EPA/600/4-88/030
August 1988
CAPILLARY COLUMN GC-MS DETERMINATION OF 77 PURGEABLE
ORGANIC COMPOUNDS IN TWO SIMULATED LIQUID WASTES
M. F. Yancey, R. A. Kornfeld, and J. S. Warner
BATTELLE
Columbus Division
Columbus, Ohio 43201-2693
Contract Number 68-03-3224
Work Assignment 3-10
Project Officer
Thomas Pressley
Physical and Chemical Methods Branch
Environmental Monitoring and Support Laboratory
Environmental Monitoring and Support Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, OH 45268
REPRODUCED By
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S DEPARTMENT OF COMMERCE
SPRINGFIELD, VA 22161
-------
TECHNICAL REPORT DATA
Ifleaie read Instructions on the rtvtnt before completinf/
REPORT NO.
EPA/600/4-88/030
2.
RECIPIENT'S ACCESSION NO
- 14S 88 I
TITLE AND SUBTITLE
Capillary Column GC-MS Determination of 77 Purgeable
Organic Compounds in Two Simulated Liquid Wastes
REPORT DATE
August 1988
PERFORMING ORGANIZATION CODE
*MT.M+30%. The observed high positive bias was attributed to\
enhanced sensitivity caused by high concentrations of ions in the MS source.
ratinn data chnuiorl that chnr»-»t
/ A a
r) and long-torm (two wooko)
17. precision was very good. KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group
18. DISTRIBUTION STATEMENT
Distribute to Public
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
20 SECURITY CLASS iThispafti
Unclassified
22. PRICE
IM5
f EPA Form 2220-1 (R«v. 4-77) PREVIOUS EDITION is OBSOLETE
i
-------
NOTICE
The Information in this document has been funded wholly or 1n part by the
United States Environmental Protection Agency under Contract Number 68-03-3224
(Work Assignment 3-10) to Battelle Memorial Institute, Battelle Columbus
Division, Columbus, Ohio 43201. It has been approved for publication as a
USEPA document. Mention of trade names or commercial products does not
constitute endorsement or recommendation.
-------
FOREWORD
Environmental measurements are required to determine the quality of ambient
waters and the character of waste^ejffluents. The Environmental Monitoring and
Support Laboratory - Cincinnati, Ohio, conducts research to:
o Develop and evaluate methods to measure the presence and
concentration of physical, chemical, and radiological pollutants
in water, wastewater, bottom sediments, and solid waste.
o Investigate methods for the concentration, recovery, and
identification of viruses, bacteria, and other nicrobiological
organisms in water, and to determine the responses of aquatic
organisms to water quality.
o Develop and operate an Agency-wide quality assurance program to
assure standardization and quality control of systems for
monitoring water and wastewater.
This report presents results obtained when capillary column gas
chromatography-mass spectrometry was used to determine applicable concentrations
ranges for 77 purgeable organic compounds and to assess the accuracy and
precision of measurements of those compounds spiked into two simulated liquid
wastes, a municipal sludge leachate and reagent water containing fulvic acid.
Thomas A. Clark, Acting Director
Environmental Monitoring and Support
Laboratory - Cincinnati
111
-------
ABSTRACT
The suitability of purge-trap-desorb (PTD) procedures for determination of
84 volatile organic compounds with capillary column gas chromatography (GC) and
mass spectrometry (MS) was evaluated. After collecting GC-MS data not
previously available for some analytes, 7 of the 84 compounds were eliminated
from further consideration because of poor purging efficiency or analyte
instability.
For each of the remaining 77 compounds, the linear concentration range and
detection limit were determined with data obtained by PTD GC-MS analysis of
spiked reagent water. A relative standard deviation (RSD) of <25% for the
average response factor was chosen as the acceptance criterion for determining
the linear range. This criterion was met over a concentration range of at least
two orders of magnitude for 56 of the 77 analytes, 1.5 orders of magnitude for
12 analytes, and 1 order of magnitude for 6 analytes. The criterion was not met
for acetone, trichlorofluoromethane, and 2-chloro-l,3-butadiene.
Method performance was assessed by analyzing eight replicate aliquots of
two simulated liquid waste samples (a municipal sewage sludge leachate and water
containing fulvic acid) containing analytes spiked at two concentrations. For
>80% of the analytes, bias of measured concentrations was <30%. For most other
analytes bias was >430%. The observed high positive bias was attributed to
enhanced sensitivity caused by high concentrations of ions in the MS source.
Calibration data showed that short-term (daily) and long-term (two weeks)
precision was very good.
IV
-------
ACKNOWLEDGMENT
The authors gratefully acknowledge the technical assistance of Robert
Slater, U.S. Environmental Protection Agency. Technical Battelle Columbus
Division staff that participated in this Work Assignment were Laura Hernon-
Kenny, Roxanne Edwards, and David Oyler. Also, the authors acknowledge Leslie
Stanton, Diane Helling, and Laraine Porter for their clerical assistance.
-------
CONTENTS
Foreword i i i
Abstract iv
Acknowledgements r v
Figure vi i
Tables vii
1. Introduction 1
2. Conclusions 2
3. Recommendations 3
4. Experimental 4
Analytes 4
PTD-GC-MS Analyses 4
Preparation of Stock Solutions 5
Preliminary Studies 6
Preparation of Spiking Solutions 7
Method Range Studies 7
Matrix Validation Studies 8
5. Results and Discussion 10
Preliminary Studies v 10
Method Range Studies 10
Matrix Validation Studies . 12
Appendix
Calibration Curves from Method Range Studies A-l
vi
-------
FIGURE
Number Page
1. Effect of MS source Ion concentration on changes in neasured
analyte Recovery 16
TABLES
Number Page
1. Source, GC and MS data for analytes evaluated in method
range study 17
2. Linear range response factor data from method range study 19
3. Detection limits obtained from method range study 26
4. Recovery results from matrix validation studies 28
5. Calibration data from matrix validation studies 30
vii
-------
SECTION 1
INTRODUCTION
In Appendix IX to 40 CFR Parts 264 and 270, the Resource Conservation and
Recovery Act specifies over 200 organic compounds used to screen for suspected
groundwater contamination at land-based hazardous waste treatment, storage,
and disposal facilities (FR, 5£, July 9, 1987, pp. 25942-25953). Analytical
methods for most of these analytes are included in "Test Methods for Evaluating
Solid Wastes^ Physical/Chemical Methods" (SW-846, Third Edition, November
1986).
The SW-846 method recommended for determining volatile, relatively water
insoluble organic analytes is Method 8240, which uses purge-trap-desorb (PTO)
analyte extraction followed by packed column gas chromatographic (GC)
separation and mass spectrometric (MS) detection and measurement. Advances in
GC column technology now permit detection and quantitation of a wider range of
compounds in a shorter time with greater sensitivity using a fused silica or
glass capillary column. For example, USEPA Method 524.2 uses a 0.75 mm i.d.
glass capillary column for GC-MS determinations of volatile organic compounds
in drinking waters.
As part of an ongoing effort to demonstrate the applicability of present
USEPA analysis methods and/or to develop new methods, the suitability of room
temperature PTD coupled with capillary column GC-MS determinations of volatile
organic compounds was evaluated. Of the 84 compounds included in this study,
data were obtained- for 77 compounds to establish the applicable concentration
range for each analyte. The method was also evaluated for accuracy and
precision of measurements of analytes added to two simulated liquid wastes, a
water containing fulvic acid and a publicly owned treatment works (POTW) sewage
sludge leachate.
-------
SECTION 2
CONCLUSIONS
The following conclusions are based on the experimental results of this
project:
o The use of methanol as a solvent interferes with the
chromatographic performance of a nonpolar capillary column for
the determination of polar volatile compounds such as
acetonitrile, isobutyl alcohol, and propargyl alcohol.
o Hexachlorocyclopentadiene, 2-chloroethyl vinyl ether, and
pentachloroethane are not very stable in methanol.
o 1,4-Dioxane is not sufficiently purged from water at room
temperature to be determined by a PTD procedure.
o Methanol and water desorbed from a trap containing Tenax,
silica gel, and charcoal, interfere with the chromatographic
performance of a nonpolar capillary column for the
determination of gaseous and very low boiling nonpolar
compounds by a PTO procedure.
o A total of 74 of the 84 volatile compounds studied can be
determined satisfactorily by SW-846 Method 8240 using a VOCOL
capillary column.
o 2-Chloro-l,3-butadiene is lost by polymerization during the
trap desorb process; the degree of polymerization and,
therefore, the percent loss, increases as the concentration
increases.
o With MS conditions that permit Method 8240 performance criteria
to be met using a capillary column and 250 ng of internal
standard, an increased sensitivity may result from high ion
concentrations in the MS source.
o A calculated MDL was often considerably lower than the lowest
concentration at which an analyte was detected experimentally.
-------
SECTION 3
RECOMMENDATIONS
The following recommendations are made based on the results from method
range and matrix validation studies:
o Of the 77 compounds for which method performance data were
obtained, 74 (all but acetone, trichlorofluoromethane, and 2-
chloro-l,3-butadiene) should be appropriate analytes for a
capillary column version of Method 8240. Acetone may be
suitable if a different quantitation ion (i.e., m/e 58) is
selected.
o Evaluate changes in GC-MS system operating conditions to allow
the electron multiplier to become saturated at lower analyte
concentrations if lower detection limits are required.
o Investigate cryofocusing or other means to focus early eluting
compounds to minimize peak broadening and improve quantitation,
especially at low concentrations.
o Use a non-volatile, water soluble solvent for spiking solutions
to avoid deleterious chromatographic effects caused by methanol
and to improve performance of early eluting analytes.
o Investigate differences between calculated and observed MDLs to
establish a protocol for obtaining more meaningful MDLs.
o Evaluate the effect of MS ion source tuning and cleanliness on changes
of analyte response factors with concentration.
-------
SECTION 4
EXPERIMENTAL
ANALYTES
A total of 84 organic compounds were considered for inclusion in this
study. The 84 compounds include all Method 524.2 analytes and all Appendix IX
compounds that might reasonably be expected to be determined by room
temperature PTD extraction followed by 6C-MS analysis using a 0.75 mm i.dj
glass capillary column.
Of the 84 analytes, 21 were obtained as individual methanol solutions
(5,000-10,000 ug/mL) from the USEPA Repository for Toxic and Hazardous
Materials, 28 were purchased as four mixtures in methanol, 34 were purchased
individually in neat form, and 1 (2-chloro-l,3-butadiene) was purchased as a
50% xylene solution.
PTD-GC-MS ANALYSES
Analyses were conducted in accordance with Method 8240 procedures.
Equipment included a Tekmar Model LSC-2 PTD system, a Carlo Erba Model 4160 GC,
a Finnigan Model 3200 MS fitted with a glass jet separator, and an Incos data
system with Revision 5.5 software. The PTD system was fitted with a 5-ml
fritted glass purge tube and a 305 mm x 4 mm i.d. stainless steel trap
containing 10 mm of 3% SP-2100 on Supelcoport, 77 mm of Tenax, 77 mm of silica-
gel, and 77 mm of coconut charcoal. The system was operated with helium purge
for 11 min at 26 mL/min at room temperature (23-25*C), desorption for 4 min at
15 mL/min at 180'C, and trap bake for 7 min at 26 mL/iin at 180*C. The GC was
fitted with a 60 m x 0.75 mm I.D. Supelco VOCOL columr. coated with a 1.5 i»m
film and operated with a helium carrier gas flow of 15 mL/min. The column
temperature was maintained at 10*C during the desorb cycle, programmed to 200*C
at 10*C/min at the end of the desorb cycle, and maintained at 200"C for 10 min.
The MS was tuned daily to meet bromofluorobenzene criteria and was operated
with an emission current of 0.27-0.37 ma, an electron multiplier voltage of
1200-1800 V, and a scan time of 1 sec over a mass range of 35-325 amu. The
emission current was selected to achieve acceptable tuning and to stay within
the range recommended by the manufacturer. The electron multiplier voltage was
-------
set slightly lower than a setting that would cause saturation for any analyte
at 200 *g/L (2000 »g/L for 15 poorly purged analytes). This setting permitted
analytes to be detected without multiplier saturation at concentrations up to
four times the internal standard (IS) concentration of 50 ng/L specified by
Method 8240, and allowed maximum dynamic range.
The system met all daily performance criteria specified by Method 8240.
In addition to BFB tuning criteria, these criteria include (1) minimum response
factor (RF) of 0.30 for each of the five system performance check compounds
(chlorobenzene, chloromethane, 1,1-dichloroethane, l»l,2,2-tetrachloroethane,
and tribromomethane); (2) RF difference of <25% for the six calibration check
compounds (chloroform, 1,1-dichloroethene, 1,2-dichloropropane, ethylbenzene,
toluene, and vinyl chloride); (3) IS retention time variation of <30 sec, and
(4) IS area variation of <50%.
PREPARATION OF STOCK SOLUTIONS
Stock methanol solutions of each of the 34 compounds obtained in neat form
were prepared with procedures described in Method 8240 and stored at -10*C.
Those solutions, the 21 solutions supplied by USEPA, and the five commercial
solutions were used to prepare four mixed stock solutions. All analytes in a
given mixed stock solution were present at the same concentration. The amounts
of 1,2-dimethylbenzene and 1,4-dimethylbenzene added from their respective
stock solutions were decreased by the amounts (deteririned by GC analysis with
flame ionization detection) contributed by xylene solvent-for the stock
solution of 2-chloro-l,3-butadiene. One of the mixed stock solutions (Mix 1)
contained only the most water-soluble analytes that were known to have low
purging efficiencies. Another one of the mixed stock solutions (Mix 2) was
devoted to analytes expected to give apparent low purging efficiencies
primarily because of hydrolytic or thermal stability problems.
-------
PRELIMINARY STUDIES
The four mixed stock solutions prepared froa Individual stock solutions
and the four commercial solutions containing mixtures of analytes were analyzed
by direct Injection to determine GC performance and obtain mass spectra for all
analytes under the GC-HS conditions described previously.
Two of the mixed stock solutions, Mix 1 and Nix 2, were analyzed at
concentrations of 200 »g/L and 2,000 »g/L in reagent water to obtain purging
efficiencies. Purging efficiencjes were determined by comparing analyte/IS
area ratios from PTD analyses of water spiked with 1 »g or 10 ng of analyte
with those obtained by direct injection of 1 »g of analyte. Seven analytes
that were not detected by direct injection or had purging efficiencies of <5%
were eliminated from further consideration. Fresh solutions of Mix 1 and Mix
2, in which these compounds were deleted, were prepared for all subsequent
studies. These two mixes contained the 15 compounds that were most water-
soluble and expected to give low apparent purging efficiencies but had passed
the preliminary tests. Those 15 compounds, henceforth referred to as the
poorly purged analytes, were:
o Acetone o Hexachloropropene
o Acrolein o 2-Hexanone
o Acrylonitrile o Methacrylonitrile
o Bis-(2-chloroethyl) ether o Methyl methacrylate
o 2-Butanone - o 4-Methyl-2-pentanone
o 2-Chloroethyl ethyl ether o Propionitrile
o trans-l,4-Dichloro-2-butene o Vinyl acetate
o Ethyl methacrylate.
PREPARATION OF SPIKING SOLUTIONS
Stock solutions were combined into a high-concentration spiking solution
that contained the 15 poorly purged analytes at a concentration of 100 ng/mL
and all other analytes at 10 i»g/mL. That solution was diluted to obtain a
low-concentration spiking solution containing the poorly purged analytes at a
concentration of 3 »g/mL and all other analytes at 0.3 >g/mL. The two spiking
solutions were stored at -10*C until needed.
-------
METHOD RANGE STUDIES
For the method range studies, the low-concentration and high-concentration
spiking solutions were used to spike 5-mL aliquots of reagent water to obtain
13 concentrations ranging from 1 to 5500 »g/L for the poorly purged analytes
and 0.1 to 550 ng/L for all other analytes. The low concentration spiking
solution was used to obtain spike concentrations of 1 to 55 ng/L for the poorly
purged analytes and 0.1 to 5.5 »g/L for all other analytes. The high concen-
tration spiking solution was used to obtain all higher analyte concentrations.
Eight replicate samples were analyzed for each of the 13 spike concentrations.
Acquired data were analyzed by a semi automated process to minimize analyst
effort. A project-specific mass spectral library was generated containing the
retention time and quantitation ion of each analyte and IS. The quantitation
ion was chosen for maximum sensitivity while attempting to avoid interferences
from coeluting materials. For the majority of analytes, the quantitation ion
selected was the base peak. For those analytes listed in Method 8240, the
primary ion specified in Method 8240 was used as the quantitation ion.
A reverse library search of the data was performed by the MS data system.
For each analyte for which the quantitation ion was detected above the
background, an RF was calculated using the equation:
RF = (Aa x CIS)/(Ais * Ca),
where
Aa = peak area of analyte
AJS = peak area of internal standard '
Ca = concentration of analyte
C]$ = concentration of internal standard.
An estimated detection limit (EDL) for each analyte was determined by a
trained analyst's manual inspection of the mass spectrum from one of the
replicate samples at the lowest concentration for which the computer detected
the quantitation ion in at least four replicates. The analyst determined the
presence of the analyte by examining the extracted ion current profiles of 2-5
major ions, including the quantitation ion, selected from the reference mass
spectrum. The analyte was considered to be present if the major ions maximized
simultaneously and had relative intensities within 20% of those in the
reference mass spectrum, as specified in Method 8240, and if the quantitation
-------
1on gave an area response greater than 1000 or a signal-to-noise ratio of at
least three to one. If, 1n the analyst's opinion based on the above criteria,
the mass spectrum confirmed the presence of the analyte in question, that
concentration was considered to be the EDL. If, 1n the opinion of the analyst,
the mass spectrum did not confirm the presence of the analyte, the manual
inspection process was repeated at the next higher concentration.
Mean RFs and RSDs of measured RFs were calculated at each concentration as
the first step in determining the linear concentration range for each analyte
(Table 2). High concentration results were evaluated for system saturation by
plotting and visually evaluating the RF as a function of analyte concentration.
If an RF decreased with increasing concentration, the high concentration was
eliminated from the linear range. An average RF and RSD of retained RFs were
computed using RFs from all concentrations other than high concentrations
rejected as described above. If the RSD was >25% (an acceptance threshold
selected with USEPA personnel concurrence), the concentration range was
narrowed in an attempt to reduce the RSD <25%, but the concentration range was
never decreased below one order of magnitude.
The lowest concentration at which the analyte was found and quantified in
at least four of eight replicates was considered to be the EDL, regardless of
the RSD of measured RFs. For each analyte, data obtained at the EDL were used
to calculate a method detection limit (HDL) using the USEPA procedure described
in Appendix B to 40 CFR Part 136 (Federal Register 49. 198, October 26, 1984).
MATRIX VALIDATION STUDIES
Two simulated liquid waste samples were spiked and analyzed to evaluate
method accuracy and precision. One sample was a municipal sewage sludge
leachate prepared using a modification of the USEPA toxicity characteristic
leaching procedure (Federal Register, 51, 21685, June 13, 1986). The
modification included using a smaller sample and shorter extraction time than
specified. Centrifuge bottles (250 n»L) were filled with a mixture of sludge
and 1 M, pH 5 acetate buffer extraction fluid (20 nl of extraction fluid per
gram of solids in the sludge) with zero headspace. After glass beads were
added to facilitate mixing, bottles were tumbled end-over-end for 2 h. The
mixture was centrifuged and filtered, using care to ninimize loss of volatile
components. The other sample was an artificial ground water prepared by adding
-------
fulvlc acid (Suwannee Stream Reference, U.S. Geological Survey, International
Humlc Substance Society) to reagent water at a concentration of 1 mg/L. The
prepared samples were stored as aliquots in 40-mL septun-capped vials with zero
headspace in a refrigerator until used for analysis.
For each of the two samples, eight unspiked replicates and eight
replicates of each of two sets of spiked samples were analyzed. Each aliquot
of one set of spiked samples contained 20 ng/L of most analytes but 200 ng/L of
the poorly purged analytes. The other set contained 200 ng/L of most analytes
but 2000 »g/L of the poorly purged analytes. Calibration standards prepared by
spiking reagent water with the each analyte at a concentration of 50 ng/L or
500 »g/L for the poorly purged analytes were analyzed at the beginning, middle,
and end of each day. Spiked samples and reagent water were analyzed
immediately after spiking.
For each analyte, a daily mean RF was calculated from data obtained by
analyses of three calibration solutions. Analyte concentrations measured (Cm)
in the spiked samples were calculated using the equation:
Cm « (Aa x CIS)/(AIS x RF),
where
RF = daily mean response factor from analysis of three calibration
solutions.
The accuracy (A) of each mean measured concentration was calculated using the
equation:
% A = [(Cm - C0)/CS] x 100,
where
C0 = concentration of analyte in unspiked matrix
Cs = concentration of analyte spiked into the matrix.
Each calculated accuracy was therefore corrected when an analyte was found in
an unspiked sample. An average accuracy and RSD of measured concentrations was
calculated for each analyte at each spiking concentration in each matrix.
-------
SECTION 5
RESULTS AND DISCUSSION
PRELIMINARY STUDIES
Six analytes (acetonitrile, isobutyl alcohol, and propargyl alcohol,
hexachlorocyclopentadiene, 2-chloroethyl vinyl ether, and pentachloroethane)
were not detected by direct injection of 1 »g and were eliminated from further
consideration. Also eliminated was 1,4-Dioxane, which had a very poor purging
efficiency, 0.5% at 2000 ng/L. The methanol injection solvent probably
interfered with determination of the highly polar compounds (acetonitrile,
isobutyl alcohol, and propargyl alcohol) by spreading them into a wide GC band.
Hexachlorocyclopentadiene, 2-chloroethyl vinyl ether, and pentachloroethane may
have decomposed during storage of the methanol spiking solution. Retention
times were determined and quantitation ions were selected from the GC-MS data
for all remaining 77 analytes (Table 1).
METHOD RANGE STUDIES
Because none of the 77 analytes was detected at spiking concentrations of
0.3 and 0.1 ng/L, RFs for these concentrations are not included in Table 2,
which summarizes RF data for the linear range for each analyte. Of the 74
analytes having satisfactory method range and RF precision, 56 exhibited a
linear range of at least two orders of magnitude and an additional 12 exhibited
a range of at least 1.5 orders of magnitude. Of the remaining six analytes,
three are highly volatile (dichlorodifluoromethane, chloromethane, and
chloroethane) and two are poorly purged (trans-l,4-dichloro-2-butene and
hexachloropropene). Those five compounds required range narrowing to reduce
the average RSD of measured RFs to <25%. No explanation is apparent for the
behavior of the sixth compound, isopropyltoluene.
Three compounds (acetone, 2-chloro-l,3-butadiene, and trichlorofluoro-
methane) did not produce <25% RSD for measured RFs even with one order of
magnitude concentration range. Acetone may yield more reliable data using m/z
58 rather than m/z 43 as the quantitation ion. A trend in decreasing RF with
increasing concentration was evident for 2-chloro-l,3-butadiene, which
polymerizes readily. The degree of polymerization, which would result in loss
10
-------
of the monomer, would be expected to increase with Increasing concentrations
and could account for lower measured RFs at higher concentrations. Trichloro-
fluoromethane was particularly sensitive to the effects of methanol and water
on GC peak shape. Other early eluting compounds such as dichlorodifluoro-
methane (20% RSD), chloromethane (23% RSD), and vinyl chloride (20% RSO) also
produced mean RFs that were less precise than RFS for aost other analytes. The
range for a fourth compound, hexachloropropene (32% RSD of mean RFs) was not
narrowed because the greatest deviation from the mean RF occurred within the
linear range at 300 »g/L. For each of the 77 analytes, a calibration curve was
prepared by plotting the analyte/IS area ratio versus concentration over the
linear range (Appendix A).
The lowest concentration in the linear range, the EDL, and the calculated
MDL for each analyte were determined (Table 3). For all but 10 analytes the
EDL, the lowest concentration at which the analyte was detected and quantified
(regardless of RSD of measured RFs) in at least four of eight replicates, was
the same as the lowest concentration in the linear range. Lower EDLs could
undoubtedly have been achieved for most analytes if MS tuning parameters and the
electron multiplier voltage had been selected to achieve maximum sensitivity
rather than to achieve a wide dynamic range and quantitation of high analyte
concentrations. The calculated MDL was considerably lower than the EDL for all
analytes except acetone. Comparison of the highest concentration at which each
analyte was not detected in any of eight replicates (Table 3) shows that for
each of 70 analytes the calculated MDL was even lower, usually by a factor of
two to five, than a concentration at which the analyte was not detected
experimentally. The low calculated MDLs reflect excellent precision at low
concentrations and indicate that a calculated MDL may be misleading.
11
-------
MATRIX VALIDATION STUDIES
The accuracies of measured concentrations of 74 analytes spiked into two
samples (a POTW sludge leachate and a water containing fulvic acid) at two
concentrations were calculated (Table 4). Because acetone, 2-chloro-l,3-
butadiene, and trichlorofluoromethane, did not yield satisfactory method range
results, data for those three compounds were discarded.
Measured concentrations were calculated with RFs aeasuredl by analysis of
triplicate aliquots of reagent water spiked with each analyte at a concentration
of 50 »g/L (or 500 ng/L for poorly purged analytes). This calibration
concentration was within the linear range for all 74 analytes although it was
near the upper limit (55 »g/L) for dichlorodifluoromethane. The high
concentration matrix spike exceeded the linear range found in the method range
study for nine compounds, bromobenzene, n-butylbenzene, sec-butylbenzene, tert-
butylbenzene, dichlorodifluoromethane, trans-l,4-dichloro-2-butene, ethyl
methacrylate, 4-methyl-2-pentanone, and n-propylbenzene. The low concentration
matrix spike was outside the range for chloroethane.
The 74 analytes studied included all but 1 (2-chloroethyl vinyl ether) of
the 30 compounds listed in Method 8240 Table 6, which specifies acceptance
criteria when a quality control check sample is analyzed. (The exception, 2-
chloroethyl vinyl ether, was among compounds not detected when directly
injected.) For all but 1 of the remaining 29 compounds, Method 8240 acceptance
criteria were achieved in both matrices at both high and low concentrations.
The one exception was ethylbenzene at the high concentration in water containing
fulvic acid, where a bias of +77% was observed but acceptable bias is +62%. A
possible explanation of this and other high biases is presented below.
To evaluate the acceptability of accuracies of concentrations measured for
each of the 74 analytes, ±30% bias was selected as an acceptance limit. This
bias limit is much more stringent than the analyte-specific biases considered
acceptable in Method 8240, which are generally ±50% or greater. With a bias
limit of ±30% (70-130% accuracy), accuracies were acceptable for 61 of the 74
analytes spiked into the POTW sludge leachate at the high concentration and for
63 analytes at the low concentration. Acceptable accuracies were achieved for
50 of the 74 analytes added at the high concentration to water containing fulvic
acid and for 70 analytes at the low concentration.
In nearly 90% of the cases in which the bias was outside the acceptance
12
-------
range of ±30%, the bias was positive rather than negative. A likely explanation
of the high positive biases, Including that of ethyl benzene discussed earlier,
is an increased sensitivity of the mass spectrometer source when ion
concentrations are unusually high. This effect can be expected to be much more
noticeable when a capillary column is used instead of a packed column, because a
capillary column produces sharper peaks and higher momentary analyte
concentrations than a packed column. The high positive bias was more prevalent
at the high spike concentration than at the low spike concentration, especially
for the water containing fulvic acid. The high spike concentration of 200 ng/L
provides 1000 ng of analyte in 5 ml of sample purged. Calibration curves
(Appendix A) for compounds such as chlorobenzene, isopropyl benzene,
isopropyltoluene, styrene, and 1,2,4-trimethylbenzene, obtained in the method
range study also provide evidence for increased sensitivity at higher
concentrations. The effect was not as apparent in the eethod range study as in
the matrix validation study, possibly because the ion source had been cleaned
immediately before beginning the method range study. Decreased source
cleanliness may enhance the effect.
For all but two cases in which the bias was negative and outside the
acceptability range, the low spike concentration was involved, and the analyte
was one of the 14 analytes spiked at a 10-fold higher concentration. For each
of those analytes, the calibration standard provided 2500 ng, which could have
produced a high ion concentration and high RF, which, in turn, could account for
an important negative bias at the low spike concentration. Thus, an increased
sensitivity resulting from high ion concentrations could account for essentially
all biases, high and low. No evidence of a matrix effect was observed.
Measured IS quantitation ion areas in spiked reagent water were very similar to
those measured in spiked samples.
The observed effect of ion concentration on detector response was
illustrated by plotting for each analyte the ratio of high concentration bias to
low concentration bias versus total ion current at the high spiking
concentration using data from analysis of water containing fulvic acid (Figure
1). The trend toward higher RF with increasing total ion concentration in the
source indicates that mass spectrometer source parameters are not stable under
conditions used for the high spike concentration experiments. This trend toward
increasing RF with increasing concentration has also been observed for aromatic
compounds by scientists in at least one other laboratory (Bill toy and Frank
13
-------
Allen, USEPA, Region IV, personal communication).
During the six days of the matrix validation study, overall precision of
measured RFs was good. For 61 of the 74 analytes, <15% RSD of measured RFs was
achieved at the calibration concentration (Table 5). For all but 2 of the other
13 analytes, RSDs were <30%. The two exceptions were trans-l,4-dich1oro-2-
butene (33% RSO) and hexachloropropene (86% RSD). Both of these analytes
produced quite variable results at all concentrations, probably because of
thermal decomposition in the trap and transfer line.
The percent difference between the average RF obtained in the matrix
validation study and the RF obtained previously in the method range study was
calculated (Table 5). For 65 of the 74 analytes, the difference was <25%, which
is within the Method 8240 acceptance range for just the six calibration check
compounds. The percent difference obtained in this study for the six
calibration check compounds was <25% except for 1,1-dichloroethene (29%
difference). A >35% difference was observed for only three analytes, trans-1,4-
dichloro-2-butene (47%), dichlorodifluoromethane (46%), and trans-1,2-
dichloroethene (36%).
14
-------
o
00 rO
T£ co
In 0
LO
in
CD
"^
Q ^
-< i in
^ in
o
j{? m n
sf 00
CM in ^ CD
^ csi
CD
CN "~ CD
CD m
^ CO *-
CD £JCN ^ ^
CD in
^£2 03
00 ^
00 CN
{5m rfl=. ^-^f2^t-
^ ^^~
m »
=*-
T CD
Pi i " 1 1
U^
ID
Ol
o
- ? 1
« o
o
o>
QJ
M
O
OJ to
_ ^ en -r-
o re
L_ ^z to
-4-J O fO
o "-5 c 01
oc Q o >
->-> ° r~
C-i fO
ij r-
e ES
3 =5
r~i ° 0)
- S c ^fe
O O M-
(_> QJ
i.
0 C
r- -(-I O tO
O -r- S-
( (D
d) _Q
u E
O i- ^
~ * 3 c
to O)
1/5 (->
_ s:
M ' 1
O
II
C_3 QJ Q
CM QJ -r-
M -f->
4- (0
LU S_
i (
Ol
r^v
oj
u i
-]/6n 02 PUD
15
-------
TABLE 1. INFORMATION ABOUT ANALYTES EVALUATED IN METHOD RANGE STUDY
Analyte ISa
1 Acetone
2 Acrolein
3 Acrylonitrile
4 Ally! chloride
5 Benzene
6 Bis-(2-chloroethy1) ether
7 Bromobenzene
8 Bromodichloromethane
9 Bromomethane
10 2-Butanone
11 n-Butylbenzene
12 sec-Butylbenzene
13 tert-Butylbenzene
14 Carbon disulfide
15 Carbon tetrachloride
16 Chlorobenzene
17 2-Chloro-l,3-butadiene
18 Chlorodibromomethane
19 Chloroethane
20 2-Chloroethyl ethyl ether
21 Chloroform
22 1-Chlorohexane
23 Chloromethane
24 2-Chlorotoluene
25 4-Chlorotoluene
26 l,2-Dibromo-3-ch1oropropane
27 1,2-Dibromoethane
28 Dibromomethane
29 1,2-Dichlorobenzene
30 1,3-Dichlorobenzene
31 1,4-Dichlorobenzene
32 trans-l,4-Dich1oro-2-butene
33 Dichlorodifluoromethane
34 1,1-Dichloroethane
35 1,2-Dichloroethane
36 1,1-Dichloroethene
37 cis-l,2-Dichloroethene
38 trans-l,2-Dichloroethene
39 Dichloromethane
40 1,2-Dichloropropane
41 1,3-Oichloropropane
42 1,1-Dichloropropene
43 cis-l,3-Dichloropropene
44 trans-l,3-Dichloropropene
1
1
1
1
2
3
3
2
1
1
3
3
3
1
2
3
1
3
1
2
1
3
1
3
3
3
3
2
3
3
3
3
1
1
2
1
1
1
1
2
3
1
2
2
Retention
CASRN Sourceb Timec
67-64-1
107-02-8
107-13-1
107-05-1
71-43-2
111-44-4
108-86-1
75-27-4
74-83-9
78-93-3
104-51-8
135-98-8
75-64-9
75-15-0
56-23-5
108-90-7
126-99-8
124-48-1
75-00-3
628-34-2
67-66-3
544-10-5
74-87-3
95-49-8
106-43-4
96-12-8
106-93-4
74-95-3
95-50-1
541-73-1
106-46-7
110-57-6
75-71-8
75-34-3
107-06-2
75-35-4
156-59-2
156-60-5
75-09-2
78-87-5
142-28-9
563-58-6
10061-01-5
10061-02-6
EPA
ALD
EPA
ALD
SUP
EPA
EAS
SUP
SUP
EPA
CHM
ALD
MCB
MCB
SUP
SUP
P&B
SUP
SUP
ALD
SUP
ALD
SUP
EPA
EPA
EPA
EPA
ALD
EPA
EPA
EPA
ALD
SUP
SUP
SUP
SUP
EPA
SUP
SUP
SUP
ALD
ALD
SUP
SUP
8:02
7:52
9:46
8:57
14:00
25:43
23:49
16:07
5:52
11:56
26:39
25:23
24:50
8:52
13:34
20:52
12:03
19:37
6:05
17:01
12:25
20:24
4:54
24:00
24:15
28:50
20:02
16:14
26:59
25:56
26:11
23:59
4:34
10:48
14:06
7:59
12:08
9:47
9:15
15:38
19:11
13:25
17:18
18:23
MW
58
56
53
76
78
142
156
162
94
72
134
134
134
76
152
112
88
206
64
108
118
118
50
126
126
234
186
172
146
146
146
124
120
98
98
96
96
96
84
112
112
110
110
110
Ouant
. Ion
m/z Rel. Int.
43
56
53
41
78
93
77
83
94
72
91
105
119
76
117
112
53
127
64
59
83
91
50
126
126
157
107
93
146
146
146
75
85
63
62
96
96
96
84
76
76
75
75
75
100
100
100
100
100
100
100
100
100
25
100
100
100
100
100
100
100
65
100
100
100
100
100
25
25
80
100
100
100
100
100
100
100
100
100
60
90
90
85
65
100
100
100
100
(continued)
16
-------
TABLE 1.
Retention
Quant. Ion
Analyte
45 1,2 -Dimethyl benzene
46 1,4-Dimethyl benzene
47 Ethyl benzene
48 Ethyl methacrylate
49 Hexachlorobutadiene
50 Hexachloroethane
51 Hexachloropropene
52 2-Hexanone
53 lodomethane
54 Isopropylbenzene
55 p- I sopropyl toluene
56 Methacrylonitrile
57 Methyl methacrylate
58 4-Methyl-2-pentanone
59 Naphthalene
60 Propionitrile
61 n-Propyl benzene
62 Styrene
63 1,1,1,2-Tetrachloroethane
64 1,1,2,2-Tetrachloroethane
65 Tetrachloroethene
66 Toluene
67 Tribromomethane
68 1,2,4-Trichlorobenzene
69 1,1,1-Trichloroethane
70 1,1,2-Trichloroethane
71 Trichloroethene
72 Trichlorofluoromethane
73 1,2,3-Trichloropropane
74 1,2,4-Trimethylbenzene
75 1,3,5-Trimethylbenzene
76 Vinyl acetate
77 Vinyl chloride
ISa
3
3
3
2
3
3
3
2
1
3
3
1
2
2
3
1
3
3
3
3
3
2
3
3
1
2
2
1
3
3
3
1
1
CASRN
95-47-6
106-42-3
100-41-4
97-63-2
87-68-3
67-72-1
1888-71-7
591-78-6
74-88-4
98-82-8
99-87-6
126-98-7
80-62-6
108-10-1
91-20-3
107-12-0
103-65-1
100-42-5
630-20-6
79-34-5
127-18-4
108-88-3
75-25-2
120-82-1
71-55-6
79-00-5
79-01-6
75-69-4
96-18-4
95-63-6
108-67-8
108-05-4
75-01-4
Source"
EPA
EPA
SUP
ALO
EPA
EPA
ALD
ALD
ALD
ALF
ALD
ALD
ALD
ALD
EPA
ALD
ALD
EPA
EPA
SUP
SUP
SUP
SUP
EPA
SUP
SUP
SUP
SUP
EPA
CHS
ALD
ALD
SUP
Timec
22:05
21:10
20:58
18:26
31:07
27:38
31:07
18:46
8:37
22:53
25:50
12:28
15:58
16:59
31:22
12:11
23:47
22:13
20:58
23:26
19:04
17:49
22:55
30:47
13:06
18:39
15:12
4:32
23:44
25:06
23:47
11:01
5:08
HW
106
106
106
114
258
234
246
100
142
120
134
67
100
100
128
55
120
104
166
166
164
92
250
180
132
132
130
136
146
120
120
86
62
m/z
106
106
106
69
225
117
143
43
142
105
119
41
69
43
128
54
91
104
131
83
164
92
173
180
97
97
130
101
110
105
105
43
62
Rel. Int.
45
45
30
100
100
100
92
100
100
100
100
100
85
100
100
100
100
100
100
100
75
65
100
100
100
100
97
100
30
100
100
100
100
'Internal standard 1 * bromochloromethane, 2 - 1,4-difluorobenzene, and 3 = chlorobenzene-
d5. bALD - Aldrich, ALF = Alfa Chemical, CHM Chemical Samples Co., CHS = Chmical
Services, EAS - Eastman Kodak, EPA - USEPA Respository, MCB - Katheson, Colemn, and Bell,
P&B = Pfaltz and Bauer, and SUP = Supelco. Detention time in ainutes and seconds.
17
-------
re
o
I/O
LU
0
QC
o
o
1
LU
^-
z
§
"-
^^
L_
§
o:
o
u
^t
^^
LU
(X)
o
(/>
;y
LU
VJ
^~
*J
"^
OC
^C
LU
^
*"^
^J
"
CM
LU
CO
^£
^~
1
a
d
^
C
~
r<
i-
VV
U
C
VJ
a
o
ro
C
ce:
i*
IhH
t.
4-
C
n
CO
c
o
O
V)
a>
j»
^
»
i-
<
<
rt
^^
<
I
O
0
CO
in
m
o
^
o
CO
in
m
o
o
o
o
o
CO
o
m
m
o
o
o
1 4
o
o
fw4
o
o
0
CO
o
o
m
in
CM
co
o vo
o ^
* 4
O CO
in
o »
CM
VO *"*
* '
O ^^»
O CM
CO
CM ^
VO
0 ^
VO
V-* x-^
^"
O CM
CM
in
0 «
00
o .
CM
0 ^
{J
VV
o
VV
u
«*
l*> 9t
in r-«
O CM O CM
CO
o .
00
o
vo ^
o> -co
o o ~-^
«* CO
o ^^ o -^
vo 'CO
o * o -^
VO ^-i
oo" ""? oo"
O -^ 0 '
^- r*^
o > o .
00 -CM
O O r-l
* ^
^. f^
o -^ o-^
in r-»
o o -~^
*f 00
o -~- o »
* -co
o -< o ^
* »
^- o
^3 ^^K ^^ ^^%
m ^~
^5 ^^ * ^3 ^*'
u
01
f~»
r*
V.
O 4^
c »-
w o
r~~ r**
O X,
J- t.
0 0
o m
CM
"^
o m
-*--'
*& ^"^
CM r^
^4C
CM -^
O «--
VO -~.
*»*
'
CM »
r» o
o -^
r-* -v
r- oo
O
i t »
CM VT>
-j
r~
f^
rf"
^O ro
»"^
CO ^
1-^
0>
^H ^^
00 CO
d"^
vo-^
vO Ot
O
CM * .
r~- in
o^~*
CM «
VO «*
O
I 1 >
l>^ CO
o
~^
vO ^~
o
r^~
in co
O
o »
f*. in
_*
0
r^. -^**
VO CM
O
vv
c
VV
N
C
W
00 -,
o o
d ^
CO t~-
0^
o
CM VO
o ^
o
CO ^-
o ^-*
d
^^
CM r-«-
O "* '
O
co r-.
o * *
d
*-**
co in
O » '
o
. .
CO ^~
0 ^"
*
0
*^
CO «
o-
*
o
CM in
0
o
^
J=
0
L
o
r*
^^
00
CM VV
« -JC
1 *->
M vv
^
3 ^
CM 10
2 VO*
t i
f-H «^
in -^
CO CM
^
vo ^
O
^ CM
t *
vo .
O VO
1 1
CM .
CO CO
i-^
00 ***
t-^ ^^
^^
I
00 »
VV
c
VV
N
C
w
o
o
s-
QO
^ o
o «
1 < ^"V
oo in
^«^
o
0»<
VO CM
d""
vO vO
O
CM ^-»
r-. co
o
VO v?
d~
in --x
f^> ^^
<*^
o
r^ -
vo in
«ta^
o
,-H~
^ CM
d """
r^ "^
CO VO
*^*
O
VO -^
VO CM
d ~~"
a>
c
4r>
o
^
0
_p*
^
5
o
E
o
^
CO
2 ^
CM
in ~-^
vo *
^4C.
- CO"
^"^
CM a>
^
O r>.
~~
CO ^111*
O VO
* 1
^ ^^
o^ O\
« **^
o
CO *^*«
OO I^
o
in .
o o
f i
^^
0
o
VV
C
as
-C
i
J-
CD
in
oo m co
o i .-
Ol <^^* ^3
a> co «
*-H y
i-<* e
c
0
C7* "-*- VV
VO CO
«M^
1 t
00 »
r>« CM
~"
O '-^
-''"'
in . *
** *
~~
00 -^
-^
CO *""*
VO CO
1
O "> CO .
CM 1»- *
O CM
vO
O "-"* ^" ^**
r~- «* CM
O "-^ ^-^
^.
o -^
CO
o -*
VO
o ^
CO
O "-^
in
O *-»
vo
0 ^~-
O ****
0
o ^
Mrt^
m
O v
d ^
m
0 -
CO
o **^
w
c
w
O JO
C r-
,
4-* 1 v
3 3
CO CO
1 1
-------
03
c
o>
o
t
II
,
V.
Cj
. CO
c
o
t
1 *
* in
£ in
r^-
a
*->
"* 0
^~ CO
O
l/l
a:
-*s ""*
^
o
*-» 0
£ °
o
J «^^
o ^
a
a>
i- 0
0
O> ro
a
nj
i-
co o
> LO
IM
c
a*
.a
r
>1
*->
OO
1
(J
a>
LO
O Cft
~_ -*
CO
O -" N
tTi in
CM
CM *
CO »
CM <*
*»^*
CO
LO --~
CO CM
CO
CM .
-* CM
CO
O1 --^
CO CO
CM
LO . ~
O^ CM
*M*
CM
LO ^
O CO
CO
co ~-~
O CO
CO
CM ~
< CO
co
a>
c
a>
fsl
C
a>
;£
>^
4->
3
CO
i
L-
a)
*->
o cr«
CO
o o"
i ^^
CO -^
CO '^
CM CO
«» ^"
in -^
LO OO
CM
LO ^
CM r-»
CO
I * ^-^.
LO O^
<*^
CM
co **^
LO *»
CO
u>
LO 1^
CM
LO
Csl OO
CM
r < ^-^
CM O
« 4
CO -
^* '"^
«» co
^~*
CO
a>
T3
r
L^_
^
I/)
r"
o
c
o
.a
^
L->
LO CM
r<
O
rSoT
*. ^
O
CO .
LO ^»"
o
f---^
LO LO
O
cy* * ^
0 ^^
CO --»
LO «*
^**
o
* -~.
0
CM -^
LO CO
O
CM --^
LO T*-
O
CM - -
l^~ LO
^~f
0
? * ^-^
LO CM
*~^
O
a>
T3
r~
J_
0
^
o
m
S-
a>
+j
o
ja
i-
(^
CJ
^5 *O
*«
"
o in
- r*
> 1
CM --v
-* CM
^^^
00 >
cr> CM
o
Cf> *-»
o
CO ^
O> CO
^1*'
o
^ --~
0 CM
-
O * ^
0
'-
LO --^
cr> CM
o
r-- ^-^
O *fr
*^
r 4
a>
c
O)
IM
C
a>
Jj
0
o
JE^
<->
"O
m en
. LO
o ^**
o *
CO 1-1
_rt ^
r~. - «
o ^~
^IC.
1 1 * .
9> 00
O
** *~*
\O LO
f^
o **-^
CM - .
in oo
o
*r '^
CO l~-
o
r-..-^
CM ^H
0 ~-~-
LO -.
1-^1
o ^
CM *-«
rt LO
^M**
0
a>
0)
r
o
AB
3
^3
t
fO
i
o
v.
o
5
i
PM 1Q
in f <
P*H
O '
g'^
00
^^**
o
r>> ^--.
* 2.
d
I-l *-X
m CM
o ^
, ^___
in CM
o
i * »
LO in
v^
o
< '*
in co
o
m .-v
m ^-<
0
LO ^-*
in t i
o
_ , ^^
LO in
^-^
o
CM/^^s
^- co
*^^
o
0)
c
.c
4?
g
rt
g
2
jQ
*r-
o
^^
<_>
«r LO
«
O v^
i-H --^
in i».
^.^
o
o *-»
m oo
o
* »
CO O
o ^
LO --^
CO t^
o
CO - *
^v*'
o
CM ^-»
* CM
*«^»
o
0)
c
.c
*-»
a>
2
O
-C
O CM
CM
O '
»»« ^^
0 0
o
o\ -^
o »*
o
LO ~
O 00
o
CTl ^
O CO
o
r^ ^*^
o ^»-
o
0
^^*
o
oo
O CO
o ^^
o\ *-*
0 ^->
o
CM »
CO
o
r~
^^
.c
O)
^_
>«J
JC
a>
ou
o a>
CJ ^)
1
CM
Co "*
f-^
CM
« LO
'* '
CO
* ^-~
* CO
CO
^.^
LO en
CM
r»» v
CTi LO
CM
CT> --~
in LO
.^-^
CM
LO ^^
o in
CO
** -^
*r r
CM
CM ^-^
LO LD
CM
cn »
Cfi ^
CM
CM - .
r»> i i
^^
CM
g
^
O
2
o
^^
c_>
m m
v**^
o
a>
3
C
^
**
O
u
S.OX
ro ^*i««
t^ O
^H
o
^- ^~.
LO CM
O
CM ^
in oo
o
CO *~~*
in oo
0 "^
CM ^.
LO CO
^«f'
0
oo ^~-«
in *»
0
CO -*^
«» LO
o
f^ ,
» CO
o
O '
LO **
o
CO "~*
LO ->
~_-
o
CD
c
ro
X
O)
.C
o
i.
o
!c
o
1
f-H
-------
CM
J3
C
40
*
O
r-*
CT
* 0
. CO
c
o
TI
*-
0
4->
"* 0
. ro
cc:
a< u">
o
4-> /-%
O o
l2 ~
01
(/> o
C«-^
r^
0 ,
CO
a
j-
0) 0
> m
c
.c
4_j
0>
{5
i-
0
J=
CJ
«~
* ^^x
o
CO *""^
^- o
F «
0
CM ^
in co
d""
cn -- -
*» co
«* ^
O
CO '"»»
^- m
* -
o
m * %
*^ ^f
»».-'
0
f-
* CM
0 """
cn
^* *O
*-_r-*
O
*4- -
^- CM
O
CO
** »
* ^^^
o
f^ *-^
>* CO
<^^>
o
w
c
w
"o
o
o
^
*_^
1
<\J
$sr
"^_J
o
Ov --^ -
* *
o
1 1 - V
m 1-1
o
CO -^.
* CM
«w^
o
»^. .
^- CM
O
<*
tf" ^^
» «« '
0
VO"-^
0
u
o
jf"
o
1
**
f-iS*
^^
o «-*
cn *~.
r-> VO
t SH^*
O
1^ .
^-. CO
o
vo-
^-i in
««^
o
vo
^-i vO
C5
vO *-»
r" * f*^
*- ij
0
vrt -^
1 CO
o
in - .
,-c vo
"^M^*
0
O '
^ CO
^^^
o
a>
c
10
a.
o
i.
a.
o
t-
o
r~
U
1
CO
$-
^
o
i
CM
^7
So
r-l
O '
in -»^
vO 1^
*-*
0
r-l .»<%
VO *
d"
*-
in co
* ^^
o
r^--^
in CM
*_*
o
if ^^^
in co
*~*
o
o -***
VO CO
0
VO *-*
m CM
-__J
0
r-*.
in CM
o
vo --.
vo m
*"_!-*
O
CO -~.
<» CM
« >l^
0
w
c
4-1
I
o
^^
^
o
1
CM
^20
r ^
F^
O >--
CM ^-»
in o
r>H
O '
^ » »
* *
d*^
O '^
« m
*-^
o
o -^
* CO
o
oo - .
co m
«M*
0
cn
CO *
d "^
VO '-^
CO CO
*-_J
0
t^^->
CO CM
O
*r -^
^" ^O
* '*«
o
CM - .
CO CM
««x
0
w
H^
r 1
vV
C
0)
IM
C
j%
o
w
o
r
U
r*
O
1
^r
r-T
o exj
o
LO CTl
O * '
o
in cn"
0 r-l
* ^
0
O * '
o
r-rT
o * ^
d
en co
0 ^
o
i
CM
I
O
o
J=
r
O
1
^^ o
" W
^H C
t/l 4^
C 3
fO JQ
I.
CO N
vo o
CM
vV
C
c
o
u
co .
f- CO
f «
CO -->
r» CM
CM
r-l ^--
CM . .
^^ ^f
CM
r-(
CO *^
in in
r*
1 1
cn . *
VO (^
r4C
W
c
re
JC
i *
i
o
i-
o
3
*£
TO
O
4-
o
JC
u
C5
-------
f\
JtJ
c
1
0
~
-J
V,
o
4 O
CO
c
o
ts m
i in
c -
o>
o _
c °
o ^H
0
c
> '"-
i ""^
4->
w 0
.^ CO
^^
ex:
_ m
tf^ if)
s_
o
t> °
£ °
0>
i/> 0
0 i
Q
i/>
d)
$- 0
O) CO
a
m
i-
a> o
^^ I.O
o
o
o
1 1
o
o
o
o
0
CO
0
o
in
in
IN co
CM
f-H *^*
10*
CM
CM .
VO CO
I-H
IN ^-^
CO -i
~^
ro
in CM
~
co ~-~
en in
>
co oo
r-*
rH *-~
co in
r-l
CO .
FN rH
1
CO .
"DO CO
f-H
w
c
10
+J
vV
O
O
r-~
f
U
a
i
r-H
f-T
ro CM
o ^»
«f CM
O
co o
O '
10 -v
CO CM
o
* ^-~
CO FN
O
en .
CO «*
O
co CM
o
CM ^N
CO CO
o
1 t ^-x
* VO
o
CO *x
CO CM
O
w
c
a>
o
0
r*"
JT
O
o
1
CM
4
tT"^ (^^
i^H
in to
^
2.C
-
co x
CM f-H
in >
o ao
:
o .
CM in
i i
o
in x
00 IN.
0
CO ""N
O i
,_, . ,
CM . .
O CM
i i
0)
c
a>
JC
4^}
0)
0
i.
o
r
JC
u
a
i
f-H
1
coco
VOIN.
^H,
CO vO
~
00 v
«* in
~
m --^
CM VO
00 '">
in *»
^
CM tN
WN
f-H m
^
h^ ^ .
CO f-H
f-H
vo <-N
CO <-i
f-H
ft)
C
0)
JC
+j
a>
s
o
jC
u
o
1
CM
f-H
1
v>
u
1 If
I»H
1 1 *< ^
* «
,-H
O ^N
f-H
00 'N
CM rN
00 *~»
o rx
'-
IN. ^
CO «»
f-H
f-H in
f-H
IN. ^>
9t in
0
VO ^N
f-H I 1
,_, . ,
<7i *~*
f-H CM
f-H
W
c
0)
JC
+j
a>
0
i.
o
fT*
U
r*
a
CM
r-H
t
M
C
(0
*" ?1
r^ CO
CM
r-l «f-f
IN in
r-l
^00*
'-"
r-l s^.
CM 1^
^
* -N
Oi Cf>
0
Cfi - *»
i in
rH
CM CM
O
<* -X
00 VO
O
CM *
o «*
^_,
CO '-v
O CM
^
0)
c
<0
a>
P
o
o
c
a.
0
i.
o.
o
r.
O
u
o
CM
r- (
* co
fH
O '
CM ^^
r vo
i.**
o
m co
o
O ^N
O
00 *"^
«* CO
o
rH»-^
* in
o
CO-N
in co
o
ir vo
o
in «~.
0
m .
in m
o
V"x *-*.
^- CO
0
0>
c
m
a.
o
t-
Q.
O
O
o
*
o
CO
1 1
^ ^.
« r*H
2^ ^^^
m co
o
o. -^
CO VO
o
CM -x
* VO
O
o »
0
tv_ ^
»* in
o
CO l-x.
0
VO ~
CO *
o
CM ^N
^»- m
0
CO x
^f CM
o
w
c
a>
a.
0
CL
O
o
JC
u
a
f-H
rH*
CM
O ^-i^
in in
o
J?*
o
VO -
m CM
0
o *-^
in vo
0
CM *
VO CO
O
in vo
o
*
in «a-
0
00 »
VO IN.
O
CM ^^.
in CM
o
0.
0
J-
Q.
O
0
JC
o
«
o
1
co
f-H
)
c
i;
-------
.o
c
ns
W
O
_J
^ 0
CO
c
o
*r^
19 *>
i» "*
c
VV
(j
c o
o --1
c
V
> ^
1 '
D
4->
* 0
. CO
a:
i* "*
O
*> o
0 0
v2 I~~l
CM
~ i/> O
co § £
< Q
a>
5- 0
O
O) CO
a
t-
a> o
> m
o
o
o
o
0
r- «
O
o
o
CO
o
o
in
in ..
in o
CM
o -^
vo
oo r-
0*"
m .
VO 00
*taX
0
i-» *~*
VO CO
o
CM »
3- CO
0 *~*
CM ^
^- CM
O
r-» .
«r^ ^f
*w^
0
CM ^
in CM
o
o ^^
in CM
^-n*
o
«r csi
o
*»
in «*
. ***
o
p~. ~
«» co
o
a>
c
a>
Nl
c
>
x:
i
r*
a
i
CM
_^
CO VO
o *~"
VO
CO in
0 """
VO
CO CO
o
CO IN
CO CO
»w^
o
lO
CO *
o
^ -^
CO CO
o
CO CM
O
yj . .
CO ff
*^*
O
CM -»
CO CM
X'
O
W
c
W
Nl
C
a>
f
>>
x:
I
5
i
^*
^
in *-*
* c^
o
o ^-»
CM 00
0*"
r-.^
VO 00
SM*
0
CM «-~
vo in
o ^^
CO »
^- 00
o
CM N
»* CM
o
p^ ~-*
*t CO
*~*
0
CM *^»
in co
o
o -
in i-i
*^
o
*r CM
0
,^ . .
in »»
^^
o
in ^-.
** CM
*^^*
o
W
c
at
M
c
ffc
r^
>>
itl
co m
IF^
O *-^
in s
CO CO
t i
o ^ *
VO <~»
*^*
O
10
CO *
0 *""
I*- *
CM VO
d ^^
CO CO
o
r-. ^
CM m
**^
o
vo ^
CO ^~
O
*t^
CO CM
^_^
0
u
vv
4-1
(V
r~
>».
t.
U
5
i
P
>^
x:
*->
CM »
r-. CO
CM
^-s
O CM
*M^
1 1
O ~
r-. oo
o
in -^
com
cJ"
r- ^
m vo
o
CM *
00 VO
^M"
o
10
vo rv.
d
vo *
VD co
o
in co
o
CO *"**
VO 00
o
vV
c
0)
o
HI
g
JD
£
o
x:
u
A)
X
a>
3:
vo m
CM
o ^^
^ ~-
«* CM
d <-"
ID >
co in
O '**'
CO
r-. co
d ~~"
CM v
in CM
*-*
O '* '
CO
f>» CO
o
CO ~
r- co
0 *~"
1^. CM
O
o »
CM in
^«^
o
CO «-^
VO CM
^^
o
0)
c
IV
x:
w
2
o
x:
0
x
* 22
V
-i CM
d >
O CM
0
«r -r*.
o o
vo
o
CO «.
^i in
^H*'
o
t ^^^
i in
^^
o
CM -^
^-< CO
d ^^
i i »^
-* VO
^^c
o
u
W
c
Q)
a.
o
t.
a.
2
o
f-
u
nj
X
VV
CM <*^ O -**1*
O r-» «T CM
O *~* CO
o *
r*. 1-1
CO
in *-^
vo in
CO
, i *
f» in
CO
CM ^ P^ v
O r- CM p-.
^«^ *
0 CO
CM > CM *-*.
> i VO VO vO
o co
r-. » CM
o i~» *r r-
o co
o in CM in
O CM
CO « CO
O VO «* 1^-
*^^ ^^^
o co
O-~- CM »
i i m r^ »^
**** <*^^
O CM
r- »
o in
^^
o
00 ^
O CO
d *"^
o-
^ »o
^i^
o
en v
O ^~
d~^
U O)
W C
c
i« O)
X E
W O
CO t
in -^
in r-
o *-»
^«^
<
00 »
VO CM
^,
vo -^
^- CM
~-'
VO s
^- co
l-H
CO ^"^
* CO
« Ml'
^
10
m co
*""
i i ^
in CM
^M*
IP i
'* CM
,-,
o »
l1^. «l.^'
VM^
l>^
3
^^
O
^^
O.
0
Q.
O
M
t-^
Q.
CM
O >
VO v
CM C>
1-^
0
CO -
CO CM
o
CO >
1<
O " "
CNJ O
O * *
CO -"^
^ a*
** ^
0
m .
CM m
*^*
o
>o-^
-^ CO
<*nnr
o
rv.-^
^^ GO
o
CO ~
CM «
I
O -
m *~*
CM CM
o
w
**~
i.
^
c
o
£
u
l«
f~
4_>
VV
-------
JO
c
re
2
o
* t
o
d 0
i CO
c
o
*J
* ««
i: m'
C
O)
(1
c o
0 *-
o
c
> 5
-r- "^
O
*->
W 0
. ***
v^
Q£
J« Sn
^ V*-t
V.
o
+* o
0 0
£ -
rtj
*ir"
C S
^ r*^
O r-l
Q
M
Ol
s- o
o
O) CO
0
10
s_
Ol O
> m
«t in
o
0
o
o
o
^fc
f-H
o
o
o
CO
o
o
in
in
f^j ^ ^
*>f ^ ^
r-l m
r-H
0-
r 1 ^-v
r-l in
*"'*
o
«* *
c CO
O
o ^
r-l VO
O
^M »**^
r-l CO
O
o -^
r-l VO
**
O
CO -*~^
r-l «*
d """
I-H .»
r-l CO
*~^
0
CM . .
r I r- 1
O
m .
i r^
«»
0
o
Ol
4->
re
r-
>»
i-
U
rO
jC
4->
p
>>
JC
4->
0)
f
CM »»
r-l r- <
d*~*
CM r-*
1 t^
^^»*
O
VO ~*
r-i ^>
O
O '-^
r-l IT)
o
CO *"*
^ 10
o
o -**»
i i m
^ --
o
^* ^^^
r-l in
d *"
r_ .
r-l ^>
d "^
CO ^'^
r 1 r-«
O
u
01
c
o
c
<«
4->
C
o>
0.
1
CM
>>
JC
4->
-*
r-^ -*- *.
p-i co
F^
t < «« r"
1-^ ir*^*,
C_T» CO
o ^
CO ^^^
r-l r>»
i-H
CO -*~^
-" *»
r <
00 --v
VT> r»-
t^_l-J
O
00 *--
o m
F-H
VO .
o *r
*-4
in *^^
CTl CM
O
CM *-*.
cn in
^^^
o
0)
0)
ro
JC
*j
0.
ro
:z
co *"*»
O 0
CM
o *
O V7>
O
CO ""^
O VO
o
m '-s
o in
d*^
CO -
O VO
o
CO *
O CM
o
CO ^^^
O CO
r-H
0 -
CO r »
o «
d *"
u
0)
r-
(.
4->
c
o
n
0
a.
O^B^
r"^»
O CM
CM -^
«M r-^
^r vo
CM
O -*
CM *
««
CM
CO "^
*~ in
CM
CO ^^^
t-« CO
I-H
^1* *~^
00 CO
I-H
1^ V
t-~ «*
, ,J
r-l
in -^
O CO
CM
CO ^^
CM CO
f-H
f**. ^ ^
cn CM
fH
a*
c
a>
N
C
5
>,
a.
o
s_
CL.
* 9'
al S"
d *^
P-4 -*"*«.
O^ CO
*^^
o
CO ^^
O> CO
d ^^
in ^
CO CM
o
00 CO*
d ^^
\n *-*
oo <<>
*-_r*
0
*
Ch CM
d "^
CO ^*-
cr> CM
d ^
^^ ^^^
00 «
o
0 --v
o m
*H^
r-H
a>
c
a*
&
! «n
LA --*^
1*? ^ ^
vo 1^
d*"*
< -~.
r~> i>»
>««^
o
VO »
VO *
d *""
«o --^
VO CO
d
O *""^»
VO CM
d ~~"
o -*-^
VO CO
^^J--*
0
CM "*.
VO CM
d""*
^« ^"^
VO CM
o
CO *^""*
VO CO
d ^
^"» ^^^«
vO «*
o
a>
c
re
jC
*j
01
o
JC
u
ro
J-
*J>
O)
i
CM
r-H
-'
^^
(^1.. .p*^
r^ * ^
* CM
r-H
O
in *~*
m oo
d "^
r-H ^-^
in co
o
CO * ^
"« T*-
d ^^
vo ^*»
*J- i-H
0 ^^
CO * ^
in vo
-*^
o
CO «-~
^- co
o
a>
c
re
JC
*J
0)
o
J.
o
JC
o>
CM
k
esj
**
^-<
LA -i
iff * ^
in oo
r-H
O
o *^
r- ^>
d ~~"
* r »
r~- ^~
d "*"
V*** ^^^
<
c
a>
JC
4-> .
a>
o
o
JC
u
ro
4->
a>
r
vo co
CM
O ~-"
-H r-^
O CM
rH)
CM - .
in m
d "^
VO CM
o *^
CO .
in co
* *«-*
o
r-l x-v
VO CM
O
in >
in *r
o
in co
o
O)
3
r
O
r
CO ^^^
»^
i"H
O *^^*
^"
a>
c
>*
o
00 » U
* CM
*«^
o
CM ^^
CO VO
d *~*
m »
* !>-.
o
in *^^
"* CM
O
l»» ^^.
* in
** *
0
00 -~>
* *
d "^
CO -
in m
<~~*
o
CO ^^^
in CM
o
CO
in to
**^
0
Ol
c
re
JC
+j
i
g
c>
s-
JO
U
1
-------
re
3C
O
_J
o
* °.
. CO
c
o
^
re "*
*-> "*
c
OJ
c 2
o
o
.^ ^^
o
*^
* 0
0 "
(/}
oc
Irt
5 ">
k
o
+-> o
0 0
re _i
* f i
CM ^~
l.l *>
y vo 0
* 0 £
< Q
Q>
i- 0
O
Q) CO
re]
k
m
<: in
o
o
o
1 1
o
o
0
o
0
00
o
o
m
in
SJS"
Cn OO
o
cnpT
*^x
o
r-4 * x
O CO
**
« 1
^^ ^* V
O *£>
i <
CSJ .*
^ CSJ
«M«*
o
^J *~ "N
o% ^-
o
h**>> *-*
CO **
d "^
in --^
VT> in
*~^
o
in *-.
CO CM
o
CM ^^
co in
^»"
o
O)
c
0)
N
C
Ol
.a
o
k
o
.c
o
.TV
k
r-
i
CM
t-^
in «
vo r^
o -^
CM -^
en vo
*^^
o
o .
p- CO
*w
0
Cn -^
vo m
o
en ~-.
in «r
*BM*
O
^" -*"^»
VO *»
o
CM v
VO *»
d *~*
en ^-»
in «*
*~~*
o
CO
in «<*
o
03 -^
VD m
***'
o
CM . .
in CM
* ~- _J
o
o>
c
re
.c
4^
O)
o
k
o
^
u
>r~
I.
p
f<
^
f.
lt
CM OO
o
CO "*
CO CM
*-*
O
00 s
CM ^~
O *^
1 I - N
CO CO
d ^~*
p^. *~-^
CM ^~
d ^~"
f_^ <^i^
CO CO
d *""
CO ^**
CM CO
1 ^»^
o
CO -^
CM CM
o
^_, , ,
CO 1^-
0
p>* ^^
CM CM
^fc ^
O
a>
c
re
.c
^ *
O)
o
i-
o
*^
u
J_
1
CM
.
r 1
CO -»
in CM
CM
VO ^
O «-'
vo ^
VO VO
^M^
o
f1^. ^ *»
(0 CM
o * ^
O^ """*»
m o
r <
O ^
0^ *^-s.
^- ro
o"^
O *^"
0 ^
p«. '"^
^ ^'
^-^
o
CM - .
*J- CM
O
^ -
^r in
*M*
O
in --»r
OO i
*-i»^*
o
0)
c
a>
JC
a>
o
$_
o
JC
o
T
H~
00 «
oo
0 *-~
ro »-^
CM in
o
in .
CM CO
o *^*
^* r**^
I 1 CO
r 4
O * *
CM ^^
^ oo
d "^
vO *-»
i i CO
> t <
O ^
0)
c
re
.c
^>
CP
g
o
J_
o
3
v^
o
J-
o
u
r-
f^
t-o/i
in .*-.
O "-J
in . .
r-H ^^
««
O
in s
'
r-l CO
* ^ **
O
a>
c
re
a.
o
i-
0.
0
j-
o
*^I
v^
^
i-
^-l~
1
oo
>
CM
r
in «
CM
ff 4 ^«^
O P^"
» 1
CM
i i ^^
m oo
*^^
<<
9-* ^"^
oo *
~
p » ^^*
CO CM
t *^^
1-1
CT\ ^^^
CM in
^"~"
00 * »
OO CM
r (
in ^-v
CO I-H
>»*
i i
OO **"»
en co
* *" ^
in .
i CM
r <
CM -
0)
c
a>
SI
c
0)
f
^^
.c
a>
E
T"
S_
H-
i
»
CM
i <
«M <
in oo
^H
vo in
*M^
t~4
00 »
vo oo
*M^
F^
in . ,
^ CM
~
en ****
CO OO
^^
"
CO <»
00 *
~^"
CM -
in co
.-< ' '
o »
in <»
*«MX
1
r ^^,
u- in
^"
co >
vo *^
^^^
^^
a>
c
a>
si
c
07
XJ
r
^^
C
0)
g
f-
fc.
1
1
m
CO
r>H
en in*
e>»
0 »
CO CM
rt ""**
CO <^"N
vD r^
^^
O
CTi ^
O VO
* -
in -~^
r~- in
*-*
o
oo ^
oo in
*'»*
r^
O *-^
CO ^0
o
ro ^^»
cn to
* *^-*
0
O CM
r I
f I *«^
at
re
a>
u
re
^
^>
^
^^
in o
CsJ
O SM"
r-« - *.
t'"- ^"
* *"*
o
CO -"^
u-) o
d ^>
uo .
f""» Cn
^H^
o
0 -
VI? VO
d *^
VH ^^^
l«. VO
o
VO
^ar vo
*M^
0
I < ^-»
* CO
o
CO
u*> i
* i
o ^ ^
p.. .
in in
*»'
o
cv
o
^
o
r^
^
u
c
^»
r- ^
^^g
cv cy «/i
+j <-» re
re t cu
o o I
i- 0.
r- 0> C
0. 1- O
*£ §
^**«*
? i
S = c
d5 rj
S 3^" c
^° o
r W
^S t
"3 "° o
i?**
C 0 0 .
Ck. O) 1
«/> O> 3
0) C
*J 0 0) 0
«* -- (-> O
o ^j re co
*- re k
ex 4^ i/> re
0) c 3
* O) i >>
P«- C -i- C
' 0 0
<-> o
Q. ^_> 4^
^s-s^
a> * c <^
o ^ o>
""^* . ^
f" O^ ni O)
y-g t. ">
4j ^^ T)
a> 4j o> 5
k ** S *
^-^^ s
-C S "* *"
v^-^^,
CM ^j ^J r*
"^^1 «*> ?
V> a " ^-
"^ o» r*
JD » 1 ^^
f^ ^^
P o
s_ ^- >-
o -,2 o>
O> -f- 3
4j c V re
o. o> '. u
o> si *NJ o>
5 «= . -o
X 0) t
*»'*- m
>^ <\j
Q, x: wi A
^ tucc *>
W "O f *
"^ C r-
-^ re «^ o*
« ." g
*» Q.
(^ O
** O) ' k
_o> re ^ o
cw'cl^S
o flu ^^ w
k re
i/> * X
4- «o g o>
2%*~' o
^* Q) CV ^
'm «= ** O
p. 4) w '|
** C W
_ cu *-> u.
5 -o c c<
O r CU
^^ E ^*
T» JC »- O
0> 4-» k
M 0) 0) O
re E Q.OO
co - x oe
re TJ cun
-------
TABLE 3. DETECTION LIHITS OBTAINED FROM METHOD RANGE STUDY
Lower limit of
linear range
Analyte M9/L
Acetone
Acrolein
Acrylonitrile
Allyl chloride
Benzene
Bis-(2-chloroethyl) ether
Bromobenzene
Bromod i chl oromethane
Bromomethane
2-Butanone
n-Butyl benzene
sec-Butyl benzene
tert-Butyl benzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
2-Chloro-l,3-butadiene
Chlorodibromomethane
Chloroethane
2-Chloroethyl ethyl ether
Chloroform
1-Chlorohexane
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
l,2-Dibromo-3-chloroprepane
1,2-Dibromoethane
Dibromomethane
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1 ,4-Dichloro-2-butene
Di chl orodi f 1 uoromethane
1,1-Dichloroethane
1,2-Dichloroethane
1 , 1 -Di chl oroethene
cis-l,2-Dichloroethene
trans-1 , 2-Di chl oroethene
Di chl oromethane
1, 2-Di chl oropropane
170
100
170
10
3.0
55
3.0
3.0
5.5
100
1.0
1.0
1.0
3.0
3.0
3.0
5.5
3.0
30
30
3.0
3.0
30
3.0
3.0
10
3.0
3.0
3.0
3.0
3.0
170
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
Empirical Calculated
EDL MDL
M9/L M9/L
170
55
170
5.5
3.0
55
3.0
3.0
5.5
30
1.0
1.0
1.0
3.0
3.0
3.0
5.5
3.0
17
30
3.0
3.0
17
3.0
3.0
10 >
3.0
3.0
3.0
3.0
3.0
55
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
200
10
40
2
0.2
10
0.7
0.2
2
10
0.4
0.4
0.8
0.3
0.2
0.3
2
0.2
5
9
0.1
0.1
10
0.3
0.3
2
0.2
0.2
0.5
0.4
0.5
30
1
0.7
0.4
1
1
0.7
0.8
0.7
Nondetect
Cone.
W/La
100
30
100
3.0
1.0
30
1.0
1.0
3.0
10
0.3
0.3
0.3
1.0
1.0
1.0
3.0
1.0
10
10
1.0
1.0
10
1.0
1.0
5.5
1.0
1.0
1.0
1.0
1.0
30
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
(continued)
25
-------
TABLE 3.
Lower limit of
linear range
Analyte pg/L
1,3-Dichloropropane
1,1-Dichloropropene
cis-l,3-Dichl oropropene
trans-l,3-Dichloropropene
l.?-Dimethylbenzene
"etlv'jenzene
iir.j , methacrylate
Ethyl benzene
Hexachlorobutadiene
Hexachloroethane
Hexachloropropene
2-Hexanone
lodomethane
Isopropyl benzene
p-Isopropyltoluene
Methacrylonitrile
Methyl methacrylate
4-Methyl -2-pentanone
Naphthalene
Propionitrile
n-Propylbenzene
Styrene
1,1,1 , 2-Tetrachloroethane
1 , 1 ,2, 2-Tetrachloroethane
Tetrachloroethene
Toluene
Tr-ibromomethane
1,2,4-Trichlorobenzene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethene
Tr i chl orof 1 uoromethane
1,2,3-Trichloropropane
1,2, 4 -Tri methyl benzene
1 ,3, 5-Trimethylbenzene
Vinyl acetate
Vinyl chloride
3.0
5.5
5.5
5.5
1.0
10
10
1.0
3.0
5.5
170
30
5.5
3.0
10
30
30
30
3.0
170
1.0
3.0
3.0
5.5
3.0
3.0
3.0
3.0
3.0
5.5
3.0
30
17
3.0
3.0
55
5.5
Empirical
EDL
M9/L
3.0
5.5
5.5
5.5
1.0
1.0
10
1.0
3.0
5.5
170
30
5.5
3.0
10
30
30
30
3.0
170
1.0
3.0
3.0
5.5
3.0
3.0
3.0
3.0
3.0
5.5
3.0
30
17
3.0
3.0
55
5.5
Calculated
HDL
M9/L
0.3
0.5
0.9
1
0.2
0.6
7
0.4
0.7
2
50
6
2
0.4
0.7
9
5
6
0.5
40
0.2
0.4
0.2
1
0.2
0.2
0.3
0.3
0.2
0.3
0.1
10
2
1
0.3
4
0.6
Nondetect
Cone.
W/La
1.0
3.0
3.0
3.0
0.3
0.3
3.0
0.3
1.0
3.0
100
17
3.0
0.3
5.5
17
3.0
17
1.0
100
0.3
1.0
1.0
3.0
1.0
0.3
1.0
1.0
1.0
3.0
0.3
17
10
1.0
1.0
30
3.0
aNondetect concentration
not detected.
the highest concentration studied at which the analyte was
26
-------
TABLE 4. ACCURACY AND PRECISION OF ANALYTE* MEASUREMENTS
IN SPIKED AND UNSPIKED SAMPLES
POTW Sludge Leachate
Water With Fulvlc Acid
Unsoiked
Spike Concentration1*
High Low High Low
Meas. Cone. Bias
Analvte (*q/L)
Acroleinc
Acrylonitrile0
Ally! chloride
Benzene 7.5
Bis-(2-chlorgethyl) etherc
Bromobenzene" 1.9
Bromodichloromethane
Bromomethaned
2-Butanonec
n- Butyl benzene" Trace
sec-Butyl benzene^ 6.2
tert-Butylbenzene° Trace
Carbon disulfide
Carbon tetrachloride
Chlorobenzene 7.1
Chi orodi bromomethane
Chloroethane6
2-Chloroethyl ethyl ether0
Chloroform
1-Chlorohexane
Chloromethane
2-Chlorotoluened
4-Chlorotoluene
1,2-Dibromoethane
Di bromomethane
1 , 2-Dibromo-3-chloropropane
1,2-Dichlorobenzene
1,3-Dichlorobenzene Trace
1,4-Dichlorobenzene 1.7
Dichl orodi fluoromethane" 7.1
1,1-Dichloroethane
1,2-Dichloroethane
1,1-Dichloroethene
cis-1 ,2-Dichloroethene
trans- 1,2-Dichloroethene
Di Chloromethane 6.0
1,2-Dichloropropane
1 , 3-Dichloropropane
1,1-Dichloropropene
cis-1, 3-Dichloropropene 3.7
,% Bias
(RSD)
-1 (12)
12 (8)
-1 (30)
12 (4)
0 (6)
48 (3)
17 (3)
62 (38)
-5 (7)
20 (4)
-1 (5)
-5 (3)
16 (11)
H (5)
26 (3)
13 (4)
32 (39)
30 (8)
26 (7)
20 (4)
28 (23)
26 (4)
29 (4)
5 (5)
11 (5)
17 (5)
12 (3)
20 (3)
18 (2)
30 (55)
22 (7)
1 (5)
10 (10)
20 (7)
20 (9)
16 (8)
26 (13)
4 (4)
6 (6)
22 (4)
,% Bias
(RSD)
0 (7) -
-2 (12)
22 (8)
3 (6)
2 (10) -
-17 (4)
-1 (3)
37 (14)
-11 (25)
0 (5)
-33 (5)
-5 (3)
16 (10)
1 (6)
3 (2)
-7 (7)
38 (11)
-18 (10)
10 (4)
0 (9)
34 (22)
59 (9)
3 (5)
-4 (4)
-1 (4)
,% Bias
(RSD)
10 (12)
6 (8)
24 (8)
25 (3)
H (10)
65 (4)
26 (2)
81 (10)
-9 (6)
49 (6)
35 (4)
20 (5)
28 (8)
22 (2)
35 (3)
13 (4)
93 (11)
,*
(RSD)
15 (5)
-7 (4)
20 (10)
4 (6)
3 (10)
-4 (6)
2 (3)
50 (10)
-5 (8)
3 (3)
2 (2)
-4 (2)
13 (5)
13 (3)
4 (2)
-1 (7)
23 (23)
25 (13) -22 (15)
27 (5)
32 (3)
2 (7)
21 (29)
36 (4)
5 (5)
13 (3)
-5 (12) -18 (9)
0 (4)
-2 (3)
2 (3)
64 (24)
19 (8)
-3 (2)
15 (13)
5 (6)
10 (8)
67 (4)
5 (6)
-5 (4)
2 (7)
-22 (3)
21 (4)
32 (4)
33 (4)
3 (20)
27 (9)
9 (4)
14 (11)
26 (7)
33 (8)
15 (8)
18 (2)
8 (4)
22 (3)
27 (4)
19 (6)
7 (8)
33 (23)
3 (3)
6 (3)
-4 (6)
-1 (4)
-7 (17)
1 (5)
2 (3)
4 (4)
33 (35)
19 (10)
-1 (7)
22 (10)
14 (3)
12 (6)
22 (4)
8 (3)
1 (6)
11 (4)
-1 (2)
(continued)
27
-------
TABLE 4. ACCURACY AND PRECISION OF ANALYTE' MEASUREMENTS
IN SPIKED AND UNSPIKED SAMPLES
POTVI Sludoe Leachate
Water With Fulvic Add
Analvte
Unsplked
Meas. Cone.
Spike Concentration1*
High Low High Low
Bias,* Bias,* 8ias,% Bias,*
(RSD) (RSD) (RSD) (RSD)
trans-1,3-Dichloropropene
trans-1,4-Dichloro-2-butenec,d
1,2-Dimethylbenzene
1,4-Dimethyl benzene
Ethyl methacrylatec,d
Ethyl benzene
Hexachlorobutadiene
Hexachloroethane
Hexachloropropenec
2-Hexanonefc
lodomethane
Isopropylbenzene
p-Isopropyltoluene
Methacrylonitrile0
Methyl methacrylatec
4-Methyl-2-pentanonec,d
Naphthalene
Propionitrilec
n-Propylbenzened
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
Tribromomethane
1,2,4-Trichlorobenzene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethene
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl acetate0
Vinyl chloride
Mean
4.4
13
Trace
Trace
Trace
Trace
Trace
Trace
2.8
1.2
19
1.4
20 (5)
72 (15)
22 (2)
9 (3)
-6 (3)
62 (4)
5 (12)
60 (6)
83 (5)
36 (24)
10 (9)
26 (2)
10 (3)
-55 (55)
34 (6)
-24 (51)
-8 (7)
-3 (9)
22 (2)
29 (3)
43 (2)
-8 (6)
15 (4)
33 (2)
11 (5)
5 (4)
7 (5)
5 (5)
9 (3)
5 (5)
36 (3)
-13 (5)
-29 (29)
26 (52)
-8 (4)
-52 (14)
0 (4)
3 (3)
-24 (4)
19 (4)
7 (14)
3 (4)
-46 (40)
-14 (8)
12 (4)
1 (4)
-2 (3)
-16 (8)
-18 (6)
-47 (5)
44 (8)
-6 (12)
10 (3)
-3 (3)
-2 (3)
-7 (5)
-4 (6;
8 (2;
-11 (8)
7 (6)
7 (6)
-7 (4)
9 (3)
-5 (6)
56 (4)
8 (3)
-1 (5)
26 (12)
16 (10)
23 (5)
50 (13)
30 (4)
20 (4)
7 (4)
77 (4)
23 (12)
60 (6)
92 (8)
2 (12)
20 (11)
51 (4)
34 (5)
11 (6)
39 (11)
15 (12)
-5 (7)
-2 (8)
57 (4)
36 (4)
48 (3)
-5 (9)
25 (5)
37 (4)
8 (6)
15 (5)
14 (3)
8 (5)
20 (2)
4 (7)
56 (4)
59 (19)
19 (6)
-6 (10)
-9 (7)
-59 (15)
4_(3)
13 (3)
-27 (10)
4 (2)
4 (10)
0 (7)
-9 (19)
-18 (13)
15 (5)
0 (3)
0 (3)
-5 (5)
-17 (10)
-16 (10)
-2 (10)
-6 (5)
-5 (2)
-4 (5)
-1 (3)
-7 (8)
1 (1)
5 (3)
-10 (11)
3 (7)
21 (3)
0 (8)
12 (3)
-8 (9)
0 (2)
2 (2)
-5 (4)
33 (7)
3 (7) 25 (7) 3 (7)
aData for acetone, 2-chloro-l,3-butadiene, and trichlorofluoromethane not
included, because those compounds did not have acceptable linear ranges.
bExcept for poorly purged analytes, high concentration was 200 ug/L, and low
concentration was 20 ug/L. For poorly purged compounds, high concentration
was 2000 ug/L, and low concentration was 200 ug/L. cPoorly purged compound.
"High concentration outside of linear range. 6Low concentration outside of
linear range.
28
-------
9
V)
$
5
2
S
Percen
& § i
! * -
* " I
< U. L.
Ot *-
II
day
IM
11
!GS»irtO«jruW'«^«'Op>W«h.«>*N-K»A/'*KlNJ*-IM'*'**O1Ow- «Olrt^«)N-PO»OfNJ»^^^»n^lQNr
S g K « 8 W S fe S S iS K fc ft 8 K 5 8 5 5 S 5 5 P R fe 8 8 & 8 8 E
ooooc3^oo'o»-'ijoc>odor>!oc>doooo«-^«-^^o»-^«-^
Kim'O«-'O»-«-^'O^*'**-K»s»*-»A^^rO'W^'>J»rv'OKi«*mojfOS.Ko
^w<^^y*v*f%'s*^^vs^>^vv«T-<-'%^^^v*-^^**^^w»>-|2»
S>s.«N(Mi';nji£i<-incom>-rMKi~fOKi»ir\«)N.-«Kii/>(M»i>JmM)4
or>J'OOKj'Oeooin«-_Kjin«oin~»«->»««^-*^«-ii«moo«-oeo«
OO«-OO«-OOO«-r»JK»rslO*-OOOOJOOOOOOO«-«-»-OO«-
~S22PcSSSccC£°''~St''x'o*"s"C>~CC*~pg*"oS^^
*~ \* ^ >^
S«OsjK\'-srp^cofOh*phtr»»->»**oo«-c«ocp>OK»iAKir*.'V'io^&.
ocM^on-oK>oinKiin<\i'Oom4r-fnmio3wF'-mKir-'-«-*-«-dd«-
eoo-o«o-OCXfsjf~rg(\j^o-iNj>»«Of^o-«>-«« S-C Ki«o»\f>com««
-*co>ro>rg<--*io^<\jo>eo>>»K)Kioe4-OK-in*»(Mi«rgnjetoi<rin»c>f4';>«Ki»»oSoin
od«-oc>«-ood»^«-Kiradddc>drgdo'c5dddddd»-d"-»-
*52iS£SS2*~CiC">l'1*S^'*"~<0*>*I^*2-%iri^~K5S'^
N^ ** N^ N^ ^^ ^^ **
a8S5S5Ss8aR)SatSRK538R;5S!S!SSS*fa8a«5
OO*-OO*-OOO"-rgK»IMOOOOOfs*OOOOOOOO^*-OO»-
Ki *- ^ ** >TO«ONmK.KK-O^C^(XNKkOk^e^^tAmOmKN-P^«O%r\G'
N^VX XX S^S^ N«r ^ tv ^^
S 8 y S 8 S 5 S 8 S $ S 5 3 fc S 5 8 R ^ S 3 5 S R fe * 8 &
od«-oo<-ooo<-*-Kinjdooododdddddd'-'-
^* ^*
u u
1
-«- » i g?*o f i ..Is iifiii
*« 8 I "!&;;«. I - !tii^8ili-e
Gzfe 55i5fiiii?|i8*-iniiBi***
^^4^* fN££CK-«X-«-t»C
c~o»"S-*c-ai'*f'0*'*
C'M-C'Si«>-3«
^ ^'QoBf&A <
X H I f E 3 3 ' <
'CWOOOttAUl
"" XjcovuODOCrgD^OiM^r
29
-------
gi
N,
< u. t-
I
1
«
t:
«->j£jJ£K>2MJ2».g'OK«O>j;K(Jjj2«fX«»|gj:»w«>.Mj;^-»
I
.
OOOOOOO
^-^OOO'-OIMOO
ooQ,^.fO*-'o^^tf*O'r'-^i-oinO;£:£K>otAft»r'>i9>«-B*"i»
vwflOvw-KOK^N**- O-O«-«-«-*V«Or*Jw*^i-'fg'^«-«-«-«- vx v «- s^m
r- %»U1fW'O^O*V*MM'»r«-«*- 'O
-«s^n^^-
m^tft^inmr-iri'OinfM
«-<\jBK!K».»-*'->»~r-->»p'Oo»'O»>-<\j«o»-!ror^*-T- Ki^tmni
o«-*-ooooooooooooooorg<- ooo*-Or-cooo
l*1~CK"^'°'y'tSCC*"CCt*f^S2C^S'v''l>*
O^ *- ru r- cj «o KI
o«-ooooooo
N-o«n«>K>rmao-«
^ o"~S » £ C
'MOklAK)^«K«OOirt>«O^^
C^^
m
»-«-OOOOOOOOOOOOOOOKI-- ooooo«-o
nj*->-ooooo*-ooooo
« n -a -o o r- »
5r $ £ £ £
0*-*--OmO»»i/iK»00>^N.-e«O>«'0
>-OOOOOOOOOOOOOOOOKI>->-OOOOO*-OOOOO
f ? .
1 ? » 1
o
*fw
BB
1 : & S i i S i
mm? ii
«M-
**
i 5s
t
ill
°*~ B ° ° ° o *~ ? *? ? "x. ">!.
c »-»->- i-
30
-------
*
a. o
I
a
§
I
_a
o
1
o -o
$ S
0 0
in in
r j
o o
2 C
S £
0 0
- h.
IM ~»
in CK
o o
£ ^
o -
Kl CO
TJ CO
O O
tfN N*
S o>
o o
o f-
S 5
wthane 0
chlorobenzene 0
u »
u
s
3
o
CO
s
o
N.
S
O
r-
s
o
s
£
o
in-
S
o
in
8
o
o.
fc
0
I
8
u
k
»-
-.
-
a
0
h»
CM
O
IM
fM
O
Kl
CO
IM
O
rvj
o
-co
SI
o
ex
a
o
m
IV
chloroethane 0
IM
-
CO O
Kl tf\
in *-
0 0
0 0
5 S
o o
- K
3 ^
0 0
IM O
O 4
in «-
o o
(M m
in «-
o o
N. h>
K rvj
o o
K &
S P
o o
o o-
5 2
Mthene 0
chloropropane 0
^ «
£ Kl
C «
..
> IM
m m
"
t n
i5 S
- IM
IM «-
S S
«- rj
r- K
(M O.
Kl O>
«- IM
C «
«- IM
in rvi
ax
<^- e
-* m
$ S
«- CM
^ ^
fM £
f\J *
methyl benzene 1
methylbenzene 1
* in
IM Kl
S
g:
o
W
"
0
x
in
3
"
in
o
O-
-0
"
-o
in
K.'
^
U
*
T
o
ru
o-
in
0
rg
2
0
o
3
o
>
o
o
o
o
0
2
0
s-
R
o
-
g
o
o
_
!
t>
1
7
t
k!
^
i
0
^
U
_J
cW
tV
4-
X
]
X
|
o.
is
f.
*
c
i
f
Si
"e
RF from triplicate anal)
i
l
oncentration,
u
*
'5.
c
-o
i
V
i
**-
L.
£
u
1
i
t_
t
y
U
>
3
i*.
P
1)
5
t
{
.
?
it* ware performed on Da)
i
t
&
1
"a
if
s"
If
1 :
KI a
- c
II
r*
ti
? **
t> ~
u
5 f
rP 3
ti
xi
S &
«
> O
I £
U
S 5
a c
o I
I T>
« =5
8. |
* 3
u it
J S
1 1
i £
11
£ i
concentration experiment
>f luoromethana not Incluc
^ 2:
l!
eAverageand RSO
u.
X
O
*
hh.
IM
V
«
u.
cc
X
°«
o
o
o
tl
»-
o
1
u
o
*v
o
H-
o
1
!
i
t
i
?
?
*
»«-
o
|
o
g
31
-------
APPENDIX A
CALIBRATION CURVES FROM METHOD RANGE STUDIES
-------
Acetone
JC
o
a
11 -
10 -
9 -
8 -
7 -
6 -
5 -
4 -
3 -
2 -
1 -
0 -
2 4
(Thousands)
Anolyte Concentration (ug/L)
Acrolein
5 -
a
o
H
a
u
3 -
2 -
1 -
2000 4000
Arolyte Concentration (ug/L)
A-lo*
6000
-------
Acrylonitrile
Jt
a
a!
o
>
c
a:
12
11 -
10 -
9 -
8 -
7 -
6 -
5 -
4 -
2 4
(Thousands)
Analyte Concentration (ug/L)
Allyl chloride
JC
o
o
o
-------
JC
o
0.
a
7 -
6 -
5 -
4 -
Benzene
2 -
200 400
Analyte Concentration (ug/L)
600
Bis(2chloroethyl)ether
JC
a
a
d
2.8
2.6 -
2.4 -
2.2 -
2 -
1.8 -
1.6 -
1.4 -
1.2 -
1 -
0,8 -
06 -
0.4 -
0.2 -
0
2 4
(Thousands)
Analyte Concentration (ug/L)
A-3
-------
Bromobenzene
a
a
>
IP
a
a
IE
1 -
40 60 80 100 120 140
Analyte Concentration (ug/L)
160
Bromodichloromethane
1
n
c
a
o
o
200 400
Analyie Concentration (ug/L)
A-4
600
-------
Bromomethane
1
a
5
P
o
o
1C
11
10 -
9 -
8 -
7 -
6 -
5 -
4- -
3 -
2 -
1 -
0
200 400
Analyte Concentration (ug/L)
600
2Butanone
4 H
O
O
n
o
c
IT
2 4
1 4
2 4
(Thousands)
Anolyte Concentration (ug/L)
A-5
-------
J£
a
a.
nButylbenzene
60 80 100
Analyte Concentration (ug/L)
120
140
160
a
a
a.
y
a
c
secButylbenzene
40
60 80 100
Analyte Concentration (ug/L)
A-6
120
140
160
-------
11
Jt
o
o
0.
_
a
tertButylbenzene
40 60 80 100 120
Arvolyte Concentration (ug/L)
140
160
Carbon disulfide
JC
o
41
a.
a
o
a:
200 400
Anolyte Concentration (ug/L)
A-7
600
-------
Carbon tetrachloride
JC
o
s.
o
a
5 -
4 -
3 -
2 -
1 -
8
200 400
Analyte Concentration (ug/L)
600
Chlorobenzene
JC
a
n
D
160 200
Analyte Concentration (ug/L)
A-8
240
280
-------
2Chloro 1,3butadiene
a
o.
o
v.
1.5
1.4 -
1.3 -
1.2 -
1.1 -
1 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1
200 400
Analyte Concentration (ug/L)
600
a
o
CL
_
a
o
or
1 -
Chlorodibromomethane
200
400
600
Concentration (ug/L)
A-9
-------
Chloroethane
0.
I
o
X.
5 -
4.5 -
4 -
3.5 -
3 -
2.5 -
2 -
1.5 -
1 -
0.5 -
0 -
200 400
Analyte Concentration (ug/L)
600
a
o
a
§
2-Chloroethyl ethyl ether
0.8
1.2 1.6
CTSouaands)
Analyte Concentration (ug/L)
A-10
2.4
2.8
-------
Chloroform
o
0.
a
32
30 -
28 -
26 -
2* -
22 -
20 -
18 -
ie -
14 -
12 -
10 -
8 -
6 -
4 -
2 -
0
200 400
Analyte Concentration (ug/L)
600
1-Chlorohexane
a
a
d
o
c
(t
200 400
Analyte Concentration (ug/L)
A-11
600
-------
Chloromethone
Jt
a
a
a
a
IE
5 -
4.5 -
4 -
3.5 -
3 -
2.3 -
2 -
1.5 -
1 -
200 400
Analyte Concentration (ug/l_)
600
2-Chlorotoluene
a
o
a.
_
0
o
200 400
Analyte Concentration (ug/L)
A-12
600
-------
4Chlorotoluene
e
«
a
o
a
K
400
600
Analyte Concentration (ug/L)
1,2 Dibromo3chloropropane
JC
a
H
o
P
o
I)
IT
1.3
1.2 -
1.1 -
1 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0
s
200 400
Analyte Concentration (og/L)
A-13
600
-------
1,2Dibromoethane
JC
a
7
o
200 400
Concentration (ug/L)
600
Dibromomethane
JC
a
e
1
o
P
o
o
a:
200 400
Anatyte Concentration (ug/L)
A-14
600
-------
1,2Dichlorobenzene
e
a
«
E
40 80 120 160 200
Analyte Concentration (ug/L)
2+0
280
1,3Dichlorobenzene
JC
a
o
H
I
o
o
IT
160
Arxjlyte Concentration (ug/L)
A-15
240
280
-------
1,4 Dichlorobenzene
JC
o
a
a:
40
80 120 160
Analyte Concentration (ug/L)
280
JC
a
o
H
trans1,4Dichloro2butene
0.9
(Thousands)
Analyte Concentration (ug/L)
A-1G
1,1
1.3
1.5
1,7
-------
Dichlorodlfluoromethane
o
Q.
5
o
a
2.3
2.2 J
2.1 -
2 -
1,9 -
1.8 -
1.7 -
1.6-
1.5-
1.4 -
1.3 -
1.2 -
1,1 -
1 -
0.9 -
0.8 -
0.7 -
0,6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1
a
a
B
20 40
Anolyte Concentration (ug/L)
60
1,1 Dichloroethane
JC
a
s.
a
o
a:
200
Analyte Concentration (ug/L)
A-17
400
600
-------
1,2Dichloroethcme
3.S -
JC
o
0.
o
_
o
2.6 -
2 -
1.5 -
1 -
0.5 -
200 400
Analyte Concentration (ug/L)
600
1,1 Dichloroethene
a
o
a
D
>
200 400
Analyte Concentration (ug/L)
A-18
600
-------
cis1,2Dichloroethene
16
15 -
14 -
13 -
12 -
11 -
10 -
9 -
8 -
7 -
6 -
5 -
4 -
3 -
2 -
1 -
0
200 400
Analyte Concentration (ug/L)
600
trans 1,2Dichloroethene
JC
a
a
V
>
t5
o
7j
IE
14 -
13 -
12 -
11 -
10 -
9 -
8 -
7 -
6 -
5 -
4 -
3 -
2 -
1 -
0
.4"
200 400
Analyte Concentration (ug/L)
A-19
600
-------
Dichloromethane
o
e
200 400
Analyte Concentration (ug/L)
600
1,2 Dichloropropane
JC
a
a
a.
o
o
E
200
Analyte Concentration (ug/L)
A-20
400
600
-------
J£
a
a.
s
a
1 -i
1,3Dichloropropane
200 400
Anolyte Concentration (ug/L)
600
1,1 Dichloropropene
JC
a
o
a.
200 400
Analyte Concentration (ug/L)
A-21
600
-------
cis 1,3Dichloropropene
JC
a
o
It
5 -
4 -
2 -
1 -
200 400
Analyte Concentration (ug/L)
600
trans1,3Dichloropropene
a
o
a
200 400
Analyte Concentration (ug/L)
A-22
600
-------
1,2-Dimethylbenzene
JC
o
o
a.
o
a:
200 400
Analyte Concentration (ug/L)
600
1,4Dimethylbenzene
3.5 -
J -
Jt
o
Q.
«
>
a
IT
2.5 -
2 -
1 5 -
05 -
200
Analyte Concentration (ug/L)
A-23
i
400
600
-------
Ethyl methacrylate
JC
a
9
o
s.
G -
5 -
4 -
3 -
2 -
1 -
0.2
0.4 0.6
(Thousands)
Analyte Concentration (ug/L)
Ethylbenzene
JE
a
o
H
o
cc.
200 400
Analyte Concentration (ug/L)
A-24
600
-------
Hexachlorobutadiene
-X
o
3
S.
4.5
40 00 120 160 200
Analyi* Concentration (ug/L)
240
280
Hexachloroethane
a
o
H
7 -
6 -
5 -
4 -
,t
200
Anolyte Concentration (uq/L)
A-25
400
600
-------
Hexachloropropene
JC
a
2
V.
1 -
0.4
0.8
1.2 1.6
(Thousands)
Anatyte Concentration (ug/L)
2Hexanone
JC
o
41
y
o
a
a:
12 -
11 -
10 -
9 -
8 -
7 -
6 -
5 -
4 -
3 -
2 -
1 -
0
2 4
(Thousand*)
Analyte Concentration (ug/L)
A--26
B
-------
lodomethane
J4
32 -
30 -
28 -
26 -
24 -
22 -
20 -
18 -
16 -
14 -
12 -
10 -
8 -
6 -
4 -
2 -
D
200 400
Analyte Concentration (ug/L)
600
Jt
a
c
a
a
«j
a:
Isopropylbenzene
30
120 160 200
Analyte Concentration (ug/L)
A-27
240
280
-------
pIsopropyltoluene
a
c
a.
o
e
x.
SO 120 160 200
Analyte Concentration (ug/L)
240
280
Methacrylonitrile
o
(Thouaands)
Analyte Concentration (ug/L)
A-28
-------
Methyl methacrylate
a
a.
a
>
a
0.4 0.8 1.2 1.6 2
(Thousands)
Analyte Concentration (ug/L)
2.8
4Methyl2pentanone
JC
a
o
0.
o
c
0.4
0.6 0.8 1
(Thousands)
Analyte Concentration (ug/L)
A-29
1.2
1.4
1.6
-------
JC
a
5 -
4 -
2 -
1 -
Naphthalene
40 80 120 160 200
Analyte Concentration (ug/L)
240
280
Propionitrile
JC
a
a
a
o
~
3.5 -
3 -
2.5 -
2 -
1.5 -
1 -
0.5 -
2 4
(Thousands)
Analyte Concentration (ug/L)
A-30
-------
nPropylbenzene
a
a
o.
o
o
a:
20
40 60 80 100
Analyte Concentration (ug/L)
a
41
a.
u
ir
6 -
5 -
4 -
Styrene
1 -
iI i i
40 80 120 160 200
Analyte Concentration (ug/L)
A-31
240
280
-------
1,1,1,2Tetrachloroethane
I
Jf
o
I
5
80 120 160 200
Analyte Concentration (ug/L)
240
280
1,1,2,2Tetrachloroethane
JC
a
CL
a
4 -
2-
1 H
200 400
Analyte Concentration (ug/L)
A-32
600
-------
Tetrachloroethene
JC
a
a
tp
o
0
It
40 80 120 160 200
Analyte Concentration (ug/L)
240
280
Toluene
a
c
a.
o
«j
ac.
6 -
5 -
4 -
T _
2 -
200 400
Analy-te Concentration (ug/L)
600
-------
I
I
1,2,4Trichlorobenzene
40 80 120 160 200
Anolyts Concentration (ug/L.)
240
280
JC
a
CL
o
>
o
E
Tribromomethane
120
160
200
240
280
Anatyte Concentration (ug/L)
A-34
-------
1,1,1-Trichloroethcme
JC
a
a.
o
0
a:
200 400
Analyte Concentration (ug/L)
600
1,1,2Trichloroethane
JC
a
c
CL
3 -
28 -
26 -
2.4 -
2.2 -
2 -
1.8 -
1.6 -
1 4 -
1.2 -
1 -
08-
06-
04-
02-
0
200 400
Analyte Concentration (ug/L)
A-3 5
600
-------
Trichlorofluoromethane
JC
o
I
5
60
1 00 140 180
Analyte Concentration (ug/L)
220
260
300
4.5
Trichloroethene
JC
a
3
a
K.
4 -
3.5 -
3 -
1.5 -
1 -
05 -
200 400
Artalyte Concentration (ug/L)
A-36
600
-------
1,2,3 Trichloropropane
Jt
a
o
a.
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
05
0.4
03
0,2
0.1
0
200 400
Analyte Concentration (ug/L)
600
1,2,4Trimethylbenzene
D
1
Jf
a
41
Q.
4)
S
o
41
£
1 O
14 -
13 -
12 -
1 1 -
10 -
9 -
8 -
7 -
6 -
5 -
4 -
i
!
^
.s
.^ i
j^
^>^
*>
^
^^
^*
^-- a
."'''
^S"*
-} 40 dJ
1 i 1 II!!!
'20 160 200 240 280
Arxilyte Concentration (uq/L)
A-37
-------
JC
o
o
a
3
a
c
K.
1,3,5Trimethylbenzene
40 80 120 160 200
Analyte Concentration (ug/L)
240
280
.
a
ti
0.
a
o
10 -
Vinyl acetate
0,8
1.2 1.6
(Thousands)
Analyte Concentration (ug/L)
A-38
2.4
2.8
-------
Vinyl chloride
JC
o
s.
0
IT
6 -
5 -
4 -
3 -
2 -
1 -
200 400
Anolyte Concentration (ug/L)
600
-------
.
t 0) 0
o oo
Q.
±1 0) o C
E£*-,2
t 0) 35
+4 Q.OO
0£.So
0
r
"B c
5
(0*5
r u
Reproduced by NTIS
National Technical Information Service
Springfield, VA 22161
This report was printed specifically for your order
from nearly 3 million titles available in our collection.
For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Documents that are not in electronic format are reproduced
from master archival copies and are the best possible reproductions
available. If you have any questions concerning this document or any
order you have placed with NTIS, please call our Customer Service
Department at (703) 605-6050.
About NTIS
NTIS collects scientific, technical, engineering, and business related
information then organizes, maintains, and disseminates that
information in a variety of formats from microfiche to online services.
The NTIS collection of nearly 3 million titles includes reports describing
research conducted or sponsored by federal agencies and their
contractors; statistical and business information; U.S. military
publications; multimedia/training products; computer software and
electronic databases developed by federal agencies; training tools; and
technical reports prepared by research organizations worldwide.
Approximately 100,000 new titles are added and indexed into the NTIS
collection annually.
For more information about NTIS products and services, call NTIS
at 1-800-553-NTIS (6847) or (703) 605-6000 and request the free
NTIS Products Catalog, PR-827LPG, or visit the NTIS Web site
http://www.ntis.gov.
NTIS
Your indispensable resource for government-sponsored
informationU.S. and worldwide
-------
*PB88245881 *
*BA*
BIN:
INVOICE:
SHIPTO:
PAYMENT:
M31B
5B9144
1*S9259
NONE
03-23-98
------- |