EPA/600/4-88/030
                                       August 1988
CAPILLARY COLUMN GC-MS DETERMINATION OF 77 PURGEABLE
  ORGANIC COMPOUNDS  IN TWO SIMULATED LIQUID WASTES
   M. F. Yancey, R.  A.  Kornfeld,  and J.  S.  Warner
                       BATTELLE
                  Columbus Division
             Columbus,  Ohio   43201-2693
              Contract Number 68-03-3224
                 Work Assignment 3-10
                   Project Officer

                   Thomas Pressley
         Physical  and Chemical Methods Branch
   Environmental Monitoring  and Support Laboratory
       Environmental Monitoring and Support Laboratory
             Office of Research and Development
            U.S. Environmental Protection Agency
                    Cincinnati, OH 45268
           REPRODUCED By
            NATIONAL TECHNICAL
           INFORMATION SERVICE
               U.S DEPARTMENT OF COMMERCE
                 SPRINGFIELD, VA 22161

-------
                                     TECHNICAL REPORT DATA
                              Ifleaie read Instructions on the rtvtnt before completinf/
    REPORT NO.
     EPA/600/4-88/030
                               2.
                                                              RECIPIENT'S ACCESSION NO
                  - 14S  88  I
    TITLE AND SUBTITLE
    Capillary  Column GC-MS Determination of 77 Purgeable
    Organic Compounds in Two Simulated Liquid Wastes
             REPORT DATE
               August 1988
             PERFORMING ORGANIZATION CODE
    *MT.M+30%. The  observed high positive bias was attributed to\
        enhanced sensitivity caused  by high  concentrations of ions in the MS source.
             ratinn data chnuiorl  that chnr»-»t
                                                 / A a
                                                       r) and long-torm  (two wooko)
   17.    precision was very  good.   KEY WORDS AND DOCUMENT ANALYSIS
                     DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS  C.  COSATI Field/Group
   18. DISTRIBUTION STATEMENT

        Distribute to Public
19. SECURITY CLASS (This Report)
  Unclassified
                                                                            21. NO. OF PAGES
                                                 20 SECURITY CLASS iThispafti
                                                   Unclassified
                                                                           22. PRICE
                                      IM5
f  EPA Form 2220-1 (R«v. 4-77)   PREVIOUS EDITION is OBSOLETE
                                                i

-------
                                    NOTICE

     The Information  in  this  document  has  been funded wholly or  1n part by the
United States  Environmental  Protection Agency under Contract Number 68-03-3224
(Work  Assignment  3-10)  to  Battelle   Memorial   Institute,   Battelle  Columbus
Division, Columbus,  Ohio   43201.   It  has  been  approved  for publication  as a
USEPA  document.    Mention of  trade  names  or   commercial  products  does  not
constitute endorsement or recommendation.

-------
                                    FOREWORD

     Environmental measurements are required to determine the quality of ambient
waters and the character of waste^ejffluents.  The Environmental Monitoring and
Support Laboratory - Cincinnati, Ohio, conducts research to:

     o  Develop and evaluate methods to measure the presence and
        concentration of physical,  chemical, and radiological pollutants
        in water, wastewater, bottom sediments, and solid waste.
     o  Investigate methods for the concentration, recovery, and
        identification of viruses,  bacteria, and other nicrobiological
        organisms  in water, and to  determine the responses of aquatic
        organisms to water quality.
     o  Develop and operate an Agency-wide  quality assurance program to
        assure standardization and  quality  control of systems for
        monitoring water and wastewater.

     This  report  presents results obtained  when capillary column gas
chromatography-mass  spectrometry was used to determine applicable  concentrations
ranges  for 77 purgeable organic compounds and  to assess  the  accuracy and
precision  of measurements of those  compounds spiked into two simulated  liquid
wastes, a  municipal  sludge leachate and  reagent water containing fulvic  acid.
                        Thomas A. Clark, Acting Director
                        Environmental  Monitoring  and  Support
                        Laboratory - Cincinnati
                                        111

-------
                                   ABSTRACT

     The suitability  of  purge-trap-desorb (PTD) procedures for  determination  of
84 volatile organic compounds with capillary column gas chromatography  (GC)  and
mass  spectrometry  (MS)  was  evaluated.     After  collecting  GC-MS data  not
previously  available  for some analytes, 7  of  the 84 compounds  were eliminated
from  further  consideration  because  of  poor  purging  efficiency  or  analyte
instability.
     For each  of the  remaining 77  compounds, the  linear concentration range and
detection  limit  were  determined  with  data  obtained by  PTD GC-MS  analysis  of
spiked  reagent  water.   A  relative  standard deviation  (RSD)  of  <25%  for  the
average  response factor was chosen as  the  acceptance criterion for determining
the linear  range. This  criterion was met over a concentration range of at least
two orders  of magnitude for  56 of the  77 analytes,  1.5 orders  of magnitude for
12 analytes,  and 1 order of magnitude for 6 analytes.  The criterion was not met
for acetone,  trichlorofluoromethane, and 2-chloro-l,3-butadiene.
     Method performance was  assessed by  analyzing eight  replicate aliquots of
two simulated  liquid  waste  samples (a municipal sewage sludge leachate and water
containing  fulvic acid) containing analytes spiked at two concentrations.  For
>80% of the analytes, bias of measured  concentrations was <30%.  For most other
analytes bias  was  >430%.    The  observed high  positive  bias was  attributed to
enhanced sensitivity  caused  by  high concentrations  of  ions in  the MS source.
Calibration  data showed  that  short-term   (daily)  and  long-term  (two  weeks)
precision  was very  good.
                                        IV

-------
                                ACKNOWLEDGMENT
     The  authors  gratefully  acknowledge  the  technical  assistance of  Robert
Slater,  U.S.  Environmental  Protection  Agency.    Technical  Battelle  Columbus
Division  staff  that participated  in  this Work  Assignment were  Laura Hernon-
Kenny, Roxanne Edwards, and David  Oyler.   Also,  the authors acknowledge Leslie
Stanton, Diane Helling, and Laraine Porter for their clerical assistance.

-------
                                   CONTENTS
Foreword	   i i i

Abstract	    iv

Acknowledgements	r	     v

Figure	   vi i

Tables	   vii

     1.  Introduction	     1

     2.  Conclusions	     2

     3.  Recommendations	     3

     4.  Experimental	     4
              Analytes	     4
              PTD-GC-MS  Analyses	     4
              Preparation of Stock Solutions	     5
              Preliminary Studies	     6
              Preparation of Spiking Solutions	     7
              Method  Range  Studies	     7
              Matrix  Validation  Studies	     8

     5.  Results  and  Discussion	     10
              Preliminary Studies	v	     10
              Method  Range  Studies	     10
              Matrix  Validation  Studies	  .   12


Appendix

         Calibration Curves from Method  Range  Studies	    A-l
                                     vi

-------
                                     FIGURE
Number                                                                     Page
1.  Effect of MS source Ion concentration on changes in neasured
      analyte Recovery	   16

                                     TABLES
Number                                                                     Page

1.  Source, GC and MS data for analytes evaluated in method
      range study	   17
2.  Linear range response factor data from method range study	   19
3.  Detection limits obtained from method range study	   26
4.  Recovery results from matrix validation studies	   28
5.  Calibration data from matrix validation studies	   30
                                   vii

-------
                                   SECTION 1
                                 INTRODUCTION

     In Appendix IX to 40 CFR Parts 264 and 270,  the Resource Conservation and
Recovery Act specifies over 200 organic compounds used to screen for suspected
groundwater contamination at land-based hazardous waste treatment, storage,
and disposal facilities (FR, 5£, July 9,  1987,  pp. 25942-25953).  Analytical
methods for most of these analytes are included in "Test Methods for Evaluating
Solid Wastes^ Physical/Chemical Methods"  (SW-846, Third Edition, November
1986).
     The SW-846 method recommended for determining volatile, relatively water
insoluble organic analytes  is Method 8240, which uses purge-trap-desorb (PTO)
analyte extraction followed by packed column gas chromatographic (GC)
separation and mass spectrometric (MS) detection and measurement.  Advances in
GC column technology now permit detection and quantitation of a wider range of
compounds in a shorter time with greater sensitivity using a fused silica or
glass capillary column.  For example, USEPA Method 524.2 uses a 0.75 mm i.d.
glass capillary column for  GC-MS determinations of volatile organic compounds
in drinking waters.
     As part of an ongoing  effort to demonstrate the applicability of present
USEPA analysis methods and/or  to develop new methods, the suitability of room
temperature PTD coupled with capillary column GC-MS determinations of volatile
organic compounds was evaluated.  Of the 84 compounds included  in this study,
data were obtained- for 77 compounds to establish the applicable concentration
range for each analyte.  The method was also evaluated for accuracy and
precision of measurements of analytes  added to two simulated liquid wastes, a
water containing fulvic acid and a publicly owned treatment works (POTW) sewage
sludge leachate.

-------
                                   SECTION 2
                                  CONCLUSIONS

     The following conclusions  are based on  the  experimental  results  of  this
project:

     o  The  use   of  methanol   as  a   solvent   interferes  with   the
        chromatographic performance of  a nonpolar capillary  column for
        the  determination   of   polar   volatile   compounds  such  as
        acetonitrile, isobutyl alcohol, and propargyl alcohol.
     o  Hexachlorocyclopentadiene,  2-chloroethyl   vinyl   ether,   and
        pentachloroethane are not very stable in methanol.
     o  1,4-Dioxane  is  not  sufficiently  purged  from water  at  room
        temperature  to be determined by a PTD procedure.
     o  Methanol  and  water  desorbed   from a  trap containing  Tenax,
        silica  gel,  and  charcoal,  interfere with  the chromatographic
        performance  of   a   nonpolar  capillary   column  for   the
        determination  of  gaseous  and  very  low  boiling  nonpolar
        compounds  by a PTO  procedure.
     o  A  total  of  74  of   the  84 volatile  compounds studied  can be
        determined  satisfactorily by SW-846  Method  8240  using  a  VOCOL
        capillary  column.
     o  2-Chloro-l,3-butadiene  is  lost  by polymerization  during the
        trap   desorb  process;   the   degree  of   polymerization   and,
        therefore,   the  percent  loss,  increases  as  the  concentration
        increases.
     o  With MS conditions  that permit  Method 8240  performance criteria
        to be  met  using  a  capillary  column  and  250 ng  of  internal
        standard,  an  increased sensitivity  may  result from  high ion
        concentrations in the MS source.
     o  A  calculated MDL was often considerably  lower than the lowest
        concentration  at which an analyte was detected experimentally.

-------
                                   SECTION 3
                                RECOMMENDATIONS

     The following  recommendations are made based  on  the results  from method
range and matrix validation studies:

     o  Of  the 77  compounds  for which  method  performance data  were
        obtained, 74  (all but  acetone,  trichlorofluoromethane,  and 2-
        chloro-l,3-butadiene)   should  be  appropriate  analytes  for  a
        capillary  column  version  of Method  8240.   Acetone  may  be
        suitable  if  a  different  quantitation  ion  (i.e.,  m/e  58)  is
        selected.
     o  Evaluate  changes  in GC-MS system operating conditions  to allow
        the  electron  multiplier  to become saturated  at  lower  analyte
        concentrations  if lower detection  limits are required.
     o  Investigate cryofocusing  or other means  to focus early eluting
        compounds to  minimize  peak broadening and improve quantitation,
        especially  at low concentrations.
     o  Use  a  non-volatile, water soluble  solvent for  spiking solutions
        to  avoid  deleterious chromatographic effects caused by methanol
        and  to improve  performance of early eluting analytes.
     o  Investigate differences between  calculated and observed MDLs to
        establish a protocol for  obtaining more meaningful MDLs.
     o  Evaluate  the  effect of MS ion source tuning and cleanliness on changes
        of  analyte  response factors  with  concentration.

-------
                                 SECTION 4
                               EXPERIMENTAL
ANALYTES
     A total of 84 organic compounds were considered for inclusion in this
study.  The 84 compounds include all Method 524.2 analytes and all Appendix IX
compounds that might reasonably be expected to be determined by room
temperature PTD extraction followed by 6C-MS analysis using a 0.75 mm i.dj
glass capillary column.
     Of the 84 analytes, 21 were obtained as individual  methanol solutions
(5,000-10,000 ug/mL) from the USEPA Repository for Toxic and Hazardous
Materials,  28 were purchased as four mixtures in methanol, 34 were purchased
individually in neat form, and 1 (2-chloro-l,3-butadiene) was purchased as a
50% xylene  solution.

PTD-GC-MS ANALYSES

     Analyses were  conducted  in accordance with Method 8240 procedures.
Equipment included  a Tekmar Model  LSC-2  PTD system, a Carlo Erba Model 4160 GC,
a  Finnigan  Model  3200  MS fitted with a glass jet  separator, and an Incos data
system with Revision 5.5 software.  The  PTD system was  fitted with a  5-ml
fritted glass purge tube and  a 305  mm x  4 mm  i.d. stainless steel trap
containing  10 mm  of 3% SP-2100 on  Supelcoport, 77 mm of Tenax,  77 mm  of silica-
gel,  and  77 mm of coconut  charcoal.  The system was operated with helium purge
for  11 min  at 26  mL/min at room temperature (23-25*C), desorption for 4 min at
15 mL/min at  180'C, and trap  bake  for 7  min at 26 mL/iin at 180*C.  The GC was
fitted with a 60  m  x 0.75  mm  I.D.  Supelco VOCOL columr.  coated with a  1.5 i»m
film  and  operated with a helium carrier  gas flow  of 15  mL/min.  The column
temperature was maintained at 10*C  during the desorb cycle, programmed  to 200*C
at 10*C/min at the  end of  the desorb cycle, and maintained  at 200"C for 10 min.
The MS was  tuned  daily to  meet bromofluorobenzene criteria  and  was operated
with  an  emission  current of  0.27-0.37 ma, an  electron multiplier  voltage of
1200-1800 V,  and  a  scan time  of 1  sec over  a  mass range of  35-325 amu.  The
emission  current  was selected to achieve acceptable tuning  and  to stay  within
the  range recommended  by the  manufacturer.  The electron multiplier voltage was

-------
set slightly lower than a setting that  would cause saturation for any analyte
at 200 *g/L (2000 »g/L  for  15 poorly purged analytes).  This setting permitted
analytes to be detected without multiplier saturation at concentrations up to
four times the internal standard (IS)  concentration of 50 ng/L  specified  by
Method 8240, and allowed maximum dynamic range.
     The system met all daily performance criteria specified by Method 8240.
In addition to BFB tuning criteria, these criteria include (1)  minimum response
factor (RF) of 0.30 for each of the five system performance check compounds
(chlorobenzene, chloromethane, 1,1-dichloroethane, l»l,2,2-tetrachloroethane,
and tribromomethane);  (2) RF difference of <25% for the six calibration check
compounds  (chloroform, 1,1-dichloroethene, 1,2-dichloropropane, ethylbenzene,
toluene, and vinyl chloride); (3) IS retention time variation of <30 sec, and
(4) IS area variation  of <50%.

PREPARATION OF STOCK SOLUTIONS

     Stock methanol solutions of each of the 34 compounds obtained in neat  form
were prepared with procedures described in Method 8240 and stored at -10*C.
Those solutions, the 21 solutions supplied by  USEPA, and the five commercial
solutions  were used to prepare four mixed stock solutions.  All analytes in  a
given mixed stock solution were present at the same concentration.  The amounts
of 1,2-dimethylbenzene and 1,4-dimethylbenzene added from their respective
stock solutions were decreased by the amounts  (deteririned by GC analysis with
flame ionization detection) contributed by xylene solvent-for the stock
solution of 2-chloro-l,3-butadiene.  One of the mixed stock solutions  (Mix  1)
contained  only the most water-soluble analytes that were known to have low
purging efficiencies.  Another one of the mixed stock solutions (Mix 2) was
devoted to analytes expected to give apparent  low purging efficiencies
primarily  because of hydrolytic or thermal  stability problems.

-------
PRELIMINARY STUDIES

     The four mixed stock solutions prepared froa Individual  stock solutions
and the four commercial solutions containing mixtures of analytes were analyzed
by direct Injection to determine GC performance and obtain  mass spectra for all
analytes under the GC-HS conditions described previously.
     Two of the mixed stock solutions, Mix 1 and Nix 2,  were  analyzed at
concentrations of 200 »g/L and  2,000 »g/L  in  reagent water to obtain  purging
efficiencies.  Purging efficiencjes were determined by comparing analyte/IS
area ratios from PTD analyses of water spiked with 1 »g  or  10 ng  of analyte
with those obtained by direct injection of 1 »g of analyte.   Seven analytes
that were not detected by direct injection or had purging efficiencies of <5%
were eliminated from further consideration.  Fresh solutions  of Mix  1 and Mix
2, in which these compounds were deleted, were prepared for all subsequent
studies.  These two mixes contained the 15 compounds that were most water-
soluble and expected to give low apparent purging efficiencies but had passed
the preliminary tests.  Those 15 compounds, henceforth referred to as the
poorly purged analytes, were:

     o  Acetone                        o  Hexachloropropene
     o  Acrolein                       o  2-Hexanone
     o  Acrylonitrile                  o  Methacrylonitrile
     o  Bis-(2-chloroethyl) ether      o  Methyl methacrylate
     o  2-Butanone                   - o  4-Methyl-2-pentanone
     o  2-Chloroethyl  ethyl ether      o  Propionitrile
     o  trans-l,4-Dichloro-2-butene    o  Vinyl acetate
     o  Ethyl methacrylate.

PREPARATION OF SPIKING SOLUTIONS

     Stock  solutions were combined  into a high-concentration spiking solution
that contained the  15  poorly purged  analytes at a concentration  of 100 ng/mL
and all other analytes at 10 i»g/mL.  That solution was diluted to obtain a
low-concentration  spiking solution  containing  the poorly purged  analytes at  a
concentration of 3  »g/mL  and all other analytes at 0.3 >g/mL.   The two spiking
solutions were stored  at  -10*C  until  needed.

-------
METHOD RANGE STUDIES

     For the method range studies, the low-concentration and high-concentration
spiking  solutions  were used to spike 5-mL aliquots  of  reagent  water to obtain
13  concentrations  ranging from 1  to  5500 »g/L for  the  poorly  purged analytes
and  0.1  to  550  ng/L  for  all  other analytes.   The low  concentration  spiking
solution was used  to  obtain  spike concentrations of 1 to 55 ng/L for the poorly
purged analytes  and 0.1 to  5.5 »g/L for  all  other  analytes.   The high concen-
tration  spiking  solution was used to  obtain  all  higher  analyte concentrations.
Eight replicate  samples  were analyzed for each of the 13 spike concentrations.
     Acquired  data were  analyzed  by a semi automated process to minimize analyst
effort.   A project-specific mass  spectral  library was  generated containing the
retention  time and quantitation  ion of each  analyte and IS.   The quantitation
ion  was  chosen for maximum  sensitivity  while attempting to avoid interferences
from coeluting materials.   For the majority  of  analytes,  the quantitation ion
selected was  the  base  peak.   For those analytes  listed in Method 8240, the
primary  ion specified in Method 8240 was used as the quantitation ion.
      A reverse library search of the data was performed by the MS data system.
For  each   analyte for  which  the quantitation  ion  was  detected  above the
background, an RF  was calculated  using the equation:
                           RF =  (Aa x CIS)/(Ais * Ca),
where
      Aa     = peak  area of analyte
     AJS     = peak  area of internal  standard      '
     Ca      = concentration  of analyte
     C]$     = concentration  of internal standard.

      An  estimated  detection limit (EDL)  for each  analyte  was  determined by  a
trained   analyst's manual  inspection  of  the mass  spectrum  from  one  of the
replicate  samples  at  the lowest  concentration  for  which the computer  detected
the quantitation  ion  in at  least four  replicates.   The analyst determined the
presence of the analyte by  examining the extracted  ion current profiles  of 2-5
major ions,  including the  quantitation  ion, selected  from  the reference mass
spectrum.   The analyte was  considered to  be  present  if  the major  ions maximized
simultaneously  and  had relative  intensities  within  20%  of  those   in the
reference  mass  spectrum, as specified  in Method 8240,  and if  the  quantitation

-------
1on gave  an  area response greater than  1000  or a signal-to-noise ratio of  at
least three to one.   If,  1n the analyst's  opinion based  on the above criteria,
the  mass  spectrum  confirmed  the  presence of  the analyte  in question,  that
concentration was considered to be the EDL.  If, 1n the opinion of the analyst,
the  mass  spectrum  did  not confirm  the presence  of the  analyte,   the  manual
inspection process was repeated at the next higher concentration.
     Mean RFs and RSDs of measured RFs were calculated at each concentration  as
the  first  step  in determining the linear  concentration  range for each analyte
(Table 2).  High concentration results  were evaluated for system saturation  by
plotting and visually evaluating the RF as a function of  analyte concentration.
If  an  RF  decreased with  increasing  concentration, the  high  concentration was
eliminated from  the linear range.  An  average  RF  and RSD of retained RFs  were
computed  using  RFs  from  all concentrations  other  than  high  concentrations
rejected  as  described  above.   If  the RSD was >25% (an  acceptance threshold
selected  with   USEPA  personnel  concurrence),  the  concentration  range  was
narrowed  in an  attempt  to reduce  the RSD <25%, but the concentration range was
never decreased  below one  order of magnitude.
     The  lowest  concentration  at  which the analyte was  found and quantified in
at  least  four of eight replicates was  considered to be  the EDL, regardless of
the  RSD of measured RFs.   For each analyte, data  obtained  at the EDL were used
to  calculate  a method detection limit  (HDL) using  the USEPA procedure described
in  Appendix B to 40 CFR Part  136  (Federal  Register 49. 198, October  26,  1984).

MATRIX VALIDATION STUDIES

     Two  simulated liquid waste  samples were  spiked and  analyzed   to evaluate
method  accuracy and  precision.    One  sample  was  a municipal  sewage  sludge
leachate  prepared  using  a modification of  the  USEPA  toxicity  characteristic
leaching   procedure  (Federal  Register,   51,   21685,  June  13,  1986).     The
modification  included using a smaller  sample and shorter extraction time than
specified.   Centrifuge bottles  (250 n»L)  were  filled with a mixture of sludge
and 1  M,  pH  5  acetate buffer extraction  fluid (20  nl of extraction fluid  per
gram of  solids  in the  sludge)  with  zero headspace.   After glass beads were
added  to  facilitate  mixing,  bottles  were tumbled end-over-end  for 2  h.    The
mixture  was  centrifuged and  filtered,  using  care to ninimize loss  of volatile
components.   The other sample was an artificial ground water  prepared by adding

-------
fulvlc acid  (Suwannee  Stream Reference, U.S.  Geological  Survey,  International
Humlc Substance  Society)  to reagent water  at  a concentration of 1 mg/L.   The
prepared samples were stored as aliquots in 40-mL septun-capped vials with zero
headspace in a refrigerator until used for analysis.
     For  each  of  the  two  samples,  eight  unspiked  replicates  and  eight
replicates of  each  of  two sets of  spiked  samples  were  analyzed.   Each aliquot
of one set of spiked samples contained 20 ng/L  of most analytes but  200 ng/L  of
the poorly purged analytes.   The other set contained 200 ng/L of most analytes
but 2000 »g/L of the poorly purged analytes.  Calibration standards  prepared by
spiking  reagent  water  with  the  each  analyte at a concentration of  50 ng/L or
500 »g/L for the poorly purged analytes were analyzed at the beginning, middle,
and  end  of  each  day.    Spiked  samples  and reagent  water  were  analyzed
immediately after spiking.
     For  each  analyte, a  daily mean  RF  was calculated from  data  obtained by
analyses  of  three  calibration solutions.   Analyte concentrations measured (Cm)
in the spiked  samples were calculated  using  the equation:

                           Cm « (Aa x  CIS)/(AIS x RF),
where
   RF  =  daily  mean  response  factor from analysis  of  three  calibration
solutions.

The  accuracy (A) of each mean  measured  concentration was calculated using  the
equation:
                          %  A =  [(Cm  - C0)/CS]  x 100,
where
      C0  = concentration of  analyte in unspiked matrix
      Cs  = concentration of  analyte spiked  into the matrix.
 Each  calculated accuracy was therefore corrected  when  an  analyte was found  in
 an  unspiked  sample.   An average  accuracy  and RSD of measured concentrations was
 calculated for  each  analyte at each  spiking concentration in each matrix.

-------
                                   SECTION 5
                            RESULTS AND DISCUSSION
PRELIMINARY STUDIES
     Six analytes (acetonitrile, isobutyl alcohol,  and  propargyl  alcohol,
hexachlorocyclopentadiene, 2-chloroethyl vinyl  ether, and  pentachloroethane)
were not detected by direct injection of 1 »g and were  eliminated  from further
consideration.  Also eliminated was 1,4-Dioxane,  which  had a very poor purging
efficiency, 0.5% at 2000 ng/L.   The methanol  injection  solvent  probably
interfered with determination of the highly polar compounds (acetonitrile,
isobutyl alcohol, and propargyl alcohol) by spreading them into a wide GC band.
Hexachlorocyclopentadiene, 2-chloroethyl vinyl  ether, and  pentachloroethane may
have decomposed during storage of the methanol  spiking  solution.   Retention
times were determined and quantitation  ions were selected  from the GC-MS data
for all remaining 77 analytes (Table 1).

METHOD RANGE  STUDIES

     Because  none of the  77 analytes was detected at spiking concentrations of
0.3 and 0.1 ng/L, RFs for these concentrations  are  not  included in Table 2,
which summarizes RF data  for the linear  range for each  analyte.  Of the  74
analytes having  satisfactory method range and RF precision, 56 exhibited a
linear range  of  at least  two orders of magnitude and an additional 12 exhibited
a range of at least 1.5 orders of magnitude.  Of the remaining six analytes,
three are highly volatile  (dichlorodifluoromethane, chloromethane, and
chloroethane) and two are  poorly purged  (trans-l,4-dichloro-2-butene  and
hexachloropropene).  Those five compounds required range narrowing to reduce
the average RSD  of measured RFs to <25%.  No explanation is apparent  for the
behavior of the  sixth compound, isopropyltoluene.
     Three compounds (acetone, 2-chloro-l,3-butadiene,  and trichlorofluoro-
methane) did  not produce  <25% RSD for measured RFs even with one order of
magnitude concentration range.  Acetone  may yield more reliable data  using m/z
58 rather than m/z 43 as  the quantitation ion.  A trend in decreasing RF with
increasing concentration  was evident for 2-chloro-l,3-butadiene, which
polymerizes readily.  The degree of polymerization, which would result in  loss
                                        10

-------
of the  monomer,  would be  expected  to increase with  Increasing  concentrations
and could account for  lower  measured  RFs  at higher concentrations.   Trichloro-
fluoromethane was particularly  sensitive  to the effects of methanol  and  water
on GC  peak  shape.    Other early eluting  compounds such as  dichlorodifluoro-
methane  (20%  RSD),  chloromethane (23% RSD), and vinyl  chloride  (20% RSO) also
produced mean RFs that were less precise than RFS for aost other analytes.  The
range for  a fourth  compound,  hexachloropropene (32% RSD of mean RFs)  was not
narrowed because the greatest  deviation  from  the mean RF occurred  within the
linear range at  300  »g/L.  For each of the 77 analytes,  a  calibration curve was
prepared by plotting the  analyte/IS  area ratio versus concentration  over the
linear range  (Appendix A).
     The lowest  concentration in the linear range,  the EDL,  and the calculated
MDL  for each analyte  were determined (Table 3).   For all  but  10  analytes the
EDL, the lowest concentration at which the analyte was detected and quantified
(regardless  of  RSD  of measured RFs)  in at least  four  of eight  replicates, was
the  same as  the lowest concentration  in the  linear  range.   Lower EDLs could
undoubtedly have been  achieved  for most analytes if MS tuning parameters  and the
electron  multiplier  voltage  had been  selected to  achieve  maximum  sensitivity
rather  than to  achieve  a wide  dynamic  range   and  quantitation  of  high  analyte
concentrations.   The calculated MDL was considerably lower  than the EDL  for all
analytes except  acetone.   Comparison of the highest concentration at which each
analyte  was not detected  in any of  eight replicates (Table 3)  shows  that for
each  of 70 analytes the  calculated MDL was even  lower, usually  by  a factor  of
two  to  five,  than  a  concentration  at  which  the analyte  was not  detected
experimentally.   The low calculated  MDLs reflect  excellent  precision  at low
concentrations  and  indicate  that a  calculated MDL  may be misleading.
                                     11

-------
MATRIX VALIDATION STUDIES

     The  accuracies  of measured concentrations of  74  analytes spiked  into  two
samples  (a POTW  sludge  leachate and  a water  containing fulvic  acid) at  two
concentrations  were  calculated  (Table  4).    Because  acetone,  2-chloro-l,3-
butadiene,  and  trichlorofluoromethane,  did not yield  satisfactory method  range
results,  data for those three compounds were discarded.
     Measured  concentrations  were calculated with  RFs aeasuredl by  analysis  of
triplicate  aliquots of reagent water spiked with each analyte at a concentration
of  50  »g/L  (or  500 ng/L  for  poorly  purged  analytes).    This  calibration
concentration  was within the linear  range for all 74 analytes  although it was
near  the  upper   limit   (55  »g/L)   for  dichlorodifluoromethane.    The  high
concentration  matrix  spike  exceeded the linear range  found  in the method range
study  for nine compounds, bromobenzene, n-butylbenzene,  sec-butylbenzene, tert-
butylbenzene,    dichlorodifluoromethane,    trans-l,4-dichloro-2-butene,   ethyl
methacrylate,  4-methyl-2-pentanone,  and  n-propylbenzene.   The low concentration
matrix  spike was  outside  the  range for chloroethane.
     The  74 analytes studied included all  but  1  (2-chloroethyl  vinyl  ether) of
the  30  compounds listed  in  Method  8240  Table  6, which  specifies acceptance
criteria  when a  quality  control  check sample  is  analyzed.   (The exception, 2-
chloroethyl  vinyl   ether,  was  among  compounds   not  detected   when   directly
injected.)   For all  but 1 of the remaining 29  compounds, Method 8240 acceptance
criteria  were  achieved  in  both  matrices  at both  high  and  low concentrations.
The  one exception was ethylbenzene  at  the  high  concentration  in water containing
fulvic  acid,  where a  bias  of +77%  was observed but acceptable bias is +62%.   A
possible  explanation of  this  and  other high  biases  is  presented below.
      To evaluate the acceptability of accuracies of concentrations  measured  for
each of  the  74 analytes,  ±30% bias was selected  as  an  acceptance  limit.  This
bias limit is  much  more stringent than the analyte-specific biases considered
acceptable in  Method 8240, which are  generally  ±50% or greater.   With a bias
limit of  ±30% (70-130%  accuracy),  accuracies  were acceptable for 61  of the  74
analytes spiked  into the POTW  sludge  leachate  at  the  high concentration and  for
63 analytes at the  low  concentration.  Acceptable accuracies were  achieved  for
50 of the 74 analytes added at  the  high concentration  to  water containing  fulvic
 acid and for 70 analytes at the low concentration.
      In  nearly 90%  of the cases  in  which the bias  was  outside  the  acceptance
                                      12

-------
range of ±30%, the bias was positive rather than negative.   A likely explanation
of the high  positive  biases,  Including that of  ethyl benzene  discussed  earlier,
is  an   increased   sensitivity   of  the  mass   spectrometer  source  when  ion
concentrations are unusually high.   This  effect  can  be  expected to be much more
noticeable when a capillary column is used instead of a  packed column, because a
capillary  column   produces  sharper  peaks  and   higher   momentary   analyte
concentrations than a  packed column.   The high positive bias was more prevalent
at the high  spike  concentration  than at the low spike concentration, especially
for the  water containing  fulvic  acid.  The high spike concentration of 200 ng/L
provides  1000 ng  of  analyte  in  5  ml  of sample purged.    Calibration  curves
(Appendix   A)  for    compounds   such   as   chlorobenzene,   isopropyl benzene,
isopropyltoluene,  styrene, and  1,2,4-trimethylbenzene,  obtained  in  the  method
range   study  also  provide  evidence   for   increased   sensitivity  at  higher
concentrations.  The  effect was  not as apparent in the eethod range study as in
the matrix validation  study, possibly  because the  ion  source  had been cleaned
immediately   before   beginning   the  method  range  study.     Decreased  source
cleanliness  may enhance the effect.
     For all  but  two  cases in  which  the  bias was negative  and  outside the
acceptability range,  the  low spike  concentration was involved,  and the analyte
was one  of the 14  analytes spiked at a 10-fold higher  concentration.  For each
of  those analytes, the calibration  standard  provided 2500  ng,  which could have
produced a high  ion concentration  and high RF, which, in turn, could  account for
an  important negative  bias at the low spike concentration.  Thus, an  increased
sensitivity  resulting  from high  ion concentrations could account for  essentially
all  biases,  high  and low.   No  evidence  of  a matrix  effect  was  observed.
Measured IS  quantitation  ion areas in spiked reagent water were very similar to
those  measured in  spiked  samples.
     The  observed  effect  of  ion  concentration  on  detector  response  was
illustrated  by plotting for each analyte  the  ratio of high  concentration bias to
low  concentration  bias   versus   total   ion   current  at   the  high  spiking
concentration using data  from analysis  of water containing fulvic acid (Figure
1).   The trend toward higher  RF with increasing total  ion concentration  in the
source indicates that  mass  spectrometer  source  parameters  are  not stable  under
conditions used  for the high spike concentration experiments.  This  trend  toward
increasing RF with increasing concentration has also been observed  for aromatic
compounds  by  scientists  in at  least one other laboratory  (Bill  toy  and  Frank
                                       13

-------
Allen, USEPA, Region IV, personal communication).
     During the  six days of the matrix  validation study, overall precision  of
measured RFs was good.   For  61  of the 74 analytes, <15% RSD  of measured RFs was
achieved at the calibration concentration (Table 5).  For all  but 2 of the other
13  analytes,  RSDs  were <30%.    The  two  exceptions were  trans-l,4-dich1oro-2-
butene  (33% RSO)  and  hexachloropropene (86%  RSD).    Both   of these  analytes
produced  quite  variable results  at  all  concentrations, probably  because  of
thermal decomposition in the trap and transfer line.
     The  percent  difference between  the average RF  obtained  in  the  matrix
validation  study and the RF obtained previously  in the method  range  study was
calculated  (Table  5).   For 65 of the 74 analytes,  the difference was  <25%, which
is  within  the Method 8240  acceptance range  for just the  six calibration check
compounds.    The   percent  difference  obtained   in  this  study  for  the  six
calibration  check  compounds   was  <25%  except  for  1,1-dichloroethene  (29%
difference).  A  >35% difference  was observed for only three analytes, trans-1,4-
dichloro-2-butene   (47%),   dichlorodifluoromethane   (46%),   and   trans-1,2-
dichloroethene (36%).
                                      14

-------
o
00 rO
T£ co









In 0
LO

in
CD


"^
Q ^
-< i in
^ in
o
j{? m n


•sf 00
CM in ^ CD
^ csi


CD
CN "~ CD
CD m
^ CO *-
CD £JCN ^ ^
CD in
^£2 03
00 ^
00 CN
{5m rfl=. •^-^f2^t-
•^ ^^~
m »—
•=*-


T— CD

Pi i " 1 1
U^
ID
Ol
•o
- ? 1
•«— o
o
o>
QJ
•M
O 
OJ to
_ ^ en -r-
o re
L_ ^z to
-4-J O fO
o "-5 c 01
oc Q o >
->-> ° r~
C-i— fO
ij r-
e ES
3 =5
r~i ° 0)
- S c ^fe
O O M-
• — (_> QJ
— i.
0 C
r- -(-I O tO
O -r- S-
(— (D
d) _Q
u E
O i- ^
~ •*• 3 c
to O)
1/5 •(->
_ s:
M— ' — 1
O
II
	 C_3 QJ Q
CM QJ -r-
M— -f->
4- (0
LU S_
i— (
Ol
r^v
oj
        u i
-]/6n 02  PUD
                         15

-------
TABLE 1.  INFORMATION ABOUT ANALYTES EVALUATED IN METHOD RANGE STUDY
Analyte ISa
1 Acetone
2 Acrolein
3 Acrylonitrile
4 Ally! chloride
5 Benzene
6 Bis-(2-chloroethy1) ether
7 Bromobenzene
8 Bromodichloromethane
9 Bromomethane
10 2-Butanone
11 n-Butylbenzene
12 sec-Butylbenzene
13 tert-Butylbenzene
14 Carbon disulfide
15 Carbon tetrachloride
16 Chlorobenzene
17 2-Chloro-l,3-butadiene
18 Chlorodibromomethane
19 Chloroethane
20 2-Chloroethyl ethyl ether
21 Chloroform
22 1-Chlorohexane
23 Chloromethane
24 2-Chlorotoluene
25 4-Chlorotoluene
26 l,2-Dibromo-3-ch1oropropane
27 1,2-Dibromoethane
28 Dibromomethane
29 1,2-Dichlorobenzene
30 1,3-Dichlorobenzene
31 1,4-Dichlorobenzene
32 trans-l,4-Dich1oro-2-butene
33 Dichlorodifluoromethane
34 1,1-Dichloroethane
35 1,2-Dichloroethane
36 1,1-Dichloroethene
37 cis-l,2-Dichloroethene
38 trans-l,2-Dichloroethene
39 Dichloromethane
40 1,2-Dichloropropane
41 1,3-Oichloropropane
42 1,1-Dichloropropene
43 cis-l,3-Dichloropropene
44 trans-l,3-Dichloropropene
1
1
1
1
2
3
3
2
1
1
3
3
3
1
2
3
1
3
1
2
1
3
1
3
3
3
3
2
3
3
3
3
1
1
2
1
1
1
1
2
3
1
2
2
Retention
CASRN Sourceb Timec
67-64-1
107-02-8
107-13-1
107-05-1
71-43-2
111-44-4
108-86-1
75-27-4
74-83-9
78-93-3
104-51-8
135-98-8
75-64-9
75-15-0
56-23-5
108-90-7
126-99-8
124-48-1
75-00-3
628-34-2
67-66-3
544-10-5
74-87-3
95-49-8
106-43-4
96-12-8
106-93-4
74-95-3
95-50-1
541-73-1
106-46-7
110-57-6
75-71-8
75-34-3
107-06-2
75-35-4
156-59-2
156-60-5
75-09-2
78-87-5
142-28-9
563-58-6
10061-01-5
10061-02-6
EPA
ALD
EPA
ALD
SUP
EPA
EAS
SUP
SUP
EPA
CHM
ALD
MCB
MCB
SUP
SUP
P&B
SUP
SUP
ALD
SUP
ALD
SUP
EPA
EPA
EPA
EPA
ALD
EPA
EPA
EPA
ALD
SUP
SUP
SUP
SUP
EPA
SUP
SUP
SUP
ALD
ALD
SUP
SUP
8:02
7:52
9:46
8:57
14:00
25:43
23:49
16:07
5:52
11:56
26:39
25:23
24:50
8:52
13:34
20:52
12:03
19:37
6:05
17:01
12:25
20:24
4:54
24:00
24:15
28:50
20:02
16:14
26:59
25:56
26:11
23:59
4:34
10:48
14:06
7:59
12:08
9:47
9:15
15:38
19:11
13:25
17:18
18:23
MW
58
56
53
76
78
142
156
162
94
72
134
134
134
76
152
112
88
206
64
108
118
118
50
126
126
234
186
172
146
146
146
124
120
98
98
96
96
96
84
112
112
110
110
110
Ouant
. Ion
m/z Rel. Int.
43
56
53
41
78
93
77
83
94
72
91
105
119
76
117
112
53
127
64
59
83
91
50
126
126
157
107
93
146
146
146
75
85
63
62
96
96
96
84
76
76
75
75
75
100
100
100
100
100
100
100
100
100
25
100
100
100
100
100
100
100
65
100
100
100
100
100
25
25
80
100
100
100
100
100
100
100
100
100
60
90
90
85
65
100
100
100
100
                                                                              (continued)
                                             16

-------
                                        TABLE 1.
                                                       Retention
Quant. Ion
Analyte
45 1,2 -Dimethyl benzene
46 1,4-Dimethyl benzene
47 Ethyl benzene
48 Ethyl methacrylate
49 Hexachlorobutadiene
50 Hexachloroethane
51 Hexachloropropene
52 2-Hexanone
53 lodomethane
54 Isopropylbenzene
55 p- I sopropyl toluene
56 Methacrylonitrile
57 Methyl methacrylate
58 4-Methyl-2-pentanone
59 Naphthalene
60 Propionitrile
61 n-Propyl benzene
62 Styrene
63 1,1,1,2-Tetrachloroethane
64 1,1,2,2-Tetrachloroethane
65 Tetrachloroethene
66 Toluene
67 Tribromomethane
68 1,2,4-Trichlorobenzene
69 1,1,1-Trichloroethane
70 1,1,2-Trichloroethane
71 Trichloroethene
72 Trichlorofluoromethane
73 1,2,3-Trichloropropane
74 1,2,4-Trimethylbenzene
75 1,3,5-Trimethylbenzene
76 Vinyl acetate
77 Vinyl chloride
ISa
3
3
3
2
3
3
3
2
1
3
3
1
2
2
3
1
3
3
3
3
3
2
3
3
1
2
2
1
3
3
3
1
1
CASRN
95-47-6
106-42-3
100-41-4
97-63-2
87-68-3
67-72-1
1888-71-7
591-78-6
74-88-4
98-82-8
99-87-6
126-98-7
80-62-6
108-10-1
91-20-3
107-12-0
103-65-1
100-42-5
630-20-6
79-34-5
127-18-4
108-88-3
75-25-2
120-82-1
71-55-6
79-00-5
79-01-6
75-69-4
96-18-4
95-63-6
108-67-8
108-05-4
75-01-4
Source"
EPA
EPA
SUP
ALO
EPA
EPA
ALD
ALD
ALD
ALF
ALD
ALD
ALD
ALD
EPA
ALD
ALD
EPA
EPA
SUP
SUP
SUP
SUP
EPA
SUP
SUP
SUP
SUP
EPA
CHS
ALD
ALD
SUP
Timec
22:05
21:10
20:58
18:26
31:07
27:38
31:07
18:46
8:37
22:53
25:50
12:28
15:58
16:59
31:22
12:11
23:47
22:13
20:58
23:26
19:04
17:49
22:55
30:47
13:06
18:39
15:12
4:32
23:44
25:06
23:47
11:01
5:08
HW
106
106
106
114
258
234
246
100
142
120
134
67
100
100
128
55
120
104
166
166
164
92
250
180
132
132
130
136
146
120
120
86
62
m/z
106
106
106
69
225
117
143
43
142
105
119
41
69
43
128
54
91
104
131
83
164
92
173
180
97
97
130
101
110
105
105
43
62
Rel. Int.
45
45
30
100
100
100
92
100
100
100
100
100
85
100
100
100
100
100
100
100
75
65
100
100
100
100
97
100
30
100
100
100
100
'Internal standard 1 * bromochloromethane, 2 - 1,4-difluorobenzene,  and 3 = chlorobenzene-
d5.  bALD - Aldrich, ALF = Alfa Chemical, CHM • Chemical Samples Co.,  CHS = Chmical
Services, EAS - Eastman Kodak, EPA - USEPA Respository, MCB - Katheson, Colemn, and Bell,
P&B = Pfaltz and Bauer, and SUP = Supelco.  Detention time in ainutes and seconds.
                                            17

-------














re
o
I/O
LU
0
QC
o
o
1—
LU
^-
z
§
"-
^^
L_
§
o:
o
u
^t
^•^

LU
(X)
o
(/>
;y

LU
VJ
^~
*J
"^
OC
^C
LU
^
*"^
^J


"
CM
LU
CO
^£
^~






















—1
a
d
^
C
~
r<
i-
VV
U
C
VJ
a
o
ro
C
ce:

i*
IhH
t.
4-
C
n

CO
c
o
O
V)
a>
j»

^
»
i-
<
<




































rt
^^
<•
I

O


0
CO


in
m
o

^

o
CO

in
m


o
o


o


o
o
CO

o
m
m


o
o
o
1— 4

o
o

fw4


o
o
0
CO
o
o
m
in















CM
• co
o vo

























o ^
• *— 4
O CO
in
o —»
• CM
VO *•"*
*— '
O ^^»
O CM
••— •

CO
CM ^
• VO
0 ^

VO
V-* x-^
• ^"
O CM


CM

• in
0 — «

00
o •— .
• CM
0 ^









{J
VV
o

VV
u
«*
l*> 9t
• in • r-«
O CM O CM





















CO
o — .
• 00
o — •

vo ^
• o> -co
o — • o ~-^
«*• CO
o ^^ o -^
• vo 'CO
o •— * o -^

VO ^-i
• oo" ""? oo"
O -^ 0 — '


^- r*^
o — > o — .
• 00 -CM
O • 	 O r-l
*•— ^
^. f^
o -^ o-^
• in • r-»
o • — o -~^


*f 00
o -~- o — »
• * -co
o •-< o ^
— * •— »
^- o
^3 ^^K ^^ ^^%
• m • ^~
^5 ^^ * ^3 ^—*'



u
01
f~»
•r*
V.
O 4^
c •»-
w o
r~~ r**
O X,
J- t.
0 0


o m
• CM










"^
o m
-*•--'
*& ^"^
CM r^
^4C
CM -^
O «--
VO -~.

• *•»•*
•— '
CM — »
r» o

o -^
r-* -—v
r- oo
O

i— t •— •»
CM VT>
• -j
r~
f^
rf"

^O ro
• »"^





CO ^
• 1-^
0>—
^H ^^
00 CO
d"^
vo-^
vO Ot
O
CM *— .
r~- in
o^~*
CM — «
VO «*
O
I— 1 — >
l>^ CO

o
~^
vO ^~

o
r^~
in co
O

o — »
f*. in
• ••_•*
0
r^. -^**
VO CM
O






























vv
c
VV
N
C
W
00 -,

o o

d ^
















CO t~-
0^—

o
CM VO
o ^

o
CO ^-
o ^-*
d
^^
CM r-«-
O "*— '
•
O
co r-.
o *— *
d

*-**
co in
O »— '
•
o
. 	 .
CO ^~
0 ^"
*
0

*—^
CO «•
o- —
*
o
CM in
0 •—
•
o

^
J=
0
L
o
r™*
^^
00
CM VV
«— -JC
1 •*->
M vv
•^
3 ^

CM 10






2 VO*
• t— i
f-H «^
in -^
CO CM
— ^
vo ^
O
^ CM
t— *
vo . — •
O VO
1— 1
CM .— •
CO CO

i-^
00 **••*
t-^ ^^
• ^^
•— I
00 — »


































VV
c
VV
N
C
w
o

o
s-
QO

^ o

o «—




1— < ^"V
oo in
• ^«^
o
0»—<
VO CM
d""
vO vO
O
CM ^-»
r-. co
o
VO v?
d~
in --x
f^> ^^
• <*^
o
r^ — -
vo in
• «ta^
o
,-H~
•^ CM
d """

r^ ••"^
CO VO
• *^*
O
VO -^
VO CM
d ~~"





















a>
c
4r>
o
^
0

_p*
^
•5
o
E
o
^
CO

2 ^
• CM








in ~-^
vo •*
^4C.
•-• CO"
^"^
CM a>
^
O r>.
~~
CO •^™111*
O VO

*— 1
^ ^^
o^ O\
« **—^
o
CO *^*«
OO I^
o

in • — .
o o
• f— i
^^ • —
0 — •

o

























VV
C
as
-C

i



J-
CD
in
• oo m co
o — i • .-•

Ol <^^* ^3
a> co «
• *-H y
i-<* — e
c
0
C7* "•-*- VV
VO CO • —
• «M^
1— t
00 — »
r>« CM
~"
O '-^
-''"'
in .— *
**• •*
~~
00 -^
-^
CO *""*•
VO CO

•— 1
O "> CO 	 .
• CM 1»- •*
O CM • • 	

vO
O "-"* ^" ^**
• r~- «*• CM
O "-^ • ^-^
^.
o -^
• CO
o •-*

VO
o — ^
• CO
O "-^

in
O *-»
• vo
0 ^~-


O ***•*
• 0
o ^
•Mrt^

m
O —v

d ^


m
0 — -
• CO
o **^



w
c
w

O JO
C r-
,
4-* 1 v
3 3
CO CO
1 1

-------
03

c

o>


o
t
I—I
,
V.
Cj

. CO
c
o
•t—
1 *
* in
£ in
 r^-
a
*->
"* 0
^~ CO
O
l/l
a:
-*s ""*
^—
o
*-» 0
£ °
 o
J— «^^
o ^
a
a>
i- 0
0
O> ro
a
nj
i-
co o
> LO

IM
c
a*
.a
r—
>1
*->
OO
1
(J
a>
LO

O Cft
• ~_ -*
CO

O -"• N
tTi in
• CM
CM •—*



CO •— •»
CM <*
• *»^*
CO

LO --~
CO CM
CO
CM — .
•-* CM
CO
O1 --^
CO CO
CM
LO .— ~
O^ CM
• *M*
CM

LO — ^
O CO
CO
co ~-~
O CO
CO
CM — ~
—< CO
co






























a>
c
a>
fsl
C
a>
;£
>^
4->
3
CO
i
L-
a)
*->

o cr«

CO 	 •








o o"
i ^^
CO -^

CO '^
CM CO
«» ^"
in -^
LO OO
CM
LO — ^
CM r-»
CO
I— * ^-^.
LO O^
• <*^
CM

co **^
LO *»•
CO
u> —
LO 1^
CM
LO —
Csl OO
CM

r— < ^-^
CM O
• «— 4
CO • — -


^* '"^
«»• co
• ^~*
CO




















a>
T3
•r—
L^_
^™
I/)
•r"
•o

c
o
.a
^
L->

LO CM
• r—<
O • —








rSoT
• •*.— ^
O

CO • — .
LO ^»"
o
f---^
LO LO
O
cy* *™ ^

0 ^^
CO --»
LO «*
• ^**
o

•* -~.

0
CM -^
LO CO
O
CM --^
LO T*-
O

CM - — -
l^~ LO
• ^~f
0


?— * ^-^
LO CM
• *~^
O
















a>
T3
•r~
J_
0

^
o
m
S-
a>
+j

o
ja
i-
(^
CJ

^5 *O
• •*—•«•
"








o in
• - r*
>— 1

CM --v
-* CM
^^^
00 — >
cr> CM
o
Cf> *-»

o
CO ^
O> CO
• ^1*'
o

^ --~
0 CM
-
O *•— ^
0 —•
'-
LO --^
cr> CM
o

r-- ^-^
O *fr
• *^
r— 4





























a>
c
O)
IM
C
a>
Jj
0
o
JE^
<->
"O
m en
. LO
o ^**












o — *
CO 1-1
_rt ^
r~. -— «
o ^~
^IC.
1— 1 *— .
9> 00
O
**• *~*
\O LO
• f^
o **-^

CM - — .
in oo
o
*r '^
CO l~-
o
r-..-^
CM ^H
0 ~-~-

LO -—.

• 1-^1
o • — ^


CM *-« —
rt LO
• ^M**
0















a>
0)
•r—
•o
AB

3
^3
t
fO

i
o
v.
o
5
i
PM 1Q

in f— <
• P*H
O— '








g'^
00
• ^^**
o

r>> ^--.
* 2.
d
I-l *-X
m CM
o ^
, ^___
in CM
o
•— i *— »
LO in
• v^
o

<• '—*
in co
o
m .-v
m ^-<
0
LO ^-*
in t— i
o

_ , ^^
LO in
• ^-^
o


CM/^^s
^- co
• *^^
o
















0)
c

.c

4?
g
rt
g
2
jQ
*r-


o
^^
<_>

«r LO
• •— «
O v^





















i-H --^
in i».
• ^.^
o

o *•-»
m oo
o
*•— »
CO O
o ^
LO --^
CO t^
o

CO -— •*

• ^v*'
o


CM ^-»
* CM
• *«^»
o
























0)
c
.c
*-»
a>
2
O
-C


O CM
• CM
O •— '


























»»« ^^
0 0
o • — •
o\ -^
o »*•
o
LO 	 ~
O 00
o

CTl • — ^
O CO

o


r^ ^*^
o ^»-

o
0 —

• ^^*
o
oo —
O CO
o ^^
o\ *-*
0 ^->

o

CM — »
— • CO
o


r~
^^
.c

O)

^_
>«J
JC
a>
ou

o a>
CJ ^)
1
CM

Co "*
• f-^
CM • —








«• LO
• '*— '
CO

•* ^-~
* CO
CO
^.^
LO en
CM
r»» —v
CTi LO
CM
CT> --~
in LO
• .^-^
CM

LO ^^
o in
CO
**• -^
*r r—
CM
CM ^-^
LO LD
CM

cn — »
Cfi ^

CM 	


CM - — .
r»> i— i
• ^^
CM

























g
^
O

2
o
^^
c_>

m m
• v**^
o • —
a>
3
C
•^
**
O
u
S.OX
ro •^*i««
t^ O
• ^H
o •—

^- ^~.
LO CM
O
CM ^
in oo
o
CO *~~*
in oo
0 "^
CM ^.
LO CO
• ^«f'
0

oo ^~-«
in *»•
0
CO -*^
«»• LO
o
f^ , 	 	
•» CO
o

O '—
LO **•

o


CO "~*
LO •->
• ~_-
o






















CD
c
ro
X
O)
.C
o
i.
o
!c
o
1
f-H

-------
CM
J3
C
40
*
O
r-*
CT
* 0

. CO
c
o
TI
 •*-

0
4->
"* 0
.— ro

cc:
a< u">
—
o
4-> /-%
O o
l2 ~
01
(/> o
C«-^
r^
0 —,
 CO
a
j-
0) 0
> m

c
.c
4_j
0>

{5
i-
0

J=
CJ
«~
* ^^x
o


CO *""^
^- o
• F— «
0 —

CM ^
in co
d""
cn -- -
*»• co
• •«*— ^
O
CO '•"•»»
^- m
• *— •-
o
m *— %
*^ ^f
• »».-••'
0
f- —
•* CM
0 """
cn —
^* *O
• *-_r-*
O
*4- -—
^- CM
O
CO —
**• •»•
* ^^^
o

f^ *-^
>* CO
• <^^>
o























w
c
w

"o

o

o

^
*_^
1
<\J
$sr
• "^_J
o


Ov --^ -

• *••— *
o

1— 1 -— V
m 1-1
o
CO -^.
* CM
• «w^
o
»^.— .
^- CM

O
<*• —
•tf" ^^
» ««— '
0
VO"-^

0
u
o

jf"
o
1
**
f-iS*
• ^^
o «-*










cn *~.
r-> VO
t SH^*
O
1^— .
^-. CO

o
vo-—
^-i in
• ««^
o
vo —
^-i vO
C5
vO *-»
r" * f*^
• *- ij
0
vrt -^
•— 1 CO
o
in -— .
,-c vo
• "^M^*
0

O '— •
^ CO
• ^^^
o












a>
c
10
a.
o
i.
a.
o
t-
o
r~
U
1
CO



$-

•^
o
i
CM
^7
So
• r-l
O— '


in -»^
vO 1^
• •*-*
0

r-l .»•<%
VO *
d"
*•-—
in co
* ^^
o
r^--^
in CM
• *_•*
o
if ^^^
in co
• *~*
o
o -***
VO CO
0
VO *-*
m CM
• -__J
0
r-*—.
in CM
o
vo --.
vo m
• *"_!-*
O

CO -~.
<»• CM
« >l^
0





















w
c

4-1

I
o

^^
•^
o
1
CM
^20
•r ^
• F^
O >--


CM ^-»
in o
• r>H
O — '

^ »— »
* *•
d*^
O '^
«• m
• *-^
o
o -^
* CO

o
oo -— .
co m
• «M*
0
cn —
CO *
d "^
VO '-^
CO CO
• *-_J
0
t^^->
CO CM
O
*r -^
^" ^O
* '*—•«•
o

CM -— .
CO CM
• ««x
0
























w
H^
r— 1

























vV
C
0)
IM
C
j%
o
w
o
r—

U
•r*
O
1
^r
r-T
o exj

o
































LO CTl
O *•— '
•
o

in cn"
0 r-l
• •*— ^
0
O *— '
•
o
r-rT
o *— ^
d
en co
0 ^
•
o








i
CM
I
O
o

J=
•r—
O
1
^^ o
" W
^H C

t/l 4^
C 3
fO JQ
I.
CO •— N
vo o
• CM

vV
C
c
o
u




co • — .
f- CO
f— «
CO -->
r» CM
• CM
r-l ^--
CM . — .
^^ ^f
• CM
r-( • 	
CO *—^
in in
• r—*
1— 1 • 	
cn .— *
VO (^
r4C
































W
c
re
JC
i *
i
o
i-
o
3

*£
TO
O
4-
o

JC
u
C5

-------
f\
JtJ
c

1

0
~
-J
V,
o
4 O

CO
c
o
ts m
i in
c -
o>
o _
c °
o ^H
0
c
> '"-
•i— ""^
4->
w 0
.•••^ CO
^^
ex:
_ m
tf^ if)

s_
o
t> °
£ °
0>
i/> 0
0 —i
Q
i/>
d)
$- 0
O) CO
a
m
i-
a> o
^^ I.O

o
o
o
1— 1
o
o
o
o
0
CO
0
o
in
in






















IN co
• CM
f-H *^*









10*
CM

CM — .
VO CO
I-H
IN ^-^
CO -i
~^
ro —
in CM
~
co ~-~
en in
—>

co oo
r-*
rH *-~
co in
r-l


CO — .
FN rH
•— 1 	


CO — .
"DO CO
f-H



















w
c
10
+J
vV
O
O
r-~
f
U

a
i
r-H
f-T

ro CM

o ^»









«f CM
O

co o
O — '
10 -v
CO CM
o
•* ^-~
CO FN
O
en— .
CO «*
O

co CM
o
CM ^N
CO CO
o


1 — t ^-x
•* VO
o


CO *—x
CO CM
O



















w
c

a>
o
0
r*"
JT
O

o
1
CM
•— 4

tT"^ (^^
• i^H










in to
^

2.C
-•
co —x
CM f-H
— —
in — >
o ao
— :
o • — .
CM in
i— i


o
in — x
00 IN.
0


CO ""N
O —i
,_, . 	 ,


CM . — .
O CM
i— i



















0)
c
a>
JC
4^}
0)
0
i.
o
r—
JC
u

a
i
f-H
•— 1

coco











VOIN.
^H,

CO vO
~
00 —v
«*• in
~
m --^
CM VO
—
00 '"•>
in *»•
^

CM tN
—
WN
f-H m
^


h^ ^— •.
CO f-H
f-H 	


vo <-N
CO <-i
f-H















ft)
C
0)
JC
+j
a>
s
o

jC
u
o
1
CM

f-H
1
v>
u

•— 1 If
• I»H
1— 1 *<— ^









* •«•
,-H

O ^N
f-H
00 '•N
CM rN
—
00 *~»
o rx
'-
IN. — ^
CO «»
f-H

f-H in
f-H
IN. ^>
9t in
0


VO ^N
f-H I— 1
,_, . 	 ,


<7i *~*
f-H CM
f-H













W
c
0)
JC
+j
a>
0
i.
o
fT*
U
•r*
a
CM

r-H
t
M
C
(0
•*" ?1

r^ CO
• CM
r-l «f-f









IN in
r-l

^00*
'-"—
r-l s^.
CM 1^
^
* -N
Oi Cf>
0
Cfi -— *»
•—i in
rH

CM CM
O
•<*• -X
00 VO
O


CM —*
o «*•
^_, 	


CO '-v
O CM
^





















0)
c
<0

a>
P
o

o


c

a.
0
i.
o.
o
r.
O


u

o

CM
r- (

* co
• fH
O •— '




CM ^^
•r vo
• i.™**
o

m co
o

O ^N
O
00 *"^
«* CO
o
rH»-^
* in
o
CO-N
in co
o

ir vo
o
in «~.

0


m — .
in m
o


V"x *-*.
^- CO
0


















0>
c
m
a.
o
t-
Q.
O
O


o
•*••
o

CO
1— 1

^ ^.
« r*H
•2^ ^^^









m co
o

o. -^
CO VO
o
CM -x
* VO
O
o —»

0
tv_ 	 ^
»*• in
o

CO l-x.
0
VO — ~
CO *
o


CM ^N
^»- m
0


CO —x
^f CM
o


















w
c
a>
a.
0

CL
O
o

JC
u

a

f-H
rH*

CM

O ^-i^









in in
o

J?*
o
VO — -
m CM
0
o *-^
in vo
0
CM —*
VO CO
O

in vo
o
* —
in «a-
0


00 —»
VO IN.
O


CM ^^.
in CM
o















0.
0
J-
Q.
O

0
JC
o
•«—
o
1
co

f-H


-------

.o
c
ns
W
O

_J
^ 0

CO
c
o
*r^
19 *>
•i» "*
c
VV
(j
c o
o --1
c
V
> ^
•1— '
D
4->
* 0
.— CO

a:
i* "*
—
O
•*•> o
0 0
• v2 I~~l
CM
~ i/> O
co § £•
< Q
a>
5- 0
O
O) CO
a
t-
a> o
> m

o
o
o

o
0
r- «
O
o
o
CO
o
o
in

















in .—.
in o
• CM
o -^
vo —
oo r-
0*"
m — .
VO 00
• *taX
0

i-» *~*
VO CO
o

CM —•»
•3- CO
0 *~*
CM — ^
^- CM
O
r-» — .
«r^ ^f
• *w^
0
CM — ^
in CM
o
o ^^
in CM
• ^-n*
o

«r csi
o
*»• —
in «*
. **„*
o

p~. — ~
«»• co

o














a>
c
a>
Nl
c
>
x:
i
•r*
a
i
CM
_^

CO VO

o *~"












VO —
CO in
0 """
VO —
CO CO
o
CO I—N
CO CO
• »w^
o
lO —
CO •*
o
^ -^
CO CO

o

CO CM
O
yj . 	 .
CO ff
• *^*
O

CM ••-»
CO CM
• X—'
O














W
c
W
Nl
C
a>

f—
>>
x:
I

5
i
^*
^

in *-*
* c^
o —
o ^-»
CM 00
0*"
r-.^
VO 00
• SM*
0

CM «-~
vo in
o ^^

CO— »
^- 00
o
CM— N
»*• CM
o
p^ ~-*
•*t CO
• *~*
0
CM *^»
in co
o
o — -
in i-i
• *^
o

*r CM
0
,^ . 	 .
in »»•
• ^^
o

in ^-.
**• CM
• *^^*
o





















W
c
at
M
c
ffc
r^
>>

itl

co m
• IF^
O *-^












in — s
CO CO
• t— i
o ^— *



VO <~»

• *^*
O
10 —
CO *
0 *""
I*- — *
CM VO

d ^^

CO CO
o
r-. — ^
CM m
• **^
o

vo ^
CO ^~

O
*t^
CO CM
• ^_^
0










u
vv
4-1
(V
r~
>».
t.
U

5
i

P—
>^
x:
*->

CM— »
r-. CO
• CM




^-s
O CM
• *M^
1— 1

O — ~
r-. oo
o • —

in -^
com
cJ"
r-— ^
m vo
o
CM — *
00 VO
• ^M"
o
10 —
vo rv.
d
vo *—
VD co

o

in co
o
CO *"**
VO 00

o

	

















vV
c
0)

•o
HI

g
JD
£
o
x:
u
A)
X
a>
3:

vo m
• CM
o ^^








^ —~-
«*• CM
d <-"

ID — >
co in
O '*•*'
CO •— •
r-. co
d ~~"
CM —v
in CM
• *-*
O '*— '
CO —
f>» CO
o
CO — ~
r- co

0 *~"

1^. CM
O
o — »
CM in
• ^«^
o

CO «-^
VO CM
• ^^
o

















0)
c
IV
x:

w
2
o
x:
0

x
* 22
V
•-i CM

d >—






























O CM
0
«r -r*.
o o
• vo
o • —

CO — «.
^i in
• ^H*'
o
t ^^^
•— i in
• ^^
o
CM -^
^-< CO
d ^^
i— i »^
•-* VO
• ^^c
o




u
W
c
Q)
a.
o
t.
a.
2
o
f-
u
nj
X
VV

CM <*^ O -**1*
O r-» «T CM

O *~* CO • —








o — *
r*. 1-1
CO — •

in *-^
vo in
CO
,— i — *
f» in
CO
CM — ^ P^ — v
O r- CM p-.
• ^«^ • *•••••
0 CO
CM — > CM *-*.
>— i VO VO vO
o co
r-. •— » CM — ••
o i~» *r r-

o co

o in CM in
O CM
CO •— « CO —
O VO «* 1^-
• *^^ • ^^^
o co

O-~- CM — »
i— i m r^ »^
• **** • <*^^
O CM
r- — »
o in
• ^^
o
00 — ^
O CO
d *"^
o—-
^ »o
• ^i^
o
en— v
O ^~
d~^








U O)
W C
c 
i« O)
X E
W O

CO t— •

in -^
in r-





o *-»

• ^«^
•— <

00 — »
VO CM
^,

vo -^
^- CM
~-'
VO — s
^- co
l-H
CO ^"^
* CO
« •Ml'
^
10 —
m co
*""
i— i — ^
in CM
• ^M*
IP— i

'* CM
,-,
o — »
l1^. «l.^'
• VM^
l>^























3
^^
O

^^
O.
0
Q.
O
M
t-^
Q.
• CM
O >—




















VO — v
CM C>
• 1-^
0 —
CO — -
CO CM
o
CO — >

• 1—<
O "— "

CNJ O
O *— *
CO -"^
^ a*
• **— ^
0

m — .
CM m
• *^*
o
>o-^
-^ CO
• <*nnr
o
rv.-^
^•^ GO
o
CO — ~
CM •«•
• •— I
O -—
m *~*
CM CM
o


w

**~
i.

•^
c
o
£
u
l«
f~
4_>
VV

-------
JO
c
re
2

o
*— t
o
d 0
•
i CO
c
o
*J
* ««
i: m'
C
O)
(1
c o
0 *-•
o
c
> 5
-r- "^
O
•*->
W 0
.— ***
v^
Q£
J« Sn
™^ V*-t
V.
o
+•* o
0 0
£ -
rtj
*ir"
C S
^ r*^
O r-l
Q
M
Ol
s- o
o
O) CO
0
10
s_
Ol O
> m
«t in
o
0
o

o
o
^fc
f-H
o
o
o
CO
o
o
in
in




















f^j ^— ^
*>f ^ ^
r-l m
• r-H
0-—


















r— 1 ^-v
r-l in
• *"••••'*
o
«*• — *
•— c CO
O
o ^
r-l VO

O
^M »**^
r-l CO
O
o -^
r-l VO
• *••*•
O


CO -*~^
r-l «*•

d """
I-H .—•»
r-l CO
• *~^
0
CM . — .
r— I r- 1
O
m . —
•— i r^
• «••—•»
0







o
Ol
4->
re
r-—
>»
i-
U
rO
jC
4->


p—
>>
JC
4->
0)
f

CM »•»
r-l r- <
d*~*

















CM r-*
•— 1 t^
• ^^»*
O
VO ~*
r-i ^>
O
O '-^
r-l IT)

o
CO *"*
^ 10
o
o -*•*»
i— i m
• ^ --
o


^* ^^^
r-l in

d *"
r_— .
r-l ^>

d "^
CO •^'^
r— 1 r-«
O










u
01
c
o
c
<«
4->
C
o>
0.
1
CM

>>
JC
4->
— -*




r-^ -*- •*.
p-i co
• F^
t— < ««— r"

1-^ ir*^*,
C_T» CO
o ^
CO ^^^
r-l r>»
i-H

CO -*~^
•-" *»•
r— <
00 --v
VT> r»-
• t^_l-J
O
00 *--
o m
F-H
VO •— .
o *r

*-4
in *^^
CTl CM
O
CM *-*.
cn in
• ^^^
o

































0)
0)

ro
JC
*j
0.
ro
:z

co •*"*»
O 0
• CM
o — *





























O V7>
O
CO ""^
O VO

o


m '-s
o in

d*^
CO • — -
O VO

o
CO • — *
O CM
o
CO ^^^
O CO
• r-H
0— -
CO r— »
o «•

d *"









u
0)

•r-
(.
4->

c
o

n
0
a.
O^B^
r"^»
O CM
CM -^

«M r-^
^r vo
CM

O •-*
CM •*
• ««••
CM

CO "^
*~ in
CM
CO ^^^
t-« CO
• I-H

^1* *~^
00 CO
I-H
1^ —V
t-~ «*
• — , ,J
r-l
in -^
O CO
CM
CO ^^
CM CO

f-H
f**. ^— ^
cn CM
fH

































a*
c
a>
N
C
5

>,
a.
o
s_
CL.
* 9'

al S"
d *^




P-4 -*"*«.
O^ CO
• *^^
o

CO ^^
O> CO
d ^^
in —^
CO CM
o

00 CO*
d ^^
\n *-*
oo <<>•
• *-_r*
0
* —•
Ch CM
d "^
CO ^—*-
cr> CM

d ^
^^ ^^^
00 — «
o
0 --v
o m
• *H^
r-H




































a>
c
a*
&
! «n
LA --*^
1*? ^ ^
vo 1^
d*"*




<• -~.
r~> i>»
• >««^
o

VO —»
VO *
d *""
«o --^
VO CO
d

O *""^»
VO CM
d ~~"
o -*-^
VO CO
• ^^J--*
0
CM "*.
VO CM
d""*
^« ^"^
VO CM

o
CO *^""*
VO CO
d ^
^"» ^^^«
vO «*

o





















a>
c
re
jC
*j
01


o

JC
u
ro
J-
*J>
O)
i
CM

r-H
-'
^•^
(^1.. .p*^
r^ * ^
* CM
• r-H
O— •









in *~*
m oo
d "^
r-H ^-^
•
in co
o
CO •*— ^
"«• T*-

d ^^
vo ^™*»
*J- i-H
0 ^^
CO *•— ^
in vo
• -*^
o


CO «-~
^- co

o















a>
c
re
JC
*J
0)
o
J.
o

JC

o>

CM
•k
esj
**
^-<
LA 	 -i
iff •* ^
in oo
• r-H
O • —









o *™^
r- ^>
d ~~"
* r— »
r~- ^~
d "*"
V*** ^^^
<
c
a>
JC
4-> — .
a>
o
o

JC
u
ro
4->
a>
r—

vo co
• CM
O ~-"









•-H r-^
O CM
rH)
CM -— .
in m
d "^

VO CM
o *^
CO •— • .
in co
* *•—«••-*
o
r-l x-v
VO CM
O
in — >
in *r

o
in co
o


O)
3
r—
O
r—

CO ^^^
••• »^
• i"H
O *^^*

^"
a>
c
•>•*
o
00— » U
* CM • —
• *«^
o

CM ^^
CO VO
d *~*
m — »
* !>-.
o
in *^™^
"* CM
O
l»» ^^.
* in
• **— •*
0
00 -~>
* •*
d "^
CO — -
in m
• <~~*
o
CO ^^^
in CM
o
CO •—
in to
• **^
0





























Ol
c
re
JC
+j
i

g
c>
s-
JO
U
1—

-------

re

3C





O
_J
o
* °.
. CO
c
o
^
re "*

•*-> "*
c
OJ

c 2
o

o

.^ ^^
o

*^
* 0
0 "
(/}
oc
Irt
5 ">

k
o
+-> o
0 0
re _i
* f i
CM ^~
l.l *>
y vo 0
* 0 £
< Q

Q>
i- 0
O
Q) CO
re]
k
 m
<: in


o
o
o
1— 1


o
o


0
o
0
00

o
o
m
in




















SJS"
Cn OO
o









cnpT
• *^x
o

r-4 *— x
O CO
• *•—*•
«— 1

^•^ ^* V
O *£>
i— <

CSJ .—*
^ CSJ
• «M«*
o

^J *~ "N
o% ^-
o

h**>> *•-••*
CO **
d "^


in --^
VT> in
• *~^
o

in *-.
CO CM
o

CM ^^
co in
• ^»"
o

























O)
c
0)
N
C
Ol
.a
o
k
o
.c
o
.TV
k
r-
i
CM

t-^

in — «
vo r^
o -^









CM -^
en vo
• *^^
o

o — .
p- CO
• *w
0

Cn -^
vo m
o

en ~-.
in «r
• *BM*
O

^" -*"^»
VO *»•
o

CM —v
VO •*»•
d *~*


en ^-»
in •«*•
• *~~*
o

CO —••
in «<*•
o

03 -^
VD m
• ***'
o

CM . — .
in CM
* ~- _J
o





















o>
c
re
.c
4^
O)
o
k
o
^
u
>r~
I.
p—
f—<
^
f.
l—t

CM OO
o













CO — "*
CO CM
• *-*
O

00 — s
CM ^~
O *^

1— I -— N
CO CO

d ^~*

p^. *~-^
CM ^~
d ^~"

f_^ <^i^
CO CO
d *""


CO ^**
CM CO
1 ^»^
o

CO -^
CM CM
o

^_, , 	 ,
CO 1^-

0

p>* ^^
CM CM
• ^fc— ^
O





















a>
c
re
.c
^ *
O)
o
i-
o
*^
u

J_
1—
CM

•.
r— 1

CO •-»
in CM
• CM










VO ^

O «-'

vo — ^
VO VO
• ^M^
o

f1^. ^— *»
(0 CM
o *—• ^

O^ """*»
m o
• r— <
O ^

0^ *^-s.
^- ro
o"^

O •*^"

0 ^


p«. '"•^
^ ^'
• ^-^
o

CM - — .
*J- CM
O

^ -— •
^r in
• *M*
O

in --»r
OO •— i
• *-i»^*
o



























0)
c
a>
JC
a>
o
$_
o
JC
o
T
H~

00— «
• oo
0 *-~



























ro »-^
CM in
o • —

in • — .
CM CO
o *^*


^* r**^
I— 1 CO
• r— 4
O *— *

CM ^^
^ oo
d "^

vO *-»
i— i CO
> t— <
O ^

























0)
c
re
.c
^>
CP
g
o
J_
o
3
v^
o
J-
o

u
•r-
f^
t-o/i

in .*-.
O "-J






















in . — .
r-H ^^
• •«•«••
O

in — s
•— ' 
r-l CO
* ^— **
O




















a>
c
re
a.
o
i-
0.
0
j-
o
*^I
v^
•^
i-
^-l~
1
oo
•>
CM

r— •

in «•
• CM
ff— 4 ^«^









O P^"
• »— 1
CM • —

i— i ^^
m oo
• *^^
<—<

9-* ^"^
oo *•
~

p— » ^^*
CO CM
t *^^
1-1

CT\ ^^^
CM in
^"~"

00 *— »
OO CM
r— (


in ^-v
CO I-H
• >»•*•
i— i

OO **"•»
en co
* *" ^

in — .
•—i CM
• r— <
CM •—-

























0)
c
a>
SI
c
0)

f—
^^
.c
a>
E
•T"
S_
H-
i
•»
CM

i— <

«M — <
in oo
^H









vo in
• *M^
t~4

00 —»
vo oo
• *M^
F^

in . — ,
^ CM
~

en ****
CO OO
• ^^
•"•

CO <—»
00 •*
~^"

CM — -
in co
.-< ' — '


o — •»
in •<»•
• *«MX
•—1

r— ^^,
•u- in
^"

co — •>
vo *^
• ^^^
^^

























a>
c
a>
si
c
07
XJ
r—
^^
•C
0)
g
•f-
fc.
1—
1
m
CO

r>H

en in*
e>»—































0 — •»
CO CM
rt ""**


CO <^"N
vD r^
• ^•^
O

CTi —^
O VO
• *— -

in -~^
r~- in
• •*-*
o

oo —^
oo in
• *'»•••*
r^

O *-^
CO ^0

o

ro ^^»
cn to
* *^-*
0

O CM
• r— I
f— I *«^















at
re

a>
u
re
^
^>
•^
^^

in o
• CsJ
O SM"













r-« -— *.
t'"- ^"
* *•••"*
o

CO -"^
u-) o
d ^>

uo — .
f""» Cn
• ^H^
o

0 -—
VI? VO
d *^
•
VH ^^^
l«. VO
o


VO —
^ar vo
• *M^
0

I— < ^-»
•*• CO
o

CO —
u*> •— i
• *— i
o ^— ^

p.. . —
in in
• *»••••'•
o




























cv
•o
^
o
r^
^
u

c

^»
•r- ^
^^g
cv cy «/i
+j <-» re
re t cu
o o I
i- 0.
r- 0> C
0. 1- O
*•£ §
^**«*
? i
S = c
d5 rj
S 3^" c
^° o
r— W
^S t
"3 "° o

i?**
C 0 0 .
Ck. O) 1
«/> O> 3
0) C
*J 0 0) 0
«* •-- •(-> O
o ^j re co
•*- re k
ex 4^ i/> re
0) c 3
*• O) i— >>
P«- C -i- C
— ' 0 0
<-> o

Q. ^_> 4^
^s-s^
a> * c <^
o ^ o>

""^* . ^
f"— O^ ni O)
y-g t. ">
4j ^^ T)
a> 4j o> 5
k ** S *•
^-^•^ s
-C S "* *"
v^-^^,

CM ^j ^J r*
"^^1 «*> •?
V> a " ^-
"^ o» r*
JD » 1 ^^
f^ ^^
P o
s_ ^- >-
o — -,2 o>
O> -f- 3
4j c V re
o. o> '. u
o> si *NJ o>
5 «= . -o
X 0) t

*»—'*- m
>^ <\j
Q, x: wi A
•^ tucc *>
W "O f— *
"^ C r-
• -^ re «^ o*
« ." g
*•—» Q.
(^ O
** O) ' k

_o> re ^ o
cw'cl^S
o flu ^^ w
k re
i/> * X
4- «o g o>

2%*~' o
^* Q) CV ^
'm «= ** O
p. 4) w '|
** C W
_ cu *-> u.
5 -o c c<
O r— CU
^^ E ^*
T» JC »- O
0> 4-» k
M 0) 0) O
re E Q.OO
co ••- x oe
re TJ cun

-------
TABLE 3.  DETECTION LIHITS OBTAINED FROM METHOD RANGE STUDY
Lower limit of
linear range
Analyte M9/L
Acetone
Acrolein
Acrylonitrile
Allyl chloride
Benzene
Bis-(2-chloroethyl) ether
Bromobenzene
Bromod i chl oromethane
Bromomethane
2-Butanone
n-Butyl benzene
sec-Butyl benzene
tert-Butyl benzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
2-Chloro-l,3-butadiene
Chlorodibromomethane
Chloroethane
2-Chloroethyl ethyl ether
Chloroform
1-Chlorohexane
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
l,2-Dibromo-3-chloroprepane
1,2-Dibromoethane
Dibromomethane
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1 ,4-Dichloro-2-butene
Di chl orodi f 1 uoromethane
1,1-Dichloroethane
1,2-Dichloroethane
1 , 1 -Di chl oroethene
cis-l,2-Dichloroethene
trans-1 , 2-Di chl oroethene
Di chl oromethane
1, 2-Di chl oropropane
170
100
170
10
3.0
55
3.0
3.0
5.5
100
1.0
1.0
1.0
3.0
3.0
3.0
5.5
3.0
30
30
3.0
3.0
30
3.0
3.0
10
3.0
3.0
3.0
3.0
3.0
170
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
Empirical Calculated
EDL MDL
M9/L M9/L
170
55
170
5.5
3.0
55
3.0
3.0
5.5
30
1.0
1.0
1.0
3.0
3.0
3.0
5.5
3.0
17
30
3.0
3.0
17
3.0
3.0
10 >
3.0
3.0
3.0
3.0
3.0
55
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
200
10
40
2
0.2
10
0.7
0.2
2
10
0.4
0.4
0.8
0.3
0.2
0.3
2
0.2
5
9
0.1
0.1
10
0.3
0.3
2
0.2
0.2
0.5
0.4
0.5
30
1
0.7
0.4
1
1
0.7
0.8
0.7
Nondetect
Cone.
W/La
100
30
100
3.0
1.0
30
1.0
1.0
3.0
10
0.3
0.3
0.3
1.0
1.0
1.0
3.0
1.0
10
10
1.0
1.0
10
1.0
1.0
5.5
1.0
1.0
1.0
1.0
1.0
30
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
                                                        (continued)
                          25

-------
                                         TABLE 3.
Lower limit of
linear range
Analyte pg/L
1,3-Dichloropropane
1,1-Dichloropropene
cis-l,3-Dichl oropropene
trans-l,3-Dichloropropene
l.?-Dimethylbenzene
"etlv'jenzene
iir.j , methacrylate
Ethyl benzene
Hexachlorobutadiene
Hexachloroethane
Hexachloropropene
2-Hexanone
lodomethane
Isopropyl benzene
p-Isopropyltoluene
Methacrylonitrile
Methyl methacrylate
4-Methyl -2-pentanone
Naphthalene
Propionitrile
n-Propylbenzene
Styrene
1,1,1 , 2-Tetrachloroethane
1 , 1 ,2, 2-Tetrachloroethane
Tetrachloroethene
Toluene
Tr-ibromomethane
1,2,4-Trichlorobenzene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethene
Tr i chl orof 1 uoromethane
1,2,3-Trichloropropane
1,2, 4 -Tri methyl benzene
1 ,3, 5-Trimethylbenzene
Vinyl acetate
Vinyl chloride
3.0
5.5
5.5
5.5
1.0
10
10
1.0
3.0
5.5
170
30
5.5
3.0
10
30
30
30
3.0
170
1.0
3.0
3.0
5.5
3.0
3.0
3.0
3.0
3.0
5.5
3.0
30
17
3.0
3.0
55
5.5
Empirical
EDL
M9/L
3.0
5.5
5.5
5.5
1.0
1.0
10
1.0
3.0
5.5
170
30
5.5
3.0
10
30
30
30
3.0
170
1.0
3.0
3.0
5.5
3.0
3.0
3.0
3.0
3.0
5.5
3.0
30
17
3.0
3.0
55
5.5
Calculated
HDL
M9/L
0.3
0.5
0.9
1
0.2
0.6
7
0.4
0.7
2
50
6
2
0.4
0.7
9
5
6
0.5
40
0.2
0.4
0.2
1
0.2
0.2
0.3
0.3
0.2
0.3
0.1
10
2
1
0.3
4
0.6
Nondetect
Cone.
W/La
1.0
3.0
3.0
3.0
0.3
0.3
3.0
0.3
1.0
3.0
100
17
3.0
0.3
5.5
17
3.0
17
1.0
100
0.3
1.0
1.0
3.0
1.0
0.3
1.0
1.0
1.0
3.0
0.3
17
10
1.0
1.0
30
3.0
aNondetect concentration
not detected.
the highest  concentration  studied at which the analyte was
                                          26

-------
TABLE 4.  ACCURACY AND PRECISION OF ANALYTE* MEASUREMENTS
              IN SPIKED AND UNSPIKED SAMPLES
                POTW Sludge Leachate
                        Water With Fulvlc Acid
        Unsoiked
           Spike Concentration1*
High       Low         High      Low
Meas. Cone. Bias
Analvte (*q/L)
Acroleinc
Acrylonitrile0
Ally! chloride
Benzene 7.5
Bis-(2-chlorgethyl) etherc
Bromobenzene" 1.9
Bromodichloromethane
Bromomethaned
2-Butanonec
n- Butyl benzene" Trace
sec-Butyl benzene^ 6.2
tert-Butylbenzene° Trace
Carbon disulfide
Carbon tetrachloride
Chlorobenzene 7.1
Chi orodi bromomethane
Chloroethane6
2-Chloroethyl ethyl ether0
Chloroform
1-Chlorohexane
Chloromethane
2-Chlorotoluened
4-Chlorotoluene
1,2-Dibromoethane
Di bromomethane
1 , 2-Dibromo-3-chloropropane
1,2-Dichlorobenzene
1,3-Dichlorobenzene Trace
1,4-Dichlorobenzene 1.7
Dichl orodi fluoromethane" 7.1
1,1-Dichloroethane
1,2-Dichloroethane
1,1-Dichloroethene
cis-1 ,2-Dichloroethene
trans- 1,2-Dichloroethene
Di Chloromethane 6.0
1,2-Dichloropropane
1 , 3-Dichloropropane
1,1-Dichloropropene
cis-1, 3-Dichloropropene 3.7
,% Bias
(RSD)
-1 (12)
12 (8)
-1 (30)
12 (4)
0 (6)
48 (3)
17 (3)
62 (38)
-5 (7)
20 (4)
-1 (5)
-5 (3)
16 (11)
H (5)
26 (3)
13 (4)
32 (39)
30 (8)
26 (7)
20 (4)
28 (23)
26 (4)
29 (4)
5 (5)
11 (5)
•17 (5)
12 (3)
20 (3)
18 (2)
30 (55)
22 (7)
1 (5)
10 (10)
20 (7)
20 (9)
16 (8)
26 (13)
4 (4)
6 (6)
22 (4)
,% Bias
(RSD)
0 (7) -
-2 (12)
22 (8)
3 (6)
2 (10) -
-17 (4)
-1 (3)
37 (14)
-11 (25)
0 (5)
-33 (5)
-5 (3)
16 (10)
1 (6)
3 (2)
-7 (7)
38 (11)
-18 (10)
10 (4)
0 (9)
34 (22)
59 (9)
3 (5)
-4 (4)
-1 (4)
,% Bias
(RSD)
10 (12)
6 (8)
24 (8)
25 (3)
H (10)
65 (4)
26 (2)
81 (10)
-9 (6)
49 (6)
35 (4)
20 (5)
28 (8)
22 (2)
35 (3)
13 (4)
93 (11)
,*
(RSD)
15 (5)
-7 (4)
20 (10)
4 (6)
3 (10)
-4 (6)
2 (3)
50 (10)
-5 (8)
3 (3)
2 (2)
-4 (2)
13 (5)
13 (3)
4 (2)
-1 (7)
23 (23)
25 (13) -22 (15)
27 (5)
32 (3)
2 (7)
21 (29)
36 (4)
5 (5)
13 (3)
-5 (12) -18 (9)
0 (4)
-2 (3)
2 (3)
64 (24)
19 (8)
-3 (2)
15 (13)
5 (6)
10 (8)
67 (4)
5 (6)
-5 (4)
2 (7)
-22 (3)
21 (4)
32 (4)
33 (4)
3 (20)
27 (9)
9 (4)
14 (11)
26 (7)
33 (8)
15 (8)
18 (2)
8 (4)
22 (3)
27 (4)
19 (6)
7 (8)
33 (23)
3 (3)
6 (3)
-4 (6)
-1 (4)
-7 (17)
1 (5)
2 (3)
4 (4)
33 (35)
19 (10)
-1 (7)
22 (10)
14 (3)
12 (6)
22 (4)
8 (3)
1 (6)
11 (4)
-1 (2)
                                                      (continued)
                           27

-------
          TABLE 4.  ACCURACY AND PRECISION OF ANALYTE' MEASUREMENTS
                        IN SPIKED AND  UNSPIKED  SAMPLES
                          POTVI Sludoe  Leachate
                            Water  With Fulvic Add
     Analvte
                  Unsplked
                  Meas. Cone.
                Spike  Concentration1*
     High      Low          High       Low
     Bias,*    Bias,*       8ias,%    Bias,*
           (RSD)     (RSD)        (RSD)      (RSD)
trans-1,3-Dichloropropene
trans-1,4-Dichloro-2-butenec,d
1,2-Dimethylbenzene
1,4-Dimethyl benzene
Ethyl methacrylatec,d
Ethyl benzene
Hexachlorobutadiene
Hexachloroethane
Hexachloropropenec
2-Hexanonefc
lodomethane
Isopropylbenzene
p-Isopropyltoluene
Methacrylonitrile0
Methyl methacrylatec
4-Methyl-2-pentanonec,d
Naphthalene
Propionitrilec
n-Propylbenzened
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
Tribromomethane
1,2,4-Trichlorobenzene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethene
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl  acetate0
Vinyl  chloride

     Mean
4.4
 13
Trace

Trace
Trace
Trace
Trace

Trace
2.8

1.2
19
 1.4
20 (5)
72 (15)
22 (2)
9 (3)
-6 (3)
62 (4)
5 (12)
60 (6)
83 (5)
36 (24)
10 (9)
26 (2)
10 (3)
-55 (55)
34 (6)
-24 (51)
-8 (7)
-3 (9)
22 (2)
29 (3)
43 (2)
-8 (6)
15 (4)
33 (2)
11 (5)
5 (4)
7 (5)
5 (5)
9 (3)
5 (5)
36 (3)
-13 (5)
-29 (29)
26 (52)
-8 (4)
-52 (14)
0 (4)
3 (3)
-24 (4)
19 (4)
7 (14)
3 (4)
-46 (40)
-14 (8)
12 (4)
1 (4)
-2 (3)
-16 (8)
-18 (6)
-47 (5)
44 (8)
-6 (12)
10 (3)
-3 (3)
-2 (3)
-7 (5)
-4 (6;
8 (2;
-11 (8)
7 (6)
7 (6)
-7 (4)
9 (3)
-5 (6)
56 (4)
8 (3)
-1 (5)
26 (12)
         16  (10)
23 (5)
50 (13)
30 (4)
20 (4)
7 (4)
77 (4)
23 (12)
60 (6)
92 (8)
2 (12)
20 (11)
51 (4)
34 (5)
11 (6)
39 (11)
15 (12)
-5 (7)
-2 (8)
57 (4)
36 (4)
48 (3)
-5 (9)
25 (5)
37 (4)
8 (6)
15 (5)
14 (3)
8 (5)
20 (2)
4 (7)
56 (4)
59 (19)
19 (6)
-6 (10)
-9 (7)
-59 (15)
4_(3)
13 (3)
-27 (10)
4 (2)
4 (10)
0 (7)
-9 (19)
-18 (13)
15 (5)
0 (3)
0 (3)
-5 (5)
-17 (10)
-16 (10)
-2 (10)
-6 (5)
-5 (2)
-4 (5)
-1 (3)
-7 (8)
1 (1)
5 (3)
-10 (11)
3 (7)
21 (3)
0 (8)
12 (3)
-8 (9)
0 (2)
2 (2)
-5 (4)
33 (7)
3  (7)     25  (7)    3  (7)
 aData   for   acetone,   2-chloro-l,3-butadiene,  and  trichlorofluoromethane   not
 included,  because  those  compounds  did not  have  acceptable  linear  ranges.
 bExcept for poorly purged  analytes,  high concentration was  200 ug/L,  and  low
 concentration  was 20  ug/L.    For  poorly purged  compounds,  high concentration
 was  2000 ug/L,  and  low concentration was 200 ug/L.   cPoorly purged  compound.
 "High  concentration outside  of linear  range.   6Low  concentration outside  of
 linear range.
                                        28

-------
9
V)

$
5
2
S
Percen
        & § i
        ! * •-
        * " I
        < U. L.
          Ot *-
           II
day
            IM
             11
!GS»irtO«jruW'«^«'Op>W«h.«>*N-K»A/'*KlNJ*-IM'*'**O1Ow- «Olrt^«)N-PO»OfNJ»^^^»n^lQNr

S g  K « 8 W S fe S S iS  K fc ft 8 K 5 8 5 5 S 5 5 P R fe 8 8 & 8 8 E
ooooc3^oo'o»-'ijoc>odor>!oc>doooo«-^«-^^o»-^«-^

                                               •
Kim'O«-'O»-«-^'O^*'**-K»s»*-»A^^rO'W^'>J»rv'OKi«*mojfOS.Ko
^w<^^y*v*f%'s*^^vs^>^vv«T-<-'%^^^v*-^^**^^w»>-|2»

  S>s.«N(Mi';nji£i<-incom>-rMKi~fOKi»ir\«)N.-«Kii/>(M»i>JmM)4
  or>J'OOKj'Oeooin«-_Kjin«oin~»«->»««^-*^«-ii«moo«-oeo«
OO«-OO«-OOO«-r»JK»rslO*-OOOOJOOOOOOO«-«-»-OO«-


~S22PcSSSccC£°''~St''x'o*"s"C>~CC*~pg*"oS^^
*~        \*                                                       ^ >^
  S«OsjK\'-srp^cofOh*phtr»»->»**oo«-c«ocp>OK»iAKir*.'V'io^&.
  ocM^on-oK>oinKiin<\i'Oom4r-fnmio3wF'-mKir-'-«-*-«-dd«-

                                                   •
eoo-o«o-OCXfsjf~rg(\j^o-iNj>»«Of^o-«>-«« S-C Ki«o»\f>com««

-*co>ro>rg<--*io^<\jo>eo>>»K)Kioe4-OK-in*»(Mi«rgnjetoi<rin»c>f4';>«Ki»»oSoin
od«-oc>«-ood»^«-Kiradddc>drgdo'c5dddddd»-d"-»-


*52iS£SS2*~CiC">l'1*S^'*"~<0*>*I^*2-%iri^~K5S'^
  N^                                ** N^            N^   ^^        ^^ **

a8S5S5Ss8aR)SatSRK538R;5S!S!SSS*fa8a«5
OO*-OO*-OOO"-rgK»IMOOOOOfs*OOOOOOOO^*-OO»-


Ki *-  ^ ** >TO«ONmK.KK-O^C^(XNKkOk^e^^tAmOmKN-P^«O%r\G'
N^VX     XX      S^S^        N«r          ^      tv     ^^

S 8 y S 8 S 5 S 8 S  $ S 5 3 fc S 5 8 R ^ S 3 5 S R fe * 8 &
od«-oo<-ooo<-*-Kinjdooododdddddd'-'-

         ^*                            ^*
         u                            u             •


                                                                 1



  -«-     »    i        g?*o   f   i        ..Is   iifiii
   *«   8    I   "!&;;«.  I   -    !tii^€8ili-e
Gzfe   55i5fiiii?|i8*-iniiBi***
^^4^—*   fN££CK-«X-«-t»C
c~o»"S-*c-ai'*f'0*'*
       C'M-C'Si«>-3«
     ^ •^'QoBf&A  <
     X H  •  I f E 3  3  '  <
     —'CWOOOttAUl
         ""        XjcovuODOCrgD^OiM^r
                                                    29

-------
gi
N,
<  u.  t-
   I
   1
    «
    t:
               «->j£jJ£K>2MJ2».g'OK«O>j;K(Jjj2«fX«»|gj:»w«>.Mj;^-»
                                                                                                                     I
                                                                   .
                                          OOOOOOO
                                                                        ^-^OOO'-OIMOO
               ooQ,^.fO*-'o^^tf*O'r'-^i-oinO;£:£K>otAft»r'>i9>«-B*"i»
               vwflOvw-KOK^N**-  •O-O«-«-«-*V«Or*Jw*^i-'fg'^«-«-«-«-  vx  v «-  s^m
               •r- %»U1fW'O^O*V*MM'»r«-«*-  'O
                                                      -«s^n^^-
                                                                              m^tft^inmr-iri'OinfM
                  «-<\jBK!K».»-*'->»~r-->»p'Oo»'O»>-<\j«o»-!ror^*-T-  Ki^tmni
                o«-*-ooooooooooooooorg<- — ooo*-Or-cooo
               l*1~CK"^'°'y'tSCC*"CCt*f^S2C^S'v''l>*
                                                                                          O^  *-  ru  r-  cj «o KI
                o«-ooooooo
                N-o«n«>K>rmao-«
                                                ^ o"~S » £ C
                                                                  'MOklAK)^«K«OOirt>«O^^
                                                                                                               C^^
                                                                                                               m
                   »-«-OOOOOOOOOOOOOOOKI-- — ooooo«-o
                                                                     nj*->-ooooo*-ooooo
                •«  n  -a  -o  o r- »
                                    5r $ £ £ £
                                                   0*-*--OmO»»i/iK»00>^N.-e«O>«'0
                   >-OOOOOOOOOOOOOOOOKI>->-OOOOO*-OOOOO
                •  f  ?  .
                1  ?  »  1
                                                       o
                                                 *fw
                                                 BB
1   :   & S  i  i  S     i
mm?    ii
«M-
•
**
                                                                            i                5s
                      t
                  ill
                °*~  B  °  —  °  °  o  *~  ?  *?  ?  "x. ">!.
                                                                                              c •»•-»->-  i-
                                                             30

-------
*  —
a.  o
    I
 a


 §



I
_a
 o
    1
o -o

$ S
0 0
in in
r j
o o
2 C
S £
0 0
•- h.
IM ~»
in CK
o o
£ ^
o •-
Kl CO
TJ CO
O O
tfN N*
S o>
o o
o f-
S 5
wthane 0
chlorobenzene 0
u •»
u •
s

3
o
CO
s
o
N.
S
O
r-
s
o
s
£
o
in-
S
o
in
8
o
o.
fc
0
I
8
u
k
»-
•-.
-

a
0
h»
CM
O
IM
fM
O
Kl
CO
IM
O
rvj
o
-co
SI
o
ex
a
o
m
IV
chloroethane 0
IM
-„
CO O

Kl tf\
in *-
0 0
•0 0
5 S
o o
•- K
3 ^
0 0
IM O
O 4
in «-
o o
(M m
in «-
o o
N. h>
K rvj
o o
K &•
S P
o o
•o o-
5 2
Mthene 0
chloropropane 0
^ «
£ Kl
C «
..

> IM
m m
"
t n
i5 S
•- IM
IM «-
S S
«- rj
r- K
(M O.
Kl O>
«- IM
C «
«- IM
in rvi
ax
<^- e—
-* m
$ S
«- CM
^ ^
fM •£
f\J *
methyl benzene 1
methylbenzene 1
•* in
IM Kl
S

g:
o
W

"
•0
x

in
3
"
in
o
O-
-0
"
-o
in

K.'
^
U
*
T
•o
ru
o-
in
0
rg
2
0
o
3
o
>
•o
o
o
o
0
2
0
s-
R
o
•-
g
o
o

_
!
t>
1
7
t
k!
^
i
0
^
U
_J

cW
tV
4-
X
]
X
|
o.
is
f.
*
c
i
f
Si
"e
RF from triplicate anal)
i
l
oncentration,
u
*
'5.
c
-o
i

V
i
**-
L.
£
u
1
i
t_
t
y
U
>
3
i*.
P
1)
5
t
{
.
?
it* ware performed on Da)
i
t
&
1
"a
if
s"
If
1 :
KI a
•- c
II
r*
ti
? **
t> ~
u
5 f
rP 3
ti
xi
•S &
«
> O
I £
U
S 5
a c
•o I
I T>
« =5
8. |
* 3
u it
J S
1 1
i £
11

£ i
concentration experiment
>f luoromethana not Incluc
^ 2:
l!
eAverageand RSO
u.
X
O
*
hh.
IM
V
«
„•
u.
cc
X
°«
o
o
o
tl
»-
o
1
u
o

*v
o
H-
o

1
!
i
t
i
?
?






















*
»«-
o
|
o
g

                                                                31

-------
                 APPENDIX A






CALIBRATION CURVES FROM METHOD RANGE STUDIES

-------
                                    Acetone
JC
o

a
11 -•




10 -




 9 -




 8 -




 7 -




 6 -




 5 -



 4 -




 3 -




 2 -




 1 -




 0 -•
                                 2                      4

                                        (Thousands)

                               Anolyte Concentration (ug/L)
                                    Acrolein
        5 -
a
o
H
a

u
        3 -
        2 -
        1 -
                                2000                  4000


                               Arolyte Concentration (ug/L)



                                            A-lo*
                                                                      6000

-------
                                 Acrylonitrile
Jt
a
a!
o
>
c
a:
      12
      11 -
      10 -
       9 -
       8 -
       7 -
       6 -
       5 -
       4 -
                                 2                      4
                                        (Thousands)
                               Analyte Concentration (ug/L)
                                 Allyl  chloride
JC
o
o
o

-------
JC
o
0.

a
       7 -
       6 -
       5 -
       4 -
                                 Benzene
       2 -
                             200                   400


                            Analyte Concentration (ug/L)
                                                                 600
                      Bis—(2—chloroethyl)ether
JC
a
a
d
2.8



2.6 -



2.4 -



2.2 -


 2 -



1.8 -



1.6 -



1.4 -



1.2 -


 1 -



0,8 -



06 -



0.4 -



0.2 -


 0
                              2                    4
                                     (Thousands)

                            Analyte Concentration (ug/L)


                                        A-3

-------
                        Bromobenzene
a

a
>
IP
a
a
IE
      1 -
                    40     60     80    100    120    140


                        Analyte Concentration (ug/L)
160
                    Bromodichloromethane
1
n
c
a
o
o
                         200               400


                        Analyie Concentration (ug/L)


                                   A-4
                                                            600

-------
                          Bromomethane
1
a

5
P
o
o
1C
11




10 -




 9 -




 8 -




 7 -




 6 -




 5 -




 4- -




 3 -




 2 -




 1 -




 0
                          200                400



                          Analyte Concentration (ug/L)
                                                           600
                            2—Butanone
      4 H
O
O
n
o

c
IT
      2 4
      1 4
                           2                  4

                                 (Thousands)

                          Anolyte Concentration (ug/L)



                                     A-5

-------
J£
a

a.
                          n—Butylbenzene
                             60     80     100



                          Analyte Concentration (ug/L)
                      120
140
160
 a
 a
 a.
•y
a
c
                         sec—Butylbenzene
                      40
  60     80     100


Analyte Concentration (ug/L)


            A-6
                                                 120
                                                        140
                                                               160

-------
      11
Jt
o
o
0.
_

a
                          tert—Butylbenzene
                       40      60      80      100     120


                            Arvolyte Concentration (ug/L)
140
160
                           Carbon  disulfide
JC
o
41
a.
a
o
a:
                            200                  400


                            Anolyte Concentration (ug/L)


                                        A-7
           600

-------
                       Carbon  tetrachloride
JC
o
s.
o
a
      5 -
      4 -
      3 -
      2 -
       1 -
                                     8
                           200                 400

                          Analyte Concentration (ug/L)
           600
                           Chlorobenzene
JC
a
n

D
                                       160      200

                           Analyte Concentration (ug/L)

                                      A-8
240
280

-------
                    2—Chloro— 1,3—butadiene
a

o.
o


v.
     1.5
1.4 -




1.3 -




1.2 -




1.1 -




 1 -




0.9 -




0.8 -



0.7 -




0.6 -




0.5 -



0.4 -




0.3 -




0.2 -




0.1
                          200                400



                          Analyte Concentration (ug/L)
                                                           600
a
o
CL
_


a

o
or
      1  -
                     Chlorodibromomethane
                          200
                                             400
                                                                600
                               Concentration (ug/L)



                                    A-9

-------
                             Chloroethane
0.
I
o
X.
      5 -•

     4.5 -

      4 -

     3.5 -

      3 -

     2.5 -

      2 -

     1.5 -

      1 -

     0.5 -

      0 -•
                            200                  400

                           Analyte Concentration (ug/L)
                                                                     600
a
o
a
§
                     2-Chloroethyl  ethyl  ether
                         0.8
                                 1.2      1.6
                                    CTSouaands)
                            Analyte Concentration (ug/L)
                                        A-10
2.4
                                                                 2.8

-------
                             Chloroform
o
0.
a
32
30 -
28 -
26 -
2* -
22 -
20 -
18 -
ie -
14 -
12 -
10 -
 8 -
 6 -
 4 -
 2 -
 0
                           200                 400
                           Analyte Concentration (ug/L)
                                                            600
                          1-Chlorohexane
a
a
d
o
c
(t
                           200                 400
                           Analyte Concentration (ug/L)
                                      A-11
                                                             600

-------
                          Chloromethone
Jt
a
a
a
a

IE
 5 -




4.5 -




 4 -




3.5 -




 3 -



2.3 -




 2 -




1.5 -



 1 -
                           200                 400


                          Analyte Concentration (ug/l_)
                                                            600
                         2-Chlorotoluene
a
o
a.
_

0

o
                           200                 400


                          Analyte Concentration (ug/L)


                                      A-12
                                                            600

-------
                         4—Chlorotoluene
e
«
a
o

a
K
                                              400
                                                            600
                          Analyte Concentration (ug/L)
                1,2— Dibromo—3—chloropropane
JC
a


H

o


P
o

I)
IT
     1.3
1.2 -



1.1 -



 1 -



0.9 -



0.8 -



0.7 -



0.6 -



0.5 -



0.4 -



0.3 -



0.2 -



0.1 -



 0
                                     s
                           200                 400


                          Analyte Concentration (og/L)


                                      A-13
                                                            600

-------
                       1,2—Dibromoethane
JC
a
7
o
                          200                400


                              Concentration (ug/L)
600
                        Dibromomethane
JC
a
e
1

o

P
o
o
a:
                          200                400


                         Anatyte Concentration (ug/L)


                                    A-14
600

-------
                       1,2—Dichlorobenzene
e
•
a
«
E
                40      80     120     160     200


                          Analyte Concentration (ug/L)
2+0
280
                       1,3—Dichlorobenzene
JC
a
o
H

I

o
o
IT
                                      160


                          Arxjlyte Concentration (ug/L)


                                     A-15
240
280

-------
                       1,4— Dichlorobenzene
JC
o
a
a:
               40
80      120      160


   Analyte Concentration (ug/L)
                                                            280
JC
a
o
H
                trans—1,4—Dichloro—2—butene
                                    0.9
                                  (Thousands)

                          Analyte Concentration (ug/L)


                                      A-1G
                                           1,1
                            1.3
                                                          1.5
                                          1,7

-------
                      Dichlorodlfluoromethane
o
•
Q.
5
o
a
      2.3
      2.2 J
      2.1 -
       2 -
      1,9 -
      1.8 -
      1.7 -
      1.6-
      1.5-
      1.4 -
      1.3 -
      1.2 -
      1,1 -
       1 -
      0.9 -
      0.8 -
      0.7 -
      0,6 -
      0.5 -
      0.4 -
      0.3 -
      0.2 -
      0.1
                                                                 a
                                                                 a
                                                                 B
                             20                   40
                            Anolyte Concentration (ug/L)
                                                                      60
                         1,1 — Dichloroethane
JC
a
s.
a
o
a:
                            200
                            Analyte Concentration (ug/L)
                                         A-17
                                                 400
600

-------
                         1,2—Dichloroethcme
     3.S -
JC
o
0.
o
_
o
     2.6 -
       2 -
     1.5 -
       1 -
     0.5 -
                            200                  400

                           Analyte Concentration (ug/L)
600
                         1,1 — Dichloroethene
 a
 o
 a
 D
 >
                            200                 400
                            Analyte Concentration (ug/L)
                                       A-18
600

-------
               cis—1,2—Dichloroethene
16
15 -
14 -
13 -
12 -
11 -
10 -
 9 -
 8 -
 7 -
 6 -
 5 -
 4 -
 3 -
 2 -
 1 -
 0
                    200                 400
                    Analyte Concentration (ug/L)
                                                              600
             trans— 1,2—Dichloroethene
JC
a
a
V
>
t5
o
7j
IE
14 -
13 -
12 -
11 -
10 -
 9 -
 8 -
 7 -
 6 -
 5 -
 4 -
 3 -
 2 -
 1 -
 0
                .4"
                    200                400
                    Analyte Concentration (ug/L)
                               A-19
                                                              600

-------
                        Dichloromethane
o
e
                          200                400

                         Analyte Concentration (ug/L)
                   600
                      1,2— Dichloropropane
JC
a
a
a.
o
o
E
                          200

                         Analyte Concentration (ug/L)

                                    A-20
400
600

-------
J£
a


a.
s
a
      1 -i
                       1,3—Dichloropropane
                           200                 400



                          Anolyte Concentration (ug/L)
600
                       1,1 —Dichloropropene
JC
a
o

a.
                           200                 400



                          Analyte Concentration (ug/L)



                                      A-21
600

-------
                   cis— 1,3—Dichloropropene
JC
a
o


It
      5 -
      4 -
      2 -
      1 -
                         200                400



                         Analyte Concentration (ug/L)
600
                 trans—1,3—Dichloropropene
a
o
a
                         200               400


                         Analyte Concentration (ug/L)



                                   A-22
600

-------
                      1,2-Dimethylbenzene
JC
o
o
a.
o
a:
                          200                 400


                         Analyte Concentration (ug/L)
                                                               600
                      1,4—Dimethylbenzene
     3.5 -
      J -
Jt
o

Q.

«
>

a

IT
     2.5 -
      2 -
     1 5 -
     05 -
                          200


                         Analyte Concentration (ug/L)


                                      A-23
                                            —i—

                                             400
600

-------
                          Ethyl  methacrylate
JC
a
9
o
s.
       G -
       5 -
       4 -
       3 -
       2 -
       1 -
                     0.2
     0.4          0.6

        (Thousands)

Analyte Concentration (ug/L)
                              Ethylbenzene
JE
a
o
H
o
cc.
                             200                  400


                             Analyte Concentration (ug/L)


                                         A-24
                                          600

-------
                       Hexachlorobutadiene
-X
o
3

S.
     4.5
               40      00      120      160     200


                          Analyi* Concentration (ug/L)
        240
280
                        Hexachloroethane
a
o
H
      7 -
      6 -
      5 -
      4 -
                 ,t
                          200


                          Anolyte Concentration (uq/L)

                                     A-25
400
                   600

-------
                        Hexachloropropene

JC
a
2

V.
       1 -
                0.4
                  0.8
     1.2      1.6

        (Thousands)

Anatyte Concentration  (ug/L)
                            2—Hexanone
JC
o
41

y
o
a
a:
12 -•



11 -



10 -



 9 -



 8 -



 7 -



 6 -



 5 -



 4 -



 3 -



 2 -



 1 -



 0
                            2                   4
                                   (Thousand*)

                           Analyte Concentration (ug/L)


                                       A--26
                                                               B

-------
                             lodomethane
      J4
      32 -
      30 -
      28 -
      26 -
      24 -
      22 -
      20 -
      18 -
      16 -
      14 -
      12 -
      10 -
       8 -
       6 -
       4 -
       2 -
       D
                            200                 400
                           Analyte Concentration (ug/L)
            600
Jt
a
c
a
a
«j
a:
                          Isopropylbenzene
                        30
                                120      160     200
                           Analyte Concentration (ug/L)
                                      A-27
240
280

-------
                         p—Isopropyltoluene
a
c
a.
o

e
x.
                        SO      120      160     200



                           Analyte Concentration (ug/L)
240
280
                           Methacrylonitrile
o
                                    (Thouaands)

                            Analyte Concentration (ug/L)



                                       A-28

-------
                         Methyl  methacrylate
a
a.
a
>

a
                 0.4       0.8      1.2      1.6       2
                                    (Thousands)
                            Analyte Concentration (ug/L)
                                      2.8
                      4—Methyl—2—pentanone
JC
a
o
0.
o
c
                       0.4
  0.6     0.8      1
        (Thousands)
Analyte Concentration (ug/L)

            A-29
                                                    1.2
                                                           1.4
                                                                  1.6

-------
JC
a
       5 -
       4 -
       2 -
       1 -
                               Naphthalene
                  40       80       120      160      200


                              Analyte Concentration (ug/L)
240
280
                                Propionitrile
JC
a
a
a
o
~
      3.5 -
       3 -
      2.5 -
       2 -
      1.5 -
        1 -
      0.5 -
                               2                     4
                                      (Thousands)
                              Analyte Concentration (ug/L)

                                           A-30

-------
                           n—Propylbenzene
a
a
o.
o
o
a:
                20
40      60     80     100



     Analyte Concentration (ug/L)
a
41
a.
u
ir
       6 -
       5 -
       4 -
                                 Styrene
       1 -
                                                      iI    i    i
                 40       80       120      160      200


                            Analyte Concentration (ug/L)


                                        A-31
                                  240
280

-------
                   1,1,1,2—Tetrachloroethane
I

Jf
o
I
5
                      80     120     160     200



                         Analyte Concentration (ug/L)
240
280
                   1,1,2,2—Tetrachloroethane
JC
a
CL

a
      4 -
      2-
      1 H
                          200                400



                         Analyte Concentration (ug/L)



                                     A-32
           600

-------
                           Tetrachloroethene
JC
a
a
tp
o
0
It
                 40       80       120      160      200


                             Analyte Concentration (ug/L)
240
        280
                                  Toluene
a
c
a.
o
«j
ac.
       6 -
       5 -
       4 -
       T _
       2 -
                             200                  400


                             Analy-te Concentration (ug/L)
            600

-------
I
I
                     1,2,4—Trichlorobenzene
                40      80      120     160     200
                          Anolyts Concentration (ug/L.)
               240
               280
JC
a
CL
o
>
o
E
                         Tribromomethane
                               120
160
200
                                                      240
280
                          Anatyte Concentration (ug/L)
                                      A-34

-------
                       1,1,1-Trichloroethcme
JC
a
a.
o
0
a:
                           200                 400
                           Analyte Concentration (ug/L)
                                                                  600
                       1,1,2—Trichloroethane
JC
a
c
CL
 3 -
28 -
26 -
2.4 -
2.2 -
 2 -
1.8 -
1.6 -
1 4 -
1.2 -
 1  -
08-
06-
04-
02-
 0
                           200                 400
                           Analyte Concentration (ug/L)
                                     A-3 5
                                                             600

-------
                      Trichlorofluoromethane
JC
o
I
5
                 60
1 00      140      180


  Analyte Concentration (ug/L)
220
260
                                                                   300
      4.5
                           Trichloroethene
JC
a
•3
a

K.
       4 -
     3.5 -
       3 -
      1.5 -
       1 -
      05 -
                            200                 400

                           Artalyte Concentration (ug/L)

                                       A-36
                                          600

-------
                      1,2,3— Trichloropropane
Jt
a
o
a.
1.4



1.3



1.2



1.1



  1



0.9



0.8


0.7



0.6



05



0.4



03



0,2



0.1



  0
                            200                 400


                           Analyte Concentration (ug/L)
                                                              600
                      1,2,4—Trimethylbenzene





D
1
Jf
a
41
Q.
4)
S
o
41
£

1 O —
14 -
13 -
12 -
1 1 -
10 -
9 -

8 -

7 -
6 -

5 -
4 -

i
!

^
.s
.^ i
j^
^>^
*>
^
^•^
^*
^-•- a
."'''
^S"*
-} 40 dJ

1 i 1 II!!!
'20 160 200 240 280
                           Arxilyte Concentration (uq/L)


                                       A-37

-------
JC
o
o
a
•3
a
c
K.
                       1,3,5—Trimethylbenzene
                 40       80      120      160      200


                            Analyte Concentration (ug/L)
240
280
.
a
ti
0.
a
o
      10 -
                             Vinyl  acetate
                         0,8
                                 1.2      1.6
                                    (Thousands)
                            Analyte Concentration (ug/L)


                                        A-38
2.4
2.8

-------
                               Vinyl  chloride
JC
o

s.
0



IT
       6 -
       5 -
       4 -
       3 -
       2 -
       1 -
                              200                   400



                             Anolyte Concentration (ug/L)
600

-------

      .
t    0) 0
o    oo
   Q.
±1 0) o C
 E£*-,2
 t 0) 35
+4 Q.OO
0£.So
         0
   r
"B c
   5
(0*5
r u
                  Reproduced by NTIS

                  National Technical Information Service
                  Springfield, VA 22161
        This report was printed specifically for your order
      from nearly 3 million titles available in our collection.


For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order.  Documents that are not in electronic format are reproduced
from master archival copies and are the best possible reproductions
available. If you have any questions concerning this document or any
order you have placed with NTIS, please call our Customer Service
Department at (703) 605-6050.

About NTIS
NTIS collects scientific, technical, engineering, and business related
information — then organizes, maintains, and disseminates that
information in a variety of formats — from microfiche to online services.
The NTIS collection of nearly 3 million titles includes reports describing
research conducted or sponsored by federal agencies and their
contractors; statistical and business information; U.S. military
publications; multimedia/training products; computer software and
electronic databases developed by federal agencies; training tools; and
technical reports prepared by research organizations worldwide.
Approximately 100,000 new titles are added and indexed  into the NTIS
collection annually.
    For more information about NTIS products and services, call NTIS
    at 1-800-553-NTIS (6847) or (703) 605-6000 and request the free
     NTIS Products Catalog, PR-827LPG, or visit the NTIS Web site
                      http://www.ntis.gov.
                             NTIS
      Your indispensable resource for government-sponsored
                information—U.S. and worldwide

-------
*PB88245881 *
*BA*
BIN:
 INVOICE:
SHIPTO:
PAYMENT:
M31B
5B9144
1*S9259
NONE
                     03-23-98

-------