United States
           Environmental Protection
           Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EPA-450/4-91-007
March 1991
          Air
vvEPA
   GUIDANCE ON THE APPLICATION
   OF REFINED DISPERSION MODELS
      FOR AIR TOXICS RELEASES

-------
                                 EPA-450/4-91-007
GUIDANCE ON THE APPLICATION
OF REFINED DISPERSION MODELS
    FOR AIR TOXICS RELEASES
                   By


            Source Receptor Analysis Branch

              Technical Support Division
          Office Of Air Quality Planning And Standards
              Office Of Air And Radiation
           U. S. Environmental Protection Agency
            Research Triangle Park, NC 27711

                 March 1991

-------
This report has been reviewed by the Office Of Air Quality Planning And Standards, U. S. Environmental
Protection Agency, and has been approved for publication. Any mention of trade names or commercial
products is not intended to constitute endorsement or recommendation for use.
                                     EPA-450/4-91-007
                                             11

-------
                               Acknowledgements


     This document was prepared by Jawad S. Touma, Source Receptor Analysis
Branch, OAQPS.  Through their reviews and numerous discussions, Dr. David
Guinnup, U.S. EPA and Dr. Tom Spicer, University of Arkansas have contributed
to numerous portions of the document.  Assistance was also received from
Dr. Don Ermak (SLAB model), Mr. Arnold Marsden (HEGADAS model), and Mr. Bruce
Kunkel (AFTOX model) who reviewed those portions related to their respective
models.  Ms. Brenda Cannady typed the document.

-------

-------
                              TABLE  OF  CONTENTS

                                                                       Page

1.0    Introduction                                                    1-1

2.0    Model  Input Considerations                                      2-1

       2.1   Release Type                                              2-1

       2.2   Continuous or Instantaneous Release Categories            2-2

       2.3   Molecular Weight                .                          2-3

       2.4   Heat Capacity                                             2-4

       2.5   Release Temperature                                       2-5

       2.6   Density                                                   2-7
                                      *
       2.7   Release Diameter (Release Area)                           2-9

       2.8   Release Buoyancy                                          2-10

       2.9   Emission Rate                                             2-11

       2.10  Release Height                                            2-12

       2.11  Wind Speed and Direction                                  2-12

       2.12  Stability Class                                           2-14

       2.13  Surface Roughness Length                                  2-16

       2.14  Ambient Temperature, Relative Humidity,  and
             Pressure                        .                          2-17
                                            • -
       2.15  Ground Surface Temperature                                2-17

       2.16  Averaging Time Considerations                             2-18

3.0    Applications to Dense Gas Models         *                        3-1

       3.1   DEGADIS Model            '                                 3-1

             a.   Isothermal  and  Nonisothermal  Simulation               3-1
             b.   Density Considerations                                 3-2
             c.   Heat Capacity Considerations                          3-4
             d.   Example Applications                                  3-4
                   Example 1                                           3-4
                   Example 2                                           3-10

-------
       3.2   HEGADAS Model                                              3-16

             a.  Water Vapor                                            3-16
             b.  Low Wind Speed                                         3-16
             c.  Averaging Time                                         3-16
             d.  Example Applications                                   3-16
                   Example 1                                            3-16
                   Example 2                                            3-21

       3.3  SLAB Model             .                                    3-25

            a.  Temperature of Source Material                          3-25
            b.  Source Area        .                                     3-25
            c.  Example Applications                                    3-27
                  Example 1                                             3-27
                  Example 2                                             3-33

4.0    Application to Non-Dense Gas Models                              4-1

       4.1  AFTOX Model     *                                            4-1

            a.  Atmospheric Stability Considerations                    4-1
            b.  Example Applications                                    4-2
                  Example 1                                             4-2
                  Example 2                                             4-7

References                                                              R-l

Appendix A: Dense Gas Model Summaries

       A.I   DEGADIS Model Summary                                      A-l

       A.2   HEGADAS Model Summary                                      A-7

       A.3   SLAB Model Summary                                         A-13

Appendix B: Non-Dense Gas Model Summaries

       B.I   AFTOX Model Summary                                        B-l

Appendix C: Dense Gas Model Input and Output Files
                                    •
       C.I   DEGADIS
               Example 1                                                C-l
               Example 2                                                C-13

       C.2   HEGADAS
               Example 1                                                C-21
               Example 2                                                C-25

-------
       C.3    SLAB
                Example 1                                              C-29
                Example 2                                              C-37

Appendix D: Non-Dense Gas Model  Input and Output Files

       D.I    AFTOX
                Example 1                                              D-l
                Example 2                                              D-3

Appendix E: Calculating Temperature of Release Material                 E-l
                                     vn

-------
                                LIST OF TABLES

Table No.                           Title                               Page

  2-1              Representative Values of Surface Roughness          2-20
                   for a Uniform Distribution of Selected Types
                   of Ground Cover

  3-1              Types of Releases Considered by Dense               3-38
                   Gas Models

  4-1              Types of Releases Considered by Non-Dense           4-13
                   Gas Models
                                     VTM

-------
1.0  Introduction

     The "Guideline on Air Quality Models  (Revised)"  (EPA,  1986) describes
screening and refined air quality modeling techniques that  focus on the  six
criteria pollutants (particulate matter, sulfur dioxide, nitrogen dioxide,
carbon monoxide, ozone, and lead).  Screening techniques are relatively  simple
and. provide conservative estimates of the  source impact.  The purpose of  such
screening techniques is to eliminate the need for further,  more detailed
modeling when it is not necessary.  Refined models provide  more detailed
treatment of physical and chemical atmospheric processes and require more
detailed and precise input data.  As a result, they provide a more refined
and, at least theoretically, a more accurate estimate of source impact and the
effectiveness of emission control strategies.  Many of the models in the
guideline have also been used in simulating air toxics releases.  However,
there is an increasing need to provide models that specifically address the
impact of toxic air pollutants.  Such models deal with both heavier than air
(dense) and neutrally buoyant (non dense)  releases.
     To meet this need, EPA first published "A Workbook of Screening
Techniques for Assessing Impacts of Toxic Air Pollutants" (EPA, 1988).  The
workbook provides a logical approach to the selection and use of appropriate
screening techniques for estimating emission rates and ambient concentrations
    •
resulting from eighteen different types of air toxics release scenarios.  EPA
then developed the TSCREEN personal computer system (EPA, 1990a) that utilizes
concepts found in expert systems to implement the scenarios described in the
workbook.  EPA also co-sponsored the development of the DEGADIS refined dense
gas model (EPA,  1989a)  and conducted a statistical  model  evaluation study of

   ' -                                 1-1

-------
seven dense gas models using three experimental programs (EPA, 1990b).
Several other documents have been published to show the user how to apply air
toxics models.  Among these are Hanna and Drivas, 1987; CCPS, 1988; and
Britter and McQuaid, 1988.  These documents provide an introductory
understanding of the complex issues associated with air toxics modeling,
especially those issues related to denser than air releases.
     With the expanding interest in and use of air toxics models, there is
also a need for general guidance on the use of refined models in order to
foster consistency in their use.  Refined air toxics dispersion models are
used for a variety of purposes.  One such application is the assessment of the
hazard extent of a past or current event (i.e., a response analysis).  For
such an application, the maximum concentration at a given distance, e.g. a
fenceline, is needed and this document shows the thought process the user
should employ to estimate the input parameters based on actual conditions of
the release.   Another application of these models is for planning purposes.
In these applications, the model user typically desires conservative estimates
of the impact from a potential  release under any condition.  Sensitivity tests
(Hanna et. al., 1990; Guinnup and Nguyen, 1991) have shown that predictions
from some models may vary by an order of magnitude or more due to changing the
input for the following meteorological parameters:  wind speed, atmospheric
stability class and surface roughness.  The guidance provided here shows how
to estimate values for these variables so that, when input into the refined
models, there is an increased likelihood for obtaining the maximum
concentration at a given distance.
     Chapter 2 describes general guidance considerations needed to apply the
                                                      •
atmospheric dispersion models described in this report.  Chapter 3 applies the
                                      1-2

-------
general guidance to several dense gas models that are  in the public domain.
These  include the models DEGADIS, HEGADAS, and SLAB; other dense gas models
will be added as they become available.  Since each model may require unique
and specific inputs, guidance for developing these unique model inputs  is
provided under the sub-heading of each model.  Finally, for each model, two
examples using the general guidance are provided.  The examples include a
definition of the release scenario, a step-by-step explanation of how the
model was applied, and an interpretation of the model results.  The two
examples can not cover all of the release types that can be considered by
these models.  Chapter 4 applies the general guidance considerations to
refined, neutrally buoyant (non-dense) air toxics dispersion models that are
also in the public domain.  Many of the EPA regulatory models that are
described in the modeling guideline (EPA, 1986) fit this category.  Since
there  is a lot of experience in the use of these models, they are not
discussed here.  Models developed specifically for air toxics releases and
that contain features unique to such sources are the subject of this chapter.
Presently, this includes the AFTOX model; other models in this category will
be added as they become available.  The organization of this Chapter is
similar to Chapter 3.
     Appendix A contains a summary outline for each dense gas model  referenced
in this guidance document and Appendix B provides a similar summary for the
models used for neutrally buoyant releases into the atmosphere.   The format
for these model summaries is the same as that used in the modeling guideline
(EPA, 1986).  Appendices C and D contain a computer listing for the two
example applications for each model.  Appendix E contains guidance on
calculating -the temperature of released material.

                                      1-3

-------
     Finally, this document is not intended to be a replacement for any model
user's guide but should serve as a general supplement that provides additional
information on the considerations needed to execute and interpret the various
models discussed.  As knowledge and experience in the use of refined air
toxics models increase, updates to this document will be necessary.  The
unique approach used here makes this document a good supplement to many
existing documents on air toxics modeling applications.
                                      1-4

-------
2.0  Model Input Considerations
     This chapter describes the meteorological and source  input parameters
required for using air toxics dispersion models and provides general guidance
on how to specify these parameters.  In general, these input parameters should
be based on site-specific data.  Based on current experience, certain  input
parameters play a more important role in determining model concentrations.
However, additional sensitivity analyses are useful in identifying the most
important parameter for a specific model and scenario.  The user should
carefully examine each release scenario and use the appropriate model  input
parameter from those listed below.  There is no universal approach for all
cases.

2.1  Release Type
     Air toxics models use differing methodologies to account for. various
release types, thus the user must know the release type before specifying the
input parameters discussed here.  Air toxics contaminants can be stored as a
gas or as a liquid, under various amounts of pressure and temperature.  When
released to the atmosphere, a substance stored as a gas under pressure at
ambient temperature will  exit as a gas.  When a substance stored as a liquid
under pressure at ambient temperature,  with a boiling point below ambient
temperature, is released into the atmosphere, there is a high probability of
aerosol formation (an aerosol includes both liquid and gas phases).  When a
substance stored as a liquid under pressure at ambient temperature, but with a
boiling point above ambient temperature is released,  the release will most
likely form a liquid pool.  This liquid pool will subsequently volatilize into
the atmosphere (evaporate) at a rate proportional to  its vapor pressure.   Low
                                     2-1

-------
volatility liquids (low vapor pressure) evaporate more slowly and tend to for-m


larger pools than high volatility liquids.   The contaminants can be stored as


a pure substance (e.g., ammonia) or a mixture (e.g., liquefied natural gas).


Materials stored at temperatures other than ambient may require more complex


thermodynamic analyses to determine the exact release phase and .such
                                                                              *

calculations are not addressed in this document.  Other complex situations


such as those involving materials which react with the atmosphere are-also not


addressed.




2.2  Continuous or Instantaneous Release Categories


     For modeling air toxics, there are two release categories:  continuous


(steady-state) or instantaneous (transient).   In steady state releases, source


characteristics do not vary with time (i.e.,  emission rate is constant),  and


the release duration is long compared to advection (travel) time. A release is


considered transient if the source characteristics do not vary with time but


the duration of the release from the source is limited.  A transient


simulation of a release is required under any of the following conditions:  a)


an instantaneous release; b) some characteristics (including release rate or


diameter) vary with time; or c) source duration is short compared with the
                                                                     *
contaminant advection time to a given location or the averaging time for


predicted concentrations.


     The user can determine if the advection  time is long compared with the


release duration by using the following empirical procedure:


     1)  Make a steady-state simulation of the release and determine the


maximum distance to the lowest concentration  of interest, X, .


     2)  Estimate the advection (travel) time to that distance as:



                                     2-2

-------
                               ttrav - 2  (XL/u)
     where: u = the ambient windspeed (typically at 10m).
     3)  If tt    is smaller than the source release duration, then a steady-
state simulation is probably sufficient.  Otherwise, the release may be
instantaneous.
     While the examples discussed in this document are limited to continuous
releases, many of the guidance considerations also apply for transient
releases.

2.3  Molecular Weight
     For a single component gaseous contaminant (e.g.  NH., gas), molecular
weight can be obtained from typical  chemistry or chemical engineering
handbooks (e.g., Perry and Green, 1984).  For a multi-component mixture, an
average molecular weight can be calculated as follows:
     If volume (or mole) fractions are known:
     where: Ms = mean molecular weight of material  released (g/g-mole);
            yi = the volume (or mole) fraction of component; and
            NT = molecular weight of each component (g/g-mole).
     If mass fractions are known:
                             Ms =
                                    =1
     where:  mi = mass fraction of each component.
                                     2-3

-------
     For aerosols made up of a single component, the molecular weight can also
be obtained from textbooks or handbooks as discussed above for pure gases.
For aerosol mixtures, an average molecular weight can be calculated using the
equations above with either mole or mass fractions, but not volume fraction.

2.4  Heat Capacity
     If the temperature of the released toxic cloud is significantly different
from ambient, heat transfer effects may be important, and the heat capacity of
the released material will be needed to calculate cloud density as it
disperses.  Heat capacity values can be obtained from typical handbooks (e.g.,
Perry and Green, 1984).  If the toxic contaminant is .a mixture, the average
heat capacity of the mixture can be approximated by:

     where: Cp  = molar heat capacity of the mixture (J/kg-mole K);
             y, = mole fraction of component i  in the mixture;  and
            Cp. = molar heat capacity of component i of the mixture (J/kg
                  mole K).
Alternatively, the heat capacity (on a mass basis) can be calculated as:

                               CPa '     %
                                     1=1
     where: Cp  = heat capacity per unit mass (J/kg K);
             m. = mass fraction of component i  in the mixture;  and
            ^)p.j = mass heat capacity of component i in the mixture (J/kg K)
                                     2-4

-------
The molar heat capacity is directly related to the mass heat capacity by the
expression:
     where: M  = molecular weight of the mixture (kg/kg-mole).
     If a gaseous contaminant is released so that the temperature of the gas
is the same as ambient temperature, then the heat capacity is not important  in
the dispersion calculation.  If required, the heat capacity for the gas can  be
obtained from typical handbooks or the model user's guide.  If the released
material is an aerosol, calculation of heat transfer effects during the cloud
dilution is complex and is not generally included in a dispersion model.  In
such a case, the user may need to externally calculate the relationship
between air/contaminant mixture density and contaminant concentration.  (For
example, the DEGADIS model may be used to simulate an aerosol release by
providing externally-calculated cloud densities as inputs.)
     Some models require specification of a heat capacity through a
parameterized function.  In these cases, the user will need to input the
appropriate values of the parameters.  Such parameters are typically provided
iii the model user's guide.
                                     *
2.5  Release Temperature
     This parameter is the temperature" of a released pollutant as soon as it
gets into the atmosphere,  after any necessary depressurization.   Some
dispersion models include a source model which attempts to calculate this
parameter;  in such cases,  the models may require the material  storage
temperature rather than the release temperature.  If the release temperature
                                     2-5

-------
is different from ambient air temperature, heat transfer into or out of the
cloud may be important.  When heat transfer is important, a thermal energy
balance is needed which can account for:  (a) energy addition to the plume due
to ambient air entrainment; (b) heat transfer at the plume boundaries; (c)
latent heat exchange due to condensation of the moisture content of entrained
                                    •
humid air and any subsequent reevaporation as the saturation conditions change
with downwind distance.  For aeroso] releases, energy balance considerations
are also needed to account for the latent heat effects due to evaporation of
the liquid contaminant phase.  The treatment of these issues varies from one
model to another.
     For release of a gas, stored at low to moderate pressure (i.e., less than
about 5 atm), the exit temperature may be assumed equal  to storage
temperature; when stored at high pressure (i.e., above about 5 atm), the gas
exit temperature may be calculated by taking into account the adiabatic
expansion of the gas after it exits from the relief valve.  This temperature
would generally be lower than the storage temperature.  The temperature of the
depressurized release can be calculated assuming isenthalpic behavior
(neglecting kinetic energy eff.ects) or assuming isentropic behavior (including
kinetic energy effects).  The isenthalpic assumption .is  generally more
                           *
conservative and is therefore preferred.  Appendix E contains examples of this
approach for making temperature calculations.
     For releases which form aerosol- clouds, the release temperature can be
                          .
assumed equal to the boiling point temperature.  For releases which form
liquid pools (see Section 2.1), estimating the release temperature is complex
and depends, for example, on the rate of heat exchange of the spilled liquid
                                    .  2-6

-------
with the surface.  An evaporation  (or source) model  is required  to make  this
estimate.  For example, some models assume the pool  temperature  is equal  to
the ambient temperature and calculate the evaporation rate  at that
temperature.

2.6  Density
     Initial cloud density is an  important determinant of cloud  extent.   The
denser the cloud is initially, the more  it will tend to spread laterally (and
even potentially upwind) due to gravitational "slumping" or spreading forces.
In addition, the changes in cloud density downwind are dependent on the  rate
of heat transfer into, the cloud.  For example, one effect of heat transfer
into a cold cloud is to reduce the negative buoyancy (i.e., decrease density)
and, thus, to reduce the horizontal dimensions that result from gravitational
spreading.  The effect of heat transfer  into an aerosol cloud is to vaporize
the aerosol droplets, thereby, reducing the total cloud density.  However,
such vaporization will also tend to reduce the cloud temperature below its
boiling point and thus increase the total cloud density.  Prediction of
aerosol cloud densities may further be complicated by chemical reaction  in the
liquid phase (as in polymerization of hydrogen fluoride) or interaction with
ambient humidity (as in pressurized ammonia and hydrogen fluoride releases).
The treatment of aerosol  cloud density in dense gas models is model specific
as is the degree of available simplification of the cloud density/
concentration relation.   Most models,  however, do require specification of the
initial cloud density (prior to any dilution in the atmosphere).
     For a gaseous release,  initial density can be estimated by specifying the
release temperature and  molecular weight and using the ideal gas  law.
                                     2-7

-------
     For an aerosol release, initial cloud density may only be calculated if
the relative amounts of liquid and vapor in the release are known.  This can
be approximated for single-component release via a flash calculation.  For a
simple case, consider the release of a single component pressurized
(saturated) liquid stored at ambient temperature,  which is above its normal
boiling point.  The relative amounts of liquid and vapor formed upon release
can be estimated by performing an adiabatic flash  calculation with the.
following equation (see Section 4.13 of the workbook (EPA, 1988)):
                               F = a,
                                           L
     where:.  F  = mass fraction of liquid flashed to vapor;
            Op,  = specific heat of liquid at constant pressure at Tu
                  (cal/(g K));
           T .   = storage or line temperature of liquid (K);
            Tu  = boiling temperature at ambient pressure (K); and
             L  = latent heat of vaporization at T^ (cal/g).
     If all the unf lashed liquid is entrained in the gas jet as an aerosol,
the initial density of the release mixture prior to any air entrainment can
then be estimated:
     where: p  -,  = density of the undiluted aerosol  mixture (g/cnr1);
              py = pure vapor density at T.  (g/cm ); and
              PL = pure liquid density at T.  (g/cnr).
Since the release is a single component, the mixture density is also equal to
the contaminant concentrations for the undiluted aerosol.  If F > 1, the
                                     2-8

-------
release is not expected to form an aerosol, and may be conservatively assumed


to form a pure gas release at its normal boiling point temperature.


     For multi -component releases, the calculation is complex and  iterative


and the user is referred to King (1988), pp. 68-90.


     The density of a substance which forms a liquid pool (see Section 2.1)
    *

can be obtained from typical handbooks, if needed by the model.






2.7  Release Diameter (Release Area)


     For stack releases, this parameter should be determined from direct


measurement from inside the stack top.  For some applications, a gas may be


slowly released from a rupture or a hole.  In those cases, the inside diameter


of the rupture point or hole may be used.  However, when the source is a


pressurized jet, the release diameter (D ), required by a dispersion model is


typically the diameter of the released jet after it has depressurized to


atmospheric pressure.  Assuming that the jet velocity remains constant within


the depressurization region, the release diameter can be estimated from:




                             °t = (PSt/Prsj)1/2£S


If the stored and released materials are both gases,  this reduces to:



                                        
-------
     If the released material forms an aerosol, calculation of the release
diameter will depend on appropriately accounting for the flashed fraction to
estimate the release density at atmospheric pressure (refer to Section 2.6 for
how to calculate (pre-|))>
     For liquid spills, a pool diameter is needed.  Screening estimates for
determining pool diameter are given in the workbook (EPA, 1988).

2.8  Release Buoyancy
     It is necessary to determine whether the released material is heavier
than air (dense) or neutrally buoyant for a specific release scenario before
an appropriate dispersion model can be selected.  This determination is done
step-wise and begins with an estimate of the molecular weight of the released
material.  Once the molecular weight has been determined, the density of the
released material as described in Section 2.6 can be compared to the density
of air to initially determine negative (dense gas) or neutral buoyancy.  For
ideal gases, the following relationship can be used:
          If:
                                  Tg      Ta
                                  ~Mg  *  "2879

     where: Ta = ambient temperature (K); and
            Ts = temperature of the material released at ambient pressure1
      Note that a liquid whose boiling point is below ambient temperature,
stored at ambient temperature under pressure may boil when released to ambient
pressure.  Then the temperature of the released material  at ambient pressure
may be assumed to be the normal boiling point.
                                     2-10

-------
(K); then, atmospheric dispersion is not affected by negative buoyancy effects
and dense gas models are not required.
     If the initial release buoyancy determinations show that dispersion  is
affected by negative buoyancy (i.e., dense gas effects are  important and  a
dense gas model is necessary), then the next step is to determine the release
Richardson number (Ri).  Ri represents a ratio of the potential energy
characteristic of the release to a measure of the ambient turbulent kinetic
energy.
     The approach recommended for determining Ri is that described in the
workbook (EPA, 1988).  Pages 5-2 through 5-5 of the workbook provide a
procedure for making the calculations for simple cases.  For more complex
situations, e.g., elevated jet releases, the TSCREEN model  (EPA, 1990) may be
used to make these calculations.  In either case, if Ri for a particular wind
speed/stability class combination is greater than 30, then dense gas effects
                     o
should be considered.   Models described in Chapter 3 are appropriate for
determining downwind concentrations from dense gas releases.  If R. is less
than or equal  to 30, the release is considered buoyant.  Although some of the
models in Chapter 3 are able to address buoyant releases, it is suggested that
the user selects one of the models in Chapter 4, or one of the EPA regulatory
models because they are easier to use than the dense gas models.
                                        •
2.9  Emission Rate
     When assessing the emission rate for a specific release scenario, several
time scales may be encountered and this "time-history" of the emission rate
     o
      A large Ri indicates the dominance of buoyancy forces over shear forces.
A cut-off value of 30 is consistent with the RVD screening model (EPA, 1989b),
which is imbedded in TSCREEN.
                                     2-11

-------
can have a significant influence on the final modeled concentration estimates.
For a pressurized release, three, time scales could be encountered; the initial
high volume emission rate followed by a near steady state rate and finally a
drop to zero as the leak stops.  Evaporation from spilled releases may exhibit
other patterns.  Therefore, to estimate emission rates, methods based on
direct measurements are preferred.  In general, emission rate (expressed as
mass per unit time) equals emission density (mass/volume) times total
volumetric flow rate (volume/time).  If direct measurements are not available,
emission rate can be estimated from the release mode and duration.  For
selected release scenarios, methods for obtaining emission estimates are shown
in the workbook (EPA, 1988).

2.10 Release Height
     This parameter should be determined from direct measurement from the
ground level at the base of the stack or the release point up to stack top.
Some models adjust the wind speed (from the measurement height) to the release
height.  For a non stack-type release, the release height represents the
vertical distance from the ground level to the center of the initial release.

2.11 Wind Speed and Direction
     Wind speed is used to determine (1) plume rise, (2) plume dilution, and
                              •
(3) mass transfer in evaporation models.  In very light winds, dense gases
tend to form "pancake-shaped" clouds near the source and the dense cloud may
not be very deep until further downwind.  As wind speed begins to increase,
the "maximum concentration" area moves further downwind and the cloud is
elongated and maximum hazard extent generally increases.  At higher wind
                                     2-12

-------
speeds, the rate of air mixing is increased (more energy is added to the
mixture) and the hazard extent decreases.  For releases from liquid pool
spills, high wind speeds increase the rate of evaporation and thus increase
the plume source strength.  However, high wind speeds also result in more
dilution due to increased entrainment of outside air and are more favorable
for atmospheric dispersion.
     Concentration estimates predicted by air toxic models decrease as the
wind speed increases (Hanna et. al., 1990).  However, most dense gas models
are less sensitive to this increase in wind speed at close-in distances, where
gravity effects are dominant.  Further downwind, the behavior of dense gas
models and non dense gas models is more similar.  In a comparison of the three
dense gas models SLAB, DEGADIS and HEGADAS, the three models exhibit different
sensitivity in modeled concentrations due to changes in wind speed.  The SLAB
model is most sensitive while DEGADIS and HEGADAS show about the same degree
of sensitivity to changes in wind .speed (Guinnup and Nguyen, 1991).  In
addition, all models indicate that an increase in wind speed causes a dramatic
reduction in the lateral dimension of the concentration isopleth with a less
dramatic reduction in downwind extent for a ground level  dense gas release.
     If the user wishes.to assess the hazard of a past event,  wind speed
should be obtained from on-site measurements usually made at the standard 10m
level height.  The wind speed at release height is frequently adjusted
internally by the model using a power law equation.   Guidance for on-site
meteorological  data collection is available in the document "On-site
Meteorological  Program Guidance for Regulatory Modeling Applications"  (EPA,
1987).   On-site meteorological data are normally averaged over a 1-hour
interval.  As described in Section 2.16, for transient releases the user
                                     2-13

-------
should carefully select the appropriate meteorological  data interval (i.e.,
the subset of time that the plume remains in the area of concern).
     The wind direction is used to approximate the direction of transport of
the plume.  The variability of the direction of transport over a period of
                                                                         »
time is a major factor in estimating ground-level  concentrations averaged over
that time period.  For response analyses, wind direction should be estimated
from on-site or nearby measurements.  For planning analyses, wind direction
should be chosen to maximize potential  off-site impacts.

2.12 Stability Class
     Stability conditions are typically assessed by means of the Pasquill-
Gifford (PG) stability categories where Category A represents extremely
unstable conditions and Category F represents moderately stable conditions.
The modeling guideline (EPA, 1986) recommends several methods for determining
the PG stability category.3
     For a given wind speed, stable atmospheric conditions provide smaller
levels of atmospheric turbulence than unstable conditions.  The influence of
atmospheric stability on the dispersion of a dense gas  (as a result of altered
levels of ambient turbulence) may be similar to that for neutrally buoyant
releases, but may also be much less.  For elevated releases, stable
atmospheric conditions tend to increase the downwind dist'ance to a given
concentration (and unstable conditions  tend to reduce it).  For dense gas
models, the maximum ground level concentration at a given distance usually
occurs under stable conditions.  As in  the case of wind speed, various models
      These methods may change and the user should refer to the latest
revisions to the guideline.
                                    . 2-14

-------
exhibit different sensitivity levels  in concentration prediction due to
changes in stability class (Hanna et  al., 1990, Guinnup and Nguyen, 1991).
     For planning analyses, where there is a need for obtaining conservative
estimates from these models, it is necessary to make a number of refined model
simulations using various stability and wind speed combinations.  For the
dense gas models included in this report, making a large number of simulations
and interpreting their results is a daunting task.  Therefore, the following
approach is suggested.  For vertically directed jet releases, the user should
first apply the RVD screening model imbedded in TSCREEN (EPA, 1990).  The
model has a built-in range of wind speeds with associated stability
categories.  The user then selects the wind speed and stability assosciated
with the maximum concentration at the fenceline distance.  This wind speed and
stability combination is then input to the refined dense gas model.  For
liquid pool spills, a wind speed of 2 m/s and F stability class can be used.
     The above procedure has shortcomings.  For example, the wind speed and
stability combinations in the screening model may not be the same combination
that would yield the maximum concentration in the refined model due to
differences in model "physics" and other assumptions.  Also, the wind speed
and stability combination may strongly depend on whether the release can be
simulated as a steady state or as a transient release.  For spills, low wind
speeds are not favorable for evaporation.   Nevertheless, simulating the
release with wind speed and stability class described above provides the user
with an initial  assessment-of the problem before applying the more complex
refined model.
                                     2-15

-------
2.13 Surface Roughness Length
     In principle, the surface roughness length is a measure of the roughness
of a surface over which a fluid is flowing and for a homogeneous surface, its
value may be approximately estimated as l/30th of the average height of the
surface irregularity.  When the landscape contains any obstructions (i.e,
nonhomogeneous), an effective roughness length must be determined.  The
effective length is best determined using the relationship described in the
meteorological  data guidance document (EPA, 1987).  Typical values of surface
roughness are shown in Table 2-1.   Some models use surface roughness to
internally compute the Monin-Obukhov length.
     The overall effects of increasing surface roughness will be to retard the
horizontal, buoyancy-induced spreading of the plume or cloud and to enhance
the mixing between plume and environment as a result of the ambient and plume
turbulence (Britter and McQuaid,  1988).  As in the case of wind speed and
stability class, various models exhibit different sensitivity levels in
predicted concentrations due to changes in surface roughness (Hanna et al.,
1990; Guinnup and Nguyen, 1991).   Because releases of a dense gas may occur in
industrial settings where the presence of a wide variety of structure heights
and shapes is common, some users  have input large surface roughness values
into a model to account for the presence of such obstacles.  However, these
large surface roughness values can significantly decrease modeled
concentrations.  For low or ground-level releases, increasing the surface
roughness value by a factor of 10 may result in concentration reductions by
about a factor of 2 (Petersen, 1989).  The use of "enhanced" roughness values
for simulating an industrial setting has yet to be thoroughly tested and
justified.  For planning analyses  where there is a need for obtaining
                                     2-16

-------
conservative estimates from these models, the use of a surface roughness value
characteristic of the smallest roughness element in the vicinity of the
release (typically around 0.01 m) will result in the prediction of a higher
concentration by the model.

2.14 Ambient Temperature. Relative Humidity, and Pressure
     To assess the consequences of a past event, input parameters should be
used which are representative of the conditions at the time of the release.
An appropriate input value for each of these parameters should be obtained
from on-site measurements at the time of release.  Guidance on methods for
collecting these data are presented in the meteorological data guidance
document (EPA, 1987).  If on-site data are not available for these parameters,
observations from nearby National Weather Service (NWS) stations may be used
instead.
     Experience to date indicates little, if any, sensitivity in predicted
model concentrations due to changes in these three parameters.  For planning
analyses, the input of a value typical of the climatological average is
usually adequate.
                                                               t,
2.15 Ground Surface Temperature  '
     An appropriate input value for ground surface temperature should be that
from routine on-site measurements.   If such data are not available, ground
surface temperature may be approximated to be equal  to ambient temperature
measured at the standard height,  for most applications.  Experience to date
indicates little, if any, sensitivity in predicted model  concentrations due to
changes in this parameter.
                                     2-17

-------
2.16 Averaging Time Considerations
     Toxic chemical releases are often of short duration and the
concentrations of interest are short term averages.  Typical concerns from a
toxic release are the maximum short term concentration and the maximum dosage.
Many toxics models are designed to provide concentration predictions for unit
averaging times ranging from 1 second to 1 hour.  By contrast, regulatory
models for most criteria pollutants have a basic averaging time of one hour
for concentration estimates.
     Refined dense gas models can typically provide concentration estimates
for user specified averaging times of 1 hour or less.  Due to entrainment with
ambient air, a dense gas release typically does not remain significantly dense
for travel times longer than 1 hour.  The length of the averaging time is
usually selected in order to evaluate the exposure to airborne chemicals.
Meteorological input, however, is often based on an hourly average.  To
determine the appropriate averaging time the user should examine the
persistence of meteorological conditions and the concentration levels of
concern keeping health or other reference levels in mind.
     Defining an appropriate averaging time for dense gas modeling application
is complicated.  Large averaging times allow for more plume meander and
                                                                         •
therefore lower average concentrations.  Thus, a 5-minute ensemble average
concentration is generally less than a 1 minute ensemble average since more
meander can generally occur in 5 minutes than in 1 minute.  Thus, some
researchers use much shorter averaging times (i.e., 5-10 seconds), than the
release duration, especially when comparing model predictions with field
measurements when these field measurements are made with shorter averaging
times.  However, meteorological inputs (i.e. stability classification) used in
                                     2-18

-------
conjunction with these models are based on a longer duration, usually 60
minutes.
     The time scales relevant to determining the averaging time to be used in
the models can be designated as:
           = avera9in9 time associated with the hazard being assessed;
           = duration of the contaminant release; and
     Hrav = trave^  tiroe* discussed earlier (Section 2.3).
If t. is the averaging time which represents the effect of plume meander, then
    a
the largest recommended t  is the minimum of t.    and t  -, (for steady-state
or transient releases); smaller values of t. can be chosen to compare with
                                           a
field observations.   If t. +  is the averaging time which accounts for
                         d, L
transient effects (not pertinent for steady-state releases) t,  t is
                                                             a, t
recommended to be t.   .
                                     2-19

-------
                                   Table  2-1
           REPRESENTATIVE VALUES OF SURFACE ROUGHNESS FOR A UNIFORM
                DISTRIBUTION OF SELECTED TYPES OF GROUND COVER
                                (PIELKE  (1984))
                                         Surface Roughness
                                                (m)
Ice
Snow
Sand
Soils
Short grass
Long grass
Agricultural crops
0.00001
0.00005 to 0.0001
0.0003
0.001 to 0.01
0.003 to 0.01
0.04 to 0.10
0.04 to 0.20
                                     2-20

-------
3.0   Application to Dense Gas Models

      This chapter narrows the focus of the general guidance considerations

developed in Chapter 2 and deals with  input requirements for each  specific

dense gas model.  At the present time, three models are discussed: DEGADIS,

HEGADAS and SLAB.  Table 3-1 shows the types of releases considered by these

dense gas models.  Significant model attributes should be carefully taken  into

consideration when selecting a model for a given application.  For each model,

the discussion begins with those specific input parameters that can not be

readily obtained from reviewing the model user's guide.  For each model, two

example applications are provided to show the user how every model input

parameter was derived.  The present examples do not cover all of the release

types that can be considered by these models.
                     v

3.1   DEGADIS Model

     The DEnse GAs Dispersion (DEGADIS) Model (Version 2.1) (EPA, 1989b) is

designed to model the dispersion of dense gas (or aerosol) clouds released

from a circular sourde cloud at ground level with no initial momentum (pooled

surface) as well as the dispersion of vertical jets.  The DEGADIS model

summary description \s included in Appendix A.I.  There are terms used in
                                          *
DEGADIS (i.e., isothermal and nonisothermal) that need distinction.

      a.    Isothermal and Nonisothermal Simulation

            An "isothermal" simulation means that DEGADIS does not use an

energy balance to relate contaminant concentration to mixture density; for an

"isothermal" simulation, the user must supply this relationship in the form of

ordered triples (of contaminant mole fraction, contaminant concentration, and

mixture density).  "Isothermal" simulations are useful  for both aerosol


                                     3-1

-------
releases and releases where the initial contaminant temperature is the same as
the ambient temperature.
            A "nonisothermal" simulation means that DEGADIS uses an energy
balance to determine the cloud temperature (and thereby its density) as air is
mixed with the cloud.  The energy balance allows for ground-to-cloud heat
transfer and accounts for thermal  effects associated with the condensation of
ambient humidity, but the energy balance does not account for thermal effects
associated with contaminant phase changes (as in aerosol releases).  The
energy balance assumes the contaminant is an ideal  gas.  "Nonisothermal"
simulations are useful when the released contaminant can be represented as an
ideal gas and the initial contaminant temperature is significantly different
from ambient temperature.
      b.  Density Considerations
         If the release being modeled is an aerosol, the DEGADIS model
requires data relating the cloud density to its contaminant concentration
level.  In order to calculate the density of a cloud for any given dilution
with air, the user must know:
         1.  the heat capacities of the liquid and vapor phases;
         2,  the heat capacity of the ambient air and its contained moisture;
                                •
             and
         3.  the latent heat of vaporization of the released contaminant and
             water.
This information is then used (in adiabatic mixing calculations, i.e.,  no heat
transfer) to determine the liquid and vapor contents of the released  .
cloud/ambient air (aerosol) mixture.
                                     3-2

-------
         As one varies the input amounts of air and released aerosol from pure


(100 percent) air to pure (100 percent) aerosol, the density of the resultant


mixture will change. [So will temperature T, liquid content (1), vapor content


(v), and concentration (c)].  The adiabatic mixing calculations result in


values for contaminant mole fraction, contaminant concentration (kg of
                                        %

contaminant per m  of contaminant/air mixture) and mixture density (kg of


contaminant/air mixture per m  of contaminant/air mixture) which are then


input to the DEGADIS model.   Typically, this calculation is made 10 to 20


times using a combination of pure air and aerosol mixtures to adequately


describe the complete density profile.  The actual number in this combination


series is then input to the model as a variable "NDEN" and the mole


fraction/contaminant concentration/mixture density data are input on


subsequent input records (see Section A of the user's guide).


         Since calculating 10 to 20 combination data points can be tedious,


one alternative, which generally provides results within acceptable error


limits, is to provide the model  with only the initial  and final mole


fraction/concentration/density data points; namely,  those for the pure ambient


air and pure aerosol as initially released.  The model will linearly


interpolate between these two end points.   For the first end point, pure
                               «
ambient air, the density entry value can be obtained from a psychometric chart


(e.g., see Felder and Rousseau,  1986).  The first end point value can also be


obtained while running the DEGltiP or JETINT modules  of the DEGADIS model.


Values for the second entry,  pure aerosol,  may be estimated if the relative


amounts of liquid and vapor  in the release are known,  as described in Section


2.5.
                                     3-3

-------
     c.  Heat Capacity Considerations
         In DEGADIS, constants for determination of cloud heat capacity are
only needed if a "nonisothermal" simulation is being made, (i.e., contaminant
release temperature differs significantly from that of ambient air and an
energy balance is used to estimate the cloud temperature).  The contaminant
                             *
heat capacity is determined by Equation A.I of the user's guide (EPA, 1989b).
A constant heat capacity can .be specified by setting the power (pi) to 0 and
the constant equal  to the desired heat capacity (J/kg K).
         The temperature difference between the release temperature and the
ambient temperature can be considered important if ambient humidity can be
condensed (which is possible if the release temperature is below the ambient
dew point).  If the difference between the release temperature and the ambient
temperature is not great, the variable "NDEN" may be set equal to -1; a pseudo
"isothermal" simulation is made.  The model calculates pure air and pure
contaminant densities based on input conditions and then linearly interpolates
between these end points.  The model still requires inputs for variable "CPP"
and CPK" but dummy values for these variables may be entered since the model
will not use these.variables when NDEN = -1.
     d.  Example Applications:
         DEGADIS Model Example 1:  Continuous Chlorine Leak
         In this hypothetical example, the DEGADIS model is used for planning
purposes to simulate the release of chlorine gas from a pressurized tank
through a 2.8 cm diameter hole.  Chlorine is being stored as a gas; in a large
tank at ambient temperature under 6 atmospheres of pressure .   The hole is
      In this example, since chlorine is released as a .gas and remains as a •
gas after depressurization, there is no need to consider any aerosol effects,
                                     3-4

-------
located 5m above ground and the release  is directed upward.  Terrain  in the
vicinity of the tank is flat and covered with grass.  Chlorine forms  a
greenish-yellow gas with a characteristic, irritating odor.  The NIOSH 15-
minute exposure limit is 0.5 ppm.  Maximum off-site concentrations from this
release are desired.  Additional parameters are given as:  molecular  weight =
70.9 g/g-mole; ambient temperature = 298 K; heat capacity at constant pressure
for chlorine gas = 500 J/kg K; ratio of specific heats = 1.35; and relative
humidity = 50 percent.
         Using the approach suggested in Chapter 2, the user begins by using
the procedure shown in the workbook (EPA, 1988} and the TSCREEN model.  This
scenario is the same as Example 6.5 of the workbook.  First, buoyancy and
density are determined.  The value for the Richardson number is well  in excess
of 30 indicating the need for a heavy gas model, and the RVD screening model
imbedded in TSCREEN is used to select the wind speed and Pasquill stability
category for input into a refined dense gas model.  The screening model
results are reviewed to determine the maximum concentration at the facility
fence!ine (100m).  This concentration occurs within stability classes E and F
at 2 m/s wind speeds.   The F stability and 2 m/s wind speed parameters are
selected as input into the DEGADIS refined dense gas model.
•
         The DEGADLS input file for this example is shown in Appendix C.I.
The description of the input elements below is done line-by-line from what is
shown in the input and output files.  The user can refer to pages A-6 thru A-8
of Appendix A of the DEGADIS model  user's guide for additional  definitions of
terms.                                .                                  .
                                     3-5

-------
1.   Line 1
     UO = 2 m/s.  UO is the ambient wind speed at reference height.
     ZO = 10 m.  ZO is the reference height.  This is the standard reference
     height for meteorological  measurements.
2.   Line 2
     ZR = 0.01 m.  ZR is the surface roughness.  This value is typical of
     terrain covered by grass.   See Table 2.1.
3.   Line 3
     INDVEL = 1.  This indicates that the ambient velocity profile will be
     calculated using the Pasquill-Gifford stability category along with the
     surface roughness to estimate the Monin-Obukhov length RML.  Using RML,
     the log velocity profile is then fixed.
     ISTAB = 6.  This is the Pasquill-Gifford F stability category.
     RML = 0. RML is the Monin-Obukhov length.  Since INDVEL = 1, the Monin-
     Obukhov length will be estimated by DEGADIS, and a dummy value of 0.0 is
     used.
4.   Line 4
     TAMB = 298 K.  TAMB is the ambient temperature.
     PAMB = 1 atm.  PAMB is the ambient pressure.  The exact magnitude for
     this parameter is not important for most releases.
     RELHUM = 50 percent.  RELHUM is the relative humidity.  Since the
     contaminant temperature is not below the ambient dew point temperature,
     this parameter will have little impact on the final result.
5.   Line 5
     TSURF = 298 K.  TSURF is the surface temperature.  This value is usually
     set equal to the ambient temperature unless otherwise known.
                                     3-6

-------
6.   Line 6
     GASNAM = CL2.  The three letter designation for the contaminant
     (Chlorine) is for documentation purposes only.
7.   Line 7
     GASMW = 70.9.  GASMW is the contaminant molecular weight for chlorine.
8.   Line 8
     AVTIME = 900 sec. (15 min.).  AVTIME is the averaging time.   This
     averaging time is used to assess the concern for public health as
     discussed above.   Here, we can compare the model predictions against the
     NIOSH Exposure Limit of 0.5 ppm for 15 minutes.
9.   Line 9
     TEMJET = 284.3 K.  TEMJET is the temperature of the released contaminant
     immediately after it is released into the atmosphere.  The cooling due to
     adiabatic expansion of the jet is calculated using the method in Appendix
     E.
10.  Line 10
     GASUL = 5 x 10   moTe fraction.  This is the higher of two concentration
     levels to be used for estimating contours.   The upper concentration limit
     is arbitrarily selected to be a factor of 10 higher than the NIOSH 15-
     minute exposure limit of 0.5 ppm.  This ppm value is converted to mole
     fraction by dividing by 10 .
     GASLL = 0.5 x 10    mole fraction.  This is  the lower of two  concentration
     levels to be used for estimating contours.   The lower concentration limit
     is selected as the NIOSH 15-minute exposure limit of 0.5 ppm converted to
                                          i
     mole fraction by  dividing by 106.
                                     3-7

-------
     ZLL = 0 m.   ZLL is the receptor elevation for contour predictions.   A
     ground level  concentration is desired.
11.   Line 11
     INDHT = 1.   This is a switch to indicate if heat transfer is to be
     included in the model.  Since the release temperature is different  than
     the ambient temperature,  heat transfer  should be included and INDHT = 1.
     CPK (heat capacity constant) and CP? (heat capacity power) are variables
     used to calculate heat capacity according to the equation used in the
     model.  To use a constant value of heat capacity for chlorine of 500 J/kg
     K,  set CPK = 500 and CPP = 0.
12.   Line 12
     NDEN = 0.  This variable is used to specify the contaminant density
     profile.  For this release, the chlorine is a gas after depressurization.
     When NDEN is set to zero a "nonisothermal" situation (where the energy
     balance is used to determine cloud density) is made; also, the initial
     contaminant density is calculated using the ideal gas law.
13.   Line 13
     ERATE = 1.261 kg/sec.  ERATE is the contaminant emission rate.  See page
    .6-14 of the workbook for details on how this value can be calculated.
14.   Line 14
     ELEJET = 5 m.  ELEJET is the initial jet elevation.   In this case,  the
     rupture hole is 5 m above ground.
     DIAJET = .06701 m.  Since the release is pressurized, the diameter  of the
     release must be adjusted sb the velocity will be calculated correctly by
     the model.   In this case, both stored and released contaminants are
     gases, so:
                                      3-8

-------
                                         T
                                         1
                                          iel
                                              1/2
                                       (0.028)  =0.06701..
15.  Line 15
     TEND = 0.  TEND is a switch indicating duration of the primary release. A
     value of zero indicates steady-state release.  Several criteria are used
     here.  A steady-state release is appropriate when storage capacity of the
     system is much larger than the release rate.  In addition, the
     applicability of a steady-state simulation depends also on the advection
     or travel time to the lowest concentration of interest (Urav) as
     discussed in Section 2.2.   This step requires an examination of the
     output.  The 0.5 ppm level is reached at 10.2 km from the source and 2
     m/s is the ambient wind speed.  Using the equation in Section 2.2,
     ttrav = 2 (xl/u) = 2 (10200/2) * 10,200 sec. = 2.8 hrs.  For this release
     rate, if the source duration is longer than 2.8 hours, then a steady-
     state simulation is justified.
16.  Line 16
     DISTMX = 100 m.   DISTMX is the maximum distance between output points in
     the model.  Note that this does not affect the concentration values
     predicted by the model; only the amount of output is affected.

Model Output
     The DEGADIS model  output file is shown in Appendix C.I.  The output file
first shows a summary of model  inputs.   Some of the parameters were calculated
directly by the model.   The model  output then lists the centerline
                                     3-9

-------
concentrations by downwind distance for the jet/plume phase of the release.
For the jet/plume release, the maximum centerline ground level concentration
is 7.49 x 10   mole fraction (749 ppm), at a distance of 220 m downwind of the
release!  The plume trajectory portion of the calculation ends at 261 m
downwind.  At this point the plume centerline is at ground level (zero).  The
maximum 5 ppm isopleth width in the jet/plume is 2 x 27.3 = 54.6 m at 261 m
downwind.
     When the plume centerline touches the ground, the DEGADIS model continues
the calculations for the dispersion of a ground level plume.  The output file
again shows a summary of model  inputs, together with additional ground-level
"source" parameters calculated directly by the model.  This is followed by a
listing of the plume concentration as a function of downwind distance.  In
addition, cross wind distances to the specified concentration levels (.5 ppm
and 5 ppm) are listed as a function of downwind distance in the last two
columns.  The higher specified concentration level 5 ppm (1.45 x 10   kg/m )
is reached at a distance of 6170 m from the release point.  The maximum 5 ppm
isopleth width is 2 x 289 = 576 m at 2970 m downwind.  Similarly, the lower
specified concentration level  0.5 ppm is reached at a distance of 10,000 m
downwind.  The maximum 0.5 ppm isopleth width is 2 x 598 or 1200 m at the
10,200 m downwind distance.
     DEGADIS Model Example 2:   Ammonia Pipeline Rupture
     The model is used here to assess the hazard extent of a past event which
occurred at about 8:00 a.m. when a bulldozer struck and ruptured an 8-inch
ammonia pipeline operating at approximately 700 psi.  The rupture was
estimated as 4 cm in diameter,  and the release rate was estimated as 56 kg/s.
The climatological data from the nearest National Weather Service station were
                                     3-10

-------
examined and the following meteorological record reconstructed for this event:
wind speed = 4.5 m/s (10 m), ambient temperature = 298 K, atmospheric
stability class = D, relative humidity = 50 percent, and atmospheric pressure
= 0.98 atmospheres.  The dense aerosol plume reportedly etched a parabolic-
shaped scar about 6 miles long and 1/2 mile wide on surrounding vegetation
(mostly short grass).  Ammonia is a colorless gas with a suffocating odor; it
exists as a liquid under 700 psi pressure.
     The input file is similar to Figure B.4 of the DEGADIS model user's
guide.  The input file used here is shown in Appendix C.I.  The input
parameters are described below.  Also see page A-6 of Appendix A of the user's
guide for additional term definitions.
     The user should perform a flash calculation to estimate the percent of
liquid flashed into vapor using the method given in the workbook (F = Cp,  x
(Ts - Tb)/L),  or F = 4294 J/Kg k (298-39.72)K/1370840 J/kg) = 0.18).
1.   Line 1
     UO = 4.5 m/s.  UO is the ambient wind speed at reference height.
     ZO = 10 m.  ZO is the reference height.  This is the standard reference
     height for meteorological measurements.
2.   Line 2
     ZR = .01 m.  ZR is the surface roughness.  This value is typical of
     terrain covered by short grass.
3.   Line 3
     INDVEL = 1.  This indicates that the ambient velocity profile will  be
     calculated using the Pasquill-Gifford stability category along with the
     surface roughness to estimate the Monin-Obukhov length RML.   Using  RML,
  •  the log velocity profile is then fixed.
                                     3-11

-------
     ISTAB = 4.  Pasquill-Gifford stability D class.
     RML = 0.  RML is the Monin-Obukhov length.  Since INDVEL = 1, the Monin-
     Obukhov length will be estimated by DEGADIS, and a dummy value of 0.0 is
     used.
4.   Line 4
     TAMB = 298 K.  TAMB is the ambient temperature.
     PAMB = .98 atm.   PAMB is the ambient pressure.
     RELHUM = 50 percent.  RELHUM is the relative humidity.
5.   Line 5
     TSURF = 298 K.  TSURF is the surface temperature.  In absence of specific
     information, this value is usually set to the ambient temperature.
6.   Line 6
     GASNAM = NH3.  A three-letter designation for the contaminant (ammonia)
     used for documentation purposes only.
7.   Line 7
     GASMW = 17.  GASMW is the contaminant molecular weight for ammonia.
8.   Line 8
     AVTIME = 3600 sec. (1 hour).  AVTIME is the averaging time. A 1-hr
     exposure concentration between 100 ppm and 1000 ppm is used to compare
     with vegetation damage.
9.   Line 9
     TEMJET = 239.7 K.  TEMJET is the temperature of the released contaminant
     after depressurization.  Since this release is  an aerosol, assume that
     the post expansion temperature is equal to the  normal boiling point.
     Note that this value is not used by the model if NDEN > 0, as described
     later.
                                     3-12

-------
10.   Line 10
     GASUL = 1000 x 10"6 mole fraction.   This is the upper concentration level
     to be used for estimating contours.   Since severe damage to vegetation
     was observed,  a 1-hour exposure level  of 1000 ppm is an estimate of the
     level that might indicate vegetation scarring.   This value is chosen as
     the upper concentration limit.   This ppm value  is converted to mole
                               g
     fraction by dividing by 10 .
     GASLL = 100 x  10"6 mole fraction.   This is the  lower concentration level
     to be used for estimating contours.   This ppm value is converted to mole
     fraction by dividing by 10 .
     ZLL = 0 m.  ZLL is the receptor elevation.
11.   Line 11
     INDHT = 0.  This is a switch  to indicate if heat transfer between the
     atmosphere and a ground-level  plume  is to be included in the model.
     Since an aerosol is being simulated, heat transfer cannot be simulated
     with ground-to-cloud energy transfer because, at present, aerosol
     releases are simulated without using the thermal energy balance (an
     "isothermal" simulation).
     CPK and CPP are variables used to  calculate heat capacity according to
     the correlation in the model.   Since heat transfer is not included,  heat
     capacity information is not needed.   However, since the model requires
     inputs in this space, dummy values  of 0.0 and 0.0 are input.
12.   Line 12
     NDEN = 2.  This variable is used to  specify the contaminant density
     profile.   At present, DEGADIS  simulates an aerosol  release with a user-
     specified concentration/density relationship (i'.e.,  an "isothermal"
                                     3-13

-------
     simulation).   Thus,  NDEN  >  0  switch  is  used to  specify the
     concentration/density relationship which,  in this case,  is described by  2
     ordered triplets.   The first  column  is  contaminant mole  fraction, the
     second column  is  contaminant  concentration, and the third column  is the
     mixture density.   The first triplet  is  for pure ambient  air  and the
     second is for  pure released material.   The first triplet is  determined
     using the ideal gas  law for ambient  air:
     p = (MW -  Pa) / (R •  Ta)  = 28.9 x 101325/8314 x 298 = 1.154
     The second triplet  is determined from an  isenthalpic flash calculation
     for the released  ammonia using the equation  in Section 2.6.
     Prel  = l/[.18/.8658  +  .82/682.8] = 4.782 kg/m2
     where py = [(17)(101325)]/[(8314)(239.7)} =  .8658 kg/m3, and
                                3
     p,  for ammonia is  682.8  kg/m  .
13.   Line  15
     ERATE = 56 kg/s.   ERATE  is  the contaminant emission rate.
14.   Line  16
     ELEJET = Om.   ELEJET is  the initial  jet elevation.  Note that the model
     will  change ELEJET to  2  x ZR  if the  user sets ELEJET to 0.
     DIAJET = .478 m.   DIAJET is the initial jet diameter.  Assuming the
     released material  is entirely a liquid before depressurization, the
     method described  in  Section 2.7 is used to calculate Dr;
          Dr = (pst/prej)1/2 Ds = (682.8/4.782)172  (.04) = 0.418m
     where the liquid density of ammonia  is 682.8, and density of ammonia upon
                                                                    p
     depressurization air is  4.782.  Area after expansion is 0.179 m.
                                    3-14

-------
15.  Line 17
     TEND = 0.  TEND is a switch indicating duration of the primary release
     mode.  A value of zero indicates a continuous release.
16.  Line 18
     DISTMX = 50m.  DISTMAX is the maximum distance between output points in
     the model, arbitrarily chosen at 50 meters in this example.  Note that
     small values of this parameter will increase the size and precision of
     the output, while large values will have the opposite effect.

Model Output
     The DEGADIS model output file for this scenario is shown in Appendix C.I.
First,  the output shows a summary of model  inputs with some additional
parameters calculated directly by the model.   The model output first lists the
centerline concentrations by downwind distance for the jet/plume phase of the
                                                                        P
release; the maximum centerline ground level  concentration is 2.21.x 10   mole
fraction (22100 ppm) at a distance of 172 m downwind.  The jet trajectory
portion of the calculation ends at 217 m downwind.  At tfiis point, the plume
centerline is at ground level.  The maximum 1000 ppm isopleth width in the
jet/plume trajectory portion of the model is  2 x 56.5 m = 113 m at 217 m
downwind.  The next portion of the output shows the plume centerline
concentration beyond plume touchdown.  The output file again shows a summary
of model inputs and also lists additional parameters calculated directly by
the model.  The maximum extent of the 1000 ppm concentration level is about
2400 m downwind.  The maximum 1000 ppm isopleth width is 2 x 262 = 524 m at
1320 m downwind.  The maximum downwind extent of the 100 ppm concentration
level is 7100 m downwind from the source. "The maximum 100 ppm isopleth width
is 2 x 606 = 1212 m at 3700 m downwind.
                                     3-15

-------
3.2  HEGADAS Model



     The HEGADAS model  (Witlox, 1988) simulates ground level, steady-state and



transient releases of dense gases formed from liquid pool surfaces.  The



HEGADAS model summary description is shown in Appendix A.2.  In applying the



HEGADAS model, the user should follow the general  modeling guidance criteria



in Chapter 2.  In running .the HEGADAS model  for the example applications,



certain input parameters were found not to be adequately described in the



model user's guide.  Useful clarification for some of these input parameters



is given below:



     a.   Water Vapor:   Water vapor flux addressed in ISURF is the transfer of



water vapor from a water surface to the cloud.  For a release over land, this



option is not needed, but the water vapor in the entrained air is still



treated in the thermodynamic calculations.  Therefore, the relative humidity



will affect the calculation regardless of the value of ISURF.



     b.   Low Wind Speed:  HEGADAS assumes that convection (flow of the gas



with the ambient wind)  is dominant over gravitational spreading.   Very low



wind speeds increase the likelihood that convention will  not dominate.  The



lowest wind speed suggested for use with HEGADAS in the user's guide is 1.5



m/s.
                                                                   •


     c.   Averaging Time:  The dispersion parameters used are those for



instantaneous concentrations.  For a longer averaging time, the value given on



page 21 of the user's guide along with a conversion formula should be used.



     d.   Example Applications



          HEGADAS Model  Example 1:  Continuous Liquid Spill from a Pipe



          For planning  purposes, the HEGADAS model is used to simulate the
                                •


release of unsymmetrical dimethylhydrazine liquid spilled from a leak in an





                                     3-16

-------
unpressurized transfer pipe.  Due to its low volatility, this substance forms
a pool, and this pool is unconfined.  This chemical was stored at ambient
pressure and temperature, and the liquid did not form a jet upon release.  The
pool evaporation rate is assumed to reach a steady state after spreading such
that the evaporation rate equals the pipe flow rate.  Dimethylhydrazine is a
fuming, colorless liquid carcinogen with a strong odor.  An estimate of the
15-minute maximum off-site concentration is needed.  The minimum distance
between the center of the spill  area and the plant fence!ine is 100 m.
Terrain in the vicinity is typically flat,  covered by short grass.  Note, this
release is similar to Example 6.15 in the workbook (EPA, 1988).  Other known
variables are:  contaminant molecular weight = 60.1 g/g-mole; liquid release
rate = 78.6 g/s; spill pool area = 58.8 m ; atmospheric temperature = 10°C,
and relative humidity = 50 percent.
          In HEGADAS, the spill  pool area is required as input.  According to
the workbook, the spill  pool area is the smaller of the confined release area
or the area at which the evaporation rate equals the release rate.  Since the
release is unconfined, the spill pool area (58.8 m ) is obtained from the
evaporation rate formula given in the workbook.  A square area is assumed.
          The HEGADAS input file is shown in Appendix C.2.   The input
parameters are described line-by-line from what is shown in the input and
output file.  The user can refer to pages 11 and 14 thru 15 of the HEGADAS
model user's guide for additional explanation of terms.
1.   Title HEGADAS-S Workbook Example 6.15
     ICNT = Contours or content  code =0.  This model  control  switch generates
     an output listing of the Richardson number, gas temperature,  and gas
     volume concentration at each downwind  distance.
                                     3-17

-------
     ISURF = Surface transfer code =3.   This model  control  switch specifies
     that surface heat transfer is included by the model.
2.   Pool Data
     PLL = Source length = 7.67 m.  This value is obtained from the workbook.
                                o
     Given a pool area of 58.8 m , and assuming a square area,  pool length =
     pool width = 7.67 m.
     PLHW = Source half width = 3.83 m.   This value is \ of 7.67 m.
3.   Ambient Conditions
     Zo = Reference height = 10 m.  This is the standard height for
     meteorological measurements.
     Uo = Wind velocity at height Zo = 1.5 m/s.  Table 2-3 of the workbook
     suggests that for ground level  releases maximum concentrations are
     predicted under very stable conditions and a low wind speed.  A 1.5 m/s
     wind speed is the lower limit of applicability of this model.
     AIRTEMP = Air temperature at ground level = 10°C.
     RH = Relative humidity = 0.5.  This value corresponds to 50% relative
     humidity.
     TGROUND = Earth surface temperature = 10°C.  This value was set equal to
     ambient temperature.
4.   DISPERSION
     ROUGH = Surface roughness parameter = 0.01 m.  This value is typical of
     flat terrain covered by short grass.  Since no other information is
     provided, a 0.01 m value provides a conservative estimate.
     MONIN = Monin-Obukhov length = 10.   This value is obtained from Figure 1,
     page 22 of the user's guide for F stability and surface roughness of
     0.01m.
                                     3-18

-------
     CROSSW = Cross-wind dispersion coefficients = 0.0705 (delta) and 0.902
     (beta).  The value of delta is derived from the conversion formula on
     page 21 of the user's guide for a 15-minute average.  The value of beta
     is obtained from Table III-2 of the user's guide for F stability.
5.   CLOUD
     XSTEP = Output step length = 1.0.  This model  switch controls the
     downwind Interval  between rows of output data.   The step length is a
     multiple of the source length (PLL).   Thus, step length (1)  times source
     length (7.67 m) = 7.67 m which is the reporting interval shown in output.
     XMAX = Maximum calculated distance =  100.   This is a number  multiplied by
     the source length.  Thus, 100 (7.67 m) = 767 m.  This indicates the
     distance a't which model execution and output are terminated.
     CAMIN = Ground level  centerline concentration  at which calculation
                    7     3
     stops = 1 x 10   kg/m .  This parameter is selected to be lower than the
     lower concentration limit (CL).
     CU = Upper threshold  concentration limit = 1.15 x 10   kg/m  .   This value
     is chosen'as a factor of 10 higher than CL.
     CL = Lower threshold  concentration limit = 1.15 x 10   kg/m  .   The 15-
     minute STEL exposure  limit for this chemical,  1.15 x 10"7,  is selected as
                                    •
     the lower concentration limit for comparing concentrations.
6.   SOURCE
     FLUX = Gas emission flux = 1.34 x 10"3 kg/m2/s.  This value  is obtained
     by dividing the given liquid release  rate  (.0786 kg/s)  by the pool  area
            2
     (58.8 nr).   The pool  area calculations are shown on Page 6-48 of  the .
     workbook.
                                     3-19

-------
     TEMPGAS = Temperature of emitted gas = 10°C.   Assume pool  surface
     temperature is in equilibrium with ambient temperature.
     CPGAS = Heat capacity of emitted gas =150 J/mole/C.  This value was
     obtained from a chemical engineering handbook.  Note, the user's guide
     refers to this variable as specific heat of gas, which is also correct.
     MWGAS = Molecular weight of emitted gas = 60.1 kg/k-mole.   This value is
     obtained from a chemical engineering handbook.
     WATGAS = Molar fraction picked up from water = 0.  Since the spill occurs
     on land, no water transfer into the source cloud occurs.

Model Output
    'The HEGADAS model output file is shown in Appendix C.2.  The output file
first lists a summary of model inputs.  Some of the parameters listed were
calculated directly by the model.   The output file lists the centerline
concentration by distance from the source.  The first two distances listed are
within the source and are ignored.  The ground level concentration on plume
axis* at 100 m from the center of the source is about 0.0018 kg/m.   The last
column provides the concentration in percent volume (mole percent) which at
100 m is 0.001248 volume percent.   Multiply this value by 10  to obtain a
                         •
plume concentration of 12.48 ppm.   The columns marked YCU and YCL tabulate the
crosswind distance to the point at which the concentration is reduced to the
"upper concentration limit" of 1.15 x 10   kg/m  and "lower concentration
limit" of 1.15 x 10   kg/m , respectively.  At 100 m downwind,  these distances
are about 90 and 98 meters, respectively.
     The model output is terminated at a distance of 763 m (or approximately
100 times PLL value of 7.67 m).  The selected upper and lower concentration
                                     3-20

-------
thresholds are reached beyond this distance.  The user can re-run the model
using a larger cut-off distance should there be a need to obtain the distances
to these concentration levels.
          HEGADAS Model Example 2:  Continuous Liquid Spill from a Tank
          In this example, the HEGADAS model is used to assess the hazard
extent of a past event where chlorine liquid is spilled from a leak in a
storage tank  under 7 atmospheres of pressure.  Upon release to the
atmosphere, the spilled liquid formed a rapidly boiling pool confined to a
diked area.  A review of on-site meteorological records shows that the release
occurred mid-day when the wind speed was 2 m/s; atmospheric stability
condition was D; atmospheric temperature was 30°C; and relative humidity was
75 percent.  The pool evaporation rate under these conditions was estimated as
         2     ?
3.0 x 10   kg/m /s.  This chemical is a fuming, colorless liquid carcinogen
with a strong odor.  The minimum distance between the center of the spill area
and the plant fence!ine is 100 m.   Other given variables are:   contaminant
molecular weight = 70.9 g/g-mole;  boiling point temperature = -34°C;  and spill
                •)
pool area = 16 m.
          The HEGADAS input file is shown in Appendix C.2.  The input
parameters are described below.
                                                          •
1.   Title HEGADAS-S Workbook Example 6.16
     ICNT = Contours or content code = 0.  This model control  switch generates
     an output listing of the Richardson number,  gas temperature,  and gas
     volume concentration at each  downwind distance.
     ISURF = Surface transfer code = 3.   This model  control  switch specifies
     that no surface heat transfer is included by the model.
                                     3-21

-------
2.   Pool  Data
     PPL = Source length = 4 m.   Assuming a square dike,  the pool
     length = pool  width = 4 m.
     PLHW = Source half-width =  2 m.   This value is \ of 4 m.
3.   Ambient Conditions
     Zo = Reference height = 10  m.  This is the standard height for
     meteorological measurements.
     Uo = Wind velocity at height Zo = 2 m/s.   This value was obtained from
     on-site measurements.
     AIRTEMP = Air temperature at ground level  = 30°C.
     RH = Relative humidity = 0.75.   This value corresponds to 75% relative
     humidity.
     TGROUND = Earth surface temperature = 30°C.  This  value was set equal to
     ambient temperature.
4.   DISPERSION
     ROUGH = Surface roughness parameter = 0.01 m.  This value is typical of
     flat terrain covered by short grass.
     MONIN = Monin-Obukhov length = 10,000.  This value is obtained from
     Figure 1, page 22 of the user's guide for D stability.
                                                *
     CROSSW = Crosswind dispersion coefficients = 0.09158 (delta) and 0.905
     (beta).  The value of delta is derived from the conversion formula on
     page 21 of the user's guide for one hour average.   These values are
     obtained from Table III-2 of the user's guide for  D stability.
5.   CLOUD
     XSTEP = Output step length  =1.0.  This model switch controls the
     downwind interval between rows of output data.  The step length is a
                                     3-22

-------
     multiple of the source length (PLL).  Thus,  step length (1) times source
     length (4 m) = 4 m which is the reporting interval shown in output.
     XMAX = Maximum calculated distance = 100.  This is a number multiplied by
     the source length.  Thus, 100 x 4 = 400 m.  This indicates the distance at
     which execution and output are terminated.
     CAMIN = Ground level centerline concentration at which calculation
     stops = 1 x 10"6 kg/m3.   This parameter is  selected to be lower than the
     lower concentration limit (CL).
     CU = Upper concentration limit = 1.5 x 10"5  kg/m3.  This value is chosen
     as a factor of 10 higher than CL.
                                               C      O
     CL = Lower concentration limit = 1.5 x 10   kg/m .  This value is
     arbitrarily selected to  provide isopleth information.
6.   SOURCE
                                         ?     ?
     FLUX = Gas emission flux = 3.0 x 10   kg/m /s.   This value is obtained
     from on-site estimates.
     TEMPGAS = Temperature of emitted gas = -34.0°C.  This  is the boiling
     point temperature for chlorine.   It is assumed  that chlorine, stored as a
     liquid, flashed completely to vapor, (-239.1 K  - 273.15 K = 34.0°C).
     CPGAS = Heat capacity of emitted gas = 35.3  J/mole/'C.   This value is
     obtained from chemical  engineering handbook, (498.1 J/kg K x 1 mole/.0709
     kg).
     MWGAS = Molecular weight of emitted gas = 70.9  kg/k-mole.   This value is
     obtained from a chemical  engineering handbook.
     WATGAS = Molar fraction  picked up from water =  0.   Since the spill  occurs
     on land,  no water transfer into  the cloud occurs.
                                     3-23

-------
Model Output
     The HEGADAS model output file is shown in Appendix C.2.  The output file
first shows a summary of model inputs.  Some of the parameters listed were
calculated directly by the model.  The output lists the center! ine
concentration by distance from the source.  The first two distances listed are
within the source and are ignored.  The third distance is at two source
lengths away from the center of the source.  The ground level concentration on
plume axis at 100 m from the source is about 0.0039 kg/m .   The last column
provides the concentration percent volume (mole percent), which at 100 m is
0.138 volume percent.  Multiply this value by 10  to convert to ppm results in
1380 ppm.  The columns marked YCU and YCL tabulate the crosswind distance to
the point at which the concentration is reduced to the "upper concentration
limit" of 1.5 x 10"5 kg/m3,  and "lower concentration limit" of 1.5 x 10"6.   At
100 m downwind, these distances are about 57.5 m and 65.4 m, respectively.
     Model output is terminated at 398 m.  This is approximately equal to XMAX
value (100) multiplied by PLL (4).  At this point, the center!ine
concentration is 3.64 x 10   kg/m  or 128 ppm.  The upper and lower
concentration limits, 1.5 x 10   and 1.15 x 10   kg/m  are reached well beyond
this distance.  The user can re-run the model  using a larger cut-off distance
should there be a need to obtain the distances at those concentration levels.
                                     3-24

-------
3.3  SLAB Model
     The SLAB model is capable of simulating a dense gas release from a ground
level evaporating pool, an elevated horizontal jet, a stack or elevated
vertical jet, or an instantaneous volume source.  Sources may be part vapor
and part liquid droplets; except the evaporating pool source which  is assumed
to be all vapor.  The SLAB model summary description is shown in Appendix A.3.
In applying the SLAB model, the user should follow the general modeling
guidance criteria in Chapter 2.  In addition, for some modeling scenarios,
certain specific considerations may need to be made.  These considerations are
discussed below:
     a.   Temperature of the source material (K) - TS
          The definition of the source temperature (TS) depends upon the type
of release.  When the release is an evaporating pool (IDSPL = 1 or 4), the
source temperature is the boiling point temperature TBP.  For a pressurized
jet release (IDSPL = 2 or 3), the source conditions are the properties of the
material after it has fully expanded to atmospheric pressure.  When the source
material is stored as a vapor under pressure and, therefore released as a
vapor (CMEDO = 0.0),  the user's guide recommends that the expansion be treated
as adiabatic and provides a formula for determining the source temperature.
This equation appears to assume an adiabatic isentropic expansion.  As
explained in Section 2.5, the adiabatic isenthalpic expansion is more
appropriate.  Appendix E discusses how to make such a calculation.
     b.   Source area (m2) - AS
          The source area has different definitions depending upon the type of
release.  For an evaporating pool  release (IDSPL = 1 or 4),  AS is the area of
                                     3-25

-------
the evaporating pool.  If AS is not known it can be calculated using:




                                        QS
                                 AS=
                                     RHOS. WS
where QS is the input mass source rate, RHOS is the vapor density of the



source material at the boiling point temperature, and WS is the known



evaporation rate expressed as a velocity (m/s).  The vapor density RHOS is



given by the ideal gas law and is:



                         RHOS = (WMS • P,)/(R • TBP)
                                        a


where WMS is the input molecular weight of the source material, P, is the
                                                                 a

                                              p

ambient atmospheric pressure [P, = 101325. N/m ], R is the gas constant [R =
                               a


8.31431 J/(mol-K)]; and TBP is the input boing point temperature.



     When the source is a pressurized horizontal  or vertical jet release



(IDSPL = 2 or 3),  AS is the area of the source after it has fully expanded and



the pressure is reduced to the ambient level.  If the source material is



stored and released as a pure vapor (CMEDO = 0.0), the user's guide recommends



that the expansion be treated adiabatically and the source area expressed as:




                           AS=(P3t/Psl)'(TS/T3t)-AI




where Pgt is the storage pressure, P  is the ambient atmospheric pressure, TS



is the input source temperature, T .  is the storage temperature, and A  is the



actual area of the rupture or opening.  When the source material is stored as



a liquid under pressure and released as a two-phase jet, AS is the area of the



source after it has flashed and formed a liquid droplet-vapor mixture of the



pure substance.  In this case, the value of AS is given by the formula
                                       Prel
                                     3-26

-------
where RHOSL is the input liquid density of the source material, Ar, is the
actual area of the rupture or opening, and prel is the density of the liquid-
vapor mixture after flashing and at the boiling point temperature TBP with
liquid mass fraction CMEDO.  The value of pm is given by:
                            = 1 ./[ < x  ~ CMEDO)  ^ CMEDO
                               7
                               .
                         zel          RHOS      RHOSL
where CMEDO is the input initial  liquid mass fraction, RHOSL is the input
liquid density of the source material,  and RHOS is the vapor density of the
source material at the boiling point temperature.   The user should refer to
the SLAB model user's guide for additional detail.
     c.   Example Appl ications
          SLAB Model  Example 1:  Continuous Chlorine Leak
          In this hypothetical example, the SLAB model is used for planning
purposes to simulate the release of chlorine gas from a pressurized tank
through a 2.8 cm diameter hole.  Chlorine is being stored as a gas in a large
tank at ambient temperature under 6 atmospheres of pressure .   The hole is
located 5m above ground and the release is directed upward.  Chlorine forms a
greenish-yellow gas with a characteristic, irritating odor.  The NIOSH 15-
minute exposure limit is 0.5 ppm.  An estimate of the maximum off-site
concentrations is desired.  Additional  parameters are:  molecular weight =
70.9 g/g-mole; ambient temperature = 298 K; ratio of specific heats = 1.35;
and relative humidity = 50 percent.
     Using the approach suggested in Chapter 2, the user begins by using the
procedure shown in the workbook and the TSCREEN model (EPA, 1990).  This
      In this example,  since chlorine is released as a gas and remain as a gas
after depressurization,  there is no need to consider any aerosol  effects.
                                     3-27

-------
scenario is the same as Example 6.5 of the workbook.  First, buoyancy and
density are determined.  The value for the Richardson number is well in excess
of 30 indicating the need for a heavy gas model and the RVD screening model
imbedded in TSCREEN is used to select the wind speed and Pasquill stability
category for input into a refined dense gas model.  The screening model
results are reviewed to determine the maximum concentration at the facility
fenceline (100m).   This concentration occurs within stability classes E and F
and 2 m/s wind speeds.  The F stability and 2 m/s wind speed parameters are
selected as input  into the SLAB refined dense gas model.
     The SLAB input file for this example is shown in Appendix C.3.  The
description of the input elements below is done line-by-line from what is
shown in the input and output files.  The user can refer to Section 3.1 "Input
File" and Table 1  of the SLAB model user's guide for additional definition of
terms.
1.   Line 1
     IDSPL = Spill source type = 3.  This indicates a vertical  jet release.
2.   Line 2
     NCALC = A switch that controls the number of substeps calculated by the
     code in integrating the system of equations from the source to the
     maximum downwind distance.  Generally, a value of 1 is adequate.
3.   Line 3
     WMS = Molecular weight of source material = 0.070906 kg/mole (chlorine).
     A convenient  list for all the material properties required by SLAB for 14
     chemicals is  provided in Table 2 of the SLAB model user's guide.
                                     3-28

-------
4.   Line 4
     CPS = Vapor heat capacity at constant pressure = 489.1 J/kg-K.  This can
     be obtained from Table 2 in the SLAB model user's guide or other standard
     references.
5.   Line 5
     TBP = Boiling point temperature = 239.1 K.  This is obtained from Table 2
     in the SLAB model user's guide.
6.   Line 6
     CMEDO = Initial liquid mass fraction = 0.  Since chlorine is released as
     a pure gas, there is no need to consider any aerosol releases due to
     phase change.
7.   Line 7
     DHE = Heat of vaporization = 287840 J/kg.  This is obtained from Table 2
     in the SLAB model user's guide.
8.   Line 8
     CPSL = Liquid heat capacity = 926.3 J/kg-K.  This value is obtained from
     Table 2 in the SLAB model user's guide.  See item 10 below.
9.   Line 9
                                                            o
     RHOSL = Liquid density of source material = 1574.0 kg/m .   This value is
     obtained from Table 2 in the SLAB model user's guide.
10.  Line 10
     SPB = Saturation pressure constant = -1.0 (default value given in Table 1
     of the SLAB user's guide).   Since the source is pure vapor (CMEDO = 0.0)
     and the temperature of the cloud does not drop below the boiling point
     temperature, the saturation pressure default option is appropriate; thus
     neither the saturation pressure constants nor any of the liquid
     properties will be used in the SLAB model calculations.
                                     3-29

-------
11.   Line 11
     SPC = Saturation pressure constant = -1.0 (default value given in Table 1
     of the SLAB user's guide).   See item 10 above.
12.   Line 12
     TS = Temperature of source  material  = 284.3 K.   TS = Temperature of
     source material  after expansion to atmospheric  pressure.  This parameter
     can be calculated according to the formulation  given in Appendix E for an
     isenthalpic expansion.
13.   Line 13
     QS = Mass source rate = 1.261  kg/s.   See page 6-14 of the workbook for
     details on how this value was  calculated.
14.   Line 14
     AS = Source area = .003525  m2.   AS = (Pst/Pa)'(TS/Tst)-Ar =
     (6./I.)-(284.3/298).(.000616)  = .003525 m2.  The area of the rupture is
              2
     .000616 m  and corresponds  to  a hole diameter of 2.8 cm.
15.   Line 15
     TSD = Continuous source duration = 25000 s.  A  steady-state release is
     appropriate when storage capacity of the system is much larger than the
     release rate.   In addition, the applicability of a steady-state
     simulation depends also on  advection or travel  time to the lowest
     concentration  of interest (ttrav) as discussed  in Section 2.2."  This step
     requires an examination of  the output.   At 10,000 m, the maximum
     centerline concentration is about 12.5  ppm.  The distance to the 0.5 ppm
     is much further downwind, and  probably  as far as 25,000 m.  Thus,
     2(l_c/u) - 25,000 sec.
                                     3-30

-------
16.  Line 16
     QTIS = Instantaneous source mass = 0.  For a  jet release,  the  user's
     guide specifies that this parameter should be  set to zero.
17.  Line 17
     HS = Source height = 5 m.
18.  Line 18
     TAV = Concentration averaging time = 900 s (15 min.).  This  averaging
     time is assumed to pose a concern for public health.  Note,  the NIOSH
     Exposure Limit has 15-minute ceiling of .5 ppm.
19.  Line 19
     XFFM = Maximum downwind distance = 10,000 m.
20.  Line 20 thru 24
     ZP = Concentration measurement height =0, 1, 2, and 4 m.  There are a
     maximum of four heights (ZP(I),I = 1,4) at which the concentration  is
     calculated as a function of downwind distance.  If the concentration is
     desired at only N heights where N < 4, then set ZP(I), I = 1, N equal to
     the N desired heights and set ZP(I), I = N + 1, 4 equal to zero.
21.  Line 25
     ZO = Surface roughness height = 0.01 m.  This value is typical" of terrain
     covered by grass.  See Table 2.1 and Table 3 in the SLAB model user's
     guide.
22.  Line 26
     ZA = Ambient measurement height" = 10 m.  This is the standard reference
     height  for meteorological  measurements.
23.  Line 27
     UA = Ambient wind speed = 2 m/s.
                                     3-31

-------
24.  Line 28
     TA = Ambient temperature = 298 K.
25.  Line 29
     RH,= Relative humidity = 50 percent.
                                                     *
26.  Line 30
     STAB = Stability class values = 6.   This is the Pasquill-Gifford F
     stability category.
27.  Line 31
     Input file closure = -1.0.  This code signifies the end of the input
     file.

Model Output
     The SLAB model output file is shown in Appendix C.3.  In addition to the
problem description, the output lists several other types of information.  For
example, the calculated vertical vapor velocity (ws) is 117.7 m/s.  The
instantaneous spatially averaged cloud parameters output gives intermediate
results in that they do not include the effects of cloud meander or time-
averaging.  The output lists three sub-titles:  1) concentration parameters;
                                                         «
2) concentration in the z plane (up to 4 heights specified by the user); and
3) maximum centerline concentration.  In the Z = 0 plane (Part 2), the column
bbc shows the effective half width and the column y/bbc = 0 gives the
centerline concentration.  The concentration should be multiplied by one
million (10 ) to convert to a ppm value.  As can be seen, the maximum
centerline concentration is 6.3 x 10  ppm at a downwind distance of 68.7 m.
In the maximum centerline concentration portion of the output (Part 3), the
user can see the maximum height of the plume centerline is 16.3 m, and that
this height is reached between 10.5 m and 12.6 m downwind of the source.
                                     3-32

-------
          SLAB Model Example 2:  Ammonia Pipeline Rupture
          The model is used here to assess the hazard extent of  a  past event
which occurred at about 8:00 a.m. when a bulldozer struck and ruptured an  8-
inch ammonia pipeline operating at approximately 700 psi.  The rupture was
estimated as 4 cm in diameter, and the release rate was estimated  as 56 kg/s.
The climatological data from the nearest NWS station were examined and the
following meteorological record reconstructed for this event:  wind speed  =
4.5 m/s, ambient temperature = 298 K, atmospheric stability class  = D,
relative humidity = 50 percent, and atmospheric pressure = 0.98  atmospheres.
The dense aerosol plume reportedly etched a parabolic-shaped scar  about 6
miles long and 1/2 mile wide on surrounding vegetation.  Ammonia is a color-
less gas with a penetrating pungent, suffocating odor; it exits  as a liquid
under 700 psi pressure.  The SLAB input file for this example is shown in
Appendix C.3.  The input parameters are described below.
1.   Line 1
     IDSPL = Spill source type = 3.  This indicates a vertical  jet release.
2.   Line 2
     NCALC = A switch that controls the number of substeps calculated by the
     code in integrating the system of equations from the -source to the
     maximum downwind distance.  Generally,.a value of 1 is adequate.
3.   Line 3
     WMS = Molecular weight of source material  = 0.017031 kg/mole  (ammonia).
     This is obtained from Table 2 in the SLAB user's guide.
4.   Line 4
     CPS = Vapor heat capacity at constant pressure = 2170 J/kg-K.   This is
     obtained from Table 2 in  the SLAB model  user's guide.
                                     3-33

-------
5.   Line 5
     TBP = Boiling point temperature = 239.72  K.   This  is  obtained  from Table
     2 in the SLAB model user's guide.
6.   Line 6
     CMEDO = Initial  liquid mass fraction  =  .82.
                     CMEDO =  1. -CPSL-(Tst-TBP) /DHE =

                  1.-(4294. )-(298-239.72)/1370840  =  .82
     This adiabatic flash calculation  is obtained  from  the equation  given  in
     the  SLAB model  user's guide.   The storage-temperature T$t  is  298  K and
     the remaining constants are material  properties  given in Table  2 of the
     user's guide.
7.   Line 7
     DHE = Heat of vaporization = 1370840  J/kg.  This is obtained from  Table 2
     in the SLAB model  user's  guide.
8.   Line 8
     CPSL = Liquid heat capacity =  4294 J/kg-K.  This value is obtained from
     Table 2 in the SLAB model  user's  guide.
9.   Line 9
     RHOSL = Liquid density of source  material = 682.8  kg/m3.  This  value  is
     obtained from Table 2 in  the SLAB model user's guide.
10.  Line 10
     SPB = Saturation pressure constant =  2132.52  K.  This value  is  obtained
     from Table 2 in the SLAB  model  user's guide.  Note, since release  forms
     an aerosol, default value is not  used.
                                     3-34

-------
11.  Line 11
     SPC = Saturation pressure  constant  =  -32.98 K.  This value is obtained
     from Table 2 in the SLAB model  user's guide.
12.  Line 12
     TS = Temperature of source material = 239.72 K.  In this example, ammonia
     gas is being stored as  a liquid under pressure and is released as a
     liquid droplet-vapor mixture.   Consequently, the source temperature TS is
     the boiling point temperature TBP = 239.72 K.
13.  Line 13
     QS = Mass source rate = 56 kg/s.  See page 6-14 of the workbook for
     details on how this value  can be calculated.
14.  Line 14
     AS = Source area = 0.179 m2.
        AS =  (KHOSL/prgl) -Ar = (682.8/4.782) '(.00126)  = 0.179fl22.
                                      i)
     The area of the rupture is .0324 m  and corresponds to a pipeline
     diameter of 8 inches.   The density of the liquid-vapor mixture pm and  the
     vapor density RHOS were calculated as follows:
             RHOS = (WMS-Pa) I  (R'TBP) = [ (.017031) '(101325.) ]/

                    (8.31431)  -(239.72) ] =  . 8658 kg/n?
                                          .18      . 82
                RHOS
15.   Line 15
     TSD = Continuous  source duration = 16,200 s.  The release is  assumed  to
     have lasted  4.5 hours.
                                    3-35

-------
16.   Line 16
     QTIS = Instantaneous source mass = 0.   For a jet release, the user's
     guide specifies that this parameter should be set to zero.
17.   Line 17
     HS = Source height = .2 m.   This is equal  to the pipeline diameter of 8
     inches.
18.   Line 18
     TAV = Concentration averaging time = 3,600 s (1 hour).   A 1-hr exposure
     concentration is used to compare with  vegetation damage.
19.   Line 19
     XFFM = Maximum downwind distance = 10,000  m.  Because of the magnitude of
     the spill,  the plume effects are assumed to be important at a large
     distance from the spill.
20.   Line 20 thru 24
     ZP = Concentration measurement height  =0, 1, 2, and 4 m.  There are a
     maximum of four heights (ZP(I),  I = 1,4) at which the concentration is
     calculated as a function of downwind distance.
21.   Line 25
     ZO = Surface roughness height = 0.01m.  This value is typical of terrain
     covered by grass.  See Table 2.1 and Table 3 in the SLAB model user's
     guide.
22.   Line 26
     ZA = Ambient measurement height = 10 m.   This is the standard reference
     height for meteorological measurements.
23.   Line 27
     UA = Ambient wind speed =4.5 m/s.
                                     3-36

-------
24.  Line 28
     TA = Ambient temperature = 298 K.
25.  Line 29
     RH = Relative humidity = 50 percent.
26.  Line 30
     STAB = Stability class values = 4.  This is the Pasquill-Gifford D
     stability category.
27.  Line 31
     Input file closure = -1.0.  This code signifies the end of the input
     file.

Model Output
     The SLAB model.output file is shown in Appendix C.3.  By looking at the
concentration in the Z = 0 plane,  one can see that the maximum ground level
concentration is 3.45 x 10  ppm at 95.1 m downwind of the source.   At 10 km
downwind, the center!ine concentration has dropped to 53.4 ppm.
Concentrations at or above 1000 ppm extend downwind to about 1700 m.  The
maximum cloud height above ground  (plume rise) is 16.8 m above ground which
occurs between & and 6 m downwind.
                                     3-37

-------
                                   Table  3-1
               Types of Releases Considered by Dense Gas Models
Dense Gas Release Type                           Model
                                   DEGADIS      HEGADAS     SLAB
Evaporating pool                      X            XX
Horizontal  jet                                                X
Vertical jet                          X                       X
Variable rate release                 X            X
Instantaneous volume source           X            XX
                                     3-38

-------
4.0  Application to Non-Dense Gas Models
     In this chapter, the general guidance considerations, developed  in
Chapter 2 are applied to specific non-dense gas models.  Many of the  EPA
regulatory models (EPA, 1986) fit this category.  However, models developed
specifically for air toxics releases and that contain features unique to such
sources are described in this chapter.  At the present time, only the AFTOX
model is discussed.  Table 4-1 shows the types of releases considered by this
non-dense gas model.  The discussion begins with those specific input
parameters that cannot be readily obtained from reviewing the user's guide.
For this model, two example applications are provided.  The present examples
do not address all of the release types that can be addressed by this model.
The examples show the user how every model input parameter was derived.  Where
applicable, the user is refered to screening procedures in the workbook to
select some of the variables needed for input.

4.1  AFTOX Model
     The AFTOX model (Version 3.1) (Kunkel, 1988) is an interactive, PC-based
Gaussian model with a variable number of puff releases per minute based on
wind speed and distance from source.  Continuous releases are simulated as a
series of puff releases.  The AFTOX model  summary description is shown in
Appendix B.I.  In applying AFTOX to some modeling scenarios, certain specific
considerations may need to be made as discussed below:
     a.    Atmospheric Stability Considerations
          AFTOX uses a continuous stability parameter ranging from 0.5 to 6 in
place of the familiar discrete stability categories.  For the F stability
class,  for example,  the stability parameter ranges from 5 to 6.   The stability
                                     4-1

-------
parameter is calculated based on: (1) relating the Monin-Obukhov length and
surface roughness to the Pasquill stability categories; or (2) if the standard
deviation of the horizontal wind direction (Sigma-theta) is known, calculating
the stability parameter using a modified sigma-theta approach.  Table 3 in the
user's guide relates the modified sigma theta method .to stability class by
giving a range of sigma-theta values for each stability class.  However, in
order to ensure the use of the maximum value in each stability class range,
for example 6 for F stability, the user should rely on Equation 28 of the
user's guide to compute the stability parameter.  For F stability, the
standard deviation of the horizontal wind direction must be equal to or less
than 1.37 for a one hour time period.  If this value (1.37) is entered in the
AFTOX model, then the stability parameter is set to exactly 6.
     b.   Example Applications
          Example 1.  Continuous Liquid Spill from a Pipe
          In this example, the AFTOX model is used for planning purposes to
simulate the release of dimethylhydrazine liquid spill from a leak in an
unpressurized transfer pipe.  This chemical  was stored at ambient pressure and
temperature.  Due to its low volatility, this substance will  form a pool,
which in this case is unconfined.  The pool  evaporation rate is assumed to
                                          *
reach a steady state after spreading such that the evaporation rate equals the
pipe flow rate.  Dimethylhydrazine is a fuming, colorless liquid carcinogen
with a strong odor.  An estimate of the maximum hourly concentration is
needed.  The minimum distance between the edge of the spill and the plant
fence!ine is 100 m.  Note, this release is similar to Example 6.15 in the
workbook (EPA, 1988).  Although hydrazine vapor is denser than air, the
release is passive and this chemical is in the AFTOX chemical  data base
                                     4-2

-------
library, further supporting that AFTOX is applicable to this release.  Other
variables are:  contaminant molecular weight = 60.1 g/g-mole; liquid release
rate = 78.6 g/s; spill pool area = 58.8 m , ambient temperature = 10°C, and
relative humidity = 50 percent.  The AFTOX input file is shown in Appendix D.
The input parameters are described line-by-line from what is shown in the
input/output file.  The user can refer to page 21 of the AFTOX model user's
guide for additional explanation of terms.
1.   Line 1:
     Station Data = Hanscom AFB.  Since the example did not specify the
     location of the release, one of four stations, for which meteorological
     data are in the AFTOX memory file, is selected.  This input is used to
     set stability, surface roughness at the wind measurement site and wind
     measurement height.
2.   Line 2:
     Date = 08-10-89.. The model may use this input to calculate solar
     elevation data in order to calculate stability using a method based on
     Monin-Obukhov length.
3.   Line 3:
     Time = 0300.   The model also uses this input to determine stability.
     During nighttime hours, the model uses stable or neutral  conditions.   A
     24-hour clock is used for time.
4.   Line 4:
     Type of Release = Continuous.
                                     4-3

-------
5.   Line 5:
     Chemical Data = Dimethylhydrazine.  This chemical is included in the
     model's chemical data base library.  The model automatically lists the
     other two lines associated with this statement (i.e., STEL and TWA).
6.   Line 6:
     Temperature =  Ambient air temperature = 10°C.
7.   Line 7:
     Wind Direction = 270°.  This value should be obtained from direct on-site
     measurements.  Here a 270° value is arbitrarily selected.   Wind direction
     is used to determine the direction towards which the plume is traveling
     and does not influence the magnitude of the concentrations.  This
     information is important if impact on a certain geographic area is
     needed.
8.   Line 8:
     Wind Speed = 1 m/s.  This value is selected from Table 2-3 of the
     workbook as a conservative estimate for ground level releases.
9.   Line 9:
     Time of Spill = Nighttime Spill.  This information is given by the model
     based on the fact that computed solar angle is less  than zero.
10.  Line 10:
     Cloud Cover = 0 Eighths.   This value should be obtained from on-site
     observation or nearest NWS station.  Here, a clear sky is  assumed.
     According to the Turner Classification scheme, cloud cover < 4/10 during
     nighttime with wind speed < 2 m/s is classified as stable.
                                     4-4

-------
11.  Line 11:
     Inversion Base Height = No Inversion.  This parameter refers to upper
     level conditions up to 500 meters above the ground.
12.  Line 12:
     Atmospheric Stability Parameter = 6.  This value is computed by the model
     based on information input by user about time of day, cloud cover, wind
     speed, and inversion height.   Here the method for determining stability
     based on wind speed and solar insolation was used by the model.
13.  Line 13:
     Spill Site Roughness Length = 1 cm.  This value is typical of flat
     terrain.
14.  Line 14:
     This is a Liquid Release.   This statement is output by model  based on
     information stored in the  chemical data library file and the air
     temperature.
15.  Line 15:
     Emission Rate = 4.72 kg/min.   This value is obtained from the given
     emission rate of 78.6 gm/s.
16.  Line 16:
     Chemical is Still  Leaking.  This information is input by the user based
     on on-site information.  If the chemical is still  leaking, the model
     assumes steady state conditions.
17.  Line 17:
     Pool Temperature = 10°C.   Assume pool surface temperature is  in
     equilibrium with ambient temperature.
                                     4-5

-------
18.  Line 18:
                         2
     Area of Spill  = 59 m.   This is an approximation to the calculated pool
                   p
     area of 58.8 m.
19.  Line 19:
     Evaporation Rate  = 3.13 kg/min.  This value is calculated directly by the
     model.   In the workbook example,  there is another equation for estimating
     evaporation but AFTOX does not allow the direct input for this parameter.
20.  Line 20:
     Concentration Averaging Time = 60 min.  This value is selected in order
     to obtain the maximum hourly concentration at the fenceline.
21.  Line 21:
     Elapsed Time Since Start of Spill = 60 min.   For continuous  releases, a
     long time period  of at least 60 minutes should be selected to represent
     steady state conditions.  Note that had the model  output been more
     extensive the method described in Section 2.2 would have been applicable.
22.  Line 22:
     Elevation = 0 m.   This value specifies receptor elevation.  Here, a
     ground level concentration is needed.
23.  Line 23:
     Downwind Distance = 100 m.  This  value is selected because it is the
     closest distance  to the site boundary.
24.  Line 24:
     Crosswind Distance = 0 m.   This value indicates that a centerline
     concentration is  needed.
                                     4-6

-------
Model Output
     AFTOX model output  is shown  in Appendix D.  The output file  is  brief.   It
first lists a summary of model  inputs and then gives the  hourly concentration
at the specified point.  For computers with a graphical display device, AFTOX
output can also include  a graphical display of plume contours  superimposed  on
a grid,  (see Appendix in AFTOX model user's guide).
     The hourly concentration predicted by AFTOX is 220.5 ppm, or 0.57 g/m.
There are three station data files in AFTOX.  Thus, different  estimates would
have been obtained from each of the other three meteorological stations due to
the variations in the roughness length at the meteorological tower and the
spil-1 sites.
          Example 2.  Continuous  Liquid Spill from a Tank
          The AFTOX model is used to assess the hazard extent  of a past event
where dimethylhydrazine was released from a liquid spill from  a leak  in an
unpressurized storage tank.  This chemical was stored at ambient pressure and
                                                           p
temperature.  The spill occurred  in a diked area of 2,500 m .  The pool
evaporation rate is assumed to reach a steady state after spreading  such that
the evaporation rate equals the liquid release rate.  A review of onsite
meteorological records shows that the release occurred during  early morning
hours when the wind speed was 1 m/s; atmospheric stability condition was F;
atmospheric temperature was 10"C; and relative humidity was 50 percent.  This
                                                                 •
chemical is a fuming, colorless liquid carcinogen with a strong odor.   The
minimum distance between the edge of the spill area and the plant fence!ine  is
100 m.   Note,  this release is similar to Example 6.16 in the workbook (EPA,
1988).   Other given variables are:  contaminant molecular weight = 60.1 g/g-
mole; liquid release rate = 2,227 g/s; and spill  pool  area = 2,037 m2.
                                      4-7

-------
          The AFTOX input file is shown in Appendix D.  The input parameters
are described below.  The user should also refer to page 21 of the AFTOX model
user's guide for a more complete definition of terms.
1.   Line 1:
     Station Data:  Vandenberg AFB.   Since the example did not specify the
     location of the release, one of four stations, for which meteorological
     data are in AFTOX memory file,  is selected.  This input is used to set
     stability,  surface roughness at the wind measurement site and wind
     measurement height.
2.   Line 2:
     Date = 08-02-89.   The model  may use this input to calculate solar
     elevation data in order to calculate stability using a method based  on
     Monin-Obukhov length.
3.   Line 3:
     Time = 0300.  The model also uses this input to determine stability.
     During nighttime hours, the model uses stable or neutral  conditions.
4.   Line 4:
     Type of Release = Continuous.
5.   Line 5:
     Chemical Data = Dimethylhydrazine.  This chemical is included in the
     model's chemical  data base library.  The model automatically lists the
                                                       •
     other two lines associated with this statement (i.e., STEL and TWA).
6.   Line 6:
     Temperature =  Ambient air temperature = 10°C.
                                     4-8

-------
7.   Line 7:
     Wind Direction = 16°.  This value should be obtained from direct on-site
     measurements.  Here a 16° value is arbitrarily selected.  Wind direction
     is used to determine the direction towards which the plume is traveling
     and does not influence the magnitude of the concentrations.  This
     information is important if impact on a certain geographic area is
     needed.
8.   Line 8:
     Wind Speed = 1 m/s.
9.   Line 9:
     Standard Deviation of Wind Direction = 1.37 Deg.  This value should be
     determined from on-site meteorological measurements.  Here, a value of
     1.37 is chosen so that the atmospheric stability class is set to 6 by-the
     model.
10.  Line 10:
     Wind Averaging Time = 60 minutes.   This value should be obtained from on-
     site information about the averaging time associated with collecting the
     sigma-theta data.  EPA modeling guidance (EPA, 1986) recommends using an
     hourly average value for sigma-theta.
11.  Line 11:
     Time of Spill  = Nighttime Spill.  This information is given by the model
     based on the fact that computed solar angle is less than zero.
12.  Line 12:
     Cloud Cover = 0 Eighths.   This value should be obtained from on-site
     observations or nearest NWS station.   Here, a clear sky is assumed.
                                     4-9

-------
     According to the Turner classification scheme,  cloud cover < 4/10 during
     nighttime with wind speed < 2 m/s is classified as stable.
13.   Line 13:
     Inversion Base Height = No Inversion.   This parameter refers to upper
     level  conditions up to 500 meters above the ground.
14.   Lines  14 and 15:
     Horizontal,  Vertical  Stability Parameter = 6.   This  value is computed by
     the model based on information input by the user about standard deviation
     of wind direction.  Here, the standard deviation sigma-theta method
     overrode the method for determining stability  based  on wind speed and
     solar  insolation because of input of on-site sigma-theta data.
15.   Line 16:
     Spill  Site Roughness  Length = 1 cm.  This value should be determined from
     on-site data.  Here,  a value typical of flat terrain was used.
16.   Line 17:
     This is a liquid release.  This statement is output  by the model based on
     the boiling point temperature of the chemical  and the ambient
     temperature.
17.   Line 18:
     Emission Rate = 133.62 kg/min.  This value is  obtained from the given
     emission rate of 2,227 g/s.
18.   Line 19:
     Chemical is Still Leaking.  This information is input by the user based
     on on-site information.  If chemical is still  leaking, the model assumes
     steady state conditions.
                                     4-10

-------
19.  Line 20:
     Pool Temperature = 10°C.  Assume pool surface temperature  is  in
     equilibrium with ambient air temperature.  This  is an acceptable
     assumption for long, continuous release times.
20.  Line 21:
                            n
     Area of Spill = 2,037 nr.  This area of the evaporating pool  is the
                                             p
     smaller of the impoundment area (2,500 m) and the area at which
                                                                   o
     evaporation across the pool equals flow into the pool (2,037  m ).  The
     pool area calculations are shown on page 6-50 of the workbook.
21.  Line 22:
     Evaporation Rate = 72.13 kg/min.  This value is calculated directly by
     the model.  In the workbook example, there is another equation for
     estimating evaporation but the AFTOX model does not allow the user to
     directly input this parameter.
22.  Line 23:
     Concentration Averaging Time = 60 min.  This value is selected in order
     to obtain an hourly concentration at the fenceline.
23.  Line 24:
     Elapsed Time Since Start of Spill  = 1,440 min.   For continuous releases,
     a long time period of at least 60 minutes should be selected  to represent
     steady state conditions.  Note that had the model, output been more
     extensive, the method described in Section 2.2 could have been used to
     set this variable.
24.  Line 25:
     Elevation = 0 m.   This value specifies receptor elevation.   Here,  a
     ground level  concentration is needed.

                                     4-11

-------
25.  Line 26:
     Downwind Distance = 100 m.  This value is selected because it is the
     closest distance to the site boundary.
26.  Line 27:
     Crosswind Distance = 0 m.  This value indicates that a centerline
     concentration is needed.

Model Output
     AFTOX model output is shown in Appendix D.  The output file first lists a
summary of model inputs and then gives the hourly concentration at the
specified point.  For computers with a graphical  display device, AFTOX output
can also include a graphical display of plume contours superimposed on a grid.
(See Appendix in AFTOX model user's guide).
     The hourly concentration predicted by AFTOX is 7761 ppm or 20.05 ug/m.
There are three other station data files in AFTOX.   Thus, different estimates
would have been obtained for each of the meteorological stations due to the
variations in the roughness length at the meteorological tower and the spill
sites.
                                     4-12

-------
                                   Table 4-1
             Types of Releases Considered by Non-Dense Gas Models
Release Type                              Model
                                    AFTOX
Continuous gas                        X
Instantaneous gas                     X
Continuous liquid                     X
Instantaneous liquid                  X
Continuous buoyant gas released
  from stack                          X
                                    4-13

-------

-------
                                  REFERENCES

 Britter, R.  E.  and J. McQuaid,  1988.   Workbook  on  the  Dispersion  of Dense
 Gases.  HSE  Contract Research Report  No.  17/1988,  Health  and  Safety Executive,
 Sheffield, England.

 Center for Chemical Process  Safety  (CCPS),  1988.   Workbook  of Test  Cases  for
 Vapor Cloud  Source Dispersion Models.   CCPS/AIChE,  345 East 47th  St.,  New
 York, NY.

 Felder, R. M. and R. W. Rousseau, 1986.   Elementary Principles  of Chemical
 Processes.   Second Edition,  John Wiley &  Sons.

 Guinnup, D.  E.  and Q. T. Nguyen, 1991.  A Sensitivity  Study of  the  Modeling
 Results from Three Dense Gas Dispersion Models  in  the  Simulation  of a  Release
 of Liquefied Methane:  SLAB, HEGADAS,  and DEGADIS.   Seventh Joint Conference
 on Applications of Air Pollution Meteorology with  AWMA.   January  14-18, 1991,
 New Orleans, LA.

 Hanna, S. R. and P. J. Drivas,  1987.   Guidelines for Vapor  Cloud  Dispersion
 Modeling.  CCPS/AIChE, 345 East 47th  St., New York,  NY.

 Hanna, S., D. Strimaitis and J. Chang,  1990.  Results  of  Hazard Response  Model
 Evaluation Using Desert Tortoise (NH3) and Goldfish  (HF)  Data Bases, Volume  1:
 Summary Report.  Prepared for American Petroleum Institute, Washington, DC.

 King, C. J., 1988.  Separation  Processes.  Second  Edition,  McGraw-Hill Book
 Company, New York.

 Kunkel, B. A.,  1988.  User's Guide for the Air  Force Toxic  Chemical  Dispersion
 Model (AFTOX).  AFG-TR-88-009.  (ADA199096).

 Perry, R. H. and D. Green, 1984.  Perry's Chemical  Engineer's Handbook.   Sixth
 Edition, McGraw-Hill, New York.

 Petersen, R. L., 1989.  Surface Roughness Effects on Heavier-Than-Air Gas
 Dispersion.  Sixth Joint Conference on Applications  of Air  Pollution
 Meteorology.  Anaheim, CA.   January 30 -  February 3.

 Pielke, R. A., 1984.  Mesoscale Meteorological Modeling.  Academic  Press,
 Orlando.

 U.S. Environmental Protection Agency,  1986.  Guideline on Air Quality Models
 (Revised) and Supplement A (1987).   EPA-450/4-78-027R.  U.S. Environmental
 Protection Agency, Research  Triangle Park, NC. 27711 (NTIS  PB 86-245248).

U.S. Environmental Protection Agency,  1987.  On-site Meteorological   Program
Guidance for Regulatory Modeling Applications.  EPA-450/4-87-013.   U.S.
 Environmental Protection Agency, Research Triangle Park, NC 27711.   (NTIS PB
87-227542.

U.S. Environmental Protection Agency, 1988.   A Workbook of Screening
Techniques for Assessing Impacts of Toxic Air Pollutants.   EPA-450/4-88-009.
U.S. Environmental Protection Agency, Research Triangle Park,  NC 27711.   (NTIS
PB 89-134349).

                                      R-l

-------
U.S. Environmental Protection Agency, 1989a.  User's Guide for the DEGADIS 2.1
Dense Gas Dispersion Model.  EPA-450/4-89-019.  U.S. Environmental Protection
Agency, Research Triangle Park, NC 27711.  (NTIS PB 90-213893)

U.S. Environmental Protection Agency, 1989b.  User's Guide for RVD 2.0 - A
Relief Valve Discharge Screening Model.  EPA-450/4-88-024.  U.S. Environmental
Protection Agency, Research Triangle Park, NC 27711.  (NTIS PB 89-151070)

U.S. Environmental Protection Agency, 1990a.  User's Guide to TSCREEN, a Model
for Screening Toxic Air Pollutant Concentrations.  EPA-450/4-89-013.  U.S.
Environmental Protection Agency, Research Triangle Park, NC.  (NTIS PB 91-
141820)

U.S. Environmental Protection Agency, 1990b.  Evaluation of Dense Gas
Simulation Models.  EPA-450/4-90-018.  U.S. Environmental Protection Agency,
Research Triangle Park, NC.

Witlox, H. W. M., 1988.  User's Guide for the HEGADAS Heavy Gas Dispersion
Program.  Shell Research Ltd. - Thornton Research Center, P. 0. Box 1,
Chester, England.
                                      R-2

-------
                                  APPENDIX A
                           Dense Gas Model  Summaries
                               Table of Contents

A.I  DENSE GAS DISPERSION (DEGADIS) MODEL SUMMARY

A.2  HEAVY GAS DISPERSION (HEGADAS) MODEL SUMMARY

A.3  SLAB MODEL SUMMARY

-------

-------
A.I  DENSE GAS DISPERSION (DEGADIS) MODEL SUMMARY
Reference:        Environmental Protection Agency, 1989.  User's Guide for the
                  DEGADIS 2.1 Dense Gas Dispersion Model.  EPA-450/4-89-019.
                  U.S. Environmental Protection Agency, Research Triangle
                  Park, NC 27711. (NTIS PB 90-213893).
                  *
Availability:     The user's guide is available through NTIS.  The FORTRAN
                  source code for operation on a VAX or PC can be'downloaded
                  through the Support Center for Regulatory Air Models (SCRAM)
                  Bulletin Board System, (919)-541-5742.

Abstract:         DEGADIS 2.1 is a dispersion model that can be used to model
                  the transport of toxic chemical releases into the atmosphere
                  regardless of plume buoyancy.  Its range of applicability
                  includes:  gases or aerosols; continuous, instantaneous,
                  finite duration, and time-variant releases; ground-level,
                  low-momentum area releases; ground-level or elevated
                  upwardly-directed stack jet releases.  The model  simulates
                  only one set of meteorological conditions, and therefore
                  should not be considered applicable over time periods much
                  longer than 1 or 2 hours.  The simulations are carried out
                  over flat, unobstructed terrain for which the characteristic
                  surface roughness is not a significant fraction of the depth
                  of the dispersion layer.  For aerosol releases, the model
                  does not characterize the density of the release; rather,
                  the user must assess that independently prior to the
                  simulation.

a.    Recommendations for Use

      DEGADIS should be used as a refined modeling approach to estimate
      spatial and temporal distribution of short-term atmospheric
      concentrations (1-hour or less averaging times) resulting from toxic
      chemical releases.  It is especially useful in situations where negative
      buoyancy effects are suspected to be important and where screening
      estimates of atmospheric concentrations are above levels of concern.

b.    Input Requirements
•
      Data can be input directly from an external input file or by keyboard
      using an interactive program module.  The model does not accept real-
      time meteorolgical data or convert units of input-values.  All  chemical
      property data must be input by the user, i.e., they are not stored
      within the model.                                         .

      Source data requirements are: emission rate, release area and release
      duration; emission chemical and physical properties (molecular weight,
      density vs concentration for situations when the  ideal gas law does not
      hold (such as aerosol releases), and contaminant heat capacity in the
                                      A-l

-------
      case of a nonisothermal gas release); stack parameters (diameter,
      elevation above ground level, and temperature at release point).

      Meteorological data requirements are: wind speed at some designated
      height above ground, stability, surface roughness, ambient temperature
      and pressure, relative humidity, and ground surface temperature (which
      in most cases can be adequately approximated by the ambient
      temperature).

      Receptor data requirements are: averaging time oT interest, above-ground
      height of receptors, and maximum distance between receptors (since this
      parameter is used only for nominal control of the output listing, it is
      of secondary importance).  No indoor concentrations are calculated by
      the model.

c.    Output

      Printed output includes in tabular form:

            Listing of model input data.

            plume center!ine elevation, mole fraction, concentration, density,
            and temperature at each downwind distance.

            sigma y and sigma z values at each downwind distance.

            off-centerline distances to 2 specified concentration values at a
            specified receptor height at each downwind distance (these values
            can be used to draw concentration isopleths after model
            execution).

            concentration vs time histories for finite-duration releases (if
            specified by user).

      The output  file is automatically saved and-must be sent to the
      appropriate printer after program execution.
          *
      No easily-accessed computer-readable output is generated by the current
      version of  the program.

      No graphical output is generated by the current version of this program.
                                             •
d.    Tvoe of Model

      DEGADIS estimates plume rise (and fall) and dispersion for vertically-
      upward jet  releases using mass and momentum balances with air
      entrainment based on laboratory and field-scale data.   These balances
      assume Gaussian similarity profiles for velocity, density,  and
      concentration within the jet.  Ground-level,  denser-than-air phenomena
      is treated  using a power law concentration distribution profile in the
      vertical  and a hybrid top hat-Gaussian concentration distribution
      profile in  the horizontal.  A power law specification is used for the

                                      A-2

-------
      vertical wind profile.  Ground-level cloud slumping phenomena and air
      entrainment are based on laboratory measurements and field-scale
      observations.

e.    Pollutant Types

      Gases and aerosols, regardless of buoyancy.  Pollutants are assumed to
      be non-reactive and non-depositing.

f.    Source-Receptor Relationships

      Only one source can be modeled at a time.

      There is no limitation to the number of receptors; the downwind receptor
      distances are internally-calculated by the model.  The DEGADIS
      calculation is carried out until the plume center!ine concentration is
      one-half of the lowest concentration level specified by the user.

      The model contains no submodels for source calculations or release
      characterization.

g.    Plume Behavior

      Jet/plume trajectory is estimated from mass and momentum balance
      equations.  Surrounding terrain is assumed to be flat, and stack tip
      downwash, building wake effects, and fumigation are not treated.

h.    Horizontal Winds

      Constant logarithmic velocity profile which accounts for stability and
      surface roughness is used.

      A wind speed profile exponent is determined from a least squares fit of
      the logarithmic profile from ground level to the wind speed reference
      height.  Calm winds can be simulated for ground-level, low-momentum
      releases.

      Along-wind dispersion of transient releases is treated using the methods
      of Colenbrander (1980) and Seals (1971).

i.    Vertical Wind Speed

      Not treated.

j.    Horizontal Dispersion

      When the plume centerline is above ground level, horizontal  dispersion
      coefficients are based upon Turner (1969) and Slade (1968) with
      adjustments made for averaging time.

      When the plume centerline is at ground level,  horizontal  dispersion also
      accounts for entrainment due to gravity currents (as appropriate)
      parameterized from laboratory experiments.


                                     A-3

-------
k.   Vertical Dispersion

     When the plume centerline is above ground level, vertical dispersion
     coefficients are based upon Turner (1969) and Slade (1968).  Perfect
     ground reflection is applied.

     In the ground-level dense-gas regime, vertical dispersion is also based
     upon results from laboratory experiments in density-stratified fluids.

1.   Chemical Transformation

     Not specifically treated.

m.   Physical Removal

     Not treated.

n.   Evaluation Studies

     Spicer, T. 0. and J. A. Havens,  1986. Development of Vapor Dispersion
     Models for Nonneutrally Buoyant Gas Mixtures - Analysis of USAF/N^O, Test
     Data.  USAF Engineering and Services Laboratory, Final Report, ESc-TR-86-
     24.

     Spicer, T. 0. and J. A. Havens,  1988. Development of Vapor Dispersion
     Models for Nonneutrally Buoyant Gas Mixtures - Analysis of TFI/NH-, Test
     Data.  USAF Engineering and Services Laboratory, Final Report, ESC-TR-87-
     72.

     Zapert, J. G., R. J. Londergan,  and H. Thistle, 1991.   Evaluation of
     Dense Gas Simulation Models.  EPA-450/4-90-018.  U.S.  Environmental
     Protection Agency, Research Triangle Park,  NC  27711.

o.   Operating Information

     The model requires either a VAX computer or a PC for its execution.

     The model currently does not require supporting software other than a VAX
     FORTRAN compiler or a Microsoft FORTRAN compiler version 5.0 for a PC.

p.   References

     Seals, G. A. 1971.  A Guide to Local  Dispersion of Air Pollutants.  Air
     Weather Service Technical Report 214.

     Colenbrander, G. W., 1980.   A Mathematical  Model for the Transient
     Behavior of Dense Vapor Clouds.   Third International Symposium on Loss
     Prevention and Safety Promotion in the Process Industries, Basel,
     Switzerland.

     Slade, D. H., 1968.  Meteorology and Atomic Energy.  U.S. Atomic Energy
     Commission, NTIS No. TID-24190.

                                     A-4

-------
Turner, D. B., 1969.  Workbook of Atmospheric Dispersion Estimates.  PHS
Publication No. 999-26.  U.S. Environmental Protection Agency, Research
Triangle Park, NC  27711.

U.S. Environmental Protection Agency, 1989.  User's Guide for RVD 2.0 -
A Relief Valve Discharge Screening Model.  EPA-450/4-88-024.  U.S.
Environmental Protection Agency, Research Triangle Park, NC  27711.
(NTIS PB 89-151070).
                               A-5

-------

-------
A.2   HEAVY GAS DISPERSION (HEGADAS) MODEL SUMMARY
Reference:
Availability:
Abstract:
                  Witlox, H.W.M., 1988.  User's Guide for the HEGADAS Heavy
                  Gas Dispersion Program.  Shell Research Ltd.-Thornton
                  Research Center, P.O. Box 1, Chester, England, CHI 3SH

                  The user's manual and computer code is available as PB 89-
                  164552 from:

                  Computer Products
                  National Technical Information Service
                  U.S. Department of Commerce
                  5815 Port Royal Road
                  Springfield, VA  22161
                  Phone (703) 487-4650

                  HEGADAS is a mathematical dispersion model that can be used
                  to model ground level steady-state and transient releases of
                  a dense toxic gas formed from area sources such as liquid
                  pools or gas clouds formed directly from leaks in process
                  equipment.  The model simulates dispersion of the dense gas
                  by combining the effects of initial gravitational spreading
                  and downwind turbulent mixing.  Particular emphasis is given
                  to thermodynamic effects on dispersion, including surface
                  heat transfer and water vapor transfer and condensation.
                  The model simulates only one set of meteorological
                  conditions per run, and therefore should not be considered
                  applicable over time periods much longer than 1 hour.   The
                  simulations are carried out over flat, and unobstructed
                  terrain.  The model is capable of simulating dispersion for
                  a continuous range of surface roughnesses.  However, no
                  indoor concentrations are calculated by the model.

a.    Recommendations for Use

      HEGADAS should be used as a refined modeling approach to estimate
      ambient concentrations and the area of exposure to concentrations above
      specified threshold values for releases from evaporative pools (both
      continuous and instantaneous).  It is especially useful in situations
      where negative buoyancy effects are suspected to be fmportant.

b.    Input Requirements

      Data are input directly from an external input file.  The model  is not
      set up to accept real-time meteorological  data or convert units of input
      values.  All  chemical property data must be input by the user, i.e.,
      they are not  stored within the model.
                                     A-7

-------
      Source data requirements are:   gas emission flux; dimensions of gas
      source; emission chemical  and physical properties (molecular weight,
      specific heat, and molar fraction picked-up water {molar ratio of water
      initially in gas to dry gas),  temperature of release gas).

      Meteorological data requirements are:  ambient wind speed at designated
      height above ground, temperature, relative humidity, surface roughness,
      and surface temperature (which in most cases can be adequately
      approximated by the ambient temperature).

      Output control requirements are: output step length (distance between
      the output downwind concentrations defined as ratio of initial downwind
      step length to the length  of the secondary source which results from
      slumping effects), distance at which calculation is stopped (ratio of X-
      coordinate at which calculation stops, to secondary source length),
      concentration thresholds at which calculation is stopped,  and upper and
      lower concentration limits.

c.    Output

      No graphical output is generated by the current version of this program.
      Also, the output is not easily accessible by other software to generate
      graphics or make statistical checks.  The output printfile is
      automatically saved and must be sent to the appropriate printer by the
      user after program execution.   Printed output includes in  tabular form:

            Listing of model input data;

            Downwind distance from source center (x-coordinate);

            Ground level concentration on plume axis (dry gas);

            Vertical and cross-wind  dispersion coefficients;

            Y-coordinate (i.e. cross-wind distance to the plume  axis) at which
            the ground level concentration equals upper and lower
            concentration limits;

            Height (Z-coordinate) at which the cloud centerline  concentration
            equals upper and lower concentration limits;

d.    Type of Model

      The steady-state version of HEGADAS assumes a hybrid top-hat/Gaussian
      similarity profile for concentration in the crosswind direction and a
      power law similarity profile in the vertical direction. This is
      accomplished by a solution to  the differential equations for such
      parameters.   The model estimates dispersion of the  cloud by combining
      the effects  of gravity spreading of gases and turbulent mixing.  Gravity
      spread effects are included by defining effective variables for
                                     A-8

-------
      transport velocity, plume width resulting from the effects of gravity
      spreading and cloud heating.

e.    Pollutant Types

      Pollutants are assumed to be non-reactive and non-depositing dense
      gases.  Surface heat transfer and water vapor flux are also included in
      the model.

f.    Source-Receptor Relationships

      Only one source can be modeled at a time.

      There is no limitation to the number of receptors; the downwind receptor
      distances are internally-calculated by the model based on output control
      variables designated by user.  The HEGADAS calculation is carried out
      until the plume center!ine concentration meets the lowest concentration
      of interest specified by the user, or plume reaches the user specified
      distance.

      The model contains no .submodels for source calculations or release
      characterization.

g.    Plume Behavior

      Plume behavior is  based on similarity profile relationships based on
      wind tunnel experiments.   Surrounding terrain is assumed to be flat.

h.    Horizontal Winds

      A power law approximation of the constant logarithmic velocity profile
      which accounts for stability and surface roughness is used.  In this
      power-law, the exponent is determined from a least squares fit of the
      logarithmic profile from ground level to twice the wind speed reference
      height.

i.    Vertical Wind Speed

      Not treated.

j.    Horizontal Dispersion

      The crosswind dispersion  parameters are derived from a crosswind
    *  diffusion equation and a  gravity-spreading equation.   The first equation
      expresses the conservation of mass in the crosswind direction, and is
      based on experimental data by Turner (1969).  The second equation
      describes the gravitational  spreading due to the density difference
      between  the vapor  cloud and  the surrounding air,  and is based on
      experimental  data  by Van  Ulden (1984).   Along-wind dispersion of
      transient releases is treated using the methods of Colenbrander (1980).
                                     A-9

-------
k.    Vertical Dispersion

      The vertical dispersion coefficient is derived from an entrainment
      equation describing the entrainment of air in the gas cloud due to
      vertical mixing.  This entrainment is assumed to be proportional to a
      function of a bulk Richardson number.  This function describes the
      influence of the density stratification on the diffusion in the vertical
      direction and is obtained from wind tunnel and water channel experiments
      (McQuaid (1976) and Kranenburg (1984)).

1.    Chemical Transformation

      The thermodynamics of the mixing of the dense gas with ambient air are
      treated; however, any reactions of released chemicals with water are not
      treated unless the model is modified by the user.

m.    Physical Removal

      Not treated.

n.    Evaluation Studies

      Colenbrander, G.W., 1980.  A Mathematical Model for The Transient
      Behaviour of Dense Gas Vapour Clouds, 3rd International Symposium on
      Loss Prevention and Safety Promotion in The Process Industries. Basel,
      September 1980.

      Colenbrander, G.W. and J.S. Puttock, 1988. Description of The HEGADAS
      Model for Dispersion of Dense Gas Releases.

o.    Operating  Information

      The model will operate on an IBM (AT, XT, and PS2 Model 50) and any
      other IBM-compatible PC.  Minimum requirement for the program are 512K
      memory and PCDOS/MSDOS version 3.1 or higher.  Use of a math coprocessor
      is highly recommended.

p.    References

      Kranenburg C., 1984.  Wind-induced Entrainment in a Stably Stratified
      Fluid, J. Fluid Mech.  145,  p. 253-273.

      McQuaid, J., 1976.  Some Experiments on the Structure of Stably-
      stratified Shear Flows.  Technical Paper p. 21 Safety in Mines Research
      Establishment, Sheffield, U.K.

      Turner, D.B., 1969.  Workbook of Atmospheric Dispersion Estimates.   U.S.
      Dept. of Health, Education and Welfare.  Public Health Service
      Publication no. 999-AP-26.
                                     A-10

-------
Van Ulden, A.P., 1984.  A New Bulk Model for Dense Gas Dispersion: Two-
dimensional Spread in Still Air. In: Atmospheric Dispersion of Heavy
Gases and Small Particles, (G. Ooms and H. Tennekes, eds.) pp. 419-440
Springer-Verlag, Berlin.
                              A-ll

-------

-------
A.3   SLAB MODEL SUMMARY
Reference:
Availability:
Abstract;
             Ermak, D.L., 1989. User's Manual for the SLAB model, An
             Atmospheric Dispersion Model for Denser-than-Air Releases,
             Draft, Lawrence Livermore National Laboratory.

             Computer code and User's Manual can be obtained upon request
             from:

             Donald L. Ermak, L-216
             Atmospheric and Geophysical Sciences Division
             Lawrence Livermore National Laboratory
             P.O. Box 808
             Livermore, CA  94550

	         The SLAB model  is a computer model, PC-based, that simulates
             the atmospheric dispersion of denser-than-air releases.  The
             type of release treated by the model  include ground-level
             evaporating pool, an elevated horizontal jet, a stack or
             elevated vertical jet and an instantaneous volume source.
             All sources except the evaporating pool may be characterized
             as aerosols.  Only one type of release can be processed in
             an individual  simulation.  Also, the model simulates only
             one set of meteorological conditions; therefore direct
             application of the model  over time periods longer than one
             or two hours is not recommended.

 Recommendations for use

 The SLAB model should be used as a refined model  to estimate spatial and
 temporal distribution of short-term ambient concentration (e.g., 1-hour
 or less averaging times) and the expected area of exposure to
 concentrations above specified threshold values for toxic chemical
 releases where the release  is suspected to be denser than the ambient
 air.

 Input Requirements

 The SLAB model is executed  in the batch mode.   Data are input directly
 from an external  input file.   There are 29 input  parameters required to
 run the SLAB model.   These  parameters are divided into 5 categories by
 the user's guide: source type,  source properties, spill properties,
 field properties, and meteorological  parameters.   The model  is not
 designed to accept real-time meteorological  data  or convert units of
 input values.   Chemical  property data is not available within the model
 and must be input by the user.   Some  chemical  and physical  property data
 are available  in  the user's guide.

 Source type is chosen as one of the following:  evaporating  pool  release,
 horizontal  jet release,  vertical  jet  or stack  release,  or instantaneous
 or short-duration evaporating pool  release.
                                     A-13

-------
      Source property data requirements are physical and chemical properties
      (molecular weight, vapor heat capacity at constant pressure; boiling
      point; latent heat of vaporization; liquid heat capacity; liquid
      density; saturation pressure constants), and initial liquid mass
      fraction in the release.

      Spill properties include:  source temperature, emission rate, source
      dimensions, instantaneous source mass, release duration, and elevation
      above ground level.

      Required field properties are:  desired concentration averaging time,
      maximum downwind distance (to stop the calculation), and four separate
      .heights at which the concentration calculations are to be made.

      Meteorological parameter requirements are:  ambient measurement height,
      ambient wind speed at designated ambient measurement height, ambient
      temperature, surface roughness, relative humidity, atmospheric stability
      class, and inverse Monin-Obukhov length (optional, only used as an input
      parameter when stability class is unknown).

c.    Output

      No graphical output is generated by the current version of this program.
      The output printfile is automatically saved and must be sent to the
      appropriate printer by the user after program execution.  Printed output
      includes in tabular form:

            Listing of model input data

            Instantaneous spatially-averaged cloud parameters - time, downwind
            distance,  magnitude of peak concentration, cloud dimensions
            (including length for puff-type simulations), volume (or mole) and
            mass fractions, downwind velocity, vapor mass fraction, density,
            temperature, cloud velocity, vapor fraction, water content,
            gravity flow velocities, and entrainment velocities;

            Time-averaged cloud parameters - parameters which may be used
            externally to calculate time-averaged concentrations at any
            location within the simulation domain (tabulated as functions of
            downwind distance);

            Time-averaged concentration values at plume centerline and at five
            off-center!ine distances (off-centerline distances are multiples
            of the effective cloud half-width, which varies as a function of
            downwind distance) at four user-specified heights and at the
            height of the plume centerline.

d.    Type of Model

      Transport and dispersion are calculated by solving the conservation
      equations for mass,  species, energy, and momentum, with the cloud being
      modeled as either a steady-state plume, a transient puff, or a
      combination of both depending on the duration of the release.  In the


                                     A-14

-------
      steady-state plume mode, the crosswind-averaged conservation equations
      are solved and all variables depend only on the downwind distance.  In
      the transient puff mode, the volume-averaged conservation equations are
      solved, and all variables depend only on the downwind travel time of the
      puff center of mass.  Time is related to downwind distance by the
      height-averaged ambient wind speed.  The basic conservation equations
      are solved via a numerical integration scheme in space and'time.

e.    Pollutant Types                                                     '

      Pollutants are assumed to be non-reactive and non-depositing dense gases
      or liquid-vapor mixtures (aerosols).  Surface heat transfer and water
      vapor flux are also included in the model.

f.    Source-Receptor Relationships

      Only one source can be modeled at a time.
      There is no limitation to the number of receptors; the downwind receptor
      distances are internally-calculated by the model.  The SLAB calculation
      is carried out up to the user-specified maximum downwind distance.

      The model contains submodels for the source characterization of
      evaporating pools, elevated vertical or horizontal jets, and
      instantaneous volume sources.

g.'    Plume Behavior

      Plume trajectory and dispersion is based on crosswind-averaged mass,
      species, energy, and momentum balance equations.  Surrounding terrain is
      assumed to be flat and of uniform surface roughness.  No obstacle or
      building effects are taken into account.

h.    Horizontal Winds

      A power law approximation of the logarithmic velocity profile which
      accounts for stability and surface roughness is used.

i.    Vertical Wind Speed

      Not treated.

j-    Vertical Dispersion

      The crosswind dispersion parameters are calculated from formulas
      reported by Morgan, et al. (1983), which are based on experimental data
      from several sources.  The formulas account for entrainment due to
      atmospheric turbulence,  surface friction, thermal convection due to
      ground heating,  differential  motion between the air and the cloud, and
      damping due to stable  density stratification within the cloud.
                                     A-15

-------
k.    Horizontal Dispersion

      The horizontal dispersion parameters are calculated from formulas
      similar to those described for vertical dispersion, also from the work
      of Morgan, et al. (1983).

1.    Chemical Transformation

      The thermodynamics of the mixing of the dense gas or aerosol with
      ambient air (including water vapor) are treated.  The relationship
      between the vapor and liquid fractions within the cloud is treated using
      the local thermodynamic equilibrium approximation.  Reactions of
      released chemicals with water or ambient air are not treated.

m.    Physical Removal

      Not treated.

n.    Evaluation Studies

      Blewitt, D. N., J. F. Yohn, and D. L. Ermak, 1987.  An Evaluation of
      SLAB and DEGADIS Heavy Gas Dispersion Models Using the HF Spill Test
      Data, Proceedings, AIChE International Conference on Vapor Cloud
      Modeling, Boston, MA, November, pp. 56-80.

      Ermak,' D. L., S.T. Chan, D. L. Morgan, and L. K. Morris, 1982.  A
      Comparison of Dense Gas Dispersion Model Simulations with Burro Series
      LNG Spill Test Results, J. Haz. Matls., 6, pp. 129-160.

      Zapert, J. G., R. J. Londergan, and H. Thistle, 1991.  Evaluation of
      Dense Gas Simulation Models.  EPA-450/4-90-018.  U.S. Environmental
      Protection Agency, Research Triangle Park, NC 27711.

o.    Operating  Information

      The model is written in standard FORTRAN 77 and operates on an IBM-
      compatible PC.  Minimum requirements for the program are 512K memory and
      PCDOS/MSDOS version 3.1 or higher.  Use of a math coprocessor will
      reduce simulation times.

p.    References

      Ermak, D. L., 1989.  A Description of the SLAB Model, presented at
      JANNAF Safety and Environmental Protection Subcommittee Meeting, San
      Antonio, TX, April, 1989.

      Morgan, D. L., Jr., L. K. Morris, and D. L. Ermak, 1983.  SLAB: A Time-
      Dependent Computer Model for the Dispersion of Heavy Gas Released in the
      Atmosphere, UCRL-53383, Lawrence Livermore National Laboratory,
      Livermore, CA.
                                     A-16

-------
                                  APPENDIX B
                         Non-Dense  Gas  Model  Summaries
                               Table  of Contents

B.I  AIR FORCE TOXIC CHEMICAL DISPERSION (AFTOX) MODEL SUMMARY

-------

-------
B.I   AIR FORCE TOXIC CHEMICAL DISPERSION (AFTOX) MODEL SUMMARY
Reference:
Availabilitv:
Abstract:
          Kunkel, B. A.,  1988. User's Guide for  the Air  Force Toxic
          Chemical Dispersion Model  (AFTOX). AFGL-TR-88-0009.
          (ADA199096)

          Computer code and  user's guide can be  obtained  upon request
          from:

          Bruce A. Kunkel
          Air Force Geophysics Laboratory  (AFGL/LYA)
          Hanscom AFB, MA 01731-5000
          Telephone: (617) 377-2972

          AFTOX is an  interactive, PC-based (for EGA and  CGA systems),
          Gaussian puff model with a variable number of puff releases
          per minute based on wind speed and distance from source. The
          model is written in BASIC and was designed to compute
          concentrations from continuous or instantaneous, liquid or
          gas, elevated or surface, point  or area source.  AFTOX
          contains an  additional subprogram for  processing a buoyant
          plume from a stack. Only one type of release can be processed
          at a time and dense gas effects  can not be modeled.  Terrain
          is assumed to be flat.  The model can  1) plot up to three
          concentration contours, 2) compute a concentration at a
          specified point and time, and 3) compute a maximum
          concentration at a given elevation and time. Some of the
          model's significant features include:  1) a stability parameter
          based on a continuous function,  2) use of roughness lengths,
          3) variable  averaging times from 1-minute to 1-hour, and 4)
          plot of a 90% probability hazardous area.  There are 76
          chemicals in its data base.

Recommendation for Use:

AFTOX is a refined modeling program for estimating concentrations from a
continuous or instantaneous,  liquid or gas, elevated or surface, point
or area source in any kind of cl imatological location. The program is
designed for chemical   spills on flat terrain and is not applicable for
complex terrain nor modeling dense gas effects.  Only one set of
meteorological data can be used each time  the program is executed.
Averaging times greater than 60 minutes are not recommended.

Input Requirements:

Two input files are used in AFTOX.   The first file (SD.DAT) contains the
meteorological site values which include: Site name,  Latitude,
Longitude,  Roughness length,  Wind instrument height above ground, Site
elevation,  and Greenwich Mean Time - local  standard time zone
difference.

                                B-l

-------
      The second file (CH.DAT) contains chemical data for 76 chemicals.  The
      data include: Chemical name, time weighted averages, short-term emission
      levels, molecular weight, boiling point, critical temperature, critical
      pressure, critical volume, vapor pressure constants, liquid density
      constants, effective diameter of molecule, energy of molecular
      interaction.

      A third file (CHEM.DAT) contains only the chemical names.  If the
      chemical released is not on the list, the following chemical data are
      requested: Chemical name, molecular weight, vapor pressure.

      Meteorological  input includes: Ambient air temperature, wind direction
      and speed, wind direction standard deviation (optional), cloud cover,
      cloud height, wet/dry ground, snow cover, inversion base height, spill
      site roughness length.

      For 'continuous' liquid or gaseous spills, input includes:  emission
      rate through rupture, duration of spill, height of release (gas only),
      area of spill (liquid release only), pool temperature (liquid release
      only),  and elapsed time since start of spill.

      For 'instantaneous' liquid or gaseous releases, input includes: height
      of Teak above ground (gaseous release only), total amount spilled,
      elapsed time since start of spill, pool  temperature (liquid release
      only),  area of spill (liquid release only).

      For continuous buoyant release from a stack, input includes:  molecular
      weight  of effluent, emission rate per minute, stack height above ground
      level,  gas stack exit temperature, volume flow rate of exit gas.

      Other files exist for transferring data between parts of AFTOX.

c.    Output

    .  Three types of output can be generated by AFTOX. They are:

        Maximum of three contour isopleth plot of concentrations;

        Concentration at specific location and time;  and

        Maximum concentration at giver, elevation and time.

      AFT.OUT is used to retain most of the input and output data.  AFT.OUT is
      overwritten when AFTOX is reexecuted.  If the data in AFT.OUT are
      needed, AFT.OUT should be renamed as soon as practical.

d.    Type of Model

      Technically, the model  is a gaussian puff model. Mass conserving
      equations are used.  A minimum of three puffs per minute are used to
      track and compute concentrations from continuous type sources. The
      faster  the wind speed the more puffs per minute are required and used so

                                      B-2

-------
there  are  no gaps  between  puffs.  Stability  classification  is  based  upon
Pasquill stability classes  but  instead  of discrete  classes, the
classification  system  is a  continuous function  designed  to  avoid  sudden
changes  in  stability classes  due  to  minor changes  in  input  values.

Pollutant Types

AFTOX  is capable of modeling  non  reactive gases and evaporating liquids
but does not model  dense gas  effects.

Source-Receptor Relationships

AFTOX  can be used  to model  a  point or an area source  but the  main
purpose of  the model is to  estimate  a short-term concentration or an
area where  concentrations will  be above a certain threshold.  Terrain
conditions  such as  dampness of  the soil and whether the ground  is snow
covered are part of AFTOX  input.

The program can produce a three level isopleth  graph  of concentration
levels and/or predict  the maximum concentration. The  contours plotting
starts at least 10  meters from  the source.  Maximum concentration
predictions are calculated  for  as close as 30 meters  from the source.
Contour plots can  extend outward to  100 km from the source.

There  are an unlimited number of points at which concentrations can be
calculated by AFTOX, but the  receptor elevation, downwind and cross wind
distances need to  be entered  each time a concentration is needed.

Plume  Behavior

For continuous buoyant plumes,  Briggs (1975) plume  rise formula is used
to calculate plume  rise.  All plumes are assumed to be neutral to
positively buoyant.  There  is no building or stack  tip downwash.
Gradual plume rise  is  used.

From non stack sources, liquid  spills are assumed to  pool on  the
surface.  The gaseous  emission  rate from an evaporating pool formed by a
liquid spill is based  on one  of two convective  mass transfer  algorithms.
These  algorithms are selected internally by the  model, as needed, based
on the chemical information available in CH.DAT.  The area of the pool
is determined from  an equilibrium established between the spillage and
evaporation rates.   An initial  sigma value is determined based on the
width of the pool.

Horizontal  Winds

The measured wind speed height  is adjusted by AFTOX to 10 m based on
stability and roughness length at the meteorological  site.  The wind at
the spill site is assumed to be equal to the computed wind at the
meteorological  site.
                                B-3

-------
The wind direction is not adjusted. However, if there is a standard
deviation of wind direction value available, that value is adjusted to a
60 minute averaging time and a 10 meter height.
Vertical Winds
Vertical winds are assumed to be zero.
Horizontal Dispersion
Two methods are available for calculating stability:
 a.   Wind, solar, roughness length and Monin-Obuhkov length
      values are used in conjunction with Golder's nomogram (1972) to
      determine a stability parameter.
 b.   The standard deviation of the wind direction is used to
      determine a stability parameter using the Modified Sigma Theta
      approach of Mitchell and Timbre (1979).
Stability parameters are a continuous form of the discrete values of the
Pasquill Stability Classes and are used to derive dispersion values.
The Pasquill-Gifford dispersion parameters are used in this model and
are adjusted for roughness length at the spill  site and for the
concentration averaging time.
A power law function is used to determine sigma y values using Hansen
(1979) coefficients.
Vertical Dispersion
See Horizontal Dispersion concerning methods for calculating"stability
parameters.
A power law fit of Pasquill sigma-z curves is used and adjusted for
roughness length and downwind distance.
Briggs (1975) plume rise equations are used for stack emissions.
Mixing height is entered manually.
Reflection terms are used only if there is an inversion below 500
meters. The terms are summed until the N-th term produces a value of
less than 0.01.
Perfect reflection is assumed at the ground.
Chemical Transformations
Chemical transformations and decay are not modeled.
                                B-4

-------
m.    Physical Removal

      There are no wet or dry deposition algorithms.

n.    Evaluations

      Kunkel, Bruce A., 1988.  User's Guide to the Air Force Toxic Chemical
      Dispersion Model (AFTOX), Air Force Geophysics Laboratory Publication
      No. AFGL-TR-88-0009, EPR No. 992.  Air Force Geophysics Laboratory,
      Hanscom AFB, MA  01731-5000. (ADA199096)'

o.    Operating Information

      AFTOX runs interactively on an IBM-PC. The source code is not machine
      dependent and should be transferable to other computers running Basic.

      The following two data files are mandatory and should be reviewed prior
      to running AFTOX: SD.DAT and CH.DAT.

      The following three programs are accessory programs that allow the user
      to update and expand the above two data files or transfer plume plots
      from the -.screen to a printer.

      SDFIL.EXE, CHFIL.EXE, and a graphics screen to printer program (i.e. MS-
      DOS's GRAPHICS command and compatible hardware).

p.    References

      Briggs, G. A. 1975.   Plume Rise Predictions.   Lectures on Air Pollution
      and Environmental Impact Analyses.  American Meteorological  Society,
      Boston, MA,  pp. 59-111.

      Colder, D.,  1972.  Relations between Stability Parameters in the Surface
      Layer.  Boundary Layer Meteorology 3,  46-58.

      Hansen, F. V.,  1979.  Engineering Estimates for the Calculation of
      Atmospheric  Dispersion Coefficients.   U.S.  Army Atmospheric Science
      Laboratory,  White Sands Missile Range, NM,  Internal Report.

      Mitchell,  A.  E., and K. 0.  Timbre, 1979.   Atmospheric Stability Class
      from Horizontal  Wind Fluctuation.   Air Pollution Control  Association
      Annual Meeting,  Cincinnati,  OH,  paper 79-29.2.
                                     B-5

-------

-------
                                  Appendix C

                    Dense Gas Model Input and Output Files

                               Table of Contents
C.I   DEGADIS Model
      Example 1:  Input/Output File
      Example 2:  Input/Output File
C.2   HEGADAS Model
      Example 1:  Input/Output File
      Example 2:  Input/Output File
C.3   SLAB Model
      Example 1:  Input/Output File
      Example 2:  Input/Output File

-------

-------
                        DEGADIS Example 1:  Input File
Workbook scenario  6.5  - continuous leak of chlorine gas
2.0  10.
0.01
160
298.
298.
CL2
70.9
900.
284.3
0.000005
   500.
1.   50.
     0.000005  0.0
   0.
0
0
1.261
5.0  0.06701
0.0
100.
uo, zo
ZR
INDVEL, ISTAB, RML
TAMB, PAMB, RELHUM
TSURF
GASNAM
GASMW
AVTIME -  (15 min)
JETTEM  •
GASUL, GASLL,  ZLL
INDHT,  CPK, CPP
NDEN
ERATE
ELEJET, DIAJET
TEND
DISTMX
                               C-l

-------
                                                                             Output  File
 o
 a
 >

w

Q

O

Q
cu
E-i
w
                                     e  e  E
                                           o
                                            I
                                           w
                                     o o o
                                     o o o
                                     o o o
                                     o  • o
                                      • o o
                               m
                               *^-
                               £

                               CM
                                I         I
                               w       «
                               m o o o o
                               O\ O O CM O
                               o  • o  o CM o o
                                           o o o CM *r o
                                           O co (T\ i—I   • ^"
                                                                   u u
                                                             o o o o o o
                                                             1-1 m o o   • o
                                                             o\   . o o in o
                                                               • T o o in o
                                                             O 00 O O »-H   •
                                                             r- CM   •   • CM I-H
                                                                   m in
                                                                                                                                                             E  e
                                                                                 I
                                                                                U
                                                                          o o o
                                                                          ,— I O O
                                                                          "•£> O i-H
                                                                          WOO
                                                                            •  • r*-
                                                                          i— t m  •
      CM


      CO
             o
             o
            XI
                               T3
                               C
                               O
                               o
 en
 o
T—i
 o
 Ll
 O
 0)
x; x:  M
 ty tj* o)
•H -H  C
 D  o) _c

       3
 0)  01  O
 U  O  Ll
 c  c
 01  1)  01
 Ll  Ll  O
 01  01  10
                                     0) oi
                                     Ll PC
73
 01
 01
 Q,
 M
T!
 C
                                     xt
                                           *4-i
<0
Cu
                                                        o
                                                       x;
                                                        o
            4J  Ll  Ll jj 4-1
            •H  3  3 -H -H
             O 4->  w TJ 73
             O  (0  « -rH -r-l
            -H  LI  01  £  £
             01  O  Li  3  3

             >  a axx:


             C  01  4J 4-1  0)
             O 4J  C  C  >
            •H     0)  0> -H


             U  CA A  <0
            •H  0) 1= 1 ^H
             Vj -H < <  0)
            In  n       pc
 01  >, >. N  N  N
 E < < « <
•H H E-< E-i H E
4J J U J U E
   td m w CQ <
 0>Q    Q    O
 c
-H
 CP
 •0
                                                                               •o
                                                                                0)
                               o
                               8.
                         Ll
                         01
                         a.
                         o
                         Ll
                         Cu
                                                                                                         c
                                                                                                         o
                                                                                                        u
x:  LI  n  M  c  01
 O> 3  01  Ol  11  3
•H  AJ  Ll  Ll  4J  O
 n  fo  oi  n  w  ex
 3  M  4J  4J  C
    01  C  C  O  >,
 Ll  Q.-H -H  U  JJ
 HE           -H
rH  (1)  M-l H-J  >, O
 3  4J  O  O  4J  <0
 o           -H  a
 41 rH  rH rH  U  *0
^H  U  01  C!  <0  O
 o -H  >  >  a
 £  4-J  CJ  H  *0  iJ
   ^H  ^-1 fH  U  13
-U  C           01
 C M  Ll  Ll  4J  EC
 ro     01  01  U
 c     a 3  oi
•H     a o  i
 E     =>  ^

4J
 c
 o
u
                                                                                                     Z
                                                                                                     W
                                                                                                     Q
                                                                                                     Z
                                                                                                                                          Cu
                                                                                                                                          O
                                                                                                                                                    a
                                                                                                                                                    o
                                                                                                                                                   Cu

                                                                                                                                                    01
                                                                                                                           01  c  u
                                                                                                                           4-1  O  0)
                                                                                                                           <« -H 4J
                                                                                                                           Ll 4J  0)
                                                                                                                               •0  £
                                                                                                                           ai  >  ra
                                                                                                                           «  0) -rH
                                                                                                                           10 rH "O
                                                                                                                           01  01
                                                                                                                           fH     Q)
                                                                                                                           01  0)  ET
                                                                                                                           0C  ffi Ll
                                                                                                                              • Ll  10
                                                                                                                               ro x:
                                                                                                                              x;  o
                                                                                                                               u  o
                                                                                      C-2

-------
c
O X O
-H 18 (8
AJ E M
fO [14 .—»
> M E
4> O rH ~
rH M-l O

£ C
3 0
E CD .H
•H rH AJ
X 0 0
S M
Cu




CM "W* rH
in • •
. CO «r
in rH rH
m m
o o
I i

o cn cn
O in rH
• co m
*T rH




cn 0 0
rH 0 O
• O O
cn . .
*r w
ooo
1 1 1
W cd W
o ^o co
o co m
in T m
r- r- vo
                           o
                          •  I

                      Er^gg
                         O O  —

                           m
                         o
                         AJ
                     o    m
                     o  ja o
                     o  AJ  i
                       •  T> Cd  —
                         •H O  E
                         SO  —

                           m
                     AJ     c
                     <     o
                         01  -H
                            M
                            b
                                     OOO
                                     ooo
                                     ooo
                           r- m r-
                           rH CM CM
                                        Z

                           vo «r co     O

                           r- m r-     M
                           rH CN) CN
                                        c/i
                           ooo
                            I   I  I
                           Cd  I
                                     CN
                                     O
                                      I
                                     «
   <8

   O>
       I
      fd
      ooo
      ooo
      o o   •
      O I— O
      co m o

      CNI
      rH CM X
      < < E
      Cu [u H
      J J cy}
CM
O
 I



CTl CM U>    rH   •   •
UJ   .   •      . O CN
 . CO in    CO rH rH
m
                                     ^" CO CO    CO CO CO

                                     CN CM CN    CN CN CN
E-




O
                                                             Q

                                                             O
                                              CM

                                              CO
                                              cn
                                              en
                                                                    I
                                                                    Z
                                                                    "-J
                                                                    I
          £

         "t?
0)
AJ
c
0)
U
                                        <

                                        (J>
 i
 18

 18
Cu
 4)
T3
 O
2
       18

      AJ m
       c  E
                            C J!
                            O —
                            U

                            C
                            o
                                        CM CO
                                        O O
                                         I   I
                                        U Cd
            m m m
            ooo
             I  I   I
            Cd Ed U
            m rH m

            rH Cn CO
                                                    VO CM
                                                    cn cn
                                                                          CM CM

                                                                          CO CO
                                     cn cn
                                     cn en
                                      I   I
                                     Z Z
             I   I
            rH rH
            m m
                                                                                                         n
                                                                                                        "SEE
                                           O O CM
                                           OOO
                                            •  •  I
                                           CN O [d
                                              rH O    CO

                                                 O    rH
                                                                                                                                                   o
                                                                                                                                                   m
                                                                                                                                                    CP
                                                                                                                          OCnO^TrHOOOCNJO
                                                                                                                          ooo«>mooooo
                                                                                                                            •  m o co *r  .  • o  i    >
                                                                                                                                        . CM CM    o
                                                                                                                                                   o
                  rH *T

                  m co
                  o o
                   I   I
                  Cd Cd
            ooo
             I    I   I
            Cd  Cd [t]

            cn  cn m
            *r  r~ m
   TJ  4)
   C  U
   -H  C —
   3  t  E
   C AJ —

   o —i
   a Q
                                     m
                                      • (
                                     in i
                                     o m
                                     o   • v
            O O rH


            rH CM CN)
             C  It
             O  M

             AJ  O
             3  M
             a a
             c
             -H  4)
                o
             18  M
             AJ  3
             18  O
             Q  CO
                                                                                   U
                                                                                   O
                                                                                          C
                                                                                          O
                                                                                          o

                                                                                          I

                                                                                         in
                     JC
                      CT>
                     •H
                      41
                     _C

                      41
                      O
                      C
                      CO
                      M
                      41
                     U-t
                      OJ
                                                     10
                                                     10
                                                     18
                                                    rH
                                                     O .C
                                                       AJ
                                                                                         n
                                                                                   AJ AJ u)
                                                                                   •8 x 0)
                                                                                      tr> c
   oi  >
   E  <8
   •H AJ
   AJ rH
       01
   ena
   c
   •H
   tr
   18
 tn M
AJ 01
 C >
 <8 18
 AJ
 10 -O
 C 01
 O -H
 o ^
   •H
 c u
 O 01
   a
Betay
Alpha
aw constan
                                                                                                               >1 >.
                                                                             _ C  3
                                                                             •H 41 .a
                                                                                                                      I  41
                                                                                                                      I  M
                                                                                                                        3
      TJ T!



      II
                                                                                                            0)  O"» 18 O O
                                                                                                               "1  4JJ3 •
                                                                       M     41
                                                                       4)
                                                                       3  >i 3 _
                                                                       O  AJ  AJ AJ 4) 4) CD
                                                                       CX-H  (8
                                                                          O  M
                                                                       >. O
                                                                                                                                              18
>J     18
H     C
M     4>
H     O
       U

      -X
       O
       o
      ja

       M
       O
                                                                    O 41 M
                                                                    rH O    -H
                                                                    41 C 4) -H
                                                                    > 0) O -H
                                                                       M CO 3

                                                                    C t-i w n
                                                                    -H 41 3 18
                                                                    3 Q£ (/} CU
                                                                                                               o    C
             O    E-i
            rH  C
             41  O AJ
             > -H  C
               AJ  41
            T>  O -H
             C -H J2
            -H  Ml
            3: fci <
 .  M AJ  >
 M  3 3 -H
 4)  W rH AJ

 £  4) W rH
 01  M J2  01
f-i Oj «( OS

 01 AJ AJ AJ
 O  C C  C
 18  0) 4)  01


 Sill
i/i < < rt
                                                                                      C-3

-------
 0>
 a

 0)
 J    O O  rH    CO in ON    rH CM r-     O
 i S£ o «3-  ^    CM ON ro    in CM ro     ro

      oo r-  VD    in ro CM    o co tn     T
      ON ON  ON    ON ON ON    ON co co     co
      CM CM  CM    CM CM CM    CM CM CM     CNJ
                                                                                                           ONIO in in m
                                                                                                          X m in m in
                                                                                                    c
                                                                                                    ta
 a,
-I  ON
 10 Jit O ID IT)
.C ^O CM  .
           -CO
                   r- o  rsi
                                in
C
W
      O  CM ro
      O  00 «T
        •  m ,-H
           I   I
                   *r !—i  r—    ro ON  \o    o
                   cr> LO  o    vp r-t  r"-    to
                   CM rH  O    CO r-  IT)    00
                   Csl fO  *J*    ^ lO  VD    ^O
                    III      III      I
H
M ro <^ co r-    CNVDT    o^rOi-H
c/i * ro ro 
Q \ rH CM ro    *r vc co    o T  co
    tT-	
W^^HrH^H    rH i-l .H    fM OsTCNJ
z m o o co
O *  O \£> CT\
l—t *  O LO ro    voiotO
E-^Eooco    crvior-
                   ON -
                                ro cs r-
                                co r~ T
                                CM vo ND
B;
EH
z
w
u
z
o
             CM
                                                                 E ON
                                                                •^ ^t
                                                                 ON-^
                                                             X M <->        E
                                                                       ^o r--
                                                                       o o
                                                                        I-  I
                                                                       U pq
                                                          o o r- o o o o
                                                          <-t ro ON O O O O
                                                          ON   . m  • o o o
                                                            • *T O O O O O
                                                          «2 CO   • O O O O
                                                          r- CM ro ir)  •  •   •
                                                                       in in
                                                                                                    IV
                                                                                                    I-
                                                                                                    0)
                                                                                                    EH
                                                                                                             ON ON ON ON
                                                                                                             ON ON ON ON


                                                                                                            ' r~ r- r~ r-
                                                                                                             ON ON ON ON

                                                                                                             CM  V£>
                                                                                                    AJ     c in in m m
                                                                                                    c in  o  •   •   •  •
                                                                                                    O W  O rH i-H r-t i-t
                                                                                                    U fl
                                                                                                       Z  CP
                                                                                                                                    o
                                                                                                                                    o
      O T O
      o m ^r
      O  ro O>    *•£" LO ^
      O  O O    ^H CM r
                                             o
                                             o
                                             o
                                             o
(0
0)
-H
JJ
i^
OJ
a
o
^
Oj

01
(Q
O

•o
0)

4_j
•H
o
0)
a
LO


t ,
4-1
J3
ON
•tH
01
3

Li
it
i—t
•3
O
11
rH
O
E




01
Li
•S

,
JJ
• H
n
c

Q




JJ
-H
O

a
iB
O

I i
IQ
0)
f^

01
ON
<0
Li
01

eg




n contour:
o
-H
JJ
U

IH
x-l

01
, — |
O
E

M
(U
a
a





n contour:
hs:
o
•H
4J
U

J^
4-1

OJ
^-4
0
E

LI
01
3
O





^j
0>

a
O
to
•H

Ll
O
14-4

JJ
£:
ON
-rl
01
X




                                                                                             o
                                                                                             o
•o
 3
 O
t—I
 U

 c
                                                                                                    01
                                                                                                    o
                                                                                                    M
                                                                                                    3
                                                                                                    o
                                                                                                    CO
                ON ON O  O
             E r- r- o  o
                CM CM O  O
                  •   .00
                r- r- o  o
                CM CM   •   •
                                                                                                                                    a
                                                                                                                                    01
                                                                                                                                    T!
 C  
                                                                                                                                    0)
                                                                                                                                 .. >  ..
                                                                                                                              .. M IB T3
                                                                                                                              « Tl  C
                                                                                                                              U    (V  01
                                                                                                                              o c n -H
                                                                                                                              >4H O 3  O
                                                                                                                                 •H    -r-4
                                                                                                                              0) 4J O HH
                                                                                                                              i4 CX-H MH
                                                                                                                              3 -H 4J  0)
                                                                                                                              •O M m  O
                                                                                                                              SI O U  O
                                                                                                                              O W
                                                                                                                              O J) n  4J
                                                                                                                              IH M n  c
                                                                                                                              a a o>  01

                                                                                                                              C 4J J<  C
                                                                                                                              o c u -H
                                                                                                                              -H 0) -H
                                                                                                                              •u E X  u
                                                                                                                              IB C 4J  4J
                                                                                                                              -H -H     C
                                                                                                                              3 IB M  01
                                                                                                                              O Li 01
                                                                                                                              ~H 4J >, U
                                                                                                                              IB C IB -rt
                                                                                                                              U W J  <
 C    rH
 01     0>

 O     Ll
•H     O
«4H     U
MH
 01    Si
 O    JJ
 U    -H 73
    C  S 01
 >< O     t)
JJ -H TI 3
^H JJ  01 rH
 U   i-H  U JJ
    IB rH O
 O1 O  10 C
 C     U
                                                                                                                                           Q. 10  Li
                                                                                                                                           E E  0)
                                                                                                                                           3 Li 14-1
                                                                                                                                              0)
                                                                                                                                                     o)
                                                                                                                                        m  to jr; c  IB
                                                                                                                                        Ll     jj IB  L4
                                                                                                                                           >| O Ll jj
                                                                                                                                           JJ 10 JJ
                                                                                                                                           .H M     L4
                                                                                                                                           >    JJ  0)
                                                                                                                                           10 2 <0 4J
                                                                                                                                           Ll O 01  IB
                                                                                                                                           U Z I S
                                                                                        o
                                                                                       1/5
                                                                                                                              oooooooo
                                                                                             C-4

-------




*
-K
-X
*
*















t/5
cr:
CJ
E-;
s:
$
<
Oi
CJ
u
cf.
r>
0
to
Q
<
^5
u

tQ
O

















*
*
*
-K






















O
u
-H
cc
ID
Ll
3
4J
fl
01
a
E
CU
H


>if^
4-> *
•rH -)e
to E
0) Cfi
a ^



u

u
fl

*4H

ID
O
Z

^^
•
CM
\

II 6
X
w



w
*-^
i-( CM
13 *
-U *
w e
°''fT1
*




±j
r*,
tn
-H E
(U
32





W
P
-H
TJ

CC E
to
a]
O







 If)




O O i-l
uo in co
i — 1 ON ^"
^r co *r
O rH CO
ro ro ro
 LO
CM VO O
^ . r-'
ON to CM
T P- rH




VD VD VD
m m m
r- P- P-
ON ON ON
ON ON ON
p- r- r-
ON ON ON
CM CM CN




ON CO CO
CO CO 00
p- p- p-
p- p- p-



^r T «r
o o o
1 1 1
to to to
CN P* ON
ON ON ON
ON VD rH
CO VD ON
m P- o
^ ro ^<
ro ro ro




CO CO LO
p* ^D ro
0 0 *T

rH OO rH
^10 P-
m LO m
0 0 O
I I I
to to to
rH LO VD
rH CN CN
•y co r-
ro O CO
CO V,O VD
CO rH rH
m LO LO




p- m m
ro *.o ^*
o en CN
ro oo P-
ro \O ON
CO \O LO






*r m o
CM lO t—t
co m o
LO rH P-
 CO >, >,
i-H r-l Ll Ll
VD p* fl fl
m m -H -H
Ll Ll
CU Ou

C C
4) 0)
O ID rH rH
m CM fl fl
co r- > >
en \o -H -H
co r- 3 3
VD VO [ij W
in in
o o
1 I
U U O 00
in r— rH in
o o vo m
in en CM •

T in rH in
•T in
in in



,,
p- r~-
^ ^3* .
•=r oo E
VD in ' — '
r- vo
in in jj
tji
c
o>
rH
ID

^3« ^o ^
0 ON ~ p
CO CO W O
in ON *^» uj
VD ^" ^ >"i
co co •— i-i

x: 1
J-> -H
O^ M
c cu
ID

VO P- jJ C
Cn r-( « Q)
rH P- rH
P- rH O >
OO i — 1 iH '<-4
T CO P p
o cr
CO W
o


CT
p-
p-















..

r-^
g
l_l

S)
to

01
Ll
3
O
10
>,
Ll
fl
•o
c
0
0
to
o
1
u
p-
^"
oo
p-
o

rH

••
_
r*)
.y
•k
E

tT1
-*

C
0
-H
4J
Ll
4J
C
01
o
c
o

01
o
Ll
3
O
tfi

^
M
ro
C
O
o
a;
LO
























































LO
O
1
W
ON
U>
m
in

u->



1
E a
rH
0) fl
U £
Ll 4J
3 C
O W
10
Ll
fl
Seconc


rH
m


¥
•o
3
p
rH
fl
ID
o
3
O
fl
•o
c
o
01
CO
CO
en
i-H

1"
.c
4-1
C
01
rH
01
o
3
O
Ll
fl
Secon<
•• o
0 E
o
E i
w —
O 0 -»
• o
in
n <*>
N 0)
4J 0
fl E -~
.C 0 —
4-1 1
•H O
S o
o
in
N H
"WrC-p
-H 4J E
I -H
01
4J
fl —
ID —
a
01
EH
fl
fl
>i CO"
4J *
•H -K
W £
c -v
1> DN
Q .*
C
O
:entrat.
.g/m**3
c ~
o
u
Mole
raction
DL,
0)
u
c —
4-) — *
M
•H
Q

• • rH
VD CN O

. . CM
O
1
to
CM *T ^
. T CN
rH
r- r~ r-
00 LO rH
VD co P~
.  U> V£>
P- P- V0
p- P- p-

0 0 O
1 1 1
to to to
rH rO ON
o m in
P- rH VO
VD VP tO
O 0 O
1 i 1
to to to
rH CM rH
rH CM LO
CO rH ON
CN CM rH
ON ON ON
VO 0 T

SP£

LO •T CO
ON O rH
ON p"~ ^*
«T CO CN
m in VD
co ro o
ON CN LO
P- CO CO
ON 00 P-
rH CM CO
OO CO CO
ON ON ON
CM CN CM
m in m
\D {Q VD
vu u> in
p- P- P-
p* r- r-

o o o
I I I
to to to
CO rH ON
rH rH 'a1
CN co ^r
m  LO
•
ON ON ON
CO CN ^>

in rH VD
CO O^ ON

rH ON p-
CN CM ro
ON ^" CO
iT) ON CM
CO P- U5
r- o ro
CO ON ON
^r CN ON
 vo
LO LO
p- p-

0 O
1 1
to w
VD ON
CN 0
CO rH
CO CO
O 0
1 1
to to
P- CM
rH O

ON O\
CM UJ
ON ON
C-5

-------
CN CN CN    CN CN CN     CM CN CN    CN CN CN    CN CN CN    CN CN CN
                                                                         CO CA rH

                                                                         CN CN CN
                                                                                      CN ^* LO
                                                                                      GO CO CO
                                                                                      CN CN CN
                                                                                     vo p~ oo
                                                                                     OO CO CO
                                                                                     CN CN CN
                        co CA CA
                        CO CO CO
                        (N  o
             o ro
CO CA O>
                                     O VO CO
                                     CN CM CN
                                                 CO ^ rH
                                                 ro ro «3*
                                                             <^> co ro
                                                             LO in vo
to o *r
^D r- r-
CA ro co
P- co co
                                                                                                              CA CA o
                                                                                                              rH rH CN
IT) ON rO
O O rH
CN CN CN
            CA ro P~     rH m 0*1
            CN ro ro     ^* "«r «3*
            fNCNCN     CNCNCSJ
VO CA CN    lO CN LO

O O rH    rH CN CN
                                                                          CA CA o
                                                                          rH rH CN
                                                                                      O rH rH
                                                                                      CN CN CN
                                                                                      CN CN ro
                                                                                      CN CN CN
                                                                                                              CN CN CN    CN CN CN
                                                 r- oo CA
                                                 CN CN (N
                                                 cr\ o  o
                                                 CN ro  m
                                       i CN CN
                                        r*"j ro
CN P~ rH

CO CO CA
LO CN LO

CA O O
                                                 co r*- r-

                                                 p» r- r*
                                     vo o ro

                                     LO LO ^r
                                     U> CO rH

                                     ro CN CN
                                                                          rH O O
                                                                          r- r~ r-
                                                                          O O 
                                                              iH O CA
                                                              M> VO LO
                         CO CO CO
                         CT\ CTl O>
                         CN CN CN
                                                             CO CO CO
                                                             CA cr> cr\
                                                             CN CN CN
                                                                                      CO CO CO
                                                                                      O\ CA CT»
                                                                                      CN CN CN
                        CO CO 00
                        CA CA CA
                        CN CN CN
                         CO CO CO
                         CA CA O\
                         CN CN CM
            CO CO CO
            CA CA CA
            CN CN CN
             O\ CA CA    CA CA CT>
              VD \^>
                                                              CA CO CO
                                                              O O O
                                                             CO CO P~
                                                             O O O
r- r- ^
o o o
V0 LO LO
O O O
ro CN CN
o o o
V£> LO ^O
rH rH O
O O O
O CA CA
O C3^ Q\
*^ LO LO
CO OO P-
CA O^ CA
LO LO LO
^pr^ pt^rT ??? ??? ??? ???

rororo rororo rororo rororo rororo rororo

ro ro ro
r- p- r-
p* r- P-

ro ro ro
r- r- r-
p- p- r-

 O
CO *3" ^*
CN o CA
LO LO LO
o o o
1 1 1
Cd Cd Cdi
O *T O"l
CO LO CO
CO O *^>
ro ro ro
o o o
Cd Cd Cd
CA CT( CA
^D ^ CO
rH CN CN

000
1 i i
W cd W
CN CA a\
LO U) rH
r- vo LO
LO LO LO
O 0 O
1 1 1
Cd Cd Cd
C\J *T" CTl
^r LO ro
O P- CN
ro ro ro
O O O
Cd Cd Cd

^D O CD
ro 

O 0 0
1 1 1
Cd Cd Cd
CO CO rH
p- ro LO
rH rH O
in LO LO
o o o
1 1 1
cd cd cd
ro co tn
 O
CO CA O
rH rH CN
O O 0
1 1 1
Cd Cd Cd
CO CA CA
•SP P" P-
LO CN P*
co co r-
lO LO LO
o o o
1 1 1
W Cd cd

^» LO CO
CAoo VO
CN CN CN
ro ro ro
O 0 O
Cd Cd Cd
O\ CA CA
CO CN O
0 rH CN
CN CN CN
LO LO LO
O 0 O
1 t 1
Cd Cd Cd
co r- to
^T rH CN
LO rH P-
LO LO tO
o o o
1 1 t
Cd Cd Cd
ro *r CA
O LO rH
w> *r ro
CN CN CN
ro ro ro
O O O
Cd Cd Cd
CA CA CA
 LO to
o o o
1 1 t
Cd Cd Cd
LO CN CA
CA CO P-
rH O CA
CN CM rH
ro ro ro
O 0 0
Cd Cd Cd
O"\ CA CA
CO VD «T
VLO VD
CN CN CN
LO LO LO
O O 0
1 1 1
td Cd Cd
rH ^O CA
U> O ^D
^ CN CA
if) IT) *T
LO LO LO
O O O
I 1 I
Cd Cd Cd
ro LO ro
CO CA rH
co r- r*
ro ro ro
O 0 0.
WWW
CA CA CA
CN O CO
r- co co
CN CN CN
LO LO LO
O O 0
1 1 1
Cd td td
O VD *-P
to «r to
p- LO ro
LO LO LO
o o o
1 1 1
Cd Cd Cd
co r- CN
ro "*d o
^X> LO LO
ro ro ro
0 O O
Cd Cd Cd
CA CA CA
^D 
CD O O
1 i I
Id Cd td
T CO O
rH P- LO
P- LO ^
ro ro ro
LO LO tn
o o o
1 1 i
Cd Cd Cd
rH ^T CA
co ro co
CN CN rH
ro ro ro
o o O
Cd Cd Cd
CA CA CA
V CN O
Tin vo
ro ro ro
LO LO LO
o o o
1 t 1
Cd Cd cd
CT\ LO CO
CN rH O
CO CN rH
n ro ro
LO LO LO
o o o
1 1 1
Cd Cd Cd
CO CA CN
*r o p-
rH rH O
ro ro ro
O 0 O
Cd Cd td
CA CA CA
CO \& ^*
vc.r-.QD
rO ro rO
                                                                                 C-6

-------
CM o r-
r* r- vo

r~ o ro
^r LO to
co r- o
LO LO VO
CM CM CM
rsj co ^r
rO ro *r

VO lO *T

CX) CO CO
ON ON ON
CM CM CM
r- vo vo
LO LO m
ro co m
LO LO in
o o o
I I I
w cj ca
VO O ON
O rH rH
O ON CD
ro CM CM
to LO vo
0 O 0
1 1 1
_J ID DJ
r* m o
m o CM
o o r-
,-H rH ON
m m m
o o o
CJ Ca ca
O> ON ON
CM o co
01 o o

^T rH CO
VO VO iT)

VO ON CM
LO LO tO
«3* CO CM
VO VD r-
CM CM CM
ON LO rH
•*r LO vo

m CM CM

CO CO CO
cri ON ON
CM CM CM
LO LO *T
LO LO lO
m m m
LO LO LO
O O O
1 1 1
WWW
m r— t m
co LO r-
r- vo LO
CM CM CM
VO VO VO
0 O O
1 1 1
UJ CiJ ta
CM ON O
CM co r-
*T rH CO
ON ON co
co co co
o o o
W CJ Ca
CTi O"» ON
VO ^ CM
rH CM m

*r o vo
LO LO ^*

lO CO rH
LO lO LO
LO en co
r- r- co
CM CM CM
r- CM co
\D r- r-

«H o ON

CO CO CO
ON ON ON
CM CM CM
co ro CM
LO lO LO
co CO ro
LO LO LO
O 0 O
1 1 1
Ca Ca ca
CO CO O
ON CM  CO t— I
CO CO CO
CO CO CO
O 0 O
ta w w
o> en a^
o co to
^r ^r LO

CM co co
^r co co

•CT VD CT»
LO LO U^
vo o co
CO ON ON
CM CM CM
^- o to
CO Cn CTt

co r- *^>

CO CO CO
cr\ cr\ o>
CM CM CNJ
CN tH O
LO LO LO
co ro co
LO t-O LO
o o o
I i I
LJj CiJ UJ
^o ^r LO
cr\ co r^
CM CM rH
^D VI3 ^
o o o
i i I
w w «
LO CO 1-H
r-l 0 O
ax r- LO
r- r- r-
co ro co
0 O O
WWW
O^ CT* CH
«T CM O
to r- co

co ro co
CM CM «-l

CNJ *T ^D
LO LO lO
r- o «r
Cft O O
CM CO CO
^H V43 CM
O O ^H

LO ^T CO

CO CO CO
CT\ ON ON
CM CM CM
O ON ON
LO LO UO
CO CO CO
LO LO LO
O 0 0
1 1 1
CJ CJ Cd
ON LO ^*
i-H V£ f-1
<-H O O
\&  ^T
CO CT\ O

CM VO ON
rH O ON

ON «H ro
LO LO lO
r- rH  VD \£>
(*1 CO CO
O 0 O
[jQ W W
ON ON ON
CM O CO
rH CM CM
lO LO LO
CM LO r*
ON co r-

LO r* ON
LO LO LO
CO rH LO
rH CM CM
co co ro
T O LO
CO «3- T

ON oo r-

00 CO CO
ON ON ON
CM CM CM
^0 LO LO
LO LO LO
ro ro ro
LO lO LO
o o o
1 t I
U tf U
CO Vi) LO
CM co ^r
VD \P VO
o o o
1 t !
M Ct) W
CM r- co
O LO iH
ro ^t O
U> U5 M>
ro ro ro
O O O
W Cd CJ
ON ON ON
^ «r CM
ro ^r LO
LO LO LO
ON O 0
VO MI LO

rH CO LO
IT) tO LO
CO rH LO
CM ro ro
co ro n
rH VO CM
LO LO VD

L^> LO "V

CO CO CO
ON ON ON
CM CM CM
«T CO CO
tO LO LO
ro ro ro
LO LO lO
O O 0
1 1 1
w w w
«> ON CO
O V£ CO
\D VO ^D
O 0 O
1 I 1
U Cd W
^r *r o
CO lO CO
co r* ^D
LO lO lO
ro co ro
O 0 O
U W U
0 CO VD
^D VD r-
LO LO LO
ON VD CM
CO CM rH

r- ON o
in LO LO
CO rH LO
ro -a" T
CO CO CO
r- CM co
*^> r- r—

CO CM rH

CO CO CO
ON ON ON
CM CM CM
CM rH rH
LO LO lO
ro co ro
LO LO LO
O O O
1 1 1
W Cd W
CO T CM
ON ^D CO
*^) VD ^O
O O O
1 1 1
W M W
o ^r CM
rH ON CO
LO CO CM
CO CO CO
O O O
W U [J
*T CM O
CO ON O
LO LO ^
XT o

CM T LO
lO LO LO
CO rH «T
 VD U>


r- co o
LO LO LO
CO rH «T
LO ^O VD
CO CO CO
ON *T O
O> O rH
rH rH O
r- VD LO
•
CO CO CO
ON ON ON
CM CM CM
co r- r-
LO LO LO
CO CO ro
r* r~ r-
LO LO tO
0 O 0
1 1 1
W ca pq
CO VD ON
rH CO LO
VD VD VD
O O O
1 1 1
U ta ca
CM co r-
r- r- co
co r- VD
CO CO CO
o o o
w ca H
en ON ON
CM o co
ro 

-------
CM    ro *r m
CO    00 CO GO
LO    in to lO
                  in \P vo

                  CO CO CO
                  lO tO m
r* P- co
CO CO CO
in m in
CO CO ON
CO CO CO
m 10 in
^ ON O
CO 00 ON
m to to
O O rH
O\ ON CTN
m to m
                                    CN CN ro
                                    ON ON ON
                                    m m m
                                                            m «3* m
                                                            ON ON ON
                                                            m to to
in m ^
ON ON ON
in m m
VJD p- r—
ON ON ON
to LO to
ON ON ON
to to m
ON ON O^    ON ON C^
in in m    m to in
      O fNJ in    W ON rH
      O O O    O O rH
                                          p~ co o    I-H ro
                                                                                                                                                       ro p- ON
                                                                                                                                                       co co co
      f — r~ P-    co co QO    ON ON ON
      m in LO    m m m    to to in
coom

ONOO
mcoi-i

o o rH
                                                                              CN CN fN
                                                                              vp u> vo
                        co ro ro

                        CN ro ^*
                                                co co ro

                                                ^rin^o
                                                vp tp y?
                                                                        mcoco

                                                                        p- p* co
                                                                                                ro ro co

                                                                                                ON o o
                                                                                                                                           co ro ro

                                                                                                                                           rH CN ro
                                                                                                                                                       co co ro

                                                                                                                                                       ro ^* in
                   • ro P-
                  O   •   •
                  rH ON CO
                                          ON r^i co
                                          to o T
                                                      m co CN
                                                      ON rO CO
                                                o m rsj
                                                ^D O ON
                                                o o o
                                                o o o
                                                o o o
                                                o o o
                                                o o o
                                                o o o
                                                o o o
                                                o o o
                                                o o o
                                                                        o o o
                                                                        o o o
                                                                        o o o
                                                                                                o o o
                                                                                                o o o
                                                                                                o o o
                                     o o o    o o o
                                     o o o   "o o o
                                     o o o    o o o
CO    CO CO CO    CO CO CO    CO CO CO    CO CO CO    CO CO CO    CO CO CO    CO CO CO    CO CO CO    CO 00 CO    CO CO CO    CO CO CO     CO CO CO    CO CO CO    CO CO CO
CTi    ON ON ON    O*i ON ON    ON ON ON    ON ON ON    ON ON ON    ON ON ON    ON ON ON    ON ON ON    ON ON ON    ON ON ON    ON ON ON     ON ON ON    ON ON ON    ON ON ON

CM    CsJCsjrsi    CNICNCN    (NfNICN    CMCMCM    CMCMCM    CNJCMOJ    CNCMCNJ    CSIfMCN    OgojCN    fNCSJCM    CslfMCM     CMCgCN     V
                                                                  in m i
                                                rH O O
                                                <*£> \O VD
                                                m m m
                                                                        (M r-H ON
                                                                        in to ^r
                                                                        in m tn
                                                                                     m CM o
                                                                                     «^  ON ON
O ^* CO
csj CN CN
GO CO CO
vp vp vp
000
1 1 1
WWW
P- O U>
VP'CN ro
CN rH GO
ON CTN CO
O O O
1 1 1
r*i c*-i ro
in ^5* P*
ON ^r T
rH rH O
ro ro ro
ro ro ro
o o o
WWW
m in m
CM GO O
ro ro tn
CO CO CO
vo vp vp
O O O
1 1 1

ON VP CO
ON ro O
vp «^. ro
CO CO 00
o o o
1 1 1
w ta w
O\ ON tO
ON O VP
ON ON CO

o o o
WWW
LO tO lO
*V VP CM
VP f- CO
ON ON ON
vo vo vp
O O O
1 1 1
WWW
CO CO rH
P* ON "^
CN rH O
III
O 0 O
1 1 1
WWW
iO P- ro
VP ro co
rH rH O
CN CN CM
rO T <3-
O O 0
WWW
lO 0 CN

-------
co r* r-    r- r- v^
CT* CIN ON    ON ON ON
LT> LO LO    IT) LO LO
                                    ON ON ON
                                    to LO LO
                                     m CM CM
                                     ON ON ON
                                     LO LO LO
                                                             rH O ON
                                                             ON ON GO
                                                 oo r^ co
                                                 CO CO CO
                                    r^- \a LO
                                    CO CO GO
                                    m 10 in
                                    ^ CM CM
                                    CO CO CO
                                    in LO to
                        O ON [—
                        co r- r-
                        LO LO LO
                                                                                                                          LOLOLO    LO m LO
CM P- ON    m LO o
ooo    I-H rH CM
in LO u">    LO LO LO
                        CM \£> CO
                        CM CM CM
                        LO LO LO
                        PO LO ON
                        m ro ro
                        LO to LO
                                     CM ^* ON

                                     LO LO LO
                                     LO iO LO
                                    CM *r co
                                    r- r- r-
                                    LO LO LO
                                    O ^ VD
                                    CO CO CO
                                    LO LO LO
                        rH ro r-
                        ON ON ON
                        LO LO LO
                                                 oo n LO
                                                 rH CM CM
                                                 ^O US ^
                                                 CT» f-H LO
                                                 CM co ro
                                                                         ON CO CO   CM *•£> LO    O ON
CO ON ON
r- r~ r-
            O rH CM
            OO CO CO
            CM m ro
            GO CO CO
            ^* LO WD
            CO CO CO
vo r- co
CO CO CO
ON ON O
CO CO ON
                                                                                                                            • o o
                                                                                                                          ON O O
                                                                                                                                      rH CM rO
                                                                                                                                      o o o
                                                                                                                                      co «r *r
                                                                                                                                      o o o
o o o    ooo
o o o    o o o
o o o    o o o
                        o o o
                        ooo
                        o o o
                        o o o
                        o o o
                        o o o
                        o o o
                        o o o
                        o o o
            o o o
            o o o
            o o o
            o o o
            o o o
            o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
000
o o o
o o o
                                                                                                              o o o    o o
                                                                                                              o o o    o o
                                                                                                              o o o    o o
CO CO CO    CO CO OO
ON CT> ON    ON ON O".
CM CM CM    CM CM CM
                        OO CO CO
                        ON ON ON
                        CM CM CM
                        CO CO CO
                        ON ON ON
                        CM CM CM
                        OO OO CO
                        ON ON ON
                        CM CM CM
            OO CO OO
            ON ON ON
            CM CM CM
            CO CO CO
            ON ON ON
            CM CM CM
CO CO CO
ON ON CH
CM CM CM
OO OO CO
ON ON ON
CM CM CM
00 CO CO
ON ON ON
CM CM CM
CO CO CO
ON ON ON
CM CM CM
CO CO CO
ON ON ON
CM CM CM
CO CO CO
ON ON ON
CM CM CM
                                                                                                              ON ON ON    ON ON
                                                                                                              CM CM CM    CM CM
o co r~
ro CM CM
LO l-O LO
            CM CM CM
            LO LO LO
                        LO LO LO    LO LO LO
                                     o r- vi>
                                     rH O O
                                     LO LO LO
                                     • \£)
000
1 1 1
W Ed Cd
LO p* in
^ i — i ^r
ON oo r^-
m LO LO
^o ^o  LO «X
m m m
yp ^D \&
ooo
i i i
Cd Cd Cd

^T rH LO
ro CM «-t
LO LO LO
\& VD VO
ooo
1 1 1
Ed Cd Cd
CO O CO
CO CO VO
O ON CO
LO ^ T
\& VO ^D
ooo
1 1 1
' Cd Ed Cd
ro P- in
rH O LO
CO P- ^O
«T *T *T
^O VO ^
ooo
1 1 1
Cd Cd Cd

LO O O
in in ^*
*3- «T *r
\D 
ooo
1 1 1
pd Cd Cd
LO CM OO
v> CM ro
rH »H O
«r ^r ^r
VT> ^D U3
OOO
I 1 >
Cd Cd [d

ON rH r-

ro ro ro
^O ^O \O
ooo
1 1 1
Cd Cd Cd
rH rO 0
O ^O ON
co r** vo
ro ro ro
M? ^O \£
OOO
1 1 1
Cd Cd Cd

LO CO LO
VP LO t-O
co ro ro
M? M? V?
ooo
1 1 1
Cd Cd Cd
CO O \&
co m co
^" "C" C*1
co ro ro
\Q V^ VO
OOO
1 1 1

in  CO
co r- r-
O 0 0
1 1 1
WWW
r— r- co
rO rH I—
ooo
1 1 1
WWW
o ro to
10 CM O
ooo
1 1 1
Cd W W
o ro O
r- in 
ooo
1 1 1
Cd W W
VX> rH CNJ
ro CXJ o\
^" *T ro
ooo
1 1 1
W Cd Cd
CO 0 p-
r- m ro
ro ro rO
OOO
1 1 1
W W W
O CO (N
rH Cn I—
ro CM r\l
ooo
1 1 1
ta w cd
O ^O ^"
*0 ro (N
INI (N CM
VD VO ^£>
OOO
1 1 1
W Cd W
rH O CO
O OS VP
 r*-
rH O O
0 0
1 1
w w
^o r*~
O 0
O O O
            000    OOO
ooo,

W cd cd
vo oo ^~
CM ro ^r
                                                             ooo

                                                             Cd  Cd  Cd
                                                                                      O O O    OOO
                                                                                                              OOO    OOO
                                                                                                                                      OOO
                                                                                                                                                   OOO
                                                                                                                                                               OOO
W Cd Ed
CO O kQ
r-t ro ro
000
CO «T U)
^T LO \J3
OOO
u w ta
CM T O
r- co ON
OOO
                                     W E4 Ed
                                     CM co o
                                     O O CM
                         W Ed Cd
                         O CM CO
                         CO CTN ON
                                                                         Cd
                                                                         O V
                                          i CM
                                           CM
                                     W CL) W
                                     T VD CM
                         Cd cd td
                         ^ O CM
                         «*o r- co
                         (N CM CM
                         Cd td Cd
                         CO O Vi>
                         CO O O
                         CM ro ro
                         Cd Cd Cd
                         CO T V£>
                         rH CM ro
                         ro ro ro
            Cd  C
            CM
            T  I
            co  ro co
                               Cd
                             * O
             Cd Cd Cd
             CM CO O
             r^ r- ON
             co ro co
                                                                                                                                                                           ON O
                                                                                                                                                                           ro ^r
                                                                                      C-9

-------
                   LO 10
                                        ON i—i
                                        o o
                                     P* ON lO
                                     ON CO CO
                                     ro ro ro
                                          LO O P*
                                     i-tcao
                                                                               -ercsiON
                                                                               OOON
                                                                                     p- 

                                                                                                                                                              ro en m
                                                                                                                                                                    ro ro rO

                                                                                                                                                                    p- r- r~
o
 I
pa
^D U) US
O O O
1 1 1
w w w
o> ro fO
in ro CO
O> ^ 00
CM  o 01
in en o
CO VO U7
V£ U> U>
o o o
1 1 1
w w w
O CO ro
*T rH P-
r- r- u>
CM CNJ CM
0 0 O
1 1 1
w w w
en r-t r-
*r r— ,-1
T ro CM
^ u> ^
o o o
1 1 1
w u w
rH co r-
m o co
\D vo in
CM CM CM
o o o
1 1 1
u w w
CM T t-l
^* en CM
r-i en cr\
vo VO v^>
0 O O
1 1 1
M W W
VO VD V0
«T CM CO
m in «r
CM CM CM
O 0 0
1 1 1
W U til
00 CO r-l
r- o r^
r- c- in
VD VO U>
O O O
1 1 1
WWW
vo co a>
V£> CM O
^* «r ^*
CM CM CM
000
1 1 1
u w w
fO rH VD
o r- o
m co co
U> VO VD
0 O O
I 1 I
u w u
CM *r co
r- in I-H
ro co co
CM CM CM
O 0 0
1 1 1
til W W
CO in CM
r- rH en
r-t ,-H CTl
VI> V£> u?
o o o
1 1 1
u w w
o VD cr»
o vx> *r
ro CM CM
CM CM CM
O O O
1 1 1
W W U
rH CM CO
ro t-* in
en co r-
y> vi> u>
o o o
1 I I
W W 03
in en r^
rH CTl V£
CM CM CM
O 0 O
1 1 1
W W CQ
CO rH O
co co r-
vo in T
M> M> vr>
o o o
I I I
MUM
rH O T
m CM o
CM CM 0)
0 0 O
1 1 1
W W W
in co m
rH CD in
^ CO CM
U> UJ ViJ
O O 0
1 1 1
w w u
«T en o
r* in co
0 0 O
rsi CM CM
o o o
I I I
W W W
rH O ON
in o cr\
rH rH  U3 **D
O O O
1 1 1
W W Id
M> r- ro
rH CO P-
o en ON

0 0 O
1 1 1
w w w
os CM «r
TT m o
en co co
vo u> vo
o o o
1 1 1
W W U
U> CM U>
«T CO O
en en en

o o o
1 I 1
W M w
0 ro CM
rH VC C-
r- \0 in
& u> \s?
o o'o
1 1 I
MUM
co r~ in
en vo in
CO CO CO

o o o
1 1 1
w w w
r- co «i;
CM CO OS
in T ro
                                           ON CO CO
                                                                                                       r~ r- t—    r- r- r-
      O O O    O O O
W W I
UJ CM '
CM m •
                  w  w  w
                  O  CM  CO
 WWW
 O *•£>  CO
 CO CO  ON
o o o



*T VD CM
O rH CM
                                                                   O O O
                                                                               o o o
                                                                                           O O O    O O O
                                                       ^ O CM
                                                       rO ^ LO
                                     M U pq
                                     CO O VD
                                     to p- r-
W Cd U

CO ON O
10 to v^
                                     W U 03
                                     CM T O
                                     rH CM Cn
                                     W W Ci]
                                     CM 03 O
o o o

w to w
^ co *r
VO p1" CO
o o o
 +  +  +
W tO M
^O CM T
ON O rH
O O O
+ +  +
Cd W Cd
O CM OO
CM co m
r— p* P*
o o o
+ +  +
f'l M r*i
O ^ CO
LO LO VD
r- p- P*
o o o
+ + +
w to cd
 CM
r- co ON
                                                                                      C-10

-------

^ CM CM
r^ r^ ^

O CM \£>
CO 00 CO
r- r- r-
y> u> r-
ro ro ro
o o o
000
000

CO CO CO
cn cn cn
CM CM CM
ro rH r-
^r ^T ro
ro ro ro
ro f") ro
^ s^ ^
o o o
1 1 1
U CJ tO
ca r- m
CO rH O\
co co r^
•H T-i,rH
O 0 O
1 t 1
w u tu
co u> m
o ^ co
n CN t-H
\o <& \&
CD O O
WWW
<3- O CM
O iH CM
CO CO CO


r- co CM
m -sr «y

co CM ^r
co cr* a\
r- r- r-
co co en
ro ro m
o o o
000
000

CO CO CO
o> cr» cr\
CM CM CM
IT) CM O
m m m
rn n m
rn m m
VO ^ \£>
o o o
I i I
CJ U EJ
T-H CO ^>
CO LO T

O O O
1 1 !
WWW
CM iM t-t
*r y) CM
i-H O O
 ^ «J5
o o o
WWW
CO O ^>
CM <=T T
CO CO CO


eg \P m
m CM r-t

CO O IT)
*N O 0
r- co co
O O rM
o o o
000
0 O 0

CO CO 00
ON CH Cft
CM  <• V£i
o o o
I 1 1
WWW
*T CM O
CM i— i cr\

o o o
I 1 1
WWW
m ^ co
*r o CM
CTt O> CO
LT) IT> LO
o o o
WWW
CO «T VD
m vo r-
CO CO CO


eft r- o
o  CT\
CM CM OJ
cr^ r- ^r
000
ro rn ro
m m ro
\Q \Q \O
o o o
1 1 1
WWW
r- vo ^c
(M rH  LO m
LO LO LO
0 O 0
WWW
CM CO O
I-H iH ro
CT> CTt CT>

*
r- rH CM
^r ro CM

LO CT» rH
CM CM CO
CO CO CO
LO U? V£>
O O O
o o o
o o o

CO CO CO
ON c^ Ch
CM CM CM
CM co ^o
o en o\
ro CM (M
ro ro ro
p* r* r^
U3 U) UJ
O 0 O
I 1 1
WWW
U3 r- r-
CO \Q LO
LO LO LO

o o o
! 1 1
WWW
cr» CM co
vo o ^)
* co -^r
ro <^ m
O\ CT\ CT\


m CM cn
O CT\ \D

IO CO CM
m ro "T
CO CO CO
r- r— co
*
o o o
o o o
o o o

CO CO CO
ON Cn CT\
CM CM CM
CM O *-O
cn en co
CM CM CM
*
co ro ro
r* r~ P*
vo vo ^o
O 0 O
-I t 1
WWW
CO CO O
CO CM rH
LO LO UO

O 0 O
i i 1
WWW
CM O ^>
o r* o
ro CM CM
LO CD to
o o o
WWW
^O CM *T
^o r- co
CTV en cr\


U> U> CO
tO CM O

^ CO O
^r «r LO
CO CO CO
co en o
0 0 O
o o o
0 O O

CO CO CO
(M CM CM
T O CO
co co r-
CM CM CM
ro ro ro
p- r- r-
u> vo vo
o o o
1 1 1
WWW
rH ro ^r
o co r-

o o o
1 I 1
WWW
^r CM I-H
r- rH co
rH rH O
LO LO LO
O O 0
WWW
0 CM CO
cn o o
er> o o
rH CM CM

LO

*r vo o
LO LO VO
CO CO CO
O rH CM
LO LO LO
O O 0
0 O 0
O O 0

CO CO CO
en cn cn
CM CM CM
T CM CO
r- r- ^o
CM CM CM
ro ro ro
^ VD \O
O O 0
t 1 1
WWW
U3 CO 0
LO *T ro

O O O
1 1 1
WWW
rH rH CM
CM cn ro
O cn cn
LO «r *r
O 0 0
WWW
O U> CO
CM CM <*)
o o o
CM CM CM



^*
u>
CO
CM
m
I— (
o
o
o

CO
cn
CM
•sr
^O
CM
ro
r-
t—
rH
\£>
0
1
W
T
rH
^T
rH
O
1
W
^"
r-
CO
»^
o
W
o
LO
o
CM




c
o
u
01
o.
01
.— i
o
tn
OOOOOE-
m
IU
O
iJ
Du
J
01
X
13
C
ffl
-U
C
0
u
01
a
01
^H
0
^"
0
1
o
o
o
o
IT)
O
J
3
01
.c
4J
M
O
b






ti
X
vo

0)
gj a>
3 >
4J O
01 XI
W 4J
C C
3ntamiru
sntamin.:
o o
lw 14-1

n n
m n)
E E
01 OJ
£ x;
Ei E-
C-ll

-------

-------
                       DEGADIS Example 2:   Input  File
 Ammonia pipeline  release (aerosol)
 4.5  10.
 0,01
 140
*298. .98
 298.
 NH3
 17.0
 3600.
 239.72
 0.001
     50.
  0.0001  0.0
 0  0.0  0.0
 2
 0.0
 1.0
 56.
 0.0
 0.0
 50.
0.0  1.154
4.782  4.782

0.478
UO, ZO
ZR
INDVEL, ISTAB, RML
TAMB, PAMB, RELHUM
TSURF
GASNAM
GASMW
AVTIME -  (1 hr)
TEMJET
GASULC, GASLLC,  ZLL
INDHT,  CPK, CPP
NDEN
ERATE
ELEJET, DIAJET
TEND
DISTMX
                                C-13

-------
                                                                        Output  File
 u
 a
>

U)
rH
Q

o
w
Q
cu
EI
W
•
                                 E E e
                                      (M
                                      o
                                 O O O
                                 o o o
                                 o o o
                                 m  . o
                                  • 00
 to    E

 E*io    *

        (N
        O
         I

P~ O O ON O
^ o o o o
I—  • O O O
OJ co oo rn  •
CN cr. ^ o o
  . CM  •  . in
        CM    (N
        O    O
         I     I
        U    U
O rH O O f^ O
 . \o o o m o
o *r o «er r- o
O Cft O m .-I ^D
^O t—I O"\ rH   • rH
                                                                       o o
                                                                        I   I
                                                                       W U
                                                                  O CM O O  • O
                                                                  o r- o o o o
                                                                  o  • o o o o
                                                                   • a\ o o m o
                                                                  r— m o o m  •
                                                                  rH CN  .  • C*1 rH
                                                                       rH rH  I
      I
      z
       W
xi x: to
o^ tr* u
-H -H C
1) OJ XI
XI XI Oi
3
m 11 o
O O -H
c c
11 gj 11

01 1) iO
cu cy w
Li 05 3
U)


n
to
IB
rH
U


JJ
-H
rH
-H
A
10
JJ
M

rH
rH

3

JJ
O*
C
1)


>
O
x:
.x

-Q
0
1
C
•H
C
o
S
>i 01 Cil >i >r
jj r-l Ul JJ JJ
-H 3 3 -H -H
O JJ M TJ "O
O 10 tO -H -H
rH M U E E
OJ 11 •-! 3 3
> aaxix;

C D jj jj 01
O JJ C C >
-H U OJ *H
Jj JJ -H -H JJ
O C J3 _Q iO
-rH 0) E ErH
U -H < < 1)
cu -Q a



E«
•H EH H
JJ iJ Id
Cd CQ
Cp O
C
•H
01
IB

U
^
•0
T5
01
•H
1-1
— 1
N N N
< ft <
EH H £
J W .E
CO CQ rfj
O (JJ












                                                                                                   jj  D
                                                                                                   x:  n
                                                                                                   cr 3
XI
•o
 u

 &
 to
T)
 C
                                            IB
                                            a,
                                            u
                                            u
                                            Q.
                                            O]
                       01
                       a
                       o
                       IH
                      Cu
                       C
                       10
                       c
                      -H

                       IB
                      JJ
                       C
                       O
                      u
                                               v

                                            IB E1
                                            rH 11
                                            3 JJ
                                            o
                                            OJ rH
                                            -H IB
                                            O -H
                                            E JJ
                                               •H
                                            JJ C
                                            C M
                                            IB
                                            c
                                            -H

                                            IB
                                            Jj
                                            c
                                            O
                                            U
 to to c  01
 OJ OJ IB  3
 VJ rH JJ  O
 u oj in  o,
JJ JJ C
 C C O  >i
-H -H O  JJ
         -H

 O O JJ  iB
      •H  O,
rH rH O  IB
 U U IB  O
 > > a
 01 U IB  JJ
-H rH U  10

 .H M JJ  I
 01 01 IB
 O. 3 U
 a o x
                                                  jj n
                                                  -H  6
                                                  w -~r- o
                                                  C  trx"! rsi
                                                  D M m co
                                                  Q —rH P-
                                                                                                                         c
                                                                                                                         o
                                                                                                                         -H
                                                                                                                         JJ  -^
                                                                                                                         IB  n
                                                                                                                         n  E o o
                                                                                                                         C  tyo
                                                                                                                         U  .* O
                                                                                                                         o  — o
                                                                                                                         C      •
                                                                                                                         o
                                                                                                                         CJ
                                                                                                                      CM C
                                                                                                                         o
                                                                                                                       •• u
                                                                                                                       tri 10
                                                                                                                       IB .-I
                                                                                        0)
                                                                                     2 -H
                                                                                     w o
                                                                                     o s
                                                                                     z
                                                                                              o o
                                                                                              o o
                                                                                              o o
                                                                                              o o
                                                                                              o   •
                                                                                                            tn
                                                                                                            ia
                                                                        u
                                                                        a
                                                                        o
                                                                                                                         * e s

                                                                                                                            CM
                                                                                                                            O
                                                                                                                            I
                                                                                                                            U
                                                                                                                         000
                                                                                                                         o o o
                                                                                                                         O O CO
                                                                                                                    1)  C  >H-
                                                                                                                    JJ  O  U
                                                                                                                    IB -H JJ
                                                                                                                    -H JJ  11
                                                                                                                       m  E
                                                                                                                    1)  >  10
                                                                                                                    01  Q) -H
                                                                                                                    10 rH TJ
                                                                                                                    11  ID
                                                                                                                    rH     D
                                                                                                                    D  D  tp
                                                                                                                    os  tr -J
                                                                                                                       U  iO
                                                                                                                       IB XI
                                                                                                                      x:  o
                                                                                                                       o  w
                                                                                                                       tO -H
                                                                                                                      •H Q
                                                                                                                      Q
                                                                                 C-14

-------
1)
-o
o



















•






































E

CSJ
o
1
M
0 O 0
o o o
o o o
o r- .
CO ro o
IN



» •• ••
rH  M E
41 O rH —
rH 4H O
U &

e c
3 0
E 41 -H
-H rH 4J
X O O
fd £ TJ
[u
rH
0
<*> w~
E "~H O £
0 0 ~~
E •
rH
O
4J
0 CM
o x: o
0 4J 1
. -o w —
3 o —
II
rH
N

4J C
< O
4) -H
rH 4-)
0 0
S 10
[14

N

10
E —
01 .§
C/l


>1
fl
§> 1
-H "-*
(/)
41
3
1 1
10
41 id
a —
E
41
EH

>,
1 i ^^
-H ro
« E
C -v.
0 C .*
0 —
1) -rl
- 4-1
*H 10
rH ^4 — ~
M 4-1 1*1
4" C E
4-1 41 \
C U CT
41 C -X
U 0 —

c
o
41 -H
i — 1 4-1
O O
X 10
[U

c
0
•H
4-1 — *
10 E
> "^
0)
1 — 1
ft")


TU  en en
CM CM CM






CO VD O
r- CM CM


CM
o
I
u
CO rH CM
r- T m

VD
CM
0
1
Ci4
O in rH
o r^- ro
. ^H VD
CO





o ro r-
p*- • «
• m CM
ro CM CM


r-
o
i
U
o • •
rH VO CM
• CM in
CM



VD u"> en
• * ro
CO *T •
rH rH m

CM CM CM
O 0 O
1 1 1
M ftl F*1
O ro CA
O ^P ^"
VD CO O
^T CM CM

rH ro
CO CO
CM ro






en ro
W CO
CM ro


ro CM
0 0
1 l

o ro r-
o CM CM
o VD o
r- CM




r- CM o
VD CM rH
m r- en




r- <3\ co
o ro r-
rH i— 1 rH




CO CO CO
cn en o\
CM CM fM






co r** **o


CM CM CM
o o o
i l l
WWW
ro VD tn
VD CO VD
CM cn ro

CM CM CM
0 Q O
1 1 1
PL] W W
o m o
o *r r-
VD CO CA
 *
*
*
1 *
1

CO
CM
—i >


X, CO
H
CO

D rH
en
rH
2
^ *5
^
rH
D ro
E *
*
*
*
yj *
*
H *
*
U *
*
•X
J *
*
jj *

=*

1

<
D
^
















































































m co
rH CM
• •
in in
•• ••
CO CO
rH rH
»* >•
CO CO


rH rH
cn cn
r i
2 Z
< <

1 1
rH rH
ro ro











c :*:
0 U
o
C rJ
3 cq

u
E 1 1
C 10 EH
O U H
CT EH
4J O

a a
c
•H 01
10 U
4J 3
iO O
O (/)










































































^.
o
u
o
L4
01
10


01
B
41

01


01
c
-H
rH
0)
p,
•H
a

10
•H
r-
O

|2
rf;
 E E E



O O (N    4)
LO O O    4~>



   rH O    'H
      O QMJ
      O    C
                                                                                                                                                 Q
                                                                                                                                                 CO
                                                                                                                             OrHOC-r^OOCMO
                                                                                                                             O  •   •
                                                                                                                                                          C/5 ^ rH ^T
                                                                                                                                4J 4J Q.
                                                                                                                                rH Q) f-H
                                                                                                                                                          [14
                                                                                                                                                          O
                                              M * O OJ
                                              H E o co
                                                 S^O I—
                                                 CP  •   .
                                              t* Jt    -=T
                                              •z.
                                              u
                                              u
                                              •z.
                                              o
                                              u
elocity at reference height
nee height
e roughness length
11 Stability class
Obukhov length
an distribution constants
Specified averag
> O O «H | -- 4
H iO 3 C «
-O 0) MH CT-H B
C IH u w c 3
•r4 41 3 10 O fl
3 OS U5 04 £ U
elocity power law constant
on velocity
t Temperature
t Pressure
t Absolute Humidity
t Relative Humidity
> -H C C C C
4J 4) 0) 4) 4)
13 O -H -H -H -H
.st-i-ii-i
3 [u < < < <
Mole fraction
.'ooooo
1..00000

aJ
a
a
M
                                                                              C-15

-------
                                                                                                                                                                o m
                                                                                                                                                                o r-
                                                                                                                                                                in ro
                                                          a
                                                         ^H    CPO O O  O
                                                          fl    J< O O O  O
                                                         £    ~^O O O  O

                                                          c       o o o  o
                                                                                                                         X
                                                                                                                          o
                                                                                                                                   T ^* -q*    «r *r *r
                                                                                                                                   m m m    m m m
                                                                                                                                   r- P* r-    r- r- r-
                                                                                                                                                              I   I   I  I
                                                          18  4.J .* &] &3 W W
                                                          C  O^r- r-p- t-~
                                                         •H  18 £ VO VO VO VO
                                                          E  ^ It rH rH rH rH
                                                          10  fci 4J CN CN CN CN
                                                         4J     C O O O O
                                                          C  "1 O
                                                          O
                                                         U
                                                                                                                                                                 i  E

                                                                                                                                                                 I  1-1
                                                                                                                                                                 I  04
                                                                                                                         CM

                                                                                                                         J
                                                                                                                                   CN CK rH
                                                                                                                                   CN T T
                                                                                                                                   VO CO 00
                                                                                                                             O V «)•
                                                                                                                             o r- CN
                                                                                                                               • in ro
                                                                                                                               > a\ oo
                                                                             C  C
                                                                             0)  0>


                                                                          oo >>
                                                                          CN -H -H
             01
             a,
             E  <
             o  :
          (1)
id
u
73
 0)
 o
 OJ
 a
en
             a) o
             in  u ^H o
      •H  Cl) CD
       cu  a.
  3  3
  o  o
 4J 4J
  C  C
  o  o
, o  0  ••
        n
     C £.
     O 4J
    •H  01
    4J --H
     o  a
     ifl  O
                                                   o
                                                   o
                                                   o
                                                   o
                                                   o
                                                   73
                                                   D
                                                   O
                                                   rH
                                                   O

                                                   c
            .
       3  E
      rH  0) >, (U
       3  « jj tr
       u  
      E os a <
                    Cl)  d)  M
                   rH rH  O
                    O  O  >«
                    E  E
                    tu  cu
                    a. s  -
                    a o
                                             o
                                             a
                                             10
                                             73
                                             3
                                             a
                                             c
                                             01
                                             o
                                             1-1
                                             3
                                             O
                                             t/5
             I/I

              01
             73
              C
              O
              o
              01
             01
                                                                                                                                   o o o
                                                                                                                                    i   i   i
                                                                                                                                   &] DO [i]
                                                                                                                                   v^ ro m
                                                                                                                                   co o r-
                                                                                                                                                ro ro ro
                                                                                                                                                o o o
                                                                                                                                                 I   I   I
                                                                                                                                                fv) (v) r*i
                                                                                                                                                00 rH CO
                                                                                                                          «  e
                                                                                                                                   CM o «
                                                                                                                                         a\
                                                                                                                                               CO  T
                                                                                                                                                    t CM
                                                                                                                                          ro          O
                                                                                                                                          O           I
                                                                                                                                            I           Ed
                                                                                                                                          WOO    00
                                                                                                                                          ro O O    1—
                                                                                                                                          i~i CD  •    CN
                                                                                                                                          Co  • ro    O
                                                                                                                                          in ic rH    in
                                                                                                                                          VO in rH
                                                                                                                          cr
                                                                                                                         ••H  1
                                                                                                                          a)
                                                                                                                 o
                                                                                                                  i


                                                                                                                 o r- o
                                                                                                                 O ON CT\
                                                             CN O «T
                                                             rH CO in
                                                             rH in ro
                                                                                                                                                                   —     g
                                                              > T ro

                                                              > 10 in
                                                                          CO
                                                                          CN
                                                                                                                                                                    en
                                                                                                                                                                    c
                                                                                                                                                                    01
                   o
                    I
                   u
                   rH
                   CO
                                                          E

                                                         EH
                                                 o   •   •  •
                                              n O O rH CN
                                                 o ro ro ro
                                                 O CN CN CN
                                                 O O O O
       C E E O  0) iw
 C 4J  J JJ 4-1  01
                                                                                   oooooooo
3
•rH
73

OS £

u
m









e o
•H 01
EH in






o r- co
o o a>
o vo o
m CN r-
. • •
VO 0^ rH
in in r-







O vo ro
O CO 00
o o <-t
O rH T
O T •
O • OO
> CO CN




VO CN «T
ro oo in
VO 00 p*
CN • •
• O «T
CN 0 rH
CO rH rH







CN rH O
r- CN r-
O\ Cri CO
O CN ^~
...
ro o\ in




• • O
rH Ij
^* r— •, 3
CN ui o
. -^ m
1
rH — M

X E
4J ~H
CP M
C O-i
0)

ro 4-> C
^r « 0)

• 01 10
rH 0 >
CN U -H
rH 3 3
o cr
CO W
0
4J
c
01
o
c
o
o

01
o

3
O
CO

>,


-------






LO
LO
CM
CO
cn

u
-H
fO
ro
1
LO O
rH VO
CM r-H
cn •
CM r-H
ro
intaminant :
Density:
ictions. . . cc
00000

LH
W
m ••
TJ >
E O.
^H
CD rtJ
u x:

O W
tfl
>,
k-l
m
c
o
u




"F
J3
jj
>H
3
M-l
*B
x;
CD
u
^i
0
jcondary s
t/>
00
^r
CO
CM
CM
IF

JC
OJ
CT
C
CD
i—i
,
M
IB
C
O
U
01
(ft
0
•• £
o
4J
£
0 —
O i-H w
dp
II -> U
•H O
S o
I— 1
tn —
N "5

£
<4-l OJ _
r-,-0 E
X S
-ature
0
CD —
a
a
E-<
>* m
XJ *
-H *
in £
c \
:entration De
;g/m**3) (kc

Mole Co
-action


u
c — .
.u •*-
w
-H
Q

cn CM in

• • rH
cn *r o

o P- co
o • •
CO CM rH

en cn cn
p- in CM
ON vo ro

CO CO CO
cn CT\ cn
CM CM CM
VO VD VO
ro ro ro
O 0 0
1 1 1
WWW
ro LO co
O Cn VO
\j~t *y *T

CM CN) CM
O O O
I 1 i
WWW
LT> ro O
ro m ro
CM CM CM


r-t rH ro
m ro m
ro ro ro


CN rH VO
I-H ro ^*

co r~ o
CM m co

m eg «3"
r- cn I-H

ON ON ON
rH rH VO
CM LO rH

CO CO CO
cn o\ eft
CM CM CM
VD VO VO
ro ro ro
O o O
1 1 1
WWW
TOO
CM VD O
CM r- ro

CM CM CM
0 O O
1 1 1
WWW
^T CO rH
Cn CM VO
rH rH O


LO LO LO
LO cn ro
ro ro ^r


ON O rH
m r- co

o co to
O tH ro

m to *r
rH VP VO

ON CTN Cft
moo
ON CO P~

CO CO CO
eft en cn
CM CM CM
VD VO VD
no ro ro
O O O
1 1 1
WWW
^* in i— i
«3- rH O
CO T O

ro co ro
o o o
) I 1
WWW
r*- cn rH
tn ro T
cn co r~


in in LO
r- »-H in
v in to


O ON r~
CT\ en o

o m CP>
in ^ r-

• rH CO
eg o o
O CO CO

CM m o
^o in in

CO CO CO
Cf\ CT\ Cf%
CM CM CM
U) U> VD
ro f*> ro
0 0 O
1 1 1
WWW
O «T CM
i-H  CH
CM CM CM
VD VD VD
ro ro ro
O O O
1 1 1
WWW
r- LO co
CM 
0 P- rH
co ro *T
co CM r-
O O> CO

CO CO CO
en ON ON
CM CM CM
vo VD VD
co ro ro
O O O
1 1 I
WWW
T O CO
CM LO CM
vo ro CM

co ro ro
O 0 O
i 1 1
WWW
CO CO O
ro ro vo
CO ^* CSJ

rn ro n
o o o
+ -r +
WWW
p* in cr^
O rH  ro ro
000
1 1 1
WWW
O CO tH
T to CM
rH O O

ro ro ro
0 O 0
i I )
WWW
O rH VO
p- in cn
VD uo ^r

ro ro ro
O O O
4- -r +
W W CJ
ON [^ rH
r- co cn


CO
O

LO
CM

ro
O
CM
CM
o
ro

CO
cn
CM
LO
rH
T
O
1
W
o
CM
LO

CO
o
1
W
LO
cn
ro

ro
O
H-
w
cn
cn
rH
C-I7

-------
                     o m
                     i—I P-
ON r-    <—< r- r-4
CM en    *T  U"> tO
ON O O
lO VO VO
eo «r 
0 O O
1 1 1
u w ta
co ro ^
ON \D O
n o ON
*D U> LO
o o o
1 I 1
cJ u ta
LO 0 rH
in rH r-
r— U) -sr
u*j m tn
o o o
1 l l
W W W
r- co m
rn o co
ro CM o
LO LO tO
o o o
1 I t
Cd W U
VD rH O
VD m ^r
ON co r-
sr ^r *r
o o o
1 1 1
U U3 U
T rH CM
cn m co
VD m ^*
^T ^ ^
o o o
1 1 I
w u w
VD m LO
(^1 ^* LO
m CM rH
T V  T
VD ON m
ON r- VD
en ro ro
o o o
l 1 1
W U U
o VD CM

-------
rH ro O
CM ro T
o LO *r
iO ^r ro
LO LO LO
CM CO rH
LO ID r-
                        CO V£> Cn    LO CO rH

                        CM rH O    Cn CO P-

                        LO LO LO    T «5T *T
                         r—t cn ro    os co o
                         rH Cn r-    LO CM rH
                         ^* ro ro    ro n ro
                        r-  o v
                        p-  CA
co LO r
O rS C
«T LO P*    CO O rH
ooo    o o o
000    OOO
ooo    ooo
CO CO CO    CO CO CO


CM CM C\    CM CM CM
ooo    ooo
ooo    ooo
ooo    ooo
             CO CO CO
             ^ CTt CTV
             

                                                                          CO CO CO
                                     O 0 O
                                     0 0 O
                                     o o o
                                     CO CO CO     CO 00 CO
                                                 CM CM CM    CM CM CM
ooo    ooo
ooo    ooo
ooo    ooo
                                                 cn cn cn    cn cn cn
                                                 CM CM CM    CM CM CM
                                                  LOLOLO    LOLOlO    LO LO lO    LOlOLO
CD O O
1 1 1
WWW
CO r*t ro
CO O ^D
m ID *r

ooo
1 1 1
WWW
r- csi LO
CO LO CO
ro ro CM

ooo
1 1 1
WWW
m n LO
LO ^ VD
fNJ rH l— t

000
1 1 1
WWW

t — i CO ro
rH 0 0

OOO
1 < 1
WWW
«T CO O
rH O O
0 P* LO

iO LO LO
ooo
1 1 1
WWW
LO *«O P"-
O rH LO
rH Cn LO
cn co co
iT> LO ID
ooo
1 1 1
WWW
IO P~ rH
CO 0") O
ro o cn
CO CO P-
LO LO U)
ooo
1 1 1
WWW
rH co ro
O LO CO
^ T rH
p- r- r-
lO LO LO
ooo
1 1 1
WWW
rH CO P-
LO cn ( —
O P*" \O
p- vD VO
ooo
i I 1
WWW
O LO \£>
ro O T
rO CM rH

ro ro ro
OOO
WWW
LO LO lO
LO P- ro
co cn o
-a- *r LO
OOO
1 l t
WWW
iO ro LO
n co co
o cn co

ro f*i ro
OOO
WWW
LO LO LO
LO rH ro
rH CM ro
LO LO LO
ooo
1 ( 1
WWW
co rH cn
ro LO o
CO P- P-

ro ro ro
ooo
WWW
LO LO LO
cn ,— i r-
ro LO 10
LO LO LO
ooo
1 1 !
WWW
o ro CM
ro cn CM
Vi) LO LO

OOO
WWW
LO LO LO
\i) r- oo
LO LO LO
OOO
1 ! 1
WWW
co CNJ cn
^* ^* ro

ooo
WWW
LO LO LO
rO LO rH
01 0 rH
LO U> Vfi
OOO
I 1 1
WWW
ro o LO
ro ro CM

ro ro ro
OOO
WWW
LO LO LO
ro cn r-t
 U>
ooo
l l l
WWW
o CM cn
ro co LO
CM rH t-t

ro ro ro
OOO
WWW
LO ID LO
r- cn LO
U> «X> VC
ooo
1 1 1
WWW
LO *r tf
rH cn LO
rH O O

ro ro ro
OOO
WWW
LT) LO LO
p1- ro LO
r- co cn
^ w &
ooo
l l 1
WWW
LO VD CO
ro P*" cn
O cn p*

ro ro ro
ooo
WWW
LO LO LO
rH ro cn
O rH rH
p- p- r-
                                  c
                                  II
                                  o
                                  14
                                  0)
                                  a
                                                                                                                        o


                                                                                                                        
                                                                                                                  4J  O
                                                                                                                   0) XI
                                                                                                                               c  c
                                                                                                                               >n  >n
                                                                                                                               c  c
                                                                                                                              -H -H
                                                                                                                               E  E
                                                                                                                               >H  "B
                                                                                                                              4J  OJ
                                                                                                                               C  C
                                                                                                                               O  O
                                                                                                                               0  0
                                                                                                                               in  at
                                                                                                                               OS  ffl
                                                                                                                               E  E

                                                                                                                               OJ  HI
                                                                                                                              £. f
                                                                                                                              H H
                                                                             C-19

-------

-------
                            HEGADAS Example 1:   Input File
TITLE HEGADAS-S Workbook Example 6.15
     ICNT  =0        *
    ISURF  =3        *
                                     CONTOURS OR CONTENTS CODE
                                     SURFACE TRANSFER CODE
POOL
*
DATA
   PLL
   PLHW
    =  7.67
    =  3.83
AMBIENT CONDITIONS
  M
  M
SOURCE LENGTH
SOURCE HALF-WIDTH
   ZO
   UO
   AIRTEMP =
   RH
   TGROUND =
DISP
   ROUGH
   MONIN
   CROSSW
CLOUD
*
   XSTEP
   XMAX
   CAMIN
   CU
   CL
*
SOURCE
       10.0
       1.5
       10.0
       0.5
       10.0
       0.01
       10.0
       0.0705
       0.902
       1.0
       100.
       l.OOE-07
       1.15E-06
       1.15E-07
* M
* M/S
* DEC.CELSIUS
*
* DEC.CELSIUS
  M
  M
  M**(1-BETA)
  KG/M3
  KG/M3
  KG/M3
REFERENCE HEIGHT
WIND VELOCITY AT HEIGHT ZO
AIR TEMP. AT GROUND LEVEL
RELATIVE HUMIDITY
EARTH-S SURFACE TEMPERATURE
SURFACE ROUGHNESS PARAMETER
MONIN - OBUKHOV LENGTH
CROSSWIND (DELTA)
          (BETA)
OUTPUT STEP LENGTH
X AT WHICH CALC. IS STOPPED
CA AT WHICH CALC. IS STOPPED
UPPER CONCENTRATION LIMIT
LOWER CONCENTRATION LIMIT
FLUX
TEMPGAS =
CPGAS
MWGAS
WATGAS =
1.34E-03
10.0
150.0
60.1
0.
                           * KG/M2/S
                           * DEC.CELSIUS
                           * J/MOLE/DEG.C
                           * KG/KMOLE
                                     GAS EMISSION FLUX
                                     TEMPERATURE   OF EMITTED GAS
                                     SPECIFIC HEAT OF EMITTED GAS
                                     MOL. WEIGHT OF EMITTED GAS
                                     MOLAR FRACTION PICKED-UP- WATE
                                        C-21

-------
Output File
1HSMAIN
0
DATE 22/10/90
14:36




««
HEGADAS-S PROGRAM (
HEGADAS-S workbook Example
VERSION AUG88
6.15




»»
CALCULATION CODE ICNT - 0
SURFACE HEAT TRANSFER MODEL I SURF - 3
THERMODYNAMIC MODEL THERMOD - NORMAL
SOURCE LENGTH PLL - 7.6700 M
SOURCE HALF-WIDTH PLW - 3.8300 M
WIND VELOCITY AT HEIGHT ZO UO - 1.5000 M/S
REFERENCE HEIGHT ZO • 10.000 M
SURFACE ROUGHNESS PARAMETER ZR - 0.10000E-01 M
AIR TEMP. AT GROUND LEVEL TAP - 10.000 DEC. CELSIUS
MONIN - OBUKHOV LENGTH OBUKL - 10.000 M
DELTA - 0.70500E-01 M*«(1-BETA)
BETA - 0.90200
SPREADING CONSTANT CE - 1.1500
OUTPUT STEP LENGTH DXO - 1.0000
X AT WHICH CALC. IS STOPPED XMAX - 100.00
CA AT WHICH CALC. IS STOPPED CAMIN - 0.10000E-06 KG/M3
UPPER CONCENTRATION LIMIT CU - 0.11500E-05 KG/M3
LOWER CONCENTRATION LIMIT CL - 0.11500E-06 KG/M3
EVAPORATION FLUX Q - 0.13400E-02 KG/M2/S - 0.78728E-01 KG/S
RELATIVE HUMIDITY R - 0.50000
TEMPERATURE OF EMITTED GAS TGE - 10.000 DEC. CELSIUS
SPECIFIC HEAT OF EMITTED GAS CPG - 150.00 J/MOLE/DEG. CELSIUS
MOL. WEIGHT OF EMITTED GAS FMG - 60.100 KG/KMOLE
EARTH-S SURFACE TEMPERATURE TW2P - 10.000 DEC. CELSIUS
MOLAR FRACTION PICKED-UP WATER W2P - O.OOOOOE+00
HEAT GROUP IN HEAT FLUX QH HEATGR - 24.000
WIND PROFILE EXPONENT ALPHA - 0.46507
USTAR - 0.44537E-01 M/S
1HSMAIN HEGADAS-S PROGRAM ( VERSION AUG88 )
1
DATE 22/10/90
14:36
PAGE •
TIME

*
PAGE
TIME
«« HEGADAS-S Workbook Example 6.15 »»
DISTANCE
(M)
-.384E+01
0.384E+01


0
0
CA
(KG/M3)
373E+00
373E+00
TAKE-UP FLUX
0.115E+02
0.192E+02
0.268E+02
0.345E+02
0.422E+02
0.499E+02
0.575E+02
0.652E+02
0.729E+02
0.805E+02
0.882E+02
0.959E+02
0.104E+03
0.111E+03
0.119E+03
0.127E+03
0.134E+03
0.142E+03
0.150E+03
0.157E+03
0.165E+03
0.173E+03
0.180E+03
0.188E+03
0.196E+03
0.203E+03
0.211E+03
0.219E+03
0.226E+03
0.234E+03
0.242E+03
0.249E+03
0.257E+03
0.265E+03
0.272E+03
0.280E+03
0.288E+03
0.295E+03
0.303E+03
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
651E-01
.203E-01
.100E-01
.616E-02
.426E-02
.318E-02
.250E-02
.204E-02
.172E-02
.147E-02
.129E-02
.114E-02
.102E-02
.923E-03
.842E-03
.773E-03
.715E-03
.664E-03
.620E-03
.581E-03
.546E-03
.515E-03
.488E-03
.463E-03
.440E-03
.420E-03
.401E-03
.384E-03
.368E-03
.354E-03
.340E-03
.328E-03
.316E-03
.305E-03
.295E-03
.285E-03
.276E-03
.268E-03
.260E-03
SZ
(M)
0.00
0.18
0
0.19
0.33
0.48
0.62
0.75
0.88
1.00
1.12
1.22
1.32
1.42
1.51
1.60
1.69
1.77
1.85
1.92
1.99
2.06
2.13
2.20
2.26
2.32
2.39
2.44
2.50
2.56
2.61
2.67
2.72
2.77
2.82
2.87
2.92
2.97
3.01
3.06
3.10
3.15
SY
(M)
0.00
0.00
MIDP
(M)
3.83
3.83
0013 KG/M2/S -
3.44
5.69
7.59
9.28
10.81
12.24
13.58
14.85
16.06
17.23
18.35
19.44
20.50
21.52
22.52
23.50
24.46
25.39
26.31
27.21
28.09
28.96
29.82
30.66
31.49
32.31
33.12
33.91
34.70
35.48
36.25
37.01
37.77
38.51
39.25
39.98
40.70
41.42
42.13
17.08
22.85
26.17
28.46
30.17
31.54
32.66
33.61
34.43
35.16
35.80
36.37
36.90
37.37
37.81
38.21
38.58
38.93
39.25
39.56
39.84
40.11
40.36
40.59
40.81
41.03
41.22
41.41
41.59
41.76
41.93
42.08
42.23
42.37
42.50
42.63
42.75
42.86
42.97
YCU
(Ml
3.83
3.83
0.0787 KG/S
28.45
40.66
49.05
55.63
61.16
65.98
70.30
74.23
77.86
81.24
84.43
87.44
90.30
93.04
95.66
98.18
100.61
102.95
105.23
107.43
109.58
111.66
113.69
115.67
117.61
119.50
121.35
123.17
124.94
126.68
128.39
130.07
131.72
133.34
134.94
136.51
138.05
139.57
141.07
ZCU
(M)
0.00
1.00

0.96
1.57
2.15
2.69
3.18
3.62
4.03
4.41
4.75
5.08
5.38
5.66
5.92
6.17
6.41
6.63
6.85
7.05
7.24
7.43
7.61
7.78
7.94
8.10
.26
.40
.55
.69
.82
.95
9.08
9.20
9.32
9.44
9.55
9.66
9.77
9.88
9.98
YCL
(M)
3.83
3.83

29.59
42.64
51.78
59.06
65.23
70.67
75.57
80.06
84.23
88.14
91.84
95.35
98.70
101.91
105.00
107.98
110.86
113.65
116.36
119.00
121.57
124.08
126.53
128.92
131.26
133.56
135.81
138'. 01
140.18
142.31
144.41
146.47
148.50
150.49
152.46
154.40
156.32
158.20
160.07
ZCL
(M)
0.00
1.12

1.09
1.81
2.51
3.16
3.76
4.31
4.82
5.29
5.73
6.14
6.53
6.89
7.23
7.55
7.86
8.16
8.44
8.70
8.96
9.21
9.45
9.68
.9.90
10.11
10.32
10.52
10.72
10.91
11.09
11.27
11.45
11.62
11.79
11.95
12.11
12.26
12.42
12.56
12.71
RIB


122.958

23.018
13.227
10.058
8.665
7.996
7.690
7.589
7.613
7.719
7.879
8.076
8.299
8.542
8.797
9.061
9.333
9.610
9.889
10.171
10.454
10.737
11.020
11.303
11.586
11.867
12.147
12.426
12.704
12.979
13.254
13.528
13.799
14.070
14.335
14.605
14.869
15.132
15.395
15.655
TMP
(DEG.C)

10.0

10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
• 10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
CONC
( I VOL . )

0.144E+02

0.252E401
0.786E+00
0.388E+00
0.238E+00
0.165E+00
0.123E+00
0.966E-01
0.789E-01
0.663E-01
0.569E-01
0.497E-01
0.440E-01
0.394E-01
0.357E-01
0.325E-01
0.299E-01
0.276E-01
0.256E-01
0.239E-01
0.224E-01
0.211E-01
0.199E-01
0.188E-01
0.179E-01
0.170E-01
0.162E-01
0.155E-01
0.148E-01
0.142E-01
0.137E-01
0.131E-01
0.127E-01
0.122E-01
0.118E-01
0.114E-01
0.110E-01
0.107E-01
0.104E-01
0.100E-01
 C-22

-------
0.311E+03
0.318E+03
0.326E+03
0.334E+03
0.341E+03
1HSMAIN
2
0.253E-03 3.19 42.84
0.245E-03 3.24 43.54
0.239E-03 3.28 44.23
0.232E-03 3.32 44.92
0.226E-03 3.36 45.60
43.08
43.18
43.27
43.36
43.45
142.55
144.01
145.44
146.86
148.26
10.08
10.18
10.28
10.37
10.47
HEGADAS-S PROGRAM (





161.90
163.72
165.51
167.29
169.04
VERSION

12.85
12.99
13.13
13.27
13.40
AUG88

15.914
16.171
16.428
16.681
16.935


10
10
10
10
10


0
0
0
0
0


DATE 22/10/90
14:36

DISTANCE
(M)
0.349E+03
0.357E+03
0.364E+03
0.372E+03
0.380E+03
0.387E+03
0.395E+03
0.403E+03
0.410E+03
0.418E+03
0.426E+03
0.433E+03
0.441E+03
0.449E+03
0.456E+03
0.464E+03
0.472E+03-
0.479E+03
0.487E+03
0.495E+03
0.502E+03
0.510E+03
0.518E+03
0.525E+03
0.533E+03
0.541E+03
0.548E+03
0.556E+03
0.564E+03
0.571E+03
0.579E+03
0.587E+03
0.594E+03
0.602E+03
0.610E+03
0.617E+03
0.625E+03
0.633E+03
0.640E+03
0.. 648E+03
0.656E+03
0.663E+03
0.671E+03
0.679E+03
0.686E+03
0.694E+03
0.702E+03
0.709E+03
0.717Et03
1HSMAIN
3



««
CA SZ SY
(KG/M3) (M) (M)
0.221E-03 3.40 • 46.28
0.215E-03 3.44 46.95
0.210E-03 3.48 47.62
0.205E-03 3.52 48.28
0.200E-03 3.56 48.94
0.196E-03 3.60 49.59
0.191E-03 3.63 50.24
0.187E-03 3.67 50.89
0.183E-03 3.71 51.53
0.180E-03 3.74 52.16
0.176E-03 3.78 52.80
0.172E-03 3.81 53.43
0.169E-03 3.85 54.05
0.166E-03 3.88 54.68
0.163E-03 3.92 55.29
0.160E-03 3.95 55.91
0.157E-03
0.154E-03
0.151E-03
0.148E-03
0.146E-03
0.143E-03
0.141E-03
0.139E-03
0.137E-03
0.134E-03
0.132E-03
0.130E-03
0.128E-03
0.126E-03
0.125E-03
0.123E-03
0.121E-03
0.119E-03
0.11BE-03
0.116E-03
0.114E-03
0.113E-03
0.111E-03
.98 56.52
.02 57.13
.05 57.73
.08 58.34
.11 58.94
.14 59.53
.18 60.13
.21 60.72
.24 61.30
.27 61.89
.30 62.47
.33 63.05
.36 63.63
.39 64.20
.42 64.77
.45 65.34
.48 65.91
.50 66.47
.53 67.03
.56 67.59
.59 68.15
.62 68.71
.64 69.26
0.110E-03 4.67 69.81
0.109E-03 4.70 70.36
0.107E-03 4.72 70.91
0.106E-03 4.75 71.45
0.104E-03 4.78 71.99
0.103E-03 4.80 72.54
0.102E-03 4.83 73.07
0.101E-03 4.86 73.61
0.995E-04 4.88 74.15
0.983E-04 4.91 74.68

HEGADAS-.
MIDP
(M)
43.53
43.61
43.69
43.76
43.83
43.89
43.95
44.01
44.07
44.12
44.17
44.22
44.26
44.31
44.35
44.39
44.42
44.45
44.49
44.51
44.54
44.57
44.59
44.61
44.63
44.65
44.67
44.68
44.69
44.71
44.72
44.72
44.73
44.74
44.74
44.74
44.75
44.75
44.75
44.74
44.74
44.74
44.73
44.72
44.72
44.71
44.70
44.69
44.67

5 Workbook
YCU
(M)
149.64
151.00
152.35
153.68
155.00
156.30
157.58
158.85
160.11
161.35
162.58
163.80
165.01
166.20
167.38
168.55
169.71
170.86
172.00
173.13
174.24
175.35
176.45
177.54
178.62
179.69
180.75
181.80
182.85
183.88
184.91
185.93
186.94
187.95
188.94
189.93
190.92
191.89
192.86
193.82
194.78
195.72
196.67
197.60
198.53
199.45
200.37
201.28
202.19

Example
ZCU
(M)
10.56
10.65
10.73
10.82
10.90
10.99
11.07
11.15
11.23
11.30
11.38
11.45
11.53
11.60
11.67
11.74
11.81
11.88
11.94
12.01
12.07
12.14
12.20
12.26
12.32
12.38
12.44
12.50
12.56
12.62
12.68
12.73
12.79
12.84
12.90
12.95
13.00
13.05
13.11
13.16
13.21
13.26
13.31
13.36
13.40
13.45
13.50
13.55
13.59
HEGADAS-S PROGRAM (






6.15
YCL
(M)
170.77
172.49
174.18
175.86
177.52
179.16
180.79
182.40
183.99
185.57
187.14
188.69
190.23
191.76
193.27
194.77
196.26
197.73
199.19
200.65
202.09
203.52
204.94
206.35
207.74
209.13
210.51
211.88
213.24
214.59
215.93
217.26
218.59
219.90
221.21
222.51
223.80
225.08
226.36
227.63
228.89
230.14
231.38
232.62
233.85
235.08
236.30
237.51
238.71
VERSION



ZCL
(M)
13.53
13.66
13.78
13.90
14.03
14.15
14.26
14.38
14.49
14.61
14.72
14.83
14.93
15.04
15.14
15.25
15.35
15.45
15.55
15.65
15.74
15.84
15.93
16.03
16.12
16.21
16.30
16.39
16.48
16.57
16.65
16.74
16.82
16.91
16.99
17.07
17.15
17.23
17.31
17.39
17.47
17.55
17.62
17.70
17.78
17.85
17.92
18.00
18.07
AUG88



RIB

»»
THP



(DEG.C)
17.186
17.438
17.686
17.935
18.181
18.424
18.668
18.909
19.152
19.391
19.630
19.868
20.103
20.340
20.574
20.807
21.038
21.269
21.500
21.729
21.957
22.182
22.409
22.634
22.858
23.079
23.302
23.524
23.744
23.964
24.184
24.402
24.617
24.833
25.051
25.265
25.477
25.691
25.904
26.116
26.327
26.537
26.746
26.956
27.163
27.371
27.576
27.783
27.988


10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


DATE 22/10/90
14:36




«« HEGADAS-S Workbook
DISTANCE
(M)
0.725E+03
0.732E+03
0.740E+03
0.748E+03
0.755E+03
0.763E+03
CA SZ SY
(KG/M3) (M) (M)
0.972E-04 4.93 75.21
0.961E-04 4.96 75.74
0.950E-04 4.98 76.27
0.939E-04 5.01 76.79
0.929E-04 5.03 77.32
0.918E-04 5.06 77.84
MIDP
(M)
44.66
44.65
44.63
44.61
44.60 '
44.58
YCU
(M)
203.08
203.98
204.87
205.75
206.62
207.50

Example
ZCU
(M)
13.64
13.68
13.73
13.77
13.82
13.86

6.15
YCL
(M)
239.91
241.10
242.29
243.47
244.64
245.81


ZCL
(M)
18.14
18.21
18.29
18.36
18.43
18.49


RIB

28.193
28.397
28.600
28.806
29.007
29.208

»»
TMP
(DEC
10
10
10
10
10
10



C)
0
0
0
0
0
0
0.976E-02
0.948E-02
0.923E-02
0.898E-02
0.875E-02
PAGE

TIME


CONC
(% VOL.)
0.853E-02
0.831E-02
0.811E-02
0.792E-02
0.774E-02
0.756E-02
0.740E-02
0.724E-02
0.708E-02
0.694E-02
0.679E-02
0.666E-02
0.653E-02
0.640E-02
0.628E-02
0.616E-02
0.605E-02
0.594E-02
0.584E-02
0.574E-02
0.564E-02
0.554E-02
0.545E-02
0.536E-02
0.528E-02
0.519E-02
0.511E-02
0.503E-02
0.496E-02
0.488E-02
0.481E-02
0.474E-02
0.467E-02
0.461E-02
0.454E-02
0.448E-02
0.442E-02
0.436E-02
0.430E-02
0.42SE-02
0.419E-02
0.414E-02
0.409E-02
0.404E-02
0.399E-02
0.394E-02
0.389E-02
0.384E-02
0.380E-02
PAGE

TIME


CONC
(% VOL.)
0.376E-02
0.371E-02
0.367E-02
0.363E-02
0.359E-02
0.355E-02
C-23

-------

-------
                            HEGADAS Example  2:  Input File
TITLE HEGADAS-S Chlorine
     ICNT  =      0
    ISURF  =      3
              spill
                *
                                 CONTOURS OR CONTENTS CODE
                                 SURFACE TRANSFER CODE
POOL   DATA
*
   PLL
   PLHW
=  4.00
=  2.00
AMBIENT CONDITIONS
* M
* M
*
SOURCE LENGTH
SOURCE HALF-WIDTH
   ZO
   UO
   AIRTEMP
   RH
   TGROUND
   10.0
   2.0
   30.0
   0.75
   30.0
* M
* M/S
* DEC.CELSIUS
*
* DEG.CELSIUS
REFERENCE HEIGHT
WIND VELOCITY AT HEIGHT ZO
AIR TEMP. AT GROUND LEVEL
RELATIVE HUMIDITY
EARTH-S SURFACE TEMPERATURE
DISP
   ROUGH
   MONIN
   CROSSW
   0.01
   10000.
   0.09158
   0.905
CLOUD
* M
* M
* M**(1-BETA)
*
*
*
SURFACE ROUGHNESS PARAMETER
MONIN - OBUKHOV LENGTH
CROSSWIND (DELTA)
          (BETA)
   XSTEP
   XMAX
   CAMIN
   CU
   CL
   1.0
   100.
   l.OE-06
   1.5E-05
   1.5E-06
* KG/M3
* KG/M3
* KG/M3
OUTPUT STEP LENGTH
X AT WHICH CALC. IS STOPPED
CA AT WHICH CALC. IS STOPPED
UPPER CONCENTRATION LIMIT
LOWER CONCENTRATION LIMIT
SOURCE
   FLUX
   TEMPGAS
   CPGAS
   MWGAS
   WATGAS
   3.0E-02
  -34.0
   35.3
   70.9
   0.
* KG/M2/S
* DEG.CELSIUS
* J/MOLE/DEG.C
* KG/KMOLE
GAS EMISSION FLUX
TEMPERATURE   OF EMITTED GAS
SPECIFIC HEAT OF EMITTED GAS
MOL. WEIGHT OF EMITTED GAS
MOLAR FRACTION PICKED-UP WATE
                                         C-25

-------
Output File
1HSMAIN
0
DATE 22/10/90
15:03



««
HEGADAS-S PROGRAM ( VERSION AUG88 )
HEGADAS-s Chlorine spill
CALCULATION CODE ICNT - 0
SURFACE HEAT TRANSFER MODEL ISURF - 3
THERMODYNAMIC MODEL THERMOD - NORMAL
SOURCE LENGTH PLL - 4.0000 M
SOURCE HALF-WIDTH PLN - 2.0000 M
WIND VELOCITY AT HEIGHT ZO UO - 2.0000 M/S
REFERENCE HEIGHT ZO - 10.000 M
SURFACE ROUGHNESS PARAMETER ZR - 0.10000E-01 M
AIR TEMP. AT GROUND LEVEL TAP - 30.000 DEG. CELSIUS
MONIN - OBUKHOV LENGTH OBUKL - 10000. M
DELTA - 0.91580E-01 M«M1-BETA>
BETA - 0.90500
SPREADING CONSTANT CE - 1.1500
OUTPUT STEP LENGTH DXO - 1.0000
X AT WHICH CALC. IS STOPPED XMAX - 100.00
CA AT WHICH CALC. IS STOPPED CAMIN - 0.10000E-05 KG/M3
UPPER CONCENTRATION LIMIT CU - 0.15000E-04 KG/M3
LOWER CONCENTRATION LIMIT CL - 0.15000E-05 KG/M3
EVAPORATION FLUX Q - 0.30000E-01 KG/M2/S - 0.48000 KG/S
RELATIVE HUMIDITY R - 0.75000
TEMPERATURE OF EMITTED GAS TGE - -34.000 DEG. CELSIUS
SPECIFIC HEAT OF EMITTED GAS CPG - 35.300 J/MOLE/DEG. CELSIUS
MOL. WEIGHT OF EMITTED GAS FMG - 70.900 KG/KMOLE
" EARTH-S SURFACE TEMPERATURE TK2P - 30.000 DEG. CELSIUS
MOLAR FRACTION PICKED-UP WATER W2P - O.OOOOOE+00
HEAT GROUP IN HEAT FLUX QH HEATGR - 24.000
WIND PROFILE EXPONENT ALPHA - 0.18635
USTAR - 0.11857E+00 M/S
1HSMAIN HEGADAS-S PROGRAM ( VERSION AUG88
1
DATE 22/10/90
15:03
PAGE
TIME
»»


PAGE
TIME
<«t HEGADAS-S Chlorine spill »»
DISTANCE
(M)
-.200E+01
0.200E+01

0.600E+01
0.100E+02
0.140E+02
0.180E+02
0.220E+02
0.260E+02
0.300E+02
0.340E+02
0.380E+02
0.420E+02
0.460E+02
0.500E+02
0.540E+02
0.580E+02
0.620E+02
0.660E+02
0.700E+02
0.740E+02
0.780E+02
0.820E+02
0.860E+02
0.900E+02
0.940E+02
0.980E+02
0.102E+03
0.106E+03
0.110E+03
0.114E+03
0.118E+03
0.122E+03
0.126E+03
0.130E+03
0.134E+03
0.138E+03
0.142E+03
0.146E+03
0.150E+03
0.154E+03
0.158E+03
CA SZ
(KG/M3) (M)
0.345E+01 0.00
0.345E+01
TAKE-UP FLUX
0.979E+00
0.364E+00
0.181E+00
0.107E+00
0.709E-01
0.50SE-01
0.379E-01
0.296E-01
0.238E-01
0.196E-01
0.165E-01
0.141E-01
0.122E-01
0.106E-01
0.940E-02
0.837E-02
0.750E-02
0.677E-02
0.615E-02
0.562E-02
0.515E-02
0.474E-02
0.43BE-02
0.407E-02
0.379E-02
0.353E-02
0.331E-02
0.310E-02
0.292E-02
0.275E-02
0.260E-02
0.246E-02
0.233E-02
0.222E-02
0.211E-02
0.201E-02
0.191E-02
0.183E-02
0.175E-02
0.05
0
0.07
0.11
0.16
0.22
0.28
0.34
0.41
0.47
0.54
0.61
0.68
0.74
0.81
0.88
0.95
1.02
1.09
1.16
1.23
1.30
1.37
1.44
1.51
1.58
1.65
1.72
1.79
1.86
1.94
2.01
2.08
2.15
2.22
2.29
2.36
2.43
2.50
2.57
2.64
SY
(M)
0.00
0.00
MIDP
(M)
2.00
2.00
0300 KG/M2/S -
1.67
2.74
3.71
4.60
5.44
6.24
7.00
7.74
8.44
9.13
9.80
10.45 •
11.09
11.71
12.32
12.92
13.51
14.09
14.66
15.22
15.77
16.31
16.85
17.38
17.91
18.42
18.94
19.44
19.95
20.44
20.94
21.42
21.91
22.39
22.86
23.33
23.80
24.26
24.72
3.97
5.75
7.11
8.18
9.07
9.81
10.46
11.03
11.54
12.00
12.42
12.80
13.15
13.48
13.78
14.06
14.33
14.58
14.81
15.03
15.23
15.43
15.62
15.79
15.96
16.12
16.27
16.41
16.55
16.68
16.81
16.93
17.04
17.15
17.25
17.35
17.45
17.54
17.63
YCU
(M)
2.00
2.00
0.4802 KG/S
9.52
14.46
18.47
21.89
24.89
27.59
30.06
32.34
34.47
36.47
38.36
40.15
41.86
43.49
45.05
46.56
48.01
49.40
50.76
52.07
53.34
54.57
55.77
56.93
58.07
59.18
60.26
61.31
62.35
63.35
64.34
65.31
6«.2S
67.18
68.09
68.98
69.86
70.71
71.56
ZCU
(M)
0.00
0.45

0.51
0.78
1.08
1.39
1.70
2.01
2.32
2.62
2.91
3.20
3.49
3.77
4.04
4.31
4.57
4.83
5.09
5.34
5.59
5.83
6.07
6.30
6.53
6.76
6.99
7.21
7.43
7.64
7.86
.07
.27
.48
.68
.88
9.07
9.27
9.46
9.65
9.83
YCL
(M)
2.00
2.00

10.07
IS. 40
19.79
23.56
26.92
29.96
32.76
35.36
37.81
40.12
42.32
44.42
46.43
48.36
50.22
52.01
53.75
55.44
57.08
58.67
60.23
61.74
63.22
64.66
66.08
67.46
68.81
70.14
71.44
72.72
73.98
75.21
76.43
77.62
78.80
79.95
81.09
82.22
83.32
ZCL
(M)
0.00
0.52

0.60
0.92
1.30
1.69
2.09
2.48
2.88
3.27
3.66
4.05
4.43
4.81
5.18
5.55
5.92
6.28
6.63
6.99
7.34
7.69
8.03
8.37
8.71
9.04
9.37
9.70
10.02
10.34
10.66
10.98
11.29
11.61
11.91
12.22
12.52
12.83
13.12
13.42
13.72
RIB

73.211

23.916
14.223
10.320
8.232
6.925
6.025
5.365
4.857
4.453
4.122
3.846
3.612
3.410
3.234
3.080
2.942
2.819
2.708
2.607
2.516
2.432
2.354
2.283
2.217
2.155
2.098
2.044
1.994
1.947
1.902
1.860
1.820
1.783
1.747
1.713
1.681
1.650
1.621
1.593
TMP
(DEG.C)

-31.0

20.0
27.7
29.2
29.6
29.8
29.9
29.9
29.9
29.9
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
CONC
(% VOL.)

0.965E+02 VISIBLE

0.332E+02
0.127E+02
0.633E+01
0.375E+01
0.248E+01
0.177E+01
0.133E+01
0.104E»01
0.836E+00
0.689E+00
0.57BE+00
0.493E+00
0.427E+00
0.373E+00
0.329E»00
0.293E*00
0.263EtOO
0.238E+00
0.216E+00
0.197EI-00 -
0.181E+00
0.166E+00
0.154E+00
0.143E+00
0.133E+00
0.124EI-00
0.116E+00
0.109E+00
0.102E+00
0.965E-01
0.912E-01
0.863E-01
0.818E-01
0.777E-01
0.739E-01
0.704E-01
0.671E-01
0.641E-01
0.613E-01
     C-26

-------
0.162E+03
0.166E+03
0.170E+03
0.174Et03
0.178E+03
1HSMAIN
2
0.167E-02
0.160E-02
0.154E-02
0.148E-02
0.142E-02
2.71
2.78
2.85
2.92
2.99
25.18
25.63
26.08
26.53
26.98
17.71 72.39
17.79 73.20
17.87 74.00
17.94 74.79
18.01 75.56
10.02
10.20
10.38
10.56
10.73
HEGADAS-S PROGRAM (





84.41
85.49
86.55
87.60
88.64
VERSION

14.01
14.30
14.59
14.87
15.16
AUG88 )

1.566
1.540
1.516
1.492
1.469


30.0
30.0
30.0
30.0
30.0


0.587E-01
0.563E-01
O.S40E-01
0.518E-01
0.498E-01


DATE 22/10/90
15:03

DISTANCE
(M)
0.182E+03
0.186E+03
0.190E+03
0.194E+03
0.198E+03
0.202E+03
0.206E+03
0.210E+03
0.214E+03
0.218E+03
0.222E+03
0.226E+03
0.230E+03
0.234E+03
0.238E+03
0.242E+03
0.246E+03
0.250E+03
0.254E+03
0.258E+03
0.262E+03
0.266E+03
0.270E+03
0.274E+03
0.278E+03
0.282E+03
0.286E+03
0.290E+03
0.294E+03
0.298E+03
0.302E+03
0.306E+03
0.310E+03
0.314E+03
0.318E+03
0.322E+03
0.326E+03
0.330E+03
0.334E+03
0.338E+03
0.342E+03
0.346E+03
0.350E403
0.354E+03
0.358E+03
0.362E+03
0.366E+03
0.370E+03
0.374E»03
1HSMAIN
3


CA
(KG/M3)
0.137E-02
0.132E-02
0.127E-02
0.123E-02
0.118E-02
0.114E-02
0.111E-02
0.107E-02
0.104E-02
0.100E-02
0.973E-03
0.944E-03
0.916E-03
0.889E-03
0.864E-03
0.840E-03
0.817E-03
0.795E-03
0.774E-03
0.753E-03
0.734E-03
0.715E-03
0.69BE-03
0.680E-03
0.664E-03
0.648E-03
0.633E-03
0.618E-03
0.604E-03
0.591E-03
0.578E-03
0.565E-03
0.553E-03
0.541E-03
0.530E-03
0.519E-03
0.508E-03
0.498E-03
0.488E-03
0.478E-03
0.469E-03
0.460E-03
0.451E-03
0.443E-03
0.434E-03
0.426E-03
0.419E-03
0.411E-03
0.404E-03


SZ
(M)
3.06
3.13
3.20
3.27
3.34
3.41
3.48
3.55
3.62
3.69
3.76
3.83
3.90
3.97
.04
.11
.18
.25
.32
.39
.46
.53
.60
.66
.73
.80
.87
.94
5.01
5.08
5.15
5.22
5.28
5.35
5.42
5.49
5.56
5.63
5.69
5.76
5.83
5.90
5.97
6.04
6.10
6.17
6.24
6.31
6.37

««
SY
(M)
27.42
27.86
28.29
28.72
29.15
29.58
30.01
30.43
30.85
31.27
31.69
32.10
32.51
32.92
33.33
33.74
34.14
34.54
34.94
35.34
35.74
36.13
36.52
36.91
37.30
37.69
38.08
38.46
38.85
39.23
39.61
39.99
40.37
40.74
41.12
41.49
41.86
42.23
42.60
42.97
43.34
43.70
44.07
44.43
44.79
45.15
45.51
45.87
46.23

HEGADAS-S Chlorine
MIDP YCU
(M) (M)
18.08 76.32
18.15 77.07
18.21 77.81
18.27 78.54
18.32 79.25
18.38 79.96
18.43 80.65
18.48 81.34
18.53 82.01
18.57 82.68
18.62 83.33
18.66 83.98
18.70 84.62
18.73 85.25
18.77 85.87
18.80 86.48
18.83 87.09
18.87 87.69
18.89 88.28
18.92 88.86
18.95 89.43
18.97 90.00
18.99 90.56
19.02 91.11
19.04 91.66
19.05 92.20
19.07 92.74
19.09 93.26
19.10 93.78
19.12 94.30
19.13 94.81
19.14 95.31
19.15 95.81
19.16 96.30
19.17 96.79
19.18 97.27
19.18 97.75
19.19 98.22
19.19 98.68
19.20 , 99.15
19.20 99.60
19.20 100.05
19.20 100.50
19.20 100.94
19.20 101.38
19.20 101.81
19.19 102.23
19.19 102.66
19.19 103.08

spill
ZCU
(M)
10.91
11.08
11.25
11.42
11.58
11.75
11.91
12.07
12.23
12.39
12.54
12.70
12.85
13.00
13.15
13.29
13.44
13.58
13.73
13.87
14.01
14.15
14.28
14.42
14.55
14.69
14.82
14.95
15.08
15.21
15.33
15.46
15.58
15.70
15.83
15.95
16.06
16.18
16.30
16.42
16.53
16.64
16.76
16.87
16.98
17.09
17.20
17.30
17.41
HEGADAS-S PROGRAM (







YCL
(M)
89.66
90.67
91.66
92.65
93.62
94.58
95.54
96.48
97.41
98.33
99.24
100.14
101.04
101.92
102.80
103.66
104.52
105.37
106.22
107.05
107.88
108.70
109.51
110.32
111.12
111.91
112.69
113.47
114.25
115.01
115.77
116.53
117.28
118.02
118.76
119.49
120.21
120.94
121.65
122.36
123.07
123.77
124.46
125.15
125.84
126.52
127.20
127.87
128.54
VERSION



ZCL
(M)
15.44
15.72
16.00
16.28
16.55
16.83
17.10
17.37
17.63
17.90
18.17
18.43
18.69
18.95
19.21
19.47
19.72
19.98
20.23
20.48
20.73
20.98
21.22
21.47
21.71
21.96
22.20
22.44
22.68
22.92
23.15
23.39
23.62
23.86
24.09
24.32
24.55
24.78
25.00
25.23
25.45
25.68
25.90
26.12
26.34
26.56
26.78
27.00
27.22
AUG88 )



RIB

1.447
1.426
1.406
1.387
1.368
1.350
1.332
1.315
1.299
1.283
1.268
1.253
1.238
1.224
1.211
1.197
1.184
1.172
1.160
1.148
1.136
1.125
1.114
1.104
1.093
1.083
1.073
1.064
1.055
1.045
1.036
1.021
1.019
1.011
1.002
0.994
0.987
0.979
0.971
0.964
0.957
0.950
0.943
0.937
0.930
0.923
0.917
0.911
0.905



»»
TMP
(DEG.C)
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0




CONC
(% VOL.)
0.480E-01
0.462E-01
0.445E-01
0.430E-01
0.415E-01
0.401E-01
0.388E-01
0.375E-01
0.363E-01
0.352E-01
0.341E-01
0.331E-01
0.321E-01
0.312E-01
0.303E-01
0.294E-01
0.286E-01
0.279E-01
0.271E-01
0.264E-01
0.257E-01
0.251E-01
0.245E-01
0.239E-01
0.233E-01
0.227E-01
0.222E-01
0.217E-01
0.212E-01
0.207E-01
0.203E-01
0.198E-01
0.194E-01
0.190E-01
0.186E-01
0.182E-01
0.178E-01
0.175E-01
0.171E-01
0.168E-01
0.164E-01
0.161E-01
0.158E-01
0.155E-01
0.152E-01
0.150E-01
0.147E-01
0.144E-01
0.142E-01


DATE 22/10/90
15:03

DISTANCE
(M)
0.378E+03
0.382E+03
0.386E+03
0.390E+03
0.394E+03
0.398Et03


CA
(KG/M3)
0.397E-03
0.390E-03
0.383E-03
0.377E-03
0.370E-03
0.364E-03


SZ
(M)
6.44
6.51
6.58
6.65
6.71
6.78

««
SY
(M)
46.58
46.94
47.29
47.65
48.00
48.35

HEGADAS-S chlorine
MIDP YCU
(M) (M)
19.18 103.49
19.18 103.90
19.17 104.31
19.16 104.71
19.15 105.11
19.15 105.50

spill
ZCU
(M)
17.51
17.62
17.72
17.82
17.93
18.03


YCL
(M)
129.20
129.86
130.52
131.17
131.81
132.46


ZCL
(M)
27.43
27.65
27.86
28.08
28.29
28.50


RIB

0.899
0.893
0.887
0.881
0.876
0.871

»»
TMP
(DEG.C)
30.0
30.0
30.0
30.0
30.0
30.0


CONC
(% VOL.)
0.139E-01
0.137E-01
0.134E-01
0.132E-01
0.130E-01
0.128E-01





PAGE

TIME





















































PAGE

TIME










C-27

-------

-------
                     SLAB Example 1:  Input File
    3
    1
 0.070906
 498.1
 239.1
 0.00
 287840.
 926.3
 1574.
 -1.0
 -1.0
 284.3
 1.261
 .003525
 25000.
 0.
 5.
 900.
 10000.
 0.
 1.
 2.
 4.
 .01
 10.0
 2.0
 298.
 50.
 6.
-1.
                               C-29

-------
                                                      Output  File
problem input
idspl -
ncalc -
wras -
cps
tbp
cmedO •
dhe
cpsl -
rhosl -
spb -
spc
ts
qs -
as -
tsd
qtis -
hs
tav
xffra -
zp(l) -
zp(2) -
zp(3) -
zp(4) -
zO
za -
ua -
ta
rh
stab -
3
1
.070906
498.10
239.10
.00
287840.
926.30
1574.00
-1.00
-1.00
284.30
1.26
.00
25000.
.00
5.00
900.00
10000.00
.00
1.00
2.00
4.00
.010000
10.00
2.00
298.00
50.00
6.00
release gas properties

 molecular weight of source gas (kg)
 vapor heat capacity, const, p.  (j/kg-k)
 temperature of source gas  (k)
 density of source gas (kg/m3)
 boiling point temperature
 liquid mass fraction
 liquid heat capacity (j/kg-k)
 heat of vaporization (j/kg)
 liquid source density (kg/ra3)
 saturation pressure constant
 saturation pressure constant  (k)
 saturation pressure constant  (k)
spill characteristics

 spill type
 mass source rate  fkg/s)
 continuous source duration (s)
 continuous source mass (kg)
 instantaneous source mass  (kg)
 source area (m2)
 vertical vapor velocity  (ra/s)
 source half width (m)
 source height (m)
 horizontal vapor velocity  (ra/s)
field parameters

 concentration averaging time  (s)
 mixing layer height  (m)
 maximum downwind distrace  (m)
 concentration measurement height (m)
ambient meteorological properties

 molecular weight of ambient air  (kg)
 heat capacity of ambient air at const p. (J/kg-k)-
 density of ambient air  (kg/m3)
 ambient measurement height  (m)
 ambient atmospheric pressure  (pa-n/ra2-j/ra3)
 ambient wind speed  (m/s)
 ambient temperature (k)
 relative humidity  (percent)
 ambient friction velocity  (ra/s)
 atmospheric stability class value
 inverse monin-obukhov length  (1/ra)
 surface roughness height (m)
additional parameters

  sub-step multiplier
  number of calculatlonal sub-steps
  acceleration of gravity (m/s2)
  gas constant (j/raol- k)
  von karman constant
• wras -
cps -
• ts
• rhos -
tbp -
• cmedO-
• cpsl -
• dhe -
• rhosl-
• spa -
• spb -
spc -
• idspl-
• qs
• tsd -
• qtcs -
• qtis -
- as -
• ws -
• bs
• hs
• us -
• tav -
• hmx -
• xffm -
• zptl>-
• zp(2>-
• zp<3)-
- zp(4)-
wmae -
cpaa -
rhoa -
za
pa
ua -
ta
rh
uastr -
stab -
ala
zO
ncalc -
nssm -
gray -
rr -
xk
7.0906E-02
4.9810E*02
2.8430E+02
3.0395E+00
2.3910E+02
O.OOOOE+00
9.2630E+02
2.8784E+05
1.5740E+03
1.0267E+01
2.4548E+03
O.OOOOE+00
3
1.2610E+00
2.SOOOE+04
3.1525E+04
O.OOOOE+00
3.5250E-03
1.1770E+02
2.9686E-02
5.0000E+00
O.OOOOE+00
9.0000E+02
2.6000E+02
l.OOOOE+04
O.OOOOE+00
l.OOOOE+00
2.0000E+00
4.0000E+00
2.8782E-02
1.0144E+03
1.1770E+00
l.OOOOE+01
1.0133E+05
2.0000E+00
2.9800E+02
5.0000E+01
5.4063E-02
6.0000E+00
8.4887E-02
l.OOOOE-02
1
3
9.8067E+00
S.3143E+00
4.1000E-01
                                                            C-30

-------
instantaneous spatially averaged cloud parameters
X
l.OOE+00
1.95E+00
2.91E+00
3.86E+00
4.81E+00
S.77E+00
6.72E+00
7.67E+00
8.63E+00
9.58E+00
1.05E+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.26E+01
1.33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.59E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
5.05E+01
5.88E+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.57E+02
1.87E+02
2.23E+02
2.66E+02
3.17E+02
3.79E+02
4.54E+02
5.43E+02
6.50E+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.B1E+03
5.7BE+03
6.94E+03
8.33E+03
1. OOE+04
X
l.OOE+00
1.9SE+00
2.91E+00
3.86E+00
4.81E+00
5.77E+00
6.72E+00
7.67E+00
8.63E+00
9.58E+00
1.05E+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.26E+01
t 33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.59E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
3C
5. OOE+00
9.92E+00
1.18E+01
1.31E+01
1.40E+01
1.48E+01
1.53E+01
1.58E+01
1.61E+01
1.62E+01
1.63E+01
1.63E+01
1.63E+01
1.63E+01
1.63E+01
1.63E+01
1.63E+01
1.62E+01
1.62E+01
1.62E+01
1.61E+01
1.60E+01
1.58E+01
1.56E+01
1.52E+01
1.47E+01
1.41E+01
1.31E+01
1.17E+01
9.62E+00
6.56E+00
1.95E+00
7.04E-01
4.15E-01
3.02E-01
2.42E-01
2.04E-01
1.78E-01
1.58E-01
1.43E-01
1.31E-01
1.21E-01
1.12E-01
1.05E-01
9.83E-02
9.28E-02
8.78E-02
8.33E-02
7.93E-02
7.55E-02
7.20E-02
6.88E-02
6.57E-02
6.27E-02
5.99E-02
5.72E-02
5.46E-02
5.21E-02
4.96E-02
4.73E-02
4.50E-02
cm
l.OOE+00
5.58E-01
2.40E-01
1.23E-01
7.32E-02
4.81E-02
3.39E-02
2.S2E-02
1.94E-02
1.54E-02
1.25E-02
1.2SE-02
1.24E-02
1.24E-02
1.24E-02
1.23E-02
1.23E-02
1.22E-02
1.21E-02
1.20E-02
1.19E-02
1.18E-02
1.16E-02
1.15E-02
1.12E-02
1.10E-02
1.07E-02
1.04E-02
1.01E-02
9.68E-03
n
bb
5.94E-02 2.97E-02
5.24E-01 4.19E-01
9.89E-01 8.08E-01
1.45E+00
1.92E+00
L.20E+00
L.59E+00
2.38E+00 1.97E+00
2.85E+00 2.36E+00
3.31E+00 2.75E+00
3.78E+00 3.14E+00
4.24E+00 3.53E+00
4.71E+00 3.92E+00
4.71E+00 3.93E+00
.71E+00 3.94E+00
.71E+00
.71E+00
.71E+00
.71E+00
.71E+00
.71E+00
.71E+00
.71E+00
.71E+00
.71E+00
.72E+00
.72E+00
.72E+00
4.73E+00
4.78E+00
4.92E+00
.95E+00
.96E+00
.97E+00
. 99E+00
.01E+00
.04E+00
.07E+00
. 11E+00
.1SE+00
.20E+00
.27E+00
.35E+00
.44E+00
.55E+00
. 68E+00
.84E+00
5.15E+00 5.03E+00
5.62E+00 5.26E+00
5.38E+00 7.13E+00
2.79E+00 2.04E+01
2.30E+00 3.51E+01
2.22E+00 4.88E+01
2.26E+00 6.14E+01
2.37E+00 7.33E+01
2.52E+00 8.47E+01
2.71E+00 9.59E+01
2.93E+00 1.07E+02
3.20E+00 1.18E+02
3.50E+00
3.85E+00
.29E+02
L.40E+02
4.24E+00 1.S1E+02
4.68E+00 1.63E+02
5.17E+00 1.74E+02
5.72E+00 1.87E+02
S.34E+00
L.99E+02
7.02E+00 2.12E+02
7.78E+00 2.26E+02
8.62E+00 2.41E+02
9.55E+00 2.57E+02
1.06E+01 2.75E+02
1.17E+01 2.94E+02
1.30E+01 3.1SE+02
1.44E+01 3.38E+02
1.59E+01 3.63E+02
1.76E+01 3.91E+02
1.96E+01 4.22E402
2.17E+01 4.57E+02
2.40E+01 4.96E+02
onv
-l.OOE+00
cmda
l.OOE+00
-l.OOE+00 4.37E-01
-l.OOE+00 7.52E-01
-l.OOE+00
1.68E-01
-l.OOE+00 9.17E-01
-l.OOE+00 9.42E-01
-l.OOE+00 9.5SE-01
-l.OOE+00 9.6SE-01
-l.OOE+00 9.71E-01
-l.OOE+00 9.75E-01
1.25E-02 9.77E-01
1.25E-02 9.77E-01
1.24E-02 9.77E-01
1.24E-02 9.78E-01
1.24E-02 9.78E-01
1.23E-02 9.78E-01
1.23E-02 9.78E-01
1.22E-02 9.78E-01
1.21E-02 9.78E-01
1.20E-02 9.78E-01
1.19E-02 9.78E-01
1.18E-02 9.78E-01
1.16E-02 9.78E-01
1.15E-02 9.78E-01
.12E-02 9.79E-01
.10E-02 9.79E-01
.07E-02 9.79E-01
.04E-02 9.79E-01
.01E-02 9.80E-01
9.68E-03 9.80E-01
o
2.S7E-02
6.35E-02
l.OOE-01
1.37E-01
1.74E-01
2.10E-01
2.47E-01
2.84E-01
3.21E-01
3.57E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
5.09E-01
1.42E+00
2.41E+00
3.32E+00
4.1SE+00
4.91E+00
5.64E+00
6.33E+00
7.01E+00
7.67E+00
8.32E+00
8.96E+00
9.58E+00
1.02E+01
1.08E+01
1.14E+01
1.20E+01
1.27E+01
1.33E+01
1.39E+01
1.46E+01
1.53E+01
1.60E+01
1.67E+01
1.75E+01
1.84E+01
1.93E+01
2.02E.+ 01
2.12E+01
2.23E+01
cnw
O.OOE+00
4.51E-03
7.76E-03
8.95E-03
9.46E-03
9.71E-03
9.86E-03
9.95E-03
l.OOE-02
l.OOE-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02

0
9
1
2
3
4
5
6
7
8
9
9
1
1
I
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
S
6
7
9
1
1
1
1
2
2
3
3
4
5
6
7
9
1
1
1
1
2
2
3
4
4
S
6
8
1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
bbx
.OOE+00 0
.53E-01 9
.91E+00 1
. 86E+00 2
. 81E+00 3
.77E+00 4
.72E+00 5
. 67E+00 6
.63E+00 7
.58E+00 8
.53E+00 9
.75E+00 9
.OOE+01 1
.03E+01 1
.07E+01 1
.11E+01 1
. 16E+01 1
.23E+01 1
.30E+01 1
.40E+01 1
.51E+01 1
. 64E+01 1
.80E+01 1
.99E+01 1
.22E+01 2
.49E+01 2
.82E+01 2
.22E+01 3
. 69E+01 3
.27E+01 4
. 95E+01 4
.78E+01 5
.77E+01 6
.96E+01 7
.39E+01 9
.11E+02 1
.32E+02 1
.56E+02 1
.86E+02 1
.22E+02 2
.65E+02 2
.16E+02 3
.78E+02 3
.53E+02 4
.42E+02 5
.49E+02 6
.78E+02 7
.32E+02 9
. 12E+03 1
.34E+03 1
.61E+03 1
.93E+03 1
.32E+03 2
.78E+03 2
.34E+03 3
.01E+03 4
.81E+03 4
.78E+03 5
.93E+03 6
.33E+03 8
.OOE+04 1
craw
.OOE+00 1
.OOE+00 8
.OOE+00 6
.OOE+00 5
.OOE+00 4
.OOE+00 3
.OOE+00 2
.OOE+00 1
.OOE+00 1
.OOE+00 6
.01E-02 0
.01E-02 -6
.01E-02 -1
.01E-02 -2
.01E-02 -3
.01E-02 -5
bx
.OOE+00
.S3E-01
.91E+00
.86E+00
.81E+00
.77E+00
.72E+00
.67E+00
. 63E+00
.S8E+00
.S3E+00
.75E+00
.OOE+01
.03E+01
.07E+01
.11E+01
.16E+01
.23E+01
.30E+01
.40E+01
.51E+01
. 64E+01
.80E+01
.99E+01
.22E+01
.49E+01
.82E+01
.22E+01
.69E+01
.27E+01
.95E+01
.78E+01
.77E+01
.9SE+01
.39E+01
.11E+02
.32E+02
. 56E+02
.86E+02
.22E+02
.65E+02
. 16E+02
.78E+02
.52E+02
.42E+02
.49E+02
.78E+02
.32E+02
.12E+03
.34E+03
.61E+03
.93E+03
.32E+03
.78E+03
.34E+03
.01E+03
.81E+03
.78E+03
.93E+03
.33E+03
.OOE+04
we
.18E+02
. 05E+01
.51E+01
.32E+01
.33E+01
.45E+01
.65E+01
.92E+01
.24E+01
.04E+00
.OOE+00
.91E-03
.52E-02
.51E-02
. 69E-02
.09E-02
.01E-02 -6.77E-02
.01E-02 -8
.01E-02 -1
.01E-02 -1
.01E-02 -1
.01E-02 -2
.01E-02 -2
.01E-02 -3
. 01E-02 -3
. 01E-02 -4
. 01E-02 -5
.01E-02 -6
. 01E-02 -7
.01E-02 -8
.76E-02
.11E-01
.39E-01
.72E-01
.11E-01
.57E-01
.10E-01
.71E-01
.42E-01
.22E-01
.13E-01
.17E-01
.37E-01
cv
l.OOE+00
3.39E-01
1.14E-01
5.39E-02
3.11E-02
2.01E-02
1.41E-02
1.04E-02
7.95E-03
6.30E-03
5.11E-03
5.10E-03
S.08E-03
5.07E-03
5.05E-03
5.04E-03
5.01E-03
. 99E-03
.95E-03
.91E-03
.87E-03
. 82E-03
.75E-03
. S8E-03
4.60E-03
4.SOE-03
4.39E-03
4.26E-03
4.11E-03
3.95E-03
3.77E-03
3.54E-03
3.03E-03
2.31E-03
1.75E-03
1.37E-03
1.09E-03
8.88E-04
7.27E-04
5.98E-04
4.93E-04
4.07E-04
3.36E-04
2.77E-04
2.29E-04
1.89E-04
1.55E-04
1.28E-04
1.05E-04
8.67E-05
7.12E-05
5.85E-05
4.79E-05
3.92E-05
3.20E-05
2.61E-05
2.12E-05
1.72E-05
1.40E-05
1.13E-05
9.09E-06
vg
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
rho
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
. 19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.18E+00
.18E+00
.18E+00
.18E+00
.18E+00
. 18E+00
. 18E+00
.18E+00
.18E+00
.18E+00
. 18E+00
. 18E+00
. 18E+00
.18E+00
.18E+00
. 18E+00
.18E+00
.18E+00
.18E+00
.18E+00
. 18E+00
. 18E+00
. 18E+00
.11E+00
.18E+00
.18E+00
.18E+00
.18E+00
.18E+00
.18E+00
. 18E+00
. 18E+00
. 18E+00
.KE+00
.18E+00
uq
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
t
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
w
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
1.97E-02
6.63E-04
6.65E-04
6.66E-04
6.69E-04
6.71E-04
6.75E-04
6.79E-04
6.85E-04
6.92E-04
7.02E-04
7.15E-04
7.33E-04
7.57E-04
7.91E-04
8.40E-04
9.12E-04
1.03E-03
1.22E-03
1.63E-03

0.
7.
1.
1.
1.
1.
1.
1.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
2.

-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
2
OOE+00
30E-01
03E+00
26E+00
46E+00
63E+00
79E+00
93E+00
06E+00
19E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
28E+00
22E+00
12E+00
95E+00
60E+00
26E+00
16E+00
15E+00
15E+00
15E+00
15E+00
15E+00
1EE+00
17E+00
18E+00
20E+00
22E+00
25E+00
28E+00
31E+00
35E+00
38E+00
43E+00
47E+00
51E+00
56E+00
S1E+00
66E+00
72E+00
77E+00
83E+00
89E+00
95E+00
01E+00
V
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
52E-02
52E-02
52E-02
52E-02
52E-02
52E-02
52E-02
52E-02
52E-02
51E-02
51E-02
51E-02
51E-02
50E-02
SOE-02
49E-02
49E-02
43E-02
30E-02
10E-02
13
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.30E+00
2.23E+00
2.13E+00
1.96E+00
1.61E+00
1.25E+00
1.16E+00
1.14E+00
1.14E+00
1.14E+00
1.15E+00
1.15E+00
1.1SE+00
1.17E+00
1.18E+00
1.20E+00
1.23E+00
1.25E+00
1.28E+00
1.31E+00
1.35E+00
1.39E+00
1.43E+00
1.47E+00
1.52E+00
1.56E+00
1.61E+00
1.6«E+00
1.72E+00
1.77E+00
1.83E+00
1.89E+00
1.95E+00
2.01E+00
vx
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.18E-01
4.18E-01
4.17E-01
4.16E-01
4.14E-01
4.10E-01
4.03E-01
                                                        C-31

-------
S.05E+01
s.esE+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.57E+02
1.87E+02
2.23E+02
2.66E+02
3.17E+02
3.79E+02
4.54E+02
5.43E+02
6.50E+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
9.24E-03
8.S7E-03
7.43E-03
5.S7E-03
4.30E-03
3.36E-03
2.69E-03
2.18E-03
1.79E-03
1.47E-03
1.21E-03
l.OOE-03
8.27E-04
6.83E-04
S.63E-04
4.64E-04
3.83E-04
3.15E-04
2.60E-04
2.14E-04
1.75E-04
1.44E-04
1.18E-04
9.66E-05
7.89E-OS
S.43E-05
5.23E-05
4.25E-05
3.44E-05
2.78E-05
2.24E-05
9.24E-03
B.67E-03
7.43E-03
5.67E-03
4.30E-03
3.36E-03
2.S9E-03
2.18E-03
1.79E-03
1.47E-03
1.21E-03
l.OOE-03
8.27E-04
6.83E-04
5.63E-04
4.64E-04
3.83E-04
3.15E-04
2.60E-04
2.14E-04
1.75E-04
1.44E-04
1.18E-04
9.S6E-05
7.89E-05
6.43E-05
5.23E-05
4.25E-05
3.44E-05
2.74E-05
2.24E-OS
9.81E-01
9.81E-01
9.B2E-01
9.84E-01
9.86E-01
9.86E-01
9.87E-01
9.88E-01
9.B8E-01
9.88E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
1.01E-02
:.01E-02
1.01E-02
1.01E-02
1.02E-02
1.02E-02
1.02E-02
1.I.2E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1 . 02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
-9.75E-01
-5.13E-01
-5.70E-02
-1.47E-02
-5.73E-03
-2.81E-03
-1.S7E-03
-9.49E-04
-6.07E-04
-4.04E-04
-2.77E-04
-1.95E-04
-1.40E-04
-1.02E-04
-7.58E-05
-5.71E-05
-4.37E-05
-3.38E-05
-2.65E-05
-2.11E-05
-1.S9E-05
-1.37E-05
-1. HE-OS
-9.14E-06
-7.54E-06
-6.23E-06
-5.16E-06
-4.28E-06
-3.55E-06
-2.94E-06
-2.43E-06
O.OOE+00
1.88E+00
1.65E+00
1.25E+00
9.28E-01
7.12E-01
5.62E-01
4.52E-01
3.68E-01
3.02E-01
2.SOE-01
2.09E-01
1.75E-01
1.48E-01
1.25E-01
1.07E-01
9.27E-02
8.08E-02
7.11E-02
6.31E-02
5.6SE-02
S.11E-02
4.66E-02
4.28E-02
3.96E-02
3.68E-02
3.43E-02
3.22E-02
3.02E-02
2.84E-02
2.6BE-02
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
2.93E-03
2.54E-02
4.03E-02
3.29E-02
2.38E-02
1.80E-02
1.44E-02
1.21E-02
1.05E-02
9.34E-03
8.47E-03
7.77E-03
7.20E-03
6.71E-03
6.29E-03
S.91E-03
5.57E-03
5.26E-03
4.98E-03
4.72E-03
4.48E-03
4.25E-03
4.05E-03
3.86E-03
3.68E-03
3.51E-03
3.35E-03
3.20E-03
3.06E-03
2.93E-03
2.80E-03
3.76E-02
3.06E-02
2.21E-02
1.90E-02
1.76E-02
1.66E-02
1.S9E-02
1.52E-02
1.46E-02
1.41E-02
1.37E-02
1.34E-02
1.31E-02
1.29E-02
1.27E-02
1.2SE-02
1.24E-02
1.23E-02
1.23E-02
1.22E-02
1.21E-02
1.20E-02
1.19E-02
1.18E-02
1.16E-02
1.15E-02
1.13E-02
1.10E-02
1.08E-02
1.05E-02
1.02E-02
3.82E-01
3.01E-01
2.19E-01
1.92E-01
1.82E-01
1.80E-01
1.80E-91
1.82E-01
1.86E-01
1.91E-01
1.97E-01
2.03E-01
2.11E-01
2.19E-01
2.27E-01
2.36E-01
2.46E-01
2.55E-01
2.65E-01
2.75E-01
2.86E-01
2.96E-01
3.06E-01
3.16E-01
3.26E-01
3.36E-01
3.45E-01
3.54E-01
3.63E-01
3.71E-01
3.78E-01
1

time averaged (tav -  900. s) volume concentration:  concentration contour parameter*

c(x.y,z,t) - cc(x) • (erf (xa)-erf (xb))  « (erf (ya)-erf (yb))  • )

   c(x,y,z,t) - concentration (volume traction)  at (x,y,z,t)
            x - downwind distance (m)
            y * crosswlnd horizontal distance (m)
            z - height (m)
            t - time (s)

          erf - error functon
           xa - (x-xc+bx)/(sr2'betax)
           xb - 
-------
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
4.65E-04
3.91E-04
3.29E-04
2.78E-04
2.36E-04
2.00E-04
1.71E-04
1.46E-04
1.24E-04
1.06E-04
9.1 IE-OS
7.79E-05
6.66E-05
5.69E-05
4.86E-05
1.14E+01
1.20E+01
1.27E+01
1.33E+01
1.39E+01
1.46E+01
1.53E+01
1.60E+01
1.67E+01
1.75E+01
1.84E+01
1.93E+01
2.02E+01
2.12E+01
2.23E+01
1.12E+02
1.21E+02
1.30E+02
1.41E+02
1.52E+02
1.66E+02
1.80E+02
1.97E+02
2.16E+02
2.38E+02
2.62E+02
2.90E+02
3.21E+02
3.57E+02
3.97E+02
8.78E-02
8.33E-02
7.93E-02
7.55E-02
7.20E-Q2
6.88E-02
6.57E-02
6.27E-02
5.99E-02
5.72E-02
S.46E-02
S.21E-02
4 . 96E-02
4.73E-02
4.50E-02
3.25E+00
3.61E+00
4.01E+00
4.4SE+00
4.93E+00
5.47E+00
6.07E+00
S.73E+00
7.46E+00
8.27E+00
9.16E+00
l.OZE+01
1.13E+01
1.25E+01
1.39E+01
1
1.
1,
2,
2
2
3
3.
4
5
«
7
8
1
1
.24E+03
.47E+03
.74E+03
.06E+03
. 43E+03
.86E+03
.36E+03
.95E+03
.63E+03
.42E+03
.34E+03
.41E+03
.6SE+03
.01E+04
.18E+04
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
S.94E+03
8.33E+03
l.OOE+04
7.
9.
1.
1.
' ,
1 ,
2.
2:
3,
4,
4.
5.
6.
a.
i.
, 78E+02
.32E+02
, 12E+03
.34E-KJ3
, 61E+03
, 93E+03
.32E+03
.78E+03
. 34E+03
.01E+03
. 81E+03
, 78E+03
, 93E+03
.33E+03
. OOE+04
6,
7,
9,
1.
1
1
1,
2,
2
3
3
4
5.
e
8
.35E+00
. 61E+00
. 13E+00
.10E+01
.31E+01
.58E+01
. 89E+01
.27E+01
.73E+01
.27E+01
. 93E+01
.72E+01
. 66E+01
. 80E+01
. 16E+01
time averaged  (tav  -   900. s) volume concentration:   concentration  In the z -   .00 plane.
downwind
distance
x (m)
l.OOE+00
1.95E+00
2.91E+00
3.86E+00
4.81E+00
5.77E+00
6.72E+00
7.67E+00
8.63E+00
9.S8E+00
1.05E+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.26E+01
1.33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.S9E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
5.05E+01
5.88E+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.57E+02
1.87E+02
2.23E+02
2.66E+02
3.17E+02
3.79E+02
4.54E+02
5.43E+02
6.SOE+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
ti»e of
max cone
(s)
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.2SE+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.2SE+04
1.2SE+04
1.2SE+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.2SE+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.27E+04
1.27E+04
1.27E+04
1.28E+04
1.28E+04
1.29E+04
1.30E+04
1.31E+04
1.32E+04
1.33E+04
1.34E+04
1.36E+04
1.39E+04
1.41E+04
1.45E+04
1.49E+04
1.S3E+04
1.59E+04
1.66E+04
1.74E+04
1.84E+04
cloud
duration

2.
2.
2
2.
2,
2.
2
2
2,
2,
2.
2
2
2.
2.
2
2
2
2.
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2.
2
2
2
2
2
2
2
2
2
2
2
2
2
(a)
.SOE+04
. 50E+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
, 50E+04
.SOE+04
.SOE+04
.SOE+04
.50E+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.50E+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.50E+04
.SOE+04
.SOE+04
.50E+04
.SOE+04
.SOE+04
.SOE+04
.50E+04
.50E+04
. 50E+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
. 50E+04
.SOE+04
. 50E+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
. 50E+04
. 50E+04
effective
half width

2
4
g
1
1
2
2
2
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
S
S
S
e
8
2
3
4
6
7
8
9
1
1
1
1
1
1
1
1
2
2
2
2
2
3
3
3
4
4
5
S
6
6
bbc (m)
.97E-02
.25E-01
.21E-01
. 22E+00
. 61E+00
.01E+00
. 40E+00
.80E+00
.20E+00
. 59E+00
.99E+00
.OOE+00
. 01E+00
.02E+00
. 04E+00
. 06E+00
.09E+00
.12E+00
. 16E+00
.21E+00
.27E+00
. 34E+00
. 43E+00
. 53E+00
.67E+00
. 83E+00
. 04E+00
.29E+00
. 61E+00
.OOE+00
.49E+00
. 40E+00
.11E+01
.57E+01
. 94E+01
.20E+01
. 40E+01
.S6E+01
.70E+01
.08E+02
. 20E+02
.31E+02
. 43E+02
.55E+02
. 68E+02
. 81E+02
.95E+02
.10E+02
. 26E+02
.44E+02
. 64E+02
.87E+02
.13E+02
-42E+02
-75E+02
.12E+02
.55E+02
.03E+02
-57E+02
.18E+02
. 87E+02
average concentration (volume fraction) at (x, y,
y/bbc- y/bbc- y/bbc- y/bbc- y/bbc-

0.
0.
0.
0.
0.
0.
0,
0.
0.
1.
1.
1,
1.
1.
1 ,
1.
1.
1.
2.
4
7.
2.
8.
6
1
5,
1.
4.
2
1,
3,
5,
6
4
3,
2.
2
1
1,
1.
9
7
e.
s,
4,
3.
2
2.
1.
1.
1.
1,
8.
6.
5.
4.
3.
2,
2
1.
1,
0.0
, OOE+00
OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
69E-40
.21E-33
.22E-33
.23E-33
.26E-33
.32E-33
.42E-33
.61E-33
.95E-33
.62E-33
.10E-33
.9SE-33
.10E-32
.61E-32
.50E-31
.13E-29
. 95E-28
.30E-25
. 96E-22
.96E-17
, 04E-11
.29E-0«
.55E-03
.33E-03
.93E-03
.69E-03
. 83E-03
.23E-03
.79E-03
.45E-03
.18E-03
.66E-04
.90E-04
.47E-04
.30E-04
.33E-04
. S4E-04
. 89E-04
.35E-04
.91E-04
.55E-04
.25E-04
. 01E-04
.09E-05
. 47E-05
. 16E-OS
. IDE-OS
.25E-05
.57E-05
. 03E-05
. 60E-05
.25E-OS

0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
8.
8.
8.
8.
9.
9,
1.
1.
1.
2.
5,
1.
5.
4.
7.
4.
8,
3,
2.
7,
2.
3.
4.
3,
2,
1,
1
1.
9.
g ,
6
5
4.
3.
2.
2.
1.
1.
1.
1.
8.
6.
5.
4.
3.
2.
2.
1.
1.
1.
8.
O.S
.OOE+00
, OOE+00
.OOE+00
, OOE+00
OOE+00
OOE+00
OOE+00
, OOE+00
.OOE+00
16E-40
30E-34
.37E-34
46E-34
.67E-34
.07E-34
.79E-34
.11E-33
.34E-33
80E-33
.82E-33
.46E-33
.45E-32
,92E-32
. 46E-31
.75E-30
.09E-28
.96E-2S
.41E-22
.04E-17
.17E-12
.26E-06
.81E-03
.35E-03
.39E-03
. 54E-03
.95E-03
.54E-03
.23E-03
.97E-04
.12E-04
. 64E-04
43E-04
.4SE-04
.64E-04
. 98E-04
.43E-04
. 98E-04
.62E-04
.31E-04
.06E-04
.60E-05
, 92E-05
. SSE-05
. 45E-05
.5SE-05
, 82E-05
.23E-05
. 77E-05
.39E-OS
.10E-05
. S2E-06
1.0
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
3.78E-41
2.69E-34
2.72E-34
2.75E-34
2.82E-34
2.94E-34
3.18E-34
3.59E-34
4.36E-34
S.86E-34
9.15E-34
1.77E-33
4.69E-33
1.92E-32
1.45E-31
2.52E-30
1.33E-28
2.91E-2S
1.11E-22
6.61E-1I
2.33E-12
7.34E-07
1.24E-03
1.41E-03
1.10E-03
8.23E-04
6.33E-04
4.98E-04
4.00E-04
3.24E-04
2.64E-04
2.15E-04
1.76E-04
1.44E-04
1.18E-04
9.66E-OS
7.89E-05
6.44E-05
5.24E-05
4.26E-05
3.45E-05
2.79E-05
2.2SE-05
1.80E-05
1.44E-05
1.15E-OS
9.15E-06
7.25E-06
5.73E-OS
4.52E-06
3.56E-06
2.80E-06
l.S
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
5.79E-42
4.13E-35
4.17E-3S
4.21E-35
4.32E-35
4.51E-35
4.87E-35
5.51E-3S
S.68E-35
8.98E-35
1.40E-34
2.72E-34
7.19E-34
2.95E-33
•2.22E-32
3.86E-31
2.03E-29
4.46E-27
1 . 70E-23
1.01E-18
3.57E-13
r.!3E-07
1.90E-04
2.17E-04
1.69E-04
1.26E-04
9.70E-05
T»«4E-05
6»13E-05
4.96E-05
4.04E-OS
3.30E-05
2.70E-05
2.21E-05
i . 81E-05
1.48E-05
1-21E-05
». 8BE-06
8.04E-06
6.53E-06
5.30E-OS
4.28E-06
3.4SE-OS
2.77E-OS
2.21E-06
1.77E-06
1.40E-06
1.11E-06
8.79E-07
6.94E-07
•5.46E-07
4..29E-07

0
0
0
0
0
0
0
0
0
4
2
3
3
3
3
3
3
4
6
1
1
5
2
1
2
1
3
•i
7
2
8
1
1
1
9
7
5
4
3
2
2
1
1
1
1
8
7
S
4
3
3
2
2
^
1
1
8
6
5
3
3
2.0
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.19E-43
.99E-36
.02E-36
.OSE-36
.13E-36
.27E-36
.S3E-36
.99E-36
.84E-36
.50E-36
.02E-35
.97E-35
.21E-3S
.13E-34
.61E-33
.79E-32
.47E-30
.23E-28
.23E-24
.34E-20
.58E-14
. 16E-09
.38E-05
.57E-05
.22E-05
. 15E-06
.03E-06
.54E-06
.44E-06
. 60E-06
. 93E-06
.39E-OS
.96E-OS
.60E-06
.31E-06
.07E-06
.77E-07
.15E-07
.82E-07
.73E-07
.84E-07
.10E-07
.SOE-07
.OOE-07
.60E-07
.2BE-07
.02E-07
. 06E-08
.37E-08
.02E-08
.96E-08
.HE-OS
y/bbc-
2.5
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
1.40E-44
1.02E-37
1.03E-37
1.04E-37
1.07E-37
1.12E-37
1.21E-37
1.36E-37
1.66E-37
2.23E-37
3.47E-37
6.74E-37
1.78E-36
7.30E-36
" 5.51E-35
9.56E-34
5.03E-32
1.10E-29
4.21E-26
2.51E-21
8.83E-16
2.79E-10
4.70E-07
5.38E-07
4.18E-07
3.12E-07
2.40E-07
1.89E-07
1.52E-07
1.23E-07
1. OOE-07
8.19E-08
6.69E-08
5.48E-08
4.49E-08
3.68E-08
3.00E-08
2.45E-OB
2.00E-08
1.62E-08
1.31E-08
1.06E-08
8.51E-09
S.86E-09
5.49E-09
4.38E-09
3.49E-09
2.77E-09
2.18E-09
1.72E-09
1.35E-09
1.07E-09
time averaged (tav  -   900.
                             volume concentration:   concentration  in the z -  1.00 plane.
downwind
distance
x (m)
l.OOE+00
1.95E+00
2.91E+00
3.86E+00
4.81E+00
5.77E+00
6.72E+00
7.S7E+00
time of
max cone
(s)
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
cloud
duration
Is)
2. SOE+04
2. SOE+04
2. SOE+04
2. SOE+04
2. SOE+04
2.50E+04
2. SOE+04
2.50E+04
effective
half width
bbc (m)
2.97E-02
4.25E-01
8.21E-01
1.22E+00
1.61E+00
2.01E+00
2.40E+00
2.80E+00
average concentration (volume fraction) at (x,y.
y/bbc-
0.0
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
y/bbc-
O.S
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
y/bbc-
1.0
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
y/bbc-
1.5
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0". OOE+00
y/bbc-
2.0
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
zl
y/bbc-
2.5
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
                                                           C-33

-------
8.63E+00
9.58E+00
1.05E+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.2«E+01
1.33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.59E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
5.05E+01
5.88E+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.57E+02
1.87E+02
2.23E+02
2.66E+02
3.17E+02
3.79E+02
4.54E+02
5.43E+02
6.50E+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.27E+04
1.27E+04
1.27E+04
1.28E+04
1.28E+04
1.29E+04
1.30E+04
1.31E+04
1.32E+04
1.33E+04
1.34E+04
1.36E+04
1.39E+04
1.41E+04
1.45E+04
1.49E+04
1.53E+04
1.59E+04
1.66E+04
1.74E+04
1.84E+04
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
50E+04
50E+04
50E+04
50E+04
50E+04
50E+04
50E+04
SOE+04
50E+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
.20E+00
.59E+00
.99E+00
.OOE+00
.01E+00
.02E+00
.04E+00
.06E+00
.09E+00
.12E+00
.16E+00
.21E+00
.27E+00
.34E+00
.43E+00
. 53E+00
.67E+00
.83E+00
.04E+00
S.29E+00
5.61E+00
5. OOE+00
S.49E+00
I.40E+00
Z.11E+01
J.57E+01
I.94E+01
S.20E+01
7.40E+01
S.S6E+01
J.70E+01
1.08E+02
1.20E+02
1.31E+02
L.43E+02
L.SSE+02
1.68E+02
1.81E+02
1.9SE+02
Z.10E+02
2.26E+02
2.44E+02
2.64E+02
2.87E+02
3.13E+02
3.42E+02
3.75E+02
4.12E+02
4.SSE+02
S.03E+02
5.57E+02
6.18E+02
6.87E+02
S
3
3
3
3
3
3
3
4
4
6
9
1
4
1
1
1
6
9
1
3
3
1
S
S
3
2
1
1
1
1
9
8
«
S
4
4
3
2
2
1
1
1
9
7
6
S
4
3
2
2
1
1
75E-44
04E-3«
13E-30
15E-30
18E-30
25E-30
.39E-30
. 64F.-30
08E-30
88E-30
.43E-30
.76E-30
.81E-29
.49E-29
. 68E-28
.11E-27
.59E-2S
.37E-25
.52E-23
.81E-19
.77E-15
.22E-10
.66E-OS
.50E-03
.02E-03
.43E-03
.53E-03
. 99E-03
. 64E-03
.37E-03
.1SE-03
.76E-04
.24E-04
.93E-04
.81E-04
. 85E-04
.03E-04
.34E-04
.75E-04
. 26E-04
.85E-04
.51E-04
.23E-04
.91E-05
.98E-05
.40E-05
.HE-OS
.07E-05
.23E-05
.S6E-05
.02E-OS
.59E-OS
.25E-05
3.92E-44
2.09E-36
2.15E-30
2.16E-30
2.19E-30
2.24E-30
2.33E-30
2.50E-30
2.80E-30
3.36E-30
4.42E-30
6.71E-30
1.24E-29
3.09E-29
1.15E-28
7.60E-28
1.09E-26
4.38E-2S
6.S4E-23
1.24E-19
2.59E-15
2.21E-10
1.14E-05
3.78E-03
3.4SE-03
2.36E-03
1.74E-03
1.37E-03
H2E-03
9.41E-04
7.94E-04
6.71E-04
5.66E-04
4.77E-04
3.99E-04
3.33E-04
2.77E-04
2.29E-04
1.89E-04
1.55E-04
1.27E-04
1.04E-04
8.42E-OS
6.81E-OS
S.48E-OS
4.40E-OS
3.51E-05
2 . 80E-05
2.22E-05
1.76E-05
1.39E-OS
1.09E-05
8.60E-06
1.2SE-44
6.79E-37
6.97E-3a
7.02E-31
7.10E-31
7.26E-31
7.56E-31
8.12E-31
9.10E-31
1.09E-30
1.44E-30
2.1BE-30
4.04E-30
l.OOE-29
3.74E-29
2.47E-28
3.54E-27
1.42E-2S
2.12E-23
4.04E-20
8.41E-16
7.19E-11
3.69E-06
1.23E-03
1.12E-03
7.66E-04
5.64E-04
4.4SE-04
3.65E-04
3.0SE-04
2.58E-04
2.18E-04
1.84E-04
1.5SE-04
1.30E-04
1.08E-04
9.00E-OS
7.45E-05
6.14E-05
5.05E-05
4.13E-OS
3.37E-05
2.73E-OS
2.21E-OS
1.78E-05
1.43E-OS
1.14E-OS
9.09E-06
7.21E-06
5.71E-06
4.50E-06
3.55E-06
2.79E-06
1.40E-4S
1.04E-37
1.07E-31
1.08E-31
1.09E-31
1.11E-31
1.16E-31
1.24E-31
1.40E-31
1.67E-31
2.20E-31
3.34E-31
6.20E-31
1.S4E-30
5.74E-30
3.79E-29
5.42E-28
2.18E-26
3.26E-24
S.19E-21
1.29E-16
1.10E-11
5.66E-07
1.88E-04
1.72E-04
1.18E-04
8.6SE-OS
6.82E-05
5.60E-05
4.68E-OS
3.95E-OS
3.34E-05
2.82E-OS
2.37E-05
1.99E-05
1.66E-05
1.38E-05
1.14E-OS
9.42E-06
7.74E-06
S.33E-06
5.16E-06
4.19E-06
3.39E-06
2.73E-06
2.19E-06
1.75E-06
1.39E-06
1.11E-06
8.75E-07
S.91E-07
5.44E-07
4.28E-07
0. OOE+00
7.54E-39
7.75E-33
7.80E-33
7.88E-33
8.06E-33
8.40E-33
9.01E-33
1.01E-32
1.21E-32
1.S9E-32
2.42E-32
4.49E-32
1.11E-31
4.16E-31
2.74E-30
3.93E-29
1.58E-27
2.36E-25
4.49E-22
9.34E-18
7.98E-13
4.10E-08
1.36E-05
1.25E-05
8.51E-06
6.26E-06
4.94E-06
4.06E-06
3.39E-06
2.86E-06
2.42E-06
2.04E-06
1.72E-06
1.44E-06
1.20E-06
l.OOE-06
8.28E-07
6.82E-07
5.61E-07
4.59E-07
3.74E-07
3.04E-07
2.46E-07
1.98E-07
1.59E-07
1.27E-07
1.01E-07
8.01E-08
6.34E-08
S.OOE-08
3.94E-08
3.10E-08
0. OOE+00
2.58E-40
2.65E-34
2.67E-34
2.59E-34
2.76E-34
2.88E-34
3.08E-34
3.4SE-34
4.14E-34
5.46E-34
8.26E-34
1.53E-33
3.81E-33
1.42E-32
9.38E-32
1.34E-30
5.38E-29
8.05E-27
1.S4E-23
3.19E-19
2.73E-14
1.40E-09
4.66E-07
4.27E-07
2.91E-07
2.14E-07
1.69E-07
1.39E-07
1.17E-07
9.80E-08
8.29E-08
6.98E-08
5.87E-08
4.92E-OB
4.11E-08
3.43E-08
2.83E-08
2.34E-08
1.92E-08
1.57E-08
1.28E-08
1.04E-08
8.37E-09
6.76E-09
5.43E-09
4.34E-09
3.47E-09
2.76E-09
2.17E-J9
1.72E-09
1.35E-09
1.07E-09
time averaged  (tav -  900.  s)  volume concentration:   concentration in the  z -  2.00 plane.
downwind
distance
x (m)
1. OOE+00
1.95E+00
2.91E+00
3.86E+00
4.81E+00
5.77E+00
6.72E+00
7.67E+00
8.63E+00
9.58E+00
1.05E+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.26E+01
1.33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.59E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
5.05E+01
5.88E+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.57E+02
1.87E+02
time of
max cone
(a)
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
cloud effective
duration half width

2
2
2
2
2
2
2
J
2
2
2
2
2
2
2
2
2
^
2
2
2
2
2
2
2
2
Z
2
2
2
2
2
2
2
2
2
2
2
2
(s) bbc (m)
50E+04 2.97E-02
50E+04 4.2SE-01
SOE+04 8.21E-01
50E+04 1.22E+00
SOE+04 1.61E+00
SOE+04 2.01E+00
SOE+04 2.40E+00
SOE+04 2.80E+00
SOE+04 3.20E+00
50E+04 3.59E+00
SOE+04 3.99E+00
SOE+04
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
50E+04
SOE+04
50E+04
SOE+04
SOE+04
.OOE+00
.01E+00
.02E+00
.04E+00
.06E+00
.09E+00
.12E+00
.16E+00
.21E+00
.27E+00
.34E+00
.43E+00
.S3E+00
.67E+00
.83E+00
SOE+04 S.04E+00
SOE+04 S.29E+00
50E+04 5.61E+00
SOE+04 6. OOE+00
SOE+04 6.49E+00
SOE+04 8.40E+00
50E+04 2.11E+01
50E+04 3.57E+01
SOE+04 4.94E+01
SOE+04 6.20E+01
50E+04 7.40E+01
50E+04 8.56E+01
50E+04 9.70E+01
average concentration (volume fraction) at (x,y
y/bbc- y/bbc-% y/bbc- y/bbc- y/bbc-

0
0
0
0
0
0
0
0
1
S
9
9
9
9
1
1
1
1
1
2
4
1
3
2
2
7
8
7
S
1
1
S
2
1
8
6
e
e
5
0.0
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
20E-38
62E-32
41E-27
47E-27
56E-27
7SE-27
01E-26
08E-26
20E-26
42E-26
84E-2C
70E-26
81E-26
12E-25
81E-25
20E-24
60E-23
96E-22
13E-20
81E-17
84E-13
27E-08
12E-04
11E-03
41E-03
14E-03
09E-04
92E-04
42E-04
12E-04
83E-04
V
O.OOE'OO
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
O.OOE.+00
0. OOE+00
0. OOE+00
8.22Ej3»
3.86E-32
6.47E-27
6.S1E-27
6.57E-27
6.70E-27
6.96E-27
7.43E-27
8.26E-27
9.76E-27
1.26E-26
1.86E-26
3.30E-26
7.69.E-26
2.62E-25
1.S1E-24
1.79E-23
S.47E-22
5.58E-20
5.37E-17
4.01E-13
8.70E-09
7.72E-05
3.51E-03
1.66E-03
7.87E-04
5.56E-04
4.75E-04
4.41E-04
4.21E-04
4.01E-M
1.0
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
2.67E-39
1.25E-32
2.10E-27
2.UE-27
2.13E-27
2.1BE-27
2.26E-27
2.41E-27
2.68E-27
3.17E-27
4.10E-27
6.03E-27
1.07E-26
2.50E-26
8.49E-26
4.90E-25
S.80E-24
1.78E-22
1.81E-20
1.74E-17
1.30E-13
2.82E-09
2.51E-05
1.14E-03
S.38E-04
2.55E-04
1.80E-04
1.S4E-04
1.43E-04
1.37E-04
1.30E-04
1.5
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
4.09E-40
1.92E-33
3.22E-28
3.24E-28
3.27E-28
3.34E-28
3.47E-28
3.70E-28
4.11E-28
4.86E-28
6.28E-28
9.25E-28
1.S4E-27
3.83E-27
1.30E-2S
7.52E-26
8.90E-2S
2.72E-23
2.78E-21
2.67E-18
2.00E-14
4.33E-10
3.84E-OS
1.75E-04
8.26E-OS
3.92E-05
2.77E-05
2.37E-05
2.20E-05
2.09E-05
2.00E-05
2.0
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
2.96E-41
1.39E-34
2.33E-29
2.35E-29
2.37E-29
2.42E-29
2.51E-29
2.68E-29
2.98E-29
3.S2E-29
4.55E-29
6.70E-29
1.19E-28
2.77E-28
9.43E-2B
5.44E-27
6.44E-26
1.97E-24
2.01E-22
1.94E-19
1.45E-15
3.14E-11
2.78E-07
1.27E-05
S.98E-06
2.84E-06
2.00E-06
1.71E-06
1.59E-06
1.52E-06
1.45E-06
z)
y/bbc-
2.S
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
1.02E-42
4.76E-36
7.97E-31
8.04E-31
8.09E-31
8.27E-31
8.60E-31
9.16E-31
1.02E-30
1.20E-30
1.56E-30
2.29E-30
4.07E-30
9.48E-30
3.23E-29
1.86E-28
2.20E-27
6.73E-26
6.87E-24
6.63E-21
4.94E-17
1.07E-12
9.52E-09
4.33E-07
2.05E-07
9.70E-08
6.84E-08
5.87E-08
5.45E-08
5.21E-08
4.95E-08
                                                          C-34

-------
2.23E+02
2.6«E+02
3.17E+02
3.79E+02
4.54E+02
5.43E+02
6.50E+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.7BE+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
1.26E+04
1.27E+04
1.27E+04
1.27E+04
1.28E+04
1.28E+04
1.29E+04
1.30E+04
1.31E+04
1.32E+04
1.33E+04
1.34E+04
1.36E+04
1.39E+04
1.41E+04
1.45E+04
1.49E+04
1.53E+04
1.59E+04
1.66E+04
1.74E+04
1.84E+04
2,
2.
2,
2.
2.
2.
2.
2,
2.
2,
2.
2
2.
2,
2.
2
2
2.
2,
2
2
2
.50E+04
.SOE+04
.50E+04
.50E+04
. 50E+04
.50E+04
.50E+04
. 50E+04
. 50E+04
. 50E+04
. 50E+04
.50E+04
.50E+04
. 50E+04
. 50E+04
.SOE+04
.SOE+04
.50E+04
. 50E+04
. 50E+04
. 50E+04
.50E+04
1.
1.
1.
\.
I.
1,
1.
1.
2.
2.
2.
2.
2.
3.
3.
3.
4.
4.
5.
5.
6
6.
08E+02 ,
20E+02
31E+02
,43E+02
.55E+02
68E+02
81E+02
,95E+02
. 10E+02
26E+02
44E+02
, 64E+02
.87E+02
,13E+02
42E+02
.75E+02
. 12E+02
.55E+02
,03E+02
.57E+02
. 18E+02
, 87E+02
5
5
4
4
3
3
2
2
2
1
1
1
9
7
6
4
3
3
2
2
1
1
.50E-04
.12E-04
. 68E-04
.21E-04
.73E-04
.25E-04
. 80E-04
.39E-04
. 02E-04
. 69E-04
. 40E-04
.15E-04
.42E-05
. 66E-05
.19E-05
. 98E-05
.98E-05
.17E-05
.52E-05
.OOE-05
. 58E-OS
.24E-OS
3.78E-04
3.52E-04
3.22E-04
2.90E-04
2.56E-04
2.24E-04
1.93E-04
1.64E-04
1.39E-04
1.16E-04
9.61E-05
7.92E-05
6.48E-05
5.27E-OS
4.26E-05
3.42E-05
2.74E-05
2.18E-05
1.73E-05
1.37E-05
1 . 08E-05
8.53E-06
1,
1,
1,
9.
8.
7,
6,
.23E-04
.14E-04
.05E-04
.40E-05
.32E-05
.26E-05
.26E-05
S.33E-05
4.
3,
3,
2.
2.
I.
1,
1.
8
7.
5.
4
3
2,
.50E-05
.76E-05
.12E-05
.57E-05
.10E-05
.71E-05
.38E-05
.HE-OS
.I9E-06
.08E-06
.62E-06
.45E-06
.52E-06
.77E-06
1
1
1
1
1
1
9
8
6
5
4
3
3
2
2
1
1
1
a
«
5
4
.88E-05
.75E-05
.60E-05
.44E-05
.28E-05
.HE-OS
.SOB-OS
.18E-06
.90E-06
.77E-06
.79E-OS
.94E-OS
.22E-06
. 62E-06
.12E-06
.70E-OS
.36E-06
. 09E-06
.62E-07
.83E-07
.39E-07
.25E-07
1.36E-06
1.27E-06
1.16E-06
1.04E-06
9.25E-07
8.07E-07
6.95E-07
5.92E-07
5.00E-07
4.18E-07
3.47E-07
2.86E-07
2.34E-07
1.90E-07
1.53E-07
1.23E-07
9.87E-OS
7.87E-OS
6.2SE-08
4.95E-08
3.90E-08
3.08E-08
4.68E-08
4.34E-08
3.97E-08
3.57E-08
3.16E-08
2.77E-08
2.38E-08
2.03E-08
1.71E-08
1.43E-08
1.19E-08
9.77E-09
7.96E-09
6.49E-09
S.25E-09
4.23E-09
3.39E-09
2.71E-09
2.14E-09
1.70E-09
1.34E-09
1.06E-09
time averaged (tav -  900.  s)  volume concentration:   concentration In the z -  4.00 plane.
downwind
distance
x (m)
l.OOE+00
1.9SE+00
2.91E+00
3.86E+00
4.81E+00
5.77E+00
6.72E+00
7.67E+00
8.63E+00
9.S8E+00
l.OSE+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.26E+01
1.33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.59E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
5.05E+01
5.88E+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.57E+02
1.87E+02
2.23E+02
2.6SE+02
3.17E+02
3.79E+02
4.S4E+02
5.43E+02
6.50E+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
time of
max cone
(3)
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.2SE+04
1.26E+04
1.26E+04
1.26E+04
1.27E+04
1.27E+04
1.27E+04
1.28E+04
1.28E+04
1.29E+04
1.30E+04
1.31E+04
1.32E+04
1.33E+04
1.34E+04
1.3SE+04
1.39E+04
1.41E+04
1.4SE+04
1.49E+04
1.S3E+04
1.S9E+04
1.66E+04
1.74E+04
1.84E+04
cloud
duration

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2"
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
(S)
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
50E+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
50E+04
50E+04
SOE+04
SOE+04
50E+04
50E+04
SOE+04
50E+04
50E+04
50E+04
SOE+04
SOE+04
SOE+04
SOE+04
50E+04
50E+04
50E+04
50E+04
SOE+04
50E+04
50E+04
SOE+04
SOE+04
50E+04
50E+04
50E+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
effective
half width
b
2.
4.
8.
1.
1.
2.
2.
2.
3.
3.
3.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
5.
5.
5.
6.
6.
8.
2.
3.
•4.
6.
7.
8.
9.
1.
1.
1.
1.
1.
1.
1.
1.
2.
2.
2.
2.
2.
3.
3.
3.
4.
4.
5.
5.
6.
6.
be (m)
97E-02
25E-01
21E-01
22E+00
61E+00
01E+00
40E+00
80E+00
20E+00
S9E+00
99E+00
OOE+00
01E+00
02E+00
04E+00
06E+00
09E+00
12E+00
16E+00
21E+00
27E+00
34E+00
43E+00
S3E+00
S7E+00
B3E+00
04E+00
29E+00
61E+00
OOE+00
49E+00
40E+00
11E+01
57E+01
94E+01
20E+01
40E+01
SSE+01
70E+01
OBE+02
20E+02
31E+02
43E+02
55E+02
68E+02
81E+02
95E+02
10E+02
26E+02
44E+02
64E+02
87E+02
13E+02
42E+02
7SE+02
12E+02
5SE+02
03E+02
S7E+02
18E+02
87E+02
average concentration (volume fraction) at (x, y
y/bbc- y/bbc- y/bbc- y/bbc- y/bbc-

0
0
0
0
0
0
1
2
4
2
1
1
1
1
1
1
2
2
2
4
s
1
3
1
1
2
1
3
3
5
1
2
9
1
8
0.0
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
18E-43
57E-3S
15E-29
S9E-24
68E-20
69E-20
70E-20
73E-20
78E-20
8BE-20
06E-20
37E-20
95E-20
09E-20
68E-20
37E-19
88E-19
72E-18
39B-17
47E-16
18E-14
02E-12
16E-09
03E-OS
S8E-03
6BE-03
21E-05
24E-OS
15E-OS

0
0
0
0
0
0
8
1
2
1
1
1
1
1
1
1
1
1
2
2
4
9
2
1
9
1
8
2
2
3
1
1
6
8
5
9.90E-OS «
1
2
3
5
7
9
1
1
1
1
1
1
1
1
9
7
S
5
4
3
2
2
1
1
1
52E-05
44E-OS
79E-05
56E-05
S3E-05
75E-05
1SE-04
30E-04
38E-04
40E-04
36E-04
27E-04
16E-04
03E-04
01E-05
71E-05
51E-05
42E-05
47E-05
65E-05
96E-05
38E-05
90E-05
52E-05
20E-05
1
1
2
3
S
£
8
8
9
9
9
8
7
7
e
s
4
3
3
2
2
1
1
1
8
0.5
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
13E-44
77E-35
85E-29
78E-24
15E-20
16E-20
17E-20
19E-20
23E-20
29E-20
42E-20
63E-20
03E-20
81E-20
59E-20
41E-20
S7E-19
18E-18
54E-18
70E-1S
HE-IS
08E-12
17E-09
46E-06
15E-03
84E-03
33E-OS
52E-06
60E-06
81E-06
OSE-OS
6BE-05
61E-OS
82E-05
24E-OS
70E-05
OOE-05
95E-05
49E-OS
60E-05
32E-05
75E-05
98E-05
10E-05
19E-05
30E-05
47E-05
73E-05
07E-05
51E-05
03E-05
63E-05
31E-05
04E-OS
27E-0«

0
0
0
0
0
0
2
S
9
S
3
3
3
3
3
4
4
S
6
9
1
3
8
3
3
5
2
6
7
1
3
5
2
2
1
2
3
S
8
1
1
2
2
2
3
3
3
2
2
2
2
1
1
1
9
8
e
s
4
3
2
1.0
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
6SE-44
74E-36
26E-30
78E-25
75E-21
7SE-21
79E-21
8SE-21
98E-21
20E-21
59E-21
29E-21
S8E-21
13E-21
49E-20
06E-20
65E-20
83E-19
lOE-ie
S2E-17
63E-15
74E-13
OSE-10
12E-06
75E-04
97E-04
06E-OS
76E-06
82E-06
21E-06
39E-06
44E-06
47E-06
24E-OS
70E-05
18E-05
60E-05
91E-OS
OBE-05
12E-05
03E-05
84E-OS
59E-OS
30E-05
01E-05
72E-05
45E-05
21E-05
97E-06
14E-06
S9E-06
31E-OS
25E-06
38E-OS
69E-06

0
0
0
0
0
0
4
8
1
B
S
5
5
S
6
6
7
B
1
1
2
4
1
5
4
8
4
1
1
1
S
9
3
4
2
3
5
g
1
1
2
3
3
4
4
4
4
4
3
3
3
2
2
1
1
1
1
8
6
S
4
1.5
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
20E-45
80E-37
42E-30
87E-26
75E-22
77E-22
81E-22
91E-22
10E-22
44E-22
05E-22
11E-22
01E-21
40E-21
28E-21
69E-21
33E-20
87E-20
75E-19
47E-18
04E-16
03E-13
OBE-10
72E-07
75E-05
15E-05
15E-06
24E-07
79E-07
39E-07
20E-07
34E-07
30E-OS
90E-OS
61E-OS
34E-06
98E-06
46E-OS
73E-06
78E-06
64E-06
36E-OG
97E-06
53E-06
OBE-06
64E-06
23E-06
8SE-OS
53E-06
2SE-06
DIE-OS
14E-07
51E-07
19E-07
12E-07

0
0
0
0
0
0
0
€
1
e






s
s
7
1
1
3
9
4
3
6
2
7
7
1
4
e
2
3
2
2
3
S
9
1
1
2
2
3
3
3
3
3
2
2
2
1
1
1
1
9
7
5
4
3
2
2.0
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
37E-3S
03E-31
42E-27
16E-23
18E-23
21E-23
2BE-23
42E-23
S7E-23
10E-23
B8E-23
30E-23
01E-22
65E-22
39E-22
61E-22
25E-21
44E-20
13E-19
93E-17
49E-15
84E-12
25E-08
16E-06
63E-06
28E-07
07E-08
02E-08
4SE-08
77E-08
04E-OB
40E-08
38E-07
89E-07
42E-07
88E-07
23E-07
42E-07
46E-07
36E-07
16E-07
88E-07
56E-07 .
23E-07
91E-07
61E-07
34E-07
11E-07
04E-08
32E-08
B9E-08
72E-08
76E-08
98E-08
z)
y/bbc-
2.5
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
2.18E-39
3.52E-33
2.20E-28
1.42E-24
1.43E-24
1.44E-24
1.46E-24
1.51E-24
1.60E-24
1.74E-24
2.01E-24
2.50E-24
3.47E-24
5.6SE-24
1.16E-23
3.29E-23
1.45E-22
1.18E-21
2.09E-20
9.99E-19
2.56E-16
2.S8E-13
4.26E-10
1.42E-07
2.26E-07
7.83E-09
1.05E-09
6.89E-10
8.40E-10
1.29E-09
2.07E-09
3.22E-09
4.72E-09
6.47E-09
8.26E-09
9.85E-09
1.10E-08
1.17E-08
1.18E-08
1.15E-08
1.08E-08
9.85E-09
8.77E-09
7.64E-09
6.52E-09
5.52E-09
4.60E-09
3.80E-09
3.11E-09
2.52E-09
2.02E-09
1.S2E-09
1.29E-09
1.02E-09
time averaged (tav -  900.  s)  volume concentration:   maximum concentration  (volume fraction) along centerline.


    downwind                 maximum    time of      cloud
    distance     height   concentration max cone     duration
      x (m)        z (m)     c(x,0,z)       (s)          (s)
    l.OOE+00    5.OOE+00    l.OOE+00    1.25E+04     2.50E+04
                                                            C-35

-------
1.95E+00
2.91E+00
3.86E+00
4.81E+00
5.77E+00
6.72E+00
7.67E+00
8.63E+00
9.58E+00
1.05E+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.26E+01
1.33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.59E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
5.05E+01
5.88E+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.S7E+02
1.87E+02
2.23E+02
2.66E+02
3.17E+02
3.79E+02
4.54E+02
5.43E+02
6.50E+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
9.92E+00
1.18E+01
1.31E+01
1.40E+01
1.48E+01
1.53E+01
1.58E+01
1.61E+01
1.62E+01
1.63E+01
1.63E+01
1.63E+01
1.63E+01
1 . 63E+01
1.63E+01
1.63E+01
1.62Et01
1.62E+01
1.62E+01
1.61E+01
1.60E+01
1.58E+01
1.5SE+01
1.52E+01
1.47E+01
1.41E+01
1.31E+01
1.17E+01
9.62E+00
6.56E+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
6.38E-01
2.14E-01
1.01E-01
5.84E-02
3.78E-02
2.64E-02
1.95E-02
1.49E-02
1.18E-02
9.58E-03
9.56E-03
9.53E-03
9.49E-03
9.45E-03
9.40E-03
9.34E-03
9.27E-03
9.18E-03
9.08E-03
8.9SE-03
8.80E-03
8.63E-03
8.42E-03
8.17E-03
7.89E-03
7.56E-03
7.19E-03
6.78E-03
6.33E-03
5.84E-03
S.55E-03
6.33E-03
4 . 93E-03
3.69E-03
2.83E-03
2.23E-03
1.79E-03
1.45E-03
1.18E-03
9.66E-04
7.90E-04
S.47E-04
5.30E-04
4.33E-04
3.S4E-04
2.89E-04
2.35E-04
1.91E-04
1.S5E-04
1.25E-04
1.01E-04
8.09E-05
6.47E-05
5.16E-05
4.10E-OS
3.25E-05
2.57E-05
2.03E-05
1.60E-05
1.25E-OS
1.25E+04
1.2SE+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.2SE+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25B+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1. 266+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.27E+04
1.27E+04
1.27E+04
1.28E+04
1.28E+04
1.29E+04
1.30E+04
1.31E+04
1.32E+04
1.33E+04
1.34E+04
1.36E+04
1.39E+04
1.41E+04
1.4SE+04
1.49E+04
1.53E+04
1.59E+04
l.«6E+04
1.74E+04
1.B4E+04
2.SOE+04
2.50E+04
2.50E+04
2.50E+04
2.SOE+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.SOE+04
2.50E+04
2.SOE+04
2.SOE+04
2.SOE+04
2.50E+04
2.SOE+04
2.50E+04
2.50E+04
2.50E+04
2.SOE+04
2. 506+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.SOE+04
2.50E+04
2.SOE+04
2.SOE+04
2.SOE+04
2.SOE+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.SOE+04
2.SOE+04
2.50E+04
2.50E+04
2.SOE+04
2.50E+04
2.SOE+04
2.50E+04
2.SOE+04
2.SOE+04
2.50E+04
2.50E+04
2.SOE+04
2.SOE+04
2.50E+04
2.50E+04
2.SOE+04
2.50E+04-
2.50E+04
C-36

-------
                      SLAB Example 2:  Input File
    3
    1
.017031
2170.0
239.72
.82
1370840.
4294.0
682.8
2132.52
-32.98
239.72
56.0
.179
16200.
0.
.20
3600.
10000.
0.
1.
2.
4.
.01
10.0
4.50
298.0
50.0
4.
-1.
                                C-37

-------
                                                   Output  File
Ammonia pipeline release (aerosol)  — SLAB model
problem input
idspl
ncalc
wms
cps
tbp
cmedO
dhe
cpsl
rhosl
spb
spc
ts
qs
as
tsd •
qtis
hs
tav
xffm
zp(l)
zp(2)
zp<3)
zp(4)
zO
za
ua
ta
rh
stab
—
_
-
•
~
-
-
_
_
™
.
*
-
.
•
-
_
-
3
1
.017031
2170.00
239.72
.82
1370840.
4234.00
682.80
2132.52
-32.98
239.72
56.00
.18
16200.
.00
.20
3600.00
10000.00
.00
1.00
2.00
4.00
.010000
10.00
4.50
298.00
50.00
4.00
release gas properties

 molecular weight of source gas (kg)
 vapor heat capacity, const, p.  (j/kg-k)
 temperature of source gas  (k)
 density of source gas (kg/m3)
 boiling point temperature
 liquid mass fraction
 liquid heat capacity (j/kg-k)
 heat of vaporization -
• zp<2|-
- zp<3)-
• zp<4>-
vmae «
cpaa *
rhoa •
za
pa
ua -
ta -
rh -
uastr •
stab -
ala
zO
2.1700E+03
2.3972E+02
8.65B2E-01
2.3972E+02
8.2000E-01
4.2940E+03
1.3708E+06
6.8280E+02
1.0315E+01
2.132SE+03
-3.2980E+01
3
5.6000E+01
1.6200E+04
9.0720E+05
O.OOOOE+00
1.7900E-01
6.5416E+01
2.1154E-01
2.0000E-01
O.OOOOE+00
3.6000E+03
1.0400E+03
l.OOOOE+04
O.OOOOE+00
l.OOOOE-fOO
2.0000E+00
4.0000E+00
2.8782E-02
1.0144E+03
1.1770E+00
l.OOOOE+01
1.0133Et05
4.5000E+00
2.9800E+02
5.0000E+01
2.6746E-01
4.0000E+00
O.OOOOE+00
l.OOOOE-02
additional parameters

  sub-step multiplier
  number of calculatlonal sub-steps
  acceleration of gravity (m/s2)
  gas constant  (J/mol- k)
 ncalc -           1
 nssra  -           3
 grav  -  9.8067E+00
 rr    -  8.3143E+00
                                                             C-38

-------
 von Jcarraan constant
                                                       -  4.1000E-01
Instantaneous spatially averaged  cloud parameters
X
l.OOE+00
1.45E+OC
1.90E+00
2.35E+00
2.80E+00
3.25E+00
3.70E+00
4.14E+00
4.59E+00
5.04E+00
5.49E+00
5.61E+00
5.76E+00
5.93E+00
6.15E+00
6.41E+00
6.73E+00
7.11E+00
7.58E+00
8.15E+00
8.85E+00
9.70E+00
1.07E+01
1.20E+01
1.35E+01
1.54E+01
1.76E+01
2.04E+01
2.37E+01
2.78E+01
3.27E+01
3.87E+01
4.61E+01
5.50E+01
6.S8E+01
7.90E+01
9.51E+01
1.15E+02
1.38E+02
1.67E+02
2.03E+02
2.45E+02
2.97E+02
3.61E+02
4.38E+02
5.32E+02
6.46E+02
7.85E+02
9.54E+02
1.16E+03
1.41E+03
1.71E+03
2.09E+03
2.54E+03
3.09E+03
3.75E+03
4.57E+03
5.55E+03
6.76E+03
8.22E+03
l.OOE+04
X
l.OOE+00
1.45E+00
1.90E+00
2.35E+00
2.80E+00
3.25E+00
3.70E+00
4.14E+00
4.59E+00
5.04E+00
5.49E+00
5.61E+00
5.76E+00
5.93E+00
6.15E+00
6.41E+00
6.73E+00
7.11E+00
7.5BE+00
8.15E+00
8.85E+00
9.70E+00
1.07E+01
1.20E+01
1.35E+01
1.54E+01
1.76E+01
2.04E+01
2.37E+01
zc
2.00E-01
7.42E+00
1.01E+01
1.20E+01
1.34E+01
1.45E+01
1.54E+01
1.60E+01
1.64E+01
1.67E+01
1.68E+01
1.68E+01
1.68E+01
1.68E+01
1.67E+01
1.67E+01
1.67E+01
1.67E+01
1.67E+01
1.67E+01
1.66E+01
1.66E+01
1.65E+01
1.64E+01
1.62E+01
1.59E+01
1.54E+01
1.48E+01
1.38E+01
1.23E+01
1.02E+01
7.84E+00
6.05E+00
4.70E+00
3.69E+00
2.93E+00
2.38E+00
1.96E+00
1.65E+00
1.42E+00
1.25E+00
1.11E+00
l.OOE+00
9.17E-01
8.48E-01
7.90E-01
7.42E-01
7.00E-01
6.64E-01
6.31E-01
6.01E-01
5.73E-01
5.47E-01
5.22E-01
4.98E-01
4.74E-01
4.51E-01
4.28E-01
4.06E-01
3.84E-01
3.63E-01
cm
l.OOE+00
6.35E-01
3.03E-01
1.62E-01
9.81E-02
6.51E-02
4.S1E-02
3.43E-02
2.S5E-02
2.10E-02
1.71E-02
1.71E-02
1.71E-02
1.71E-02
1.71E-02
1.70E-02
1.70E-02
1.70E-02
1.70E-02
1.69E-02
1.69E-02
1.68E-02
1.67E-02
1.67E-02
1.66E-02
1.64E-02
1.63E-02
1.61E-02
1.59E-02
h
4.23E-01
2.32E+00
4.22E+00
6.12E+00
8.02E+00
9.92E+00
1.18E+01
1.37E+01
1.S6E+01
1.75E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.95E+01
1.95E+01
1.95E+01
1.95E+01
1.95E+01
1.96E+01
1.96E+01
1.97E+01
1.98E+01
2.00E+01
1.62E+01
1.27E+01
1.03E+01
8.56E+00
7.36E+00
6.60E+00
6.18E+00
6.0SE+00
6.20E+00
6.63E+00
7.32E+00
8.30E+00
9.60E+00
1.13E+01
1.34E+01
1.60E+01
1.92E+01
2.31E+01
2.78E+01
3.35E+01
4.03E+01
4.84E+01
S.80E+01
6.94E+01
8.27E+01
9.84E+01
1.17E+02
1.38E+02
1.62E+02
1.91E+02
cmv
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
1.71E-02
1.71E-02
1.71E-02
1.71E-02
1.71E-02
1.70E-02
1.70E-02
1.70E-02
1.70E-02
1.69E-02
1.69E-02
1.68E-02
1.67E-02
1.67E-02
1.66E-02
1.64E-02
1.63E-02
1.61E-02
1.S9E-02
bb
2.12E-01
1.63E+00
3.05E+00
4.48E+00
S.90E+00
7.32E+00
8.74E+00
1.02E+01
1.16E+01
1.30E+01
1.44E+01
1.44E+01
1.44E+01
1.45E+01
1.45E+01
1.4SE+01
1.4SE+01
1.45E+01
1.45E+01
1.46E+01
1.4SE+01
1.47E+01
1.47E+01
1.48E+01
1.49E+01
1.50E+01
1.51E+01
1.52E+01
1.54E+01
1.5SE+01
1.59E+01
2.01E+01
2.66E+01
3.48E+01
4.49E+01
5.72E+01
7.15E+01
8.75E+01
1.05E+02
1.23E+02
1.42E+02
1.61E+02
1.80E+02
1.99E+02
2.18E+02
2.37E+02
2.5SE+02
2.7SE+02
2.95E+02
3.16E+02
3.39E+02
3.63E+02
3.89E+02
4.19E+02
4.52E+02
4.89E+02
5.31E+02
5.78E+02
6.32E+02
6.93E+02
7.62E+02
cmda
O.OOE+00
3.61E-01
6.90E-01
8.29E-01
8.93E-01
9.25E-01
9.44E-01
9.56E-01
9.64E-01
9.69E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.74E-01
9.74E-01
9.74E-01
9 74E-01
b
1.90E-01
3.41E-01
4.92E-01
6.43E-01
7.94E-01
9.44E-01
1.10E+00
1.25E+00
1.40E+00
1.55E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
2.12E+00
2.75E+00
3.SSE+00
4.53E+00
5.70E+00
7.05E+00
8.S4E+00
1.01E+01
1.18E+01
1.34E+01
1.S1E+01
1.67E+01
1.83E+01
1.98E+01
2.12E+01
2.26E+01
2.39E+01
2.53E+01
2.66E+01
2.79E+01
2.92E+01
3.06E+01
3.21E+01
3.37E+01
3.S4E+01
3.72E+01
3.91E+01
4.13E+01
4.36E+01
4.62E+01
cmw
O.OOE+00
3.72E-03
7.11E-03
8.55E-03
9.20E-03
9.54E-03
9.74E-03
9.86E-03
9.94E-03
9.99E-03
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
1 .OOE-02
l.OOE-02
l.OOE-02

0
4
8
1
1
2
2
3
3
4
4
4
4
4
5
5
5
6
6
7
7
8
9
1
1
1
1
1
2
2
3
3
4
5
6
7
9
1
1
1
2
2
2
3
4
5
6
7
9
1
1
1
2
2
3
3
4
5
6
8
^

_1
-1
-1
-1
-1
-1
-1
-1
-1
-1
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
bbx
OOE+00
49E-01
98E-01
35E+00
80E+00
2SE+00
70E+00
14E+00
S9E+00
04E+00
49E+00
C1E+00
76E+00
93E+00
15E+00
41E+00
73E+00
11E+00
58E+00
15E+00
85E+00
70E+00
73E+00
10E+01
25E+01
44E+01
6SE+01
94E+01
27E+01
68E+01
17E+01
77E+01
51E+01
40E+01
48E+01
80E+01
41E+01
14E+02
37E+02
66E+02
02E+02
44E+02
96E+02
60E+02
37E+02
31E+02
45E+02
84E+02
53E+02
16E+03
41E+03
71E+03
08E+03
54E+03
08E+03
75E+03
56E+03
55E+03
76E+03
22E+03
OOE+04
cmwv
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
68E-03
69E-03
69E-03
69E-03
70E-03
70E-03
71E-03
71E-03
72E-03
74E-03
75E-03
77E-03
78E-03
81E-03
84E-03
87E-03
92E-03
97E-03
03E-03
bx
O.OOE+00
4.49E-01
8.98E-01
1.35E+00
1.80E+00
2.2SE+00
2.70E+00
3.14E+00
3.S9E+00
4.04E+00
4.49E+00
4.61E+00
4.76E+00
4.93E+00
5.15E+00
S.41E+00
5.72E+00
6.11E+00
6.58E+00
7.15E+00
7.I5E+00
8.70E+00
9.73E+00
1.10E+01
1.25E+01
1.44E+01
1.66E+01
1.94E+01
2.27E+01
2.68E+01
3.17E+01
3.77E+01
4.51E+01
5.40E+01
6.48E+01
7.80E+01
9.41E+01
1.14E+02
1.37E+02
1.66E+02
2.02E+02
2.44E+02
2.96E+02
3.60E+02
4.37E+02
5.31E+02
6.45E+02
7.84E+02
9.S3E+02
1.16E+03
1.41E+03
1.71E+03
2.0BE+03
2.54E+03
3.08E+03
3.75E+03
4.56E+03
5.55E+03
6.75E+03
8.22E+03
l.OOE+04
we
6.54E+01
4.47E+01
3.62E+01
2.96E+01
2.40E+01
1.92E+01
1.47E+01
1.07E+01
6.91E+00
3.36E+00
O.OOE+00
-1.05E-02
-2.33E-02
-3.89E-02
-5.78E-02
-8.08E-02
-1.09E-01
-1.43E-01
-1.84E-01
-2.34E-01
-2.94E-01
-3.67E-01
-4.55E-01
-5.S2E-01
-6.91E-01
-8.4SE-01
-1.03E+00
-1.25E+00
-1.52E+00
cv
l.OOE+00
7.46E-01
4.24E-01
2.46E-01
1.55E-01
1.05E-01
7.S5E-02
5.66E-02
4.39E-02
3.50E-02
2.86E-02
2.86E-02
2.85E-02
2.85E-02
2.B5E-02
2.85E-02
2.84E-02
2.84E-02
2.83E-02
2.83E-02
2.82E-02
2.B1E-02
2.80E-02
2.78E-02
2.77E-02
2.75E-02
2.72E-02
2.69E-02
2.66E-02
2.61E-02
2.55E-02
2.49E-02
2.43E-02
2.3SE-02
2.24E-02
2.10E-02
1.91E-02
1.69E-02
1.45E-02
1.21E-02
9.93E-03
7.97E-03
6.30E-03
4 . 92E-03
3.80E-03
2.92E-03
2.23E-03
1.70E-03
1.29E-03
9.84E-04
7.48E-04
5.68E-04
4.32E-04
3.28E-04
2.49E-04
1.90E-04
1.44E-04
1.10E-04
8.33E-05
6.34E-05
4.83E-OS
vg
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
rho
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.23E+00
.23E+00
.23E+00
. 23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
. 23E+00
.23E+00
.22E+00
.22E+00
. 22E+00
.22E+00
.22E+00
.22E+00
.21E+00
. 20E+00
.20E+00
.19E+00
.19E+00
.19E+00
.18E+00
. 18E+00
. 18E+00
. 18E+00
.18E+00
. 18E+00
. 18E+00
. 18E+00
. 18E+00
. UE+00
. 18E+00
. 18E+00
. 18E+00
. 18E+00
.18E+00
. 18E+00
. 18E+00
ug
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
, OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
4
t
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
83E+02
83E+02
S3E+02
83E+02
83E+02
83E+07
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
84E+02
84E+02
84E+02
84E+02
84E+02
8SE+02
85E+02
85E+02
86E+02
87E+02
88E+02
90E+02
91E+02
93E+02
94E+02
95E+02
96E+02
96E+02
97E+02
97E+02
97E+02
97E+02
98E+02
98E+02
98E+02
98E+02
98E+02
98E+02
98E+02
98E+02
98E+02
98E+02
98E+02
w
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
25E-01
62E-02
63E-02
S3E-02
63E-02
63E-02
64E-02
64E-02
65E-02
66E-02
68E-02
70E-02
73E-02
78E-02
86E-02
97E-02
16E-02
48E-02
09E-02

a
1
2
2
3
3
3
3
4
t
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
u
.OOE+00
.SOE+00
.12E+00
.60E+00
.01E+00
.36E+00
.68E+00
.98E+00
.25E+00
.51E+00
.7SE+00
.75E+00 4
.75E+00 <
.75E+00 4
.75E+00 <
.75E+00 <
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.74E+00 <
.74E+00 4
.73E+00 4
.73E+00 4
.71E+00 <
.72E+00 4
.67E+00 <
.55E+00 <
.4SE+00 4
.36E+00 4
.29E+00 4
.24E+00 '
.22E+00 4
.21E+00 4
.21E+00 4
.21E+00 '
.21E+00 4
.24E+00 4
.27E+00 4
.33E+00 4
.39E+00 4
.47E+00 4
.55E+00 <
.64E+00 4
.74E+00 4
.84E+00 4
.94E+00 4
.04E+00 !
-14E+00 !
.24E+00 !
.35E+00 • !
.45E+00 !
.S4E+00 !
. 64E+00 .
.73E+00 .
V
.OOE+00 t
.OOE+00 C
.OOE+00 C
.OOE+00 C
.OOE+00 C
.OOE+00 C
.OOE+00. C
.OOE+00 (
.OOE+00 I
.OOE+00 C
.50E-01 (
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.49E-01
.49E-01
.49E-01
.49E-01
.49E-01
.49E-01
.48E-01
ua
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.82E+00
.82E+00
.81E+00
.80E+00
.79E+00
.77E+00
.74E+00
.65E+00
.52E+00
.40E+00
.30E+00
.23E+00
.19E+00
.17E+00
.17E+00
.18E+00
.19E+00
.20E+00
.23E+00
.28E+00
.33E+00
.40E+00
.48E+00
.56E+00
.65E+00
.75E+00
'.85E+00
.95E+00
.05E+00
.15E+00
.2SE+00
.35E+00
.4SE+00
.55E+00
.65E+00
.74E+00
vx
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.15E-01
.L5E-01
.15E-01
.15E-01
.15E-01
.15E-01
.15E-01
.1SE-01
.15E-01
.15E-01
.15E-01
.15E-01
.15E-01
.15E-01
.15E-01
.15E-01
.ISE^Ol
.15E-01
                                                          C-39

-------
2.78E+01
3.27E+01
3.87E+01
4.61E+01
5.50E+01
6.58E+01
7.90E+01
9.51E+01
1.15E+02
1.38E+02
1.67E+02
2.03E+02
2.45E+02
2.97E+02
3.61E+02
4.38E+02
5.32E+02
6.46E+02
7.85E+02
9.54E+02
1.16E+03
1.41E+03
1.71E+03
2.09E+03
2.54E+03
3.09E+03
3.75E+03
4.57E+03
5.55E+03
6.76E+03
8.22E+03
l.OOE+04
1.S6E-02
1.53E-02
1.49E-02
1.45E-02
1.40E-02
1.34E-02
1.25E-02
1.14E-02
1.01E-02
8.64E-03
7.22E-03
5.90E-03
4.73E-03
3.74E-03
2.92E-03
2.25E-03
1.73E-03
1.32E-03
1.01E-03
7.67E-04
5.83E-04
4.43E-04
3.36E-04
2.56E-04
1.94E-04
1.48E-04
1.12E-04
8.53E-05
6.48E-05
4.93E-OS
3.75E-05
2.86E-05
1.S6E-02
1.53E-02
1.49E-02
1.45E-02
1.40E-02
1.34E-02
1.25E-02
1.14E-02
1.01E-02
8.64E-03
7.22E-03
5.90E-03
4.73E-03
3.74E-03
2.92E-03
2.25E-03
1.73E-03
1.32E-03
1.01E-03
7.S7E-04
5.83E-04
4.43E-04
3.36E-04
2.56E-04
1.94E-04
1.48E-04
1.12E-04
8.53E-05
6.48E-05
4.93E-05
3.75E-05
2.86E-05
9.74E-01
9.75E-01
9.75E-01
9.75E-01
9.76E-01
9.77E-01
9.77E-Q1
9.79E-01
9.80E-01
9.81E-01
9.83E-01
9.84E-01
9.85E-01
9.86E-01
9.87E-01
9.88E-01
9.88E-01
9.88E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
l.OOE-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
.11E-03
.21E-03
.32E-03
. 44E-03
.59E-03
. 80E-03
9.08E-03
9.45E-03
9.89E-03
1.01E-02
1.01E-02
1.01E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02B-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02B-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
-1.83E+00
-2.19E+00
-1.47E+00
-8.97E-01
-5.40E-01
-3.24E-01
-1.94E-01
-1.1SE-01
-7.01E-02
-4.28E-02
-2.65E-02
-1.S7E-02
-1.07E-02
-S.98E-03
-4.6SE-03
-3.17E-03
-2.20E-03
-1.56E-03
-1.13E-03
-8.41E-04
-6.37E-04
-4.93E-04
-3.88E-04
-3.10E-04
-2.50E-04
-2.04E-04
-1.67E-04
-1.37E-04
-1.13E-04
-9.23E-05
-7.53E-05
-6.13E-05
O.OOE+00
O.OOE+00
3.77E+00
3.94E+00
4. OOE+00
3.95E+00
3.77E+00
3.49E+00
3.13E+00
2.72E+00
2.30E+00
1.90E+00
1.5SE+00
1.25E+00
1.01E+00
8.14E-01
6.SOE-01
5.39E-01
4.46E-01
3.74E-01
3.19E-01
2.77E-01
2.45E-01
2.20E-01
2.01E-01
1.85E-01
1.72E-01
1.S1E-01
1.52E-01
1.44E-01
1.36E-01
1.29E-01
O.OOE+00 !
O.OOE+00 1
O.OOE+00 4
O.OOE+00 (
O.OOE+00 "
O.OOE+00 f
O.OOE+00 '.
O.OOE+00
O.OOE+00 <
O.OOE+00 '
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
.S2E-02
.21E-01
.90E-02
.16E-02
.39E-02
.46E-02
>.18E-02
.4SE-02
I.27E-02
I.01E-02
. 80E-02
.56E-02
.37E-02
. 24E-02
.19E-02
.19E-02
.21E-02
.27E-02
.32E-02
.37E-02
.41E-02
.44E-02
.45E-02
.44E-02
.42E-02
.37E-02
-29E-02
.20E-02
.07E-02
'.91E-02
7.71E-02
7.47E-02
1.48E-01
1.47E-01
1.44E-01
1.38E-01
1.31E-01
1.23E-01
1.16E-01
1.10E-01
1.04E-01
9.90E-02
9.45E-02
9.04E-02
8.67E-02
8.34E-02
8.07E-02
7.85E-02
7.66E-02
7.50E-02
7.37E-02
7.25E-02
7.13E-02
7.02E-02
6.89E-02
6.76E-02
6.61E-02
6.44E-02
6.25E-02
6.04E-02
5.81E-02
5.57E-02
5.31E-02
5.04E-02
.16E-01
.16E-01
.17E-01
.16E-01
.15E-01
.14E-01
.13E-01
.13E-01
.12E-01
.12E-01
.12E-01
.12E-01
.12E-01
.12E-01
.13E-01
.13E-01
.14E-01
.14E-01
.15E-01
.16E-01
J.16E-01
1.17E-01
1.17E-01
1.18E-01
.18E-01
.19E-01
.19E-01
.18E-01
.18E-01
.17E-01
4.16E-01
4.15E-01
1

time averaged (tav - 3600. 9)  volume concentration:   concentration contour parameters

c(x,y,z,t)  - cc(x) * (erf(xa)-erf(xb))  * (erf(ya)-erf(yb))  *  (exp(-za'za)+exp(-zb*zb))

   c(x,y,z,t) - concentration (volume fraction)  at (x,y,z,t)
            x - downwind distance Ira)
            y - crosswlnd horizontal distance (m)
            z - height (m)
            t - tine (si

          erf - error functon
           xa - (x-xc+bx)/(sr2*betax)
           xb - (x-xc-bx)/(sr2*betax)
           ya - (y+b)/(sr2*betac)
           yb - 
-------
5.
6
7
9.
1.
1.
1.
2.
2.
3.
3,
4
5
6
8.
1
,32E+02
.46E+02
.85E+02
54E+02
, 16E+03
.41E+03
.71E+03
.09E+03
. 54E+03
. 09E+03
. 75E+03
. 57E+03
. 55E+03
. 76E+03
.22E+03
. OOE+04
6.
4,
3.
3.
2.
1,
1.
1.
9.
8,
6
5,
4.
3,
2,
.39E-03
. 96E-03
.87E-03
.03E-03
.39E-03
.90E-03
.52E-03
.22E-03
.90E-04
. 04E-04
.55E-04
.35E-04
.37E-04
.57E-04
.92E-04
2.38E-04
2
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
.12E+01
.26E+01
.39E+01
.53E+01
.66E+01
.79E+01
.92E+01
.06E+01
.21E+01
.37E+01
.54E+01
.72E+01
.91E+01
.13E+01
.36E+01
.62E+01
1,
1,
1
1.
2.
2
2
2.
3
3
4,
4
5
5.
6
7
.45E+02
.59E+02
.74E+02
.91E+02
, 10E+02
.32E+02
.57E+02
. 86E+02
.20E+02
.60E+02
.05E+02
.59E+02
.20E+02
. 90E+02
. 70E+02
. 60E+02
7.
7
7
6
e.
6
5
5,
5
4
4
4
4
4
3
3
.90E-01
.42E-01
.OOE-01
.64E-01
•31E-01
.01E-01
.73E-01
.47E-01
.22E-01
. 98E-01
.74E-01
.51E-01
.28E-01
. 06E-01
. 84E-01
.63E-01
7
8
1
1
1
1
2
2
3
3
4
5
6
7
9
1
.26E+00
.78E+00
.07E+01
.29E+01
.57E+01
.90E+01
.29E+01
.76E+01
. 32E+01
.98E+01
.75E+01
.65E+01
.71E+01
.94E+01
.35E+01
.10E+02
2
3
3
4
5
6
7
9
1
1
1
1
2
2
3
3
.47E+02
.OOE+02
.S2E+02
.37E+02
.27E+02
.34E+02
.61E+02
.12E+02
.09E+03
.31E+03
.57E+03
.87E+03
.24E+03
.68E+03
.20E+03
.83E+03
5,
6
7.
9,
1,
1.
1.
2,
2
3.
3.
4
5
6.
8,
1
.32E+02
.46E+02
. 85E+02
.54E+02
, 16E+03
.41E+03
.71E+03
.09E+03
.54E+03
.09E+03
. 75E+03
. 57E+03
. S5E+03
.76E+03
.22E+03
.OOE+04
5,
6
7
9
1,
1
1
2
2
3
3
4
5
«
8
1
.31E+02
. 45E+02
.84E+02
.53E+02
.16E+03
.41E+03
.71E+03
.08E+03
. 54E+03
. 08E+03
.75E+03
, 56E+03
. 55E+03
.75E+03
.22E+03
.OOE+04
4.
5.
6.
7.
9.
1,
1.
1.
2
2
3.
3,
4
5.
6.
8
.34E+00
.27E+00
.40E+00
.78E+00
.47E+00
. 15E+01
.40E+01
.70E+01
. 07E+01
. 52E+01
. 06E+01
. 73E+01
. 53E+01
. 52E+01
. 71E+01
. 16E+01
time averaged  (tav - 3600.  a)  volume concentration:  concentration in the z -   .00 plane.
downwind time of
distance max cone
x (m) (s)
l.OOE+00
1.45E+00
1.90E+00
2.35E+00
2.80E+00
3.25E+00
3.70E+00
4.14E+00
4.59E+00
5.04E+00
5.49E+00
5.61E+00
5.76E+00
5.93E+00
6.1SE+00
6.41E+00
6.73E+00
7.11E+00
7.58E+00
8.1SE+00
8.8SE+00
9.70E+00
1.07E+01
1.20E+01
1.35E+01
1.S4E+01
1.76E+01
2.04E+01
2.37E+01
2.78E+01
3.27E+01
3.87E+01
4.61E+01
5.50E+01
6.58E+01
7.90E+01
9.51E+01
1.15E+02
1.38E+02
1.67E+02
2.03E+02
2.45E+02
2.97E+02
3.61E+02
4.38E+02
5.32E+02
6.46E+02
7.85E+02
9.54E+02
1.16E+03
1.41E+03
1.71E+03
2.09E+03
2.54E+03
3.09E+03
3.75E+03
. 10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
. 10E+03
.10E+03
.10E+03
.10E+03
.10E+03
-10E+03
.10E+03
.10E+03
.10E+03
-IOE+03
. 10E+03
.10E+03
.10E+03
.XOE+03
.10E+03
.10E+03
. 10E+03
.10E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.12E+03
.12E+03
.13E+03
.13E+03
.14E+03
.15E+03
. 16E+03
.17E+03
.18E+03
.20E+03
.22E+03
.2SE+03
.28E+03
.32E+03
.37E+03
.43E+03
.50E+03
.59E+03
.69E+03
.82E+03
4.57E+03 8.97E+03
S.55E+03 9.16E+03
6.76E+03 9.39E+03
8.22E+03 9.67E+03
1. OOE+04 1. OOE+04
1
time averaged (tav - 3600.
downwind tijne of
distance max cone
x (m) (s)
l.OOE+00 8.10E+03
1.45E+00 8.10E+03
1.90E+00 8.J.OE+03
2.35E+00 8.10E+03
2.80E+00 8.10E+03
3.25E+00 8.10E+03
3.70E+00 8.10E+03
cloud
duration
(s)
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.C2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.S2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.S2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04

s) volume
cloud
duration
(s)
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
effective
half width
bbc (m)
2.12E-01
1.64E+00
3.06E+00
4.48E+00
S.91E+00
7.33E+00
8.75E+00
1.02E+01
1.16E+01
1.30E+01
1.44E+01
1.45E+01
.45E+01
.45E+01
.45E+01
.45E+01
.4SE+01
.4SE+01
.46E+01
.46E+01
.47E+01
.47E+01
.48E+01
.49E+01
.50E+01
1.52E+01
1.53E+01
l.SSE+01
1.59E+01
1.63E+01
1.68E+01
2.12E+01
2.77E+01
3.60E+01
4.63E+01
S.88E+01
7.33E+01
8.96E+01
1.07E+02
1.26E+02
1.46E+02
1.66E+02
1.87E+02
2.08E+02
2.30E+02
2.53E+02
2.77E+02
3.03E+02
3.32E+02
3.65E+02
4 .03E+02
4.46E+02
4.96E+02
5.55E+02
6.24E+02
7.03E+02
7.95E+02
9.01E+02
1.02E+03
1.16E+03
1.32E+03

concentration :
effective
half width
bbc (m)
2.12E-01
1.64E+00
3.06E+00
4.48E+00
5.91E+00
7.33E+00
8.75E+00
average concentration (volume fraction)
y/bbc-

8
7
1
8
2
1
1
e
2
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
5
9
1
2
2
2
3
3
3
3
3
2
2
1
1
9
7
5
4
3
2
1
1
8
6
4
3
2
1
1
9
7
S

0.0
.72E-01
.43E-27
.55E-15
.22E-11
. 80E-08
.01E-06
.12E-05
.18E-05
.20E-04
. 81E-04
.25E-03
.25E-03
.25E-03
.25E-03
.25E-03
.25E-03
.26E-03
.2SE-03
.27E-03
.29E-03
.32E-03
.36E-03
.43E-03
.53E-03
.70E-03
.98E-03
.47E-03
.38E-03
.22E-03
.32E-03
.92E-02
.32E-02
.47E-02
.78E-02
.09E-02
.35E-02
.45E-02
.33E-02
.01E-02
.S7E-02
.09E-02
. 66E-02
.28E-02
.77E-03
.38E-03
.53E-03
.12E-03
.06E-03
.26E-03
.66E-03
.22E-03
.95E-04
.54E-04
.77E-04
.47E-04
.53E-04
. 84E-04
.35E-04
. 86E-05
.24E-05
.34E-05

concentration
y/bbc-
0.5
8.23E-01
5.11E-27
1.06E-15
5.65E-11
1.92E-08
S.95E-07
7.69E-06
4.25E-05
1.51E-04
.99E-04
.57E-04
.57E-04
.58E-04
. 58E-04
.59E-04
. 61E-04
.64E-04
.68E-04
.76B-04
.88E-04
9.06E-04
9.35E-04
9.BOE-04
1.05E-03
1.17E-03
1.3SE-03
1.69E-03
2.32E-03
3.59E-03
6.40E-03
1.32E-02
1.59E-02
1.70E-02
1.91E-02
2.13E-02
2.30E-02
2.37E-02
2.29E-02
2.07E-02
1.77E-02
1.44E-02
1.14E-02
8.80E-03
6.72E-03
5.07E-03
3.80E-03
2.83E-03
2.10E-03
1.55E-03
1.14E-03
8.40E-04
6.15E-04
4.50E-04
3.28E-04
2.39E-04
1.74E-04
1.27E-04
9.26E-05
6.78E-05
4.98E-05
3.67E-05

in the z -
y/bbc-
1.0
3.01E-01
1.66E-27
3.45E-16
1.83E-11
6.25E-09
2.25E-07
2.50E-06
1.38E-05
4.91E-05
1.30E-04
2.78E-04
2.78E-04
2.78E-04
2.79E-04
2.79E-04
2.79E-04
2.BOE-04
2.82E-04
2.84E-04
2.88E-04
2.94E-04
3.03E-04
3.18E-04
3.41E-04
3.79E-041
4.41E-04
5.50E-04
7.53E-041
1.16E-03
2.08E-03
4.28E-03
5.17E-03
5.51E-03
6.19E-03
6.90E-03
7.48E-03
7.70E-03
7.43E-03
6.72E-03
5.73E-03
4.67E-03
3.69E-03
2.86E-03
2.18E-03
1.65E-03
1.23E-03
9.19E-04
6.82E-04
5.04E-04
3.71E-04
2.73E-04
2.00E-04
1.46E-04
1.06E-04-
7.75E-OS
5.65E-OS
4.12E-OS
3.00E-05
2.20E-05
1.62E-05
1.19E-05

X.OO plane
y/bbc-
1.5
7.47E-03
2.54E-28
5.29E-17
2.81E-12
9.58E-10
3.46E-08
3.83E-07
2.12E-06
7.52E-06
1.99E-05
4.27E-05
4.27E-05
4.27E-05
4.27E-05
4.28E-05
4.29E-05
4.30E-05
4.32E-05
4.36E-05
4.42E-05
4.51E-05
4.65E-05
4.88E-05
5.23E-05
5.81E-05
6.77E-05
8.44E-OS
1.16E-04
1.79E-04
3.19E-04
6.56E-04
7.93E-04
8.45E-04
9.50E-04
1.06E-03
1.15E-03
1.18E-03
1.14E-03
1.03E-03
8.79E-04
7.17E-04
5.67E-04
4.38E-04
3.34E-04
2.S2E-04
1.B9E-04
1.41E-04
1.05E-04
7.73E-05
5.70E-05
4.18E-05
3.06E-05
2.24E-05
1.63E-05
1.19E-05
8.66E-06
6.31E-06
4.61E-06
3.37E-06
2.48E-06
1.83E-06


at (x,y.
y/bbc-

5
1
3
2
6
2
2
1
5
1
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
£
8
1
2
4
5
6
6
7
8
8
8
7
6
5
4
3
2
1
1
1
7
5
4
3
2
1
1
8
e
4
3
2
1
1


average concentration (volume fraction)
y/bbc-

6
1
S
1
1
2
2
0.0
.10E-09
.80E-20
.09E-13
.65E-09
.58E-07
.B8E-06
.15E-03f
y/bbc-
0.5
5.76E-09
1.24E-20
3.50E-13
1.13E-09
1.08E-07
1.98E-06
1.48E-05
y/bbc-
1.0
2.11E-09
4.03E-21
1.14E-13
3.69E-10
3.52E-08
6.43E-07
4.80E-06
y/bbc-
1.5
5.22E-11
6.17E-22
1.74E-14
5.65E-11
5.40E-09
9.86E-06
7.36E-07
2.0
.41E-06
.83E-29
. 82E-18
.03E-13
.93E-11
.50E-09
.77E-08
.53E-07
.45E-07
.44E-06
. 09E-06
. 09E-06
.09E-06
.09E-06
.10E-OS
. 10E-06
.HE-OS
.13E-06
.16E-06
.20E-06
.27E-06
.37E-06
.53E-OS
.79E-OS
.20E-06
.90E-06
.1 IE-OS
.36E-06
.2»E-05
.31E-05
.75E-OS
.74E-05
.12E-05
. 88E-05
.66E-05
.31E-05
.56E-05
.25E-05
.46E-05
.3SE-05
.19E-05
.10E-05
.17E-05
.42E-05
. 83E-05
.37E-05
.02E-05
.58E-06
. 60E-06
.13E-06
.03E-06
.22E-06
.62E-06
.18E-06
.61E-07
.27E-07
.57E-07
.34E-07
.44E-07
.79E-07
.32E-07


at (x,y.
y/bbc-

3
4
1
4
3
7
5
2.0
.78E-14
.44E-23
.26E-15
.09E-12
.91E-10
.14E-09
.33E-08
z)
y/bbc-
2.5
O.OOE+00
6.17E-31
1.30E-19
6.95E-15
2.37E-12
8.54E-11
9.47E-10
5.24E-09
1.86E-08
4.93E-08
1.05E-07
1.06E-07
1.06E-07
1.06E-07
1.06E-07
1.06E-07
1.06E-07
1.07E-07
1.08E-07
1.09E-07
1.12E-07
1.15E-07
1.21E-07
1.30E-07
1.44E-07
1.67E-07
2.09E-07
2.86E-07
4.42E-07
7.89E-07
1.62E-06
1.96E-06
2.09E-06
2.35E-06
2.62E-06
2.84E-06
2.93E-06
2.82E-06
2.55E-06
2.17E-06
1.78E-06
1.40E-06
1.09E-06
8.28E-07
6.25E-07
4.69E-07
3.48E-07
2.59E-07
1.92E-07
1.42E-07
1.04E-07
7.60E-08
5.56E-08
4.04E-08
2.94E-08
2.15E-08
1.57E-08
1.14E-08
8.32E-09
6.15E-09
4.54E-09


z)
y/bbc-
2.5
O.OOE+00
1.50E-24
4.28E-17
1.40E-13
1.34E-11
2.44E-10
1.82E-09
                                                          C-41

-------
4.14E+00 8.10E+03
4.59E+00 S.10E+03
5.04E+00 8.10E+03
5.49E+00 8.10E+03
5.61E+00 3.10E+03
5.76E+00 8.10B+03
5.93E+00 8.10E+03
6.15E+00 g.lOE+03
6.41E+00 8.10E+03
6.73E+00 8.10E+03
7.11E+00 8.10E+03
7.58E+00 8.10E+03
8.15E+00 8.10E+03
8.85E+00 8.10E+03
9.70E+00 8.10E+03
1.07E+01 8.10E+03
1.20E+01 8.10E+03
1.35E+01 8.10E+03
1.54E+01 8.10E+03
1.76E+01 8.10E+03
2.04E+01 8.10E+03
2.37E+01 8.10E+03
2.78E+01 8.11E+03
3.27E+01 8.11E+03
3.87E+01 8.11E+03
4.6-1E+01 8.11E+03
5.50E+01 8.11E+03
6.58E+01 B.11E+03
7.90E+01 8.11E+03
9.51E+01 8.12E+03
1.15E+02 8.12E+03
1.38E+02 8.13E+03
1.67E+02 8.13E+03
2.03E+02 8.14E+03
2.45E+02 8.15E+03
2.97E+02 8.16E+03
3.61E+02 8.17E+03
4.38E+02 8.18E+03
5.32E+02 8.20E+03
6.46E+02 8.22E+03
7.85E+02 8.25E+03
9.54E+02 8.28E+03
1.16E+03 8.32E+03
• 1.41E+03 8.37E+03
1.71E+03 8.43E+03
2.09E+03 8.SOE+03
2.54E+03 ' 8.59E+03
3.09E+03 8.69E+03
3.75E+03 B.82E+03
4.S7E+03 8.97E+03
5.55E+03 9.16E+03
6.76E+03 9.39E+03
8.22E+03 9.67E+03
l.OOE+04 l.OOE+04
1
time averaged (tav - 3600.
downwind tljne of
x (m) (3)
l.OOE+00
1.45E+00
1.90E+00
2.35E+00
2.80E+00
3.25E+00
3.70E+00
4.14B+00
4.59E+00
5.04E+00
5.49E+00
5.61E+00
5.76E+00
5.93E+00
6.15E+00
6.41E+00
6.73E+00
7.11E+00
7.58E+00
8.15E+00
8.85E+00
9.70E+00
1.07E+01
1.20E+01
1.35Et01
1.54E+01
1.76E+01
2.04E+01
2.37E+01
2.78E+01
3.27E+01
3.87E+01
4.61E+01
5.50E+01
6.58E+01
7.90E+01
9.51E+01
1.15E+02
.10E+03
.10E+03
.10E+03
.10E+03
. 10E+03
.10E+03
.10E+03
.10E+03
-10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
-10E+03
.10E+03
.10E+03
-10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
. 10E+03
. 10E+03
.10E+03 .
. 10E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.12E+03
.12E+03
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

3)
62E+04
62E+04
62E+04
62Et04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62Et04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
S2E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E4-04
62E+04

volume
cloud

1
1
1
1
1
1
1
1
(3)
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
1.62Et04
1
1
1
62E+04
62E+04
62E+04
1.62E+04
1
1
1
62E+04
62E+04
62E*04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.02E+01
1.16E+01
1.30E+01
1.44E+01
1.45E+01
1.45E+01
1.45E+01
1.45E+01
1.4SE+01
1.45E+01
1.46E+01
1.46E+01
1.46E+01
1.47E+01
1.47E+01
1.48E+01
1.49E+01
l.SOEtOl
1.52E+01
1.53E+01
1.56E+01
1.59E+01
1.63E+01
1.68E+01
2.12E+01
2.77E+01
3.60E+01
4.63E+01
5.88E+01
7.33E+01
8.96E+01
1.07E+02
1.26E+02
1.46E+02
1.66E+02
1.87E+02
2.08E+02
2.30E+02
2.53E+02
2.77E+02
3.03E+02
3.32E+02
3.65E+02
4.03E+02
4.46E+02
4 . 96E+02
5.5SE+02
6.24E+02
7.03E+02
7.95E+02
9.01E+02
1.02E+03
1.16E+03
1.32E+03

concentration :
effective
half width
bbc (n)
2.12E-01
1.64E+00
3.06E+00
4.48E+00
5.91E+00
7.33E+00
8.75E*00
1.02E+01
1.16E+01
1.30E+01
1.44E+01
1.45E+01
1.45E+01
1.45E+01
1.45E+01
1.45E+01
1.45E+01
1.46E+01
1.46E+01
1.46E+01
1.47E+01
1.47E+01
1.48E+01
1.49E+01
1.50E+01
1.52E+01
1.53E+01
1.56E+01
1.59E+01
1.63E+01
1.68E+01
2.12E+01
2.77E*01
3.60E+01
4.63E+01
5.88E+01
7.33E+01
1.62E+04 8.96E+rfl
9.39E-05
2.88E-04
6.95E-04
1.41E-03
1.41E-03
1.41E-03
1.41E-03
1.41E-03
1.41E-03
1.42E-03
1.42E-03
1.44E-03
1.45E-03
1.48E-03
1.53E-03
1.60E-03
1.7JE-03
1.B9E-03
2.19E-03
2.72E-03
3.68E-03
5.61E-03
9.84E-03
1.98E-02
2
-------
1.38E+02
1.67E+02
2.03E+02
2.45E+02
2.97E+02
3.61E+02
4.38E+02
5.32E+02
6.46E+02
7.85E+02
9.54E+02
1.16E+03
1.41E+03
1.71E+03
2.09E+03
2.S4E+03
3.09E+03
3.75E+03
4.57E+03
5.55E+03
.13E+03
.13E+03
.14E+03
.15E+03
.16E+03
.17E+03
. 18E+03
.20E+03
.22E+03
.25E+03
.28E+03
.32E+03
.37E+03
.43E+03
. 50E+03
.59E+03
.69E+03
.82E+03
.97E+03
. 16E+03
6.76E+03 9.39E+03
8.22E+03 9.67E+03
1. OOE+04 1. OOE+04
1
time averaged (tav - 3600.
downwind tine of
x (ml (s)
I. OOE+00
1.45E+00
1.90E+00
2.35E+00
2.80E+00
3.25E+00
3.70E+00
4.14E+00
4.59E+00
5.04E+00
5.49E+00
5.61E+00
5.76E+00
5.93E+00
6.15E+00
6.41E+00
6.73E+00
7.11E+00
7.58E+00
8.15E+00
8.85E+00
9.70E+00
1.07E+01
1.20E+01
1.35E-+01
1.54E+01
1.76E+01
2.04E+01
2.37E+01
2.78E+01
3.27E+01
3.87E+01
4.61E+01
5.50E+01
6.58E+01
7.90E+01
9.51E+01
1.15E+02
1.38E+02
1.67E+02
2.03E+02
2.45E+02
2.97E+02
3.61E+02
4.38E+02
5.32E+02
6.46E+02
7.85E+02
9.54E+02
1.16E+03
1.41E+03
1.71E+03
2.09E+03
2.54E+03
3.09E+03
3.75E+03
4.57E+03
5.55E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
-10E+03
•10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.12E+03
.12E+03
.13E+03
.13E+03
.14E+03
.15E+03
.16E+03
.17E+03
.18E+03
.20E+03
.22E+03
.25E+03
.28E+03
.32E+03
.37E+03
.43E+03
.50E+03
.59E+03
.69E+03
.82E+03
.97E+03
.16E+03
6.76E+03 9.39E+03
8.22E+03 9.S7E+03
1. OOE+04 1. OOE+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04

s) volume
cloud
(s)
1.62E+04
1.62E+04
1.62E+04
1.S2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.E2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.S2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.S2E+04
1.62E+04
1
1
1
1
1
2
2
2
2
3
3
3
4
4
4
5
6
7
7
9
1
I
1

.07E+02
.26E+02
.4SE+02
. 66E+02
.87E+02
. 08E+02
.30E+02
. 53E+02
.77E+02
. 03E+02
. 32E+02
.6SE+02
.03E+02
.46E+02
. 96E+02
.55E+02
.24E+02
.03E+02
.95E+02
. 01E+02
.02E+03
. 16E+03
.32E+03

concentration :
effective
"
2
1
3
t
5
7
1
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
3
4
5
7
8
1
1
1
1
1
2
2
2
2
3
3
3
4
4
4
5
6
7
7
9
1
1
1
4.*. •J.Ul.lt
bbc (ml
.12E-01
.64E+00
.06E+00
.48E+00
.91E+00
.33E+00
.75E+00
. 02E+01
.16E+01
.30E+01
.44E+01
.45E+01
.45E+01
.45E+01
.45E+01
.45E+01
.45E+01
.46E+01
.46E+01
.46E+01
.47E+01
.47E+01
. 48E+01
.49E+01
.50E+01
.52E+01
.53E+01
.56E+01
.59E+01
.63E+01
.68E+01
.12E+01
.77E+01
.60E+01
.63E+01
.88E+01
.33E+01
.96E+01
.07E+02
.26E+02
.46E+02
.66E+02
.87E+02
.08E+02
.30E+02
.53E+02
.77E+02
.03E+02
.32E+02
.65E+02
.03E+02
.46E+02
.96E+02
.55E+02
.24E+02
.03E+02
.95E+02
.01E+02
.02E+03
.16E+03
.32E+03
2
2
1
1
1
9
6
5
4
3
2
1
1
8
6
4
3
2
1
1
9
7
5

.50E-02
.11E-02
.76E-02
.44E-02
.15E-02
.05E-03
.99E-03
.32E-03
.02E-03
.OOE-03
.23E-03
.65E-03
.22E-03
. 92E-04
.52E-04
. 76E-04
.47E-04
. 53E-04
. 84E-04
.35E-04
.85E-05
.24E-05
.34E-OS

concentration
1.72E-02
1.45E-02
1.21E-02
9.89E-03
7.92E-03
6.22E-03
4.80E-03
3.66E-03
2.76E-03
2.06E-03
1.53E-03
1.13E-03
8.36E-04
6.13E-04
4.48E-04
3.27E-04
2.39E-04
1.74E-04
1.27E-04
9.25E-05
6.77E-05
4.98E-05
3.67E-05

In the z -
5.59E-03
4.72E-03
3.93E-03
3.21E-03
2.57E-03
2.02E-03
1.56E-03
1.19E-03
8.96E-04
6.70E-04
4.98E-04
3.68E-04
2.71E-04
1.99E-04
1.46E-04
1.06E-04
7.74E-05
5.64E-05
4.11E-05
3.00E-05
2.20E-OS
1.62E-05
1.19E-05

4.00 plane
•.57E-04
7.24E-04
S.02E-04
4.92E-04
3.94E-04
3.10E-04
2.39E-04
1.82E-04
1.37E-04
1.03E-04
7.64E-05
5.65E-05
4.16E-05
3.05E-05
2.23E-05
1.63E-05
1.19E-05
8.65E-06
6.31E-06
4.61E-06
3.37E-06
2.48E-06
1.83E-06


6.21E-OS
5.24E-05
4.36E-05
3.S6E-05
2.85E-05
2.24E-05
1.73E-05
1.32E-05
9.95E-06
7.45E-06
5.53E-06
4.09E-06
3.01E-06
2.21E-06
1.62E-06
1.1BE-06
8.60E-07
6.27E-07
4.57E-07
3.34E-07
2.44E-07
1.79E-07
1.32E-07


average concentration (volume fraction) at (x,y.
y/bbc™
0.0
0
3
2
1
7
2
S
1
1
2














5
5
6
8
1
1
2
3
3
4
3
3
2
1
1
1
1
9
8
7
5
4
3
2
2
1
1
8
6
4
3
2
1
1
9
7
5
.OOE+00
.26E-OS
.55E-06
. 56E-05
.19E-05
.30E-04
.55E-04
.10E-03
.88E-03
.90E-03
.14E-03
.14E-03
.14E-03
.14E-03
.14E-03
.15E-03
.16E-03
.17E-03
.19E-03
.23E-03
.29E-03
.39E-03
.54E-03
.78E-03
.15E-03
.76E-03
.76E-03
.49E-03
.16E-02
.73E-02
. 80E-02
.40E-02
.83E-02
.OOE-02
.71E-02
.05E-02
.31E-02
.74E-02
.37E-02
.16E-02
.04E-02
.42E-03
.37E-03
.18E-03
.94E-03
.76E-03
.72E-03
.85E-03
.15E-03
.61E-03
.20E-03
.82E-04
.47E-04
.74E-04
.46E-04
.52E-04
.84E-04
. 34E-04
. S5E-05
.23E-05
.34E-05
Jf / l/Mli—
0.5
O.OOE+00
2.24E-06
1.75E-06
1.07E-05
4.94E-05
1.58E-04
3.82E-04
7.S6E-04
1.29E-03
2. OOE-03
2.85E-03
2.85E-03
2.B5E-03
2.85E-03
2.85E-03
2.85E-03
2.86E-03
2.87E-03
2.88E-03
2.91E-03
2.95E-03
3.02E-03
3.12E-03
3.28E-03
3.54E-03
3 . 96E-03
4.65E-03
5.83E-03
7.95E-03
1.19E-02
1.92E-02
2.34E-02
2.S3E-02
2.75E-02
2.55E-02
2.10E-02
1.S9E-02
1.19E-02
9.41E-03
7.98E-03
7.14E-03
6.48E-03
5.76E-03
4.94E-03
4.08E-03
3.27E-03
2.55E-03
1.96E-03
1.48E-03
1.11E-03
8.22E-04
6.06E-04
4.45E-04
3.25E-04
2.38E-04
1.73E-04
1.26E-04
9.24E-05
6.77E-05
4.97E-05
3.67E-05
Jf / wvl.—
1.0
O.OOE+00
7.29E-07
5.68E-07
3.49E-06
1.61E-05
5.12E-05
1.24E-04
2.45E-04
4.20E-04
6.48E-04
9.25E-04
9.24E-04
9.24E-04
9.24E-04
9.25E-04
9.26E-04
9.28E-04
9.31E-04
9.36E-04
9.45E-04
9.58E-04
9.80E-04
1.01E-03
1.07E-03
1.15E-03
1.29E-03
1.51E-03
1.89E-03
2.58E-03
3.86E-03
6.24E-03
7.60E-03
8.S4E-03
8.93E-03
8.29E-03
6.81E-03
5.16E-03
3.88E-03
3.06E-03
2.59E-03
2.32E-03
2.10E-03
1.B7E-03
1.60E-03
1.32E-03
1.06E-03
8.29E-04
6.36E-04
4.81E-04
3.60E-04
2.67E-04
1.97E-04
1.44E-04
1.06E-04
7.71E-05
5.S3E-05
4.11E-05
3.00E-05
2.20E-05
1.61E-05
1.19E-05
y 1 uu\f—
1.5
O.OOE+00
1.12E-07
8.71E-08
5.34E-07
2.46E-06
7.86E-06
1.90E-05
3.76E-05
6.45E-05
9.94E-05
1.42E-04
1.42E-04
1.42E-04
1.42E-04
1.42E-04
1.42E-04
1.42E-04
1.43E-04
1.44E-04
1.45E-04
1.47E-04
1.50E-04
1.55E-04
1.63E-04
1.76E-04
1.97E-04
2.31E-04
2.90E-04
3.96E-04
5.92E-04
9.57E-04
1.16E-03
1.31E-03
1.37E-03
1.27E-03
1.04E-03
7.92E-04
S.95E-04
4.69E-04
3.97E-04
3.56E-04
3.22E-04
2.87E-04
2.46E-04
2.03E-04
1.63E-04
1.27E-04
9.75E-05
7.37E-05
5.51E-05
4.09E-05
3.02E-05
2.21E-05
1.62E-05
1.18E-05
8.63E-06
6.30E-06
4.60E-06
3.37E-06
2.48E-06
1.83E-06
2.0
O.OOE+00
8.03E-09
6.30E-09
3.87E-08
1.78E-07
5.69E-07
1.3BE-06
2.72E-06
4.67E-06
7.19E-06
1.03E-05
1.03E-05
1.03E-OS
1.03E-05
1.03E-05
1.03E-05
1.03E-05
1.03E-OS
1.04E-05
1.05E-OS
1.06E-OS
1.09E-OS
1.12E-05
1.18E-05
1.28E-05
1.43E-OS
1.68E-05
2.10E-05
2.87E-05
4.29E-05
6.93E-05
8.44E-05
9.4BE-05
9.91E-05
9.20E-05
7.56E-05
5.73E-05
4.31E-05
3.39E-05
2.88E-05
2.58E-05
2.34E-05
2.08E-OS
1.78E-05
1.47E-05
1.18E-05
9.21E-OE
7.06E-06
5.34E-06
3.99E-06
2.96E-06
2.19E-06
1.60E-06
1.17E-06
8.57E-07
6.25E-07
4.56E-07
3.33E-07
2.44E-07
1.79E-07
1.32E-07
2.12E-06
1.79E-06
1.49E-06
1.22E-06
9.78E-07
7.66E-07
S.92E-07
4.51E-07
3.40E-07
2.54E-07
1.89E-07
1.40E-07
1.03E-07
7.57E-08
5.54E-08
4.03E-08
2.94E-08
2.15E-08
1.56E-08
1.14E-08
8.31E-09
6.15E-09
4.54E-09


z)
2.5
O.OOE+00
2.71E-10
2.14E-10
1.32E-09
6.08E-09
1.94E-08
4.70E-08
9.32E-08
1.59E-07
2.46E-07
3.50E-07
3.51E-07
3.51E-07
3.50E-07
3.51E-07
3.52E-07
3.52E-07
3.53E-07
3.55E-07
3.58E-07
3.64E-07
3.71E-07
3.85E-07
4.05E-07
4.36E-07
4.87E-07
5.73E-07
7.18E-07
9.79E-07
1.47E-06
2.36E-06
2.88E-06
3.24E-06
3.39E-06
3.15E-06
2.58E-06
1.96E-06
1.47E-06
1.16E-06
9.83E-07
8.81E-07
7.99E-07
7.11E-07
6.08E-07
5.03E-07
4.03E-07
3.14E-07
2.41E-07
1.83E-07
1.37E-07
1.01E-07
7.49E-08
5.50E-08
4.01E-08
2.93E-08
2.14E-08
1.5EE-08
1.14E-08
8.31E-09
6.14E-09
4.53E-09
time averaged (tav - 3600.  s)  volume  concentration:  maximum concentration (volume fraction)  along centerline.
    downwind                 maximum     time  of      cloud
    distance     height   concentration  max cone    duration
      x *m)        z (m)     c(x.O.z)        (s)          (s)
                                                            C-43

-------
l.OOE+00
1.4SE+00
1.90E+00
2.35E+00
2.80E+00
3.25E+00
3.70E+00
4.14E+00
4.59E+00
5.04E+00
5.49E+00
s.siE+oo
5.76E+00
5.93E+00
6.15E+00
6.41E+00
6.73EtOO
7.11E+00
7.58E+00
8.15E+00
8.85E+00
9.70E+00
1.07E+01
1.20E+01
1.35E+01
1.54E+01
1.76E+01
2.04E+01
2.37Et01
2.78E+01
3.27E+01
3.87E+01
4.61E+01
5.50E+01
6.58E+01
7.90E+01
9.51E+01
1.15E+02
1.38E+02
1.67E+02
2.03E+02
2.45E+02
2.97E+02
3.61E+02
4.38E+02
5.32E+02
6.46E+02
7.85E+02
9.54E+02
1.16E+03
1.41E+03
1.71E+03
2.09E+03
2.54E+03
3.09E+03
3.75E+03
4.57E+03
5.5SE+03
6.76E+03
8.22E+03
l.OOE+04
1.97E-01
7.42E+00
1.01E+01
1.20E+01
1.34E+01
1.45E+01
1.S4E+01
1.60E+01
1.64E+01
1.67E+01
1.68E+01
1.68E+01
1.6BE+01
1.68E+01
1.67E+01
1.67E+01
1.67E+01
1.67E+01
1.67E+01
1.67E+01
1.66E+01
1.66E+01
1.65E+01
1.64E+01
I.62E+01
1.59E+01
1.54E+01
1.48E+01
1.38E+01
1.23E+01
1.02E+01
7.7SE+00
S.95E+00
4.54E+00
3.38E+00
2.25E+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
l.OOE+00
l.OOE+00
8.08E-01
4.70E-01
2.96E-01
2.01E-01
1.44E-01
1.08E-01
8.38E-02
6.68E-02
S.45E-02
5.45E-02
S.44E-02
5.44E-02
S.43E-02
S.43E-02
S.42E-02
5.41E-02
5.40E-02
S.38E-02
5.36E-02
5.34E-02
5.31E-02
5.27E-02
5.23E-02
5.17E-02
S.11E-02
S.02E-02
4 . 92E-02
4.78E-02
4.62E-02
4.42E-02
4.28E-02
4.05E-02
3.78E-02
3.S4E-02
3.45E-02
3.33E-02
3.01E-02
2.57E-02
2.09E-02
1.66E-02
1.28E-02
9.77E-03
7.38E-03
5.53E-03
4.12E-03
3.06E-03
2.26E-03
1.66E-03
1.22E-03
8.95E-04
6.S4E-04
4.77E-04
3.47E-04
2.S3E-04
1.84E-04
1.35E-04
9.86E-05
7.24E-05
5.34E-05
.10E+03
. 10E+03
. 10E+03
. 10E+03
. 10E+03
.10E+03
.10E+03
. 10E+03
.10E+03
. 10E+03
. 10E+03
. 10E+03
.10E+03
.10E+03
.10E+03
. 10E+03
. 10E+03
. IOE+03
. 10E+03
. IOE+03
. IOE+03
.IOE+03
.IOE+03
.IOE+03
.IOE+03
.IOE+03
.IOE+03
.IOE+03
.IOE+03
.11E+03
. 11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.12E+03
. 12E+03
.13E+03
.13E+03
. 14E+03
.15E+03
.1SE+03
.17E+03
. 18E+03
.20E+03
. 22E+03
.25E+03
.28E+03
.32E+03
.37E+03
.43E+03
.50E+03
.59E+03
.S9E+03
. 82E+03
.97E+03
9.16E+03
9.39E+03
9.67E+03
l.OOE+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.S2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
J.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
C-44

-------
                                  APPENDIX D

                  Non-Dense Gas Model Input and Output Files

                               Table of  Contents
D.I   AFTOX Model
      Example 1:  Input/Output File
      Example 2:  Input/Output File

-------
                        AFTOX Example 1:  Input & Output File



   USAF TOXIC CHEMICAL DISPERSION MODEL 	 AFTOX

Workbook Example  6.15

Hanscom AFB MA
DATE: 08-10-89
TIME: 0300 LST

CONTINUOUS RELEASE

UNSYM. DIMETHYLHYDRAZINE(UDMH)
 SHORT TERM EXPOSURE LIMIT(STEL)  IS .48 PPM ( 1.15 MG M-3)
 TIME WEIGHTED AVERAGE(TWA)  IS  .06 PPM ( .14 MG M-3)

TEMPERATURE = 10  C
WIND DIRECTION =  270
WIND SPEED = 1 M/S
NIGHTTIME SPILL
CLOUD COVER IS 0  EIGHTHS
THERE IS NO INVERSION
ATMOSPHERIC STABILITY PARAMETER IS 6
SPILL SITE ROUGHNESS LENGTH  IS  1  CM
                     •
THIS IS A LIQUID  RELEASE
EMISSION RATE IS  4.72 KG/MIN
CHEMICAL IS STILL LEAKING
POOL TEMPERATURE  IS  10 C
AREA OF SPILL IS  59 SQ M
EVAPORATION RATE  IS 3.13  KG/MIN
CONCENTRATION AVERAGING TIME IS 60 MIN
ELAPSED TIME SINCE START  OF  SPILL IS 60 MIN
ELEVATION IS 0 M
DOWNWIND DISTANCE IS 100  M
CROSSWIND DISTANCE IS 0 M

THE CONCENTRATION IS 220.5 PPM ( 567.7 MG M-3)
                                D-l

-------

-------
                     AFTOX Example  2:  Input & Output File
   USAF TOXIC CHEMICAL DISPERSION MODEL 	 AFTOX

Workbook Example  6.16

Vandenberg AFB
DATE: 08-02-89
TIME: 0300 LST

CONTINUOUS RELEASE

UNSYM. DIMETHYLHYDRAZINE(UDMH)
 SHORT TERM EXPOSURE LIMIT(STEL)  IS .48 PPM (  1.15 MG M-3)
 TIME WEIGHTED AVERAGE(TWA)  IS  .06 PPM ( .14 MG M-3)
TEMPERATURE = 10  C
WIND DIRECTION =16
WIND SPEED = 1 M/S
STANDARD DEVIATION OF WIND  DIRECTION =1.37 DEC
WIND AVERAGING TIME =60  MIN
NIGHTTIME SPILL
CLOUD COVER IS 0  EIGHTHS
THERE IS NO INVERSION
HORIZONTAL STABILITY PARAMETER  IS  6
VERTICAL STABILITY PARAMTERE IS 6

SPILL SITE ROUGHNESS LENGTH IS  1  CM

THIS IS A LIQUID  RELEASE
EMISSION RATE IS  133.62 KG/MIN
CHEMICAL IS STILL LEAKING
POOL TEMPERATURE  IS  10 C
AREA OF SPILL IS  2037 SQ  M
EVAPORATION RATE  IS 72.13 KG/MIN
CONCENTRATION AVERAGING TIME IS 60 MIN
ELAPSED TIME SINCE START  OF SPILL IS 1440 MIN
HEIGHT ABOVE GROUND IS  0  M
DOWNWIND DISTANCE IS 100  M
CROSSWIND DISTANCE IS 0 M

THE CONCENTRATION IS 7761 PPM(  20046.6 MG M-3)
                                D-3

-------

-------
                Appendix  E
Calculating Temperature of Release Material

-------

-------
                                   Appendix  E

                  Calculating Temperature of Release Material

       To  correctly  utilize  dense  gas  models,  it  may be important  to start  the
dispersion  calculations  using  the temperature  of the released  material  just
after  it  enters  the atmosphere and depressurizes.   For a  material  which is
stored under  pressure, this requires  an  estimate of the release temperature
immediately after  it expands to atmospheric pressure.   For  a liquid which  is
stored under  pressure above its normal boiling temperature,  the release will
be  accompanied by flashing,  and the release temperature may be conservatively
assumed to  equal the normal  boiling temperature.   It should be noted that  a
flash  calculation should be performed for this situation  to determine the
relative  amounts of liquid  and vapor  in  the initial  release.

       If  the  released material  can be represented  as an ideal  gas  both  before
and after depressurization,  then  the  temperature of the contaminant is
unchanged during an isenthalpic expansion.  Such ideal  gas  behavior can be
expected  for  low-to-moderate storage  pressure  and  temperature  and  when  the
pressure  and  temperature are not  near the critical  pressure and temperature,
respectively.

       If  the  contaminant cannot be represented as  an ideal  gas both before and
after  depressurization, then the  temperature of  the contaminant must be
determined  from thermodynamic  properties of the  released  gas.  Thermodynamic
properties  are generally presented in one of two forms:   in tables or in
figures.  These examples demonstrate  the pertinent calculations (for nonideal
gases)  for  both data types.

Chlorine  Example

       For this example, chlorine  gas  at 6 atm  and  298  K is  to  be released  to
atmospheric pressure.  Since the  initial pressure  of 6  atm  could be considered
to  be  out of  the low-to-moderate  pressure range,  ideal  gas  behavior may not be
justified for these  conditions.

       Isenthalpic depressurization  simply means  that the-  enthalpy  of the gas
is  unchanged between  the initial  and  final  states.   If  H. and H,: denote the
initial and final enthalpies of the gas, respectively,  then  isenthalpic
depressurization implies that H.=Hf.  From  Perry's  handbook  (Perry  and  Green,
1984),  the properties for chlorine  are given in  tabular form; part  of the
table  is  shown in Table 1.   The tabl'e shows the  enthalpy  (H*) and  temperature
(T*) for  chlorine vapor under  saturation conditions.

                                    Table 1

                Temperature  Versus  Enthalpy for  Chlorine  Vapor

Temperature           Pressure                 Enthalpy
If	K            Ib./sq.  in.               B.t.u./Mb)('F)
-29.29                  14.696                   225.86
  60                    85.606                   233.64
  80                   116.46                    235.03

*Based on Table 3-229 chlorine, p. 3-184, Perry's Handbook,  Sixth  Edition

                                      E-l

-------
Using this  information, the  initial and final enthalpies can be represented
as:

      Hi ='H*(P.) + Cp (Ti - T*(P.))

      Hf = H*(Pf) + Cp (Tf - T*(Pf))

where H*(P.) and H*(pf) represent the enthalpy of saturated chlorine vapor at
the  initial and final pressures, respectively.  Likewise, !*(?.= ) and T*(Pf)
represent the temperature of saturated chlorine vapor at the initial storage
pressure (6 atm x 14.696=88.176 Ib./sq. in.) and final pressure (1 atm x
14.696=14.696 Ib./sq. in.).  From the table, H*(P.)=233.77 BTU/lb.,
T*(P.)=289.74K (or 62.13'F), H*(Pf)=225.86 BTU/lb.1, and T*(Pf)=239.1 K (or
-29.01 F).  (For interpolation, log(P) can be linearly interpolated with 1/T*
where T* is in absolute temperature, and H* can be linearly interpolated with
T*).  With these values and the heat capacity for chlorine (taken to be 0.214
BTU/lb. K), Tf is 284.3 K.

      If the initial state of 6 atm had been considered to be a low-to-
moderate pressure, and since the initial state is not near the critical
conditions for chlorine (76.1 atm and 417 K), then ideal gas behavior for both
initial and final states would have been justified, and the final chlorine
temperature would be equal to the initial  state temperature or 298 K.  This
assumption would have resulted in an error of 4.8% in the density estimate for
input to the dispersion model.

First Propvlene Example

      For this example, propylene gas at 29 bar (28.6 atm) and 343.15 K is to
be released to atmospheric pressure.  Since the initial pressure of 29 bar
could be considered to be out of the low-to-moderate pressure range, ideal gas
behavior may not be justified for these conditions.  (Also, the initial state
is near the critical state of 46.41 bar and 365.1 K.)

      In Perry's handbook, sixth edition,  (page 3-219, Figure 3-32), the
properties for propylene are given in both a table and a figure.   Once again,
isenthalpic expansion from the initial to final state implies H.=hL.  Using
the figure, the initial enthalpy is found to be approximately llOO kJ/kg using
the initial pressure (29 bar) and initial  temperature (343.15 K).  The final
temperature can now be found by using the final pressure (1.01325 bar) and the
final enthalpy (1100 kJ/kg -- since H^Hr); the final temperature is
approximately 285 K.

      If ideal  gas behavior for both initial and final states had been
assumed, the final propylene temperature would have been 343.15 K.  This
assumption would have resulted in an error of 20% in the density estimate for
input to the dispersion model.

Second Proovlene Example

      For this  example,  propylene gas at 5 bar (4.9 atm) and 303.15 K is to be
released to atmospheric pressure.   Since the initial  pressure and temperature
could be considered to be in the low-to-moderate range, and since the initial
state is not near the critical conditions, ideal  gas behavior may be justified


                                      E-2

-------
for these conditions.  If ideal gas behavior is assumed for both  initial and
final states, the final (depressurized) propylene temperature would be 303.15
K.

      As a check, the properties for propylene can be applied to this example.
Once again using the figure discussed above, the initial enthalpy is found to
be approximately 1100 kJ/kg using the Initial pressure (5 bar) and initial
temperature (303.15 K).  The final temperature can again be found by using the
final pressure (1.01325 bar) and the final enthalpy (1100 kJ/kg -- since
H.=Hf); using this method, the final temperature is approximately 293 K.

      If ideal gas behavior for both initial and final states had been
assumed, the density estimate for the dispersion model would be in error by
3.4%.

References

Perry, R. H. and D. W. Green, eds., "Perry's Chemical  Engineer's
    Handbook," Sixth Edition, McGraw-Hill, 1984.
                                     E-3

-------

-------
                                    TECHNICAL REPORT DATA
                            (Please read /nunictidns on rise rereni: before completing!
l. REPORT
  EPA-450/4-91-007
                                                            3. RECIPIENT'S ACCESSION NO.
4. TITLE ANDSUBTITLE
  Guidance  on  the Application of  Refined Dispersion
  Models  for Air Toxics Releases
          5. REPORT DATE
            March 1991
          6. PERFORMING ORGANIZATION CODE
7. AUTMOR(S)
                                                            8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
   Source  Receptor Analysis  Branch
   U.S.  Environmental  Protection  Agency
   Research Triangle Park, NC   27711
                                                            10. PROGRAM ELEMENT NO.
          11. CONTRACT/GRANT NO.
 12. SPONSORING AGENCY NAME AND ADDRESS
                                                            13. TYPE OF REPORT AND PERIOD COVERED
                                                               Final Report	
                                                            14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES

    EPA Contact:  Jawad S. Touma
 16. ABSTRACT
         Refined air toxics models are increasingly  being used to assess  the  impact of
    toxic air pollutants  released into the atmosphere.   The purpose of this guidance
    document is to provide general guidance considerations for applying dispersion
    models to such releases and to show the thought  process required by the non-expert
    user to develop all model  input parameters.   Two example applications  for each
    model are provided with a  step-by-step explanation  of all model input  parameters
    and model output.  Four specific models are  currently included in the  document.
    These are the DEGADIS, HEGADAS, and SLAB models  appropriate for denser-than-air
    releases and the AFTOX model  for neutrally buoyant  releases of toxic  air  pollutants
17.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
    Air Pollution
    Hazardous Waste  Assessments
    Toxic Air Pollutants
    Dense Gas Models
    Air Quality Dispersion Models
                                               b.lDENTIFIfcRS/OPEN ENDED TERMS  C. COSATI I icld/Croup
Dispersion Modeling
Meteorology
Air Pollution
13B
             STATLML\1
    Release Unlimited
                                               19. SECUHIT < CLASS HIM A'cport)
                                                  Unclassified
                                                                          21. NO. OF PAGES
                                               20. SECUHIT Y CLASS ITlHS
                                                  Unclassified
                                                                                165
                                                                          22. PRICE:
EPA Form 2."20-1 (9-73)

-------

-------