United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EPA-450/4-91-007
March 1991
Air
vvEPA
GUIDANCE ON THE APPLICATION
OF REFINED DISPERSION MODELS
FOR AIR TOXICS RELEASES
-------
EPA-450/4-91-007
GUIDANCE ON THE APPLICATION
OF REFINED DISPERSION MODELS
FOR AIR TOXICS RELEASES
By
Source Receptor Analysis Branch
Technical Support Division
Office Of Air Quality Planning And Standards
Office Of Air And Radiation
U. S. Environmental Protection Agency
Research Triangle Park, NC 27711
March 1991
-------
This report has been reviewed by the Office Of Air Quality Planning And Standards, U. S. Environmental
Protection Agency, and has been approved for publication. Any mention of trade names or commercial
products is not intended to constitute endorsement or recommendation for use.
EPA-450/4-91-007
11
-------
Acknowledgements
This document was prepared by Jawad S. Touma, Source Receptor Analysis
Branch, OAQPS. Through their reviews and numerous discussions, Dr. David
Guinnup, U.S. EPA and Dr. Tom Spicer, University of Arkansas have contributed
to numerous portions of the document. Assistance was also received from
Dr. Don Ermak (SLAB model), Mr. Arnold Marsden (HEGADAS model), and Mr. Bruce
Kunkel (AFTOX model) who reviewed those portions related to their respective
models. Ms. Brenda Cannady typed the document.
-------
-------
TABLE OF CONTENTS
Page
1.0 Introduction 1-1
2.0 Model Input Considerations 2-1
2.1 Release Type 2-1
2.2 Continuous or Instantaneous Release Categories 2-2
2.3 Molecular Weight . 2-3
2.4 Heat Capacity 2-4
2.5 Release Temperature 2-5
2.6 Density 2-7
*
2.7 Release Diameter (Release Area) 2-9
2.8 Release Buoyancy 2-10
2.9 Emission Rate 2-11
2.10 Release Height 2-12
2.11 Wind Speed and Direction 2-12
2.12 Stability Class 2-14
2.13 Surface Roughness Length 2-16
2.14 Ambient Temperature, Relative Humidity, and
Pressure . 2-17
• -
2.15 Ground Surface Temperature 2-17
2.16 Averaging Time Considerations 2-18
3.0 Applications to Dense Gas Models * 3-1
3.1 DEGADIS Model ' 3-1
a. Isothermal and Nonisothermal Simulation 3-1
b. Density Considerations 3-2
c. Heat Capacity Considerations 3-4
d. Example Applications 3-4
Example 1 3-4
Example 2 3-10
-------
3.2 HEGADAS Model 3-16
a. Water Vapor 3-16
b. Low Wind Speed 3-16
c. Averaging Time 3-16
d. Example Applications 3-16
Example 1 3-16
Example 2 3-21
3.3 SLAB Model . 3-25
a. Temperature of Source Material 3-25
b. Source Area . 3-25
c. Example Applications 3-27
Example 1 3-27
Example 2 3-33
4.0 Application to Non-Dense Gas Models 4-1
4.1 AFTOX Model * 4-1
a. Atmospheric Stability Considerations 4-1
b. Example Applications 4-2
Example 1 4-2
Example 2 4-7
References R-l
Appendix A: Dense Gas Model Summaries
A.I DEGADIS Model Summary A-l
A.2 HEGADAS Model Summary A-7
A.3 SLAB Model Summary A-13
Appendix B: Non-Dense Gas Model Summaries
B.I AFTOX Model Summary B-l
Appendix C: Dense Gas Model Input and Output Files
•
C.I DEGADIS
Example 1 C-l
Example 2 C-13
C.2 HEGADAS
Example 1 C-21
Example 2 C-25
-------
C.3 SLAB
Example 1 C-29
Example 2 C-37
Appendix D: Non-Dense Gas Model Input and Output Files
D.I AFTOX
Example 1 D-l
Example 2 D-3
Appendix E: Calculating Temperature of Release Material E-l
vn
-------
LIST OF TABLES
Table No. Title Page
2-1 Representative Values of Surface Roughness 2-20
for a Uniform Distribution of Selected Types
of Ground Cover
3-1 Types of Releases Considered by Dense 3-38
Gas Models
4-1 Types of Releases Considered by Non-Dense 4-13
Gas Models
VTM
-------
1.0 Introduction
The "Guideline on Air Quality Models (Revised)" (EPA, 1986) describes
screening and refined air quality modeling techniques that focus on the six
criteria pollutants (particulate matter, sulfur dioxide, nitrogen dioxide,
carbon monoxide, ozone, and lead). Screening techniques are relatively simple
and. provide conservative estimates of the source impact. The purpose of such
screening techniques is to eliminate the need for further, more detailed
modeling when it is not necessary. Refined models provide more detailed
treatment of physical and chemical atmospheric processes and require more
detailed and precise input data. As a result, they provide a more refined
and, at least theoretically, a more accurate estimate of source impact and the
effectiveness of emission control strategies. Many of the models in the
guideline have also been used in simulating air toxics releases. However,
there is an increasing need to provide models that specifically address the
impact of toxic air pollutants. Such models deal with both heavier than air
(dense) and neutrally buoyant (non dense) releases.
To meet this need, EPA first published "A Workbook of Screening
Techniques for Assessing Impacts of Toxic Air Pollutants" (EPA, 1988). The
workbook provides a logical approach to the selection and use of appropriate
screening techniques for estimating emission rates and ambient concentrations
•
resulting from eighteen different types of air toxics release scenarios. EPA
then developed the TSCREEN personal computer system (EPA, 1990a) that utilizes
concepts found in expert systems to implement the scenarios described in the
workbook. EPA also co-sponsored the development of the DEGADIS refined dense
gas model (EPA, 1989a) and conducted a statistical model evaluation study of
' - 1-1
-------
seven dense gas models using three experimental programs (EPA, 1990b).
Several other documents have been published to show the user how to apply air
toxics models. Among these are Hanna and Drivas, 1987; CCPS, 1988; and
Britter and McQuaid, 1988. These documents provide an introductory
understanding of the complex issues associated with air toxics modeling,
especially those issues related to denser than air releases.
With the expanding interest in and use of air toxics models, there is
also a need for general guidance on the use of refined models in order to
foster consistency in their use. Refined air toxics dispersion models are
used for a variety of purposes. One such application is the assessment of the
hazard extent of a past or current event (i.e., a response analysis). For
such an application, the maximum concentration at a given distance, e.g. a
fenceline, is needed and this document shows the thought process the user
should employ to estimate the input parameters based on actual conditions of
the release. Another application of these models is for planning purposes.
In these applications, the model user typically desires conservative estimates
of the impact from a potential release under any condition. Sensitivity tests
(Hanna et. al., 1990; Guinnup and Nguyen, 1991) have shown that predictions
from some models may vary by an order of magnitude or more due to changing the
input for the following meteorological parameters: wind speed, atmospheric
stability class and surface roughness. The guidance provided here shows how
to estimate values for these variables so that, when input into the refined
models, there is an increased likelihood for obtaining the maximum
concentration at a given distance.
Chapter 2 describes general guidance considerations needed to apply the
•
atmospheric dispersion models described in this report. Chapter 3 applies the
1-2
-------
general guidance to several dense gas models that are in the public domain.
These include the models DEGADIS, HEGADAS, and SLAB; other dense gas models
will be added as they become available. Since each model may require unique
and specific inputs, guidance for developing these unique model inputs is
provided under the sub-heading of each model. Finally, for each model, two
examples using the general guidance are provided. The examples include a
definition of the release scenario, a step-by-step explanation of how the
model was applied, and an interpretation of the model results. The two
examples can not cover all of the release types that can be considered by
these models. Chapter 4 applies the general guidance considerations to
refined, neutrally buoyant (non-dense) air toxics dispersion models that are
also in the public domain. Many of the EPA regulatory models that are
described in the modeling guideline (EPA, 1986) fit this category. Since
there is a lot of experience in the use of these models, they are not
discussed here. Models developed specifically for air toxics releases and
that contain features unique to such sources are the subject of this chapter.
Presently, this includes the AFTOX model; other models in this category will
be added as they become available. The organization of this Chapter is
similar to Chapter 3.
Appendix A contains a summary outline for each dense gas model referenced
in this guidance document and Appendix B provides a similar summary for the
models used for neutrally buoyant releases into the atmosphere. The format
for these model summaries is the same as that used in the modeling guideline
(EPA, 1986). Appendices C and D contain a computer listing for the two
example applications for each model. Appendix E contains guidance on
calculating -the temperature of released material.
1-3
-------
Finally, this document is not intended to be a replacement for any model
user's guide but should serve as a general supplement that provides additional
information on the considerations needed to execute and interpret the various
models discussed. As knowledge and experience in the use of refined air
toxics models increase, updates to this document will be necessary. The
unique approach used here makes this document a good supplement to many
existing documents on air toxics modeling applications.
1-4
-------
2.0 Model Input Considerations
This chapter describes the meteorological and source input parameters
required for using air toxics dispersion models and provides general guidance
on how to specify these parameters. In general, these input parameters should
be based on site-specific data. Based on current experience, certain input
parameters play a more important role in determining model concentrations.
However, additional sensitivity analyses are useful in identifying the most
important parameter for a specific model and scenario. The user should
carefully examine each release scenario and use the appropriate model input
parameter from those listed below. There is no universal approach for all
cases.
2.1 Release Type
Air toxics models use differing methodologies to account for. various
release types, thus the user must know the release type before specifying the
input parameters discussed here. Air toxics contaminants can be stored as a
gas or as a liquid, under various amounts of pressure and temperature. When
released to the atmosphere, a substance stored as a gas under pressure at
ambient temperature will exit as a gas. When a substance stored as a liquid
under pressure at ambient temperature, with a boiling point below ambient
temperature, is released into the atmosphere, there is a high probability of
aerosol formation (an aerosol includes both liquid and gas phases). When a
substance stored as a liquid under pressure at ambient temperature, but with a
boiling point above ambient temperature is released, the release will most
likely form a liquid pool. This liquid pool will subsequently volatilize into
the atmosphere (evaporate) at a rate proportional to its vapor pressure. Low
2-1
-------
volatility liquids (low vapor pressure) evaporate more slowly and tend to for-m
larger pools than high volatility liquids. The contaminants can be stored as
a pure substance (e.g., ammonia) or a mixture (e.g., liquefied natural gas).
Materials stored at temperatures other than ambient may require more complex
thermodynamic analyses to determine the exact release phase and .such
*
calculations are not addressed in this document. Other complex situations
such as those involving materials which react with the atmosphere are-also not
addressed.
2.2 Continuous or Instantaneous Release Categories
For modeling air toxics, there are two release categories: continuous
(steady-state) or instantaneous (transient). In steady state releases, source
characteristics do not vary with time (i.e., emission rate is constant), and
the release duration is long compared to advection (travel) time. A release is
considered transient if the source characteristics do not vary with time but
the duration of the release from the source is limited. A transient
simulation of a release is required under any of the following conditions: a)
an instantaneous release; b) some characteristics (including release rate or
diameter) vary with time; or c) source duration is short compared with the
*
contaminant advection time to a given location or the averaging time for
predicted concentrations.
The user can determine if the advection time is long compared with the
release duration by using the following empirical procedure:
1) Make a steady-state simulation of the release and determine the
maximum distance to the lowest concentration of interest, X, .
2) Estimate the advection (travel) time to that distance as:
2-2
-------
ttrav - 2 (XL/u)
where: u = the ambient windspeed (typically at 10m).
3) If tt is smaller than the source release duration, then a steady-
state simulation is probably sufficient. Otherwise, the release may be
instantaneous.
While the examples discussed in this document are limited to continuous
releases, many of the guidance considerations also apply for transient
releases.
2.3 Molecular Weight
For a single component gaseous contaminant (e.g. NH., gas), molecular
weight can be obtained from typical chemistry or chemical engineering
handbooks (e.g., Perry and Green, 1984). For a multi-component mixture, an
average molecular weight can be calculated as follows:
If volume (or mole) fractions are known:
where: Ms = mean molecular weight of material released (g/g-mole);
yi = the volume (or mole) fraction of component; and
NT = molecular weight of each component (g/g-mole).
If mass fractions are known:
Ms =
=1
where: mi = mass fraction of each component.
2-3
-------
For aerosols made up of a single component, the molecular weight can also
be obtained from textbooks or handbooks as discussed above for pure gases.
For aerosol mixtures, an average molecular weight can be calculated using the
equations above with either mole or mass fractions, but not volume fraction.
2.4 Heat Capacity
If the temperature of the released toxic cloud is significantly different
from ambient, heat transfer effects may be important, and the heat capacity of
the released material will be needed to calculate cloud density as it
disperses. Heat capacity values can be obtained from typical handbooks (e.g.,
Perry and Green, 1984). If the toxic contaminant is .a mixture, the average
heat capacity of the mixture can be approximated by:
where: Cp = molar heat capacity of the mixture (J/kg-mole K);
y, = mole fraction of component i in the mixture; and
Cp. = molar heat capacity of component i of the mixture (J/kg
mole K).
Alternatively, the heat capacity (on a mass basis) can be calculated as:
CPa ' %
1=1
where: Cp = heat capacity per unit mass (J/kg K);
m. = mass fraction of component i in the mixture; and
^)p.j = mass heat capacity of component i in the mixture (J/kg K)
2-4
-------
The molar heat capacity is directly related to the mass heat capacity by the
expression:
where: M = molecular weight of the mixture (kg/kg-mole).
If a gaseous contaminant is released so that the temperature of the gas
is the same as ambient temperature, then the heat capacity is not important in
the dispersion calculation. If required, the heat capacity for the gas can be
obtained from typical handbooks or the model user's guide. If the released
material is an aerosol, calculation of heat transfer effects during the cloud
dilution is complex and is not generally included in a dispersion model. In
such a case, the user may need to externally calculate the relationship
between air/contaminant mixture density and contaminant concentration. (For
example, the DEGADIS model may be used to simulate an aerosol release by
providing externally-calculated cloud densities as inputs.)
Some models require specification of a heat capacity through a
parameterized function. In these cases, the user will need to input the
appropriate values of the parameters. Such parameters are typically provided
iii the model user's guide.
*
2.5 Release Temperature
This parameter is the temperature" of a released pollutant as soon as it
gets into the atmosphere, after any necessary depressurization. Some
dispersion models include a source model which attempts to calculate this
parameter; in such cases, the models may require the material storage
temperature rather than the release temperature. If the release temperature
2-5
-------
is different from ambient air temperature, heat transfer into or out of the
cloud may be important. When heat transfer is important, a thermal energy
balance is needed which can account for: (a) energy addition to the plume due
to ambient air entrainment; (b) heat transfer at the plume boundaries; (c)
latent heat exchange due to condensation of the moisture content of entrained
•
humid air and any subsequent reevaporation as the saturation conditions change
with downwind distance. For aeroso] releases, energy balance considerations
are also needed to account for the latent heat effects due to evaporation of
the liquid contaminant phase. The treatment of these issues varies from one
model to another.
For release of a gas, stored at low to moderate pressure (i.e., less than
about 5 atm), the exit temperature may be assumed equal to storage
temperature; when stored at high pressure (i.e., above about 5 atm), the gas
exit temperature may be calculated by taking into account the adiabatic
expansion of the gas after it exits from the relief valve. This temperature
would generally be lower than the storage temperature. The temperature of the
depressurized release can be calculated assuming isenthalpic behavior
(neglecting kinetic energy eff.ects) or assuming isentropic behavior (including
kinetic energy effects). The isenthalpic assumption .is generally more
*
conservative and is therefore preferred. Appendix E contains examples of this
approach for making temperature calculations.
For releases which form aerosol- clouds, the release temperature can be
.
assumed equal to the boiling point temperature. For releases which form
liquid pools (see Section 2.1), estimating the release temperature is complex
and depends, for example, on the rate of heat exchange of the spilled liquid
. 2-6
-------
with the surface. An evaporation (or source) model is required to make this
estimate. For example, some models assume the pool temperature is equal to
the ambient temperature and calculate the evaporation rate at that
temperature.
2.6 Density
Initial cloud density is an important determinant of cloud extent. The
denser the cloud is initially, the more it will tend to spread laterally (and
even potentially upwind) due to gravitational "slumping" or spreading forces.
In addition, the changes in cloud density downwind are dependent on the rate
of heat transfer into, the cloud. For example, one effect of heat transfer
into a cold cloud is to reduce the negative buoyancy (i.e., decrease density)
and, thus, to reduce the horizontal dimensions that result from gravitational
spreading. The effect of heat transfer into an aerosol cloud is to vaporize
the aerosol droplets, thereby, reducing the total cloud density. However,
such vaporization will also tend to reduce the cloud temperature below its
boiling point and thus increase the total cloud density. Prediction of
aerosol cloud densities may further be complicated by chemical reaction in the
liquid phase (as in polymerization of hydrogen fluoride) or interaction with
ambient humidity (as in pressurized ammonia and hydrogen fluoride releases).
The treatment of aerosol cloud density in dense gas models is model specific
as is the degree of available simplification of the cloud density/
concentration relation. Most models, however, do require specification of the
initial cloud density (prior to any dilution in the atmosphere).
For a gaseous release, initial density can be estimated by specifying the
release temperature and molecular weight and using the ideal gas law.
2-7
-------
For an aerosol release, initial cloud density may only be calculated if
the relative amounts of liquid and vapor in the release are known. This can
be approximated for single-component release via a flash calculation. For a
simple case, consider the release of a single component pressurized
(saturated) liquid stored at ambient temperature, which is above its normal
boiling point. The relative amounts of liquid and vapor formed upon release
can be estimated by performing an adiabatic flash calculation with the.
following equation (see Section 4.13 of the workbook (EPA, 1988)):
F = a,
L
where:. F = mass fraction of liquid flashed to vapor;
Op, = specific heat of liquid at constant pressure at Tu
(cal/(g K));
T . = storage or line temperature of liquid (K);
Tu = boiling temperature at ambient pressure (K); and
L = latent heat of vaporization at T^ (cal/g).
If all the unf lashed liquid is entrained in the gas jet as an aerosol,
the initial density of the release mixture prior to any air entrainment can
then be estimated:
where: p -, = density of the undiluted aerosol mixture (g/cnr1);
py = pure vapor density at T. (g/cm ); and
PL = pure liquid density at T. (g/cnr).
Since the release is a single component, the mixture density is also equal to
the contaminant concentrations for the undiluted aerosol. If F > 1, the
2-8
-------
release is not expected to form an aerosol, and may be conservatively assumed
to form a pure gas release at its normal boiling point temperature.
For multi -component releases, the calculation is complex and iterative
and the user is referred to King (1988), pp. 68-90.
The density of a substance which forms a liquid pool (see Section 2.1)
*
can be obtained from typical handbooks, if needed by the model.
2.7 Release Diameter (Release Area)
For stack releases, this parameter should be determined from direct
measurement from inside the stack top. For some applications, a gas may be
slowly released from a rupture or a hole. In those cases, the inside diameter
of the rupture point or hole may be used. However, when the source is a
pressurized jet, the release diameter (D ), required by a dispersion model is
typically the diameter of the released jet after it has depressurized to
atmospheric pressure. Assuming that the jet velocity remains constant within
the depressurization region, the release diameter can be estimated from:
°t = (PSt/Prsj)1/2£S
If the stored and released materials are both gases, this reduces to:
-------
If the released material forms an aerosol, calculation of the release
diameter will depend on appropriately accounting for the flashed fraction to
estimate the release density at atmospheric pressure (refer to Section 2.6 for
how to calculate (pre-|))>
For liquid spills, a pool diameter is needed. Screening estimates for
determining pool diameter are given in the workbook (EPA, 1988).
2.8 Release Buoyancy
It is necessary to determine whether the released material is heavier
than air (dense) or neutrally buoyant for a specific release scenario before
an appropriate dispersion model can be selected. This determination is done
step-wise and begins with an estimate of the molecular weight of the released
material. Once the molecular weight has been determined, the density of the
released material as described in Section 2.6 can be compared to the density
of air to initially determine negative (dense gas) or neutral buoyancy. For
ideal gases, the following relationship can be used:
If:
Tg Ta
~Mg * "2879
where: Ta = ambient temperature (K); and
Ts = temperature of the material released at ambient pressure1
Note that a liquid whose boiling point is below ambient temperature,
stored at ambient temperature under pressure may boil when released to ambient
pressure. Then the temperature of the released material at ambient pressure
may be assumed to be the normal boiling point.
2-10
-------
(K); then, atmospheric dispersion is not affected by negative buoyancy effects
and dense gas models are not required.
If the initial release buoyancy determinations show that dispersion is
affected by negative buoyancy (i.e., dense gas effects are important and a
dense gas model is necessary), then the next step is to determine the release
Richardson number (Ri). Ri represents a ratio of the potential energy
characteristic of the release to a measure of the ambient turbulent kinetic
energy.
The approach recommended for determining Ri is that described in the
workbook (EPA, 1988). Pages 5-2 through 5-5 of the workbook provide a
procedure for making the calculations for simple cases. For more complex
situations, e.g., elevated jet releases, the TSCREEN model (EPA, 1990) may be
used to make these calculations. In either case, if Ri for a particular wind
speed/stability class combination is greater than 30, then dense gas effects
o
should be considered. Models described in Chapter 3 are appropriate for
determining downwind concentrations from dense gas releases. If R. is less
than or equal to 30, the release is considered buoyant. Although some of the
models in Chapter 3 are able to address buoyant releases, it is suggested that
the user selects one of the models in Chapter 4, or one of the EPA regulatory
models because they are easier to use than the dense gas models.
•
2.9 Emission Rate
When assessing the emission rate for a specific release scenario, several
time scales may be encountered and this "time-history" of the emission rate
o
A large Ri indicates the dominance of buoyancy forces over shear forces.
A cut-off value of 30 is consistent with the RVD screening model (EPA, 1989b),
which is imbedded in TSCREEN.
2-11
-------
can have a significant influence on the final modeled concentration estimates.
For a pressurized release, three, time scales could be encountered; the initial
high volume emission rate followed by a near steady state rate and finally a
drop to zero as the leak stops. Evaporation from spilled releases may exhibit
other patterns. Therefore, to estimate emission rates, methods based on
direct measurements are preferred. In general, emission rate (expressed as
mass per unit time) equals emission density (mass/volume) times total
volumetric flow rate (volume/time). If direct measurements are not available,
emission rate can be estimated from the release mode and duration. For
selected release scenarios, methods for obtaining emission estimates are shown
in the workbook (EPA, 1988).
2.10 Release Height
This parameter should be determined from direct measurement from the
ground level at the base of the stack or the release point up to stack top.
Some models adjust the wind speed (from the measurement height) to the release
height. For a non stack-type release, the release height represents the
vertical distance from the ground level to the center of the initial release.
2.11 Wind Speed and Direction
Wind speed is used to determine (1) plume rise, (2) plume dilution, and
•
(3) mass transfer in evaporation models. In very light winds, dense gases
tend to form "pancake-shaped" clouds near the source and the dense cloud may
not be very deep until further downwind. As wind speed begins to increase,
the "maximum concentration" area moves further downwind and the cloud is
elongated and maximum hazard extent generally increases. At higher wind
2-12
-------
speeds, the rate of air mixing is increased (more energy is added to the
mixture) and the hazard extent decreases. For releases from liquid pool
spills, high wind speeds increase the rate of evaporation and thus increase
the plume source strength. However, high wind speeds also result in more
dilution due to increased entrainment of outside air and are more favorable
for atmospheric dispersion.
Concentration estimates predicted by air toxic models decrease as the
wind speed increases (Hanna et. al., 1990). However, most dense gas models
are less sensitive to this increase in wind speed at close-in distances, where
gravity effects are dominant. Further downwind, the behavior of dense gas
models and non dense gas models is more similar. In a comparison of the three
dense gas models SLAB, DEGADIS and HEGADAS, the three models exhibit different
sensitivity in modeled concentrations due to changes in wind speed. The SLAB
model is most sensitive while DEGADIS and HEGADAS show about the same degree
of sensitivity to changes in wind .speed (Guinnup and Nguyen, 1991). In
addition, all models indicate that an increase in wind speed causes a dramatic
reduction in the lateral dimension of the concentration isopleth with a less
dramatic reduction in downwind extent for a ground level dense gas release.
If the user wishes.to assess the hazard of a past event, wind speed
should be obtained from on-site measurements usually made at the standard 10m
level height. The wind speed at release height is frequently adjusted
internally by the model using a power law equation. Guidance for on-site
meteorological data collection is available in the document "On-site
Meteorological Program Guidance for Regulatory Modeling Applications" (EPA,
1987). On-site meteorological data are normally averaged over a 1-hour
interval. As described in Section 2.16, for transient releases the user
2-13
-------
should carefully select the appropriate meteorological data interval (i.e.,
the subset of time that the plume remains in the area of concern).
The wind direction is used to approximate the direction of transport of
the plume. The variability of the direction of transport over a period of
»
time is a major factor in estimating ground-level concentrations averaged over
that time period. For response analyses, wind direction should be estimated
from on-site or nearby measurements. For planning analyses, wind direction
should be chosen to maximize potential off-site impacts.
2.12 Stability Class
Stability conditions are typically assessed by means of the Pasquill-
Gifford (PG) stability categories where Category A represents extremely
unstable conditions and Category F represents moderately stable conditions.
The modeling guideline (EPA, 1986) recommends several methods for determining
the PG stability category.3
For a given wind speed, stable atmospheric conditions provide smaller
levels of atmospheric turbulence than unstable conditions. The influence of
atmospheric stability on the dispersion of a dense gas (as a result of altered
levels of ambient turbulence) may be similar to that for neutrally buoyant
releases, but may also be much less. For elevated releases, stable
atmospheric conditions tend to increase the downwind dist'ance to a given
concentration (and unstable conditions tend to reduce it). For dense gas
models, the maximum ground level concentration at a given distance usually
occurs under stable conditions. As in the case of wind speed, various models
These methods may change and the user should refer to the latest
revisions to the guideline.
. 2-14
-------
exhibit different sensitivity levels in concentration prediction due to
changes in stability class (Hanna et al., 1990, Guinnup and Nguyen, 1991).
For planning analyses, where there is a need for obtaining conservative
estimates from these models, it is necessary to make a number of refined model
simulations using various stability and wind speed combinations. For the
dense gas models included in this report, making a large number of simulations
and interpreting their results is a daunting task. Therefore, the following
approach is suggested. For vertically directed jet releases, the user should
first apply the RVD screening model imbedded in TSCREEN (EPA, 1990). The
model has a built-in range of wind speeds with associated stability
categories. The user then selects the wind speed and stability assosciated
with the maximum concentration at the fenceline distance. This wind speed and
stability combination is then input to the refined dense gas model. For
liquid pool spills, a wind speed of 2 m/s and F stability class can be used.
The above procedure has shortcomings. For example, the wind speed and
stability combinations in the screening model may not be the same combination
that would yield the maximum concentration in the refined model due to
differences in model "physics" and other assumptions. Also, the wind speed
and stability combination may strongly depend on whether the release can be
simulated as a steady state or as a transient release. For spills, low wind
speeds are not favorable for evaporation. Nevertheless, simulating the
release with wind speed and stability class described above provides the user
with an initial assessment-of the problem before applying the more complex
refined model.
2-15
-------
2.13 Surface Roughness Length
In principle, the surface roughness length is a measure of the roughness
of a surface over which a fluid is flowing and for a homogeneous surface, its
value may be approximately estimated as l/30th of the average height of the
surface irregularity. When the landscape contains any obstructions (i.e,
nonhomogeneous), an effective roughness length must be determined. The
effective length is best determined using the relationship described in the
meteorological data guidance document (EPA, 1987). Typical values of surface
roughness are shown in Table 2-1. Some models use surface roughness to
internally compute the Monin-Obukhov length.
The overall effects of increasing surface roughness will be to retard the
horizontal, buoyancy-induced spreading of the plume or cloud and to enhance
the mixing between plume and environment as a result of the ambient and plume
turbulence (Britter and McQuaid, 1988). As in the case of wind speed and
stability class, various models exhibit different sensitivity levels in
predicted concentrations due to changes in surface roughness (Hanna et al.,
1990; Guinnup and Nguyen, 1991). Because releases of a dense gas may occur in
industrial settings where the presence of a wide variety of structure heights
and shapes is common, some users have input large surface roughness values
into a model to account for the presence of such obstacles. However, these
large surface roughness values can significantly decrease modeled
concentrations. For low or ground-level releases, increasing the surface
roughness value by a factor of 10 may result in concentration reductions by
about a factor of 2 (Petersen, 1989). The use of "enhanced" roughness values
for simulating an industrial setting has yet to be thoroughly tested and
justified. For planning analyses where there is a need for obtaining
2-16
-------
conservative estimates from these models, the use of a surface roughness value
characteristic of the smallest roughness element in the vicinity of the
release (typically around 0.01 m) will result in the prediction of a higher
concentration by the model.
2.14 Ambient Temperature. Relative Humidity, and Pressure
To assess the consequences of a past event, input parameters should be
used which are representative of the conditions at the time of the release.
An appropriate input value for each of these parameters should be obtained
from on-site measurements at the time of release. Guidance on methods for
collecting these data are presented in the meteorological data guidance
document (EPA, 1987). If on-site data are not available for these parameters,
observations from nearby National Weather Service (NWS) stations may be used
instead.
Experience to date indicates little, if any, sensitivity in predicted
model concentrations due to changes in these three parameters. For planning
analyses, the input of a value typical of the climatological average is
usually adequate.
t,
2.15 Ground Surface Temperature '
An appropriate input value for ground surface temperature should be that
from routine on-site measurements. If such data are not available, ground
surface temperature may be approximated to be equal to ambient temperature
measured at the standard height, for most applications. Experience to date
indicates little, if any, sensitivity in predicted model concentrations due to
changes in this parameter.
2-17
-------
2.16 Averaging Time Considerations
Toxic chemical releases are often of short duration and the
concentrations of interest are short term averages. Typical concerns from a
toxic release are the maximum short term concentration and the maximum dosage.
Many toxics models are designed to provide concentration predictions for unit
averaging times ranging from 1 second to 1 hour. By contrast, regulatory
models for most criteria pollutants have a basic averaging time of one hour
for concentration estimates.
Refined dense gas models can typically provide concentration estimates
for user specified averaging times of 1 hour or less. Due to entrainment with
ambient air, a dense gas release typically does not remain significantly dense
for travel times longer than 1 hour. The length of the averaging time is
usually selected in order to evaluate the exposure to airborne chemicals.
Meteorological input, however, is often based on an hourly average. To
determine the appropriate averaging time the user should examine the
persistence of meteorological conditions and the concentration levels of
concern keeping health or other reference levels in mind.
Defining an appropriate averaging time for dense gas modeling application
is complicated. Large averaging times allow for more plume meander and
•
therefore lower average concentrations. Thus, a 5-minute ensemble average
concentration is generally less than a 1 minute ensemble average since more
meander can generally occur in 5 minutes than in 1 minute. Thus, some
researchers use much shorter averaging times (i.e., 5-10 seconds), than the
release duration, especially when comparing model predictions with field
measurements when these field measurements are made with shorter averaging
times. However, meteorological inputs (i.e. stability classification) used in
2-18
-------
conjunction with these models are based on a longer duration, usually 60
minutes.
The time scales relevant to determining the averaging time to be used in
the models can be designated as:
= avera9in9 time associated with the hazard being assessed;
= duration of the contaminant release; and
Hrav = trave^ tiroe* discussed earlier (Section 2.3).
If t. is the averaging time which represents the effect of plume meander, then
a
the largest recommended t is the minimum of t. and t -, (for steady-state
or transient releases); smaller values of t. can be chosen to compare with
a
field observations. If t. + is the averaging time which accounts for
d, L
transient effects (not pertinent for steady-state releases) t, t is
a, t
recommended to be t. .
2-19
-------
Table 2-1
REPRESENTATIVE VALUES OF SURFACE ROUGHNESS FOR A UNIFORM
DISTRIBUTION OF SELECTED TYPES OF GROUND COVER
(PIELKE (1984))
Surface Roughness
(m)
Ice
Snow
Sand
Soils
Short grass
Long grass
Agricultural crops
0.00001
0.00005 to 0.0001
0.0003
0.001 to 0.01
0.003 to 0.01
0.04 to 0.10
0.04 to 0.20
2-20
-------
3.0 Application to Dense Gas Models
This chapter narrows the focus of the general guidance considerations
developed in Chapter 2 and deals with input requirements for each specific
dense gas model. At the present time, three models are discussed: DEGADIS,
HEGADAS and SLAB. Table 3-1 shows the types of releases considered by these
dense gas models. Significant model attributes should be carefully taken into
consideration when selecting a model for a given application. For each model,
the discussion begins with those specific input parameters that can not be
readily obtained from reviewing the model user's guide. For each model, two
example applications are provided to show the user how every model input
parameter was derived. The present examples do not cover all of the release
types that can be considered by these models.
v
3.1 DEGADIS Model
The DEnse GAs Dispersion (DEGADIS) Model (Version 2.1) (EPA, 1989b) is
designed to model the dispersion of dense gas (or aerosol) clouds released
from a circular sourde cloud at ground level with no initial momentum (pooled
surface) as well as the dispersion of vertical jets. The DEGADIS model
summary description \s included in Appendix A.I. There are terms used in
*
DEGADIS (i.e., isothermal and nonisothermal) that need distinction.
a. Isothermal and Nonisothermal Simulation
An "isothermal" simulation means that DEGADIS does not use an
energy balance to relate contaminant concentration to mixture density; for an
"isothermal" simulation, the user must supply this relationship in the form of
ordered triples (of contaminant mole fraction, contaminant concentration, and
mixture density). "Isothermal" simulations are useful for both aerosol
3-1
-------
releases and releases where the initial contaminant temperature is the same as
the ambient temperature.
A "nonisothermal" simulation means that DEGADIS uses an energy
balance to determine the cloud temperature (and thereby its density) as air is
mixed with the cloud. The energy balance allows for ground-to-cloud heat
transfer and accounts for thermal effects associated with the condensation of
ambient humidity, but the energy balance does not account for thermal effects
associated with contaminant phase changes (as in aerosol releases). The
energy balance assumes the contaminant is an ideal gas. "Nonisothermal"
simulations are useful when the released contaminant can be represented as an
ideal gas and the initial contaminant temperature is significantly different
from ambient temperature.
b. Density Considerations
If the release being modeled is an aerosol, the DEGADIS model
requires data relating the cloud density to its contaminant concentration
level. In order to calculate the density of a cloud for any given dilution
with air, the user must know:
1. the heat capacities of the liquid and vapor phases;
2, the heat capacity of the ambient air and its contained moisture;
•
and
3. the latent heat of vaporization of the released contaminant and
water.
This information is then used (in adiabatic mixing calculations, i.e., no heat
transfer) to determine the liquid and vapor contents of the released .
cloud/ambient air (aerosol) mixture.
3-2
-------
As one varies the input amounts of air and released aerosol from pure
(100 percent) air to pure (100 percent) aerosol, the density of the resultant
mixture will change. [So will temperature T, liquid content (1), vapor content
(v), and concentration (c)]. The adiabatic mixing calculations result in
values for contaminant mole fraction, contaminant concentration (kg of
%
contaminant per m of contaminant/air mixture) and mixture density (kg of
contaminant/air mixture per m of contaminant/air mixture) which are then
input to the DEGADIS model. Typically, this calculation is made 10 to 20
times using a combination of pure air and aerosol mixtures to adequately
describe the complete density profile. The actual number in this combination
series is then input to the model as a variable "NDEN" and the mole
fraction/contaminant concentration/mixture density data are input on
subsequent input records (see Section A of the user's guide).
Since calculating 10 to 20 combination data points can be tedious,
one alternative, which generally provides results within acceptable error
limits, is to provide the model with only the initial and final mole
fraction/concentration/density data points; namely, those for the pure ambient
air and pure aerosol as initially released. The model will linearly
interpolate between these two end points. For the first end point, pure
«
ambient air, the density entry value can be obtained from a psychometric chart
(e.g., see Felder and Rousseau, 1986). The first end point value can also be
obtained while running the DEGltiP or JETINT modules of the DEGADIS model.
Values for the second entry, pure aerosol, may be estimated if the relative
amounts of liquid and vapor in the release are known, as described in Section
2.5.
3-3
-------
c. Heat Capacity Considerations
In DEGADIS, constants for determination of cloud heat capacity are
only needed if a "nonisothermal" simulation is being made, (i.e., contaminant
release temperature differs significantly from that of ambient air and an
energy balance is used to estimate the cloud temperature). The contaminant
*
heat capacity is determined by Equation A.I of the user's guide (EPA, 1989b).
A constant heat capacity can .be specified by setting the power (pi) to 0 and
the constant equal to the desired heat capacity (J/kg K).
The temperature difference between the release temperature and the
ambient temperature can be considered important if ambient humidity can be
condensed (which is possible if the release temperature is below the ambient
dew point). If the difference between the release temperature and the ambient
temperature is not great, the variable "NDEN" may be set equal to -1; a pseudo
"isothermal" simulation is made. The model calculates pure air and pure
contaminant densities based on input conditions and then linearly interpolates
between these end points. The model still requires inputs for variable "CPP"
and CPK" but dummy values for these variables may be entered since the model
will not use these.variables when NDEN = -1.
d. Example Applications:
DEGADIS Model Example 1: Continuous Chlorine Leak
In this hypothetical example, the DEGADIS model is used for planning
purposes to simulate the release of chlorine gas from a pressurized tank
through a 2.8 cm diameter hole. Chlorine is being stored as a gas; in a large
tank at ambient temperature under 6 atmospheres of pressure . The hole is
In this example, since chlorine is released as a .gas and remains as a •
gas after depressurization, there is no need to consider any aerosol effects,
3-4
-------
located 5m above ground and the release is directed upward. Terrain in the
vicinity of the tank is flat and covered with grass. Chlorine forms a
greenish-yellow gas with a characteristic, irritating odor. The NIOSH 15-
minute exposure limit is 0.5 ppm. Maximum off-site concentrations from this
release are desired. Additional parameters are given as: molecular weight =
70.9 g/g-mole; ambient temperature = 298 K; heat capacity at constant pressure
for chlorine gas = 500 J/kg K; ratio of specific heats = 1.35; and relative
humidity = 50 percent.
Using the approach suggested in Chapter 2, the user begins by using
the procedure shown in the workbook (EPA, 1988} and the TSCREEN model. This
scenario is the same as Example 6.5 of the workbook. First, buoyancy and
density are determined. The value for the Richardson number is well in excess
of 30 indicating the need for a heavy gas model, and the RVD screening model
imbedded in TSCREEN is used to select the wind speed and Pasquill stability
category for input into a refined dense gas model. The screening model
results are reviewed to determine the maximum concentration at the facility
fence!ine (100m). This concentration occurs within stability classes E and F
at 2 m/s wind speeds. The F stability and 2 m/s wind speed parameters are
selected as input into the DEGADIS refined dense gas model.
•
The DEGADLS input file for this example is shown in Appendix C.I.
The description of the input elements below is done line-by-line from what is
shown in the input and output files. The user can refer to pages A-6 thru A-8
of Appendix A of the DEGADIS model user's guide for additional definitions of
terms. . .
3-5
-------
1. Line 1
UO = 2 m/s. UO is the ambient wind speed at reference height.
ZO = 10 m. ZO is the reference height. This is the standard reference
height for meteorological measurements.
2. Line 2
ZR = 0.01 m. ZR is the surface roughness. This value is typical of
terrain covered by grass. See Table 2.1.
3. Line 3
INDVEL = 1. This indicates that the ambient velocity profile will be
calculated using the Pasquill-Gifford stability category along with the
surface roughness to estimate the Monin-Obukhov length RML. Using RML,
the log velocity profile is then fixed.
ISTAB = 6. This is the Pasquill-Gifford F stability category.
RML = 0. RML is the Monin-Obukhov length. Since INDVEL = 1, the Monin-
Obukhov length will be estimated by DEGADIS, and a dummy value of 0.0 is
used.
4. Line 4
TAMB = 298 K. TAMB is the ambient temperature.
PAMB = 1 atm. PAMB is the ambient pressure. The exact magnitude for
this parameter is not important for most releases.
RELHUM = 50 percent. RELHUM is the relative humidity. Since the
contaminant temperature is not below the ambient dew point temperature,
this parameter will have little impact on the final result.
5. Line 5
TSURF = 298 K. TSURF is the surface temperature. This value is usually
set equal to the ambient temperature unless otherwise known.
3-6
-------
6. Line 6
GASNAM = CL2. The three letter designation for the contaminant
(Chlorine) is for documentation purposes only.
7. Line 7
GASMW = 70.9. GASMW is the contaminant molecular weight for chlorine.
8. Line 8
AVTIME = 900 sec. (15 min.). AVTIME is the averaging time. This
averaging time is used to assess the concern for public health as
discussed above. Here, we can compare the model predictions against the
NIOSH Exposure Limit of 0.5 ppm for 15 minutes.
9. Line 9
TEMJET = 284.3 K. TEMJET is the temperature of the released contaminant
immediately after it is released into the atmosphere. The cooling due to
adiabatic expansion of the jet is calculated using the method in Appendix
E.
10. Line 10
GASUL = 5 x 10 moTe fraction. This is the higher of two concentration
levels to be used for estimating contours. The upper concentration limit
is arbitrarily selected to be a factor of 10 higher than the NIOSH 15-
minute exposure limit of 0.5 ppm. This ppm value is converted to mole
fraction by dividing by 10 .
GASLL = 0.5 x 10 mole fraction. This is the lower of two concentration
levels to be used for estimating contours. The lower concentration limit
is selected as the NIOSH 15-minute exposure limit of 0.5 ppm converted to
i
mole fraction by dividing by 106.
3-7
-------
ZLL = 0 m. ZLL is the receptor elevation for contour predictions. A
ground level concentration is desired.
11. Line 11
INDHT = 1. This is a switch to indicate if heat transfer is to be
included in the model. Since the release temperature is different than
the ambient temperature, heat transfer should be included and INDHT = 1.
CPK (heat capacity constant) and CP? (heat capacity power) are variables
used to calculate heat capacity according to the equation used in the
model. To use a constant value of heat capacity for chlorine of 500 J/kg
K, set CPK = 500 and CPP = 0.
12. Line 12
NDEN = 0. This variable is used to specify the contaminant density
profile. For this release, the chlorine is a gas after depressurization.
When NDEN is set to zero a "nonisothermal" situation (where the energy
balance is used to determine cloud density) is made; also, the initial
contaminant density is calculated using the ideal gas law.
13. Line 13
ERATE = 1.261 kg/sec. ERATE is the contaminant emission rate. See page
.6-14 of the workbook for details on how this value can be calculated.
14. Line 14
ELEJET = 5 m. ELEJET is the initial jet elevation. In this case, the
rupture hole is 5 m above ground.
DIAJET = .06701 m. Since the release is pressurized, the diameter of the
release must be adjusted sb the velocity will be calculated correctly by
the model. In this case, both stored and released contaminants are
gases, so:
3-8
-------
T
1
iel
1/2
(0.028) =0.06701..
15. Line 15
TEND = 0. TEND is a switch indicating duration of the primary release. A
value of zero indicates steady-state release. Several criteria are used
here. A steady-state release is appropriate when storage capacity of the
system is much larger than the release rate. In addition, the
applicability of a steady-state simulation depends also on the advection
or travel time to the lowest concentration of interest (Urav) as
discussed in Section 2.2. This step requires an examination of the
output. The 0.5 ppm level is reached at 10.2 km from the source and 2
m/s is the ambient wind speed. Using the equation in Section 2.2,
ttrav = 2 (xl/u) = 2 (10200/2) * 10,200 sec. = 2.8 hrs. For this release
rate, if the source duration is longer than 2.8 hours, then a steady-
state simulation is justified.
16. Line 16
DISTMX = 100 m. DISTMX is the maximum distance between output points in
the model. Note that this does not affect the concentration values
predicted by the model; only the amount of output is affected.
Model Output
The DEGADIS model output file is shown in Appendix C.I. The output file
first shows a summary of model inputs. Some of the parameters were calculated
directly by the model. The model output then lists the centerline
3-9
-------
concentrations by downwind distance for the jet/plume phase of the release.
For the jet/plume release, the maximum centerline ground level concentration
is 7.49 x 10 mole fraction (749 ppm), at a distance of 220 m downwind of the
release! The plume trajectory portion of the calculation ends at 261 m
downwind. At this point the plume centerline is at ground level (zero). The
maximum 5 ppm isopleth width in the jet/plume is 2 x 27.3 = 54.6 m at 261 m
downwind.
When the plume centerline touches the ground, the DEGADIS model continues
the calculations for the dispersion of a ground level plume. The output file
again shows a summary of model inputs, together with additional ground-level
"source" parameters calculated directly by the model. This is followed by a
listing of the plume concentration as a function of downwind distance. In
addition, cross wind distances to the specified concentration levels (.5 ppm
and 5 ppm) are listed as a function of downwind distance in the last two
columns. The higher specified concentration level 5 ppm (1.45 x 10 kg/m )
is reached at a distance of 6170 m from the release point. The maximum 5 ppm
isopleth width is 2 x 289 = 576 m at 2970 m downwind. Similarly, the lower
specified concentration level 0.5 ppm is reached at a distance of 10,000 m
downwind. The maximum 0.5 ppm isopleth width is 2 x 598 or 1200 m at the
10,200 m downwind distance.
DEGADIS Model Example 2: Ammonia Pipeline Rupture
The model is used here to assess the hazard extent of a past event which
occurred at about 8:00 a.m. when a bulldozer struck and ruptured an 8-inch
ammonia pipeline operating at approximately 700 psi. The rupture was
estimated as 4 cm in diameter, and the release rate was estimated as 56 kg/s.
The climatological data from the nearest National Weather Service station were
3-10
-------
examined and the following meteorological record reconstructed for this event:
wind speed = 4.5 m/s (10 m), ambient temperature = 298 K, atmospheric
stability class = D, relative humidity = 50 percent, and atmospheric pressure
= 0.98 atmospheres. The dense aerosol plume reportedly etched a parabolic-
shaped scar about 6 miles long and 1/2 mile wide on surrounding vegetation
(mostly short grass). Ammonia is a colorless gas with a suffocating odor; it
exists as a liquid under 700 psi pressure.
The input file is similar to Figure B.4 of the DEGADIS model user's
guide. The input file used here is shown in Appendix C.I. The input
parameters are described below. Also see page A-6 of Appendix A of the user's
guide for additional term definitions.
The user should perform a flash calculation to estimate the percent of
liquid flashed into vapor using the method given in the workbook (F = Cp, x
(Ts - Tb)/L), or F = 4294 J/Kg k (298-39.72)K/1370840 J/kg) = 0.18).
1. Line 1
UO = 4.5 m/s. UO is the ambient wind speed at reference height.
ZO = 10 m. ZO is the reference height. This is the standard reference
height for meteorological measurements.
2. Line 2
ZR = .01 m. ZR is the surface roughness. This value is typical of
terrain covered by short grass.
3. Line 3
INDVEL = 1. This indicates that the ambient velocity profile will be
calculated using the Pasquill-Gifford stability category along with the
surface roughness to estimate the Monin-Obukhov length RML. Using RML,
• the log velocity profile is then fixed.
3-11
-------
ISTAB = 4. Pasquill-Gifford stability D class.
RML = 0. RML is the Monin-Obukhov length. Since INDVEL = 1, the Monin-
Obukhov length will be estimated by DEGADIS, and a dummy value of 0.0 is
used.
4. Line 4
TAMB = 298 K. TAMB is the ambient temperature.
PAMB = .98 atm. PAMB is the ambient pressure.
RELHUM = 50 percent. RELHUM is the relative humidity.
5. Line 5
TSURF = 298 K. TSURF is the surface temperature. In absence of specific
information, this value is usually set to the ambient temperature.
6. Line 6
GASNAM = NH3. A three-letter designation for the contaminant (ammonia)
used for documentation purposes only.
7. Line 7
GASMW = 17. GASMW is the contaminant molecular weight for ammonia.
8. Line 8
AVTIME = 3600 sec. (1 hour). AVTIME is the averaging time. A 1-hr
exposure concentration between 100 ppm and 1000 ppm is used to compare
with vegetation damage.
9. Line 9
TEMJET = 239.7 K. TEMJET is the temperature of the released contaminant
after depressurization. Since this release is an aerosol, assume that
the post expansion temperature is equal to the normal boiling point.
Note that this value is not used by the model if NDEN > 0, as described
later.
3-12
-------
10. Line 10
GASUL = 1000 x 10"6 mole fraction. This is the upper concentration level
to be used for estimating contours. Since severe damage to vegetation
was observed, a 1-hour exposure level of 1000 ppm is an estimate of the
level that might indicate vegetation scarring. This value is chosen as
the upper concentration limit. This ppm value is converted to mole
g
fraction by dividing by 10 .
GASLL = 100 x 10"6 mole fraction. This is the lower concentration level
to be used for estimating contours. This ppm value is converted to mole
fraction by dividing by 10 .
ZLL = 0 m. ZLL is the receptor elevation.
11. Line 11
INDHT = 0. This is a switch to indicate if heat transfer between the
atmosphere and a ground-level plume is to be included in the model.
Since an aerosol is being simulated, heat transfer cannot be simulated
with ground-to-cloud energy transfer because, at present, aerosol
releases are simulated without using the thermal energy balance (an
"isothermal" simulation).
CPK and CPP are variables used to calculate heat capacity according to
the correlation in the model. Since heat transfer is not included, heat
capacity information is not needed. However, since the model requires
inputs in this space, dummy values of 0.0 and 0.0 are input.
12. Line 12
NDEN = 2. This variable is used to specify the contaminant density
profile. At present, DEGADIS simulates an aerosol release with a user-
specified concentration/density relationship (i'.e., an "isothermal"
3-13
-------
simulation). Thus, NDEN > 0 switch is used to specify the
concentration/density relationship which, in this case, is described by 2
ordered triplets. The first column is contaminant mole fraction, the
second column is contaminant concentration, and the third column is the
mixture density. The first triplet is for pure ambient air and the
second is for pure released material. The first triplet is determined
using the ideal gas law for ambient air:
p = (MW - Pa) / (R • Ta) = 28.9 x 101325/8314 x 298 = 1.154
The second triplet is determined from an isenthalpic flash calculation
for the released ammonia using the equation in Section 2.6.
Prel = l/[.18/.8658 + .82/682.8] = 4.782 kg/m2
where py = [(17)(101325)]/[(8314)(239.7)} = .8658 kg/m3, and
3
p, for ammonia is 682.8 kg/m .
13. Line 15
ERATE = 56 kg/s. ERATE is the contaminant emission rate.
14. Line 16
ELEJET = Om. ELEJET is the initial jet elevation. Note that the model
will change ELEJET to 2 x ZR if the user sets ELEJET to 0.
DIAJET = .478 m. DIAJET is the initial jet diameter. Assuming the
released material is entirely a liquid before depressurization, the
method described in Section 2.7 is used to calculate Dr;
Dr = (pst/prej)1/2 Ds = (682.8/4.782)172 (.04) = 0.418m
where the liquid density of ammonia is 682.8, and density of ammonia upon
p
depressurization air is 4.782. Area after expansion is 0.179 m.
3-14
-------
15. Line 17
TEND = 0. TEND is a switch indicating duration of the primary release
mode. A value of zero indicates a continuous release.
16. Line 18
DISTMX = 50m. DISTMAX is the maximum distance between output points in
the model, arbitrarily chosen at 50 meters in this example. Note that
small values of this parameter will increase the size and precision of
the output, while large values will have the opposite effect.
Model Output
The DEGADIS model output file for this scenario is shown in Appendix C.I.
First, the output shows a summary of model inputs with some additional
parameters calculated directly by the model. The model output first lists the
centerline concentrations by downwind distance for the jet/plume phase of the
P
release; the maximum centerline ground level concentration is 2.21.x 10 mole
fraction (22100 ppm) at a distance of 172 m downwind. The jet trajectory
portion of the calculation ends at 217 m downwind. At tfiis point, the plume
centerline is at ground level. The maximum 1000 ppm isopleth width in the
jet/plume trajectory portion of the model is 2 x 56.5 m = 113 m at 217 m
downwind. The next portion of the output shows the plume centerline
concentration beyond plume touchdown. The output file again shows a summary
of model inputs and also lists additional parameters calculated directly by
the model. The maximum extent of the 1000 ppm concentration level is about
2400 m downwind. The maximum 1000 ppm isopleth width is 2 x 262 = 524 m at
1320 m downwind. The maximum downwind extent of the 100 ppm concentration
level is 7100 m downwind from the source. "The maximum 100 ppm isopleth width
is 2 x 606 = 1212 m at 3700 m downwind.
3-15
-------
3.2 HEGADAS Model
The HEGADAS model (Witlox, 1988) simulates ground level, steady-state and
transient releases of dense gases formed from liquid pool surfaces. The
HEGADAS model summary description is shown in Appendix A.2. In applying the
HEGADAS model, the user should follow the general modeling guidance criteria
in Chapter 2. In running .the HEGADAS model for the example applications,
certain input parameters were found not to be adequately described in the
model user's guide. Useful clarification for some of these input parameters
is given below:
a. Water Vapor: Water vapor flux addressed in ISURF is the transfer of
water vapor from a water surface to the cloud. For a release over land, this
option is not needed, but the water vapor in the entrained air is still
treated in the thermodynamic calculations. Therefore, the relative humidity
will affect the calculation regardless of the value of ISURF.
b. Low Wind Speed: HEGADAS assumes that convection (flow of the gas
with the ambient wind) is dominant over gravitational spreading. Very low
wind speeds increase the likelihood that convention will not dominate. The
lowest wind speed suggested for use with HEGADAS in the user's guide is 1.5
m/s.
•
c. Averaging Time: The dispersion parameters used are those for
instantaneous concentrations. For a longer averaging time, the value given on
page 21 of the user's guide along with a conversion formula should be used.
d. Example Applications
HEGADAS Model Example 1: Continuous Liquid Spill from a Pipe
For planning purposes, the HEGADAS model is used to simulate the
•
release of unsymmetrical dimethylhydrazine liquid spilled from a leak in an
3-16
-------
unpressurized transfer pipe. Due to its low volatility, this substance forms
a pool, and this pool is unconfined. This chemical was stored at ambient
pressure and temperature, and the liquid did not form a jet upon release. The
pool evaporation rate is assumed to reach a steady state after spreading such
that the evaporation rate equals the pipe flow rate. Dimethylhydrazine is a
fuming, colorless liquid carcinogen with a strong odor. An estimate of the
15-minute maximum off-site concentration is needed. The minimum distance
between the center of the spill area and the plant fence!ine is 100 m.
Terrain in the vicinity is typically flat, covered by short grass. Note, this
release is similar to Example 6.15 in the workbook (EPA, 1988). Other known
variables are: contaminant molecular weight = 60.1 g/g-mole; liquid release
rate = 78.6 g/s; spill pool area = 58.8 m ; atmospheric temperature = 10°C,
and relative humidity = 50 percent.
In HEGADAS, the spill pool area is required as input. According to
the workbook, the spill pool area is the smaller of the confined release area
or the area at which the evaporation rate equals the release rate. Since the
release is unconfined, the spill pool area (58.8 m ) is obtained from the
evaporation rate formula given in the workbook. A square area is assumed.
The HEGADAS input file is shown in Appendix C.2. The input
parameters are described line-by-line from what is shown in the input and
output file. The user can refer to pages 11 and 14 thru 15 of the HEGADAS
model user's guide for additional explanation of terms.
1. Title HEGADAS-S Workbook Example 6.15
ICNT = Contours or content code =0. This model control switch generates
an output listing of the Richardson number, gas temperature, and gas
volume concentration at each downwind distance.
3-17
-------
ISURF = Surface transfer code =3. This model control switch specifies
that surface heat transfer is included by the model.
2. Pool Data
PLL = Source length = 7.67 m. This value is obtained from the workbook.
o
Given a pool area of 58.8 m , and assuming a square area, pool length =
pool width = 7.67 m.
PLHW = Source half width = 3.83 m. This value is \ of 7.67 m.
3. Ambient Conditions
Zo = Reference height = 10 m. This is the standard height for
meteorological measurements.
Uo = Wind velocity at height Zo = 1.5 m/s. Table 2-3 of the workbook
suggests that for ground level releases maximum concentrations are
predicted under very stable conditions and a low wind speed. A 1.5 m/s
wind speed is the lower limit of applicability of this model.
AIRTEMP = Air temperature at ground level = 10°C.
RH = Relative humidity = 0.5. This value corresponds to 50% relative
humidity.
TGROUND = Earth surface temperature = 10°C. This value was set equal to
ambient temperature.
4. DISPERSION
ROUGH = Surface roughness parameter = 0.01 m. This value is typical of
flat terrain covered by short grass. Since no other information is
provided, a 0.01 m value provides a conservative estimate.
MONIN = Monin-Obukhov length = 10. This value is obtained from Figure 1,
page 22 of the user's guide for F stability and surface roughness of
0.01m.
3-18
-------
CROSSW = Cross-wind dispersion coefficients = 0.0705 (delta) and 0.902
(beta). The value of delta is derived from the conversion formula on
page 21 of the user's guide for a 15-minute average. The value of beta
is obtained from Table III-2 of the user's guide for F stability.
5. CLOUD
XSTEP = Output step length = 1.0. This model switch controls the
downwind Interval between rows of output data. The step length is a
multiple of the source length (PLL). Thus, step length (1) times source
length (7.67 m) = 7.67 m which is the reporting interval shown in output.
XMAX = Maximum calculated distance = 100. This is a number multiplied by
the source length. Thus, 100 (7.67 m) = 767 m. This indicates the
distance a't which model execution and output are terminated.
CAMIN = Ground level centerline concentration at which calculation
7 3
stops = 1 x 10 kg/m . This parameter is selected to be lower than the
lower concentration limit (CL).
CU = Upper threshold concentration limit = 1.15 x 10 kg/m . This value
is chosen'as a factor of 10 higher than CL.
CL = Lower threshold concentration limit = 1.15 x 10 kg/m . The 15-
minute STEL exposure limit for this chemical, 1.15 x 10"7, is selected as
•
the lower concentration limit for comparing concentrations.
6. SOURCE
FLUX = Gas emission flux = 1.34 x 10"3 kg/m2/s. This value is obtained
by dividing the given liquid release rate (.0786 kg/s) by the pool area
2
(58.8 nr). The pool area calculations are shown on Page 6-48 of the .
workbook.
3-19
-------
TEMPGAS = Temperature of emitted gas = 10°C. Assume pool surface
temperature is in equilibrium with ambient temperature.
CPGAS = Heat capacity of emitted gas =150 J/mole/C. This value was
obtained from a chemical engineering handbook. Note, the user's guide
refers to this variable as specific heat of gas, which is also correct.
MWGAS = Molecular weight of emitted gas = 60.1 kg/k-mole. This value is
obtained from a chemical engineering handbook.
WATGAS = Molar fraction picked up from water = 0. Since the spill occurs
on land, no water transfer into the source cloud occurs.
Model Output
'The HEGADAS model output file is shown in Appendix C.2. The output file
first lists a summary of model inputs. Some of the parameters listed were
calculated directly by the model. The output file lists the centerline
concentration by distance from the source. The first two distances listed are
within the source and are ignored. The ground level concentration on plume
axis* at 100 m from the center of the source is about 0.0018 kg/m. The last
column provides the concentration in percent volume (mole percent) which at
100 m is 0.001248 volume percent. Multiply this value by 10 to obtain a
•
plume concentration of 12.48 ppm. The columns marked YCU and YCL tabulate the
crosswind distance to the point at which the concentration is reduced to the
"upper concentration limit" of 1.15 x 10 kg/m and "lower concentration
limit" of 1.15 x 10 kg/m , respectively. At 100 m downwind, these distances
are about 90 and 98 meters, respectively.
The model output is terminated at a distance of 763 m (or approximately
100 times PLL value of 7.67 m). The selected upper and lower concentration
3-20
-------
thresholds are reached beyond this distance. The user can re-run the model
using a larger cut-off distance should there be a need to obtain the distances
to these concentration levels.
HEGADAS Model Example 2: Continuous Liquid Spill from a Tank
In this example, the HEGADAS model is used to assess the hazard
extent of a past event where chlorine liquid is spilled from a leak in a
storage tank under 7 atmospheres of pressure. Upon release to the
atmosphere, the spilled liquid formed a rapidly boiling pool confined to a
diked area. A review of on-site meteorological records shows that the release
occurred mid-day when the wind speed was 2 m/s; atmospheric stability
condition was D; atmospheric temperature was 30°C; and relative humidity was
75 percent. The pool evaporation rate under these conditions was estimated as
2 ?
3.0 x 10 kg/m /s. This chemical is a fuming, colorless liquid carcinogen
with a strong odor. The minimum distance between the center of the spill area
and the plant fence!ine is 100 m. Other given variables are: contaminant
molecular weight = 70.9 g/g-mole; boiling point temperature = -34°C; and spill
•)
pool area = 16 m.
The HEGADAS input file is shown in Appendix C.2. The input
parameters are described below.
•
1. Title HEGADAS-S Workbook Example 6.16
ICNT = Contours or content code = 0. This model control switch generates
an output listing of the Richardson number, gas temperature, and gas
volume concentration at each downwind distance.
ISURF = Surface transfer code = 3. This model control switch specifies
that no surface heat transfer is included by the model.
3-21
-------
2. Pool Data
PPL = Source length = 4 m. Assuming a square dike, the pool
length = pool width = 4 m.
PLHW = Source half-width = 2 m. This value is \ of 4 m.
3. Ambient Conditions
Zo = Reference height = 10 m. This is the standard height for
meteorological measurements.
Uo = Wind velocity at height Zo = 2 m/s. This value was obtained from
on-site measurements.
AIRTEMP = Air temperature at ground level = 30°C.
RH = Relative humidity = 0.75. This value corresponds to 75% relative
humidity.
TGROUND = Earth surface temperature = 30°C. This value was set equal to
ambient temperature.
4. DISPERSION
ROUGH = Surface roughness parameter = 0.01 m. This value is typical of
flat terrain covered by short grass.
MONIN = Monin-Obukhov length = 10,000. This value is obtained from
Figure 1, page 22 of the user's guide for D stability.
*
CROSSW = Crosswind dispersion coefficients = 0.09158 (delta) and 0.905
(beta). The value of delta is derived from the conversion formula on
page 21 of the user's guide for one hour average. These values are
obtained from Table III-2 of the user's guide for D stability.
5. CLOUD
XSTEP = Output step length =1.0. This model switch controls the
downwind interval between rows of output data. The step length is a
3-22
-------
multiple of the source length (PLL). Thus, step length (1) times source
length (4 m) = 4 m which is the reporting interval shown in output.
XMAX = Maximum calculated distance = 100. This is a number multiplied by
the source length. Thus, 100 x 4 = 400 m. This indicates the distance at
which execution and output are terminated.
CAMIN = Ground level centerline concentration at which calculation
stops = 1 x 10"6 kg/m3. This parameter is selected to be lower than the
lower concentration limit (CL).
CU = Upper concentration limit = 1.5 x 10"5 kg/m3. This value is chosen
as a factor of 10 higher than CL.
C O
CL = Lower concentration limit = 1.5 x 10 kg/m . This value is
arbitrarily selected to provide isopleth information.
6. SOURCE
? ?
FLUX = Gas emission flux = 3.0 x 10 kg/m /s. This value is obtained
from on-site estimates.
TEMPGAS = Temperature of emitted gas = -34.0°C. This is the boiling
point temperature for chlorine. It is assumed that chlorine, stored as a
liquid, flashed completely to vapor, (-239.1 K - 273.15 K = 34.0°C).
CPGAS = Heat capacity of emitted gas = 35.3 J/mole/'C. This value is
obtained from chemical engineering handbook, (498.1 J/kg K x 1 mole/.0709
kg).
MWGAS = Molecular weight of emitted gas = 70.9 kg/k-mole. This value is
obtained from a chemical engineering handbook.
WATGAS = Molar fraction picked up from water = 0. Since the spill occurs
on land, no water transfer into the cloud occurs.
3-23
-------
Model Output
The HEGADAS model output file is shown in Appendix C.2. The output file
first shows a summary of model inputs. Some of the parameters listed were
calculated directly by the model. The output lists the center! ine
concentration by distance from the source. The first two distances listed are
within the source and are ignored. The third distance is at two source
lengths away from the center of the source. The ground level concentration on
plume axis at 100 m from the source is about 0.0039 kg/m . The last column
provides the concentration percent volume (mole percent), which at 100 m is
0.138 volume percent. Multiply this value by 10 to convert to ppm results in
1380 ppm. The columns marked YCU and YCL tabulate the crosswind distance to
the point at which the concentration is reduced to the "upper concentration
limit" of 1.5 x 10"5 kg/m3, and "lower concentration limit" of 1.5 x 10"6. At
100 m downwind, these distances are about 57.5 m and 65.4 m, respectively.
Model output is terminated at 398 m. This is approximately equal to XMAX
value (100) multiplied by PLL (4). At this point, the center!ine
concentration is 3.64 x 10 kg/m or 128 ppm. The upper and lower
concentration limits, 1.5 x 10 and 1.15 x 10 kg/m are reached well beyond
this distance. The user can re-run the model using a larger cut-off distance
should there be a need to obtain the distances at those concentration levels.
3-24
-------
3.3 SLAB Model
The SLAB model is capable of simulating a dense gas release from a ground
level evaporating pool, an elevated horizontal jet, a stack or elevated
vertical jet, or an instantaneous volume source. Sources may be part vapor
and part liquid droplets; except the evaporating pool source which is assumed
to be all vapor. The SLAB model summary description is shown in Appendix A.3.
In applying the SLAB model, the user should follow the general modeling
guidance criteria in Chapter 2. In addition, for some modeling scenarios,
certain specific considerations may need to be made. These considerations are
discussed below:
a. Temperature of the source material (K) - TS
The definition of the source temperature (TS) depends upon the type
of release. When the release is an evaporating pool (IDSPL = 1 or 4), the
source temperature is the boiling point temperature TBP. For a pressurized
jet release (IDSPL = 2 or 3), the source conditions are the properties of the
material after it has fully expanded to atmospheric pressure. When the source
material is stored as a vapor under pressure and, therefore released as a
vapor (CMEDO = 0.0), the user's guide recommends that the expansion be treated
as adiabatic and provides a formula for determining the source temperature.
This equation appears to assume an adiabatic isentropic expansion. As
explained in Section 2.5, the adiabatic isenthalpic expansion is more
appropriate. Appendix E discusses how to make such a calculation.
b. Source area (m2) - AS
The source area has different definitions depending upon the type of
release. For an evaporating pool release (IDSPL = 1 or 4), AS is the area of
3-25
-------
the evaporating pool. If AS is not known it can be calculated using:
QS
AS=
RHOS. WS
where QS is the input mass source rate, RHOS is the vapor density of the
source material at the boiling point temperature, and WS is the known
evaporation rate expressed as a velocity (m/s). The vapor density RHOS is
given by the ideal gas law and is:
RHOS = (WMS • P,)/(R • TBP)
a
where WMS is the input molecular weight of the source material, P, is the
a
p
ambient atmospheric pressure [P, = 101325. N/m ], R is the gas constant [R =
a
8.31431 J/(mol-K)]; and TBP is the input boing point temperature.
When the source is a pressurized horizontal or vertical jet release
(IDSPL = 2 or 3), AS is the area of the source after it has fully expanded and
the pressure is reduced to the ambient level. If the source material is
stored and released as a pure vapor (CMEDO = 0.0), the user's guide recommends
that the expansion be treated adiabatically and the source area expressed as:
AS=(P3t/Psl)'(TS/T3t)-AI
where Pgt is the storage pressure, P is the ambient atmospheric pressure, TS
is the input source temperature, T . is the storage temperature, and A is the
actual area of the rupture or opening. When the source material is stored as
a liquid under pressure and released as a two-phase jet, AS is the area of the
source after it has flashed and formed a liquid droplet-vapor mixture of the
pure substance. In this case, the value of AS is given by the formula
Prel
3-26
-------
where RHOSL is the input liquid density of the source material, Ar, is the
actual area of the rupture or opening, and prel is the density of the liquid-
vapor mixture after flashing and at the boiling point temperature TBP with
liquid mass fraction CMEDO. The value of pm is given by:
= 1 ./[ < x ~ CMEDO) ^ CMEDO
7
.
zel RHOS RHOSL
where CMEDO is the input initial liquid mass fraction, RHOSL is the input
liquid density of the source material, and RHOS is the vapor density of the
source material at the boiling point temperature. The user should refer to
the SLAB model user's guide for additional detail.
c. Example Appl ications
SLAB Model Example 1: Continuous Chlorine Leak
In this hypothetical example, the SLAB model is used for planning
purposes to simulate the release of chlorine gas from a pressurized tank
through a 2.8 cm diameter hole. Chlorine is being stored as a gas in a large
tank at ambient temperature under 6 atmospheres of pressure . The hole is
located 5m above ground and the release is directed upward. Chlorine forms a
greenish-yellow gas with a characteristic, irritating odor. The NIOSH 15-
minute exposure limit is 0.5 ppm. An estimate of the maximum off-site
concentrations is desired. Additional parameters are: molecular weight =
70.9 g/g-mole; ambient temperature = 298 K; ratio of specific heats = 1.35;
and relative humidity = 50 percent.
Using the approach suggested in Chapter 2, the user begins by using the
procedure shown in the workbook and the TSCREEN model (EPA, 1990). This
In this example, since chlorine is released as a gas and remain as a gas
after depressurization, there is no need to consider any aerosol effects.
3-27
-------
scenario is the same as Example 6.5 of the workbook. First, buoyancy and
density are determined. The value for the Richardson number is well in excess
of 30 indicating the need for a heavy gas model and the RVD screening model
imbedded in TSCREEN is used to select the wind speed and Pasquill stability
category for input into a refined dense gas model. The screening model
results are reviewed to determine the maximum concentration at the facility
fenceline (100m). This concentration occurs within stability classes E and F
and 2 m/s wind speeds. The F stability and 2 m/s wind speed parameters are
selected as input into the SLAB refined dense gas model.
The SLAB input file for this example is shown in Appendix C.3. The
description of the input elements below is done line-by-line from what is
shown in the input and output files. The user can refer to Section 3.1 "Input
File" and Table 1 of the SLAB model user's guide for additional definition of
terms.
1. Line 1
IDSPL = Spill source type = 3. This indicates a vertical jet release.
2. Line 2
NCALC = A switch that controls the number of substeps calculated by the
code in integrating the system of equations from the source to the
maximum downwind distance. Generally, a value of 1 is adequate.
3. Line 3
WMS = Molecular weight of source material = 0.070906 kg/mole (chlorine).
A convenient list for all the material properties required by SLAB for 14
chemicals is provided in Table 2 of the SLAB model user's guide.
3-28
-------
4. Line 4
CPS = Vapor heat capacity at constant pressure = 489.1 J/kg-K. This can
be obtained from Table 2 in the SLAB model user's guide or other standard
references.
5. Line 5
TBP = Boiling point temperature = 239.1 K. This is obtained from Table 2
in the SLAB model user's guide.
6. Line 6
CMEDO = Initial liquid mass fraction = 0. Since chlorine is released as
a pure gas, there is no need to consider any aerosol releases due to
phase change.
7. Line 7
DHE = Heat of vaporization = 287840 J/kg. This is obtained from Table 2
in the SLAB model user's guide.
8. Line 8
CPSL = Liquid heat capacity = 926.3 J/kg-K. This value is obtained from
Table 2 in the SLAB model user's guide. See item 10 below.
9. Line 9
o
RHOSL = Liquid density of source material = 1574.0 kg/m . This value is
obtained from Table 2 in the SLAB model user's guide.
10. Line 10
SPB = Saturation pressure constant = -1.0 (default value given in Table 1
of the SLAB user's guide). Since the source is pure vapor (CMEDO = 0.0)
and the temperature of the cloud does not drop below the boiling point
temperature, the saturation pressure default option is appropriate; thus
neither the saturation pressure constants nor any of the liquid
properties will be used in the SLAB model calculations.
3-29
-------
11. Line 11
SPC = Saturation pressure constant = -1.0 (default value given in Table 1
of the SLAB user's guide). See item 10 above.
12. Line 12
TS = Temperature of source material = 284.3 K. TS = Temperature of
source material after expansion to atmospheric pressure. This parameter
can be calculated according to the formulation given in Appendix E for an
isenthalpic expansion.
13. Line 13
QS = Mass source rate = 1.261 kg/s. See page 6-14 of the workbook for
details on how this value was calculated.
14. Line 14
AS = Source area = .003525 m2. AS = (Pst/Pa)'(TS/Tst)-Ar =
(6./I.)-(284.3/298).(.000616) = .003525 m2. The area of the rupture is
2
.000616 m and corresponds to a hole diameter of 2.8 cm.
15. Line 15
TSD = Continuous source duration = 25000 s. A steady-state release is
appropriate when storage capacity of the system is much larger than the
release rate. In addition, the applicability of a steady-state
simulation depends also on advection or travel time to the lowest
concentration of interest (ttrav) as discussed in Section 2.2." This step
requires an examination of the output. At 10,000 m, the maximum
centerline concentration is about 12.5 ppm. The distance to the 0.5 ppm
is much further downwind, and probably as far as 25,000 m. Thus,
2(l_c/u) - 25,000 sec.
3-30
-------
16. Line 16
QTIS = Instantaneous source mass = 0. For a jet release, the user's
guide specifies that this parameter should be set to zero.
17. Line 17
HS = Source height = 5 m.
18. Line 18
TAV = Concentration averaging time = 900 s (15 min.). This averaging
time is assumed to pose a concern for public health. Note, the NIOSH
Exposure Limit has 15-minute ceiling of .5 ppm.
19. Line 19
XFFM = Maximum downwind distance = 10,000 m.
20. Line 20 thru 24
ZP = Concentration measurement height =0, 1, 2, and 4 m. There are a
maximum of four heights (ZP(I),I = 1,4) at which the concentration is
calculated as a function of downwind distance. If the concentration is
desired at only N heights where N < 4, then set ZP(I), I = 1, N equal to
the N desired heights and set ZP(I), I = N + 1, 4 equal to zero.
21. Line 25
ZO = Surface roughness height = 0.01 m. This value is typical" of terrain
covered by grass. See Table 2.1 and Table 3 in the SLAB model user's
guide.
22. Line 26
ZA = Ambient measurement height" = 10 m. This is the standard reference
height for meteorological measurements.
23. Line 27
UA = Ambient wind speed = 2 m/s.
3-31
-------
24. Line 28
TA = Ambient temperature = 298 K.
25. Line 29
RH,= Relative humidity = 50 percent.
*
26. Line 30
STAB = Stability class values = 6. This is the Pasquill-Gifford F
stability category.
27. Line 31
Input file closure = -1.0. This code signifies the end of the input
file.
Model Output
The SLAB model output file is shown in Appendix C.3. In addition to the
problem description, the output lists several other types of information. For
example, the calculated vertical vapor velocity (ws) is 117.7 m/s. The
instantaneous spatially averaged cloud parameters output gives intermediate
results in that they do not include the effects of cloud meander or time-
averaging. The output lists three sub-titles: 1) concentration parameters;
«
2) concentration in the z plane (up to 4 heights specified by the user); and
3) maximum centerline concentration. In the Z = 0 plane (Part 2), the column
bbc shows the effective half width and the column y/bbc = 0 gives the
centerline concentration. The concentration should be multiplied by one
million (10 ) to convert to a ppm value. As can be seen, the maximum
centerline concentration is 6.3 x 10 ppm at a downwind distance of 68.7 m.
In the maximum centerline concentration portion of the output (Part 3), the
user can see the maximum height of the plume centerline is 16.3 m, and that
this height is reached between 10.5 m and 12.6 m downwind of the source.
3-32
-------
SLAB Model Example 2: Ammonia Pipeline Rupture
The model is used here to assess the hazard extent of a past event
which occurred at about 8:00 a.m. when a bulldozer struck and ruptured an 8-
inch ammonia pipeline operating at approximately 700 psi. The rupture was
estimated as 4 cm in diameter, and the release rate was estimated as 56 kg/s.
The climatological data from the nearest NWS station were examined and the
following meteorological record reconstructed for this event: wind speed =
4.5 m/s, ambient temperature = 298 K, atmospheric stability class = D,
relative humidity = 50 percent, and atmospheric pressure = 0.98 atmospheres.
The dense aerosol plume reportedly etched a parabolic-shaped scar about 6
miles long and 1/2 mile wide on surrounding vegetation. Ammonia is a color-
less gas with a penetrating pungent, suffocating odor; it exits as a liquid
under 700 psi pressure. The SLAB input file for this example is shown in
Appendix C.3. The input parameters are described below.
1. Line 1
IDSPL = Spill source type = 3. This indicates a vertical jet release.
2. Line 2
NCALC = A switch that controls the number of substeps calculated by the
code in integrating the system of equations from the -source to the
maximum downwind distance. Generally,.a value of 1 is adequate.
3. Line 3
WMS = Molecular weight of source material = 0.017031 kg/mole (ammonia).
This is obtained from Table 2 in the SLAB user's guide.
4. Line 4
CPS = Vapor heat capacity at constant pressure = 2170 J/kg-K. This is
obtained from Table 2 in the SLAB model user's guide.
3-33
-------
5. Line 5
TBP = Boiling point temperature = 239.72 K. This is obtained from Table
2 in the SLAB model user's guide.
6. Line 6
CMEDO = Initial liquid mass fraction = .82.
CMEDO = 1. -CPSL-(Tst-TBP) /DHE =
1.-(4294. )-(298-239.72)/1370840 = .82
This adiabatic flash calculation is obtained from the equation given in
the SLAB model user's guide. The storage-temperature T$t is 298 K and
the remaining constants are material properties given in Table 2 of the
user's guide.
7. Line 7
DHE = Heat of vaporization = 1370840 J/kg. This is obtained from Table 2
in the SLAB model user's guide.
8. Line 8
CPSL = Liquid heat capacity = 4294 J/kg-K. This value is obtained from
Table 2 in the SLAB model user's guide.
9. Line 9
RHOSL = Liquid density of source material = 682.8 kg/m3. This value is
obtained from Table 2 in the SLAB model user's guide.
10. Line 10
SPB = Saturation pressure constant = 2132.52 K. This value is obtained
from Table 2 in the SLAB model user's guide. Note, since release forms
an aerosol, default value is not used.
3-34
-------
11. Line 11
SPC = Saturation pressure constant = -32.98 K. This value is obtained
from Table 2 in the SLAB model user's guide.
12. Line 12
TS = Temperature of source material = 239.72 K. In this example, ammonia
gas is being stored as a liquid under pressure and is released as a
liquid droplet-vapor mixture. Consequently, the source temperature TS is
the boiling point temperature TBP = 239.72 K.
13. Line 13
QS = Mass source rate = 56 kg/s. See page 6-14 of the workbook for
details on how this value can be calculated.
14. Line 14
AS = Source area = 0.179 m2.
AS = (KHOSL/prgl) -Ar = (682.8/4.782) '(.00126) = 0.179fl22.
i)
The area of the rupture is .0324 m and corresponds to a pipeline
diameter of 8 inches. The density of the liquid-vapor mixture pm and the
vapor density RHOS were calculated as follows:
RHOS = (WMS-Pa) I (R'TBP) = [ (.017031) '(101325.) ]/
(8.31431) -(239.72) ] = . 8658 kg/n?
.18 . 82
RHOS
15. Line 15
TSD = Continuous source duration = 16,200 s. The release is assumed to
have lasted 4.5 hours.
3-35
-------
16. Line 16
QTIS = Instantaneous source mass = 0. For a jet release, the user's
guide specifies that this parameter should be set to zero.
17. Line 17
HS = Source height = .2 m. This is equal to the pipeline diameter of 8
inches.
18. Line 18
TAV = Concentration averaging time = 3,600 s (1 hour). A 1-hr exposure
concentration is used to compare with vegetation damage.
19. Line 19
XFFM = Maximum downwind distance = 10,000 m. Because of the magnitude of
the spill, the plume effects are assumed to be important at a large
distance from the spill.
20. Line 20 thru 24
ZP = Concentration measurement height =0, 1, 2, and 4 m. There are a
maximum of four heights (ZP(I), I = 1,4) at which the concentration is
calculated as a function of downwind distance.
21. Line 25
ZO = Surface roughness height = 0.01m. This value is typical of terrain
covered by grass. See Table 2.1 and Table 3 in the SLAB model user's
guide.
22. Line 26
ZA = Ambient measurement height = 10 m. This is the standard reference
height for meteorological measurements.
23. Line 27
UA = Ambient wind speed =4.5 m/s.
3-36
-------
24. Line 28
TA = Ambient temperature = 298 K.
25. Line 29
RH = Relative humidity = 50 percent.
26. Line 30
STAB = Stability class values = 4. This is the Pasquill-Gifford D
stability category.
27. Line 31
Input file closure = -1.0. This code signifies the end of the input
file.
Model Output
The SLAB model.output file is shown in Appendix C.3. By looking at the
concentration in the Z = 0 plane, one can see that the maximum ground level
concentration is 3.45 x 10 ppm at 95.1 m downwind of the source. At 10 km
downwind, the center!ine concentration has dropped to 53.4 ppm.
Concentrations at or above 1000 ppm extend downwind to about 1700 m. The
maximum cloud height above ground (plume rise) is 16.8 m above ground which
occurs between & and 6 m downwind.
3-37
-------
Table 3-1
Types of Releases Considered by Dense Gas Models
Dense Gas Release Type Model
DEGADIS HEGADAS SLAB
Evaporating pool X XX
Horizontal jet X
Vertical jet X X
Variable rate release X X
Instantaneous volume source X XX
3-38
-------
4.0 Application to Non-Dense Gas Models
In this chapter, the general guidance considerations, developed in
Chapter 2 are applied to specific non-dense gas models. Many of the EPA
regulatory models (EPA, 1986) fit this category. However, models developed
specifically for air toxics releases and that contain features unique to such
sources are described in this chapter. At the present time, only the AFTOX
model is discussed. Table 4-1 shows the types of releases considered by this
non-dense gas model. The discussion begins with those specific input
parameters that cannot be readily obtained from reviewing the user's guide.
For this model, two example applications are provided. The present examples
do not address all of the release types that can be addressed by this model.
The examples show the user how every model input parameter was derived. Where
applicable, the user is refered to screening procedures in the workbook to
select some of the variables needed for input.
4.1 AFTOX Model
The AFTOX model (Version 3.1) (Kunkel, 1988) is an interactive, PC-based
Gaussian model with a variable number of puff releases per minute based on
wind speed and distance from source. Continuous releases are simulated as a
series of puff releases. The AFTOX model summary description is shown in
Appendix B.I. In applying AFTOX to some modeling scenarios, certain specific
considerations may need to be made as discussed below:
a. Atmospheric Stability Considerations
AFTOX uses a continuous stability parameter ranging from 0.5 to 6 in
place of the familiar discrete stability categories. For the F stability
class, for example, the stability parameter ranges from 5 to 6. The stability
4-1
-------
parameter is calculated based on: (1) relating the Monin-Obukhov length and
surface roughness to the Pasquill stability categories; or (2) if the standard
deviation of the horizontal wind direction (Sigma-theta) is known, calculating
the stability parameter using a modified sigma-theta approach. Table 3 in the
user's guide relates the modified sigma theta method .to stability class by
giving a range of sigma-theta values for each stability class. However, in
order to ensure the use of the maximum value in each stability class range,
for example 6 for F stability, the user should rely on Equation 28 of the
user's guide to compute the stability parameter. For F stability, the
standard deviation of the horizontal wind direction must be equal to or less
than 1.37 for a one hour time period. If this value (1.37) is entered in the
AFTOX model, then the stability parameter is set to exactly 6.
b. Example Applications
Example 1. Continuous Liquid Spill from a Pipe
In this example, the AFTOX model is used for planning purposes to
simulate the release of dimethylhydrazine liquid spill from a leak in an
unpressurized transfer pipe. This chemical was stored at ambient pressure and
temperature. Due to its low volatility, this substance will form a pool,
which in this case is unconfined. The pool evaporation rate is assumed to
*
reach a steady state after spreading such that the evaporation rate equals the
pipe flow rate. Dimethylhydrazine is a fuming, colorless liquid carcinogen
with a strong odor. An estimate of the maximum hourly concentration is
needed. The minimum distance between the edge of the spill and the plant
fence!ine is 100 m. Note, this release is similar to Example 6.15 in the
workbook (EPA, 1988). Although hydrazine vapor is denser than air, the
release is passive and this chemical is in the AFTOX chemical data base
4-2
-------
library, further supporting that AFTOX is applicable to this release. Other
variables are: contaminant molecular weight = 60.1 g/g-mole; liquid release
rate = 78.6 g/s; spill pool area = 58.8 m , ambient temperature = 10°C, and
relative humidity = 50 percent. The AFTOX input file is shown in Appendix D.
The input parameters are described line-by-line from what is shown in the
input/output file. The user can refer to page 21 of the AFTOX model user's
guide for additional explanation of terms.
1. Line 1:
Station Data = Hanscom AFB. Since the example did not specify the
location of the release, one of four stations, for which meteorological
data are in the AFTOX memory file, is selected. This input is used to
set stability, surface roughness at the wind measurement site and wind
measurement height.
2. Line 2:
Date = 08-10-89.. The model may use this input to calculate solar
elevation data in order to calculate stability using a method based on
Monin-Obukhov length.
3. Line 3:
Time = 0300. The model also uses this input to determine stability.
During nighttime hours, the model uses stable or neutral conditions. A
24-hour clock is used for time.
4. Line 4:
Type of Release = Continuous.
4-3
-------
5. Line 5:
Chemical Data = Dimethylhydrazine. This chemical is included in the
model's chemical data base library. The model automatically lists the
other two lines associated with this statement (i.e., STEL and TWA).
6. Line 6:
Temperature = Ambient air temperature = 10°C.
7. Line 7:
Wind Direction = 270°. This value should be obtained from direct on-site
measurements. Here a 270° value is arbitrarily selected. Wind direction
is used to determine the direction towards which the plume is traveling
and does not influence the magnitude of the concentrations. This
information is important if impact on a certain geographic area is
needed.
8. Line 8:
Wind Speed = 1 m/s. This value is selected from Table 2-3 of the
workbook as a conservative estimate for ground level releases.
9. Line 9:
Time of Spill = Nighttime Spill. This information is given by the model
based on the fact that computed solar angle is less than zero.
10. Line 10:
Cloud Cover = 0 Eighths. This value should be obtained from on-site
observation or nearest NWS station. Here, a clear sky is assumed.
According to the Turner Classification scheme, cloud cover < 4/10 during
nighttime with wind speed < 2 m/s is classified as stable.
4-4
-------
11. Line 11:
Inversion Base Height = No Inversion. This parameter refers to upper
level conditions up to 500 meters above the ground.
12. Line 12:
Atmospheric Stability Parameter = 6. This value is computed by the model
based on information input by user about time of day, cloud cover, wind
speed, and inversion height. Here the method for determining stability
based on wind speed and solar insolation was used by the model.
13. Line 13:
Spill Site Roughness Length = 1 cm. This value is typical of flat
terrain.
14. Line 14:
This is a Liquid Release. This statement is output by model based on
information stored in the chemical data library file and the air
temperature.
15. Line 15:
Emission Rate = 4.72 kg/min. This value is obtained from the given
emission rate of 78.6 gm/s.
16. Line 16:
Chemical is Still Leaking. This information is input by the user based
on on-site information. If the chemical is still leaking, the model
assumes steady state conditions.
17. Line 17:
Pool Temperature = 10°C. Assume pool surface temperature is in
equilibrium with ambient temperature.
4-5
-------
18. Line 18:
2
Area of Spill = 59 m. This is an approximation to the calculated pool
p
area of 58.8 m.
19. Line 19:
Evaporation Rate = 3.13 kg/min. This value is calculated directly by the
model. In the workbook example, there is another equation for estimating
evaporation but AFTOX does not allow the direct input for this parameter.
20. Line 20:
Concentration Averaging Time = 60 min. This value is selected in order
to obtain the maximum hourly concentration at the fenceline.
21. Line 21:
Elapsed Time Since Start of Spill = 60 min. For continuous releases, a
long time period of at least 60 minutes should be selected to represent
steady state conditions. Note that had the model output been more
extensive the method described in Section 2.2 would have been applicable.
22. Line 22:
Elevation = 0 m. This value specifies receptor elevation. Here, a
ground level concentration is needed.
23. Line 23:
Downwind Distance = 100 m. This value is selected because it is the
closest distance to the site boundary.
24. Line 24:
Crosswind Distance = 0 m. This value indicates that a centerline
concentration is needed.
4-6
-------
Model Output
AFTOX model output is shown in Appendix D. The output file is brief. It
first lists a summary of model inputs and then gives the hourly concentration
at the specified point. For computers with a graphical display device, AFTOX
output can also include a graphical display of plume contours superimposed on
a grid, (see Appendix in AFTOX model user's guide).
The hourly concentration predicted by AFTOX is 220.5 ppm, or 0.57 g/m.
There are three station data files in AFTOX. Thus, different estimates would
have been obtained from each of the other three meteorological stations due to
the variations in the roughness length at the meteorological tower and the
spil-1 sites.
Example 2. Continuous Liquid Spill from a Tank
The AFTOX model is used to assess the hazard extent of a past event
where dimethylhydrazine was released from a liquid spill from a leak in an
unpressurized storage tank. This chemical was stored at ambient pressure and
p
temperature. The spill occurred in a diked area of 2,500 m . The pool
evaporation rate is assumed to reach a steady state after spreading such that
the evaporation rate equals the liquid release rate. A review of onsite
meteorological records shows that the release occurred during early morning
hours when the wind speed was 1 m/s; atmospheric stability condition was F;
atmospheric temperature was 10"C; and relative humidity was 50 percent. This
•
chemical is a fuming, colorless liquid carcinogen with a strong odor. The
minimum distance between the edge of the spill area and the plant fence!ine is
100 m. Note, this release is similar to Example 6.16 in the workbook (EPA,
1988). Other given variables are: contaminant molecular weight = 60.1 g/g-
mole; liquid release rate = 2,227 g/s; and spill pool area = 2,037 m2.
4-7
-------
The AFTOX input file is shown in Appendix D. The input parameters
are described below. The user should also refer to page 21 of the AFTOX model
user's guide for a more complete definition of terms.
1. Line 1:
Station Data: Vandenberg AFB. Since the example did not specify the
location of the release, one of four stations, for which meteorological
data are in AFTOX memory file, is selected. This input is used to set
stability, surface roughness at the wind measurement site and wind
measurement height.
2. Line 2:
Date = 08-02-89. The model may use this input to calculate solar
elevation data in order to calculate stability using a method based on
Monin-Obukhov length.
3. Line 3:
Time = 0300. The model also uses this input to determine stability.
During nighttime hours, the model uses stable or neutral conditions.
4. Line 4:
Type of Release = Continuous.
5. Line 5:
Chemical Data = Dimethylhydrazine. This chemical is included in the
model's chemical data base library. The model automatically lists the
•
other two lines associated with this statement (i.e., STEL and TWA).
6. Line 6:
Temperature = Ambient air temperature = 10°C.
4-8
-------
7. Line 7:
Wind Direction = 16°. This value should be obtained from direct on-site
measurements. Here a 16° value is arbitrarily selected. Wind direction
is used to determine the direction towards which the plume is traveling
and does not influence the magnitude of the concentrations. This
information is important if impact on a certain geographic area is
needed.
8. Line 8:
Wind Speed = 1 m/s.
9. Line 9:
Standard Deviation of Wind Direction = 1.37 Deg. This value should be
determined from on-site meteorological measurements. Here, a value of
1.37 is chosen so that the atmospheric stability class is set to 6 by-the
model.
10. Line 10:
Wind Averaging Time = 60 minutes. This value should be obtained from on-
site information about the averaging time associated with collecting the
sigma-theta data. EPA modeling guidance (EPA, 1986) recommends using an
hourly average value for sigma-theta.
11. Line 11:
Time of Spill = Nighttime Spill. This information is given by the model
based on the fact that computed solar angle is less than zero.
12. Line 12:
Cloud Cover = 0 Eighths. This value should be obtained from on-site
observations or nearest NWS station. Here, a clear sky is assumed.
4-9
-------
According to the Turner classification scheme, cloud cover < 4/10 during
nighttime with wind speed < 2 m/s is classified as stable.
13. Line 13:
Inversion Base Height = No Inversion. This parameter refers to upper
level conditions up to 500 meters above the ground.
14. Lines 14 and 15:
Horizontal, Vertical Stability Parameter = 6. This value is computed by
the model based on information input by the user about standard deviation
of wind direction. Here, the standard deviation sigma-theta method
overrode the method for determining stability based on wind speed and
solar insolation because of input of on-site sigma-theta data.
15. Line 16:
Spill Site Roughness Length = 1 cm. This value should be determined from
on-site data. Here, a value typical of flat terrain was used.
16. Line 17:
This is a liquid release. This statement is output by the model based on
the boiling point temperature of the chemical and the ambient
temperature.
17. Line 18:
Emission Rate = 133.62 kg/min. This value is obtained from the given
emission rate of 2,227 g/s.
18. Line 19:
Chemical is Still Leaking. This information is input by the user based
on on-site information. If chemical is still leaking, the model assumes
steady state conditions.
4-10
-------
19. Line 20:
Pool Temperature = 10°C. Assume pool surface temperature is in
equilibrium with ambient air temperature. This is an acceptable
assumption for long, continuous release times.
20. Line 21:
n
Area of Spill = 2,037 nr. This area of the evaporating pool is the
p
smaller of the impoundment area (2,500 m) and the area at which
o
evaporation across the pool equals flow into the pool (2,037 m ). The
pool area calculations are shown on page 6-50 of the workbook.
21. Line 22:
Evaporation Rate = 72.13 kg/min. This value is calculated directly by
the model. In the workbook example, there is another equation for
estimating evaporation but the AFTOX model does not allow the user to
directly input this parameter.
22. Line 23:
Concentration Averaging Time = 60 min. This value is selected in order
to obtain an hourly concentration at the fenceline.
23. Line 24:
Elapsed Time Since Start of Spill = 1,440 min. For continuous releases,
a long time period of at least 60 minutes should be selected to represent
steady state conditions. Note that had the model, output been more
extensive, the method described in Section 2.2 could have been used to
set this variable.
24. Line 25:
Elevation = 0 m. This value specifies receptor elevation. Here, a
ground level concentration is needed.
4-11
-------
25. Line 26:
Downwind Distance = 100 m. This value is selected because it is the
closest distance to the site boundary.
26. Line 27:
Crosswind Distance = 0 m. This value indicates that a centerline
concentration is needed.
Model Output
AFTOX model output is shown in Appendix D. The output file first lists a
summary of model inputs and then gives the hourly concentration at the
specified point. For computers with a graphical display device, AFTOX output
can also include a graphical display of plume contours superimposed on a grid.
(See Appendix in AFTOX model user's guide).
The hourly concentration predicted by AFTOX is 7761 ppm or 20.05 ug/m.
There are three other station data files in AFTOX. Thus, different estimates
would have been obtained for each of the meteorological stations due to the
variations in the roughness length at the meteorological tower and the spill
sites.
4-12
-------
Table 4-1
Types of Releases Considered by Non-Dense Gas Models
Release Type Model
AFTOX
Continuous gas X
Instantaneous gas X
Continuous liquid X
Instantaneous liquid X
Continuous buoyant gas released
from stack X
4-13
-------
-------
REFERENCES
Britter, R. E. and J. McQuaid, 1988. Workbook on the Dispersion of Dense
Gases. HSE Contract Research Report No. 17/1988, Health and Safety Executive,
Sheffield, England.
Center for Chemical Process Safety (CCPS), 1988. Workbook of Test Cases for
Vapor Cloud Source Dispersion Models. CCPS/AIChE, 345 East 47th St., New
York, NY.
Felder, R. M. and R. W. Rousseau, 1986. Elementary Principles of Chemical
Processes. Second Edition, John Wiley & Sons.
Guinnup, D. E. and Q. T. Nguyen, 1991. A Sensitivity Study of the Modeling
Results from Three Dense Gas Dispersion Models in the Simulation of a Release
of Liquefied Methane: SLAB, HEGADAS, and DEGADIS. Seventh Joint Conference
on Applications of Air Pollution Meteorology with AWMA. January 14-18, 1991,
New Orleans, LA.
Hanna, S. R. and P. J. Drivas, 1987. Guidelines for Vapor Cloud Dispersion
Modeling. CCPS/AIChE, 345 East 47th St., New York, NY.
Hanna, S., D. Strimaitis and J. Chang, 1990. Results of Hazard Response Model
Evaluation Using Desert Tortoise (NH3) and Goldfish (HF) Data Bases, Volume 1:
Summary Report. Prepared for American Petroleum Institute, Washington, DC.
King, C. J., 1988. Separation Processes. Second Edition, McGraw-Hill Book
Company, New York.
Kunkel, B. A., 1988. User's Guide for the Air Force Toxic Chemical Dispersion
Model (AFTOX). AFG-TR-88-009. (ADA199096).
Perry, R. H. and D. Green, 1984. Perry's Chemical Engineer's Handbook. Sixth
Edition, McGraw-Hill, New York.
Petersen, R. L., 1989. Surface Roughness Effects on Heavier-Than-Air Gas
Dispersion. Sixth Joint Conference on Applications of Air Pollution
Meteorology. Anaheim, CA. January 30 - February 3.
Pielke, R. A., 1984. Mesoscale Meteorological Modeling. Academic Press,
Orlando.
U.S. Environmental Protection Agency, 1986. Guideline on Air Quality Models
(Revised) and Supplement A (1987). EPA-450/4-78-027R. U.S. Environmental
Protection Agency, Research Triangle Park, NC. 27711 (NTIS PB 86-245248).
U.S. Environmental Protection Agency, 1987. On-site Meteorological Program
Guidance for Regulatory Modeling Applications. EPA-450/4-87-013. U.S.
Environmental Protection Agency, Research Triangle Park, NC 27711. (NTIS PB
87-227542.
U.S. Environmental Protection Agency, 1988. A Workbook of Screening
Techniques for Assessing Impacts of Toxic Air Pollutants. EPA-450/4-88-009.
U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. (NTIS
PB 89-134349).
R-l
-------
U.S. Environmental Protection Agency, 1989a. User's Guide for the DEGADIS 2.1
Dense Gas Dispersion Model. EPA-450/4-89-019. U.S. Environmental Protection
Agency, Research Triangle Park, NC 27711. (NTIS PB 90-213893)
U.S. Environmental Protection Agency, 1989b. User's Guide for RVD 2.0 - A
Relief Valve Discharge Screening Model. EPA-450/4-88-024. U.S. Environmental
Protection Agency, Research Triangle Park, NC 27711. (NTIS PB 89-151070)
U.S. Environmental Protection Agency, 1990a. User's Guide to TSCREEN, a Model
for Screening Toxic Air Pollutant Concentrations. EPA-450/4-89-013. U.S.
Environmental Protection Agency, Research Triangle Park, NC. (NTIS PB 91-
141820)
U.S. Environmental Protection Agency, 1990b. Evaluation of Dense Gas
Simulation Models. EPA-450/4-90-018. U.S. Environmental Protection Agency,
Research Triangle Park, NC.
Witlox, H. W. M., 1988. User's Guide for the HEGADAS Heavy Gas Dispersion
Program. Shell Research Ltd. - Thornton Research Center, P. 0. Box 1,
Chester, England.
R-2
-------
APPENDIX A
Dense Gas Model Summaries
Table of Contents
A.I DENSE GAS DISPERSION (DEGADIS) MODEL SUMMARY
A.2 HEAVY GAS DISPERSION (HEGADAS) MODEL SUMMARY
A.3 SLAB MODEL SUMMARY
-------
-------
A.I DENSE GAS DISPERSION (DEGADIS) MODEL SUMMARY
Reference: Environmental Protection Agency, 1989. User's Guide for the
DEGADIS 2.1 Dense Gas Dispersion Model. EPA-450/4-89-019.
U.S. Environmental Protection Agency, Research Triangle
Park, NC 27711. (NTIS PB 90-213893).
*
Availability: The user's guide is available through NTIS. The FORTRAN
source code for operation on a VAX or PC can be'downloaded
through the Support Center for Regulatory Air Models (SCRAM)
Bulletin Board System, (919)-541-5742.
Abstract: DEGADIS 2.1 is a dispersion model that can be used to model
the transport of toxic chemical releases into the atmosphere
regardless of plume buoyancy. Its range of applicability
includes: gases or aerosols; continuous, instantaneous,
finite duration, and time-variant releases; ground-level,
low-momentum area releases; ground-level or elevated
upwardly-directed stack jet releases. The model simulates
only one set of meteorological conditions, and therefore
should not be considered applicable over time periods much
longer than 1 or 2 hours. The simulations are carried out
over flat, unobstructed terrain for which the characteristic
surface roughness is not a significant fraction of the depth
of the dispersion layer. For aerosol releases, the model
does not characterize the density of the release; rather,
the user must assess that independently prior to the
simulation.
a. Recommendations for Use
DEGADIS should be used as a refined modeling approach to estimate
spatial and temporal distribution of short-term atmospheric
concentrations (1-hour or less averaging times) resulting from toxic
chemical releases. It is especially useful in situations where negative
buoyancy effects are suspected to be important and where screening
estimates of atmospheric concentrations are above levels of concern.
b. Input Requirements
•
Data can be input directly from an external input file or by keyboard
using an interactive program module. The model does not accept real-
time meteorolgical data or convert units of input-values. All chemical
property data must be input by the user, i.e., they are not stored
within the model. .
Source data requirements are: emission rate, release area and release
duration; emission chemical and physical properties (molecular weight,
density vs concentration for situations when the ideal gas law does not
hold (such as aerosol releases), and contaminant heat capacity in the
A-l
-------
case of a nonisothermal gas release); stack parameters (diameter,
elevation above ground level, and temperature at release point).
Meteorological data requirements are: wind speed at some designated
height above ground, stability, surface roughness, ambient temperature
and pressure, relative humidity, and ground surface temperature (which
in most cases can be adequately approximated by the ambient
temperature).
Receptor data requirements are: averaging time oT interest, above-ground
height of receptors, and maximum distance between receptors (since this
parameter is used only for nominal control of the output listing, it is
of secondary importance). No indoor concentrations are calculated by
the model.
c. Output
Printed output includes in tabular form:
Listing of model input data.
plume center!ine elevation, mole fraction, concentration, density,
and temperature at each downwind distance.
sigma y and sigma z values at each downwind distance.
off-centerline distances to 2 specified concentration values at a
specified receptor height at each downwind distance (these values
can be used to draw concentration isopleths after model
execution).
concentration vs time histories for finite-duration releases (if
specified by user).
The output file is automatically saved and-must be sent to the
appropriate printer after program execution.
*
No easily-accessed computer-readable output is generated by the current
version of the program.
No graphical output is generated by the current version of this program.
•
d. Tvoe of Model
DEGADIS estimates plume rise (and fall) and dispersion for vertically-
upward jet releases using mass and momentum balances with air
entrainment based on laboratory and field-scale data. These balances
assume Gaussian similarity profiles for velocity, density, and
concentration within the jet. Ground-level, denser-than-air phenomena
is treated using a power law concentration distribution profile in the
vertical and a hybrid top hat-Gaussian concentration distribution
profile in the horizontal. A power law specification is used for the
A-2
-------
vertical wind profile. Ground-level cloud slumping phenomena and air
entrainment are based on laboratory measurements and field-scale
observations.
e. Pollutant Types
Gases and aerosols, regardless of buoyancy. Pollutants are assumed to
be non-reactive and non-depositing.
f. Source-Receptor Relationships
Only one source can be modeled at a time.
There is no limitation to the number of receptors; the downwind receptor
distances are internally-calculated by the model. The DEGADIS
calculation is carried out until the plume center!ine concentration is
one-half of the lowest concentration level specified by the user.
The model contains no submodels for source calculations or release
characterization.
g. Plume Behavior
Jet/plume trajectory is estimated from mass and momentum balance
equations. Surrounding terrain is assumed to be flat, and stack tip
downwash, building wake effects, and fumigation are not treated.
h. Horizontal Winds
Constant logarithmic velocity profile which accounts for stability and
surface roughness is used.
A wind speed profile exponent is determined from a least squares fit of
the logarithmic profile from ground level to the wind speed reference
height. Calm winds can be simulated for ground-level, low-momentum
releases.
Along-wind dispersion of transient releases is treated using the methods
of Colenbrander (1980) and Seals (1971).
i. Vertical Wind Speed
Not treated.
j. Horizontal Dispersion
When the plume centerline is above ground level, horizontal dispersion
coefficients are based upon Turner (1969) and Slade (1968) with
adjustments made for averaging time.
When the plume centerline is at ground level, horizontal dispersion also
accounts for entrainment due to gravity currents (as appropriate)
parameterized from laboratory experiments.
A-3
-------
k. Vertical Dispersion
When the plume centerline is above ground level, vertical dispersion
coefficients are based upon Turner (1969) and Slade (1968). Perfect
ground reflection is applied.
In the ground-level dense-gas regime, vertical dispersion is also based
upon results from laboratory experiments in density-stratified fluids.
1. Chemical Transformation
Not specifically treated.
m. Physical Removal
Not treated.
n. Evaluation Studies
Spicer, T. 0. and J. A. Havens, 1986. Development of Vapor Dispersion
Models for Nonneutrally Buoyant Gas Mixtures - Analysis of USAF/N^O, Test
Data. USAF Engineering and Services Laboratory, Final Report, ESc-TR-86-
24.
Spicer, T. 0. and J. A. Havens, 1988. Development of Vapor Dispersion
Models for Nonneutrally Buoyant Gas Mixtures - Analysis of TFI/NH-, Test
Data. USAF Engineering and Services Laboratory, Final Report, ESC-TR-87-
72.
Zapert, J. G., R. J. Londergan, and H. Thistle, 1991. Evaluation of
Dense Gas Simulation Models. EPA-450/4-90-018. U.S. Environmental
Protection Agency, Research Triangle Park, NC 27711.
o. Operating Information
The model requires either a VAX computer or a PC for its execution.
The model currently does not require supporting software other than a VAX
FORTRAN compiler or a Microsoft FORTRAN compiler version 5.0 for a PC.
p. References
Seals, G. A. 1971. A Guide to Local Dispersion of Air Pollutants. Air
Weather Service Technical Report 214.
Colenbrander, G. W., 1980. A Mathematical Model for the Transient
Behavior of Dense Vapor Clouds. Third International Symposium on Loss
Prevention and Safety Promotion in the Process Industries, Basel,
Switzerland.
Slade, D. H., 1968. Meteorology and Atomic Energy. U.S. Atomic Energy
Commission, NTIS No. TID-24190.
A-4
-------
Turner, D. B., 1969. Workbook of Atmospheric Dispersion Estimates. PHS
Publication No. 999-26. U.S. Environmental Protection Agency, Research
Triangle Park, NC 27711.
U.S. Environmental Protection Agency, 1989. User's Guide for RVD 2.0 -
A Relief Valve Discharge Screening Model. EPA-450/4-88-024. U.S.
Environmental Protection Agency, Research Triangle Park, NC 27711.
(NTIS PB 89-151070).
A-5
-------
-------
A.2 HEAVY GAS DISPERSION (HEGADAS) MODEL SUMMARY
Reference:
Availability:
Abstract:
Witlox, H.W.M., 1988. User's Guide for the HEGADAS Heavy
Gas Dispersion Program. Shell Research Ltd.-Thornton
Research Center, P.O. Box 1, Chester, England, CHI 3SH
The user's manual and computer code is available as PB 89-
164552 from:
Computer Products
National Technical Information Service
U.S. Department of Commerce
5815 Port Royal Road
Springfield, VA 22161
Phone (703) 487-4650
HEGADAS is a mathematical dispersion model that can be used
to model ground level steady-state and transient releases of
a dense toxic gas formed from area sources such as liquid
pools or gas clouds formed directly from leaks in process
equipment. The model simulates dispersion of the dense gas
by combining the effects of initial gravitational spreading
and downwind turbulent mixing. Particular emphasis is given
to thermodynamic effects on dispersion, including surface
heat transfer and water vapor transfer and condensation.
The model simulates only one set of meteorological
conditions per run, and therefore should not be considered
applicable over time periods much longer than 1 hour. The
simulations are carried out over flat, and unobstructed
terrain. The model is capable of simulating dispersion for
a continuous range of surface roughnesses. However, no
indoor concentrations are calculated by the model.
a. Recommendations for Use
HEGADAS should be used as a refined modeling approach to estimate
ambient concentrations and the area of exposure to concentrations above
specified threshold values for releases from evaporative pools (both
continuous and instantaneous). It is especially useful in situations
where negative buoyancy effects are suspected to be fmportant.
b. Input Requirements
Data are input directly from an external input file. The model is not
set up to accept real-time meteorological data or convert units of input
values. All chemical property data must be input by the user, i.e.,
they are not stored within the model.
A-7
-------
Source data requirements are: gas emission flux; dimensions of gas
source; emission chemical and physical properties (molecular weight,
specific heat, and molar fraction picked-up water {molar ratio of water
initially in gas to dry gas), temperature of release gas).
Meteorological data requirements are: ambient wind speed at designated
height above ground, temperature, relative humidity, surface roughness,
and surface temperature (which in most cases can be adequately
approximated by the ambient temperature).
Output control requirements are: output step length (distance between
the output downwind concentrations defined as ratio of initial downwind
step length to the length of the secondary source which results from
slumping effects), distance at which calculation is stopped (ratio of X-
coordinate at which calculation stops, to secondary source length),
concentration thresholds at which calculation is stopped, and upper and
lower concentration limits.
c. Output
No graphical output is generated by the current version of this program.
Also, the output is not easily accessible by other software to generate
graphics or make statistical checks. The output printfile is
automatically saved and must be sent to the appropriate printer by the
user after program execution. Printed output includes in tabular form:
Listing of model input data;
Downwind distance from source center (x-coordinate);
Ground level concentration on plume axis (dry gas);
Vertical and cross-wind dispersion coefficients;
Y-coordinate (i.e. cross-wind distance to the plume axis) at which
the ground level concentration equals upper and lower
concentration limits;
Height (Z-coordinate) at which the cloud centerline concentration
equals upper and lower concentration limits;
d. Type of Model
The steady-state version of HEGADAS assumes a hybrid top-hat/Gaussian
similarity profile for concentration in the crosswind direction and a
power law similarity profile in the vertical direction. This is
accomplished by a solution to the differential equations for such
parameters. The model estimates dispersion of the cloud by combining
the effects of gravity spreading of gases and turbulent mixing. Gravity
spread effects are included by defining effective variables for
A-8
-------
transport velocity, plume width resulting from the effects of gravity
spreading and cloud heating.
e. Pollutant Types
Pollutants are assumed to be non-reactive and non-depositing dense
gases. Surface heat transfer and water vapor flux are also included in
the model.
f. Source-Receptor Relationships
Only one source can be modeled at a time.
There is no limitation to the number of receptors; the downwind receptor
distances are internally-calculated by the model based on output control
variables designated by user. The HEGADAS calculation is carried out
until the plume center!ine concentration meets the lowest concentration
of interest specified by the user, or plume reaches the user specified
distance.
The model contains no .submodels for source calculations or release
characterization.
g. Plume Behavior
Plume behavior is based on similarity profile relationships based on
wind tunnel experiments. Surrounding terrain is assumed to be flat.
h. Horizontal Winds
A power law approximation of the constant logarithmic velocity profile
which accounts for stability and surface roughness is used. In this
power-law, the exponent is determined from a least squares fit of the
logarithmic profile from ground level to twice the wind speed reference
height.
i. Vertical Wind Speed
Not treated.
j. Horizontal Dispersion
The crosswind dispersion parameters are derived from a crosswind
* diffusion equation and a gravity-spreading equation. The first equation
expresses the conservation of mass in the crosswind direction, and is
based on experimental data by Turner (1969). The second equation
describes the gravitational spreading due to the density difference
between the vapor cloud and the surrounding air, and is based on
experimental data by Van Ulden (1984). Along-wind dispersion of
transient releases is treated using the methods of Colenbrander (1980).
A-9
-------
k. Vertical Dispersion
The vertical dispersion coefficient is derived from an entrainment
equation describing the entrainment of air in the gas cloud due to
vertical mixing. This entrainment is assumed to be proportional to a
function of a bulk Richardson number. This function describes the
influence of the density stratification on the diffusion in the vertical
direction and is obtained from wind tunnel and water channel experiments
(McQuaid (1976) and Kranenburg (1984)).
1. Chemical Transformation
The thermodynamics of the mixing of the dense gas with ambient air are
treated; however, any reactions of released chemicals with water are not
treated unless the model is modified by the user.
m. Physical Removal
Not treated.
n. Evaluation Studies
Colenbrander, G.W., 1980. A Mathematical Model for The Transient
Behaviour of Dense Gas Vapour Clouds, 3rd International Symposium on
Loss Prevention and Safety Promotion in The Process Industries. Basel,
September 1980.
Colenbrander, G.W. and J.S. Puttock, 1988. Description of The HEGADAS
Model for Dispersion of Dense Gas Releases.
o. Operating Information
The model will operate on an IBM (AT, XT, and PS2 Model 50) and any
other IBM-compatible PC. Minimum requirement for the program are 512K
memory and PCDOS/MSDOS version 3.1 or higher. Use of a math coprocessor
is highly recommended.
p. References
Kranenburg C., 1984. Wind-induced Entrainment in a Stably Stratified
Fluid, J. Fluid Mech. 145, p. 253-273.
McQuaid, J., 1976. Some Experiments on the Structure of Stably-
stratified Shear Flows. Technical Paper p. 21 Safety in Mines Research
Establishment, Sheffield, U.K.
Turner, D.B., 1969. Workbook of Atmospheric Dispersion Estimates. U.S.
Dept. of Health, Education and Welfare. Public Health Service
Publication no. 999-AP-26.
A-10
-------
Van Ulden, A.P., 1984. A New Bulk Model for Dense Gas Dispersion: Two-
dimensional Spread in Still Air. In: Atmospheric Dispersion of Heavy
Gases and Small Particles, (G. Ooms and H. Tennekes, eds.) pp. 419-440
Springer-Verlag, Berlin.
A-ll
-------
-------
A.3 SLAB MODEL SUMMARY
Reference:
Availability:
Abstract;
Ermak, D.L., 1989. User's Manual for the SLAB model, An
Atmospheric Dispersion Model for Denser-than-Air Releases,
Draft, Lawrence Livermore National Laboratory.
Computer code and User's Manual can be obtained upon request
from:
Donald L. Ermak, L-216
Atmospheric and Geophysical Sciences Division
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 94550
The SLAB model is a computer model, PC-based, that simulates
the atmospheric dispersion of denser-than-air releases. The
type of release treated by the model include ground-level
evaporating pool, an elevated horizontal jet, a stack or
elevated vertical jet and an instantaneous volume source.
All sources except the evaporating pool may be characterized
as aerosols. Only one type of release can be processed in
an individual simulation. Also, the model simulates only
one set of meteorological conditions; therefore direct
application of the model over time periods longer than one
or two hours is not recommended.
Recommendations for use
The SLAB model should be used as a refined model to estimate spatial and
temporal distribution of short-term ambient concentration (e.g., 1-hour
or less averaging times) and the expected area of exposure to
concentrations above specified threshold values for toxic chemical
releases where the release is suspected to be denser than the ambient
air.
Input Requirements
The SLAB model is executed in the batch mode. Data are input directly
from an external input file. There are 29 input parameters required to
run the SLAB model. These parameters are divided into 5 categories by
the user's guide: source type, source properties, spill properties,
field properties, and meteorological parameters. The model is not
designed to accept real-time meteorological data or convert units of
input values. Chemical property data is not available within the model
and must be input by the user. Some chemical and physical property data
are available in the user's guide.
Source type is chosen as one of the following: evaporating pool release,
horizontal jet release, vertical jet or stack release, or instantaneous
or short-duration evaporating pool release.
A-13
-------
Source property data requirements are physical and chemical properties
(molecular weight, vapor heat capacity at constant pressure; boiling
point; latent heat of vaporization; liquid heat capacity; liquid
density; saturation pressure constants), and initial liquid mass
fraction in the release.
Spill properties include: source temperature, emission rate, source
dimensions, instantaneous source mass, release duration, and elevation
above ground level.
Required field properties are: desired concentration averaging time,
maximum downwind distance (to stop the calculation), and four separate
.heights at which the concentration calculations are to be made.
Meteorological parameter requirements are: ambient measurement height,
ambient wind speed at designated ambient measurement height, ambient
temperature, surface roughness, relative humidity, atmospheric stability
class, and inverse Monin-Obukhov length (optional, only used as an input
parameter when stability class is unknown).
c. Output
No graphical output is generated by the current version of this program.
The output printfile is automatically saved and must be sent to the
appropriate printer by the user after program execution. Printed output
includes in tabular form:
Listing of model input data
Instantaneous spatially-averaged cloud parameters - time, downwind
distance, magnitude of peak concentration, cloud dimensions
(including length for puff-type simulations), volume (or mole) and
mass fractions, downwind velocity, vapor mass fraction, density,
temperature, cloud velocity, vapor fraction, water content,
gravity flow velocities, and entrainment velocities;
Time-averaged cloud parameters - parameters which may be used
externally to calculate time-averaged concentrations at any
location within the simulation domain (tabulated as functions of
downwind distance);
Time-averaged concentration values at plume centerline and at five
off-center!ine distances (off-centerline distances are multiples
of the effective cloud half-width, which varies as a function of
downwind distance) at four user-specified heights and at the
height of the plume centerline.
d. Type of Model
Transport and dispersion are calculated by solving the conservation
equations for mass, species, energy, and momentum, with the cloud being
modeled as either a steady-state plume, a transient puff, or a
combination of both depending on the duration of the release. In the
A-14
-------
steady-state plume mode, the crosswind-averaged conservation equations
are solved and all variables depend only on the downwind distance. In
the transient puff mode, the volume-averaged conservation equations are
solved, and all variables depend only on the downwind travel time of the
puff center of mass. Time is related to downwind distance by the
height-averaged ambient wind speed. The basic conservation equations
are solved via a numerical integration scheme in space and'time.
e. Pollutant Types '
Pollutants are assumed to be non-reactive and non-depositing dense gases
or liquid-vapor mixtures (aerosols). Surface heat transfer and water
vapor flux are also included in the model.
f. Source-Receptor Relationships
Only one source can be modeled at a time.
There is no limitation to the number of receptors; the downwind receptor
distances are internally-calculated by the model. The SLAB calculation
is carried out up to the user-specified maximum downwind distance.
The model contains submodels for the source characterization of
evaporating pools, elevated vertical or horizontal jets, and
instantaneous volume sources.
g.' Plume Behavior
Plume trajectory and dispersion is based on crosswind-averaged mass,
species, energy, and momentum balance equations. Surrounding terrain is
assumed to be flat and of uniform surface roughness. No obstacle or
building effects are taken into account.
h. Horizontal Winds
A power law approximation of the logarithmic velocity profile which
accounts for stability and surface roughness is used.
i. Vertical Wind Speed
Not treated.
j- Vertical Dispersion
The crosswind dispersion parameters are calculated from formulas
reported by Morgan, et al. (1983), which are based on experimental data
from several sources. The formulas account for entrainment due to
atmospheric turbulence, surface friction, thermal convection due to
ground heating, differential motion between the air and the cloud, and
damping due to stable density stratification within the cloud.
A-15
-------
k. Horizontal Dispersion
The horizontal dispersion parameters are calculated from formulas
similar to those described for vertical dispersion, also from the work
of Morgan, et al. (1983).
1. Chemical Transformation
The thermodynamics of the mixing of the dense gas or aerosol with
ambient air (including water vapor) are treated. The relationship
between the vapor and liquid fractions within the cloud is treated using
the local thermodynamic equilibrium approximation. Reactions of
released chemicals with water or ambient air are not treated.
m. Physical Removal
Not treated.
n. Evaluation Studies
Blewitt, D. N., J. F. Yohn, and D. L. Ermak, 1987. An Evaluation of
SLAB and DEGADIS Heavy Gas Dispersion Models Using the HF Spill Test
Data, Proceedings, AIChE International Conference on Vapor Cloud
Modeling, Boston, MA, November, pp. 56-80.
Ermak,' D. L., S.T. Chan, D. L. Morgan, and L. K. Morris, 1982. A
Comparison of Dense Gas Dispersion Model Simulations with Burro Series
LNG Spill Test Results, J. Haz. Matls., 6, pp. 129-160.
Zapert, J. G., R. J. Londergan, and H. Thistle, 1991. Evaluation of
Dense Gas Simulation Models. EPA-450/4-90-018. U.S. Environmental
Protection Agency, Research Triangle Park, NC 27711.
o. Operating Information
The model is written in standard FORTRAN 77 and operates on an IBM-
compatible PC. Minimum requirements for the program are 512K memory and
PCDOS/MSDOS version 3.1 or higher. Use of a math coprocessor will
reduce simulation times.
p. References
Ermak, D. L., 1989. A Description of the SLAB Model, presented at
JANNAF Safety and Environmental Protection Subcommittee Meeting, San
Antonio, TX, April, 1989.
Morgan, D. L., Jr., L. K. Morris, and D. L. Ermak, 1983. SLAB: A Time-
Dependent Computer Model for the Dispersion of Heavy Gas Released in the
Atmosphere, UCRL-53383, Lawrence Livermore National Laboratory,
Livermore, CA.
A-16
-------
APPENDIX B
Non-Dense Gas Model Summaries
Table of Contents
B.I AIR FORCE TOXIC CHEMICAL DISPERSION (AFTOX) MODEL SUMMARY
-------
-------
B.I AIR FORCE TOXIC CHEMICAL DISPERSION (AFTOX) MODEL SUMMARY
Reference:
Availabilitv:
Abstract:
Kunkel, B. A., 1988. User's Guide for the Air Force Toxic
Chemical Dispersion Model (AFTOX). AFGL-TR-88-0009.
(ADA199096)
Computer code and user's guide can be obtained upon request
from:
Bruce A. Kunkel
Air Force Geophysics Laboratory (AFGL/LYA)
Hanscom AFB, MA 01731-5000
Telephone: (617) 377-2972
AFTOX is an interactive, PC-based (for EGA and CGA systems),
Gaussian puff model with a variable number of puff releases
per minute based on wind speed and distance from source. The
model is written in BASIC and was designed to compute
concentrations from continuous or instantaneous, liquid or
gas, elevated or surface, point or area source. AFTOX
contains an additional subprogram for processing a buoyant
plume from a stack. Only one type of release can be processed
at a time and dense gas effects can not be modeled. Terrain
is assumed to be flat. The model can 1) plot up to three
concentration contours, 2) compute a concentration at a
specified point and time, and 3) compute a maximum
concentration at a given elevation and time. Some of the
model's significant features include: 1) a stability parameter
based on a continuous function, 2) use of roughness lengths,
3) variable averaging times from 1-minute to 1-hour, and 4)
plot of a 90% probability hazardous area. There are 76
chemicals in its data base.
Recommendation for Use:
AFTOX is a refined modeling program for estimating concentrations from a
continuous or instantaneous, liquid or gas, elevated or surface, point
or area source in any kind of cl imatological location. The program is
designed for chemical spills on flat terrain and is not applicable for
complex terrain nor modeling dense gas effects. Only one set of
meteorological data can be used each time the program is executed.
Averaging times greater than 60 minutes are not recommended.
Input Requirements:
Two input files are used in AFTOX. The first file (SD.DAT) contains the
meteorological site values which include: Site name, Latitude,
Longitude, Roughness length, Wind instrument height above ground, Site
elevation, and Greenwich Mean Time - local standard time zone
difference.
B-l
-------
The second file (CH.DAT) contains chemical data for 76 chemicals. The
data include: Chemical name, time weighted averages, short-term emission
levels, molecular weight, boiling point, critical temperature, critical
pressure, critical volume, vapor pressure constants, liquid density
constants, effective diameter of molecule, energy of molecular
interaction.
A third file (CHEM.DAT) contains only the chemical names. If the
chemical released is not on the list, the following chemical data are
requested: Chemical name, molecular weight, vapor pressure.
Meteorological input includes: Ambient air temperature, wind direction
and speed, wind direction standard deviation (optional), cloud cover,
cloud height, wet/dry ground, snow cover, inversion base height, spill
site roughness length.
For 'continuous' liquid or gaseous spills, input includes: emission
rate through rupture, duration of spill, height of release (gas only),
area of spill (liquid release only), pool temperature (liquid release
only), and elapsed time since start of spill.
For 'instantaneous' liquid or gaseous releases, input includes: height
of Teak above ground (gaseous release only), total amount spilled,
elapsed time since start of spill, pool temperature (liquid release
only), area of spill (liquid release only).
For continuous buoyant release from a stack, input includes: molecular
weight of effluent, emission rate per minute, stack height above ground
level, gas stack exit temperature, volume flow rate of exit gas.
Other files exist for transferring data between parts of AFTOX.
c. Output
. Three types of output can be generated by AFTOX. They are:
Maximum of three contour isopleth plot of concentrations;
Concentration at specific location and time; and
Maximum concentration at giver, elevation and time.
AFT.OUT is used to retain most of the input and output data. AFT.OUT is
overwritten when AFTOX is reexecuted. If the data in AFT.OUT are
needed, AFT.OUT should be renamed as soon as practical.
d. Type of Model
Technically, the model is a gaussian puff model. Mass conserving
equations are used. A minimum of three puffs per minute are used to
track and compute concentrations from continuous type sources. The
faster the wind speed the more puffs per minute are required and used so
B-2
-------
there are no gaps between puffs. Stability classification is based upon
Pasquill stability classes but instead of discrete classes, the
classification system is a continuous function designed to avoid sudden
changes in stability classes due to minor changes in input values.
Pollutant Types
AFTOX is capable of modeling non reactive gases and evaporating liquids
but does not model dense gas effects.
Source-Receptor Relationships
AFTOX can be used to model a point or an area source but the main
purpose of the model is to estimate a short-term concentration or an
area where concentrations will be above a certain threshold. Terrain
conditions such as dampness of the soil and whether the ground is snow
covered are part of AFTOX input.
The program can produce a three level isopleth graph of concentration
levels and/or predict the maximum concentration. The contours plotting
starts at least 10 meters from the source. Maximum concentration
predictions are calculated for as close as 30 meters from the source.
Contour plots can extend outward to 100 km from the source.
There are an unlimited number of points at which concentrations can be
calculated by AFTOX, but the receptor elevation, downwind and cross wind
distances need to be entered each time a concentration is needed.
Plume Behavior
For continuous buoyant plumes, Briggs (1975) plume rise formula is used
to calculate plume rise. All plumes are assumed to be neutral to
positively buoyant. There is no building or stack tip downwash.
Gradual plume rise is used.
From non stack sources, liquid spills are assumed to pool on the
surface. The gaseous emission rate from an evaporating pool formed by a
liquid spill is based on one of two convective mass transfer algorithms.
These algorithms are selected internally by the model, as needed, based
on the chemical information available in CH.DAT. The area of the pool
is determined from an equilibrium established between the spillage and
evaporation rates. An initial sigma value is determined based on the
width of the pool.
Horizontal Winds
The measured wind speed height is adjusted by AFTOX to 10 m based on
stability and roughness length at the meteorological site. The wind at
the spill site is assumed to be equal to the computed wind at the
meteorological site.
B-3
-------
The wind direction is not adjusted. However, if there is a standard
deviation of wind direction value available, that value is adjusted to a
60 minute averaging time and a 10 meter height.
Vertical Winds
Vertical winds are assumed to be zero.
Horizontal Dispersion
Two methods are available for calculating stability:
a. Wind, solar, roughness length and Monin-Obuhkov length
values are used in conjunction with Golder's nomogram (1972) to
determine a stability parameter.
b. The standard deviation of the wind direction is used to
determine a stability parameter using the Modified Sigma Theta
approach of Mitchell and Timbre (1979).
Stability parameters are a continuous form of the discrete values of the
Pasquill Stability Classes and are used to derive dispersion values.
The Pasquill-Gifford dispersion parameters are used in this model and
are adjusted for roughness length at the spill site and for the
concentration averaging time.
A power law function is used to determine sigma y values using Hansen
(1979) coefficients.
Vertical Dispersion
See Horizontal Dispersion concerning methods for calculating"stability
parameters.
A power law fit of Pasquill sigma-z curves is used and adjusted for
roughness length and downwind distance.
Briggs (1975) plume rise equations are used for stack emissions.
Mixing height is entered manually.
Reflection terms are used only if there is an inversion below 500
meters. The terms are summed until the N-th term produces a value of
less than 0.01.
Perfect reflection is assumed at the ground.
Chemical Transformations
Chemical transformations and decay are not modeled.
B-4
-------
m. Physical Removal
There are no wet or dry deposition algorithms.
n. Evaluations
Kunkel, Bruce A., 1988. User's Guide to the Air Force Toxic Chemical
Dispersion Model (AFTOX), Air Force Geophysics Laboratory Publication
No. AFGL-TR-88-0009, EPR No. 992. Air Force Geophysics Laboratory,
Hanscom AFB, MA 01731-5000. (ADA199096)'
o. Operating Information
AFTOX runs interactively on an IBM-PC. The source code is not machine
dependent and should be transferable to other computers running Basic.
The following two data files are mandatory and should be reviewed prior
to running AFTOX: SD.DAT and CH.DAT.
The following three programs are accessory programs that allow the user
to update and expand the above two data files or transfer plume plots
from the -.screen to a printer.
SDFIL.EXE, CHFIL.EXE, and a graphics screen to printer program (i.e. MS-
DOS's GRAPHICS command and compatible hardware).
p. References
Briggs, G. A. 1975. Plume Rise Predictions. Lectures on Air Pollution
and Environmental Impact Analyses. American Meteorological Society,
Boston, MA, pp. 59-111.
Colder, D., 1972. Relations between Stability Parameters in the Surface
Layer. Boundary Layer Meteorology 3, 46-58.
Hansen, F. V., 1979. Engineering Estimates for the Calculation of
Atmospheric Dispersion Coefficients. U.S. Army Atmospheric Science
Laboratory, White Sands Missile Range, NM, Internal Report.
Mitchell, A. E., and K. 0. Timbre, 1979. Atmospheric Stability Class
from Horizontal Wind Fluctuation. Air Pollution Control Association
Annual Meeting, Cincinnati, OH, paper 79-29.2.
B-5
-------
-------
Appendix C
Dense Gas Model Input and Output Files
Table of Contents
C.I DEGADIS Model
Example 1: Input/Output File
Example 2: Input/Output File
C.2 HEGADAS Model
Example 1: Input/Output File
Example 2: Input/Output File
C.3 SLAB Model
Example 1: Input/Output File
Example 2: Input/Output File
-------
-------
DEGADIS Example 1: Input File
Workbook scenario 6.5 - continuous leak of chlorine gas
2.0 10.
0.01
160
298.
298.
CL2
70.9
900.
284.3
0.000005
500.
1. 50.
0.000005 0.0
0.
0
0
1.261
5.0 0.06701
0.0
100.
uo, zo
ZR
INDVEL, ISTAB, RML
TAMB, PAMB, RELHUM
TSURF
GASNAM
GASMW
AVTIME - (15 min)
JETTEM •
GASUL, GASLL, ZLL
INDHT, CPK, CPP
NDEN
ERATE
ELEJET, DIAJET
TEND
DISTMX
C-l
-------
Output File
o
a
>
w
Q
O
Q
cu
E-i
w
e e E
o
I
w
o o o
o o o
o o o
o • o
• o o
m
*^-
£
CM
I I
w «
m o o o o
O\ O O CM O
o • o o CM o o
o o o CM *r o
O co (T\ i—I • ^"
u u
o o o o o o
1-1 m o o • o
o\ . o o in o
• T o o in o
O 00 O O »-H •
r- CM • • CM I-H
m in
E e
I
U
o o o
,— I O O
"•£> O i-H
WOO
• • r*-
i— t m •
CM
CO
o
o
XI
T3
C
O
o
en
o
T—i
o
Ll
O
0)
x; x: M
ty tj* o)
•H -H C
D o) _c
3
0) 01 O
U O Ll
c c
01 1) 01
Ll Ll O
01 01 10
0) oi
Ll PC
73
01
01
Q,
M
T!
C
xt
*4-i
<0
Cu
o
x;
o
4J Ll Ll jj 4-1
•H 3 3 -H -H
O 4-> w TJ 73
O (0 « -rH -r-l
-H LI 01 £ £
01 O Li 3 3
> a axx:
C 01 4J 4-1 0)
O 4J C C >
•H 0) 0> -H
U CA A <0
•H 0) 1= 1 ^H
Vj -H < < 0)
In n pc
01 >, >. N N N
E < < « <
•H H E-< E-i H E
4J J U J U E
td m w CQ <
0>Q Q O
c
-H
CP
•0
•o
0)
o
8.
Ll
01
a.
o
Ll
Cu
c
o
u
x: LI n M c 01
O> 3 01 Ol 11 3
•H AJ Ll Ll 4J O
n fo oi n w ex
3 M 4J 4J C
01 C C O >,
Ll Q.-H -H U JJ
HE -H
rH (1) M-l H-J >, O
3 4J O O 4J <0
o -H a
41 rH rH rH U *0
^H U 01 C! <0 O
o -H > > a
£ 4-J CJ H *0 iJ
^H ^-1 fH U 13
-U C 01
C M Ll Ll 4J EC
ro 01 01 U
c a 3 oi
•H a o i
E => ^
4J
c
o
u
Z
W
Q
Z
Cu
O
a
o
Cu
01
01 c u
4-1 O 0)
<« -H 4J
Ll 4J 0)
•0 £
ai > ra
« 0) -rH
10 rH "O
01 01
fH Q)
01 0) ET
0C ffi Ll
• Ll 10
ro x:
x; o
u o
C-2
-------
c
O X O
-H 18 (8
AJ E M
fO [14 .—»
> M E
4> O rH ~
rH M-l O
£ C
3 0
E CD .H
•H rH AJ
X 0 0
S M
Cu
CM "W* rH
in • •
. CO «r
in rH rH
m m
o o
I i
o cn cn
O in rH
• co m
*T rH
cn 0 0
rH 0 O
• O O
cn . .
*r w
ooo
1 1 1
W cd W
o ^o co
o co m
in T m
r- r- vo
o
• I
Er^gg
O O —
m
o
AJ
o m
o ja o
o AJ i
• T> Cd —
•H O E
SO —
m
AJ c
< o
01 -H
M
b
OOO
ooo
ooo
r- m r-
rH CM CM
Z
vo «r co O
r- m r- M
rH CN) CN
c/i
ooo
I I I
Cd I
CN
O
I
«
<8
O>
I
fd
ooo
ooo
o o •
O I— O
co m o
CNI
rH CM X
< < E
Cu [u H
J J cy}
CM
O
I
CTl CM U> rH • •
UJ . • . O CN
. CO in CO rH rH
m
^" CO CO CO CO CO
CN CM CN CN CN CN
E-
O
Q
O
CM
CO
cn
en
I
Z
"-J
I
£
"t?
0)
AJ
c
0)
U
<
(J>
i
18
18
Cu
4)
T3
O
2
18
AJ m
c E
C J!
O —
U
C
o
CM CO
O O
I I
U Cd
m m m
ooo
I I I
Cd Ed U
m rH m
rH Cn CO
VO CM
cn cn
CM CM
CO CO
cn cn
cn en
I I
Z Z
I I
rH rH
m m
n
"SEE
O O CM
OOO
• • I
CN O [d
rH O CO
O rH
o
m
CP
OCnO^TrHOOOCNJO
ooo«>mooooo
• m o co *r . • o i >
. CM CM o
o
rH *T
m co
o o
I I
Cd Cd
ooo
I I I
Cd Cd [t]
cn cn m
*r r~ m
TJ 4)
C U
-H C —
3 t E
C AJ —
o —i
a Q
m
• (
in i
o m
o • v
O O rH
rH CM CN)
C It
O M
AJ O
3 M
a a
c
-H 4)
o
18 M
AJ 3
18 O
Q CO
U
O
C
O
o
I
in
JC
CT>
•H
41
_C
41
O
C
CO
M
41
U-t
OJ
10
10
18
rH
O .C
AJ
n
AJ AJ u)
•8 x 0)
tr> c
oi >
E <8
•H AJ
AJ rH
01
ena
c
•H
tr
18
tn M
AJ 01
C >
<8 18
AJ
10 -O
C 01
O -H
o ^
•H
c u
O 01
a
Betay
Alpha
aw constan
>1 >.
_ C 3
•H 41 .a
I 41
I M
3
TJ T!
II
0) O"» 18 O O
"1 4JJ3 •
M 41
4)
3 >i 3 _
O AJ AJ AJ 4) 4) CD
CX-H (8
O M
>. O
18
>J 18
H C
M 4>
H O
U
-X
O
o
ja
M
O
O 41 M
rH O -H
41 C 4) -H
> 0) O -H
M CO 3
C t-i w n
-H 41 3 18
3 Q£ (/} CU
o C
O E-i
rH C
41 O AJ
> -H C
AJ 41
T> O -H
C -H J2
-H Ml
3: fci <
. M AJ >
M 3 3 -H
4) W rH AJ
£ 4) W rH
01 M J2 01
f-i Oj «( OS
01 AJ AJ AJ
O C C C
18 0) 4) 01
Sill
i/i < < rt
C-3
-------
0>
a
0)
J O O rH CO in ON rH CM r- O
i S£ o «3- ^ CM ON ro in CM ro ro
oo r- VD in ro CM o co tn T
ON ON ON ON ON ON ON co co co
CM CM CM CM CM CM CM CM CM CNJ
ONIO in in m
X m in m in
c
ta
a,
-I ON
10 Jit O ID IT)
.C ^O CM .
-CO
r- o rsi
in
C
W
O CM ro
O 00 «T
• m ,-H
I I
*r !—i r— ro ON \o o
cr> LO o vp r-t r"- to
CM rH O CO r- IT) 00
Csl fO *J* ^ lO VD ^O
III III I
H
M ro <^ co r- CNVDT o^rOi-H
c/i * ro ro
Q \ rH CM ro *r vc co o T co
tT-
W^^HrH^H rH i-l .H fM OsTCNJ
z m o o co
O * O \£> CT\
l—t * O LO ro voiotO
E-^Eooco crvior-
ON -
ro cs r-
co r~ T
CM vo ND
B;
EH
z
w
u
z
o
CM
E ON
•^ ^t
ON-^
X M <-> E
^o r--
o o
I- I
U pq
o o r- o o o o
<-t ro ON O O O O
ON . m • o o o
• *T O O O O O
«2 CO • O O O O
r- CM ro ir) • • •
in in
IV
I-
0)
EH
ON ON ON ON
ON ON ON ON
' r~ r- r~ r-
ON ON ON ON
CM V£>
AJ c in in m m
c in o • • • •
O W O rH i-H r-t i-t
U fl
Z CP
o
o
O T O
o m ^r
O ro O> *•£" LO ^
O O O ^H CM r
o
o
o
o
(0
0)
-H
JJ
i^
OJ
a
o
^
Oj
01
(Q
O
•o
0)
4_j
•H
o
0)
a
LO
t ,
4-1
J3
ON
•tH
01
3
Li
it
i—t
•3
O
11
rH
O
E
01
Li
•S
,
JJ
• H
n
c
Q
JJ
-H
O
a
iB
O
I i
IQ
0)
f^
01
ON
<0
Li
01
eg
n contour:
o
-H
JJ
U
IH
x-l
01
, — |
O
E
M
(U
a
a
n contour:
hs:
o
•H
4J
U
J^
4-1
OJ
^-4
0
E
LI
01
3
O
^j
0>
a
O
to
•H
Ll
O
14-4
JJ
£:
ON
-rl
01
X
o
o
•o
3
O
t—I
U
c
01
o
M
3
o
CO
ON ON O O
E r- r- o o
CM CM O O
• .00
r- r- o o
CM CM • •
a
01
T!
C
0)
.. > ..
.. M IB T3
« Tl C
U (V 01
o c n -H
>4H O 3 O
•H -r-4
0) 4J O HH
i4 CX-H MH
3 -H 4J 0)
•O M m O
SI O U O
O W
O J) n 4J
IH M n c
a a o> 01
C 4J J< C
o c u -H
-H 0) -H
•u E X u
IB C 4J 4J
-H -H C
3 IB M 01
O Li 01
~H 4J >, U
IB C IB -rt
U W J <
C rH
01 0>
O Ll
•H O
«4H U
MH
01 Si
O JJ
U -H 73
C S 01
>< O t)
JJ -H TI 3
^H JJ 01 rH
U i-H U JJ
IB rH O
O1 O 10 C
C U
Q. 10 Li
E E 0)
3 Li 14-1
0)
o)
m to jr; c IB
Ll jj IB L4
>| O Ll jj
JJ 10 JJ
.H M L4
> JJ 0)
10 2 <0 4J
Ll O 01 IB
U Z I S
o
1/5
oooooooo
C-4
-------
*
-K
-X
*
*
t/5
cr:
CJ
E-;
s:
$
<
Oi
CJ
u
cf.
r>
0
to
Q
<
^5
u
tQ
O
*
*
*
-K
O
u
-H
cc
ID
Ll
3
4J
fl
01
a
E
CU
H
>if^
4-> *
•rH -)e
to E
0) Cfi
a ^
u
u
fl
*4H
ID
O
Z
^^
•
CM
\
II 6
X
w
w
*-^
i-( CM
13 *
-U *
w e
°''fT1
*
±j
r*,
tn
-H E
(U
32
W
P
-H
TJ
CC E
to
a]
O
If)
O O i-l
uo in co
i — 1 ON ^"
^r co *r
O rH CO
ro ro ro
LO
CM VO O
^ . r-'
ON to CM
T P- rH
VD VD VD
m m m
r- P- P-
ON ON ON
ON ON ON
p- r- r-
ON ON ON
CM CM CN
ON CO CO
CO CO 00
p- p- p-
p- p- p-
^r T «r
o o o
1 1 1
to to to
CN P* ON
ON ON ON
ON VD rH
CO VD ON
m P- o
^ ro ^<
ro ro ro
CO CO LO
p* ^D ro
0 0 *T
rH OO rH
^10 P-
m LO m
0 0 O
I I I
to to to
rH LO VD
rH CN CN
•y co r-
ro O CO
CO V,O VD
CO rH rH
m LO LO
p- m m
ro *.o ^*
o en CN
ro oo P-
ro \O ON
CO \O LO
*r m o
CM lO t—t
co m o
LO rH P-
CO >, >,
i-H r-l Ll Ll
VD p* fl fl
m m -H -H
Ll Ll
CU Ou
C C
4) 0)
O ID rH rH
m CM fl fl
co r- > >
en \o -H -H
co r- 3 3
VD VO [ij W
in in
o o
1 I
U U O 00
in r— rH in
o o vo m
in en CM •
T in rH in
•T in
in in
,,
p- r~-
^ ^3* .
•=r oo E
VD in ' — '
r- vo
in in jj
tji
c
o>
rH
ID
^3« ^o ^
0 ON ~ p
CO CO W O
in ON *^» uj
VD ^" ^ >"i
co co •— i-i
x: 1
J-> -H
O^ M
c cu
ID
VO P- jJ C
Cn r-( « Q)
rH P- rH
P- rH O >
OO i — 1 iH '<-4
T CO P p
o cr
CO W
o
CT
p-
p-
..
r-^
g
l_l
S)
to
01
Ll
3
O
10
>,
Ll
fl
•o
c
0
0
to
o
1
u
p-
^"
oo
p-
o
rH
••
_
r*)
.y
•k
E
tT1
-*
C
0
-H
4J
Ll
4J
C
01
o
c
o
01
o
Ll
3
O
tfi
^
M
ro
C
O
o
a;
LO
LO
O
1
W
ON
U>
m
in
u->
1
E a
rH
0) fl
U £
Ll 4J
3 C
O W
10
Ll
fl
Seconc
rH
m
¥
•o
3
p
rH
fl
ID
o
3
O
fl
•o
c
o
01
CO
CO
en
i-H
1"
.c
4-1
C
01
rH
01
o
3
O
Ll
fl
Secon<
•• o
0 E
o
E i
w —
O 0 -»
• o
in
n <*>
N 0)
4J 0
fl E -~
.C 0 —
4-1 1
•H O
S o
o
in
N H
"WrC-p
-H 4J E
I -H
01
4J
fl —
ID —
a
01
EH
fl
fl
>i CO"
4J *
•H -K
W £
c -v
1> DN
Q .*
C
O
:entrat.
.g/m**3
c ~
o
u
Mole
raction
DL,
0)
u
c —
4-) — *
M
•H
Q
• • rH
VD CN O
. . CM
O
1
to
CM *T ^
. T CN
rH
r- r~ r-
00 LO rH
VD co P~
. U> V£>
P- P- V0
p- P- p-
0 0 O
1 1 1
to to to
rH rO ON
o m in
P- rH VO
VD VP tO
O 0 O
1 i 1
to to to
rH CM rH
rH CM LO
CO rH ON
CN CM rH
ON ON ON
VO 0 T
SP£
LO •T CO
ON O rH
ON p"~ ^*
«T CO CN
m in VD
co ro o
ON CN LO
P- CO CO
ON 00 P-
rH CM CO
OO CO CO
ON ON ON
CM CN CM
m in m
\D {Q VD
vu u> in
p- P- P-
p* r- r-
o o o
I I I
to to to
CO rH ON
rH rH 'a1
CN co ^r
m LO
•
ON ON ON
CO CN ^>
in rH VD
CO O^ ON
rH ON p-
CN CM ro
ON ^" CO
iT) ON CM
CO P- U5
r- o ro
CO ON ON
^r CN ON
vo
LO LO
p- p-
0 O
1 1
to w
VD ON
CN 0
CO rH
CO CO
O 0
1 1
to to
P- CM
rH O
ON O\
CM UJ
ON ON
C-5
-------
CN CN CN CN CN CN CM CN CN CN CN CN CN CN CN CN CN CN
CO CA rH
CN CN CN
CN ^* LO
GO CO CO
CN CN CN
vo p~ oo
OO CO CO
CN CN CN
co CA CA
CO CO CO
(N o
o ro
CO CA O>
O VO CO
CN CM CN
CO ^ rH
ro ro «3*
<^> co ro
LO in vo
to o *r
^D r- r-
CA ro co
P- co co
CA CA o
rH rH CN
IT) ON rO
O O rH
CN CN CN
CA ro P~ rH m 0*1
CN ro ro ^* "«r «3*
fNCNCN CNCNCSJ
VO CA CN lO CN LO
O O rH rH CN CN
CA CA o
rH rH CN
O rH rH
CN CN CN
CN CN ro
CN CN CN
CN CN CN CN CN CN
r- oo CA
CN CN (N
cr\ o o
CN ro m
i CN CN
r*"j ro
CN P~ rH
CO CO CA
LO CN LO
CA O O
co r*- r-
p» r- r*
vo o ro
LO LO ^r
U> CO rH
ro CN CN
rH O O
r- r~ r-
O O
iH O CA
M> VO LO
CO CO CO
CT\ CTl O>
CN CN CN
CO CO CO
CA cr> cr\
CN CN CN
CO CO CO
O\ CA CT»
CN CN CN
CO CO 00
CA CA CA
CN CN CN
CO CO CO
CA CA O\
CN CN CM
CO CO CO
CA CA CA
CN CN CN
O\ CA CA CA CA CT>
VD \^>
CA CO CO
O O O
CO CO P~
O O O
r- r- ^
o o o
V0 LO LO
O O O
ro CN CN
o o o
V£> LO ^O
rH rH O
O O O
O CA CA
O C3^ Q\
*^ LO LO
CO OO P-
CA O^ CA
LO LO LO
^pr^ pt^rT ??? ??? ??? ???
rororo rororo rororo rororo rororo rororo
ro ro ro
r- p- r-
p* r- P-
ro ro ro
r- r- r-
p- p- r-
O
CO *3" ^*
CN o CA
LO LO LO
o o o
1 1 1
Cd Cd Cdi
O *T O"l
CO LO CO
CO O *^>
ro ro ro
o o o
Cd Cd Cd
CA CT( CA
^D ^ CO
rH CN CN
000
1 i i
W cd W
CN CA a\
LO U) rH
r- vo LO
LO LO LO
O 0 O
1 1 1
Cd Cd Cd
C\J *T" CTl
^r LO ro
O P- CN
ro ro ro
O O O
Cd Cd Cd
^D O CD
ro
O 0 0
1 1 1
Cd Cd Cd
CO CO rH
p- ro LO
rH rH O
in LO LO
o o o
1 1 1
cd cd cd
ro co tn
O
CO CA O
rH rH CN
O O 0
1 1 1
Cd Cd Cd
CO CA CA
•SP P" P-
LO CN P*
co co r-
lO LO LO
o o o
1 1 1
W Cd cd
^» LO CO
CAoo VO
CN CN CN
ro ro ro
O 0 O
Cd Cd Cd
O\ CA CA
CO CN O
0 rH CN
CN CN CN
LO LO LO
O 0 O
1 t 1
Cd Cd Cd
co r- to
^T rH CN
LO rH P-
LO LO tO
o o o
1 1 t
Cd Cd Cd
ro *r CA
O LO rH
w> *r ro
CN CN CN
ro ro ro
O O O
Cd Cd Cd
CA CA CA
LO to
o o o
1 1 t
Cd Cd Cd
LO CN CA
CA CO P-
rH O CA
CN CM rH
ro ro ro
O 0 0
Cd Cd Cd
O"\ CA CA
CO VD «T
VLO VD
CN CN CN
LO LO LO
O O 0
1 1 1
td Cd Cd
rH ^O CA
U> O ^D
^ CN CA
if) IT) *T
LO LO LO
O O O
I 1 I
Cd Cd Cd
ro LO ro
CO CA rH
co r- r*
ro ro ro
O 0 0.
WWW
CA CA CA
CN O CO
r- co co
CN CN CN
LO LO LO
O O 0
1 1 1
Cd td td
O VD *-P
to «r to
p- LO ro
LO LO LO
o o o
1 1 1
Cd Cd Cd
co r- CN
ro "*d o
^X> LO LO
ro ro ro
0 O O
Cd Cd Cd
CA CA CA
^D
CD O O
1 i I
Id Cd td
T CO O
rH P- LO
P- LO ^
ro ro ro
LO LO tn
o o o
1 1 i
Cd Cd Cd
rH ^T CA
co ro co
CN CN rH
ro ro ro
o o O
Cd Cd Cd
CA CA CA
V CN O
Tin vo
ro ro ro
LO LO LO
o o o
1 t 1
Cd Cd cd
CT\ LO CO
CN rH O
CO CN rH
n ro ro
LO LO LO
o o o
1 1 1
Cd Cd Cd
CO CA CN
*r o p-
rH rH O
ro ro ro
O 0 O
Cd Cd td
CA CA CA
CO \& ^*
vc.r-.QD
rO ro rO
C-6
-------
CM o r-
r* r- vo
r~ o ro
^r LO to
co r- o
LO LO VO
CM CM CM
rsj co ^r
rO ro *r
VO lO *T
CX) CO CO
ON ON ON
CM CM CM
r- vo vo
LO LO m
ro co m
LO LO in
o o o
I I I
w cj ca
VO O ON
O rH rH
O ON CD
ro CM CM
to LO vo
0 O 0
1 1 1
_J ID DJ
r* m o
m o CM
o o r-
,-H rH ON
m m m
o o o
CJ Ca ca
O> ON ON
CM o co
01 o o
^T rH CO
VO VO iT)
VO ON CM
LO LO tO
«3* CO CM
VO VD r-
CM CM CM
ON LO rH
•*r LO vo
m CM CM
CO CO CO
cri ON ON
CM CM CM
LO LO *T
LO LO lO
m m m
LO LO LO
O O O
1 1 1
WWW
m r— t m
co LO r-
r- vo LO
CM CM CM
VO VO VO
0 O O
1 1 1
UJ CiJ ta
CM ON O
CM co r-
*T rH CO
ON ON co
co co co
o o o
W CJ Ca
CTi O"» ON
VO ^ CM
rH CM m
*r o vo
LO LO ^*
lO CO rH
LO lO LO
LO en co
r- r- co
CM CM CM
r- CM co
\D r- r-
«H o ON
CO CO CO
ON ON ON
CM CM CM
co ro CM
LO lO LO
co CO ro
LO LO LO
O 0 O
1 1 1
Ca Ca ca
CO CO O
ON CM CO t— I
CO CO CO
CO CO CO
O 0 O
ta w w
o> en a^
o co to
^r ^r LO
CM co co
^r co co
•CT VD CT»
LO LO U^
vo o co
CO ON ON
CM CM CM
^- o to
CO Cn CTt
co r- *^>
CO CO CO
cr\ cr\ o>
CM CM CNJ
CN tH O
LO LO LO
co ro co
LO t-O LO
o o o
I i I
LJj CiJ UJ
^o ^r LO
cr\ co r^
CM CM rH
^D VI3 ^
o o o
i i I
w w «
LO CO 1-H
r-l 0 O
ax r- LO
r- r- r-
co ro co
0 O O
WWW
O^ CT* CH
«T CM O
to r- co
co ro co
CM CM «-l
CNJ *T ^D
LO LO lO
r- o «r
Cft O O
CM CO CO
^H V43 CM
O O ^H
LO ^T CO
CO CO CO
CT\ ON ON
CM CM CM
O ON ON
LO LO UO
CO CO CO
LO LO LO
O 0 0
1 1 1
CJ CJ Cd
ON LO ^*
i-H V£ f-1
<-H O O
\& ^T
CO CT\ O
CM VO ON
rH O ON
ON «H ro
LO LO lO
r- rH VD \£>
(*1 CO CO
O 0 O
[jQ W W
ON ON ON
CM O CO
rH CM CM
lO LO LO
CM LO r*
ON co r-
LO r* ON
LO LO LO
CO rH LO
rH CM CM
co co ro
T O LO
CO «3- T
ON oo r-
00 CO CO
ON ON ON
CM CM CM
^0 LO LO
LO LO LO
ro ro ro
LO lO LO
o o o
1 t I
U tf U
CO Vi) LO
CM co ^r
VD \P VO
o o o
1 t !
M Ct) W
CM r- co
O LO iH
ro ^t O
U> U5 M>
ro ro ro
O O O
W Cd CJ
ON ON ON
^ «r CM
ro ^r LO
LO LO LO
ON O 0
VO MI LO
rH CO LO
IT) tO LO
CO rH LO
CM ro ro
co ro n
rH VO CM
LO LO VD
L^> LO "V
CO CO CO
ON ON ON
CM CM CM
«T CO CO
tO LO LO
ro ro ro
LO LO lO
O O 0
1 1 1
w w w
«> ON CO
O V£ CO
\D VO ^D
O 0 O
1 I 1
U Cd W
^r *r o
CO lO CO
co r* ^D
LO lO lO
ro co ro
O 0 O
U W U
0 CO VD
^D VD r-
LO LO LO
ON VD CM
CO CM rH
r- ON o
in LO LO
CO rH LO
ro -a" T
CO CO CO
r- CM co
*^> r- r—
CO CM rH
CO CO CO
ON ON ON
CM CM CM
CM rH rH
LO LO lO
ro co ro
LO LO LO
O O O
1 1 1
W Cd W
CO T CM
ON ^D CO
*^) VD ^O
O O O
1 1 1
W M W
o ^r CM
rH ON CO
LO CO CM
CO CO CO
O O O
W U [J
*T CM O
CO ON O
LO LO ^
XT o
CM T LO
lO LO LO
CO rH «T
VD U>
r- co o
LO LO LO
CO rH «T
LO ^O VD
CO CO CO
ON *T O
O> O rH
rH rH O
r- VD LO
•
CO CO CO
ON ON ON
CM CM CM
co r- r-
LO LO LO
CO CO ro
r* r~ r-
LO LO tO
0 O 0
1 1 1
W ca pq
CO VD ON
rH CO LO
VD VD VD
O O O
1 1 1
U ta ca
CM co r-
r- r- co
co r- VD
CO CO CO
o o o
w ca H
en ON ON
CM o co
ro
-------
CM ro *r m
CO 00 CO GO
LO in to lO
in \P vo
CO CO CO
lO tO m
r* P- co
CO CO CO
in m in
CO CO ON
CO CO CO
m 10 in
^ ON O
CO 00 ON
m to to
O O rH
O\ ON CTN
m to m
CN CN ro
ON ON ON
m m m
m «3* m
ON ON ON
m to to
in m ^
ON ON ON
in m m
VJD p- r—
ON ON ON
to LO to
ON ON ON
to to m
ON ON O^ ON ON C^
in in m m to in
O fNJ in W ON rH
O O O O O rH
p~ co o I-H ro
ro p- ON
co co co
f — r~ P- co co QO ON ON ON
m in LO m m m to to in
coom
ONOO
mcoi-i
o o rH
CN CN fN
vp u> vo
co ro ro
CN ro ^*
co co ro
^rin^o
vp tp y?
mcoco
p- p* co
ro ro co
ON o o
co ro ro
rH CN ro
co co ro
ro ^* in
• ro P-
O • •
rH ON CO
ON r^i co
to o T
m co CN
ON rO CO
o m rsj
^D O ON
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o o o o
o o o "o o o
o o o o o o
CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO 00 CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO
CTi ON ON ON O*i ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON
CM CsJCsjrsi CNICNCN (NfNICN CMCMCM CMCMCM CNJCMOJ CNCMCNJ CSIfMCN OgojCN fNCSJCM CslfMCM CMCgCN V
in m i
rH O O
<*£> \O VD
m m m
(M r-H ON
in to ^r
in m tn
m CM o
«^ ON ON
O ^* CO
csj CN CN
GO CO CO
vp vp vp
000
1 1 1
WWW
P- O U>
VP'CN ro
CN rH GO
ON CTN CO
O O O
1 1 1
r*i c*-i ro
in ^5* P*
ON ^r T
rH rH O
ro ro ro
ro ro ro
o o o
WWW
m in m
CM GO O
ro ro tn
CO CO CO
vo vp vp
O O O
1 1 1
ON VP CO
ON ro O
vp «^. ro
CO CO 00
o o o
1 1 1
w ta w
O\ ON tO
ON O VP
ON ON CO
o o o
WWW
LO tO lO
*V VP CM
VP f- CO
ON ON ON
vo vo vp
O O O
1 1 1
WWW
CO CO rH
P* ON "^
CN rH O
III
O 0 O
1 1 1
WWW
iO P- ro
VP ro co
rH rH O
CN CN CM
rO T <3-
O O 0
WWW
lO 0 CN
-------
co r* r- r- r- v^
CT* CIN ON ON ON ON
LT> LO LO IT) LO LO
ON ON ON
to LO LO
m CM CM
ON ON ON
LO LO LO
rH O ON
ON ON GO
oo r^ co
CO CO CO
r^- \a LO
CO CO GO
m 10 in
^ CM CM
CO CO CO
in LO to
O ON [—
co r- r-
LO LO LO
LOLOLO LO m LO
CM P- ON m LO o
ooo I-H rH CM
in LO u"> LO LO LO
CM \£> CO
CM CM CM
LO LO LO
PO LO ON
m ro ro
LO to LO
CM ^* ON
LO LO LO
LO iO LO
CM *r co
r- r- r-
LO LO LO
O ^ VD
CO CO CO
LO LO LO
rH ro r-
ON ON ON
LO LO LO
oo n LO
rH CM CM
^O US ^
CT» f-H LO
CM co ro
ON CO CO CM *•£> LO O ON
CO ON ON
r- r~ r-
O rH CM
OO CO CO
CM m ro
GO CO CO
^* LO WD
CO CO CO
vo r- co
CO CO CO
ON ON O
CO CO ON
• o o
ON O O
rH CM rO
o o o
co «r *r
o o o
o o o ooo
o o o o o o
o o o o o o
o o o
ooo
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
000
o o o
o o o
o o o o o
o o o o o
o o o o o
CO CO CO CO CO OO
ON CT> ON ON ON O".
CM CM CM CM CM CM
OO CO CO
ON ON ON
CM CM CM
CO CO CO
ON ON ON
CM CM CM
OO OO CO
ON ON ON
CM CM CM
OO CO OO
ON ON ON
CM CM CM
CO CO CO
ON ON ON
CM CM CM
CO CO CO
ON ON CH
CM CM CM
OO OO CO
ON ON ON
CM CM CM
00 CO CO
ON ON ON
CM CM CM
CO CO CO
ON ON ON
CM CM CM
CO CO CO
ON ON ON
CM CM CM
CO CO CO
ON ON ON
CM CM CM
ON ON ON ON ON
CM CM CM CM CM
o co r~
ro CM CM
LO l-O LO
CM CM CM
LO LO LO
LO LO LO LO LO LO
o r- vi>
rH O O
LO LO LO
• \£)
000
1 1 1
W Ed Cd
LO p* in
^ i — i ^r
ON oo r^-
m LO LO
^o ^o LO «X
m m m
yp ^D \&
ooo
i i i
Cd Cd Cd
^T rH LO
ro CM «-t
LO LO LO
\& VD VO
ooo
1 1 1
Ed Cd Cd
CO O CO
CO CO VO
O ON CO
LO ^ T
\& VO ^D
ooo
1 1 1
' Cd Ed Cd
ro P- in
rH O LO
CO P- ^O
«T *T *T
^O VO ^
ooo
1 1 1
Cd Cd Cd
LO O O
in in ^*
*3- «T *r
\D
ooo
1 1 1
pd Cd Cd
LO CM OO
v> CM ro
rH »H O
«r ^r ^r
VT> ^D U3
OOO
I 1 >
Cd Cd [d
ON rH r-
ro ro ro
^O ^O \O
ooo
1 1 1
Cd Cd Cd
rH rO 0
O ^O ON
co r** vo
ro ro ro
M? ^O \£
OOO
1 1 1
Cd Cd Cd
LO CO LO
VP LO t-O
co ro ro
M? M? V?
ooo
1 1 1
Cd Cd Cd
CO O \&
co m co
^" "C" C*1
co ro ro
\Q V^ VO
OOO
1 1 1
in CO
co r- r-
O 0 0
1 1 1
WWW
r— r- co
rO rH I—
ooo
1 1 1
WWW
o ro to
10 CM O
ooo
1 1 1
Cd W W
o ro O
r- in
ooo
1 1 1
Cd W W
VX> rH CNJ
ro CXJ o\
^" *T ro
ooo
1 1 1
W Cd Cd
CO 0 p-
r- m ro
ro ro rO
OOO
1 1 1
W W W
O CO (N
rH Cn I—
ro CM r\l
ooo
1 1 1
ta w cd
O ^O ^"
*0 ro (N
INI (N CM
VD VO ^£>
OOO
1 1 1
W Cd W
rH O CO
O OS VP
r*-
rH O O
0 0
1 1
w w
^o r*~
O 0
O O O
000 OOO
ooo,
W cd cd
vo oo ^~
CM ro ^r
ooo
Cd Cd Cd
O O O OOO
OOO OOO
OOO
OOO
OOO
W Cd Ed
CO O kQ
r-t ro ro
000
CO «T U)
^T LO \J3
OOO
u w ta
CM T O
r- co ON
OOO
W E4 Ed
CM co o
O O CM
W Ed Cd
O CM CO
CO CTN ON
Cd
O V
i CM
CM
W CL) W
T VD CM
Cd cd td
^ O CM
«*o r- co
(N CM CM
Cd td Cd
CO O Vi>
CO O O
CM ro ro
Cd Cd Cd
CO T V£>
rH CM ro
ro ro ro
Cd C
CM
T I
co ro co
Cd
* O
Cd Cd Cd
CM CO O
r^ r- ON
co ro co
ON O
ro ^r
C-9
-------
LO 10
ON i—i
o o
P* ON lO
ON CO CO
ro ro ro
LO O P*
i-tcao
-ercsiON
OOON
p-
ro en m
ro ro rO
p- r- r~
o
I
pa
^D U) US
O O O
1 1 1
w w w
o> ro fO
in ro CO
O> ^ 00
CM o 01
in en o
CO VO U7
V£ U> U>
o o o
1 1 1
w w w
O CO ro
*T rH P-
r- r- u>
CM CNJ CM
0 0 O
1 1 1
w w w
en r-t r-
*r r— ,-1
T ro CM
^ u> ^
o o o
1 1 1
w u w
rH co r-
m o co
\D vo in
CM CM CM
o o o
1 1 1
u w w
CM T t-l
^* en CM
r-i en cr\
vo VO v^>
0 O O
1 1 1
M W W
VO VD V0
«T CM CO
m in «r
CM CM CM
O 0 0
1 1 1
W U til
00 CO r-l
r- o r^
r- c- in
VD VO U>
O O O
1 1 1
WWW
vo co a>
V£> CM O
^* «r ^*
CM CM CM
000
1 1 1
u w w
fO rH VD
o r- o
m co co
U> VO VD
0 O O
I 1 I
u w u
CM *r co
r- in I-H
ro co co
CM CM CM
O 0 0
1 1 1
til W W
CO in CM
r- rH en
r-t ,-H CTl
VI> V£> u?
o o o
1 1 1
u w w
o VD cr»
o vx> *r
ro CM CM
CM CM CM
O O O
1 1 1
W W U
rH CM CO
ro t-* in
en co r-
y> vi> u>
o o o
1 I I
W W 03
in en r^
rH CTl V£
CM CM CM
O 0 O
1 1 1
W W CQ
CO rH O
co co r-
vo in T
M> M> vr>
o o o
I I I
MUM
rH O T
m CM o
CM CM 0)
0 0 O
1 1 1
W W W
in co m
rH CD in
^ CO CM
U> UJ ViJ
O O 0
1 1 1
w w u
«T en o
r* in co
0 0 O
rsi CM CM
o o o
I I I
W W W
rH O ON
in o cr\
rH rH U3 **D
O O O
1 1 1
W W Id
M> r- ro
rH CO P-
o en ON
0 0 O
1 1 1
w w w
os CM «r
TT m o
en co co
vo u> vo
o o o
1 1 1
W W U
U> CM U>
«T CO O
en en en
o o o
1 I 1
W M w
0 ro CM
rH VC C-
r- \0 in
& u> \s?
o o'o
1 1 I
MUM
co r~ in
en vo in
CO CO CO
o o o
1 1 1
w w w
r- co «i;
CM CO OS
in T ro
ON CO CO
r~ r- t— r- r- r-
O O O O O O
W W I
UJ CM '
CM m •
w w w
O CM CO
WWW
O *•£> CO
CO CO ON
o o o
*T VD CM
O rH CM
O O O
o o o
O O O O O O
^ O CM
rO ^ LO
M U pq
CO O VD
to p- r-
W Cd U
CO ON O
10 to v^
W U 03
CM T O
rH CM Cn
W W Ci]
CM 03 O
o o o
w to w
^ co *r
VO p1" CO
o o o
+ + +
W tO M
^O CM T
ON O rH
O O O
+ + +
Cd W Cd
O CM OO
CM co m
r— p* P*
o o o
+ + +
f'l M r*i
O ^ CO
LO LO VD
r- p- P*
o o o
+ + +
w to cd
CM
r- co ON
C-10
-------
^ CM CM
r^ r^ ^
O CM \£>
CO 00 CO
r- r- r-
y> u> r-
ro ro ro
o o o
000
000
CO CO CO
cn cn cn
CM CM CM
ro rH r-
^r ^T ro
ro ro ro
ro f") ro
^ s^ ^
o o o
1 1 1
U CJ tO
ca r- m
CO rH O\
co co r^
•H T-i,rH
O 0 O
1 t 1
w u tu
co u> m
o ^ co
n CN t-H
\o <& \&
CD O O
WWW
<3- O CM
O iH CM
CO CO CO
r- co CM
m -sr «y
co CM ^r
co cr* a\
r- r- r-
co co en
ro ro m
o o o
000
000
CO CO CO
o> cr» cr\
CM CM CM
IT) CM O
m m m
rn n m
rn m m
VO ^ \£>
o o o
I i I
CJ U EJ
T-H CO ^>
CO LO T
O O O
1 1 !
WWW
CM iM t-t
*r y) CM
i-H O O
^ «J5
o o o
WWW
CO O ^>
CM <=T T
CO CO CO
eg \P m
m CM r-t
CO O IT)
*N O 0
r- co co
O O rM
o o o
000
0 O 0
CO CO 00
ON CH Cft
CM <• V£i
o o o
I 1 1
WWW
*T CM O
CM i— i cr\
o o o
I 1 1
WWW
m ^ co
*r o CM
CTt O> CO
LT) IT> LO
o o o
WWW
CO «T VD
m vo r-
CO CO CO
eft r- o
o CT\
CM CM OJ
cr^ r- ^r
000
ro rn ro
m m ro
\Q \Q \O
o o o
1 1 1
WWW
r- vo ^c
(M rH LO m
LO LO LO
0 O 0
WWW
CM CO O
I-H iH ro
CT> CTt CT>
*
r- rH CM
^r ro CM
LO CT» rH
CM CM CO
CO CO CO
LO U? V£>
O O O
o o o
o o o
CO CO CO
ON c^ Ch
CM CM CM
CM co ^o
o en o\
ro CM (M
ro ro ro
p* r* r^
U3 U) UJ
O 0 O
I 1 1
WWW
U3 r- r-
CO \Q LO
LO LO LO
o o o
! 1 1
WWW
cr» CM co
vo o ^)
* co -^r
ro <^ m
O\ CT\ CT\
m CM cn
O CT\ \D
IO CO CM
m ro "T
CO CO CO
r- r— co
*
o o o
o o o
o o o
CO CO CO
ON Cn CT\
CM CM CM
CM O *-O
cn en co
CM CM CM
*
co ro ro
r* r~ P*
vo vo ^o
O 0 O
-I t 1
WWW
CO CO O
CO CM rH
LO LO UO
O 0 O
i i 1
WWW
CM O ^>
o r* o
ro CM CM
LO CD to
o o o
WWW
^O CM *T
^o r- co
CTV en cr\
U> U> CO
tO CM O
^ CO O
^r «r LO
CO CO CO
co en o
0 0 O
o o o
0 O O
CO CO CO
(M CM CM
T O CO
co co r-
CM CM CM
ro ro ro
p- r- r-
u> vo vo
o o o
1 1 1
WWW
rH ro ^r
o co r-
o o o
1 I 1
WWW
^r CM I-H
r- rH co
rH rH O
LO LO LO
O O 0
WWW
0 CM CO
cn o o
er> o o
rH CM CM
LO
*r vo o
LO LO VO
CO CO CO
O rH CM
LO LO LO
O O 0
0 O 0
O O 0
CO CO CO
en cn cn
CM CM CM
T CM CO
r- r- ^o
CM CM CM
ro ro ro
^ VD \O
O O 0
t 1 1
WWW
U3 CO 0
LO *T ro
O O O
1 1 1
WWW
rH rH CM
CM cn ro
O cn cn
LO «r *r
O 0 0
WWW
O U> CO
CM CM <*)
o o o
CM CM CM
^*
u>
CO
CM
m
I— (
o
o
o
CO
cn
CM
•sr
^O
CM
ro
r-
t—
rH
\£>
0
1
W
T
rH
^T
rH
O
1
W
^"
r-
CO
»^
o
W
o
LO
o
CM
c
o
u
01
o.
01
.— i
o
tn
OOOOOE-
m
IU
O
iJ
Du
J
01
X
13
C
ffl
-U
C
0
u
01
a
01
^H
0
^"
0
1
o
o
o
o
IT)
O
J
3
01
.c
4J
M
O
b
ti
X
vo
0)
gj a>
3 >
4J O
01 XI
W 4J
C C
3ntamiru
sntamin.:
o o
lw 14-1
n n
m n)
E E
01 OJ
£ x;
Ei E-
C-ll
-------
-------
DEGADIS Example 2: Input File
Ammonia pipeline release (aerosol)
4.5 10.
0,01
140
*298. .98
298.
NH3
17.0
3600.
239.72
0.001
50.
0.0001 0.0
0 0.0 0.0
2
0.0
1.0
56.
0.0
0.0
50.
0.0 1.154
4.782 4.782
0.478
UO, ZO
ZR
INDVEL, ISTAB, RML
TAMB, PAMB, RELHUM
TSURF
GASNAM
GASMW
AVTIME - (1 hr)
TEMJET
GASULC, GASLLC, ZLL
INDHT, CPK, CPP
NDEN
ERATE
ELEJET, DIAJET
TEND
DISTMX
C-13
-------
Output File
u
a
>
U)
rH
Q
o
w
Q
cu
EI
W
•
E E e
(M
o
O O O
o o o
o o o
m . o
• 00
to E
E*io *
(N
O
I
P~ O O ON O
^ o o o o
I— • O O O
OJ co oo rn •
CN cr. ^ o o
. CM • . in
CM (N
O O
I I
U U
O rH O O f^ O
. \o o o m o
o *r o «er r- o
O Cft O m .-I ^D
^O t—I O"\ rH • rH
o o
I I
W U
O CM O O • O
o r- o o o o
o • o o o o
• a\ o o m o
r— m o o m •
rH CN . • C*1 rH
rH rH I
I
z
W
xi x: to
o^ tr* u
-H -H C
1) OJ XI
XI XI Oi
3
m 11 o
O O -H
c c
11 gj 11
01 1) iO
cu cy w
Li 05 3
U)
n
to
IB
rH
U
JJ
-H
rH
-H
A
10
JJ
M
rH
rH
3
JJ
O*
C
1)
>
O
x:
.x
-Q
0
1
C
•H
C
o
S
>i 01 Cil >i >r
jj r-l Ul JJ JJ
-H 3 3 -H -H
O JJ M TJ "O
O 10 tO -H -H
rH M U E E
OJ 11 •-! 3 3
> aaxix;
C D jj jj 01
O JJ C C >
-H U OJ *H
Jj JJ -H -H JJ
O C J3 _Q iO
-rH 0) E ErH
U -H < < 1)
cu -Q a
E«
•H EH H
JJ iJ Id
Cd CQ
Cp O
C
•H
01
IB
U
^
•0
T5
01
•H
1-1
— 1
N N N
< ft <
EH H £
J W .E
CO CQ rfj
O (JJ
jj D
x: n
cr 3
XI
•o
u
&
to
T)
C
IB
a,
u
u
Q.
O]
01
a
o
IH
Cu
C
10
c
-H
IB
JJ
C
O
u
v
IB E1
rH 11
3 JJ
o
OJ rH
-H IB
O -H
E JJ
•H
JJ C
C M
IB
c
-H
IB
Jj
c
O
U
to to c 01
OJ OJ IB 3
VJ rH JJ O
u oj in o,
JJ JJ C
C C O >i
-H -H O JJ
-H
O O JJ iB
•H O,
rH rH O IB
U U IB O
> > a
01 U IB JJ
-H rH U 10
.H M JJ I
01 01 IB
O. 3 U
a o x
jj n
-H 6
w -~r- o
C trx"! rsi
D M m co
Q —rH P-
c
o
-H
JJ -^
IB n
n E o o
C tyo
U .* O
o — o
C •
o
CJ
CM C
o
•• u
tri 10
IB .-I
0)
2 -H
w o
o s
z
o o
o o
o o
o o
o •
tn
ia
u
a
o
* e s
CM
O
I
U
000
o o o
O O CO
1) C >H-
JJ O U
IB -H JJ
-H JJ 11
m E
1) > 10
01 Q) -H
10 rH TJ
11 ID
rH D
D D tp
os tr -J
U iO
IB XI
x: o
o w
tO -H
•H Q
Q
C-14
-------
1)
-o
o
•
E
CSJ
o
1
M
0 O 0
o o o
o o o
o r- .
CO ro o
IN
» •• ••
rH M E
41 O rH —
rH 4H O
U &
e c
3 0
E 41 -H
-H rH 4J
X O O
fd £ TJ
[u
rH
0
<*> w~
E "~H O £
0 0 ~~
E •
rH
O
4J
0 CM
o x: o
0 4J 1
. -o w —
3 o —
II
rH
N
4J C
< O
4) -H
rH 4-)
0 0
S 10
[14
N
10
E —
01 .§
C/l
>1
fl
§> 1
-H "-*
(/)
41
3
1 1
10
41 id
a —
E
41
EH
>,
1 i ^^
-H ro
« E
C -v.
0 C .*
0 —
1) -rl
- 4-1
*H 10
rH ^4 — ~
M 4-1 1*1
4" C E
4-1 41 \
C U CT
41 C -X
U 0 —
c
o
41 -H
i — 1 4-1
O O
X 10
[U
c
0
•H
4-1 — *
10 E
> "^
0)
1 — 1
ft")
TU en en
CM CM CM
CO VD O
r- CM CM
CM
o
I
u
CO rH CM
r- T m
VD
CM
0
1
Ci4
O in rH
o r^- ro
. ^H VD
CO
o ro r-
p*- • «
• m CM
ro CM CM
r-
o
i
U
o • •
rH VO CM
• CM in
CM
VD u"> en
• * ro
CO *T •
rH rH m
CM CM CM
O 0 O
1 1 1
M ftl F*1
O ro CA
O ^P ^"
VD CO O
^T CM CM
rH ro
CO CO
CM ro
en ro
W CO
CM ro
ro CM
0 0
1 l
o ro r-
o CM CM
o VD o
r- CM
r- CM o
VD CM rH
m r- en
r- <3\ co
o ro r-
rH i— 1 rH
CO CO CO
cn en o\
CM CM fM
co r** **o
CM CM CM
o o o
i l l
WWW
ro VD tn
VD CO VD
CM cn ro
CM CM CM
0 Q O
1 1 1
PL] W W
o m o
o *r r-
VD CO CA
*
*
*
1 *
1
CO
CM
—i >
X, CO
H
CO
D rH
en
rH
2
^ *5
^
rH
D ro
E *
*
*
*
yj *
*
H *
*
U *
*
•X
J *
*
jj *
=*
1
<
D
^
m co
rH CM
• •
in in
•• ••
CO CO
rH rH
»* >•
CO CO
rH rH
cn cn
r i
2 Z
< <
1 1
rH rH
ro ro
c :*:
0 U
o
C rJ
3 cq
u
E 1 1
C 10 EH
O U H
CT EH
4J O
a a
c
•H 01
10 U
4J 3
iO O
O (/)
^.
o
u
o
L4
01
10
01
B
41
01
01
c
-H
rH
0)
p,
•H
a
10
•H
r-
O
|2
rf;
E E E
O O (N 4)
LO O O 4~>
rH O 'H
O QMJ
O C
Q
CO
OrHOC-r^OOCMO
O • •
C/5 ^ rH ^T
4J 4J Q.
rH Q) f-H
[14
O
M * O OJ
H E o co
S^O I—
CP • .
t* Jt -=T
•z.
u
u
•z.
o
u
elocity at reference height
nee height
e roughness length
11 Stability class
Obukhov length
an distribution constants
Specified averag
> O O «H | -- 4
H iO 3 C «
-O 0) MH CT-H B
C IH u w c 3
•r4 41 3 10 O fl
3 OS U5 04 £ U
elocity power law constant
on velocity
t Temperature
t Pressure
t Absolute Humidity
t Relative Humidity
> -H C C C C
4J 4) 0) 4) 4)
13 O -H -H -H -H
.st-i-ii-i
3 [u < < < <
Mole fraction
.'ooooo
1..00000
aJ
a
a
M
C-15
-------
o m
o r-
in ro
a
^H CPO O O O
fl J< O O O O
£ ~^O O O O
c o o o o
X
o
T ^* -q* «r *r *r
m m m m m m
r- P* r- r- r- r-
I I I I
18 4.J .* &] &3 W W
C O^r- r-p- t-~
•H 18 £ VO VO VO VO
E ^ It rH rH rH rH
10 fci 4J CN CN CN CN
4J C O O O O
C "1 O
O
U
i E
I 1-1
I 04
CM
J
CN CK rH
CN T T
VO CO 00
O V «)•
o r- CN
• in ro
> a\ oo
C C
0) 0>
oo >>
CN -H -H
01
a,
E <
o :
(1)
id
u
73
0)
o
OJ
a
en
a) o
in u ^H o
•H Cl) CD
cu a.
3 3
o o
4J 4J
C C
o o
, o 0 ••
n
C £.
O 4J
•H 01
4J --H
o a
ifl O
o
o
o
o
o
73
D
O
rH
O
c
.
3 E
rH 0) >, (U
3 « jj tr
u
E os a <
Cl) d) M
rH rH O
O O >«
E E
tu cu
a. s -
a o
o
a
10
73
3
a
c
01
o
1-1
3
O
t/5
I/I
01
73
C
O
o
01
01
o o o
i i i
&] DO [i]
v^ ro m
co o r-
ro ro ro
o o o
I I I
fv) (v) r*i
00 rH CO
« e
CM o «
a\
CO T
t CM
ro O
O I
I Ed
WOO 00
ro O O 1—
i~i CD • CN
Co • ro O
in ic rH in
VO in rH
cr
••H 1
a)
o
i
o r- o
O ON CT\
CN O «T
rH CO in
rH in ro
— g
> T ro
> 10 in
CO
CN
en
c
01
o
I
u
rH
CO
E
EH
o • • •
n O O rH CN
o ro ro ro
O CN CN CN
O O O O
C E E O 0) iw
C 4J J JJ 4-1 01
oooooooo
3
•rH
73
OS £
u
m
e o
•H 01
EH in
o r- co
o o a>
o vo o
m CN r-
. • •
VO 0^ rH
in in r-
O vo ro
O CO 00
o o <-t
O rH T
O T •
O • OO
> CO CN
VO CN «T
ro oo in
VO 00 p*
CN • •
• O «T
CN 0 rH
CO rH rH
CN rH O
r- CN r-
O\ Cri CO
O CN ^~
...
ro o\ in
• • O
rH Ij
^* r— •, 3
CN ui o
. -^ m
1
rH — M
X E
4J ~H
CP M
C O-i
0)
ro 4-> C
^r « 0)
• 01 10
rH 0 >
CN U -H
rH 3 3
o cr
CO W
0
4J
c
01
o
c
o
o
01
o
3
O
CO
>,
-------
LO
LO
CM
CO
cn
u
-H
fO
ro
1
LO O
rH VO
CM r-H
cn •
CM r-H
ro
intaminant :
Density:
ictions. . . cc
00000
LH
W
m ••
TJ >
E O.
^H
CD rtJ
u x:
O W
tfl
>,
k-l
m
c
o
u
"F
J3
jj
>H
3
M-l
*B
x;
CD
u
^i
0
jcondary s
t/>
00
^r
CO
CM
CM
IF
JC
OJ
CT
C
CD
i—i
,
M
IB
C
O
U
01
(ft
0
•• £
o
4J
£
0 —
O i-H w
dp
II -> U
•H O
S o
I— 1
tn —
N "5
£
<4-l OJ _
r-,-0 E
X S
-ature
0
CD —
a
a
E-<
>* m
XJ *
-H *
in £
c \
:entration De
;g/m**3) (kc
Mole Co
-action
u
c — .
.u •*-
w
-H
Q
cn CM in
• • rH
cn *r o
o P- co
o • •
CO CM rH
en cn cn
p- in CM
ON vo ro
CO CO CO
cn CT\ cn
CM CM CM
VO VD VO
ro ro ro
O 0 0
1 1 1
WWW
ro LO co
O Cn VO
\j~t *y *T
CM CN) CM
O O O
I 1 i
WWW
LT> ro O
ro m ro
CM CM CM
r-t rH ro
m ro m
ro ro ro
CN rH VO
I-H ro ^*
co r~ o
CM m co
m eg «3"
r- cn I-H
ON ON ON
rH rH VO
CM LO rH
CO CO CO
cn o\ eft
CM CM CM
VD VO VO
ro ro ro
O o O
1 1 1
WWW
TOO
CM VD O
CM r- ro
CM CM CM
0 O O
1 1 1
WWW
^T CO rH
Cn CM VO
rH rH O
LO LO LO
LO cn ro
ro ro ^r
ON O rH
m r- co
o co to
O tH ro
m to *r
rH VP VO
ON CTN Cft
moo
ON CO P~
CO CO CO
eft en cn
CM CM CM
VD VO VD
no ro ro
O O O
1 1 1
WWW
^* in i— i
«3- rH O
CO T O
ro co ro
o o o
) I 1
WWW
r*- cn rH
tn ro T
cn co r~
in in LO
r- »-H in
v in to
O ON r~
CT\ en o
o m CP>
in ^ r-
• rH CO
eg o o
O CO CO
CM m o
^o in in
CO CO CO
Cf\ CT\ Cf%
CM CM CM
U) U> VD
ro f*> ro
0 0 O
1 1 1
WWW
O «T CM
i-H CH
CM CM CM
VD VD VD
ro ro ro
O O O
1 1 1
WWW
r- LO co
CM
0 P- rH
co ro *T
co CM r-
O O> CO
CO CO CO
en ON ON
CM CM CM
vo VD VD
co ro ro
O O O
1 1 I
WWW
T O CO
CM LO CM
vo ro CM
co ro ro
O 0 O
i 1 1
WWW
CO CO O
ro ro vo
CO ^* CSJ
rn ro n
o o o
+ -r +
WWW
p* in cr^
O rH ro ro
000
1 1 1
WWW
O CO tH
T to CM
rH O O
ro ro ro
0 O 0
i I )
WWW
O rH VO
p- in cn
VD uo ^r
ro ro ro
O O O
4- -r +
W W CJ
ON [^ rH
r- co cn
CO
O
LO
CM
ro
O
CM
CM
o
ro
CO
cn
CM
LO
rH
T
O
1
W
o
CM
LO
CO
o
1
W
LO
cn
ro
ro
O
H-
w
cn
cn
rH
C-I7
-------
o m
i—I P-
ON r- <—< r- r-4
CM en *T U"> tO
ON O O
lO VO VO
eo «r
0 O O
1 1 1
u w ta
co ro ^
ON \D O
n o ON
*D U> LO
o o o
1 I 1
cJ u ta
LO 0 rH
in rH r-
r— U) -sr
u*j m tn
o o o
1 l l
W W W
r- co m
rn o co
ro CM o
LO LO tO
o o o
1 I t
Cd W U
VD rH O
VD m ^r
ON co r-
sr ^r *r
o o o
1 1 1
U U3 U
T rH CM
cn m co
VD m ^*
^T ^ ^
o o o
1 1 I
w u w
VD m LO
(^1 ^* LO
m CM rH
T V T
VD ON m
ON r- VD
en ro ro
o o o
l 1 1
W U U
o VD CM
-------
rH ro O
CM ro T
o LO *r
iO ^r ro
LO LO LO
CM CO rH
LO ID r-
CO V£> Cn LO CO rH
CM rH O Cn CO P-
LO LO LO T «5T *T
r—t cn ro os co o
rH Cn r- LO CM rH
^* ro ro ro n ro
r- o v
p- CA
co LO r
O rS C
«T LO P* CO O rH
ooo o o o
000 OOO
ooo ooo
CO CO CO CO CO CO
CM CM C\ CM CM CM
ooo ooo
ooo ooo
ooo ooo
CO CO CO
^ CTt CTV
CO CO CO
O 0 O
0 0 O
o o o
CO CO CO CO 00 CO
CM CM CM CM CM CM
ooo ooo
ooo ooo
ooo ooo
cn cn cn cn cn cn
CM CM CM CM CM CM
LOLOLO LOLOlO LO LO lO LOlOLO
CD O O
1 1 1
WWW
CO r*t ro
CO O ^D
m ID *r
ooo
1 1 1
WWW
r- csi LO
CO LO CO
ro ro CM
ooo
1 1 1
WWW
m n LO
LO ^ VD
fNJ rH l— t
000
1 1 1
WWW
t — i CO ro
rH 0 0
OOO
1 < 1
WWW
«T CO O
rH O O
0 P* LO
iO LO LO
ooo
1 1 1
WWW
LO *«O P"-
O rH LO
rH Cn LO
cn co co
iT> LO ID
ooo
1 1 1
WWW
IO P~ rH
CO 0") O
ro o cn
CO CO P-
LO LO U)
ooo
1 1 1
WWW
rH co ro
O LO CO
^ T rH
p- r- r-
lO LO LO
ooo
1 1 1
WWW
rH CO P-
LO cn ( —
O P*" \O
p- vD VO
ooo
i I 1
WWW
O LO \£>
ro O T
rO CM rH
ro ro ro
OOO
WWW
LO LO lO
LO P- ro
co cn o
-a- *r LO
OOO
1 l t
WWW
iO ro LO
n co co
o cn co
ro f*i ro
OOO
WWW
LO LO LO
LO rH ro
rH CM ro
LO LO LO
ooo
1 ( 1
WWW
co rH cn
ro LO o
CO P- P-
ro ro ro
ooo
WWW
LO LO LO
cn ,— i r-
ro LO 10
LO LO LO
ooo
1 1 !
WWW
o ro CM
ro cn CM
Vi) LO LO
OOO
WWW
LO LO LO
\i) r- oo
LO LO LO
OOO
1 ! 1
WWW
co CNJ cn
^* ^* ro
ooo
WWW
LO LO LO
rO LO rH
01 0 rH
LO U> Vfi
OOO
I 1 1
WWW
ro o LO
ro ro CM
ro ro ro
OOO
WWW
LO LO LO
ro cn r-t
U>
ooo
l l l
WWW
o CM cn
ro co LO
CM rH t-t
ro ro ro
OOO
WWW
LO ID LO
r- cn LO
U> «X> VC
ooo
1 1 1
WWW
LO *r tf
rH cn LO
rH O O
ro ro ro
OOO
WWW
LT) LO LO
p1- ro LO
r- co cn
^ w &
ooo
l l 1
WWW
LO VD CO
ro P*" cn
O cn p*
ro ro ro
ooo
WWW
LO LO LO
rH ro cn
O rH rH
p- p- r-
c
II
o
14
0)
a
o
4J O
0) XI
c c
>n >n
c c
-H -H
E E
>H "B
4J OJ
C C
O O
0 0
in at
OS ffl
E E
OJ HI
£. f
H H
C-19
-------
-------
HEGADAS Example 1: Input File
TITLE HEGADAS-S Workbook Example 6.15
ICNT =0 *
ISURF =3 *
CONTOURS OR CONTENTS CODE
SURFACE TRANSFER CODE
POOL
*
DATA
PLL
PLHW
= 7.67
= 3.83
AMBIENT CONDITIONS
M
M
SOURCE LENGTH
SOURCE HALF-WIDTH
ZO
UO
AIRTEMP =
RH
TGROUND =
DISP
ROUGH
MONIN
CROSSW
CLOUD
*
XSTEP
XMAX
CAMIN
CU
CL
*
SOURCE
10.0
1.5
10.0
0.5
10.0
0.01
10.0
0.0705
0.902
1.0
100.
l.OOE-07
1.15E-06
1.15E-07
* M
* M/S
* DEC.CELSIUS
*
* DEC.CELSIUS
M
M
M**(1-BETA)
KG/M3
KG/M3
KG/M3
REFERENCE HEIGHT
WIND VELOCITY AT HEIGHT ZO
AIR TEMP. AT GROUND LEVEL
RELATIVE HUMIDITY
EARTH-S SURFACE TEMPERATURE
SURFACE ROUGHNESS PARAMETER
MONIN - OBUKHOV LENGTH
CROSSWIND (DELTA)
(BETA)
OUTPUT STEP LENGTH
X AT WHICH CALC. IS STOPPED
CA AT WHICH CALC. IS STOPPED
UPPER CONCENTRATION LIMIT
LOWER CONCENTRATION LIMIT
FLUX
TEMPGAS =
CPGAS
MWGAS
WATGAS =
1.34E-03
10.0
150.0
60.1
0.
* KG/M2/S
* DEC.CELSIUS
* J/MOLE/DEG.C
* KG/KMOLE
GAS EMISSION FLUX
TEMPERATURE OF EMITTED GAS
SPECIFIC HEAT OF EMITTED GAS
MOL. WEIGHT OF EMITTED GAS
MOLAR FRACTION PICKED-UP- WATE
C-21
-------
Output File
1HSMAIN
0
DATE 22/10/90
14:36
««
HEGADAS-S PROGRAM (
HEGADAS-S workbook Example
VERSION AUG88
6.15
»»
CALCULATION CODE ICNT - 0
SURFACE HEAT TRANSFER MODEL I SURF - 3
THERMODYNAMIC MODEL THERMOD - NORMAL
SOURCE LENGTH PLL - 7.6700 M
SOURCE HALF-WIDTH PLW - 3.8300 M
WIND VELOCITY AT HEIGHT ZO UO - 1.5000 M/S
REFERENCE HEIGHT ZO • 10.000 M
SURFACE ROUGHNESS PARAMETER ZR - 0.10000E-01 M
AIR TEMP. AT GROUND LEVEL TAP - 10.000 DEC. CELSIUS
MONIN - OBUKHOV LENGTH OBUKL - 10.000 M
DELTA - 0.70500E-01 M*«(1-BETA)
BETA - 0.90200
SPREADING CONSTANT CE - 1.1500
OUTPUT STEP LENGTH DXO - 1.0000
X AT WHICH CALC. IS STOPPED XMAX - 100.00
CA AT WHICH CALC. IS STOPPED CAMIN - 0.10000E-06 KG/M3
UPPER CONCENTRATION LIMIT CU - 0.11500E-05 KG/M3
LOWER CONCENTRATION LIMIT CL - 0.11500E-06 KG/M3
EVAPORATION FLUX Q - 0.13400E-02 KG/M2/S - 0.78728E-01 KG/S
RELATIVE HUMIDITY R - 0.50000
TEMPERATURE OF EMITTED GAS TGE - 10.000 DEC. CELSIUS
SPECIFIC HEAT OF EMITTED GAS CPG - 150.00 J/MOLE/DEG. CELSIUS
MOL. WEIGHT OF EMITTED GAS FMG - 60.100 KG/KMOLE
EARTH-S SURFACE TEMPERATURE TW2P - 10.000 DEC. CELSIUS
MOLAR FRACTION PICKED-UP WATER W2P - O.OOOOOE+00
HEAT GROUP IN HEAT FLUX QH HEATGR - 24.000
WIND PROFILE EXPONENT ALPHA - 0.46507
USTAR - 0.44537E-01 M/S
1HSMAIN HEGADAS-S PROGRAM ( VERSION AUG88 )
1
DATE 22/10/90
14:36
PAGE •
TIME
*
PAGE
TIME
«« HEGADAS-S Workbook Example 6.15 »»
DISTANCE
(M)
-.384E+01
0.384E+01
0
0
CA
(KG/M3)
373E+00
373E+00
TAKE-UP FLUX
0.115E+02
0.192E+02
0.268E+02
0.345E+02
0.422E+02
0.499E+02
0.575E+02
0.652E+02
0.729E+02
0.805E+02
0.882E+02
0.959E+02
0.104E+03
0.111E+03
0.119E+03
0.127E+03
0.134E+03
0.142E+03
0.150E+03
0.157E+03
0.165E+03
0.173E+03
0.180E+03
0.188E+03
0.196E+03
0.203E+03
0.211E+03
0.219E+03
0.226E+03
0.234E+03
0.242E+03
0.249E+03
0.257E+03
0.265E+03
0.272E+03
0.280E+03
0.288E+03
0.295E+03
0.303E+03
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
651E-01
.203E-01
.100E-01
.616E-02
.426E-02
.318E-02
.250E-02
.204E-02
.172E-02
.147E-02
.129E-02
.114E-02
.102E-02
.923E-03
.842E-03
.773E-03
.715E-03
.664E-03
.620E-03
.581E-03
.546E-03
.515E-03
.488E-03
.463E-03
.440E-03
.420E-03
.401E-03
.384E-03
.368E-03
.354E-03
.340E-03
.328E-03
.316E-03
.305E-03
.295E-03
.285E-03
.276E-03
.268E-03
.260E-03
SZ
(M)
0.00
0.18
0
0.19
0.33
0.48
0.62
0.75
0.88
1.00
1.12
1.22
1.32
1.42
1.51
1.60
1.69
1.77
1.85
1.92
1.99
2.06
2.13
2.20
2.26
2.32
2.39
2.44
2.50
2.56
2.61
2.67
2.72
2.77
2.82
2.87
2.92
2.97
3.01
3.06
3.10
3.15
SY
(M)
0.00
0.00
MIDP
(M)
3.83
3.83
0013 KG/M2/S -
3.44
5.69
7.59
9.28
10.81
12.24
13.58
14.85
16.06
17.23
18.35
19.44
20.50
21.52
22.52
23.50
24.46
25.39
26.31
27.21
28.09
28.96
29.82
30.66
31.49
32.31
33.12
33.91
34.70
35.48
36.25
37.01
37.77
38.51
39.25
39.98
40.70
41.42
42.13
17.08
22.85
26.17
28.46
30.17
31.54
32.66
33.61
34.43
35.16
35.80
36.37
36.90
37.37
37.81
38.21
38.58
38.93
39.25
39.56
39.84
40.11
40.36
40.59
40.81
41.03
41.22
41.41
41.59
41.76
41.93
42.08
42.23
42.37
42.50
42.63
42.75
42.86
42.97
YCU
(Ml
3.83
3.83
0.0787 KG/S
28.45
40.66
49.05
55.63
61.16
65.98
70.30
74.23
77.86
81.24
84.43
87.44
90.30
93.04
95.66
98.18
100.61
102.95
105.23
107.43
109.58
111.66
113.69
115.67
117.61
119.50
121.35
123.17
124.94
126.68
128.39
130.07
131.72
133.34
134.94
136.51
138.05
139.57
141.07
ZCU
(M)
0.00
1.00
0.96
1.57
2.15
2.69
3.18
3.62
4.03
4.41
4.75
5.08
5.38
5.66
5.92
6.17
6.41
6.63
6.85
7.05
7.24
7.43
7.61
7.78
7.94
8.10
.26
.40
.55
.69
.82
.95
9.08
9.20
9.32
9.44
9.55
9.66
9.77
9.88
9.98
YCL
(M)
3.83
3.83
29.59
42.64
51.78
59.06
65.23
70.67
75.57
80.06
84.23
88.14
91.84
95.35
98.70
101.91
105.00
107.98
110.86
113.65
116.36
119.00
121.57
124.08
126.53
128.92
131.26
133.56
135.81
138'. 01
140.18
142.31
144.41
146.47
148.50
150.49
152.46
154.40
156.32
158.20
160.07
ZCL
(M)
0.00
1.12
1.09
1.81
2.51
3.16
3.76
4.31
4.82
5.29
5.73
6.14
6.53
6.89
7.23
7.55
7.86
8.16
8.44
8.70
8.96
9.21
9.45
9.68
.9.90
10.11
10.32
10.52
10.72
10.91
11.09
11.27
11.45
11.62
11.79
11.95
12.11
12.26
12.42
12.56
12.71
RIB
122.958
23.018
13.227
10.058
8.665
7.996
7.690
7.589
7.613
7.719
7.879
8.076
8.299
8.542
8.797
9.061
9.333
9.610
9.889
10.171
10.454
10.737
11.020
11.303
11.586
11.867
12.147
12.426
12.704
12.979
13.254
13.528
13.799
14.070
14.335
14.605
14.869
15.132
15.395
15.655
TMP
(DEG.C)
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
• 10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
CONC
( I VOL . )
0.144E+02
0.252E401
0.786E+00
0.388E+00
0.238E+00
0.165E+00
0.123E+00
0.966E-01
0.789E-01
0.663E-01
0.569E-01
0.497E-01
0.440E-01
0.394E-01
0.357E-01
0.325E-01
0.299E-01
0.276E-01
0.256E-01
0.239E-01
0.224E-01
0.211E-01
0.199E-01
0.188E-01
0.179E-01
0.170E-01
0.162E-01
0.155E-01
0.148E-01
0.142E-01
0.137E-01
0.131E-01
0.127E-01
0.122E-01
0.118E-01
0.114E-01
0.110E-01
0.107E-01
0.104E-01
0.100E-01
C-22
-------
0.311E+03
0.318E+03
0.326E+03
0.334E+03
0.341E+03
1HSMAIN
2
0.253E-03 3.19 42.84
0.245E-03 3.24 43.54
0.239E-03 3.28 44.23
0.232E-03 3.32 44.92
0.226E-03 3.36 45.60
43.08
43.18
43.27
43.36
43.45
142.55
144.01
145.44
146.86
148.26
10.08
10.18
10.28
10.37
10.47
HEGADAS-S PROGRAM (
161.90
163.72
165.51
167.29
169.04
VERSION
12.85
12.99
13.13
13.27
13.40
AUG88
15.914
16.171
16.428
16.681
16.935
10
10
10
10
10
0
0
0
0
0
DATE 22/10/90
14:36
DISTANCE
(M)
0.349E+03
0.357E+03
0.364E+03
0.372E+03
0.380E+03
0.387E+03
0.395E+03
0.403E+03
0.410E+03
0.418E+03
0.426E+03
0.433E+03
0.441E+03
0.449E+03
0.456E+03
0.464E+03
0.472E+03-
0.479E+03
0.487E+03
0.495E+03
0.502E+03
0.510E+03
0.518E+03
0.525E+03
0.533E+03
0.541E+03
0.548E+03
0.556E+03
0.564E+03
0.571E+03
0.579E+03
0.587E+03
0.594E+03
0.602E+03
0.610E+03
0.617E+03
0.625E+03
0.633E+03
0.640E+03
0.. 648E+03
0.656E+03
0.663E+03
0.671E+03
0.679E+03
0.686E+03
0.694E+03
0.702E+03
0.709E+03
0.717Et03
1HSMAIN
3
««
CA SZ SY
(KG/M3) (M) (M)
0.221E-03 3.40 • 46.28
0.215E-03 3.44 46.95
0.210E-03 3.48 47.62
0.205E-03 3.52 48.28
0.200E-03 3.56 48.94
0.196E-03 3.60 49.59
0.191E-03 3.63 50.24
0.187E-03 3.67 50.89
0.183E-03 3.71 51.53
0.180E-03 3.74 52.16
0.176E-03 3.78 52.80
0.172E-03 3.81 53.43
0.169E-03 3.85 54.05
0.166E-03 3.88 54.68
0.163E-03 3.92 55.29
0.160E-03 3.95 55.91
0.157E-03
0.154E-03
0.151E-03
0.148E-03
0.146E-03
0.143E-03
0.141E-03
0.139E-03
0.137E-03
0.134E-03
0.132E-03
0.130E-03
0.128E-03
0.126E-03
0.125E-03
0.123E-03
0.121E-03
0.119E-03
0.11BE-03
0.116E-03
0.114E-03
0.113E-03
0.111E-03
.98 56.52
.02 57.13
.05 57.73
.08 58.34
.11 58.94
.14 59.53
.18 60.13
.21 60.72
.24 61.30
.27 61.89
.30 62.47
.33 63.05
.36 63.63
.39 64.20
.42 64.77
.45 65.34
.48 65.91
.50 66.47
.53 67.03
.56 67.59
.59 68.15
.62 68.71
.64 69.26
0.110E-03 4.67 69.81
0.109E-03 4.70 70.36
0.107E-03 4.72 70.91
0.106E-03 4.75 71.45
0.104E-03 4.78 71.99
0.103E-03 4.80 72.54
0.102E-03 4.83 73.07
0.101E-03 4.86 73.61
0.995E-04 4.88 74.15
0.983E-04 4.91 74.68
HEGADAS-.
MIDP
(M)
43.53
43.61
43.69
43.76
43.83
43.89
43.95
44.01
44.07
44.12
44.17
44.22
44.26
44.31
44.35
44.39
44.42
44.45
44.49
44.51
44.54
44.57
44.59
44.61
44.63
44.65
44.67
44.68
44.69
44.71
44.72
44.72
44.73
44.74
44.74
44.74
44.75
44.75
44.75
44.74
44.74
44.74
44.73
44.72
44.72
44.71
44.70
44.69
44.67
5 Workbook
YCU
(M)
149.64
151.00
152.35
153.68
155.00
156.30
157.58
158.85
160.11
161.35
162.58
163.80
165.01
166.20
167.38
168.55
169.71
170.86
172.00
173.13
174.24
175.35
176.45
177.54
178.62
179.69
180.75
181.80
182.85
183.88
184.91
185.93
186.94
187.95
188.94
189.93
190.92
191.89
192.86
193.82
194.78
195.72
196.67
197.60
198.53
199.45
200.37
201.28
202.19
Example
ZCU
(M)
10.56
10.65
10.73
10.82
10.90
10.99
11.07
11.15
11.23
11.30
11.38
11.45
11.53
11.60
11.67
11.74
11.81
11.88
11.94
12.01
12.07
12.14
12.20
12.26
12.32
12.38
12.44
12.50
12.56
12.62
12.68
12.73
12.79
12.84
12.90
12.95
13.00
13.05
13.11
13.16
13.21
13.26
13.31
13.36
13.40
13.45
13.50
13.55
13.59
HEGADAS-S PROGRAM (
6.15
YCL
(M)
170.77
172.49
174.18
175.86
177.52
179.16
180.79
182.40
183.99
185.57
187.14
188.69
190.23
191.76
193.27
194.77
196.26
197.73
199.19
200.65
202.09
203.52
204.94
206.35
207.74
209.13
210.51
211.88
213.24
214.59
215.93
217.26
218.59
219.90
221.21
222.51
223.80
225.08
226.36
227.63
228.89
230.14
231.38
232.62
233.85
235.08
236.30
237.51
238.71
VERSION
ZCL
(M)
13.53
13.66
13.78
13.90
14.03
14.15
14.26
14.38
14.49
14.61
14.72
14.83
14.93
15.04
15.14
15.25
15.35
15.45
15.55
15.65
15.74
15.84
15.93
16.03
16.12
16.21
16.30
16.39
16.48
16.57
16.65
16.74
16.82
16.91
16.99
17.07
17.15
17.23
17.31
17.39
17.47
17.55
17.62
17.70
17.78
17.85
17.92
18.00
18.07
AUG88
RIB
»»
THP
(DEG.C)
17.186
17.438
17.686
17.935
18.181
18.424
18.668
18.909
19.152
19.391
19.630
19.868
20.103
20.340
20.574
20.807
21.038
21.269
21.500
21.729
21.957
22.182
22.409
22.634
22.858
23.079
23.302
23.524
23.744
23.964
24.184
24.402
24.617
24.833
25.051
25.265
25.477
25.691
25.904
26.116
26.327
26.537
26.746
26.956
27.163
27.371
27.576
27.783
27.988
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DATE 22/10/90
14:36
«« HEGADAS-S Workbook
DISTANCE
(M)
0.725E+03
0.732E+03
0.740E+03
0.748E+03
0.755E+03
0.763E+03
CA SZ SY
(KG/M3) (M) (M)
0.972E-04 4.93 75.21
0.961E-04 4.96 75.74
0.950E-04 4.98 76.27
0.939E-04 5.01 76.79
0.929E-04 5.03 77.32
0.918E-04 5.06 77.84
MIDP
(M)
44.66
44.65
44.63
44.61
44.60 '
44.58
YCU
(M)
203.08
203.98
204.87
205.75
206.62
207.50
Example
ZCU
(M)
13.64
13.68
13.73
13.77
13.82
13.86
6.15
YCL
(M)
239.91
241.10
242.29
243.47
244.64
245.81
ZCL
(M)
18.14
18.21
18.29
18.36
18.43
18.49
RIB
28.193
28.397
28.600
28.806
29.007
29.208
»»
TMP
(DEC
10
10
10
10
10
10
C)
0
0
0
0
0
0
0.976E-02
0.948E-02
0.923E-02
0.898E-02
0.875E-02
PAGE
TIME
CONC
(% VOL.)
0.853E-02
0.831E-02
0.811E-02
0.792E-02
0.774E-02
0.756E-02
0.740E-02
0.724E-02
0.708E-02
0.694E-02
0.679E-02
0.666E-02
0.653E-02
0.640E-02
0.628E-02
0.616E-02
0.605E-02
0.594E-02
0.584E-02
0.574E-02
0.564E-02
0.554E-02
0.545E-02
0.536E-02
0.528E-02
0.519E-02
0.511E-02
0.503E-02
0.496E-02
0.488E-02
0.481E-02
0.474E-02
0.467E-02
0.461E-02
0.454E-02
0.448E-02
0.442E-02
0.436E-02
0.430E-02
0.42SE-02
0.419E-02
0.414E-02
0.409E-02
0.404E-02
0.399E-02
0.394E-02
0.389E-02
0.384E-02
0.380E-02
PAGE
TIME
CONC
(% VOL.)
0.376E-02
0.371E-02
0.367E-02
0.363E-02
0.359E-02
0.355E-02
C-23
-------
-------
HEGADAS Example 2: Input File
TITLE HEGADAS-S Chlorine
ICNT = 0
ISURF = 3
spill
*
CONTOURS OR CONTENTS CODE
SURFACE TRANSFER CODE
POOL DATA
*
PLL
PLHW
= 4.00
= 2.00
AMBIENT CONDITIONS
* M
* M
*
SOURCE LENGTH
SOURCE HALF-WIDTH
ZO
UO
AIRTEMP
RH
TGROUND
10.0
2.0
30.0
0.75
30.0
* M
* M/S
* DEC.CELSIUS
*
* DEG.CELSIUS
REFERENCE HEIGHT
WIND VELOCITY AT HEIGHT ZO
AIR TEMP. AT GROUND LEVEL
RELATIVE HUMIDITY
EARTH-S SURFACE TEMPERATURE
DISP
ROUGH
MONIN
CROSSW
0.01
10000.
0.09158
0.905
CLOUD
* M
* M
* M**(1-BETA)
*
*
*
SURFACE ROUGHNESS PARAMETER
MONIN - OBUKHOV LENGTH
CROSSWIND (DELTA)
(BETA)
XSTEP
XMAX
CAMIN
CU
CL
1.0
100.
l.OE-06
1.5E-05
1.5E-06
* KG/M3
* KG/M3
* KG/M3
OUTPUT STEP LENGTH
X AT WHICH CALC. IS STOPPED
CA AT WHICH CALC. IS STOPPED
UPPER CONCENTRATION LIMIT
LOWER CONCENTRATION LIMIT
SOURCE
FLUX
TEMPGAS
CPGAS
MWGAS
WATGAS
3.0E-02
-34.0
35.3
70.9
0.
* KG/M2/S
* DEG.CELSIUS
* J/MOLE/DEG.C
* KG/KMOLE
GAS EMISSION FLUX
TEMPERATURE OF EMITTED GAS
SPECIFIC HEAT OF EMITTED GAS
MOL. WEIGHT OF EMITTED GAS
MOLAR FRACTION PICKED-UP WATE
C-25
-------
Output File
1HSMAIN
0
DATE 22/10/90
15:03
««
HEGADAS-S PROGRAM ( VERSION AUG88 )
HEGADAS-s Chlorine spill
CALCULATION CODE ICNT - 0
SURFACE HEAT TRANSFER MODEL ISURF - 3
THERMODYNAMIC MODEL THERMOD - NORMAL
SOURCE LENGTH PLL - 4.0000 M
SOURCE HALF-WIDTH PLN - 2.0000 M
WIND VELOCITY AT HEIGHT ZO UO - 2.0000 M/S
REFERENCE HEIGHT ZO - 10.000 M
SURFACE ROUGHNESS PARAMETER ZR - 0.10000E-01 M
AIR TEMP. AT GROUND LEVEL TAP - 30.000 DEG. CELSIUS
MONIN - OBUKHOV LENGTH OBUKL - 10000. M
DELTA - 0.91580E-01 M«M1-BETA>
BETA - 0.90500
SPREADING CONSTANT CE - 1.1500
OUTPUT STEP LENGTH DXO - 1.0000
X AT WHICH CALC. IS STOPPED XMAX - 100.00
CA AT WHICH CALC. IS STOPPED CAMIN - 0.10000E-05 KG/M3
UPPER CONCENTRATION LIMIT CU - 0.15000E-04 KG/M3
LOWER CONCENTRATION LIMIT CL - 0.15000E-05 KG/M3
EVAPORATION FLUX Q - 0.30000E-01 KG/M2/S - 0.48000 KG/S
RELATIVE HUMIDITY R - 0.75000
TEMPERATURE OF EMITTED GAS TGE - -34.000 DEG. CELSIUS
SPECIFIC HEAT OF EMITTED GAS CPG - 35.300 J/MOLE/DEG. CELSIUS
MOL. WEIGHT OF EMITTED GAS FMG - 70.900 KG/KMOLE
" EARTH-S SURFACE TEMPERATURE TK2P - 30.000 DEG. CELSIUS
MOLAR FRACTION PICKED-UP WATER W2P - O.OOOOOE+00
HEAT GROUP IN HEAT FLUX QH HEATGR - 24.000
WIND PROFILE EXPONENT ALPHA - 0.18635
USTAR - 0.11857E+00 M/S
1HSMAIN HEGADAS-S PROGRAM ( VERSION AUG88
1
DATE 22/10/90
15:03
PAGE
TIME
»»
PAGE
TIME
<«t HEGADAS-S Chlorine spill »»
DISTANCE
(M)
-.200E+01
0.200E+01
0.600E+01
0.100E+02
0.140E+02
0.180E+02
0.220E+02
0.260E+02
0.300E+02
0.340E+02
0.380E+02
0.420E+02
0.460E+02
0.500E+02
0.540E+02
0.580E+02
0.620E+02
0.660E+02
0.700E+02
0.740E+02
0.780E+02
0.820E+02
0.860E+02
0.900E+02
0.940E+02
0.980E+02
0.102E+03
0.106E+03
0.110E+03
0.114E+03
0.118E+03
0.122E+03
0.126E+03
0.130E+03
0.134E+03
0.138E+03
0.142E+03
0.146E+03
0.150E+03
0.154E+03
0.158E+03
CA SZ
(KG/M3) (M)
0.345E+01 0.00
0.345E+01
TAKE-UP FLUX
0.979E+00
0.364E+00
0.181E+00
0.107E+00
0.709E-01
0.50SE-01
0.379E-01
0.296E-01
0.238E-01
0.196E-01
0.165E-01
0.141E-01
0.122E-01
0.106E-01
0.940E-02
0.837E-02
0.750E-02
0.677E-02
0.615E-02
0.562E-02
0.515E-02
0.474E-02
0.43BE-02
0.407E-02
0.379E-02
0.353E-02
0.331E-02
0.310E-02
0.292E-02
0.275E-02
0.260E-02
0.246E-02
0.233E-02
0.222E-02
0.211E-02
0.201E-02
0.191E-02
0.183E-02
0.175E-02
0.05
0
0.07
0.11
0.16
0.22
0.28
0.34
0.41
0.47
0.54
0.61
0.68
0.74
0.81
0.88
0.95
1.02
1.09
1.16
1.23
1.30
1.37
1.44
1.51
1.58
1.65
1.72
1.79
1.86
1.94
2.01
2.08
2.15
2.22
2.29
2.36
2.43
2.50
2.57
2.64
SY
(M)
0.00
0.00
MIDP
(M)
2.00
2.00
0300 KG/M2/S -
1.67
2.74
3.71
4.60
5.44
6.24
7.00
7.74
8.44
9.13
9.80
10.45 •
11.09
11.71
12.32
12.92
13.51
14.09
14.66
15.22
15.77
16.31
16.85
17.38
17.91
18.42
18.94
19.44
19.95
20.44
20.94
21.42
21.91
22.39
22.86
23.33
23.80
24.26
24.72
3.97
5.75
7.11
8.18
9.07
9.81
10.46
11.03
11.54
12.00
12.42
12.80
13.15
13.48
13.78
14.06
14.33
14.58
14.81
15.03
15.23
15.43
15.62
15.79
15.96
16.12
16.27
16.41
16.55
16.68
16.81
16.93
17.04
17.15
17.25
17.35
17.45
17.54
17.63
YCU
(M)
2.00
2.00
0.4802 KG/S
9.52
14.46
18.47
21.89
24.89
27.59
30.06
32.34
34.47
36.47
38.36
40.15
41.86
43.49
45.05
46.56
48.01
49.40
50.76
52.07
53.34
54.57
55.77
56.93
58.07
59.18
60.26
61.31
62.35
63.35
64.34
65.31
6«.2S
67.18
68.09
68.98
69.86
70.71
71.56
ZCU
(M)
0.00
0.45
0.51
0.78
1.08
1.39
1.70
2.01
2.32
2.62
2.91
3.20
3.49
3.77
4.04
4.31
4.57
4.83
5.09
5.34
5.59
5.83
6.07
6.30
6.53
6.76
6.99
7.21
7.43
7.64
7.86
.07
.27
.48
.68
.88
9.07
9.27
9.46
9.65
9.83
YCL
(M)
2.00
2.00
10.07
IS. 40
19.79
23.56
26.92
29.96
32.76
35.36
37.81
40.12
42.32
44.42
46.43
48.36
50.22
52.01
53.75
55.44
57.08
58.67
60.23
61.74
63.22
64.66
66.08
67.46
68.81
70.14
71.44
72.72
73.98
75.21
76.43
77.62
78.80
79.95
81.09
82.22
83.32
ZCL
(M)
0.00
0.52
0.60
0.92
1.30
1.69
2.09
2.48
2.88
3.27
3.66
4.05
4.43
4.81
5.18
5.55
5.92
6.28
6.63
6.99
7.34
7.69
8.03
8.37
8.71
9.04
9.37
9.70
10.02
10.34
10.66
10.98
11.29
11.61
11.91
12.22
12.52
12.83
13.12
13.42
13.72
RIB
73.211
23.916
14.223
10.320
8.232
6.925
6.025
5.365
4.857
4.453
4.122
3.846
3.612
3.410
3.234
3.080
2.942
2.819
2.708
2.607
2.516
2.432
2.354
2.283
2.217
2.155
2.098
2.044
1.994
1.947
1.902
1.860
1.820
1.783
1.747
1.713
1.681
1.650
1.621
1.593
TMP
(DEG.C)
-31.0
20.0
27.7
29.2
29.6
29.8
29.9
29.9
29.9
29.9
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
CONC
(% VOL.)
0.965E+02 VISIBLE
0.332E+02
0.127E+02
0.633E+01
0.375E+01
0.248E+01
0.177E+01
0.133E+01
0.104E»01
0.836E+00
0.689E+00
0.57BE+00
0.493E+00
0.427E+00
0.373E+00
0.329E»00
0.293E*00
0.263EtOO
0.238E+00
0.216E+00
0.197EI-00 -
0.181E+00
0.166E+00
0.154E+00
0.143E+00
0.133E+00
0.124EI-00
0.116E+00
0.109E+00
0.102E+00
0.965E-01
0.912E-01
0.863E-01
0.818E-01
0.777E-01
0.739E-01
0.704E-01
0.671E-01
0.641E-01
0.613E-01
C-26
-------
0.162E+03
0.166E+03
0.170E+03
0.174Et03
0.178E+03
1HSMAIN
2
0.167E-02
0.160E-02
0.154E-02
0.148E-02
0.142E-02
2.71
2.78
2.85
2.92
2.99
25.18
25.63
26.08
26.53
26.98
17.71 72.39
17.79 73.20
17.87 74.00
17.94 74.79
18.01 75.56
10.02
10.20
10.38
10.56
10.73
HEGADAS-S PROGRAM (
84.41
85.49
86.55
87.60
88.64
VERSION
14.01
14.30
14.59
14.87
15.16
AUG88 )
1.566
1.540
1.516
1.492
1.469
30.0
30.0
30.0
30.0
30.0
0.587E-01
0.563E-01
O.S40E-01
0.518E-01
0.498E-01
DATE 22/10/90
15:03
DISTANCE
(M)
0.182E+03
0.186E+03
0.190E+03
0.194E+03
0.198E+03
0.202E+03
0.206E+03
0.210E+03
0.214E+03
0.218E+03
0.222E+03
0.226E+03
0.230E+03
0.234E+03
0.238E+03
0.242E+03
0.246E+03
0.250E+03
0.254E+03
0.258E+03
0.262E+03
0.266E+03
0.270E+03
0.274E+03
0.278E+03
0.282E+03
0.286E+03
0.290E+03
0.294E+03
0.298E+03
0.302E+03
0.306E+03
0.310E+03
0.314E+03
0.318E+03
0.322E+03
0.326E+03
0.330E+03
0.334E+03
0.338E+03
0.342E+03
0.346E+03
0.350E403
0.354E+03
0.358E+03
0.362E+03
0.366E+03
0.370E+03
0.374E»03
1HSMAIN
3
CA
(KG/M3)
0.137E-02
0.132E-02
0.127E-02
0.123E-02
0.118E-02
0.114E-02
0.111E-02
0.107E-02
0.104E-02
0.100E-02
0.973E-03
0.944E-03
0.916E-03
0.889E-03
0.864E-03
0.840E-03
0.817E-03
0.795E-03
0.774E-03
0.753E-03
0.734E-03
0.715E-03
0.69BE-03
0.680E-03
0.664E-03
0.648E-03
0.633E-03
0.618E-03
0.604E-03
0.591E-03
0.578E-03
0.565E-03
0.553E-03
0.541E-03
0.530E-03
0.519E-03
0.508E-03
0.498E-03
0.488E-03
0.478E-03
0.469E-03
0.460E-03
0.451E-03
0.443E-03
0.434E-03
0.426E-03
0.419E-03
0.411E-03
0.404E-03
SZ
(M)
3.06
3.13
3.20
3.27
3.34
3.41
3.48
3.55
3.62
3.69
3.76
3.83
3.90
3.97
.04
.11
.18
.25
.32
.39
.46
.53
.60
.66
.73
.80
.87
.94
5.01
5.08
5.15
5.22
5.28
5.35
5.42
5.49
5.56
5.63
5.69
5.76
5.83
5.90
5.97
6.04
6.10
6.17
6.24
6.31
6.37
««
SY
(M)
27.42
27.86
28.29
28.72
29.15
29.58
30.01
30.43
30.85
31.27
31.69
32.10
32.51
32.92
33.33
33.74
34.14
34.54
34.94
35.34
35.74
36.13
36.52
36.91
37.30
37.69
38.08
38.46
38.85
39.23
39.61
39.99
40.37
40.74
41.12
41.49
41.86
42.23
42.60
42.97
43.34
43.70
44.07
44.43
44.79
45.15
45.51
45.87
46.23
HEGADAS-S Chlorine
MIDP YCU
(M) (M)
18.08 76.32
18.15 77.07
18.21 77.81
18.27 78.54
18.32 79.25
18.38 79.96
18.43 80.65
18.48 81.34
18.53 82.01
18.57 82.68
18.62 83.33
18.66 83.98
18.70 84.62
18.73 85.25
18.77 85.87
18.80 86.48
18.83 87.09
18.87 87.69
18.89 88.28
18.92 88.86
18.95 89.43
18.97 90.00
18.99 90.56
19.02 91.11
19.04 91.66
19.05 92.20
19.07 92.74
19.09 93.26
19.10 93.78
19.12 94.30
19.13 94.81
19.14 95.31
19.15 95.81
19.16 96.30
19.17 96.79
19.18 97.27
19.18 97.75
19.19 98.22
19.19 98.68
19.20 , 99.15
19.20 99.60
19.20 100.05
19.20 100.50
19.20 100.94
19.20 101.38
19.20 101.81
19.19 102.23
19.19 102.66
19.19 103.08
spill
ZCU
(M)
10.91
11.08
11.25
11.42
11.58
11.75
11.91
12.07
12.23
12.39
12.54
12.70
12.85
13.00
13.15
13.29
13.44
13.58
13.73
13.87
14.01
14.15
14.28
14.42
14.55
14.69
14.82
14.95
15.08
15.21
15.33
15.46
15.58
15.70
15.83
15.95
16.06
16.18
16.30
16.42
16.53
16.64
16.76
16.87
16.98
17.09
17.20
17.30
17.41
HEGADAS-S PROGRAM (
YCL
(M)
89.66
90.67
91.66
92.65
93.62
94.58
95.54
96.48
97.41
98.33
99.24
100.14
101.04
101.92
102.80
103.66
104.52
105.37
106.22
107.05
107.88
108.70
109.51
110.32
111.12
111.91
112.69
113.47
114.25
115.01
115.77
116.53
117.28
118.02
118.76
119.49
120.21
120.94
121.65
122.36
123.07
123.77
124.46
125.15
125.84
126.52
127.20
127.87
128.54
VERSION
ZCL
(M)
15.44
15.72
16.00
16.28
16.55
16.83
17.10
17.37
17.63
17.90
18.17
18.43
18.69
18.95
19.21
19.47
19.72
19.98
20.23
20.48
20.73
20.98
21.22
21.47
21.71
21.96
22.20
22.44
22.68
22.92
23.15
23.39
23.62
23.86
24.09
24.32
24.55
24.78
25.00
25.23
25.45
25.68
25.90
26.12
26.34
26.56
26.78
27.00
27.22
AUG88 )
RIB
1.447
1.426
1.406
1.387
1.368
1.350
1.332
1.315
1.299
1.283
1.268
1.253
1.238
1.224
1.211
1.197
1.184
1.172
1.160
1.148
1.136
1.125
1.114
1.104
1.093
1.083
1.073
1.064
1.055
1.045
1.036
1.021
1.019
1.011
1.002
0.994
0.987
0.979
0.971
0.964
0.957
0.950
0.943
0.937
0.930
0.923
0.917
0.911
0.905
»»
TMP
(DEG.C)
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
CONC
(% VOL.)
0.480E-01
0.462E-01
0.445E-01
0.430E-01
0.415E-01
0.401E-01
0.388E-01
0.375E-01
0.363E-01
0.352E-01
0.341E-01
0.331E-01
0.321E-01
0.312E-01
0.303E-01
0.294E-01
0.286E-01
0.279E-01
0.271E-01
0.264E-01
0.257E-01
0.251E-01
0.245E-01
0.239E-01
0.233E-01
0.227E-01
0.222E-01
0.217E-01
0.212E-01
0.207E-01
0.203E-01
0.198E-01
0.194E-01
0.190E-01
0.186E-01
0.182E-01
0.178E-01
0.175E-01
0.171E-01
0.168E-01
0.164E-01
0.161E-01
0.158E-01
0.155E-01
0.152E-01
0.150E-01
0.147E-01
0.144E-01
0.142E-01
DATE 22/10/90
15:03
DISTANCE
(M)
0.378E+03
0.382E+03
0.386E+03
0.390E+03
0.394E+03
0.398Et03
CA
(KG/M3)
0.397E-03
0.390E-03
0.383E-03
0.377E-03
0.370E-03
0.364E-03
SZ
(M)
6.44
6.51
6.58
6.65
6.71
6.78
««
SY
(M)
46.58
46.94
47.29
47.65
48.00
48.35
HEGADAS-S chlorine
MIDP YCU
(M) (M)
19.18 103.49
19.18 103.90
19.17 104.31
19.16 104.71
19.15 105.11
19.15 105.50
spill
ZCU
(M)
17.51
17.62
17.72
17.82
17.93
18.03
YCL
(M)
129.20
129.86
130.52
131.17
131.81
132.46
ZCL
(M)
27.43
27.65
27.86
28.08
28.29
28.50
RIB
0.899
0.893
0.887
0.881
0.876
0.871
»»
TMP
(DEG.C)
30.0
30.0
30.0
30.0
30.0
30.0
CONC
(% VOL.)
0.139E-01
0.137E-01
0.134E-01
0.132E-01
0.130E-01
0.128E-01
PAGE
TIME
PAGE
TIME
C-27
-------
-------
SLAB Example 1: Input File
3
1
0.070906
498.1
239.1
0.00
287840.
926.3
1574.
-1.0
-1.0
284.3
1.261
.003525
25000.
0.
5.
900.
10000.
0.
1.
2.
4.
.01
10.0
2.0
298.
50.
6.
-1.
C-29
-------
Output File
problem input
idspl -
ncalc -
wras -
cps
tbp
cmedO •
dhe
cpsl -
rhosl -
spb -
spc
ts
qs -
as -
tsd
qtis -
hs
tav
xffra -
zp(l) -
zp(2) -
zp(3) -
zp(4) -
zO
za -
ua -
ta
rh
stab -
3
1
.070906
498.10
239.10
.00
287840.
926.30
1574.00
-1.00
-1.00
284.30
1.26
.00
25000.
.00
5.00
900.00
10000.00
.00
1.00
2.00
4.00
.010000
10.00
2.00
298.00
50.00
6.00
release gas properties
molecular weight of source gas (kg)
vapor heat capacity, const, p. (j/kg-k)
temperature of source gas (k)
density of source gas (kg/m3)
boiling point temperature
liquid mass fraction
liquid heat capacity (j/kg-k)
heat of vaporization (j/kg)
liquid source density (kg/ra3)
saturation pressure constant
saturation pressure constant (k)
saturation pressure constant (k)
spill characteristics
spill type
mass source rate fkg/s)
continuous source duration (s)
continuous source mass (kg)
instantaneous source mass (kg)
source area (m2)
vertical vapor velocity (ra/s)
source half width (m)
source height (m)
horizontal vapor velocity (ra/s)
field parameters
concentration averaging time (s)
mixing layer height (m)
maximum downwind distrace (m)
concentration measurement height (m)
ambient meteorological properties
molecular weight of ambient air (kg)
heat capacity of ambient air at const p. (J/kg-k)-
density of ambient air (kg/m3)
ambient measurement height (m)
ambient atmospheric pressure (pa-n/ra2-j/ra3)
ambient wind speed (m/s)
ambient temperature (k)
relative humidity (percent)
ambient friction velocity (ra/s)
atmospheric stability class value
inverse monin-obukhov length (1/ra)
surface roughness height (m)
additional parameters
sub-step multiplier
number of calculatlonal sub-steps
acceleration of gravity (m/s2)
gas constant (j/raol- k)
von karman constant
• wras -
cps -
• ts
• rhos -
tbp -
• cmedO-
• cpsl -
• dhe -
• rhosl-
• spa -
• spb -
spc -
• idspl-
• qs
• tsd -
• qtcs -
• qtis -
- as -
• ws -
• bs
• hs
• us -
• tav -
• hmx -
• xffm -
• zptl>-
• zp(2>-
• zp<3)-
- zp(4)-
wmae -
cpaa -
rhoa -
za
pa
ua -
ta
rh
uastr -
stab -
ala
zO
ncalc -
nssm -
gray -
rr -
xk
7.0906E-02
4.9810E*02
2.8430E+02
3.0395E+00
2.3910E+02
O.OOOOE+00
9.2630E+02
2.8784E+05
1.5740E+03
1.0267E+01
2.4548E+03
O.OOOOE+00
3
1.2610E+00
2.SOOOE+04
3.1525E+04
O.OOOOE+00
3.5250E-03
1.1770E+02
2.9686E-02
5.0000E+00
O.OOOOE+00
9.0000E+02
2.6000E+02
l.OOOOE+04
O.OOOOE+00
l.OOOOE+00
2.0000E+00
4.0000E+00
2.8782E-02
1.0144E+03
1.1770E+00
l.OOOOE+01
1.0133E+05
2.0000E+00
2.9800E+02
5.0000E+01
5.4063E-02
6.0000E+00
8.4887E-02
l.OOOOE-02
1
3
9.8067E+00
S.3143E+00
4.1000E-01
C-30
-------
instantaneous spatially averaged cloud parameters
X
l.OOE+00
1.95E+00
2.91E+00
3.86E+00
4.81E+00
S.77E+00
6.72E+00
7.67E+00
8.63E+00
9.58E+00
1.05E+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.26E+01
1.33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.59E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
5.05E+01
5.88E+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.57E+02
1.87E+02
2.23E+02
2.66E+02
3.17E+02
3.79E+02
4.54E+02
5.43E+02
6.50E+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.B1E+03
5.7BE+03
6.94E+03
8.33E+03
1. OOE+04
X
l.OOE+00
1.9SE+00
2.91E+00
3.86E+00
4.81E+00
5.77E+00
6.72E+00
7.67E+00
8.63E+00
9.58E+00
1.05E+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.26E+01
t 33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.59E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
3C
5. OOE+00
9.92E+00
1.18E+01
1.31E+01
1.40E+01
1.48E+01
1.53E+01
1.58E+01
1.61E+01
1.62E+01
1.63E+01
1.63E+01
1.63E+01
1.63E+01
1.63E+01
1.63E+01
1.63E+01
1.62E+01
1.62E+01
1.62E+01
1.61E+01
1.60E+01
1.58E+01
1.56E+01
1.52E+01
1.47E+01
1.41E+01
1.31E+01
1.17E+01
9.62E+00
6.56E+00
1.95E+00
7.04E-01
4.15E-01
3.02E-01
2.42E-01
2.04E-01
1.78E-01
1.58E-01
1.43E-01
1.31E-01
1.21E-01
1.12E-01
1.05E-01
9.83E-02
9.28E-02
8.78E-02
8.33E-02
7.93E-02
7.55E-02
7.20E-02
6.88E-02
6.57E-02
6.27E-02
5.99E-02
5.72E-02
5.46E-02
5.21E-02
4.96E-02
4.73E-02
4.50E-02
cm
l.OOE+00
5.58E-01
2.40E-01
1.23E-01
7.32E-02
4.81E-02
3.39E-02
2.S2E-02
1.94E-02
1.54E-02
1.25E-02
1.2SE-02
1.24E-02
1.24E-02
1.24E-02
1.23E-02
1.23E-02
1.22E-02
1.21E-02
1.20E-02
1.19E-02
1.18E-02
1.16E-02
1.15E-02
1.12E-02
1.10E-02
1.07E-02
1.04E-02
1.01E-02
9.68E-03
n
bb
5.94E-02 2.97E-02
5.24E-01 4.19E-01
9.89E-01 8.08E-01
1.45E+00
1.92E+00
L.20E+00
L.59E+00
2.38E+00 1.97E+00
2.85E+00 2.36E+00
3.31E+00 2.75E+00
3.78E+00 3.14E+00
4.24E+00 3.53E+00
4.71E+00 3.92E+00
4.71E+00 3.93E+00
.71E+00 3.94E+00
.71E+00
.71E+00
.71E+00
.71E+00
.71E+00
.71E+00
.71E+00
.71E+00
.71E+00
.71E+00
.72E+00
.72E+00
.72E+00
4.73E+00
4.78E+00
4.92E+00
.95E+00
.96E+00
.97E+00
. 99E+00
.01E+00
.04E+00
.07E+00
. 11E+00
.1SE+00
.20E+00
.27E+00
.35E+00
.44E+00
.55E+00
. 68E+00
.84E+00
5.15E+00 5.03E+00
5.62E+00 5.26E+00
5.38E+00 7.13E+00
2.79E+00 2.04E+01
2.30E+00 3.51E+01
2.22E+00 4.88E+01
2.26E+00 6.14E+01
2.37E+00 7.33E+01
2.52E+00 8.47E+01
2.71E+00 9.59E+01
2.93E+00 1.07E+02
3.20E+00 1.18E+02
3.50E+00
3.85E+00
.29E+02
L.40E+02
4.24E+00 1.S1E+02
4.68E+00 1.63E+02
5.17E+00 1.74E+02
5.72E+00 1.87E+02
S.34E+00
L.99E+02
7.02E+00 2.12E+02
7.78E+00 2.26E+02
8.62E+00 2.41E+02
9.55E+00 2.57E+02
1.06E+01 2.75E+02
1.17E+01 2.94E+02
1.30E+01 3.1SE+02
1.44E+01 3.38E+02
1.59E+01 3.63E+02
1.76E+01 3.91E+02
1.96E+01 4.22E402
2.17E+01 4.57E+02
2.40E+01 4.96E+02
onv
-l.OOE+00
cmda
l.OOE+00
-l.OOE+00 4.37E-01
-l.OOE+00 7.52E-01
-l.OOE+00
1.68E-01
-l.OOE+00 9.17E-01
-l.OOE+00 9.42E-01
-l.OOE+00 9.5SE-01
-l.OOE+00 9.6SE-01
-l.OOE+00 9.71E-01
-l.OOE+00 9.75E-01
1.25E-02 9.77E-01
1.25E-02 9.77E-01
1.24E-02 9.77E-01
1.24E-02 9.78E-01
1.24E-02 9.78E-01
1.23E-02 9.78E-01
1.23E-02 9.78E-01
1.22E-02 9.78E-01
1.21E-02 9.78E-01
1.20E-02 9.78E-01
1.19E-02 9.78E-01
1.18E-02 9.78E-01
1.16E-02 9.78E-01
1.15E-02 9.78E-01
.12E-02 9.79E-01
.10E-02 9.79E-01
.07E-02 9.79E-01
.04E-02 9.79E-01
.01E-02 9.80E-01
9.68E-03 9.80E-01
o
2.S7E-02
6.35E-02
l.OOE-01
1.37E-01
1.74E-01
2.10E-01
2.47E-01
2.84E-01
3.21E-01
3.57E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
3.94E-01
5.09E-01
1.42E+00
2.41E+00
3.32E+00
4.1SE+00
4.91E+00
5.64E+00
6.33E+00
7.01E+00
7.67E+00
8.32E+00
8.96E+00
9.58E+00
1.02E+01
1.08E+01
1.14E+01
1.20E+01
1.27E+01
1.33E+01
1.39E+01
1.46E+01
1.53E+01
1.60E+01
1.67E+01
1.75E+01
1.84E+01
1.93E+01
2.02E.+ 01
2.12E+01
2.23E+01
cnw
O.OOE+00
4.51E-03
7.76E-03
8.95E-03
9.46E-03
9.71E-03
9.86E-03
9.95E-03
l.OOE-02
l.OOE-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
0
9
1
2
3
4
5
6
7
8
9
9
1
1
I
1
1
1
1
1
1
1
1
1
2
2
2
3
3
4
4
S
6
7
9
1
1
1
1
2
2
3
3
4
5
6
7
9
1
1
1
1
2
2
3
4
4
S
6
8
1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
bbx
.OOE+00 0
.53E-01 9
.91E+00 1
. 86E+00 2
. 81E+00 3
.77E+00 4
.72E+00 5
. 67E+00 6
.63E+00 7
.58E+00 8
.53E+00 9
.75E+00 9
.OOE+01 1
.03E+01 1
.07E+01 1
.11E+01 1
. 16E+01 1
.23E+01 1
.30E+01 1
.40E+01 1
.51E+01 1
. 64E+01 1
.80E+01 1
.99E+01 1
.22E+01 2
.49E+01 2
.82E+01 2
.22E+01 3
. 69E+01 3
.27E+01 4
. 95E+01 4
.78E+01 5
.77E+01 6
.96E+01 7
.39E+01 9
.11E+02 1
.32E+02 1
.56E+02 1
.86E+02 1
.22E+02 2
.65E+02 2
.16E+02 3
.78E+02 3
.53E+02 4
.42E+02 5
.49E+02 6
.78E+02 7
.32E+02 9
. 12E+03 1
.34E+03 1
.61E+03 1
.93E+03 1
.32E+03 2
.78E+03 2
.34E+03 3
.01E+03 4
.81E+03 4
.78E+03 5
.93E+03 6
.33E+03 8
.OOE+04 1
craw
.OOE+00 1
.OOE+00 8
.OOE+00 6
.OOE+00 5
.OOE+00 4
.OOE+00 3
.OOE+00 2
.OOE+00 1
.OOE+00 1
.OOE+00 6
.01E-02 0
.01E-02 -6
.01E-02 -1
.01E-02 -2
.01E-02 -3
.01E-02 -5
bx
.OOE+00
.S3E-01
.91E+00
.86E+00
.81E+00
.77E+00
.72E+00
.67E+00
. 63E+00
.S8E+00
.S3E+00
.75E+00
.OOE+01
.03E+01
.07E+01
.11E+01
.16E+01
.23E+01
.30E+01
.40E+01
.51E+01
. 64E+01
.80E+01
.99E+01
.22E+01
.49E+01
.82E+01
.22E+01
.69E+01
.27E+01
.95E+01
.78E+01
.77E+01
.9SE+01
.39E+01
.11E+02
.32E+02
. 56E+02
.86E+02
.22E+02
.65E+02
. 16E+02
.78E+02
.52E+02
.42E+02
.49E+02
.78E+02
.32E+02
.12E+03
.34E+03
.61E+03
.93E+03
.32E+03
.78E+03
.34E+03
.01E+03
.81E+03
.78E+03
.93E+03
.33E+03
.OOE+04
we
.18E+02
. 05E+01
.51E+01
.32E+01
.33E+01
.45E+01
.65E+01
.92E+01
.24E+01
.04E+00
.OOE+00
.91E-03
.52E-02
.51E-02
. 69E-02
.09E-02
.01E-02 -6.77E-02
.01E-02 -8
.01E-02 -1
.01E-02 -1
.01E-02 -1
.01E-02 -2
.01E-02 -2
.01E-02 -3
. 01E-02 -3
. 01E-02 -4
. 01E-02 -5
.01E-02 -6
. 01E-02 -7
.01E-02 -8
.76E-02
.11E-01
.39E-01
.72E-01
.11E-01
.57E-01
.10E-01
.71E-01
.42E-01
.22E-01
.13E-01
.17E-01
.37E-01
cv
l.OOE+00
3.39E-01
1.14E-01
5.39E-02
3.11E-02
2.01E-02
1.41E-02
1.04E-02
7.95E-03
6.30E-03
5.11E-03
5.10E-03
S.08E-03
5.07E-03
5.05E-03
5.04E-03
5.01E-03
. 99E-03
.95E-03
.91E-03
.87E-03
. 82E-03
.75E-03
. S8E-03
4.60E-03
4.SOE-03
4.39E-03
4.26E-03
4.11E-03
3.95E-03
3.77E-03
3.54E-03
3.03E-03
2.31E-03
1.75E-03
1.37E-03
1.09E-03
8.88E-04
7.27E-04
5.98E-04
4.93E-04
4.07E-04
3.36E-04
2.77E-04
2.29E-04
1.89E-04
1.55E-04
1.28E-04
1.05E-04
8.67E-05
7.12E-05
5.85E-05
4.79E-05
3.92E-05
3.20E-05
2.61E-05
2.12E-05
1.72E-05
1.40E-05
1.13E-05
9.09E-06
vg
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
rho
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
. 19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.19E+00
.18E+00
.18E+00
.18E+00
.18E+00
.18E+00
. 18E+00
. 18E+00
.18E+00
.18E+00
.18E+00
. 18E+00
. 18E+00
. 18E+00
.18E+00
.18E+00
. 18E+00
.18E+00
.18E+00
.18E+00
.18E+00
. 18E+00
. 18E+00
. 18E+00
.11E+00
.18E+00
.18E+00
.18E+00
.18E+00
.18E+00
.18E+00
. 18E+00
. 18E+00
. 18E+00
.KE+00
.18E+00
uq
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
t
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
2.98E+02
w
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
1.97E-02
6.63E-04
6.65E-04
6.66E-04
6.69E-04
6.71E-04
6.75E-04
6.79E-04
6.85E-04
6.92E-04
7.02E-04
7.15E-04
7.33E-04
7.57E-04
7.91E-04
8.40E-04
9.12E-04
1.03E-03
1.22E-03
1.63E-03
0.
7.
1.
1.
1.
1.
1.
1.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
2.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
2
OOE+00
30E-01
03E+00
26E+00
46E+00
63E+00
79E+00
93E+00
06E+00
19E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
31E+00
28E+00
22E+00
12E+00
95E+00
60E+00
26E+00
16E+00
15E+00
15E+00
15E+00
15E+00
15E+00
1EE+00
17E+00
18E+00
20E+00
22E+00
25E+00
28E+00
31E+00
35E+00
38E+00
43E+00
47E+00
51E+00
56E+00
S1E+00
66E+00
72E+00
77E+00
83E+00
89E+00
95E+00
01E+00
V
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
52E-02
52E-02
52E-02
52E-02
52E-02
52E-02
52E-02
52E-02
52E-02
51E-02
51E-02
51E-02
51E-02
50E-02
SOE-02
49E-02
49E-02
43E-02
30E-02
10E-02
13
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.33E+00
2.30E+00
2.23E+00
2.13E+00
1.96E+00
1.61E+00
1.25E+00
1.16E+00
1.14E+00
1.14E+00
1.14E+00
1.15E+00
1.15E+00
1.1SE+00
1.17E+00
1.18E+00
1.20E+00
1.23E+00
1.25E+00
1.28E+00
1.31E+00
1.35E+00
1.39E+00
1.43E+00
1.47E+00
1.52E+00
1.56E+00
1.61E+00
1.6«E+00
1.72E+00
1.77E+00
1.83E+00
1.89E+00
1.95E+00
2.01E+00
vx
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.19E-01
4.18E-01
4.18E-01
4.17E-01
4.16E-01
4.14E-01
4.10E-01
4.03E-01
C-31
-------
S.05E+01
s.esE+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.57E+02
1.87E+02
2.23E+02
2.66E+02
3.17E+02
3.79E+02
4.54E+02
5.43E+02
6.50E+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
9.24E-03
8.S7E-03
7.43E-03
5.S7E-03
4.30E-03
3.36E-03
2.69E-03
2.18E-03
1.79E-03
1.47E-03
1.21E-03
l.OOE-03
8.27E-04
6.83E-04
S.63E-04
4.64E-04
3.83E-04
3.15E-04
2.60E-04
2.14E-04
1.75E-04
1.44E-04
1.18E-04
9.66E-05
7.89E-OS
S.43E-05
5.23E-05
4.25E-05
3.44E-05
2.78E-05
2.24E-05
9.24E-03
B.67E-03
7.43E-03
5.67E-03
4.30E-03
3.36E-03
2.S9E-03
2.18E-03
1.79E-03
1.47E-03
1.21E-03
l.OOE-03
8.27E-04
6.83E-04
5.63E-04
4.64E-04
3.83E-04
3.15E-04
2.60E-04
2.14E-04
1.75E-04
1.44E-04
1.18E-04
9.S6E-05
7.89E-05
6.43E-05
5.23E-05
4.25E-05
3.44E-05
2.74E-05
2.24E-OS
9.81E-01
9.81E-01
9.B2E-01
9.84E-01
9.86E-01
9.86E-01
9.87E-01
9.88E-01
9.B8E-01
9.88E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
1.01E-02
:.01E-02
1.01E-02
1.01E-02
1.02E-02
1.02E-02
1.02E-02
1.I.2E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1 . 02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
-9.75E-01
-5.13E-01
-5.70E-02
-1.47E-02
-5.73E-03
-2.81E-03
-1.S7E-03
-9.49E-04
-6.07E-04
-4.04E-04
-2.77E-04
-1.95E-04
-1.40E-04
-1.02E-04
-7.58E-05
-5.71E-05
-4.37E-05
-3.38E-05
-2.65E-05
-2.11E-05
-1.S9E-05
-1.37E-05
-1. HE-OS
-9.14E-06
-7.54E-06
-6.23E-06
-5.16E-06
-4.28E-06
-3.55E-06
-2.94E-06
-2.43E-06
O.OOE+00
1.88E+00
1.65E+00
1.25E+00
9.28E-01
7.12E-01
5.62E-01
4.52E-01
3.68E-01
3.02E-01
2.SOE-01
2.09E-01
1.75E-01
1.48E-01
1.25E-01
1.07E-01
9.27E-02
8.08E-02
7.11E-02
6.31E-02
5.6SE-02
S.11E-02
4.66E-02
4.28E-02
3.96E-02
3.68E-02
3.43E-02
3.22E-02
3.02E-02
2.84E-02
2.6BE-02
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
2.93E-03
2.54E-02
4.03E-02
3.29E-02
2.38E-02
1.80E-02
1.44E-02
1.21E-02
1.05E-02
9.34E-03
8.47E-03
7.77E-03
7.20E-03
6.71E-03
6.29E-03
S.91E-03
5.57E-03
5.26E-03
4.98E-03
4.72E-03
4.48E-03
4.25E-03
4.05E-03
3.86E-03
3.68E-03
3.51E-03
3.35E-03
3.20E-03
3.06E-03
2.93E-03
2.80E-03
3.76E-02
3.06E-02
2.21E-02
1.90E-02
1.76E-02
1.66E-02
1.S9E-02
1.52E-02
1.46E-02
1.41E-02
1.37E-02
1.34E-02
1.31E-02
1.29E-02
1.27E-02
1.2SE-02
1.24E-02
1.23E-02
1.23E-02
1.22E-02
1.21E-02
1.20E-02
1.19E-02
1.18E-02
1.16E-02
1.15E-02
1.13E-02
1.10E-02
1.08E-02
1.05E-02
1.02E-02
3.82E-01
3.01E-01
2.19E-01
1.92E-01
1.82E-01
1.80E-01
1.80E-91
1.82E-01
1.86E-01
1.91E-01
1.97E-01
2.03E-01
2.11E-01
2.19E-01
2.27E-01
2.36E-01
2.46E-01
2.55E-01
2.65E-01
2.75E-01
2.86E-01
2.96E-01
3.06E-01
3.16E-01
3.26E-01
3.36E-01
3.45E-01
3.54E-01
3.63E-01
3.71E-01
3.78E-01
1
time averaged (tav - 900. s) volume concentration: concentration contour parameter*
c(x.y,z,t) - cc(x) • (erf (xa)-erf (xb)) « (erf (ya)-erf (yb)) • )
c(x,y,z,t) - concentration (volume traction) at (x,y,z,t)
x - downwind distance (m)
y * crosswlnd horizontal distance (m)
z - height (m)
t - time (s)
erf - error functon
xa - (x-xc+bx)/(sr2'betax)
xb -
-------
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
4.65E-04
3.91E-04
3.29E-04
2.78E-04
2.36E-04
2.00E-04
1.71E-04
1.46E-04
1.24E-04
1.06E-04
9.1 IE-OS
7.79E-05
6.66E-05
5.69E-05
4.86E-05
1.14E+01
1.20E+01
1.27E+01
1.33E+01
1.39E+01
1.46E+01
1.53E+01
1.60E+01
1.67E+01
1.75E+01
1.84E+01
1.93E+01
2.02E+01
2.12E+01
2.23E+01
1.12E+02
1.21E+02
1.30E+02
1.41E+02
1.52E+02
1.66E+02
1.80E+02
1.97E+02
2.16E+02
2.38E+02
2.62E+02
2.90E+02
3.21E+02
3.57E+02
3.97E+02
8.78E-02
8.33E-02
7.93E-02
7.55E-02
7.20E-Q2
6.88E-02
6.57E-02
6.27E-02
5.99E-02
5.72E-02
S.46E-02
S.21E-02
4 . 96E-02
4.73E-02
4.50E-02
3.25E+00
3.61E+00
4.01E+00
4.4SE+00
4.93E+00
5.47E+00
6.07E+00
S.73E+00
7.46E+00
8.27E+00
9.16E+00
l.OZE+01
1.13E+01
1.25E+01
1.39E+01
1
1.
1,
2,
2
2
3
3.
4
5
«
7
8
1
1
.24E+03
.47E+03
.74E+03
.06E+03
. 43E+03
.86E+03
.36E+03
.95E+03
.63E+03
.42E+03
.34E+03
.41E+03
.6SE+03
.01E+04
.18E+04
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
S.94E+03
8.33E+03
l.OOE+04
7.
9.
1.
1.
' ,
1 ,
2.
2:
3,
4,
4.
5.
6.
a.
i.
, 78E+02
.32E+02
, 12E+03
.34E-KJ3
, 61E+03
, 93E+03
.32E+03
.78E+03
. 34E+03
.01E+03
. 81E+03
, 78E+03
, 93E+03
.33E+03
. OOE+04
6,
7,
9,
1.
1
1
1,
2,
2
3
3
4
5.
e
8
.35E+00
. 61E+00
. 13E+00
.10E+01
.31E+01
.58E+01
. 89E+01
.27E+01
.73E+01
.27E+01
. 93E+01
.72E+01
. 66E+01
. 80E+01
. 16E+01
time averaged (tav - 900. s) volume concentration: concentration In the z - .00 plane.
downwind
distance
x (m)
l.OOE+00
1.95E+00
2.91E+00
3.86E+00
4.81E+00
5.77E+00
6.72E+00
7.67E+00
8.63E+00
9.S8E+00
1.05E+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.26E+01
1.33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.S9E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
5.05E+01
5.88E+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.57E+02
1.87E+02
2.23E+02
2.66E+02
3.17E+02
3.79E+02
4.54E+02
5.43E+02
6.SOE+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
ti»e of
max cone
(s)
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.2SE+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.2SE+04
1.2SE+04
1.2SE+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.2SE+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.27E+04
1.27E+04
1.27E+04
1.28E+04
1.28E+04
1.29E+04
1.30E+04
1.31E+04
1.32E+04
1.33E+04
1.34E+04
1.36E+04
1.39E+04
1.41E+04
1.45E+04
1.49E+04
1.S3E+04
1.59E+04
1.66E+04
1.74E+04
1.84E+04
cloud
duration
2.
2.
2
2.
2,
2.
2
2
2,
2,
2.
2
2
2.
2.
2
2
2
2.
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2.
2
2
2
2
2
2
2
2
2
2
2
2
2
(a)
.SOE+04
. 50E+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
, 50E+04
.SOE+04
.SOE+04
.SOE+04
.50E+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.50E+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.50E+04
.SOE+04
.SOE+04
.50E+04
.SOE+04
.SOE+04
.SOE+04
.50E+04
.50E+04
. 50E+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
. 50E+04
.SOE+04
. 50E+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
.SOE+04
. 50E+04
. 50E+04
effective
half width
2
4
g
1
1
2
2
2
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
S
S
S
e
8
2
3
4
6
7
8
9
1
1
1
1
1
1
1
1
2
2
2
2
2
3
3
3
4
4
5
S
6
6
bbc (m)
.97E-02
.25E-01
.21E-01
. 22E+00
. 61E+00
.01E+00
. 40E+00
.80E+00
.20E+00
. 59E+00
.99E+00
.OOE+00
. 01E+00
.02E+00
. 04E+00
. 06E+00
.09E+00
.12E+00
. 16E+00
.21E+00
.27E+00
. 34E+00
. 43E+00
. 53E+00
.67E+00
. 83E+00
. 04E+00
.29E+00
. 61E+00
.OOE+00
.49E+00
. 40E+00
.11E+01
.57E+01
. 94E+01
.20E+01
. 40E+01
.S6E+01
.70E+01
.08E+02
. 20E+02
.31E+02
. 43E+02
.55E+02
. 68E+02
. 81E+02
.95E+02
.10E+02
. 26E+02
.44E+02
. 64E+02
.87E+02
.13E+02
-42E+02
-75E+02
.12E+02
.55E+02
.03E+02
-57E+02
.18E+02
. 87E+02
average concentration (volume fraction) at (x, y,
y/bbc- y/bbc- y/bbc- y/bbc- y/bbc-
0.
0.
0.
0.
0.
0.
0,
0.
0.
1.
1.
1,
1.
1.
1 ,
1.
1.
1.
2.
4
7.
2.
8.
6
1
5,
1.
4.
2
1,
3,
5,
6
4
3,
2.
2
1
1,
1.
9
7
e.
s,
4,
3.
2
2.
1.
1.
1.
1,
8.
6.
5.
4.
3.
2,
2
1.
1,
0.0
, OOE+00
OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
69E-40
.21E-33
.22E-33
.23E-33
.26E-33
.32E-33
.42E-33
.61E-33
.95E-33
.62E-33
.10E-33
.9SE-33
.10E-32
.61E-32
.50E-31
.13E-29
. 95E-28
.30E-25
. 96E-22
.96E-17
, 04E-11
.29E-0«
.55E-03
.33E-03
.93E-03
.69E-03
. 83E-03
.23E-03
.79E-03
.45E-03
.18E-03
.66E-04
.90E-04
.47E-04
.30E-04
.33E-04
. S4E-04
. 89E-04
.35E-04
.91E-04
.55E-04
.25E-04
. 01E-04
.09E-05
. 47E-05
. 16E-OS
. IDE-OS
.25E-05
.57E-05
. 03E-05
. 60E-05
.25E-OS
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
8.
8.
8.
8.
9.
9,
1.
1.
1.
2.
5,
1.
5.
4.
7.
4.
8,
3,
2.
7,
2.
3.
4.
3,
2,
1,
1
1.
9.
g ,
6
5
4.
3.
2.
2.
1.
1.
1.
1.
8.
6.
5.
4.
3.
2.
2.
1.
1.
1.
8.
O.S
.OOE+00
, OOE+00
.OOE+00
, OOE+00
OOE+00
OOE+00
OOE+00
, OOE+00
.OOE+00
16E-40
30E-34
.37E-34
46E-34
.67E-34
.07E-34
.79E-34
.11E-33
.34E-33
80E-33
.82E-33
.46E-33
.45E-32
,92E-32
. 46E-31
.75E-30
.09E-28
.96E-2S
.41E-22
.04E-17
.17E-12
.26E-06
.81E-03
.35E-03
.39E-03
. 54E-03
.95E-03
.54E-03
.23E-03
.97E-04
.12E-04
. 64E-04
43E-04
.4SE-04
.64E-04
. 98E-04
.43E-04
. 98E-04
.62E-04
.31E-04
.06E-04
.60E-05
, 92E-05
. SSE-05
. 45E-05
.5SE-05
, 82E-05
.23E-05
. 77E-05
.39E-OS
.10E-05
. S2E-06
1.0
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
3.78E-41
2.69E-34
2.72E-34
2.75E-34
2.82E-34
2.94E-34
3.18E-34
3.59E-34
4.36E-34
S.86E-34
9.15E-34
1.77E-33
4.69E-33
1.92E-32
1.45E-31
2.52E-30
1.33E-28
2.91E-2S
1.11E-22
6.61E-1I
2.33E-12
7.34E-07
1.24E-03
1.41E-03
1.10E-03
8.23E-04
6.33E-04
4.98E-04
4.00E-04
3.24E-04
2.64E-04
2.15E-04
1.76E-04
1.44E-04
1.18E-04
9.66E-OS
7.89E-05
6.44E-05
5.24E-05
4.26E-05
3.45E-05
2.79E-05
2.2SE-05
1.80E-05
1.44E-05
1.15E-OS
9.15E-06
7.25E-06
5.73E-OS
4.52E-06
3.56E-06
2.80E-06
l.S
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
5.79E-42
4.13E-35
4.17E-3S
4.21E-35
4.32E-35
4.51E-35
4.87E-35
5.51E-3S
S.68E-35
8.98E-35
1.40E-34
2.72E-34
7.19E-34
2.95E-33
•2.22E-32
3.86E-31
2.03E-29
4.46E-27
1 . 70E-23
1.01E-18
3.57E-13
r.!3E-07
1.90E-04
2.17E-04
1.69E-04
1.26E-04
9.70E-05
T»«4E-05
6»13E-05
4.96E-05
4.04E-OS
3.30E-05
2.70E-05
2.21E-05
i . 81E-05
1.48E-05
1-21E-05
». 8BE-06
8.04E-06
6.53E-06
5.30E-OS
4.28E-06
3.4SE-OS
2.77E-OS
2.21E-06
1.77E-06
1.40E-06
1.11E-06
8.79E-07
6.94E-07
•5.46E-07
4..29E-07
0
0
0
0
0
0
0
0
0
4
2
3
3
3
3
3
3
4
6
1
1
5
2
1
2
1
3
•i
7
2
8
1
1
1
9
7
5
4
3
2
2
1
1
1
1
8
7
S
4
3
3
2
2
^
1
1
8
6
5
3
3
2.0
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.19E-43
.99E-36
.02E-36
.OSE-36
.13E-36
.27E-36
.S3E-36
.99E-36
.84E-36
.50E-36
.02E-35
.97E-35
.21E-3S
.13E-34
.61E-33
.79E-32
.47E-30
.23E-28
.23E-24
.34E-20
.58E-14
. 16E-09
.38E-05
.57E-05
.22E-05
. 15E-06
.03E-06
.54E-06
.44E-06
. 60E-06
. 93E-06
.39E-OS
.96E-OS
.60E-06
.31E-06
.07E-06
.77E-07
.15E-07
.82E-07
.73E-07
.84E-07
.10E-07
.SOE-07
.OOE-07
.60E-07
.2BE-07
.02E-07
. 06E-08
.37E-08
.02E-08
.96E-08
.HE-OS
y/bbc-
2.5
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
1.40E-44
1.02E-37
1.03E-37
1.04E-37
1.07E-37
1.12E-37
1.21E-37
1.36E-37
1.66E-37
2.23E-37
3.47E-37
6.74E-37
1.78E-36
7.30E-36
" 5.51E-35
9.56E-34
5.03E-32
1.10E-29
4.21E-26
2.51E-21
8.83E-16
2.79E-10
4.70E-07
5.38E-07
4.18E-07
3.12E-07
2.40E-07
1.89E-07
1.52E-07
1.23E-07
1. OOE-07
8.19E-08
6.69E-08
5.48E-08
4.49E-08
3.68E-08
3.00E-08
2.45E-OB
2.00E-08
1.62E-08
1.31E-08
1.06E-08
8.51E-09
S.86E-09
5.49E-09
4.38E-09
3.49E-09
2.77E-09
2.18E-09
1.72E-09
1.35E-09
1.07E-09
time averaged (tav - 900.
volume concentration: concentration in the z - 1.00 plane.
downwind
distance
x (m)
l.OOE+00
1.95E+00
2.91E+00
3.86E+00
4.81E+00
5.77E+00
6.72E+00
7.S7E+00
time of
max cone
(s)
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
cloud
duration
Is)
2. SOE+04
2. SOE+04
2. SOE+04
2. SOE+04
2. SOE+04
2.50E+04
2. SOE+04
2.50E+04
effective
half width
bbc (m)
2.97E-02
4.25E-01
8.21E-01
1.22E+00
1.61E+00
2.01E+00
2.40E+00
2.80E+00
average concentration (volume fraction) at (x,y.
y/bbc-
0.0
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
y/bbc-
O.S
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
y/bbc-
1.0
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
y/bbc-
1.5
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0". OOE+00
y/bbc-
2.0
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
zl
y/bbc-
2.5
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
C-33
-------
8.63E+00
9.58E+00
1.05E+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.2«E+01
1.33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.59E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
5.05E+01
5.88E+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.57E+02
1.87E+02
2.23E+02
2.66E+02
3.17E+02
3.79E+02
4.54E+02
5.43E+02
6.50E+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.27E+04
1.27E+04
1.27E+04
1.28E+04
1.28E+04
1.29E+04
1.30E+04
1.31E+04
1.32E+04
1.33E+04
1.34E+04
1.36E+04
1.39E+04
1.41E+04
1.45E+04
1.49E+04
1.53E+04
1.59E+04
1.66E+04
1.74E+04
1.84E+04
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
50E+04
50E+04
50E+04
50E+04
50E+04
50E+04
50E+04
SOE+04
50E+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
.20E+00
.59E+00
.99E+00
.OOE+00
.01E+00
.02E+00
.04E+00
.06E+00
.09E+00
.12E+00
.16E+00
.21E+00
.27E+00
.34E+00
.43E+00
. 53E+00
.67E+00
.83E+00
.04E+00
S.29E+00
5.61E+00
5. OOE+00
S.49E+00
I.40E+00
Z.11E+01
J.57E+01
I.94E+01
S.20E+01
7.40E+01
S.S6E+01
J.70E+01
1.08E+02
1.20E+02
1.31E+02
L.43E+02
L.SSE+02
1.68E+02
1.81E+02
1.9SE+02
Z.10E+02
2.26E+02
2.44E+02
2.64E+02
2.87E+02
3.13E+02
3.42E+02
3.75E+02
4.12E+02
4.SSE+02
S.03E+02
5.57E+02
6.18E+02
6.87E+02
S
3
3
3
3
3
3
3
4
4
6
9
1
4
1
1
1
6
9
1
3
3
1
S
S
3
2
1
1
1
1
9
8
«
S
4
4
3
2
2
1
1
1
9
7
6
S
4
3
2
2
1
1
75E-44
04E-3«
13E-30
15E-30
18E-30
25E-30
.39E-30
. 64F.-30
08E-30
88E-30
.43E-30
.76E-30
.81E-29
.49E-29
. 68E-28
.11E-27
.59E-2S
.37E-25
.52E-23
.81E-19
.77E-15
.22E-10
.66E-OS
.50E-03
.02E-03
.43E-03
.53E-03
. 99E-03
. 64E-03
.37E-03
.1SE-03
.76E-04
.24E-04
.93E-04
.81E-04
. 85E-04
.03E-04
.34E-04
.75E-04
. 26E-04
.85E-04
.51E-04
.23E-04
.91E-05
.98E-05
.40E-05
.HE-OS
.07E-05
.23E-05
.S6E-05
.02E-OS
.59E-OS
.25E-05
3.92E-44
2.09E-36
2.15E-30
2.16E-30
2.19E-30
2.24E-30
2.33E-30
2.50E-30
2.80E-30
3.36E-30
4.42E-30
6.71E-30
1.24E-29
3.09E-29
1.15E-28
7.60E-28
1.09E-26
4.38E-2S
6.S4E-23
1.24E-19
2.59E-15
2.21E-10
1.14E-05
3.78E-03
3.4SE-03
2.36E-03
1.74E-03
1.37E-03
H2E-03
9.41E-04
7.94E-04
6.71E-04
5.66E-04
4.77E-04
3.99E-04
3.33E-04
2.77E-04
2.29E-04
1.89E-04
1.55E-04
1.27E-04
1.04E-04
8.42E-OS
6.81E-OS
S.48E-OS
4.40E-OS
3.51E-05
2 . 80E-05
2.22E-05
1.76E-05
1.39E-OS
1.09E-05
8.60E-06
1.2SE-44
6.79E-37
6.97E-3a
7.02E-31
7.10E-31
7.26E-31
7.56E-31
8.12E-31
9.10E-31
1.09E-30
1.44E-30
2.1BE-30
4.04E-30
l.OOE-29
3.74E-29
2.47E-28
3.54E-27
1.42E-2S
2.12E-23
4.04E-20
8.41E-16
7.19E-11
3.69E-06
1.23E-03
1.12E-03
7.66E-04
5.64E-04
4.4SE-04
3.65E-04
3.0SE-04
2.58E-04
2.18E-04
1.84E-04
1.5SE-04
1.30E-04
1.08E-04
9.00E-OS
7.45E-05
6.14E-05
5.05E-05
4.13E-OS
3.37E-05
2.73E-OS
2.21E-OS
1.78E-05
1.43E-OS
1.14E-OS
9.09E-06
7.21E-06
5.71E-06
4.50E-06
3.55E-06
2.79E-06
1.40E-4S
1.04E-37
1.07E-31
1.08E-31
1.09E-31
1.11E-31
1.16E-31
1.24E-31
1.40E-31
1.67E-31
2.20E-31
3.34E-31
6.20E-31
1.S4E-30
5.74E-30
3.79E-29
5.42E-28
2.18E-26
3.26E-24
S.19E-21
1.29E-16
1.10E-11
5.66E-07
1.88E-04
1.72E-04
1.18E-04
8.6SE-OS
6.82E-05
5.60E-05
4.68E-OS
3.95E-OS
3.34E-05
2.82E-OS
2.37E-05
1.99E-05
1.66E-05
1.38E-05
1.14E-OS
9.42E-06
7.74E-06
S.33E-06
5.16E-06
4.19E-06
3.39E-06
2.73E-06
2.19E-06
1.75E-06
1.39E-06
1.11E-06
8.75E-07
S.91E-07
5.44E-07
4.28E-07
0. OOE+00
7.54E-39
7.75E-33
7.80E-33
7.88E-33
8.06E-33
8.40E-33
9.01E-33
1.01E-32
1.21E-32
1.S9E-32
2.42E-32
4.49E-32
1.11E-31
4.16E-31
2.74E-30
3.93E-29
1.58E-27
2.36E-25
4.49E-22
9.34E-18
7.98E-13
4.10E-08
1.36E-05
1.25E-05
8.51E-06
6.26E-06
4.94E-06
4.06E-06
3.39E-06
2.86E-06
2.42E-06
2.04E-06
1.72E-06
1.44E-06
1.20E-06
l.OOE-06
8.28E-07
6.82E-07
5.61E-07
4.59E-07
3.74E-07
3.04E-07
2.46E-07
1.98E-07
1.59E-07
1.27E-07
1.01E-07
8.01E-08
6.34E-08
S.OOE-08
3.94E-08
3.10E-08
0. OOE+00
2.58E-40
2.65E-34
2.67E-34
2.59E-34
2.76E-34
2.88E-34
3.08E-34
3.4SE-34
4.14E-34
5.46E-34
8.26E-34
1.53E-33
3.81E-33
1.42E-32
9.38E-32
1.34E-30
5.38E-29
8.05E-27
1.S4E-23
3.19E-19
2.73E-14
1.40E-09
4.66E-07
4.27E-07
2.91E-07
2.14E-07
1.69E-07
1.39E-07
1.17E-07
9.80E-08
8.29E-08
6.98E-08
5.87E-08
4.92E-OB
4.11E-08
3.43E-08
2.83E-08
2.34E-08
1.92E-08
1.57E-08
1.28E-08
1.04E-08
8.37E-09
6.76E-09
5.43E-09
4.34E-09
3.47E-09
2.76E-09
2.17E-J9
1.72E-09
1.35E-09
1.07E-09
time averaged (tav - 900. s) volume concentration: concentration in the z - 2.00 plane.
downwind
distance
x (m)
1. OOE+00
1.95E+00
2.91E+00
3.86E+00
4.81E+00
5.77E+00
6.72E+00
7.67E+00
8.63E+00
9.58E+00
1.05E+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.26E+01
1.33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.59E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
5.05E+01
5.88E+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.57E+02
1.87E+02
time of
max cone
(a)
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
cloud effective
duration half width
2
2
2
2
2
2
2
J
2
2
2
2
2
2
2
2
2
^
2
2
2
2
2
2
2
2
Z
2
2
2
2
2
2
2
2
2
2
2
2
(s) bbc (m)
50E+04 2.97E-02
50E+04 4.2SE-01
SOE+04 8.21E-01
50E+04 1.22E+00
SOE+04 1.61E+00
SOE+04 2.01E+00
SOE+04 2.40E+00
SOE+04 2.80E+00
SOE+04 3.20E+00
50E+04 3.59E+00
SOE+04 3.99E+00
SOE+04
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
50E+04
SOE+04
50E+04
SOE+04
SOE+04
.OOE+00
.01E+00
.02E+00
.04E+00
.06E+00
.09E+00
.12E+00
.16E+00
.21E+00
.27E+00
.34E+00
.43E+00
.S3E+00
.67E+00
.83E+00
SOE+04 S.04E+00
SOE+04 S.29E+00
50E+04 5.61E+00
SOE+04 6. OOE+00
SOE+04 6.49E+00
SOE+04 8.40E+00
50E+04 2.11E+01
50E+04 3.57E+01
SOE+04 4.94E+01
SOE+04 6.20E+01
50E+04 7.40E+01
50E+04 8.56E+01
50E+04 9.70E+01
average concentration (volume fraction) at (x,y
y/bbc- y/bbc-% y/bbc- y/bbc- y/bbc-
0
0
0
0
0
0
0
0
1
S
9
9
9
9
1
1
1
1
1
2
4
1
3
2
2
7
8
7
S
1
1
S
2
1
8
6
e
e
5
0.0
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
20E-38
62E-32
41E-27
47E-27
56E-27
7SE-27
01E-26
08E-26
20E-26
42E-26
84E-2C
70E-26
81E-26
12E-25
81E-25
20E-24
60E-23
96E-22
13E-20
81E-17
84E-13
27E-08
12E-04
11E-03
41E-03
14E-03
09E-04
92E-04
42E-04
12E-04
83E-04
V
O.OOE'OO
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
O.OOE.+00
0. OOE+00
0. OOE+00
8.22Ej3»
3.86E-32
6.47E-27
6.S1E-27
6.57E-27
6.70E-27
6.96E-27
7.43E-27
8.26E-27
9.76E-27
1.26E-26
1.86E-26
3.30E-26
7.69.E-26
2.62E-25
1.S1E-24
1.79E-23
S.47E-22
5.58E-20
5.37E-17
4.01E-13
8.70E-09
7.72E-05
3.51E-03
1.66E-03
7.87E-04
5.56E-04
4.75E-04
4.41E-04
4.21E-04
4.01E-M
1.0
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
2.67E-39
1.25E-32
2.10E-27
2.UE-27
2.13E-27
2.1BE-27
2.26E-27
2.41E-27
2.68E-27
3.17E-27
4.10E-27
6.03E-27
1.07E-26
2.50E-26
8.49E-26
4.90E-25
S.80E-24
1.78E-22
1.81E-20
1.74E-17
1.30E-13
2.82E-09
2.51E-05
1.14E-03
S.38E-04
2.55E-04
1.80E-04
1.S4E-04
1.43E-04
1.37E-04
1.30E-04
1.5
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
4.09E-40
1.92E-33
3.22E-28
3.24E-28
3.27E-28
3.34E-28
3.47E-28
3.70E-28
4.11E-28
4.86E-28
6.28E-28
9.25E-28
1.S4E-27
3.83E-27
1.30E-2S
7.52E-26
8.90E-2S
2.72E-23
2.78E-21
2.67E-18
2.00E-14
4.33E-10
3.84E-OS
1.75E-04
8.26E-OS
3.92E-05
2.77E-05
2.37E-05
2.20E-05
2.09E-05
2.00E-05
2.0
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
2.96E-41
1.39E-34
2.33E-29
2.35E-29
2.37E-29
2.42E-29
2.51E-29
2.68E-29
2.98E-29
3.S2E-29
4.55E-29
6.70E-29
1.19E-28
2.77E-28
9.43E-2B
5.44E-27
6.44E-26
1.97E-24
2.01E-22
1.94E-19
1.45E-15
3.14E-11
2.78E-07
1.27E-05
S.98E-06
2.84E-06
2.00E-06
1.71E-06
1.59E-06
1.52E-06
1.45E-06
z)
y/bbc-
2.S
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
1.02E-42
4.76E-36
7.97E-31
8.04E-31
8.09E-31
8.27E-31
8.60E-31
9.16E-31
1.02E-30
1.20E-30
1.56E-30
2.29E-30
4.07E-30
9.48E-30
3.23E-29
1.86E-28
2.20E-27
6.73E-26
6.87E-24
6.63E-21
4.94E-17
1.07E-12
9.52E-09
4.33E-07
2.05E-07
9.70E-08
6.84E-08
5.87E-08
5.45E-08
5.21E-08
4.95E-08
C-34
-------
2.23E+02
2.6«E+02
3.17E+02
3.79E+02
4.54E+02
5.43E+02
6.50E+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.7BE+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
1.26E+04
1.27E+04
1.27E+04
1.27E+04
1.28E+04
1.28E+04
1.29E+04
1.30E+04
1.31E+04
1.32E+04
1.33E+04
1.34E+04
1.36E+04
1.39E+04
1.41E+04
1.45E+04
1.49E+04
1.53E+04
1.59E+04
1.66E+04
1.74E+04
1.84E+04
2,
2.
2,
2.
2.
2.
2.
2,
2.
2,
2.
2
2.
2,
2.
2
2
2.
2,
2
2
2
.50E+04
.SOE+04
.50E+04
.50E+04
. 50E+04
.50E+04
.50E+04
. 50E+04
. 50E+04
. 50E+04
. 50E+04
.50E+04
.50E+04
. 50E+04
. 50E+04
.SOE+04
.SOE+04
.50E+04
. 50E+04
. 50E+04
. 50E+04
.50E+04
1.
1.
1.
\.
I.
1,
1.
1.
2.
2.
2.
2.
2.
3.
3.
3.
4.
4.
5.
5.
6
6.
08E+02 ,
20E+02
31E+02
,43E+02
.55E+02
68E+02
81E+02
,95E+02
. 10E+02
26E+02
44E+02
, 64E+02
.87E+02
,13E+02
42E+02
.75E+02
. 12E+02
.55E+02
,03E+02
.57E+02
. 18E+02
, 87E+02
5
5
4
4
3
3
2
2
2
1
1
1
9
7
6
4
3
3
2
2
1
1
.50E-04
.12E-04
. 68E-04
.21E-04
.73E-04
.25E-04
. 80E-04
.39E-04
. 02E-04
. 69E-04
. 40E-04
.15E-04
.42E-05
. 66E-05
.19E-05
. 98E-05
.98E-05
.17E-05
.52E-05
.OOE-05
. 58E-OS
.24E-OS
3.78E-04
3.52E-04
3.22E-04
2.90E-04
2.56E-04
2.24E-04
1.93E-04
1.64E-04
1.39E-04
1.16E-04
9.61E-05
7.92E-05
6.48E-05
5.27E-OS
4.26E-05
3.42E-05
2.74E-05
2.18E-05
1.73E-05
1.37E-05
1 . 08E-05
8.53E-06
1,
1,
1,
9.
8.
7,
6,
.23E-04
.14E-04
.05E-04
.40E-05
.32E-05
.26E-05
.26E-05
S.33E-05
4.
3,
3,
2.
2.
I.
1,
1.
8
7.
5.
4
3
2,
.50E-05
.76E-05
.12E-05
.57E-05
.10E-05
.71E-05
.38E-05
.HE-OS
.I9E-06
.08E-06
.62E-06
.45E-06
.52E-06
.77E-06
1
1
1
1
1
1
9
8
6
5
4
3
3
2
2
1
1
1
a
«
5
4
.88E-05
.75E-05
.60E-05
.44E-05
.28E-05
.HE-OS
.SOB-OS
.18E-06
.90E-06
.77E-06
.79E-OS
.94E-OS
.22E-06
. 62E-06
.12E-06
.70E-OS
.36E-06
. 09E-06
.62E-07
.83E-07
.39E-07
.25E-07
1.36E-06
1.27E-06
1.16E-06
1.04E-06
9.25E-07
8.07E-07
6.95E-07
5.92E-07
5.00E-07
4.18E-07
3.47E-07
2.86E-07
2.34E-07
1.90E-07
1.53E-07
1.23E-07
9.87E-OS
7.87E-OS
6.2SE-08
4.95E-08
3.90E-08
3.08E-08
4.68E-08
4.34E-08
3.97E-08
3.57E-08
3.16E-08
2.77E-08
2.38E-08
2.03E-08
1.71E-08
1.43E-08
1.19E-08
9.77E-09
7.96E-09
6.49E-09
S.25E-09
4.23E-09
3.39E-09
2.71E-09
2.14E-09
1.70E-09
1.34E-09
1.06E-09
time averaged (tav - 900. s) volume concentration: concentration In the z - 4.00 plane.
downwind
distance
x (m)
l.OOE+00
1.9SE+00
2.91E+00
3.86E+00
4.81E+00
5.77E+00
6.72E+00
7.67E+00
8.63E+00
9.S8E+00
l.OSE+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.26E+01
1.33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.59E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
5.05E+01
5.88E+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.57E+02
1.87E+02
2.23E+02
2.6SE+02
3.17E+02
3.79E+02
4.S4E+02
5.43E+02
6.50E+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
time of
max cone
(3)
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.2SE+04
1.26E+04
1.26E+04
1.26E+04
1.27E+04
1.27E+04
1.27E+04
1.28E+04
1.28E+04
1.29E+04
1.30E+04
1.31E+04
1.32E+04
1.33E+04
1.34E+04
1.3SE+04
1.39E+04
1.41E+04
1.4SE+04
1.49E+04
1.S3E+04
1.S9E+04
1.66E+04
1.74E+04
1.84E+04
cloud
duration
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2"
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
(S)
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
50E+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
50E+04
SOE+04
50E+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
50E+04
50E+04
SOE+04
SOE+04
50E+04
50E+04
SOE+04
50E+04
50E+04
50E+04
SOE+04
SOE+04
SOE+04
SOE+04
50E+04
50E+04
50E+04
50E+04
SOE+04
50E+04
50E+04
SOE+04
SOE+04
50E+04
50E+04
50E+04
SOE+04
SOE+04
SOE+04
SOE+04
SOE+04
effective
half width
b
2.
4.
8.
1.
1.
2.
2.
2.
3.
3.
3.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
5.
5.
5.
6.
6.
8.
2.
3.
•4.
6.
7.
8.
9.
1.
1.
1.
1.
1.
1.
1.
1.
2.
2.
2.
2.
2.
3.
3.
3.
4.
4.
5.
5.
6.
6.
be (m)
97E-02
25E-01
21E-01
22E+00
61E+00
01E+00
40E+00
80E+00
20E+00
S9E+00
99E+00
OOE+00
01E+00
02E+00
04E+00
06E+00
09E+00
12E+00
16E+00
21E+00
27E+00
34E+00
43E+00
S3E+00
S7E+00
B3E+00
04E+00
29E+00
61E+00
OOE+00
49E+00
40E+00
11E+01
57E+01
94E+01
20E+01
40E+01
SSE+01
70E+01
OBE+02
20E+02
31E+02
43E+02
55E+02
68E+02
81E+02
95E+02
10E+02
26E+02
44E+02
64E+02
87E+02
13E+02
42E+02
7SE+02
12E+02
5SE+02
03E+02
S7E+02
18E+02
87E+02
average concentration (volume fraction) at (x, y
y/bbc- y/bbc- y/bbc- y/bbc- y/bbc-
0
0
0
0
0
0
1
2
4
2
1
1
1
1
1
1
2
2
2
4
s
1
3
1
1
2
1
3
3
5
1
2
9
1
8
0.0
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
18E-43
57E-3S
15E-29
S9E-24
68E-20
69E-20
70E-20
73E-20
78E-20
8BE-20
06E-20
37E-20
95E-20
09E-20
68E-20
37E-19
88E-19
72E-18
39B-17
47E-16
18E-14
02E-12
16E-09
03E-OS
S8E-03
6BE-03
21E-05
24E-OS
15E-OS
0
0
0
0
0
0
8
1
2
1
1
1
1
1
1
1
1
1
2
2
4
9
2
1
9
1
8
2
2
3
1
1
6
8
5
9.90E-OS «
1
2
3
5
7
9
1
1
1
1
1
1
1
1
9
7
S
5
4
3
2
2
1
1
1
52E-05
44E-OS
79E-05
56E-05
S3E-05
75E-05
1SE-04
30E-04
38E-04
40E-04
36E-04
27E-04
16E-04
03E-04
01E-05
71E-05
51E-05
42E-05
47E-05
65E-05
96E-05
38E-05
90E-05
52E-05
20E-05
1
1
2
3
S
£
8
8
9
9
9
8
7
7
e
s
4
3
3
2
2
1
1
1
8
0.5
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
13E-44
77E-35
85E-29
78E-24
15E-20
16E-20
17E-20
19E-20
23E-20
29E-20
42E-20
63E-20
03E-20
81E-20
59E-20
41E-20
S7E-19
18E-18
54E-18
70E-1S
HE-IS
08E-12
17E-09
46E-06
15E-03
84E-03
33E-OS
52E-06
60E-06
81E-06
OSE-OS
6BE-05
61E-OS
82E-05
24E-OS
70E-05
OOE-05
95E-05
49E-OS
60E-05
32E-05
75E-05
98E-05
10E-05
19E-05
30E-05
47E-05
73E-05
07E-05
51E-05
03E-05
63E-05
31E-05
04E-OS
27E-0«
0
0
0
0
0
0
2
S
9
S
3
3
3
3
3
4
4
S
6
9
1
3
8
3
3
5
2
6
7
1
3
5
2
2
1
2
3
S
8
1
1
2
2
2
3
3
3
2
2
2
2
1
1
1
9
8
e
s
4
3
2
1.0
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
6SE-44
74E-36
26E-30
78E-25
75E-21
7SE-21
79E-21
8SE-21
98E-21
20E-21
59E-21
29E-21
S8E-21
13E-21
49E-20
06E-20
65E-20
83E-19
lOE-ie
S2E-17
63E-15
74E-13
OSE-10
12E-06
75E-04
97E-04
06E-OS
76E-06
82E-06
21E-06
39E-06
44E-06
47E-06
24E-OS
70E-05
18E-05
60E-05
91E-OS
OBE-05
12E-05
03E-05
84E-OS
59E-OS
30E-05
01E-05
72E-05
45E-05
21E-05
97E-06
14E-06
S9E-06
31E-OS
25E-06
38E-OS
69E-06
0
0
0
0
0
0
4
8
1
B
S
5
5
S
6
6
7
B
1
1
2
4
1
5
4
8
4
1
1
1
S
9
3
4
2
3
5
g
1
1
2
3
3
4
4
4
4
4
3
3
3
2
2
1
1
1
1
8
6
S
4
1.5
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
20E-45
80E-37
42E-30
87E-26
75E-22
77E-22
81E-22
91E-22
10E-22
44E-22
05E-22
11E-22
01E-21
40E-21
28E-21
69E-21
33E-20
87E-20
75E-19
47E-18
04E-16
03E-13
OBE-10
72E-07
75E-05
15E-05
15E-06
24E-07
79E-07
39E-07
20E-07
34E-07
30E-OS
90E-OS
61E-OS
34E-06
98E-06
46E-OS
73E-06
78E-06
64E-06
36E-OG
97E-06
53E-06
OBE-06
64E-06
23E-06
8SE-OS
53E-06
2SE-06
DIE-OS
14E-07
51E-07
19E-07
12E-07
0
0
0
0
0
0
0
€
1
e
s
s
7
1
1
3
9
4
3
6
2
7
7
1
4
e
2
3
2
2
3
S
9
1
1
2
2
3
3
3
3
3
2
2
2
1
1
1
1
9
7
5
4
3
2
2.0
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
37E-3S
03E-31
42E-27
16E-23
18E-23
21E-23
2BE-23
42E-23
S7E-23
10E-23
B8E-23
30E-23
01E-22
65E-22
39E-22
61E-22
25E-21
44E-20
13E-19
93E-17
49E-15
84E-12
25E-08
16E-06
63E-06
28E-07
07E-08
02E-08
4SE-08
77E-08
04E-OB
40E-08
38E-07
89E-07
42E-07
88E-07
23E-07
42E-07
46E-07
36E-07
16E-07
88E-07
56E-07 .
23E-07
91E-07
61E-07
34E-07
11E-07
04E-08
32E-08
B9E-08
72E-08
76E-08
98E-08
z)
y/bbc-
2.5
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
0. OOE+00
2.18E-39
3.52E-33
2.20E-28
1.42E-24
1.43E-24
1.44E-24
1.46E-24
1.51E-24
1.60E-24
1.74E-24
2.01E-24
2.50E-24
3.47E-24
5.6SE-24
1.16E-23
3.29E-23
1.45E-22
1.18E-21
2.09E-20
9.99E-19
2.56E-16
2.S8E-13
4.26E-10
1.42E-07
2.26E-07
7.83E-09
1.05E-09
6.89E-10
8.40E-10
1.29E-09
2.07E-09
3.22E-09
4.72E-09
6.47E-09
8.26E-09
9.85E-09
1.10E-08
1.17E-08
1.18E-08
1.15E-08
1.08E-08
9.85E-09
8.77E-09
7.64E-09
6.52E-09
5.52E-09
4.60E-09
3.80E-09
3.11E-09
2.52E-09
2.02E-09
1.S2E-09
1.29E-09
1.02E-09
time averaged (tav - 900. s) volume concentration: maximum concentration (volume fraction) along centerline.
downwind maximum time of cloud
distance height concentration max cone duration
x (m) z (m) c(x,0,z) (s) (s)
l.OOE+00 5.OOE+00 l.OOE+00 1.25E+04 2.50E+04
C-35
-------
1.95E+00
2.91E+00
3.86E+00
4.81E+00
5.77E+00
6.72E+00
7.67E+00
8.63E+00
9.58E+00
1.05E+01
1.07E+01
1.10E+01
1.13E+01
1.17E+01
1.21E+01
1.26E+01
1.33E+01
1.40E+01
1.50E+01
1.61E+01
1.74E+01
1.90E+01
2.09E+01
2.32E+01
2.59E+01
2.92E+01
3.32E+01
3.79E+01
4.37E+01
5.05E+01
5.88E+01
6.87E+01
8.06E+01
9.49E+01
1.12E+02
1.33E+02
1.S7E+02
1.87E+02
2.23E+02
2.66E+02
3.17E+02
3.79E+02
4.54E+02
5.43E+02
6.50E+02
7.79E+02
9.33E+02
1.12E+03
1.34E+03
1.61E+03
1.93E+03
2.32E+03
2.78E+03
3.34E+03
4.01E+03
4.81E+03
5.78E+03
6.94E+03
8.33E+03
l.OOE+04
9.92E+00
1.18E+01
1.31E+01
1.40E+01
1.48E+01
1.53E+01
1.58E+01
1.61E+01
1.62E+01
1.63E+01
1.63E+01
1.63E+01
1.63E+01
1 . 63E+01
1.63E+01
1.63E+01
1.62Et01
1.62E+01
1.62E+01
1.61E+01
1.60E+01
1.58E+01
1.5SE+01
1.52E+01
1.47E+01
1.41E+01
1.31E+01
1.17E+01
9.62E+00
6.56E+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
6.38E-01
2.14E-01
1.01E-01
5.84E-02
3.78E-02
2.64E-02
1.95E-02
1.49E-02
1.18E-02
9.58E-03
9.56E-03
9.53E-03
9.49E-03
9.45E-03
9.40E-03
9.34E-03
9.27E-03
9.18E-03
9.08E-03
8.9SE-03
8.80E-03
8.63E-03
8.42E-03
8.17E-03
7.89E-03
7.56E-03
7.19E-03
6.78E-03
6.33E-03
5.84E-03
S.55E-03
6.33E-03
4 . 93E-03
3.69E-03
2.83E-03
2.23E-03
1.79E-03
1.45E-03
1.18E-03
9.66E-04
7.90E-04
S.47E-04
5.30E-04
4.33E-04
3.S4E-04
2.89E-04
2.35E-04
1.91E-04
1.S5E-04
1.25E-04
1.01E-04
8.09E-05
6.47E-05
5.16E-05
4.10E-OS
3.25E-05
2.57E-05
2.03E-05
1.60E-05
1.25E-OS
1.25E+04
1.2SE+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.2SE+04
1.2SE+04
1.25E+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.2SE+04
1.2SE+04
1.25E+04
1.25E+04
1.25E+04
1.25B+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1.25E+04
1. 266+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.26E+04
1.27E+04
1.27E+04
1.27E+04
1.28E+04
1.28E+04
1.29E+04
1.30E+04
1.31E+04
1.32E+04
1.33E+04
1.34E+04
1.36E+04
1.39E+04
1.41E+04
1.4SE+04
1.49E+04
1.53E+04
1.59E+04
l.«6E+04
1.74E+04
1.B4E+04
2.SOE+04
2.50E+04
2.50E+04
2.50E+04
2.SOE+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.SOE+04
2.50E+04
2.SOE+04
2.SOE+04
2.SOE+04
2.50E+04
2.SOE+04
2.50E+04
2.50E+04
2.50E+04
2.SOE+04
2. 506+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.SOE+04
2.50E+04
2.SOE+04
2.SOE+04
2.SOE+04
2.SOE+04
2.50E+04
2.50E+04
2.50E+04
2.50E+04
2.SOE+04
2.SOE+04
2.50E+04
2.50E+04
2.SOE+04
2.50E+04
2.SOE+04
2.50E+04
2.SOE+04
2.SOE+04
2.50E+04
2.50E+04
2.SOE+04
2.SOE+04
2.50E+04
2.50E+04
2.SOE+04
2.50E+04-
2.50E+04
C-36
-------
SLAB Example 2: Input File
3
1
.017031
2170.0
239.72
.82
1370840.
4294.0
682.8
2132.52
-32.98
239.72
56.0
.179
16200.
0.
.20
3600.
10000.
0.
1.
2.
4.
.01
10.0
4.50
298.0
50.0
4.
-1.
C-37
-------
Output File
Ammonia pipeline release (aerosol) — SLAB model
problem input
idspl
ncalc
wms
cps
tbp
cmedO
dhe
cpsl
rhosl
spb
spc
ts
qs
as
tsd •
qtis
hs
tav
xffm
zp(l)
zp(2)
zp<3)
zp(4)
zO
za
ua
ta
rh
stab
—
_
-
•
~
-
-
_
_
™
.
*
-
.
•
-
_
-
3
1
.017031
2170.00
239.72
.82
1370840.
4234.00
682.80
2132.52
-32.98
239.72
56.00
.18
16200.
.00
.20
3600.00
10000.00
.00
1.00
2.00
4.00
.010000
10.00
4.50
298.00
50.00
4.00
release gas properties
molecular weight of source gas (kg)
vapor heat capacity, const, p. (j/kg-k)
temperature of source gas (k)
density of source gas (kg/m3)
boiling point temperature
liquid mass fraction
liquid heat capacity (j/kg-k)
heat of vaporization -
• zp<2|-
- zp<3)-
• zp<4>-
vmae «
cpaa *
rhoa •
za
pa
ua -
ta -
rh -
uastr •
stab -
ala
zO
2.1700E+03
2.3972E+02
8.65B2E-01
2.3972E+02
8.2000E-01
4.2940E+03
1.3708E+06
6.8280E+02
1.0315E+01
2.132SE+03
-3.2980E+01
3
5.6000E+01
1.6200E+04
9.0720E+05
O.OOOOE+00
1.7900E-01
6.5416E+01
2.1154E-01
2.0000E-01
O.OOOOE+00
3.6000E+03
1.0400E+03
l.OOOOE+04
O.OOOOE+00
l.OOOOE-fOO
2.0000E+00
4.0000E+00
2.8782E-02
1.0144E+03
1.1770E+00
l.OOOOE+01
1.0133Et05
4.5000E+00
2.9800E+02
5.0000E+01
2.6746E-01
4.0000E+00
O.OOOOE+00
l.OOOOE-02
additional parameters
sub-step multiplier
number of calculatlonal sub-steps
acceleration of gravity (m/s2)
gas constant (J/mol- k)
ncalc - 1
nssra - 3
grav - 9.8067E+00
rr - 8.3143E+00
C-38
-------
von Jcarraan constant
- 4.1000E-01
Instantaneous spatially averaged cloud parameters
X
l.OOE+00
1.45E+OC
1.90E+00
2.35E+00
2.80E+00
3.25E+00
3.70E+00
4.14E+00
4.59E+00
5.04E+00
5.49E+00
5.61E+00
5.76E+00
5.93E+00
6.15E+00
6.41E+00
6.73E+00
7.11E+00
7.58E+00
8.15E+00
8.85E+00
9.70E+00
1.07E+01
1.20E+01
1.35E+01
1.54E+01
1.76E+01
2.04E+01
2.37E+01
2.78E+01
3.27E+01
3.87E+01
4.61E+01
5.50E+01
6.S8E+01
7.90E+01
9.51E+01
1.15E+02
1.38E+02
1.67E+02
2.03E+02
2.45E+02
2.97E+02
3.61E+02
4.38E+02
5.32E+02
6.46E+02
7.85E+02
9.54E+02
1.16E+03
1.41E+03
1.71E+03
2.09E+03
2.54E+03
3.09E+03
3.75E+03
4.57E+03
5.55E+03
6.76E+03
8.22E+03
l.OOE+04
X
l.OOE+00
1.45E+00
1.90E+00
2.35E+00
2.80E+00
3.25E+00
3.70E+00
4.14E+00
4.59E+00
5.04E+00
5.49E+00
5.61E+00
5.76E+00
5.93E+00
6.15E+00
6.41E+00
6.73E+00
7.11E+00
7.5BE+00
8.15E+00
8.85E+00
9.70E+00
1.07E+01
1.20E+01
1.35E+01
1.54E+01
1.76E+01
2.04E+01
2.37E+01
zc
2.00E-01
7.42E+00
1.01E+01
1.20E+01
1.34E+01
1.45E+01
1.54E+01
1.60E+01
1.64E+01
1.67E+01
1.68E+01
1.68E+01
1.68E+01
1.68E+01
1.67E+01
1.67E+01
1.67E+01
1.67E+01
1.67E+01
1.67E+01
1.66E+01
1.66E+01
1.65E+01
1.64E+01
1.62E+01
1.59E+01
1.54E+01
1.48E+01
1.38E+01
1.23E+01
1.02E+01
7.84E+00
6.05E+00
4.70E+00
3.69E+00
2.93E+00
2.38E+00
1.96E+00
1.65E+00
1.42E+00
1.25E+00
1.11E+00
l.OOE+00
9.17E-01
8.48E-01
7.90E-01
7.42E-01
7.00E-01
6.64E-01
6.31E-01
6.01E-01
5.73E-01
5.47E-01
5.22E-01
4.98E-01
4.74E-01
4.51E-01
4.28E-01
4.06E-01
3.84E-01
3.63E-01
cm
l.OOE+00
6.35E-01
3.03E-01
1.62E-01
9.81E-02
6.51E-02
4.S1E-02
3.43E-02
2.S5E-02
2.10E-02
1.71E-02
1.71E-02
1.71E-02
1.71E-02
1.71E-02
1.70E-02
1.70E-02
1.70E-02
1.70E-02
1.69E-02
1.69E-02
1.68E-02
1.67E-02
1.67E-02
1.66E-02
1.64E-02
1.63E-02
1.61E-02
1.59E-02
h
4.23E-01
2.32E+00
4.22E+00
6.12E+00
8.02E+00
9.92E+00
1.18E+01
1.37E+01
1.S6E+01
1.75E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.94E+01
1.95E+01
1.95E+01
1.95E+01
1.95E+01
1.95E+01
1.96E+01
1.96E+01
1.97E+01
1.98E+01
2.00E+01
1.62E+01
1.27E+01
1.03E+01
8.56E+00
7.36E+00
6.60E+00
6.18E+00
6.0SE+00
6.20E+00
6.63E+00
7.32E+00
8.30E+00
9.60E+00
1.13E+01
1.34E+01
1.60E+01
1.92E+01
2.31E+01
2.78E+01
3.35E+01
4.03E+01
4.84E+01
S.80E+01
6.94E+01
8.27E+01
9.84E+01
1.17E+02
1.38E+02
1.62E+02
1.91E+02
cmv
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
-l.OOE+00
1.71E-02
1.71E-02
1.71E-02
1.71E-02
1.71E-02
1.70E-02
1.70E-02
1.70E-02
1.70E-02
1.69E-02
1.69E-02
1.68E-02
1.67E-02
1.67E-02
1.66E-02
1.64E-02
1.63E-02
1.61E-02
1.S9E-02
bb
2.12E-01
1.63E+00
3.05E+00
4.48E+00
S.90E+00
7.32E+00
8.74E+00
1.02E+01
1.16E+01
1.30E+01
1.44E+01
1.44E+01
1.44E+01
1.45E+01
1.45E+01
1.4SE+01
1.4SE+01
1.45E+01
1.45E+01
1.46E+01
1.4SE+01
1.47E+01
1.47E+01
1.48E+01
1.49E+01
1.50E+01
1.51E+01
1.52E+01
1.54E+01
1.5SE+01
1.59E+01
2.01E+01
2.66E+01
3.48E+01
4.49E+01
5.72E+01
7.15E+01
8.75E+01
1.05E+02
1.23E+02
1.42E+02
1.61E+02
1.80E+02
1.99E+02
2.18E+02
2.37E+02
2.5SE+02
2.7SE+02
2.95E+02
3.16E+02
3.39E+02
3.63E+02
3.89E+02
4.19E+02
4.52E+02
4.89E+02
5.31E+02
5.78E+02
6.32E+02
6.93E+02
7.62E+02
cmda
O.OOE+00
3.61E-01
6.90E-01
8.29E-01
8.93E-01
9.25E-01
9.44E-01
9.56E-01
9.64E-01
9.69E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.73E-01
9.74E-01
9.74E-01
9.74E-01
9 74E-01
b
1.90E-01
3.41E-01
4.92E-01
6.43E-01
7.94E-01
9.44E-01
1.10E+00
1.25E+00
1.40E+00
1.55E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
1.70E+00
2.12E+00
2.75E+00
3.SSE+00
4.53E+00
5.70E+00
7.05E+00
8.S4E+00
1.01E+01
1.18E+01
1.34E+01
1.S1E+01
1.67E+01
1.83E+01
1.98E+01
2.12E+01
2.26E+01
2.39E+01
2.53E+01
2.66E+01
2.79E+01
2.92E+01
3.06E+01
3.21E+01
3.37E+01
3.S4E+01
3.72E+01
3.91E+01
4.13E+01
4.36E+01
4.62E+01
cmw
O.OOE+00
3.72E-03
7.11E-03
8.55E-03
9.20E-03
9.54E-03
9.74E-03
9.86E-03
9.94E-03
9.99E-03
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
l.OOE-02
1 .OOE-02
l.OOE-02
l.OOE-02
0
4
8
1
1
2
2
3
3
4
4
4
4
4
5
5
5
6
6
7
7
8
9
1
1
1
1
1
2
2
3
3
4
5
6
7
9
1
1
1
2
2
2
3
4
5
6
7
9
1
1
1
2
2
3
3
4
5
6
8
^
_1
-1
-1
-1
-1
-1
-1
-1
-1
-1
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
bbx
OOE+00
49E-01
98E-01
35E+00
80E+00
2SE+00
70E+00
14E+00
S9E+00
04E+00
49E+00
C1E+00
76E+00
93E+00
15E+00
41E+00
73E+00
11E+00
58E+00
15E+00
85E+00
70E+00
73E+00
10E+01
25E+01
44E+01
6SE+01
94E+01
27E+01
68E+01
17E+01
77E+01
51E+01
40E+01
48E+01
80E+01
41E+01
14E+02
37E+02
66E+02
02E+02
44E+02
96E+02
60E+02
37E+02
31E+02
45E+02
84E+02
53E+02
16E+03
41E+03
71E+03
08E+03
54E+03
08E+03
75E+03
56E+03
55E+03
76E+03
22E+03
OOE+04
cmwv
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
68E-03
69E-03
69E-03
69E-03
70E-03
70E-03
71E-03
71E-03
72E-03
74E-03
75E-03
77E-03
78E-03
81E-03
84E-03
87E-03
92E-03
97E-03
03E-03
bx
O.OOE+00
4.49E-01
8.98E-01
1.35E+00
1.80E+00
2.2SE+00
2.70E+00
3.14E+00
3.S9E+00
4.04E+00
4.49E+00
4.61E+00
4.76E+00
4.93E+00
5.15E+00
S.41E+00
5.72E+00
6.11E+00
6.58E+00
7.15E+00
7.I5E+00
8.70E+00
9.73E+00
1.10E+01
1.25E+01
1.44E+01
1.66E+01
1.94E+01
2.27E+01
2.68E+01
3.17E+01
3.77E+01
4.51E+01
5.40E+01
6.48E+01
7.80E+01
9.41E+01
1.14E+02
1.37E+02
1.66E+02
2.02E+02
2.44E+02
2.96E+02
3.60E+02
4.37E+02
5.31E+02
6.45E+02
7.84E+02
9.S3E+02
1.16E+03
1.41E+03
1.71E+03
2.0BE+03
2.54E+03
3.08E+03
3.75E+03
4.56E+03
5.55E+03
6.75E+03
8.22E+03
l.OOE+04
we
6.54E+01
4.47E+01
3.62E+01
2.96E+01
2.40E+01
1.92E+01
1.47E+01
1.07E+01
6.91E+00
3.36E+00
O.OOE+00
-1.05E-02
-2.33E-02
-3.89E-02
-5.78E-02
-8.08E-02
-1.09E-01
-1.43E-01
-1.84E-01
-2.34E-01
-2.94E-01
-3.67E-01
-4.55E-01
-5.S2E-01
-6.91E-01
-8.4SE-01
-1.03E+00
-1.25E+00
-1.52E+00
cv
l.OOE+00
7.46E-01
4.24E-01
2.46E-01
1.55E-01
1.05E-01
7.S5E-02
5.66E-02
4.39E-02
3.50E-02
2.86E-02
2.86E-02
2.85E-02
2.85E-02
2.B5E-02
2.85E-02
2.84E-02
2.84E-02
2.83E-02
2.83E-02
2.82E-02
2.B1E-02
2.80E-02
2.78E-02
2.77E-02
2.75E-02
2.72E-02
2.69E-02
2.66E-02
2.61E-02
2.55E-02
2.49E-02
2.43E-02
2.3SE-02
2.24E-02
2.10E-02
1.91E-02
1.69E-02
1.45E-02
1.21E-02
9.93E-03
7.97E-03
6.30E-03
4 . 92E-03
3.80E-03
2.92E-03
2.23E-03
1.70E-03
1.29E-03
9.84E-04
7.48E-04
5.68E-04
4.32E-04
3.28E-04
2.49E-04
1.90E-04
1.44E-04
1.10E-04
8.33E-05
6.34E-05
4.83E-OS
vg
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
rho
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.23E+00
.23E+00
.23E+00
. 23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
.23E+00
. 23E+00
.23E+00
.22E+00
.22E+00
. 22E+00
.22E+00
.22E+00
.22E+00
.21E+00
. 20E+00
.20E+00
.19E+00
.19E+00
.19E+00
.18E+00
. 18E+00
. 18E+00
. 18E+00
.18E+00
. 18E+00
. 18E+00
. 18E+00
. 18E+00
. UE+00
. 18E+00
. 18E+00
. 18E+00
. 18E+00
.18E+00
. 18E+00
. 18E+00
ug
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
, OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
4
t
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
83E+02
83E+02
S3E+02
83E+02
83E+02
83E+07
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
83E+02
84E+02
84E+02
84E+02
84E+02
84E+02
8SE+02
85E+02
85E+02
86E+02
87E+02
88E+02
90E+02
91E+02
93E+02
94E+02
95E+02
96E+02
96E+02
97E+02
97E+02
97E+02
97E+02
98E+02
98E+02
98E+02
98E+02
98E+02
98E+02
98E+02
98E+02
98E+02
98E+02
98E+02
w
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
OOE+00
25E-01
62E-02
63E-02
S3E-02
63E-02
63E-02
64E-02
64E-02
65E-02
66E-02
68E-02
70E-02
73E-02
78E-02
86E-02
97E-02
16E-02
48E-02
09E-02
a
1
2
2
3
3
3
3
4
t
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
u
.OOE+00
.SOE+00
.12E+00
.60E+00
.01E+00
.36E+00
.68E+00
.98E+00
.25E+00
.51E+00
.7SE+00
.75E+00 4
.75E+00 <
.75E+00 4
.75E+00 <
.75E+00 <
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.75E+00 4
.74E+00 <
.74E+00 4
.73E+00 4
.73E+00 4
.71E+00 <
.72E+00 4
.67E+00 <
.55E+00 <
.4SE+00 4
.36E+00 4
.29E+00 4
.24E+00 '
.22E+00 4
.21E+00 4
.21E+00 4
.21E+00 '
.21E+00 4
.24E+00 4
.27E+00 4
.33E+00 4
.39E+00 4
.47E+00 4
.55E+00 <
.64E+00 4
.74E+00 4
.84E+00 4
.94E+00 4
.04E+00 !
-14E+00 !
.24E+00 !
.35E+00 • !
.45E+00 !
.S4E+00 !
. 64E+00 .
.73E+00 .
V
.OOE+00 t
.OOE+00 C
.OOE+00 C
.OOE+00 C
.OOE+00 C
.OOE+00 C
.OOE+00. C
.OOE+00 (
.OOE+00 I
.OOE+00 C
.50E-01 (
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.50E-01
.49E-01
.49E-01
.49E-01
.49E-01
.49E-01
.49E-01
.48E-01
ua
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.83E+00
.82E+00
.82E+00
.81E+00
.80E+00
.79E+00
.77E+00
.74E+00
.65E+00
.52E+00
.40E+00
.30E+00
.23E+00
.19E+00
.17E+00
.17E+00
.18E+00
.19E+00
.20E+00
.23E+00
.28E+00
.33E+00
.40E+00
.48E+00
.56E+00
.65E+00
.75E+00
'.85E+00
.95E+00
.05E+00
.15E+00
.2SE+00
.35E+00
.4SE+00
.55E+00
.65E+00
.74E+00
vx
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.15E-01
.L5E-01
.15E-01
.15E-01
.15E-01
.15E-01
.15E-01
.1SE-01
.15E-01
.15E-01
.15E-01
.15E-01
.15E-01
.15E-01
.15E-01
.15E-01
.ISE^Ol
.15E-01
C-39
-------
2.78E+01
3.27E+01
3.87E+01
4.61E+01
5.50E+01
6.58E+01
7.90E+01
9.51E+01
1.15E+02
1.38E+02
1.67E+02
2.03E+02
2.45E+02
2.97E+02
3.61E+02
4.38E+02
5.32E+02
6.46E+02
7.85E+02
9.54E+02
1.16E+03
1.41E+03
1.71E+03
2.09E+03
2.54E+03
3.09E+03
3.75E+03
4.57E+03
5.55E+03
6.76E+03
8.22E+03
l.OOE+04
1.S6E-02
1.53E-02
1.49E-02
1.45E-02
1.40E-02
1.34E-02
1.25E-02
1.14E-02
1.01E-02
8.64E-03
7.22E-03
5.90E-03
4.73E-03
3.74E-03
2.92E-03
2.25E-03
1.73E-03
1.32E-03
1.01E-03
7.67E-04
5.83E-04
4.43E-04
3.36E-04
2.56E-04
1.94E-04
1.48E-04
1.12E-04
8.53E-05
6.48E-05
4.93E-OS
3.75E-05
2.86E-05
1.S6E-02
1.53E-02
1.49E-02
1.45E-02
1.40E-02
1.34E-02
1.25E-02
1.14E-02
1.01E-02
8.64E-03
7.22E-03
5.90E-03
4.73E-03
3.74E-03
2.92E-03
2.25E-03
1.73E-03
1.32E-03
1.01E-03
7.S7E-04
5.83E-04
4.43E-04
3.36E-04
2.56E-04
1.94E-04
1.48E-04
1.12E-04
8.53E-05
6.48E-05
4.93E-05
3.75E-05
2.86E-05
9.74E-01
9.75E-01
9.75E-01
9.75E-01
9.76E-01
9.77E-01
9.77E-Q1
9.79E-01
9.80E-01
9.81E-01
9.83E-01
9.84E-01
9.85E-01
9.86E-01
9.87E-01
9.88E-01
9.88E-01
9.88E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.89E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
9.90E-01
l.OOE-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.01E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
.11E-03
.21E-03
.32E-03
. 44E-03
.59E-03
. 80E-03
9.08E-03
9.45E-03
9.89E-03
1.01E-02
1.01E-02
1.01E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02B-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02B-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
1.02E-02
-1.83E+00
-2.19E+00
-1.47E+00
-8.97E-01
-5.40E-01
-3.24E-01
-1.94E-01
-1.1SE-01
-7.01E-02
-4.28E-02
-2.65E-02
-1.S7E-02
-1.07E-02
-S.98E-03
-4.6SE-03
-3.17E-03
-2.20E-03
-1.56E-03
-1.13E-03
-8.41E-04
-6.37E-04
-4.93E-04
-3.88E-04
-3.10E-04
-2.50E-04
-2.04E-04
-1.67E-04
-1.37E-04
-1.13E-04
-9.23E-05
-7.53E-05
-6.13E-05
O.OOE+00
O.OOE+00
3.77E+00
3.94E+00
4. OOE+00
3.95E+00
3.77E+00
3.49E+00
3.13E+00
2.72E+00
2.30E+00
1.90E+00
1.5SE+00
1.25E+00
1.01E+00
8.14E-01
6.SOE-01
5.39E-01
4.46E-01
3.74E-01
3.19E-01
2.77E-01
2.45E-01
2.20E-01
2.01E-01
1.85E-01
1.72E-01
1.S1E-01
1.52E-01
1.44E-01
1.36E-01
1.29E-01
O.OOE+00 !
O.OOE+00 1
O.OOE+00 4
O.OOE+00 (
O.OOE+00 "
O.OOE+00 f
O.OOE+00 '.
O.OOE+00
O.OOE+00 <
O.OOE+00 '
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
.S2E-02
.21E-01
.90E-02
.16E-02
.39E-02
.46E-02
>.18E-02
.4SE-02
I.27E-02
I.01E-02
. 80E-02
.56E-02
.37E-02
. 24E-02
.19E-02
.19E-02
.21E-02
.27E-02
.32E-02
.37E-02
.41E-02
.44E-02
.45E-02
.44E-02
.42E-02
.37E-02
-29E-02
.20E-02
.07E-02
'.91E-02
7.71E-02
7.47E-02
1.48E-01
1.47E-01
1.44E-01
1.38E-01
1.31E-01
1.23E-01
1.16E-01
1.10E-01
1.04E-01
9.90E-02
9.45E-02
9.04E-02
8.67E-02
8.34E-02
8.07E-02
7.85E-02
7.66E-02
7.50E-02
7.37E-02
7.25E-02
7.13E-02
7.02E-02
6.89E-02
6.76E-02
6.61E-02
6.44E-02
6.25E-02
6.04E-02
5.81E-02
5.57E-02
5.31E-02
5.04E-02
.16E-01
.16E-01
.17E-01
.16E-01
.15E-01
.14E-01
.13E-01
.13E-01
.12E-01
.12E-01
.12E-01
.12E-01
.12E-01
.12E-01
.13E-01
.13E-01
.14E-01
.14E-01
.15E-01
.16E-01
J.16E-01
1.17E-01
1.17E-01
1.18E-01
.18E-01
.19E-01
.19E-01
.18E-01
.18E-01
.17E-01
4.16E-01
4.15E-01
1
time averaged (tav - 3600. 9) volume concentration: concentration contour parameters
c(x,y,z,t) - cc(x) * (erf(xa)-erf(xb)) * (erf(ya)-erf(yb)) * (exp(-za'za)+exp(-zb*zb))
c(x,y,z,t) - concentration (volume fraction) at (x,y,z,t)
x - downwind distance Ira)
y - crosswlnd horizontal distance (m)
z - height (m)
t - tine (si
erf - error functon
xa - (x-xc+bx)/(sr2*betax)
xb - (x-xc-bx)/(sr2*betax)
ya - (y+b)/(sr2*betac)
yb -
-------
5.
6
7
9.
1.
1.
1.
2.
2.
3.
3,
4
5
6
8.
1
,32E+02
.46E+02
.85E+02
54E+02
, 16E+03
.41E+03
.71E+03
.09E+03
. 54E+03
. 09E+03
. 75E+03
. 57E+03
. 55E+03
. 76E+03
.22E+03
. OOE+04
6.
4,
3.
3.
2.
1,
1.
1.
9.
8,
6
5,
4.
3,
2,
.39E-03
. 96E-03
.87E-03
.03E-03
.39E-03
.90E-03
.52E-03
.22E-03
.90E-04
. 04E-04
.55E-04
.35E-04
.37E-04
.57E-04
.92E-04
2.38E-04
2
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
.12E+01
.26E+01
.39E+01
.53E+01
.66E+01
.79E+01
.92E+01
.06E+01
.21E+01
.37E+01
.54E+01
.72E+01
.91E+01
.13E+01
.36E+01
.62E+01
1,
1,
1
1.
2.
2
2
2.
3
3
4,
4
5
5.
6
7
.45E+02
.59E+02
.74E+02
.91E+02
, 10E+02
.32E+02
.57E+02
. 86E+02
.20E+02
.60E+02
.05E+02
.59E+02
.20E+02
. 90E+02
. 70E+02
. 60E+02
7.
7
7
6
e.
6
5
5,
5
4
4
4
4
4
3
3
.90E-01
.42E-01
.OOE-01
.64E-01
•31E-01
.01E-01
.73E-01
.47E-01
.22E-01
. 98E-01
.74E-01
.51E-01
.28E-01
. 06E-01
. 84E-01
.63E-01
7
8
1
1
1
1
2
2
3
3
4
5
6
7
9
1
.26E+00
.78E+00
.07E+01
.29E+01
.57E+01
.90E+01
.29E+01
.76E+01
. 32E+01
.98E+01
.75E+01
.65E+01
.71E+01
.94E+01
.35E+01
.10E+02
2
3
3
4
5
6
7
9
1
1
1
1
2
2
3
3
.47E+02
.OOE+02
.S2E+02
.37E+02
.27E+02
.34E+02
.61E+02
.12E+02
.09E+03
.31E+03
.57E+03
.87E+03
.24E+03
.68E+03
.20E+03
.83E+03
5,
6
7.
9,
1,
1.
1.
2,
2
3.
3.
4
5
6.
8,
1
.32E+02
.46E+02
. 85E+02
.54E+02
, 16E+03
.41E+03
.71E+03
.09E+03
.54E+03
.09E+03
. 75E+03
. 57E+03
. S5E+03
.76E+03
.22E+03
.OOE+04
5,
6
7
9
1,
1
1
2
2
3
3
4
5
«
8
1
.31E+02
. 45E+02
.84E+02
.53E+02
.16E+03
.41E+03
.71E+03
.08E+03
. 54E+03
. 08E+03
.75E+03
, 56E+03
. 55E+03
.75E+03
.22E+03
.OOE+04
4.
5.
6.
7.
9.
1,
1.
1.
2
2
3.
3,
4
5.
6.
8
.34E+00
.27E+00
.40E+00
.78E+00
.47E+00
. 15E+01
.40E+01
.70E+01
. 07E+01
. 52E+01
. 06E+01
. 73E+01
. 53E+01
. 52E+01
. 71E+01
. 16E+01
time averaged (tav - 3600. a) volume concentration: concentration in the z - .00 plane.
downwind time of
distance max cone
x (m) (s)
l.OOE+00
1.45E+00
1.90E+00
2.35E+00
2.80E+00
3.25E+00
3.70E+00
4.14E+00
4.59E+00
5.04E+00
5.49E+00
5.61E+00
5.76E+00
5.93E+00
6.1SE+00
6.41E+00
6.73E+00
7.11E+00
7.58E+00
8.1SE+00
8.8SE+00
9.70E+00
1.07E+01
1.20E+01
1.35E+01
1.S4E+01
1.76E+01
2.04E+01
2.37E+01
2.78E+01
3.27E+01
3.87E+01
4.61E+01
5.50E+01
6.58E+01
7.90E+01
9.51E+01
1.15E+02
1.38E+02
1.67E+02
2.03E+02
2.45E+02
2.97E+02
3.61E+02
4.38E+02
5.32E+02
6.46E+02
7.85E+02
9.54E+02
1.16E+03
1.41E+03
1.71E+03
2.09E+03
2.54E+03
3.09E+03
3.75E+03
. 10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
. 10E+03
.10E+03
.10E+03
.10E+03
.10E+03
-10E+03
.10E+03
.10E+03
.10E+03
-IOE+03
. 10E+03
.10E+03
.10E+03
.XOE+03
.10E+03
.10E+03
. 10E+03
.10E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.12E+03
.12E+03
.13E+03
.13E+03
.14E+03
.15E+03
. 16E+03
.17E+03
.18E+03
.20E+03
.22E+03
.2SE+03
.28E+03
.32E+03
.37E+03
.43E+03
.50E+03
.59E+03
.69E+03
.82E+03
4.57E+03 8.97E+03
S.55E+03 9.16E+03
6.76E+03 9.39E+03
8.22E+03 9.67E+03
1. OOE+04 1. OOE+04
1
time averaged (tav - 3600.
downwind tijne of
distance max cone
x (m) (s)
l.OOE+00 8.10E+03
1.45E+00 8.10E+03
1.90E+00 8.J.OE+03
2.35E+00 8.10E+03
2.80E+00 8.10E+03
3.25E+00 8.10E+03
3.70E+00 8.10E+03
cloud
duration
(s)
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.C2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.S2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.S2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
s) volume
cloud
duration
(s)
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
effective
half width
bbc (m)
2.12E-01
1.64E+00
3.06E+00
4.48E+00
S.91E+00
7.33E+00
8.75E+00
1.02E+01
1.16E+01
1.30E+01
1.44E+01
1.45E+01
.45E+01
.45E+01
.45E+01
.45E+01
.4SE+01
.4SE+01
.46E+01
.46E+01
.47E+01
.47E+01
.48E+01
.49E+01
.50E+01
1.52E+01
1.53E+01
l.SSE+01
1.59E+01
1.63E+01
1.68E+01
2.12E+01
2.77E+01
3.60E+01
4.63E+01
S.88E+01
7.33E+01
8.96E+01
1.07E+02
1.26E+02
1.46E+02
1.66E+02
1.87E+02
2.08E+02
2.30E+02
2.53E+02
2.77E+02
3.03E+02
3.32E+02
3.65E+02
4 .03E+02
4.46E+02
4.96E+02
5.55E+02
6.24E+02
7.03E+02
7.95E+02
9.01E+02
1.02E+03
1.16E+03
1.32E+03
concentration :
effective
half width
bbc (m)
2.12E-01
1.64E+00
3.06E+00
4.48E+00
5.91E+00
7.33E+00
8.75E+00
average concentration (volume fraction)
y/bbc-
8
7
1
8
2
1
1
e
2
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
5
9
1
2
2
2
3
3
3
3
3
2
2
1
1
9
7
5
4
3
2
1
1
8
6
4
3
2
1
1
9
7
S
0.0
.72E-01
.43E-27
.55E-15
.22E-11
. 80E-08
.01E-06
.12E-05
.18E-05
.20E-04
. 81E-04
.25E-03
.25E-03
.25E-03
.25E-03
.25E-03
.25E-03
.26E-03
.2SE-03
.27E-03
.29E-03
.32E-03
.36E-03
.43E-03
.53E-03
.70E-03
.98E-03
.47E-03
.38E-03
.22E-03
.32E-03
.92E-02
.32E-02
.47E-02
.78E-02
.09E-02
.35E-02
.45E-02
.33E-02
.01E-02
.S7E-02
.09E-02
. 66E-02
.28E-02
.77E-03
.38E-03
.53E-03
.12E-03
.06E-03
.26E-03
.66E-03
.22E-03
.95E-04
.54E-04
.77E-04
.47E-04
.53E-04
. 84E-04
.35E-04
. 86E-05
.24E-05
.34E-05
concentration
y/bbc-
0.5
8.23E-01
5.11E-27
1.06E-15
5.65E-11
1.92E-08
S.95E-07
7.69E-06
4.25E-05
1.51E-04
.99E-04
.57E-04
.57E-04
.58E-04
. 58E-04
.59E-04
. 61E-04
.64E-04
.68E-04
.76B-04
.88E-04
9.06E-04
9.35E-04
9.BOE-04
1.05E-03
1.17E-03
1.3SE-03
1.69E-03
2.32E-03
3.59E-03
6.40E-03
1.32E-02
1.59E-02
1.70E-02
1.91E-02
2.13E-02
2.30E-02
2.37E-02
2.29E-02
2.07E-02
1.77E-02
1.44E-02
1.14E-02
8.80E-03
6.72E-03
5.07E-03
3.80E-03
2.83E-03
2.10E-03
1.55E-03
1.14E-03
8.40E-04
6.15E-04
4.50E-04
3.28E-04
2.39E-04
1.74E-04
1.27E-04
9.26E-05
6.78E-05
4.98E-05
3.67E-05
in the z -
y/bbc-
1.0
3.01E-01
1.66E-27
3.45E-16
1.83E-11
6.25E-09
2.25E-07
2.50E-06
1.38E-05
4.91E-05
1.30E-04
2.78E-04
2.78E-04
2.78E-04
2.79E-04
2.79E-04
2.79E-04
2.BOE-04
2.82E-04
2.84E-04
2.88E-04
2.94E-04
3.03E-04
3.18E-04
3.41E-04
3.79E-041
4.41E-04
5.50E-04
7.53E-041
1.16E-03
2.08E-03
4.28E-03
5.17E-03
5.51E-03
6.19E-03
6.90E-03
7.48E-03
7.70E-03
7.43E-03
6.72E-03
5.73E-03
4.67E-03
3.69E-03
2.86E-03
2.18E-03
1.65E-03
1.23E-03
9.19E-04
6.82E-04
5.04E-04
3.71E-04
2.73E-04
2.00E-04
1.46E-04
1.06E-04-
7.75E-OS
5.65E-OS
4.12E-OS
3.00E-05
2.20E-05
1.62E-05
1.19E-05
X.OO plane
y/bbc-
1.5
7.47E-03
2.54E-28
5.29E-17
2.81E-12
9.58E-10
3.46E-08
3.83E-07
2.12E-06
7.52E-06
1.99E-05
4.27E-05
4.27E-05
4.27E-05
4.27E-05
4.28E-05
4.29E-05
4.30E-05
4.32E-05
4.36E-05
4.42E-05
4.51E-05
4.65E-05
4.88E-05
5.23E-05
5.81E-05
6.77E-05
8.44E-OS
1.16E-04
1.79E-04
3.19E-04
6.56E-04
7.93E-04
8.45E-04
9.50E-04
1.06E-03
1.15E-03
1.18E-03
1.14E-03
1.03E-03
8.79E-04
7.17E-04
5.67E-04
4.38E-04
3.34E-04
2.S2E-04
1.B9E-04
1.41E-04
1.05E-04
7.73E-05
5.70E-05
4.18E-05
3.06E-05
2.24E-05
1.63E-05
1.19E-05
8.66E-06
6.31E-06
4.61E-06
3.37E-06
2.48E-06
1.83E-06
at (x,y.
y/bbc-
5
1
3
2
6
2
2
1
5
1
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
£
8
1
2
4
5
6
6
7
8
8
8
7
6
5
4
3
2
1
1
1
7
5
4
3
2
1
1
8
e
4
3
2
1
1
average concentration (volume fraction)
y/bbc-
6
1
S
1
1
2
2
0.0
.10E-09
.80E-20
.09E-13
.65E-09
.58E-07
.B8E-06
.15E-03f
y/bbc-
0.5
5.76E-09
1.24E-20
3.50E-13
1.13E-09
1.08E-07
1.98E-06
1.48E-05
y/bbc-
1.0
2.11E-09
4.03E-21
1.14E-13
3.69E-10
3.52E-08
6.43E-07
4.80E-06
y/bbc-
1.5
5.22E-11
6.17E-22
1.74E-14
5.65E-11
5.40E-09
9.86E-06
7.36E-07
2.0
.41E-06
.83E-29
. 82E-18
.03E-13
.93E-11
.50E-09
.77E-08
.53E-07
.45E-07
.44E-06
. 09E-06
. 09E-06
.09E-06
.09E-06
.10E-OS
. 10E-06
.HE-OS
.13E-06
.16E-06
.20E-06
.27E-06
.37E-06
.53E-OS
.79E-OS
.20E-06
.90E-06
.1 IE-OS
.36E-06
.2»E-05
.31E-05
.75E-OS
.74E-05
.12E-05
. 88E-05
.66E-05
.31E-05
.56E-05
.25E-05
.46E-05
.3SE-05
.19E-05
.10E-05
.17E-05
.42E-05
. 83E-05
.37E-05
.02E-05
.58E-06
. 60E-06
.13E-06
.03E-06
.22E-06
.62E-06
.18E-06
.61E-07
.27E-07
.57E-07
.34E-07
.44E-07
.79E-07
.32E-07
at (x,y.
y/bbc-
3
4
1
4
3
7
5
2.0
.78E-14
.44E-23
.26E-15
.09E-12
.91E-10
.14E-09
.33E-08
z)
y/bbc-
2.5
O.OOE+00
6.17E-31
1.30E-19
6.95E-15
2.37E-12
8.54E-11
9.47E-10
5.24E-09
1.86E-08
4.93E-08
1.05E-07
1.06E-07
1.06E-07
1.06E-07
1.06E-07
1.06E-07
1.06E-07
1.07E-07
1.08E-07
1.09E-07
1.12E-07
1.15E-07
1.21E-07
1.30E-07
1.44E-07
1.67E-07
2.09E-07
2.86E-07
4.42E-07
7.89E-07
1.62E-06
1.96E-06
2.09E-06
2.35E-06
2.62E-06
2.84E-06
2.93E-06
2.82E-06
2.55E-06
2.17E-06
1.78E-06
1.40E-06
1.09E-06
8.28E-07
6.25E-07
4.69E-07
3.48E-07
2.59E-07
1.92E-07
1.42E-07
1.04E-07
7.60E-08
5.56E-08
4.04E-08
2.94E-08
2.15E-08
1.57E-08
1.14E-08
8.32E-09
6.15E-09
4.54E-09
z)
y/bbc-
2.5
O.OOE+00
1.50E-24
4.28E-17
1.40E-13
1.34E-11
2.44E-10
1.82E-09
C-41
-------
4.14E+00 8.10E+03
4.59E+00 S.10E+03
5.04E+00 8.10E+03
5.49E+00 8.10E+03
5.61E+00 3.10E+03
5.76E+00 8.10B+03
5.93E+00 8.10E+03
6.15E+00 g.lOE+03
6.41E+00 8.10E+03
6.73E+00 8.10E+03
7.11E+00 8.10E+03
7.58E+00 8.10E+03
8.15E+00 8.10E+03
8.85E+00 8.10E+03
9.70E+00 8.10E+03
1.07E+01 8.10E+03
1.20E+01 8.10E+03
1.35E+01 8.10E+03
1.54E+01 8.10E+03
1.76E+01 8.10E+03
2.04E+01 8.10E+03
2.37E+01 8.10E+03
2.78E+01 8.11E+03
3.27E+01 8.11E+03
3.87E+01 8.11E+03
4.6-1E+01 8.11E+03
5.50E+01 8.11E+03
6.58E+01 B.11E+03
7.90E+01 8.11E+03
9.51E+01 8.12E+03
1.15E+02 8.12E+03
1.38E+02 8.13E+03
1.67E+02 8.13E+03
2.03E+02 8.14E+03
2.45E+02 8.15E+03
2.97E+02 8.16E+03
3.61E+02 8.17E+03
4.38E+02 8.18E+03
5.32E+02 8.20E+03
6.46E+02 8.22E+03
7.85E+02 8.25E+03
9.54E+02 8.28E+03
1.16E+03 8.32E+03
• 1.41E+03 8.37E+03
1.71E+03 8.43E+03
2.09E+03 8.SOE+03
2.54E+03 ' 8.59E+03
3.09E+03 8.69E+03
3.75E+03 B.82E+03
4.S7E+03 8.97E+03
5.55E+03 9.16E+03
6.76E+03 9.39E+03
8.22E+03 9.67E+03
l.OOE+04 l.OOE+04
1
time averaged (tav - 3600.
downwind tljne of
x (m) (3)
l.OOE+00
1.45E+00
1.90E+00
2.35E+00
2.80E+00
3.25E+00
3.70E+00
4.14B+00
4.59E+00
5.04E+00
5.49E+00
5.61E+00
5.76E+00
5.93E+00
6.15E+00
6.41E+00
6.73E+00
7.11E+00
7.58E+00
8.15E+00
8.85E+00
9.70E+00
1.07E+01
1.20E+01
1.35Et01
1.54E+01
1.76E+01
2.04E+01
2.37E+01
2.78E+01
3.27E+01
3.87E+01
4.61E+01
5.50E+01
6.58E+01
7.90E+01
9.51E+01
1.15E+02
.10E+03
.10E+03
.10E+03
.10E+03
. 10E+03
.10E+03
.10E+03
.10E+03
-10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
-10E+03
.10E+03
.10E+03
-10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
. 10E+03
. 10E+03
.10E+03 .
. 10E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.12E+03
.12E+03
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
3)
62E+04
62E+04
62E+04
62Et04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62Et04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
S2E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E4-04
62E+04
volume
cloud
1
1
1
1
1
1
1
1
(3)
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
62E+04
1.62Et04
1
1
1
62E+04
62E+04
62E+04
1.62E+04
1
1
1
62E+04
62E+04
62E*04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.02E+01
1.16E+01
1.30E+01
1.44E+01
1.45E+01
1.45E+01
1.45E+01
1.45E+01
1.4SE+01
1.45E+01
1.46E+01
1.46E+01
1.46E+01
1.47E+01
1.47E+01
1.48E+01
1.49E+01
l.SOEtOl
1.52E+01
1.53E+01
1.56E+01
1.59E+01
1.63E+01
1.68E+01
2.12E+01
2.77E+01
3.60E+01
4.63E+01
5.88E+01
7.33E+01
8.96E+01
1.07E+02
1.26E+02
1.46E+02
1.66E+02
1.87E+02
2.08E+02
2.30E+02
2.53E+02
2.77E+02
3.03E+02
3.32E+02
3.65E+02
4.03E+02
4.46E+02
4 . 96E+02
5.5SE+02
6.24E+02
7.03E+02
7.95E+02
9.01E+02
1.02E+03
1.16E+03
1.32E+03
concentration :
effective
half width
bbc (n)
2.12E-01
1.64E+00
3.06E+00
4.48E+00
5.91E+00
7.33E+00
8.75E*00
1.02E+01
1.16E+01
1.30E+01
1.44E+01
1.45E+01
1.45E+01
1.45E+01
1.45E+01
1.45E+01
1.45E+01
1.46E+01
1.46E+01
1.46E+01
1.47E+01
1.47E+01
1.48E+01
1.49E+01
1.50E+01
1.52E+01
1.53E+01
1.56E+01
1.59E+01
1.63E+01
1.68E+01
2.12E+01
2.77E*01
3.60E+01
4.63E+01
5.88E+01
7.33E+01
1.62E+04 8.96E+rfl
9.39E-05
2.88E-04
6.95E-04
1.41E-03
1.41E-03
1.41E-03
1.41E-03
1.41E-03
1.41E-03
1.42E-03
1.42E-03
1.44E-03
1.45E-03
1.48E-03
1.53E-03
1.60E-03
1.7JE-03
1.B9E-03
2.19E-03
2.72E-03
3.68E-03
5.61E-03
9.84E-03
1.98E-02
2
-------
1.38E+02
1.67E+02
2.03E+02
2.45E+02
2.97E+02
3.61E+02
4.38E+02
5.32E+02
6.46E+02
7.85E+02
9.54E+02
1.16E+03
1.41E+03
1.71E+03
2.09E+03
2.S4E+03
3.09E+03
3.75E+03
4.57E+03
5.55E+03
.13E+03
.13E+03
.14E+03
.15E+03
.16E+03
.17E+03
. 18E+03
.20E+03
.22E+03
.25E+03
.28E+03
.32E+03
.37E+03
.43E+03
. 50E+03
.59E+03
.69E+03
.82E+03
.97E+03
. 16E+03
6.76E+03 9.39E+03
8.22E+03 9.67E+03
1. OOE+04 1. OOE+04
1
time averaged (tav - 3600.
downwind tine of
x (ml (s)
I. OOE+00
1.45E+00
1.90E+00
2.35E+00
2.80E+00
3.25E+00
3.70E+00
4.14E+00
4.59E+00
5.04E+00
5.49E+00
5.61E+00
5.76E+00
5.93E+00
6.15E+00
6.41E+00
6.73E+00
7.11E+00
7.58E+00
8.15E+00
8.85E+00
9.70E+00
1.07E+01
1.20E+01
1.35E-+01
1.54E+01
1.76E+01
2.04E+01
2.37E+01
2.78E+01
3.27E+01
3.87E+01
4.61E+01
5.50E+01
6.58E+01
7.90E+01
9.51E+01
1.15E+02
1.38E+02
1.67E+02
2.03E+02
2.45E+02
2.97E+02
3.61E+02
4.38E+02
5.32E+02
6.46E+02
7.85E+02
9.54E+02
1.16E+03
1.41E+03
1.71E+03
2.09E+03
2.54E+03
3.09E+03
3.75E+03
4.57E+03
5.55E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
-10E+03
•10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.10E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.12E+03
.12E+03
.13E+03
.13E+03
.14E+03
.15E+03
.16E+03
.17E+03
.18E+03
.20E+03
.22E+03
.25E+03
.28E+03
.32E+03
.37E+03
.43E+03
.50E+03
.59E+03
.69E+03
.82E+03
.97E+03
.16E+03
6.76E+03 9.39E+03
8.22E+03 9.S7E+03
1. OOE+04 1. OOE+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
s) volume
cloud
(s)
1.62E+04
1.62E+04
1.62E+04
1.S2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.E2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.S2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.S2E+04
1.62E+04
1
1
1
1
1
2
2
2
2
3
3
3
4
4
4
5
6
7
7
9
1
I
1
.07E+02
.26E+02
.4SE+02
. 66E+02
.87E+02
. 08E+02
.30E+02
. 53E+02
.77E+02
. 03E+02
. 32E+02
.6SE+02
.03E+02
.46E+02
. 96E+02
.55E+02
.24E+02
.03E+02
.95E+02
. 01E+02
.02E+03
. 16E+03
.32E+03
concentration :
effective
"
2
1
3
t
5
7
1
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
3
4
5
7
8
1
1
1
1
1
2
2
2
2
3
3
3
4
4
4
5
6
7
7
9
1
1
1
4.*. •J.Ul.lt
bbc (ml
.12E-01
.64E+00
.06E+00
.48E+00
.91E+00
.33E+00
.75E+00
. 02E+01
.16E+01
.30E+01
.44E+01
.45E+01
.45E+01
.45E+01
.45E+01
.45E+01
.45E+01
.46E+01
.46E+01
.46E+01
.47E+01
.47E+01
. 48E+01
.49E+01
.50E+01
.52E+01
.53E+01
.56E+01
.59E+01
.63E+01
.68E+01
.12E+01
.77E+01
.60E+01
.63E+01
.88E+01
.33E+01
.96E+01
.07E+02
.26E+02
.46E+02
.66E+02
.87E+02
.08E+02
.30E+02
.53E+02
.77E+02
.03E+02
.32E+02
.65E+02
.03E+02
.46E+02
.96E+02
.55E+02
.24E+02
.03E+02
.95E+02
.01E+02
.02E+03
.16E+03
.32E+03
2
2
1
1
1
9
6
5
4
3
2
1
1
8
6
4
3
2
1
1
9
7
5
.50E-02
.11E-02
.76E-02
.44E-02
.15E-02
.05E-03
.99E-03
.32E-03
.02E-03
.OOE-03
.23E-03
.65E-03
.22E-03
. 92E-04
.52E-04
. 76E-04
.47E-04
. 53E-04
. 84E-04
.35E-04
.85E-05
.24E-05
.34E-OS
concentration
1.72E-02
1.45E-02
1.21E-02
9.89E-03
7.92E-03
6.22E-03
4.80E-03
3.66E-03
2.76E-03
2.06E-03
1.53E-03
1.13E-03
8.36E-04
6.13E-04
4.48E-04
3.27E-04
2.39E-04
1.74E-04
1.27E-04
9.25E-05
6.77E-05
4.98E-05
3.67E-05
In the z -
5.59E-03
4.72E-03
3.93E-03
3.21E-03
2.57E-03
2.02E-03
1.56E-03
1.19E-03
8.96E-04
6.70E-04
4.98E-04
3.68E-04
2.71E-04
1.99E-04
1.46E-04
1.06E-04
7.74E-05
5.64E-05
4.11E-05
3.00E-05
2.20E-OS
1.62E-05
1.19E-05
4.00 plane
•.57E-04
7.24E-04
S.02E-04
4.92E-04
3.94E-04
3.10E-04
2.39E-04
1.82E-04
1.37E-04
1.03E-04
7.64E-05
5.65E-05
4.16E-05
3.05E-05
2.23E-05
1.63E-05
1.19E-05
8.65E-06
6.31E-06
4.61E-06
3.37E-06
2.48E-06
1.83E-06
6.21E-OS
5.24E-05
4.36E-05
3.S6E-05
2.85E-05
2.24E-05
1.73E-05
1.32E-05
9.95E-06
7.45E-06
5.53E-06
4.09E-06
3.01E-06
2.21E-06
1.62E-06
1.1BE-06
8.60E-07
6.27E-07
4.57E-07
3.34E-07
2.44E-07
1.79E-07
1.32E-07
average concentration (volume fraction) at (x,y.
y/bbc™
0.0
0
3
2
1
7
2
S
1
1
2
5
5
6
8
1
1
2
3
3
4
3
3
2
1
1
1
1
9
8
7
5
4
3
2
2
1
1
8
6
4
3
2
1
1
9
7
5
.OOE+00
.26E-OS
.55E-06
. 56E-05
.19E-05
.30E-04
.55E-04
.10E-03
.88E-03
.90E-03
.14E-03
.14E-03
.14E-03
.14E-03
.14E-03
.15E-03
.16E-03
.17E-03
.19E-03
.23E-03
.29E-03
.39E-03
.54E-03
.78E-03
.15E-03
.76E-03
.76E-03
.49E-03
.16E-02
.73E-02
. 80E-02
.40E-02
.83E-02
.OOE-02
.71E-02
.05E-02
.31E-02
.74E-02
.37E-02
.16E-02
.04E-02
.42E-03
.37E-03
.18E-03
.94E-03
.76E-03
.72E-03
.85E-03
.15E-03
.61E-03
.20E-03
.82E-04
.47E-04
.74E-04
.46E-04
.52E-04
.84E-04
. 34E-04
. S5E-05
.23E-05
.34E-05
Jf / l/Mli—
0.5
O.OOE+00
2.24E-06
1.75E-06
1.07E-05
4.94E-05
1.58E-04
3.82E-04
7.S6E-04
1.29E-03
2. OOE-03
2.85E-03
2.85E-03
2.B5E-03
2.85E-03
2.85E-03
2.85E-03
2.86E-03
2.87E-03
2.88E-03
2.91E-03
2.95E-03
3.02E-03
3.12E-03
3.28E-03
3.54E-03
3 . 96E-03
4.65E-03
5.83E-03
7.95E-03
1.19E-02
1.92E-02
2.34E-02
2.S3E-02
2.75E-02
2.55E-02
2.10E-02
1.S9E-02
1.19E-02
9.41E-03
7.98E-03
7.14E-03
6.48E-03
5.76E-03
4.94E-03
4.08E-03
3.27E-03
2.55E-03
1.96E-03
1.48E-03
1.11E-03
8.22E-04
6.06E-04
4.45E-04
3.25E-04
2.38E-04
1.73E-04
1.26E-04
9.24E-05
6.77E-05
4.97E-05
3.67E-05
Jf / wvl.—
1.0
O.OOE+00
7.29E-07
5.68E-07
3.49E-06
1.61E-05
5.12E-05
1.24E-04
2.45E-04
4.20E-04
6.48E-04
9.25E-04
9.24E-04
9.24E-04
9.24E-04
9.25E-04
9.26E-04
9.28E-04
9.31E-04
9.36E-04
9.45E-04
9.58E-04
9.80E-04
1.01E-03
1.07E-03
1.15E-03
1.29E-03
1.51E-03
1.89E-03
2.58E-03
3.86E-03
6.24E-03
7.60E-03
8.S4E-03
8.93E-03
8.29E-03
6.81E-03
5.16E-03
3.88E-03
3.06E-03
2.59E-03
2.32E-03
2.10E-03
1.B7E-03
1.60E-03
1.32E-03
1.06E-03
8.29E-04
6.36E-04
4.81E-04
3.60E-04
2.67E-04
1.97E-04
1.44E-04
1.06E-04
7.71E-05
5.S3E-05
4.11E-05
3.00E-05
2.20E-05
1.61E-05
1.19E-05
y 1 uu\f—
1.5
O.OOE+00
1.12E-07
8.71E-08
5.34E-07
2.46E-06
7.86E-06
1.90E-05
3.76E-05
6.45E-05
9.94E-05
1.42E-04
1.42E-04
1.42E-04
1.42E-04
1.42E-04
1.42E-04
1.42E-04
1.43E-04
1.44E-04
1.45E-04
1.47E-04
1.50E-04
1.55E-04
1.63E-04
1.76E-04
1.97E-04
2.31E-04
2.90E-04
3.96E-04
5.92E-04
9.57E-04
1.16E-03
1.31E-03
1.37E-03
1.27E-03
1.04E-03
7.92E-04
S.95E-04
4.69E-04
3.97E-04
3.56E-04
3.22E-04
2.87E-04
2.46E-04
2.03E-04
1.63E-04
1.27E-04
9.75E-05
7.37E-05
5.51E-05
4.09E-05
3.02E-05
2.21E-05
1.62E-05
1.18E-05
8.63E-06
6.30E-06
4.60E-06
3.37E-06
2.48E-06
1.83E-06
2.0
O.OOE+00
8.03E-09
6.30E-09
3.87E-08
1.78E-07
5.69E-07
1.3BE-06
2.72E-06
4.67E-06
7.19E-06
1.03E-05
1.03E-05
1.03E-OS
1.03E-05
1.03E-05
1.03E-05
1.03E-05
1.03E-OS
1.04E-05
1.05E-OS
1.06E-OS
1.09E-OS
1.12E-05
1.18E-05
1.28E-05
1.43E-OS
1.68E-05
2.10E-05
2.87E-05
4.29E-05
6.93E-05
8.44E-05
9.4BE-05
9.91E-05
9.20E-05
7.56E-05
5.73E-05
4.31E-05
3.39E-05
2.88E-05
2.58E-05
2.34E-05
2.08E-OS
1.78E-05
1.47E-05
1.18E-05
9.21E-OE
7.06E-06
5.34E-06
3.99E-06
2.96E-06
2.19E-06
1.60E-06
1.17E-06
8.57E-07
6.25E-07
4.56E-07
3.33E-07
2.44E-07
1.79E-07
1.32E-07
2.12E-06
1.79E-06
1.49E-06
1.22E-06
9.78E-07
7.66E-07
S.92E-07
4.51E-07
3.40E-07
2.54E-07
1.89E-07
1.40E-07
1.03E-07
7.57E-08
5.54E-08
4.03E-08
2.94E-08
2.15E-08
1.56E-08
1.14E-08
8.31E-09
6.15E-09
4.54E-09
z)
2.5
O.OOE+00
2.71E-10
2.14E-10
1.32E-09
6.08E-09
1.94E-08
4.70E-08
9.32E-08
1.59E-07
2.46E-07
3.50E-07
3.51E-07
3.51E-07
3.50E-07
3.51E-07
3.52E-07
3.52E-07
3.53E-07
3.55E-07
3.58E-07
3.64E-07
3.71E-07
3.85E-07
4.05E-07
4.36E-07
4.87E-07
5.73E-07
7.18E-07
9.79E-07
1.47E-06
2.36E-06
2.88E-06
3.24E-06
3.39E-06
3.15E-06
2.58E-06
1.96E-06
1.47E-06
1.16E-06
9.83E-07
8.81E-07
7.99E-07
7.11E-07
6.08E-07
5.03E-07
4.03E-07
3.14E-07
2.41E-07
1.83E-07
1.37E-07
1.01E-07
7.49E-08
5.50E-08
4.01E-08
2.93E-08
2.14E-08
1.5EE-08
1.14E-08
8.31E-09
6.14E-09
4.53E-09
time averaged (tav - 3600. s) volume concentration: maximum concentration (volume fraction) along centerline.
downwind maximum time of cloud
distance height concentration max cone duration
x *m) z (m) c(x.O.z) (s) (s)
C-43
-------
l.OOE+00
1.4SE+00
1.90E+00
2.35E+00
2.80E+00
3.25E+00
3.70E+00
4.14E+00
4.59E+00
5.04E+00
5.49E+00
s.siE+oo
5.76E+00
5.93E+00
6.15E+00
6.41E+00
6.73EtOO
7.11E+00
7.58E+00
8.15E+00
8.85E+00
9.70E+00
1.07E+01
1.20E+01
1.35E+01
1.54E+01
1.76E+01
2.04E+01
2.37Et01
2.78E+01
3.27E+01
3.87E+01
4.61E+01
5.50E+01
6.58E+01
7.90E+01
9.51E+01
1.15E+02
1.38E+02
1.67E+02
2.03E+02
2.45E+02
2.97E+02
3.61E+02
4.38E+02
5.32E+02
6.46E+02
7.85E+02
9.54E+02
1.16E+03
1.41E+03
1.71E+03
2.09E+03
2.54E+03
3.09E+03
3.75E+03
4.57E+03
5.5SE+03
6.76E+03
8.22E+03
l.OOE+04
1.97E-01
7.42E+00
1.01E+01
1.20E+01
1.34E+01
1.45E+01
1.S4E+01
1.60E+01
1.64E+01
1.67E+01
1.68E+01
1.68E+01
1.6BE+01
1.68E+01
1.67E+01
1.67E+01
1.67E+01
1.67E+01
1.67E+01
1.67E+01
1.66E+01
1.66E+01
1.65E+01
1.64E+01
I.62E+01
1.59E+01
1.54E+01
1.48E+01
1.38E+01
1.23E+01
1.02E+01
7.7SE+00
S.95E+00
4.54E+00
3.38E+00
2.25E+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
l.OOE+00
l.OOE+00
8.08E-01
4.70E-01
2.96E-01
2.01E-01
1.44E-01
1.08E-01
8.38E-02
6.68E-02
S.45E-02
5.45E-02
S.44E-02
5.44E-02
S.43E-02
S.43E-02
S.42E-02
5.41E-02
5.40E-02
S.38E-02
5.36E-02
5.34E-02
5.31E-02
5.27E-02
5.23E-02
5.17E-02
S.11E-02
S.02E-02
4 . 92E-02
4.78E-02
4.62E-02
4.42E-02
4.28E-02
4.05E-02
3.78E-02
3.S4E-02
3.45E-02
3.33E-02
3.01E-02
2.57E-02
2.09E-02
1.66E-02
1.28E-02
9.77E-03
7.38E-03
5.53E-03
4.12E-03
3.06E-03
2.26E-03
1.66E-03
1.22E-03
8.95E-04
6.S4E-04
4.77E-04
3.47E-04
2.S3E-04
1.84E-04
1.35E-04
9.86E-05
7.24E-05
5.34E-05
.10E+03
. 10E+03
. 10E+03
. 10E+03
. 10E+03
.10E+03
.10E+03
. 10E+03
.10E+03
. 10E+03
. 10E+03
. 10E+03
.10E+03
.10E+03
.10E+03
. 10E+03
. 10E+03
. IOE+03
. 10E+03
. IOE+03
. IOE+03
.IOE+03
.IOE+03
.IOE+03
.IOE+03
.IOE+03
.IOE+03
.IOE+03
.IOE+03
.11E+03
. 11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.11E+03
.12E+03
. 12E+03
.13E+03
.13E+03
. 14E+03
.15E+03
.1SE+03
.17E+03
. 18E+03
.20E+03
. 22E+03
.25E+03
.28E+03
.32E+03
.37E+03
.43E+03
.50E+03
.59E+03
.S9E+03
. 82E+03
.97E+03
9.16E+03
9.39E+03
9.67E+03
l.OOE+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.S2E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
J.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1 . 62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
1.62E+04
C-44
-------
APPENDIX D
Non-Dense Gas Model Input and Output Files
Table of Contents
D.I AFTOX Model
Example 1: Input/Output File
Example 2: Input/Output File
-------
AFTOX Example 1: Input & Output File
USAF TOXIC CHEMICAL DISPERSION MODEL AFTOX
Workbook Example 6.15
Hanscom AFB MA
DATE: 08-10-89
TIME: 0300 LST
CONTINUOUS RELEASE
UNSYM. DIMETHYLHYDRAZINE(UDMH)
SHORT TERM EXPOSURE LIMIT(STEL) IS .48 PPM ( 1.15 MG M-3)
TIME WEIGHTED AVERAGE(TWA) IS .06 PPM ( .14 MG M-3)
TEMPERATURE = 10 C
WIND DIRECTION = 270
WIND SPEED = 1 M/S
NIGHTTIME SPILL
CLOUD COVER IS 0 EIGHTHS
THERE IS NO INVERSION
ATMOSPHERIC STABILITY PARAMETER IS 6
SPILL SITE ROUGHNESS LENGTH IS 1 CM
•
THIS IS A LIQUID RELEASE
EMISSION RATE IS 4.72 KG/MIN
CHEMICAL IS STILL LEAKING
POOL TEMPERATURE IS 10 C
AREA OF SPILL IS 59 SQ M
EVAPORATION RATE IS 3.13 KG/MIN
CONCENTRATION AVERAGING TIME IS 60 MIN
ELAPSED TIME SINCE START OF SPILL IS 60 MIN
ELEVATION IS 0 M
DOWNWIND DISTANCE IS 100 M
CROSSWIND DISTANCE IS 0 M
THE CONCENTRATION IS 220.5 PPM ( 567.7 MG M-3)
D-l
-------
-------
AFTOX Example 2: Input & Output File
USAF TOXIC CHEMICAL DISPERSION MODEL AFTOX
Workbook Example 6.16
Vandenberg AFB
DATE: 08-02-89
TIME: 0300 LST
CONTINUOUS RELEASE
UNSYM. DIMETHYLHYDRAZINE(UDMH)
SHORT TERM EXPOSURE LIMIT(STEL) IS .48 PPM ( 1.15 MG M-3)
TIME WEIGHTED AVERAGE(TWA) IS .06 PPM ( .14 MG M-3)
TEMPERATURE = 10 C
WIND DIRECTION =16
WIND SPEED = 1 M/S
STANDARD DEVIATION OF WIND DIRECTION =1.37 DEC
WIND AVERAGING TIME =60 MIN
NIGHTTIME SPILL
CLOUD COVER IS 0 EIGHTHS
THERE IS NO INVERSION
HORIZONTAL STABILITY PARAMETER IS 6
VERTICAL STABILITY PARAMTERE IS 6
SPILL SITE ROUGHNESS LENGTH IS 1 CM
THIS IS A LIQUID RELEASE
EMISSION RATE IS 133.62 KG/MIN
CHEMICAL IS STILL LEAKING
POOL TEMPERATURE IS 10 C
AREA OF SPILL IS 2037 SQ M
EVAPORATION RATE IS 72.13 KG/MIN
CONCENTRATION AVERAGING TIME IS 60 MIN
ELAPSED TIME SINCE START OF SPILL IS 1440 MIN
HEIGHT ABOVE GROUND IS 0 M
DOWNWIND DISTANCE IS 100 M
CROSSWIND DISTANCE IS 0 M
THE CONCENTRATION IS 7761 PPM( 20046.6 MG M-3)
D-3
-------
-------
Appendix E
Calculating Temperature of Release Material
-------
-------
Appendix E
Calculating Temperature of Release Material
To correctly utilize dense gas models, it may be important to start the
dispersion calculations using the temperature of the released material just
after it enters the atmosphere and depressurizes. For a material which is
stored under pressure, this requires an estimate of the release temperature
immediately after it expands to atmospheric pressure. For a liquid which is
stored under pressure above its normal boiling temperature, the release will
be accompanied by flashing, and the release temperature may be conservatively
assumed to equal the normal boiling temperature. It should be noted that a
flash calculation should be performed for this situation to determine the
relative amounts of liquid and vapor in the initial release.
If the released material can be represented as an ideal gas both before
and after depressurization, then the temperature of the contaminant is
unchanged during an isenthalpic expansion. Such ideal gas behavior can be
expected for low-to-moderate storage pressure and temperature and when the
pressure and temperature are not near the critical pressure and temperature,
respectively.
If the contaminant cannot be represented as an ideal gas both before and
after depressurization, then the temperature of the contaminant must be
determined from thermodynamic properties of the released gas. Thermodynamic
properties are generally presented in one of two forms: in tables or in
figures. These examples demonstrate the pertinent calculations (for nonideal
gases) for both data types.
Chlorine Example
For this example, chlorine gas at 6 atm and 298 K is to be released to
atmospheric pressure. Since the initial pressure of 6 atm could be considered
to be out of the low-to-moderate pressure range, ideal gas behavior may not be
justified for these conditions.
Isenthalpic depressurization simply means that the- enthalpy of the gas
is unchanged between the initial and final states. If H. and H,: denote the
initial and final enthalpies of the gas, respectively, then isenthalpic
depressurization implies that H.=Hf. From Perry's handbook (Perry and Green,
1984), the properties for chlorine are given in tabular form; part of the
table is shown in Table 1. The tabl'e shows the enthalpy (H*) and temperature
(T*) for chlorine vapor under saturation conditions.
Table 1
Temperature Versus Enthalpy for Chlorine Vapor
Temperature Pressure Enthalpy
If K Ib./sq. in. B.t.u./Mb)('F)
-29.29 14.696 225.86
60 85.606 233.64
80 116.46 235.03
*Based on Table 3-229 chlorine, p. 3-184, Perry's Handbook, Sixth Edition
E-l
-------
Using this information, the initial and final enthalpies can be represented
as:
Hi ='H*(P.) + Cp (Ti - T*(P.))
Hf = H*(Pf) + Cp (Tf - T*(Pf))
where H*(P.) and H*(pf) represent the enthalpy of saturated chlorine vapor at
the initial and final pressures, respectively. Likewise, !*(?.= ) and T*(Pf)
represent the temperature of saturated chlorine vapor at the initial storage
pressure (6 atm x 14.696=88.176 Ib./sq. in.) and final pressure (1 atm x
14.696=14.696 Ib./sq. in.). From the table, H*(P.)=233.77 BTU/lb.,
T*(P.)=289.74K (or 62.13'F), H*(Pf)=225.86 BTU/lb.1, and T*(Pf)=239.1 K (or
-29.01 F). (For interpolation, log(P) can be linearly interpolated with 1/T*
where T* is in absolute temperature, and H* can be linearly interpolated with
T*). With these values and the heat capacity for chlorine (taken to be 0.214
BTU/lb. K), Tf is 284.3 K.
If the initial state of 6 atm had been considered to be a low-to-
moderate pressure, and since the initial state is not near the critical
conditions for chlorine (76.1 atm and 417 K), then ideal gas behavior for both
initial and final states would have been justified, and the final chlorine
temperature would be equal to the initial state temperature or 298 K. This
assumption would have resulted in an error of 4.8% in the density estimate for
input to the dispersion model.
First Propvlene Example
For this example, propylene gas at 29 bar (28.6 atm) and 343.15 K is to
be released to atmospheric pressure. Since the initial pressure of 29 bar
could be considered to be out of the low-to-moderate pressure range, ideal gas
behavior may not be justified for these conditions. (Also, the initial state
is near the critical state of 46.41 bar and 365.1 K.)
In Perry's handbook, sixth edition, (page 3-219, Figure 3-32), the
properties for propylene are given in both a table and a figure. Once again,
isenthalpic expansion from the initial to final state implies H.=hL. Using
the figure, the initial enthalpy is found to be approximately llOO kJ/kg using
the initial pressure (29 bar) and initial temperature (343.15 K). The final
temperature can now be found by using the final pressure (1.01325 bar) and the
final enthalpy (1100 kJ/kg -- since H^Hr); the final temperature is
approximately 285 K.
If ideal gas behavior for both initial and final states had been
assumed, the final propylene temperature would have been 343.15 K. This
assumption would have resulted in an error of 20% in the density estimate for
input to the dispersion model.
Second Proovlene Example
For this example, propylene gas at 5 bar (4.9 atm) and 303.15 K is to be
released to atmospheric pressure. Since the initial pressure and temperature
could be considered to be in the low-to-moderate range, and since the initial
state is not near the critical conditions, ideal gas behavior may be justified
E-2
-------
for these conditions. If ideal gas behavior is assumed for both initial and
final states, the final (depressurized) propylene temperature would be 303.15
K.
As a check, the properties for propylene can be applied to this example.
Once again using the figure discussed above, the initial enthalpy is found to
be approximately 1100 kJ/kg using the Initial pressure (5 bar) and initial
temperature (303.15 K). The final temperature can again be found by using the
final pressure (1.01325 bar) and the final enthalpy (1100 kJ/kg -- since
H.=Hf); using this method, the final temperature is approximately 293 K.
If ideal gas behavior for both initial and final states had been
assumed, the density estimate for the dispersion model would be in error by
3.4%.
References
Perry, R. H. and D. W. Green, eds., "Perry's Chemical Engineer's
Handbook," Sixth Edition, McGraw-Hill, 1984.
E-3
-------
-------
TECHNICAL REPORT DATA
(Please read /nunictidns on rise rereni: before completing!
l. REPORT
EPA-450/4-91-007
3. RECIPIENT'S ACCESSION NO.
4. TITLE ANDSUBTITLE
Guidance on the Application of Refined Dispersion
Models for Air Toxics Releases
5. REPORT DATE
March 1991
6. PERFORMING ORGANIZATION CODE
7. AUTMOR(S)
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Source Receptor Analysis Branch
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS
13. TYPE OF REPORT AND PERIOD COVERED
Final Report
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
EPA Contact: Jawad S. Touma
16. ABSTRACT
Refined air toxics models are increasingly being used to assess the impact of
toxic air pollutants released into the atmosphere. The purpose of this guidance
document is to provide general guidance considerations for applying dispersion
models to such releases and to show the thought process required by the non-expert
user to develop all model input parameters. Two example applications for each
model are provided with a step-by-step explanation of all model input parameters
and model output. Four specific models are currently included in the document.
These are the DEGADIS, HEGADAS, and SLAB models appropriate for denser-than-air
releases and the AFTOX model for neutrally buoyant releases of toxic air pollutants
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Air Pollution
Hazardous Waste Assessments
Toxic Air Pollutants
Dense Gas Models
Air Quality Dispersion Models
b.lDENTIFIfcRS/OPEN ENDED TERMS C. COSATI I icld/Croup
Dispersion Modeling
Meteorology
Air Pollution
13B
STATLML\1
Release Unlimited
19. SECUHIT < CLASS HIM A'cport)
Unclassified
21. NO. OF PAGES
20. SECUHIT Y CLASS ITlHS
Unclassified
165
22. PRICE:
EPA Form 2."20-1 (9-73)
-------
------- |