4\	United States
^nlMOt Environmental Protection
^k#	11 m mAgency
R par an Buffer Width,
Vegetati ve Cover, and
N trogen Removal
Effectiveness:
A Review of Current Science and
Regulations
Stream
Riparian Butler
Riparian Buffer

-------
EPA/600/R-05/118
October 2005
Riparian Buffer Width, Vegetative Cover,
and Nitrogen Removal Effectiveness:
A Review of Current Science and Regulations
Paul M. Mayer
Steven K. Reynolds, Jr.
Timothy J. Canfield
U.S. Environmental Protection Agency
Office of Research and Development
National Risk Management Research Laboratory
Ada, Oklahoma 74820
Marshall D. McCutchen
East Central University
Ada, Oklahoma 74820
Project Officer
Paul M. Mayer
Ground Water and Ecosystems Restoration Division
National Risk Management Research Laboratory
Ada, Oklahoma 74820
National Risk Management Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268

-------
Notice
The U.S. Environmental Protection Agency through its Office of Research
and Development funded, managed, and collaborated in the research described
here through in-house efforts. It has been subjected to the Agency's peer and
administrative review and has been approved for publication as an EPA document.
Mention of trade names or commercial products does not constitute endorsement
or recommendation for use.
All research projects making conclusions or recommendations based on en-
vironmental data and funded by the U.S. Environmental Protection Agency are
required to participate in the Agency Quality Assurance Program. This project did
not involve the collection or use of environmental data and, as such, did not require
a Quality Assurance Project Plan.

-------
Foreword
The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation's land, air, and water
resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions
leading to a compatible balance between human activities and the ability of natural systems to support and nurture
life. To meet this mandate, EPA's research program is providing data and technical support for solving environmen-
tal problems today and building a science knowledge base necessary to manage our ecological resources wisely,
understand how pollutants affect our health, and prevent or reduce environmental risks in the future.
The National Risk Management Research Laboratory is the Agency's center for investigation of technological and
management approaches for preventing and reducing risks from pollution that threatens human health and the
environment. The focus of the Laboratory's research program is on methods and their cost-effectiveness for pre-
vention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public
water systems; remediation of contaminated sites, sediments and ground water; prevention and control of indoor
air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to
foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL's research
provides solutions to environmental problems by: developing and promoting technologies that protect and improve
the environment; advancing scientific and engineering information to support regulatory and policy decisions; and
providing the technical support and information transfer to ensure implementation of environmental regulations and
strategies at the national, state, and community levels.
This publication has been produced as part of the Laboratory's strategic long-term research plan. It is published
and made available by EPA's Office of Research and Development to assist the user community and to link re-
searchers with their clients.
The goal of this report is to synthesize the existing scientific literature on the effectiveness of riparian buffers to im-
prove water quality through their inherent ability to process and remove excess anthropogenic nitrogen from surface
and ground waters. Due to this ability, riparian buffers often are employed as an environmental management tool
by resource management agencies. Despite significant research effort toward understanding the ecological func-
tions of riparian buffers, there remains no consensus for what constitutes optimal riparian buffer design or proper
buffer width to achieve maximum nitrogen removal effectiveness. This report does not provide a one-size-fits-all
recommendation for such a design or width but rather attempts to identify generalizations and trends extracted from
published literature that will aid managers in making decisions about establishing, maintaining, or restoring riparian
buffers in watersheds of concern. Although, buffer width stands out as one factor influencing the capacity for buffers
to remove nitrogen, numerous other factors described herein play significant roles that must be understood before
employing riparian buffers as part of a comprehensive watershed management plan.
Stephen G. Schmelling, Director^/-"
Ground Water and Ecosystems^estoration Division
National Risk Management Research Laboratory
mi

-------
Synopsis and Abstract
Synopsis
1)	Riparian buffers are vegetated zones adjacent to streams and wetlands that represent a best manage-
ment practice (BMP) for controlling nitrogen entering water bodies.
2)	Current research indicates that riparian buffers of various vegetation types are effective at reducing
nitrogen levels in groundwater and streams.
3)	Buffer width is only one factor controlling nitrogen removal effectiveness.
4)	Subsurface removal of nitrogen in riparian buffers is often high, especially where conditions promote
microbial denitrification.
5)	Riparian buffers are a single component of comprehensive watershed management plans, which must
also include point source and non-point source control of nitrogen.
Abstract
Mayer, P.M., S.K. Reynolds, M.D. McCutchen, and T.J. Canfield. Riparian buffer width, vegetative cover, and nitrogen
removal effectiveness: A review of current science and regulations. EPA/600/R-05/118. Cincinnati, OH, U.S.
Environmental Protection Agency, 2006.
Riparian zones, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting
and controlling nitrogen loads entering water bodies. Buffer width may be positively related to nitrogen removal ef-
fectiveness by influencing nitrogen retention through plant sequestration or removal through microbial denitrification.
We surveyed peer-reviewed scientific literature containing data on riparian buffers and nitrogen concentration in
streams and groundwater of riparian zones to identify causation and trends in the relationship between buffer width
and nitrogen removal capacity. We also examined Federal and State regulations regarding riparian buffer widths to
determine if such legislation reflects the current scientific understanding of buffer effectiveness.
Nitrogen removal effectiveness varied widely among riparian zones studied. Subsurface removal of nitrogen was
efficient but did not appear to be related to buffer width. Surface removal of nitrogen was partly related to buffer
width and was generally inefficient, removing only a small fraction of the total nitrogen flowing through soil surface
layers. While some narrow buffers (1-15 m) removed significant proportions of nitrogen, narrow buffers actually
contributed to nitrogen loads in riparian zones in some cases. Wider buffers (>50 m) more consistently removed
significant portions of nitrogen entering a riparian zone. Buffers of various vegetation types were equally effective
at removing nitrogen in the subsurface but not in surface flow. The general lack of vegetation type or buffer width
effects on nitrogen removal, especially in the subsurface, suggests that soil type, watershed hydrology (e.g., soil
saturation, groundwater flow paths, etc.), and subsurface biogeochemistry (organic carbon supply, high nitrate inputs)
may be more important factors dictating nitrogen concentrations due to their influence on denitrification.
State and Federal guidelines for buffer width also varied widely but were generally consistent with the peer-reviewed
literature on effective buffer width, recommending or mandating buffers ~7-100 m wide. Proper design, placement,
and protection of buffers are critical to buffer effectiveness. To maintain maximum effectiveness, buffer integrity
should be protected against soil compaction, loss of vegetation, and stream incision. Maintaining buffers around
stream headwaters will likely be most effective at maintaining overall watershed water quality while restoring de-
graded riparian zones, and stream channels may improve nitrogen removal capacity. Riparian buffers are a "best
management practice" (BMP) that should be used in conjunction with a comprehensive watershed management
plan that includes control and reduction of point and non-point sources of nitrogen from atmospheric, terrestrial,
and aquatic inputs.
Keywords: attenuation, buffer strip, denitrification, groundwater, nitrate, nitrogen, stream, riparian buffer, surface
water, watershed, vegetated filter strip
iv

-------
Contents
Foreword		iii
Synopsis	iv
Abstract	iv
Acknowledgments	ix
Introduction	1
Literature Survey Methods	2
Results	3
Synthesis of Published Reviews on Buffer Effectiveness	3
Detailed Insight into the Peer-Reviewed Literature about Buffer Effectiveness	3
Vegetated buffers around wetlands	3
Forested buffers	3
Grasslands	4
Meta-Analysis of the Peer-Reviewed Literature about Buffer Effectiveness	4
Methods	4
Results	5
Discussion	13
Federal Regulations and Recommendations	13
United States Code (USC)	13
Code of Federal Regulations (CFR)	13
State and Provincial Regulations and Recommendations	14
Other Aspects of Buffer Effectiveness	14
Buffer Restoration, Planning, and Design	15
Summary and Conclusions	17
Literature Cited	19
Appendices....	25
Appendix 1 	25
Appendix 2	26
v

-------
vi

-------
Figures
1.	Relationship of nitrogen removal effectiveness to riparian buffer width	9
2.	Nitrogen removal effectiveness in riparian buffers by flow path	10
3.	Relationship of nitrogen removal effectiveness to riparian buffer width by
flow path	10
4.	Nitrogen removal effectiveness in riparian buffers by buffer vegetation type	11
5.	Relationship of nitrogen removal effectiveness to riparian buffer width by
riparian vegetation type	11
6.	Nitrogen removal effectiveness in riparian buffers by buffer vegetation type
and water flow path	12
7.	Relationship of nitrogen removal effectiveness to nitrogen load:buffer
width ratio	12
vii

-------
Tables
1.	Summary Table of Riparian Buffer Effectiveness at Removing Nitrogen by
Vegetative Cover, Hydrologic Flow Path, Buffer Width and Soil Type	
2.	Mean and Percent Effectiveness of Riparian Buffers at Removing Nitrogen
Appendix
1.	Summary Table of United States Code Referring to "Riparian," "Buffer,"
"Vegetated," and "Filter Strip"	
2.	Summary Table of Code of Federal Regulations Referring to "Riparian,"
"Buffer," "Vegetated," and "Filter Strip"	
viii

-------
Acknowledgments
We thank D. Niyogi, D. Walters, and S. Wenger for their constructive comments on
this manuscript. T. Wiggins assisted in the search for literature and government
regulations. K. Tynsky created the cover art. Cover photos were provided by T.
Barthelmeh, K. Jewell, and J.Williams. The U.S. Environmental Protection Agency
through its Office of Research and Development funded and managed the research
described here through in-house efforts. It has been subjected to the Agency's
peer and administrative review and has been approved for publication as an EPA
document.
ix

-------
X

-------
Introduction
The U.S. Environmental Protection Agency (U.S. EPA) considers nitrogen one of the top stressors in aquatic eco-
systems (U.S. EPA 2002a). Though nitrogen is an important nutrient for all organisms, excess nitrogen is a pollutant
that causes eutrophication in surface water and contaminates groundwater (Carpenter et al. 1998). Streams receive
chronic nitrogen inputs from upland sources such as fertilizers, animal wastes, leaking sewer lines, atmospheric depo-
sition, and runoff from highways (Carpenter et al. 1998, Swackhamer et al. 2004). Subsequent eutrophication leads
to environmental impacts such as toxic algal blooms, oxygen depletion, fish kills, and loss of biodiversity (Vitousek et
al. 1997). Nitrate nitrogen (N03 ) also is a drinking water pollutant, especially dangerous to infants <6 months old who
are at risk of methanoglobin-induced anemia or blue baby syndrome in which nitrate (converted to nitrite in the body)
inhibits oxygen uptake, potentially leading to brain damage, or death (Welch 1991). The allowable level of nitrogen in
drinking water for children <6 months old is 10 ppm (mg/1) as nitrate nitrogen (U.S. EPA 2002b).
Nitrogen enters aquatic ecosystems in one in of several forms including nitrate nitrogen (e.g. fertilizers), particulate
nitrogen (e.g. litter fall from trees), ammonium (e.g. sewage and animal waste), and nitrous oxides from fossil fuel com-
bustion (Schlesinger 1997). The means of entry into a system may differ for each type of nitrogen. For example, nitrous
oxides enter by atmospheric deposition, nitrate often enters through groundwater, and particulate nitrogen follows ter-
restrial routes. Nitrogen is transformed by biological processes including uptake by plants and microbial denitrification,
a process where anaerobic bacteria transform nitrate nitrogen to N2, a gas phase of nitrogen (Schlesinger 1997). Only
denitrification removes nitrogen from a system, whereas, nitrogen uptake by plants eventually returns nitrogen to the
system through senescence and microbial decay. Nitrate nitrogen is of concern as an environmental stressor because
it is biologically reactive, poses a human health risk, and often is found in groundwater.
Riparian buffers are thought to be an effective, sustainable means of buffering aquatic ecosystems against nutrient
stressors such as nitrogen (Phillips 1989a) and thus are considered a best management practice (BMP) by State and
Federal resource agencies (i.e., USDA-NRCS Environmental Quality Incentive Program, Conservation Programs Manual
Part 515.91). Riparian buffers attenuate nitrogen through plant uptake, microbial immobilization and denitrification, soil
storage, and groundwater mixing (Lowrance et al. 1997). The effectiveness of a buffer will depend upon its ability to
intercept nitrogen in its various forms traveling along surface or subsurface pathways.
Often buffers are defined operationally as the zone of vegetation adjacent to streams, rivers, creeks, or wetlands (i.e.,
Lee et al. 2004). For this paper, riparian buffer, riparian zone, buffer strip, filter strip, and vegetated filter strip are terms
used synonymously. However, these terms may be defined differently depending on the application and agency in
question. Regardless of terminology, the extent to which riparian buffers attenuate nitrogen and improve stream water
quality is thought to be at least partly a function of buffer width (Vidon and Hill 2004), by some estimates, accounting
for 81% of a buffer's nitrogen removal effectiveness (Phillips 1989a). Intuitively, larger and wider riparian buffers should
transform and remove more nitrogen from the watershed. Therefore, numerous State and Federal resource agencies
have guidelines recommending buffers of minimum width to protect stream ecosystems from nutrient inputs (Belt et al.
1992, Christensen 2000, Lee et al. 2004.). Despite this trend toward regulation of riparian buffer widths, the specific
mechanisms responsible for removing nitrogen within buffers are not thoroughly understood. Furthermore, what is
known is not widely distributed to those who might be able to utilize the information to manage and restore riparian
buffers to maintain water quality (Hickey and Doran 2004). An urgent need exists for guidance on proper and effective
use of buffers to maintain water quality.
The purpose of this document is to identify causation and trends in the relationship between buffer width and nitrogen
removal capacity extracted from peer-reviewed studies with empirical data on buffer effectiveness. Our secondary objective
was to survey the State and Federal regulations and guidelines regarding riparian buffers to determine if buffer widths
required under current law are consistent with effective buffer widths identified from the peer-reviewed literature.
1

-------
Literature Survey Methods
We employed database search engines (e.g., Cambridge Abstracts, Google Scholar, etc.) and existing bibliographies
(e.g., Correll 2003) to locate riparian buffer zone literature. We used search terms singly or combination including: ripar-
ian, buffer, width, filter strip, vegetated filters, nitrogen, etc. We summarized the conclusions from comprehensive and
regional literature syntheses and the results from peer-reviewed research papers that contained original data quantifying
the effects of riparian buffer width on nitrogen attenuation. We also surveyed Federal agency documents and previously
published reviews of buffer width literature for opinions and recommendations on minimum effective buffer width. Papers
that did not relate nitrogen removal to buffer width were not included in the results. Data presented in proceedings and
other non-peer-reviewed sources were generally not included here except as part of generalizations presented in other
literature reviews because methods therein could not be verified. We placed greater emphasis on studies that quantified
a rate of nitrogen removal calculated per unit distance or per unit area. Such data may provide a quantifiable estimate
of buffer effectiveness and aid in establishing minimum buffer widths based on removal effectiveness.
We also surveyed relevant Federal and State regulation codes, peer-reviewed literature reviews of government guidelines,
and recommendations by government agencies that were not part of regulatory legislation. We attempted to locate
Federal regulations and laws concerning riparian buffers by searching the web versions of the United States Code,
Public and Private Laws, and the Code of Federal Regulations. Various agency websites were searched, including the
websites of the United States Department of Agriculture (USDA), the United States Forest Service (USFS), the United
States Army Corps of Engineers (USACE), the Bureau of Land Management (BLM), and the Government Accountability
Office (GAO). We spoke directly with agency officials to clarify findings and to aid in the search for other regulations.
Federal and State regulations and recommendations were compared to the previous literature-based results on riparian
zones to determine the degree of consistency between them.
2

-------
Results
Synthesis of Published Reviews on Buffer Effectiveness
We found 14 comprehensive and regional reviews of riparian buffer literature, most of which contained generalizations
and recommendations based on both peer-reviewed and non-peer-reviewed research. In general, riparian forest veg-
etation and wetlands have been demonstrated as effective nutrient filters, particularly those between ~10-50 m wide
(Belt et al. 1992, Johnson and Ryba 1992, Castelle et al. 1994, Fennessy and Cronk 1997, Fischer and Fischenich
2000, Christensen 2000). Narrower riparian buffers (5-6 m) may still reduce subsurface nitrate flows by up to ~80%
(Muscutt et al. 1993, Parkyn 2004). However, extensive experimental support for buffer zones <10 m, like those used
extensively on many farms, is lacking (Hickey and Doran 2004). Furthermore, riparian buffer zones >30 m were recom-
mended for fully effective subsurface nutrient reduction (Muscutt et al. 1993, Wenger 1999). According to Wenger and
Fowler (2000), "The most effective buffers are at least 30 meters, or 100 feet, wide composed of native forest, and are
applied to all streams, including very small ones." The use of riparian buffers to filter nutrients from surface flow was
not recommended by Barling and Moore (1994) because dissolved nitrate was not significantly reduced.
Groundwater flow paths, soil characteristics (i.e., moisture storage, hydraulic conductivity, roughness, and slope), sea-
sonal, and climate may significantly impact the rate and magnitude of subsurface nitrate removal. Groundwater flow
above shallow, impermeable soil layers maximizes water residence time and contact with plant roots and organic-rich
soils, thereby increasing the potential for nitrate removal by plant uptake and microbial activity (Hill 1996, Christensen
2000). Considerably less nitrate removal per unit distance occurred where local or regional groundwater flowed at
deeper depths or through organically-poor soil (Hill 1996). Where groundwater bypassed the root zone and surface
soil layers, the retention of nitrogen was minimal (Lowrance et al. 1997).
Detailed Insight into the Peer-Reviewed Literature about Buffer Effectiveness
Vegetated buffers around wetlands
Wetland buffer zones were highly variable in their effectiveness, removing from 12-80% of surface water nitrogen (Yates
and Sheridan 1983, Brusch and Nilsson 1993). However, much faster nitrate reductions can occur in the groundwater
of wetlands where, in some cases, >95% of nitrate can be removed within 1 m (Burns and Nguyen 2002). Brusch
and Nilsson (1993) documented temperature and seasonal components to nitrate reductions in surface runoff across
a 15-25 m wide peat wetland. Average nitrate reduction was 73.7% in the summer, 12.2% during the first winter, but
~38% during the second winter season due to higher temperatures. Despite seasonal variance in mean surface runoff
nitrate concentration of 15 to 50 ppm, nitrate concentration in an adjacent stream did not exceed 5 ppm throughout the
study. Seasonal patterns, but with higher percentage of nitrate reduction (>90%), also were noted in a 200-m wide reed
and alder wetland within a river channel scar (Fustec et al. 1991).
Wetland buffers on soils with limited organic matter (i.e., sand or gravel) tended to show lower capacity to remove
nitrogen. Cooper (1990) found that, while subsurface nitrate removal from highly organic, saturated soils was ~90%,
removal from within mineral colluvial soils was much less effective. Clausen et al. (2000) observed a 52-76% reduction
in subsurface nitrate concentrations (95% of all nitrate loss) across a 5-m "poorly to very poorly drained alluvium wet-
land." Hanson et al. (1994) and Vellidis et al. (2003) observed similar reductions in nitrate (59% and 78%, respectively)
from sandy, forested wetlands (31 and 38 m wide, respectively). Under "severely suboptimal conditions" in forested
wetlands (i.e., sparsely vegetated, poorly drained, bottomland soils), riparian buffer widths <100 m were estimated to
be 90% efficient at removing nutrients from agricultural runoff. However, under less severe conditions, buffer widths
of 40-80 m on poorly drained soils and 15-60 m on well-drained soils were estimated to remove most nutrient runoff
passing through a forested wetland, riparian zone (Phillips 1989b).
Forested buffers
The attenuation of nitrogen from groundwater flow can be rapid in forested riparian buffer zones. Schoonover and Wil-
lard (2003) found that 10-m forested buffers reduced groundwater nitrate concentration by 61 %. Another study found a
buffer averaging 38-m wide reduced nitrate concentration by 78% and ammonium by 52% (Vellidis et al. 2003). Others
3

-------
have documented more than 85% nitrate removal within the first 5 m of a buffer and 90-99% removal within 10-50 m
of a buffer (Jacobs and Gilliam 1985, Lowrance 1992, Cey et al. 1999). As with wetland riparian buffers, most of the N
transformation (~75%) occurred within the subsurface flow (Peterjohn and Correll 1984, Osbourne and Kovacic 1993).
Furthermore, mature forests were 2-5 times more effective than "managed" (i.e., clearcut or selectively thinned) forests
(Lynch et al. 1985, Hubbard and Lowrance 1997). Kuusemets et al. (2001) estimated that 85% of total nitrogen was
retained in a heavily polluted 51-m wide riparian buffer, whereas only 40% of total nitrogen was retained in a buffer
31 m wide. Riparian buffers 100 m and 200 m wide in North Carolina removed from 67%-100% of groundwater nitrate
entering the stream (Spruill 2004).
Effectiveness of nitrogen removal in forested riparian zones can vary widely due to characteristics unrelated to width.
Extreme nitrogen loading (Lowrance et al. 1997) and increased hydraulic conductivity of the soil (Pinay and Decamps
1988, Pinay et al. 1993, Sabater et al. 2003) decrease effectiveness of forested riparian buffer zones. In some cases,
these conditions can result in a net increase in nitrate concentrations in the groundwater (Sabater et al. 2003, Groffman
et al. 2003) and can double the necessary width of the riparian zone for effective nutrient removal (Kuusemets et al.
2001). Spruill (2000) observed no difference in deep, "old" (>20 yr) groundwater underneath riparian zones with and
without forested 30-m buffers, but 65-70% nitrate removal in shallow, "young" (<20 yr) groundwater through "reduction
or denitrification." Effects of buffer width and length were mixed in a New Zealand study of forested buffers. However,
oldest, longest (longitudinal), and widest (lateral) buffers had the greatest total nitrogen reductions (Parkyn et al. 2003).
Saturated conditions led to removal of all nitrate within the first 30 m of forested riparian buffers in France (Pinay and
Decamps 1988).
Grasslands
Grassed buffers or filter strips used alone or in conjunction with woody vegetation also can be effective at removing
nitrogen. A 7.1-m grass buffer removed 80% of the total nitrogen and 62% of nitrate. Addition of a 9.2-m woody buf-
fer to the grass buffer (total 16.3 m) increased effectiveness by 20%, removing 94% of the total nitrogen and 85% of
the nitrate in runoff. However, effectiveness of the buffers in this study was negatively related to intensity of rainfall
events (Lee et al. 2003). Giant cane (Arundinaria gigantea) reduced nitrate levels 90% in the first 3.3 m of the buffer,
and 99% over 10 m, an effectiveness promoted by saturated conditions from upwelling groundwater (Schoonover and
Williard 2003). In a study of seven herbaceous and herbaceous/forested riparian buffers in Canada, 90% removal of
nitrate occurred 15 to 37 m into the riparian buffer depending on soil types and depth of the confining layer (Vidon and
Hill 2004). Conversion of a portion of a corn field (Zea mays L.) to a riparian buffer of fine leaf fescue (Festuca spp.)
decreased overland flow concentrations of total Kjeldahl nitrogen (TKN) by 70% and nitrate by 83% over the control
and reduced nitrate concentrations in groundwater by 35%. Most (52%) of the nitrate decrease occurred within a 2.5-m
wetland adjacent to the stream (Clausen et al. 2000).
In an Italian study, a 6-m wide grass/forest buffer (5-m grass + 1-m trees) reduced groundwater nitrate by >90% from
maximum concentrations of ~25-28 ppm ( x = 6.2) under the application field to a level always <2 ppm ( x = 0.6) in
groundwater (Borin and Bigon 2002). Grass buffers <5 m wide were ineffective in removing total nitrogen from surface
runoff; those <10 m, but >5 m, wide were found to be 29-65% effective (Magette et al. 1989, Schmitt et al. 1999). Ad-
dition of a "forested" component to the grass buffer did not increase effectiveness (Schmitt et al. 1999). Grass filter
strips 4.6 and 9.1 m wide reduced surface nitrate runoff from no-till cornfields by 27 and 57%, respectively. However,
similar filter strips installed below animal feedlots were completely ineffective, yielding net gains in surface runoff nitrate
concentrations (Dillaha et al. 1988, 1989).
Meta-Analysis of the Peer-Reviewed Literature about Buffer Effectiveness
Methods
Few peer-reviewed studies experimentally quantify nitrogen removal based specifically on riparian zone width. Rather,
most studies measure nitrogen depletion at various locations throughout the riparian zone and/or in relation to biotic and
abiotic variables such as vegetation or soil type. The lack of standardized field tests to quantify nitrogen removal based
on buffer width sometimes makes comparisons among studies difficult. However, generalizations can be made based
on the trends among 40 studies yielding 66 buffer width-effectiveness relationships (Table 1). In order to facilitate these
generalizations and analyses, we grouped studies by vegetative cover type (i.e., wetland, forested, grassland) and by
hydrologic flow conditions (e.g., surface vs. subsurface), factors that may influence nutrient attenuation in riparian buf-
fer zones. We calculated nitrogen removal effectiveness (%) as 1) the % difference in nitrogen concentration between
the influent into and effluent out of the riparian buffer, 2) % difference in nitrogen concentration between the terminus
of the control buffer and that of the test buffer, or 3) if recalculation was impossible based on available data, the values
presented by the authors were used directly (Table 1). These effectiveness data were plotted against buffer width, and
linear and non-linear regression models were fitted to the data to reveal patterns of nitrogen removal based on width,
buffer type, and hydrology. Though nitrate (N03 ) was the form of nitrogen most often measured among studies, we did
4

-------
not distinguish among nitrogen forms when calculating effectiveness. All buffers included in studies for which efficiencies
could be calculated were included in the meta-analyses as independent data points. We then examined the relationship
between loads (influents) and efficiencies to determine if thresholds existed for N removal. For studies that reported
the actual influent nitrogen concentrations, we calculated the ratio of nitrogen load to buffer width as a measure of the
level of impact to buffers and then used that ratio as the independent variable and nitrogen removal effectiveness as
the dependent variable in a linear regression model to estimate buffer thresholds for nitrogen removal. Analyses were
performed with SYSTAT version 11 (SPSS 2004).
Results
We found that nitrogen removal effectiveness varied widely among studies (Table 1) but overall, buffers were effec-
tive at removing large proportions of the nitrogen found in water flowing through riparian ecosystems (mean % ± 1SE:
74.2 ± 4.0; Table 2). A small but significant proportion of the variance in removal of nitrogen was explained by buffer
width (R2 = 0.14, N = 66; Figure 1). That is, wider buffers removed more nitrogen, but other factors also must have
affected effectiveness. Additionally, greater consistency of nitrogen removal was evident with increasing buffer width
(Figure 1). For example, nitrogen removal effectiveness in buffers <50 m wide was more variable than those >50 m
where nearly all buffers exhibited about a 75% removal effectiveness (Figure 1). Thus, wider buffers are more likely
to be efficient zones of nitrogen removal, whereas, narrower buffers may not always remove significant portions of
nitrogen. Based on our non-linear regression model, 50%, 75%, and 90% removal efficiencies would occur in buffers
approximately 3 m, 28 m, and 112 m wide, respectively (Figure 1, Table 2).
We found that nitrogen removal effectiveness also differed by flow pattern. Subsurface removal of nitrogen was
much more efficient than surface removal (mean % ± 1SE: subsurface 89.6 ± 1.8, N = 48; surface 33.3 ± 7.7, N= 18;
t = 10.1, P< 0.001; Figure 2). Furthermore, subsurface removal of nitrogen did not appear to be related to buffer width
(R2 = 0.02, N= 48; Figure 3), whereas, a small but significant proportion of the variance in surface removal of nitrogen
was explained by buffer width (R2 = 0.29, N = 18; Figure 3). That is, wider buffers removed more nitrogen in surface
runoff. While some narrow buffers (1-15 m) removed significant proportions of nitrogen, three studies found that narrow
buffers actually contributed nitrogen to riparian zones (i.e. had negative effectiveness values; Table 1). Such cases are
likely to be short-term events due to nitrification or high rainfall events that lead to rapid inputs of particulate nitrogen.
Based on our non-linear regression model, 50%, 75%, and 90% nitrogen removal efficiencies in surface flow would
occur in buffers approximately 34, 118, and 247 m wide, respectively (Figure 3, Table 2).
We also found that nitrogen removal effectiveness varied by buffer vegetation type (N = 66; F= 4.8, P = 0.002; Figure 4
and Table 2). Grass buffers were significantly less effective than forest buffers at removing nitrogen (P = 0.001, Bonfer-
roni adjustment), whereas, other buffers were equally effective (Figure 4).
Forested and wetland buffers showed no relationship between buffer width and nitrogen removal effectiveness (Figure 5).
However, grass buffer effectiveness increased with buffer width in a non-linear fashion (Figure 5). Grass and grass/forest
buffers were not always effective at removing nitrogen and, in three cases where buffers were <10 m, actually added
to nitrogen loads (Figure 5). Based on the non-linear model results, we calculated the approximate buffer widths by
vegetative types necessary to achieve 50%, 75%, and 90% effectiveness (Table 2). Nitrogen removal efficiencies of
50%, 75%, and 90% were predicted for grass buffers approximately 16, 47, and 90 m wide and for grass/forest buffers
approximately 5, 20, and 47 m wide, respectively. Given the low R2 values, buffer widths could not be predicted for
effective nitrogen removal for grass or grass/forest buffers (Table 2). Note also, that the relationship between buffer
width and effectiveness for forested wetlands was negative (Figure 5), suggesting that narrow forested wetland buffers
are more effective than wide buffers. This non-intuitive result is likely due to the small sample size and not a cause and
effect relationship. Therefore, buffer widths were not predicted for this vegetation type. Subsurface removal of nitrogen
was generally high regardless of vegetation type, whereas, surface removal was less efficient and more variable among
all buffer vegetation types (Figure 6).
In a similar meta-analysis with a more limited data set but fitting the same non-linear model as here, Oberts and Plevan
(2001) found that nitrate nitrogen retention in wetland buffers was positively related to buffer width (R2 values ranged
from 0.35 - 0.45). Nitrogen removal efficiencies of 65-75% and 80-90% were predicted for wetland buffers 15 m and
30 m wide, respectively, depending on whether nitrate nitrogen was measured in surface or subsurface flow.
Finally, we found evidence for a threshold of nitrogen removal in buffers based on the nitrogen load entering the buffer.
We calculated a ratio of nitrogen influent (pmm) to buffer width (m) for all studies that quantified influent loads and then
fitted a linear model with nitrogen removal effectiveness as the dependent variable. Nitrogen removal effectiveness
declined as the nitrogen load to width ratio increased (R2 = 0.11, P = 0.02, N = 55; Figure 7). That is, buffer effective-
ness declined when nitrogen loads were high relative to buffer width. However, five studies showed low or no nitrogen
removal effectiveness even when nitrogen loads were small relative to buffer width (Figure 7), a pattern due to the inef-
fectiveness of nitrogen removal in surface flows. Thus, these data were highly variable but imply a threshold for nitrogen
removal in buffers suggesting that reducing buffer width will risk nitrogen contamination to watersheds.
5

-------
Table 1. Summary Table of Riparian Buffer Effectiveness at Removing Nitrogen by Vegetative Cover, Hydrologic Flow Path, Buffer Width and Soil
Type, ("nd" = not detected; = data not provided by authors)
Vegetative
Cover Type
Flow Path
Buffer
Width
N form
Mean
Influent
(pmm)
Mean
Effluent
(pmm)
Effectiveness(%)
Major Soil type(s)
Study
grass
surface
4.6
total N
-
-
-15
sandy loam
Magette et al. 1989
grass
surface
9.2
-
-
35
grass
surface
7.5
total N
68
44
35
silty clay loam
Schmitt et al. 1999
grass
surface
15
68
33
51
grass
surface
4.6
nitrate
1.86
2.37
-27
silt loam
Dillaha et al. 1988
grass
surface
9.1
1.86
2.13
-15
grass
surface
4.6
nitrate
-
-
27
silt loam
Dillaha et al. 1989
grass
surface
9.1
-
-
57
grass
surface
91
total N
21.6
13.3
38
-
Zirschky et al. 1989
grass
surface
27
nitrate
0.37
0.34
8
-
Young et al. 1980
grass
surface
26
nh3
3.61
3.05
16
very fine sandy loam
Schwerand Clausen 1989
grass
surface
26
TKN
48.9
11.76
76
very fine sandy loam
Schwerand Clausen 1989
grass
subsurface
25
nitrate
15.5
6.2
60
coarse sand
Vidon and Hill 2004b
grass
subsurface
70
nitrate
1.55
0.32
80
fine sandy loam/silt
loam
Martin et al. 1999
grass
subsurface
39
nitrate
16.5
3
82
silty clay loam
Osborne and Kovacic 1993
grass
subsurface
25
nitrate
12.15
1.92
84
peat/sand
Hefting and de Klein 1998
grass
subsurface
16
nitrate
2.8
0.3
89
stony clay loam
Haycock and Burt 1993
grass
subsurface
10
nitrate
7
0.3
96
entisols/histosols
Hefting et al. 2003
grass
subsurface
100
nitrate
375
<5
98
-
Prach and Rauch 1992
grass
subsurface
10
nitrate
7.54
0.05
99
silt loam
Schoonover and Williard
2003
grass
subsurface
30
nitrate
44.7
0.45
99
sand/loamy sand
Vidon and Hill 2004b
grass
subsurface
50
nitrate
6.6
0.02
100
fine sandy loam
Martin et al. 1999

-------
Table 1. Continued.
Vegetative
Cover Type
Flow Path
Buffer
Width
N form
Mean
Influent
(pmm)
Mean
Effluent
(pmm)
Effectiveness(%)
Major Soil type(s)
Study
grassforest
surface
7.5
total N
68
49
28
silty clay loam
Schmitt et al. 1999
grassforest
surface
15
total N
68
40
41
grassforest
subsurface
6
nitrate
6.17
0.56
91
loam/sandy loam
Borin and Bigon 2002
grassforest
subsurface
70
nitrate
11.98
1.09
91
loamy sand
Hubbard and Lowrance
1997
grassforest
subsurface
66
nitrate
5.8
0.17
97
gravel
Vidon and Hill 2004b
grassforest
subsurface
33
nitrate
5.7
0.11
98
sandy loam/loamy
sand
Vidon and Hill 2004b
grassforest
subsurface
45
nitrate
17.8
0.18
99
peat
Vidon and Hill 2004b
grassforest
subsurface
70
nitrate
1.65
0.02
99
fine sandy loam/silt
loam
Martin et al. 1999
forest
surface
30
nitrate
0.37
0.08
78
silt/stony loam
Lynch et al. 1985
forest
surface
70
nitrate
4.45
0.94
79
fine sandy loam
Peterjohn and Correll 1984
forest
subsurface
50
nitrate
26
11
58
entisols/histosols
Hefting et al. 2003
forest
subsurface
200
nitrate
11
4
64
medium-coarse sand
Spruill 2004
forest
subsurface
10
nitrate
6.29
1.15
82
silt loam
Schoonover and Williard
2003
forest
subsurface
55
nitrate
-
-
83
-
Lowrance et al. 1984
forest
subsurface
20
nitrate
-
-
83
-
Schultz et al. 1995
forest
subsurface
85
nitrate
7.08
0.43
94
fine sandy loam
Peterjohn and Correll 1984
forest
subsurface
204
nitrate
29.4
1.76
94
peat/sand/gravel
Vidon and Hill 2004b
forest
subsurface
50
nitrate
13.52
0.81
94
loamy sand
Lowrance 1992
forest
subsurface
60
nitrate
8
0.4
95
sand/gravel/clay
Jordan et al. 1993
forest
subsurface
16
nitrate
16.5
0.75
95
silty clay loam
Osborne and Kovacic 1993

-------
Table 1. Continued.
Vegetative
Cover Type
Flow Path
Buffer
Width
N form
Mean
Influent
(pmm)
Mean
Effluent
(pmm)
Effectiveness(%)
Major Soil type(s)
Study
forest
subsurface
16
nitrate
6.6
0.3
95
stony clay loam
Haycock and Pinay 1993
forest
subsurface
15
nitrate
-
-
96
-
Hubbard and Sheridan
1989
forest
subsurface
165
nitrate
30.8
1
97
peat/sand
Hill et al. 2000
forest
subsurface
50
nitrate
6.26
0.15
98
peat/sand
Hefting and de Klein 1998
forest
subsurface
220
nitrate
10.8
0.22
98
peat/loamy sand
Vidon and Hill 2004b
forest
subsurface
50
nitrate
7.45
0.1
99
loamy sand
Jacobs and Gilliam 1985
forest
subsurface
10
nitrate
13
0.1
99
silt loam
Cey et al. 1999
forest
subsurface
100
nitrate
5.6
0.02
100
sandy clay/coarse
sand
Spruill 2004
forest
subsurface
30
nitrate
1.32
nd
100
silt clay
Pinay and Decamps 1988
forest
subsurface
100
nitrate
12
nd
100
silt/plant debris/sand
Spruill 2004
forestwetland
surface
-
nitrate
0.34
0.07
81
sand
Yates and Sheridan 1983
forestwetland
subsurface
31
nitrate
62.7
25.9
59
sand
Hanson et al. 1994
forestwetland
subsurface
38
nitrate
30.6
6.7
78
sandy loam
Vellidis et al. 2003
forestwetland
subsurface
14.6
nitrate
-
-
84
sandy mixed mesic
Simmons et al. 1992
forestwetland
subsurface
5.8
nitrate
-
-
87
sandy mixed mesic
Simmons et al. 1992
forestwetland
subsurface
5.8
nitrate
-
-
90
sandy mixed mesic
Simmons et al. 1992
forestwetland
subsurface
6.6
nitrate
-
-
97
loamy mixed mesic
Simmons et al. 1992
forestwetland
subsurface
30
nitrate
1.06
nd
100
clay loam
Pinay et al. 1993
wetland
surface
20
nitrate
57
50
12
peat/sand
Brusch and Nilsson 1993
wetland
surface
20
57
15
74
wetland
subsurface
5
nitrate
6.56
1.55
76
stony silt loam
Clausen et al. 2000
wetland
subsurface
5
3
1.44
52
wetland
subsurface
1
nitrate
1
-
96
clay loam/clay
Burns and Nguyen 2002
wetland
subsurface
200
nitrate
10.5
0.5
95
silt/sand/gravel
Fustec et al. 1991
wetland
subsurface
40
nitrate
77.48
0.31
100
fine to coarse sand
Puckett et al. 2002

-------
Table 2. Mean and Percent Effectiveness of Riparian Buffers at Removing Nitrogen. Buffer Widths Necessary to
Achieve a Given Percent Effectiveness (50%, 75%, 90%) are Approximate Values Predicted by the Non-
Linear Model, y=a*ln(x)+b. Effectiveness was not predicted (np) for Models with R2 Values <0.2
Flow Path or
Vegetative cover
type
N
Mean nitrogen
removal
effectiveness
(%)
1SE
Relationship to buffer
width
Approximate buffer
width (m) by
predicted effectiveness
50%
75%
90%
Model
R2
All studies
66
74.2
4.0
y = 10.5*ln(x) + 40.5
0.137
3
28
112

Surface flow
18
33.3
7.7
y = 20.2*ln(x) - 21.3
0.292
34
118
247
Subsurface flow
48
89.6
1.8
y = 1,4*ln(x) + 84.9
0.016
np
np
np

Forest
22
90.0
2.5
y = -0.7*ln(x) + 92.5
0.003
np
np
np
Forested Wetland
7
85.0
5.2
y = -7.3*ln(x) + 104.3
0.203
np
np
np
Grass
22
53.3
8.7
y = 23.0*ln(x) - 13.6
0.277
16
47
90
Grass/forest
8
80.5
10.2
y = 18.1*ln(x) + 20.4
0.407
5
20
47
Wetland
7
72.3
11.9
y = 3.0*ln(x) + 68.9
0.005
np
np
np
100
r ' (HIjI i i i i®
> 50
iiii
y=10.5*ln(x)+40.5
R2 = 0.14
N= 66
I' i i '' ¦ i i i i 111 i i'i i 1111 i i 11111 i 1111 11 11111111
0 25 50 75 100 125 150 175 200 225 250
Buffer Width (m)
Figure 1. Relationship of nitrogen removal effectiveness to riparian buffer width. All studies combined. Lines indicate
probable 50%, 75%, and 90% nitrogen removal efficiencies based on the fitted non-linear model.
9

-------
N removal efficiency - surface vs. Subsurface flow

§
£
u
,p.
W
>
0
S
£
S
en
1
100
-25
-50
subsurface surface
Flow Path
Figure 2. Nitrogen removal effectiveness in riparian buffers by flow path. The center vertical line of the box and whisker
plot marks the median of the sample. The length of each box shows the range within which the central 50%
of the values fall. Box edges indicate the first and third quartiles. Whiskers show the range of observed
values that fall within the midrange of the data. Asterisks indicate outside values.
N removal vs. buffer width - surface vs. Subsurface flow
100
75
50
i
te
H
« 25
£
E
a
V
on
I -25
-50
jtgk1 iSjSlgMdJDl 1 M l$l P
ij.ii
1 "6' 1 ' " .®, " 1
1	
c£p
Q~5e*
8 ° «







:x °o
o * /

O

! x/
X



-*/
7 vx

Subsurface; 0
y=l,4*ln(x)+84.9
i?2 =0.02
A^48
—
; x
*x


Surface: X
y=20.2*ln(x)-21.3
R2=0.29
iV= 18

X
1 1 1 1 1 1
50%
i i i 1 i i i i 1 i i i i 1 i i
75%
i 1 1 I I
1 i i i i 1 i i i i 1 i i i
90% f
i 1 ii i ji
0 25 50 75 100 125 150 175 200 225 250
Buffer Width (m)
Figure 3. Relationship of nitrogen removal effectiveness to riparian buffer width by flow path. Lines indicate probable
50%, 75%, and 90% nitrogen removal efficiencies in the surface flow path based on the fitted non-linear
model.
10

-------
V

a
s
K
§
so
s
25
g -25
-50

i^d1



^ V
«-J"

Vegetative Cover Type
Figure 4. Nitrogen removal effectiveness in riparian buffers by buffer vegetation type. The center vertical line of the box
and whisker plot marks the median of the sample. The length of each box shows the range within which the
central 50% of the values fall. Box edges indicate the first and third quartiles. Whiskers show the range of
observed values that fall within the midrange of the data. Asterisks indicate outside values. Boxes identified
with the same letters are not significantly different (P > 0.05).
s=
0s
V
C
tu
£
<8
"3
>¦
o
S
£
s
tu
OS
o
b
75
50
25
0 -
-25 i
-50
1111111111111111111111111
Vegetative Cover Type \
O forest	J
X forested wetland
+ grass
A grass/forest
V wetland
1 I 1 ¦ ¦ 1 I ¦ ¦ ¦ ¦ I ¦ ¦ ¦ ¦ I i ¦¦ ¦
0 25 50 75 100 125 150 175 200 225 250
Buffer Width (m)
Figure 5. Relationship of nitrogen removal effectiveness to riparian buffer width by riparian vegetation type. Curves
are fitted to non-linear model: y = a*ln(x) + b
11

-------
100
S
£
o
to
w
13
s
a
£
a
01)
o
u
75 -
50 -
25 -
0 -
_ _
Z -25 -
-50
O
~a
B
Flow type
~	subsurface
~	surface
_L


4




_L
Vegetative Cover Type
Figure 6. Nitrogen removal effectiveness in riparian buffers by buffer vegetation type and water flow path. The center
vertical line of the box and whisker plot marks the median of the sample. The length of each box shows the
range within which the central 50% of the values fall. Box edges indicate the first and third quartiles. Whis-
kers show the range of observed values that fall within the midrange of the data. Asterisks indicate outside
values.
100

0>
s
u
to
W
>
e
s
£
a
aj
on
e
h
25
£ -25
-50
I I I
0
y=-5.4x+81.7
i?2 = 0.11
P = 0.02
N =55
_l	I	I	
10
Nitrogen Influent Concentration (pmm): Buffer Width (m)
Figure 7. Relationship of nitrogen removal effectiveness to nitrogen load:buffer width ratio. Fitted to linear model:
y=a(x)+b.
12

-------
Discussion
Our meta-analysis suggests that nitrogen removal in the subsurface may be more directly influenced by soil type, wa-
tershed hydrology (e.g., soil saturation, groundwater flow paths, etc.), and subsurface biogeochemistry (organic carbon
supply, high nitrate inputs) through cumulative effects on microbial denitrification activity than on buffer width per se.
Surface flows bypass zones of denitrification and thus effectively remove nitrogen only when buffers are wide enough
and have adequate vegetation cover to control erosion and filter movement of particulate forms of nitrogen. Grass
buffers, for example, may be better at intercepting particulate nitrogen in the sediments of surface runoff by reducing
channelized flow.
Federal Regulations and Recommendations
United States Code (USC)
Riparian buffers are noted in at least 14 parts within the USC (Appendix 1). Under the auspices of the 1972 Federal
Water Pollution Control Act or Clean Water Act (33USC1251 et seq. as amended through P.L. 107-303, November 27,
2002), the U.S. EPA publishes lists of impaired waters for which Total Maximum Daily Loads (TMDL) are established that
limit the amount of a pollutant, including nitrogen, that a water body can receive and remain compliant with State water
quality standards (33USC1251.319). States are required to implement BMP's, such as riparian buffers or vegetated
filter strips, to achieve compliance. U.S. EPA provides generalized recommendations and funding for riparian buffers
and filter strips as part of Comprehensive Nutrient Management Plans (U.S. EPA 2001, 2003). However, site-specific
BMP approaches and implementation are the jurisdiction of the States.
No comprehensive Federal statutory laws exist directly dealing with riparian buffer width even though buffers are men-
tioned in the USC. In some cases, site-specific legislation has been enacted that mandates protection of riparian buffers.
The United States Congress has passed laws requiring vegetation to be left undisturbed on the sides of stream and
river banks during specific activities. For example, in 16 USC 539(d), the National Forest Timber Utilization Program
(a.k.a. the 1990 Tongass Timber Reform Act):
"In order to assure protection of riparian habitat, the Secretary shall maintain a buffer zone of no less than
one hundred feet in width on each side of all Class I streams in the Tongass National Forest, and on those
Class II streams which flow directly into a Class I stream, within which commercial timber harvesting shall be
prohibited..."
Timber harvesting from the National Forest System has also been regulated, in general, through the National Forest
System Land and Resource Management Plan, which states, without providing strict guidelines, that harvesting plans
must,
"insure that timber will be harvested from National Forest System lands only where soil, slope, or other watershed
conditions will not be irreversibly damaged" and where "protection is provided for streams, streambanks,
shorelines, lakes, wetlands, and other bodies of water from detrimental changes in water temperatures, blockages
of water courses, and deposits of sediment, where harvests are likely to seriously and adversely affect water
conditions or fish habitat" (16 USC 1604).
Riparian conservation has been cited within the USC as one of the purposes for the establishment of National Parks
and as directives to the Secretary of the Interior (e.g. 16 USC Sec. 460). As all national parks must follow the dual
policy of both multiple and sustained yield, several subsections within this section of USC address riparian zones of
other national parks likewise, to "contribute to public enjoyment," "protect important resource values," etc. In all cases,
the statutes are site-specific, and the riparian zones discussed are between 100 and 300 ft.
Code of Federal Regulations (CFR)
Riparian buffers are noted in at least 47 parts within the CFR (Appendix 2). The CFR places blanket statutory restrictions
on certain industrial practices in riparian areas. For instance, 30 CFR 816.57 and 30 CFR 817.57 prohibit surface and
underground mining activities within 100 ft of perennial or intermittent streams, and 36 CFR 228.108 prohibits mining
operations within the National Forest System "in areas subject to mass soil movement, riparian areas, and wetlands."
Voluntary participation programs such as the Conservation Reserve Program (CRP) and the Conservation Reserve
Enhancement Program (CREP) provide landowners financial incentives to protect land and waterbodies through main-
tenance of buffers, wetlands, and by planting cover crops (7CFR1410). The CRP is administered through the U.S.
Department of Agriculture's Farm Service Agency (USDA-FSA) (7CFR, Chap. VII) with technical assistance provided
by the National Resources Conservation Service (USDA-NRCS) (7CFR, Chap. VI).
The USDA-FSA makes a distinction between filter strips and riparian buffers (7CFR1410.2). Filter strip is a "a strip or
area of vegetation adjacent to a body of water the purpose of which is to remove nutrients, sediment, organic matter,
13

-------
pesticides, and other pollutants from surface runoff and subsurface flow by deposition, absorption, plant uptake, and
other processes, thereby reducing pollution and protecting surface water and subsurface water quality and of a width
determined appropriate for the purpose by the Deputy Administrator." No minimum widths are specified for construction
of filter strips (NRCS 2003; practice Code 393).
Riparian buffer (NRCS 2003; practice Code 391) is "a strip or area of vegetation adjacent to a river or stream of suf-
ficient width as determined by the Deputy Administrator to remove nutrients, sediment, organic matter, pesticides, and
other pollutants from surface runoff and subsurface flow by deposition, absorption, plant uptake, and other processes,
thereby reducing pollution and protecting surface water and subsurface water quality, which are also intended to pro-
vide shade to reduce water temperature for improved habitat for aquatic organisms and supply large woody debris for
aquatic organisms and habitat for wildlife."
The importance of the distinction between filter strip and riparian buffer is in their implementation. For example, ac-
cording to the CRP, riparian buffers should consist of three zones. Zone 1 starts at the top of the stream bank, is de-
voted to trees, and has a minimum width of 15 ft measured as perpendicular from the bank. Zone 2 is predominately
composed of riparian trees and shrubs suitable to the site and has a minimum width of 20 ft. Zone 3 is only required
for concentrated flow conditions and is devoted to native grasses and forbs (NRCS 2003). CRP limits enrollment of
buffers constructed for water quality to those with less than a "maximum average width of 180 feet" and an absolute
maximum width of 350 ft.
State and Provincial Regulations and Recommendations
State (USA) and Provincial (Canada) width guidelines for forested riparian buffers associated with timber harvesting
were recently summarized by Lee et al. (2004). State width guidelines for buffers ranged from 15.5 - 24.2 m. Provincial
guidelines generally required wider buffers (13.8 - 43.8 m). Widest buffers were recommended in northern Canada
and narrowest in the southeastern U.S. In some areas, buffer widths were regulated as "one size fits all." Elsewhere,
width recommendations were modified using factors including size/permanence of waterbody, slope of surrounding
terrain, and presence/absence of fish.
In general, Lee et al. (2004) found that State-level "blanket" regulations addressing nitrogen attenuation and riparian
buffer zone widths were non-existent. Many states have no mandatory buffer regulations and almost none regulate ag-
riculture where buffers may have greatest potential for attenuating nitrogen fertilizer or livestock. However, many states
have documented standards related to sections 303(d) and 319 of the CWA that result in site-specific maintenance of
riparian zones for watershed protection, including nutrient attenuation. For resource agencies that do not yet have such
regulations and wish to develop standards, numerous models and existing riparian buffer ordinances are available to
serve as templates (U.S. EPA, undated; SCDHEC, undated). Many local governing bodies at the county, municipal, or
district level proved additional guidance or regulation regarding riparian buffers. Wenger and Fowler (2000) indicated
that establishing and enforcing regulations for variable-width buffers contingent upon local land use, slope, soil type, etc.
are most difficult and suggest, rather, a model, fixed-width buffer ordinance intended to be clear and enforceable.
Other Aspects of Buffer Effectiveness
Buffer width partly accounts for nitrogen removal effectiveness of riparian buffers. However, other factors may be equally
or more important in determining buffer effectiveness such as vegetation type and depth of the root zone where plants
can take up nitrogen (Asmussen et al. 1979, Cooper 1990). Nitrogen also is consumed by denitrifying bacteria which
convert nitrate to inert dinitrogen gas (Korum 1992). Therefore, riparian zones are particularly effective at removing
nitrate where groundwater conditions favor denitrification, such as saturated soils that maintain anaerobic sites (Leeds-
Harrison et al. 1999, Sloan et al. 1999, Sabater et al. 2003) and carbon supplies adequate for bacterial respiration in
the subsurface (Hanson et al. 1994; Hill et al. 2000, 2004; Steinhart et al. 2001; Schade et al. 2001, 2002; Richardson
et al. 2004). Therefore, narrow buffers may be effective if such groundwater characteristics promoting denitrification are
present (Dillaha et al. 1989, Simmons et al. 1992) but, as our meta-analysis showed, wider buffers tended to be more
effective. Streams with riparian zones that remain hydrologically connected with adjacent floodplains are more likely to
function in ways that promote denitrification (Groffman et al. 2003; Groffman et al. 2005).
For maximum and long-term effectiveness, buffer integrity should be protected against a) soil compaction from vehicles,
livestock, and impervious surfaces (e.g., pavement) that might inhibit infiltration or disrupt water flow patterns (Dillaha
et al. 1989; NRC 2002), b) excessive leaf litter removal or alteration of the natural plant community (e.g., raking, tree
thinning, introduction of invasive species) that might reduce carbon-rich organic matter from reaching the stream, and
c) urbanization and other practices that might disconnect the stream channel from the flood plain (i.e., channelization,
bank erosion, stream incision, and drain tiles) and thereby reduce the spatial and temporal extent of soil saturation
(Paul and Meyer 2001, Groffman et al. 2003, Groffman et al. 2005). Buffer width may indirectly affect factors promoting
denitrification. For example, narrow buffers that produce little vegetative biomass may not provide sufficient stocks of
organic material for microbial denitrifiers.
14

-------
Buffer Restoration, Planning, and Design
Creating ordinances and zoning to protect existing buffers will likely be cheaper than creating new buffers or restor-
ing degraded ones. However, restoring buffers may be a necessary component of watershed water quality protection
(FISRWG 1998, NRC2002). An engineering approach thought to maximize nutrient removal capacity of buffers involves
a multiple vegetation species or plant zone system (Welch 1991, Schultz et al. 1995, NRCS 2003). This 3-zone strat-
egy was originally intended for protecting streams against timber harvest or agricultural use and is characterized by a
zone of grasses and forbs immediately next to the area of disturbance, a middle zone of shrubs, and a zone of trees
nearest to the stream channel. In theory, sediments and nutrients in surface runoff flowing from agricultural fields or
timbered areas are intercepted first by the grass zone, while nutrients entering deeper subsurface pathways are taken
up by shrub and tree roots (NRC 2002).
Substantial evidence exists to emphasize the importance of maintaining riparian zones in upstream headwaters or
backwaters regions, which can be areas of high nitrogen removal (Perry et al. 1999, Morrice et al. 2000, Peterson et
al. 2001, Seitzinger et al. 2002, Richardson et al. 2004, Bernhardt et al. 2005a). For a 10th order stream, up to 90% of
the cumulative stream length consists of ephemeral, first, and second order streams (NRC 2002). Thus, the largest
proportion of annual stream nutrient load enters watersheds from the headwaters where the capacity to remove nitrogen
is great, while less additional nitrogen processing occurs in the main channels of higher order streams (Richardson et
al. 2004, Bernot and Dodds 2005).
Many stream restoration projects are conducted to re-establish geomorphic stability (Bernhardt et al. 2005b) using ap-
proaches that potentially alter nutrient and sediment dynamics (Steiger and Gurnell 2003) in ways that may promote
conditions for denitrification such as increasing supply and burial of organic matter, reconnecting flood plains, and
increasing hydraulic residence time (Groffman et al. 1996). Furthermore, removal of nitrate occurs within the stream
channel after nutrients have moved through the riparian zone and entered the hyporheic zone (Peterson et al. 2001,
Kemp and Dodds 2002) suggesting that, in addition to establishing riparian buffers, manipulation of stream channels to
support denitrification also should be considered as a means to manage nutrients (Groffman et al. 2005).
15

-------
16

-------
Summary and Conclusions
Based on current studies, riparian buffers of various types are effective at reducing nitrogen in riparian zones, especially
nitrogen flowing in the subsurface. Buffers generally are more effective where soil type, hydrology, and biogeochemis-
try are conducive to microbial denitrification and plant uptake. While some narrow buffers (1-15 m) removed nitrogen,
wider buffers (>50 m) more consistently removed significant portions of nitrogen probably by providing more area for
root uptake of nitrogen or more sites for denitrification.
On average, State guidelines (Lee et al. 2004) recommended buffer widths that corresponded well to the minimum
effective buffer widths necessary to improve water quality only if conditions within buffers are conducive to denitrifica-
tion. Federal regulations do not stipulate minimum buffer widths for nitrogen removal from streams. Rather, riparian
buffers represent a suggested tool to protect stream water quality and/or for removing streams from impaired listing
due to nitrogen pollution under 303(d) section of the Clean Water Act. Federally recommended buffer widths vary from
~7-100 m, which encompass the width range of buffers expected to remove significant amounts of nitrogen.
Buffers extending along the length of both stream banks and in which there is prolonged contact time with the root zone
will offer greater likelihood of nitrogen uptake by plants. Buffers will be most effective at controlling nitrogen through
denitrification when 1) water flow (overland and subsurface) is evenly distributed and soil infiltration rates are high,
2) anaerobic (saturated) conditions persist in the subsurface, and 3) sufficient organic carbon is present. Therefore,
to maintain maximum effectiveness, buffer integrity should be protected against soil compaction, loss of vegetation,
and stream incision. Maintaining buffers around stream headwaters will likely be most effective at maintaining overall
watershed water quality while restoring degraded riparian zones, and stream channels may improve nitrogen removal
capacity. However, because streams and riparian zones have limited capacity to process nitrogen, watershed nutrient
management efforts also must include control and reduction of point and non-point sources of nitrogen from atmospheric,
terrestrial, and aquatic inputs. In any case, riparian buffers are a "best management practice" (BMP) that should be
used in conjunction with a comprehensive watershed management plan (U.S. EPA 1995, NRC 2002). Finally, riparian
buffers are often protected to achieve multiple goals (e.g. sediment trapping, aesthetics, wildlife habitat), some of which
may require wider buffers, specific vegetation types, and/or other special considerations (Castelle et al. 1994, Wenger
1999, Fischer and Fischenich 2000).
17

-------
18

-------
Literature Cited
Asmussen, L.E., J.M. Sheridan, and C.V. Booram, Jr. 1979. Nutrient movement in streamflowfrom agricultural watersheds
in the Georgia Coastal Plain. Transactions of the American Society of Agricultural Engineers 22:809-815, 821.
Barling, R.D., and I.D. Moore. 1994. Role of buffer strips in management of waterway pollution: A review. Environmental
Management 18:543-558.
Belt, G.H., J. O'Laughlin, and T. Merrill. 1992. Design of forest riparian buffer strips for the protection of water quality:
analysis of scientific literature. Idaho Forest, Wildlife, and Range Policy Group Report No. 8, University of Idaho,
Moscow, ID.
Bernhardt, E.S., G.E. Likens, R.O. Hall, Jr., D.C. Buso, S.G. Fisher, T.M. Burton, J.L. Meyer, W.H. McDowell, M.S. Mayer,
W.B. Bowden, S.E.G. Findlay, K.H. MacNeale, R.S. Stelzer, and W.H. Lowe. 2005a. Can't see the forest for the
stream? In-stream processing and terrestrial nitrogen exports. Bioscience 55:219-230.
Bernhardt, E.S, M.A. Palmer, J.D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-
Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, R. Jenkinson, S. Katz, G.M. Kondolf, P. S. Lake, R. Lave,
J.L. Meyer, T.K. O'Donnell, L. Pagano, B. Powell, and E. Sudduth. 2005b. Synthesizing U.S. river restoration efforts.
Science 308:636-637.
Bernot, M.J. and W.K. Dodds. 2005. Nitrogen retention, removal, and saturation in lotic ecosystems. Ecosystems
8:442-453.
Borin, M., and E. Bigon. 2002. Abatement of N03-N concentration in agricultural waters by narrow buffer strips. Envi-
ronmental Pollution 117:165-168.
Brusch, W., and B. Nilsson. 1993. Nitrate transformation and water movement in a wetland area. Hydrobiologia
251:103-111.
Burns, D.A., and L. Nguyen. 2002. Nitrate movement and removal along a shallow groundwater flow path in a riparian
wetland within a sheep-grazed pastoral catchment: results of a tracer study. New Zealand Journal of Marine and
Freshwater Research 36:371-385.
Carpenter, S., N.F. Caraco, D.L. Correll, R.W. Howarth, A.N. Sharpley, and V.H. Smith. 1998. Nonpoint pollution of
surface waters with phosphorus and nitrogen. Issues in Ecology No. 3, Ecological Society of America, Washington,
DC, 12 pp.
Castelle, A.J., A.W. Johnson, and C. Conolly. 1994. Wetland and stream buffer size requirements - a review. Journal
of Environmental Quality 23:878-882.
Cey, E.E., D.L. Rudolph, R. Aravena, and G. Parkin. 1999. Role of the riparian zone in controlling the distribution and fate
of agricultural nitrogen near a small stream in southern Ontario. Journal of Contaminant Hydrology 37:45-67.
Christensen, D. 2000. Protection of riparian ecosystems: a review of the best available science. Jefferson County
Natural Resources Division, Port Townsend, WA.
Clausen, J.C., K. Guillard, C.M. Sigmund, and K.M. Dors. 2000. Water quality changes from riparian buffer restoration
in Connecticut. Journal of Environmental Quality 29:1751-1761.
Cooper, A.B. 1990. Nitrate depletion in the riparian zone and stream channel of a small headwater catchment.
Hydrobiologia 202:13-26.
Correll, D. 2003. Vegetated stream riparian zones: Their effects on stream nutrients, sediments, and toxic substances.
13th edition. Sustainable Florida Ecosystems, Inc., Crystal River, FL.
Dillaha, T.A., J.H. Sherrard, D. Lee, S. Mostaghimi, and V.O. Shanholtz. 1988. Evaluation of vegetative filter strips as a
best management practice for feed lots. Journal of the Water Pollution Control Federation 60:1231-1238.
Dillaha, T.A., R.B. Reneau, S. Mostaghimi, and D. Lee. 1989. Vegetative filter strips for agricultural nonpoint source
pollution control. Transactions of the American Society of Agricultural Engineers 32:513-519.
Fennessy, M.S., and J.K. Cronk. 1997. The effectiveness and restoration potential of riparian ecotones for the manage-
ment of nonpoint source pollution, particularly nitrates. Critical Reviews in Environmental Science and Technology
27:285-317.
Fischer, R.A., and J.C. Fischenich. 2000. Design recommendations for riparian corridors and vegetated buffer strips.
Technical Note ERDC-TN-EMRRP-SR-24, Army Engineer Waterways Experiment Station, Vicksburg, MS.
Federal Interagency Stream Corridor Restoration Working Group (FISRWG). 1998. Stream Corridor Restoration:
Principles, Processes, and Practices. GPO Item No. 0120-A; SuDoc No. A 57.6/2:EN3/PT.653.
19

-------
Fustec, E., A. Mariotti, X. Grillo, and J. Sajus. 1991. Nitrate removal by denitrification in alluvial ground water: role of
a former channel. Journal of Hydrology 123:337-354.
Groffman, P.M., D.J. Bain, L.E. Band, K.T. Belt, G.S. Brush, J.M. Grove, R.V. Pouyat, I.C. Yesilonis, and W.C. Zipperer.
2003. Down by the riverside: urban riparian ecology. Frontiers in Ecology and the Environment 6:315-321.
Groffman, P.M., G. Howard, A.J. Gold, and W.M. Nelson. 1996. Microbial nitrate processing in shallow groundwater in
a riparian forest. Journal of Environmental Quality 25:1309-1316.
Groffman, P.M., A.M. Dorsey, and P.M. Mayer. 2005. N processing within geomorphic structures in urban streams.
Journal of the North American Benthological Society 24:613-625.
Hanson, G.C., P.M. Groffman, and A.J. Gold. 1994. Symptoms of nitrogen saturation in a riparian wetland. Ecological
Applications 4:750-756.
Haycock, N.E., and TP. Burt. 1993. Role of floodplain sediments in reducing the nitrate concentration of subsurface
run-off: a case study in the Cotswolds, UK. Hydrological Processes 7:287-295.
Haycock, N.E., and G. Pinay. 1993. Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips
during the winter. Journal of Environmental Quality 22:273-278.
Hefting, M.M., R. Bobbink, and H. de Caluwe. 2003. Nitrous oxide emission and denitrification in chronically nitrate-
loaded riparian buffer zones. Journal of Environmental Quality 32:1194-1203.
Hefting, M.M., and J.J.M. de Klein. 1998. Nitrogen removal in buffer strips along a lowland stream in the Netherlands:
a pilot study. Environmental Pollution 102, S1:521-526.
Hickey, M.B.C., and B. Doran. 2004. A review of the efficiency of buffer strips for the maintenance and enhancement
of riparian ecosystems. Water Quality Research Journal of Canada 39:311-317.
Hill, A.R. 1996. Nitrate removal in stream riparian zones. Journal of Environmental Quality 25:743-755.
Hill, A.R., K.J. Devito, S. Campagnolo, and K. Sanmugadas. 2000. Subsurface denitrification in a forest riparian zone:
Interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51:193-223.
Hill, A.R., P.G.F. Vidon, and J. Langat. 2004. Denitrification potential in relation to lithology in five headwater riparian
zones. Journal of Environmental Quality 33:911-919.
Hubbard, R.K., and R. Lowrance. 1997. Assessment of forest management effects on nitrate removal by riparian buffer
systems. Transactions of the American Society of Agricultural Engineers 40:383-391.
Hubbard, R.K., and J.M. Sheridan. 1989. Nitrate movement to groundwater in the southeastern Coastal Plain. Journal
of Soil and Water Conservation 44:20-27.
Jacobs, T.C., and J.W. Gilliam. 1985. Riparian losses of nitrate from agricultural drainage waters. Journal of Environ-
mental Quality 14:472-478.
Johnson, A.W., and D.M. Ryba. 1992. Literature review of recommended buffer widths to maintain various functions
of stream riparian areas. Water and Land Resources Division, King County Department of Natural Resources,
Seattle, WA.
Jordan, T.E., D.L. Correll, and D.E. Weller. 1993. Nutrient interception by a riparian forest receiving inputs from adjacent
cropland. Journal of Environmental Quality 22:467-473.
Kemp, M.J., and W.K. Dodds. 2002. Comparisons of nitrification and denitrification in prairie and agriculturally-influenced
streams. Ecological Applications 12:998-1009.
Korum, S.F. 1992. Natural denitrification in the saturated zone: a review. Water Resources Research. 28:1657-
1668.
Kuusemets, V., U. Mander, K. Lohmus, and M. Ivask. 2001. Nitrogen and phosphorus variation in shallow groundwater
and assimilation in plants in complex riparian buffer zones. Water Science and Technology 44:615-622.
Lee, K.-H., T.M. Isenhart, and R.C. Schultz. 2003. Sediment and nutrient removal in an established multi-species ripar-
ian buffer. Journal of Soil and Water Conservation 58:1-7.
Lee, P., C. Smyth, and S. Boutin. 2004. Quantitative review of riparian buffer width guidelines from Canada and the
United States. Journal of Environmental Management 70:165-180.
Leeds-Harrison, P.B., J.N. Quinton, M.J. Walker, C.L. Sanders, and T. Harrod. 1999. Grassed buffer strips for the control
of nitrate leaching to surface waters in headwater catchments. Ecological Engineering 12:299-313.
Lowrance, R. 1992. Groundwater nitrate and denitrification in a coastal plain riparian forest. Journal of Environmental
Quality 21:401-405.
20

-------
Lowrance, R., L.S. Altier, J.D. Newbold, R.R. Schnabel, RM. Groffman, J.M. Denver, D.L. Correll, J.W. Gilliam, J.L. Rob-
inson, R.B. Brinsfield, K.W. Staver, W. Lucas, and A.H. Todd. 1997. Water quality functions of riparian forest buffer
systems in Chesapeake Bay Watersheds. Environmental Management 21:687-712.
Lowrance, R.R., R.L. Todd, and L.E. Asmussen. 1984. Nutrient cycling in an agricultural watershed - I: phreatic move-
ment. Journal of Environmental Quality 13:22-27.
Lynch, J., E. Corbett, and K. Mussallem. 1985. Best management practices for controlling nonpoint source pollution
of forested watersheds. Journal of Soil and Water Conservation 1:164-167.
Magette, W.L., R.B. Brinsfield, R.E. Palmer, and J.D. Wood. 1989. Nutrient and sediment removal by vegetated filter
strips. Transactions of the American Society of Agricultural Engineers 32:663-667.
Martin, T.L., N.K. Kaushik, H.R. Whiteley, S. Cook, and J.W. Nduhiu. 1999. Groundwater nitrate concentrations in the
riparian zones of two southern Ontario streams. Canadian Water Resources Journal 24:125-138.
Morrice, J.A., C.N. Dahm, H.M. Valett, P.V. Unnikrishna, and M.E. Campana. 2000. Terminal electron accepting pro-
cesses in the alluvial sediments of a headwater stream. Journal of the North American Benthological Society
19:593-608.
Muscutt, A.D., G.L. Harris, S.W. Bailey, and D.B. Davies. 1993. Buffer zones to improve water quality. A review of their
potential use in UK agriculture. Agriculture, Ecosystems, and Environment 45:59-77.
National Research Council. 2002. Riparian areas: Functions and strategies for management. National Academy Press,
Washington, DC.
National Resources Conservation Service. 2003. National Handbook of Conservation Practices. U.S. Department of
Agriculture, Washington, DC.
Oberts, G. and A. Plevan. 2001. Benefits of wetland buffers: a study of functions, values and size. Report prepared
for the Minnehaha Creek Watershed District. Emmons and Oliver Resources, Inc. Oakdale, MN. 41 pp.
Osborne, L.L., and D.A. Kovacic. 1993. Riparian vegetated buffer strips in water-quality restoration and stream man-
agement. Freshwater Biology 29:243-258.
Parkyn, S. 2004. Review of riparian buffer zone effectiveness. Ministry of Agriculture and Forestry Technical Paper
No. 2004/05, Wellington, New Zealand.
Parkyn, S.M., R.J. Davies-Colley, N.J. Halliday, K.J. Costly, and G.F. Croker. 2003. Planted riparian buffer zones in New
Zealand: Do they live up to expectations? Restoration Ecology 11:436-447.
Paul, M.J. and J.L. Meyer. 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics 32:333-
365.
Perry, C.D., G. Vellidis, R. Lowrance, and D.L. Thomas. 1999. Watershed-scale water quality impacts of riparian forest
management. Journal of Water Resources Planning and Management 125:117-125.
Peterjohn, W.T., and D.L. Correll. 1984. Nutrient dynamics in an agricultural watershed observations on the role of a
riparian forest. Ecology 65:1466-1475.
Peterson, B.J., W.M. Wollheim, P.J. Mulholland, J.R.Webster, J.L. Meyer, J.L. Tank, E. Marti, W.B. Bowden, H.M. Valett,
A.E. Hershey, W.H. McDowell, W.K. Dodds, S.K. Hamilton, S. Gregory, and D.D. Morrall. 2001. Control of nitrogen
export from watersheds by headwater streams. Science 292:86-90.
Phillips, J.D. 1989a. An evaluation of the factors determining the effectiveness of water quality buffer zones. Journal
of Hydrology 107:133-145.
Phillips, J.D. 1989b. Nonpoint source pollution control effectiveness of riparian forests along a coastal plain river.
Journal of Hydrology 110:221-237.
Pinay, G., and H. Decamps. 1988. The role of riparian woods in regulating nitrogen fluxes between alluvial aquifer and
surface water: a conceptual model. Regulated Rivers: Research and Management 2:507-516.
Pinay, G., L. Roques, and A. Fabre. 1993. Spatial and temporal patterns of denitrification in riparian forest. Journal of
Applied Ecology 30:581-591.
Prach, K., and O. Rauch 1992. On filter effects of ecotones. Ekologia (CSFR) 11:293-298.
Puckett, L.J., T.K. Cowdery, P.B. McMahon, L.H.Tornes, and J.D. Stoner. 2002. Using chemical, hydrologic, and age
dating analysis to delineate redox processes and flow paths in the riparian zone of a glacial outwash aquifer-stream
system. Water Resources Research 38:10.1029.
Richardson, W.B., E.A. Strauss, L.A. Bartsch, E.M. Monroe, J.C. Cavanaugh, L. Vingum, and D.M. Soballe. 2004.
Denitrification in the Upper Mississippi River: rates, controls, and contribution to nitrate flux. Canadian Journal of
Fisheries and Aquatic Sciences 61:1102-1112.
21

-------
Sabater, S., A Butturini, J.C. Clement, T. Burt, D. Dowrick, M. Hefting, V. Matre, G. Pinay, C. Postolache, M. Rzepecki,
and F. Sabater. 2003. Nitrogen removal by riparian buffers along a European climatic gradient: patterns and factors
of variation. Ecosystems 6:20-30.
Schade, J.D., S.G. Fisher, N.B. Grimm, and J.A. Seddon. 2001. The influence of a riparian shrub on nitrogen cycling
in a Sonoran Desert stream. Ecology 82:3363-3376.
Schade, J.D., E. Marti, J.R. Welter, S.G. Fisher, and N.B. Grimm. 2002. Sources of nitrogen to the riparian zone of a
desert stream: implications for riparian vegetation and nitrogen retention. Ecosystems 5:68-79.
Schlesinger, W.H. 1997. Biogeochemistry: an analysis of global change. Academic Press, San Diego, CA. 588 pp.
Schmitt, T.J., M.G. Dosskey, and K.D. Hoagland. 1999. Filter strip performance and processes for different vegetation,
widths, and contaminants. Journal of Environmental Quality 28:1479-1489.
Schoonover, J.E., and K.W.J. Williard. 2003. Ground water nitrate reduction in giant cane and forest riparian buffer
zones. Journal of the American Water Resources Association 39:347-354.
Schultz, R.C., J.P. Colletti, T.M. Isenhart, W.W. Simpkings, C.W. Mize, and M.L. Thompson. 1995. Design and placement
of a multi-species riparian buffer strip. Agroforestry Systems 29:201-225.
Schwer, C.B., and J.C. Clausen. 1989. Vegetative filter strips of dairy milkhouse wastewater. Journal of Environmental
Quality 18:446-451.
Seitzinger, S.P., R.V. Styles, E.W. Boyer, R.B. Alexander, G. Billen, R.W. Howarth, B. Mayer, and N. van Breemen. 2002.
Nitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A. Biogeo-
chemistry 57:199-237.
Simmons, R.C., A.J. Gold, and P.M. Groffman. 1992. Nitrate dynamics in riparian forests: groundwater studies. Journal
of Environmental Quality 21:659-665.
Sloan, A.J., J.W. Gillian, J.E. Parsons, R.L. Mikkelsen, and R.C. Riley. 1999. Groundwater nitrate depletion in a swine
lagoon effluent-irrigated pasture and adjacent riparian zone. Journal of Soil and Water Conservation 54:651-656.
South Carolina Department of Health and Environmental Control. Undated. Vegetated Riparian Buffers and Buffer
Ordinances. http://www.scdhec.net/ocrm/HTML/printed.html; http://www.scdhec.net/ocrm/pubs/buffers.pdf
Spruill, T.B. 2000. Statistical evaluation of effects of riparian buffers on nitrate and ground water quality. Journal of
Environmental Quality 29:1523-1538.
Spruill, T.B. 2004. Effectiveness of riparian buffers in controlling ground-water discharge of nitrate to streams in selected
hydrogeological settings of the North Carolina Coastal Plain. Water Science and Technology 49:63-70.
SPSS, Inc. 2000. SYSTAT 10. Chicago, Illinois, USA.
Steiger, J., and A.M. Gurnell. 2003. Spatial hydrogeomorphological influences on sediment and nutrient deposition in
riparian zones: observations from the Garonne River, France. Geomorphology 49:1-23.
Steinhart, G.S., G.E. Likens, and P.M. Groffman. 2001. Denitrification in stream sediments in five northeastern (USA)
streams. Verhandlungen der Internationalen Vereingug fur Theorerische und Andwandte Limnologie 27:1331-
1336.
Swackhamer, D.L., H.W. Paerl, S.J. Eisenreich, J. Hurley, K.C. Hornbuckle, M. McLachlan, D. Mount, D. Muir, and D.
Schindler. 2004. Impacts of atmospheric pollutants on aquatic ecosystems. Issues in Ecology No. 12, Ecological
Society of America, Washington DC, 24 pp.
U.S. Environmental Protection Agency. Undated. Aquatic Buffers, http://www.epa.gov/owow/nps/ordinance/buffers.
htm
U.S. Environmental Protection Agency. 1995. Ecological restoration: a tool to manage stream quality. EPA/841/F-95-
007. Office of Water, Washington, DC.
U.S. Environmental Protection Agency. 2001. Development Document for the Proposed Revisions to the National
Pollutant Discharge Elimination System Regulation and the Effluent Guidelines for Concentrated Animal Feeding
Operations. EPA/821/R-01/003. Office of Water, Washington, DC.
U.S. Environmental Protection Agency. 2002a. National Water Quality Inventory: 2000 Report. EPA/841/R-02/001.
Office of Water, Washington, DC.
U.S. Environmental Protection Agency. 2002b. National Primary Drinking Water Standards. EPA/816/F-02/013. Office
of Water, Washington, DC.
U.S. Environmental Protection Agency. 2003. National Management Measures to Control Nonpoint Source Pollution
from Agriculture. EPA/841/B-03/004. Office of Wetlands, Oceans, and Watersheds, Washington, DC.
Vellidis, G., R. Lowrance, P. Gay, and R.K. Hubbard. 2003. Nutrient transport in a restored riparian wetland. Journal
22

-------
of Enviromental Quality 32:711-726.
Vidon, P.G.F., and A.R. Hill. 2004. Landscape controls on nitrate removal in stream riparian zones. Water Resources
Research 40:W03201.
Vitousek, P.M., J. Aber, R.W. Howarth, G.E. Likens, RA. Matson, D.W. Schindler, W.H. Schlesinger, and G.D. Tilman.
1997. Human alteration of the global nitrogen cycle: Causes and consequences. Issues in Ecology 1:1-15.
Welch, D.J. 1991. Riparian forest buffers - functional and design protection and enhancement of water resources.
USDA Forest Service Publication NA-PR-07-91.
Wenger, S. 1999. A review of the scientific literature on riparian buffer width, extent and vegetation. Office of Public
Service and Outreach, Institute of Ecology, University of Georgia, Athens, GA.
Wenger, S.J., and L. Fowler. 2000. Protecting stream and river corridors: creating effective local riparian buffer ordi-
nances. Carl Vinson Institute of Government, University of Georgia, Athens, GA.
Yates, P., and J.M. Sheridan. 1983. Estimating the effectiveness of vegetated floodplains/wetlands as nitrate-nitrite and
orthophosphorus filters. Agriculture, Ecosystems and Environment 9:303-314.
Young, R.A., T. Huntrods, and W. Anderson. 1980. Effectiveness of vegetated buffer strips in controlling pollution from
feedlot runoff. Journal of Environmental Quality 9:483-487.
Zirschky, J., D. Crawford, L. Norton, S. Richards, D. Deemer. 1989. Ammonia removal using overland flow. Journal of
the Water Pollution Control Federation 61:1225-1232.
23

-------
24

-------
Appendices
Appendix 1. Summary Table of United States Code Referring to "Riparian", "Buffer", "Vegetated", and "Filter Strip".
(Source: http://www.gpoaccess.gov)
United States Code

Title
Chapter
Part(s)
16 - Conservation
1 - National Parks, Military Parks, Monuments, and
Seashores
460


2 - National Forests
539


6 - Game and Bird Preserves, Protection
689


36 - Forest and Rangeland Renewable Resources Planning
1604


41 - Cooperative Forestry Assistance
2103
2140

58 - Land and Wetland Conservation and Reserve Program
3831
3839

25 - Indians
11 - Irrigation of Alloted Lands
381


33 - Navigation and Navigable
Waters
9 - Protection of Navigable Waters and or
Harbor and River Improvements Generally
465


11 - Bridges over Navigable Waters
500

36 - Water Resources Development
2336


42 - The Public Welfare
19 - Water Resources Planning
1962


43 - Public Lands
23 - Grants of Swamp and Overflowed Lands
994

25

-------
Appendix 2. Summary Table of Code of Federal Regulations Referring to "Riparian", "Buffer", "Vegetated", and"Filter
Strip". (Source: http://www.gpoaccess.gov)
Code of Federal Regulations


Title
Chapter
Part(s)
7 - Agriculture
VI - National Resources Conservation Service
601
610


VII - Farm Service Agency
718



XIV - Commodity Credit Corporation
1410
1467
1469

XVII - Rural Utilities Service
1767



XVIII - Rural Housing Service, Rural Business
Cooperative, Rural Utilities Service, and
Farm Service Agency
1940
1943
1955


10 - Energy
I - Nuclear Regulatory Commission
51




18 - Conservation
of Power and Water
Resources
I - Federal Energy Regulatory Commission
5
380


XIII - Tennessee Valley Authority
1304




30 - Mineral Resources
VII - Office of Surface
15
80
84
715
717
780
784
816
817




36 - Parks, Forests, and
Public Property
II - Forest Service
200
228
230
292

40 - Protection of the
Environment
I - Environmental Protection Agency
122
412



43 - Public Lands, Interior
II - Bureau of Land Management
2420
2450
3420
3800
3809
4100
4120
4130
III - Utah Reclamation Mitigation and
Conservation Commission
10005




44 - Emergency
Management and
Assistance
I - Federal Emergency Management Agency
60
206
209


50 - Wildlife and Fisheries
I - U.S. Fish and Wildlfe Service
17
36
37

II - National Marine Fisheries Service
222
223
226

26

-------
oEPA
United States
Environmental Protection
Agency
National Risk Management
Research Laboratory
Cincinnati, OH 45268
Official Business
Penalty for Private Use
$300
EPA/600/R-05/118
October 2005
Please make all necessary changes on the below label,
detach or copy, and return to the address In the upper
left-hand corner.
If you do not wish to receive these reports CHECK HERED;
detach, or copy this cover, and return to the address in the
upper left-hand corner.
PRESORTED STANDARD
POSTAGE & FEES PAID
EPA
PERMIT No. G-35
Recvcied/Recvetable
/Kmmr	t on
jlK	r that ^onrdjns e mtnnum of
VUV 50% post-consumer fiber content
prar«s!>d cftiar ne fr^

-------