740R84101
           EXPOSURE ASSESSMENTS;

TOOLS,  TECHNIQUES, AND EXAMPLE APPLICATIONS




              A BRIEFING FOR:

    U.S.  ENVIRONMENTAL  PROTECTION AGENCY
                  REGION  V
             CHICAGO, ILLINOIS




                PREPARED  BY:

    U.S.  ENVIRONMENTAL  PROTECTION AGENCY
         OFFICE  OF  Toxic  SUBSTANCES
        EXPOSURE  EVALUATION  DIVISION
             WASHINGTON, D.C.

                    AND

                VERSAR INC.
             6850  VERSAR  CENTER
           SPRINGFIELD,' VIRGINIA
              MARCH  16,  1984
                     U S Environmental Protection Agency
                     GLN'PO Library Collection (PL-12J)
                     7? West Jackson Boulevard,
                     Chicago, II  60604-3590

-------
                    BRIEFING FORMAT

(1)   INTRODUCTION
(2)   EXPOSURE  ASSESSMENT COMPONENT

     -  PHYSICAL-CHEMICAL PROPERTIES
         • CHEMICAL SPECIFIC REFERENCES/INFORMATION SOURCES
         • GENERIC  DATA  (E.G.,  ENVIRONMENTAL  PARAMETERS,
           INDUSTRY INFORMATION)
         •TOOLS  (E.G.,  AUTOMATED OR  ON-LINE  DATA  BASES,
           SIMULATION MODELS)
         •EXAMPLE  APPLICATIONS OF  EACH  COMPONENT  AND/OR
           TOOL
     -  SOURCE ANALYSIS
     -  FATE/EXPOSURE PATHWAYS
     -  MONITORING/MODELING
     -  POPULATIONS
     -  INTEGRATION (SCENARIO DEVELOPMENT)

(.3)   BRIEF  REVIEW OF  AN  EXPOSURE ASSESSMENT FOR
     4,4'-METHYLENEBIS(2-CHLOROANILINE)  (MBOCA)

-------
       MAJOR  INFORMATION  RESOURCE:   NINE  VOLUME  EXPOSURE
                   ASSESSMENT  METHODS  REPORTS
    VOLUME 1    METHODS FOR ASSESSING EXPOSURE TO CHEMICAL
                SUBSTANCES

   *VOLUME 2    METHODS FOR ASSESSING EXPOSURE TO CHEMICAL
                SUBSTANCES IN THE AMBIENT ENVIRONMENT

   "•VOLUME 3    METHODS FOR ASSESSING EXPOSURE FROM DISPOSAL OF
                CHEMICAL SUBSTANCES

    VOLUME 4    METHODS FOR ASSESSING EXPOSURE TO CHEMICAL
                SUBSTANCES RESULTING FROM TRANSPORTATION-
                RELATED SPILLS

   *VOLUME 5    METHODS FOR ASSESSING EXPOSURE TO CHEMICAL
                SUBSTANCES IN DRINKING WATER

    VOLUME 6    METHODS FOR ASSESSING OCCUPATIONAL EXPOSURE TO
                CHEMICAL SUBSTANCES

    VOLUME 7    METHODS FOR ASSESSING CONSUMER EXPOSURE TO
                CHEMICAL SUBSTANCES

    VOLUME 8    METHODS FOR ASSESSING EXPOSURE TO CHEMICAL
                SUBSTANCES IN FOOD

   *VOLUME 9    METHODS FOR ENUMERATING AND CHARACTERIZING
                POPULATIONS EXPOSED TO CHEMICAL SUBSTANCES
*AVAILABLE FOR REVIEW.

-------
  GRAPHICAL EXPOSURE MODELING SYSTEM - A COMPUTERIZED
  LIBRARY OF DATA BASES AND MODELS TO ASSIST THE
  INVESTIGATOR IN PERFORMING EXPOSURE ASSESSMENTS.
GEMS INCLUDES:

-  PHYSICAL-CHEMICAL PROPERTY ESTIMATION METHODS
-  ENVIRONMENTAL PARTITIONING MODEL
-  AIR CONCENTRATION SIMULATION MODELS
-  WATER CONCENTRATION SIMULATION MODELS
-  GROUNDWATER CONCENTRATION SIMULATION MODELS
-  DATA BASES ON INDUSTRIAL MANUFACTURERS AND POTW LOCATIONS
-  WATER SUPPLY LOCATIONS
-  POPULATION DATA

-------
             PHYSICAL-CHEMICAL  PROPERTIES

•  CHEMICAL SPECIFIC DATA
   -  REFERENCE SOURCES FOR EXPERIMENTAL DATA IDENTIFIED,
      CATALOGUED, AND EVALUATED.  PROPERTIES OF INTEREST
      INCLUDE:

      (1)  VAPOR PRESSURE
      (2)  SOLUBILITY
      (3)  LOG  P
      (4)  HENRY'S CONSTANT
      (5)  BOILING/MELTING POINTS

t  GENERIC DATA

   -  GENERAL PROPERTIES BY CHEMICAL CLASS, BY STRUCTURE,
      ETC.

•  TOOLS

   -  CHEMEST - ON-LINE DATA SYSTEM THAT PERMITS ESTIMATION
      OF VARIOUS PROPERTIES WHEN NO EXPERIMENTAL DATA ARE
      AVAILABLE.
   -  NON-COMPUTERIZED ESTIMATION METHODS  ("HANDBOOK OF
      CHEMICAL  PROPERTY ESTIMATION METHODS" - W.J. LYMAN ET
      AL. 1983)

•  EXAMPLE - PHYSICAL-CHEMICAL PROPERTY SUMMARY FOR fIBOCA
GOAL;  GATHER INPUT DATA FOR CHEMICAL FATE INVESTIGATIONS.

-------
        REFERENCE SOURCES FOR CHEMICAL SPECIFIC
            PHYSICAL-CHEMICAL PROPERTY DATA
•  ON-LINE INFORMATION SOURCES

   -  CHEMICAL AND TOXICOLOGICAL FILES OF NATIONAL LIBRARY
      OF MEDICINE (CHEMLINE, TOXLINE, RTECS, TDB)
   -  CIS - CHEMICAL INFORMATION SYSTEM  (NIH/EPA)
   -  HAZARDLINE - (OCCUPATIONAL HEALTH  SERVICES)
   -  CICIS - CHEMICALS IN COMMERCE INFORMATION SYSTEM
      (EPA-OTS)

•  HARD COPY DATA SOURCES

   -  GENERAL EXPERIMENTAL LITERATURE
   -  REFERENCE VOLUMES
         CRC HANDBOOK OF CHEMISTRY
         MERCK INDEX
         LANGE'S HANDBOOK OF CHEMISTRY
         HANDBOOK OF ENVIRONMENTAL DATA  ON ORGANIC CHEMICALS
         ETC. (NOTE:  INFORMATION SOURCES CATALOGUED IN
         AMBIENT METHODS REPORT)

-------
                         TOOLS
•  CHEMEST - COMPUTERIZED VERSION OF W.J. LYMAN'S HANDBOOK
   OF CHEMICAL PROPERTY ESTIMATION METHODS.  INCLUDED IN
   GEMS - USER FRIENDLY:

   -  CURRENT METHODS INCLUDE:
         SOLUBILITY IN WATER
         SOIL ABSORPTION COEFFICIENT
         BlOCONCENTRATION FACTOR  (FISH)
         BOILING POINT
         VAPOR PRESSURE
         RATE OF VOLATILIZATION FROM WATER
         HENRY'S LAW CONSTANT

•  LOG P ANALYSIS - OCTANOL/WATER PARTITION COEFFICIENT
•  HAND CALCULATION METHODS FOR:

   -  ACTIVITY COEFFICIENTS
   -  SOLUBILITY IN SOLVENTS
   -  RATE OF HYDROLYSIS
   -  VOLATILIZATION FROM SOIL
   -  DIFFUSION COEFFICIENTS
   -  ETC.

-------
                  00
    •)
   a
   uj
   :>
* UJ
* CO
*     ^
    /     N
W
1»           T*

d.   2     ^
    x     /
      tr
      ct

      o
      n

cu>^

«f          ^
^           J>
   \


      I
•»*
•»*
         O 
-------
o
<£
M    cu
                                          cn
                                          cn








o
u. cn
>-«








®
cu
V*
u.
Z 0^0
1 «-l
m
••
O»
cu

O)
®



































O »*
U. ~«
O ^&
LU -«
Z Ok
"•>
o
O 00
o
 r-
c cn -4
o
f- U)
« cu ^

LU LA
T* «-4 «H
U>
T
/>> V «-4
/\ v
/•s v cn
/SV ^H




94 •*
** »«
^* "* 5
M M
M ^
$4 94
^4 *• 94
** O **
M Z M
^« **
** ^ 5
*t. ~ii 4*
^ •>*
•)4 ^ M
M -H
4A ^A
•^ ® ^
** in •*
^ [*- -)4
•>* M
$+ 34
•H •* 94
^j /"% ^^
^^ Mn ^^
^^ £fm ^^
94 «)-«cnc
®®®®®®-r^®®®®<
i











•®*4(i
»H •»-(•»

















































O ® ® U) ® ®
A cn cn IA ^ ® ••
n ^ ^ n o) ® 
-------
                                                     (V
                                                     o
                                                     o
                                                     I
                                                     t-
                                                     UJ
                                                     X
                                                     fr-
                                                     Q£
                                                      I
                                                     UJ
                                                     at
                                               o
                        UJ
      X    X    ^
                                         en
                                               U)
                                               00
                                   n
                                                O
o
    E    f-    E    UJ
                                   O
                                     *
                                   a.

                                   a:
                                   UJ
                                         o
                                         z
o
o
      UJ
      cc
      3
      H
      
      O ~

      o >
      t-
(-
z


O
o
                                                  o
                                                  z
         UJ
         a.
         >
                                                   138

-------
1STANT
^_
o
o

3

Q£
Z
UJ
X
**
LU CJ
QC Z

X
o

a
z
1—4
Ul
a

«

ru





LABORATORY UOLATILIZATION
Lu
O

*~*
Z
LU
O
>
X
o
X
-J
w











/•^
cu

a:
o

•«-»
%^

QC
UJ
03
E
3
Ul Z
UJ
f- O
_ ®
*
u 
o: ru
13
e-

Z Ul
i LU f-
l CHEMICAL (A-M3/MOL NON-DIM)
LC.
O
u.

1-
z

a:
z
UJ
X

Q£
UJ
H
Z
LU
E
m
o
1

o
z

T
O
1
UJ
*-4

^H
*
®




•






Z
UJ
X
; UOLATILIZATION CAN BE CONSIDERED
^^
0
-j

>
Q£
UJ
=>

U)
M

f-
z


U.
i— i

t-
a.
E
O
C£
a.

t-
x
LU
Z
•
^
x
x
IH*
UJ
3
J

Q
UJ
(-

t-i
t-
w
u.
>-»
H
Z

f-
z
1— 1
 O
1- t-
>^
a
•LU
LU 00
Ul E
1-13
3 Z
a:
LUQ:
X LU
f- t~
O Lu

x
a:
LU UJ
H Q.
z >
LUH
139

-------
******











Q£
LU 1-
(- Z
- «  a
-« N
(ft MM O C 1 Q£ O •-*
t-z z -J  c^ a z>
i— i U| > ® LU
tz. a a i Q- o
> « O Z LU E Z
LU JO LU® LU* HH •
^ « ~ X CO H-® 3LO
o co • tu -^
H-I LU *"•
E >
LU ^
X
O^^
^*
Lu LU
o a_
Z f~
o
H-I
f- 0-
O Q ~
^ O Q£
Q£ HH >.
Lu K
LU O
LU Q. Q
fr—
<£ LU
-J E Q£
^•^ ^^ f»
^ '^ -i.
OK ^ ®
J
 HI
0 Lu QC
f- •-• LU
o a.
X LU
V) Q_ ii LU R
HI U) E
3 >—(
 LU LU LU
i- n f- E
o LU 
H-
t-t
o ^
O fi
»-! O
LU p8
~ > (ft
X
t^ Qi ^fit Q£
z Xto LU
LU N ~* Q H" E
a: EU, u. Z)
=) is z
O £
o
a: Z o
LU & X
(-5* t-
 o:
z
»— t IV
O

LU Q
(ft
Z)
Q£
LU X


O (ft
f-
LU
(ft Q.
f- >
1-1 H-
Z Q£
Z) X
*»
O LU
LU Lu
o: IM
t— I «J U
(ft 1
LU Lu
a j
^
& X
LU Z)
t- Q -J
Z Z X
LU 
ru 
Z) O X ~
(-
-> O LU >
(ft 1- E
•^ «
Z t- (ft ^
O Z »-• O
t-i -*  Q£ LU
«. i a.
(UO LU >
^* Q OS H-
1
LO O

























































CK
Q£ X
X \


T LO
9®
+ 1
LU LU
r- oo
^Q ^r
• •
1-4 (O



P-





f-
z
 ^


























o



c& ^^ *s
• * •
LO ** LO
LO •
0>

®

XXX




H-
»
LU
EO
i-t LU
H i-t
U.
a i-t
LU O
(-.LU
LU a.

-------
Table 3-1.  Summary of Chemical and Physical Properties of MBOCA
Property
Molecular Weight
Vapor Pressure 0 20°C
0 30°C
0 40°C
1? 60 °C
9 75°C
& 90°C
0 100°C
0 120°C
> 200°C
Henry's Constant

Value
267.16
7.2 x lO'6 torr
5.1 x 10'6 torr
3.7 x 10'6 torr
1.3 x 1CT5 torr
2.0 x 10~5 torr
2.9 x 10'5 torr
3.6 x 10'5 torr
5. .4 x 10'5 torr
Decomposes
1.3 x TO'7
atm-m3/mole
Volatilization Rate Constant (Water) 6.5 x 10"5/hr
Log Octanol/Water Partition
Coefficient
Soil Absorption Coefficient
Solubility in Water

Solubility (% by weight) 0
in Trichloroethylene
in Toluene
in Ethoxyethyl acetate
in Mesityloxide
in Methylethyl ketone
in Tetra-hydrofuran
in Dimethylformamide
in Dimethylsulfoxide
Specific gravity, solid, @
liauid, 0
Melting Point


Chemical Reactivity
Moisture Content
Storage Stability

3.3
1,500
13.8 mg/1
13.9 mg/1
24°C
4.2
7.5
34.4
43
51
55.5
61.7
75
25°C 1.44 g/cm3
107°C 1.26 g/cm3
100 to 109°C
99 to 107°C
no°c
Weak base
<_0.5%
Excellent, slightly
Reference


Rappaport and Morales (1979)
"
ii
Dupont (1977)
ii ii
H it
H H
ii M
H H

Calculated (see
Calculated (see

Calculated (see
Voorman (1981)
Calculated (see
Voorman (1981)

Dupont (1977)
ii ii
M H
ii ii
H n
H n
n n
11 n
Dupont (1977)
II II
Dupont (1977)
tt
II







Appendix)
Appendix )

Appendix)

Appendix)













Van Nostrand (1981)
IARC (1974)
IARC (1974)
Dupont (1977)
Dupont (1977)




                          hygroscopic

-------
                    SOURCE ANALYSIS
               (I.E., MATERIALS BALANCE)

•  CHEMICAL SPECIFIC DATA

   -  REFERENCE SOURCES FOR:
         PRODUCTION VOLUME
         PROCESS CHEMISTRY
         PLANT LOCATIONS
         COMMERCIAL/CONSUMER CHEMICAL USES
         DISPOSAL
         TRANSPORT/STORAGE

•  GENERIC DATA

   -  CATALOGUED THE FOLLOWING
         EMISSION FACTORS
         TREATMENT EFFICIENCIES
         SURFACE WATER DILUTION RATES
         BUILDING SIZES
         VENTILATION AND MIXING FACTORS

t  TOOLS

   -  INDUSTRIAL FACILITY DISCHARGE FILE (IFD)
   -  TSCA INVENTORY
   -  RCRA HAZARDOUS WASTE DATA BASE

•  EXAMPLE SOURCE ANALYSIS FOR CYCLOHEXANONE
GOAL:  QUANTIFY EMISSION RATES TO THE ENVIRONMENT.  IDENTIFY
       POSSIBLE FUTURE CONTROL POINTS.

-------
                   CHEMICAL SPECIFIC DATA

REFERENCE SOURCES FOR:  MANUFACTURING FACILITIES, PRODUCTION
 VOLUME,  GEOGRAPHIC  LOCATION,  PROCESS  CHEMISTRY,  DISPOSAL,  ETC.
  •   ON-LINE DATA SOURCES

      -   CICIS  -  TSCA  INVENTORY
      -   DIALOG SEARCHES
      -   MEDLARS/TDB - NATIONAL  LIBRARY  OF  MEDICINE
      -   IFD  (INDUSTRIAL  FACILITY  DISCHARGE  FILE  -  SEE  TOOLS)
      -   HAZARDOUS WASTE  MANAGEMENT INFORMATION  SYSTEM  - RCRA
         DATA BASE OF  TREATMENT, STORAGE  AND  DISPOSAL
         FACILITIES  (TSDFs)

  •   HARD  COPY DATA SOURCES  (EXAMPLES)

      -   SRI DIRECTORY OF CHEMICAL  PRODUCERS
      -   FARM CHEMICALS HANDBOOK
      -   KIRK-OTHMER ENCYCLOPEDIA  OF  CHEMICAL  TECHNOLOGY
      -   USITC  -  PRODUCTION AND  SALES  DATA
      -   MINERALS YEARBOOK  -  BUREAU  OF MINES
      -   ENCYCLOPEDIA  OF  POLYMER SCIENCE  &  TECHNOLOGY
      -   PATENT LITERATURE
      -   ETC.

-------
                      GENERIC DATA

•  EMISSIONS FACTORS - BASED ON PRODUCTION VOLUME  (KG
   RELEASED/KKG PRODUCED) AND ACCORDING TO PROCESS.
   FOR EXAMPLE:

   -  ORGANIC CHEMICALS MANUFACTURING - RELEASE AVERAGES
      0.35 PERCENT OF TOTAL PRODUCTION
   -  FOR VOC EMISSIONS BREAKDOWN AS FOLLOWS:
         31 STORAGE LOSSES
         32% FUGITIVE LOSSES
         4% SECONDARY RELEASES
         55% PROCESS VENT EMISSIONS
   -  EMISSIONS FACTORS BY PROCESS
         0.11% - OXIDATION
         0.65% - HALOGENATION
         0.015% - HYDROLYSIS

•  SURFACE WATER DILUTION FACTORS (SEE ATTACHED TABLE)

   -  ORGANIC CHEMICALS - THE AVERAGE STREAM DILUTION
      FACTOR IS 428 FOR MEAN FLOW CONDITIONS; FOR LOW FLOW
      (7-Q-10) IT IS 46

t  TREATMENT EFFICIENCIES

   -  DRINKING WATER TREATMENT - BY PROCESS AND BY CHEMICAL
      ANALOGY:  COAGULATION REMOVES APPROXIMATELY 50% OF
      HALOGENATED ALIPHATICS, 99% OF DDT IS REMOVED BY
      REVERSE OSMOSIS
   -  SANITARY WATER TREATMENT

•  BUILDING VENTILATION/MIXING FACTORS

-------
          Table 4-1.  Mean Annual and 7-Day-10-Year Low Flow Stream Dilution Factors
                       for the 21 Major Industrial Categories
                                                Stream Dilution Factor (SDF)

Industry
Leather Tanning
Aluminum Forming
Battery Manufacturing
Coil Coating
Metal Finishing
Foundaries
Iron and Steel
Non-Ferrous Metals
Porcelain Enameling
Paint
Ink
Pulp and Paper
Textiles
Coal Mining
Ore Mining
Petroleum Refining

Organic Chemicals
Pesticides
Electric
Inorganic Chemicals
Gasahol
Mean Annual Percentile
25th
189
17.9
33
1,097
NA
NA
684
NA
1,030
NA
NA
44.9
443
211
5.8
976 (26th)

111
2,000
129
107
NA
50th
826
126
99.9
7,110
NA
NA
709
NA
7,223
NA
NA
259
2,212
422
39.7
17,622
(51st)
428
7,700
1,350
678
NA
75th
1,904
1,348
1,185
34,260
NA
NA
6,740
NA ,
28,443
NA
NA
1,154
5,853
633
323.2
69,348
(74th)
2,890
52,000
10,600
8,726
NA
7-Q-10 Percentile
25th
6.5
0.3
2.0
91.3
NA
NA
28.3
NA
59
NA
NA
5.9
19
115
0.72
113

9
162
8.65
6.7
NA
50th
27.6
6.8
6.8
453
NA
NA
97.0
NA
233
NA
NA
28.1
135
231
1.03
496

46
828
126
43.1
NA
75th
102
133
58.1
15,360
NA
NA
539
NA
9,238
NA
NA
159
785
347
10.6
9,029

193
3,474
345
923
NA
Source:  Retrievals of the HLDF system of EPA-MDSD

NA = Data not available (data to be included in future drafts of this methodology as it
     becomes available).
                                               4-3

-------
                         TOOLS

ESSENTIALLY ON-LINE DATA BASES INCLUDING:
   •  CICIS - TSCA INVENTORY
   •  RCRA DATA BASE

   •  IFD - INDUSTRIAL FACILITIES DISCHARGE FILE
          - A DATA BASE OF DIRECT AND INDIRECT INDUSTRIAL
            DISCHARGERS IN THE U.S.
          - DATA BASE INCLUDES:   PLANT NAME,  LOCATION, SIC
            CODES, PLANT FLOW, RECEIVING STREAM NAME
          - RETRIEVALS MAY BE CONDUCTED BY SIC CODE,
            LOCATION, BY RECEIVING STREAM
          - SEE ATTACHED FOR DEMONSTRATION

-------
          EXAMPLE RETRIEVAL FROM IFD BY SIC





SIC 28<4H (PERFUME, COSMETICS AND TOILET PREPARATIONS)

-------
? exec  from  Sen . epawch » 3045 * £ol ib ( txprw 13''  cli
      WELCOME TO THE T'^- [004 IFD  RET? IE' '.-4.  3Y5frM:
  THIS  PROCEDURE IS DESIGNED TO ~Mi.O"l  THE  USER A>:a;:33 v,"  ,;;;-;
  INDUSTRIAL  FACILITIES DISCHARGE  (IFD'  DM - ..... - iF IV-' ' < " • •" ."I- -
  OF GENERATING STANr,,.-? j FORMAT REPORTS,   SEvET-AL  F c TR ;  "•->'
  AND SELECTION OP'P'Oi-3 ARE OFFERED  TO  ENABLE LliilfE'..
  CUSTOMIZATION OF THE DESIRED REPORT.   ANY  QUEST! <"-^ 
-------
u
c
J.

















•V
o
X
\r.

\
~*












»—
a:
o
a.
aj
z




c
u.

a.
X
H-






































A
uJ
l/>
<
2>
C
h-
«J
^
Z •"•
^ *
u o
U-' S
IT. —
a.
I/! X
*• ^
i/i :
>
-J V
< V
2 V
<
<
-J a.
•< u

z in
uJ a.
r i
z o
o •
z c
— If.
•> ^
£ ^
uJ •
1 3
< <
X J
jj *





a


*


>•
S
^
Z

o
u

UJ
o
^
•3

HJ

*-

X.
3
U.

z
UJ
a

~«
z

v>
Urf
c
a.
z

•r »
o
C 1-
aJ r
>- 0
cr c.
0 a.
y« z

-»• UJ
-*• ~
X c
CM U
II
0 CJ
in yi
9
e
a a



n <
n z
n >-
II V
n —
II C
H Z.
II —
U
II
II
II
II
It
II
II A
n v
n v
N U.
n C
» o
V C
n
it u
u —
II V.
H
H
II
II
n
II 31
II O
U _l
H U.
n
n _i
n <
u t-
H O
H —
u
it
N
it r
II UJ
ii r
H Z
II Z
II Z
H
II
II
II
II
It
II
H
H
ii y-
ii i-
N •-
II U
II
n
n
n
n
n
u
H
n
N
II
II
II






U
U
II
II
H
H
II UJ
« Z
n <
ii z
a
u >-
H h-
II «••
U _t
II —
II U
II <
N u.
II
II
II
II
II
II
II a
ii in
u LL:
II O
n a
u z
u
IT II
V II
V II
i-ll
O II
C II
**.' W
•— II
C H
U H
U
II
Ii
H
R
II
H
II
II
II
II
N
H
II
II
H
N
II
U
a
H
n
H
1 II
i II
a u
••s H
H
0 U
O II
1= II
— II
1 U

II
in n
-U II
3. (1
— II
i. II
II
U. H
c u
II
II
R
N
II
II
II
N
II

II
K
H
II
II
H
II
n
u
u
it
H
it
•
•N
•
H
U
II
N
II
H
II
It
n
H
n
a
«
n
u
u
u
II
H
H
II
n
n
H
it
H
II
II
II
n
n
u
u
n
n
u
u
o
*
•»
s.
n.































u
_!
_l
•M
>
VI
V—
^
X








UJ
_J
_1

>
I/I
^
z
3
X
1
I/I

«
Z
p
7

c

5
i

u.'
in
'jj
I
o


cr
^
•r

in o n
"u



















X Z
V) UO
U X I/I

uj a c
c ex <
z c r
< u.
J; ^.
c »- c
_l (/I U.







<
_! Z
-1 0
aJ V!
I —
3
e <
r> i

0> 1-
• u.
H-
UJ U
i. Z.
(^ —
o
0 •
X
7 C i
z. z z

o n
z _i
o •
uJ C i.
_l — U
rr < uj
-. _l Z
r u 3


o >c —
•n :> -.
n -» —
= ru c
0 O 0
o o o
< k- <
O O "-
c- c
«• *
•« •«
X :
(VI (VI







r--a
3 01
(VI (M



















UJ
_1
_J_)
— 3
> <
i/i a.
v
UJ t-
X. 2
^% ^
C «t
o in








>
*j —
o: a
o
£ -U
••• tr
h- <
-J U
•X
CD U
1 <
Z Z
O O
-* " -J
O —
z o


X M
•n a
(\J O
0 0
o e
o c
C Z
Z Z
CSC
•»•»•»
* * -»
X * S
(Mm iv







o in at
ul»- «
*



















>-
»»
-• >
U Z
<
o z a
* o e.

lZ U. I/I
^ *^ z
« -J «
i/) cj a.









a
tt
0
u.
Z
 ~

3 O Z
H> UJ
>• _1 M
t- O -"
O I u.
u w a.


•»• r- O
-» CM -»
m ^^ r~
(VI 0 0
300
O 0 O
CJ -5 -5
Z Z Z
O »
« *
•*••
xz
njni







-c



















c
z
o
a a
IX
UJ O
-I CD
<
><
Z 3
•- O
1 *"
3 T
Z —










2
C

I/I

»
»•
O

>-
<
z
u a.
Z ^
_i
>- c
Z  m o
• 
O ? x
c >-
c x >
£ Z
«/> Z <
zox.
-. in in
_i o a
a. uj o










(




c
UJ (J
I- Z.
< l-l
z
C VI
a. 3
a z
•p o
^ 2.
Z 1
4 • ^_
' oe

0 — O
•- e
^ z c
UJ C UJ
Z _l V)
cr >• jj
— uj r
u_ r cj


•jv r> o
* = x
— r? ^
1*1 r>> o
o <= c
O 3 O
T ~5 >•
Z Z Z
0 C
•» •*
•• •»
33 3>
(V(\i







•• in
•» ->
n^




















X
>
X

2
X
uJ
«L
t
V)












_l
_l
<
r

_•
_i

u z
z 1
— • a.
a:
v »
t~ u

3U>

OO
IZ <
^.UJ

Z 0
O «J
•» <
< 3


— 0
^ <£
•» ru
^- 0
O »M
O O
o o
>• <
zo.
= 0
(M Ow
e c ;r s e
•»»•»••*
•*»•«»•«•
e ic ic s i
IM nj (XI (VJ f\l







in o> *• •» —
• • e
in » o
— o
<\j
•
«
M















in tn
«t «
ft a
Q a
O UJ UJ
« o ••• ^*
u z a. a.
< <
^ QL m (/)
Z 3 « <
Z ^ -J -I









•
I/I
a
o
«
a.

v e
x u.
« T
CD
z in
020
VI 3 Z
z in o
III.
00
i i i
U U 12
z z ^ «! r
— ,- o
Z 2 Z
0 0 0 O J
CJ O I/* */l oj
a^ z z in
uj z r r uj
^J UJ O O X
= =->-; u


(\j — •- 3 f-
*D >C •*« •*? ^
-,---. m j
AJ rvi "M "i IT

-------












5
1

3

-8




I

1


I

^
J

e


g
SI
3?
o
e
.*
u
£

JS
!
w
•&
3





1







g

I
>0

z
.**
c
tj
*•
i 5



s
s
o
I 0


o
N




§ 5

co 9
i 1
i i
3 2





u
1 I
* '
i §





X
^"
» ^
- i.
2L u.
: fr
g- s
3 «
•D U
QJ I/I
< a
*



CSl
(M
m

m


5




2

i
i
^





i
K
1
1






X
^
!
^
1
^5
(
UJ
m

O



o




0

1

—



^
V
I
i
I





X
1—
10
Victori
jj
1
^3
(
UJ
I

r-»

8
5

in


§




1
o

§
1
i




V
2
VI
UJ





u.

V
1/1
I
•
5
o
c
i

o

m

8
n»
O
CO
^

!•



(M
r*
O

i
i
o




<5
1
19
Vt






^
a
i/i
i
—
u
c
•
8
a.
2
8

m

8
in

.
in

!
R



00

1
1
8


u
>
*ae

'£




_j
»
£
IQ
fr
8
•8
'•§
3

g
c


















1 1

•S 8"
a
."S «
S*^
a
i- S
£ fe
J ^
i 5
J 8
>-> 5
o
•— Id
1 0

r^ *-
"~* !Z
t w
S £
O (T)
i -o
P*- C
HH
§
•O QJ
4J U
v> u
ca o
^ i/>

-------
               EXAMPLE HLDF RETRIEVALS
USE OF CRT FOR IDENTIFYING WASTEWATER DISCHARGE POINT
        AND DOWNSTREAM DRINKING WATER  INTAKE

-------
                                                                                                                                                  in
                                                                                                                                                  u
                                                                                                                                                  j
                                                                                                                                                  n
   ru


   r
oon
ui«
     r
u > 
       no- a. a.
u I   ouj »uj
—i o   <» M o>
« 1   <»•-•<« —
O LU   ^1 U. -I
v, a.   r a. a.
                                                                                 3-16

-------
 I
 Ei
 cc

 g
 H
 ft:
nni
«oa
                                                    3-17

-------
       EXAMPLE DEMONSTRATION OF SOURCE ANALYSIS
CHEMICAL - CYCLOHEXANONE (CHEMICAL INTERMEDIATE IN SYNTHESIS
           OF NYLON)
(1)  IDENTIFIED MANUFACTURERS/PRODUCTION VOLUME
(2)  DESCRIBED PROCESS CHEMISTRY
(3)  IDENTIFIED AMBIENT RELEASES
(4)  QUANTIFIED AIR AND WATER RELEASES

-------
A
















03
g
U.
g

y
1
^u
LU
1
5
u
°
^
IU
^


^~





























1
1
re
VI
i/i

y
a.


CM
g
•-. o
a a
CO 0.
o
C g
VI •—
c
a. *"">
§ -G
*p* t$
^ re
'£
1


"g
'•£
2
o
_j

4J
C
re
a.













J~


c
CL




§


> r—
• •- *>
*> S-
3 S-
C g
O "~
:•- 4J
re "S
tx
o
•a c vi
>> re 3
.c x
Q) QJ
1 (53


S 5
*•' ^
CO O




0 CM
o in
CM •—
^^ ^^

1 S


< x
.
t-^ *r
^— ^


m ^J
^X S
ET t.
X U-







.
3

u
JJ
VI
re

•g
re

. fe fr
S-.-2 3
5^j^
QJ
•OH) U
0) .1- vi
'^ ^ '-5

< GO








u
c
I-H


3
fld I-*
Q.
vi g>
i. O
V U

ll
^^
* 1
•-I p
• Q-
LU
3

0)

-w
Q.
re
u
g"

."?
x
0
CD
re
x

"3


£;
*~*
^




CM
^^

g
m


LJU
-
,2
o
u

yj
c













t
8
i/>
0)


X
• a>
3^
o
0 +>
-4-> C
c re
re vi
c §

£
§

U
.2
4-»
1
s"

.1
x
0
8S
5-5
li
U -D


S

o



^
in
^^

CO



cS
K
re


3
O)
5

















U
c
g"
a.

•x.
S
3

>
•p»
O

-4-1
re
c

g>
|
1
1

^ ^
CO
CM •— •
O CO
CM VO
vO r-


P 8
o *~
S C


o o
CM P~
*
CM



,£
—I


^J
4^
h-











•o
re
v>
e-sl
3 1 •-
V >
•S 6 S
A 31 VI
(_••-> U
re i— ••-
u re -w
.,- v>
c u re — i
o a; r- <
•r- Q. CL ^-»
c oo o
3 ^—

















g
u

O
a.
5
o
JJ
\
*J
U
U
''O
"Q
^J


^1
^j
u
re
a.
re
u
c
re
a.
O)
c
VI
•3
O
U
^
8;
Q.

"O CM
(M 4J 3^
»— 3 O
(J t—
HH r— t— (
QC fO uo

*•"- CM co

-------













%
H- 1
t— 1

3

LL.
t—
I-H
S
LU
(X
§
g
2*
^j
(X


,
CM

LU
1



















A) O
+> U
t/) TJ
c* e
.^ o
S «2
rti >(»
ex o
S
i

8
u.
~$




c
>e

*

i


i
^
1

u-

c
ol


i
V
u
%
CT
c


«*—
0)


fy



U
1
S
5
8










2









5

fC
|
C
2
4«*
c
it
SI

* ?



s
i r-:


o
i 0


s 5



r. S
O
•— CM

CO OJ
V, x»

§ 1
o •—








u
i. S
> •<-
(/>
!S S
i £






X
^ *"
u

r— X
S (-.
S~ ""
a.
i 3
O 0)

•D U
D in
^ '-5
< S
§



CM
c\l
CO

CO
CO
CM


!-



^

•~

8
Lo
1
^









9)
'a.
"S
to







X
H-

•
1
2
o
1
3


*-H
LU
CO
lO
(\J


^
CO


o



o



o

CO

I
0
8
CM





!_
Q>


/^f
1
IO







X


.p.
2
u
>
4->
1
3
•a

HH
LU
1

r*

g
®.
r~
—

S


!-



S

o

I
S
§
§






s-
0)

IP_
ce
i
i/i
LU






U.


O
. , Pensac
8
O

C
3)
c
I
0
CM
in

CO

8
r-»
P*.

O
m
f—

s
CO
vO


CM
r-
CO

O

|
g
O
O






L.
(U

.^
ex
c
c
10
IO
1/5







S

A
, Augusta
u
c
HH

M
e
0.
z
I

CO

g
m-
in


.
in"
10
CM



CO

^"

CM
S
8
o
S



i.
V

tr_
ex

>r.
&
I/)
.-





^^
— 1
.
VI-
IO
t—

e-
s
-S
1
o

c
o

c





















•
L> CO
(U ^
O y>

^? ^2
O T5


OJ ^3
Q

I- O
O LL«
>+- t— *
§ 
-------
      TABLE 3.  ESTIMATES OF WASTEWATER DISCHARGES AND IN-STREAM CONCENTRATIONS OF CYCLOHEXANONE
Plant Name
Allied Corp.,
Badische Corp
E.I. du Pont,
E.I. du Pont,
Monsanto Co.,
and Location
Hopewell, VA
. , Freeport , TX
Orange, TX
Victoria, TX
Pensacola, FL
Nipro, Inc., Augusta, GA
Union Carbide

Corp., Taft, LA

Plant Flow
(MGD)
107
2.88
167
30.0
0.031
0.372
19.8
I = 327
Cyclohexanone
3
Plant Loading
(kq/dav)
86. 24
654
529
1,000
1,070
668
3.914
E = 4,010
Cyclohexanone
Effluent
Concentration
(mq/1)
0.213
60.0
0.837
8.81
9,120
474
0.052
X7 = 3.24
Cyclohexanone
Diluted In-Stream
6
Concentration (mg/1)
Mean Low
MA NA
8.23 60
0.026 0.598
0.164 3.35
0.065 0.518
0.028 0.135
O.001 <0.001

Analysis assumes no industrial wastewater pretreatment.

Industrial Facilities Discharge (IFD) Data Base, 1983.

^Calculated based on the stoichiometry of the cyclohexane oxidation process, i.e.,
                   Catalyst
  Cyclohexane + 03	> Cyclohexanone  +•  Cyclohexanol  -t-     Water
   (m.wt.=84.16)            (m.wt.=98.14)    (m.wt.=100.16)     (m.wt.=18.02)
 Therefore, the production of 1 kg Cyclohexanone will release 0.1836 kg water.  Assuming that the water is
 saturated with Cyclohexanone (i.e., 25,000 mg/1), the release  rate of 4.59 x 10~3 kg Cyclohexanone releasec
 kg Cyclohexanone produced is estimated.  The Cyclohexanone production data are extracted from Table  1 assun
 330 operating days per year.

*For the phenol hydrogenation production process a release rate of 10 percent of the cyclohexane oxidation
 process release rate was assumed (JRB 1981).  This results in a phenol hydrogenation process release rate
 of 4.590 x lO"4 kg Cyclohexanone released/kg Cyclohexanone produced.

^Calculated as the quotient of "Cyclohexanone Plant Loading" divided by "Plant Flow," and a conversion facto
 (3.785 liters/gal Ion).

"Calculated as the quotient of "Cyclohexanone Effluent Concentration" divided by "Receiving Stream Dilution
 Factor" (Table 2).

Vlow-weighted average effluent concentration.

-------
                FATE/EXPOSURE  PATHWAYS

•  CHEMICAL-SPECIFIC INFORMATION

   -  REFERENCES FOR EXPERIMENTAL TRANSPORT AMD
      TRANSFORMATION DATA (VOLATILIZATION, SOLUBILITY,
      BIODEGRADATION, PHOTOLYSIS, BIOACCUMULATION,
      HYDROLYSIS,  ETC.)

•  GENERIC INFORMATION

   -  GENERAL FATE INFORMATION BASED ON CHEMICAL CLASSES,
      MOLECULAR CONFIGURATIONS, MOLECULE CONSTITUENTS

t  TOOLS

   -  METHODS FOR  ESTIMATING CHEMICAL-PHYSICAL PROPERTIES
      RELATED TO TRANSPORT/TRANSFORMATION
   -  ENPART - ENVIRONMENTAL PARTITIONING MODEL OF  THE GEMS
      SYSTEM

•  EXAMPLE FATE SUMMARY FOR MBOCA AND ENPART ANALYSIS FOR
   CYCLOHEXANONE
GOAL;   IDENTIFY THE MEDIA (WATER, AIR, SOIL) AND EXPOSURE
       ROUTE (INHALATION, INGESTION. DERMAL CONTACT)

-------
       CHEMICAL SPECIFIC AND GENERIC INFORMATION
t  EXPERIMENTAL LITERATURE - IDENTIFIABLE VIA ON-LINE
   LITERATURE SEARCH (E.G., DIALOG)

t  DOCUMENTED FATE OF ANALOGOUS COMPOUNDS - AQUATIC FATE OF
   129 - PRIORITY POLLUTANTS

•  CANONICAL ENVIRONMENT DATA (WATER FLOWS, DEPTHS, WIND
   SPEED, TEMPERATURES, ETC.).   INPUTS TO FATE MODELS.

-------
•  METHODS FOR ESTIMATING PHYSICAL-CHEMICAL PROPERTIES
   RELATED TO TRANSPORT AND TRANSFORMATION OF PMM AND
   EXISTING CHEMICALS (E.G.,  CHEMEST,  METHODS OF W.J. L.YMAN
   ET AL.. SRI-ORD REPORT))

   -  ATMOSPHERIC RESIDENCE TIME
   -  VOLATILIZATION FROM.WATER (AND SOIL)
   -  SOIL ABSORPTION COEFFICIENTS
   -  OCTANOL/WATER PARTITION COEFFICIENTS
   -  RATE OF HYDROLYSIS
   -  RATE OF AQUEOUS PHOTOLYSIS
   -  RATE OF BIODEGRADATION

•  ENPART - ENVIRONMENTAL PARTITIONING MODEL (GEMS)
          - ESTIMATES RELATIVE CONCENTRATIONS AND MASS
            DISTRIBUTIONS IN  VARIOUS ENVIRONMENTAL MEDIA
            (AIR, WATER, AND  SOIL; WATER COMPARTMENT
            FURTHER DIVIDED INTO SUSPENDED SEDIMENT, BIOTA,
            AND BOTTOM SEDIMENT)
          - STATIC MODE (RELATIVE  EQUILIBRIUM CONDITIONS)
            AND DYNAMIC MODE  (INCLUDES KINETICS OR
            INTERPHASE TRANSFER RATES)
          - INPUT REQUIREMENTS INCLUDE EMISSIONS TO AIR,
            WATER, SOIL (MASS/YR)  AND  PHYSICAL-CHEMICAL
            PROPERTIES

-------
EXAMPLE DEMONSTRATION OF FATE/EXPOSURE PATHWAYS ANALYSIS
 (1)    ENVIRONMENTAL  FATE OF MBOCA  (M.M'-METHYLENEBIS
       (2-CHLOROANILINE)

 (2)    ENPART ANALYSIS OF CYCLOHEXANONE

-------





















U
o
Q.
(/)
C
*o
i-
h—
•g


1-^-


»
L.
«3
&
OO

^~
LO
0)
•" ~
.Q
L_
'

























CD
o
C 10
CU 4-1
-o 10
•r- Q
14.
C M-
O 0
o






£_
-C

CU • — .
u- C\J
•£ ~^

1
1*- 4-1

IO
nr























4-1
>» C
i. CU
10 E
§cu
4-1
3 10
00 4-1
00
























r—
IO
4-1
C
 Q-
c
LU

s
3
^
cu
s.







t-t

LO
IO Ol
l£>
01 1

C\J Ol
i— lO

co






in
S-
cu cu
> 4-1
•r— IO
4-1 2
IO
T3 CU
IO U
S. IO
Ol M—
CU S-
•o 3
i/i
cu
XI T3
CU
>1 4-1
IO IO
c S_
cu
C 10
o
4-1 •»—
iO
•O T3
•i- C
X IO
o
. 0 l 4-1
o c
4-1 *r-
o
x: l/l
Q. CU
1/1
4-J l/l
u cu
CU <_}
S- O
•r- &.
•a Q.
c









i/i
i/i
>,

o
4-1
O
x:
o_



3
o
_l










IO
10
CT1

C\J




^_
IO
(J

1 -a
in 10
cu s-
i.
CU ^
4-1 X
0
•0 !-
cu -a
+J >>
IO X:
4.
CU >,
10 -Q

c c
•i- O

4-1 4-1
C IO
IO T3
> t-
CU X
r— O
CU
S- U
cu £
J2 • a.
IO 00
E o

1 ^

•M
*a •
5 JS
X C
o cu
T3 C
cu o
tsl S-
>l -f-
r^ >
IO C
4-1 CU
IO
V "m

IO S-
4-1 4^
cu
^









c
o

4-1
IO
-a

X
o


































•
cu
14-

p—
1
14-

IO
JZ

4J
i-
o
JC
w

>,
r—
cu
>
4-1
IO

cu
s_
>,
J2
"8
J3

[I
o
I/I
cu
-o

cu
c
o
N
o

s-
o




















.c
Ol
3C
















1


























•
00
00
cu
u
o
S-
a.
IO
4-1
c
cu

1
>
c
cu
4-1
c
IO
>
cu

cu
S-
IO

4->
o
TC.








in
l/l
>,

"o
s_
•o
>,
31


E
3
•0
cu
s:







u
•&


X

r-»
o

^























•
yi
(/)
CD
8
i-
a.
IO
4-1
c
cu
E
c
o
S-
>
c
cu
4-1
c
IO
>
ai

cu
i.
IO

4->
o
^




c
o

4-1
IO
N

,f^
4->
IO

"o
>

J=
Ol
£
















1






£
01

-C
IO
cu
>
IO
x:
^
,
00 •
>>
i — 10
IO r—
•r- (J
1-
4-1 i-
l/l o
cu
S. i—
S. 10
cu ••-
4-1 S-
cu
C 40
•^ IO
u. E
cG .^
u c
o 10
i- 01
a. s-
0
4-1
C 14-
IO o
u
•r- 4-1
14- C
••- CU
C 4->
01 C
•i- o
I/I u

> iT
r— •!—
-O C
10 01
-O -r-
O i/i
i.
0. <£



c
o c
•i- 0
4-1 •»-
IO 4-1
•— lO
3 T3
E iO
3 S-
0 01
u a)
10 -n
•° °

CO CO

00
¥ **
C i —
IO 4-1
4J C
3 IO
1 — U
O i+I
Q- •!-
c
U Ol
C Lo
cu
-C CU •
Q. J3
oo
J4-1
o
_. =
, LU
a. i — ^
> u -^
JO CU
s- cu
•o -r- -a
aj -a ••-
C 3
•i- 1- Ol
E 0
S- 14- t-
cu cu
4-i -a on
CU C 3
T3 IO
cu
00 CU -C
IO C 4-1
S 0
N S
oo o O
r— i.
IO >, 14-
0 JD
•i- cu
•o c i—
•O o -Q
S- >r- IO
4-1 i—
i — IO ••—
>) -0 10
X -i- >
O X 10
S- 0
>> U 0
.C •!- •!-
S- 4-1
>, HJ 10
J3 x; E
a. •>-
C 00 4-1
O O 00
•r- e CU
4-1 5
IO IO Q-
-o 
CU i — l/l
x: i 3
a. it-
l/l 1 — l/l
O IO TD
E x: 0
4-> x:
113 CU 4->
X 

"8
(-
3
00
IO
cu
s:
X!






ia
u

I
o

tn
•m
oo
h-
o
1
«c
a_
LU


h-
uo
LU
LU
n:
o

03

>
r»v
i
o
X

CO
•
t —


4->
c
 LU
u
38

-------
TABLE 4.  INPUT PARAMETERS FOR THE CYCLOHEXANONE ENPART MODEL
Parameter
Total Environmental Release
Air
Water
Soil
Vapor Pressure @ 20°C
Solubility
Octanol/Water Partition Coefficient
Soil Adsorption-Oesorption Coefficient
Organic Carbon Partition Coefficient
Soil Percent Organic Carbon
Sediment Percent Organic Carbon
Henrys Law Constant 9 20°C
Atmospheric Mixing Depth
Depth of Water Compartment
Depth of Soil Compartment
Soil Bulk Density
Suspended Sediment Load
Bottom Sediment Depth
Biota Lipid Fraction
Fraction of Biota per Volume
Value

12.4 x 106 Kg/year
1.32 x 106 Kg/year
0
2 torr
25,000 mg/1
6.46
0
0
21
4.0t
1.03 x 10~5 atm-n^/mole
10,000 m
7.0 m
0.9 cm
1.5 g/cm3
5.0 mg/1
0.021 m
0.2
5.0 x 10~7
Reference

Revised JRB (1981)
estimate (see text)
Estimated (see text)
JRB (1981)
Union Carbide (1975)
Union Carbide (1971)
Leo et al. (1971)
Unknown
Unknown
Defaul t
Default
Dilling (1977)
Default
Default
Default
Default
Default
Default
Default
Default

-------
TABLE 4.  (Continued)
Parameter
Chemical Dissociation Constant
Half Life for OH Radical Reaction in Air
Half Life of Ozone Reaction in Air
Direct Photolysis Half Life in Air
Air to Water Half Life
Molecular Weight
Air to Soil Half Life
Half Life for Hydrolysis in Surface Water
Half Life for Photolysis in Surface Water
Half Life for Biodegradation in Surface
Water
Water to Air Half Life: Volatilization
Half Life for Biodegradation in Soil
Half Life for Hydrolysis in Soil
Soil to Air Half Life
Value
0.0
0
0
2.6 hours
0
98.14
0
0
0
<5 days
331.2 hours
<5 days
0
0
Reference
Default
Unknown
Unknown
JRB (1981)
Unknown
Union Carbide (1975)
Unknown
Unknown
Unknown
Pitter (1976)
Lande et al . (1976)
Pitter (1976)
Unknown
Unknown

-------
oo

n


01
      H
01    _
00    Z
\    o
O
Q:
UJ
Ul


?
o
      U)
      

                 O® fir* 010101 O
                 111  .......
                 Q
                 UJ
iJ UJ UJ UJ UJ UJ UJ
{C ^ CO 01 & CD Q
3 CO P) U) O CO CO
O *• U) O »-i 0) T
UJ  ......
   -H H.H r- t^ co-
Q
Ul I  »  «  •  I  I

£            *
                                       o

                                       

£Z

HE
^: MO:
3QU
   UJ
   CO
                                                     tt O

-------
U)
DISTRIBUTION

O UJ CO
Z UJ f~ *
O I 
a: M
f-i-
V)  A in

-------
             MONITORING/MODELING  ANALYSIS

•  CHEMICAL-SPECIFIC INFORMATION

   -  DATA BASES FOR STORAGE/RETRIEVAL OF ENVIRONMENTAL
      CONCENTRATIONS OF CHEMICAL SUBSTANCES CATALOGUED AND
      EVALUATED.  EXAMPLES INCLUDE:
      AEROMETRIC EMISSION REPORTING SYSTEM (AEROS),
        ENVIRONMENTAL ASSESSMENT DATA SYSTEM (EADS)
        COMPLIANCE DATA SYSTEM (CDS)
      HAZARDOUS AND TRACE EMISSION SYSTEM (HATREMS)
      NATIONAL  EMISSIONS DATA SYSTEM (NEDS)
      STORET (EPA)
      WATSTORE (U.S.G.S.)
      NATIONWIDE URBAN RUNOFF PROGRAM (NURP)
      SAROAD (I.E., STORAGE AND RETRIEVAL OF AEROMETRIC
      DATA)
   -  LITERATURE SEARCHES VIA DIALOG/ORBIT
   -  SAMPLING  AND ANALYSIS METHODS AND THEIR LIMITATIONS
      (ACCURACY, DETECTION LIMITS) CATALOGUED.

•  GENERIC DATA - INPUTS FOR MODELS (I.E.,  DEFAULT VALUES) '
•  TOOLS - POLLUTANT CONCENTRATION ESTIMATION MODELS (I.E.,
   ALL MEDIA)
•  EXAMPLE MONITORING DATA SUMMARY FOR MBOCA

GOAL;  QUANTIFICATION OF EXPOSURE  MEDIA CONCENTRATIONS.

-------
                         TOOLS
                   (INCLUDED  IN  GEMS)
•  AIR MODELS (I.E. POINT, AREA, AND LINE SOURCE)

   -  ATMOSPHERIC TRANSPORT MODEL (ATM)
   -  INDUSTRIAL SOURCE COMPLEX (ISC) MODEL
   -  ATMOSPHERIC Box MODEL

t  SURFACE WATER MODELS

   -  EXPOSURE ANALYSIS MODELING SYSTEM (EXAMS) - PREDICTS
      BULK TRANSPORT AND DILUTION AS WELL AS FATE PROCESSES
      INCLUDING VOLATILIZATION, HYDROLYSIS, BIODEGRADATION,
      ETC.  EXAMS CAN SIMULATE RIVERS OR LAKES.  PREDICTS
      CONCENTRATIONS IN VARIOUS COMPARTMENTS AWAY FROM THE
      SOURCE.
   -  MANY OTHER SURFACE WATER MODELS ALSO AVAILABLE.

•  GROUND WATER MODELS

   -  SESOIL - SEASONAL SOIL COMPARTMENT MODEL (CHEMICAL
      MOVEMENT IN THE UNSATURATED ZONE)
   -  AT123D - TRANSPORT IN THE 'SATURATED ZONE

-------
 EXAMPLE DEMONSTRATION OF MONITORING/MODELING ANALYSIS
(1)    MONITORING  SUMMARY  FOR  MOCA

(2)    ATM SIMULATION  OF  AIR  RELEASE  OF  CYCLOHEXANONE  FROM
      INDUSTRIAL  PLANT

(3)    EXAMS SIMULATION  OF WATER  RELEASE AND  IN-STREAM
      CONCENTRATION  OF  CYCLOHEXANONE  FROM  AN INDUSTRIAL
      PLANT

      GROUND TRANSPORT  SIMULATION OF  NTA RELEASE  FROM
      SEPTIC TANKS

-------
























OJ
c
c
ro
P
Q

-C
o
1
CSJ
^*r
VI
-d
1
,
^
OJ
1
*-

o

VI
4-1
VI
01

Ol
c
i-
o
c
o
X

4—
o

^1

rO
3

CM
t
IO
OJ
r—
J3
"~
















VI
C
c

E

CJ
01
o
c
01
i-
O>
"a!
ae









x
(O
£






4t
VI
O
•i- C
4-> ro
ro aj
i. E
c
ai
u
c
o
c
i




i|
0 T3
i. VI 4->
O! Ol O
f-l g f\l
3 4-> 0)
z -o
'1
O VI -o
01 01
L. i — N
oi a. >-,
•° ro "ro

3 5 C



Ol O VI
= •5,1
Q. r— +J
E fQ OJ
(C C £
00 rt3













2
S-
o
Q.
CU
i.
VI
"a!

(U


ro
i
.
rO
O
oo
01

**•— *

s£
0
1
J—J

















































*^
ai

ro

-a
4-> (1)
C 4-1
E 01
o of
> <
C 0
uj o
4, i
C i.
01 *r- •
-O
•5 <
Ol
3
O
-C

o **

"S s;
VI i —
-Q »
OJ
01

ro i—
VI O
cu
*-> E
VI S.
3 c ai
o aj r-
M- J* 01

VI „
CU VI VO
-C ^ CM
t tg
0^3
<4- j co *— in






CJ O C-J O
C9 C£) CD CD


,
C
ro

< cu
J= i.
•*- *J 

VI
i-
S-
ro
Q-





o
z








a
z





0
z






o





C£






Z
CD


C
ID
ro
4-)
V)
ai

a.
VI
01 <4-
4-> O
ro
3 VI
O) r—
O 3
ro vi
14- CU
S- 3
OJ OO O
ro •
3 •—
CO
















a.
a.

r*~
•
O
V
VI

















































ro
£
O
14-
M
S
c
ro
U
S
1
s_
































































(








J_
Ol
.*
ce
=
VI
Ol
c
0
VI
VI




Ol

-Q

(/I
VI
O
a.


1—


^
01

•
«
4-*


VI
S-
S-
rO
a.





1—
a.








t—
a.





r—
a.






0





ct






oo
s
CD


cu
Ol
ro

VI
14-
o
s.
01
4->
o Influen








JD
a.
a.
LO

O

V
VI

Ol
4-
CU
•a
VI


^^
01
u
ro
s-
4->



















































c

4-1
C
<0
'a.
4-> £
c
treatme
Adrian,




o>

JD

VI J3
VI Q.
O 0.
0.
	 • IT)

1— 0

V
•"
§ *
Ol ^
r— Q)
r— CU
ro -a
4-1 (/I
Ol •!-

VI . — •
•i- CU
S- 0
s- «
ro i-
a. 4->





t—
Q.








i—
0.





r—
a.






0





a:






oo
s
CJ
CD


ai
01
ro
ai
vi
c
o *"
i- C
 'c
o Effluen
treatme
Adrian,















^__^
o
oo
Ol
^_^
rO
4-1
01

I/I
s_
1-
ro
Q-



_
v^
Ol
3

*~





r-
Ol
3
^-



^
^^
ai
3
, —




^





•—






OO
CD



1
3
C
s- ro
CU E
ro et

1 1
c r_
3 OJ
s- E
s-
01 O
CJ ^~
«- E
S- 0
3 i.
OO 4-
o










































































•o

ro
0
o

c
ro *-t
01 c
C ro
i. si
55
u


50

-------
                                                 50 kin
                             NNW
                                                                  NNE
    WNW
    WSW
    SEGMENT
  CONCENTRATION
 BASED ON AVERAGE
OF 4 CONCENTRATIONS
WITHIN EACH SECTOR
                                                                                          ENE
                                                                                          ESE
                                                                ONE RADIAL SECTOR
                 Figure  9.   Wind Rose  Sectors  for  ATM-SECPOP
                                                37

-------
                                                                                                            — v  mruin
                 (<)Cii«i'i«*^^tnd'rt^^'»ff»r*^tfiui'^'t*t«^o>u»(^oa^rrtf"rtnn*«*ow^^
                 ***<»•  $*«<»*«0<9<9aj*9~*««*<0<»   9«^«9^-9«tA«*O»4»4»«««*A««C»«
                 I  «4 ^ I   + I»*+I»I*'^I(*)+I^+I®1+I    +  iW+ttO+lftl+lrtl+l«**'*»l^+l^ +  .  — .
                 Uj^ujiii  LU m ci biuj fu m u QO iiiuj ^*ujLU**tu*»  niv  n  m   ni
                 9   99  99CU9.9(099m99m99P*9OP"99  99   99  99O-99JV99UI99CB9  9
                 i    * i   »io»+ivfi9-*iin*i—•*.    *  i   * i    *  i   + i—»i—^ini*!—•*  i    4.
                 UI   UlbJ  ^J^J   UIUI  UI UI V ^U ^J   U^U*^UI(M   U^U  UIUI   UJ^J  ^JUI   *ll UJ   UIUI  UIUI   ^J  ^J   \M
                 V   9»»  9   9—  9P-   90*  oar-  aoru   mr-   —09   10—  99   99  9—   1009   mp-  o»ni   •«  09   9
                 9   9o»  90*   (0v  10 ru  m9   P-C»   p>9   utv  99   9m  9p-   vn   (09  —m   —  9   9
                9   99m99<099m99<099   99  99   99OJ99   99  99 V 999991X199  999
                 i    •fioj*i9-»im+iin*t   *  i   «• i    +iv+i   +  i   + i m+ i  IA*  i n+ i   +•  i    *
                ui   uiu4U)ujwoiuju^nujmu)UM   uiui  uiui   uiui^^uiw   uiuj  ujujiuuiuj   uiuinujuj  ui  ui   ui
                v   9a   aov   09—   mm  in<0   99  9—   9«xi  mm   9P-  9in   in 9   inift  »o»  9  (0   9

                5»   989   P-<0   r>—   99  P-9   9(XI  9V   9m  09V   9—  & —   ojm   Ifim  CO—  9  IT)   9

                v   9—   r<-—   ru—   m—  v—   9—  9«i   9m  nni   9m  9v   r>n   — ni  uim  9  ni   9
                9   99   99  990999(099Ot99999V99   99 — 99  99P-99 —99W99   9 90B9     ^
                 i    +i   *i   *im*inj+iv*i9*i9*i    +109*1   + i  m * i  <0 *  i ru + i    +  iv+      ^
                ui   uiui   uiui  uiui—UIUI9UIUI—uiuitouiui—uiui   uiui   uiui  uiuiruuiuimuiuimuiui   ui uiruui      Q.
                io   9f-   9f-  9in—vgioruiomruoir-—ruin   r-m   910   (09  59   rum—10in  —in   9 i/>   r-      o
                -   908   9n  SP-   r--  »9   njoi  »-   u>9   99   v<0  9v   ion   o?fu  u>u>   9 01   in     a_
      —   909   9m  9P-   >—  a>9   ruru  at—   in 9  99   vyj  9v   ian   ooru  in in  9 01
      v   9m   909  9v   —m  mru   uir-  v—   V9  9v   0910  91x1   mat   9in  01—  9 ru
     i>S  9    —99 — 99 —99   9V   99   9U>   P-09   9lfl  9m  AJV   9—9      .
      29    m   99   909  9P-   9(0  (XI (XI   10—  99   9(0   909   9O>   09 Ol   9V  900  — m   9—9      ~
     :z   •    —   9   9     -^

     •          m   9—   9—  9P-   9r-  mr-   nioo  9O>   901   9—   9   9P-  99   9(0  9 CD   9F-  9fU   9O   9O>   9P-  9V   9O»  9P-  OP-   P- 9  9
                09   90S   9A1  9V   909  9O>   99  99   9(U   9O»   9O>  9(U   9P-  9(0  99   09 O)  9
3    «  9    999999999 — 99999—99999999999999999999999999999 999
—    0:   •    9   99   99   99   99  99   99  99   99  99   99  99   99   99  99  99  9
O    UI—    +   +•+   4>+   >t   •*+  +1   <*+  •**•>   ++  •*•*   4>*  •»•*   ++   ++  +-^  •*+  "*•
Z    3        UI   UIUI   UIUI   UIUI   UIU  UIUI   UIUI  UIUI   UIUI  UIUI   UIUI  UIUI   UIUI   UIUI  UIUI  UI UI  UI
—       9tA   9OI   9(0  9—   9O)  9Ul   9m  9(XI   9V  9in   909   9U1  99  9 (XI  9
          in    P-   9  9V   99   9OI  9m  9 V  9
X    -I   •    V   909   9in   9f-   99  9—   9—  9(XI   9   9—  9(71   9—  9—   9m  9OJ   9AI  9m   9m   9(\J  9(XI  9 ru  9

—    2  in    999999999999999999999999999999999999999999999 999
3       9V  9(U   9in  9m  99   9U>   9(0  9 ID  9
      (0   9m   99  9(0   99  91X1   9(0  9m   9U)  9V   9(0  9—  9O>   9(XI   99l/>9lR9in9in9IA9     ^

         r-
     i        njviooi     —     mino99ruvp-o>—     m
    o                                 —     —     —     —    rururururumm

    c

    oe
    o
    I-Z     UIUIUIUIUIUIUItn333a33     3
    OZZZ            UI     ijl     i/l           (/)
-------


r «
0 ^
t- * ********* **"
O . * 1 1 H i H i •» •»•» *• «•>
LU
QC +. ttntiii + ++ 4. ^^
H^
CO
t + i mini +• ** + *•»•

"^ » i nun + +-«. + +*.
LU 0
O § * ' ' " ' "' *+++**
 +•»*

^^ 	
O *» * * **
/T" **
^ JJ » *imi>i + »****
Q. + » im HI »*+»»»
^ ^ ^ mi MI -^ ^4. + 4^
ca
"~ + •» l»l HI *+»+«*
2j + •*• '•' •' * ++ ***•
o * * l-l *' * "*~^ * **
^ » +•«»•••*• +*-»+<»»
•»• •*••***#•-•* •*• *•*• + •*»*
 > »» »«*
t 	 * •*• •*!» -»^ * -4.-*. « <«*+
Z* * "*** "** * ** +^**
^ ^ Hlfr 4^ ^ ^^ ^^4^
LiJ 4- -* -«» -44 4> 4><»- * III
O +• •»" -••• -^ -4- ++ 1 III
7T +.+-t»»-t»+ •*"»»•
Q •*••*• -»4> -**• •*> -t- -f •*-!•*•
/> -»••»-•**•••• **-»--M**
+ •»••*» * * **m.
+ + '»4-»*+ +•*"•»•
>J ++•«»>++ i ni
1-^ ^ ^ 4^ ^ ^.^ 1 1 Ml
fV •*-•+• •»*• •»> •*•* im
(jj »•» *«• •«*• *» •*»
g" •»-*• 4*» •«» ** ***
cn ! ' ' """,' ' " " i s i i i !
"~ tn

ni
-a


T

(U

-
i 6
~
5

• g
— 2 o
QC
u.
Ld
n o


Oioujr-r-r^weDOO!®
^ 1 ! t t 1 1 1 1 t 1
OJ
o

fO
4^}
(/I
O
(/I
c
0
1 1

M-
O

i i
O

51
O)
^
— 1

>>
CL
5
o
•r-
"o.
s_
C3
CL
O
CL
O
LjJ
oo
1
1
f^^
41
^
E
CO
«2LnS*2 i
^ ^ C\J



r^
O)
CJ>
n i u.
e
S UJ


» «
o
0 «
o c
O -l
41

-------
  •    a
UI  O    X
X  O    UI
                               3)
                      a  a "o  «-
                      •H  o» c  -H
                      *>  0  0  O       3
                   k  •  9     00    0
                   o  Jt  o»~  a. k a» c
                  v«  *>  e  0  0 9 «••
                      c  0 t»     0 -« ui
                   •  at-*  c   * o •« a
                   00     0  o a o o
                  •*»    is  •  0 x • f-
                   0  u.  e  •  0 0     
                   O  « X     0 O I- 0
                   •  i.ui*acooai
                      0     c  i.    J 0
                  •a  a 0  0  0  *a.
                   c    x     ^ •    0
                   0  •« i- o  x 0  »x
                      C    Z  0 4> H «>
                   00    3     « tf>
                   at    • o  • a»«-i z
                   0   «  « a.  o *> j z>
                   s  c  • c  t.    >- a
                   o> o  0 o  «~ 0    0
                   C  -H 4> O    X * S*
 3  0  I.  O  0 O     0
 er*> 4>  0  u ui  0  k  0
 090    -< K  B»   •«»
 k  a.-«  UK     c  0  0
    « -a -«  0 TJ  -H JE in
 00    4> X  e "« 4>
•H  o  «  0  o  0  0    ^»
JC     09        009
•*>  0 4>  er*> i- -»  >  a.
    >  •  0  u z     0  e  •
 k4 U
 04»     C " C  0  k    U
«~U  »-»0ZU^>0«
    00     « O  -i  0 X O
 0  k  k  0    QCBk4>UI
—  09—  0»-»0       CK
Jl ^>  O  0 4» ^ X  »«~
 0  K  O  O    ZU^Ok
-* ^  O.-*  k UI    Z     0
«4     X  •  B ~  B D  ai4>
 0C000    xate0
 >  0    X  9  0 .P ^  0 -"
 0     D)  U     •
    0  e     0  0 ^  0 ^  k
      -HO    4> UI •« UI  O
       M-400O0O«»
       91  e  2  »Z  3»Z
      —  0  O  0    OC    M UI
—  0  0 O.  k    UQ.U.K
 9*O    JO    (A »J O O
A     k UI  3    UlUICtl-
 0OOZ9)   O Z O. (A
 U 4>        O
 O    Z    J<
 > 
 0 T9 *»     e
    0  c a.  0
 »ti  0 «J
 00    ui  *    >
 e  •  0 z ui    OL >
 OCA    J    i- at
•H        0 M     ac    uio*-«z
   4»       «    I UI O 3
 0  u t»  «3>    o o a. o:
 0  0  c ti
 e  k  0  k *»
 o  0  •  o  9
 ax  •  3  a
 0  u  o  a» e
 0     o  0 -«
 k  0    J*       UI       J
   x z     s»   o       J
•d «> 3  k  c    zi-i-«
 C    B00    « •-• O O
 00    —       Z X J UI
   *>  0  9 *~    o ui a. a
 0        u  o
ti ti  » -<
 c  0  0 •*>  0                ui
 0 t» —  k  •                O
 •  0  a  0  0                z
 • ~<  •  O. 6                UI
 O  >  0                      J
 U0X00    »- UI (A    3
    k  0    X    MU>Of-«
 B)ja     k *>    O « « « K
 e .a  k  o       3K033
«40O*Mk    CUI*JOK*
 k    U.     O
 0  0    O. «-       H

 e     • ui  0    z ui
 •  e ^ z —    o c
    0k    JB    M Z    >
 COO4*0    HO    H
 0     3  0 —    OK    n
x ti     OI-H    ui « H J a.
3  k  •     0    D D V) « O
    O X  O  >    OZM3H
    > 4* H  0    « UI J O 
-------





(A
U
U)

(D
O
O
UJ

O
M
1-

o
Ol
01 ••
Ui -J
1 *
Z
Ui
f-
(ft
>
•J)
o
o
Ui
•
U
K

J
o
(ft
(ft
I-l
Q
^N
0.
o





J

®





P-
®

UJ
T
00
n
»

3 ^
cna

(0(0
® ®
i i
UJUJ
0101
U) 0)
P- (0
* *
p- p-

^> ^.
i-t 0)


(0(0
® ®
1 1
UJUJ
01 OJ
Ift 0)
P- (0
• *
p- p-

/-\ r*\
i-i 0)





f^
(0


(U TH
iH iH
| |
UJUJ
01 i-l
(0 U)
•H T
• *
0) n

/^
(0



3 
®

/^
®
1-4

tn
^4
I
UJ
TH
T
LD
*
P-

^
01

0]
rH
1
UJ
(0
®
U)
4>
(n

rv
01


01
i-i
i
UJ
1-1
U)
8
»
OJ

/^
ru



M
E
*
Q
Z
D •
O (ft
U. H
(ft UJ

fr- Z
az
 
-------
(A


UI


(A


(A
O
O
UJ


O
3   S
 a
  o
  i
     « »
    t^* z
        o
    zPP


    ill
    OQ UJ
      UJO
    g^^
                   O   M
               3(- •
                 f-X
               ZO 
-------
two models were chosen because of their versatile capabilities  and their

relative ease of use.  In order to run the model, GSC  had  to  make several

estimates and assumptions.  The information used for the modeling is as

follows:

    Unsaturated Zone


    •  Table 4-6 lists the information used in SESOIL  for  modeling the
       unsaturated zone.

    •  The source of NTA was  residential  septic tanks.  A representative
       housing density of 2,000 houses per 1,000 acres was used to
       estimate the total NTA effluent to ground water.  However, to
       facilitate SESOIL output, only a single-house was used,  and the
       result was extrapolated for the total.

    •  The average septic drainage area of each house  was  estimated to be
       50 m2.

    •  The mean concentration of NTA in the effluent was estimated to be
       12 mg/1  (6.1 mg/1 - 18 rog/1).

    •  The unsaturated soil column was estimated  to be 5 m, of which the
       top meter was assumed  to be aerobic and the lower four meters less
       aerated.

    •  Three different soil types, each assigned  different hydraulic
       conductivities.

    •  Three different decay  rates of NTA were used for the top meter.

    •  Four different decay rates of NTA  were used to  the lower four
       meters.

    •  Thus, 36 runs in  all were made for NTA transport using SESOIL  (3
       soil types x 3 decay rates -  upper layer x 4 decay rates - lower
       layer).

    Saturated  Zone

    •  Table 4-7 lists the  information  used  in AT123D to model NTA
       transport in the  saturated zone.

    •  The results from  SESOIL were  used  as  the source of NTA  (kg/hr) to
       the saturated zone.

    •  The saturated zone was assumed to  be  a water table aquifer with a
       mean depth of 50m.

                                    4-27

-------
         Table 4-6.  Parameter Values Used in SESOIL to Estimate
                     NTA Concentrations in the Unsaturated Zone
Time of simulation:  Monthly simulation for 10 years*

Effluent quantity per house:  300 gal/day (4 persons  per  house)

Average precipitation:  8.5 cm/month**

Soil density:  1.32 gm/cm^

Disconnectedness Index:  4.0

Porosity:  0.35

Permeability:  7.15 x 10'9 cm2 (soil  type 1)
               1.44 x 10'8 cm2 (soil  type 2)
               5.32 x 10"8 cm2 (soil  type 3)

NTA solubility:  1,200 mg/1

Adsorption coefficient:  6.3 [(ug/gm)/(ug/ml)]

Henry's constant:  0.0***

Molecular weight:  191-257 gm/mole

Decay rate:  Upper layer    0.11  day"1 (half-life • 6.3 days)
(EPA 1982a, EPA 19825)      0.16  day1 (half-life - 4.3 days)
                            0.22  day1 (half-life * 4.3 days)
             Lower layer    0 day1  (half-life =    )
                            0.00019  day'1 (half-life  *  10 yr.)
                            0.00038  day1 (half-life  -  5  yr.)
                            0.0019 day1 (half-life = 1 yr.)


Source:  6SC 1982


*   Maximum permissible simulation period in SESOIL.

**  Observed at Clinton, Massachusetts, a relatively  wet  location.

*** Assumed 0.0 because of NTA's  high  solubility and  relatively  small
    vapor pressure.
                                           4-28

-------
         Table 4-7.  Parameter Values Used in AT123D to Estimate
                     NTA Concentrations in the Saturated Zone
Time of simulation:  136 years*

Hydraulic gradient:  0.05**

Distribution coefficient:  0.0031 m3/kg [3.15 (ug/gm)/(ug/ml)]***

Porosity:  0.35

Bulk density:  1320 kg/m3 (1.32 gm/cm3)

Dispersivity:  30m (longitudinal)
                5 m (lateral)
                5 m (vertical)

Decay rate:  0 hr'1 (half-life = »)
             7.92 x 10'6 hr"1 (half-life = 10 yr.)
             1.58 x 10"5 hr'1 (half-life - 5 yr.)
             7.92 x 10'5 hr-1 (half-life = 1 yr.)



Source:  6SC 1982.

*  An average detention time calculated on the basis of assumed
   drainfield area, hydraulic conductivity, and hydraulic gradient.

** A slightly higher-than-average value was conservatively assumed.

***Taken as half of the value used in SESOIL.
                                    4-29

-------
   Table 4-8.  Simulated Average NTA Concentrations in Ground Water at
                20m Depth^ in an Aquifer of 50m Average Depth
                                    NTA concentration in aquifer3(ug/l)
Soil type2     NTA half-life in     Septic effluent     Septic effluent
               aquifer (years)        6.1 mg/1 NTA         18 mg/1 NTA
Soil type 1
Soil type 2
Soil type 3
Soil type 1
Soil type 2
Soil type 3
1
1
1
10
10
10
0.14
0.25-0.44
1.0-1.5
6.5-12
8.5-15
11-19
0.23-0.41
0.74-1.3
3.0-4.5
20-36
26-45
33
Source:  GSC (1982)

1   Depth at which average concentration occurs in a well with a
    screened, penetrating depth of 50 meters into an aquifer of 50 meters
    average depth.

2   Soil type 1 » Moderate percolation; loam and silt soil.
    Soil type 2 * Between soil types 1 and 3 (i.e., sandy loam to loamy
    sand)
    Soil type 3 = Rapid percolation; sandy soil.

3   Concentration ranges for the three biodegration half-lives in the
    aerobic zone of the soil column are presented for the low and high
    end of the expected septic system effluent concentrations.
                               4-31

-------
                 POPULATION  ENUMERATION

t  CHEMICAL-SPECIFIC INFORMATION

   -  POPULATION DATA SOURCES CATALOGUED ACCORDING TO
      EXPOSURE CATEGORY (AMBIENT, OCCUPATIONAL, CONSUMER,
      FOOD, DRINKING WATER)

t  GENERIC DATA

   -  POPULATION DENSITIES
   -  USERS OF CONSUMER PRODUCTS
   -  PROCESS LABOR REQUIREMENTS
   -  "EATERS" OF FOODS
   -  SEX AND AGE DISTRIBUTIONS
   -  "DRINKERS" OF WATER TYPES (E.G., GROUND VS. SURFACE)

•  TOOLS

   -  ON-LINE SECPOP PROGRAM (ACCESSES POPULATION DATA FOR
      ALL U.S. LOCALES.  SYSTEM IS INTEGRATED WITH ATM TO
      FACILITATE CALCULATION OF CONCENTRATION IN SPECIFIC
      AREAS AND POPULATION EXPOSED)
   -  WATER SUPPLY DATA BASE
   -  SIMMONS STUDIES
GOAL;  ENUMERATE POPULATION EXPOSED TO CHEMICAL OF
       INTEREST.  INPUT TO FINAL RISK ESTIMATES.

-------
                   Table 12.  Population of the United States
                              by Age and Sex:  April  1,  1980
Age and sex
1 . Both sexes
All ages
Under 5
5-9
10-14
15-19
20-24
25-34
35-44
45-54
55-64
65-74
75-84
Over 85
Median age
2. Male
All ages
Under 5
5-9
10-14
15-19
20-24
25-34
35-44
45-54
55-64
65-74
75-84
85 +
Median age
3. Females
All ages
Under 5
5-9
10-14
15-19
20-24
25-34
35-44
45-54
55-64
65-74
75-84
85 -t-
Median age
Population

226,504; 825
16,344,407
16,697,134
18,240,919
21,161,667
21,312,557
37,075,629
25,631,247
22,797,367
21,699,765
15,577,586
7,726,826
2,239,721
30.0

110,032,295
8,360,135
8,537,903
9,315,055
10,751,544
10,660,063
18,378,764
12,567,786
11,007,985
10,150,459
6,755,199
2,865,974
681,428
28.8

116,472.530
7,984,272
8,159,231
8,925,864
10,410,123
10,652,494
18,696,865
13,063,461
11,789,382
11,549,306
8,822,387
4,860,852
1,558,293
31.3
Percent

100.00
7.22
7.37
8.05
9.34
9.41
16.37
11.32
10.65
9.58
6.88
3.41
.99


100.00
7.59
7.76
8.46
9.77
9.69
16.70
11.42
10.00
9.22
6.14
2.60
0.62


100.00
6.85
7.00
7.66
8.94
9.15
16.05
11.22
10.12
9.92
7.57
4.17
1.34

Source:   Personal communication between Mrs.  McCoy of the Population
         Division, Bureau of the Census, and Amy Borenstein,  Versar, Inc.
         July 1982.

-------
Table 14.   Employed Persons by Occupation and Sex,  1979
Occupation
Professional and technical workers
Medical and other health
Teachers except college
Other
Managers and administrators, non-farm
Salaried
Self-employed, retail trade
Other self-employed
Sales workers
Retail trade
Other
Clerical workers
Stenographers, typists, secretaries
Other
Craft workers
Carpenters
Construction craftsworkers
Mechanics and repairers
Metal craftsworkers
Blue collar supervisors
All other
Operatives, except transport
Durable goods manufacture
Nondurable goods manufacture
Other industries
Transport equipment operators
Drivers, motor vehicles
All others
Non-farm laborers
Construction
Manufacturing
Other industries
Percent of total
Male
46.0
25.2
20.6
64.5
68.1
67.5
62.1
78.6
45.9
31.5
65.1
17.3
1.4
22.9
92.6
100.0
98.9
98.2
95.1
85.7
80.0
51.7
57.6
36.4
55.5
91.0
90.1
96.4
87.0
95.3
81.8
86.4
employment
Female
54.0
74.8
79.4
35.5
31.9
32.5
37.9
21.4
54.1
68.5
34.9
82.7
98.6
77.1
7.4
-
1.1
1.8
4.9
14.3
20.0
48.3
42.4
63.6
44.5
9.0
8.9
3.6
13.0
4.7
18.2
13.6
                               34

-------
in
to

IO
i
in

V>
>, 0)
O  *-
c

O -0 <

a. 1"
3 o. m
8 «
fl *j «r
s_ o to
01 4-1 1
Jin
> «T
O CM

S ! *
t*. i—
c
o
•fcJ
"Z S-
*_> O 4)
V) S U
.)- i-
O i*- O
0 t-
X
o x
to
c
 «- T3
< O 0)
^ >,
i- 0
0) —
in f §•

fli C
PM V)

ro "00
"~ 'S u
i— a)
0.















c
0
£
^
CL

L)

O


"
^

CM



CO

CO



in

f^


O
O
^*

o
CM

cn

to
r~

in

CO
CO

CM

p^.

O
O
to



en

^«
*-•








CO
to
CO

m
^*

r~





•
1e
u

c

u
1)


A

(O '^
C 11
o s-
••- "3
1/1 C
l/l •'-
1) -*

o -o
i- C
Cu ^


,.,

("™
"
-^
in
cn



cn

CO
r—








S
co
co
CO
to

o
*""






•a

s-
TJ
C

\s

T)

(Q

C
I
VI
4J

(fl
^-
LJ



O

in



,—

to



CM

VO


^~
cn
CO

«*
l~m

^f

o
CM

,_

to
CM

CO

CO
"
cn
S



f*N»

m
p—








CO
CO
K,
tn
F-~
LTJ

O


+J
O
a.
i/i
c
T3
^


^J
cx
a*


OJ

A

0)
.*
4_}
IQ

0)
a.
o


o
^

-—



in

CM



to

o


m
^


T
CM

cn

CM
CO

_

in


O

m
"
in
in
cn



co

CO









CM
CO
cn
A

in
cn

CM









0)

•i—
4-t
a


-------
Table 16.   Ranking of Seafood Species by  Percent  of  Individuals Consuming and
           Projected 1980 Consuming Population
Rank


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Speci es
Total sample
Total seafood
Tuna, light
Shrimp
Flounders
Ocean Perch
Salmon
Clams
Cod
Pollock
Haddock
Herring
Oysters
Crab, other than King
Trout (Freshwater)
Catfish (Freshwater)
Bass
Lobster, Northern
Mackeral , Other than Jack
Halibut
Scallops
Whitefish
Snapper
Hake
Pike
Lobster, Spiny
Smelt
Perch (Freshwater)
Bluegills
Bluefish
Crappie
Trout (Marine)
Bon i to
Crab, King
Mullet
Number of
users
25,947
25,165
16.817
5,808
3,327
2,519
2,454
2,242
1,492
1,466
1,441
1,251
1,239
1,168
970
876
826
675
616
574
526
492
490
392
390
350
328
268
265
236
228
220
148
130
97
Percent Projected number of
of sample total 1980 population
size (X 1,000)
100.0
94.0
64.8
22.4
12.8
9.7
9.5
8.6
5.6
5.6
5.6
4.8
4.8
4.5
3.7
3.4
3.2
2.6
2.4
2.2
2.0
1.9
1.9
1.5
1.5
• 1.3
1.3
1.0
1.0
0.9
0.9
0.8
0.6
0.5
0.4
226,000
204,000
146,000
50,600
28,900
21,900
21,500
19,400
12,700
12,700
12,700
10,800
10,800
10,200
8,360
7,680
7,230
5,880
5,420
4,970
4,520
4,290
4,290
3,390
3,390
2,940
2,940
2,260
2,260
2,030
2,030
1,310
1,360
1,130
904
                                      103

-------
     Table 17.  Percent of Households,  U.S.  Population,  and Household Size
                in Urban, Rural  Non-Farm,  and Rural  Farm Areas  with  Home
                Fruit and Vegetable Garden in 1977
Urbanization
Urban
Rural non-farm
Rural farm
Percent households
with garden
43
41
84
Household
size (number
of persons)
3.17
3.44
3.86
Percent of total
U.S. population
32
9
3
Source:  USEPA (1980).
                                        107

-------
                                                    TOOTHPASTE: USAGE
                                                        (FEMALES)
TOTAL
 u.s.
 '000
                                         ALLUSBB
                                      A    B    C   D
                                           x  Across
                                     '000  OONN  * IKK
                                                              tCAVT USERS
                                                           A     B     C   D
                                                                 X  ACROSS
                                                           '000  OONM   X  INK
                                   ICDILM USERS
                                 A     B    C    a
                                       x ACROSS
                                '000  OOM*   X  IN»
TOTAL FB4AIS
FEMAIE K»e«AKERS
3«>L0YHJ KTTVEIS

18 - 2*
25-3*
36 -4*
4S-- 54
S5 -64.
SS CR OUBt

1&- 34
18 - 49
35 - 49

GRADUATE) COLLEGE
Al ItMJtU ff* I &f
gUOUATED HlOi SCHOOL
010 NOT  GRADUATE HIGH SCHOOL

EfcPLOYH)
E*»LOYB> FULL-TDC
E»»U3YH> PART-TTke
NOTS^LOYED

PROFESSXONAL/MANAGSl
CLERICAL/SALES
CRAFTS€H/FCR£k€N
      EWLOYED
SXNSLE
MARRIED
OIVORCSJ/SB>ARATED/WDO»€D
PARENTS

WHITE
BLACK
OTHER

NORTHEAST-CENSUS
NORTH CSNTRAL
SOUTH
*€5T

NORTHEAST-MCrG.
EAST CENTRAL
*EST CENTRAL
SOUTH
PACIFIC

COUNTY SIZE A
COUNTY SIZE B
COUNTY SIZE C
COUNTY SIZE 0

>€TRO CENTRAL CITY
tCTRO SUBURBAN
NON i-emc

HSHLD INC $35.000 OR 'KJRE
$25.000 CR VGRE
$20.000 - $24.399
$15.000 - $19.999
$10.000 - $14.999
$ 5.000 - $ 9.999
UNDER $5.000

(«HLD OF 1 OR Z PEOPLE
3 CR 4 PEOPLE
5 OR MORE PEOPLE

HO CHILD IN HSHLD
CHILD(REN) UtCER 2 YRS
                                          LUXT USERS
                                       A     3    C    0
                                             % ACROSS
                                       •000  DDK*   X  ItCX
                                                                                       .3  36
                                                                                       .S  96
                                                                                       .3 100
                                                                                       .6 101
                                                                                       .6 107
                                                                                       .1 115
                                                                         14938' 100.0
                                                                         139911 93.7
                                                                          29211
                                    751741100.0
                                    537551 91.5
                                    164581 21.3
          21S63 nOO.Q 26.7-100 >
          18966 I 87.6 25.5  95
           379t I 17.5 22.S  85-
               38575 NOQ.O  47.S 100
               35798 I 92.8.  48.1 101
                974TI 2S.3  58.2 122
92.7 100
32.4. 100
98.2 106
                                    !408*l 18.7
                                    172081 22.9
                                    121021 16.1
                                    111671
                                     96791
                                    109351
99.3 IOC
98.2. 106
96.9 105
93.1 100
88. t .95.
79.6 86
22.2 33.6 126
aii M!S 107
14.41155.Oil 911
31853
50029
18176
                                    31292) 41.6
                                    48779| 64.9
                                    17487] 23.3
98.2 106
97.5 1
96.2 1
46.3  30
6S.5  28
21.2  25
                                      41.8  50.6 106
                                      66.5  51.3 tO»
                                      24.7  52.4 110
                                    12.1  28
                                    17.0  29
                                   41.0  26
                                   30.0  24.9
                                     8902
                                    12031
                                    31912
                                    22329
                             10136
                              7551
                              2584
                             11527
         9135' 12.
        15383* 20
         685'
        117571 1
                                    129T11 /7.2
                                    466011/62.0
                                    15662/20.8
                                    3137W 41.7
                                     The percent or all heavy users who are age
                                     35-M. Percents in this column add to 100%
                                     vertically.
                                                          This is an index based on the percent in
                                                          column C. The 25.0% of women age 35-44
                                                          who are heavy users is 7% lower tnan the
                                                          26.7% of total women who are heavy jsers
                                                          This yields an index or 93 (25.0% + 26.7%).
                                                     The percent of all women age 35-44 who are
                                                     heavy users or" toothpaste. These percents
                                                     project to each individual demographic
                                                     break.
                          The projected number or people in
                          thousands. This reflects 3,117.000 women
                          age 35-W who are heavy users of
                          toothpaste.
                                                 These  illustrative data were taken from
                                             1982  SHRB  Marketing Report.  The headings
                                             reflect adult female users of  toothpaste
                                             grouped by  total,  heavy,  medium and  light
                                             users.

                                                 Users of  individual brands  are reported
                                             the same manner as  heavy,  medium and  light
                                             users of the  product category.
6 - 1
12 - 17 YEARS

RESICENCS OWE
VAUE: S40.COO CR  -CRE
VALL£: JTCe SJC.OOO
             Figure  20.   A Page  From  a  Typical 1982  SMRB  Marketing Report
Source:    SMRB  1982.
                                                        134

-------
        Table 27,  Population Served by Drinking Water Treatment
                   Processes for the U.S.
Treatment
method
Corrosion control
Softening
Taste and odor
Iron removal
/Vrmoniation
Fluoridation
Disinfection
Untreated
Aeration
Prechlori nation
Coagulation
Sedimentation
Filtration
Number of
facilities1
3,334
2,540
2,941
4,275
1,071
7,150
20,663
33.7812
4,154
4,791
4,615
5,020
6,265
Population served
(x 1,000)
68,636
39,582
97,728
54,773
18,242
115,392
171,666
20,530
64,952
76,952
117,309
114,800
117,066
Source:  FRDS Data Retrieval FY 1980

IA facility is defined as a system serving >25 persons
^Primarily ground water systems
                                       161

-------
    DEMONSTRATION OF EXPOSED POPULATION ENUMERATION

(1)    ATM-SECPOP SIMULATION
(2)    WSDB (WATER SUPPLY  DATA BASE)  RETRIEVAL

-------
 I
Jt

IA
«
Id
at
a
T

a
«
K
U)
ui
      i
      <3
      I
z
o
«i
Ifl
      o
      §c
Z
o
      
                                                                                                                             ai
                                                                                                                             00
                                                                                                                             o
   -a
Q. OJ
O nj—njw — ——
 z
 •i
      z  (M^taoi^nuiooonjTf^ai^
      
-------
 a
 e
 a
 3
 o
 i.
 a
JS.
o
 i.
 a
 u
 c
T3
 e
 3
 o
 i.
 a


 e
 o
 •4

-P
 It)
 a.
 o
a.
 OJ
 u
                                                                                                                            o
                                                                                                                           00
                                                                                                                            o
                                                                                                                           a.
                                                                                                                            o
 l/l
c;
ca

a
UJ

14- .
 o

 CD
 Q

 C.

 03
 _

O
a.
C_)

UJ
00
 I
                                                                                                                           o

                                                                                                                           a>

                                                                                                                           Q.
                                                                                                                           H
                                                                                                                           rn
                                                                                                                           oo
                                                                                                                           O)
                                                         43

-------
                WATER  SUPPLY  DATA  BASE
FOR POPULATIONS EXPOSED TO CHEMICAL SUBSTANCES IN DRINKING
WATER
•  INTEGRATED WITH IFD VIA STREAM NAME AND NUMBER

•  RETRIEVALS BY STREAM (OR RIVER, LAKE) NAME RESULT IN
   LISTING WATER UTILITIES ON WATER SODY.

•  POPULATION SERVED is INCLUSIVE DATA LISTING FOR EACH
   UTILITY

•  OTHER ON-LINE DATA BASES INCLUDE THE FEDERAL REPORTING
   DATA SYSTEM (FRDS) OF EPA-OFFICE OF DRINKING WATER (MORE
   UP-TO-DATE AND INCLUDES TREATMENT INFORMATION)

-------
EXAMPLE HLDF RETRIEVAL FOR DRINKING WATER FACILITIES,
  GAGES. AND OTHER  INDUSTRIAL  PLANTS DOWNSTREAM  OF
     Dow CHEMICAL PLANT IN PLAQUEMINE,  LOUISIANA
          (PRODUCER OF L,2-DlCHLOROPROPANE)
   NOTE:  HYDROLOGIC ORDER AND RIVER MILE INDEXING

-------
Lr te  K re rr











UJ

jLOGICAL SECyul
cc
o
>
X
>-
<
_J
0.
in
M
<
H-
•t
to
o
n
CO
UJ
K
<
— J

cr
t—
aJ
O
^-
in




— j
en
in

u.
z

(^
O 1

<
' o
in i
CM
O
"o
oo
f-
tn
-
939E+01 8090100007
)007 ?
— o
o
< 01
a o
CO
3 O
tr
LU

a '_"
tn o
in o
in o
in
Z
h- t-


2

.j
01
IO
u.

f-
Ol 1
en

<
o
U) 1
o
" o
o u
H-
l/l
CM
i 900C
9000010609 00+3215
IN O
O
Ol
o
CD
O
ce
tu

n r"
tn en
in o>
tn —
Z
ce ce


m
o
o
—i
en
CM
Ol
ID
U.
Z

c^
en i
00

<•
o
in i
cv
c
" 0
0 U
t-
in
n
443E+00 8090100003
)003 ?
r» 0
O
Ol
o
CO
o
o
2
or
LU

in 131
tn CD
in —
n CM
Z
X CC
a. a.
a a,
« ui
in in
tn en
LUUIUJLl.ltUUJUJUJlLJUJUJUJUJUJUJ32UJUJilJlUUJUJUJUJUJUJ
OUt.iOlOUOUOUOtJUCJUOOUOOCt- > > — LU UJ LU 1 1 LU MIULU > > LU
t^inz 20:20:2x20:2 -.«--• — 2 •- »- z a 2 ce •-
o — < < < < < < — a: a tr tr < — cc a: < < ce
— a a. a a. — a a a. co 03 a — a a. a. o. a
. «oi l^l^I^i^lH^ou^i^'^ISl^
10 coo: o?ZQ:So:Z o- Z tr ^^ *^ "^ oD CO -•• cr ^* >~* tr S tr Z ^^
u- a.
Z Z 00 -
o o in


CJ 1 1 UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ LU UJ LU UJ UJ LU UJ UJ LU
n a.a.a.a.aaa.a,xa.aaa.a.a— ~ac.aa.3.a.a.a.aa.
t- i-
<-i 3 3 33IX- — — 13 UUincjJOCCtn — — — i-'O
o tniX3333 uu22cc-i — — S:LULU< — trccorcco
en mCLO. cco:4ce23oo<<<>Q.I cocoaf-»— i 0.0.0.0.00
CDr^z^Oi/iincccc*-*— in D^2inininin t-»
in >/i in \f\ ** ** *t & 4 4 tu LU C 2 ^ Q. * LU uj z ^ i/j in 1/1 in x
44.O.O.23-'— i — -J0:< u-22<2ujujujujt-
l-*-XX55 < < _l _J < LU mtnu. IU2-1-I-1-J
Cy Ce Q: to O UJ LU O: Q: ""* "~* Z — J 1C COUJU.Lt.J . ry r>* ry nr "
+ o.Q.tuujmtnoo^~^~XXtuozcNCN Qiuiixx
*-oo — »- o T en »- fn
•-— O 0 0 « * 0 OO 0
oo o o o en LO o oo o
o»en r~ — otuui— — — t-
00 X OCOO.O-O OO O
OO — — 0 2 Z — — — —
30

£mSininnnmonmSnmo5S°°°Sn(S2c\S?3inin
inoioii^r-LninLOinLnLnLnLniriniQTinininf-cnorNfl' — — — — —
tnrMCMinintoiocoiototoioat&ioo-— — — — — — oicMfonnnn
Z
cecececececececececececeiEaczcrccceceaiceceeececececececea:
RECW MISSIS5IPP
HECW AUSSISS1PP
RECW MISSIESIPP
RECW WISSIS3IPP
RECW MIS.jISJIPP
Illl!
«—•- — •-
IO 1 1 1 1
CM — CM
O —

— . ^
00 O U U U U U
in — tn in in 01 u»
CO CO IX 03 CO CD CO
u. u.
S S C 0 0 0 0
a o o 022 MISSISSIPPI
.A0000191 UNION CARBIDf
.A0004367 AMERICAN CYAr
.A0005266 MONSANTO CO-l
.A0005746 ARGUS CHEM-SI
.A0005762 SHELL CHEM-NC
- 0 0
o o in tn tn tn in
01 en LU LJ LU uj uj
o o Q a Q Q Q
oo CD a. a a a a
0022222
O >
3 0
tr
itl UJ {1J LLJ ''' *A> '''

a n n a. o. a. a. a.
Lnmininininintn
t/)^- — ^^ — ^^«

£
arcrctrirararQ:


c

_j
o
u.

e'-
en 7
o
*
<
o
in i
CM
O
"~ a
O tJ
H-
0)
10
B46E+01 8070100001
>ooi ?
5
:G0807010C
2
ce
UJ

a. C3
in o
tn o
in t-
tn «r
Z
Z CE

-------
              INTEGRATED  EXPOSURE ANALYSIS

•  CHEMICAL-SPECIFIC INFORMATION
   - POPULATION HABITS
•  GENERIC INFORMATION

   -  INHALATION RATES
   -  INGESTION RATES
   -  FREQUENCY OF EXPOSURE
   -  DURATION OF EXPOSURE
   -  BODY SURFACE AREAS
   -  ABSORPTION RATES
   -  POPULATION HABITS

•  TOOLS
   -  ESTABLISHED FRAMEWORKS
GOAL;  QUANTIFY HUMAN HOURLY,  DAILY,  YEARLY OR LIFETIME
EXPOSURE (MASS/TIME) TO CHEMICAL OF INTEREST

-------
                       INHALATION INTAKE
                               (I)
                             ug/YMr
             ABSORPTION RATE
                    (A)
                atgortMd/hour
    AMBIENT
CONCENTRATION
VENTILATION RATE
       (V)
     m^/hour
  FREQUENCY
      (F)
no. axposures/year
 DURATION
    (D)
hours/exposure
                       FIGURE 2. EXPOSURE FRAMEWORK: INHALATION ROUTE

-------





















a
VI
Ol
k.
3
I/I
O
ex
X
UJ
c
a
•4-1
 9> >»
41 * <3
44 wi -a
!
S -a en
- >»<
£ Z £
«» £
^3


S.
H 3
44 o — »
S' i;
••- >i •<
St g1
uj i




>l S»
u "O
e 01
41 >.
3 <.
9 wi
0) >>
u 7
u. ••}

^^
WI
C >t
0 n
•— 13
44 "^
>o wi
k. k.
3 3
1



O

4J
W ^^
i-n
*> g
c <.
41 91
C 5
C ^"^
o
u






§,

•s -
W) «
o •—
a. a
X CX
UJ o
















41 O
k. —
3 k,
WI  O
« •
•— o»




i k.
< 41  9i e
^ w, ^ =55
a 41 o i/i »•>
C 41 & WI 3 4)
o >> wi e i k. wi
•^ o a> « o «t 3 *j
« — e c ie
ma— « e k, o •— «
Q. S i« — D U 03 O —
3 UJ 3 Q. •— 13. X C. Q.
U J3
u S
o • < •

•

MM MM
41
S1
k.
41
>
«S


91
^
00
rv
14-
O

jr
91
i
>»


V
91

|Q

£
^J
"5
«
^
*o
41
J3

O
44
•o
1
WI
WI
a

IA
41
Jtf
k


e •
-• 91
+> ^
30
in f^

k. WI

WI
• c
k. o
•0 --
41 44
>> «

k, "3
S.&
a.
WI
>• <—
• ia «
e -ok.
O 41
— 10 C
44  9»
0 —
WI -04)
I * >

WI — "5
wi t} O
•a: c: ^



ia ^9









•
+j
c
«
^B
O.
01
e
lU
j=
*<
01
k.
3
X
"o
a.

91
2

WI
3

5
o
S

<^
O
J*

in
•
o
e
j=
w
"»
e
o
*i
|M
U
«4
e
01
g
o
u
g
>^B
X
E
e
o

•o
41
WI
«
J3

41
k.
3
WI
a
a.
x
41
•a
e
V
e
o
•^
4W
1)
3
§•
a.
•^
41
.*•*
«
•«•
AJ
WI
LU



U
113

-------
            FINAL PULL IT ALL TOGETHER
        WHAT  HAS  BEEN  GOING  ON  SUMMARY.'.'.'.'

DEMONSTRATION (BRIEF) EXPOSURE ASSESSMENT FOR MBOCA

-------
                   CASE STUDY #2
    H,M'-METHYLENEBIS (2-CHLOROANILINE)

•  BACKGROUND
   -  CURING AGENT FOR CASTABLE POLYURETHANE PRODUCTS
      (E.G., ROLLER SKATE WHEELS, SHOE HEELS)
   -  POSSIBLE CARCINOGEN
   -  EMERGENCY STANDARD PROMULGATED IN 1973 (RESCINDED
      IN 1974)
   -  CRYSTALLINE SOLID THAT TENDS TO POWDER ON USE
   -  ALL U.S. MANUFACTURING CEASED IN 1979
•  PURPOSE
   -  INPUT TO PRIORITY REVIEW LEVEL RISK ASSESSMENT
•  SCOPE
   -  SOURCE TO RECEPTOR (HUMAN)
   -  ALL EXPOSURE CATEGORIES
   -  ALL RELEVANT MEDIA

•  APPROACH
   -  DETAILED CHARACTERIZATION OF EMISSIONS
   -  COMPREHENSIVE REVIEW OF MONITORING DATA
   -  MODELING OF AMBIENT CONCENTRATIONS
   -  IDENTIFICATION AND ENUMERATION OF EXPOSED POPULATIONS
   -  ANNUAL EXPOSURE CALCULATIONS FOR ALL EXPOSED POPULATIONS
      (TYPICAL AND REASONABLE WORST CASE)

-------
t
t
                                      CHEMICAL-PHYSICAL PROPERTIES

                                  •  GATHERED FROM LITERATURE
                                  •  CALCULATED WHERE DATA WAS LACKING
                                     -  CHOCST FILE OF EPA-OTS
                                     -  METHODS OF LYMAN ET AL. L982

-------
            Table 3-1.  Summary of Chemical and Physical Properties of MBOCA
Property
Molecular Weight
Vapor Pressure 9 20°C
9 30°C
9 40°C
0 60°C
9 75°C
9 90°C
9 100°C
9 120°C
>_ 200°C
Henry's Constant
Volatilization Rate Constant (Water)
Log Octanol /Water Partition
Coefficient
Solubility in Water

Solubility (X by weight) 9 24°C
in Trichloroethylene
in Toluene
in Ethoxyethyl acetate
in Mesityloxide
in Methyl ethyl ketone
in Tetra-hydrofuran
in Dimethylformamide
in Dimethylsulfoxide
Specific gravity, solid, 9 25°C
liquid, 9 107°C
Melting Point


Value
267.16
7.2 x 10'6 torr
5.1 x 1CT6 torr
3.7 x 10'6 torr
1.3 x lO'5 torr
2.0 x 10'5 torr
2.9 x 1(T5 torr
3.6 x 10'5 torr
5.4 x 1CT5 torr
Decomposes
1.8 x 10-7
6.5 x l
-------
         PRODUCTION AND ENVIRONMENTAL RELEASES
•  GATHERED PRODUCTION HISTORY
•  IDENTIFIED PLANTS AND LOCATIONS
•  GATHERED INFORMATION AND REVIEWED PROCESS CHEMISTRY
•  ENVIRONMENTAL RELEASES FROM MONITORING DATA (ANDERSON
   DEVELOPMENT Co. - ADRIAN, MI)
•  GATHERED IMPORTATION HISTORY

-------
        PRfllARY USES AND ENVIRONMENTAL RELEASES

t  99X USED IN CURING POLYURETHANE ELASTOMERS
•  REVIEWED AND EVALUATED PROCESS TO IDENTIFY RELEASED POINTS
   (SEE FIGURE)
•  ESTIMATED NUMBER OF PLANTS NATIONWIDE BASED ON INDUSTRIAL
   SURVEYS (TOTAL PRODUCTION -r- AVERAGE USE PER PLANT)
•  IDENTIFIED PLANT LOCATIONS
•  ESTIMATED FUGITIVE EMISSIONS
 -  PLANT AIR VOLUMES
 -  AIR EXCHANGE RATES (CFR REQUIRES ICFM/FT^)
 -  CALCULATED AIR EMISSION RATE (VOLUME x AIR EXCHANGE RATE)
 -  CALCULATED MEAN OCCUPATIONAL AIR CONCENTRATION FROM
    MONITORING DATA
 -  CALCULATED MOCA EMISSION RATE (CONCENTRATION x AIR EMISSION
    RATE)

-------
       SECONDARY USES AND ENVIRONMENTAL RELEASES
•  IDENTIFIED PRODUCTION (GENERAL LITERATURE)
•  IDENTIFIED INDUSTRIES
•  GATHERED INFORMATION ON RESIDUAL LEVELS AND USE PATTERNS

-------
           SUMMARY OF ENVIROWENTAL RELEASES
•  AIR RELEASES FROM DIRECT PRODUCTION INCLUDING RE-ENTRAINMENT
   OF MOCA DUST

•  AIR RELEASES FROM PROCESSING INCLUDING RE-ENTRAINMENT  OF MOCA
   DUST

t  RELEASES ASSOCIATED WITH RESIDUAL LEVELS IN CONSUMER PRODUCTS

-------
                      ENVIRONMENTAL FATE

               •  PHOTODEGRADATION
               t  OXIDATION
               •  HYDROLYSIS
               •  VOLATILIZATION
               •  SORPTION*
               •  BlOACCUMULATION
               •  BlOTRANSFORMATION AND BlODEGRATION
•BASED ON CHEMICAL-PHYSICAL PROPERTIES, FATE OF ANALOGOUS COMPOUNDS
 (AROMATIC AMINES),  ESTIMATES OF ENVIRONMENTAL ACTIVITY (E.G.,  LOG
 KOW)

-------
                 MONITORING DATA

•  GATHERED ALL AVAILABLE MONITORING DATA
t  EVALUATED SAMPLING AND ANALYSIS TECHNIQUES
   -  AIR
   -  WATER
   -  SURFACES
   -  BIOTA
   -  SOIL AND SEDIMENT
   -  URINE AND TISSUES

•  RE-EVALUATE MONITORING DATA
•  CALCULATE MEAN CONCENTRATIONS

-------






















"8
3
e
-u
e
cS
41
e

"-
e
- -o

1 e s
t/i «



































t
"3"
en
en

*-
I
o
z

n
ex
ex
§"

a
LO



^
ex
ex

S
8


^
3:
§
^rt






^
^


V
*—




I

_*>
j
O 5^
— 0
<— t c
.a ex —
3
ex 4i u
Ul 4»
E O u
0 — 3
t *l

" 01 a
o > <:
wi O
= o
4) **~ r^
(J .C ^*
_ ^.
! ! !
z z z

tjjj
^^
_cx
§8 8
**2 *™
S •" ~
9~



tjO ^
ex ex
ex ex

§o o
•f en
CM


.a .a .a
ex ex ex
ex a. ex
O O O
0 p— c5
CM ^ •—






00 O O



00 — vo
*"" ^




as ae as
z z z


o o <
§— 00 i— 
o
z z z

c o c

•f™ l/t •»"
3 z s
E
c c
•— LO —

S- ^-. i— t
4) en 41
u r^ c u
3 -«. •*- 3
"O T f -a
O --. *J O
I. LO ~ 4.
ex • — 3 a.

•






«

Ul


e
.2
^j
 -O JJ
en 41
r- 4-1 e
^s U f
LO 4}
LO r— 4)
O 4-1
TJ 0 •--
C U)
»a vi
41 —
cn ^^ 1^
r^ O^ -^
^*x S 4^
^~ IB ^
CO t/l ^J
LO 1— £•
*-^ ••— Ul
O 4)
00 !.
CVI
§11
f Ul
S- Ul *J • • C
H_ 0) 01 I/I Ul O
^ e •— « -o ai t-
4i i— -^ ex ui u^r-w
•— S c 10 o  u ^ ex 3
^ OI O W O41 34101Cn 4) • J-> Ul-^
COO«*JJ34>-kJ><4-'
J£ 4-> OCXUOSOUI

•MCZUfOOlO M»> O
« J-> S- O = ••- D O
•auics o o «s_mex
S iioot - t. m -a 3

O O  nj o 4) « >— « c
ui^S-Su-^^CX*-,










































01
u
3
•§
I.
ex

CJ
O
Z
14-
o

>> "3 — •
4^ -^ O^
•** i_ p»*
•5 3 «
u ~^~
•^ C *^"5
> "~ ' —


-------
   ESTIMATION OF ENVIRONMENTAL CONCENTRATIONS
CONCENTRATIONS (AIR) IN AMBIENT ENVIRONMENT AROUND
POLYURETHINE CASTING FACILITIES
-  ATMOSPHERIC TRANSPORT MODEL (AIM) IN GEMS
-  DEVELOPED PROTOTYPE FACILITY
-  EMISSION RATE FROM SOURCE ANALYSIS
-  CANONICAL ENVIRONMENTS (CALIFORNIA AND MICHIGAN)

-------

-------



o
c
a
u>
O



u

X








VI
QJ
U
C
in
£ • —
=

« en
in r^ r— «r









«— CM
a % b b
o •— ^ •—
XXX
X
in in rr
5 * » S
en . . •
• r- CM tO
i i i
i
.— CM CM
O i i i


x x x x
in en oo in
oo en to ^
'




in O O O

O i— CM ro
i I i I
O in o o
o o *— 
-------

-------
                   HON OF EXPOSURE SCENARIOS
                    EXPOSED PQRJLA
P
TIP
f  OCCUPATIONAL - INHALATION, INGESTION, DERMAL
t  AMBIENT - INHALATION, INGESTION,  DERMAL (IN ADRIAN,  MI AND
   AROUND POLYURETHANE CASTING FACILITIES)
•  DRINKING WATER
•  FOOD
•  CONSUMER PRODUCTS - DERMAL

-------

-------
                 EXPOSURE CALCULATIONS
•  INHALATION - CONCENTRATION x INHALATION RATE x DURATION
                x FREQUENCY

•  DERMAL - SURFACE CONCENTRATION x AREA OF EXPOSED SKIN x
            DURATION x FREQUENCY x ABSORPTION RATE

   -  AREA OF EXPOSED SKIN - BODY SURFACE AREA x PERCENTAGE
                             OF SURFACE AREA FOR SPECIFIC
                             BODY PARTS

-------
4

-------






















VI
01
w
3
VI
e
a.
X
UJ

w
S
a
•o
*
4-1

** ^^ <••
I/I — -^
UJ- g,
•o *-
. 3
££
•o~
<0 -5
01 Jtf
i  CM*
- "8 1
a vi o
_ o r-
** a. "».
e x 01
3 UJ E
J^^
e
a

s
^3 "»"
« 3
VI IO
i 3
2 &
Q.




Exposure
scenario



CM •— CM
1 1 1
o o o
X XX
\O * «iM
B f7 ^T ^^
• • *
F* *- <0
ft


S S S
CM CM CM






i« —in





in g tf>
~- <*> •—
O O 0
• • •
P- CM »-
%





CM CM
00 00
> U .
^ f» «••
r»
CM

O
CM
^*
•
CM
a
4rf 1
1
§
I
*O. 4-
d, «_ o oi
c e a a js
•— IO VI VI ^ U •*•*
j: wi o> e e vi a
 o> e o> a «
«o> o — c -S 0101
0)^ ajs — 4J 01 c c
X3 VI i- 4-> 01 • « C < — —
ax «» a. a. — Ci.-ut.oii-
^ •— 01 oio) a a) a. o s c 3
Q. O X — U B ^ GU O « -O — -O
go. a — x uaax x vi
S •— lOOt-Q 41 U 01014(41
oi a. e &vivi<*.k— LVI
C C ffoivlio VI O 3 >u-o— xcxu
-*3— x
• •
U) en




V CM
0 0

X X
U) ^f
• •
•— CM



g g
CM CM






« va





U)
1 O
••






1
1 «

"~

A
o
•
in
*™
Q
• 2
A
^
4)
c
ii! -S
0} 4rf
41 41
X U
a 3
•Si
TOTAL
Non-production en|
in MBOCA-using po
plants
^
CO
U4

-------
<•,  .,

~, ait

f, *,-,
                             Protection Agency
             ..
           31 WestJacksSn Boulevard.
                    ft.  ^©604-3590

-------
























2
b
3
tfl
O
&
bu

^™
i

5!

"S
*^
fl

I/I
UJ
*»
o
£
to
CM
1
00
4)

J3
m
I—
















^2
1
I/I
UJ




1
+*

g

J^
VI




^t
i
i
u.



I

J^
2
s

>ta
o
«
1
4)
|
(/>
s

<*•
e
M
e
i




•o
VI
S.
X
UJ












41
k
3
VI
O
0.
X
UJ







ja
41 —^
at x
vi -a
•s «
= ff


in m o







^•^^^•^
CM CM VO




in «n «rt
w en to
O vo CM
• •
O O O
"•»"<•
X X M
«» «r »

o

03
41
»
a
**
8
•
CM

!•» 1
j= S k
i«_ 4) at M 3>
o e s e S
« oak
vt JS k U O
41 4d JE *.
4i 41 -we
X k — -g
O3 CM C
— X at 3
g. — vt e a
fa 41 •— k
« a. at x *
*O IQ
<*- 01 — ' •— —
o c a. —
-— jj -O O
VI I/I p— •— C VI
4» 3 3 •«- 4)
— 1 vi -g J= k -O
— < J-> < O -a 41
H- — u C .— *J
SB S o * — — — *" "
uj « S •— .— CM jse
**^ ^u ^t o« ^^ *^ (J *^*

5 < 00
—

V U1

C3 O


X X


_
1
0

ff-JS
,d(
eo
^ .tn
t-
O wt


JS 4*
at .at
••• <»
*t
X
J VI
k
«j
»*
 4J
CM
B
a -a

JS •—
•^ u

4) O
*« *J
S -C
01
41 •—
J3 41
li
3 4)
vi at
VI <9

k *
j>e 41
if.
e at
0 Jtf
«J O
S ^
1«
Q. 4J

at at

fe S~
kf:
I"3 «
4» at
vi at «
X a
« u i*-
•a 4t o
>
in >
a vi
J9 4J CM
vt *a ^

*O *^
4) —
CB 13 U
0 9
•O VI
k *•
X Ol —
i— j« Ol
•^ u •^
« O 4)
0 X X
J3


































.
u
o
i
41
i
o
1
in
in
in
•^
—
in
O
•
CM
S
u
•v.
5
CM

in

C

in
O

41
4)
41
TJ


j^
VI
1
•^
X
X
(J









































.
VI
V
S>
X
o
i
8

41

**
|*
1
^j.
X
41
I/I
k
4)
1
S
^^
i
«*-
**•
o

^
1
c
•o

Q
1—
•e


vt
41
Vt 01
3 19
VI
e 
k
in 4)
• j:
e •
"% z
Htchigan w
Oeepwater
e
e
*• m

3x
41
B VI
;i
0t 'W

"t3

0 0
u
in
k e
S °

!*•» 5f

js "g
3 4*
2 g
J= U
41
~ i
e in
41
k 41 •
"° * H
•~ 4J 41
•^ VI
JS <4- 0
u — a.
X
«_ 4)
O •
4) '•» —
3 a **
C "3 C
41 41
4) k 4J
JS 3 0
H- CD O.
4)












•
U3
Q.
0.




•
m
in

14-
o
o
4»
«
k
M
41
U
S
0
u
<
u

X

•^
o
vt
1
X

k
41
•a
vt
3


i

•*•
e
e
a

VI
a

jj
^^
Ol
e
41
k
I/I
4)
U
k
3
O
I/I


jg
„.
S

-------