AP-44
                                                   PB-190  247
   HANDBOOK  OF  AIR  POLLUTION

   James  P.  Sheehy,  et  al
                                    DISTRIBUTED BY:
                                    National Technical Information Service
                                    U. S. DEPARTMENT OF  COMMERCE
                                    5285 Port Royal Road, Springfield Va. 22151

-------
                                                                   PB-190 247
HANDBOOK   OF   AIR    POLLUTION
                              By

                      James P. Sheehy

                      William C. Achinger

                      Regina A. Simon
                 TRAINING  PROGRAM
                         Reproduced by
                         NATIONAL TECHNICAL

                         INFORMATION  SERVICE
                            US Department of Commerce
                             Springfield, VA. 22151
 U.S. DEPARTMENT OF HEALTH, EDUCATION,, AND WELFARE

                      Public Health Service

     Bureau of Disease Prevention and Environmental Control

             National Center for Air Pollution Control
                      Durham, N. C.  27701
                                                       f-

-------
The ENVIRONMENTAL HEALTH SERIES of reports was established
to report the results of scientific and engineering studies of man's
environment:  The community, 'whether urban, suburban, or rural,
where he lives,  works, and plays; the air, water and earth he uses
and reuses; and the  wastes he produces and muist dispose of in a way
that preserves these natural resources.  This SERIES of reports
provides for professional users a central source of information on the
intramural research activities of the  Centers  in the  Bureau of Disease
Prevention and Environmental Control,  and on their cooperative
activities with State and local agencies, research institutions, and in-
dustrial organizations.  The general subject area of each report is
indicated by the letters that appear in the publication number; the
indicators are
                     AP  - Air Pollution

                     RH  - Radiological Health

                     UIH  - Urban and Industrial Health
Reports in the SERIES will be distributed to requesters, as supplies
permit.  Requests should be directed to the Air Pollution Technical
Information Center, National Center for Air Pollution Control,
Public Health Service, Department of Health,  Education,  and
Welfare, Washington,  D. C.  20201
         Public Health Service Publication No. 999-AP-44

-------
                   ABOUT  THE COVER
The cover illustration represents the Ringelmann Chart,  a method
for the estimation of smoke density, which was developed by
Professor Maximilian Ringelmann in Paris.  Introduced into the
United States in 1897, it now forms the basis of smoke emission
legislation in over 100 American communities,  and may be
considered as a nationwide standard.

The Ringelmann Chart consists of a series of graduated shades
of grey, varying in five equal  steps from white  (Ringelmann
Number 0) to black (Ringelmann Number 5).  The shades
between are  represented by standard grids; those reproduced
on the cover are Ringelmann 1 through 4.

-------
HANDBOOK   OF   AIR   POLLUTION
                             By

                     James P. Sheehy
                     William C. Achinger
                     Regina A. Simon
                    Air Pollution Training
                  TRAINING  PROGRAM
 U.S. DEPARTMENT OF HEALTH, EDUCATION,  AND WELFARE
                     Public Health Service
                   Bureau of State Services
                   Division of Air Pollution

            Robert A. Taft Sanitary Engineering Center
                   Cincinnati,  Ohio 45226

-------
                      PURPOSE OF HANDBOOK
Individuals working in the air pollution field often need access to data
concerning the characteristics and behavior of air, gases and particles,
and the chemistry of atmospheric pollutants, and to data of a general
nature such as mathematics and common conversion factors. At pre-
sent,  to have access to all this information, the individual needs a
wide variety of reference books.  The Air Pollution Handbook was de-
signed to consolidate the applicable portions of these numerous  references
into a single,  easily accessible source.

The primary consideration for inclusion in the handbook is that  the infor-
mation  be unlikely to change.  This, then,  excludes experimental results
and data on air quality, even though these may be quite useful.  The one
exception to this general rule is  the section on medical aspects.  The
experimental data that is included here is widely accepted in the field of
biological experimentation.

It is not the intention of the authors that this handbook replace all other
reference texts.  It is designed to provide information of a general
nature.  For more specific data, an individual would refer to a  more
specialized text.

-------
              ACKNOWLEDGEMENT
Special acknowledgement is given to the many individuals
who made this publication possible and, in particular, to the
contributions of Messrs. Rudolph P. V. Boksleitner,   John
J.  Henderson, Donald  R. Johnston,  Carl A.  Lindstrom,
Stanley F.  Slevaand George W.  Walsh, and to Mr. Robert
Thomas for help and assistance  in layout and format.
We wish to acknowledge and thank the following companies
and government agencies for their permission to use mat-
erial from their publications in this handbook.
        Academic Press

        American Air Filter Company, Inc.
        American Institute of Steel Construction
        American Society of Heating,  Refrigerating
          and Air Conditioning Engineers

        Chemical Rubber Publishing Company
        The Electric Hotpack Company, Inc.
        Manufacturing Chemists' Association

        McGraw-Hill Book Company

        Merrill Books,  Inc.

        Mine Safety Appliance Company

        National Academy of Sciences
        The National Bureau of Standards
        Pulverizing Machinery Division
          Metals Disintegrating Company, Inc.
        W. B. Saunders Company

        The Smithsonian Institution
        U.  S.  Weather Bureau
Complete information on publications from which material
was used can be found in Section XVIII, Bibliography.  The
reference number which appears on the first sheet, of any
subject also refers to the Bibliography.

-------
                   USE OF INDEX SYSTEM







To find the first page of any section in this handbook, bend  back




the  pages after the Table  of Contents as  in  the accompanying




sketch.  Select the page whose black tab aligns with the desired




section tab  located in the  Index.  The selected page will be the




Section Divider for the section being sought.

-------
                           TABLE OF  CONTENTS


TITLE                                                                    PAGE NO.

SECTION 1  GENERAL

         Signs and Symbols	    1-1
         Periodic Classification of the Elements	    1-2
         The Electromagnetic Spectrum	    1-3
         Selected Common Abbreviations	    1-4
         Dimensional Systems and Selected Systems of Units of Measurement	    1-6

SECTION!  TIME

         Table of Equivalents of Time	 .    2-1
         Hours, Minutes and Seconds to Decimals of a Day	    2-1
         Decimals of a Day to Hours, Minutes, and Seconds	    2-2
         Minutes and Seconds to Decimals of an Hour   	    2-2

SECTION 3  TEMPERATURE

         Temperature Equivalents Chart	    3-1
         Temperature Conversion Table, Centigrade-Fahrenheit	    3-4
         Temperature Equivalent Graph, Centigrade, Kelvin, Rankine, Fahrenheit  . .    3-5

SECTION 4  LENGTHS

         Table of Equivalents	    4-1
         Conversion Factors — Length	    4-2
         Decimals of an Inch for  Each 64th of an Inch with Millimeter Equivalents . .    4-3
         Decimals of a Foot for Each 32nd of an Inch	    4-4

SECTIONS  AREA

         Table of Equivalents of Area	    5*1

SECTIONS  VELOCITY

         Table of Equivalents of Velocities	    6-1
         Conversion Factors — Velocity	    6-2
         Meters per Second to Miles per Hour, Feet per Second, Kilometers per Hour,
            Knots, Feet per Minute	    6-3
         Feet per  Second to Meters per Second,  Feet per Minute, Miles per Hour,
            Kilometers per Hour, Knots	    6-4
         Relationship Between Velocity Head and  Velocity	    6-6

SECTION 7  CAPACITIES, VOLUMES AND FLOW RATES

         Equivalents of Capacities or Volumes	    7-1
         Units of Capacity, Dry Measure	    7-3
         Units of Capacity, Liquid Measure	    7-3
         Units of Volume	    7-4
         Equivalents of Volume	    7-4

-------
             INDEX
                    GENERAL




                       TIME





                 TEMPERATURE





                    LENGTHS





                       AREA





                    VELOCITY




 CAPACITIES, VOLUMES AND FLOW RATES




                       MASS




                    PRESSURE




      PROPERTIES OF PARTICULATES





                 WATER VAPOR




            PROPERTIES OF GASES





              PROPERTIES OF AIR




PROPERTIES OF POTENTIAL POLLUTANTS




  MISCELLANEOUS CONVERSION FACTORS




                    MEDICAL




                 MATHEMATICS




                 BIBLIOGRAPHY
SECTION  I
SECTION  II
SECTION  III
SECTION  IV
SECTION  V
SECTION  VI
SECTION  VII
SECTION  VIII
SECTION  IX
SECTION  X
SECTION  XI
SECTION  XII
SECTION  XIII
SECTION  XIV
SECTION  XV
SECTION  XVI
SECTION  XVII
SECTION  XVIII

-------
TITLE                                                                      PAGE NO.

SECTION 7 CAPACITIES, VOLUMES AND FLOW RATES (continued)

         Conversion Factors - Volume	    7-5
         Conversion Factors — Flow	    7-6
         Relationship Between Nozzle Size and Flow Rate	    7-7

SECTIONS MASS

         International  Atomic Weights	    8-1
         Equivalents of Weights or Masses  	    8-2
         Conversion Factors for Units of Mass	    8-4
         Pounds and Ounces to Kilograms	    8-5
         Kilograms  to Avoirdupois Pounds and  Ounces	    8-5
         Grams to Grains	    8-6
         Grains to Grams	    8-6
         Comparison of the  Various Tons  and Pounds in  Use in  the United States
            (From 1 to 9 Units)  	    8-7
         Equivalents in Kilograms of 1 to 999 Avoirdupois Pounds	    8-8
         Equivalents in Avoirdupois Pounds of 1 to 999 Kilograms	    8-10

SECT/ON 9 PRESSURE

         Table of Equivalents of Pressure	    9-1
         Conversion Factors - Pressure	    9-2
         Conversion Factors — Pressure Head	    9-3
         Barometric Pressure at Various Altitudes	    9-4
         Angle of Inclination of a Manometer Necessary to Produce Desired
            Magnification	    9-7

SECTION 10 PROPERTIES OF PARTICULATES

         Specific Gravities  of Wind Erosion Products, Industrial Dusts and Combus-
            tion Products	    10-1
         Specific Gravities of Some Common Minerals	    10-2
         Specific Gravities of Common Metals	    10-3
         Diameters  and Specific Gravities  of Selected Pollen Grains	    10-4
         Sizes of Airborne Particulates (M.S.A.)	    10-5
         Characteristics of Particles and Particle Dispersoids  	    10-6
         Size  and Characteristics of Air-Borne  Solids (Frank Chart)	    10-8
         Limits of Particle Size Measuring  Equipment	    10-9
         Physical Properties of Flyash	    10-10
         Standard U.S. and Tyler Screen Scales  	    10-11

SECTION 77 WATER VAPOR

         Saturation  Vapor Pressure Over Water
            (°F, in Hg)  -  Table	    11-1
         Saturation  Vapor Pressure Over Water
            (°C, Millibars)  -   Table	    11-6
         Saturation  Vapor Pressure Over Water
            (°C, mm Hg)  - Table	    11-8
         Low  Temperature Psychrometric Chart (Metric Units)	    11-9
         Normal Temperature Psychrometric Chart (Metric Units)	    11-10

-------
TULE                                                                       PAGE NO.

SECT/ON JJ WATER VAPOR (cont/nued)

         High Temperature Psychrometric Chart (Metric Units)	   11-11
         Low Temperature Psychrometric Chart (English Units)	   11-12
         Normal Temperature Psychrometric Chart (English Units)	   11-13
         High Temperature Psychrometric Chart (English Units)	   11-14
         Saturation Vapor Pressure Over Water
             (°F, in Hg)  -  Graph	   11-15
         Saturation Vapor Pressure Over Water
             (°C, mm Hg)  - Graph	   11-16
         Reduction of Psychrometric Observations
             (Fahrenheit Temperatures)	   11-17
         Reduction of Psychrometric Observations
             (Centigrade Temperatures)	   11-18
         Correction Tables for Psychrometric Chart  -  Altitude (Fahrenheit)	   11-19
         Saturated Water Vapor as Fraction of Metered Volume as a Function of
             Absolute Pressure (in. Hg) and Temperature (°F)	   11-21
         Saturated Water Vapor as Fraction of Metered Volume as a Function of
            Absolute Pressure (mm. Hg) and Temperature (°C)	   11 -22
         Psychrometric  Nomographs for High and Low Pressures	   11-23
         Fraction  of Total Volume Occupied  by Water Vapor vs. Gms. of Water per
            Gram of Dry Air	   11 - 29
         Graphical  Method for Converting Volume  of Condensed Water to Volume of
            Water Vapor at Conditions of Temperature in °K  and Pressure in mm.Hg.   11-30
         Relative Humidity Tables	   11-31

SECTION 12 PROPERTIES OF GASES

         Graphical Solution of Boyle's Low, P1V, = P2V2 = C
            for P in mm.Hg and V  in Liters	   12-1
         Graphical Solution of Charles Law, Pi/f. = ?2/J~  = ^
            for P in mm.Hg and T  in °K	   12-2
         Graphical Solution of "Perfect Gas Law" for One Gram-Mole of Gas,
             T= C for P in mm.Hg, V  in Liters and T in °K	   12-3
         Nomograph for Gas Expansion Following PV =C, for P in PSIA, V in Cubic
            Feet	   12-4
         Graphical  Solution for Determining Density  of a Gas, Knowing  P in mm Hg,
            T in °C, and Molecular Weight	   12-6
         Nomographs for Converting p.g/M  to PPM  by Volume Knowing T in  °K,
            Molecular Weight and P in gm/cm-sec or mm. Hg	   12-7
         Graph for Converting |j.g/M  to PPM by Volume Knowing P in mm. Hg and T
            in °K for CI2, S02, N02,  HCI, H2S, HCN, HF and NH3	   12-9
         Viscosities of Gases: Coordinates for Use with Nomograph	   12-10
         Viscosities of Gases at One Atmosphere	   12-11
         Molecular Weights of Selected Gases	   12-12
         Specific Heat Ratios of Gases at One Atmosphere	   12-13

SECT/ON 13 PROPERTIES OF A/R
                                 «j
         Density of Dry  Air in Kg/M  for °C and Absolute Pressure in Millibars  ...   13-1
         Density of Dry  Air in Mg/cm  for °C and Absolute Pressure in mm. of Hg, .  .   13-3
         Density of Air  (50% Saturated) in Milligrams per Milliliter for Various Tem-
            peratures in °C and Absolute Pressure in mm of Hg	   13-4

                                          Hi

-------
TITLE                                                                      PAGE NO.

SECTION 13 PROPERTIES OF AIR (continued)

         Specific Weight of Dry Air in Ibs/ft  for °F and °R and Absolute Pressure
            of 29.92 in. Hg - Graph	   13-6
         Specific Weight of Dry Air in Ibs/ft   for  °F and Absolute Pressure of
            29.92 in. Hg -  Table	   13-7
         Kinematic Viscosity  (ft /sec)  of Dry  Air at  an Absolute Pressure of
            29.92 in Hg and Various Temperatures °F . .	   13-7
         Nomograph for Determining Theoretical Minimum Weight of Air Required for
            Combustion of a Fuel When the Chemical Analysis is Known	   13-8
         Viscosity of Air (Centipoises) at One Atmosphere for Various Temperatures
            °C and °F	   13-10
         Composition of Dry Air	   13-11
         Air Density Chart	   13-12

SECTION 14 PROPERTIES OF POTENTIAL POLLUTANTS

         Selected Chemical and Physical  Data on Potential Atmospheric
            Contaminants	   14-1
         Perceptible Concentrations and Characteristics of Various Substances in Air   14-17
         Ring Structures of Polynuclear Organic Pollutants	   14-20

SECTION 15 MISCELLANANEOUS CONVERSION FACTORS

         Conversion Factors  -  Force	   15-1
         Conversion Factors  -  Energy and Work	   15-1
         Conversion Factors  -  Power	   15-2
         Conversion Factors  —  Energy per Unit Area	   15-2
         Conversion Factors  -  Power per Unit Area 	   15-2
         Conversion Factors  -  Illumination, Brightness, Etc	   15-3
         Conversion Factors  —  Emission Rates	•	   15-4

SECTION 16 MEDICAL

         Absolute Lung Volumes, Definitions and Conversions	   16-1
         Subdivisions of Lung Volume: Man	'	   16-2
         Diagram of Lung Lobule	   16-3
         Representation of Respiratory System	i	   16-4
         Representation of Respiratory Tract	^	   16-4
         Respiratory Rate, Tidal and Minute Volumes	   16-5
         Data Useful in Pulmonary Physiology	   16-6
         Mean Respiratory Air Flow Measurements   	   16-7
         Blood Erythrocyte and Hemoglobin  Values at or Near Sea Level:  Man  ....   16-8
         Blood Erythrocyte and Hemoglobin  Values at Altitude:  Man	   16-9

SECTION 17 MATHEMATICS

         Squares and Square Roots	   17-1
         Logarithms to Base 10	   17-6
         Natural (Napierian) Logarithms	   17-8
         Values and Logarithms of Exponential Functions	   17-10
         Selected Principles of Algebra	   17-14
         Selected Trigonometric Relationships  .	   17-17

                                         in

-------
TITLE

SECTION 17 MATHEMATICS (continued)

         Selected Principles of Graphics	
         Selected Integrals	
         Selected Differentials	
         Statistical Analysis of the Frequency Distribution
         Properties of Selected Geometric Figures 	
PAGE NO.
  17-22
  17-24
  17-25
  17-26
  17-27
SECTION 18 BIBLIOGRAPHY
  18-1

-------
SECTION 1  GENERAL
         Signs and Symbols	    1-1
         Periodic Classification of the Elements	•   1-2
         The Electromagnetic Spectrum	    1-3
         Selected Common Abbreviations	    1-4
         Dimensional Systems and Selected Systems of Units of Measurement >.....    1-6

-------
                                    SIGNS AND SYMBOLS
       +    plus, addition, positive
            minus, subtraction, negative
            plus or minus, positive or
                negative
            minus or plus, negative or
                positive
      —    division
x, ' ,  ()()    multiplication
   0 [ ]    collection
       =    is equal to
       ^    is not equal to
       =    is identical to
       "*
       =    equals approximately,
                congruent
       >    greater than
       ^    not greater than
      =    greater than or equal to
       <    less than
       <{:    not less  than
      _<    less than or equal to
      '.'.    proportional to
       '.    ratio
       ~    similar to
       oc    varies as, proportional to
       —•   approaches
       «>    infinity
            therefore
Iog,log10
  ln,loge
   e or e
       j_
       n
        n
       n
       n1
       n"
     f (x)
       Ax
       dx
        ~L
      sin
      cos
  square root
  nth root
  nth power of a
  common logarithm
'  natural logarithm
  base of natural logs,  2. 718
  pi,  3.1416
  angle
  perpendicular to
  parallel to.
  any number
  absolute value of n
  average value of n
  reciprocal of nth power
      of a =[-^t]
  n degrees
  n minutes, n feet
  n seconds, n inches
  function of x
  increment of x
  differential of x
  summation of
  sine
  cosine
                                                              tan   tangent
                                           GREEK ALPHABET
Alpha
Beta
Gamma
Delta
Epsilon
Zeta
Eta
Theta
A
B
r
A
E
Z
H
e
a
(3
\
*
«
S
n
e
Iota
Kappa
Lambda
Mu
Nu
Xi
Omicron
Pi
I
K
A.
M
N
S
O
I
I
K
K
»
V
f
o
IT
Rho
i Sigma
Tau
Upsilon
Phi
Chi
Psi
Omega
P
T,
T
T
*
X
t
Q
P
(7
T
0


-------
Z
LU

LU
_J
LU
LU
X
I-
LJL
O

00  2
<  %
-1  &
(J
u

o
o:
LU
a.
IO
~ * 8
it

IO
" * 8
«•
o
a*l
00
Cn u. cn
00
X
00 O Cn
jrt
^
^ z 8
£
* ° |
* « §
00 »; Cn
- « en
to
10
is. - 9
- ° 5
(O
£ u» 8
8i
« 0. &
s
* - 8
— CO ob
CM
2 < §
CM

CM
* 2 5
Cri
cn
10 'Jj cn
u>
M o> »O
- s a
' *§
<0 w 00
10 * KJ
oo
Cn
S*f
* «)  cd
h-
OJ
IO tn 
10 < Jf
p-
0)
CM V m
to O CM
1^
- 0 S
10 ° S
O c 10
to M m
ID

cj o oo
in
U) « 00

" s S
o
* w Q
CM U CVI
in
t
IO > (J)
W ^ ci
in
CV) ._  «•'
*
80 O
U §
CM
o> * 2
"~ 
to
tr 
O c l£(
in (/) 00
 c °3
^ - £
00 -o ^r
* 0 CM
1s*- O1 CD
* < "
O
- CM
* M si
o> ^_ S
10 g
CM
oo w u>
to  o
oo i g
CM
S3 1
S« |
fc * S
£
CM
10 Mi 0
^ o g
in v  IO
' 92
m
to 0' °?
^° g
O)
S £ |
r-- o —
in *• N-
 2

£ £ 2
s 
oo

10
(O
(0
m
to
^
(O
IO
ID
CM
ID
ID
o
CD

cn
CO
m

m







3
X
E
i-
UJ

o
I

o
K
^
0
3
UJ
E
co
a.
•a

CL
a;
O

o
a>
•O

c «
r •-
C M
3
cn
3
ro'
rO
cn
cd
CD
(O
CM
N-'
JO
ro
cn
S
o
in
CO
(\J
CD
m
m
CM
m
cn
m
lo-
ci
in
t
fM
—
S
o
CM
O
»~
cn
00
to







ro j.
2 5
CM
O
5
8

cn
cn
m
cn
cn
(0
cn
m
cn
cn
ro
cn
CM
cn

cn
o
cn

cn
00
o
T>
E
U-

u)

CJ
00
e
o
f.

a.
a.
Z
0

8.
K

<




;
;

\
t
(
?
£
|
P
C\
rc
C
CC
rr
cv
rn
CVJ
s
CM
rO
(M
CM
CM
'c •—
1-2
See Reference  No. 13

-------
u
LU
Q.
i/->

U
J-
LU
Z
O
 u
 LU
 _l
 LU

 LU
 X
                   UJ
                         UJ U

                         z o
                         UJ <0
                         (9






t

1
(/>
4

2-'
^

"
i t~
4 UI
Of
H
5
-j
*^
,2
>


_






••




—













o
UJ
a:
i
4
ae
u.
z








4
$
0
Q
<_
(C








0
(
1
1
*ft
3> '
UJgJ

_•
UI












b'H =o-
rv s.
2 « 2
7
» O*
o —
^ 14
•o V
T
"o 2-
: v
o —
?
o 0-
o —
•IV
~ T
» °"
o -
™" 9
*> 0-
o —
~ 0
1
2 2"
•
	 i_.
M
'o-
M
„ -o-
1 •"
o
in ™ '-
i
0
• — -
1
0
1—1
A O-
0 "
~" M
T 2-
o
~" ft
T 2"
o
7" V
o
— «^
T o-
0

2* "o-
1 •••
o
. "o-
t
0
sT *2-
2 .
5 8'

2 S
«
M
0
M
#* ••
o
M -
O
O
«|
o -
^
•
~o "
•
~o ~
~*
K
~O '
•
~o -
4>
~o ;
— — -
*
~0"
M>
"0"
(4
"o"

= _
o

o
~o -
~
gi
o ~
~
•
O "
IK
o -
«
o -
~
»
o-
~

• .
o
M
o -

















^
N




























«*
g -


0 -
/ o~i — ^_,
> ^ S
~ E <
>• ° o
« > ^ i
K T O
W^ -^-
l_
Z IB >-
uj i o
Z UJ £
0-1 3
t- ui a
o > u
i S a:
a * £
                                                                                               E
                                                                                               o
                                                                                          !!1
                                                                                          o
                                                                                          >
                                                                                          UJ
                                                                                          IK
                                                                                          (9
 8
_£.
 o
 UJ
 ae
E
u
                                                                                                M

                                                                                                (0
       X
       »-
       o
       z
       UJ
       _!
       UJ
                                                                                                          1-3

-------
                           SELECTED COMMON ABBREVIATIONS
    A . A         Angstrom unit of length
    abs.           absolute
    amb.           ambient
    app.mol.wt.    apparent molecular weight
    atm.           atmospheric
    at. wt.         atomic weight
    b. p.           boiling point
    bbl.           barrel
    BTU           British thermal unit
    cal.           calorie
    eg.            centigram
    cm.           centimeter
    cgs system     centimeter-gram-second
                   system
    cone.          concentrated,  concentration
          q
    cc, cm         cubic centimeter
             Q
    cu.ft.,  ft      cubic foot
    cfh            cubic feet per hour
    cfm           cubic feet per minute
    cfs            cubic feet per second
      3   3
    m ,  M         cubic meter
                   degree
      C            degree Centigrade, degree
                   Celsius
      F            degree Fahrenheit
    °K            degree Kelvin
      R            degree Reaumur, degree
                   Rankine
    ft.             foot
    ft.lb.          foot pound
    fpm            feet per minute
    fps            feet per second
    fps system     foot-pound-second system
    f. p.            freezing point
    gr.            grain
    g, gm.         gram
    hr.            hour
    in.            inch
kcal.           kilocalorie
kg.            kilogram
km.            kilometer
liq.            liquid
1              liter
log            logarithm (common)
In             logarithm (natural)
m. p.           melting point
m, M          meter
|x              micron
mks system    meter-kilogram-second
               system
mph            miles per hour
mg            milligram
ml             milliliter
mm            millimeter
inn            millimicron
min.           minute
mol.wt.        molecular weight
oz.            ounce
ppb            parts per billion
pphm           parts per hundred million
ppm            parts per million
Ib.             pound
psi            pounds per square inch
psia            pounds per square inch
               absolute
psig            pounds per square inch gage
r,p.ro.         revolutions per minute
sec.            second
sp. gr.          specific gravity
sp.ht.          specific heat
sp. wt.          specific weight
sq,            square
scf            standard cubic foot
STP            standard temperature and
               pressure
temp.          temperature
wt.            weight
1-4

-------
                          -
                         ai
                                                        Bis
                               3,6



                               I
f!
                                                             If

-------
LLJ
UJ
Qi
LLJ
U_
o
u_
o
fe
Q
UJ
u
1X1

3

LU
-z.
o

-------
i/

-------
          DIMENSIONAL SYSTEMS AND SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                                                    (continued)
             TABLE 2.   CONVERSION FACTORS FOR  CONVERTING  FORCE,  MASS, LENGTH AND
                 TIME  BETWEEN  THE  ABSOLUTE  AND  GRAVITATIONAL DIMENSIONAL SYSTEMS
                   ABSOLUTE
              MASS - LENGTH - TIME
 Syyten) of units
 of measurement
Dimensions
                                     quantity
                           DIMENSIONAL SYSTEM
                             DEFINED TERMS
                            Conversion factors
                                                     GRAVITATIONAL
                                                  FOKl E - LENGTH - TIME
                                         Unit
                                        quantity
                                                               Dimensions
                                                                           Item
System of units
of measurement
                       (masa) (length)
                         (time)2
 gmm-cm
1     2
                                                               gm -cm   •
                                                  (1) gm,
                                                1.0197 X 10
                                                             980.665 gm
cm - gm  - sec
  (column no.  1)
                                   (1) grn
                                                                            gm.-aec
                                                                            —I-
                                                              (force) (tune)'
                                                                                         length
                                _3 ym -sec
                        1.0197 X 10 d 	i	
                Length
                          length
                                   (1) cm
                                                                 (l)cm
                                                                          (I) cm
                                                                                        length
                                                                                                  Length
                                                                 (1) sec
                                   U) sec
                                              - < 1) sec
                       ^masa) (length)
                          (time)2
                                                            980. 665 dyne
           (1) dyne
                                                1.0197 X 10* gaa
                                                  (1) gmf
                                                                                                         cm - gm, -  sec
                                                                                                            (column no. 5)
cm - gm  - dyne
       m
    sec - °K
  (column no. 2)
                                                              (force) (tune)'
                                              = 1.0197 X 10
                                 - gm.-sec
                                                                 length
                Length
                           length
                                   (I) cm
                                                                          (1) cm
                                                (1) cm
                                                                                        length
                                                                                                  Length
                                                                 (1) sec   •
                                   (1) sec
                                                                          (1) sec
                                                                gm -cm  ,
                       [mass) (length)
                                   (1) -
                                                                          U> t.
                                               = 2.2481X 10  »
 cm - gm  - sec
   (column no. 1)
                                                           1.4594X 104gm  "
                                                                                      (force) (time)
                                                                                        length
                                               • 6.8522 X 10
                Length
                          length
                                   (1) cm
                                                                                        length
                                                                                                  Length
                                                                 (1) sec
                                              = (II oec
                       [masbi (length)
                         (time)2
                                                         4.4482 X 10 dyne
           (1) dyne
                                                                                                          ft -  f - sec
                                                                                                          (column no. 6)
 cm -  gmm -  Oyne

     sec  - °K
   (column no.  2)
                                  1.4594 X 10 gm   •
                                           •  m
           (1)
                       = 6.8522 X 10
                                                  (force) (time)
                                                    length
                                                                 30.48 cm
                Length
                          length
                                   (1) cm
                                                                          (1)  ft
                                                                                        length
                                                                                                  Length
                                                                 (1) sec   =
                                   (1) sec
                                              = (1) sec
                                                                          (1)  sec
     Preceding page  blank
                                                                                                                  1-7

-------
      DIMENSIONAL SYSTEMS AND SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                                     (continued)

        TABLE 2.  CONVERSION FACTORS FOR CONVERTING FORCE, MASS, LENGTH AND
          TIME BETWEEN THE ABSOLUTE AND GRAVITATIONAL DIMENSIONAL SYSTEMS
                                     (continued)
1-8

-------
         DIMENSIONAL SYSTEMS AND SELECTED SYSTEMS OF  UNITS OF  MEASUREMENT
                                                      (continued)

           TABLE 2..  CONVERSION  FACTORS  FOR CONVERTING FORCE,  MASS,  LENGTH ANO
               TIME  BETWEEN  THE  A&SOLUTE AND GRAVITATIONAL  DIMENSIONAL SYSTEMS
                                                      (continued)
                 ABSOLUTE

             MASS - LENGTH - TIME
                                                  DIMENSIONAL SYSTEM
                                                    DEFINED TERMS
                                                     GRAVITATIONAL

                                                  FORCE - LENGTH - TIME
System of units
of measurement
  Unit
 quantity
Conversion Factor
  Unit
quantity
                                                                                      Dimensions
                                                                                                   Item
System of units
of measurement
                      .mass) (length)

                        (time)
                                              • 3. 1081 X 10   t
ft  -  m  - sec

     °R

(column no, 3)
                                               3. 1081X10
                                                       2't-sec*
                                                                                      orce) (tune)
                                                                                       length
                             (1) ft
               ngth
                         length
1) ft
                                        1) ft
                                                     length
                                                              Length
                                               (1) ft
                                                                (1) sec  «
                                              * (1) sec
                      Imassl (length)

                       (tune)
1) poundal
                                                         32. 174 pousdal
 -  m - poundaJ

 sec - °B

(column no. 4)
                                                                                      'orce) (time)
                                                                                        length
                             (1) ft
                ength
                         length
                                                                                        length
                                                                                                 Length
                                              Ml) ft
                                                                                                 Time
                                              = (1) sec
                                                                                                          f, - "f - sec
                                                                                                           (column no. 6)
                      mass) (length)
                        (time)
                                                            32. 174 m     •
 ft  -  m  - sec
  (column no. 3)
                                               3. 1081 X lo"2 slug
                                                                           (1) slug
                                                                                      force) (tune)
                                                                                        length
                                                                (1) ft
               ^ength
                         length
                                   1) tt
                                                                           (1) ft
                                                                                        length
                                                                                                 Length
                                                                (1) sec
                                                                           (1) sec
                                              • (1) sec
                      (mass) (length)
                        (time)
                                   1) poundal
                                                            32. 174 poundal
 ft  -  m  - pound


   sec -  °R


 (column no. 4)
           : 3. 1081 X 10"2 slug
                                        (1) slug
                                                                                      force) (time)
                                                     length
               Length
                         length
                                                                           (1) ft
                                                                                        length
                                                                                                 Length
                                              = (1) ft
                                                                (1) sec
                                                                           (1) sec
                                                                        ft -  f - slug

                                                                          sec - °R

                                                                        (column no. 7)
                                                                                                                 1-9

-------
        DIMENSIONAL SYSTEMS AND  SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                                                    (continued)
            TABLE  3.  CONVERSION  FACTORS FOR  CONVERTING  FORCE,  MASS, LENGTH AND
              TIME  BETWEEN THE ENGINEERING AND THE  ABSOLUTE DIMENSIONAL  SYSTEMS
                ENGINEERING

         FORCE - MASS - LENGTH - TIME
                                 DIMENSIONAL SYSTEM

                                   DEFINED TERMS
                                                       ABSOLUTE

                                                  MASS - LENGTH - TIME
System of units
of measurement
Item
       dimensions
 Unit
quantity
                                                  Conversion Factors
                                                           quantity
                                                                                     Dimensions
                                                                                                 Item
                                                                                       System of uniti
                                                                                        of measureme
                                                        1.0197 X 10  ||mf  •
                                  (1) gmf
                                                                                    (mass) (length)
                                                     gm
                                                                                     (time)
                                                             (Dgn,
                                  (1) gm
                                             -. (1) gn.
                                                                         U> g-n
                                                             (1) cm     •
               Length
                         length
                                  (1) cm
                                              * (1) cm
 (column no. 8)
               Length
                         length
                                                              (1) sec    •
                                  (1) sec
                                  (1) gm,
                                              : 980. 665 dyne
                                                                         (1) cm
                                                                         (1) sec
                                                                         (1) dyne
                                                                                       length
                                                                     (mass) (length)
                                                                       (time)2
                                                                                                Length
                                                              (1) gn,    =
                                  (llgDl
                                              MDgn,
                                                              (1) cm
                                  (1) cm
                                              • (1) cm
                                  (1) sec
                                                               (1) sec
                                              = (1) sec
                                                                                        length
                                                                                                 Length
                                                                                               "K

                                                                                         (column no.
                                                                                         m - gmm -


                                                                                           sec - °K

                                                                                         (column no. 2
                                                        14.098 gm
                                   (1)
                                     gmf
                                                                          1)
                                                                                     (mass) (length)
                                              « 7.0933 X 10
                                                          453.592 gm
                                   (l)gin
 cm - gm( - gn»n

    sec - °K

   (column no. 8)
                Length
                          length
                Length
                          length
                                   (1) cm
                                                                          1) m
                                                                                      (time)
                                                                           1) ft
                                              = 3.2808 X 10  ft
                                                (1) sec  •
                                                           1) sec-
                                   (U gmf
                                                          4&3.592gm
                                   (1)  gm,.
                                    1) cm
                                   ID sec
                                                                                        length
                                                                           1) poundal
                                              = 3. 2808 X 10  ft
                                               1 (I) sec
                                                                (1) sec   •
                                                                                     (mass) (lengthj
                                                                                                 Length
                                                                                          ft -  m  - s

                                                                                             °R

                                                                                           (column no.
                                                                                        (time)
                                                                           1) sec
                                                                                        length
                                                                                                 Length
                                                                                         ft -  m -  pou

                                                                                                o
                                                                                            sec -  R

                                                                                           (column no.  4
 1-10

-------
      DIMENSIONAL SYSTEMS AND SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                                                (continued)

         TABLE 3.   CONVERSION  FACTORS FOR CONVERTING FORCE,  MASS,  LENGTH AND
           TIME BETWEEN THE ENGINEERING  AND  THE ABSOLUTE DIMENSIONAL SYSTEMS
                                                 (continued)
             KNGINEEKING

        fXIKCE - MASS - LENGTH - T1MK
            DIMENSIONAL SYSTEM

              DEFINED TKHMS
     ABSOLUTE

MASS - LENGTH - T1MK
             Item
 Unit
quantity
                                                                     iiuailtlty
                              (1) "t
                                                                              (mass) (length)
                                        «4.4482 X 10
                                                                                (time)
                              (1) m
                                                                   1) gm
                                         453.592 gm
            Length
                      length
                              (1) ft
                                                                                length
                                                                                         Length
                                                                                                 (column no.  1)
                                                         (1) sec    •
                              (1) sec
 sec - "R

(column no. 9}
                                         4.4482 X. 10  dyne
                                                                    1) dyne
                                                                             (mass) (length)
                                                                                (time)
                                         453.592 gm
                                                                    l)gn>
                                                     3. 2808 X 10  ft
            Length
                      length
                              (1) ft
                                                                                length
                                                                                         Length
                                                                                                 (column no. 2)
                                                         (1) sec
                              (1) sec
                                         (1) se
                              (1) "f
                                                                             (mass) (length)
                                                                                (time)
                                                         (1) '
                                                                                                        sec
            Length
                      length
                                                                                length
                                                                                         Length
                                                                                                ft - m

                                                                                                    °R

                                                                                                 (column no. 3)
ft -  *f - »m

  sec - °R

(column no. 9)
                                                         (J) sec
                                         32. 174 poundal
                                                                   1} poundal
                                                                             (mass) (length)
                                                         (Dm    =
                                          (Dm
            Length
                      length
                                         (I) ft
                                                                                length
                                                                                         Length
                                                               ft -  m  - poundal

                                                                 sec - °R


                                                                (column no  4)
                                                                                                      l-il

-------
      DIMENSIONAL SYSTEMS AND SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                                    (continued)

      TABLE 4. CONVERSION  FACTORS FOR CONVERTING FORCE, MASS, LENGTH AND TIME
           BETWEEN THE ENGINEERING AND THE GRAVITATIONAL DIMENSIONAL SYSTEMS
1-12

-------
        DIMENSIONAL  SYSTEMS AND SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                                               (continued)
        TABLE 4.  CONVERSION FACTORS FOR CONVERTING  FORCE,  MASS,  LENGTH AND TIME
              BETWEEN THE ENGINEERING AND THE  GRAVITATIONAL DIMENSIONAL SYSTEMS
                                                (continued)
               ENG1NEKIUNG

         FORCE - MASS - LENGTH - TIME
                                              DIMENSIONAL SYSTEM
                                               DEFINED TERMS
                                                                  GRAVITATIONAL

                                                                 FOKCE - LENGTH - TIME
 System of units
 of measurement
 Ken
        Dimensions
 Unit
quantity
                                  Conversion Factor
 Unit
quantity
System of units
of measurement
cm - gnu - gm


  sec - °K


 (column no. 8)
Length
    sec -  R


  (column no. 9}
             Length
                                                      453.592 gmf
                                (Dgrn
                                                    1.4658 X 10 gm
                                                                   (1) slug
                            • 6.8221 X 10  slug
          length
                                                     U)S
                                         • 3.2808 X 10  ft
                                                          (1) sec
                                                                   (1) sec
                        length
                                (1)  m
                                         • 3. 1081 X 10"2 slug
                                                                   (1) slug
                                (II ft
                                         - ( 1) ft
                                         = U> sec
                                            (1) ft
                                                          (1) sec
                                                                   (1) ft
                                                                             (forceKtime)
                                                                               length
                                                                 length
                                                                           Length
                                                                                  ft -  f - slug

                                                                                    sec - °R

                                                                                   (column no. 7)
                                                               (force)ftimc)
                                                                  length
                                                                               length
                                                                                        Length
                                                                                                     1-13

-------
         DIMENSIONAL  SYSTEMS AND SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                                                      (continued)
                       TABLE  5.   CONVERSION  FACTORS  FOR CONVERTING  FORCE,  MASS,
                       LENGTH, AND  TIME WITHIN  THE ABSOLUTE DIMENSIONAL SYSTEM
                  ABSOLUTE

              MASS - LENGTH - TIME
 System of units
 of measurement
cm - gm   - sec
 {column no. 1)
[tern
       Dime nit ions
                       (maa a) (length)

                         (time)
                           length
                        (maasUlengthj
                         (time)
                Mass        mass
                 ength
                           length
 Unit
quantity
                                    Dgn-
                                    1) cm
                                    1) sec
                                   DIMENSIONAL SYSTEM

                                     DEFINED TERMS
                                    Cpuveraion Factor*
                                                1 dyne
                                                                U>gm,r
                                               MDgn.
                                                                (1) cm
                                                         ABSOLUTE

                                                     MASS - LKNr.TIl - TIME
 Unit
juantlty
                                                           (1) dyne
                                                                            (l)gn.
                                               * (1) cm
                                                                (1) sec    =
                                               = (1) sec
                                                                gm - crrT
                                               • 3. 2808 X 10  ft
                                                                 (1) sec
                                               = (1) aec
                                                                             1) cm
                                                                             1) sec
                                                                             1) ft
                                                                        (time)
                                                                                          length
                                                                                       mass) g>n
                                                                 30:48 cm i =
cm  - gm   -  dyn

    .ec - °K

   (column no. 2)
                Length
                           length
                                                                            (1) ft
                                                                                          length
                                                                                                     Length
                                                                                                             ft  -  m  - ae
                                                                                                             (column no. 3)
                               » 3.2808 X 10  ft
                                                (1) lee    =
                                                                            (1) stc
                        (maaa)dength)

                          (time)2
                                                            1. 3825 X 10 dyne
                    I) dyne
                               • 7.2333 X 10  poundal
                                        -5 .
                                                            (1) poundal
                                                                                       (maee) (length)
                                                                         (time)
                                    (1)
                                                            45.). 592 gm
                 ength
                           length
                                    (1) cm
                                    (1) aec
                                                                 30.48 cm  *
                                                                 (1) «<»c    »
                                                                                          length
                                                                                                     Length
                                                                                           ft  -  m  - pound

                                                                                             Bee - °R

                                                                                            (column no. 4)
                                                • (1) ser
                                                                             (1) BC
 1-14

-------
DIMENSIONAL SYSTEMS AND SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                            (continued)

        TABLE 5.  CONVERSION FACTORS FOR CONVERTING FORCE, MASS,
        LENGTH, AND TIME WITHIN THE ABSOLUTE DIMENSIONAL SYSTEM
                             (continued)
    TABLE 6.  CONVERSION FACTORS FOR CONVERTING FORCE,  MASS, LENGTH
          AND TIME WITHIN THE ENGINEERING DIMENSIONAL SYSTEM
ENGINEERING
FORCE - MASS - LENGTH - TIME
System of units
of measurement
cm - gm - gm
i m
sec - °K
(column no. 8)
Item
Force
Mass
Length
Time
Dimensions
force
mass
length
time
Unit
quantity
(1) gmf
Ulgmm
(1) cm
(1) sec
DIMENSIONAL SYSTEM
DEFINED TERMS '
Conversion Factor
— -_^__^^ 453.592gmf •
• 2. 2046 X 10"3 *f ~~~~ — -_^____^
- — -_ 453. 592 gm «
^~"^--^ m
• 2.2046 X 10~3 *m " — ^-^^_^
— -^ _^^ 30.48cm «
• 3.2808 X lo"2 ft 	 • — ^_^
~^~-^-~__^^ (1) sec •
• < 1) sec 	 — -_^_^
ENGINEERING
FORCE - MASS - LENGTH - TIME
Unit
quantity
(,)'f
(1) "m
(l) ft
(1) sec
Dimensions
force
mass
length
tune
Item
Force
Mass
Length
Time
System of units
of measurement
ft - ', - 'm
sec - °R
(column no, 9}
                                                                        1-15

-------
      DIMENSIONAL SYSTEMS AND SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                                   (continued)

          TABLE 7. CONVERSION FACTORS FOR CONVERTING FORCE, MASS, LENGTH
               AND TIME WITHIN THE GRAVITATIONAL DIMENSIONAL SYSTEM
1-16

-------
      DIMENSIONAL SYSTEMS AND SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                                         (continued)
 SUMMARY OF SELECTED SYSTEMS OF
 UNITS OF MEASUREMENT WITHIN THE
 THREE BASIC DIMENSIONAL SYSTEMS

 A summary of several systems of units of
 measurement is presented in Table  1.  The
 three dimensional systems and the two basic
 systems of units of measurement are listed
 across the top of the table.  Selected items
 for consideration are listed in the left
 column of the table.  The dimensions for each
 of these items are given for each of the
 systems of measurement.

 Notice that columns 1 and 2,  columns  3 and 4,
 and columns 6 and 7 are separated by  a dashed
 line.  This is because the systems of units
 of measurement in these pairs of columns  are
 essentially the same system of units of
 measurement. The only difference between
 the paired columns is that the term dyne (in
 column 2) is used to describe  the unit  force
     gm   - cm
 of 1  	5	  in column 1, the term
        sec

 poundal (in column 4) is used to describe the
               *_.   - ft
unit force of 1
                m
                   2
in column 3; and
                sec
the term slug (in column 7) is used to describe
                    #f- sec2
the unit mass of  1  ——	  in column 6.


The systems of units of measurement in
these paired columns are  so similar that they
are usually used interchangeably.

Notice that under the column entitled
"Dimensions", some items have two
different sets of dimensions which are
separated by a slashed line.  The two sets of
dimensions  are necessitated by the fact that
in the absolute dimensional system, force is
a secondary quantity while it is a primary
quantity in the other two dimensional systems.
In addition,  mass is a secondary quantity in
the gravitational dimensional system and a
primary quantity in the other two dimensional
systems.  Notice also that as any of the items
with two sets of dimensions is  followed across
the table through each of the systems of units
of measurement, only one set of dimensions
is given in each of the systems of units of
measurement.   Notice in the table proper
that,  if the dimensions of an item are in
force units,  the dimensions are placed above
the slashed line and if the dimensions of the
item are in mass units the dimensions are
placed below the slashed line.

Notice that the universal gas constant (R) has
three separate sets of dimensions one set for
each of the three dimensional systems.  This
results from the fact that, by definition, the
dimensions of the  gas constant involve both
force units and mass units.  This means that,
in the absolute dimensional system all
dimensions are in mass  units as illustrated
by the first of the  three sets of dimensions;
in the gravitational dimensional system all
dimensions are in force  units as illustrated
by the second of the three sets of dimensions;
and in the engineering dimensional system the
dimensions are in both force units and mass
units as illustrated by the third set of
dimensions.

Notice that the  term mole in the dimensions
of the universal gas constant and in the
dimensions of molecular weight has an
identifying tag labeling the mole as a  mass-
mole.  Notice also that the dimensions of this
tag changes from dimensional system to
dimensional  system and also from system of
units of measurement to system of units of
measurement.  It is essential that this
labeling tag change because the quantity of
substance described by a mole  of substance
varies depending upon the dimensional system.
To verify this last point one only has to look
at the definition of a mole.  A mole of any
pure substance is that quantity  of the substance
whose mass is numerically equal to its
molecular weight.   This  means that the quantity
of a mole of substance will vary as the manner
in which a unit of mass is defined.
                                                                                       1-17

-------
      DIMENSIONAL SYSTEMS AND SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                                          (continued)
   CONVERSION FACTORS
   For Column No.  9:
   With so many different dimensional systems
   and systems  of units of measurement one
   must immediately ask how does one get from
   one system to another.  Tables 2 through 7
   provide conversion factors for converting
   any of the four basic quantities of force, mass,
   length, and time in one of the systems  of units
   of measurement listed in Table 1 to any other
   system of units of measurement listed  in
   Table  1.  To provide a guide for the use of
   these tables each system of units of measure-
   ment in Table 1 has been given a column
   number.  This column numbering has been
   carried throughout  the tables.

   The conversions for length are derived from
   a comparison of the primary standards of
   length in the  Metric System of units of
   measurement and in the English System of
   units of measurement.  Conversion factors
   for force and mass are derived in the following
   manner:

   Example No.  1

   Derive a conversion factor for converting

   gm  ~ cm
   !#-=!#  X 32.174
     i      m
       (To five
                       sec
   significant figures)
Dividing these two relationships yields
      gm   -  cm
      6  m
        sec
gm  - cm
6  m
                        sec
                   32.174-
                          sec

It is known from a comparison of standan
that 1 #m is equivalent to 453. 592 gmm ai
that 1 ft. is equivalent to 30. 48 cm.  Sub-
stituting these equivalents into the above
relationship yields:

            gm   - cm
         «     m
              sec
      m
              (force units in column No. 1)
     sec
               1 #
           	m	 v  cm   v 	l
            453. 592 gm  *    2  X ~3Q~4
                    6  m   sec
    to an equivalent force unit of #f (column
    No.  9).  The following relationships are
    established from Newton's second law of
    mechanics (F =  MA):
                                                               32.174
                     sec*
      For Column No. 1:
         gm   - cm
           m
           sec
                   = 1 gmmX1
                                sec
1-18

-------
        DIMENSIONAL SYSTEMS AND SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                                          (continued)
  Cancelling like dimensions and rearranging
  terms yields:
                                               Cancelling like dimensions and rearrang-
                                               ing terms yields:
 gm   - cm
    m
    sec
               32.174 X 453.592 X 30.48
                                                  gmf - sec

                                                     cm
                   980.665 gm     or
                             m
 gm  - cm
   sec
             = 2.2481X10   #f  or
                                               1  gm    = 1.0197 X 10
                                                    m
                                                                        o
                                                                              - sec
                                                                            cm
1 #  -  4.4482 X 10
                  c   cm   ~ cm
                  5   ° m
                       sec
  These two conversion factors are listed
  in Table 3.
  Example No.  2
  Derive a conversion factor for converting
           £i
  gmf - sec

      cm
             (mass unit in column No. 5)
  to an equivalent mass unit of gmm (column
  No. 8).  The following relationships are
  established from Newton's second law of
  mechanics (F  =  MA):
     For Column No. 5:
     1gm
gmf - sec
   cm
                         X 1
                                 cm
                                sec
                                               These two conversion factors are listed in
                                               Table 4.

                                            The following examples will illustrate the use
                                            of these conversion factors:
                                               Example No.  1

                                               Convert a density of 1.0
                                                                        gm
                                                                           m
                                                                        cm
                               (column
   No.  1) into an equivalent density in units of
   I f -  sec2
   - 1 - (column No. 6).  From Table 2
     ft

   it can be seen that 1 gm   is equivalent to
                                                                    m
                                               6.8522 X 10

                                                                         and 30. 48 cm
                                                 are equivalent to 1 ft.  It follows that:
    gm
1.0 — £   X
    cm3
                                                            6.8522 X 10
                                                                      -5  #f ' sec
                                                                             ft
     For Column No. 8:
                               cm
     1 gm  *  1 gm  X 980. 665  —~
         i         in              tu
                              sec
                                                         x
                                                             30-48
                                                               ft
                                                                          = 1.95
                                                                                  . - sec
                                                                                   ft
Dividing these two relationships yields:
                    2
            gm, - sec
m=   'Ha—-x -^
1 gm.
                         sec
                                                Therefore, a density of 1.0  _gna.m_   is
                                                                           cmv
                                                                             #f-sec2
                                                equivalent to a density of 1.95	-=—
                                                                               ft
                                                                                     1-19

-------
        DIMENSIONAL SYSTEMS AND SELECTED SYSTEMS OF UNITS OF MEASUREMENT
                                          (continued)
    Example No. 2:

                                   *f
    Convert a specific weight of 62. 4 — —
    column No. 9) to an equivalent specific
                        #
    weight in units of  — = -- 
-------
SECTION 2 TIME
         Table of Equivalents of Time	    2-1
         Hours, Minutes and Seconds to Decimals of a Day	    2-1
         Decimals of a Day to Hours, Minutes, and Seconds	    2-2
         Minutes and Seconds to Decimals of an Hour  	    2-2

-------
                           TABLE OF EQUIVALENTS OF  TIME
                          1 mean solar second (sec., s.)
                               = 1.002738 sidereal seconds
                          1 mean solar minute (min., m.)
                               = 60 nee. (mean solar)
                          1 mean solar hour (hr., h.)
                               = 3600 sec. (mean solar)
                               = 60 min. (mean solar)
                          1 mean solar day (da., d.)
                               = 86400 sec.  (mean solar)
                               = 1440 min.  (mean solar)
                               = 24 hr. (mean solar)
                               = 24 hours 3 minutes 56.555 seconds of mean sidereal time
                          1 tropical (mean solar, ordinary) year (yr.)
                               = 31.5569 X 10" sec. (mean solar)
                               = 525949 min. (mean solar)
                               = 8765.81 hr. (mean solar)
                               = 365.2422 da. (mean solar)
                               = 366.2422 sidereal days
                          1 sidereal second
                               = 0.997270 sec. (mean solar)
                          1 sidereal day
                               = 86164.1 sec. (mean solar)
                               = 23 hr. 56 min. 4.091 sec. (mean solar)
               HOURS,  MINUTES AND SECONDS TO  DECIMALS OF A DAY
                 Hours   Day
                    1  0.041667
                    2   .083 333
                    3   .125 000
                    4   .166667

                    5  0.208333
                    6   .250000
                    7   .291667
                    8   .333 333
                    9   .375000
                   10  0.416667
                   11   .458333
                   12   .500000
                   13   .541667
                   14   .583 333

                   15  0.625000
                   16   .666667
                   17   .708 333
                   18   .750 000
                   19   .791 667
                  20 0.833333
                  21   .875 000
                  22   .916667
                  23   .958333
                  24 1.000000
Min. Day
1 0.000694
2 .001 389
3 .002083
4 .002778
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
0.003472
.004167
.004861
.005556
.006250
0.006944
.007639
.008333
.009028
.009722
0.010417
.011 111
.011806
.012 500
.013 194
0.013889
.014 583
.015278
.015972
.016667
0.017361
.018056
.018 750
.019444
.020 139
Min.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Day
0.021 528
.022222
.022917
.023611
0.024 305
.025000
.025694
.026389
.027083
0.027778
.028472
.029167
.029861
.030556
0.031 250
.031 944
.032639
.033333
.034028
0.034 722
.035 417
.036111
.036806
.037 500
0.038 194
.038889
.039 583
.040278
.040972
Sec. Day
1 0.000012
2 .000023
3 .000.035
4 .000046
5 0.000058
6 .000069
7 .000081
8 .000093
9 .000104
10 0.000116
11 .000 127
12 .000 139
13 .000 150
14 .000162
15 0.000174
16 .000185
17 .000 197
18 .000 208
19 .000220
20 0.000231
21 .000 243
22 .000255
23 .000266
24 .000278
25 0.000289
26 .000301
27 .000313
28 .000 324
29 .000336
Sec.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
. 47
48
49
50
51
52
53
54
55
56
57
58
59
Day
0.000 359
.000370
.000382
.000394
0.000405
.000417
.000428
.000440
.000451
0.000463
.000475
.000486
.000498
.000509
0.000521
.000532
.000544
.000556
.000567
0.000579
.000590
.000602
.000613
.000625
0.000637
.000648
.000660
.000671
.000683
                                 30  0.020833
60 0.041667
                                                              30 0.000347
60  .000 694
See  Reference No.  1
                                                                                                     2-1

-------
        DECIMALS OF A DAY TO HOURS, MINUTES AND SECONDS
Daya
0.01
.02
.03
.04
O.OS
.06
.07
.08
.09
0.10
.20
.30
.40
0.50
.60
.70
.80
.90
Hr.




1
1
1
1
2
2
4
7
9
12
14
16
19
21
Mia.
14
28
43
57
12
26
40
55
9
24
48
12
36
0
24
48
12
36
Sec.
24
48
12
36
0
24
48
12
36
0
0
0
0
0
0
0
0
0
O»T"
0.0001
2
3
4
0.0005
6
7
8
9
0.0010
20
30
40
0.0050
60
70
80
90
Min.






1
1
1
1
2
4
5
7
8
10
11
12
Sec.
8.64
17.28
25.92
34.56
43.20
51.84
0.48
9.12
17.76
26.40
52.80
1920
45.60
12.00
38.40
4.80
.3170
57.60
Day*
0.000001
2
3
4
0.000005
6
7
8
9
0.000010
20
30
40
0.000050
60
70
80
90
Sec.
0.09
0.17
026
0.35
0.43
0.52
0.60
0.69
0.78
0.86
1.73
2.59
3.46
4.32
5.18
6.05
6.91
7.78
           MINUTES AND SECONDS TO DECIMALS OF AN HOUR

Min.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Decimal* of
»nhoar
0.016667
.033333
.050000
.066667
0.083333
.100000
.116667
.133333
.150000
0.166667
.183333
200000
216667
233333
0250000
266667
283333
-300000
.316667
0.333333
.350000
.366667
.383333
.400000
0.416667
.433333
.450000
.466667
.483333

Min.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Decimals of
an boor
0.516667
.533333
.550000
.566667
0.583333
.600000
.616667
.633333
.650000
0.666667
.683333
.700000
.716667
.733333
0.750000
.766667
.783333
.800000
.816667
0.833333
.850000
.866667
.883333
.900000
0.916667
.933333
.950000
.966667
.983333

Sec.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 ,
29
Decimal! of
an hour
0.000278
.000556
.000833
.001 111
0.001389
.001667
.001944
.002222
.002500
0.002778
.003056
.003333
.003611
.003889
0.004 167
.004444
.004722
.005000
.005278
0.005556
.005833
.006111
.006389
.006667
0.006944
'007222
.007500
.007778
.008056

Sec.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Decimal! of
an hour
0.008611
.008889
.009167
.009444
0.009722
.010000
.010278
.010556
.010833
0.011 111
.011389
.011667
.011944
.012222
0.012500
.012778
.013056
.013333
.013611
0.013889
.014 167
.014444
.014722
.015000
8.015278
.015556
.015833
.016 HI
.016389
           30  0.500 COO
60  1.000000
30  0.008333
60  0.016667
2-2
                            See Reference No. 1

-------
SECT/ON 3 TEMPERATURE

         Temperature Equivalents Chart	    3-1
         Temperature Conversion Table, Centigrade-Fahrenheit	    3-4
         Temperature Equivalent Graph, Centigrade, Kelvin, Rankine, Fahrenheit .  .    3-5

-------
                           TEMPERATURE  EQUIVALENTS  CHART
                  0 APPROXIMATE  ABSOLUTE,°CENTIGRADE,° FAHRENHEIT,0REAUMUR
                        -
                  Centigrade

                  E
                Rankine

 Freezing  Boiliner
 point of  point of

"IP
                      AA=C+273=K-0.16=(5/9)(F-32) + 273


                      Rankine=F+459.69
                                                MOPOHTIOMAl. MKTS
F
C, K,
R
R
C, K,
F
AA.
375"
374
373
372
371
370
369
368
367
366
365
364
363
362
361
360
359
358
357
356
355
354
353
352
351
nt\
AA
AA
C.
102"
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78

F.
215?6
213.8
212.0
210.2
208.4
206.6
204.8
203.0
201.2
199.4
197.6
195.8
194.0
192.2
190.4
188.6
186.8
185.0
183.2
181.4
179.6
177.8
176.0
174.2
172.4
0.18
0.08
0.055+
0.044+
0.1
0.1
0.125
0.225
R.
81 ?6
80.8
80.0
79.2
78.4
77.6
76.8
76.0
75.2
74.4
73.6
72.8
72.0
71.2
70.4
69.6
68.8
68.0
67.2
66.4
65.6
64.8
64.0
63.2
62.4
0.36 6.S4
0.16 0.24
0.111+ 0.166+
0.088+ 0.133+
0.2 0.3
0.2 0.3
0.25 0.375
0.45 0.67S
AA.
350°
349
348
347
346
345
344
343
342
341
340
339
338
337
336
335
334
333
332
331
330
329
328
327
326
C.
77"
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
0.72
0.32
0.222+
0.177+
0.4
0.4
0.5
0.9
F.
170°6
168.8
167.0
165.2
163.4
161.6
159.8
158.0
156.2
154.4
152.6
150.8
149.0
147.2
145.4
143.6
141.8
140.0
138.2
136.4
134.6
132.8
131.0
129.2
127.4
o'.90
0.40
0.277+
0.222+
0.5
0.5
0.625
1.125
R.
61 ?6
60.8
60.0
59.2
58.4
57.6
56.8
56.0
55.2
54.4
53.6
52.8
52.0
5J.2
50.4
< 49.6
48.8
48.0
47.2
46.4
1 45.6
44.8
44.0
43.2
42.4
0.6 0.7
1.08 1.26
0.48 0.56
0.333+ 0.388+
0.266+ 0.311+
0.6 0.7
0.6 0.7
0.75 0.875
1.35 1.575
AA.
325'
324
323
322
321
320
319
318
317
316
315
314
313
312
311
310
309
308
307
306
305
304
303
302
301
C.
52°
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
0.8
1.44
0.64
0.444+
0.355+
0.8
0.8
1.0
1.8
F
125?6
123.8
122.0
120.2
118.4
116.6
114.8
113.0
111.2
109.4
107.6
105.8
104.0
102.2
100.4
98.6
96.8
95.0
93.2
91.4
89.6
87.8
86.0
84.2
82.4
0.9
1.62
0.72
0.5
0.4
0.9
0.9
1.125
2.025
R.
41 ?6
40.8
40.0
39.2
38.4
37.6
36.8
36.0
35 2
34.4
33.6
32.8
32.0
31.2
30.4
29.6
28.8
28.0
27.2
26.4
25.6
24.8
24.0
23.2
22.4
                350    77   170.6   61.6
       325    52    125.6   41.6
300   27    80.6   21.6
                  * The Ninth General Conference on Weights and Measures, October 1948, gave the degree of temperature
                the designation of dtarei Celsius in place of dtgrii centigraai.  See Stimion, H. F., The international tem-
                perature scale of 1948, Nat. Bur. Stand. Journ. Res., vol. 42. p. 209, 1949.
                  t R. T. Birge, Rev. Mod. Phys., vol. 13, p. 233,  1941.
See  Reference No.  1
                                                                                                       3-1

-------
                   TEMPERATURE EQUIVALENTS CHART

                                   :ENTIGRADE,(
                                   (continued)
0APPROXIMATE ABSOLUTE^CENTIGRADE^FAHRENHEIT^REAUMUR
AA.
300°
299
298
297
296
295
J94
293
292
291
290
289
288
287
286
2«3
284
283
282
281
280
279
278
277
276
275
274
273
772
271
270
26')
2<)8
2<>7
266
26S
264
263
262
261
260
259
258
257
256
255
254
253
2:2
251
C.
27"
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
20
9
8
7
6
5
4
3
+ 2
+ 1
0
- 1
	 -7
^
4
5
6
7
— 8
9
10
n
12
— 13
14
15
16
17
—18
19
20
21
22
F.
80t6
78.8
77.0
75.2
73.4
71.6
69.8
68.0
66.2
64.4
62.6
60.8
59.0
57.2
55,4
53.6
51.8
50.0
48.2
46.4
44.6
42.8
41.0
39.2
37.4
35.6
33.8
32.0
30.2
2H.4
26.6
24.S
23.0
21.2
19.4
17.6
15.8
14.0
12.2
10.4
8.6
6.8
5.0
3 2
+1.4
—0.4
2.2
4.0
5.8
7.6
R.
21 ?6
20.8
20.0
19.2
18.4
17.6
16.8
16.0
15.2
14.4
13.6
12. S
12.0
11.2
10.4
9.6
8.8
8.0
7.2
6.4
5.6
4.8
4.0
3.2
2.4
+ 1.6
+ 0.8
0.0
- 0.8
- 1.6
— 2.4
3.2
4.0
4.8
5.6
— 6.4
7.2
8.0
?.8
9.6
—10.4
11.2
12.0
12.8
13.6
—14.4
15.2
16.0
16.8
17.6
AA.
250°
249
248
247
246
245
244
243
242
241
240
239
238
237
236
235
234
233
232
231
230
229
228
227
226
225
224
223
7?2
221
220
219
218
217
216
215
214
213
212
211
210
209
208
207
206
205
204
203
202
201
C.
-23°
24
25
26
27
—28
29
30
31
32
—33
34
35
36
37
-38
39
40
41
42
-43
44
45
46
47
-48
49
50
51
52
—53
54
55
56
57
-58
59
60
61
62
—63
64
65
66
67
-68
69
70
71
72
F.
— 9°4
11.2
13.0
14.8
16.6
-18.4
20.2
22.0
23.8
25.6
-27.4
29.2
31.0
32.8
34.6
-36.4
38.2
40.0
41.8
43.6
—45.4
47.2
49.0
50.8
52.6
—54.4
56.2
58.0
59.8
61.6
—63.4
65.2
67.0
68.8
70.6
—72.4
74.2
76.0
77.8
79.6
-81.4
83.2
85.0
86.8
88.6
—90.4
92.2
94.0
95.8
97.6
K.
-18°4
19.2
20.0
20.8
21.6
-22.4
23.2
24.0
24.8
25.6
-26.4
27.2
28.0
28.8
29.6
—30.4
31.2
32.0
32.8
33.6
—34.4
35.2
36.0
36.8
37.6
—38.4
39.2
40.0
40.8
41.6
—42.4
43.2
44.0
44.8
45.6
-46.4
47.2
48.0
48.8
49.6
—50.4
51.2
52.0
52.8
53.6
-54.4
55.2
56.0
56.8
57.6
AA.
200°
199
198
197
196
195
194
193
192
191
190
189
.188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
1(56
165
164
163
162
161
160
159
158
157
156
155
154
153
352
151
C.
- 73°
74
75
76
77
- 78
79
80
81
82
— 83
84
85
86
87
- 88
89
90
91
92
- 93
94
95
96
97
- 98
99
100
101
102
-103
104
105
106
107
-108
109
110
111
112
—113
114
115
116
117
-118
119
120
121
122
F.
- 99°4
101.2
103.0
104.8
106.6
-108.4
110.2
112.0
113.8
115.6
-117.4
119.2
121.0
122.8
124.6
-126.4
128.2
130.0
131.8
133.6
-135.4
137.2
139.0
140.8
142.6
-144.4
146.2
148.0
149.«
151.6
—153.4
155.2
157.0
158.8
160.6
-162.4
164.2
166.0
167.8
169.6
—171.4
173.2
175.0
176.8
178.6
-180.4
182.2
184.0
185.8
187.6
R.
-58°4
59.2
60.0
60.8
61.6
-62.4
63.2
64.0
64.8
65.6
—66.4
67.2
68.0
68.8
69.6
-70.4
71.2
72.0
72.8
73.6
-74.4
75.2
76.0
76.8
77.6
-78.4
79.2
80.0
80.8
81.6
-82.4
83.2
84.0
84.8
85.6
-86.4
87.2*
88.0
88.8 ,,
89.6
—90.4*
91.2
92.0
92.8
93.6*
-94.4
95 .7
96.0
96.8
97.6
          250 -23  -9.4 -18.4    200  -73 -99.4 -58.4    150 -123 —189.4 -98.4
3-2

-------
         TEMPERATURE EQUIVALENTS CHART
                         ENTIGRADE,0
                         (continued)
APPROXIMATE ABSOLUTE,"CENTIGRADE,0 FAHRENHEIT,0 REAUMUR
AA.
ISO'
149
148
147
146
:45
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
C.
F.
R.
>_123°— 189?4 — 98?4
124
125
126
127
-128
129
130
131
132
-133
134
135
136
137
—138
139
140
141
142
—143
144
145
146
147
-148
149
150
151
152
—153
154
155
156
157
-158
159
160
161
162
— 163
164
165
166
167
—168
169
170
171
172
191.2
193.0
194.8
196.6
-198.4
200.2
202.0
203.8
205.6
—207.4
209.2
211.0
212.8
214.6
—216.4
218.2
220.0
221.8
223.6
—225.4
227.2
229.0
230.8
232.6
—234.4
236.2
238.0
239.8
241.6
-243.4
245.2
247.0
248.8
250.6
—252.4
254.2
256.0
257.8
259.6
—261.4
263.2
265.0
266.8
268.6
—270.4
272.2
274.0
275.8
277.6
99.2
100.0
100.8
101.6
-102.4
103.2
104.0
104.8
105.6
-106.4
107.2
108.0
108.8
109.6
—110.4
111.2
112.0
112.8
113.6
—114.4
115.2
116.0
116.8
117.6
—118.4
119.2
120.0
120.8
121.6
—122.4
123.2
124.0
124.8
125.6
-126.4
127.2
128.0
128.8
129.6
— 130.4
131.2
132.0
132.8
133.6
-134.4
135.2
136.0
136.8
137.6
AA
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
C.
0 -173'
174
175
176
177
-178
179
180
181
182
-183
184
185
186
187
—188
189
190
191
192
—193
194
195
196
197
—198
199
200
201
202
—203
204
205
206
207
—208
209
210
211
212
—213
214
215
216
217
—218
219
220
221
222
F.
> 	 279° 4
281 '.2
283.0
284.8
286.6
-288.4
290.2
292.0
293.8
295.6
-297.4
299.2
301.0
302.8
304.6
—306.4
308.2
310.0
311.8
313.6
R.
-138°4
139.2
140.0
140.8
141 .(>
-142.4
143.2
144.0
144.8
145.6
—146.4
147.2
148.0
148.8
149.6
-150.4
151.2
152.0
152.8
153.6
—315.4—154.4
317.2
319.0
320.8
322.6
—324.4
326.2
328.0
329.8
331.6
-333.4
335.2
337.0
338.8
340.6
—342.4
344.2
346.0
347.8
349.6
—351.4
353.2
355.0
356.8
358.6
—360.4
362.2
364.0
365.8
367.6
155.2
156.0
156.8
157.6
-158.4
159.2
160.0
160.8
161.6
-162.4
163.2
164.0
164.8
165.6
—166. '4
167.2
168.0
168.8
169.6
—170.4
171.2
172.0
172.8
173. £
—174.4
175.2
176.0
176.8
177.6
AA.
50°
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
' 1
C.
—223°
224
225
226
in
-228
229
230
231
232
—233
234
23S
236
237
—238
239
240
241
242
—243
244
245
246
247
-248
249
250
251
252
—253
254
255
256
257
-258
259
260
261
262
-263
264
265
266
267
—268
269
270
271
272
F.
	 369? 4
S?\ 2
J7j!o
374.8
37(i 6
-378.4
380.2
382.0
383.8
3»5.6
—387.4
389.2
391.0
392.8
394.6
-396.4
398.2
400.0
401.8
403.6
—405.4
407.2
409.0
410.8
412.6
—414.4
416.2
418.0
419.8
421.6
—423.4
425.2
427.0
428.8
430.6
—432.4
434.2
436.0
437.8
439.6
—441.4
443.2
445.0
446.8
448.6
—450.4
452.2
454.0
455 8
457.6
R.
— 178°4
179.2
180.0
180.8
181.6
-182.4
183.2
184.0
184.8
185.6
—186.4
187.2
188.0
188.8
189.6
—190.4
191.2
192.0
192.8
193.6
-194.4
195.2
196.0
196.8
197.6
—198.4
199.2
200.0
200 8
201.6
-202.4
203.2
204.0
204.8
205.6
—206.4
207.2
208.0
208 8
209.6
-210 4
211 2
212.0
212 S
213.6
-214.4
215.2
216.0
216.8
217.6
100 —173 —279.4—138.4    50 —223 —369.4-178.4    0 —273 —459.4-218.4
                                                                 3-3

-------
                          TEMPERATURE CONVERSION TABLE
                              CENTIGRADE - FAHRENHEIT
    The number* in the second column of each *ection refer to the
    temperature either in degrees Centigrade or Fahrenheit which it
    i> deiired to convert. If converting from Fahrenheit degrees to
    Centigrade degree* Ike equivalent temperature will be found in
.he left column, whiUi if converting from degree* Centigrade to
degree* Fahrenheit, the answet will be found in the column on
the right. These Albert  Sauveur temperature convenion table*
are reproduced through the courtesy of University Press, Inc
-60° to +59*
C F
-51 -60 -76
-46 -50 -58
-40 -40 -40
-34 -30 -22
-29 -20-4
-23 -10 14
-17.7 0 32
-17.2 1 338
-16.6 2 356
-16.1 3 374
-15.5 4 392
-15.0 5 410
-14.4 6 428
-13.9 7 44.6
-13.3 8 46.4
-12.7 9 48.2
-12.2 10 500
-11.4 11 51.8
-11.1 12 53.6
-10.S 13 55 4
-10.0 14 57. 7
- 9.4 15 59.0
- 8.8 16 60.8
- 8.3 17 62.4
- 7.7 18 64.4
- 7.2 19 66.2
- 6.6 20 68.0
- 6.1 21 69.8
- 5.5 22 71.4
- 5.0 23 73.4
- 4.4 24 75.2
- 39 25 '7.0
- 3.3 26 78-8
~ 2,8 27 80.6
-12 28 82.4
- 1.6 29 64.2
- M 30 86.0
- .6 31 87.8
0 32 89.6
.5 33 91.4
1.1 34 93.2
1,6 35 95.0
2.2 36 96.8
2.7 37 98.6
13 38 100.4
3.8 39 102.2
4.4 40 104.0
4.9 41 105.8
5.5 42 107.6
6.0 43 109.4
6.6 44 111.2
7.1 45 113.0
77 46 H4.8
8.2 47 116.6
8.8 48 118.4
9.3 49 120.2
9.9 50 122.0
10.4 51 123.8
11 1 52 125.6
11.5 53 1274
12. 1 54 129.2
126 55 131.0
13.2 56 133.8
13.7 57 134.6
14.3 58 136.4
14.8 59 138.2
60° to 330°
C F
15.6 60 140.0
16.1 61 141.8
16.6 62 143.6
17.1 63 145.4
17.7 64 147.2
18.2 65 149.0
18.8 66 150.8
19 3 67 152.6
19.9 68 154,4
20.4 69 154.2
21.0 70 1S8.0
21.5 71 159.8
22.2 72 141.6
22.7 73 163.4
23.3 74 165.2
23.8 75 167.0
24.4 76 168.8
25.0 77 170.6
25.5 78 172.4
26. 2 79 174. 2
26.8 80 176.0
27.3 81 177.8
27.7 82 179.6
28.2 83 181.4
28.8 84 183.2
293 85 185.0
29.9 86 184.8
30.4 87 188.6
31.0 88 190.4
31.5 .89 192.2
32. 1 90 194.0
32.6 91 195.8
33.3 92 197.6
33 8 93 199.4
344 94 201.2
34.9 95 203.0
35.5 96 204.8
36. 1 97 Z>4.4
34.4 98 208.4
37.1 99 210.2
37.7 100 212.0
38 100 212
43 110 330
49 120 248
54 130 244
40 140 284
45 150 302
71 140 320
76 170 338
83 180 356
88 190 374
93 200 392
99 210 410
100 212 413
104 220 428
110 230 446
IIS 240 444
121 250 482
127 2.40 500
132 270 518
138 280 534
143 290 5S4
149 300 572
1S4 3)0 590
140 320 608
145 330 424
340* to 9*0°
C F
17 1 340 444
177 350 442
182 340 480
188 370 498
193 380 714
199 390 734
204 400 752
210 410 770
215 420 788
221 430 804
226 440 824
232 450 842
238 440 840
243 470 878
249 480 896
254 490 914
260 500 932
265 510 950
271 520 968
276 530 986
282 540 1004
288 550 1023
293 560 1040
299 570 1058
304 580 1074
310 590 1094
315 400 111?
321 410 1130
326 420 1148
332 630 1164
338 440 1184
343 650 1202
349 460 1220
354 470 1238
360 680 1256
36S 690 1274
371 700 1292
376 7)0 1310
382 720 1328
387 730 1346
393 740 1364
399 750 1382
404 740 1400
410 770 1418
415 780 1436
421 790 1454
426 800 1472
432 810 1490
438 820 1508
443 830 1526
449 840 1544
454 850 1S42
440 840 1580
445 870 1598
471 880 1414
476 890 1434
482 900 1652
487 910 1670
493 920 1488
498 930 1704
504 940 1724
510 950 1742
515 940 1740
520 970 1778
526 980 1794
532 990 1814
1000° to 1400°
C F
538 1000 1832
543 10W 1850
549 1020 1868
554 1030 1886
560 1040 1904
565 1050 1922
571 1060 1940
576 1070 1958
582 1080 1976
587 1090 1994
593 1100 2012
598 1110 2030
604 1120 2048
609 1130 2066
615 1140 2084
620 1150 2102
626 1160 7120
631 1170 2138
637 1180 2156
442 1190 2174
448 1200 2192
653 1210 2210
659 1220 2228
644 1230 2244
670 1240 2264
675 1250 2282
681 1260 2300
686 1270 2318
692 1280 2336
697 1290 ZJS4
704 1300 2372
708 1310 2390
715 1320 2408
719 1330 2424
726 1340 2444
734 1350 2442
737 1340 2480
741 1370 2498
748 1380 2516
752 1390 2534
760 1400 2552
765 1410 2570
771 1420 2588
776 1430 2404
782 1440 2424
787 1450 2642
793 1440 2440
798 1470 2478
804 1480 2494
809 1490 2714
815 1500 2732
820 1510 2750
827 1520 2748
831 1530 2784
838 1540 2804
842 1550 2822
849 156P 2B«0
853 1570 2858
840 1580 2876
844 1590 2894
871 1600 2912
876 1610 2930
882 1420 2948
887 1430 29 44
893 1440 29114
898 1450 3002
904 1440 3020
1670° to 2330*
C F
909 1470 3038
915 1680 3054
920 1490 3074
926 1700 3092
931 1710 3110
937 1720 3128
942 1730 3146
948 1740 3164
753 1750 3182
959 1760 3200
964 1770 3218
970 1780 3236
975 1790 3254
981 1800 3272
<>86 18 10 3290
992 1820 3X8
997 1830 3326
1003 1840 3344
1008 1850 3342
1014 1860 3380
1019 1870 3398
1025 1880 3416
1030 1890 3434
1036 1900 3452
1041 1910 3470
1047 1920 3488
1052 1930 3504
1058 1940 3524
1063 1950 3542
1049 1940 3540
1074 1970 3578
1080 1980 3596
1085 1990 3614
M93 2000 3432
1098 2010 3450
1104 2020 3668
1109 2030 3484
1115 2040 3704
1120 2050 3722
1 124 2040 3740
1131 2070 3758
1137 2080 3774
1142 2090 3794
1149 2100 3812
11.14 2110 3830
1160 2120 3848
HAS 2130 3844
1)71 2140 3884
1174 2150 3902
1182 2140 3920
11117 2170 3938
1193 2180 3956
11«>8 2190 3974
1X14 2200 3992
1209 2210 4010
1215 2220 4028
1230 2230 4044
1224 2240 4044
1231 2250 4082
1237 2240 4100
1242 2270 4118
1248 2280 4134
1253 2290 4154
1259 2300 4172
1244 2310 4190
1270 2320 4208
1275 2330 4224
2340° to 3000°
C F
1281 2340 4244
1286 2350 4262
1292 2360 4280
1297 2370 4298
1303 2380 4316
1308 2390 4334
1315 2400 4352
1320 2410 4370
1326 2420 4388
1331 2430 4006
1337 2440 4424
1342 2450 4442
1348 2460 4460
1353 2470 4478
1359 2480 4496
1364 2490 4514
1371 2500 4532
1376 2510 4550
1382 2520 4568
1387 2530 4586
1393 2540 4604
1398 2550 4622
1404 2560 4640
1409 2570 4658
1415 2580 4476
1420 2590 4694
1427 2600 47 12
1432 2610 4730
1438 2420 4748
1443 2430 4744
1449 2440 4784
1454 2450 4802
1460 2660 4820
1465 2470 4838
1471 2480 4854
1476 2690 4874
' 1483 2700 4892
1488 2710 4910
1494 2720 4928
1499 2730 4946
1505 2740 496*
1510 ,2750 4982
1516 2740 5000
1521 2770 5018
1527 2780 S034
1532 2790 50S4
1538 2800 5072
1543 '2810 5090
1549 2820 5108
1554 2830 5124
1540 «2840 5144
1505 2850 5162
1571 2840 5180
1574 2870 5198
1582 2880 5214
1587 2890 5234
1593 2900 5252
1598 2910 5270
1404 2920 5288
1409 2930 5304
1415 2940 5324
1420 2950 5342
1424 2940 5340
1631 2970 5378
1637 2980 5394
1642 2990 S414
1449 3000 5432
3-4
                            See Reference  No.  2

-------
LU
X
•z.
LU
Of
X
<
u_


LU"
2^
Z
<
_J
LLJ
LU
Q
<
OL
•z.
LU
u
X
Q.
LU
ID
c?
UJ

LU
01
OL
LU

0-
15
LU
              CM
        O
        oo

              o
              o
o §
CN O
CN •—

— O


o 2
      LU

      z  2


      2  8
      Z  o
         §
         o
           Qi

           O
         o
         o
    0£.
 cm. o
o   oo
   o
   00
   CO
 Uo
o  n
 •*• oo
 00 r-
       »  o
        oo
              oo
(C69-CZ3)

  O   O

  ^o   *o
                                                NIA13>
                                             O
                                             o
                                             o
                                             s?
                                                      533*1930

                                                      o    o    c
                                                                §
                                                        IT)
                                                                            i=8

                                                                               o
                                                                               CN
                                                                                     o
                                                                                     00
                                                                               o
                                                                                     SQ  O
                                                                               o
                                                                               o
                                                                               o

                                                                               3
                                                                             LU

                                                                             I


                                                                             Z

                                                                             LU
                                                                         10  X



                                                                         2  L^
                                                                         o  ^
                                                                         CN  UJ
                                                                               o  O
                                                                               *O  i^j


                                                                               o  °
                                                                               CO
                                                                                    O
                                                                                    o
                                                                                    •t
                                                                              o
                                                                              CO
                                                                              co
                     o
                     O
                               o
                               OO
                               CO
                                     co
                              o
                              s
                                               CO
                        o
                        CO
                        CN
O
•O
CN
                                                                        CN
§
    LU
         <
                       (02t--0)   3QVil9llN3D   533^930
                                                                                      3-5

-------
SECTION 4 LENGTHS
         Table of Equivalents	    4-1
         Conversion Factors - Length	    4-2
         Decimals of an Inch for Each 64th of an Inch with Millimeter Equivalents . .    4-3
         Decimals of a Foot for Each 32nd of an Inch  	    4-4

-------
                                        TABLE OF EQUIVALENTS

                  When tho name of a unit is enclosed in brackets (thus,  [1 hand]	),  this indicates (1)
             that the unit is not in general current use in the United States, or (2) that the unit is believed
             to be based  on "custom  and usage" rather than  on formal  authoritative definition.
                  Equivalents  involving decimals are, in most  instances, rounded off to  the third decimal
             place except where they are exact, in which cases  these exact equivalents are so designated.
                                                           LENGTHS

                                                                               iO.l millimicron.
                                                                               0.000 1 micron.
                                                                               0.000 000 1 millimeter.
                                                                               0.000 000 004 inch.
                                                                              [120 fathoms.
                 1 cable's length				1720 feet.
                                                                              1219.456 meters.
                 1 centimeter (cm)	  ._		0.393 7 inch (exactly).
                 1 chain (ch) (Gunter's or surveyors)	  . .               [66 feet.
                                                                              [20.117 meters.
                 [1 chain] (engineers)	                                    f 100 feet.
                            8               	'			\30.480 meters.
                 I decimeter (dm)				 3.937 inches (exactly).
                 1 dekameter (dkm)		_	32.808 feet.
                 1 fathom		    .                          |6feet-
                                                                "	       11.829 meters.
                 1 foot (ft)					0.305 meter.
                                                                               10 chains (surveyors).
                 1 furlong (fur.).
                                                              660 feet.
                                                              220 yards.
                                                                                 statute mile.
                                                                               201.168 meters.
                 [1 hand]	  		  .  4 inches.
                 1 inch (in.)	  2.540 centimeters.
                 1 kilometer (km)		0.621 mile.

                 1 league (land)				  \\ •*•*«* milf'
                                                                              14.828 kilometers.
                 1 link (li) (Gunter's or surveyors)    .     .                     j7'92 inches (*™W-
                                                                              10.201 meter.
                 (1 link (li) (engineers)]	  	 	\\^'   .
                                                                              (0.305 meter.
                 1 meter (m)	    ..     .          j39.37 inches (exactly).
                                                                              11.094 yards.
                 1 micron (n [the Greek letter mul)	                     10.001 millimeter (exactly).
                                                                              10.000 039 37 inch (exactly).
                 j   u                                                        10.001 inch (exactly).
                                                                    	"" \0. 025 4 millimeter.
                 1 mile (mi) (statute or land)	          ! 5 280 feet.
                                                                              11.609 kilometers.
                                                                               1.152 statute miles.
                 (1 mile (mi) (nautical, geographical, or sea, U. S.)] "•	      i6 °80-20 feet-
                                                                               1.853 kilometers.
                                                                               1.001 international nautical'mile.
                                                                               1.852 kilometers (exactly).
                                                                               1.151 statute miles.
                                                                               0.999 U..S. nautical miles.
                 1  millimeter (mm).				i	0.039 37 inch (exactly).
                 1 millimicron  (m/< [the English letter m in  combination with   f0.001 micron (exactly).
                   the Greek letter mu])	[0.000 000 039 37 inch (exactly).
                                                                              [0.013 837 inch (exactly)
                 1 point (typography)			.'	iy,t jnch (approximately).
                                                                              (.0.351 millimeter.
                                                                               (16H feet.
                                                                               5K yards.
                                                                               5.029 meters.
                 1  yard (yd)		_		0.914 meter.
1 mile  (mi) (nautical, international)b.
              B The angstrom Is basically defined in terms of the »avelength of the red radiation ol cadmium under specified conditions by the relation
           1 wavelength-6 438.48B g angstroms.
              >> The International nautical mile of 1 862 meters (6 076.103 33 ... feet) was adopted effective July 1,1954 for use In the United States.  The
           value formerly used in the United States was 6 080 20 feet- 1 nautical (geographical or sea) mile
See Reference  No.  3                                           '                                               4-1

-------
  O
  z
  UJ
  _J
   I
  uo
  o:
  o

  u
  O
  «/>
  a:
  LU
  >
  Z
  O
  u

Li
01
t)
O
2
•MMMMMWI

^
01
1


•MMHMM^
Lt
<1)
"S
1
I
o

Li
O
4>
S
rH
rH
>iH
B
O
(4
U
§


^
•-H
S



• 1
^




o





r*.
O
5


to ,
*• ^
"O '— X
0) C M
1 /
Q/c »
1 0) *•
/IS



m
i
^ o
m rH
n rH
N X


CO 1O

« rH
X


OO po
f- 1
t- o
• rH
t-
CM X




" S

co' ""'
co X





rH





U
5



m
i
§ X



5^2
o X





oo
0
CO



CO
o
m

*$f
•* 2
S x


^ *rl
OS i
» 0
~" X


CO
CO
CO
CO





_







CJ
*— 1





8



m
1
3 °
-< X
•«»••••.


5 '2
-1 X





5.
rH
05



^
o>

^Jt
•* 2
s' x


f^ -.
00 |
^ o
10 x








CO







to




•o
Li
rt



CT>
o
to
-'



0> m
O o
tO rH
-^' X




-^
OS
S^o
* T— I
i-H
X



g ^o
^H
^ X
^
S O
to -<
•H' X





1-1


o
to
c-




Q
00
OJ





o
tO it
CO S
to' X




rH



en
o
X
rH


to
O
rH
X
f-H




O
X
rH



CO
1
O
X


rH


rH
t~ vH
CO ,
-1 o
• rH
S x


<*7
2 x




I/O

8 x



in
t- i
S 2
co X


c
0
£
s



to
1
o
X
rH


CO
1
0
rH
X
rH

•••^••^


rH
a




rH

CO
o
X


t- oo
co 7
-1 o
S x


f T
o """
-* X




o T

co' X



N
t^ i
S 2
co' X


-M
Q)
',3




rH

«~i~i«— ««

CO
O
rH
X
rH

»•«••*


m
o
rH
X
rH



to
o
rH
X
rH

O3
O
rH
X
«-H


f— _,
CC |
» rH
S x


•* 
1
B
1

.
a
2
3

3
•a
'M
QJ
•a
o
^j
'a
3
'C
1
bfi
a)
S
O
£,


a>
,3

01
t;
§
o
u
o
H
4-2

-------
   DECIMALS OF AN INCH FOR EACH 64TH
OF AN INCH WITH MILLIMETER EQUIVALENTS
FrmUofl

tt
....
Hi

K
....
K

tt
	
Hi

lift
....
K

Hi
	
Hi

%
	
H

%
....
^
....
%
....
H
*4th»
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Decimal
.015625
.03125
.046875
.0625
.078125
.09375
.109375
.125
.140625
.15625
.171875
.1875
.203125
.21875
.234375
.250
.265625
.28125
.296875
.3125
.328125
.34375
.359375
.375
.390625
.40625
.421875
.4375
.453125
.46875
.484375
.500
Millinw'ert
(tpprox.)
0.397
0.794
1.191
1.588
1.984
2.381
2.778
3.175
3.572
3.969
4.366
4.763
5.159
5.556
5.953
6.350
6.747
7.144
7.541
7.938
8.334
8.731
9.128
9.525
9.922
10.319
10.716
11.113
11.509
11.906
12.303
Fraction

'36

£

%

>A

H6

%

%
.. .
X

H6

%

%
•
H

'%

%

H6
....
12.700 I 1
!'
%4th*
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Decimal
.515625
.53125
.546875
.5625
.578125
.59375
.609375
.625
.640625
.65625
.671875
.6875
.703125
.71875
.734375
.750
.765625
.78125
.796875
.8125
.828125
.84375
.859375
.875
.890625
.90625
.921875
.9375
.953125
.96875
.984375
1.000
MillinwMrt
(tpprox.)
13.097
13.494
13.891
14.288
14.684
15.081
15.478
15.875
16.272
16.669
17.066
17.463
17.859
18.256
18.653
19.050
19.447
19.844
20.241
20.638
21.034
21.431
21.828
22.225
22.622
23.019
23.416
23.813
24.209
24.606
25.003
25.400

-------
Soijort   22 i i !t    £ 2? !£? £
O) OJ O» O*   Ok Oi Oi wi    Oi Cn O> Oi
                                                     t— if to

                                                     & fc fc
                                                                               ,— •

                                                                              ' SB
                                                                              ) O> '
                lO   ^h»CO

                                                               1O «-
                                                               ip Op
u
                 8
                           o )
                               r—
                               ro
                               in
                                                                   T— ^*
                                                                   CJ ^f
                                                                   "5 *O
                                                                   to 10
    ^-
— «-tM
                
-------
SECTIONS AREA




        Table of Equivalents of Area
5-1

-------
                              TABLE OF  EQUIVALENTS OF AREA
Units
1 square inch —
1 square link —
1 square loot —
1 square yard —
1 square rod —
1 square chain —
1 acre —
1 square mile -
1 square centimeter—
1 square meter —
1 hectare -
Square Inches
1
68.7364
144
1296
89204
627264
6 272 640
4014489600
0.154 999 69
1S49.9969
15499969
Square link*
0.0159423
1
2.29S 684
20.6612
625
10000
100000
64 000 000
0.002471 04
24.7104
247104
Square ieet
0.00694444
0.4356
1
9
272.25
4356
43560
27 878 400
0.001076387
10. 763 87
107 638. 7
Square yard*
a 000 771 605
O.O484
0.1111111
1
30.25
484
4840
3097600
0.0001195985
1. 195 985
11959.85
Square rods
0. 000 025 507 6
0.0016
0.00367309
0.03305785
1
16
160
102 4OO
0.00000395367
0.0395367
395.367
Square Chains
0.00000159423
0.0001
0.000229568
0.00206612
0.0625
1
10
6400
0.000000247104
0.00247104
24. 7104
Units
1 square inch —
1 square link -
1 square loot -
1 square yard —
1 square rod —
1 square chain —
1 acre -
1 square mile —
1 square centunster=
1 square meter =
1 hectare
Acres
0.000000159423
0.00001
0.0000229568
0.000206612
0.00685
0.1
1
640
0.0000000247104
0.000247104
2.47104
Square miles
0.0000000002491
0.000 000 015 685
0.0000000358701
0.000000322831
0.000 009 765698
0.000 106 M
0.001 569 5
1
0.000 000 000 038 61006
0.0000003861006
0.003861006
Square centimeters
6.451626
404.6873
929.0341
8361.307
252929.5
4046873
40 468 726
25899984703
1
10000
100000000
Square meters
0.0006451626
0.04046873
0.09290341
0.8361307
25.29295
404.6873
4046.873
2589998
0.0001
1
10000
Hectares
0.000000064516
0.00000404687
0.00000929034
0.0000836131
0.002529295
0.0404687
0.404687
258.9998
O.OOOOOO01
0.0001
1
             1 acre*
             1 are.
                                  AREAS OR SURFACES

                                                             43 560 square feet.
                            		 4 840 square yards.
                                                             0.405 hectare.
                                                             119.596 square yards.
                            	'	                  0.025 acre.
 1 hectare		_				 2.471 acres.
[1 square (building)]				__ 100 square feet.
 1 square centimeter (cm2)				_. 0.155 square inch.
 1 square decimeter (dm2)			 15.500  square inches.
 1 square foot (sq ft)						 929.034 square centimeters.
 1 square inch (sq in.)			 6.452 square centimeters
                                                            J247.104 acres.
                            	        	\0.386 square mile.
                                                            11.196 square yards.
                            '""	     	'	110.764 square feet.
 1 square mile (sqmi)					259.000 hectares.
 1 square millimeter (mm2)		0.002 square inch.
 1 square rod (sq rd), sq pole, or sq perch				25.293 square meters.
 1 square yard (sq yd)			0.836 square meter.
             1 square kilometer (km2).

             1 square meter (mj)	
          i The question Is often asked as to the length of a side of an acre of ground. An acre is a unit otarea containing 43 MO square feet.
       necessarily square, or even rectangular. But, if it is square then the length of a side is equal to V<3 680-208.710+ feet.
                                                                                                     It Is not
See  Reference No.  3
                                                                                                             5-1

-------
SECT/ON 6 VELOC/TY
         Table of Equivalents of Velocities	    6-1
         Conversion Factors - Velocity	    6-2
         Meters per Second to Miles per Hour, Feet per Second, Kilometers per Hour,
             Knots, Feet per Minute	    6-3
         Feet per Second to Meters per Second, Feet per Minute,  Miles  per Hour,              •
             Kilometers per Hour, Knots	    6'4       ™
         Relationship Between Velocity Head and Velocity	    6-6

-------
                            TABLE OF EQUIVALENTS OF  VELOCITIES
                     Velocity; (peed:
                        1 meter per second (m. sec.-*, mps)
                              = 3.6 km. hr.-1
                              = 1.94254 knots
                              = 2.23694 mi. hr."1
                              = 3.28084 ft. sec.-1
                              = 196.850 ft. min.-1
                              = 0.77742 Mat. day-1
                        1 kilometer per hour  (km. hr."*,
                          kph)
                              = 0.277778 m. sec.-1
                              = 0.539593 knot
                              = 0.621371 mi. hr.-1
                              = 0.911344 ft. sec.-1
                              = 021595 Mat. day1

                        1 degree of latitude per day (Mat.
                          day1)
                             = 1.2863 m.  sec.'1
                             = 4.6307 km. hr.-1
                             = 2.4987=* 2.5 knots
                             = 2.8774 mi. hr.
 1 knot
      = 1  naut. mi. hr.-"
      = 1.15155 mi. hr.-1
      = 1.68895 ft. sec.-1
      = 0.514791m. sec.-*
      = 1.85325 km. hr.J
      = 101.337 ft. min.-1
      = 0.40021 as 0.4 Mat. day'
 1 mile per how (mi. hr."1, mph)
      = 0.868391 knot
      = 1.46667 ft. sec."4
      = 0.44704 m. sec.-1
      = 1.609344 km. hr.-1
      = 88 ft. min.-1
      = 0.34754 Mat. dayj
1 foot per second  (ft. sec.'1, fps)
      = 0.592085 knot
      = 0.681818 mi. hr.-1
      = 60 ft. min.-*
      = 0.3048m. sec.-'
      = 1.09728 km. hr.-1
1 foot per minute (ft. min.'1, fpm)
      = 0.00986808 knot
      = 0.0113636 mi. hr.-1
     = 0.00508 m. sec.-1
     sO.018288kni.hr.-1
See Reference  No.   1
                                                                                                                6-1

-------
      o
      _J
      LU
      IS)
      Q£
      O

      U
      <
      U.

      z
      o
      oo
      C£
      LU
      O
      U
1
cd

—
•rH
a



CO
•+->
o
J2


$H
XH
"•— — .
a


!M
*£^
*•*•».,
a

.s

M
7?
- rH t- t- X CM" i rH 1 ^ CM rH 1 O) O CO t-H CO CD X 00* o rH 00 C3 O CO ""• O oo' 00 t~ CD CO T— 1 rH 1 C- O O rH t**" 4^ VX * a t> 0 CO T-H CO t- X CM' o r-l CD r-H m rH rH co CO in 00 rH CM •* O CO rH T— 1 o X rH O 05 CO CD rH rH O5 O l> r-H ^* . *vy in CO | o T-H CM 1 CO O CO T-H rH co X co' CM 1 t- O CO rH CO •H X •* CM 1 CO O in rH o t- X CO* t> co CD CD CO* CM 1 rH 0 rH rH T-H rH ~^ co' CM 1 t- 0 CM rH CO co X rH . CS -o •r-l a IH 2 o ret 4) 3 i— t cS C 0) OJD CD - -3 S 3 CU T3 r-l CP •3 £ o; co cd CU rt fl "* m a w p s M J-; 3 rt} . 3 " CO t> t> 'El
-------
         METERS  PER  SECOND  TO  MILES  PER  HOUR,   FEET  PER  SECOND,
                    KILOMETERS PER  HOUR, KNOTS,  FEET PER  MINUTE
                                         Kilo-
                     Meter* Mile*   Feet  meteri
                       P«   J*T    ** .   !"
                     second hour   second   hour
        Feet
        per
Knot!   minute
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
2.2
4.5
6.7
8.9
112
13.4
15.7
17.9
20.1
22.4
24.6
26.8
29.1
31.3
33.6
35.8
38.0
40.3
42.5
44.7
47.0
49.2
51.4
53.7
55.9
58.2
60.4
62.6
64.9
67.1
69.3
71.6
73.8
76.1
78.3
80.5
82.8
85.0
87.2
89.5
91.7
94.0
96.2
98.4
100.7
102.9
105.1
107.4
109.6
111.8
3.3
6.6
9.8
13.1
16.4
19.7
23.0
26.2
29.5
32.8
36.1
39.4
42.7
45.9
49.2
52.5
55.8
59.1
62.3
65.6
68.9
72.2
75.5
78.7
82.0
85.3
88.6
91.9
95.1
98.4
101.7
105.0
108.3
111.5
114.8
118.1
121.4
124.7
128.0
131.2
134.5
137.8
141.1
144.4
147.6
150.9
1542
157.5
160.8
164.0
3.6
12
10.8
14.4
18.0
21.6
25.2
28.8
32.4
36.0
39.6
43.2
46.8
50.4
54.0
57.6
61.2
64.8
68.4
72.0
75.6
79.2
82.8
86.4
90.0
93.6
972
100.8
104.4
108.0
111.6
115.2
118.8
122.4
126.0
129.6
133.2
136.8
140.4
144.0
147.6
151.2
154.8
158.4
162.0
165.6
169.2
172.8
176.4
180.0
1.9
3.9
5.8
7.8
9.7
11.7
13.6
15.5
17.5
19.4
21.4
23.3
25.3
27.2
29.1
31.1
33.0
35.0
36.9
38.9
40.8
42.7
44.7
46.6
48.6
50.5
52.4
54.4
56.3
58.3
602
62.2
64.1
66.0
68.0
69.9
71.9
73.8
75.8
77.7
79.6
81.6
83.S
85.5
87.4
89.4
91.3
93.2
952
97.1
197
394
591
787
984
1181
1378
1575
1772
1969
2165
2362
2559
2756
2953
3150
3346
3543
3740
3937
4134
4331
4528
4724
4921
5118
5315
5512
5709
5906
6102
6299
6496
6693
6890
7087
7283
7480
7677
7874
8071
8268
8465
8661
8858
9055
9252
9449
9646
9843
                      51  114.1   167.3   183.6   99.1   10039
                      52  116.3   170.6   187.2  101.0   10236
                      S3  118.6   173.9   190.8  103.0   10433
                      54  12CR   177.2   194.4  104.9   10630
                      55  123.0   180.4   198.0  106.8   10827
                    Kilo-
Heteri Mile>   Fe«t   meters          Feet
 per   per    per     per            per
second hour  second   hour   Knot*  minute
 56  125.3   183.7  201.6   108.8  11024
 57  127.5   187.0  205.2   110.7  11220
 58  129.7   190.3  208.8   112.7  11417
 59  132.0   193.6  212.4   114.6  11614
 60  134.2   196.9  216.0   116.6  11811

 61  136.5   200.1  219.6   118.5  12008
 62  138.7   203.4  223.2   120.4  12205
 63  140.9   206.7  226.8   122.4  12402
 64  1432   210.0  230.4   124.3  12598
 65  145.4   213.3  234.0   126.3  12795

 66  147.6   216.5  237.6   128.2  12992
 67  149.9   219.8  241.2   130.1  13189
 68  152.1   223.1  244.8   132.1  13386
 69  154.3   226.4  248.4   134.0  13583
 70  156.6   229.7  252.0   136.0  13780

 71  158.8   232.9  255.6   137.9  13976
 72  161.1   236.2  259.2   139.9  14173
 73  163.3   239.5  262.8   141.8  14370
 74  165.5   242.8  266.4   143.7  14567
 75  167.8   246.1  270.0   145.7  14764

 76  170.0   249.3  273.6   147.6  14961
 77  172.2   252.6  2772   149.6  15157
 78  174.5   255.9  280.8   151.5  15354
 79  176.7   2592  284.4   153.5  15551
 80  179.0   262.5  288.0   155.4  15748

 81  181.2   265.7  291.6   157.3  15945
 82  183.4   269.0  295.2   159.3  16142
 83  185.7   272.3  298.8   161.2  16339
 84  187.9   275.6  302.4   163.2  16535
 85  190.1   278.9  306.0   165.1  16732

 86  192.4   282.2  309.6   167.1  16929
 87  194.6   285.4  313.2   169.0  17126
 88  196.9  288.7  316.8   170.9  17323
 89  199.1   292.0  320.4   172.9  17520
 90  201.3   295.3  324.0   174.8  17717

 91   203.6   298.6  327.6   176.8  17913
 92  205.8   301.8  331.2   178.7  18110
 93  2d8.0   305.1  334.8   180.7  18307
 94  210.3   308.4  338.4   182.6  18504
 95  212.5   311.7  342.0   184.5  18701

 96  214.7   315.0  345.6   186.5  18898
 97  217.0   318.2  3492   188.4  19094
 98  219.2   321.5  352.8   190.4  19291
 99  221.5   324.8  3S6.4   192.3  19488
100  223.7   328.1  360.0   194.3  19685

110   246.1   360.9  396.0   213.7  19882
120   268.4   393.7  432.0   233.1  20079
130   290.8   426.5  468.0   252.5  20276
140   313.2   459.3  504.0   272.0  20472
150   335.5   492.1  540.0   291.4  20669

160   357.9   524.9  576.0   310.8  20866
170   380.3   557.7  612.0   3302  21063
180   402.6   590.6  648.0   349.7  21260
190   425.0  623.4  684.0   369.1  21457
200   447.4  656.2  720.0   388.5  21654
See Reference No.  1
                                                                                                                  6-3

-------
     FEET PER SECOND TO METERS PER SECOND, FEET PER MINUTE,
           MILES PER HOUR, KILOMETERS PER HOUR,  KNOTS
Feet
per
second
1
2
3
4
5
6
7
B
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Meters
per
second
0.31
0.61
0.92
1.22
1.53
1.83
2. 14
2.44
2.75
3.05
3.36
3.66
3.97
4.27
4.58
4.88
5.19
5.49
5.80
6. 10
6.41
6. 71
7.02
7. 32
7.63
7.93
8.24
8.54
8.85
9. 15
9.46
9. 76
10.07
10. 37
10. 68
Feet
per
minute
60
120
180
240
300
360
420
480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
I960
2040
2100
Miles
per
hour
0.68
1.36
2.05
2.73
3.41
4.09
4.77
5.45
6. 14
6.82
7.50
8. 18
8.86
9.55
10.23
10.91
11.59
12.27
12.95
13.64
14.32
15.00
15.68
16.36
17.05
17. 73
18.41
19.09
19. 77
20.45
21. 14
21.82
22.50
23.18
23.86
Kilo-
meters
per
hour
1.10
2.19
3.29
4.39
5.49
6.58
7.68
8.78
9.88
10.97
12.07
13. 17
14.26
15.36
16. 46
17.56
18. 65
19. 75
20.85
21.95
23.04
24. 14
25.24
26. 33
27.43
28.53
29.63
30.72
31. 82
32.92
'34. 02
35. 11
36. 21
37. 31
38.40
Knots
0. 59
1.18
1.78
2.37
2.96
3.55
4. 14
4. 74
5.33
5.92
6.51
7. 11
7. 70
8.29
8.88
9.47
10.07
10.66
11.25
11.84
12.43
13. 03
13.62
14. 21
14.80
15. 39
15.99
16. 58
17. 17
17.76
18. 35
18.95
19. 54
20. 13
20. 72
Feet
per
econd
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69 ,
70
Meters
per
second
10.98
11.29
11.59
11. 90
12.20
12.51
12. 81
13. 12
13.42
13.73
14.03
14.34
14.64
14. 95
15.25
15.56
15.86
16. 17
16.47
16.78
17.08
17. 39
17. 69
18. 00
18. 30
18. 61
18. 91
19.22
19.52
19.83
20. 13
20. 44
'20. 74
21.05
21.35
f
Feet
per
minute
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
Miles
per
hour
24.55
25. 23
25.91
26.59
27.27
27.95
28.64
29.32
30.00
30. 68
31. 36
32.05
32.73
33.41
34.09
34. 77
35.45
36. 14
36.82
37.50
38. 18
38. 86
39. 54
40.23
40. 91
41.59
42.27
42.95
43.64
44. 32
45.00
45.68
46.36
47.05
47. 73
Kilo-
meters
per
hour
39.50
40. 60
41.70
42.79
43.89
44.99
46.09
47. 18
48. 28
49.38
50.47
51. 57
52. 67
53. 77
54. 86
55. 96
57. 06
58. 16
59.25
60. 35
61.45
62. 54
63. 64
64. 74
65. 84
66.93
68. 03
69. 13
70. 23
71. 32
72.42
73.52
74.62
75. 71
76. 81
Knots
21.32
21.91
22. 50
23.09
23. 68
24. 28
24.87
25.46
26.05
26. 64
27.24
27.83
28.42
29.01
29. 60
30. 20
30. 79
31.38
31.97
32.56
33. 16
33. 75
34. 34
34.93
35.53
36. 12
36.71
37.30
37.89
38.49
39.08
39.67
40.26
40. 85
41.45
6-4

-------
FEET PER SECOND TO METERS PER SECOND, FEET PER MINUTE,
      MILES PER HOUR, KILOMETERS PER HOUR, KNOTS
                      (continued)
Feet
per
second
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
105
110
115
120
125
Meters
per
second
21. 66
21.96
22.27
22.57
22.88
23. 18
23.49
23. 79
24. 10
24.40
24. 71
25.01
25. 32
25. 62
25. 93
26.23
26. 54
26. 84
27. 15
27.45
27. 76
28. 06
28.37
28. 67
29. 98
29. 28
29.59
29. 89
30. 20
30. 50
32. 03
33. 55
35.08
36. 60
38. 13
Feet
per
minute
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6300
6600
6900
7200
7500
Miles
per
hour
48.41
49.09
49. 77
50. 45
51. 14
51.82
52.50
53. 18
53. 86
54. 55
55. 23
55. 91
56. 59
57. 27
57. 95
58.64
59. 32
60. 00
60.68
61. 36
62. 05
62. 73
63.41
64. 09
64. 77
65.45
66. 14
66. 82
67. 50
68. 18
71. 59
75. 00
78. 41
81. 82
85. 23
Kilo-
meters
per
hour
77. 91
79.00
80. 10
81. 20
82. 30
83. 39
84.49
85.59
86. 69
87. 78
88. 88
89.98
91.07
92. 17
93. 27
94. 37
95.46
96. 56
97. 66
98. 76
99. 85
100. 95
102.05
103. 14
104. 24
105. 34
106.44
107. 53
108. 63
109. 73
115. 21
120. 70
126. 19
131. 67
137. 16
Knots
42.04
42. 63
43. 22
43. 81
44. 41
45. 00
45,59
46, 18
46. 77
47. 37
47. 96
48. 55
49. 14
49.74
50. 33
50.92
51.51
52. 10
52.70
53. 29
53.88
54.47
55.06
55. 66
56. 25
56. 84
57. 43
58.02
58. 62
59. 21
62. 17
65. 13
68. 09
71.05
74.01
Feet
per
second
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
225
250
275
300
325 .
350
375
400
425
450
475
500
525
550
575
600
625
650
675
700
Meters
per
second
39.65
41, 18
42, 70
44.23
45. 75
47.28
48. 80
50. 33
51. 85
53.38
54.90
56. 43
57. 95
59.48
61.00
68. 63
76. 25
83. 88
91. 50
99. 13
106. 75
114. 38
122.00
129. 63
137. 25
144.88
152.50
160. 13
167. 75
175. 38
183. 00
190. 63
198. 25
205. 88
213. 50
Feet
pet-
minute
7800
8100
8400
8700
9000
9300
9600
9900
10200
10500
10800
moo
11400
11700
12000
13500
15000
16500
18000
19500
21000
22500
24000
25500
27000
28500
30000
31500
33000
34500
36000
37500
39000
40500
42000
Miles
per
hour
88. 64
92.05
95.45
98. 86
102. 27
105. 68
109. 09
112. 50
115. 91
119.32
122. 73
126. 14
129. 55
132.95
136. 36
153.41
170. 45
187. 50
204. 55
221. 59
238. 64
255. 68
272. 73
289. 77
306. 82
323.86
340.91
357. 95
375. 00
392.05
409.09
426. 14
443. 18
460. 23
477. 27
Kilo-
meters
per
hour
142. 65
148. 13
153. 62
159. 11
164. 59
170.08
175. 56
181. 05
186. 54
192. 02
197. 51
203. 00
208. 48
213. 97
219. 46
246. 89
274. 32
301. 75
329. 18
356. 62
384.05
411.48
438. 91
466. 34
493. 78
521. 21
548. 64
576.07
603. 50
630. 94
658. 37
685. 80
713. 23
740. 66
768. 10
Knots
76. 97
79. 93
82. 89
85. 85
88. 81
91. 77
94. 73
97. 69
100. 65
103. 61
106. 58
109. 54
112. 50
115. 46
118. 42
133. 22
148. 02
162. 82
177. 63
192. 43
207. 23
222. 03
236. 83
251. 64
266. 44
281. 24
296. 04
310. 84
325. 65
340. 45
355. 25
370. 05
384. 86
399. 66
414.46
                                                    6-5

-------
                                               KEEE^a"
 U
 o
 _J
 UJ
 o
 <
 LLJ
 X
 o

 LLJ
 z
 UJ
 LJJ
 UJ
 CO
 X
 to
 z
 UJ
 a:
                                                              u.

                                                              I
                                                              
-------
SECT/ON 7  CAPACITIES, VOLUMES AND FLOW RATES

        Equivalents of Capacities or Volumes	    7-1
        Units of Capacity, Dry Measure	    7-3
        Units of Capacity, Liquid Measure	    7-3
        Units of Volume	    7-4
        Equivalents of Volume	    7-4
        Conversion Factors — Volume	    7-5
        Conversion Factors — Flow	    7-6
        Relationship Between Nozzle Size and Flow Rate	    7-7
                                           (,-7

-------
                       EQUIVALENTS OF  CAPACITIES OR  VOLUMES

          1 barrel (bbl), liquid		-	-	 31 to 42 gallons.'
                                                        ...        7 056 cubic inches.
          1 barrel (bbl), standard for fruits, vegetables, and other dry com-
            modities except cranberries		-.	-		
          1 barrel (bbl), standard, cranberry.
105 dry quarts.
3.281 bushels, struck measure.
5 826 cubic inches.
      dry quarts.
                                                                        2.709 bushels, struck measure.
          , ,   ,  ,  ..  . /TT  ., .  .    .                                     J2 150.42 cubic inches  (exactly).
          1 bushel  (bu) (U. S.) struck measure. .................. . ...... 1 35.238 liters.
          [1 bushel, heaped (U. S.)] ........ . ..... ..... ..................
          1        '    v                                                 [1.278 bushels, struck measure. k
          ri u  i. i  n. \ fn M- v T     • is / x    i         M                / 1.032  U.  S. bushels, struck measure.
          1 bushel  (bu) (British Imperial) (struck measure)] _______________ ioomo*   u-  •   v
                                                                        [4 .sly. Jo cubic inches.
          1 cord (cd) (firewood) ___________ ...... ----------------------  128 cubic feet.
          1 cubic centimeter (cm3) _____________________________ ...... ..  0.061 cubic inch.
          1 cubic decimeter (dm3) -------- ............ ------------------  61.023 cubic inches.
              i.- *  * /   «\                                             (7.481 gallons.
          1 CublC fOOt (CU ft) ------- ..... ------------------- ______ ..... looo.T   u- j  •   .
                                                                        128.317 cubic decimeters.
                                                                         {0.554 fluid ounce.
                                                                         4.433 fluid drams.
                                                                         16.387 cubic centimeters.
          1 cubic meter (ms) _____ ..... ... _______ ..... _ ...... _____ .....  1.308 cubic yards.
          1 cubic yard (cu yd). ...... ----------------------- ____ .......  0.765 cubic meter.

                                                                           [8 fluid ounces.
       1 cup, measuring --------------- .......        ----------    Us liquid pint.
                                                                            fY» fluid ounce.
                                                                            0.226 cubic inch.
                                                                            3.697 milliliters.
                                                                            1.041  British fluid drachms.
                                                                           [0.961  U.  S.  fluid  dram.
      [1 drachm, fluid (fl dr) (British)] ______ ......... . . ..... _______  1 0.21 7 cubic inch.
                                                                           1 3. 552 milliliters.
       ,,,,..    , ,. ,.                                                    1 2.642 gallons.
       1 dekaliter  (dkl) ------------------------------------- ....    | , ,35 ;ecks

                                                                            1231 cubic inches.
                                                                            3.785 liters.
                                                                            0.833 British gallon.
                                                                            128 U. S. fluid ounces.
                                                                            277.42 cubic inches.
      [1 gallon (gal)  (British Imperial)].
       1 g>U (gi).
    1.201 U. S. gallons.
    4.546 liters,
    160 British fluid ounces,
    7.219 cubic inches.
    4 fluid ounces.
    0.118 liter.
       , ,    ....   ,, ..                                                     126.418 gallons.
       1 hectoliter (hi)			  			  ..          *
                                                                            2.838 bushels.
       1 liter.
       1 milliliter (ml).
    1.057 liquid quarts.
    0.908 dry quart.
    61.025 cubic inches.
    0.271 fluid dram.
    16.231 minims.
     ' There are a variety of "barrels" established by law or usage. For example. Federal taxes on fermented liquors are based on a barrel of 31
   gallons; many State laws fix the "barrel (or liquids" as 31H gallons; one State fixes a 36-gallon barrel for cistern measurement; Federal Uw recognizes
   a 40-gallon barrel lor "proor spirits"; by custom, « gallons comprise a barrel of crude oil or petroleum products for statistical purposes, and this
   equivalent la recognized "for liquids" by four States.
     k Frequently recogniied as 1H bushels, struck measure.
See Reference  No.   3                                                                                       7-1

-------
                     EQUIVALENTS OF CAPACITIES OR VOLUMES
                                             (continued)
                                                                     0.061 cubic inch.
                                                                    , 1.805 cubic inches.
      1 ounce, fluid (or liquid)  (flozor/3)  (U.S.)	_ 29.573 nulliliters.
                                                                     1.041 British fluid ounces.
                                                                     0.061 U. S. fluid ounce.
      [1 ounce, fluid (fl oz) (British)]		 1.734 cubic inches.
                                                                     28.412 milliliters.
      1 peck (pk)		-.		(8.810 liters.
      ,  .    , t.  .                                                  133.600 cubic inches.
      1 pmt (pt), dry					|0.551 liter.

      1 pint (pt), liquid				'
                                                                    167.201 cubic inches.
      1 quart (qt), dry (U. S.)				[l.lOl liters.
                                                                    10.069 British quart.
                                                                    157.75 cubic inches (exactly).
      1 quart (qt), liquid (U. S.)			(0.946 liter.
                                                                     0.833 British quart.
                                                                     60.354 cubic inches.
      [1 quart (qt) (British)]..-			 1.032 U. S. dry quarts.
                                                                     1.201 U. S. liquid quarts.
                                                                     3 teaspoons.1
       1 tablespoon,	 	-_ 4 fluid drams.
                                                                     '4 fluid ounce.
                                                                    I 'i tablespoon.1
       1 teaspoon		},,/ a • j j     \
            1                                                        U!4 fluid drams.1
                                                                    1270.91 U. S.  gallons.
       1 water ton (English)					j 224  British   Imperial  gallons  (ex-
                                                                     (   actly).
     1 The equivalent "1 teaspoon- 1M fluid drams" ha* been found by the IHiveau to correspond more closely with the actual capacities of "measur-
  ing" and sliver tenspoons than the equivalent "1 teaspoon— 1 fluid dram." which is Riven by a number of dictionaries.
7-2

-------
                UNITS OF CAPACITY DRY MEASURE
Units
1 dry pint -
1 dry quart -
1 peck m
1 bushel f
I lit :r
1 dekaliter •=
1 cubic inch =
1 cubic foot =
Dry plats
1
a
16
64
1.81621
18.1621
0.0297616
51.428093
Dry quirts
0.5
1
8
32
0.908 103
9.081 03
0.0148808
25.714047
Pecks
0.0625
0.125
1
A
0.113513
1.13S 13
0.001 860 10
3.214255 8
Bushels
0.015 625
0.031 25
0.25
1
0.028 378
0.283 78
0.000465 0!5
0.803 56395
DnJts
1 dry pint »
1 dry quart «
1 peck
1 bushel »
Uit:r
1 dekaliter =
1 cubic inch =
1 cubic foot =
Liters
0. 550 598
1.101 197
8. 809 57
35. 2383
1
10
0. 016 386 7
28. 316 22
Dekaliters
0.055 059 8
0.110 119 7
0. 880 957
3.523 83
0.1
1
0 001 638 67
2.831 622
Cubic inches
33.600 3185
67.800 635
537.605
2150.42
61.0251
610 251
1
1728
Cubic feet
0. 019 444 63
0. 038 889 25
0.311 114
1. 244 456
0.035 315 4
0.353 154
0.000 578 703 7
1
               UNITS OF CAPACITY LIQUID MEASURE
Units
1 minim —
1 fluid dram -
1 fluid ounce—
1 gill
1 liquid pint -
1 liquid quart—
1 gallon
1 milliliter **
1 liter
1 cubic inch —
1 cubic foot =
Minims
1
60
48O
1920
7680
15360
61440
16.2311
16 231.1
265.974
459 603.1
Fluid drams
0.0166667
1
8
32
128
256
1024
0.270 518
270.518
4.432 90
7660.052
Fluid ounces
0.00208333
0.125
1
4
16
32
128
0.033 814 8
33.8)48
0.554 113
957.506 S
GUIs
0.000520833
0.031 25
0.85
1
4
8
33
0.008 453 69
8.453 69
0.138 528
239.376 6
Liquid pints
0.000130208
0.007 812 5
0.0625
0.25
1
2
8
0.002 113 42
2.113 42
0.034 632 0
59.844 16
Units
1 minim =
1 fluid dram =
1 fluid ounce =
1 gill
1 liquid pint =
1 liquid quart =
1 gallon
1 milliliter «
1 liter
1 cubic inch =
1 cubic foot. =
Liquid quarts
0. 000 065 104
0.00390625
0.03125
0.125
0.5
1
4
0.001 056 71
1.056 71
0.017 316 0
29.922 08
Gallons
0. 000 016 276
0. 000 976 562
O.OO7 812 5
0.03125
0.125
0.25
1
0. 000 264 178
0.264 178
0. 004 320 00
7.480 519 5
Milliliters
0. 061 610 2
3.696 61
29. 5729
118.292
473. 166
946.332
3785. 329
1
1000
16. 3867
28 316. 22
Liters
0. 000 061 610 2
0.003 6% 61
0. 029 572 9
0.118 292
0.473 166
0.946 332
3.785 329
0.001
1
0. 016 386 7
28.316 22
Cubic inches
0. 003 759 77
0.225 586
1.804 69
7.218 75
28.875
57.78
231
0.061 025 1
61.025 1
1
1728
Cubic feet
0. 000 002 175 79
0.000 130 547
0. 001 044 38
0.004 177 52
0. 016 710 1
0.033 420 1
0. 133 680 6
0.000 035 315 4
0.035 315 4
0.000 578 703 7
1
See Reference No. 3
7-3

-------
                                             UNITS OF  VOLUME
Units
1 cubic inch —
1 cubic loot -
1 cubic yard —
1 cubic centimeter-
1 cubic decimeter —
1 cubic meter —

Cubic inches
1
1728
46656
0.06102338
61.02338
61023.38

Cubic feet
0.000578704
1
27
0.00003531445
0.0353144$
35.31445

Cubic yirdi
0. 000 021 433 47
0.0370370
1
0.00000130794
0.001307943
1.3079428

Units
1 cubic inch -
1 cubic toot -
1 cubic yard —
1 cubic centimeter—
1 cubic decimeter —
1 cubic meter —
Cubic centimeters
16.387162
28317.016
764 559. 4
1
1000
100000O
Cubic decimeter*
0.01638716
28.317016
764.5594
0.001
1
1000
Cubic meten
0.00001638716
0.028317016
0.7645594
0.000001
0.001
1
 See Reference No. 3
                                       EQUIVALENTS OF VOLUME
                1 cubic centimeter (cm.*)
                     = 0.999972 ml.
                     = 0.0610237 in.'
                     = 0.0338140 U. S. fl. oz.
                1 cubic meter (m.1) or stere (s.)
                     = 10" cm.*
                     = 999.9721.
                     = 35.3147 ft.'
                     = 264.172 U. S. gal.
                     = 219.97 Brit. gal.
                1 milliliter  (ml.)
                     = 1.000028 cm.*
                     = 0.0610255 in.*
                     = 0.033815 U. S. fl. oz.
                     = 0.035196 Brit. fl. oz.
                1 liter (1.)
                 (1 liter is defined as the volume
               occupied by 1 kilogram of water
               at  its  temperature of maximum
               density.)
                     = 1000.028 cm.*
                     = 61.0255 in.'
                     = 33.815 U. S. fl. oz.
                     = 1.05672 U. S. qt.
                     = 0.264179  U. S. gal.
                     = 35.196 Brit. fl. oz.
               1 cubic inch  (in.*)
                     ^0.554113  U. S. fl. oz.
                     = 16.3871 cm.*
                     = 16.3866 ml.
               1 cubic foot (ft.*)
                    = 1728 in.'
                    = 29.9221 U. S. qt.
                    = 7.48052 U. S.  gal.
                    = 28316.8 cm.*
                    = 28.31611.
1 fluid ounce, U. S. (U. S. fl. oz.)
     = 1.80469 in.'
     = 29.5735 cm.*
     = 29.5727 ml.
     = 1.0408 Brit. fl. oz.
1 fluid ounce, British (Brit. fl. oz.)
     = 1.7339 in.*
     = 28.413 cm*
     = 28.412 ml.
     = 0.96076 U. S. fl.oz.
1 quart, liquid, U.  S. (U. S. qt.)
     = 57.75 in.*
     = 32 U. S. fl. oz.
     = 946.353 cm.'
      = 0.946326  1.
1 gallon, U. S. (U. S. gal.)
      = 231 in.»
      = 128 U. S. fl.  oz.
      = 133.23  Brit. fl. oz.
      = 0.83267 Brit.  gal.
      = 3785.41 cm.*
      ^.78531 1.
 1 gallon, British (Brit, gal.) (Im-
    perial gallon)
   (1 British  gallon is denned as
the volume occupied by 10 pounds
of water at 62*  F.)
      = 160 Brit. fl. oz.
      = 277.42  in.'
      = 1.2010  U. S. gal.
      = 153 72  U. S. fl. o*.
      = 4546.1 cm.'
      = 4.54601.
7-4
                    See  Reference  No.  17

-------
LJJ
2
Zi
_J
O
>

  I

t^
a:
o
K-
u
o:
LU
>
z
o

rH
(U
•rH




S-,
(U
•+->
CJ ^
•rf S
•° .s
3 £
U c
0
u

J_)
0**
O 4->
*rl ^
QJ
Q

j_,
3 .£
oS

O rH
•H pC
J2 0
3 C
o -


•S3 -r*
•§8
Cj w



O *o
'rt rH
•§ rt
(J >"


CO rH
-, M V/



C-
CM





^






^•s



CO

CO
CO
CM



t-
rH |j
CO o
co S

CO |^
g o
co' X





0
•rH +J
,o O
3 O
U fe

co
co
QQ fVl
OO i
CO o
rH *""'
X



CM
f^
oo
CO
CO
rH


CM
C-

*°' *S
^ X


CM

fO (-,
CD ^
-1 X


*"*


O Tjl
» 0
*
m X

c-
°o m
CO i
2 °
*"• rH
CN X





o
u!



CO
t^
O5
O5
Oi
CT)


CD
O
rH
X

rH



o
o
o
rH





rH

CO
Q __.
"< rH
co' X

in
^
rH
CO
.
in
CO

OS
r-
o
CO
rH





0 L,
•!H 
U P

CO
t-
O5 ^4
O5 i
05 0
O5
X






rH






CO
1
0
rH
X
rH

co
i
0
X
rH
CO fsi
CM ,
o '0
1—1 rH
co' X


<# in
i
in rH

co* X


05 co
C~ 1
CO rH
-* X

(U

f\)
C*
o -S
In c
3 Q)
U U





rH






C-
CM
O
O
o
o
r-(
c-
CM
O
o
o
0
rH

t>
CM co
0 '0
0 rH
°. X
rH
m
CM
o
rH
co

co ex,
S °
*
M X


O m
OO i
S o
CO rt
-* X





0)
.•s
J

                                                                                        w

                                                                                        .t!
                                                                                        G
                                                                                        3

                                                                                        C
                                                                                        0)

                                                                                        .&
                                                                                        6JD
                                                                                        (Q
                                                                                        O
                                                                                        a

                                                                                        fr
                                                                                        (U
                                                                                        0)
                                                                                        3
C

0)
tuo
3

S
3

73


S-,
•iH


0)
T)

rt

o
                                                                                        3
                                                                                        01
                                                                                        * §

                                                                                        S 73
                                                                                        O OJ
                                                                                           W

                                                                                        rt
                                                                                        o'g
                                                                                        E-" rt
                                                                                                               7-5

-------
  o

  u_

   I
  o

  u
  <
  u.
  LLJ

  >


  O
  u


".-. «=
6 c
0 g



"p °
C 0)
U CO



J!





, o
J 111
in



^i
co a
*-§



e
•u d
"" H



CO 0
Si s>
w




"sl





CO C
§ 6





CO U
fe-i V
S to


•a « y

.** c X
'to ^7
Q/e »
r b


o
X
to


to
0
X



00 CO
S 2
§ x




CO
t-
as
C?i
03
OS

CM
t- 2
d x


r-
2^2
-< X
CM

CO
in
CO


o
o
CO
CO





o
to





rt






CO O
« 4)
A to


CO
o
X



c-
S"o
s C
" ^



CO
t-
os
OS
OS
OS


to
to
to



OS
•""* l-H
^ X
CM

•-H
CO
in
CO
CO
CO
CO
in
o



o
tcs





„





t-
to
I-i
o
o





« .s
s e


to ^.
S 2
-< X



t-
"' x



t-
co
CO
CO




B"0
* 1-t
CM X


5
CO
in
CO

CO
00
CO
in
o


s s
co X
cn


r-1





CO
is
to X




oo "?
E: 2
CM' X





" 3



S 2
•^ X


0

N> x


CO
OJ ^
g 2
to' X
t-H



CO
CO
CO*



0
o
CO
CO



o
CO



rt




OS
r4
o
T-t


as
CO
i-H




5"
« 2
03 X
CM




CO O
*8



CO
CO
CM



^CMo
X



to
i-H
CO
CO*
CM



OS i
"*. 2
!>
^ X



o
CO



_



to '0
to S
co X



Ol
Ol
tc
^




CO
s '2
co X
CM



10 -tf
O) |
*~* c
^ X





o .3

10

t-- °
•*' X



CO
in
to
as'
r-


os
r-i
IT-
o




1"
CO o
• i— 4
^ X



rH



to 'o
CO i-t
to X


f2 'o
CM' X



CO
CO C
cd X




?- S
•*' X




\\
t-' X





CO 1 3


r-
to
to
to"



OI
o
o
o
o


0
to





v-t




CO
CO
r-
S
CO
O3
CO
i-H
rH
CM


s '2
in X
CO


CO
CO



to
§"
§ 2
to' X


t^
CN
1"
§ 2
-•' x





1 °



M
o
o
o
o

'a
to



.1




t-
tO rs]
tO |
CO Q
^ *"*
X

to
CO
00
i-H
eg


S72
m' X
CO

to ?
co V,
co ,5
m' X


to
1 's
' co* X


t-
N
»§?
§ 2
i-4, X




£•?
S 2
-<* x





J|l

CO
t- 1
S 2
to' X



rt



00 CM
l'°
O? ^H
us* X


CO
c-
i\
OS ^
><


-7
S 2
rf' X


§7
2 °
''^ TH
OJ X


«"o
in „
co' X

CO
i
o
X
CO

CO


in
i
o
r-4
X

to


to
0
X
!•«




CO
SJai
o| co



,_,




0
to


CO
^* ^
OS i
O> o
OS rH
os' X



CO
Ol CM
OS 1
OS Q
in" ^
X

^
I1?
S 2
CM' X


|T2
0 X

t*.
to ,
CO 0
CO S
m' X

m
i
o
rH
X
to




to
i
0
X

**"*


£°?
to o
to ii
^' X





CO
ai.s
"la

                                                                                   c
                                                                                   4)


                                                                                   .S
                                                                                   BC


                                                                                   «




                                                                                   O
7-6

-------
             RELATIONSHIP BETWEEN NOZZLE SIZE AND FLOW RATE
FLOW RATE (M3/unit time)
0 00001
i 	
0.00005
. 	 _. 4 	 . -
0.0001
	 1 	
(I/unit time)
0.0005
>
0.001
0.005
0.01
                                    FLOW RATE (I/unit time)

                                                    0.5
  0.05
   0.01
  0.005>
M
s
  0.001
 0.0005
 0.0001
             Example No. 1:      .
                The velocity of flow in q 3/4" diameter nozzle
                is 80 ft/sec. JWhot |s rh« flow rate in the noz-
      0.01
                        0.05
                                 0.1
                                                    0.5
                                                             1.0
                                                                                 5.0
                                       FLOW RATE (ft3/unit time)
                                                                                        7-7

-------
SECTIONS MASS
         International Atomic Weights	    8-1
         Equivalents of Weights or Masses  	    8-2
         Conversion  Factors for Units of Moss	    8-4
         Pounds and Ounces to Kilograms	    8-5
         Kilograms to Avoirdupois Pounds and Ounces	    8-5
         Grams to Grains	    8-6
         Grains to Grams	    8-6
         Comparison of the  Various Tons  and Pounds in Use in the United States
            (From 1 to 9 Units)  	    8-7
         Equivalents in Kilograms of 1 to 999 Avoirdupois Pounds  .	    8-8
         Equivalents in Avoirdupois Pounds of 1 to 999 Kilograms	    8-10

-------
                             INTERNATIONAL ATOMIC  WEIGHTS

                                          BASED  ON CARBON -  12

Actinium
Aluminum
Americium
Antimony
Argon
Arsenic
Astatine
Barium
Berkelium
Beryllium
Bismuth
Boron
Bromine
Cadmium
Calcium
Californium
Carbon
Cerium
Cesium
Chlorine
Chromium
Cobalt
Copper
Curium
Dysprosium
Einsteinium
Erbium
Europium
Fermium
Fluorine
Francium
Gadolinium
Gallium
Germanium
Gold
Hafnium
Helium
Holmium
Hydrogen
Indium
Iodine
Iridium
Iron
Krypton
Lanthanum
Lead
Lithium
Lutetium
Magnesium
Manganese
Mendeleviurn
Sym-
bol
Ac
Al
Am
Sb
Ar
As
At
Ba
Bk
Be
Bi
B
Br
Cd
Ca
Cf
C
Ce
Cs
Cl
Cr
Co
Cu
Cm
Dy
Es
Er
Eu
Fm
F
Fr
Gd
Ga
Ge
Au
Hf
He
Ho
H
In
I
Ir
Fe
Kr
La
Pb
Li
Lu
Mg
Mn
Md
Atomic
Number
89
13
95
51
18
33
85
56
97
4
83
5
35
48
20
98
6
58
55
17
24
27
29
96
66
99
68
63
100
9
87
64
31
32
79
72
2
67
1
49
53
77
26
30
57
82
3
71
12
25
101 ;
Atomic
Weight
[227] *
2ti.9S15
1243] *
J21.75
39.948
74.9216
1210] *
137.34
(249] *
0.0122
208.980
10.811"
79.909 *
112.40
40.08
[251] *
12.01115°
140.12
132.905
35.453 b
51.996 6
58.9332
63.54
[247] *
162.50
[254] *
167.26
151.96
[253] *
18.9984
[223] *
157.25
69.72
72.59
196.967
178.49
4.0026
164.930
1.00797"
114.82
126.9044
192.2
55.847 6
83.80
138.91
207.19
0.939
174.97
24.312
54.9380
[250] *

Mercury
Molybdenum
Neoaymiura
Neon
Neptunium
Nickel
Niobium
Nitrogen
Nobelium
Osmium
Oxygen
Palladium
Phosphorus
Platinum
Plutonium
Polonium
Potassium
Praseodymium
Promethium
Protactinium
Radium
Radon
Rhenium
Rhodium
Rubidium
Ruthenium
Samarium
Scandium
Selenium
Silicon
Silver
Sodium
Strontium
Sulfur
Tantalum
Technetium
Tellurium
Terbium
Thallium
Thorium
Thulium
Tin
Titanium
Tungsten
Uranium
Vanadium
Xenon
Ytterbium
Yttrium
Zinc
Zirconium
Sym-
bol
Hg~
Mo
Nd
Ne
Np
Ni
Nb
N
No
Os
O
Pd
P
Pt
Pu
Po
K
Pr
Pm
Pa
Ra
Rn
Re
Rh
Rb
Ru
Sm
Sc
Se
Si
Ag
Na
Sr
S
Ta
Tc
Te
Tb
Tl
Th
Tin
Sn
Ti
W
U
V
Xc
Yb
Y
Zn
Zr
Atomic
Number
80
42
60
10
Atomic
Weight
200.59
95.94
144.24
20.183
93 [237] *
28
41
7
58.71
92.906
1-1.0067
102 [254]*
76
8
46
15
78
190.2
15.9994 «
100.4
30.9738
195.09
94 [242] *
84 [210) *
19
59
61
91
88
86
75
45
37
44
02
21
34
14
47
11
38
16
73
43
52
65
81
90
69
50
22
74
92
23
54
70
39
30
40
39.102
140.907
147] *
231 *
226 *
222 *
186.2
102.905
85.47
101.07
150.35
44.956
78.96
28.086 «
107.870 b
22.9898
87.62
32.064 "
180.948
[99|*
127.60
158.924
204.37
232.038
168.934
118.69
47.90
183.85
238.03
50.942
131.30
173.04
88.905
65.37
91.22
            * Value In brackets denotes the moss number of tlie isotope of longest known half life (or a better known one
          lor Bk, Cf, Po. Pm, and Tc).
            "Atomic weight vanes because of natural variation in  isotoplc composition- B  ±0003' C ±000005-
          H, ±0.00001; O, ±0.0001; HI, ±0.001; S, ±0.003.
            "Atomic weight is believed to have following experimental uncertainty: Br, ±0.002; Cl, ±0.001; Or, ±0.001;
          Ve, ±0.003; At;, ±0 003.  For other elements, the last digit s\ven for the atoime weight la believed reliable to
          ±0.5.  Lawrcnclum, Lw. has been proposed as the name for <>!«irient Xo 103, ii'jrlldic mass about '257.
See  Reference  No.  10
3-1

-------
                             EQUIVALENTS OF  WEIGHTS OR MASSES
1 assay ton" (AT)	29.167 grams.
                                                               [200 milligrams.
* carat (c)	-	-				'[3.086 gfains.

1 dram, apothecaries (draper/5)		j a.gl^grarns.
1 dram, avoirdupois (dr avdp)			J27'}{» (=27.344) grains.
  gamma, see microgram.                                        11.772 grams.
1 grain	64.799 milligrams.
                                                               115.432 grains.
1 gram  (g)			.	|0.035 ounce, avoirdupois.
                         ,      .         .                      1112 pounds.
 1 hundredweight, gross or long » (gross cwt)	150 802 kilograms.

 1 hundredweight, net or short (cwt or net cwt)		{ ., Ocn , .,  '
             0                                                 [45.o59 kilograms.
 1 kilogram (kg)				  		2.205 pounds.
 1 microgram (pg (the Greek  letter  mu  in combination with the
  letter g])»		  -__  	 0.000 001 gram (exactly).
 1 milligram (mg)		   		 0.015 grain.
                                                                437.5 grains (exactly).
 1 ounce, avoirdupois  (oz avdp)	  _ _.	..'0911 troy or apothecaries ounce.
                                                                28 350 grams.
                                                                480 grains.
                                                                1.097 avoirdupois ounces.
                                                                31.103 grams.
1 pennyweight (dwt)		  	 1.555 grams.
     . A                                                        (0.01 carat.
 1 point			<.,   ....
                                                               12 milligrams.
                                                               f 7 000 grains.
1 pound,  avoirdupois (Ib  avdp)				.	| 1.215 troy or apothecaries pounds.
                                                               1453.592 grams.
                                                                {5  760 grains.
                                                                0.823 avoirdupois pound.
                                                                373.242 grams.
                1 ounce, troy or apothecaries (oz t or oz ap or/3)-
                                                                                ('?. 240 pounds.
                1 ton,  gross or long •		< 1.12 net tons (exactly).
                                                                                110)6 metric tons.
                                                                                 2 204.022 pounds.
                 1 ton, metric (t).
                                                                 0.984 gross ton.
                                                                 1.102 net tons.
                                                                f2 000 pounds.
 1 ton, net or short						  -_| 0.893 gross ton.
                                                                10.907 metric ton.
               » Used In assaying. The assay ton bears the same relation in the milligram that a ton of 2  »»> poumH avoirdupois bear, to the ounce troy;
            hence the weight in milligrams of precious metal obtained (roin one assay ton of ore fives directly the numbr-r of troy ounces to the iwt Ion.
               • The gross or long ton and hundredweight are used commercially in the XJniteti States to «nl> a very limited eiterit, usually in restricted
            Industrial (Mds. The«« units are the same as the British "ton" and "hundredwtiglit."
               • The symbol -, [the Greek letter gamma] Is also used.
               • The gross or long ton and hundredweight are used commercially in the United States to a limited extent only, usually In restricted indus-
            trial fields.  These  units are the same as the British "ton" and "hundredweight "
8-2                                                                                          See Reference  No.   3

-------
                             EQUIVALENTS OF WEIGHTS OR MASSES
                                                  (continued)
                          1 gram (g.)                              1 grain  (gr.)
                                = 15.4324 gr.                             = 0.0647989 g.
                                = 0.0352740 or.                           - 0.00228571 oz.
                                = 0.002204623 Ib.                    1 ounce  avoirdupois (or.)
                          1 kilogram (kg.)                               = 437.5 gr.
                                = 10* g.                                 = 28.3495 g,
                                = 35.2740 oz.                        1 pound avoirdupois (Ib.)
                                = 2.204623 Ib.                            =7000gf.
                          1 metric ton, tonne (t.)                         = 16 oz,
                                = 10* kg.                                = 453.S923 |.
                                = 2204.62315.                            =0.4535923 kg.
                                = 1.10231 short tons                  1 short ton
                                = 0.9842107 long ton                      = 2000 Ib.
                                                                       = 0.892857 long ton
                                                                       = 907.1846 kg.
                                                                       = 0.9071846 t.
                                                                  1 long ton
                                                                       = 2240 Ib.
                                                                       = 1.12 short tons
                                                                       = 1016.047 kg.
                                                                       = 1.016047 t.
See  Reference  No.  1

-------
               CONVERSION FACTORS FOR UNITS OF MASS
                   UNITS OF MASS LESS THAN POUNDS AND KILOGRAMS
Unite
Igram —
1 apoth. scruple —
1 pennyweight —
1 avoir, dram —
1 apoth. dram —
1 avoir, ounce —
1 apoth. or (toy ounce—
1 apoth. or troy pound—
1 avoir, pound —
1 milligram
Igram —
1 kilogram
Unite
1 grain —
1 apoth. scruple —
1 pennyweight —
1 avoir, dram —
1 apoth. dram —
1 avoir, ounce —
1 apolh. or trey ounce -
1 apoth. or troy pound—
1 avoir, pound —
1 milligram -
Igram —
1 kilogram
Unite
Igram -

1 pennrwelgnt —
1 avoir, dram
1 apoth. dram -
1 avoir, ounce —
1 apoth. or trey ounce -
1 apoth. or troy pound-
1 avoir, pound —
1 milligram
Igram —
1 kilogram -
Grama
1
2O
24
2744875
60
4374
48O
5760
7000
0.015 4)2 956
15.432356
15432.356
Apotbacartoa'
iji aasitj
inning
0.0166667
0.33333)
0.4
0.455 729 t
I
7.29166
8
96
116.6667
0.000 257 205 9
0.25720$*
257.20594
AvterdnJMBi
•Mian*
0.000 142 8)7 1
&002 957 14)
0.003428571
0.00390635
0.008371429
04635
0.068 571 49
0.822857.1
1
0.000002 204 62
0.002.20462
2.204622341
Apothecaries'
scruples
O.O5
I
1.2
1.3671875
3
21475
34
288
350
0.000 771 618
0.771 618
771.6178
Avolrdupola
ounces
0.002 285 71
0.045 714 3
0.054 857.1
O.O62S
0. 137 142 9
1
1.097 142 9
13. 165 714
16
0.000035 27396
0.03527396
35.27396
MUligraau
64.798918
1295.9784
1555.1740
1771.8454
3887.9)51
28349.527
31 103.481
37) 241. 77
453 592.4377
1
1000
1000000
Pennyweights
0.041 666 67
0.8333333
1
1.199323
24 *
18.229 17
20
340
291.6667
0.000 643 014 8
0.643 014 85
643.014 85
Apothecarle*' or
toy ounces
0.0020833$
0.0416667
O.05
0.056966 146
0.125
0.911458)
1
12
14.583333
0.000032 150 74
0.032 ISO 74
92.150742
Grama
0.064 798 918
1. 295 978 4
I'.SSS 174 0
L77184S4
9.8879351
28.949527
91. 103 481
373.24177
453493 437 7
OjOQl
1000
Avolrdupola
drama
0.036 571 43
0.731 428 C
0.877 714 3
1
2.194 286
16
17.55428
210.6514
256
0.000564383)
0.564 383)
564.38332
traypounda
0.000 173611 1
0.003472222
0.004 166667
0.004 747 1788
0.010416667
0.075954861
0.083 33333
1
1. 215 277 8
0.000002679 29
0.002679 23
2.6792285
KUograma
0.000 064 798 »

0.001 555 174
a 001 77184$
0.00388793$
0.028 949. S3
0.031 10348
0.373 24177
0.453 593 427 1
O.OOOOO1
04)01
                   CHITS Of MASS GRBATBR TBAH AVOIRDUPOIS OUNCES
Unite
1 avolrdupola ounce —
1 avolrdupola pound —
1 abort hundredweight-
1 short ton -
1 long ton —
1 kilogram -
1 until lc ton •"
•^^ .zj..-—-.—
Avenwpooi
ouncoa
1
16
1600
32OOO
3584O
35. 273 957
35 273.957
Units
1 avoirdupota ounces —
1 avolrdupola pound —
1 abort bundradwoigbt-
1 abort ton -
1 long ton -
1 kilogram -
1 metric ton -
Avolrdupola
pounds
O4W25
100
2OOO
2240
2. 204 622 34
2204.62234
Long tons
0.000027901 79
0.000446428 6
0.044 64286
a 892 857 1
0.000984 2064
0.984 20640
Short hundred-
weight*
0.00062S
0.01
1
20
28.4
0.022 046 223
22.046 223
KUograma
0.028 349 S3
O.453 592 427 7
45.359 243
907.18486
1016.047 04
1
1OOO
Snort tons
O.OOOO3125
O.OO05
O.O5
1
1.12
0.001 102 311 2
1.102 311 2
Metric tons
0.000 028 349 53
0.000453 59243
0.045 359 243
0.907 184 86
1.016047 04
O.OO1
1
8-4
                                                          See Reference No.  3

-------
                              POUNDS  AND OUNCES  TO KILOGRAMS
                                        1 avoirdupois pound = 0.4S35923 kilogram
                                        1 avoirdupois ounce = 0.0283495 kilogram
Pounds

0
1
2
3
4
5
6
7
8
9
Ounces

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
.0
kg.
0.0000
0.4536
0.9072
1.3608
1.8144
2.2680
2.7216
3.17S1
3.6287
4.0823
.0
kg.
0.0000
.0283
.0567
.0850
.1134
0.1417
.1701
.1984
.2268
.2551
0.2835
.3118
.3402
.3685
.3969
.1
kg.
0.0454
0.4990
0.9525
1.4061
1.8597
2.3133
2.7669
3.2205
3.6741
4.1277
.1
kg.
0.0028
.0312
0595
.0879
.1162
0.1446
.1729
5013
.2296
.2580
0.2863
.3147
.3430
.3714
.3997
2
kg.
0.0907
0.5443
0.9979
1.4515
1.9051
2.3587
2.8123
35659
3.7195
4.1730
2
kg.
0.0057
.0340
.0624
.0907
.1191
0.1474
.1758
5041
2325
5608
0.2892
.3175
.3459
.3742
.4026
.3
kg.
0.1361
0.5897
1.0433
1.4969
1.9504
2.4040
2.8576
3.3112
3.7648
4.2184
.3
kg.
0.0085
.0369
.0652
.0936
.1219
0.1503
.1786
.2070
.2353
5637
0.2920
.3203
.3487
.3770
.4054
.4
kg.
0.1814
0.6350
1.0886
1.5422
1.9958
2.4494
2.9030
3.3566
3.8102
45638
.4
kg.
0.0113
.0397
.0680
.0964
.1247
0.1531
.1814
5098
.2381
.2665
0.2948
.3232
.3515
.3799
.4082
.5
kg.
0.2268
0.6804
1.1340
1.5876
2.0412
2.4948
2.9483
3.4019
3.8555
4.3091
.5
kg.
0.0142
.0425
.0709
.0992
.1276
0.1559
.1843
5126
.2410
5693
05977
.3260
.3544
.3827
.4111
.6
kg.
0.2722
0.7257
1.1793
1.6329
2.0865
2.5401
2.9937
3.4473
3.9009
4.3545
.6
kg.
0.0170
.0454
.0737
.1021
.1304
0.1588
.1871
.2155
.2438
5722
0.3005
.3289
.3572
.3856
.4139
.7
kg.
0.3175
0.7711
1.2247
1.6783
2.1319
2.5855
3.0391
3.4927
3.9463
4.3998
.7
kg.
0.0198
.0482
.0765
.1049
.1332
0.1616
.1899
5183
.2466
5750
0.3033
.3317
.3600
1R8A
.«JOO^
.4167
.8
kg.
0.3629
0.8165
1.2701
1.7237
2.1772
2.6308
3.0844
3.5380
3.9916
4.4452
.8
kg.
0.0227
.0510
.0794
.1077
.1361
0.1644
.1928
5211
5495
.2778
0.3062
.3345
.3629
.3912
.4196
.9
kg.
0.4082
0.8618
1.3154
1.7690
2.2226
2.6762
3.1298
3.5834
4.0370
4.4906
.9
kg.
0.0255
.0539
.0822
.1106
.1389
0.1673
.1956
5240
5523
5807
0.3090
.3374
.3657
.3941
.4224
                      15    0.4252  0.4281  0.4309  0.4337  0.4366    0.4394  0.4423  0.4451  0.4479  0.4508
                    KILOGRAMS TO  AVOIRDUPOIS POUNDS AND OUNCES
                   Kilo-
                   grams

                    0
                    1
                    2
                    3
                    4

                    5
                    6
                    7
                    8
                    9
                                       1 kilogram = 2504623 avoirdupois pounds
 0.0     0.1    0.2    0.3    0.4
av. Ibs.  av. Ibs.  av. Ibs.  av. Ibs.  av. Ibs.
 0.000   0.220   0.441   0.661   0.882
 2.205   2.425   2.646   2.866   3.086
 4.409   4.630   4.850   5.071   5.291
 6.614   6.834   7.055   7.275   7.496
 8.818   9.039   9559   9.480   9.700

11.023  11.244  11.464  11.685  11.905
13.228  13.448  13.669  13.889  14.110
15.432  15.653  15.873  16.094  16.314
17.637  17.857  18.078  18.298  18.519
19.842  20.062  20.2J33  20.503  20.723

    Tenths of a kilogram to ounces
                             kg.     oz.
                             0.1   3.5274
                              .2   7.0548
                              .3   10.5822
                              .4   14.1096
                              .5   17.6370
                  kg.    oz.
                 ,0.6  21.1644
                   .7  24.6918
                   .8  28.2192
                   .9  31.7466
                  1.0  35.2740
 0.5    0.6    0.7    0.8    0.9
av. Ibs.  av. Ibs.  tv. Ibs.  av. Ibs.  av. Ibs.
 1.102   1.323   1.543   1.764   1.984
 3.307   3.527   3.748   3.968   4.189
 5.512   5.732   5.952   6.173   6.393
 7.716   7.937   ai57   8.378   8.598
 9.921  10.141  10.362  10.582  10.803

12.125'  12.346  12.566  12.787  13.007
14.330  14.551  14.771  14.991  15.212
16.535  16.755  16.976  17.196  17.417
18.739  18.960  19.180  19.401  19.621
20.944  21.164  21.385  21.605  21.826

       Hundredth) of a kilogram
   to decimals of a pound and to ounces
 kg.  av. Ibs.  oz.
0.01 0.022 = 0.35
 .02  .044=0.71
 .03  .066 = 1.06
 .04  .088 = 1.41
 .05  .110 = 1.76
 kg. av. Ibs.   oc.
0.06 0.132 = 2.12
 .07  .154 = 2.47
 .08  .176 = 2.82
 .09  .198 = 3.17
 .10  520 = 3.53
See Reference No.  1
                                                                                                                 5-5

-------
                                        GRAMS  TO GRAINS
                                                = lS.432361 grains
Grams
0
1
2
3
4
5
6
7
8
9


0
10
20
30
40
50
60
70
80
90






.0 .1 .2 .3 .4
0.00 1.54 3.09 4.63 6.17
15.43 16.98 18.52 20.06 21.61
30.86 32.41 33.95 35.49 37.04
46.30 47.84 49.38 50.93 52.47
61.73 63.27 64.82 66.36 67.90
77.16 78.71 80.25 81.79 83.33
92.59 94.14 95.68 97.22 98.77
108.03 109.57 111.11 112.66 114.20
123.46 125.00 126.55 128.09 129.63
138.89 140.43 141.98 143.52 145.06
01234
grains grains grains grains grains
0.00 15.43 30.86 46.30 61.73
154.32 169.76 185.19 200.62 216.05
308.65 324.08 339.51 354.94 370.38
462.97 478.40 493.84 50927 524.70
617.29 632.73 648.16 663.59 679.02
771.62 787.05 802.48 817.92 833.35
925.94 941.37 956.81 972.24 987.67
1080.27 1095.70 1111.13 1126.56 1141.99
1234.59 1250.02 1265.45 1280.89 1296.32
1388.91 1404.34 1419.78 1435.21 1450.64
gram grain gram grain
0.01 0.154 0.06 0.926
.02 .309 .07 1.080
.03 .463 .08 1.235
.04 .617 .09 1.389
.05 .772 .10 1.543
.5 .6 .7 .8 .9
7.72 9.26 10.80 12.35 13.89
23.15 24.69 26.24 27.78 29.32
38.58 40.12 41.67 43.21 44.75
54.01 55.56 57.10 58.64 60.19
69.45 70.99 72.53 74.08 75.62
84.88 86.42 87.% 89.51 91.05
100.31 101.85 103.40 104.94 106.48
115.74 117.29 118.83 120.37 121.92
131.18 132.72 134.26 135.80 137.35
146.61 148.15 149.69 151.24 152.78
56789
grains grains grains grains grains
77.16 92.59 108.03 123.46 138.89
231.49 246.92 262.35 277.78 293.21
385.81 401.24 416.67 432.11 447.54
540.13 555.56 571.00 586.43 601.86
694.46 709.89 725.32 740.75 756.19
848.78 864.21 879.64 895.08 910.51
1003.10 1018.54 1033.97 1049.40 1064.83
1157.43 1172.86 1188.29 1203.72 1219.16
1311.75 1327.18 1342.62 1358.05 1373.48
1466.07 1481.51 1496.94 1512.37 1527.80
grain grain .grain grain
0.001 6.015 0.006 0.093
.002 .031 .007 .108
.003 .046 .008 .123
.004 .062 .009 .139
.005 .077 .010 .154
                                        GRAINS TO GRAMS

Grains

0
10
20
30
40
50
60
70
80
90

0
grams
0.0000
0.6480
1.2960
1.9440
2.5920
3.2399
3.8879
4.5359
5.1839
5.8319

1
grams
0.0648
0.7128
1.3608
2.0088
2.6568
3.3047
3.9527
4.6007
5.2487
5.8967

2
grams
0.1296
0.7776
1.4256
2.0736
2.7216
3.3695
4.0175
4.6655
5.3135
5.9615
1 grata = 0.06479890 gram
3
grams
0.1944
0.8424
1.4904
2.1384
2.7864
3.4343
4.0823
4.7303
5.3783
6.0263
4
grams
0.2592
0.9072
1.5552
2.2032
2.8512
3.4991
4.1471
4.7951
5.4431
6.0911
5
grams
0.3240
0.9720
1.6200'
2.2680
2.9160
3.5639
4.2119
4.8599
5.5079
6.1559
6
grams
0.3888
1.0368
1.6848
2.3328
2,9807
3.6287
4.2767
4.9247
5.5727
6.2207
7
gratus
0.4536
1.1016
1.7496
2.3976
3.0455
3.6935
4.3415
4.9895
5.6375
6.2855
8
grams
0.5184
1.1664
1.8144
2.4624
3.1103
3.7583
4.4063
5.0543
5.7023
6.3503
9
grams
0.5832
1.2312
1.8792
2.5272
3.1751
3.8231
4.4711
5.1191
5.7671
6.4151
                                 Tenths of a grain
                              grain  gram
                               0.1 0.0065
                                2  .0130
                                3  .0194
                                .4  .0259
                                .5  .0324
grain gram
 0.6  0.0389
  .7  .0454
  .8  .0518
  .9  .0583
 1.0  .0648
                   Hundredth* of a grain
grain   gram
0.01  0.0006
 .02   .0013
 .03   .0019
 .04   .0026
 .05   .0032
grain  gram
0.06  0.0039
 .07   .0045
 .08   .0052
 .09   .0058
 .10   .0065
8-6
                                                                                 See Reference No.  1

-------
    COMPARISON OF THE VARIOUS TONS AND POUNDS IN USE IN THE
                  UNITED STATES (FROM 1 TO 9 UNITS)
Troy pounds
1
a
A
4
5
6
7
8
!)
1.21528
2. 430 56
3.64583
4.861 11
6.07639
7. 291 67
8. 506 94
9.72222
10.93750
2. 679 23
5. 358 46
8. 037 69
10. 716 91
13, 937 50
16. 075 37
18. 754 60
21.43383
24.11306
2430.56
4861.11
7291.67
9722. 22
12 152. 78
14 583. 33
17013.89
19 444. 44
21875.00
2722. 22
5444.44
8166.67
10888.89
13611.11
1&333.33
19055.56
21 777. 78
24500.00
2679. 23
5358. 48
8037. 69
10716.91
13937.50
16 075 37
18 754 60
21 433. 83
24 113 06
Avoirdupois
pounds
0. 822 857
1.64571
2. 468 57
3. 291 43
4. 114 29
4.93714
5. 760 00
6. 582 86
7.40571
1
2
3
4
5
6
7
8
9
2. 204 62
4.40924
6.61387
8.81849
11.02311
13. 227 73
15.43236
17.63698
19. 841 60
2000
4000
6000
8000
10000
12000
14000
16000
18000
2240
4480
6720
8960
11200
13440
15680
17920
20160
2204. 62
4409. 24
6613.87
8818. 49
11023.11
13 227. 73
15 432. 36
17 636 98
19841.60
Kilograms
0.37324
0. 746 48
1.11973
1. 492 97
1.86621
2. 239 45
2.61269
2. 985 93
3. 359 18
0. 453 59
0.90718
1.36078
1.81437
2. 267 96
2. 721 55
3.17515
3. 628 74
4. 082 33
1
fc
3
4
&
6
7
8
9
907.18
1814.37
2721.55
3628. 74
4535. 92
5443. 11
6350 29
7257.48
8164.66
1016. 05
2032. 09
3048.14
4064.19
5080. 24
6096.28
7112.32
8128. 38
9144.42
1000
2000
3000
4000
5000
6000
7000
8000
9000
Short tons
0.00041143
0. 000 822 86
0.00123429
0.00164571
0.00205714
0. 002 468 57
0. 002 880 00
0.003291 43
0. 003 702 86
0.0005
0.0010
0 0015
0 0020
0.0025
0 0030
0.0035
0 0040
0 0045
0 001 102 31
0. 002 204 62
0 003 306 93
0. 004 409 24
0 005511 56
0.00661387
0.007716 18
0 00881849
0 009 920 80
1
2
3
4
S
0
7
8
9
1.12
2.24
3.36
4 4S
5.60
6.72
7.84
8 96
10 08
1.10231'
2. 204 62
3 30693
4.40924
5 511 56
6. 613 87
7 71618
8. 818 49
9 92080
Long tons
0. 000 367 35
0. 000 734 69
0. 001 102 04
0. 001 469 39
0.00183673
0. 002 204 08
0 002 571 43
0. 002 938 78
0. 003 306 12
0 000 446 43
0. 000 892 86
0. 001 339 29
0 001 785 71
0 002 232 14
0.00267857
0.00312500
0. 003 571 43
0 004 017 86
0.000984 21
0.00196841
0 002 952 62
0. 003 936 83
0. 004 921 03
0. 005 905 24
0 00688944
0 007 873 65
0. 008 857 86
0. 892 87
1 785 71
2 678 57
3.57143
4.46429
5 357 14
6 25000
7 14286
8. 035 71
1
a
3
4
S
6
7
8
9
0. 984 21
1.96841
2.95262
3. 936 83
4 921 03
5 905 24
6 889 44
7 87365
8. 857 86
Metric tons
0. 000 373 24
0. 000 746 48
0.00111973
0.00149297
0.00186621
0. 002 239 45
0.00261269
0. 002 985 93
0. 003 359 IS
0. 000 453 59
0. 000 907 18
0 001 360 78
0 001 814 37
0 002 267 96
0.00272155
0 003175 IS
0. 003 628 74
0 004 082 33
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0. 907 18
1.81437
2. 721 55
1628 74
4 535 92
5.44311
6.35029
7. 257 48
8.16466
1.016 OS
2.03209
3. 048 14
4.06419
5.08024
6.0% 28
7.11232
8. 128 38
9. 144 42
1
2
3
4
6
6
7
8
9
See Reference No. 3
3-7

-------
   Q
   O
   CL

   co

   O
   Q_
   Ox

   ON
   Ox
   LL

   O
   o:
   o
   o
   t-


   LLl
   or
   LLJ
              I
I
   —     "8
   v     «
                 ERft$SSSR"S  3C

                 8!8*5*3$S83  Sr
                 N&5X5 Soi¥Bm  8S
                                            S! "^ S ^ £? ** *"* 2 ° iS SSrcStScQ «

                                            oNt^N!S**ino^0i s8 *t:Sfia *f!aM:!9»s
                  csx8-*ll«  iSSlsgsgis RiNisRCivs sglsssSss? sSsxsxsr
                  apaSsa.sss  SSKSRSESSSS SRSSSSSSE;! $g$sa?!3sn$ S^SRSZSSS

                 *mmm  m^m^ mzuMSs %%mm%$ $$$mm


                                            zsmmm m~mM&
                                r

                                       Jg cSS$sSis
                                       ?i §§iiiili
                                                                  r
        iiliiiilli lillii
                     K9  $M


                              lililllill             iiliiSiiil
                                            Ar4r4m« tnw>t»«DOt o•-****«* m«E*aoot

                                            S           3
                   ISiliiilii              ISIili
       zS$§lsiiBg  fS^SfeS^^-'  ss-=^a*f»5
       RHSlaifigS  il5Sl§§5S8  Ill3515l!s
                                                                  issSaSSsll
                                          |-
            ifiiil
	        *
            c
                                                           <~>t^>n S^S13<*
                                                           ocnt^ o^- oo-HI
                                                          i »-< *o ^-« f»« INI r>. co o
                                          r
                              Hiiiii
                           in  *5
                            I^SC01* ErtifiiC!* JPSa*^^0  PftS^^^^^S!!
                            >J m 4> o tA •** fr-f}c*v>r^i^clmtfit-»  t^NOPYOvDNw^r'C
                    f^* «9 r^iOar^tpfim^o^1 t<-i^^roor4mttN«o  fnt-O'*'w«-"noo  ododoIo^ojoo-i'-Jj;



                        A«HM(«>'4> to*^*-flO» Qxxrtm**- tntor^«o
-------
oo
ID

O

Q.

CO


O

D_

ID

0
h-  -a
     <»'   J'HIS1W'*' "'>*»''-«<*  §^IS"°'*' 1°'°r"

                   t»                 t*                  t*                 t"





                   Oo»o^oor-«a««^^-o7  w*M«oc>c»ooc-t^*   *o^-«-(nr4-«»-»o^ao  aor^*»rt*^iP>'v*'-<-^
                   Ovi^t^-cnou-)—SJ1'*— t^S2 If T^
                   <-4^-OO<-tt/10OlNtOOrtr-.«-*
                   t-.rsi?-fOOO?)O>'S-Sin  Ss6-HS«M?-Sooro»   ^•Si/igm-t'5-tc-fM  r-maono^^-ow-too
                   O"^cS^-  9rooo^irxr^toot/>0i   •*-Bo»ooofvj»--i-noovi  o**oo*oi^«sji-~^ioo







                                     §t™                  Op                 ft
                                     o

















§                 S                 t~~                8"             w  ?"
•*•*•*•••*










£ftvj3>3S \D««««






w                 w                 05                  eo                 co



























                                                   *=   SStiSS3S3SSSSS
                                                                           5SS!!
                                            !oior.ceo>  e-M«» vivot-eoo.  ««C
                                                                         «
                                                                                                    mar-coo,
                                                                                                                     8-9

-------
  co
  O
                        M
                        I



                        3
                                                      §S rH -H r
                                                      «M«T «c o
                                       rg vi K 9 «^£
                                                     ooooo ooooo

                                                     f>T^r tn»oe-«oc\
                                                                                                           >J r-t^t-.t-t*>   P*C*f
                                                                 pflfi-J join   «^ of r
                                                                     i <«• —. f- f» o*  »nf«»oo-*e

                                                                     I  *)QO(Nlr-»v4  ^r-  Avf^lOU

                                                                     > CO O*^* ^ *O  OO O fM ^f tj
                                                                                                                 •» o m •-•   oo •«*• oto  — M rg   r5rocO-<
                                                                                                                • o t» m
                                                                                                                 CSift'""
                               •-
                  t>o*rsi^"'Oooc?ro  i/ir^&^^'NOfldof'jtfi   t*-ON-^covpoooNipg   g^*-*p^i

                  ininu*)tnin>n»n*n  Jntninintninininvom   InininininviiSS^SS   vo^C'
                                                                                          PVM 51-3 OO OtM   •* * 00 O (M VvDOOOfM


                                                                                          •100 O 
               i-» m *n to \
                                                                               01 — r
                                                                                                     Tfocooco fO'*^*^'^'  ^•^••*^--* ^r*^--*-*
                                                      2"
                                                      3
                                                                                                                     -• r* rsi ro

                                                    -ooo«   <5^HM«**n«or»oooN   p*^c

                                                            ?^                      S
              SSSvO^ ?S»ccI
              00 O (^OtON


                                                                                                     OO«ONOO — i « PM S Pa
                                K^vfMCO^ VHOt^OOO*  Q*4C«I <-* to OwS

                       sajsssslsss






<•>•-<'•'«'>*• to«or-OOO>   Q-tMCO'T >OtOl>.OQ9.

              ^SKoS^Sao"""   ~"
                                                                                                               o>n «~* **- « o 10 M

                                                                                                                ooo S & "*" °° ***
                                                                                   1'
                                5-^Nr>^- w*'Ot>»«e>   ®^te»«^- wMOtnooo*   ^«-*«*n* «rt»or»ooo»   O-HMW*- m\o^ooen   ^»-«fMPS^r vxoc^oooi


                                          .-* ro »n oo o   i*ij^ot'««t*i»nt^c

                                          C4(M fM CM «M   rMfMlMfMCMCNlfMCMf
                                                                                   *O oo O rM tr >o oo O r


                                                                                   16 oo -* ro in r^ o* rj ••


                                                                                   CslSlNHMfM fMrsJCOC
                                                                                                                            •^ in in cr>-*-*n>or,eo»
                         I
            I    «Nl^-'*do(i*^**i*ftr^c^  «
                                                       Qf-i«
                                                                              S-SSSS3SJS
                                                                              A p\ o O •-*  •—r^fM^i
                                                                                         - *   -
                                                        ?  ?^S?SS!ffiE;SsS


                                                            g«Nm»«X>C-«»
                                                                                        -. tsjt^. —< o -^ »n o   <*CTi^*5co oorsir-—
-------
O

O
O
U_

O

oo

Q
         o
                    •-"tAQW)» ^r
R                      0*000 A
                      m CD OCM ^

                                                                                        CMMr«iCM MCMNCMr*   «MP4IMN«^ «Mmc«*ft r-o»
                                                                r
&'*>Qtcr»e.tn--£^  SSSaS^!

              "2S  --«-t«M«MCO I
                                                                                                     9 ^ v  m «
                                                                                                     ^(^5  «a
                                                                                              >*-« °°

                                                                                              ? f*» r*> f*
                        w^ o to *
                                                                                      r
                    fivit^Q^'H "*•>£} orf O r*J  tn c^ a> ^< c
                    g««§5jj|«^  g^s^^
                        ^
                    ssas
                                            g'
                                            »o

                                                                                                                      vitor*oo01
H-
z
LU
                                                                        DO^O«OIMO  »n-^ r-^
                                                                        eq coaofMt~*H  to^toc
                                                                      --NrOco^vio  vt >p to F
                                                                r-o*-«ovit^o*i  f*0v<^r
Z)
O
LU
                                                                                                                      ««o««&«o
A<-


01
                                                                                                     . coo*  AVH
                    o ^

                    S


                    e
                            OO "^ '^ ^
                    g-.~n»««t.«o,  g-Mn^^^t..*  g
                                                                                                                                            5-11

-------
SECTION 9 PRESSURE
         Table of Equivalents of Pressure	    9-1
         Conversion Factors — Pressure	    9-2
         Conversion Factors — Pressure Head	    9-3
         Barometric Pressure at Various Altitudes	    9-4
         Angle of Inclination  of a Manometer Necessary to Produce Desired
             Magnification	    9-7

-------
                              TABLE  OF  EQUIVALENTS  OF PRESSURE
                           NOTE.—The pressure units one standard inch of mercury, one standard millimeter
                         of mercury, and one standard atmosphere are defined in terms of the conventional
                         standard value of. gravity 980.665 cm. sec.'1, which was adopted by the Interna-
                         tional Committee on Weights and Measures. These units have been proposed for
                         general meteorological use. The pressure units one 45' inch of mercury, one 45'
                         millimeter of mtrtury, and one 45' atmosphere are denned in itnrt*  of the best
                         value of gravity at 45" latitude and  sea level, 980.616  cm. sec.'1
                         1   dyne  per   square  centimeter
                           (dyne cm.-*)
                              =1 barye
                              = 10-* mb.
                              -10-* bar.
                         1 millibar  (mb.)
                              = 10* dynes cm."1
                              = 0.00101972 kg. cm.-'
                              = 0.750099 mm. Hg. (45°)
                              = 0.750062 mm. Hg. (stand-
                                   ard)
                              = 0.0295315 in. Hg. (45°)
                              = 0.03)5300 in. Hg. (stand-
                                   ard)
                              = 0.0145038 Ib. in.-'
                         1 centibar  (cb.)
                              = 10 mb.
                         1 bar (b.)
                              = 10* dynes cm."1
                              = \(f mb.
                              = 10* barye
                         1 standard millimeter of  mercury
                          (mm. Hg. (standard))
                              = 1.000050  mm. Hg. (45°)
                              = 1.333224 mb.
                              = 0.001359504 kg. cm.-'
                              = 0.03937205 in. Hg. (45°)
                              = 0.03937008 in. Hg.( stand-
                                  ard)
                              = 0.0193368  Ib. in.-1
                         1 45° millimeter of mercury (mm.
                          Hg. (45'))
                              = 0.999950 mm. Hg.( stand-
                                  ard)
                              = 1.333157mb.
                              = 0.00135944 kg. cm.-1
                              = 0.03937008 in. Hg. (45')
                              = 0.0393681 in. Hg. (stand-
                                  ard)
                              = 0.0193358 Ib. in.-'
                         1 kilogram per square centimeter
                          (kg. cm/1)
                              = 980665 dynes cm.'1
                              = 980.665 mb.
                              = 735.596 mm, Hg. (45°)
                              = 735.559 mm. Hg. (stand-
                                  ard)
                              = 28.9605 in. Hg. (45")
                              = 28.9590 in. Hg.  (stand-
                                  ard)
                              = 14.2233 Ib. in.'1
 1 standard inch  of  mercury  (in.
   Hg.  (standard))
       = 0.491154 Ib. in.J
       = 33.8639 mb.
       = 0.0345316 kg. cm.J
       = 25.4013 mm. Hg.  (45°)
       = 25.4 mm, Hg. (standard)
 1 45° inch of mercury  (in. Hg.
   (45*))
       = 0.491130 Ib. in.-1
       = 33.8622 mb.
       = 0.0345298 kg. cm.-*
       = 25.4 mm. Hg. (45*)
       = 25.3987 mm. Hg. (stand-
           ard)
 1 pound per square inch  (Ib. in."*,
   psi)
       = 2.03612 in. Hg.  (45°)
       = 2.03602 in.  Hg. (stand-
           ard)
       = 68.9476 mb.
      = 0.0703069 kg.  cm.-'
      = 51.7175 mm.  Hg. (45°)
      = 51.7149 mm. Hg. (stand-
         ard)
 1  standard atmosphere
      = 1013.250 mb.
      = 1.03323 kg. cm.J
      = 760 mm. Hg.  (»tandard)
      = 29.9213 in.  Hg.  (stand-
           ard)
      = 14.6960 Ib.  in.-"
      = 760.038 mm. Hg. (45»)
      = 29.9228 in.  Hg.  (45')
      = 1.000050 45° atmosphere
1 45° atmosphere
      = 1013.200 mb.
      = 1.03318 kg. cm.J
  '    =760 mm. Hg. (45°)
      = 29.9213  in. Hg. (45°)
     '=14.695 Ib.  in.-*
      = 759.962 mm. Hg. (stand-
          ard)
      = 29.9198  in. Hg.  (stand-
          ard)
      = 0.999950 standard atmos-
          phere
1 inch of water, 4° C.
      = 2.491 mb.
See Reference No.  1
                                                                                                                   9-1

-------
LJLJ

QL
LU
at:
Q.
O
I-
u

u_

z
o


LU
O
u
"in
**
AJ
ri
ft
in
0
a


**-(
=*=


CM
.3





*4-l
=»fc



i



G


M
g
0


Cfl
•3
T)

0
ft


CM
£





^g




CM
O
0)
M
1
C



M
0)
C
•O


CM
a
o





6
1


CM
O
CO
a
o

•iH -,H /
to C /

in
i
O -H
in
.4 *^
rH
CO
1
m o
CO rH
CO
o X
CM*
CO
1
0 O
05 rH
rH
o X
rH
CM
1
c*- o
O) *H
rH
t- X
CO*

CM
1
r- o
05 rH
rH
c- X
CO





r-<





rH


IN
*l
*•* v3
*k
o



c-
1
CM O
OJ rH
CD
co X
05'
in
i
O rH
m

rH
CO
1
in o
CO rH
00
o X
CM'
CO
i
t- 0
O5 rH
rH
o X
rH
CM
1
t- o
O5 rH
rH
t- X
CO*

CM
1
t- 0
05 rH
rH
t- X
CO





rH





rH



CO M
I8
IT



in
i
t- o
00 rH
CD
*tt '^
rH
1
CO rH
in
*-" X
CM'
CM
rH 0
CO rH
0
-i X
co'
CM
m o
t- rH
rH
m X
rH





rH






rH



CM
CO
CO
^f
rH



CM
CO
CO
••*
rH


N
=(b *



in
i
t~ o
CO rH
CO
-# X
'"'
Tf 0
00 rH
in
--< x
CM'
i
rH 0
CO rH
O
<-< X
CO
1
m o
t- rH
rH
m X
rH





vH






rH



c**s
CO
03
Tt<
rH



CM
CO
CO
rH

w
"rt
TJ ^
O ""
a



T^l
|
^J* O
CO rH
co x
aj
CM
1
C*^ f^>
CM rH
PJ
•* X
*•••

CM
CO
^4
o
CM



irH


BO
a>
00
in
CO



CO
co
tn
CO


in
CO
CO
o"
CO
, 05


in
CO
, CO .
o
CO
OS
'

-------
Q


UJ

X

LU


ID
i/i
oo
UJ
o
h-
u
•z.
o
oo
o:
LLJ
o
u
to

•
a;

a
CO
O
a
0
CM
a
.
,5

be

K

a

(^


tuo
hM

•
a
u


Hn
|~~
MH

JH
"

h
cd
^2
rH
a
§



,
cd
PQ


rH
1
CM O
O5 rH
CD
oo X



JS.
^
rH
O



CD
O
O
in
t>



co
0
o
in
o



o
CO
in
O5
CM




O
O
0
1 — 1




rH
TJ ^
<» CO /I
SH -2 /
•H -rH »
CO fl /
CD 3 /
P /
/ £ 03
/ 
* K. -|H
/ .5 fl
f 0 =>
1



rH
cd
PQ



^
|
CM O
O5 rH
CO
oo X

CD*
rH
1
t- 0
•HH rH
rH
o X
**

rH
1
CO O
O rH
O
m X
t—


CM
1
CD O
0 rH
0
m X
t»."

CM
1
0 O
CO rH
m
05 X
*
CM






TH

CO

r^
X
rH





rH
cd
a
|



CM
|
rH 0
CM rH
co x
,
co

,CD
, m
i co
' i — i
i
i

o
o
^
tn
CM



. o
o
""""p
m
(M*







rH



^
CD
00
co*
CO
CM
1
••* o
CD rH
oo
co X
co"





OJO
a
a



CM
1
00 0
in rH
« X
,
i — t
m
CM
m
CO
m*






o
,H







rH

^
1
O O
C- rH
CO
05 X
*
CO



CM
CO ,
CO
co
rH
CM •
1
CM O
CO rH
CO
co X
rH





tuo
a
a
u



co
1
00 O
in rH
co X
(
i — i
i
m o
CM rH
m
co X
in






rH


rH
1
o
rH

X
rH

CM
1
O O
£~ 1 — 1
CO
05 X
CO





O5
0
O5
^
CM*

CO
1
O5 O
O rH
O5
^ X
CM*





O
CM
a
d









rH

O5
c-
CD*
O





O
CO
t-






CD
t-



rH
O5
CM
O5*
CM
CO
CO O
CO rH
rH
o X
rH



CO
CO
rH
O
rH
-
to
rH
fl^
si
OH
CO
O
a
+»


                                                                                           CD
                                                                                          -f->
                                                                                          • H
                                                                                           to
                                                                                           O
                                                                                           a
                                                                                           a
                                                                                           o

                                                                                           rH
                                                                                           O
                                                                                           -t->
                                                                                           O
                                                                                           n5
                                                                                          <(H

                                                                                           0)
                                                                                           0)
                                                                                           3
                                                                                          r— t
                                                                                           ri
                                                                                           >


                                                                                             03
                                                                                           rH
                                                                                           o
                                                                                           S
                                                                                           o
                                                                                          H

                                                                                                     9-3

-------
              BAROMETRIC PRESSURE AT VARIOUS ALTITUDES
                            [Abridged from the Smithsonian Table*]


                            Values o( 00308 (14-0.0010195X36) log. 29-.80
                                                 o
Barometric
pressure, B
inches

17.00
.10
.20
.30
.40
17.50
.60
.70
.80
.90
iaoo
.10
.20
.30
.40
l&SO
.60
.70
.80
.90
19.00
.10
.20
.30
.40
19.50
.60
.70
.80
.90
moo
.10
.20
.30
.40
20.50
.60
.70
.80
.90
21.00
.10
.20
.30
.40
21.50
.CO
.70
.80
.90
22.00
.10
.20
.30
.40
22.50
.60
.70
.80
.90
23.00
.10
.20
.30
.40
0
Feet
15,347
15, 187
15,029
14,871
14, 715
14,559
14,404
14,250
14,097
13.945
13,793
13,643
13,493
13,344
13,196
13,049
12,902
12,756
12,611
12,467
12,324
12,181
12,039
11,898
11,758
11,618
11,479
11,340
11,208
11,066
10,930
10,794
10,659
10,525
10, 391
10,259
10,126
9,995
9,864
9,733
9,604
9,474
9,346
9,218
9,091
8,964
8,838
8,712
8,587
8,463
8,339
8,216
8,093
7,971
7,849
7,728
7,608
7,488
7,368
7,249
7,131
7,013
6,896
8,779
6,662
0.01
Feet
15,331
15,172
15,013
14,856
14,699
14,544
14,389
14,235
14,082
13,930
13, 778
13,628
13,478
13,329
13, 181
13,034
12,888
12,742
12,597
12,453
12,310
12,167
12,025
11,884
11,744
11,604
11,465
11,327
11,189
11,052
10,916
10,781
10,646
10, 512
10,378
10,245
10, 113
9,982
9,851
9,720
9,581
9,462
9,333
9,205
9,078
8,951
8,825
8,700
8,575
8,451
8,327
8,204
8,081
7,959
7,837
7,716
7,596
7,476
7,356
7,238
7,119
7,001
6,884
6,767
6,661
0.02
Feet
15,315
15,156
14,997
14,840
14,684
14,528
14,373
14, 219
14,067
13,914
13,763
13,613
13,463
13, 314
13,166
13,019
12,873
12,727
12,583
12,438
12,295
12,153
12,011
11,870
11,730
11,690
11, 451
11, 313
11, 178
11,039
10,903
10,767
10,632
10,498
10,365
10,232
10,100
9,968
9,838
9,707
9,678
9,449
9,320
9,193
9,065
8,939
8,813
8,687
8,562
8,438
8,314
8,191
8,069
7,947
7,825
7,704
7,584
7,464
7,345
7,226
7,107
6,990
6,872
6,755
6,639
0.03
Feet
15,299
15,140
14,982
14,824
14,668
14, 512
14,358
14,204
14,051
13,899
13, 748
13,598
13,448
13,300
13, 152
13,005
12,858
12,713
12,568
12,424
12,281
12,138
11,997
11,866
11,716
11, 576
11,437
11,299
11,162
11,025
10,889
10,754
10,619
10.485
10, 352
10,219
10,087
9,955
9,825
9,694
9,566
9,436
9,307
9,180
9,053
8,926
8,800
8,675
8,560
8,426
8,302
8,179
8,056
7,935
7,813
7,692
7,572
7,452
7,333
7,214
7,096
6,978
6,861
6,744
6,628
0.04
Feet
15,283
15,124
14,966
14,809
14,652
14,497
14,342
14,189
14,036
13,884
13,733
13,583
13,433
13,285
13, 137
12,990
12,844
12,698
12,554
12, 410
12,267
12,124
11,983
11,842
11,702
11,562
11,429
11,285
11,148
11,011
10, 875
10,740
10,605
10,472
10,338
10.206
10,074
9,942
9.812
9,681
9,662
9,423
9,296
9,167
9,040
8,913
8,788
8,662
8,538
8,413
8,290
8,167
8,044
7,922
7,801
7,680
7,560
7,440
7,321
7,202
7,084
6,966
6,849
6,732
6,616
0.05
Feet
15,267
15,108
14,950
14,793
14,637
14,481
14,327
14, 173
14,021
13,869
13, 718
13,568
13,418
13,270
13,122
12,975
12,829
12,684
12,539
12,395
12,252
12, 110
11,969
11,828
11,688
11,5*8
11,410
11,272
11,134
10,998
10,862
10,727
10,592
10,458
10,326
10,192
10,060
9,929
9,799
9,668
9,639
9,410
9,282
9,164
9,027
8,901
8,775
8,680
8,525
8,401
8,277
8,154
8,032
7,910
7,789
7,668
7,548
7,426
7,309
7,190
7,072
6,954
6,837
6,721
6,604
0.06
Feet
15,251
16,092
14,934
14, 777
14, 621
14,466
14,312
14,168
14,006
13,854
13,703
13,663
13,404
13,255
13, 107
12,961
12,815
12,669
12.525
12,381
12,238
12,096
11,964
11,814
11,674
11,634
11,396
11,258
11. 121
10,984
10,848
10, 713
10,579
10,445
10,312
10, 179
10,047
9,916
9,786
9,655
9,526
9,397
9,269
9,142
9,015
8,888
8,762
8,637
8,513
8,389
8,265
8,142
8,020
7,898
7,777
7,656
7,536
7,416
7,297
7,178
7,060
6,943
6,825
6,709
6,593
0.07
Feet
15,235
15,076
14,919
14,762
14,608
14,451
14,296
14,143
13,990
13,839
13,688
13,538
13,389
13,240
13,093
12,946
12,800
12,655
12,510
12,367
12,224
12,082
11,940
11,800
11,660
11,520
11,382
11,244
11,107
10,970
10,835
10,700
10,665
10,431
10,298
10,166
10,034
9,903
9,772
9,642
9,513
9,384
9,256
9,129
9,002
8,876
8,760
8,625
8,500
8,376
•S,253
8,130
8,008
7,886
7,765
7,644
7,524
7,404
7,285
7,166
7,048
(1,931
6,814
6,697
6,581
0.08
Feet
15,219
15,061
14,903
14, 746
14,590
14,435
14,281
14,128
13,975
13,824
13, 673
13,523
13, 374
13,226
13, 078
12,931
12,785
12,640
12,496
12,352
12,210
12,068
11,926
11,786
11,646
11,507
11,368
11,230
11,093
10,957
10,821
10,686
10,552
10,418
10,285
10,163
10,021
9,890
9,769
9,629
9,500
9,372
9,244
9,116
8,989
8,863
8,737
8,612
8,488
8,364
8,240
8.118
7,995
7,874
7,763
7,632
7,512
7,392
7,273
7,155
7,037
6,919
6,802
6,686
6,570
0.09
Feet
15,203
15,045
14,887
14,730
14, 575
14,420
14,266
14, 112
13,960
13,808
13,658
13,608
13,359
13,211
13,063
12,917
12,771
12,626
12,482
12,338
12,195
12,053
11,912
11, 772
11, 632
11,493
11,054
11, 217
11,080
10,943
10,808
10, 673
10,638
10,405
10,272
10, 139
10,008
9,877
9,746
9,617
9,487
9,359
9,231
9,103
8,977
8,860
8,725
8,600
8,475
8,352
8,228
8,105
7,983
7,862
7,740
7,620
7,600
7,380
7,261
7,143
7,025
6,907
6,790
6,674
6,658
9-4
See Reference No. 6

-------
BAROMETRIC PRESSURE AT VARIOUS ALTITUDES
                 (continued)
Barometric
pressure, U
inches

23.50
.60
.70
.80
.90
24.00
.10
.20
.30
.40
24.50
.60
.70
.80
.90
25.00
.10
.20
.30
.40
25.50
.60
.70
.80
90
26 00
.10
.20
.30
.40
26.50
.60
.70
.80
.90
27.00
.10
.20
.30
.40
27.50
.60
.70
.80
.90
28.00
.10
.20
.30
.40
28.50
.60
.70
80
.90
29.00
.10
.20
.30
.40
29.50
.60
.70
.80
.90
30.00
.10
.20
.30
.40
30.50
.60
70
80
0
Feet
6,546
6,431
6,316
6,202
6,088
5,974
5,861
5,749
5, 637
5,525
5,414
5,303
5,193
5,083
4,974
4,Sfi5
4,756
4,648
4,540
4,433
4,326
4,220
4,114
4,009
3,903
3,799
3,694
3,590
3,487
3,384
3,281
3,179
3,077
2,975
2,874
2,773
2,672
2,572
2,473
2,373
2,274
2,176
2,077
1,989
1,872
1,784
1,688
1, 591
1,495
1,399
1,303
1,208
1, 113
1,019
925
831
737
644
551
458
366
274
182
+91
0
-91
-181
-271
-361
-451
-540
-629
-718
-806
0.01
Feet
6,535
6,420
6,308
6,190
6,076
5,963
5,850
5, 737
5,625
5,514
5,403
5,292
5,182
5, 072
4,963
4,854
4,745
4.637
4, 530
4,423
4,316
4,209
4,104
3,998
3,893
3,788
3,684
3,580
3,477
3,373
3,270
3,168
3.066
2,965
2,864
2,763
2,662
2,562
2,463
2,363
2,264
2,166
2,067
1.970
1,872
1,775
1,678
1,581
1,485
1,389
1,294
1,199
1, 104
1,009
915
821
728
635
542
449
357
265
173
+ 82
-9
-100
-190
-280
-370
-460
-549
-638
-727
-815
0.02
Feet
6,523
6,408
6,293
6,179
6,065
5,952
5,839
5,726
5,614
5,503
5,392
5,281
5,171
5,061
4,952
4.843
4,735
4,627
4,519
4,412
4,305
4,199
4,093
3,988
3,882
3,778
3,674
3,570
3,466
3,363
3,260
3,158
3,056
2, 955
2,854
2,753
2,652
2,552
2,453
2,353
2,254
2,156
2,058
1,960
1,862
1,765
1,668
1.572
1,476
1,380
1,284
1,189
1.094
1,000
906
812
718
625
532
440
348
256
164
+73
-18
-109
-199
-289
-379
-469
-558
,-647
-735
-824
0.03
Feet
6,512
6,397
6,282
6,167
6,054
5,940
5,827
5,715
5,603
5,492
5,381
5,270
5,160
5,050
4,941
4,832
4,724
4,616
4,508
4,401
4,295
4,188
4,082
3,977
3,872
3,767
3,663
3,559
3,456
3,353
3,250
3,148
3,046
2,945
2,843
2,743
2,642
2,542
2,443
2,343
2,245
2,146
2,048
1,950
1,852
1,755
1,659
1,562
,496
,370
,275
,180
,085
990
896
803
709
616
523
431
338
247
155
+64
-27
-118
-208
-298
-388
-478
-567
-656
-744
-833
0.01
Feet
6,500
6,385
6,270
6,156
6,042
5,929
5,816
5,704
5,593
5,480
5,369
5, 259
5, 149
5,039
4,930
4,821
4.713
4,605
4,498
4,391
4,284
4,178
4,072
3,966
3,861
3,757
3, 653
3,549
3,446
3,343
3,240
3, 138
3,036
2,934
2,833
2,733
2,632
2,532
2, 433
2,334
2,235
2,136
2,038
1,940
1,843
1,746
1. 649
1, 552
1, 456
1,361
l,2f.5
1,170
1, 075
981
887
794
700
607
514
421
329
237
146
+55
-36
-127
-217
-307
-397
-486
-576
-665
-753
-841
0.05
Feet
6,489
6,374
6,259
6,145
6,031
5,918
5,805
5,693
5,581
5,469
5,358
5,248
5,138
5.028
4,919
4,810
4,702
4,594
4,487
4,380
4,273
4,167
4,061
3,956
3,851
3,746
3,642
3,539
3,435
3,332
3,230
3, 128
3,026
-2, 924
2,8,23
2,723
2.622
2,522
2,423
2,324
2,225
2,126
2,028
1,930
1,833
1,736
1,639
1,543
1,447
1,351
1,256
1,161
1,066
972
878
784
690
597
505
412
320
228
137
+45
-45
-136
-226
-316
-406
-495
-585
-673.
-762
-850
0.06
Feet
6,477
6,362
6,247
6,133
6,020
5,906
5,794
5,681
5,570
5,458
5,347
5,237
5,127
5,017
4,908
4,800
4,691
4,584
4,476
4,369
4,263
4,156
4,051
3,945
3,841
3,736
3,632
3,528
3,425
3,322
3,219
3,117'
3.016
2,914
2,813
2,713
2,612
2,512
2,413
2,314
2,215
2,116
2,018
1.P21
1,823
1,726
1,630
1,533
1,437
1,342
1,246
1,151
1,057
962
868
775
681
588
495
403
311
219
128
+ 36
-55
-145
-235
-325
-415
-504
-693
-682
-771
-859
0.07
Feet
6,466
6,351
6,236
6,122
6,008
5,895
5.782
5.670
5,558
5, 447
5. 336
5,228
5,116
5,006
4,897
4,789
4,681
4,573
4, 465
4, 3->8
4, 252
4,146
4,040
3,935
3,830
3,726
3,622
3,518
3.415
3,312
3.209
3,107
3,005
2,904
2,803
2, 703
2,602
2,502
2.403
2,304
2,205
2. 107
2.009
1,911
1,814
1,717
1,620
1,524
1,428
1,332
1,237
1,142
1,047
953
859
765
672
579
486
394
302
2'0
118
+ 27
-64
-154
-244
-334
-424
-513
-602
-691
-780
-868
0.08
Feet
6,454
6,339
6,225
6,110
5,997
5,884
5,771
5,659
5, 547
5, 436
5,325
5,215
5,105
4,995
4,886
4,778
4,070
4,562
4, 455
4,348
4,241
4,135
4,030
3,924
3,820
3,715
3,611
3,508
3.404
3,301
3,199
3,097
2,995
2,894
2,793
2,692
2.592
2,493
2,393
2,294
2,195
2,097
1,999
,901
,804
,707
.610
,514
,418
,322
1,227
1,132
1,038
943
849
756
663
570
477
384
292
201
109
+ 18
-73
-163
-253
-343
-433
-522
-611
-700
-788
-877
0.09
Feet
6,443
6,328
6, 213
6,099
5,986
5,872
5,760
5,648
5,536
5,425
5,314
5,204
5.094
4,985
4,876
4,767
4,659
4, 551
4,444
4,337
4,231
4,125
4,019
3,914
3,809
3,705
3,601
3,497
3,394
3,291
3,189
3,087
2, 985
2.884
2, 783
2,682
2,582
2,483
2,383
2,284
2,185
2.087
,9»9
,891
,794
,697
,601
,504
,408
,313
,218
,123
,028
934
840
746
653
560
468
375
283
192
100
+9
— S2
-172
-2fi2
-352
-442
-531
-620
-709
-797
-885
                                                 9-5

-------
              BAROMETRIC PRESSURE AT VARIOUS ALTITUDES
                                     (continued)
                              (Abridged from the Smithsonian Tables]

                             Term for temperature: 0.002039 (T—50°) z

                       For temperatures^™ £ |;}the values are to
Mean tempera-
ture T.
"F.
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
as
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
6
4
3
2
1
0
°F.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
8s
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
Approximate elevations obtained from Table VI
1000
Fttt
2
4
6
8
10
12
14
16
18
20
22
24
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
80
82
84
86
88
90
92
94
96
98
100
102
2,000
feet
4
8
12
16
20
24
29
33
37
41
45
49
53
57
61
65
69
73
77
82
86
90
94
98
102
106
110
114
118
122
126
130
135
139
143
147
151
156
159
163
167
171
175
179
184
188
192
196
200
204
3,000
Feet
6
12
18
24
31
37
43
49
55
61
67
73
80
86
92
98
104
110
116
122
128
135
141
147
153
159
165
171
177
184
190
196
202
208
214
220
226
232
239
245
251
257
263
269
275
281
287
294
300
306
4,000
Feet
8
16
24
33
41
49
57
65
73
82
90
98
106
114
122
130
139
147
155
163
171
179
188
196
204
212
220
228
236
245
253
261
269
277
285
294
302
310
318
326
334
343
351
359
367
375
383
391
400
408
5,000
Feet
10
20
31
41
51
6.1
71
82
92
102
112
122
133
143
153
163
173
184
194
204
214
224
234
245
255
265
275
285
296
306
316
326
336
347
357
367
377
387
398
408
418
428
438
449
459
469
479
489
500
510
6,000
Feet
12
24
37
49
61
73
86
98
110
122
135
147
159
171
184
196
208
220
232
245
257
269
281
294
306
318
330
343
355
367
379
391
404
416
428
440
453
465
477
489
502
514
526
538
551
563
r6
687
599
612
7,000
Feet
14
29
43
57
71
86
100
114
128
143
157
171
186
200
214
228
243
257
271
285
300
314
328
343
357
371
385
400
414
428
442
457
471
485
500
514
628
542
557
571
585
599
614
628
642
657
671
685
699
714
8,000
Feet
16
33
49
65
82
98
114
130
147
163
179
196
212
228
245
261
277
294
310
326
343
359
375
391
408
424
440
457
473
489
506
522
538
555
571
587
sot
620
•536
652
1369
685
701
718
734
750
767
783
799
816
9,000
Feet
18
37
55
73
92
no
128
147
165
184
202
220
239
257
275
294
312
330
349
367
385
404
422
440
459
477
495
514
532
551
569
587
606
624
642
661
679
897
716
734
752
771
789
807
826
844
862
881
899
918
10,000
Feet
20
41
61
82
102
122
143
163
184
204
224
245
265
285
306
326
347
367
387
408
428
449
469
489
510
530
551
571
591
612
632
652
673
693
714
734
754
775
795
81«
836
856
877
897
918
938
958
979
999
1,020
9-6

-------
               ANGLE OF INCLINATION OF A MANOMETER
                   NECESSARY  TO PRODUCE  DESIRED
                           MAGNIFICATION
UJ
UJ


O
UJ
Q
z
o
N
Di
o
x

Q
Z
I/O
O
o
z
z
LU
O
z
              2.0    3.0  4.0    6.0  8.0  10

                           MAGNIFICATION
20     30   40  50  60
See Reference No. 20
             9-7

-------
SECTION 10 PROPERTIES OF PART/CULATES

         Specific Gravities  of Wind Erosion Products, Industrial Dusts and Combus-
            tion Products	   10-1
         Specific Gravities of Some Common Minerals	   10-2
         Specific Gravities of Common Metals	   10-3
         Diameters and Specific Gravities of Selected Pollen Grains .	   10-4
         Sizes of Airborne Particulates (M.S.A.)	   10-5
         Characteristics  of Particles and Particle Dispersoids  	   10-6
         Size  and Characteristics of Air-Borne Solids (Frank Chart)  	   10-8
         Limits of Particle Size Measuring Equipment	   10-9
         Physical Properties of Flyash	   10-10
         Standard U.S. and Tyler Screen Scales	   10-11

-------
h-
uo
ID
Q
oo
Q.
   O.
on
u_
o

oo
LU
O

y
u.

O
LLJ
Q.
00
CO
-+-*
CJ
d
-O
o
SH
a
d
_o
CO
d
e
0
U



Industrial dusts
en

o
d
•o
o
S-t
OH
o
• rH
en
O
cu

1
•rH
cd

bD

o
•rH
• rH
CJ
O>
a
CO




_i
UJ
/o
en
co ^
rH O
cu •4J
O . rH
cenos
incine



sawdust

















r— 1
1
O












CO
o
a
en
4->
CO
0
a
CO CO CO CO
« "2 3 o a
a % 3 0 3
plastics, gums, resj
most organic compoi
many hydrated salts
Na2SO4- 12H2O, Na2
CaCOo- 5H9O (Carna
O &
0
CO CU
o ^
'So TO
o 
talc, micas, cryoliti
fluorite




rft
(Jl
rH CO
Cti "t->
CO g

2 P
CO '/"I
tfH ^
.
f" rn
calcit
mica:
co
.
CO
1
CD
CM'
















en nj" cjj
^ d rH -
^ «J .-^
asbestos, metal pow<
corundum, lime, ga]
garnets, barium,
strontium, hematite,
salts, etc. , magneti
marcasite, pyrite,
willemite, zincite


^
CO j?
, K cti
co ,2} be

c r 1 -2
O ^ ( *'"'
bD CO M rH
rrt ft CO
tl fiT "T3 ni
*3 " 4J 'H 4J
TO rH -rH CO -rH
. CO Cn rH
-i 4J JH
cti -a >, 3 a
rQ O ft rH CO


co
,
CO
A




                                                                                           10-1

-------
            SPECIFIC GRAVITIES OF: SOME COMMON MINERALS
Borax
Sylvite
Bauxite
Sulfur
Stilbite
Halite
Serpentine
Natrolite
Sodalite
Graphite
Gypsum
Apophyllite
Brucite
Leucite
Microcline
Orthoclase
Nepheline
Kaolinite
Albite
Oligoclase
Quartz
Andesine
LabradorUe
Scapolite
C alette
Plagioclase
Talc
Anorthite
Beryl
Wollastonite
Dolomite
Phlogopite
1.7
1.99
2. 0 -
2.05
2.1 -
2.16
2.2 -
2.25
2.30
2.3
2.32
2.3 -
2.39
2.45
2.54
2.57
2.55
2.6 -
2.62
2.65
2.65
2.69
2.71
2.65
2.72
2.62
2.7 -
2.76
2.75
2.8 -
2.85
2.86


2.55
- 2.09
2.2

2.65




2.4

- 2.50
- 2.57

- 2.65
2.63





- 2.74

- 2.76
2.8

-2.8
2.9


Muscovite
Lepidolite
Anhydrite
Aragonite
Biotite
Cryolite
Amblygonite
Lazulite
Magnesite
Tourinaline
Tremolite
Apatite
Spodumene
Andalusite
Fluorite
Hornblende
Sillimanite
Diopside
Augite
Olivine
Enstatite
Diaspore
E pi dote
2.
2.
2.
2.
2.
2.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
HemimorphiteS
Sphene
Realgar
Diamond
3.
3.
3.
76
8 -
89
95
8 -
95
0 -
0 -
0 -
0 -
0 -
15
15
16
18
2
23
2 -
2 -
27
2 -
35
35
-
3
-

3
-
3
3
3
3
3
-
-
-



3
3
-
3
-
-
3
.
2

.
3
.
.
.
.
0
.

2
*
1
1
2
1

98


0



.25
,
3
3
3



.
.
4
.
3
3
.4-3,
4 -
48
5
3.




RhodochrositeS. 45 -
Garnet
Spinel
Kyanite
Rhodonite
3.
3.
3.
3.
5 -
6 -
56
58
4.
4.
3
.
.
.



3
4
.
5
.
.

20
30
20





37

45
45
.5
55


3
3


.60

0
- 3.
-3.
66
70
Staurolite
Chrysoberyl
Azurite
Side rite
Malachite
Celestite
Sphalerite
Corundum
Willemite
Chalcopyrite
Rutile
Enargite
Barite
Stibnite
Ilmenite
Pyrolusite
Molybdenite
Zircon
Marcasite
Pyrite
Franklinite
Magnetite
Z'ncite
Cuprite
Arsenopyrite
Cerussite
Cassitertte
Galena
Cinnabar
Copper
Silver

3.
3.
3.
3.
3.
3.
3.
4.
3.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
5.
5.
5.
5.
6.
6.
6.
6.
7.
8.
8.
65
65
77
83
9 -
95
9 -
02
9 -
1 -
18
43
5
52
7
75
62
68
89
02
15
18
68
0
07
55
8 -
4 -
10
9
- 3
- 3

- 3
4.
- 3
4.

4.
4.
-4
-4

-4


-4









7.
7.


.7J
.8

.8*
03
.91
I

2
3
. 2£
.45

.62


.73









1
6


10.5




10-2

-------
SPECIFIC GRAVITIES OF COMMON METALS

Aluminum
Antimony
Arsenic
Barium
Beryllium
Bismuth
Cadmium
Calcium
Cerium
Cesium
Chromium
Cobalt
Copper
Gallium
Germanium
Gold
Indium
Iridium
Iron
Lanthanum
Lead
Lithium
Magnesium
Manganese
Mercury
Molybdenum
Neodymium
Nickel
symbol
Al
Sb
As
Ba
Be
Bi
Cd
Ca
Ce
Cs
Cr
Co
Cu
Ga
Ge
Au
In
Ir
Fe
La
Pb
Li
Mg
Mn
Hg
Mo
Nd
Ni
sp. gr. element
2.699
6.618
5.13
3.5
1.84
9.781
8.648
1.54
6.90
1.873
6.92
8.71
8.92
5.903
5.46
18.88
7.28
22.42
7.85
6.15
11.342
0.534
1.741
7.42
13.546
10. 2
6.96
8.60-90
Niobium
Osmium
Palladium
Platinum
Potassium
Praseodymium
Rhenium
Rhodium
Rubidium
Ruthenium
Selenium
Silver
Sodium
Strontium
Tantalum
Tellurium
Thallium
Thorium
Tin (white)
Tin (grey)
Titanium
Tungsten
Uranium
Vanadium
Yttrium
Zinc
Zirconium
>
symbol
Nb
Os
Pd
Pt
K
Pr
Re
Rh
Rb
Ru
Se
Ag
Na
Sr
Ta
Te
Tl
Th
Sn
Sn
Ti
W
U
V
Y
Zn
Zr

sp.gr,....
8.4
22.5
12.16
21.37
0.87
6.475
20.53
12.44
1.532
12.06
4.3-8
10.492
0.9712
2.50-58
16.6
6.25
11.86
11.3
7.29
5.8
4.5
18.6-19. 1
18.7
5.96
5.51
6.92
6.44

                                           10-3

-------
DIAMETERS  AND SPECIFIC  GRAVITIES  OF  SELECTED  POLLEN  GRAINS
             Common
               Name

    Giant ragweed
    Burweed marsh elder
    Short ragweed
    False ragweed
    Marsh elder
    Southern ragweed
    Western ragweed
    Cocklebur

    Russian thistle
    Palmer's amaranth
    Western water hemp
    Mexican fireweed

    Annual sage
    Tall wormwood
    Sagebrush

    Nettle
    Red sorrel
    Hemp
    English plantain

    Bluegrass
    Bluegrass
    Bermuda grass
    Orchard grass
    Timothy
    Rye
    Corn

    Sycamore
    Mountain cedar
    Hazelnut
    Birch
    Alder
    Ash
    Cottonwood
    Elm
    Bur oak
    Shingle oak
    Walnut
    Beech
    Hickory
    Scotch pine
    Bull pine
      Botanical
        Name

Ambrosia trifida
Iva xanthifoiia
Ambrosia elatior
Franseria acanthlcarpa
Iva ciliata
Ambrosia bidentata
Ambrosia psilostachya
Xanthium commune

Salsola pestifer
Amaranthus palmerl
Acnida tamariscina
Kochia scoparia

Artemisia annua
Artemisia caudata
Artemisia tridentata

Urtica gracilis
Rumex acetosella
Cannabis sativa
Plantago lanceolata

Poa pratensis
Poa pratensis
Capriola dactylon
Dactylis glomerata
Phleum pratense
Secale cereale
Zea mays

Platanus occidentalis
Juniperus sabinoldes
Corylus americana
Betula nigra
Alnus glutinosa
Fraxinus americana
Populus virginiana
Ulmus americana
Quercus macrocarpa
Quercus imbricaria
Juglans nigra
Fagus grandifolia
Carya ovata
Pinus sylvestris
Pinus ponderosa
Diameter in
  Microns

   19.25
   19.3
   20.0
   22.0
   23.0
   23.0
   26.4
   27.0

   23.6
   25.8
   27.5
   32.7

   20.4
   21.0
   25.85

   14.0
   21.45
   25.0
   27.5

   28.0
   30.0
   28.5
   34.0
   34.0
   49.5
   90.0

   22.22
   22.8
   23.6
   24.6
   26.0
   27.1
   30.0
   31.2
   32.3
   33.1
   35.75
   44.0
   45.0
   52.0
   60.0
Specific
Gravity

 0.52
 0.79
 0.55 *
 0.75
 0.56
 0.50
 0.57
 0.45

 0.90
 1.02
 1.01
 0.97

 1.02
 1.04
 1.03

 0.77
 0.78
 0.82
 0.97

 0.90
 0.90
 1.01
 0.91
 0.90
 0.98
 1.00

 0.92
 1.08
 1.09
 0.94
 0.97
 0.90
 0.79
 1.00
 1.04
 1.04
 0.93
 0.94
 0.79
 0.45
 0.45
                                                    Crawford, J. H., Pub. Health Rep. 64:1195,
                                                     1949.  reports a value of 1. 3.
 10-4

-------
OO
UJ
I-
<
_l

U
Q.
LU
Z
Of
o
CO
LL
O
«/)
UJ
N











Atrotolt









c
OC

i


1


*.
tt Outdoor Air
1
•
i
s
1







V)


n


of


Metallurgical 0
o
"".














i
e
I
I
8
«-














1
>•
I

rf
U.
§
I












nd Llmtttont
o
r Mill Dutt
id Zinc Outt
Is
"*
:
1
i










|»UDU3)
Z\
















Spray Drltd Ml
10


*o
i











r Olomi
I
X

v
!£
0


*
T.
- B 1
_ Combustion No









i 	 £
S
i
1



j
REFERENCE j

u
i
1
t








—i
s-
8-
§-
1-
^
i
i
, 	 /
o
sj

IW







3
8
to"
-

0
2
o


m
O

o
o
o
o
8
0
8
B
ci

                                                                                                   in
                                                                                                   c
                                                                                                   o
                                                                                                  
-------
 on
LLJ
Q.

Q

LLJ

U
H-


0.
Q
Z
<

LU
_J
U
 u_
 o
 oo
 LU
 X
 U
          8-:
          §

            :-l—s- :a—s-
                   8-
                  ••
                   e-
              8
              0--
8-.
  II
       •1-
                     Fl
                     _*_.
              5
              i
              3*
                               _:

                               ?
                s
                *
                m

IUI
                              E

          «11
                                *   I  «-
                               -1-iUI
                                O u.
                                 >, —
                                SI
                                                         1
                                            £1.
10-6
                                               See Reference No. 9

-------
 to
 Q

 O
 1/1
 C£
 LU
 Q_
 oo

 Q

 UJ
 _)
CL -.
   -a
a «>
z s
00
LU
_J
u
Q_

U_
O
oo
U
LLI
I—
U
z:
U
                                                                                              10-7

-------
    SIZE AND CHARACTERISTICS OF  AIR-BORNE SOLIDS (FRANK CHART)
                                                              LAWS OF SETTLING
                                                               IN RELATION TO
                                                               PARTICLE SIZE
                                                          [Lines of Demarcation appro*.)
                                                             PARTICLES FALL WITH
                                                             INCREASING VELOCITY
                                                                         C*Vek>citqim./stc

                                                                         C*Vfelocity ft./min,

                                                                         d«Diom of por-
                                                                           ticle in cm.

                                                                         D«Diom.of por-
                                                                          ticle in Microns

                                                                         r« Radius of par-
                                                                           ticle in cm.

                                                                         g * 98! cm /sec1
                                                                           acceleration

                                                                         S« Density of
                                                                            particle
                                                                         S= Density of Air
                                                                           (Very Smaii
                                                                            eiotwetos.)

                                                                           Viscosity of
                                                                           air in poises
                                                                           IW4X|0"7for
                                                                           air of 70° F

                                                                                cm.
                                                                           (Mean free
                                                                            poth of qfls
                                                                            molecules)
                                                            PARTICLES MOVE LIKE
                                                               GAS MOLECULES
                                                                          A=Distonceof
                                                                          motion in time t

                                                                          R=Gas constant
                                                                           = 8316X10'

                                                                          T» Absolute
                                                                            Temperoture
       .001
                                                                            molecules in
                                                                          on* mol =606X10"
     IT IS ASSUMED THAT THE PARTICLES ARE OF UNIFORM SPHERICAL SHAPE HAVIN6 SPECIFIC GRAVITY ONE AND
     THAT THE DUST CONCENTRATION li 0.1 GRAINS PER 1000 Co " Of AIR,THE AVERAGE OF METROPOLITAN DISTRICTS.
10-8
See Reference No.  8

-------
 UJ
 s
 a.

 Z)
 o
 LU

 O
 z
 o:
 z>
 oo
 <
 UJ

 UJ
 N
 «/>
 LU
 _J
 U

 H
 o:
 <
 a.
 LL
 o
 00














>









V
icroscop
^






•>
Q.
O
O
O

u
E
o


ZJ



































j











' z
o
0
2
o
^
c
o
u

—
UJ






























J





S

2
.fc
3
UJ

o
o
J






0
o

~^
o

•—
-*




























c
«l
^0




1
i








. 3
k.
c
5







































UJ
0

*
>











I













O*
2
k.
__ c
o
o


-*



























.§
*j
>•

o
^
o
(C

c
o
1
1
, 1
V









o

u
a
••-
O

o
(t

X

















— » '
u
•i
•i
0.
5
fe
"c
li*.
12 ! I
I'l
o|B
1 1
J 1
*






* £ <*

— «* _
0 § *
S -2 r
i * s
-
Q



—
o
o
0





;«j
0


o



o



                                                                   y   "S
                                                                   C   o
                                                                   o   •*•
                                                                   a   
See  Reference  No.  7
                                                                                                10-9

-------
                                                                                 m
   UL
   O

   t/o
   UJ

   I-
   Qi
   UJ
   Q_
   O
   Qi
   Q.

   X
   Q.
M rj
i— I CD
rt
•rH
£ o
W •*-•
!* -a
PQ fl -^
E-" (M
Z
w
u
J ^
OH
w ^
n °°
ft to
i
w S 2
Cfi 3 •*-•
 i
i— »



o
r-t
O


[^
I>

T*1





CD
0
O
















}<
e
t
cc
o rt
•I
s
r &
F
s £
r-™l
T— I



CM
CO
f— 1


CO
0

•"tf
i-H




CM
1—1
O

















)
c
K
c
M
ct
£
C
•i—
ni
£
T— 1

       ai

                                                                                     a>
                                                                                     lH  C
                                                                                     u  cu
                                                                                     co  cp
                                                                                         o
                                                                                     0)
                                                                                     s
                                                                                     I
        c
        0)
        o


        So'I


        o  a. c
       lrH c/j  o

        (D  C  "^
        QJD 0)  ^
        O  !M  S
        f"  rt  'S  O
       "O  O. H-J  S-i
        i>> OH 0) J2
       S 
-------
                STANDARD U.S. AND TYLER SCREEN SCALES
Nominal
Aperture width
microns
1
2.5
5
10
20
37
43
44
53
61
62
74
88
89
104
105
124
125
147
149
175
177
208
210
246
250
295
297
350
351
417
inches*
.00004
.0001
.0002
.0004
.0008
.0014
.0017
.0017
.0021
.0024
.0024
.0029
.0035
.0035
.0041
.0041
.0049
.0049
.0058
.0059
.0069
.0070
.0082
.0083
.0097
.0098
.0116
.0117
.0138
.0138
.0164 (1/64)
U.S.
Standard
12500
5000
2500
1250
625
400
-
325
270
-
230
200
170
-
-
140
-
120
-
100
-
80
-
70
-
60
-
50
45
-
-
Tyler
-
-
-
-
-
-
325
-
270
250
-
200
-
170
150
-
115
-
100
-
80
-
65
-
60
-
48
-
-
42
35
Nominal
Aperture width
microns
420
495
500
589
590
701
710,
833
840
991
1000
1168
1190
1397
1410
1651
1680
1981
2000
2362
2380
2794
2830
3327
3360
3962
4000
4699
4760
6680

inches*
.0165
.0195
.0197
.0232
.0232
.0276
.0280
.0328 (1/32)
.0331
.0390
.0394
.0460 (3/64)
.0469
.0550
.0555
.0650 (1/16)
.0661
.0780 (5/64)
.0787
.093 (3/32)
.0937
.110 (7/64)
.111
.131 (1/8)
.132
.156 (5/32)
.157
.185 (3/16)
.187
.263 (1/4)

U.S.
Standard
40
-
35
-
30
-
25
-
20
-
18
-
16
-
14 "^
-
12
-
10
-
8
-
7
-
6
-
5
-
4
-

Tyler
-
32
-
28
-
24
-
20
-
16
-
14
-
12
-
10
-
9
-
8
-
7
-
6
-
5
-
4
-
3

''Numbers in parentheses indicate approximate fractions of an inch.
                                                                     10-11

-------
SECT/ON IJ  WATER VAPOR

         Saturation Vapor Pressure Over Water
             (°F, in Hg)  -  Table	   11-1
         Saturation Vapor Pressure Over Water
             (°C, Millibars)  -  Table	   11-6
         Saturation Vapor Pressure Over Water
             (°C, mm Hg) -  Table	   11-8
         Low Temperature Psychrometric Chart (Metric Units)	   11-9
         Normal Temperature Psychrometric Chart (Metric Units)	   11-10
         High Temperature Psychrometric Chart (Metric Units)	   11-11
         Low Temperature Psychrometric Chart (English Units)	   11-12
         Normal Temperature Psychrometric Chart (English Units)	   11-13
         High Temperature Psychrometric Chart (English Units)	   11-14
         Saturation Vapor Pressure Over Water
             (°F, in Hg)  -  Graph	   11-15
         Saturation Vapor Pressure Over Water
             (°C, mm Hg) -  Graph	   11-16
         Reduction of Psychrometric Observations
             (Fahrenheit Temperatures)	   11-17
         Reduction of Psychrometric Observations
             (Centigrade Temperatures)	   11-18
         Correction Tables for Psychrometric Chart  - Altitude (Fahrenheit)	   11-19
         Saturated Water Vapor as Fraction of Metered Volume as a Function of
             Absolute Pressure (in. Hg) and Temperature (°F)	   11-21
         Saturated Water Vapor as Fraction of Metered Volume as a Function of
             Absolute Pressure (mm. Hg) and Temperature (°C)	   11 -22
         Psychrometric Nomographs for High and Low Pressures	   11-23
         Fraction of Total  Volume Occupied by  Water Vapor vs. Cms. of Water per
             Gram of Dry Air	   11 -29
         Graphical Method for Converting Volume of Condensed Water to Volume of
             Water  Vapor at Conditions of Temperature in °K and Pressure in mm.Hg.   11 -30
         Relative Humidity Tables	   11 -31

-------
                  SATURATION VAPOR PRESSURE OVER WATER
                             (°F,  in Hg) - TABLE
Tern.
per*-
ture
•F.
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
English units
.0 .1 2 .3 .4 .5 .6 .7 A .9
in. Hg. ia. Hg, in. Hg. in. Hg. in. Kg.
0.04477 0.04498 0.04519 0.04540 0.04562
0.04691 0.04713 0.04735 0.04757 0.04780
0.04915 0.04938 0.04961 0.04984 0.05008
0.05149 0.05173 0.05197 0.05221 0.05245
0.05392 0.05417 0.05442 0.05467 0.05492
0.05646 0.05672 0.05698 0.05724 0.05750
0.05910 0.05937 0.05964 0.05991 0.06019
0.06185 0.06213 0.06242 0.06270 0.06298
0.06471 0.06500 0.06530 0.06560 0.06589
0.06769 0.06800 0.06830 0.06861 0.06892
0.07080 0.07112 0.07144 0.07176 0.07208
0.07403 0.07436 0.07469 0.07503 0.07536
0.07740 0.07774 0.07809 0.07843 0.07878
0.08089 0.08125 0.08161 0.08197 0.08234
0.08454 0.08491 0.08528 0.08566 0.08603
0.08832 0.08871 0.08910 0.08949 0.08988
0.09226 0.09266 0.09306 0.09347 0.09387
0.09634 0.09676 0.09718 0.09760 0.09802
0.10060 0.10104 0.10147 0.10191 0.10235
0.10501 0.10546 0.10592 0.10637 0.10683
0.10960 0.11007 0.11054 0.11102 0.11149
0.11437 0.11486 0.11535 0.11584 0.11633
0.11933 0.11983 0.12034 0.12085 0.12136
0.12446 0.12499 0.12552 0.12605 0.12658
0.12980 0.13035 0.13090 0.13145 0.13200
0.13534 0.13591 0.13647 0.13704 0.13762
0.14109 0.14168 0.14226 0.14285 0.14345
0.14705 0.14766 0.14827 0.14889 0.14950
0.15324 0.15387 0.15450 0.15514 0.15578
0.15966 0.16032 0.16097 0.16163 0.16230
0.16631 0.16699 0.16767 0.16835 0.16904
0.17321 0.17392 0.17462 0.17533 0.17605
0.18036 0.18109 0.18182 0.18256 0.18330
0.18778 0.18854 0.18929 0.19005 0.19082
0.19546 0.19624 0.19703 0.19782 0.19861
020342 020423 020504 0.20586 020668
021166 021250 021334 0.21419 0.21504
022020 022107 022194 022282 022370
0.22904 0.22994 0.23084 023175 023266
0.23819 023912 024006 024100 024194
024767 024864 024960 025058 0.25155
025748 025848 025948 0.26049 0.26150
026763 026866 0.26970 027074 0.27179
027813 027920 028027 0.28135 0.28243
0.28899 0.29010 029121 0.29232 0.29344
0.30023 0.30137 0.30252 0.30367 0.30483
0.31185 0.31303 0.31422 0.31541 0.31661
0.32387 0.32509 0.32632 0.32755 0.32879
0.33629 0.33755 0.33882 0.34010 0.34137
0.34913 0.35044 0.35175 0.35306 0.35439
in. He. in. Hf. In. Kg. in. Hg. ia. Hg.
0.04583 0.04604 0.04626 0.04647 0.04669
0.04802 0.04824 0.04847 0.04869 0.04892
0.05031 0.05054 0.05078 0.05102 0.05125
0.05269 0.05293 0.05318 0.05343 0.05367
0.05517 0.05543 0.05568 0.05594 0.05620
0.05776 0.05803 0.05829 0.05856 0.05883
0.06046 0.06074 0.06101 0.06129 0.06157
0.06327 0.06355 0.06384 0.06413 0.06442
0.06619 0.06649 0.06679 0.06709 0.06739
0.06923 0.06954 0.06985 0.07017 0.07048
0.07240 0.07272 0.07305 0.07337 0.07370
0.07570 0.07604 0.07638 0.07672 0.07706
0.07913 0.07948 0.07983 0.08018 0.08053
0.08270 0.08307 0.08343 0.08380 0.08417
0.08641 0.08679 0.08717 0.08755 0.08793
0.09027 0.09067 0.09106 0.09146 0.09186
0.09428 0.09469 0.09510 0.09551 0.09592
0.09845 0.09888 0.09931 0.09974 0.10017
0.10279 0.10323 0.10367 0.10411 0.10456
0.10729 0.10775 0.10821 0.10867 0.10913
0.11197 0.11245 0.11292 0.11340 0.11389
0.11683 0.11733 0.11783 0.11833 0.11883
0.12187 0.12238 0.12290 0.12342 0.12394
0.12711 0.12764 0.12818 0.12872 0.12926
0.13255 0.13310 0.13366 0.13422 0.13478
0.13819 0.13877 0.13934 0.13992 0.14051
0.14404 0.14464 0.14524 0.14584 0.14644
0.15012 0.15074 0.15136 0.15198 0.15261
0.15642 0.15706 0.15771 0.15836 0.15901
0.16296 0.16362 0.16429 0.16496 0.16563
0.16973 0.17042 0.17111 0.17181 0.17251
0.17676 0.17747 0.17819 0.17891 0.17963
0.18404 0.18478 0.18553 0.18628 0.18703
0.19158 0.19235 0.19313 0.19390 0.19468
0.19940 020020 020100 020181 020261
020750 020833 020916 020999 0.21082
021589 021675 021761 021847 0.21933
022458 022547 022636 022725 022814
023357 023449 023541 023633 023726
024289 024384 0.24479 024575 024671
025253 0.25352 025450 025549 025648
026251 026353 0.26455 0.26557 026660
027284 0.27389 027494 027600 027706
028351 0.28460 028569 028679 028789
029456 029569 0.29682 0.29795 0.29909
0.30599 0.30715 0.30832 0.30949 0.31067
0.31781 0.31901 0.32022 0.32143 0.32265
0.33003 0.33127 0.33252 0.33377 0.33503
0.34266 0.34394 0.34523 0.34653 0.34783
0.35571 0.35704 0.35837 0.35971 0.36105
              50   0.36240 0.36375 0.36511 0.36646 0.36783   0.36920 0.37057 0.37195 0.37333 0.37472
See Reference No.  1
                                                                          11-1

-------
                  SATURATION VAPOR PRESSURE OVER WATER

                            (T,  in Hg) - TABLE
                                  (continued)
Tem-
pera-
ture
•F.
SO
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
iuigiun un
.0 .1 2 J .4
in. Hg. in. Hg. In. Hg. In. Hg. in. Hg.
0.36240 0.36375 0.36511 0.36646 0.36783
.37611 .37751 .37891 .38031 .38172
.39028 .39172 .39317 .39462 .39608
.40492 .40641 .40709 .40940 .41090
.42003 .42157 .42311 .42466 .42621
0.43564 0.43723 0.43882 0.44042 0.44203
.45176 .45340 .45504 .45670 .45835
.46840 .47009 .47179 .47350 .47521
.48558 .48733 .48908 .49084 .49260
.50330 -50510 .50691 .50873 .51055
0.52160 0.52346 0.52533 0.52720 0.52908
.54047 .54239 .54432 .54625 .54818
.55994 .56192 .56391 .56590 .56790
.58002 .58206 .58411 .58616 .58823
.60073 .60284 .60495 .60707 .60919
0.62209 0.62426 0.62644 0.62862 0.63082
.64411 .64635 .64859 .65085 .65311
.66681 .66912 .67143 .67376 .67608
.69021 .69259 .69497 .69737 .69977
71432 .71677 .71923 .72169 .72416
0.73916 0.74169 0.74422 0.74676 0.74931
.76476 .76736 .76997 .77259 .77521
79113 .79381 .79650 .79919 .80190
.81829 .82105 .82382 .82659 .82938
.84626 .84910 .85195 £5481 .85768
0.87506 0.87799 0.88092 0.88387 0.88682
.90472 50773 .91075 51378 .91682
.93524 53834 .94145 54457 .94770
56666 .96985 .97305 .97626 .97948
.99900 1.00228 1.00558 1.00888 1.01220
1.0323 1.0357 1.0391 1.0425 1.0459
1.0665 1.0700 1.0735 1.0769 1.0804
1.1017 1.1053 1.1089 1.1125 1.1161
1.1380 1.1417 1.1453 1.1490 1.1527
1.1752 1.1790 1.1828 1.1866 1.1904
1.2136 1.2175 1.2214 15253 12292
1.2530 1.2570 1.2610 12650 12691
12935 12976 1.3017 1.3059 1.3100
1.3351 1.3393 1.3436 1.3478 1.3521
1.3779 1.3822 1J866 1.3910 1.3954
1.4219 1.4264 1.4308 1.4353 1.4398
1.4671 1.4717 1.4763 1.4809 1.4856
1.5136 1.5183 1.5230 1.5278 1.5325
1.1613 1.5661 1.5710 1.5759 1.5807
1.6103 1.6153 1.6203 1.6253 1.6303
1.6607 1.6658 1.6709 1.6761 1.6812
1.7124 1.7176 1.7229 1.7282 1.7335
1.7655 1.7709 1.7763 1.7817 1.7871
1.8200 1.8255 1.8311 1.8366 1.8422
1.8759 1.8816 1.8873 1.8930 1.8987
its
5 .6 .7 A .9
in. HIT. In. Hg. in. HI. In. He. fa. He.
0.36920 0.37057 0.37195 0.37333 0.37472
.38314 .38456 .38598 .38741 .38884
.39754 .39901 .40048 .40195 .40343
.41241 .41393 .41544 .41697 .41850
.42777 .42933 .43090 .43248 .43406
0.44364 0.44525 0.44687 0.44849 0.45012
.46001 .46168 .46335 .46503 .46671
.47692 .47864 .48037 .48210 .48384
.49437 .49614 .49792 .49971 .50150
.51238 .51421 .51605 .51789 .51974
0.53096 0.53285 0.53475 0.53665 0.53856
.55013 .55208 .55403 .55600 .55797
.56990 .57191 .57393 .57595 .57798
.59029 .59237 .59445 .59654 .59863
.61133 .61347 .61561 .61777 J61992
0.63302 0.63522 0.63743 0.63965 0.64188
.65537 .65765 .65993 .66221 .66451
.67842 .68076 .68312 .68547 .68784
.70217 .70459 .70701 .70944 .71188
.72664 72913 .73163 73413 73664
0.75186 0.75443 0.75700 0.75958 0.76217
.77785 78049 .78314 .78579 78846
.80461 .80733 .81006 £1279 .81554
.83217 £3497 .83778 £4060 £4343
.86055 .86344 .86633 £6923 £7214
0.88978 0.89275 0.89573 0.89872 050172
.91987 .92292 .92599 .92906 .93215
.95084 55398 .95714 .96030 .96348
.98271 58595 .98920 .99246 .99572
1.01552 1.01885 1.02220 1.02555 1.02891
1.0493 1.0527 1.0561 1.0596 1.0630
1.0840 1.0875 1.0910 1.0946 1.0981
1.1197 1.1234 1.1270 1.1307 1.1343
1.1564 1.1602 1.1639 1.1677 1.1714
1.1943 1.1981 12020 12058 12097
12332 12371 12411 12450 12490
12731 1.2772 12812 12853 12894
1.3142 1.3183 1.3225 1.3267 1.3309
1.3564 1.3606 1.3649 1.3692 U736
1.3998 1.4042 1.4086 1.4130 1.4174
1.4443 1.4489 1.4534 1.4580 1.4625
1.4902 1.4949 1.4995 1.5042 1.5089
1.5373 1.5421 1.5469 1.5517 1.5565
1.5856 1.5905 1.5955 1.6004 1.6053
1.6353 1.6404 1.64.54 1.6505 1.6556
1.6864 1.6916 1.6967 1.7019 1.7072
1.7388 17441 17494 17548 1.7601
1.7926 1.7980 1£035 1.8090 1.8145
1.8478 1.8533 1.8590 1.8646 1.8702
1.9045 1.9102 1.9160 1.9218 1.9276
            100
1.9334  1.9392  1.9450 15509 1.9568   1.9626  15685 1.9745 15804 1.9863
11-2

-------
       SATURATION  VAPOR  PRESSURE  OVER  WATER

                           (T,  in  Hg)  - TABLE
                                    (continued)
 T«
 p««
 tort

 •F.
 100
 101
 102
 103
 104

 105
 106
 107
 108
 109

 110
 111
 112
 113
 114

 115
 116
 117
 118
 119

 120
 121
 122
 123
 124

 125
 126
 127
 128
 129

 130
 131
 132
 133
 134

 135
 136
 137
 138
 139

 140
 141
 142
 143
 144

 145
 146
 147
 148
 149
   .0
.1
    English unfa

.3      .4        .5
   £
 in. He.  In. Hf.  in. Hf.  in. Bf.  in. Hg.
 1.9334  1.9392  1.9450  1.9509  1.9568
 1.9923  1.9983  2.0043  2,0103  2.0164
 2.0529  2.0590  2.0652  2.0713  2.0775
 2.1149  2.1212  2.1275  2.1338  2,1402
 2,1786  2.1851  2.1916  2.1981  27046

 22440  22506  22573  22639  22706
 2.3110  2.3178  2.3246  2.3315  2.3383
 2.3798  2.3868  2.3938  2.4008  2.4078
 2.4503  2.4574  2.4646  2.4718  2.4790
 2.5226  2.5299  2.5373  2.5447  2.5521

 2.5968  2.6043  2.6118  2.6194  2.6270
 2.6728  2.6805  2.6882  2.6960  2.7037
 2.7507  2.7586  2.7665  2.7745  2.7824
 2.8306  2.8387  23468  2.8550  2.8631
 2.9125  29208  2.9291  2.9374  2.9458

 2.9963  3.0048  3.0133  2.0219  3.0305
 3.0823  3.0910  3.0997  3.1085  3.1172
 3.1703  3.1792  3.1882  3.1972  32062
 32606  32697  3.2789  32881   32973
 3.3530  3.3624  3J718  3.3812  3.3906

 3.4477  3.4573  3.4669  3.4765  3.4862
 3.5446  3.5544  3.5643  3.5741   3.5840
 3.6439  3.6539  3.6640  3.6741   3.6842
 3.7455  3.7558  3.7661  3.7765   3.7869
 3.8496  33601  3.8707  33813   33919

 3.9561  3.9669  3.9777  35885   3.9994
 4.0651  4.0762  4.0872  4.098*  4.1095
 4.1768  4.1881  4.1994  42108   42222
 42910  4.3026  4.3141  4.3257   4.3374
 4.4078  4.4196  4.4315  4.4434   4.4553

 4.5274  4.5395  4.5517  4.5638   4.5760
 4.6498  4.6622  4.6746  4.6871   4.6995
 4.7750  4.7877  43004  4.8131   43258
 4.9030  4.9160  4.9290  4X20   4.9551
 5.0340  5.0473  5.0605  5.0738   5.0872

 5.1679  5.1815  5.1951  52087   52223
 5.3049  5.3188  5.3327  5.3466   5.3606
 5.4450  S.4592  5.4734  5.4876   5.5018
 5.5881  5.6026  5.6171  5.6317   5.6463
 5.7345  5.7493  5.7642  5.7791   57940

 53842  53993  5.9145  5.9297   5.9450
 6.0371  6.0526  6.0681  6.0836   6.0992
 6.1934  62092   62251  62410  62569
 6.3532  6.3694  6.3856  6.4018  6.4180
 6.5164  6.5329 6.5495  6.5661  6.5827

6.6832  6.7001  6.7170  6.7339  6.7509
63536  63708  63881  6.9054  6.9228
7.0277  7.0453  7.0630  7.0807  7.0984
72056  72236  72416  72597  72778
 7.3872  7.4056  7.4240  7.4424  7.4609
                              in. Hf.  in. Be.  in. H|.   ta. H».  in-Hf.
                              1.9626  1.9685  1.9745   1.9804  1.9863
                              2.0224  2.0285  2.0346   2.0407  2.0486
                              2.0837  2.0899  2.0961   2.1024  2.1086
                              2.1465  2.1529  2.1593   2.1657  2.1722
                              22111  22176  22242   22308  22374

                              2.2773  22840  22907   22975  2.3042
                              2.3452  2.3521  2.3590   2.3659  2.3728
                              2.4148  2.4219  2.4290   2.4361  2.4432
                              2.4862  2.4935  2.5007   2.5080  2.5153
                              2.5595  2.5669  24744   2.5818  2.5893

                              2.6346  2.6422  2.6498   2.6574  2.6651
                              2.7115  2.7193  2.7271   2.7350  27428
                              2.7904  2.7984  2.8064   2.8145  23225
                              2.8713  2.8795  2.8877   2.8960  2.9042
                              2.9541   2.9625  25709   2.9794  2.9878

                              3.0390  3.0477  3.0563   3.0649  3.0736
                              3.1260  3.1348  3.1437   3.1525  3.1614
                              32152  32242  32333   32424  32515
                              3.3065   3.3158  3.3250   3.3343  3.3437
                              3.4001   3.4096  3.4191   3.4286  3.4381

                              3.4958  3.5056  3.5153   3.5250  3.5348
                              3.5940  3.6039  3.6139   3.6239  3.6339
                              3.6944  3.7046  3.7148   3.7250  3.7352
                              3.7972  33077  33181  3.8286  3.8391
                              3.9025   3.9132  3.9239   3.9346  3.9453

                              4.0103  4.0212  4.0321  4.0431  4.0541
                              4.1206  4.1318  4.1430  4.1543  4.1655
                              42336  42450  42565  42680  42795
                              43490  4.3607  4.3725  4.3842  4.3960
                              4.4672  4.4792  4.4912  4.5033  44153
                              4.5882  4.6005
                              4.7120  47246
                              43386  43514
                              4.9681  4.9813
                              5.1006  5.1140

                              52360  52497
                              5J746  5.3886
                              5.5161  5.5305
                              5.6609  5.6755
                              53090  53239

                              5.9602  55755
                              6.1148  6.1305
                              62729  62889
                              6.4344  6.4507
                              64994  6.6160

                              6.7679  67850
                              6.9402  6.9576
                              7.1162  7.1340
                              72959  7J141
                              7.4794  7.4980
                             4.6128
                             4.7371
                             43643
                             45944
                             5.1274

                             52635
                             5.4027
                             5.5448
                             5.6902
                             53390

                             5.9909
                             6.1461
                             6.3049
                             6.4671
                             6.6328

                             63021
                             6.9751
                             7.1518
                             7.3323
                             74166
4.6251
4.7497
43772
5.0076
5.1409

52773
5.4167
54592
5.7050
53540

6.0062
6.1619
6.3210
6.4835
6.6496

63192
6.9926
7.1697
7.3506
74353
4.6374
47624
43901
5.0208
5.1544

52911
5.4309
54736
57197
53691

6.0217
6.1776
6J371
6.4999
6.6664

6.8364
7.0101
7.1876
7.3689
74540
150    74727  7491S  7.6103  7.6291  7.6480    7.6670  7.6859  7.7049  7.7240  77431
                                                                                                11-3

-------
                 SATURATION  VAPOR PRESSURE OVER WATER
                            (T, in Hg) - TABLE
                                  (continued)
Tern-
perm-
tun
•F.
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
English units
.0
in.Hf.
7.5727
7.7622
7.9556
8.1532
8.3548
8.5607
87708
8.9853
9.2042
9.4276
94556
9.8882
10-126
10.368
10.615
10.867
11.124
1U86
1L653
11.925
12.203
12.487
12.775
13.070
13.370
13.676
13.987
14.305
14.629
14.959
15.295
15.637
15.986
16.341
16.703
17.071
17.446
17.829
18218
18.614
19.017
19.428
19.846
20.271
20.704
21.145
21.594
22.050
22.515
22.987
.1
io.Hg.
7.5915
7.7814
7.9752
8.1732
8.3752
8.5815
8.7921
9.0070
9.2263
9.4502
9.6786
99117
10.150
10,392
10.640
10.892
11.150
11.412
11.680
11.953
12.231
12.515
12.804
13.100
13.400
13.707
14.019
14.337
14.662
14.992
15429
15.672
16.021
16.377
16.739
17.108
17.484
17.868
18.257
18.654
19.058
19.469
19.888
20.314
20.748
21.190
21.639
22.096
22.562
23.035
2
in. He.
7.6103
7 AIMS
7.9948
8.1932
8.3956
8.6024
8.8133
9.0287
92485
9.4728
9.7017
9.9353
10.174
10.417
10.665
10.918
11.176
11.439
11.707
11.980
12259
12.544
12.834
13.130
13.431
13.738
14.050
14.369
14.695
15.026
15.363
15.706
16.056
16.413
16.776
17.145
17.522
17.906
18297
18.694
19.099
19.511
19.930
20.357
20.792
21234
21.684
22.142
22.609
23.083
.3
In. He.
7.6291
7.8198
8.0145
82132
8.4161
8.6233
8.8347
9.0505
92707
9.4955
9.7249
9.9589
10.198
10.442
10.690
10.944
11.202
11.466
11.734
12.008
12288
12.573
12.863
13.159
13.461
13.769
14.082
14.402
14.727
15.059
1S.397
15.741
16.092
16.449
16.813
17.183
17.560
17.945
18.336
18.734
19.140
19.553
19.973
20.400
20.835
21279
21.730
22.189
22.656
23.130
.4
in.Hg.
7.6480
7.8391
8.0342
82333
8.4367
8.6442
8.8561
9.0723
92930
9.5182
9.7481
9.9826
10222
10.466
10.715
10.969
11.228
11.492
11.761
12.035
12.316
12.601
12.892
13.189
13.492
13.800
14.113
14.434
14.760
15.093
15.431
15.776
16,127
16.485
16.849
17.220
17.598
17.984
1&376
18.774
19.181
19.594
20.015
20.443
20.879
21.324
21.775
22.235
22.703
23.178
.5
in. Hi .
7.6670
7.8584
8.0539
82535
8.4572
8.66S2
8.8775
9.0942
9.3153
9.5410
9.7713
10X106
10246
10.491
10.740
10.995
11254
11.519
11.788
12.063
12.344
12.630
12.922
13219
13.522
13.831
14.145
14.466
14.793
15.126
15.465
15.811
16.163
16.521
16.886
17258
17.637
18.023
18.415
18.814
19222
19.636
20.058
20.486
20.924
21.369
21.821
22282
22.750
23.226
.6
in. Hf.
7.6859
7.8777
8.0737
82736
8.4778
46862
8.8990
9.1161
9.3377
9.5638
9.7946
10.030-
10271
10.516
10.766
11.021
11281
11.546
11.815
12.091
12.373
12.659
12.951
13.249
13.553
13.862
14.177
14.499
14.826
15.160
15.499
15.846
16.198
16.557
16.923
17295
17.675
18.062
18.455
18.855
19263
19.678
20.100
20.530
20.968
21.414
21.867
22.328
22.797
23275
.7
in. Hf .
7.7049
7.8971
8.0935
82939
8.4985
8.7073
8.9205
9.1381
9.3601
9.5867
9.8179
10.054
10295
10.540
10.791
11.046
11.307
11.572
11.843
12.119
12.401
12.688
12.981
13279
13.584
13.893
14209
14.531
14.859
15.194
15.534
15.881
16.234
16.594
16.960
17.333
17.713
18.101
18.494
18.895
19.304
19.720
20.143
20.573
21.012
21.459
21.912
22.375
22.844
23.323
£
in-Hg.
7.7240
7.9166
8.1134
8.3141
8.5192
8.7284
8.9420
9.1601
9.3826
9.6096
9.8413
10.078
10.319
10.565
10.816
11.072
11.333
11.599
11.870
12.147
12.430
12.717
13.011
13.310
13.614
13.924
14241
14.564
14.893
15227
15.568
15.916
16269
16.630
16.997
17.370
17.752
18.140
18.534
18.936
19.345
19.762
20.185
20.617
21.056
21.504
21.958
22.421
22.892
23.371
.9
in. Hg.
7.7431
7.9361
8.1333
84344
8.5399
8.7496
&9637
9.1821
9.4051
9.6326
9.8647
10.102
10.344
10.590
10.842
11.098
11460
11426
11.898
12.175
12.458
12.746
13.040
13440
13.645
13.956
14273
14.596
14.926
15261
15.602
15.951
16405
16.667
17.034
17.408
17.790
18.179
18.574
18.976
19.387
19.804
20228
20.660
21.101
21.549
22.004
22.468
22.939
23.420
            200 - 23.468  23.516  23.565  23.614 23.663   23.711  23.760  23.809  23.858  23.908
11-4

-------
          SATURATION  VAPOR PRESSURE OVER  WATER

                        ('F,  in  Hg)  -  TABLE

                                   (continued)


T«n-                                English units

w™"      .0      .1      2      .3      .4         .5      .6      .7      .8       .9

 •F.     in.HB.   in. Hg.  in. Hg.  in. Hg.  in. Hg.     In. Hg.  in. Hg.   in. Hg.  in. Hg.   in. Hg.
200     23.468   23.516  23.565   23.614  23.663     23.711   23.760  23.809   23.858  23.908
201     23.957   24.006  24.056   24,106  24.155     24205   24.255  24.305   24.355  24.405
202     24.455   24.505  24.555   24.606  24.656     24.707   24.758  24.808   24.859  24.910
203     24.961   25.012  25.063   25.115  25.166     25.217   25.269  25.321   25.372  25.424
204     25.476   25.528  25.580   25.632  25.685     25.737   25.789  25.842   25.895  25.947

205     26.000   26.053  26.106   26.159  26.212     26.265   26.318  26.371   26.425  26.478
206     26.532   26.586  26.640   26.694  26.748     26.802   26.856  26.910   26.965  27.019
207     27.074   27.129  27.183   27.238  27.293     27.348   27.404  27.459   27.514  27.569
208     27.625   27.681  27.736   27.792  27.848     27.904   27.960  28.016   28.072  28.129
209     28.185   28241  28.298   28.355  28.411     28.468   28.525  28.582   28.639  28.697

210     28.754   28.811  28.869   28.927  28.985     29.042   29.100  29.158   29.216  29275
211     29.333   29.391  29.450   29.508  29.567     29.626   29.685  29.744   29.803  29.862
212     29.921
                                                                                          11-5

-------
                         SATURATION VAPOR  PRESSURE  OVER  WATER
                                        (°C,  MILLIBARS)  - TABLE
                   Ton-                                  Metric units

                   ?5£    .0       .1       2       .3        .4       .5       .6       .7       A        .9

                    •C.     mb.     tub.     tnb.      mb.      mb.       mb.      mb.      mb.     mb.      mb.
                     0   6.1078   6.1523   6.1971   6.2422   6.2876   6.3333   6.3793  6.4256   6.4721   6.5190
                     1   6.5662   6.6137   6.6614   6.7095   6.7579   6.8066   6.8556  6.9049   6.9545   7.0044
                     2   7.0547   7.1053   7.1562   7.2074   7.2590   7.3109   7J631  7.4157   7.4685   7.5218
                     3   7.5753   7.6291   7.6833   7.7379   7.7928   7.8480   7.9036  7.9595   8.0158   8.0724
                     4   8.1294   8.1868   82445   8.3026   8.3610   8.4198   8.4789  8.5384   8.5983   8.6586

                     5   8.7192   8.7802   8.8416   8.9033   8.9655   9.0280   9.0909  9.1542   9.2179   9.2820
                     6   9.3465   9.4114   9.4766   9.5423   9.6083   9.6748   9.7416  9.8089   9.8765   9.9446
                     7   10.013   10.082   10.151   10.221    10291   10.362   10.433    10.505   10.577   10.649
                     8   10.722   10.795   10.869   10.943    11.017   11.092   11.168    11243   11.320   11.397
                     9   11.474   11.552   11.630   11.708    11.787   11.867   11.947    12.027   12.108   12.190

                    10   12272   12.355   12.438   12.521    12.606   12.690   12.775    12.860   12.946   13.032
                    11   13.119   13207   13.295   13.383    13.472   13.562   13.652    13.742   13.833   13.925
                    12   14.017   14.110   14203   14297    14.391   14.486   14.581    14.678   14.774   14.871
                    13   14.969   15.067   15.166   15266    15.365   15.466   15.567    15.669   15.771   15.874
                    14   15.977   16.081   16.186   16291    16.397   16.503   16.610    16718   16.826   16.935

                    15   17.044   17.154   17264   17.376    17.487   17.600   17.713    17.827   17.942   18.057
                    16   18.173   18290   18.407   18.524    18.643   18.762   18.882    19.002   19.123   19.245
                    17   19.367   19.490   19.614   19.739    19.864   19.990   20.117    20244   20.372   20.501
                    18   20.630   20.760   20.891   21.023    21.155   21.288   21.422    21.556   21.691   21.827
                    19   21.964   22.101   22240   22.379    22.518   22.659   22.800    22.942   23.085   23229

                    20   23.373   23.518   23.664   23.811    23.959   24.107   24.256    24.406   24.557   24.709
                    21   24.861   25.014   25.168   25.323    25.479   25.635   25.792    25.950   26.109   26269
                    22   26.430   26.592   26.754   26.918    27.082   27247   27.413    27.580   27.748   27.916
                    23   28.086   28256   28.428   28.600    28.773   28.947   29.122    29.298   29.475   29.652
                    24   29.831   30.011   30.191   30.373    30.555   30.739   .30.923    31.109   31295   31.483

                    25   31.671   31.860   32.050   32242    32.434   32.627   32.821    33.016   33212   33.410
                    26   33.608   33.807   34.008   34.209    34.411   34.615   34.820    35.025   35232   35.440
                    27   35.649   35.859   36.070   36.282    36.495   36.709   36.924    37.140   37.358   37.576
                    28   37.796   38.017   38239   38.462    38.686   38.911    39.137    39.365   39.594   39.824
                    29   40.055   40287   40.521   40.755    40.991   41228   41.466    41.705   41545   42.187

                    30   42.430   42.674   42.919   43.166    43.414   43.663    43.913    44.165   44.418   44.672
                    31  44.927   45.184   45.442   45.701    45.961   46223    46.486    46.750   47.016   47283
                    32   47.551   47.820   48.091   48.364    48.637   48.912   49.188    49.466   49.745   50.025
                    33   50.307   50.590   50.874   51.160    51.447   51.736   52j026    52.317   52.610   52.904
                    34   53200   53.497   53.796   54.096    54.397   54.700   55.004    55.310   55.617   55.926

                    35   56236   56.548   56.861   57.176    57.492   57.810   58.129    58.450   58.773   59.097
                    36   59.422   59.749   60.077   60.407    60.739   61.072 <  61.407    61.743   62.081   62.421
                    37   62.762   63.105   63.450   63.796    64.144   64.493   64.844    65.196   65.550   65.906
                    38   66264   66.623   66.985   67.347    67.712   68.078   $8.446    68.815   69.186   69.559
                    39  69.934   70.310   70.688   71.068    71.450   71.833    72218    72.605   72.904   73.385

                    40  73.777   74.171    74.568   74.966    75.365   75.767 .  76.170    76.575   76.982   77.391
                    41   77.802   78215   78.630   79.046    79.465   79.885    80.307    80.731   81.157   81.585
                    42  82.015   82.447   82.881   83.316    83.754   84.194   84.636    85.079   85.525   85.973
                    43  86.423   86.875   87.329   87.785    88.243   88.703    89.165    89.629   90.095   90.564
                    44  91.034   91.507   91.981   92.458    92.937   93.418    93.901    94.386   94.874   95.363

                    45  95.855   96.349   96.845   97.343    97.844   98.347    98.852    99.359   99.869  100.38
                    46 100.89   101.41   101.93   102.45   102.97   103.50   104.03   104.56   105.09    10562
                    47 106.16   106.70   10724   107.78   108.33   108.88   109.43   109.98   110.54    11110
                    48 111.66   11222   112.79   113.36   113.93   114.50   115.07   11565   11623    116.81
                    49 117.40   117.99   118.58   119.17   119.77   120.37   120.97   12157   122.18    122.79

                    50 123.40   124.01   124.63   12525   125.87   126.49   127.12   127.75   128.38    129.01
11-6                                                                                            See  Reference No.   1

-------
       SATURATION VAPOR PRESSURE OVER  WATER
                    (°C,  MILLIBARS)  - TABLE
                                   (continued)
 Tern-
 perm-
 tare

  •C.
  SO
  51
  52
  53
  54

  55
  56
  57
  58
  59

  60
  61
  62
  63
  64

  65
  66
  67
  68
  69

  70
  71
  72
  73
  74

  75
  76
  77
  78
  79
    .0
.1
   Metric units

.3       .4        S
.7
 81
 82
 83
 84

 85
 86
 87
 88
 89

 90
 91
 92
 93
 94

 95
 96
 97
 98
 99

100
101
102
   mb.     mb.     mb.     mb.     mb.
  123.40  124.01  124.63   12525  125.87
  129.65  13029  130.93   131.58  13223
  136.17  136.84  137.51   138.18  138.86
  142.98  143.68  14438   145.08  145.78
  150.07  150.80  151.53   152.26  152.99

  157.46  15822  158.97   159.74  160.50
  165.16  165.95  166.74   167.53  168.33
  173.18  174.00  174.82   175.65  176.48
  181.53  182.38  183.24   184.10  184.96
  190.22  191.11  192.00   192.89  193.79

  19926  200.18  201.11   202.05  202.98
  208.67  209.63  210.59   211.56  212.53
  218.45  219.45  220.45   221.46  222.47
  228.61  229.65  230.70   231.74  232.79
  239.18  24026  241.34   242.43  243.52

  250.16  25128  252.41   253.54  254.67
  261.56  262.73  263.90   265.07  26625
  273.40  274.61  275.82   277.04  27826
  285.70  286.96  28821   289.48  290.75
  298.45  299.75  301.06   302.37  303.69

  311.69  313.04  314.39   315.75  317.12
  325.42  326.82  32822   329.63  331.05
  339.65  341.10  342.56   344.03  345.50
  354.41  355.91  357.43   358.94  360.46
  369.71  3712/  372.84  374.41  375.99

  385.56  387.18  388.80  390.43  392.06
  401.98  403.65  405.34  407.02  408.71
  418.98  420.71  422.45  42420  425.95
  436.59  438.38  440.18  441.99  443.80
  454.81  456.67  458.53  460.40  46228

  473.67  475.59  477.52  479.45  481.39
  493.17  495.16  497.15  499.16  501.17
  513.35  515.41  517.47  519.54  521.62
  534.22  536.35  538.48  540.62  542.77
  555.80  557.99  56020  562.41  564.62

  578.09  580.36  582.64  584.93  58722
  601.13  603.48  605.83  608.19  610.56
 624.94  627.36  629.79  63223  634.68
  649.53  652.03  654.54  657.06  659.59
 674.92  677.50  680.09  682.69  685.30

 701.13  703.80  706.47  709.16  711.85
 728.19  730.94  733.70  736.47  73925
 756.11  758.95  761.80  764.66  767.52
 784.92  787.85  790.79  793.74  796.69
 814.63  817:65  820.69  823.73  826.78

 84528  848.40  851.52  854.65  857.80
 876.88  880.09 883.31  886.55  889.79
 909.45  912.76  916.08  919.42  922.76
 943.02  946.43 949.85  95328  956.73
 977.61  981.13 984.65  988.19  991.74

101325 1016.87 1020.50 1024.14 1027.80
1049.94 1053.67 1057.41 1061.16 1064.93
108774
                                mb.    mb.     mb,     mb.     mb.
                               126.49  127.12  127.75  128.38  129.01
                               132.88  133.53  134.19  134.84  135.51
                               139.54  140.22  140.91  141.60  14229
                               146.49  14720  147.91  148.63  149.35
                               153.73  154.47  155.21  155.96  156.71

                               16127  162.04  162.82  163.59  164.38
                               169.13  169.93  170.74  171.55  172.36
                               177.31  178.15  178.99  179.83  180.68
                               185.83  186.70  187.58  188.45  189.34
                               194.69  195.60  196.51  197.42  198.34

                               203.92  204.86  205.81  206.76  207.71
                               213.51  214.49  215.48  216.46  217.45
                               223.48  224.50  225.52  226.54  227.58
                               233.85  234.91  235.97  237.03  238.11
                               244.62  245.72  246.82  247.93  249.04

                               255.81  256.95  258.10  25925  260.40
                               267.43  268.61  269.80  271.00  27220
                               279.49  280.72  281.96  28320  284.45
                               292.02  293.30  294.58  295.86  297.15
                               305.01  306.34  307.67  309.00  310.34

                               318.49  319.87  32125  322.63  324.02
                               332.47  333.89  335.33  336.76  338.20
                               346.97  348.45  349.93  351.42  352.91
                               361.99  363.52  365.06  366.61  368.15
                               377.57  379.16  380.75  382.35  383.95

                              393.70  395.34  396.99  398.65  400.31
                              410.41  412.11   413.82  415.53  41725
                              427.71  429.47  43124  433.02  434.80
                              445.62  447.45  449.28  451.11  452.96
                              464.16  466.05  467.94  469.85  471.76

                              483.34  48529  48725  48922  491.19
                              503.18  50520  50723  50926  511.30
                              523.70  525.79  527.89  529.99  53Z10
                              544.92  547.08  54925  551.43  553.61
                              566.85  569.06  571.32  573.57  575.83

                              589.52  591.83   594.14  596.46  598.79
                              612.94  615.32  617.72  620.12  622.52
                              637.13  639.59  642.07  644.55   647.03
                              662.12  664.66  66722  669.78   672.34
                              687.92  690.55  693.18  695.82   698.47

                              714.55  71726  719.98  722.71   725.45
                              742.04  74484  747.64  750.46   75328
                              770.40  77329  776.18  779.09   782.00
                              799.66  802.63  805.62  808.61   811.62
                              829.84  832.91  835.99  839.08  842.17

                              860.96  864.12  867.30  870.48   873.68
                              893.04  89630  899.57  902.86  906.15
                              926.11   929.47  932.84  93623  939.62
                              960.18  963.65  967.12  970.61  974.10
                              995.30  998.87 1002.45 1006.04 1009.64

                             1031.46 1035.13 1038.82 1042.51 104622
                             1066.70 1072.49 107628 1060.09 1083.91
                                                                                                  11-7

-------
   SATURATION VAPOR PRESSURE OVER WATER (°C, mm. Hg) -  TABLE

                  VALUES FOR FRACTIONAL DEGREE BETWEEN 50 AND
                      89 WERE OBTAINED BY INTERPOLATION
Temp.
•c
-18
-14
-13
-12
-11

-10
- 9
- 8
- 7
- 6

- 6
- 4
- 3
- 2
- 1

- 0

0
1
2
3
4

6
6
7
8
9

10
11
12
13
14
16
16
17
18
19

20
21
22
23
24

96
26
27
28
29
30
31
32
33
34
36
3G
37
38
30
40
41
0 0
1 436
1.560
1.691
1.834
1.987

2.149
2 326
2 514
2.715
2.931

3.163
3.410
3 673
3 956
4.258

4.579

4.579
4 926
5.294
5.685
6.101

6 543
7.013
7.513
8 045
8.609

9.209
9.844
10.518
11.231
11.987
12.788
13 634
14.530
15 477
16 477

17.5J5
18.650
19.827
21.068
22.377

23.756
25 209
26.739
28.349
30.043
31.824
33.695
35.663
37.729
39 898
42 175
44 563
47.067
49.692
52.442
55.324
58 34
0.2
1.414
1.534
1.665
1.804
1.955

2.116
2 289
2 475
2.674
2 887

3 115
3.359
3.620
3 898
4.196

4 513

4.647
4.998
5 370
5 766
6.187

6 635
7 111
7 617
8.155
8.727

9,333
9.976
10.658
11.379
12.144
12.953
13.809
14 715
15.673
16.685

17.753
18.880
20 070
21.324
22.648

24.039
25 509
27 055
28.680
30.392
32.191
34 082
36.068
38 155
40.344
42 644
45 054
47.582
50 231
53 009
55.91
58.96
0 4
390
.511
.637
.776
.924

2.084
2.254
2.437
2.633
2.843

3.069
3.309
3.567
3 841
4.135

4.448

4 715
5 070
5.447
5 848
6.274

6 728
7.209
7.722
8 267
8.845

9.458
10.109
10.799
11.528
12 302
13 121
13 987
14 903
15.871
16 894

17.974
19.113
20.316
21.583
22.922

24.326
25 812
27 374
29 015
30.745
32.561
34 471
36 477
38.584
40.796
43.117
45.549
48.102
50.774
53.580
56.51
59.58
0.6
3G8
.485
.611
.748
.893

2.0.50
2.219
2.399
2.593
2.800

3.022
3 259
3.514
3 785
4 075

4.385

4.785
5.144
5.525
5.931
6.363

6.822
7.309
7.828
8.380
8.965

9.585
10.244
10 941
11.680
12.462
13.290
14.166
15 092
16 071
17 10-

18.197
19.349
20.565
21.845
23.198

24.617
26 117
27 696
29.3.54
31 . 102
32.934
34 864
36.891
39.018
41.251
43.595
46 050
48.627
51.323
54 156
57.11
60.22
0 8
1.345
1.400
1.585
1.720
1.863

2 018
2.184
2.362
2.553
2.757

2 976
3.211
3.461
3 730
4.016

4 320

4.855
5 219
5.605
6.015
6.453

6 917
7.411
7.936
8.494
9.086

9.714
10.380
11.085
11.833
12.624
13.461
14.347
15 284
16.272
17 319

18.4*2
19.587
20.815
22.110
23.476

24 912
26 426
28 021
29.697
31.461
33.312
35.261
37 308
39 457
41.710
44 078
46.556
49 157
51.879
54.737
57 72
60 86
Temp.
42
43
44

46
46
47
48
49

60
51
52
53
54

66
56
57
58
.19

60
61
62
63
64

66
66
67
68
69
70
71
72
73
74
76
76
77
78
79

80
81
82
83
84
86
86 ,
87
88
89
90
91
92
93
94
96
9»>
97
98
99
100
101
0 0
61.50
64 80
68.26

71 88
75.65
79.60
83 71
88.02

92.51
97.20
102.09
107.20
112.51

118.04
123 80
129 82
W6 08
142 60

149 38
K>6 4:i
163.77
171.38
179.31

187.54
100 09
204.96
214 17
223.73
233.7
24:> 9
254.6
26,-). 7
277.2
289.1
301.4
314.1
327.3
341 .0

3.V...1
369 7
384,9
400.6
416.8
433.6
450.9
468.7
487.1
506.1
525 76
546.05
506.99
588.60
610.90
633 90
6.57 62
6S2.07
707 . 27
733 24
700,00
787 ,57
0 2
62.14
65.48
68.97

72.62
76 43
80 41
84 56
38.90

93.5
98.2
103.1
108.2
113.6

119.1
125.0
131.0
137 3
143 9

130.7
1.37.8
165 2
.172 9
180 9

189.2
197 8
206.8
216.0
225.7
235.7
246.0
256 8
208.0
279.4
291.5
303 8
316 6
:wo.o
343.8

358.0
372.6
388.0
403.8
420.2
437.0
454. 4
472.4
491.0
510.0
529.77
550.18
571.26
593.00
615 44
638 59
oo> 45
0*7 04
71:.' 40
7IJ8 53
7^ 45
79.'! 18
0.4
62 80
66.16
69.69

73.36
77.21
81.23
85.42
89.79

94.4
99.1
104.1
109.3
114.7

120.3
126.2
132.3
138.5
145.2

152.1
1J9 3
166.8
174.5
182.5

190.9
l'J9.5
208.6
218.0
227.7
237.7
248.2
2.59.0
270.2
281 '.8
204.0
306.4
319 2
332 8
346.6

361.0
375.6
391.2
407 0
423.6
440 4
458.0
476.0
494.7
513.9
533.80
.5.54.3.5
575.55
597.43
620 01
643.30
or>7 :u
Ii02 . 0.5
717 :,o
74.5 80
770 93
798.82
0 6
03 46
66.86
70.41

74 12
78.00
82.05
86.28
90.69

95.3
100 1
105.1
110.4
115.8

121 5
127.4
133 5
139 9
146 6

IK 5
ICO 8
168 3
176.1
184.2

192.6
201 3
210 5
219 9
229.7
239.7
2.50.3
261 2
272 6
284 2
206 4
308.0
322.0
:m.o
349 4

303 . 8
378.8
394 4
410 2
426.8
444.0
461.6
479.8
498.- 5
517.8
537.86
5.58 53
579 87
601.89
624.01
648 05
072 20
(597 10
722 75
74'J.20
770 44
804 50
0 8
(Vt 12
67.58
71.14

74.88
78.80
82.87
87.14
91.59

96.3
101.1
106.2
111.4
116.9

122.6
128.6
134.7
141.2
148.0

1.55.0
102.3
169.8
177.7
185.8

104.3
203.1
212.3
221.8
231.7
241.8
2.52.4
203.4
274.8
286.6
2<)3.8
311.4
324.6
338.2
352.2

S06.8
381.8
307.4
413.6
«0.2
447.5
465.2
483.4
502.2
521.8
541.95
502.75
,584.22
006.38
029.24
652.82
077.12
702.17
727.98
7.54.58
782.00
810.21
11-8
See Reference No. 12

-------
       HIV AHQ jo wvao aad aodVA 831VM do swvao) ouva AiiaiwnH
 h-
 o:
 u
 u
 o:
 i-
 LLJ
 S
 O
 Qfj
 X
 u
 >-

 £

 uj
 Oil
a:
LLJ
a.
2
LLI
O
LLJ
Q£

Z)
UJ
a.


LLJ
                                                                  CO

                                                                  13
                                                                  cc
a:
Q
                                                                  11-9

-------
( aiv AHOI do  WVHO aad HOJVA
                                       do swvao ) ouva xnaiwnH
 i-
 o:
 <
 x
 u
 u
 UJ

 O
 LLJ
 Q_
 2
 LU
 I-

 _J
 <
 S
 OIL
 O
11-10

-------
HIGH TEMPERATURE PSYCHROMETRIC CHART
              (METRIC UNITS)
                                          .-. .090
    50
                                            .075
                                            .070
                                            .085  —•
                                            .080
O
3

§
ex.
in
0.
ex.
O
0.
                                                LL.
                                                O
                                                to
                                                O

                                                O
                                                H-
                                                <

                                                >-
                                                H;
                                                O
                                                X
                                      no   120
       DRY BULB TEMPERATURE  ( °C )
                                                11-11

-------
        (aiv xaa do annod aad aodVA  ygivM do sannod)  oiiva AiiaiwnH
                                                                 18
  X
  u
  LLJ
LJJ
  LU
  Q_
  2
  LLJ
  I-

  O
                                                                     LU
                                                                     DC
                                                                     LU
                                                                     O.
                                                                     CO
                                                                     —1
                                                                     D
                                                                     CO
11-12
                                                        See Reference No. 14

-------
(aiv xaa jo annod aad aodVA
                                        jo sannod) ouva Aiiaiwrm
  o:
  <
  n:
  u
  u
  QL
  h-
  LU
  Q. X




  II
  
-------
                   HIGH TEMPERATURE PSYCHROMETRIC CHART

                                   (ENGLISH UNITS)
                                                                       0.090
                                                                       0.085
                                                                       0.080
                                                                       0.075
                                                                       0.070
                                                                       0.065
                                                                       0.060
                                                                       0.055
                                                                       0.050
                                                                       0.045
                                                                       0.040
                                                                       0.035
                                                                       0.030
                                                                       0.025
                                                                           oe.
                                                                           a
             o

             z
             :D

             O
             o.

             oe.
             LLJ
             a.

             Of.

             O
             0£.
             UJ
             I—

             <



             u_

             O

             


             Z


             O
             Q-



             g

             i—

             <



             >-
             H;

             Q
                                                            220
                                                                   240
                           DRY BULB TEMPERATURE  (°F)
11-14
See Reference No. 14

-------
             SATURATION VAPOR PRESSURE OVER WATER

                             (T, in. Hg)
o>
LU
1/1

1/1
UJ
o
Q.
z
o
    0.2 scsri:
      0    20   40    60
80   100   120  140


  TEMPERATURE   ('
160   180   200  220  240
                                                                11-15

-------
                SATURATION VAPOR PRESSURE OVER WATER
                                ("C, mm. Hg.,)

                          va uration 'rapor pressure of
            0   10   20   30   40   50   60   70   80   90   100

                            TEMPERATURE   (°C)
11-16

-------
             REDUCTION OF PSYCHROMETRIC OBSERVATIONS
                     (FAHRENHEIT TEMPERATURES)

             Values of A« = 0.000367M* — O (1 + -*'~13-) for p = 30 in. Hg. and 1 in. Hg.

                      (See p. 365 for discussion and explanation of table.)
                             Wet-bulb temperature f — 'F.
Deprei-
.ionof 0 20 40 60
wet bulb
* ~ •* 30 in. 1 in. 30 in. lin. 30 in. 1 in. 30 in. 1 in.
in. Hg. In. Hg in. Hg. in. Hg. in. Hg. in. Hg. in. Hg. in. Hg.
1 0.01079 0.00036 0.01093 0.00037 0.01107 0.00037 0.01121 0.00038
2 .02157 .00072 .02185 .00072 .02213 .00073 .02241 .00074
3 .03236 .00108 .03278 .00109 .03320 .00111 .03362 .00112
4 .04314 .00144 .04370 .00146 .04426 .00148 .04482 .00150
5 0.05393 0.00180 0.05463 0.00183 0.05533 0.00185 0.05603 0.00187
6 .06471 .00216 .06556 .00218 .06640 .00221 .06724 .00224
7 .07550 .00252 .07648 .00255 .07746 .00258 .07844 .00262
8 .08629 .00288 .08741 .00292 .08853 .00295 .08965 .00299
9 .09707 .00323 .09833 .00327 .09959 .00332 .10086 .00336
10 0.10926 0.00364 0.11066 0.00369 0.11206 0.00374
11 .12018 .00401 .12173 .00406 .12327 .00411
12 .13279 .00442 .13447 .00448
13 .14386 .00479 .14568 .00486
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30















































































j. Wet-bulb temperature f —
lion of
wet bulb
t — f
•F.
1
2
3
4
5
6
7
8
9
-40
30 in.
ln.Hg.
0.010505
.021011
.031516
.042022
0.052527
.063032
.073538
.084043
.094549
1 In.
in.Hg.
0.000353
.000697
.001050
.001403
0.001756
.002099
.002452
.002805
.003149
.15492
0.16599
.17706
.18812
.19919
21025
022132
23239
















•F.
-20
30 In.
ln.Hg.
0.010646
.021291
.031937
.042582
0.053228
.063873
.074519
.085.165
.095810
1 in.
in.Hg.
0.000358
.000706
.001064
.001421
0.001779
.002127
.002485
.002843
.003191
.00517 .15689
0.00553 0.16809
.00590 .17930
.00627 .19051
.00664 20171
.00701 21292
0.00738 022412
.00775 23533
24654
25774
26895
028015
29136
.30257
.31377
.32498
0.33619
.34739
,35860
.36980
.38101
0.39222
,40342
.41463
.42584
.43704
0.44825
.00523
0.00560
.00597
.00635
.00673
.00709
0.00747
.00785
.00821
.00859
.00897
0.00934
.00971
.01009
.01046
.01083
0.01121
.01158
.01195
.01233
.01270
0.01307
.01345
.01382
.01420
.01456
0.01494
80
30 in. 1 in.
in. Hg. In. Hg.
0.01135 0.00038
.02269 .00075
.03404 .00113
.04539 .00151
0.05673 0.00190
.06808 .00227
.07942 .00265
.09077 .00303
.10212 .00340
0.11346 0.00378
.12481 .00416
.13616 .00453
.14750 .00492
.15885
0.17020
.18154
.19289
20423
21558
022693
23827
24962
26097
27231
028366
29501
.30635
.31770
.32904
0.34039
.35174
.36308
.37443
.38578
0.39712
.40847
.41982
.43116
.44251
0.45385
.00530
0.00567
.00605
.00643
.00681
.00718
0.00756
.00795
.00832
.00870
.00908
0.00946
.00983
.01021
.01059
.01097
0.01135
.01173
.01210
.01248
.01286
0.01323
.01361
.01399
.01438
.01475
0.01513
.45945 .01532 .46520 .01551
.47066 .01568 .47655 .01588 42
.48187 .01606 .48789 .01626
.49307 .01644 .49924 .01664
0.50428
.51549
.52669



0.01681
.01718
.01756



0.51059
.52193
.53328
54463
.55597

0.56732
0.01702
.01740
.01778
.01816
.01853

0.01891
•F.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
43
44
45
46
47
48
49

50
See Reference No.  1
11-17

-------
                   REDUCTION OF PSYCHROMETRIC  OBSERVATIONS

                                 (CENTIGRADE TEMPERATURES)




                           Values of  A* = 0.000660(l+ 0.00115t')K«-I')  for #=1000 mb.

               Depre^
               vet bulb                        Wet-bulb  temperature If — *C.

                *~r   -50   -40     -30    -20   -10    0       10     20     30     40     50

                        mb.   mb.     mb.    mb.   mb,    mb.     mb.     mb.     mb.     mb.    mb.
                  0   0.0    0.0    0.0    0.0    0.0    0.0      0.0      0.0     0.0     0.0    0.0
                  1   0.6220  0.6296  0.6372  0.6448  0.6524  0.6600   0.6676   0.675   0.683   0.690  0.698
                  2   12441  12593  12745  12896  13048  13200   13352   1.350   1.366   1381  1.396
                  3   1.8662  1.8889  1.9117  1.9345  1.9572  1.9800   2.0028   2.026   2.048   2.071  2.094
                  4   2.4882  2.5186  2.5489  2.5793  2.6096  2.6400   2.6704   2.7011   2.731   2.761  2.792

                  5   3.1102  3.1482  3.1862  32241  32620  3.3000   33380   3376   3.414   3.452  3.490
                  6   3.7323  3.7778  3.8234  3.8689  3.9145  3.9600   4.0055   4.051   4.097   4.142  4.188
                  7   4.3544  4.4075  4.4606  4.5137  4.5669  4.6200   4.6731   4.726   4.779   4.833  4.886
                  8   4.9764  5.0371  5.0978  5.1586  52193  52800   53407,   5.401   5.462   5.523  5.584
                  9   5.5984  5.6668  5.7351  5.8034  5.8717  5.9400   6.0083   6.075'   6.145   6213  6282

                 10                                      6.6000   6.6759   6.752   6.828   6.904  6.980
                 11                                              7.3435   7.427   7.510   7.594  7.677
                 12                                              8.0111   8.102   8.193   8.284  8375
                 13                                              8.6787   8.777   8.876   8.975  9.073
                 14                                              93463   9.453   9.559   9.665  9.771

                 15                                             10.0138  10.128  10242  10.355  10.469
                 16                                             10.6814  10.803  10524  11.046  11.167
                 17                                             11.3490  11.478  11.607  11.736  11.865
                 18                                             12.0166  12.153  12290  12.426  12.563
                 19                                             12.6842  12.828  12573  13.117  13261

                 20                                                     13.504  13.655  13.807  13.959
                 21                                                     14.179  14338  14.498  14.657
                 22                                                     14.854  15.021  15.188  15355
                 23                                                     15.529  15.704  15.878  16.053
                 24                                                     16204  16386  16.569  16.751

                 25                                                     16.880  17.069  17259  17.449
                 26                                                     17.555  17.752  17.949  18.147
                 27                                                     18230  18.435  18.640  18.845
                 28                                                     18.905  19.118  19330  19.543
                 29                                                     19.580  19.800  20.020  20241

                 30                                                     20255  20.483  20.711  20.938
                 31                                                     20.931  21.166  21.401  21.636
                 32                                                     21.606  21.849  22.092  22334
                 33                                                     22281  22.531  22.782  23.032
                 34                                                     22.956  23214  23.472  23.730

                 35                                                     23.631  23.897  24.163  24.428
11-18                                                                                   See Reference  No.   1

-------
      CORRECTION TABLES FOR PSYCHROMETRIC CHART - ALTITUDE
                              (FAHRENHEIT)

          Additive Corrections for W, b, »nd T When Barometric Pressure Differs from Standard Burometer
                                Approximate altitude in feet
Wet '"
Bulb
emp.
-20
-18
-16
-14
-12
— 10
-8
-6
—4
-2
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
Sat.
Vapor
Press
In. H»
0.013
0.014
0.016
0018
0 020
0 022
0025
0 027
0.030
0.034
0.038
0042
0046
0.051
0.057
0 063
0069
0.077
0085
0 093
0 103
0 113
0.124
0 137
0 ISO
0.165
0.180
0.197
0.212
0 229
0.248
0.268
0.289
0.312
0.336
0.3491
0.3624
0.3761
0.3903
0.4049
0.4200
0.4356
0.4518
0.4684
04856
0 5033
0.522
0 540
0 560
0 580
0 601
0 622
0 644
0 667
0 690
0 714
0 739
0 76S
0 791
0 818
0 846
0 875
0 905
0 935
0 967
0 999
032
067
102
138
175
.214
253
294
335
378
-9
Ap -
AJF.'
-006
-007
-0.07
-008
-009
-0 10
-0.12
-0 13
-0 14
-0 16
-0 18
-0 V
-0 22
-0 24
-027
-0 30
-0 33
-0 36
-0 4C
-044
-0 49
-0 5
-0 6
-0 7
-07
-0 8
-0 9
-0 9
-1 0
-I.I
-1.2

-14
-1 5
-1 6
-1 7
-1.7
-1.8
-1 9
-1 9
-2 0
-2 1
-2 2
-2 3
-23
-2.4
-2.5
-26
-27
-28
-29
-3 1
-3 2
-3 3
-3 4
-3 5
-3 7
-3 8
-39
—4 1
-4 2
-4 4
-45
-4 7
-4 9
-5 0
-5 2
-5 4
-5 6
-5 8
-6.0
-6 2
-6 4
-6 7
-69
-7 1
00
+ 1
AA
-001
-001
-001
-0 01
-0 01
—0 02
-002
-0 02
0 02
-•0-02
« c
-0 ,
-0 03
-0 04
-004
-0 04
-0 05
-0 05
-0 06
-0 07
-0 08
-008
-0 09
-0 10
-0 II
-0 12
-0 13
-0 14
-0 15
-0 17
-0 18
-0 20
-0 22
-0 23
-0 25
-0 26
-0 27
-028
-0 29
-0 30
-031
-032
-0 34
-0.35
-0 37
-038
-0.40
-041
-0 43
-0 44
-046
-048
-0 50
-0 51
-0 53
-0.55
-057
-0 59
-061
-063
-066
-0 68
-071
-073
-0 76
-0 79
-0 82
-085
-088
-091
-094
-097
-1 00
-1 05
-1 08
-1 12
90
Ap-
Aff.l
' 006
007
0 08
009
0 10
0 II
0 12
0 14
0 15
0 17
0 19
0 21
0 23
0 26
029
0 32
035
0 39
0 43
0 47
0 52
06
0 6
0 7
0 8
0 8
09
0

2
3

5
6
8
8
»
0
0
1
2
3
.4
4
5
6
7
8
9
3 0
3 2
3 3
3 4
3 5
37
3 8
3.9
4.1
4.2
4.4
4.6
4.7
4 9
5.1
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6 7
6 9
7 1
7 4
7 7
0
-1
AA
001
001
0 01
001
001
002
002
002
0 02
002
003
003
003
004
004
0 05
005
006
006
0 07
008
0 09
0 10
0 II
0 12
0 13
0 14
0 15
0 17
0 18
0 20
0 21
023
025
027
0 28
029
030
032
0 33
034
035
0.37
0 37
039
041
0.42
044
0 46
048
0 49
0 51
053
0 55
0 57
0 59
0 61
064
066
069
0 71
0 74
077
079
0 82
0 85
0 88
091
094
097
1 00
1 05
1 08
1 II
1 16
1 21
181
Ap -
AIT.'
0 13
0 14
0 16
0 18
0 21
0 23
0 26
029
032
0 35
0 39
044
048
0 54
0 59
066
073
081
089
098
1 OS
1 2
1 3
1 4
1 6
1 7
1 9
2 1
22
24
26
2.8
3 1
3 3
36
3 7
3.9
4 0
4.2
4.4
4.5
47
4.9
5 1
5 3
5 4
5 7
59
6 1
6.3
6 5
6 8
7 1
73
76
7 9
8 1
84
87
9 0
9.4
97
10 0
10 4
10 8
II 2
II 6
12 0
125
129
13 3
13
14
14
15
15
DO
-2
A*
002
0.02
002
003
003
003
004
004
005
005
006
007
007
008
009
0 10
0 II
0 12
0 14
0 15
0 17
0 18
0 20
0 22
0 24
0 27
029
0 32
0 35
0 37
0.41
044
047
0.51
0.56
0 58
060
063
065
068
0 70
0 73
076
0 79
082
085
0.88
091
095
098
1 02
06
10
14
18
23
27
.32
36
41
46
52
57
63
69
75
1 82
1 88
1 96
202
2 10
2 17
224
232
2 40
2.50
27
Aj>-
Air.'
020
023
0 26
0 29
032
036
0 40
044
050
0 55
0 61
068
075
0 83
093
03
13
25
38
53
68
9
1
3
5
7
0
2
3 5
38
4 1
4 4
48
5 2
5.6
53
6.1
6.3
6.5
67
7.0
73
7.6
79
8 2
8.5
8.8
9.2
9.5
9.9
10.2
106
II 0
11.4
II. 8
12.2
12 7
13 1
13.6
14 1
146
15 1
15 7
16 3
169
17 5
18 1
188
19.5
202
209
21.6
223
23 1
23 9
24.8 '
10
-3
AA
003
003
004
004
005
005
006
0 07
007
0 08
009
0 10
0 II
0 13
0.14
0 16
0 17
0 19
0 21
0 23
0 26
029
032
035
038
042
045
049
0 53
0 58
063
0 69
0 74
0 80
087
090
0 94
0.97
.01
.05
.09
13
.18
22
27
32
.37
.43
.48
54
.59
65
72
.78
84
1.90
1 98
2 05
2 13
2 20
228
236
2 46
25?
2 65
2 74
284
2.95
306
3 17
328
3 39
350
363
3 75
390
37
A»>-
AW.'
028
032
036
0 40
044
0 50
0 55
062
069
076
085
094
1 OS
1 16
1 28
1 42
1.57
1 74
1 92
2 12
233
26
28
3 1
34
38
4 1
4 4
4 8
5 2
5 7
6 1
6 7
7 2
7 8
8.1
84
87
9 0
9 3
9 7
10 1
10.5
10.9
11.3
11.7
12 2
127
13 2
13 7
14 2
14.
IS
15.
16
17
17
18.
18
19.
20.
20
21
22
23
24
25
26
27.
28
28
29 9
309
320
33 1
34 3
00
-4
AA
004
005
005
0 06
007
0 07
008
0 09
0 10
0 II
0 13
0 14
0 16
0 18
0 19
022
0 24
026
0 29
032
036
0 40
0 43
0 48
0 52
0 58
063
068
074
080
088
094
04
II
21
25
30
.35
40
44
SO
.57
63
69
76
82
90
98
205
2 13
2 21
2 29
238
2.47
2 56
265
2.75
2 84
294
3 05
3 16
3 27
3 39
3 52
365
379
3 93
4 08
4 24
439
4 54
4 69
4 85
5 02
5 20
5 39
4»
Aj> =
AIT.'
036
041
046
052
0 58
064
0 72
080
089
099
1 10
1 22
1 36
1 SI
1 67
1 85
204
2 26
2 49
275
3 03
34
3 7
4 1
4 5
49
5.3
5 7
6 2
68
7 4
80
8 7
9 4
10 2
10 5
109
II 3
II 8
12 2
127
13 2
13 7
14 2
14 7
153
15.9
16 5
17 1
17 7
184
19 1
19.8
20 5
21 3
22 1
229
23 7
24 6
25.5
264
27 4
28 3
29 4
30 5
31 6
32 7
33 9
35.1
36 4
377
39 0
40 4
41 8
43 2
44 8
00
-5
AA
0 OS
006
0 07
0 08
009
0 10
0 II
0 12
0 13
0 15
0 17
0 19
0 21
0 23
0 25
0 28
031
0 34
0 38
0 42
0 46
0 52
0 57
063
069
0 75
082
0 88
096
1 05
14
23
34
45
58
63
69
75
83
89
97
205
2 13
2 21
2 28
238
2.47
2.57
266
2 76
287
298
3 09
3 20
3 32
345
3 58
3 70
3 84
3 99
4 14
4 28
4 42
4 61
4 77
4 95
5 13
5 32
5 51
5 71
5 92
6 12
6 34
6 56
6 79
7 04
591
Aj,-
AIF.'
0 47
0 52
0 58
065
0 72
0 81
0 90
00
12
24
38
53
70
89
209
231
2 56
2 82
3 12
3 44
3 79
4 2
4 6
5 1
5 6
6 1
6 6
7 2
7 8
84
9 2
10 0
108
II 7
126
13.1
136
14.1
14.7
15.2
15.8
16.4
17 1
17 7
18 4
19.1
19.9
20 7
21 4
22 3
23 1
23 9
24 8
25 7
26 7
27 7
2ft 7
29 7
30 9
31 9
33 1
34 3
35 5
36 9
38 2
39 6
41 0
42 5
44 0
45 6
47.2
48 9
SO 6
52 3
54 2
56.2
00
-6
AA
007
0 OS
0.09
0.10
0.11
0 12
0 13
0 15
0 17
0 19
0 21
0 23
0 26
0 29
032
035
039
0 43
0 48
053
058
064
071
0 78
086
092
01
II
20
30
.42
54
67
81
95
2.03
2.11
2.18
2 28
236
245
254
2.66
2 75
2 86
297
309
3 22
333
3 47
3.60
3.73
3 87
4 01
4.16
432
4 48
4 64
4 82
499
5 18
5 37
5 56
5 77
5.98
6 20
6 43
6 66
6.90
7.15
7 41
7 67
7 94
8.21
8 51
8 83
See Reference No. 10
11-19

-------
       CORRECTION TABLES  FOR  PSYCHROMETRIC CHART  - ALTITUDE
                                                 (FAHRENHEIT)
                                                       (continued)

           Additive Correction! for W, h, and T When Barometric Pretiur* Differs from Standard Barometer
Wet
Bulb
T«mp.
1'
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
III
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
Sat.
Vance
i n|*»
Pre».
In. H,
1 422
1 467
1 514
1 561
1.610
1 661
1 712
1 766
1 820
1 876
1 933
1 992
2053
2 115
2 179
2.244
2 311
2 381
2 450
2 523
2.597
2 673
2 751
2831
2913
2996
3062
3.170
3.260
3.353
3.448
3 545
3644
3 746
3 850
3956
4 065
4.177
4 291
4 408
4.527
4650
4 775
4.903
5 034
5 168
5 305
5 445
5 588
5 735
5884
—91

Ap -
A»V
-7~4
-7 6
-79
-8 2
-85
-8 8
-9 1
—9 4
-9 7
-10 1
-104
-108
-II. 1
-11.5
-11.9
-12 4
-128
-13 2
-13.7
-14.2
-14 7
-15 2
-15 7
-16.)
-16.9
-17.4
-180
-187
-19.)
-20 0
-20 7
-21 4
-222
-2) 0
-2)8
-24.7
-25.6
-26 5
-27 5
-28.5
-29 5
-306
-31 8
-329
-34 2
-35 5
-36 8
•-38 J
-39 7
-41 2
-428
IQ

+ 1
AA
- T6
- 20
- 24
- 29
- 34
- 39
- 43
— 48
- 53
- .59
- 64
- 71
- 75
- 82
- .88
-1 96
-202
-209
-2 17
-2 25
-233
-241
-249
-2 58
-268
-276
-2 86
-297
-3 07
-3 18
-3 29
-3 40
-3.53
-366
-3 79
-3 94
-4.08
- 23
- »
- 55
- 71
- 89
- 08
-5 »
-5 47
-568
-5 89
-6 II
-636
-660
-6 86


Ap-
Aifv
79
2
5
8
.1
4
8
1ft 1
IV 1
10 4
108
II 2
II 6
120
124
12.8
133
13 7
14 2
14 7
15 3
15 8
16 3
169
17 5
18 1
188
19 4
20 1
208
21 6
224
23 2
24 0
24 9
25 8
26 1
276
286
29 7
30 8
320
33 2
34 4
35 8
37 1
38 5
400
41 5
43 2
44 8
465


-1
AA
24
29
34
39
43
.48
54
64
70
77
83
90
96
202
2 10
•S.I7
2 25
233
242
2 50
2 58
268
278
287
298
3 08
3 19
3 31
3 43
3 56
3 77
3 82
3 96
4 II
4 15
440
4 56
4 74
4.92
5.11
5 30
5 50
5 72
593
6 16
6 40
664
6.92
7 18
845

18
A, -
Air.i
16 5
17 0
17 6
183
18.9
196
202
in o
M v
21.7
224
23.2
24 0
24 8
25 7
266
276
286
296
306
31.7
328
34 0
35 2
36 4
37 7
39 1
40 4
41 8
43 3
44 9
46 6
48 3
500
51 8
537
55 6
577
59 8
620
64 3
667
69 2
71 8
74 5
77 4
803
S3 4
M 6
900
93 6
97.)

0
-2
AA
259
267
2 77
288
298
3.09
3 18
Jw
ft
3 42
3 53
3 66
3 79
392
4 06
4 20
4 36
4.51
468
4 84
502
5.20
5 39
58
77
98
21
42
6 64
6 88
7 14
7 41
7 68
796
25
55
86
20
54
89
1026
10 64
II 05
II 47
II 91
1237
12 84
13 34
13 86
14.41
14 99
\5.St
	
27
Ap-
AHV
25 7
26 6
27 5
28 5
29 5
30 5
31 5
«* t
j* t>
33 8
35 0
363
37 6
389
403
41 6
43 1
446
46 2
47 7
49 4
51 3
53 1
55 0
569
589
61 0
63 2
65 4
67.8
70.3
72 8
75 5
78 2
81 1
840
87 1
903
93.6
97 1
1007
104 5
108 5
1126
116.9
121 4
126 0
130 9
1)6 0
141 4
147 0
152 8

10
MJ —
AA
404
4 18
4 33
4 49
464
4 80
496
511
t*
5 33
5 52
573
5 94
6 14
637
6 58
6 82
7 06
7.31
7 55
782
8 13
8 42
S 72
9 03
9 50
9 68
1003
1038
1077
II 18
II 58
12 01
12 45
1291
1)38
1) 88
1439
1493
15.49
16 07
16 68
17 33
17 99
18 68
19 41
20 15
2094
21 77
22 64
23 55
24 48
17
9t
Ap-
AIT.'
35 6
369
38 2
396
41 0
42 4
43 8
«^
3
47 0
486
50 4
52 2
54 1
560
579
59.9
62 1
64.3
66 5
68.9
71 3
73 8
76' 4
79 2
82.0
85 0
88 0
91 2
94 4
979
101 4
105 1
109 0
112 9
117 1
121 4
1259
130 6
135 5
1406
145 9
151 4
157 2
163 3
1696
176 2
183 1
190 3
197 8
205 7
2140

10
~1
~AA
~rw
5 80
6 01
623
6.46
668
690
7| A
14
7 41
7.67
7.95
8 24
8.54
885
9.15
9 47
9.82
10.17
10 5)
1091
11.30
11.70
12 II
1256
13 01
13 49
1397
14 49
15 00
15 56
16 13
16 72
17 35
1798
1865
19 34
2007
20 S3
21 61
U44
23 29
24 18
25 II
26 10
27 12
28 18
29 30
30 46
31 67
32.95
34 29

4ft.
Ap -
-&W.'~~
46 4
48 1
49.8
51 5
53 4
55.2
57 2
»*
2
61 3
63 5
65 7
68 0
705
72.9
755
782
81.1
84.1
87.0
90.0
93.1
96 4
99.9
103 5
107.3
Mil
115 1
119.2
123 5
128.0
1327
137.6
142 6
1479
1533
159 1
165.0
171 2
177.6
184 3
191.4
198 7
206 3
214 3
222 7
231.4
2405
250.1
260.1
270.6
281 6

-J
~-f
~AA
7 29
7 56
7 83
8 II
841
869
9 01
»M
yy
9 67
1002
1037
10 74
II 13
II 52
II 93
1237
1283
13 31
13 77
14 25
1475
15 28
15.84
16 42
17 03
1764
18 28
1894
1963
20 35
21 10
21.89
22 70
23 55
24.42
25.35
26.30
2730
28.33
29.41
30 55
31 73
3296
34 25
3560
37 01
3848
40 03
41.65
43.34
45 12

59
Ap -
~*W.<
~58~2
60 3
62 5
64 7
670
69.3
71 7
71 1
/4 i
76 8
796
82 5
85 4
885
91 (
94.8
982
101 7
105 3
109 1
113 f
117 u
121 4
125 9
130.4
135.0
1)9 7
144.7
150.0
155.4
161. 1
167 1
173 2
179.6
1863
193.2
200.5
2080
215.8
224.0
2326
241.5
2503
2606
2708
281.4
292.6
304.2
316.4
329.3
342.7
356.8

00
-6
AA
"9TTT
9 48
9 83
10 18
1055
1092
11.30
n7n
/u
12 II
1256
13.02
13.48
,3.98
1447
14.98
15 53
16 09
1666
17 27
17.90
18.54
19 24
19.96
2068
21.42
22 18
22 98
23 83
24 73
2561
26 56
27 56
28.58
29.66
30.77
31 95
33 15
34 41
35 73
37.12
3855
40 05
41.63
43.28
44.99
46.80
48.67
50.64
5273
54.89
57.17
           I - Dry bulb temperature (°F).
           (' - Wet bulb temperature ("F).
           t - Barometric preamm (in. of HI).
          Ap - Pretnire difference from standard barometer (in. of Hf).
          W — Moiiture content of air (p. per Ib. of dry air).
          nV - Moiiture content of air saturated at wet bulb temperature I' la per
              Ib. of dry air).
         ArF - Moisture content correction of air when barometric premre differa
              from itandard barometer dr. per Ib. of dry air).
        AHV - Moisture content correction of air saturated at wet bulb temperature
              when barometric prewre diffen from itandard barometer (p. per Ib
              of_dryair).
              NOTE: To obtain A IT reduce value of A IF.' by I % when
                I -1' - 24°F and correct proportionally when (- (' ii not 24*F.
           A — Enthalpy of moist air (B.t.u. per Ib. of dry air).
          AA - Enthalpy correction when barometer preuure diffen from itandard
              barometer, for saturated wunaattirated air.  (B.t.u. per Ib. of dry air).
           • - Volume of moist air (cu. ft. per Ib. of dry air).
Example: At a barometric pranun of 25.92 with 220*F DB and IOO°F WB
determine IT. A, and vA.  >>--4 and from table ArF,'- 50.4. From note
above,

      AIT - AIT.I - f™ x .01 x 50.4) - 50.4 - rs - 47.9

Therefore W - 102 (from chart) + 47.9 - 149.9 p. per Ib of dry air.  From
table AA - 7.95.  Therefore A - saturation enthalpy from  chart + devia-
tion + 7.95 - 71.7 - 2.0 + 7.95 - 77.65 B.t.u. per Ib. of dry air.  From
equation above

                     I -r
                             - ».4)«.
                 .754 (t +ma) f . "  W "I
                	;	LI+«15>J
11-20

-------
SATURATED  WATER VAPOR AS FRACTION OF METERED VOLUME AS A

   FUNCTION OF ABSOLUTE PRESSURE (in. Hg.) AND TEMPERATURE (°F)
o
O


z
o
o
Q.
Q
           4    5   6  7  8  9 10            20       30



               ABSOLUTE  METER  PRESSURE  (in. Hg)
40
                                                          11-21

-------
 SATURATED  WATER VAPOR AS FRACTION OF METERED VOLUME AS A
  FUNCTION OF ABSOLUTE PRESSURE IN mm Hg, AND TEMPERATURE (°C)
      z
      o
      Of
      o
      a.
         0.03
         0.02
             100
  200      300   400  500  600   800   1000

ABSOLUTE  PRESSURE  (mm  Hg)
11-22

-------
         PSYCHROMETRIC NOMOGRAPHS FOR HIGH AND LOW  PRESSURES
 Example 1  (Centigrade Chart - Low Range)

Suppose a psychrometer reads 20°C on the dry
bulb and 8°C on the wet bulb when the total
(barometric) pressure is 60 cm Hg.  To find
the pressure of water vapor,  place a straight-
edge so that it intersects the  "Observed Dry
Bulb Minus Wet Bulb,°C" scale at 20 - 8 = 12.
Adjust it so that it intersects the "Barometer,
cm Hg" scale at 60, and note the intersection
with the "Sea Level Equivalent Dry Bulb Minus
Wet Bulb,°C" scale (9.5).  Holding the straight-
edge at this point, swing it so that it inter-
sects the (central, nearly vertical) "Wet Bulb,
°C" scale at 8, and read the pressure of water
vapor (3. 30) on the "Humidity, mm Hg" scale
at the right.  A computation from the psychro-
metric formula gives  3.312 mm Hg for this
value.
 Example 2  (Centigrade Chart - Low Range)

 Continuing the example started above, hold
 the straightedge fixed at the value 3. 30 on
 the "Humidity,  mm Hg",  and swing it so that
 it intersects the (diagonal)  "Dry Bulb.'fc"
 scale at 20.  By extending this line to the
 vertical "Relative Humidity, Percent" scale
 (inner left), the relative humidity is found
 (18. 8%).  Computation gives 18. 87% for the
 psychrometric  data given originally.
 Example 3  (Centigrade Chart - Low Range)

Continuing with the data of example 1, con-
nect 3. 30 on the "Humidity,  mm Hg" scale by
straightedge with 100 on the "Relative
Humidity, Percent" scale. The intersection
of the straightedge with the "Wet Bulb.'fc"
scale (-4. 35°C) gives the dewpoint  in terms
of subcooled water; that with the "Ice Bulb,
°C"scale(-3.85°C) gives the dewpoint rela-
tive to ice.  Computed values are  -4.
and -3. 85
-------
        PSYCHROMETRIC NOMOGRAPHS  FOR HIGH AND LOW PRESSURES
                                      (continued)
                       Example 7 (Centigrade Chart - Low Range)

A psychrometer reads 24°C on the dry bulb and 8 C on the wet bulb when the pressure is
57 cm Hg.  Using these values, the pressure of water vapor is found to be 2.05 mm Hg.  By
assuming separately the values 25°C on the dry bulb, 9°C on the wet bulb, and 58 cm Hg,  the
following sequence of values is found.
Dry,°C
24
25
24
24
Wet, °C
8
8
9
8
Pressure,
cm Hg
57
57
57
58
Humidity, mm Hg
Chart
2.05
1.66
2.96
1.93
Formula
2.050
1.676
2.984
1.945
From these values, the effect of an error of one unit in each reading, and its reciprocal
function, the precision requisite to obtaining a final value of desired precision,  are obtained,
as given below.
Unit error in
Dry bulb
Wet bulb
Pressure
Error in final
value, mm Hg
0.39
0.91
0.12
Precision for 1%
relative humidity
precision in result
O.SS'fc
0. 22°C
1.86 cmHg
Precision for 0. 1 mm
Hg precision in result
0. 26°C
0.10°C
0.83 cm Hg
 11-24

-------
PSYCHROMETRIC NOMOGRAPHS FOR HIGH AND LOW PRESSURES
                        (continued)
                       SONIW anna  xaa a3A«3sao
                    !N3TVAin03  T3A31 V3S
                                                        11-25

-------
     PSYCHROMETRIC NOMOGRAPHS FOR HIGH AND LOW PRESSURES
                             (continued)

2 o>
1 , VJ 1 , 1 1 . 1 1 1 1 1.1 ,
rv • i • i • i

CO
,.,|,,


r-
1.1 I. , . .1 ._! . . I . .

OH ww 'Aiiamru
o             g

                  o 'anna ISM SONW aina xaa  a3AH3sao
                       'anna 13M snNm eina

                          XN31VAinO3 13A31 V3S
11-26

-------
PSYCHROMETRIC NOMOGRAPHS FOR HIGH AND LOW PRESSURES
                        (continued)
                  'anna ISM SONIW anna xaa
                   !N31VAin03 13A3T V3S
                                                        11-27

-------
      PSYCHROMETRIC NOMOGRAPHS FOR HIGH AND LOW PRESSURES
                              (continued)
                              OH 'Ml
                                   o              in
                     '9ing IBM snNm aina AHQ Q3A«3sao
                        J.N3DH3d 'AliailNnH 3AllV-|3b
D 2
' 'i1 ' 1 ' V ' 1 ' 'i
o
r\j
1 1 1 1 1,1 1 1 i I^L.
0
o
1 1,1 1
o
1 1,1 1 1 1 1,1 1
o
in
1 1,1 | 1,1
0
«
* VJ f'-V'"
o

0

-------
O
LL.
O




O

a:
LU
Q_


LU
h-
<
^

LL
O
  •
^^0

O

I/O
O
Q_
a:
LL)
I-
CO
a
UJ
U
O
LU
3
ID
_J
O
LL.
O
•z.
O
                                                                                            Qi
                                                                                            O
                                                                                            01
                                                                                            LU
                                                                                            a.
                                                                                            CO
                                                                                            O
                y31VM   A3   Q3ldnDDO    3WniOA   1V1O1   dO   NOIlDVild
                                                                                       11-29

-------
      GRAPHICAL METHOD FOR CONVERTING VOLUME OF CONDENSED WATER
      TO VOLUME OF WATER VAPOR AT CONDITIONS OF TEMPERATURE IN
                        *K AND PRESSURE IN mm. Hg.
          Example:
  1.0
2.0    3.0  4.0    6.0  8.0 10         20    30  40

       VOLUME  OF  WATER  VAPOR (liters)
60  80
11-30

-------
CO
Q  O
—_  J^
2  <
ID  -
X  v?
    UJ
iu  5


II
LU  •-

Of  t
    UJ
    X

    1.
    LU
    ex.
    I
                                                               SSS  SSSSS 8SSSC


•* p «•****•»•-«
U} M M tA «» lA IA
!•»»»«•» « w **
>R u> tn ui id in iA
t-teiAIAM »*"
in io to id K» MI u»
oor-r-wt*»iA
MuiwauiiAie M»
e wacMr- t-r~
WU»M-
••«->- 1- ••«•«-
3SS3SSS
sssssss
S29S2"S

»•»•••
-»»^*'*
sssss
sssss
sssss
W4»«*N»U*
miAlAWItA
00...
sssss
5S5SS
WWWViA
**««»«
M «« r- 1- 1-
sssss
•tHMMM
t-«-t-»-t-
*»»»*»
r-r-t-t-f-

WMMMW
sssss
*-!>»-••
•BttWMW
•2S£*

• •BMr-t,
MM^^O
M9IAIAl«u»
332S3
ss::s
StaitttoU
e« «•»»
WMMtiAiA
3 5 3 S M
tats taw «
wSSS10
sssss

*-fft-t~

ssss*
sssss
sssss
S2222

M»M*«*t
« W W
t-WWVlA
SSS55
^^00*
U»M»U»W»*>
SSSSS
sssss
sssss
sssss
pa M r> c* M
(CWWWtft
t- f- « w •*
«W«WU>
MMMMM
*~ *~ •- *~ *-

sssss
•VtOOOM
• lAUliAiA

MMMM^
ia wmtt
55555
5*55*
— OO»i*»
MKIMtW

SSSSS
sssss
SSSSS
mrtMNM
<0 •« W W ••
u» u» M •» *
<0WW«<0
r-r-»-i»w
tew WWW
et «t oiwao
«*«« ww

ss::s

sssss
M^MOO
M»in^"**»
t- WIAIA
*>oo«>r~^-
SM»U»U»M»
^^M«qM
5U»5S
«0Sw»MM
«4«*-l-«O
wwww*
*MHMM
WWWWW
wwautko*
wwwww
3SwU*
SSSSS
SS5CS

sssss
-S22S

r-r-vMw
••WMMM
• «o»r-w
MMMMM
NM^ee
•**••*•«••<
WiMia-^n
SS555
•*<«ee»
MMH4>A«
ioinu»iAia
eor-i« VIA
MIMMlAlA
e»d»ooM
M-^eo
wwwww
WVMMM
wwwww
sssss
sssss

— OOOO
W lAMlA

MMMWM
MM******
•»•!•*«•
ft «*n*iM
XO«WM
««Mom
MM-«eo
55533
««t-t-«
SSSSS
in ww n M
Miaiaiaw*
t-r-w«»ta
««io«r>
IA«AIAlA>4
t« -• ^ OO
ww ww
::sss
1-WWkOlA
••••»•••

PSSSS

MWWOOM
f- »Mk«M
•VMMMM
ssscs
HMMMM
«kV, t~WlA
*t*tn«»f*
sssss
U»WM**>^
S555S
M^eo»«
iA*ato-r •*
«MMM-*
Mtowauiu*
t»«iAU» »
dnAM»«aiA
*«ewt~ W
w»MiAiAia
SSSSS
::sss

ss?:r

W^MMM
SSSSSSS  SSSSS SSSSS  S
                                          SS
                                             S  SSSSS S
WWWWW W»  «»M>MIA MlAMMlA  M»MHAH)in itV




•DWMMWWW  MWMI*a0 «•»«»«>  «O go oe «C W t* t-

»«*«*«»«»  •»•»»«* •>•*»»  •>«»««« *»
                                                t>t-t-r-r> »-»-1-»»
                                                •»••»••« *•«**
sssssss  zzzzz sssss  s^ss *s*HH ?55H? H5555  H==^ s?ss!
                    SSSSS S53SS SSSSS 55555 555;? SSt



                    SSSSS SUSSS SSSSS SS2S5 5555: 351

                    IA^MMM -^<^oat» r-r-WM> ^•**»«»* ^••OAOQ oei~u
                    »<••»<••• wv^Mtio tauttauiiA M>nia>Aio unoirt-*-* -v« i


                    »!•-«•»«* lA^MMrd MGOMA oeoet~t-w «*«»»«« H -- e
                    • VI»WA M

                                            M M oo w w
                                                                                              1"
                                                                                               -
                                                         SSSSS SSSSS 55555 355SS
                                                       * 3SSSS SS^*» SS;^? ^S[:
                                                                       •»«•* MCITCMM
                                                       S SSSSS SSSSS SS55S 55555
                                                                                    —-- —OOOJOt A«D

                                                                                    «»« «t »*lgc W Be«
See Reference  No.  16
                                                                                11-31

-------
SECTION U PROPERTIES OF GASES

         Graphical Solution of Boyle's Low, P^  = P2V2 = C
            for P in mm.Hg and V in Liters	   12-1
         Graphical Solution of Charles Law, PI/J = PI/J  = '-
            for P in mm.Hg and T in °K	   12-2
         Graphical Solution of "Perfect Gas Law" for One Gram-Mole of Gas,
            -^T - C for P in mm.Hg, V in Liters and T in  °K	   12-3
         Nomograph for Gas  Expansion Following PVn=C, for P in PSIA, V in Cubic
            Feet	   12-4
         Graphical Solution for Determining Density of a Gas,  Knowing P in mm Hg,
            T in  °C, and Molecular Weight	   12-6
         Nomographs for Converting |_i g/M to PPM by  Volume  Knowing T in °K,
            Molecular  Weight and P  in gm/cm-sec or mm. Hg	   12-7
         Graph for Converting jig/M  to PPM by Volume Knowing P in mm. Hg and T
            in °K for CI2, S02, N02, HCI, H2S, HCN, HF and NH3	   12-9
         Viscosities of Gases:  Coordinates for Use with Nomograph	   12-10
         Viscosities of Gases at One Atmosphere	   12-11
         Molecular Weights of Selected Gases	   12-12
         Specific Heat  Ratios of Gases at  One Atmosphere	   12-13

-------
       GRAPHICAL SOLUTION OF BOYLES LAW.
 PiVi = P2V2 =  C FOR P IN mm Hg AND V IN LITERS
                    VOLUME  (liters)
       3.0  4.0 5.0 6.0 8.0  10         20
                                                    30  40  50 60 7080  100
                                                               10000
                                                                9000
                                                                8000
                                                                7000
                                                                6000

                                                                5000
                                                                4000
                                                                2000
0.01
0.02   0.03 0.04   0.06  0.08 0.10       0.20   0.30  0.40
                    VOLUME  (liters)
                                                              0.60 0.80  1
                                                            12-1

-------
                   GRAPHICAL SOLUTION OF CHARLES LAW.
                            C FOR p IN mm H9 AND T IN °K
                             TEMPERATURE   (°K)
12-2

-------
 GRAPHICAL SOLUTION OF"PERFECT GAS LAW" FOR ONE GRAM-MOLE OF GAS.
              £X= C FOR P IN mm Hg, V IN LITERS AND T IN °K
1000
900
100
                               300      400
                         TEMPERATURE  (°K)
500   600  700  800 900 1000
                                                             12-3

-------
                          NOMOGRAPH FOR  GAS  EXPANSION
            FOLLOWING  PVn =  C,  FOR P IN PSIA,  V IN CUBIC FEET
     Method for making  calculations  necessary
     for plotting gas expansion or compression
     curves, or  for making other computations
     for determination of relationships between
     pressure and volume of a fixed amount of
     gas.  The  equation upon which  the chart
     is based is the conventional one, where

                    PVn = C
     where P is pressure, V  is volume, n is an
     exponent,  and C is  a figure  that remains
     constant through any one series of compu-
     tations.
       Any units may be used for pressure  and
     volume, but in any series of computations
     they must be consistent.
       In  arithmetical computation,  the  first
     step must be to set up the value of the con-
     stant  upon the basis of original pressure
     and volume conditions and an assumed ex-
     ponent. Then pressures may be computed
     for varying volumes, or  volumes  for vary-
     ing pressures.  Where the exponent is 1.0,
     which  can happen  only in  theory,  the
     arithmetical  problem is simple.   But the
     exponents applying to various gaseous ma-
     terials under actual  conditions are usually
     odd  ones, making  computation difficult
     and tedious.  With  the chart, however,  it
     is a simple process.

       Procedure.   First, the value of the expo-
     nent is set, and then  the vertical line scaled
     for this value on the chart is used through-
     out computations for the particular gas and
     general range of operations.   The second
     step is then  to note on this vertical  line
     the intersection of the horizontal   line
     scaled for  the initial value of volume, in-
     terpolating as may be  necessary.  Then a
     straight line  is established  through  this
     point  and the scale point corresponding to
     the initial Absolute Pressure on  the scale
     so designated.
       The intersection  of  this  line is  then
     noted on the blank  axis, and this point is
used as a basis for further steps.  Thus, to
determine the new volume  at some differ-
ent pressure, a straight line is established
through this point and the  scale point for
the new value on the Absolute Pressure
scale.  Then,  on the vertical line corre-
sponding to the assumed exponent value,
at the intersection of the line  just estab-
lished, may be read the new value of vol-
ume.
  By way of illustration, data may be ob-
tained for plotting the expansion curve of
a volume of gas beginning with an  abso-
lute pressure  of  300 pounds  per square
inch and occupying a volume of 5.00 cubic
feet, the exponent being set at  1.33.  The
first step, of course, is as described above,
locating the vertical line corresponding to
the exponent,  interpolating as necessary.
  Next,  a  straight   line  is  established
through  the scale point on this  line, corre-
sponding to the Volume,  5.00, and the
scale point for 300 on the  Absolute  Pres-
sure scale.  The intersection of  the line so
established with the  central, blank axis is
then noted and is used in subsequent  oper-
ations in this  particular problem.
  Now, the line is rotated about this  point
on  the blank axis to find points on the
expansion  curve,  and with one end  fixed
at any selected scale point on the A bsolute
Pressure scale, the corresponding  Volume
is read as  the intercept of the horizontal
scale lines on the vertical line of assumed
exponent at  the  point of intersection of
the rotating line. In this case, reading at
absolute pressures of 150, 80, and  40,  the
corresponding volumes are 8.35,  13.2. and
22.4, where computation gave 8.39, 13.20,
and 22.75.
  It should be emphasized that operation
of  this chart differs from others  in  this
collection  in  that the  intercepts  on  the
vertical lines are not carried to a fixed axis
associated with the graph  section.
12-4
                                                                         See Reference  No.  11

-------
     I—
     LU
     LLJ
     U_

     U

     CO
28 S g  8   8
o e> a

SNTTTOA
Q_     .
X  <
LU  £75
^  Q.

o  2  "S

or  °-  I
o  Q:  c
u-  o  8
-i-  u_  ~
o   "
O  c

O  Q.
     O
     _J
     _l
     O
                                                                          3KT1OSW
                 Ur.l.i.l.i.i.i.i.l.i.i.i.i.l.i.i.i.i.i .1.1.
                                                           8  S   B    8
                                                        I.. .,1,
                                                                          ..I....I..
                                                                                    . I.... I... ,1.1....... I.,
                                                                                                           5
                                                                                                        -1-J
                                                                                                                                     12-5

-------
12-6

-------
              I
                                     HOlDVd
g
z
j£
LU
IE
ID
_J
>
X_
CQ
n
01
E
E
a:
o
cs
flj
(/)
E
u
E
CT
0
X

1
71
2
X
IT)
-T

i i i i i i i
o o o o o o o
X X X X X X X
o> oo h-» *o in ^f co
, 1 , 1 . 1 > 1 > ' 1 '
fill |i i ^,« ii i 	
CM| cp| col co 1 ^l ^l 7
iiii •• i •
o o o o 2l ° 2
X X 'x ^ X. X X
^"* (^ QQ |S^ **O * LO ^*
\
-1 \ ilOlDVd
i §
X X
CM •—
1 1
1 ?l ' 7
2 2
x x
C*j ^«

1
                                                     awmoA
^ •<

O^

uu

o;iu
o _J
LL.O

I'l'l'l'l 'Ml
3CNOO rv -o in -^

i | i | i
CO CM
\ \ 1 .
\
\ |>|l|l|l| • |
_o. ootx >o 10
awmoA
'Ml
•* co

1 1 '
CM

1
O
                     cos 1° wdd eri  :suv
O
•«
-=
Wdd 04
                            i x Ei


                            OOOC
                                     jyy
                                    .
                                    Xq


                                   PUD
                                             00
                                 /gW \3WmOA


                                 I 6lH/  SSVW
                                                        CM
                                                                          12-7

-------
  I **•

O Q)



Si
,  J,,»,J,
1  I l  I I I i 11
                      1     IM
I    I
                                                       1   1
        o

         X
•o I >o' ^o I
 O  o  O
             X
            u->

            O*
                            x
                           CM
                                 co
 I   I  •  I  I  I '  I • I • I' I
  O   •<>  
-------
  GRAPH FOR CONVERTING ng/M3 TO PPM BY VOLUME KNOWING P (mm Hg) AND
            T (°C OR *K) FOR CI2/ S02/  N02, HCI, H2S, HCN, HF AND NH3
  MASS    OF   POLLUTANT
        PER   VOLUME
OF   CARRIER   GAS
                                                        300  400 500   700   1000
         OF   POLLUTANT
 PER   VOLUME   OF
CARRIER   GAS   (PPM)
                                                  when the concentration of NO2 is 0.29 ppm?
                                                  The existing temperature and pressure are 107°C
                                                  and 760 mm Hg.

                                               Ans: _£ _ 760 mm Hg _
                                                   T ~ (107+273)°K "
                                                Concentration = 440 u
                                                                        12-9

-------
                           VISCOSITIES OF GASES
                     COORDINATES FOR USE WITH NOMOGRAPH
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Gas
Acetic acid
Acetone
Acetylene
Air
Ammonia
Argon
Benzene
Bromine
Butene
Butylene
Carbon dioxide
Carbon disulfide
Carbon monoxide
Chlorine
Chloroform
Cyanogen
Cyclohexane
Ethane
Ethyl acetate
Ethyl alcohol
Ethyl chloride
Ethyl ether
Ethylene
Fluorine
Freon-11
Freon-12
Freon-21
Freon-22
X
7.7
8.9
9.8
11.0
8.4
10.5
8.5
8.9
9.2
8.9
9.5
8.0
11.0
9.0
8.9
9. 2
9.2
9.1
8.5
9.2
8.5
8.9
9.5
7.3
10.6
11.1
10.8
10.1
Y
14.3
13.0
14.9
20.0
16.0
22.4
13.2
19.2
13.7
13.0
18. 7
16. 0
20.0
18.4
15.7
15.2
12.0
14.5
13.2
14.2
15.6
13.0
15. 1
23.8
15.1
16.0
15.3
17.0
No.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
Gas
Freon-113
Helium
Hexane
Hydrogen
3H2 + 1N2
Hydrogen bromide
Hydrogen chloride
Hydrogen cyanide
Hydrogen iodide
Hydrogen sulfide
Iodine
Mercury
Methane
Methyl alcohol
Nitric oxide
Nitrogen
Nitrosyl chloride
Nitrous oxide
Oxygen
Pentane
Propane
Propyl alcohol
Propylene
Sulfur dioxide
Toluene
2, 3, 3-Trimethylbutane
Water
Xenon
X
11.3
10.9
8.6
11.2
11.2
8.8
8.8
9.8
9.0
8.6
9.0
5.3
9.9
8.5
10.9
10.6
8.0
8.8
11. 0
7.0
9.7
8.4
9.0
9.6
8.6
9.5
8.0
9. 3
Y
14.0
20.5
11.8
12.4
17.2
20.9
18.7
14.9
21.3
18.0
18.4
22.9
15.5
15.6
20.5
20.0
17.6
19.0
21. 3
12.8
12.9
13.4
13.8
17.0
12.4
10.5
16.0
23.0
12-10
See Reference No.  10

-------
VISCOSITIES OF GASES AT ONE ATMOSPHERE
    FOR COORDINATES SEE TABLE ON PRECEDING PAGE
Temp
Deg.C
-100 —
0 —



100 —

w»
__
.—
200 — -



300 —


—
400 —
-
-
500 — r
600 —
700 —

800
900 —
1000 —
e Referer
eroture ^
Deg.F. C
	 IOO
— 0
3O
r100 28
26
—
— 200
?4

— 99
— 300
20
	 400
— IR


5OO
V
— 6OO l4
— 700 '2

— 800 IU
__
Qnft a
y w o
— IOOO 6

1 1 00
— 4
	 1200
	 1300 2
	 1400 Q






































































































































































































































































i


























































































































































































































































































	 I50O 024 6 8 10 12 14 16 18
~ 1600 *
	 1700
	 1800
ce No. 10

/iscosity
entipoises
— O.I
— 009
— 0.08
— 0.07
— 0.06
r- 0.05
—
f\ AA
— y.o*T
-
-
— 0.03
;
-
— 0.02


-
— 0.01
— 0.009
— 0.008
— 0.007
— 0.006
— 0.005
12-11

-------
   CO
   LLJ
   O
   LU
   h-
   U
   LU
   _1
   LLI
   oo

   LL
   O
   CD

   LU
   U
   LU
rt +j
CJ f<
y W)
rH <"
0 £
nS
rH
a
o
fa




CO
cd
O
rt
3 X!
o w
... **"^
rH 9
O >
"3
a
0
fa






CO
ri
O

CD
rH
O
CM


CM
a





Hydrogen

^
0
CD
CM
CM
a
CM
U








0)
0)
1— 1
&
m
U

1— 1
o
o
CM

a

CD
73
•rH
O
1 Hydrogen flu

co
O
t>
I— 1

CO
^








rt
O
a
a

CO
o
^
CO

CO
CM
a


0)
73

I Hydrogen su

^f
en
05
co


<;









c
o
be


">
co
CO

rH





1 Krypton

co
&
i-»

CO
a
CO










I Arsine

<* CO
O rH
CD O
r-l CM

a v
u &





Methane
Neon

CM O
T-l rH
CO CD
m m
o
rH CO
a a
U U








_
1 Butane
Butene -

rH
O
O
CO

O





0)
73
•a
o
0
•iH
•rH

i— 1
O
Tf


CM
O
U




fll


o
•rH
73
1 Carbon

CM
0
CO
CM

CM





Nitrogen

^f
-1
CD


(M
CO
U




1 Chlorin

o
o
CM
CO

CM
O





fl
I)
o

l~-
o
o
co
CD
a
CM
U









I Ethane

o
0
CO


co
o





1 Ozone

m
o
CO
CM

a
CM
U









1 Ethene

•35
0
•^

CO
rH
hH
CO
U





1 Propane

0
o
CO
CO

CM
fa








(U
I Fluorin

c-
o
^
CO

CM
O
CO





•rH
o
'En
i
3
CO
co
O
O
•rJH


0)
a









1 Helium


co
i— i
CO

0)
X





1 Xenon

t~-
rt<
CD
CO

r-H
U
a

(U
73
•iH
!H
O
rH
rC
O
fl
OJO
o
rH
l&
12-12

-------

UJ
cz
UJ
X
a.
CO
o
  UJ

  O
UJ
  o

  LL
  O
  tt:
UJ
X

U

u.

u
UJ
CL
CO
           e £
                Ol^|/^r>i
                —  --»

                *
                          66—  —
                                                           »A — O«
                                                           — aoo
                                                          I  "j"~
                                                                                    Nt
Formul
                                  BO
                                          OCJOO   ZZ    S5  55

          •a
           a
           §
           a

           o
          O
                    i
                K
                         |l
                         J2.S W
                              ft  II
                                 SS
                                           'Sli'S'
                                           S   S
                                                                «
                                                               "O
-s *s
g jz;
                                                                              'r1»
                                                                              •
S
Si
^
<5
         gS^l
             o
             °-
             S
             3
                                         *n»AOu>o*r>oiAO  m o>A
-------
SECT/ON 73  PROPERTIES OF AIR

         Density of Dry Air  in Kg/M  for °C and Absolute Pressure in Millibars ...    13-1
         Density of Dry Air  in Mg/cm  for  °C  and Absolute Pressure in mm. of Hg.  . .    13-3
         Density of Air (50% Saturated) in Milligrams per Milliliter for Various Tem-
             peratures in °C and Absolute  Pressure in mm of Hg	    13-4

         Specific Weight of Dry Air in  Ibs/ft for F and  R and Absolute Pressure
             of 29.92 in. Hg  - Graph	    13-6
         Specific Weight of Dry Air in  Ibs/ft  for   F  and Absolute  Pressure  of
             29.92 in. Hg -  Table	    13-7
                                2
         Kinematic  Viscosity  (ft /sec)  of  Dry  Air  at  an Absolute Pressure of
             29.92 in Hg and Various Temperatures °F	    13-7
         Nomograph for  Determining Theoretical Minimum Weight of Air Required for
             Combustion of a Fuel When the Chemical Analysis is Known	    13-8
         Viscosity  of Air (Centipoises)  at One Atmosphere for Various Temperatures
             °C and °F	    13-10
         Composition of Dry Air	    13-11
         Air Density  Chart	    13-12

-------
                                     DENSITY  OF  DRY AIR IN  Kg/M3
                  FOR  °C   AND  ABSOLUTE  PRESSURE  IN  MILLIBARS
                  Ad-
                 juted
                 Tirtul
                  tern-                                 Preuarc—milUban
                  perm.
                  t»«.    1100   1000   900    800    700    600     500   400   300 '  200    100
                   f.
                   •C.   kg.m.-» kg.m.-* kf.ni.-*  kg.m.-« kg.rn.-*  kg.m.- kg-m/4  k«.m.J kf.m.-« kf.at-* t*.m.-«
                    0    1.4029  1.2754 1.1478  1.0203 0.8928  0.7652 0.6377  0.5102 0.3826 02551  0.1275
                    1    1.3978  1.2707 1.1437  1.0166 0.8895  0.7624 0.6354  0.5083 0.3812 0.2541  0.1271
                    2    1.3927  12661 1.1395  1.0129 0.8863  0.7597 0.6331  0.5064 0.3798 02532  0.1266
                    3    1.3877  12615 1.1354  1.0092 0.8831  0.7569 0.6308  0.5046 0.3785 02523  0.1262
                    4    1.3827  12570 1.1313  1.0056 0.8799  0.7542 0.6285  0.5028 0-3771 02514  0.1257

                    5    1.3777  12525 1.1272  1.0020 0.8767  0.7515 0.6262  0.5010 0.3757 02S05  0.1252
                    6    U728  12480 1.1232  0.9984 0.8736  0.7488 0.6240  0.4992 0.3744 02496  0.1248
                    7    1.3679  12435 1.1192  0.9948 0.8705  0.7461 0.6218  0.4974 0.3731 02487  0.1244
                    8    1.3630  12391 1.1152  0.9913 0.8674  07435 0.6195  0.4956 0.3717 02478  0.1239
                    9    1.3582  12347 1.1112  0.9878 0.8643  0.7408 0.6174  0.4939 0.3704 02469  0.1235

                    10    1.3534  12303 1.1073  0.9843 0.8612  0.7382 0.6152  0.4921 0.3691 02461  0.1230
                    11    1.3486  12260 1.1034  0.9808 0.8582  0.7356 0.6130  0.4904 OJ678 02452  0.1226
                    12    1.3439  12217 1.0995  0.9774 0.8552  0.7330 0.6109  0.4887 0.3665 02443  0.1222
                    13    1.3392  12174 1.0957  0.9740 0.8522  0.7305 0.6087  0.4870 0.3652 02435  0.1217
                    14    1.3345  12132 1.0919  0.9706 0.8492  0.7279 0.6066  0.4853 0.3640 02426  0.1213

                    15    1.3299  12090 1.0881  0.9672 0.8463  0.7254  0.6045  0.4836 0.3627 02418  0.1209
                    16    1.3253  12048 1.0843  0.9638 0.8434  0.7229  0.6024  0.4819  0.3614 02410  0.1205
                    17    1.3207  12007 1.0806  0.9605 0.8405  0.7204 0.6003  0.4803 0.3602 02401  0.1201
                    18    1.3162  1.1965 1.0769  0.9572 0.8376  0.7179  0.5983  0.4786 0.3590 02393  0.1197
                    19    1.3117  1.1924 1.0732  0.9540 0.8347  0.7155 0.5962  0.4770 0.3577 02385  0.1192

                    20    1.3072  1.1884  1.0695  0.9507  0.8319  0.7130  0.5942  0.4753  0.3565 02377  0.1188
                    21    1.3028  1.1843  1.0659  0.9475  0.8290  0.7106  0.5922  0.4737  0.3553 02369  0.1184
                    22    12984  1.1803  1.0623  0.9443  0.8262  0.7082  0.5902  0.4721  0.3541  02361  0.1180
                    23    12940  1.1763 1.0587  0.9411 0.8234  0.7058  0.5882  0.4705  0.3529 02353  0.1176
                    24    12896  1.1724  1.0551  0.9379  0.8207  0.7034  0.5862  0.4690  OJ517 02345  0.1172

                    25    12853  1.1684  1.0516  0.9348  0.8179  0.7011  0.5842  0.4674  0.3505 02337  0.1168
                    26    12810  1.1645  1.0481  0.9316  0.8152  0.6987  0.5823  0.4658  0.3494 02329  0.1165
                    27    12767  1.1607  1.0446  0.9285  0.8125  0.6964  0.5803  0.4643  0.3482 02321  0.1161
                    28    12725  1.1568  1.0411  0.9254  0.8098  0.6941  0.5784  0.4627  0.3470 02314  0.1157
                    29    12683  1.1530  1.0377  0.9224  0.8071  0.6918  0.5765  0.4612  0.3459 02306  0.1153

                    30    12641  1.1492  1.0343  0.9193  0.8044  0.6895  0.5746  0.4597  0.3448 02298  0.1149
                    31    12599  1.1454  1.0309  0.9163  0.8018  0.6872  0.5727  0.4582  0.3436 02291  0.1145
                    32    12558  1.1416  1.0275  0.9133  0.7991  0.6850  0.5708  0.4567  0.3425 02283  0.1142
                    33    12517  1.1379  1.0241  0.9103  0.7965  0.6827  0.5690  0.4552  0.3414 02276  0.1138
                    34   12476  1.1342  1.0208  0.9074  0.7939  0.6805  0.5671  0.4537  0.3403 02268  0.1134

                    35    12436  1.1305  1.0175  0.9044  0.7914  0.6783  0.5653  0.4522  0.3392 02261  0.1131
                    36   12396  1.1269  1.0142  0.9015  0.7888  0.6761  0.5634 0.4507  0.3381 02254  0.1127
                    37   12356  1.1232  1.0109  0.8986  0.7863  0.6739  0.5616  0.4493  0.3370 0.2246  0.1123
                    38   12316  1.1196  1.0077  0.8957  0.7837  0.6718  0.5598 0.4479  0.3359 02239  0.1120
                    39   L2276  1.1160  1.0044  0.8928  0.7812  0.6696  0.5580  0.4464  0.3348 02232  0.1116

                    40   12237  1.1125  1.0012  0.8900  0.7787  0.6675  0.5562  0.4450  0.3337 02225  0.1112
                    41    12198  1.1089  0.9980  0.8872  0.7763  0.6654  0.5545  0.4436  0.3327 02218 0.1109
                    42   12160  1.1054  0.9949  0.8843  0.7738  0.6633  0.5527 0.4422 0.3316 02211  0.1105
                    43   12121  1.1019  0.9917  0.8815  0.7713 0.6612 0.5510 0.4408 0.3306 02204 0.1102
                    44   12083  1.0984  0.9886  0.8788  0.7689  0.6591  0.5492 0.4394 0.3295 02197  0.1098

                    45   12045  1.0950  0.9855  0.8760 0.7665  0.6570  0.5475 0.4380 0.3285  02190 0.1095
                    46   12007  1.0916  0.9824  0.8732  0.7641  0.6549  0.5458 0.4366 0.3275 02183 0.1092
                    47     1970  1.0882  0.9793  0.8705  0.7617 0.6529  0.5441  0.4353 0.3264 02176 0.1088
                    48   11932  10848  0$63  0.8678 0.7593 0.6509 0.5424 0.4339 0.3254  02170 0.1085
                    49   1.1895  1.0814  0.9733  0.8651  0.7570 0.6488  0.5407 0.4326 0.3244  02163 0.1081

                    50   1.1859  1.0780  0.9702  0.8624  0.7546  0.6468   0.5390 0.4312 0.3234  02156 0.1078
See Reference  No.  1                                                                                           13-1

-------
                                   DENSITY   OF  DRY   AIR  IN  Kg/M3

                   FOR  °C  AND  ABSOLUTE  PRESSURE  IN   MILLIBARS
                                                        (continued)

•c.
50
51
52
53
54

55
56
57
58
59

60
61
62
63
64

65
66
67
68
69

70
71
72
73
74

75
76
77
78
79

80
81
82
83
84

85
86
87
88
89

90
91
92
93
94

95
96
97
98
99
                                                        PreMore— mfflibwv
                           1100   1000   900    800    700   600    500    400    300    200    100
                           1.1859  1.0780 0.9702  05624  0.7546 0.6468 05390 0.4312  0.3234  02156  0.1078
                           1.1822  0.0747 0.9673  05598  0.7523 0.6448 0.5374 0.4299  0.3224  02149  0.1075
                           1.1786  1.0714 0.9643  05571  07500 0.6429 0.5357 0.4286  0.3214  02143  0.1071
                           1.1750  1.0681 05613  05545  07477 0.6409 05341 04273  0.3204  02136  0.1068
                           1.1714  1.0649 0.9584  05519  0.7454 0.6389 05324 0.42S9  0.3195  02130  0.1065

                           U678 14616 0.9555  05493  0.7431 0.6370 0.5308 0.4247  0.3185  02123  01062
                           1.1642  1.0584 0.9526  05467  07409 0.6350 0.5292 0.4234  0.3175  02117  0.1058
                           1.1667 14552 05497  05442  0.7386 0.6331 0.5276 0.4221  0.3166  02110  0.1055
                           1.1572  1.0520 05468  05416  07364 0.6312 05260 0.4208  0.3156  02104  0.1052
                           1.1537  1.0488 0.9440  0.8391  0.7342 0.6293 0.5244 0.4195  0.3147  02098  0.1049

                           1.1503  1.0457 0.9411  05366  0.7320 0.6274 0.5228 04183  OJ137  02091  01046
                           1.1468  1.0426 0.9383  05340  0.7298 0.6255 05213 0.4170  0.3128  02085  01043
                           1.1434  1.0394 05355  05316  0.7276 0.6237 05197 04158  0.3118  02079  0.1039
                           1.1400  1.0364 0.9327  05291  0.7255 0.6218 0.5182 0.4145  0.3109  02073  0.1036
                           1.1366  1.0333 0.9300  05266  07233 0.6200 0.5166 0.4133  O3100  02067  01033

                           1.1333  1.0302 0.9272  0.8242  0.7212 0.6181 0.5151 04121  OJ091  02060  0.1030
                           1.1299  1.0272 0.9245  0.8218  0.7190 0.6163 0.5136 0.4109  0.3082  02054  0.1027
                           1.1266  1.0242 0.9218  05193  07169 0.6145 05121 O4097  0.3073  02048  0.1024
                           1.1233 1.0212 0.9191  05169  0.7148 0.6127 05106 0.4085  0.3064  02042  O1021
                           1.1200  1.0182 05164  0.8146  0.7127 0.6109 05091 0.4073  0.3055  02036  01018

                           1.1167  1.0152 0.9137  05122  0.7107 0.6091 05076 0.4061  O3046  02030  0.1015
                           1.1135 1.0123 0.9110  05098  0.7086 0.6074 0.5061 0.4049  0.3037  02025  0.1012
                           1.1103 14093 09084  05075  07065 0.6056 0.5047 04037  0.3028  02019  0.1009
                           1.1071 1.0064 0.9058  05051  07045 0.6039 0.5032 0.4026  0.3019  02013  0.1006
                           1.1039  1.0035 0.9032  05028  07025 0.6021 05018 0.4014  OJ011  02007  01004

                           1.1007  1.0006 05006  05005  07004 0.6004 0.5003 0.4003  0.3002  02001  01001
                           1.0976 0.9978 05980  07962  0.6984 05987 04989 0.3991  02993  0.1996  00998
                           1.0944 0.9949 0.8954  07959  0.6965 0.5970 0.4975 03980  02985  0.1990  00995
                           1.0913 09921 05929  0.7937  06945 0.5953 0.4960 OJ968  02976  01984  00992
                           1.0882 09893 05904  07914  0.6925 05936 0.4946 03957  02968  0.1979  00989

                           1.0851 0.9865 05878  0.7892  0.6905 05919 0.4932 0.3946  02959  0.1973  00986
                           1.0621 0.9837 0.8853  0.7870  0.6886 0.5902 0.4918 0.3935  02951  01967  00984
                           1.0790 0.9809 0.8828  0.7847  0.6866 0.5886 0.4905 0.3924  02943  0.1962  00981
                           1.0760 0.9782 05804  0.7825  0.6847 0.5869 0.4891 03913  02935  01956  00978
                           1.0730 09754 05779  0.7803  0.6828 0.5853 0.4877 0.3902  02926  O1951  00975

                           1.0700 0.9727 05754  0.7782  0.6809 0.5836 0.4864 0.3891  02918  01945  00973
                           1.0670 0.9700 05730  0.7760  0.6790 05820 0.4850 0.3880  02910  01940  00970
                           1.0640 0.9673 05706  0.7738  0.6771 0.5804 0.4836 03869  02902  01935  00967
                           1.0611 0.9646 0.8682  0.7717  0.6752 0.5788 0.4823 0.3858  02894  0 929  00965
                           1.0582 0.9620 0.8658  0.7696  0.6734 0.5772 0.4810 0.3848  02886  O1924  00962
                          1.0552 0.9593  05634 0.7674
                          1.0523 05567  05610 0.7653
                          1.0495 0.9541  0.8587 0.7632
                          1.0466 0.9514  0.8563 0.7612
                          1.0437 0.9489  0.8540 07591
0.6715  0.5756  0.4797
0.6697  0.5740  0.4783
0.6678  0.5724  0.4770
0.6660  0.5709  0.4757
0.6642  0.5693  0.4744
       0.3837  02878
       04827  02870
       0.3816  02862
       0.3806  02854
       0.3795  02847
                                                             0.1919 0.0959
                                                             0.1913 0.0957
                                                             0.1908 0.0954
                                                             0.1903 0.0951
                                                             0.1898 0.0949
1.0409  0.9463
1.0381  0.9437
1.0353  0.9412
1.0325  0.9386
1.0297  05361
0.8517  0.7570
0.8493  0.7550
0.8471  0.7529
0.8448  07509
0.8425  07489
                                                     0.6624
                                                     0.6606
                                                     0.6588
                                                     0.6570
                                                     0.6553
       0.5678
       0.5662
       0.5647
       0.5632
       0.5617
0.4731
0.4719
0.4706
0.4693
0.4681
0.3785  02839  0.1893  0.0946
0.3775  02831  0.1887  0.0944
05765  02824  0.1882  0.0941
0.3755  0.2816  0.1877  0.0939
0.3744  02808  0.1872  0.0936
                    100   1.0270 0.9336  0.8402 0.7469 0.6535  0.5602  0.4668 0.3734 02801 0.1867 0.0934
13-2

-------
                      DENSITY OF DRY AIR  IN mg/cm3 FOR'C
                     AND  ABSOLUTE PRESSURE  IN mm.  OF Hg
               This table gives the density at different temperatures of dry air containing atxnit
              0.04 per cent of CO, (which is an average value for the COj content), the values being
              computed from the formula
                                          1.293052   *
                                      ^  1+0.00367 O6o

              where A is pressure in millimeters of mercury at  o° C and standard gravity, and t is
              temperature in degrees centigrade.
!*
;3
t •
!S
fc
H
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Premure In millimeters ef Hf (0* C, standard fravUy)

720


1. 1611
1. 1571
1.1531
1. 1491
1.1451
L1412
1.1373
1.1335
1.1296
1.1258
1.1220
1.1183
1.1146
1.1108
1.1072
1.1035
1.0999

725


1.1691
1.1651
1. 1611
1.1571
1.1531
1.1492
1.1452
1. 1414
1. 1375
1.1337
1.1298
1.1261
1.1223
1.1186
1.1149
1. 1112
1.1075

730


L1772
1. 1731
1.1691
1.1650
L1611
1.1571
1.1531
1. 1492
1.1453
1. 1415
1.1376
1.1338
1.1300
1.1263
1.1225
1.1188
1. 1151

735


1.1853
1. 1812
1.1771
1.1730
1.1690
1.1650
1. 1610
1. 1571
1.1532
1. 1493
1.1454
1. 1416
1.1378
1.1340
1.1302
1.1265
1.1228

740


1.1933
1.1892
1.1851
1. 1810
1.1770
1.1729
1.1689
1.1650
1. 1610
L1571
1.1532
1.1494
1. 1455
1. 1417
1.1379
1.1342
1.1304

745


1.2014
1. 1972
.1931
.1890
.1849
.1809
.1768
.1728
.1689
.1649
.1610
.1571
.1533
.1494
1.1456
1. 1418
1.1381

750


L2095
1.2053
L2011
1.1970
1.1929
1.1888
1.1847
1.1807
1. 1767
1. 1727
1.1688
1.1649
1. 1610
1. 1571
L1533
1 . 1495
1. 1457

755


1.2175
1.2133
1.2091
1.2049
L2008
.1967
.1926
.1886
.1846
.1806
.1766
.1727
.1687
.1648
.1610
1. 1571
1.1533

760


1.2256
1.2213
1.2171
1.2129
L2088
1.2046
1.2005
1.1965
1. 1924
1.1884
L1844
1.1804
1.1765
1. 1726
L1687
1.1648
1. 1610

765


L2336
.2294
.2251
.2209
L2167
.2126
.2084
.2043
.2002
.1962
.1922
.1882
.1842
.1803
L1764
.1725
.1686

770


1. 2417
1.2374
1.2331
1.2289
1.2247
1.2205
1.2163
1. 2i22
1.2081
L2040
1.2000
1.1959
1.1920
1.1880
1.1840
1.1801
1.1762

775


1.2498
.2454
.2411
.2369
.2326
.2284
.2242
.2201
.2159
.2118
.2078
.2037
.1997
.1957
.1917
.1878
.1839
See Reference No. 3
                                                                                      13-3

-------
  DENSITY  OF AIR (50% SATURATED)  IN MILLIGRAMS PER  MILLILITER FOR
  VARIOUS  TEMPERATURES  IN  °C AND  ABSOLUTE PRESSURE IN mm OF  Hg


                This table is from Theorie, Konstruktion und Gebrauch der Feineren Hebelwage,
               by W. Felgentraeger.  It is computed for air of 50 per cent relative humidity and for
               a place where "g" equals 981.288 cm/sec'.  Ordinary changes from these conditions
               may be expected to introduce errors of about five units in the last decimal place given.
               If more accurate results are required, reductions or corrections must be applied '* as
               noted below the table.
                The barometer readings should be corrected for instrumental errors such as errors of
               the scale or residual gas pressure if these errors arc  not neglible.  The reductions for
               temperature and for gravity (latitude and elevation) are included in the computation
               of the table.  The temperature used must be that at the balance case; the temperature
               of the barometer should not differ from this by more than 5°.
,\l
690
1
2
3
4
5
6
7
8
9
no
i
2
3
4
5
6
7
8
9
710
1
2
3
4
5
6
7
8
9
720
1
2
3
4
5
6
7
>
9
730
1
2
3
4
i
6
7
8
9
740
16°
L103
104
106
108
109
111
112
114
116
117
1.119
120
122
124
125
127
128
130
132
133
1.135
136
138
140
141
143
144
146
14»
149
1.151
152
154
156
157
159
160
162
164
165
1.167
169
170
172
173
175
177
178
180
181
1.183
17'
099
100
102
103
105
106
108
110
111
113
115
116
118
119
121
122
124
126
127
129
130
132
134
135
137
138
140
142
143
144
146
148
150
151
153
154
156
158
159
161
162
164
166
167
169
170
172
174
175
177
178
18*
094
096
097
099
101
102
104
105
107
109
110
112
113
115
117
118
120
121
123
125
126
128
129
131
132
134
136
137
139
140
142.
144
145
147
148
150
151
153
155
156
158
160
161
163
164
166
16f>
169
171
172
174
19'
090
092
093
095
096
098
099
101
103
104
106
107
109
111
112
114
US
117
118
120
122
123
125
127
128
130
131
133
134
136
138
139
141
142
144
145
147
149
150
152
153
155
157
158
160
161
163
165
166
168
169
20°
086
087
089
091
092
094
095
097
098
100
102
103
105
106
108
110
111
113
114
116
117
119
121
122
124
125
127
128
130
132
133
135
136
138
140
141
143
144
146
147
149
151
152
154
155
157
159
160
162
163
165
21°
082
083
085
086
088
089
091
093
094
096
097
099
100
102
104
10S
107
108
110
112
113
115
116
118
119
121
123
121
126
127
129
130
132
134
135
137
138
140
141
143
145
146
148
149
151
153
154
156
157
159
160
22'
077
079
081
082
084
085
087
088
090
092
093
095
096
098
099
101
103
104
106
107
109
110
112
114
115
117
118
120
121
123
124
126
128
129
131
132
134
136
137
139
140
142
143
145
147
148
150
151
153
154
156
23'
073
075
076
078
080
081
083
084
086
087
089
090
092
094
095
097
098
100
101
103
105
106
108
109
111
112
114
115
117
119
120
122
123
125
126
128
130
131
133
134
136
137
139
140
142
144
145
147
148
150
151
2V
069
071
072
074
075
077
078
080
082
083
085
086
088
089
091
092
094
096
097
099
too
102
103
105
106
108
110
111
113
114
116
117
119
120
122
124
125
127
128
130
131
133
135
136
138
139
141
142
144
145
147
25'
065
066
068
070
071
073
074
076
077
079
080
082
084
085
087
088
090
091
093
094
096
097
099
101
102
104
105
107
108
110
111
113
114
116
118
119
121
122
124
125
127
129
130
132
133
135
136
138
139
141
142
26*
061
062
064
065
067
068
070
072
073
075
076
078
079
081
082
084
085
087
089
090
092
093
095
096
098
099
101
102
104
106
107
109
110
112
113
115
116
118
120
121
123
124
126
127
129
130
132
133
135
136
138
27'
057
058
060
061
063
064
066
067
069
070
072
074
075
077
078
080
081
083
084
086
087
089
090
092
094
095
097
098
100
101
103
104
106
107
109
111
112
114
115
117
118
120
121
123
124
126
128
129
131
132
134
28«
052
054
055
057
059
060
062
063
065
066
068
069
071
072
074
076
077
078
080
082
083
085
086
088
089
091
092
094
095
097
099
100
102
103
105
106
108
109
111
112
114
115
117
119
120
122
123
125
126
128
129
                "When a large number of corrections or reductions must be iutroduced it is generally as easy and often
               preferable for other reasons to determine the density from other tables.
13-4
See Reference No.  3

-------
DENSITY OF AIR (50% SATURATED) IN MILLIGRAMS PER MILLILITER FOR
VARIOUS TEMPERATURES  IN CC AND ABSOLUTE PRESSURE IN mm OF Hg
                            (continued)

740









710









760









77









710
16'
1.183
183
186
Itt
189
191
193
194
196
197
1.199
201
202
204
205
207
209
210
212
213
1.215
217
218
220
221
223
22S
226
228
230
1.231
233
234
236
238
239
241
242
244
246
247
17'
178
180
182
183
18S
186
188
190
191
193
194
196
198
199
201
202
204
206
207
209
210
212
214
21S
217
218
220
222
223
225
226
228
230
231
233
234
236
238
239
241
242
18'
174
176
177
179
180
182
183
185
187
188
190
191
193
195
196
198
199
201
203
204
206
207
209
211
212
214
215
217
219
220
222
223
225
227
228
230
231
233
234
236
238
19*
169
171
173
174
176
177
179
180
182
184
185
187
188
190
192
193
195
196
198
200
201
203
204
206
208
209
211
212
214
215
217
219
220
222
223
225
227
228
230
231
233
20'
165
166
168
170
in
173
174
176
177
179
181
182
184
185
187
189
190
192
193
195
196
198
200
201
203
204
206
208
209
211
212
214
215
217
219
220
222
223
225
227
228
21'
160
162
164
165
167
168
170
171
in
175
176
178
179
181
182
184
186
187
18»
190
192
193
195
197
198
200
201
203
204
206
208
209
211
212
214
216
217
219
220
222
223
22*
156
157
159
161
162
164
165
167
168
170
172
173
175
176
178
179
181
183
184
186
187
189
190
192
194
195
197
198
200
201
203
205
206
208
209
211
212
214
216
217
219
23'
111
153
155
156
158
159
161
162
164
166
167
169
170
172
173
175
177
178
180
181
183
184
186
187
189
191
192
194
195
197
198
200
201
203
205
206
208
209
211
213
214
24'
147
148
ISO
152
153
155
156
158
159
161
163
164
166
167
169
170
172
174
175
177
178
180
181
183
184
186
188
189
191
192
194
195
197
198
200
202
203
205
206
208
209
25'
142
144
146
147
149
150
152
153
155
157
158
160
161
163
164
166
167
169
171
172
174
175
177
178
180
181
183
184
186
188
189
191
192
193
195
197
198
200
202
203
205
26*
138
140
141
143
144
146
147
149
150
152
154
155
157
158
160
161
163
164
166
168
169
171
172
174
175
177
178
180
181
183
185
186
1S8
189
191
192
194
195
197
199
200
27'
134
135
137
138
140
141
143
144
146
148
149
151
152
154
155
157
158
160
161
163
165
166
168
169
171
172
174
175
177
178
180
182
183
185
186
188
189
191
192
194
195
28'
129
131
132
134
136
137
139
140
142
143
145
146
J 48
149
151
152
154
1S5
157
1S8
160
162
163
165
166
168
169
171
172
174
175
177
178
180
182
183
185
186
188
189
191
                          Interpolation Table
X. Af
A» >s
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.0'
0
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
0.1
- 0
- 0
- 0
+ 0
+ 0
+ 0
+ 0
+ 1
+ 1
+ 1
0.2
- 1
- 1
- 1
- 0
- 0
- 0
+ 0
+ 0
+ 0
+ 0
0.3
- 1
- 1
- 1
- 1
- 1
- 1
— 0
- 0
- 0
+ 0
0.4
- 2
- 2

	
—
_
__
_
_
- 0
0.5
- 2
- 2
«. 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
0.6
- 3
— 3
- 2
- 2
- 2
- 2
- 2
- 2
— • 2
- 2
0.7
- 3
- 3
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 1
0.8
- 4
— 4
- 4
- 3
- 3
- 3
- 3
- 3
- 2
- 2
0.9
- 4
- 4
Mtl A
- 4
- 4
- 3
— 3
— 3
- 3
- 3
                         Humidity Correction
Per
\^e«it
•c
10
20
30

10

+ 2
+4
+7

20

+ 2
+3
+6

30

+ 1
4-2
+4

40

+ 1
+ 1
+ 2

50

0
0
0

60

-1
-1
-2

70

-1
-2
-4

80

-2
-3
-6

90

-2
-4
-7

100

-3
-5
-9
                                                             13-5

-------
         SPECIFIC WEIGHT OF DRY AIR IN Ibs/ft3 FORT AND'R
                AND ABSOLUTE PRESSURE OF 29.92 in. Hg
O£.
O
LU
Q.
                                                                        4500
                                                                        4000
                                                                        3500
                                                                        3000
                                                                        2500

                                                                        2000

                                                                        1500
                                                                     _  1000
                                                     500
                                                     400
                                                     300
                                                     200
                                                     100

                                                     0
                                                                     _-100
                                                                     _ -200
                                                                       -300
      0.01
0.
02        0.04

    SPECIFIC
 0.06 0.08 0.10       0.

WEIGHT  (LBS/FT3)
20
0.30  0.40
  13-6

-------
           SPECIFICWEIGHT OF DRY AIR IN Ibs/ft3 FOR°F
             AND ABSOLUTE PRESSURE OF 29.92 in.Hg
Temperature
(°F)
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
Specific weight
(Ibs/ft3)
0.08633
0. 08449
0.08273
0.08104
0. 07942
0.07785
0.07636
0.07492
0.07353
0.07219
0.07090
0.06966
0. 06845
0.06729
0.06617
0.06509
0.06403
Temperature
(°F)
180
200
220
240
260
280
300
350
400
450
500
550
600
700
800
900
1000
Specific weight
(Ibs/ft3)
0.06203
0.06015
0. 05838
0.05671
0.05514
0. 05365
0.05223
0.04901
0.04615
0.04362
0.04135
0.03930
0. 03744
0.03422
0. 03150
0.02911
0.02718
        KINEMATIC VISCOSITY (ftfsec) OF DRY AIR AT AN
ABSOLUTE PRESSURE  OF 29.92 in. HgAND VARIOUS TEMPERATURES 'F
Temperature
(°F)
0
20
40
60
80
100
120
150
200
Kinematic viscosity
(ft2/sec)
1.26 (10) -4
1.36 (10)-4
1.46 (lO)'4
1.58 dor4
1.69 (10)"4
1.80 (lO)'4
1.89 (lO)-4
2.07 (10)~4
2.4 (lO)'4
                                                        13-7

-------
                NOMOGRAPH FOR DETERMINING THEORETICAL
    MINIMUM WEIGHT OF  AIR REQUIRED  FOR COMBUSTION OF A FUEL
                   WHEN  THE CHEMICAL ANALYSIS IS KNOWN
     Method for tho determination of the theoreti-
     cal minimum weight of air required for
     combustion of a fuel when the chemical
     analysis is known.  The chart also deter-
     mines the theoretical maximum amount of
     carbon dioxide which would result if the
     fuel  were completely  burned  with  that
     amount of air.  In addition, it is possible
     to determine the actual amount of air for
     lower values for the carbon dioxide content
     of the flue gases.
       One of  the two  equations upon which
     the chart is based is that for the theoretical
     amount of air, where the weight of air in
     pounds per pound of dry fuel is

       W0 -  11.49C + 34.48(H - 0/8) + 4.31 S
     where C is the carbon content,  H is the
     hydrogen content, O is the oxygen content,
     and S is the sulphur content, all as decimal
     parts of the total dry weight.  The carbon
     dioxide content  of the flue gas = COZ =
     2AC/W, as theoretical maximum.

       Procedure.  The use  of the chart  is in
     three stages, the first of which is to establish
     a straight line through the scale points cor-
     responding to the  known  values for  Sul-
     phur Content and Oxygen  Content on the
     scales so designated.  The intersection of
     this line with the first blank axis, near the
     left-hand side of the chart, is then noted.
     A second  straight line  is then established
     through this point and the scale point cor-
     responding to the known value of Hydro-
     gen Content on that scale, and the intersec-
     tion of this line is noted on the second
     blank axis, at the right side of the chart.
        Then, a third straight line is set through
     this point and the scale point correspond-
     ing to the Carbon  Content, and on the A
scalings on the Pounds Air per Pound Fuel
and Carbon  Dioxide—Per Cent scales are
read the final figures.  To find the amount
of air for an actual observed amount of car-
bon dioxide, a  straight  line through the
scale points for the given values for  Carbon
Content and Carbon Dioxide will intersect
the Pounds Air  per Pound Fuel scale at a
scale value that  gives the answer.  The  B
scales  are added to increase  the range of
this operation.
  To illustrate the use of the chart, condi-
tions arc determined for a bituminous coal
of 0.777 carbon, 0.049 hydrogen, 0.108 oxy-
gen, and 0.040 sulphur.  First, a line is set
through 4.0  per cent on the Sulphur Con-
tent scale and 10.8 on the Oxygen Content
scale, and its intersection is noted on the
blank axis at the left.   A second line  is
then laid through this point and 4.9 on the
Hydrogen Content scale, and its  intersec-
tion is noted on the blank axis at the right.
A third line  through this point and  77.7
on the Carbon Content scale is then found
to intersect the Pound* Air per Pound Fuel
A scale at 10.32 and the Carbon Dioxide—
Per Cent scale at 18.1.  The computed
values were  10.321 and 18.09, respectively.
  If the observed carbon dioxide in the
stack gases is 12 per  cent,  a line is estab-
lished through the scale  point correspond-
ing to this value (with use of the B scale
necessary), and the scale  point for 77.7 on
the Carbon Content scale, and the amount
of air per pound of fuel is read as 15.60, the
computed value being 15.54.
  To find the weight of the dry flue gases
per pound of fuel, the weights of  sulphur
and carbon  per  pound of fuel are added,
and eight times the weight of hydrogen is
deducted.
13-8
                                                                       See Reference No.  11

-------
     UJ

     u_
<  o
u  z   z


UJ  p   g

O  Z)   ^
UJ  CO   <^>
x  ^   ~~
H"  O   £
                                                                                      1N39 MM - 1N31N09
                                                               1.1.1.1.1 . J .I.I.I/tWi.1. l.l.l.l.l.l.l.l.i.l.l.l.l.l.l^.l.l.l.KU^I.I.i


                                                                                N
=        H. -a
^   Q  <  §


H   *<^
LLJ   ~D  o  8
                                                             I* I       130J ONTO* HM Ml* SONOOd




                                 .1	I.,.. j...,|....j....|..,.j....|....|....[....|,...|	j	I" "I	I	|....|.4..|l...|...l[llHJ





                                                             (81       13nj ONnOd H3d MW SONnOd
X   <  ^

Q-   u_  £
      <__  ^^
      •   1
Q^        z
O   H-  ID
o   x  x

O   rr,  ^
3
L.j
 1N3D M3d-lM3lNIM NO9MV9

  e                 s
...i.i.......i.........i....
                                                                                                       9
?
.1.
      z>

      z
                                                                 tHZ> «3d-lN31N03 N30JUO
                                                                   a                   s                   8
                                                                ....i.... i....i.... i....i....i....i....i....i....i.... i....i.
                                                                                                                               8
                                                                                                                                            13-9

-------
          VISCOSITY  OF  AIR  (CENTIPOISES) AT  ONE  ATMOSPHERE
                   FOR VARIOUS  TEMPERATURES °C AND °F
             Temptroturt
           Deg.C.   Dtfl.F.
          -100 —i
                	100
           100 —
           200
           300 —
           400
           500 —


           600 -

           700 -

           800 -

           900-
           1000-
                — O
                — 100
                — 200
                 -300
                — 400
                  500
                — 600
                — 700
— 800

  •900
  • 1000
  • 1100
  - I2OO
  • 1300
  • 1400
  • 1500
  • 1600
  • 1700
  - 1800
                                                Viscosity
                                               Ctntipoilts
                                                —O.I
                                                — 0.09

                                                - O.08

                                                — O.OT

                                                - 0.06
                                                                — 0.05
                                                                — 0.04
                                                                — O.03
                                                                — 0.02
— 0.01
— 0.009

— 0.008

— 0.007

=- 0-006

— O.O05
(1) centipoise
(10)"2 gm
cm-sec
_2
(10) poise
2.09(10)"5
#f - sec
ft2
2.09(10)" 5
slug
ft - sec
6.72(10)~4
#
m
ft - sec
13-10
                                               See Reference No.  10

-------


££
<
rv
Q
U_
o

z
0



I/I
LU
5
0
\s
io
CM
|_

bj
•iH
CU
rH
rt
i— i
3
0)
r— 1
O
§

c
o
• rH
O
rt
£j ^
r— *
O
JS>

D
CO O -^ O CO CO
rt O •*)< i-t 00 O
O O O> O rt O
oo CM en -^ o ^
CM CO CO Tfi CN

1 1
0 0

X X
o> m co co TJ<
O O) O O CO CM

oo o rt m
r~ CM

E-
CO
oo

1
0

X
o

<— I


o
to
0
CM

1
o

X
o

m


co
rt
CO
rt

CO
i
O

X
o

00


o
o
o
00

CD
0

X
o

rt



CM
CM
CM

03
0

X
o

to


O)
m
1—1
O
o
o
CO
s
0)
o

rH*
0)
s

.
a
^
o



•
co
co
en
rH
m"
c-

a.
,
t**
CO
o
rt
m
05
CO
a
co"
CO
c— 4
CJ
o
CO
^
1
fl\
^

^•^
o
tf

                 al
ormu
EH



CO
rt
DJO
4-»
0>
3
-M
•rH
•f-*
co
d
O
u



CM
55









d
bjO
o
M
•rH
£
CM rH
O <









d
en d
bjO O
r*} DJO
X rH
O <
CM
O CU
u £;




*
cu
!H
^S
o
•rH
P
d
0
i-i 0
rt 0)
U 5?
£









|
rH
QJ
ffi
rH CM
1^ ffi









c
rH CD
I 2
>i T3
rH K^)
^ ffi
CU
X









c
o
d
CD
X
co d
O tf








*
* *
CU d
d o
O 13
ts) rt
O rH
H
1
a
rt
U
0)
(D
CO

aJ
rH
•8
•rH
%
>


#
t^
•»
CU
rH
CO «"
O5 Z
•\
00 CO*
in
rn •
w
•
a .
>-5

CU
§
•a
-3
ffi



»-3
-l->
rH
O*
•
C/3
d
^
1

d
%
U



•^4 *rH
* *
|l
rt rt
cu **
rH ^.
.sl

CU CU
rH rH
rt rt
•rH -rH
S rH
cd co
> >
„
., jf
•)?• *
See Reference No.  1                                                                    13-11

-------
                                   AIR DENSITY CHART
                        WET BULB DEPRESSION, °F
                       12     16     20     2
                                                                              EXAMPLE:
                                                                              Dry  bulb  temporal
                                                                             = 85»F
                                                                              Wet  bulb  temporal
                                                                             = 76»F
                                                                              Barometric pressure
                                                                             30.2 In. Hg

                                                                              SOLUTION:
                                                                              At Intersection of %
                                                                             tlcal line, giving wet b
                                                                             depresalon (9) with •!
                                                                             Ing dry bulb tempera!
                                                                             line  scale   (85),  dr
                                                                             horizontal line to Inolli
                                                                             line  denoting  baromel
                                                                             pressure  (3Q£).   Fr
                                                                             that Intersection, vertl
                                                                             downward will give d
                                                                             slty  of air (.0728  Ib/
                                                                             ft»).
   .080  .078   .076
.074   .072   .070    .068   .066
      AIR DENSITY, LBS/FT3
M4   .062   1060
13-12
                                                    See Reference No.  I1!

-------
SECT/ON 74 PROPERTIES OF POTENTIAL POLLUTANTS

         Selected Chemical and Physical Data on Potential Atmospheric
            Contaminants	   14-1
         Perceptible Concentrations and Characteristics of Various Substance sin Air   14-17
         Ring Structures of Polynuclear Organic Pollutants	   14-20
                                      /

-------
                       SELECTED CHEMICAL AND PHYSICAL
             DATA ON POTENTIAL ATMOSPHERIC  CONTAMINANTS
                                    ABBREVIATIONS USED
     A., specific gravity with reference to air = 1
     abs., absolute
     al., alcohol
     atm., atmosphere
     °C., Centigrade degrees (All temperatures in Table I
     are in the Centigrade system.)
     c., cold
     ca., approximately
     cc., cubic centimeters
     cm.'-'/sec., square centimeters per second
     cryst., crystal
     d., decomposes or decomposed
     d.h.,  decomposes hot
     dil., dilute
     expl., explodes
     h., hot
     i., insoluble
     ign., ignites
     liq., liquid
     m, meta position
     mm., millimeters
     n, normal
o, ortho position
p, para position
prim., primary
s., soluble
s. abs., soluble in absolute alcohol
s.h., soluble hot
si. d., slightly decomposed
si. s., slight or slightly soluble
subl., sublimes
v., very
v.s., very soluble
v.s.h., very soluble hot
v. si., very slight or very slightly
v.sl.s., very slightly soluble
<», soluble in all proportions
>, greater  than
<, less than
±, about or near to, plus or minus
-0,800 loses an  atom  of oxygen at 800° C.
a, alpha form or position
ft, beta form or position
u, omega position
See Reference No.  5
                                                                                        14-1

-------
        to  -
                     
P^
Z
LU
L_
t^
O
f\ «"•""•
Q_ -0
4)

o J
e
< 0
HO
-~~
<
Q
_J
•o'oS"
CQ&H

t*
C 4-T
S.Su
CL» O o
*3 CL,
gHH
•^J "•*""*•
g C o
o i> IH CD
J'JI's-?,
«ei c"d
. «M ^ • ,-* C
Qo c
r -i CJ
>^ x^-

! *
42 5
J3 Iw
o. j
§ 1
c •§
• — QJ
-^ ^

£
d oo
CM TH
f— f



in t>
CO to
CM rH
r*t
I

e o
e e
TH t
CO <
CO <
I— 1 1
© <




8 8




8 8


3 l-
J— 1 rtj
0 ! -g
y} C5
j>
>"^^


t*.
0 >>.^
*C ."tJ m
' *"t ^> C
Isa
c«O
W"c3

8 8



•:' Ri"
§8 5
t> ©
© r-(

co  in     co
oi  cb     to
co  m     ^f
                                           CO
                                       co
                                       t-
                                        I
                                        O  t-,

                                        iH  O
           oq
           co
                                                   co
                                                   co
                                                    I
                                        88      8
 8   8

_C
-O
                                                          in
                  oo
                   I
06
t-
                                                                 oo
                                                                  I
                                                                         •^
                                                                         Oi
CO
CO
 I
                                                                                 o
                                                                          co
&    ^     t     fc     i
CD      ^t     rH      N     i-J
co      oo     oo      oq     oq
iH      ©     ©      ©     O
                                                       (N
                                                       CO
                                                         .
                                                                                                       50  IM  rf
                                                                                                       OO  CO  O
                                                                                                       ^T      «
                                                    CM  in
                                                    CO  CO
                                                    l>  t-
                                                     I    I
                                                                00
                                                                                                                    to
                                                       c  °o
                                                        Oi Oi
                                                        00 00
                                                        in m
                                                        © ©
                                                        d d
                                                                                         in
                                                 tO      CO
                                                 t-      .-(
                                                 oo      oo
                                                 ©      ©
                                                                                                        8888
                                                                                                        8888
                                                                                                       S
                                                                                                        irt   tn
                                                                                                       2l* °e    8
                                                                                                        rH  IM  CO
                                                                                                        t»  ©  lO
                                                                                                        oo  oi  oq
                                                                                                        ©©©
                                                                        in
                                                                        00
                                                                                                                           CM_
                                                                                                                           ai
                                                                                                                           oo
                                                                                    8
                                                                                    -*
                                                                                    CM
                                                                                                                                   :~i
                                                                                                                                   t~
u
X
CL
O
Z
u
E
Q
UJ
r-
U
LU
_J
UJ
co
—
~5
fe
fc
*73
.§
a>
O


Element, Compound
or Other Substance

O
E
U
w
K
O



Acetaldehyde
(ethanal)

ffi
Q
O
«
33
O



^— \
13
'i
i!
U J=
Is

q
o
o
K
O



Acetic anhydride

n
X
O
o
u
sc
o



Acetone








(propanone)

M
U
33
U
33
U
O _
OJ
C
a> rt
Acetylene tetrachlorid
(sym-tetrachloroeth

O
33
O
33
O
33
CJ



Acrolein
(acrylic aldehyde)

^
0
33
y
M
33
O



Acrylonitrile








"oT
rs
03
>^
u
">>
c
q
C4
33
O
33
O
33 '
0



I
-<-j
i- a>
II
*> 13
5s
<




ra
33
25



Ammonia
                                                                                         33
                                                 tt
                                                 g

                                                         33
                                                         O
                                                                                                        BS
                                                                                                        w   _    -   •.„
                                                                                                        ffi   8  S3  K
                                                                                                         «   ^^   ,o   
                                                                      o>
                                                                      N

                                                                     I
                                                                      O
                                                                  11
                                                                  r=  rt
Argon
                                                                                                                                    M
                                                                                                                                     $
                                                                                                                                     I
                                                                                                                                    <
  14-2

-------
O
u

u

LU
X
a.
o
LU
Z'-g
o§
 <
 u
X
CL
U

LU
X
U
Q
LU
r-
u
LU
_J
LU
oo
It
^a
^4
OC
C *.
2-i
a> c
-u.
(W "5

$t- '
SL

1
PH
8
C
5
IS
'rt
o

II
OTC.






T
I
c
^
•^
c
I
5

0
4


0
4
> -^
.b 1
i " ^^^-,
! (5 w.
n
fc
"S

•s
o
SJ
^
jg
rt
^
?'S
2Q
3fe

^S
"3
1
6
£
a>
O
2 w
II
|l
?^
si
iJO
!fe

eo
1-1

oo
1— 1
1









:



•6
iH
.2*





("3
1
f \
Arsenic trichloride
(butter of arsenic
o
Tl >-J
IO • O •
10 .00 ;

§in
^
eo c> w
S i :
i
in
c-
o
o

• • ^ CO

j§
a
: : s :

• OJ fc
CJ ^^ ^^
§ > d :
 C %2S
•^ 03 03 PQ

<>»
s

m
o
1





8


JS
•6



•0
(N
^H



O
6
o
o

Benzoyl chloride
oo
Ift t-
s s
T"4

: 7





8 »



8 M
8
eo
i-H
8 «
ft
O* ft^
CTJ


**
§
j£
o
o «

Benzyl amine
( w-aminotoluene]
Bromine
CSI
m
^H

CO
£
1





8



M



•-
O4
^H




«
§ '

Bromobenzene
(phenyl bromide

i


00
<— 1
1





8



8
.
ss ?*\
^5 w*
»H O
I





«
K
Cf
O

Bromoethane
(ethyl bromide)
00
in
rH


00
7





8



8



•-
si"




«
ffi
a
0

Bromoethylene
(vinyl bromide)
1
in
^


g
1





w



«;
CO
•
To

t





«
a

Bromomethane
(methyl bromide
s
» s^
O o
t^ t»


OJ OJ
5 •-'
<-< rH
1 1
10
00
o
d

8 8



8 8
R
i*r
•
o
sir w-
1 «
eo so


«-
P? £
a •£
C5 ™
V 0
o S
a a

Bromopropane
(propyl bromide]
Bromopropene
(allyl bromide)
S «
2 s


T :





s :



s :
T3
*
w
.- .j
t *'-
eo m
Tj« 50
•^ CO



Cl
« 0
K X
0 ffi
(0
ffi u
~ S
"-Bromotoluene
(benzyl bromide]
Bromoxylene
( bromo-o-xylene
                                                                                                14-3

-------
oo
r-
Z
 bo

.S ~  •
r~ CO
                 CO

                 0
                                           CO
                                                                 OS
                                                                    S
                                                                                           LO
                                                                                            S
                                                              W             00

                                                              co      01     co
                                                              •*      OS     t-
O
u

y
ex
in
x
Q_
«/•>
O

h-
LU
          ii CO
            os

            S
                             CO
os

OS
                                           os
                                                         M
                                                                                                  co
                                                                                                                  co
                                                                      00
                                                                      os
                                                                           0  "?
                                                                           S3  S
                                                                                i
                        q o
                        o d
                                               q
                                               d
                                                                                      o o c>
o
£ 1
ctf W
PH
S "o
_, X
»M Q
i ^
•g
3 t*
C/2 "rt
^


CJ "*^
If 1
.5* 2 w
^ fe

Chemical Formula


"c y
lement, Compou
or Other Substan
W

8


K




••"

•g .
CO
d


«
33
O
O
33
O
33*
O



3-Butadiene
(erythrene)
rJ
S"


^
S

C ,|
M ! h-
g
10
^


°s
d
.2"

3?
O
«4
O
a
33
o



">>
* "S
g.SJ
Is


8


8


J_
OS


8-
0
rH
00
d


33
q
o
c*
33
33
c5



•Butanol
c
tn
8 >

»
8 >



t-
ec -~

2. „
fi
0
35 cq
d o
.2"
•-•
33 33
0 9.
6 ffi
o u
(r) ^_^
0 0
X—-
c
2
Butanone
(methylethyl ke
utene-1
(butylene)

0
o

8 ^v
m W
1=5 d

m
c5
-S BC
33 q
C^ r«y4
1 =
g K



L-Butyl acetate
•Butyl cellosolve
B c

8 8


8 8


— q
"I d
> V

i 8 'a
rH OS
rH CO
OS C—
d d


J? O
33 ^s.
^ o
« t£
rj W
^ O
O tr?
^ r^
hpt U
l

^_^
1
rt 0)
1 ll
"T a* rS
.£? _ -o
c M

8 oj


o


.
• ^_;
05

t 2
rH 'CD
rH 00
OS ^*
O rH


0 !|
ii


	 v
•Butyl nitrite
acodyl oxide
(eacodylie oxide
c O

• '•


*

S> 8
8 1
OS C
.-: t- o

e
"» co
co 10
00 rH
-o
1
•o <5
o o



admium
arbon dioxide
u o

8


8
^
S T
i v«s I
j d d c
>
•g

rH T
CO r-
(N O
rH C
.2" .i
« i!
off C
u c



arbon disulfide
V. A« ««».« *J
o c:

: s


a 8
s
POO •. fc
51 §i
» d d d


^
l« 8iO*
S °>
o m
5 rH
31
_4
•«
3 0
; o


T)
arbon tetrachlori
;> o











-j
J
"a
|
1
(See monofluorotrirhl



arrene No. 2
C
    14-4

-------
oo
h-

<

•<
r-
0
U
U

Of
LU
X
Q.
oo
0
2
h-
<
•
_J
<
r-
LU
1 	
r—
f \
£ i
__ 3
§1

PH
bC
C*
"^ £_

i
-^.ts^j
0) O o
^j A
E&
H
c-g 7
o a
'w's
te$
3*
Qc.



.2
&
g
r- 1
c
£
is
J3
"o
CO

«i
S-t
BJ
$X








J l^ fli
•3^
= c^
*-Sg
) sS


b
0)
•S
H
"o
•§
w
«j

S
S

?l
J VJ
il
3"
0

rt
3
0
fc
1
0>
6

•o n>
Element, Compoun
or Other Substanc<


T- 1
iti
eo
»H

g
1










8


8


8

kl"
.—i
03
O>
d


a
o
f*
c*
a
O
6
>n
a
«•»
u

i— i
Cellosolve
(2-ethoxy-ethanol-


00
to
i«
t— t
h.
s
1










8


8


S3

k!«
§
d




q
a
d
d
r i
^J
«
a
o


Cellosolve acetate
B <5 *
e -• j
» _: I -
«? OJ ^. « &
JS d £ •» g
1
CO
S g §
7 " '









• 1— *
^? f^
• £ S

^4
• ^ §•
O! 0>

s,6"'2 . ' .
to o o t>
** 0 0
rH »— 1 O 5
80 s a"
•* < ^
? - ^

0 0 U


Chlorine
Chlorine dioxide
(chlorine peroxide'
Chlorine monoxide



<-i

                     rH

                     d
                 sr    k's    ='-
                 rH     O     00
                 S     2     §§
~5S  3    0
 S § a     j
1 S u     g
       a
       0
 &a


 1^
 P  O)
           a
           0
5     g
0     U


   ^H  U
              «,
                  0
a
o
a
Chlorovinyldichloro-

arsine (Lewisite)
                               14-5

-------
o
u


u

C£
UJ


Q_
CO
O


h-
Z

UJ
CL  g
£.Sd
•30°
pqfU
         •s-g  •
         -iJ.SCJ
         "5 Oo
          c c
          O 
         T,   *J
         J3 I  Ed
         _Q
         •o   -S
         CO
              O


              1
              efl
Oo
^0
•<
H
O
_J
<
U
CO
%^
^~
X
Q_
0
Z
<
1
<
u
^
UJ
X
u
Q
UJ
h-
U
UJ
_J
UJ
co
1
o >>.-£
(C +J aa
I'll
03C5 u
0


03
~5
£
L.
O
fe
"e5
_o
flj
UJ
X
O

Is
II
e «
EX5
O 3
ow
- u
-^> O>
C J=
o> -»->
so
*; t.
Sfe







94
s
o
fo
s
u
O
O

'oT
-o
si
m ^
1*
Is
.c *
o
                                 oooo
                                              g   co
                     C>
                     00
                                                  c
                                                                                      ^  8
                      1

                      V
                                        eo
                           g

                           ci
                                                                              oo
                                                                              88
                                                          fch
                                                                       00
k  kl»   fc!"',

% s     §  s
t> rH     CO  -^
ON     rH  r-
                                                                                                IO
                                                                                               kl»
                                                                                                kft
                                                                                                t-
                                                                                                     s
                                                                                                      O5

                                                                                                      o
Kf,
to
m
CM
                                                                                                            CO

                                                                                                            o
                                                                                                           "si-
                                                                                                            iH
                                                                                                            os
                                                                                                            C
-------
VI
r-


2
<
r-
Z
O
u

u
o:
LU
T*
0.
»x\
V*
O
3>
H
•<
_J
<
h-
LLJ
i—
1
O
Q-
"Z. "o
0 §
< i
He
o
< s
Q
_l
<
U
c/>
>-
X
n
LL.
O
Z
<
_l
<
y
LU
SELECTED CH
M
.at
'S'c"
«*
U)
C-t-
2-E
^5 c
S*

_ 4-
!§
'3«
•SI
s
).a a
S "" B
> ^

a>
5
H

"o
•§
O
«i
fc
5
t£
1^

=!
2^
5^
S

fA
TO
3
S
£
"s
1
6

Clement, ^ompouna
or Other Substance
•o
"to
t>
r-l
CM
S
^H










09


09

a
t-
0
d

fcl-
kA
^.
rH




%
•4
L_d
a
o
'«
a
9
o

Dichlorodiethyl sulfide

i-H
6
Tj<
t-
S
w«
1










8


8


fe
01

8l*
«O
s
^H






94
Q
•*
a
o

(mustard gas)
Dichloromethane
(methylene chloride)

irt
^
i— i

•










•






73

2l»
_^




^•H
O
••
a
o
6
**
a
o
o

Dichloromethyl ether

01 "p
06 N
^
§ :
I •










09


09 :

•R
UD
c»
.J V

•o kin
?H m
^ 5
_^j ^j
T^ ^^




(9
W
HH
o
•«
•»§
£S
0 0

Dichloromonofluoro-
methane (Freon-21)
1, 1-Dichloro-l-nitro-

00
«o
o>
g
1
v








o?
>


V3
>
•
fc
CN
d

*
m
r-<
^^



u
«4
a
0
S
a
o
*o
a
0

ethane
1, 2-Dichloropropane
(propylene chloride)
\
in
\n
in
o
8
i










8


8


09
•

'sis
d
T— 1
t-
d







a
!Z
•4
^
a
w
O

Difluoromonochloro-
ethane (Freon-114)
Diethyl amine
•«
•55
d
o
d
m
IN
1










8


03

•q
"w


fcl-
g
1-<
fH






»•
O
°i
o
w»
a
«4
O
*~—s

Diethyl sulfate

00 Cft 00 "*
a g § ^
N ?3 |
U»
: : S 8
' 1










.- 03 : <«


S ^
0 > . M


M
8 8 .- >

K\n 8)8 . o_,
oo o <9 Q
S 1 So 1
i-J d « o


6
'd
/•-^
•4
o a
« o
3 y-
S °
^ HH
"w "^75" 3n
5 Sffi"fe 5
§ orf a g
W, JjJ Q ^
4 -,
11 6c^
- f -g § c
S S-E" l~ 1^ s
•fiX'S^'. 5£'S
£ •»£ M fc get s
s s^ s| Is 5
^-4)'o>
>> 7, « ">,•>, ferg 5
5^-5?-Sjc §
»-(
m
c^j









f
a m.
03 8 >


03
09 8 >

03
"03
.- ' >

kl* k M*
g S S
OS CM Cft
d i-5 c4





tO
w
0 5 «
515
a a a
00 0

Dimethyl aniline
Dimethyl arsine
(cacodyl hydride)
Dimethyl mercury
(mercury dimethyl)
  oo

  88
  8
   .
   a
     ^-,

   is
   Q
14-7

-------
«X1
r-
Z
z
2
h-
Z
O
u
u
7v
UJ
I
Q.
0
K
_J

P
ABB
UJ
£ 1
9
Z |
0 1
< 4i
h~
O
_j

U
x
Q.
Q

^M*
<
_l
<
U
•^e
.2:
X
U
SELECTED

e'+j
'S O o

g> ,

"o3 So
£&<
c ^ ^
O  ^ qj
ifif
Qr^ 6

S3
1 "
§ -
rH O
(S -Q
**"* fj
J3 ^
15
O -4->
*
^

;>,

i %%
wO -
5

3
6
e
fe
1
1


"§8
lement, Compou
•r Other Substan
w u

^«5b- 9S«Er 00 -< II
| | 1 | 'I


O O O rH i-l O O
d d o o o d d


• "" '.O (J Q Q
tn . • gj o ° o o
S
n s
• ^ ^j
^ : : •§ i s : s s
fe. fc. fc
O V M ^^
»5 ^. ^ <3 « o
-^8^3 ^S00 8 8°

• i ^
!_ n« s L § %ir «" *^r 11"
N 0 «0 S 0^ S t^ §00
rHrH»-5 O O O O OO


a
U j-5
'« /"^ 7"^ «i "
MQO O O •• "•
"i '•* O ** •• ^" ffi W
o^-N a a r? a 5r?
^ad ^98 u ^9
Q U O •" •« ™ '<• H? H^
5-6C oou o c5u


"5 "m^
w -
•, T3 TT < — ,
"11^ ^ ^r S
a)^-x°"S-g u Cajrt
g'** gg ^^^ "3 ^^£-5
+->4)i-6c"73O T*Si'— "^S 5 e Si e
Oc-wsS'Sb4>'>>™'tt ™ej w.a'aS
-b S.22-g^ g g'S'SLS -c-S -c 6 -c-S
c oS f-S-g | |S §A -g^- §A ,g3
Q Q Q HUH » W W

00 0
CO — 1

oq eo
t> 00
7 *

Oj^Jt^j.
t- t- t-
10 irt m
o q o
doo


8 8



8 8
.„
n 00
01 «5
d d


*rl* U*
^ 00
f-H d

a
d
d
o
t *»a \a
*• ei
O O



hyl bromide
(bromoethane)
Ethyl butyrate
W c
                                                  8   888






                                                  8   888






                                                  ® ®  .  — s?
                                                      .«  ^ 8




                                                  t*   si;  I; fcjj-


                                                  O   iH  r-5 r-5
                                                  o
<   ~

«-i|
r ^  "» HH
2 ^ a
oou
                                                        s
14-8

-------
oo
z
<
<
r-
O
U

U
Of
LU
X
Q.
t J\
V>
O
^^M
1
r~
•<
_l


P
LU
l^
P*
QL «
3
Z -S
of
< -
h-
O
_/
<
U
GO
>-
X
Q_
Q
z
<
	 1
<
u
LU
x
u
Q
LU
H-
U
LU
_J
LU
GO
~.S u, O>
'S'S'8^.
Sf.3d
«5 1
>_
0)
^ -S
c3 W
(X,
§ -3
»— i O
rf3
.S 8
.§ ^
in
^ &
^ *s
C» e9
t>
J>

«^
'S-'rS S
|§l
lo?
&


cQ
"3

S
fo
1
W
1
6
Tl -
c $
11
6^2
0 3
OW
- kd
-t-> 4)
C^
 ^ "5
t- OO t- 00 00
o o o o o
O GJ O O O



o °3 .
^ 8 > 88




88 88 88
8
v« « 1_
ko « eo
88 8 ^ Ij »-<
^^
°sl» il» t-w 5tl* si" iii»
eo 
§
la a
•+•* — fc ^^
g o q
fe K -^ o- tc o
W » -j LM( ^^ '^ ^^
!S ^ W '•• ~ r^ Z
1 i" ^ g S o§
'O HH y-^ ^J * O V
r_) ^' • r^ ^^ •«
Sg g g-a S S
J. ">•>
O ^2
C *5
1 il
R —. -i
^ o o •- o>
•S §L ^.^ S -S «
.H^> X1^ 'J- R u eo -S-
"9 6C 60*5.05 C ft "
ss;?2'>,'og6-i: 1 -^
ggogjsgg w 5 ii c-
SSsSgl 5 5s 5 5;!
^J ^J HW> -|J 4J ^> nVJ
M M M r-r-T rvi rvi r,i
                                                                                  to
                                                                          88
 "2    •  =o
TS  t;   S
 >  Tg  8
                                                                         Q         ec       oo
                                                                         c>ocJ     r4       o
                                                                        a
                                                                             u
                                                                                             o
                                                                                             I
                                                                                                                          I    8
                                                                                                            t>
                                                                                                            06
                                                                                                            CO
                                                                                                             I
                                              4
                       S     =5
                                                                                             tn   v
                                                                        -

                                                                 W     WWW      fefefe
                                        OfficW
                                                                                                                         14-9

-------
CO
r—
Z

2

O
u
u
o:
LU
Q_
co
o
ZS
• "

1
•Mi
<
1—
'7
LU
r-
O 9
Q. *
z 1
o 1
< £

r-
<
Q
i
_l
U
CO
>-
X
Q_
O
Z
<
_J
<
U
2
LU
X
u
SELECTED i

*tf •
— .So
S<2*
hM
I?~
•a Cr-^
** *s c J
•3 or
^
cc 7
O a> t* S3
'w'S'S^?
«g|S^
s3""I


&
w ^*
•** *T?
b rvi
TO *™^
d.
§ 1
c -o
— S
£ 5
*3
-§ -•
.s S
5 |


?*»
«W1
101
15?
&


a!
1
£
1
a>
X
O

T3 -
S S
Element, Compou
or Other Substani
t- i
*? s
Tj< -* krt t-
§ §S S S a? §
^ ^ 1 «*
1-4
— . "? o> IH o>
? : S S S S
1 i i I i








8 8 8 8 o5 I


5
S 8 8 8 rf
fe
fc. 0
t) V
00 BO 5> ^ ^2
^ "^ c4 ci d
.-:>•.-; t> oo
*-*x
• — **
v ^c
hi 5" S
hcir"Jr «* v « l
do d d »H d


nS *
a u
a 9 a
Sg S §
08 o 1
5>- T — ' W
K" a a" a" o .
oo o 0-5- a a
I I
-S a -s-
1 - "3
•c B S'S
| | 81
«? ^ -? •- 1 1
s s« ^1 sals
§ i^ si gf if ?
tg SS %± SI ie f
KM a) ^^ 
^ S 5? S
i i
o>
^ 83^
i ill








s : : i
is.
o
S
s : : oS

*• 4.
«. v *
» 1 J3
8* i^ C™ "
> g §a
CO ^Ml I""

x*s
•- .. 21
& S i S
S Cft rH »-t
O O CNJ r-i



^.^
g
5
•w
CO
s
&
W 0 fa ^ ^
S a a,a a

^

1 ^ ^.| «
fi 'S -— •£ s *o
•5 §S 5 § s
§ t?S £ $ g
c g .a g g c
^3 'O Oi 'O *^ T3
>> >» "^ >* >> >>
a a a a a

TO ^ "* 1
S ?2 Jg *j §
rH rH
•
\a ^*. °? S
eo us -^ o» ®
rH O  IO
rH rH , , rH


0*
d




„• 8 : 8 8 :



o5 8 : 8 8 :
•
^t
l 00 rH
•* rH C« OJ i-i in





^
g
g g „ g .
. Ti . " J?
••••MM O
a a a a s
*3 0 0 0 0 fa



"ST
si si ll |1 ^l
j mi mill
•g ^s "B^ "S^ •g* 1^
r-« 1— I H- ( 1— ( 1— 1 W
14-10

-------
UJ


o
Q_
Q

_J


O

oo
<
U


UJ
X


o
LU
h-
U
LU
_l
LU
oo
CO


I       9*
5      11*
Z
O
u

y
a:
LU
x
         M -—

        2. So
         4> O o
         O

             O)
            •s
          .

         III
             a]

            "3
Fo
Chem
           §2

           M

           ii
          Ow

          ^"fc
           C js
           ID 'JJ
           SO
          ^ ^
          w °
                       "
                                  So
       
                                     X
                                     O

                                     6
                                     o


                                     o
W
                    «^»Cbo
                   opL.SSw
                                         0
00

t-:
os
                                                        us
                                                        go
                                                        01
                                                                c-
                                                                «d
                                                                 i

                   .
                   §

                       fcl*
                        io
                        CC
                        Os
                                                           k'«
                                                                                        C>r4
                                                                                             O
                                                                                             q
                                                                                             o
                                                         §


                                                      II  *


                                                                                                   t>

                                                                                                   1^
                                                                                                   oj
                                                                 00
o
                                                                                                         03
                                                                                                 14-11

-------
H-


Z
O
u

       pqO-
        M  .
        C *J
       '-D.£ u
          Oo
                       eo
                              io
                              oj
                                  m  co  ce

                                  CO  CO  t*™
                                os
                         -oiri
                         -moo
                         'II
                             1    1
                                                    05
                                                   oot-
                                                                                           CO
                                                                                                     O      8
                                                                                                     «2  oi  |
                                                        —    •  t-
                                                         O<    •   i
                                                         X
                                                         53
                                                                                                                       t-
                                                                                                                   rH  "*
                                                                                            a     ^
            &
          c5  I H
          OH  |


          8  |-
          rH    O

          C   *
 3
 e
 o
t-

 S
 £
 o>
Q
"? a.
 C o
 3 C
 S «1
 C »
 £j=
 O 3
Ocw

*Jfc
 CJ=
 ^> ^

 1°
                       t-;
                       d
                  01
                  d
                                       •
                                      .2  t-
                                  .^   M  co
to  oo  us

o>  06  QO
O  rH  O
                     0
                     ^
                     ffi
                     o
                              0
                              o
                        Q<0
                         •«   n   »
                        KKK
                        ooo
                                                       OJ
                                                       "2
                                                       >
                                                              i"   in in



                                                               O5 00
                                                 Oi-*
                                                            o  o

                                                            .2"


                                                                SB

                                                         i  i
               KOOUU
^clohexane
3 hexahydrii
cyclohexani
exahydro-o-
cyclohexanc
ichlorarsine
0>
1
s
">>
J3
x — s
Z
**.

                                                                1
                                                                          8       8
                                                                          o       a
                                                          o
                                                         _:
                                                          "J
                                                          >
                                                                            iJ7     o
                                                                            w      is
                                                                            u      o
                                                                               t
                                      ss
w
o







                                                                                                         °e
                                                                                                     O
                                                                                                     s
                                                                                                     S
                                                                                                  S3
                                                                                                  §  £
                                                                                                JlS  Jc,
                                                                                                (N  O  t>  GJ
                                                                                                   CU
                                                                                                              CO
                                                                                                      OOrH
                                                                                                    i 5

                                                                                                      1
14-12

-------
H

Z
2
<^
1-
z
o
u

u
Of
LU
IT
CL
O
p^
•
^flr
_,

§'S'3 \
5t3*§ C ^3
QO"*^

4>
CO t~\
t *J
£
o
2 "o
•S "8

2
J3 ^
OJ "rt
^J



^>
O t>>."tlH
«c.-ti S
0



3
g
Q
fa
15
o>

F^lement, Compound
or Other Substance
E
s





?










8



8

in
*^



°S'8
ft \ ft
CO
m
o





O

a

Nitroethane


co



co
T










.






t
-o


o
§
00





e-i
o
o
M

Nitrogen dioxide


i
1


co
CO
o
1— I
1
1













en
o
cj
U
CO
in
o
co
^
X-N
<
O
s







o
n

Nitrous oxide
o
E CO
s§!

s
si
co
co
i-H










8
c/3
•8
^
S

00
o



°,
i





a

O
O
o

Nitroglycerine
E
in
•c
in
i-H
O



in
00
CO
1










CO



CO

8
m
Oi



-i-
fils
00
CO







«
O

Nitromethane
i . •
a JL
co 7n t> w oq
O O »X CO CO CO ?Ot- G
CO in S 00 rH «0 COCO C
1 1


o m "*. «> a
CO CO«O°Or-HCO O5 • £
w ^ in £ }S "^ co- c-
1 i "-1 CO CO i ,-H
1 'II 1
1 1 1







0
f,
8 « <„• •' : 8 s 8


"5
"8 5 -S : : 8 8 S
S, _ °o oo °t-> "o £f ' "c
O t>t^i-H*O^O ?fiOO C
TH O O *""* r"' 1""1 OO C


.
O 5
<5 a a K t
* °° , ° a

g 3 3 R * 3 c
V. ) MH ?U O O ^ f"
J« O U c, ^; O ^
3 ^ ^ O hjj X
g a a « , a ^ a s
^ OCjOOO ^i O C.
O)
c
_0;
rt
'*~^ flj p*2
0) g -u
i> a JS a -5
c a t3 « x:
C3 O 0> C O c
a a "e 2 — " t
Sotu^, o^o^glS1
n_hcji "P c« 7: S S — f
ri't->c«C(-i -C-t-"-Cc3cS^.c
l|l| Is l| 5 g ||l
5"J3;xn >>o cS cn"d--2.Q
•v , V ^ N *> Qjt7<|-7i-1
(N CCOOOn OnCC t>
c
| e
UD N e
00 rj< CO C0_ S
a o i-5 inotj mo o^5
scooom ooooco.
4 ;_( r-i co i co m m
1 t-

.«
o m r-4 oo
~ ^i CO <^^ ^^ C^J ^^ ^* ^O T"H
- i-H _L CO1^ COT^COtT"»-H
i s 17 7 c- « 7
bo









8Q 0 . . »
o o y; • w -co



3 Q u • •
' O O tfj " tfj ^^ *

0 " *" ?. ^
^ oo ,, '^ ?5 o •
> .^ -^ > C^l "^ T3

^-x
?- - °. - - °- - ^ - -
•^ C^l t*™ *-^ C^ ^* C*J J*C t"^
0 O O ^OCO »™^QO O ^



•H
5'
^

5 o o -< ^'
rs rj I-H HH r'-' -= '- —
H ^<. Lin £ O *-|H rf~ r ,
H — i •- ^ t-U -T ., O
^) ^) ^) ^) ^^ P_, p ! p ! p ,
C "O **
S T" ~ 4j
2 fe 2 — S •§
S ^ .S «i C 3 'C
^ "S ;•« :S 5 £ o
— aiy u t, o rt~
>.C™ — vrt o ~- -*->jC
2^.§ -1e | £ |-|
5 — i C •- "§ b^3 33
«>jOcb *~".iiaj*-ct- t«t^
5-Cfe"C 2T3C0-0 OO
3*jO>> — .a— S-^-cx: j=^:
-a/'pjco'-jXgiji-ja.Q. a a
E"t" i V C ™ C •/: f r. r. •/. -y:
_-Cxi.i'>H.a'O.Hoo oo
- cu F£ -C _C ^ x: -C -C
J OH OH OnCL, CL,OH CntX,
14-13

-------
bo ..

ce •
'-5-SO
O O o
O
U

U

Ql
UJ

D_
be
C -u

~.Sd
 O o
LU

<
y
oo
>-

Q.
O
z
U

-s.
UJ

U

o
UJ
h-
U
UJ
_J
UJ
oo
     3
     l
   w
        o
        u
   s
.S
O
      "? «
       c y
       3 C
       O crt
       a#
       eJ
       O 3
      OW2

       «fc
       c j=
       b *->
       £0

      - h
      w °
                I   «>  «o t-^
                00   «£>  I-H Cvj
                •3!   o>  p TI<
           ^H 00         "5 *J

           So S  S   S  S? at S
           7I77III
                               eo
                                                *
                                                           cn
                       w  • S  t~   -^92
                       7  :7  53   3T

           £
           o>
                        888
           « a
           uo
                 oo  •*
                 2  3$
                 3  2
                    B
                    O
B
y

B
O
                                 s
                                 oo

                                       g  I
                                               "
                                               5.
                                                    «
                                                    06
                                                      
                        C  C OH   00  W «5  CO
                        «»      -   _   „    „
                      8-  g  2  S -C g 3 3  3  3  13
                        R  "O  ^O-'^laM'.-v-iz;
                             ^"33^33  «
                             05   OT 03   03  03  H
 14-14

-------
00
L_
r^
z
<
<
h-
Z
O
u
u

o:
UJ
X
CL
00
O
2
I—
<
i
_j
<
h-
LU
L>^
0 9
Q_ V
ZG
•i-4
0 1
w
< 3
1—
O
_J
U

oo
^—
^~
X
Q_
O
<
_J
<
U
3
UJ
X
SELECTED C


,
C*>"
.5 Cr<
— .so
'6 Oo
rn PH
MH
t* .
C 4J
5 -So'

^

u »>
O >*.TI
cC -^ 53
Tel
r/) r h
^•* ^ t^
O



JS

Chemical For
^^

lement, Compound
r Other Substance
H °

6 1
E e
us eo oo 5 3 . l
^* « ^^ M t" ^^
oj «o o CJ o at- ]
00 Tt< N "5 »-l X 00 1
"^ -i ^j _j _u MI _^
^^ 1™^ ^^ ^^ ^^ V ^^
^ _. »/3
^3* ^^ »
rrf^ f*5 CO Oi CO t™ Oi
^ S CO rH CO (N 0]
e «x 1 1 ^ 1 -1










Q 888-
03 ° ° ° ° OJ

^ _C1
OJ 8 8 "M 8 03



.^ .-5 .« .- .- ._;

e1* i>|« «l» e|«
81 21 21 S> o
§T}" O5 1/5 2
C^ U5 O5 t-
«O <£> OS kO
{,} T-H rH TH T-5 1-5
94

'z
s
0
0 ^
W »• ja _ ffi
u q 0* £ t5
U3 O -5 ^ ^.
^ q q K a 6
S 5 d B B &
^^
o>
rs
CD c m o>
c § c c
2 C , 4> T3 — ' =
|2 £g §•§ J oil
is sj 1 - •>. ^r-as
ec , 1 s ^ 5 N- e £
1! :-! 1 1 1 ill
L* t> ^ •- _C ^ (M fc^ IM r^ f-
-ts ^ T— t "S -^ ^ -*-* -*ji-'E
Q,) 4> V CJ 
^ _J c" H H H


000 t-lC'-lN "i^S
2S ig?§5:^^^

eo ^  ^ °°.
10 «>T#00 -£2?S3^S
: « 7^ : ^ J3 7 3 "f
1 ' ^ ' I v









en
^8' 8888:«i8>
OT
M
^ r^
* tn '•«
^j8 8888^«J8>
0
2
a . 8 ""^
in « i-j v
i-5 "to o • . 8 !
"O .— •— ' —

» Jsl" V* s!* 'al* 8>. -'" °s s L
§s §g^s §g!
SoO OiOOCO-f . ^* ^ ™
r-5c5 ONT-Hi-H -rHOr-l


F3
^^
a
u
§ . i
g ffi» o B d - S§
Ij i 1 I 1 S i ii
'S' JH" ^^
T3 ^~- O>
'C ^* P 'O 4>
rt -^"^ 'C ^
? , "a? e « --^o oJii 'w >>-J
5 1 IJ^al Ji| 81 . §1
l| |^|||il|| |ill2
l| ^->, at 1 1 §>> §! sff S" * -*
.§§ s§^li ||O|°^|^|B^^.S
&'l S3llSli|Ilfld^S.2.2S
r* ^ — ' 75 v' — "* ^ — ' O "* — ** *C "* Ui t- ^ ^* (M fc^
HH HHHE-HHHH
14-15

-------
h-

2fl
H

rt ^
dn
O „
0 3
!s |
>. <5

I •-
3 OJ
O etf
CO >



w £>.-£
'C > c
WOQ
S

rt
3
S
u
O
fc
s
1
JC
o

-rt
Is
P
E^3
O 3
002
•s?
£6
so
- %
w °
00
j °? s

2 W ^O 00 ^j »T*
O CO O CJ "H< O "5
eg 00 10 x oo 10
4) N TH

®?
Csj .QO
• »-H • •
1




• &
to to • IO to

.
^ "3
S . ""'
>0 to 10
.
• rS
J2 — oj ^
"»-i ? — : o
t> Tj< > ^0
1C
oo
^ 2 fl *•?
c^i "w ""* S S
• O rH r-5 rH O



K
O

94
j» «j ^a
^ S -^ -^V s
^ ffi K K O 3|
r -^ ^^ ^^ *tmJ ^-4 r ~*


C c
2 o> § 2 >cj^3 v
00 ^^"^ ^ •go+J
oo-fcJ*JE-kJ *">^ ?
X i; o> o>.» o>->->/i< o>
«« E Eis E'SH &
'C ^~* 'C 'C ^^ 'C 'C ^^ 3
r r . r^ r. r_. r.
t~* " " " " t^



IN
r- 1
1


3
»H
1




to
>'




to


4
to


rito
00
0






sT'-J
a
o
a
o



1
">>
                                                                        "*
                                                                        **
                                                                        U5  O
                                                                        N  O


                                                                           7
                                                                    |

                                                                     O)
                                                                           N
.-;  o
                                                              o>

                                                             I
                                                              S
                                                                     to

                                                                     cfl

                                                              $     ^
                                                                         g
                                                                            -S
14-16

-------
     PERCEPTIBLE CONCENTRATIONS AND CHARACTERISTICS
                OF VARIOUS SUBSTANCES IN AIR
Substance Cone.
causing faint odor
(mg/ liter)
(oz/1000 cu. ft.)
Acetaldehyde
Pungent odor.
Acrolein
Acrid odor of burning fat
"Akrol"
Acrid pine-tar odor.
Irritating.
Allyl alcohol
Alcoholic odor. Not
unpleasant.
0.004

0.038

0. 01


0.017

Allyl amine 0. 067
Odor similar to ammonia.
Irritating.
Allyl disulfide
0. 0001
Garlic odor. Decomposes
Allyl isocyanide
Sweet but repulsive odor.
Nauseating.
Allyl isothiocyanate
Mustard oil odor. Nose
and eye irritant.
Allyl mercaptan
Very disagreeable odor.
Garlic .

Allyl sulfide
Garlic odor.

Ammonia
Sharp, pungent odor.
Amylene
Nauseating in high
concentrations.
Amyl acetate (iso)
Banana odor.
Amyl isovalerate (iso)
Pleasant. Fruity.
Amyl mercaptan (iso)
Unpleasant.
0. 0043


0.0017


**0. 0005



0. 00005


0. 037

0.0066


0.0006

0. 0008

0. 0003

Substance Cone.
causing faint odor
(mg/ liter)
(oz/1000 cu. ft.)
Amyl sulfide (iso)
Strong and unpleasant odor
Benzaldehyde
Odor of bitter almonds.
Benzyl chloride
Lacrimator. Aromatic.
Benzyl mercaptan
Unpleasant odor.
Benzyl sulfide
Unpleasant odor.
Bromacetone
Pungent and stifling odor.
Bromacetophenone
Butylene (beta)
Gas-house odor.
Butylene (gamma)
Gas-house odor.
n-Butyl mercaptan
Strong, unpleasant odor.
n-Butyl sulfide
Unpleasant odor.
Carbon disulfide

Aromatic odor, slightly
pungent.

Chloracetophenone
Apple blossom odor.
Strong lacrimator.
B-chlorvinyldichlorarsine
Odor of geraniums.
(Lewisite)
Chlorine
Pungent and irritating odor
Chlorophenol
Medicinal odor. Phenolic.
Chloropicrin
Fly paper odor.
0. 0003

0.003

0. 0016

0.00019

0. 0006
0.0005
0. 00064
0.059

0.05

**0. 0014

0. 0011

0. 0026




**0. 0085


0. 014


0.010

0. 00018

0.0073

See Reference No. D
                                                          14-17

-------
       PERCEPTIBLE CONCENTRATIONS AND CHARACTERISTICS

                 OF VARIOUS SUBSTANCES IN AIR
                            (continued)
Substance Cone.
causing faint odor
(mg/ liter)
(oz/1000 cu. ft.)
Coumarine 0. 00034
Vanilla odor. Pleasant.
Crotonaldehyde **0. 021
Eye and nose irritant.
Crotyl mercaptan 0. 000029
Skunk odor.
Cyanogen chloride 0. 0025
Bitter almonds.

Dichlordiethyl sulfide 0.0013
Garlic or horseradish odor,
(mustard gas)
Dichlorethylene (trans.) 0.0043
Ethereal odor.

Dimethyl trithiocarbonate 0.00018
Foul and disagreeable.
Diphenylamine chlorarsine 0. 0025
Slight odor.

Diphenyl chlorarsine 0. 0003
Shoe polish odor.

Diphenyl cyanarsine 0. 0003
Odor of bitter almonds and
ear lie.
gtt* «&>•* •
Diphenyl ether 0. 000069
Geranium odor. Pleasant.

Diphenyl sulfide 0. 000048
Ethereal, but unpleasant
odor.

Diphosgene 0. 0088
Suffocating, disagreeable
odor.
Dithio-ethylene glycol 0.0016
Disagreeable, garlic-like
odor.
Ethylene dichloride 0. 025
Aromatic. Ethereal.
Ethyl dichlorarsine 0. 001
Irritating, biting.
Ethyl isothiocyanate 0. 038
Mustard oil. Irritating odor.

Ethyl mercaptan **0.00019
Odor of decayed cabbage.
Substance Cone.
causing faint odor
(mg/ liter)
(oz/1000 cu. ft.)
Ethyl selenide 0. 000062
Garlic odor. Putrid and
nauseating.
Ethyl seleno mercaptan 0. 0000018
Very foul and disagreeable
odor.
Ethyl sulfide 0. 00025
Garlic-like, foul odor.
Nauseating.
Hydrogen cyanide 0. 001
Odor of bitter almonds.
Hydrogen sulfide 0.0011
Odor of rotten eggs.
Nauseating.
Methyl anthranilate 0. 00037
Floral essence. Fruity odor.
Methyl dichlorarsine 0. 0008
Slight odor. Irritating.
Methyl mercapta a 0.0011
Odor of decayed cabbage
or -onions.

Methyl sulfide 0.0011
Odor of decayed vegetables.
Methyl thiocyanate 0. 0096
Odor of almonds.
Unpleasant.
Nitrobenzene 0. 03
Odor of bitter almonds
Oxidized oils 0.0011
Unpleasant and irritating.
Ozone 0.001
Slightly pungent, irritating
odor.
Phenyl isocyanide **0. 000029
Repulsive, nauseating odor.
Phenyl isothiocyanate 0. 0024
Cinnamon odor. Pleasant.
Phosgene 0. 0044
Odor of ensilage or fresh-
cut hay.
Propionaldehyde 0. 002
Acrid, irritating odor.
14-18

-------
          PERCEPTIBLE CONCENTRATIONS AND CHARACTERISTICS
                         OF VARIOUS SUBSTANCES IN AIR
                                      (continued)
                         Substance Cone.
                        causing faint odor
                           (mg/liter)
                         (oz/1000 cu. ft.)
                        Substance Cone.
                       causing faint odor
                          (mg/liter)
                        (oz/1000 cu. ft.)
 Propyl mercaptan             0. 000075
   Unpleasant odor.
 b-Propyl sulfide               0.00081
   Foul odor.  Nauseating.
 Pyridine                   **0.0037
   Disagreeable, irritating
   odor.
 Skatole                       0.009
   Pungent,  irritating odor.
 Thiocresol                   0.0001
   Rancid, skunk-like odor.
 Thiophenol                   0.000062
   Putrid, nauseating odor.
 *Based on data from references 1 and 2.

**Av.  value of observations obtained with
  material of varying purity.
Trinitro butyl xylene
   Musk odor.
0.00001
REFERENCES
1  Fieldnap, A. C.,  Sayers, R. R. ,  et al.
     Warning Agents for Fuel Gases.
     U. S. Bureau of Mines.  Monograph
     No. 4.  1931.

2  Prentis. A.M. Chemicals in War.
     McGraw Book  Company.   New York.
     1937.
                                                                                14-19

-------
        RING STRUCTURES OF POLYNUCLEAR ORGANIC POLLUTANTS
                BENZENE
             NAPHTHALENE
        BENZ(a) ANTHRACENE
        DIBENZ (a,h) ANTHRACENE
                                                CHRYSENE
                                                 FLUORENE
                                         11 H-BENZO(b) FLUORENE
                                        11 H-BENZO(a) FLUORENE
                                          FLUORANTHENE
                  PYRENE
14-20

-------
 RING STRUCTURES OF POLYNUCLEAR ORGANIC POLLUTANTS
                       (continued)
 PHENANTHRENE
BENZO(a)PYRENE
 BENZO (e) PYRENE
                                         PERYLENE
                                    BENZO (g,h,i)PERYLENE
                                       CORONENE
           ANTHANTHRENE
                                                       14-21

-------
SECTION 15 MISCELLANANEOUS CONVERSION FACTORS
         Conversion Factors
         Conversion Factors
         Conversion Factors
         Conversion Factors
         Conversion Factors
         Conversion Factors
         Conversion Factors
-  Force	   15-1
-  Energy and Work	   15-1
-  Power	   15-2
—  Energy per Unit Area	   15-2
-  Power per Unit Area  	   15-2
-  Illumination, Brightness, Etc	   15-3
-  Emission Rates	   15-4

-------
                              CONVERSION  FACTORS - FORCE
                       1 gram  weight
                            = 980.665 dynes
                       1 kilogram weight
                            = 9.80665 X 10* dynes
                       1 newton
                            = 10* dynes
1 pound weight
     = 32.174 poundals
     = 444822 dynes
1 poundal
     = 13825.5 dynes
                      * at standard gravity of 980.665 cm/sec2 or 32.174 ft/sec2
                     CONVERSION FACTORS - ENERGY AND WORK
                       1  erg
                            = 1 dyne-centimeter
                            = 10"' abs. joule
                            = 2.38844X10-'  ITcal.
                            = 2.3892 X 10-* cal...
                       1  absolute joule  (abs. joule)
                            = 10' ergs
                            = 0.238844 ITcal.
                            = 0.23892  caU
                       1  kilogram-meter (kg.-m.)
                            = 9.80665  abs. joules
                       1  International Steam Tables cal-
                         orie  (ITcal.)*
                            = 4.18684  X  107 ergs
                            = 4.18684  abs. joules
                            = 1.00032  cal.»
                            = .	Int. kw.-hr.
                              860 X 103
                       1  15° gram-calorie (cal.u)*
                            = 4.1855 abs. joules
                       1  kilogram-calorie  (Kcal.)
                            = 10" gram-calories
                       1  absolute kilowatt-hour (abs. kw.-
                         hr.)
                            = 3.6 X 10' abs. joules
                       1  mean International  kilowatt-hr.
                            = 1.00019  abs.  kw.-hr.
                            = 860000  ITcal.  •
                            = 3.60068  X  10" abs. joules
                            = 3412.756 Btu
1 British thermal unit (Btu)
  (The Btu used here is defined
  by the relationship:
1 Btu "F.-i lb.-i = 1 ITcal. °C.-i
  «-»)
     = 251.996 ITcal.
     = 252.08 cal.i,
     = 1055.07 abs. joules
     = 0.00029302 Int. kw.-hr.
1 foot-pound (ft.-lb.)
     = 1.35582 abs. joules
See  Reference  No.  1
                                                                                                        15-1

-------
                             CONVERSION  FACTORS - POWER
                    1 absolute watt (abs. watt)
                         = 1 abs. joule sec."1
                         = 0.238844 ITcal. sec.'1
                         = 14.33062 ITcal. min.-'
                         = 0.23892 caU sec.'1
                         = 14.33527 caU min.-1
                         = 0.056868 Btu min.-1
                    1 mean International watt
                         = 1.00019 ibi. witti
                    1 ITcal. sec.'1
                         = 4.18684 abs. watts
                    1 ITcal. min.-1
                         = 0.069781 abs. watt
                    1 caU sec.'1
                         = 4.1855 abs. watts
                    1 cal.ii min.-1
                         = 0.069758 abs. watt
1 horsepower, electrical, U.  S,
  Brit.
     = 746 ib«. w«tti
1 horsepower  (mechanical)
     = 550 It. Ib. MO.-I
     = 745.70 »bs. watts
1 horsepower  (continental)
     = 736 «bt. wttti
1 cheval-vapeur
     = 75 k|. m. iec.-»
     = 735.499 abs.  watts
1 Btu min.-1
     = 175.844 abs.  watts
     = 251.996 ITcal. min.-1
     = 252.08 cal.» min.-1
              CONVERSION FACTORS - ENERGY PER UNIT  AREA
                    1 langlcy  (ly.)
                         = 1 cal.» cm.'1
                         = 4.1855 abs. joules cm.'*
                         = 0.011624 Int. kw.-hr. m.'*
                         = 3.6855 Rtu ft.'*
                    1 abs. joule cm."1
                         = 0.23892 cal.« cm.-'
                         = 0.00277725 Int.  kw.-hr.
                             m.-'
                         = 0.88054  Btu ft.-'
                    1 Int. kw.-hr. m."'
                         = 86.028 ral.ii cm.'1
                         = 360.068 abs. joules cm."'
 1 Btu ft.-*
      = 027133 cal.,, cm.-*
      = 1.13566 abs. joules cm.-*
               CONVERSION  FACTORS - POWER PER  UNIT AREA
                    1 cal.i, cm."' min.'1
                         = 1 ly. mill."1
                         = 0.069758 abs. watt cm.-*
                         = 0.069745 Int. watt'cm.-1
                         = 69.745  Int.  kw.  deka-
                             mctcr'*
                         = 3.6855 Btu  ft.' min.-1
                         = 1440 cal.,, cm.'' day'1
                         = 5307.1 Btu ft.-* day'1
 1 Btu ft.-* min."
      = 0.27133 cal.» cm.-1 min.-1
      = 0.0189277 abs. watt cm.-4
15-2
                                                                                  See Reference  No.  1

-------
            CONVERSION  FACTORS - ILLUMINATION, BRIGHTNESS, ETC.
                       The total luminous flux from a source of unit spherical candlepower is 4r lumens.
                     1 lux (Ix.)                              1 footcandle (ft.-c.)
                          = 1   lumen incident  per                 =1  lumen  incident  per
                               square meter                             *quare foot
                          = 0.0001 ph.                             = 10.76 Ix.
                          = 0.09290  ft.-c.

                     1 phot  (ph.)                             1 candle per in.*  (c.  in.-1)
                          = 1   lumen incident  per                 =0.1550 sb.
                               square centimeter                     =0.487 L.
                     1 stilb  (sb.)                                   = 452.4 ft.-L.
                          = 1  Int. c. cm."*                     1 footlambert (ft.-L.)
                          = «• L. =  3.142 L.                        = 0.0003426 sb.
                          = 2919ft.-L.                             = 0.001076 L.
                     1 lambert (L.)                                 = 0.002211 c.  in."*
                          = l/w sb.  = 0.3183 sb.               1 candle per ft.«
                          = 2.054 c. in.-*                           = 3.142 ft.-L.
                          = 929ft.-L.
                     1 millilambert (mL.)
                          = 10^ L.
                     1 apostilb,  in  International units
                          = l/OrX  10*) 80.= -^; Stilb
                          = 0.1 mL.
                     1 apostilb,  in  German  (Hefner)
                       units
                          = 0.09 mL.

                       Luminous efficiency:  At wave  length of  maximum luminosity 0355 it for
                     photopic vision, the luminous efficiency is 680 lumens per watt, corresponding to a
                     minimum "mechanical equivalent of light" of 0.00151 watt per lumen.
See  Reference  No.  1                                                                                 15-3

-------
         LLJ
         h-
         oo
         00
         LU

          I

         00
         Q-1
         O
         h-
         U
         z
         o
         oo
         &.
         LLJ
         O
         U
»,
r*>
§
0

J^
Rt
T3

in
§
2



•^
rjjr
o


>,
rt
"U


X)



(H
.C
"•^
0)
XI


.3
g

CO
XI


>>
c?

.^^
bo
X


IH
A
•— »
.S?

.3
j:
1C
S
60

O
CO
~rr7
bo

o /
<|J _W /
rH 'rH M
i
/ C w

/ -3 'c
^ O 3

CO O
CD rH
t-
•* X
CO
CM
1
0 0

CM
m X
O)

CO
1
CO O
CO rH
CD
03 X
CO*

CM
CO O
•O1 •-<
o
03 X
rH



pw
CO
CO
O3
C-"

1
00 O
CM — 1
CM
CO X
rH



O
O •-!

S x
CO*




CO
co"


o
o
CO



o
rH


o
01
01
01
g
no



rH
1
oo o
CO rH
t- X
m'
CO
i
co o
t- rH
CO
m X
rH

m

OJ O
CO rH
rH
CD X
CD*


t-
^*
r-
rH
CO

rH
1
CO O
CM rH
CM
CO X
rH

CO
1
co o
^ rH
O
CM X
CM"



o
o

*f
•4
CM
I
O

o X
co"


o
,H°

CM
1
t- O
CO rH
CO
co X
T-H


.s
to
BO




CO
CO
in
CO
OJ°
CM
1
CD O
irt ***4
co X
CM

CO
1
co o
CM r-l
O
rH


rH O
rH rH
O3
CM X
m"



co

o

CM"

CM
1
Tj" O
't 1-1
f-
 o
in rH
CO
m X
Tf"


00
O3
m
*"


S
-— «.
a




o
o
CO
CO
"*'
CM

0 0
0 rH
O
CM X
,_,'

^
t
0 0
O rH
§x
in





o
^f
CM





0
rH

CM
1
t- O
CD rH
CO
co X
rH



CD O

oo
o X
-"'
^
i
O3 O

CO
•fT
"*'

00
03
m
m
t-'

rH
1
O O
0 -"
S X
rH


SH
J2

1



I
O O
in rH
CM
oo X
rH
•

o O3 rH O3 CM X co" O 0 O rH in o x rH n) •O to | o rH CO t- o O3 rH CO c- X >N" „, i CO O rH rH •* T-l in O3 r- * in" rH 1 rH O C1*-* rH co M X CM" CO 1 CM O in rH O co X co' *!* in oo ^" IN" rH 1 CO O in rH CO o X rH O CO CM rH CM co o CO rH t- co X CM" IH 01 1 JH rt 0> C 0) XI •o § 01 •M C 3 C 0) So o> xj 0) •H 01 O 8- . Q •M o 0) 0> rj ±! ^j XI Or1 3 *3 •tH tUD 1 ^> ^ 3 fl iW .•a c o> M '01 O) •o rt O a c 3 C O> 'bo E 0 <*-* V 3 "rt rt 'S :onve \j o H 01 .in 01 s-S 15-4


-------
SECTION 16 MEDICAL
         Absolute Lung Volumes, Definitions ond Conversions	   16-1
         Subdivisions of Lung Volume:  Man	   16-2
         Diagram of Lung Lobule	   16-3
         Representation of Respiratory System	   16-4
         Representation of Respiratory Tract	   16-4
         Respiratory Rate, Tidal and Minute Volumes	   16-5
         Data Useful in Pulmonary Physiology	   16-6
         Mean Respiratory Air Flow Measurements  	   16-7
         Blood Erythrocyte and  Hemoglobin Values at or Near Sea Level: Man  ....   16-8
         Blood Erythrocyte and  Hemoglobin Values at Altitude: Man	   16-9


-------
           ABSOLUTE LUNG VOLUMES, DEFINITIONS AND CONVERSIONS
       1  ABSOLUTE LUNG VOLUMES, DEFINITIONS AND CONVERSIONS   ATPS, BTPS,  AND STPD CONDITIONS

            Gas volume in the lung exists at fiody JTemperature and atmospheric pressure and is completely Saturated
    with water vapor at body temperature--hence the designation BTPS.
            However, once the gas has been blown into a measuring device such as a spirometer,  the temperature will
    have dropped to the spirometer or Ambient Temperature; although the gas volume is still Saturated with water vapoi
    at the  lower ambient temperature the water vapor volume is reduced.  The Pressure of the atmosphere is the same.
    This condition is designated ATPS.
            Under average laboratory conditions (ATPS),  the "true" lung volume (BTPS) will shrink,  in response to the
    ambient temperature and barometric pressure, to perhaps 93%, as shown in the figure below.  If this lung volume is
    then converted to conditions of Standard ^Temperature and ^Pressure with all water vapor removed (or Dry), this
    STPD value will be approximately 83% of the BTPS lung volume--sometimes even less in accordance with the baro-
    metric pressure (also as shown in the  figure below).
            It must also be borne in mind that lung volume measurements are often made on closed breathing circuits
    which contain a CO^ absorber. Any volume expired into such a system will,  of course, be automatically reduced by
    the percentage of CO;> in the expired air; for a Vital Capacity obtained after full inspiration and before maximal
    expiration, this reduction  may well be of the order of 2-3%.  This discrepancy must be considered in making refer-
    ence to "absolute volumes."
            All lung volumes  are normally recorded at ATPS conditions.  Conversion to BTPS conditions which repre-
    sent true or anatomical lung volume requires knowledge of room or spirometer temperature and approximate baro-
    metric pressure.                                       J10   pR.pH2o
            True lung volume (BTPS)  = lung volume at ATPS x      x —S—~±—, where t * spirometer temperature in

    degrees C; Pjg = barometric pressure  in mm Hg; and pH^O = vapor pressure of water at spirometer temperature t.
    310 is absolute body temperature of 37°C, and 47 mm Hg is the vapor pressure of water at 37°C.
                       100
                        90 —
              BTPS

         % Lung Volume
                        80
                        70
                                                                    37
                                                                    30
                                                    ATPS
                                                 At Various

                                                 Temps, °C
                            760
—I—1—I—I—I—I—I—j-
           700                  650
 Barometric Pressure,  mm Hg
See  Reference No.  18
                                                                16-1

-------
                              SUBDIVISIONS OF LUNG  VOLUME:   MAN
                                                   DIAGRAM
                                   Volumes corrected to HIPS condvUonb (cf Page 1).
                    M
                    c
                    3
                    o
   Inspiratory
     Capacity
    Functional
     Residual .
                                                                 InspiratC'ry Reserve Volume
                                                                                  Tidal Volume
                                                                                  (any level of
                                                                                    activity)
                                                                 Expiratory Reserve Volume


.
'•"•f
Residual
Volume
1
                                  Special Divisions for
                                Pulmonary Function Tests
                                 Primary Subdivisions
                                    of Lung Volume
      Reference: Comroe, J. H., Jr.. et al,  Fed. Proc. 9:602, 1950.
                                  STANDARD TERMINOLOGY OF LUNG CAPACITY
             Standardized Term
       1' Inspiratory reserve volume
                                                 Definition
 Maximal volume that can be inspired
  from end-tidal inspiration.
       2' Tidal volume

       3| Expiratory reserve volume
Volume of gas inspired or expired
  during each respiratory cycle.	
         Residual volume
         Inspiratory capacity
         Functional residual capacity
       7 Vital capacity

       8 Total lung capacity
 Maximal volume that can be expired
  from resting expiratory level.
Volume of gas in lungs at end of
  maximal expiration.
Maximal volume that can be inspired
  from resting expiratory level.
Volume of gas in lungs at resting
  expiratory level.


Maximal volume that can be expired >
	after maximal inspiration.	
Volume of gas in lungs at end of
  maximal inspiration.
                                                                                   Previous Term
Complemental air.
Complementary air.
Complemental air minus tidal air.
Inspiratory capacity minus tidal volume.
                                                                        Tidal air.
Supplemental air.
Reserve air.
Residual air.
Residual capacity.
Complemental air.
Complementary air.
Functional residual air.
Equilibrium capacity.
Mid-capacity.
Normal capacity.	
Vital capacity.
Total lung volume.
      Reference;  Comroe, J. H., Jr., "The Lung," Chicago; The Year Book Publishers,  1956.
16-2
                                                  See Reference  No.  18

-------
                        LUNG LOBULE
    OLFACTORY AREA
      CONCHAE
     VESTIBULE
      TRACHEA
        LUNG
    BRONCHUS
      BRONCHIAL
       ARTERY
  PULMONARY
    ARTERY
LYMPHATICS

 PULMONARY
    VEIN
    LYMPHATICS
 NASOPHARYNX

 ORAL PHARYNX

EPIGLOTTIS


LARYNX
       LUNG
                                         TRACHEO-BRONCHIAL
                                         LYMPH  NODES
    CONDUCTING
    BRONCHIOLE

      TERMINAL
      BRONCHIOLE

       RESPIRATORY
       BRONCHIOLE

       ALVEOLAR
        DUCT

       ALVEOLAR
                                          •ALVEOLUS
 See Reference No.  23
                                                        16-3

-------
UJ
H-
oo
>-
oo
O
h-
Q.
co
UJ
C£

U_

O
I-
z
UJ
t/1
LLJ
Qi
Q.
UJ

£ §  S  8
r_  M  •«  AN
            -
            co  g

               U
 «
 S *»
11

 W oT
o
 u

-a

 e
 e .2
             bfi
 g42
PQ
                I

                S,

                bfi


               J
                     r}'
                     O
                        OO
                 rJ'
                 O
                                  -tOOW
                                        V
                                        "I
                                        O
                  eo
                                   m
                            cc
                            0
                  i/5
                          tN
            ^O
            ^
                                f  « I- l-
                                0600
               2 P  x x x x
                     ^j p-j o es
                     i/5 I-H CN in
                                      CM
                           ^ >-  *J  e
                           1 -a 1  2
                                   '
          s
                     •— N f-j  CO _r!
                   . .2 .2 .« 13
                                            U
                                   cd

                                   1
                                    c 3
                                      g
                                                  O
                                                  I-
                                          CL
                                          oo
                                          LLJ
                                          Ckf

                                          LJ_

                                          O

                                          Z
                                          O
                                                  H-
                                                  Z
                                                  LLJ
                                                  oo
                                                  LLJ
                                                  o:
                                                  Q_
                                                  LLJ
                                                  Of
                                               co
                                               S
                                      ^§ «  °

                                      !!!

                                      ;ll
                                         B«^N  L^
                                         *^  S
                                      *§ S  S
                                       s :-a
                                       u o  o
                                      < fa  H
                                      a  A  u
                                                                 o  2r !
                                                                 - -S I 8
                                                                 o  to I P
o
CO
                                                                 tu
                                                     s
                                                   > 8

                                                   «|£
                                                   « o ^^
 s «,
 = S
-3 5
                                                                   1
                                                        "-io'eioo'ooooo
                                                                      tf5 UO
                                                           t*~ r>»  £•*> c*o i—t i—* c^ i/5 o
                                                           ppppppp'-;'-;
                                                           oddddddoo
                                                                               1/5
                                                                                    Irt 1/5
                                                                                             i— 1 O O
                                                                                             1/5
                                                              «5  i-J r-5 d d  d d d d d
                                                                                 m      _.

                                                                 ppppppOrHoSS
                                                                 dddo'dddddei
                                                              i—ii— tcvte^o
                                                                      ^
                                                                                          o£>^
                                                                                    o o
                                                                         S  f:  x x x x
                                                                                          »O i—
                                                                                          oo
                                                                               
-------
                   UJ
                   2
                   ZD
                   _J
                   O

                   _J
                   UJ
                   I—
                   ID
                    UJ
                   UJ
                   Qi
a;
a_
r-H •
g -S
s
Q> M
3 *~l
c
•rH
[>•

*-
ft
 C
f . •r"'
s s
rt .js "^
_i oj c^
" t *^5
03 $
D Q*
tf £


G
.2
-*J
•5
o
u
T3 ^*3JQ
Q •!— 1 WIJ
w |




co
0
rH

CO
e
CO

t-'


^_^
in
CO
i
in
r-
in

o
in
C--

i-H
CO*
rH
|
T— I
O
I— 1
t-

t-H
i— I

tuo
.s
M
cu
OH







oT
o
co
i
co
«

CO
co"
(M
o"
r-
tv
1-1
o
i-H
m
i — t

co
t^
CD
t—i
c^J
00*
r-l
|
t-
in*
i — t
r-4

t-*
r-l

O

&JO
'J
m
co'
CO


fl
rt
CM
in
i
CO
co

o>
CM
rh
^
»— i
i — i
CM
O
O
o
i-H

o
co
o
CM
CO
co*
CO
1
CO
00*
,— (
CM

T— 1
CM
_*
O
>>
rt
ffi








r-t
in
i
o


in
•^*


^— ^
CO
CO
1
m
co
CM

en
CO
CO

o"
CO*
T— 1
i
TF
o
I— I
^

,_°
rH

CJD
•S
H-3
w
tf







00
co*
i— i
i
en
in

CO
co*
i— i

^.^
m
co
CO
i
CO
co
CO

o
CO
CO








o

O3
i— I

!H
O

i
•rH
J'

rt4
m
C
at
a
0
CO
T— 1
CO
i
co
t-'

m
•**
CM

o"
t~
— 1
1
0
cn
•^

o
CO
CO

co
in
CO
i
'o
in
CM
O

o
CO
X
O1
>•>
rt
cu
ffi








































T!
C!
O
OH
m
o
CM
CM
buo
i-H
*




                                                                                 OT    OT
                                                                                 *T3   'O
                                                                                 c    c
                                                                                 3    3
                                                                                 O    O
                                                                                 A   OH
                                                                                 rH   CJ3
                                                                                 in   -—I
CO)
                                                                                 CO
                                                                                      bfl
                                                                                     m
C
O
•i-i
-»->
rt
                                                                                            CO
                                                                                            cu
a;
O

a

0)
13
 CD
 P
• r-l
 a
See  Reference  No.  18
             16-5

-------
         O
         O
         _J
         o
         1C
         Q.
         :D
         Q.
13
U_
LLJ

ZD

<
                   0) Ti
                   O. C
                   en O
           o o
                   0) Ul
                   11
                     o>
                   " E
                   M O
                   5 -^
                   -C Ifl
                   rt xi
                   t S

                   13 E
                   a, e
                   u M
                   rt c
                   01 rt
                   6 i-
                   -H L,
                   ~~^ rt
                   c >
                   rt to
                   8 "
                   01 -o
                   t. c
                     (0
                   rt ~
                   > *





JS
rt










Variable




Al
3
'rt





4j
3
rt
i,
rt
















S
j=
u
X
U
ID
rt
O
rt
C
0
Diffusi












Lung Volumes (BTPS








T?I X
E £ 6 .»?

•£~c "c 6
55 §66 -^
6 6 "^jOO I
^^; O U U. j=

66 "g "i "i . "i
in o . o r- r^ *o o

S ^ £ £
"i H&; ^
a ~ ~ x
3 -^- J3 *»
° S « «
M 
_ nt hit -*~
O2 consumption (STPD)
CO2 output (STPD)
Respiratory exchange ratio,
uptake)
Diffusing capacity, O2 (STF
Diffusing capacity, CO (ste;
Diffusing capacity, CO (sin|
Fractional CO uptake
Maximal diffusing capacity











o
5
3
u
41
<

2 o
"" 3
BE
0 0
°. °
fM ^
M BO Q£ bfi C> O

-eelee^oc,
• 6oa§
F* *n o o *n o •

cS"—
'IN! ^ O
£ 1 O
a ^ o
S 0 S 0
C C C
<» 11 01 U
0 i. t, i.
[ O2 saturation (% saturation
Oj tension
CO2 tension
Alveolar-arterial pO2 diffe
Alveolar- arterial pO2 diffe
Alveolar-arterial pO2 diffe
O2 saturation (100% O2)
PH









S
£
rt
41
U
0)
"S
W
U
•a
5
u
01
01
ID
^
£ u
* «
g r- -^ .c
3s".5,S = *^i| B

-.-JJjjg™^) 0
S S § o -. "*. * ^ o o
	 —
- ^ H
Q. — '"'
0 j J
— • .. rt "» >»
^£~a 1
£ s 4> £ u •£.
Maximal breathing capacity
Timed vital capacity (% of t
Maximal expiratory flow ra
Maximal inspiratory flow n
Compliance of lungs and the
Compliance of lungs
Airway resistance
Work of quiet breathing
Maximal work of breathing
Maximal inspiratory and ex
pressures
335 SSSS2 SSS^SSS ? 5 5 ? ? 5 3 5 ? ? S







E E E E E E
o o o o o o .
o o o o o o IP
^0 ra ao M «*• o o

olume
apacity
1 lung capacity x 100

>> ^ ^
O L 3 ti "tl
0)7 01 T] U 01
g- « 6 3 2. 6
O 0 Ct. — 2 <= _
-; S a rt § s  ce u, H os











Ventilation (BTPS)





c
1
to
c
.9 c c
a e B
M 	 , — .
is1?1
B t o o
o o o o
S»NJ o in rM
-• vO -. •«•

u
o
rt
Q. q
M O
^ 3
rt rt
. 8* =
01 S . c
Tidal volum
Frequency
Minute volu
Respiratorj
Alveolar ve










a
Distribution of Inspired











r4 IM
Z 2
in iri ^g
V V r-
•O
^ O
increase N2 for 500 ml
is)
implying rate (7 min test
: (mixing efficiency rela
o "• w .^5
v C ^ "^fl
w rt So § S
v ~Z Q o 3
*j ° U "
Single- brea
expired a
Pulmonary
Helium clos
to perfect





|

A*
•o
I
S
1
tilation/ Pulmonary Capi
c

"*
"o
**








=0*0
. r- ace /tidal volume x 100
~~ W Ul
cT: *
S §-8
a-s-s
'c "a "a
Alveolar ve
Physiologicl
Physiologic










c
Pulmonary Circulatio









no c

6 g'Z S

< rt rt rt
fj O O (J
Pulmonary
Pulmonary
Pulmonary
Pulmonary











Alveolar Gas










x ta
a *
IE
Is



V
*> b
= S
3g
£a
^"rt
rt 3
||
O O

— , _ _« _, _ , ^, ^^^ .-irNjrvjrg raiM
16-6
                                                                        See  Reference No.  18

-------









1
r^
LU
"^5^

LU
CK
— -\
OO
<£
LU
°Z
^^- '•*^
O 2
—1 0
LU Z
2: o
>-
*"^ | 	
O *^
r- i
51
LU
OH
3-^

•^£
LU
S



C '
o 5 I ^ cc in co o* CM co
1
e
S S
00 \
S E
SL
e
sC 00 r-- CO \C CM CM CM O Q ON
r— ^ ^-t cc CM in ^

t- O ^ p CO fO f^
001-^0^" ^ "**" CM CO O "~" 00
r-t i— • CM CO

t"C' 00 f^ \C CO O ^_ *O
1-1 ~6
"" «]

c

o js
00 g
be

c
<*'!
S E
•*

^c
5 IP
01)
a
CO ^
S "s
J?
d
's
0 >
5
^c
t
•2
c
"XJ
$



4)
2
kl
o
ONgT^tO •**• "— * CM CM O ON O
"* ^ ^ — CS



Tf t- r-- cq O ^o scs
S2?«»c-ft»o ^m
--H •— l-t



o co t"— ON o CM i"»
cMOocor-' o r- CM CM " op •— ;
i— * CM CM co o o Trio



t- O-- oo ON p cq CM
rfsOCMO^ ^J" m CM c4 1~H 'w fO
^HI-HCMCMCCCO -*m


CM oc —; co —; —; co
CMIO--HO co op fo CM ^ ^* L"J
^-•OCMCN-Cin Tt-m

O CM TT O —i ^ CM
CMJCOO^Tf" C1 rO CO CO |--l ^^ OS
(_I(^^_(_T*1^' rt-in


^ co ON ^^ CO CM O
O*^ CO ^ O O CM co CO r~* ON r~^
CM t- -— i ^- -^ CO COLT

.s 1 1 -*
C ^" ^ ^
^^t •*• C c tc^-. -^
1 t a 1 1 ^ '& -1 t"i x •! .s e " -s "5
a, a.^uaj^-^^v^- b^u^u
'" S .2 > S - £ •- ££ c- i G 2 " S ""
1 » I = 1 1 1 1 1 1 1 1 1 1 i 1 '| I
a m 5
IM O <* « r-; M «5
00 00 Q IN >0 •-•
*-« *o in ^
p— 4 ••* CO
*. •"! "*, i-< t-' «' t
^00 Tf1 CS I'S "^t
f-H 2 ^ <-^
«o
o r^ S
W) 00 O c* o; ,f «}
»* O> «* 1-1 in CM
i— I o TP f-


rH
CO f-; «
*1 "~! 'I oo t^ ^t irt
cs


rt
S 3 5 S S ^ «
I-H \o ^ in


i-H
*£! CO ^
^ ^ «! f-I CM Tj* O
CO O\ *O CM i/J h-

l^ O CO
§_* — . «. . .


CO ^ OO
^ ^ ^ O t^ co' ^P

co co in
^ ^ ^~. •— ! ON re *£i

»-« u5 CM CO

^
D „
"y _ ^ C
>> u . « V O
°^^g-§. . il^'i
^*&g8*I !j.tf!
.Hr^ii*;!-! i
S- "? 8 I 81 g^ 1 2 •« ".S
Mlll:f|l!ll|
|l^|so|^-|0^
s
CO — '
&X
vO
CO
s
C> 1—4
«

8

pj
4M

r^-

« °
cs


^
3 °


5;
1 °

£5
in o
s

9S

s
"S ®

CM


C!
'§ s
<. •
31 '^
*M G
0 O fc
e'l 1
o "S •-
j £ o.
c3a|


















•^
^
1
.0
o
a.
3 •
ri
«« §
. rt
*« 6C
**• Q
* £
T 2,
\\
» .S
S -o
l\
r. fJ
£ .1

.2 g
g s
« £
~c ^5"
CQ 3
a -
ll
1- U
u _S
ta A
See Reference No.  19
                                                                                       16-7

-------
                   ro
        _J
        LLJ
        >
        UJ
        _J

        <
        LLJ
LU




O

H-
<


LU
ID
        CO
        O
        _)
        O
        o
        ^
        LU
        X

        a
        2:
        <
        LU
        U
        o
        LU

        Q
        O
        O
        _J
        CO
                  4)
                  3  C
                  a o
jQ C *D
 o o o
—> •-" O
 tO) *J ^
 o * &

 S*l
H-I -> >>
                                         I*  C  C

                                                  :
              co
+i -t;  cd
C C  H
  4J  cd
ot~ooo^4^H^^^H
                                                                   Cjv O

                                                                   ^H M
                                                                           DC

                                                                           U

                                                                           2
                                                                           jQ
                                                                            O
                                                                           F— I
                                                                            tUD
                                                                            o

                                                                            s
                                                                                             o
                                                                            o
                                                                           U

                                                                            c
                                                                            cfl
                                                                            0)
                                                                                             ro
                                                                           •
                                                                           TJ
                                                                            3
                                                                                     en
                                                                                     0)
                                                                                     ^^
                                                                                     cd
16-8
                                                             See Reference No.  22

-------
        LU
        Q
        H
        _J
        <
        I-
        LU
        ID
        CD
        O
        _J
        O
        O
        2
        LU
        I
        a
        z
        <
        LU
        h-
        >-
        LJ
        O
        Qi
        X
        I-
        >-
        CK
        LU

        Q
        O
        O
        _l
        CD
w,

 in
 c
 t-,
.§
 o"
en
OS
c
0)
TJ
•«-4
V)
                         rg
                       IP
                       t—4
                       O


                       a

                       o
      ° o §
      o'^S
     *O £  O

     °5  -
     •—« U  bo
     CQ
                       §1
u 2
CQ ^
       0)
       TJ

       3  6
       5 us
        O
        a)
                         C

                         0
                         U
              w
         u
                                    ID— «
                                                   rs)
                                                         rg
                                                                 rg
             O O O  O
             V
                                                                 cd
                          "
                                m
                                5
                                                    0 0
                                                                                         c
                                                                                         a
                                                                        
                                                                       o
                                                                       U
                                                                       01
                                                                       •~*
                                                                       rt
See Reference No.  22
                                                                                            16-9

-------
SECTION 77  MATHEMATICS

         Squares and Square Roots	    17-1
         Logarithms to Base 10	    17-6
         Natural (Napierian) Logarithms	    17-8
         Values and Logarithms of Exponential Functions	    17-10
         Selected Principles of Algebra	    17-14
         Selected Trigonometric Relationships	    17-17
         Selected Principles of Graphics	    17-22
         Selected Integrals	    17-24
         Selected Differentials	    17-25
         Statistical Analysis of the Frequency Distribution	    17-26
         Properties of Selected Geometric Figures	    17-27

-------
SQUARES AND SQUARE ROOTS
AT
140
1.01
1.02
1.03
1.04
1.01
1.06
1.07
1.08
1.09
1.10
1.11
1.12
1.13
1.14
1.18
1.16
1.17
1.18
1.19
I JO
1.21
1.22
1.23
1.24
148
1.26
1.27
1.28
1.29
1.SO

1.31
1.32
1.33
1.34
14S
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.48
1.46
1.47
1.48
1.49
140
1.51
1.52
1.53
1.54
1.U
1.56
1.57
1.58
1.59
l.<0
If
N*
1.0000
1.0201
1.0404
1.0609
1.0816
1.1025
1.1236
1.1449
1.1664
1.1881
1.2100
1.2321
1.2544
1.2769
1.2996
1.3225
1.3456
1.3689
1.3924
1.4161
1.4400
1.4641
1.4884
1.5129
1.5376
1.5625
1.5876
1.6129
1.6384
1.6641
1.0900

1.7161
1.7424
1.7689
1.7956
1.8226
1.8496
1.8769
1,9044
1.9321
1.9600
1.9881
2.0164
2.0449
2.0736
2.1025
2.1316
2.1609
2.1904
2.2201
2.2500
2.2801
2.3104
2.3409
2.3716
2.4025
2.4336
2.4649
2.4964
2.5281
24SBOO
N*
-Sii
1.00000
1.00499
1.00995
1.01489
1.01980
1.02470
1.02956
1.03441
1.03923
1.04403
1.04881
1.05357
1.05830
1.06301
1.06771
1.07238
1.07703
1.08167
1.08628
1.09087
1.09545
1.10000
1.10454
1.10905
1.11355
1.11803
1.12250
1.12694
1.13137
1.13578
1.14018

1.14455
1.14891
1.15326
1.15758
1 16190
1.16619
1.17047
1.17473
1.17898
1.18322
1.18743
1.19164
1.19583
1.20000
1.20416
1.20830
1.21244
1.21655
1.22066
1.22474
1.22882
1.23288
1.23693
1.24097
1.24499
1.24900
1.25300
1.25698
1.26095
1.26491
V*
•N/iow
4M4228
3.17805
3.19374
3.20936
3.22490
3.24037
3.25576
3.27109
3.28634
3.30151
3.31662
3.33167
3.34664
3.36155
3.37639
3.39116
3.40588
3.42053
3.43511
3.44964
3.46410
3.47851
3.49285
3.50714
3.52136
3.53553
3.54965
3.56371
3.57771
3.591GG
3.60555

3.61939
3.63318
3.64692
3.66060
3.67423
3.68782
3.70135
3.71484
3.72827
3.74166
3.75500
3.76829
3.78153
3.79473
3.80789
3.82099
3.83406
3.84708
3.86005
3.87298
3.88587
3.89872
3.91152
3.92428
3.93700
3.94968
3.96232
3.97492
3.98748
4.00000
y/tJw
N
140
1.61
1.62
1.63
1.64
146
IM
1.67
1.68
1.69
1.70
1.71
.72
.73
.74
1.TS
.76
.77
.78
.79
140
1.81
142
1.83
144
145
1.86
1.87
1.88
149
140

1.91
1.92
1.93
1.94
1.96
1.97
1.98
1.99
S40
2.01
2.02
2.03
2.04
S40
2.06
2.07
2.08
2.09
S.10
2.11
2.12
2.13
2.14
«.!•
2.16
2.17
2.18
2.19
t4W
AT
N*
24600
2.5921
2.6244
2.6569
2.6896
2.7225
2.7556
2.7889
24224
24561
24900
2,9241
2.9584
2.9929
3.0276
3.0625
3.0976
3.1329
3.1684
3.2041
3.2400
3.2761
3.3124
3.3489
3.3856
3.4225
3.4596
3.4969
3.5344
3.5721
3.6100

3.6481
3.6864
3.7249
3.7636
3.8025
3.8416
3.8809
3.9204
3.9601
4.0000
4.0401
4.0804
4.1209
4.1616
4.2025
4.2436
4.2849
4.3264
4.3681
4.4100
4.4521
4.4944
44369
4.5796
4.6225
4.6656
4.7089
4.7524
4.7961
44400
N*
VN
1.26491
1.26886
1.27279
1.27671
1.28062
1.28452
1.28841
1.29228
1.29615
1.30000
1.30384
140767
141149
141529
1.31909
1.32288
142665
1.33041
1.33417
1.33791
1.34164
1.34536
1.34907
1.35277
1.35647
146015
1.36382
1.36748
147113
1.37477
1.37840

148203
1.38564
1.38924
1.39284
1.39642
1.40000
1.40357
1.40712
1.41067
1.41421
1.41774
1.42127
1.42478
1.42829
1.43178
1.43527
1.43875
1.44222
1.44568
1.44914
1.45258
1.45602
1.45945
1.46287
1.46629
1.46969
1.47309
1.47648
1.47986
1.48324
VN
VMUV
4.00000
4.01248
4.03492
4.03783
4.04969
4.06202
4.07431
4.08656
4.09878
4.11096
4.12311
4.13521
4.14729
4.15933
4.17133
4.18330
4.19524
4.20714
4.21900
4.23084
4.24264
4.25441
4.26616
447785
4.28952
4.30116
4.31277
442435
4.33590
444741
445890

4.37036
448178
449318
4.40454
4.41588
4.42719
4.43847
4.44972
4.46094
4.47214
4.48330
4.49444
4.50555
4.51664
4.52769
443872
444973
4.56070
4.57165
4.68258
4.59347
4.60435
4.61619
4.62601
4.63681
4.64758
4.65833
4.66906
4.67974
4.69042
•N/lOtf
#
•JO
241
242
248
244
tiff
2.26
2.27
248
2.29
•40
241
242
2.33
244
IM
246
247
248
249
•.40
2.41
2.42
2.43
2.44
S.4C
2.46
2.47
2.48
2.49
•40

2.51
2.52
243
244
•46
2.56
2.57
2.68
2.59
•40
2.61
2.62
2.63
2.64
S.4M
2.66
2.67
2.68
2.69
•.TO
2.71
2.72
2.73
2.74
».75
2.76
2.77
2.78
2.79
•40
N
N*
44400
44841
4.9284
4.9729
5.0176
5.0625
5.107ft
5.1529
5.1984
5.2441
6.2900
54361
5.3824
5.4289
5.4756
5.5225
54696
5.6169
5.6644
5.7121
6.7600
54081
54564
6.9049
5.9536
6.0025
6.0516
6.1009
6.1504
6.2001
6.2500

64001
64504
6.4009
6.4616
64025
6.5536
6.6049
6.6564
6.7081
6.7600
6.8121
6.8644
6.9169
6.9696
7.0225
7.0756
7.1289
7.1824
7.2361
7.2900
74441
74984
7.4529
7.5076
7.5625
7.6176
7.6729
7.7284
7.7841
7.8400
N*
VN
1.48824
1.48661
1.48997
1.49332
1.49666
140000
1.50833
140665
140997
141327
1.61668
1.61987
1.62315
1.52643
142971
1.53297
1.63623
1.63948
1.64272
1.64596
1.64919
1.66242
1.65563
1.55886
1.66206
146626
1.66844
147162
147480
1.67797
1.68114

1.68430
1.68746
1.69060
1.59874
149687
1.60000
1.60312
1.60624
1.60936
141246
1.61666
1.61864
1.62173
1.62481
1.62786
1.68096
1.63401
1.63707
1.64012
1.64317
1.64621
1.64924
1.66227
1.66629
1.66881
1.66132
1.66433
1.66733
1.67033
1.67332
VN
-N/lOAf
4.69042
4.70106
4.71169
4.72229
4.73286
4.74342
4.76396
4.76446
4.77498
4.78639
4.79683
440625
441664
4.82701
448735
444768
4.86798
4.86826
4.87852
448876
4.89898
4.90918
4.91935
4.92960
4.98964
4.94975
4.96984
4.96991
4.97996
4.98999
500000

6.00999
5.01996
6.02991
6.03984
504976
6.06964
5.06962
5.07937
6.08920
5.09902
5.10882
5.11859
6.12835
6.13809
5.14782
5.16752
6.16720
6.17687
6.18652
5.19016
6.20577
5.21536
6.22494
6.23450
5.24404
5.25357
5.26308
5.27257
5.28205
5.29150
VWN
                                     17-1

-------
                   SQUARES AND SQUARE ROOTS
                             (continued)
N
S.80
2.81
2.82
2 83
2.84
2.85
2.86
2.87
2.88
2.89
2.90
2.91
2.92
2.93
2.94
1.95
2.96
2.97
2.98
2.99
3.00
3.01
3.02
3.03
3.04
3.06
3.06
3.07
3.08
3.09
3.10
3.11
3.12
3.13
3.14
3.16
3.16
3.17
3.18
8.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3. 30
3.37
3.38
3.39
3.40
N
AT»
7.8400
7.8961
7.9524
8.0089
8.0656
8.1225
8.1796
8.2369
8.2944
8.3521
8.4100
8.4681
8.5264
8.5849
8.6436
8.7025
8.7616
8.8209
8.8804
8.9401
9.0000
9.0601
9.1204
9.1809
9.2416
9.3025
9.3636
9.4249
9.4864
9.5181
9.6100
9.6721
9.7344
9.7969
9.8596
9.9225
9.9856
10.0489
10.1124
10.1761
10.2400
10.3041
10.3884
10.4329
10.4976
10.5625
10.6276
10.6929
10.7584
10.8241
10.8900
10.9561
11.0224
11.0889
11.1556
11.2225
11.2896
1 1 3569
11.4244
11.4921
11.5600
N1
VN
1.67332
1.67631
1.67920
1.68226
1.68523
1.68819
1.69115
1.69411
1.69706
1.70000
1.70294
1.70587
1.70880
1.71172
1.71464
1.71756
1.72047
1.72337
1.72627
1.72916
1.73205
1.73494
1.73781
1.74069
1.74356
1.74642
1.74929
1.75214
1.75499
1.75784
1.76068
1.76352
1.76635
1.76918
1.77200
1.77482
1.77764
1.78045
1.78326
1.78606
1.78885
1.79165
1.79444
1.79722
1.80000
1.80278
1.80555
1.80331
1.81108
1.81384
1.81659
1.81934
1.82209
1.82483
1.82757
1.83030
1.83303
1.83576
1.83848
1.84120
1.84391
VN
Vib^
5.29150
5.30094
6.31037
5.31977
5.32917
5.33854
5.34790
5.35724
5.36656
5.37587
5.38516
5.39444
5.40370
5.41295
5.42218
5.43139
5.44059
5.44977
5.45894
5.46809
5.47723
5.48635
5.49545
5.50454
5.51362
5.52268
5.53173
5.54076
5.54977
5.55878
5.56776
5.57674
5.58570
5.59464
5.60357
5.61249
5.62139
5.63028
5.63915
5.64801
5.65685
5.66569
5.67450
5.68331
5.69210
5.70088
5.70964
5.71839
5.72713
5.73585
5.74456
6.75326
5.76194
5.77062
5.77927
5.78792
5.79655
5.80517
5.81378
5.82237
5.83095
VWN
N
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58'
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.70
3.71
3.72
3.73
3.74
3.75
3.76
3.77
3.78
3.79
3.80
3.81
3.82
3.83
3.84
3.85
3.86
3.87
3.88
3.89
3.90
3.91
3.92
3.93
3.94
3.95
3.96
3.97
3.98
3.99
4.00
N
N*
11.5600
11.6281
11.6964
11.7649
11.8336
11.9025
11.9716
12.0409
12.1104
12.1801
12.2500
12.3201
12.3904
12.4609
12.5316
12.6025
12.6736
12.7449
12.8164
12.8881
12.9600
13.0321
13.1044
13.1769
13.2496
13.3225
13.3956
13.4689
13.5424
13.6161
13.6900
13.7641
13.8384
13.9129
13.9876
14.0625
14.1376
14.2129
14.2884
14.3641
14.4400
14.5161
14.5924
14.6689
14.7456
14.8225
14.8996
14.9769
15.0544
15.1321
15.2100
15.2881
15.3664
15.4449
15.5236
15.6025
15.6816
15.7609
15.8404
15.9201
16.0000
N1
VN
1.84391
1.84662
1.84932
1.85203
1.85472
1.85742
1.86011
1.86279
1.86548
1.86815
1.87083
1.87350
1.87617
1.87883
1.88149
1.88414
1.88680
1.88944
1.89209
1.89473
1.89737
1.90000
1.90263
1.90526
1.90788
1.91050
1.91311
1.91572
1.91833
1.92094
1.92354
1.92614
1 ..92873
1.93132
1.93391
1.93649
1.93907
1.94165
1.94422
1.94679
1.94936
1.95192
1.95448
1.95704
1.95959
1.96214
1.96469
1.96723
1.96977
1.97231
1.97484
1.97737
1.97990
1.98242
1.98494
1.98746
1.98997
1.99249
1.99499
1.99750
2.00000
VN
V\QN
5.83095
5.83952
5.84808
5.85662
5.86515
5.87367
5.88218
5.89067
5.89915
5.90762
5.91608
5.92453
5.93296
5.94138
5.94979
5.95819
5.96657
5.97495
5.98331
5.99166
6.00000
6.00833
6.01664
6.02495
6.03324
6.04152
6.04979
6.05805
6.06630
6.07454
6.08276
6.09098
6.09918
6.10737
6.11555
6.12372
6.13188
6.14003
6.14817
6.15630
6.16441
6.17252
6.18061
6.18870
6.19677
6.20484
6.21289
6.22093
6.22896
6.23699
6.24500
6.25300
6.26099
6.26897
6.27694
6.28490
6.29285
6.30079
6.30872
6.31664
6.32456
Vwf
N
4.00
4.01
4.02
4.03
4.04
4.06
4.06
4.07
4.08
4.09
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.26
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.36
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.46
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
454
4,55
4.56
4.57
4.58
4.59
4.60
N
JV»
16.0000
16.0801
16.1604
16.2409
16.3216
] 6.4025
16.4836
16.5649
16.6464
16.7281
16.8100
16.8921
16.9744
17.0569
17.1396
17.2225
17.3056
17.3889
17.4724
17.5561
17.6400
17.7241
17.8084
17.8929
17.9776
18.0625
IS. 1476
18.2329
18.3184
18.4041
18.4900
18.5761
18.6624
18,7489
18 8356
18.9225
19.0096
19.0969
19.1844
19.2721
19.3600
19.4481
19.5364
19.6249
19.7136
19.8025
19.8916
19.9809
20.0704
20.1601
20.2500
20.3401
20.4304
20.5209
20.6116
20.7025
20.7936
20.8849
20.9764
21.0681
21.1600
tf*
VN
2.00000
2.00250
2.00499
2.00749
2.00998
2.01246
2.01494
2.01742
2.01990
2.02237
2.02485
2.02731
2.02978
2.03224
2.03470
2.03715
2.03961
2.04206
2.04450
2.04695
2.04939
2.051F3
2.05426
2.05670
2.05913
2.06155
2.06398
2.06640
2.06882
2.07123
2.07364
2.07605
2.07846
2.08087
2.08327
2.08567
2.08806
2.09045
2.09284
2.09523
2.09762
2.10000
2.10238
2.10476
2.10713
2.10950
2.11187
2.11424
2.11660
2.11896
2.12132
2.12368
2.12603
2.12838
2.13073
2.13307
2.13542
2.13776
2.14009
2.14243
2.14476
VN
VlON
6.32456
6.33246
6.34035
6.34823
6.35610
6.36396
6.37181
6.37966
6.38749
6.39531
6.40312
6.41093
6.41872
6.42651
6.43428
6.44205
6.44981
6.45755
6.46529
6.47302
6.48074
6.48845
6.49615
6.50384
6.51153
€.51920
6.52687
6.53452
6.54217
6.54981
6.55744
6.56506
6.57267
6.58027
6.58787
6.59545
6.60303
6.61060
6.61816
6.62571
6.63325
6.64078
6.64831
6.65582
6.66333
6.67083
6.67832
6.68581
6.69328
6.70075
6.70820
6.71565
6.72309
6.73053
6.73795
6.74537
6.75278
6.76018
6.76757
6.77495
6.78233
VuiN
17-2

-------
SQUARES AND SQUARE ROOTS
         (continued)
N
4.60
4.61
4.62
4.63
4.64
4.66
4.66
4.67
4.68
4.69
4.70
4.71
4.72
4.73
4.74
4.76
4.76
4.77
4.78
4.79
4.80
4.81
4.82
4.83
4.84
4.86
4.86
4.87
4.88
4.89
4.90
4.91
4.92
4.93
4.94
4.96
4.96
4.97
4.98
4.99
6.00
5.01
5.02
5.03
5.04
6.06
5.06
5.07
5.08
5.09
6.10
5.11
5.12
5.13
5.14
6.16
5.16
5.17
5.18
5.19
6JO
N
A"
21.1600
21.2521
21.3444
21.4369
21.5296
21.6225
21.7156
21.8089
21.9024
21.9961
22.0900
22.1841
22.2784
22.3729
22.4676
22.5625
22.6576
22.7529
22.8484
22.9441
23.0400
23.1361
23.2324
23.3280
23.4256
23.5225
23.6196
23.7169
23.8144
23.9121
24.0100
24.1081
24.2064
24.3049
24.4036
24.5025
24.6016
24.7009
24.8004
24.9001
25.0000
25.1001
25.2004
25.3009
25.4016
25.5025
25.6036
25.7049
25.8064
25.9081
26.0100
26.1121
26.2144
26.3169
26.4196
26.5225
26.6256
26.7,289
26.8324
26.9361
27.0400
N*
VN
2.14476
2.14709
2.14942
2.15174
2.15407
2.15639
2.15870
2.16102
2.16333
2.16564
2.16795
2.17025
2.17256
2.17486
2.17715
2.17945
2.18174
2.18403
2.18632
2.18861
2.19089
2.19317
2.19545
2.19773
2.20000
2.20227
2.20454
2.20681
2.20907
2.21133
2.21359
2.21585
2.21811
2.22030
2.22::di
2.22486
2.22711
2.22935
2.23159
2.23383
2.23607
2.23830
2.24054
2.24277
2.24499
2.24722
2.24944
2.25167
2.25389
2.25610
2.25832
2.26053
2.26274
2.26495
2.26716
2.26936
2.27156
2.27376
2.27596
2.27816
2.28035
VN
VuiN
6.78233
6,78970
tt.79706
6.80441
6.81175
6.81909
6.82642
6.83374
6.84105
6.84836
6.85565
6.86294
6.87023
6.87750
6.88477
6.89202
6.89928
6.90652
6.91375
6.92098
6.92820
6.93542
6.94262
6.94982
6.95701
6.96419.
6.97137
6.97854
6.98570
6.99285
7,00000
7.00714
7.01427
7.02140
7.02851
7.03562
7.04273
7.04982
7.05691
7.06399
7.07107
7.07814
7.08520
7.09225
7.09930
7.10634
7.11337
7.12039
7.12741
7.13442
7.14143
7.14843
7.15542
7.16240
7.16938
7.17635
7.18331
7.19027
7.19722
7.20417
7.21110
•v/iojv
ff
BJM>
5.21
5.22
5.23
5.24
6J6
5.26
5.27
6.28
5.29
6.30
5.31
5.32
5.33
5.34
6.36
5.36
5.37
5.38
5.39
6.40
5.41
5.42
5.43
5.44
6.46
5.46
5.47
5.48
5.49
6.60
5.51
6.52
5.53
5.54
6.66
5.56
5.57
5.58
5.59
6.60
5.61
5.62
5.63
5.64
6.66
5.66
5.67
5.68
5.69
6.70
5.71
5.72
5.73
5.74
6.76
5.76
5.77
5.78
5.79
6.80
N
N*
27.0400
27.1441
27.2484
27.3629
27.4676
27.6626
27.6676
27.7729
27.8784
27.9841
28.0900
28.1961
28.3024
28.4089
28.5156
28.6225
28.7296
28.8369
28.9444
29.0521
29.1600
29.268 1
29.3764
29.4849
29.5936
29.7025
29.8116
29.9209
30.0304
30.1401
30.2500
30.3601
30.4704
30.5809
30.6916
30.8025
30.9136
31.0249
31.1364
31.2481
31.3600
31.4721
31.5844
31.6969
31.8096
31.9225
32.0356
32.1489
32.2624
32.3761
32.4900
32.6041
32.7184
32.8329
32.9476
33.0625
33.1776
33.2929
33.4084
33.5241
33.6400
A"
VN
2.28036
2.28264
2.28473
2.28602
2.28910
2.29129
2.29347
2.29566
2.29783
2.30000
2.30217
2.30434
2.30651
2.30868
2.31084
2.31301
2.31517
2.31733
2.31948
2.32164
2.32379
2.32594
2.32809
2.33024
2.33238
2.33452
2.33666
2.33880
2.34094
2.34307
2.34521
2.34734
2.34947
2.35160
2.35372
2.35584
2.35797
2.36008
2.36220
2.36432
2.36643
2.36854
2.37065
2.37276
2.37487
2.37697
2.37908
2.38118
2.38328
2.38537
2.38747
2.38956
2.39165
2.39374
2.39583
2.99792
2.40000
2.40208
2.40416
2.40624
2.40832
VN
VlOAT
7.21110
7.21803
7.22496
7.23187
7.23878
7.24569
7.25259
7.26948
7.26636
7.27324
7.28011
7.28697
7.29383
7-.30068
7.30763
7.31437
7.32120
7.32803
7.33486
7.34166
7.34847
7.35527
7.36206
7.36885
7.37564
7.38241
7.38918
7.39594
7.40270
7.40945
7.41620
7.42294
7.42967
7.43640
7.44312
7.4/983
7,46654
7.46324
7.46994
7.47663
7.48331
7:48999
7.49667
7.50333
7.60999
7.51665
7.52330
7.52994
7.63658
7.64321
7.54983
7.56646
7.56307
7.66968
7.57628
7.68288
r.58847
7.59605
7.60263
7.60920
7.61677
ViSv
N
6.80
6.81
5.82
5.83
5.84
6.86
6.86
5.87
5.88
5.89
6.90
6.91
5.92
5.93
5.94
6.98
6.96
5.97
5.98
5.99
6.00
6.01
6.02
6.03
6.04
«.06
6.06
6.07
6.08
6.09
6.10
6.11
6.12
6.13
6.14
6.16
6.16
6.17
6.18
6.19
6 JO
•6.21
6.22
6.23
6.24
6.16
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.S6
6.36
6.37
6.38
6.39
6.40
N
N*
33.6400
33.7*1
33.8724
33.9889
34.1066
34.2226
34.3396
34.4669
34.5744
34.6921
34.8100
34.9281
&.0464
35.1649
36.2836
36.4026
36.6216
36.6409
36.7604
36.8801
36.0000
36.1201
36.2404
36.3609
36.4816
36.6026
36.7236
36.8449
36.9664
37.0881
37.2100
37.3321
37.4544
37.6769
37.6996
37.8226
37.9466
38.0689
38.1924
38.3161
38.4400
38.6641
38.6884
38.8129
38.9376
39.0626
39.1876
39.3129
39.4384
39.6641
39.6900
39.8161
39.9424
40.0689
40.1966
40.3225
40.4496
40.5769
40.7044
40.8321
40.9600
N*
VN
2.40832
2.41039
2.41247
2.41464
2.41661
2.41868
2.42074
2.42281
2.42487
2.42693
2.42899
2.43106
2.43311
2.43616
2.43721
2.43926
2.44131
2.44336
2.44640
2.44746
2.44949
2.45163
2.46357
2.46661
2.45764
2.46967
2.46171
2.46374
2.46577
2.46779
2.46982
2.47184
2.47386
2.47688
2.47790
2.47992
2.48193
2.48395
2.48696
2.48797
2.48998
2.49199
2.49399
2.49600
2.49800
2.60000
2.60200
2.60400
2.60699
2.60799
2.60998
2.61197
2.61396
2.61696
2.61794
2.61992
2.62190
2.62389
2.62587
2.62784
2.62982
VN
VUN
7.81677
7.62234
7.62889
7.63644
7.64199
7.64863
7.66606
7.66159
7.66812
7.67463
7.68116
7.68766
7.69416
7.70065
7.70714
7.71362
7.72010
7.72668
7.73306
7.73951
7.74697
7.76242
7.76887
7.76631
7.77174
7.77817
7.78460
7.79102
7.79744
7.80386
7.81026
7.81666
7.82304
7.82943
7.83682
7.84219
7.84857
7.86493
7.86130
7.86766
7.87401
7.88036
7.88670
7.89303
7.89937
7.90669
7.91202
7.91833
7.92465
7.93096
7.93725
7.94355
7.94984
7.95613
7.96241
7.96869
7.97496
7.98123
7.98749
7.99376
8.00000
VtoN
                                          17-3

-------
                     SQUARES AND SQUARE ROOTS
                              (continued)
N
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.56
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65
6.66
6.67
6.68
6.69
6.70
6.71
6.72
6.73
6.74
6.75
6.76
6.77
6.78
6.79
6.80
6.81
6.82
6.83
6.84
6.85
6.86
6.87
6.88
6.89
6.90
6.91
6.92
6.93
6.94
6.95
6.96
6.97
6.98
6.99
7.00
N
N*
40.9600
41.0881
41.2164
41.3449
41.4736
41.6025
41.7316
41.8609
41.9904
42.1201
42.2500
42.3801
42.5104
42.6409
42.7716
42.9025
43.0336
43.1649
43.2964
43.4281
43.5600
43.6921
43.8244
43.9569
44.0896
44.2225
44.3556
44.4889
44.6224
44.7561
44.8900
45.0241
45.1584
45.2929
45.4276
45.5625
45.6976
45.8329
45.9684
46.1041
46.2400
46.3761
46.5124
46.6489
46.7856
46.9225
47.0596
47.1969
47.3344
47.4721
47.6100
47.7481
47.8864
48.0249
48.1636
48.3025
48.4416
48.5809
43.7204
48.8601
49.0000
N*
VN
2.62982
2.63180
2.63377
2.53574
2.63772
2.63969
2.64165
2.64362
2.54658
2.64765
2.64951
2.65147
2.65343
2.55539
2.65734
2.65930
2.66125
2.66320
2.56515
2.56710
2.56905
2.57099
2.57291
2.574S3
2.57682
2.57876
2.58070
2.58263
2.58457
2.58650
2.58844
2.59037
2.59230
2.59422
2.59615
2.59803
2.60000
2.60192
2.60384
2.60576
2.60768
2.60960
2.61151
2.S1343
2.61534
2.61725
2.61916
2.62107
2.62298
2.62488
2.62679
2.62869
2.63059
2.63249
2.63439
2.63629
2.63818
2.64008
2.64197
2.64386
2.64575
VN
VlbAT
8.00000
8.00625
8.01349
8.01873
8.02496
8.03119
8.03741
8.04363
8.04984
8.05605
8.06226
8.06846
8.07465
8.08084
8.0S703
8.09321
8.0993S
8.10555
8.11172
8.11783
8.12404
8.13019
8.13634
8.14248
8.14862
8.15475
8.16088
8.16701
8.17313
8.17924
8.18535
8.19146
8.19758
8.20368
8.20975
8.21584
8.22192
8 22300
8.2340S
8.24015
8.24621
8.25227
8.25833
8.26433
8.27043
8.27647
8.28251
8.28855
8.29458
8.30060
8.30662
8.31264
8.31865
8.32466
8.33067
8.33667
8.34266
8.34865
8.3.T464
8.36062
8.36660
ViON
N
7.00
7.01
7.02
7.03
7.04
7.06
7.06
7.07
7.08
7.09
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7*0
7.21
7.22
7.23
7.24
7.S5
7.26
7.27
7.23
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.33
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7;55
7.56
7.57
7.58
7.59
7.60
N
N»
49.0000
49.1401
49.2804
49.4209
49.6616
49.7025
49.8436
49.9849
60.1264
60.2681
50.4100
60.5521
50.6944
50.8369
50.9796
51.1225
51.2656
51.4089
51.5524
51.6961
51.8400
51.9841
52.1284
52.2729
52.4176
52.5625
52.7076
52.8529
52.9934
53.1441
53.2900
53.4361
53.5824
53.7289
53.8756
54.0225
54.1696
54.3169
54.4644
54.6121
54.7600
54.9081
55.0564
55.2049
55.3536
55.5025
55.6516
55.8009
55.9504
56.1001
56.2500
56.4001
56.5504
56.7009
56.8516
57.0025'
57.1536
57.3049
57.4564
57.6081
57.7600
AT*
VN
2.64575
2.64764
2.64963
2.65141
2.65330
2.65518
2.65707
2.66895
2.66083
2.66271
2.66458
2.66646
2.66833
2.67021
2.67208
2.67395
2.67582
2.67769
2.67955
2.68142
2.68328
2.68514
2.68701
2.68887
2.69072
2.69258
2.69444
2.69629
2.69815
2.70000
2.70185
2.70370
2.70555
2.70740
2.70924
2.71109
2.71293
2.71477
2.71662
2.71846
2.72029
2.72213
2.72397
2.72580
2.72764
2.72947
2.73130
2.73313
2.73496
2.73679
2.73861
2.74044
2.74226
2.74408
2.74591
2.74773
2/74955
2.75136
2.75318
2.75500
2.75681
Vff
VlOtf
8.36660
8.37267
8.37864
8.38451
8.39047
8.39643
8.40238
8.40833
8.41427
8.42021
8.42615
8.43208
8.43801
8.44393
8.44985
8.46577
8.46168
8.46759
8.47349
8.47939
8.48528
8.49117
8.49706
8.50294
8.50882
8.51469
8.52056
8.52643
8.53229
8.63815
8.54400
8.54985
8.55570
8.56154
8.56738
8.57321
8.57904
8.58487
8.59069
8.59651
8.60233
8.60814
8.61394
8.61974
8.62564
8.63134
8.63713
8.64292
8.64870
8.65448
8.66025
8.66603
8.67179
8.67756
8.68332
8.68907
8.69483
8.70057
8.70632
8.71206
8.71780
•v/iotf
N
7.60
7.61
7.62
7.63
7.64
7.65
7.66
7.67
7.68
7.69
7.70
7.71
7.72
7.73
7.74
7.75
7.76
7.77
7.78
7.79
7.80
7.81
7.82
7.83
7.84
7.85
7.86
7.87
7.88
7.89
7.90
7.91
7.92
7.93
7.94
7.95
7.96
7.97
7.98
7.99
8.00
8.01
8.02
8.03
8.04
8.06
8.06
8.07
8.08
8.09
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
N
N*
57.7600
57.9121
58.0M4
68.2109
58.3696
68.6225
68.6756
68.8289
58.9824
59.1361
59.2900
69.4441
69.5984
59.7529
59.9076
60.0625
60.2176
60.3729
60.5284
60.6841
60.8400
60.9961
61.1524
61.3089
61.4656
61.6225
61.7796
61.9369
62.0944
62.2521
62.4100
62.5681
62.7264
62.8849
63.0436
63.2025
63.3616
63.5209
63.6804
63.8401
64.0000
64.1601
64.3204
64.4809
64.6416
64.8025
64.9636
651249
65.2864
65.4481
65.6100
65.7721
65.9344
66.0969
66.2596
66.4225
66.5856
66.7489
66.9124
67.0761
67.2400
N1
VN
2.76681
2.75862
2.76043
2.76225
2.76405
2.76686
2.76767
2.76948
2.77128
2.77308
2.77489
2.77669
2.77849
2.78029
2.78209
2.78388
2.78568
2.78747
2.78927
2.79108
2.79285
2.79464
2.79643
2.79821
2.80000
2.80179
2.80357
2.80535
2.80713
2.80891
2.81069
2.81247
2.81425
2.81603
2.81780
2.81957
2.82135
2.82312
2.82489
2.82666
2.82843
2.83019
2.83196
2.83373
2.83549
2.83725
2.83901
2.84077
2.84253
2.84429
2.84605
2.84781
2.84956
2.85132
2.85307
2.85482
2.85657
2.85832
2.86007
2.86182
2.86356
VN
VWN
8.71780
8.72353
8.72926
8.73499
8.74071
8.74643
8.75214
8.75785
8.76356
8.76926
8.77496
8.78066
8.78635
8.79204
8.79773
8.80341
8.80909
8.81476
8.82043
8.82610
8.83176
8.83742
8.84308
8.84873
8.85438
8.86002
8.86566
8.87130
8.87694
8.88257
8.88819
8.89382
8.89944
8.90505
8.91067
8.91628
8.92188
8.92749
8.93308
8.93868
8.94427
8.94986
8.95545
8.96103
8.96660
8.9721R
8.97775
8.98332
8.98888
8.99444
9.00000
9.00555
9.01110
9.01665
9.02219
9.02774
9.03327
9.03881
9.04434
9.04986
9.06539
Vi
-------
SQUARES AND SQUARE ROOTS
        (continued)
N
8.20
8.21
8.22
8.23
8.24
8.26
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.46
8.46
8.47
8.48
8.49
8.60
8.51
8.52
8.53
8.54
8.S5
8.56
8.57
8.5S
8.59
8.60
8.61
8.62
8.63
8.64
8.66
8.66
8.67
8.68
8.69
8.70
8.71
8.72
8.73
8.74
8.75
8.76
8.77
8.78
8.79
8.80
N
N*
67.2400
67.4041
67.5084
67.7329
67.8976
68.0625
68.2276
68.3929
68.5584
68.7241
68.8900
69.0561
69.2224
69.3889
69.5556
69.7225
69.8896
70.0569
70.2244
70.3921
70.5600
70.7281
70.8964
71.0649
71.2336
71.4025
71.5716
71.7409
71.9104
72.0801
72.2500
72.4201
72.5904
72.7609
72.9316
73.1025
73.2736
73.4449
73.6164
73.7881
73.9600
74.1321
74.3044
74.4769
74.6496
74.8225
74.9956
75.1689
75.3424
75.5161
75.6900
75.8641
76.0384
76.2129
76.3876
76.5625
76.7376
76.9129
77.0884
77.2641
77.4400
N*
VN
2.86356
2.86531
2.86706
2.86880
2.87054
2.87228
2.87402
2.87576
2.87750
2.87924
2.88097
2.88271
2.8S444
2.88617
2.88791
2.88964
2.89137
2.89310
2.89482
2.89655
2.8982S
2.90000
2.90172
2.90345
2.90517
2.90689
2.908S1
2.91033
2.91204
2.91376
2.91548
2.91719
2.91890
2.92082
2.92233
2.92404
2.92575
2.92746
2.92916
2.93087
2.93258
2.93428
2.93593
2.93769
2.93939
2.94109
2.94279
2.94449
2.94618
2.94788
2.94958
2.95127
2.95296
2.95466
2.95635
2.95804
2.95973
2.96142
2.96311
2.96479
2.96648
VN
VlON
9.05539
9.06091
9.06642
9.07193
9.07744
9.08295
9.08845
9.09395
9.09945
9.10494
9.11043
9.11592
9.12140
9.12688
9.13236
9-13783
9.14330
9.14877
9.15423
9.15969
9.16515
9.17061
9.17606
9.18150
9.18695
9.19239
9.19783
9.20326
9.20869
9.21412
9.21951
9.22497
9.23033
9.235SO
9.24121
9.24662
9.25203
9.25743
9.26283
9.26823
9.27362
9.27901
9.28440
9.28978
9.29516
9.30054
9.30591
9.31128
9.31665
9.32202
9.32738
9.33274
9.33809
9.34345
9.34880
9.35414
9.35949
9.36483
9.37017
9.37550
9.38083
VlON
N
8 JO
8.81
8.82
8.83
8.84
$.85
8.86
8.87
8.88
8.89
8.90
8.91
8.92
8.93
8.94
8.95
8.96
8.97
8.98
8.99
9.00
9.01
9.02
9.03
9.04
9.05
9.06
9.07
9.08
9.09
9.10
9.11
9.12
9.13
9.14
9.16
9.16
9.17
9.18
9.19
9.10
9.21
9.22
9.23
9.24
9J5
9.26
9.27
9.28
9.29
9.30
9.31
9.32
9.33
9.34
9.36
9.36
9.37
9.38
9.39
9.40
N
N*
77.4400
77.6161
77.7924
77.9689
78.1456
78.3225
78.4996
78.6769
78.8544
79.0321
79.2100
79.3881
79.5664
79.7449
79.9236
80.1025
80.2816
80.4609
80.6404
80.8201
81.0000
81.1801
81.3604
81.5409
81.7216
81.9025
82.0836
82.2649
82.4464
82.6281
82.8100
82.9921
83.1744
83.3569
83.5396
83.7225
83.9056
84.0889
84.2724
84.4561
84.6400
84.8241
85.0084
85.1929
85.3776
85.5625
85.7476
85.9329
86 1184
86.3041
86.4900
86.6761
86.8624
87.0489
87.2358
87.4225
87.6096
87.7969
87.9844
88.1721
88.3600
N*
VN
2.96648
2.96816
2.96985
2.97153
2.97321
2.97489
2.97658
2.97825
2.97993
2.98161
2.98329
2.98496
2.98664
2.98831
2.98998
2.99166
2.99333
2.99500
2.99666
2.99833
3.00000
3.00167
3.00333
3.00500
3.00666
3.00832
3.00998
3.01164
3.01330
3.01496
3.01662
3.01828
3.01993
3.02159
3.02324
3.02490
3.02655
3.02820
3.02985
3.03150
3.03315
3.03480
3.03645
3.03809
3.03974
3.04138
3.04302
3.04467
3.04631
3.04795
3.04959
3.05123
3.05287
3.05450
3.05614
3.0577*
3.05941
3.06105
3.06268
3.06431
3.06594
VN
Vuitf
9.38063
9.38616
9.39149
9.39681
9.40213
9.40744
9.41276
9.41807
9.42338
9.42868
9.43398
9.43928
9.44458
9.44987
9.45516
9.46044
9.46573
9.47101
9.47629
9.48156
9.48683
9.49210
9.49737
9.50263
9.50789
9.51315
9.51840
9.52365
9.52890
9.53415
9.53939
9.54463
9.54987
9.55510
9.56033
9.56556
9.57079
9.57601
9.58123
9.58645
9.59166
9.59687
9.60208
9.60729
9.61249
9.61769
9.62289
9.62808
9.63328
9.63846
9.64365
9.64883
9.65401
9.65919
9.66437
9.66954
9.67471
9.67988
9.68504
9.69020
9.69536
VLQN
N
9.40
9.41
9.42
9.43
9.44
*.M
9.46
9.47
9.48
9.49
9.60
9.51
9.62
9.63
9.64
9.M
9.66
9.57
9.58
9.59
9.60
9.61
9.62
9.63
9.64
9.65
9.66
9.67
9.68
9.69
9.70
9.71
9.72
9.73
9.74
9.76
9.76
9.77
9.78
9.79
9.80
9.81
9.82
9.83
9.84
9.86
9.86
9.87
9.88
9.89
9.90
9.91
9.92
9.93
9.94
9.95
9.96
9.97
9.98
9.99
10.00
N
AP
88.3600
88.6481
88.7364
88.9249
89.1136
89.3025
89.4916
89.6809
89.8704
90.0601
90.2500
90.4401
90.6304
90.8209
91.0116
91.2026
91.3936
91.5849
91.7764
91.9681
92.1600
92.3521
92.5444
92.7369
92.9296
93.1225
93.3166
93.5089
93.7024
93.8961
94.0900
94.2841
94.4784
94.6729
94.8676
95.0625
95.2576
95.4529
95.6484
95.8441
96.0400
96.2361
96.4324
96.6289
96.8256
97.0225
97.2196
97.4169
97.6144
97.8121
98.0100
98.2081
98.4064
98.6049
98.8036
99.0025
99.2016
99.4009
99.6004
99.8001
100.000
N*
VN
3.00694
3.06757
3.06920
3.07083
3.07246
3.07409
3.07571
3.07734
3.07896
3.08068
3.08221
3.08383
3.08545
3.08707
3.08869
3.09031
3.09192
3.09364
3.09516
3.09677
3.09839
3.10000
3.10161
3.10322
3.10483
3.10644
3.10806
3.10966
3.11127
3.11288
3.11448
3.11609
3.11769
3.11929
3.12090
3.12250
3.12410
3.12670
3.12730
3.12890
3.13050
3.13209
3.13369
3.13528
3.13688
3.13847
3.14006
3.14166
3.14325
3.14484
3.14643
3.14802
3.14960
3.15119
3.15278
3.15436
3.16595
3.15753
3.15911
3.16070
3.16228
VN
Vwi
9.69536
9.70052
9.70567
9.71082
9.71597
9.72111
9.72625
9.73139
9.73663
9.74166
9.74A79
9.75192
9.75706
9.76217
9.76729
9.77241
9.77763
9.78264
9.78775
9.79285
9.79796
9.80306
9.80816
9.81326
9.81836
9.82344
9.82863
9.83362
9.83870
9.84378
9.84886
9.86393
9.86901
9.86408
9.86914
9.87421
9.87927
9.88433
9.88939
9.89444
9.89949
9.90454
9.90959
9.91464
9.91968
9.92472
9.92975
9.93479
9.93982
9.94485
9.94987
9.95490
9.95992
9.96494
9.96995
9.97497
9.97998
9.98499
9.98999
9.99500
10.0000
VutN
                                          17-5

-------
                                 LOGARITHMS TO  BASE 10
N
10
11
12
13
14
15
16
17
13
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
N
01234
0000 0043 0086 0128 0170
0414 0453 0492 0531 0569
0792 0828 0864 0899 0934
1139 1173 1206 1239 1271
1461 1492 1523 1553 1584
1761 1790 1818 1847 1875
2041 2068 2095 2122 2148
2304 2330 2355 2380 2405
2553 2577 2601 2625 2648
2788 2810 2833 2856 2878
3010 3032 3054 3075 3096
3222 3243 3263 3284 3304
3424 3444 3464 3483 3502
3617 3636 3655 3674 3692
3802 3820 3838 3856 3874
3979 3997 4014 4031 4048
4150 4166 4183 4200 4216
4314 4330 4346 4362 4378
4472 4487 4502 4518 4533
4624 4639 4654 4669 4683
4771 4786 4800 4814 4829
4914 4928 4942 4955 4969
5051 5065 5079 5092 5105
5185 5198 5211 5224 5237
5315 5328 5340 5353 5366
5441 5453 5465 5478 5490
5563 5575 5587 5599 5611
5682 5694 5705 5717 5729
5798 5809 5821 5832 5843
5911 5922 5933 5944 5955
6021 6031 6042 6053 6064
6128 6138 6149 6160 6170
6232 6243 6253 6263 6274
6335 6345 6355 6365 6375
6435 6444 6454 6464 6474
6532 6542 6551 6561 6571
6628 6637 6646 6656 6665
6721 6730 6739 6749 6758
6812 6821 6830 6839 6848
6902 6911 6920 6C28 6937
6990 6998 7007 7016 7024
7076 7084 7093 7101 7110
7160 7168 7177 7185 7193
7243 7251 7259 7267 7275
7324 7332 7340 7348 7356
01234
56789
0212 0253 0294 0334 0374
0607 0645 0682 0719 0755
0969 1004 1038 1072 1106
1303 1335 1367 1399 1430
1614 1644 1673 IV 03 1732
1903 1931 1959 1987 2014
2175 2201 2227 2253 2279
2430 2455 2480 2504 2529
2672 2695 2718 2742 2765
2900 2923 2945 2967 2989
3118 3139 3160 3181 3201
3324 3345 3365 3385 3404
3522 3541 3560 3579 3598
3711 3729 3747 3766 3784
3892 3909 3927 3945 3962
4065 4082 4099 4116 4133
4232 4249 4265 4281 4298
4393 4409 4425 4440 4456
4548 4564 4579 4594 4609
4698 4713 4728 4742 4757
4843 4857 4871 4886 4900
4983 4997 5011 5024 5038
5119 5132 5145 5159 5172
5250 5263 5276 5289 5302
5378 5391 5403 5416 5428
5502 5514 5527 5539 5551
5623 5635 5647 5658 5670
5740 5752 57C3 5775 5786
5855 5866 5877 5888 5899
5966 5977 5988 5999 6010
6075 6085 6096 6107 6fl7
6180 6191 6201 6212 6222
6284 6294 6304 6314 6325
6385 6395 6405 6415 6425
6484 6493 6503 6513 6522
6580 6590 6599 6609 6618
6675 6684 6693 6702 6712
6767 6776 6785 6794 6803
6857 6866 6875 6884 6893
6946 6955 6964 6972 6981
7033 7042 7050 7059 7067
7118 7126 7135 7143 7152
7202 7210 7218 7226 7235
7284 7292 7300 7308 7316
7364 7372 7380 7388 7396
56789
Proportional Parts
123456789
4 8 12 17 21 25 29 33 37
4 8 11 15 19 23 26 30 34
3 7 10 14 17 21 24 28 31
3 6 10 13 16 19 23 26 29
3 6 9 12 15 18 21 24 27
3 6 8 11 14 17 20 22 25
3 5 8 11 13 16 18 21 24
2 5 7 10 12 15 17 20 22
2 5 7 9 12 14 16 19 21
2 4 7 9 11 13 16 18 20
2 4 6 8 11 13 15 17 19
2 4 6 8 10 12 14 16 18
2 4 6 8 10 12 14 15 17
2 4 8 7 9 11 13 15 17
2 4 5 7 9 11 12 14 16
2 3 5 7 9 10 12 14 15
2 3 5 7 8 10 11 13 15
2 3 5 6 8 9 11 13 14
2 3 5 6 8 9 11 12 14
1 3 4 6 7 9 10 12 13
1 3 4 6 7 9 10 11 13
1 3 4 6 7 8 10 11 12
1 3 4 5 7 8 9 11 12
1 3 4 5 6 8 9 10 12
1345689 10 11
1245679 10 11
1 2 4 5 6 7 8 10 11
12356789 10
12356789 10
12345789 10
12345689 10
123456789
123456789
123456789
123456789
123456789
123456778
123455678
123445678
123446678
123345678
123345678
122345677
122345667
122345667
123456789
            The proportional  parts are stated  in full for every  tenth at the right-hand side.
            The logarithm of any number of four significant figures can be read directly by
            adding the proportional  part  corresponding  to  the fourth  figure to the  tabular
            number corresponding to the  first three figures.  There may be an error  of  1 in
            the last place.
17-6

-------
                       LOGARITHMS TO BASE 10
                                  (continued)
N
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
!>3
94
95
96
97
98
99
N
01234
7404 7412 7419 7427 7435
7482 7490 7497 7505 7513
7559 7566 7574 7582 7589
7634 7642 7649 7657 7664
7709 771G 7723 7731 7738
7782 7789 7796 7803 7810
7853 7860 7868 7875 7882
7924 7931 7938 7945 7952
7993 8000 8007 8014 8021
8062 8069 8075 8082 8089
8129 8136 8142 8149 8156
8195 8202 8209 8215 8222
8261 8267 8274 8280 8287
8325 8331 8338 8344 8351
8388 8395 8401 8407 8414
S451 8457 8463 8470 8476
8513 8519 8525 8531 8537
8573 8579 8585 8591 8597
8633 8639 8645 8651 8657
8692 8698 8704 8710 8716
8751 8756 8762 8768 8774
8808 8814 8820 8825 8831
8865 8871 8876 8882 8887
8921 8927 8932 8938 8943
8976 8982 8987 8993 8998
9031 9036 9042 9047 9053
9085 9090 9096 9101 9106
9138 9143 9149 9154 9159
9191 9196 9201 9206 9212
9243 9248 9253 9258 9263
9294 9299 9304 9309 9315
9345 9350 9355 9360 9365
9395 9400 9405 9410 9415
9445 9450 9455 9460 9465
9494 9499 9504 9509 9513
9542 9547 9552 9557 9562
9590 9595 9600 9605 9609
9038 9643 9647 9652 9657
9685 9689 9694 9699 9703
9731 9736 9741 9745 9750
9777 9782 9786 9791 9795
9823 9827 9832 9836 9841
9868 9872 9877 9881 9886
9912 9917 9921 9926 9930
9956 9961 9965 9969 9974
01234
56789
7443 7451 7459 7466 7474
7520 7528 7536 7543 7551
7597 7604 7612 7619 7627
7672 7679 7686 7694 7701
7745 7752 7760 7767 7774
7818 7825 7832 7839 7846
7889 7896 7903 7910 7917
7959 7966 7973 7980 7987
8028 8035 8041 8048 8055
8096 8102 8109 8116 8122
8162 8169 8176 8182 8189
8228 8235 8241 8248 8254
8293 8299 8306 8312 8319
8357 8363 8370 8376 8382
8420 8426 8432 8439 8445
8482 8488 8494 8500 8506
8543 8549 8555 8561 8567
8603 8609 8615 8621 8627
8663 8669 8675 8681 8686
8722 8727 8733 8739 8745
8779 8785 8791 8797 8802
8837 8842 8848 8854 8859
8893 8899 8904 8910 8915
8949 8954 8960 8965 8971
9004 9009 9015 9020 9025
9058 9063 9069 9074 9079
9112 9117 9122 9128 9133
9165 9170 9175 9180 9186
9217 9222 9227 9232 9238
9269 9274 9279 9284 9289
9320 9325 9330 9335 9340
9370 9375 9380 9385 9390
9420 9425 9430 9435 9440
9469 9474 9479 9484 9489
9518 9523 9528 9533 9538
9566 9571 9576 9581 9586
9614 9619 9624 9628 9,633
9661 9666 9671 9675 9680
9708 9713 9717 9722 9727
9754 9759 9763 9768 9773
9800 9805 9809 9814 9818
9845 9850 9854 9859 9863
9890 9894 9899 9903 9908
9934 9939 9943 9948 9952
9978 9983 9987 9991 9996
56789
Proportional Parts
123456789
122345567
122345567
122345567
112344567
112344567
112344566
112344560
1 12334566
112334556
1 12334556
1 12334556
112334556
112334556
1 12334456
112234456
1 12234456
112234455
1 12234455
112234455
112234455
1 12233455
1 12233455
1 12233445
1 12233445
1 12233445
1 12233445
1 12233445
112233445
112233445
112233445
112233445
112233445
011223344
011223344
011223344
011223344
011223344
011223344
011223344
011223344
011223344
011223344
011223344
011223344
011223334
123456789
The proportional parts are stated in full for every tenth at the right-hand side.
The logarithm of any number of four significant figures can be read directly by
adding the proportional  part corresponding to  the  fourth  figure to the tabular
number corresponding to  the first three figures.   There may be an error of 1 in
the last place.
                                                                                    17-7

-------
                           NATURAL  (NAPIERIAN)  LOGARITHMS
                   The natural logarithm of • number if the index of the power to wbloh the
                   baae t  (2.7162818) mu*t be raised in order to equal the number.
                        Example: lot, 4.18 " In 4.12 • 1.4169.
                   The table give* th« natural  logarithm* of number* from 1.00  to 0.09 di-
                   reotly,  and  permit* finding  logarithm* of number* outeide that range by
                   the addition or •ubtraotion of the natural  logarithm* of power* of 10.
                        Example: In 079. - In «.70 * In 10* ; 1.9166 + 4.8062 • 6.6807
                                In 0.0679 - In 6.79 - In 10 - 1.9166 - 4.6062 - - 2.6897
                   In 10.
S. 802686
                                        lateral  Lo««rltke« *f 10*

                                            In 10* -  9.210840
                   In 10* • 4.606170
                   In 10  - 6.907766
                In 10"
In 10 - 16.118096
In 10* - 18.420681
                                 11.612926
                        In 10" - 18.816611         In 10* - SO.728266
To obtain the ooamon logarithm, the natural  logarithm 1* multiplied by
logic «, •*!<* i* 0.484294, or Iog10 * - 0.484294 In H.
N
1.0
.1
.2
.3
.4
.5
.6
.7
.8
.0
2.0
1
,2
.3
4
A
.«
.7
.8
9
*.•
.1
2
.3
.4
.5
.6
.7
.8
.9
4.«
.1
.2
.3
.4
.5
.6
.7
.8
.0
0 123456789
0.00000 .00995 .01980 .02958 .03922
.09531 .10436 .11333 .12222 .13103
.18232- .19062 .19885 .20701 .21511
.26236 .27003 .27763 .2H513 .29267
.33647 .34359 .35066 45767 .36464
.40547 .41211 .41871 .42527 .43178
.47000 .47623 .48243 .48858 .49470
.53063 .53649 .54232 .54812 .55389
.58779 .59333 .59884 .60432 .60977
.64185 .64710 .65233 .65752 .6626*
0.69315 .69813 .70310 .70804 .71295
.74194 .74669 .75142 .75612 .76031
.78846 .79299 .79751 .80200 .80648
.83291 .83725 44157 .84587 .85015
.87547 .87963 .88377 .88789 .89200
.•1629 .92028 .92426 .82822 .93216
.05551 .95935 .06317 .96698 47078
.00325 .09695 '.00063 '.00430 ".00796
1.02962 .03318 .03674 .04028 .04380
.06471 .06816 .07158 .07500 .07841
1.00861 .10194 .10526 .10856 .11186
.13140 .13462 .13783 .14103 .14422
.16315 .16627 .16938 .17248 .17557
.10302 .19695 .19996 .20297 .20597
.22378 .22671 .22964 .23256 .23547
.25276 .25562 .25846 .26130 .26413
.28093 .28371 .28647 .28023 .29188
.30833 41103 .31372 .31641 .31809
33500 .33763 44025 .34286 44547
46008 46354 46600 46864 47118
148629 48870 40128 40377 40624
.41099 .41343 .41585 .41828 .42070
.43508 .43746 .43084 .44220 .44456
.45862 .46094 .46328 .46557 .46787
.48160 .48387 .48614 .48840 .40066
40408 .50630 40861 41079 41203
49606 42823 43030 43254 43471
44756 44060 45181 45303 45604
.56862 47070 47277 4748ft 47001
48024 40127 40331 40SM 40737
.04879 .05827 .06766 .07696 .08618
.13976 .14842 .15700 .16551 .17305
.22314 .23111 .23902 .24686 .25464
.30010 40748 .31481 .32208 .32030
47150 47844 .38526 .39204 49878
.43825 .44469 .45108 .45742 .46373
.50078 .50682 .51282 .51879 .52473
.55962 .56531 .57098 .57661 .58222
.61519 .62058 .62594 .63127 .63658
.66783 .67294 .67803 .68310 .68813
.71784 .72271 .72755 .73237 .73718
.76547 .77011 .77473 .77932 .78300
.81093 .81536 .81978 .82418 .82855
.85442 .85866 .86289 .86710 .87120
.89609 .90018 .00422 .90826 .01228
.03609 .04001 .94391 .04770 .05160
.07456 .97833 .98208 .98582 .08054
•.01160 '.01523 ".01885 '.02245 '.02604
.04732 .05082 .05431 .05779 .06126
.08181 .08519 .0885.} .09192 .00527
.1151* .11841 .12168 .12493 .12817
.14740 .15057 .15373 .15638 .16009
.17865 .18173 .18470 .18784 .10080
.90896 .21194 .21491 .21788 .23083
.23837 44127 44415 44703 44900
.26695' 46976 47257 47536 .27815
.29473 40746 40010 40291 40563
42176 42442 42708 42972 43237
44807 45067 45325 45584 46841
47372 47624 47877 43128 48379
40872 .40118 .40364 .40610 .40854
.42311 .42552 .42792 .43031 .43270
.44692 .44927 .45161 .45395 .45620
.47018 .47247 .47476 .47705 .47033
.40200 .40515 .49730 .40962 40181
41513 41732 41051 42170 42388
43687 .53902 .54116 .54330 44543
45814 .58025 .56235 .56444 46653
47808 .58104 .58300 .58515 .58719
49030 .60141 .60342 .00543 .60744
17-8
                                                   See  Reference No.  12

-------
NATURAL (NAPIERIAN) LOGARITHMS
              (continued)
N
f.O
.1
.2
.3
.4
.5
.8
.7
.8
.0
t.0
.1
.2
.3
.4
.5
.6
.7
.8
.9
7.t
.1
.2
.3
.4
.5
.«
.7
.8
.0
&•
.1
.2
.3
.4
.5
.6
.7
.8
.9
».•
.1
.2
.3
.4
.8
.8
.7
.8
.«
01234
1.60944 .01144 .61343 .61542 .6174
.62924 .63120 .63315 .63511 .63705
.64866 .65058 .65250 .65441 .65632
.66771 .66959 .67147 .67335 .67523
.68640 .68825 .69010 .69194 .69378
.70475 .70656 .70838 .71019 .71199
.72277 .72455 .72633 .72811 .72988
.74047 .74222 .74307 .74572 .74746
.75786 .75958 .76130 .76302 .76473
.77495 .77565 .77834 .78002 .78171
1.79176 .79342 .79509 .79«73 .79840
.80829 .80993 .81156 .S1319 .81482
.82455 .82616 .82777 .82938 .83098
.84055 .84214 .84372 .84530 .84688
.85630 .85786 .85942 .86097 .86253
.87180 .87334 .87487 .87641 .87794
.88707 .8X858 .89010 .89160 .89311
.90211 .90360 .90509 .90658 .90806
.91692 .91839 .91986 .92132 .92279
.93152 .93297 .93442 .93586 .93730
1.94591 .94734 .94876 .95019 .95161
.96009 .96150 .96291 .96431 .96571
.97408 .97547 .97685 .97824 .97962
.98787 .98924 .99061 .99198 .99334
2.00148 .00283 .00418 .00553 .00687
.01490 .01624 .01757 .01890 .02012
.02815 .02946 .03078 .03209 .03340
.04122 .04252 .04381 .04511 .04640
.05412 .05540 .05668 .05796 .05924
.06686 .06813 .06939 .07065 .07191
1.07944 .08069 .08194 .08318 .08443
.09186 .09310 .09433 .09556 .09679
.10413 .10535 .10657 .10779 .10900
.11626 .11746 .11866 .11986 .12106
.12823 .12942 .13061 .13180 .13298
.14007 .14124 .14242 .14359 .14476
.15176 .15292 .15409 .15524 .15640
.16332 .10447 .16562 .16677 .16791
.17475 .17589 .17702 .17816 .17929
.18605 .18717 .18830 .18942 .19054
2.19722 .19834 .19944 .20055 .20166
.20827 .20937 .21047 .21157 .21266
.21920 .22029 .22138 .22246 .22354
.23001 .23109 .23216 .23324 .23431
.24071 .24177 .24284 .24390 .24496
.25129 .25234 .25339 .25444 .25549
.26176 .2H280 .26384 .26488 .26592
.27213 .27316 .27419 .27521 .27624
.28238 .28340 .28442 .28544 .28646
.29253 .29354 .29455 .29556 .29657
5678*
.61939 .62137 .62334 .62531 .62728
.63900 .64094 .64287 .64481 .64673
.65823 .66013 .66203 .66393 .66582
.67710 .67896 .68083 .68269 .88455
.69582 .09745 .69928 .70111 .70293
.71380 .71560 .71740 .71919 .72098
.73166 .73342 .73519 .73695 .73871
.74920 .75094 .75207 .75440 .75613
.76644 .76815 .7G9S5 .77156 .77329
.78330 .78507 .78675 .78842 .79009
.80006 .80171 .80336 .80500 .80665
.81645 .81806 .81970 .82132 .82294
.83258 .83418 .83578 .83737 .83896
.84845 .85003 .85160 .85317 .85473
.86408 .86563 .86718 .86872 .87028
.87947 .88099 .88251 .8*403 .88855
.89462 .89012 .89702 .SWM2 .90061
.90954 .91102 .91230 .>il30g .91545
.92425 .92571 .92716 .92*}2 .93007
.93874 .MO IS .94162 .94305 .94448
.95303 .95445 .95596 .95727 .95869
.96711 .96851 .96991 .97130 .97269
.98100 .98238 .08379 .98513 .98650
.99470 .99606 .09742 .99877 '.00013
.00821 .0095A .01080 .01223 .01357
.02155 .02287 .02419 .02551 .02683
.03471 .03601 .03732 .03862 .03992
.04769 .04898 .05027 .05156 .05384
.06051 .06170 .06306 .06433 .06560
.07317 .07443 .07568 .07094 .07819
.08567 .08691 .08815 .08930 .090*3
.09802 .09924 .10047 .10160 .10291
.11021 .11142 .11263 .11384 .11105
.12226 .12346 .12465 .1258ft .12704
.13417 .13535 .13653 .13771 .13889
.14593 .14710 .14827 .14043 .19060
.15756 .15871 .15987 .16102 .16217
.16905 .17020 .17134 .17248 .17361
.18042 .18155 .18267 .18380 .18403
.19165 .19277 .19389 .10500 .10611
.20276 .20387 .20497 .10607 J0717
.21375 .21485 .21594 .21703 .21812
.22462 .22570 .22678 .22786 .22804
.23538 .23645 .23751 .23858 .23005
.24601 .24707 .24813 .24918 .25024
.25654 .25750 .25863 .25968 .26072
.26696 .26799 .26903 .27006 .27100
.27727 .27829 .27932 .28034 .28136
.28747 .28849 .28950 .29051 .29152
.29757 .29868 .29958 .30058 .30158
                                            17-9

-------
         VALUES AND LOGARITHMS OF EXPONENTIAL FUNCTIONS
                                     -X
           Note: If 0 < x < .01 the value for e " can be found by the use of
           (1-x) or the value for ex can be found by the use of (1 + x).
X

0 00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.5C
e*
Value LogIO
1 .0000 .00000
1.0101 .00434
1.0202 .00869
1.0305 .01303
1.0408 .01737
1.0513 .02171
1.0618 .02606
1.0725 .03040
1.0833 03474
1.0942 03909
1.1052 .04343
1.1163 .04777
1.1275 .05212
1.1388 .0?646
1.1503 .06080
1.1618 .06514
1.1735 .06949
1.1853 .07383
1.1972 .07817
1.2092 ..08252
1.2214 .08686
1.2337 ,0'J120
1.2461 .09554
1.2586 .09989
1.2712 .10423
1.2840 .10857
1.2969 .11292
1.3100 .11726
1.3231 .12160
1.3364 .12595
1 . 3499 . 1 3029
1 . 3634 . 1 3463
1.3771 .13897
1.3910 .14332
1.4049 .14766
1.4191 .15200
1.4333 .15635
1.4477 .16069
1.4623 .16503
1.4770 .16937
1.4918 .17372
1.5068 .17806
1.5220 .18240
1.5373 .18675
1.5527 .19109
1.5683 .19543
1.5841 .19978
1.6000 .20412
1.6161 .20846
1.6323 .21280
1.6487 .21715
e~*
Value
1 . 00000
.99005
. 98020
.97045
.96079
.95123
.94176
. 93239
.92312
.91393
.90484
.89583
.88692
.87809
. 86936
.86071
.85214
.84366
. 83527
.82696
.81873
.81058
.80252
.79453
.78663
.77880
.77105
.76338
.75578
.74826
. 74082
.73345
.72615
.71892
.71177
.70469
. 69768
.69073
.68386
.67706
.67032
.66365
. 65705
.65051
. 64404
.63763
.63128
.62500
.61878
.61263
.60653
X

0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
e*
Value Logic
1.6487 .21715
1.6653 .22149
1 . 6820 . 22583
1.6989 .23018
1.7160 .23452
1.7333 .23886
1.7507 .24320
1.7683 .24755
1.7860 .25189
1.8040 .25623
1.8221 .26058
1.8404 .26492
1.8589 .26926
1.8776 .27361
1.8965 .27795
1.9155 .28229
1.9348 .28664
1.9542 .29098
1.9739 .29532
1.9937 .29966
2.0138 .30401
2.0340 .30835
2.0544 .31269
2.0751 .31703
2.0959 .32138
2.1170 .32572
2.1383 .33006
2.1598 .33441
2.1815 .33875
2.2034 .34309
2.2255 .34744
2.2479 .35178
2.2705 .35612
2.2933 .36046
2.3164 .36481
'2.3396 .36915
2.3632 .37349
2.3869 .37784
2.4109 .38218
2.4351 .38652
2.4596 .39087
2.4843 .39521
2.5093 .39955
2.5345 .40389
'2.5600 .40824
2,5857 .41258
2.6117 .41692
2.6379 .42127
2.6645 .42561
2.6912 .42995
2.7183 .43429
e~*
Value
.60653
.60050
. 59452
. 58860
.58275
. 57695
.57121
. 56553
. 55990
. 55433
.54881
.54335
. 53794
. 53259
.52729
. 52205
.51685
.51171
.50662
.50158
.49659
.49164
.48675
.48191
.47711
.47237
.46767
.46301
.45841
.45384
.44933
.44486
.44043
.43605
.43171
.42741
.42316
.41895
.41478
.41066
.40657
.40252
.39852
.39455
.39063
.38674
.38289
.37908
.37531
.37158
.36788
17-10

-------
VALUES AND LOGARITHMS OF EXPONENTIAL FUNCTIONS
                    (continued)
X

1.00
1.01
1.02
1.03
1.04
1.05
1 .06
1.07
1 .08
1 .09
1.10
1.11
1.12
1.13
1 .14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
e1
Value LogIO
2.7183 .43429
2.7456 .43864
2.7732 .44298
2.8011 .44732
2.8292 .45167
2.8577 .45601
2.8864 .46035
2.9154 .46470
2.9447 .46904
2.9743 .47338
3.0042 .47772
3.0344 .48207
3.0649 .48641
3.0957 .49075
3.1268 .49510
3.1582 .49944
3.1899 .50378
3.2220 .50812
3.2544 .51247
3.2871 .51681
3.3201 .52115
3.3535 .52550
3.3872 .52984
3.4212 .53418
3.4556 .53853
3.4903 .54287
3.5254 .54721
3.5609 .55155
3.5966 .55590
3.6328 .56024
3.6693 .56458
3.7062 .56893
3.7434 .57327
3.7810 .57761
3.8190 .58195
3.8574 .58630
3.8962 .59064
3 . 9354 . 59498
3.9749 ,59933
4.0149 .60367
4.0552 .60801
4.0960 .61236
4.1371 .61670
4.1787 .62104
4.2207 .62538
4.2631 .62973
4.3060 .63407
4.3492 .63841
4 . 3929 . 64276
4.4371 .64710
4.4817 .65144
er*
Value
. 36788
. 36422
. 36060
.35701
.35345
. 34994
. 34646
.34301
.33960
. 33622
.33287
. 32956
.32628
.32303
.31982
.31664
.31349
.31037
. 30728
. 30422
.30119
.29820
.29523
.29229
.28938
.28650
.28365
.28083
.27804
.27527
.27253
.26982
.26714
.2644g
.26185
.25924
.25666
.25411
.25158
.24908
.24660
.24414
.24171
.23931
.23693
.23457
.23224
. 22993
.22764
.22537
.22313
Z

1.50
1.51
1.52
1.53
1.54
1.55
I 56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.70
1.71
1.72
1.73
1.74
1.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.88
1.89
1.90
1.91
1.92
1.93
1.94
1.95
1.96
1.97
1.98
1.99
2.00
e*
Value Logio
4.4817 .65144
4.5267 .65578
4.5722 .66013
4.6182 .66447
4.6646 .66881
4.7115 .67316
4.7588 .67750
4.8066 .68184
4.8550 .68619
4.9037 .69053
4.9530 .69487
5.0028 .69921
5.0531 .70356
5.1039 .70790
5.1552 .71224
5.2070 .71659
5.2593 .72093
5.3122 .72527
5.3656 .72961
5.4195 .73396
5.4739 .73830
5.5290 .74264
5.5845 .74699
5.6407 .75133
5.6973 .75567
5.7546 .76002
5.8124 .76436
5.8709 .76870
5.9299 .77304
5.9895 .77739
6.0496 .78173
6.1104 .78607
6.1719 .79042
6.2339 .79476
6.2965 .79910
6.3598 .80344
6.4237 .80779
6.4883 .81213
6.5535 .81647
6.6194 .82082
6.6859 .82516
6.7531 .82950
6.8210 .83385
6.8895 .83819
6.9588 .84253
7.0287 .84687
7.0993 .85122
7.1707 .85556
7.2427 .85990
7.3155 .86425
7.3891 .86859
er*
Value
.22313
.22091
.21871
.21654
.21438
.21225
.21014
.20805
. 20598
.20393
.20190
.19989
.19790
.19593
.19398
.19205
.19014
.18825
.18637
.18452
.18268
.18087
.17907
.17728
.17552
.17377
. 1 7204
.17033
.16864
.16696
.16530
.16365
.16203
.16041
.15882
15724
.15567
.15412
. 1 5259
. 1 51 07
.14957
.14808
14661
.M515
. 14370
.14227
.14086
.13946
.13807
.13670
.13534
                                                   17-11

-------
       VALUES AND LOGARITHMS OF EXPONENTIAL FUNCTIONS
                            (continued)
X

sToo
2.01
2.02
2.03
2.04
2.05
2.06
2.07
2.06
2.09
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
2.41
2.42
2.43
2.44
2.45
2.46
2.47
2.48
2.49
2.50
e*
Value Loft,
7.3891 .86859
7.4633 .87293
7.5383 .87727
7.6141 .88162
7.6906 .88596
7.7679 .89030
7.8460 .89465
7.9248 .89899
8.0045 .90333
8.0849 .90768
8.1662 .91202
8.2482 .91636
8.3311 .92070
8.4149 .92505
8.4994 .92939
8.5849 .93373
8.6711 .93808
8.7583 .94242
8.8463 .94676
8.9352 .95110
9.0250 .95545
9.1157 .95979
9.2073 .96413
9.2999 .96848
9.3933 .97282
9.4877 .97716
9.5831 .98151
9.6794 .98585
9.7767 .99019
9.8749 .99453
9.9742 .99888
10.074 1.00322
10.176 1.00756
10.278 1.01191
10.381 1.01625
10.486 1.02059
10.591 1.02493
10.697 1.02928
10.805 1.03362
10.913 1.03796
11.023 1.04231
11.134 1.04665
11.246 1.05099
11.359 1.05534
11.473 1.05968
1 1 . 588 1 . 06402
1 1 . 705 1 . 06836
11.822 1.07271
11.941 1.07705
12.061 1.08139
12.182 1.08574
e~*
Value
.13534
.13399
.13266
.1313",
.13003
^2873
.12745
.12619
.12493
.12369
.12246
.12124
.12003
.11884
.11765
.11648
.11533
.11418
.11304
.11192
.11080
.10970
.10861
.10753
.10646
.10540
.10435
.10331
.10228
.10127
.10026
.09926
.09827
.09730
.09633
.09537
. 09442
.09348
.09255
.09163
.09072
.08982
.08892
.08804
.08716
.08629
.08543
.08458
.08374
.08291
.08208
X

2.50
2.51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59
2.60
2.61
2.62
2.63
2.64
2.65
2.66
2.67
2.68
2.69
2.70
2.71
2.72
2.73
2.74
2.75
2.76
2.77
2.78
2.79
2.80
2.81
2.82
2.83
2.84
2.85
2.86
2.87
2.88
2.89
2.90
2.91
2.92
2.93
2.94
2.95
2.96
2.97
2.98
2.99
3.00
e*
Value Logi»
12.182 1 .08*?*
12.305 1.09008
12.429 1.09442
12.554 1.09877
12.680 1.10311
12.807 1.10745
12.936 1.11179
13.066 1.11614
13.197 1.12048
13.330 1.12482
13.464 1.12917
13.599 1.13351
13.736 1.13785
13.874 1.14219
14.013 1.14654
14.154 1.15088
14.296 1.15522
14.440 1.15957
14.585 1.16391
14.732 1.16825
14.880 1.17260
15.029 1.17694
15.180 1.18128
15.333 1.18562
15.487 1.18997
15.643 1.19431
15.800 1.19865
15.959 1.20300
16.119 1.20734
16.281 1.21168
16.445 1.21602
16.610 1.22037
16.777 1.22471
16.945 1.22905
17.116 1.23340
17.288 1.23774
17.462 1.24208
17.637 1.24643
17.814 1.25077
17.993 1.25511
18.174 1.25945
18.357 1.26380
18.541 1.26814
18.728 1.27248
18.916 1.27683
19.106 1.28117
19.298 1.28551
19.492 1.28985
19.688 1 .29420
19.886 1.29854
20.086 1.30288
e~*
Value
.08208
.08127
.08046
.07966
.07887
.07808
.07730
.07654
.07577
.07502
.07427
.07353
.07280
.07208
.07136
.07065
.06995
.06925
.06856
.06788
.06721
.06654
.06587
.06522
.06457
.06393
.06329
.06266
.06204
.06142
.0608?
.06020
.05961
.05901
.05843
.05784
.05727
.05670
.05613
.05558
.05502
.05448
.05393
.05340
.05287
.05234
.05182
.05130
.05079
.05029
.04979
17-12

-------
VALUES AND LOGARITHMS OF EXPONENTIAL FUNCTIONS
                    (continued)
z

3.00
3,05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
3.95
4.00
4.10
4.20
4.30
4.40
4.50
4.60
4.70
4.80
4.90
5.00
5.10
5.20
5.30
5.40
5.50
5.60
5.70
5.80
5.90
6.00
6.25
6.50
6.75
7.00
7.50
8.00
8.50
9.00
9.50
10.00

Value
20.066
21.115
22.198
23.336
24.533
25.790
27.113
28.503
29.964
31.500
33.115
34.813
36.598
38.475
40.447
42.521
44.701
46.993
49.402
51.935
54.598
60.340
66.686
73.700
81.451
90.017
99.484
109.95
121.51
134.29
148.41
164.02
181.27
200.34
221.41
244.69
270.43
298 . 87
330.30
365.04
403.43
518.01
665.14
854.06
1096.6
1808.0
2981.0
4914.8
8103.1
13360.
22026.
t*
Log 10
1.30288
1 . 32460
1.34631
1.36803
1.38974
1.41146
1.43317
1.45489
1 . 47660
1 . 49832
1 . 52003
1.54175
1 . 56346
1.58517
1.60689
1.62860
1 .65032
1.67203
1.69375
1.71546
1.73718
1.78061
1.82404
1.86747
1.91090
1 .95433
1.99775
2.04118
2.08461
2.12804
2.17147
2.21490
2.25833
2.30176
2.34519
2.38862
2.43205
2.47548
2.51891
2.56234
2.60577
2.71434
2 . 82291
2.93149
3.04006
3.25721
3.47436
3.69150
3.90865
4.12580
4.34294
tr*
Value
.04979
.04736
.04505
.04285
.04076
.03877
.03688
.03508
.03337
.03175
.03020
.02872
.02732
.02599
.02472
.02352
.02237
.02128
.02024
.01925
.01832
.01657
.01500
.01357
.01227
.01111
.01005
.00910
.00823
.00745
.00674
.00610
.00552
.00499
.00452
.00409
.00370
.00335
. 00303
.00274
.00248
.00193
.00150
.00117
.00091
.00055
.00034
.00020
.00012
.00007
,00005
                                                   17-13

-------
                   SELECTED PRINCIPLES OF ALGEBRA
 I  OPERATIONS WITH EXPONENTS
   (am)  X   (a")
                        m + n
   .  m. n
   (a  )
              mn
(am)  X   (b111)


(a1")  -f   (a")
                       (ab)
                          m
                        m - n
II  FACTORING

   Common factor

      ax  +   ay  • a( x + y)

   Difference of two squares
                 • (a + b)   ( a - b)
   Trinomial perfect square
      a2  +   2ab + b2
      a
             2ab
                    »   (a + b)

                    -   (a - b)
                                        HI  OPERATIONS INVOLVING FRACTIONS
                                              a j_  £
                                              b    b
                                              ji
                                              b
c
b
                                                          a - c
                                                            b

                                                          ac
                                                          bd
                                                            (I) "CO'
                                                                      ad
                                                                      be
                                           IV  OPERATIONS INVOLVING RADICALS
Other trinomials

   x2  +  (a + b)x  +  ab  -  (x + a) (x+b)

 acx2  +  (ad + bc)x +  bd  « (ax+b) (cx+d)

Other types

   a3  +  b3  «  (a+b) (a2-ab+b2)

   a
       3  -  b3  »  (a-b) (a2 +ab+b2)
      a2 + b2 + c2 + 2ab + 2ac + 2bc
                                                   ,       mn^.   ,
                                                   -,     \  /a
                                                          V
                                               n ,	,  n
                                                •?/—'     *n/—•
                                                V  a      A/  a
                                                 i	1      V   b
                                                    n/	,      n/	,
                                                  . y b   +  c \J b =  (a+c)


                                                  \f~b~1-  Cyb  '»  (a-c)\A~b*
                                                                    ac \ /  bd
  '.7-14

-------
                       SELECTED PRINCIPLES OF ALGEBRA
                                         (continued)
  V  QUADRATIC EQUATION
       ax   + bx +  c =  0
     The sum of an infinite geometric pro-
     gression is
                                                      S   =
                "1
               1 - r
                                                                    where r <  1
            -b ± Vb°  - 4ac
       X            2
        2
     If b   - 4ac is > 0 the roots are real and
     unequal.
        2
     If b   - 4ac = 0 the roots are real and equal.
        2
     If b   - 4ac is < 0 the roots are imaginary.
 VI  BINOMIAL THEOREM

     Where n is a positive integer
  /  j_,\n    n L n  n-1   ,  n(n-l)   n-22
  (a + b)  = a  + y a   b+  ~\ . 2   a   b

         ^  n (n- 1) (n-2)   n-3,3
         + —:	~	x—  a    b
VIII  SCIENTIFIC NOTATION AND LOGARITHMS

  A  Scientific Notation

     Any number may be written as the pro-
     duct of a number having a single non-zero
     digit to the left of the decimal point and a
     positive or negative power often. The
     power of ten is the number of places which
     the decimal point is moved from its exist-
     ing position to get the number in scientific
     notation form.  The sign of the exponent is
     positive if the decimal point is moved to the
     left and negative if the decimal point is
     moved to the  right.
        83. 100,000  =  8.31 X 10

       0.00000040   =  4.0  X 10
                                                                              -7
VII   PROGRESSIONS

     The n— term of an arithmetic progression
       an "  al
    The sum of an arithmetic progression

       S   =     (a   + a>
         th_
    The n    term of a geometric progression

                n- 1
       a   = a.r
        n     1
The sum of a geometric progression is

                          where r 4> 1
                  / n   i
       S   =  a   /IL-ll
        n      1  I r - 1
                      n
                    - r
                              where r <  1
  B Logarithms

     When a   * x; log  x = b
                                                    log x + log y  = log ( xy)
     x log y  =  log

     logx  - logy = logf-J
                                                   log\
                   - logx
                                                   log  N = (log  N)(log   b)
                                                      ct          D       3.
     log
       e
                                                   log1Q N  = 0.4343  log   N
     10ge  N  =  -
                                                                 343
                                                                                       17-15

-------
                  SELECTED PRINCIPLES OF ALGEBRA
                                  (continued)
                      DC  DETERMINANTS

                          Simultaneous equations:

                               ax +  by  + cz

                               ex +  fy  + gz

                               ix  +  jy  + kz

                          Determinant solutions:
                                  d   b   c
                                  h   f   g
                                  1   j   k
d

h

1
                                  a   b   c
                                  e   f   g
                                  i   J   *
                                  dfk + bgl + cjh • cfi - gjd - khb
                                  afk + bgi + cje - cfi - gja - keb
a
e
i
a
e
i
ahk
d c
h g
1 k
b c
f g
j k






+ dgi + cle - chi -jfla - ked
                                  afk +bgi + cje - cfi - gja - keb
a
e
i
a
e
i
b
f
j
b
f
j
d
h
1
c
g
k
                                  afl + bhi + dje - dfi - hja - leb
                                 afk + bgi + cje - cfi - gja - keb
17-16

-------
            SELECTED TRIGONOMETRIC RELATIONSHIPS
I  FUNDAMENTAL RELATIONSHIPS IN

  A RIGHT TRIANGLE
    2       2
6 sin A +  cos A = 1
hypotenuse >^
adja<
sine A a
cosine A =
tanget A =
cotangent A =
secant A =
cosecant A =


Pythagorean
7
8
9
opposite
side
10
11
:ent side
„.•_ A _ opposite side 12
hypotenuse
_ adjacent side 13
COS J\ — . 	
hypotenuse
t,n A _ opposite side 14
zan A — , . ~ r^
adjacent side
cot A - adjacent side 15
L.OI £\ — ~ . ,
opposite side
_ccA _ hypotenuse 16
»ci^ rt. — , . 7 r~:
adjacent side
. hypotenuse 17
c* f* r* f\ TIT - T
4 &
sec A = 1 + tan A
2 2
esc A = 1 4- cot A
sin(A+B) = sinA cosB +
cos(A4-B)= cos A cos B -
sin(A-B) = sinA cosB -
cos(A-l
tan(A4-E
cot(A4-E
tan(A-E
cot(A-E
sin2A
opposite side

Theorem
18
19
2 2
( hypotenuse) = (adjacent side) + 20
( opposite side)
ftf 21
II TRIGONOMETRIC IDENTITIES
1
i
.L
0
£i
3
4

5

Sin ri. —
COS A =
tan A =
fan A s:
IctiJ r\. —
cot A =

esc A
1
sec A
1
cot A
sinA
cos A
cos A
22

23
'
24
9£
£3
2fi<
cos 2A
cos 2A
cos2A
tan2A
sin —

A
cos •=•

tan A
A
tan -
tan —
3)= COS A COSB 4-
, _ tan A 4- tan B
cos A sinB
sinA sinB
cos A sinB
sinA sinB
' 1 - tanA tanB
. _ cot A cotB - 1
' cot A 4- cotB
. _ tanA - tanB
1 4- tanA tanB
(. _ cot A cotB 4- l
cotB - cot A
= 2 sin A cos A
2 9.
- cos
= 1 -
A - sin A
2 sin2 A


2
= 2 cos A - 1
2
1 -
•4

•^

•*G

i
i
tanA
tan^A
- cos A ^
2 )

_ _ _,_ 1
2 /

- cos A '
4- cos Ay
sinA
+ cos A
- cos A

i

i

1



                                                             17-17

-------
               SELECTED TRIGONOMETRIC RELATIONSHIPS
                                 (continued)
27  sin A +  sinB  * 2 sin
                                    cos
28  sin A -  sinB
29  cos A +  cosB * 2 cos
    30  cos A -  cosB  «-2sin
                              /A+B\     /A-B i
                       -  2 cos ^— —-/sin  V- •  y

                              lA+Bi     iA~^B I
                              ^ o ycos  \"Ty
 III  SIGNS OF TRIGONOMETRIC FUNCTIONS
     2nd quadrant ( 90° to 180°):
        positive functions:
            sin and  esc
        negative functions:
            cos, tan,  cot and sec
                                     1st quadrant  (0° to 90°):
                                         positive functions
                                             sin,  cos,  tan, cot,
                                             sec and esc
     3rd quadrant (180° to 270°):
        positive functions:
            tan and cot
        negative functions:
            sin, cos,  sec and esc
                                     4th quadrant  (270° to 360°) :
                                         positive functions:
                                             cos and sec
                                         negative functions:
                                             sin,  tan, cot and esc
17-18

-------
                 SELECTED TRIGONOMETRIC RELATIONSHIPS
                                   (continued)
IV  NUMERICAL VALUES OF SELECTED TRIGONOMETRIC FUNCTIONS
       Angle
                      Sin
          Cos
Tan
Cot
Sec
Csc
                                                                 + 00
          30
  1
  2
                fwr
           45
           60
                   •/P
           90
          120
          1
          2
                  -2
           135
                   -1
                 -N/F1
           150
  1
  2
           180
          -1
                  - 1
                                                                 + 00
          210
  1
  2
                          -2
          225
          240
                      5-
                      £t
                                    - 2
          270
-1
                                                        +   00
                                                                 - 1
          300
          1
          2
          315
                   -i
          -1
          330
          360
  1
  2
                                               +  00
                          -2
                                                                 +  00
                                                                      17-19

-------
                SELECTED TRIGONOMETRIC RELATIONSHIPS
                                    (continued)
V  SOLUTION OF ANY TRIANGLE

   C
                                                   a + b +c
^-•xCASE
ITEM ^"^^x^
Given:



Solution:

Check:



Area:
I
One side and
two angles


Law of sines

Law of tan-
gents or
Newton's
formula
2
a sin B sin C
2 sin A
II
Two sides and
an angle op-
posite one of
them
Law of sines

Law of tan-
gents or
Newton's
formula
ab sin C
2
III
Two sides and
their included
angle

Law of
tangents
Law of sines
or Newton's
formula

ab sin C
. 2
IV
Three sides



Tangents of
half angles
A+B + C = 180°



ti
s(s-a)(s-b)(s-c)f
   Law of Sines:  In  any triangle the sides are
   proportional to the sines of the opposite
   angles.
         a
        sin A
sinB
   Law of Cosines: The square of any two
   sides of a triangle is equal to the sum of
   the squares of the other two sides di-
   minished by twice the product of the other
   two sides and their included angle.
                .
                +  c
                .
                +  c
         2bccosA

         2ac cos B

         2ab cos C
                               Law of Tangents:  In any triangle the tan-
                               gent of half the difference of any two
                               angles is to the tangent of half their sum
                               as the difference of the sides opposite
                               these  angles is to their difference.
                                                 tan
                                   /A-B^
                                   VTV
                                     e+B
                                     ^
                                                 tan
                                                 tan I
                                   (&ry
a-b
a+b
                                              b-c
                                              b+c
                                              a-c
                                              a+c
                                                                       where a > b
                                                                       where b > c
                                                                       where a > c
  17-20

-------
              SELECTED TRIGONOMETRIC RELATIONSHIPS
                                 (continued)
Tangents of Half Angles:
tan
tan
tan

(s
-a)
(s-b)
( s-c)
_ s 	
    (s-a)
s-a) (s-b) (s-c)
     s   	
   (^b)      =
             «•
5-a) (s-b) (s-c)
                    (s-c)
Newton's Formula:
     c    _   a + b
    .  C
   sin-
cos
                             Area Formulae:
                               Area  =

                               Area  =


                               Area  -


                               Area  =
                                             Area
                                                        [ s(s-a) (s-b) (s-c)]
                                                         2
                                                        a sinB sin C
                                                          2 sin A
b sinAsinC
  2 sinB
c sin As in B
  2 sinC
                               Area  =   i be sin A
                                            ac sin B
                                             Area   =   i ab sin C
                                                                    17-21

-------
                       SELECTED PRINCIPLES OF GRAPHICS
I  THE STRAIGHT LINE (RECTANGULAR
   COORDINATE SYSTEM)

A Distance  Between any Two Points
B  Coordinates of the Midpoint of a Line
   x =-
                 y =
C  Slope of a Line
      X2'xl
D  Angle of  Intersection of Two Lines


   tan <(>,
       '1—>2
m2 " ml
1 + m.m_
     1
E  Forms of Equations of Straight Lines

   1 Equation of a line through a given point
     with given slope

     a  Any point; any slope

        y - yj = m (x - Xj)


     b  Origin; any slope

        y = mx

   2 Equation of a line through two given
     points
              y2-yi   /     '
       - y, =  -——  ( x - x
              X2   1   \
   3 Equation of a line through a given
     Y-intercept with a given slope.

     y = mx + b
                                 4  Equation of a line through its intercepts
                                   on both axes.
                                                      +
                                                    a   b
                                 5  Equation of a. line in terms of the
                                   perpendicular distance to a line from
                                   the origin and the positive angle which
                                   the perpendicular makes with the X-axis.
                                  \
                                                           \
                                      x cos <$> -t- y sin $ =


                             II  ADJUSTING THE AXES

                              A Translation of Axes
Y i








0
Y' i
r
& -^
t
p 
-------
                    SELECTED PRINCIPLES OF GRAPHICS
                                    (continued)
 B  Rotation of Axes
./>
Xv I
\


       x' = x cos 4> - y sin $



       y' = x sin 4> + y cos <(>
                                            X'
                                            D  Hyperbola


                                                 2     2
                                               Ax  + By

                                               opposite signs)
                                                   Ax2 + By2 + Cx 4 Dy + E = 0 (A & B have
                                                   (x - h)2   (y - k)2

                                                      2    "    .2
                                                     a         b
                                                                 = 1
                                                    2     2

                                                   —- - *-K  = 1 (center of hyperbola at origin)
                                                    2   .it
                                                   a    b
                                            E  Summary

                                                 2     2
                                               Ax  + By + Cx + Dy+ E = 0



                                               1 If A = B, the  curve will be a circle.



                                               2 If either A or B equal 0, the curve will

                                                 be a parabola.



                                               3 If A and B have the same sign and

                                                 A # B, the curve is an ellipse.
Ill  EQUATIONS OF COMMON GEOMETRIC

    FORMS
                                               4 If A and B have opposite signs, the

                                                 curve is a hyperbola.
 A Circle


     2    2
    x  + y  + Ax + By + C = 0



    (x - h)2 + (y - k)2 = r2


     222
    x  + y  = r   (center of circle at origin)
 B  Ellipse


      2     2
    Ax  + By  + Cx + Dy + E = 0  (A & B have
    the same sign)
(x - h)
                 - k)2
     2     2
    3C     V
    —5 +  ^-5=1 (center of ellipse at origin)
     /     fi
    a     b
 C  Parabola
    Ax  + Bx + Cy + D = 0



    (x - h)2 = 2p(y - k)


     2
    x = 2py (vertex of parabola at origin)
                                                                                  17-23

-------
                  SELECTED INTEGRALS
1 / Odx = c
2 t dx = x + c

3 f adx = ax + c
, n , xn+1
/ n •+• 1
. / dx ,
5 / — = Inx-t- c
/ x
/ X , X
6 / e dx = e +c
x
/• x, a
/ Inx
8 f sin x dx = - cos x 4 c
9 f cos x dx = sin x + c
•
10 / tan x dx = In sec x -t- c

11 f cot x dx = In sin x + c
/
12 J secx dx = ln(sec x + tan x) + c
13 J cscx dx = ln(csc x - cot x) •*• c
2
14 J sec x dx = tan x + c
2
15 / esc x dx = - cot x -v c
J
16 J sec x tan x dx = sec x •*• c
17 f esc x cot x dx = -esc x + c
, o r dx , X
1 p r ~ -3 T*r- oin -t i~
10 / 0 n'l - arc sin- t c
I t « «\7 *»
/ (a - x )2
^

19 /" dX - J arc- tan X + r
19 / 2 2 arc tan a + c
J a -t x

"0 / dX - * arc -cc X t c
<{0 / .2 2.i a arc SCC a
y x(x - a r
"1 /" dx 1 ln/x" *\ i c
21 / 2 2 * 2alnU+a + C
J x - a.
22 f 9dx2 - -^ i" (r^) + c
1 ft & bet \a — Xf
rf a - x


"'1 / U* , - In k 1 IT. I a^P 1 r
to I „ A i - in IX -t \» T a >*|T c
/ (x^al"2
i i 2
24 / (a2 - x2)"2dx = | (a2 - x T + % arc sin-
' 2 2 a


+ c

/9 *>i v9 91. Q 1 99^
(xZ i aVdx = |(x 1 a^)2 i^-ln [x +(x +a^)]fc

26 / sin2x dx « ^ - 4 sin 2x -f c
2 4
/3 1 2
tain Y Hv r - C-OH x ^ftin v -4- 9\ 4- r*
Olll A UA * Q V*WO A. \DU1 A T A/ X I*,
J
.n-l
•^fl f Hn" v rfv , sm x cos x n-l / . n
* n n f
f 2 x 1
29 J cos x dx = -= + -7 sin 2x + c
/3 1 2
cos x dx * -s sinx ^] + c
17-24

-------
SELECTED DIFFERENTIALS
Function Derivative
1 y = c
2 y = x
3 y = ax
4 y = x
5 y = u + v
6 y = uv
' *•;
8 y = f(u), u = f(x)
9 y= un
10 y = log u
3.
11 y = In u
12 y=au
13 y=eu
^=°
dx
& = 1
dx
£=*
dx
dy n-1
-f- = nx
dx
dy _ du dv
dx dx dx
dy dv du
j = U-7~ + V-T-
dx dx dx
du dv
v 	 u __
dy dx dx
dx 2
v
dy _ dy > du
dx du dx
dy n-1 du
-f- = nu —
dx dx
dy 1 , du
-T- - — log e -j-
dx u a dx
dy 1 du
dx u dx
dy u du
—- = a Ina —
dx dx
dy u du
— *- = e —
dx dx
Function Derivative
v
14 y = u
15 y = sin u
16 y = cos u
17 y = tan u
18 y = cot u
19 y = sec u
20 y = esc u
21 y - arc sin u
22 y = arc cos u
23 y = arc tan u
24 y = arc cot u
25 y = arc sec u
26 y = arc esc u
dy v-1 du v, dv
-r- - vu — + u In u-r-
dx dx dx
dy du
-f- - cos u —
dx dx
dy . du
~r- = - sin u -T—
dx dx
dy 2 du
-H2- = sec u -r-
dx dx
dy 2 du
~ = - esc u —
dx dx
dy . du
-*- - sec u tan u -r-
dx dx
dy . du
-f- = - CSC U COt U -r—
dx dx
dy 1 du
dx (1.u2)i dx
dy - 1 du
dx (1_u2)i dx
dy 1 du
dx " , 2 dx
1 + u
dy - 1 du
dx 2 dx
1 + u
dy 1 du
dx ,2 ..I dx
u(u - lr
dy - 1 du
dx u(u2 - I)1 dx
                                      17-25

-------
          STATISTICAL ANALYSIS OF THE FREQUENCY DISTRIBUTION
I  STATISTICS USED TO DETERMINE
   CENTRAL TENDENCY

A  Arithmetic Mean

   1  Ungrouped data
     x  =
           x+x+x      + x
            1     2     3 .  . .   n   Sx
                     n
                                    n
   2 Grouped data

          £(f X MP)
     x =
              N
B  Median

   1  Ungrouped data
              / N + 1 'i
     median = r""5—)
              *   £i  *
                    th
   2  Grouped data
     median = L -t-
                 iC
C  Mode

   1  Ungrouped data

     mode = most frequent value

   2  Grouped data

     mode (approximation) = L +1


D  Geometric Mean

   1  Ungrouped data


               (x9) .  . .
~m v i' * v
or
logx
I-.— «-! _
log Gm
,, . . . V-JJ, J

+ log x2 .

N
i

. . -I- log x


                                                2  Grouped data

                                                  log G.
                                                       m
(f X log MP)
    N
                                            II  STATISTICS USED TO DETERMINE
                                                DISPERSION OF RESULTS

                                             A  Range
                                                   xmax" Xmin
                                             B Average Deviation

                                               1  Ungrouped data

                                                         (x - x)
                                                  AD =
                                                          N
                                                2  Grouped data

                                                       SMMP-x)
                                                  AD-    N

                                             C  Standard Deviation

                                                1  Ungrouped data
                                                          (x - x)21
                                                         N- 1   j
                                               2  Grouped data
                                                  correction for grouping
                                               3  Value of the standard deviation

                                                  x^ Is contains 68. 3% of the area under
                                                        the normal curve

                                                  x + 2s contains 95. 5% of the area under
                                                        the normal curve

                                                  x + 3s contains 99. 8% of the area under
                                                        the normal curve.
 17-26

-------
                 PROPERTIES OF SELECTED GEOMETRIC  FIGURES
                          PROPERTIES  OF  THE  CIRCLE
                                                      Circumference  - 6.28318 r = 3.14159 d
                                                      Diameter      = 0.31831 circumference
                                                      Area          = 3.14159 r*
                                                      Arc   a


                                                      Angle A°


                                                      Radius r
rr A"
 180°
180" a
  ?rr
4 b« +c«
   8 b
0.017453 r A"


57.29578 -
                                                      Chord c  - 2 V2 br—b* = 2 rsin
                                                      Rise
r - V4 V 4 r» - c» - ~ tan A
                                                                 2rsin>
       — = r + y — V r» — x*
                                                            y  «b — r + Vr2 — x»

                                                            x  - V r» — (r + y — b7*

                          Diameter of circle of equal periphery as square - 1.27324 side of square
                          Side of square of equal periphery as circle      = 0.78540 diameter of circle
                          Diameter of circle circumscribed about square ** 1.41421 side of square
                          Side of square inscribed in circle             =• 0.70711 diameter of circle
           CIRCULAR  SECTOR
                                                    r — radius of circle   y = angle ncp in degrees

                                                    Area of Sector ncpo = *,4 (length of arc nop X r)


                                                                     - Area of Circle X ^


                                                                     - 0.0087266 X  r* X y
           CIRCULAR SEGMENT
                                       r = radius of circle    x = chord    b = rise

                                       Area of Segment nop = Area of Sector ncpo — Area of triangle ncp

                                                           (Length of arc nop X r) — x (r — b)
                                                                        ~2

                                       Area of Segment nsp •= Area of Circle — Area of Segment nop
                                VALUES FOR  FUNCTIONS OF

                                     * = 3.14159265359,   log = 0.4971499
   — =0.5641896, log = 1.7514251
           TT» - 9.8696044, log = 0.9942997  --- = 0.3183099, log = 1.5028501


           JT» =31.0062767, log = 1.4914496  ~ - 0.1013212, log =7.0057003   ~= 0.0174533, log =1T.2418774
                1.7724539, log = 0.2485749     - 0.0322515, log - 2.5085500
                                                                   180

                                                                   180
       57.2957795, log = 1.7581226
See  Reference No.  4
                                                                                                   17-27

-------
           PROPERTIES OF SELECTED GEOMETRIC FIGURES
                            (continued)
PROPERTIES OF
SQUARE
Axis of moments through center

t
1
d —
1
I



	 — 	 	 —__



< 	 d 	
c
...JL


T*

SQUARE
Axis of moments on base

r
a
i_







1
0
1



SQUARE
Axis of moments on diagonal

/\ I
S N. O
_/_ 	 \ J_
/ \^ / \
/\ >v / /
" ^\s /*
w
RECTANGLE

Axis of moments through center

d 	




,-_b 	 *
"T
1


GEOMETRIC SECTIONS

A - d«
d
c " T
d«
12
S - d*
6
r - -4-= - .288675 d
V 12

A - d*
c - d
3
8 - d*
^
d
r - -7= . .577350 d
V3
A - d»

d
" V2

1 - TIT
d*
8 - —j---j - .117851 d»
d
r . - _ .288675 d
V 12

A • bd

c , d-
2
| - bd»

0 " 6
r » -^ - .288675 d
17-28

-------
    PROPERTIES OF  SELECTED GEOMETRIC FIGURES
                              (continued)
    PROPERTIES   OF  GEOMETRIC  SECTIONS
      RECTANGLE
   Axis of moments on base
           -b	>
                                  A
                                  c
                                  I

                                  S
      bd
      d
     _bd»_
      3
      bd»
      3
      d
     V3
                                              .577350 d
      RECTANGLE
  Axis of moments on diagonal
A  =  bd
                                          bd
                                       V b» + d»
                                       ___b»jd»
                                       6 (b» + d»
                                          b«d»
                                       6V b* + d»
                                           bd
                                       V 6 (b* +d»)
      RECTANGLE
   Axis of moments any line
   through center of gravity
      bd
      b sin a -t-'d cos a
                                       bd (b* sin'a 4- d' coa'ai
                                              12
                                       bd (b» sin'a + d» cos'a)
                                        6 (b sin a + d cos a)
                                        '>sin»a + d3 cos'a
 HOLLOW RECTANGLE
Axis of moments through center
              1~T
     bd — bidi
     jd^
     2
     bd' — bidj
                                          12
                                       bd>
                                          6d

                                       y12 A
                                                                      17-29

-------
          PROPERTIES OF SELECTED GEOMETRIC FIGURES
                            (continued)
PROPERTIES OF
EQUAL. RECTANGLES
Axis of moment* through
center of gravity
t T
!, . .1
I I
J i i
LJ
UNEQUAL RECTANGLES
Axis of moment* through
center of gravity
i f* — "— H .*
. * I J v .
T t -4 	 -T T
1 t 11
a i) • - - I I
iyi °i
* ,,,r- ... ,. 1 1
ti 4 	 i- j
T L T*
MH
TRIANGLE
Axis of moments through
center of gravity
1 A T
• /\ I
1 T-\
T / 1
l~l
TRIANGLE
Axis of moment* on base
I A i
1/1.1


GEOMETRIC SECTIONS
A - b (d — di)
« - f
2
b (d» - d,*)
1 ~ 12
0 b(d»-di»)
8 * 6d
r . J *•=.«»•_
r \12(d-d,)
A - bt + bttt
H bt« + bit, (d - Vi t,)
C A
I - ^ + bty»-f^--hb,t,yt»
S - ± 8l . J-
- -Vf
A » J4
2
2d
* ' 3
bd*
"36
a « M*
8 24
' - vW " i'235702"
A - bd
2
c - d
. bd*
12
a „ bdt
8 12
r . JL . ,408248d
17-30

-------
  PROPERTIES OF SELECTED  GEOMETRIC FIGURES
                            (continued)
  PROPERTIES OF  GEOMETRIC  SECTIONS
    TRAPEZOID

 Axis of moments through
    center of gravity
                                       dib +_ bi)_


                                       dj.2b_-t-_ bi)
                                      "T(b~Vbi7'

                                       d> (b» -*- 4 bbi + bt»)
                                          36~ib"+"bi)
                                       d«
                                             4 bbi f
                                          12 (2b + b,)
      CIRCLE

    Axis of moments
    through center
                = .785398 d« = 3.141593 R»
                                      7rd*- - -— = .049087 d< = .785398 R«
                                       64     4
                                       32

                                      d
                                      '4
                                                - .0981 75 d» = .785398 R»
            R

            2
 HOLLOW CIRCLE

   Axis of moments
    through center
A  =

                                           .
                                         32d
                                      \ d'
               = . 785398 (d»-
   HALF CIRCLE

Axis of moments through
   center of gravity
A  =
      "'"
                                   '  «  (^3^
                   =  1. 570796 R»



                   =   .575587 R

                                                                       17-31

-------
          PROPERTIES OF SELECTED GEOMETRIC FIGURES
                            (continued)
          PROPERTIES  OF  GEOMETRIC  SECTIONS
                                A -
          HALF PARABOLA
       COMPLEMENT OF HALF
            PARABOLA
A - |- ab
    2
                                    1-
                                It

                                la

                                1*

                                U
    Jf-
    4ao
  Of
                                    •
      »
                                A -
                                    10
                                li

                                la
        PARABOLIC FILLET IN
           RIGHT ANGLE
             2
          \
              \
b -


A -

m -

It -
     t
    2V2
4-

17-32

-------
      PROPERTIES OF SELECTED GEOMETRIC  FIGURES
                             (continued)
     PROPERTIES OF  GEOMETRIC SECTIONS
                                      2
                                      4a
                                        irab
                                 li

                                 It

                                 Ij
                                  irab»
                                  ira'b
    QUARTER ELLIPSE

             2   4
             (<-n^|
I--
        	j-|
             m
            ~ta
                           A -  -^»

                           m -  ^
                                Sir
                                 li

                                 li

                                 It

                                 (4
                                      3ir

                                      a>b
                                1
                                16
                                1
                                16
                                   U - iV
* ELLIPTIC COMPLEMENT
         ;< —„—J
                  T
                                 A =  ab ( 1 —
                                      6 f 1 — -

                                      a>b
                                   =  ab»
* To obtain properties of half circle, quarter circle and circular complement substitute a = b = R.
                                                                    17-33

-------
            PROPERTIES OF SELECTED GEOMETRIC FIGURES
                                (continued)
           PROPERTIES  OF GEOMETRIC SECTIONS
         REGULAR POLYGON

            Axis of moment*
             through center
n -  Number of tidea

     180°
     n
                                      a


                                      R
                                      Rt


                                      A
                                           2 sin*
     2 tan 


    -jp na» cot # - -;;-
                                                          - nRt» tan 0
                                           A(6R» - a»)     A(12R»* + a*)
                                        "24       "     48
                                   rt
  "  V"  24~   "  \  '*»"
17-34

-------
SECTION 78 BIBLIOGRAPHY
18-1

-------
                                 BIBLIOGRAPHY

 1  List, Robert J.  Smithsonian Meteorological Tables. 6th Revised Edition.  Publication
      4014 of the Smithsonian Institution.  1951.

 2  Reference Data and  Tables.  Pulverizing Machinery Division of Metals Disintegrating
      Company, Inc. Bulletin 55B-1.

 3  Precision Measurement and  Calibration - Selected Papers on Optics, Metrology, and
      Radiation.   National Bureau of Standards Handbook 77.  Volume 3.  February 1,  1961.

 4  Steel Construction,  5th Edition.  American Institute of Steel Construction.  1955.

 5  Air  Pollution Abatement Manual.  Manufacturing Chemists' Association, Inc.

 6  Marvin,  C. F.  Barometers and the Measurement of Atmospheric Pressure.  Weather
      Bureau Circular  F.  Instrument Division.  Seventh Edition.  1941.

 7  Published by Mine Safety Appliance  Company.

 8  Published by American Air Filter Company,  Inc.

 9  Stern, Arthur C.  Air Pollution.   Volume 1.  Academic Press.  1962.

10  Perry, John H.  Chemical Engineers' Handbook.  Fourth Edition.   McGraw-Hill Book
      Company, Inc.  1950.

11  Kuhlmann,  C.  Albert.  Nomographic Charts.  First Edition.  McGraw-Hill Book Company,
      Inc.  1951.                               
-------