I
fi
I
087*5 '
i
*„**
1
905D87001
LAKE ERIE TRIBUTARY
STUDIES
1987 WATER YEAR
DRAFT REPORT
Submitted in Partial Fulfillment of
Grant Number R005967-01
Great Lakes National Program Office
U. S. Environmental Protection Office, Regie
Chicago, Illinois 60604
Robert Beltran, Project Officer
January 1989
I. 5?
•£.
Prepared by:
David B. Bi
Water Quality
Heidelberg Col
310 East Marl
Tiffin, Ohio
1:1
-------
-------
I
TABLE OF CONTENTS
• Draft Report: 1987 Water Year [[[ 1
Background [[[ 1
• Study Locations [[[ 2
Nutrient and Sediment Loads for the 1 987 Water Year ............................ 2
_ Pesticides Concentrations and Loads for the 1987 Water Year ................... 6
I References [[[ 19
• Appendix 1: Concentrations and Loads of Nutrients and Sediments in
Lake Erie Tributaries [[[ 21
• Appendix 2: Pesticide Loads in Lake Erie Tributaries ............................... 38
Appendix 3: Pesticide Concentrations in Lake Erie Tributaries, 1987
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
BACKGROUND
For the portion of the 1987 water year extending from May 1, 1987 through August
31, 1987, the Great Lakes National Program Office provided partial support (Grant
R005967-01) for the sediment, nutrient, and pesticide monitoring program at six long term
river transport stations in the Lake Erie Basin. Additional support for the operation of this
program, both during the above time period and during the balance of the water year, was
provided by the State of Ohio and by manufacturers of pesticides and soaps and detergents.
Parallel monitoring is also underway at a seventh station, a tributary to Lost Creek in
Defiance County, with support from the U. S. Soil Conservation Service.
The program conducted during the 1987 water year is part of a large scale, long
term agricultural ecosystem study in the Lake Erie Basin.1 The EPA's Great Lakes
National Program Office also provided partial support for these research and monitoring
efforts during the five year interval beginning with the 1982 water year. On an annual
basis, the program provides detailed information on nutrient, sediment and pesticide
loading into Lake Erie from its major tributaries, as called for in the Great Lakes
Surveillance Plan.2 Beginning with the 1988 water year, support from the State of Ohio
was increased, and portions of the program were incorporated into an expanded
cooperative tributary loading program involving the U. S. Geological Survey, the State of
Ohio (through the Ohio Department of Natural Resources) and Heidelberg College.
The reporting program associated with the above research and monitoring activities
involves several formats. At approximately four year intervals, major interpretive reports
are prepared.1-3 The data also serve as a basis for numerous journal publications4'5'6'7
and published symposia papers.8'9'10'11'12'1^ For years between the major interpretive
reports, the grant reports consist primarily of data summaries, as produced by existing
programs for calculating loads and various types of average concentrations. This type of
data report was produced for the 1986 water year,14 and is the type prescribed in the
proposals associated with this 1987 water year EPA grant.
Consequently, this report will consist primarily of data summaries in the form of
tables, figures, and appendices. The reader is referred to our most recent interpretive report
for detailed discussions of field collection, chemical analyses, and data analysis
procedures, as well as for discussions of the characteristics of agricultural nonpoint
pollution illustrated by these studies4.
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
STUDY LOCATIONS
The locations of the six sampling stations included in this study, as well as that for
the tributary to Lost Creek, are shown in Figure 1. All seven of the stations are located at
U. S, Geological Survey stream gaging stations. The U. S. Geological Survey station
number at each site is also shown in Figure 1. Additional information regarding each
station, as well as precise coordinates for each station, are published in Volume 2 of the
Water Resources Data, Ohio , Water Year 1987, as published by the U. S. Geological
Survey. The chemical concentration data for each station is stored in the STORET data
base under the U.S. Geological Survey station number and the Heidelberg College Water
Quality Laboratory agency code.
NUTRIENT AND SEDIMENT LOADS
MONTHLY AND ANNUAL LOADS
The monthly and annual loads of sediments and major nutrients for the seven
stations are shown in Appendix 1. Annual chemographs and hydrographs are shown on
the page facing the corresponding monthly loading tables.
TIME WEIGHTED AND FLOW WEIGHTED CONCENTRATIONS
The time weighted mean concentrations (TWMC) and flow weighted mean
concentrations (FWMC) for the 1987 water year for the major parameters at each station are
shown in Table 1. FWMC's exceed TWMC's for parameters whose concentrations are
higher during high flow conditions than during low flow conditions. For all stations and
parameters listed, except for soluble reactive phosphorus and nitrates at the Cuyahoga
River station, FWMC's exceed TWMC's. The higher low flow concentrations of soluble
reactive phosphorus and nitrates at the Cuyahoga station can be attributed to significant
point sources of these substances in the Cuyahoga River Basin.
COMPARISON BETWEEN 1987 ANNUAL LOADS AND LONG TERM
AVERAGE ANNUAL LOADS
In Table 2, the annual loads for the major parameters for the 1987 water year are
compared with the average annual loads observed for the indicated period of record for
each station. For virtually all cases, the 1987 loads were less than the long term average
loads. It should also be noted that the annual discharges at each station were also lower
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
MICHIGAN
PENNSYLVANIA
INDIANA
OHIO
LAKE ERIE
MONITORED
WATERSHEDS
A Sampling Station
1 River Raisin near Monroe (USGS 04176500)
2 Maumee River at Bowling Green (USGS 04193500)
3 Lost Creek near Defiance (USGS 04185440)
4 Sandusky River at Fremont (USGS 04198000)
5 Honey Creek at Melmore (USGS 04197100)
6 Rock Creek at Tiffin (USGS 04197170)
7 Cuyahoga River at Independence (USGS 04208000)
Figure 1. Locations of sampling stations in the Lake Erie tributary monitoring
program.
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
15
•*--
C
O ||"j
0) Ixi
1""
o
^
'3)2
E
io
H~ ^
2
•~
a
t^J ^>
£ r
^i
Z
CO O
o 5
r^
.j
^r
>
_J £
CD
e
cc'y
CO P
£
^
^>
^~
dE
1*
o-'o
1- 2
p^
f—
dl
1*
co"o
2
^E
P-
c
0
'15
25
CO
r*.
^j-
in
,_'
in
co'
CM
in
m
o
0
in
q
o
^_
in
0
d
t
q
d
CO
00
CM
d
CM
0
CM
d
in
in
CO
co
Oi
CD
ir
f
1
,_
"0"
T —
O
CSj
r-
O>
CO
T—
in
cvi
^
CO
o
d
CO
CO
q
d
o
CM
CO
d
00
in
CM
d
CO
co
co
f>*
c5
ir
ctf
O)
O
3
O
,_
co
CO
T—
T-'
in
O5
CO
^>
q
co
^
^>
o
d
r--
C\J
q
d
in
co
d
o
^~
T—
d
*
co
co
CM
_
CD
if
c
'co
CC.
CO
o>
T~
r**
CM
T—
CO
CM
in
in
q
•^t
o
00
q
d
CO
q
d
en
h-
co
d
CO
o
CM
o
CO
00
^
(V,'
in
.^
CD
6
o
0)
o
CM
T-
1—
r^
in
CM
CO
CM
^
in
o
d
CO
q
d
•51-
CO
CO
d
^
in
d
CM
in
r-~
^p
CD
0
1
CC
00
fSn
cvi
^J-
CM
^
•^
in
CD
t^
CM
,_
CO
o
d
O)
CM
q
d
^.
CO
cq
d
^j.
^>
T—
d
0)
Lf)
CO
^
6
I
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
O)
o
CO
c
3
o
o
v>
•o
CO
O
+-t
0>
"O
a
•«-•
0)
*k»
•«-•
c
CO
0>
>s
I
h-
oo
o>
o
00
•c
CO
a.
o
O
cvi
a
o
l-
g>
g
1
1
£
O
Z
1—
ei
CM
0
z
tfi
2
^
cx
1
Q.
C
CD
6
"O
d)
0)
"5
2
s
*
O)
<
co
o>
O)
<
CO
o>
O)
>
oo
cn
o>
j*
^
co
cn
o>
<
t^
00
en
1
o
t-.
y-
10"
o
o
CO
V
cn
o
co
o
o
o_
10"
(O
CM
O
O
O
10"
en
CO
,_
IO
CM
cd
^H
1
O
r-
co
co"
00
o
cn
CM
10"
o
CO
co_
o
o
CM
o
cn
to
*~
o
^
CM
cn
CO
en
co
CM
o
cn
co
o"
cn
o
co
co
CO
i^
o
cd
ro
81
-i
0
o
CM"
o
CO
CM"
*
CM
CM
^
O
CM
CO
O
CO
f-
IO
IO
o
IO
o
o
IO
CM
co"
CM
O
CO
O
2
CM
cn
^
O
5
o
o
co
_
IO
co
IO
^
"*
co
cn
00
co
co
CO
o
fx.
co"
o
^
co"
^.
CO
co
O
1
•
cn
"*
1
!
cn
,
!
co
!
,
*
CM
CO
CO
;
co
CM
ci
fi
1
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
than the long term average. It is likely that the lower stream flows were associated with
rainfall patterns and that these lower stream discharges are primarily responsible for the
lower than average annual loading.
In Figures 2-4, the seasonal and annual loads and discharges are shown for the
Maumee and Sandusky rivers and for Honey Creek. These figures illustrate the extensive
variability associated with sediment and nutrient export from these rivers. Recent studies
by Richards15 identify several of these tributaries as prime examples of event response
tributaries.
PESTICIDE CONCENTRATIONS AND LOADS
PESTICIDE CONCENTRATIONS IN INDIVIDUAL SAMPLES
The pesticide concentration data for individual samples for each station are
presented in Appendix 3. That appendix also contains a description of the analytical
methods used for pesticide analysis.
PESTICIDE LOADS
The pesticide loads transported at each of the sampling stations are presented in
Appendix 2.
TIME WEIGHTED MEAN CONCENTRATIONS (TWMC'S) OF PESTICIDES
The TWMC's, along with the 50th, 90th, and 95th percentile concentrations and the
maximum concentrations at the transport stations are shown for each of the six major
herbicides included in this study in Tables 3-8. The calculations include all samples
collected between April 15 and August 15, 1987. The data in the tables have not been
corrected for recoveries less than 100%. The average recovery for each herbicide is listed in
a footnote for each table.
CONCENTRATION EXCEEDENCY CURVES FOR PESTICIDES
Concentration exceedency curves for the three herbicides used in the largest
quantities and having the highest concentrations in stream systems (alachlor, metolachlor,
and atrazine) are shown for the Maumee River (Figure 5), the Sandusky River (Figure 6)
and Honey Creek (Figure 7). The use and interpretations of the pesticide concentration
exceedency curves are presented elsewhere.4
-------
I
I
I
I
I
I
I
I
I
I
I
I
SEASONAL LOADS
|^ Summer
^ Spring
(3 Winter
ffl Fall
•£• 8000
"
6000 -
o
3
O
o 4000
§> 2000
CO
o
%
'76 '78 '80 '82 '84 '86
water year
avg
4000
•= 3000
I 2000
o
Q.
':•: '
1
x
X
x
I
X
f
X
X
••'•:•
:::-'
1
x
X
X
X
>
X
1
*i
1
X
X
X
1
¥•*
X
X
5?
—
X
X
X
800
c
o
^ 600 -
•5
2 400
o
a.
o
oc
200-
'76 '78 '80 '82 '84 '86 avg
water year
X
\
X
X
X
Xx
X
^
'!..
H
1
X
X
1
X
X
f
X
X
X
&•
'••#
II
1
X
X
x
x
X
s
X
pq
1
-_
I
X
X
f
X
X
x
m
rs/
p
1
.•;::•
1
X
f
x
f
X
_*.
'76 '78 '80 '82 '84 '86
water year
avg
\
I
\
\
"at
o
o
"Z
E
TJ
ousan
-C
8
2000
1000
0
I
I
I
Fi
x
x
X
X
f
X
X
X
X
f
X
f
X
x
:.;l*
I
X
jf
1
••¥.
n
l
X
X
X
X
X
f
x
X
X
X
i~
\
I
X
1
X
X
X
X
$1
' t
X
X
' f
X
J:J
|
^
"s
t s
f
'76 '78 '80 '82 '84 '86
water year
avg
40000
"3T
o
o 30000
•
z
20000 -
10000 -
\
V
1
X
I
X
. :•*
• •:•
1
x
X
X
X
>
\
X
X
X
x
\
'f
f
y
f
s
s
f
1
f
X
X
X
X
r-
X
/
'76 '78 '80 '82 '84 '86
water year
avg
Figure 2. Annual variability and seasonal distribution of discharge and loading of SS,
TP, SRP and Nitrate + Nitrite-Nitrogen at the Maumee River transport station.
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SEASONAL LOADS
f§ Summer
!^| Spring
E3 Winter
Q Fall
o
S
o
c
o
I
Hi
(4
b
1000 -
76 '78 '80 '82 '84 '86
water year
avg
(0
o
T3
(0
(O
O
500 -
400 -
300 -
200 -
100 -
0 -
X
X
'x
'x
'x
*?
x
X
T"
1
X
s
s
1
1
!
1
X
X
X
X
X
1
X
1
. ^
X
X
i
~
1
76 '78 '80 '82 '84 '86 avg
water year
M
C
O
Total Phosphorus (metric
IV3 -&. CT>
O O O
3 0 O O
1
X
X
s
X
X
X
X
Si
X
X
X
X
X
X
1
i
X
X
X
X
X
X
X
-i.
1
X
X
i S
X
an
H
1
X
X
x
X
x
pa
s?
§j§
!
1
X
X
X
X
X
1
ijX
#
X
X
X
X
X
X
X
X
X
X
x
X
'i
i
1
X
•V
X
, \
2.
X
X
X
x
X
Pi
p
s
\
f
\
76 '78 '80 '82 '84 '86
water year
o
0)
o
a
100-
i
76 '78 '80 '82 '84
water year
'86
(A
JE
0)
£
*—
z
76 '78 '80 '82 '84
water year
'86
Figure 3. Annual variability and seasonal distribution of discharge and loading of SS,
TP, SRP and Nitrate + Nitrite-Nitrogen at the Sandusky River transport station.
avg
avg
6000 -
4000 -
2000 -
0 -
x
X
X
X
"*.
"*T
-•:;-
X
X
X
X
X
\
T?
1
X
\
'V
1
x
x
X
X
X
x
X
1
x\
/
s
ft
R
\
s
X
I
^
X
X
i
X
X
X
ft!
1
£<,
,v;;
m
1
X
X
X
X
X
X
X
X
X
X
:•*'
:-::i'
v:|:
1
•xSl
rf*
.-:'::;
1
x
x
s,
X
X
X
T
|.:
vi,
i
X
X
\
X
avg
-------
1
1
1 fin
<^^ i UU T
0>
II
SEASONAL LOADS £ 80 '
•g
IfH Summer •§• 60 -
eo
Kfl Spring 2
n £ 40-
_ LJ Winter g-
1 E3 Fall | 20-
n
| * 0-
5
•' i'
1
Ki
1
/
X
X
:•£;:
-
4t
1
f
s
\
^
T*r
:''€
-
^
X
M
1
X
X
X
' /
X
X
' /
X
^B"
1
.'•:•:•
\
f
X
,•':•'•
i
s
, >
s
, >
"S
1
X
X
rr*r
:. f
' .. X
76 '78 '80 '82 '84 '86 avg
1
niuu n
Ifc-
o
Ti\
E
o
1 !
• J 1 00 -
11
fl)
E>
.c
__ o
• •-
• Q 0 -
ETU ^
pri
i
X
f
':W*
•i ? $
:-.;i x^ •?'.
^
\
X
X
1
x
f
f
s,
\
f
J7/ ^ iwja
'" H ^
i:i;;i ^
V> !*• \ \ » N
y, :.• f s f /
% . s s •. x
U* •• f ™ •** '
^ N. "-:, N :".• ..:• x
^ :•:• f :;.-' •'•. f
\ f i;-: ,X '.•" ' ?•
::! . \ ;•-• ' , - . •
• " ' "*** . : . " '. •'
fcU
?
0
—
•8
E.
S 10-
a
o
CO
DC
"o
w o-l
water year
s
\
jx;;:
X
X
' rf
\
X
X
X
X
I
X
s
^
s
MM)
\
i-
i
N
X
X
"!f
1
•:tv
I
X
^
X
:#
T**
"t^ ' \
• 76 '78 '80 '82 '84 '86 avg 76 '78 '80 '82 '84 '86 avg
water year
1
I-3T 80000 -i
I
O
'B 60000 -
1 !
2 40000 -
1 -
•§ 20000 -
• *•
1 »S o-
"T
x ^^^
!
i
A*
Cm
^ « ra ra
li^alH i
1000 -
"
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CO
CD
CD
E
3
E
"x
CO
E
c
CO
1=
0
1
'J;;
CD
o
^_
O
O
rt\
.-=
"c
05
CD
Q.
o"
2
^*
^^
p~
g
§
1
0
o
c
CO
CD
E
•D
0>
3E:
D>
5
£
CD
E
K"
00
CD
.Q
ui
T—
.
CO
3
O)
3
^»
"O
cO
LO
T~
• —
Q.
C
CD
CD
5
0>
.Q
•Q
CD
t3
CD
8
CO
CD
Q.
E
CO
—•
CO
CD
•o
3
0
C
CO
03
Q
*
CO
o
00
CO
c
>
CD
CO
*w*
CO
o
"ps
u
CO
CO
1—
E
3 _J
C r3)
!=*•
in O)
0) =J.
o>
7^
C £1 f
S 00)
0) ^ =J-
Q-
O O)
in i
^ =L
Z
c
o
TO
w
CO
co
co
in
m
CO
O)
^j*
f^.
^
o
CO
o
CO
r-
d
CO
in
0
Maumee R
TJ-
f«v.
oi
^
in
en
CM
in
T—
"*
CM
CNJ
in
d
jj
CO
CO
a:
Sandusky
^
T~
p
CM
r-
£
T"
T-
fx»
N;
T-
o
CM
p
d
CO
d
|v
oc
c
'05
'ro
tr
05
CO
en
d
en
CO
d
0
CM
p
d
0
CM
p
d
CO
CO
CM
d
co
of
Cuyahoga
CO
CO
cq
m
^
00
CO
en
CO
^^
o
CO
o
^
d
o
CM
co
o
^~
6
05
o
CO
oo
CO
co
CO
in
T"
CM
f^
r-
eo
•«~
CM
00
CM
d
CM
en
in
d
CO
Rock Cr.
en
00
T-
d
CM
^—
co
CM
CO
0
en
CO
T—
0
00
d
m
CM
d
oo
6
to
^o
o
o
*""
CO
c
(O
CO
.SJ
"o
CO
tCl>
'C
o>
k.
0
•Q
c5
t3
t
8
I
ro
CO
_gj
o
CO
1-
.c
ro
1
o>
£L
\
CO
o
o
ro
ro
•2
n^*
>
8
£
CO
O)
ro
CO
10
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-<2 to
Q) D
j> 3
£ **•
p? C
.i «
^ rt
CO ^-
•0 Q.
C ^.f
CO*5
2 s
ll
ss
t^ -Q
CI
o> "a
a CD
11
CJ> O
.-= o
c to
CD CD
fc? "5.
S E
Q-co
o|
'r* "O
F- 3
^~" O
co c
c —
O (0
03 «
4s Q
{—
CD «
c w
8.1
C CO
JO (5
CD
E S
CD
CD 0>
£ CO
__. HH-*
.2>co
a> ^
5 o
*•§
C CO
h- ^
-* E
2 *- in
-Q >^l T—
E^
C- {Jp
O3
2
^ _j
cn 3.
1
m ^— ^-*
O O O)
k. en ix
Q>
a.
^^
O O)
in a.
y _j
|1
c
o
to
55
00
in
in
o
T—
T™
CO
en
CM
cn
00
^
CM
CM
in
en
00
CO
o
^
Maumee R.
CO
T-
C)
CM
CO
O
CM
to
CM
en
^
00
o
00
T-
00
CO
(0
CO
Sandusky R.
o
T—
c\i
00
o
o
00
o
o
o
CM
o
o
in
en
in
o
^
CC
c
'in
CC
in
CO
Tt
in
co
5
^
00
o
CO
o
o
o
o
cn
•t
in
CO
Cuyahoga R.
t- N- en
co in m
r-. CD cn
CO 00 CO
CM T- in
•^- T m
o cn •«*•
r^ in en
co r^ f*-
^~
r^ in •^-
in M- m
^t co en
0 Tt TT
^
CO 00 (O
co in co
co m cq
W 0 CD
oo cn oo
CO T- T}-
en T- CM
CO CM CM
co ^ r^
O CO 00
T—
O c
5T S o
ill
Q
o
o
c
(0
£
®
o
CO
CO
1
8
c.
Q
*^"
?
1
8
-*—
8
2
co
to
K
c
to
co
•o
^
t—
o
f^
t^
(A
co
_o
£
rn
•g
•jj
£
4_
O
"^
tT*
>
8
£
0}
O)
2
CD
1
#
11
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
JO
CD
^ LO
CD T~
ECO
D
£ J*
'x<
CO TO
E c
kw M*
CO
"c ^
co 33
ff\ T""
wy *—
c a.
o <
V-» _
w £
i: ®
c a>
CD 5
^ CD
o-0
0X3
CD *
s t>
c .3?
|8
Q-CD
^CQ.
0 E
^> *"
i- IB
£3
o .2
-*= o
CO C
c eg
0 *
cQ
o ^
0* .
_ CO
L_ ^-
s|
£S
-o w
CD
CD CO
««
.iS
H'§
^75
CD x_
50
E
§_J
._ O)
1 =l
K'B)
O3 i
1 £_J
1 It
a.
0 0)
in di
0_j
p ^>
p
Z
c
o
c5
w
CO
^
C7>
a>
CO
S
oi
r^
CM
oi
o>
in
XT
CO
CO
^
o
Maumee R.
OJ
^-
CO
^~
o>
5
CO
T-
CM
CO
d
CO
00
in
T—
CO
in
CO
CO
CO
CO
Sandusky R.
CO
^*
co
^
•r-
co
in
•^
r-
T-
O>
CO
o
0
d
00
CO
T-
r-
cc
%
•ffl
cc
fx*
T™
co
CM
[^
T—
CO
CM
CM
CM
d
O
CM
0
d
oo
r~;
d
CO
Cuyahoga R.
i- T- CM
T- CM CO
T- co r~
ui r-' in
CO T- Tj-
CM 1- Tf
co h» S-
in T- co
in co T-'
T~ T~
o> o o
CM CM CM
CO O CM
CM in CO
in in T-
CO GO CO
CM r^ Tf
CM O T-'
T- CO O
CO 00 CO
in r^ co
co ^" Is-
O CO 00
^"
O c
1 « 2
! £ ji
o
o
CO
^
CO
(O
™ ~*
0
w
CD
cB
^
fc-
i
1
8
I
co
in
£
fi
CO
1-
CQ
1
0)
H
CO
r^
(A
co
CD
1
to
£
o3
8
£
* The average
12
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.sati
CD D
£§>
il
.iS
CO1**
Ell
^__ T*
c Q-
CO <
CO C
C CD
O CD
tj 5
SB
C JO
ntile conce
3 collected
Si>
*- Q.
CD c
°-l
,— C. 10
o =
2 to
$ CD
f™ "U
C~. 3
to "o
C^^
*—
0 ~
*= CO
2? ra
HQ
8*
o i
0 o
cr '~
CO «
CD w)
Ec
T3 CD
CD >
^ CD
^>^
CD CO
5 c
CD "N
•""B
. 0)
co E
® *- ir5
JO 5 T-
_
E o>
fl^-
II
_co
§ SB>
£ OT =1
o.
JC _/
O O)
IB,
^ *•
•z.
g
c^
CM
CO
CM
CM
CO
evi
en
•t
e\i
CO
co
d
g
d
o
Maumee R.
m
p
"*
in
p
CM
CO
CO
CO
CM
O
d
CO
00
d
CO
CO
Sandusky R.
5
T-
CO
CO
d
CM
CM
d
o
CM
0
d
in
in
CM
d
^
cc
1
CO
in
d
CO
LD
d
o
CM
o
d
0
CM
0
d
CO
d
CO
Cuyahoga R.
o en CM
00 0 00
in ^ T-
o en CM
r-. i- -d-
p CM co
co co in
m co CM
00 CO T-
^ d T^
CM CO O
CO CO O
T- p p
odd
•* in co
CO CO T-
N. CM ^~
odd
co *3* i*^
O CO 00
6 w
|^o
1
re
CO
>
«#—
o
veries
8
p
corrected for
g
^
cu
as
CO
O)
J3
CO
1-
c
'ffl
"53
0)
l~
1
ro
%
_c
3
•c
§*"
^
£
c5
>
g
eo
O)
2
1
o>
13
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
w w
CU 3
> 0)
.CD 3
E "^
§T3
.i§
s^
CO If:
El
.— _
^<"
CO C
C CD
O CD
•~ >
CO •£*
i: CD
c -Q
CD -o
£ «>
o c3
O ^)
= 8
m w
8 0)
m °-
S.E
CO
-— ^. CO
0-
2 co
^ CD
i- "°
O 3
CO O
C C
o —
*2 CO
2 co
HQ
CD
O *
0 g
0 0
cr '-^
CO CO
CD to
E ^.
C
T3 CD
CD >
*± 0)
-£= CO
.55^
CD CO
^ CD
CD C
E'N
~ CO
1— c
CO
2 *- LO
J3 £ T-
CO
.E D)
x i
S
st
O) ^.
E j= -j
01 ^ ™
o ^~^
D_
jC- _,
CD O>
in A
IB,
^
c
o
To
c/5
in
CO
in
^>
CO
01
CO
^
f^
CM
CO
in
d
T—
T™
O
"*
Maumee R.
in
^>
m
'^t
0)
co
^
CM
in
CM
d
in
d
co
(O
Sandusky R.
o
co
T—
CM
00
d
CM
00
d
o
0
d
CO
CO
d
fv^
cc
c
;5
DC
CM
d
5
d
CM
p
d
o
CM
o
d
CO
CO
p
d
CO
Cuyahoga R.
o co r^
CO CO i-
h-. CM CO
•^ CO CO
••" 'I~
Is* O> ^
h~ O) 00
co in t-
CM O O)
o r^» r-
•"*• CM -
^
i
t
8
s
£
co
fx.
_Q)
"ci
f—
£;
••••
i
u>
f"
c^
CO
CO
co
O)
N
CO
C^
co
o"
»
^
"^
>
p
2
CO
i1
1
0
14
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CO
(D
Q3
—
E
ZJ
maxim
V)
o
"c
o
0
o
J)
c
o
y
0>
o
^J~
O"~"~
^
C/3
2
c
?\
I
03
QJ
^
05
Ol
'55
$
CD
E
i-
00
CD
X3
uO
T"
^
O)
Q.
<
0)
0)
^
^
0)
fli
_V^
8
_CP
Q_
r"
5
co
Cu
Q?
"o
CO
f
g
U)
QJ
o
CO
CO
s
c
£
E ,
3 _ J
C ^5)
§ ^
•5
K ^>
0) =L
o>
.—
0 00)
c cr» d.
CD
O.
f — )
O O)
in =1
o
_. — J
|s
c
o
m
CO
CO
^
CO
CO
CO
T-
00
d
o
0
o
d
CO
CM
d
o
^
Maumee R
^
fs»
in
CM
in
co
*~
0
CM
p
d
o
0
o
d
CO
O)
p
d
CO
CO
tr
Sandusky 1
o
CM
0
d
o
CM
o
d
o
CM
o
d
o
CM
p
d
T-
CO
o
d
cc
•55
o
CM
O
d
0
CM
p
°
O
CM
0
d
o
CM
O
d
00
•t
p
d
co
a:
Cuyahoga
CO
CJ)
cb
CM
in
o>
CO
o
CM
p
d
o
0
o
d
CM
o>
CM
d
CO
o
t—
kj
O
£
o
00
o
in
oS
0
CM
o
d
o
o
o
d
o
o
p
d
00
co
o
d
^
CO
O
CO
CO
^
CO
^~
o
CM
O
d
o
o
p
d
o
o
p
d
hs.
O)
p
d
r-.
00
6
o
-CD
to
CD
**
2
03
75
T3
* Recovery
15
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
o
o
00 -
00*91
OO'Zl
(V6n)
OO'i 00
UOT}DJ}U83UOQ
00'0
E
o
T3
.0
"k-
CD
Q.
03
•»— »
O)
0)
if
E
3
CO
CO
0>
T3
'g
CD
0)
o
o
o
o
CD
o co
o 01
5 03
O J3
II
O
o x:
c o>
o 3
O o
0) 03
= 2
O)
16
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
o
o
ocroz
00 >
JU9OUOQ
00'0°
O
Q)
o
if
tfl
03
V)
Q)
s
o
0)
CD
CD
1
O
>%
o
0}
QJ r^
CD CO
o en
X T-
Q)
c cu
o .a
'
cO
w -
o
C
o
en
o 1
JC
oo
a>
17
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
QQ-QZ
00-91
00 'Zl
(l/Bn)
00*8
uoi ^DJ
00
o
o
o
10
•a
4)
-« c
• o
C> C
in q)
u
c
o
s°
-Pil
o1
o
-*>
C
«
u
o «-
in V
o
o
00'0
18
CO
CO
en
a.
<
o
•o
g
"u-
CD
Q.
CD
^— '
O)
C
'
-
CD
CD
0)
o
CD
T3
'o
'
CD
CD
CO
CD
U
CD
CD
CD
CD
C CD
o
§1
£?*"
u.
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
REFERENCES
1. Baker, D. B. 1988. Sediment, Nutrient and Pesticide Transport in Selected
Lower Great Lakes Tributaries. EPA Report EPA-905/4-88-001, U. S. EPA
Great Lakes National Program Office, Chicago. 225 p.
2. Great Lakes International Surveillance Plan (GLISP). 1986. International
Joint Commission, Detroit. Part 5.
3. Baker, D. B. 1984. Fluvial transport and processing of sediments and nutrients in
large agricultural river basins. U.S. Environ. Protection Agency, ERL, Athens,
Georgia. EPA-600/3-83-054.
4. Richards, R. P. 1985. Monte Carlo studies of sampling strategies for
estimating tributary loads: II. Effects on bias and precision due to
differences among watershed sizes and the transported materials being
monitored. U.S. EPA, Region V, Chicago.
5. Baker, D.B. 1985. Regional water quality impacts of intensive row-crop agriculture:
a Lake Erie Basin case study. J. Soil and Water Conserv. 40:125-132.
6. Richards. R. P., J. W. Kramer, D. B. Baker, and K. A. Krieger. 1987. Pesticides
in rainwater in the northeastern United States. Nature. Vol. 327, No. 6118, 14 May
1987.
7. Richards, R. P. 1985. Estimating the extent of reduction needed to statistically
demonstrate reduced nonpoint phosphorus loading to Lake Erie. J. Great Lakes Res.
11 (2):110-116.
8. Baker, D. B. 1985b. Impacts of cropland runoff on nutrient and pesticide
concentrations in river systems in The Qffsite Costs of Soil Erosion. Proceedings of
a symposium, May 1985. The Conservation Foundation, Washington, D.C. pp. 63-
80.
9. Baker, D.B. 1987. Rural nonpoint pollution in the Lake Erie Basin: Overview.
IN: Effects of Conservation Tillage on Groundwater Quality — Nitrates and
Pesticides. Lewis Pub., Chelsea, MI. pp. 65-91.
10. Baker, D.B., K. A. Krieger, R. P. Richards and J. W. Kramer. 1985a. Effects of
intensive agricultural land use on regional water quality in northwestern Ohio. pp.
201-207. IN: U.S. EPA, Perspective on nonpoint source pollution. EPA 440/5-85-
001.
11. Baker, D. B., K. A. Krieger, R. P. Richards and J. W. Kramer. 1985b. Gross
erosion rates, sediment yields, and nutrient yields. IN: Perspective on nonpoint
source pollution. EPA 440/5-85-001.
12. Baker, D.B. 1988. Farm chemicals in surface waters. IN: Water Quality: A
Realistic Perspective. University of Michigan, Ann Arbor, pp. 219-234.
19
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
13. Richards, R. P. and D. B. Baker. 1988. Estimates of human exposure to pesticides
through drinking water: A preliminary risk assessment. 26 p.
14. Baker, D. B. 1987. An integrated tributary loading program and conservation tillage
assessment program for the Lower Great Lakes. 1986 Water Year Summary Report.
Grant Number R005817-01-2. Great Lakes National Program Office, Chicago. 49
P-
15. Richards, R. P. 1988. Measures of flow variability and a new classification of Great
Lakes tributaries. Report to U.S. EPA/GLNPO, 18 pp. plus figures and appendices.
20
-------
I
I
I
I LAKE ERIE TRIBUTARY LOADING STUDIES
• APPENDIX 1
I CONCENTRATIONS AND LOADS OF NUTRIENTS AND
| SEDIMENTS IN LAKE ERIE TRIBUTARIES
• (1987 WATER YEAR)
I
Submitted in Partial Fulfillment of
I Grant Number R005967-01
• Great Lakes National Program Office
U. S. Environmental Protection Agency, Region 5
Chicago, Illinois 60604
I Robert Beltran, Project Officer
• January 1989
I
Prepared by:
• David B. Baker, Director
Water Quality Laboratory
• Heidelberg College
Tiffin, Ohio 44883
I
I
I
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Note: In this appendix, the concentrations and loads of nutrients and sediments are
presented in the same format that was used in Appendix 1 of the 1988 report by Baker
entitled Sediment, Nutrient and Pesticide Transport in Selected Lower Great Lakes
Tributaries (EPA-905/4-88-001). The reader is referred to that document for details on the
methods used to calculate monthly and annual loads of nutrients and sediments.
List of Tables
The following tables for the indicated stations include:
1. USGS discharge for each month and the entire water year.
2. The ratios of the monthly USGS discharge to the discharge observed in the monitoring
program.
3. The number of samples analyzed each month.
4. The monthly and water year loads of suspended solids (SS), total phosphorus (TP),
soluble reactive phosphorus (SRP), nitrate plus nitrite-nitrogen (NO23-N), total
Kjeldahl nitrogen (TKN), and Chloride (Cl).
Table Station Page
1. Maumee 24
2. Sandusky 26
3. Raisin 28
4. Cuyahoga 30
5. Honey Geek 32
6. Rock Creek 34
7. Lost Creek 36
22
-------
I
I
• List of Figures
• The following figures for the indicated stations include annual hydrographs, sedigraphs and
I
chemographs for total phosphorus, soluble reactive phosphorus, nitrate plus nitrite-nitrogen,
and conductivity.
Figure Station Page
1. Maumee 25
2. Sandusky 27
_ 3. Raisin 29
| 4. Cuyahoga 31
5. Honey Creek 33
I 6. Rock Creek 35
7. Lost Creek 37
I
I
I
I
I
I
I
I
I
I
I
-------
1
tu
1
0
C/f
<0
CD
.O
o
3
U
C
g
=
'c
t*
C
"™
c
'6>
CO
CD
2*
.C
O
CO
s
CO
CD
T~
CO
CD
.92
ra
>
^
£r
ȣ-
u_
$
'£
0)
CO
E
CO
5
1
o
c'
CO
0
CO
TJ
c
ra
CO .
~O W
ra c
— -8
_>..o
1 i
^ c
i»
"Q O)
K
_J
O
z
^^
*-
1
CO
OJ
o
z
CL
00
Q-
'
(n
w>
CO
CO
0
•o"5-
Zc?
5 —
o 13
U- CC
0)
CO en
O to
CO •§
3 CO
b
^z
"c
o
T)- CD O
O J^^ ^~
CO t- O
co in •sr
o in CM
co co o
CO CD CO
in in co
co T- co
in i^. co
en o m
T- CM CM
co in ^
•t CD T-
cn CM i-
r*^ CM co
CD CM in
CM [^ CM
CM o in
CO i- T-
•^ 00 •*
o in -<3-
•<* O N-
o in co
t--- v in
in c^ to
•sj- CO CM
in CD en
co in o
o> at o
0 0 iT-
CO CO CD
en en T-
m oo m
CO O 00
CO CO •*
<-. > o
0 0 CD
OZQ
M- 00 CM
CO CO i-
r~- T- T-
CO h~ O)
f^ r- CO
Tt CD •>!•
T- co oo
en oo CD
T- CO •*
T- CO O
CO •<*• T—
r*~ in o
T- CO
m CD co
CO -^ CO
CM CO CO
en in CM
CO CO N-
CM ^ •*
CO -r- O
r^. m co
co i- o
co •f T-
i- CM
in co en
CO CO CO
•* r^ i^-
00 CO •«}•
o en co
i- O O
•* en r-.
^ ^ co
o co en
co en co
T- CM CM
-O ^
•^LL!
en in en
CO CO CO
oo co oo
co o o
o co r--
00 00 ^
CO CM O
O CD r-
•-
m co r-
T- CM T-
00 CO CM
M- i- CM
i- CO CD
0 i- 0
O CO CO
m t^- CD
"t T- CM
o co en
o •* o
o in co
CM CO CO
^j* oo en
CO CO CO
co r^ T-
i- CM CO
en co en
o o o
CM m CM
•<* CO CM
o en in
o r^- CM
CO CM CM
>- >< c
d- J2 T
< 2 -3
m >*• co
CM en o
CM CO CO
T- co en
Is* CM CM
co o in
in CM T-
co ^- en
^j-
CO CO T-
CO i- CO
CM
1- •si- 1-
CO CO CD
r-- co T-
CO CM h-
CM en o
CO r- T-
r~ Is- r-~
CD CO CO
i- co in
CO CM CM
CO
in CD CM
CO CO CO
CO -r- CM
r^ co o
en CM CD
O T- 1-
O CM CM
co co en
CM en CD
CD ^ ^J"
CM
O) CL
•53®
-3
-------
81 '0 ZL '0
(I/6UJ) d
90 '0
00 '0
"10S
B'2l S'8 £•> O'O
(l/6iu) 31VM1IN
506 *09
(soqiun)
20C
< Sg
3 S
96Clt
U9
O'O
f
3
O
O
u>
co
O)
O
CO
CD
CO
ID
a °> u.
u. •— CD
>
1 *
-» CD
CD
CO
Q)
Q.
2
D>
O
CD
.C
O
•a
c
CD
.C
Q.
CD
0)
T3
CD
CO
O)
O xJ
"9 cu
^* •>*
x: •*»
"CD CD
|i
oo
• en
CD
O)
IV 101
-------
0)
m
o
C
CO
52
•§
f=
•£
u
c
g
1
.£
c
CD
CO
to
o
Q
CO
o>
l_
co
CD
CD
CO
*
£
w-
CD
if
"
73
co
CO
CD
O
**—
CD
(5
o
73
73
C
CO
(/> .
73 CO
CO CL
— 2
-C j=
tff CD
o E
2 c
o> .>
(0
I—
_j
O
z
i^
1—
z
CO
CM
o
Z
Q.
CO
M
u.
'
CO
CO
co
*S Q-
z if
co
||
u.cc
CD
CO cn
O co
§1
b
£
"c
o
2
r- co r-
T- cn cn
(V 0 0
co ^r h-
CM CO CO
o co co
o> CM m
if CO •*}•
CM CM CM
in co co
»— CO N-
TJ- co co
T»- co cn
o cn m
co o r^
i- cn T-
m o cn
Tf CO ^f
oo in co
oo m o
h^ co cn
r-. •* co
T- CM r-
O O 00
CM *-
o r^
m in
cn o
; T-CM
00 00 CO
in r-- o
CO i- CM
i- CM m
T— t— t—
*- > O
O O CD
OZQ
co r^- CM
T- CO CM
O> Is* 00
t— T— T—
h^ co r^
CM CO CO
CO • o o
co r^ o
co co
(^ CO CM
T- 1^. CM
T- 1- CO
cn co co
o T- cn
O CM CO
cn CM CM
i- CM 0
in *- r^
CO CO T-
m i- co
CO 00 CM
CM in
o TJ- cn
•<* co co
^^ r*1" r^*
O 05 O)
o r^ cn
r- T- 0
co T- en
cn co T-
T— Is* CO
f^ CO 00
T~
l_ >, c
Q ^ro^ 3
< 2 -j
in in co
cn (^ oo
co >* S-
en co i-
CO xj- CO
T- co oo
O T-
co
CO CO T-
CO T-
Q.
•5 3 CD
•=9
-------
a:
>-
x.
GO
Z>
Q
2
<
GO
9C '0 tZ '0
(T/&UI) d
'0
00-0 B'tl 6'6 6't 0 '0
'IDS (I/6*) 31VH1IN
tS6 9C9 BtC 0
n) 30NV10nQNOO
0 9B6L
t-ZCl
Z99
~1
I 'Z
* 'I
(l/6ai)
O)
o
o
o
oo
o>
O
6
CO
CD
CO
h- .
eo 55
2 .5
cc
CO
CO
a?
>-
on
t^
oo
"
0)
o
c
.2
"5
c
T3
C
CO
Q.
CO
O)
(A
Q.
CO
O ^
•p o>
II
-------
c
CD
.>
O)
CD
CD
CO
c
C8
w"
^-
CD
0)
E
o
3
br
.—
."=:
E
c
c
CD
(g
CD
O)
1
U
(0
a
.
1
5
a>
c5
1
£
c
"CO
a:
fc_ '
m
o
.S3
•o
•o
c
m
CO
co
o
.^^
1: w
c o
o *t
1"
— 1
O
z
v
1-
t
co
' CM
O
Z
a_
/v-
LL.
CO
M
LO-
CO
CO
CO
_g>
"fi d.
5 •—
_o rt
U. OL
CD
CO 0)
O ca
"^ "o
^3 CO
a
x:
"c
o
^r-co
a> r*. CM
co oo en
T- i- CM
•C CM CO
en T»- in
(>. ifl ,5-
o in o
CM i-
m oo co
co co oo
^J- i- CO
00 00 O)
CM CM in
i2^^
O O CO
r** in oo
CM
r*- co oo
CD in co
in i- oo
0 i- i-
*t m rr
CM CM CM
in co CM
O •* CM
co i- •*)•
in o r^
CO 00 00
i- CM T-
CM XT CO
*"
*- > O
0 O CD
OZQ
in CD CD
r^ o co
o h« in
en in r^
T- T- CM
CO CO CM
•^- m CM
CO CM 0
i-1-OO
^~ r^« oo
T- CM
S" "^ co
0 O i-
T- m co
CM i- 00
i- CM 00
r-. CM T-
CM i- in
CO
CO CO CO
CM CM CM
00 CT> i-
m in o
CM CM CM
O) i- CM
CT) r*^ oo
oo en in
co CM r^
III
o r-- r^
h* CO CO
o i- < CD r^*
r- CM
m in m
CM CM CM
00 CO •*
O) Tl" CO
r- CM CO
in i- i-
o> r*- 1-
o> r^ o>
CD CM CM
>- &•> c
^-i^
o> TT in
CD co in
•* h> in
CD O> i-
T~
in oo i-
CO CM f^
i- T- CM
t^ CO N-
CM co r^
T- co co
000
•*»• m o
i- ••» co
O) O Is-
CM O 00
CO CO 00
1—
If) CO CD
CM CM CM
in o •*
CO CO CM
CM m CM
i- [-- 0
r>- r^- m
o r^ CM
i- T- CM
o> Q.
3 3 CD
1—
en
en
CO
CM
CO
cri
^
f^«
CD
CM
CM
in
CM
in"
CM
ai
r-'
^
CM
U7
CM
O
O
CO
o
CO
CO
CD
m
t-
28
-------
CO
OL
CC'O 22-0
(I/6UJ) d
U'O OO'O
'IDS
B'Zl
IC9> I80C
ttSL
M01J
80C
O)
c
o
O
10
co
o
d
CO
O
CO
c
°w
'
Q.
ro
o>
o
QJ
c
o
3
c
CO
Q.
2
g)
TO
CD
>
0.
CD
O)
I J5
P 03
^ W S
=3 03
-------
1
o
-o
c
re
CD
IS
£
f)
c
o
1
c
c
'6>
to
CO
to
b"
00
en
re
^
re
5
*-
o
CO
if
re
e?
JE
re
^
o
1
jo
CO
E?
re
0
w
TO
C
re
TJ ">
re c
O Cj
>» o
£ '•£
^- a}
o E
S.c
CO .>
t-
d
Z
^
1-
Z
, co
CM
0
Z
Q.
IT"
LL.
CO
0-
(0
CO
W
.»
"o °-
zl
5 • —
_g re
LL LL
CD
CO P>
- in
CM O 00
CM r-. co
CO CO CO
r^ co T~
CO CO CO
o c» o
T- 0 *-
Oi 00 O)
o in T
t^. oo co
r^ in i-
*~
<— > o
O O CO
OZQ
•r- U) CO
CM i- CM
in o in
CM O f-
cn oo oo
in co oo
r^ en en
oo in TJ-
'"
^- CM in
CM en co
en en o
CD CM ^f
^" co ^j*
O> T- Tj-
m oo m
T- CM
in o o
CM T- CO
en oo CM
i- in
oo r- oo
CM T- CO
r^ o in
en ^° en
CM en o
co T- oo
o o o
r- CD CM
CD ^- en
_Q
-|LLS
v- CD en
r-» r~- CM
So o
^ en
CO CO CO
T-
in in en
CM in en
T- CO 00
CM
oo CM in
en oo o
co oo m
T- CM 00
CO CM Tj-
T- o in
co r- co
•o- CM
co CM co
m CM T-
CM CM CO
co T- in
CM r-
lf> If) h~
CO CO ^"
r^. m oo
o r^. in
o oo en
T- 0 0
o o in
r^. co co
T- CM CO
m co *t
*"
tc
^
r^ TJ- CD
oo CM en
•* co en
oo r^- en
•* CM CO
en r^* r^
co in co
in CM co
*~
en o i-
i- 00 i-
O Tfr CM
en r^- in
in CM in
T- CD 00
T- oo co
co •«* o
in r^ p^
co co oo
00 CO ^
CO
T— r** r**
TT CO CM
CO CO (^-.
CD CM 00
en en CM
O O T-
00 00 O
O T- CM
•t- r~- co
en CM in
en a.
•5 3 co
o
in
oo
CM
in
i^.
in
^j-'
o
CM
TT—
J*
^
CD
en
co'
in
CM
en
CO
CM
00
N.
P;
CO
••"
f»^
o
en
co
o
in
00
CO
3
0
30
-------
CZ'O
O'S
CT
L'i
O'O S661 OCCl
(soquin)
S99
2 <
Ul
I DC
< lii
IOU
129/.
018C
0 C9C2
89/1
(I/6tu)
8 '0
1V101
0 "0
8
§
OJ
TJ-
o
o
-
i w
£ -
O> CD
ir
o>
o
>.
d
CD
Q.
2
O)
O
0}
o
.2
*
(Q
Q.
^ -5>
< "°
**• CD
y w
Q.
5
O)
O
CO
CO
9> cu
3 £
O)
31
-------
W
"S
(0
o
T3
C
CO
2
"5
E
o
ID
13
C
.g
1
c
CD
ch
to
co
1
O
CO
en
CD
^_
CD
"55
2
o
1
ts
CD
CD
6
O
X
fc—
** —
CD
O)
a
"§
S
TO .
C {/)
CO c
03 O
S.2
_O i=
;>, CJJ
£ C
S CD
in o5
m CD
w ^
_J
O
•z.
N£
1—
1
co
' CM
o
Z
a.
CO
/s
LL
*~
CO
CO
(0
CD
0 0.
CO
5 -—
5 ca
""
Q)
CO 0)
o «
"^ "o
Z) eft
b
JC
o
1-^-*
oo co r^
CM oo r--
CM CO CO
in T- o
oo •<*• r«
CM CO CO
CO CO T-
M- r>- eo
t^ a> o
co co r-
T- T- T-
00 00 T-
^- co r*»
CO CO CO
r^- in o>
T- CM T-
CO h» T-
co ^f co
CM CO CD
m CM co
O 0 0
o en co
•^- CM in
CO CO 00
§> 0
O CD
zo
r-inT-
O 00 CM
•-
CM CO CO
TT T- 00
^ •>«• CM
000
f1* CO CO
O T- T-
CM 00 O
o r~- r-
T- CM CO
CO O O
CO CO CO
•«i- oo en
r^ in o
o o r^
T- T- en
en T- o
'd- oo r»
III
CM O O
TT i— TT
co m o
CO T-
IV CM O
T- co in
r>- T- co
co T- in
00 T— "fl-
T- T- in
T- 0 0
co in co
co o m
co iv co
o co m
O T- O)
CO T-
rv o co
co ^- m
CM 00 •si-
r** co "*j"
Ol T- O
O T- 1-
CO T- CM
T- O CO
CM CM in
CM
if!
•si- r>- co
o in en
CO CM
en co in
CO T- O
T- •* T-
m
in •* co
en CM o
o o o
co in T-
•^too
•* o o>
co J-
CM
CO CO CO
•^r co co
CO CO O
T- T- O
T- CM CM
•SJ- CO <^"
en T- o
O> Q-
•5 3 CD
co
,f
CO
T—
CM
CO
1^'
o
CM
(^
in
m
in
CO
CO
O)
oi
CO
in
o
^~
CM
O>
in
o
''^
CO
1
32
-------
a:
<
r->
oo
01
(I/Bui)
9i '0 oo '
10V3a 'IDS
0'9l
0'8 0 '0
3J.vyj.IN
tee oes sez o
(soqum) 30NViOnCJNOO
8661
0 OZ9L
Z 'I
(I/ Bui)
CD «
UJ O)
o
o
05
CD
CO
O
E
n)
^
0}
E
o
0)
o
O)
O
E
o>
o
T3
CO
CL
CO
D)
T3
0>
ro
O ••— •
s
co en
Si
O)"0
9 '0 0 "0
1V101
-------
c
c
.1
en
£
CB
u>
o
•o
ca
52
E
o
ID
o
0
1
c
c
'en
CO
S>
ca
.c
0
.!2
O
00
en
CO
9*
I
5
k.
1
o
~Q
O
QC
£
0)
en
ni
1
T3
C
1C
(/>
nJ
_o
2E
"c w
is
o
CO 'is
-2> £
S
_J
O
Z
h-
Z
CO
• CM
0
O.
CO
u.
1-
co
CO
CO
H- —
° c
z (0
CO
$
_o fa
0)
CO en
O cc
§1
b
•*-•
o
o co co
rx m o
CO 00 00
en o T-
CM 00 •*
rx o en
T~
in CM rx
CO T— 1—
T~ 1~
T- 00 T-
rx oo o
CO T- CM
o o o
CM in CM
CO T- 00
T- CM T-
T- 0 CM
en co en
•*r en to
•* 00 0
co in eo
T- 00 i-
oo ^- co
CM -i- CM
o in co
co co in
co co ^*
•»- > o
O O 0)
OZQ
f*1* f*1* CO
CO CM O
CO ^3" ^
CO CO CO
T- CO CO
T- CM T-
CM T- en
co in co
co in *-
CM fx CM
O 0 O
o o o
co t- co
T- CO T-
o o o
rx CM i-
co en rx
en o ix
CO CO CO
•*• oo i-
CM CO O
O i- O
T- •* ix
T- O •<«•
T- CM i-
III
CO O |x
rx en o
00 -i- CM
CM 0 T-
CM •* CM
00 0 T-
Jx ^- en
en o co
T~
en oo co
co o co
i- O O
o o o
r- in in
CM O CM
T- O O
0 CM CO
O CM CO
rx T-
o in co
CO CO fx
rx oo en
to en co
o en en
i- O O
r- o en
co co rx
TT O O
til
o co co
o rx co
CM
rx i- T-
CO T- T-
T- 0 0
CO T- T-
CM 0 0
co en co
in o o
o o o
o o o
CM CO CM
co o o
o o o
r- rx eo
en
T~
co co co
CO CO CM
i- ix m
o o o
•*f 0 00
1- T- O
rx co en
00 CM i-
000
en a.
"•^ "J Q)
«2 ^f (A
CM
,_'
LD
fx
CM
5
^.
CO
CO
en
CM
T—
^
00
rx
T—
1—
CO
^-
en
^
en
CO
co
CM
CO
1
34
-------
SI '0
S'6
(I/6UJ)
O'O S6ZI
A
SOS
991
0 C6CZ S6SI 86A
(I/6iu) J.N3NICJ3S
35
o
O'O
O
O)
c
"v—
3
TJ
o"
O
O
CO
CD
CO
CD
2?
o
-g
o
QC
Q.
CO
O1
O
0>
.c
o
c
CD
T3
C
CO
Q.
CD
(O
Q.
co
o>
o
CO
^r-
O) CO
52
O)
(l/6iu) d
-------
1
_o
c
(0
sf
0)
E
g
.Q
o
c
g
1
c
CD
OJ
<2
CD
£»
0)
f~
o
•
CO
en
to
CD
»-
CD
75
J5
CO
|
h—
O
w
o
— ^
CD
i_
»*—
CD
O>
co
"0
'•5
C yj
Cu r~
»M C
CO O
"§ o
5 '-fc
£ jf
! c
2 o>
CD $
1"
o
z
1—
C\J
O
Z
D.
DC
CO
Q.
1-
co
CO
CO
0)
»^- Q^
^ c
^* 5
CO
§-j-:
nj
1 1 rr
CD
CO S)
O «
CO -c-
b
£
O
CO f^ CJ)
o in co
T~
CO O) Tj-
|-» TJ- CD
CM 0 O
00 O T-
1— 1— T—
M- CO i-
CO T- 1-
o o o
o o o
en co o
^-oo
odd
oo cj r^
00 i- T-
CM
O> O) CO
1— ^ ^*
CM CO 00
O CM CM
e\j o TT
CO t- i-
to to co
O5 CM CO
O 0 0
0 0 CD
OZQ
00 r^» ^"
CM CO ^~
co co i^-
T- - O) O
o o o
•* CM 00
T- CJ CM
0 0 O
III
in oo co
CM CO T-
co o co
CM CO CM
0 CM 0
•«*- a> T-
o co T-
•* o in
O CO O
o o o
000
CM CO •*
0 CM 0
o o o
if 00 00
O) CM
^" O f^
CO 00 Tf
oo r-~ o>
CO 00 00
o> en co
o o o
^j" en oo
i- •* O
000
^ :&> c
O T- CM
CM O O
CO r- T-
*• o o
0 0 O
00 T- r-
000
V V
CM T- T-
i- O O
o o o
o o o
V V
CM r- i-
i- 0 0
o o o
V V
CM T- i-
[v. V V
CO CO T
in CM co
••d- o o
CO CM CM
CO CO CO
o o o
in T- T-
T- O 0
o o o
o> a.
^ 3 CD
-5
o
in
o
CO
CO
£
36
-------
•0 ZZ'Q
(I/6UJ) d
(soquin) HONViOnONOO
zz
«
^E.
^
i
„,
^
j
f
-<
—
— g
l Z8 It
D.
UJ
U
3
3
•z
•
."*
a:
a
o
Ul
u.
<
o
Ul
a
>
o
o
o
0 99S
—
7
^
-
C tttZ 2221
a.
UJ
(A
U
Z
"
2
It
.*
(t
O
Ul
u.
I
o
Ul
o
o
8
o e-
4
)
<^
. ^
• 'i^r~*j
-^
J
•<
z
_ J
J
-j
-^
J
2 6H 6'0 0
a.
(A
1
_j
^
z
>-
<
K
.*
Ct
m
Ul
u.
|
O
1—
u
o
0
(«; = ) M01J (r/6uO 1N3WI03S (I/6"') d 1V10i
37
00
o
d
co
CO
:>,
.
03
w
QJ
§"
O5
O
O)
£
T3
c
CO
.c
Q.
CO
T3
0)
U)
.c" nj
Q. o
CO >s
c?^
-of
>« 5
co
3
2? ^
iZ
0)
o>
-------
I
I
I
I LAKE ERIE TRIBUTARY LOADING STUDIES
| APPENDIX 2
| PESTICIDE LOADS IN LAKE ERIE TRIBUTARIES
• (1987 WATER YEAR)
I
Submitted in Partial Fulfillment of
I Grant Number R005967-01
• Great Lakes National Program Office
U. S. Environmental Protection Agency, Region 5
Chicago, Illinois 60604
• Robert Beltran, Project Officer
• January 1989
I
• Prepared by:
David B. Baker, Director
• Water Quality Laboratory
Heidelberg College
Tiffin, Ohio 44883
I
I
I
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Note: In this appendix, the pesticides loads for Lake Erie tributaries are presented in the
same format that was used in Appendix 2 of the 1988 report by Baker entitled Sediment,
Nutrient and Pesticide Transport in Selected Lower Great Lakes Tributaries (EPA-905/4-
88-001). The reader is referred to that document for details on the methods used to
calculate pesticide loads for each station.
List of Tables
The following tables present the pesticide loads and unit area loads for each station.
Table Station Page
1. Maumee 40
2. Sandusky 41
3. Raisin 42
4. Cuyahoga 43
5. Honey Creek 44
6. Rock Creek 45
7. Lost Creek 46
39
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Table 1: Pesticide loads for the Maumee River, USGS04193500,
during the time interval 8704150000 to 8708150000, a span of 122 days,
during which 40 pesticide samples were taken.
The time characterized by any pesticide sample was limited to 7 days.
The loads calculated in this manner are as follows:
Pesticide
Simazine
Carbofuran
Atrazine
Terbufos
Fonofos
Metribuzin
Alachlor
Linuron
Metolachlor
Cyanazine
Pendimet halin
1:1 PTC
D1A
DEA
Ethoprop
Trifluralin
Phorate
Propoxur
Aldicarb
The monitored time is 97.2361 days.
The monitored discharge is 377284 cfs-days, or 923.214 million cubic meters,
The total discharge during this time is 401727 cfs-days,
or 983.026 million cubic meters, and is based on the most complete
discharge record available in the computer. Due to differences in data and
calculation approach, this discharge may differ from the USGS discharge for
the same time period. The discharge record covers 121.125 days out of 122
with each flow measurement characterizing one day or less. 1 flow values
out of 149 were missing.
The observed loads correspond to the time and discharge monitored.
The extrapolated loads are calculated by multiplying the observed load
by the ratio of the total discharge to the monitored discharge.
The unit area load is the extrapolated load divided by the watershed
area and re-expressed as grams per hectare.
The accuracy of the load estimates is dependent on the frequency and
representativeness of the pesticide samples and the flow data.
Infrequent pesticide samples are more often the limiting factor than
is inadequate flow data.
Pesticide concentrations below detection limit are taken as 0.000 ug/L.
40
Observed
Load
kg
330.431
1107.04
4664.52
44.2636
368.569
730.14
1552.14
49.2537
3937.41
1113.6
76.3805
3.56784
42.2637
13.2938
219.693
38.172
222.32
42.0645
0
Extrapolated
Load
kg
351 .839
1178.76
4966.71
47.1312
392.447
777.443
1652.7
52.4447
4192.5
1185.75
81 .3289
3.79899
45.0019
14.155
233.926
40.6451
236.723
44.7897
0
Unit area
Load
g/ha
.214601
.718976
3.02941
.287473E-01
.23937
.474195
1.00805
.319882E-01
2.55718
.723239
.496059E-01
.231716E-02
. 27448 5E-01
.863374E-02
.142681
. 24791 1E-01
.144387
.273191E-01
0
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Table 2: Pesticide loads for the Sandusky River, USGS04198000,
during the time interval 8704150000 to 8708150000, a span of 122 days,
during which 65 pesticide samples were taken.
The time characterized by any pesticide sample was limited to 7 days.
The loads calculated in this manner are as follows:
Pesticide
Simazine
Carbofuran
Atrazine
Terbufos
Fonofos
Metribuzin
Alachlor
Linuron
Metolachlor
Cyanazine
Pendimethalin
EPTC
DIA
DEA
Ethoprop
Trifluralin
Phorate
Propoxur
Aldicarb
Observed
Load
kg
114.044
767.7
1077.16
0
68.2491
212.242
480.978
73.3624
1020.54
86.3519
23.5525
2.51089
2.49424
3.16955
24.2905
2.17676
1.23705
.516062
0
Extrapolated
Load
kg
117.452
790.639
1109.35
0
70.2884
218.584
495.35
75.5546
1051.03
88.9321
24.2562
2.58592
2.56876
3.26426
25.0163
2.24181
1.27401
.531482
0
Unit area
Load
g/ha
.362506
2.44024
3.42391
0
.216939
.67464
1.52886
.233193
3.24393
.274482
.748649E-01
.798J23E-02
.792S28E-02
.100749E-01
.772108E-01
.691915E-02
. 39321 3E-02
.164038E-02
0
The monitored time is J03.649 days.
The monitored discharge is 105851 cfs-days, or 259.017 million cubic meters.
The total discharge during this time is 109014 cfs-days,
or 266.756 million cubic meters, and is based on the most complete
discharge record available in the computer. Due to differences in data and
calculation approach, this discharge may differ from the USGS discharge for
the same time period. The discharge record covers 113.625 days out of 122
with each flow measurement characterizing one day or less. 0 flow values
out of 180 were missing.
The observed loads correspond to the time and discharge monitored.
The extrapolated loads are calculated by multiplying the observed load
by the ratio of the total discharge to the monitored discharge.
The unit area Joad is the extrapolated load divided by the watershed
area and re-expressed as grams per hectare.
The accuracy of the load estimates is dependent on the frequency and
representativeness of the pesticide samples and the flow data.
Infrequent pesticide samples are more often the limiting factor than
is inadequate flow data.
Pesticide concentrations below detection limit are taken as 0.000 ug/L.
41
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Table 3: Pesticide loads for the River Raisin, USGS04176500,
during the time interval 8704150000 to 8708150000, a span of 122 days,
during which 6 pesticide samples were taken.
The time characterized by any pesticide sample was limited to 7 days.
The loads calculated in this manner are as follows:
Pe s t i c i de
Simazine
Carbofuran
Atrazine
Terbufos
Fonofos
Metribuzin
Alachlor
Linuron
Metolachior
Cyanazine
Pendimethalin
EPTC
DIA
DEA
Ethoprop
Trifluralin
Phorate
Propoxur
Aldicarb
The monitored time is 40 days.
The monitored discharge is 8064.62 cfs-days, or 19.7341 million cubic meters,
The total discharge during this time is 31978 cfs-days,
or 78.2502 million cubic meters, and is based on the most complete
discharge record available in the computer. Due to differences in data and
calculation approach, this discharge may differ from the USGS discharge for
the same time period. The discharge record covers 101.63 days out of 122
with each flow measurement characterizing one day or less. 0 flow values
out of 102 were missing.
The observed loads correspond to the time and discharge monitored.
The extrapolated loads are calculated by multiplying the observed load
by the ratio of the total discharge to the monitored discharge.
The unit area load is the extrapolated load divided by the watershed
area and re-expressed as grams per hectare.
The accuracy of the load estimates is dependent on the frequency and
representativeness of the pesticide samples and the flow data.
Infrequent pesticide samples are more often the limiting factor than
is inadequate flow data.
Pesticide concentrations below detection limit are taken as 0.000 ug/L.
42
Observed
Load
kg
2.13483
9.45032
65.1303
0
3.39069
10.4976
22.2597
0
22.4832
10.0)92
3.84666
0
0
.103388
1 .45543
.125054E-01
1.55067
.100043E-01
0
Ext rapolated
Load
kg
8.46509
37.4726
258.256
0
13.4448
41.6254
88.2647
0
89.1508
39.7285
15.2529
0
0
.409958
5.77111
.495867E-01
6.14875
.396693E-01
0
Unit area
Load
g/ha
.313638E-01
.138839
.956859
0
.498142E-01
.154225
.327027
0
.33031
.147197
.056513
0
0
.151893E-02
.213824E-01
.183722E-03
. 22781 6E-01
.146978E-03
0
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
T.itle 4: Pesticide loads for the Cuyahoga River, USGS04208000,
during the time interval 8704150000 to 8708150000, a spaa of 122 days,
during which 4 pesticide samples were taken.
The time characterized by any pesticide sample was limited to 7 days.
The loads calculated in this manner are as follows:
Pesticide
Simazine
Carbofuran
Atrazine
Terbufos
Fonofos
Metribuzin
Alachlor
Linuron
Metolachlor
Cyanazine
Pendimethalin
EPTC
DIA
DEA
Ethoprop
Trifluralin
Phorate
Propoxur
Aldicarb
The monitored time is 21 days.
The monitored discharge is 33675.6 cfs-days, or 82.4043 million cubic meters.
The total discharge during this time is 90317.8 cfs-days,
or 221.008 million cubic meters, and is based on the most complete
discharge record available in the computer. Due to differences in data and
calculation approach, this discharge may differ from the USGS discharge for
the same time period. The discharge record covers 118.748 days out of 122
with each flow measurement characterizing one day or less. 0 flow values
out of 157 were missing.
The observed loads correspond to the tine and discharge monitored.
The extrapolated loads are calculated by multiplying the observed load
by the ratio of the total discharge to the monitored discharge.
The unit area load is the extrapolated load divided by the watershed
area and re-expressed as grams per hectare.
The accuracy of the load estimates is dependent on the frequency and
representativeness of the pesticide samples and the flow data.
Infrequent pesticide samples are more often the limiting factor than
is inadequate flow data.
Pesticide concentrations below detection limit are taken as 0.000 ug/L.
43
Observed
Load
kg
10.673
10.3312
64.6018
0
7.53734
6.80883
12.4538
0
51.0571
2.05774
.407366
0
0
.581 951 Ii-01
.876423
0
0
0
0
Extrapolated
Load
kg
28.6248
27.7081
173.261
0
20.2151
18.2612
33.4009
0
136.935
5.51885
1.09255
0
0
.156079
2.35056
0
0
0
0
Unit area
Load
g/ha
.156334
.151328
.946267
0
.110405
.997336E-01
.182419
0
.747869
.301412E-01
.596697E-02
0
0
.852424E-03
.128376R-01
0
0
0
0
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Table 5: Pesticide loads for Honey Creek, USGS04197100,
during the time interval 8704150000 to 8708150000, a span of 122 days,
during which 102 pesticide samples were taken.
The time characterized by any pesticide sample was limited to 7 days.
The loads calculated in this manner are as follows:
Pesticide
Simazine
Carbofuran
Atrazine
Terbufos
Fonofos
Metribuzin
Alachlor
Linuron
Metolachlor
Cyanazine
Pendimethalin
EPTC
DIA
DEA
Ethoprop
Trifluralin
Phorate
Propoxur
Aldicarb
The monitored time is 102.875 days.
The monitored discharge is 7319.69 cfs-days, or 17.9113 million cubic meters,
The total discharge during this time is 6998.51 cfs-days,
or 17.1254 million cubic meters, and is based on the most complete
discharge record available in the computer. Due to differences in data and
calculation approach, this discharge may differ from the USGS discharge for
the same time period. The discharge record covers 114.25 days out of 122
with each flow measurement characterizing one day or less. 0 flow values
out of 162 were missing.
The observed loads correspond to the time and discharge monitored.
The extrapolated loads are calculated by multiplying the observed load
by the ratio of the total discharge to the monitored discharge.
The unit area load is the extrapolated load divided by the watershed
area and re-expressed as grams per hectare.
The accuracy of the load estimates is dependent on the frequency and
representativeness of the pesticide samples and the flow data.
Infrequent pesticide samples are more often the limiting factor than
is inadequate flow data.
Pesticide concentrations below detection limit are taken as 0.000 ug/L.
44
Observed
Load
kg
9.46856
11.0289
116.142
.141258E-01
7.45817
11 .2119
54.4497
7.68909
65.1481
14.9971
1.5841
.151202
.135681
.340906E-02
1 .48242
.272269
.217595
.016867
0
Extrapolated
Load
kg
9.05309
10.5449
111.046
.013506
7.13091
10.72
52.0605
7.3517
62.2895
14.339
1.51459
.144567
.129728
.325947E-02
1.41737
.260322
.208047
.161269E-01
0
Unit area
Load
g/ha
.234536
.273185
2.87683
.349896E-03
.184739
.277719
1.34872
.190459
1.61372
.371478
.392381E-01
.374526E-02
.336082E-02
.844423E-04
.367195E-01
. 67441 K-02
.538982E-02
.417795E-03
0
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Table 6: Pesticide loads for Rock Creek, USGS041 97170, '
during the time interval 8704150000 to 8708150000, a span of 122 days,
during which 63 pesticide samples were taken.
The time characterized by any pesticide sample was limited to 7 days.
The loads calculated in this manner are as follows:
Pesticide
Simazine
Carbofuran
Atrazine
Terbufos
Fonofos
Metribuzin
Alachlor
Linuron
Metolachlor
Cyanazine
Pendimethalin
EPTC
DIA
DEA
Ethoprop
Trifluralin
Phorate
Propoxur
Aldicarb
The monitored time is 106.311 days.
The monitored discharge is 97V.083 cfs-days, or 2.39582 million cubic meters.
The total discharge during this time is 1055.16 cfs-days,
or 2.58198 million cubic meters, and is based on the most complete
discharge record available in the computer. Due to differences in data and
calculation approach, this discharge may differ from the USGS discharge for
the same time period. The discharge record covers 115.875 days out of 122
with each flow measurement characterizing one day or less. 0 flow values
out of 177 were missing.
The observed loads correspond to the time and discharge monitored.
The extrapolated loads are calculated by multiplying the observed load
by the ratio of the total discharge to the monitored discharge.
The unit area load is the extrapolated load divided by the watershed
area and re-expressed as grams per hectare.
The accuracy of the load estimates is dependent on the frequency and
representativeness of the pesticide samples and the flow data.
Infrequent pesticide samples are more often the limiting factor than
is inadequate flow data.
Pesticide concentrations below detection limit are taken as 0.000 ug/L.
45
Observed
Load
kg
44.6823
.767647
7.27584
.016602
.676009
1 .22729
2.76978
.435409
7.51977
.576826
.19034
.109592
.1353251- -01
.367975E-01
.106515
. 232741 E-01
.977698E-01
.174452E-01
0
Extrapolated
Load
kg
48.1543
.827297
7.84121
.017892
.728539
1.32265
2.985
.469243
8.10409
.621648
.205131
.118107
.145841 E-01
.396568E-01
.114792
.250826E-01
.105367
.188008E-01
0
Unit area
Load
g/ha
5.37437
.923323E-01
.875135
.199688E-02
.813101E-01
.147617
.333148
.523708E-01
.904475
.693804E-01
.022894
.131816E-01
.162768E-02
.442598E-02
.128116E-01
.27994E-02
.117597E-01
.20983E-02
0
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Table 7: Pesticide loads for Lost Creek, USGS04185440,
during the time interval 8704150000 to 8708150000, a span of 122 days,
during which 86 pesticide samples were taken.
The time characterized by any pesticide sample was limited to 7 days.
The loads calculated in this manner are as follows:
Pesticide
Simazine
Carbofuran
Atrazine
Terbufos
Fonofos
MetribuzLn
Alachlor
Linuron
Metolachlor
Cyanazine
Pendimethalin
EPTC
UIA
l)EA
Ethoprop
Trifluralin
Phorate
Propoxur
Aldicarb
The monitored time is 104.358 days.
The monitored discharge is 344.607 cfs-days, or .843253 million cubic meters.
The total discharge during this time is 367.522 cfs-days,
or .899327 million cubic meters, and is based on the most complete
discharge record avaiJable in the computer. Due to differences in data and
calculation approach, this discharge may differ from the USGS discharge for
the same time period. The discharge record covers 121.681 days out of 122
with each flow measurement characterizing one day or less. 0 flow values
out of 215 were missing.
The observed loads correspond to the time and discharge monitored.
The extrapolated loads are calculated by multiplying the observed load
by the ratio of the total discharge to the monitored discharge.
The unit area load is the extrapolated load divided by the watershed
area and re-expressed as grams per hectare.
The accuracy of the load estimates is dependent on the frequency and
representativeness of the pesticide samples and the flow data.
Infrequent pesticide samples are more often the limiting factor than
is inadequate flow data.
Pesticide concentrations below detection limit are taken as 0.000 tig/L.
46
Observed
Load
kg
.194632
2.18214
7.96431
. 43451 1E-03
2.06286
.970862
3.71565
.399619
5.52499
3.26162
.162048
.218514E-02
.132899K-01
.785868E-01
.507588
.304382E-02
.022285
.111922E-02
0
Extrapolated
Load
kg
.207575
2.32725
8.49391
.463405E-03
2.20004
1.03542
3.96273
.426193
5.89239
3.4785
.172824
.233044E-02
.141736K-01
.838126E-01
.541341
.324622E-02
.237669E-01
.119364E-02
0
Unit area
Load
g/ha
.244205
2.73794
9.99284
.545182E-03
2.58828
1.21814
4.66203
.501403
6.93222
4.09236
.203323
.27417E-02
.166748K-01
. 986031 £-01
.636872
.381909E-02
.027961
.140429E-02
0
-------
U.S. Environmental Protection Agency
GLNPO Library Collection (PL-12J) _^
77 West Jackson Boulevard,
Chicago, II 60604-3590
------- |