United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park, NC 27711
EPA-450/4-92-002
December 1992
Air
SV EPA Toxic Modeling System Short-Term (TOXST)
User's Guide
-------
EPA-450/4-92-002
TOXIC MODELING SYSTEM SHORT-TERM (TOXST)
USER'S GUIDE
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
December 1992
U.S. Environmental Protection Agency
Region 5, Library (PI.-12J)
77 West Jackson Doulcvara, J2iij Fioor
Chicago, IL 60604-3590
-------
DISCLAIMER
This document has been reviewed by the Office of Air Quality Planning and Standards, U.S.
Environmental Protection Agency, and approved for publication. Approval does not signify that the
contents necessarily reflect the view and policies of the U.S. Environmental Protection Agency, nor
does mention of trade names or commercial products constitute endorsement or recommendation for
use.
ii
-------
PREFACE
With the promulgation of "A Tiered Modeling Approach for Assessing the Risks Due to Sources of
Hazardous Air Pollutants" (Ref 1) and the release of new versions of EPA's Industrial Source
Complex (ISC2) Dispersion Models (Ref 2) in March of 1992, it became necessary to revise the
former Integrated Toxic Expected Exceedance (INTOXX) Model (Ref 3), which was based on the
superceded version of the Industrial Source Complex (Short-Term) (ISCST) (Ref 4) model. This
document describes that revision, TOXST, and related revisions to ISC2. It replaces the previous
INTOXX documentation and programs.
iii
-------
ACKNOWLEDGEMENTS
The original document, Integrated Toxic Expected Exceedance (INTOXX) Model User's Guide, was
written by T. E. Stoeckenius and J. R. Pehling of Systems Applications International, San Rafael,
California. That work was funded by the U.S. Environmental Protection Agency (EPA) under
Contract No. 68D90006. This document and the computer program modifications were prepared by J.
W. Dunn, Research Triangle Institute, Center for Environmental Analysis, Research Triangle Park,
North Carolina. The work was funded by the Environmental Protection Agency under Purchase Order
No. 2D1482NALX, with Melissa Watkins as Project Manager. Additional guidance was provided by
David Guinnup, EPA. Assistance with ISCST2 was provided by Roger Erode, Pacific Environmental
Sciences, Research Triangle Park, North Carolina.
iv
-------
TABLE OF CONTENTS
DISCLAIMER «
PREFACE iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES viii
1. INTRODUCTION 1
1.1 BACKGROUND : 1
1.2 OVERVIEW OF TOXST 1
1.3 MANUAL SCOPE AND ORGANIZATION 3
2. TOXST ALGORITHMS 5
2.1 OVERVIEW 5
2.2 ISCST2 ALGORITHMS 7
2.3 TOXX ALGORITHMS 7
2.3.1 The Emissions Algorithm 7
2.3.2 Expected Exceedances Calculations 8
2.3.3 Multiple Sources 8
2.3.4 Multiple Pollutants and Threshold Concentrations 10
2.3.5 Screening Procedures 12
2.4 TOXST LIMITATIONS 13
2.5 DISCUSSION OF TOXST INPUTS AND OUTPUTS 13
3. PREPARING TOXST INPUT FILES 15
3.1 PREPARATION OF ISCST2 INPUT FILES 15
3.2 PREPARATION OF TOXX INPUT PARAMETER FILE 19
4. EXECUTING TOXST 25
4.1 SYSTEM REQUIREMENTS 25
4.2 EXECUTION PROCEDURE 26
-------
5. TOXST OUTPUT 29
5.1 GENERAL OUTPUT 29
5.2 ISCST2 PRINTOUT FILE 29
5.3 TOXX PRINTOUT FILE 29
5.3.1 Output For Single-Species, Multiple-Threshold Applications (Modes A,
B, and C) 30
5.3.2 Output For Multiple-Species Applications (Modes D, E, and F) 30
6. EXAMPLE TOXST APPLICATIONS 31
6.1 EXAMPLE 1 31
6.2 EXAMPLE 2 57
References 103
Appendix 105
vt
-------
LIST OF FIGURES
2-1 Overview of the TOXST system 6
2-2 Example Relationships of ISCST2 source groups to TOXX sources and TOXX source groups . 9
4-1 TOXST main menu screen 27
6-1 ISCST2 parameter input file, Example 1 34
6-2 TOXX parameter input file, Example 1 36
6-3 ISCST2 printable output file, Example 1 37
6-4 Printable TOXX results file, Example 1 , 53
6-5 Schematic diagram of modeled facility in Example 2 57
6-6 ISCST2 parameter input file, Example 2 59
6-7 TOXX parameter input file, Example 2 61
6-8 ISCST2 printable output file, Example 2 62
6-9 TOXX printable output file, Example 2 95
vu
-------
LIST OF TABLES
2-1 TOXX modes 11
3-1 Example input parameter file for the ISCST2 model 16
3-2 Example TOXX input parameter file .20
A-l Example of emission rate specifications for multiple source, multiple species,
single source group applications of TOXX 106
viii
-------
1. INTRODUCTION
1.1 BACKGROUND
The Toxic Modeling System Short-Term (TOXST) addresses the problem of estimating expected
exceedances of specified short-term health effects thresholds in the vicinity of continuous and
intermittent toxic releases from a complex industrial site.
Certain industrial facilities emit airborne toxic chemicals known to be harmful when their
concentrations exceed a specified health effect threshold value. However, releases of such chemicals
often occur intermittently. This random emission pattern makes it difficult to predict the frequency
with which ambient concentrations will exceed the health effect threshold in the vicinity of a source,
since the particular atmospheric dispersion conditions coinciding with each release period cannot be
known in advance. An analysis in which worst-case dispersion conditions are assumed to coincide
with each release would tend to overestimate the exceedance frequency, since a certain proportion of
releases are likely to occur under more favorable dispersion conditions. On the other hand, assuming
that each release occurs in conjunction with some more favorable dispersion condition, or that the
source operates continuously at some long-term average emission rate, will likely underestimate the
exceedance rate.
TOXST attempts to avoid the problems of underestimation and overestimation of exceedance rates
resulting from random emission patterns by using a Monte Carlo simulation of source emissions of
user-specified durations and rates at randomly selected points in time. In addition, TOXST maintains
the capability of simulating continuous emission sources along with intermittent emissions, thereby
providing a more realistic simulation of actual industrial operations.
1.2 OVERVIEW OF TOXST
This manual describes a system of computer programs known as TOXST ( Toxic modeling system
Short-Term). TOXST is an interactive, PC-based system designed to assist users in analyzing the air
quality impacts of intermittent releases of toxic materials from industrial sources. TOXST consists of
three programs:
RUNTOXST, a control program that assists users in setting up and executing ISCST2
and TOXX runs,
ISCST2, a widely-used dispersion model which is used to predict ambient
concentrations resulting from each source included in the simulation, and
-------
TOXX, a post-processor which comprises the Toxic Expected Exceedances model that
carries out the exceedance calculations.
RUNTOXST prompts users to enter the names of appropriate, previously created ISCST2 and TOXX
input files; it then sets up and executes first ISCST2 and then TOXX using these files. Transfer of
data from ISCST2 to TOXX is handled automatically by TOXST; no user intervention is required.
Options allow delayed model execution (for example, model runs can be set up during the day and
execution delayed until evening) and allow only ISCST2 or only TOXX to be executed (in the latter
case, using the output of a previous ISCST2 run).
The ISCST2 program generates screened ambient concentration values resulting from each toxic
pollutant source included in the TOXST simulation. All sources are modeled in ISCST2 as if they
were continuous and operating either at their maximum hourly emission rate or at a unit emission rate
(1 g/s); the intermittency of those sources so designated is subsequently accounted for in the TOXX
post-processor. Concentration predictions are passed from ISCST2 to the TOXX post-processor using
the TOXXFILE option in ISCST2.
The TOXX post-processor utilizes the ISCST2 results in the TOXXFILE for random, intermittent
sources to calculate the real-time concentration impacts of the simulated facility, either on a source-by-
source basis or for all sources combined. Each ambient (1-hour) concentration impact is then
compared to a user-specified threshold to determine if an "exceedance" of that threshold occurs.
Exceedances are subsequently tracked at each receptor during each hour of the year to obtain annual
exceedance rates, and these rates are reported in the program output In addition to the calculation of
single pollutant threshold exceedance rates, the TOXX post-processor can also calculate multiple-
pollutant "exceedance" rates, using an additive, hazard index approach.
TOXST requires several ISCST2 and TOXX model input files. ISCST2 model input files used with
TOXST are described in the ISC2 user's manual. Vol. I. (Ref 2a). These files contain information on
physical source parameters (e.g., location, stack height) and meteorological conditions. TOXX input
files contain information on the species of toxic pollutants being emitted by the source(s) under study,
the time-dependent distribution of these emissions, and health effect thresholds and background
concentrations (if any) for each species.
-------
1J MANUAL SCOPE AND ORGANIZATION
This manual presents information needed to develop inputs for and execute TOXST on an IBM PC-
compatible computer.1 It also describes algorithms used in the TOXX model contained within
TOXST, TOXX input parameters, formats of TOXX input files, and the output produced by the
TOXX model.
We assume that users are familiar with the preparation of input files for, and the interpretation of
output from, the ISCST2 dispersion model as described in the ISC2 manuals (Ref 2a). Thus this
information will not be repeated in detail here although an example is given and items pertinent to
TOXST are noted.
The manual consists of six chapters. Chapter 1 constitutes a general introduction to TOXST. Chapter
2 describes the principal TOXST applications, concepts, and algorithms. Chapter 3 contains an
example ISCST2 input file with brief description and a detailed description of the content and format
of the TOXST input files. Chapter 4 provides information needed to execute TOXST on an IBM-PC
or compatible machine. Chapter 5 describes the output produced by TOXST. Chapter 6 presents
some sample applications with input and output file listings. Appendix A contains a description of
procedures to be used in developing ISCST2 dispersion model inputs for use with TOXST in special
situations.
1 Although TOXST will run on most PC-compatible machines running some version of the PC- or
MS-DOS, the minimum recommended system requirements for acceptable performance are: 80286- or
80386-based PC-compatible with Monochrome monitor, math coprocessor, 40MB hard disk and DOS
3.2 or higher.
-------
2. TOXST ALGORITHMS
2.1 OVERVIEW
In this chapter, we briefly describe the algorithms used in TOXST, focusing in particular on the
algorithms used in the TOXX model itself. An overview of the TOXST modeling system is shown in
Figure 2-1. TOXST consists of three programs:
The ISCST2 model,
the TOXX model, and
RUNTOXST, an interactive control program.
The flow of information between the three programs is depicted in Figure 2-1, including a description
of each of the input and output files associated with their execution.
Prior to using TOXST, it is necessary to prepare both the ISCST2 input files and the TOXX input
parameter file shown in Figure 2-1. Information needed to prepare the TOXX input parameter file is
presented in Chapter 3. Information needed to prepare the ISCST2 input files (i.e., the preprocessed
meteorological data file and the ISCST2 input parameter file) is provided in the ISC2 user's guide
Vol. I (Ref 2a). Additional information on the proper specification of ISCST2 model options and
source emission rates is presented in Section 3.1 and the Appendix.
Once all input files have been prepared, the TOXST control program is invoked. Using input file
names specified by the user, this program creates batch input files and MS-DOS batch files that run
first ISCST2 and then TOXX. By specifying multiple sets of ISCST2 input files, each corresponding
to a different year of meteorological data, multiple ISCST2 runs can be performed, producing a set of
binary output files for a multi-year period; these files are then used as input to the TOXX model.
-------
I I
I RUNTOXST Control Program |
I l
i l i
Preprocessed | 1 \ 1 ISCST2 input |
met. data file | | | | parameter file |
l l
| ISCST2 |
|dispersion model|
i r
i i
| ISCST2 output
I file (printable)|
Screened concentrations
for one calendar year
(TOXXFILE)
I I 1
I i | |> |Temporary paging file)
j TOXX input I | * 1 j j (binary format) |
I parameter file | >\ TOXX model 1|«* ' J
I
->-| HEM file
|(reserved for use
|in later versions)
|TOXX output file |
I (printable) |
FIGURE 2-1 Overview of the TOXST system
-------
2.2 ISCST2 ALGORITHMS
Algorithms used in the ISCST2 dispersion model arc described in detail in the ISC2 user's manual
Vol. H (Ref 2b). It is assumed here that readers are already familiar with ISCST2. A procedure
referred to as the TOXXFUJS option has been incorporated into ISCST2 which creates a "screened"
binary concentration output file that contains only those concentrations for each hour at each receptor
whose concentration exceeds a user-defined threshold value. The purpose of the TOXXFDLE option
is to reduce the size of the binary output file. Guidance on the selection of an appropriate threshold
value is given in Section 3.1.
In multiple-source applications, the concentration attributed to each individual source for a given
receptor-hour is compared to the threshold value. If the contribution of any single source exceeds the
threshold, all source contributions for the receptor-hour are written to the binary output file. The
ISCST2 threshold concentration used in the screening procedure is a value that the user specifies in the
ISCST2 input parameter file described in detail in Section 3.1. This procedure insures that multiple-
source exceedance calculations will be carried out property in the TOXX model.
2.3 TOXX ALGORITHMS
In this section we briefly describe the algorithms used in TOXX to calculate expected exceedances of
health effects threshold concentrations. It should be noted that while the TOXX model can be used in
a stand-alone mode to calculate exceedances for 1-, 3- or 24-hour average concentrations, the interface
between ISCST2 and TOXX within the current version of TOXST is designed in such a way that
TOXST can only be used to calculate hourly average exceedances. Therefore, the following discussion
is concerned only with a 1-hour averaging period.
2.3.1 The Emissions Algorithm
Emissions in TOXX are modeled as a random process in which a source is either emitting at a
constant rate (i.e., "on") or not emitting ("off") during each hour. A Monte-Carlo sampling procedure
is used to simulate the source emissions by determining whether a source is on or off during each hour
of the simulation period, which is generally assumed to be one year. At the beginning of the
simulation, the source is presumed to be turned off. The probability, pm, of the source going from the
off state to the on state during each subsequent hour is a fixed value input by the TOXX user. For
each hour, a random number between 0 and 1 is generated, and if this number is less than or equal to
Pa,, the source is turned on. As long as the source stays off, the process is independent from one hour
to the next (i.e., the source has an equal probability of turning on in each subsequent hour). However,
once the source is turned on, it remains on for a fixed number of hours set by the user via a parameter
in the input parameter file. Whenever the source is on, the emission rate maintains a constant value
specified by the user. After this set number of hours has elapsed, the source is turned off, and the
-------
random selection process is repeated for each subsequent hour in the calendar year thereby generating
a randomly selected sequence of emission rates for the year. A randomly generated one-year sequence
of emission rates is generated independently for each source and for each group of covarying sources
(source group). That is, the hour-to-hour random determination of whether or not a source is to be
turned on is done separately for each source and each source group. Consequently, there will be as
many one-year sequences of emission rates as there are independent sources and source groups.
Appropriate specification of p^ for TOXST simulations can be achieved by following several simple
rules. (1) For each continuous emission source, p,,, should be specified as 1.0. The specified duration
of these releases is subsequently irrelevant to the calculation, but a specification of 1.0 is
recommended. (2) For each unconstrained intermittent source, pm is equal to the average number of
releases per year divided by 8760 (the number of hours in a non-leap year). The specified duration of
these releases should be equal to the nearest integer hour which is not less than the actual average
release duration. (3) For each intermittent source whose hours of possible operation are constrained to
a portion of the day, month or year, p^ should be specified as the average number of releases per year
divided by the total number of hours in the year during which its operation is possible. The duration
should be specified as in rule (2) above.
2.3.2 Expected Exceedances Calculations
Calculations of the expected number of exceedances at each receptor for a particular pollutant species
and threshold concentration combination are dependent on the foregoing Monte Carlo procedure.
Simply put, a one-year sequence of emission rates is randomly generated for each of a series of trials
or "sample years." The randomly generated emission rate for each hour is multiplied by the
corresponding dispersion model result (X/q value) at each receptor to obtain receptor-specific predicted
concentrations. If the resulting product is greater than or equal to the health effect threshold
concentration (less background concentration, if any), an exceedance is recorded ai: that receptor, and
the total number of such receptor-specific exceedances in each sample year is noted. This process is
repeated for a large number of sample years using a new set of randomly generated emission rates
each year. The average number of exceedances per year over all trials (i.e., sample years) is then
taken as an estimate of the expected exceedance rate.
In TOXX, the term "health effect threshold" is used to denote the concentration that defines an
exceedance.
2.3.3 Multiple Sources
Emissions of toxic compounds from a complex of multiple sources can be modeled with TOXX .
Two idealized release scenarios are available to the TOXX user
-------
Independently varying sources in which the emissions during any hour at one source are not
in any way related to emissions during the same hour at any other source, and
Covarying sources in which all sources are either emitting or not emitting during any
particular hour.
Covarying sources are typically found in industrial facilities where a single batch process results in
simultaneous releases of pollutants from multiple locations. Independently varying sources may occur
in large facilities where several processes are being carried out independent of one another, resulting in
releases that are not correlated from one source to the next
TOXX is designed to handle combinations of covarying and independently varying sources in a single
application. Sources that are covarying must be assigned to the same TOXX source group when
creating the TOXX input parameter file described in Section 3.2. Sources with independently varying
emissions must be assigned to different TOXX source groups. Each source identified in the TOXX
input parameter file must be associated with its own set of dispersion model results in an ISCST2
TOXXFILE. The TOXX user may then choose to group some or all of these sources, depending on
which sources are to have covarying emissions. These TOXX source groups should not be confused
with the "source groups" defined in the ISCST2 input parameter file. Throughout this User's Guide,
the term "source group" is used to refer to TOXX source groups unless otherwise stated. A single set
of dispersion estimates (X/q values) will appear in the ISCST2 TOXXFILE dispersions result file for
each ISCST2 source group defined in the ISCST2 input parameter file. Therefore, each individual
source identified in the TOXX input parameter file must correspond to an ISCST2 source group
consisting of one or more actual sources as defined in the ISCST2 input parameter file. This
relationship is illustrated in Figure 2-2. The current version of TOXST limits the total number of
TOXX source groups to 20.
\ _. ISCST2 Source Tr,yy 4~,,rf,~ #1
( Group #1 TOXX Souice #1
TOXX Source
Group #1
Source A
Source B
Source C - - TOXX Source #2
D -
FIGURE 2-2 Example Relationships of ISCST2 source groups to TOXX sources and TOXX source
groups. Emissions from sources A, B, and C from ISCST2 are combined as covarying TOXX sources
#1 and #2 while source D remains independent.
-------
To insure proper operation of the TOXX program, identical emission rate multipliers must be specified
in the TOXX input parameter file for all sources belonging to the same TOXX source group. This
means that co-varying sources in the same TOXX source group may only have different emission rates
if their specified emission rates in the ISCST2 input file are different Additional information
concerning the TOXX input parameter file is presented in Section 3.2.
2.3.4 Multiple Pollutants and Threshold Concentrations
In addition to single pollutant, single threshold simulations, TOXX can treat situations involving
multiple pollutant species and threshold concentrations. These capabilities, when combined with die
multiple-source and multiple-source-group capabilities described above, result in six different operating
modes, as summarized in Table 2-1. The first three modes involve cases in which only a single
species is to be modeled. We discuss the principal features of each of these modes next.
Mode A: This is the simplest mode in that exceedances of up to six threshold concentrations
can be calculated simultaneously, rather than having to run the model separately for each
threshold. Separate expected exceedance calculations are conducted and results output for each
threshold. The multiple threshold capability is included in all of the single-species modes (A,
B and Q, but not in any of the multiple-species modes (D, E, and F).
Mode B: Source emissions are modeled as covarying, meaning that all sources are either on
or off during any given hour. All sources are in the same TOXX source group and identical
emission rate multipliers must be specified in the TOXX input parameter file for each source.
No more than 20 sources may be specified.
Mode C: This mode represents independently varying multiple sources and multiple source:
groups. As in mode B, all sources within a group must have identical emissions. However,
emissions can vary from one group to the next The total number of individual sources in all
groups must not exceed 20.
The remaining three TOXX modes (D, E, and F) involve cases in which more than one pollutant
species of concern is to be modeled. TOXX is capable of treating up to six different species in a
single run. Two methods for calculating exceedances involving mixtures of two or more species are:
available in TOXX:
Non-interactive method: In this method, the potential health effect of each species is
considered separately. That is, separate exceedance calculations are made for each species.
An exceedance is recorded for a species at a receptor during any hour in which the
concentration of the species (plus background, if any) exceeds its designated threshold concen-
tration. If no species concentrations exceed their threshold values, no exceedances are
10
-------
CIS
!
X
X
B
^^
i
S
«
CO
JJ
B
O
U
a
c
o
4J
T> id
O JJ
TJ
C
id
u
a
3
E
a.
3
o
u
IT
i
id
CO
0
x;
c
rl
X!
H
n
0
u
u
3
O
CO
n
IH
0
H
'o.
H
JJ
rj
£
to
X!
O
«
0
IH
O
TJ
0
H
tH
H
O
8.
CO
X
>l
0
id
vj
B
O
TH
CO
CO
-r*
E
0
0
id
IH
d
a
0
01
d rH O.
& O
id in
CO CO
0 JJ JJ
rH 10 C
P 0
a o
jJ 3 O
10 0
3 U
E er
CO
co 0 O.
063
u id o
IH co u
O 0
to X C
rH 0
id C 3
3 -rl JJ
TJ 0
rl tO J3
> 0
rl 0 H
TJ U 0
C 3 tn
H O tJ
CO -H
tH TJ
O -
CO >1
IH 0 id
0 -H E
9 °
B 0 CO
3 a c
C n 0
rl
rH C "I
d 0 M
JJ > -H
0 -H 6
EH tJ» 0
IH
0
a
0
c
o
to
I
co
0
IH
8,
S
I
-------
recorded. The possible synergistic effects of multiple species are not considered in this
method.
Interactive method (additive model): In this method, a simple model (known as the additive
model) is used to account for the possible synergistic effects of the pollutant species. Using
this model, an exceedance is recorded at a receptor for any hour in which the sum of the ratios
of the concentrations of each species to their respective threshold concentrations is greater
than or equal to one. Thus, an exceedance may be recorded for an hour even though no
individual species concentration exceeds its threshold value.
By setting an option flag in the TOXX input parameter file (see Section 3.2), the TOXST user can
select either of these methods for calculating exceedances in multiple-species applications.
As is the case with single-species applications, TOXX may be run in three different multiple-species
modes:
Mode D: This is the multiple-species version of Mode A. A separate threshold concentration,
background concentration, and emission rate multiplier are entered in the TOXX input
parameter file for each species modeled.
Mode E: This mode is the multiple-species version of Mode B. Emission rate multipliers
specified for a given species must be the same for all sources, but as in Mode D, a separate
emission rate multiplier, threshold concentration, and background concentration are input for
each species.
Mode F: This mode is the multiple-species version of Mode C. The total number of sources
must be no more than 20. For a given species, sources in the same group must have identical
emissions but emissions may vary from one group to the next Separate emission rates are
input for each species and source group. A separate threshold concentration and background
concentration is input for each species.
2.33 Screening Procedures
In the TOXX post-processor, a screening procedure is used to eliminate from consideration any
concentration values so small that they result in a negligibly small probability of exceedance. This
saves computing time since the vast majority of concentration values are typically less than the
screening level and are thus eliminated from subsequent calculations. The procedure in TOXX has
been designed to eliminate concentration values so small mat even with all sources emitting (i.e., "on")
no exceedance would result The TOXX screening procedure is designed to determine the proper
screening level for each of the six modes described in the preceding section.
12
-------
The screening procedure within TOXX should not be confused with the preliminary screening
performed by ISCST2 in the creation of the TOXXFILE binary concentration output file (see Section
2.1). The ISCST2 screening is a coarse screen designed to limit the size of the binary X/q files. The
TOXX screening is performed on only those X/q passing through the ISCST2 screen and is designed
to reduce the computational burden of the TOXX exceedance calculations. This screening procedure
is tailored to the specific input parameters of each TOXX run. If the screening value calculated by
TOXX is less than the screening value input to ISCST2. the TOXX results will be incorrect. In such
cases, a warning message will be output It is important, therefore, to select an ISCST2 screening
level that is at least as small as the smallest screening level likely to be used in any subsequent
applications of TOXX to the ISCST2 results. However, the use of an excessively small ISCST2
screening level may result in unmanageably large ISCST2 X/q output files.
2.4 TOXST LIMITATIONS
TOXST users should be aware of certain limitations to the accuracy and applicability of TOXST
results. In particular, it should be noted that the simple emissions distribution assumed in the TOXX
model (i.e., a randomly intermittent, constant-rate distribution) may represent only a rough
approximation of the actual distribution of emissions from the source under study.
Also, since TOXX uses the Monte-Carlo simulation procedure, users should be aware that the accurate
calculation of expected exceedances requires a sufficiently large number of simulations. If available
computer memory and/or disk space severely limit the number of simulations that can be performed,
large errors may result The number of simulation years performed is set by by the user as a
parameter value in the TOXX input parameter file (see Section 3.2).
2.5 DISCUSSION OF TOXST INPUTS AND OUTPUTS
As illustrated in Figure 2-1, TOXST applications involve the execution of the ISCST2 Gaussian
dispersion model followed by execution of the TOXX post-processor. The ISCST2 model used with
TOXST reads the meteorological data file and input parameter file described in the ISC2 user's guide,
Vol I (Ref 2a). As noted in Section 3.1, certain options must be specified in the ISCST2 input
parameter file to assure its compatibility with TOXST. These options instruct the program to prepare
the binary file of dispersion estimates required by the TOXX model (TOXXFILE).
In some TOXST applications, a unit source emission rate of 1 g/s may be specified in the ISCST2
input parameter file to produce "normalized" dispersion results for subsequent processing by the
TOXX post-processor. In such cases, actual emission rates are provided as "emission rate multiplier"
inputs in the TOXX input file. In other TOXST applications, however, it may be desirable to use
actual emission rates ISCST inputs, and provide unit values (1.0) as "emission rate multiplier" inputs
in the TOXX input file. Other variations are possible, as long as the user takes care to insure that the
13
-------
product of the appropriate ISCST emission rate and its corresponding TOXX emission rate multiplier
result in the desired emission rate for each modeled source and species. Additional information
concerning the proper specification of emission rates is provided in the appendix.
TOXX requires as input the binary dispersion file (TOXXFILE) produced by ISCST2 and an input
parameter file. The following points should be noted regarding the parameter file:
For multiple-species applications, a parameter must be set to instruct the program to use either
the non-interactive or interactive (i.e., additive) model, as described in Section 2.3.
Parameters required as input to TOXX to describe the emissions distribution are (1) the
duration of the release in hours, (2) the probability of a release beginning during a given hour,
and (3) the emission rate during a release.
Since TOXX uses a Monte-Carlo simulation, the desired number of sample-years must be
input
For single-species applications, up to six threshold concentrations may be entered along with a
single background concentration.
For multiple-species applications, a separate threshold concentration and background
concentration are entered for each species. Only one threshold concentration may be entered
for each species. A separate emission rate is entered for each species in each source group (if
multiple source groups are being used; see Table 2-1).
Outputs produced by TOXST include the standard ISCST2 printout as described in the ISC2 user's
guide Vol. I (Ref 2a) and the TOXX model printout as described in Section 5.3. The latter file
includes a listing of all TOXX input parameters and the results of the expected exceedance
calculations for each receptor site and/or the maximum expected exceedances over all receptors. In
single-species applications, and in multiple-species applications that do not use the interactive method,
expected exceedances are listed separately for each species or threshold concentration. In multiple-
species applications in which the interactive method is used, a single expected exceedance value for
the pollutant mixture is output for each receptor.
14
-------
3. PREPARING TOXST INPUT FILES
In the previous chapter we presented an overview of TOXST and the associated input and output files.
In this chapter we provide a detailed description of the contents and formats of the input files. Output
files are described in Chapter 5.
3.1 PREPARATION OF KCST2 INPUT FILES
The ISCST2 meteorological data input file and the ISCST2 input parameter file used in TOXST are
identical in content and format to, respectively, the binary meteorological data file and the "card
image" parameter input file used with the ISCST2 model dated 92273, as described in the ISC2 user's
guide, Vol. 1 (Ref 2a). Certain options must be specified in the input parameter file so that ISCST2
will produce the desired binary dispersion estimate output file. Specifically, the ISCST2 OUtput
pathway option TOXXFILE, which includes the concentration cutoff value, and the COntrol pathway
option to perform only one-hour averaging (AVERTIME = 1 ) should be specified.
The concentration cutoff value, or threshold, provided to ISCST2 should be small enough so that all
"significant" concentration values are included in the TOXXFILE, but not so small as to render that
file unmanageable. One reasonable approach to follow is:
1. For a simulation involving N pollutants and J ISCST2 source groups, select the lowest health
effects concentration threshold to be included in the analysis. Call it L.
2. Select a cutoff concentration value which is no larger than X, where
X = L / (N * J).
A listing of an example ISCST2 input file is shown in Table 3-1. Lines beginning with ** are
comments not interpreted by ISCST2 as input data to be processed. Items of particular interest to
TOXST users are flagged with ««. (Do not include the « markings in an actual input file; an
error will result, terminating the ISCST2 run.) These items include a specified averaging time of one
hour, specifying the TOXXFILE output option to create a binary file, and specifying a separate source
group for each individual source. It may be of interest to note that the example file was converted
from an original ISCST input file (i.e., the old version) by using an auxiliary program created for
(new) ISCST2, namely STOLDNEW (Short Term. OLD to NEW). For more details, see the ISC2
user's guide, Vol. I (Ref 2a).
15
-------
QQ
input parameter file for running the new ISCST2 dispersion model was created
usly existing old ISCST input file that was used to create one of the examples
o
0> -H
H >
£2
a Q.
x
d) «>
« g
H O
A M
* *
* *
original InToxx documentation by execution of the program
d>
&
c
c
I
H
*
«
ch is available on the EPA SCRAM bulletin board along with ISCST2.
H
r*
*
s
STOLDNE
* *
* *
TARTING
co
O
U
tant_A - Example Plant. Only 1st 7 days
ample new ISCST2 for documenting the new TOXST
3 M
rH 0)
rH
0 C
O< <
ITLEONE
ITLETWO
EH EH
O O
0 0
URBAN GRDRIS
O
2
0
CJ
ODELOPT
S
8
M
3
O
e:
0)
q
o
o
H
4J
C
a
s
§
m
S
V
V
V
V
V
V
V
V
V
V
rH
VERTIME
<
o
o
ffl
id
re
EH
o
OLLUT ID
04
8
o
0
o
0
o
0
CAYCOEF
Q
8
55
i
UNORNOT
K
8
EH
§
CO
K
fy*
H
RRORFIL
a
8
INISHED
Pu
8
TARTING
co
S
CO
co
>H
CO
X
09 Ou
"O >*
M EH
10 o
O OS
(A
c
0 Q
H W
U O
10 OS
u co
o
ource L
CO
* *
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
CO
a
EH
M
co 2
> M
N
co
EH EH
H H
co 2 2
EH H H
>H X
CO
CO CO CO
sax
o o o o o
o o o o o
o o o o o
o o o o o
EH
2
EH E
2 ;
H K
o o o o o
CM
if m
22222
o o o o o
M H M M H
EH EH EH EH EH
<
o o o o o
(o co co co CQ
-------
m
o o o o o
o o o o o
r- r-- r* r- co
CO CO CO CO rH
o o o o o
o o o o o o o
o o o o o o o
CO CO PO 00 CO CO CO
«. OOOOOOO
CM OOOOOOO
OOOOOOO
n ooooooo
0) OOOOOOO
o o o o o
o o o o o
o o o o o
lO LO lO U*> rH
CO CO CO CO
o o o o o
o o o o o
o o o o o
o o o o o
rH rH i-H rH «Tl
CO CO CO CO C\l
O O O O O
GO OO GO GO CN]
r- r~ r* t- oo
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
<0 r- GO r- co
co r>
CO CO CO CO
rH CN CO
1/1
c5 o o o o
fii ftf 0^4 fli 05
co co co co co
O O O O O
CO CO CO CO CO
d) 4)
ooooooo oo
Hi-HrHrHrHrHi-H HrH
3 3
CO
CO
CO CO
CO CO
I I
C G
OOOOOOO OO
2i-HrHrHrHrHrHS5rH
to 10 10
10
M
O
*o *o
CD 0)
n n
DOOOOOODO
I-H rH rH i-H rH rH i-H
n
4->
V0
n
4J
r)
0)
x
CD
X
Otoooooo O> o
CrHrHi-HrHrHrH C rH
H H
H
3
n
o
H
£
o
000000 -HO
&
CO
O
.H
M
H
H
O
0)
a
CO
c
o
H
-U
O
CO
M
-H
CM
O O U U O O
ae a a; aa a 33
EHMHMHHHEHH
ODDD&DDOD
ZOQCBCQCQCQCDZCQ
OOOOOO*
COCOCOCOCOCO-K
0
CO
0)
o
3
O
CO
CO
CO
1
c
S
S3
M
O
T)
01
CO
D
0
o
o
o
0
o
CO
0
0
o
0
o
o
o
CO
o
o
o
o
o
o
o
CO
o
o
0
0
CO
0
0
0
CO
0
0
o
o
CO
o
o
o
CO
o
0
o
o
CO
o
o
o
CO
o
CD
o
3
o
CO
CO
co
1
c
o
f7
*5
M
o
o
0)
n
o
o
o
CO
0
0
o
CO
o
on o o o o o o no
H
3
.
c
H
d
H
H
3
n
o
H
-------
emisfact for 2,3,4,5
8
H
ti
8,
deleted
.
CU,
w
EH
O
H
g
O
1
o
M
33
U
U
CO
CO
0
o
W
o
o
o
0
o
rH
EMISUNIT
0
to
rH
i-H
3*
srcgro
CM
CM
§
srcgro
CO
CO
04
srcgro
4
5 <«« 5 sources, 5 source groups
if m
Oj Qj
3 3
srcgro
srcgro
FINISHED
O
STARTING
S
$
S
o
H
jJ
S
t
#
X
O
4J
CO
-U
CO
1
4J
CO
0)
P
u>
0)
in
i-H
rH
toxxfile
FINISHED
S
O
13
C
0)
-------
3.2 PREPARATION OF TOXX INPUT PARAMETER FILE
An example TOXX input parameter file for a Mode C application (see Section 2.3.4) is shown in
Table 3-2. Free format is used throughout, with the exception of the parameters title, hName,
pName, and sName, which are character strings. The title can be typed in alphanumeric characters
anywhere in the first 80 spaces of record 1; hName and pName, respectively, can be typed anywhere
in the first 20 spaces of record types 4 and 5, and sName can be typed anywhere in the first 20 spaces
of record type 9. A description of the individual records follows:
Record 1
title -- Title of the TOXX run (may be up to 80 characters long)
Record 2
nHET Number of health effect thresholds. A maximum of six different
thresholds may be specified for single species applications (Modes A, B, and C); one
per species must be specified for multiple-species applications (Modes D, E, and F).
hET - List of nHET health effect threshold concentrations (ug/m3).
Record3
nPol - Number of pollutant species to be modeled (nPol = 1 for Modes A, B, and
C; nPol = 2 to 6 for Modes D, E, and F).
bkgd - List of background concentrations for each species (ug/m3).
The following record type is repeated once for each health effect threshold concentration specified in
record 2. Thus there are nHET records of this type:
Record Type 4
hName ~ Health effect threshold name used in identifying the threshold on output
pages (maximum of 20 characters).
19
-------
tc
S3
s,
i
X
X
B
en
U
CQ
V
ple of Actual
e
tries
Ex
En
I
£ >
$ £ -
- s tr
"§>
" '
£3 *
1
a
i
I
1
a
1
.« e s.. s
rt - - a § -.
& &
2 & a
B" J B*
* & & &
1 1 psl
* *
cn
oo
ON en
CM
Ss5
:-e
en
>O 1-1
$
ts
10
«i w -r
-^ >»»_;>-/ O W O
*"* OO Q^ » ttg « CiL »
.ON3^H5*~'5fsJ
^1 ~1 O ~7 O of O en
Oenco-H6O»-'CO»-i
O O O
oo ON <" ON i O\ <i
^^S^^SSIS
O
CN
-------
The following record type is repeated once for each pollutant species specified in record 3. Thus there
are nPol records of this type:
Record Type 5
pName - Name of pollutant species (maximum of 20 characters).
The following records appear only once; they are not repeated.
Record Type 6
nSim Number of sample years for the Monte-Carlo simulation (may be between 1
and 1999, but values larger than 100 are recommended for most situations and 400
is a reasonable value).
nSrc Number of ISCST2 source groups to be included in this simulation (must be
between 1 and 20).
iAvPer Averaging period (hours). Must be set equal to 1 for all current TOXST
applications.
Record Type 7
(Add Interaction model flag for multiple species applications (Modes D, E, and
F). Set equal to 0 if non-interaction method is to be used to calculate exceedances.
Set equal to 1 if additive model is to be used to estimate interactive effect of
pollutant mixture (see Section 2.3). Must be set equal to 0 for single-species
applications (Modes A, B, and Q.
ITab - Expected exceedance output type flag:
ITab = 0: Do not print expected exceedances for individual receptors.
ITab = 1: Print expected exceedances for individual receptors in polar
grid format.
ITab = 2: Print expected exceedances for individual receptors in Cartesian
grid format.
ITab = 9: Use flag in the last dispersion model results file read to select
one of these options.
21
-------
lYrlyYearly output flag. Control option to print expected exceedances for
individual meteorological years (i.e., individual years of dispersion model results) in
addition to printing one set of results averaged over all meteorological years: lYrly
= 0, do not print yearly output; lYrly = 1, print yearly output.
Record Type 8
nYear - Number of meteorological years (i.e., years of dispersion model results;
maximum of 6).
iYear List of the years of dispersion model results. All four digits of the year
must be entered (i.e., 1965, 1966, 1967).
The next two record types arc repeated for each source when more than one source is being considered
(Modes B, C, E, and F).
Record Type 9
sName - Source name (20 characters maximum)
Record Type 10
iSrc ~ The ISCST2 source group number. In ISCST2, source groups are used in
two ways: (1) to identify individual sources when the TOXXFILE option is chosen
(that is, each source is identified as a separate source group), and (2) to specify
actual groupings of sources whenever the user wishes to aggregate them on the basis
of some common feature or analysis. ISCST2 source groups should not be confused
with TOXX source groups; see Section 2.3. If the dispersion model was exercised
for ISCST2 source groups numbered 10, 11 and 13, and parameters for the second
of these three source groups are being entered, iSrc would be set equal to 11. Not
all ISCST2 source groups included in the dispersion model output need be included
in a TOXX run; impacts from ISCST2 source groups with group numbers not
assigned to iSrc will be ignored by TOXX.
22
-------
iGrp - TOXX source group number. Each source is assigned to a TOXX source
group such that all sources with covarying emissions are assigned to the same group
and sources with independently varying emissions are assigned to different groups
(see Section 2.3). TOXX source group numbers should be assigned consecutively,
beginning with group number 1. A maximum of 20 groups may be specified. Note,
however, the restriction on the total number of individual sources that may be
specified (see description of parameter nSrc).
The values of the following parameters must be identical for all sources belonging to
the same TOXX source group. Thus, some information is repeated if a group
consists of more than a single source. For more information, see Sections 2.2 and
2.3.
probOn Probability of source switching on (must be between 0 and 1; see Section
2.3.1).
timeOn Release duration, i.e., number of hours a source remains on once turned
on. This must be a FORTRAN integer whose value is greater than or equal to the
actual release duration in hours.
rate List of emission rate multipliers for each species for the source group (g/s)
during source release periods (For example, if there are four different species
included in this simulation, there will be four separate emission rate multipliers
separated by commas in this line.)
23
-------
4. EXECUTING TOXST
4.1 SYSTEM REQUIREMENTS
TOXST is designed to be executed on an IBM PC-compatible machine. While the TOXST system has
been tested fully on only an Intel 80386-based PC, the executable version available through the EPA's
Office of Air Quality Planning and Standards TTN (Technology Transfer Network) should run on any
PC, with or without a math coprocessor. Faster machines are recommended for higher performance,
but are not necessarily required. MS DOS 5.0 was used in developing and testing the TOXST system.
To ensure acceptable performance, the minimum recommended system configuration is a 386-based
PC with a 40 MB hard-disk drive, monochrome monitor and DOS 5.0 or higher. TOXST disk storage
requirements are largely a function of the complexity of the dispersion modeling scenario; the volume
of output produced by TOXX is negligible in comparison to that produced by ISCST2. Typical disk
storage requirements are as follows:
TOXST executable program code 224Kb
ISCST2 input data - 250Kb
ISCST2 binary output 12.6 Mb
ISCST2 printable output negligible
TOXX input data negligible
TOXX temporary paging file variable2
TOXX output negligible
Approximate Total (excluding TOXX paging file) 13 Mb
The size of the ISCST2 binary output file is determined by the number of receptors and source groups
specified and, most important, by the value of the screening cutoff concentration specified in the
ISCST2 input file OUput pathway (see Section 3.1). The file size indicated above is based on a rough
estimate of the maximum disk storage required for one year of dispersion data for a network of 180
receptors, assuming that all the hourly X/q values pass the ISCST2 prescreening. This would output
24 hours/day * 365 days * 180 receptors =1.6 million receptor-hours of X/q values. Each such
receptor-hour would require approximately 8 bytes of disk space, so that the entire binary X/q output
file would occupy 12.6 Mb. Of course, this is a "worst case" one-year scenario. With a suitable
choice for the ISCST2 prescreening cutoff, the size of the binary X/q file may be reduced by 90% or
more. In estimating overall storage requirements, it is necessary to consider the size of the ISCST2
output produced for each year modeled.
2 Minimum size is 32 Kb, maximum size is size of ISCST2 binary output plus 32 Kb. Actual
size depends on how many x/q values have the potential to produce exceedances when all sources are
"on" (see Section 2.3.5).
25
-------
There are three include files for the FORTRAN programs: INTXX.VIN, INTXXJTN, and
TOXX.INS. In addition, there is an MS-DOS batch file, TOXST.BAT, which is used to invoke the
TOXST system.
The FORTRAN programs in TOXST were developed using the Microsoft FORTRAN Optimizing
Compiler Version 5.1.
4.2 EXECUTION PROCEDURE
For proper execution, it is required that all executable TOXST code (the batch control file
TOXST.BAT and the executable versions of INTXX, ISCST2, and TOXX) must be located in the
same directory on the user's hard disk. Input files for ISCST2 and TOXX may reside in other
directories, and must be set up in advance of running TOXST.3 After downloading the executable
files from the TTN bulletin board (see Sec. 4.1) into a directory on the hard disk:, the user enters the
command TOXST to begin execution. The program is operated through a series of menu screens.
The main menu is shown in Figure 4-1.
After selecting one of the options on this menu, additional menus appear and the user is requested to
enter the number of ISCST2 and TOXX runs to be set up along with the appropriate filenames (i.e:.,
extended DOS file identifiers including; optionally, drive, path name, file name, and file extension) for
the required ISCST2 and/or TOXX input and output files. If filenames are entered without drive/path
specifiers, files must be located in the directory from which TOXST was invoked. TOXST restricts
the length of ISCST2 filenames to 80 characters and that of TOXX filenames to 64 characters. The
system uses these filenames to construct DOS batch files to run ISCST2 and/or TOXX. By selecting
the appropriate menu options, these batch jobs may be executed automatically upon termination of
TOXST, or stored for later execution. Under the latter option, it is necessary to remember that the
following filenames are used: The standard batch file that carries out ISCST2 runs configured with
TOXST is GoISCST2.Bat; that for TOXX runs is GoTOXX.BaL These batch files, as well as any
temporary files created by ISCST2 or TOXX, are stored in the directory from which the TOXST
system was invoked.
A TOXST session proceeds in a sequence of steps. The first step creates ISCST2 and TOXX batch
files (choice (1) from the main menu, Figure 4-1). It is here that the user enters the number of
3 The executable versions of TOXST programs available on the SCRAM bulletin board may be
downloaded and executed "as is" by following the directions in the TOXSTREA.DME file available
on the bulletin board. Information on compiling TOXST source code is in the TOXSTREA.DME
file.
26
-------
~ ~;" * '^$\'3%', v * '",< -'- , ' '
- ^; *»^. - <^ .* ,- ^
FIGURE 4-1. TOXST main menu screen.
executions of each program to be performed, and the names of input and output files for each such
executioa4 At each stage, TOXST checks to be sure that the specified input files exist. If a required
file is not present, the user is prompted to enter a new filename. Required input files include the
ISCST2 or TOXX parameter input files and the ISCST2 meteorological input file. If a TOXX batch
file is created without first creating an ISCST2. batch file, one or more TOXXFILEs created by
ISCST2 are also required.
After creating batch files for either or both ISCST2 and TOXX, the user may queue either or both
batch files to automatically execute upon termination of the TOXST session (choice (2) on the main
menu, Figure 4-1). This step only requires the selection of the program (ISCST2 or TOXX) for which
a batch file is to be queued. If both an ISCST2 and a TOXX run are to be performed, the ISCST2 run
must be queued first.
Once these steps have been carried out, the user exits from TOXST. If ISCST2 and/or TOXX batch
files have been queued for automatic execution, they will begin running, with the ISCST2 runs always
occurring first If no batch files have been queued, the user may carry out the ISCST2 and/or TOXX
runs that have been set up by running the GoISCST2.Bat and GoTOXX.Bat batch files at any
convenient time. Two example TOXST sessions are described in detail in Chapter 6.
4 Note that the "log" output files referred to in the program prompts are actually the "printable
output" or "printout" files referred to in the text and shown in Figure 2-1.
27
-------
5. TOXST OUTPUT
5.1 GENERAL OUTPUT
As shown in Figure 2-1, the principal output of TOXST is the TOXX printout file, which contains the
results of the expected exceedance calculations. In addition to this file, most users will also want to
examine the ISCST2 printout file to verify the proper operation of the ISCST2 model. Neither the
TOXXFILE produced by ISCST2 nor the TOXX temporary paging file (which is automatically erased
after the TOXX model has been sucessfully run) is a printable file. These files are not normally
examined by TOXST users and therefore are not described in this manual
5.2 ISCST2 PRINTOUT FILE
Output produced by running ISCST2 in the TOXST system is identical in format and content to the
standard ISCST2 output as described in the ISC2 user's guide, Vol. I. Users needing additional
information about this file should refer to the user's guide. The file is formatted using FORTRAN
carriage control characters in column one.
5.3 TOXX PRINTOUT FILE
TOXX produces a single printout file that is formatted using FORTRAN carriage control characters in
column one. Examples of typical TOXX outputs can be found in Chapter 6.
The first page of the TOXX printout repeats information specified by the user in the input parameter
file for verification. The second page describes information contained in the dispersion model output
(X/q) file or files used in the TOXX run. The third page contains any warning messages output by the
TOXX subroutine setup. The fourth page summarizes the results of the TOXX screening procedure,
which is designed to eliminate X/q values not large enough to potentially result in exceedances.
Additional information on the screening procedure and interpretation of this page of the output can be
found in Section 2.3.5.
The remaining pages of the TOXX printout show the results of the expected exceedance calculations.
Results are shown for each receptor only if one of the "output for all receptors" options (input
parameter ITab = 1 or 2 or ITab = 9 and the last dispersion model results file read contains output
option 1 or 2) has been specified. Otherwise, only the maximum expected exceedance rate is output.
Results for individual meteorological years are output only if the "output by years" option (input
parameter lYrly =1) has been specified. Otherwise, only the expected exceedances averaged over all
years are output.
TOXX displays resultant exceedances at receptor locations in a tabular format that is arranged
according to the receptor grid as defined by the user in execution of ISCST2. Receptors are numbered
29
-------
1 through the maximum number of receptors in the dispersion grid network(s). (While ISCST2
permits the use of multiple grids, a single grid is recommended for use with TOXX because,
otherwise, the tabular format, which is defined based on the characteristics of the last network
specified in the ISCST2 run, may become difficult to interpret.) For a polar grid, a row of values in
the tabular printout represents receptors along a radial of the grid and, for the case of a Cartesian grid
system, receptors along a row of the Cartesian grid. For a polar grid defined in ISCST2 as 4 radials
beginning at 45 degrees separated by increments of 90 degrees, the first radial, i.e. row of tabular
values, corresponds to the radial lying at 45 degrees, generally northeast The second radial, e.g. row
of values, lies at 135 degreees, or southeast, and so on. For a Cartesian grid defined in terms of toth
positive x- and y-axis increments beginning at the lower right (southwest) comer, the first row of
values printed, and numbered ROW 1, represents the bottom (southernmost) row of the grid, and the
left to right orientation of the values represents west to east. If the user should define the grid in
ISCST2 as beginning at the northwest comer, and in which case the y-axis increment would be
specified as a negative value, ROW 1 of values would correspond to the northernmost row of the grid.
Thus, a knowledge of the grid system as defined in ISCST2 is necessary, for without it the TOXX
user perceives merely a listing of some values with no indication as to their physical locations.
The expected exceedance output is slightly different for each TOXX mode (Table 2-1), as described
below.
5.3.1 Output For Single-Species, Multiple-Threshold Applications (Modes A, B, and C)
In these modes, expected exceedances corresponding to each threshold concentration are output on a
separate line. Thresholds are referred to by number, with numbers assigned by TOXX as shown on
the first page of the printout In multiple-source-group applications (mode Q, expected exceedances
resulting from the impact of each source group are output along with expected exceedances resulting
from the combined impacts of all groups.
5.3.2 Output For Multiple-Species Applications (Modes D, E, and F)
In these modes, expected exceedances, calculated either by the noninteractive method (input parameter
I Add = 0) or interactive method (i.e., additive model) (input parameter I Add = 1) are output. If the
interactive method is used, only exceedances resulting from the combined effects of pollutants are
calculated and there is no separate output for each threshold concentration. In multiple-source-group
applications (mode F), expected exceedances resulting from the impact of each source group are output
along with expected exceedances resulting from the combined impacts of all groups.
30
-------
6. EXAMPLE TOXST APPLICATIONS
In this chapter we present two TOXST applications. To date, there have been no applications of
TOXST to actual toxic release situations. Therefore, the examples presented are somewhat artificial in
nature and only loosely based on actual release scenarios. They nevertheless serve to illustrate the
basic procedures involved in TOXST applications. The first example is relatively simple: a single
source, a small (32 receptors) polar grid, and a single pollutant The second example involves four
sources, a larger (121 receptors) rectangular receptor grid, and two pollutants whose effects are
combined with the additive exceedance option in TOXX. Both examples use the same year of
preprocessed meteorological data.
6.1 EXAMPLE 1
Intermittent releases of a pollutant, Pollutant A, from a single source are modeled in this example.
ISCST2 is used to generate ground level concentration estimates at an array of 32 receptors located
along 4 circular arcs consisting of 8 receptors each. The dispersion model inputs are prepared using
the knowledge that the releases from this source may only be initiated at either 8 AM or 8 PM on any
day of the year, and will only last for one hour. The emission rate used in the dispersion model is set
equal to the actual rate for the source during periods when Pollutant A is being released. The TOXX
model is then used to account for the fact that the actual occurrence of a release on any particular day
is random. The ISCST2 model is exercised using a single year of meteorological data from 1964.
The ISCST2 input file for this example shown in Figure 6-1 specifies the creation of a TOXXFDLE
using a prescreening level of 1.5 x 10* g/m3 to eliminate negligibly small concentrations and thus
reduce the size of the resulting TOXXFILE.
The TOXX input parameter file used for this example is shown in Figure 6-2.
Pollutant A threshold concentration (410 ug/m3) is specified, and a zero background concentration is
assumed. Since the actual emission rates during release periods for the source was specified in the
ISCST2 model run, an emission rate of 1 g/s is specified for the source in TOXX. In this way, the
source will be modeled at the proper emission rate. As stated above, each release episode lasts one
hour. The probability of a release occurring in any given hour of the simulation is specified based on
the knowledge that this source averages 312 releases per year. Recalling that the total possible hours
of operation are twice daily, or 730 hours in a year, the probability of a release occuring, pon, is
specified as 312/730, or 0.427.
31
-------
NOTE: the number of sources (1) and the type of receptor grid (polar, code = 1) used in the ISCST2
run must also be specified in the TOXX input file. These two items occur in lines 6 and 7 of the
example input file - they are not conveyed automatically from ISCST2 to TOXX.
After creating the ISCST2 input parameter file, the meteorological data file, and the TOXX input
parameter file, the TOXST system is invoked and option 1 from the main menu (Figure 4-1) is
selected. This brings up the Create Batch Files menu from which option 1 is selected, thus invoking
the Create ISCST2 Batch File screen. The number of ISCST2 runs to be executed (1) is entered
followed by the appropriate ISCST2 input and output file names in response to the program prompts.
After returning to the Create Batch Files menu, option 2 is selected, thus bringing up the Create
TOXX Batch File menu. The number of TOXX runs (1) is entered, followed by the appropriate input
and output file names in response to the program prompts. The number of X/q TOXXFILEs
requested (1) corresponds to the number of ISCST2 runs that were set up in the previous step, The
user will be prompted to enter the name of the ISCST2 output TOXXFILE; the name entered should
be the same name used in the ISCST2 parameter input file in the TOXXFILE definition statement
After returning to the Create Batch Files menu, option 3 is selected, thereby returning to the main
menu. In those cases where execution of both ISCST2 and TOXX can require several hours, option 2,
automatic execution of the queued batch files upon exit from TOXST, should probably not be selected
at this time and option 3 (Exit) should be selected instead. This is done to avoid tying up the PC for
the rest of the day. Execution of the models can then be initiated at a later time by running the
GoISCST2.Bat and GoTOXX.Bat command files in sequence at a convenient time. (Note: it is
instructive for the user to examine these files) For this small example case, however, only a few
minutes are required for execution. Therefore, we return to the main menu and select option No. 2
("Queue created batch files for post-TOXST execution"). This brings up the TOXST Queue Batch
Files Menu from which option No. 2 is selected, so that execution of the ISCST2 model will begin
automatically upon exiting TOXST. Automatic execution of TOXX is likewise selected. Finally,
return to the main menu and select option No. 3 ("Exit TOXST program"). When ISCST2 has
completed, TOXX will be invoked for execution automatically.
Upon completion of the ISCST2 run, the ISCST2 printable output file should be examined to insure
that the model inputs were read properly and that the model executed as expected. For this example
run, the file should appear as shown in Figure 6-3. The first portion of the print file is an echo of the
ISCST2 inputs. The remainder of the print file is the run-time results.
Expected exceedance results from the TOXX model are contained in the TOXX printable output file
given in Figure 6-4. The first page of the output repeats the information input by the user via the
input parameter file; the second page repeats information contained in the dispersion model results
(DMR) file, i.e. the TOXXFILE. Expected exceedances calculated by TOXX for each source group
(in this case of a single source, there is only one source group) are listed starting on the fifth page.
The maximum expected exceedance rate for source group No. 1 is 67.35 exceedances per year and
32
-------
occurs at receptor number 5, which is the first receptor on the second radial. Since the first radial was
specified in the ISCST2 input to begin at 45 degrees, and the radials are at 45 degrees separation, the
second radial is at 90 degrees, i.e. it is directed due east
NOTE: Detailed receptor grid information is not apparent from the TOXX printable output file and
must be inferred from the grid description in the ISCST2 specifications. The grid description is not
included in the ISCST2 TOXXHLE output and, consequently, is not passed automatically from
ISCST2 to TOXX. Note also that the use of more than one grid in a single ISCST2 run, while
permissible, will lead to printable results in TOXX that can prove to be quite difficult to interpret.
Also see Section 5.3.
*
33
-------
4J
«W 3
g O CU '
10 C C 0)
M 4J -H (0 *J
Cn M o>
o n) c n >H
H Q. 10 (0 O
a n
n V 73 A
o
X3 0) >
4-> 73 S M fl)
M a> n
MH <0 (0 W -H
O O J-> S
XI <0 T3 0)
c -o c .*
0 C <0 -H
H -H rH rH
-U 4J <0 EH
3 <0 C CO «.
O rH -H O C
fl) rH tj> CO O
X 3 -r| H -H
0) XI M 4J
O tH «
>i 2 O 4J
xj 2 >
H C X
0) 0) 0) X
T3.Cg.pO
0) 4J a 0) H
-U O rH 2
CO C rH O M
O o fl) n
M !> Q rH
O (I) 0) O CO
rH T3 C
03 XI S -rl
CO co CM O U>
* rH EH C -rl
H rJ M
tO a
a 0)
4J » O J5 >
CO *J -rl
P ». H Ol
CO S M
j- H S O fl)
P 2 fl> **H rH
Q C CL
fl) 1-5 0) g
4-1 O 0) rH <0
O EH X3 -rl rl
2 CO .P H O
0 O
V
fl) q to
-H --H q
H -H
tH fl) ^
-H H
rH 4) «]
IQ «3 -H
3
0> S
0 fl) U
H -q q
H 4J 10
<0 .q
4J ^H
H H IH
q -d
H - 4J
03 0
rX! 03 Q)
fl) O «q
W QJ 4J
V 3 q
V Q, O
4J
3
Q,
e
H
g
o
!_ i
C M
CO O
rH 1»H
ou
o
0) -r|
H M
Q« Cn
g
CO M
X CO
U H
O
1 O,
< -
U U
c u
CO 3
4-1 O
3 n
H
rH fl)
& o
O U O
H O +J
E~* M fl?
&4 ^ ^
2 E* JJ
M H -H
CO EH +J
O O O
0 0 U
IH
3
O
.q
M
<*H
0
03
H
4J
to
q
H
to
o o
£ *S QJ Q
O 0 0 O
O O O O
to
q
0
IH
Se
o
to
03
to
q
H.
x;
u
q
0)
§
Q
0)
4J
~l
3
rH
O
o
0
o
rH
rH
CO
0
o
00
t-
O
0)
rl
Q
a
EH
O
2
*
«
o
rH
VD
«
CO
o
CO
-p
n
EH
O
S
S
M
D
n
o
co
on-Specific Building Widths Used for Non-SS Source 1
rl
jj
o
a)
M
rl
Q
**
H
S
2
«
«
o
0
0
fO
*
vo
rH
O
CO
4J
00
Q
H
S
S
M
D
m
o
CO
-------
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
JH >H >H
Q Q Q Q Q O
Ixi f*f Qu f*j QEJ f*f
^ "5 O O O o
o
rH i-l i-H rH i-H i-H O
O O O O O O O
id id id IQ id id o
4J *J 4J 4J J-> -P i-H
W W CO W W W
CO CO CO CO O H
co co co
H M H H H H H
ooooooooo
cocococococotococo
1 sta
1 orig 0.0 0.0 « Grid Information is not passed to TOXX
1 dist 100. 200. 400. 800.
1 gdir 8 45. 45. « 8 radials starting at 45 degrees in increments of 45 degrees
1 end
i-i H H
Q. Q. Q,
i H
H 0
EH 0,
35
EH M
CO Cn
88
H -!
a a
M
o
.f
M
c»
s
Q
co
H
Z
H
b
§
O
Z
TARTI
co
§
5299\iscst2\metdata.st UNFORM « data in a different directory
^
o
*H
H
1
1
H
i
000 METERS
74 1964 Lo3_Angeles
i-l
o en
rH CM
EH <
o <
< co
£ £
0
id oo
o
H 0
G rH
id co
4-> CM
G
id oo
CO
rH
in
* 0
eft ro
i-H
-i in
CO
rtfi CO
EH EH
AIRDA
INDCA
0 »
§j} £
Q
co
H
Z
H
Bu
§
i
TARTI:
CO
§
o
m
i^
3
rt!
a
§
EH
X
8
er cutoff g/s filename
a
I
<
c
0
H
4J
a
o
*
1.5e-6 test-stl.tox « the T0XXFILE definition
i-i
u a
»J W
OXXFI
INISH
EH b
88
-------
old concentration (ug/m3)
ound
jj
c
10
.-(
Cu
0)
r-\
%
(0
X
u
1
*l
4J
c
<0
JJ
3
rH
H
0
Cu
a
c
-H
i-H
d
0
4->
q
V)
-i
^
.
0
^
rH
U
effec
q
4J
S
<0
0)
q
M
,o
M
~<
o>
xi
polar receptor grid, l=>print yearly output
e year
H
o
10
V
V
,-H
8
g
5
w
er, TOXX source group number, probability of source
§
3
q
g^
o
M
Cr.
8
M
O
V)
.
q
H
xi
0
4J
M
i
n
q
m
ollut,
Q,
^
Q)
§
B
0)
H
^
x;
t3
-------
4J
3
U Ed O EH
2 2 * ft.
H O 4J O
EH W S Source
VFJ
1
I
M
O
U
rl
Q
i
o
o
o
PO
V£
PO
rH
^
0
10
4J
Of)
Q
H
&
BUILD
o
0
o
0
o
0
o
0
0
o
o
o
o
0
o
o
o
0
o
>H
1
f-i
^
o
10
4J
oa
EH
{J
rtj
EMISF
of)
10
0)
rH
s
0
o
CO
V
V
o
0
o
0
o
H
o
o
0
o
o
,00000
0
o
0
o
0
!M
Q
1
iH
jS<*
o
id
-p
n
EH
(J
njj
EMISF
o
o
o
o
o
.00000
o
o
o
0
o
o
o
0
o
0
JH
Q
EH
8
a
1-1
\J
o
10
4J
n
EH
o
<
EMISF
o
o
o
o
0
o
0
o
o
0
0
o
0
o
Q
0
o
o
o
0
^4
o
1
K
I-l
^
0
(0
n
EH
£_)
rij
EMISF
0)
n
n)
0)
H
0)
M
s
o<
o
o
CO
V
V
o
o
o
0
o
I-l
o
o
0
o
o
o
o
o
o
o
o
o
0
o
o
SH
e
8
a
rH
\J
o
10
4J
n
EH
|rf
EMISF
o
0
o
0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
X
s
I
iH
^
o
10
Of)
EH
{J
rtj
EMISF
JBIC-METER)
[MICROGRAMS/Cl
O
r_T
GRAMS /SI
^^
o
u
o
o
o
0
o
rH
EH
M
55
co
H
£
(_^
hH
rtj
Qj Q
& w
o a
SRCGR
FINIS
r-
cn
en
vo
I
oo oooooooo
oo oooooooo
o* * o* * o* o* oooooooooo
co * * co * -ic co * co * tocococncocococococo
-------
oo
CO
o
o
oo
o
o
m
o ^«
o
o o
CM in
o
o
o o oo
Cn -U i-i
(0 -rl n -ri TJ
P w -H T) fl
<0 O "O 0* CD
rH i-l rH rH
FO
tdata.st
O
<0 00
n o
o -H o
-H C rH
4) o
2*1
3 10 CO
4J CM
« C
O (0 oo
I-H CO
in
1
a
o o o o
Ou Q. O. Q.
CM
4-> CO
W OS OS
o a f * o
(0 EH vo vo
H a tr> a\ co
en o
» r-
m o r*» en ^J1
^ tH H m
o co ro
O rH CM i-H
2 H
H O
EH Q,
8 5
co Cn
u a)
2 M
o ac
*a
H 2
M M
O^ CM
O iJ EH < rt* CO Q
2 H a EH EH EH U
H faO < <
-------
CM VD
i 6
IB
rH
3
U
rH
IB
O
rH
4)
o
1
*
*
"n
w
O
4->
a
0)
o
0)
05
CM
ro
o
C
iB
"w
Q.
O
M
0
0)
O
M
3
O
CO
rH
^
CO
0)
0
M
O
10
rH
cn
0)
o
rH
U
c
M
c
3
05
n
-H
EH
«
ft
A Pollutant Type of: OTHER
co
4)
3
cn
CO
rtl
rH
4)
o
O
32
4)
EH
*
«
inue RUNning After the Setup Testing.
4-1
c
0
o
o
EH
4J
01
CO
rH
01
T3
1
«
ft
lected:
uts Tables of Overall Maximum Short Term Values (MAXTABLE Keyword)
01 a
CO 4-1
3
cn o
c
0 ft
-r-4 (U
JJ "O
Q, O
OS
4J
£J
a
4-1
3
O
K
ft
uts External File(s) of Values for Input to TOXX Model (TOXXFILE Keyword)
Ou
4_)
O
rH
0)
o
o
S3
U
a
4)
f
I
CO
u
CO
8
a
E
-------
lags May Appear Following CONC Values: c for Calm Hours
m for Missing Hours
b for Both Calm and Missing Hours
gt. (m) = 10.00 ; Decay Coef. = .0000 ; Rot. Angle = .0
n Units = (GRAMS/SEC) ; Emission Rate Unit Factor = . 10000E+07
Units = (MICROGRAMS/CUBIC-METER)
fa
CT>
C
-H
3
O
~t
r-t
O
fa
01
X«
E-4
W
s
z
a: o
. (0 3
6 to 0.
0> 1 4J
< W O
«.
0
M
V(
BE)
o
0)
IT)
4J
0)
Q
en
vo
-------
CM
*
*
*
|J
C
tfl
iH
O.
H
cc
K
O
co
co
EH
I-H
X
Ed
03
Cd
EH
1 1
a
EH
I-H
X
Ed
jg
Ed
EH
EH
EC
O
M
Ed
EC
^
Ed
Cd
>H
X
^^
CO
EH
I-H
Z
o
OS
Cd
^
~r
EH
p<
J3
Ou
Ed
O
K
D
G.K) (M/SEC) (METERS) BY
Ed 1
Q
1
co
K 1
Ed
EH 1
Cd
& 1
1
co I
a
Ed 1
EH
1 I
1
CO
a: 1
Cd
EH 1
Cd
S3 1
1
^^
CO 1
K
Cd 1
S
1 '
|
1
|
|
I
|
. |
CO
EH 1
O 1
|
i
i
Q 1
M
1
|
1
a
Eu
1
CO
Ed
>H
O
in
ro
t-H
O
o
i-H
^
n
00
r-
en
o
o
o
iH
0
Cd
O
o
<£>
ON
,
O
,_!
g
M
-------
(si \o
CTl fH
a.
X
g
4J
C M
as O
r-t MH
Cu
o
m M
x m
w M
o
I a,
4J
c
CO
&4
8
Of.
o
w
o
OS
o
o
w
b
Cd
Q
W
Q
W
o
(XI
o
o
CO
V)
Q
Ed
O
o
I
cn
o
to
Q
W
CO
O
C/}
o
M
El
Oi
o
o
H
O
s
§
o
-------
W
O
O O O O O O
o o o o o o
CO O O O O O O
M co co co co co
co -H
X n)
W ~l
, £
*..
4-) O
C M
18 3
4J O
3 (0
rM
rH 4)
O C
cu O
en
z
o
M
W
z
Q
O
Q
J
I-H
3
CQ
O
M
h
rH
O
W
cu
co
Z
o
o
CO
a
o
I
o o o o o o
o o o o o o
CQ O O O O O O
co co co co (O n
CQ VO VO VD VO VO VO
> V O VO CM 00 TT
CM rH rH CM CM CO
O O O O O O
o o o o o o
pa o o o o o o
CO CO CO CO CO CO
35
CQ VO VO VO VO VO VO
in «-H r* co
rH CM CM CO
O O O O O O
o o o o o o
o o o o o o
co co co to ro co
to vo vo vo vo vo vo
ex
X
§
i
00
O
CO
E
co
r-
CM
01
a\
O
OS
W
g
w
o
w
a
u
in
o
tn
z
o
cu
o
C5
Z
I-H
*3
Ed
1
CM CO «T O vo CM
rH CM CM CO
< O O O O O O
X
rH O O O O O O
&£?£
UCQOOOOOO
!-
-------
CM
cn
VO rH
rH CO |
V. I
rH CTl 1
rH rH )
* *
* «
* *
4-1
3
a
c
-H
X
g
E-i
4-1
C M
ra o
H
§ M
X m
WrH
1 04
< -
1 I)
4-1 0
C M
ns 3
iJ 0
3 0)
-H
,-t QJ
O C
cm O
* *
* *
* -(c
*
*
K
PO
P"
CN
CM
I
CM
E-i
CO
u
CO
M
«
«
Cd
U
<
CL4
s
t-3
fe
i
CO
05
o
o
a
o
o
..
a
w
w
^
CO
§
M
CU
O
e>
!Z
rH
J
Ed
a
§
H
K
K
K
>H
<*
a
Ed
K
EH
Eu
O
05
O
sc:
r^
H
05
O
EC4
1
SB
CJ
M
3C
3
to
05
3
o
CO
Ed
EH
$
;S
O
to
to
M
s
Ed
Ed
O
X
O
O
CO
41
LAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
<
O
co
05
O
§
p£
2
^
<
U
ta
X
o
o
0£
If
r4
JS
CO
a:
§
X
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
1 H
Z
1 3
1 04
1
1 H
1 Ed
O4
1 ><
EH
1
Ed
1 O
05
1 O
0
1 CO
1
*
1
1
rH
1 tt
CJ
1 <
H
1 CO
1 1
1 0
M
Ed
1 O
&
' §
1 CO
o
0
+
Ed
O
O
0
o
o
vo
0
o
-r
w
0
0
o
0
o
in
o
o
+
Ed
O
0
0
o
0
^*
o
0
+
Ed
O
o
o
0
o
o
o
o
-t-
Ed
0
O
O
o
0
CM
O
O
+
W
o
0
o
o
o
'
rH
OOE+00 10 .OOOOOE+00 11 .OOOOOE+00 12 .OOOOOE+00
o
0
o
o\
rH
O
-t-
Ed
0
O
o
o
rH
00
o
o
+
Ed
o
o
o
o
o
'
r~
o
0
Ed
0
o
0
o
o
00
rH
O
o
+
Ed
0
o
o
0
o
r-
rH
O
0
+
Ed
O
O
0
o
o
vo
rH
O
0
+
Ed
O
o
o
0
o
m
rH
O
o
-f
Ed
0
O
o
o
0
^>
rH
O
o
+
u
o
o
0
o
o
*
m
rH
OOE+00 22 .OOOOOE+00 23 .OOOOOE+00 24 .OOOOOE+00
o
0
o
rH
CM
rH
O
+
Ed
0
O
o
o
rH
0
CM
O
O
+
U
o
o
0
o
o
'
o>
rH
-------
OJ
CTl
o
O
vo
GRIDPOLR
METERS
o
m
X
W
3
a
c
X
§
EH
4-1
ID O
a,
r-H M
a, o>
m M
x fl
Ed ^H
O
I 04
4-1 O
z a;
«2 Ed
05 EH
Ed
Ed S
O v
- §
O
O
o
I-H
O5
O
X
O
o
00
o
o
o
o
r^
CM
in
cs
tM
O
aa
4t
i
§
P
8
CO
en
m
<*>
i
CM
CM
§
M
a
o
co
o
Z
o
I t
EH
Ou
O
o
Z
w
a
i
o
o
rg
o
o
o
en
-------
CNJ VO
G\ i4
\
U> i-H
iI (*1
v ..
I-H (Tl
Cd
,J
M
Eu
Cd
O O O O O O
o o o o o o
Ed Cd Cd Ed Cd Ed
O O O O O O
o o o o o o
vo o o o o o o
m in o in o o
-H i-H CN CN f> CO
Q,
c
X
X
g
4J
C M
m o
M M
p, £7\
rtf M
X m
Cd --I
O
I a.
I CO
U O
C M
4-1 O
3 in
I CO
o c
Qj O
CN
CN
§
M
CO
oc
Ed
O
Z
M
CO
co
Ed
O
O
05
On
05
O
En
Q
Ed O
EH Z
O II
Ed o
Cd >
co co
Cd
CO >H
< -H
Q
Q
Ed
O
3
o
z
CO
§
o
z
Cd
Cd
O
O
CO
CJ
»-l
o
o
05
O
Cd
EH
CO
CO
Cd
O
s
OH
EH
<
m
05
o
o
o
o
a
Cd
CO
CO
z
O
M
EH
a,
O
s
a
o
§
o
Cd
EH
Cd
EH
CO
Cd
M
05
8
Cd
s
CJ
a
Cd
Cd
a.
CO
o
z
EC
EH U
tw Cd
1-4 CO
fa \
CO
EC 05
O Cd
a EH
O Cd
05 £
Cu
O
Z
1
a;
Ed
a<
a.
o
CD
ro
co
o o o o o o
o o o o o o
+ + + + + +
fv) f^t fvj f*1 TT1 TT1
o o o o o o
o o o o o o
m o o o o o o
in in o tn o o
I-H rn CN CM ro n
o o o o o o
o o o o o o
+ + + + + +
Cd Ed Cd Cd Cd Ed
O O O O O O
o o o o o o
o o o o o o
in in o in o o
i-H i-H CN CN rO n
o
rO
Z
Cd
O
04
X
Cd
Cd
t-3
Cu
O
05
Q
Z
8
Cd
EH
O
Q
Cd
Ed
Oi
CO
Q
Z
O O O O O O
o o o o o o
+ + + + + +
f'1 M f'1 M C'l M
O O O O O O
o o o o o o
ro o o o o o o
in in o m o o
«-H *H CN CN H
M 05
CQCd
Is
CO O
to
o
CO
Ed
0
-------
O O O O i-l i-l
o o o o o o
+ + + 4- I I
Pd P4 Cd CO W W
o o o o o o
o o o o o o
O O O O O O
o o o o o m
O O O O CM O
O O O O <-< i-H
o o o o o o
+ + + + I I
Cx3 Cd U [£| W W
o o o o o o
o o o o o o
LO O O O O O O
o o o o o m
O O O O CM CO
O O O O i-H i-H
o o o o o o
+ + + + I I
Cd Dd Pd cd Ed W
o o o o o o
o o o o o o
O O O O O O
o o o o o m
o o o o CM
E
O O O O i-l rH
o o o o o o
+ + + + I I
W W W bl W W
o o o o o o
o o o o o o
o o o o o o
o o o o o in
o o o o CM m
E-i !M
w OS
PQ o a w
w o
-------
*** 11/16/92
*** 19:31:16
paap. ft
4J
a
c
H
X
X
o
EH
C M
m o
04
TJ
0) -rH
1 t 1
i - Examp'.
Polar gj
4-> 0
C M
(fl 3
J-) O
a w
nH CD
O C
Hi O
-k -k
k -k
« k
k
k
-k
t~
CM
CM
en
55
O
t i
CO
OS
w
1
CM
EH
co
O
CO
t~4
k
*
*
)
]
)
4
1
25
Si
ca
OS
D
o
p»t
0
(_)
Q
CO
o
CO
§
i t
EH
CU
o
z
M
W
o
i
*
«
k
*
EH
<
a
h3
4
o
t-H
O
.r-s
METEOROLC
CO
as
o
a
*-5
bu
O
en
o"
UPPER AIR STATION
^*
f>«fc
r- 1
no
<
S
EH CO
a os
0 D
M
W
O. T
(-H
Z 4
M 05
X 0
MOS
co
ffl CO
CO O
EH~
O ~
W CO
w ^
04 S
CO ~-
OS
O EH
^ o
f,, f,-[
^
OS
o
>H
Q
a
EH
o
os
Cd
1
1
1
1
1
1
1
1
1
1
1
1 OOOOOOOP-t-HVeDCMVOOOOCMCNl.-li-HT-Hr-l
1 ro no co ro co co ro ^* f^ ^^ t-n ^* vo o^ en en o^ CM 10 oo » < ^*
1
1
^"^^r^rrororo f-tt i«-i»-if-4i-Hi-HCMCMCM
1
( vo in r- in^rOT^rrorovininvoLnvD
1
1 vinomincnoocnoor^enenoopovDinoor^r-CMvoo
oooDQOcQoooOQOcooocncncncncncncncDODCDOoooco
1 CMCMCMCMCMCMCNCMCMeNeNCMCNCMCMCMCMCMMCMCMCSI
1
1
1
1 OOOOOOOOOOOOOOOOOOOOOO
|CNiCgfMCNC»JCNOJ<\li-l C\J
1
1
1
*~^ ^^ CO ^^ lO VO f** CD ^^ ^3 i~4 &4 PO ^* lO VD p1" 00 O^ O rH (^
1
1
1
1
1
1
1
1
1 VOVOVOVOVOVOVOVOVOVOV01OVOVOVPVOVOVOVOV0VOVO
'
1
1
1
1
1
-------
r- r
r-l CM
10 ro
a\ r~
en CM
CM m
vo
oo oo
CM CM
.1
*"
vo co
o o
vo vo
-------
CM VD Cf
CM rH
VD rH
I-H ro C£
~-x C
-H cn <
* «
* «
4-)
3
C
H
X
EH
4J
ID O
i VH
CU
0) -H
^H M
a en
x fo
Cz] iH
, £
1 O
C M
3 :
HH
X
ca
E-i
«
*
STACKl
*
CO
IG SOURCE
M
a
3
o
z
*
A
CUBIC-y
CO
0
g
W
a
w
&>
o
Eu
O
0
I
M
*
ft
s
os
OS
X
OS
RECEPTC
s
fMMDDHH
U
CJ
CU
<
Cu
1 C3
1
1 I-H
p-
O
1 P-
1
1
1
1 I"*
P-
O
1 p"
1
1
1
1
1 <
1011208
1 VD
o
1 0
VD
1 CM
1
1
1
Cu
\ o
1
r I-H
p-
0
1
1
1
1
1 i-H
P-
O
1
1
1
1 ^
1103108
I VO
o
I o
1 co
1 <*>
1 ^
Cu Cu
C3 <3
i-H O
P- 0
0
p-
i-H O
P- O
O O
P- O
1 i-H
1
EH EH
1112708
1020208
VO VO
O 0
o o
o co
CIS
CM CM
Cu Cu
O 13
iH |H
p- r-
0 0
i-H rH
P- p-
0 0
1
1081208
1101208
VD VO
0 O
o o
f> f>
CO CO
CM CO
Cu Cu
C3 C3
O O
0 0
O 0
0 0
i-H «H
o o
o o
EH EH
1051908
1073008
VO VO
o o
o o
o o
s°
CM CM
Cu Cu
O <3
0 0
o o
0 0
i-H .-1
0 0
0 0
1070908
1060408
vo vo
o o
o o
ao vo
co co
"""
Cu Cu
C3 13
O |H
0 P-
0 O
0 p-
r-t 1
0 i-l
0 p-
o
p-
1
EH EH
1080608
1121808
VO VO
o o
0 0
o o
88
CM CM
Cu Cu
O O
O 0
1
p- p»
0 0
1 1
1111908
1081008
VO VO
0 0
o o
H i-H
CM CM
VD P-
Cu Cu
a a
o o
o o
o
o
0 0
o o
o
o
i-H
1
H EH
110108
1080708
VO VO
o o
o o
cn en
22
CN O4
CM Cu
O 13
O 0
P- P-
O 0
1
1062608
1120608
VO VD
0 O
0 0
1-4 cn
CM CM
oo cn
Cu Cu
O 13
O O
O O
0
o
i-H
0 0
O 0
0
o
I-l
1
EH EH
1020408
1071608]
VO VO
o o
o o
en cn
22
CM CM
in vo
Cu Cu
13 13
O
1
P- 0
0 0
1 iH
1112008
1062408
VO VO
O 0
0 0
cn cn
CM CM
S3
Cu Cu
13 O
i-H i-H
P- P-
O O
P" P-
i-H i-H
P- P-
O O
p- P-
1 1
EH EH
051208
011708
VO VO
o o
0 0
VD CM
vo"vo
£ cn
CM CM
P- 00
Cu Cu
O O
i-H i-H
O O
p- P-
O O
1 1
H EH
1060508
092808
vo vo
o o
0 0
VD O
CM CM
22
Oi Cu
13 13
O O
0 0
0
0
1
0 0
o o
o
o
I-t
EH EH
1020708
082508
vo vo
o o
o o
CM O
VO VD
cn£
CM CM
cn o
Cu Cu
13 13
0 0
o o
o o
0 0
0 0
iH i-H
1122220
1020608
VD VO
0 0
O 0
o o
CM CM
3 2
Cu Cu
(3 C3
i-l iH
P- P-
0 0
P- P-
i-H t-H
P- P-
O O
p- p-
1
EH EH
1090308
080408
VD VO
O O
O O
i-H 0
in in
££
CM CM
.H CM
Cu Cu
O 13
O O
O 0
o o
i-H iH
1
O O
0 0
1051220
1060608
vo vo
o o
0 O
o cn
CM CM
S5
Cu Cu
13 13
-H O
P- 0
0
p-
i-H 0
P- 0
0 0
P- O
1 i-H
1
EH H
1072108)
112208
vo vo
o o
0 O
in *r
cn en
32
CM CM
CO «
Cu Cu
13 C3
O O
o o
o
i-H
O 0
O 0
o
I-H
EH H
1091008
1093008
vo vo
o o
O 0
cn en
CM CM
33
C3 (3
H O
P- O
0 O
P- O
i-H O
P- O
o
p-
1
EH H
< <
1102508)
101708
vo vo
0 0
O 0
m rj
00 00
00 00
-H i-H
CM CM
m vo
Cu Cu
C3 C3
O i-H
O p-
o
1
O i-H
0 p-
o o
-H 1
1
EH EH
1 '
1121008
1113008
vo vo
O 0
0 O
cn co
CO CM
VD 00
V VD
P- VO
CM CM
O i-H
CM CM
CU CU
O 13
O i-H
O P"
0
p-
O iH
O P-
O O
O P-
t-H 1
1
EH EH
< <
1122508
1032408
VD VO
O O
O O
CM O
0 T
p- m
en p-
CM CM
p- 00
Cu CU
C3 (3
o o
o o
o
o o
0 0
0
1
1072308
1020808
VD VO
O 0
0 O
CO CO
CM CN
00 00
VO VD
VD VO
CM CM
CM CO
CM CM
ill Cu
O 13
H t-H
P- P-
0 0
r- p-
rH I-H
r- p-
0 0
r- p-
I i
EH EH
1070808
1092708
vo vo
o o
o o
T CM
-I O
CTI in
o o
CM CM
CP O
Cu Cu
U O
-H O
P- O
0 0
1 i-H
1
i-l O
P- 0
o
1
1121508
1091708
VD VO
O 0
0 O
00 00
00 00
vo vo
vo vo
CM CM
v in
CM CM
cn
-------
a
&
JU
£
O
4>
OH
P
00
2
co
a
E
E-i 05 H 05 >-
OS i-3 OS (-3 05
< o < o <
O Qj O PJ Q
Q Q O O Z
l-l M t/J C/3 3
03 05 M I-H O
O CS Q O PQ
II
II
U Oj O (Xi Q
O O Q Q CO
W
w
Dj
OS
OM
Ed
O
Ed
OS
-------
(N VO O
!
-1
g
:
9
M
O
m
4->
o
EH
CO
u
a
CO *
w «
2
QC Cx]
o z
« o
os z
u
EH
Ex
co
w
o *
CO *
CO
z
O O
Z Z
§
3
l-l
(A
0)
0)
O
O
3
CO
0)
0)
-------
H
EH
s
w
EH
O)
03
U
CJ
I
Q
U
W
O
X
u
a
w
EH
CJ
u
04
X
03
U
M
X
o
EH
EH
03
§
EH
C C
O O
01 0
CM a)
.nid
JS I
o o
t5u
o u
04
as
O M
EH
CM
n
o\
ID
M
id
iH
O
4J a
3
a o>
c c
fH -H
V, I
0 10
io n
3
O fH
H O
O XI
0 10
4J (])
0 M
E XI
fH O
O
a J
0 c
<4H
O
i
o
c
4J
Id
JJ
I
n
o
4J
C
id
iH
CU
0
fH
0,
X
w
1
<
1
4J
id
4-1
3
.H
fH
O
Cu
&
H
«H
X 0
X 0
O fH
4-1
-H
C
0
i>
H
O>
4J
id
E
M
o
tH.
4J
3
a
4J
3
o
0
o
c
id
a
0
0
u
X
0
a
0
4J
u
&
x
0
fH ?H ^*
VC 0)
0\ 9)
fH O
n
t-i
o
4->
a
0
u
0
H
fH
fH
id
'n
o
OH
n
0
O
c
id
o
0
0
o
X
0
o
0
4J
o
0
a
x
0
4J
3
a
4-)
8
&
id
n
0
>
id
o
C
id
>
iH
M
id
0
>i
n
0
0
c
id
o
0
0
u
x
0
o
0
4-1
U
0
a
x
0
4->
3
a
4J
3
O
id
4J
3
fH
fH
O
a
0
fH
o>
c
-H
V>
id
>i
J3
n
0
u
c
id
T>
0
0
O
X
0
o
0
4->
U
1
0
T3
C
H
fiu
n)
0)
id
O
o
^H
O
u
o
01
II)
4J
o
n
M T3
0)
a
4J
« id
-~ -H >
W TJ -H
t-l 4J
3 -O O
0 O 0 A)
E x; 4J
n *~ n a
M 0 oi c
00 TJ 3 O
a M o o1 -H
3 -H 0 4J
W O M M a
c c n ID o
3 o a UH
H -H C O 4J
4J O O> 3
<4-i id -H c , M
4J (0 0) 0) 4J 0
o
O
O
10
0
H
id xl
4J H
id
a
o
w ..
01 o>
M E
X! id
EH Z
4J 4J
O O
01 01
IM MH
XI X!
4-1 4J
H rH
id id
(0 0) O
c ^ o
O Oi o
4J
id
a
o
4J 4J
C C
id id
4J 4J
3 3
fH -H
fH fH
O O
Cu Cu
A
EH
u-i
o
o
O
3
O
O
id
ca
3
a
0) -H r~
W fH CM
Id -H T
01 J3
fH id
0) XI
05 o
Information:
o c
fH
O
XI
<0
0
M
XI
T3
C
id
1 1
4-*
C
d
4J
3
fH
fH
O
Pj
d
j
d
3
j
- 0)
d E
j id
3 Z
H
H 4J
3 C
b id
4J
3
fH
H
0
(X
»
o
HH
H
-H:
O
04
4-1
c
id
4J
3
fH
fH
O
Cu
fH
ation:
o
IU
c
M
10
0
U
M
3
O
03
C
O
-H
n
(0
H
M
01
id
Z
0
O
M
3
O
03
*
0,
3
O
H
O
4»
0
O
>J
3
O
(O
rH
M
CJ
OS
o
o
03
rH
fH
-------
O
-rl
4J
10
l-l
O
id
Q
3
10
0
05
0
73
C
o
-H
10
0
a.
10
c
id
a
id
x
4-1
a
VD
O
I
M
O
O
O
in
rH-q'i-ICMI'iHOOrH
rH VO d 00
O ON P^
Ou tH 00
**
co
M
0
TJ
id
ffi
X
0
-H
H
M-l
id
[ 1
n)
a
id
41
10
TJ
41
r-l
3
to
' HI
M
rH
(U
TJ
O
e
0
-H
01
U
0
a
CD
.pa]
TJ
Ik)
O
0
rH
4->
-H
H
TJ
0
rH
0
1
Vj
id
0
>H
w
u
3
0
a
*
CO
TJ
O
rl
kj
0
a
co 0^
t4 C
O -H
4J 0>
a id
0 M
U 0
0 >
M id
**
o
0
l-l
CM
1
rH
C
O
1
Q)
j_i
>,
X)
41
3
a
P
0
x
0
X
u
u
0
M
M
O
^^
M
id
rH
0
IP**
co
rH
id
rl
TJ
id
^4
*
E
5"
CM
EH
to
O
to
rH
C
TJ
0
10
3
0
3
rH
^
MH
(4_i
O
ij
3
0
1
M (
5
H
Q 1
(
0 0
Q >
1
>i i
id (
E c
a c
P :
j i
n
0 4
C
rl
P <
P
0 C
M
a
P
CO 1
E 3
3
-I
co
0
IT
id
ca
n
0 c
£
1
3
)
)
U C
H 0
J -H
1 41
% 10
3 rH
d P
) 0
id vo
- o 00
: rl
3 O
» TJ
J 0
H >
3 Id
o in
1)
£ 4fc
H
V
§
E 0
rH
3 -H
3 t,
H
n c
>4 -H e*
]) VO
3, id n
1 H)-) f
-i id
3 a
^^
rH
id
o
EH
TJ
0
rH
0
T3 f
O vo
£ at
rH
^4
id
0
x
4^
0
-H
Cu rH
g
0
|
n
E
10
*p
o
I
W
0
O
0
o
o
rH
«r°
II
c
-H
E
5
>;
^^
*
a
rl J
TJ i
^* rH J
VO O
O
o
EH >i
C
id
0
«"H
i
41
n
*
-J
j
3
X
J
3
3
U
J
3
3
)
)
J
<
a
4->
3 C
U id
J i-H
)
X 0
< rH
i] a
E
id
X
1
rf
1
c
id
4-)
3
rH
rH
O
cu
t.
a
c
-rl
rH
X
X
o
+J
c
3
A
X
3
EH
4H
O
0
rH
-rl
EH
CO
0
id
^
Qt
C
l-l
3
0
rH
i-H
o
UH
0
A
4->
MH
O
X!
0
id
0
C
H
T)
rH
O
X!
CO
0
r;
4J
XI
U
id
0
UH
O
CO
0
O
C
id
T>
0
0
u
X
0
TJ
0
4J
O
i
X
0
E
3
e
-H
X
id
E
0
Xi
0
41
id
u
TJ
c
-rl
_ -_
.£
^
to
y
CO
rH
0
41
CO
l£
0
4J
O
z
-0
0
c
»H
O
E
O
o
co
cu
p
o
M
O* m
n
0
o r-
M VO
P
o
(0
^
rH 41=
rH
.<
TJ
rH
O
XI
M 10
rl 0
id M
d? x!
> 4J
>~H ^i
(d ,Q
Q
-H 10
tJ* fl)
O O
J rH C
O id
(H TJ
O 0
(P 0
4J 0
(P X
£ 0
rH TJ
rH 0
Itt 41
U
x
O 0
E
rl -H
IP X
i< £
A
-------
CO
CO
CM
CO
m
CO
o
<-l VO
vo
r~
in
CM
CM
r-
CM
O
in
o
n
4)
o
ig
o
4)
0)
o
X
0
tJ
&
X
u
o
n
0)
X
H
CM n
o
M 0)
Q U
reshold
j3
4J
IM
O
X
«
X
U
co n
M
O
s*
M 0
Q U
$&
reshold
^j
*w
o
X
0
X
w
^* B)
O
< a
S8
£5
reshold
4-1
M-l
o
X
X
w
m
^
M
a
el
n
o
a
0
o
«
reshold
4J
14-1
o
x
x
a
vo
^
M
a
S
n
O
a.
8
£
.reshold
4J
lt-4
O
X
0)
X
w
o
ex
X
w
(U
s
2
o
o
CO
m
O
cn
o
o
in
en
o
CM
O
O
oo
o
en
.H CM
o
o
g
B
I
|
OH
T
\o
8
a
E
-------
CO
CM
O
o
CM
n
o
CO
00
1C
i-4
CO V
ID
CM
r
CM
CT\
CM
r~- m
H
O
iJ 4J
< a
M CO
a o
o
in
A
4-)
X
0
X
o
-(
o
J3
n
O
M
X
O)
X
H
I/I
-------
c
O -H *
03 rH
03 O
« 1
03 CM
1
CM
CO O |
O -H (d
x: N
jj T)
O -H
MH M O
O
.p W 03
03 3 0) 4)
4) O* TJ O
O C M
3 4-> O
O 0) -H CO
03 rH H
H O
O -P
* X MH 4)
CX 4) 3
C 4) Q ~
H C H CM
X
4-> m
co
*
rH
in
*
o
in
o
03
*^ooooooo
QI O O O O
g in in
co co co co
4J CO
CO
CO
CO
a
o ^ o o o o o
03 -4JO -OOOOO
X m o» m
co xl o o o o
X ^* CM rH rH
-P
CO
EH
H
O
EH O
-P 2 4)
O H 03
M O
CO Oi
25
H
O
CU
M
O
CM
rH T3 rH CM CM CO CO
OO-rlOOOOOOO
HUOMMMMMMM
O3M3333333
MOCOOOOOOOO
CO 0)
03 03 03 03 03 03 03
CD
H
i
EH
CO
03
M
C 2 4)
O O -P
r| H
p H
(0 rt*
o a M
o o
O
M
3
O
03
X!
O
-------
rH CM CO
o o o o
M M M H
O O O O
(0 03 0} CO
H
O
M
3
O
03
a
3
O
M
Cn
o
M
03
O
03
CM
O
^|
3
O
03
a
3
O
M
O^
O
M
03
CO
O
M
3
O
03
a
3
O
M
Cr*
o
M
03
^*
O
i-|
3
O
03
a
3
O
M
D1
a
M
03
rH
rH
m
a
3
O
M
c7>
O
M
03
O
03
*
*
Q
rc
CO
M
55
H
CM
O
CO
in
eg
^
o
in
CM
* » 4^
o
4J 0
.C rH
Oi *
-H 0
M 0
H rH
0) ~
a
a o
3 4J
o *
4J 0
O
^ rH
0 |
m *
CM 0
1 o
* rH
0 I
m '
eg
i e
o
M
-P M-l
4J -H
a rH
0) -H
o o
4) rtJ
M(U
^^^
0) 0)
j3 jd
^^J C^
C" t^
-)c -ic
* -K
T3
1^
^j
t*
M
O
-P
O^
0)
o
0)
M
1
M
c^
**1
V
V
o
in
rH
rH
O
in
CM
1
o
m
rH
rH
*
O
m
CM
1
u
52
< M
EH JH
CO X
_^ ^J
*^ 1^
^ 5
o o
O EH
z o£
M 3
e» o
a2 o
^^^J ^^^
^ ^^J
H CC
CO O
2S
W
p^
i^
O
H Q
S| ffl
-O CO
Q H
H »
0« H
O fr
§U
^^^1
flj
^^^^
o
Eu
CO
(0
o
s
a
CM
EH
CO
V)
O
03
-H
CM
*
O
ro co
CM o>
M
3
H
CO
o>
a
CD a,
ff) rS
Q) Q)
O -C
4J
o
4J
0)
H
H CO M
I 0) 0)
M <0 "O
CO 3 M
O
0)
c; q
4J -H
V V
V V
X Ex]
O
m
3
U rH
M
0)
a
0)
(0
M
H
m
a) a)
td
w a>
C iJ H
O M .Q ^5 ffi
H Cu flJ (0 CO
4J X -P 4J H
a x x o 25
o o
-------
pollutants
CM
ti
C
O
H
-P
3
^
C
O
H
W
«
£
*M
0)
u
Q>
***
*
X
0)
-o
c
H
TJ
M
o
-------
CO
CD
O
M
3
O
CO
*3*
*k
a
c
H
^T
^^j
^^^
CO
1
EH
CO
W
*
K
CO
O
rH
O
MH
.p
H
CNJ
EH
CO
a
CO
H
«.
rH
CD
T)
O
s
g
M
CD
H
-P
M
O
£
CO
CM
O
CO
H
CD
X3
-P
M
O
MH
P
3
a
c
H
0)
rH
P,
6
OJ
X
0)
C
OJ
CO
-H
CO
H
j5
B
*
-K
C
CO
CO
CD
CO
CO
-i
-P
H
H
-H
O
OJ
MH
CD
H
Qj
£
OJ
X
0)
0)
-C
*
*
V
rH
O
O
1
CM
CTi
1
^
"-V,
O
in
^r
1
CD
TJ
CD
M
CD
OJ
OJ
o
-, CD
CM H
O^ Q<
CT* £
rH (d
X
A CD
O
U 0)
OJ £
^^« »
* *
* *
a*
M
&
w
M
EH
X
X
o
H
CD
H
H
0)
4J
C
rt
*
*
-
^
O
53
TART I
CO
O
O
NEW TOXST MODEL - BASED ON TIERED MODELING TEST CASE
O
fa
25
5
Qt*
EH
CO
W
EH
W
2J
ITLEO
EH
sed met data from LA/Santa Monica, 4 sources, 2 pollut
CO
CD
o
o
M
a
i
EH
pj
§
§
2
tt
0
5
ITLET
EH
£
Da
^**
EH
co
1
EH
CO
w
EH
rH
-H
rrorf
CD
urban
u
s
o
o
EH
^^J
^^^
D
rfj
fa
Q
EH
O4
ODELO
S
4J
OJ
rH
v 1 (1_J
I 1 T^
W
Dq co O
2 EH DJ
H O O
H g <
ct; a I-H
pa p* fa
> w
< EH
*
*
£
EH
O
Q
M
OLLUT
04
a
3
M
EH
O
0
OS
"
EH
W
w
fa
EH
M
LEVUN
W
Q
pa
INISH
fa
O
O
a
OJ
H m
T3.
O
CO
CO
CO O H
C3 'CD
> Q
<«
in
C"l
I
co
m
^
lj^
-p
CO
O
0)
CO
1;
o
o
^«
#
rH
l/^
EH
2
H
O
Oi
oo
NO
o o
o o o o
a
3
o
o
eg
#
rH
POINT
rH
POINT
1.
POINT
rH
T3O-HOOOOOOO
-HMUMMMMMMM
03M3333333
MOCOOOOOOOO
co m
co co w co to co co
OJ <
O O
O O
CD
O
M
3
O
CO
OJ
C
H
CD
O
M
3
O
CO
x:
o
OJ
0)
4J
3
O4
o* o* ooooooo*
co * co * cococococococo*
-------
in
CM
eg
rH
O
M
3
O
W
rH
O
M
3
O
oo
a
3
O
M
O>
O
M
CO
* O
* 00
CM
O
M
0
O
oo
CM
O
M
0
O
CO
a
0
O
M
O
M
CO
CO
o
M
3
O
00
co
o
M
3
O
(0
a
3
O
M
O
M
CO
O
M
0
O
00
'SJ'
O
M
0
O
00
a
0
o
o
M
CO
rH
rH
«
a
0
o
M
O^
O
M
00
O
CO
*
*
Q
W
S3
CO
H
M
fa
O
CO
from lowerleft (-250, -250) to upperright
00
H
-o
-H
M
O^
M
O
4->
a
0)
o
0)
M
0)
X!
H
*
O
o
o
o
4->
o
o
rH
1
O
o
rH
e
o
M
T3
-H
W
H
x:
0)
T3
H
00
n
-H
00
H
^l
4J
-H
H
-H
O
(Q
i| i
0)
X!
E-*
*
rij
E-*
W
i t
flj
rij
U
O EH
J25 fli
M <
EH U
SS
£H pc|
w C?
M M
2 2
o
m
rH
i-H
O
in
CM
1
o
rH
rH
O
tn
I
O
jg
H
*H
X
rH
Qtf
t4J
o
CO
at
T3
4J
CM
4J
CO
O
00
-H
W
U
CM
in
o
o
H
I
CO
rH H
o co co
rH CM
nc
CO
H
0)
0)
U
O
55
H
EH
rt]
EH
CO
D
O
(d O
C 4J
0) ^*
H EH
-r| CO
MH 1
X co
O EH
4J
m to
(LJ 1
^^^^ i
0 0)
4J in
0
O rH
M
0)
a
a)
^ fH
rtj
W
C hi
O H
*H tu
4J X
p. ^
0 O
EH
K
*
O
in
0)
^
00
M
-H
*W
0)
^
(Q
H
H
-------
CM fO «-t
CT> O
\
V£> VO
«H rH W
\ O
r-H O <
«H CNJ Hi
* -K
* -K
-K -K
4J
W 3
CO rH
< 4
CJ O
a
EH
CO CM
Cd
EH ^
W
(J
«j
EH -a
CO
X 4J
O O
EH £
5 T)
U
O
HH
CO
05
CtJ
1
CN
EH
CO
U
CO
M
*
*
EH
^
;=>
<
tu
Q
H
<
*1
fa
z
<
CQ
05
O
O
Z
O
o
*
Q
JJ3
CO
E>
CO
z
O
I*
H
OH"
O
IS
HH
h-3
Cd
O
o
2
*
*
*
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
*
* 1
-K
1
1
1
|
>H
05 1
*c
S 1
§
O 1
CO
1
CO
Z 1
o
** 1
EH
Q_I |
o
i
O.
p"* 1
EH
W 1
CO
1
1-3
w t
Q
O 1
S
1
1
1
*
-K 1
*
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
«
c
o
-H
+J
m
M
4J
C
CU
U
z
o
u
0)
en
m
M
OJ
>
<
IM
O
C
O
-H
-P
(d
i-H
3
O
rH
m
o
M
O
Ct4
a
3
-P
/It
il/
CO
CO
rH
rH
(1)
o
o
JE
*
*
-
C
o
H
CO
M
0)
a
GO
H
Q
Z
<;
CQ
05
D
CO
0)
CO
fcD
rH
0)
o
O
s
*
*
* *
CO
d
o
H
-p
a
o
EH
CD «
rtl -H
CM O5
CJ
Q O
E
>! 3
M rH
O 04
P
(0 >-H
rH (TJ
3 C
CP -H
a> i«
05
0) .H
0)
CO
O
rH
0)
o
o
z
*
«
*
c
o
-H
CO
M
a
a
CO
. -H
X Q
}
m T3
3 0)
c o
3 3
O T3
Q C
H
a i
**1 ^"i
4J O
1 C
^ a)
O >t
m o
P 3
CO CQ
CN PO
.
0)
c
H
JJ
3
O
05
a>
c
. -H
C CO
-H QJ
-P O
3 0
0 M
05 0^
O* «
d *J
^H ffl
CO Q
CO
Q) CP
o d
O -H
M W
P! fl)
H
co 2
E
rH 4)
fQ V)
U D
0) -P
CO O
D^^f
gf^
^p tO
CO
-p
d
V
H
TJ
fl
M
O
0)
M
3
4->
m
M
(U
a
05 e
4J 0)
d EH
p -p
rH *H
3 3
ffl (Q
M-i M
(U 0)
Q Q
vo r**
V)
CP
d
H
a
rH
H
3 CM
CQ O
CO
4J 1
a d
3 0
CJ* Z
CO \
M Z
0)
S 01
-d -H
C 4-^
3 d
O (I)
CQ d
o
M CU
0) X
CU W
a
0 0
c Z
oo o1*
w
d
-H
(0
M
M
0)
EH
EH
<
rH1
fe
d
o
CO
M
O
4J
a
0)
o
(D
oc
CO
0)
n
0)
rtj
rH
0)
o
o
s
n
*
CO
4J
rC
o>
-H
0)
ffi
M
O
t)
a
0)
o
0)
05
w
rHJ
o
o
rtj
^^J
^^^
L^^
o
55
CO
CU
3
CO
(0
fflj
rH
o
o
3E
*
«
05
pTj
1
t |
**
4-t
O
^^
w
^^
OJ
01
m
M
0)
>
05
rH
CM
rH
a
d
TJ
»
j^.
CO
a
3
O
M
O
0)
O
M
3
O
co n:
EH
^r O
*
M-l
O
.«. H
0
O i T3
0) M W
M O rJ
3 t-n
M >i Cw
^
M riJ O
OSS
4J *
CU X
0) CO X
o a> o
0) D EH
05 rH
m o
>i > u
,Q
6 j->
CO M 3
(D CD a
3 EH C
H M
m 4-)
> M M
O O
E A M-4
M CO
0) CO
H e a
3 3
.U) S rH
M -H m
0 X >
^ 03
CO S m to
.C M ~
Ijt a) rH
re o -H
Cl4
4-1 **-t
O O *H
m
-------
r-
o
o
o
o
o
(I
CO
M
P
O
a:
e
rH
m
o
M
o
UH
w
M
p
o
EC
O>
C
-H
to
CO
-H
2
M
O
iw
CO
M
P
O
33
t7>
C
-H
CO
CO
-H
2
-o
c
m
£
rH
m
o
X!
4J
O
CQ
H
O
IM
o
*
II
0>
*H
Oi
c
<
9
4J
O
OS
*
o
o
o
o
M
O
4J
O
rfl
Pu
4J
-H
C
ID
0)
4-)
m
DC
c
o
1
*H
w
to
H
£
W
*
4->
P
O
^r
4->
CO
1
4->
to
(1)
4-)
0)
rH
1
H
CL,
4J
C
-H
M-
cu
«
4J
D
a
4->
P
O
*
*
o e
CO
CD
OJ
a
a
w
c
-H
O
0)
-C
* *
tl
m
>
o
o
o
Cn
C
-H
3
O
_)
* i
rH
O
ti,
M
i
-H
C
o
4J
Oi C
a: o
H
CO
e M
0) -H
S 6
< w
M
4J
P
a
c
M
O
CO
-H
2
*
II
CO
4J
-H
C
H>
4J
P
a
4J
P
o
^m
^4'
4J
CO
1
4-J
W
0)
4J
**
0)
rH
H
DL4
£
m
0)
M
4J
CO
c
P
ac
4J
p
cu
c
(~*
*
cc
CO
I
EH
05
0)
a.
0)
m
CO
CO
Q)
M
O
M
M
Cd
T3
0)
(Q
4J
0)
-------
CN CO CNJ
O
CJ
o
CsJ
* *
* *
* *
CJ
<
O O
a
EH
00 CNJ
CJ
crt
O 0)
Z O
M
CJ O
Q W
O
Q m
CJ O
05 -H
CJ C
o
z m
O 4->
c
o rd
CJ W
CO
ca
i
o
M
Q
O
EH
CO
X 4->
O OJ
EH g
2 T3
CJ 0)
W
05 CO
o o
o
M
z a
05 EH
CJ
EH 2
co 2
cj <
EH 05
-K -K
* *
* *
CN
CM
cn
Z
O
CO
05
Cd
I
CN
EH
CO
O
CO
Q
m
os
o
z
o
o
Q
CJ
CO
CO
z
O
EH
CU
O
O
z
CJ
Q
i
*
*
*
*
*
*
EH
rtj
Q
CJ
O
05
O
CO
EH
Z
t-H
O
DJ
*
*
*
NG EMISSION RATE
M
Q
M
O
CQ
&£
O
rtj
EH
CO
M
CJ
<;
EH
CO
&£
CJ
EH
M
X
CJ
*
On
2
CJ
EH
EH
ac
O
hH
w
a;
^
w
h3
Id
>H
X
*~*
o
CJ
CO
\
CO
2
2
05
O
.
EH
Si
cu
CJ
o
«
O
O
CO
CQ
- .
CO
os
CJ
EH
CJ
2
* '
.H.
O
CJ
CO
"V.
2
^
w
o
CJ
Q
>-*
*~*
CO
oe
w
EH
CJ
2
O-x.
CO
05
CJ
EH
pj
S
-
_
CO
05
CJ
EH
CJ
2
CO
OS
CJ
EH
CJ
2
* '
.
CO
!rf
o
Q
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
t
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
O
o
in
o
vo
»
in
o
o
CO
o
ro
O
O
O
^r
o
o
*
o
*
\f)
CO
rH
O
+
w
o
o
o
o
r-4
O
rH
O
05
D
O
CO
O
z
o
i-H
^*
o
i-H
o
o
ro
i-H
CO
O
O
O
CN
O
O
*
o
m
r-H
O
+
CJ
o
o
o
o
<-H
o
OJ
o
05
£3
O
CO
o
z
in
t-H
*3*
in
o
o
CO
o
ro
O
O
*
O
rH
O
O
m
o
*
rH
O
-f
CJ
o
o
o
o
rH
O
CO
u
D
o
CO
o
in
i-H
*
in
p*-
*
o
o
ro
rH
CO
O
O
*
O
rH
O
o
*
m
o
rH
O
+
CJ
o
o
o
o
rH
*
O
*3*
o
05
D
O
CO
tN
O
CU
^^
X
tt
,2
1C
!
a>
1
S
c
Ou
s
U
00
00
-------
CN
o
o
CM
*
*
*
w
CO
< rH
o o
a
EH
CO CM
w
EH -
CO
o a>
z u
l-H M
J 3
w o
Q W
O
s
Q 01
W O
05 -H
W C
M O
EH S
m
O 4->
c
a 01
w co
CO
CQ
*
K
*
CO
r-
Osi
o
CO
05
Pd
I
CM
EH
CO
CJ
CO
*
*
*
EH £
JjJ 0)
Z W
W
05 0)
o u
O
M
a
i
05 EH
r i *S"*
co S
EH 05
*
-K
*
*
*
*
CO
a,
o
05
O
CJ
05
I
^
CJ
Q
O
s
EH
CO
X
o
e
o
M
U-(
01
4J
01
o
JJ
(U
EH
t_l
O
-------
CM
a>
2 o
M M
J 3
w o
Q W
i1
a
-------
CN ro in
o
O
CM CM
* *
* *
* -fc
cd
CO
rfj
u
EH
CO
pa
EH
O
2
M
J
pa
Q
o
2
Q
pa
05
pa
hH
EH
2
O
Q
fd
CO
(_^
fl3 O
*O <3
tj
4-) Q
CO
e
TO
CO
w
to
0)
u
o
M EH
di <
1 ^
£-H» f^
w
s
m^ ^ ar
rf^j tf^
^ <^
-K
*
*
O
2
CO
CO
ta
CJ
o
05
CM
05
O
Pu
Q
pa
EH
O
pa
h-3
pa
CO
CO
>H
rtj
Q
^
<£
u
*-H
O
o
o
o;
o
w
E-*
W
2
*
*
-K
^
^^
o
2
II
O
«
CO
pa
>H
II
r-l
*-*
EH 05
* *
* *
* -1C
-K
*
-te
r-
-------
*
*
*
O O O O
O O O O O O
+ + + + I 1
Cd [x] W W W W
o o o o o o
o o o o o o
O O O O O O
o o o o o
O O O O CM CO
O O O O i-H
o o o o o
+ + + + I
Cd Cd W Cd Cd
o o o o o
o o o o o
m o o o o o
o o o o o
O O O O CM
o
1
o
o
o
CO
EH
SB-
M
os
O OS
cd
Cd EH
DS Cd
O S
OS
OS
Cd
cu
S
Cd
EH
EH
CC
Cd
<
-K
-K
W
EH CO
u
EH OS
O O
O. Cd
Q
O O O O
o o o o
Cd Cd
o o o o
o o o o
o o o o
o o o o
o o o o
o o
I I
Cd Cd
o o
o o
o o
o m
CM CO
OS
o
o
Cd
EH
o
a
Cd
o o o o
o o o o o o
+ -*- + +! I
Cd Cd Cd Cd Cd Cd
o o o o o o
o o o o o o
CO O O O O O O
o o o o o m
O O O O CM CO
cu
CO
CM
o o o o
o o o o o o
+ + + + I I
Ed Cd Cd Cd Cd W
o o o o o o
o o o o o o
o o o o o o
o o o o o m
O O O O CM CO
oo
I I
O O O O i-H «H
o o o o o o
+ + + +
Cd Cd Cd Cd
o o o o o o
o o o o o o
o o o o o o
o o o o o
O O O O CM CO
>H
EH
O
<:
O
-------
CM
td
rH O <
rH
*
-K
-tc
Cd
CO
O
H
CO
Cd
EH
2
j
Cd
Q
§
Q
Cd
OS
Cd
M
EH
2
Q
Cd
CO
to
I-H
*
<
*
CM q
*
-tc
*
4J
£3
rH
O
a
CM
».
W
O
3
O
W
«?*
^
o
-H
C
o
s
TJ
i i
nV"
C
CO
rt^
l_3
E
O
V-1
*H
TJ
Jj
rO
TJ
EH
Q H
rf
^1 ^B^-
* i ^p
^H *-J
(flj OH
0 O
M Cn
O
O
os
o
Cd
EH
Cd
22
Cn
O
CO
os
E5 4J
OE/i
VJ
JU *
m
^* 4-J
CM CO
T5
4J
EH 0)
CO £
as ^
t-H CM
Cn 4-J
W
W O
a; w
EH -H
^
* en
* en
* CM
m
**
**
o
*
Cd
rH*
rH
Cn
U
* *
1 1
O
s
* f > *Vt
^-1 t^ Ol
m 2 *-H
O^ rfj
05
** * *
Cd OS
2 < Cd
Zt-
r"^
2
O
rH
EH
<4
EH
CO
os
n
<
OS
UzJ
fi i
^i j
D
^* ^1*
f^ ^O
f-H H
2
O
HH
EH
r-
co
CM
cn
o
PO
o
o
in
r-H
CN
rH
rH
*3*
**O
rH
^T
in
^T
CM
CM
r-
CM
10
o
p-
co
CN
10
O
CM
O
CM
CSJ
CM
CN
rH
rH
^T
^0
CM
«\
^_l
Cu
X
r T
»
E
4*
^
d-
^
-------
o
* *
r- r-
H CN
m
01 r-
r~
CM
CM
10
GO CO
-------
CM ro r-
vo
**
CQ
CO
*
*
*
*
*
*
ro
CM
CM
OT
O
CO
OS
W
I
CM
EH
CO
CO
*
-tt
«
\ o
rH O <
Qj
*
K
*
JJ
CJ 3
CO r-»
< ^H
o o
a
EH
CO CM
CJ
EH -
(/)
CJ 0)
z u
(-H M
hH1 3
CJ O
Q tf)
S*
Q -*
EH
5^
os
o
S
EH
W
^^
r-H
OS
rt!
U
*«
Q
H-l
W
p^"^
os
g
t^
EH
CJ
*
*
*
*
m
*
^x
w
S
rf!
OS
o
o
os
o
rH
Z
DC
EH
O
Cu
o
o
^ta^
o
CJ
*
*
*~*
to
OS
W
EH
CJ
E
Q
V**
o
o
o
1
X
Q
os
o
o
u
1
o
o
*
o
m
1
o
o
o
o
rH
1
O
O
*
o
in
rH
1
O
O
o
o
CM
1
O
o
o
m
CM
I
.
CO
o£
CO
EH
M
S
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\
\
I
1
1
1
1
1
1
1
1
t
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
*
1
1
1
1
1
1
1
,61967 (64110707)
rH
in
o
rH
m
o
VD
CM
VD
CO
CO
rH
VO
.^
O
en
rH
m
o
^r
VO
* '
O
CO
r**
CM
o
o
m
*~.
CO
o
CM
rH
00
O
"O*
VO
"*
o
in
CO
ro
O
en
CO
^.
rH
CM
VO
CM
r-*
**
VP
^**
m
^*
*v
rH
O
m
ro
o
*
o
m
CM
,75757 (64110707)
en
m
o
rH
m
o
m
vo
^*
o
o
T
vo
V
o
m
o
CO
o
VO
* *
CO
00
VO
o
en
vo
"*
,_,
CO
o
vo
o
CM
rH
*3*
VD
**
O
r*
r-
r*
rH
CO
^p
^
CO
o
r-
o
rH
rH
VO
**
O
vo
en
m
rH
CM
*P
O
*
O
o
CM
,05860 (64051909)
11 (64080408) 52.
CO
CM
in
CO
^
,_
CO
o
r-
o
rH
rH
VD
*-*
r"»
o\
CO
rH
in
CO
m
^,
00
o
o
rH
rH
T
VD
""
T
O
vo
CM
m
^
CM
CM
*r
rH
VO
O
vo
w
CO
vo
rH
*f
in
vo
m
o
o
m
rH
CO
O
O
CO
O
VD
O
CO
O
ro
46 (64110708) 51,
rH
CM
VO
CO
VO
^^
CO
o
o
rH
rH
T
vo
"^
en
rH
CM
en
VD
rH
VO
-
p*
O
in
rH
^*
O
^*
vo
^"^
ro
CO
in
ro
vo
vo
^-»
CO
o
o
ro
ro
O
vo
*-*
*
-------
CN ro co
VD VO
rH O
CSJ Oi
* *
* *
* *
4J
W P
CO rH
< r~|
O O
H a
CO CN]
W
EH ^
«
O -3
EH CC
-x *
* *
K
*
£3
S
Q
EH
ri*
hJ
S
CQ
OS
o
u
z
o
o
*
Q
C/)
^
W
z«
o
hH
CU
O
z
3
u
/*\
i
*
*
*
-K
t f
O
o
0
2S FOR SOURCE GROUP: S
-*(
o
V 1
i
EH
<
ti f
CC
V
EH
Z
Cd
O
Z ^
o
CJ
rH
W U
J
O5
P5 O
W CO
<
PC
32
1
i-H *
>-^
CO
P-H *^
C/) W
w o
3C OS
O O
hH O
^^f
X CO
EH O
co ;s
r-H H
Q
t-^
W CJ
J-l rS
C_i i *
li ' ^^
*
*
-K
*
*
-K
EH
a
u
Q
05
O CO
"- -*(
w s
Q-i ^s* ^^
>< 52 w
EH JT Q/
^ U
-^ OH EH
OS O W
§ ° 5
EH O
PL] M Q
>*- *-* /v*
z s g
Z O
^4 r ^
..MO
X
rH
CC ?T*
*ll EH
U O
Pw
Q O
n
fj
5<5 Z
r^^^ (^""^
CC O
O 0
2
EH *
Cd *
-K
*
*
*
Q
o
U
1
SH
o
o
o
o
CM
O
O
«
o
in
o
o
o
o
rH
o
O
O
m
o
o
*»
W
CC
EH
M
E
I
i
I
I
I
1
I
i
I
t
i
i
i
i
I
I
I
i
I
I
1
I
I
\
\
I
I
I
i
I
I
I
I
1
I
I
i
I
1
i
i
I
I
i
i
i
I
i
1
I
I
I
I
I
1
I
I
1
1
t
1
,98001 (64062409)
.47773 (64101309)
,24453 (64062306) 40.
.44175 (64062409) 47,
in
CO CO
CM CO
P* rH
00 O
«g« in
» - .
i-t cn
rH O
O rH
n o
00 CO
0 O
VO VD
«
vo cn
r- vo
^^^ ^n~
r- ro
CO O
co cn
v ^i*
.
0 O
#
o o
m o
CM CM
,85483 (64062807)
.84195 (64010710)
,86884 (64090308) 48,
.44026 (64102815) 47,
rH CM
m m
*-* *
cn oo
o o
VD CO
o o
CM cn
rH O
^r ^r
vo vo
*^ »
CM CM
VD VO
P* O
CM in
CM CO
in o
m ^«
* k *
cn CM
O rH
p- p*
rH i-H
00 CM
O 0
*3* «g*
VD VO
"** **
co ro
O *3*
VO P*
CM in
P* CO
^* ro
in ^
. ^-s
cn CM
O rH
rH P"
O CM
00 rH
O O
VD VD
^^ **^
VD cn
m P*-
jv ^^^
P»- VO
rH in
m r*
m T
_ __
0 O
9
O O
m o
rH rH
.82262 (641006Q9)
CM
in
rH
rH
rH
O
rH
O
^*
VD
cn
CM
rH
m
ro
00
-_B
CO
o
^
CM
P-
O
V
vo
*-*
CO
T
CM
VO
rH
cn
eg
^^
cn
o
CM
CM
00
o
T
vo
^-*
CO
^
CO
VD
O
CM
^^
O
rH
rH
CM
CM
O
VD
*"*
00
CO
in
p-
o
p-
o
o
in
.33496 (64011911)
.36559 (64011911) 52,
5
.^
o
rH
cn
O
^r
o
*r
vo
*-*
CM
^*
P-
cn
00
cn
_-^
o
^^
o
o
o
o
o
*-*
rH
rH
CO
rH
CM
O
VD
*""*
m
o
m
o
o
o
.74540 (64021210)
,39577 (64042209)
,93607 (64021210) 58,
,17212 (64062907) 57.
CO CM
vo ^r
-~. ^,
o cn
i-H O
co ro
O rH
m cn
0 0
T *r
VD VD
M-
OO CO
co in
VD P*
Cn rH
O VD
CM 0
CM m
-v - »
O rH
rH rH
rH rH
o ro
CM rH
O O
^* ^*
VD VO
> *v
in cn
CO CO
^H" ^^^
O 0
rH in
CM «!T
*-». s.
cn it
O rH
cn co
o CM
*^* rH
O rH
VO VD
+* -*~f
Cn rH
rH CO
cn ^*
rH P-
P* CO
P- P*
^
_ _
0 0
* *
o o
in o
I «-t
I
.68166 (64051504)
,32724 (64100808) 42,
^
^
o
rH
«-C
O
CM
O
^
VO
+^
rH
in
CO
^*
00
m
«T
^^
p*
o
o
r**
o
^*
vo
**"
p*
CO
in
^
^*
r- 1
r*
o
CM
rH
VO
*""*
t^^
^^^
cn
vo
r-
c-
in
o
o
iH
1
,54725 (64051504)
.20396 (64122208)
,81665 (64100807) 44,
.95272 (64051206) 44,
vo in
. s
P- rH
0 0
in ^
CM rH
00 CO
o o
*3» T
vo vo
*."
CO rH
CM r*
CM 00
o cn
-------
CN CO CTl
u^
1 1
T 1
rH
rH
*
-tc
*
Ed
CO
<
O
EH
CO
Cd
EH
O
Z
M
rH1
Ed
Q
o
2
Q
Cd
05
Cd
M
EH
Z
O
Q
Cd
CO
1
c\l
% ^
H
CO
A/)
f-H
*
*
*
C.J
t *
( M
f i r«M
0 <
CM Qj
*
*
-te
U
D
i I
rH
O
a
CN
*
CO
0)
U
M
D
O
ffl
*r
(0
u
H
C
o
2
(0
4J
C
CO
^
a>
E
*o
a>
n
t/>
(U
o
o
Vj
a
i
EH
Cd
2
S*
SJ
Pi
-K
*
*
H
hJ
Q
f-H
<;
i_p
Cl4
2;
rf
ca
05
o
o
z
o
o
..
Q
Cd
CO
o
^B
)
z
O
EH
Cu
O
O
z
rH
C«3
Q
i
*
*
*
*
*
-»C
rH
O
§
O
CO
..
ex
o
O
05
o
&3
o
05
£3
o
CO
OH
o
Cn
*
CO *
Cd *
HH EH
< a:
> rtj
O
Q
rH
Z 05
O O
n
EH
< Cd
05 Ou
f . t ^^j
^^^ ^^^
^** F""l
Cd
CJ fid
Z - 05
O 0
u 3
J ^^J
r^n t^
Cd O Cd
O Q5 Z
05 O
Cd CO
05
ffi
1 i-H
" ^ g
CO U
r i i^^
CO Cd
Cd O Q
n: 05 HH
o o
MO 5<5
ffi CO O5
O
EH O S
CO Z EH
rH rH Cd
Q Z
^^^J 1C
Cd O *
!X Z *
£H rH
*
*
*
1
1
1
1
1
1
1
1
|
1
* 1
*
1
1
1
1
1
1
|
I
t
1
1
1
1
n ,
4t
* i
2 '
\ 1
<£ CO
4! Cd
05 EH I
O 2 1
05 ~
<-> ~ '
rH Q
y OS l
2 g
z. O '
s V ,
1 1
X
1
I
1
ffi
EH |
O
1
Du
0 1
o i
S3
0 '
^ i
1
* i
* '
i
1
1
1
1
1
1
1
0 1
o
1
I
o
m i
CM
1
1
I
I
_ |
I
O 0)
05 pj 1
O Ed
O H I
U Ed
1 2 1
1
. ..
m
CM
00
CM
CD
o
£
in
o
VO
o\
CN
O
10
ro o\ ^* r** p1* ^
CM ^ ^T
CN
n
vo
ON
00
*r
o
o
m
^_i
I
^-^
^*
o
in
rH
in
o
vo
^p
vo
rH
C3\
CM
O
^P
__
O
»
O
o
CN
1
^^.
*f
O
m
rH
m
o
vo
r-
cv
00
*3*
n
C3\
r>
__
o
o
m
CM
1
-------
CM n o
CTl O rH
^v * *
V.Q ^o
-H rH Cd
\ o
*-H o <;
rH C\l Qj
* -lc
MODELING TEST CASE **
1 sources, 2 pollut **
^lERED I
lonica, *
c-> .i.
Z (fl
O 4->
C
Q (TJ
Cd CO
CO \
^ rtl
CO (JJ
i e
o
i_J i_i
' i
W *M
Q
O nJ
S -U
fl
EH T3
CO
V *
X jJ
O 0)
EH £
S T3
CxJ 0
2 W
CO
05 OJ
O 0
DM O
M
23 QJ
O 1
02 EH
W S
EH QS
* *
* *
* *
*
*
*
m
r*
CN
>V 1
CM
j4r»
cn
53
t «
CO
05
W
^
1
CN
E-*
£/1
W*
CO
J J
rH
*
*
i
fcH
._"[
<
Cn
Q
EH
^
r-3
Cn
_fcj
CC
O
2
o
CJ
# *
Q
Cd
CO
Z
O
fH
O4
O
o
25
rH
rH
Cd
Q
M
*
*
*
*
*
*
CM
U
OS
CD
O
US FOR SOURCE GROUP: S'
fr-i-4
r^.
ITRATIO)
z
Cd
O
2
O
O
Cd
<
^*^
05
Cd
<
05
t
rH
EH
CO
Cd
EC
O
rH
EC
e-*
CO
rH
Cd
as
EH
K
*
*
*.
CN
o
-_J
05
o
CO
..».
CO
"
Cd
o
05
Q
CO
o
2
rH
Q
2
o
25
rH
*
j<
: DC ART '
r-i
OS
^^^^
o
**
Cd
cu
EH
^
05
0
H
Cd
S^
.^
rH
05
ril
O
Q
M
vj
05
i
EH
cd
25
*
K
O
o
*
o
m
I
*
*
o
o
*
o
o
rH
1
00
*
*
S
2 co
2] 05 O
< Cd O
05 EH -
O WO
O S m
O5 ^ I-H
O I
I-H Q
^frj tM
o
7 O
3 y
t
X
a:
EH
o
CM
0 o
o
CJ
Z O
O °
8 7
*
*
O
*
O
in
CM
t
__ ^_
a w
05 05
§Cd
CH
CJ U
^^u
- J^| «M^
r
i
i
i
i
i
i
i
t
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
1
1
i
i
i
I
i
i
i
i
i
1
i
t
i
i
i
i
i
i
I
1
i
t
i
i
i
I
i
i
I
,18260 (64010920)
,34640 (64010705)
,70060 (64112420) 134.
,57910 (64051909) 153,
n T
CM oo
fM rH
* ~~*
4120723
4032422
vo vo
. .
VO rH
O O
vo vo
0 0
CO CM
O rH
^t ^
VO VO
w **
o o
vo n
V 00
co m
^* CO
VO rH
ON "Q*
rH rH
» -*.
rH CO
O 0
vo ro
0 O
CM rH
rH rH
vo vo
o o
CM rH
ON 5T
T CM
O CM
o\ m
rH CO
rH rH
O O
* »
0 0
m o
CM
-------
CN
\_M V_rf 1-
^"^ * *
VO VD
rH rH D
rH O <
rH CN C
* *
MODELING TEST CASE **
3 sources, 2 pollut **
)DEL - BASED ON TIERED J
L from LA/Santa Monica,'
v_;
o
1
CN
* »
EH
W
O
to
1
HH
^
-It
T
d
D
C *
^ *
*
CN
O
05
O
2S FOR SOURCE GROUP: Si
***
i
JE CONCENTRATION VALUl
IC2 ,
fETWORK TYPE: GRIDCART 1
tH V^ H, }4 ^
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
r
i
i
\
\
\
\
I
1
i
i
i
i
i
i
i
i
i
i
i
t
i
i
i
i
i
i
i
i
i
i
1
i
i
i
i
i
i
i
i
i
.03430 (64051422)
.62520 (64091023) 198,
r-
rH
CO
rH
en
rH
rH
rH
VD
O
CM
CN
(64062724) 125,
o
CO
o
rH
CO
rH
^
VD
O
CO
rH
CO
O
VD
O
CN
in
in
cn
VD
m
rH
o
o
in
CM
,03950 (64080901)
.92450 (64051422) 152,
rH
O
CN
CO
CM
vo
rH
CO
O
VO
O
CO
m
CO
(64092801) 150,
o
CM
CN
m
rH
VD
rH
^
CO
o
p-
rH
^*
o
VO
O
p^
CO
in
o
CO
m
rH
o
o
o
CM
,05490 (64091823)
,90880 (64080901) 227.
.76800 (64062409) 162,
p
(64051205) 179,
o
r^
rH
00
CO
rH
CM
,^
CO
o
p*
rH
^*
O
VD
O
[-»
O
en
en
m
CM
CM
o
o
«H
.05810 (64082203)
.28660 (64051202) 161.
.45230 (64101208) 181.
(64062306) 244,
o
CO
CM
CN
CO
VD
CM
^^
CO
o
r-
rH
*3*
O
vo
O
in
VD
m
en
en
p*.
CM
O
o
o
,63030 (64091824)
.50850 (64073006) 209,
.59460 (64070706) 219,
(64080306) 267.
o
vo
VD
CO
O
CO
^^
rH
rH
OO
O
rH
O
VO
O
^*
CM
^*
VO
^1
CM
O
*
o
in
,18340 (64100902)
,44120 (64041722) 224.
,47650 (64041722) 232,
(64040910) 276,
o
r-
CO
vo
00
vo
rH
^^.
o
_
o
o
o
o
o
o
.10420 (64100801)
r-
LO
rH
O
en
rH
VD
O
VO
O
rH
en
VD
.86910 (64042209) 215,
(64091309) 413,
o
vo
r-
vo
en
o
CN
CM
- *
o
rH
^
rH
CM
O
VD
O
en
vo
^*
*j*
CM
m
CM
O
*
O
in
i
.20130 (64010804)
.25060 (64042209) 216.
.35860 (64051504) 213,
(64051206) 244,
o
VD
en
VD
vo
r-
CM
^^
o
rH
rH
O
rH
O
vo
o
00
o
VD
CN
in
CN
o
*
o
o
rH
1
.95530 (64041322)
.20060 (64031706) 223,
.51110 (64122208) 153,
(64082507) 185.
o
00
CO
o
en
o
CM
^^
O
rH
rH
O
rH
O
5
O
o
VD
m
CO
*
-------
CN
C71
"N.
^D
rH
""S.
rH
rH
*
-K
*
Cx]
CO
<
u
EH
CO
W
EH
O
2
hH
HH
U
Q
O
E,
Q
W
OS
w
t-t
EH
2
O
Q
W
CO
<
PQ
1
.-3
Cd
Q
O
*y
H
CO
X
o
EH
3
b3
2
OS
o
fct
2
E3
OH
EH
CO
W
EH
-*
K
*
-K
*
*
CO
P-
CM
«fe. t
(SJ
en
z
o
^^^
(-4
CO
OS
£J
^
i
C\I
s ^*
EH
CO
U
CO
*
*
*
rn eg
o -*
* *
\£>
^ Cd
.. o
O <
CN Oj
*
*
*
JJ
3
rH
rH
O
a
Csj
w
W
0)
o
M
3
O
CO
u
2
O
O
*
CO
o
CO
2
O
M
EH
O-i
O
2
3
£3
Q
§
*
^f
*
*
*
rg
O
«
D
O
CO
*
dj
o
o
OS
o
w
CJ
OS
o
o
CO
os
O
DM
CO
W
o
HH1
<
>
2
O
hH
EH
<
os
EH
2
W
U
2
O
O
w
U
rt!
OS
^
^
EH
^
OS
o
3
EH
CJ
2
*«*
i-H
a;
^
o
**
Q
HH
&d
OS
o
EH
W
2
*
*
K
k
*
CO
*
*
S
v.
CO
2
^
OS
e>
o
os
CJ
M
S
2
33
EH
O
Du
O
O
2S
O
o
-*
-4c
W
** J
OS
CJ
EH
U
E
Q
O
o
1
X
Q
OS
8
O
1
^1
o
o
f
o
in
* *
CM
OT
OS
ca
5
i
i
i
t
i
i
i
I
i
i
i
i
i
i
t
i
1
I
I
i
i
i
i
i
i
I
i
i
i
i
i
i
i
i
t
i
i
i
i
i
i
1
1
i
i
i
i
i
i
i
i
1
1
I
1
i
i
i
,
i
I
i
i
i
*
+
«
*-* * <*** * ^*+ *-* « * *-% «-*
^H C^ ***J* ^5* ^3* CM ^H vH CM ^M ^O
QCMOOJCMOCMOCMCMO
^QOc^covjooxooi^Hconr11*
O^B^ ^^1 «vJ ^^J ^^^ ^^^ ^^J ^^pj ^B^ ^>^J
i i v TI r i ^^^ ^^^ ^^^ v r i T i v i
OO O\ O^ O1 f-H C3 CM ^* ^J* ^* CO
OOOOOtHrHOOOO
^l* ^* ^* ^* *y* ^r ^* ^* **J* ^* ^*
VO^0\OU)KOVOVOVOVO^0VO
*^ *^ moonr*oooo
O\ ^]* O O\ O\ VO CO CN **O 00 Cft
VDfOCDinrHOaOOCM^'r-t
CNo^tnwc'iiOt-HVDr-'CM
rHCMt-HrHi (CMrHfMi (rHt 1
OOOOOOOOOOO
ooooo ooooo
m o m o m m o m o tn
CMCSJrHrt 1 ^-1 rH Cs| CM
fill
CN
O
3-
^f
X
PQ
h
jy
E
I
=x
o
o
3
CQ
4-4
C
c
ex
p
(>5
a
CO
QG
\o
s>
E
oo
-------
eg ro co
O rH
to 10
CQ
*
K
-1C
CO
eg
eg
2
O
co
05
tt
I
eg
EH
CO
O
CO
O
CN cu
*
K
*
J-)
W P
CO rH
< rH
cj o
a
EH
CO CN
W
EH ^
tf>
O CJ
z o
hH M
hH" P
u o
Q M
S*
Q rt
w o
05 -H
W C
M O
EH S
z m
O ^>
c
Q fO
DJ CO
CO
1
1-3
Q
O
2
EH
CO
X
o
EH
s
oa
21
cc
o
S3
O
e
o
M
ni
4-J
ns
-o
4J
OJ
£
-d
0)
c/)
tn
0)
u
o
M
a
i
EH
O
<;
(4
Q
EH
2;
O
M
EH
05
EH
53
w
o
2S *
O
o
CO
W O
O 05
05 O
W CO
*
-K
-K
EH
05
<
CJ
a
i
r*-1
05
O
*
pa
Cu
>H
EH
&d
05
o
3
EH
W
*
*
CO
*
*
S
CO
s
53
05
O
O
05
O
M
£
Z
M
05
a:
CO
EH *~
CO U
w o
ac 05
o o
rH O
X CO
EH U
CO &
Q
M O
^w^ ~^P
^^4 ^^^J
EH
*
*
*
05
CJ
EH
O
05
i
EH
W
2
-K
K
O
§
o
o
o
*
o
m
I
o
o
o
o
rH
1
«_*
to
05 0
W 0
H
w o
£ m
-* rH
1
Q
O
O
U
1
X
o
o
o
o
CM
1
o
o
*
O
in
CM
1
^^
Q to
OS 05
8CJ
H
U W
1 £
i
i
i
t
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
t
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
*
o
CM
cn
o
rH
O
^*
to
^^
o
GO
cn
rH
eg
CO
CM
CO
^^
o
eg
T
eg
rH
rH
to
*"
O
eg
o
o
r-
*r
CO
^*
^^
CO
eg
r-
o
eg
rH
^*
to
"**
O
m
o
CO
00
rH
cn
CM
^^
to
o
to
o
CO
o
to
"*»
o
eg
cn
to
r-
co
[*
CO
~*
rH
O
to
o
eg
rH
to
"^
O
p»
m
in
m
o
rH
CM
O
O
in
CM
*~+
m
o
r-
o
rH
O
qi
VO
^^
o
CO
rH
^
O
CO
eg
^
^
o
CM
^
eg
rH
rH
to
*~r
O
00
o\
in
CO
r-
cn
3*
^
eg
CM
*3*
CM
CO
o
«T
to
%
O
r-
m
p"
in
CM
CO
in
^.
rH
O
to
o
CM
rH
to
**
O
CO
to
VO
in
CM
cn
CM
_^
rO
O
CO
O
rH
rH
to
**
o
CO
CO
CM
O
-*
o
CM
rH
eg
rH
rH
to
* '
O
r-
cn
rH
^r
eg
(H
p*
^^.
CO
o
in
rH
^*
o
^*
to
***"
o
CO
to
CO
o
CO
CO
to
^.
CO
o
oo
eg
to
o
VO
*-*
o
VO
m
VO
in
eg
in
CO
«
CM
O
^*
rH
*J*
O
to
^f
o
to
in
CO
^*
^
00
CM
O
o
in
rH
1
. *
O ^*
CM O
in to
0 O
CM rH
rH rH
^ ^*
to to
*" *^
0 O
CO O
P- CM
in rH
to *?
to ^
^" CO
^r co
* *
vo cn
O rH
cn ro
0 O
cn CM
O rH
to to
** "
o o
CM in
00 CO
r* in
to to
rH CO
O rH
^ CO
.«. *~>
0 0
eg eg
rH rH
CM eg
rH rH
rH rH
^* ^*
vo to
-rf ***
O 0
vo p*
co in
co to
vo o
^r eg
O rH
m co
^^ _
CO O
o eg
in rH
rH CM
^* rH
O rH
to to
* **^
0 O
P* CM
o r-
rH tO
rH CO
CO P*
eg rH
^" CO
* <. *-*,
CO CO
CM O
co m
O rH
^t ^«
O O
vo to
** *^
O 0
00 P*
CO P-
eg o
cn in
^ to
^* o
eg co
O 0
*
0 O
o m
eg eg
I t
-
3
O
ON
oo
-------
oj m
en o
vo vc
o
CM
*
*
Cd
(j
<
* «
* *
* *
CM
CM
cn
2
O
CO
05
Cd
I
CNJ
CO
CJ
CO
Q
CO
o
CO
2
O
EH
a.
o
a
*
k
*
Cd
Q
3
*
*
CO
O
O
DELING TEST CASE
O
S
Q
Cd
os
Cd
i i
EH
2
O
Q
Cd
CO
v.
«.
rH
as
rtj
O
*
a
i i
^
OS
o
s
EH
Cd
2
*
*
*
*
ro
*
*
S
"S^
w
25
"*
O
m
p-
o
00
p»
en
*5*
o
o
o
CM
.*
ro
01
00
rH
en
o
vo
**^
o
^t
p-
^*
00
in
f*«
^T
^.^
04
OJ
O
04
T
O
VD
***
O
ro
en
OJ
CO
o
ro
m
**
CM
04
^"
fH
m
o
*T
vo
*-*
o
P-
ro
ao
o
o
vo
VD
o
o
m
rH
. ,
^*
o
OJ
iH
CO
O
VD
**
O
m
ro
r-*
o
p*
04
^
^^
^*
O
04
OJ
en
o
vo
**
o
"V
OJ
V
o
r-»
^*
m
^.^
OJ
OJ
o
04
^*
O
^*
vo
**^
o
04
00
in
ro
ro
o
00
^^
ro
CM
VD
rH
CO
o
vo
^-*
o
CO
vo
^1
^*
^J*
^*
P-
^
ro
o
c*«
tH
O
VO
*^
o
CO
*3*
CO
vo
en
r-
r*
o
o
o
fH
-_t
^*
CM
CO
fH
en
o
vo
^-*
o
^i
m
CO
VD
OJ
ro
in
^^,
^*
eg
CD
fH
en
o
vo
*"'
o
ro
^r
^i
VD
p«*
en
CD
^^
^*
o
-------
CM
a\
.. o
rH O rfj
rH CM CU
* *
* *
* *
Cd
< -H
CJ O
a
EH
CO CM
Cd
EH ^
(0
0)
U
M M
Cd O
Q W
i
O fQ
Cd U
05 I
Cd C
rH O
EH S
O 4J
C
Cd
CO
CQ
e
o
M
Q
i
rfl
CO
X jJ
o a>
EH £
TJ
Cd (U
2 W
W
05 0)
O U
2 a
D i
05 EH
Cd
EH S
co S
Cd <
EH 05
* *
* *
* *
*
-K
K
r-
CN
CM
2
O
CO
05
I
CM
EH
CO
CJ
CO
*
*
IONS USED: CONC URBAN FLAT DFAULT
*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: SOURC3 ***
INCLUDING SOURCE (S): SOURC3 ,
EH
O
O
rH
Cd
Q
£2
*
*
*
*** NETWORK ID: CARl ; NETWORK TYPE: GRIDCART ***
** CONC OF OTH IN MICROGRAMS/M**3 **
X-COORD (METERS)
o
05
8
U
1
o
o
o
CM
w
OS
M
EH
U
32
w
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
i
i
i
i
i
.27290 (64042022)
CM
O
o
in
CM
.49730 (64091823)
CM
P-
n
o
o
o
CM
,83800 (64070105)
V£>
00
CM
__
O
o
m
rH
,22070 (64091824)
V0
CO
_
o
o
o
,72890 (64011624)
,33310 (64100902)
oo c\
_
o o
* #
o
m
o
CM
rH
rH
V0
O
CM
CO
10
m
CO
o
*
o
in
I
,21540 (64010804)
^^^
^^1
_
o
o
o
r-l
1
.77740 (64041322)
CO
CM
CO
O
o
in
rH
1
.35640 (64041322)
CM
rH
O
*
o
o
CM
1
,27080 (64031706)
m
o
CM
o
o
in
CM
I
(S
o
H
x
W
ju
33
M
&
3
o
o
oo
-c
Q-
P
CO
oo
-------
Os] CO
\J1 '
\
<4
\
^^^
^^HJ
MODELING TEST CASE **
L - BASED ON TIERED t
Cd
Q
£_,
CO
X
O
EH
CaJ
33
cc
o
&*
2
CC
FH
c^
CO
w
*
*
*
*
4c
*
no
r^
CN]
*^ i
1
T
CM
» n
EH
CO
o
X
*
W f 1
* *
rH K
C
o <
CN a
5 sources, 2 pollut **
^PB
m
o
c
o
P
c
0
M
IJH
fO
4->
O
6
---
d
-J *
W CJ *
a: 2 *
f- * i_-
^ * i i
*
*
«
O
O
o
tn
l
*
*
o
o
o
o
rH
1
ROGRAMS/M**3
(METERS)
150.00
CJ I
M Q
^t fV*
S 0
2 8
rH V
1
X
Ed
EH
O
fo
O o
o
u
2 °
0 °
8 7
*
*
O
o
*
o
m
CM
l
_ _
Q W
cc cc
o w
O H
o w
1 £
f
1
t
1
1
1
1
1
1
1
1
1
1
1
1
1
t
1
1
1
1
1
1
t
1
1
1
1
1
1
1
1
|
1
1
I
I
1
1
1
1
1
1
1
1
1
1
w
\
\
\
\
\
\
\
\
\
\
1
1
1
1
1
1
1
,37890 (64010920)
,32590 (64010705)
,88470 (64112420) 317.
.27970 (64112420) 408,
070 (64120723) 466.
590 (64032422) 472,
ao in
CO *T
^* rH
00 rH
CM m
* .
VO rH
0 O
VD VO
O O
CO CM
O rH
^r ^r
VD va
**^ **
O O
«J" CO
OO ^3
CO P*
rH p-
vo ao
CO CM
-^. *»
rH CO
0 O
VD CO
0 O
CM rH
rH rH
VD VO
"*f ^H^
0 0
^* ^5
00 CO
00 rH
VD ^*
VD CO
O *(T
CM CM
0 0
0 0
tn o
CM CM
,00480 (64112420)
,96970 (64051909)
,28040 (64032422) 666.
,48720 (64091323) 923,
490 (64091323) 626.
980 (64092004) 599.
en m
rH CM
co in
rH P*
^r in
^*. ^.
o ^
CM O
CO O
O CM
IH cn
rH O
^j< «?
VO VO
>* »*
O O
CM O
CM
CM VP
m co
m co
co m
-^ *
«gt VD
0 O
O iH
CM CM
O\ KT
0 O
VO V£>
***" '"^
0 O
^r CM
CO CM
CM O
O vo
co ^r
cn vo
CO CO
0 O
o o
to o
rH rH
,75800 (64112621)
,72000 (64060602)
,44330 (64061422) 1185.
,54350 (64062503) 1533,
470 (64101807) 949.
510 (64011104) 664,
cn p*
co m
o in
P* VO
^ *-*
p* *j*
o o
CO tH
H *H
O fH
rH O
V "3"
VO VO
^
o o
rH Cft
r~ P-
CO CO
vo t
cn co
CM CO
VD *3*
^^. **.
P" «*J*
0 O
CO rH
rH rH
O rH
rH O
VO VD
~ r ^^
0 O
^^ ^J*
m P-
m CM
cn p»
00 CM
o vo
"a* co
0 O
o
in
,87100 (64100123)
,75000 (64090906)
,11130 (64062104) 1076.
,32210 (64041503) 628,
750 (64090905) 623,
840 (64091005) 845,
en in
CM m
m 'V
vo o
m m
* ,**
rH ^*
CM O
00 rH
rH CM
rH VD
rH O
^j» ^"
VD VD
** *-*
0 O
CO P*
rH C*~
cn ^*
rH O
o VD
rH CO
VO CO
h ^*
rH CM
CM CM
GO VO
tH rH
»H rH
rH O
VO VD
^"* *"""
0 O
rH CO
P* CM
00 CO
oo m
O CO
P- O
^* CO
_
o o
0 O
in o
1 rH
1
,92900 (64013120)
VD
m
o
CM
rH
CM
TH
rH
VO
O
cn
vo
in
870 (640415403) 665.
CM
CD
cn
cn
in
*
CO
o
00
CM
VO
O
^"
vp
^""
o
00
CO
cn
o
rH
CO
*
CM
o
^r
rH
^J*
o
vo
^^
o
rH
00
CO
CM
p^
p-
CM
o
o
in
rH
1
,13390 (64120520)
,00520 (64110604)
,89560 (64090906) 427.
,76780 (64120319) 324.
200 (64112120) 385,
910 (64112120) 304,
^» ^i
CM P-
m CM
00 O
^* CO
*. *
CO O
O CM
in rH
rH CM
^^^H MnJ
^* f 1
0 rH
^T ^T
VO VD
** *^
0 0
CM rH
rH CM
^* cn
rH O
"*a* co
» ^«.
CO CO
CM O
co in
O rH
^1 ^ft
0 0
VD VD
*"""* *"^
O 0
vo vo
00 CO
CO CO
p* m
en cn
co cn
CM CM
-
O 0
*
O 0
o m
CM CM
1 1
04
oo
oo
I
-------
CM ro r-
O^
^
rH
r-H
i-l
*
MODELING TEST CASE **
BASED ON TIERED ^
1
t-3
Cd
Q
s
m I
EH
CO
X
o
EH
S
Cd
2
Oi
O
to
2
CC
EH
CO
Cd
EH
*
*
*
*
K
-tc
00
p*
CN
*jf
C7>
2
n
CO
cc
Cd
^
1
CN
» ^
^^j
rA
0)
-Ic
*
w *
^D
r 1 tL
* * C
o <
CN G
1 sources, 2 pollut **
LA/Santa Monica,'
6
O
M
VIH
4J
OJ
T)
JJ
0)
e
T3
(0
(0
d)
U
o
M
cu
1
EH
Cd
s
cd
*
*
K
1
]
J
4
4
4
-
f1 f
.."1
§
|"f|
Q
EH
c^I
^q
fa
CQ
jm^
K
r^
o
2
O
O
*
Cd
CO
* f\
Ui
hH
E-t
O4
O
O
2
M
h3
K
*
*
*
*
*
O
O
CS FOR SOURCE GROUP: S<
CENTRATION VALUI
2
O
O
Cd
fO
-£
cc
Cd
-------
co
U3
Cd
o
CN
* *
K -K
* *
Cd
CO
< rH
O O
a
EH
CO CN
Cd
EH ^
CO
O Q)
Z 0
M M
J 3
Cd O
Q W
O
O TJ
w o
O5 -H
Cd C
o
m
o jj
c
Q m
Cd CO
CO
m
i
e
o
Cd
Q
O m
2 -u)
CO
X 4->
o *
O
o
o
CM
CO
ec
Cd
H
ptj
32
"«*
1
1
I
1
\
\
\
\
1
1
1
1
1
1
1
1
I
1
I
1
1
1
I
r
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
t
i
i
i
i
i
i
i
t
i
i
i
i
i
i
,73960 (64042022)
ON
CO
o
o
m
CM
.04900 (64091823)
CM
CO
O
o
o
CM
.51670 (64070105)
,61170 (64091824)
.72960 (64011624)
c-71 an tdA-\ nnanoi
r- fH o a
r* oo vo p
CM CO ^* *
o o o c
* *
o o o
m o to
cH fH
J rH
> O
* ON
> CM
> rH
^ rH
5 VO
3 O
f\ ^f*
-1 VO
> o
3 CO
* CO
r co
> o
*
o
to
1
.47030 (64010804)
CM
CN
O
*
O
o
rH
1
,69890 (64041322)
00
rH
CO
o
o
to
rH
1
r
,16230 (64041322)
v
o
CO
o
o
o
CM
1
,46820 (64031706)
rH
O
CM
O
*
O
m
CM
t
C4
V
is,
"^
X
U
o
<«
3
t
o
o
eg oo
c
a
co
23
oo
-------
CM
O rH
TIERED MODELING TEST CASE *** 11/16/
2
O
Q
DO
CO
<
m
i
ij
Da
Q
O
s
EH
CO
X
O
EH
3
ta
12
05
o
b
13
O
05
EH
CO
Da
EH
*
K
*
*
K
*
r-
CN
CT»
2
O
I-H
CO
05
Da
>
i
CM
EH
CO
O
CO
rH
*
*
*
Monica, 4 sources, 2 pollut *** 20:16:
PAGE
rd
4J
C
03
CO
*v-
<;
«j
e
o
M
M
tf
4-)
tf
TJ
4J
(1)
£
73
^ o
< CO
05
EC
1
rH
CO
*-*
o w
in O
05
Z3
O
S co
O
2 0
rH Z
X M
< Q
^ta* **^^
^^^J ^'
.J
Cd U
ac ss
EH M
*
*
*
cu
EH
O
>H
><
O
EH
cu
u
o
>t
>H
CO
: ^»
V &
s 0
^ CJ
CO w
s
5
M 02
S
z
i i
w
cu
33 EH
EH
O c^
O
Du
O
QC
O >*
J3 *"
n 05
g X
^
f^j/*
* 0
04
o
OS
EH
*t|
s
a;
Q
y
g
>H
>H
*^
CJ
SB
o
o
^
7
2
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
I
i
i
t
i
i
i
i
i
i
i
i
i
t
i
i
i
i
.
i
i
i
i
i
i
i
1
i
i
i
UUCJOOUOOCJOOCJUUOOCJOOUOCJCJOO
ooooooooooooooooooooooooo
OOOOOOOOOOOOOOOOOOOOOOOOO
ooooooooo
mtnominmooir)
o
to
«
o
o
I
oooooo
mm
I t oinminu->mu">o
rHiHCNi-Hi-)«HC>Ji-I^HCSJiH»-tTHCsl I Cg^^H^H I .-) I ^H
I I I I I I I I I I I II t I
^^ooooooor-oo
D
O
oc
uuouocjoaoaooouuooooouuouu
ooooooooooooooooooooooooo
ooooooooooooooooooooooooo
********** *
OOOOOOOOOOOOOOOOOOOOOOOOO
I r-H |
CM
ICMrHrHrHrHCM I
I
|
G
CU
00
U
£2
oo
ooooooooooooooooooooooooo
ooooooooooooooooooooooooo
**********
OOOOOOOOOOOOOOOOOOOOOOO O
in
60
E
i-lt-HCMCMCMrHCMCMrHrHrHCMrH ) CMrHCMrHCMCMCMCM^H
I I I I I I I I I I I ( I I I I I
rHOOOCMOOOOOOOCMOrHOOOOOCMOOOO
OrHOOOOOOOrHOOOrHOOOOOOOOrHOO
*
**
****
«**
*
-------
(N
*&
X
w
oS
S
3
&
=3
O
s
s
c
ex
P
U
C/3
oo
I
so
e
a
oo
05 fn 05
05 J 05 A 05
< O < O <
CJ cu CJ cu Q
Q Q CJ O
t-t M CO C/>
Q Q CQ
II II II
CJ DJ O O« Q
O O Q Q CQ
CO
w
OS
O
EH
a.
o
*
K
-------
CM m o
o CM
o <
CN CU
* *
* -1C
* *
CO
O O
a
CO CN
tJ
EH ^
«
C5 O
CO
05
ffi
I
CO
O W
m o
05
D
O
S co
S O
M &
X rH
< Q
T^ r^^
^^^t ^^jf
hi
W U
EC 25
EH
*
*
-fc
CO
*
*
^
CO
05
O
O
cc
o
EH
O
DM
O
O
O
*
K
05
o
U
pa
o:
X
a:
o
>H
x
U
2
O
O
&c5
CU
EH
O
s
ffi
EC
O
U
2=
O
O
M
Cu
>< I
H
I
Du
O I
I
05
o
X
i oooooouuoocjoaooooooooocjoo
OOO
I
I . ^^
OOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOO
A*******
ooooo ooo oooo oooo o
omtnoo omm mmmo moom m
I *H i-H i-i | | ?H rH rH I
I
OOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOO
| ****
o o o o o o o
I in o o m m in m
I rH rH ||
I
OOOOOOOOOOOO
oooooomminoino
rHrHrHrHrHrH I |rH|rH
II II
O O
O O
I OJOOOOrHcHOOJOOOrHOOOOrHOOrHOrHrHCM
| OOrHOCMOJOOJOJrHrHOJCMOOJOOrHOOnOIrHrHCM
I OOOrHOOOrHOOOOOOOOrHOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOO
V0
oo in
co co co r* oo OJ co
OJ OJ ON VO OO rH O
CM CM ^ CO in ** VO
co co r- co m
rH r*
O OJ OJ
CO CO CO O t"-
m
CO fO
o o\ co en CM
OJ rn ^o >^
tn oo
co
r*
VD vo
CM OJ
ojojojincocoofOLncMO
o oo co co GO o o P"* o ^* co r*~
* ******
COfOtOOJCMOJrHrHrH^r^rCOOJCMOJCMO
vovovpv0wvoiovov&u7\c^vD tn in m tn in in m in
CMCMOJOJOJOJOJOJCMOJOJOJCMCMOJOJOJOJOJCMCM
<
u
o
E
*->
=3
s-
3
o
oo
OOUCJCJUCJUUUOOUOCJOCJUOCJUUUUU
C
c
ex
OOOOOOOOOOOOOOOOOOOOOOOOO
ooooooooooooooooooooooooo
ooooooooooooo
ininoinmininininoinoo
I rH I rH I rH rH
I I
ooooooooo
ooininminmoo
rH rH || rH rH
I I
U
CO
oo
t
SO
05
X
O I
EH
CU I
O I
OOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOO
I
ooooooooo
ooiniommmmo
i
O O O O O O
o LO in o o o
rH rH rH rH
oooooooo
inoooooinm
I rH rH rH rH rH | |
i
I
I
III
CAOjcnoovocooococo(OojvDojojr-«!rofOincoo\r-^rr-^rH
OOJOOOOOOOOCMOOCMOOrHOOOOOOJOO
CMrHrHmOOJOOJ
-------
OJ
o
D-
X
W
f*
O
-------
CN ro
o c\j
rH O
rH CN
* *
* *
* -K
-P
ca p
CO rH
< rH
CJ O
EH
CO CN
Cd
EH *
O 0)
U
O
Q
W
CO
<
CQ
I
Cd
Q
o
K
K
ro
04
CN
O
M
CO
I
CN
EH
CO
o
*
*
*
Q
O
2
O O
o pa
tn cj
OS
D
S co
D
s o
rH 2
X
< Q
S D
.-3
W O
DC 2
EH n
-tt
*
*
*
*
ro
*
*
35
to
OS
o
o
OS
o
a
o
o
CJ
Pu
O I
^**. I
OS
X I
OS I
X
' I
PS
o
EH
CU
CJ
W
DS
Q
Q
a
Z
o
o
EH |
fe I
O
* I
OS
X
OS
o
EH
CM
O
U
o
z
o
U
UOUCJUOUCJOCJOCJUUUCJCJUOUCJOCJOCJ
Cb OOOOOOOOOOOOOOOOOOOOOOOOO
>H I OOOOOOOOOOOOOOOOOOOOOOOOO
o o o o
m in in
o o o o o
in in in tn m
II II
o o
m m
o o
m m
OOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOO
oooooooo
I I I
oooooooooooooo
mininininininininininminin
II l l l l i l
i
i
l
i
i
I ***** ^**^ ^""^
EH EH EH
EH EH EH
H EH
VD
O O O O O O CM
VO
in
o
I vo
CMOOr-tr^^rCMr-COCOrH
OOOCMCMOOOCNOOOCMOOOOO
OO 00 r** *Q* O CM O\ ^" ^ tH
rHOOrHtHrHCMCNQrH
r-CMOorOCOOVOVDVOVOOOCO*7rHrHrHVOrH
CM
a\
CO
m
r- o vo vo m o vo
vovovoininin^rro
vo
00
o rH CN ro v in
CM CM CM CM CN CN
CN
a>
U
X
W
^J
2
3
&
=»
o
OO
c
ex
p
on
U
oo
oo
-------
-------
csj ro
CT» O CN
vo
O
CN Oi
*
*
-P
P
CO
<
0 O
E-t
CO
o
O
M
a
i
2
D
05 EH
S
EH S
CO S
Pi] S
EH Q£
*
*
Q
En
CQ
05
O
CJ
2
O
O
Q
PL)
CO
n
to
2
O
EH
Oi
O
o
2
rH
W
Q
*
*
*
*
*
*
D
O
O)
a,
D
O
w
o
o
CO
O
Cn
O
I-H
EH
as
EH
2
o
2
O
O
w
o
< u
OS
Z)
sc
i
CO
O W
in u
05
D
S to
D
as o
M 2
X rH
< Q
^E* 1^
^^^M ^^^f
rH
w o
X 25
EH
*
K
CO
*
*
S
CO
05
O
O
05
O
O
O
O
o
*
*
I UUOCJOOUCJUUOOOOUCJOOUOUOUOO
I
frl I ... ^^ ^^ _ _ ^t^ ^^^ ^p^ ^J^ ^^^ ^^ ^1^ ^^^ ^,^ ^fc ^^. _ -_ ^i^ ^i^ __ ^_^
cu ooooooooooooooooooooooooo
>* I OOOOOOOOOOOOOOOOOOOOOOOOO
f^f «*»*******
IOOOOOOO OO OOOO
CwininmuOLomm inm in m m in
O I I II I
o
EH
Cu
PJ
u
>H
>H
U
2
O
O
^
O
2"
cc
X
a:
o
£
K
Q
o
o
o
05 I
X fc,«i.*.«.«lfc«»«fc».«fc«»«»fc.^^«.fc«k'fc«*««.*.*.*.«»
I OOOOOOOOOOOOOOOOOOOOOOOOO
ooooooooooooooooooooooooo
Qfi J «************»***
oooooooooo oooooooooooo
II III III II I
a:
K
Q
I r-*
-+mr -^f -\ t mp **^^ ^§ t ^«w »^ ^^ »* vi ^A^ i ***rf v^ ^ «i» "^ x»* -^** ^^* »
pOCNOOOOOOCNOCNOOOCNOOOCNOOOOO
^P^^rIOfN^OOJt~'oriJO'~'
-------
04
O
H
x
W
*h
Jlj
S
I
P
O
O
2
CQ
a
"C
ex
s
CO
U
CO
ON
oo
2
a
E
EH DC >H
< O < O <
U O4 U O» Q
Q Q O U 2
I-H I-H CO
OS 06 M
0 Q 03
II tl II II II
U CM O Oi Q
a o Q Q CQ
04
>H
O
E-t
a.
Cd
U
-------
CM
cn
^
rH
rH
iH
*
*
*
Cd
CJ
EH
CO
Cd
EH
O
SS
tH
Q
O
s
Q
Cd
05
Cd
M
BH
§
Q
Cd
CO
CQ
\
t-H*
Cd
Q
O
s
EH
CO
X
O
EH
3
Cd
SS
P£
O
z
05
EH
CO
Cd
H
*
*
*
*
*
K
CO
r
CM
CM
CTi
55
O
M
to
O5
Cd
>
1
CN
EH
CO
O
CO
M
*
*
*
LA/Santa Monica, 4 sources, 2 pollut *** 20:16:03
PAGE 23
HEST 1-HR RESULTS ***
£
O
M
MH
fO
4_)
Ti
-o
P
0)
e
T5
0)
(0
W
(U
U
O
M
a
f
RAMMET-
*
*
*
O
HH
a
fo
O
EH
h^ >^
S Pi
rtj rfj
fc ^
Q S
C3
)
W
3!
EH
«
-1C
*
EH
§
CQ
D
U
2
o
CJ
i *
Q
Cd
CO
CO
o
IH
EH
0,
O
U
z
IH
Q
o
£
*
*
*
AMS/M**3 **
NETWORK
EPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID
05 CJ 1
0 Cd
O 05 1
05
0 1
M
22 t
~
M
f
1
1
1
1
rc 33
H as i
O Cd Q
H Q 1
Cn *^ 22
O Q S 1
>*
CJ >H 1
o i
° CJ .
* S=
J 0 1
* U
1
Cd
C3 1
rt*
CM 1
cd
> i
4
EH
05
o
EH
Cd
O
C*}
*
*
*
05 EH 05 ^
rH* 05 (H* O5
O < O *C
Q~i O O* Q
Q CJ CJ 55
M CO CO O
D5 rH HH O
o Q a co
II II II II
O^i CJ CLi O
CD O O 03
(N
O
'cL
x
U
JL>
iS
=3
O
C
c
en
en
U
on
oo
8
3
-------
c\j
o C\)
* *
* *
* *
-p
3
CO I
< -H
CJ O
a
EH
CO CM
-H O <
«-H CM Oi
EH ^
Z 0
3
O
to
O
O
m
i
K
*
ro
r-
(N
CM
CT»
O
CO
05
U
CO
*
*
Q m
w o
os
c
o
2
«J
Q rt
pa
CO
e
o
Q
o m
2 4-)
ro
EH T3
CO
X -U
O 0)
2 TJ
U 0)
Z CO
(0
OS Q)
O U
Cn O
M
z a
o i
OS EH
EH 2
co 2
Cx] <
EH
* *
* *
-tt -te
Q
CO
CJ
o
o
Q
W
CO
CO
z
o
*
*
*
c
o
-H
-U
3
U
(U
X
w
t
0)
T»
O
2
CN
CJ
CO
HH
M
O
Cn
1
1
1
1
1
1
1
1
0)
0)
C7»
us
w
w
0)
2
H
m
4J
O
EH
M-l
O
^^.
(0
-*
m
to
w
(U
2
M
O
M
M
Ed
^
m
-U
nJ
Du
O
<«.
to
*
0)
CT
m
0)
a
0)
2
O>
C
-H
C
M
W
S
O
(0
0)
CT
ffl
to
CO
CD
2
I
m
c
o
-H
4-J
01
e
M
O
^
C
n
^«
t-H
T3
OJ
-H
iw
-H
JJ
C
o
T3
h-t
(0
M
3
O
K
£
-H
01
CJ
*3«
rH
oo
*
K
«
*
*
*
CO
ta
-1C
*
K
*
*
*
*
CO
CO
co
EH
a.
o
M
m
CO
0)
OS
o z
OS O
as z
[I]
a:
EH *
*
< *
CO *
CO
DP
2
z
o o
z z
*
*
K
*
*
«
*
«
*
«
«
*
*
*
0)
n
0)
o
o *
3 *
*
«
«
*
-K
*
*
«
*
«
*
*
0) *
(U *
CO
» *
-H *
C *
-H *
&* *
*
CN *
Q
0)
to
a>
2
K
*
*
O O O
o o o
EH EH
4J
o
*
*
*
*
*
k
*
*
*
«
k
K
K
«
«
*
«
«
«
«
*
*
CO
o
CO
-------
-X
-X
-X
-X
-X
-X
-X
-x
-X
-X
-X
-X
-X
-X
-X
*
-X
-X
-X
-X
-X
-X
-X
-X
-X
-k
-X
-X
-X
s
a;
u
EH
1
EH
PC
O
X
W
^
s
£}
H
(O
>H
to
to
U
(J
z
<
Q
U
U
U
X
u
Q
U
EH
U
W
On
X
u
to
u
M
X
o
EH
*i
EH
OT
X
O
H
-x
-x
-x
-X
-X
-X
-X
*
-X
X
-X
-X
-X
*
*
-X
*
-X
-X
-X
-X
*
-x
-X
-X
X
-K
-X
-X
-X
-X
-X
-X
X
*
*
*
«
*
*
*
d
o
-H
(0
M
tl)
>
0
rH
A
^
-p
«J
a
£
O
U
u
Oj
S
A
M
v
*
-X
-X
*
*
-X
-X
-X
*
*
-X
*
*
*
-X
-X
-K
-K
-X
-X
-X
-X
-X
-X
*
*
-X
*
*
-X
-X
-X
-X
-X
-X
-X
*
-X
-X
-X
-X
-X
*
-X
-X
-X
X
-X
-X
*
-X
-X
-X
*
*
-X
-X
-K
-X
*
-X
*
*
*
*
-X
-X
-X
-X
*
-X
*
*
-X
*
*
-X
-X
-X
-X
*
-X
*
-X
-X
-X
-X
-X
-X
-X
-X
-X
-X
-X
fc.
HJC
-X '
-K
-K
-X
-X
*
-K
-X
-X
*
-X
X
-X
Jto
^
*
*
*
-X
X
*
-X
*
-X
-1C
*
*
^U
*IC
*
*
X
*
-x
-x
<-H
99
rH
rH
1
rH
rH
c
3
t-t
MH
o
^
(ft
je
O
fd
4J
(0
5 ^
D
H «.
J 0)
d rH
e a
H £
D fd
H X
- Q)
H
Oi
J C
3 -H
X rH
H 0)
H 73
O
-i £
D
3 TJ
3 0)
M O ^<
0) O
H ^
^^j
*
^
i
rH
fd
o
H
a>
o
^H
O
O
(!)
4J
0)
£
10
M 4)
O O
a M
3
0) O
C C CO
3 0
M -H C
4J 0
1M fd -H
O rH CO
3 W
a) e -H
rH -H 6
.M « a>
H
e* * *H
*
TJ
i-H
i
o
(0 X4
H CO
fd 0)
* (t) M
>i >» XJ
fd 4J
H rH
M fd o
fd o >
H -H
H O> 4J
fd O -H
rH rH TJ
3 O TJ
Oi n fd
C O
fd d) o
4J 4J rH
O (!) 0>
a) e c
4J H -H
3 rH W
a ^ rH
c c
W W O *
3 fd W
T> 4J
C v 0) C
H w 01 fd
H fd 4J
COM3
0) 4J 0) rH
> a > ^H
-H 0) fd O
o> o a
4J J-« C 0)
1 -H
O fd rH 4J
IW M rH
^-td 3
4J 0 0) £
3 M-t >i
a >i
4J W 0) X)
3 Q)
O O U «
C C (I)
0) fd fd O
O TJ 73 C
c a) a> 73
73 o o a>
0) X X 0>
0) O 0) O
O X
X 73 73 0>
a) o a>
4J 4J 73
73 U O 0
0) 0) 0) 4J
4J a a u
0 X X 0)
a a> o a
a x
X 4J 4J fl)
0) 3 3
H ^r a a 73
VO tt) 4J 4J C
0> W 3 3 -H
rH D O O fc
»* * **
(0
4J
rH
3
W
(U
M
C
O
-H
CO
M TJ
0) 0)
a 4J
(ft td
1 t^.
^ -H >
(0 T) -H
M 4J
3 *O O
o a> «
XJ 4J
WO)
0) C
TJ 3 O
o tr-H
-H a jj
M n a
Q) O
a *d -H
id d)
M >i M
0) 4J ft)
> .0) W
< S D
**
en
cn
3
-o
O
X!
W
0)
4J EH
fd
Q
TJ
rH
O
x;
w
0) 01
M £
4J 4J
O O
O a)
<4-t M-i
U Ed
XJ X
4J 4J
0) 01
4J 4J
3 3
O O
O O
o o
*
C
O
-H t
4J
fd
£
M
0 j
»M
C
H
TJ C
rH
O
X!
0)
0)
V4
x!
EH
TJ
C
fd
4J
c
fd
4J
3
'-t
H
O
ai
fd
u
fd
a
M
c to
>d £
u id
32 < CO
H 1 1
H 4J 4J 4J
O C C C
it (d fd fd
4J 4J 4J
3 33
rH rH rH
rH rH rH
O O O
On CM QJ
**
TJ
M
*
«H
- '
r*i
o
On »-t Ot
-------
WOO^POOfHOO
V) 0)
H 4J
E
a:
0)
CO
<
o
H
CO
W
H
O
W
Q
Q
pa
w
H
Z
O
o
CO
CQ
1
Q
O
2
H
CO
X
o
W
Z
05
O
Cn
Z
o
as
H
(O V ^*
U VO
E-* O\
fH
* **
id
jj
O
1
pa
o
o
o
rH *T CM rH fH
CN CO rH
rH [*
CO
** # * * **
jj
o
0)
H
CM
»
i
i ^^^
O m
a 6
H ~ ^
rH JJ {31
* o
o a>
C M CN
It *- H
0 CO
^* CO U
J (A
O H
r** M
M C
JJ H -H
to a o
*O O "O
O 0) ~ irH
a J3 0 CU
a P
(0 O» 4-» *- rH
rJ C P 10
o -H a w >
JJ 01 JJ *H
Q« id P X 1
rH
rH
id
u
-H
JJ
c
d)
TJ
-H
to
H
CM
4^
JJ
C
0)
c
rH
^H
-H
3
d)
o
M
p
o
to
CO
H
x
EH
.
a
P
o
^i
o^
M
H
X
v
c
*«H
CO
a>
o
n
p
o
CO
rH
rH
id
o
JJ
to
d)
H
1 t
a
a
»3
a
P
o
1-1
o
*
0*
c
H
p
c
JJ
c
o
u
c
p
n
X
X
o
H
ON
-------
o
W M C
H (U -H
N C
o
id
w o o o
C V4 4J
O M 3
H 0) O W
w _Q w a>
to £
H (U to
E e -H a
a
c
-H
C
id
4->
C
4J
3
O
a
ro
^*s
0)
O
V4
3
O
to
X
X
o
EH
M
O
M-t
^-,
O
O
o
o
II
**
0)
C
OJ
4J
3
rH
rH
O
a
<*
*.
n
a
3
O
to
-H
4-»
C
id
jj
3
rH
rH
O
a
w
-H
X!
4J
4->
-H
£
0)
M
(U
>
C
rH
(H
*
a
3
O
M
Oi
(0
-H
Xi
4J
C
-H
W
Q}
O
3
O
to
O
U-l
(1)
4J
*d
±4
to
C
o
-H
to
10
fH
£
CD
O
to
id
X!
fj
3*
a
3
O
M
3
C
-H
4J
C
O
U
c
3
X
X
o
6H
T3
0)
a>
M
O
73
(d
d)
c
o
-H
4J
id
rH
p
o
£
Q
U oo
H
O
o
00
to
-H
O
H
0)
O
M
3
O
to
X
X
o
H
V4
O
M-t
*_h
o
o
o
o
"
II
**
0)
4J
id
i-i
to
C
o
H
to
to
-H
E
w
**
o>
c
*^1
c
M
id
3
entlcally zero.
T3
H
to
H
rH
4fet
4-»
C
id
4J
3
rH
i-H
O
a
«
^^
^<
=*.
a
3
O
M
0"!
4H
O
M
a>
,Q
g
0)
6
C
-H
C
id
3
to
-H
X
4J
C
id
4J
3
rH
rH
O
a
(0
H
X!
4J
4J
-H
£
0)
M
0)
£>
0)
C
rH
rH
-H
2
0)
o
M
3
O
to
10
-H
x:
a
3
O
^i
O1
V)
H
x:
4J
C
H
to
0)
O
fa
3
O
10
rH
rH
id
O
4J
to
0)
H
a
a
*= t
4
c 1
rd I
4J <
3 0
rH
cH ^
o <
a 7
i
o
tl 1 1
1
Q)
.p t
id »
t j j
i
to t
c
o c
H
0)
to
-H
£
a)
o
10
id
X
^t
*
a
3
O
J-i
O
0*
c
H
3
C
H
4-i
C
o
u
c
3
M
X
X
o
H
0 T3
J 0)
H >
3 td
0 (/5
/ ^^
^
I)
3
3
^ r-H
w4 *f"l
3 CM
H
0 C
J -r*( ^*
U VP
X
4J
O
id
a>
-H
O
j^
W
0)
V-t
X!
-P
id
**H
O
(1)
O
c
id
-o
0)
0)
o
X
0)
0
V)
3
id
o
^H
-H
-P
0)
-o
C
id
(U
,v
t
c
m
fl>
3
rH
id
^
CO
0)
2
o
**
4
r
I
4
r
C
<
(
*
t
7
<
(
<
!
P
7
<
4
(
(
<
J
C
«
J
3
X
J
3
5
1)
J
*
d
3
1)
u
J
<
a
3
D
j
J
D
X
<
t]
II
C
O
-H
4J
id
M
3
73
C
O
-H
to
(0
H
£
«,
to
^
O
id
4J
01
^*
*,
0)
a
£
id
X
0)
o*
c
-rH
rH
0)
-o
o
£
T3
0)
H
0)
H
..
C
3
CC
X
X
o
£-1
U-l
o
0)
rH
4J
to
4J
xi
O
rd
d)
M-t
O
V)
0)
o
c
id
73
-------
W
0)
P
3
P
3
O
4)
u
c
73
0)
0)
X
u
73
4>
P
o
(U
w
c
01
P
o
a
CN
II
C
o
-H
P
OJ
C
o
-H
«
(0
-H
0>
w
4J
O1
c
H
O
-H
O
01
o
c
o
73
O
CO
0)
o
0)
MH
O
(4
0)
O
C
73
01
0)
U
X
O)
0 O
OJ
P
^*
4»"
*~H
a
£
oJ
X
0)
c
_-J
^n
Ctl
73
O
£
73
4)
M
0)
-H
H
*
C
cc
X
X
o
MH
O
CD
rH
P
H
EH
73
4)
O
41
a
4>
E
£
-H
X
03
CO
c
0}
P
o
a
H
c
o
H
P
01
M
C
O
to
to
6
01
CO
0)
0)
rH
.0.
01
P
0>
C
-H
3
O
rH
rH
O
MH
0)
X!
P
M-I
O
o
01
0)
o
X
CO
01
o
01
0)
CO
01
o
C
<0
73
0)
0)
U
X
Q\
CD
U
3
O
U5
(0
tl
OJ
CD
>^
<-H
01
O
-H
tj\
O
rH
O
^1
o
0)
P
4>
E
rH
rH
OJ
J-l
CD
>
O
01
o^
*
M
a>
>
*!
A
>
d
(0
4)
O
C
01
73
4)
0)
O
X
0)
73
CD
4J
O
0)
a
X
CD
O
2
H
t ^0
3 O
<0
P
CO
*h
CD
J
!*!
a
e
01
X
CD
£j>
c
H
rH
41
73
O
e
73
01
M
0)
-H
EH
C
3
a;
X
X
o
EH
M-l
O
Q)
rH
P
t-f
EH
CD
73
01
P
01
a
X
4>
E
3
£
H
X
OJ
E
01
X
4J
0)
4J
0]
o
H
73
C
H
*-^
*
^^
CO
pX
0)
H
M
CD
4J
0)
i4j
CD
O
z
0)
0)
CO
4J
C
<0
P
o
a
CN
n
a
o
P
3
a
P
3
O
01
o
OJ
73
0)
U
X
73
0)
P
O
O)
n
c
o
01
3
73
C
O
-H
CO
(0
E
0)
OJ
P
O
M-l
J
P
M-i
O
O
0)
c
H
73
rH
O
n
01
u
OJ
01
W
o
o
c
OJ
73
0)
0)
O
X
01
0)
U
v^
3
O
CO
*
CO
V4
(Q
01
>^
rH
OJ
O
H
(j\
O
rH
O
M
O
CD
P
at
E
rH
rH
OJ
J-l
CD
£>
O
0)
0»
OJ
M
ffl
>
A
Ei
n
o
&
i-t
J U
OJ
P
CO
^*
^
CD
a
E
OJ
X
0)
o^
c
-H
rH
0)
73
O
E
73
01
M
01
H
EH
C
3
&
X
X
o
EH
MH
O
CD
rH
P
rH
H
73
4)
P
O
41
a
X
41
E
3
E
-H
X
<0
E
41
XI
P
4)
P
<0
O
-H
73
C
H
jm
*
*~
n
^
BO
H
M
0)
4J
CO
rtj
(9
4J
O
SB
2 pollutants
on=
each of the following tables
threshold
*T
**
a
P
o
M
0>
0)
o
M
3
O
CO
CO
te
01
CD
rH
ol
o
-H
tJ*
O
rH
O
O
CD
4J
CD
£
rH
rH
0)
n
a
o
CD
|Q
M
ni
^
<
A
d
C
c
A
7
0
C
(.
>
t
7
C
4-
(
<
C
>
b
CO
0)
o
c
01
73
0)
O
X
41
73
CD
4J
O
CD
a
X
CD
O
Z
H
11 4J
J OJ
: n
fl 3
3 73
11
D C
) O
< -H
a (0
V)
3 -H
D E
j 0)
.)
J ^
X W
< V
J O
D^
C
-H
rH
Q)
73
O
E
"0
(1)
M
-H
H
C
fc*
!3
()£
X
X
o
EH
WH
O
(U
rH
4J
H
E-t
XJ
O
OJ
Q)
M-l
O
CO
Q)
O
C
OJ
73
4)
4>
O
X
4)
73
4>
P
O
CD
a
X
4)
£
D
£
*r-t
X
03
6
01
X!
P
Ct)
P
oj
O
-H
73
C
H
.*
*
CO
,v
CO
H
1-4
0)
P
CO
rtj
*
CD
P
O
2
§
O
-------
o
o
o
o
o
o
o
CM
CM
CO
o
o
o
o
o
o
o
CM
o
o
o
o
o
o
00
o
n
o
o
o
o
o
o
00
CM
o
o
o
o
o
o
r-
1-t
00
CM
o
o
o
o
o
o
T3
Q)
c
-H
r-
CM
o
o
w
o
o
o
o
o
o
in
CM
0)
o
M
D
O
V)
o
o
o
o
o
o
m
CM
I
3
O
CD
-0
3
a
c
a
X
X
o
as
a\
as
CO
^ (U
ifl O
(1) C
>1 m
73
H
>
<
o
4J
a
a)
o
-o
o
-------
o
o
o
o
o
o
o
o
m
in
o
o
o
o
o
o
ro
o
CM
in
vo
to
r-
o
o
m
o
o
o
CM
in
m
10
o
o
in
m
en
in
CM
vc
ro
-(
o
jj
a
a)
s o
o a>
OS P5
-U
T3
O
X
a
a>
o
0)
OS
m
(M
o
X
0)
X
Cd
o
4-J
a
01
s o
o a)
OS OS
4-)
TJ
73
O -
X
-------
o
o
o
o
o
o
p-
CO
00
o
o
o
o
CO
oo
o
o
o
o
o
o
o
o
o
ID
oo
r*
o
o
o
o
o
o
oo
o
o
o
o
CO
o
CM
O
O
o
o
eg
oo
ro
o
o
o
o
o
o
og
CO
m
o
o
o
o
o
o
o
o
oo
Cft
CM
o
I
=3
o
o
c
cu
X
X
O
H
VO
8
a
o
o
o
o
o
o
o
o\
o
o
o
o
o
o
o
o
CO
r-
co
CO
00
a\
en
o
o
o
o
o
o
o
o
o
*-(
t-H
(0
w
l-t
-C
M
X
4J
n
to
M
(0
M
x:
4J
(0
M
O
4J
a
0)
s u
O 0)
a: CE:
M
-o
T3
M-l
O
X
a>
x
w
M
M
O
CO 4->
0)
O
4)
CC
4J
-o
-o
U-l
O
X
Q)
X
w
CO
*
V)
a
*
o
o
u
P
T3
-o
u-i
O
X
0)
X
w
U
o
**
n
M
O
4J
a
0)
u
X
0)
X
Ed
O
4J
a
at
3: o
O 0)
a tx
X
0)
X
CJ
o
DC
CO
M
O
*
a
0)
o
X
0)
X
w
-------
o
o
o
CN
O
O
CTI
O
o
oo
o
o
o
o
cs
4>
B-
o
o
o
o
^f
x
UQ
I-
9
O
$
c
c
a.
X
X
O
o
o
O
o
o
o
O
O
3 o
O 0)
a: a:
W
4J
>
4J
3
O
0)
sg
x o
w c
0)
-------
References
1. EPA, 1992. "A Tiered Modeling Approach for Assessing the Risks Due to Sources of
Hazardous Air Pollutants/1 U.S. Environmental Protection Agency (EPA-450/4-92-001).
2. EPA, 1992. "User's Guide for the Industrial Source (ISC2) Dispersion Models." (EPA-
450/4-92-008a, b, and c):
a. Volume I User Instructions
b. Volume n Dispersion Algorithms
c. Volume in Guide to Programmers
3. Stoeckenius, T. E., and J. R. Pehling. 1990. "Integrated Toxic Expected Exceedance
(INTOXX) Model User's Guide." Systems Applications, Inc., San Rafael, California
(SYSAPP-90/127).
. -
4. EPA, 1988. "Industrial Source Complex (ISC) Dispersion Model User's Guide, Second
Edition (Revised). Volume 1. U.S. Environmental Protection Agency (EPA-450/4-88-002A)
103
-------
Appendix
SPECIAL CONSIDERATIONS FOR DEVELOPING ISCST2 INPUT
FILES FOR USE IN TOXX
The capability within TOXX to handle situations involving multiple pollutant species does not affect
the setup of dispersion model runs. Each source in the dispersion model should represent an actual
point (or line, area, or volume) at which one or more pollutant species are released. The dispersion
model will then calculate a set of dispersion coefficients, or (X/q) values, for each source, whether the
source releases just a single species or several species.5 A separate emission rate of zero can be
entered in the TOXX input parameter file for any species of any source/species combination which
does not represent an actual release.
TOXX assumes that the dispersion results have been normalized to an emission rate of 1 g/s. Thus,
with the possible exception described below, an emission rate of 1 g/s should be specified for each
source in the dispersion model. In this way, when the X/q values from the dispersion model are
multiplied within TOXX by a specifically selected emission rate q expressed in g/s, the correct
concentration units X will be retrieved.
A potential exception to the "1 g/s rule" just described occurs in multiple-source situations. As noted
in Section 3.2, a single emission rate for each pollutant species must be specified in the TOXX input
parameter file for all sources within the same TOXX source group. If all sources within a group
actually have identical emission rates for a given species, or if no more than one source is included in
any single-source group, then it is sufficient to specify a rate of 1 g/s for each source in the dispersion
model. In general, it is not possible to handle situations in TOXX in which each source/species
combination is characterized by a different emission rate for sources that are to be included in the
same source group. However, in one important special situation, it is possible to correctly account for
such emission rate differences through the proper selection of emission rates in the dispersion model
and the TOXX input parameter file. This special situation is one in which emissions for all species
vary in the same proportion from one source to the next For example, if the emission rates for each
species at one source (say, source No. 2) are half those at another (say, source No. 1), then one can
specify an emission rate of 1 g/s in the dispersion model for source No. 1 and 0.5 g/s for source No.
2. Continuing with this example, we would specify for both sources in the TOXX input parameter file
the actual source No. 1 emission rate for each species. The net effect of this would be that emissions
for any given species from source No. 2 would be modeled in TOXX as half the emission rate for the
5 It is assumed in TOXX that a source which releases several species releases them simultaneously
such that all species comprising the source emissions are being released whenever the source is "on"
and no species are being released whenever it is "off" (see Section 2.1).
105 *
-------
corresponding species at source No. 1. A numerical example of such a situation is presented in Table
A-l. This methodology can be extended directly to situations involving more than two sources. Tie
only restriction is that the ratio of emission rates from one source to the next must be identical for all
pollutant species being modeled.
TABLE A-l Example of emission rate specifications for multiple source, multiple species,
single source group applications of TOXX.
Source #1
Species A Species B
Source #2
Species A Species B
Actual emission rate when "on":
Emission rate specified in
TOXX input parameter file:
Emission rate specified in
dispersion model:*
100 g/s 110 g/s
100 g/s 100 g/s
Ig/s
50 g/s
55 g/s
100 g/s 110 g/s
0.5 g/s
* Only one emission rate per source is specified in the dispersion model.
106
-------
TECHNICAL REPORT DATA
(Please read Instructions on reverse before completing)
1. REPORT NO.
EPA-450/4-92-002
3. RECIPIENT'S ACCESSION NO.
4. TIUE AND SUBTTTlf
Toxic Modeling System Short-Term (TOXST)
User's Guide
5. REPORT DATE
December 1992
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
8. PERFORMING ORGANIZATION REPORT NO
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Research Triangle Institute
Post Office Box 12194
Research Triangle Park, NC 27709-2194
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
Purchase Order No. 2D1482NALX
12. SPONSORING AGENCY NAME AND ADDRESS
U. S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Technical Support Division
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This document describes the Toxic Modeling System Short-Term (TOXST) and provides instructions on its
implementation. TOXST is a personal-computer-based model that has been developed in conjunction with the
release of the new version of the EPA's Industrial Source Complex Dispersion Models (EPA, 1992) and the
promulgation of the EPA's "A Tiered Modeling Approach for Assessing the Risks Due to Sources of Hazardous Air
Pollutants" (EPA-450/4-92-001). The purpose of TOXST is to assist in the evaluation of acute health hazards that
may result from short-term exposure to air pollutants.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b. IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/ Group
Air Pollution
Atmospheric Dispersion Modeling
Air Toxics
Risk Assessment
18. DISTRIBUTION STATEMENT
Release Unlimited
IB. SECURITY CLASS (fbport)
Unclassified
21. NO. OF PAGES
20. SECURITY CLASS (Pag9)
Unclassified
22. PRICE
EPA Form 2220-1 {Rev. 4-77) PREVIOUS EDfTION IS OBSELETE
-------
|