-------
Q
UJ
X
LU
ID
i/i
oo
UJ
o
h-
u
•z.
o
oo
o:
LLJ
o
u
to
•
a;
a
CO
O
a
0
CM
a
.
,5
be
K
a
(^
tuo
hM
•
a
u
Hn
|~~
MH
JH
"
h
cd
^2
rH
a
§
,
cd
PQ
rH
1
CM O
O5 rH
CD
oo X
JS.
^
rH
O
CD
O
O
in
t>
co
0
o
in
o
o
CO
in
O5
CM
O
O
0
1 — 1
rH
TJ ^
<» CO /I
SH -2 /
•H -rH »
CO fl /
CD 3 /
P /
/ £ 03
/
* K. -|H
/ .5 fl
f 0 =>
1
rH
cd
PQ
^
|
CM O
O5 rH
CO
oo X
CD*
rH
1
t- 0
•HH rH
rH
o X
**
rH
1
CO O
O rH
O
m X
t—
CM
1
CD O
0 rH
0
m X
t»."
CM
1
0 O
CO rH
m
05 X
*
CM
TH
CO
r^
X
rH
rH
cd
a
|
CM
|
rH 0
CM rH
co x
,
co
,CD
, m
i co
' i — i
i
i
o
o
^
tn
CM
. o
o
""""p
m
(M*
rH
^
CD
00
co*
CO
CM
1
••* o
CD rH
oo
co X
co"
OJO
a
a
CM
1
00 0
in rH
« X
,
i — t
m
CM
m
CO
m*
o
,H
rH
^
1
O O
C- rH
CO
05 X
*
CO
CM
CO ,
CO
co
rH
CM •
1
CM O
CO rH
CO
co X
rH
tuo
a
a
u
co
1
00 O
in rH
co X
(
i — i
i
m o
CM rH
m
co X
in
rH
rH
1
o
rH
X
rH
CM
1
O O
£~ 1 — 1
CO
05 X
CO
O5
0
O5
^
CM*
CO
1
O5 O
O rH
O5
^ X
CM*
O
CM
a
d
rH
O5
c-
CD*
O
O
CO
t-
CD
t-
rH
O5
CM
O5*
CM
CO
CO O
CO rH
rH
o X
rH
CO
CO
rH
O
rH
-
to
rH
fl^
si
OH
CO
O
a
+»
CD
-f->
• H
to
O
a
a
o
rH
O
-t->
O
n5
<(H
0)
0)
3
r— t
ri
>
03
rH
o
S
o
H
9-3
-------
BAROMETRIC PRESSURE AT VARIOUS ALTITUDES
[Abridged from the Smithsonian Table*]
Values o( 00308 (14-0.0010195X36) log. 29-.80
o
Barometric
pressure, B
inches
17.00
.10
.20
.30
.40
17.50
.60
.70
.80
.90
iaoo
.10
.20
.30
.40
l&SO
.60
.70
.80
.90
19.00
.10
.20
.30
.40
19.50
.60
.70
.80
.90
moo
.10
.20
.30
.40
20.50
.60
.70
.80
.90
21.00
.10
.20
.30
.40
21.50
.CO
.70
.80
.90
22.00
.10
.20
.30
.40
22.50
.60
.70
.80
.90
23.00
.10
.20
.30
.40
0
Feet
15,347
15, 187
15,029
14,871
14, 715
14,559
14,404
14,250
14,097
13.945
13,793
13,643
13,493
13,344
13,196
13,049
12,902
12,756
12,611
12,467
12,324
12,181
12,039
11,898
11,758
11,618
11,479
11,340
11,208
11,066
10,930
10,794
10,659
10,525
10, 391
10,259
10,126
9,995
9,864
9,733
9,604
9,474
9,346
9,218
9,091
8,964
8,838
8,712
8,587
8,463
8,339
8,216
8,093
7,971
7,849
7,728
7,608
7,488
7,368
7,249
7,131
7,013
6,896
8,779
6,662
0.01
Feet
15,331
15,172
15,013
14,856
14,699
14,544
14,389
14,235
14,082
13,930
13, 778
13,628
13,478
13,329
13, 181
13,034
12,888
12,742
12,597
12,453
12,310
12,167
12,025
11,884
11,744
11,604
11,465
11,327
11,189
11,052
10,916
10,781
10,646
10, 512
10,378
10,245
10, 113
9,982
9,851
9,720
9,581
9,462
9,333
9,205
9,078
8,951
8,825
8,700
8,575
8,451
8,327
8,204
8,081
7,959
7,837
7,716
7,596
7,476
7,356
7,238
7,119
7,001
6,884
6,767
6,661
0.02
Feet
15,315
15,156
14,997
14,840
14,684
14,528
14,373
14, 219
14,067
13,914
13,763
13,613
13,463
13, 314
13,166
13,019
12,873
12,727
12,583
12,438
12,295
12,153
12,011
11,870
11,730
11,690
11, 451
11, 313
11, 178
11,039
10,903
10,767
10,632
10,498
10,365
10,232
10,100
9,968
9,838
9,707
9,678
9,449
9,320
9,193
9,065
8,939
8,813
8,687
8,562
8,438
8,314
8,191
8,069
7,947
7,825
7,704
7,584
7,464
7,345
7,226
7,107
6,990
6,872
6,755
6,639
0.03
Feet
15,299
15,140
14,982
14,824
14,668
14, 512
14,358
14,204
14,051
13,899
13, 748
13,598
13,448
13,300
13, 152
13,005
12,858
12,713
12,568
12,424
12,281
12,138
11,997
11,866
11,716
11, 576
11,437
11,299
11,162
11,025
10,889
10,754
10,619
10.485
10, 352
10,219
10,087
9,955
9,825
9,694
9,566
9,436
9,307
9,180
9,053
8,926
8,800
8,675
8,560
8,426
8,302
8,179
8,056
7,935
7,813
7,692
7,572
7,452
7,333
7,214
7,096
6,978
6,861
6,744
6,628
0.04
Feet
15,283
15,124
14,966
14,809
14,652
14,497
14,342
14,189
14,036
13,884
13,733
13,583
13,433
13,285
13, 137
12,990
12,844
12,698
12,554
12, 410
12,267
12,124
11,983
11,842
11,702
11,562
11,429
11,285
11,148
11,011
10, 875
10,740
10,605
10,472
10,338
10.206
10,074
9,942
9.812
9,681
9,662
9,423
9,296
9,167
9,040
8,913
8,788
8,662
8,538
8,413
8,290
8,167
8,044
7,922
7,801
7,680
7,560
7,440
7,321
7,202
7,084
6,966
6,849
6,732
6,616
0.05
Feet
15,267
15,108
14,950
14,793
14,637
14,481
14,327
14, 173
14,021
13,869
13, 718
13,568
13,418
13,270
13,122
12,975
12,829
12,684
12,539
12,395
12,252
12, 110
11,969
11,828
11,688
11,5*8
11,410
11,272
11,134
10,998
10,862
10,727
10,592
10,458
10,326
10,192
10,060
9,929
9,799
9,668
9,639
9,410
9,282
9,164
9,027
8,901
8,775
8,680
8,525
8,401
8,277
8,154
8,032
7,910
7,789
7,668
7,548
7,426
7,309
7,190
7,072
6,954
6,837
6,721
6,604
0.06
Feet
15,251
16,092
14,934
14, 777
14, 621
14,466
14,312
14,168
14,006
13,854
13,703
13,663
13,404
13,255
13, 107
12,961
12,815
12,669
12.525
12,381
12,238
12,096
11,964
11,814
11,674
11,634
11,396
11,258
11. 121
10,984
10,848
10, 713
10,579
10,445
10,312
10, 179
10,047
9,916
9,786
9,655
9,526
9,397
9,269
9,142
9,015
8,888
8,762
8,637
8,513
8,389
8,265
8,142
8,020
7,898
7,777
7,656
7,536
7,416
7,297
7,178
7,060
6,943
6,825
6,709
6,593
0.07
Feet
15,235
15,076
14,919
14,762
14,608
14,451
14,296
14,143
13,990
13,839
13,688
13,538
13,389
13,240
13,093
12,946
12,800
12,655
12,510
12,367
12,224
12,082
11,940
11,800
11,660
11,520
11,382
11,244
11,107
10,970
10,835
10,700
10,665
10,431
10,298
10,166
10,034
9,903
9,772
9,642
9,513
9,384
9,256
9,129
9,002
8,876
8,760
8,625
8,500
8,376
•S,253
8,130
8,008
7,886
7,765
7,644
7,524
7,404
7,285
7,166
7,048
(1,931
6,814
6,697
6,581
0.08
Feet
15,219
15,061
14,903
14, 746
14,590
14,435
14,281
14,128
13,975
13,824
13, 673
13,523
13, 374
13,226
13, 078
12,931
12,785
12,640
12,496
12,352
12,210
12,068
11,926
11,786
11,646
11,507
11,368
11,230
11,093
10,957
10,821
10,686
10,552
10,418
10,285
10,163
10,021
9,890
9,769
9,629
9,500
9,372
9,244
9,116
8,989
8,863
8,737
8,612
8,488
8,364
8,240
8.118
7,995
7,874
7,763
7,632
7,512
7,392
7,273
7,155
7,037
6,919
6,802
6,686
6,570
0.09
Feet
15,203
15,045
14,887
14,730
14, 575
14,420
14,266
14, 112
13,960
13,808
13,658
13,608
13,359
13,211
13,063
12,917
12,771
12,626
12,482
12,338
12,195
12,053
11,912
11, 772
11, 632
11,493
11,054
11, 217
11,080
10,943
10,808
10, 673
10,638
10,405
10,272
10, 139
10,008
9,877
9,746
9,617
9,487
9,359
9,231
9,103
8,977
8,860
8,725
8,600
8,475
8,352
8,228
8,105
7,983
7,862
7,740
7,620
7,600
7,380
7,261
7,143
7,025
6,907
6,790
6,674
6,658
9-4
See Reference No. 6
-------
BAROMETRIC PRESSURE AT VARIOUS ALTITUDES
(continued)
Barometric
pressure, U
inches
23.50
.60
.70
.80
.90
24.00
.10
.20
.30
.40
24.50
.60
.70
.80
.90
25.00
.10
.20
.30
.40
25.50
.60
.70
.80
90
26 00
.10
.20
.30
.40
26.50
.60
.70
.80
.90
27.00
.10
.20
.30
.40
27.50
.60
.70
.80
.90
28.00
.10
.20
.30
.40
28.50
.60
.70
80
.90
29.00
.10
.20
.30
.40
29.50
.60
.70
.80
.90
30.00
.10
.20
.30
.40
30.50
.60
70
80
0
Feet
6,546
6,431
6,316
6,202
6,088
5,974
5,861
5,749
5, 637
5,525
5,414
5,303
5,193
5,083
4,974
4,Sfi5
4,756
4,648
4,540
4,433
4,326
4,220
4,114
4,009
3,903
3,799
3,694
3,590
3,487
3,384
3,281
3,179
3,077
2,975
2,874
2,773
2,672
2,572
2,473
2,373
2,274
2,176
2,077
1,989
1,872
1,784
1,688
1, 591
1,495
1,399
1,303
1,208
1, 113
1,019
925
831
737
644
551
458
366
274
182
+91
0
-91
-181
-271
-361
-451
-540
-629
-718
-806
0.01
Feet
6,535
6,420
6,308
6,190
6,076
5,963
5,850
5, 737
5,625
5,514
5,403
5,292
5,182
5, 072
4,963
4,854
4,745
4.637
4, 530
4,423
4,316
4,209
4,104
3,998
3,893
3,788
3,684
3,580
3,477
3,373
3,270
3,168
3.066
2,965
2,864
2,763
2,662
2,562
2,463
2,363
2,264
2,166
2,067
1.970
1,872
1,775
1,678
1,581
1,485
1,389
1,294
1,199
1, 104
1,009
915
821
728
635
542
449
357
265
173
+ 82
-9
-100
-190
-280
-370
-460
-549
-638
-727
-815
0.02
Feet
6,523
6,408
6,293
6,179
6,065
5,952
5,839
5,726
5,614
5,503
5,392
5,281
5,171
5,061
4,952
4.843
4,735
4,627
4,519
4,412
4,305
4,199
4,093
3,988
3,882
3,778
3,674
3,570
3,466
3,363
3,260
3,158
3,056
2, 955
2,854
2,753
2,652
2,552
2,453
2,353
2,254
2,156
2,058
1,960
1,862
1,765
1,668
1.572
1,476
1,380
1,284
1,189
1.094
1,000
906
812
718
625
532
440
348
256
164
+73
-18
-109
-199
-289
-379
-469
-558
,-647
-735
-824
0.03
Feet
6,512
6,397
6,282
6,167
6,054
5,940
5,827
5,715
5,603
5,492
5,381
5,270
5,160
5,050
4,941
4,832
4,724
4,616
4,508
4,401
4,295
4,188
4,082
3,977
3,872
3,767
3,663
3,559
3,456
3,353
3,250
3,148
3,046
2,945
2,843
2,743
2,642
2,542
2,443
2,343
2,245
2,146
2,048
1,950
1,852
1,755
1,659
1,562
,496
,370
,275
,180
,085
990
896
803
709
616
523
431
338
247
155
+64
-27
-118
-208
-298
-388
-478
-567
-656
-744
-833
0.01
Feet
6,500
6,385
6,270
6,156
6,042
5,929
5,816
5,704
5,593
5,480
5,369
5, 259
5, 149
5,039
4,930
4,821
4.713
4,605
4,498
4,391
4,284
4,178
4,072
3,966
3,861
3,757
3, 653
3,549
3,446
3,343
3,240
3, 138
3,036
2,934
2,833
2,733
2,632
2,532
2, 433
2,334
2,235
2,136
2,038
1,940
1,843
1,746
1. 649
1, 552
1, 456
1,361
l,2f.5
1,170
1, 075
981
887
794
700
607
514
421
329
237
146
+55
-36
-127
-217
-307
-397
-486
-576
-665
-753
-841
0.05
Feet
6,489
6,374
6,259
6,145
6,031
5,918
5,805
5,693
5,581
5,469
5,358
5,248
5,138
5.028
4,919
4,810
4,702
4,594
4,487
4,380
4,273
4,167
4,061
3,956
3,851
3,746
3,642
3,539
3,435
3,332
3,230
3, 128
3,026
-2, 924
2,8,23
2,723
2.622
2,522
2,423
2,324
2,225
2,126
2,028
1,930
1,833
1,736
1,639
1,543
1,447
1,351
1,256
1,161
1,066
972
878
784
690
597
505
412
320
228
137
+45
-45
-136
-226
-316
-406
-495
-585
-673.
-762
-850
0.06
Feet
6,477
6,362
6,247
6,133
6,020
5,906
5,794
5,681
5,570
5,458
5,347
5,237
5,127
5,017
4,908
4,800
4,691
4,584
4,476
4,369
4,263
4,156
4,051
3,945
3,841
3,736
3,632
3,528
3,425
3,322
3,219
3,117'
3.016
2,914
2,813
2,713
2,612
2,512
2,413
2,314
2,215
2,116
2,018
1.P21
1,823
1,726
1,630
1,533
1,437
1,342
1,246
1,151
1,057
962
868
775
681
588
495
403
311
219
128
+ 36
-55
-145
-235
-325
-415
-504
-693
-682
-771
-859
0.07
Feet
6,466
6,351
6,236
6,122
6,008
5,895
5.782
5.670
5,558
5, 447
5. 336
5,228
5,116
5,006
4,897
4,789
4,681
4,573
4, 465
4, 3->8
4, 252
4,146
4,040
3,935
3,830
3,726
3,622
3,518
3.415
3,312
3.209
3,107
3,005
2,904
2,803
2, 703
2,602
2,502
2.403
2,304
2,205
2. 107
2.009
1,911
1,814
1,717
1,620
1,524
1,428
1,332
1,237
1,142
1,047
953
859
765
672
579
486
394
302
2'0
118
+ 27
-64
-154
-244
-334
-424
-513
-602
-691
-780
-868
0.08
Feet
6,454
6,339
6,225
6,110
5,997
5,884
5,771
5,659
5, 547
5, 436
5,325
5,215
5,105
4,995
4,886
4,778
4,070
4,562
4, 455
4,348
4,241
4,135
4,030
3,924
3,820
3,715
3,611
3,508
3.404
3,301
3,199
3,097
2,995
2,894
2,793
2,692
2.592
2,493
2,393
2,294
2,195
2,097
1,999
,901
,804
,707
.610
,514
,418
,322
1,227
1,132
1,038
943
849
756
663
570
477
384
292
201
109
+ 18
-73
-163
-253
-343
-433
-522
-611
-700
-788
-877
0.09
Feet
6,443
6,328
6, 213
6,099
5,986
5,872
5,760
5,648
5,536
5,425
5,314
5,204
5.094
4,985
4,876
4,767
4,659
4, 551
4,444
4,337
4,231
4,125
4,019
3,914
3,809
3,705
3,601
3,497
3,394
3,291
3,189
3,087
2, 985
2.884
2, 783
2,682
2,582
2,483
2,383
2,284
2,185
2.087
,9»9
,891
,794
,697
,601
,504
,408
,313
,218
,123
,028
934
840
746
653
560
468
375
283
192
100
+9
— S2
-172
-2fi2
-352
-442
-531
-620
-709
-797
-885
9-5
-------
BAROMETRIC PRESSURE AT VARIOUS ALTITUDES
(continued)
(Abridged from the Smithsonian Tables]
Term for temperature: 0.002039 (T—50°) z
For temperatures^™ £ |;}the values are to
Mean tempera-
ture T.
"F.
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
as
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
6
4
3
2
1
0
°F.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
8s
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
Approximate elevations obtained from Table VI
1000
Fttt
2
4
6
8
10
12
14
16
18
20
22
24
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
80
82
84
86
88
90
92
94
96
98
100
102
2,000
feet
4
8
12
16
20
24
29
33
37
41
45
49
53
57
61
65
69
73
77
82
86
90
94
98
102
106
110
114
118
122
126
130
135
139
143
147
151
156
159
163
167
171
175
179
184
188
192
196
200
204
3,000
Feet
6
12
18
24
31
37
43
49
55
61
67
73
80
86
92
98
104
110
116
122
128
135
141
147
153
159
165
171
177
184
190
196
202
208
214
220
226
232
239
245
251
257
263
269
275
281
287
294
300
306
4,000
Feet
8
16
24
33
41
49
57
65
73
82
90
98
106
114
122
130
139
147
155
163
171
179
188
196
204
212
220
228
236
245
253
261
269
277
285
294
302
310
318
326
334
343
351
359
367
375
383
391
400
408
5,000
Feet
10
20
31
41
51
6.1
71
82
92
102
112
122
133
143
153
163
173
184
194
204
214
224
234
245
255
265
275
285
296
306
316
326
336
347
357
367
377
387
398
408
418
428
438
449
459
469
479
489
500
510
6,000
Feet
12
24
37
49
61
73
86
98
110
122
135
147
159
171
184
196
208
220
232
245
257
269
281
294
306
318
330
343
355
367
379
391
404
416
428
440
453
465
477
489
502
514
526
538
551
563
r6
687
599
612
7,000
Feet
14
29
43
57
71
86
100
114
128
143
157
171
186
200
214
228
243
257
271
285
300
314
328
343
357
371
385
400
414
428
442
457
471
485
500
514
628
542
557
571
585
599
614
628
642
657
671
685
699
714
8,000
Feet
16
33
49
65
82
98
114
130
147
163
179
196
212
228
245
261
277
294
310
326
343
359
375
391
408
424
440
457
473
489
506
522
538
555
571
587
sot
620
•536
652
1369
685
701
718
734
750
767
783
799
816
9,000
Feet
18
37
55
73
92
no
128
147
165
184
202
220
239
257
275
294
312
330
349
367
385
404
422
440
459
477
495
514
532
551
569
587
606
624
642
661
679
897
716
734
752
771
789
807
826
844
862
881
899
918
10,000
Feet
20
41
61
82
102
122
143
163
184
204
224
245
265
285
306
326
347
367
387
408
428
449
469
489
510
530
551
571
591
612
632
652
673
693
714
734
754
775
795
81«
836
856
877
897
918
938
958
979
999
1,020
9-6
-------
ANGLE OF INCLINATION OF A MANOMETER
NECESSARY TO PRODUCE DESIRED
MAGNIFICATION
UJ
UJ
O
UJ
Q
z
o
N
Di
o
x
Q
Z
I/O
O
o
z
z
LU
O
z
2.0 3.0 4.0 6.0 8.0 10
MAGNIFICATION
20 30 40 50 60
See Reference No. 20
9-7
-------
SECTION 10 PROPERTIES OF PART/CULATES
Specific Gravities of Wind Erosion Products, Industrial Dusts and Combus-
tion Products 10-1
Specific Gravities of Some Common Minerals 10-2
Specific Gravities of Common Metals 10-3
Diameters and Specific Gravities of Selected Pollen Grains . 10-4
Sizes of Airborne Particulates (M.S.A.) 10-5
Characteristics of Particles and Particle Dispersoids 10-6
Size and Characteristics of Air-Borne Solids (Frank Chart) 10-8
Limits of Particle Size Measuring Equipment 10-9
Physical Properties of Flyash 10-10
Standard U.S. and Tyler Screen Scales 10-11
-------
h-
uo
ID
Q
oo
Q.
O.
on
u_
o
oo
LU
O
y
u.
O
LLJ
Q.
00
CO
-+-*
CJ
d
-O
o
SH
a
d
_o
CO
d
e
0
U
Industrial dusts
en
o
d
•o
o
S-t
OH
o
• rH
en
O
cu
1
•rH
cd
bD
o
•rH
• rH
CJ
O>
a
CO
_i
UJ
/o
en
co ^
rH O
cu •4J
O . rH
cenos
incine
sawdust
r— 1
1
O
CO
o
a
en
4->
CO
0
a
CO CO CO CO
« "2 3 o a
a % 3 0 3
plastics, gums, resj
most organic compoi
many hydrated salts
Na2SO4- 12H2O, Na2
CaCOo- 5H9O (Carna
O &
0
CO CU
o ^
'So TO
o
talc, micas, cryoliti
fluorite
rft
(Jl
rH CO
Cti "t->
CO g
2 P
CO '/"I
tfH ^
.
f" rn
calcit
mica:
co
.
CO
1
CD
CM'
en nj" cjj
^ d rH -
^ «J .-^
asbestos, metal pow<
corundum, lime, ga]
garnets, barium,
strontium, hematite,
salts, etc. , magneti
marcasite, pyrite,
willemite, zincite
^
CO j?
, K cti
co ,2} be
c r 1 -2
O ^ ( *'"'
bD CO M rH
rrt ft CO
tl fiT "T3 ni
*3 " 4J 'H 4J
TO rH -rH CO -rH
. CO Cn rH
-i 4J JH
cti -a >, 3 a
rQ O ft rH CO
co
,
CO
A
10-1
-------
SPECIFIC GRAVITIES OF: SOME COMMON MINERALS
Borax
Sylvite
Bauxite
Sulfur
Stilbite
Halite
Serpentine
Natrolite
Sodalite
Graphite
Gypsum
Apophyllite
Brucite
Leucite
Microcline
Orthoclase
Nepheline
Kaolinite
Albite
Oligoclase
Quartz
Andesine
LabradorUe
Scapolite
C alette
Plagioclase
Talc
Anorthite
Beryl
Wollastonite
Dolomite
Phlogopite
1.7
1.99
2. 0 -
2.05
2.1 -
2.16
2.2 -
2.25
2.30
2.3
2.32
2.3 -
2.39
2.45
2.54
2.57
2.55
2.6 -
2.62
2.65
2.65
2.69
2.71
2.65
2.72
2.62
2.7 -
2.76
2.75
2.8 -
2.85
2.86
2.55
- 2.09
2.2
2.65
2.4
- 2.50
- 2.57
- 2.65
2.63
- 2.74
- 2.76
2.8
-2.8
2.9
Muscovite
Lepidolite
Anhydrite
Aragonite
Biotite
Cryolite
Amblygonite
Lazulite
Magnesite
Tourinaline
Tremolite
Apatite
Spodumene
Andalusite
Fluorite
Hornblende
Sillimanite
Diopside
Augite
Olivine
Enstatite
Diaspore
E pi dote
2.
2.
2.
2.
2.
2.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
HemimorphiteS
Sphene
Realgar
Diamond
3.
3.
3.
76
8 -
89
95
8 -
95
0 -
0 -
0 -
0 -
0 -
15
15
16
18
2
23
2 -
2 -
27
2 -
35
35
-
3
-
3
-
3
3
3
3
3
-
-
-
3
3
-
3
-
-
3
.
2
.
3
.
.
.
.
0
.
2
*
1
1
2
1
98
0
.25
,
3
3
3
.
.
4
.
3
3
.4-3,
4 -
48
5
3.
RhodochrositeS. 45 -
Garnet
Spinel
Kyanite
Rhodonite
3.
3.
3.
3.
5 -
6 -
56
58
4.
4.
3
.
.
.
3
4
.
5
.
.
20
30
20
37
45
45
.5
55
3
3
.60
0
- 3.
-3.
66
70
Staurolite
Chrysoberyl
Azurite
Side rite
Malachite
Celestite
Sphalerite
Corundum
Willemite
Chalcopyrite
Rutile
Enargite
Barite
Stibnite
Ilmenite
Pyrolusite
Molybdenite
Zircon
Marcasite
Pyrite
Franklinite
Magnetite
Z'ncite
Cuprite
Arsenopyrite
Cerussite
Cassitertte
Galena
Cinnabar
Copper
Silver
3.
3.
3.
3.
3.
3.
3.
4.
3.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
5.
5.
5.
5.
6.
6.
6.
6.
7.
8.
8.
65
65
77
83
9 -
95
9 -
02
9 -
1 -
18
43
5
52
7
75
62
68
89
02
15
18
68
0
07
55
8 -
4 -
10
9
- 3
- 3
- 3
4.
- 3
4.
4.
4.
-4
-4
-4
-4
7.
7.
.7J
.8
.8*
03
.91
I
2
3
. 2£
.45
.62
.73
1
6
10.5
10-2
-------
SPECIFIC GRAVITIES OF COMMON METALS
Aluminum
Antimony
Arsenic
Barium
Beryllium
Bismuth
Cadmium
Calcium
Cerium
Cesium
Chromium
Cobalt
Copper
Gallium
Germanium
Gold
Indium
Iridium
Iron
Lanthanum
Lead
Lithium
Magnesium
Manganese
Mercury
Molybdenum
Neodymium
Nickel
symbol
Al
Sb
As
Ba
Be
Bi
Cd
Ca
Ce
Cs
Cr
Co
Cu
Ga
Ge
Au
In
Ir
Fe
La
Pb
Li
Mg
Mn
Hg
Mo
Nd
Ni
sp. gr. element
2.699
6.618
5.13
3.5
1.84
9.781
8.648
1.54
6.90
1.873
6.92
8.71
8.92
5.903
5.46
18.88
7.28
22.42
7.85
6.15
11.342
0.534
1.741
7.42
13.546
10. 2
6.96
8.60-90
Niobium
Osmium
Palladium
Platinum
Potassium
Praseodymium
Rhenium
Rhodium
Rubidium
Ruthenium
Selenium
Silver
Sodium
Strontium
Tantalum
Tellurium
Thallium
Thorium
Tin (white)
Tin (grey)
Titanium
Tungsten
Uranium
Vanadium
Yttrium
Zinc
Zirconium
>
symbol
Nb
Os
Pd
Pt
K
Pr
Re
Rh
Rb
Ru
Se
Ag
Na
Sr
Ta
Te
Tl
Th
Sn
Sn
Ti
W
U
V
Y
Zn
Zr
sp.gr,....
8.4
22.5
12.16
21.37
0.87
6.475
20.53
12.44
1.532
12.06
4.3-8
10.492
0.9712
2.50-58
16.6
6.25
11.86
11.3
7.29
5.8
4.5
18.6-19. 1
18.7
5.96
5.51
6.92
6.44
10-3
-------
DIAMETERS AND SPECIFIC GRAVITIES OF SELECTED POLLEN GRAINS
Common
Name
Giant ragweed
Burweed marsh elder
Short ragweed
False ragweed
Marsh elder
Southern ragweed
Western ragweed
Cocklebur
Russian thistle
Palmer's amaranth
Western water hemp
Mexican fireweed
Annual sage
Tall wormwood
Sagebrush
Nettle
Red sorrel
Hemp
English plantain
Bluegrass
Bluegrass
Bermuda grass
Orchard grass
Timothy
Rye
Corn
Sycamore
Mountain cedar
Hazelnut
Birch
Alder
Ash
Cottonwood
Elm
Bur oak
Shingle oak
Walnut
Beech
Hickory
Scotch pine
Bull pine
Botanical
Name
Ambrosia trifida
Iva xanthifoiia
Ambrosia elatior
Franseria acanthlcarpa
Iva ciliata
Ambrosia bidentata
Ambrosia psilostachya
Xanthium commune
Salsola pestifer
Amaranthus palmerl
Acnida tamariscina
Kochia scoparia
Artemisia annua
Artemisia caudata
Artemisia tridentata
Urtica gracilis
Rumex acetosella
Cannabis sativa
Plantago lanceolata
Poa pratensis
Poa pratensis
Capriola dactylon
Dactylis glomerata
Phleum pratense
Secale cereale
Zea mays
Platanus occidentalis
Juniperus sabinoldes
Corylus americana
Betula nigra
Alnus glutinosa
Fraxinus americana
Populus virginiana
Ulmus americana
Quercus macrocarpa
Quercus imbricaria
Juglans nigra
Fagus grandifolia
Carya ovata
Pinus sylvestris
Pinus ponderosa
Diameter in
Microns
19.25
19.3
20.0
22.0
23.0
23.0
26.4
27.0
23.6
25.8
27.5
32.7
20.4
21.0
25.85
14.0
21.45
25.0
27.5
28.0
30.0
28.5
34.0
34.0
49.5
90.0
22.22
22.8
23.6
24.6
26.0
27.1
30.0
31.2
32.3
33.1
35.75
44.0
45.0
52.0
60.0
Specific
Gravity
0.52
0.79
0.55 *
0.75
0.56
0.50
0.57
0.45
0.90
1.02
1.01
0.97
1.02
1.04
1.03
0.77
0.78
0.82
0.97
0.90
0.90
1.01
0.91
0.90
0.98
1.00
0.92
1.08
1.09
0.94
0.97
0.90
0.79
1.00
1.04
1.04
0.93
0.94
0.79
0.45
0.45
Crawford, J. H., Pub. Health Rep. 64:1195,
1949. reports a value of 1. 3.
10-4
-------
OO
UJ
I-
<
_l
U
Q.
LU
Z
Of
o
CO
LL
O
«/)
UJ
N
Atrotolt
c
OC
i
1
*.
tt Outdoor Air
1
•
i
s
1
V)
n
of
Metallurgical 0
o
"".
i
e
I
I
8
«-
1
>•
I
rf
U.
§
I
nd Llmtttont
o
r Mill Dutt
id Zinc Outt
Is
"*
:
1
i
|»UDU3)
Z\
Spray Drltd Ml
10
*o
i
r Olomi
I
X
v
!£
0
*
T.
- B 1
_ Combustion No
i £
S
i
1
j
REFERENCE j
u
i
1
t
—i
s-
8-
§-
1-
^
i
i
, /
o
sj
IW
3
8
to"
-
0
2
o
m
O
o
o
o
o
8
0
8
B
ci
in
c
o
-------
on
LLJ
Q.
Q
LLJ
U
H-
0.
Q
Z
<
LU
_J
U
u_
o
oo
LU
X
U
8-:
§
:-l—s- :a—s-
8-
••
e-
8
0--
8-.
II
•1-
Fl
_*_.
5
i
3*
_:
?
s
*
m
IUI
E
«11
* I «-
-1-iUI
O u.
>, —
SI
1
£1.
10-6
See Reference No. 9
-------
to
Q
O
1/1
C£
LU
Q_
oo
Q
UJ
_)
CL -.
-a
a «>
z s
00
LU
_J
u
Q_
U_
O
oo
U
LLI
I—
U
z:
U
10-7
-------
SIZE AND CHARACTERISTICS OF AIR-BORNE SOLIDS (FRANK CHART)
LAWS OF SETTLING
IN RELATION TO
PARTICLE SIZE
[Lines of Demarcation appro*.)
PARTICLES FALL WITH
INCREASING VELOCITY
C*Vek>citqim./stc
C*Vfelocity ft./min,
d«Diom of por-
ticle in cm.
D«Diom.of por-
ticle in Microns
r« Radius of par-
ticle in cm.
g * 98! cm /sec1
acceleration
S« Density of
particle
S= Density of Air
(Very Smaii
eiotwetos.)
Viscosity of
air in poises
IW4X|0"7for
air of 70° F
cm.
(Mean free
poth of qfls
molecules)
PARTICLES MOVE LIKE
GAS MOLECULES
A=Distonceof
motion in time t
R=Gas constant
= 8316X10'
T» Absolute
Temperoture
.001
molecules in
on* mol =606X10"
IT IS ASSUMED THAT THE PARTICLES ARE OF UNIFORM SPHERICAL SHAPE HAVIN6 SPECIFIC GRAVITY ONE AND
THAT THE DUST CONCENTRATION li 0.1 GRAINS PER 1000 Co " Of AIR,THE AVERAGE OF METROPOLITAN DISTRICTS.
10-8
See Reference No. 8
-------
UJ
s
a.
Z)
o
LU
O
z
o:
z>
oo
<
UJ
UJ
N
«/>
LU
_J
U
H
o:
<
a.
LL
o
00
>
V
icroscop
^
•>
Q.
O
O
O
u
E
o
ZJ
j
' z
o
0
2
o
^
c
o
u
—
UJ
J
S
2
.fc
3
UJ
o
o
J
0
o
~^
o
•—
-*
c
«l
^0
1
i
. 3
k.
c
5
UJ
0
*
>
I
O*
2
k.
__ c
o
o
-*
.§
*j
>•
o
^
o
(C
c
o
1
1
, 1
V
o
u
a
••-
O
o
(t
X
— » '
u
•i
•i
0.
5
fe
"c
li*.
12 ! I
I'l
o|B
1 1
J 1
*
* £ <*
— «* _
0 § *
S -2 r
i * s
-
Q
—
o
o
0
;«j
0
o
o
y "S
C o
o •*•
a >
See Reference No. 7
10-9
-------
m
UL
O
t/o
UJ
I-
Qi
UJ
Q_
O
Qi
Q.
X
Q.
M rj
i— I CD
rt
•rH
£ o
W •*-•
!* -a
PQ fl -^
E-" (M
Z
w
u
J ^
OH
w ^
n °°
ft to
i
w S 2
Cfi 3 •*-•
i
i— »
o
r-t
O
[^
I>
T*1
CD
0
O
}<
e
t
cc
o rt
•I
s
r &
F
s £
r-™l
T— I
CM
CO
f— 1
CO
0
•"tf
i-H
CM
1—1
O
)
c
K
c
M
ct
£
C
•i—
ni
£
T— 1
ai
a>
lH C
u cu
co cp
o
0)
s
I
c
0)
o
So'I
o a. c
lrH c/j o
(D C "^
QJD 0) ^
O !M S
f" rt 'S O
"O O. H-J S-i
i>> OH 0) J2
S
-------
STANDARD U.S. AND TYLER SCREEN SCALES
Nominal
Aperture width
microns
1
2.5
5
10
20
37
43
44
53
61
62
74
88
89
104
105
124
125
147
149
175
177
208
210
246
250
295
297
350
351
417
inches*
.00004
.0001
.0002
.0004
.0008
.0014
.0017
.0017
.0021
.0024
.0024
.0029
.0035
.0035
.0041
.0041
.0049
.0049
.0058
.0059
.0069
.0070
.0082
.0083
.0097
.0098
.0116
.0117
.0138
.0138
.0164 (1/64)
U.S.
Standard
12500
5000
2500
1250
625
400
-
325
270
-
230
200
170
-
-
140
-
120
-
100
-
80
-
70
-
60
-
50
45
-
-
Tyler
-
-
-
-
-
-
325
-
270
250
-
200
-
170
150
-
115
-
100
-
80
-
65
-
60
-
48
-
-
42
35
Nominal
Aperture width
microns
420
495
500
589
590
701
710,
833
840
991
1000
1168
1190
1397
1410
1651
1680
1981
2000
2362
2380
2794
2830
3327
3360
3962
4000
4699
4760
6680
inches*
.0165
.0195
.0197
.0232
.0232
.0276
.0280
.0328 (1/32)
.0331
.0390
.0394
.0460 (3/64)
.0469
.0550
.0555
.0650 (1/16)
.0661
.0780 (5/64)
.0787
.093 (3/32)
.0937
.110 (7/64)
.111
.131 (1/8)
.132
.156 (5/32)
.157
.185 (3/16)
.187
.263 (1/4)
U.S.
Standard
40
-
35
-
30
-
25
-
20
-
18
-
16
-
14 "^
-
12
-
10
-
8
-
7
-
6
-
5
-
4
-
Tyler
-
32
-
28
-
24
-
20
-
16
-
14
-
12
-
10
-
9
-
8
-
7
-
6
-
5
-
4
-
3
''Numbers in parentheses indicate approximate fractions of an inch.
10-11
-------
SECT/ON IJ WATER VAPOR
Saturation Vapor Pressure Over Water
(°F, in Hg) - Table 11-1
Saturation Vapor Pressure Over Water
(°C, Millibars) - Table 11-6
Saturation Vapor Pressure Over Water
(°C, mm Hg) - Table 11-8
Low Temperature Psychrometric Chart (Metric Units) 11-9
Normal Temperature Psychrometric Chart (Metric Units) 11-10
High Temperature Psychrometric Chart (Metric Units) 11-11
Low Temperature Psychrometric Chart (English Units) 11-12
Normal Temperature Psychrometric Chart (English Units) 11-13
High Temperature Psychrometric Chart (English Units) 11-14
Saturation Vapor Pressure Over Water
(°F, in Hg) - Graph 11-15
Saturation Vapor Pressure Over Water
(°C, mm Hg) - Graph 11-16
Reduction of Psychrometric Observations
(Fahrenheit Temperatures) 11-17
Reduction of Psychrometric Observations
(Centigrade Temperatures) 11-18
Correction Tables for Psychrometric Chart - Altitude (Fahrenheit) 11-19
Saturated Water Vapor as Fraction of Metered Volume as a Function of
Absolute Pressure (in. Hg) and Temperature (°F) 11-21
Saturated Water Vapor as Fraction of Metered Volume as a Function of
Absolute Pressure (mm. Hg) and Temperature (°C) 11 -22
Psychrometric Nomographs for High and Low Pressures 11-23
Fraction of Total Volume Occupied by Water Vapor vs. Cms. of Water per
Gram of Dry Air 11 -29
Graphical Method for Converting Volume of Condensed Water to Volume of
Water Vapor at Conditions of Temperature in °K and Pressure in mm.Hg. 11 -30
Relative Humidity Tables 11 -31
-------
SATURATION VAPOR PRESSURE OVER WATER
(°F, in Hg) - TABLE
Tern.
per*-
ture
•F.
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
English units
.0 .1 2 .3 .4 .5 .6 .7 A .9
in. Hg. ia. Hg, in. Hg. in. Hg. in. Kg.
0.04477 0.04498 0.04519 0.04540 0.04562
0.04691 0.04713 0.04735 0.04757 0.04780
0.04915 0.04938 0.04961 0.04984 0.05008
0.05149 0.05173 0.05197 0.05221 0.05245
0.05392 0.05417 0.05442 0.05467 0.05492
0.05646 0.05672 0.05698 0.05724 0.05750
0.05910 0.05937 0.05964 0.05991 0.06019
0.06185 0.06213 0.06242 0.06270 0.06298
0.06471 0.06500 0.06530 0.06560 0.06589
0.06769 0.06800 0.06830 0.06861 0.06892
0.07080 0.07112 0.07144 0.07176 0.07208
0.07403 0.07436 0.07469 0.07503 0.07536
0.07740 0.07774 0.07809 0.07843 0.07878
0.08089 0.08125 0.08161 0.08197 0.08234
0.08454 0.08491 0.08528 0.08566 0.08603
0.08832 0.08871 0.08910 0.08949 0.08988
0.09226 0.09266 0.09306 0.09347 0.09387
0.09634 0.09676 0.09718 0.09760 0.09802
0.10060 0.10104 0.10147 0.10191 0.10235
0.10501 0.10546 0.10592 0.10637 0.10683
0.10960 0.11007 0.11054 0.11102 0.11149
0.11437 0.11486 0.11535 0.11584 0.11633
0.11933 0.11983 0.12034 0.12085 0.12136
0.12446 0.12499 0.12552 0.12605 0.12658
0.12980 0.13035 0.13090 0.13145 0.13200
0.13534 0.13591 0.13647 0.13704 0.13762
0.14109 0.14168 0.14226 0.14285 0.14345
0.14705 0.14766 0.14827 0.14889 0.14950
0.15324 0.15387 0.15450 0.15514 0.15578
0.15966 0.16032 0.16097 0.16163 0.16230
0.16631 0.16699 0.16767 0.16835 0.16904
0.17321 0.17392 0.17462 0.17533 0.17605
0.18036 0.18109 0.18182 0.18256 0.18330
0.18778 0.18854 0.18929 0.19005 0.19082
0.19546 0.19624 0.19703 0.19782 0.19861
020342 020423 020504 0.20586 020668
021166 021250 021334 0.21419 0.21504
022020 022107 022194 022282 022370
0.22904 0.22994 0.23084 023175 023266
0.23819 023912 024006 024100 024194
024767 024864 024960 025058 0.25155
025748 025848 025948 0.26049 0.26150
026763 026866 0.26970 027074 0.27179
027813 027920 028027 0.28135 0.28243
0.28899 0.29010 029121 0.29232 0.29344
0.30023 0.30137 0.30252 0.30367 0.30483
0.31185 0.31303 0.31422 0.31541 0.31661
0.32387 0.32509 0.32632 0.32755 0.32879
0.33629 0.33755 0.33882 0.34010 0.34137
0.34913 0.35044 0.35175 0.35306 0.35439
in. He. in. Hf. In. Kg. in. Hg. ia. Hg.
0.04583 0.04604 0.04626 0.04647 0.04669
0.04802 0.04824 0.04847 0.04869 0.04892
0.05031 0.05054 0.05078 0.05102 0.05125
0.05269 0.05293 0.05318 0.05343 0.05367
0.05517 0.05543 0.05568 0.05594 0.05620
0.05776 0.05803 0.05829 0.05856 0.05883
0.06046 0.06074 0.06101 0.06129 0.06157
0.06327 0.06355 0.06384 0.06413 0.06442
0.06619 0.06649 0.06679 0.06709 0.06739
0.06923 0.06954 0.06985 0.07017 0.07048
0.07240 0.07272 0.07305 0.07337 0.07370
0.07570 0.07604 0.07638 0.07672 0.07706
0.07913 0.07948 0.07983 0.08018 0.08053
0.08270 0.08307 0.08343 0.08380 0.08417
0.08641 0.08679 0.08717 0.08755 0.08793
0.09027 0.09067 0.09106 0.09146 0.09186
0.09428 0.09469 0.09510 0.09551 0.09592
0.09845 0.09888 0.09931 0.09974 0.10017
0.10279 0.10323 0.10367 0.10411 0.10456
0.10729 0.10775 0.10821 0.10867 0.10913
0.11197 0.11245 0.11292 0.11340 0.11389
0.11683 0.11733 0.11783 0.11833 0.11883
0.12187 0.12238 0.12290 0.12342 0.12394
0.12711 0.12764 0.12818 0.12872 0.12926
0.13255 0.13310 0.13366 0.13422 0.13478
0.13819 0.13877 0.13934 0.13992 0.14051
0.14404 0.14464 0.14524 0.14584 0.14644
0.15012 0.15074 0.15136 0.15198 0.15261
0.15642 0.15706 0.15771 0.15836 0.15901
0.16296 0.16362 0.16429 0.16496 0.16563
0.16973 0.17042 0.17111 0.17181 0.17251
0.17676 0.17747 0.17819 0.17891 0.17963
0.18404 0.18478 0.18553 0.18628 0.18703
0.19158 0.19235 0.19313 0.19390 0.19468
0.19940 020020 020100 020181 020261
020750 020833 020916 020999 0.21082
021589 021675 021761 021847 0.21933
022458 022547 022636 022725 022814
023357 023449 023541 023633 023726
024289 024384 0.24479 024575 024671
025253 0.25352 025450 025549 025648
026251 026353 0.26455 0.26557 026660
027284 0.27389 027494 027600 027706
028351 0.28460 028569 028679 028789
029456 029569 0.29682 0.29795 0.29909
0.30599 0.30715 0.30832 0.30949 0.31067
0.31781 0.31901 0.32022 0.32143 0.32265
0.33003 0.33127 0.33252 0.33377 0.33503
0.34266 0.34394 0.34523 0.34653 0.34783
0.35571 0.35704 0.35837 0.35971 0.36105
50 0.36240 0.36375 0.36511 0.36646 0.36783 0.36920 0.37057 0.37195 0.37333 0.37472
See Reference No. 1
11-1
-------
SATURATION VAPOR PRESSURE OVER WATER
(T, in Hg) - TABLE
(continued)
Tem-
pera-
ture
•F.
SO
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
iuigiun un
.0 .1 2 J .4
in. Hg. in. Hg. In. Hg. In. Hg. in. Hg.
0.36240 0.36375 0.36511 0.36646 0.36783
.37611 .37751 .37891 .38031 .38172
.39028 .39172 .39317 .39462 .39608
.40492 .40641 .40709 .40940 .41090
.42003 .42157 .42311 .42466 .42621
0.43564 0.43723 0.43882 0.44042 0.44203
.45176 .45340 .45504 .45670 .45835
.46840 .47009 .47179 .47350 .47521
.48558 .48733 .48908 .49084 .49260
.50330 -50510 .50691 .50873 .51055
0.52160 0.52346 0.52533 0.52720 0.52908
.54047 .54239 .54432 .54625 .54818
.55994 .56192 .56391 .56590 .56790
.58002 .58206 .58411 .58616 .58823
.60073 .60284 .60495 .60707 .60919
0.62209 0.62426 0.62644 0.62862 0.63082
.64411 .64635 .64859 .65085 .65311
.66681 .66912 .67143 .67376 .67608
.69021 .69259 .69497 .69737 .69977
71432 .71677 .71923 .72169 .72416
0.73916 0.74169 0.74422 0.74676 0.74931
.76476 .76736 .76997 .77259 .77521
79113 .79381 .79650 .79919 .80190
.81829 .82105 .82382 .82659 .82938
.84626 .84910 .85195 £5481 .85768
0.87506 0.87799 0.88092 0.88387 0.88682
.90472 50773 .91075 51378 .91682
.93524 53834 .94145 54457 .94770
56666 .96985 .97305 .97626 .97948
.99900 1.00228 1.00558 1.00888 1.01220
1.0323 1.0357 1.0391 1.0425 1.0459
1.0665 1.0700 1.0735 1.0769 1.0804
1.1017 1.1053 1.1089 1.1125 1.1161
1.1380 1.1417 1.1453 1.1490 1.1527
1.1752 1.1790 1.1828 1.1866 1.1904
1.2136 1.2175 1.2214 15253 12292
1.2530 1.2570 1.2610 12650 12691
12935 12976 1.3017 1.3059 1.3100
1.3351 1.3393 1.3436 1.3478 1.3521
1.3779 1.3822 1J866 1.3910 1.3954
1.4219 1.4264 1.4308 1.4353 1.4398
1.4671 1.4717 1.4763 1.4809 1.4856
1.5136 1.5183 1.5230 1.5278 1.5325
1.1613 1.5661 1.5710 1.5759 1.5807
1.6103 1.6153 1.6203 1.6253 1.6303
1.6607 1.6658 1.6709 1.6761 1.6812
1.7124 1.7176 1.7229 1.7282 1.7335
1.7655 1.7709 1.7763 1.7817 1.7871
1.8200 1.8255 1.8311 1.8366 1.8422
1.8759 1.8816 1.8873 1.8930 1.8987
its
5 .6 .7 A .9
in. HIT. In. Hg. in. HI. In. He. fa. He.
0.36920 0.37057 0.37195 0.37333 0.37472
.38314 .38456 .38598 .38741 .38884
.39754 .39901 .40048 .40195 .40343
.41241 .41393 .41544 .41697 .41850
.42777 .42933 .43090 .43248 .43406
0.44364 0.44525 0.44687 0.44849 0.45012
.46001 .46168 .46335 .46503 .46671
.47692 .47864 .48037 .48210 .48384
.49437 .49614 .49792 .49971 .50150
.51238 .51421 .51605 .51789 .51974
0.53096 0.53285 0.53475 0.53665 0.53856
.55013 .55208 .55403 .55600 .55797
.56990 .57191 .57393 .57595 .57798
.59029 .59237 .59445 .59654 .59863
.61133 .61347 .61561 .61777 J61992
0.63302 0.63522 0.63743 0.63965 0.64188
.65537 .65765 .65993 .66221 .66451
.67842 .68076 .68312 .68547 .68784
.70217 .70459 .70701 .70944 .71188
.72664 72913 .73163 73413 73664
0.75186 0.75443 0.75700 0.75958 0.76217
.77785 78049 .78314 .78579 78846
.80461 .80733 .81006 £1279 .81554
.83217 £3497 .83778 £4060 £4343
.86055 .86344 .86633 £6923 £7214
0.88978 0.89275 0.89573 0.89872 050172
.91987 .92292 .92599 .92906 .93215
.95084 55398 .95714 .96030 .96348
.98271 58595 .98920 .99246 .99572
1.01552 1.01885 1.02220 1.02555 1.02891
1.0493 1.0527 1.0561 1.0596 1.0630
1.0840 1.0875 1.0910 1.0946 1.0981
1.1197 1.1234 1.1270 1.1307 1.1343
1.1564 1.1602 1.1639 1.1677 1.1714
1.1943 1.1981 12020 12058 12097
12332 12371 12411 12450 12490
12731 1.2772 12812 12853 12894
1.3142 1.3183 1.3225 1.3267 1.3309
1.3564 1.3606 1.3649 1.3692 U736
1.3998 1.4042 1.4086 1.4130 1.4174
1.4443 1.4489 1.4534 1.4580 1.4625
1.4902 1.4949 1.4995 1.5042 1.5089
1.5373 1.5421 1.5469 1.5517 1.5565
1.5856 1.5905 1.5955 1.6004 1.6053
1.6353 1.6404 1.64.54 1.6505 1.6556
1.6864 1.6916 1.6967 1.7019 1.7072
1.7388 17441 17494 17548 1.7601
1.7926 1.7980 1£035 1.8090 1.8145
1.8478 1.8533 1.8590 1.8646 1.8702
1.9045 1.9102 1.9160 1.9218 1.9276
100
1.9334 1.9392 1.9450 15509 1.9568 1.9626 15685 1.9745 15804 1.9863
11-2
-------
SATURATION VAPOR PRESSURE OVER WATER
(T, in Hg) - TABLE
(continued)
T«
p««
tort
•F.
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
.0
.1
English unfa
.3 .4 .5
£
in. He. In. Hf. in. Hf. in. Bf. in. Hg.
1.9334 1.9392 1.9450 1.9509 1.9568
1.9923 1.9983 2.0043 2,0103 2.0164
2.0529 2.0590 2.0652 2.0713 2.0775
2.1149 2.1212 2.1275 2.1338 2,1402
2,1786 2.1851 2.1916 2.1981 27046
22440 22506 22573 22639 22706
2.3110 2.3178 2.3246 2.3315 2.3383
2.3798 2.3868 2.3938 2.4008 2.4078
2.4503 2.4574 2.4646 2.4718 2.4790
2.5226 2.5299 2.5373 2.5447 2.5521
2.5968 2.6043 2.6118 2.6194 2.6270
2.6728 2.6805 2.6882 2.6960 2.7037
2.7507 2.7586 2.7665 2.7745 2.7824
2.8306 2.8387 23468 2.8550 2.8631
2.9125 29208 2.9291 2.9374 2.9458
2.9963 3.0048 3.0133 2.0219 3.0305
3.0823 3.0910 3.0997 3.1085 3.1172
3.1703 3.1792 3.1882 3.1972 32062
32606 32697 3.2789 32881 32973
3.3530 3.3624 3J718 3.3812 3.3906
3.4477 3.4573 3.4669 3.4765 3.4862
3.5446 3.5544 3.5643 3.5741 3.5840
3.6439 3.6539 3.6640 3.6741 3.6842
3.7455 3.7558 3.7661 3.7765 3.7869
3.8496 33601 3.8707 33813 33919
3.9561 3.9669 3.9777 35885 3.9994
4.0651 4.0762 4.0872 4.098* 4.1095
4.1768 4.1881 4.1994 42108 42222
42910 4.3026 4.3141 4.3257 4.3374
4.4078 4.4196 4.4315 4.4434 4.4553
4.5274 4.5395 4.5517 4.5638 4.5760
4.6498 4.6622 4.6746 4.6871 4.6995
4.7750 4.7877 43004 4.8131 43258
4.9030 4.9160 4.9290 4X20 4.9551
5.0340 5.0473 5.0605 5.0738 5.0872
5.1679 5.1815 5.1951 52087 52223
5.3049 5.3188 5.3327 5.3466 5.3606
5.4450 S.4592 5.4734 5.4876 5.5018
5.5881 5.6026 5.6171 5.6317 5.6463
5.7345 5.7493 5.7642 5.7791 57940
53842 53993 5.9145 5.9297 5.9450
6.0371 6.0526 6.0681 6.0836 6.0992
6.1934 62092 62251 62410 62569
6.3532 6.3694 6.3856 6.4018 6.4180
6.5164 6.5329 6.5495 6.5661 6.5827
6.6832 6.7001 6.7170 6.7339 6.7509
63536 63708 63881 6.9054 6.9228
7.0277 7.0453 7.0630 7.0807 7.0984
72056 72236 72416 72597 72778
7.3872 7.4056 7.4240 7.4424 7.4609
in. Hf. in. Be. in. H|. ta. H». in-Hf.
1.9626 1.9685 1.9745 1.9804 1.9863
2.0224 2.0285 2.0346 2.0407 2.0486
2.0837 2.0899 2.0961 2.1024 2.1086
2.1465 2.1529 2.1593 2.1657 2.1722
22111 22176 22242 22308 22374
2.2773 22840 22907 22975 2.3042
2.3452 2.3521 2.3590 2.3659 2.3728
2.4148 2.4219 2.4290 2.4361 2.4432
2.4862 2.4935 2.5007 2.5080 2.5153
2.5595 2.5669 24744 2.5818 2.5893
2.6346 2.6422 2.6498 2.6574 2.6651
2.7115 2.7193 2.7271 2.7350 27428
2.7904 2.7984 2.8064 2.8145 23225
2.8713 2.8795 2.8877 2.8960 2.9042
2.9541 2.9625 25709 2.9794 2.9878
3.0390 3.0477 3.0563 3.0649 3.0736
3.1260 3.1348 3.1437 3.1525 3.1614
32152 32242 32333 32424 32515
3.3065 3.3158 3.3250 3.3343 3.3437
3.4001 3.4096 3.4191 3.4286 3.4381
3.4958 3.5056 3.5153 3.5250 3.5348
3.5940 3.6039 3.6139 3.6239 3.6339
3.6944 3.7046 3.7148 3.7250 3.7352
3.7972 33077 33181 3.8286 3.8391
3.9025 3.9132 3.9239 3.9346 3.9453
4.0103 4.0212 4.0321 4.0431 4.0541
4.1206 4.1318 4.1430 4.1543 4.1655
42336 42450 42565 42680 42795
43490 4.3607 4.3725 4.3842 4.3960
4.4672 4.4792 4.4912 4.5033 44153
4.5882 4.6005
4.7120 47246
43386 43514
4.9681 4.9813
5.1006 5.1140
52360 52497
5J746 5.3886
5.5161 5.5305
5.6609 5.6755
53090 53239
5.9602 55755
6.1148 6.1305
62729 62889
6.4344 6.4507
64994 6.6160
6.7679 67850
6.9402 6.9576
7.1162 7.1340
72959 7J141
7.4794 7.4980
4.6128
4.7371
43643
45944
5.1274
52635
5.4027
5.5448
5.6902
53390
5.9909
6.1461
6.3049
6.4671
6.6328
63021
6.9751
7.1518
7.3323
74166
4.6251
4.7497
43772
5.0076
5.1409
52773
5.4167
54592
5.7050
53540
6.0062
6.1619
6.3210
6.4835
6.6496
63192
6.9926
7.1697
7.3506
74353
4.6374
47624
43901
5.0208
5.1544
52911
5.4309
54736
57197
53691
6.0217
6.1776
6J371
6.4999
6.6664
6.8364
7.0101
7.1876
7.3689
74540
150 74727 7491S 7.6103 7.6291 7.6480 7.6670 7.6859 7.7049 7.7240 77431
11-3
-------
SATURATION VAPOR PRESSURE OVER WATER
(T, in Hg) - TABLE
(continued)
Tern-
perm-
tun
•F.
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
English units
.0
in.Hf.
7.5727
7.7622
7.9556
8.1532
8.3548
8.5607
87708
8.9853
9.2042
9.4276
94556
9.8882
10-126
10.368
10.615
10.867
11.124
1U86
1L653
11.925
12.203
12.487
12.775
13.070
13.370
13.676
13.987
14.305
14.629
14.959
15.295
15.637
15.986
16.341
16.703
17.071
17.446
17.829
18218
18.614
19.017
19.428
19.846
20.271
20.704
21.145
21.594
22.050
22.515
22.987
.1
io.Hg.
7.5915
7.7814
7.9752
8.1732
8.3752
8.5815
8.7921
9.0070
9.2263
9.4502
9.6786
99117
10.150
10,392
10.640
10.892
11.150
11.412
11.680
11.953
12.231
12.515
12.804
13.100
13.400
13.707
14.019
14.337
14.662
14.992
15429
15.672
16.021
16.377
16.739
17.108
17.484
17.868
18.257
18.654
19.058
19.469
19.888
20.314
20.748
21.190
21.639
22.096
22.562
23.035
2
in. He.
7.6103
7 AIMS
7.9948
8.1932
8.3956
8.6024
8.8133
9.0287
92485
9.4728
9.7017
9.9353
10.174
10.417
10.665
10.918
11.176
11.439
11.707
11.980
12259
12.544
12.834
13.130
13.431
13.738
14.050
14.369
14.695
15.026
15.363
15.706
16.056
16.413
16.776
17.145
17.522
17.906
18297
18.694
19.099
19.511
19.930
20.357
20.792
21234
21.684
22.142
22.609
23.083
.3
In. He.
7.6291
7.8198
8.0145
82132
8.4161
8.6233
8.8347
9.0505
92707
9.4955
9.7249
9.9589
10.198
10.442
10.690
10.944
11.202
11.466
11.734
12.008
12288
12.573
12.863
13.159
13.461
13.769
14.082
14.402
14.727
15.059
1S.397
15.741
16.092
16.449
16.813
17.183
17.560
17.945
18.336
18.734
19.140
19.553
19.973
20.400
20.835
21279
21.730
22.189
22.656
23.130
.4
in.Hg.
7.6480
7.8391
8.0342
82333
8.4367
8.6442
8.8561
9.0723
92930
9.5182
9.7481
9.9826
10222
10.466
10.715
10.969
11.228
11.492
11.761
12.035
12.316
12.601
12.892
13.189
13.492
13.800
14.113
14.434
14.760
15.093
15.431
15.776
16,127
16.485
16.849
17.220
17.598
17.984
1&376
18.774
19.181
19.594
20.015
20.443
20.879
21.324
21.775
22.235
22.703
23.178
.5
in. Hi .
7.6670
7.8584
8.0539
82535
8.4572
8.66S2
8.8775
9.0942
9.3153
9.5410
9.7713
10X106
10246
10.491
10.740
10.995
11254
11.519
11.788
12.063
12.344
12.630
12.922
13219
13.522
13.831
14.145
14.466
14.793
15.126
15.465
15.811
16.163
16.521
16.886
17258
17.637
18.023
18.415
18.814
19222
19.636
20.058
20.486
20.924
21.369
21.821
22282
22.750
23.226
.6
in. Hf.
7.6859
7.8777
8.0737
82736
8.4778
46862
8.8990
9.1161
9.3377
9.5638
9.7946
10.030-
10271
10.516
10.766
11.021
11281
11.546
11.815
12.091
12.373
12.659
12.951
13.249
13.553
13.862
14.177
14.499
14.826
15.160
15.499
15.846
16.198
16.557
16.923
17295
17.675
18.062
18.455
18.855
19263
19.678
20.100
20.530
20.968
21.414
21.867
22.328
22.797
23275
.7
in. Hf .
7.7049
7.8971
8.0935
82939
8.4985
8.7073
8.9205
9.1381
9.3601
9.5867
9.8179
10.054
10295
10.540
10.791
11.046
11.307
11.572
11.843
12.119
12.401
12.688
12.981
13279
13.584
13.893
14209
14.531
14.859
15.194
15.534
15.881
16.234
16.594
16.960
17.333
17.713
18.101
18.494
18.895
19.304
19.720
20.143
20.573
21.012
21.459
21.912
22.375
22.844
23.323
£
in-Hg.
7.7240
7.9166
8.1134
8.3141
8.5192
8.7284
8.9420
9.1601
9.3826
9.6096
9.8413
10.078
10.319
10.565
10.816
11.072
11.333
11.599
11.870
12.147
12.430
12.717
13.011
13.310
13.614
13.924
14241
14.564
14.893
15227
15.568
15.916
16269
16.630
16.997
17.370
17.752
18.140
18.534
18.936
19.345
19.762
20.185
20.617
21.056
21.504
21.958
22.421
22.892
23.371
.9
in. Hg.
7.7431
7.9361
8.1333
84344
8.5399
8.7496
&9637
9.1821
9.4051
9.6326
9.8647
10.102
10.344
10.590
10.842
11.098
11460
11426
11.898
12.175
12.458
12.746
13.040
13440
13.645
13.956
14273
14.596
14.926
15261
15.602
15.951
16405
16.667
17.034
17.408
17.790
18.179
18.574
18.976
19.387
19.804
20228
20.660
21.101
21.549
22.004
22.468
22.939
23.420
200 - 23.468 23.516 23.565 23.614 23.663 23.711 23.760 23.809 23.858 23.908
11-4
-------
SATURATION VAPOR PRESSURE OVER WATER
('F, in Hg) - TABLE
(continued)
T«n- English units
w™" .0 .1 2 .3 .4 .5 .6 .7 .8 .9
•F. in.HB. in. Hg. in. Hg. in. Hg. in. Hg. In. Hg. in. Hg. in. Hg. in. Hg. in. Hg.
200 23.468 23.516 23.565 23.614 23.663 23.711 23.760 23.809 23.858 23.908
201 23.957 24.006 24.056 24,106 24.155 24205 24.255 24.305 24.355 24.405
202 24.455 24.505 24.555 24.606 24.656 24.707 24.758 24.808 24.859 24.910
203 24.961 25.012 25.063 25.115 25.166 25.217 25.269 25.321 25.372 25.424
204 25.476 25.528 25.580 25.632 25.685 25.737 25.789 25.842 25.895 25.947
205 26.000 26.053 26.106 26.159 26.212 26.265 26.318 26.371 26.425 26.478
206 26.532 26.586 26.640 26.694 26.748 26.802 26.856 26.910 26.965 27.019
207 27.074 27.129 27.183 27.238 27.293 27.348 27.404 27.459 27.514 27.569
208 27.625 27.681 27.736 27.792 27.848 27.904 27.960 28.016 28.072 28.129
209 28.185 28241 28.298 28.355 28.411 28.468 28.525 28.582 28.639 28.697
210 28.754 28.811 28.869 28.927 28.985 29.042 29.100 29.158 29.216 29275
211 29.333 29.391 29.450 29.508 29.567 29.626 29.685 29.744 29.803 29.862
212 29.921
11-5
-------
SATURATION VAPOR PRESSURE OVER WATER
(°C, MILLIBARS) - TABLE
Ton- Metric units
?5£ .0 .1 2 .3 .4 .5 .6 .7 A .9
•C. mb. tub. tnb. mb. mb. mb. mb. mb. mb. mb.
0 6.1078 6.1523 6.1971 6.2422 6.2876 6.3333 6.3793 6.4256 6.4721 6.5190
1 6.5662 6.6137 6.6614 6.7095 6.7579 6.8066 6.8556 6.9049 6.9545 7.0044
2 7.0547 7.1053 7.1562 7.2074 7.2590 7.3109 7J631 7.4157 7.4685 7.5218
3 7.5753 7.6291 7.6833 7.7379 7.7928 7.8480 7.9036 7.9595 8.0158 8.0724
4 8.1294 8.1868 82445 8.3026 8.3610 8.4198 8.4789 8.5384 8.5983 8.6586
5 8.7192 8.7802 8.8416 8.9033 8.9655 9.0280 9.0909 9.1542 9.2179 9.2820
6 9.3465 9.4114 9.4766 9.5423 9.6083 9.6748 9.7416 9.8089 9.8765 9.9446
7 10.013 10.082 10.151 10.221 10291 10.362 10.433 10.505 10.577 10.649
8 10.722 10.795 10.869 10.943 11.017 11.092 11.168 11243 11.320 11.397
9 11.474 11.552 11.630 11.708 11.787 11.867 11.947 12.027 12.108 12.190
10 12272 12.355 12.438 12.521 12.606 12.690 12.775 12.860 12.946 13.032
11 13.119 13207 13.295 13.383 13.472 13.562 13.652 13.742 13.833 13.925
12 14.017 14.110 14203 14297 14.391 14.486 14.581 14.678 14.774 14.871
13 14.969 15.067 15.166 15266 15.365 15.466 15.567 15.669 15.771 15.874
14 15.977 16.081 16.186 16291 16.397 16.503 16.610 16718 16.826 16.935
15 17.044 17.154 17264 17.376 17.487 17.600 17.713 17.827 17.942 18.057
16 18.173 18290 18.407 18.524 18.643 18.762 18.882 19.002 19.123 19.245
17 19.367 19.490 19.614 19.739 19.864 19.990 20.117 20244 20.372 20.501
18 20.630 20.760 20.891 21.023 21.155 21.288 21.422 21.556 21.691 21.827
19 21.964 22.101 22240 22.379 22.518 22.659 22.800 22.942 23.085 23229
20 23.373 23.518 23.664 23.811 23.959 24.107 24.256 24.406 24.557 24.709
21 24.861 25.014 25.168 25.323 25.479 25.635 25.792 25.950 26.109 26269
22 26.430 26.592 26.754 26.918 27.082 27247 27.413 27.580 27.748 27.916
23 28.086 28256 28.428 28.600 28.773 28.947 29.122 29.298 29.475 29.652
24 29.831 30.011 30.191 30.373 30.555 30.739 .30.923 31.109 31295 31.483
25 31.671 31.860 32.050 32242 32.434 32.627 32.821 33.016 33212 33.410
26 33.608 33.807 34.008 34.209 34.411 34.615 34.820 35.025 35232 35.440
27 35.649 35.859 36.070 36.282 36.495 36.709 36.924 37.140 37.358 37.576
28 37.796 38.017 38239 38.462 38.686 38.911 39.137 39.365 39.594 39.824
29 40.055 40287 40.521 40.755 40.991 41228 41.466 41.705 41545 42.187
30 42.430 42.674 42.919 43.166 43.414 43.663 43.913 44.165 44.418 44.672
31 44.927 45.184 45.442 45.701 45.961 46223 46.486 46.750 47.016 47283
32 47.551 47.820 48.091 48.364 48.637 48.912 49.188 49.466 49.745 50.025
33 50.307 50.590 50.874 51.160 51.447 51.736 52j026 52.317 52.610 52.904
34 53200 53.497 53.796 54.096 54.397 54.700 55.004 55.310 55.617 55.926
35 56236 56.548 56.861 57.176 57.492 57.810 58.129 58.450 58.773 59.097
36 59.422 59.749 60.077 60.407 60.739 61.072 < 61.407 61.743 62.081 62.421
37 62.762 63.105 63.450 63.796 64.144 64.493 64.844 65.196 65.550 65.906
38 66264 66.623 66.985 67.347 67.712 68.078 $8.446 68.815 69.186 69.559
39 69.934 70.310 70.688 71.068 71.450 71.833 72218 72.605 72.904 73.385
40 73.777 74.171 74.568 74.966 75.365 75.767 . 76.170 76.575 76.982 77.391
41 77.802 78215 78.630 79.046 79.465 79.885 80.307 80.731 81.157 81.585
42 82.015 82.447 82.881 83.316 83.754 84.194 84.636 85.079 85.525 85.973
43 86.423 86.875 87.329 87.785 88.243 88.703 89.165 89.629 90.095 90.564
44 91.034 91.507 91.981 92.458 92.937 93.418 93.901 94.386 94.874 95.363
45 95.855 96.349 96.845 97.343 97.844 98.347 98.852 99.359 99.869 100.38
46 100.89 101.41 101.93 102.45 102.97 103.50 104.03 104.56 105.09 10562
47 106.16 106.70 10724 107.78 108.33 108.88 109.43 109.98 110.54 11110
48 111.66 11222 112.79 113.36 113.93 114.50 115.07 11565 11623 116.81
49 117.40 117.99 118.58 119.17 119.77 120.37 120.97 12157 122.18 122.79
50 123.40 124.01 124.63 12525 125.87 126.49 127.12 127.75 128.38 129.01
11-6 See Reference No. 1
-------
SATURATION VAPOR PRESSURE OVER WATER
(°C, MILLIBARS) - TABLE
(continued)
Tern-
perm-
tare
•C.
SO
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
.0
.1
Metric units
.3 .4 S
.7
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
mb. mb. mb. mb. mb.
123.40 124.01 124.63 12525 125.87
129.65 13029 130.93 131.58 13223
136.17 136.84 137.51 138.18 138.86
142.98 143.68 14438 145.08 145.78
150.07 150.80 151.53 152.26 152.99
157.46 15822 158.97 159.74 160.50
165.16 165.95 166.74 167.53 168.33
173.18 174.00 174.82 175.65 176.48
181.53 182.38 183.24 184.10 184.96
190.22 191.11 192.00 192.89 193.79
19926 200.18 201.11 202.05 202.98
208.67 209.63 210.59 211.56 212.53
218.45 219.45 220.45 221.46 222.47
228.61 229.65 230.70 231.74 232.79
239.18 24026 241.34 242.43 243.52
250.16 25128 252.41 253.54 254.67
261.56 262.73 263.90 265.07 26625
273.40 274.61 275.82 277.04 27826
285.70 286.96 28821 289.48 290.75
298.45 299.75 301.06 302.37 303.69
311.69 313.04 314.39 315.75 317.12
325.42 326.82 32822 329.63 331.05
339.65 341.10 342.56 344.03 345.50
354.41 355.91 357.43 358.94 360.46
369.71 3712/ 372.84 374.41 375.99
385.56 387.18 388.80 390.43 392.06
401.98 403.65 405.34 407.02 408.71
418.98 420.71 422.45 42420 425.95
436.59 438.38 440.18 441.99 443.80
454.81 456.67 458.53 460.40 46228
473.67 475.59 477.52 479.45 481.39
493.17 495.16 497.15 499.16 501.17
513.35 515.41 517.47 519.54 521.62
534.22 536.35 538.48 540.62 542.77
555.80 557.99 56020 562.41 564.62
578.09 580.36 582.64 584.93 58722
601.13 603.48 605.83 608.19 610.56
624.94 627.36 629.79 63223 634.68
649.53 652.03 654.54 657.06 659.59
674.92 677.50 680.09 682.69 685.30
701.13 703.80 706.47 709.16 711.85
728.19 730.94 733.70 736.47 73925
756.11 758.95 761.80 764.66 767.52
784.92 787.85 790.79 793.74 796.69
814.63 817:65 820.69 823.73 826.78
84528 848.40 851.52 854.65 857.80
876.88 880.09 883.31 886.55 889.79
909.45 912.76 916.08 919.42 922.76
943.02 946.43 949.85 95328 956.73
977.61 981.13 984.65 988.19 991.74
101325 1016.87 1020.50 1024.14 1027.80
1049.94 1053.67 1057.41 1061.16 1064.93
108774
mb. mb. mb, mb. mb.
126.49 127.12 127.75 128.38 129.01
132.88 133.53 134.19 134.84 135.51
139.54 140.22 140.91 141.60 14229
146.49 14720 147.91 148.63 149.35
153.73 154.47 155.21 155.96 156.71
16127 162.04 162.82 163.59 164.38
169.13 169.93 170.74 171.55 172.36
177.31 178.15 178.99 179.83 180.68
185.83 186.70 187.58 188.45 189.34
194.69 195.60 196.51 197.42 198.34
203.92 204.86 205.81 206.76 207.71
213.51 214.49 215.48 216.46 217.45
223.48 224.50 225.52 226.54 227.58
233.85 234.91 235.97 237.03 238.11
244.62 245.72 246.82 247.93 249.04
255.81 256.95 258.10 25925 260.40
267.43 268.61 269.80 271.00 27220
279.49 280.72 281.96 28320 284.45
292.02 293.30 294.58 295.86 297.15
305.01 306.34 307.67 309.00 310.34
318.49 319.87 32125 322.63 324.02
332.47 333.89 335.33 336.76 338.20
346.97 348.45 349.93 351.42 352.91
361.99 363.52 365.06 366.61 368.15
377.57 379.16 380.75 382.35 383.95
393.70 395.34 396.99 398.65 400.31
410.41 412.11 413.82 415.53 41725
427.71 429.47 43124 433.02 434.80
445.62 447.45 449.28 451.11 452.96
464.16 466.05 467.94 469.85 471.76
483.34 48529 48725 48922 491.19
503.18 50520 50723 50926 511.30
523.70 525.79 527.89 529.99 53Z10
544.92 547.08 54925 551.43 553.61
566.85 569.06 571.32 573.57 575.83
589.52 591.83 594.14 596.46 598.79
612.94 615.32 617.72 620.12 622.52
637.13 639.59 642.07 644.55 647.03
662.12 664.66 66722 669.78 672.34
687.92 690.55 693.18 695.82 698.47
714.55 71726 719.98 722.71 725.45
742.04 74484 747.64 750.46 75328
770.40 77329 776.18 779.09 782.00
799.66 802.63 805.62 808.61 811.62
829.84 832.91 835.99 839.08 842.17
860.96 864.12 867.30 870.48 873.68
893.04 89630 899.57 902.86 906.15
926.11 929.47 932.84 93623 939.62
960.18 963.65 967.12 970.61 974.10
995.30 998.87 1002.45 1006.04 1009.64
1031.46 1035.13 1038.82 1042.51 104622
1066.70 1072.49 107628 1060.09 1083.91
11-7
-------
SATURATION VAPOR PRESSURE OVER WATER (°C, mm. Hg) - TABLE
VALUES FOR FRACTIONAL DEGREE BETWEEN 50 AND
89 WERE OBTAINED BY INTERPOLATION
Temp.
•c
-18
-14
-13
-12
-11
-10
- 9
- 8
- 7
- 6
- 6
- 4
- 3
- 2
- 1
- 0
0
1
2
3
4
6
6
7
8
9
10
11
12
13
14
16
16
17
18
19
20
21
22
23
24
96
26
27
28
29
30
31
32
33
34
36
3G
37
38
30
40
41
0 0
1 436
1.560
1.691
1.834
1.987
2.149
2 326
2 514
2.715
2.931
3.163
3.410
3 673
3 956
4.258
4.579
4.579
4 926
5.294
5.685
6.101
6 543
7.013
7.513
8 045
8.609
9.209
9.844
10.518
11.231
11.987
12.788
13 634
14.530
15 477
16 477
17.5J5
18.650
19.827
21.068
22.377
23.756
25 209
26.739
28.349
30.043
31.824
33.695
35.663
37.729
39 898
42 175
44 563
47.067
49.692
52.442
55.324
58 34
0.2
1.414
1.534
1.665
1.804
1.955
2.116
2 289
2 475
2.674
2 887
3 115
3.359
3.620
3 898
4.196
4 513
4.647
4.998
5 370
5 766
6.187
6 635
7 111
7 617
8.155
8.727
9,333
9.976
10.658
11.379
12.144
12.953
13.809
14 715
15.673
16.685
17.753
18.880
20 070
21.324
22.648
24.039
25 509
27 055
28.680
30.392
32.191
34 082
36.068
38 155
40.344
42 644
45 054
47.582
50 231
53 009
55.91
58.96
0 4
390
.511
.637
.776
.924
2.084
2.254
2.437
2.633
2.843
3.069
3.309
3.567
3 841
4.135
4.448
4 715
5 070
5.447
5 848
6.274
6 728
7.209
7.722
8 267
8.845
9.458
10.109
10.799
11.528
12 302
13 121
13 987
14 903
15.871
16 894
17.974
19.113
20.316
21.583
22.922
24.326
25 812
27 374
29 015
30.745
32.561
34 471
36 477
38.584
40.796
43.117
45.549
48.102
50.774
53.580
56.51
59.58
0.6
3G8
.485
.611
.748
.893
2.0.50
2.219
2.399
2.593
2.800
3.022
3 259
3.514
3 785
4 075
4.385
4.785
5.144
5.525
5.931
6.363
6.822
7.309
7.828
8.380
8.965
9.585
10.244
10 941
11.680
12.462
13.290
14.166
15 092
16 071
17 10-
18.197
19.349
20.565
21.845
23.198
24.617
26 117
27 696
29.3.54
31 . 102
32.934
34 864
36.891
39.018
41.251
43.595
46 050
48.627
51.323
54 156
57.11
60.22
0 8
1.345
1.400
1.585
1.720
1.863
2 018
2.184
2.362
2.553
2.757
2 976
3.211
3.461
3 730
4.016
4 320
4.855
5 219
5.605
6.015
6.453
6 917
7.411
7.936
8.494
9.086
9.714
10.380
11.085
11.833
12.624
13.461
14.347
15 284
16.272
17 319
18.4*2
19.587
20.815
22.110
23.476
24 912
26 426
28 021
29.697
31.461
33.312
35.261
37 308
39 457
41.710
44 078
46.556
49 157
51.879
54.737
57 72
60 86
Temp.
42
43
44
46
46
47
48
49
60
51
52
53
54
66
56
57
58
.19
60
61
62
63
64
66
66
67
68
69
70
71
72
73
74
76
76
77
78
79
80
81
82
83
84
86
86 ,
87
88
89
90
91
92
93
94
96
9»>
97
98
99
100
101
0 0
61.50
64 80
68.26
71 88
75.65
79.60
83 71
88.02
92.51
97.20
102.09
107.20
112.51
118.04
123 80
129 82
W6 08
142 60
149 38
K>6 4:i
163.77
171.38
179.31
187.54
100 09
204.96
214 17
223.73
233.7
24:> 9
254.6
26,-). 7
277.2
289.1
301.4
314.1
327.3
341 .0
3.V...1
369 7
384,9
400.6
416.8
433.6
450.9
468.7
487.1
506.1
525 76
546.05
506.99
588.60
610.90
633 90
6.57 62
6S2.07
707 . 27
733 24
700,00
787 ,57
0 2
62.14
65.48
68.97
72.62
76 43
80 41
84 56
38.90
93.5
98.2
103.1
108.2
113.6
119.1
125.0
131.0
137 3
143 9
130.7
1.37.8
165 2
.172 9
180 9
189.2
197 8
206.8
216.0
225.7
235.7
246.0
256 8
208.0
279.4
291.5
303 8
316 6
:wo.o
343.8
358.0
372.6
388.0
403.8
420.2
437.0
454. 4
472.4
491.0
510.0
529.77
550.18
571.26
593.00
615 44
638 59
oo> 45
0*7 04
71:.' 40
7IJ8 53
7^ 45
79.'! 18
0.4
62 80
66.16
69.69
73.36
77.21
81.23
85.42
89.79
94.4
99.1
104.1
109.3
114.7
120.3
126.2
132.3
138.5
145.2
152.1
1J9 3
166.8
174.5
182.5
190.9
l'J9.5
208.6
218.0
227.7
237.7
248.2
2.59.0
270.2
281 '.8
204.0
306.4
319 2
332 8
346.6
361.0
375.6
391.2
407 0
423.6
440 4
458.0
476.0
494.7
513.9
533.80
.5.54.3.5
575.55
597.43
620 01
643.30
or>7 :u
Ii02 . 0.5
717 :,o
74.5 80
770 93
798.82
0 6
03 46
66.86
70.41
74 12
78.00
82.05
86.28
90.69
95.3
100 1
105.1
110.4
115.8
121 5
127.4
133 5
139 9
146 6
IK 5
ICO 8
168 3
176.1
184.2
192.6
201 3
210 5
219 9
229.7
239.7
2.50.3
261 2
272 6
284 2
206 4
308.0
322.0
:m.o
349 4
303 . 8
378.8
394 4
410 2
426.8
444.0
461.6
479.8
498.- 5
517.8
537.86
5.58 53
579 87
601.89
624.01
648 05
072 20
(597 10
722 75
74'J.20
770 44
804 50
0 8
(Vt 12
67.58
71.14
74.88
78.80
82.87
87.14
91.59
96.3
101.1
106.2
111.4
116.9
122.6
128.6
134.7
141.2
148.0
1.55.0
102.3
169.8
177.7
185.8
104.3
203.1
212.3
221.8
231.7
241.8
2.52.4
203.4
274.8
286.6
2<)3.8
311.4
324.6
338.2
352.2
S06.8
381.8
307.4
413.6
«0.2
447.5
465.2
483.4
502.2
521.8
541.95
502.75
,584.22
006.38
029.24
652.82
077.12
702.17
727.98
7.54.58
782.00
810.21
11-8
See Reference No. 12
-------
HIV AHQ jo wvao aad aodVA 831VM do swvao) ouva AiiaiwnH
h-
o:
u
u
o:
i-
LLJ
S
O
Qfj
X
u
>-
£
uj
Oil
a:
LLJ
a.
2
LLI
O
LLJ
Q£
Z)
UJ
a.
LLJ
CO
13
cc
a:
Q
11-9
-------
( aiv AHOI do WVHO aad HOJVA
do swvao ) ouva xnaiwnH
i-
o:
<
x
u
u
UJ
O
LLJ
Q_
2
LU
I-
_J
<
S
OIL
O
11-10
-------
HIGH TEMPERATURE PSYCHROMETRIC CHART
(METRIC UNITS)
.-. .090
50
.075
.070
.085 —•
.080
O
3
§
ex.
in
0.
ex.
O
0.
LL.
O
to
O
O
H-
<
>-
H;
O
X
no 120
DRY BULB TEMPERATURE ( °C )
11-11
-------
(aiv xaa do annod aad aodVA ygivM do sannod) oiiva AiiaiwnH
18
X
u
LLJ
LJJ
LU
Q_
2
LLJ
I-
O
LU
DC
LU
O.
CO
—1
D
CO
11-12
See Reference No. 14
-------
(aiv xaa jo annod aad aodVA
jo sannod) ouva Aiiaiwrm
o:
<
n:
u
u
QL
h-
LU
Q. X
II
-------
HIGH TEMPERATURE PSYCHROMETRIC CHART
(ENGLISH UNITS)
0.090
0.085
0.080
0.075
0.070
0.065
0.060
0.055
0.050
0.045
0.040
0.035
0.030
0.025
oe.
a
o
z
:D
O
o.
oe.
LLJ
a.
Of.
O
0£.
UJ
I—
<
u_
O
>
Z
O
Q-
g
i—
<
>-
H;
Q
220
240
DRY BULB TEMPERATURE (°F)
11-14
See Reference No. 14
-------
SATURATION VAPOR PRESSURE OVER WATER
(T, in. Hg)
o>
LU
1/1
1/1
UJ
o
Q.
z
o
0.2 scsri:
0 20 40 60
80 100 120 140
TEMPERATURE ('
160 180 200 220 240
11-15
-------
SATURATION VAPOR PRESSURE OVER WATER
("C, mm. Hg.,)
va uration 'rapor pressure of
0 10 20 30 40 50 60 70 80 90 100
TEMPERATURE (°C)
11-16
-------
REDUCTION OF PSYCHROMETRIC OBSERVATIONS
(FAHRENHEIT TEMPERATURES)
Values of A« = 0.000367M* — O (1 + -*'~13-) for p = 30 in. Hg. and 1 in. Hg.
(See p. 365 for discussion and explanation of table.)
Wet-bulb temperature f — 'F.
Deprei-
.ionof 0 20 40 60
wet bulb
* ~ •* 30 in. 1 in. 30 in. lin. 30 in. 1 in. 30 in. 1 in.
in. Hg. In. Hg in. Hg. in. Hg. in. Hg. in. Hg. in. Hg. in. Hg.
1 0.01079 0.00036 0.01093 0.00037 0.01107 0.00037 0.01121 0.00038
2 .02157 .00072 .02185 .00072 .02213 .00073 .02241 .00074
3 .03236 .00108 .03278 .00109 .03320 .00111 .03362 .00112
4 .04314 .00144 .04370 .00146 .04426 .00148 .04482 .00150
5 0.05393 0.00180 0.05463 0.00183 0.05533 0.00185 0.05603 0.00187
6 .06471 .00216 .06556 .00218 .06640 .00221 .06724 .00224
7 .07550 .00252 .07648 .00255 .07746 .00258 .07844 .00262
8 .08629 .00288 .08741 .00292 .08853 .00295 .08965 .00299
9 .09707 .00323 .09833 .00327 .09959 .00332 .10086 .00336
10 0.10926 0.00364 0.11066 0.00369 0.11206 0.00374
11 .12018 .00401 .12173 .00406 .12327 .00411
12 .13279 .00442 .13447 .00448
13 .14386 .00479 .14568 .00486
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
j. Wet-bulb temperature f —
lion of
wet bulb
t — f
•F.
1
2
3
4
5
6
7
8
9
-40
30 in.
ln.Hg.
0.010505
.021011
.031516
.042022
0.052527
.063032
.073538
.084043
.094549
1 In.
in.Hg.
0.000353
.000697
.001050
.001403
0.001756
.002099
.002452
.002805
.003149
.15492
0.16599
.17706
.18812
.19919
21025
022132
23239
•F.
-20
30 In.
ln.Hg.
0.010646
.021291
.031937
.042582
0.053228
.063873
.074519
.085.165
.095810
1 in.
in.Hg.
0.000358
.000706
.001064
.001421
0.001779
.002127
.002485
.002843
.003191
.00517 .15689
0.00553 0.16809
.00590 .17930
.00627 .19051
.00664 20171
.00701 21292
0.00738 022412
.00775 23533
24654
25774
26895
028015
29136
.30257
.31377
.32498
0.33619
.34739
,35860
.36980
.38101
0.39222
,40342
.41463
.42584
.43704
0.44825
.00523
0.00560
.00597
.00635
.00673
.00709
0.00747
.00785
.00821
.00859
.00897
0.00934
.00971
.01009
.01046
.01083
0.01121
.01158
.01195
.01233
.01270
0.01307
.01345
.01382
.01420
.01456
0.01494
80
30 in. 1 in.
in. Hg. In. Hg.
0.01135 0.00038
.02269 .00075
.03404 .00113
.04539 .00151
0.05673 0.00190
.06808 .00227
.07942 .00265
.09077 .00303
.10212 .00340
0.11346 0.00378
.12481 .00416
.13616 .00453
.14750 .00492
.15885
0.17020
.18154
.19289
20423
21558
022693
23827
24962
26097
27231
028366
29501
.30635
.31770
.32904
0.34039
.35174
.36308
.37443
.38578
0.39712
.40847
.41982
.43116
.44251
0.45385
.00530
0.00567
.00605
.00643
.00681
.00718
0.00756
.00795
.00832
.00870
.00908
0.00946
.00983
.01021
.01059
.01097
0.01135
.01173
.01210
.01248
.01286
0.01323
.01361
.01399
.01438
.01475
0.01513
.45945 .01532 .46520 .01551
.47066 .01568 .47655 .01588 42
.48187 .01606 .48789 .01626
.49307 .01644 .49924 .01664
0.50428
.51549
.52669
0.01681
.01718
.01756
0.51059
.52193
.53328
54463
.55597
0.56732
0.01702
.01740
.01778
.01816
.01853
0.01891
•F.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
43
44
45
46
47
48
49
50
See Reference No. 1
11-17
-------
REDUCTION OF PSYCHROMETRIC OBSERVATIONS
(CENTIGRADE TEMPERATURES)
Values of A* = 0.000660(l+ 0.00115t')K«-I') for #=1000 mb.
Depre^
vet bulb Wet-bulb temperature If — *C.
*~r -50 -40 -30 -20 -10 0 10 20 30 40 50
mb. mb. mb. mb. mb, mb. mb. mb. mb. mb. mb.
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.6220 0.6296 0.6372 0.6448 0.6524 0.6600 0.6676 0.675 0.683 0.690 0.698
2 12441 12593 12745 12896 13048 13200 13352 1.350 1.366 1381 1.396
3 1.8662 1.8889 1.9117 1.9345 1.9572 1.9800 2.0028 2.026 2.048 2.071 2.094
4 2.4882 2.5186 2.5489 2.5793 2.6096 2.6400 2.6704 2.7011 2.731 2.761 2.792
5 3.1102 3.1482 3.1862 32241 32620 3.3000 33380 3376 3.414 3.452 3.490
6 3.7323 3.7778 3.8234 3.8689 3.9145 3.9600 4.0055 4.051 4.097 4.142 4.188
7 4.3544 4.4075 4.4606 4.5137 4.5669 4.6200 4.6731 4.726 4.779 4.833 4.886
8 4.9764 5.0371 5.0978 5.1586 52193 52800 53407, 5.401 5.462 5.523 5.584
9 5.5984 5.6668 5.7351 5.8034 5.8717 5.9400 6.0083 6.075' 6.145 6213 6282
10 6.6000 6.6759 6.752 6.828 6.904 6.980
11 7.3435 7.427 7.510 7.594 7.677
12 8.0111 8.102 8.193 8.284 8375
13 8.6787 8.777 8.876 8.975 9.073
14 93463 9.453 9.559 9.665 9.771
15 10.0138 10.128 10242 10.355 10.469
16 10.6814 10.803 10524 11.046 11.167
17 11.3490 11.478 11.607 11.736 11.865
18 12.0166 12.153 12290 12.426 12.563
19 12.6842 12.828 12573 13.117 13261
20 13.504 13.655 13.807 13.959
21 14.179 14338 14.498 14.657
22 14.854 15.021 15.188 15355
23 15.529 15.704 15.878 16.053
24 16204 16386 16.569 16.751
25 16.880 17.069 17259 17.449
26 17.555 17.752 17.949 18.147
27 18230 18.435 18.640 18.845
28 18.905 19.118 19330 19.543
29 19.580 19.800 20.020 20241
30 20255 20.483 20.711 20.938
31 20.931 21.166 21.401 21.636
32 21.606 21.849 22.092 22334
33 22281 22.531 22.782 23.032
34 22.956 23214 23.472 23.730
35 23.631 23.897 24.163 24.428
11-18 See Reference No. 1
-------
CORRECTION TABLES FOR PSYCHROMETRIC CHART - ALTITUDE
(FAHRENHEIT)
Additive Corrections for W, b, »nd T When Barometric Pressure Differs from Standard Burometer
Approximate altitude in feet
Wet '"
Bulb
emp.
-20
-18
-16
-14
-12
— 10
-8
-6
—4
-2
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
Sat.
Vapor
Press
In. H»
0.013
0.014
0.016
0018
0 020
0 022
0025
0 027
0.030
0.034
0.038
0042
0046
0.051
0.057
0 063
0069
0.077
0085
0 093
0 103
0 113
0.124
0 137
0 ISO
0.165
0.180
0.197
0.212
0 229
0.248
0.268
0.289
0.312
0.336
0.3491
0.3624
0.3761
0.3903
0.4049
0.4200
0.4356
0.4518
0.4684
04856
0 5033
0.522
0 540
0 560
0 580
0 601
0 622
0 644
0 667
0 690
0 714
0 739
0 76S
0 791
0 818
0 846
0 875
0 905
0 935
0 967
0 999
032
067
102
138
175
.214
253
294
335
378
-9
Ap -
AJF.'
-006
-007
-0.07
-008
-009
-0 10
-0.12
-0 13
-0 14
-0 16
-0 18
-0 V
-0 22
-0 24
-027
-0 30
-0 33
-0 36
-0 4C
-044
-0 49
-0 5
-0 6
-0 7
-07
-0 8
-0 9
-0 9
-1 0
-I.I
-1.2
-14
-1 5
-1 6
-1 7
-1.7
-1.8
-1 9
-1 9
-2 0
-2 1
-2 2
-2 3
-23
-2.4
-2.5
-26
-27
-28
-29
-3 1
-3 2
-3 3
-3 4
-3 5
-3 7
-3 8
-39
—4 1
-4 2
-4 4
-45
-4 7
-4 9
-5 0
-5 2
-5 4
-5 6
-5 8
-6.0
-6 2
-6 4
-6 7
-69
-7 1
00
+ 1
AA
-001
-001
-001
-0 01
-0 01
—0 02
-002
-0 02
0 02
-•0-02
« c
-0 ,
-0 03
-0 04
-004
-0 04
-0 05
-0 05
-0 06
-0 07
-0 08
-008
-0 09
-0 10
-0 II
-0 12
-0 13
-0 14
-0 15
-0 17
-0 18
-0 20
-0 22
-0 23
-0 25
-0 26
-0 27
-028
-0 29
-0 30
-031
-032
-0 34
-0.35
-0 37
-038
-0.40
-041
-0 43
-0 44
-046
-048
-0 50
-0 51
-0 53
-0.55
-057
-0 59
-061
-063
-066
-0 68
-071
-073
-0 76
-0 79
-0 82
-085
-088
-091
-094
-097
-1 00
-1 05
-1 08
-1 12
90
Ap-
Aff.l
' 006
007
0 08
009
0 10
0 II
0 12
0 14
0 15
0 17
0 19
0 21
0 23
0 26
029
0 32
035
0 39
0 43
0 47
0 52
06
0 6
0 7
0 8
0 8
09
0
2
3
5
6
8
8
»
0
0
1
2
3
.4
4
5
6
7
8
9
3 0
3 2
3 3
3 4
3 5
37
3 8
3.9
4.1
4.2
4.4
4.6
4.7
4 9
5.1
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6 7
6 9
7 1
7 4
7 7
0
-1
AA
001
001
0 01
001
001
002
002
002
0 02
002
003
003
003
004
004
0 05
005
006
006
0 07
008
0 09
0 10
0 II
0 12
0 13
0 14
0 15
0 17
0 18
0 20
0 21
023
025
027
0 28
029
030
032
0 33
034
035
0.37
0 37
039
041
0.42
044
0 46
048
0 49
0 51
053
0 55
0 57
0 59
0 61
064
066
069
0 71
0 74
077
079
0 82
0 85
0 88
091
094
097
1 00
1 05
1 08
1 II
1 16
1 21
181
Ap -
AIT.'
0 13
0 14
0 16
0 18
0 21
0 23
0 26
029
032
0 35
0 39
044
048
0 54
0 59
066
073
081
089
098
1 OS
1 2
1 3
1 4
1 6
1 7
1 9
2 1
22
24
26
2.8
3 1
3 3
36
3 7
3.9
4 0
4.2
4.4
4.5
47
4.9
5 1
5 3
5 4
5 7
59
6 1
6.3
6 5
6 8
7 1
73
76
7 9
8 1
84
87
9 0
9.4
97
10 0
10 4
10 8
II 2
II 6
12 0
125
129
13 3
13
14
14
15
15
DO
-2
A*
002
0.02
002
003
003
003
004
004
005
005
006
007
007
008
009
0 10
0 II
0 12
0 14
0 15
0 17
0 18
0 20
0 22
0 24
0 27
029
0 32
0 35
0 37
0.41
044
047
0.51
0.56
0 58
060
063
065
068
0 70
0 73
076
0 79
082
085
0.88
091
095
098
1 02
06
10
14
18
23
27
.32
36
41
46
52
57
63
69
75
1 82
1 88
1 96
202
2 10
2 17
224
232
2 40
2.50
27
Aj>-
Air.'
020
023
0 26
0 29
032
036
0 40
044
050
0 55
0 61
068
075
0 83
093
03
13
25
38
53
68
9
1
3
5
7
0
2
3 5
38
4 1
4 4
48
5 2
5.6
53
6.1
6.3
6.5
67
7.0
73
7.6
79
8 2
8.5
8.8
9.2
9.5
9.9
10.2
106
II 0
11.4
II. 8
12.2
12 7
13 1
13.6
14 1
146
15 1
15 7
16 3
169
17 5
18 1
188
19.5
202
209
21.6
223
23 1
23 9
24.8 '
10
-3
AA
003
003
004
004
005
005
006
0 07
007
0 08
009
0 10
0 II
0 13
0.14
0 16
0 17
0 19
0 21
0 23
0 26
029
032
035
038
042
045
049
0 53
0 58
063
0 69
0 74
0 80
087
090
0 94
0.97
.01
.05
.09
13
.18
22
27
32
.37
.43
.48
54
.59
65
72
.78
84
1.90
1 98
2 05
2 13
2 20
228
236
2 46
25?
2 65
2 74
284
2.95
306
3 17
328
3 39
350
363
3 75
390
37
A»>-
AW.'
028
032
036
0 40
044
0 50
0 55
062
069
076
085
094
1 OS
1 16
1 28
1 42
1.57
1 74
1 92
2 12
233
26
28
3 1
34
38
4 1
4 4
4 8
5 2
5 7
6 1
6 7
7 2
7 8
8.1
84
87
9 0
9 3
9 7
10 1
10.5
10.9
11.3
11.7
12 2
127
13 2
13 7
14 2
14.
IS
15.
16
17
17
18.
18
19.
20.
20
21
22
23
24
25
26
27.
28
28
29 9
309
320
33 1
34 3
00
-4
AA
004
005
005
0 06
007
0 07
008
0 09
0 10
0 II
0 13
0 14
0 16
0 18
0 19
022
0 24
026
0 29
032
036
0 40
0 43
0 48
0 52
0 58
063
068
074
080
088
094
04
II
21
25
30
.35
40
44
SO
.57
63
69
76
82
90
98
205
2 13
2 21
2 29
238
2.47
2 56
265
2.75
2 84
294
3 05
3 16
3 27
3 39
3 52
365
379
3 93
4 08
4 24
439
4 54
4 69
4 85
5 02
5 20
5 39
4»
Aj> =
AIT.'
036
041
046
052
0 58
064
0 72
080
089
099
1 10
1 22
1 36
1 SI
1 67
1 85
204
2 26
2 49
275
3 03
34
3 7
4 1
4 5
49
5.3
5 7
6 2
68
7 4
80
8 7
9 4
10 2
10 5
109
II 3
II 8
12 2
127
13 2
13 7
14 2
14 7
153
15.9
16 5
17 1
17 7
184
19 1
19.8
20 5
21 3
22 1
229
23 7
24 6
25.5
264
27 4
28 3
29 4
30 5
31 6
32 7
33 9
35.1
36 4
377
39 0
40 4
41 8
43 2
44 8
00
-5
AA
0 OS
006
0 07
0 08
009
0 10
0 II
0 12
0 13
0 15
0 17
0 19
0 21
0 23
0 25
0 28
031
0 34
0 38
0 42
0 46
0 52
0 57
063
069
0 75
082
0 88
096
1 05
14
23
34
45
58
63
69
75
83
89
97
205
2 13
2 21
2 28
238
2.47
2.57
266
2 76
287
298
3 09
3 20
3 32
345
3 58
3 70
3 84
3 99
4 14
4 28
4 42
4 61
4 77
4 95
5 13
5 32
5 51
5 71
5 92
6 12
6 34
6 56
6 79
7 04
591
Aj,-
AIF.'
0 47
0 52
0 58
065
0 72
0 81
0 90
00
12
24
38
53
70
89
209
231
2 56
2 82
3 12
3 44
3 79
4 2
4 6
5 1
5 6
6 1
6 6
7 2
7 8
84
9 2
10 0
108
II 7
126
13.1
136
14.1
14.7
15.2
15.8
16.4
17 1
17 7
18 4
19.1
19.9
20 7
21 4
22 3
23 1
23 9
24 8
25 7
26 7
27 7
2ft 7
29 7
30 9
31 9
33 1
34 3
35 5
36 9
38 2
39 6
41 0
42 5
44 0
45 6
47.2
48 9
SO 6
52 3
54 2
56.2
00
-6
AA
007
0 OS
0.09
0.10
0.11
0 12
0 13
0 15
0 17
0 19
0 21
0 23
0 26
0 29
032
035
039
0 43
0 48
053
058
064
071
0 78
086
092
01
II
20
30
.42
54
67
81
95
2.03
2.11
2.18
2 28
236
245
254
2.66
2 75
2 86
297
309
3 22
333
3 47
3.60
3.73
3 87
4 01
4.16
432
4 48
4 64
4 82
499
5 18
5 37
5 56
5 77
5.98
6 20
6 43
6 66
6.90
7.15
7 41
7 67
7 94
8.21
8 51
8 83
See Reference No. 10
11-19
-------
CORRECTION TABLES FOR PSYCHROMETRIC CHART - ALTITUDE
(FAHRENHEIT)
(continued)
Additive Correction! for W, h, and T When Barometric Pretiur* Differs from Standard Barometer
Wet
Bulb
T«mp.
1'
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
III
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
Sat.
Vance
i n|*»
Pre».
In. H,
1 422
1 467
1 514
1 561
1.610
1 661
1 712
1 766
1 820
1 876
1 933
1 992
2053
2 115
2 179
2.244
2 311
2 381
2 450
2 523
2.597
2 673
2 751
2831
2913
2996
3062
3.170
3.260
3.353
3.448
3 545
3644
3 746
3 850
3956
4 065
4.177
4 291
4 408
4.527
4650
4 775
4.903
5 034
5 168
5 305
5 445
5 588
5 735
5884
—91
Ap -
A»V
-7~4
-7 6
-79
-8 2
-85
-8 8
-9 1
—9 4
-9 7
-10 1
-104
-108
-II. 1
-11.5
-11.9
-12 4
-128
-13 2
-13.7
-14.2
-14 7
-15 2
-15 7
-16.)
-16.9
-17.4
-180
-187
-19.)
-20 0
-20 7
-21 4
-222
-2) 0
-2)8
-24.7
-25.6
-26 5
-27 5
-28.5
-29 5
-306
-31 8
-329
-34 2
-35 5
-36 8
•-38 J
-39 7
-41 2
-428
IQ
+ 1
AA
- T6
- 20
- 24
- 29
- 34
- 39
- 43
— 48
- 53
- .59
- 64
- 71
- 75
- 82
- .88
-1 96
-202
-209
-2 17
-2 25
-233
-241
-249
-2 58
-268
-276
-2 86
-297
-3 07
-3 18
-3 29
-3 40
-3.53
-366
-3 79
-3 94
-4.08
- 23
- »
- 55
- 71
- 89
- 08
-5 »
-5 47
-568
-5 89
-6 II
-636
-660
-6 86
Ap-
Aifv
79
2
5
8
.1
4
8
1ft 1
IV 1
10 4
108
II 2
II 6
120
124
12.8
133
13 7
14 2
14 7
15 3
15 8
16 3
169
17 5
18 1
188
19 4
20 1
208
21 6
224
23 2
24 0
24 9
25 8
26 1
276
286
29 7
30 8
320
33 2
34 4
35 8
37 1
38 5
400
41 5
43 2
44 8
465
-1
AA
24
29
34
39
43
.48
54
64
70
77
83
90
96
202
2 10
•S.I7
2 25
233
242
2 50
2 58
268
278
287
298
3 08
3 19
3 31
3 43
3 56
3 77
3 82
3 96
4 II
4 15
440
4 56
4 74
4.92
5.11
5 30
5 50
5 72
593
6 16
6 40
664
6.92
7 18
845
18
A, -
Air.i
16 5
17 0
17 6
183
18.9
196
202
in o
M v
21.7
224
23.2
24 0
24 8
25 7
266
276
286
296
306
31.7
328
34 0
35 2
36 4
37 7
39 1
40 4
41 8
43 3
44 9
46 6
48 3
500
51 8
537
55 6
577
59 8
620
64 3
667
69 2
71 8
74 5
77 4
803
S3 4
M 6
900
93 6
97.)
0
-2
AA
259
267
2 77
288
298
3.09
3 18
Jw
ft
3 42
3 53
3 66
3 79
392
4 06
4 20
4 36
4.51
468
4 84
502
5.20
5 39
58
77
98
21
42
6 64
6 88
7 14
7 41
7 68
796
25
55
86
20
54
89
1026
10 64
II 05
II 47
II 91
1237
12 84
13 34
13 86
14.41
14 99
\5.St
27
Ap-
AHV
25 7
26 6
27 5
28 5
29 5
30 5
31 5
«* t
j* t>
33 8
35 0
363
37 6
389
403
41 6
43 1
446
46 2
47 7
49 4
51 3
53 1
55 0
569
589
61 0
63 2
65 4
67.8
70.3
72 8
75 5
78 2
81 1
840
87 1
903
93.6
97 1
1007
104 5
108 5
1126
116.9
121 4
126 0
130 9
1)6 0
141 4
147 0
152 8
10
MJ —
AA
404
4 18
4 33
4 49
464
4 80
496
511
t*
5 33
5 52
573
5 94
6 14
637
6 58
6 82
7 06
7.31
7 55
782
8 13
8 42
S 72
9 03
9 50
9 68
1003
1038
1077
II 18
II 58
12 01
12 45
1291
1)38
1) 88
1439
1493
15.49
16 07
16 68
17 33
17 99
18 68
19 41
20 15
2094
21 77
22 64
23 55
24 48
17
9t
Ap-
AIT.'
35 6
369
38 2
396
41 0
42 4
43 8
«^
3
47 0
486
50 4
52 2
54 1
560
579
59.9
62 1
64.3
66 5
68.9
71 3
73 8
76' 4
79 2
82.0
85 0
88 0
91 2
94 4
979
101 4
105 1
109 0
112 9
117 1
121 4
1259
130 6
135 5
1406
145 9
151 4
157 2
163 3
1696
176 2
183 1
190 3
197 8
205 7
2140
10
~1
~AA
~rw
5 80
6 01
623
6.46
668
690
7| A
14
7 41
7.67
7.95
8 24
8.54
885
9.15
9 47
9.82
10.17
10 5)
1091
11.30
11.70
12 II
1256
13 01
13 49
1397
14 49
15 00
15 56
16 13
16 72
17 35
1798
1865
19 34
2007
20 S3
21 61
U44
23 29
24 18
25 II
26 10
27 12
28 18
29 30
30 46
31 67
32.95
34 29
4ft.
Ap -
-&W.'~~
46 4
48 1
49.8
51 5
53 4
55.2
57 2
»*
2
61 3
63 5
65 7
68 0
705
72.9
755
782
81.1
84.1
87.0
90.0
93.1
96 4
99.9
103 5
107.3
Mil
115 1
119.2
123 5
128.0
1327
137.6
142 6
1479
1533
159 1
165.0
171 2
177.6
184 3
191.4
198 7
206 3
214 3
222 7
231.4
2405
250.1
260.1
270.6
281 6
-J
~-f
~AA
7 29
7 56
7 83
8 II
841
869
9 01
»M
yy
9 67
1002
1037
10 74
II 13
II 52
II 93
1237
1283
13 31
13 77
14 25
1475
15 28
15.84
16 42
17 03
1764
18 28
1894
1963
20 35
21 10
21.89
22 70
23 55
24.42
25.35
26.30
2730
28.33
29.41
30 55
31 73
3296
34 25
3560
37 01
3848
40 03
41.65
43.34
45 12
59
Ap -
~*W.<
~58~2
60 3
62 5
64 7
670
69.3
71 7
71 1
/4 i
76 8
796
82 5
85 4
885
91 (
94.8
982
101 7
105 3
109 1
113 f
117 u
121 4
125 9
130.4
135.0
1)9 7
144.7
150.0
155.4
161. 1
167 1
173 2
179.6
1863
193.2
200.5
2080
215.8
224.0
2326
241.5
2503
2606
2708
281.4
292.6
304.2
316.4
329.3
342.7
356.8
00
-6
AA
"9TTT
9 48
9 83
10 18
1055
1092
11.30
n7n
/u
12 II
1256
13.02
13.48
,3.98
1447
14.98
15 53
16 09
1666
17 27
17.90
18.54
19 24
19.96
2068
21.42
22 18
22 98
23 83
24 73
2561
26 56
27 56
28.58
29.66
30.77
31 95
33 15
34 41
35 73
37.12
3855
40 05
41.63
43.28
44.99
46.80
48.67
50.64
5273
54.89
57.17
I - Dry bulb temperature (°F).
(' - Wet bulb temperature ("F).
t - Barometric preamm (in. of HI).
Ap - Pretnire difference from standard barometer (in. of Hf).
W — Moiiture content of air (p. per Ib. of dry air).
nV - Moiiture content of air saturated at wet bulb temperature I' la per
Ib. of dry air).
ArF - Moisture content correction of air when barometric premre differa
from itandard barometer dr. per Ib. of dry air).
AHV - Moisture content correction of air saturated at wet bulb temperature
when barometric prewre diffen from itandard barometer (p. per Ib
of_dryair).
NOTE: To obtain A IT reduce value of A IF.' by I % when
I -1' - 24°F and correct proportionally when (- (' ii not 24*F.
A — Enthalpy of moist air (B.t.u. per Ib. of dry air).
AA - Enthalpy correction when barometer preuure diffen from itandard
barometer, for saturated wunaattirated air. (B.t.u. per Ib. of dry air).
• - Volume of moist air (cu. ft. per Ib. of dry air).
Example: At a barometric pranun of 25.92 with 220*F DB and IOO°F WB
determine IT. A, and vA. >>--4 and from table ArF,'- 50.4. From note
above,
AIT - AIT.I - f™ x .01 x 50.4) - 50.4 - rs - 47.9
Therefore W - 102 (from chart) + 47.9 - 149.9 p. per Ib of dry air. From
table AA - 7.95. Therefore A - saturation enthalpy from chart + devia-
tion + 7.95 - 71.7 - 2.0 + 7.95 - 77.65 B.t.u. per Ib. of dry air. From
equation above
I -r
- ».4)«.
.754 (t +ma) f . " W "I
; LI+«15>J
11-20
-------
SATURATED WATER VAPOR AS FRACTION OF METERED VOLUME AS A
FUNCTION OF ABSOLUTE PRESSURE (in. Hg.) AND TEMPERATURE (°F)
o
O
z
o
o
Q.
Q
4 5 6 7 8 9 10 20 30
ABSOLUTE METER PRESSURE (in. Hg)
40
11-21
-------
SATURATED WATER VAPOR AS FRACTION OF METERED VOLUME AS A
FUNCTION OF ABSOLUTE PRESSURE IN mm Hg, AND TEMPERATURE (°C)
z
o
Of
o
a.
0.03
0.02
100
200 300 400 500 600 800 1000
ABSOLUTE PRESSURE (mm Hg)
11-22
-------
PSYCHROMETRIC NOMOGRAPHS FOR HIGH AND LOW PRESSURES
Example 1 (Centigrade Chart - Low Range)
Suppose a psychrometer reads 20°C on the dry
bulb and 8°C on the wet bulb when the total
(barometric) pressure is 60 cm Hg. To find
the pressure of water vapor, place a straight-
edge so that it intersects the "Observed Dry
Bulb Minus Wet Bulb,°C" scale at 20 - 8 = 12.
Adjust it so that it intersects the "Barometer,
cm Hg" scale at 60, and note the intersection
with the "Sea Level Equivalent Dry Bulb Minus
Wet Bulb,°C" scale (9.5). Holding the straight-
edge at this point, swing it so that it inter-
sects the (central, nearly vertical) "Wet Bulb,
°C" scale at 8, and read the pressure of water
vapor (3. 30) on the "Humidity, mm Hg" scale
at the right. A computation from the psychro-
metric formula gives 3.312 mm Hg for this
value.
Example 2 (Centigrade Chart - Low Range)
Continuing the example started above, hold
the straightedge fixed at the value 3. 30 on
the "Humidity, mm Hg", and swing it so that
it intersects the (diagonal) "Dry Bulb.'fc"
scale at 20. By extending this line to the
vertical "Relative Humidity, Percent" scale
(inner left), the relative humidity is found
(18. 8%). Computation gives 18. 87% for the
psychrometric data given originally.
Example 3 (Centigrade Chart - Low Range)
Continuing with the data of example 1, con-
nect 3. 30 on the "Humidity, mm Hg" scale by
straightedge with 100 on the "Relative
Humidity, Percent" scale. The intersection
of the straightedge with the "Wet Bulb.'fc"
scale (-4. 35°C) gives the dewpoint in terms
of subcooled water; that with the "Ice Bulb,
°C"scale(-3.85°C) gives the dewpoint rela-
tive to ice. Computed values are -4.
and -3. 85
-------
PSYCHROMETRIC NOMOGRAPHS FOR HIGH AND LOW PRESSURES
(continued)
Example 7 (Centigrade Chart - Low Range)
A psychrometer reads 24°C on the dry bulb and 8 C on the wet bulb when the pressure is
57 cm Hg. Using these values, the pressure of water vapor is found to be 2.05 mm Hg. By
assuming separately the values 25°C on the dry bulb, 9°C on the wet bulb, and 58 cm Hg, the
following sequence of values is found.
Dry,°C
24
25
24
24
Wet, °C
8
8
9
8
Pressure,
cm Hg
57
57
57
58
Humidity, mm Hg
Chart
2.05
1.66
2.96
1.93
Formula
2.050
1.676
2.984
1.945
From these values, the effect of an error of one unit in each reading, and its reciprocal
function, the precision requisite to obtaining a final value of desired precision, are obtained,
as given below.
Unit error in
Dry bulb
Wet bulb
Pressure
Error in final
value, mm Hg
0.39
0.91
0.12
Precision for 1%
relative humidity
precision in result
O.SS'fc
0. 22°C
1.86 cmHg
Precision for 0. 1 mm
Hg precision in result
0. 26°C
0.10°C
0.83 cm Hg
11-24
-------
PSYCHROMETRIC NOMOGRAPHS FOR HIGH AND LOW PRESSURES
(continued)
SONIW anna xaa a3A«3sao
!N3TVAin03 T3A31 V3S
11-25
-------
PSYCHROMETRIC NOMOGRAPHS FOR HIGH AND LOW PRESSURES
(continued)
2 o>
1 , VJ 1 , 1 1 . 1 1 1 1 1.1 ,
rv • i • i • i
CO
,.,|,,
r-
1.1 I. , . .1 ._! . . I . .
OH ww 'Aiiamru
o g
o 'anna ISM SONW aina xaa a3AH3sao
'anna 13M snNm eina
XN31VAinO3 13A31 V3S
11-26
-------
PSYCHROMETRIC NOMOGRAPHS FOR HIGH AND LOW PRESSURES
(continued)
'anna ISM SONIW anna xaa
!N31VAin03 13A3T V3S
11-27
-------
PSYCHROMETRIC NOMOGRAPHS FOR HIGH AND LOW PRESSURES
(continued)
OH 'Ml
o in
'9ing IBM snNm aina AHQ Q3A«3sao
J.N3DH3d 'AliailNnH 3AllV-|3b
D 2
' 'i1 ' 1 ' V ' 1 ' 'i
o
r\j
1 1 1 1 1,1 1 1 i I^L.
0
o
1 1,1 1
o
1 1,1 1 1 1 1,1 1
o
in
1 1,1 | 1,1
0
«
* VJ f'-V'"
o
0
-------
O
LL.
O
O
a:
LU
Q_
LU
h-
<
^
LL
O
•
^^0
O
I/O
O
Q_
a:
LL)
I-
CO
a
UJ
U
O
LU
3
ID
_J
O
LL.
O
•z.
O
Qi
O
01
LU
a.
CO
O
y31VM A3 Q3ldnDDO 3WniOA 1V1O1 dO NOIlDVild
11-29
-------
GRAPHICAL METHOD FOR CONVERTING VOLUME OF CONDENSED WATER
TO VOLUME OF WATER VAPOR AT CONDITIONS OF TEMPERATURE IN
*K AND PRESSURE IN mm. Hg.
Example:
1.0
2.0 3.0 4.0 6.0 8.0 10 20 30 40
VOLUME OF WATER VAPOR (liters)
60 80
11-30
-------
CO
Q O
—_ J^
2 <
ID -
X v?
UJ
iu 5
II
LU •-
Of t
UJ
X
1.
LU
ex.
I
SSS SSSSS 8SSSC
•* p «•****•»•-«
U} M M tA «» lA IA
!•»»»«•» « w **
>R u> tn ui id in iA
t-teiAIAM »*"
in io to id K» MI u»
oor-r-wt*»iA
MuiwauiiAie M»
e wacMr- t-r~
WU»M-
••«->- 1- ••«•«-
3SS3SSS
sssssss
S29S2"S
»•»•••
-»»^*'*
sssss
sssss
sssss
W4»«*N»U*
miAlAWItA
00...
sssss
5S5SS
WWWViA
**««»«
M «« r- 1- 1-
sssss
•tHMMM
t-«-t-»-t-
*»»»*»
r-r-t-t-f-
WMMMW
sssss
*-!>»-••
•BttWMW
•2S£*
• •BMr-t,
MM^^O
M9IAIAl«u»
332S3
ss::s
StaitttoU
e« «•»»
WMMtiAiA
3 5 3 S M
tats taw «
wSSS10
sssss
*-fft-t~
ssss*
sssss
sssss
S2222
M»M*«*t
« W W
t-WWVlA
SSS55
^^00*
U»M»U»W»*>
SSSSS
sssss
sssss
sssss
pa M r> c* M
(CWWWtft
t- f- « w •*
«W«WU>
MMMMM
*~ *~ •- *~ *-
sssss
•VtOOOM
• lAUliAiA
MMMM^
ia wmtt
55555
5*55*
— OO»i*»
MKIMtW
SSSSS
sssss
SSSSS
mrtMNM
<0 •« W W ••
u» u» M •» *
<0WW«<0
r-r-»-i»w
tew WWW
et «t oiwao
«*«« ww
ss::s
sssss
M^MOO
M»in^"**»
t- WIAIA
*>oo«>r~^-
SM»U»U»M»
^^M«qM
5U»5S
«0Sw»MM
«4«*-l-«O
wwww*
*MHMM
WWWWW
wwautko*
wwwww
3SwU*
SSSSS
SS5CS
sssss
-S22S
r-r-vMw
••WMMM
• «o»r-w
MMMMM
NM^ee
•**••*•«••<
WiMia-^n
SS555
•*<«ee»
MMH4>A«
ioinu»iAia
eor-i« VIA
MIMMlAlA
e»d»ooM
M-^eo
wwwww
WVMMM
wwwww
sssss
sssss
— OOOO
W lAMlA
MMMWM
MM******
•»•!•*«•
ft «*n*iM
XO«WM
««Mom
MM-«eo
55533
««t-t-«
SSSSS
in ww n M
Miaiaiaw*
t-r-w«»ta
««io«r>
IA«AIAlA>4
t« -• ^ OO
ww ww
::sss
1-WWkOlA
••••»•••
PSSSS
MWWOOM
f- »Mk«M
•VMMMM
ssscs
HMMMM
«kV, t~WlA
*t*tn«»f*
sssss
U»WM**>^
S555S
M^eo»«
iA*ato-r •*
«MMM-*
Mtowauiu*
t»«iAU» »
dnAM»«aiA
*«ewt~ W
w»MiAiAia
SSSSS
::sss
ss?:r
W^MMM
SSSSSSS SSSSS SSSSS S
SS
S SSSSS S
WWWWW W» «»M>MIA MlAMMlA M»MHAH)in itV
•DWMMWWW MWMI*a0 «•»«»«> «O go oe «C W t* t-
»«*«*«»«» •»•»»«* •>•*»» •>«»««« *»
t>t-t-r-r> »-»-1-»»
•»••»••« *•«**
sssssss zzzzz sssss s^ss *s*HH ?55H? H5555 H==^ s?ss!
SSSSS S53SS SSSSS 55555 555;? SSt
SSSSS SUSSS SSSSS SS2S5 5555: 351
IA^MMM -^<^oat» r-r-WM> ^•**»«»* ^••OAOQ oei~u
»<••»<••• wv^Mtio tauttauiiA M>nia>Aio unoirt-*-* -v« i
»!•-«•»«* lA^MMrd MGOMA oeoet~t-w «*«»»«« H -- e
• VI»WA M
M M oo w w
1"
-
SSSSS SSSSS 55555 355SS
* 3SSSS SS^*» SS;^? ^S[:
•»«•* MCITCMM
S SSSSS SSSSS SS55S 55555
—-- —OOOJOt A«D
«»« «t »*lgc W Be«
See Reference No. 16
11-31
-------
SECTION U PROPERTIES OF GASES
Graphical Solution of Boyle's Low, P^ = P2V2 = C
for P in mm.Hg and V in Liters 12-1
Graphical Solution of Charles Law, PI/J = PI/J = '-
for P in mm.Hg and T in °K 12-2
Graphical Solution of "Perfect Gas Law" for One Gram-Mole of Gas,
-^T - C for P in mm.Hg, V in Liters and T in °K 12-3
Nomograph for Gas Expansion Following PVn=C, for P in PSIA, V in Cubic
Feet 12-4
Graphical Solution for Determining Density of a Gas, Knowing P in mm Hg,
T in °C, and Molecular Weight 12-6
Nomographs for Converting |_i g/M to PPM by Volume Knowing T in °K,
Molecular Weight and P in gm/cm-sec or mm. Hg 12-7
Graph for Converting jig/M to PPM by Volume Knowing P in mm. Hg and T
in °K for CI2, S02, N02, HCI, H2S, HCN, HF and NH3 12-9
Viscosities of Gases: Coordinates for Use with Nomograph 12-10
Viscosities of Gases at One Atmosphere 12-11
Molecular Weights of Selected Gases 12-12
Specific Heat Ratios of Gases at One Atmosphere 12-13
-------
GRAPHICAL SOLUTION OF BOYLES LAW.
PiVi = P2V2 = C FOR P IN mm Hg AND V IN LITERS
VOLUME (liters)
3.0 4.0 5.0 6.0 8.0 10 20
30 40 50 60 7080 100
10000
9000
8000
7000
6000
5000
4000
2000
0.01
0.02 0.03 0.04 0.06 0.08 0.10 0.20 0.30 0.40
VOLUME (liters)
0.60 0.80 1
12-1
-------
GRAPHICAL SOLUTION OF CHARLES LAW.
C FOR p IN mm H9 AND T IN °K
TEMPERATURE (°K)
12-2
-------
GRAPHICAL SOLUTION OF"PERFECT GAS LAW" FOR ONE GRAM-MOLE OF GAS.
£X= C FOR P IN mm Hg, V IN LITERS AND T IN °K
1000
900
100
300 400
TEMPERATURE (°K)
500 600 700 800 900 1000
12-3
-------
NOMOGRAPH FOR GAS EXPANSION
FOLLOWING PVn = C, FOR P IN PSIA, V IN CUBIC FEET
Method for making calculations necessary
for plotting gas expansion or compression
curves, or for making other computations
for determination of relationships between
pressure and volume of a fixed amount of
gas. The equation upon which the chart
is based is the conventional one, where
PVn = C
where P is pressure, V is volume, n is an
exponent, and C is a figure that remains
constant through any one series of compu-
tations.
Any units may be used for pressure and
volume, but in any series of computations
they must be consistent.
In arithmetical computation, the first
step must be to set up the value of the con-
stant upon the basis of original pressure
and volume conditions and an assumed ex-
ponent. Then pressures may be computed
for varying volumes, or volumes for vary-
ing pressures. Where the exponent is 1.0,
which can happen only in theory, the
arithmetical problem is simple. But the
exponents applying to various gaseous ma-
terials under actual conditions are usually
odd ones, making computation difficult
and tedious. With the chart, however, it
is a simple process.
Procedure. First, the value of the expo-
nent is set, and then the vertical line scaled
for this value on the chart is used through-
out computations for the particular gas and
general range of operations. The second
step is then to note on this vertical line
the intersection of the horizontal line
scaled for the initial value of volume, in-
terpolating as may be necessary. Then a
straight line is established through this
point and the scale point corresponding to
the initial Absolute Pressure on the scale
so designated.
The intersection of this line is then
noted on the blank axis, and this point is
used as a basis for further steps. Thus, to
determine the new volume at some differ-
ent pressure, a straight line is established
through this point and the scale point for
the new value on the Absolute Pressure
scale. Then, on the vertical line corre-
sponding to the assumed exponent value,
at the intersection of the line just estab-
lished, may be read the new value of vol-
ume.
By way of illustration, data may be ob-
tained for plotting the expansion curve of
a volume of gas beginning with an abso-
lute pressure of 300 pounds per square
inch and occupying a volume of 5.00 cubic
feet, the exponent being set at 1.33. The
first step, of course, is as described above,
locating the vertical line corresponding to
the exponent, interpolating as necessary.
Next, a straight line is established
through the scale point on this line, corre-
sponding to the Volume, 5.00, and the
scale point for 300 on the Absolute Pres-
sure scale. The intersection of the line so
established with the central, blank axis is
then noted and is used in subsequent oper-
ations in this particular problem.
Now, the line is rotated about this point
on the blank axis to find points on the
expansion curve, and with one end fixed
at any selected scale point on the A bsolute
Pressure scale, the corresponding Volume
is read as the intercept of the horizontal
scale lines on the vertical line of assumed
exponent at the point of intersection of
the rotating line. In this case, reading at
absolute pressures of 150, 80, and 40, the
corresponding volumes are 8.35, 13.2. and
22.4, where computation gave 8.39, 13.20,
and 22.75.
It should be emphasized that operation
of this chart differs from others in this
collection in that the intercepts on the
vertical lines are not carried to a fixed axis
associated with the graph section.
12-4
See Reference No. 11
-------
I—
LU
LLJ
U_
U
CO
28 S g 8 8
o e> a
SNTTTOA
Q_ .
X <
LU £75
^ Q.
o 2 "S
or °- I
o Q: c
u- o 8
-i- u_ ~
o "
O c
O Q.
O
_J
_l
O
3KT1OSW
Ur.l.i.l.i.i.i.i.l.i.i.i.i.l.i.i.i.i.i .1.1.
8 S B 8
I.. .,1,
..I....I..
. I.... I... ,1.1....... I.,
5
-1-J
12-5
-------
12-6
-------
I
HOlDVd
g
z
j£
LU
IE
ID
_J
>
X_
CQ
n
01
E
E
a:
o
cs
flj
(/)
E
u
E
CT
0
X
1
71
2
X
IT)
-T
i i i i i i i
o o o o o o o
X X X X X X X
o> oo h-» *o in ^f co
, 1 , 1 . 1 > 1 > ' 1 '
fill |i i ^,« ii i
CM| cp| col co 1 ^l ^l 7
iiii •• i •
o o o o 2l ° 2
X X 'x ^ X. X X
^"* (^ QQ |S^ **O * LO ^*
\
-1 \ ilOlDVd
i §
X X
CM •—
1 1
1 ?l ' 7
2 2
x x
C*j ^«
1
awmoA
^ •<
O^
uu
o;iu
o _J
LL.O
I'l'l'l'l 'Ml
3CNOO rv -o in -^
i | i | i
CO CM
\ \ 1 .
\
\ |>|l|l|l| • |
_o. ootx >o 10
awmoA
'Ml
•* co
1 1 '
CM
1
O
cos 1° wdd eri :suv
O
•«
-=
Wdd 04
i x Ei
OOOC
jyy
.
Xq
PUD
00
/gW \3WmOA
I 6lH/ SSVW
CM
12-7
-------
I **•
O Q)
Si
, J,,»,J,
1 I l I I I i 11
1 IM
I I
1 1
o
X
•o I >o' ^o I
O o O
X
u->
O*
x
CM
co
I I • I I I ' I • I • I' I
O •<>
-------
GRAPH FOR CONVERTING ng/M3 TO PPM BY VOLUME KNOWING P (mm Hg) AND
T (°C OR *K) FOR CI2/ S02/ N02, HCI, H2S, HCN, HF AND NH3
MASS OF POLLUTANT
PER VOLUME
OF CARRIER GAS
300 400 500 700 1000
OF POLLUTANT
PER VOLUME OF
CARRIER GAS (PPM)
when the concentration of NO2 is 0.29 ppm?
The existing temperature and pressure are 107°C
and 760 mm Hg.
Ans: _£ _ 760 mm Hg _
T ~ (107+273)°K "
Concentration = 440 u
12-9
-------
VISCOSITIES OF GASES
COORDINATES FOR USE WITH NOMOGRAPH
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Gas
Acetic acid
Acetone
Acetylene
Air
Ammonia
Argon
Benzene
Bromine
Butene
Butylene
Carbon dioxide
Carbon disulfide
Carbon monoxide
Chlorine
Chloroform
Cyanogen
Cyclohexane
Ethane
Ethyl acetate
Ethyl alcohol
Ethyl chloride
Ethyl ether
Ethylene
Fluorine
Freon-11
Freon-12
Freon-21
Freon-22
X
7.7
8.9
9.8
11.0
8.4
10.5
8.5
8.9
9.2
8.9
9.5
8.0
11.0
9.0
8.9
9. 2
9.2
9.1
8.5
9.2
8.5
8.9
9.5
7.3
10.6
11.1
10.8
10.1
Y
14.3
13.0
14.9
20.0
16.0
22.4
13.2
19.2
13.7
13.0
18. 7
16. 0
20.0
18.4
15.7
15.2
12.0
14.5
13.2
14.2
15.6
13.0
15. 1
23.8
15.1
16.0
15.3
17.0
No.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
Gas
Freon-113
Helium
Hexane
Hydrogen
3H2 + 1N2
Hydrogen bromide
Hydrogen chloride
Hydrogen cyanide
Hydrogen iodide
Hydrogen sulfide
Iodine
Mercury
Methane
Methyl alcohol
Nitric oxide
Nitrogen
Nitrosyl chloride
Nitrous oxide
Oxygen
Pentane
Propane
Propyl alcohol
Propylene
Sulfur dioxide
Toluene
2, 3, 3-Trimethylbutane
Water
Xenon
X
11.3
10.9
8.6
11.2
11.2
8.8
8.8
9.8
9.0
8.6
9.0
5.3
9.9
8.5
10.9
10.6
8.0
8.8
11. 0
7.0
9.7
8.4
9.0
9.6
8.6
9.5
8.0
9. 3
Y
14.0
20.5
11.8
12.4
17.2
20.9
18.7
14.9
21.3
18.0
18.4
22.9
15.5
15.6
20.5
20.0
17.6
19.0
21. 3
12.8
12.9
13.4
13.8
17.0
12.4
10.5
16.0
23.0
12-10
See Reference No. 10
-------
VISCOSITIES OF GASES AT ONE ATMOSPHERE
FOR COORDINATES SEE TABLE ON PRECEDING PAGE
Temp
Deg.C
-100 —
0 —
100 —
w»
__
.—
200 — -
300 —
—
400 —
-
-
500 — r
600 —
700 —
800
900 —
1000 —
e Referer
eroture ^
Deg.F. C
IOO
— 0
3O
r100 28
26
—
— 200
?4
— 99
— 300
20
400
— IR
5OO
V
— 6OO l4
— 700 '2
— 800 IU
__
Qnft a
y w o
— IOOO 6
1 1 00
— 4
1200
1300 2
1400 Q
i
I50O 024 6 8 10 12 14 16 18
~ 1600 *
1700
1800
ce No. 10
/iscosity
entipoises
— O.I
— 009
— 0.08
— 0.07
— 0.06
r- 0.05
—
f\ AA
— y.o*T
-
-
— 0.03
;
-
— 0.02
-
— 0.01
— 0.009
— 0.008
— 0.007
— 0.006
— 0.005
12-11
-------
CO
LLJ
O
LU
h-
U
LU
_1
LLI
oo
LL
O
CD
LU
U
LU
rt +j
CJ f<
y W)
rH <"
0 £
nS
rH
a
o
fa
CO
cd
O
rt
3 X!
o w
... **"^
rH 9
O >
"3
a
0
fa
CO
ri
O
CD
rH
O
CM
CM
a
Hydrogen
^
0
CD
CM
CM
a
CM
U
0)
0)
1— 1
&
m
U
1— 1
o
o
CM
a
CD
73
•rH
O
1 Hydrogen flu
co
O
t>
I— 1
CO
^
rt
O
a
a
CO
o
^
CO
CO
CM
a
0)
73
I Hydrogen su
^f
en
05
co
<;
c
o
be
">
co
CO
rH
1 Krypton
co
&
i-»
CO
a
CO
I Arsine
<* CO
O rH
CD O
r-l CM
a v
u &
Methane
Neon
CM O
T-l rH
CO CD
m m
o
rH CO
a a
U U
_
1 Butane
Butene -
rH
O
O
CO
O
0)
73
•a
o
0
•iH
•rH
i— 1
O
Tf
CM
O
U
fll
o
•rH
73
1 Carbon
CM
0
CO
CM
CM
Nitrogen
^f
-1
CD
(M
CO
U
1 Chlorin
o
o
CM
CO
CM
O
fl
I)
o
l~-
o
o
co
CD
a
CM
U
I Ethane
o
0
CO
co
o
1 Ozone
m
o
CO
CM
a
CM
U
1 Ethene
•35
0
•^
CO
rH
hH
CO
U
1 Propane
0
o
CO
CO
CM
fa
(U
I Fluorin
c-
o
^
CO
CM
O
CO
•rH
o
'En
i
3
CO
co
O
O
•rJH
0)
a
1 Helium
co
i— i
CO
0)
X
1 Xenon
t~-
rt<
CD
CO
r-H
U
a
(U
73
•iH
!H
O
rH
rC
O
fl
OJO
o
rH
l&
12-12
-------
UJ
cz
UJ
X
a.
CO
o
UJ
O
UJ
o
LL
O
tt:
UJ
X
U
u.
u
UJ
CL
CO
e £
Ol^|/^r>i
— --»
*
66— —
»A — O«
— aoo
I "j"~
Nt
Formul
BO
OCJOO ZZ S5 55
•a
a
§
a
o
O
i
K
|l
J2.S W
ft II
SS
'Sli'S'
S S
«
"O
-s *s
g jz;
'r1»
•
S
Si
^
<5
gS^l
o
°-
S
3
*n»AOu>o*r>oiAO m o>A
-------
SECT/ON 73 PROPERTIES OF AIR
Density of Dry Air in Kg/M for °C and Absolute Pressure in Millibars ... 13-1
Density of Dry Air in Mg/cm for °C and Absolute Pressure in mm. of Hg. . . 13-3
Density of Air (50% Saturated) in Milligrams per Milliliter for Various Tem-
peratures in °C and Absolute Pressure in mm of Hg 13-4
Specific Weight of Dry Air in Ibs/ft for F and R and Absolute Pressure
of 29.92 in. Hg - Graph 13-6
Specific Weight of Dry Air in Ibs/ft for F and Absolute Pressure of
29.92 in. Hg - Table 13-7
2
Kinematic Viscosity (ft /sec) of Dry Air at an Absolute Pressure of
29.92 in Hg and Various Temperatures °F 13-7
Nomograph for Determining Theoretical Minimum Weight of Air Required for
Combustion of a Fuel When the Chemical Analysis is Known 13-8
Viscosity of Air (Centipoises) at One Atmosphere for Various Temperatures
°C and °F 13-10
Composition of Dry Air 13-11
Air Density Chart 13-12
-------
DENSITY OF DRY AIR IN Kg/M3
FOR °C AND ABSOLUTE PRESSURE IN MILLIBARS
Ad-
juted
Tirtul
tern- Preuarc—milUban
perm.
t»«. 1100 1000 900 800 700 600 500 400 300 ' 200 100
f.
•C. kg.m.-» kg.m.-* kf.ni.-* kg.m.-« kg.rn.-* kg.m.- kg-m/4 k«.m.J kf.m.-« kf.at-* t*.m.-«
0 1.4029 1.2754 1.1478 1.0203 0.8928 0.7652 0.6377 0.5102 0.3826 02551 0.1275
1 1.3978 1.2707 1.1437 1.0166 0.8895 0.7624 0.6354 0.5083 0.3812 0.2541 0.1271
2 1.3927 12661 1.1395 1.0129 0.8863 0.7597 0.6331 0.5064 0.3798 02532 0.1266
3 1.3877 12615 1.1354 1.0092 0.8831 0.7569 0.6308 0.5046 0.3785 02523 0.1262
4 1.3827 12570 1.1313 1.0056 0.8799 0.7542 0.6285 0.5028 0-3771 02514 0.1257
5 1.3777 12525 1.1272 1.0020 0.8767 0.7515 0.6262 0.5010 0.3757 02S05 0.1252
6 U728 12480 1.1232 0.9984 0.8736 0.7488 0.6240 0.4992 0.3744 02496 0.1248
7 1.3679 12435 1.1192 0.9948 0.8705 0.7461 0.6218 0.4974 0.3731 02487 0.1244
8 1.3630 12391 1.1152 0.9913 0.8674 07435 0.6195 0.4956 0.3717 02478 0.1239
9 1.3582 12347 1.1112 0.9878 0.8643 0.7408 0.6174 0.4939 0.3704 02469 0.1235
10 1.3534 12303 1.1073 0.9843 0.8612 0.7382 0.6152 0.4921 0.3691 02461 0.1230
11 1.3486 12260 1.1034 0.9808 0.8582 0.7356 0.6130 0.4904 OJ678 02452 0.1226
12 1.3439 12217 1.0995 0.9774 0.8552 0.7330 0.6109 0.4887 0.3665 02443 0.1222
13 1.3392 12174 1.0957 0.9740 0.8522 0.7305 0.6087 0.4870 0.3652 02435 0.1217
14 1.3345 12132 1.0919 0.9706 0.8492 0.7279 0.6066 0.4853 0.3640 02426 0.1213
15 1.3299 12090 1.0881 0.9672 0.8463 0.7254 0.6045 0.4836 0.3627 02418 0.1209
16 1.3253 12048 1.0843 0.9638 0.8434 0.7229 0.6024 0.4819 0.3614 02410 0.1205
17 1.3207 12007 1.0806 0.9605 0.8405 0.7204 0.6003 0.4803 0.3602 02401 0.1201
18 1.3162 1.1965 1.0769 0.9572 0.8376 0.7179 0.5983 0.4786 0.3590 02393 0.1197
19 1.3117 1.1924 1.0732 0.9540 0.8347 0.7155 0.5962 0.4770 0.3577 02385 0.1192
20 1.3072 1.1884 1.0695 0.9507 0.8319 0.7130 0.5942 0.4753 0.3565 02377 0.1188
21 1.3028 1.1843 1.0659 0.9475 0.8290 0.7106 0.5922 0.4737 0.3553 02369 0.1184
22 12984 1.1803 1.0623 0.9443 0.8262 0.7082 0.5902 0.4721 0.3541 02361 0.1180
23 12940 1.1763 1.0587 0.9411 0.8234 0.7058 0.5882 0.4705 0.3529 02353 0.1176
24 12896 1.1724 1.0551 0.9379 0.8207 0.7034 0.5862 0.4690 OJ517 02345 0.1172
25 12853 1.1684 1.0516 0.9348 0.8179 0.7011 0.5842 0.4674 0.3505 02337 0.1168
26 12810 1.1645 1.0481 0.9316 0.8152 0.6987 0.5823 0.4658 0.3494 02329 0.1165
27 12767 1.1607 1.0446 0.9285 0.8125 0.6964 0.5803 0.4643 0.3482 02321 0.1161
28 12725 1.1568 1.0411 0.9254 0.8098 0.6941 0.5784 0.4627 0.3470 02314 0.1157
29 12683 1.1530 1.0377 0.9224 0.8071 0.6918 0.5765 0.4612 0.3459 02306 0.1153
30 12641 1.1492 1.0343 0.9193 0.8044 0.6895 0.5746 0.4597 0.3448 02298 0.1149
31 12599 1.1454 1.0309 0.9163 0.8018 0.6872 0.5727 0.4582 0.3436 02291 0.1145
32 12558 1.1416 1.0275 0.9133 0.7991 0.6850 0.5708 0.4567 0.3425 02283 0.1142
33 12517 1.1379 1.0241 0.9103 0.7965 0.6827 0.5690 0.4552 0.3414 02276 0.1138
34 12476 1.1342 1.0208 0.9074 0.7939 0.6805 0.5671 0.4537 0.3403 02268 0.1134
35 12436 1.1305 1.0175 0.9044 0.7914 0.6783 0.5653 0.4522 0.3392 02261 0.1131
36 12396 1.1269 1.0142 0.9015 0.7888 0.6761 0.5634 0.4507 0.3381 02254 0.1127
37 12356 1.1232 1.0109 0.8986 0.7863 0.6739 0.5616 0.4493 0.3370 0.2246 0.1123
38 12316 1.1196 1.0077 0.8957 0.7837 0.6718 0.5598 0.4479 0.3359 02239 0.1120
39 L2276 1.1160 1.0044 0.8928 0.7812 0.6696 0.5580 0.4464 0.3348 02232 0.1116
40 12237 1.1125 1.0012 0.8900 0.7787 0.6675 0.5562 0.4450 0.3337 02225 0.1112
41 12198 1.1089 0.9980 0.8872 0.7763 0.6654 0.5545 0.4436 0.3327 02218 0.1109
42 12160 1.1054 0.9949 0.8843 0.7738 0.6633 0.5527 0.4422 0.3316 02211 0.1105
43 12121 1.1019 0.9917 0.8815 0.7713 0.6612 0.5510 0.4408 0.3306 02204 0.1102
44 12083 1.0984 0.9886 0.8788 0.7689 0.6591 0.5492 0.4394 0.3295 02197 0.1098
45 12045 1.0950 0.9855 0.8760 0.7665 0.6570 0.5475 0.4380 0.3285 02190 0.1095
46 12007 1.0916 0.9824 0.8732 0.7641 0.6549 0.5458 0.4366 0.3275 02183 0.1092
47 1970 1.0882 0.9793 0.8705 0.7617 0.6529 0.5441 0.4353 0.3264 02176 0.1088
48 11932 10848 0$63 0.8678 0.7593 0.6509 0.5424 0.4339 0.3254 02170 0.1085
49 1.1895 1.0814 0.9733 0.8651 0.7570 0.6488 0.5407 0.4326 0.3244 02163 0.1081
50 1.1859 1.0780 0.9702 0.8624 0.7546 0.6468 0.5390 0.4312 0.3234 02156 0.1078
See Reference No. 1 13-1
-------
DENSITY OF DRY AIR IN Kg/M3
FOR °C AND ABSOLUTE PRESSURE IN MILLIBARS
(continued)
•c.
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
PreMore— mfflibwv
1100 1000 900 800 700 600 500 400 300 200 100
1.1859 1.0780 0.9702 05624 0.7546 0.6468 05390 0.4312 0.3234 02156 0.1078
1.1822 0.0747 0.9673 05598 0.7523 0.6448 0.5374 0.4299 0.3224 02149 0.1075
1.1786 1.0714 0.9643 05571 07500 0.6429 0.5357 0.4286 0.3214 02143 0.1071
1.1750 1.0681 05613 05545 07477 0.6409 05341 04273 0.3204 02136 0.1068
1.1714 1.0649 0.9584 05519 0.7454 0.6389 05324 0.42S9 0.3195 02130 0.1065
U678 14616 0.9555 05493 0.7431 0.6370 0.5308 0.4247 0.3185 02123 01062
1.1642 1.0584 0.9526 05467 07409 0.6350 0.5292 0.4234 0.3175 02117 0.1058
1.1667 14552 05497 05442 0.7386 0.6331 0.5276 0.4221 0.3166 02110 0.1055
1.1572 1.0520 05468 05416 07364 0.6312 05260 0.4208 0.3156 02104 0.1052
1.1537 1.0488 0.9440 0.8391 0.7342 0.6293 0.5244 0.4195 0.3147 02098 0.1049
1.1503 1.0457 0.9411 05366 0.7320 0.6274 0.5228 04183 OJ137 02091 01046
1.1468 1.0426 0.9383 05340 0.7298 0.6255 05213 0.4170 0.3128 02085 01043
1.1434 1.0394 05355 05316 0.7276 0.6237 05197 04158 0.3118 02079 0.1039
1.1400 1.0364 0.9327 05291 0.7255 0.6218 0.5182 0.4145 0.3109 02073 0.1036
1.1366 1.0333 0.9300 05266 07233 0.6200 0.5166 0.4133 O3100 02067 01033
1.1333 1.0302 0.9272 0.8242 0.7212 0.6181 0.5151 04121 OJ091 02060 0.1030
1.1299 1.0272 0.9245 0.8218 0.7190 0.6163 0.5136 0.4109 0.3082 02054 0.1027
1.1266 1.0242 0.9218 05193 07169 0.6145 05121 O4097 0.3073 02048 0.1024
1.1233 1.0212 0.9191 05169 0.7148 0.6127 05106 0.4085 0.3064 02042 O1021
1.1200 1.0182 05164 0.8146 0.7127 0.6109 05091 0.4073 0.3055 02036 01018
1.1167 1.0152 0.9137 05122 0.7107 0.6091 05076 0.4061 O3046 02030 0.1015
1.1135 1.0123 0.9110 05098 0.7086 0.6074 0.5061 0.4049 0.3037 02025 0.1012
1.1103 14093 09084 05075 07065 0.6056 0.5047 04037 0.3028 02019 0.1009
1.1071 1.0064 0.9058 05051 07045 0.6039 0.5032 0.4026 0.3019 02013 0.1006
1.1039 1.0035 0.9032 05028 07025 0.6021 05018 0.4014 OJ011 02007 01004
1.1007 1.0006 05006 05005 07004 0.6004 0.5003 0.4003 0.3002 02001 01001
1.0976 0.9978 05980 07962 0.6984 05987 04989 0.3991 02993 0.1996 00998
1.0944 0.9949 0.8954 07959 0.6965 0.5970 0.4975 03980 02985 0.1990 00995
1.0913 09921 05929 0.7937 06945 0.5953 0.4960 OJ968 02976 01984 00992
1.0882 09893 05904 07914 0.6925 05936 0.4946 03957 02968 0.1979 00989
1.0851 0.9865 05878 0.7892 0.6905 05919 0.4932 0.3946 02959 0.1973 00986
1.0621 0.9837 0.8853 0.7870 0.6886 0.5902 0.4918 0.3935 02951 01967 00984
1.0790 0.9809 0.8828 0.7847 0.6866 0.5886 0.4905 0.3924 02943 0.1962 00981
1.0760 0.9782 05804 0.7825 0.6847 0.5869 0.4891 03913 02935 01956 00978
1.0730 09754 05779 0.7803 0.6828 0.5853 0.4877 0.3902 02926 O1951 00975
1.0700 0.9727 05754 0.7782 0.6809 0.5836 0.4864 0.3891 02918 01945 00973
1.0670 0.9700 05730 0.7760 0.6790 05820 0.4850 0.3880 02910 01940 00970
1.0640 0.9673 05706 0.7738 0.6771 0.5804 0.4836 03869 02902 01935 00967
1.0611 0.9646 0.8682 0.7717 0.6752 0.5788 0.4823 0.3858 02894 0 929 00965
1.0582 0.9620 0.8658 0.7696 0.6734 0.5772 0.4810 0.3848 02886 O1924 00962
1.0552 0.9593 05634 0.7674
1.0523 05567 05610 0.7653
1.0495 0.9541 0.8587 0.7632
1.0466 0.9514 0.8563 0.7612
1.0437 0.9489 0.8540 07591
0.6715 0.5756 0.4797
0.6697 0.5740 0.4783
0.6678 0.5724 0.4770
0.6660 0.5709 0.4757
0.6642 0.5693 0.4744
0.3837 02878
04827 02870
0.3816 02862
0.3806 02854
0.3795 02847
0.1919 0.0959
0.1913 0.0957
0.1908 0.0954
0.1903 0.0951
0.1898 0.0949
1.0409 0.9463
1.0381 0.9437
1.0353 0.9412
1.0325 0.9386
1.0297 05361
0.8517 0.7570
0.8493 0.7550
0.8471 0.7529
0.8448 07509
0.8425 07489
0.6624
0.6606
0.6588
0.6570
0.6553
0.5678
0.5662
0.5647
0.5632
0.5617
0.4731
0.4719
0.4706
0.4693
0.4681
0.3785 02839 0.1893 0.0946
0.3775 02831 0.1887 0.0944
05765 02824 0.1882 0.0941
0.3755 0.2816 0.1877 0.0939
0.3744 02808 0.1872 0.0936
100 1.0270 0.9336 0.8402 0.7469 0.6535 0.5602 0.4668 0.3734 02801 0.1867 0.0934
13-2
-------
DENSITY OF DRY AIR IN mg/cm3 FOR'C
AND ABSOLUTE PRESSURE IN mm. OF Hg
This table gives the density at different temperatures of dry air containing atxnit
0.04 per cent of CO, (which is an average value for the COj content), the values being
computed from the formula
1.293052 *
^ 1+0.00367 O6o
where A is pressure in millimeters of mercury at o° C and standard gravity, and t is
temperature in degrees centigrade.
!*
;3
t •
!S
fc
H
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Premure In millimeters ef Hf (0* C, standard fravUy)
720
1. 1611
1. 1571
1.1531
1. 1491
1.1451
L1412
1.1373
1.1335
1.1296
1.1258
1.1220
1.1183
1.1146
1.1108
1.1072
1.1035
1.0999
725
1.1691
1.1651
1. 1611
1.1571
1.1531
1.1492
1.1452
1. 1414
1. 1375
1.1337
1.1298
1.1261
1.1223
1.1186
1.1149
1. 1112
1.1075
730
L1772
1. 1731
1.1691
1.1650
L1611
1.1571
1.1531
1. 1492
1.1453
1. 1415
1.1376
1.1338
1.1300
1.1263
1.1225
1.1188
1. 1151
735
1.1853
1. 1812
1.1771
1.1730
1.1690
1.1650
1. 1610
1. 1571
1.1532
1. 1493
1.1454
1. 1416
1.1378
1.1340
1.1302
1.1265
1.1228
740
1.1933
1.1892
1.1851
1. 1810
1.1770
1.1729
1.1689
1.1650
1. 1610
L1571
1.1532
1.1494
1. 1455
1. 1417
1.1379
1.1342
1.1304
745
1.2014
1. 1972
.1931
.1890
.1849
.1809
.1768
.1728
.1689
.1649
.1610
.1571
.1533
.1494
1.1456
1. 1418
1.1381
750
L2095
1.2053
L2011
1.1970
1.1929
1.1888
1.1847
1.1807
1. 1767
1. 1727
1.1688
1.1649
1. 1610
1. 1571
L1533
1 . 1495
1. 1457
755
1.2175
1.2133
1.2091
1.2049
L2008
.1967
.1926
.1886
.1846
.1806
.1766
.1727
.1687
.1648
.1610
1. 1571
1.1533
760
1.2256
1.2213
1.2171
1.2129
L2088
1.2046
1.2005
1.1965
1. 1924
1.1884
L1844
1.1804
1.1765
1. 1726
L1687
1.1648
1. 1610
765
L2336
.2294
.2251
.2209
L2167
.2126
.2084
.2043
.2002
.1962
.1922
.1882
.1842
.1803
L1764
.1725
.1686
770
1. 2417
1.2374
1.2331
1.2289
1.2247
1.2205
1.2163
1. 2i22
1.2081
L2040
1.2000
1.1959
1.1920
1.1880
1.1840
1.1801
1.1762
775
1.2498
.2454
.2411
.2369
.2326
.2284
.2242
.2201
.2159
.2118
.2078
.2037
.1997
.1957
.1917
.1878
.1839
See Reference No. 3
13-3
-------
DENSITY OF AIR (50% SATURATED) IN MILLIGRAMS PER MILLILITER FOR
VARIOUS TEMPERATURES IN °C AND ABSOLUTE PRESSURE IN mm OF Hg
This table is from Theorie, Konstruktion und Gebrauch der Feineren Hebelwage,
by W. Felgentraeger. It is computed for air of 50 per cent relative humidity and for
a place where "g" equals 981.288 cm/sec'. Ordinary changes from these conditions
may be expected to introduce errors of about five units in the last decimal place given.
If more accurate results are required, reductions or corrections must be applied '* as
noted below the table.
The barometer readings should be corrected for instrumental errors such as errors of
the scale or residual gas pressure if these errors arc not neglible. The reductions for
temperature and for gravity (latitude and elevation) are included in the computation
of the table. The temperature used must be that at the balance case; the temperature
of the barometer should not differ from this by more than 5°.
,\l
690
1
2
3
4
5
6
7
8
9
no
i
2
3
4
5
6
7
8
9
710
1
2
3
4
5
6
7
8
9
720
1
2
3
4
5
6
7
>
9
730
1
2
3
4
i
6
7
8
9
740
16°
L103
104
106
108
109
111
112
114
116
117
1.119
120
122
124
125
127
128
130
132
133
1.135
136
138
140
141
143
144
146
14»
149
1.151
152
154
156
157
159
160
162
164
165
1.167
169
170
172
173
175
177
178
180
181
1.183
17'
099
100
102
103
105
106
108
110
111
113
115
116
118
119
121
122
124
126
127
129
130
132
134
135
137
138
140
142
143
144
146
148
150
151
153
154
156
158
159
161
162
164
166
167
169
170
172
174
175
177
178
18*
094
096
097
099
101
102
104
105
107
109
110
112
113
115
117
118
120
121
123
125
126
128
129
131
132
134
136
137
139
140
142.
144
145
147
148
150
151
153
155
156
158
160
161
163
164
166
16f>
169
171
172
174
19'
090
092
093
095
096
098
099
101
103
104
106
107
109
111
112
114
US
117
118
120
122
123
125
127
128
130
131
133
134
136
138
139
141
142
144
145
147
149
150
152
153
155
157
158
160
161
163
165
166
168
169
20°
086
087
089
091
092
094
095
097
098
100
102
103
105
106
108
110
111
113
114
116
117
119
121
122
124
125
127
128
130
132
133
135
136
138
140
141
143
144
146
147
149
151
152
154
155
157
159
160
162
163
165
21°
082
083
085
086
088
089
091
093
094
096
097
099
100
102
104
10S
107
108
110
112
113
115
116
118
119
121
123
121
126
127
129
130
132
134
135
137
138
140
141
143
145
146
148
149
151
153
154
156
157
159
160
22'
077
079
081
082
084
085
087
088
090
092
093
095
096
098
099
101
103
104
106
107
109
110
112
114
115
117
118
120
121
123
124
126
128
129
131
132
134
136
137
139
140
142
143
145
147
148
150
151
153
154
156
23'
073
075
076
078
080
081
083
084
086
087
089
090
092
094
095
097
098
100
101
103
105
106
108
109
111
112
114
115
117
119
120
122
123
125
126
128
130
131
133
134
136
137
139
140
142
144
145
147
148
150
151
2V
069
071
072
074
075
077
078
080
082
083
085
086
088
089
091
092
094
096
097
099
too
102
103
105
106
108
110
111
113
114
116
117
119
120
122
124
125
127
128
130
131
133
135
136
138
139
141
142
144
145
147
25'
065
066
068
070
071
073
074
076
077
079
080
082
084
085
087
088
090
091
093
094
096
097
099
101
102
104
105
107
108
110
111
113
114
116
118
119
121
122
124
125
127
129
130
132
133
135
136
138
139
141
142
26*
061
062
064
065
067
068
070
072
073
075
076
078
079
081
082
084
085
087
089
090
092
093
095
096
098
099
101
102
104
106
107
109
110
112
113
115
116
118
120
121
123
124
126
127
129
130
132
133
135
136
138
27'
057
058
060
061
063
064
066
067
069
070
072
074
075
077
078
080
081
083
084
086
087
089
090
092
094
095
097
098
100
101
103
104
106
107
109
111
112
114
115
117
118
120
121
123
124
126
128
129
131
132
134
28«
052
054
055
057
059
060
062
063
065
066
068
069
071
072
074
076
077
078
080
082
083
085
086
088
089
091
092
094
095
097
099
100
102
103
105
106
108
109
111
112
114
115
117
119
120
122
123
125
126
128
129
"When a large number of corrections or reductions must be iutroduced it is generally as easy and often
preferable for other reasons to determine the density from other tables.
13-4
See Reference No. 3
-------
DENSITY OF AIR (50% SATURATED) IN MILLIGRAMS PER MILLILITER FOR
VARIOUS TEMPERATURES IN CC AND ABSOLUTE PRESSURE IN mm OF Hg
(continued)
740
710
760
77
710
16'
1.183
183
186
Itt
189
191
193
194
196
197
1.199
201
202
204
205
207
209
210
212
213
1.215
217
218
220
221
223
22S
226
228
230
1.231
233
234
236
238
239
241
242
244
246
247
17'
178
180
182
183
18S
186
188
190
191
193
194
196
198
199
201
202
204
206
207
209
210
212
214
21S
217
218
220
222
223
225
226
228
230
231
233
234
236
238
239
241
242
18'
174
176
177
179
180
182
183
185
187
188
190
191
193
195
196
198
199
201
203
204
206
207
209
211
212
214
215
217
219
220
222
223
225
227
228
230
231
233
234
236
238
19*
169
171
173
174
176
177
179
180
182
184
185
187
188
190
192
193
195
196
198
200
201
203
204
206
208
209
211
212
214
215
217
219
220
222
223
225
227
228
230
231
233
20'
165
166
168
170
in
173
174
176
177
179
181
182
184
185
187
189
190
192
193
195
196
198
200
201
203
204
206
208
209
211
212
214
215
217
219
220
222
223
225
227
228
21'
160
162
164
165
167
168
170
171
in
175
176
178
179
181
182
184
186
187
18»
190
192
193
195
197
198
200
201
203
204
206
208
209
211
212
214
216
217
219
220
222
223
22*
156
157
159
161
162
164
165
167
168
170
172
173
175
176
178
179
181
183
184
186
187
189
190
192
194
195
197
198
200
201
203
205
206
208
209
211
212
214
216
217
219
23'
111
153
155
156
158
159
161
162
164
166
167
169
170
172
173
175
177
178
180
181
183
184
186
187
189
191
192
194
195
197
198
200
201
203
205
206
208
209
211
213
214
24'
147
148
ISO
152
153
155
156
158
159
161
163
164
166
167
169
170
172
174
175
177
178
180
181
183
184
186
188
189
191
192
194
195
197
198
200
202
203
205
206
208
209
25'
142
144
146
147
149
150
152
153
155
157
158
160
161
163
164
166
167
169
171
172
174
175
177
178
180
181
183
184
186
188
189
191
192
193
195
197
198
200
202
203
205
26*
138
140
141
143
144
146
147
149
150
152
154
155
157
158
160
161
163
164
166
168
169
171
172
174
175
177
178
180
181
183
185
186
1S8
189
191
192
194
195
197
199
200
27'
134
135
137
138
140
141
143
144
146
148
149
151
152
154
155
157
158
160
161
163
165
166
168
169
171
172
174
175
177
178
180
182
183
185
186
188
189
191
192
194
195
28'
129
131
132
134
136
137
139
140
142
143
145
146
J 48
149
151
152
154
1S5
157
1S8
160
162
163
165
166
168
169
171
172
174
175
177
178
180
182
183
185
186
188
189
191
Interpolation Table
X. Af
A» >s
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.0'
0
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
0.1
- 0
- 0
- 0
+ 0
+ 0
+ 0
+ 0
+ 1
+ 1
+ 1
0.2
- 1
- 1
- 1
- 0
- 0
- 0
+ 0
+ 0
+ 0
+ 0
0.3
- 1
- 1
- 1
- 1
- 1
- 1
— 0
- 0
- 0
+ 0
0.4
- 2
- 2
—
_
__
_
_
- 0
0.5
- 2
- 2
«. 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
0.6
- 3
— 3
- 2
- 2
- 2
- 2
- 2
- 2
— • 2
- 2
0.7
- 3
- 3
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 1
0.8
- 4
— 4
- 4
- 3
- 3
- 3
- 3
- 3
- 2
- 2
0.9
- 4
- 4
Mtl A
- 4
- 4
- 3
— 3
— 3
- 3
- 3
Humidity Correction
Per
\^e«it
•c
10
20
30
10
+ 2
+4
+7
20
+ 2
+3
+6
30
+ 1
4-2
+4
40
+ 1
+ 1
+ 2
50
0
0
0
60
-1
-1
-2
70
-1
-2
-4
80
-2
-3
-6
90
-2
-4
-7
100
-3
-5
-9
13-5
-------
SPECIFIC WEIGHT OF DRY AIR IN Ibs/ft3 FORT AND'R
AND ABSOLUTE PRESSURE OF 29.92 in. Hg
O£.
O
LU
Q.
4500
4000
3500
3000
2500
2000
1500
_ 1000
500
400
300
200
100
0
_-100
_ -200
-300
0.01
0.
02 0.04
SPECIFIC
0.06 0.08 0.10 0.
WEIGHT (LBS/FT3)
20
0.30 0.40
13-6
-------
SPECIFICWEIGHT OF DRY AIR IN Ibs/ft3 FOR°F
AND ABSOLUTE PRESSURE OF 29.92 in.Hg
Temperature
(°F)
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
Specific weight
(Ibs/ft3)
0.08633
0. 08449
0.08273
0.08104
0. 07942
0.07785
0.07636
0.07492
0.07353
0.07219
0.07090
0.06966
0. 06845
0.06729
0.06617
0.06509
0.06403
Temperature
(°F)
180
200
220
240
260
280
300
350
400
450
500
550
600
700
800
900
1000
Specific weight
(Ibs/ft3)
0.06203
0.06015
0. 05838
0.05671
0.05514
0. 05365
0.05223
0.04901
0.04615
0.04362
0.04135
0.03930
0. 03744
0.03422
0. 03150
0.02911
0.02718
KINEMATIC VISCOSITY (ftfsec) OF DRY AIR AT AN
ABSOLUTE PRESSURE OF 29.92 in. HgAND VARIOUS TEMPERATURES 'F
Temperature
(°F)
0
20
40
60
80
100
120
150
200
Kinematic viscosity
(ft2/sec)
1.26 (10) -4
1.36 (10)-4
1.46 (lO)'4
1.58 dor4
1.69 (10)"4
1.80 (lO)'4
1.89 (lO)-4
2.07 (10)~4
2.4 (lO)'4
13-7
-------
NOMOGRAPH FOR DETERMINING THEORETICAL
MINIMUM WEIGHT OF AIR REQUIRED FOR COMBUSTION OF A FUEL
WHEN THE CHEMICAL ANALYSIS IS KNOWN
Method for tho determination of the theoreti-
cal minimum weight of air required for
combustion of a fuel when the chemical
analysis is known. The chart also deter-
mines the theoretical maximum amount of
carbon dioxide which would result if the
fuel were completely burned with that
amount of air. In addition, it is possible
to determine the actual amount of air for
lower values for the carbon dioxide content
of the flue gases.
One of the two equations upon which
the chart is based is that for the theoretical
amount of air, where the weight of air in
pounds per pound of dry fuel is
W0 - 11.49C + 34.48(H - 0/8) + 4.31 S
where C is the carbon content, H is the
hydrogen content, O is the oxygen content,
and S is the sulphur content, all as decimal
parts of the total dry weight. The carbon
dioxide content of the flue gas = COZ =
2AC/W, as theoretical maximum.
Procedure. The use of the chart is in
three stages, the first of which is to establish
a straight line through the scale points cor-
responding to the known values for Sul-
phur Content and Oxygen Content on the
scales so designated. The intersection of
this line with the first blank axis, near the
left-hand side of the chart, is then noted.
A second straight line is then established
through this point and the scale point cor-
responding to the known value of Hydro-
gen Content on that scale, and the intersec-
tion of this line is noted on the second
blank axis, at the right side of the chart.
Then, a third straight line is set through
this point and the scale point correspond-
ing to the Carbon Content, and on the A
scalings on the Pounds Air per Pound Fuel
and Carbon Dioxide—Per Cent scales are
read the final figures. To find the amount
of air for an actual observed amount of car-
bon dioxide, a straight line through the
scale points for the given values for Carbon
Content and Carbon Dioxide will intersect
the Pounds Air per Pound Fuel scale at a
scale value that gives the answer. The B
scales are added to increase the range of
this operation.
To illustrate the use of the chart, condi-
tions arc determined for a bituminous coal
of 0.777 carbon, 0.049 hydrogen, 0.108 oxy-
gen, and 0.040 sulphur. First, a line is set
through 4.0 per cent on the Sulphur Con-
tent scale and 10.8 on the Oxygen Content
scale, and its intersection is noted on the
blank axis at the left. A second line is
then laid through this point and 4.9 on the
Hydrogen Content scale, and its intersec-
tion is noted on the blank axis at the right.
A third line through this point and 77.7
on the Carbon Content scale is then found
to intersect the Pound* Air per Pound Fuel
A scale at 10.32 and the Carbon Dioxide—
Per Cent scale at 18.1. The computed
values were 10.321 and 18.09, respectively.
If the observed carbon dioxide in the
stack gases is 12 per cent, a line is estab-
lished through the scale point correspond-
ing to this value (with use of the B scale
necessary), and the scale point for 77.7 on
the Carbon Content scale, and the amount
of air per pound of fuel is read as 15.60, the
computed value being 15.54.
To find the weight of the dry flue gases
per pound of fuel, the weights of sulphur
and carbon per pound of fuel are added,
and eight times the weight of hydrogen is
deducted.
13-8
See Reference No. 11
-------
UJ
u_
< o
u z z
UJ p g
O Z) ^
UJ CO <^>
x ^ ~~
H" O £
1N39 MM - 1N31N09
1.1.1.1.1 . J .I.I.I/tWi.1. l.l.l.l.l.l.l.l.i.l.l.l.l.l.l^.l.l.l.KU^I.I.i
N
= H. -a
^ Q < §
H *<^
LLJ ~D o 8
I* I 130J ONTO* HM Ml* SONOOd
.1 I.,.. j...,|....j....|..,.j....|....|....[....|,...| j I" "I I |....|.4..|l...|...l[llHJ
(81 13nj ONnOd H3d MW SONnOd
X < ^
Q- u_ £
<__ ^^
• 1
Q^ z
O H- ID
o x x
O rr, ^
3
L.j
1N3D M3d-lM3lNIM NO9MV9
e s
...i.i.......i.........i....
9
?
.1.
z>
z
tHZ> «3d-lN31N03 N30JUO
a s 8
....i.... i....i.... i....i....i....i....i....i....i.... i....i.
8
13-9
-------
VISCOSITY OF AIR (CENTIPOISES) AT ONE ATMOSPHERE
FOR VARIOUS TEMPERATURES °C AND °F
Temptroturt
Deg.C. Dtfl.F.
-100 —i
100
100 —
200
300 —
400
500 —
600 -
700 -
800 -
900-
1000-
— O
— 100
— 200
-300
— 400
500
— 600
— 700
— 800
•900
• 1000
• 1100
- I2OO
• 1300
• 1400
• 1500
• 1600
• 1700
- 1800
Viscosity
Ctntipoilts
—O.I
— 0.09
- O.08
— O.OT
- 0.06
— 0.05
— 0.04
— O.03
— 0.02
— 0.01
— 0.009
— 0.008
— 0.007
=- 0-006
— O.O05
(1) centipoise
(10)"2 gm
cm-sec
_2
(10) poise
2.09(10)"5
#f - sec
ft2
2.09(10)" 5
slug
ft - sec
6.72(10)~4
#
m
ft - sec
13-10
See Reference No. 10
-------
££
<
rv
Q
U_
o
z
0
I/I
LU
5
0
\s
io
CM
|_
bj
•iH
CU
rH
rt
i— i
3
0)
r— 1
O
§
c
o
• rH
O
rt
£j ^
r— *
O
JS>
D
CO O -^ O CO CO
rt O •*)< i-t 00 O
O O O> O rt O
oo CM en -^ o ^
CM CO CO Tfi CN
1 1
0 0
X X
o> m co co TJ<
O O) O O CO CM
oo o rt m
r~ CM
E-
CO
oo
1
0
X
o
<— I
o
to
0
CM
1
o
X
o
m
co
rt
CO
rt
CO
i
O
X
o
00
o
o
o
00
CD
0
X
o
rt
CM
CM
CM
03
0
X
o
to
O)
m
1—1
O
o
o
CO
s
0)
o
rH*
0)
s
.
a
^
o
•
co
co
en
rH
m"
c-
a.
,
t**
CO
o
rt
m
05
CO
a
co"
CO
c— 4
CJ
o
CO
^
1
fl\
^
^•^
o
tf
al
ormu
EH
CO
rt
DJO
4-»
0>
3
-M
•rH
•f-*
co
d
O
u
CM
55
d
bjO
o
M
•rH
£
CM rH
O <
d
en d
bjO O
r*} DJO
X rH
O <
CM
O CU
u £;
*
cu
!H
^S
o
•rH
P
d
0
i-i 0
rt 0)
U 5?
£
|
rH
QJ
ffi
rH CM
1^ ffi
c
rH CD
I 2
>i T3
rH K^)
^ ffi
CU
X
c
o
d
CD
X
co d
O tf
*
* *
CU d
d o
O 13
ts) rt
O rH
H
1
a
rt
U
0)
(D
CO
aJ
rH
•8
•rH
%
>
#
t^
•»
CU
rH
CO «"
O5 Z
•\
00 CO*
in
rn •
w
•
a .
>-5
CU
§
•a
-3
ffi
»-3
-l->
rH
O*
•
C/3
d
^
1
d
%
U
•^4 *rH
* *
|l
rt rt
cu **
rH ^.
.sl
CU CU
rH rH
rt rt
•rH -rH
S rH
cd co
> >
„
., jf
•)?• *
See Reference No. 1 13-11
-------
AIR DENSITY CHART
WET BULB DEPRESSION, °F
12 16 20 2
EXAMPLE:
Dry bulb temporal
= 85»F
Wet bulb temporal
= 76»F
Barometric pressure
30.2 In. Hg
SOLUTION:
At Intersection of %
tlcal line, giving wet b
depresalon (9) with •!
Ing dry bulb tempera!
line scale (85), dr
horizontal line to Inolli
line denoting baromel
pressure (3Q£). Fr
that Intersection, vertl
downward will give d
slty of air (.0728 Ib/
ft»).
.080 .078 .076
.074 .072 .070 .068 .066
AIR DENSITY, LBS/FT3
M4 .062 1060
13-12
See Reference No. I1!
-------
SECT/ON 74 PROPERTIES OF POTENTIAL POLLUTANTS
Selected Chemical and Physical Data on Potential Atmospheric
Contaminants 14-1
Perceptible Concentrations and Characteristics of Various Substance sin Air 14-17
Ring Structures of Polynuclear Organic Pollutants 14-20
/
-------
SELECTED CHEMICAL AND PHYSICAL
DATA ON POTENTIAL ATMOSPHERIC CONTAMINANTS
ABBREVIATIONS USED
A., specific gravity with reference to air = 1
abs., absolute
al., alcohol
atm., atmosphere
°C., Centigrade degrees (All temperatures in Table I
are in the Centigrade system.)
c., cold
ca., approximately
cc., cubic centimeters
cm.'-'/sec., square centimeters per second
cryst., crystal
d., decomposes or decomposed
d.h., decomposes hot
dil., dilute
expl., explodes
h., hot
i., insoluble
ign., ignites
liq., liquid
m, meta position
mm., millimeters
n, normal
o, ortho position
p, para position
prim., primary
s., soluble
s. abs., soluble in absolute alcohol
s.h., soluble hot
si. d., slightly decomposed
si. s., slight or slightly soluble
subl., sublimes
v., very
v.s., very soluble
v.s.h., very soluble hot
v. si., very slight or very slightly
v.sl.s., very slightly soluble
<», soluble in all proportions
>, greater than
<, less than
±, about or near to, plus or minus
-0,800 loses an atom of oxygen at 800° C.
a, alpha form or position
ft, beta form or position
u, omega position
See Reference No. 5
14-1
-------
to -
P^
Z
LU
L_
t^
O
f\ «"•""•
Q_ -0
4)
o J
e
< 0
HO
-~~
<
Q
_J
•o'oS"
CQ&H
t*
C 4-T
S.Su
CL» O o
*3 CL,
gHH
•^J "•*""*•
g C o
o i> IH CD
J'JI's-?,
«ei c"d
. «M ^ • ,-* C
Qo c
r -i CJ
>^ x^-
! *
42 5
J3 Iw
o. j
§ 1
c •§
• — QJ
-^ ^
£
d oo
CM TH
f— f
in t>
CO to
CM rH
r*t
I
e o
e e
TH t
CO <
CO <
I— 1 1
© <
8 8
8 8
3 l-
J— 1 rtj
0 ! -g
y} C5
j>
>"^^
t*.
0 >>.^
*C ."tJ m
' *"t ^> C
Isa
c«O
W"c3
8 8
•:' Ri"
§8 5
t> ©
© r-(
co in co
oi cb to
co m ^f
CO
co
t-
I
O t-,
iH O
oq
co
co
co
I
88 8
8 8
_C
-O
in
oo
I
06
t-
oo
I
•^
Oi
CO
CO
I
o
co
& ^ t fc i
CD ^t rH N i-J
co oo oo oq oq
iH © © © O
(N
CO
.
50 IM rf
OO CO O
^T «
CM in
CO CO
l> t-
I I
00
to
c °o
Oi Oi
00 00
in m
© ©
d d
in
tO CO
t- .-(
oo oo
© ©
8888
8888
S
irt tn
2l* °e 8
rH IM CO
t» © lO
oo oi oq
©©©
in
00
CM_
ai
oo
8
-*
CM
:~i
t~
u
X
CL
O
Z
u
E
Q
UJ
r-
U
LU
_J
UJ
co
—
~5
fe
fc
*73
.§
a>
O
Element, Compound
or Other Substance
O
E
U
w
K
O
Acetaldehyde
(ethanal)
ffi
Q
O
«
33
O
^— \
13
'i
i!
U J=
Is
q
o
o
K
O
Acetic anhydride
n
X
O
o
u
sc
o
Acetone
(propanone)
M
U
33
U
33
U
O _
OJ
C
a> rt
Acetylene tetrachlorid
(sym-tetrachloroeth
O
33
O
33
O
33
CJ
Acrolein
(acrylic aldehyde)
^
0
33
y
M
33
O
Acrylonitrile
"oT
rs
03
>^
u
">>
c
q
C4
33
O
33
O
33 '
0
I
-<-j
i- a>
II
*> 13
5s
<
ra
33
25
Ammonia
33
tt
g
33
O
BS
w _ - •.„
ffi 8 S3 K
« ^^ ,o
o>
N
I
O
11
r= rt
Argon
M
$
I
<
14-2
-------
O
u
u
LU
X
a.
o
LU
Z'-g
o§
<
u
X
CL
U
LU
X
U
Q
LU
r-
u
LU
_J
LU
oo
It
^a
^4
OC
C *.
2-i
a> c
-u.
(W "5
$t- '
SL
1
PH
8
C
5
IS
'rt
o
II
OTC.
T
I
c
^
•^
c
I
5
0
4
0
4
> -^
.b 1
i " ^^^-,
! (5 w.
n
fc
"S
•s
o
SJ
^
jg
rt
^
?'S
2Q
3fe
^S
"3
1
6
£
a>
O
2 w
II
|l
?^
si
iJO
!fe
eo
1-1
oo
1— 1
1
:
•6
iH
.2*
("3
1
f \
Arsenic trichloride
(butter of arsenic
o
Tl >-J
IO • O •
10 .00 ;
§in
^
eo c> w
S i :
i
in
c-
o
o
• • ^ CO
j§
a
: : s :
• OJ fc
CJ ^^ ^^
§ > d :
C %2S
•^ 03 03 PQ
<>»
s
m
o
1
8
JS
•6
•0
(N
^H
O
6
o
o
Benzoyl chloride
oo
Ift t-
s s
T"4
: 7
8 »
8 M
8
eo
i-H
8 «
ft
O* ft^
CTJ
**
§
j£
o
o «
Benzyl amine
( w-aminotoluene]
Bromine
CSI
m
^H
CO
£
1
8
M
•-
O4
^H
«
§ '
Bromobenzene
(phenyl bromide
i
00
<— 1
1
8
8
.
ss ?*\
^5 w*
»H O
I
«
K
Cf
O
Bromoethane
(ethyl bromide)
00
in
rH
00
7
8
8
•-
si"
«
ffi
a
0
Bromoethylene
(vinyl bromide)
1
in
^
g
1
w
«;
CO
•
To
t
«
a
Bromomethane
(methyl bromide
s
» s^
O o
t^ t»
OJ OJ
5 •-'
<-< rH
1 1
10
00
o
d
8 8
8 8
R
i*r
•
o
sir w-
1 «
eo so
«-
P? £
a •£
C5 ™
V 0
o S
a a
Bromopropane
(propyl bromide]
Bromopropene
(allyl bromide)
S «
2 s
T :
s :
s :
T3
*
w
.- .j
t *'-
eo m
Tj« 50
•^ CO
Cl
« 0
K X
0 ffi
(0
ffi u
~ S
"-Bromotoluene
(benzyl bromide]
Bromoxylene
( bromo-o-xylene
14-3
-------
oo
r-
Z
bo
.S ~ •
r~ CO
CO
0
CO
OS
S
LO
S
W 00
co 01 co
•* OS t-
O
u
y
ex
in
x
Q_
«/•>
O
h-
LU
ii CO
os
S
CO
os
OS
os
M
co
co
00
os
0 "?
S3 S
i
q o
o d
q
d
o o c>
o
£ 1
ctf W
PH
S "o
_, X
»M Q
i ^
•g
3 t*
C/2 "rt
^
CJ "*^
If 1
.5* 2 w
^ fe
Chemical Formula
"c y
lement, Compou
or Other Substan
W
8
K
••"
•g .
CO
d
«
33
O
O
33
O
33*
O
3-Butadiene
(erythrene)
rJ
S"
^
S
C ,|
M ! h-
g
10
^
°s
d
.2"
3?
O
«4
O
a
33
o
">>
* "S
g.SJ
Is
8
8
J_
OS
8-
0
rH
00
d
33
q
o
c*
33
33
c5
•Butanol
c
tn
8 >
»
8 >
t-
ec -~
2. „
fi
0
35 cq
d o
.2"
•-•
33 33
0 9.
6 ffi
o u
(r) ^_^
0 0
X—-
c
2
Butanone
(methylethyl ke
utene-1
(butylene)
0
o
8 ^v
m W
1=5 d
m
c5
-S BC
33 q
C^ r«y4
1 =
g K
L-Butyl acetate
•Butyl cellosolve
B c
8 8
8 8
— q
"I d
> V
i 8 'a
rH OS
rH CO
OS C—
d d
J? O
33 ^s.
^ o
« t£
rj W
^ O
O tr?
^ r^
hpt U
l
^_^
1
rt 0)
1 ll
"T a* rS
.£? _ -o
c M
8 oj
o
.
• ^_;
05
t 2
rH 'CD
rH 00
OS ^*
O rH
0 !|
ii
v
•Butyl nitrite
acodyl oxide
(eacodylie oxide
c O
• '•
*
S> 8
8 1
OS C
.-: t- o
e
"» co
co 10
00 rH
-o
1
•o <5
o o
admium
arbon dioxide
u o
8
8
^
S T
i v«s I
j d d c
>
•g
rH T
CO r-
(N O
rH C
.2" .i
« i!
off C
u c
arbon disulfide
V. A« ««».« *J
o c:
: s
a 8
s
POO •. fc
51 §i
» d d d
^
l« 8iO*
S °>
o m
5 rH
31
_4
•«
3 0
; o
T)
arbon tetrachlori
;> o
-j
J
"a
|
1
(See monofluorotrirhl
arrene No. 2
C
14-4
-------
oo
h-
<
•<
r-
0
U
U
Of
LU
X
Q.
oo
0
2
h-
<
•
_J
<
r-
LU
1
r—
f \
£ i
__ 3
§1
PH
bC
C*
"^ £_
i
-^.ts^j
0) O o
^j A
E&
H
c-g 7
o a
'w's
te$
3*
Qc.
.2
&
g
r- 1
c
£
is
J3
"o
CO
«i
S-t
BJ
$X
J l^ fli
•3^
= c^
*-Sg
) sS
b
0)
•S
H
"o
•§
w
«j
S
S
?l
J VJ
il
3"
0
rt
3
0
fc
1
0>
6
•o n>
Element, Compoun
or Other Substanc<
T- 1
iti
eo
»H
g
1
8
8
8
kl"
.—i
03
O>
d
a
o
f*
c*
a
O
6
>n
a
«•»
u
i— i
Cellosolve
(2-ethoxy-ethanol-
00
to
i«
t— t
h.
s
1
8
8
S3
k!«
§
d
q
a
d
d
r i
^J
«
a
o
Cellosolve acetate
B <5 *
e -• j
» _: I -
«? OJ ^. « &
JS d £ •» g
1
CO
S g §
7 " '
• 1— *
^? f^
• £ S
^4
• ^ §•
O! 0>
s,6"'2 . ' .
to o o t>
** 0 0
rH »— 1 O 5
80 s a"
•* < ^
? - ^
0 0 U
Chlorine
Chlorine dioxide
(chlorine peroxide'
Chlorine monoxide
<-i
rH
d
sr k's ='-
rH O 00
S 2 §§
~5S 3 0
S § a j
1 S u g
a
0
&a
1^
P O)
a
0
5 g
0 U
^H U
«,
0
a
o
a
Chlorovinyldichloro-
arsine (Lewisite)
14-5
-------
o
u
u
C£
UJ
Q_
CO
O
h-
Z
UJ
CL g
£.Sd
•30°
pqfU
•s-g •
-iJ.SCJ
"5 Oo
c c
O
T, *J
J3 I Ed
_Q
•o -S
CO
O
1
efl
Oo
^0
•<
H
O
_J
<
U
CO
%^
^~
X
Q_
0
Z
<
1
<
u
^
UJ
X
u
Q
UJ
h-
U
UJ
_J
UJ
co
1
o >>.-£
(C +J aa
I'll
03C5 u
0
03
~5
£
L.
O
fe
"e5
_o
flj
UJ
X
O
Is
II
e «
EX5
O 3
ow
- u
-^> O>
C J=
o> -»->
so
*; t.
Sfe
94
s
o
fo
s
u
O
O
'oT
-o
si
m ^
1*
Is
.c *
o
oooo
g co
C>
00
c
^ 8
1
V
eo
g
ci
oo
88
fch
00
k kl» fc!"',
% s § s
t> rH CO -^
ON rH r-
IO
kl»
kft
t-
s
O5
o
Kf,
to
m
CM
CO
o
"si-
iH
os
C
-------
VI
r-
2
<
r-
Z
O
u
u
o:
LU
T*
0.
»x\
V*
O
3>
H
•<
_J
<
h-
LLJ
i—
1
O
Q-
"Z. "o
0 §
< i
He
o
< s
Q
_l
<
U
c/>
>-
X
n
LL.
O
Z
<
_l
<
y
LU
SELECTED CH
M
.at
'S'c"
«*
U)
C-t-
2-E
^5 c
S*
_ 4-
!§
'3«
•SI
s
).a a
S "" B
> ^
a>
5
H
"o
•§
O
«i
fc
5
t£
1^
=!
2^
5^
S
fA
TO
3
S
£
"s
1
6
Clement, ^ompouna
or Other Substance
•o
"to
t>
r-l
CM
S
^H
09
09
a
t-
0
d
fcl-
kA
^.
rH
%
•4
L_d
a
o
'«
a
9
o
Dichlorodiethyl sulfide
i-H
6
Tj<
t-
S
w«
1
8
8
fe
01
8l*
«O
s
^H
94
Q
•*
a
o
(mustard gas)
Dichloromethane
(methylene chloride)
irt
^
i— i
•
•
73
2l»
_^
^•H
O
••
a
o
6
**
a
o
o
Dichloromethyl ether
01 "p
06 N
^
§ :
I •
09
09 :
•R
UD
c»
.J V
•o kin
?H m
^ 5
_^j ^j
T^ ^^
(9
W
HH
o
•«
•»§
£S
0 0
Dichloromonofluoro-
methane (Freon-21)
1, 1-Dichloro-l-nitro-
00
«o
o>
g
1
v
o?
>
V3
>
•
fc
CN
d
*
m
r-<
^^
u
«4
a
0
S
a
o
*o
a
0
ethane
1, 2-Dichloropropane
(propylene chloride)
\
in
\n
in
o
8
i
8
8
09
•
'sis
d
T— 1
t-
d
a
!Z
•4
^
a
w
O
Difluoromonochloro-
ethane (Freon-114)
Diethyl amine
•«
•55
d
o
d
m
IN
1
8
03
•q
"w
fcl-
g
1-<
fH
»•
O
°i
o
w»
a
«4
O
*~—s
Diethyl sulfate
00 Cft 00 "*
a g § ^
N ?3 |
U»
: : S 8
' 1
.- 03 : <«
S ^
0 > . M
M
8 8 .- >
K\n 8)8 . o_,
oo o <9 Q
S 1 So 1
i-J d « o
6
'd
/•-^
•4
o a
« o
3 y-
S °
^ HH
"w "^75" 3n
5 Sffi"fe 5
§ orf a g
W, JjJ Q ^
4 -,
11 6c^
- f -g § c
S S-E" l~ 1^ s
•fiX'S^'. 5£'S
£ •»£ M fc get s
s s^ s| Is 5
^-4)'o>
>> 7, « ">,•>, ferg 5
5^-5?-Sjc §
»-(
m
c^j
f
a m.
03 8 >
03
09 8 >
03
"03
.- ' >
kl* k M*
g S S
OS CM Cft
d i-5 c4
tO
w
0 5 «
515
a a a
00 0
Dimethyl aniline
Dimethyl arsine
(cacodyl hydride)
Dimethyl mercury
(mercury dimethyl)
oo
88
8
.
a
^-,
is
Q
14-7
-------
«X1
r-
Z
z
2
h-
Z
O
u
u
7v
UJ
I
Q.
0
K
_J
P
ABB
UJ
£ 1
9
Z |
0 1
< 4i
h~
O
_j
U
x
Q.
Q
^M*
<
_l
<
U
•^e
.2:
X
U
SELECTED
e'+j
'S O o
g> ,
"o3 So
£&<
c ^ ^
O ^ qj
ifif
Qr^ 6
S3
1 "
§ -
rH O
(S -Q
**"* fj
J3 ^
15
O -4->
*
^
;>,
i %%
wO -
5
3
6
e
fe
1
1
"§8
lement, Compou
•r Other Substan
w u
^«5b- 9S«Er 00 -< II
| | 1 | 'I
O O O rH i-l O O
d d o o o d d
• "" '.O (J Q Q
tn . • gj o ° o o
S
n s
• ^ ^j
^ : : •§ i s : s s
fe. fc. fc
O V M ^^
»5 ^. ^ <3 « o
-^8^3 ^S00 8 8°
• i ^
!_ n« s L § %ir «" *^r 11"
N 0 «0 S 0^ S t^ §00
rHrH»-5 O O O O OO
a
U j-5
'« /"^ 7"^ «i "
MQO O O •• "•
"i '•* O ** •• ^" ffi W
o^-N a a r? a 5r?
^ad ^98 u ^9
Q U O •" •« ™ '<• H? H^
5-6C oou o c5u
"5 "m^
w -
•, T3 TT < — ,
"11^ ^ ^r S
a)^-x°"S-g u Cajrt
g'** gg ^^^ "3 ^^£-5
+->4)i-6c"73O T*Si'— "^S 5 e Si e
Oc-wsS'Sb4>'>>™'tt ™ej w.a'aS
-b S.22-g^ g g'S'SLS -c-S -c 6 -c-S
c oS f-S-g | |S §A -g^- §A ,g3
Q Q Q HUH » W W
00 0
CO — 1
oq eo
t> 00
7 *
Oj^Jt^j.
t- t- t-
10 irt m
o q o
doo
8 8
8 8
.„
n 00
01 «5
d d
*rl* U*
^ 00
f-H d
a
d
d
o
t *»a \a
*• ei
O O
hyl bromide
(bromoethane)
Ethyl butyrate
W c
8 888
8 888
® ® . — s?
.« ^ 8
t* si; I; fcjj-
O iH r-5 r-5
o
< ~
«-i|
r ^ "» HH
2 ^ a
oou
s
14-8
-------
oo
z
<
<
r-
O
U
U
Of
LU
X
Q.
t J\
V>
O
^^M
1
r~
•<
_l
P
LU
l^
P*
QL «
3
Z -S
of
< -
h-
O
_/
<
U
GO
>-
X
Q_
Q
z
<
1
<
u
LU
x
u
Q
LU
H-
U
LU
_J
LU
GO
~.S u, O>
'S'S'8^.
Sf.3d
«5 1
>_
0)
^ -S
c3 W
(X,
§ -3
»— i O
rf3
.S 8
.§ ^
in
^ &
^ *s
C» e9
t>
J>
«^
'S-'rS S
|§l
lo?
&
cQ
"3
S
fo
1
W
1
6
Tl -
c $
11
6^2
0 3
OW
- kd
-t-> 4)
C^
^ "5
t- OO t- 00 00
o o o o o
O GJ O O O
o °3 .
^ 8 > 88
88 88 88
8
v« « 1_
ko « eo
88 8 ^ Ij »-<
^^
°sl» il» t-w 5tl* si" iii»
eo
§
la a
•+•* — fc ^^
g o q
fe K -^ o- tc o
W » -j LM( ^^ '^ ^^
!S ^ W '•• ~ r^ Z
1 i" ^ g S o§
'O HH y-^ ^J * O V
r_) ^' • r^ ^^ •«
Sg g g-a S S
J. ">•>
O ^2
C *5
1 il
R —. -i
^ o o •- o>
•S §L ^.^ S -S «
.H^> X1^ 'J- R u eo -S-
"9 6C 60*5.05 C ft "
ss;?2'>,'og6-i: 1 -^
ggogjsgg w 5 ii c-
SSsSgl 5 5s 5 5;!
^J ^J HW> -|J 4J ^> nVJ
M M M r-r-T rvi rvi r,i
to
88
"2 • =o
TS t; S
> Tg 8
Q ec oo
c>ocJ r4 o
a
u
o
I
I 8
t>
06
CO
I
4
S =5
tn v
-
W WWW fefefe
OfficW
14-9
-------
CO
r—
Z
2
O
u
u
o:
LU
Q_
co
o
ZS
• "
1
•Mi
<
1—
'7
LU
r-
O 9
Q. *
z 1
o 1
< £
r-
<
Q
i
_l
U
CO
>-
X
Q_
O
Z
<
_J
<
U
2
LU
X
u
SELECTED i
*tf •
— .So
S<2*
hM
I?~
•a Cr-^
** *s c J
•3 or
^
cc 7
O a> t* S3
'w'S'S^?
«g|S^
s3""I
&
w ^*
•** *T?
b rvi
TO *™^
d.
§ 1
c -o
— S
£ 5
*3
-§ -•
.s S
5 |
?*»
«W1
101
15?
&
a!
1
£
1
a>
X
O
T3 -
S S
Element, Compou
or Other Substani
t- i
*? s
Tj< -* krt t-
§ §S S S a? §
^ ^ 1 «*
1-4
— . "? o> IH o>
? : S S S S
1 i i I i
8 8 8 8 o5 I
5
S 8 8 8 rf
fe
fc. 0
t) V
00 BO 5> ^ ^2
^ "^ c4 ci d
.-:>•.-; t> oo
*-*x
• — **
v ^c
hi 5" S
hcir"Jr «* v « l
do d d »H d
nS *
a u
a 9 a
Sg S §
08 o 1
5>- T — ' W
K" a a" a" o .
oo o 0-5- a a
I I
-S a -s-
1 - "3
•c B S'S
| | 81
«? ^ -? •- 1 1
s s« ^1 sals
§ i^ si gf if ?
tg SS %± SI ie f
KM a) ^^
^ S 5? S
i i
o>
^ 83^
i ill
s : : i
is.
o
S
s : : oS
*• 4.
«. v *
» 1 J3
8* i^ C™ "
> g §a
CO ^Ml I""
x*s
•- .. 21
& S i S
S Cft rH »-t
O O CNJ r-i
^.^
g
5
•w
CO
s
&
W 0 fa ^ ^
S a a,a a
^
1 ^ ^.| «
fi 'S -— •£ s *o
•5 §S 5 § s
§ t?S £ $ g
c g .a g g c
^3 'O Oi 'O *^ T3
>> >» "^ >* >> >>
a a a a a
TO ^ "* 1
S ?2 Jg *j §
rH rH
•
\a ^*. °? S
eo us -^ o» ®
rH O IO
rH rH , , rH
0*
d
„• 8 : 8 8 :
o5 8 : 8 8 :
•
^t
l 00 rH
•* rH C« OJ i-i in
^
g
g g „ g .
. Ti . " J?
••••MM O
a a a a s
*3 0 0 0 0 fa
"ST
si si ll |1 ^l
j mi mill
•g ^s "B^ "S^ •g* 1^
r-« 1— I H- ( 1— ( 1— 1 W
14-10
-------
UJ
o
Q_
Q
_J
O
oo
<
U
UJ
X
o
LU
h-
U
LU
_l
LU
oo
CO
I 9*
5 11*
Z
O
u
y
a:
LU
x
M -—
2. So
4> O o
O
O)
•s
.
III
a]
"3
Fo
Chem
§2
M
ii
Ow
^"fc
C js
ID 'JJ
SO
^ ^
w °
"
So
X
O
6
o
o
W
«^»Cbo
opL.SSw
0
00
t-:
os
us
go
01
c-
«d
i
.
§
fcl*
io
CC
Os
k'«
C>r4
O
q
o
§
II *
t>
1^
oj
00
o
03
14-11
-------
H-
Z
O
u
pqO-
M .
C *J
'-D.£ u
Oo
eo
io
oj
m co ce
CO CO t*™
os
-oiri
-moo
'II
1 1
05
oot-
CO
O 8
«2 oi |
— • t-
O< • i
X
53
t-
rH "*
a ^
&
c5 I H
OH |
8 |-
rH O
C *
3
e
o
t-
S
£
o>
Q
"? a.
C o
3 C
S «1
C »
£j=
O 3
Ocw
*Jfc
CJ=
^> ^
1°
t-;
d
01
d
•
.2 t-
.^ M co
to oo us
o> 06 QO
O rH O
0
^
ffi
o
0
o
Q<0
•« n »
KKK
ooo
OJ
"2
>
i" in in
O5 00
Oi-*
o o
.2"
SB
i i
KOOUU
^clohexane
3 hexahydrii
cyclohexani
exahydro-o-
cyclohexanc
ichlorarsine
0>
1
s
">>
J3
x — s
Z
**.
1
8 8
o a
o
_:
"J
>
iJ7 o
w is
u o
t
ss
w
o
°e
O
s
S
S3
§ £
JlS Jc,
(N O t> GJ
CU
CO
OOrH
i 5
1
14-12
-------
H
Z
2
<^
1-
z
o
u
u
Of
LU
IT
CL
O
p^
•
^flr
_,
§'S'3 \
5t3*§ C ^3
QO"*^
4>
CO t~\
t *J
£
o
2 "o
•S "8
2
J3 ^
OJ "rt
^J
^>
O t>>."tlH
«c.-ti S
0
3
g
Q
fa
15
o>
F^lement, Compound
or Other Substance
E
s
?
8
8
in
*^
°S'8
ft \ ft
CO
m
o
O
a
Nitroethane
co
co
T
.
t
-o
o
§
00
e-i
o
o
M
Nitrogen dioxide
i
1
co
CO
o
1— I
1
1
en
o
cj
U
CO
in
o
co
^
X-N
<
O
s
o
n
Nitrous oxide
o
E CO
s§!
s
si
co
co
i-H
8
c/3
•8
^
S
00
o
°,
i
a
O
O
o
Nitroglycerine
E
in
•c
in
i-H
O
in
00
CO
1
CO
CO
8
m
Oi
-i-
fils
00
CO
«
O
Nitromethane
i . •
a JL
co 7n t> w oq
O O »X CO CO CO ?Ot- G
CO in S 00 rH «0 COCO C
1 1
o m "*. «> a
CO CO«O°Or-HCO O5 • £
w ^ in £ }S "^ co- c-
1 i "-1 CO CO i ,-H
1 'II 1
1 1 1
0
f,
8 « <„• •' : 8 s 8
"5
"8 5 -S : : 8 8 S
S, _ °o oo °t-> "o £f ' "c
O t>t^i-H*O^O ?fiOO C
TH O O *""* r"' 1""1 OO C
.
O 5
<5 a a K t
* °° , ° a
g 3 3 R * 3 c
V. ) MH ?U O O ^ f"
J« O U c, ^; O ^
3 ^ ^ O hjj X
g a a « , a ^ a s
^ OCjOOO ^i O C.
O)
c
_0;
rt
'*~^ flj p*2
0) g -u
i> a JS a -5
c a t3 « x:
C3 O 0> C O c
a a "e 2 — " t
Sotu^, o^o^glS1
n_hcji "P c« 7: S S — f
ri't->c«C(-i -C-t-"-Cc3cS^.c
l|l| Is l| 5 g ||l
5"J3;xn >>o cS cn"d--2.Q
•v , V ^ N *> Qjt7<|-7i-1
(N CCOOOn OnCC t>
c
| e
UD N e
00 rj< CO C0_ S
a o i-5 inotj mo o^5
scooom ooooco.
4 ;_( r-i co i co m m
1 t-
.«
o m r-4 oo
~ ^i CO <^^ ^^ C^J ^^ ^* ^O T"H
- i-H _L CO1^ COT^COtT"»-H
i s 17 7 c- « 7
bo
8Q 0 . . »
o o y; • w -co
3 Q u • •
' O O tfj " tfj ^^ *
0 " *" ?. ^
^ oo ,, '^ ?5 o •
> .^ -^ > C^l "^ T3
^-x
?- - °. - - °- - ^ - -
•^ C^l t*™ *-^ C^ ^* C*J J*C t"^
0 O O ^OCO »™^QO O ^
•H
5'
^
5 o o -< ^'
rs rj I-H HH r'-' -= '- —
H ^<. Lin £ O *-|H rf~ r ,
H — i •- ^ t-U -T ., O
^) ^) ^) ^) ^^ P_, p ! p ! p ,
C "O **
S T" ~ 4j
2 fe 2 — S •§
S ^ .S «i C 3 'C
^ "S ;•« :S 5 £ o
— aiy u t, o rt~
>.C™ — vrt o ~- -*->jC
2^.§ -1e | £ |-|
5 — i C •- "§ b^3 33
«>jOcb *~".iiaj*-ct- t«t^
5-Cfe"C 2T3C0-0 OO
3*jO>> — .a— S-^-cx: j=^:
-a/'pjco'-jXgiji-ja.Q. a a
E"t" i V C ™ C •/: f r. r. •/. -y:
_-Cxi.i'>H.a'O.Hoo oo
- cu F£ -C _C ^ x: -C -C
J OH OH OnCL, CL,OH CntX,
14-13
-------
bo ..
ce •
'-5-SO
O O o
O
U
U
Ql
UJ
D_
be
C -u
~.Sd
O o
LU
<
y
oo
>-
Q.
O
z
U
-s.
UJ
U
o
UJ
h-
U
UJ
_J
UJ
oo
3
l
w
o
u
s
.S
O
"? «
c y
3 C
O crt
a#
eJ
O 3
OW2
«fc
c j=
b *->
£0
- h
w °
I «> «o t-^
00 «£> I-H Cvj
•3! o> p TI<
^H 00 "5 *J
So S S S S? at S
7I77III
eo
*
cn
w • S t~ -^92
7 :7 53 3T
£
o>
888
« a
uo
oo •*
2 3$
3 2
B
O
B
y
B
O
s
oo
g I
"
5.
«
06
C C OH 00 W «5 CO
«» - _ „ „
8- g 2 S -C g 3 3 3 3 13
R "O ^O-'^laM'.-v-iz;
^"33^33 «
05 OT 03 03 03 H
14-14
-------
00
L_
r^
z
<
<
h-
Z
O
u
u
o:
UJ
X
CL
00
O
2
I—
<
i
_j
<
h-
LU
L>^
0 9
Q_ V
ZG
•i-4
0 1
w
< 3
1—
O
_J
U
oo
^—
^~
X
Q_
O
<
_J
<
U
3
UJ
X
SELECTED C
,
C*>"
.5 Cr<
— .so
'6 Oo
rn PH
MH
t* .
C 4J
5 -So'
^
u »>
O >*.TI
cC -^ 53
Tel
r/) r h
^•* ^ t^
O
JS
Chemical For
^^
lement, Compound
r Other Substance
H °
6 1
E e
us eo oo 5 3 . l
^* « ^^ M t" ^^
oj «o o CJ o at- ]
00 Tt< N "5 »-l X 00 1
"^ -i ^j _j _u MI _^
^^ 1™^ ^^ ^^ ^^ V ^^
^ _. »/3
^3* ^^ »
rrf^ f*5 CO Oi CO t™ Oi
^ S CO rH CO (N 0]
e «x 1 1 ^ 1 -1
Q 888-
03 ° ° ° ° OJ
^ _C1
OJ 8 8 "M 8 03
.^ .-5 .« .- .- ._;
e1* i>|« «l» e|«
81 21 21 S> o
§T}" O5 1/5 2
C^ U5 O5 t-
«O <£> OS kO
{,} T-H rH TH T-5 1-5
94
'z
s
0
0 ^
W »• ja _ ffi
u q 0* £ t5
U3 O -5 ^ ^.
^ q q K a 6
S 5 d B B &
^^
o>
rs
CD c m o>
c § c c
2 C , 4> T3 — ' =
|2 £g §•§ J oil
is sj 1 - •>. ^r-as
ec , 1 s ^ 5 N- e £
1! :-! 1 1 1 ill
L* t> ^ •- _C ^ (M fc^ IM r^ f-
-ts ^ T— t "S -^ ^ -*-* -*ji-'E
Q,) 4> V CJ
^ _J c" H H H
000 t-lC'-lN "i^S
2S ig?§5:^^^
eo ^ > ^ °°.
10 «>T#00 -£2?S3^S
: « 7^ : ^ J3 7 3 "f
1 ' ^ ' I v
en
^8' 8888:«i8>
OT
M
^ r^
* tn '•«
^j8 8888^«J8>
0
2
a . 8 ""^
in « i-j v
i-5 "to o • . 8 !
"O .— •— ' —
» Jsl" V* s!* 'al* 8>. -'" °s s L
§s §g^s §g!
SoO OiOOCO-f . ^* ^ ™
r-5c5 ONT-Hi-H -rHOr-l
F3
^^
a
u
§ . i
g ffi» o B d - S§
Ij i 1 I 1 S i ii
'S' JH" ^^
T3 ^~- O>
'C ^* P 'O 4>
rt -^"^ 'C ^
? , "a? e « --^o oJii 'w >>-J
5 1 IJ^al Ji| 81 . §1
l| |^|||il|| |ill2
l| ^->, at 1 1 §>> §! sff S" * -*
.§§ s§^li ||O|°^|^|B^^.S
&'l S3llSli|Ilfld^S.2.2S
r* ^ — ' 75 v' — "* ^ — ' O "* — ** *C "* Ui t- ^ ^* (M fc^
HH HHHE-HHHH
14-15
-------
h-
2fl
H
rt ^
dn
O „
0 3
!s |
>. <5
I •-
3 OJ
O etf
CO >
w £>.-£
'C > c
WOQ
S
rt
3
S
u
O
fc
s
1
JC
o
-rt
Is
P
E^3
O 3
002
•s?
£6
so
- %
w °
00
j °? s
2 W ^O 00 ^j »T*
O CO O CJ "H< O "5
eg 00 10 x oo 10
4) N TH
®?
Csj .QO
• »-H • •
1
• &
to to • IO to
.
^ "3
S . ""'
>0 to 10
.
• rS
J2 — oj ^
"»-i ? — : o
t> Tj< > ^0
1C
oo
^ 2 fl *•?
c^i "w ""* S S
• O rH r-5 rH O
K
O
94
j» «j ^a
^ S -^ -^V s
^ ffi K K O 3|
r -^ ^^ ^^ *tmJ ^-4 r ~*
C c
2 o> § 2 >cj^3 v
00 ^^"^ ^ •go+J
oo-fcJ*JE-kJ *">^ ?
X i; o> o>.» o>->->/i< o>
«« E Eis E'SH &
'C ^~* 'C 'C ^^ 'C 'C ^^ 3
r r . r^ r. r_. r.
t~* " " " " t^
IN
r- 1
1
3
»H
1
to
>'
to
4
to
rito
00
0
sT'-J
a
o
a
o
1
">>
"*
**
U5 O
N O
7
|
O)
N
.-; o
o>
I
S
to
cfl
$ ^
g
-S
14-16
-------
PERCEPTIBLE CONCENTRATIONS AND CHARACTERISTICS
OF VARIOUS SUBSTANCES IN AIR
Substance Cone.
causing faint odor
(mg/ liter)
(oz/1000 cu. ft.)
Acetaldehyde
Pungent odor.
Acrolein
Acrid odor of burning fat
"Akrol"
Acrid pine-tar odor.
Irritating.
Allyl alcohol
Alcoholic odor. Not
unpleasant.
0.004
0.038
0. 01
0.017
Allyl amine 0. 067
Odor similar to ammonia.
Irritating.
Allyl disulfide
0. 0001
Garlic odor. Decomposes
Allyl isocyanide
Sweet but repulsive odor.
Nauseating.
Allyl isothiocyanate
Mustard oil odor. Nose
and eye irritant.
Allyl mercaptan
Very disagreeable odor.
Garlic .
Allyl sulfide
Garlic odor.
Ammonia
Sharp, pungent odor.
Amylene
Nauseating in high
concentrations.
Amyl acetate (iso)
Banana odor.
Amyl isovalerate (iso)
Pleasant. Fruity.
Amyl mercaptan (iso)
Unpleasant.
0. 0043
0.0017
**0. 0005
0. 00005
0. 037
0.0066
0.0006
0. 0008
0. 0003
Substance Cone.
causing faint odor
(mg/ liter)
(oz/1000 cu. ft.)
Amyl sulfide (iso)
Strong and unpleasant odor
Benzaldehyde
Odor of bitter almonds.
Benzyl chloride
Lacrimator. Aromatic.
Benzyl mercaptan
Unpleasant odor.
Benzyl sulfide
Unpleasant odor.
Bromacetone
Pungent and stifling odor.
Bromacetophenone
Butylene (beta)
Gas-house odor.
Butylene (gamma)
Gas-house odor.
n-Butyl mercaptan
Strong, unpleasant odor.
n-Butyl sulfide
Unpleasant odor.
Carbon disulfide
Aromatic odor, slightly
pungent.
Chloracetophenone
Apple blossom odor.
Strong lacrimator.
B-chlorvinyldichlorarsine
Odor of geraniums.
(Lewisite)
Chlorine
Pungent and irritating odor
Chlorophenol
Medicinal odor. Phenolic.
Chloropicrin
Fly paper odor.
0. 0003
0.003
0. 0016
0.00019
0. 0006
0.0005
0. 00064
0.059
0.05
**0. 0014
0. 0011
0. 0026
**0. 0085
0. 014
0.010
0. 00018
0.0073
See Reference No. D
14-17
-------
PERCEPTIBLE CONCENTRATIONS AND CHARACTERISTICS
OF VARIOUS SUBSTANCES IN AIR
(continued)
Substance Cone.
causing faint odor
(mg/ liter)
(oz/1000 cu. ft.)
Coumarine 0. 00034
Vanilla odor. Pleasant.
Crotonaldehyde **0. 021
Eye and nose irritant.
Crotyl mercaptan 0. 000029
Skunk odor.
Cyanogen chloride 0. 0025
Bitter almonds.
Dichlordiethyl sulfide 0.0013
Garlic or horseradish odor,
(mustard gas)
Dichlorethylene (trans.) 0.0043
Ethereal odor.
Dimethyl trithiocarbonate 0.00018
Foul and disagreeable.
Diphenylamine chlorarsine 0. 0025
Slight odor.
Diphenyl chlorarsine 0. 0003
Shoe polish odor.
Diphenyl cyanarsine 0. 0003
Odor of bitter almonds and
ear lie.
gtt* «&>•* •
Diphenyl ether 0. 000069
Geranium odor. Pleasant.
Diphenyl sulfide 0. 000048
Ethereal, but unpleasant
odor.
Diphosgene 0. 0088
Suffocating, disagreeable
odor.
Dithio-ethylene glycol 0.0016
Disagreeable, garlic-like
odor.
Ethylene dichloride 0. 025
Aromatic. Ethereal.
Ethyl dichlorarsine 0. 001
Irritating, biting.
Ethyl isothiocyanate 0. 038
Mustard oil. Irritating odor.
Ethyl mercaptan **0.00019
Odor of decayed cabbage.
Substance Cone.
causing faint odor
(mg/ liter)
(oz/1000 cu. ft.)
Ethyl selenide 0. 000062
Garlic odor. Putrid and
nauseating.
Ethyl seleno mercaptan 0. 0000018
Very foul and disagreeable
odor.
Ethyl sulfide 0. 00025
Garlic-like, foul odor.
Nauseating.
Hydrogen cyanide 0. 001
Odor of bitter almonds.
Hydrogen sulfide 0.0011
Odor of rotten eggs.
Nauseating.
Methyl anthranilate 0. 00037
Floral essence. Fruity odor.
Methyl dichlorarsine 0. 0008
Slight odor. Irritating.
Methyl mercapta a 0.0011
Odor of decayed cabbage
or -onions.
Methyl sulfide 0.0011
Odor of decayed vegetables.
Methyl thiocyanate 0. 0096
Odor of almonds.
Unpleasant.
Nitrobenzene 0. 03
Odor of bitter almonds
Oxidized oils 0.0011
Unpleasant and irritating.
Ozone 0.001
Slightly pungent, irritating
odor.
Phenyl isocyanide **0. 000029
Repulsive, nauseating odor.
Phenyl isothiocyanate 0. 0024
Cinnamon odor. Pleasant.
Phosgene 0. 0044
Odor of ensilage or fresh-
cut hay.
Propionaldehyde 0. 002
Acrid, irritating odor.
14-18
-------
PERCEPTIBLE CONCENTRATIONS AND CHARACTERISTICS
OF VARIOUS SUBSTANCES IN AIR
(continued)
Substance Cone.
causing faint odor
(mg/liter)
(oz/1000 cu. ft.)
Substance Cone.
causing faint odor
(mg/liter)
(oz/1000 cu. ft.)
Propyl mercaptan 0. 000075
Unpleasant odor.
b-Propyl sulfide 0.00081
Foul odor. Nauseating.
Pyridine **0.0037
Disagreeable, irritating
odor.
Skatole 0.009
Pungent, irritating odor.
Thiocresol 0.0001
Rancid, skunk-like odor.
Thiophenol 0.000062
Putrid, nauseating odor.
*Based on data from references 1 and 2.
**Av. value of observations obtained with
material of varying purity.
Trinitro butyl xylene
Musk odor.
0.00001
REFERENCES
1 Fieldnap, A. C., Sayers, R. R. , et al.
Warning Agents for Fuel Gases.
U. S. Bureau of Mines. Monograph
No. 4. 1931.
2 Prentis. A.M. Chemicals in War.
McGraw Book Company. New York.
1937.
14-19
-------
RING STRUCTURES OF POLYNUCLEAR ORGANIC POLLUTANTS
BENZENE
NAPHTHALENE
BENZ(a) ANTHRACENE
DIBENZ (a,h) ANTHRACENE
CHRYSENE
FLUORENE
11 H-BENZO(b) FLUORENE
11 H-BENZO(a) FLUORENE
FLUORANTHENE
PYRENE
14-20
-------
RING STRUCTURES OF POLYNUCLEAR ORGANIC POLLUTANTS
(continued)
PHENANTHRENE
BENZO(a)PYRENE
BENZO (e) PYRENE
PERYLENE
BENZO (g,h,i)PERYLENE
CORONENE
ANTHANTHRENE
14-21
-------
SECTION 15 MISCELLANANEOUS CONVERSION FACTORS
Conversion Factors
Conversion Factors
Conversion Factors
Conversion Factors
Conversion Factors
Conversion Factors
Conversion Factors
- Force 15-1
- Energy and Work 15-1
- Power 15-2
— Energy per Unit Area 15-2
- Power per Unit Area 15-2
- Illumination, Brightness, Etc 15-3
- Emission Rates 15-4
-------
CONVERSION FACTORS - FORCE
1 gram weight
= 980.665 dynes
1 kilogram weight
= 9.80665 X 10* dynes
1 newton
= 10* dynes
1 pound weight
= 32.174 poundals
= 444822 dynes
1 poundal
= 13825.5 dynes
* at standard gravity of 980.665 cm/sec2 or 32.174 ft/sec2
CONVERSION FACTORS - ENERGY AND WORK
1 erg
= 1 dyne-centimeter
= 10"' abs. joule
= 2.38844X10-' ITcal.
= 2.3892 X 10-* cal...
1 absolute joule (abs. joule)
= 10' ergs
= 0.238844 ITcal.
= 0.23892 caU
1 kilogram-meter (kg.-m.)
= 9.80665 abs. joules
1 International Steam Tables cal-
orie (ITcal.)*
= 4.18684 X 107 ergs
= 4.18684 abs. joules
= 1.00032 cal.»
= . Int. kw.-hr.
860 X 103
1 15° gram-calorie (cal.u)*
= 4.1855 abs. joules
1 kilogram-calorie (Kcal.)
= 10" gram-calories
1 absolute kilowatt-hour (abs. kw.-
hr.)
= 3.6 X 10' abs. joules
1 mean International kilowatt-hr.
= 1.00019 abs. kw.-hr.
= 860000 ITcal. •
= 3.60068 X 10" abs. joules
= 3412.756 Btu
1 British thermal unit (Btu)
(The Btu used here is defined
by the relationship:
1 Btu "F.-i lb.-i = 1 ITcal. °C.-i
«-»)
= 251.996 ITcal.
= 252.08 cal.i,
= 1055.07 abs. joules
= 0.00029302 Int. kw.-hr.
1 foot-pound (ft.-lb.)
= 1.35582 abs. joules
See Reference No. 1
15-1
-------
CONVERSION FACTORS - POWER
1 absolute watt (abs. watt)
= 1 abs. joule sec."1
= 0.238844 ITcal. sec.'1
= 14.33062 ITcal. min.-'
= 0.23892 caU sec.'1
= 14.33527 caU min.-1
= 0.056868 Btu min.-1
1 mean International watt
= 1.00019 ibi. witti
1 ITcal. sec.'1
= 4.18684 abs. watts
1 ITcal. min.-1
= 0.069781 abs. watt
1 caU sec.'1
= 4.1855 abs. watts
1 cal.ii min.-1
= 0.069758 abs. watt
1 horsepower, electrical, U. S,
Brit.
= 746 ib«. w«tti
1 horsepower (mechanical)
= 550 It. Ib. MO.-I
= 745.70 »bs. watts
1 horsepower (continental)
= 736 «bt. wttti
1 cheval-vapeur
= 75 k|. m. iec.-»
= 735.499 abs. watts
1 Btu min.-1
= 175.844 abs. watts
= 251.996 ITcal. min.-1
= 252.08 cal.» min.-1
CONVERSION FACTORS - ENERGY PER UNIT AREA
1 langlcy (ly.)
= 1 cal.» cm.'1
= 4.1855 abs. joules cm.'*
= 0.011624 Int. kw.-hr. m.'*
= 3.6855 Rtu ft.'*
1 abs. joule cm."1
= 0.23892 cal.« cm.-'
= 0.00277725 Int. kw.-hr.
m.-'
= 0.88054 Btu ft.-'
1 Int. kw.-hr. m."'
= 86.028 ral.ii cm.'1
= 360.068 abs. joules cm."'
1 Btu ft.-*
= 027133 cal.,, cm.-*
= 1.13566 abs. joules cm.-*
CONVERSION FACTORS - POWER PER UNIT AREA
1 cal.i, cm."' min.'1
= 1 ly. mill."1
= 0.069758 abs. watt cm.-*
= 0.069745 Int. watt'cm.-1
= 69.745 Int. kw. deka-
mctcr'*
= 3.6855 Btu ft.' min.-1
= 1440 cal.,, cm.'' day'1
= 5307.1 Btu ft.-* day'1
1 Btu ft.-* min."
= 0.27133 cal.» cm.-1 min.-1
= 0.0189277 abs. watt cm.-4
15-2
See Reference No. 1
-------
CONVERSION FACTORS - ILLUMINATION, BRIGHTNESS, ETC.
The total luminous flux from a source of unit spherical candlepower is 4r lumens.
1 lux (Ix.) 1 footcandle (ft.-c.)
= 1 lumen incident per =1 lumen incident per
square meter *quare foot
= 0.0001 ph. = 10.76 Ix.
= 0.09290 ft.-c.
1 phot (ph.) 1 candle per in.* (c. in.-1)
= 1 lumen incident per =0.1550 sb.
square centimeter =0.487 L.
1 stilb (sb.) = 452.4 ft.-L.
= 1 Int. c. cm."* 1 footlambert (ft.-L.)
= «• L. = 3.142 L. = 0.0003426 sb.
= 2919ft.-L. = 0.001076 L.
1 lambert (L.) = 0.002211 c. in."*
= l/w sb. = 0.3183 sb. 1 candle per ft.«
= 2.054 c. in.-* = 3.142 ft.-L.
= 929ft.-L.
1 millilambert (mL.)
= 10^ L.
1 apostilb, in International units
= l/OrX 10*) 80.= -^; Stilb
= 0.1 mL.
1 apostilb, in German (Hefner)
units
= 0.09 mL.
Luminous efficiency: At wave length of maximum luminosity 0355 it for
photopic vision, the luminous efficiency is 680 lumens per watt, corresponding to a
minimum "mechanical equivalent of light" of 0.00151 watt per lumen.
See Reference No. 1 15-3
-------
LLJ
h-
oo
00
LU
I
00
Q-1
O
h-
U
z
o
oo
&.
LLJ
O
U
»,
r*>
§
0
J^
Rt
T3
in
§
2
•^
rjjr
o
>,
rt
"U
X)
(H
.C
"•^
0)
XI
.3
g
CO
XI
>>
c?
.^^
bo
X
IH
A
•— »
.S?
.3
j:
1C
S
60
O
CO
~rr7
bo
o /
<|J _W /
rH 'rH M
i
/ C w
/ -3 'c
^ O 3
CO O
CD rH
t-
•* X
CO
CM
1
0 0
CM
m X
O)
CO
1
CO O
CO rH
CD
03 X
CO*
CM
CO O
•O1 •-<
o
03 X
rH
pw
CO
CO
O3
C-"
1
00 O
CM — 1
CM
CO X
rH
O
O •-!
S x
CO*
CO
co"
o
o
CO
o
rH
o
01
01
01
g
no
rH
1
oo o
CO rH
t- X
m'
CO
i
co o
t- rH
CO
m X
rH
m
OJ O
CO rH
rH
CD X
CD*
t-
^*
r-
rH
CO
rH
1
CO O
CM rH
CM
CO X
rH
CO
1
co o
^ rH
O
CM X
CM"
o
o
*f
•4
CM
I
O
o X
co"
o
,H°
CM
1
t- O
CO rH
CO
co X
T-H
.s
to
BO
CO
CO
in
CO
OJ°
CM
1
CD O
irt ***4
co X
CM
CO
1
co o
CM r-l
O
rH
rH O
rH rH
O3
CM X
m"
co
o
CM"
CM
1
Tj" O
't 1-1
f-
o
in rH
CO
m X
Tf"
00
O3
m
*"
S
-— «.
a
o
o
CO
CO
"*'
CM
0 0
0 rH
O
CM X
,_,'
^
t
0 0
O rH
§x
in
o
^f
CM
0
rH
CM
1
t- O
CD rH
CO
co X
rH
CD O
oo
o X
-"'
^
i
O3 O
CO
•fT
"*'
00
03
m
m
t-'
rH
1
O O
0 -"
S X
rH
SH
J2
1
I
O O
in rH
CM
oo X
rH
• o
O3 rH
O3
CM X
co"
O 0
O rH
in
o x
rH
n)
•O
to
|
o
rH
CO
t- o
O3 rH
CO
c- X
>N"
„,
i
CO O
rH rH
•*
T-l
in
O3
r-
*
in"
rH
1
rH O
C1*-* rH
co
M X
CM"
CO
1
CM O
in rH
O
co X
co'
*!*
in
oo
^"
IN"
rH
1
CO O
in rH
CO
o X
rH
O
CO
CM
rH
CM
co o
CO rH
t-
co X
CM"
IH
01
1
JH
rt
0>
C
0)
XI
•o
§
01
•M
C
3
C
0)
So
o>
xj
0)
•H
01
O
8-
.
Q
•M
o
0)
0>
rj
±!
^j
XI
Or1
3
*3
•tH
tUD
1
^>
^
3
fl
iW
.•a
c
o>
M
'01
O)
•o
rt
O
a
c
3
C
O>
'bo
E
0
<*-*
V
3
"rt
rt
'S
:onve
\j
o
H
01
.in
01
s-S
15-4
-------
SECTION 16 MEDICAL
Absolute Lung Volumes, Definitions ond Conversions 16-1
Subdivisions of Lung Volume: Man 16-2
Diagram of Lung Lobule 16-3
Representation of Respiratory System 16-4
Representation of Respiratory Tract 16-4
Respiratory Rate, Tidal and Minute Volumes 16-5
Data Useful in Pulmonary Physiology 16-6
Mean Respiratory Air Flow Measurements 16-7
Blood Erythrocyte and Hemoglobin Values at or Near Sea Level: Man .... 16-8
Blood Erythrocyte and Hemoglobin Values at Altitude: Man 16-9
-------
ABSOLUTE LUNG VOLUMES, DEFINITIONS AND CONVERSIONS
1 ABSOLUTE LUNG VOLUMES, DEFINITIONS AND CONVERSIONS ATPS, BTPS, AND STPD CONDITIONS
Gas volume in the lung exists at fiody JTemperature and atmospheric pressure and is completely Saturated
with water vapor at body temperature--hence the designation BTPS.
However, once the gas has been blown into a measuring device such as a spirometer, the temperature will
have dropped to the spirometer or Ambient Temperature; although the gas volume is still Saturated with water vapoi
at the lower ambient temperature the water vapor volume is reduced. The Pressure of the atmosphere is the same.
This condition is designated ATPS.
Under average laboratory conditions (ATPS), the "true" lung volume (BTPS) will shrink, in response to the
ambient temperature and barometric pressure, to perhaps 93%, as shown in the figure below. If this lung volume is
then converted to conditions of Standard ^Temperature and ^Pressure with all water vapor removed (or Dry), this
STPD value will be approximately 83% of the BTPS lung volume--sometimes even less in accordance with the baro-
metric pressure (also as shown in the figure below).
It must also be borne in mind that lung volume measurements are often made on closed breathing circuits
which contain a CO^ absorber. Any volume expired into such a system will, of course, be automatically reduced by
the percentage of CO;> in the expired air; for a Vital Capacity obtained after full inspiration and before maximal
expiration, this reduction may well be of the order of 2-3%. This discrepancy must be considered in making refer-
ence to "absolute volumes."
All lung volumes are normally recorded at ATPS conditions. Conversion to BTPS conditions which repre-
sent true or anatomical lung volume requires knowledge of room or spirometer temperature and approximate baro-
metric pressure. J10 pR.pH2o
True lung volume (BTPS) = lung volume at ATPS x x —S—~±—, where t * spirometer temperature in
degrees C; Pjg = barometric pressure in mm Hg; and pH^O = vapor pressure of water at spirometer temperature t.
310 is absolute body temperature of 37°C, and 47 mm Hg is the vapor pressure of water at 37°C.
100
90 —
BTPS
% Lung Volume
80
70
37
30
ATPS
At Various
Temps, °C
760
—I—1—I—I—I—I—I—j-
700 650
Barometric Pressure, mm Hg
See Reference No. 18
16-1
-------
SUBDIVISIONS OF LUNG VOLUME: MAN
DIAGRAM
Volumes corrected to HIPS condvUonb (cf Page 1).
M
c
3
o
Inspiratory
Capacity
Functional
Residual .
InspiratC'ry Reserve Volume
Tidal Volume
(any level of
activity)
Expiratory Reserve Volume
.
'•"•f
Residual
Volume
1
Special Divisions for
Pulmonary Function Tests
Primary Subdivisions
of Lung Volume
Reference: Comroe, J. H., Jr.. et al, Fed. Proc. 9:602, 1950.
STANDARD TERMINOLOGY OF LUNG CAPACITY
Standardized Term
1' Inspiratory reserve volume
Definition
Maximal volume that can be inspired
from end-tidal inspiration.
2' Tidal volume
3| Expiratory reserve volume
Volume of gas inspired or expired
during each respiratory cycle.
Residual volume
Inspiratory capacity
Functional residual capacity
7 Vital capacity
8 Total lung capacity
Maximal volume that can be expired
from resting expiratory level.
Volume of gas in lungs at end of
maximal expiration.
Maximal volume that can be inspired
from resting expiratory level.
Volume of gas in lungs at resting
expiratory level.
Maximal volume that can be expired >
after maximal inspiration.
Volume of gas in lungs at end of
maximal inspiration.
Previous Term
Complemental air.
Complementary air.
Complemental air minus tidal air.
Inspiratory capacity minus tidal volume.
Tidal air.
Supplemental air.
Reserve air.
Residual air.
Residual capacity.
Complemental air.
Complementary air.
Functional residual air.
Equilibrium capacity.
Mid-capacity.
Normal capacity.
Vital capacity.
Total lung volume.
Reference; Comroe, J. H., Jr., "The Lung," Chicago; The Year Book Publishers, 1956.
16-2
See Reference No. 18
-------
LUNG LOBULE
OLFACTORY AREA
CONCHAE
VESTIBULE
TRACHEA
LUNG
BRONCHUS
BRONCHIAL
ARTERY
PULMONARY
ARTERY
LYMPHATICS
PULMONARY
VEIN
LYMPHATICS
NASOPHARYNX
ORAL PHARYNX
EPIGLOTTIS
LARYNX
LUNG
TRACHEO-BRONCHIAL
LYMPH NODES
CONDUCTING
BRONCHIOLE
TERMINAL
BRONCHIOLE
RESPIRATORY
BRONCHIOLE
ALVEOLAR
DUCT
ALVEOLAR
•ALVEOLUS
See Reference No. 23
16-3
-------
UJ
H-
oo
>-
oo
O
h-
Q.
co
UJ
C£
U_
O
I-
z
UJ
t/1
LLJ
Qi
Q.
UJ
£ § S 8
r_ M •« AN
-
co g
U
«
S *»
11
W oT
o
u
-a
e
e .2
bfi
g42
PQ
I
S,
bfi
J
r}'
O
OO
rJ'
O
-tOOW
V
"I
O
eo
m
cc
0
i/5
tN
^O
^
f « I- l-
0600
2 P x x x x
^j p-j o es
i/5 I-H CN in
CM
^ >- *J e
1 -a 1 2
'
s
•— N f-j CO _r!
. .2 .2 .« 13
U
cd
1
c 3
g
O
I-
CL
oo
LLJ
Ckf
LJ_
O
Z
O
H-
Z
LLJ
oo
LLJ
o:
Q_
LLJ
Of
co
S
^§ « °
!!!
;ll
B«^N L^
*^ S
*§ S S
s :-a
u o o
< fa H
a A u
o 2r !
- -S I 8
o to I P
o
CO
tu
s
> 8
«|£
« o ^^
s «,
= S
-3 5
1
"-io'eioo'ooooo
tf5 UO
t*~ r>» £•*> c*o i—t i—* c^ i/5 o
ppppppp'-;'-;
oddddddoo
1/5
Irt 1/5
i— 1 O O
1/5
«5 i-J r-5 d d d d d d d
m _.
ppppppOrHoSS
dddo'dddddei
i—ii— tcvte^o
^
o£>^
o o
S f: x x x x
»O i—
oo
-------
UJ
2
ZD
_J
O
_J
UJ
I—
ID
UJ
UJ
Qi
a;
a_
r-H •
g -S
s
Q> M
3 *~l
c
•rH
[>•
*-
ft
C
f . •r"'
s s
rt .js "^
_i oj c^
" t *^5
03 $
D Q*
tf £
G
.2
-*J
•5
o
u
T3 ^*3JQ
Q •!— 1 WIJ
w |
co
0
rH
CO
e
CO
t-'
^_^
in
CO
i
in
r-
in
o
in
C--
i-H
CO*
rH
|
T— I
O
I— 1
t-
t-H
i— I
tuo
.s
M
cu
OH
oT
o
co
i
co
«
CO
co"
(M
o"
r-
tv
1-1
o
i-H
m
i — t
co
t^
CD
t—i
c^J
00*
r-l
|
t-
in*
i — t
r-4
t-*
r-l
O
&JO
'J
m
co'
CO
fl
rt
CM
in
i
CO
co
o>
CM
rh
^
»— i
i — i
CM
O
O
o
i-H
o
co
o
CM
CO
co*
CO
1
CO
00*
,— (
CM
T— 1
CM
_*
O
>>
rt
ffi
r-t
in
i
o
in
•^*
^— ^
CO
CO
1
m
co
CM
en
CO
CO
o"
CO*
T— 1
i
TF
o
I— I
^
,_°
rH
CJD
•S
H-3
w
tf
00
co*
i— i
i
en
in
CO
co*
i— i
^.^
m
co
CO
i
CO
co
CO
o
CO
CO
o
O3
i— I
!H
O
i
•rH
J'
rt4
m
C
at
a
0
CO
T— 1
CO
i
co
t-'
m
•**
CM
o"
t~
— 1
1
0
cn
•^
o
CO
CO
co
in
CO
i
'o
in
CM
O
o
CO
X
O1
>•>
rt
cu
ffi
T!
C!
O
OH
m
o
CM
CM
buo
i-H
*
OT OT
*T3 'O
c c
3 3
O O
A OH
rH CJ3
in -—I
CO)
CO
bfl
m
C
O
•i-i
-»->
rt
CO
cu
a;
O
a
0)
13
CD
P
• r-l
a
See Reference No. 18
16-5
-------
O
O
_J
o
1C
Q.
:D
Q.
13
U_
LLJ
ZD
<
0) Ti
O. C
en O
o o
0) Ul
11
o>
" E
M O
5 -^
-C Ifl
rt xi
t S
13 E
a, e
u M
rt c
01 rt
6 i-
-H L,
~~^ rt
c >
rt to
8 "
01 -o
t. c
(0
rt ~
> *
JS
rt
Variable
Al
3
'rt
4j
3
rt
i,
rt
S
j=
u
X
U
ID
rt
O
rt
C
0
Diffusi
Lung Volumes (BTPS
T?I X
E £ 6 .»?
•£~c "c 6
55 §66 -^
6 6 "^jOO I
^^; O U U. j=
66 "g "i "i . "i
in o . o r- r^ *o o
S ^ £ £
"i H&; ^
a ~ ~ x
3 -^- J3 *»
° S « «
M
_ nt hit -*~
O2 consumption (STPD)
CO2 output (STPD)
Respiratory exchange ratio,
uptake)
Diffusing capacity, O2 (STF
Diffusing capacity, CO (ste;
Diffusing capacity, CO (sin|
Fractional CO uptake
Maximal diffusing capacity
o
5
3
u
41
<
2 o
"" 3
BE
0 0
°. °
fM ^
M BO Q£ bfi C> O
-eelee^oc,
• 6oa§
F* *n o o *n o •
cS"—
'IN! ^ O
£ 1 O
a ^ o
S 0 S 0
C C C
<» 11 01 U
0 i. t, i.
[ O2 saturation (% saturation
Oj tension
CO2 tension
Alveolar-arterial pO2 diffe
Alveolar- arterial pO2 diffe
Alveolar-arterial pO2 diffe
O2 saturation (100% O2)
PH
S
£
rt
41
U
0)
"S
W
U
•a
5
u
01
01
ID
^
£ u
* «
g r- -^ .c
3s".5,S = *^i| B
-.-JJjjg™^) 0
S S § o -. "*. * ^ o o
—
- ^ H
Q. — '"'
0 j J
— • .. rt "» >»
^£~a 1
£ s 4> £ u •£.
Maximal breathing capacity
Timed vital capacity (% of t
Maximal expiratory flow ra
Maximal inspiratory flow n
Compliance of lungs and the
Compliance of lungs
Airway resistance
Work of quiet breathing
Maximal work of breathing
Maximal inspiratory and ex
pressures
335 SSSS2 SSS^SSS ? 5 5 ? ? 5 3 5 ? ? S
E E E E E E
o o o o o o .
o o o o o o IP
^0 ra ao M «*• o o
olume
apacity
1 lung capacity x 100
>> ^ ^
O L 3 ti "tl
0)7 01 T] U 01
g- « 6 3 2. 6
O 0 Ct. — 2 <= _
-; S a rt § s ce u, H os
Ventilation (BTPS)
c
1
to
c
.9 c c
a e B
M , — .
is1?1
B t o o
o o o o
S»NJ o in rM
-• vO -. •«•
u
o
rt
Q. q
M O
^ 3
rt rt
. 8* =
01 S . c
Tidal volum
Frequency
Minute volu
Respiratorj
Alveolar ve
a
Distribution of Inspired
r4 IM
Z 2
in iri ^g
V V r-
•O
^ O
increase N2 for 500 ml
is)
implying rate (7 min test
: (mixing efficiency rela
o "• w .^5
v C ^ "^fl
w rt So § S
v ~Z Q o 3
*j ° U "
Single- brea
expired a
Pulmonary
Helium clos
to perfect
|
A*
•o
I
S
1
tilation/ Pulmonary Capi
c
"*
"o
**
=0*0
. r- ace /tidal volume x 100
~~ W Ul
cT: *
S §-8
a-s-s
'c "a "a
Alveolar ve
Physiologicl
Physiologic
c
Pulmonary Circulatio
no c
6 g'Z S
< rt rt rt
fj O O (J
Pulmonary
Pulmonary
Pulmonary
Pulmonary
Alveolar Gas
x ta
a *
IE
Is
V
*> b
= S
3g
£a
^"rt
rt 3
||
O O
— , _ _« _, _ , ^, ^^^ .-irNjrvjrg raiM
16-6
See Reference No. 18
-------
1
r^
LU
"^5^
LU
CK
— -\
OO
<£
LU
°Z
^^- '•*^
O 2
—1 0
LU Z
2: o
>-
*"^ |
O *^
r- i
51
LU
OH
3-^
•^£
LU
S
C '
o 5 I ^ cc in co o* CM co
1
e
S S
00 \
S E
SL
e
sC 00 r-- CO \C CM CM CM O Q ON
r— ^ ^-t cc CM in ^
t- O ^ p CO fO f^
001-^0^" ^ "**" CM CO O "~" 00
r-t i— • CM CO
t"C' 00 f^ \C CO O ^_ *O
1-1 ~6
"" «]
c
o js
00 g
be
c
<*'!
S E
•*
^c
5 IP
01)
a
CO ^
S "s
J?
d
's
0 >
5
^c
t
•2
c
"XJ
$
4)
2
kl
o
ONgT^tO •**• "— * CM CM O ON O
"* ^ ^ — CS
Tf t- r-- cq O ^o scs
S2?«»c-ft»o ^m
--H •— l-t
o co t"— ON o CM i"»
cMOocor-' o r- CM CM " op •— ;
i— * CM CM co o o Trio
t- O-- oo ON p cq CM
rfsOCMO^ ^J" m CM c4 1~H 'w fO
^HI-HCMCMCCCO -*m
CM oc —; co —; —; co
CMIO--HO co op fo CM ^ ^* L"J
^-•OCMCN-Cin Tt-m
O CM TT O —i ^ CM
CMJCOO^Tf" C1 rO CO CO |--l ^^ OS
(_I(^^_(_T*1^' rt-in
^ co ON ^^ CO CM O
O*^ CO ^ O O CM co CO r~* ON r~^
CM t- -— i ^- -^ CO COLT
.s 1 1 -*
C ^" ^ ^
^^t •*• C c tc^-. -^
1 t a 1 1 ^ '& -1 t"i x •! .s e " -s "5
a, a.^uaj^-^^v^- b^u^u
'" S .2 > S - £ •- ££ c- i G 2 " S ""
1 » I = 1 1 1 1 1 1 1 1 1 1 i 1 '| I
a m 5
IM O <* « r-; M «5
00 00 Q IN >0 •-•
*-« *o in ^
p— 4 ••* CO
*. •"! "*, i-< t-' «' t
^00 Tf1 CS I'S "^t
f-H 2 ^ <-^
«o
o r^ S
W) 00 O c* o; ,f «}
»* O> «* 1-1 in CM
i— I o TP f-
rH
CO f-; «
*1 "~! 'I oo t^ ^t irt
cs
rt
S 3 5 S S ^ «
I-H \o ^ in
i-H
*£! CO ^
^ ^ «! f-I CM Tj* O
CO O\ *O CM i/J h-
l^ O CO
§_* — . «. . .
CO ^ OO
^ ^ ^ O t^ co' ^P
co co in
^ ^ ^~. •— ! ON re *£i
»-« u5 CM CO
^
D „
"y _ ^ C
>> u . « V O
°^^g-§. . il^'i
^*&g8*I !j.tf!
.Hr^ii*;!-! i
S- "? 8 I 81 g^ 1 2 •« ".S
Mlll:f|l!ll|
|l^|so|^-|0^
s
CO — '
&X
vO
CO
s
C> 1—4
«
8
pj
4M
r^-
« °
cs
^
3 °
5;
1 °
£5
in o
s
9S
s
"S ®
CM
C!
'§ s
<. •
31 '^
*M G
0 O fc
e'l 1
o "S •-
j £ o.
c3a|
•^
^
1
.0
o
a.
3 •
ri
«« §
. rt
*« 6C
**• Q
* £
T 2,
\\
» .S
S -o
l\
r. fJ
£ .1
.2 g
g s
« £
~c ^5"
CQ 3
a -
ll
1- U
u _S
ta A
See Reference No. 19
16-7
-------
ro
_J
LLJ
>
UJ
_J
<
LLJ
LU
O
H-
<
LU
ID
CO
O
_)
O
o
^
LU
X
a
2:
<
LU
U
o
LU
Q
O
O
_J
CO
4)
3 C
a o
jQ C *D
o o o
—> •-" O
tO) *J ^
o * &
S*l
H-I -> >>
I* C C
:
co
+i -t; cd
C C H
4J cd
ot~ooo^4^H^^^H
Cjv O
^H M
DC
U
2
jQ
O
F— I
tUD
o
s
o
o
U
c
cfl
0)
ro
•
TJ
3
en
0)
^^
cd
16-8
See Reference No. 22
-------
LU
Q
H
_J
<
I-
LU
ID
CD
O
_J
O
O
2
LU
I
a
z
<
LU
h-
>-
LJ
O
Qi
X
I-
>-
CK
LU
Q
O
O
_l
CD
w,
in
c
t-,
.§
o"
en
OS
c
0)
TJ
•«-4
V)
rg
IP
t—4
O
a
o
° o §
o'^S
*O £ O
°5 -
•—« U bo
CQ
§1
u 2
CQ ^
0)
TJ
3 6
5 us
O
a)
C
0
U
w
u
ID— «
rs)
rg
rg
O O O O
V
cd
"
m
5
0 0
c
a
o
U
01
•~*
rt
See Reference No. 22
16-9
-------
SECTION 77 MATHEMATICS
Squares and Square Roots 17-1
Logarithms to Base 10 17-6
Natural (Napierian) Logarithms 17-8
Values and Logarithms of Exponential Functions 17-10
Selected Principles of Algebra 17-14
Selected Trigonometric Relationships 17-17
Selected Principles of Graphics 17-22
Selected Integrals 17-24
Selected Differentials 17-25
Statistical Analysis of the Frequency Distribution 17-26
Properties of Selected Geometric Figures 17-27
-------
SQUARES AND SQUARE ROOTS
AT
140
1.01
1.02
1.03
1.04
1.01
1.06
1.07
1.08
1.09
1.10
1.11
1.12
1.13
1.14
1.18
1.16
1.17
1.18
1.19
I JO
1.21
1.22
1.23
1.24
148
1.26
1.27
1.28
1.29
1.SO
1.31
1.32
1.33
1.34
14S
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.48
1.46
1.47
1.48
1.49
140
1.51
1.52
1.53
1.54
1.U
1.56
1.57
1.58
1.59
l.<0
If
N*
1.0000
1.0201
1.0404
1.0609
1.0816
1.1025
1.1236
1.1449
1.1664
1.1881
1.2100
1.2321
1.2544
1.2769
1.2996
1.3225
1.3456
1.3689
1.3924
1.4161
1.4400
1.4641
1.4884
1.5129
1.5376
1.5625
1.5876
1.6129
1.6384
1.6641
1.0900
1.7161
1.7424
1.7689
1.7956
1.8226
1.8496
1.8769
1,9044
1.9321
1.9600
1.9881
2.0164
2.0449
2.0736
2.1025
2.1316
2.1609
2.1904
2.2201
2.2500
2.2801
2.3104
2.3409
2.3716
2.4025
2.4336
2.4649
2.4964
2.5281
24SBOO
N*
-Sii
1.00000
1.00499
1.00995
1.01489
1.01980
1.02470
1.02956
1.03441
1.03923
1.04403
1.04881
1.05357
1.05830
1.06301
1.06771
1.07238
1.07703
1.08167
1.08628
1.09087
1.09545
1.10000
1.10454
1.10905
1.11355
1.11803
1.12250
1.12694
1.13137
1.13578
1.14018
1.14455
1.14891
1.15326
1.15758
1 16190
1.16619
1.17047
1.17473
1.17898
1.18322
1.18743
1.19164
1.19583
1.20000
1.20416
1.20830
1.21244
1.21655
1.22066
1.22474
1.22882
1.23288
1.23693
1.24097
1.24499
1.24900
1.25300
1.25698
1.26095
1.26491
V*
•N/iow
4M4228
3.17805
3.19374
3.20936
3.22490
3.24037
3.25576
3.27109
3.28634
3.30151
3.31662
3.33167
3.34664
3.36155
3.37639
3.39116
3.40588
3.42053
3.43511
3.44964
3.46410
3.47851
3.49285
3.50714
3.52136
3.53553
3.54965
3.56371
3.57771
3.591GG
3.60555
3.61939
3.63318
3.64692
3.66060
3.67423
3.68782
3.70135
3.71484
3.72827
3.74166
3.75500
3.76829
3.78153
3.79473
3.80789
3.82099
3.83406
3.84708
3.86005
3.87298
3.88587
3.89872
3.91152
3.92428
3.93700
3.94968
3.96232
3.97492
3.98748
4.00000
y/tJw
N
140
1.61
1.62
1.63
1.64
146
IM
1.67
1.68
1.69
1.70
1.71
.72
.73
.74
1.TS
.76
.77
.78
.79
140
1.81
142
1.83
144
145
1.86
1.87
1.88
149
140
1.91
1.92
1.93
1.94
1.96
1.97
1.98
1.99
S40
2.01
2.02
2.03
2.04
S40
2.06
2.07
2.08
2.09
S.10
2.11
2.12
2.13
2.14
«.!•
2.16
2.17
2.18
2.19
t4W
AT
N*
24600
2.5921
2.6244
2.6569
2.6896
2.7225
2.7556
2.7889
24224
24561
24900
2,9241
2.9584
2.9929
3.0276
3.0625
3.0976
3.1329
3.1684
3.2041
3.2400
3.2761
3.3124
3.3489
3.3856
3.4225
3.4596
3.4969
3.5344
3.5721
3.6100
3.6481
3.6864
3.7249
3.7636
3.8025
3.8416
3.8809
3.9204
3.9601
4.0000
4.0401
4.0804
4.1209
4.1616
4.2025
4.2436
4.2849
4.3264
4.3681
4.4100
4.4521
4.4944
44369
4.5796
4.6225
4.6656
4.7089
4.7524
4.7961
44400
N*
VN
1.26491
1.26886
1.27279
1.27671
1.28062
1.28452
1.28841
1.29228
1.29615
1.30000
1.30384
140767
141149
141529
1.31909
1.32288
142665
1.33041
1.33417
1.33791
1.34164
1.34536
1.34907
1.35277
1.35647
146015
1.36382
1.36748
147113
1.37477
1.37840
148203
1.38564
1.38924
1.39284
1.39642
1.40000
1.40357
1.40712
1.41067
1.41421
1.41774
1.42127
1.42478
1.42829
1.43178
1.43527
1.43875
1.44222
1.44568
1.44914
1.45258
1.45602
1.45945
1.46287
1.46629
1.46969
1.47309
1.47648
1.47986
1.48324
VN
VMUV
4.00000
4.01248
4.03492
4.03783
4.04969
4.06202
4.07431
4.08656
4.09878
4.11096
4.12311
4.13521
4.14729
4.15933
4.17133
4.18330
4.19524
4.20714
4.21900
4.23084
4.24264
4.25441
4.26616
447785
4.28952
4.30116
4.31277
442435
4.33590
444741
445890
4.37036
448178
449318
4.40454
4.41588
4.42719
4.43847
4.44972
4.46094
4.47214
4.48330
4.49444
4.50555
4.51664
4.52769
443872
444973
4.56070
4.57165
4.68258
4.59347
4.60435
4.61619
4.62601
4.63681
4.64758
4.65833
4.66906
4.67974
4.69042
•N/lOtf
#
•JO
241
242
248
244
tiff
2.26
2.27
248
2.29
•40
241
242
2.33
244
IM
246
247
248
249
•.40
2.41
2.42
2.43
2.44
S.4C
2.46
2.47
2.48
2.49
•40
2.51
2.52
243
244
•46
2.56
2.57
2.68
2.59
•40
2.61
2.62
2.63
2.64
S.4M
2.66
2.67
2.68
2.69
•.TO
2.71
2.72
2.73
2.74
».75
2.76
2.77
2.78
2.79
•40
N
N*
44400
44841
4.9284
4.9729
5.0176
5.0625
5.107ft
5.1529
5.1984
5.2441
6.2900
54361
5.3824
5.4289
5.4756
5.5225
54696
5.6169
5.6644
5.7121
6.7600
54081
54564
6.9049
5.9536
6.0025
6.0516
6.1009
6.1504
6.2001
6.2500
64001
64504
6.4009
6.4616
64025
6.5536
6.6049
6.6564
6.7081
6.7600
6.8121
6.8644
6.9169
6.9696
7.0225
7.0756
7.1289
7.1824
7.2361
7.2900
74441
74984
7.4529
7.5076
7.5625
7.6176
7.6729
7.7284
7.7841
7.8400
N*
VN
1.48824
1.48661
1.48997
1.49332
1.49666
140000
1.50833
140665
140997
141327
1.61668
1.61987
1.62315
1.52643
142971
1.53297
1.63623
1.63948
1.64272
1.64596
1.64919
1.66242
1.65563
1.55886
1.66206
146626
1.66844
147162
147480
1.67797
1.68114
1.68430
1.68746
1.69060
1.59874
149687
1.60000
1.60312
1.60624
1.60936
141246
1.61666
1.61864
1.62173
1.62481
1.62786
1.68096
1.63401
1.63707
1.64012
1.64317
1.64621
1.64924
1.66227
1.66629
1.66881
1.66132
1.66433
1.66733
1.67033
1.67332
VN
-N/lOAf
4.69042
4.70106
4.71169
4.72229
4.73286
4.74342
4.76396
4.76446
4.77498
4.78639
4.79683
440625
441664
4.82701
448735
444768
4.86798
4.86826
4.87852
448876
4.89898
4.90918
4.91935
4.92960
4.98964
4.94975
4.96984
4.96991
4.97996
4.98999
500000
6.00999
5.01996
6.02991
6.03984
504976
6.06964
5.06962
5.07937
6.08920
5.09902
5.10882
5.11859
6.12835
6.13809
5.14782
5.16752
6.16720
6.17687
6.18652
5.19016
6.20577
5.21536
6.22494
6.23450
5.24404
5.25357
5.26308
5.27257
5.28205
5.29150
VWN
17-1
-------
SQUARES AND SQUARE ROOTS
(continued)
N
S.80
2.81
2.82
2 83
2.84
2.85
2.86
2.87
2.88
2.89
2.90
2.91
2.92
2.93
2.94
1.95
2.96
2.97
2.98
2.99
3.00
3.01
3.02
3.03
3.04
3.06
3.06
3.07
3.08
3.09
3.10
3.11
3.12
3.13
3.14
3.16
3.16
3.17
3.18
8.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3. 30
3.37
3.38
3.39
3.40
N
AT»
7.8400
7.8961
7.9524
8.0089
8.0656
8.1225
8.1796
8.2369
8.2944
8.3521
8.4100
8.4681
8.5264
8.5849
8.6436
8.7025
8.7616
8.8209
8.8804
8.9401
9.0000
9.0601
9.1204
9.1809
9.2416
9.3025
9.3636
9.4249
9.4864
9.5181
9.6100
9.6721
9.7344
9.7969
9.8596
9.9225
9.9856
10.0489
10.1124
10.1761
10.2400
10.3041
10.3884
10.4329
10.4976
10.5625
10.6276
10.6929
10.7584
10.8241
10.8900
10.9561
11.0224
11.0889
11.1556
11.2225
11.2896
1 1 3569
11.4244
11.4921
11.5600
N1
VN
1.67332
1.67631
1.67920
1.68226
1.68523
1.68819
1.69115
1.69411
1.69706
1.70000
1.70294
1.70587
1.70880
1.71172
1.71464
1.71756
1.72047
1.72337
1.72627
1.72916
1.73205
1.73494
1.73781
1.74069
1.74356
1.74642
1.74929
1.75214
1.75499
1.75784
1.76068
1.76352
1.76635
1.76918
1.77200
1.77482
1.77764
1.78045
1.78326
1.78606
1.78885
1.79165
1.79444
1.79722
1.80000
1.80278
1.80555
1.80331
1.81108
1.81384
1.81659
1.81934
1.82209
1.82483
1.82757
1.83030
1.83303
1.83576
1.83848
1.84120
1.84391
VN
Vib^
5.29150
5.30094
6.31037
5.31977
5.32917
5.33854
5.34790
5.35724
5.36656
5.37587
5.38516
5.39444
5.40370
5.41295
5.42218
5.43139
5.44059
5.44977
5.45894
5.46809
5.47723
5.48635
5.49545
5.50454
5.51362
5.52268
5.53173
5.54076
5.54977
5.55878
5.56776
5.57674
5.58570
5.59464
5.60357
5.61249
5.62139
5.63028
5.63915
5.64801
5.65685
5.66569
5.67450
5.68331
5.69210
5.70088
5.70964
5.71839
5.72713
5.73585
5.74456
6.75326
5.76194
5.77062
5.77927
5.78792
5.79655
5.80517
5.81378
5.82237
5.83095
VWN
N
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58'
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.70
3.71
3.72
3.73
3.74
3.75
3.76
3.77
3.78
3.79
3.80
3.81
3.82
3.83
3.84
3.85
3.86
3.87
3.88
3.89
3.90
3.91
3.92
3.93
3.94
3.95
3.96
3.97
3.98
3.99
4.00
N
N*
11.5600
11.6281
11.6964
11.7649
11.8336
11.9025
11.9716
12.0409
12.1104
12.1801
12.2500
12.3201
12.3904
12.4609
12.5316
12.6025
12.6736
12.7449
12.8164
12.8881
12.9600
13.0321
13.1044
13.1769
13.2496
13.3225
13.3956
13.4689
13.5424
13.6161
13.6900
13.7641
13.8384
13.9129
13.9876
14.0625
14.1376
14.2129
14.2884
14.3641
14.4400
14.5161
14.5924
14.6689
14.7456
14.8225
14.8996
14.9769
15.0544
15.1321
15.2100
15.2881
15.3664
15.4449
15.5236
15.6025
15.6816
15.7609
15.8404
15.9201
16.0000
N1
VN
1.84391
1.84662
1.84932
1.85203
1.85472
1.85742
1.86011
1.86279
1.86548
1.86815
1.87083
1.87350
1.87617
1.87883
1.88149
1.88414
1.88680
1.88944
1.89209
1.89473
1.89737
1.90000
1.90263
1.90526
1.90788
1.91050
1.91311
1.91572
1.91833
1.92094
1.92354
1.92614
1 ..92873
1.93132
1.93391
1.93649
1.93907
1.94165
1.94422
1.94679
1.94936
1.95192
1.95448
1.95704
1.95959
1.96214
1.96469
1.96723
1.96977
1.97231
1.97484
1.97737
1.97990
1.98242
1.98494
1.98746
1.98997
1.99249
1.99499
1.99750
2.00000
VN
V\QN
5.83095
5.83952
5.84808
5.85662
5.86515
5.87367
5.88218
5.89067
5.89915
5.90762
5.91608
5.92453
5.93296
5.94138
5.94979
5.95819
5.96657
5.97495
5.98331
5.99166
6.00000
6.00833
6.01664
6.02495
6.03324
6.04152
6.04979
6.05805
6.06630
6.07454
6.08276
6.09098
6.09918
6.10737
6.11555
6.12372
6.13188
6.14003
6.14817
6.15630
6.16441
6.17252
6.18061
6.18870
6.19677
6.20484
6.21289
6.22093
6.22896
6.23699
6.24500
6.25300
6.26099
6.26897
6.27694
6.28490
6.29285
6.30079
6.30872
6.31664
6.32456
Vwf
N
4.00
4.01
4.02
4.03
4.04
4.06
4.06
4.07
4.08
4.09
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.26
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.36
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.46
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
454
4,55
4.56
4.57
4.58
4.59
4.60
N
JV»
16.0000
16.0801
16.1604
16.2409
16.3216
] 6.4025
16.4836
16.5649
16.6464
16.7281
16.8100
16.8921
16.9744
17.0569
17.1396
17.2225
17.3056
17.3889
17.4724
17.5561
17.6400
17.7241
17.8084
17.8929
17.9776
18.0625
IS. 1476
18.2329
18.3184
18.4041
18.4900
18.5761
18.6624
18,7489
18 8356
18.9225
19.0096
19.0969
19.1844
19.2721
19.3600
19.4481
19.5364
19.6249
19.7136
19.8025
19.8916
19.9809
20.0704
20.1601
20.2500
20.3401
20.4304
20.5209
20.6116
20.7025
20.7936
20.8849
20.9764
21.0681
21.1600
tf*
VN
2.00000
2.00250
2.00499
2.00749
2.00998
2.01246
2.01494
2.01742
2.01990
2.02237
2.02485
2.02731
2.02978
2.03224
2.03470
2.03715
2.03961
2.04206
2.04450
2.04695
2.04939
2.051F3
2.05426
2.05670
2.05913
2.06155
2.06398
2.06640
2.06882
2.07123
2.07364
2.07605
2.07846
2.08087
2.08327
2.08567
2.08806
2.09045
2.09284
2.09523
2.09762
2.10000
2.10238
2.10476
2.10713
2.10950
2.11187
2.11424
2.11660
2.11896
2.12132
2.12368
2.12603
2.12838
2.13073
2.13307
2.13542
2.13776
2.14009
2.14243
2.14476
VN
VlON
6.32456
6.33246
6.34035
6.34823
6.35610
6.36396
6.37181
6.37966
6.38749
6.39531
6.40312
6.41093
6.41872
6.42651
6.43428
6.44205
6.44981
6.45755
6.46529
6.47302
6.48074
6.48845
6.49615
6.50384
6.51153
€.51920
6.52687
6.53452
6.54217
6.54981
6.55744
6.56506
6.57267
6.58027
6.58787
6.59545
6.60303
6.61060
6.61816
6.62571
6.63325
6.64078
6.64831
6.65582
6.66333
6.67083
6.67832
6.68581
6.69328
6.70075
6.70820
6.71565
6.72309
6.73053
6.73795
6.74537
6.75278
6.76018
6.76757
6.77495
6.78233
VuiN
17-2
-------
SQUARES AND SQUARE ROOTS
(continued)
N
4.60
4.61
4.62
4.63
4.64
4.66
4.66
4.67
4.68
4.69
4.70
4.71
4.72
4.73
4.74
4.76
4.76
4.77
4.78
4.79
4.80
4.81
4.82
4.83
4.84
4.86
4.86
4.87
4.88
4.89
4.90
4.91
4.92
4.93
4.94
4.96
4.96
4.97
4.98
4.99
6.00
5.01
5.02
5.03
5.04
6.06
5.06
5.07
5.08
5.09
6.10
5.11
5.12
5.13
5.14
6.16
5.16
5.17
5.18
5.19
6JO
N
A"
21.1600
21.2521
21.3444
21.4369
21.5296
21.6225
21.7156
21.8089
21.9024
21.9961
22.0900
22.1841
22.2784
22.3729
22.4676
22.5625
22.6576
22.7529
22.8484
22.9441
23.0400
23.1361
23.2324
23.3280
23.4256
23.5225
23.6196
23.7169
23.8144
23.9121
24.0100
24.1081
24.2064
24.3049
24.4036
24.5025
24.6016
24.7009
24.8004
24.9001
25.0000
25.1001
25.2004
25.3009
25.4016
25.5025
25.6036
25.7049
25.8064
25.9081
26.0100
26.1121
26.2144
26.3169
26.4196
26.5225
26.6256
26.7,289
26.8324
26.9361
27.0400
N*
VN
2.14476
2.14709
2.14942
2.15174
2.15407
2.15639
2.15870
2.16102
2.16333
2.16564
2.16795
2.17025
2.17256
2.17486
2.17715
2.17945
2.18174
2.18403
2.18632
2.18861
2.19089
2.19317
2.19545
2.19773
2.20000
2.20227
2.20454
2.20681
2.20907
2.21133
2.21359
2.21585
2.21811
2.22030
2.22::di
2.22486
2.22711
2.22935
2.23159
2.23383
2.23607
2.23830
2.24054
2.24277
2.24499
2.24722
2.24944
2.25167
2.25389
2.25610
2.25832
2.26053
2.26274
2.26495
2.26716
2.26936
2.27156
2.27376
2.27596
2.27816
2.28035
VN
VuiN
6.78233
6,78970
tt.79706
6.80441
6.81175
6.81909
6.82642
6.83374
6.84105
6.84836
6.85565
6.86294
6.87023
6.87750
6.88477
6.89202
6.89928
6.90652
6.91375
6.92098
6.92820
6.93542
6.94262
6.94982
6.95701
6.96419.
6.97137
6.97854
6.98570
6.99285
7,00000
7.00714
7.01427
7.02140
7.02851
7.03562
7.04273
7.04982
7.05691
7.06399
7.07107
7.07814
7.08520
7.09225
7.09930
7.10634
7.11337
7.12039
7.12741
7.13442
7.14143
7.14843
7.15542
7.16240
7.16938
7.17635
7.18331
7.19027
7.19722
7.20417
7.21110
•v/iojv
ff
BJM>
5.21
5.22
5.23
5.24
6J6
5.26
5.27
6.28
5.29
6.30
5.31
5.32
5.33
5.34
6.36
5.36
5.37
5.38
5.39
6.40
5.41
5.42
5.43
5.44
6.46
5.46
5.47
5.48
5.49
6.60
5.51
6.52
5.53
5.54
6.66
5.56
5.57
5.58
5.59
6.60
5.61
5.62
5.63
5.64
6.66
5.66
5.67
5.68
5.69
6.70
5.71
5.72
5.73
5.74
6.76
5.76
5.77
5.78
5.79
6.80
N
N*
27.0400
27.1441
27.2484
27.3629
27.4676
27.6626
27.6676
27.7729
27.8784
27.9841
28.0900
28.1961
28.3024
28.4089
28.5156
28.6225
28.7296
28.8369
28.9444
29.0521
29.1600
29.268 1
29.3764
29.4849
29.5936
29.7025
29.8116
29.9209
30.0304
30.1401
30.2500
30.3601
30.4704
30.5809
30.6916
30.8025
30.9136
31.0249
31.1364
31.2481
31.3600
31.4721
31.5844
31.6969
31.8096
31.9225
32.0356
32.1489
32.2624
32.3761
32.4900
32.6041
32.7184
32.8329
32.9476
33.0625
33.1776
33.2929
33.4084
33.5241
33.6400
A"
VN
2.28036
2.28264
2.28473
2.28602
2.28910
2.29129
2.29347
2.29566
2.29783
2.30000
2.30217
2.30434
2.30651
2.30868
2.31084
2.31301
2.31517
2.31733
2.31948
2.32164
2.32379
2.32594
2.32809
2.33024
2.33238
2.33452
2.33666
2.33880
2.34094
2.34307
2.34521
2.34734
2.34947
2.35160
2.35372
2.35584
2.35797
2.36008
2.36220
2.36432
2.36643
2.36854
2.37065
2.37276
2.37487
2.37697
2.37908
2.38118
2.38328
2.38537
2.38747
2.38956
2.39165
2.39374
2.39583
2.99792
2.40000
2.40208
2.40416
2.40624
2.40832
VN
VlOAT
7.21110
7.21803
7.22496
7.23187
7.23878
7.24569
7.25259
7.26948
7.26636
7.27324
7.28011
7.28697
7.29383
7-.30068
7.30763
7.31437
7.32120
7.32803
7.33486
7.34166
7.34847
7.35527
7.36206
7.36885
7.37564
7.38241
7.38918
7.39594
7.40270
7.40945
7.41620
7.42294
7.42967
7.43640
7.44312
7.4/983
7,46654
7.46324
7.46994
7.47663
7.48331
7:48999
7.49667
7.50333
7.60999
7.51665
7.52330
7.52994
7.63658
7.64321
7.54983
7.56646
7.56307
7.66968
7.57628
7.68288
r.58847
7.59605
7.60263
7.60920
7.61677
ViSv
N
6.80
6.81
5.82
5.83
5.84
6.86
6.86
5.87
5.88
5.89
6.90
6.91
5.92
5.93
5.94
6.98
6.96
5.97
5.98
5.99
6.00
6.01
6.02
6.03
6.04
«.06
6.06
6.07
6.08
6.09
6.10
6.11
6.12
6.13
6.14
6.16
6.16
6.17
6.18
6.19
6 JO
•6.21
6.22
6.23
6.24
6.16
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.S6
6.36
6.37
6.38
6.39
6.40
N
N*
33.6400
33.7*1
33.8724
33.9889
34.1066
34.2226
34.3396
34.4669
34.5744
34.6921
34.8100
34.9281
&.0464
35.1649
36.2836
36.4026
36.6216
36.6409
36.7604
36.8801
36.0000
36.1201
36.2404
36.3609
36.4816
36.6026
36.7236
36.8449
36.9664
37.0881
37.2100
37.3321
37.4544
37.6769
37.6996
37.8226
37.9466
38.0689
38.1924
38.3161
38.4400
38.6641
38.6884
38.8129
38.9376
39.0626
39.1876
39.3129
39.4384
39.6641
39.6900
39.8161
39.9424
40.0689
40.1966
40.3225
40.4496
40.5769
40.7044
40.8321
40.9600
N*
VN
2.40832
2.41039
2.41247
2.41464
2.41661
2.41868
2.42074
2.42281
2.42487
2.42693
2.42899
2.43106
2.43311
2.43616
2.43721
2.43926
2.44131
2.44336
2.44640
2.44746
2.44949
2.45163
2.46357
2.46661
2.45764
2.46967
2.46171
2.46374
2.46577
2.46779
2.46982
2.47184
2.47386
2.47688
2.47790
2.47992
2.48193
2.48395
2.48696
2.48797
2.48998
2.49199
2.49399
2.49600
2.49800
2.60000
2.60200
2.60400
2.60699
2.60799
2.60998
2.61197
2.61396
2.61696
2.61794
2.61992
2.62190
2.62389
2.62587
2.62784
2.62982
VN
VUN
7.81677
7.62234
7.62889
7.63644
7.64199
7.64863
7.66606
7.66159
7.66812
7.67463
7.68116
7.68766
7.69416
7.70065
7.70714
7.71362
7.72010
7.72668
7.73306
7.73951
7.74697
7.76242
7.76887
7.76631
7.77174
7.77817
7.78460
7.79102
7.79744
7.80386
7.81026
7.81666
7.82304
7.82943
7.83682
7.84219
7.84857
7.86493
7.86130
7.86766
7.87401
7.88036
7.88670
7.89303
7.89937
7.90669
7.91202
7.91833
7.92465
7.93096
7.93725
7.94355
7.94984
7.95613
7.96241
7.96869
7.97496
7.98123
7.98749
7.99376
8.00000
VtoN
17-3
-------
SQUARES AND SQUARE ROOTS
(continued)
N
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.56
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65
6.66
6.67
6.68
6.69
6.70
6.71
6.72
6.73
6.74
6.75
6.76
6.77
6.78
6.79
6.80
6.81
6.82
6.83
6.84
6.85
6.86
6.87
6.88
6.89
6.90
6.91
6.92
6.93
6.94
6.95
6.96
6.97
6.98
6.99
7.00
N
N*
40.9600
41.0881
41.2164
41.3449
41.4736
41.6025
41.7316
41.8609
41.9904
42.1201
42.2500
42.3801
42.5104
42.6409
42.7716
42.9025
43.0336
43.1649
43.2964
43.4281
43.5600
43.6921
43.8244
43.9569
44.0896
44.2225
44.3556
44.4889
44.6224
44.7561
44.8900
45.0241
45.1584
45.2929
45.4276
45.5625
45.6976
45.8329
45.9684
46.1041
46.2400
46.3761
46.5124
46.6489
46.7856
46.9225
47.0596
47.1969
47.3344
47.4721
47.6100
47.7481
47.8864
48.0249
48.1636
48.3025
48.4416
48.5809
43.7204
48.8601
49.0000
N*
VN
2.62982
2.63180
2.63377
2.53574
2.63772
2.63969
2.64165
2.64362
2.54658
2.64765
2.64951
2.65147
2.65343
2.55539
2.65734
2.65930
2.66125
2.66320
2.56515
2.56710
2.56905
2.57099
2.57291
2.574S3
2.57682
2.57876
2.58070
2.58263
2.58457
2.58650
2.58844
2.59037
2.59230
2.59422
2.59615
2.59803
2.60000
2.60192
2.60384
2.60576
2.60768
2.60960
2.61151
2.S1343
2.61534
2.61725
2.61916
2.62107
2.62298
2.62488
2.62679
2.62869
2.63059
2.63249
2.63439
2.63629
2.63818
2.64008
2.64197
2.64386
2.64575
VN
VlbAT
8.00000
8.00625
8.01349
8.01873
8.02496
8.03119
8.03741
8.04363
8.04984
8.05605
8.06226
8.06846
8.07465
8.08084
8.0S703
8.09321
8.0993S
8.10555
8.11172
8.11783
8.12404
8.13019
8.13634
8.14248
8.14862
8.15475
8.16088
8.16701
8.17313
8.17924
8.18535
8.19146
8.19758
8.20368
8.20975
8.21584
8.22192
8 22300
8.2340S
8.24015
8.24621
8.25227
8.25833
8.26433
8.27043
8.27647
8.28251
8.28855
8.29458
8.30060
8.30662
8.31264
8.31865
8.32466
8.33067
8.33667
8.34266
8.34865
8.3.T464
8.36062
8.36660
ViON
N
7.00
7.01
7.02
7.03
7.04
7.06
7.06
7.07
7.08
7.09
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7*0
7.21
7.22
7.23
7.24
7.S5
7.26
7.27
7.23
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.33
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7;55
7.56
7.57
7.58
7.59
7.60
N
N»
49.0000
49.1401
49.2804
49.4209
49.6616
49.7025
49.8436
49.9849
60.1264
60.2681
50.4100
60.5521
50.6944
50.8369
50.9796
51.1225
51.2656
51.4089
51.5524
51.6961
51.8400
51.9841
52.1284
52.2729
52.4176
52.5625
52.7076
52.8529
52.9934
53.1441
53.2900
53.4361
53.5824
53.7289
53.8756
54.0225
54.1696
54.3169
54.4644
54.6121
54.7600
54.9081
55.0564
55.2049
55.3536
55.5025
55.6516
55.8009
55.9504
56.1001
56.2500
56.4001
56.5504
56.7009
56.8516
57.0025'
57.1536
57.3049
57.4564
57.6081
57.7600
AT*
VN
2.64575
2.64764
2.64963
2.65141
2.65330
2.65518
2.65707
2.66895
2.66083
2.66271
2.66458
2.66646
2.66833
2.67021
2.67208
2.67395
2.67582
2.67769
2.67955
2.68142
2.68328
2.68514
2.68701
2.68887
2.69072
2.69258
2.69444
2.69629
2.69815
2.70000
2.70185
2.70370
2.70555
2.70740
2.70924
2.71109
2.71293
2.71477
2.71662
2.71846
2.72029
2.72213
2.72397
2.72580
2.72764
2.72947
2.73130
2.73313
2.73496
2.73679
2.73861
2.74044
2.74226
2.74408
2.74591
2.74773
2/74955
2.75136
2.75318
2.75500
2.75681
Vff
VlOtf
8.36660
8.37267
8.37864
8.38451
8.39047
8.39643
8.40238
8.40833
8.41427
8.42021
8.42615
8.43208
8.43801
8.44393
8.44985
8.46577
8.46168
8.46759
8.47349
8.47939
8.48528
8.49117
8.49706
8.50294
8.50882
8.51469
8.52056
8.52643
8.53229
8.63815
8.54400
8.54985
8.55570
8.56154
8.56738
8.57321
8.57904
8.58487
8.59069
8.59651
8.60233
8.60814
8.61394
8.61974
8.62564
8.63134
8.63713
8.64292
8.64870
8.65448
8.66025
8.66603
8.67179
8.67756
8.68332
8.68907
8.69483
8.70057
8.70632
8.71206
8.71780
•v/iotf
N
7.60
7.61
7.62
7.63
7.64
7.65
7.66
7.67
7.68
7.69
7.70
7.71
7.72
7.73
7.74
7.75
7.76
7.77
7.78
7.79
7.80
7.81
7.82
7.83
7.84
7.85
7.86
7.87
7.88
7.89
7.90
7.91
7.92
7.93
7.94
7.95
7.96
7.97
7.98
7.99
8.00
8.01
8.02
8.03
8.04
8.06
8.06
8.07
8.08
8.09
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
N
N*
57.7600
57.9121
58.0M4
68.2109
58.3696
68.6225
68.6756
68.8289
58.9824
59.1361
59.2900
69.4441
69.5984
59.7529
59.9076
60.0625
60.2176
60.3729
60.5284
60.6841
60.8400
60.9961
61.1524
61.3089
61.4656
61.6225
61.7796
61.9369
62.0944
62.2521
62.4100
62.5681
62.7264
62.8849
63.0436
63.2025
63.3616
63.5209
63.6804
63.8401
64.0000
64.1601
64.3204
64.4809
64.6416
64.8025
64.9636
651249
65.2864
65.4481
65.6100
65.7721
65.9344
66.0969
66.2596
66.4225
66.5856
66.7489
66.9124
67.0761
67.2400
N1
VN
2.76681
2.75862
2.76043
2.76225
2.76405
2.76686
2.76767
2.76948
2.77128
2.77308
2.77489
2.77669
2.77849
2.78029
2.78209
2.78388
2.78568
2.78747
2.78927
2.79108
2.79285
2.79464
2.79643
2.79821
2.80000
2.80179
2.80357
2.80535
2.80713
2.80891
2.81069
2.81247
2.81425
2.81603
2.81780
2.81957
2.82135
2.82312
2.82489
2.82666
2.82843
2.83019
2.83196
2.83373
2.83549
2.83725
2.83901
2.84077
2.84253
2.84429
2.84605
2.84781
2.84956
2.85132
2.85307
2.85482
2.85657
2.85832
2.86007
2.86182
2.86356
VN
VWN
8.71780
8.72353
8.72926
8.73499
8.74071
8.74643
8.75214
8.75785
8.76356
8.76926
8.77496
8.78066
8.78635
8.79204
8.79773
8.80341
8.80909
8.81476
8.82043
8.82610
8.83176
8.83742
8.84308
8.84873
8.85438
8.86002
8.86566
8.87130
8.87694
8.88257
8.88819
8.89382
8.89944
8.90505
8.91067
8.91628
8.92188
8.92749
8.93308
8.93868
8.94427
8.94986
8.95545
8.96103
8.96660
8.9721R
8.97775
8.98332
8.98888
8.99444
9.00000
9.00555
9.01110
9.01665
9.02219
9.02774
9.03327
9.03881
9.04434
9.04986
9.06539
Vi
-------
SQUARES AND SQUARE ROOTS
(continued)
N
8.20
8.21
8.22
8.23
8.24
8.26
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.46
8.46
8.47
8.48
8.49
8.60
8.51
8.52
8.53
8.54
8.S5
8.56
8.57
8.5S
8.59
8.60
8.61
8.62
8.63
8.64
8.66
8.66
8.67
8.68
8.69
8.70
8.71
8.72
8.73
8.74
8.75
8.76
8.77
8.78
8.79
8.80
N
N*
67.2400
67.4041
67.5084
67.7329
67.8976
68.0625
68.2276
68.3929
68.5584
68.7241
68.8900
69.0561
69.2224
69.3889
69.5556
69.7225
69.8896
70.0569
70.2244
70.3921
70.5600
70.7281
70.8964
71.0649
71.2336
71.4025
71.5716
71.7409
71.9104
72.0801
72.2500
72.4201
72.5904
72.7609
72.9316
73.1025
73.2736
73.4449
73.6164
73.7881
73.9600
74.1321
74.3044
74.4769
74.6496
74.8225
74.9956
75.1689
75.3424
75.5161
75.6900
75.8641
76.0384
76.2129
76.3876
76.5625
76.7376
76.9129
77.0884
77.2641
77.4400
N*
VN
2.86356
2.86531
2.86706
2.86880
2.87054
2.87228
2.87402
2.87576
2.87750
2.87924
2.88097
2.88271
2.8S444
2.88617
2.88791
2.88964
2.89137
2.89310
2.89482
2.89655
2.8982S
2.90000
2.90172
2.90345
2.90517
2.90689
2.908S1
2.91033
2.91204
2.91376
2.91548
2.91719
2.91890
2.92082
2.92233
2.92404
2.92575
2.92746
2.92916
2.93087
2.93258
2.93428
2.93593
2.93769
2.93939
2.94109
2.94279
2.94449
2.94618
2.94788
2.94958
2.95127
2.95296
2.95466
2.95635
2.95804
2.95973
2.96142
2.96311
2.96479
2.96648
VN
VlON
9.05539
9.06091
9.06642
9.07193
9.07744
9.08295
9.08845
9.09395
9.09945
9.10494
9.11043
9.11592
9.12140
9.12688
9.13236
9-13783
9.14330
9.14877
9.15423
9.15969
9.16515
9.17061
9.17606
9.18150
9.18695
9.19239
9.19783
9.20326
9.20869
9.21412
9.21951
9.22497
9.23033
9.235SO
9.24121
9.24662
9.25203
9.25743
9.26283
9.26823
9.27362
9.27901
9.28440
9.28978
9.29516
9.30054
9.30591
9.31128
9.31665
9.32202
9.32738
9.33274
9.33809
9.34345
9.34880
9.35414
9.35949
9.36483
9.37017
9.37550
9.38083
VlON
N
8 JO
8.81
8.82
8.83
8.84
$.85
8.86
8.87
8.88
8.89
8.90
8.91
8.92
8.93
8.94
8.95
8.96
8.97
8.98
8.99
9.00
9.01
9.02
9.03
9.04
9.05
9.06
9.07
9.08
9.09
9.10
9.11
9.12
9.13
9.14
9.16
9.16
9.17
9.18
9.19
9.10
9.21
9.22
9.23
9.24
9J5
9.26
9.27
9.28
9.29
9.30
9.31
9.32
9.33
9.34
9.36
9.36
9.37
9.38
9.39
9.40
N
N*
77.4400
77.6161
77.7924
77.9689
78.1456
78.3225
78.4996
78.6769
78.8544
79.0321
79.2100
79.3881
79.5664
79.7449
79.9236
80.1025
80.2816
80.4609
80.6404
80.8201
81.0000
81.1801
81.3604
81.5409
81.7216
81.9025
82.0836
82.2649
82.4464
82.6281
82.8100
82.9921
83.1744
83.3569
83.5396
83.7225
83.9056
84.0889
84.2724
84.4561
84.6400
84.8241
85.0084
85.1929
85.3776
85.5625
85.7476
85.9329
86 1184
86.3041
86.4900
86.6761
86.8624
87.0489
87.2358
87.4225
87.6096
87.7969
87.9844
88.1721
88.3600
N*
VN
2.96648
2.96816
2.96985
2.97153
2.97321
2.97489
2.97658
2.97825
2.97993
2.98161
2.98329
2.98496
2.98664
2.98831
2.98998
2.99166
2.99333
2.99500
2.99666
2.99833
3.00000
3.00167
3.00333
3.00500
3.00666
3.00832
3.00998
3.01164
3.01330
3.01496
3.01662
3.01828
3.01993
3.02159
3.02324
3.02490
3.02655
3.02820
3.02985
3.03150
3.03315
3.03480
3.03645
3.03809
3.03974
3.04138
3.04302
3.04467
3.04631
3.04795
3.04959
3.05123
3.05287
3.05450
3.05614
3.0577*
3.05941
3.06105
3.06268
3.06431
3.06594
VN
Vuitf
9.38063
9.38616
9.39149
9.39681
9.40213
9.40744
9.41276
9.41807
9.42338
9.42868
9.43398
9.43928
9.44458
9.44987
9.45516
9.46044
9.46573
9.47101
9.47629
9.48156
9.48683
9.49210
9.49737
9.50263
9.50789
9.51315
9.51840
9.52365
9.52890
9.53415
9.53939
9.54463
9.54987
9.55510
9.56033
9.56556
9.57079
9.57601
9.58123
9.58645
9.59166
9.59687
9.60208
9.60729
9.61249
9.61769
9.62289
9.62808
9.63328
9.63846
9.64365
9.64883
9.65401
9.65919
9.66437
9.66954
9.67471
9.67988
9.68504
9.69020
9.69536
VLQN
N
9.40
9.41
9.42
9.43
9.44
*.M
9.46
9.47
9.48
9.49
9.60
9.51
9.62
9.63
9.64
9.M
9.66
9.57
9.58
9.59
9.60
9.61
9.62
9.63
9.64
9.65
9.66
9.67
9.68
9.69
9.70
9.71
9.72
9.73
9.74
9.76
9.76
9.77
9.78
9.79
9.80
9.81
9.82
9.83
9.84
9.86
9.86
9.87
9.88
9.89
9.90
9.91
9.92
9.93
9.94
9.95
9.96
9.97
9.98
9.99
10.00
N
AP
88.3600
88.6481
88.7364
88.9249
89.1136
89.3025
89.4916
89.6809
89.8704
90.0601
90.2500
90.4401
90.6304
90.8209
91.0116
91.2026
91.3936
91.5849
91.7764
91.9681
92.1600
92.3521
92.5444
92.7369
92.9296
93.1225
93.3166
93.5089
93.7024
93.8961
94.0900
94.2841
94.4784
94.6729
94.8676
95.0625
95.2576
95.4529
95.6484
95.8441
96.0400
96.2361
96.4324
96.6289
96.8256
97.0225
97.2196
97.4169
97.6144
97.8121
98.0100
98.2081
98.4064
98.6049
98.8036
99.0025
99.2016
99.4009
99.6004
99.8001
100.000
N*
VN
3.00694
3.06757
3.06920
3.07083
3.07246
3.07409
3.07571
3.07734
3.07896
3.08068
3.08221
3.08383
3.08545
3.08707
3.08869
3.09031
3.09192
3.09364
3.09516
3.09677
3.09839
3.10000
3.10161
3.10322
3.10483
3.10644
3.10806
3.10966
3.11127
3.11288
3.11448
3.11609
3.11769
3.11929
3.12090
3.12250
3.12410
3.12670
3.12730
3.12890
3.13050
3.13209
3.13369
3.13528
3.13688
3.13847
3.14006
3.14166
3.14325
3.14484
3.14643
3.14802
3.14960
3.15119
3.15278
3.15436
3.16595
3.15753
3.15911
3.16070
3.16228
VN
Vwi
9.69536
9.70052
9.70567
9.71082
9.71597
9.72111
9.72625
9.73139
9.73663
9.74166
9.74A79
9.75192
9.75706
9.76217
9.76729
9.77241
9.77763
9.78264
9.78775
9.79285
9.79796
9.80306
9.80816
9.81326
9.81836
9.82344
9.82863
9.83362
9.83870
9.84378
9.84886
9.86393
9.86901
9.86408
9.86914
9.87421
9.87927
9.88433
9.88939
9.89444
9.89949
9.90454
9.90959
9.91464
9.91968
9.92472
9.92975
9.93479
9.93982
9.94485
9.94987
9.95490
9.95992
9.96494
9.96995
9.97497
9.97998
9.98499
9.98999
9.99500
10.0000
VutN
17-5
-------
LOGARITHMS TO BASE 10
N
10
11
12
13
14
15
16
17
13
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
N
01234
0000 0043 0086 0128 0170
0414 0453 0492 0531 0569
0792 0828 0864 0899 0934
1139 1173 1206 1239 1271
1461 1492 1523 1553 1584
1761 1790 1818 1847 1875
2041 2068 2095 2122 2148
2304 2330 2355 2380 2405
2553 2577 2601 2625 2648
2788 2810 2833 2856 2878
3010 3032 3054 3075 3096
3222 3243 3263 3284 3304
3424 3444 3464 3483 3502
3617 3636 3655 3674 3692
3802 3820 3838 3856 3874
3979 3997 4014 4031 4048
4150 4166 4183 4200 4216
4314 4330 4346 4362 4378
4472 4487 4502 4518 4533
4624 4639 4654 4669 4683
4771 4786 4800 4814 4829
4914 4928 4942 4955 4969
5051 5065 5079 5092 5105
5185 5198 5211 5224 5237
5315 5328 5340 5353 5366
5441 5453 5465 5478 5490
5563 5575 5587 5599 5611
5682 5694 5705 5717 5729
5798 5809 5821 5832 5843
5911 5922 5933 5944 5955
6021 6031 6042 6053 6064
6128 6138 6149 6160 6170
6232 6243 6253 6263 6274
6335 6345 6355 6365 6375
6435 6444 6454 6464 6474
6532 6542 6551 6561 6571
6628 6637 6646 6656 6665
6721 6730 6739 6749 6758
6812 6821 6830 6839 6848
6902 6911 6920 6C28 6937
6990 6998 7007 7016 7024
7076 7084 7093 7101 7110
7160 7168 7177 7185 7193
7243 7251 7259 7267 7275
7324 7332 7340 7348 7356
01234
56789
0212 0253 0294 0334 0374
0607 0645 0682 0719 0755
0969 1004 1038 1072 1106
1303 1335 1367 1399 1430
1614 1644 1673 IV 03 1732
1903 1931 1959 1987 2014
2175 2201 2227 2253 2279
2430 2455 2480 2504 2529
2672 2695 2718 2742 2765
2900 2923 2945 2967 2989
3118 3139 3160 3181 3201
3324 3345 3365 3385 3404
3522 3541 3560 3579 3598
3711 3729 3747 3766 3784
3892 3909 3927 3945 3962
4065 4082 4099 4116 4133
4232 4249 4265 4281 4298
4393 4409 4425 4440 4456
4548 4564 4579 4594 4609
4698 4713 4728 4742 4757
4843 4857 4871 4886 4900
4983 4997 5011 5024 5038
5119 5132 5145 5159 5172
5250 5263 5276 5289 5302
5378 5391 5403 5416 5428
5502 5514 5527 5539 5551
5623 5635 5647 5658 5670
5740 5752 57C3 5775 5786
5855 5866 5877 5888 5899
5966 5977 5988 5999 6010
6075 6085 6096 6107 6fl7
6180 6191 6201 6212 6222
6284 6294 6304 6314 6325
6385 6395 6405 6415 6425
6484 6493 6503 6513 6522
6580 6590 6599 6609 6618
6675 6684 6693 6702 6712
6767 6776 6785 6794 6803
6857 6866 6875 6884 6893
6946 6955 6964 6972 6981
7033 7042 7050 7059 7067
7118 7126 7135 7143 7152
7202 7210 7218 7226 7235
7284 7292 7300 7308 7316
7364 7372 7380 7388 7396
56789
Proportional Parts
123456789
4 8 12 17 21 25 29 33 37
4 8 11 15 19 23 26 30 34
3 7 10 14 17 21 24 28 31
3 6 10 13 16 19 23 26 29
3 6 9 12 15 18 21 24 27
3 6 8 11 14 17 20 22 25
3 5 8 11 13 16 18 21 24
2 5 7 10 12 15 17 20 22
2 5 7 9 12 14 16 19 21
2 4 7 9 11 13 16 18 20
2 4 6 8 11 13 15 17 19
2 4 6 8 10 12 14 16 18
2 4 6 8 10 12 14 15 17
2 4 8 7 9 11 13 15 17
2 4 5 7 9 11 12 14 16
2 3 5 7 9 10 12 14 15
2 3 5 7 8 10 11 13 15
2 3 5 6 8 9 11 13 14
2 3 5 6 8 9 11 12 14
1 3 4 6 7 9 10 12 13
1 3 4 6 7 9 10 11 13
1 3 4 6 7 8 10 11 12
1 3 4 5 7 8 9 11 12
1 3 4 5 6 8 9 10 12
1345689 10 11
1245679 10 11
1 2 4 5 6 7 8 10 11
12356789 10
12356789 10
12345789 10
12345689 10
123456789
123456789
123456789
123456789
123456789
123456778
123455678
123445678
123446678
123345678
123345678
122345677
122345667
122345667
123456789
The proportional parts are stated in full for every tenth at the right-hand side.
The logarithm of any number of four significant figures can be read directly by
adding the proportional part corresponding to the fourth figure to the tabular
number corresponding to the first three figures. There may be an error of 1 in
the last place.
17-6
-------
LOGARITHMS TO BASE 10
(continued)
N
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
!>3
94
95
96
97
98
99
N
01234
7404 7412 7419 7427 7435
7482 7490 7497 7505 7513
7559 7566 7574 7582 7589
7634 7642 7649 7657 7664
7709 771G 7723 7731 7738
7782 7789 7796 7803 7810
7853 7860 7868 7875 7882
7924 7931 7938 7945 7952
7993 8000 8007 8014 8021
8062 8069 8075 8082 8089
8129 8136 8142 8149 8156
8195 8202 8209 8215 8222
8261 8267 8274 8280 8287
8325 8331 8338 8344 8351
8388 8395 8401 8407 8414
S451 8457 8463 8470 8476
8513 8519 8525 8531 8537
8573 8579 8585 8591 8597
8633 8639 8645 8651 8657
8692 8698 8704 8710 8716
8751 8756 8762 8768 8774
8808 8814 8820 8825 8831
8865 8871 8876 8882 8887
8921 8927 8932 8938 8943
8976 8982 8987 8993 8998
9031 9036 9042 9047 9053
9085 9090 9096 9101 9106
9138 9143 9149 9154 9159
9191 9196 9201 9206 9212
9243 9248 9253 9258 9263
9294 9299 9304 9309 9315
9345 9350 9355 9360 9365
9395 9400 9405 9410 9415
9445 9450 9455 9460 9465
9494 9499 9504 9509 9513
9542 9547 9552 9557 9562
9590 9595 9600 9605 9609
9038 9643 9647 9652 9657
9685 9689 9694 9699 9703
9731 9736 9741 9745 9750
9777 9782 9786 9791 9795
9823 9827 9832 9836 9841
9868 9872 9877 9881 9886
9912 9917 9921 9926 9930
9956 9961 9965 9969 9974
01234
56789
7443 7451 7459 7466 7474
7520 7528 7536 7543 7551
7597 7604 7612 7619 7627
7672 7679 7686 7694 7701
7745 7752 7760 7767 7774
7818 7825 7832 7839 7846
7889 7896 7903 7910 7917
7959 7966 7973 7980 7987
8028 8035 8041 8048 8055
8096 8102 8109 8116 8122
8162 8169 8176 8182 8189
8228 8235 8241 8248 8254
8293 8299 8306 8312 8319
8357 8363 8370 8376 8382
8420 8426 8432 8439 8445
8482 8488 8494 8500 8506
8543 8549 8555 8561 8567
8603 8609 8615 8621 8627
8663 8669 8675 8681 8686
8722 8727 8733 8739 8745
8779 8785 8791 8797 8802
8837 8842 8848 8854 8859
8893 8899 8904 8910 8915
8949 8954 8960 8965 8971
9004 9009 9015 9020 9025
9058 9063 9069 9074 9079
9112 9117 9122 9128 9133
9165 9170 9175 9180 9186
9217 9222 9227 9232 9238
9269 9274 9279 9284 9289
9320 9325 9330 9335 9340
9370 9375 9380 9385 9390
9420 9425 9430 9435 9440
9469 9474 9479 9484 9489
9518 9523 9528 9533 9538
9566 9571 9576 9581 9586
9614 9619 9624 9628 9,633
9661 9666 9671 9675 9680
9708 9713 9717 9722 9727
9754 9759 9763 9768 9773
9800 9805 9809 9814 9818
9845 9850 9854 9859 9863
9890 9894 9899 9903 9908
9934 9939 9943 9948 9952
9978 9983 9987 9991 9996
56789
Proportional Parts
123456789
122345567
122345567
122345567
112344567
112344567
112344566
112344560
1 12334566
112334556
1 12334556
1 12334556
112334556
112334556
1 12334456
112234456
1 12234456
112234455
1 12234455
112234455
112234455
1 12233455
1 12233455
1 12233445
1 12233445
1 12233445
1 12233445
1 12233445
112233445
112233445
112233445
112233445
112233445
011223344
011223344
011223344
011223344
011223344
011223344
011223344
011223344
011223344
011223344
011223344
011223344
011223334
123456789
The proportional parts are stated in full for every tenth at the right-hand side.
The logarithm of any number of four significant figures can be read directly by
adding the proportional part corresponding to the fourth figure to the tabular
number corresponding to the first three figures. There may be an error of 1 in
the last place.
17-7
-------
NATURAL (NAPIERIAN) LOGARITHMS
The natural logarithm of • number if the index of the power to wbloh the
baae t (2.7162818) mu*t be raised in order to equal the number.
Example: lot, 4.18 " In 4.12 • 1.4169.
The table give* th« natural logarithm* of number* from 1.00 to 0.09 di-
reotly, and permit* finding logarithm* of number* outeide that range by
the addition or •ubtraotion of the natural logarithm* of power* of 10.
Example: In 079. - In «.70 * In 10* ; 1.9166 + 4.8062 • 6.6807
In 0.0679 - In 6.79 - In 10 - 1.9166 - 4.6062 - - 2.6897
In 10.
S. 802686
lateral Lo««rltke« *f 10*
In 10* - 9.210840
In 10* • 4.606170
In 10 - 6.907766
In 10"
In 10 - 16.118096
In 10* - 18.420681
11.612926
In 10" - 18.816611 In 10* - SO.728266
To obtain the ooamon logarithm, the natural logarithm 1* multiplied by
logic «, •*!<* i* 0.484294, or Iog10 * - 0.484294 In H.
N
1.0
.1
.2
.3
.4
.5
.6
.7
.8
.0
2.0
1
,2
.3
4
A
.«
.7
.8
9
*.•
.1
2
.3
.4
.5
.6
.7
.8
.9
4.«
.1
.2
.3
.4
.5
.6
.7
.8
.0
0 123456789
0.00000 .00995 .01980 .02958 .03922
.09531 .10436 .11333 .12222 .13103
.18232- .19062 .19885 .20701 .21511
.26236 .27003 .27763 .2H513 .29267
.33647 .34359 .35066 45767 .36464
.40547 .41211 .41871 .42527 .43178
.47000 .47623 .48243 .48858 .49470
.53063 .53649 .54232 .54812 .55389
.58779 .59333 .59884 .60432 .60977
.64185 .64710 .65233 .65752 .6626*
0.69315 .69813 .70310 .70804 .71295
.74194 .74669 .75142 .75612 .76031
.78846 .79299 .79751 .80200 .80648
.83291 .83725 44157 .84587 .85015
.87547 .87963 .88377 .88789 .89200
.•1629 .92028 .92426 .82822 .93216
.05551 .95935 .06317 .96698 47078
.00325 .09695 '.00063 '.00430 ".00796
1.02962 .03318 .03674 .04028 .04380
.06471 .06816 .07158 .07500 .07841
1.00861 .10194 .10526 .10856 .11186
.13140 .13462 .13783 .14103 .14422
.16315 .16627 .16938 .17248 .17557
.10302 .19695 .19996 .20297 .20597
.22378 .22671 .22964 .23256 .23547
.25276 .25562 .25846 .26130 .26413
.28093 .28371 .28647 .28023 .29188
.30833 41103 .31372 .31641 .31809
33500 .33763 44025 .34286 44547
46008 46354 46600 46864 47118
148629 48870 40128 40377 40624
.41099 .41343 .41585 .41828 .42070
.43508 .43746 .43084 .44220 .44456
.45862 .46094 .46328 .46557 .46787
.48160 .48387 .48614 .48840 .40066
40408 .50630 40861 41079 41203
49606 42823 43030 43254 43471
44756 44060 45181 45303 45604
.56862 47070 47277 4748ft 47001
48024 40127 40331 40SM 40737
.04879 .05827 .06766 .07696 .08618
.13976 .14842 .15700 .16551 .17305
.22314 .23111 .23902 .24686 .25464
.30010 40748 .31481 .32208 .32030
47150 47844 .38526 .39204 49878
.43825 .44469 .45108 .45742 .46373
.50078 .50682 .51282 .51879 .52473
.55962 .56531 .57098 .57661 .58222
.61519 .62058 .62594 .63127 .63658
.66783 .67294 .67803 .68310 .68813
.71784 .72271 .72755 .73237 .73718
.76547 .77011 .77473 .77932 .78300
.81093 .81536 .81978 .82418 .82855
.85442 .85866 .86289 .86710 .87120
.89609 .90018 .00422 .90826 .01228
.03609 .04001 .94391 .04770 .05160
.07456 .97833 .98208 .98582 .08054
•.01160 '.01523 ".01885 '.02245 '.02604
.04732 .05082 .05431 .05779 .06126
.08181 .08519 .0885.} .09192 .00527
.1151* .11841 .12168 .12493 .12817
.14740 .15057 .15373 .15638 .16009
.17865 .18173 .18470 .18784 .10080
.90896 .21194 .21491 .21788 .23083
.23837 44127 44415 44703 44900
.26695' 46976 47257 47536 .27815
.29473 40746 40010 40291 40563
42176 42442 42708 42972 43237
44807 45067 45325 45584 46841
47372 47624 47877 43128 48379
40872 .40118 .40364 .40610 .40854
.42311 .42552 .42792 .43031 .43270
.44692 .44927 .45161 .45395 .45620
.47018 .47247 .47476 .47705 .47033
.40200 .40515 .49730 .40962 40181
41513 41732 41051 42170 42388
43687 .53902 .54116 .54330 44543
45814 .58025 .56235 .56444 46653
47808 .58104 .58300 .58515 .58719
49030 .60141 .60342 .00543 .60744
17-8
See Reference No. 12
-------
NATURAL (NAPIERIAN) LOGARITHMS
(continued)
N
f.O
.1
.2
.3
.4
.5
.8
.7
.8
.0
t.0
.1
.2
.3
.4
.5
.6
.7
.8
.9
7.t
.1
.2
.3
.4
.5
.«
.7
.8
.0
&•
.1
.2
.3
.4
.5
.6
.7
.8
.9
».•
.1
.2
.3
.4
.8
.8
.7
.8
.«
01234
1.60944 .01144 .61343 .61542 .6174
.62924 .63120 .63315 .63511 .63705
.64866 .65058 .65250 .65441 .65632
.66771 .66959 .67147 .67335 .67523
.68640 .68825 .69010 .69194 .69378
.70475 .70656 .70838 .71019 .71199
.72277 .72455 .72633 .72811 .72988
.74047 .74222 .74307 .74572 .74746
.75786 .75958 .76130 .76302 .76473
.77495 .77565 .77834 .78002 .78171
1.79176 .79342 .79509 .79«73 .79840
.80829 .80993 .81156 .S1319 .81482
.82455 .82616 .82777 .82938 .83098
.84055 .84214 .84372 .84530 .84688
.85630 .85786 .85942 .86097 .86253
.87180 .87334 .87487 .87641 .87794
.88707 .8X858 .89010 .89160 .89311
.90211 .90360 .90509 .90658 .90806
.91692 .91839 .91986 .92132 .92279
.93152 .93297 .93442 .93586 .93730
1.94591 .94734 .94876 .95019 .95161
.96009 .96150 .96291 .96431 .96571
.97408 .97547 .97685 .97824 .97962
.98787 .98924 .99061 .99198 .99334
2.00148 .00283 .00418 .00553 .00687
.01490 .01624 .01757 .01890 .02012
.02815 .02946 .03078 .03209 .03340
.04122 .04252 .04381 .04511 .04640
.05412 .05540 .05668 .05796 .05924
.06686 .06813 .06939 .07065 .07191
1.07944 .08069 .08194 .08318 .08443
.09186 .09310 .09433 .09556 .09679
.10413 .10535 .10657 .10779 .10900
.11626 .11746 .11866 .11986 .12106
.12823 .12942 .13061 .13180 .13298
.14007 .14124 .14242 .14359 .14476
.15176 .15292 .15409 .15524 .15640
.16332 .10447 .16562 .16677 .16791
.17475 .17589 .17702 .17816 .17929
.18605 .18717 .18830 .18942 .19054
2.19722 .19834 .19944 .20055 .20166
.20827 .20937 .21047 .21157 .21266
.21920 .22029 .22138 .22246 .22354
.23001 .23109 .23216 .23324 .23431
.24071 .24177 .24284 .24390 .24496
.25129 .25234 .25339 .25444 .25549
.26176 .2H280 .26384 .26488 .26592
.27213 .27316 .27419 .27521 .27624
.28238 .28340 .28442 .28544 .28646
.29253 .29354 .29455 .29556 .29657
5678*
.61939 .62137 .62334 .62531 .62728
.63900 .64094 .64287 .64481 .64673
.65823 .66013 .66203 .66393 .66582
.67710 .67896 .68083 .68269 .88455
.69582 .09745 .69928 .70111 .70293
.71380 .71560 .71740 .71919 .72098
.73166 .73342 .73519 .73695 .73871
.74920 .75094 .75207 .75440 .75613
.76644 .76815 .7G9S5 .77156 .77329
.78330 .78507 .78675 .78842 .79009
.80006 .80171 .80336 .80500 .80665
.81645 .81806 .81970 .82132 .82294
.83258 .83418 .83578 .83737 .83896
.84845 .85003 .85160 .85317 .85473
.86408 .86563 .86718 .86872 .87028
.87947 .88099 .88251 .8*403 .88855
.89462 .89012 .89702 .SWM2 .90061
.90954 .91102 .91230 .>il30g .91545
.92425 .92571 .92716 .92*}2 .93007
.93874 .MO IS .94162 .94305 .94448
.95303 .95445 .95596 .95727 .95869
.96711 .96851 .96991 .97130 .97269
.98100 .98238 .08379 .98513 .98650
.99470 .99606 .09742 .99877 '.00013
.00821 .0095A .01080 .01223 .01357
.02155 .02287 .02419 .02551 .02683
.03471 .03601 .03732 .03862 .03992
.04769 .04898 .05027 .05156 .05384
.06051 .06170 .06306 .06433 .06560
.07317 .07443 .07568 .07094 .07819
.08567 .08691 .08815 .08930 .090*3
.09802 .09924 .10047 .10160 .10291
.11021 .11142 .11263 .11384 .11105
.12226 .12346 .12465 .1258ft .12704
.13417 .13535 .13653 .13771 .13889
.14593 .14710 .14827 .14043 .19060
.15756 .15871 .15987 .16102 .16217
.16905 .17020 .17134 .17248 .17361
.18042 .18155 .18267 .18380 .18403
.19165 .19277 .19389 .10500 .10611
.20276 .20387 .20497 .10607 J0717
.21375 .21485 .21594 .21703 .21812
.22462 .22570 .22678 .22786 .22804
.23538 .23645 .23751 .23858 .23005
.24601 .24707 .24813 .24918 .25024
.25654 .25750 .25863 .25968 .26072
.26696 .26799 .26903 .27006 .27100
.27727 .27829 .27932 .28034 .28136
.28747 .28849 .28950 .29051 .29152
.29757 .29868 .29958 .30058 .30158
17-9
-------
VALUES AND LOGARITHMS OF EXPONENTIAL FUNCTIONS
-X
Note: If 0 < x < .01 the value for e " can be found by the use of
(1-x) or the value for ex can be found by the use of (1 + x).
X
0 00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.5C
e*
Value LogIO
1 .0000 .00000
1.0101 .00434
1.0202 .00869
1.0305 .01303
1.0408 .01737
1.0513 .02171
1.0618 .02606
1.0725 .03040
1.0833 03474
1.0942 03909
1.1052 .04343
1.1163 .04777
1.1275 .05212
1.1388 .0?646
1.1503 .06080
1.1618 .06514
1.1735 .06949
1.1853 .07383
1.1972 .07817
1.2092 ..08252
1.2214 .08686
1.2337 ,0'J120
1.2461 .09554
1.2586 .09989
1.2712 .10423
1.2840 .10857
1.2969 .11292
1.3100 .11726
1.3231 .12160
1.3364 .12595
1 . 3499 . 1 3029
1 . 3634 . 1 3463
1.3771 .13897
1.3910 .14332
1.4049 .14766
1.4191 .15200
1.4333 .15635
1.4477 .16069
1.4623 .16503
1.4770 .16937
1.4918 .17372
1.5068 .17806
1.5220 .18240
1.5373 .18675
1.5527 .19109
1.5683 .19543
1.5841 .19978
1.6000 .20412
1.6161 .20846
1.6323 .21280
1.6487 .21715
e~*
Value
1 . 00000
.99005
. 98020
.97045
.96079
.95123
.94176
. 93239
.92312
.91393
.90484
.89583
.88692
.87809
. 86936
.86071
.85214
.84366
. 83527
.82696
.81873
.81058
.80252
.79453
.78663
.77880
.77105
.76338
.75578
.74826
. 74082
.73345
.72615
.71892
.71177
.70469
. 69768
.69073
.68386
.67706
.67032
.66365
. 65705
.65051
. 64404
.63763
.63128
.62500
.61878
.61263
.60653
X
0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
e*
Value Logic
1.6487 .21715
1.6653 .22149
1 . 6820 . 22583
1.6989 .23018
1.7160 .23452
1.7333 .23886
1.7507 .24320
1.7683 .24755
1.7860 .25189
1.8040 .25623
1.8221 .26058
1.8404 .26492
1.8589 .26926
1.8776 .27361
1.8965 .27795
1.9155 .28229
1.9348 .28664
1.9542 .29098
1.9739 .29532
1.9937 .29966
2.0138 .30401
2.0340 .30835
2.0544 .31269
2.0751 .31703
2.0959 .32138
2.1170 .32572
2.1383 .33006
2.1598 .33441
2.1815 .33875
2.2034 .34309
2.2255 .34744
2.2479 .35178
2.2705 .35612
2.2933 .36046
2.3164 .36481
'2.3396 .36915
2.3632 .37349
2.3869 .37784
2.4109 .38218
2.4351 .38652
2.4596 .39087
2.4843 .39521
2.5093 .39955
2.5345 .40389
'2.5600 .40824
2,5857 .41258
2.6117 .41692
2.6379 .42127
2.6645 .42561
2.6912 .42995
2.7183 .43429
e~*
Value
.60653
.60050
. 59452
. 58860
.58275
. 57695
.57121
. 56553
. 55990
. 55433
.54881
.54335
. 53794
. 53259
.52729
. 52205
.51685
.51171
.50662
.50158
.49659
.49164
.48675
.48191
.47711
.47237
.46767
.46301
.45841
.45384
.44933
.44486
.44043
.43605
.43171
.42741
.42316
.41895
.41478
.41066
.40657
.40252
.39852
.39455
.39063
.38674
.38289
.37908
.37531
.37158
.36788
17-10
-------
VALUES AND LOGARITHMS OF EXPONENTIAL FUNCTIONS
(continued)
X
1.00
1.01
1.02
1.03
1.04
1.05
1 .06
1.07
1 .08
1 .09
1.10
1.11
1.12
1.13
1 .14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
e1
Value LogIO
2.7183 .43429
2.7456 .43864
2.7732 .44298
2.8011 .44732
2.8292 .45167
2.8577 .45601
2.8864 .46035
2.9154 .46470
2.9447 .46904
2.9743 .47338
3.0042 .47772
3.0344 .48207
3.0649 .48641
3.0957 .49075
3.1268 .49510
3.1582 .49944
3.1899 .50378
3.2220 .50812
3.2544 .51247
3.2871 .51681
3.3201 .52115
3.3535 .52550
3.3872 .52984
3.4212 .53418
3.4556 .53853
3.4903 .54287
3.5254 .54721
3.5609 .55155
3.5966 .55590
3.6328 .56024
3.6693 .56458
3.7062 .56893
3.7434 .57327
3.7810 .57761
3.8190 .58195
3.8574 .58630
3.8962 .59064
3 . 9354 . 59498
3.9749 ,59933
4.0149 .60367
4.0552 .60801
4.0960 .61236
4.1371 .61670
4.1787 .62104
4.2207 .62538
4.2631 .62973
4.3060 .63407
4.3492 .63841
4 . 3929 . 64276
4.4371 .64710
4.4817 .65144
er*
Value
. 36788
. 36422
. 36060
.35701
.35345
. 34994
. 34646
.34301
.33960
. 33622
.33287
. 32956
.32628
.32303
.31982
.31664
.31349
.31037
. 30728
. 30422
.30119
.29820
.29523
.29229
.28938
.28650
.28365
.28083
.27804
.27527
.27253
.26982
.26714
.2644g
.26185
.25924
.25666
.25411
.25158
.24908
.24660
.24414
.24171
.23931
.23693
.23457
.23224
. 22993
.22764
.22537
.22313
Z
1.50
1.51
1.52
1.53
1.54
1.55
I 56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.70
1.71
1.72
1.73
1.74
1.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.88
1.89
1.90
1.91
1.92
1.93
1.94
1.95
1.96
1.97
1.98
1.99
2.00
e*
Value Logio
4.4817 .65144
4.5267 .65578
4.5722 .66013
4.6182 .66447
4.6646 .66881
4.7115 .67316
4.7588 .67750
4.8066 .68184
4.8550 .68619
4.9037 .69053
4.9530 .69487
5.0028 .69921
5.0531 .70356
5.1039 .70790
5.1552 .71224
5.2070 .71659
5.2593 .72093
5.3122 .72527
5.3656 .72961
5.4195 .73396
5.4739 .73830
5.5290 .74264
5.5845 .74699
5.6407 .75133
5.6973 .75567
5.7546 .76002
5.8124 .76436
5.8709 .76870
5.9299 .77304
5.9895 .77739
6.0496 .78173
6.1104 .78607
6.1719 .79042
6.2339 .79476
6.2965 .79910
6.3598 .80344
6.4237 .80779
6.4883 .81213
6.5535 .81647
6.6194 .82082
6.6859 .82516
6.7531 .82950
6.8210 .83385
6.8895 .83819
6.9588 .84253
7.0287 .84687
7.0993 .85122
7.1707 .85556
7.2427 .85990
7.3155 .86425
7.3891 .86859
er*
Value
.22313
.22091
.21871
.21654
.21438
.21225
.21014
.20805
. 20598
.20393
.20190
.19989
.19790
.19593
.19398
.19205
.19014
.18825
.18637
.18452
.18268
.18087
.17907
.17728
.17552
.17377
. 1 7204
.17033
.16864
.16696
.16530
.16365
.16203
.16041
.15882
15724
.15567
.15412
. 1 5259
. 1 51 07
.14957
.14808
14661
.M515
. 14370
.14227
.14086
.13946
.13807
.13670
.13534
17-11
-------
VALUES AND LOGARITHMS OF EXPONENTIAL FUNCTIONS
(continued)
X
sToo
2.01
2.02
2.03
2.04
2.05
2.06
2.07
2.06
2.09
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
2.41
2.42
2.43
2.44
2.45
2.46
2.47
2.48
2.49
2.50
e*
Value Loft,
7.3891 .86859
7.4633 .87293
7.5383 .87727
7.6141 .88162
7.6906 .88596
7.7679 .89030
7.8460 .89465
7.9248 .89899
8.0045 .90333
8.0849 .90768
8.1662 .91202
8.2482 .91636
8.3311 .92070
8.4149 .92505
8.4994 .92939
8.5849 .93373
8.6711 .93808
8.7583 .94242
8.8463 .94676
8.9352 .95110
9.0250 .95545
9.1157 .95979
9.2073 .96413
9.2999 .96848
9.3933 .97282
9.4877 .97716
9.5831 .98151
9.6794 .98585
9.7767 .99019
9.8749 .99453
9.9742 .99888
10.074 1.00322
10.176 1.00756
10.278 1.01191
10.381 1.01625
10.486 1.02059
10.591 1.02493
10.697 1.02928
10.805 1.03362
10.913 1.03796
11.023 1.04231
11.134 1.04665
11.246 1.05099
11.359 1.05534
11.473 1.05968
1 1 . 588 1 . 06402
1 1 . 705 1 . 06836
11.822 1.07271
11.941 1.07705
12.061 1.08139
12.182 1.08574
e~*
Value
.13534
.13399
.13266
.1313",
.13003
^2873
.12745
.12619
.12493
.12369
.12246
.12124
.12003
.11884
.11765
.11648
.11533
.11418
.11304
.11192
.11080
.10970
.10861
.10753
.10646
.10540
.10435
.10331
.10228
.10127
.10026
.09926
.09827
.09730
.09633
.09537
. 09442
.09348
.09255
.09163
.09072
.08982
.08892
.08804
.08716
.08629
.08543
.08458
.08374
.08291
.08208
X
2.50
2.51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59
2.60
2.61
2.62
2.63
2.64
2.65
2.66
2.67
2.68
2.69
2.70
2.71
2.72
2.73
2.74
2.75
2.76
2.77
2.78
2.79
2.80
2.81
2.82
2.83
2.84
2.85
2.86
2.87
2.88
2.89
2.90
2.91
2.92
2.93
2.94
2.95
2.96
2.97
2.98
2.99
3.00
e*
Value Logi»
12.182 1 .08*?*
12.305 1.09008
12.429 1.09442
12.554 1.09877
12.680 1.10311
12.807 1.10745
12.936 1.11179
13.066 1.11614
13.197 1.12048
13.330 1.12482
13.464 1.12917
13.599 1.13351
13.736 1.13785
13.874 1.14219
14.013 1.14654
14.154 1.15088
14.296 1.15522
14.440 1.15957
14.585 1.16391
14.732 1.16825
14.880 1.17260
15.029 1.17694
15.180 1.18128
15.333 1.18562
15.487 1.18997
15.643 1.19431
15.800 1.19865
15.959 1.20300
16.119 1.20734
16.281 1.21168
16.445 1.21602
16.610 1.22037
16.777 1.22471
16.945 1.22905
17.116 1.23340
17.288 1.23774
17.462 1.24208
17.637 1.24643
17.814 1.25077
17.993 1.25511
18.174 1.25945
18.357 1.26380
18.541 1.26814
18.728 1.27248
18.916 1.27683
19.106 1.28117
19.298 1.28551
19.492 1.28985
19.688 1 .29420
19.886 1.29854
20.086 1.30288
e~*
Value
.08208
.08127
.08046
.07966
.07887
.07808
.07730
.07654
.07577
.07502
.07427
.07353
.07280
.07208
.07136
.07065
.06995
.06925
.06856
.06788
.06721
.06654
.06587
.06522
.06457
.06393
.06329
.06266
.06204
.06142
.0608?
.06020
.05961
.05901
.05843
.05784
.05727
.05670
.05613
.05558
.05502
.05448
.05393
.05340
.05287
.05234
.05182
.05130
.05079
.05029
.04979
17-12
-------
VALUES AND LOGARITHMS OF EXPONENTIAL FUNCTIONS
(continued)
z
3.00
3,05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
3.95
4.00
4.10
4.20
4.30
4.40
4.50
4.60
4.70
4.80
4.90
5.00
5.10
5.20
5.30
5.40
5.50
5.60
5.70
5.80
5.90
6.00
6.25
6.50
6.75
7.00
7.50
8.00
8.50
9.00
9.50
10.00
Value
20.066
21.115
22.198
23.336
24.533
25.790
27.113
28.503
29.964
31.500
33.115
34.813
36.598
38.475
40.447
42.521
44.701
46.993
49.402
51.935
54.598
60.340
66.686
73.700
81.451
90.017
99.484
109.95
121.51
134.29
148.41
164.02
181.27
200.34
221.41
244.69
270.43
298 . 87
330.30
365.04
403.43
518.01
665.14
854.06
1096.6
1808.0
2981.0
4914.8
8103.1
13360.
22026.
t*
Log 10
1.30288
1 . 32460
1.34631
1.36803
1.38974
1.41146
1.43317
1.45489
1 . 47660
1 . 49832
1 . 52003
1.54175
1 . 56346
1.58517
1.60689
1.62860
1 .65032
1.67203
1.69375
1.71546
1.73718
1.78061
1.82404
1.86747
1.91090
1 .95433
1.99775
2.04118
2.08461
2.12804
2.17147
2.21490
2.25833
2.30176
2.34519
2.38862
2.43205
2.47548
2.51891
2.56234
2.60577
2.71434
2 . 82291
2.93149
3.04006
3.25721
3.47436
3.69150
3.90865
4.12580
4.34294
tr*
Value
.04979
.04736
.04505
.04285
.04076
.03877
.03688
.03508
.03337
.03175
.03020
.02872
.02732
.02599
.02472
.02352
.02237
.02128
.02024
.01925
.01832
.01657
.01500
.01357
.01227
.01111
.01005
.00910
.00823
.00745
.00674
.00610
.00552
.00499
.00452
.00409
.00370
.00335
. 00303
.00274
.00248
.00193
.00150
.00117
.00091
.00055
.00034
.00020
.00012
.00007
,00005
17-13
-------
SELECTED PRINCIPLES OF ALGEBRA
I OPERATIONS WITH EXPONENTS
(am) X (a")
m + n
. m. n
(a )
mn
(am) X (b111)
(a1") -f (a")
(ab)
m
m - n
II FACTORING
Common factor
ax + ay • a( x + y)
Difference of two squares
• (a + b) ( a - b)
Trinomial perfect square
a2 + 2ab + b2
a
2ab
» (a + b)
- (a - b)
HI OPERATIONS INVOLVING FRACTIONS
a j_ £
b b
ji
b
c
b
a - c
b
ac
bd
(I) "CO'
ad
be
IV OPERATIONS INVOLVING RADICALS
Other trinomials
x2 + (a + b)x + ab - (x + a) (x+b)
acx2 + (ad + bc)x + bd « (ax+b) (cx+d)
Other types
a3 + b3 « (a+b) (a2-ab+b2)
a
3 - b3 » (a-b) (a2 +ab+b2)
a2 + b2 + c2 + 2ab + 2ac + 2bc
, mn^. ,
-, \ /a
V
n , , n
•?/—' *n/—•
V a A/ a
i 1 V b
n/ , n/ ,
. y b + c \J b = (a+c)
\f~b~1- Cyb '» (a-c)\A~b*
ac \ / bd
'.7-14
-------
SELECTED PRINCIPLES OF ALGEBRA
(continued)
V QUADRATIC EQUATION
ax + bx + c = 0
The sum of an infinite geometric pro-
gression is
S =
"1
1 - r
where r < 1
-b ± Vb° - 4ac
X 2
2
If b - 4ac is > 0 the roots are real and
unequal.
2
If b - 4ac = 0 the roots are real and equal.
2
If b - 4ac is < 0 the roots are imaginary.
VI BINOMIAL THEOREM
Where n is a positive integer
/ j_,\n n L n n-1 , n(n-l) n-22
(a + b) = a + y a b+ ~\ . 2 a b
^ n (n- 1) (n-2) n-3,3
+ —: ~ x— a b
VIII SCIENTIFIC NOTATION AND LOGARITHMS
A Scientific Notation
Any number may be written as the pro-
duct of a number having a single non-zero
digit to the left of the decimal point and a
positive or negative power often. The
power of ten is the number of places which
the decimal point is moved from its exist-
ing position to get the number in scientific
notation form. The sign of the exponent is
positive if the decimal point is moved to the
left and negative if the decimal point is
moved to the right.
83. 100,000 = 8.31 X 10
0.00000040 = 4.0 X 10
-7
VII PROGRESSIONS
The n— term of an arithmetic progression
an " al
The sum of an arithmetic progression
S = (a + a>
th_
The n term of a geometric progression
n- 1
a = a.r
n 1
The sum of a geometric progression is
where r 4> 1
/ n i
S = a /IL-ll
n 1 I r - 1
n
- r
where r < 1
B Logarithms
When a * x; log x = b
log x + log y = log ( xy)
x log y = log
logx - logy = logf-J
log\
- logx
log N = (log N)(log b)
ct D 3.
log
e
log1Q N = 0.4343 log N
10ge N = -
343
17-15
-------
SELECTED PRINCIPLES OF ALGEBRA
(continued)
DC DETERMINANTS
Simultaneous equations:
ax + by + cz
ex + fy + gz
ix + jy + kz
Determinant solutions:
d b c
h f g
1 j k
d
h
1
a b c
e f g
i J *
dfk + bgl + cjh • cfi - gjd - khb
afk + bgi + cje - cfi - gja - keb
a
e
i
a
e
i
ahk
d c
h g
1 k
b c
f g
j k
+ dgi + cle - chi -jfla - ked
afk +bgi + cje - cfi - gja - keb
a
e
i
a
e
i
b
f
j
b
f
j
d
h
1
c
g
k
afl + bhi + dje - dfi - hja - leb
afk + bgi + cje - cfi - gja - keb
17-16
-------
SELECTED TRIGONOMETRIC RELATIONSHIPS
I FUNDAMENTAL RELATIONSHIPS IN
A RIGHT TRIANGLE
2 2
6 sin A + cos A = 1
hypotenuse >^
adja<
sine A a
cosine A =
tanget A =
cotangent A =
secant A =
cosecant A =
Pythagorean
7
8
9
opposite
side
10
11
:ent side
„.•_ A _ opposite side 12
hypotenuse
_ adjacent side 13
COS J\ — .
hypotenuse
t,n A _ opposite side 14
zan A — , . ~ r^
adjacent side
cot A - adjacent side 15
L.OI £\ — ~ . ,
opposite side
_ccA _ hypotenuse 16
»ci^ rt. — , . 7 r~:
adjacent side
. hypotenuse 17
c* f* r* f\ TIT - T
4 &
sec A = 1 + tan A
2 2
esc A = 1 4- cot A
sin(A+B) = sinA cosB +
cos(A4-B)= cos A cos B -
sin(A-B) = sinA cosB -
cos(A-l
tan(A4-E
cot(A4-E
tan(A-E
cot(A-E
sin2A
opposite side
Theorem
18
19
2 2
( hypotenuse) = (adjacent side) + 20
( opposite side)
ftf 21
II TRIGONOMETRIC IDENTITIES
1
i
.L
0
£i
3
4
5
Sin ri. —
COS A =
tan A =
fan A s:
IctiJ r\. —
cot A =
esc A
1
sec A
1
cot A
sinA
cos A
cos A
22
23
'
24
9£
£3
2fi<
cos 2A
cos 2A
cos2A
tan2A
sin —
A
cos •=•
tan A
A
tan -
tan —
3)= COS A COSB 4-
, _ tan A 4- tan B
cos A sinB
sinA sinB
cos A sinB
sinA sinB
' 1 - tanA tanB
. _ cot A cotB - 1
' cot A 4- cotB
. _ tanA - tanB
1 4- tanA tanB
(. _ cot A cotB 4- l
cotB - cot A
= 2 sin A cos A
2 9.
- cos
= 1 -
A - sin A
2 sin2 A
2
= 2 cos A - 1
2
1 -
•4
•^
•*G
i
i
tanA
tan^A
- cos A ^
2 )
_ _ _,_ 1
2 /
- cos A '
4- cos Ay
sinA
+ cos A
- cos A
i
i
1
17-17
-------
SELECTED TRIGONOMETRIC RELATIONSHIPS
(continued)
27 sin A + sinB * 2 sin
cos
28 sin A - sinB
29 cos A + cosB * 2 cos
30 cos A - cosB «-2sin
/A+B\ /A-B i
- 2 cos ^— —-/sin V- • y
lA+Bi iA~^B I
^ o ycos \"Ty
III SIGNS OF TRIGONOMETRIC FUNCTIONS
2nd quadrant ( 90° to 180°):
positive functions:
sin and esc
negative functions:
cos, tan, cot and sec
1st quadrant (0° to 90°):
positive functions
sin, cos, tan, cot,
sec and esc
3rd quadrant (180° to 270°):
positive functions:
tan and cot
negative functions:
sin, cos, sec and esc
4th quadrant (270° to 360°) :
positive functions:
cos and sec
negative functions:
sin, tan, cot and esc
17-18
-------
SELECTED TRIGONOMETRIC RELATIONSHIPS
(continued)
IV NUMERICAL VALUES OF SELECTED TRIGONOMETRIC FUNCTIONS
Angle
Sin
Cos
Tan
Cot
Sec
Csc
+ 00
30
1
2
fwr
45
60
•/P
90
120
1
2
-2
135
-1
-N/F1
150
1
2
180
-1
- 1
+ 00
210
1
2
-2
225
240
5-
£t
- 2
270
-1
+ 00
- 1
300
1
2
315
-i
-1
330
360
1
2
+ 00
-2
+ 00
17-19
-------
SELECTED TRIGONOMETRIC RELATIONSHIPS
(continued)
V SOLUTION OF ANY TRIANGLE
C
a + b +c
^-•xCASE
ITEM ^"^^x^
Given:
Solution:
Check:
Area:
I
One side and
two angles
Law of sines
Law of tan-
gents or
Newton's
formula
2
a sin B sin C
2 sin A
II
Two sides and
an angle op-
posite one of
them
Law of sines
Law of tan-
gents or
Newton's
formula
ab sin C
2
III
Two sides and
their included
angle
Law of
tangents
Law of sines
or Newton's
formula
ab sin C
. 2
IV
Three sides
Tangents of
half angles
A+B + C = 180°
ti
s(s-a)(s-b)(s-c)f
Law of Sines: In any triangle the sides are
proportional to the sines of the opposite
angles.
a
sin A
sinB
Law of Cosines: The square of any two
sides of a triangle is equal to the sum of
the squares of the other two sides di-
minished by twice the product of the other
two sides and their included angle.
.
+ c
.
+ c
2bccosA
2ac cos B
2ab cos C
Law of Tangents: In any triangle the tan-
gent of half the difference of any two
angles is to the tangent of half their sum
as the difference of the sides opposite
these angles is to their difference.
tan
/A-B^
VTV
e+B
^
tan
tan I
(&ry
a-b
a+b
b-c
b+c
a-c
a+c
where a > b
where b > c
where a > c
17-20
-------
SELECTED TRIGONOMETRIC RELATIONSHIPS
(continued)
Tangents of Half Angles:
tan
tan
tan
(s
-a)
(s-b)
( s-c)
_ s
(s-a)
s-a) (s-b) (s-c)
s
(^b) =
«•
5-a) (s-b) (s-c)
(s-c)
Newton's Formula:
c _ a + b
. C
sin-
cos
Area Formulae:
Area =
Area =
Area -
Area =
Area
[ s(s-a) (s-b) (s-c)]
2
a sinB sin C
2 sin A
b sinAsinC
2 sinB
c sin As in B
2 sinC
Area = i be sin A
ac sin B
Area = i ab sin C
17-21
-------
SELECTED PRINCIPLES OF GRAPHICS
I THE STRAIGHT LINE (RECTANGULAR
COORDINATE SYSTEM)
A Distance Between any Two Points
B Coordinates of the Midpoint of a Line
x =-
y =
C Slope of a Line
X2'xl
D Angle of Intersection of Two Lines
tan <(>,
'1—>2
m2 " ml
1 + m.m_
1
E Forms of Equations of Straight Lines
1 Equation of a line through a given point
with given slope
a Any point; any slope
y - yj = m (x - Xj)
b Origin; any slope
y = mx
2 Equation of a line through two given
points
y2-yi / '
- y, = -—— ( x - x
X2 1 \
3 Equation of a line through a given
Y-intercept with a given slope.
y = mx + b
4 Equation of a line through its intercepts
on both axes.
+
a b
5 Equation of a. line in terms of the
perpendicular distance to a line from
the origin and the positive angle which
the perpendicular makes with the X-axis.
\
\
x cos <$> -t- y sin $ =
II ADJUSTING THE AXES
A Translation of Axes
Y i
0
Y' i
r
& -^
t
p
-------
SELECTED PRINCIPLES OF GRAPHICS
(continued)
B Rotation of Axes
./>
Xv I
\
x' = x cos 4> - y sin $
y' = x sin 4> + y cos <(>
X'
D Hyperbola
2 2
Ax + By
opposite signs)
Ax2 + By2 + Cx 4 Dy + E = 0 (A & B have
(x - h)2 (y - k)2
2 " .2
a b
= 1
2 2
—- - *-K = 1 (center of hyperbola at origin)
2 .it
a b
E Summary
2 2
Ax + By + Cx + Dy+ E = 0
1 If A = B, the curve will be a circle.
2 If either A or B equal 0, the curve will
be a parabola.
3 If A and B have the same sign and
A # B, the curve is an ellipse.
Ill EQUATIONS OF COMMON GEOMETRIC
FORMS
4 If A and B have opposite signs, the
curve is a hyperbola.
A Circle
2 2
x + y + Ax + By + C = 0
(x - h)2 + (y - k)2 = r2
222
x + y = r (center of circle at origin)
B Ellipse
2 2
Ax + By + Cx + Dy + E = 0 (A & B have
the same sign)
(x - h)
- k)2
2 2
3C V
—5 + ^-5=1 (center of ellipse at origin)
/ fi
a b
C Parabola
Ax + Bx + Cy + D = 0
(x - h)2 = 2p(y - k)
2
x = 2py (vertex of parabola at origin)
17-23
-------
SELECTED INTEGRALS
1 / Odx = c
2 t dx = x + c
3 f adx = ax + c
, n , xn+1
/ n •+• 1
. / dx ,
5 / — = Inx-t- c
/ x
/ X , X
6 / e dx = e +c
x
/• x, a
/ Inx
8 f sin x dx = - cos x 4 c
9 f cos x dx = sin x + c
•
10 / tan x dx = In sec x -t- c
11 f cot x dx = In sin x + c
/
12 J secx dx = ln(sec x + tan x) + c
13 J cscx dx = ln(csc x - cot x) •*• c
2
14 J sec x dx = tan x + c
2
15 / esc x dx = - cot x -v c
J
16 J sec x tan x dx = sec x •*• c
17 f esc x cot x dx = -esc x + c
, o r dx , X
1 p r ~ -3 T*r- oin -t i~
10 / 0 n'l - arc sin- t c
I t « «\7 *»
/ (a - x )2
^
19 /" dX - J arc- tan X + r
19 / 2 2 arc tan a + c
J a -t x
"0 / dX - * arc -cc X t c
<{0 / .2 2.i a arc SCC a
y x(x - a r
"1 /" dx 1 ln/x" *\ i c
21 / 2 2 * 2alnU+a + C
J x - a.
22 f 9dx2 - -^ i" (r^) + c
1 ft & bet \a — Xf
rf a - x
"'1 / U* , - In k 1 IT. I a^P 1 r
to I „ A i - in IX -t \» T a >*|T c
/ (x^al"2
i i 2
24 / (a2 - x2)"2dx = | (a2 - x T + % arc sin-
' 2 2 a
+ c
/9 *>i v9 91. Q 1 99^
(xZ i aVdx = |(x 1 a^)2 i^-ln [x +(x +a^)]fc
26 / sin2x dx « ^ - 4 sin 2x -f c
2 4
/3 1 2
tain Y Hv r - C-OH x ^ftin v -4- 9\ 4- r*
Olll A UA * Q V*WO A. \DU1 A T A/ X I*,
J
.n-l
•^fl f Hn" v rfv , sm x cos x n-l / . n
* n n f
f 2 x 1
29 J cos x dx = -= + -7 sin 2x + c
/3 1 2
cos x dx * -s sinx ^] + c
17-24
-------
SELECTED DIFFERENTIALS
Function Derivative
1 y = c
2 y = x
3 y = ax
4 y = x
5 y = u + v
6 y = uv
' *•;
8 y = f(u), u = f(x)
9 y= un
10 y = log u
3.
11 y = In u
12 y=au
13 y=eu
^=°
dx
& = 1
dx
£=*
dx
dy n-1
-f- = nx
dx
dy _ du dv
dx dx dx
dy dv du
j = U-7~ + V-T-
dx dx dx
du dv
v u __
dy dx dx
dx 2
v
dy _ dy > du
dx du dx
dy n-1 du
-f- = nu —
dx dx
dy 1 , du
-T- - — log e -j-
dx u a dx
dy 1 du
dx u dx
dy u du
—- = a Ina —
dx dx
dy u du
— *- = e —
dx dx
Function Derivative
v
14 y = u
15 y = sin u
16 y = cos u
17 y = tan u
18 y = cot u
19 y = sec u
20 y = esc u
21 y - arc sin u
22 y = arc cos u
23 y = arc tan u
24 y = arc cot u
25 y = arc sec u
26 y = arc esc u
dy v-1 du v, dv
-r- - vu — + u In u-r-
dx dx dx
dy du
-f- - cos u —
dx dx
dy . du
~r- = - sin u -T—
dx dx
dy 2 du
-H2- = sec u -r-
dx dx
dy 2 du
~ = - esc u —
dx dx
dy . du
-*- - sec u tan u -r-
dx dx
dy . du
-f- = - CSC U COt U -r—
dx dx
dy 1 du
dx (1.u2)i dx
dy - 1 du
dx (1_u2)i dx
dy 1 du
dx " , 2 dx
1 + u
dy - 1 du
dx 2 dx
1 + u
dy 1 du
dx ,2 ..I dx
u(u - lr
dy - 1 du
dx u(u2 - I)1 dx
17-25
-------
STATISTICAL ANALYSIS OF THE FREQUENCY DISTRIBUTION
I STATISTICS USED TO DETERMINE
CENTRAL TENDENCY
A Arithmetic Mean
1 Ungrouped data
x =
x+x+x + x
1 2 3 . . . n Sx
n
n
2 Grouped data
£(f X MP)
x =
N
B Median
1 Ungrouped data
/ N + 1 'i
median = r""5—)
* £i *
th
2 Grouped data
median = L -t-
iC
C Mode
1 Ungrouped data
mode = most frequent value
2 Grouped data
mode (approximation) = L +1
D Geometric Mean
1 Ungrouped data
(x9) . . .
~m v i' * v
or
logx
I-.— «-! _
log Gm
,, . . . V-JJ, J
+ log x2 .
N
i
. . -I- log x
2 Grouped data
log G.
m
(f X log MP)
N
II STATISTICS USED TO DETERMINE
DISPERSION OF RESULTS
A Range
xmax" Xmin
B Average Deviation
1 Ungrouped data
(x - x)
AD =
N
2 Grouped data
SMMP-x)
AD- N
C Standard Deviation
1 Ungrouped data
(x - x)21
N- 1 j
2 Grouped data
correction for grouping
3 Value of the standard deviation
x^ Is contains 68. 3% of the area under
the normal curve
x + 2s contains 95. 5% of the area under
the normal curve
x + 3s contains 99. 8% of the area under
the normal curve.
17-26
-------
PROPERTIES OF SELECTED GEOMETRIC FIGURES
PROPERTIES OF THE CIRCLE
Circumference - 6.28318 r = 3.14159 d
Diameter = 0.31831 circumference
Area = 3.14159 r*
Arc a
Angle A°
Radius r
rr A"
180°
180" a
?rr
4 b« +c«
8 b
0.017453 r A"
57.29578 -
Chord c - 2 V2 br—b* = 2 rsin
Rise
r - V4 V 4 r» - c» - ~ tan A
2rsin>
— = r + y — V r» — x*
y «b — r + Vr2 — x»
x - V r» — (r + y — b7*
Diameter of circle of equal periphery as square - 1.27324 side of square
Side of square of equal periphery as circle = 0.78540 diameter of circle
Diameter of circle circumscribed about square ** 1.41421 side of square
Side of square inscribed in circle =• 0.70711 diameter of circle
CIRCULAR SECTOR
r — radius of circle y = angle ncp in degrees
Area of Sector ncpo = *,4 (length of arc nop X r)
- Area of Circle X ^
- 0.0087266 X r* X y
CIRCULAR SEGMENT
r = radius of circle x = chord b = rise
Area of Segment nop = Area of Sector ncpo — Area of triangle ncp
(Length of arc nop X r) — x (r — b)
~2
Area of Segment nsp •= Area of Circle — Area of Segment nop
VALUES FOR FUNCTIONS OF
* = 3.14159265359, log = 0.4971499
— =0.5641896, log = 1.7514251
TT» - 9.8696044, log = 0.9942997 --- = 0.3183099, log = 1.5028501
JT» =31.0062767, log = 1.4914496 ~ - 0.1013212, log =7.0057003 ~= 0.0174533, log =1T.2418774
1.7724539, log = 0.2485749 - 0.0322515, log - 2.5085500
180
180
57.2957795, log = 1.7581226
See Reference No. 4
17-27
-------
PROPERTIES OF SELECTED GEOMETRIC FIGURES
(continued)
PROPERTIES OF
SQUARE
Axis of moments through center
t
1
d —
1
I
— —__
< d
c
...JL
T*
SQUARE
Axis of moments on base
r
a
i_
1
0
1
SQUARE
Axis of moments on diagonal
/\ I
S N. O
_/_ \ J_
/ \^ / \
/\ >v / /
" ^\s /*
w
RECTANGLE
Axis of moments through center
d
,-_b *
"T
1
GEOMETRIC SECTIONS
A - d«
d
c " T
d«
12
S - d*
6
r - -4-= - .288675 d
V 12
A - d*
c - d
3
8 - d*
^
d
r - -7= . .577350 d
V3
A - d»
d
" V2
1 - TIT
d*
8 - —j---j - .117851 d»
d
r . - _ .288675 d
V 12
A • bd
c , d-
2
| - bd»
0 " 6
r » -^ - .288675 d
17-28
-------
PROPERTIES OF SELECTED GEOMETRIC FIGURES
(continued)
PROPERTIES OF GEOMETRIC SECTIONS
RECTANGLE
Axis of moments on base
-b >
A
c
I
S
bd
d
_bd»_
3
bd»
3
d
V3
.577350 d
RECTANGLE
Axis of moments on diagonal
A = bd
bd
V b» + d»
___b»jd»
6 (b» + d»
b«d»
6V b* + d»
bd
V 6 (b* +d»)
RECTANGLE
Axis of moments any line
through center of gravity
bd
b sin a -t-'d cos a
bd (b* sin'a 4- d' coa'ai
12
bd (b» sin'a + d» cos'a)
6 (b sin a + d cos a)
'>sin»a + d3 cos'a
HOLLOW RECTANGLE
Axis of moments through center
1~T
bd — bidi
jd^
2
bd' — bidj
12
bd>
6d
y12 A
17-29
-------
PROPERTIES OF SELECTED GEOMETRIC FIGURES
(continued)
PROPERTIES OF
EQUAL. RECTANGLES
Axis of moment* through
center of gravity
t T
!, . .1
I I
J i i
LJ
UNEQUAL RECTANGLES
Axis of moment* through
center of gravity
i f* — "— H .*
. * I J v .
T t -4 -T T
1 t 11
a i) • - - I I
iyi °i
* ,,,r- ... ,. 1 1
ti 4 i- j
T L T*
MH
TRIANGLE
Axis of moments through
center of gravity
1 A T
• /\ I
1 T-\
T / 1
l~l
TRIANGLE
Axis of moment* on base
I A i
1/1.1
GEOMETRIC SECTIONS
A - b (d — di)
« - f
2
b (d» - d,*)
1 ~ 12
0 b(d»-di»)
8 * 6d
r . J *•=.«»•_
r \12(d-d,)
A - bt + bttt
H bt« + bit, (d - Vi t,)
C A
I - ^ + bty»-f^--hb,t,yt»
S - ± 8l . J-
- -Vf
A » J4
2
2d
* ' 3
bd*
"36
a « M*
8 24
' - vW " i'235702"
A - bd
2
c - d
. bd*
12
a „ bdt
8 12
r . JL . ,408248d
17-30
-------
PROPERTIES OF SELECTED GEOMETRIC FIGURES
(continued)
PROPERTIES OF GEOMETRIC SECTIONS
TRAPEZOID
Axis of moments through
center of gravity
dib +_ bi)_
dj.2b_-t-_ bi)
"T(b~Vbi7'
d> (b» -*- 4 bbi + bt»)
36~ib"+"bi)
d«
4 bbi f
12 (2b + b,)
CIRCLE
Axis of moments
through center
= .785398 d« = 3.141593 R»
7rd*- - -— = .049087 d< = .785398 R«
64 4
32
d
'4
- .0981 75 d» = .785398 R»
R
2
HOLLOW CIRCLE
Axis of moments
through center
A =
.
32d
\ d'
= . 785398 (d»-
HALF CIRCLE
Axis of moments through
center of gravity
A =
"'"
' « (^3^
= 1. 570796 R»
= .575587 R
17-31
-------
PROPERTIES OF SELECTED GEOMETRIC FIGURES
(continued)
PROPERTIES OF GEOMETRIC SECTIONS
A -
HALF PARABOLA
COMPLEMENT OF HALF
PARABOLA
A - |- ab
2
1-
It
la
1*
U
Jf-
4ao
Of
•
»
A -
10
li
la
PARABOLIC FILLET IN
RIGHT ANGLE
2
\
\
b -
A -
m -
It -
t
2V2
4-
17-32
-------
PROPERTIES OF SELECTED GEOMETRIC FIGURES
(continued)
PROPERTIES OF GEOMETRIC SECTIONS
2
4a
irab
li
It
Ij
irab»
ira'b
QUARTER ELLIPSE
2 4
(<-n^|
I--
j-|
m
~ta
A - -^»
m - ^
Sir
li
li
It
(4
3ir
a>b
1
16
1
16
U - iV
* ELLIPTIC COMPLEMENT
;< —„—J
T
A = ab ( 1 —
6 f 1 — -
a>b
= ab»
* To obtain properties of half circle, quarter circle and circular complement substitute a = b = R.
17-33
-------
PROPERTIES OF SELECTED GEOMETRIC FIGURES
(continued)
PROPERTIES OF GEOMETRIC SECTIONS
REGULAR POLYGON
Axis of moment*
through center
n - Number of tidea
180°
n
a
R
Rt
A
2 sin*
2 tan
-jp na» cot # - -;;-
- nRt» tan 0
A(6R» - a») A(12R»* + a*)
"24 " 48
rt
" V" 24~ " \ '*»"
17-34
-------
SECTION 78 BIBLIOGRAPHY
18-1
-------
BIBLIOGRAPHY
1 List, Robert J. Smithsonian Meteorological Tables. 6th Revised Edition. Publication
4014 of the Smithsonian Institution. 1951.
2 Reference Data and Tables. Pulverizing Machinery Division of Metals Disintegrating
Company, Inc. Bulletin 55B-1.
3 Precision Measurement and Calibration - Selected Papers on Optics, Metrology, and
Radiation. National Bureau of Standards Handbook 77. Volume 3. February 1, 1961.
4 Steel Construction, 5th Edition. American Institute of Steel Construction. 1955.
5 Air Pollution Abatement Manual. Manufacturing Chemists' Association, Inc.
6 Marvin, C. F. Barometers and the Measurement of Atmospheric Pressure. Weather
Bureau Circular F. Instrument Division. Seventh Edition. 1941.
7 Published by Mine Safety Appliance Company.
8 Published by American Air Filter Company, Inc.
9 Stern, Arthur C. Air Pollution. Volume 1. Academic Press. 1962.
10 Perry, John H. Chemical Engineers' Handbook. Fourth Edition. McGraw-Hill Book
Company, Inc. 1950.
11 Kuhlmann, C. Albert. Nomographic Charts. First Edition. McGraw-Hill Book Company,
Inc. 1951.
-------