740R84101
EXPOSURE ASSESSMENTS;
TOOLS, TECHNIQUES, AND EXAMPLE APPLICATIONS
A BRIEFING FOR:
U.S. ENVIRONMENTAL PROTECTION AGENCY
REGION V
CHICAGO, ILLINOIS
PREPARED BY:
U.S. ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF Toxic SUBSTANCES
EXPOSURE EVALUATION DIVISION
WASHINGTON, D.C.
AND
VERSAR INC.
6850 VERSAR CENTER
SPRINGFIELD,' VIRGINIA
MARCH 16, 1984
U S Environmental Protection Agency
GLN'PO Library Collection (PL-12J)
7? West Jackson Boulevard,
Chicago, II 60604-3590
-------
BRIEFING FORMAT
(1) INTRODUCTION
(2) EXPOSURE ASSESSMENT COMPONENT
- PHYSICAL-CHEMICAL PROPERTIES
• CHEMICAL SPECIFIC REFERENCES/INFORMATION SOURCES
• GENERIC DATA (E.G., ENVIRONMENTAL PARAMETERS,
INDUSTRY INFORMATION)
•TOOLS (E.G., AUTOMATED OR ON-LINE DATA BASES,
SIMULATION MODELS)
•EXAMPLE APPLICATIONS OF EACH COMPONENT AND/OR
TOOL
- SOURCE ANALYSIS
- FATE/EXPOSURE PATHWAYS
- MONITORING/MODELING
- POPULATIONS
- INTEGRATION (SCENARIO DEVELOPMENT)
(.3) BRIEF REVIEW OF AN EXPOSURE ASSESSMENT FOR
4,4'-METHYLENEBIS(2-CHLOROANILINE) (MBOCA)
-------
MAJOR INFORMATION RESOURCE: NINE VOLUME EXPOSURE
ASSESSMENT METHODS REPORTS
VOLUME 1 METHODS FOR ASSESSING EXPOSURE TO CHEMICAL
SUBSTANCES
*VOLUME 2 METHODS FOR ASSESSING EXPOSURE TO CHEMICAL
SUBSTANCES IN THE AMBIENT ENVIRONMENT
"•VOLUME 3 METHODS FOR ASSESSING EXPOSURE FROM DISPOSAL OF
CHEMICAL SUBSTANCES
VOLUME 4 METHODS FOR ASSESSING EXPOSURE TO CHEMICAL
SUBSTANCES RESULTING FROM TRANSPORTATION-
RELATED SPILLS
*VOLUME 5 METHODS FOR ASSESSING EXPOSURE TO CHEMICAL
SUBSTANCES IN DRINKING WATER
VOLUME 6 METHODS FOR ASSESSING OCCUPATIONAL EXPOSURE TO
CHEMICAL SUBSTANCES
VOLUME 7 METHODS FOR ASSESSING CONSUMER EXPOSURE TO
CHEMICAL SUBSTANCES
VOLUME 8 METHODS FOR ASSESSING EXPOSURE TO CHEMICAL
SUBSTANCES IN FOOD
*VOLUME 9 METHODS FOR ENUMERATING AND CHARACTERIZING
POPULATIONS EXPOSED TO CHEMICAL SUBSTANCES
*AVAILABLE FOR REVIEW.
-------
GRAPHICAL EXPOSURE MODELING SYSTEM - A COMPUTERIZED
LIBRARY OF DATA BASES AND MODELS TO ASSIST THE
INVESTIGATOR IN PERFORMING EXPOSURE ASSESSMENTS.
GEMS INCLUDES:
- PHYSICAL-CHEMICAL PROPERTY ESTIMATION METHODS
- ENVIRONMENTAL PARTITIONING MODEL
- AIR CONCENTRATION SIMULATION MODELS
- WATER CONCENTRATION SIMULATION MODELS
- GROUNDWATER CONCENTRATION SIMULATION MODELS
- DATA BASES ON INDUSTRIAL MANUFACTURERS AND POTW LOCATIONS
- WATER SUPPLY LOCATIONS
- POPULATION DATA
-------
PHYSICAL-CHEMICAL PROPERTIES
• CHEMICAL SPECIFIC DATA
- REFERENCE SOURCES FOR EXPERIMENTAL DATA IDENTIFIED,
CATALOGUED, AND EVALUATED. PROPERTIES OF INTEREST
INCLUDE:
(1) VAPOR PRESSURE
(2) SOLUBILITY
(3) LOG P
(4) HENRY'S CONSTANT
(5) BOILING/MELTING POINTS
t GENERIC DATA
- GENERAL PROPERTIES BY CHEMICAL CLASS, BY STRUCTURE,
ETC.
• TOOLS
- CHEMEST - ON-LINE DATA SYSTEM THAT PERMITS ESTIMATION
OF VARIOUS PROPERTIES WHEN NO EXPERIMENTAL DATA ARE
AVAILABLE.
- NON-COMPUTERIZED ESTIMATION METHODS ("HANDBOOK OF
CHEMICAL PROPERTY ESTIMATION METHODS" - W.J. LYMAN ET
AL. 1983)
• EXAMPLE - PHYSICAL-CHEMICAL PROPERTY SUMMARY FOR fIBOCA
GOAL; GATHER INPUT DATA FOR CHEMICAL FATE INVESTIGATIONS.
-------
REFERENCE SOURCES FOR CHEMICAL SPECIFIC
PHYSICAL-CHEMICAL PROPERTY DATA
• ON-LINE INFORMATION SOURCES
- CHEMICAL AND TOXICOLOGICAL FILES OF NATIONAL LIBRARY
OF MEDICINE (CHEMLINE, TOXLINE, RTECS, TDB)
- CIS - CHEMICAL INFORMATION SYSTEM (NIH/EPA)
- HAZARDLINE - (OCCUPATIONAL HEALTH SERVICES)
- CICIS - CHEMICALS IN COMMERCE INFORMATION SYSTEM
(EPA-OTS)
• HARD COPY DATA SOURCES
- GENERAL EXPERIMENTAL LITERATURE
- REFERENCE VOLUMES
CRC HANDBOOK OF CHEMISTRY
MERCK INDEX
LANGE'S HANDBOOK OF CHEMISTRY
HANDBOOK OF ENVIRONMENTAL DATA ON ORGANIC CHEMICALS
ETC. (NOTE: INFORMATION SOURCES CATALOGUED IN
AMBIENT METHODS REPORT)
-------
TOOLS
• CHEMEST - COMPUTERIZED VERSION OF W.J. LYMAN'S HANDBOOK
OF CHEMICAL PROPERTY ESTIMATION METHODS. INCLUDED IN
GEMS - USER FRIENDLY:
- CURRENT METHODS INCLUDE:
SOLUBILITY IN WATER
SOIL ABSORPTION COEFFICIENT
BlOCONCENTRATION FACTOR (FISH)
BOILING POINT
VAPOR PRESSURE
RATE OF VOLATILIZATION FROM WATER
HENRY'S LAW CONSTANT
• LOG P ANALYSIS - OCTANOL/WATER PARTITION COEFFICIENT
• HAND CALCULATION METHODS FOR:
- ACTIVITY COEFFICIENTS
- SOLUBILITY IN SOLVENTS
- RATE OF HYDROLYSIS
- VOLATILIZATION FROM SOIL
- DIFFUSION COEFFICIENTS
- ETC.
-------
00
•)
a
uj
:>
* UJ
* CO
* ^
/ N
W
1» T*
d. 2 ^
x /
tr
ct
o
n
cu>^
«f ^
^ J>
\
I
•»*
•»*
O
-------
o
<£
M cu
cn
cn
o
u. cn
>-«
®
cu
V*
u.
Z 0^0
1 «-l
m
••
O»
cu
O)
®
O »*
U. ~«
O ^&
LU -«
Z Ok
"•>
o
O 00
o
r-
c cn -4
o
f- U)
« cu ^
LU LA
T* «-4 «H
U>
T
/>> V «-4
/\ v
/•s v cn
/SV ^H
94 •*
** »«
^* "* 5
M M
M ^
$4 94
^4 *• 94
** O **
M Z M
^« **
** ^ 5
*t. ~ii 4*
^ •>*
•)4 ^ M
M -H
4A ^A
•^ ® ^
** in •*
^ [*- -)4
•>* M
$+ 34
•H •* 94
^j /"% ^^
^^ Mn ^^
^^ £fm ^^
94 «)-«cnc
®®®®®®-r^®®®®<
i
•®*4(i
»H •»-(•»
O ® ® U) ® ®
A cn cn IA ^ ® ••
n ^ ^ n o) ®
-------
(V
o
o
I
t-
UJ
X
fr-
Q£
I
UJ
at
o
UJ
X X ^
en
U)
00
n
O
o
E f- E UJ
O
*
a.
a:
UJ
o
z
o
o
UJ
cc
3
H
O ~
o >
t-
(-
z
O
o
o
z
UJ
a.
>
138
-------
1STANT
^_
o
o
3
Q£
Z
UJ
X
**
LU CJ
QC Z
X
o
a
z
1—4
Ul
a
«
ru
LABORATORY UOLATILIZATION
Lu
O
*~*
Z
LU
O
>
X
o
X
-J
w
/•^
cu
a:
o
•«-»
%^
QC
UJ
03
E
3
Ul Z
UJ
f- O
_ ®
*
u
o: ru
13
e-
Z Ul
i LU f-
l CHEMICAL (A-M3/MOL NON-DIM)
LC.
O
u.
1-
z
a:
z
UJ
X
Q£
UJ
H
Z
LU
E
m
o
1
o
z
T
O
1
UJ
*-4
^H
*
®
•
Z
UJ
X
; UOLATILIZATION CAN BE CONSIDERED
^^
0
-j
>
Q£
UJ
=>
U)
M
f-
z
U.
i— i
t-
a.
E
O
C£
a.
t-
x
LU
Z
•
^
x
x
IH*
UJ
3
J
Q
UJ
(-
t-i
t-
w
u.
>-»
H
Z
f-
z
1— 1
O
1- t-
>^
a
•LU
LU 00
Ul E
1-13
3 Z
a:
LUQ:
X LU
f- t~
O Lu
x
a:
LU UJ
H Q.
z >
LUH
139
-------
******
Q£
LU 1-
(- Z
- « a
-« N
(ft MM O C 1 Q£ O •-*
t-z z -J c^ a z>
i— i U| > ® LU
tz. a a i Q- o
> « O Z LU E Z
LU JO LU® LU* HH •
^ « ~ X CO H-® 3LO
o co • tu -^
H-I LU *"•
E >
LU ^
X
O^^
^*
Lu LU
o a_
Z f~
o
H-I
f- 0-
O Q ~
^ O Q£
Q£ HH >.
Lu K
LU O
LU Q. Q
fr—
<£ LU
-J E Q£
^•^ ^^ f»
^ '^ -i.
OK ^ ®
J
HI
0 Lu QC
f- •-• LU
o a.
X LU
V) Q_ ii LU R
HI U) E
3 >—(
LU LU LU
i- n f- E
o LU
H-
t-t
o ^
O fi
»-! O
LU p8
~ > (ft
X
t^ Qi ^fit Q£
z Xto LU
LU N ~* Q H" E
a: EU, u. Z)
=) is z
O £
o
a: Z o
LU & X
(-5* t-
o:
z
»— t IV
O
LU Q
(ft
Z)
Q£
LU X
O (ft
f-
LU
(ft Q.
f- >
1-1 H-
Z Q£
Z) X
*»
O LU
LU Lu
o: IM
t— I «J U
(ft 1
LU Lu
a j
^
& X
LU Z)
t- Q -J
Z Z X
LU
ru
Z) O X ~
(-
-> O LU >
(ft 1- E
•^ «
Z t- (ft ^
O Z »-• O
t-i -* Q£ LU
«. i a.
(UO LU >
^* Q OS H-
1
LO O
CK
Q£ X
X \
T LO
9®
+ 1
LU LU
r- oo
^Q ^r
• •
1-4 (O
P-
f-
z
^
o
c& ^^ *s
• * •
LO ** LO
LO •
0>
®
XXX
H-
»
LU
EO
i-t LU
H i-t
U.
a i-t
LU O
(-.LU
LU a.
-------
Table 3-1. Summary of Chemical and Physical Properties of MBOCA
Property
Molecular Weight
Vapor Pressure 0 20°C
0 30°C
0 40°C
1? 60 °C
9 75°C
& 90°C
0 100°C
0 120°C
> 200°C
Henry's Constant
Value
267.16
7.2 x lO'6 torr
5.1 x 10'6 torr
3.7 x 10'6 torr
1.3 x 1CT5 torr
2.0 x 10~5 torr
2.9 x 10'5 torr
3.6 x 10'5 torr
5. .4 x 10'5 torr
Decomposes
1.3 x TO'7
atm-m3/mole
Volatilization Rate Constant (Water) 6.5 x 10"5/hr
Log Octanol/Water Partition
Coefficient
Soil Absorption Coefficient
Solubility in Water
Solubility (% by weight) 0
in Trichloroethylene
in Toluene
in Ethoxyethyl acetate
in Mesityloxide
in Methylethyl ketone
in Tetra-hydrofuran
in Dimethylformamide
in Dimethylsulfoxide
Specific gravity, solid, @
liauid, 0
Melting Point
Chemical Reactivity
Moisture Content
Storage Stability
3.3
1,500
13.8 mg/1
13.9 mg/1
24°C
4.2
7.5
34.4
43
51
55.5
61.7
75
25°C 1.44 g/cm3
107°C 1.26 g/cm3
100 to 109°C
99 to 107°C
no°c
Weak base
<_0.5%
Excellent, slightly
Reference
Rappaport and Morales (1979)
"
ii
Dupont (1977)
ii ii
H it
H H
ii M
H H
Calculated (see
Calculated (see
Calculated (see
Voorman (1981)
Calculated (see
Voorman (1981)
Dupont (1977)
ii ii
M H
ii ii
H n
H n
n n
11 n
Dupont (1977)
II II
Dupont (1977)
tt
II
Appendix)
Appendix )
Appendix)
Appendix)
Van Nostrand (1981)
IARC (1974)
IARC (1974)
Dupont (1977)
Dupont (1977)
hygroscopic
-------
SOURCE ANALYSIS
(I.E., MATERIALS BALANCE)
• CHEMICAL SPECIFIC DATA
- REFERENCE SOURCES FOR:
PRODUCTION VOLUME
PROCESS CHEMISTRY
PLANT LOCATIONS
COMMERCIAL/CONSUMER CHEMICAL USES
DISPOSAL
TRANSPORT/STORAGE
• GENERIC DATA
- CATALOGUED THE FOLLOWING
EMISSION FACTORS
TREATMENT EFFICIENCIES
SURFACE WATER DILUTION RATES
BUILDING SIZES
VENTILATION AND MIXING FACTORS
t TOOLS
- INDUSTRIAL FACILITY DISCHARGE FILE (IFD)
- TSCA INVENTORY
- RCRA HAZARDOUS WASTE DATA BASE
• EXAMPLE SOURCE ANALYSIS FOR CYCLOHEXANONE
GOAL: QUANTIFY EMISSION RATES TO THE ENVIRONMENT. IDENTIFY
POSSIBLE FUTURE CONTROL POINTS.
-------
CHEMICAL SPECIFIC DATA
REFERENCE SOURCES FOR: MANUFACTURING FACILITIES, PRODUCTION
VOLUME, GEOGRAPHIC LOCATION, PROCESS CHEMISTRY, DISPOSAL, ETC.
• ON-LINE DATA SOURCES
- CICIS - TSCA INVENTORY
- DIALOG SEARCHES
- MEDLARS/TDB - NATIONAL LIBRARY OF MEDICINE
- IFD (INDUSTRIAL FACILITY DISCHARGE FILE - SEE TOOLS)
- HAZARDOUS WASTE MANAGEMENT INFORMATION SYSTEM - RCRA
DATA BASE OF TREATMENT, STORAGE AND DISPOSAL
FACILITIES (TSDFs)
• HARD COPY DATA SOURCES (EXAMPLES)
- SRI DIRECTORY OF CHEMICAL PRODUCERS
- FARM CHEMICALS HANDBOOK
- KIRK-OTHMER ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY
- USITC - PRODUCTION AND SALES DATA
- MINERALS YEARBOOK - BUREAU OF MINES
- ENCYCLOPEDIA OF POLYMER SCIENCE & TECHNOLOGY
- PATENT LITERATURE
- ETC.
-------
GENERIC DATA
• EMISSIONS FACTORS - BASED ON PRODUCTION VOLUME (KG
RELEASED/KKG PRODUCED) AND ACCORDING TO PROCESS.
FOR EXAMPLE:
- ORGANIC CHEMICALS MANUFACTURING - RELEASE AVERAGES
0.35 PERCENT OF TOTAL PRODUCTION
- FOR VOC EMISSIONS BREAKDOWN AS FOLLOWS:
31 STORAGE LOSSES
32% FUGITIVE LOSSES
4% SECONDARY RELEASES
55% PROCESS VENT EMISSIONS
- EMISSIONS FACTORS BY PROCESS
0.11% - OXIDATION
0.65% - HALOGENATION
0.015% - HYDROLYSIS
• SURFACE WATER DILUTION FACTORS (SEE ATTACHED TABLE)
- ORGANIC CHEMICALS - THE AVERAGE STREAM DILUTION
FACTOR IS 428 FOR MEAN FLOW CONDITIONS; FOR LOW FLOW
(7-Q-10) IT IS 46
t TREATMENT EFFICIENCIES
- DRINKING WATER TREATMENT - BY PROCESS AND BY CHEMICAL
ANALOGY: COAGULATION REMOVES APPROXIMATELY 50% OF
HALOGENATED ALIPHATICS, 99% OF DDT IS REMOVED BY
REVERSE OSMOSIS
- SANITARY WATER TREATMENT
• BUILDING VENTILATION/MIXING FACTORS
-------
Table 4-1. Mean Annual and 7-Day-10-Year Low Flow Stream Dilution Factors
for the 21 Major Industrial Categories
Stream Dilution Factor (SDF)
Industry
Leather Tanning
Aluminum Forming
Battery Manufacturing
Coil Coating
Metal Finishing
Foundaries
Iron and Steel
Non-Ferrous Metals
Porcelain Enameling
Paint
Ink
Pulp and Paper
Textiles
Coal Mining
Ore Mining
Petroleum Refining
Organic Chemicals
Pesticides
Electric
Inorganic Chemicals
Gasahol
Mean Annual Percentile
25th
189
17.9
33
1,097
NA
NA
684
NA
1,030
NA
NA
44.9
443
211
5.8
976 (26th)
111
2,000
129
107
NA
50th
826
126
99.9
7,110
NA
NA
709
NA
7,223
NA
NA
259
2,212
422
39.7
17,622
(51st)
428
7,700
1,350
678
NA
75th
1,904
1,348
1,185
34,260
NA
NA
6,740
NA ,
28,443
NA
NA
1,154
5,853
633
323.2
69,348
(74th)
2,890
52,000
10,600
8,726
NA
7-Q-10 Percentile
25th
6.5
0.3
2.0
91.3
NA
NA
28.3
NA
59
NA
NA
5.9
19
115
0.72
113
9
162
8.65
6.7
NA
50th
27.6
6.8
6.8
453
NA
NA
97.0
NA
233
NA
NA
28.1
135
231
1.03
496
46
828
126
43.1
NA
75th
102
133
58.1
15,360
NA
NA
539
NA
9,238
NA
NA
159
785
347
10.6
9,029
193
3,474
345
923
NA
Source: Retrievals of the HLDF system of EPA-MDSD
NA = Data not available (data to be included in future drafts of this methodology as it
becomes available).
4-3
-------
TOOLS
ESSENTIALLY ON-LINE DATA BASES INCLUDING:
• CICIS - TSCA INVENTORY
• RCRA DATA BASE
• IFD - INDUSTRIAL FACILITIES DISCHARGE FILE
- A DATA BASE OF DIRECT AND INDIRECT INDUSTRIAL
DISCHARGERS IN THE U.S.
- DATA BASE INCLUDES: PLANT NAME, LOCATION, SIC
CODES, PLANT FLOW, RECEIVING STREAM NAME
- RETRIEVALS MAY BE CONDUCTED BY SIC CODE,
LOCATION, BY RECEIVING STREAM
- SEE ATTACHED FOR DEMONSTRATION
-------
EXAMPLE RETRIEVAL FROM IFD BY SIC
SIC 28<4H (PERFUME, COSMETICS AND TOILET PREPARATIONS)
-------
? exec from Sen . epawch » 3045 * £ol ib ( txprw 13'' cli
WELCOME TO THE T'^- [004 IFD RET? IE' '.-4. 3Y5frM:
THIS PROCEDURE IS DESIGNED TO ~Mi.O"l THE USER A>:a;:33 v," ,;;;-;
INDUSTRIAL FACILITIES DISCHARGE (IFD' DM - ..... - iF IV-' ' < " • •" ."I- -
OF GENERATING STANr,,.-? j FORMAT REPORTS, SEvET-AL F c TR ; "•->'
AND SELECTION OP'P'Oi-3 ARE OFFERED TO ENABLE LliilfE'..
CUSTOMIZATION OF THE DESIRED REPORT. ANY QUEST! <"-^
-------
u
c
J.
•V
o
X
\r.
\
~*
»—
a:
o
a.
aj
z
c
u.
a.
X
H-
A
uJ
l/>
<
2>
C
h-
«J
^
Z •"•
^ *
u o
U-' S
IT. —
a.
I/! X
*• ^
i/i :
>
-J V
< V
2 V
<
<
-J a.
•< u
z in
uJ a.
r i
z o
o •
z c
— If.
•> ^
£ ^
uJ •
1 3
< <
X J
jj *
a
*
>•
S
^
Z
o
u
UJ
o
^
•3
HJ
*-
X.
3
U.
z
UJ
a
~«
z
v>
Urf
c
a.
z
•r »
o
C 1-
aJ r
>- 0
cr c.
0 a.
y« z
-»• UJ
-*• ~
X c
CM U
II
0 CJ
in yi
9
e
a a
n <
n z
n >-
II V
n —
II C
H Z.
II —
U
II
II
II
II
It
II
II A
n v
n v
N U.
n C
» o
V C
n
it u
u —
II V.
H
H
II
II
n
II 31
II O
U _l
H U.
n
n _i
n <
u t-
H O
H —
u
it
N
it r
II UJ
ii r
H Z
II Z
II Z
H
II
II
II
II
It
II
H
H
ii y-
ii i-
N •-
II U
II
n
n
n
n
n
u
H
n
N
II
II
II
U
U
II
II
H
H
II UJ
« Z
n <
ii z
a
u >-
H h-
II «••
U _t
II —
II U
II <
N u.
II
II
II
II
II
II
II a
ii in
u LL:
II O
n a
u z
u
IT II
V II
V II
i-ll
O II
C II
**.' W
•— II
C H
U H
U
II
Ii
H
R
II
H
II
II
II
II
N
H
II
II
H
N
II
U
a
H
n
H
1 II
i II
a u
••s H
H
0 U
O II
1= II
— II
1 U
II
in n
-U II
3. (1
— II
i. II
II
U. H
c u
II
II
R
N
II
II
II
N
II
II
K
H
II
II
H
II
n
u
u
it
H
it
•
•N
•
H
U
II
N
II
H
II
It
n
H
n
a
«
n
u
u
u
II
H
H
II
n
n
H
it
H
II
II
II
n
n
u
u
n
n
u
u
o
*
•»
s.
n.
u
_!
_l
•M
>
VI
V—
^
X
UJ
_J
_1
>
I/I
^
z
3
X
1
I/I
«
Z
p
7
c
5
i
u.'
in
'jj
I
o
cr
^
•r
in o n
"u
X Z
V) UO
U X I/I
uj a c
c ex <
z c r
< u.
J; ^.
c »- c
_l (/I U.
<
_! Z
-1 0
aJ V!
I —
3
e <
r> i
0> 1-
• u.
H-
UJ U
i. Z.
(^ —
o
0 •
X
7 C i
z. z z
o n
z _i
o •
uJ C i.
_l — U
rr < uj
-. _l Z
r u 3
o >c —
•n :> -.
n -» —
= ru c
0 O 0
o o o
< k- <
O O "-
c- c
«• *
•« •«
X :
(VI (VI
r--a
3 01
(VI (M
UJ
_1
_J_)
— 3
> <
i/i a.
v
UJ t-
X. 2
^% ^
C «t
o in
>
*j —
o: a
o
£ -U
••• tr
h- <
-J U
•X
CD U
1 <
Z Z
O O
-* " -J
O —
z o
X M
•n a
(\J O
0 0
o e
o c
C Z
Z Z
CSC
•»•»•»
* * -»
X * S
(Mm iv
o in at
ul»- «
*
>-
»»
-• >
U Z
<
o z a
* o e.
lZ U. I/I
^ *^ z
« -J «
i/) cj a.
a
tt
0
u.
Z
~
3 O Z
H> UJ
>• _1 M
t- O -"
O I u.
u w a.
•»• r- O
-» CM -»
m ^^ r~
(VI 0 0
300
O 0 O
CJ -5 -5
Z Z Z
O »
« *
•*••
xz
njni
-c
c
z
o
a a
IX
UJ O
-I CD
<
><
Z 3
•- O
1 *"
3 T
Z —
2
C
I/I
»
»•
O
>-
<
z
u a.
Z ^
_i
>- c
Z m o
•
O ? x
c >-
c x >
£ Z
«/> Z <
zox.
-. in in
_i o a
a. uj o
(
c
UJ (J
I- Z.
< l-l
z
C VI
a. 3
a z
•p o
^ 2.
Z 1
4 • ^_
' oe
0 — O
•- e
^ z c
UJ C UJ
Z _l V)
cr >• jj
— uj r
u_ r cj
•jv r> o
* = x
— r? ^
1*1 r>> o
o <= c
O 3 O
T ~5 >•
Z Z Z
0 C
•» •*
•• •»
33 3>
(V(\i
•• in
•» ->
n^
X
>
X
2
X
uJ
«L
t
V)
_l
_l
<
r
_•
_i
u z
z 1
— • a.
a:
v »
t~ u
3U>
OO
IZ <
^.UJ
Z 0
O «J
•» <
< 3
— 0
^ <£
•» ru
^- 0
O »M
O O
o o
>• <
zo.
= 0
(M Ow
e c ;r s e
•»»•»••*
•*»•«»•«•
e ic ic s i
IM nj (XI (VJ f\l
in o> *• •» —
• • e
in » o
— o
<\j
•
«
M
in tn
«t «
ft a
Q a
O UJ UJ
« o ••• ^*
u z a. a.
< <
^ QL m (/)
Z 3 « <
Z ^ -J -I
•
I/I
a
o
«
a.
v e
x u.
« T
CD
z in
020
VI 3 Z
z in o
III.
00
i i i
U U 12
z z ^ «! r
— ,- o
Z 2 Z
0 0 0 O J
CJ O I/* */l oj
a^ z z in
uj z r r uj
^J UJ O O X
= =->-; u
(\j — •- 3 f-
*D >C •*« •*? ^
-,---. m j
AJ rvi "M "i IT
-------
5
1
3
-8
I
1
I
^
J
e
g
SI
3?
o
e
.*
u
£
JS
!
w
•&
3
1
g
I
>0
z
.**
c
tj
*•
i 5
s
s
o
I 0
o
N
§ 5
co 9
i 1
i i
3 2
u
1 I
* '
i §
X
^"
» ^
- i.
2L u.
: fr
g- s
3 «
•D U
QJ I/I
< a
*
CSl
(M
m
m
5
2
i
i
^
i
K
1
1
X
^
!
^
1
^5
(
UJ
m
O
o
0
1
—
^
V
I
i
I
X
1—
10
Victori
jj
1
^3
(
UJ
I
r-»
8
5
in
§
1
o
§
1
i
V
2
VI
UJ
u.
V
1/1
I
•
5
o
c
i
o
m
8
n»
O
CO
^
!•
(M
r*
O
i
i
o
<5
1
19
Vt
^
a
i/i
i
—
u
c
•
8
a.
2
8
m
8
in
.
in
!
R
00
1
1
8
u
>
*ae
'£
_j
»
£
IQ
fr
8
•8
'•§
3
g
c
1 1
•S 8"
a
."S «
S*^
a
i- S
£ fe
J ^
i 5
J 8
>-> 5
o
•— Id
1 0
r^ *-
"~* !Z
t w
S £
O (T)
i -o
P*- C
HH
§
•O QJ
4J U
v> u
ca o
^ i/>
-------
EXAMPLE HLDF RETRIEVALS
USE OF CRT FOR IDENTIFYING WASTEWATER DISCHARGE POINT
AND DOWNSTREAM DRINKING WATER INTAKE
-------
in
u
j
n
ru
r
oon
ui«
r
u >
no- a. a.
u I ouj »uj
—i o <» M o>
« 1 <»•-•<« —
O LU ^1 U. -I
v, a. r a. a.
3-16
-------
I
Ei
cc
g
H
ft:
nni
«oa
3-17
-------
EXAMPLE DEMONSTRATION OF SOURCE ANALYSIS
CHEMICAL - CYCLOHEXANONE (CHEMICAL INTERMEDIATE IN SYNTHESIS
OF NYLON)
(1) IDENTIFIED MANUFACTURERS/PRODUCTION VOLUME
(2) DESCRIBED PROCESS CHEMISTRY
(3) IDENTIFIED AMBIENT RELEASES
(4) QUANTIFIED AIR AND WATER RELEASES
-------
A
03
g
U.
g
y
1
^u
LU
1
5
u
°
^
IU
^
^~
1
1
re
VI
i/i
y
a.
CM
g
•-. o
a a
CO 0.
o
C g
VI •—
c
a. *"">
§ -G
*p* t$
^ re
'£
1
"g
'•£
2
o
_j
4J
C
re
a.
J~
c
CL
§
> r—
• •- *>
*> S-
3 S-
C g
O "~
:•- 4J
re "S
tx
o
•a c vi
>> re 3
.c x
Q) QJ
1 (53
S 5
*•' ^
CO O
0 CM
o in
CM •—
^^ ^^
1 S
< x
.
t-^ *r
^— ^
m ^J
^X S
ET t.
X U-
.
3
u
JJ
VI
re
•g
re
. fe fr
S-.-2 3
5^j^
QJ
•OH) U
0) .1- vi
'^ ^ '-5
< GO
u
c
I-H
3
fld I-*
Q.
vi g>
i. O
V U
ll
^^
* 1
•-I p
• Q-
LU
3
0)
-w
Q.
re
u
g"
."?
x
0
CD
re
x
"3
£;
*~*
^
CM
^^
g
m
LJU
-
,2
o
u
yj
c
t
8
i/>
0)
X
• a>
3^
o
0 +>
-4-> C
c re
re vi
c §
£
§
U
.2
4-»
1
s"
.1
x
0
8S
5-5
li
U -D
S
o
^
in
^^
CO
cS
K
re
3
O)
5
U
c
g"
a.
•x.
S
3
>
•p»
O
-4-1
re
c
g>
|
1
1
^ ^
CO
CM •— •
O CO
CM VO
vO r-
P 8
o *~
S C
o o
CM P~
*
CM
,£
—I
^J
4^
h-
•o
re
v>
e-sl
3 1 •-
V >
•S 6 S
A 31 VI
(_••-> U
re i— ••-
u re -w
.,- v>
c u re — i
o a; r- <
•r- Q. CL ^-»
c oo o
3 ^—
g
u
O
a.
5
o
JJ
\
*J
U
U
''O
"Q
^J
^1
^j
u
re
a.
re
u
c
re
a.
O)
c
VI
•3
O
U
^
8;
Q.
"O CM
(M 4J 3^
»— 3 O
(J t—
HH r— t— (
QC fO uo
*•"- CM co
-------
%
H- 1
t— 1
3
LL.
t—
I-H
S
LU
(X
§
g
2*
^j
(X
,
CM
LU
1
A) O
+> U
t/) TJ
c* e
.^ o
S «2
rti >(»
ex o
S
i
8
u.
~$
c
>e
*
i
i
^
1
u-
c
ol
i
V
u
%
CT
c
«*—
0)
fy
U
1
S
5
8
2
5
fC
|
C
2
4«*
c
it
SI
* ?
s
i r-:
o
i 0
s 5
r. S
O
•— CM
CO OJ
V, x»
§ 1
o •—
u
i. S
> •<-
(/>
!S S
i £
X
^ *"
u
r— X
S (-.
S~ ""
a.
i 3
O 0)
•D U
D in
^ '-5
< S
§
CM
c\l
CO
CO
CO
CM
!-
^
•~
8
Lo
1
^
9)
'a.
"S
to
X
H-
•
1
2
o
1
3
*-H
LU
CO
lO
(\J
^
CO
o
o
o
CO
I
0
8
CM
!_
Q>
/^f
1
IO
X
.p.
2
u
>
4->
1
3
•a
HH
LU
1
r*
g
®.
r~
—
S
!-
S
o
I
S
§
§
s-
0)
IP_
ce
i
i/i
LU
U.
O
. , Pensac
8
O
C
3)
c
I
0
CM
in
CO
8
r-»
P*.
O
m
f—
s
CO
vO
CM
r-
CO
O
|
g
O
O
L.
(U
.^
ex
c
c
10
IO
1/5
S
A
, Augusta
u
c
HH
M
e
0.
z
I
CO
g
m-
in
.
in"
10
CM
CO
^"
CM
S
8
o
S
i.
V
tr_
ex
>r.
&
I/)
.-
^^
— 1
.
VI-
IO
t—
e-
s
-S
1
o
c
o
c
•
L> CO
(U ^
O y>
^? ^2
O T5
OJ ^3
Q
I- O
O LL«
>+- t— *
§
-------
TABLE 3. ESTIMATES OF WASTEWATER DISCHARGES AND IN-STREAM CONCENTRATIONS OF CYCLOHEXANONE
Plant Name
Allied Corp.,
Badische Corp
E.I. du Pont,
E.I. du Pont,
Monsanto Co.,
and Location
Hopewell, VA
. , Freeport , TX
Orange, TX
Victoria, TX
Pensacola, FL
Nipro, Inc., Augusta, GA
Union Carbide
Corp., Taft, LA
Plant Flow
(MGD)
107
2.88
167
30.0
0.031
0.372
19.8
I = 327
Cyclohexanone
3
Plant Loading
(kq/dav)
86. 24
654
529
1,000
1,070
668
3.914
E = 4,010
Cyclohexanone
Effluent
Concentration
(mq/1)
0.213
60.0
0.837
8.81
9,120
474
0.052
X7 = 3.24
Cyclohexanone
Diluted In-Stream
6
Concentration (mg/1)
Mean Low
MA NA
8.23 60
0.026 0.598
0.164 3.35
0.065 0.518
0.028 0.135
O.001 <0.001
Analysis assumes no industrial wastewater pretreatment.
Industrial Facilities Discharge (IFD) Data Base, 1983.
^Calculated based on the stoichiometry of the cyclohexane oxidation process, i.e.,
Catalyst
Cyclohexane + 03 > Cyclohexanone +• Cyclohexanol -t- Water
(m.wt.=84.16) (m.wt.=98.14) (m.wt.=100.16) (m.wt.=18.02)
Therefore, the production of 1 kg Cyclohexanone will release 0.1836 kg water. Assuming that the water is
saturated with Cyclohexanone (i.e., 25,000 mg/1), the release rate of 4.59 x 10~3 kg Cyclohexanone releasec
kg Cyclohexanone produced is estimated. The Cyclohexanone production data are extracted from Table 1 assun
330 operating days per year.
*For the phenol hydrogenation production process a release rate of 10 percent of the cyclohexane oxidation
process release rate was assumed (JRB 1981). This results in a phenol hydrogenation process release rate
of 4.590 x lO"4 kg Cyclohexanone released/kg Cyclohexanone produced.
^Calculated as the quotient of "Cyclohexanone Plant Loading" divided by "Plant Flow," and a conversion facto
(3.785 liters/gal Ion).
"Calculated as the quotient of "Cyclohexanone Effluent Concentration" divided by "Receiving Stream Dilution
Factor" (Table 2).
Vlow-weighted average effluent concentration.
-------
FATE/EXPOSURE PATHWAYS
• CHEMICAL-SPECIFIC INFORMATION
- REFERENCES FOR EXPERIMENTAL TRANSPORT AMD
TRANSFORMATION DATA (VOLATILIZATION, SOLUBILITY,
BIODEGRADATION, PHOTOLYSIS, BIOACCUMULATION,
HYDROLYSIS, ETC.)
• GENERIC INFORMATION
- GENERAL FATE INFORMATION BASED ON CHEMICAL CLASSES,
MOLECULAR CONFIGURATIONS, MOLECULE CONSTITUENTS
t TOOLS
- METHODS FOR ESTIMATING CHEMICAL-PHYSICAL PROPERTIES
RELATED TO TRANSPORT/TRANSFORMATION
- ENPART - ENVIRONMENTAL PARTITIONING MODEL OF THE GEMS
SYSTEM
• EXAMPLE FATE SUMMARY FOR MBOCA AND ENPART ANALYSIS FOR
CYCLOHEXANONE
GOAL; IDENTIFY THE MEDIA (WATER, AIR, SOIL) AND EXPOSURE
ROUTE (INHALATION, INGESTION. DERMAL CONTACT)
-------
CHEMICAL SPECIFIC AND GENERIC INFORMATION
t EXPERIMENTAL LITERATURE - IDENTIFIABLE VIA ON-LINE
LITERATURE SEARCH (E.G., DIALOG)
t DOCUMENTED FATE OF ANALOGOUS COMPOUNDS - AQUATIC FATE OF
129 - PRIORITY POLLUTANTS
• CANONICAL ENVIRONMENT DATA (WATER FLOWS, DEPTHS, WIND
SPEED, TEMPERATURES, ETC.). INPUTS TO FATE MODELS.
-------
• METHODS FOR ESTIMATING PHYSICAL-CHEMICAL PROPERTIES
RELATED TO TRANSPORT AND TRANSFORMATION OF PMM AND
EXISTING CHEMICALS (E.G., CHEMEST, METHODS OF W.J. L.YMAN
ET AL.. SRI-ORD REPORT))
- ATMOSPHERIC RESIDENCE TIME
- VOLATILIZATION FROM.WATER (AND SOIL)
- SOIL ABSORPTION COEFFICIENTS
- OCTANOL/WATER PARTITION COEFFICIENTS
- RATE OF HYDROLYSIS
- RATE OF AQUEOUS PHOTOLYSIS
- RATE OF BIODEGRADATION
• ENPART - ENVIRONMENTAL PARTITIONING MODEL (GEMS)
- ESTIMATES RELATIVE CONCENTRATIONS AND MASS
DISTRIBUTIONS IN VARIOUS ENVIRONMENTAL MEDIA
(AIR, WATER, AND SOIL; WATER COMPARTMENT
FURTHER DIVIDED INTO SUSPENDED SEDIMENT, BIOTA,
AND BOTTOM SEDIMENT)
- STATIC MODE (RELATIVE EQUILIBRIUM CONDITIONS)
AND DYNAMIC MODE (INCLUDES KINETICS OR
INTERPHASE TRANSFER RATES)
- INPUT REQUIREMENTS INCLUDE EMISSIONS TO AIR,
WATER, SOIL (MASS/YR) AND PHYSICAL-CHEMICAL
PROPERTIES
-------
EXAMPLE DEMONSTRATION OF FATE/EXPOSURE PATHWAYS ANALYSIS
(1) ENVIRONMENTAL FATE OF MBOCA (M.M'-METHYLENEBIS
(2-CHLOROANILINE)
(2) ENPART ANALYSIS OF CYCLOHEXANONE
-------
U
o
Q.
(/)
C
*o
i-
h—
•g
1-^-
»
L.
«3
&
OO
^~
LO
0)
•" ~
.Q
L_
'
CD
o
C 10
CU 4-1
-o 10
•r- Q
14.
C M-
O 0
o
£_
-C
CU • — .
u- C\J
•£ ~^
1
1*- 4-1
IO
nr
4-1
>» C
i. CU
10 E
§cu
4-1
3 10
00 4-1
00
r—
IO
4-1
C
Q-
c
LU
s
3
^
cu
s.
t-t
LO
IO Ol
l£>
01 1
C\J Ol
i— lO
co
in
S-
cu cu
> 4-1
•r— IO
4-1 2
IO
T3 CU
IO U
S. IO
Ol M—
CU S-
•o 3
i/i
cu
XI T3
CU
>1 4-1
IO IO
c S_
cu
C 10
o
4-1 •»—
iO
•O T3
•i- C
X IO
o
. 0 l 4-1
o c
4-1 *r-
o
x: l/l
Q. CU
1/1
4-J l/l
u cu
CU <_}
S- O
•r- &.
•a Q.
c
i/i
i/i
>,
o
4-1
O
x:
o_
3
o
_l
IO
10
CT1
C\J
^_
IO
(J
1 -a
in 10
cu s-
i.
CU ^
4-1 X
0
•0 !-
cu -a
+J >>
IO X:
4.
CU >,
10 -Q
c c
•i- O
4-1 4-1
C IO
IO T3
> t-
CU X
r— O
CU
S- U
cu £
J2 • a.
IO 00
E o
1 ^
•M
*a •
5 JS
X C
o cu
T3 C
cu o
tsl S-
>l -f-
r^ >
IO C
4-1 CU
IO
V "m
IO S-
4-1 4^
cu
^
c
o
4-1
IO
-a
X
o
•
cu
14-
p—
1
14-
IO
JZ
4J
i-
o
JC
w
>,
r—
cu
>
4-1
IO
cu
s_
>,
J2
"8
J3
[I
o
I/I
cu
-o
cu
c
o
N
o
s-
o
.c
Ol
3C
1
•
00
00
cu
u
o
S-
a.
IO
4-1
c
cu
1
>
c
cu
4-1
c
IO
>
cu
cu
S-
IO
4->
o
TC.
in
l/l
>,
"o
s_
•o
>,
31
E
3
•0
cu
s:
u
•&
X
r-»
o
^
•
yi
(/)
CD
8
i-
a.
IO
4-1
c
cu
E
c
o
S-
>
c
cu
4-1
c
IO
>
ai
cu
i.
IO
4->
o
^
c
o
4-1
IO
N
,f^
4->
IO
"o
>
J=
Ol
£
1
£
01
-C
IO
cu
>
IO
x:
^
,
00 •
>>
i — 10
IO r—
•r- (J
1-
4-1 i-
l/l o
cu
S. i—
S. 10
cu ••-
4-1 S-
cu
C 40
•^ IO
u. E
cG .^
u c
o 10
i- 01
a. s-
0
4-1
C 14-
IO o
u
•r- 4-1
14- C
••- CU
C 4->
01 C
•i- o
I/I u
> iT
r— •!—
-O C
10 01
-O -r-
O i/i
i.
0. <£
c
o c
•i- 0
4-1 •»-
IO 4-1
•— lO
3 T3
E iO
3 S-
0 01
u a)
10 -n
•° °
CO CO
00
¥ **
C i —
IO 4-1
4J C
3 IO
1 — U
O i+I
Q- •!-
c
U Ol
C Lo
cu
-C CU •
Q. J3
oo
J4-1
o
_. =
, LU
a. i — ^
> u -^
JO CU
s- cu
•o -r- -a
aj -a ••-
C 3
•i- 1- Ol
E 0
S- 14- t-
cu cu
4-i -a on
CU C 3
T3 IO
cu
00 CU -C
IO C 4-1
S 0
N S
oo o O
r— i.
IO >, 14-
0 JD
•i- cu
•o c i—
•O o -Q
S- >r- IO
4-1 i—
i — IO ••—
>) -0 10
X -i- >
O X 10
S- 0
>> U 0
.C •!- •!-
S- 4-1
>, HJ 10
J3 x; E
a. •>-
C 00 4-1
O O 00
•r- e CU
4-1 5
IO IO Q-
-o
CU i — l/l
x: i 3
a. it-
l/l 1 — l/l
O IO TD
E x: 0
4-> x:
113 CU 4->
X
"8
(-
3
00
IO
cu
s:
X!
ia
u
I
o
tn
•m
oo
h-
o
1
«c
a_
LU
h-
uo
LU
LU
n:
o
03
>
r»v
i
o
X
CO
•
t —
4->
c
LU
u
38
-------
TABLE 4. INPUT PARAMETERS FOR THE CYCLOHEXANONE ENPART MODEL
Parameter
Total Environmental Release
Air
Water
Soil
Vapor Pressure @ 20°C
Solubility
Octanol/Water Partition Coefficient
Soil Adsorption-Oesorption Coefficient
Organic Carbon Partition Coefficient
Soil Percent Organic Carbon
Sediment Percent Organic Carbon
Henrys Law Constant 9 20°C
Atmospheric Mixing Depth
Depth of Water Compartment
Depth of Soil Compartment
Soil Bulk Density
Suspended Sediment Load
Bottom Sediment Depth
Biota Lipid Fraction
Fraction of Biota per Volume
Value
12.4 x 106 Kg/year
1.32 x 106 Kg/year
0
2 torr
25,000 mg/1
6.46
0
0
21
4.0t
1.03 x 10~5 atm-n^/mole
10,000 m
7.0 m
0.9 cm
1.5 g/cm3
5.0 mg/1
0.021 m
0.2
5.0 x 10~7
Reference
Revised JRB (1981)
estimate (see text)
Estimated (see text)
JRB (1981)
Union Carbide (1975)
Union Carbide (1971)
Leo et al. (1971)
Unknown
Unknown
Defaul t
Default
Dilling (1977)
Default
Default
Default
Default
Default
Default
Default
Default
-------
TABLE 4. (Continued)
Parameter
Chemical Dissociation Constant
Half Life for OH Radical Reaction in Air
Half Life of Ozone Reaction in Air
Direct Photolysis Half Life in Air
Air to Water Half Life
Molecular Weight
Air to Soil Half Life
Half Life for Hydrolysis in Surface Water
Half Life for Photolysis in Surface Water
Half Life for Biodegradation in Surface
Water
Water to Air Half Life: Volatilization
Half Life for Biodegradation in Soil
Half Life for Hydrolysis in Soil
Soil to Air Half Life
Value
0.0
0
0
2.6 hours
0
98.14
0
0
0
<5 days
331.2 hours
<5 days
0
0
Reference
Default
Unknown
Unknown
JRB (1981)
Unknown
Union Carbide (1975)
Unknown
Unknown
Unknown
Pitter (1976)
Lande et al . (1976)
Pitter (1976)
Unknown
Unknown
-------
oo
n
01
H
01 _
00 Z
\ o
O
Q:
UJ
Ul
?
o
U)
O® fir* 010101 O
111 .......
Q
UJ
iJ UJ UJ UJ UJ UJ UJ
{C ^ CO 01 & CD Q
3 CO P) U) O CO CO
O *• U) O »-i 0) T
UJ ......
-H H.H r- t^ co-
Q
Ul I » « • I I
£ *
o
£Z
HE
^: MO:
3QU
UJ
CO
tt O
-------
U)
DISTRIBUTION
O UJ CO
Z UJ f~ *
O I
a: M
f-i-
V) A in
-------
MONITORING/MODELING ANALYSIS
• CHEMICAL-SPECIFIC INFORMATION
- DATA BASES FOR STORAGE/RETRIEVAL OF ENVIRONMENTAL
CONCENTRATIONS OF CHEMICAL SUBSTANCES CATALOGUED AND
EVALUATED. EXAMPLES INCLUDE:
AEROMETRIC EMISSION REPORTING SYSTEM (AEROS),
ENVIRONMENTAL ASSESSMENT DATA SYSTEM (EADS)
COMPLIANCE DATA SYSTEM (CDS)
HAZARDOUS AND TRACE EMISSION SYSTEM (HATREMS)
NATIONAL EMISSIONS DATA SYSTEM (NEDS)
STORET (EPA)
WATSTORE (U.S.G.S.)
NATIONWIDE URBAN RUNOFF PROGRAM (NURP)
SAROAD (I.E., STORAGE AND RETRIEVAL OF AEROMETRIC
DATA)
- LITERATURE SEARCHES VIA DIALOG/ORBIT
- SAMPLING AND ANALYSIS METHODS AND THEIR LIMITATIONS
(ACCURACY, DETECTION LIMITS) CATALOGUED.
• GENERIC DATA - INPUTS FOR MODELS (I.E., DEFAULT VALUES) '
• TOOLS - POLLUTANT CONCENTRATION ESTIMATION MODELS (I.E.,
ALL MEDIA)
• EXAMPLE MONITORING DATA SUMMARY FOR MBOCA
GOAL; QUANTIFICATION OF EXPOSURE MEDIA CONCENTRATIONS.
-------
TOOLS
(INCLUDED IN GEMS)
• AIR MODELS (I.E. POINT, AREA, AND LINE SOURCE)
- ATMOSPHERIC TRANSPORT MODEL (ATM)
- INDUSTRIAL SOURCE COMPLEX (ISC) MODEL
- ATMOSPHERIC Box MODEL
t SURFACE WATER MODELS
- EXPOSURE ANALYSIS MODELING SYSTEM (EXAMS) - PREDICTS
BULK TRANSPORT AND DILUTION AS WELL AS FATE PROCESSES
INCLUDING VOLATILIZATION, HYDROLYSIS, BIODEGRADATION,
ETC. EXAMS CAN SIMULATE RIVERS OR LAKES. PREDICTS
CONCENTRATIONS IN VARIOUS COMPARTMENTS AWAY FROM THE
SOURCE.
- MANY OTHER SURFACE WATER MODELS ALSO AVAILABLE.
• GROUND WATER MODELS
- SESOIL - SEASONAL SOIL COMPARTMENT MODEL (CHEMICAL
MOVEMENT IN THE UNSATURATED ZONE)
- AT123D - TRANSPORT IN THE 'SATURATED ZONE
-------
EXAMPLE DEMONSTRATION OF MONITORING/MODELING ANALYSIS
(1) MONITORING SUMMARY FOR MOCA
(2) ATM SIMULATION OF AIR RELEASE OF CYCLOHEXANONE FROM
INDUSTRIAL PLANT
(3) EXAMS SIMULATION OF WATER RELEASE AND IN-STREAM
CONCENTRATION OF CYCLOHEXANONE FROM AN INDUSTRIAL
PLANT
GROUND TRANSPORT SIMULATION OF NTA RELEASE FROM
SEPTIC TANKS
-------
OJ
c
c
ro
P
Q
-C
o
1
CSJ
^*r
VI
-d
1
,
^
OJ
1
*-
o
VI
4-1
VI
01
Ol
c
i-
o
c
o
X
4—
o
^1
rO
3
CM
t
IO
OJ
r—
J3
"~
VI
C
c
E
CJ
01
o
c
01
i-
O>
"a!
ae
x
(O
£
4t
VI
O
•i- C
4-> ro
ro aj
i. E
c
ai
u
c
o
c
i
i|
0 T3
i. VI 4->
O! Ol O
f-l g f\l
3 4-> 0)
z -o
'1
O VI -o
01 01
L. i — N
oi a. >-,
•° ro "ro
3 5 C
Ol O VI
= •5,1
Q. r— +J
E fQ OJ
(C C £
00 rt3
2
S-
o
Q.
CU
i.
VI
"a!
(U
ro
i
.
rO
O
oo
01
**•— *
s£
0
1
J—J
*^
ai
ro
-a
4-> (1)
C 4-1
E 01
o of
> <
C 0
uj o
4, i
C i.
01 *r- •
-O
•5 <
Ol
3
O
-C
o **
"S s;
VI i —
-Q »
OJ
01
ro i—
VI O
cu
*-> E
VI S.
3 c ai
o aj r-
M- J* 01
VI „
CU VI VO
-C ^ CM
t tg
0^3
<4- j co *— in
CJ O C-J O
C9 C£) CD CD
,
C
ro
< cu
J= i.
•*- *J
VI
i-
S-
ro
Q-
o
z
a
z
0
z
o
C£
Z
CD
C
ID
ro
4-)
V)
ai
a.
VI
01 <4-
4-> O
ro
3 VI
O) r—
O 3
ro vi
14- CU
S- 3
OJ OO O
ro •
3 •—
CO
a.
a.
r*~
•
O
V
VI
ro
£
O
14-
M
S
c
ro
U
S
1
s_
(
J_
Ol
.*
ce
=
VI
Ol
c
0
VI
VI
Ol
-Q
(/I
VI
O
a.
1—
^
01
•
«
4-*
VI
S-
S-
rO
a.
1—
a.
t—
a.
r—
a.
0
ct
oo
s
CD
cu
Ol
ro
VI
14-
o
s.
01
4->
o Influen
JD
a.
a.
LO
O
V
VI
Ol
4-
CU
•a
VI
^^
01
u
ro
s-
4->
c
4-1
C
<0
'a.
4-> £
c
treatme
Adrian,
o>
JD
VI J3
VI Q.
O 0.
0.
• IT)
1— 0
V
•"
§ *
Ol ^
r— Q)
r— CU
ro -a
4-1 (/I
Ol •!-
VI . — •
•i- CU
S- 0
s- «
ro i-
a. 4->
t—
Q.
i—
0.
r—
a.
0
a:
oo
s
CJ
CD
ai
01
ro
ai
vi
c
o *"
i- C
'c
o Effluen
treatme
Adrian,
^__^
o
oo
Ol
^_^
rO
4-1
01
I/I
s_
1-
ro
Q-
_
v^
Ol
3
*~
r-
Ol
3
^-
^
^^
ai
3
, —
^
•—
OO
CD
1
3
C
s- ro
CU E
ro et
1 1
c r_
3 OJ
s- E
s-
01 O
CJ ^~
«- E
S- 0
3 i.
OO 4-
o
•o
ro
0
o
c
ro *-t
01 c
C ro
i. si
55
u
50
-------
50 kin
NNW
NNE
WNW
WSW
SEGMENT
CONCENTRATION
BASED ON AVERAGE
OF 4 CONCENTRATIONS
WITHIN EACH SECTOR
ENE
ESE
ONE RADIAL SECTOR
Figure 9. Wind Rose Sectors for ATM-SECPOP
37
-------
— v mruin
(<)Cii«i'i«*^^tnd'rt^^'»ff»r*^tfiui'^'t*t«^o>u»(^oa^rrtf"rtnn*«*ow^^
***<»• $*«<»*«0<9<9aj*9~*««*<0<» 9«^«9^-9«tA«*O»4»4»«««*A««C»«
I «4 ^ I + I»*+I»I*'^I(*)+I^+I®1+I + iW+ttO+lftl+lrtl+l«**'*»l^+l^ + . — .
Uj^ujiii LU m ci biuj fu m u QO iiiuj ^*ujLU**tu*» niv n m ni
9 99 99CU9.9(099m99m99P*9OP"99 99 99 99O-99JV99UI99CB9 9
i * i »io»+ivfi9-*iin*i—•*. * i * i * i + i—»i—^ini*!—•* i 4.
UI UlbJ ^J^J UIUI UI UI V ^U ^J U^U*^UI(M U^U UIUI UJ^J ^JUI *ll UJ UIUI UIUI ^J ^J \M
V 9»» 9 9— 9P- 90* oar- aoru mr- —09 10— 99 99 9— 1009 mp- o»ni •« 09 9
9 9o» 90* (0v 10 ru m9 P-C» p>9 utv 99 9m 9p- vn (09 —m — 9 9
9 99m99<099m99<099 99 99 99OJ99 99 99 V 999991X199 999
i •fioj*i9-»im+iin*t * i «• i +iv+i + i + i m+ i IA* i n+ i +• i *
ui uiu4U)ujwoiuju^nujmu)UM uiui uiui uiui^^uiw uiuj ujujiuuiuj uiuinujuj ui ui ui
v 9a aov 09— mm in<0 99 9— 9«xi mm 9P- 9in in 9 inift »o» 9 (0 9
5» 989 P-<0 r>— 99 P-9 9(XI 9V 9m 09V 9— & — ojm Ifim CO— 9 IT) 9
v 9— r<-— ru— m— v— 9— 9«i 9m nni 9m 9v r>n — ni uim 9 ni 9
9 99 99 990999(099Ot99999V99 99 — 99 99P-99 —99W99 9 90B9 ^
i +i *i *im*inj+iv*i9*i9*i +109*1 + i m * i <0 * i ru + i + iv+ ^
ui uiui uiui uiui—UIUI9UIUI—uiuitouiui—uiui uiui uiui uiuiruuiuimuiuimuiui ui uiruui Q.
io 9f- 9f- 9in—vgioruiomruoir-—ruin r-m 910 (09 59 rum—10in —in 9 i/> r- o
- 908 9n SP- r-- »9 njoi »- u>9 99 v<0 9v ion o?fu u>u> 9 01 in a_
— 909 9m 9P- >— a>9 ruru at— in 9 99 vyj 9v ian ooru in in 9 01
v 9m 909 9v —m mru uir- v— V9 9v 0910 91x1 mat 9in 01— 9 ru
i>S 9 —99 — 99 —99 9V 99 9U> P-09 9lfl 9m AJV 9—9 .
29 m 99 909 9P- 9(0 (XI (XI 10— 99 9(0 909 9O> 09 Ol 9V 900 — m 9—9 ~
:z • — 9 9 -^
• m 9— 9— 9P- 9r- mr- nioo 9O> 901 9— 9 9P- 99 9(0 9 CD 9F- 9fU 9O 9O> 9P- 9V 9O» 9P- OP- P- 9 9
09 90S 9A1 9V 909 9O> 99 99 9(U 9O» 9O> 9(U 9P- 9(0 99 09 O) 9
3 « 9 999999999 — 99999—99999999999999999999999999999 999
— 0: • 9 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 9
O UI— + +•+ 4>+ >t •*+ +1 <*+ •**•> ++ •*•* 4>* •»•* ++ ++ +-^ •*+ "*•
Z 3 UI UIUI UIUI UIUI UIU UIUI UIUI UIUI UIUI UIUI UIUI UIUI UIUI UIUI UIUI UI UI UI
— 9tA 9OI 9(0 9— 9O) 9Ul 9m 9(XI 9V 9in 909 9U1 99 9 (XI 9
in P- 9 9V 99 9OI 9m 9 V 9
X -I • V 909 9in 9f- 99 9— 9— 9(XI 9 9— 9(71 9— 9— 9m 9OJ 9AI 9m 9m 9(\J 9(XI 9 ru 9
— 2 in 999999999999999999999999999999999999999999999 999
3 9V 9(U 9in 9m 99 9U> 9(0 9 ID 9
(0 9m 99 9(0 99 91X1 9(0 9m 9U) 9V 9(0 9— 9O> 9(XI 99l/>9lR9in9in9IA9 ^
r-
i njviooi — mino99ruvp-o>— m
o — — — — rururururumm
c
oe
o
I-Z UIUIUIUIUIUIUItn333a33 3
OZZZ UI ijl i/l (/)
-------
r «
0 ^
t- * ********* **"
O . * 1 1 H i H i •» •»•» *• «•>
LU
QC +. ttntiii + ++ 4. ^^
H^
CO
t + i mini +• ** + *•»•
"^ » i nun + +-«. + +*.
LU 0
O § * ' ' " ' "' *+++**
+•»*
^^
O *» * * **
/T" **
^ JJ » *imi>i + »****
Q. + » im HI »*+»»»
^ ^ ^ mi MI -^ ^4. + 4^
ca
"~ + •» l»l HI *+»+«*
2j + •*• '•' •' * ++ ***•
o * * l-l *' * "*~^ * **
^ » +•«»•••*• +*-»+<»»
•»• •*••***#•-•* •*• *•*• + •*»*
> »» »«*
t * •*• •*!» -»^ * -4.-*. « <«*+
Z* * "*** "** * ** +^**
^ ^ Hlfr 4^ ^ ^^ ^^4^
LiJ 4- -* -«» -44 4> 4><»- * III
O +• •»" -••• -^ -4- ++ 1 III
7T +.+-t»»-t»+ •*"»»•
Q •*••*• -»4> -**• •*> -t- -f •*-!•*•
/> -»••»-•**•••• **-»--M**
+ •»••*» * * **m.
+ + '»4-»*+ +•*"•»•
>J ++•«»>++ i ni
1-^ ^ ^ 4^ ^ ^.^ 1 1 Ml
fV •*-•+• •»*• •»> •*•* im
(jj »•» *«• •«*• *» •*»
g" •»-*• 4*» •«» ** ***
cn ! ' ' """,' ' " " i s i i i !
"~ tn
ni
-a
T
(U
-
i 6
~
5
• g
— 2 o
QC
u.
Ld
n o
Oioujr-r-r^weDOO!®
^ 1 ! t t 1 1 1 1 t 1
OJ
o
fO
4^}
(/I
O
(/I
c
0
1 1
M-
O
i i
O
51
O)
^
— 1
>>
CL
5
o
•r-
"o.
s_
C3
CL
O
CL
O
LjJ
oo
1
1
f^^
41
^
E
CO
«2LnS*2 i
^ ^ C\J
r^
O)
CJ>
n i u.
e
S UJ
» «
o
0 «
o c
O -l
41
-------
• a
UI O X
X O UI
3)
a a "o «-
•H o» c -H
*> 0 0 O 3
k • 9 00 0
o Jt o»~ a. k a» c
v« *> e 0 0 9 «••
c 0 t» 0 -« ui
• at-* c * o •« a
00 0 o a o o
•*» is • 0 x • f-
0 u. e • 0 0
O « X 0 O I- 0
• i.ui*acooai
0 c i. J 0
•a a 0 0 0 *a.
c x ^ • 0
0 •« i- o x 0 »x
C Z 0 4> H «>
00 3 « tf>
at • o • a»«-i z
0 « « a. o *> j z>
s c • c t. >- a
o> o 0 o «~ 0 0
C -H 4> O X * S*
3 0 I. O 0 O 0
er*> 4> 0 u ui 0 k 0
090 -< K B» •«»
k a.-« UK c 0 0
« -a -« 0 TJ -H JE in
00 4> X e "« 4>
•H o « 0 o 0 0 ^»
JC 09 009
•*> 0 4> er*> i- -» > a.
> • 0 u z 0 e •
k4 U
04» C " C 0 k U
«~U »-»0ZU^>0«
00 « O -i 0 X O
0 k k 0 QCBk4>UI
— 09— 0»-»0 CK
Jl ^> O 0 4» ^ X »«~
0 K O O ZU^Ok
-* ^ O.-* k UI Z 0
«4 X • B ~ B D ai4>
0C000 xate0
> 0 X 9 0 .P ^ 0 -"
0 D) U •
0 e 0 0 ^ 0 ^ k
-HO 4> UI •« UI O
M-400O0O«»
91 e 2 »Z 3»Z
— 0 O 0 OC M UI
— 0 0 O. k UQ.U.K
9*O JO (A »J O O
A k UI 3 UlUICtl-
0OOZ9) O Z O. (A
U 4> O
O Z J<
>
0 T9 *» e
0 c a. 0
»ti 0 «J
00 ui * >
e • 0 z ui OL >
OCA J i- at
•H 0 M ac uio*-«z
4» « I UI O 3
0 u t» «3> o o a. o:
0 0 c ti
e k 0 k *»
o 0 • o 9
ax • 3 a
0 u o a» e
0 o 0 -«
k 0 J* UI J
x z s» o J
•d «> 3 k c zi-i-«
C B00 « •-• O O
00 — Z X J UI
*> 0 9 *~ o ui a. a
0 u o
ti ti » -<
c 0 0 •*> 0 ui
0 t» — k • O
• 0 a 0 0 z
• ~< • O. 6 UI
O > 0 J
U0X00 »- UI (A 3
k 0 X MU>Of-«
B)ja k *> O « « « K
e .a k o 3K033
«40O*Mk CUI*JOK*
k U. O
0 0 O. «- H
e • ui 0 z ui
• e ^ z — o c
0k JB M Z >
COO4*0 HO H
0 3 0 — OK n
x ti OI-H ui « H J a.
3 k • 0 D D V) « O
O X O > OZM3H
> 4* H 0 « UI J O
-------
(A
U
U)
(D
O
O
UJ
O
M
1-
o
Ol
01 ••
Ui -J
1 *
Z
Ui
f-
(ft
>
•J)
o
o
Ui
•
U
K
J
o
(ft
(ft
I-l
Q
^N
0.
o
J
®
P-
®
UJ
T
00
n
»
3 ^
cna
(0(0
® ®
i i
UJUJ
0101
U) 0)
P- (0
* *
p- p-
^> ^.
i-t 0)
(0(0
® ®
1 1
UJUJ
01 OJ
Ift 0)
P- (0
• *
p- p-
/-\ r*\
i-i 0)
f^
(0
(U TH
iH iH
| |
UJUJ
01 i-l
(0 U)
•H T
• *
0) n
/^
(0
3
®
/^
®
1-4
tn
^4
I
UJ
TH
T
LD
*
P-
^
01
0]
rH
1
UJ
(0
®
U)
4>
(n
rv
01
01
i-i
i
UJ
1-1
U)
8
»
OJ
/^
ru
M
E
*
Q
Z
D •
O (ft
U. H
(ft UJ
fr- Z
az
-------
(A
UI
(A
(A
O
O
UJ
O
3 S
a
o
i
« »
t^* z
o
zPP
ill
OQ UJ
UJO
g^^
O M
3(- •
f-X
ZO
-------
two models were chosen because of their versatile capabilities and their
relative ease of use. In order to run the model, GSC had to make several
estimates and assumptions. The information used for the modeling is as
follows:
Unsaturated Zone
• Table 4-6 lists the information used in SESOIL for modeling the
unsaturated zone.
• The source of NTA was residential septic tanks. A representative
housing density of 2,000 houses per 1,000 acres was used to
estimate the total NTA effluent to ground water. However, to
facilitate SESOIL output, only a single-house was used, and the
result was extrapolated for the total.
• The average septic drainage area of each house was estimated to be
50 m2.
• The mean concentration of NTA in the effluent was estimated to be
12 mg/1 (6.1 mg/1 - 18 rog/1).
• The unsaturated soil column was estimated to be 5 m, of which the
top meter was assumed to be aerobic and the lower four meters less
aerated.
• Three different soil types, each assigned different hydraulic
conductivities.
• Three different decay rates of NTA were used for the top meter.
• Four different decay rates of NTA were used to the lower four
meters.
• Thus, 36 runs in all were made for NTA transport using SESOIL (3
soil types x 3 decay rates - upper layer x 4 decay rates - lower
layer).
Saturated Zone
• Table 4-7 lists the information used in AT123D to model NTA
transport in the saturated zone.
• The results from SESOIL were used as the source of NTA (kg/hr) to
the saturated zone.
• The saturated zone was assumed to be a water table aquifer with a
mean depth of 50m.
4-27
-------
Table 4-6. Parameter Values Used in SESOIL to Estimate
NTA Concentrations in the Unsaturated Zone
Time of simulation: Monthly simulation for 10 years*
Effluent quantity per house: 300 gal/day (4 persons per house)
Average precipitation: 8.5 cm/month**
Soil density: 1.32 gm/cm^
Disconnectedness Index: 4.0
Porosity: 0.35
Permeability: 7.15 x 10'9 cm2 (soil type 1)
1.44 x 10'8 cm2 (soil type 2)
5.32 x 10"8 cm2 (soil type 3)
NTA solubility: 1,200 mg/1
Adsorption coefficient: 6.3 [(ug/gm)/(ug/ml)]
Henry's constant: 0.0***
Molecular weight: 191-257 gm/mole
Decay rate: Upper layer 0.11 day"1 (half-life • 6.3 days)
(EPA 1982a, EPA 19825) 0.16 day1 (half-life - 4.3 days)
0.22 day1 (half-life * 4.3 days)
Lower layer 0 day1 (half-life = )
0.00019 day'1 (half-life * 10 yr.)
0.00038 day1 (half-life - 5 yr.)
0.0019 day1 (half-life = 1 yr.)
Source: 6SC 1982
* Maximum permissible simulation period in SESOIL.
** Observed at Clinton, Massachusetts, a relatively wet location.
*** Assumed 0.0 because of NTA's high solubility and relatively small
vapor pressure.
4-28
-------
Table 4-7. Parameter Values Used in AT123D to Estimate
NTA Concentrations in the Saturated Zone
Time of simulation: 136 years*
Hydraulic gradient: 0.05**
Distribution coefficient: 0.0031 m3/kg [3.15 (ug/gm)/(ug/ml)]***
Porosity: 0.35
Bulk density: 1320 kg/m3 (1.32 gm/cm3)
Dispersivity: 30m (longitudinal)
5 m (lateral)
5 m (vertical)
Decay rate: 0 hr'1 (half-life = »)
7.92 x 10'6 hr"1 (half-life = 10 yr.)
1.58 x 10"5 hr'1 (half-life - 5 yr.)
7.92 x 10'5 hr-1 (half-life = 1 yr.)
Source: 6SC 1982.
* An average detention time calculated on the basis of assumed
drainfield area, hydraulic conductivity, and hydraulic gradient.
** A slightly higher-than-average value was conservatively assumed.
***Taken as half of the value used in SESOIL.
4-29
-------
Table 4-8. Simulated Average NTA Concentrations in Ground Water at
20m Depth^ in an Aquifer of 50m Average Depth
NTA concentration in aquifer3(ug/l)
Soil type2 NTA half-life in Septic effluent Septic effluent
aquifer (years) 6.1 mg/1 NTA 18 mg/1 NTA
Soil type 1
Soil type 2
Soil type 3
Soil type 1
Soil type 2
Soil type 3
1
1
1
10
10
10
0.14
0.25-0.44
1.0-1.5
6.5-12
8.5-15
11-19
0.23-0.41
0.74-1.3
3.0-4.5
20-36
26-45
33
Source: GSC (1982)
1 Depth at which average concentration occurs in a well with a
screened, penetrating depth of 50 meters into an aquifer of 50 meters
average depth.
2 Soil type 1 » Moderate percolation; loam and silt soil.
Soil type 2 * Between soil types 1 and 3 (i.e., sandy loam to loamy
sand)
Soil type 3 = Rapid percolation; sandy soil.
3 Concentration ranges for the three biodegration half-lives in the
aerobic zone of the soil column are presented for the low and high
end of the expected septic system effluent concentrations.
4-31
-------
POPULATION ENUMERATION
t CHEMICAL-SPECIFIC INFORMATION
- POPULATION DATA SOURCES CATALOGUED ACCORDING TO
EXPOSURE CATEGORY (AMBIENT, OCCUPATIONAL, CONSUMER,
FOOD, DRINKING WATER)
t GENERIC DATA
- POPULATION DENSITIES
- USERS OF CONSUMER PRODUCTS
- PROCESS LABOR REQUIREMENTS
- "EATERS" OF FOODS
- SEX AND AGE DISTRIBUTIONS
- "DRINKERS" OF WATER TYPES (E.G., GROUND VS. SURFACE)
• TOOLS
- ON-LINE SECPOP PROGRAM (ACCESSES POPULATION DATA FOR
ALL U.S. LOCALES. SYSTEM IS INTEGRATED WITH ATM TO
FACILITATE CALCULATION OF CONCENTRATION IN SPECIFIC
AREAS AND POPULATION EXPOSED)
- WATER SUPPLY DATA BASE
- SIMMONS STUDIES
GOAL; ENUMERATE POPULATION EXPOSED TO CHEMICAL OF
INTEREST. INPUT TO FINAL RISK ESTIMATES.
-------
Table 12. Population of the United States
by Age and Sex: April 1, 1980
Age and sex
1 . Both sexes
All ages
Under 5
5-9
10-14
15-19
20-24
25-34
35-44
45-54
55-64
65-74
75-84
Over 85
Median age
2. Male
All ages
Under 5
5-9
10-14
15-19
20-24
25-34
35-44
45-54
55-64
65-74
75-84
85 +
Median age
3. Females
All ages
Under 5
5-9
10-14
15-19
20-24
25-34
35-44
45-54
55-64
65-74
75-84
85 -t-
Median age
Population
226,504; 825
16,344,407
16,697,134
18,240,919
21,161,667
21,312,557
37,075,629
25,631,247
22,797,367
21,699,765
15,577,586
7,726,826
2,239,721
30.0
110,032,295
8,360,135
8,537,903
9,315,055
10,751,544
10,660,063
18,378,764
12,567,786
11,007,985
10,150,459
6,755,199
2,865,974
681,428
28.8
116,472.530
7,984,272
8,159,231
8,925,864
10,410,123
10,652,494
18,696,865
13,063,461
11,789,382
11,549,306
8,822,387
4,860,852
1,558,293
31.3
Percent
100.00
7.22
7.37
8.05
9.34
9.41
16.37
11.32
10.65
9.58
6.88
3.41
.99
100.00
7.59
7.76
8.46
9.77
9.69
16.70
11.42
10.00
9.22
6.14
2.60
0.62
100.00
6.85
7.00
7.66
8.94
9.15
16.05
11.22
10.12
9.92
7.57
4.17
1.34
Source: Personal communication between Mrs. McCoy of the Population
Division, Bureau of the Census, and Amy Borenstein, Versar, Inc.
July 1982.
-------
Table 14. Employed Persons by Occupation and Sex, 1979
Occupation
Professional and technical workers
Medical and other health
Teachers except college
Other
Managers and administrators, non-farm
Salaried
Self-employed, retail trade
Other self-employed
Sales workers
Retail trade
Other
Clerical workers
Stenographers, typists, secretaries
Other
Craft workers
Carpenters
Construction craftsworkers
Mechanics and repairers
Metal craftsworkers
Blue collar supervisors
All other
Operatives, except transport
Durable goods manufacture
Nondurable goods manufacture
Other industries
Transport equipment operators
Drivers, motor vehicles
All others
Non-farm laborers
Construction
Manufacturing
Other industries
Percent of total
Male
46.0
25.2
20.6
64.5
68.1
67.5
62.1
78.6
45.9
31.5
65.1
17.3
1.4
22.9
92.6
100.0
98.9
98.2
95.1
85.7
80.0
51.7
57.6
36.4
55.5
91.0
90.1
96.4
87.0
95.3
81.8
86.4
employment
Female
54.0
74.8
79.4
35.5
31.9
32.5
37.9
21.4
54.1
68.5
34.9
82.7
98.6
77.1
7.4
-
1.1
1.8
4.9
14.3
20.0
48.3
42.4
63.6
44.5
9.0
8.9
3.6
13.0
4.7
18.2
13.6
34
-------
in
to
IO
i
in
V>
>, 0)
O *-
c
O -0 <
a. 1"
3 o. m
8 «
fl *j «r
s_ o to
01 4-1 1
Jin
> «T
O CM
S ! *
t*. i—
c
o
•fcJ
"Z S-
*_> O 4)
V) S U
.)- i-
O i*- O
0 t-
X
o x
to
c
«- T3
< O 0)
^ >,
i- 0
0) —
in f §•
fli C
PM V)
ro "00
"~ 'S u
i— a)
0.
c
0
£
^
CL
L)
O
"
^
CM
CO
CO
in
f^
O
O
^*
o
CM
cn
to
r~
in
CO
CO
CM
p^.
O
O
to
en
^«
*-•
CO
to
CO
m
^*
r~
•
1e
u
c
u
1)
A
(O '^
C 11
o s-
••- "3
1/1 C
l/l •'-
1) -*
o -o
i- C
Cu ^
,.,
("™
"
-^
in
cn
cn
CO
r—
S
co
co
CO
to
o
*""
•a
s-
TJ
C
\s
T)
(Q
C
I
VI
4J
(fl
^-
LJ
O
in
,—
to
CM
VO
^~
cn
CO
«*
l~m
^f
o
CM
,_
to
CM
CO
CO
"
cn
S
f*N»
m
p—
CO
CO
K,
tn
F-~
LTJ
O
+J
O
a.
i/i
c
T3
^
^J
cx
a*
OJ
A
0)
.*
4_}
IQ
0)
a.
o
o
^
-—
in
CM
to
o
m
^
T
CM
cn
CM
CO
_
in
O
m
"
in
in
cn
co
CO
CM
CO
cn
A
in
cn
CM
0)
•i—
4-t
a
-------
Table 16. Ranking of Seafood Species by Percent of Individuals Consuming and
Projected 1980 Consuming Population
Rank
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Speci es
Total sample
Total seafood
Tuna, light
Shrimp
Flounders
Ocean Perch
Salmon
Clams
Cod
Pollock
Haddock
Herring
Oysters
Crab, other than King
Trout (Freshwater)
Catfish (Freshwater)
Bass
Lobster, Northern
Mackeral , Other than Jack
Halibut
Scallops
Whitefish
Snapper
Hake
Pike
Lobster, Spiny
Smelt
Perch (Freshwater)
Bluegills
Bluefish
Crappie
Trout (Marine)
Bon i to
Crab, King
Mullet
Number of
users
25,947
25,165
16.817
5,808
3,327
2,519
2,454
2,242
1,492
1,466
1,441
1,251
1,239
1,168
970
876
826
675
616
574
526
492
490
392
390
350
328
268
265
236
228
220
148
130
97
Percent Projected number of
of sample total 1980 population
size (X 1,000)
100.0
94.0
64.8
22.4
12.8
9.7
9.5
8.6
5.6
5.6
5.6
4.8
4.8
4.5
3.7
3.4
3.2
2.6
2.4
2.2
2.0
1.9
1.9
1.5
1.5
• 1.3
1.3
1.0
1.0
0.9
0.9
0.8
0.6
0.5
0.4
226,000
204,000
146,000
50,600
28,900
21,900
21,500
19,400
12,700
12,700
12,700
10,800
10,800
10,200
8,360
7,680
7,230
5,880
5,420
4,970
4,520
4,290
4,290
3,390
3,390
2,940
2,940
2,260
2,260
2,030
2,030
1,310
1,360
1,130
904
103
-------
Table 17. Percent of Households, U.S. Population, and Household Size
in Urban, Rural Non-Farm, and Rural Farm Areas with Home
Fruit and Vegetable Garden in 1977
Urbanization
Urban
Rural non-farm
Rural farm
Percent households
with garden
43
41
84
Household
size (number
of persons)
3.17
3.44
3.86
Percent of total
U.S. population
32
9
3
Source: USEPA (1980).
107
-------
TOOTHPASTE: USAGE
(FEMALES)
TOTAL
u.s.
'000
ALLUSBB
A B C D
x Across
'000 OONN * IKK
tCAVT USERS
A B C D
X ACROSS
'000 OONM X INK
ICDILM USERS
A B C a
x ACROSS
'000 OOM* X IN»
TOTAL FB4AIS
FEMAIE K»e«AKERS
3«>L0YHJ KTTVEIS
18 - 2*
25-3*
36 -4*
4S-- 54
S5 -64.
SS CR OUBt
1&- 34
18 - 49
35 - 49
GRADUATE) COLLEGE
Al ItMJtU ff* I &f
gUOUATED HlOi SCHOOL
010 NOT GRADUATE HIGH SCHOOL
EfcPLOYH)
E*»LOYB> FULL-TDC
E»»U3YH> PART-TTke
NOTS^LOYED
PROFESSXONAL/MANAGSl
CLERICAL/SALES
CRAFTS€H/FCR£k€N
EWLOYED
SXNSLE
MARRIED
OIVORCSJ/SB>ARATED/WDO»€D
PARENTS
WHITE
BLACK
OTHER
NORTHEAST-CENSUS
NORTH CSNTRAL
SOUTH
*€5T
NORTHEAST-MCrG.
EAST CENTRAL
*EST CENTRAL
SOUTH
PACIFIC
COUNTY SIZE A
COUNTY SIZE B
COUNTY SIZE C
COUNTY SIZE 0
>€TRO CENTRAL CITY
tCTRO SUBURBAN
NON i-emc
HSHLD INC $35.000 OR 'KJRE
$25.000 CR VGRE
$20.000 - $24.399
$15.000 - $19.999
$10.000 - $14.999
$ 5.000 - $ 9.999
UNDER $5.000
(«HLD OF 1 OR Z PEOPLE
3 CR 4 PEOPLE
5 OR MORE PEOPLE
HO CHILD IN HSHLD
CHILD(REN) UtCER 2 YRS
LUXT USERS
A 3 C 0
% ACROSS
•000 DDK* X ItCX
.3 36
.S 96
.3 100
.6 101
.6 107
.1 115
14938' 100.0
139911 93.7
29211
751741100.0
537551 91.5
164581 21.3
21S63 nOO.Q 26.7-100 >
18966 I 87.6 25.5 95
379t I 17.5 22.S 85-
38575 NOQ.O 47.S 100
35798 I 92.8. 48.1 101
974TI 2S.3 58.2 122
92.7 100
32.4. 100
98.2 106
!408*l 18.7
172081 22.9
121021 16.1
111671
96791
109351
99.3 IOC
98.2. 106
96.9 105
93.1 100
88. t .95.
79.6 86
22.2 33.6 126
aii M!S 107
14.41155.Oil 911
31853
50029
18176
31292) 41.6
48779| 64.9
17487] 23.3
98.2 106
97.5 1
96.2 1
46.3 30
6S.5 28
21.2 25
41.8 50.6 106
66.5 51.3 tO»
24.7 52.4 110
12.1 28
17.0 29
41.0 26
30.0 24.9
8902
12031
31912
22329
10136
7551
2584
11527
9135' 12.
15383* 20
685'
117571 1
129T11 /7.2
466011/62.0
15662/20.8
3137W 41.7
The percent or all heavy users who are age
35-M. Percents in this column add to 100%
vertically.
This is an index based on the percent in
column C. The 25.0% of women age 35-44
who are heavy users is 7% lower tnan the
26.7% of total women who are heavy jsers
This yields an index or 93 (25.0% + 26.7%).
The percent of all women age 35-44 who are
heavy users or" toothpaste. These percents
project to each individual demographic
break.
The projected number or people in
thousands. This reflects 3,117.000 women
age 35-W who are heavy users of
toothpaste.
These illustrative data were taken from
1982 SHRB Marketing Report. The headings
reflect adult female users of toothpaste
grouped by total, heavy, medium and light
users.
Users of individual brands are reported
the same manner as heavy, medium and light
users of the product category.
6 - 1
12 - 17 YEARS
RESICENCS OWE
VAUE: S40.COO CR -CRE
VALL£: JTCe SJC.OOO
Figure 20. A Page From a Typical 1982 SMRB Marketing Report
Source: SMRB 1982.
134
-------
Table 27, Population Served by Drinking Water Treatment
Processes for the U.S.
Treatment
method
Corrosion control
Softening
Taste and odor
Iron removal
/Vrmoniation
Fluoridation
Disinfection
Untreated
Aeration
Prechlori nation
Coagulation
Sedimentation
Filtration
Number of
facilities1
3,334
2,540
2,941
4,275
1,071
7,150
20,663
33.7812
4,154
4,791
4,615
5,020
6,265
Population served
(x 1,000)
68,636
39,582
97,728
54,773
18,242
115,392
171,666
20,530
64,952
76,952
117,309
114,800
117,066
Source: FRDS Data Retrieval FY 1980
IA facility is defined as a system serving >25 persons
^Primarily ground water systems
161
-------
DEMONSTRATION OF EXPOSED POPULATION ENUMERATION
(1) ATM-SECPOP SIMULATION
(2) WSDB (WATER SUPPLY DATA BASE) RETRIEVAL
-------
I
Jt
IA
«
Id
at
a
T
a
«
K
U)
ui
i
<3
I
z
o
«i
Ifl
o
§c
Z
o
ai
00
o
-a
Q. OJ
O nj—njw — ——
z
•i
z (M^taoi^nuiooonjTf^ai^
-------
a
e
a
3
o
i.
a
JS.
o
i.
a
u
c
T3
e
3
o
i.
a
e
o
•4
-P
It)
a.
o
a.
OJ
u
o
00
o
a.
o
l/l
c;
ca
a
UJ
14- .
o
CD
Q
C.
03
_
O
a.
C_)
UJ
00
I
o
a>
Q.
H
rn
oo
O)
43
-------
WATER SUPPLY DATA BASE
FOR POPULATIONS EXPOSED TO CHEMICAL SUBSTANCES IN DRINKING
WATER
• INTEGRATED WITH IFD VIA STREAM NAME AND NUMBER
• RETRIEVALS BY STREAM (OR RIVER, LAKE) NAME RESULT IN
LISTING WATER UTILITIES ON WATER SODY.
• POPULATION SERVED is INCLUSIVE DATA LISTING FOR EACH
UTILITY
• OTHER ON-LINE DATA BASES INCLUDE THE FEDERAL REPORTING
DATA SYSTEM (FRDS) OF EPA-OFFICE OF DRINKING WATER (MORE
UP-TO-DATE AND INCLUDES TREATMENT INFORMATION)
-------
EXAMPLE HLDF RETRIEVAL FOR DRINKING WATER FACILITIES,
GAGES. AND OTHER INDUSTRIAL PLANTS DOWNSTREAM OF
Dow CHEMICAL PLANT IN PLAQUEMINE, LOUISIANA
(PRODUCER OF L,2-DlCHLOROPROPANE)
NOTE: HYDROLOGIC ORDER AND RIVER MILE INDEXING
-------
Lr te K re rr
UJ
jLOGICAL SECyul
cc
o
>
X
>-
<
_J
0.
in
M
<
H-
•t
to
o
n
CO
UJ
K
<
— J
cr
t—
aJ
O
^-
in
— j
en
in
u.
z
(^
O 1
<
' o
in i
CM
O
"o
oo
f-
tn
-
939E+01 8090100007
)007 ?
— o
o
< 01
a o
CO
3 O
tr
LU
a '_"
tn o
in o
in o
in
Z
h- t-
2
.j
01
IO
u.
f-
Ol 1
en
<
o
U) 1
o
" o
o u
H-
l/l
CM
i 900C
9000010609 00+3215
IN O
O
Ol
o
CD
O
ce
tu
n r"
tn en
in o>
tn —
Z
ce ce
m
o
o
—i
en
CM
Ol
ID
U.
Z
c^
en i
00
<•
o
in i
cv
c
" 0
0 U
t-
in
n
443E+00 8090100003
)003 ?
r» 0
O
Ol
o
CO
o
o
2
or
LU
in 131
tn CD
in —
n CM
Z
X CC
a. a.
a a,
« ui
in in
tn en
LUUIUJLl.ltUUJUJUJlLJUJUJUJUJUJUJ32UJUJilJlUUJUJUJUJUJUJ
OUt.iOlOUOUOUOtJUCJUOOUOOCt- > > — LU UJ LU 1 1 LU MIULU > > LU
t^inz 20:20:2x20:2 -.«--• — 2 •- »- z a 2 ce •-
o — < < < < < < — a: a tr tr < — cc a: < < ce
— a a. a a. — a a a. co 03 a — a a. a. o. a
. «oi l^l^I^i^lH^ou^i^'^ISl^
10 coo: o?ZQ:So:Z o- Z tr ^^ *^ "^ oD CO -•• cr ^* >~* tr S tr Z ^^
u- a.
Z Z 00 -
o o in
CJ 1 1 UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ LU UJ LU UJ UJ LU UJ UJ LU
n a.a.a.a.aaa.a,xa.aaa.a.a— ~ac.aa.3.a.a.a.aa.
t- i-
<-i 3 3 33IX- — — 13 UUincjJOCCtn — — — i-'O
o tniX3333 uu22cc-i — — S:LULU< — trccorcco
en mCLO. cco:4ce23oo<<<>Q.I cocoaf-»— i 0.0.0.0.00
CDr^z^Oi/iincccc*-*— in D^2inininin t-»
in >/i in \f\ ** ** *t & 4 4 tu LU C 2 ^ Q. * LU uj z ^ i/j in 1/1 in x
44.O.O.23-'— i — -J0:< u-22<2ujujujujt-
l-*-XX55 < < _l _J < LU mtnu. IU2-1-I-1-J
Cy Ce Q: to O UJ LU O: Q: ""* "~* Z — J 1C COUJU.Lt.J . ry r>* ry nr "
+ o.Q.tuujmtnoo^~^~XXtuozcNCN Qiuiixx
*-oo — »- o T en »- fn
•-— O 0 0 « * 0 OO 0
oo o o o en LO o oo o
o»en r~ — otuui— — — t-
00 X OCOO.O-O OO O
OO — — 0 2 Z — — — —
30
£mSininnnmonmSnmo5S°°°Sn(S2c\S?3inin
inoioii^r-LninLOinLnLnLnLniriniQTinininf-cnorNfl' — — — — —
tnrMCMinintoiocoiototoioat&ioo-— — — — — — oicMfonnnn
Z
cecececececececececececeiEaczcrccceceaiceceeececececececea:
RECW MISSIS5IPP
HECW AUSSISS1PP
RECW MISSIESIPP
RECW WISSIS3IPP
RECW MIS.jISJIPP
Illl!
«—•- — •-
IO 1 1 1 1
CM — CM
O —
— . ^
00 O U U U U U
in — tn in in 01 u»
CO CO IX 03 CO CD CO
u. u.
S S C 0 0 0 0
a o o 022 MISSISSIPPI
.A0000191 UNION CARBIDf
.A0004367 AMERICAN CYAr
.A0005266 MONSANTO CO-l
.A0005746 ARGUS CHEM-SI
.A0005762 SHELL CHEM-NC
- 0 0
o o in tn tn tn in
01 en LU LJ LU uj uj
o o Q a Q Q Q
oo CD a. a a a a
0022222
O >
3 0
tr
itl UJ {1J LLJ ''' *A> '''
a n n a. o. a. a. a.
Lnmininininintn
t/)^- — ^^ — ^^«
£
arcrctrirararQ:
c
_j
o
u.
e'-
en 7
o
*
<
o
in i
CM
O
"~ a
O tJ
H-
0)
10
B46E+01 8070100001
>ooi ?
5
:G0807010C
2
ce
UJ
a. C3
in o
tn o
in t-
tn «r
Z
Z CE
-------
INTEGRATED EXPOSURE ANALYSIS
• CHEMICAL-SPECIFIC INFORMATION
- POPULATION HABITS
• GENERIC INFORMATION
- INHALATION RATES
- INGESTION RATES
- FREQUENCY OF EXPOSURE
- DURATION OF EXPOSURE
- BODY SURFACE AREAS
- ABSORPTION RATES
- POPULATION HABITS
• TOOLS
- ESTABLISHED FRAMEWORKS
GOAL; QUANTIFY HUMAN HOURLY, DAILY, YEARLY OR LIFETIME
EXPOSURE (MASS/TIME) TO CHEMICAL OF INTEREST
-------
INHALATION INTAKE
(I)
ug/YMr
ABSORPTION RATE
(A)
atgortMd/hour
AMBIENT
CONCENTRATION
VENTILATION RATE
(V)
m^/hour
FREQUENCY
(F)
no. axposures/year
DURATION
(D)
hours/exposure
FIGURE 2. EXPOSURE FRAMEWORK: INHALATION ROUTE
-------
a
VI
Ol
k.
3
I/I
O
ex
X
UJ
c
a
•4-1
9> >»
41 * <3
44 wi -a
!
S -a en
- >»<
£ Z £
«» £
^3
S.
H 3
44 o — »
S' i;
••- >i •<
St g1
uj i
>l S»
u "O
e 01
41 >.
3 <.
9 wi
0) >>
u 7
u. ••}
^^
WI
C >t
0 n
•— 13
44 "^
>o wi
k. k.
3 3
1
O
4J
W ^^
i-n
*> g
c <.
41 91
C 5
C ^"^
o
u
§,
•s -
W) «
o •—
a. a
X CX
UJ o
41 O
k. —
3 k,
WI O
« •
•— o»
i k.
< 41 9i e
^ w, ^ =55
a 41 o i/i »•>
C 41 & WI 3 4)
o >> wi e i k. wi
•^ o a> « o «t 3 *j
« — e c ie
ma— « e k, o •— «
Q. S i« — D U 03 O —
3 UJ 3 Q. •— 13. X C. Q.
U J3
u S
o • < •
•
MM MM
41
S1
k.
41
>
«S
91
^
00
rv
14-
O
jr
91
i
>»
V
91
|Q
£
^J
"5
«
^
*o
41
J3
O
44
•o
1
WI
WI
a
IA
41
Jtf
k
e •
-• 91
+> ^
30
in f^
k. WI
WI
• c
k. o
•0 --
41 44
>> «
k, "3
S.&
a.
WI
>• <—
• ia «
e -ok.
O 41
— 10 C
44 9»
0 —
WI -04)
I * >
WI — "5
wi t} O
•a: c: ^
ia ^9
•
+j
c
«
^B
O.
01
e
lU
j=
*<
01
k.
3
X
"o
a.
91
2
WI
3
5
o
S
<^
O
J*
in
•
o
e
j=
w
"»
e
o
*i
|M
U
«4
e
01
g
o
u
g
>^B
X
E
e
o
•o
41
WI
«
J3
41
k.
3
WI
a
a.
x
41
•a
e
V
e
o
•^
4W
1)
3
§•
a.
•^
41
.*•*
«
•«•
AJ
WI
LU
U
113
-------
FINAL PULL IT ALL TOGETHER
WHAT HAS BEEN GOING ON SUMMARY.'.'.'.'
DEMONSTRATION (BRIEF) EXPOSURE ASSESSMENT FOR MBOCA
-------
CASE STUDY #2
H,M'-METHYLENEBIS (2-CHLOROANILINE)
• BACKGROUND
- CURING AGENT FOR CASTABLE POLYURETHANE PRODUCTS
(E.G., ROLLER SKATE WHEELS, SHOE HEELS)
- POSSIBLE CARCINOGEN
- EMERGENCY STANDARD PROMULGATED IN 1973 (RESCINDED
IN 1974)
- CRYSTALLINE SOLID THAT TENDS TO POWDER ON USE
- ALL U.S. MANUFACTURING CEASED IN 1979
• PURPOSE
- INPUT TO PRIORITY REVIEW LEVEL RISK ASSESSMENT
• SCOPE
- SOURCE TO RECEPTOR (HUMAN)
- ALL EXPOSURE CATEGORIES
- ALL RELEVANT MEDIA
• APPROACH
- DETAILED CHARACTERIZATION OF EMISSIONS
- COMPREHENSIVE REVIEW OF MONITORING DATA
- MODELING OF AMBIENT CONCENTRATIONS
- IDENTIFICATION AND ENUMERATION OF EXPOSED POPULATIONS
- ANNUAL EXPOSURE CALCULATIONS FOR ALL EXPOSED POPULATIONS
(TYPICAL AND REASONABLE WORST CASE)
-------
t
t
CHEMICAL-PHYSICAL PROPERTIES
• GATHERED FROM LITERATURE
• CALCULATED WHERE DATA WAS LACKING
- CHOCST FILE OF EPA-OTS
- METHODS OF LYMAN ET AL. L982
-------
Table 3-1. Summary of Chemical and Physical Properties of MBOCA
Property
Molecular Weight
Vapor Pressure 9 20°C
9 30°C
9 40°C
0 60°C
9 75°C
9 90°C
9 100°C
9 120°C
>_ 200°C
Henry's Constant
Volatilization Rate Constant (Water)
Log Octanol /Water Partition
Coefficient
Solubility in Water
Solubility (X by weight) 9 24°C
in Trichloroethylene
in Toluene
in Ethoxyethyl acetate
in Mesityloxide
in Methyl ethyl ketone
in Tetra-hydrofuran
in Dimethylformamide
in Dimethylsulfoxide
Specific gravity, solid, 9 25°C
liquid, 9 107°C
Melting Point
Value
267.16
7.2 x 10'6 torr
5.1 x 1CT6 torr
3.7 x 10'6 torr
1.3 x lO'5 torr
2.0 x 10'5 torr
2.9 x 1(T5 torr
3.6 x 10'5 torr
5.4 x 1CT5 torr
Decomposes
1.8 x 10-7
6.5 x l
-------
PRODUCTION AND ENVIRONMENTAL RELEASES
• GATHERED PRODUCTION HISTORY
• IDENTIFIED PLANTS AND LOCATIONS
• GATHERED INFORMATION AND REVIEWED PROCESS CHEMISTRY
• ENVIRONMENTAL RELEASES FROM MONITORING DATA (ANDERSON
DEVELOPMENT Co. - ADRIAN, MI)
• GATHERED IMPORTATION HISTORY
-------
PRfllARY USES AND ENVIRONMENTAL RELEASES
t 99X USED IN CURING POLYURETHANE ELASTOMERS
• REVIEWED AND EVALUATED PROCESS TO IDENTIFY RELEASED POINTS
(SEE FIGURE)
• ESTIMATED NUMBER OF PLANTS NATIONWIDE BASED ON INDUSTRIAL
SURVEYS (TOTAL PRODUCTION -r- AVERAGE USE PER PLANT)
• IDENTIFIED PLANT LOCATIONS
• ESTIMATED FUGITIVE EMISSIONS
- PLANT AIR VOLUMES
- AIR EXCHANGE RATES (CFR REQUIRES ICFM/FT^)
- CALCULATED AIR EMISSION RATE (VOLUME x AIR EXCHANGE RATE)
- CALCULATED MEAN OCCUPATIONAL AIR CONCENTRATION FROM
MONITORING DATA
- CALCULATED MOCA EMISSION RATE (CONCENTRATION x AIR EMISSION
RATE)
-------
SECONDARY USES AND ENVIRONMENTAL RELEASES
• IDENTIFIED PRODUCTION (GENERAL LITERATURE)
• IDENTIFIED INDUSTRIES
• GATHERED INFORMATION ON RESIDUAL LEVELS AND USE PATTERNS
-------
SUMMARY OF ENVIROWENTAL RELEASES
• AIR RELEASES FROM DIRECT PRODUCTION INCLUDING RE-ENTRAINMENT
OF MOCA DUST
• AIR RELEASES FROM PROCESSING INCLUDING RE-ENTRAINMENT OF MOCA
DUST
t RELEASES ASSOCIATED WITH RESIDUAL LEVELS IN CONSUMER PRODUCTS
-------
ENVIRONMENTAL FATE
• PHOTODEGRADATION
t OXIDATION
• HYDROLYSIS
• VOLATILIZATION
• SORPTION*
• BlOACCUMULATION
• BlOTRANSFORMATION AND BlODEGRATION
•BASED ON CHEMICAL-PHYSICAL PROPERTIES, FATE OF ANALOGOUS COMPOUNDS
(AROMATIC AMINES), ESTIMATES OF ENVIRONMENTAL ACTIVITY (E.G., LOG
KOW)
-------
MONITORING DATA
• GATHERED ALL AVAILABLE MONITORING DATA
t EVALUATED SAMPLING AND ANALYSIS TECHNIQUES
- AIR
- WATER
- SURFACES
- BIOTA
- SOIL AND SEDIMENT
- URINE AND TISSUES
• RE-EVALUATE MONITORING DATA
• CALCULATE MEAN CONCENTRATIONS
-------
"8
3
e
-u
e
cS
41
e
"-
e
- -o
1 e s
t/i «
t
"3"
en
en
*-
I
o
z
n
ex
ex
§"
a
LO
^
ex
ex
S
8
^
3:
§
^rt
^
^
V
*—
I
_*>
j
O 5^
— 0
<— t c
.a ex —
3
ex 4i u
Ul 4»
E O u
0 — 3
t *l
" 01 a
o > <:
wi O
= o
4) **~ r^
(J .C ^*
_ ^.
! ! !
z z z
tjjj
^^
_cx
§8 8
**2 *™
S •" ~
9~
tjO ^
ex ex
ex ex
§o o
•f en
CM
.a .a .a
ex ex ex
ex a. ex
O O O
0 p— c5
CM ^ •—
00 O O
00 — vo
*"" ^
as ae as
z z z
o o <
§— 00 i—
o
z z z
c o c
•f™ l/t •»"
3 z s
E
c c
•— LO —
S- ^-. i— t
4) en 41
u r^ c u
3 -«. •*- 3
"O T f -a
O --. *J O
I. LO ~ 4.
ex • — 3 a.
•
«
Ul
e
.2
^j
-O JJ
en 41
r- 4-1 e
^s U f
LO 4}
LO r— 4)
O 4-1
TJ 0 •--
C U)
»a vi
41 —
cn ^^ 1^
r^ O^ -^
^*x S 4^
^~ IB ^
CO t/l ^J
LO 1— £•
*-^ ••— Ul
O 4)
00 !.
CVI
§11
f Ul
S- Ul *J • • C
H_ 0) 01 I/I Ul O
^ e •— « -o ai t-
4i i— -^ ex ui u^r-w
•— S c 10 o u ^ ex 3
^ OI O W O41 34101Cn 4) • J-> Ul-^
COO«*JJ34>-kJ><4-'
J£ 4-> OCXUOSOUI
•MCZUfOOlO M»> O
« J-> S- O = ••- D O
•auics o o «s_mex
S iioot - t. m -a 3
O O nj o 4) « >— « c
ui^S-Su-^^CX*-,
01
u
3
•§
I.
ex
CJ
O
Z
14-
o
>> "3 — •
4^ -^ O^
•** i_ p»*
•5 3 «
u ~^~
•^ C *^"5
> "~ ' —
-------
ESTIMATION OF ENVIRONMENTAL CONCENTRATIONS
CONCENTRATIONS (AIR) IN AMBIENT ENVIRONMENT AROUND
POLYURETHINE CASTING FACILITIES
- ATMOSPHERIC TRANSPORT MODEL (AIM) IN GEMS
- DEVELOPED PROTOTYPE FACILITY
- EMISSION RATE FROM SOURCE ANALYSIS
- CANONICAL ENVIRONMENTS (CALIFORNIA AND MICHIGAN)
-------
-------
o
c
a
u>
O
u
X
VI
QJ
U
C
in
£ • —
=
« en
in r^ r— «r
«— CM
a % b b
o •— ^ •—
XXX
X
in in rr
5 * » S
en . . •
• r- CM tO
i i i
i
.— CM CM
O i i i
x x x x
in en oo in
oo en to ^
'
in O O O
O i— CM ro
i I i I
O in o o
o o *—
-------
-------
HON OF EXPOSURE SCENARIOS
EXPOSED PQRJLA
P
TIP
f OCCUPATIONAL - INHALATION, INGESTION, DERMAL
t AMBIENT - INHALATION, INGESTION, DERMAL (IN ADRIAN, MI AND
AROUND POLYURETHANE CASTING FACILITIES)
• DRINKING WATER
• FOOD
• CONSUMER PRODUCTS - DERMAL
-------
-------
EXPOSURE CALCULATIONS
• INHALATION - CONCENTRATION x INHALATION RATE x DURATION
x FREQUENCY
• DERMAL - SURFACE CONCENTRATION x AREA OF EXPOSED SKIN x
DURATION x FREQUENCY x ABSORPTION RATE
- AREA OF EXPOSED SKIN - BODY SURFACE AREA x PERCENTAGE
OF SURFACE AREA FOR SPECIFIC
BODY PARTS
-------
4
-------
VI
01
w
3
VI
e
a.
X
UJ
w
S
a
•o
*
4-1
** ^^ <••
I/I — -^
UJ- g,
•o *-
. 3
££
•o~
<0 -5
01 Jtf
i CM*
- "8 1
a vi o
_ o r-
** a. "».
e x 01
3 UJ E
J^^
e
a
s
^3 "»"
« 3
VI IO
i 3
2 &
Q.
Exposure
scenario
CM •— CM
1 1 1
o o o
X XX
\O * «iM
B f7 ^T ^^
• • *
F* *- <0
ft
S S S
CM CM CM
i« —in
in g tf>
~- <*> •—
O O 0
• • •
P- CM »-
%
CM CM
00 00
> U .
^ f» «••
r»
CM
O
CM
^*
•
CM
a
4rf 1
1
§
I
*O. 4-
d, «_ o oi
c e a a js
•— IO VI VI ^ U •*•*
j: wi o> e e vi a
o> e o> a «
«o> o — c -S 0101
0)^ ajs — 4J 01 c c
X3 VI i- 4-> 01 • « C < — —
ax «» a. a. — Ci.-ut.oii-
^ •— 01 oio) a a) a. o s c 3
Q. O X — U B ^ GU O « -O — -O
go. a — x uaax x vi
S •— lOOt-Q 41 U 01014(41
oi a. e &vivi<*.k— LVI
C C ffoivlio VI O 3 >u-o— xcxu
-*3— x
• •
U) en
V CM
0 0
X X
U) ^f
• •
•— CM
g g
CM CM
« va
U)
1 O
••
1
1 «
"~
A
o
•
in
*™
Q
• 2
A
^
4)
c
ii! -S
0} 4rf
41 41
X U
a 3
•Si
TOTAL
Non-production en|
in MBOCA-using po
plants
^
CO
U4
-------
<•, .,
~, ait
f, *,-,
Protection Agency
..
31 WestJacksSn Boulevard.
ft. ^©604-3590
-------
2
b
3
tfl
O
&
bu
^™
i
5!
"S
*^
fl
I/I
UJ
*»
o
£
to
CM
1
00
4)
J3
m
I—
^2
1
I/I
UJ
1
+*
g
J^
VI
^t
i
i
u.
I
J^
2
s
>ta
o
«
1
4)
|
(/>
s
<*•
e
M
e
i
•o
VI
S.
X
UJ
41
k
3
VI
O
0.
X
UJ
ja
41 —^
at x
vi -a
•s «
= ff
in m o
^•^^^•^
CM CM VO
in «n «rt
w en to
O vo CM
• •
O O O
"•»"<•
X X M
«» «r »
o
03
41
»
a
**
8
•
CM
!•» 1
j= S k
i«_ 4) at M 3>
o e s e S
« oak
vt JS k U O
41 4d JE *.
4i 41 -we
X k — -g
O3 CM C
— X at 3
g. — vt e a
fa 41 •— k
« a. at x *
*O IQ
<*- 01 — ' •— —
o c a. —
-— jj -O O
VI I/I p— •— C VI
4» 3 3 •«- 4)
— 1 vi -g J= k -O
— < J-> < O -a 41
H- — u C .— *J
SB S o * — — — *" "
uj « S •— .— CM jse
**^ ^u ^t o« ^^ *^ (J *^*
5 < 00
—
V U1
C3 O
X X
_
1
0
ff-JS
,d(
eo
^ .tn
t-
O wt
JS 4*
at .at
••• <»
*t
X
J VI
k
«j
»*
4J
CM
B
a -a
JS •—
•^ u
4) O
*« *J
S -C
01
41 •—
J3 41
li
3 4)
vi at
VI <9
k *
j>e 41
if.
e at
0 Jtf
«J O
S ^
1«
Q. 4J
at at
fe S~
kf:
I"3 «
4» at
vi at «
X a
« u i*-
•a 4t o
>
in >
a vi
J9 4J CM
vt *a ^
*O *^
4) —
CB 13 U
0 9
•O VI
k *•
X Ol —
i— j« Ol
•^ u •^
« O 4)
0 X X
J3
.
u
o
i
41
i
o
1
in
in
in
•^
—
in
O
•
CM
S
u
•v.
5
CM
in
C
in
O
41
4)
41
TJ
j^
VI
1
•^
X
X
(J
.
VI
V
S>
X
o
i
8
41
**
|*
1
^j.
X
41
I/I
k
4)
1
S
^^
i
«*-
**•
o
^
1
c
•o
Q
1—
•e
vt
41
Vt 01
3 19
VI
e
k
in 4)
• j:
e •
"% z
Htchigan w
Oeepwater
e
e
*• m
3x
41
B VI
;i
0t 'W
"t3
0 0
u
in
k e
S °
!*•» 5f
js "g
3 4*
2 g
J= U
41
~ i
e in
41
k 41 •
"° * H
•~ 4J 41
•^ VI
JS <4- 0
u — a.
X
«_ 4)
O •
4) '•» —
3 a **
C "3 C
41 41
4) k 4J
JS 3 0
H- CD O.
4)
•
U3
Q.
0.
•
m
in
14-
o
o
4»
«
k
M
41
U
S
0
u
<
u
X
•^
o
vt
1
X
k
41
•a
vt
3
i
•*•
e
e
a
VI
a
jj
^^
Ol
e
41
k
I/I
4)
U
k
3
O
I/I
jg
„.
S
-------
|