (CHANNEL 0)
Julian
Cal Cal
Date Date
08/03/89
08/04/89
08/06/89
08/07/89
08/08/89
08/09/89
08/10/89
08/11/89
08/14/89
08/15/89
08/16/89
08/17/89
08/18/89
08/21/89
08/22/89
08/23/89
08/24/89
08/25/89
08/28/89
08/29/89
08/30/89
08/31/89
09/01/89
09/05/89
09/06/89
09/07/89
09/08/89
09/11/89
09/12/89
09/13/89
09/14/89
09/15/89
09/18/89
09/19/89
09/20/89
09/21/89
09/22/89
09/24/89
09/25/89
09/26/89
09/27/89
09/28/89
215
216
218
219
220
221
222
223
226
227
228
229
230
233
234
235
236
237
240
241
Z42
243
244
248
249
250
251
254
255
256
257
258
261
262
263
264
265
267
268
269
270
271
Intial
Zero
A.C.
0.000
0.000
0.000
0.000
0.000
0.000
0.000
2.465
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.780
0.000
12.730
0.000
0.360
0.000
0.000
0.000
0.000
0.000
0.000
0.000
2.350
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Final Initial Final Initial Final Cal Cal
Zero Zero Zero Cal Cal Factor Factor
A.C. ppmC ppmC Factor Factor Drift X Drift
0.000 0.000000 0.000000 0.000307 0.000308 -0.000001 -0.358708
3.050 0.000000 0.000925 0.000300 0.000303 -0.000004 -1.208061
0.000 0.000000 0.000000 0.000299 0.000299 0.000000 0.000000
0.000 0.000000 0.000000 0.000300 0.000300 0.000000 0.029398
2.315 0.000000 0.000697 0.000299 0.000301 -0.000002 -0.616333
0.000 0.000000 0.000000 0.000301 0.000302 -0.000001 -0.336481
0.000 0.000000 0.000000 0.000300 0.000303 -O.G3Q003 -1.107990
0.000 0.000739 0.000000 0.000300 0.000300 -0.000000 -0.144798
0.000 0.000000 0.000000 0.000300 0.000306 -0.000006 -1.855203
3.710 0.000000 0.001132 0.000299 0.000305 -0.000006 -1.921009
0.000 0.000000 0.000000 0.000299 0.000302 -0.000002 -0.779748
4.565 0.000000 0.001370 0.000300 0.000300 -0.000000 -0.003137
0.000 0.000000 0.000000 0.000306 0.000292 0.000014 4.460500
0.000 0.000000 0.000000 0.000294 0.000298 -0.000004 -1.423636
0.000 0.000000 0.000000 0.000299 0.000306 -0.000007 -2.272854
0.575 0.000000 0.000174 0.000297 0.000302 -0.000004 -1.498292
0.000 0.000000 0.000000 0.000303 0.000309 -0.000006 -2.056354
0.000 0.000000 0.000000 0.000305 0.000312 -0.000006 -2.074276
0.000 0.000538 0.000000 0.000302 0.000304 -0.000002 -0.588713
8.890 0.00000^ 0.002642 0.000303 0.000297 0.000005 1.816768
12.7; 0.003872 0.003872 0.000304 0.000304 0.000000 0.000000
0.000 0.000000 0.000000 0.000302 0.000308 -0.000006 -1.993487
0.360 0.000109 0.000109 0.000303 0.000303 0.000000 0.000000
2.140 0.000000 0.000665 0.000304 0.000311 -0.000007 -2.357163
0.375 0.000000 0.000116 0.000303 0.000310 -0.000006 -2.121072
0.000 0.000000 0.000000 0.000303 0.000304 -0.000001 -0.327210
0.000 0.000000 0.000000 0.000304 0.000304 0.000000 0.000000
0.000 0.000000 0.000000 0.000302 0.000302 0.000000 0.000000
0.000 0.000000 0.000000 0.000303 0.000303 -0.000001 -0.205518
0.000 0.000000 0.000000 0.000309 0.000309 0.000000 0.023649
2.350 0.000709 0.000709 0.000302 0.000302 0.000000 0.000000
0.000 0.000000 0.000000 0.000303 0.000303 -0.000001 -0.185613
0.000 0.000000 0.000000 0.000299 0.000302 -0.000003 -1.101487
0.000 0.000000 0.000000 0.000300 0.000298 0.000002 0.784490
0.000 0.000000 0.000000 0.000298 0.000301 -0.000003 -1.012285
0.000 0.000000 0.000000 0.000298 0.000297 0.000000 0.154848
0.000 0.000000 0.000000 0.000297 0.000297 0.000000 0.000000
0.000 0.000000 0.000000 0.000297 0.000297 0.000000 0.000000
0.000 0.000000 0.000000 0.000296 0.000296 0.000000 0.000000
0.000 0.000000 0.000000 0.000299 0.000299 0.000000 0.000000
0.000 0.000000 0.000000 0.000300 0.000303 -0.000004 -1.190461
0.000 0.000000 0.000000 0.000297 0.000297 0.000000 0.000000
F-ll
-------
TABLE F-4. DAILY CALIBRATION DATA SUMMARY (CHANNEL 0)
Cal
Date
Julian
Cal
Date
Intial
Zero
A.C.
Final
Zero
A.C.
Initial
Zero
ppmC
Final
Zero
ppmC
Initial
Cal
Factor
Final
Cal
Factor
Cal
Factor
Drift
Cal
Factor
% Drift
09/29/89 272 0.000 0.000 0.000000 0.000000 0.000299 0.000299 0.000000 0.000000
10/02/89 275 0.000 0.000 0.000000 0.000000 0.000297 0.000297 0.000000 0.000000
10/03/89 276 0.000 0.000 0.000000 0.000000 0.000296 0.000299 -0.000003 -0.970956
10/04/89 277 0.000 0.000 0.000000 0.000000 0.000296 0.000296 0.000000 0.000000
F-12
-------
APPENDIX G
1989 NMOC IN-HOUSE QUALITY CONTROL SAMPLES
-------
vj
-------
TABLE G-l. NMOC INHOUSE QUALITY CONTROL SAMPLES (CHANNEL A)
Julian QC Calculated Measured
Date Date I.D. NMOC NMOC
Analyzed Analyzed Number ppmC ppmC
06/06/89
06/07/89
06/08/89
06/09/89
06/12/89
06/14/89
06/21/89
06/23/89
06/26/89
06/28/89
06/29/89
06/30/89
07/03/89
07/06/89
07/10/89
07/12/89
07/14/89
07/17/89
07/18/89
07/19/89
07/20/89
07/21/89
07/24/89
07/26/89
07/27/89
07/28/89
07/31/89
08/02/89
08/04/89
08/07/89
08/09/89
08/10/89
08/11/89
08/14/89
08/15/89
08/21/89
08/23/89
08/25/89
08/28/89
08/30/89
08/31/89
09/01/89
09/05/89
157
158
159
160
163
165
172
174
177
179
180
181
184
187
191
193
195
198
199
200
201
202
205
207
208
209
212
214
216
219
221
222
223
226
227
233
235
237
240
242
243
244
248
1002
1003
1004
1058
1086
1111
1233
1298
1297
1354
1373
1418
1447
1471
1573
1599
1654
1682
1708
1734
1762
1788
1813
1866
1600
1912
1939
1988
2039
2064
2096
2143
2168
2190
2222
2318
2369
2422
2458
2498
2527
2530
2601
0.455
0.545
0.766
0.406
0.464
0.597
1.815
0.512
0.158
0.284
0.394
0.325
17.557
16.763
8.767
8.395
5.459
1.231
0.757
0.478
0.320
0.260
0.207
0.242
8.767
0.193
0.151
0.132
0.291
0.491
0.271
0.345
0.612
0.117
1.144
0.701
0.998
3.744
1.714
0.636
0.472
0.688
0.142
0.458
0.546
0.754
0.364
0.466
0.649
1.784
0.486
0.147
0.292
0.433
0.304
17.251
17.557
8.401
8.767
5.682
1.298
0.772
0.490
0.333
0.252
0.217
0.245
8.431
0.196
0.171
0.126
0.275
0.504
0.255
0.342
0.612
0.110
1.095
0.667
0.984
3.847
1.703
0.598
0.606
0.677
0.167
NMOC
Bias
ppnC
0.003
0.001
-0.012
-0.042
0.002
0.052
-0.031
-0.026
-0.011
0.008
0.039
-0.021
-0.306
0.794
-0.366
0.372
0.223
0.067
0.015
0.012
0.013
-0.008
0.010
0.003
-0.336
0.003
0.020
-0.006
-0.016
0.013
-0.016
-0.003
0.000
-0.007
-0.049
-0.034
-0.014
0.103
-0.011
-0.038
0.134
-0.011
0.025
NMOC
Percent
Bias
0.659
0.257
-1.567
-10.345
0.431
8.710
-1.708
-5.078
-6.962
2.817
9.898
-6.462
-1.743
4.737
-4.175
4.431
4.085
5.443
1.982
2.510
4.063
-3.077
4.831
1.240
-3.833
1.554
13.245
-4.545
-5.498
2.648
-5.904
-0.870
0.000
-5.983
-4.283
-4.850
-1.403
2.751
-0.642
-5.975
28.390
-1.599
17.606
G-l
-------
TABLE 6-1. NMOC INHCUSE QUALITY CONTROL SAMPLES (CHANNEL A)
Date
Analyzed
09/07/89
09/08/89
09/13/89
09/14/89
09/15/89
09/20/89
09/22/89
Julian
Date
Analyzed
250
251
256
257
258
263
265
QC
I.D.
Number
2629
2645
2735
2757
2779
2854
2906
Calculated
NHOC
ppmC
0.916
0.707
0.656
1.049
1.089
0.246
0.357
Measured
NMOC
ppmC
0.931
0.689
0.708
1.080
1.170
0.248
0.347
NMOC
Bias
ppmC
0.015
-0.018
0.052
0.031
0.081
0.002
-0.010
NMOC
Percent
Bias
1.638
-2.546
7.927
2.955
7.438
0.813
-2.801
G-2
-------
TABLE G-2. NMOC INHOUSE QUALITY CONTROL SAMPLES (CHANNEL B)
Julian QC Calculated Measured
Date Date 1.0. NMOC NMOC
Analyzed Analyzed Number ppmC ppmC
06/06/89
06/07/89
06/06/69
06/09/89
06/12/89
06/14/89
06/21/89
06/23/89
06/26/89
06/28/89
06/29/89
06/30/89
07/03/89
07/06/89
07/10/89
07/12/89
07/14/89
07/17/89
07/18/89
07/19/89
07/20/89
07/21/89
07/24/89
07/26/89
07/27/89
07/28/89
07/31/89
08/02/89
08/04/89
08/07/89
08/09/89
08/10/89
08/11/89
08/14/89
08/15/89
08/21/89
08/23/89
08/25/89
08/28/89
08/30/89
08/31/89
09/01/89
09/05/89
157
158
159
160
163
165
172
174
177
179
180
181
184
187
191
193
195
198
199
200
201
202
205
207
208
209
212
214
216
219
221
222
223
226
227
233
235
237
240
242
243
244
248
1002
1003
1004
1058
1086
1111
1233
1298
1297
1354
1373
1418
1447
1471
1573
1599
1654
1682
1708
1734
1762
1788
1813
1866
1600
1912
1939
1988
2039
2064
2096
2143
2168
2190
2222
2318
2369
2422
2458
2498
2527
2530
2601
0.461
0.529
0.759
0.404
0.454
0.564
1.821
0.508
0.163
0.284
0.393
0.325
17.557
16.975
8.767
8.449
5.458
1.227
0.753
0.477
0.318
0.260
0.207
0.242
8.767
0.193
0.151
0.128
0.291
0.492
0.267
0.334
0.612
0.117
1.149
0.686
0.975
3.804
1.681
0.627
0.461
0.686
0.139
0.458
0.546
0.754
0.364
0.466
0.649
1.784
0.486
0.147
0.287
0.433
0.289
17.321
17.557
8.404
8.767
5.682
1.298
0.772
0.490
0.333
0.252
0.211
0.242
8.506
0.191
0.158
0.126
0.279
0.504
0.255
0.342
0.614
0.110
1.095
0.667
0.984
3.847
1.703
0.598
0.606
0.677
0.167
NMOC
Bias
ppmC
-0.003
0.017
-0.005
-0.040
0.012
0.085
-0.037
-0.022
-0.016
0.003
0.040
-0.036
-0.236
0.582
-0.363
0.318
0.224
0.071
0.019
0.013
0.015
-0.008
0.004
0.000
-0.261
-0.002
0.007
-0.002
-0.012
0.012
-0.012
0.008
0.002
-0.007
-0.054
-0.019
0.009
0.043
0.022
-0.029
0.145
-0.009
0.028
NMOC
Percent
Bias
-0.651
3.289
-0.659
-9.901
2.643
15.071
-2.032
-4.331
-9.816
1.056
10.178
-11.077
-1.344
3.429
-4.141
3.764
4.104
5.786
2.523
2.725
4.717
-3.077
1.932
0.000
-2.977
-1.036
4.636
-1.563
-4.124
2.439
-4.494
2.395
0.327
-5.983
-4.700
-2.770
0.923
1.130
1.309
-4.625
31.453
-1.312
20.144
G-3
-------
TABLE G-2. NMOC INHOUSE QUALITY CONTROL SAMPLES (CHANNEL B)
Date
Analyzed
09/07/89
09/08/89
09/13/89
09/14/89
09/15/89
Julian
Date
Analyzed
250
251
256
257
258
QC
1.0.
Number
2629
2645
2735
2757
2779
Calculated
NMOC
ppmC
0.919
.0.691
0.656
1.049
1.089
Measured
NMOC
ppmC
0.931
0.689
0.689
1.077
1.180
NMOC
Bias
ppmC
0.012
-0.002
0.033
0.028
0.091
NMOC
Pe ent
Bias
].306
-0.289
5.030
2.669
8.356
09/20/89 263 2854 0.209 0.248 0.039 18.660
09/22/89 265 2906 0.358 0.347 -0.011 -3.073
G-4
-------
TABLE 6-3. NMOC INHOUSE QUALITY CONTROL SAMPLES (CHANNEL C)
Julian QC Calculated Measured
Date Date 1.0. NMOC NHOC
Analyzed Analyzed Number ppmC ppmC
06/06/89
06/07/89
06/08/89
06/09/89
06/12/89
06/14/89
06/21/89
06/23/89
06/26/89
06/28/89
06/29/89
06/30/89
07/03/89
07/06/89
07/10/89
07/12/89
07/14/89
07/17/89
07/18/89
07/19/89
07/20/89
07/21/89
07/24/89
07/26/89
07/27/89
07/28/89
07/31/89
08/02/89
08/04/89
08/07/89
08/09/89
08/10/89
08/11/89
08/14/89
08/15/89
08/21/89
08/23/89
08/25/89
08/28/89
08/30/89
08/31/89
09/01/89
09/05/89
157
158
159
160
163
165
172
174
177
179
180
181
184
187
191
193
195
198
199
200
201
202
205
207
208
209
212
214
216
219
221
222
223
226
227
233
235
237
240
242
243
244
248
1002
1003
1004
1058
1086
1111
1233
1298
1297
1354
1373
1418
1447
1471
1573
1599
1654
1682
1708
1734
1762
1788
1813
1866
1600
1912
1939
1988
2039
2064
2096
2143
2168
2190
2222
2318
2369
2422
2458
2498
2527
2530
2601
0.456
0.542
0.741
0.403
0.456
0.600
1.833
0.513
0.160
0.284
0.386
0.325
17.557
16.993
8.767
8.177
5.430
1.221
0.743
0.480
0.320
0.261
0.207
0.242
8.767
0.193
0.151
0.127
0.291
0.494
0.269
0.342
0.612
0.117
1.150
0.679
0.983
3.701
1.690
0.623
0.470
0.708
0.148
0.458
0.546
0.754
0.364
0.466
0.649
1.784
0.486
0.147
0.292
0.433
0.296
17.122
17.557
8.187
8.767
5.682
1.298
0.772
0.490
0.333
0.252
0.211
0.243
8.143
0.193
0.187
0.126
0.275
0.504
0.255
0.342
0.609
0.109
1.095
0.667
0.984
3.847
1.703
0.598
0.606
0.677
0.167
NMOC
Bias
ppmC
0.002
0.004
0.013
-0.039
0.010
0.049
-0.049
-0.027
-0.013
0.008
0.047
-0.029
-0.435
0.564
-0.580
0.590
0.252
0.077
0.029
0.010
0.013
-0.009
0.004
0.001
-0.624
0.000
0.036
-0.001
-0.016
0.010
-0.014
0.000
-0.003
-0.008
-0.055
-0.012
0.001
0.146
0.013
-0.025
0.136
-0.031
0.019
NMOC
Percent
Bias
0.439
0.812
1.754
-9.677
2.193
8.167
-2.673
-5.263
-8.125
2.817
12.176
-8.923
-2.478
3.319
-6.616
7.215
4.641
6.306
3.903
2.083
4.063
-3.448
1.932
0.413
-7.118
0.000
23.841
-0.787
-5.498
2.024
-5.204
0.000
-0.490
-6.838
-4.783
-1.767
0.102
3.945
0.769
-4.013
28.936
-4.379
12.838
G-5
-------
TABLE G-3. NMOC INHOUSE QUALITY CONTROL SAMPLES (CHANNEL C)
Date
Analyzed
09/07/89
09/08/89
09/13/89
09/14/89
09/15/89
09/20/89
09/22/89
Julian
Date
Analyzed
250
251
256
257
258
263
265
QC
1.0.
Number
2629
2645
2735
2757
2779
2854
2906
Calculated
NMOC
ppmC
0.941
0.697
0.656
1.049
1.089
0.238
0.353
Measured
NMOC
ppmC
0.931
0.689
0.706
1.084
1.178
0.248
0.347
NMOC
Bias
ppmC
-0.010
-0.008
0.050
0.035
0.089
0.010
-0.006
NMOC
Percent
Bias
-1.063
-1.148
7.S22
3.337
8.173
4.202
-1.700
G-6
-------
TABLE 6-4. NMOC INHOUSE QUALITY CONTROL SAMPLES (CHANNEL D)
Julian QC Calculated Measured
Date Date I.D. NMOC NMOC
Analyzed Analyzed Number ppmC ppmC
06/06/89
06/07/89
06/08/89
06/09/89
06/12/89
06/14/89
06/21/89
06/23/89
06/26/89
06/28/89
06/29/89
06/30/89
07/03/89
07/06/89
07/10/89
07/12/89
07/14/89
07/17/89
07/18/89
07/19/89
07/20/89
07/21/89
07/24/89
07/26/89
07/27/89
07/28/89
07/31/89
08/02/89
08/04/89
08/07/89
08/09/89
08/10/89
08/11/89
08/14/89
08/15/89
08/16/89
08/23/89
08/25/89
08/28/89
08/30/89
08/31/89
09/01/89
09/05/89
157
158
159
160
163
165
172
174
177
179
180
181
184
187
191
193
195
198
199
200
201
202
205
207
208
209
212
214
216
219
221
222
223
226
227
233
235
237
240
242
243
244
248
1002
1003
1004
1058
1086
1111
1233
1298
1297
1354
1373
1418
. 1447
1471
1573
1599
1654
1682
1708
1734
1762
1788
1813
1866
1600
1912
1939
1988
2039
2064
2096
2143
2168
2190
2222
2318
2369
2422
2458
2498
2527
2530
2601
0.453
0.525
0.743
0.393
0.454
0.592
1.821
0.597
0.155
0.284
0.383
0.325
17.557
16.712
8.767
8.384
5.490
1.214
0.742
0.464
0.312
0.252
0.207
0.242
8.767
0.193
0.151
0.124
0.291
0.484
0.262
0.336
0.612
0.117
1.138
0.674
1.047
3.811
1.710
0.651
0.508
0.676
0.138
0.458
0.546
0.754
0.364
0.466
0.649
1.784
0.486
0.147
0.284
0.433
0.306
16.991
17.557
8.378
8.767
5.682
1.298
0.772
0.490
0.333
0.252
0.206
0.238
8.431
0.190
0.190
0.126
0.267
0.504
0.255
0.342
0.603
0.108
1.095
0.667
0.984
3.847
1.703
0.598
0.606
0.677
0.167
NMOC
Bias
ppmC
0.005
0.021
0.011
-0.029
0.012
0.057
-0.037
-0.111
-0.008
0.000
0.050
-0.019
-0.566
0.845
-0.389
0.383
0.192
0.084
0.030
0.026
0.021
0.000
-0.001
-0.004
-0.336
-0.003
0.039
0.002
-0.024
0.020
-0.007
0.006
-0.009
-0.009
-0.043
-0.007
-0.063
0.036
-0.007
-0.053
0.098
0.001
0.029
NMOC
Percent
Bias
1.104
4.076
1.480
-7.379
2.643
9.628
-2.032
-18.593
-5.161
0.000
13.055
-5.846
-3.224
5.056
-4.437
4.568
3.497
6.919
4.043
5.603
6.731
0.000
-0.483
-1.653
-3.833
-1.554
25.828
1.613
-8.247
4.132
-2.672
1.786
-1.471
-7.692
-3.779
-1.039
-6.017
0.945
-0.409
-8.141
19.291
0.148
21.014
G-7
-------
TABLE 6-4. NHOC INHOUSE QUALITY CONTROL SAMPLES (CHANNEL D)
Date
Analyzed
09/07/89
09/08/89
09/13/89
09/14/89
09/15/89
09/20/89
09/22/89
Julian
Date
Analyzed
250
251
256
257
258
263
265
QC
I.D.
Number
2629
2645
2735
2757
2779
2854
2906
Calculated
NHOC
ppenC
0.967
0.747
0.656
1.049
1.089
0.233
0.351
Measured
NMOC
ppmC
0.931
0.689
0.704
1.073
1.170
0.248
0.347
NMOC
Bias
ppmC
-0.036
-0.058
0.048
0.024
0.081
0.015
-0.004
NMOC
Percent
Bias
-3.723
-7.764
7.317
2.288
7.438
6.438
-1.140
-------
APPENDIX H
MULTIPLE DETECTOR SPECIATED THREE-HOUR SITE DATA SUMMARIES
-------
'.* *
\
-------
APPENDIX H -- LIST OF TABLES
Table Page
H-l MULTIPLE DETECTOR SPECIATED THREE-HOUR DATA SUMMARY FOR C3IL . H-l
H-2 MULTIPLE DETECTOR SPECIATED THREE-HOUR DATA SUMMARY FOR C6IL . H-4
H-3 MULTIPLE DETECTOR SPECIATED THREE-HOUR DATA SUMMARY FOR GRMI . H-7
H-4 MULTIPLE DETECTOR SPECIATED THREE-HOUR DATA SUMMARY FOR MNY . . H-10
H-5 MULTIPLE DETECTOR SPECIATED THREE-HOUR DATA SUMMARY FOR M1NY . H-13
H-6 MULTIPLE DETECTOR SPECIATED THREE-HOUR DATA SUMMARY FOR NWNJ . H-16
H-7 MULTIPLE DETECTOR SPECIATED THREE-HOUR DATA SUMMARY FOR PLNJ . H-l9
/ "%
-------
-------
TABLE H-1. MULTIPLE DETECTOR SPECIATEO THREE-HOUR DATA SUMMARY FOR C3IL
Sample Date
Sample ID
Total NMOC, ppmC
Compound
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3-Butadiene
Bromomethane
Chloroethane
Methylene chloride
trans- 1,2-D ich loroethylene
1 , 1 - 0 i ch I oroethane
Chloroprene
Bromochloromethane
Chloroform
1,1,1-Trichloroethane
Carbon tetrachloride
1,2-D ich I oroethane
Benzene
Tr ich loroethylene
1,2-Dichloropropane
Bromodichloromethane
cis-1,3-Dichloropropylene
Toluene
n-Octane/t-1,3-Dichloropropylene
1 , 1 ,2-Trichloroethane
Tetrach loroethyl ene
D i bromoch 1 oromethane
Ch lorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1,1,2,2-Tetrachloroethane
m-D ich lorobenzene
p-D i ch 1 orobenzene
o-D ich lorobenzene
07/17/89
1748
0.417
<1.00
<0.10
<0.20
<0.20
0.05 H
<0.20
0.05 H
<0.11
<0.04
<0.04
0.10 H
<0.01
<0.01
<0.01
0.15 L
<0.04
2.25 H
<0.01
<0.04
<0.01
<0.04
2.38 M
<0.04
<0.02
<0.07
<0.01
<0.02
0.36 H
1.82 H
0.53 H
<0.01
<0.01
0.03 L
<0.09
<0.02
08/09/89
2174
0.232
3.27 L
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
1.09 M
0.14 L
<0.04
1.34 H
0.37 H
<0.04
<0.01
<0.04
2.30 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.24 H
1.34 H
0.41 H
<0.01
<0.01
<0.02
<0.09
<0.02
08/11/89
2223
;
0.211
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
1.32 H
<0.04
<0.04
0.06 M
<0.01
<0.01
3.13 H
0.14 U
<0.04
0.90 H
0.58 M
<0.04
0.08 M
3.65 H
<0.02
<0.04
<0.02
<0.07
<0.01
<0.02
0.20 H
0.97 H
0.36 H
<0.01
<0.01
<0.02
<0.09
<0.02
08/14/89
2283
0.242
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
0.13 M
<0.01
<0.01
0.83 L
0.14 L
<0.04
0.89 H
0.14 L
<0.04
<0.01
<0.04
1.45 H
0.31 L
<0.02
0.88 L
<0.01
<0.02
0.19 H
0.85 H
0.31 H
<0.01
<0.01
<0.02
<0.09
<0.02
•\
08/15/89
2277
0.252
1.73 L
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
0.08 H
<0.01
<0.01
1.13 M
0.15 L
<0.04
0.89 H
0.74 H
<0.04
<0.01
<0.04
3.41 M
<0.04
<0.02
1.33 L
<0.01
<0.02
0.29 H
1.37 H
0.46 H
<0.01
<0.01
<0.02
0.84 L
0.07 L
H High confidence level
M Medium confidence level
L Low confidence level
(Continued)
WHM/015
H-1
-------
TABLE H-1. C3IL (Continued)
Sample Date
Sample 10
Total NMOC, ppmC
Compound
Acetylene
Propylene
Chi oromethane
Vinyl chloride
1,3 -Butadiene
Bromomethane
Chloroethane
Methylene chloride
trans-1,2-Dichloroethylene
1,1-Di chloroethane
Chloroprene
Bromoch I oromethane
Chloroform
1,1,1-Trichloroethane
Carbon tetrachloride
1 ,2-Dichloroethane
Benzene
Trichloroethylene
1 ,2-Dichloropropane
B romodi ch I oromethane
cis-1,3-Dichloropropylene
Toluene
n-Octane/t-1,3-Dichloropropylene
1,1,2-Trichloroethane
Tetrachloroethylene
0 i bromoch I oromethane
Chi orobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xy 1 ene
Bromoform
1,1,2,2-Tetrachloroethane
m-D i ch I orobenzene
p-D i ch I orobenzene
o-D i ch I orobenzene
H High confidence level M
0 Duplicate sample R
08/16/89
2316
0.304
<1.00
<0.10
<0.20
<0.20
<0.10
0.07 H
<0.10
<0.11
<0.04
<0.04
0.13 L
<0.01
<0.01
2.52 H
0.13 L
<0.04
1.14 H
0.51 H
<0.04
<0.01
<0.04
3.76 M
0.22 L
<0.02
1.82 L
<0.01
<0.02
0.37 H
1.84 H
0.56 H
<0.01
<0.01
0.02 L
<0.09
<0.02
Medium confidence
Replicate analysis
08/17/89
23380
0.141
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
2.04 H
<0.04
<0.04
<0.06
<0.01
<0.01
1.12 H
0.12 L
<0.04
0.53 H
0.21 H
<0.04
<0.01
<0.04
1.18 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.12 H
0.59 H
0.16 H
<0.01
<0.01
<0.02
<0.09
<0.02
level
08/17/89
2338R
0.141
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
2.25 H
<0.04
<0.04
<0.06
<0.01
<0.01
1.15 H
0.13 L
<0.04
0.57 H
0.37 M
<0.04
<0.01
<0.04
1.28 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.12 H
0.64 H
0.22 H
<0.01
<0.01
<0.02
<0.09
<0.02
L Low confidence
08/17/89
23390
0.150
•0.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
1.94 H
<0.04
<0.04
<0.06
<0.01
<0.01
1.10 H
0.13 L
<0.04
0.56 H
0.26 H
<0.04
<0.01
<0.04
1.16 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.12 H
0.59 H
0.21 L
<0.01
<0.01
<0.02
<0.09
<0.02 ,
level
08/18/89
2416
0.080
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
0.83 M
0.14 L
<0.04
0.25 H
0.16 L
<0.04
<0.01
<0.04
0.24 H
<0.04 .
<0.02
0.09 L
<0.01
<0.02
0.04 M
0.18 H
0.06 H
<0.01
<0.01
<0.02
<0.09
<0.02
(Continued)
UHH/015
H-2
-------
TABLE H-1. C3IL (Continued)
Sample Date
Sample ID
Total NMOC, ppmC
Compound
Acetylene
P ropy I ene
Chloromethane
Vinyl chloride
1,3- Butadiene
Bromomethane
Chloroethane
Methyl ene chloride
trans-1,2-Dichloroethylene
1 , 1 -Di Chloroethane
Chloroprene
Bromochloromethane
Chloroform
1 , 1 , 1-Trichloroethane
Carbon tetrachloride
1,2-Dichtoroethane
Benzene
Trichtoroethylene
1 , 2-0 i ch I oropropane
B romod i ch 1 ororne thane
c i s - 1 , 3 -D i ch I oropropy I ene
Toluene
n-Octane/t-1,3-Dichloropropylene
1 , 1 , 2- Tr i ch I oroethane
Tetrachloroethylene
0 i bromoch I or omethane
Chlorobenzene
Ethylbenzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1 , 1 ,2,2-Tetrachloroethane
m-Di chlorobenzene
p-Oi chlorobenzene
o-Di chlorobenzene
08/21/89
2378
0.542
08/22/89
2400
0.233
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
1.61 L
<0.04
<0.04
<0.06
<0.01
<0.01
1.29 L
0.13 U
<0.04
2.44 H
0.65 L
<0.04
<0.01
<0.04
6.59 H
<0.04
<0.02
1.15 L
<0.01
<0.02
0.67 H
3.59 N
1.09 N
<0.01
<0.01
<0.02
0.20 H
<0.02
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
•cO.04
<0.06
<0.01
<0.01
0.75 L
0.15 L
<0.04
1.24 H
<0.01
0.46 H
<0.01
<0.04
3.07 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.22 H
1.16 H
0.36 L
<0.01
<0.01
<0.02
0.08 M
<0.02
=======rs=s=sBS====ss=ss=ss==s==s====:
H High confidence level
=======================
Medium confidence level
Low confidence level
WHM/015
H-3
-------
TABLE H-2. MULTIPLE DETECTOR SPECIATED THREE-HOUR DATA SUMMARY FOR C6IL
Sample Date
Sample ID
Total NMOC, ppmC
Compound
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3 -Butadiene
Bromomethane
Chloroethane
Methylene chloride
trans-1,2-Dichloroethylene
1,1-Di chloroethane
Chloroprene
B romoch I oromethane
Chloroform
1,1,1-Trichloroethane
Carbon tetrachloride
1.2-Dichloroethane
Benzene
Trichloroethylene
1 , 2 • D i ch 1 oropr opane
Bromod i ch I oromethane
cis-1,3-Dichloropropylene
Toluene
n-Octane/t-1 ,3-Dichloropropylene
1 , 1 ,2-Trichloroethane
Tet rach I oroethy I ene
D i bromoch loromethane
Chlorobenzene
Ethylbenzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1 , 1 ,2, 2-Tetrachloroethane
m- D i ch I orobenzene
p- D i ch I orobenzene
o-Dich I orobenzene
07/17/89
1749
0.973
<1.00
<0.10
<0.20
<0.20
1.04 M
<0.20
<0.10
<0.11
<0.04
<0.04
0.03 M
<0.01
<0.01
1.35 M
0.14 L
<0.04
8.16 H
0.39 L
<0.04
<0.01
<0.04
10.53 H
<0.04
<0.02
<0.07
<0.01
<0.02
1.20 H
6.95 H
2.23 H
<0.01
<0.01
<0.02
1.15 M
<0.02
08/09/89
2173
0.960
<1.00
<0.10
<0.20
<0.20
0.77 M
<0.20
<0.10
<0.11
<0.04
<0.04
0.03 M
<0.01
<0.01
1.39 M
0.16 L
<0.04
5.35 M
0.44 M
1.04 M
<0.01
<0.04
9.25 H
<0.04
<0.02
<0.07
<0.01
<0.02
1.09 H
6.28 H
2.09 H
<0.01
<0.01
<0.02
0.82 L
<0.02
08/11/89
2224
1.442
Concentration, ppbv
17.33 L
<0.10
<0.20
<0.20
1.07 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06 .
<0.01
<0.01
2.54 M
0.17 L
<0.04
8.30 H
1.76 H
<0.04
<0.01
<0.04
27.86 H
<0.04
<0.02
1.77 L
<0.01
<0.02
1.82 H
10.00 H
3.43 H
<0.01
<0.01
<0.02
<0.09
<0.02
08/15/89
2276
0.628
<1.00
<0.10
<0.20
<0.20
0.56 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
1.52 H
0.20 L
<0.04
3.61 H
0.94 M
<0.04
<0.01
<0.04
9.64 H
<0.04
<0.02
<0.07
<0.01
<0.02
1.73 H
9.50 H
2.76 H
<0.01
<0.01
<0.02
1.21 M
0.40 L
08/16/89
2317
0.963
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
0.24 M
<0.01
<0.01
2.85 H
0.13 L .
<0.04
4.04 H
1.15 M
<0.04
<0.01
<0.04
10.00 H
<0.04
0.03 M
<0.07
<0.01
<0.02
3.00 H
17.41 H
4.89 H
<0.01
<0.01
<0.02
<0.09
<0.02
H High confidence level
M Medium confidence level
Low confidence level
(Continued)
WHM/015
H-4
-------
TABLE H-2. C6IL (Continued)
Sample Date
Sample ID
Total NMOC, ppmC
Compound
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3 -Butadiene
Bromomethane
Chloroethane
Methylene chloride
trans- 1,2-Dichloroethylene
1,1-Di chloroethane
Chloroprene
Bromoch I oromethane
Chloroform
1,1,1-Trichloroethane
Carbon tetrachloride
1 ,2-Dichloroethane
Benzene
Trichloroethylenc
1 , 2 - D i ch t oropropane
Bromodichloromethane
cis-1,3-Dichloropropylene
Toluene
n-Octane/t- 1 , 3-0 i ch I oropropy I ene
1 , 1 ,2-Tri chloroethane
Tetrachloroethylene
D i bromoch I oromethane
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1 , 1 ,2,2-Tetrachloroethane
m- D i ch I orobenzene
p-Di Chlorobenzene
o-Di Chlorobenzene
H High confidence level M
D Duplicate sample R
08/17/89
2331
1.952
<1.00
19.46 M
<0.20
0.20
1.02 M
<0.20
<0.10
2.78 L
<0.04
<0.04
0.12 L
<0.01
<0.01
6.27 H
0.15 L
<0.04
6.39 H
0.97 L
1.35 H
<0.01
<0.04
23.74 H
1.53 L
0.08 H
2.98 L
<0.01
<0.02
16.48 H
88.90 H
18.64
<0.01
<0.01
<0.02
<0.09
<0.02
Medium confidence
Replicate analysis
08/21/89
2388D
1.811
<1.00
<0.10
<0.20
<0.20
1.64
<0.20
<0.10
<0.11
<0.04
<0.04
0.18
<0.01
<0.01
2.33
0.17
<0.04
8.93
1.19
<0.04
<0.01
<0.04
21.04
<0.04
0.05
<0.07
<0.01
<0.02
3.77
20.98
6.89
<0.01
<0.01
<0.02
<0.09
<0.02
level
08/21/89
2388R
1.811
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
H 1.43 H
<0.20
<0.10
<0.11
<0.04
<0.04
L <0.06
<0.01
<0.01
M 2.13 M
L 0.17 L
<0.04
H 8.68 H
H 1.41 M
<0.04
<0.01
<0.04
H 21.07 H
<0.04
M 0.06 H
<0.07
<0.01
<0.02
H 3.66 H
H 20.16 H
H 6.70 H
<0.01
<0.01
0.02 L
<0.09
<0.02
L Low confidence
08/21/89
23890
1.781
<1.00
<0.10
<0.20
<0.20
1.67 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
2.34 H
0.17 L
<0.04
8.72 H
1.67 L
<0.04
<0.01
<0.04
21.72 H
<0.04
<0.02
<0.07
<0.01
0.03 L
3.65 H
20.02 H
6.48 H
<0.01
<0.01
<0.02
<0.09
0.12 L
level
08/22/89
2401
2.663
1.75 L
<0.10
<0.20
<0.20
0.31 H
<0.20
<0.10
<0.11
<0.04
<0.04
1.30 H
<0.01
<0.01
6.87 H
0.21 L
<0.04
2.20 H
0.92 M
1.64 H
<0.01
<0.04
54.31 H
<0.04
<0.02
1.76 L
<0.01
0.95 H
2.08 H
7.60 H
4.62 H
<0.01
<0.01
<0.02
<0.09
<0.02
(Continued)
UHM/015
H-5
-------
TABLE H-2. C6IL (Continued)
Sample Date
Sample ID
08/31/89
2581
Total NMOC. ppmC
0.732
Compound
Concentration, ppbv
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3-Butadiene
Bromomethane
Chloroethane
Methylene chloride
trans-1,2-0ichloroethylene
1,1-Dichloroethane
Chloroprene
BromochIoromethane
Chloroform
1,1,1-Trichloroethane
Carbon tetrachloride
1,2-Oichloroethane
Benzene
Trichloroethylene
1,2-Oichloropropane
BromodichIoromethane
cis-1,3-0ichloropropylene
Toluene
n-0ctane/t-1,3-0ichloropropylene
1,1,2-Trichloroethane
Tetrachloroethylene
Oibromochloromethane
Chlorobenzene
Ethylbenzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1,1,2,2-Tetrachloroethane
m-D i chIorobenzene
p-D i chIorobenzene
o-DichIorobenzene
H High confidence level
=s=s=s=s=========s==sss=:
M Medium confidence level
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.04
<0.04
0.56 M
<0.01
<0.01
0.98 H
0.11 L
<0.04
3.83 H
0.37 H
<0.04
<0.01
9.05 H
<0.04
<0.02
<0.07
<0.01
<0.02
1.05 H
5.64 H
1.80 L
<0.01
<0.01
<0.02
<0.09
<0.02
:=S=SS=S===5S=S=£=S==SSS=S=SS=S==SS:
============r================
Low confidence level
WHM/015
H-6
-------
TABLE H-3. MULTIPLE DETECTOR SPECIATEO THREE-HOUR DATA SUMMARY FOR GRMI
Sample Date
Sample ID
Total NMOC, ppmC
Compound
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3-Butadiene
Bromomethane
Chloroethane
Methylene chloride
trans- 1 ,2-Dichloroethylene
1,1-Di chloroethane
Chloroprene
8 romoch I oromethane
Chloroform
1,1,1-Trichloroethane
Carbon tetrachloride
1,2-Dichloroethane
Benzene
Trichloroethylene
1 ,2-Dichloropropane
B romod i ch I oromethane
cis-1,3-Dichloropropylene
Toluene
n-0ctane/t-1,3-dichloropropylene
1,1,2-Trichloroethane
Tetrach I oroethy I ene
D i bromoch I oromethane
Chlorobenzene
Ethylbenzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1,1,2,2-Tetrachloroethane
m-Di chlorobenzene
p-Di chlorobenzene
o-Di chlorobenzene
H High confidence level M
D Duplicate sample R
07/17/89
1761
1.001
<1.00
<0.10
<0.20
<0.20
0.70 M
<0.20
<0.10
<0.11
<0.04
<0.04
0.13 H
O.01
<0.01
3.43 M
0.14 L
<0.04
3.58 H
7.56 H
<0.04
<0.01
<0.04
15.43 H
1.87 L
<0.02
0.35 H
<0.01
<0.02
1.43 H
8.78 H
2.68 H
<0.01
<0.01
<0.02
<0.09
<0.02
Medium confidence
Replicate analysis
08/03/89
2093D
0.586
<1.00
<0.10
<0.20
<0.20
0.42 M
<0.20
<0.10
<0.11
<0.04
<0.04
0.19 L
<0.01
<0.01
1.55 L
0.18 L
<0.04
2.29 H
0.84 H
<0.04
<0.01
<0.04
4.06 H
<0.04
<0.02
<0.07
<0.01
0.04 M
0.51 H
2.28 H
0.84 L
<0.01
<0.01
<0.02
0.20 M
<0.02
level
i
08/03/89
2093R
0.586
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
0.45 M
<0.20
<0.10
<0.11
<0.04
<0.04
0.10 H
<0.01
<0.01
1.60 L
0.19 L
<0.04
2.15 K
0.86 H
<0.04
<0.01
<0.04
4.21 H
<0.04
<0.02
0.53 L
<0.01
<0.02
0.53 N
2.30 H
0.90 H
<0.01
<0.01
<0.02
0.24 M
<0.02
08/03/89
2094D
0.567
<1.00
<0.10
<0.20
<0.20
0.42 L
<0.20
<0.10
<0.11
<0.04
<0.04
0.08 H
<0.01
<0.01
1.54 L
0.17 L
<0.04
2.10 H
0.71 H
<0.04
<0.01
<0.04
4.13 L
<0.04
<0.02
0.22 L
<0.01
0.05 L
0.48 H
2.27 H
0.86 H
<0.01
<0.01
<0.02
0.20 M
<0.02
L Low confidence level
08/09/89
2180
1.394
<1.00
<0.10
<0.20
<0.20
0.81 M
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
3.50 H
0.17 L
<0.04
4.73 H
3.14 H
1.14 H
<0.01
<0.04
17.79 H
<0.04
<0.02
<0.07
<0.01
<0.02
1.63 H
9.46 H
2.74 H
<0.01
<0.01
<0.02
<0.09
<0.02
(Continued)
WHM/015
H-7
-------
TABLE H-3. GRMI (Continued)
Sample Date
Sample 10
Total NMOC, ppmC
Compound
Acetylene
Propylene
Chi oromethane
Vinyl chloride
1,3-Butadiene
Bromome thane
Chloroethane
Methylene chloride
trans-1,2-Dichloroethylene
1,1-Dichloroethane
Chloroprene
Bromoch I oromethane
Chloroform
1,1,1 -Trichloroethane
Carbon tetrachloride
1, 2-0 i chloroethane
Benzene
Trichloroethyl ene
1 , 2-D ich loropropane
Bromodi ch I oromethane
cis-1,3-Dichloropropylene
Toluene
n-Octane/t-1 ,3-dichloropropylene
1 , 1 ,2-Trichloroethane
Tet rach I oroethy I ene
0 i bromoch I oromethane
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1 , 1 ,2,2-Tetrachloroethane
m-0 i ch I orobenzene
p-Oichlorobenzene
o-Oichlorobenzene
08/11/89
2208
0.414
<1.00
<0.10
<0.20
<0.20
0.96 N
<0.20
<0.10
<0.11
<0.04
<0.04
0.10 H
<0.01
<0.01
2.89 M
0.14 L
<0.04
5.99 H
2.11 H
<0.04
<0.01
<0.04
2.07 H
<0.04
<0.02
<0.07
<0.01
<0.02
2.17 H
11.83 H
3.58 H
<0.01
<0.01
<0.02
<0.09
<0.02
08/14/89
2258
0.424
<1.00
<0.10
<0.20
<0.20
0.10 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
1.17 H
0.15 L
<0.04
1.64 H
0.73 L
<0.04
<0.01
<0.04
4.96 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.60 H
2.78 H
0.82 H
<0.01
<0.01
<0.02
<0.09
<0.02
08/15/89
2272
0.218
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
0.17 L
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
0.85 H
0.20 L
<0.04
1.16 H
0.71 H
<0.04
<0.01
<0.04
4.37 H
<0.04
<0.02
0.14 L
<0.01
<0.02
0.41 H
2.07 H
0.64 H
<0.01
<0.01
<0.02
0.25 L
<0.02
08/16/89
2295
0.636
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
0.76 L
0.13 L
<0.04
2.89 M
0.44 M
<0.04
<0.01
<0.04
8.45 H
<0.04
<0.02
0.07 M
<0.01
<0.02
0.69 H
4.05 H
1.25 M
<0.01
<0.01
<0.02
<0.09
<0.02
==================
08/17/89
2337
0.701
<1.00
9.58 M
<0.20
<0.20
0.48 N
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
2.21 H
0.13 L
<0.04
2.81 N
0.12 L
<0.04
<0.01
<0.04
10.33 H
<0.04
<0.02
0.25 L
<0.01
<0.02
3.68 H
4.00 H
1.38 H
<0.01
<0.01
<0.02
<0.09
<0.02
High confidence level
Medium confidence level
Low confidence level
(Continued)
WHM/015
H-8
-------
TABLE H-3. GRMI (Continued)
====sss=s==s===s====s================s=======r==========s=s===a===s==================================================
Sample Date 08/21/89
Sample ID 2387
Total NHOC, ppmC 0.364
Compound Concentration, ppbv
Acetylene <1.00
Propylene <0.10
Chloromethane <0.20
Vinyl chloride <0.20
1,3-Butadiene <0.10
Bromomethane <0.20
Chloroethane <0.10
Methylene chloride <0.11
trans-1,2-Dichloroethylene <0.04
1,1-Oichloroethane <0.04
Chloroprene <0.06
Bromochloromethane <0.01
Chloroform <0.01
1,1,1-Trichloroethane 2.88 H
Carbon tetrachloride 0.13 L
1,2-Dichloroethane <0.04
Benzene 1.23 H
Trichloroethylene 0.72 H
1,2-Dichloropropane 0.07 M
Bromodichloromethane <0.01
cis-1,3-0ichloropropylene <0.04
Toluene 3.73 H
n-Octane/t-1,3-dichloropropylene <0.04
1,1,2-Trichloroethane <0.02
Tetrachloroethylene 0.08 L
Oibromochloromethane <0.01
Chlorobenzene <0.02
Ethylbenzene 0.63 H
m/p-Xylene 3.56 H
Styrene/o-Xylene 1.03 H
Bromoform <0.01
1,1,2,2-Tetrachloroethane <0.01
m-Dichlorobenzene <0.02
p-Oichlorobenzene 0.60 L
o-Oichlorobenzene <0.02
=========================================================================r==========================================:
H High confidence level M Medium confidence level L Low confidence level
WHM/015 H"9
-------
TABLE H-4. MULTIPLE DETECTOR SPECIATED THREE-HOUR DATA SUMMARY FOR MNY
=====s======sssss=s%s==ssssa=s=s=ss
Sample Date
Sample ID
Total NMOC, ppmC
Compound
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3-Butadiene
Bromomethane
Chloroethane
Methylene chloride
trans-1,2-Dichloroethylene
1,1-Di chloroethane
Chloroprene
B romoch I oromethane
Chloroform
1,1,1-Trichloroethane
Carbon tetrachloride
1 , 2 -D i ch I oroethane
Benzene
Trichloroethylene
1 , 2-0 ich loropropane
Bromod i ch 1 oromethane
cis-1,3-Dichloropropylene
Toluene
n-0ctane/t-1,3-dichloropropylene
1,1,2-Trichloroethane
Tetrachloroethylene
D ibromoch I oromethane
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1 , 1 ,2,2-Tetrachloroethane
m-Oichlorobenzene
p-Di chlorobenzene
o-Di chlorobenzene
S====3E=====S=S=3B
07/17/89
1757
0.216
<1.00
2.39 M
<0.20
<0.20
0.14 H
<0.20
0.11 L
<0.11
<0.04
<0.04
0.50 L
<0.01
<0.01
0.90 H
0.14 L
<0.04
0.98 H
0.05 H
<0.04
<0.01
<0.04
2.01 H
<0.04
<0.02
4.85 H
<0.01
<0.02
0.19 H
1.16 H
0.44 L
<0.01
<0.01
<0.02
0.13 H
<0.02
=s:=s===s====s=
07/18/89
1753
0.515
8.69 L
<0.10
<0.20
<0.20
0.28 H
<0.20
<0.10
<0.11
<0.04
<0.04
0.09 H-
<0.01
<0.01
1.11 H
0.14 L
<0.04
2.33 H
0.19 M
<0.04
<0.01
<0.04
5.15 H
<0.04
<0.02
3.53 L
<0.01
<0.02
0.59 H
3.33 H
1.19 H
<0.01
<0.01
<0.02
<0.09
0.30 L
SSSSSBS=S=S==SS==S=SSS
08/09/89
2176
0.127
Concentration, ppbv
1.23 L
3.37 H
<0.20
<0.20
0.10 H
<0.20
<0.10
1.87 L
<0.04
<0.04
<0.06
<0.01
<0.01
1.06 H
0.15 L
<0.04
0.94 H
<0.01
<0.04
<0.01
<0.04
3.02 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.23 H
1.32 H
0.52 L
<0.01
<0.01
<0.02
0.17 H
0.23 M
!=S=S===S=======S=Z
08/10/89
2197
0.603
6.94 L
<0.10
<0.20
<0.20
0.29 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
0.10 H
1.27 M
0.16 L
<0.04
2.31 H
0.22 L
•cO.04
<0.01
•cO.04
8.04 H
<0.04
<0.02
3.03 L
<0.01
<0.02
0.56 H
3.82 H
1.33 H
<0.01
<0.01
<0.02
0.30 M
<0.02
s===s=======
08/11/89
2230
0.281
<1.00
<0.10
<0.20
<0.20
0.17 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
0.56 H
0.14 L
<0.04
1.30 H
<0.01
<0.04
<0.01
<0.04
2.81 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.28 H
1.61 H
0.63 H
<0.01
<0.01
<0.02
0.16 M
<0.02
H High confidence level
M Medium confidence level
Low confidence level
(Continued)
WHM/015
H-10
-------
TABLE H-4. MNY (Continued)
Sample Date
Sample ID
Total NMOC, ppmC
Compound
Acetylene
Propylene
Chi oromethane
Vinyl chloride
1,3-Butadiene
Bromomethane
Chloroethane
Methylene chloride
trans- 1,2-Dichloroethylene
1 , 1-Di chloroethane
Chloroprene
B romoch I oromethane
Chloroform
1,1, 1 -Trich toroethane
Carbon tetrachloride
1,2-Dichloroethane
Benzene
Trichloroethylene
1 , 2 - D i ch I or opr opane
B romod i ch I oromethane
cis-1,3-Dichloropropylene
Toluene
n-0ctane/t-1,3-dichloropropylene
1 , 1 ,2-Trichloroethane
Tetrachloroethylene
D i bromoch loromethane
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1 , 1 ,2, 2-Tetrach toroethane
m- D i ch I orobenzene
p-D i ch 1 orobenzene
o-Dichlorobenzene
H High confidence level M
D Duplicate sample R
08/15/89
2286
1.006
<1.00
<0.10
<0.20
<0.20
0.62 M
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
1.79 H
0.17 L
<0.04
4.18 M
0.21 L
<0.04
<0.01
<0.04
13.38 H
<0.04
<0.02
3.93 H
<0.01
<0.02
1.24 H
6.86 H
2.52 H
<0.01
<0.01
<0.02
<0.09
<0.02
Medium confidence
Replicate analysis
08/16/89
2284D
0.566
<1.00
<0.10
<0.20
<0.20
0.32 M
<0.20
<0.10
<0.11
<0.04
<0.04
0.24 M
<0.01
<0.01
1.20 H
0.18 L
<0.04
2.27 H
<0.01
<0.04
<0.01
<0.04
5.37 L
<0.04
0.11 M
2.00 H
<0.01
<0.02
0.65 H
4.06 H
1.75 H
<0.01
<0.01
0.03 M
<0.09
<0.02
level
08/16/89
2284R
0.566
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
0.30 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
1.06 H
0.16 L
<0.04
2.37 H
0.04 H
<0.04
<0.01
<0.04
5.41 M
<0.04
<0.02
1.98 H
<0.01
0.27 M
0.94 L
3.99 H
1.69 M
<0.01
<0.01
<0.02
<0.09
<0.02
L Lou confidence
08/16/89
2285D
0.556
•0.00
<0.10
<0.20
<0.20
0.32 H
<0.20
<0.10
<0.11
<0.04
<0.04
0.09 M
<0.01
<0.01
0.97 H
0.15 L
<0.04
2.32 H
<0.01
<0.04
<0.01
<0.04
5.49 M
<0.04
<0.02
2.58 M
<0.01
0.13 M
0.68 H
3.71 H
1.73 H
<0.01
<0.01
<0.02
<0.09
<0.02
level
08/18/89
2362
0.259
1.02 L
3.02 H
<0.20
<0.20
0.13 H
<0.20
<0.10
<0.11
<0.04
<0.04
0.08 H
<0.01
<0.01
0.58 M
0.15 L
<0.04
1.12 H
0.03 L
<0.04
<0.01
0.29 L
2.54 L
<0.04
<0.02
1.07 L
<0.01
<0.02
0.26 H
1.43 H
0.56 H
<0.01
<0.01
<0.02
<0.09
<0.02
(Continued)
UHM/015
H-ll
-------
TABLE H-4. MNY (Continued)
Sample Date
Sample ID
08/17/89
2358
Total NMOC, ppmC
0.405
Compound
Concentration, ppbv
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3-Butadiene
Bromomethane
Chloroethane
Methylene chloride
trans-1,2-Dichloroethylene
1,1-Dichloroethane
Chloroprene
Bromochloromethane
Chloroform
1,1,1-Trichloroethane
Carbon tetrachloride
1,2-Oichloroethane
Benzene
Trichloroethylene
1,2-Dichloropropane
BromodichIoromethane
cis-1,3-0 ich loropropylene
Toluene
n-0ctane/t-1,3-dichloropropylene
1,1,2-Trichloroethane
Tet rachIoroethyIene
0ibromochloromethane
Chlorobenzene
Ethylbenzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1,1,2,2-Tetrachloroethane
m-0 i chIorobenzene
p-Dichlorobenzene
o-OichIorobenzene
<1.00
6.22 H
<0.20
<0.20
0.16 H
<0.20
<0.10
<0.11
<0.04
<0.04
0.52 H
<0.01
0.10 H
0.93 H
0.14 L
<0.04
1.45 H
0.09 L
<0.04
<0.01
<0.04
3.51 M
<0.04
<0.02
2.46 H
<0.01
<0.02
0.37 H
2.06 H
0.78 H
<0.01
<0.01
0.01 H
<0.09
<0.02
H High confidence level
M Medium confidence level
L Low confidence level
H-12
UHH/015
-------
TABLE H-5. MULTIPLE DETECTOR SPECIATED THREE-HOUR DATA SUMMARY FOR M1NY
==========r=======================:
Sample Date
Sample ID
Total NMOC, ppmC
Compound
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3-Butadiene
Bromomethane
Chloroethane
Methylene chloride
trans-1,2-Dichloroethylene
1,1-Di chloroethane
Chloroprene
Bromoch loromethane
Chloroform
1,1,1-Trichloroethane
Carbon tetrachloride
1,2-Di chloroethane
Benzene
Trichloroethylene
1 , 2-D i ch I oropropane
Bromodichloromethane
cis-1,3-Dichloropropylene
Toluene
n-0ctarte/t-1,3-0ichloropropylene
1 , 1 ,2- Tri chloroethane
Tetrachloroethylene
D i bromoch 1 oromethane
Chlorobenzene
Ethylbenzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1 , 1 , 2 , 2 - Tet rach I oroethane
m- D i ch I orobenzene
p-Di Chlorobenzene
o-D ich I orobenzene
H High confidence level M
D Duplicate sample R
r==================r
07/17/89
1758
0.309
<1.00
3.41 M
<0.20
<0.20
0.17 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
0.71 M
0.16 L
<0.04
1.35 H
<0.01
<0.04
<0.01
<0.04
2.92 M
0.12 H
<0.02
0.61 L
<0.01
<0.02
0.35 H
2.05 H
0.74 H
<0.01
<0.01
<0.02
0.22 H
<0.02
Medium confidence
Replicate analysis
:==«========
07/18/89
1752
0.681
<1.00
8.31 M
<0.20
<0.20
0.54 M
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
0.09 H
1.08 H
0.14 L
<0.04
2.92 H
0.17 L
<0.04
<0.01
<0.04-
6.12 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.64 H
3.94 H
0.14 L
<0.01
<0.01
<0.02
0.35 M
<0.02
level
=as==s==sa==z=======
08/09/89
2175
0.356
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
0.26 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
0.88 H
0.14 L
<0.04
1.82 H
<0.01
<0.04
<0.01
<0.04
5.05 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.40 H
2.33 H
0.85 H
<0.01
<0.01
<0.02
<0.09
<0.02
L Low confidence
=================:
08/10/89
2196
0.799
<1.00
<0.10
<0.20
<0.20
0.53 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.36
<0.01
<0.01
3.23 H
0.20 L
<0.04
3.70 H
0.37 M
<0.04
<0.01
<0.04
9.98 H
<0.04
<0.02
1.90 L
<0.01
<0.02
0.93 H
5.58 H
2.17 H
<0.01
<0.01
0.01 L
1.41 L
<0.02
\
level
===============
08/11/89
2236
0.220
<1.00
<0.10
<0.20
<0.20
0.14 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
0.62 H
0.14 L
<0.04
1.27 H
0.10 L
<0.04
<0.01
<0.04
2.84 H
<0.04
•<0.02
<0.07
<0.01
0.13 M
0.28 H
1.54 H
0.58 H
<0.01
<0.01
<0.02
0.16 M
<0.02
(Continued)
UHH/015
H-13
-------
TABLE H-5. H1NY (Continued)
Sample Date
Sample ID
Total NHOC, ppmC
Compound
Acetylene
Propylene
Chi oromethane
Vinyl chloride
1,3-Butadiene
Bromomethane
Chloroethane
Methylene chlorid"
trans- 1,2-Dich lor. cthylene
1 , 1 -Oi chloroethane
Chloroprene
Bromoch I oromethane
Chloroform
1,1, 1 -Trichloroethane
Carbon tetrachloride
1, 2-0 i chloroethane
Benzene
Trichloroethylene
1 ,2-Dichloropropane
Bromodi ch I oromethane
cis-1,3-Dichloropropylene
Toluene
n-Octane/t-1,3-Dichloropropylene
1 ,1 ,2-Tri chloroethane
Tet rach I oroethy I ene
D i bromoch I oromethane
Chlorobenzene
Ethylbenzene
m/p-Xylene
S tyrene/o- Xy I ene
Bromoform
1 , 1 , 2 , 2 - Tet rach I oroethane
m-D i ch I orobenzene
p-Di chlorobenzene
o-Di chlorobenzene
H High confidence level M
D Duplicate sample R
08/15/89
2287
2.043
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
0.18 M
<0.01
<0.01
4.87 H
0.23 L
<0.04
7.80 H
0.57 H
<0.04
<0.01
<0.04
25.01 L
<0.04
0.11 H
<0.07
<0.01
<0.02
2.06 M
12.01 M
4.55 M
<0.01
<0.01
<0.02
<0.09
<0.02
Medium confidence
Replicate analysis
08/16/89
2301
0.795
<1.00
14.19 M
<0.20
<0.20
0.52 H
<0.20
1.49 L
2.51 L
<0.04
<0.04
0.09 H
<0.01
<0.01
3.05 H
0.15 L
<0.04
4.31 H
0.16 L
<0.04
<0.01
<0.04
10.15 M
<0.04
<0.02
1.91 L
<0.01
<0.02
1.30 H
7.24 H
2.94 H
<0.01
<0.01
<0.02
<0.09
<0.02
level
08/17/89
2348D
0.359
Concentration, ppbv
<1.00
4.61 M
<0.20
<0.20
0.20 H
<0.20
0.05 L
<0.11
<0.04
<0.04
<0.06 •
<0.01
<0.01
0.88 H
0.13 L
<0.04
1.54 H
0.05 L
<0.04
<0.01
<0.04
3.64 M
<0.04
<0.02
<0.07
<0.01
<0.02
0.37 H
2.11 H
0.80 H
<0.01
<0.01
<0.02
1.14 L
<0.02
L Low confidence
08/17/89
2348R
0.359
<1.00
4.82 L
<0.20
<0.20
0.18 H
<0.20
<0.10
<0.11
<0.04
<0.04
0.05 H
<0.01
<0.01
0.89 H
0.14 L
<0.04
1.58 H
0.05 L
<0.04
<0.01
0.25 L
3.75 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.39 H
2.07 H
0.79 H
<0.01
<0.01
0.02 L
0.97 L
<0.02
level
,789
23490
0.312
<1.00
4.63 L
<0.20
<0.20
0.15 H
<0.20
<0.10
<0.11
<0.04
<0.04
0.05 H
<0.01
<0.01
0.91 H
0.13 L
<0.04
1.59 H
0.07 L
<0.04
<0.01
<0.04
3.68 M
<0.04
<0.02
<0.07
<0.01
<0.02
0.40 H
2.18 H
0.84 H
<0.01
<0.01
<0.02
<0.09
<0.02
(Continued)
WHH/015
H-14
-------
TABLE H-5. M1NY (Continued)
Sample Date 08/18/89
Sample ID 2363
Total NMOC, ppmC 0.318
Compound Concentration, ppbv
Acetylene <1.00
Propylene 4.21 H
Chloromethane <0.20
Vinyl chloride <0.20
1,3-Butadiene 0.17 H
Bromomethane <0.20
Chloroethane 0.74 L
Methylene chloride <0.11
trans-1,2-Dichloroethylene <0.04
1,1-Dichloroethane <0.04
Chloroprene <0.06
8romochloromethane <0.01
Chloroform <0.01
1,1,1-Trichloroethane 0.77 H
Carbon tetrachloride 0.17 L
1,2-Dichloroethane <0.04
Benzene 1.42 H
Trichloroethylene 0.07 M
1,2-Dichtoropropane <0.04
Bromodichloromethane <0.01
cis-1,3-Dichloropropylene <0.04
Toluene 3.50 H
n-Octane/t-1,3-Dichloropropylene <0.04
1,1,2-Trichloroethane <0.02
Tetrachloroethylene 1.57 H
Dibromochloromethane <0.01
Chlorobenzene <0.02
Ethylbenzene 0.42 H
m/p-Xylene 2.33 M
Styrene/o-Xylene 0.84 H
Bromoform <0.01
1,1,2,2-Tetrachloroethane <0.01
m-Dichlorobenzene 0.01 L
p-Dichlorobenzene <0.09
o-Dichlorobenzene <0.02
H High confidence level M Medium confidence level L Low confidence level
UHM/015
H-15
-------
TABLE H-6. MULTIPLE DETECTOR SPECIATED THREE-HOUR DATA SUMMARY FOR NUNJ
=====r===============s=============
Sample Date
Sample ID
Total NMOC, ppmC
Compound
Acetylene
Propylene
Chtoromethane
Vinyl chloride
1,3-Butadiene
Bromome thane
Chloroethane
Methylene chloride
trans- 1,2-Dichloroethylene
1 , 1 -D i ch loroethane
Chloroprene
Bromochloromethane
Chloroform
1,1,1 -Trichloroethane
Carbon tetrachloride
1,2-Di chloroethane
Benzene
Trichloroethylene
1 , 2 - 0 i ch I oropr opane
Bromodichloromethane
cis-1,3-Dichloropropylene
Toluene
n-Octane/t-1,3-Dichloropropylene
1 , 1 , 2-Trichloroethane
Tetrachloroethylene
D i bromoch loromethane
Chlorobenzene
Ethylbenzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1 , 1 ,2,2-Tetrachloroethane
m- D i ch I orobenzene
p-D ich I orobenzene
o-Dichlorobenzene
H High confidence level M
D Duplicate sample R
07/14/89
1760
1.112
<1.00
<0.10
<0.20
<0.20
0.51 H
<0.20
<0.10
5.57 H
<0.04
<0.04
<0.06
<0.01
<0.01
1.79 H
0.14 L
<0.04
2.85 H
1.95 M
<0.04
<0.01
0.92 L
23.67 H
<0.04
0.51 H
1.78 L
<0.01
<0.02
1.04 H
6.66 H
2.18 H
<0.01
<0.01
0.13 L
2.54 L
<0.02
Medium confidence
Replicate analysis
08/08/89
2199
0.254
<1.00
<0.10
<0.20
<0.20
0.11 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
0.51 L
0.13 L
<0.04
1.15 H
<0.01
0.29 H
<0.01
<0.04
2.40 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.33 H
2.03 H
0.66 L
<0.01
<0.01
<0.02
0.09 H
<0.02
level
08/09/89 08/09/89
2169D
0.319
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
0.09 M
<0.20
<0.10
0.96 H
<0.04
<0.04
0.07 L
<0.01
<0.01
1.75 H
0.15 L
<0.04
0.94 H
0.36 M
<0.04
<0.01
<0.04
3.82 H
<0.04
<0.02
<0.07
<0.01
<0.02
1.54 H
7.58 H
1.56 H
<0.01
<0.01
0.01 L
<0.09
<0.02
L Low confidence level
2169R
0.319
<1.00
<0.10
<0.20
<0.20
0.07 H
<0.20
<0.10
0.87 L
<0.04
<0.04
0.06 H
<0.01
<0.01
1.69 H
0.14 L
<0.04
0.89 H
0.26 H
<0.04
<0.01
<0.04
3.65 H
<0.04
<0.02
<0.07
<0.01
<0.02
1.46 H
7.20 H
1.54 H
<0.01
<0.01
<0.02
0.08 M
0.90 L
:===£==========
08/09/89
21 700
0.298
<1.00
<0.10
<0.20
<0.20
0.09 H
<0.20
<0.10
0.96 L
<0.04
<0.04
0.07 H
<0.01
<0.01
1.64 H
0.14 L
<0.04
0.92 H
0.31 L
<0.04
<0.01
<0.04
4.00 H
<0.04
<0.02
<0.07
<0.01
<0.02
1.47 H
7.22 H
1.50 H
<0.01
<0.01
0.06 L
<0.09
<0.02
(Continued)
UHM/015
H-16
-------
TABLE H-6. NUNJ (Continued)
. Sample Date
Sample ID
Total NHOC, ppmC
Compound
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3-Butadienc
Bromomethane
Chloroethane
Methylene chloride
trans-1,2-Dichloroethylene
1 , 1-0 i chloroethane
Chloroprene
Bromoch 1 oromethane
Chloroform
1,1,1 -Trichloroethane
Carbon tetrachloride
1,2-Dichloroethane
Benzene
Trichloroethylene
1 , 2 - 0 i ch 1 oropropane
Bromod i ch I oromethane
cis-1,3-Dichloropropylene
Toluene
n-Octane/t-1,3-Dichloropropylene
1 , 1 ,2-Trich loroethane
Tetrachloroethylene
0 i bromoch I oromethane
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1 , 1 ,2,2-Tetrachloroethane
m-Di chlorobenzene
p- D i ch I orobenzene
o-Dichlorobenzene
08/14/89
2265
1.356
<1.00
<0.10
<0.20
<0.20
0.96 M
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
2.02 L
0.17 L
<0.04
5.44 M
0.55 M
0.93 L
<0.01
<0.04
18.21 H
0.61 H
<0.02
0.71 L
<0.01
0.26 H
1.76 H
10.16 H
3.50 M
<0.01
<0.01
<0.02
<0.09
<0.02
08/15/89
2297
1.981
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
2.57 M
0.21 L
<0.04
5.98 N
1.00 L
<0.04
<0.01
<0.04
20.17 M
<0.04
<0.02
1.01 M
<0.01
1.29 M
2.44 H
14.07 M
5.06 M
<0.01
<0.01
<0.02
<0.09
<0.02
08/16/89
2364
0.551
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
0.29 H
<0.20
<0.10
<0.11
<0.04
<0.04
0.56 M
<0.01
<0.01
1.18 L
0.15 L
<0.04
2.18 H
1.48 H
<0.04
<0.01
<0.04
6.72 H
<0.04
<0.02
0.75 L
<0.01
<0.02
0.96 M
5.01 H
1.78 M
<0.01
<0.01
0.02 L
<0.09
<0.02
08/18/89
2419
0.324
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
1.29 H
<0.04
<0.04
<0.06
<0.01
<0.01
0.60 L
0.14 L
<0.04
1.18 H
0.19 M
<0.04
<0.01
<0.04
8.54 H
<0.04
<0.02
0.15 L
<0.01
<0.02
0.42 H
2.52 H
0.77 L
<0.01
<0.01
<0.02
<0.09
<0.02
\
08/22/89
2448
0.307
<1.00
<0.10
<0.20
<0.20
0.10 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
0.49 M
0.13 L
<0.04
1.20 H
<0.01
<0.04
<0.01
<0.04
4.43 L
<0.04
<0.02
1.04 L
<0.01
<0.02
0.36 H
2.02 M
0.85 M
<0.01
<0.01
<0.02
0.12 L
<0.02
H High confidence level
M Medium confidence level
Low confidence level
(Continued)
WHH/015
H-17
-------
TABLE H-6. NWNJ (Continued)
Sample Date
Sample ID
08/24/89
2433
Total NMOC, ppmC
0.315
Compound
Concentration, ppbv
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3-Butadiene
Bromomethane
Chtoroethane
Hethylene chloride
trans-1,2-Dichloroethylene
1,1-Dichloroethane
Chloroprene
B roroochIoromethane
Chloroform
1,1,1-Trichloroethane
Carbon tetrachloride
1,2-Dichloroethane
Benzene
Trichloroethylene
1,2-Oichloropropane
BromodichIoromethane
cis-1,3-Dichloropropylene
Toluene
n-Octane/t-1,3-Dichloropropylene
1,1,2-Trichloroethane
Tetrachloroethylene
Dibromochloromethane
Chlorobenzene
Ethylbenzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1,1,2,2-Tetrachloroethane
m- 0 i chIorobenzene
p-Oichlorobenzene
o-Oichlorobenzene
<1.00
<0.10
<0.20
<0.20
0.16 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
1.10 M
0.13 L
<0.04
1.33 H
0.11 L
<0.04
<0.01
<0.04
4.48 H
<0.04
<0.02
1.55 M
<0.01
<0.02
0.44 H
2.44 H
0.83 H
<0.01
<0.01
<0.02
<0.09
<0.02
H High confidence level
H Medium confidence level
Low confidence level
WHM/015
H-19
-------
TABLE H-7. MULTIPLE DETECTOR SPECIATED THREE-HOUR DATA SUMMARY FOR PLNJ
=ss=ss==s=s===ss==sss=s=s:=ss:=s:=s==s:s=s=ass=ss===s====sss=s=s:s:====5:ss=s=====s=======;=:=
Sample Date
Sample 10
Total NMOC, ppnC
Compound
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3- Butadiene
Sromome thane
Chloroethane
Hethylene chloride
trans-1,2-Dichloroethylene
1 , 1 -D i ch loroethane
Chloroprene
Bromoch loromethane
Chloroform
1,1.1-Trichloroethane
Carbon tetrachloride
1 , 2-0 i ch loroethane
Benzene
Trichloroethylene
1 , 2 - 0 i ch 1 oropr opane
Bromodi Chloromethane
cis-1,3-0ichloropropylene
Toluene
n-Octane/t-1,3-Dichloropropylene
1 , 1 , 2-Trichloroethane
Tetrachloroethylene
Dibromoch loromethane
Chlorobenzene
Ethyl benzene
m/p-Xylene
Styrene/o-Xylene
Sromoform
1,1,2,2-Tetrachloroethane
m- 0 i ch I orobenzene
p-D i ch I orobenzene
o-Dichlorobenzene
H High confidence level M
0 Duplicate sample R
08/08/89
2198
0.104
<1.00
1.52 L
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
0.28 L
0.14 L
<0.04
0.49 H
<0.01
<0.04
<0.01
<0.04
1.04 H
<0.04
0.01 M
0.04 L
<0.01
<0.02
0.08 H
0.40 H
0.18 H
<0.01
<0.01
<0.02
0.05 L
0.20 L
Medium confidence
Replicate analysis
08/09/89
2193
0.525
<1.00
<0.10
<0.20
<0.20
0.46 H
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
2.04 H
0.13 I
<0.04
2.64 H
<0.01
0.26 H
<0.01
<0.04
6.03 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.51 H
3.18 H
1.18 H
<0.01
<0.01
<0.02
<0.09
<0.02
level
!
08/14/89
2314D
0.764
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
0.52 H
<0.20
<0.10
9.45 M
<0.04
<0.04
0.10 M
<0.01
<0.01
1.93 H
0.15 L
<0.04
3.38 H
<0.01
<0.04
<0.01
<0.04
9.02 H
<0.04
<0.02
0.78 L
<0.01
<0.02
0.97 H
5.07 H
1.90 H
<0.01
<0.01
<0.02
1.96 M
<0.02
L Low confidence
08/14/89
2314R
0.764
<1.00
<0.10
<0.20
<0.20
0.42 H
<0.20
<0.10
10.29 L
<0.04
<0.04
<0.06
<0.01
<0.01
2.02 H
0.16 L
<0.04
3.36 H
0.60 L
<0.04
<0.01
<0.04
8.05 H
<0.04
<0.02
0.73 M
<0.01
0.03 M
0.97 H
4.74 H
1.75 H
<0.01
<0.01
<0.02
2.30 M
<0.02
level
08/14/89
231 5D
0.758
<1.00
<0.10
<0.20
<0.20
0.45 H
<0.20
<0.10
10.08 M
<0.04
<0.04
<0.06
<0.01
<0.01
1.91 H
0.15 L
<0.04
2.94 H
0.34 H
<0.04
<0.01
0.71 L
8.00 H
<0.04
<0.02
<0.07
<0.01
0.07 H
0.96 H
4.90 H
2.03 H
<0.01
<0.01
<0.02
1.33 L
<0.02
(Continued)
UHM/015
H-20
-------
TABLE H-7. PLNJ (Continued)
Sample Date
Sample ID
Total NHOC, ppmC
Compound
Acetylene
Propylene
Chi oromethane
Vinyl chloride
1,3-Butadiene
Bromomethane
Chloroethane
Methylene chloride
trans-1,2-Dichloroethylene
1,1-Dichloroethane
Chloroprene
Bromochloromethane
Chloroform
1,1,1-Trich loroethane
Carbon tetrachloride
1 , 2-D i ch loroethane
Benzene
Trichloroethylene
1 , 2-D i ch I oropropane
Bromod i ch I oromethane
cis-1,3-Dichloropropylene
Toluene
n-Octane/t-1,3-Dichloropropylene
1, 1, 2- Tri chloroethane
Tetrachloroethylene
D i bromoch I oromethane
Chlorobenzene
Ethylbenzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1 , 1 ,2, 2-Tetrach loroethane
m-Di chlorobenzene
p-Dichlorobenzene
o-D i ch I orobenzene
08/15/89
2303
0.888
3.89 L
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
1.78 L
0.17 L
<0.04
3.48 H
0.27 L
<0.04
<0.01
<0.04
8.95 L
<0.04
0.07 L
1.30 M
<0.01
<0.02
0.99 H
5.35 H
1.88 H
<0.01
<0.01
0.01 L
1.22 L
<0.02
08/17/89
2342
0.405
<1.00
<0.10
<0.20
<0.20
0.20 H
<0.20
<0.10
<0.11
<0.04
<0.04
0.47 H
<0.01
<0.01
0.87 H
0.14 L
<0.04
1.71 H
0.16 L
<0.04
<0.01
0.30 H
4.61 H
<0.04
<0.02
<0.07
<0.01
<0.02
0.40 H
2.30 H
0.90 H
<0.01
<0.01
<0.02
<0.09
<0.02
08/18/89
2409
0.294
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.01
<0.01
0.32 L
0.13 L
<0.04
0.97 K
« '
< ,+
<0.>-,
<0.04
3.11 H
<0.04
<0.02
0.34 L
<0.01
<0.02
0.33 H
1.95 H
1.61 H
<0.01
<0.01
<0.02
0.18 H
<0.02
08/21/89
2413
0.353
<1.00
<0.10
<0.20
<0.20
<0.10
0.06 H
<0.10
1.87 H
<0.04
<0.04
<0.06
<0.01
<0.01
0.91 L
0.15 L
<0.04
2.06 H
<0.01
<0.04
<0.01
<0.04
5.77 H
<0.04
<0.02
0.14 M
<0.01
0.06 L
0.39 H
2.12 H
0.80 H
<0.01
<0.01
<0.02
<0.09
0.26 L
08/22/89
2453
0.161
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
0.31 M
<0.01
<0.01
0.31 M
0.15 L
<0.04
0.92 H
0.19 L
0.04
<0.01
0.04
1.63 H
<0.04
O.02
0.26 H
<0.01
<0.02
0.20 H
1.04 H
0.41 H
<0.01
<0.01
<0.02
0.35 L
0.10 L
H High confidence level
M Medium confidence level
Low confidence level
(Continued)
UHM/015
H-21
-------
TABLE H-7. PLNJ (Continued)
Sample Date 08/23/89
Sample ID 2454
Total NMOC, ppmC 0.425
Compound
Acetylene
Propylene
Chloromethane
Vinyl chloride
1,3-Butadiene
Bromomethane
Chloroethane
Hethylene chloride
trans- 1,2-Dichloroethylene
1 , 1 -D i ch I oroethane
Chloroprene
Bromochloromethane
Chloroform
1,1,1-Trichloroethane
Carbon tetrachloride
1,2-Di chloroethane
Benzene
Trichloroethylene
1,2-Dichloropropane
B romod i ch 1 orornet hane
cis-1,3-Dichloropropylene
Toluene
n-Octane/t-1,3-Dichloropropylene
1 , 1 ,2-Trichloroethane
Tetrachloroethylene
0 i bromoch 1 oromethane
Chlorobenzene
Ethylbenzene
m/p-Xylene
Styrene/o-Xylene
Bromoform
1 , 1 ,2,2-Tetrachloroethane
m-D i ch I orobenzene
p-D i ch I orobenzene
o-D i ch I orobenzene
H High confidence level H Medium confidence level
Concentration, ppbv
<1.00
<0.10
<0.20
<0.20
0.14 M
<0.20
<0.10
<0.11
<0.04
<0.04
0.10 M
<0.01
<0.01
0.73 H
0.15 L
<0.04
1.68 H
<0.01
<0.04
<0.01
<0.04
4.13 L
<0.04
<0.02
<0.07
<0.01
0.04 H
0.37 H
1.84 H
0.68 M
<0.01
<0.01
<0.02
<0.09
<0.02
L Low confidence level
H-22
WHM/015
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-450/4-90-011
2.
3. RECIPIENTS ACCESSION NO.
4. TITLE AND SUBTITLE
1989 Nonmethane Organic Compound And Three-hour
Air Toxics Monitoring Program
5. REPORT DATE
May 1990
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Radian Corporation
Research Triangle Park, NC 27709
. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68D80014
12. SPONSORING AGENCY NAME AND ADDRESS
Office of Air Quality Planning and Standards
U.S. Environmental Protection Agency
Research Triangle Park, N.C. 27711
13. TYPE OF REPORT AND PERIOD COVERED
14. SPONSORING AGENCY CODE
16. SUPPLEMENTARY NOTES
16. ABSTRACT
In certain areas of the country where the National Ambient Air Quality Standard
(NAAQS) for ozone is being exceeded, additional measurements of ambient nonmethane
organic compounds (NMOC) are needed to assist the affected States in developing
revised ozone control strategies. Because of previous difficulty in obtaining accurate
NMOC measurements, the U.S. Environmental Protection Agency (EPA) has provided
monitoring and analytical assistance to these States, beginning in 1984 and
continuing through the 1989 NMOC Monitoring Program.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Ozone Control Strategies
National Ambient Air Quality Standards
Nonmethane Organic Compound
Monitoring
Analysis
1989 NMOC Monitoring Program
18. DISTRIBUTION STATEMENT
19. SECURITY CLASS (This Report)
21. NO. OF PAGES
444
Unlimited
20. SECURITY CLASS (This page)
22. PRICE
EPA Form 2220-1 (R«v. 4-77) PREVIOUS EDITION is OBSOLETE
-------
INSTRUCTIONS
1. REPORT NUMBER
Insert the EPA report number as it appears on the cover of the publication.
2. LEAVE BLANK
3. RECIPIENTS ACCESSION NUMBER
Reserved for use by each report recipient.
4. TITLE AND SUBTITLE
Title should indicate clearly and briefly the subject coverage of the report, and be displayed prominently. Sol subtitle, if used, in smaller
type or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, add volume
number and include subtitle for the specific title.
5. REPORT DATE
Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selected (e.g.. date of issue, datv of
approval, date of preparation, etc.).
6. PERFORMING ORGANIZATION CODE
Leave blank.
7. AUTHOR(S)
Give name(s) in conventional order (John R. Doe. J. Robert Doe, etc.). List author's affiliation if it differs from the performing organi-
zation.
8. PERFpRMING ORGANIZATION REPORT NUMBER
Insert if performing organization wishes to assign this number.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Give name, street, city, state, and ZIP code. List no more than two levels of an organizational hircarchy.
10. PROGRAM ELEMENT NUMBER
Use the program element number under which the report was prepared. Subordinate numbers muy be included in parentheses.
11. CONTRACT/GRANT NUMBER
Insert contract or grant number under which report was prepared.
12. SPONSORING AGENCY NAME AND ADDRESS
Include ZIP code. \ /
13. TYPE OF REPORT AND PERIOD COVERED
\
Indicate interim final, etc., and if applicable, dates covered. *
14. SPONSORING AGfcNCY CODE / \
Insert appropriate code. /
IS. SUPPLEMENTARY NOTES f \
Enter information not included elsewhere but useful.-such as: Prepared in cooperation with. Translation of, I'resenled at conlcremv
------- |