INTERSTATE AIR POLLUTION
STUDY
BI-STATE DEVELOPMENT
AGENCY
ST. LOUIS DEPARTMENT OF
HEALTH AND HOSPITALS
ST. LOUIS - DIVISION OF
AIR POLLUTION CONTROL
EAST ST. LOUIS - AIR
POLLUTION CONTROL
COMMISSION
PHASE II PROJECT REPORT
ST. LOUIS COUNTY
HEALTH DEPARTMENT
EAST SIDE HEALTH
DISTRICT
MISSOURI DIVISION
OF HEALTH
ILLINOIS DEPARTMENT
OF PUBLIC HEALTH
CHAMBER OF COMMERCE OF
METROPOLITAN ST. LOUIS
AIR QUALITY MEASUREMENTS
ILLINOIS AIR POLLUTION
CONTROL BOARD
DHEW
PUBLIC HEALTH SERVICE
-------
-------
INTERSTATE AIR POLLUTION STUDY
PHASE II PROJECT REPORT
AIR QUALITY MEASUREMENTS
prepared by
J. R. Farmer
J. D. Williams
O.S. Environmental Protection Agency
Region 5, Library 15PL-16)
230 S. Dearborn Street, Boom 1670
Chicago. IL 60604
UoS. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
Public Health Service
Bureau of Disease Prevention and Environmental Control
National Center for Air Pollution Control
Cincinnati, Ohio
December 1966
-------
Copies of this report are available from the cooperating agencies listed on
the cover of this report and from the Control Development Program, National
Center for Air Pollution Control, 1055 Laidlaw Avenue, Cincinnati, Ohio 45237.
11
-------
FOREWORD
The Interstate Air Pollution Study was divided into two phases. Phase I, a
general study of the overall air pollution problems in the St. Louis - East St. Louis
metropolitan area, was conducted to determine specific activities that would require
further study in Phase II of the project. The effort was divided into two phases to
provide a logical stopping point in the event that interest and resources for proceed-
ing further might not materialize. The necessary impetus did continue, however,
and the Phase II operation was also completed.
The Phase I operation resulted in a detailed report, designed primarily for use
of the Executive Committee members and their agencies in making decisions con-
cerning the Phase II project operation. A Phase I summary report was also pre-
pared; it received wide distribution.
Numerous papers, brochures, and reports were prepared during Phase II
operations, as were some 18 Memorandums of Information and Instruction con-
cerning the project. All of these documents were drawn upon in the preparation of
the Phase II project report. The Phase II project report consists of eight separate
volumes under the following titles:
I. Introduction
II. Air Pollutant Emission Inventory
III. Air Quality Measurements
IV. Odors - Results of Surveys
V. Meteorology and Topography
VI. Effects of Air Pollution
VII. Opinion Surveys and Air Quality Statistical Relationships
VIII. Proposal for an Air Resource Management Program.
-------
ACKNOWLEDGMENTS
Grateful appreciation is extended to these individuals and agencies whose
cooperation and generous giving of their time, effort, and facilities made possible
this Study and this report.
Dr. Nicholas Duffetf Director, Public Health Laboratory,
City of St. Louis Health Division.
Richard Collins, Chief Chemist, Public Health Laboratory,
City of St. Louis Health Division, and staff for
invaluable assistance in performing chemical analyses
and in providing laboratory facilities and equipment.
H. C. Mitchell, Director, Division of Sanitation, and
William Shenk, Chemist, and staff of the St. Louis County
Health Department for providing assistance and chemical
analyses.
Don Long, Environmental Services, Missouri Division of Health,
and staff for important chemical analyses.
Robert Scott, James Weart, and Arnold Westerhold, and staff
of the Illinois Department of Public Health, Division of
Laboratories, for important chemical analyses.
Anton Telford^ Industrial Hygiene Section, City of St. Louis
Health Division, for operating a complete sampling station
and equipment at other locations.
Robert J. Chanslor,^ Supervisor of Air Pollution Control,
East St. Louis, for operating a complete sampling station
and other assistance.
Carlton Laird,6 Wood River City Manager, and Anthony Candela,
John Barach, Robert Stocker, Gene Rice, Ervin Thien,
Wood River Fire Department, for operating and maintaining
high-volume and AISI samplers.
Leo Sauget, Mayor of Monsanto, Ted Turner, Chief of Police,
and 01lie Reeves, Monsanto Fire Department, for operating
and maintaining high-volume and AISI samplers.
V. E. Staff, Chief Highway Engineer, State of Illinois,
William S. Krause, District Engineer, W. B. Williams, and
P. Ayers, for assisting the Study and operating high-volume
and AISI samplers.
Robert H. Frey, Jefferson Barracks Veterans Administration
Hospital, for operating and maintaining high-volume and AISI
samplers.
aPresently Director of Laboratories, Board of Health, State of Kansas.
^Presently with St. Louis County Health Department.
cPresently with Illinois Department of Public Health.
^Presently with U.S. Public Health Service, Gary, Indiana.
ePresently with City of East St. Louis.
-------
C. D. Trowbridge, Director, St. Louis Testing Laboratories, Inc.,
and F.dward Lanser, Chemist, for operating and maintaining
high-volume and oxidant samplers.
Frank Day, Plant Engineer, Forest Park, for operating and maintaining a high-
volume sampler.
Robert Hardy, Custodian, 5th District Police Station, for operating and
maintaining a high-volume sampler.
Charles Bushman, William Brolaski, Robert Yauzty, and Walter Barry,
Aeronautical Charts and Information Center, for their generous
assistance in operating and maintaining high-volume and AISI samplers,
cloth deterioration rack, and dustfall and lead peroxide candle
equipment.
Charles Copley, Commissioner of Air Pollution Control, City of St. Louis,
Jerome Molas, Industrial Hygiene Section, Anton Telford, Louis F. Klein
and Richard Knapp, for operating and maintaining several high-volume
stations throughout the City of St. Louis.
Malcolm Z. Brown, Air Pollution Sanitarian, St. Louis County Health
Department, Charles K. Gillespie, Timothy Shea, Walter Horstman, and
Leroy Vertrees for operating and maintaining several high-volume
and AISI stations in the St. Louis County area.
James H. Carter, (deceased), Commissioner Air Pollution Control,
City of St. Louis, for reading of AISI tapes.
L. F. Garber, Chief of Environmental Services, Missouri Division of
Health, and J. S. Noel, for their general assistance.
Robert R. French, Sanitary Engineer, Illinois Department of Public Health,
for his assistance.
Dr. Carl Rice, County Health Officer, Jefferson County, Missouri, and
Oscar H. Fager, Public Health Engineer, for assistance in establishing
sampling sites.
James P. Sperber, H. Neff Jenkins, Lowell F. Ring, Frank P. Partee,
Dave L. Brooman, Norman Edmisten and S. W. Horstman, Project Engineers,
Interstate Air Pollution Study, for direct and invaluable aid in the
conduct of the Study.
John Wheeler, Technician, Interstate Air Pollution Study, for reading
AISI tapes and genera] assistance in the conduct of the Study.
John J. Jamison* and George Ilickman, Statistical Services Branch,
Robert A. Taft Sanitary Lngineering Center, Cincinnati, Ohio, for
preparing the computer programs to process and analyze the data.
Francis L. Bunyard, Technical Assistance Branch, Robert A. Taft
Sanitary Engineering Center, Cincinnati, Ohio, for assistance in
processing the data.
William Jenkins, Inspector,Granite City,Illinois, for operating and
maintaining high-volume, AISI, and oxidant samplers.
aPresently with International Business Machine Corporation.
-------
William Smoot, (deceased) Inspector, East Side Health District,
for operating and maintaining high-volume and AISI samplers.
Brother Joel, Alexian Brothers Hospital, for operating an oxidant sampler.
Dr. Eugene Tucker, St. Mary's Hospital, for operating an oxidant sampler.
Dr. French Hansel, for supplying daily pollen count data.
-------
CONTENTS
INTRODUCTION ........................................ 1
MEASUREMENT METHODS ................................. 1
PARTICULATE POLLUTANTS ............................. 3
Suspended Particulates ................................ 3
High-volume Air Sampler ............................ 11
AISI Automatic Tape Sampler .......................... 12
Settled Particulate ................................... 13
GASEOUS POLLUTANTS ................................. 14
Sulfation (Lead Peroxide Candle Method) .................... 14
Sulfur Dioxide (West-Gaeke) ............................ 15
Total Oxidants (Phenolphthalin) ........................... 17
MATERIALS DETERIORATION ............................. 17
VISIBILITY .......................................... 19
ATMOSPHERIC TURBIDITY ............................... 19
AEROALLERGENS ..................................... 20
HYDROGEN SULFIDE ................................... 20
CAMP STATION ...................................... 20
DISCUSSION OF RESULTS .................................. 21
GENERAL .......................................... 21
DUSTFALL .......................................... 22
SUSPENDED PARTICULATES MEASURED BY HIGH- VOLUME AIR
.......................................... 30
CARCINOGENS ....................................... 70
PARTICULATE SULFATE ................................ 75
SUSPENDED PARTICULATES MEASURED BY AISI SAMPLER
(Soiling Index) ......................................... 75
SULFATION .......................................... 98
SULFUR DIOXIDE (West-Gaeke) ............................ 109
HYDROGEN SULFIDE ................................... 135
VISIBILITY .......................................... 138
ATMOSPHERIC TURBIDITY .............................. 139
TOTAL OXIDANTS - NETWORK ............................ 141
AEROALLERGENS ..................................... 144
CAMP STATION DATA .................................. 147
MATERIALS DETERIORATION ............................ 157
Steel Panels ....................................... 157
Fabrics .......................................... 161
-------
REFERENCES 166
APPENDIX - AIR QUALITY MEASUREMENT STATIONS EXCEPT
SULFUR DIOXIDE WINTER NETWORKS 171
Ascending Order of Site Coordinate Numbers 171
Alphabetical Order by Name 174
SULFUR DIOXIDE WINTER NETWORK STATIONS 177
By Ascending Site-Coordinate Numbers 177
By Numerical Station Numbers 180
-------
III. AIR QUALITY MEASUREMENTS
INTRODUCTION
The purpose of Phase II operations of the Interstate Air Pollution Study was
stated in the Phase II Project Agreement:
The purpose of the project is to study in detail air
pollution activity areas which were determined by
Phase I of the Interstate Air Pollution Study to need
further investigation; assist the two States and several
local agencies to strengthen and coordinate their air
Pollution activities and control programs; develop the
basis for, and assist with the establishment of an air
resource management program; provide an operating frame-
work within the project area for research and development
work; and do research and technical investigation which
will add to the body of existing knowledge on the nature,
transport, and effects of air pollution.'
The development of an effective air resource management program begins with
identification of the pollutants in the air, and determination of the quantity and
origin of each type. The air quality measurement program was designed and operated
to make these determinations in the Metropolitan St. Louis area. Once the physical
aspects of the air pollution problem are defined, air-pollution-effect data and
criteria as well as opinion surveys can be used to set the air quality goals. From
this base, with use of the pollutant emission inventory, the air resource management
emission control plan can be designed. At this stage the air quality measurement
program is used to monitor the air quality to assure that the goals are attained.
In additon to its use in the air resource management program, this report
provides a reasonably complete list of air quality data in a form that will assist
research and program personnel in developing activities and attaining program
objectives.
Figure 1, a population distribution map of the Study area, is provided to
allow comparison between distribution of population, pollutants, and sampling
measurement networks.
MEASUREMENT METHODS
Essentially two types of pollutants occur in the air, particulates and gases.
The particulates are classified as suspended and settleable. The suspended particulates
vary in size from less than 1 to approximately 100 microns;they remain suspended in
the atmosphere for long periods of time. Because the settleab'e particulates are
-------
400°°°' 410 420 430 440 450 460 470 480 490 500" 510 520 530 540 550
Figure 1. Population from I960 census by 5,000-foot grid squares.
-------
much larger and heavier, they settle out of the air relatively close to their source.
The gaseous pollutants, which are molecular in size, remain mixed in the atmosphere
indefinitely since they have approximately the same density as the air itself.
Figures 2 and 3 are maps of the area showing the sampling site locations and
delineating the equipment at each site. Table 1 gives a summary of all equipment
and measurements made during the Study. Tables 2,3, and 4 give a classification of
each site and the potential air pollution sources around them. Classifications are
made using a modified Air Pollution Control Association (APCA) designation explained in
Table 2. The classification describes three circular-segmented zones of activity
around the station: 0 to \ mile, \ to h mile, and % to 1 mile. A single classifica-
tion has not been assigned to a 360-degree circumference, but is given for 45-degree
arcs centering in the north, in the northeast, and so on around the total circumference.
This system records for eight directions from the samplers, the types of air pollutant
source activity in operation. It helps with interpretation of data from each station.
Albums of black and white photographs were compiled to show the sampling
sites and equipment and a view from the site in each principal direction. These
albums were given to the Illinois Department of Public Health, the St. Louis Division
of Air Pollution Control, and the St. Louis County Health Department.
Meteorological data are from the Weather Bureau Station at Lambert Field.
Their relationship to data from other years and to the rest of the Study area is
covered in Volume V,Meteorology and Topography.
The stability classes were determined from meteorological data from Lambert
Field by the Pasquill-Gifford-Turner stability classification criteria. These
criteria are based on surface wind speed, daytime solar insolation, and nighttime
cloud cover. They give the following classes: (1) extremely unstable, (2) unstable,
(3) slightly unstable, (4) neutral, (5) slightly stable, (6) stable, and
(7) extremely stable. For the purposes of this report, classes 6 and 7 are grouped
with class 5. Thermal mixing, as influenced by solar radiation, is at its naximum
for class 1 and at its minimum for class 5. The wind speed, however, is lowest at
class 1, increases to its maximum at class 4, and decreases again at class 5.
The size of the air quality measurements program and the variety of measure-
ments made are a credit to the numerous cooperating organizations and individuals.
PARTICULATE POLLUTANTS
Suspended Particulates
Suspended particulates were measured by both the high-volume air sampler
and the AISI tape sampler. Suspended particulates are small particles that absorb,
reflect, and scatter the sunlight and thus obscure visibility. When breathed, they
-------
320 330 340 350 360 370 380 390 400" 410 420 430 440 450 460 470 480 490 500"* 510 520 530 540 550 560 570 580
ST CH4RLES,
' ST LOUIS CO
JEFFERSON CO
LfffHD
BOUNDARIES
STATE
COUNTY
HIGHWAY MARKERS
FEDERAL —n—
STATE Q
EACH GRID CELL ENCLOSES
36 SQUARE MILES
SHADED AREA COVERS 122
SQUARE MILES
CIRCLE ENCLOSES 200
SQUARE MILES
SHADED AREA SHOWS PRINCIPAL
URBAN AREA
EDURDSVILIT
160
750
740
SCOTT AF9
BELLEVILLE>
\\
FESTUS"
] CRYSTAL CITY
1
1
-f
1
.4. _ __
_l_ —
1
I
— I
1
__ J
Ns
•
. I V i .
STATION
irpE
i
2
3
4
5
E
7
8
9
10
II
12
13
^
EQUIPMENT
HICH VOLUME
KICK VOLUME, AISI
DUSTFALL, LEAD PEROXIDE CAUDLE
DUSTFALL, LEAD PEROXIDE CANDLE, CORROSION PANEL
DUSTFALL, LEAD PEROXIDE CANDLE, SO? SOTBITIAL. AISI, HIGH
VOLUME
COITOK CLOTH, NYLON CLOTH. AISI
COTTON CLOTH, »< LOB CLOTH
COTTON CLOTH, NYLON CLOTH, AISI, H IGH VOLUME
OUSTRLL, LEAD PEROXIDE CANDLE. CODROSW DWEL. AISL HIGH
VOLUME
DUSTFALL, LEAD PEROXIDE CANDLE.COTTO«CLCm,NYLO« CUTH
AISI, HICH VOLUME
PUSTFALLLEAD PEROXK CAWE.CORJIOSI™ »NEU NTLON aOTH,
S% SEDUOITIAL. AISI, HICH VOUlOdOANT
DUSTFALL. LEU PEROXIDE CANDLE.CODROSIOII PANEL.COTTW CLOTH,
*
-------
AND DIFFUSION MODEL STUDIES
LEGEND
BOUNDARIES
STATE
COUNTY
HIGHWAY MARKERS
FEDERAL —U~
STATE —O—
1963-64 SAMPLING
OPERATION
ADDITIONAL SITES FOR
1964-65 SAMPLING
OPERATION
J80 400"r 410 420 430 440 450 460 470 480 490 SOO""' 510 520 530 540 550 560
Figure 3. Sulfur dioxide sampling network for winter seasons.
-------
o
o
H
2
W
2
W
<&
D
OT
<
W
a
w
£
V— I
H
ID
O
O
ff!
ID
OT
,0
rt
in
I
1
E
CO
u
4-1
X
to
e
1 <
g
a
c
1
2
o «-t
c
X U
U E
C 0
] Frequt
measui
1
3
UJ
•s«
c
h 0
|3
£
*
3
cO
^
in
.
,
.
N
•C
N
i/l
N
vinetric
0)
tl
4>
* TS
C
«j ~* 3
J= JO —
ec 3 o
41 O C
5
p.
E
«
« -C
M C
C
Kl
-t X
« -o
1*H
*J 1
U 4-»
-* 0
in — »
^ o
a
3
—
I-
O
tn
g
m
e
cO *
4-1 VI
in 4-*
giL
a.
•o 3
D V)
ta «
— t co
C 3
4) in
• M 4>
3 .C
cr 4-t
LU O
O 4> U *O
J= E ••* -
4J -H V. K)
S> ** (O
ss~
4> CX-H K)
•o -a -
O ft> h •
— : «-> 3 o
.n « 4- to
0 <*H
E 3 C -
3 « a CTi
•H (N
t* t* o -
CO O —t 00
EC **- t* fN
4)
-a
•H n
x co
o
«-* c
3 E »
<4- 4> <4-
111
u
C-
E
a
tn .c
>. c
ca o
3
-o
£
4>
O- 4)
TJ 5
* C
4i ta
•&
c
o
C0
(44
3
W
O
4>
E
O
14-
41 •
CL W
4)
41 -H
t- O.
in
in
0) <*-
in 0
X
ca o
C "H
ca 4-*
•^ _
ca ~<
C M
\c
K)
0
u-i
vimetric
ca
4-» ta
* t
"cit a
o "*-
H 0
X
(- CO
o -^.
'1
— 1 W)
ft> ti
E ft)
3 ^
-. a.
gi
i m
« t.
in
0)
•O n»
•^ 3
C U
4) -rt
0. 4-1
in u,
3 M
Ul G.
GO
rO
U
«a
o
CL
A
oc
•H 1-
— t 4)
CL
4> ^
DC 4)
e *-*
u <*-
X
a
^ -o
° £
r-< in
V
Cu P,
Vi CL.
in *• w
•> -^
N- •* CL
CO ^ E
•< t*-« m
4)
*->
•o to
•3 3
C U
C- 4-»
in ^
3 ca
X
3 w
4-t 4)
in ~H
0
i X
p-H -H
c
H C
h O
3
T3 -0
in 4-t
IH CO
4-1 O
•T-l
t4-l 4-t
4) C
(4 4)
a E
4> 3
tn cr
rj-
c
CU
re 1/1
•a T
c •*
ca
ci
JC (0 CD
4-t be
4> in C
O 3 E
Q. *J H
O
0)
^ 13
3 ••-!
— < O
to *o
4)
ro
•u
c
CO
4)
4)
X
0
•o
^
5
5
X
ea
o «
CM PL
^ M
i -C
C *-• v.
4) -H t-i
3 * 41
O- DC
0) M C
U p. E
ta in 4-t
O -H OC
w rt *O
< **J E
3 -<
M- X
-H O
3 ^
»
E
ca
o
o
01
4-1
cO
4)
U E*
4) •
^H G.
O 0
U O
f-,
SI
cO
in
4) -
12
r-
sD*
C
•^
nolphtha
49,50
4) -
.£ 00
O- t
c
CQ
tJ
X
O
CO
O
H
*-> ca
3 T3
C -^
^ in
0 CL
^ E
«
rO in
w,
OC
C
I
4-t
BO
Z
Ov
c
«J
•H
C
CM
S
U
4)
I
O
£
2
00
•*4 C 1*
•i-t « CL
*» E fc.
OC tfl 4>
e c «->
ca n -H
U *J <*-
X
CO
O tn
rM CL
— t in
H E
* **
t-. a>
4) W
-< cO
« rt
tn n >
>-. 4) <
CM
c
OC t3
X 3
™ in
.-
t r-
o <—<
C7> OO
4> ao
•i-i
in 4)
4-t
W -H
co v>
tn 4-t
4> CD
I-
in G.
«l
TJ tn
•si
O J=
4J 1^
O 3
ec 6
ca
jr
•H
*£
£8
•t-t in
££
3 U
5'S
•o
a
c
4) n
^ T3
£8
X
IH CO
o •--.
ca
— < in
T3
C
KI tn
-• E
in co
O ^
u ^
O 3
o: c
tn
C
4)
QC
t*
cO
O
4)
O
C
4)
cd Z*
4) T3
»- C
UJ
in
C "
O tn
•rJ C
V O
rt -H
£ s
15
g
|
ID
o
s
V)
f-4
C C
O ^
4-* X
CO — Ci"
> — c
t-< CO -H
Q> D C
O E
M
ft)
O
c
=
X
H
H
:>
c
a>
•o
CO
E
4>
£>
O
c
§£
U 3
u
C .£!
0) o
E
4> in
IH CO
3 f
in
cO c
4> 3
SO
Ul
o
tj: u-
U
4> i*
"O.T
M r
§•
x :
•a ••
o * .
*-» •
0 JJ
V 3
§ £
t-,
41
4-*
E
O
O
C-
c
3
•H
^ X
a> 4-1
D.T3
4-J 3
•< *-*
C.
C
*J^ X
u *->
^ 13
ft) *3
fn c
U > «
II
- 4-* U
•0 •S
2 S
•p DC U
Ci a
§tn in
x J=
4-» 4-t
* C C
7 i i
00 ^ !
1 CM fN
i/i in •— <
— -• 4)
4) 4> C !
C C CO
ca ca CL
CL a.
c
-H C 0
a> o *->
CD ^ w
4-1 X O
in z o
c
o
in co
cB O
-rH — H
I-I (->
a>
-------
(i
O
H
U
W
~j
I— (
Q
O
H
L_|
U
W
to
W
f-H
ffi
H
! '
H
H
I— j
in
O
1 — i
ex
b
m
O
H
y
h
co
10
<£J
U
re
o
u
LL.
C/-,
n
LL;
«
ro
^
2
(H
3
"O
C
-O
re
0)
w
re
(H
o
tn
c
ra
*^
o
aj
0 Z
4J V)
O ^H
E
'E *;
^-" O
c re
o
•-I i-i
4-> C
re re
IM -H
O C-
C-
o •—•
re
O rH
> E
ffl V
t- X
c; L-
CO LU 2 CC tj
CO < < L3 L3
CQ < <£ CO U
< < < U C
CO < < CO U
S S | S S
CO , ^ 4J § G'
w -H c "a • *
ft) H H « H
•~" E *-» re " w '"
•-i re o * fa in y.
E fl> E •" w 6t
S S = vt m
(N-^o.£ ^ " ** J!I
^To0^ 7 C"EE
^.5 SI ^ ^^r,
§CEB^ c U « «
'5 ° ^ ° H s « s
>-«4>LLl*-* ** ^ tn"*^."
^^ * 'u o o V)
O 3 ,— , u ^^ O O
-, .tj 'g & S "g B. a
> ^H DC E Jtf C C :
S MCI—* -"(dnre
Z QfH_* LU-^3^I^
2 -o CM o u^aibcbc
in— LU*^^" «(««•«•-
o^ 2: 3 •- a> u r4°'n^
3^ ^ )
•IH -H H W T3 4> <+- C C X-H C C
j^ o ^ HFHOIHLLJ «-.ha>j:(-ta>
C_j ~ (_) C
-------
H
O
W
rt
r-H
Q
O
H
H
O
W
(In
C/}
W
rt
ffi
H
W
H
I-H
cn
0
PH
O
I-H
H
<
O
I-H
h
H-l
OT
OT
<
J
U
o
u
rj
0)
VI
Jtf
cc
S*
•H V
«-» CL
* X
«-> «-»
VI
i
2
to
§«
U
£
•iH LU
UJ
UJ
z
h
4
+J
n
4) C
£|
o
U
c
n
V)
u
£
o
c
0
v
E
V
C
u
c
LU
z
4>
E
"^
ee
process:
ss NW.
e —
J~
™*
CO
CD
CO
CO
CO
CD
CQ
U.
u-
eo
u.
U
CD
§
1
cc
CD
03
CO
LTl
XI
00
t,
O
S
c
u
c
2
2
—
-H
(N
60
C
M
(A
V
U
o
O.
C
f-i
n
rH
LU
z
4)
H
(N
•^
oc
c
tn
4) uj
U CO
CL —
C E
*
CO
CQ
CD
CO
CD
ce
CO
CQ
CD
I
00
M
U
£
V
JZ
UJ
«
E
"J*
C
rt
CL
4>
O
G.
C
o
LJ 4-*
cO
4> r»
•H C
E **
o
IN C
C OC CO
O C
•-* HO
r- 4> E
1 Is
U C *-"
> -H C
M rt «
(J U CL
LJ CQ
UJ CC
< CQ
LU CD
UJ CO
< CO
LJ CO
< CD
< CO
C) co
8 S
d U-
Si b
8 it
O LL.
L3 u-
< C_J
-U Lu
< u
< CO
(N 00
00 CTl
00 00
LU
CO
—
E
C
CB
Cu
rt
rt
. 1
CO U
i/i
4> UJ
— Z
E V
CM H
E
*J
C IN
« *x.
D-
CC iH
4> 4)
-C C •
U r* LU
u
• C in
LU rH 4)
Z — •
•£ "O -H
z tn c e
4> n
O — > W^,
"" E 5 7
c u c
c « o to
L. — fM —
3 D. CL CL
r. C *H
O 4> H
n E
r. —
-a z
c
Z E
4) -H
O •
•t 03 *
OC Q)
*-* C — i
C -i •«
a c E
0- 3 —
V C C
> a> ra
O CL —
B- O CL
11
fe 3
LS U
LD <
U <
t; <
a s
cu -5
UJ <
u. «c
LU <
LL, <
LL. ^
LL. -rf
LU <
U. <
tt, <
Lu U
0 Ot
i s
,.
LL,
0)
• H
E
C
rt
CL
—
V
i*
u
E
TT
to
rt
n
rt
1-
4_)
3
-a
c
uj
U
r- CO
E
4>
rH
rt E
n c
'r- 3
3 O
C 3
§
3
LU
O
LU
LU
C!
U.
g
Lu
g
Lu
LU
C
LU
LU
g
at
0
in
__
n
'£
£
3
T)
C
• rH
C
rt
4-*
C
a-
u>
UJ 2
CO O
a.
V
H CC
E
in
Ed -r4
a> E
B (N
ce *
S d
3 tfl
-o
c
rH Z
V)
LU 4)
T3 T3 — 6
4) 4> r* (N
-rH rH —• UJ
—« -^ rsi i Z
•rH ^ — V)
r-l t- | (P) 4>
3 3 a. S "e
-a -o E
c c 3 — M
X X OC r- I
> > c 3 «
ca m M T) a>
4) 0) 3 C r-
I ~ CQ — «
—
5UJ LU LU U,
LU LU LU LU
CO LU t; CD O
U LL, LU C7 Lu
LJ LU UJ CJ U-
U Lu U LU O
(J LU < U LU
O LJ tj UJ U-
O Lu (J UJ O
U U LU LU UJ
L= LU rf LU LJ
a u. < m O
U. Lu U LU U.
U. U. UJ U. LU
LU LU o CQ a
U CQ 11. LU CQ
U LU LU LU (J
a LU aj CD S
CO CO LU UJ LU
CO Lu LU U LU
CO Lu LU CO O
< LU U- U LU
CD LU U. UJ LU
CO LU UJ DQ C
Of i* O •* IO
O O O (N —
m co a> o> — •
»
c —
« -rH
— E
CL
(N
V 1
«-> (N
in
OC C
c n
1 *
C 4)
1 ^
Z (N in
V
TJ « —
C 0) •-•
CQ rH E
n
CO CL
t/} «J -O
V)
3 M
CO TJ C
LU" '5 £
CO •- 3
Z ^!
n
rH 4) Z
n —
— E V
CO —
*J t.
lie
C r.
--H OC 3
C £
> c o
O 3 3
!Z CD <1
-
u. ec <
LU U <
U. CD C
U. Q C
Q U <
LU LU <
a. u <
c u <
LU co tj:
LU CO
rH
CO
«
Ut
*J
3
-o
C
•H
CO
0)
E
rM
T3
C
rt
V
E •
4>
X —
U E
C
CL
O 13
CJ (^
c; ts
c; <
o u
§ s
H |
U LU
Si 3
Si it
U UJ
U LU
(^ Lu
L3 LU
C3 LJ
M O
(••* O
m in
CM
"^
1
ex
C
E £•
3 4>
£ C
.- £
UJ 4>
tO rH
— O
E X
•o
in 4>
|g
c' 3
H V)
c
rH •-
3 2
JD
(/I
.. 0)
z ^^
in E
— IN
rg CO
-H CL
U
i-S
3 CL
or co
C
• rH V)
E.2
S e
OO
<
LJ
LU
Lu
Lu
LU
LU
LU
LU
Lu
LU
Lu
<
LU
LL.
2
LJ
2
LJ
00
O
Lrt
LU
C/"
4)
•^
^
1
"rt
U
V
"y
UJ
CO
V)
V
r*
P-
Ofi
C
£
t-i
uu
r^i
-H
*->
C
CL
-------
rt
O
H
U
w
t— (
Q
O
H
H
U
W
w
W
«
VTH
h
H"H
£
co
W
H
HH
o
^-i
t~H
/^
P.
i«^
~H
H
re
o> c
M -a
tr t-
o
o
u
00
3
<
_, fV) -*
C O tJ
< U U
< L3 U
< (J U
Sou
< u
U
X)
fn
U
V)
4)
•O
C
O
•1-1
+J
CO
o
C!
In
tf>
cO
M
C
O
^
o
<4^
(U
j^
H
re
A
E
D
(-
C
o
c
•o
c
rt
V
h
L>
n
4J
D-
V)
*^
C
3
oc
c
4>
3
•o
2
5
w
VI
a>
X
w
i/i
c
0
•o
X
-H
CQ
c
a>
T3
(U
a:
1
<
u
^
u
nj
^
U
CL
4^
C
3
ew
C
^
TJ
3! V
•v u
C 'h
m
c *••
« -o
4-> C£
U i-*
^ a.
O P-
E O
(/i
X
« o :
c f.
at H
Tl O
J3
j= x:
W DC
J^ OJ
cq -H —
c o
0) t->
« e e
OJ O O
1 1 1
=O U ^
rt
-H (T3
re •«
r4 4-J
W C
C V
V 4->
o ex
CL
C
S 2
3 ^
5 S
O CL.
C-
t-i
h *H
•H CO
rt
j=
* 00
O <-i
JZ JZ
iH rH
* 5
*~T ^
cd co
tH tri
*-> w
(A V)
% -5
C C
' *
OJ U.
^
«
O
l^
(-.
bC
(-,
a
o
V)
o.
M
C
V
3
•o
rt
H
3
a:
1
O
i—i U
SI
O U U ^C. H ,
s-5
Hi
r ° «
o o o
-------
o
I— I
H
U
W
O
H
H
U
W
&
CO
W
rt
ffi
to
W
H
n
CO
O
D U
01 U
a u
eu 73
c c
t) co
cv
§ .2
01 t*
4J 4J
t/) tn
3
O 73
3 C
b
V) O
rt eu
•|H IT
E
IN W
I 0)
C
rt 01 4-1
Q. C C
O co
3 «T °~
•H 4-> ^
ECO)
0) CO 3
3
T3
C
3
0
.C
4-> C
§ ^
CO
C-
o.
u
M
•H
* 3
U CO
•• a
£
t,
V> V
U 3
rt O
•H a.
r*l irt
73
i t<
CO
rt X
a « -
rt jr o
3 2 - S
•,-. co « 3
e E 73 o
U V. «)
J= oi co H
U a: X w
»,
^H ""
3 *
73 E
M •"
B" 5 8
3 -H « 4J
ca E x co
rt
u
H -rt
a
CJ
CO
W
Q
I-H
X!
O
I — I
Q
rt
g s
§ s
CQ CQ
1
1
8 PL)
«
Cb
8
B: S
o o
PQ
< PL,
5 S
< PQ
CO
fa
O
z,
o
I— I
£H
<
U
to
co
U
w
H
e
pa
I
8
0
1 1
1 g
pn pg
PQ PQ
PQ pa
1
w
M
CO PL. O
8 H 5
9 S3
O W
S
fc PQ
w CQ
CM CQ
CQ
CQ
s
W
a
o
o
o
» ^
m u
o pa
CQ
O
O
< p> PL,
£ 9
*< &
Q PQ
i
o
<;
pa
CO
o
41
CO
4) C
rt 00
h~ cn
o
LO
en fN oo
O rt
LO LO
ro *H
i/i tn
10
-------
Table 4. CLASSIFICATION OF OXIDANT NETWORK SAMPLING SITES
WITH RESPECT TO DIRECTION
Site
coordinates
449-719
4S8-7SS
482-697
485-714
490-713
501-713
507-741
509-710
Direction
N
BBB
BBB
CBB
CCB
ODD
DFF
BEE
CCE
NE
BBB
BBB
CCF
CCD
ODD
DFF
BBB
CEE
E
BBB
BBB
CFG
CDD
ODD
DCB
DDC
CDE
SE
CCB
BRB
CFG
CEE
UDF
DFF
CKF
CBB
S
CCC
BBA
CFG
CEB
DDC
UCE
DFF
CBB
SW
CAA
BBB
CCB
CEB
DEB
DFF
DFF
CCE
W
CAA
BBB
BBB
CFF
DEE
DFF
DFF
CDB
NW
CAA
BBB
BBB
CCC
DDC
DFF
DFF
CCB
Remarks
Hospital power plant 1/4 mile NW.
Grain processing 1-1/2 miles NE and 2 miles
incinerator 3/4 mile Sb.
Industrial area 1-2 miles W.
Industrial area 1-1/2 miles E; 1-1/2 miles
power plant and industrial area 1-1/2 miles
Heavy industrial area SE, S, SW, W and NW,
including steel mill.
NW;
S;
NE.
penetrate deeply into the lungs. They also cause economic loss because of their
soiling and corrosive properties.
High-volume Air Sampler - Suspended particulate samples were collected with
high-volume air samplers ' ' (Figure 4), which operate somewhat like a vacuum
cleaner. With this method, glass fiber filters are weighed and mounted on the sam-
plers. Air is normally drawn through the filter at a rate of about 50 cubic f«et
per minute. During the Study, transformers were placed on the samplers to increase
motor life and decrease brush wear. These units decreased the average flow to about
35 to 40 cubic feet per minute. After 24 hours of sampling (from 2:00 p.m. to
Figure 4. High-volume air sampler.
11
-------
2:00 p.m.), the filters were reweighed to determine the increase in weight due to
the particulate matter that was removed from the sampled air by the filter. The
results are expressed as micrograms of particulat'es per cubic meter of air sampled.
In addition to the total weight of the sample, metals, organic content, and
certain organic chemicals were measured on selected samples by the U. S. Public
Health Service Laboratory of Engineering and Physical Sciences. The filters were
saved for possible further analysis.
The particles consist of dust, smoke, and fumes; they come from incomplete
combustion of fuels and wastes, gravel handling and crushing operations, metallurgi-
cal processes, chemical processes, grain handling operations, earth moving operations,
and many other similar processes.
The sampling schedule for the high-volume sampler network was a combination
of continuous weekday and random sampling. At the beginning of the Study a random
sampling schedule of 100 days was established for the period July 1, 1963, through
June 30, 1964. In addition to the 100 days, 75 percent of September and all of
October were to be sampled for a total of 141 sampling days. This schedule was
altered during the Study so that continuous weekday sampling was performed from
September 1963 through March 1964 and the random schedule was followed during the
other 5 months.
•7 n -7 o
AISI Automatic Tape Sampler - The MSI sampler ' (Figure 5) also collects
suspended particulates and operates by drawing air through a small area on a strip
of Whatman No. 4 filter paper at a rate of approximately 0.25 cubic foot per minute.
After 2 hours of operation, the sampler automatically shifts the filter paper to a
new position and continues operation. The quantity of material collected is
Figure 5. Sequential sampler, AISI tape sampler, and AISI tape reader.
12
-------
determined by the difference in the amounts of light that pass through the spot and
the unexposed filter. The results, expressed as Cohs (coefficient of haze) per
1,000 lineal feet, describe the soiling properties of the air.
Settled Particulate
Settled particulate, or dusTfall, ' ' measurements determine the amounts of
heavy airborne particles, i.e., those that settle from the air readily. Settled
particulate measurements vary greatly both between and within urban areas since they
are affected by many variables such as commercial and industrial activity,
construction, fuel use patterns, meteorology, traffic patterns, and solid-waste
disposal practices.
These large particles are usually trapped or filtered out in the upper
respiratory tract and do not enter the lungs. They do, however, settle and cause
horizontal surfaces to become dirty.
Dustfall was measured by exposing 5-quart, 8.25-inch-high, 7.5-inch-diameter
mouth, plastic jars in suitable stands (Figure 6) on a roof or other support for
1-month exposure periods. The jars were covered after the exposure period and
Figure 6. Dustfall bucket \vith metal corrosion panels and
sulfation candle.
13
-------
returned to the laboratory, where the water-soluble and -insoluble portions were
determined. The results are expressed in tons per square mile per month.
A common practice for dustfall sampling is to maintain a liquid level in the
jars to prevent the particles from being blown out. In this Study the jars were set
out dry. A study was performed at the Taft Sanitary Engineering Center in Cincinnati,
Ohio, to determine whether there was a significant difference in collection with the
two methods. This study, although not conclusive, showed that up to 50 percent of
the solids collected may be reentrained into the atmosphere when the bottom of the
jar is dry. Being exposed to the elements, a dry jar naturally becomes a wet jar
when it rains. The amount of dust retained depends then on how much and how often
it rains, and the evaporation that takes place between rains. During the study
unusually dry weather was experienced at times; therefore, the dustfall data recorded
were undoubtedly conservative (low).
The Cincinnati study also showed that dustfall jars 10.75 inches deep were
not more efficient than the 8.25-inch-deep jars used in this Study. The results of
this Study are given in the Interstate Air Pollution Study Memorandum of Information
and Instruction No. 6a,* "Collection and Analytical Procedure for Settled
Particulate."
GASEOUS POLLUTANTS
The gaseous pollutants measured in this Study were sulfur dioxide, total
oxidants, and hydrogen sulfide. In addition to these measurements, the CAMP
(Continuous Air Monitoring Program) station, which began operating March 1, 1964,
sampled the air for carbon monoxide, nitrogen dioxide, nitrogen oxide, total
oxidants, sulfur dioxide, and total hydrocarbons.
Sulfation (Lead Peroxide Candle Method)
Basically, the sampler (Figures 6 and 7 ) consists of a cylinder around
which is wrapped a gauze coated with a paste containing lead dioxide. Sulfur
dioxide gas and certain other sulfur compounds react with the lead dioxide to give
lead sulfate. The samplers are exposed for a period of 1 month and then analyzed
for sulfate. The results are expressed as milligrams of sulfur trioxide per 100
square centimeters per day.
The reactivity of lead peroxide varies from one batch to another; therefore,
enough lead peroxide was purchased to last the entire Study. So that the results
of this Study could be compared with those data obtained from other areas, the
* The Memorandums of Information and Instruction cited throughout this report were
directed to the project staff and constitute a detailed record of the procedures
employed.
14
-------
Figure 7. Lead peroxide candle and shelter.
batch of lead peroxide used was standardized against a standard lead peroxide
purchased from Research Appliance Company which in turn was standardized to the
British standard Batch Type A. The details of this standardization are given in
the Interstate Air Pollution Study Memorandum of Information and Instruction No. 13,
"Standardization of the Lead Peroxide Candles." During the Study the Illinois
Department of Public Health Division of Laboratories successfully developed and
tested a turbidimetric method for the determination of sulfates in lead peroxide
candles. This method is reported in Memorandum of Information and Instruction 6C,
dated March 1965.
Sulfur oxides, which include sulfur dioxide, in the ambient air are of
interest because of (1) their harmful effects on the health of humans and animals,
(2) their demonstrated harmful effects on vegetation, and (3) their economic
effects as evidenced by materials deterioration and metal corrosion.
Sulfur dioxide in the air is thought to undergo changes in the following
sequence: from sulfur dioxide, to sulfur trioxide, to sulfuric acid, and finally to
sulfate. Although these changes are not fully understood, the intermediate product,
sulfuric acid, is known to be a greater hazard to health than the sulfur dioxide
from which it comes. Sulfuric acid, because of its hygroscopic nature, occurs in
the air in small droplets, which, among other effects, reduce visibility.
Sulfur Dioxide (West-Gaeke)
The West-Gaeke method for measuring sulfur dioxide uses tetrachloromercurate
39
(TCM) in a collecting solution. The air is bubbled through the solution, which
collects the sulfur dioxide in chemical combination. When certain dyes are added
15
-------
to the solution, the color changes. The intensity of the color change is measured
by a spectrophotometer and related to the sulfur dioxide concentration. The results
are expressed as parts per million by volume (ppm)'.
Two types of samplers were used during the Study. The automatic sequential
sampler (Figure 8) collects twelve 2-hour samples over a 24-hour period, and the
24-hour sampler (Figure 9) collects one sample over a 24-hour period.
Figure 8. Two-hour sequential sampler.
Figure 9. Twenty-four-hour composite gas sampler.
16
-------
Total Oxidants (Phenolphthalin)
The total oxidants were measured by bubbling air through a solution of phenol-
phthalin. In this procedure, the oxidants change the phenolphthalin to phenolphthalein
and the color of the solution changes. The color change is measured by a spectro-
photometer, and the results are expressed in ppm.
The components of the oxidant sampling train (Figure 10) were arranged in the
following order: 18 inches of Teflon tubing, a bubbler containing the phenolphthalin
solution, a trap to collect any entrained solution, a rotometer, a valve to control
airflow, and a pump. A timer was installed to stop the pump automatically after 10
minutes of operation.
Total oxidants are important because they indicate the presence of photo-
chemical reaction products, which cause eye irritation, damage to vegetation and
rubber, and reduced visibility. The oxidants (ozone and others) result from
photochemical reactions involving nitrogen oxides and hydrocarbons in the presence
of sunlight. High concentrations of true photochemical oxidants generally occur on
days with low wind speeds, clear skies, and strong sunlight.
MATERIALS DETERIORATION
The relationship of air pollutants to the deterioration of materials was
studied by exposing cotton cloth, nylon cloth, and steel panels. This study was
made not only to obtain information concerning the Study area but also to develop
methodology for determining economic damage due to air pollution. The cloth
deterioration study was unique in that it was the first attempt to relate air
pollution to deterioration of cloth.
Figure 10. Oxidant sampler.
17
-------
The steel panels (Figure 6) were 4 by 6 inches by 1/16 inch thick. The
amount of corrosion was found by determining the loss in panel weight after removal
of corrosion products. Eight panels were exposed at each of 35 sites. The exposure
periods were 2, 4, 8, and 16 months. At the end of each period, two panels were
removed from each site and analyzed. These panels are referred to as top and bottom
because of their arrangement.
Seven sites were equipped with cotton panels and eight with nylon panels.
Two weights of woven cotton cloth were used, a light cotton print and a 10.10-ounce
army duck. Initially 12 panels were set out at each site, and one panel was removed
each month for a period of 1 year. Each panel was analyzed for residual strength,
pH, fluidity (a chemical-physical measure of degradation), and visual appearance.
Figure 11 is a photograph of a cotton-exposure rack.
Figure 11. Cotton exposure rack.
The nylon panels were exposed 1 year also, but were not removed from the
sites. A monthly visual observation was made to note any physical degradation of
the panels. Since nylon is very sensitive to acids, the panels were examined to
determine whether any small perforations developed. No physical or chemical tests
were performed on these panels.
A short-term corrosion study was conducted from December 1, 1964, through
February 28, 1965, as part of the 40-station sulfur dioxide sampling network. The
methodology for this network was the same as that used in the earlier study.
18
-------
VISIBILITY
When relative humidity is below 70 percent, decrease in visibility is due
primarily to particulate matter in the air. An adverse condition for airport
operation exists when visibility is less than 3 miles. Visibility observations
were taken at the Project Field Office in downtown St. Louis, coordinates 493-713.
Observations were usually made in the morning in two directions, southwest and east.
At the same time, observations were taken with the Volz Sun Photometer, an instrument
being developed to measure atmospheric turbidity directly. This method offers
considerable promise as a new and economical method of measuring air quality.
ATMOSPHERIC TURBIDITY
56
Atmospheric turbidity, as the name implies, refers to materials in the air
that reduce its light-transmitting capability. For the most part these are small
air pollutant particles. The effect of water vapor is excluded by selection of
0.5-micron-wavelength monochromatic light with a filter.
The Sun Photometer (Figure 12), which measures turbidity, consists of a small
wooden box containing a filter, photoelectric cell, microammeter, and level. It is
sensitive to 0.5-micron-wavelength monochromatic light. Attenuation of this light,
after correction for the optical air mass, is a measure of turbidity between the sun
and the photometer. Most of the turbidity is within a few hundred feet of the
ground. Values range from 0.02 in very clean air to 0.60 in dirty air.
Figure 12. Sun photometer.
19
-------
AEROALLERGENS
Pollen grains are one of the many aeroallergens that come from natural
sources. Pollen grains, a primary cause of hay fever, come from weeds, grasses,
trees, and other vegetation. Since pollens arise from vegetation, they are seasonal
in character.
Pollen data were collected by exposing adhesive-coated microscope slides at
site 481-718. Collection was done by an allergist who makes daily counts during the
pollen season. In making his count, he follows, in slightly modified form, the
American Academy of Allergy gravity method, in which slides are exposed in a
horizontal position in a shelter for 24 hours; the pollens are deposited on the
slide by gravity and impingement from wind currents. The American Academy of Allergy
counts the number of ragweed pollen grains per square centimeter by making a little
over four crossings of a 22- by 22-millimeter (mm) cover slip using a 1-mm field.
This number is converted into grains per cubic yard by multiplying by 3.6. The
local allergist counts the number of pollen grains per 3,6 square centimeters by
making eight crossings on a 22- by 22-mm cover slip using a 2-mm field. This number
is equivalent to the grains per cubic yard and does not require a conversion factor
as does the Academy's reading.
HYDROGEN SULFIDE
Hydrogen sulfide comes from the manufacture of coke, distillation of tar,
petroleum and natural gas refining, kraft process pulp mill operations, other
chemical processes, and anaerobic decomposition of putrescible matter. It has a
very obnoxious odor and can be detected in concentrations as low as 13 ppb. At
very low concentrations it tarnishes silver and copper and blackens lead-base
paints.
Two hydrogen sulfide sampling stations were operated during this study. They
were situated at site coordinates 505-740 and 510-742, where they operated during
the fall of 1964. The samplers were AISI units equipped with lead-acetate-impregnated
paper to sample for hydrogen sulfide". Twelve 2-hour samples were collected per day.
CAMP STATION
A Public Health Service Continuous Air Monitoring Program (CAMP) station was
installed in St. Louis in January 1964. The station, southwest of City Hall on the
northwest corner of 12th and Clark Streets (coordinates 490-713) began operation in
March 1964.
The station was equipped with six automatic instruments that sampled the
atmosphere continuously to measure carbon monoxide, sulfur dioxide, nitric oxide,
nitrogen dioxide, total oxidants, and total hydrocarbons. The basic instruments
20
-------
consist of a gas train, detector, flow-measuring equipment, and a pump. They are
equipped with a strip chart recorder, which gives a continuous record of pollutant
levels, and an analog-to-digital punch tape recorder, which contains 16-channel
paper tape.
Carbon monoxide is determined by an infrared analyzer. Nitrogen dioxide is
determined by colorimetry in which Griess - Saltzman reagent is used. The nitrogen
oxide present is converted to nitrogen dioxide. The total nitrogen dioxide is
compared with that previously measured, and the difference between the two determina-
tions is attributed to the nitrogen oxide. Total hydrocarbons are measured by a
hydrogen flame ionization analyzer, and sulfur dioxide is determined by electrical
conductivity. Oxidants are determined colorimetrically with potassium iodide as the
reagent.
Every 5 minutes the punch tape recorder punches a number in binary decimal
code on the strip chart. The 16-channel tape data are automatically placed on
80-column punch cards, which, in turn, are processed by a computer to provide
statistical summaries of each pollutant.
DISCUSSION OF RESULTS
GENERAL
Over 50,000 pieces of air quality measurement and meteorological data were
processed during this Study. A summary of the kinds of measurements made is given
in Table 1. Table 2 gives a description of the area around the sampling sites,
and Figure 2 shows the location and types of equipment at each site. The details of
the design of the aerometric network are given in the Interstate Air Pollution
Study Memorandum of Information and Instruction No. 12, "Design of Air Quality
Measuring Program."
A statistical evaluation is made of data from each type of air quality
measurement. The arithmetic and geometric means and their standard deviation are
determined for the year, each month, and each season. Spring is considered to be
March, April, and May; summer is June, July, and August; fall is September, October,
and November; and winter is December, January, and February.
In general the sampling day was the period from 2:00 p.m. of one day to
2:00 p.m. of the following day. The sampling day is referenced to the starting day
rather than the ending day. Except for a few instances where operation records were
not clear, all data refer to central standard time.
In this report data are reported in the text to agree with tabulated data
direct from computer printouts. This arrangement facilitates use and checking of
both. It does, however, give the appearance of greater numerical significance than
is warranted or intended. Dustfall and suspended particulates should be considered
21
-------
valid to the nearest whole number, and Coh values, to the nearest tenth. Other
pollutant measurements should be interpreted on the basis of known limitations of
the measurement methods.
The results from the high-volume air samplers, the AISI samplers, and sulfur
dioxide samplers were related to wind direction, which gave a graphical representa-
tion of wind directions and a group of specific air quality measurements taken at
a fixed site. This method of data presentation is known as a pollution rose. A
detailed procedure for preparing pollution roses is presented in Memorandum of
Information and Instruction No. 18, "Standard Pollution Roses."
DUSTFALL
Dustfall measurements were made at 42 sites. The results are reported as
total dustfall (soluble and insoluble) and are given in Tables 5 through 10. As in
most urban areas, results varied, as is shown by the range of values from 3 to 176
tons per square mile per month during the measurement period from March 1963 to
February 1964. The arithmetic mean for all stations during this period was 22.99
tons per square mile per month, and the geometric mean was 18.42 tons per square
mile per month.
SPRING
SUMMER 1963
FALL
WINTER 1964
YEAR
1 I I I I I 1 1 1 L
001 005 0.1 0 2 05
2 5 10 20 30 40 50 60 70 80 90 95 98 99 99.8 9 99.99
% OF SAMPLES < STATED CONCENTRATION
Figure 13. Dustfall frequency.dislribuliorL, all sites.
22
-------
Table 5. DUSTFALL, MARCH, APRIL, MAY 1963
(tons/mi /mo)
Site
coordinates
407-770
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
46S-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-809
498-704
499-724
501-713
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
16
18
13
10
13
12
16
15
18
15
16
18
20
17
25
23
17
21
94
17
21
13
17
15
11
13
34
21
16
94
64
36
49
18
15
13
21
21
10
9
9
Maximum
26
58
23
21
22
20
16
26
19
23
26
29
40
27
35
28
26
37
123
29
30
21
30
33
25
13
55
28
33
176
90
36
83
26
32
20
31
24
17
17
176
Na
3
3
3
3
3
3
1
3
2
3
3
3
3
3
3
2
3
3
2
3
3
3
3
3
3
1
3
3
3
3
3
1
3
3
3
3
3
3
3
3
115
Arithmetic
Mean
22.33
33.66
17.33
15.33
17.33
15.33
22.33
18.50
20.00
20.66
24.33
30.66
22.00
31.00
25.50
20.33
31.66
108.50
21.66
27.00
16.66
23.00
23.33
16.00
44.33
23.33
23.00
132.00
73.66
69.66
22.33
22.00
16.33
25.33
23.00
12.66
12.33
29.51
Standard
Deviation
5.50
21.36
5.13
5.50
4.50
4.16
6.35
0.70
4.35
5.03
5.68
10.06
5.00
5.29
3.53
4.93
9.23
20.50
6.42
5.19
4.04
6.55
9.07
7.81
10.50
4.04
8.88
41.32
14.22
18.14
4.04
8.88
3.51
5.13
1.73
3.78
4.16
25.26
Geometric
Mean
21.82
29.66
16.84
14.65
16.94
14.97
21.64
18.49
19.65
20.26
23.85
29.47
21.61
30.67
25.37
19.96
30.63
107.52
21.07
26.63
16.34
22.38
22.16
14.88
43.49
23.11
21.93
127.74
72.80
67.90
22.07
20.89
16.08
24.99
22.95
12.32
11.89
24.20
Standard
Deviation
1.30
1.82
1.33
1.44
1.30
1.29
1.37
1.03
1.26
1.27
1.28
1.42
1.26
1.19
1.14
1.25
1.38
1.20
1.32
1.22
1.27
1.32
1.48
1.56
1.27
1.18
1.44
1.36
1.20
1.32
1.20
1.47
1.24
1.21
1.08
1.32
1.38
1.75
N = number of samples.
Of the 42 sites, only two had maximum values of less than 20 tons per
square mile per month. Ten sites had values of over 50 tons per square mile
per month, and two had values of over 120 tons per square mile per month. The
23
-------
Table 6. DUSTFALL, JUNE, JULY, AUGUST 1963
(tons/mi /mo)
Site
coordinates
407-740
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-809
498-704
499-724
501-713
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
14
6
9
7
9
11
10
7
8
12
12
15
8
17
21
16
14
45
12
17
10
17
13
9
12
17
16
11
83
44
30
32
15
15
12
22
16
10
7
6
Maximum
19
9
11
12
12
12
18
9
53
18
14
20
20
30
23
20
22
65
12
21
12
18
13
15
21
42
18
18
105
54
33
35
33
23
18
26
16
11
10
105
Na
0
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
120
Arithmetic
Mean
16.00
7.33
10.00
9.66
10.00
11.66
13.66
8.00
23.66
15.66
12.66
16.66
12.66
24.66
22.33
18.00
17.66
56.33
12.00
19.00
11.33
17.66
13.00
11.33
16.33
29.33
16.66
14.00
95.00
50.00
31.33
33.33
22.33
17.66
15.00
24.00
16.00
10.33
8.33
20.08
Standard
Deviation
2.64
1.52
0.99
2.51
1.73
0.57
4.04
0.99
25.42
3.21
1.15
2.88
6.42
6.80
1.15
1.99
4.04
10.26
0.00
1.99
1.15
0.57
0.00
3.21
4.50
12.50
1.15
3.60
11.13
5.29
1.52
1.52
9.45
4.61
2.99
1.99
0.00
0.57
1.52
16.48
Geometr-ic
Mean
15.86
7.23
9.96
9.43
9.90
11.65
13.27
7.95
16.18
15.42
12.63
16.50
11.69
23.96
22.31
17.92
17.36
55.67
11.99
18.92
11.29
17.66
12.99
11.05
15.91
27.45
16.64
13.70
94.55
49.80
31.30
33.31
21.10
17.29
14.79
23.94
15.99
10.32
8.24
16.52
Standard
Deviation
1.17
1.22
1.10
1.31
1.18
1.05
1.34
1.13
2.81
1.24
1.09
1.18
1.61
1.35
1.05
1.11
1.25
1.20
1.00
1.11
1.11
1.03
1.00
1.30
1.32
1.57
1.07
1.28
1.12
1.11
1.04
1.04
1.49
1.27
1.22
1.08
1.00
1.05
1.19
1.76
N = number of samples.
frequency distribution of all sites (Figure 13) indicates that values equal to
or greater than 42 tons per square mile per month occurred 10 percent of the
time during the year.
24
-------
Table 7. DUSTFALL, FALL - SEPTEMBER, OCTOBER, NOVEMBER 1963
(tons/mi /mo)
Site
coordinates
407-770
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-809
498-704
499-724
501-713
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
11
14
7
9
10
12
11
11
10
11
14
13
16
10
21
12
15
15
59
12
19
11
16
12
11
20
45
12
17
79
51
33
37
18
15
9
17
18
10
9
7
Maximum
19
16
10
15
15
16
24
16
18
17
24
18
38
16
28
21
21
24
79
14
23
19
23
20
14
28
49
19
22
97
72
58
68
21
36
19
29
25
13
13
97
Na
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
3
3
3
3
2
3
3
3
3
3
3
3
3
2
3
3
3
2
3
2
3
3
3
3
3
119
Arithmetic
Mean
14.00
15.33
8.33
11.00
12.33
14.00
16.33
13.00
12.66
13.00
18.66
15.00
26.00
13.00
24.50
16.66
17.66
18.33
66.66
13.00
21.33
14.66
19.00
17. OC
12.33
24.33
47.00
14.66
19.50
85.00
58.00
43.00
52.50
19.33
25.50
13.66
23.33
21.66
n.33
10.33
23.01
Standard
Deviation
4.35
1.15
1.52
3.46
2.51
1.99
6.80
2.64
4.61
3.46
5.03
2.64
11.13
2.99
3.51
4.50
3.05
4.93
10.78
1.41
2.08
4.04
3.60
4.35
1.52
4.04
1.99
3.78
3.53
10.39
12.12
13.22
21.92
1.52
14.84
5.03
6.02
3.51
1.52
2.30
17.47
Geometric
Mean
13.58
15.30
8.24
10.67
12.16
13.90
15.46
12.83
12.16
12.71
18.21
14.85
24.43
12.76
24.31
16.24
17.49
17.92
66.11
12.96
21.26
14.30
18.78
16.58
12.27
24.10
46.97
14.36
19.33
84.59
57.21
41.74
50.15
19.29
23.23
13.05
22.78
21.47
11.26
10.17
19.00
Standard
Deviation
1.34
1.08
1.19
1.34
1.22
1.15
1.49
1.21
1.40
1.28
1.30
1.18
1.54
1.26
1.15
1.32
1.18
1.29
1.16
1.11
1.10
1.31
1.20
1.32
1.12
1.18
1.04
1.27
1.19
1.12
1.22
1.34
1.53
1.08
1.85
1.45
1.31
1.18
1.14
1.29
1.77
= number of samples.
25
-------
Table 8. DUSTFALL, WINTER - DECEMBER 1963 AND, JANUARY,
FEBRUARY 1964 (tons/mi2/mo)
Site
coordinates
407-770
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465 731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-709
495-809
498-704
499-724
501-713
505-740
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
8
11
5
5
5
6
7
7
5
7
10
10
10
7
16
10
10
15
19
13
7
9
15
13
3
20
27
11
29
9
48
45
29
78
27
14
31
6
18
19
8
6
3
Maximum
19
21
10
8
9
11
19
13
12
12
17
26
15
24
20
19
20
19
35
21
16
18
21
17
13
26
51
17
65
18
88
86
52
78
53
22
31
12
29
28
25
12
88
Na
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
2
3
2
3
3
3
3
1
2
3
1
3
3
3
3
2
117
Arithmetic
Mean
14.00
16.00
7.00
6.33
7.33
9.00
12.66
9.66
8.00
9.66
13.66
16.66
12.00
13.00
18.00
14.00
15.00
16.33
28.33
15.66
10.33
13.66
18.33
15.33
8.33
22.66
39.00
13.00
47.00
13.66
74.00
61.33
39.00
40.00
17.33
8.33
22.00
24.66
17.66
9.00
19.54
Standard
Deviation
5.56
5.00
2.64
1.52
2.08
2.64
6.02
3.05
3.60
2.51
3.51
8.32
2.64
9.53
2.82
4.58
5.00
2.30
8.32
4.61
4.93
4.50
3.05
2.08
5.03
3.05
16.97
3.46
25.45
4.50
22.53
21.73
11.78
18.38
4.16
3.21
6.08
4.93
8.73
4.24
16.78
Geometric
Mean
13.16
15.46
6.69
6.21
7.11
8.70
11.68
9.35
7.48
9.43
13.35
15.38
11.81
11.03
17.88
13.51
14.42
16.22
27.41
15.25
9.64
13.13
18.15
15.23
7.05
22.53
37.10
12.71
43.41
13.13
71.35
58.97
37.86
37.82
17.01
7.95
21.48
24.30
15.87
8.48
15.25
Standard
Deviation
1.56
1.38
1.43
1.26
1.36
1.38
1.64
1.36
1.55
1.31
1.30
1.62
1.23
1.96
1.17
1.38
1.41
1.14
1.38
1.31
1.55
1.42
1.18
1.15
2.14
1.14
1.56
1.28
1.76
1.42
1.40
1.40
1.34
1.61
1.26
1.43
1.29
1.23
1.82
1.63
1.95
JN = number of samples.
26
-------
Table 9. DUSTFALL - YEAR, MARCH 1963-FEBRUARY 1964
(tons/mi /mo)
Site
coordinates
407-770
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-709
495-809
498-704
499-724
501-713
505-740
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
8
14
5
5
5
6
7
7
5
7
10
10
10
7
16
10
10
14
19
12
7
9
15
12
3
12
17
11
29
9
48
44
29
57
27
14
13
6
17
16
8
6
3
Maximum
26
58
23
21
2.2
20
24
26
19
53
26
29
40
27
35
28
26
37
123
29
30
21
30
33
25
28
55
28
65
33
176
90
58
78
83
33
36
20
31
28
25
17
176
Na
10
10
12
12
12
12
10
12
11
12
12
12
12
12
12
11
12
12
11
11
12
12
12
12
12
10
11
12
3
11
12
12
10
2
10
12
9
12
12
12
12
11
471
Arithmetic
Mean
15.50
21.10
10.00
10.66
11.66
12.08
13.80
14.66
11.18
16.58
17.16
17.16
21.33
15.16
25.08
19.09
17.75
21.00
61.00
15.81
19.41
14.08
19.50
17.16
12.00
20.30
40.00
16.91
41.00
17.36
96.50
60.75
37.60
67.50
49.40
20.33
22.33
13.33
23.66
21.33
13.00
10.09
22.99
Standard
Deviation
6.04
13.36
5.16
4.41
4.67
3.65
4.80
6.09
4.95
12.55
4.60
6.39
10.15
6.87
6.03
5.53
3.91
8.11
29.79
5.38
7.07
3.72
4.07
5.93
5.11
5.35
11.73
4.98
20.78
6.45
31.04
15.28
9.69
14.84
20.23
5.26
8.52
4.51
4.51
4.33
5.06
3.08
19.62
Geometric
Mean
14.53
18.95
9.05
9.92
10.84
11.57
13.10
13.62
10.24
13.97
16.60
16.19
19.36
13.73
24.39
18.26
17.33
19.83
54.21
15.15
17.93
13.64
19.16
16.42
10.92
19.60
38.06
16.28
37.95
16.39
92.40
59.14
36.64
66.67
45.91
19.77
20.98
12.53
23.26
20.92
12.28
9.69
18.42
Standard
Deviation
1.45
1.53
1.56
1.48
1.49
1.36
1.40
1.48
1.55
1.74
1.31
1.41
1.57
1.60
1.28
1.38
1.26
1.40
1.70
1.34
1.57
1.29
1.20
1.34
1.63
1.33
1.42
1.33
1.59
1.42
1.35
1.26
1.25
1.24
1.49
1.27
1.44
1.46
1.21
1.22
1.39
1.33
1.85
*N = number of samples.
27
-------
Table 10. DUSTFALL FOR ALL STATIONS BY MONTHS
(tons/mi /mo)
Month
Feb 1963
Mar
Apr
May
June
July
Aug
Sept
Oct
Nov
Dec
Jan 1964
Feb
Minimum
5
12
9
10
7
6
7
7
10
8
3
5
8
Maximum
135
176
126
94
83
105
97
97
79
79
48
88
86
Na
32
38
38
39
40
40
40
40
39
40
39
37
41
Arithmetic
Mean
29.68
34.57
29.89
24.20
21.65
19.05
19.55
20.45
25.94
22.72
14.84
17.40
25.95
Standard
Deviation
27.57
28.75
24.94
21.17
15.83
17.63
16.23
17.03
16.23
19.01
10.50
16.33
20.09
Geometric
Mean
22.77
29.12
24.85
19.70
18.17
15.49
16.01
16.93
22.79
17.86
12.05
13.57
21.18
Standard
Deviation
2.00
1.68
1.73
1.75
1.74
1.76
1.79
1.73
1.60
1.90
1.90
1.91
1.81
X = number of samples.
The monthly and seasonal trends shown in Figure 14 generally follow the same
o
pattern as those found in Nashville'' and other cities. The maximum monthly
geometric mean for all sites was 29.12 tons per square mile per month, which
occurred in March 1963. The minimum monthly geometric mean was 12.05 tons per
square mile per month in December 1963. As would be expected from these two
monthly means, the spring season showed the highest geometric mean, 24.20 tons per
square mile per month, and the winter season the lowest, 15.25 tons per square mile
per month.
Site 433-565, which is in a low-density-residential - to - rural area, had
the lowest yearly geometric mean of 9.05 tons per square mile per month. Site
498-704, which is in a very heavily industrialized area, had the highest yearly
geometric mean of 92.40 tons per square mile per month.
Since dustfall measurements include relatively large particles that settle
out close to their sources, stations close to large sources detect greater amounts
of dustfall than stations farther away. The winter season, because of space heating,
might be expected to have the most dustfall, but the spring season had the highest.
This can be attributed primarily to the high wind speeds in the spring, which pick
up more dust from the ground. The lack of vegetative cover and increase in
construction and farm work in the spring also help explain the seasonal increase.
28
-------
J0
o
l5
UJ
u
Z
O
o
MAR APR MAY JUNE JULY AUG SEPT OCT NOV DEC JAN FE B
I 1963 1 (—1964—1
SPRING FALL YEAR
SUMMER WINTER
Figure 14. Dustfall - geometric means for months, seasons, and years.
Since no previous dustfall studies have been made in the St. Louis area, it
is not possible to determine a trend. St. Louis would be expected to follow the
trend of other similar cities in which dustfall has been reduced considerably in
the past 30 years. New York City values, for instance, decreased from 162 tons per
square mile per month in 1944 to 61 tons per square mile per month in 1963 , with
nearly all the reduction occurring between 1944 and 1952. Cincinnati values
decreased from 54.2 tons per square mile per month in 1930-31 to 15.5 tons per
4
square mile per month in 1963-64. There was a steady decrease between 1944 and 19S7
and not much change since. Chicago values decreased from 394.8 tons per square
mile per month in 1928 to 43.1 tons per square mile per month in 1962. The major
portion of this decrease occurred between 1928 and 1935. Pollutant emission control
program activities and conversion from coal to oil and natural gas for fuel, which
have also taken place in St. Louis, account for the decreases.
Table 11 compares St. Louis results with results from seven other cities.
Chicago, Cincinnati, New York, and Detroit results are from within the city limits;
the Windsor, Nashville, and St. Louis results are from the entire metropolitan area
and are, therefore, expected to be lower.
The states of New York and Oregon are the only two states known to have
established dustfall objectives or standards. Oregon has the following dustfall
standard: "The particle fallout rate in a residential or commercial land-use area
shall not exceed the normal background values by more than 15 tons per square mile
per month; excepting that in heavy-industry-land-use areas the particle fallout
rate may be 30 tons per square mile per month above the normal "background level
..." Normal background levels average about 5 tons per square mile per month.
New York has established dustfall objectives that range in geometric means
from 0.30 milligram per square centimeter per month (8.5 tons/mi /mo) in cleaner
areas, to 1.5 milligrams per square centimeter per month (42.8 tons/mi /mo) in
dirtier industrial areas. There are also three other values between these two.
29
-------
Table 11. DUSTFALL RESULTS FROM ST. LOUIS AND OTHER CITIES
City
Chicago
Cincinnati
New York City
Detroit
Windsor, industrial
Commerci al -res ident ia 1
Residential, semirural
Nashville
St. Louis
Louisville
Refer-
ence
5
4
3
58
58
2
59
Year
1962
1963-64
1963
1956
1955
1958-59
1963-64
1956
Dustfall ,a
tons/mi /mo
43.1
15. 5h
61
b
67° }
83.1 1
47.4 >
35.6 )
6.5b
20.97 I
29 )
Remarks
Central
city
only
Metropolitan
area
Metropolitan area
geometric mean
Metropolitan area
Arithmetic means except as noted.
Water insoluble portion only.
High dustfall values are associated with excessive soiling of automobiles,
porches, window sills, and other horizontal surfaces. On the basis of the above
standard and objective, some industrial and some residential areas are considered
excessively dirty in the St. Louis area. Dustfall values in excess of 15 to 20
tons per square mile per month are considered detrimental by many authorities.
SUSPENDED PARTICULATES MEASURED BY HIGH-VOLUME AIR SAMPLER
High-volume air samplers were operated at 17 sites to collect suspended
particulates. The results are given in Table 12. The geometric means for the year
July 1963 tnrough June 1964 ranged from 60.98 micrograms per cubic meter at Site
432-715, which is in a light commercial area, to 221.81 micrograms per cubic meter
at site 505-740, which is surrounded by industry and burning dumps.
Figures 15 and 16 are isopleth maps of the annual geometric means and the 99th
percentile values, respectively. From the 1960 census population density (Figure
1) and the isopleth map of the annual geometric means, it was determined that approx-
imately 84,000 people lived in areas having concentrations greater than 150
micrograms per cubic meter.
The State of Colorado has adopted an ambient air quality standard for
suspended particulates of 120 micrograms per cubic meter. The standard is based on
the average of samples collected at least once every third day over a 3-month
period in the central business district of the city or community where a single
30
-------
Table 12. SUSPENDED PARTICULATES BY HIGH-VOLUME AIR SAMPLER
3
Site
coordinates
July 1963 (R
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
499-700
501-713
520-798
534-702
Minimum
mdom sch«
37
48
55
23
44
76
183
59
39
57
58
90
43
40
Aug (Random schedule)
432-715
438-689
449-719
468-665
469-750
472-680
481-698
489-728
490-713
4D9-700
501-713
520-798
534-702
42
43
68
37
36
105
53
110
81
57
76
38
22
Maximum
dule)
122
60
158
104
97
175
1029
145
247
191
177
427
154
156
102
140
133
111
118
334
151
255
224
996
251
116
189
Sept (Weekday schedule)
432-715
438-689
449-719
468-665
469-750
470-718
472-6SO
481-698
489-728
490-713
499-700
501-713
520-798
534-702
45
49
44
43
70
58
35
69
12
91
71
47
47
25
112
206
172
152
123
230
539
211
392
282
741
443
265
164
Na
8
2
10
12
6
8
9
10
8
10
12
15
7
12
7
7
6
7
6
6
8
6
7
7
8
5
6
23
20
18
23
4
18
17
19
16
17
19
17
20
9
Arithmetic
Mean
70.25
54.00
84.00
63.33
60.83
109.00
416.44
83.40
139.25
112.10
106.75
158.86
101.28
83.66
75.85
93.00
99.16
83.00
81.16
238.66
108.87
170.83
165.14
251.00
163.50
82.80
92.83
71.43
97.65
95.55
91.65
99.25
114.55
275.70
124.52
169.06
188.47
202.36
203.76
115.55
78.66
Standard
deviation
30 . 34
8.48
30.19
24.91
18.66
33.59
275.38
27.01
62.93
36.67
37.98
78.87
41.35
41.36
18.75
34.52
26.67
25.82
30.22
87.00
32.93
50.44
53.53
335.56
58.12
36.29
73.84
18.94
35.22
31.24
26.81
23.34
40.28
131.97
40.93
98.13
45.20
145.34
101.74
63.87
45.54
Geometric
Mean
64.63
53.66
80.14
58.29
58.86
105.10
355.27
80.05
124.34
106.90
100.79
147.75
93.01
75.42
73.53
87.19
96.13
78.61
75.71
222.61
103.88
164.90
154.12
150.98
154.04
75.28
66.21
69.05
92.40
90.67
87.71
97.05
108.41
238.36
118.34
135.68
182.69
173.61
179.73
100.89
66.61
Standard
deviation
1.55
1.17
1.36
1.56
1.30
1.32
1.77
1.33
1.74
1.38
1.42
1.42
1.59
1.59
1.32
1.40
1.31
1.46
1.53
1.54
1.40
1.33
1.46
2.67
1.46
1.66
2.60
1.30
1.40
1.40
1.36
1.28
1.40
1.88
1.39
2.24
1 . 30
1.69
1.71
1.69
1.89
N = number of samples.
31
-------
Table 12. (Cont'd) SUSPENDED PARTICULATES BY HIGH-VOLUME
AIR SAMPLER (fJ-g/m3)
Site
coordinates
Oct (Weekday
468-665
432-715
438-689
449-719
469-750
470-718
472-680
481-698
489-728
490-713
499-700
501-713
520-798
534-702
Nov (Weekday
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
495-709
499-700
501-713
505-740
520-798
534-702
Dec (Weekday
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
495-709
501-713
505-740
520-798
534-702
Minimum
schedule)
61
45
50
52
67
41
10
61
88
81
105
130
67
82
schedule)
14
17
22
19
28
19
11
12
26
74
42
90
70
104
83
19
schedule]
30
28
23
34
33
12
52
46
60
63
73
100
71
27
35
Maximum
229
143
179
242
189
248
767
217
642
288
433
366
334
207
152
147
223
220
229
205
488
161
294
435
207
379
333
778
276
251
186
150
175
199
173
306
499
253
187
220
258
225
1066
372
177
\'a
25
25
24
23
10
19
22
25
12
23
21
20
15
6
18
19
15
21
19
13
19
24
9
17
9
9
15
10
16
14
20
19
21
21
19
13
14
17
8
19
17
17
18
21 ~
14
Arithmetic
Mean
138.68
91.20
110.20
142.30
130.00
135.26
312.77
141.92
233.75
205.73
193.66
245.05
171.53
140.00
65.88
61.73
87.60
69.23
91.21
103.92
194.15
83.08
170.00
161.94
117.33
203.00
195.40
298.40
155.43
98.92
74.20
57.21
70.52
80.04
88.94
98.92
181.92
98.41
98.87
121.73
146.76
164.17
215.77
139.71
101.42
Standard
deviation
42.61
25.96
34.20
42.80
41.52
55.36
198.24
37.90
144.77
56.29
87.10
66.15
68.30
43.17
34.05
30.54
51.56
44.48
51.37
62.58
146.15
36.75
92.95
106.27
51.26
111.57
84.15
200.00
63.88
59.70
41.97
28.06
39 . 95
43.67
37.34
80.14
125.31
52.08
42.23
44.36
54.64
40.32
230.34
73.94
48.36
Geometric
Mean
131.69
87.53
104.45
135.49
123.29
122.08
238.45
136.25
204.02
196.06
179.57
235.39
158.18
134.39
57.65
54.94
74.43
59.67
78.97
83.45
133.71
73.57
137.34
138.48
105.87
177.97
177.03
252.39
143.99
82.74
65.98
52.36
60.66
70.55
81.77
73.41
147.61
88.41
92.19
114.69
137.56
159.22
163.05
122.36
88.89
Standard
deviation
1.40
1.34
1.41
1.39
1.42
1.65
2.51
1.35
1.69
1.41
1.45
1.35
1.54
1.37
1.74
1.66
1.83
1.71
1.74
2.12
2.74
1.75
2.21
1.72
1.66
1.71
1.61
1.80
1.49
1.92
1.60
1.51
1.76
1.65
1.53
2.32
1.96
1.58
1.47
1.42
1.45
1.29
1.96
1.74
1.76
32
-------
Table 12.
(Cont'd) SUSPENDED PARTICULATES BY HIGH-VOLUME
AIR SAMPLER
Site
coordinates
Jan 1964 (We.
432-715
438-689
449-719
468-665
469-750
472-680
481-698
490-713
494-703
495-709
501-713
505-740
52"-798
534-702
Minimum
jkday sche
37
28
32
33
55
86
54
77
93
72
88
98
81
25
Maximum
dule)
106
111
178
151
193
1337
246
302
327
308
373
622
430
248
Feh (Weekday schedule)
432-715
438-698
44')-71"
468-665
4 6:>- 750
47H-71S
472-6SO
431 -60S
4P9-72S
490-713
494-703
495-709
501-713
505-74i)
520-798
534-702
30
23
32
26
43
35
43
45
66
80
96
80
108
78
58
41
130
142
248
87
182
202
733
271
232
268
406
414
417
624
235
258
Mar (Weekday schedule)
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
494-703
495-709
501-713
505-740
520-798
534-702
23
18
15
16
31
57
55
23
30
62
63
74
67
89
49
50
122
124
151
98
151
162
975
196
147
241
318
417
267
604
314
181
Na
25
10
19
25
9
19
23
18
16
22
21
20
24
19
22
20
21
17
22
13
17
22
15
17
15
18
18
18
18
10
23
21
18
22
23
2
14
23
18
18
12
21
16
10
21
11
Arithmetic
.Mean
63.68
54.90
79.10
71.80
106.22
436.42
111.56
150.16
165.62
146.36
199.28
338.20
185.12
114.57
63.54
58.55
88.66
48.76
95.81
75.61
198.64
94.86
102.26
151.88
182.46
189.50
203.50
205.05
137.00
124.70
56.52
68.42
82.77
45.31
85.08
109.50
287.50
97.43
87.27
134.27
159.75
162.19
162.75
260.20
169.19
87.27
Standard
deviation
21.72
29.28
44.72
29.66
48.45
336.36
53.92
60.15
56.89
64.28
77.96
165.51
80.42
57.76
28.23
26.49
57.81
14.79
38.58
47.41
176.04
54.34
43.22
63.25
75.04
80.93
78.13
118.78
51.19
60.82
23.14
26.39
37.98
18.98
33.87
74.24
279.05
45.45
36.69
51.04
74.22
75.57
55.85
172.98
73.20
39.15
Geometric
Mean
60.19
49.05
69.16
66.50
96.93
337.55
101.05
140.07
157.70
134.64
185.84
291.72
170.91
100.50
58.36
53.60
73.86
46.73
89.15
65.57
147.41
84.48
96.18
139.95
170.95
175.15
191.45
183.77
127.82
111.01
51.90
62.37
72.17
41.82
77.99
96.09
197.62
86.66
79.44
124.76
145.54
149.56
152.46
215.82
152.57
80.81
Standard
deviation
1.40
1.62
1.68
1.48
1.57
2.09
1.55
1.45
1.37
1.50
1.46
1.82
1.49
1.74
1.51
1.53
1.84
1.35
1.46
1.69
2.18
1.58
1.40
1.51
1.43
1.49
1.42
1.57
1.48
1.70
1.54
1.61
1.82
1.51
1.56
2.09
2.37
1.68
1.58
1.49
1.56
1.48
1.47
1.90
1.63
1.48
33
-------
Table 12. (Cont'd) SUSPENDED PARTICULATES BY HIGH-VOLUME
AIR SAMPLER (|ag/m3)
Site
coordinates
Minimum
Apr (Random schedule)
432-715
438-689
449-719
468-665
469-750
472-680
481-698
489-728
490-713
494-703
495-709
501-713
505-740
520-798
534-702
May (Random .
432-715
438-689
449-719
468-665
469-750
470-718
489-728
490-713
495-709
501-713
505-740
,Tune(Random
432-715
438-689
449-719
468-665
469-750
470-718
490-713
495-709
501-713
505-740
34
34
78
15
33
23
55
39
58
78
79
92
71
80
79
schedule)
44
51
55
52
56
82
186
126
146
154
253
Maximum
105
132
131
98
150
926
255
188
193
451
264
248
502
302
101
489
131
145
99
186
119
186
126
247
287
459
Na
8
9
6
8
7
4
8
13
7
15
8
8
7
6
S
6
6
4
6
6
3
1
1
4
6
5
Arithmetic
Mean
69.12
76.33
107.16
48.62
87.85
295.50
133.00
99.92
125.00
187.80
155.62
146.75
263.00
161.83
89.00
145.16
90.83
88.75
64.50
102.50
98.66
179.00
210.66
338.00
schedule)]
25
44
22
31
42
33
132
79
131
141
109
183
139
149
109
98
146
134
2S5
254
7
8
7
5
8
5
3
6
7
7
57.42
83.75
104.28
69.40
70.62
62.00
138.00
102.66
195. UO
191.28
Standard
deviation
24.59
32.82
21.45
27.27
39.32
422.72
68.06
52.98
46.95
113.06
62.08
58.37
146.22
83.77
9.13
170.85
27.49
39.33
17.53
47.24
18.77
46.22
44.01
80.76
1
1
27.37
43.86
43.18
46.15
24.54
23.42
7.21
18.41
49.59
40.72
Geometric
Mean
65.02
70.32
105.26
42.00
79.59
130.12
118.69
87.97
116.94
161.05
145.58
137.59
223.75
145.03
88.63
98.69
87.12
83.04
62.87
94.60
97.50
175.05
207.00
330.66
52.21
76.26
91.08
60.00
67.07
58.46
137.87
101.34
189.81
187.57
Standard
deviation
1.46
1.54
1.23
1.81
1.65
4.55
1.66
1.69
1.50
1.75
1.47
1.45
1.93
1.66
1.10
2.36
1.38
1.50
1.26
1.53
1.20
1.26
1.22
1.26
1.60
1.55
1.94
1.78
1.40
1.47
1.05
1.19
1.28
1.23
34
-------
Table 12. (Cont'd) SUSPENDED PARTICULATES BY HIGH-VOLUME
AIR SAMPLER (|JLg/m3)
Site
coordinates
Minimum
Maximum
Summer '63 (Random schedule)
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
499-700
501-713
520-798
534-702
37
43
52
23
36
31
96
53
39
57
30
76
30
22
122
140
158
118
133
175
1029
151
255
224
996
427
246
189
Fall '63 (Weekday schedule)
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
495-709
499-700
501-713
505-740
520-798
534-702
14
17
22
19
28
19
10
12
12
74
42
71
47
104
47
19
152
206
242
229
229
248
767
217
642
435
207
741
443
778
334
251
Na
32
9
34
28
32
19
36
22
25
40
41
31
37
26
66
63
56
69
33
50
58
68
37
57
9
49
52
10
51
29
Winter ' 63-64 (Weekday schedule)
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
494-703
495-709
501-713
505-740
520-798
534-702
30
23
23
26
33
12
43
45
60
63
93
72
88
71
27
25
186
150
248
199
193
306
1337
271
232
502
406
414
417
1066
430
258
67
49
61
63
50
26
50
62
23
54
31
57
56
56
63
43
Arithmetic
Mean
69.71
84.33
81.41
75.35
76.03
91.84
309.25
92.63
137.84
118.82
128.51
164.61
133.18
96.46
77.40
91.60
112.62
101.86
103.93
119.66
263.05
116.29
190.27
187.52
117.33
198.75
217.23
298.40
144.52
101.13
66.77
57.28
79.44
68.33
95.08
87.26
284.32
102.03
101.08
140.70
173.77
160.10
189.98
256.05
156.23
112.65
Standard
deviation
18.97
34.62
23.83
23.91
22.64
32.89
197.37
28.95
48.39
38.53
145.48
63.25
58.86
49.47
28.21
38.78
48.43
48.14
48.28
53.08
169.40
45.69
115.19
73.42
51.26
114.79
85.59
200.00
68.36
55.40
30.92
27.12
48.00
34.18
39.64
65.60
265.25
53.23
41.94
56.89
65.72
69.26
69.77
184.55
73.51
54.99
Geometric
Mean
67.20
78.27
78.53
70.79
72.91
86.15
266.92
88.60
129.49
113.50
104.73
155.79
118.31
82.85
71.92
82.77
101.43
90.38
92.67
105.95
197.26
105.38
155.33
173.06
105.87
176.95
198.51
252.39
128.75
85.52
61.24
52.16
67.62
61.66
87.58
69.38
202.03
91.42
94.77
130.52
163.98
147.24
179.02
208.57
140.71
98.82
Standard
deviation
1.32
1.50
1.30
1.47
1.34
1.46
1.69
1.35
1.45
1.34
1.70
1.38
1.70
1.82
1.50
1.61
1.63
1.67
1.65
1.72
2.47
1.64
2.08
1.51
1.66
1.58
1.57
1.80
1.64
1.87
1.50
1.53
1.76
1.55
1.50
2.00
2.29
1.57
1.41
1.47
1.40
1.50
1.40
1.87
1.60
1.72
= nuriber of samples.
35
-------
Table 12. (Cont'd) SUSPENDED PARTICULATES BY HIGH-VOLUME
AIR SAMPLER ((J-g/m3)
Site
coordinates
Minimum
Spring '64 (Random sd
520-798
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
494-703
495-709
501-713
505-740
534-702
69
28
26
33
15
31
95
23
41
39
58
63
74
85
71
52
Maximum
ledule)
314
489
132
151
99
186
162
926
255
188
190
340
264
287
502
126
Na
14
23
23
16
23
36
3
10
17
11
13
10
19
18
14
9
July '63-June '64 (Random schedule)
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
494-703
495-709
499-700
501-713
505-740
520-798
534-702
14
17
22
15
28
33
11
27
12
57
63
42
67
76
71
27
22
July 1963 All 23
AUS All 22
Sept All 12
Oct All 10
Nov All 11
Dec All 12
Jan 1964 All 25
Heb All 23
Mar All 15
Apr All 15
May All 44
June All 22
Summer All 22
Fall All 10
Winter All 12
Spring All 15
Year Random 11
489
183
171
220
186
205
1337
255
311
435
340
264
332
355
502
334
258
1029
996
741
767
778
1066
1337
733
973
926
489
285
1029
778
1337
926
1337
89
74
81
85
71
34
63
77
44
65
19
45
21
69
39
63
42
129
86
240
270
247
258
270
283
273
119
48
63
412
757
811
245
981
Arithmetic
Mean
180.71
82.65
74.52
94.25
51.08
88.52
125.33
284.60
115.29
100.54
123.23
157.50
157.89
170.00
286.50
90.11
69.39
72.81
83.61
67.22
81.16
98.20
303.55
96.75
123.75
139.47
158.42
143.75
166.52
176.42 .
246.25
135.23
102.33
121.71
131.98
138.22
169.93
124.88
114.56
160.72
124.19
119.76
132.77
146.89
107.26
124.33
145.18
133.28
126.93
124.16
Standard
deviation
86.32
92.08
30.82
35.87
22.81
36.69
33.94
307.27
62.69
52.67
43.97
94.74
56.37
58.47
16.42
21.83
51.67
33.94
37.95
35.55
33.89
49.96
274.16
42.66
64.22
62.25
69.44
51.72
75.26
62.04
110.83
70.28
49.16
117.55
114.62
92.15
99.54
99.64
91.20
151.37
89.36
103.67
111.96
104.67
60.49
103.53
99.04
115.85
105.71
107.75
Geometric
Mean
160.63
65.03
68.03
86.66
46.08
80.86
122.34
64 . 78
100.29
88.35
115.42
137.13
148.03
160.03
259.77
87.59
60.98
65.15
74.29
59.39
74.76
86.20
207.73
88.39
106.48
128.27
146.35
134.64
151.27
165.97
221.81
118.04
91.70
98.03
108.33
116.44
148.32
95.97
93.90
121.84
100.93
94.. 36
106.04
119.61
91.10
103.81
119.17
105.02
100.14
98.77
Standard
deviation
1.68
1.81
1.57
1.56
1.61
1.56
1.30
3.13
1.73
1.71
1.47
1.71
1.45
1.44
1.65
1.29
1.60
1.62
1.67
1.65
1.50
1.69
2.55
1.53
1.82
1.50
1.49
1.45
1.57
1.42
1.61
1.72
1.62
1.81
1.82
1.78
1.69
2.08
1.85
2.04
1.89
1.96
1.92
1.87
1.81
1.74
1.90
1.94
1.95
1.92
Year
All
10
1337 2298 134.49
107.56 107.86
1.92
36
-------
L EGEND
BOUNDARIES
STATE
COUNTY
HIGHWAY MARKERS
FEDERAL
STATE
— O—
ISOPLETHS OF ANNUAL GEOMETRIC MEAN
VALUES
_^_ LINES OF ACTUAL EQUAL VALUE
_» LINES OF PROBABLE EQUAL VALUE
HIGH VOLUME SAMPLING FROM JULY 1,1963
TO JULY 1,1964, IT STATIONS
820
810
BOO"
790
780
770
760
750
740
730
720
710
mm
690
680
670
660
650
640
630
620
610
600"°
590
580
390 400™' 410 420 430 440 450 460 470 480 490 500000' 510 520 530 540 550 560 570
Figure 15. Annual geometric means of particulate matter measured with high-
volume samplers
37
-------
/ EG END
BOUNDARIES
STATE
COUNTY
HIGHWAY MARKERS
FEDERAL —D
STATE —O
ISOPLETHS OF 99 PERCENTILE VALUES
LINES OF ACTUAL EQUAL VALUES
LINES OF PROBABLE EQUAL VALUES
BASED ON ANNUAL GEOMETRIC MEANS
AND STANDARD DEVIATIONS FOR 17
STATIONS DURING JULY 1.1963 TO
JULY 1.1964.
390 400"°' 410 420 430 440 450 460 470 480 490 500""' 510 520 530 540 550 560 570
Figure 16. Suspended particulate matter 99 percentile values measured with high-
volume samplers (fig/m ).
38
-------
Q
emission source is not the prime polluter. The State of Oregon has established a
maximum concentration of 150 micrograms per cubic meter for residential and
commercial areas and 250 micrograms per cubic meter for industrial areas, both
above normal background levels. Background levels in rural Missouri average
g
approximately 30 micrograms per cubic meter. This, based on the Oregon standard
would make the limits 180 and 280 micrograms per cubic meter for St. Louis. The
State of New York has adopted ambient air quality objectives that range in geometric
means from 40 micrograms per cubic meter in cleaner areas to 135 micrograms per
cubic meter in dirtier industrial areas. There are five additional objectives
between these two. Since the New York and Colorado standards are more recent than
the Oregon requirement, there appears to be a trend toward lower values. There is
also a trend away from the use of single-number standards. Standards should relate
to effects; therefore, frequency and duration of occurrence as well as level of pol-
lution should be established in the standards.
Site 490-713 in downtown St. Louis exceeded the Colorado standard three out
of four seasons; whereas site 501-713 in downtown East St. Louis exceeded it in all
four seasons. The Oregon standards were exceeded by all the sites except sites
449-719 (residential-commercial) and 495-709 (industrial). The sites used in this
Study cannot be classified exactly according to the New York classification system.
Sites 472-680, 494-703, and 499-700, however, which are in industrial areas, had
geometric means that exceeded the New York poorest-air-quality objective of 135
micrograms per cubic meter.
The monthly, seasonal, and yearly geometric means for all sites given in
Figure 17 show October as the maximum month with 148.32 micrograms per cubic meter,
and June, the lowest with 91.10 micrograms per cubic meter. Fall was the highest
season with 119.17 micrograms per cubic meter, and spring, the lowest with 100.14
micrograms per cubic meter. The yearly geometric mean based on random days was
98.77 micrograms per cubic meter and 107.86 micrograms per cubic meter based on all
results. If weekday sampling schedule results are used for the fall and winter
seasons, the yearly mean is lower than any of the seasonal means. This is because
the weekday sampling schedule was used to determine the fall and winter means and
the 100-day random sampling schedule to determine the spring, summer, and yearly
means. This approach was taken to prevent biasing the yearly mean with more winter
and fall results than spring and summer results.
Since the weekday sampling schedule provides more data than the random
schedule, it has greater validity. As the data are used the conservative nature of
the yearly mean should be considered. This would justify increasing the yearly
mean as much as 7 micrograms per cubic meter, or from 98.77 to about 105.
39
-------
175
in
b 150
125
Z
0
p 100
cc
1- 75
UJ
Z 50
0
0
25
0
-
.
-
-
-
-
n
r— i
n
[-1
...
—
F — 1
,_.
-
-
_
]
'
-
NOV DEC JAN
FEB MAR APR MAY JUNE
-1964 1
SUMMER WINTER YEAR
FALL SPRING
Figure 17. Suspended particulate geometric means for months, seasons,
and year-measured with high-volume samplers.
A statistical comparison of the results from the weekday and random schedules
was made to determine the validity of the random schedule. This comparison showed
that the 100-day random-sampling schedule could be used to estimate annual and
season means within ± 20 percent of the true geometric mean at 95 percent confidence
limits. A random schedule of 250 to 300 days would be required to estimate monthly
means with the same degree of confidence. The details of this statistical comparison
are given in the Interstate Air Pollution Study, Memorandum of Information and
Instruction No. 14, "Comparison of Hi-Vol Particulate Measurement Using Random and
Weekday Schedules July 1963 Through June 1964." Table 13 compares the results of
the random and weekday schedules by station and seasons, and Table 14 indicates the
percent difference between the random and weekday sampling results. Use of these
tables will guide the user regarding the degree of confidence that can be placed in
the data for use in specific places or specific time intervals.
Figures 18 through 33 give the suspended particulate frequency distributions
for the year and seasons at each of the sampling sites. A test of the data from
ten of the sites was made to determine whether the geometric mean and its standard
deviation or the arithmetic mean and its standard deviation described the data
better. For all ten sites, the geometric means were nearer to the 50th percentile
value than were the arithmetic means. For nine of the sites, each set of the ten
fractiles (10th percentile, 20th percentile, etc.) described an approximate straight
line very close to the line determined by the particular site's geometric mean and
its standard deviation. Zimmer, Tabor, and Stern also found this to be true of
the National <\ir Sampling Network data. The conclusion reached was that the geomet-
ric mean and its standard deviation should be used to describe each station's data
distribution.
40
-------
TO
z
<
w
S
u
r-H
PH
H
W
I
W
O
J
ffi
H
Z
O
o
TO
<
w
w
ri
H
i"
•8-3
CO
V
•-»
I
t-t
s
^p
-o
OV
M
CO
X
o
u.
2
*"3
z
r )
2
(
•=
(
i
-i-*
O (-
*-> O
-t O 00 O 00
fN O O Q O
(N ^r -* o °o
in r- at >£ in
ot r-j ^ r- f^ o
O —• O QO rO O
• I .| .1 .1 ii • i ii it • t
oo r- ro (N O «O
Ot OO 30 >0 O CO
IN 00 O O IN Oi >O
o oo (N o -too
LT) -H LO r-» O ^O O
O r-. o - Ot OO QO 0 to O r-» Tf
O* — * ^ O Oi
^r m m o t^> r- •O r- Ot GO in -H r-- O ^ in O
^ m T in m r* •*•«*• t- oc o o O O4" O ^ 00V rO\o Ol^1 *t —•
O»m Wrj -^O rOO C*-H ^tO O»r^- OVOO O(M
i/)>o ^ i/> 1/1* ^r^ r-oo ^i*- to^ r^-x ooo»
•-< i/i t^^" -Hto t~*r^ Of*- f*«m O-^ ^^r^- Of
^r-o *o» i/> T ro\o i^o» rv*v cnr-* i- ^r-
mirt mm mr^ >£>irt \oc-» ooo OM r^-r*- o^
«ot«t -«\n Ok«t w o> oot * oo » m com o o<-« in"» OfN ^oo w«p *)^
O*oo -^O tOK» f*- OO O»^- TfrO CTlfO r-O
«Ot r-J(N OO Of- (Nl-» (N OO O«0 OOO 00 LO
o -o oo ov t^~ *» woo <-«Ok cno 010 o —« o -^
HI a» »o (M i/i »H r- o
irt -^ -H r--«ro
ino^—^^irttNoo^
(Naoctirt»OOinrs*r-i
o*^«o»rt«-«u>oot-i
^-4 rO ^H
S-T (NO »-«r< o-O -^oo ooo o«o iorj Otr*
O t^- d AOt
^H fj
-HP^ (Nr- (MrO i/joo mf- O1-^ too —«oo ^o
S-H -HIM -H-* o»o -^rvi oom atr- ooi/> ^-tn
r^- r-ao «oo r*o% r^c» oo ooc\ ooo -HUI
r^o»otoo^>«e
— •OOHIl/lQO^Of^-**^
rNr^r-oi^in^fN^r
OOOOsO\DOO(7iCTttO
L/iooooooao
— too— *OLn-HOOO%rsj
fMeOCT*goa»OM^-^Ov
O
o
o
•w
o
o
•o
CN
0»
CTl
O
(N O
•-t (N
OO l/>
0 Ut
^ a»
CM rO
rvi r^
(N O
1^- O
10 a»
h, 0
ffl ^
Oi ^
0 05
O -^
rO OO
>o to
at >o
^- o
V O
cv a»
0 <7»
(N *
O r4
o oo
«N
pH
^p
1/1
at
o
1
-H C-|
2S
3S
^r ro
in r-
»o
rj
o*
tt
rO
^H
O
l/l
o
1/1
r^
in
a^
=o
Tt
o> o
to m
in ot
rO -^r
a> in
00 -<
rO i/l
o ^*-
— • ^
O ^T
O O
O *T
~* ro
o> o
r» m
o r-
ul ro
Kl 1-^
^ OO
r* in
00 O
1 1
O -T
•«?• r-
•^ ^r
55
£2
ro
O
00
•V
•V
^~
(O
c*
o
in
O*
^F
i i
O» r--
»o m
oo r-'
o r*»
t-i --<
co r*.
CM m
oo a>
r-» r*
o> •«•
o
r^
to
o o
to ^t
T fN
o in
oo in
^ ^~
(N «-•
r- ot
-• n
^ 00
o» in
in oo
O (N
r^ (N
r- o»
m in
r^ ro
ro O
o> r^
in h*
O <7t
r- HJ
oo in
<~t K)
«N r4
t^. »o
CM r-
^ Ok
r- r--
-H ^H
10
w
• i
to
o
I-H
0>
2
(N (N
(N O
•*» CTi
o r-
•-H
rO »^
^-< in
OO 00
r* o>
(M
(N
t>*
O
Kl
0
o
•&
r*-
in
vJD
to
o
l/l
r»-
in
r*.
CO
o
o
o
to
(0
m
r*
to
fN
IN
O\ (N
m co
01 in
to •-•
fN r^
0 r-
o r*
O» ro
o ao
Ci (N
to t-^
O -«
O CT>
^
O ro
<-+ (N
o m
r*
r»
a>
tn
(N
-H
(N
0
^>
in
o
i/j
rO
O
m
•^
(N r-
v in
tO fN
r-» in
Oi (N
o °°
oo r*
Cl (N
r* -H
Ot Ok
o o
in r-
0 •£>
0 ro
^ fN
O (M
•*• o>
co at
•«* rO
rj ^p
^
(N «0
^- OO
CN l/l
r- o»
r*- oo
s§
•0
(N
• 1
in
r-
o
ro
at
00 -H
Oi r-
CM O
-« n
-H 10
o r^
(N OO
CM rj
r^
in
00
to
o
o
0
V
00
CO
Oi
o
(N
in
tO
•o
00
CO
fN >-t
ro QO
0 0
oO 00
S3
O -*
TJ- -H
-H 0
Oi m
m o
CO O
01 at
00 00
ro co
r>. oo
-H ^>
r- f^-
r-« (M
0 00
§Ol
rt
~4 *t
(N rO
(N »-«
O sO
2S
00
at
. i
r*-
o
O)
r-
00
SCM
00
oO oO
Oi Oi
^ IN
Oi Lrt
in in
Oi 00
ro
(N
r-i
QO
Oi
in
r-~
00
o
f-4
Oi
»N
O
TT
ro
m
o
t--
r-
oO
%O
r^-
h-
^*
tN
O
~o •&
(N fO
(N *»•
at ot
V
— t f>
•—< >H
< in
S
6
§
c
rt
u
«*
41
-------
o
Q
w
W
W
o
o
Q
O
I — I
H
<
2
W
O
tf
w
0,
0)
I—I
,0
H
V)
o
CO
C
t-l
o
o
u
o
V)
3
0)
u
(/}
(
to o
t/i r~-
O 00
CN en
in o
O ^T
m r~-
(
o --•
i
en o
c\ o
m en
Ch O
TT ro
Ch O
o to
Cn ~^
^T t-
C1 00
oo .
7 " ^
0
oc r-- en
I — « TT
'
«
O oc (-*
"7 " ^
\D
rs| tO
00
in fN oo
*V ^ *°
-H
rr cn 00
i «-« m
r-
(VI -H O
1
fN ^ tO
tO
rl rsi en
*-* fN >O
_
o oo o
1
to
to o to
^H rj \o
i
rt
U.
<; 23
r-
1 " ^
-
en
o •& o
to
i ^ m
en
^ r- r~
^
1 to
p-
rj co -q-
*-. ^-« m
^
fNl •-• tO
1 -H fN
*
LO (N fN
— t fN \O
rj
to en o
1 -H U1
r-
CM O O
1
o
^ ^H in
fN
W rsi to
-i rN vO
O
2 ^3 o
1
o
rs] so en
— « —• T
1
(L)
C
< 01
-
^
o
t IN
O
1 —H
l/l
^H ^^
'
O
en t^ r^-
i ^
00
t^
W \o en
*"* *~*
to
en in r~»
rO
1
»
*"•
^
r~ r- to
1 (N
fN
U", O OC
1
en
o r- o
-H r-4
1
d-
C/l
< =Q
O
^
-
*
-
1 fN
r-
O i/i ^^
1 ^
i
CO
O tO tO
i •
fN -H
'
*
m cn cn
1 --H
CO
.
O
< 33
cn
*"• •"•
0
in
^ ^ oo
+ -H
0
i —«
i
LO
cn m r*-
0
to ^o cn
,
r-
o r- ~+
*T '^
fN
cn oo <-H
1 fN
CC
in r- cn
i ^
1
< =0
».
1
-
to
r^. ^j- o
tO fN
*
fN
1
0
to m fN
••H fN
1
m
t~~ to ^O
, -
to
O T OO
,
fN
to m to
.-• fN
o
m ^o cn
*
OO
fN
^.
r-^ r- m
--« rN
to
cn r- cn
1
fsj
, ^
^
< a
<»
rn ,-*
00
fN 00 OQ
O
OO sD OO
cn
1 i-H
^.
\O r^ oo
i •— «
^
, -
to
-^ oo r-
i
fN
<-< cn i/j
i — «
-g-
\O O fN
^H ^H fN
vD
r- oo r-
i
o
m i*- to
+ ^
*
<-* •-« fN
,_,
sO oo r-
' ^
00
r* O «-•
tO r-t fN
'
O
cn cn o
^H fN
tO
^fN
0
u.
< 33
OO
+ ^
tO 00 —1
o
r-t fN O
*
00
+ <^
m
cn oo •-•
1 fN
cn
cn %o fN
, ^
o
o r*- oo
i -t
fN
cn to oo
TT
o cn to
I fN
^
fN \O ^
1
«
i rsi
^
CN cn CM
1 fN
^
7 * 2
cn
-^ cn -•
r-t fN4
iri cn to
i rsj
f-i
rt
• O
r~t 3
3 T3
-3 0
0) X
-C O
U tfl
X
o -o
-a ^
TO a>
n ti
ra
42
-------
Analysis of the frequency distributions shows that for most of the sites the
summer season data had the least slope or standard deviation and those of the fall
season had the greatest. These findings can be attributed to meteorological
conditions. The meteorological conditions during the summer season were more uniform,
with only a very few short-term inversions, and more variable in the fall, with more
long-term inversions.
On the basis of 1 percent occurrence level (99 percent of samples on figures),
results ranged from 182 micrograms per cubic meter at site 432-715 to 1,800 micrograms
per cubic meter at site 472-680. This tenfold difference indicates the great
variation among residential, commercial, and industrial complexes in the St. Louis
area.
1000
soo
600
£ 200
z
o
.5 ,00
ct
t- 8(
2
UJ
<_>
Z
o
o
III III
—•SUMMER
-•-•• FALL
___ WINTER
SPRING
'---YEAR
1963
1964
J L
J I L
001 0050 I 0 2 05
2 5 10 20 30 40 5O 60 70 80 90 95
% OF SAMPLES < STATED CONCENTRATION
99 8 9 9999
Figure 18. Frequency distribution of suspended particulates measured with
high-volume sampler at site No. 432-715.
43
-------
IOOC
BOO
600 )-
400 I—
E 200 i-
CT
a_
g
t-
<
,CL_
CO
——SUMMER
•-•-> FALL
.._ WINTER
SPRING
-_- YEAR
I I I
1964
f 0 20 30 40 50 60 70 80 90 95 98 99 99 6 9 9999
% OF SAMPLES < STATED CONCENTRATION
Figure 19. Frequency distribution of suspended particulates measured
•with high-volume sampler at site No. 438-689.
1000
800
600
400
E 200 -
•-— WINTER
SPRING
.__. YEAR
1964
001 0050102 0512 5 10 20 30 40 50 60 70 80 90 95 98 99
% OF SAMPLES < STATED CONCENTRATION
99 8 9 99 99
Figure 20. Frequency distribution of suspended particulates measured
with high-volume sampler at site No. 449-719.
44
-------
1000
800
E 200
\
CT
i
z
O
h- 100
I 80
H
LJ
z 60
O
40 -
I 1 1 T
* X <^^
S x' ^>^x
g x ^**^ X
.** ~^^P .O
—— SUMMER
-•-•• FALL
___ WINTER
SPRING
---' YEAR
_1_
1963
1964
001 005 0102 05
5 10 20 30 40 50 60 70 80 90 95 98 99 99 8 9 9999
% OF SAMPLES < STATED CONCENTRATION
Figure 21. Frequency distribution of suspended particulates measured
with high-volume sampler at site No. 468-665.
T
£ 202 t
2
O
00 r
60 -
•—SUMMER
....... FALL
--— WINTER
.......... SPRING
-__. YEAR
_J I I
1963
1964
Cc 00^ C'C£ C5 t t C 30 3C 40 60 60 70 80 90 95 98 99 99 8 9 9999
% OF SAMPLES S STATED CONCENTRATION
Figure 22. Frequency distribution of suspended particulates measured
with high-volume sampler at site No. 469-750.
-------
1000
BOO
E 200
o*
^
2
O
CL
^— SUMMER
-•-• FALL
—-— WINTER
SPRING
•--• YEAR
1963
1964
I
001 005 0 • c 2 05 t 5 lO 20 30 40 50 60 70 80 90 95 98 99 99 8 9 9999
% OF SAMPLES < STATED CONCENTRATION
Figure 23. Frequency distribution of suspended particulates measured
with high-volume sampler at site No. 470-718.
0.05 0102 05
20 30 40 50 60 70 BO 90 95 98 99 99 8 9 9999
% OF SAMPLES S STATED CONCENTRATION
Figure 24. Frequency distribution of suspended particulates measured
with high-volume sampler at site No. 472-680.
46
-------
6 200
I- 100
<
cc
2
o
o
i s&?
§ .x*g*^
— SUMMER
• — •-FALL
___ WINTER
1963
1964
II II!
SPRING
.... YEAR
II 1 1 1 I I 1 I 11 ii
1 1
005 0 I 0 2 05
5 10 20 30 40 50 60 70 80 90 95 98 99 99 8 9 99-
% OF SAMPLES < STATED CONCENTRATION
Figure 25. Frequency distribution of suspended particulates measured
•with high-volume sampler at site No. 481-698.
1000
800
£ 200
—. SUMMER
..... FALL
-._ WINTER
SPRING
.... YEAR
1963
1964
005 0102 05
5 10 20 30 40 50 60 70 80 90 95 98 99 99 8 9 9999
% OF SAMPLES < STATED CONCENTRATION
Figure 26. Frequency distribution of suspended particulate measured
with high-volume sampler at site No. 489-728.
47
-------
1000
800
e zoo
CP
=L
<
ttL
——SUMMER
•• —- FALL
___ WINTER
SPRING
• --- YEAR
1963
1964
001 103051 2 5 10 20 30 40 50 60 70 80 90 95 98 99 99 8 9 9999
% OF SAMPLES < STATED CONCENTRATION
Figure 27. Frequency distribution of suspended particulates measured
with high-volume sampler at site No. 490-713.
1000 i
800 -
- NOTE SITE ACTIVATED NOV 1963
E 200
2
O
I I I L
...._, FALL (NOV 1963 ONLY)
— WINTER 1964
SPRING
.... YEAR (NOV 1963-JUNE 1964)
J I 1 1 I I I I I I
20 30 40 50 60 70 80 90 95 96 99 99 6 9 9999
% OF SAMPLES < STATED CONCENTRATION
Figure 28. Frequency distribution of suspended particulates measured
with high-volume sampler at site No. 495-709.
48
-------
1000
800
E 200
C7>
i
I I I I I
NOTE SITE 499-700 MOVED TO
494-703 FEB 1,1964
JULY 1,1963-FEB 1,1964(499-703)
SUMMER (499-700)
1964
"-•- FALL (499-700)
—-- WINTER (494-702)
SPRING (494-703)
--- FEB 1,1964-JUNE 30,1964(494-703)
J I I i.
5 10 20 30 40 50 60 70 8O 90 95 96 99 99 8 9 9999
% OF SAMPLES < STATED CONCENTRATION
Figure 29. Frequency distribution of suspended particulates measured
with high-volume sampler at site No. 499-700 and 494-703.
1000
800
— SUMMER
FALL '963
—-— WINTER
SPRING
•--• YEAR
1964
2 5 10 20 30 40 50 60 70 80 90 95 98 99 99 8 9 9999
% OF SAMPLES < STATED CONCENTRATION
Figure 30. Frequency distribution of suspended particulates measured
with high-volume sampler at site No. 501-713.
49
-------
1000
800 -
E 200
z
o
o
i — i
T 1 1 T
•#/'
—• SUMMER
-'-•• FALL
—- — WINTER
SPRING
--- YEAR
l963
001 0 05 0102 05
10 20 30 40 50 60 70 80 90 95 98 99 99 6 9 9999
% OF SAMPLES < STATED CONCENTRATION
Figure 31. Frequency distribution of suspended particulates measured
with high-volume sampler at site No. 505-740.
JF
~l 1 T
600 \-
E 200 h
—• SUMMER
-•-• FALL
___ WINTER
SPRING
• --• YEAR
1963
1964
_1_J L
_L
001 0050 102 05
5 10 20 30 40 50 60 70 80 90 95 96 99 99 8 9 9999
% OF SAMPLES < STATED CONCENTRATION
Figure 32. Frequency distribution of suspended particulates measured
with high-volume sampler at site No. 520-798.
50
-------
1000
800
£ 200
<
tr.
o
-------
CALM-92
CALM-92
79
59 =>
78
Figure 34. Suspended particulate pollu-
tion,rose - site No. 432-715
Sept. 1963 - Feb. 1964, 133
samples.
87
106
93
Figure 35. Suspended particulate pollu-
tion rose - site No. 438-689
Sept. 1963 - Feb. 1964, 112
samples.
1200
FROM
Q 5 i 10 . 15
PERCENT OF SAMPLES
24-hour samples - High-Volume sampler
Note Numbers on radials are average arithmetic
concentrations tor wind directions indicated
Average concentrations
for calm conditions are
given above roses
72
CALM-84
104
121
Figure 36. Suspended particulate pollu- Figure 37. Suspended particulate pollu-
tion rose - site No. 449-719 tion rose - site No. 468-665
Sept. 1963 - Feb. 1964, 117 Sept. 1963 - Feb. 1964, 132
samples. samples.
52
-------
CALM-138
77
CALM-124
115
105
128
Figure 38. Suspended particulate pollu-
tion rose - site No. 469-750
Sept. 1963 - Feb. 1964, 83
samples.
112
117
Figure 39. Suspended particulate pollu-
tion rose - site No. 470-718
Sept. 1963 - Feb. 1964, 76
samples.
I50-200_
100-150 >200
WIND
^ FROM
* THIS
DIRECTION
5
10
15
PERCENT OF SAMPLES
24-hour samples -High-Volume sampler
Note Numbers on radials are average arithmetic
concentrations for wind directions indicated
Average concentrations
for calm conditions are
given above roses
CALM-255
213
217
264
226
282
78
94
418
116
Figure 40. Suspended particulate pollu- Figure 41. Suspended particulate pollu-
tion rose - site No. 472-680 tion rose - site No. 481-698
Sept. 1963 - Feb. 1964, 108 Sept. 1963 - Feb. 1964, 130
samples. samples.
53
-------
CALM-I6I
1ST
203
142
129
199
Figure 42. Suspended particulate pollu- Figure 43. Suspended particulate pollu-
tion rose - site No. 489-728 tion rose - site No. 490-713
Sept. 1963 - Feb. 1964, 60 Sept. 1963 - Feb. 1964, 111
samples. samples.
WIND
^THIS
DIRECTION
0 5 i 10 15
PERCENT OF SAMPLES
24-hour samples - High-Volume sampler
Note Numbers on radials are average arithmetic
concentrations for wind directions indicated
Average concentrations
for calm conditions are
given above roses
CALM-230
153 140
141
CALM-212
172
189
125
Figure 44. Suspended particulate pollu- Figure 45. Suspended particulate pollu-
tion rose - site No. 494-703 tion rose - site No. 495-709
Jan. 1964 - Feb. 1964, 31 Nov. 1963 - Feb. 1964, 66
samples. samples.
54
-------
CALM-162
253 [
228
CALM-274
185
199
173
225
Figure 46. Suspended particulate pollu- Figure 47. Suspended particulate pollu-
tion rose - site No. 499-700 tion rose - site No. 501-713
Sept. 1963 - Feb. 1964, 49 Sept. 1963 - Feb. 1964, 108
samples. samples.
WIND
THIS
DIRECTION
Average concentrations
for calm conditions are
given above roses.
PERCENT OF SAMPLES
24-hour samples - High-Volume sampler
Note Numbers on radials are average arithmetic
concentrations for wind directions indicated
182
225
CALM-329
165
431
Figure 48. Suspended particulate pollu-
tion rose - site No. 505-740
Nov. 1963 - Feb. 1964, 66
samples.
162
179
Figure 49. Suspended particulate pollu-
tion rose - site No. 520-798
Sept. 1963 - Feb. 1964, 114
samples.
55
-------
WIND
FROM
THIS
DIRECTION
5 10 15
^^^^^^^i^ss^^s
PERCENT OF SAMPLES
24-hour samples —HIGH-VOLUME SAMPLER
Note- Numbers on radials are average arithmetic
concentrations for wind directions indicated
Average concentrations
for calm conditions are
given above roses.
103
112
118
Figure 50. Suspended particulate pollu-
tion rose - site No. 534-702
Sept. 1963 - Feb. 1964, 72
samples.
The results from September 1963 through February 1964 were used for the
roses because the weekday sampling schedule in effect then provided a greater
number of samples and thus greater reliability of pollution rose data. The meteor-
ological data were obtained from Lambert Field (coordinates 440-760). Although
the meteorological data were collected several miles from some of the sampling sites,
comparison of these data with those collected at different levels on the KMOX-TV
tower (coordinates 491-716) indicated that the Lambert Field data were the best to
use for pollution rose preparation. The tower data, however, reported in part in
Volume V, Meteorology and Topography, and a report by Dr. George Arnold indicate
the presence of a heat island influence on air circulation. The KMOX-TV tower data,
therefore, should be used to help make detailed interpretations of results in the
St. Louis central business district and East St. Louis city areas.
The pollution roses show the west to northwest and south to southeast sectors
had the most frequently occurring winds. Sites 432-715, 438-689, and 449-719 had
few occurrences of suspended particulates in high ranges, but most of the pollutant
56
-------
came from the eastern sectors as indicated by the higher:direction averages.
Beginning with site 468-665 and moving toward the City of St. Louis, the percent
of occurrence of suspended particulates in high ranges increased very sharply and
remained high for the sites in Illinois. Measurements at site 534-702, the most
easterly site, decreased to relatively few occurrences of upper-range suspended
particulates. The roses for sites 472-680, 499-700, and 505-740, which were close
to large sources, clearly indicate the direction of the major sources from the
sampling sites. The other roses indicate directions of the winds that bring the
most pollution to each site, but the variations for these are not as obvious as for
the first three sites.
To indicate the importance of directional influence on suspended particulate
pollutants and to provide a guide for design of the pollution reduction nlan, a
directional analysis was made using data pertaining to the maximum directions as
shown on the pollution roses. These data appear on the pollution rose printouts
by 10 percentiles. An example of a resulting frequency distribution and percent
reductions needed to reach an air qualitv goal of 75 micrograms per cubic meter is
shown in Figure 51 for sampling site 495-709, which had a maximum pollution level of
201 micrograms per cubic meter from the east. Figures 52 and 53 show the direction of
maximum pollution influence and percent reductions needed to reach a 75 microgram-
per-cubic-meter goal at all high-volume sampler stations for both geometric mean
and 99th percentile conditions.
The method of making the percent source strength reduction calculation is
that developed by Larsen during work in Los Angeles. Here, Larsen's method is
applied to single directions rather than to the sampling site station as a unit.
The directions reported are considered quite significant and the percent reductions,
somewhat less significant because of a number of factors. First, the method of
computing pollution rose data tends to distribute some high values to the wind
directions on either side of the highest value direction. Second, the distance to
the major sources in that direction are not considered, and, therefore, the
diffusion that results along the trajectory of the pollutants is not adequately
considered. Third, the winds carrying pollutants have a tendency to meander so that
pollutants from a single source are brought to the station from a sector rather than
from a specific direction. This dilution tends to reduce the effects of the source
on the station when directions are considered. The method is thought to be conserva-
tive and tends to underestimate the percent reduction needed. It was also applied
conservatively by selecting the highest known station value as being the 99th
percentile value in those instances where the plotted 99th percentile was much
higher. The air quality goals of 75 and 200 micrograms per cubic meter for the
geometric mean and 99th percentile are used here as examples only. Background
57
-------
I.OOO
800
60O
400
E200
^
o>
IIIIT~
I111IT
g
t-
100
80
8 60
40
20
I I I I I
STATION 495-709
EAST DIRECTION
NOV 1963-FEB. 1964
SEE FIGURE 45.
0.01 0050.1 0.2 0.5 I 2 5 10 20 30 40 50 60 70 80 90 95
% OF SAMPLES <- STATED CONCENTRATION
99.8 .9 99.99
Figure 51. Frequency distribution of suspended particulates measured with
high-volume sampler - maximum direction analysis.
levels of 30 and 91 micrograms per cubic meter, geometric mean, and 99th percentiles,
respectively, were used.
The maps in Figures 52 and 53 show that the central part of the Study area,
in general, has a considerable effect on the pollution levels in the outlying areas.
The source areas of major importance are indicated as being south of East St. Louis
and in a southerly direction from Granite City. The area south of Jefferson Barracks
shows the influence of downriver sources or the influence of river topography on
transport of pollutants. Both the geometric means and 99th percentiles show
essentially the same results with emission reductions of 10 to 30 percent called
for in the outlying areas and 60 to 96 percent in the central areas.
Another approach to interpreting the high-volume air sampler data was to
correlate it with Pasquill's stability classification as described by Turner.
The stability classes were described previously in the Measurement Methods section
of this Report. The results are given in Table 15. Wind speed appears to be the
meteorological factor of primary importance, since 11 stations indicated a high
particulate loading with low wind speeds and low particulate loading with high wind
58
-------
420 430 440 450 460 470 480 490 500°°° 510 520 530 540
ADISON CO.
O HIGH VOLUME SAMPLING STATION
•-IIHD DIRECTION
REDUCTION FOR RESIDENTIAL AIR QUALITY
% GOAL OF 75^g/m3 BASED ON GEOMETRIC
Figure 52. Directions of maximum influence on high-volume sampler stations
and direction-percent reductions (geometric means).
59
-------
420 430 440 450 • 460 410 480 490 500°°° 510 520 530 540
ADISON CO
O HIGH-VOLUME SAMPLING STATION
*~WIND DIRECTION
REDUCTION FOR RESIDENTIAL AIR
% QUALITY GOAL OF 200 /ig/m3 (99
PERCENTILE)
Figure 53. Directions of maximum influence; on high-volume sampler stations
and direction-percent reductions (99 percentile).
60
-------
Table 15. AVERAGE SUSPENDED PAR TICULATES BY
HIGH-VOLUME SAMPLER FOR FIVE ATMOSPHERIC
STABILITY CLASSES, JULY 1963 - JUNE 1964 ((ig/m3)
Site
coordinates
432-715
438-689
449-719
468-665
469-750
470-718
472-6SO
481-698
489-728
490-713
494-703b
495-709°
499-700d
501-713
505-740°
520-798
534-702
Atmospheric stability class
1
80.000
109.889
102.158
87.684
95.846
119.000
229.667
120.556
191.857
196.625
-
152.818
-
199.389
261.357
123.167
148.000
2
93.775
97.747
101.964
84.000
95.325
110.929
281.867
119.516
174.823
180.413
154.000
157.276
173.571
219.179
257.932
129.396
130.939
3
75.590
84.873
94.270
74.845
82.729
110.075
302.584
109.044
133.980
149.623
147.967
148.673
147.803
195.585
249.082
125.356
105.991
4
61.984
63.119
75.547
59.912
76.891
93.264
314.027
89.284
106.094
130.909
162.712
139.655
176.863
157.835
240.280
140.929
94.830
5,6,7
76.502
80.183
90.270
73.872
86.423
97.459
289.152
103.218
139.007
144.576
147.891
150.823
159.299
194.442
255.036
128.025
114.821
1 = extremely unstable.
2 = unstable.
3 = slightly unstable.
4 = neutral.
5,6,7 = slightly stable, stable,
^January 1964 - July 1964.
November 1963 - July 1964.
H
July 1963 - December 1963.
November 1963 - July 1964.
and extremely stable.
61
-------
speeds, whereas only six indicated the reverse relationship. In view of the over-
riding importance of wind speed, attempts should be made to determine the mathemati-
cal formulas expressing this relationship for each pollutant.
Analyses were made of some of the high-volume filter samples for metals and
organic matter content. The results are given in Tablesl6 and 17 and Figures 54 and
55. Also included are the results from the St. Louis and East St. Louis NASN sites
and the Midwest averages. The samples were selected on the basis of the meteorologi-
cal conditions conducive to high air pollution and the wind being mostly from one
direction. Samples were also selected so that the eight major wind directions were
represented. The maps in Figures 54 and 55 show the wind directions associated
with levels of organic and metal particulates considered worth reporting for
comparison purposes. The bases for comparison are given at the end of Table 16.
They are the NASN averages for 1957 through 1961 for the nation, Midwest, and
St. Louis. The following numerical values were selected:
Particulate Concentration, ug/m Particulate Concentration, pg/m
Organic 15.0 Vanadium 0.015
Beryllium Any Zinc 0.75
Manganese 0.01 Chromium 0.05
Lead 1.0 Nickel 0.030
Tin 0.06 Molybdenum 0.02
Iron 3.0 Cobalt 0.003
Copper 0.08 Bismuth Any
Titanium 0.08 Cadmium 0.030
Ant imony Any
The maps show the areas along the river and near industrial areas to be the
most polluted with metal and organic particulates. Nearly all of the stations
showed lead occurring in above-average concentrations.
The NASN has had high-volume samplers operating in both St. Louis and East
St. Louis. The St. Louis station, located at coordinates 489-714, collected data
every year from 1957 through 1963. The East St. Louis station, located at coordinates
501-713, provided data for the years 1958, 1961, and 1963. These data are summariz-
ed in Figure 56 and compared with the national averages for each year in Figure 57.
The East St. Louis results were higher than the St. Louis results, and both were
higher than the national average. With the exception of an increase in 1959,
suspended particulates have decreased gradually in St. Louis since 1957, as did the
national average. The 1963 East St. Louis value was lower than that for 1958, but a
sharp increase from 1961 to 1963 indicates an increase in pollution.
62
-------
W
H
W
O
>
I
ffi
O
I— I
ffi
p
W
H
U
W
J
W
O
H
Z
W
O
U
U
O
rt
o
Q
W
S
sD
i—i
O
Part ic
V
t->
a
13
C t-i
i -X3
4) -^ u
4J fci *J
• ir\
rH 0
0 0
o o
n r>
0 0
0 0
-3 r-.
0 0
0 O
CN- GO
O 0
O rH
O 0
O 0
* C--
0 0
CM C^
0 0
o o
0 0
o o
o o
0 O
o o
.04 •<*
OJ OJ
r- r-
r^ £
NO --^
NO OJ
NO" ^5"
3 g
u^
El
CM
?
0 0
O o
0 0
0 0
§ 1
O 0
O O
o o
C 0
0 0
o o
o o
0 0
0 0
§o
0
0 0
o -3"
OJ OJ
O 0
0 0
§ 1
0 0
O CO
O MO
0 0
3 2
O 0
O 0
r-i r-»
C 0
0 0
rH ITS,
0 0
0 O
W-\ rH
O rH
0 OJ
0 O
0 0
O u~\
0 0
oj r-
0 0
o o
o o
o o
O 0
•O LTi
* 5
e-\
vD f\
-^. NO
CO ~*-.
CM NO
•5- -21
i-l 03
* U
§
i
§
O
o
g
o
§
o
§
o
8
O
CO
8
O
§
0
0
o
0
0
0
o
0
8
O
OJ
c
o
fl
0
8
O
rH
O
CM
0
O
O
0
fN
O
w>
r>
NO
CO
CM
o
C1^
r-< O
0 0
80
o
§o
0
0 0
en oo
fs,
O 0
o o
0 0
8 3
O 0
H r~\
0 0
rH OJ
0 0
o o
8 8
8 8
o- o'
<-" •»
(N
R 3
^ $
Z. >
^2. 5.
^ CO
^ X
^\
»
§o
0
o o
O 0
8 8
0 0
O 0
§o
8
o o
§o
0
0 0
0 0
8 8
0 O
\r\ O
rH Q
0 O
O 0
§O
8
O 0
O O
0 C
O 0
c- o
rH O
c o
0 O
o o
0 0
H 3
0 X
o
C"*i *O
O 0
o o
O 0
o o
oj NO
O 0
OJ 4
0 0
0 0
o o
o o
O 0
- *
Jj 00
fN
I §
^- NO
a 5-
g g
o
£
o o
8 8
0 0
o o
o o
o o
0 0
80
o
0 0
0 0
o o
8 8
0 0
o c
o o
o o
0- 0
i-i O
C 0
o o
8 &
o o
o o
ir\ rH
oj so
o o
r- J*
8 1
0 0
o o
0 0
3 a
-d NO
O 0
0~\ OJ
o o
o o
c^» »o
0 0
oj r~\
O 0
o o
g 8
8 8
o o
f> CM
*O ~*
r~\
\o r~\
> JS.
r-1 to
NO" 7^
H g
8 §
0 0
8 8
o o
O 0
0 O
0 0
0 0
O 0
§o
8
O 0
8rH
0
O 0
o vo
8 &
O 0
C^ r-\
§rH
c
0 O
g e
O 0
8 3
O 0
0 O
0 O
o o
OJ CO
0 O
NO O
O OJ
f\ CM
0 0
O 0
O- CO
O P^
C*^ i-i
O H
o o
0 O
O O
8 8
O 0
rsi
Oi Ch
O~\
NO C"-.
-— NO
tO ^.
•5. -^.
Ji a"
1 CO
§
o
o
o
o
0
o
8
0
o
8
O
o
c
o
CN
8
O
w\
o
o
o
3
o
8
O
0
o
o
CM
0
CO
0
3"
O
o-
1—1
NO
o
o
o
o
g
o
Kl
l/l
OO
f\
NO
ir\
N
NO
%
CO
fi
O
&
8 8
O 0
O 0
8 S
o o
O 0
o o
o o
o o
0 0
O 0
8 8
O O
O 0
0 O
0 O
V^, iA
rH rH
O O
O 0
& &
O O
0 O
ft R
O rH
CM o
8 8
O O
O O
0 C
oj vn,
0 0
O rH
g s
O 0
U-\ C\
0 rH
3CN-
0
o o
i 1
O 0
ui en
CM m
CTI r^
C~v
r^ NO
NO .
5 *
7^ ^
M
B m
%
63
-------
co
W
W
O
I—(
K
Q
W
H
U
W
J
W
O
H
W
H
O
U
U
o
rt
o
p
H
W
TJ
-M
O
U
^
a)
H
£l
•a
C£
U
_0
IH
C
"«
. •"
0
*-J
t-i 3
4-> U
C
c
"-
CL.
y
£
U
c
tx
IH
O
U
n
a.
2
!£
Site
coordi-
nates
8
0
O
O
o
8
O
o
8
O
8
O
§
O
o
o
o
s
s
o
J-
o
o
CM
o
H
pi
0
O
o
o
§
o
in
0
s
o
z
3"
8
O
0
o
8
O
o
<9
o
g
o
s
0
o
CAi
o
0
*
£•
o
o
o
o
rH
3
O
rH^
0
°
0
o
o
8
8
o
0.
2
1
CO
§
O
CO
H
O
o
8
O
o
8
O
O
0
o
i
0
8
O
O
8
O
O
o
0
*
o
N
o
0
o
o
o
8
o
o
o
-N
2
1
R
§
o
§
O
8
O
O
O
0
iH
0
O
0
o
§
o
0
c
o
iH
O
0
$
o
0
o
so
8
0
o
o*
o
1
o
I/,
s
1
H
§
O
§
0
8
O
o
c
o
C_)
o
o
0
(H
c
o
o
8
O
o
o
0
o
3
O
3
O
CM
H
°
00
0
8
O
8
8
O
o
2
1
H
* O
O
O
0
0
8
0
o
8
o
8
0
8
O
1
O
§
o
o
CM
8
O
0
o
iH
O
o
§
o
CM
O
O
O
§
O
n.
0,
f
H
H
§OO OOOO OOOOOOOO
OOOOOO OOOOOOOO
COOOOOC OOOOOOOO
OOO OOOO OOOOOOOO
§HO O r-l rHO
ooooooo oooooooo
OOOOOOO OOOCOOOO
OOOOOOO OOOOOOOO
§000000 oooooooo
OOOOOO CCOOOOOO
ooooooo oooooooo
(*- CO
LnTj-aOOO^rHM^ ^JONCCCO "IN «O
Sr^-H00^-10 2222££S^
llllllltllllllll
H H H X H H B K R B 8 - * 8 H
cO r^*
£ £
.
so
»
80
o
0 O
o o
0 O
§ a
o o
§ 8
o o
0 O
0 0
o o
o o
0 O
0 0
o o
0 0
gm
rH
o c
0 0
0 0
o o
0 0
O 0
o o
8 §
0 0
,-J CM
0 0
o o
CO O
O CM
o o
UN, r-l
O rH
O -S
o o
0 0
1 OJ
CM tN
o o
o o
0 0
J H
II
IS ,
64
-------
W
H
W
o
>
I
£
o
r-H
£
Q
W
H
U
W
J
W
OT
tM
o
H
j7
W
H
Z
O
U
o
O
CC
o
Q
H
o
O
xO
u
i—i
rO
n)
H
/•
a
£
q
o
H
f
r-
U
C
>
e
'ntrqtjor
ru
U
c
o
o- uj
°"
c
u-
(^
c
cc
Organic
c.
-o
C I-"
S "3
(U -O It
*4 O «
cr O C
0 0
0 0
o o
d d
O (H
5 *
0 0
O o
o o
d d
0 O
80
0
o o
— ' O
0 0
o d
-^ CO
CM CM
O O
cO u~,
rH (H
0 0
O O
8O
0
00 v~\
rH rH
0 0
80
0
o o
rH CM
0 0
o o
O '•O
vi) CM
^o d
u~\ u~\
00 ^
lA 0
O 0
u~\ H
ro 0
0 CM
o d
8 8
8 8
O 0
00 00
r- o
O T
^ o
f*l fO
^ o
in ui
$ W
O
O
•J-
ON
s-
8(i
0
0 0
o o
o ^o
8\r\
0
o o
o o
o o
0 O
d d
0 O
8 8
d ->
8 8
d c*
xO H
rH rH
0 0
vO ^O
O O
0 0
o o
o vQ
•s 3
o o
r~i c*^
0 0
d d
o- o
0 H
d d
j- o
H rH
0 0
of d
o d
° 3.
o o
o 8
8 8
0 0
*o m
ao ao
f>
-v, -a
U-> --^
-H *D
«r •&
(0 tO
s
^
^
0
u-\
5 o
d d
o o
80
0
0 O
0 O
0 O
0 O
d d
§o
o 8
d d
0 O
0 a
d d
CM O
iH O
0 O
d o
MD O
o o
X£) O
8 8
0 O
rH O
0 O
d d
U-\ C*^
0 O
d o
o u-\
rH O
0 0
o o
o o
c*- H
0 O
d o
8 8
8 8
0 O
O i/>
i/l r-
*
KI
jj --
r- r~
g i
8
O
d
*
0
8
O
O
0
o
o
o
o
o
d
O
H
O
0
c~>
H
O
d
o
-^
r-i
8
0
8
o
~
o
J
3
d
rH
VT\
rH
d
o
o
CTi
hO
i/l
Kl
•v^
QO
Z
8
O
O
S
O
o
o
o
0
d
o
8
d
0
o
o
s
0
o
r-
8
O
S
(M
O
o
o
f\
0
o
t
o
CO
1-1
H
O
O
o
c^
o
d'
8
8
0
°°.
[-•.
ro
^v.
xD
•V
g
I
O
fM
VA
8 8
0 O
O O
o o
8 8
0 0
80
0
d d
o o
80
0
d d
8 8
O O
J iA
CM CM
O 0
3 co
0
0 0
o o
s 3
r-, o
3 H
0 0
0 0
o^ r~
0 0
* •
0 O
C~\ 00
0 0
o o
r-< O
rH rH
rH rH
O O
d d
o d
c^ c^-
o o
d d
8 8
8 8
O 0
SO —1
Oi O
•£> fl
M to
PJ ^
Tt LO
i ^
8
0
O
0
o
o
o
o
o
o
0
o
c-
o
o
o
d
"7
o
CO
o
0
d
o
ao
5
o
m
o
o
o
r-*
d
o
g
o
o
c^
o
d
8
8
0
QO
O
-o
xD
^O
3
0
o
o
o
o
o
o
8
d
o
8
O
8
O
O
fv;
0
o
8
O
8
§
H
O
O
3
d
*7
8
d
d
g
d
8
8
^
••»
hO
S
i^
W
o
o
0
o
0
o
o
o
o
o
d
0
o
o
o
o
o
d
rH
O
8
O
d
o
o
0
8
r~\
0
o
OJ
o
o
rH
8
O
O
r*\
o
d
o
S
1/1
K,
S
vO
CO
CM
?
lA
8
O
d
rH
fM
0
O
o
o
o
o
8
d
8
O
^0
rH
O
O
o
0
d
&
o
8
r'l
O
d
fTN
O
d
u-\
rH
O
d
0
3
O
1
r--
ai
sO
fo
c\t
rH VD UA O> "^
§°p CO -jf
ai 92
no i O O
o d o o
§OO co t\l ir\
OOOO
o oooo
rH CO 00 H O
O O O H rH
o oooo
tV O. O H O
in f> •
O \Q \Q C\ H —" «
o oooo §-(sj^i
d dodo cy.-3 (O-CL
in in W
. . . . • e *— ' E <^
O OOO<-H H H • — '
o 10
r-j ^H fN CTI
CM cO -* IA Q\ r~"
0 OHOO oog rtt-
o o'doo o — • aii«-
E C
O O t* O r-i
X t4_ «4ri (J, . 14- U
oil'1 o «
o c c o c 4-1
, O O I O tf:
*J *JCTi m *J Ul
, -°C>^*CO*CD ^'"aJ^^^
ro rr,dt^-C\j 2M*^(£!2
n
co tr u H y uj
,0 ^o u~\ H jf ZZ-H^Z z
,O (---* r-lCO C/}LO-*4J[/; to
4) j= jj* o « a>
E E *-» u E V E
e . , . , uu^JuEu
35 HrHO^^UM
Je 3 « E *-• E
j= e j= o jr
^•O W W *J4-»HZ4Jg*J
co m en to M (-. « < »M U ^
S 2 2 X rt^o-ao^w
65
-------
W
H
,-J
W
S
ID
J
O
>
i
ffi
O
P
W
H
U
W
J
W
O
OT
00
Q
H
H
H
Q
t^
I—I
fa
a)
H
JD
-0
H
CO
o
0
rH
l-
t^ C
! c-'
! ^
! c
, o >
! ro
V-
c
; 1> -^
: i L^
, " '
j p
i £
i ! ~
X
! • -^
' a.
I —
c
I —
CQ
Organic
(J
|H
ra
c.
CJ
«
Q
TJ
c *-
Site
coordinates
oooooooo
OOOOOOOO
oooooooo
oooooooo
^J-i-HOOOOOO
fO-HOOOOOO
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
••- CTi I — i— « r-- oo IN ^o
OOOrJOO-"^
cooooooo
oooocooo
•*r(M— «r-TtrMoo^O
_< _, _| (N| _. • .-H r>J -r-j o r-j
^Tj—.U-l — ^-1 —• .->
r-joc.C'.O'-H^OoOSC
cnr^-TfOfj-^Ou'i'O
•T O O -T T O^D-O
O -^ "-- -O -O --. -~^ ---.
-v,--^--^--.-^"--.-^"--
JJ
_J LC
7
o o o o o o o
O O O O O O 0
o o o o o o o
o o o o o o o
O ci ° ° O — i O
O ^ O O O <-t O
o o o o o o o
o o o c o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
O O 0 O O O O
!-- •& r-t t*~ O •-* O
o o <-* o o <-< o
O O O O O 0 0
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o c o
O O O O O 0 O
O -H O O O O rvj
o to QO o o ^t m
0 0 0 O O — O
o o o o o o o
o c o o o o o
O O O O O — "
0 O O O 0 O C
o o o o o o o
r-j O f^ ~^ ^-i fi i— •
O 0 O 0 O 0 0
0 O 0 O 0 0 C
0 0 0 0 0 0 C
O — i — • O O C O
0 O 0 O 0 0 0
C O C: O O O O
•— • •—« Ln fvj L/l 1^1 f"i
0 r-i O O 0 O 0
IN r-i ro o to rj f">
O O 0 0 O O 0
o o o o o o o
O O 0 O O O O
O O O O 0 O 0
o o o o o o o
o o o o o o o
o o' o o o o o
O ^D sD — i —i C — '
T iri i~j m r- r- o
T ci -t K> r-- r~ o
** -T ^T T
-O ~t -t -t J2 O -O
•^ o o -c ^ ^, -^
-^ \ \ ^ -^ -v^ ^,
_J (T
c%
c»
J5
X
fO
-T
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
000
o o o
o o o
0 O O
o o o
o o o
o o o
o o o
— 0 0
o o o
o o o
O O Oi
CM O O
o o o
o o o
r- ci o
to -« o
o o o
o o o
coo
rj O O
— i O O
— o o
o o o
0 O O
o o o
o o o
rr — f^
o o c
coo
-H O O
sC O O
0 O O
0 0 O
CO Kl T
rj o 0
rxj O ^J-
— o o
o o o
c: o o
000
0 O O
0 0 O
000
•4" 30 sD
— t Ki rr
-T ~ Ji
CO rO CTi
rj
— -7 JD
sD -O ~~~-
^
r^-
Oi
ry
T
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o co o o
-* it O O »-« O O
— « (N O O C O O
o o o o c o o
o o o o o o o
o o o o o o o
o o o o o o o
O 0 O O O O O
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o c o o
o o o o o o o
o o o o o o o
O r-4 <3O f O O
to i/i r>i rj ~- o O
^ o o o o o o
O O O O O O C
O O 0 0 0 O O
o o o o o o o
o o o o o o o
o o o o o o o
f^ •"• •"* '"•
OO ^ ^i -O ^ P>J rf)
OD r^- co sO (N «7 »T
Tt TI- — -r
n O ^O *T T -£> -O
J^ "^ \ O ^) -^» '^^
^ ^, ^ "-V- "^. -^ -"v
J- L/5
irs
£1
,c
x.
x>
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o r- i/^
O O O O <^l O^
o o o o o o
o o o o o o
o o o o o o
0 0 O 0 0 0
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
00 LO f*- LO T}1 Q1
O tM O — i — i -H
o o o c o o
o o o o o o
o ^ r» O o^ ^
fN 1^1 -^ r*> fN — <
O O O C) O O
o o o o o o
O <-v) O O O O
O sO O *O LO fl
o o o o -^ —
o o o o o o
O 0 O O O O
o o o o o o
-^ to O "^ *3" ^
o o o o o o
o o o o o o
O [N| O ^H ,-1 -H
O ^i O fO ^ — «
O O O O 0 O
o o o o o o
r^i oo CT\ *t t~*. •&•
0 C -H -« O r^
n oc o r- rt oo
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
— i t-O O -^ O CO
ro \D ^ r^ ^O •O
co c» o fo o TT
LT, rg \D O •"-• CTi
•^f T "* *T
•O •*? *t ~D O O
•^. .0 o -*^ -^ ^^
^ ^ * C r; c
J rO »0
UJ
UJ LO
o
m
r~
o\
o
-*
O O O O rO O
u^ O O (Nl Ci O
O o o r-i o O
O O O O O O
m o o o o o
sO O 0 O O O
o o o o o o
O O O O O 0
o o o o o o
o o o o o o
o o o o o c
o o o o o o
O O O fN to O
O O O .-H -H O
O O C; C O O
o o o o o o
•"" O O *T to O
o o o o o o
o o o o o o
O rO -H O 0 -£)
oo rsi TT o to O
— i O O i/l fN O
o o o o o o
o o oo o c o
i* — . — . fsl T O
-H 0 0 X ro 0
o o o o o o
O Oi O — » O O
i-H LO L/) L/l C~. (N
O C^ rr rr C"i O
.-I f~. o D r\i c
o c o o o c
o o o c; o o
rr to ^T rr O — <
O 0 0 O 0 0
O O 0 O 0 0
r-~ — TJ c; o ^c
--. Kl
0 0 0 O O C
o o o o o o
«T ^O -T i^1 fN| OC
i~^
o o _^ -. ^ o
0=0000
o o o *^ o ^
o o o ^ ^ ^
0 0 0 0 0 0
O O O O ° —"
0000°°
•£) co O co \O tO to ^j-
to fN r i rO r* ^H
rsi ^H
-------
C/)
Oi
W
H
W
O
HH
ffi
Q
W
H
U
W
J
W
W
P
W
H
w
Q
o
U
r—
i—i
0)
3
oj
H
e
*»*.
a
o
rt
(-,
C
it
e
u
-a
c
QJ
LT
J2
•o
'H
O
o
•H
14
c
>
•rH
3
u_
C/)
XI
a.
c
UJ
CD
O
c
M
IH
0
U
1-4
»4
Q.
V
*J
(S
IK
coordinates
o o o o o o o
§«o o o o o o
O O Q O O O
o o o o o o o
o o o o o o o
(M iO O 0 0 0 0
•-* o o o o o o
o o o o o o o
o o o oi o o o
o o o o o o o
o o o o o o o
o o o o o o o
§o o o o o o
0 O 0 0 0 0
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
ro ^- * o o o>
(N (M fS — i —• O O
o o o o o o o
o o o o o o o
o -o o ^r o o o
•~» o ^- o o ~H —i
^^^4^000
o o o o o o o
o o o o o o o
4/> O %0 *~- V CM ~H
O --i O O O O O
o o o o o o o
^ o O O O
CM O ^ O — « O (N
O O O O O O 0
o o o o o o o
o> o r- m ^ ^ r.
rj CN o O O O O
o — « o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
§000000
o o o o o o
O O O O O 0 O
•& O NO <^ O TJ- t^
oj o CTi LO r^ r^ o
•^- -w •»» ^r
^r *o -^ *r o \o \o
<& "^- -O -O -••%. --^ -N.
^-, r^ ^-, ^^ — '
^>
OO
*»
o o c
o o o
o o o
o o o
xD ci r-~
—i ro CJ
o o o
o o o
o o o
o o o
o o o
o o o
o o o
000
o o o
o o o
o o o
o o o
r^ in oo
•—1 ^H (N
o o o
o o o
CTi ^r i^
O «-i ^
o o o
000
1/1 o r^
o .-. o
O O -H
o o o
o o o
ro •v r--
o o o
o o o
oo to r-j
o o o
o o o
(N CTi OO
~H o r^
o o o
o o o
(N O O
o o o
o o o
O O CO
0 0 O
o o o
o o o
o o o
CO ^5 rO
-* hO »O
** -*
•^ J3 O
J3 ^. "-.
•^» r\i 00
— tf
X
^i
r-
CTi
oc
T
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
-£> Kl O O (N O
-H ^ O O CM O
o o o o o o
O O O O f~> O
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
K) r- oo oo o ~*
Kl I/) rM i-H K) •-"
o o o o o o
o o o o o o
o t-. O Tf r^ in
rO (N ^H •-( ro (N
o o o o o o
o o o o o o
O O — < O -H ro O
-^ Kl (N O -H O
o o o o c o
o o o o o o
^ tn m M (M i^-
O ^ O O ~*i O
o o o o o o
\O O (^J trt \O (N
ro ^ O O — • O
o o o o o o
fN 1/1 (N r~ ^ i/i
•v rM (N O •«• O
O O O O O 0
o o o o c c
(N -< O
O O O O -H O
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
O 0 0 0 0 0
Is- .O O sD i/l ro
^ ^ ° 2 °° °
H^ Ji ^ H^ OO rO
•^- -v -^r ^r
TJ- -O 'O ^f •O -O
& ^~^, £> -^-^
^, r r- --*. -* ac
UJ
C/l
Kl
r^-
o
3%
t
o o o o o
o o o o o
o o o o o
o o o o o
oo 0 0 — -H
00 "1 O tO OJ
o «-* o o o
o o o o o
fO O O ro Kl
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
Kl r-« - -^ oo
•J~
rO
o
T
?.
-T
o o o o o
o o o o o
o o o o o
O 0 O O O
O o ""• O O
1- O ^ *> O
rO o O <""* O
0 O O O O
rg O O -^ O
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
\O ^ CM tO ^h
\O fs| i/^ f>l -H
o o o o o
o o o o o
tO CTi C% CD CM
(N O OJ t-^ — <
o o o o o
o o o o o
O 00 O O O
O% O fM O O
-H i~>i rj -H
(~Nj O Lrt I/) L/l
T T ^T
T C t ~C -D
*O *^, £> ^~~. ~-~~~.
•^~~. f~- -^. i") M
_!
_j y"
-J
^
z>
-r
o o o o o o
o o o o o o
o o o o o o
o c o o o o
i/} O ro O O O
to O 1-1 O ro O
O O O 0 0 O
o c o o o o
O O O O 0 O
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
OO L/l (N OO fM O
r-j (N r\j - O> LO — i
— i O O O O O
0 O O O O O
\O (N ro to rsj — •
ff) CM ^H CM O O
O O O O O C;
o o o o o o
r^ »n r»* o> m to
rN O O O O 0
O O O O 0 O
O 0 O O O 0
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
OO W CM O T t~-
• -^ -^
-•^ r- --^ -~^ — i oo
•^ ^^ -^ -^- *^ ^,
0_
U"
r-
67
-------
«
sD
w
H
KH
tq
w
o
ffi
o
M
ffi
Q
H
H
u
w
J
w
w
Q
w
H
w
Q
cc
^1
u
OOOOOOO OOO OOOO
OOOOOOO OOO OOOO
OOOOOOO OOO OOOO
OOOOOOO OOO OOOO
(NTj-OOOOiO OOO OOOO
to to O O O O CM OOO O —« O O
OOOOOOO OOO OOOO
OOOOOOO OOO OOOO
OOOOOOO OOO OOOO
OOOOOOO OOO OOOO
OOOOOOO OOO OOOO
OOOOOOO OOO OOOO
OOOOOOOO OOO OOOO
OOOOOOO OOO OOOO
OOOOOOO OOO OOOO
OOOOOOO OOO OOOO
*T ^H O O ^H O ("••! ^-« O O O »-H O O
OOOOOOO OOO OOOO
OOOOOOO OOO OOOO
G to Ci oo o <—» (~^ fsi CNI LO ^H^O*D
^H O O O O O O OOO OOOO
ocooooo ooo oooo
rsi to u"> (N <-< *r c^ TOO T o o o
\O 00 -^ to -- ^ ** ^-H O O -H O O O
ooooooo ooo oooo
o'oooooo ooo oooo
oooooooc -^ !•••• Is- 01/100
OtOtOI^OOf^- oO*t(N ^C-li •—• c: C; •—• —ir-iio OOOO
OOOOCOd OOO OOOO
OOOOOO— OOO OOOO
(-^.^-.^O^tOLA --41/1O l/l CO P—H tO
hOrjO^^OOfN OO^^ OOOO
oooooco ooo oooo
—
-------
u.Zn.Bird.Ora.Mn.PUSn.Fe
Mn.Pb.Cu.Zn.Bi.Cdl
BELLEVILLE
LEGEND:
O SAMPLING STATION
DIRECTION
ONLY NW, N. NE, AND E WIND DIRECTIONS ARE SHOWN
HERE
ORG-ORGAN 1C
BE -BERYLLIUM
Mn -MANGANESL
Pb -LEAD
Sn -TIN
Fe -IRON
Cu - COWE.R
Ti -TIT/1! MUM
V -VANADIUM
Zi\ -ZINC
Cr -CHROMIUM
Ni -NICKEL
Mo-MOLYBDENUM
Cc-COBALT
bi -USMUTH
Cc! -C^
>-, - ANTIMONY
430 440 ^59 < GO 'iTO 480 480 500**
530 540 550
54, Geogra'phii o i 5t ribution of airborne metals uml organic particulates
from nor']i\vi-sl, north, northeast, and ca;,{.
Figure 57 shows the seasonal and yearly results from the NASN rural Missouri
and St. Louis sites, and the Interstate Air Pollution Study site 490-713. Table 18
skives the 1963 NASN data for St. Louis, Fast St. Louis, and selected other cities.
Of the 15 cities listed, East St. Louis ranked next to highest for suspended
particulates (geometric means) and St. Louis ranked llth.
-------
Be,Mn,Pb,Sn,Fe,
Cu,Ti,V,Zn,Cr,Ni.
Mo.Co.Cd.Org.
Be,Fe,Zn,Cd
Sn.Cu.Ni
Mn.Pb
Sn.Fe
Cu.Zn
Ni.Bi
Cd.Ord
/TVCu.Pb.Sn,
Zn.Bi.Cd
Mn,Cu,Zn,Co
Sb Pb.Cd.Cr.Fe
Ti.Mo.Ni.Be. \
LEGEN
O SAMPLING STATION -*WIND DIRECTION
ONLY SE,S, SW, AND W WIND DIRECTIONS ARE
SHOWN HERE. SEE FIGURE 54 FOR OTHERS THESE
METAL AND ORGANIC PARTICIPATES ARE THOSE
FROM TABLES 16 AND 17 THAT WERE CONSIDERED
SIGNFICANT
V - VANADIUM
Zn-ZINC
Cr - CHROMIUM
Ni -NICKEL
Org- ORGANIC
Be - BERYLLIUM
Mn -MANGANESE
- LEAD
-TIN
- IRON
- COPPER
Mo-MOLYBDENUM
Co - COBALT
Bi -BISMUTH
Cd-CADMIUM Sb-ANTIMONY
420 430 440 450 460 470 480 490 500000' 510 520 530 54Q 550
Figure 55. Geographic distribution of airborne metals
and organic particulates from southeast,
south, southwest, and west.
CARCINOGENS
One of the nolynuclear hydrocarbons found in the urban atmosphere is benzo(a)
pyrene, also known as 3,4-benzpyrene, hereafter referred to in this report as BaP.
BaP is carcinogenic to experimental animals and is suspected of beinc
carcinogenic to man. BaP is only one of several polynuclear hydrocarbons that
70
-------
300
275 -
250 -
225 -
200 -
o
I- 150 h
o:
2 125 -
UJ
o
o I0°
-------
Table 18. COMPARISON OF THE SUSPENDED PARTICULATE AND
SULFUR DIOXIDE LEVELS OF SOME CITIES FROM
1963 NATIONAL AIR SAMPLING NETWORK DATAa
City
E. St. Louis
St. Louis
Atlanta
Birmingham
Chicago
Cincinnati
Denver
Detroit
Los Angeles
Nashville
New Orleans
New York
Philadelphia
San Francisco
Washington, D
National
Suspended particulates, V-g/m
Geometric mean
184
111
96
129
137
116
169
116
114
124
91
189
148
64
C. 108
92
Maximum
550
180
186
505
257
204
673
404
251
285
187
431
308
158
231
710
Sulfur dioxide, ppm
Arithmetic mean
--
0.02
0.01
0.01
0.11
0.02
0.01
0.02
< 0.01
0.01
< 0.01
0.15
0.10
< 0.01
0.03
0.03
Maximum
--
0.10
0.03
0.05
0.30
0.06
0.02
0.07
0.01
0.05
0.01
0.38
0.27
0.01
0.08
0.38
See reference 62.
exist in the air over cities. It exists in the atmosphere as a solid, arising from
incomplete combustion of fuels such as coal, oil, and gasoline and certain types of
refuse.
The BaP content of the air of 94 urban and 28 nonurban areas was reported in
a paper by Sawicki. The BaP content was determined by single pooled samples from
the regular high-volume air samples collected by the NASN from January to March 1959.
They are reported in Table 19. Of all the areas sampled, St. Louis had next to the
highest values at that time. In 1963 three high-volume air samples, collected on
October 8, 9, and 14, at site 490-713 (Municipal Courts Building in St. Louis) were
composited, and 2.1 micrograms of RaP per 1000 cubic meters of air was found. This
quantity is approximately l/25th the amount found in January to March 1959. The
difference may be accounted for in part by the fact that suspended particulate
levels may have been abnormally high in 1959. Comparison revealed that they were
-------
PH
0
&-M
w
W
H
O
(X
§-
CQ ^
D ffi
£ U
W <
O ^
1— 1 KrH
T K
£ O
z 5
w S
0 H
n rrf
u <;
Sz
w 2;
PH
£l
o
N
W
cq
i — i
0)
H
1 £ 1
n ~i
i CQ Kl
1 ^ e
; DC O
;i C.
~-» c
o o
CQ t-. H U
3. X> *+-
Of 4->
D. ^
e-
3
x
°
4-1
00
0
0 .H
CQ O
oc v E
og
CL oc w H
3 ^S
u c rt
M & 1> l-
G. DC *J
CO M «
0 D.
«-*
*J
U
4J
t/1
KJ ^-< (M
So2?0-«>OOOrOO
n ' t
$ 1.
re u c M *-> •* c
in X^t>*-*Xi «—•«'>«»
at
< -H (Q
— t *J
X O O O
s ^s -s
« 1 fc Su Q
z z z z z z o
r-i •
oooooaooo-^oo
- o.
fO
1
&« 1 x«^a»
Sf 2 SwJtc >*•<
IsISIslllII
cd 3
. -Si *3
• cd e w o co u
3 j< o e i-i H v
Xi «n M 3 --H o C
— " —• i* t-t cd o c
< < < < u u u
fOsoooo«to^oo-oo^-^^rtwcoooo^in.-H^Hiniooooo<7»ooMK)j*
"^ M
-* •* ao ^
OW^OOtOxO-OOOOOvOrO-.^-oOO^OOMso'^.MiXin'oOmOO^OOOOjO
^"SS «V| rt r* r+ ^^H^-«
x
M cd O U *
§ c c-S Sg«-o** cc«g g u
V) C O 'D Srt S t. C C *-» etf O~H«-« O O J^ *-• t) *J bf t> V
r£Ot-t~^oca'~ e «d v 4J ^ •*4OEO*j~*~*t-<*-'O«B'— < edo«j^H^^3c«— ">*iHO«o
co
(= cd
-H C '^ 1=
C (d O C — <
CO ^4^V O M C
ocT^, *~'U In c"c ^^cc
— < «J C o 3 ex •» C ^4 nnvtO
.nro MOT ^*?-: *^*?^ * ^ "*. °. ^^^^
A
OOO Ol O O OOOOOOOOOOOOOOOOOOOOOOOOOOO^O
^
A
cd
O M M
.5 B c »2 •» »« ? 2 ^3 ^«
cdCOO UOCM ^hv O M Q-^-4»l
•«H > t>e M o *oloM£ai"Offic; oet -^ p. c o -o *> C acxtctc 9
M • C C "^-iCSi5tSSt" •HCd«-)>tUcdHC'-*O*AO .C <• O M O tV
• SpS p5 S^tt-'-^fi^T"* t" -* S '** ** S "tl ^ 5*N^i~*iei« «?
115 lsSll6l-3lllslsl5lSIJ|ll55l|SSJ||
M
O 01 « CL
»«JX4 « XC-03 C «j-^.^, cfl
^ u • 0 cd-^id jcncx: (d om^coj^
cd-^a-a --toe « u M rt u QC inrnnew
X^^^H M C cd ctt 3v>u~*cd -H 4)-<-*o oicd
rt 4j O »- h<-i.i-i (din*JHCX-• — • i* ^J5:zz y y yy yz
-------
approximately twice as high in St. Louis during the 1959 sampling period as they
were for the same period in the preceding year. Furthermore, October is not part of
the heating season when larger amounts of BaP could be expected. Samples were
analyzed by the Public Health Service, Laboratory of Engineering and Physical
Science.
To determine the winter-time levels of BaP in the Study area, pooled samples
of suspended particulates, collected at lU sampling stations were analyzed.
The samples were composited from three to seven 2l*-hour samples collected with
high-volume samplers during the period from January 6 and March 18, 1961*. They
generally represent the days of higher-than-average heating requirements. The
results, summarized in Table 20, varied from 1.1* micrograms of BaP per 1,000 cubic
meters of air on the outskirts of the Study area to 28.0 micrograms per 1,000 cubic
meters just north of downtown St. Louis. The arithmetic mean concentration of the
lit samples analyzed was 10.2 micrograms per 1,000 cubic meters. As expected, the
higher concentrations were observed in areas where coal is burned domestically.
Table 19 shows that the BaP concentrations in the Study area are comparable to the
concentrations found in cities similar to St. Louis in size and the general makeup
of air pollution sources.
Table 20. BENZO(a)PYRENE CONCENTRATIONS IN INTERSTATE STUDY
STUDY AREA, JANUARY-MARCH, 1964a
Sampling
site
(grid
coordinates )
1*38-689
1* 1*9-719
1*68-665
U69-750
1+72-680
1*81-698
1*89-728
1*90-713
l*9l*-703
1*95-709
501-713
505-7^0
520-798
531+-702
Suspended
particulates
Hg/m
75
89
57
89
287
107
126
181*
191
191*
218
283
175
136
Benzo(a)Pyrene
ug/1,000 m
air
1.5
5.3
1.1*
3.8
21+.0
1*.9
28.0
5.6
18.8
15.7
1.7
11.1*
15.8
l*.l*
M-g/S Of
benzene soluble
570
830
570
620
3,510
1*70
1*,220
530
1,350
970
67
1,130
1,670
71*0
Benzene
soluble
ug/m air
2.6
6.3
2.1*
6.1
6.8
10.5
6.6
5-6
iu.o
16.2
23.7
10.1
9.1*
6.0
One composite sample for each site, pooled from 3 to 7 individual
samples collected between January 6 and March 18, 196!*.
DGeometric mean of 3 to 7 filter samples comprising the composite
sample for analysis.
74
-------
Analysis of the sample collected at site 501-713 revealed a phenanthrene
concentration of lUO micrograms per 1,000 cubic meters of air. This high value of
phenanthrene is not typical of what is known concerning this pollutant at this time.
Samples from other sites did not show sufficient concentrations for analysis. As
emission source information is obtained, review and further investigation of
polynuclear hydrocarbons is warranted.
PARTICULATE SULFATE
During December 1963 through February 1964 millipore filters used in the
inlets to sulfur dioxide samplers were saved for microscopic examination. Although
particles on the filter were too numerous to count, the examination revealed that
sulfate crystals were the most numerous.
The high-volume air sampler filters collected at the St. Louis NASN station
in 1958, 1962, and 1963 were analyzed for particulate sulfate levels. The yearly
Q
averages of these results are as follows: 18.2 micrograms per cubic meter in 1958,
14.6 micrograms per cubic meter in 1962, and 13.1 micrograms per cubic meter in
62 9
1963. The national average for 1957-60 was 11.8 micrograms per cubic meter and
10.1 micrograms per cubic meter in 1963.
SUSPENDED PARTICIPATES MEASURED BY AISI SAMPLER (Soiling Index)
AISI samplers were located at 12 sites. The results, given in Table 21,
ranged from 0.00 to 19.11 Cohs per 1,000 lineal feet. The geometric means for the
period July 1963 through June 1964 ranged from 0.145 Coh per 1,000 lineal feet at
site 468-665, which was a low-density residential area, to 1.623 Coh per 1,000
lineal feet for 499-700, which was a heavily industrialized area.
Figures 58 and 59 are isopleth maps of AISI sampler annual geometric means and
the 99th percentile values based on the annual geometric means, respectively. Both,
maps show that the area with highest pollution levels is in Illinois and that it
extends both north and south of East St. Louis.
The State of New Jersey has prepared the following adjectival rating scale
14
for suspended particulates by AISI sampler.
0-0.9 Coh per 1,000 lineal feet - light
1.0-1.9 Cohs per 1,000 lineal feet - moderate
2.0-2.9 Cohs per 1,000 lineal feet - heavy
3.0-3.9 Cohs per 1,000 lineal feet - very heavy
4.0-4.9 Cohs per 1,000 lineal feet - extremely heavy
The State of Colorado has adopted an air quality standard of 0.5 Coh per 1,000
lineal feet of air, when measured in the central business district of a city or
o
community on at least every third day and averaged over any 3-month period. The
Colorado standard was exceeded at site 490-713 in downtown St. Louis for three of
the four seasons, and at site 501-713 in downtown East St. Louis for all four
seasons.
75
-------
Table 21. SUSPENDED PARTICULATES BY AISI SAMPLER,
(Cohs/1, 000 lineal feet)
Site
coordinates
July 1963
432-715
449-719
468-665
469-750
472-680
501-713
Aug
438-689
449-719
490-713
501-713
Sept
438-689
449-719
490-713
501-713
505-740
Oct
438-689
469-750
495-709
501-713
520-798
N'ov
432-715
438-689
449-719
468-665
469-750
495-709
501-713
520-798
Dec
432-715
438-689
449-719
468-665
469-750
495-709
501-713
520-798
Jan 1964
432-715
438-689
449-719
468-665
469-750
490-713
495-709
499-700
501-713
505-740
Minimum
0.00
0.04
0.00
0.00
0.00
0.09
0.00
0.00
0.00
0.18
0.00
0.00
0.00
0.09
0.00
0.00
0.00
0.18
0.18
0.09
0.00
0.00
0.00
0.00
0.00
0.09
0.18
0.00
0.00
0.00
0.00
0.00
0.00
0.09
0.36
0.00
0.00
0.00
0.00
0.00
0.00
0.18
0.09
0.18
0.55
0.18
Maximum
0.60
1.76
2.10
1.90
3.20
3.56
1.29
1.99
2.69
4.96
0.60
1.09
4.80
5.47
5.65
2.13
3.25
5.73
11.12
5.13
4.45
2.40
2.50
1.02
4.02
9.71
16.60
5.83
1.92
5.04
3.07
1.19
3.00
7.69
12.71
6.40
3.39
2.30
3.85
1.18
4.65
6.81
13.16
7.69
19.11
9.80
Na
132
343
310
136
103
258
359
368
290
341
162
118
307
331
338
184
120
125
333
274
204
358
200
155
347
299
302
280
260
358
307
282
369
370
372
264
358
314
366
226
364
225
226
159
359
198
Arithmetic
Mean
0.269
0.303
0.311
0.260
0.855
0.850
0.260
0.386
0.440
1.197
0.193
0.352
0.749
1.419
0.879
0.313
0.560
0.936
1.912
0.772
0.542
0.351
0.516
0.325
0.750
1.501
3.066
1.129
.331
.429
.621
.123
.637
1.782
3.565
1.193
0.396
0.349
0.591
0.230
0.778
1.652
1.485
1.853
4.354
2.339
Standard
deviation
0.109
0.222
0.206
0.227
0.641
0.555
0.192
0.279
0.350
0.857
0.122
0.228
0.624
0.994
0.781
0.292
0.541
0.737
1.432
0.644
0.615
0.366
0.461
0.249
0.750
1.348
2.926
1.031
0.370
0.420
0.562
0.155
0.523
1.431
2.392
0.930
0.436
0.315
0.566
0.219
0.697
1.177
1.550
1.495
2.924
1.621
Geometric
Mean
0.246
0.237
0.252
0.196
0.638
0.699
0.193
0.291
0.315
0.956
0.139
0.269
0.559
1.126
0.608
0.239
0.340
0.757
1.574
0.602
0.311
0.233
0.317
0.204
0.477
1.086
2.002
0.785
0.164
0.294
0.417
0.'062
0.462
1.296
2.787
0.898
0.227
0.241
0.381
0.135
0.527
1.299
1.034
1.409
3.422
1.789
Standard
deviation
1.586
2.082
2.198
2.327
2.341
1.911
2.394
2.330
2.678
1.973
2.686
2.374
2.314
2.034
2.621
2.122
3.178
1.871
1.831
2.032
3.251
2.587
3.215
3.246
2.882
2.275
2.594
2.484
3.895
2.643
2.631
3.457
2.397
2.329
2.109
2.234
3.324
2.642
2.874
3.196
2.565
2.056
2.357
2.094
2.089
2.225
76
-------
Table 21. (Cont'd?) SUSPENDED P ARTICULATES BY AISI SAMPLER,
(Cohs/1, 000 lineal feet)
Site
coordinate
Feb 1964
499-700
432-715
438-689
449-719
468-665
469-750
472-680
490-713
495-709
501-713
505-740
Mar
432-715
438-689
449-719
468-665
469-750
472-680
490-713
495-709
501-713
505-740
April
432-715
438-689
449-719
468-665
469-750
472-680
490-713
495-709
501-713
505-740
520-798
May
432-715
438-689
449-719
469-750
472-680
490-713
495-709
501-713
505-740
June
432-715
438-689
449-719
490-713
495-709
501-713
Minimutp
i " - - —
0.93
0.00
0.00
0.00
0.00
0.00
0.00
0.18
0.09
0.36
0.18
0.00
0.00
0.00
0.00
0.00
0.00
0.18
0.27
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.09
0.00
0.00
0.00
0.40
0.90
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Maximum
7.23
3.46
3.01
3.62
2.34
3.97
5.65
8.67
9.22
18.18
8.94
1.54
1.59
2.51
0.65
4.57
5.47
1.44
11.12
7.23
1.43
0.68
1.70
0.36
1.71
2.94
3.89
5.30
8.94
7.69
4.64
0.83
0.94
2.22
2.32
2.94
4.64
4.96
5.47
6.60
0.63
1.39
1.77
2.21
4.03
3.89
Na
-
27
345
347
347
192
348
348
196
249
342
348
372
371
337
150
370
262
0
9
361
372
360
348
324
69
360
240
237
259
355
267
91
372
360
322
89
63
261
319
372
259
184
353
341
301
174
361
Arithmetic
Mean
3.480
0.452
0.402
0.623
0.347
0.698
1.138
1.732
1.765
3.458
1.837
0.314
0.267
0.471
0.181
0.502
1.173
0.464
2.290
1.276
.213
.181
.307
.125
.304
.793
.702
.739
1.346
1.210
.662
0.208
0.179
0.297
0.286
0.962
0.618
0.746
0.925
1.059
0.215
0.194
0.302
0.534
0.610
0.766
Standard
deviation
1.786
0.501
0.389
0.634
0.335
0.659
0.930
1.346
1.637
3.014
1.498
0.263
0.215
0.376
0.128
0.534
0.894
0.452
1.873
1.248
0.169
0.132
0.250
0.104
0.246
0.545
0.540
0.638
1.199
1.123
Geometric
Mean
2.984
0.264
0.263
0.380
0.244
0.486
0.802
1.352
1.244
2.430
1.383
0.224
0.192
0.322
0.125
0.321
0.889
0.340
1.731
0.833
0.148
0.131
0.210
0.076
0.221
0.579
0.564
0.481
0.999
0.834
.567 .522
0.149
0.130
0.209
0.267
0.540
0.464
0.745
0.713
0.899
0.134
0.165
0.238
0.337
0-517
0-579
0.154
0.134
0.231
0.229
0.828
0.479
0.479
0.734
0.742
0.163
0.138
0.221
0.415
0.412
0.599
standard
deviation
1.820
3.116
2.772
2.972
2.475
2.378
2.564
2.013
2.375
2.384
2.117
2.435
2.487
2.755
2.847
2.738
2.281
2.150
2.123
2.690
2.709
2.537
2.699
3.160
2.467
2.694
1.981
3.122
2.210
2.541
1.987
2.403
2.353
2.281
1.883
1.778
2.286
2.995
2.007
2.539
2.430
2.488
2.335
2.413
2.978
2.133
77
-------
Table 21. (Cont'dJ SUSPENDED PARTICULATES BY AISI SAMPLER,
(Cohs/1, 000 lineal feet)
Site
coordinates
Summer 1963
432-715
438-689
449-719
468-665
469-750
472-680
490-713
501-713
Fall 1963
432-715
438-689
449-719
469-750
490-713
495-709
501-713
505-740
520-798
Minimum
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.09
0.09
0.00
0.00
Winter 1963-64
432-715
438-689
449-719
468-665
469-750
472-680
490-713
495-709
499-700
501-713
505-740
520-798
Spring 1964
432-715
438-689
449-719
468-665
472-680
505-740
520-798
469-750
490-713
495-709
501-713
o.oo
0.00
0.00
0.00
0.00
0.00
0.18
0.09
0.00
0.36
0.18
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.09
0.00
0.00
0.00
0.00
Maximum
1.00
1.29
2.12
2.10
1.90
3.20
2.69
4.96
4.45
2.40
2.50
4.02
4.80
9.71
16.60
5.65
5.83
3.46
5.04
3.85
2.34
4.65
5.65
8.67
13.16
8.67
19. 11
9.80
6.40
1.54
1.59
2.51
0.65
5.47
7.69
4.64
4.57
4.64
5.30
11.12
Na
301
359
968
509
364
158
290
814
204
704
318
467
307
424
966
338
554
963
1019
1020
700
1081
353
421
845
215
1073
546
264
1104
1079
983
219
565
898
91
819
498
587
1088
Arithmetic
Mean
0.268
0.260
0.360
0.288
0.287
0.721
0.440
0.974
.542
.305
.456
.701
.749
1.335
2.104
.879
.952
0. 399
0.395
0.611
0.219
0.704
1.139
1.689
1.698
2.259
3.795
2.019
1.193
0.246
0.210
0.360
0.164
0.998
1.194
0.662
0.391
0.658
0.739
1.515
Standard
deviation
0.150
0.192
0.273
0.182
0.199
0.586
0.350
0-708
0.615
0.312
0. 399
0.706
0.624
1.228
2.044
0.781
0.879
0.447
0.380
0.588
0.253
0.632
0.924
1.257
1.530
1.870
2.808
1.561
0.930
0.206
0.169
0.300
0.124
0.748
1.122
0.567
0.416
0.503
0.696
1.460
Geometric
Mean
0.216
0.193
0.273
0.227
0.231
0.49.6
0.315
0.781
0.311
0.208
0.298
0.437
0.559
0.976
1.513
(i. 608
0.688
0.219
0.266
0.391
0.116
0.491
0.806
1.323
1.206
1.623
2.858
1.518
0.898
0.173
0.151
0.251
0.107
0.735
0.806
0.522
0.262
0.518
0.477
1.079
Standard
deviation
2.270
2.394
2.221
2.379
2.106
2.813
2.678
1.967
3.251
2.553
2.906
2.984
2.314
2.195
2.221
2.621
2.286
3.445
2.693
2.834
3.530
2.450
2.551
2.035
2.360
2.385
2.217
2.176
2.234
2.559
2.498
2.625
3.009
2.460
2.603
1.987
2.571
2.150
3.036
2.288
78
-------
Table 21. (Cont'd) SUSPENDED PARTICULATES BY AISI SAMPLER,
(Cohs/1, 000 lineal feet)
Site
coordinates
Minimum
July 1963-June 1964
432-715
438-689
449-719
468-665
469-750
472-680
490-713
495-709
499-700
501-713
505-740
520-798
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
July 1963 All 0.00
August All 0.00
September All 0.00
October All 0.00
November All 0.00
December All 0.00
.January 1964 All 0.00
February All 0.00
March All 0.00
April All 0.00
May All 0.00
June All 0.00
Spring '64 All 0.00
Summer '63 All 0.00
Fall '63 All 0.00
Winter '63- '64 All 0.00
Year '63-'64 All 0.00
Maximum
4.45
5.04
3.85
2.34
4.65
5.65
8.67
13.16
8.67
19.11
9.80
6.40
3.56
4.96
5.65
11.12
16.60
12.71
19.11
18.18
11.12
8.94
6.60
4.03
11.12
4.96
16.60
19.11
19.11
Na
2587
3514
3373
1384
2503
1021
1817
2030
215
4087
1811
909
1282
1387
1256
1036
2145
2611
2800
3089
2604
2910
2417
1714
7931
3894
4437
8500
5274
Arithmetic
Mean
0.325
0.286
0.436
0.243
0.577
1.027
0.857
1.251
2.259
2.118
1.370
0.993
0.451
0.564
0.852
1.052
1.091
1.186
1.370
1.267
0.845
0.607
0.555
0.440
0.669
0.476
1.014
1.276
0.901
Stnnrin-rrl
deviation
0.365
0.288
0.424
0.233
0.593
0.808
0.870
1.283
1.870
2.214
1.295
0.882
0.433
0.610
0.832
1.125
1.597
1.627
1.884
1.672
1.157
0.760
0.625
0.430
0.887
0.484
1.317
1.733
1.304
Geometric
Mean
0.200
0.193
0.291
0. 145
0.372
0.748
0.581
0.805
1.623
1.380
0.906
0.723
0.319
0.354
0.537
0.669
0.539
0.507
0.620
0.657
0.431
0.335
0.334
0.285
0.363
0.321
0.566
0.595
0.453
Standard
deviation
2.929
2.636
2.658
3.278
2.716
2.484
2.606
2.836
2.385
2.546
2.699
2.275
2.395
2.843
2.958
2.761
3.528
4.406
3.986
3.407
3.413
3.323
2.981
2.831
3.266
2.613
3.196
3.915
3.471
N = number of samples.
79
-------
ST. LOUH CO.
JEFFEMOI CO. "
1. ._ -1-
LECEHO
BOUNDARIES
STATE
COUNTY
ISOPLETHS Of ANNUAL GEOMETRIC MEAN VALUES
— LINES OF ACTUAL EQUAL VALUE
— LINCS OF PROBABLE EQUAL VALUE
AISI SANPLIN FROM JULY 1,1963 TO JULY 1,1964
12 STATIONS.
390 400°" 410 '420 430 440 450 460 470 480 490 30000* 510 520 530 540 550 560 5
.80
Figure 58. Suspended particulate annual geometric means measured with AISI
sampler (Cohs/1, 000 lineal ft) for 2-hour sampling.
80
-------
MADISON CO j
CLAIR CO
LEGEHD
BOUNDARIES
STATE
COUNTY
HIGHWAY MARKERS
FEDERAL
STATE
ISOPLETHS OF 99 PERCENTILE VALUES
— LINES OFACTUAL EQUAL VALUE
LINES OF PROBABLE EQUAL VALUE
BASED ON ANNUAL GEOMETRIC MEANS
AND STANDARD DEVIATIONS FOR 12
STATIONS DURING JULY 1,1963 TO
JULY 1,1964.
390 400°"' 410 420 430 440 450 460 470 480 490 500"°' 510 520 530 540 550 560 570
Figure 59. Suspended particulate 99 percentile values measured with AISI
sampler (Cohs/1, 000 lineal ft) for 2-hour sampling.
81
-------
Figures 60 through 71 give the frequency distributions at each site by season
and year. The geometric means and their standard deviations were used since they
best described the distribution of the high-volume air sampler results and both
samplers measure suspended particulates. As was found with the high-volume sampler
results, the slope or standard deviation for the summer season was usually the least
and the winter and fall seasons the greatest. Considering each station singly on the
basis of 1 percent of the time for the year, a range of values from 1.8 to 10.3
Cohs per 1,000 lineal feet occurred. For the winter season, this range increased to
2.3 to 10.8 Cohs per 1,000 lineal feet with only 3 of 12 sites having concentrations
of less than 4.0 Cohs per 1,000 lineal feet. This means that during 1 percent of
the winter season, nine of the sites had "extremely heavy" concentrations according
to the New Jersey rating scale.
Figure 72 is a map showing the percent of times that soiling index values
equalled or exceeded 2 Cohs per 1,000 lineal feet - "heavy" according to the New
Jersey rating scale. Sampling sites in St. Louis County on the edge of the air
pollution basin exceeded 2 Cohs only 1 to 2 percent of the times, but the site in
East St. Louis exceeded this value 68 percent of the times during the winter season.
100
80
6.0
— SUMMER
• •-•• FALL
.__ WINTER
••» SPRING
•--• YEAR
o
o
o
X 0 80
LJ
O
Z 0 60
O
in
0 20 -
0 10
001 005 0102 05 I
10 20 30 40 50 60 70 80 90 95
% OF SAMPLES S STATED VALUE
99 8 9 99 99
Figure 60. Frequency distribution of suspended particulates
measured with AISI sampler at site No. 432-715.
82
-------
100
80
1 - 1 - 1 - 1 - 1 - 1
1 - 1 - 1 - 1
— SUMMER
•• —• FALL
___ WINTER
SPRING
•--• YEAR
1963
l964
001 005 0102 05
5 10 20 30 40 50 60 70 80 90 95 90 99
% OF SAMPLES S STATED VALUE
99 8 9 99 9
Figure 61. Frequency distribution of suspended particulates
measured with AISI sampler at site No. 438-689.
100
80
I—I 1 1 T
SUMMER
T"
8
o
••-•- FALL
_-_ WINTER
SPRING
— - YEAR
1963
1964
yc
§
o
z
h
0 60 f-
0 40 -
I-
0 20 U
001 0 05 0102 05 I 2
5 lO 20 30 40 50 60 70 80 90 95 98 99
% OF SAMPLES < STATED VALUE
99 8 9 99 99
Figure 62. Frequency distribution of suspended particulates
measured with AISI sampler at site No. 449-719.
83
-------
100
80
O
o
O
o
2
-i—i—i—i—i—r
•SUMMER
•- FALL (NO SAMPLING)
_ WINTER
SPRING
- YEAR
1963
1964
oo f-
*—
0 80 I-
0 60 -
001 005 O.I 0 2 05
10 20 30 40 SO 60 70 80 90 95
% OF SAMPLES 4 STATED VALUE
98 99
99 8 9 99 99
Figure 63. Frequency distribution of suspended particulates
measured with AISI sampler at site No. 468-665.
001 005 0102 05
10 20 30 40 50 60 70 80 90 95
% OF SAMPLES S STATED VALUE
99 8 9 »9 99
Figure 64. Frequency distribution of suspended particulates
measured with AISI sampler at site No. 469-750.
84
-------
100
eo
8
O
•x.
£
O
0 i oo
X
y o so
I — I
r
r
— SUMMER
._._ FALL (NO SAMPLING)
-— WINTER
SPRING
__ YEAR
1963
1964
060)-
i-
O
in
001 0 05 0102 03
10 20 50 40 50 60 70 80 90 95
% OF SAMPLES <. STATED VALUE
98 99
99 8 9 99 99
Figure 65. Frequency distribution of suspended particulates
measured -with AISI sampler at site No. 472-680.
— SUMMER
-.- FALL l963
._ WINTER ,„„„
SPRING I9M
__ YEAR
001 005 0102 05
5 10 20 30 40 50 60 70 80 90 95 98 99
% OF SAMPLES <. STATED VALUE
99 8 9 99 99
Figure 66. Frequency distribution of suspended particulates
measured "with AISI sampler at site No. 490-713.
85
-------
100
80 -
~I—I—I 1 1 1 1 1 1 1 1 T
^—• SUMMER (NO SAMPLING)
8
o
o
z
o
z
-J
o
FALL
--- WINTER
.......... SPRING
.-.EAR
l963
//
- 20
£
o
U I 00
5" 080
O
z
— 060
O
6 040
/A
///
1 1 1 1 1 1 II
001 0 05 01 02 05
_1 I I l_
J l_
2 5 10 20 30 40 SO GO TO 80 90 95 98 99 99 8 9 99.99
% OF SAMPLES i STATED VALUE
Figure 67. Frequency distribution of suspended particulates
measured with AISI sampler at site No. 495-709.
80
60
I 00
080
WINTER 1963-64
f
~ f
I /
_L
_J L
0 01 0.05 0102051 Z
5 10 20 30 40 50 60 '0 80 90 95 98 99
% OF SAMPLES S STATED VALUE
99 8 9 99 99
Figure 68. Frequency distribution of suspended particulates
measured with AISI sampler at site No. 499-700.
86
-------
100
ao
o
o
w I 00
.c
o
O 080
1—r—I 1—r
^— SUMMER
— . FALL l963
-__ WINTER .„,_
SPRING l964
.-— YEAR
-I
001 005 0102 05
I I I
10 20 30 40 50 60 70 BO 90 95
% OF SAMPLES S STATED VALUE
99 8 9 99 99
Figure 69. Frequency distribution of suspended particulates
measured with AISI sampler at site No. 501-713.
100
8 0
60
40
V
4i
W
C 20
o
1
(A
•§ i oo
0
- 0 80
X
u
g 060
z
o
2
j 040
5
020
O IO
1 1 1 1 1 1 1 1 1 1 1 1
— 1 — 1 — 1 1 1 1^> 1 '
/i
* t*
-
y y / v
- -.-. FALL 1963 /// '
_ ...WINTER „ * *//
SPRING l964 | /// /
— •YEAR * ////
0 * A ..» .*
j / ///
w X^ * *» ^
5 *' /V /
» / ///
i/A-'
/I
t / /
* „* ,*
t/ /
// /
w
-
: / //Y i
S t/ f
/ f/ -f
/'**" t'
* t/ t
/ ///
* /.-• .-
x /' /
// /
// /
"' /
1 1 1 1 1 It 111
III 11 II II
-
-
-
001 005 0102 05
10 20 30 40 50 60 70 80 90 95
% OF SAMPLES S STATED VALUE
99 8 9 99 99
Figure 70. Frequency distribution of suspended particulates
measured with AISI sampler at site No. 505-740.
87
-------
100
80
6.0
O.
O ,00
X 080
UJ
o
Z 060
O
Z
8
040
^ SUMMER (NO SAMPLING)
._.. FALL l963
--WINTER
SPRING
-- YEAR
/
/# /
/> /
,4
.'>•/
001 0.050.1 0205 I
10 20 30 40 90 60 70 SO 9O 95
% OF SAMPLES S STATED VALUE
99 8 9 99 99
Figure 71. Frequency distribution of suspended particulates
measured with AISI sampler at site No. 520-798.
The diurnal variations given in Table 22 and Figure 73 show the Coh values for
the winter to be the highest, and those in the summer to be the lowest. The diurnal
variations are similar to those found in other studies, i.e., the higher concentra-
tions occur in the morning (6 to 10 a.m.) and evening (6 to 10 p.m.), and the lower
occur in the early morning (2 to 6 a.m.) and afternoon (noon to 4 p.m.). The higher
values are due to the increase of people's activities and to the fact that meteorolo-
gical conditions are generally less favorable to dispersing pollutants at these times.
The trends of the suspended particulates by AISI sampler (Coh values, soiling
index) since 1954 are shown in Table 23 and Figure 74. They show a sizeable decrease
from 1954 to 1957, but only for the period April to December. This decrease does
not appear in the succeeding December-to-March period. The 1957 and 1958 results
appear consistent within themselves, though somewhat low in respect to the values
flanking them. The missing data between 1959 and 1962 make further comparisons
difficult, but it appears there has been an overall decrease since 1954 with some
fluctuations in between. The decrease would seem logical since the high-volume
sampler trend shows a decrease and the fuel use trend has been to convert from
coal to gas and oil for heating, thus reducing the amount of particulates of this
type emitted to the atmosphere.
-------
- ,820
eft fit
F - F»U 1963
f - IINTER 1964
T - 1963-64
PREPARED FROM FREQUENCY
DISTRIBUTIONS
LEG END
BOUNDARIES
STATE
COUNTY
HIGHWAY MARKERS
FEDERAL
STATE
390 400"' 4lu 420 430 440 450 460 470 480 490 5'00W' 510 520 530 540 550 560
figure 72. Percent of times soiling index equalled or exceeded
2. 0 Cohs/1, 000 lineal feet.
-------
Table 22. DIURNAL VARIATION OF AISI SAMPLER RESULTS,
GEOMETRIC MEAN (Cohs/1, 000 lineal feet)
Site
coordinat
U32-715
U38-689
1*1*9-719
it 68-61^
1*69-750
1*72-680
1*90-713
1*95-709
1*99-700
501-713
505 -7uo
520-798
All-
Date
Suraner '63
Fall '63
Winter '63-6!*
Spring ''61*
Year '63-6U
Stunner '63
Fall '63
Winter '63-61*
Spring '61*
Year '63-6U
Sunnier '63
Fall '63
winter '63-61*
Spring '6U
Year '63-6U
Summer '63
Winter '63-6!*
Spring "61*
Year '63-61*
Sunmer '63
Fall '63
•inter '63-61*
Spring '6U
Year '63-61*
umaer '63
inter '63-6!*
Spring '61*
ear '63-61+
Summer '63
all '63
inter '63-6U
Spring "6U
ear '63-61*
all '63
inter "63-61*
pring '6U
ear '63-61*
inter '63-6!*
ummer '63
all '63
inter '63-61*
"pring '6U
ear '63-6!*
11 '63
nter '63-6!*
"pring '6U
ar '63-61*
11 '63
nter '63-6!*
ring '61*
ar '63-61*
•umnar '63
11 '63
nter '63-61*
ring '61+
ar '63-6U
TUe of day
6-2 2-4 4-6 6-8 8-16 16-12 12-14 14-16 16-18 18-20 20-22 22-24
0.28 0.32 0.31 0.26 0.25 0.23 0.22 0.27 0.2l* 0.2-3. 0.26 0.31
0.50 0.1*7 0.58 0.1*3 0.27 0.26 0.21 0.28 0.37 0.1*0 0.1*5 '0-53
0.27 0.2U 0.28 0.26 0.2l* 0.32 0.28 0.28 0.30 0.39 0-38 0.29
0.25 0.25 0.20 0.19 0.17 0.16 0.17 0.18 0.18 0.19 0-27 0.29
0.27 0.25 0.25 0.23 0.21 0.22 0.21 0.21 0.23 0.26 0.31 0.30
0.32 0.21 0.17 0.86 0.20 0.25 0.17 0.19 0.22 0.19 0.25 0.2U
0.23 0.23 0.23 0.2U 0.27 0.20 0.20 0.20 0.20 0.29 0.29 0.26
0.33 0.30 0.30 O.U2 0.36 0.31 0.2k 0.19 0.26 0.33 0.33 0.33
0.22 0.17 0.16 0.20 0.18 0.18 0.17 0.18 0.17 O.l8 0.19 0.21
0.26 0.22 0.21 0.26 0.2U 0.22 O.l8 0.18 0.20 0.22 0.2l* 0.25
0.3U 0.30 0.27 0.23 0.25 0.26 0.26 0.24 0.2U 0.28 0.30 0.36
0.39 0.1*1 0.1*3 0.28 0.27 0.26 0.28 0.31 0.3* 0.1*5 0.1*1* 0.1*5
0.1*0 0.1*3 O.U8 0.1*3 Q.U7 0.38 0.39 0.35 0.1*0 0.39 O.U2 0.1+1
0.29 0.28 0.31 0.31 0.25 0.25 0.29 0.26 0.26 0.29 0.31 0-32
0.33 0.32 0.3!* 0.31 0.30 0.28 0.30 0.28 0.29 0.31 °-3^ 0-35
0.28 0.31 0.28 0.28 0.28 0.29 0.30 0.30 0.29 0.25 0.27 0.28
0.21 0.21 0.18 0.21 0.23 0.20 O.l8 0.23 0.17 0.23 0.18 0.23
0.21 0.13 0.19 0.26 0.16 0.16 0.15 0.17 0.22 0.16 0.2U 0.22
0.21* 0.22 0.21 0.25 0.2l* 0.22 0.19 °-23 0.20 0.23 0.21 0.25
0.26 0.27 0.26 0.27 0.21* 0.26 0.22 O.23 0.23 0.25 0.31 0.29
0.1*7 0.1*3 0.1*2 0.1*5 0.52 0.1*3 0.31* 0.29 0.38 0.63 0.63 0.61
0.50 0.1*3 O.UU 0.56 0.61 0.51 0.39 0.37 0.1*9 0.6U o.57 0.52
0.29 0-28 0.26 0.32 0.31* 0.31 0.26 0.21 0.23 0.27 0.33 0-33
0.1*0 0.38 0.36 0.43 0.1*7 0.1*0 0.33 0.29 0.35 0.1*6 0.1*7 0.1*1*
0.66 0.56 0.1*7 0.68 0.51 0.72 0.1*6 0.58 0.51* 0.52 0.65 0.55
0.91 0.81 0.71* 0.85 0.99 i.oU l.Ol 0.70 0.81 0.93 0.90 0.85
0.83 0.66 0.68 0.80 0.82 0.87 0.72 0.81 0.78 o.8l 0.8U 0.71
0.88 0.70 0.69 0.82 0.85 0.92 0.78 0.75 0.71* 0.83 0.85 0.71*
0.1*0 0.33 0.1*1* 0.58 O.U8 0.33 0.28 0.29 0.33 0.31* 0.1*0 0.51
0.56 0.1*6 0.58 0.78 l.Ol 0.53 0.36 o.Ul o.l*8 0.59 0.68 0.68
1.30 0.37 1.26 1.1*1* i.ljO 1.28 1.15 1-21* 1.1*7 1.1*1 1.39 1.22
0.60 0.58 0.58 0.62 0.52 0.50 0.51 0.1*7 0.51* 0.56 0.57 0.57
0.66 0.6U 0.68 0.76 0.73 0.56 0.1*9 0.1*9 0.59 0.59 0.69 0.68
0.86 0.82 0.93 1.12 1.15 0.88 0.73 0.78 1.08 1.21 1.17 1.06
1.02 1.01 0.98 1.22 1.59 1-51* 1.06 l.Ol* 1.21 1.5!* 1.26 1.13
0.63 0.55 0.69 0.69 0.58 0.63 0.1*9 0.1*6 0.52 0.55 0.51* 0.63
0.81 0.76 0.83 0.92 1.00 0.95 0.71 0.71 0.82 0.96 0.89 0-9O
1.1*7 2.30 2.06 1.82 1.75 1.70 1.36 1.6o 1.70 1.37 1.39 1.60
0.83 0.80 0.92 1.12 0.86 0.72 0.53 0.53 0.63 0.71 l.oo 0.91*
1.57 1-39 1-51* 1.96 1.97 1.29 0.95 l.oo 1.1*3 1.81+ 1.82 1.73
2.32 2.32 2.66 i*.21 U.12 2.73 2.05 2.10 2.92 3.31 3.13 2.72
1.21* l.Ol* 1.15 1.65 1.38 1.03 0.7!+ 0.72 0.83 1.12 1.31 1.29
1.39 1.28 1.U6 2.03 1-79 1.27 0.93 0.95 1-21 1.U8 1.67 1.56
0.66 0.71 0.61+ 0.71 0.79 0.79 0.63 0.1+7 0.1*7 0.53 0.65 0.83
1.59 1.U8 1.59 2.01* 1.96 1.60 1.28 1.18 1.30 1.1+9 1.64 i 7i*
0.87 0.82 0.93 0.96 0.90 0.79 0.68 0.78 0.71* 0.95 o 85 o 88
0.96 O.Q2 1.00 1.12 1.09 0.91* 0.80 0.78 0.78 0.9!+ 0.95 I.oU
0.6l 0.72 0.61+ 0.71 0.85 0.75 0.61+ 0.1*7 1.1+1* o.6l 0.75 0.73
0.91* 0.90 0.72 0.90 1.1*0 1.26 0.91 0.73 0.67 0.82 0.8l 0.92
0.69 0.61 0.55 0.1*0 0.85 0.79 0.61* 0.28 0.1+1+ 0.37 0.52 0.1+8
0.-60 0.75 0.65 0.73 0.97 0.85 0.70 0.50 0.1+8 o.6l 0.73 0.71+
0.1*0 0.37 0.36 0.39 0.35 0.31* 0.30 0.30 0.31 0.33 0.39 0.1+2
0.63 0.6l 0.63 0.67 0.71 0.56 0.1+5 0.1+5 0.52 0.69 0.72 0.72
0.6k 0.61 0.63 0.71+ 0.79 0.69 0.56 0.55 0.63 0.75 0.70 0.67
0.1+5 O.IMD 0.1*1 0.1+6 0.1+2 0.39 0.35 0.31* 0.36 0.1*0 0.1+5 c.i+6
0.33 0.1+9 0.50 0.57 0.55 0.1+9 0.1*1 o.Ul 0.1*5 0.52 0.^5 0.55
90
-------
Table 23. TREND OP SUSPENDED PARTICULATES BY AISI SAMPLER
(Cohs/1, 000 lineal feet)
Year
April
May
June
July
August
Septenber
Ref. 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18
1954-5S 63 1.7 2.3 1.2 1.4 1.6'2.0 0.7 0.7 1.0 1.2 0.6 0.8 1.1 1.3 0.8 0.7 0.7 1.1 0.5 O.S 0.8 1.1 0.6 0.7
1957-58 63 0.5 0.6 0.4 0.5 0.4 0.4 0.3 0.3 - 0.4 0.4 0.3 0.3 0.4 0.5 0.3 0.3 0.4 0.5 0.4 O.S
1958-59 64 0.6 1.0 0.4 O.S 0.5 O.S 0.4 0.4 0.5 0.4 0.2 0.2 0.6 0.8 O.S 0.4 0.8 1.0 0.6 0.6 1.0 1.0 0.6 0.6
1962-63 65 0.9 1.1 0.6 0.7 0.7 0.7 0.8 0.9 0.7 0.7 0.4 0.4 0.5 0.6 0.4 0.3 0.6 0.8 0.3 O.S O.S 0.6 0.4 0.4
Aug.'63 to
July '64
0.6 0.6 0.6 0.6 O.S 0.6 0.4 O.S 0.6 0.6 0.4 0.3 -
0.4 0.6 0.3 0.3 0.6 0.8 0.4 0.6
October
November
December
January
February
March
00 06 12 Iff 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18
1954-55 63 1.2 1.8 0.9 1.4 1.8 2.0 1.6 2.1 1.6 1.0 1.7 1.9 1.5 2.1 1.8 2.0 1.7 2.0 1.6 2.1 1.5 1.9 1.2 1.6
1957-58 63 0.7 0.8 0.6 0.7 1.0 1.2 0.8 1.0 1.3 1.0 1.0 1.2 1.5 1.9 1.0 1.6 1.0 1.5 1.3 l.S 1.0 0.0 O.S 1.0
1958-59 64 1.4 1.5 1.0 1.3 1.7 1.9 1.5 2.0 1.8 2.0 1.8 2.0 1.7 2.3 1.7 1.8 1.4 1.9 1.7 1.6 1.0 1.0 0.7 0.9
1962-63 65 - - - - - - 1.0 1.1 0.9 1.1 0.8 0.9 0.8 0.7
Aug.'63 to
July '64
1.3 1.5 1.2 1.3 1.4 1.3 1.1 1.6 -
The data from 1954 - 1963 are 3-hour samples from site 491-713. Data from August 1963 - July
1964 are 2-hour samples reported as geometric means from site 490-713.
1.0
0.9
_ 0.8
O
o>
c
= 0.7
O
O
O 0.6
0.5
O
- 0.3
Z
d 0.2
o
O.I
0
n 1 1 1 1 r
WINTER 1963-64
SUMMER 1963
0-? 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24
TIME OF DAY
Figure 73. Diurnal variation of soiling index geometric means
all AISI sampler sites.
91
-------
54'57'58'62'63|54'57'58'62'63 54'57'58'62'63 54'57'58'62'63
APRIL I MAY I JUNE I JULY
Figure 74. Suspended particulates - 6 a.m. monthly means -
AISI sampler.
Pollution roses for each site for February 1964 are given in Figures 75
through 84. February was selected as the period for analysis because more samplers
were operating at that time than during any other period of the study. Mechanical
problems led to redesign and rebuilding of every sampler. Data from rebuilt units
are far more reliable than those from original equipment. The redesign features
are reported in Memorandum of Information and Instruction Number 8, AISI Tape
Sampler Modifications.
Figure 85 shows the wind directions for the three highest AISI suspended
particulate directional averages at each station during February 1964. It indicates
that for the stations in Missouri, away from the central metropolitan area, the
highest suspended particulates occurred when the wind was from the direction of the
central metropolitan area. The wind direction - particulate level relationships
shown in Figure 85 and the pollution roses at sites 505-740 and 472-680 are due to
point sources.
For the stations in East St. Louis and the St. Louis central business district,
the actual wind directions are at times markedly different from those at the Weather
Bureau station at Lambert Field; therefore, the actual wind directions for the
maximum particulate levels in these areas may not be quite as indicated. The
altered wind directions were reported by Arnold to be caused by counterflow of air
close to the ground surface and to air drift along the valley because of the channel-
92
-------
0469
0330
0197°
CALM-0.654
0225
0689
0377
0259
Figure 75. Soiling index pollution
rose - site No. 432-715
345 samples.
0238
Figure 76. Soiling index pollution
rose - site No. 438- '
347 samples.
0
.0-60 60-15 I 5-3 0^3 0_
'Cohs/ 1,000 lineal feet
5 10 15
WIND
j. FROM
* THIS
DIRECTION
PERCENT OF SAMPLES
2-hour samples-AIS! sampler —Feb 1964
Note Numbers on radia Is are arithmetic average
concentrations for wind directions indicated
CALM-I 342
0329
0385
0421
0480
0210
0633
Figure 77. Soiling index pollution
rose - site No. 449-347
347 samples.
Figure 78. Soiling index pollution
rose - site No. 468-665
192 samples.
93
-------
0.755
0258
0.421
0523
1.822
1780
0734
1736
Figure 79. Soiling index pollution
rose - site No. 469-750
348 samples.
Figure 80. Soiling index pollution
rose - site No. 472-680
348 samples.
1.443
I 213
0
\Q-.60 60-151^0
' Cohs/1,000 lineal feet
5 10 15
WIND
..FROM
*• THIS
DIRECTION
PERCENT OF SAMPLES
2-hour samples-AISI sampler-Feb 1964
Note Numbers on radials are arithmetic average
concentrations for wind directions indicated
CALM-3,097
1203
2102
2746
2088
1728
1382
1540
Figure 81. Soiling index pollution
rose - site No. 490-713
196 samples.
Figure 82. Soiling index pollution
rose - site No. 495-709
249 samples.
94
-------
• I 156
1401
3.163
3.122
4.951
4.253
3844
Figure 83. Soiling index pollution
rose - site No. 501-713
342 samples.
WIND
^ FROM
^THIS
DIRECTION
Q-.6Q .6
xCohs/l,000 Imeal feet
5 10 15
PERCENT OF SAMPLES
2-hour samples -AISI sampler- Feb 1964
Note- Numbers on rodials are arithmetic average
concentrations for wind directions indicated
0.788
0.960
CALM-3.916
0897
1534
I 160
3.238
2.711
Figure 84. Soiling index pollution
rose - site No. 505-740
348 samples.
95
-------
LEEEHD
tlMMH MiTM
•M OIUCTINS FOR S^EE HIGHEST DIRECTIONAL AYERACE
FN EACH AISI i4NPLINt STATHi, FROM SOIL UK WOfl
POLLKTWI ROMS (Flit ;5 - T5-14)
390 400000 410 420 450 440 450 460 470 480 490 500M
-------
ing effect. The counterflow and drift are verified and quantitated to some decree
by wind measurements at the different levels on the KMOX-TV tower. They are report-
ed in Volume V, Meteorology and Topography.
The results of the correlation between meteorological stability classes and
the AISI sampler data for each site are given in Table 24. At 6 of the 12 sites
the results have the same pattern as the high-volume sampler results, a decrease in
suspended particulatcs from class 2 to class 4 and an increase for class 5. Four of
the six sites not having this pattern had an increase from class 2 to 3, but a
decrease from class 3 to 4, and an increase from class 4 to 5. The other two sites
showed increases from class 3 to 4. These results indicate that although wind speed
is the more influential factor, thermal mixing has a greater influence on particulates
collected by the AISI sampler than on that collected by the high-volume air sampler.
The difference reflects the influence of the smaller particles collected by the AISI
sampler. The class 1 condition did not occur during February 1964.
Table 24. AVERAGE SUSPENDED PARTICULATES
BY AISI SAMPLER FOR FIVE ATMOSPHERIC
STABILITY CLASSES, WINTER 1963-64
(Cohs/1, 000 lineal feet)
Site
coordinates
432-715
438-689
449-719
468-665
469-750
472-680^
490-713C
495-709
499-700
501-713
505-740°
520-798
Atmospheric stability class
1
-
2 ,
0.359
0.325
0.917
0.318
0.963
-
-
-
-
1.409
1.986
2.028
3.880
4.763
-
-
2.328
0.740
3
0.358
0.419
0.735
0.193
0.897
1.346
2.030
2.294
2.599
4.632
2.121
1.971
4
0.405
0.343
0.472
0.220
0.550
1.065
1.436
1.532
1.959
2.785
1.618
1.022
5,6,7
0.400
0.471
0.773
0.217
0.877
1.196
1.971
1.S08
2.346
5.075
2.621
1.296
1 = extremely unstable.
2 = unstable.
3 = slightly unstable.
4 = neutral.
5,6,7 = slightly stable, stable, and
b Feb 1964 only.
Jan and Feb 1964 only.
extremely stable.
97
-------
SULFATION
Lead peroxide candles were located at 42 sites to measure sulfation rates.
The results are reported in milligrams of sulfur trioxide per 100 square centimeters
per day and are given in Tables 25 to 30. The results ranged from 0.10 to 8.86 mg
SO./100 cm /day for the period March 1963 through February 1964. The arithmetic
2
mean for all sites during this period was 1.228 mg SO /100 cm /day, and the geomet-
2
ric mean was 0.886 mg SO /100 cm /day. Site 433-565, which is a low-population-
density residential-to-rural site, had the lowest yearly geometric mean of 0.220 mg
SO,/100 cm /day, and site 472-680, which is heavily industrialized, had the highest
2
of 5.264 mg SO./100 cm /day.
The monthly and seasonal trends are shown in Figure 86. With the exception
i
of the increase in July and August, these trends follow those found in Nashville/
The July and August anomaly was examined by plotting individual June-to-July
increases for each station on a map. This was done in two ways, with both showing
essentially the same .results. The first was based on the hypothesis that the pollu-
tant would be uniformly distributed over the area and that it would cause an increase
of at least 0.15 mg SO./lOO cm /day. The second assumed a pollutant distribution
that would cause a 20 percent or more increase from the June value. The map, Figure
Table 25. 1963-64 SULFATION FOR ALL STATIONS BY MONTHS
(mg SO^/100 cm2/day)
Month
Feb 1963
Mar
Apr
May
June
July
Aug
Sept
Oct
Nov
Dec
Jan 1964
Feb
Minimum
0.17
0.19
0.20
0.16
0.13
0.16
0.20
0.14
0.15
0.10
0.42
0.13
0.28
Maximum
3.58
4.63
7.27
5.52
4.32
8.86
4.77
4.33
6.54
7.04
4.17
4.85
3.94
Na
29
38
39
40
39
38
40
40
40
41
41
40
41
Arithmetic
Mean
1.301
1.365
1.153
0.909
0.734
1.378
0.887
0.814
1.159
1.400
1.694
1.729
1.499
Standard
deviation
0.746
0.955
1.275
0.999
0.819
1.758
0.882
0.767
1.116
1.208
1.040
1.142
0.957
Geometric
Mean
1.103
1.086
0.857
0.649
0.517
0.827
0.671
0.617
0.852
1.046
1.405
1.366
1.233
Standard
deviation
1.859
2.044
2.021
2.168
2.214
2.634
2.018
2.055
2.193
2.231
1.880
2.136
1.913
N = number of samples.
98
-------
Table 26. StFLFATION FOR MARCH, APRIL, MAY 1963
(mg SO3/100 cm2/day)
Site
coordinates
407-770
421-739
433-565
435-589
435-717
436-743
449-719
451-738
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
473-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-809
498-704
499-724
501-713
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
0.22
0. 16
0. 19
0. 19
0.24
0. 38
0. 43
0. 41
0. 33
0. 33
0. 59
0. 63
0. 67
0.47
0. 71
0.82
0. 45
0.81
5. 52
0.84
0. 50
1. 00
0.66
0. 42
0.29
1.38
1. 04
0.66
0. 84
3.88
1. 37
1. 31
0.48
1. 22
1.30
0. 53
0.96
1. 33
0.22
0. 31
0. 16
Maximum
0.47
0.46
0.22
0.42
0.40
0.80
0.43
0.93
0.93
0. 79
1.05
1. 19
3.42
1.02
1.27
1. 45
1. 08
1.64
7.27
1.79
1. 08
1.52
0.96
0. 74
0. 47
1. 38
1. 75
0.78
1. 35
4.89
2.93
1. 31
2. 77
2.03
2. 98
1.98
1.67
1.92
0.82
0.63
7.27
Na
3
3
3
3
1
3
3
:
3
3
3
\
:
3
3
3
2
3
-
3
3
3
3
1
3
3
3
3
3
1
3
3
3
3
3
3
3
3
117
Arithmetic
Mean
0.370
0. 333
0.203
0. 333
0. 326
0.580
0.666
0.606
0.580
0. 793
0.883
1.846
0. 713
1. 046
1. 080
0.750
1.203
6. 395
1.296
0.830
1.233
0.833
0.550
0.386
1. 393
0.710
1.013
4.466
2.063
1.760
1. 656
1.876
1.086
1. 320
1.546
0.510
0. 450
1. 138
Standard
deviation
0. 132
0. 155
0. 015
0. 125
0. 080
0.210
0.260
0.302
0.232
0.234
0.283
1. 417
0.280
0. 295
0. 329
0. 316
0. 416
1.237
0.476
0.298
0.264
0. 155
0. 168
0.090
0. 355
0.062
0. 291
0. 524
0. 794
1. 168
0. 408
0. 955
0. 781
0. 355
0. 324
0. 300
0. 163
1.093
Geometric
Mean
0.351
0.308
0.202
0. 314
0. 319
0.554
0.631
0. 555
0. 544
0.771
0.853
1.492
0.677
1. 015
1.048
0.704
1. 155
6. 334
1.237
0. 789
1.214
0.823
0.534
0.379
1. 362
0.708
0.987
4.445
1.964
1. 392
1. 621
1.735
0. 923
1.287
1.525
0.445
0.431
0.841
Standard
deviation
1.506
1. 755
1.077
1.549
1.298
1.451
1.508
1.678
1.569
1. 336
1. 375
2.260
1.475
1. 367
1. 340
1.549
1.422
1. 214
1.460
1.498
1.234
1.216
1.340
1.278
1.297
1.090
1.310
1.128
1.464
2.547
1.296
1. 597
1. 980
1. 320
1.221
1. 940
1. 429
2. 129
N = number of samples.
87, shows that the central portion of the Study area, including East St. Louis and
the central portion of St. Louis, was not affected by this summertime phenomenon.
The urban area surroundine the central area was affected except for an area to the
east of East St. Louis. Since most outlying stations in Belleville, St. Louis
County, Jefferson County, St. Clair County, and St. Charles County did not show an
appreciable July increase, this phenomenon is apparently associated with some
activity in the major urban areas. The 1,400 percent increase at station 488-672 in
the southeast part of the study area near large swampy areas suggested that anaerobic
99
-------
Table 27. SU'LFATION FOR JUNE, JULY, AUGUST 1963
(mg SO3/100 cm2/day)
Site
coordinates
467-740
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-7Z4
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-809
498-704
499-724
501-713
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
0. 18
0. 13
0.32
0. 13
0. 31
0. 33
0. 30
0. 19
0. 30
0. 47
0. 44
0.49
0. 32
0. 62
0. 30
0. 29
0.71
4. 32
0. 67
0. 42
0. 93
0. 55
0. 35
0. 29
1.02
1.06
0.51
0. 53
3.43
0. 76
1. 09
1. 32
1. 01
0.99
0. 49
0. 55
0. 87
0. 21
0. 21
0. 13
Maximum
0.34
0.28
0. 34
0.25
0. 41
0.51
0. 48
0. 38
0. 41
0.79
4. 10
0.75
0. 55
0. 90
0. 95
0. 47
0. 85
8.86
0. 93
0. 83
0. 99
0. 82
5. 11
1. 03
1. 44
1. 63
1.28
1. 10
4.98
2. 15
1. 18
2. 75
1. 18
2. 92
0. 49
1. 02
1. 35
1. 26
0. 40
8. 86
Na
0
3
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
3
3
3
3
117
Arithmetic
Mean
0.256
0. 190
0. 330
0. 200
0. 360
0. 420
0. 383
0. 303
0. 355
0.656
1. 716
0.626
0.436
0. 780
0. 683
0. 403
0. 780
5. 983
0.786
0. 610
0. 956
0. 680
2. 050
0. 586
1. 233
1.420
0.820
0.723
4. 096
1. 326
1. 136
1. 856
1.113
1. 653
0. 490
0. 810
1. 103
0. 570
0. 300
0. 995
Standard
deviation
0.080
0. 079
0.009
0. 062
0. 050
0. 090
0. 090
0. 100
0. 077
0. 166
2.065
0. 130
0. 115
0. 144
0. 340
0. 098
0. 098
2. 501
0. 132
0.206
0. 030
0. 135
2. 655
0. 391
0.210
0. 313
0. 406
0. 326
0. 797
0. 729
0.045
0. 778
0. 090
1. 097
0. 000
0. 238
0. 240
0. 597
0. 095
1. 241
Geometric
Mean
0.248
0. 179
0. 329
0. 192
0. 357
0.413
0. 376
0. 290
0. 350
0.641
1. 032
0. 617
0. 426
0. 770
0. 610
0. 394
0.776
5. 672
0.779
0. 586
0. 956
0. 671
1. 072
0. 508
1.221
1. 394
0. 759
0.680
4.046
1. 204
1. 136
1. 759
1. 110
1. 447
0. 490
0. 784
1. 085
0. 398
0. 289
Standard
deviation
1. 374
1. 487
1.030
1.414
1. 150
1. 243
1. 265
1. 451
1. 247
1. 315
3. 338
1. 240
1. 312
1.214
1.862
1. 306
1. 135
1. 475
1. 179
1. 405
1. 032
1.221
4. 030
1.907
1. 188
1.269
1. 604
1. 516
1. 209
1. 698
1. 040
]. 480
1 . 086
1. 837
1. 000
i. 375
1. 245
2. 713
1. 380
0.659 1 2.320
aN = number of samples.
decomposition may be the cause. Temperature increases and rainfall decreases during
this season of the year also lend support to hypothesized effects of increases in
anaerobic decomposition. Meteorological data for downtown St. Louis show averages
of 77.9, 79.2, 76.8, and 71.4°F and 2.66, 2.13, 2.39, and 1.47 inches of rainfall,
respectively, for the months of .June, July, August, and September 1963. Lambert
Field data show averages of 75.4, 77.3, 74.9, and 68.5°F, and 3.87, 1.37, 2.55, and
1.13 inches of rainfall, respectively, for the same months.
-------
Table 28. SITUATION FOR SEPTEMBER, OCTOBER,
NOVEMBER 1963 (mgSO3/100 cm2/day)
Site
coordinates
407-770
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-809
498-704
499-724
501-713
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
0. 20
0. 26
0. 10
0. 26
0. 19
0. 42
0. 40
0. 37
0. 37
0. 43
0. 69
0. 62
0.66
0. 45
0. 56
0. 85
0. 47
0. 84
4. 33
0. 99
0. 68
0. 97
0. 58
0. 30
0. 14
1. 43
1. 46
0. 79
0. 47
2. 82
0. 71
0. 97
1. 47
0. 90
Maximum
0. 44
0. 30
0. 39
0. 38
0. 30
0. 61
0. 44
0. 66
0. 65
0. 83
0. 78
1. 10
1.58
0. 92
0. 95
1. 14
0. 91
1. 15
7. 04
1. 70
1. 40
1. 36
0. 86
2. 14
1. 14
1. 89
1.64
1.92
2. 66
3. 33
3. 22
2.64
2. 07
2. 53
0.94 2.88
0.41 1.74
0.70 1.60
0.21 1.74
0.27 1.56
0. 28 0. 98
0. 10 7. 04
i
N3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
121
Arithmetic
Mean
0. 300
0. 280
0. 213
0. 306
0. 250
0. 526
0. 426
0. 493
0. 473
0. 643
0. 726
0. 846
1. 023
0.663
0. 743
0.956
0. 670
0. 973
5. 970
1. 273
0. 996
1. 140
0. 733
1. 073
0. 760
1. 633
1.566
1. 220
1. 660
3. 043
1. 923
1. 580
1. 770
1. 553
1. 730
0. 926
1. 076
0. 900
1. 086
0. 723
1. 127
Standarc
deviation
0. 124
0. 019
0. 155
0. 064
0. 055
0. 097
0. 023
0. 149
0. 153
0. 201
0. 047
0. 241
0. 489
0.237
0. 196
0. 159
0. 222
0. 159
1. 442
0. 376
0. 367
0. 199
0. 141
0. 954
0. 541
0. 234
0. 094
0. 611
1. 107
0. 260
1. 257
0. 921
0. 424
0. 861
1. 018
0. 712
0. 467
0. 775
0. 710
0. 3-85
1. 068
Geometric
Mean
0. 283
0. 279
0. 180
0. 302
0. 245
0. 520
0. 426
0. 478
0. 458
0. 620
0. 725
0.823
0. 953
0.635
0. 726
0. 948
0. 645
0. 964
5. 841
1. 238
0. 953
1. 128
0. 723
0. 794
0. 542
1. 622
1. 564
. 129
. 322
. 036
. 614
. 425
. 744
1. 409
1. 547
0. 765
1. 013
0. 649
0. 844
0.629
0. 821
Standard
deviation
1. 494
1. 074
2. Oil
1. 222
1.263
1. 212
1. 056
1. 342
1. 357
1. 398
1. 066
1. 332
1. 572
1.430
1. 302
]. 173
1. 392'
1. 173
1.299
1. 325
1. 438
1. 187
1. 223
2. 671
3. 237
1. 151
1. 063
1. 597
2. 494
1. 088
2. 147
1. 715
1. 273
1.699
1. 767
2. 100
1. 521
2. 899
2. 687
2. 019
2. 214
number of samples.
The minimum monthly geometric mean for all stations was 0.517 mg SO /100 cm2/
day in June and the maximum was 1.405 mg S03/100 cm2/day in December.
The winter season geometric mean was the highest at 1.332 mg S03/100 cm2/day, and
the summer geometric mean was the lowest at 0.659 mg SCyiOO cm2/day. Figures 88
and 89 are isopleth maps of the annual sulfation geometric means and 99th percentile
values.
101
-------
Table 29. SULFATION FOR DECEMBER 1963,
JANUARY AND FEBRUARY 1964
(mg SO3/100 cm2/day)
Site
coordinates
407-770
421-739
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-709
495-809
498-704
499-724
501-713
505-740
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
0. 65
0. 46
0.28
0. 29
0. 43
0. 42
0.80
0.73
0.70
0. 13
0. 84
0.89
1.47
0.80
1.01
1. 19
0.91
1.42
3.20
1.86
0.98
1. 70
0.95
0. 95
0. 79
1.64
1.66
1.01
2. 26
1. 57
2. 48
3. 18
3. 43
3. 03
3. 73
2. 61
2. 89
1. 24
1. 24
1. 39
1. 10
0. 57
0. 13
Maximum
0. 73
0. 52
0. 59
0. 51
0.63
0. 92
0.93
1.01
1.01
0.86
1. 14
1.70
2. 47
1.46
1.27
1.83
1. 50
1.93
4.85
2.64
2. 11
1.91
1. 77
2.04
1.86
2.59
2.06
1. 51
2.61
2.29
4. 59
3. 93
4. 17
3. 03
3. 77
3.56
3. 15
1.54
1. 78
2. 19
2. 35
1. 06
4.85
N"
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
2
3
2
3
3
3
3
3
122
Arithmetic
Mean
0. 680
0.483
0. 383
0. 376
0.540
0.710
0.863
0.866
0.820
0. 576
1.006
1. 190
1.876
1. 050
1. 150
1.553
1. 136
1.663
3. 950
2.200
1. 413
1.800
1.280
1. 403
1. 270
2. 186
1. 796
1. 290
2.423
1.880
3. 670
3. 620
3. 910
3. 750
2.966
3. 020
1. 356
1. 570
1.826
1. 593
0.846
1.640
Standard
deviation
Y
0. 043
0.032
0. 178
0. 117
0. 101
0.259
0. 065
0. 140
0. 166
0. 391
0. 152
0. 443
0. 525
0. 357
0. 131
0. 328
0. 317
0. 255
0. 835
0. 399
0. 609
0. 105
0. 432
0. 567
0.543
0. 490
0. 228
0. 255
0. 176
0. 370
1. 080
0. 391
0. 416
0. 028
0. 517
0. 183
0. 160
0.289
0.405
0. 665
0.251
1. 044
Geometric
Mean
0.679
0. 482
0. 358
0. 365
0. 533
0.673
0.861
0. 859
0. 809
0. 435
0.998
1. 140
1.830
1. 013
1. 144
1.528
1. 109
1. 650
3. 892
2. 176
1. 334
1. 797
1. 234
1. 332
1. 194
2. 147
1.787
1.272
2.419
1.856
3. 552
3. 605
3.894
3. 749
2. 938
3. 017
1.350
1. 550
1. 795
1. 509
0.819
1. 332
Standard
deviation
1.065
1.067
1. 537
1. 344
1. 216
1. 515
1. 078
1. 176
1. 215
2. 858
1. 169
1. 417
1.308
1. 378
1. 123
1. 250
1. 304
1. 165
1.232
1. 194
1.498
1.060
1. 380
1. 476
1.535
1.270
1. 130
1. 230
1. 074
1.211
1. 377
1. 117
1. 116
1. 007
1. 182
1.062
1. 122
1.215
1.261
1.484
1. 381
1. 970
N = number of samples.
From the 1960 census population density and the isopleth map of the annual
geometric means, it was estimated that 150,000 people lived in areas with a level of
1.5-2.0 mg SO./100 cm /day and approximately 80,000 people lived in areas with
2 16
levels of 2.0 mg SO /100 cm /day or greater. A study by Thomas and Davidson
showed that clean air (60 to 70 miles from any source of sulfur dioxide)had a
102
-------
Table 30. .SULFATION FROM MARCH 1963 THROUGH
FEBRUARY 1964 (mg SO /100 cm2/day)
Site
coordinates
407-770
421-739
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-709
495-809
498-704
499-724
501-713
505-740
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
0. 15
0. 16
0. 10
0. 19
0. 13
0. 31
0. 33
0. 30
0. 19
0. 13
0. 47
0. 44
0. 49
0. 32
0. 56
0. 30
0. 29
0. 71
3. 20
0. 67
0. 42
0. 93
0. 55
0. 30
0. 14
1. 02
1. 04
0. 51
0. 80
0. 47
2. 48
0. 71
0. 97
2. 77
0. 48
0. 90
0. 94
0. 41
0. 55
0. 21
0. 21
0. 21
0. 10
Maximum
0. 73
0. 52
0. 59
0. 51
0.63
0. 92
0. 93
1. 01
1. 01
0. 86
1. 14
4. 10
3.42
1.46
1. 27
1. 83
1. 50
1.93
8. 86
2. 64
2. 11
1.91
1. 77
5. 11
1. 86
2.59
2. 06
1.92
2.61
2.66
4. 98
3.93
4. 17
3. 03
3. 77
3.56
3. 15
1. 98
1. 78
2. 19
2. 35
1. 06
8. 86
Na
12
12
12
12
12
12
10
12
12
11
12
12
12
12
12
12
12
11
11
12
12
12
12
12
12
10
12
12
4
12
12
12
10
2
10
12
11
11
12
12
12
12
477
Arithmetic
Mean
0. 383
0. 338
0.247
0. 336
0. 329
0. 544
0. 556
0. 602
0.550
0. 555
0. 795
1. 1.59
1. 343
0. 715
0.930
1.068
0. 740
1. 189
5. 500
1. 389
0. 962
1.282
0.881
1.269
0. 750
1.654
1. 544
1. 010
2. 017
1. 319
3. 819
2. 233
2. 119
2. 900
2. 189
1. 822
1. 983
1. 008
1. 194
1. 344
0. 940
0. 580
1. 228
Standard
deviation
0.208
0. 119
0. 134
0.082
0. 150
0. 199
0.218
0.240
0. 258
0.246
0. 195
0.984
0.881
0. 320
0. 249
0. 415
0. 350
0.410
1. 725
0.619
0. 458
0. 360
0. 326
1. 354
0. 503
0.487
0.282
0. 422
0. 824
0. 722
0. 834
1. 144
1.337
0. 183
1. 066
0. 858
0. 951
0. 568
0.418
0. 559
0.680
0. 309
1. 137
Geometric
Mean
0. 333
0. 317
0. 220
0. 327
0.299
0. 513
0. 522
0. 559
0. 494
0. 490
0.773
0. 953
1. 125
0. 656
0.898
0. 981
0. 667
1. 127
5. 264
1.269
0. 876
1. 239
0. 838
0.882
0. 594
1. 594
1. 518
0. 937
1.834
1. 133
3. 732
1. 926
1. 784
2.897
1. 904
1.652
1. 770
0. 867
1. 122
1. 178
0. 689
0. 503
0.886
Standard
deviation
1.747
1.467
1. 634
1.287
1.575-
1.422
1.438
1. 501
1.642
1. 784
1. 284
1. 790
1.840
1.538
1. 323
1. 591
1.611
1. 403
1. 362
1. 556
1.566
1. 309
1. 373
2. 309
2. 124
1. 325
1. 217
1. 488
1. 744
1.810
1. 255
1. 824
1. 831
1. 065
1. 842
1. 581
1.661
1. 785
1. 459
1. 877
2. 417
1. 758
2. 245
N = number of samples.
sulfation rate of 0.03 mg SO /100 cm /day. This means that these 230,000 people
lived in areas that had sulfation rates of at least 50 times as high as areas with
clean air.
The frequency distribution of the sulfation rates for all sites, shown in
Figure 90, reveals that sulfation rates of 3.2 mg S0,/100 cm /day or higher occurred
2
1U percent of the time during the winter and 2.6 mg SO /100 cm /day 10 nercent of
103
-------
C V
1 8
>, 1 6
o
"" 1 4
-
,
CO j
E
0 1 2^
g
"« 1 01-
o
in
CT 0 81—
E
z~ 0 6k
g
2 04k
^
1/1 0 2t-
Pi
-
r-
™
1
—
F—
-
'
MAR APR MAY JUNE JULY AUG SEPT OCT NOV DEC JAN FEB SPRING
i QC-I , i |QR4-t Qll
-
-
_
. ,
_
_
-
1
FALL YEAR
MMPR JUIMTTD
Figure 86. Sulfation - geometric means for months,
seasons, and years.
the time during the year. Table 31 presents data from St. Louis and four other
cities. St. Louis and Nashville results are total urban area averages for a year.
London data are for seven central city stations; the yearly means are averaged
arithmetically. The Pennsylvania data are for less than a year, and the Seward
station was influenced by a nearby coal-burning power plant and down-valley winds.
St. Louis metropolitan area sulfation levels are almost five times those of
\'ashville, the only truly comparable city on an area-wide basis. The yearly station
geometric means of 1.59 at site 490-713 and 1.78 at site 501-713 may be compared to
the London value. St. Louis, therefore, has about one-half the sulfation level of
London and almost five times that of Nashville.
For the investigation of the statistical relationship between sulfation rates
and sulfur dioxide levels the data used were primarily from the 1964-1965 winter
network of ten paired sampling stations. The 1963-1964 retwork station data were
found unsuitable for this purpose because the sampling station pairs were not
located at the same places and the data, although showing an apparent relationship
at paired stations, were insufficient to show a relationship between different nairs
of stations. Figure 91 and Table 32 show the data and results for the ten paired
stations. The correlation coefficients (0.67-0.72) between the sulfation rates and
sulfur dioxide levels are all reasonably good and consistent. Plotted data for
individual paired stations also show a consistency in their fluctuations about the
means. It is linear and consistent in slope, site by site, between the 1963-64 and
1964-65 winter seasons. The equivalent sulfur dioxide concentration for 1.0 mg SO /
2
100 cm /day of sulfation using the sulfation versus 24-hour sulf'-r dioxide geometric
104
-------
—I*
ST CHARLES
r~] AREA .IN WHICH INCREASE
STATIONS AT WHICH INCREASE
L EGEHD
BOUNDARIES
STATE
COUNTY
HIGHWAY MARKERS
FEDERAL —U
STATE —O
A STATIONS AT WHICH INCREASE
OCCURRED
390 400000 410 420 430 440 450 460 470 480 490 500000' 510 520 530 540 550 560 570
Figure 87. Geographic distribution of sulfation increases from June to July 1963.
105
-------
Ltefm
tOWOARIES
STATE
man
ISOPLETMS OF 8EWETRIC MEAN VALUES.
-^— LIKES OF ACTUAL EOUAL VALUES
IKES OF PRfllASLE EQUAL VALUES
BASED ON VALUES FROM 41 LOCATIONS DURINC FEB. 20,1963
TO FEB. 10,1964.
ttltWIAY MAKERS
FEDERAL
STATE
390 WO000 410 420 430 440 450 460 470 480 490 500"° 510 520 530 540 550 560
Figure 88. Sulfation - geometric means measured by lead peroxide candles
(mg SO3/100 cm2/day).
106
-------
L EGEHD
BOUNDARIES
STATE
COUNTY
HIGHWAY MARKERS
FEDERAL —O
STATE
ISOPLETHS OF 99 PERCENTILE VALUES
— LINES OF ACTUAL EQUAL VALUE
LINES OF PROBABLE EQUAL VALUE
BASED ON ANNUAL GEOMETRIC MEANS
AND STANDARD DEVIATIONS FOR 41
STATIONS DURING FEBRUARY 20,1963
TO FEBRUARY 10,1964.
390 400" 410 420 430 440 450 460 470 480 490 500"' 510 520 530 540 550 560
580
Figure 89. Sulfation - 99 percentile values measured by lead peroxide candles
(mg SO3/100 cm2/day).
107
-------
SUMMER
'-•• FALL
__ WINTER 1964
i-- YEAR
O.I
001
005 0102 05 I 2 5 10 20 30 40 50 60 70 30 90 95 98 99
% OF SAMPLES < STATED CONCENTRATION
998999 9999
Figure 90. Sulfation frequency distribution, all sites.
Table 31. SULFATION RESULTS FROM ST. LOUIS AND OTHER CITIES
City
Seward, Pa.
New Florence, Pa.
London, England
Nashville
St. Louis
St. Louis
(Site 501-713)
Ref
60
60
61
2
Date
9/26/59
3/15/60
9/26/59
3/15/60
1949-54
1958-59
1963-64
1963-64
Sulfation rates,
mg S03/100 cm2/day
3.7
0.6
3.3
0.190
0.886
1.78
Remarks
Near a coal-burning
power plant; down
valley winds.
7 central city stations.
Geometric mean.
Geometric mean.
Geometric mean.
108
-------
E
Q.
Q.
LJ
Q
X
o
cc
in
0.12
0 I I
0.10
0.09
0.08
0.07
0.05
0.04
0.03
0.02
0.01
0
minium
SULFATION v«. 2-hr S02ARITH MEANS
CORRELATION COEF. -0.72
SULFATION v«. 2-hr SOj GEO MEANS
CORRELATION COEF-0.71
SULFATION vs 24-hr SOg ARITH MEANS
CORRELATION COEF.-0.69
SULFATION vs. 24-hr. SOg GEO MEANS/
CORRELATION COEF.-0.67 /
1.0 2.0 3.0 4.0
SULFATION, mg S03/I00 cm2/day
5.0
6.0
Figure 91. Sulfation versus sulfur dioxide (Dec 1964 - Feb 1965)
at 10 paired stations.
means was 0.013 ppm, as compared to 0.042 ppm sulfur dioxide per 1.0 mg SO./100 cm /
17 '
day found in Nashville. These data indicate that compounds other than sulfur diox-
ide have a. greater influence on the sulfation rates in St. Louis than in Nashville.
SULFUR DIOXIDE (West-Gaeke)
Three separate networks of sulfur dioxide samplers were operated during this
Study. One network consisting of three sites was equipped with 2-hour sequential
samplers. It was operated from May 1963 to July 1964. Results from it are not
reported. A second network of twenty 24-hour samplers was operated from December
1963 to February 1964, and another network consisting of forty 24-hour samplers
plus ten 2-hour sequential samplers was operated from December 1964 to February
1965. Results of the 20-site network operated in the winter of 1963-64 are given
in Table 33 and the results of the 40-site network are listed in Tables 34 and 35.
The ranges of results were 0.00-0.24 ppm for the network of twenty 24-hour
samplers (December 1963 - February 1964), 0.00-0.26 ppm for the network of forty
109
-------
Table 32. DATA'FROM 1964-65 SULFUR DIOXIDE STUDY
Site
coordinates
449-719
468-724
479-738
481 o36
490-713
498-729
499-706
509-710
509-751
527-702
Month
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
SCL mean, ppm
2-hr
Arithmetic
0.032
0.023
0.026
0.083
0.079
0.078
0.058
0.050
0.046
0.033
0.034
0.035
0.071
0.048
0.058
0.066
0.065
0.068
0.134
0.131
0.118
0.065
0.065
0.075
0.035
0.034
0.029
0.025
0.031
0.034
Geometric
0.020
0.011
0.013
0.072
0.064
0.068
0.040
0.029
0.029
0.021
0.020
0.021
0.049
0.035
0.043
0.049
0.044
0.047
0.108
0.106
0.094
0.053
0.049
0.056
0.020
0.018
0.013
0.017
0.018
0.020
24-hr
Arithmetic
0.022
0.020
0.021
0.075
0.065
0.068
0.054
0.048
0.041
0.028
0.027 •
0.028
0.049
0.049
0.049
0.054
0.059
0.057
0.102
0.110
0.103
0.045
0.052
0.059
0.028
0.029
0.021
0.028
0.029
0.030
Geometric
0.017
0.014
0.014
0.072
0.059
0.063
0.042
0.037
0.034
0.020
0.021
0.023
0.045
0.043
0.045
0.048
0.050
0.047
0.090
0.102
0.097
0.037
0.045
0.047
0.019
0.022
0.014
0.021
0.022
0.021
Sulfation,
mg S03/100 cm2/day
1.70
1.57
1.55
2.02
2.55
2.23
1.21
2.62
1.68
2.47
1.98
1.58
2.27
3.00
2.26
2.83
2.69
2.37
5.54
4.24
3.61
3.50
2.99
2.40
2.59
2.92
1.88
2.66
2.48
1.43
24-hour samplers (December 1964 - February 1965), and 0.00-0.86 ppm for the network
of ten 2-hour sequential samplers (December 1964 - February 1965).
The locations of 19 of the 24-hour sampler stations were the same for the
winters of 1963-64 and 1964-65. Comparison of the results from these stations
(Table 36) shows that the sulfur dioxide concentrations were significantly higher
for the winter of 1964-65 than for the winter of 1963-64. The possible reasons for
this are: (1) sulfur dioxide concentrations for St. Louis are beginning an upward
trend; (2) the meteorological conditions were more conducive to high air pollution
during the 1964-65 season than during 1963-64; (3) the 1963-64 samples faded as a
110
-------
Table 33. 19&3-64 SULFUR DIOXIDE 24-HOUR SAMPLES
(ppm)
Site
coordinates
Dec 1963
466-742
471-689
472-707
480-682
481-696
481-726
487-706
490-759
491-692
494-721
498-718
498-729
499-743
502-736
503-723
509-751
513-742
515-690
518-716
533-717
All
Jan 1964
466-742
471-689
472-707
480-682
481-696
481-726
487-706
490-759
491-692
494-721
498-718
498-729
499-743
502-736
503-723
509-751
513 742
515-690
518-716
533-717
All
a
Minimum
0.002
0.004
0.000
0.000
0.000
0.008
0.015
0.000
0.000
0.004
0.021
0.001
0.002
0.002
0.003
0.000
0.000
0.001
0.010
0.002
0.000
0.003
0.005
0.002
0.003
0.003
0.011
0.008
0.001
0.000
0.007
0.002
0.003
0.002
0.002
0.016
0.000
0.000
0.007
0.008
0.005
0.000
Maximum
0.04
0.07
0.11
0.09
0.13
0.17
0.15
0.04
0.07
0.10
0.07
0.14
0.06
0.08
0.07
0.06
0.03
0.09
0.09
0.03
0.17
0.20
0.13
0.06
0.04
0.05
0.17
0.14
0.08
0.04
0.12
0.24
0.14
0.08
0.09
0.14
0.08
0.05
0.08
0.08
0.06
0.24
Na
20
22
22
13
20
20
19
20
21
18
12
19
21
18
17
20
19
17
21
20
379
27
27
27
26
27
27
27
27
28
24
27
26
26
27
26
26
25
23
27
27
527
Arithmetic
Mean
0.017
0.026
0.027
0.024
0.034
0.054
0.065
0.015
0.022
0.039-
0.040
0.043
0.021
0.029
0.033
0.019
0.013
0.028
0.034
0.013
0.029
0.037
0.034
0.023
0.015
0.021
0.069
0.056
0.029
0.006
0.057
0.045
0.055
0.024
0.032
0.044
0.027
0.010
0.031
0.032
0.019
0.033
Standard
deviation
0.015
0.022
0.032
0.027
0.039
0.042
0.038
0.015
0.025
0.027
0.018
0.041
0.018
0.025
0.021
0.019
0.010
0.026
0.022
0.008
0.029
0.043
0.035
0.019
0.011
0.015
0.050
0.037
0.026
0.009
0.037
0.047
0.043
0.020
0.027
0.026
0.027
0.011
0.021
0.021
0.015
0.033
Geometric
Mean
0.010
0.018
0.011
0.012
0.012
0.040
0.054
0.006
0.008
0.028
0.036
0.019
0.014
0.019
0.025
0.008
0.007
0.016
0.028
0.010
0.016
0.020
0.022
0.016
0.012
0.016
0.050
0.044
0.016
0.003
0.043
0.030
0.038
0.015
0.021
0.038
0.014
0.006
0.024
0.026
0.014
0.020
Standard
deviation
3.011
2.523
4.799
4.076
5.318
2.337
1.897
4.559
5.082
2.522
1.562
5.207
2.699
2.847
2.275
4.532
3.408
3.632
1.853
2.157
3.678
3.321
2.470
2.643
2.145
2.145
2.350
2.153
3.613
3.022
2.321
2.519
2.588
3.069
2.791
1.618
3.726
2.955
2.145
1.993
2.033
3.119
N = number of samples.
Ill
-------
Table 33. (Cont'd-) 1963-64 SULFUR DIOXIDE 24-HOUR SAMPLES
(ppm)
Site
coordinates
Feb 1964
466-742
471-689
472-707
480-682
481-696
481-726
487-706
490-759
491-692
494-721
498-718
498-729
499-743
502-736
503-723
509-751
513-742
515-690
518-716
533-717
All
Winter
466-742
471-689
472-707
480-682
481-696
481-726
Minimum
0.001
0.002
0.001
0.001
0.003
0.009
0.003
0.001
0.001
0.008
0.004
0.007
0.002
0.008
0.002
0.001
0.000
0.009
0.003
0.001
0.000
0.001
0.002
0.000
0.000
0.000
0.008
487-706 0.003
490-759
491-692
0.000
0.000
494-721 i 0.004
498-718
498-729
499-743
502-736
503-723
509-751
513-742
515-690
518-716
533-717
All
0.002
0.001
0.002
0.002
0.002
0.000
0.000
0.001
| 0.003
0.001
0.000
Maximum
0.07
0.05
0.04
0.04
0.09
0.10
0.08
0.03
0.03
0.16
0.12
0.10
0.04
0.06
0.05
0.04
0.03
0.05
0.06
0.02
0.16
0.20
0.13
0.11
0.09
0.13
0.17
0.15
0.08
0.07
0.16
0.24
0.14
0.08
0.09
0.14
0.08
0.05
0.09
0.09
0.06
0.24
NS
25
26
24
27
27
25
27
27
27
25
27
25
27
27
27
25
27
26
25
27
523
72
75
73
66
74
72
73
74
76
67
66
70
74
72
70
71
71
66
73
74
1429
Arithmetic
Mean
0.022
0.019
0.011
0.015
0.025
0.045
0.037
0,010
0.008
0.034
0.024
0.037
0.010
0.032
0.029
0.012
0.010
0.028
0.027
0.012
0.022
0.026
0.027
0.021
0.017
0.026
0.056
0.051
0.019
0.011
0.043
0.035
0.045
0.018
0.031
0.035
0.020
0.011
0.029
0.031
0.015
0.028
Standard
deviation
0.021
0.016
0.013
0.010
0.020
0.027
0.017
0.009
0.006
0.031
0.023
0.027
0.008
0.017
0.015
0.014
0.007
0.012
0.017
0.006
0.020
0.031
0.026
0.023
0.015
0.026
0.042
0.033
0.020
0.016
0.033
0.035
0.038
0.017
0.023
0.022
0.022
0.010
0.020
0.020
0.011
0.028
Geometric
Mean
0.013
0.014
0.007
0.012
0.019
0.036
0.032
0.007
0.006
0.026
0.017
0.027
0.008
0.027
0.023
0.006
0.007
0.026
0.021
0.009
0.014
0.014
0.018
0.011
0.012
0.016
0.042
0.041
0.009
0.005
0.032
0.025
0.028
0.012
0.022
0.028
0.009
0.006
0.022
0.025
0.011
0.016
Standard
deviation
3.322
2.490
2.819
2.380
2.161
2.053
1.917
2.790
2.137
2.039
2.180
2.257
1.918
1.833
2.286
3.303
2.574
1.620
2.239
2.283
2.751
3.298
2.518
3.441
2.568
2.957
2.249
2.042
3.737
3.385
2.313
2.324
3.191
2.632
2.451
2.102
.3.855
2.897
2.358
2.038
2.182
3.150
N = number of samples.
112
-------
Table 34. 196"4-65 SULFUR DIOXIDE 24-HOUR SAMPLES
(ppm)
Site
coordinates
Dec 1964
449-719
450-703
453-735
466-742
467-697
468-718
468-724
471-689
472-707
474-756
478-723
479-738
480-682
480-712
481-696
486-718
487-706
488-730
490-713
490-759
491-692
494-721
498-696
498-718
498-729
499-706
499-743
501-713
502-736
503-723
509-700
Minimum
0.004
0.008
0.003
0.006
0.008
0.002
0.034
0.010
0.011
0.008
0.012
0.004
0.006
0.027
0.004
0.026
0.023
0.013
0.018
0.007
0.004
0.014
0.002
0.014
0.020
0.030
0.000
0.005
0.016
0.011
0.003
509-710 0.013
509-720 0.017
509-751 0.003
513-742 0.002
Maximum
0.07
0.05
0.06
0.08
0.12
0.08
0.12
0.19
0.08
0.12
0.08
0.16
0.05
0.10
0.09
0.19
0.12
0.21
0.08
0.09
0.09
0.19
0.13
0.10
0.12
0.25
0.08
0.18
0.17
0.09
0.13
0.11
0.12
0.08
0.07
515-690 0.025 0.11
518-716 : 0,010 0.11
521-733 , 0.005 0.08
527-702 0.005 O.Ob
533-717 ! 0.004 0.07
Na
30
26
24
22
28
16
31
26
26
29
31
27
25
29
29
28
30
29
29
23
30
31
19
31
25
21
31
31
29
29
28
29
24
29
29
29
30
29
24
29
Arithmetic
Mean
0.022
0.025
0.027
0.038
0.038
0.042
0.075
0.053
0.036
0.057
0.036
0.054
0.022
0.065
0.028
0.080
0.064
0.069
0.049
0.031
0.024
0.063
0.042
0.052
0.054
0.102
0.035
0.083
0.055
0.042
0.055
0.045
0.050
0.028
0.024
0.056
0.044
0.030
0.028
0.018
Standard
deviation
0.016
0.011
0.017
0.023
0.028
0.026
0.021
0.044
0.017
0.031
0.015
0.036
0.012
0.023
0.025
0.034
0.029
0.048
0.020
0.028
0.023
0.041
0.038
0.024
0.027
0.052
0.026
0.042
0.033
0.021
0.035
0.028
0.031
0.023
0.017
0.022
0.027
0.022
0.017
0.015
-
Geometric
Mean
0.017
0.023
0.021
0.030
0.029
0.031
0.072
0.040
0.032
0.028
0.033
0.042
0.019
0.060
0.020
0.073
0.058
0.055
0.045
0.022
0.015
0.053
0.026
0.046
0.048
0.090
0.021
0.069
0.048
0.036
0.043
0.037
0.042
0.019
0.018
0.052
0.036
0.023
0.021
0.014
Standard
deviation
2.078
1.626
2.223
2.151
2.095
2.680
1.346
2.119
1.617
2.180
1.560
2.156
1.683
1.465
2.287
1.523
1.585
2.021
1.554
2.334
2.682
1.841
3.249
1.649
1.620
1.654
3.475
2.085
1.705
1.773
2.199
1.858
1.829
2.496
2.247
1.485
1.897
2.120
2.183
2.098
N = number of samples.
113
-------
Table 34. (Cont'd) 1964-65 SULFUR DIOXIDE 24-HOUR SAMPLES
(ppm)
Site
coordinates
Jan 1965
449-719
450-703
453-735
466-742
467-697
468-718
468-724
471-689
472-707
474-756
478-723
479-738
480-682
480-712
481-696
486-718
487-706
488-730
490-713
490-759
491-692
494-721
498-696
498-718
498-729
499-706
499-743
501-713
502-736
503-723
509-700
509-710
509-720
509-751
513-742
515-690
518-716
521-733
527-702
533-717
Minimum
0.002
0.002
0.002
0.003
0.006
0.008
0.023
0.011
0.005
0.003
0.009
0.005
0.006
0.020
0.005
0.023
0.013
0.014
0.012
0.002
0.001
0.016
0'. 003
0.011
0.013
0.041
0.005
0.036
0.006
0.014
0.006
0.008
0.011
0.004
0.012
0.008
0.009
0.004
0.005
0.002
Maximum
0.06
0.05
0.08
0.09
0.08
0.11
0.14
o.n
0.08
0.09
0.10
0.14
0.07
0.13
0.07
0.15
0.18
0.14
0.10
0.06
0.07
0.14
0.11
0.08
0.14
0.22
0.12
0.20
0.15
0.19
0.17
0.11
0.16
0.11
0.14
0.09
0. 10
0.07
0.06
0.05
Na
29
30
29
28
30
29
31
30
30
31
31
31
30
29
31
27
29
30
28
30
30
29
29
31
29
31
30
27
31
28
25
31
28
27
31
30
29
30
31
29
Arithmetic
Mean
0.020
0.019
0.024
0.029
0.037
0.038
0.065
0.041
0.034
0.033
0.041
0.048
0.027
0.062
0.027
0.074
0.066
0.060
0.049
0.029
0.025
0.062
0.039
0.046
0.059
0.110
0.044
0.091
0.057
0.054
0.064
0.052
0.044
0.029
0.039
0.054
0.045
0.037
0.029
0.019
Standard
deviation
0.017
0.013
0.020
0.024
0.022
0.027
0.030
0.023
0.022
0.025
0.021
0.034
0.014
0.028
0.018
0.032
0.036
0.036
0.025
0.018
0.021
0.034
0.030
0.020
0.033
0.042
0.030
0.038
0.029
0.042
0.039
0.026
0.030
0.024
0.029
0.022
0.024
0.020
0.018
0.010
Geometric
Mean
0.014
0.014
0.016
0.021
0.029
0.029
0.059
0.035
0.027
0.023
0.036
0.037
0.023
0.056
0.021
0.066
0.056
0.049
0.043
0.021
0.015
0.053
0.027
0.041
0.050
0.102
0.033
0.084
0.049
0.043
0.052
0.045
0.038
0.022
0.032
0.048
0.037
0.030
0.022
0.016
Standard
deviation
2.573
2.198
2.619
2.436
2.139
2.111
1.565
1.840
2.072
2.507
1.754
2.199
1.744
1.610
2.182
1.655
1.852
1.969
1.739
2.407
2.964
1.799
2.612
1.641
1.832
1.498
2.322
1.532
1.850
1.867
2.095
1.849
1.714
2.160
1.815
1.707
1.972
1.966
2.289
2.110
N = number of samples.
114
-------
Table 34. (Cont'd) 1964-65 SULFUR DIOXIDE 24-HOUR SAMPLES
(ppm)
Site
coordinates
Feb 1965
449-719
450-703
453-735
466-742
467-697
468-718
468-724
471-689
472-707
474-756
478-723
479-738
480-682
480-712
481-696
486-718
487-706
488-730
490-713
490-759
491-692
494-721
498-696
498-718
498-729
499-706
499-743
501-713
502-736
503-723
509-700
509-710
509-720
509-751
513-742
515-690
518-716
521-733
527-702
533-717
Minimum
0.002
0.004
0.004
0.004
0.006
0.007
0.039
0.010
0.009
0.004
0.007
0.010
0.010
0.019
0.006
0.030
0.018
0.019
0.024
0.003
0.003
0.015
0.005
0.012
0.019
0.054
0.006
0.034
0.013
0.004
0.006
0.015
0.010
0.002
0.006
0.011
0.012
0.007
0.006
0.005
Maximum
0.06
0.04
0.04
0.06
0.07
0.08
0.17
0.10
0.07
0.09
0.19
0.09
0.06
0.10
0.10
0.12
0.13
0.16
0.11
0.09
0.06
0.10
0.09
0.26
0.14
0.19
0.16
0.22
0.12
0.23
0.12
0.16
0.09
0.06
0.06
0.09
0.12
0.06
0.09
0.07
Na
24
27
26
25
27
27
27
27
27
27
22
27
27
27
26
27
27
27
27
27
27
27
27
26
27
26
26
27
27
27
27
27
27
26
27
27
27
27
27
27
Arithmetic
Mean
0.021
0.019
0.022
0.027
0.033
0.034
0.068
0.041
0.031
0.029
0.070
0.041
0.029
0.053
0.028
0.075
0.063
0.057
0.049
0.031
0.022
0.052
0.034
0.071
0.057
0.103
0.047
0.083
0.049
0.055
0.051
0.059
0.047
0.021
0.031
0.043
0.049
0.032
0.030
0.023
Standard
deviation
0.017
0.012
0.011
0.020
0.022
0.021
0.028
0.025
0.018
0.024
0.053
0.025
0.012
0.020
0.021
0.026
0.026
0.033
0.022
0.028
0.016
0.027
0.024
0.058
0.037
0.037
0.043
0.046
0.029
0.050
0.033
0.038
0.022
0.017
0.016
0.018
0.031
0.015
0.025
0.019
Geometric
Mean
0.014
0.015
0.018
0 . 020
0.026
0.027
0.063
0.033
0.026
0.021
0.046
0.034
0.026
0.049
0.023
0.071
0.057
0.048
0.045
0.021
0.017
0.045
0.026
0.055
0.047
0.097
0.031
0.074
0.042
0.040
0.040
0.047
0.041
0.014
0.027
0.039
0.040
0.028
0.021
0.017
Standard
deviation
2.602
2.031
1.947
2.293
2.139
1.977
1.416
1.964
1.849
2.269
2.941
1.894
1.584
1.494
1.897
1.437
1.607
1.774
1.552
2.644
2.144
1.715
2.211
2.076
1.835
1.431
2.609
1.642
1.756
2.280
2.153
1.987
1.774
2.613
1.872
1.636
2.018
1.799
2.358
2.188
N = number of samples.
115
-------
Table 34. (Cont'd)- 1964-65 SULFUR DIOXIDE 24-HOUR SAMPLES
(ppm)
Site
coordinates
Minimum
Dec '64 - Feb '65
449-719
450-703
453-735
466-742
467-697
468-718
468-724
471-689
472-707
474-756
478-723
479-738
480-682
480-712
481-696
0.002
0.002
0.002
0.003
0.006
0.002
0.023
0.010
0.005
0.003
0.007
0.004
0.006
0.019
0.004
486-718 i 0.023
487-706
488-730
490-713
490-759
491-692
494-721
498-696
498-718
498-729
499-706
499-743
501-713
502-736
503-723
509-700
509-710
509-720
509-751
513-742
515-690
518-716
521-733
527-702
533-717
Dec. 1964 ALL
Jan. 1965 ALL
Feb. 1965 ALL
Dec. 1964 -
Feb. 1965
0.013
0.013
0.012
0.002
0.001
.0.014
0.002
0.011
0.013
0 . 030,
0.000
0.005
0.006
0.004
0.003
0.008
0.010
0.002
0.002
0.008
0.009
0.004
0.005
0.002
0.000
0.001
0.002
0.000
Maximum
0.07
0.05
0.08
0.09
0.12
0.11
0.17
0.19
0.08
0.12
0.19
0.16
0.07
0.13
0.10
0.19
0.18
0.21
0.11
0.09
0.09
0.19
0.13
0.26
0.14
0.25
0.16
0.22
0.17
0.23
0.17
0.16
0.16
0.11
0.14
0.11
0.12
0.08
0.09
0.07
0.25
0.22
0.26
0.26
Na
83
83
79
75
85
72
89
83
83
87
84
85
82
85
86
Arithmetic
Mean
0.021
0.021
0.024
0.031
0.036
0.037
0.069
0.045
0.034
0.033
0.047
0.048
0.026
0.060
0.028
82 0.076
86 0.064
86 0.062
84 0.049
80 0.030
87 0.023
87 0.059
75
88
81
0.038
0.056
Standard
deviation
0.016
0.013
0.017
0.023
0.024
0.024
0.026
0.032
0.019
0.027
0.034
0.032
Geometric
Mean
0.015
0.017
0.018
0.023
0.028
0.029
0.065
0.036
0.028
0.024
0.037
0.037
0.013 0.023
0.024
0.021
0.031
0.030
0.040
0.022
0.024
0.020
0.035
0.030
0.037
0.057 0.032
78 [0.106 0.043
87
85
87
84
80
87
79
82
87
0.042 0.033
0.086
0.054
0.050
0.057
0.052
0.047
0.026
0.032
86 0.051
86
86
82
85
1095
1179
1064
3338
0.046
0.033
0.029
0.020
.046
.045
.044
.045
0.042
0.030
0.039
0.035
0.031
0.028
0.021
0.022
0.021
0.027
0.019
0.020
0.015
0.033
0.033
0.034
0.033
0.055
0.021
0.070
0.057
0.051
0.044
0.021
0.016
0.050
0.026
0.047
0.048
0.097
0.028
0.075.
0.046
0.040
0.045
0.043
0.040
0.018
0.025
0.046
0.037
0.027
0.022
0.016
0.034
0.034
0.033
0.034
Standard
deviation
2.393
2.011
2.271
2.323
2.110
2.166
1.455
1.961
1.863
2.318
2.024
2.082
1.686
1.531
2.118
1.536
1.675
1.917
1.609
2.439
2.589
1.785
2.594
1.786
1.759
1.517
2.833
1.779
1.767
1.965
2.145
1.896
1.760
2.436
2.043
1.628
1.947
1.969
2.258
2.123
2.299
2.322
2.274
2.299
N = number of samples.
116
-------
Table 35. 1964-65 SULFUR DIOXIDE 2-HOUR SEQUENTIAL SAMPLES
Site
coordinates
Dec 1964
449-719
468-724
479-738
481-696
490-713
498-729
499-706
509-710
509-751
527-702
Jan 1965
449-719
468-724
479-738
481-696
490-713
498-729
499-706
509-710
509-751
527-702
Feb 1965
Minimum
0.000
0.012
0.000
0.000
0.008
0.004
0.007
0.011
0.004
0.003
0.000
0.002
0.003
0.001
0.001
0.000
0.009
a 003
0.001
0.000
I
449-719
468-724
479-738
481-696
490-713
498-729
499-706
509-710
509-751
527-702
a ooo
aoii
a ooo
a 001
a 004
a 006
a ooo
a 009
aooi
a ooo
Dec 64 - Feb '65
449-719
468-724
479-738
481-696
490-713
498-729
499-706
509-710
509-751
527-702
Dec. 1964 All
Jan. 1965 All
Feb. 1965 All
Dec 1964-
1JGV,. ±^"t , , .
Feb. 1965 Xi
a ooo
a 002
a ooo
a ooo
a 001
a ooo
0.000
0.003
0.001
0.000
0. 000
o.ooo
0.000
0.000
Maximum
0.30
0.29
0.28
0.25
0-39
0.28
0.57
0.29
0.31
0.18
0.29
0.34
0-38
0.29
0.26
0.55
0.86
0.34
0.38
0.17
0.15
0.25
0.28
0.24
0.30
0.37
0.61
0 .28
0 .26
0 .22
0 .30
0 .34
0 .38
0 .29
0 .39
0 .55
0 .86
0 .34
0 .38
0 .22
0 .57
0 .86
0 .61
0 .86
Na
356
368
332
336
370
289
312
351
224
297
334
361
342
342
357
303
361
340
257
365
249
308
232
290
316
285
308
295
301
296
939
1037
906
968
1043
877
981
986
782
958
3235
3362
2880
9477
Arithmetic
Mean
0.032
0.083
0.058
0.033
0.071
0.066
0.134
0.065
0.035
0.025
0.023
0.079
0.050
0.034
0.048
0.065
0.131
0.065
0.034
0.031
0.026
0.078
0.046
0.035
0.058
0.068
0.118
0.075
0.029
0.034
0.027
0.080
0.052
0 .034
0.059
0 .066
0 .128
0 .068
0 .032
3 .030
3 .061
D .057
3 .058
3 .059
Standard
deviation
0.034
0 .043
0 -049
0.040
0.069
0 .050
0.091
0.046
0.045
0.025
0.034
0.053
0.054
0.040
0.041
0.064
0.094
0 .049
0 .046
0 .029
0 .030
0 .043
0 .044
0 .041
0 .048
0 .063
0 .084
0 .059
0 .040
0 .033
0 .033
0 .047
0 .050
0 .040
0 .055
0 .060
0 .090
0 .051
0 .044
0 .029
0 .060
0 .062
0 .058
0 .060
Geometric
Mean
0.020
0.072
0.040
0.021
0.049
0.049
0.108
0.053
0.020
0.017
0.011
0.064
0.029
0.020
0.035
0.044
0.106
0.049
0.018
0.018
0.013
0.068
0.029
0.021
0.043
0.047
0.094
0.056
0.013
0.020
0.015
0.068
0.033
0.021
0.042
0 .046
0.103
0 .052
0 .016
0.018
0.039
0 .033
0 .034
0 .035
Standard
deviation
2.615
1.718
2.463
2.503
2.307
2.250
1.947
1.884
2.791
2.386
3.195
1.938
2.923
2.858
2.293
2.475
1.932
2.257
3.107
3.153
3.471
1.712
2.815
2.752
2.200
2.370
2.143
2.162
3.807
2.953
3.127
1.797
2.755
2.701
2.297
2.368
2.008
2.101
3.320
2.856
2.727
3.159
3.186
3.026
N = number of samples.
117
-------
Table 36. COMPARISON OF 1963-64 AND 1964-65
SULFUR DIOXIDE RESULTS
Site
coordinates
1*66-71*2
1*71-689
^72-707
1*80-682
1*81-696
1*87-706
1*90-759
1*91-692
l*9l*-721
1*98,718
1*98-729
^99-7^3
502-736
503-723
509-751
513-7^2
515-690
518-716
533-717
24-hour SO arithmetic means, ppm
Dec 1963 -
Feb 1964
0.026
0.027
0.021
0.017
0.026
0.051
0.019
0.011
0.01*3
0.035
0.01*5
0.018
0.031
0.035
0.020
0.011
0.029
0.031
0.015
Dec 1964 -
Feb 1965
0.031
0.01*5
0.031*
0.026
0.028
0.061*
0.030
0.023
0.059
0.056
0.057
0.01*2
0.05!*
0.050
0.026
0.032
0.051
0.01*6
0.020
Difference (1964-
65 - 1963-64)
+0.005
+0.018
+0.013
+0.009
+0.002
+0.013
+0.011
+0.012
+0.016
+0.021
+0.012
+0.021*
+0.023
+0.015
+0.006
+0.021
+0.022
+0.015
+0.005
result of beini? mailed to Cincinnati for analysis, but the 1964-65 samples, analyzed
in St. Louis, had little, if any, time to fade; and (4) the 1963-64 samples were
prefiltered whereas the 1964-65 samples were not. hxamination of 99th percentile
values for stations operating at the same location during both winter seasons showed
only small differences. This fact increases confidence in the measurement method.
The effect of the prefilters was found to be a reduction of 2 to 4 percent in
measured sulfur dioxide levels. This determination was made by "f test for matched
pairs. The "matched pairs" of samplers providing the data were bubblers operating
in parallel in the same sampler; one with a filter on the inlet and the other
without.
Comparison of the matched nairs of arithmetic monthly means from the ten
stations that had both 2-hour sequential and 24-hour samplers during the 1964-65 net-
work operation indicates that the monthly 2-hour sequential sampler arithmetic means
118
-------
were 15 to 24 percent greater than the monthly 24-hour sampler arithmetic means.
The "t" test for matched pairs was used to calculate the difference at the 95 percent
1 R
confidence level. The Nashville study showed that the 24-hour sampler results were
25 to 35 percent higher than the 2-hour sequential sampler results. In other words,
the relationship between the two sampling periods is reversed in the two studies.
CAMP station sulfur dioxide readings by means of a conductivity method were
correlated with the results of the 2-hour and 24-hour samplers located at the CAMP
station (490-713) during the 1964-65 study. Correlation coefficients of 0.93 and
0.80 were obtained for the 2-hour sampler results versus CAMP results and 24-hour
sampler results versus CAMP results, respectively. By means of least squares, the
following straight line equations were determined for the two correlations:
Y = 0.985 X - 0.0114, where Y = CAMP results and X = 2-hour results,
Y = 0.988 X - 0.00068. where Y = CAMP results and X = 24-hour results.
These equations indicate that the 2-hour and 24-hour sampler results, which
were determined by the West and Gaeke method, were higher than the CAMP results.
Normally the opposite relationship will occur and there is no logical explanation
for this at present.
Figures 92 and 93 are isopleth maps of the 24-hour sampler geometric means
amd 99th percentile values, based on geometric means and standard deviations, for
the 1963-64 sulfur dioxide network. From the isopleth map of the geometric means
and the 1960 census population density, it was determined that approximately 140,000
people lived in areas with concentrations of 0.04 ppm and greater and that approxi-
mately 225,000 people lived in areas with concentrations between 0.03 and 0.04 npm.
Figures 94 and 95 are isopleth maps of the 24-hour sampler geometric means and 99th
percentile values from the 1964-65 sulfur dioxide network operation.
The State of California has adopted an ambient air quality standard of 1.0
19
ppm for 1 hour, or 0.3 ppm for 8 hours. The State of Colorado air quality
o
standard is 0.1 ppm for 24 hours or 0,5 ppm for 1 hour. The State of New York
standards, applicable to regional objectives and subregions, range from 0.1 to 0.15
ppm for 24 hours and 0.25 to 0.40 ppm for 1 hour; The U.S.S.R. and Czechoslovakian
standard is 0.05 ppm for 24 hours.
Figure 96 gives the frequency distributions for sites 481-726, which had the
highest results; 491-692, which had the lowest results; 494-721, an industrial area;
and all 20 sites combined for the 1963-64 network of 24-hour samplers. These
distributions reveal that the Colorado standard of 0.1 ppm for 24 hours was exceeded
15 percent of the time at site 481-726, and 6 percent of the time for all sites
combined. Ten of the 20 sites had one or more results above the Colorado standard,
and all sites had results equal to or greater than the Russian standard of 0.05 ppm
for 24 hours.
119
-------
ISOPLETHS or tfOHcn m* mm.
— LMft tt «ni»l EWM. WlKt
•- LIIH W tttUILE EMM. M.KS
BASED 01 SCASOMl KOKETIIC MEAN W.IICI FM 20 STATIONS
DURHKKC.I.IM3 fl F(t tl, IM4.
390 400°0
-------
L EGEHD
BOUNDARIES
ISOPLETHS OF 99 PERCENTILE VALUES
LINES OF ACTUAL EQUAL VALUE
LINES OF PROBABLE EQUAL VALUE
BASED ON SEASONAL GEOMETRIC MEANS
AND STANDARD DEVIATIONS FOR 20
STATIONS DURING DECEMBER 1,1963
TO FEBRUARY 29,1964.
STATE
COUNTY
HIGHWAY MARKERS
FEDERAL —Q
STATE —O
390 400"' 410 420 430 440 450 460 470 480 490 500"' 510 520 530 540 550 560 570
Figure 93. Twenty-f our -hour sulfur dioxide 99 percentile values (ppm).
and all 40 sites combined for the 1964-65 sulfur dioxide network of 24-hour
samplers. These results indicate that the Colorado standard of 0.1 ppm for 24 hours
121
-------
LEGEHD
BOUNDARIES
STATE
COUNTY
HIGHWAY MARKERS
590 400"' 410 420 430 440 450 460 470 480 490 500«"' 510 520 530 540 550 560 570
Figure 94. Twenty-f our -hour sulfur dioxide geometric means (ppm)
for 40-station network during •winter of 1964-65.
was exceeded 48 percent of the time at site 499-706, almost 1 percent of the time at
site 533-717, and 10 percent of the time for all sites combined. Figure 98 gives
122
-------
— -^ 170
/ST LOUIS CO1
ISOPLETHS OF 99 PERCENTILE VALUES
LINES OF ACTUAL EQUAL VALUE
LINES OF PROBABLE EQUAL VALUE
BOUNDARIES
STATE
COUNTY
HIGHWAY MARKERS
FEDERAL
STATE
40 STATION NETWORK-DECEMBER I,
1964 TO FEBRUARY 28,1965 .
390 40(F 410 420 430 440 450 460 470 480 490 500"" 510 520 530 540 550 560 570
Figure 95. Twenty-four-hour sulfur dioxide 99 percentile values (ppm)
for 40-station network during winter of 1964-65.
123
-------
o.ooa —
oooi
001 0501
2 51 2 5 10 20 30 40 50 60 70 80 90 95 98 99
% OF SAMPLES s STATED CONCENTRATION
99.8 9 99.99
Figure 96. Twenty-f our -hour sulfur dioxide frequency distribution
(Dec 1963 - Feb 1964), geometric means.
the frequency distribution for sites 499-706, 490-713, 449-719, and all ten of the
sites combined for the 1964-65 network of 2-hour sequential samplers. No present
standards or objectives have been based on 2-hour results; therefore, no direct
comparison can be made.
The diurnal variations given in Table 37 and Figure 99 indicate only minor
variations in the sulfur dioxide concentrations during the day for sites 490-713,
449-719, and all ten sites combined. Site 499-706 showed much greater variations
1Z4
-------
e
1.0
08
0.6
04
0.2
O.I
008
006
004
1—I T
t/>
x
o
0 002
01
ooi
0008
0.006
0004
0.002 h
0.001
I I I I I _ 1 L I L_
0.01 005 0205 12 5 10
I I I I J L. .L . 1
20 30 40 50 60 70 80 90 95 96 99
] 1
998999 9999
% OF SAMPLES < STATED CONCENTRATION
Figure 97. Twenty-four -hour samples - sulfur dioxide frequency
distribution (Dec 1964 - Feb 1965).
with the peaks being between 2 to 4 a.m. and 6 to 8 p.m. Normal morning peaks
around 6 to 8 a.m. reflect the increase of human activities in the morning. The
2 to 4 a.m. peak may indicate an industrial influence or a meteorolopic-topotjraphic
influence.
Tne pollution roses for the twenty 24-hour sampler stations used in the
1963-64 network are shown in Figures 100 through 119. The roses indicate the
central metropolitan area as the primary source of the sulfur dioxide. Certain
industrial areas also contribute a significant portion.
125
-------
E
Q.
Q.
g
Q
1.0
08
06
04
0.2
O.I
008
0.06
0.04
0.02
0.01
0.008
O.O06
0004
OOO2
0.001
T~n r
1 I T
i i i i i
_L
I I I I I
_L
J L
001 0.05 02 05 I
2 5 10 20 30 4O 50 6O 70 80 90 95 98 99 998 99.9 99.99
% OF SAMPLES £ STATED CONCENTRATION
Figure 98. Two-hour sequential sulfur dioxide frequency distribution
(Dec 1964 - Feb 1965).
To indicate the importance of directional influence on sulfur dioxide levels
and to provide a guide for design of the air use plan, a directional analysis was
made from sulfur dioxide data collected during the 1963-64 winter season. The
basic data appear on pollution rose computer printouts (not included in this report)
and on pollution roses, which are part of this report. The method used is the same
126
-------
1, I I 1 1 1 1 1 I I I I
0-2 AM 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-2020-22 22-2424-2626-2828-3032-34
TIME OF DAY
Figure 99. Diurnal variations of sulfur dioxide (Dec 1964 -
Feb 1965).
Table 37. DIURNAL VALUES FOR 2-HOUR SULFUR DIOXIDE,
DECEMBER 1964 - FEBRUARY 1965
Daily time
interval,
hr
0-2
2-4
4-6
6-8
8-10
10-12
12-14
14-16
16-18
18-20
2O-22
22-24
449-719
468-724
479-738
431-696
Site
coordinates
490-713 498-729
SO concentration
0.009
0.012
0.013
0.015
0.012
0.011
0.012
0.011
0.016
0.013
0.011
0.008
O.OUl
0.064
0.086
0.098
0.081
0.055
0.060
0.083
0.101
0.080
0.058
0.045
0.032
0.017
0.024
0.032
0.027
0.021
0.024
0.029
0.017
0.019
0.030
0.025
0.031
0.029
0.026
0.017
0.017
0.016
0.018
0.019
0.020
0.018
0.016
0.019
0.038
0.037
0.043
0.043
0.044
0.033
0.037
0.045
0.043
0.058
0.048
0.050
0.049
0.039
0.048
0.057
0.050
0.039
0.033
0.032
0.052
0.038
0.051
0.044
499-706
, ppm
0.097
0.134
0.130
0.116
0.055
0.064
0.047
0.062
0.119
0.142
0.107
0.104
509-710
0.033
0.044
0.054
0.055
0.066
0.065
0.056
0.057
0.058
0.060
0.051
0.040
509-751
0.018
0.017
0.017
0.016
0.016
0.015
0.010
0.014
0.015
0.017
0.015
0.013
527-702 Ml
0.017
0.017
0.019
0.020
0.023
0.025
0.025
0.033
0.018
0.024
0.021
0.020
0.017
0.017
0.019
0.020
0.023
0.025
0.025
0.033
0.018
0.024
0.021
0.020
as that used for suspended particulates (collected by high-volume sampler). The
tentative goal used for method-demonstration purposes is 0.04-ppm 24-hour average
not to be exceeded over 1 percent of the time, 99th percentile value. The back-
ground is considered to be zero. A mar), Figure 120, shows the results of the
analysis.
This directional analysis supports the observations drawn from the pollution
roses and directly confirming that the central part of the study area has considera-
ble effect on sulfur dioxide levels in outlying areas and points to the areas having
127
-------
CAL'M-0050
CALM-0.036
0014
0013
0.014
0017
0013 D
0.014
0.018
0022
0029
0018
0055
0048
0042
Figure 100. Sulfur dioxide pollution
rose - site No. 466-742
72 samples.
0020
0031
0043
Figure 101. Sulfur dioxide pollution
rose - site No. 471-689
75 samples.
WIND
._ FROM
* THIS
DIRECTION
n-ni 01-03^05 > 05
ppm
5 10 15
PERCENT OF SAMPLES
24-hour samples —Dec 1963 Feb 1964
Note Numbers on radials are average arith-
metic concentrations for wind directions
indicated
0010
0016
OOI2L*
'0018
0020
0027
Figure 102. Sulfur dioxide pollution
rose - site No. 472-707
73 samples.
0015
0024
CALM-002 I
0.021
0021
0013
0013
0.015
Figure 103. Sulfur dioxide pollution
rose - site No. 480-682
66 samples.
128
-------
CALM-0.043
CALM-0.096
0022
0.017
0.040
0.046
0.019
0034
0032
0.033
0041
0044
0.019
0.018
Figure 104. Sulfur dioxide pollution
rose - site No. 481-696
74 samples.
0.079
0.077
0071
Figure 105. Sulfur dioxide pollution
rose - site No. 481-726
72 samples.
0
,00-01 01-03 03-05 _LQ5_
ppm
5 10 15
WIND
„. FROM
*" THIS
DIRECTION
PERCENT OF SAMPLES
24-hour samples —Dec. 1963 Feb 1964
Note- Numbers onradials are average arith-
metic concentrations for wind directions
indicated.
CALM-0 065
0038
0040
0052
0.060
0.049
0.010
OOI3D
Figure 106.
0046
0.060
Sulfur dioxide pollution
rose - site No. 487-706
73 samples.
0024
Figure 107.
0034
0.035
Sulfur dioxide pollution
rose - site No. 490-759
74 samples.
129
-------
CALM-0.014
CALM-O.O53
0009
0.015
0.030
0.028
0.029
0.006ff
0.023
0.035
0.034
0.035
0.005
0004
0055
0.077
0004
Figure 108. Sulfur dioxide pollution
rose - site No. 491-692
76 samples.
0.060
Figure 109. Sulfur dioxide pollution
rose - site No. 494-721
67 samples.
0
0-01 OI-.03 03J)5 ^ 051
pprri
5 10 15
WIND
^ FROM
* THIS
DIRECTION
PERCENT OF SAMPLES
24-hour somples — Dec 1963 Feb 1964
Note' Numbers on radials are average arith-
metic concentrations for wind directions
indicated.
0023
0045
0.063
CALM-0.027
0021
0027
0.033
0.027
CALM-O057
0.033
0.042
0.028
0.044
0.038
0032
0.037
Figure 110. Sulfur dioxide pollution
rose - site No. 498-718
66 samples.
Figure 111.
0.054
Sulfur dioxide pollution
rose - site No. 498-729
70 samples.
130
-------
CALW-0.021
CALM-0.042
0012
0011
0011
0013
0.01303
Figure 112.
0.023
0030
Sulfur dioxide pollution
rose - site No. 499-743
74 samples.
0021
0.022
0023
0.026
0.027
0.031
0041
0041
Figure 113. Sulfur dioxide pollution
rose - site No. 502-736
72 samples.
WIND
FROM
THIS
DIRECTION
PERCENT OF SAMPLES
24-hour samples—Dec. 1963 Fe b 1964
Note Numbers on radials are overage arith-
metic concentrations for wind directions
indicated.
0043
0043
CALM-0.023
0.012
OOI&D
0.033
0.037
0.036
Figure 114. Sulfur dioxide pollution
rose - site No. 503-723
70 samples.
0010
0011
0016
0032
Figure 115. Sulfur dioxide pollution
rose - site No. 509-751
71 samples.
131
-------
0.008
CALM-0.038
0013
0011
0012
Figure 116. Sulfur dioxide pollution
rose - site No. 513-742
71 samples.
0.027
0.034
0042
0041
= 0004 0.025
0.030
Figure 117. Sulfur dioxide pollution
rose - site No. 515-690
66 samples.
0
0-01 01-03 03^05 >05|
ppm
5 10 15
WIND
„. FROM
* THIS
DIRECTION
PERCENT OF SAMPLES
24-hour samples —Dec 1963 Fe b 1964
Note Numbers oniradials are average arith-
metic concentrations for wind directions
indicated
0030
0023
CALM-0040
0026
0028
0.041
0017
0013
CALM-0.014
0015
0015
0.021 002ICP
0025
0.026
Figure 118. Sulfur dioxide pollution
rose - site No. 518-716
73 samples.
Figure 119. Sulfur dioxide pollution
rose - site No. 533-717
74 samples.
132
-------
° ST. CLAIR CO.
ST. 78
EGEHD
O SAMPLING STATION
WIND DIRECTION TO STATION
% REDUCTION TO MEET GOAL
450 460 4TO 480 490 500000' 510 520 530 540
Figure 120. Directions of maximum sulfur dioxide influence on stations
and direction-percent reduction needed.
the greatest sulfur dioxide source strength as being in the East St. Louis area and
the area to the southwest of Granite City. In St. Louis, grid square 480-720 appears
to be subjected to equally strong sources on more than one side, possibly from home
heating with coal or sources with tall stacks at some distance.
The results of the correlation of sulfur dioxide concentrations from the
1963-64 network and stability classes are given in Table 38. The minimum concentra-
tions occurred for stability class 4 at 19 of the 20 stations, with the maximum
concentrations equally divided among classes 2, 3, and 5. These results are similar
133
-------
Table :>«: AVERAGE 24-HOUR SULFUR DIOXIDE
CONCENTRATION FOR FIVE ATMOSPHERIC
STABILITY CLASSES
DECEMBER 1963 - FEBRUARY 1964
Site
coordinates
466-742
471-689
472-707
1*80-682
481-696
481-726
487-706
490-759
491-692
494-721
498-718
1*98-729
499-7^3
502-736
503-723
509-751
513-7^2
515-690
518-716
533-717
Atmospheric stability class
1
2 1 3 | 4 | 5,6,7
Average SO- concentration, ppm
._
—
—
—
— -
—
--
~
—
—
~
~
—
~
—
—
—
—
—
--
0.029
0.029
0.030
0.026
0.050
0.070
0.059
0.017
0.020
0.047
0.029
0.050
0.017
0.036
0.036
0.021
0.010
0.032
0.036
0.016
0.029
0.035
0.028
0.021
0.035
0.069
0.059
0.021
0.015
0.0^9
0.033
0.056
0.022
0,036
0.0^0
0.024
0.012
0.033
0.036
0.015
0.02U
0.022
0.016
0.014
0.022
0.047
0.046
0.017
0.011
0.039
0.037
0.038
0.016
0.028
0.034
0.017
0.010
0.028
0.026
0.015
0.030
0.033
0.025
0.021
0.030
0.069
0.058
0.021
0.012
0.050
0.035
0.054
0.021
0.037
0.038
0.024
0.013
0.032
0.038
0.016
1 = extremely unstable.
2 = unstable.
3 = slightly unstable.
4 = neutral.
5,6,7 = slightly stable, stable, and extremely stable.
to those obtained for the AISI sampler; they indicate that high wind speeds rather
than high thermal mixing result in the lower concentrations.
An attempt was made to demonstrate the influence of a "heat island'' effect by
plotting stability classes for station maximum levels on a map. The expected order
if there were no "heat island ' effect would place maximum levels at the upper end of
134
-------
the scale (7) and minimum levels at the lower end (1). A consistent change from the
expected pattern across the air pollution basin would be indicative of "heat island"
effects. The results did not show a consistent pattern, possibly because of the
overriding influences of wind speed and source strength-direction. Although not
included in this report, these results are mentioned to prevent duplication of
effort by others who may use these data.
In addition to the high-volume air samplers, the National Air Sampling
Network has operated sulfur dioxide samplers in some of the larger metropolitan
areas. The results from St. Louis and some other cities for 1963 are given in
Table 18. Of the 14 cities listed, four had arithmetic means above that for St.
Louis, which was equal to that of two other cities. The St. Louis mean was somewhat
below the average for the 14.
The trend of sulfur dioxide concentrations in the St. Louis area since 1936
is given in Table 39. It is easy to see from these figures that the concentrations
in 1963-64 and 1964-65 were considerably lower than in 1936-37. The major portion
of this reduction occurred as a result of:
1. Required use of low volatile coal (lower in sulfur also)
in St. Louis hand-fired units. Ordinance 41804, 1940.
2. Required use of washed stoker fuels. Ordinance 41804,
1940 (washing required if ash content exceeded 12 percent
or sulfur content 2 percent. Washing removes large
percent of pyrites).
3. Change from coal to a fuel of lesser sulfur content
(influenced by 1 and 2 and availability of gas at compe-
titive prices).
HYDROGEN SULFIDE
Hydrogen sulfide data were obtained at sites 505-740 and 510-742 (not a
network site) during September, October, and November 1964. These results are
given in Tables 40 and 41. Odor threshold levels reported for hydrogen sulfide vary
from 10 to 100 parts per billion (ppb). Hydrogen sulfide is very obnoxious to
humans. Under certain meteorological conditions, it causes significant damage to
lead-base paints at a concentration of approximately 100 ppb.
The State of New York ambient air quality objective for hydrogen sulfide is
7 19
100 ppb for 1 hour, which is the same as the California standard. The U.S.S.R.
has established a much lower standard of 5 ppb for 24 hours. The Terre Haute,
Indiana report of June 1964 suggests a goal of 50 ppb for 1 hour.
The highest hydrogen sulfide measurement made during this Study was 62.5 ppb,
a 2-hour average, which could but probably does not exceed the New York or California
135
-------
Table 39. SULFUR DIOXIDE TREND IN ST. LOUIS AREA SINCE 1936
October 12, 1936 -
April 25, 193766
February - March 195067
April 7 - April 14,
195468
NASN, 196269
NASN, 196362
December 1963 -
February 1964
December 1964 -
February 1965
No. of
stations
52
9
1
1
1
20
40
No. of
samples
2319
243
49
23
26
1429
3338
Max- concen-
tration, ppm
2.266
0.51
0.17
0.12
0.10
0.24
0.26
Avg concen-
tration, ppm
0.180
0.041
0.06
0.05
0.02
0.028
0.045
Table 40. HYDROGEN SULFIDE DATA FROM SITE NO. 505-740 (ppb)
Date
Sept
Oct
Max
Mln
No.
' V",
1964
17
18
19
20
21
22
2?
2U
25
26
27
28
29
30
1
Time
0-2
-
2.0
5.0
2.U
2.0
1.8
1.8
l.U
13.2
2.6
l.U
l.U
3-1
0.7
1.2
13.2
0.7
1U
2.9
2-4
-
2.U
U.5
1.8
3.5
3.5
1.8
1.6
1.0
3.1
0.7
1.0
3.1
0.7
2.2
U.5
0.7
1U
2.2
4-6
-
0.9
3.8
1.6
l.U
0.9
2.2
l.U
3-1
2.2
0.7
0.7
1.0
o.u
-
3-8
O.U
13
1.6
6-8
-
l.U
6.1
1.2
2.2
1.0
2.0
2.6
0.7
2.2
O.U
0.7
2.8
0.7
-
6.1
O.U
13
1.8
8-10
1.8
2.2
3-3
1.8
0.9
l.U
l.U
3-1
U.o
2.8
0.0
1.0
2.8
l.U
-
U.o
0.0
lU
2.0
10-12
U.O
2.2
1.6
1.0
1.8
1.0
1.8
2.6
2.6
2.6
0.5
1.0
2.2
0.9
-
U.O
0.5
lU
1.8
12-14
l.U
1.6
1.0
0.9
2.U
1.2
1.2
3-U
2.8
2.6
1.0
1.2
0.7
1.2
-
3-1
0.7
lU
1.6
14-16
1.2
1.8
0.7
0.7
1.8
1.2
l.U
3-3
3.3
l.U
l.U
1.2
1.0
l.U
-
3.3
0.7
1U
1.6
16-18
2.2
1.6
1.2
2.0
2.0
2.2
1.8
2.6
2.2
1.2
1.0
0.7
0.7
1.0
-
2.6
0.7
lU
1.6
18-20
1.8
2.6
2.U
1.2
2.6
U.O
2.2
1.8
2.U
1.2
1.2
1.0
0.7
1.8
-
U.o
0.7
lU
1.6
20-22
0.9
3.8
0.7
0.9
2.6
1.8
1.2
2.0
2.6
l.U
0.7
1.8
1.0
l.U
-
3-8
0.7
lU
1.6
22-24
0.9
U.8
2.8
2.6
3.1
1.2
1.8
2.2
2.U
1.2
1.0
3-3
0.7
2.8
-
U.8
0.7
lU
2.2
136
-------
Table 41. HYDROGEN SULFIDE DATA FROM SITE NO. 510-742 (ppb)
D»t», 1964
Sept. 1
2
3
it
5
6
7
8
9
10
11
12
13
lU
15
16
18
19
20
21
Oct. J
2
•*
k
<;
g
7
8
9
10
11
12
13
11*
15
ID
17
18
6-2
1.2
3.1
2.U
1.0
1.8
36.3
3.1
3-3
2.2
1.8
l.U
1.0
1.0
U.5
3.1
1.8
3-1
23.0
l.U
-
1.2
2.0
0.7
o.u
1 .2
0.7
0.0
O.U
1.2
2.U
2.2
1.0
1.0
-
l.U
fi.6
U.2
' 2-4
1.0
7-7
3-1
l.U
l.U
58.5
13-2
2.U
9.7
1.2
l.U
1.0
l.U
U.o
3.5
2.8
3.5
62.5
O.U
-
l.U
3.3
o.u
0.5
1.6
1.2
] .2
1.2
0.9
3-1
2.6
0.5
0.9
-
].8
5.6
2.2
4-A
0.9
33-5
2.6
1.0
l.U
37.6
U3.0
U.o
3-5
l.U
0.9
1.2
2.2
2.2
-
3-5
U.O
2.8
3-1
-
1.2
5.3
1.0
o.u
0.7
1.2
1.2
0.5
1.0
1.8
2.2
1.0
0.5
-
1.0
5.0
o.U
" 6-4
1.8
10. U
1.0
1.0
2.2
U7.0
3.8
3-5
3-5
2.8
0.9
1.0
1.8
2.6
-
1.8
2.2
3.1
U.O
-
1.6
7.'2
0.5
l.U
0.7
1.6
1.3
0.7
3-1
1.2
2.6
1.0
2.2
-
2.8
U.O
o.u
4-10
l.U
5.0
1.6
o.U
5.0
U7.0
39-3
3-3
2.8
1.8
l.U
l.U
1.8
1.8
-
1.6
l.U
2.2
2.2
-
l.U
5.0
0.7
l.U
0.5
2.6
l.U
0.5
1.0
1.6
3-5
1.8
1.8
-
2.2
6.1
0.2
16-12
2.6
2.6
0.7
I'.O
6.6
5.0
3-5
2.8
3.1
l.U
1.8
0.7
1.6
3.1
-
l.U
0.9
1.8
1.8
1.8
0.7
0.9
1.0
0.0
1.0
2.6
l.U
1.0
0.5
0.7
2.0
1.0
3.8
0.7
2.2
U.5
0.5
Tine
12-14
1.6
1.8
0.5
1.0
7.7
U.5
3-1
1.8
2.8
1.8
l.U
1.6
1.8
2.0
.
1.8
1.8
2.6
U.O
1.8
0.7
O.U
0.0
0.9
1.2
1.6
2.0
1.0
0.0
0.0
1.2
0.0
-
1.2
0.9
l.U
O.U
14-14 '
l.U
2.9
0.9
1.0
10. U
U.O
2.8
1.8
3.8
1.0
1.8
l.U
U.O
2.0
.
U.O
2.2
3-5
17-5
2.U
O.U
l.U
0.0
o.o
1.2
1.2
1.0
0.5
0.0
0.9
0.9
o.u
-
0.2
0.7
2.0
0.7
16-18
0.5
13.6
3.1
1.0
0.9
17.5
9.0
2.8
l.U
1.8
1.0
1.6
1.6
2.8
U.o
_
U.O
5.6
U.o
39.3
U.8
0.7
0.7
0.2
1.0
1.6
0.7
2.2
0.5
1.0
l.U
0.5
0.9
-
0.5
l.U
l.U
0.7
14-36
0.9
20. U
U.5
2.U
1.2
Ul.2
2U.6
3.1
l.U
1.8
1.2
0.9
1.8
5.3
3.1
-
2.2
1.8
U.O
3.1
7.2
1.0
l.U
0.7
1.8
1.0
0.5
1.8
0.5
1.8
l.U
1.0
1.0
-
1.0
l.U
2.0
0-7
26-JJ
1.2
U.8
3-1
3-1
1.2
Ul.2
3.1
3-3
2.0
1.0
1.0
1.2
l.U
6.9
3-1
-
2.6
5.0
2.8
3-1
1.2
O.U
1.0
o.U
0.9
2.6
1.0
1.6
0.7
0.7
1.8
0.9
1.0
-
1.0
6.1
2.6
1.0
22-24
l.U
10.7
2.U
l.U
1.0
30.0
U.O
3.5
2.C
1.8
1.0
1.8
l.U
U.5
2.6
-
U.5
7.2
2.8
-
0.7
l.U
2.U
o.u
1.0
3-1
l.U
O.U
1.8
0.7
1.8
1.0
2.2
-
1.8
8.U
3.1
1.0
137
-------
Table 41. (Cont'd) HYDROGEN SULFIDE DATA FROM SITE NO. 510-742 (ppb)
Date
Oct.
Nov.
Max.
Min.
No.
AvG
, 1964
19
20
21
22
23
Sk
25
26
27
28
2°
30
31
]
2
3
U
s
0-2 2-4 4-6 6-8
0.7 1.0 0.2 l.U
0.2 0.4 0.7 1.0
1.0 1.0 0.7 0.7
0.5 0.2 0.0 1.0
l.U 0.9 1.0 l.U
3-3 3-3 2.8 U.5
1.2 1.2 1.8 1.8
3.1 1.0 l.U 2.2
l.U 0.9 0/9 1.2
2.2 1.0 1.2 2.U
2.6 1.8 l.U 1.2
0.7 1.0 1.0 1.8
1.6 1.2 1.0 1.2
2.2 3.1 3.1 2.U
1.2 1.2 0.7 0.7
2.0 l.U 3.5 8.U
1.2 l.U 1.8 1.8
2.2 0.7
6.3 62.5 U3.0 U7.0
0.0 0.2 0.0 O.U
3 53 51 51
2.9 U.U 3.9 3.2
time
8-10 10-12 12-14
0.7 0.7 0.7
1.0 1.0 0.7
0.7 0.5 0.5
l.U 0.9 0.5
1.2 0.7 1.0
U.8 1.0 0.5
2.2 1.2 0.7
2.2 2.2 2.2
1.2 2.6 1.8
2.2 1.8 0.9
1.2 1.2 1.2
l.U l.U 1.0
1.2 O.U 0.7
1.0 l.U 1.8
1.2 l.U 2.6
3.1 1.0 1.0
2.8 U.O 1.2
-
U?.0 6.6 7.7
0.2 0.0 0.0
51 53 52
3.6 1.7 1-5
14-16 16-18
0.7 0.7
0.9 0.7
1.2 0.5
0.2 0.5
1.0 1.0
0.7 l.U
1.0 0.7
1.8 2.8
l.U 1.0
0.7 0.7
0.7 0.7
1.0 1.0
O.U l.U
l.U l.U
l.U 2.2
0.7 0.7
O.U 0.9
-
17-5 39-3
0.0 0.2
52 53
l.P 2.0
18-20 20-22
0.9 0.5
1.0 1.0
0.5 0.2
1.2 0.5
l.U 2.2
2.U 1.8
1.6 1.2
2.2 2.6
1.2 2.2
0.7 2.6
0.7 O.U
1.8 1.6
2.2 2.2
1.0 0.9
3.1 U.O
i.o 3.1
1.8 3.1
-
Ul.2 Ul.2
0.5 0.2
53 53
3-3 2.6
22-24
O.U
l.U
0.2
0.7
2.8
0.9
2.8
3.1
2.2
2.6
0.7
l.U
2.2
0.7
1.8
2.6
5-0
-
30.0
0.2
52
2.9
standards. It does exceed the Terre Haute suggested goal. On 7 days, concentrations
of 10 ppb or greater were measured at site 510-742. The peak concentrations usually
began in the late afternoon and continued through the night into the next morning.
The wind was from the south-southeast or south during each episode. The highest
average concentrations occurred between 2 and 4 a.m. at site 510-742, and between
midnight and 2 a.m. at site 505-740. The occurrence of typical hydrogen-sulfide-
type paint damage during the measurement period indicates that exposure was probably
greater than measured; either in concentration or duration.
VISIBILITY
A summary of the visibility observations made from the project office (493-
713) is given in Table 42. These results for relative humidity of less than 70
percent show that visibility east across the river into the East St. Louis afea was
equal to or less than 3 miles during 58.7 percent of the observations during the fall,
138
-------
Table 42. VISIBILITY OBSERVATIONS FROM SITE NO. 493-713a
Time
June
Aug. 1963
Sept.
Nov. 1963
Dec. 1963
Feb. 1964
March
May 1964
Year
No.
observa-
tions
64
58
59
48
229
No.
observa-
tions ,
70% R.H.
or less
15
29
44
36
124
East
<1 mile.
No. %b
0 0.0
1 3.5
4 9.1
1 2.8
6 4.8
<2
No
3
6
9
4
22
miles
%c
20.0
20.7
20.5
11.1
17.8
<3
No
6
17
23
8
54
miles
%c
40.0
58.7
52.3
22.2
43.5
Southwest
<1 mile
No. %C
0 0.0
0 0.0
3 6.8
1 2.8
4 3.2
<2 miles
No. %c
0 0.0
0 0.0
5 11.4
2 5.6
7 5.6
<3
No
3
4
13
3
23
miles
%c
20.0
13.8
29.6
8.3
18.6
3 Times of observations same as for turbidity measurements; see Table 43.
R.H. is relative humidity.
C Percent of times when relative humidity was less than 70%.
and 52.3 percent of the time during the winter. The percent of reduced visibility
toward the southwest was very much lower, 13.8 in the fall and 29.6 in the winter.
These measurements provide additional evidence that the Illinois side of the river
had more visibility-reducing pollution than the Missouri side.
Attempts were made to correlate the visibility observations with AISI sampler
measurements, sulfur dioxide, and total oxidant measurements from the CAMP station,
and high-volume air sampler and atmospheric turbidity measurements made with the
Volz Sun Photometer. In each case the correlation was poor to nonexistent. An
attempt was made to correlate the low visibility observations with the sulfur
dioxide and total oxidant measurements from the CAMP station taken 1 and 2 hours
prior to the visibility observations, but such a small number of reduced visibility
observations were available after the CAMP station began operating that no correla-
tion could be found. This correlation might be found if more data were available.
One fact that may have resulted in such low correlations is that no landmarks
for visibility observations were available between 3 and 10 miles to the east, and
none was available beyond 4 miles to the southwest. Also, the observations were
made to the nearest mile instead of the nearest half-mile. Using half-mile increments
up to 10 miles would give a much better basis for a correlation.
ATMOSPHERIC TURBIDITY
In addition to the visibility observations, measurements of atmospheric
turbidity were made with the Volz Sun Photometer at the project office, 493-713.
The results are given in Table 43. Attempts were made to correlate these measure-
139
-------
Table 43. ATMOSPHERIC TURBIDITY OF MEASUREMENTS BY
SUN PHOTOMETER FROM SITE NO. 493-713
Pate
1963
June 5
6
7
11
13
It
17
16
21
2t
25
26
27
2b
July 1
2
3
5
p
9
10
11
12
16
19
2?
2t
25
30
Jan- 13
nary it
1964 15
'0
21
22
?£
?9
Feb- t
ruary n
13
It
71,
25
2(.
27
Zfc
Time,
local
8:20
8:15
8:20
8:15
8:1-:
8:/5
8:?0
8:!C
8:10
8:20
8:10
8:15
8:05
3:05
8:15
8:tC
8:05
8:10
8:15
8:15
8:10
8:15
8:20
8:05
8:10
8:20
8:10
8:15
8:10
11:05
9:50
10:00
9:t5
3=55
O . r-r-
9:55
9:55
9: ',0
9:'*5
o 'tL
/ •,/-
9:32
9=17
9:1'
9:22
9:07
9:06
Turbidity
0.225
0.125
0.180
O.lt6
0.156
0.077
0.116
0.260
0.093
0.088
0.112
0.158
0.160
0.112
0.216
0.270
0.112
0.275
0.130
0.107
0.093
0.125
0.107
0.103
0.216
0.155
0.170
0.21)6
0.118
0.090
0.095
O.o?b
0.065
0.068
0.030
0.230
0.075
0.210
0.235
0.093
0.160
0.090
O.if.5
0.125
0.128
0.065
Date
1963
AUgUSt 2
5
6
8
9
13
111
16
23
26
27
28
Septenfcer 10
12
19
20
9"
2!*
25
27
30
March 6
13
16
17
18
23
2t
26
3C
30
31
31
31
April 1
2
6
6
7
9
10
n
13
it
15
16
17
22
27
30
Time,
local
8:15
8:10
8:05
8:15
8:10
8:05
8:10
8:05
8:10
8:10
8:')0
8:10
9:20
9:05
9:15
9:20
9:25
9:30
9:20
9:28
9:30
9:10
8:50
8:1*7
8:50
8:1*0
8:30
8:30
8:26
6:33
11:25
6:10
ll*O6
16:10
10:20
15:55
12:20
15:70
8:1*5
7:t9
9:00
8:1*0
16:25
8:1*5
9:25
9:0=
9OO
8:05
8:55
8:50
Turbidity
0.105
C.100
0.185
0.210
0.258
0.062
0.100
0.088
0.137
0.110
0.21*6
0.285
0.150
0.092
0.226
0.11*6
0.107
0.11*2
0.105
0.127
0.085
o.its
0.080
0.072
0.112
0.095
0.160
0.270
0.270
c.155
o.2">o
0.080
0.085
0.075
0.360
0.095
0.11*0
0.075
0.165
0.138
0.11*6
0.092
0.065
0.093
0.115
0.170
0.215
0.082
0.093
0.110
Date
1963
October 1
?
3
ii
7
9
10
11
It
15
17
21
?2
21j
26
November 1
12
15
December 2
6
18
23
26
27
30
May 1
t
5
5
it
15
19
?o
21
22
25
Time,
local
9:30
?O5
9:30
9:30
10:00
9:35
9:35
9:tO
9:t5
9: to
9:t^
°:t5
10:10
9:50
9:00
9:10
9:12
9:15
9:tO
9O5
10:20
9:50
9:55
9:55
9:59
15--5J
8:30
8:30
It: 10
9:30
16:00
8:tO
9:t5
16:25
8:50
10:35
Turbidity
0.073
0.108
0.072
0.096
0.113
0.138
O.lt6
0.117
0.170
0.290
0.375
0.160
0.107
0.275
0.070
0.062
0.070
0.125
0.112
0.068
0.120
0.1J8
0.065
0.093
0.170
0.180
0.135
0.230
0.150
0.11*6
0.160
o.it5
0.250
0.230
0.2tO
0.190
ments with visibility, AISI sampler, high-volume air sampler, and sulfur dioxide
measurements from the CAMP station. These correlations were very low.
Since these low correlations may have resulted from an insufficient amount of
data, a more extensive study would be necessary before any final conclusions could be
140
-------
made. If these correlations do exist, it is important, from a program-development
point of view, that they he found because the Sun Photometer is an inexpensive and
easy-to-use instrument. Another possibility would be to devise an air pollution
index similar perhaps to that used by New York City, which includes sulfur dioxide,
AISI, and carbon monoxide values, and correlate it with the Sun Photometer. Atmos-
pheric turbidity is a measure of many pollutants, and trying to correlate with one
to the exclusion of others may not be possible.
TOTAL OXIDANTS - NETWORK
Total oxidants were measured, using the phenolphthalin method, at nine sites
from May through October 1964. The highest value obtained was 0.30 ppm at site
449-719 during October (Table 44). Figure 121, which gives the monthly geometric
means and peaks, shows that the geometric means increased from May to July and then
decreased from July to October. This is as expected since total oxidants are a
result of photochemical reactions that occur to the greatest extent in the warmer
months.
0 30
025 -
GEOMETRIC MEANS (ALL STATIONS)
MAXIMUM VALUE FOR MONTH
MAY
JUNE
JULY
AUG.
SEPT
OCT.
MAY-OCT
Figure 121. Total oxidants - geometric means and maximums for
1964 months and average for months measured.
141
-------
Table 44. TOTAL OXIDANTS, ppm
Site
coordinates
May 1964
449-719
458-755
482-697
485-714
490-713
501-713
507-741
509-710
All
June
449-719
458-755
482-697
485-714
490-713
501-713
507-741
509-710
All
July
449-719
458-755
482-697
485-714
490-713
501-713
507-741
509-710
All
August
449-719
458-755
482-697
485-714
490-713
501-713
507-741
509-710
All
September
449-719
458-755
480-725
482-697
485-714
490-713
501-713
507-741
509-710
All
Minimum
0. 01
0. 00
0. 00
0. 01
0. 01
0.00
0.03
0.00
0.00
0.03
0. 00
0. 01
0.01
0.00
0.01
0.01
0.01
0. 00
0. 02
0.01
0.08
0.03
0. 01
0. 05
0. 01
0. 01
0. 01
0. 01
0. 01
0. 05
0. 02
0. 01
0. 05
0.01
0. 01
0.01
0.01
0.02
0.01
0. 04
0.02
0. 00
0. 05
0. 00
0.00
Maximum
0. 10
0. 11
0. 13
0. 08
0. 07
0. 14
0. 10
0. 12
0. 14
0.26
0. 09
0. 06
0. 15
0. 15
0.07
0.05
0. 07
0.26
0. 17
0. 10
0. 16
0. 15
0. 06
0. 10
0. 07
0. 17
0. 15
0. 08
0. 09
0. 15
0. 19
0. 06
0. 10
0. 11
0. 19
0. 13
0. 10
0.23
0.09
0. 16
0.22
0. 07
0. 05
0.08
0.23
Na
15
35
24
15
44
41
27
41
242
59
66
24
66
65
36
61
32
409
67
67
0
66
66
47
16
48
377
59
63
57
63
58
37
39
37
413
57
63
14
52
63
50
44
10
44
397
Arithmetic
Mean
0. 046
0. 045
0. 037
0. 040
0. 036
0. 073
0. 051
0.056
0. 050
0.088
0. 044
0. 038
0.083
0. 067
0.038
0. 049
0. 035
0. 059
0.087
0. 053
0. 118
0. 091
0. 039
0. 056
0. 036
0. 073
0. 073
0. 037
0. 046
0. 100
0.074
0. 034
0. 056
0. 040
0.060
0. 051
0. 038
0. 072
0. 036
0. 105
0. 063
0. 032
0.050
0.031
0. 053
Standard
leviation
0. 028
0.026
0. 024
0. 018
0. 019
0. 040
0.010
0.033
0.030
0. 048
0. 015
0. 014
0. 030
0. 028
0. 015
0. 005
0. 012
0. 033
0. 031
0. 019
0. 021
0.026
0. 012
0. 017
0.017
0. 036
0. 030
0. 017
0. 020
0. 018
0. 033
0. 014
0. 016
0. 023
0. 032
0. 024
0.018
0. 060
0. 017
0.027
0.038
0. 016
0. 000
0. 018
0. 036
Geometric
Mean
0. 037
0.038
0. 032
0.036
0.030
0. 056
0. 050
0. 044
0. 040
0. 078
0.041
0. 035
0. 076
0. 060
0. 034
0. 048
0. 033
0. 052
0. 081
0. 050
0. 116
0. 087
0.036
0. 054
0. 031
0. 063
0.066
0.032
0. 041
0. 099
0. 067
0. 030
0. 054
0. 034
0. 051
0. 045
0.033
0.056
0.032
0. 100
0. 054
0. 027
0. 050
0. 026
0. 043
Standard
aviation
1.983
1. 877
1.757
1.727
1.885
2. 374
1. 183
2.260
2. 007
1.635
1.487
1.571
1.594
1. 745
1. 596
1. 228
1. 470
1. 715
1.469
1.489
1. 210
1. 383
1.485
1.267
1.710
1. 791
1.638
1. 680
1.619
1.215
1. 596
1. 734
1. 264
1.867
1. 838
1.699
1.687
2.050
1. 652
1.358
1.736
1.772
1. 000
1.805
1.958
aN = number of samples.
142
-------
Table 44. (Cont'd) TOTAL, OXIDANTS, ppm
Site
coordinates
October
449-719
458-755
480-725
482-697
485-714
490-713
501-713
507-741
509-710
All
May-Oct 1964
449-719
458-755
480-725
482-697
485-714
490-713
501-713
507-741
509-710
All
Minimum
0. 00
0. 00
0. 02
0. 01
0. 02
0.00
0.01
0.00
0.00
0. 00
0.00
0.02
0.00
0.01
0.00
0.00
0.01
0.00
0. 00
Maximum
0. 30
0. 09
0.08
0. 08
0. 19
0. 12
0. 10
0. 10
0.30
0. 30
0. 11
0.23
0. 13
0. 19
0.22
0. 14
0. 10
0. 12
0.30
Na
62
66
29
49
60
61
14
0
14
355
319
360
43
206
333
344
219
153
216
2193
Arithmetic
Mean
0.068
0.029
0. 044
0.033
0. 092
0. 040
0.039
0.040
0. 051
0.072
0. 041
0. 053
0.038
0.097
0.063
0.043
0.052
0.039
0.058
Standard
deviation
0.051
0.016
0. 020
0. 015
0. 030
0.026
0. 027
0. 030
0.037
0.040
0.020
0. 039
0.019
0. 030
0.034
0.026
0.011
0.024
0. 035
Geometric
Mean
0. 054
0.025
0.040
0.030
0.087
0.032
0. 030
0. 029
0.040
0.062
0.036
0.045
0. 034
0. 091
0.053
0.035
0.051
0.032
0. 048
Standard
deviation
2. Oil
1.678
1.594
1.550
1.459
2. 024
2. 146
2.258
2.039
1.793
1.704
1. 775
1.640
1. 514
1.935
1.901
1. 232
1.898
1.918
N = number of samples.
Figure 122, which gives the frequency distribution for all the sites, indi-
cates that the smog odor level occurred during 4 percent of the measurement times
and the eye-irritation level occurred during less than 1 percent of the measurement
times. These figures are not alarmingly high, but they do show that St. Louis has
experienced photochemical smog, and that with normal growth the potential is present
for much greater oxidant concentrations in the future.
When the phenolphthalin method is used, the first sign of smog odor occurs at
0.15 ppm; eye irritation, vegetation damage, and visibility reduction are evident at
0.25 ppm. The State of California adopted 0.15 ppm (a value approximately equal
to 0.25 ppm by the phenolphthalin method) for 1 hour by the potassium iodide method
19
as a standard. The State of New York has four ambient air quality objectives for
oxidants: 0.05 ppm for 24 hours for rural and residential areas, 0.10 ppm for 24
hours for commercial and industrial areas, 0.15 ppm for 1 hour for all land-use
areas, and 0.10 ppm for 4 hours for rural and residential areas. The State of
o
Colorado adopted as its standard 0.10 ppm for 1 hour, and uses the potassium iodide
method.
143
-------
I 0
0 8
E 02
< 010
CL
tlJ
O
O
O
i i i—i—r
~i r
iii iii
DOI 0.05 01 0.2 0.5 I
J L
J I L
5 10 20 30 40 50 60 70 80 90 95
% OF SAMPLES < STATED CONCENTRATION
J L
99.8 999 99.99
Figure 122. Total oxidants - frequency distribution, all sites
(May - Oct 1964).
To show the geographical distribution and variation with time of day and
month, data from six stations were used to prepare Table 45 and Figure 123. Since
these six stations are in a reasonably straight line from west to east through the
center of the metropolitan area, results from them show an oxidant profile. The
Mississippi River and grid coordinates are shown for geographic orientation.
May, which is thought to precede the main photochemical smog season, shows
levels of about 0.04 ppm across Clayton and St. Louis City, with an increase to
about 0.06 ppm in East St. Louis. During the rest of the months the levels were
higher in St. Louis and St. Louis County than in East St. Louis. This pattern is
quite different from that found for sulfur dioxide and particulate pollutants.
Variation during the day showed the morning low, with noon and afternoon values
about equal.
Additional discussion of oxidants appears in the CAMP Station Data section
70
of this report and in a report on tobacco plant damage.
AEROALLERGENS
The results of aeroallergen measurements made by the American Academy of
Allergy gravity shelter method are given in Tables 46 and 47 . These data show that
144
-------
STATIONS
0.0
440 450 460 470 480 490
EAST-WEST GRID LOCATION
500
510 515
Figure 123. St. Louis Metropolitan Area east-west oxidant profiles.
the pollen season begins in the early spring with tree pollination and continues
through the summer with grass pollination (May and June primarily) and into the fall
(August and September primarily) with ragweed pollination. The conditions under
which pollen is emitted usually include light winds, clear to partly cloudy skies,
24
and at least moderate convection - all of which contribute to vertical movement
of the air.
145
-------
Pi
D
O
E
Q
H
2
O
O
1— I
h
<
H
to
co
H
Q
K— (
X
o
H
O
H
•sf
4)
fi
rt
H
1
1
i
1
|
n
s
in o o
— oo to w
tM O O •-" fM
OOO
ooo
fM W to O
CM O O to fN
OOO
moo
tM to o >o
tM O O O CM
ooo
-H O O
W iO «-* *O
<-+ o o •-« — •
-H OOO
o ooo
O oo m CN oo
• <-t O O O -«
tM • • • fN
— ooo
o woo
O tN t CN O
O 0 -* —
o ooo
O to O O
.. tN O O — •-«
•-» ooo
O (MOO
o oo oo -i in
• • ^ O O ^H ft
fN > « « CN
>-» ooo
o ooo
o r-t in CN ^H
• • fN 0 O — -«
o ooo
O to O O
O to o in r*
•- tN i-l O — -«
IS) . . . CM
«H OOO
o ooo
o -« w t t
•• fN O O — tO
fN • • . CN
— ' OOO
o ooo
o to r* tN in
•• tN O O — tO
o ooo
o woo
O 00 W to \D CN
-• ^ O O CN fN
—i 000
o in o o
o o oo m «-t >
^ e e E H
Q> CX CX CX 1>
EM cx cx ex «
+j 0 * - - O
~ . ?.s s .
0 .rt a .
< S Z O
vi in
in x — -H
— C n> 3
r- rt *-» O
i y .H j
oo ' CL,
in - w •
Tt *J O 4-»
w ffi tn
oo o o
to CN f-
ooo o
ooo
(N O 0
t CN OO
OOO O
ooo
too
o o o
t 0 O
CN o t m
ooo
ooo
8.8.8. «
cx ex ex w
00 C X
> -H *
< s z o
482-697
Alexian
Brothers
Hospital
00 O O
w t w
°°^ s
ooo
00 OO
W in t
o o •-« o
ooo
So o
fN IO
o o f« —
ooo
woo
ooo
to O O
^-» in o
~H O — O
ooo
So o
t o
o o •-• r*
ooo
r-*. O O
r-* O — •-»
ooo
r-- o o
o oo in o
-H O -H CN
OOO
OOO
w in — w
o o -« •-«
ooo
to o o
fN OO \O
.-tO-* CN
OOO
tO O O
CN oo in
»-» O f« fN
ooo
ooo
•-< oo m
f.0 - JN
ooo
000
W O m CN
O O — (N
ooo
moo
W t t CN
O O i-" CN
ooo
r-*. o O
\O •* m ft
O O — CN
ooo
too
in t oo
ooo
OO O O
tO fN NO
ooo in
ooo
ooo
to r~* m t
ooo --»
ooo
8.8.8. S
o. ex ex w
00 C X
> «-( o»
< s: z o
485-714
St. Louis
Testing
Laboratory
too
So o
O — CM
ooo
woo
t — CM
o o •-• o
ooo
woo
CM o m
OOO \O
ooo
too
r- fM oo
ooo
in o o
r-. t fN
o o CM in
ooo
CM O O
t CM W
OOO t
ooo
O
ooo
in o o
oo r- TT
o o -» r-
ooo
r- o o
-O O -t i-t
O O I-H ^-«
ooo
ooo
oo o-m «-t
ooo
r^. o o
in — o t
0 0 -H ~l
ooo
woo
tO i-» 1-^
ooo
CM O O
^J- ^ t^
ooo in
ooo
t- 0 O
tM •-• m m
OOO i-"
ooo
8.8.8. S
ex ex, cx m
M C X
> -H CO
tn
<=>. g ^
O
m
t in
°. i *
O
£•",/>
°. S "
o
»
3
woo
10 1-1 r-
o o o
in o o
to •-» r^
ooo L
ooo
— oo
fN O t
OOO
ooo
ooo
ooo
ooo
woo
*o — -o
ooo
ooo
•ooo
(N — m
ooo
d o o
ooo
t o o
t t *o
ooo
ooo
-H 0 0
to <-* *o
ooo
ooo
OO O O
t tO \O
ooo
odd
00 O O
to CM r-
ooo
odd
too
»o *-* r-
ooo
odd
m o o
r* o tN
ooo
woo
%o o rt
0 0 —
ooo
m O o
t- 1-1 t
0 0 —
ooo
III
III
in
•f-4
3
IO O !-•
r^ «
i • X
1-4 4-*
0 VI X
in 4-1
4J "-*
in O
at
UJ
n
*
9)
t
t
t
\o
00
w
CN
t
in
No. Observ.
W (A
SB ~
S Si 0
o
to
— w
o z w
d s
woo
tO O OO
ooo
moo
IO -H a
< z z
0 •§ 4J
— -H as o
r- 05 4-> -H
W 4-1 CO 4-1
O V) O W
i/> « X -it
tu a
fN O O
ui rN oo
ooo
ooo
m o o
t CM 00
ooo
ooo
r^ o o
to fM F""1
ooo
d o o
too
w in oo
ooo
ooo
& oo to in
§0 0 fN
ooo
ooo
to CN m
ooo
ooo
o
z
CM ac
CM
t
f-4
**» w
c
-1
o
z
ooo
in in in
ooo
ooo
ooo
in in m
ooo
ooo
ooo
m in in
ooo
ooo
r-. o o
m in o
00-
odd
00 O O
in in o
O O ft
ooo
too
in in o
o o •-•
odd
ooo
m in in m
ooo
ooo
W 0 o
w in in o
O o z o o ,-H
z s=;=;d
ooo
in in in
in ooo
ooo
a
z
o
z
ooo
i-t m in in
CN OOO
d o d
ooo
o c/) m m in
CN z; o o o
o . , .
ooo
ooo
o m in m
fM OOO
ooo
CTi
00
o
£ E e E £
v cx ex ex «j
M cx ex cx tfi
^ S
> -H d
o < s: z o
z z
480-725
Homer Phillips
Hospital
ooo
m m o
o o ~^
odd
ooo
en m m m
g °. °. °.
ooo
CO O O
t >o m
o o c
odd
8.8,8.
ex cx cx
3£l
507-740
Granite City
Fire Station
146
-------
Table 46. POLLEN AND MOLD COUNTS FOR 1963 AT SITE COORDINATES 481-718
BY AMERICAN ACADEMY OF ALLERGY GRAVITY POLLEN SAMPLER3-
Monthb
March
Min
Max
Avg
April
Min
Max
Avg
May
Min
Max
Avg
June
Min
Max
Avg
July
Min
Max
Avg
August
Min
Max
Avg
September
Min
Max
Avg
El«
Hackberry
Poplar
Cottonwood
28
1*0
13M
0
16
1.7
0
2
0.2
0
0
0
0
0
0
0
0
0
0
0
0
0
216
30.5
0
W
7-5
p
2
0.0
0
0
0
0
0
0
0
0
0
0
0
0
Maple
Oak
0
aS
*.9
0
7
o.k
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8e
17.5
6
1300
25U.3
0
36
6.2
0
0
0
0
0
0
0
0
0
0
0
0
Sycamore
Hickory
Walnut
Grass
Plantain
Goosefoot
Ragweed
Molds
Count, grains/yd
0
36
U.2
a
uoo
92.1
0
8
0.3
0
0
0
0
0
0
0
0
0
0
0
0
0
16
2.5
0
112
13.*
0
62
12.3
0
6
0.3
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0.2
0
lit
5.0
0
16
7.6
0
8
2.8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
1.2
0
6
1.9
0
2U
1.6
0
0
0
0
0
0
0
0
0
0
1
0.0
0
0
0
0
h
0.7
0
152
21.9
0
88
31.U
0
0
0
0
0
0
0
2
0.2
0
U
0.2
0
8
1.0
0
U02
86.U
12
36U
112.7
0
Vo
9-5
0
72
15.1
0
87
23.2
0
153
50.1
0
230
52.9
0
276
57.6
U
320
75-5
Data supplied by Dr. French 1C. Hansel, Allergist.
Readings were taken every day except Sundays and holidays
These figures divided by 3.6 would be comparable to grains per square centimeter values reported by the American
Acadeav of Allergy gravity pollen sampler.
The large differences between the minimum and maximum values for each month
are due to the sampling method as well as changes in wind speed, direction, and
atmospheric turbulence and differences in release of pollen. Although pollen counts
have not been precisely correlated with human reaction, it is known that human
response to allergens varies considerably, both in respect to allergen types ar
-------
Table 47. POLLEN AND MOLD COUNTS FOR 1964 AT SITE NO. 481-718 BY
AMERICAN ACADEMY OF ALLERGY GRAVITY POLLEN SAMPLERa
Month11
March
Mm
Max
Avg
April
Mm
Max
Avg
May
Mm
Max
Avg
June
Mm
Max
Avg
July
Min
Max
Avg
August
Min
Max
Avg
September
Mm
Max
Avg
blm
Hackberry
Popl ar
Cottonwood
Maple
Oak
Sycamore
Hickory
Walnut
Grass
Plantain
Goosefoot
Ragweed
Molds
Count? Brain/yd
6
112
40.4
0
70
12.8
0
10
0.9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
48
10.0
0
20
1.4
0
0
0
0
0
0
0
0
0
0
0
0
2
4
1.1
0
12
2.1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
830
117.2
0
390
78.2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
850
78.6
0
54
9.4
0
36
4.4
0
0
0
0
0
0
0
0
0
0
0
0
0
18
3.3
0
150
39.3
0
4
0.2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
18
4.6
0
32
4.3
0
6
0.8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12
2.8
0
8
1.3
0
0
0
0
0
0
0
0
0
0
iO
''0
1
0
0
0
I
0
6
0.5
0
5
0.9
0
34
11.2
2
56
30.7
0
0
0
0
0
0
0
0
0
0
2
0.2
0
6
0.8
0
230
47.8
0
374
144.3
0
10
3.0
0
0
0
0
0
0
0
164
30.6
6
109
28.8
0
98
33.3
6
202
71.8
Data supplied by Dr. French K. Hansel, Allergist.
Readings were taken every day except Sundays and holidays.
c These figures divided by 3.6 would be comparable to pollen grains per square centimeter of slide area values
using the same sampler.
December 1964 and 1964 yearly means for all cities except St. Louis. Sampling was
done during 10 months only in St. Louis. CAMP station data not available at the
time this report was prepared may be obtained from the Public Health Service to
assist with further interpretation of these data.
T!;e frequency distributions of the St. Louis 5-minute-sample data from March
1964 to February 1965 are presented in Figures 124 and 125. The median sulfur
dioxide concentration was 0.04 ppm with 17 percent of the measurements above 0.10
ppm. Oxidant levels (potassium iodide method) exceeded 0.10 ppm slightly over 1
percent of the time. The seasonal and yearly diurnal variations are presented in
Table 49. Figure 126 shows the yearly diurnal variations of the CAMP station
measurements. The curves for carbon monoxide, nitrogen oxide, and hydrocarbons show
peaks between 6 and 8 a.m. and 4 and 6 p.m., times when traffic is heaviest. The
sulfur dioxide curve shows peaks at 8 to 9 a.m. and 8 to 10 p.m. The oxidant curve
peaks around 1 to 2 p.m. when the sunlight is the most intense.
Figure 127 dramatically illustrates the influence of meteorological conditions
on pollution levels. The Public Health Service Air Pollution Potential Forecast
program issued an air pollution alert for October 15 and 16, 1964, for a large
148
-------
w
I—I
H
<
u
w
o w
rt u
h W
< O
P D
u
oj
"
(tf
H
a
o
•H
•P
a!
>ncentr
0
to
•p
9
«H
O
o
>carbon
|
9)
«
^
•H
•H
TJ
a
-
*
•H
X
o
-d
c
1
1
fi
•H
O
o
•H
r.
•r1
trbon monoxide
0
Is
to
"*
e
UN
•H X
UN
•*
C
"d !*
? jij
UN
M)
"*
Sx
? a
i a
UN
U)
If
UN
HO
.c
i
>J
r— ON t~- if\-& ON trNO u^ O U~N -d[ trCfi *™i QO ^O VD PO PO PO oj ^t O irv-^" co O ITS ro ON ,3- LTN
ooooooooooo ooooooooooo ooooooooooo
l£\VJ3 vjj U"\^f CVJ OJ rH CO i-H CM CO COV^ ^ Jj ^ fO OJ PO OJ OJ ^( iO-^t -at ^""^ CVI »H C\J C\J
O O O O C) O 1 I O O O O O f^ f^ O c) ^) ^5 O O O O O O O O O O O O O O
OOOOOO OOO OOOOOOOOOOO OOOOOOOOOOO
CO O f-\ CVJ \o O OJ »-H ON O CVJ -d" OACO CO CO O> ON CO -3" O O CO -d1 CO VO ON t— ir\ rH CO t^-
rorO_4-j- i_j- i OJrnroro oornpooonoooro-d'^cnro c\JC\jC\JOJOJC\JC\jrnCVJC\JOJ
i—\ OJ rH h— ^" ITS ^- PO tf> ^t OJ rH ^~ ^ OJ rH rH \D rH CO ^— CO OJ PO OJ ON b~ LTN CO -^ LP* O
PO OJ CO CO OJ O O OJ PO O \D -^ VO CO VO VJ3 CO t~— VO CO CO CO t*1" VO t~- VO VO ITN LTN-^1 VO 1 O
rHr^OOrHHrHHrHrHH OOOOOOOOOOO OOOOOOOOO H
groo\vrtrH\o voot— co POPOOJOJ POJ- ,=t-ir\vevoj-ONOON t— rorn co
tHOOrHOliHOjOJi-H OOOOOOOOOOO OrHOl lOlOOlO
OOOOOO OOOO OOOOOOOOOOO OOO O OO O
OJ ON t~~ ON ON ON rH ON rH CO ON VQ V£) ^ O \JD LTN LTN O O h— O PO OJ ON ir\ ON\O t1^ LAVO OJ t—
rHOrHi-HrHt— rHPOi-HOt— OOrHOJrHOJOjOJPOOPO HHOJi-HHrHPOOjOrHPO
OOOOOOOOOOO OOOOOOOOOOO OOOOOOOOOOO
j-^^t—t^LA vD-d-mir\ OJOJPOro^j'J-i/N^POPO -i-=ty"N-^-4f-^t-^ f^-^t
O OOOOO lOOOO OOOOOOOOOOO OOOOOOO i i O O
OOOOOO OOOO OOOOOOOOOOO OOOOOOO OO
OJ,— irHVDCOOPOt1— OCOt— OPOHOJOJOJCOb-COJ-CO POONCOrHVOHVOONt^POirN
OOfOpOPnOJjrtLfNONCO-d'ON CMPOOJOJOJOOPO-d-VOlTNVO lAOJVOPOrHPO^-LrNCOVOrn
OOOOOOOOOOO OOOOOOOOOOO OOOOOOOOOOrH
O CO \D t*- ^JD CO NO -d" PO O OJ OJ CM OJ PO PO PO t— O LTN-^ J" PO PO CM OJ CM PO C^- QNSP -=t
HOOOOOlrHHrHrH OOOOOOOOHOO OOOOOOOOOOO
OOOOOO OOOO OOOOOOOOOOO OOOOOOOOOOO
\J3O-d-COOCOON-3-rOON-3' POOO^J-rHU>CvJ\pir\ONON rHONON-^lTNCO-^-i-H PO\O VO
PO^J-J-OOvOirN-J-VOirv-^NO 1 rHCMCMOJrHOJCMOjJ-^f C\JPOOJrHrHrHOJ,cJ--4--=f_=J-
O H PO OJ t*- u^ OJ^-HOJ VOONrH rO_=ft/\_d-VD iTNON[^ tTN-^-i/NVOCOPOOr—
eC rt rt
-------
w
hH
H
hH
U
<,
U
o
u
-
fl
o
U
00
0)
rt
H
a
P.
.
c
o
c
0)
o
o
to
+>
1
*o
1H
X
o
rH
0)
£
§
p
c3
"
o
t
s
rH
0)
"8
E-i
tJ
•H
X
o
1-1
h
<2
rH
t/>
0)
•a
iH
X
o
T-t
•d
C
o
(H
•H
z=
I
X
o
o
TH
•H
3
X
o
c
i
1
o
c
?g
i £
M>
^
c
1 2
1s
U)
"*•
iH >*
s s
l/N
CO
^
c
in ^
U)
5
f i
i S
to
5
B ^
Ji
CO
X!
+>
i
£
•H
O
ooooooooooo ooooooooooo ooooooooooo
roroinirsrocornmcn en CMOJ (MHOjtMoornCM Ojmin m^ ^ OJ ro ro c\J ro
OOOOOOOOO IO OO I lOOOOOOO OOOOOOOOOOO
OOOOOOOOO O OO OOOOOOO OOOOOOOOOOO
VO t- CVJ OO CO CVJ r-l l/NVO CM t- m CM OO 'ONOO ON'O CM t— CM \£> H ONOO ON CM CM O OO CM p
ro CM ro ro ro ro ro ro_d- roco^-rorocvjcxicucocoi ico I-^COCOCM co jf ^ co ro m
O*\ tfN^^ O^ ^~ P O t^~ COOO CO CO^J *JJ ^t b~* rH Vp ON t" m^p ^J3 ^J l/NCO rH ^^ i-" t CT\VO t"**^
tMcNJCMCMrHCAlCVJoOt— CO[^- rHOOOOi-HC\lrHrHHC\i O CTSVO mOCJ\Oc5\rHO\H
OOOOOOOOOOO OOOOOOOOOOO HOOOHOOOHOH
-*_=J--3«:cOOKQ>~' S-1 S-i
SCO
g 45
"6 ra g
I 3 rH
•H S
1 le 55
Q
c
o
E
I
<*-!
CO
•a
•a
v
in
a)
a>
n
x
3
O
t/5
a
150
-------
I 0
08
0.6
04
E 02
2
O
£ Oi
t-
5 008
006
004 —
002 —
001
T~l I I I I T
~iiiiiiiiiir
TT
SULFUR DIOXIDE
NITRIC OXIDE
I I
I I
001 005 02 05 l 2 3 10 20 30 40 50 60 70 80 90 95 98 99 998 999 9999
% OF SAMPLES^ STATED CONCENTRATION
Figure 124. CAMP station frequency distribution (March 1964 - Feb 1965).
1000
800
600
TT~I—T
n—i—r
"i — i
i — i — r
n—r
. 200 |—
o: 100
LiJ 80
O
O 60
O
40
10
CARBON MONOXIDE
HYDROCARBONS —
I I I I I
I I I I I I
J I
J I
001 005 02 05 I
5 10 20 30 40 5O 60 70 80 90 95
% OF SAMPLES < STATED CONCENTRATION
98 99 998 999 9999
Figure 125. CAMP station frequency distribution (March - Feb 1965).
151
-------
0.10
E
0.08
1
g 0.06
Q
Z
o
Z 0.04
CM
O
O 0.02
to
0.00
i i r
i r
/v X"
\-
I
I
I
I
I
I
I
I
I
10.0
8.0
E
a.
Q.
co
60
O
o
4.0
a
z
^o
o
00 02
AM
04 06 08 10
16 18 20 22
12 14
PM
TIME OF DAY
Figure 126. CAMP station diurnal variations (March -
Feb 1965).
midwest area that included St. Louis. Hourlv pollutant concentrations at the
St. Louis CAMP station for the period October 13 through 18, 1964, are presented in
Figure 127. The peak concentrations for carbon monoxide, hydrocarbons, nitrogen
oxide, and nitrogen dioxide obtained on October 16 were the yearly maximum concen-
trations for these pollutants. Significantly, the concentrations reached their
peaks during the early morning hours (7 to 9 a.m.) and then decreased as the sun
warmed the earth and created turbulence in the atmosphere. Another important point
is the manner in which the nitrogen dioxide peak lagged the nitric oxide, carbon
monoxide, and hydrocarbon peaks by about 2 hours.
One of the most unusual peaks recorded at the St. Louis CAMP station was 0.85
ppm for total oxidants on July 1, 1964, at 8:40 p.m. This was the highest total
oxidant reading ever recorded by any CAMP station to that time. The sulfur dioxide
instrument also showed a sharp increase during this period, but the other instrument
readings remained constant. The pollutant causing the increase could not, based on
present knowledge, have been photochemical smog since the rise was detected long
after the major flow of traffic had subsided and the sun had set. The wind readings
from 7 to 9 p.m. that evening at the KMOX tower fluctuated from the south to south-
east. The wind speeds were very low.
Another similar incident occurred on September 14, 1964, at 7 p.m. when a
total oxidant value of 0.50 ppm was recorded. The sulfur dioxide instrument also
showed a slight increase at that time but the other instrument readings remained
constant. Again, the wind at the KMOX-TV tower was from the south to southeast at
152
-------
E °'3
a.
" °"2
-------
Q
W
W
CO
H
K fi
O ft
CO
^
o
<; y
u H
o <
<;
o
O D
< CO
> H
j <:
p
n)
H
I
1
s
=
£
""" 1
Season,
to O r- to to
o to to r>- to
1*- O O to O
^} » ifi 'tr -o
•O « 10 Oi -0
*O to O to 00
oo oo i-» oo oo
to r-. o r«- -w
cn o eo o»
^ * W U. * >•
O Is- ro to >O
to rsj v TI- to
xn r- o to ,0
to r-i ^ ^ to
O O O 0 O
0 O 0 0 O
in to to to in
o o o o o
SO o r-- in
o o •* i-.
o o — o o
o o o o o
in 10 r-- K> ^
vp O -O rv iv%
3 o o o o
o o r- M m
M M K> r» to t/>
00000
o o o o o
o o o o o
o o o o o
O "> «*» K* O
o o o o o
CM ^ CM r-l (N
o o o o o
o o o o o
o o o o o
o o o o o
Nitrogen
oxide
>i-K
^ 1 *•* c •*
a. 9 « ** »
to « u. x >-
in r-- to o to
^ IO tO (N| Kl
o o o o o
in r-. t~- o ^>
v to to Q
o o o o o
o o o o o
1/1 r-. r«. to m
^ to to fNi ro
O O 0 O O
o o d d d
in to i*- r- in
^ ?O to (\i to
0 0 O O 0
O O O O O
O 1O Kl O •*
«» »o »o »o to
O 0 O O 0
O O O O O
^ to to to to
O O 0 O 0
O O O O O
O O O O O
0 0 O O 0
o in r- o
i o o a o
0030
o o o o o
0 O O O 0
m o o f) -,
tO tO tO f\| <\|
0 0 0 O 0
O O 0 O O
(^ tO Kl to _*
o o o o o
O O O O 0
O 0 0 O 0
O 0 0 O 0
in r-> o f*. ^
•W tO V -H PO
0 0 O O O
o o o o o
in >o r- r* m
•» ^ ro .-* to
o o o o o
0 O O O O
m o o r-. r^
•v •« 10 •» 10
O O 0 O O
O O 0 O O
O t>- I1-- to oo
o o o o o
o o o o o
M tO CM t-t S
O 0 O O O
o o o o o
in r^ r^ o •«
o o o o o
o o o o o
o o o o o
o o o o o
m O r^ o r-
o o o o o
o o o o o
o o o o o
•V (0 to tN tO
o o o o o
o o o o o
Nitrogen
dioxide
M t-i h
5|-Sh
M I -« B *
#5 £ S 5
0 O O O 0
O >*» i*i O ^p
r- 1/1 r^ 10 10
00000
0 O O 0 O
o •*> K> r-. M
o o o o o
o o o o o
K> r«- r^. o CM
>o -^ *o r*- ^
o o o o o
o d o d d
o o o o o
00000
r^ O i">- o oo
to M »O *O -«t
O 0 O O O
0 0 O 0 O
KI r-- o o m
o o o o o
0 O O O 0
0 0 O 0 0
0 O O 0 O
0 0 f> 0 «
o o o o o
0 O O O O
r^ r-. o o r-o
•« f* vo •« m
o o o o o
O O O O O
r- O r- n •«
o o o o o
0 O O O O
r- o o h- >O
•v ^ r-- -o m
0 O O O O
0 O O O 0
M O Kl ^ O
^ •«• QO r- >o
0 O O O O
o o o o o
o o « o o
o o o o o
i*1 O O fO CTl
QO m r-. t^ r-
0 0 -i O O
0 0 0 O O
K) o (o KJ m
O> *} •-« t^ 00
0 0 -H 0 0
o o o o o
§r- KI r-. ^
»o o r~- 00
0 0 -H 0 0
o o o o o
^ H» o r- o
oe in 91 in t^
00000
o o o o o
r~ r-. 10 KI !••>
t^ M r* so >o
O 0 0 O O
O O O O O
t*- O O O Ol
r- *» r^ \o •£
00000
0 O O O O
S3SS8
0 O O O O
O O K) O 00
O C> O 0 0
§•4- OO t/) ^O
o o o o
O 0 O O O
o o o o o
o o o o o
Sulfur
dioxide
M M
|-S h
. 1 -i c «
i 9 * -M «
W5 U. X >-
fl ^1 K> tO Kl
O *) K» O O»
0 ^ M O 01
f) r-j to KI r^'
O O M O OO
fi rsi M 10 rs
O O ro O OO
o o r-- o o
to r^ K) ^ K)
o r-- c- o i*>
f» rs» KI ^ PO
O r- ro O O
ro rvt PO rt K>
o r- o o en
to (s* to KI r-i
in rn o o tf»
tO IN 10 tO f-J
""""""
O r-- r- o rt
n r4 ^ •«• to
m r- o o ui
Kl (N •* •«• 10
o o to o to
-» M -W -V lO
o r^ 10 o o*
•* M ^ M fO
m i-» r^. o M
m o o o co
Kl fv| Kl fO f*
o to o o oo
K) r^ (O ro f*J
(N (N tO M (N
m to to o «
o M
M rO M M to
o o o o o
O O O 0 O
Rr- o i-» 01
(M to r*i fM
o o o o o
o o o o o
o o >o r-- to
10 (N (M -H IM
o o o o o
O O O O O
8 2 S ^ °
O O 0 O O
t-- h- P^ o o
r>i ^H ^4 N rs|
o o o o o
O 0 O O O
o o o o o
0 O O 0 O
o o o o o
1 1 1 1 1
(N
154
-------
station data were used, since the CAMP station was the only place where hydrocarbons
were measured and where sufficient oxidant and other data were gathered to allow
comparison. The attempt failed, but the following- valuable observations were made.
During July and August 1964, on days with little cloud cover, no rain, and
oxidant levels of 0.05 ppm or higher, hydrocarbons measured at 8 a.m. were compared
with the maximum oxidant level measured between 10 a.m. and 4 p.m. (Figure 128)-
The maximum nitrogen dioxide values between 7 and 11 a.m. were also compared to these
maximum oxidant levels (Figure 129). Data .were 1-hour average concentrations. Both
Figures 128 and 129 show the same 5 high-oxidant-level days separated in what appears
to be a separate function from the rest of the data. Hourly wind observations
between 10 a.m. and 4 p.m. were matched with hourly oxidant levels for these 5 high-
oxidant days as well as for the rest of the July and August days under investigation
15
14
13
Q.
Q.
CO
a'°
x
O 9
JULY AND AUGUST, 1964
DAYS WITH RAIN AND
EXTREME CLOUD COVER
ARE NOT INCLUDED
* LOCAL STANDARD Tl ME
CAMP DATA
e o
00
-L
_L
o
I 2 3
HYDROCARBONS, ppm
Figure 128. Relationship between hydrocarbons at
8 a.m. * and maximum total oxidants
occurring between 10 a.m. and 4 p.m.
155
-------
16
15
14
t/ I I
z
Q 10
X
o
_J 9
o
H
7
6
5
4
o —
JULY AND AUGUST, 1964
DAYS WITH RAIN AND
EXTREME CLOUD COVER
ARE NOT INCLUDED
*LOCAL STANDARD TIME
CAMP DATA
I
I
3456789
NITROGEN DIOXIDE, pphm
10
Figure 129. Relationship between maximum nitrogen
dioxide from 7 to 1 1 a.m. * and maximum
total oxidants from 10 a.m. to 4 p.m.
(Figure 130). The 2-month period had a large variety of wind speeds and directions,
but the 5 high-oxidant days showed a preponderance of low wind speeds from the east-
northeast and north-northeast. This leads to the possibility that oxidants,(photo-
chemical or chemically related giving the same measurement response), produced in the
Illinois part of the Study area were borne to the CAMP station and that conditions
for oxidant production were more favorable there than indicated by measurements of
hydrocarbons and nitrogen dioxide made at the CAMP station.
Additional analysis of the data indicated that increased wind speeds resulted
in decreased oxidant levels. Although a relationship anpeared to exist between
concentrations of nitrogen dioxide and hydrocarbons, the practical value of the
156
-------
AVERAGE WIND SPEED 9 3 mph
AVERAGE WINDSPEEO 74 mph
WIND ROSE FOR REMAINING JULY AND
AUGUST, 1964 DAYS
0_ 5 10 IS 20 25 30 35
No OBSERVATIONS
WIND ROSE FOR 5 HIGH-OXIDANT DAYS
0 5 10 15
^m
No OBSERVATIONS
miles per hour
Figure 130. Wind roses based on hourly observations from 10 a.m. to
4 p.m. during oxidant study.
relationship for air-use-program development was not discernible because of unknown
quantitative relationships between levels of nitrogen dioxide and hydrocarbons and
the formation of oxidants and effects levels.
In conclusion, the formation and transport of oxidants in the Study area is
complex. Some high oxidant levels do not relate to hours of the day when such
levels would be expected. They are associated with southeast winds. Some relative-
ly high levels are associated with the same measured levels of precursors that
usually form much lower levels of oxidants. These are associated with winds from a
northeasterly direction. The majority of oxidant levels, however, do show a fairly
consistent relationship with precursors measured at the CAMP station.
MATERIALS DETERIORATION
Steel Panels
Results from the 35-station network in which steel panels were exposed for
four periods from April 1963 through August 1964 are shown in Table 50. Arithmetic
mean corrosion rates for all sites except 498-704 for the 2-, 4-, 8-, and 16-month
exposure periods were 2.16, 3.86, 5.59, and 7.72 grams per panel, respectively. The
157
-------
Table 50. CORROSION RATES AT SELECTED EXPOSURE SITES IN ST. LOUIS
EAST ST. LOUIS AREA
Site
coordinates
UOT-770
U21-729
>t33-565
1*35-717
1,36-7113
M.9-719
1(51-728
'•53-701
1.57-766
1.63-691
U6U-7UO
1*65-731
1*67-758
1*69-683
1*69-705
U71-71U
1*76-72"*
1*77-758
1*79-701*
1*82-699
1*88-672
1*90-61*6
1*90-713
1*90-730
1*95-693
1*95-809
1*98-701*
1*99-721*
501-713
505-71*1
509-710
517-762
520-790
521-725
585-683
Weight lost per U- by 6-in. panel, grams
2-month exposure
Top and
bottom panel
1.1*7
1.07
1.08
1.07
0.66
0.56
1.12
0.70
1.70
1.32
1.33
I."t5
1.89
1.73
1.93
1.1*9
1.70
1.63
2.00
1.78
1.61.
1.1*1
2.38
2.08
1.92
1.89
3.30
2.76
2.18
1.95
2.65
2.30
2.35
2.10
2.U7
2.11
2.77
2.56
2.36
2.12
1.76
1.51*
1.1*9
1.1.2
2.87
2.66
2.90
2.86
2.53
2.25
2.01.
1.91
8.39
8.66
It. 19
3.97
2.95
2.97
3.38
3.36
3.10
2.96
2.09
1.89
3.1*2
3.29
3.73
3.65
1.59
1.1*3
Mean
1.27
1.08
0.61
0.91
1.51
1.39
1.81
1.71
1.67
1.89
1.53
2.23
1.91
3.03
2.07
2.U8
2.23
2.29
2.67
2.21*
1.65
1.1.6
2.77
2.88
2.39
1.98
3.53
U.08
2.96
3.3".
3.03
1.99
3.36
3.69
1.51
l*-month exposure
Top and
bottom panel
2.90
2.58
2.68
2.U2
2.93
2.97
3.08
2.83
3.20
2.6U
3.2U
3.17
3.IW
3.73
3.50
3.1*5
3.36
3.39
li.io
3.87
3.00
2.80
3.69
3.51*
3.21
3.06
5.38
5.38
3.55
3.35
3.93
3.65
3.62
3.60
3.76
3.69
"t.33
U.02
U.05
3.73
3.3"*
3.26
3."*1»
3.28
Lost
3.8U
>t.!5
3.90
I*. 36
1*.29
3.18
3.0U
12.77
13. 31*
5.69
5.80
"*.79
U.63
l*.79
1*.96
5.03
5.35
!*.39
"*.55
5.07
5.19
6.23
6.27
3.1*1*
3.60
Mean
2.71*
2.55
2.95
2.96
2.92
3.21
3.57
3.W
3.38
3.99
2.90
3.62
3.11*
5.38
3>5
3.79
3.61
3.73
l*.l8
3.89
3.30
3.36
3.81.
1..03
"t.33
3.11
13.06
5.75
U.71
1..88
5.19
l*.l»7
5.13
6.25
3.52
8-month exposure
Top and
bottom panel
"».l*ll
I*. 38
U.ltU
U.28
5.26
5.15
5.52
5A7
1*.28
It. 17
5.12
5.33
5.68
6.29
5.02
1*.9U
5.3>*
5.36
6.23
6.12
3.51
3.38
1».75
U.72
lt.71
l*.8o
8.26
8.25
It. 70
1*.90
"*.99
5.39
"..50
1*,65
5.22
5.26
5. to
5.30
5.67
5.7"*
I..91
1..90
1..72
k.71
5.0lt
1*.89
l*.96
5.5"*
6.15
6.1*0
k.32
l*.15
16.51
16.83
7.86
7.61.
6.26
6.16
6.02
6.1.2
7.21
7.8U
7.29
7.29
7.26
6.96
8.1*0
8.73
5.51*
5.56
Mean
U.ltl
It. 36
5.21
5.50
!*.23
5.23
5.99
U.98
5.35
6.18
3.1*5
l».7l*
U.76
8.26
It. 80
5.19
lt.58
5.2U
5.35
5.71
!t.91
U.72
It. 97
5.25
6.28
l*.2l*
16.67
7.75
6.21
6.22
7.53
7.29
7.11
8.57
5.52
16-month exposure
Top and
bottom panel
6.60
6.10
6.1*1*
6.13
7.83
7.U6
8.02
7.56
6.25
5.79
7.15
6.65
8.02
7.59
7.21*
6.69
7.83
7.39
7.95
7.60
5.36
5.21
8.80
7.57
7.11*
6.81
10.67
9.91
6.98
5.79
8.20
6.33
6.1*8
5.75
8.02
7.65
7.68
7.07
7."t7
6.85
7.28
6.82
7.39
6.79
7.30
6.56
7.51
6.83
8.05
8.06
7.32
6.80
23.36
22.35
11. Its
10.32
9.32
8.18
8.67
8.22
9.88
9.1*3
9.61
9.25
9.09
8.88
11.13
10.63
8.26
8.1U
Mean
6.35
6.29
7.65
7.79
6.02
6.90
7.81
6.97
7.61
7.78
5.29
8.18
6.98
10.29
6.39
7.27
6.12
7.8U
7.38
7.16
7.05
7.09
6.93
7.17
8.06
7.06
22.86
10.89
8.75
8.1*5
9.66
9."*3
8.99
10.88
8.20
158
-------
weight loss rate was 1.08, 0.97, 0.70, and 0.48 gram per month for the respective
exposure periods. The tests demonstrated that the corrosion rate decreases with time
and that corrosion products build up to provide a protective coating.
Figure 131, a map of the Study area, shows the geographical distribution of
the 16-month mean corrosion rates. The actual locations of exposure sites are shown
on Figure 2. Two nonurban sites, 433-565 and 585-683, are beyond the boundaries of
the map.
Corrosion occurs at above-average rates in the high pollution areas. This
is shown by comparison of corrosion maps, Figures 131 and 133 ; with isopleth maps
for sulfation, sulfur dioxide, and particulates, measured by both the high-volume
sampler and AISI sampler. The amount of increase in corrosion was as much as six-
fold in the high pollution areas compared to the low pollution areas.
To test statistical correlations, dustfall and sulfation average values for
each exposure period were plotted against the corresponding corrosion values.
Annual mean pollution values were used for plotting 16-month data. Dustfall data,
regardless of the exposure period, displayed no recognizable correlation or trend
with corrosion. The correlation between sulfatior and corrosion, however, was
significant, 0.89 for the first 2-month exposure period. Figure 132 shows this
graphically for the 2- and 16-month exposure periods. Data from site 498-704 were
not included. Linear equations were derived for the sulfation-corrosion relation-
ship and a statistical analysis was made. The analysis showed a correlation for
the 2-month exposure period statistically significant at better than the 1 percent
level, and for the 16-month exposure period statistically significant at the 1
percent level.
A second corrosion study was made using ten corrosion panel stations during
the period December 1, 1964, through February 28, 1965. The sulfur oxides networks
in operation during that period at these sites are described in other parts of this
report.
Table 51 presents the corrosion-weight-loss results and corresponding sulfur
dioxide and sulfation measurements for each of the ten exposure sites. Figure 133
shows the geographical distribution of the exposure sites and the corresponding
3-month corrosion rates. As in the earlier corrosion study, increased corrosion
occurred in the areas of greater pollution. In this case, the cleanest site,
449-719, was located in the western suburbs of the metropolitan area. Compared to
this ''clean site," corrosion increased by 237 percent at the highest corrosion site,
499-706. Figures 134 and 135 show the relationships between the corrosion-weight-loss
values and corresponding mean sulfur dioxide and sulfation measurements. Equations
were derived for these relationships, and correlation coefficients were found to be
159
-------
400000' 410 420 430 440 450 460 470 480 490 500°°°' 510 520 530 540 550
Figure 131. Corrosion isopleths from 16-month study in St. Louis - East St. Louis
Metropolitan Area (Numbers on isopleths indicate weight loss per panel
in grams).
160
-------
12
10
in
£
o
LU
Z
<
CL
o:
U c
CL 6
CO
CO
O
_l
*4
(£
LU
0
o o '"
0
o o o o ..•••"
o o
C'"o° ° ° °°o
2-MONTH EXPOSURE VERSUS
• 2- MONTH MEAN SULFATION
RATE.
16-MONTH EXPOSURE VERSUS
o 12-MONTH MEAN SULFATION
RATE.
I |
0 0.5 1.0 1.5 2.0 2.5
MEAN SULFATION RATE, mg S03/I00 cm2/day
Figure 132. Relationship between corrosion and corre-
sponding mean sulfation rate measured at
selected sites in the St. Louis - East St.
Louis Metropolitan Area.
approximately 0.90 for all relationships, significant at the 1 percent level. These
findings are very similar to those of the earlier study, in which the correlation
coefficient for corrosion and mean sulfation rates during the first 2-month exposure
period at 34 of the 35 sites was 0.89.
Fabrics
Tests on cotton fabrics following exposure, although made primarily to
develop a study and test methodology, led to the following observations:
1. There is a significant relationship between air pollution and the
degradation of cotton fabrics. Fabrics exposed at the three sites with the highest
levels of air pollution had the greatest strength losses.
161
-------
2. The economic aspects of air-pollution-induced cloth degradation could be
considerable. If a fabric article is serviceable until it still has one-third of
its original strength, air pollution can reduce i'ts effective service life to one-
sixth or less of that of a similar article exposed in a clean area.
3. The time of initiating exposure studies is important. The samples
exposed first in June degraded more rapidly than those started in December.
Reduced chemical reaction rates resulting from lower temperatures and decreased
solar intensity may be the cause.
4. Biological deterioration does not seem to be a major factor in fabric
degradation in the St. Louis area.
Table 51. CORROSION AND CORRESPONDING SULFUR DIOXIDE AND
SULFATION MEASUREMENTS OF THE 1964-65 ST. LOUIS 3-MONTH
SULFUR DIOXIDE SAMPLING NETWORK
Site
Coordinate
449-719
468-724
479-738
481-696
490-713
498-729
499-706
509-710
509-751
527-702
Weight loss per
panel, grams
Top
panel
3.63
7.84
6.86
4.95
6.99
8.72
12.53
8.74
7.60
4.08
Bottom
panel
3.77
7.58
6.57
5.14
6.91
8.36
12.45
7.88
7.47
4.40
Mean
3.70
7.71
6.72
5.05
6.95
8.54
12.49
8.31
7.54
4.24
S02, ppm
2 -hourly
samples
0.027
0.080
0.052
0.034
0.059
0.066
0.128
0.068
0.032
0.030
24-hourly
samples
0.021
0.069
0.048
0.028
0.049
0.057
0.106
0.052
0.026
0.029
Sulfation,
mg S03/100 cm2/
day
1.61
2.27
1.84
2.01
2.51
2.63
4.46
2.96
2.46
2.19
162
-------
400°°°' 410 420 430 440 450 460 470
490 500"* 510 520 530 540 550
Figure 133. Exposure sites for 3-month (Dec 1964 - Feb 1965) corrosion study
in St. Louis - East St. Louis Metropolitan Area (Numbers at each
site indicate weight loss per panel in grams).
163
-------
o 2-hr MEASUREMENTS
• 24-hr MEASUREMENTS
0.02 0.04 0.06 0.08 0.10 0.12
MEAN SULFUR DIOXIDE CONCENTRATION, ppm
0.14
Figure 134. Relationship between corrosion of mild steel
and corresponding mean sulfur dioxide con-
centration for 3-month (Dec 1964 - Feb 1965)
exposure at 1 0 St. Louis sites.
164
-------
12345
MEAN SULFATION RATE, mg S03/I00 cm2/day
Figure 135. Relationship between corrosion of mild
steel and corresponding monthly mean
sulfation rate for 3-month (Dec 1964 -
Feb 1965) exposure at 10 St. Louis sites.
165
-------
REFERENCES
1. Kaiser, E. R. Odor and its measurement. In: Air Pollution. A. C. Stern, ed.
Vol. I. Ch. 15. Academic Press. New York. 1962.
2. Keagy, D. M., et al. Sampling stations and time requirements for urban air
pollution surveys. Part I: Lead peroxide and dustfall collectors. JAPCA.
11:270-280. June 1961.
3. City of New York, Department of Air Pollution Control News. New York.
May 1959.
4. The Air Pollution Control League's 34th annual soot and dustfall report for
the City of Cincinnati, Ohio, twelve months, ending June 30, 1964.
5. City of Chicago, Department of Air Pollution Control, Dustfall monitoring
networks dustfall averages from 1928 thru 1962.
6. Oregon administrative rules. Oregon state sanitary authority. Administrative
order SA 16. Statutory authority: ORS 449.800. Feb. 13, 1962.
7. Ambient air quality objectives. New York State Department of Health, Air
Pollution Control Board. Albany, New York. (Adopted Oct. 30, 1964).
8. Colorado session of laws of 1964. House Bill No. 1050. (Approved March 18,
1964).
9. Air Pollution Measurements of the National Air Sampling Network - Analysis of
Suspended Particulates 1957-61. Department of Health, Education, and Welfare.
Public Health Service Publication No. 978. 1962.
10. Zimmer, C. E., E. C. Tabor, and A. C. Stern. Particulate pollutants in the air
of the United States. JAPCA.9:136-143. Nov. 1959.
11. Larsen, R. I. A method for determining source reduction required to meet air
quality standards. JAPCA. Feb. 1961.
12. Turner, D. B. A diffusion model for an urban area. J. Applied Meteorology.
3:83-91. Feb. 1964.
13. Sawicki, E., et al. Benzo(a)pyrene content of the air of American communities.
American Industrial Hygiene Assoc. 21:443-451. Dec. 1960.
14. Monroe, W. A. State-wide air pollution survey, smoke index. New Jersey State
Health Department. Aug. 1958.
15. Arnold, G. R. Local inversions, air currents, and smoke pollution in Cahokia
Bottom. (Doctor of Science thesis) Washington University. Sever Institute of
Technology. St. Louis, Missouri. June 1964.
16. Thomas, F. W., and C. M. Davidson. Monitoring sulfur dioxide with lead peroxide
cylinders. JAPCA. 11:24-27. Jan. 1961.
166
-------
17. Stalker, W. W., R. C. Dickerson, and G. D. Kramer. Atmospheric sulfur dioxide
and particulate matter. Presented at the 23rd annual meeting of the American
Industrial Hygiene Association. Washington, D. C. May 1962.
18. Stalker, W. W., R. C. Dickerson, and G. D. Kramer. Sampling station and time
requirements for urban air pollution surveys, Part IV: 2- and 24-hour sulfur
dioxide and summary of other pollutants, JAPCA. 12:361-375. Aug. 1962.
19. California Department of Public Health, technical report of California
standards for ambient air and motor vehicle exhaust. Supplement No. 2.
Berkeley, Calif. 1962.
20. Stern, A. C. Summary of existing air pollution standards. JAPCA. 14:5-15.
Jan. 1964.
21. The air pollution situation in Terre Haute, Indiana, with special reference to
the hydrogen sulfide incident of May-June 1964. Department of Health,
Education, and Welfare. Public Health Service and Indiana Air Pollution Control
Board. June 19, 1964.
22. Braverman, M. M., and C. Theophil. Technical report No. 2, New York City air
pollution index. Department of Air Pollution Control. City of New York.
1964.
23. Bell, F. A. and G. B. Welsh. Annual report of the Metropolitan Washington
Council of Governments oxidant sampling network, October 1961 - September 1962
Public Health Service. Division of Air Pollution. Oct. 25, 1962.
24. Raynor, G. S. and E. C. Ogden. Twenty-four hour dispersion of ragweed pollen
from known sources. Brookhaven National Laboratory. BNL-957 (T-398)
(Supported, in part, by U. S. Public Health Service Research Grant No. AP-81.)
25. Recommended standard method for continuing dustfall survey (APM 1-a) Committee
on Air Pollution Measurements of APCA. JAPCA. 5:176-181. Nov. 1955.
26. Nader, J. S. Dustfall retention efficiencies of dustfall collectors. JAPCA.
8:35-38. May 1958.
27. Collection and analysis of dustfall, ASTM standards on methods of atmospheric
sampling and analysis, pp. 97-100. 1962.
28. The investigation of atmospheric pollution. Fuel research station. Blackwell
Lane, Greenwick, London, S. E. 10, 1948.
29. Department of Scientific and Industrial Research. Atmospheric research tech.
paper 1, pp. 20-23. H. M. Stationery Office. London. 1945.
30. Thomas, F. W. and C, M. Davidson. Monitoring sulfur dioxide with lead peroxide
cylinders. JAPCA. 11:24-27. Jan. 1961.
31. Evaluation of total sulfation in the atmosphere by lead peroxide candle method.
ASTM standards on methods of atmospheric sampling and analysis, 1962,
pp. 125-128.
32. Sheen, R. T., H. L. Kahler, and E. M. Ross. Turbidimetric determination of
sulfate in water. Industrial Engineering Chemistry Analytical Edition.
7:262-265. July 15, 1935.
33. Standard methods for the examination of water and wastewater, American Public
Health Association, 1790 Broadway, New York. 1960. p. 237.
167
-------
34. Reisch, R. F. Modification of the Sheen, Kahler and Ross procedure for turbidi-
metric determination of sulfate. 1960. (Unpublished)
35. Analysis of filtered air particulate matter. 'New York State Department of
Health. Division of Laboratories and Research. April 17, 1961.
36. Procedures for the analysis of suspended particulate matter collected on glass
fiber filters. Department of Health, Education, and Welfare. Public
Health Service. Division of Air Pollution. Robert A. Taft Sanitary Engineer-
ing Center. Cincinnati, Ohio. 1963.
37. Pack, J. C., D. M. Keagy, and W. M. Stalker. Developments in the use of the
AISI automatic smoke sampler. JAPCA. 10:303-306. Aug. 1960.
38.
Hemeon, W. C. L., G. F. Haines, Jr., and H. M. Ide. Determination of haze and
smoke concentrations by filter paper samplers. Air Repair. Aug. 1953.
39. West, P. W., and G. C. Gaeke. Fixation of sulfur dioxide as disulfitomercurate
(II), subsequent colorimetric estimation. Anal. Chem. 28:1961. 1956.
40. Nauman, R. V., et al. A spectrophotometric study of the Schiff reaction as
applied to the quantitative determination of sulfur dioxide. Anal. Chem.
32:1307. 1960.
41. Pate, J. B., J. P. Lodge, and A. F. Wartburg. Effect of pararosaniline in the
trace determination of sulfur dioxide. Anal. Chem. 34:1660. 1962.
42. Welch, A. F. and J. P. Terry. Development in the measurement of atmospheric
sulfur dioxide. J. Amer. Ind. Hyg. Assoc. 21:316. 1960.
43. McCaldin, R. 0. and E. R. Hendrickson. Use of a gas chamber for testing air
samplers. J. Amer. Ind. Hyg. Assoc. 20:509. 1959.
44. Terraglio, F. P. and R. M. Manganelli. Laboratory evaluation of sulfur dioxide
methods. Anal. Chem. 34:675. 1962.
45. West, P. W. and F. Ordoveza. Elimination of nitrogen dioxide interference in
the determination of sulfur dioxide. Anal. Chem. 34:1324. 1962.
46. Haagen-Smit, A. J. and M. F. Brunelle. The application of phenolphthalin
reagent to atmospheric oxidant analysis. Int. J. Air Pollution. 1:51.
Oct. 1958.
47. Bender, D. F. and A. W. Breidenbach Modification of the phenolphthalin method
for the determination of total oxidants. Anal. Chem. 35:417. 1963.
48. A Handbook, Colorimetric Analytical Chemical Methods. The determination of
atmospheric oxidants. Part 5. The Tintometer, Limited. Salisbury, England.
6th ed. 1962.
49. Louw, C. W. and E. C. Halliday. The accuracy of the total oxidants measurement
as obtained by the phenolphthalin method. Int. J. Air Pollution. 7:1033. 1963.
50. Lada, 0. and K. Nakaaki. On the determination of ozone in air. Tests on the
phenolphthalin method. J. Sci. of Labour. 39:595. 1963.
51. McBride, R. S. and J. D. Edwards. Lead acetate test for hydrogen sulfide in
gas. N. B. S. Technical Paper No. 41. 1914.
168
-------
52. Sensenbaugh, J. D. and W. C. L. Hemeon. A low cost sampler for measurement of
low concentrations of hydrogen sulfide. Air Repair. 4:5. May 1954.
53. Ogden, E. C., G. S. Raynor, and J. M. Vormevik. Construction and use of the
intermittent rotoslide pollen sampler. Pollen and Mold Committee. American
Academy of Allergy. Milwaukee, Wise. 1964.
54. Durham, 0. C. Report of the National Pollen Survey Committee of the American
Academy of Allergy on a conversion factor for gravity slide counts.
J. Allergy. 18:284. 1947.
55. Ogden, E. C. and G. S. Raynor. Field evaluation of ragweed pollen samplers.
J. of Allergy. 31:307-316. July-Aug. 1960.
56. McCormick, R. A. and D. IV. Baulch. The variation with height of the dust
loading over a city as determined from the atmospheric turbidity. JAPCA.
12:492-496. Oct. 1962.
57. Upham, J. B. Materials deterioration and air pollution. Presented at the 57th
Annual Meeting of the Air Pollution Control Association. Houston, Texas.
June 23, 1964.
58. Pollution of the atmosphere in the Detroit River area. Report of the
International Joint Commission, United States and Canada. 1960.
59. The Louisville air pollution study. Robert A. Taft Sanitary Engineering
Center technical report A61-4. Department of Health, Education, § Welfare.
Public Health Service. Cincinnati, Ohio. 1961.
60. McCaldin, R. 0. and W. E. Bye. Air pollution appraisal - Seward and
New Florence, Pennsylvania. Department of Health, Education, § Welfare.
Public Health Service. Robert A. Taft Sanitary Engineering Center.
Cincinnati, Ohio. 1961.
61. Investigation of atmospheric pollution. 27th report. Department of Scientific
and Industrial Research. H. M. Printing Office. London. 1955.
62. Air Pollution Measurements of the National Air Sampling Network - Analysis of
Suspended Particulates 1963. Department of Health, Education, and Welfare.
Public Health Service. 1965.
63. Division of Smoke Regulation. City of St. Louis, Missouri. Annual report for
fiscal year 1957-58. June 1958.
64. Division of Smoke Regulation. City of St. Louis, Missouri. Annual report for
fiscal year 1958-59. July 1959.
65. Division of Air Pollution Control. City of St. Louis, Missouri. Annual report
for fiscal year 1962-63. June 1963.
66. Air Hygiene Foundation of America, Inc. - Special Research Series Bulletin No. 1.
Parts I and II - Concentrations of volatile sulfur compounds in atmospheric
air. 1937 and 1938.
67. Schueneman, J. J. Atmospheric concentrations of sulfur dioxide in St. Louis,
1950. Industrial Hygiene Quarterly. 12:30-36. March 1951.
68. The concentrations of oxidizing substances in the atmosphere of a number of
American cities, July 10, 1953 - July 10, 1954. Project S and F 6.8 to
American Petroleum Institute, Smoke and Fumes Committee, from Kettering
169
-------
Laboratories. Department of Preventive Medicine and Industrial Health.
College of Medicine. University of Cincinnati. Sept. 1, 1954.
69. Air quality data. National Air Sampling Network, Department of Health,
Education, and Welfare. Public Health Service. 1962.
70. Edmisten, Norman C. Tobacco Plant - Ozone Study Report. In preparation.
71. Jutze, G. A. and E. C. Tabor. The continuous air monitoring program. JAPCA
13:278-280. June 1963.
170
-------
APPENDIX
AIR QUALITY MEASUREMENT STATIONS EXCEPT SULFUR DIOXIDE WINTER NETWORKS
Ascending order of site coordinate numbers
Site
Coordinate
Address
Station Name
City § State
407-770 Metropolitan Life Ins. Co.
814 Clay St.
421-729 11720 Olive St. Road
432-715 St. Louis Co. Pub. Library
1640 S. Lindbergh Blvd.
433-565 Festus Jr. High School
711 W. Main St.
435-589 Mueller Lumber Co.
435-717 N § K Associates
9827 Clayton Road
436-743 West Overland Fire Dist.
2831 Ashby Road
438-689 42 Crestwood Plaza
449-719 801 S. Brentwood
451-728 University City
Fire Station No. 3
1045 North $ South Road
453-701 St. Michael School
76730 Sutherland Ave.
457-766 Florissant School Dist.
Bus Garage
1894 New Florissant Road
458-715 6420 Clayton Road
463-691 Schnuck Super Market
7450 Hampton Road
464-740 Walgreen Drug Store
1 Normandy Shopping Center
465-731 Central Hardware Co.
6250 Easton Ave.
467-758 10132 W. Florissant
468-665 Veterans Admin. Hospital
Lindbergh at Mississippi R.
469-683 Lemay Bank and Trust
152 Lemay-Ferry Road
469-705 C. Rallo Construction Co.
5000 Kemper Ave.
St. Charles
Creve Coeur
Kirkwood
Festus
Pevely
Ladue
Overland
Crestwood
Brentwood
University City
Shrewsbury
Florissant
St. Mary Hospital
Schnuck
Northwoods
Wellston
Dellwood
Jefferson Barracks
Lemay
Rallo
St. Charles, Mo.
St. Louis, Mo. 63141
St. Louis, Mo. 63124
Festus, Mo.
Pevely, Mo.
St. Louis, Mo. 63124
St. Louis, Mo. 63114
St. Louis, Mo. 63126
St. Louis, Mo. 63105
St. Louis, Mo. 63130
St. Louis, Mo. 63119
St. Louis, MO. 63135
St. Louis, Mo. 6131^
St. Louis, Mo. 63109
St. Louis, Mo. 63124
St. Louis, Mo. 63133
St. Louis, Mo. 63136
St. Louis, Mo. 63125
St. Louis, Mo. 63125
St. Louis, Mo. 63139
171
-------
Site
Coordinate
Address
Station Name
City § State
469-749 Peoples 905 Liquor Store
7445 W. Florissant
469-750 Northland Shopping Center
Lucas § Hunt at W. Floris-
sant
470-718 Steinberg Skating Rink
Forest Park
471-714 St. Louis University High
School, 4970 Oakland Ave
472-680 8900 S. Broadway
476-724 1421 N. Taylor
477-758 Bell Telephone Co.
10024 Duke Drive, Jennings
479-704 St. Elizabeth Academy
3401 Arsenal St.
480-725 2601 Whittier St.
481-698 3919 Iowa
482-697 3933 S. Broadway
482-699 3641 S. Jefferson
485-714 2810 Clark St.
488-672 600 Louisiana
489-728 1901 Penrose
490-646 119 Cherry St.
490-713 1300 Market St.
490-730 4560 N. 2nd St.
494-703 Monsanto Terminal
Mississippi River
495-693 Rts. 157 § 3
495-709 MacArthur Bridge
495-809 101 E. 3rd St.
498-704 Highway 3
499-700 2897 Monsanto Ave.
499-724 4th § Washington
501-713 7 Collinsville Ave.
505-740 2000 Edison St.
505-740 20th 5 State
507-741 23rd § Madison
509-710 638 N. 20th St.
517-692 5900 Bond Ave.
Jennings
Northland
Steinberg
St. Louis U.H.S.
Aero Charts
Visitation School
Moline Acres
St. Elizabeth
Homer G. Phillips Hosp.
Iowa
Alexian Brothers Hosp.
A. § P.
St. L. Testing Lab.
Dupo Comm'l High Schl.
Penrose Police Sta. 5th
District
Columbia Fire Dept.
Municipal Cts. Bldg.
Western Trucking Co.
Monsanto Terminal
Parks College of St.Louis
University - Mercury Hall
MacArthur
Alton City Hall
Young-Wheeler Lbr. Co.
Monsanto Village Hall
Brooklyn Fire Dept.
E. St. Louis City Hall
Granite City City Hall
Granite City Steel Office
Granite City Fire Station
East Side Health District
Centreville Twp. Gen'l Hosp
St. Louis, Mo. 63136
St. Louis, Mo. 63136
St. Louis, Mo.
St. Louis, Mo. 63110
St. Louis, Mo. 63129
St. Louis, Mo. 63113
St. Louis, Mo. 63136
St. Louis, Mo. 63118
St. Louis, Mo. 63115
St. Louis, Mo. 63118
St. Louis, Mo. 63111
St. Louis, Mo. 63118
St. Louis, Mo. 63103
Dupo, 111.
St. Louis, Mo. 63107
Columbia, 111.
St. Louis, Mo. 63103
St. Louis, Mo. 63147
Monsanto, 111.
Centreville, 111.
State line - Mo.-111.
Alton, 111.
Monsanto, 111.
Monsanto, 111.
Lovejoy, 111.
E. St. Louis, 111.
Granite City, 111.
Granite City, 111.
Granite City, 111.
E. St. Louis, 111.
Centreville, 111.
172
-------
Site
Coordinate
517-762
520-790
520-798
Address
5429 Maryville Rd.
507 N. Delmar
Wood River City
Station Name
Cedar Park Confectionery
Hartford Fire Department
Wood River
City § State
Granite City, 111.
Hartford, 111.
Wood River, 111.
Hall § Fire Dept.
521-725 Canteen School
Kingshighway §
Hwy. 40
534-702 French Village Dist.
HW. Garage
9300 St. Clair
554-668 U.S. Army Reserve
Center
500 South Belt East
585-683 Scott Air Force Base
Provost Marshall's
office
Canteen
French Village
Belleville
Scott AFB
Canteen, 111.
E. St. Louis, 111.
Belleville, 111.
Scott Air Force Base,
Illinois
173
-------
AIR QUALITY MEASUREMENT STATIONS EXCEPT SULFUR DIOXIDE WINTER NETWORKS
Alphabetical order by name
Station Name
Address
Site
Coordinate
City § State
A. § P.
Aero Charts
Alexian Brothers Hospital
Alton
Belleville
Brentwood
Brooklyn
Canteen
Cedar Park
Centrevilie
Columbia
Creve Coeur
Crestwood
Dellwood
Dupo
E. St. Louis City Hall
East Side Health Dist.
Festus
Florissant
French Village
Granite City City Hall
3641 S. Jefferson
8900 S. Broadway
3933 S. Broadway
Alton City Hall
101 E. 3rd St.
U.S. Army Reserve Ctr.
500 South Belt. East.
801 S. Brentwood
Brooklyn Fire Dept.
4th § Washington
Canteen School
Kingshighway § Hwy. 40
Cedar Pk. Confect'y
5429 Maryville Rd.
Centreville Twp.
General Hospital
5900 Bond Ave.
Columbia Fire Dept.
119 Cherry St.
11720 Olive St. Road
42 Crestwood Plaza
10132 W. Florissant
Dupo Comm'l High Schl.
600 Louisiana
7 Collinsville Ave.
638 N. 20th St.
Festus Jr. High Schl.
711 W. Main St.
Florissant School Dist.
Bus Garage
1894 New Florissant Rd.
French Village Dist.
Hwy. Garage
9300 St. Clair
2000 Edison St.
482-699 St. Louis, Mo. 63118
472-680 St. Louis, Mo. 63129
482-697 St. Louis, Mo. 63111
495-809 Alton, 111.
554-668 Belleville, 111.
449-719 St. Louis, Mo. 63105
499-724 Lovejoy, 111.
521-725 Canteen, 111.
517-762 Granite City, 111.
517-692 Centreville, 111.
490-646 Columbia, 111.
421-729 St. Louis, Mo. 63141
438-689 St. Louis, Mo. 63126
467-758 St. Louis, Mo. 63136
488-672 Dupo, 111.
501-713 East St. Louis, 111.
509-710 East St. Louis, 111.
433-565 Festus, Mo.
457-766 St. Louis, Mo. 63135
534-702
E. St. Louis, 111.
505-740 Granite City, 111.
174
-------
Station Name
Granite City Fire Sta.
Granite City Steel Office
Hartford
Homer G. Phillips Hospital
Iowa
Jefferson Barracks
Jennings
Kirkwood
Ladue
Lemay
MacArthur
Moline Acres
Monsanto
Monsanto Terminal
Monsanto Village
Site
Address Coordinate
23rd § Madison
20th § State
Hartford Fire Dept.
S07 N. Delmar
2601 Whittier St.
3919 Iowa
V. A. Hospital
Lindbergh at Mississip-
pi River
Peoples 905 Liquor Store
7445 W. Florissant
St. Louis County Public
Library
1640 S. Lindbergh Blvd.
N§K Associates
9827 Clayton Road
Lemay Bank § Trust
152 Lemay Ferry Rd.
MacArthur Bridge
Bell Telephone Co.
10024 Duke Drive
Young-Wheeler Lbr. Co.
Highway 3
Mississippi River
Monsanto Village Hall
2897 Monsanto Ave.
507-741
505-740
520-790
480-725
481-698
468-665
469-749
432-715
435-717
469-683
495-709
477-758
498-704
494-703
499-700
City § State
Granite City, 111.
Granite City, 111.
Hartford, 111.
St. Louis, Mo. 63115
St. Louis, Mo. 63118
St. Louis, Mo. 63125
St. Louis, Mo. 63136
St. Louis, Mo. 63124
St. Louis, Mo. 63124
St. Louis, Mo. 63125
Missouri - Illinois
State line
St. Louis, Mo. 63136
Monsanto, 111.
Monsanto, 111.
Monsanto, 111.
Municipal Courts
Northland
Northwoods
Overland
Parks College
Penrose
Pevely
Rallo
Municipal Court Bldg. 490-713
1300 Market St.
Northland Shopping Center 469-750
Lucas-Hunt at W. Floris-
sant
Walgreen Drug Store 464-740
1 Normandy Shopping Ctr.
West Overland Fire Dist. 436-743
2831 Ashby Road
Parks College of 495-693
St. Louis University
Mercury Hall, Rts. 157 S 3
Police Station (Sth Dist.)
1901 Penrose
Mueller Lumber Co. 435-589
C. Rallo Construction Co. 469-705
5000 Kemper Ave.
St. Louis, Mo. 63103
St. Louis, Mo. 63136
St. Louis, Mo. 63124
St. Louis, Mo. 63114
Centreville, 111.
489-728 St. Louis, Mo. 63107
Pevely, Mo.
St. Louis, Mo. 63139
175
-------
Station Name
Address
Site
Coordinate
City § State
St. Charles
St. Elizabeth
St. Louis Testing Lab.
St. Louis U.H.S.
St. Mary Hospital
Schnuck
Scott Air Force Base
Shrewsbury
Steinberg
University City
Visitation
Welisten
Western
Wood River
Metropolitan Life Ins. 407-770
Co., 814 Clay Street
St. Elizabeth Academy 479-704
3401 Arsenal St.
2810 Clark St. 485-714
St. Louis University 471-714
High School
4970 Oakland Ave.
6420 Clayton Road 458-715
Schnuck Super Market 463-691
7450 Hampton Road
Provost Marshall's Office 585-683
St. Michael School 453-701
76730 Sutherland Ave.
Steinberg Skating Rink 470-718
Forest Park
University City Fire 451-728
Station No. 3
1045 North § South Rd.
Visitation School 476-724
1421 N. Taylor
Central Hardware Co. 465-731
6250 Easton Ave.
Western Trucking Co. 490-730
4560 N. 2nd St.
Wood River City Hall 520-798
f, Fire Dept.
St. Charles, Missouri
St. Louis, Mo. 63118
St. Louis, Mo. 63103
St. Louis, Mo. 63110
St. Louis, Mo. 63117
St. Louis, Mo. 63109
Scott A.F. Base, Illinois
St. Louis, Mo. 63119
St. Louis, Mo.
St. Louis, Mo. 63130
St. Louis, Mo. 63113
St. Louis, Mo. 63133
St. Louis, Mo. 63147
Wood River, 111.
176
-------
SULFUR DIOXIDE WINTER NETWORK STATIONS
By Ascending Site-Coordinate Numbers
Site
Coordinate
449-719
Address and Location
Northwest corner of St. Louis County Health
Station
No.
33
State
Missouri
Building, Brentwood Boulevard (Brentwood).
450-703 Power pole on southwest corner of Newport and 35
Summit Avenues (Webster Groves).
453-735 Power pole with street light, north end of 31
Vinita Drive, near intersection of Vinita
and Monroe Drives (Vinita Terrace).
466-742 Power pole with street light, southeast of the 29
intersection of Crestland and Florian
Streets (Northwoods).
467-697 Power pole with transformer No. 52/10 in alley 37
(approximately 50 ft.) east of Brannon Avenue
between Itaska and Delor Streets.
468-718 Power pole near creek on north side of lower 19
parking lot east of Municipal Theater in
Forest Park.
468-724 Power pole on northwest corner of Belt and
Gates Avenue. 17
471-689 Power pole with transformer, south side of 39
street in front of 3728 Blow Street, between
Eugenia and Field Streets.
472-707 Power pole with transformer No. 4518, on north 21
side of alley (just off Alfred Street)
between Magnolia Avenue and Tower Grove Place.
474-756 Power pole No. 2108, south side of Kappel Drive, 27
off Halls Ferry Road. Second pole east of
Nolte Avenue (Moline Acres).
478-723 Power pole in alley at northwest corner of lot 49
behind 4215 West Page Boulevard, between
Whittier and Pendleton Avenues.
479-738 Power pole in alley at southwest corner of lot 15
behind 5449 Geraldine Street, north of
Harney Street.
480-682 Power pole with street light No. 86, northwest 40
side of South 7th Street, southwest of school
playground (E. Carondelet).
480-712 Power pole west side of Rankin Street, at alley 11
between Caroline and Rutger Streets.
481-696 Power pole on southwest corner of Ohio and
Gasconade Streets. 23
Missouri
Missouri
Missouri
Missouri
Missouri
Missouri
Missouri
Missouri
Missouri
Missouri
Missouri
Illinois
Missouri
Missouri
177
-------
Site
Coordinate
Address and Location
Station
Number
State
486-718
487-706
488-730
490-713
490-759
491-692
494-721
498-696
498-717
498-729
499-706
499-743
501-713
502-736
503-723
509-700
Power pole with transformer, northeast of 5
intersection Leffingwell and Cole Streets.
Vacant lot on corner.
Power pole with transformer No. 2205; first 13
pole south of Ann Street in alley between
llth and 12th Streets.
Power pole with transformer south side of street
in front of 1914 Obear Street, between 20th and
Blair Streets. 7
North side of CAMP Station, 12th and Clark Streets. 3
Power pole with street light, north side of 25
Cameron Street, west of Crawford Street
(Riverview).
Power pole with transformer and light, southeast 26
corner of 4th and Green Streets intersection
(Cahokia).
Power pole with transformer, between 1st and 1
2nd Street, south side of Ryerson Parking lot.
Power pole No. 1702, in front of 217 Julian 24
Street at north end of side street (Cahokia).
Power pole with street light No. 609 on east side 2
of Front Street, 2000 feet north of Broadway
(E. St. Louis).
Power pole with street light, 50 yards east of 4
3rd Street, north side of Hampden. (Venice,
111.).
Power pole in school yard east of Easterly 10
Elementary School, 1060 Liberty Street,
approximately 150 feet from street.
(E. St. Louis).
Power pole with street light, southwest of 16
Cayuga Street and McCasland Ave.
(Granite City, 111.).
Power pole with transformer in E. St. Louis 8
Municipal parking lot, behind City Hall.
Pole furnishes power to 17 Main Street
(E. St. Louis).
Power pole with street light, between 10th 18
and 12th Streets on east side of State
Street. About 200 yards north of 10th
Street.
Power pole 40 feet north of Big Bend rtoad, next (,
to railroad; furnisnes power to RR Signal 211
(National City).
Power pole at end of South 36th Street, off 14
(Highway 13) Bond Avenue (E. St. Louis).
Missouri
Missouri
Missouri
Missouri
Missouri
Illinois
Missouri
Illinois
Illinois
Illinois
Illinois
Illinois
Illinois
Illinois
Illinois
Illinois
178
-------
Site
Coordinate
Address and Location
Station
No.
State
509-710 Power pole south of East Side Health District 12
628 N. 20th Street, E. St. Louis; supplies
power to building. Approximately 100 feet
east of street. (E. St. Louis).
509-720 Power pole with transformer, supplying power 20
to Radio Station KATZ off Alternate 67
north of Highway 70 (St. Glair County).
509-751 Power pole with transformer, furnished to 28
Box 1012 Pontoon Rd., Granite City, 111.
%-mile east of Highway Alternate 67
(Madison County).
513-742 Power pole No. 2832, south side of street 30
in front of 2832 E. 25th Street, block
east of Nameoki Avenue (Granite City).
515-690 Power pole with transformer No. 15236, west 38
side and in front of 6210 Church Street
(Centreville).
518-716 Power pole with street light, northeast 22
of Lincoln Avenue and 45th Street
intersection (E. St. Louis).
521-733 Power pole No. 18397 supplying electricity 32
to the pink trailer house with the
painted wood rail fence at the end of the
right fork of Bend Road (Horse Shoe Lake area).
527-702 Power pole on north side of Eureka Street, at 36
alley between 77th and 78th Streets
(E. St. Louis).
533-717 Power pole with transformer, south side and 34
in front of 8500 Forest Blvd.
(St. Clair County).
Illinois
Illinois
Illinois
Illinois
Illinois
Illinois
Illinois
Illinois
Illinois
-------
SULFUR DIOXIDE WINTER NETWORK STATIONS
By Numerical Station Numbers
Station
No.
Address and Location
Site
Coordinate
State
1 Power pole with transformer, between 1st and 2nd Streets*
south side of Ryerson Parking Lot.
2 Power pole with street light No. 609 on east side of
Front Street, 2000 feet north of Broadway.
(E. St. Louis).
3 North side of CAMP Station, 12th and Clark Streets.
4 Power pole with street light, 50 yards east of 3rd
Street, north side of Hampden. (Venice, 111.}.
5 Power pole with transformer, northeast of intersection
Leffingwell and Cole Streets. Vacant lot on
corner.
6 Power pole 40 feet north of Bend Road next to railroad;
furnishes power to RR Signal 211 (National City).
7 Power pole with transformer, south side of street in
front of 1914 Obear Street.between 20th and Blair
Streets.
8 Power pole with transformer in E. St. Louis Municipal
parking lot, behind City Hall. Pole furnishes
power to 17 Main Street (E. St. Louis).
9 Installed but not operable. Moved to Site 49.
10 Power pole in school yard east of Easterly Elementary
School, 1060 Liberty Street, approximately 150 feet
from street. (E. St. Louis).
11 Power pole west side of Rankin Street,at alley between
Caroline and Rutger Streets.
12 Power pole south of East Side Health District,
628 N. 20th Street, E. St. Louis; supplies power
to building. Approximately 100 feet east of
street. (E. St. Louis).
13 Power pole with transformer No. 2205; first pole south
of Ann Street in alley between llth and 12th Streets.
14 Power pole at end of South 36th Street, off (Highway 13)
Bond Avenue. (E. St. Louis).
15 Power pole in alley at southwest corner of lot behind
5449 Geraldine Street, north of Harney Street.
16 Power pole with street light, southwest of Cayuga
Street and McCasland Avenue. (Granite City).
494-721
498-717
490-713
498-729
486-718
503-723
488-730
501-713
Missouri
Illinois
Missouri
Illinois
Missouri
Illinois
Missouri
Illinois
499-706
480-712
509-710
487-706
509-700
479-738
499-743
Missouri
Illinois
Missouri
Illinois
Missouri
Illinois
Missouri
Illinois-
180
-------
Station
No.
17
18
19
20
Address and Location
Power pole on northwest corner of Belt and Gates
Avenue.
Power pole with street light, between 10th and 12th
Streets on east side of State Street. About 200
yards north of 10th Street.
Pole near creek on north side of lower parking lot
east of Municipal Theater in Forest Park.
Power pole with transformer, supplying power to
Site
Coordinate
468-724
502-736
468-718
509-720
State
Missouri
Illinois
Missouri
Illinois
Radio Station KATZ off Alternate 67 north of
Highway 70 (St. Clair County).
21 Power pole with transformer No. 4518, on north side 472-707 Missouri
of alley (just off Alfred Street) between Magnolia
Avenue and Tower Grove Place.
22 Power pole with street light:northeast of Lincoln 518-716 Illinois
Avenue and 45th Street intersection (E. St. Louis),
23 Power pole on southwest corner of Ohio and Gasconade 481-696 Missouri
Streets.
24 Power pole No. 1702, in front of 217 Julian Street at 498-696 Illinois
north end of side street (Cahokia).
25 Power pole with street light, north side of Cameron 490-759 Missouri
Street, west of Crawford Street '(Riverview).
26 Power pole with transformer and light, southeast 491-692 Illinois
corner of 4th and Green Streets intersection
(Cahokia).
27 Power pole No. 2108, south side of Kappel Drive,off 474-756 Missouri
Halls Ferry Road. Second pole east of Nolte
Avenue (Moline Acres).
28 Power pole with transformer, furnished to Box 1012 509-751 Illinois
Pontoon Road, Granite City, 111. %-mile east of
Highway Alternate 67 (Madison County).
29 Power pole with street light, southeast of the 466-742 Missouri
intersection of Crestland and Florian Streets
(Northwoods).
30 Power pole No. 2832, south side of street in front 513-742 Illinois
of 2832 E. 25th Street, block east ?f Nameoki
Avenue (Granite City).
31 Power pole with street light, north end of Vinita 453-735 Missouri
Drive, near intersection of Vinita and Monroe
Drives(Vinita Terrace).
32 Power pole No. 18397 supplying- electricity to the 521-733 Illinois
pink trailer house with the painted wood rail
fence at the end of the right fork of Bend
Road (Horse Shoe Lake area).
33 Northwest corner of St. Louis County Health Building, 449-719 Missouri
Brentwood Boulevard (Brentwood).
34 Power pole with transformer, south side and in front 533-717 Illinois
of 8500 Forest Boulevard (St. Clair County).
181
-------
Station
No.
35
36
37
Address and Location
Power pole on southwest corner of Newport and
Summit Avenues (Webster Groves).
Power pole on north side of Eureka Street at alley
between 77th and 78th Streets (E. St. Louis).
Power pole with transformer No. 52/10 in alley
(approximately 50 feet) east of Brannon Avenue,
between Itaska and Delor Streets.
Site
Coordinate
450-703
527-702
467-697
State
Missouri
Illinois
Missouri
38 Power pole with transformer No. 15236, west side 515-690 Illinois
and in front of 6210 Church Street (Centreville).
39 Power pole with transformer, south side of street 471-689 Missouri
in front of 3728 Blow Street, between Eugenia
and Field Streets.
40 Power pole with street light No. 86, northwest 480-682 Illinois
side of South 7th Street, southwest of school
playground (E. Carondelet).
49 Power pole in alley at northwest corner of lot 478-723 Missouri
behind 4215 West Page Boulevard, between
Whittier and Pendleton Avenues.
182
------- |