INTERSTATE  AIR   POLLUTION

                                            STUDY
 BI-STATE  DEVELOPMENT
        AGENCY


ST.  LOUIS  DEPARTMENT  OF
 HEALTH AND HOSPITALS


ST.  LOUIS  - DIVISION  OF
 AIR POLLUTION CONTROL


 EAST ST.  LOUIS  - AIR
   POLLUTION CONTROL
      COMMISSION
PHASE  II PROJECT  REPORT
    ST. LOUIS COUNTY
   HEALTH  DEPARTMENT

    EAST SIDE HEALTH
       DISTRICT


    MISSOURI DIVISION
       OF HEALTH


   ILLINOIS DEPARTMENT
    OF  PUBLIC HEALTH

 CHAMBER OF COMMERCE OF
 METROPOLITAN ST.  LOUIS
 AIR  QUALITY MEASUREMENTS
 ILLINOIS AIR POLLUTION
     CONTROL BOARD


         DHEW
  PUBLIC HEALTH SERVICE

-------

-------
         INTERSTATE AIR POLLUTION  STUDY

              PHASE II  PROJECT REPORT
              AIR  QUALITY MEASUREMENTS
                      prepared by


                     J. R.  Farmer
                     J. D. Williams
           O.S.  Environmental Protection Agency
           Region 5, Library  15PL-16)
           230 S. Dearborn Street, Boom 1670
           Chicago. IL   60604
UoS. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE

                  Public Health Service

    Bureau of Disease Prevention and Environmental Control
          National Center for Air Pollution Control
                     Cincinnati, Ohio

                     December 1966

-------
      Copies of this report are available from the cooperating agencies listed on
the cover of this report and from the Control Development Program, National
Center for Air Pollution Control,  1055 Laidlaw Avenue,  Cincinnati, Ohio 45237.
                                         11

-------
                                 FOREWORD
    The Interstate Air Pollution Study was divided into two phases.  Phase I, a
general study of the overall air pollution problems in the St. Louis  - East St. Louis
metropolitan area, was conducted  to determine  specific  activities that would require
further study in Phase II  of the project.  The effort was divided into two phases to
provide a logical stopping point in  the event that interest and resources for proceed-
ing further might not materialize.   The necessary impetus did continue, however,
and the Phase II operation was also completed.

    The Phase I operation resulted in a detailed report,  designed primarily for use
of the Executive Committee members and their  agencies in making decisions con-
cerning the Phase II project operation.   A Phase I summary report was also pre-
pared; it received wide distribution.

    Numerous papers,  brochures, and  reports  were prepared during Phase  II
operations, as were some 18 Memorandums of Information and Instruction con-
cerning the project.  All  of these documents  were drawn upon in the preparation of
the Phase II project report.  The Phase II project report  consists of eight separate
volumes under the following titles:

            I.  Introduction
           II.  Air Pollutant Emission Inventory
           III.  Air Quality Measurements
           IV.  Odors - Results of Surveys
           V.  Meteorology and Topography
           VI.  Effects of Air Pollution
          VII.  Opinion Surveys and Air Quality Statistical Relationships
         VIII.  Proposal for an Air Resource Management Program.

-------
                                  ACKNOWLEDGMENTS


Grateful appreciation is extended to these individuals and agencies whose

cooperation and generous giving of their time,  effort, and facilities made possible

this Study and this report.

       Dr. Nicholas Duffetf  Director,  Public Health Laboratory,
         City of St.  Louis Health Division.

       Richard Collins,  Chief Chemist,  Public Health Laboratory,
         City of St.  Louis Health Division,  and staff for
         invaluable assistance in performing chemical analyses
         and in providing laboratory facilities and equipment.

       H. C. Mitchell,  Director,  Division of Sanitation,  and
         William Shenk,  Chemist,  and staff of the St. Louis County
         Health Department for providing assistance and chemical
         analyses.

       Don Long, Environmental Services, Missouri Division of Health,
         and staff for important  chemical analyses.

       Robert Scott,  James Weart, and Arnold Westerhold,  and staff
         of the Illinois Department of Public Health, Division of
         Laboratories,  for important chemical analyses.

       Anton Telford^ Industrial  Hygiene Section, City of St. Louis
         Health Division, for operating a complete sampling station
         and equipment  at other locations.
       Robert J. Chanslor,^   Supervisor of Air Pollution Control,
         East St.  Louis, for operating a complete sampling station
         and other assistance.

       Carlton Laird,6    Wood River City Manager, and Anthony Candela,
         John Barach, Robert Stocker, Gene Rice, Ervin Thien,
         Wood River Fire Department, for operating and maintaining
         high-volume and AISI samplers.

       Leo Sauget,  Mayor of Monsanto, Ted Turner, Chief of Police,
         and 01lie Reeves, Monsanto Fire Department, for operating
         and maintaining high-volume and AISI samplers.

       V. E. Staff,  Chief Highway Engineer,  State of Illinois,
         William S.  Krause,  District Engineer,  W. B.  Williams, and
         P.  Ayers,  for  assisting  the Study and operating  high-volume
         and AISI  samplers.

       Robert H.  Frey,  Jefferson  Barracks Veterans Administration
         Hospital,  for  operating  and maintaining high-volume and  AISI
         samplers.

         aPresently Director of Laboratories, Board of Health, State of Kansas.
         ^Presently with St. Louis County Health Department.
         cPresently with Illinois Department of Public Health.
         ^Presently with U.S. Public Health Service, Gary, Indiana.
         ePresently with City of East St. Louis.

-------
C. D. Trowbridge, Director, St. Louis Testing Laboratories, Inc.,
  and F.dward Lanser, Chemist, for operating and maintaining
  high-volume and oxidant samplers.

Frank Day, Plant Engineer, Forest Park, for operating and maintaining a high-
  volume sampler.

Robert Hardy, Custodian, 5th District Police Station, for operating and
  maintaining a high-volume sampler.

Charles Bushman, William Brolaski, Robert Yauzty, and Walter Barry,
  Aeronautical Charts and Information Center, for their generous
  assistance in operating and maintaining high-volume and AISI samplers,
  cloth deterioration rack, and dustfall and lead peroxide candle
  equipment.

Charles Copley, Commissioner of Air Pollution Control, City of St. Louis,
  Jerome Molas, Industrial Hygiene Section, Anton Telford, Louis F. Klein
  and Richard Knapp, for operating and maintaining several high-volume
  stations throughout the City of St. Louis.

Malcolm Z. Brown, Air Pollution Sanitarian, St.  Louis County Health
  Department, Charles K. Gillespie, Timothy Shea, Walter Horstman, and
  Leroy Vertrees for operating and maintaining several high-volume
  and AISI stations in the St. Louis County area.

James H. Carter, (deceased), Commissioner Air Pollution Control,
  City of St. Louis, for reading of AISI tapes.

L. F. Garber, Chief of Environmental Services, Missouri Division of
  Health, and J. S. Noel, for their general assistance.

Robert R. French, Sanitary Engineer, Illinois Department of Public Health,
  for his assistance.

Dr. Carl Rice, County Health Officer, Jefferson County, Missouri, and
  Oscar H. Fager, Public Health Engineer, for assistance in establishing
  sampling sites.

James P. Sperber, H. Neff Jenkins, Lowell F. Ring, Frank P. Partee,
  Dave L. Brooman,  Norman Edmisten and S. W. Horstman, Project Engineers,
  Interstate Air Pollution Study, for direct and invaluable aid in the
  conduct of the Study.

John Wheeler, Technician, Interstate Air Pollution Study, for reading
  AISI tapes and genera] assistance in the conduct of the Study.

John J.  Jamison*  and George Ilickman, Statistical Services Branch,
  Robert A. Taft Sanitary Lngineering Center, Cincinnati, Ohio, for
  preparing the computer programs to process and analyze the data.

Francis L. Bunyard, Technical Assistance Branch, Robert A. Taft
  Sanitary Engineering Center, Cincinnati, Ohio, for assistance in
  processing the data.

William Jenkins, Inspector,Granite City,Illinois, for operating and
  maintaining high-volume, AISI, and oxidant samplers.


  aPresently with International Business Machine Corporation.

-------
William Smoot,  (deceased) Inspector, East Side Health District,
  for operating and maintaining high-volume and AISI samplers.


Brother Joel, Alexian Brothers Hospital, for operating an oxidant sampler.

Dr.  Eugene Tucker, St. Mary's Hospital, for operating an oxidant sampler.

Dr.  French Hansel, for supplying daily pollen count data.

-------
                                  CONTENTS


INTRODUCTION  ........................................      1
MEASUREMENT METHODS .................................      1
   PARTICULATE POLLUTANTS .............................      3
      Suspended Particulates ................................      3
        High-volume Air Sampler  ............................    11
        AISI Automatic Tape Sampler ..........................    12
      Settled Particulate ...................................    13
   GASEOUS POLLUTANTS .................................    14
      Sulfation (Lead Peroxide Candle Method)  ....................    14
      Sulfur Dioxide (West-Gaeke)  ............................    15
      Total Oxidants (Phenolphthalin) ...........................    17
   MATERIALS DETERIORATION .............................    17

   VISIBILITY ..........................................    19
   ATMOSPHERIC TURBIDITY ...............................    19
   AEROALLERGENS .....................................    20
   HYDROGEN SULFIDE ...................................    20
   CAMP STATION  ......................................    20
DISCUSSION OF RESULTS ..................................    21
   GENERAL  ..........................................    21
   DUSTFALL ..........................................    22
   SUSPENDED PARTICULATES MEASURED BY HIGH- VOLUME AIR
              ..........................................    30

   CARCINOGENS .......................................    70

   PARTICULATE SULFATE ................................    75

   SUSPENDED PARTICULATES MEASURED BY AISI SAMPLER
   (Soiling Index) .........................................    75

   SULFATION ..........................................    98

   SULFUR DIOXIDE (West-Gaeke)  ............................   109

   HYDROGEN SULFIDE ...................................   135

   VISIBILITY ..........................................   138

   ATMOSPHERIC TURBIDITY  ..............................   139

   TOTAL OXIDANTS - NETWORK ............................   141

   AEROALLERGENS .....................................   144

   CAMP  STATION DATA ..................................   147

   MATERIALS DETERIORATION  ............................   157
     Steel Panels .......................................   157
     Fabrics  ..........................................   161

-------
REFERENCES	     166
APPENDIX - AIR QUALITY MEASUREMENT STATIONS EXCEPT
    SULFUR DIOXIDE WINTER NETWORKS	     171
        Ascending Order of Site Coordinate Numbers	     171
        Alphabetical Order by Name	     174

    SULFUR DIOXIDE WINTER NETWORK STATIONS	     177
        By Ascending Site-Coordinate Numbers	     177
        By Numerical Station Numbers	     180

-------
                   III.   AIR  QUALITY MEASUREMENTS

                                   INTRODUCTION

       The purpose of Phase  II  operations  of the Interstate Air Pollution Study was
stated in the Phase II Project  Agreement:
              The purpose of the project  is to study in detail air
              pollution activity areas which were determined by
              Phase I of the Interstate Air Pollution Study to need
              further investigation;  assist the two States and several
              local agencies to strengthen and coordinate their air
              Pollution activities  and control programs; develop the
              basis for, and assist with the establishment of an air
              resource management program; provide an operating frame-
              work within the project area for research and development
              work; and do research and technical investigation which
              will add to the body  of existing knowledge on the nature,
              transport, and effects of air pollution.'

       The development of an effective air resource management program begins with
identification of the pollutants in the air, and determination of the quantity and
origin of each type.   The air quality measurement program was designed and operated
to make these determinations in the Metropolitan St. Louis area.  Once the physical
aspects of the air pollution problem are defined, air-pollution-effect data and
criteria as well as opinion  surveys can be used to set the air quality goals.  From
this base, with  use of the pollutant emission inventory, the air resource management
emission control plan can be designed.  At this stage the air quality measurement
program is used  to monitor the  air quality to assure that the goals are attained.
       In additon to  its use in the air resource management program, this report
provides a reasonably complete  list of air quality data in a form that will assist
research and program  personnel  in developing activities and attaining program
objectives.
       Figure 1, a population distribution map of the Study area, is provided to
allow comparison between distribution of population, pollutants, and sampling
measurement networks.
                               MEASUREMENT METHODS
       Essentially two types of pollutants occur in the air, particulates and gases.
The particulates are classified as  suspended and settleable.  The suspended particulates
vary in size from less than  1 to approximately 100 microns;they remain suspended in
the atmosphere for long periods of  time.   Because the settleab'e particulates are

-------
400°°°' 410   420   430   440   450   460   470   480   490   500"  510   520   530  540  550
    Figure 1.  Population from I960 census by 5,000-foot grid squares.

-------
much larger and heavier, they settle out of the air relatively close to their source.
The gaseous pollutants, which are molecular in size, remain mixed in the atmosphere
indefinitely since they have approximately the same density as the air itself.
       Figures 2 and 3 are maps of the area showing the sampling site locations and
delineating the equipment at each site.  Table 1 gives a summary of all equipment
and measurements made during the Study.  Tables 2,3, and 4  give a classification of
each site and the potential air pollution sources around them.  Classifications are
made using a modified Air Pollution Control Association (APCA) designation explained in
Table 2.  The classification describes three circular-segmented zones of activity
around the station: 0 to \ mile, \ to h mile, and % to 1 mile.  A single classifica-
tion has not been assigned to a 360-degree circumference, but is given for 45-degree
arcs centering in the north, in the northeast, and so on around the total circumference.
This system records for eight directions from the samplers, the types of air pollutant
source activity in operation.  It helps with interpretation of data from each station.
       Albums of black and white photographs were compiled to show the sampling
sites and equipment and a view from the site in each principal direction.  These
albums were given to the Illinois Department of Public Health, the St. Louis Division
of Air Pollution Control, and the St. Louis County Health Department.
       Meteorological data are from the Weather Bureau Station at Lambert Field.
Their relationship to data from other years and to the rest of the Study area is
covered in Volume V,Meteorology and Topography.
       The stability classes were determined from meteorological data from Lambert
Field by the Pasquill-Gifford-Turner stability classification criteria.  These
criteria are based on surface wind speed, daytime solar insolation, and nighttime
cloud cover.  They give the following classes: (1) extremely unstable, (2) unstable,
(3) slightly unstable, (4) neutral, (5) slightly stable, (6) stable, and
(7) extremely stable.  For the purposes of this report, classes 6 and 7 are grouped
with class 5.  Thermal mixing, as influenced by solar radiation, is at its naximum
for class 1 and at its minimum for class 5.  The wind speed, however, is lowest at
class 1, increases to its maximum at class 4, and decreases again at class 5.

       The size of the air quality measurements program and the variety of measure-
ments made are a credit to the numerous cooperating organizations and individuals.

PARTICULATE POLLUTANTS

Suspended Particulates
       Suspended particulates were measured by both the high-volume air sampler
and the AISI tape sampler.  Suspended particulates are small particles that absorb,
reflect, and scatter the sunlight and thus obscure visibility.  When breathed, they

-------
320   330  340  350   360  370   380   390  400" 410  420   430  440  450   460   470  480   490   500"* 510   520   530  540   550   560  570  580
                                  ST CH4RLES,
                                ' ST LOUIS  CO

                               JEFFERSON  CO
      LfffHD

BOUNDARIES
  STATE          	
  COUNTY         	
HIGHWAY MARKERS
  FEDERAL        —n—
  STATE          	Q	
EACH GRID CELL ENCLOSES
  36 SQUARE MILES
SHADED AREA COVERS 122
  SQUARE MILES
CIRCLE ENCLOSES 200
  SQUARE MILES
SHADED AREA SHOWS PRINCIPAL
  URBAN AREA	
                                                                                                      EDURDSVILIT
                                                                                                                          160
                                                                                                                          750
                                                                                                                           740
                                                                                                                    SCOTT AF9
                                                                                                 BELLEVILLE>
                                                                                      \\
                                                FESTUS"
                                                       ] CRYSTAL CITY
1
1

-f 	
1
.4. _ __


_l_ —
1
I
— I 	
1

__ J

Ns

•
. I V i .
STATION
irpE
i
2
3
4
5

E
7
8
9

10

II

12
13
^
EQUIPMENT
HICH VOLUME
KICK VOLUME, AISI
DUSTFALL, LEAD PEROXIDE CAUDLE
DUSTFALL, LEAD PEROXIDE CANDLE, CORROSION PANEL
DUSTFALL, LEAD PEROXIDE CANDLE, SO? SOTBITIAL. AISI, HIGH
VOLUME
COITOK CLOTH, NYLON CLOTH. AISI
COTTON CLOTH, »< LOB CLOTH
COTTON CLOTH, NYLON CLOTH, AISI, H IGH VOLUME
OUSTRLL, LEAD PEROXIDE CANDLE. CODROSW DWEL. AISL HIGH
VOLUME
DUSTFALL, LEAD PEROXIDE CANDLE.COTTO«CLCm,NYLO« CUTH
AISI, HICH VOLUME
PUSTFALLLEAD PEROXK CAWE.CORJIOSI™ »NEU NTLON aOTH,
S% SEDUOITIAL. AISI, HICH VOUlOdOANT
DUSTFALL. LEU PEROXIDE CANDLE.CODROSIOII PANEL.COTTW CLOTH,
*
-------
                                                               AND DIFFUSION MODEL STUDIES
                                      LEGEND
                                BOUNDARIES
                                  STATE           	
                                  COUNTY          	
                                HIGHWAY MARKERS
                                  FEDERAL          —U~
                                  STATE           —O—
1963-64 SAMPLING
OPERATION
ADDITIONAL SITES FOR
1964-65 SAMPLING
OPERATION
J80   400"r 410   420   430  440   450   460   470   480   490   SOO""' 510   520   530   540   550   560
         Figure 3.   Sulfur  dioxide sampling network for winter seasons.

-------
o
o
H
2
W

2
W
<&
D
OT
<
W
a
w
£
V— I
H
ID
O
O
 ff!
 ID
 OT
 ,0
 rt











in


I













1

E
CO
u
4-1
X
to
e
1 <



g

a
c
1

2


o «-t
c
X U
U E
C 0
] Frequt
measui



1
3
UJ



•s«
c
h 0


|3






£
*
3

cO


^












in

.

,

.








N
•C
N

i/l
N
vinetric
0)


tl
4>


* TS
C

«j ~* 3
J= JO —
ec 3 o
41 O C
5
p.
E
«
« -C
M C
C
Kl
-t X
« -o
1*H
*J 1
U 4-»
-* 0

in — »

^ o














a



3
—
I-
O
tn




g

m

e
cO *
4-1 VI
in 4-*
giL
a.
•o 3
D V)
ta «
— t co

C 3
4) in

• M 4>
3 .C
cr 4-t
LU O
O 4> U *O
J= E ••* -
4J -H V. K)
S> ** (O
ss~
4> CX-H K)
•o -a -
O ft> h •
— : «-> 3 o
.n « 4- to
0 <*H
E 3 C -
3 « a CTi
•H (N
t* t* o -
CO O —t 00
EC **- t* fN

4)
-a
•H n
x co
o
«-* c

3 E »
<4- 4> <4-
111
u
C-
E
a
tn .c
>. c
ca o
3



-o
£
4>
O- 4)

TJ 5
* C
4i ta




•&






c
o


C0
(44

3
W


O


4>
E
O
14-

41 •
CL W
4)
41 -H
t- O.
in
in
0) <*-
in 0
X
ca o
C "H
ca 4-*


•^ _
ca ~<
C M
\c
K)
0

u-i
vimetric
ca





4-» ta


* t
"cit a
o "*-
H 0


X
(- CO
o -^.
'1
— 1 W)



ft> ti
E ft)
3 ^
-. a.
gi
i m

« t.









in
0)

•O n»

•^ 3
C U
4) -rt
0. 4-1
in u,
3 M
Ul G.




























GO

rO
U
«a
o
CL
A


oc
•H 1-
— t 4)
CL

4> ^
DC 4)
e *-*
u <*-


X
a
^ -o
° £
r-< in



V
Cu P,
Vi CL.
in *• w
•> -^
N- •* CL
CO ^ E
•< t*-« m









4)
*->
•o to

•3 3
C U

C- 4-»
in ^
3 ca


X
3 w
4-t 4)
in ~H
0

i X



p-H -H


c
H C
h O
3
T3 -0

in 4-t
IH CO
4-1 O

•T-l
t4-l 4-t
4) C
(4 4)
a E

4> 3
tn cr
rj-
c


CU
re 1/1
•a T
c •*
ca

ci 
JC (0 CD
4-t be
4> in C


O 3 E
Q. *J H



O









0)
^ 13
3 ••-!

— < O

to *o






























4)
ro
•u
c
CO

4)


4)


X
0
•o
^
5
5


X
ea
o «
CM PL
^ M
i -C
C *-• v.
4) -H t-i
3 * 41
O- DC
0) M C
U p. E
ta in 4-t

O -H OC
w rt *O
< **J E















3 -<
M- X
-H O
3 ^


»
E

ca

o
o

01

4-1
cO


4)
U E*
4) •
^H G.

O 0
U O
f-,
SI
cO
in
4) -

12

r-
sD*

C
•^
nolphtha
49,50
4) -
.£ 00
O- t




c
CQ
tJ
X
O
CO
O
H


*-> ca
3 T3
C -^
^ in
0 CL
^ E
«
rO in
w,

OC
C
I
4-t

BO

Z



Ov










c
«J

•H

C




























CM

S
U
4)
I
O
£
2


00
•*4 C 1*

•i-t « CL
*» E fc.
OC tfl 4>
e c «->
ca n -H
U *J <*-


X
CO
O tn
rM CL
— t in
H E
* **

t-. a>
4) W
-< cO
« rt


tn n >
>-. 4) <



CM








c

OC t3



X 3
™ in


.-



t r-
o <—<
C7> OO


4> ao

•i-i
in 4)
4-t
W -H
co v>

tn 4-t
4> CD
I-
in G.
«l
TJ tn

•si
O J=
4J 1^
O 3
ec 6



ca
jr
•H
*£
£8
•t-t in
££
3 U
5'S





•o
a
c
4) n
^ T3
£8


X
IH CO
o •--.
ca
— < in
T3
C

KI tn
-• E
in co
O ^
u ^
O 3
o: c







tn
C
4)
QC
t*



cO
O

4)







O



C


4)
cd Z*

4) T3
»- C
UJ
in
C "
O tn
•rJ C
V O
rt -H
£ s

15


g

|
ID
o
s
V)
f-4










C C
O ^

4-* X
CO — Ci"
> — c
t-< CO -H
Q> D C

O E

M

ft)
O
c


=










X

H



H


:>


c



a>
•o
CO
E

4>
£>

O
c



§£
U 3
u

C .£!
0) o
E
4> in
IH CO
3 f
in
cO c
4> 3


SO
Ul
o
tj:  u-





U
4> i*
"O.T
M r
§•

x :

•a ••
o * .
*-» •

0 JJ
V 3
§ £

t-,
41
4-*
E
O
O
C-

c
3










•H
^ X
a> 4-1

D.T3



4-J 3
•< *-*


























C.

C

*J^ X
u *->
^ 13
ft) *3

fn c
U > «





II
- 4-* U
•0 •S
2 S
•p DC U
Ci a


§tn in
x J=
4-» 4-t
* C C
7 i i
00 ^ !
1 CM fN



i/i in •— <
— -• 4)
4) 4> C !
C C CO
ca ca CL
CL a.
c
-H C 0
a> o *->
CD ^ w
4-1 X O
in z o







c
o


in co

cB O
-rH — H
I-I (->
a> 
-------








(i


O

H
U
W
~j
I— (
Q
O
H

L_|
U
W


to
W

f-H
ffi
H
! '


H
H
I— j
in
O
1 — i
ex
b
m
O


H

y
h
co
10
<£J
U


re
o
u
LL.
C/-,

n
LL;

«
ro
^
2
(H

3
"O
C
-O
re
0)
w
re
(H
o
tn
c
ra
*^
o
aj

0 Z
4J V)
O ^H

E
'E *;
^-" O

c re
o
•-I i-i
4-> C
re re
IM -H
O C-
C-
o •—•
re
O rH
> E
ffl V
t- X
c; L-



CO LU 2 CC tj
CO < < L3 L3
CQ < <£ CO U


< < < U C
CO < < CO U
S S | S S
CO , ^ 4J § G'


w -H c "a • *

ft) H H « H
•~" E *-» re " w '"
•-i re o * fa in y.
E fl> E •" w 6t
S S = vt m
(N-^o.£ ^ " ** J!I
^To0^ 7 C"EE
^.5 SI ^ ^^r,
§CEB^ c U « «
'5 ° ^ ° H s « s
>-«4>LLl*-* ** ^ tn"*^."
^^ * 'u o o V)
O 3 ,— , u ^^ O O
-, .tj 'g & S "g B. a
> ^H DC E Jtf C C :
S MCI—* -"(dnre
Z QfH_* LU-^3^I^
2 -o CM o u^aibcbc
in— LU*^^" «(««•«•-
o^ 2: 3 •- a> u r4°'n^
3^ ^  )
•IH -H H W T3 4> <+- C C X-H C C
j^ o ^ HFHOIHLLJ «-.ha>j:(-ta>
C_j ~ (_) C 
-------
H
O
W
rt
r-H
Q
O
H
H
O
W
(In
C/}
W
rt

ffi
H
 W
 H
 I-H
 cn

 0
 PH
 O
 I-H
 H
 <
 O
 I-H
 h
 H-l
 OT
 OT
  <
  J
  U
   o
  u
  rj

   0)




















VI
Jtf
cc












S*
•H V
«-» CL
* X
«-> «-»
VI
i
2
to
§«
U
£
•iH LU
UJ
UJ
z
h
4
+J
n
4) C
£|
o
U



c
n
V)

u
£
o

c

0
v
E
V
C
u
c

LU
z

4>
E

"^
ee


process:
ss NW.
e —
J~


™*

CO
CD
CO
CO
CO
CD
CQ
U.
u-
eo

u.
U
CD
§
1
cc
CD
03

CO
LTl
XI
00




t,
O
S

c
u
c


2
2

—
-H

(N
60
C
M
(A
V
U
o
O.
C
f-i
n
rH

LU
z
4)
H
(N
•^

oc
c

tn
4) uj
U CO
CL —
C E


*

CO
CQ
CD
CO
CD
ce






CO
CQ
CD

I
00






M
U

£
V
JZ


UJ
«

E


"J*
C
rt

CL
4>
O
G.


C
o
LJ 4-*
cO
4> r»
•H C
E **
o
IN C
C OC CO
O C
•-* HO
r- 4> E
1 Is
U C *-"
> -H C
M rt «
(J U CL




LJ CQ
UJ CC
< CQ
LU CD
UJ CO
< CO
LJ CO
< CD
< CO
C) co
8 S

d U-
Si b
8 it
O LL.
L3 u-
< C_J
-U Lu
< u
< CO

(N 00
00 CTl
00 00





LU
CO

—
E


C
CB
Cu

rt
rt

. 1
CO U
i/i
4> UJ
— Z
E V
CM H
E
*J
C IN
« *x.
D-

CC iH
4> 4)
-C C •
U r* LU
u
• C in
LU rH 4)
Z — •
•£ "O -H
z tn c e
4> n
O — > W^,
"" E 5 7

c u c
c « o to
L. — fM —
3 D. CL CL
r. C *H
O 4> H 
n E

r. —
-a z
c
Z E

4) -H
O •
•t 03 *

OC Q)
*-* C — i
C -i •«
a c E
0- 3 —
V C C
> a> ra
O CL —
B- O CL




11
fe 3
LS U
LD <
U <
t; <
a s
cu -5

UJ <
u. «c
LU <
LL, <
LL. ^
LL. -rf
LU <
U. <
tt, <
Lu U

0 Ot
i s


,.
LL,
0)
• H
E


C
rt
CL

—
V


i*

u
E
TT
to
rt
n
rt
1-
4_)

3
-a
c

uj
U

r- CO
E
4>
rH
rt E

n c
'r- 3
3 O
C 3




§
3
LU
O
LU
LU
C!
U.
g

Lu
g
Lu
LU
C
LU
LU
g

at
0
in


__
n
'£
£
3
T)
C
• rH
C
rt

4-*
C
a-

u>
UJ 2
CO O
a.
V
H CC
E
in

Ed -r4
a> E
B (N
ce *
S d
3 tfl
-o
c
rH Z
V)
LU 4)
T3 T3 — 6
4) 4> r* (N
-rH rH —• UJ
—« -^ rsi i Z
•rH ^ — V)
r-l t- | (P) 4>

3 3 a. S "e
-a -o E
c c 3 — M
X X OC r- I
> > c 3 «
ca m M T) a>
4) 0) 3 C r-
I ~ CQ — «


—

5UJ LU LU U,
LU LU LU LU
CO LU t; CD O
U LL, LU C7 Lu
LJ LU UJ CJ U-
U Lu U LU O
(J LU < U LU
O LJ tj UJ U-
O Lu (J UJ O
U U LU LU UJ
L= LU rf LU LJ
a u. < m O

U. Lu U LU U.
U. U. UJ U. LU
LU LU o CQ a
U CQ 11. LU CQ
U LU LU LU (J
a LU aj CD S
CO CO LU UJ LU
CO Lu LU U LU
CO Lu LU CO O
< LU U- U LU
CD LU U. UJ LU
CO LU UJ DQ C

Of i* O •* IO
O O O (N —
m co a> o> — •






»


c —
« -rH
— E
CL
(N
V 1
«-> (N
in
OC C
c n
1 *
C 4)
1 ^

Z (N in
V
TJ « —
C 0) •-•
CQ rH E
n
CO CL

t/} «J -O
V)
3 M
CO TJ C
LU" '5 £
CO •- 3
Z ^!
n
rH 4) Z
n —
— E V
CO —

*J t.
lie
C r.
--H OC 3
C £
> c o
O 3 3
!Z CD <1

-


u. ec <
LU U <
U. CD C
U. Q C
Q U <
LU LU <
a. u <
c u <
LU co tj:
LU CO 
rH
CO
«

Ut
*J
3
-o
C
•H
CO
0)
E
rM
T3
C
rt

V
E •


4>
X —
U E
C
CL
O 13




CJ (^
c; ts
c; <
o u
§ s
H |

U LU
Si 3
Si it
U UJ
U LU
(^ Lu
L3 LU
C3 LJ

M O
(••* O
m in




CM
"^


1

ex
C
E £•
3 4>
£ C
.- £
UJ 4>
tO rH
— O
E X

•o
in 4>
|g
c' 3
H V)
c
rH •-
3 2
JD
(/I
.. 0)
z ^^
in E
— IN

rg CO
-H CL


U
i-S
3 CL
or co
C
• rH V)
E.2
S e

OO


<
LJ
LU
Lu
Lu
LU
LU
LU
LU

Lu
LU
Lu
<
LU
LL.
2
LJ
2
LJ

00
O
Lrt

LU
C/"
4)
•^
^


1


"rt
U

V
"y

UJ
CO
V)
V

r*
P-
Ofi
C

£
t-i

uu
r^i

-H
*->
C

CL

-------


rt
O
H
U
w
t— (
Q
O
H

H
U
W
w
W
«
VTH
h
H"H
£

co
W
H
HH



o

^-i
t~H
/^
P.


i«^
~H
H


re
o> c
M -a
tr t-
o
o
u


















00

3
<




_, fV) -*




C O tJ
< U U


< L3 U
< (J U


Sou


< u 

U
X)
fn
U
V)
4)
•O
C
O
•1-1
+J
CO
o
C!
In
tf>
cO

M
C
O
^
o
<4^
(U
j^
H
re
























A
E
D
(-
C
o
c
•o
c
rt
V
h
L>
n

4J
D-
V)
*^
C
3

oc
c
4>
3
•o
2


5
w
VI
a>
X
w

i/i
c
0
•o
X
-H
CQ

c
a>
T3
(U
a:
1
<



































u
^
u
nj

^
U
CL

4^
C
3

ew
C
^
TJ
3! V
•v u
C 'h
m
c *••
« -o
4-> C£
U i-*
^ a.
O P-
E O
(/i
X

« o :
c f.
at H
Tl O
J3
j= x:
W DC
J^ OJ
cq -H —

c o
0) t->

« e e
OJ O O
1 1 1
=O U ^

















































rt
-H (T3
re •«
r4 4-J
W C
C V
V 4->
o ex
CL
C
S 2
3 ^

5 S
O CL.
C-
t-i
h *H
•H CO
rt
j=
* 00
O <-i
JZ JZ
iH rH
* 5
*~T ^
cd co
tH tri
*-> w
(A V)
% -5
C C
' *
OJ U.

















































^
«
O
l^

(-.
bC
(-,
a

o
V)

o.
M
C
V
3
•o




rt
H
3
a:
1
O










                i—i   U
                    SI
  O U U ^C. H ,
         s-5
         Hi
         r ° «
       o o o 
-------
                                                 o
                                                 I— I
                                                 H
                                                 U
                                                 W
                                                 O
                                                 H
                                                 H
                                                 U
                                                 W
                                                 &
                                                 CO
                                                 W
                                                 rt
                                                 ffi
                                                 to
                                                 W
                                                 H
                                                 n
                                                 CO

                                                 O
      D U

      01 U
 a  u

 eu 73
 c  c
 t)  co
 cv

 § .2
 01  t*
4J 4J
 t/)  tn
    3
 O 73
 3  C
         b
      V)  O

     rt  eu
     •|H  IT
      E

     IN W

      I   0)
         C
     rt  01  4-1
     Q. C  C
         O  co


     3  «T °~
     •H  4->  ^
     ECO)
     0)  CO  3
                                                                                                  3
                                                                                                                            T3
                                                                                                                             C
                                                          3
                                                          0
                                                          .C
                                                                                                                       4->    C

                                                                                                                        §   ^
                                                          CO
                                                          C-
                                                                   o.


                                                                   u
                                                                   M
                                                                  •H


                                                            *    3
                                                U   CO

                                                ••   a
                                               £
                                                     t,
                                                V>   V
                                                U   3
                                               rt   O
                                               •H   a.


                                               r*l   irt
                                                    73
                                                i    t<
                                                     CO
                                               rt   X
                                                a   «       -
                                               rt   jr       o
                                                3    2   -  S
                                               •,-.    co  «  3
                                                e    E  73   o
                                                U       V.   «)
                                               J=   oi  co  H
                                               U   a:  X  w
                                                                                           »,
                                                      ^H  ""
                                                      3  *
                                                      73  E

                                                      M •"
                                                      B"   5    8
                                                      3 -H   «    4J
                                                      ca  E  x    co
                                                                                                                                                              rt
                                                                                                                                                              u
                                                                                                                                                       H   -rt
                                                                                                                                                              a
                                                                                                                                                             CJ
                                                 CO

                                                 W
                                                 Q
                                                 I-H
                                                 X!
                                                 O
                                                 I — I
                                                 Q

                                                 rt

                 g   s
                 §   s
                 CQ   CQ
                          1
                                                                                                  1
8                                                             PL)
                                                             «
                                        Cb
                                        8
                                                                                B:   S
                                                                                o   o
                                                                                                          PQ
                                                                                               <    PL,
                                                                                               5    S
                                                                                               <    PQ
                                                 CO
                                                 fa
                                                 O

                                                 z,
                                                 o
                                                 I— I
                                                 £H
                                                 <
                                                 U
                                                 to
                                                 co
                                                 U
w
                                                                        H
     e
     pa
I
                                                                        8
                                                                        0
                 1    1
            1   g
pn   pg

PQ   PQ


PQ   pa
                          1
                                                      w
                                                      M
              CO   PL.   O
              8   H   5
              9   S3
              O   W
S
                                                                                                  fc   PQ
                                                                                                  w   CQ
                                                                                                  CM   CQ
                                                    CQ
                                                    CQ
                                                    s
W
a
                                                                  o
                                                                  o
                                                                  o
                                                             »   ^
                                                             m   u
                                                                                     o   pa
CQ
O
O
              <   p>   PL,
                   £   9
                                                                                   *<   &
                                                                                   Q   PQ
                                   i
                                                                                                     o
                                                                                                     <;
                                                                                                     pa
                                                 CO

                                                  o
                                                                   41

                                                                   CO
                                                               4)  C
                                                                                                                       rt   00
                                                                                                                       h~   cn
                                                                                                                                          o
                                                                                                                                          LO
                                                                                                                                                  en   fN   oo
                                                                                                     O   rt
                                                                                                     LO   LO
                                                                                                          ro   *H
                                                                                                          i/i   tn
                                          10

-------
      Table 4.  CLASSIFICATION OF OXIDANT NETWORK SAMPLING SITES
                         WITH RESPECT TO DIRECTION
Site
coordinates
449-719
4S8-7SS
482-697
485-714
490-713
501-713
507-741
509-710
Direction
N
BBB
BBB
CBB
CCB
ODD
DFF
BEE
CCE
NE
BBB
BBB
CCF
CCD
ODD
DFF
BBB
CEE
E
BBB
BBB
CFG
CDD
ODD
DCB
DDC
CDE
SE
CCB
BRB
CFG
CEE
UDF
DFF
CKF
CBB
S
CCC
BBA
CFG
CEB
DDC
UCE
DFF
CBB
SW
CAA
BBB
CCB
CEB
DEB
DFF
DFF
CCE
W
CAA
BBB
BBB
CFF
DEE
DFF
DFF
CDB
NW
CAA
BBB
BBB
CCC
DDC
DFF
DFF
CCB
Remarks
Hospital power plant 1/4 mile NW.

Grain processing 1-1/2 miles NE and 2 miles
incinerator 3/4 mile Sb.
Industrial area 1-2 miles W.

Industrial area 1-1/2 miles E; 1-1/2 miles
power plant and industrial area 1-1/2 miles
Heavy industrial area SE, S, SW, W and NW,
including steel mill.



NW;


S;
NE.


penetrate deeply into the lungs.  They also cause economic loss because  of their
soiling and corrosive properties.

       High-volume Air Sampler - Suspended  particulate  samples  were collected with
high-volume air samplers '   '    (Figure 4), which operate  somewhat like  a vacuum
cleaner.   With this method,  glass fiber filters  are weighed and mounted  on  the sam-
plers.  Air is normally drawn through the filter at a rate of about 50 cubic f«et
per minute.  During the Study, transformers were placed on the  samplers  to  increase
motor life and decrease brush wear.   These  units decreased the  average flow to about
35 to 40 cubic feet per minute.   After 24 hours  of sampling (from 2:00 p.m. to
                      Figure 4.  High-volume air sampler.
                                                                                11

-------
2:00 p.m.), the filters were reweighed to determine the increase in weight due to
the particulate matter that was removed from the sampled air by the filter.   The
results are expressed as micrograms of particulat'es per cubic meter of air sampled.
       In addition to the total weight of the sample,  metals,  organic  content,  and
certain organic chemicals were measured on selected samples  by the U.  S.  Public
Health Service Laboratory of Engineering and Physical  Sciences.   The filters  were
saved for possible further analysis.
       The particles consist of dust,  smoke, and fumes;  they come from incomplete
combustion of fuels and wastes, gravel handling and crushing operations,  metallurgi-
cal processes, chemical processes,  grain handling operations,  earth moving operations,
and many other similar processes.
       The sampling schedule for the  high-volume sampler network was a combination
of continuous weekday and random sampling.  At the beginning of the Study a random
sampling schedule of 100 days was  established for the  period July 1, 1963, through
June 30, 1964.  In addition to the 100 days, 75 percent  of September and  all  of
October were to be sampled for a total of 141 sampling days.  This schedule was
altered during the Study so that continuous weekday sampling was performed from
September 1963 through March 1964  and the random schedule was followed during the
other 5 months.
                                                    •7 n  -7 o
       AISI Automatic Tape Sampler -  The MSI sampler   '   (Figure 5)  also collects
suspended particulates and operates by drawing air through a small area on a  strip
of Whatman No. 4 filter paper at a rate of approximately 0.25 cubic foot  per  minute.
After 2 hours of operation, the sampler automatically  shifts the filter paper to a
new position and continues operation.   The quantity of material collected is
    Figure 5.  Sequential sampler, AISI  tape sampler, and AISI tape reader.
12

-------
determined by the difference in the amounts of light that pass through the spot  and
the unexposed filter.   The results, expressed as Cohs (coefficient of haze) per
1,000 lineal feet, describe the soiling properties of the air.

Settled Particulate
       Settled particulate, or dusTfall, '   '   measurements determine the amounts of
heavy airborne particles, i.e., those that  settle from the air readily.  Settled
particulate measurements vary greatly both  between and within urban areas since  they
are affected by many variables such as commercial and industrial activity,
construction, fuel use patterns, meteorology, traffic patterns, and solid-waste
disposal practices.
       These large particles are usually trapped or filtered out in the upper
respiratory tract and do not enter the lungs.  They do, however, settle and cause
horizontal surfaces to become dirty.
       Dustfall was measured by exposing 5-quart, 8.25-inch-high, 7.5-inch-diameter
mouth, plastic jars in suitable stands (Figure 6) on a roof or other support for
1-month exposure periods.  The jars were covered after the exposure period and
             Figure 6.  Dustfall bucket \vith metal  corrosion panels and
                        sulfation candle.
                                                                                 13

-------
returned to the laboratory, where the water-soluble and -insoluble portions were
determined.  The results are expressed in tons per square mile per month.
       A common practice for dustfall sampling is to maintain a liquid level in the
jars to prevent the particles from being blown out.  In this Study the jars were set
out dry.  A study was performed at the Taft Sanitary Engineering Center in Cincinnati,
Ohio, to determine whether there was a significant difference in collection with the
two methods.  This study, although not conclusive, showed that up to 50 percent of
the solids collected may be reentrained into the atmosphere when the bottom of the
jar is dry.  Being exposed to the elements, a dry jar naturally becomes a wet jar
when it rains.  The amount of dust retained depends then on how much and how often
it rains, and the evaporation that takes place between rains.  During the study
unusually dry weather was experienced at times; therefore,  the dustfall data recorded
were undoubtedly conservative (low).
       The Cincinnati study also showed that dustfall jars  10.75 inches deep were
not more efficient than the 8.25-inch-deep jars used in this Study.   The results of
this Study are given in the Interstate Air Pollution Study  Memorandum of Information
and Instruction No.  6a,* "Collection and Analytical Procedure for Settled
Particulate."

GASEOUS POLLUTANTS
       The gaseous pollutants measured in this Study were sulfur dioxide, total
oxidants, and hydrogen sulfide.   In addition to these measurements,  the CAMP
(Continuous Air Monitoring Program) station, which began operating March 1, 1964,
sampled the air for carbon monoxide, nitrogen dioxide, nitrogen oxide, total
oxidants, sulfur dioxide, and total hydrocarbons.

Sulfation (Lead Peroxide Candle Method)
       Basically, the sampler (Figures 6 and 7 ) consists of a cylinder around
which is wrapped a gauze coated with a paste containing lead dioxide.  Sulfur
dioxide gas and certain other sulfur compounds react with the lead dioxide to give
lead sulfate.  The samplers are exposed for a period of 1 month and then analyzed
for sulfate.  The results are expressed as milligrams of sulfur trioxide per 100
square centimeters per day.
       The reactivity of lead peroxide varies from one batch to another; therefore,
enough lead peroxide was purchased to last the entire Study.  So that the results
of this Study could be compared with those data obtained from other areas, the
* The Memorandums of Information and Instruction cited throughout this report were
  directed to the project staff and constitute a detailed record of the procedures
  employed.
14

-------
                  Figure 7.  Lead peroxide candle and shelter.

batch of lead peroxide used was standardized against a standard lead peroxide
purchased from Research Appliance Company which in turn was standardized to the
British standard Batch Type A.  The details of this standardization are given in
the Interstate Air Pollution Study Memorandum of Information and Instruction No. 13,
"Standardization of the Lead Peroxide Candles."  During the Study the Illinois
Department of Public Health Division of Laboratories successfully developed and
tested a turbidimetric method for the determination of sulfates in lead peroxide
candles.  This method is reported in Memorandum of Information and Instruction 6C,
dated March 1965.
       Sulfur oxides, which include sulfur dioxide, in the ambient air are of
interest because of (1) their harmful effects on the health of humans and animals,
(2) their demonstrated harmful effects on vegetation, and (3) their economic
effects as evidenced by materials deterioration and metal corrosion.
       Sulfur dioxide in the air is thought to undergo changes in the following
sequence:   from sulfur dioxide, to sulfur trioxide, to sulfuric acid, and finally to
sulfate.  Although these changes are not fully understood, the intermediate product,
sulfuric acid, is known to be a greater hazard to health than the sulfur dioxide
from which it comes.   Sulfuric acid, because of its hygroscopic nature, occurs in
the air in small droplets,  which, among other effects, reduce visibility.

Sulfur Dioxide (West-Gaeke)
       The West-Gaeke method for measuring sulfur dioxide uses tetrachloromercurate
                              39
(TCM)  in a collecting solution.    The air is bubbled through the solution, which
collects the sulfur dioxide in chemical combination.   When certain dyes are added
                                                                                15

-------
to the solution,  the color changes.  The  intensity of the color change is measured
by a spectrophotometer and related to the sulfur dioxide concentration.  The results
are expressed as  parts per million by volume (ppm)'.
       Two types  of samplers  were used during the Study.  The automatic sequential
sampler (Figure 8)  collects twelve 2-hour samples over a 24-hour period, and the
24-hour sampler (Figure 9)  collects  one sample over a 24-hour period.
                     Figure 8.  Two-hour  sequential sampler.
              Figure 9.   Twenty-four-hour composite gas sampler.
 16

-------
Total Oxidants  (Phenolphthalin)
       The total oxidants were measured by bubbling air through a solution of phenol-
phthalin.  In this procedure, the oxidants change the phenolphthalin to phenolphthalein
and the color of the solution changes.    The color change is measured by a spectro-
photometer, and the results are expressed in ppm.
       The components of the oxidant sampling train (Figure 10) were arranged in the
following order: 18 inches of Teflon tubing, a bubbler containing the phenolphthalin
solution, a trap to collect any entrained solution, a rotometer, a valve to control
airflow, and a pump.  A timer was installed to stop the pump automatically after 10
minutes of operation.
       Total oxidants are important because they indicate the presence of photo-
chemical reaction products, which cause eye irritation, damage to vegetation and
rubber, and reduced visibility.  The oxidants (ozone and others) result from
photochemical reactions involving nitrogen oxides and hydrocarbons in the presence
of sunlight.   High concentrations of true photochemical oxidants generally occur on
days with low wind speeds, clear skies, and strong sunlight.

MATERIALS DETERIORATION
       The relationship of air pollutants to the deterioration of materials was
studied by exposing cotton cloth, nylon cloth, and steel panels.  This study was
made not only to obtain information concerning the Study area but also to develop
methodology for determining economic damage due to air pollution.   The cloth
deterioration study was unique in that it was the first attempt to relate air
pollution to deterioration of cloth.
                            Figure 10.  Oxidant sampler.
                                                                                 17

-------
       The steel panels (Figure 6)  were 4 by 6 inches  by 1/16 inch  thick.   The
amount of corrosion was found by determining the loss  in panel  weight  after removal
of corrosion products.   Eight panels were exposed at each of 35 sites.   The exposure
periods were 2, 4, 8,  and 16 months.  At the end of each period,  two panels were
removed from each site and analyzed.  These panels are referred to  as  top  and bottom
because of their arrangement.
        Seven  sites  were  equipped with  cotton  panels and eight  with nylon  panels.
 Two  weights of woven  cotton  cloth  were used,  a  light  cotton  print  and a 10.10-ounce
 army duck.  Initially  12  panels  were set out  at  each  site,  and one panel  was removed
 each month  for a period  of 1 year.  Each panel was analyzed  for  residual  strength,
 pH,  fluidity  (a chemical-physical  measure of  degradation),  and visual appearance.
 Figure 11 is  a photograph of a cotton-exposure  rack.
                         Figure 11.   Cotton exposure rack.
        The nylon panels were exposed 1 year also,  but were not removed from the
 sites.  A monthly visual observation was made to note any physical degradation of
 the panels.  Since nylon is very sensitive to acids, the panels were examined to
 determine whether any small perforations developed.  No physical or chemical tests
 were performed on these panels.

        A short-term corrosion study was conducted from December 1, 1964, through
 February 28, 1965, as part of the 40-station sulfur dioxide sampling network.  The
 methodology for this network was the same as that used in the earlier study.
  18

-------
VISIBILITY
       When relative humidity is below 70 percent,  decrease in visibility is due
primarily to particulate matter in the air.   An adverse condition for airport
operation exists when visibility is less than 3 miles.   Visibility observations
were taken at the Project Field Office in downtown  St.  Louis,  coordinates 493-713.
Observations were usually made in the morning in two directions,  southwest and east.
At the same time, observations were taken with the  Volz Sun Photometer,  an instrument
being developed to measure atmospheric turbidity directly.   This  method  offers
considerable promise as a new and economical method of measuring  air quality.
ATMOSPHERIC TURBIDITY
                            56
       Atmospheric turbidity,  as the name implies, refers to materials in the air
that reduce its light-transmitting capability.  For the most part these are small
air pollutant particles.  The effect of water vapor is excluded by selection of
0.5-micron-wavelength monochromatic light with a filter.
       The Sun Photometer (Figure 12), which measures turbidity, consists of a small
wooden box containing a filter, photoelectric cell, microammeter, and level.  It is
sensitive to 0.5-micron-wavelength monochromatic light.  Attenuation of this light,
after correction for the optical air mass, is a measure of turbidity between the sun
and the photometer.    Most of the turbidity is within a few hundred feet of the
ground.  Values range from 0.02 in very clean air to 0.60 in dirty air.
                            Figure  12.  Sun photometer.
                                                                                19

-------
AEROALLERGENS
       Pollen grains are one of the many aeroallergens that come from natural
sources.  Pollen grains, a primary cause of hay fever, come from weeds, grasses,
trees, and other vegetation.  Since pollens arise from vegetation, they are seasonal
in character.
       Pollen data were collected by exposing adhesive-coated microscope slides   at
site 481-718.  Collection was done by an allergist who makes daily counts during the
pollen season.  In making his count, he follows, in slightly modified form, the
American Academy of Allergy gravity method, in which slides are exposed in a
horizontal position in a shelter for 24 hours; the pollens are deposited on the
slide by gravity and impingement from wind currents.  The American Academy of Allergy
counts the number of ragweed pollen grains per square centimeter by making a little
over four crossings of a 22- by 22-millimeter (mm) cover slip using a 1-mm field.
This number is converted into grains per cubic yard by multiplying by 3.6.  The
local allergist counts the number of pollen grains per 3,6 square centimeters by
making eight crossings on a 22- by 22-mm cover slip using a 2-mm field.  This number
is equivalent to the grains per cubic yard and does not require a conversion factor
as does the Academy's reading.

HYDROGEN SULFIDE
       Hydrogen sulfide comes from the manufacture of coke, distillation of tar,
petroleum and natural gas refining, kraft process pulp mill operations, other
chemical processes, and anaerobic decomposition of putrescible matter.   It has a
very obnoxious odor and can be detected in concentrations as low as 13 ppb.   At
very low concentrations it tarnishes silver and copper and blackens lead-base
paints.
       Two hydrogen sulfide sampling stations were operated during this study.  They
were situated at site coordinates 505-740 and 510-742, where they operated during
the fall of 1964.   The samplers were AISI units equipped with lead-acetate-impregnated
paper to sample for hydrogen sulfide".  Twelve 2-hour samples were collected per day.

CAMP STATION
       A Public Health Service Continuous Air Monitoring Program (CAMP) station was
installed in St. Louis in January 1964.  The station, southwest of City Hall on the
northwest corner of 12th and Clark Streets (coordinates 490-713) began operation in
March 1964.
       The station was equipped with six automatic instruments that sampled the
atmosphere continuously to measure carbon monoxide, sulfur dioxide, nitric oxide,
nitrogen dioxide,  total oxidants, and total hydrocarbons.  The basic instruments
20

-------
consist of a gas train, detector, flow-measuring equipment, and a pump.  They are
equipped with a strip chart recorder, which gives a continuous record of pollutant
levels, and an analog-to-digital punch tape recorder, which contains 16-channel
paper tape.
       Carbon monoxide is determined by an infrared analyzer.  Nitrogen dioxide is
determined by colorimetry in which Griess - Saltzman reagent is used.  The nitrogen
oxide present is converted to nitrogen dioxide.  The total nitrogen dioxide is
compared with that previously measured, and the difference between the two determina-
tions is attributed to the nitrogen oxide.  Total hydrocarbons are measured by a
hydrogen flame ionization analyzer, and sulfur dioxide is determined by electrical
conductivity.  Oxidants are determined colorimetrically with potassium iodide as the
reagent.
       Every 5 minutes the punch tape recorder punches a number in binary decimal
code on the strip chart.  The 16-channel tape data are automatically placed on
80-column punch cards, which, in turn, are processed by a computer to provide
statistical summaries of each pollutant.

                               DISCUSSION OF RESULTS

GENERAL
       Over 50,000 pieces of air quality measurement and meteorological data were
processed during this Study.  A summary of the kinds of measurements made is given
in Table 1.  Table 2 gives a description of the area around the sampling sites,
and Figure 2 shows the location and types of equipment at each site.  The details of
the design of the aerometric network are given in the Interstate Air Pollution
Study Memorandum of Information and Instruction No. 12, "Design of Air Quality
Measuring Program."
       A statistical evaluation is made of data from each type of air quality
measurement.   The arithmetic and geometric means and their standard deviation are
determined for the year, each month, and each season.  Spring is considered to be
March, April, and May; summer is June, July, and August; fall is September, October,
and November; and winter is December, January, and February.
       In general the sampling day was the period from 2:00 p.m. of one day to
2:00 p.m. of the following day.  The sampling day is referenced to the starting day
rather than the ending day.  Except for a few instances where operation records were
not clear,  all data refer to central standard time.
       In this report data are reported in the text to agree with tabulated data
direct from computer printouts.  This arrangement facilitates use and checking of
both.   It does,  however, give the appearance of greater numerical significance than
is warranted  or intended.   Dustfall and suspended particulates should be considered
                                                                                 21

-------
valid to the nearest whole number, and Coh values,  to  the  nearest  tenth.   Other
pollutant measurements should be  interpreted on  the basis  of known limitations  of
the measurement methods.
       The results from the high-volume air samplers,  the  AISI  samplers, and sulfur
dioxide samplers were related to  wind direction,  which  gave a graphical  representa-
tion of wind directions and a group of specific  air quality measurements  taken  at
a fixed site.  This method of data presentation  is  known as a pollution rose.   A
detailed procedure for preparing  pollution roses is presented in Memorandum of
Information and Instruction No. 18, "Standard Pollution Roses."
DUSTFALL
       Dustfall measurements were made at 42 sites.  The results are  reported as
total dustfall (soluble and insoluble) and are given in Tables 5 through 10. As in
most urban areas, results varied, as is shown by the range of values  from 3 to  176
tons per square mile per month during the measurement  period from  March 1963 to
February 1964.  The arithmetic mean for all stations during this period was 22.99
tons per square mile per month, and the geometric mean was 18.42 tons per square
mile per month.
                                                  SPRING
                                                  SUMMER 1963
                                                  FALL
                                                  WINTER  1964
                                                  YEAR
                                        1  I  I   I  I   I	1	1	1	L
          001 005 0.1 0 2  05
                          2   5   10  20 30 40 50 60 70  80  90  95  98 99   99.8  9  99.99
                                % OF SAMPLES < STATED CONCENTRATION
                Figure 13.  Dustfall frequency.dislribuliorL,  all sites.
 22

-------
               Table 5.  DUSTFALL, MARCH, APRIL, MAY 1963
                                   (tons/mi /mo)
Site
coordinates
407-770
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
46S-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-809
498-704
499-724
501-713
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
16
18
13
10
13
12
16
15
18
15
16
18
20
17
25
23
17
21
94
17
21
13
17
15
11
13
34
21
16
94
64
36
49
18
15
13
21
21
10
9
9
Maximum
26
58
23
21
22
20
16
26
19
23
26
29
40
27
35
28
26
37
123
29
30
21
30
33
25
13
55
28
33
176
90
36
83
26
32
20
31
24
17
17
176
Na
3
3
3
3
3
3
1
3
2
3
3
3
3
3
3
2
3
3
2
3
3
3
3
3
3
1
3
3
3
3
3
1
3
3
3
3
3
3
3
3
115
Arithmetic
Mean
22.33
33.66
17.33
15.33
17.33
15.33

22.33
18.50
20.00
20.66
24.33
30.66
22.00
31.00
25.50
20.33
31.66
108.50
21.66
27.00
16.66
23.00
23.33
16.00

44.33
23.33
23.00
132.00
73.66

69.66
22.33
22.00
16.33
25.33
23.00
12.66
12.33
29.51
Standard
Deviation
5.50
21.36
5.13
5.50
4.50
4.16

6.35
0.70
4.35
5.03
5.68
10.06
5.00
5.29
3.53
4.93
9.23
20.50
6.42
5.19
4.04
6.55
9.07
7.81

10.50
4.04
8.88
41.32
14.22

18.14
4.04
8.88
3.51
5.13
1.73
3.78
4.16
25.26
Geometric
Mean
21.82
29.66
16.84
14.65
16.94
14.97

21.64
18.49
19.65
20.26
23.85
29.47
21.61
30.67
25.37
19.96
30.63
107.52
21.07
26.63
16.34
22.38
22.16
14.88

43.49
23.11
21.93
127.74
72.80

67.90
22.07
20.89
16.08
24.99
22.95
12.32
11.89
24.20
Standard
Deviation
1.30
1.82
1.33
1.44
1.30
1.29

1.37
1.03
1.26
1.27
1.28
1.42
1.26
1.19
1.14
1.25
1.38
1.20
1.32
1.22
1.27
1.32
1.48
1.56

1.27
1.18
1.44
1.36
1.20

1.32
1.20
1.47
1.24
1.21
1.08
1.32
1.38
1.75
   N = number of samples.
       Of the 42 sites,  only  two had maximum values of less than 20 tons per
square mile per month.   Ten sites had values of over 50 tons per square mile
per month, and two had values of over 120 tons per square mile per month.  The
                                                                                23

-------
              Table 6.  DUSTFALL, JUNE,  JULY,  AUGUST 1963
                                  (tons/mi /mo)
Site
coordinates
407-740
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-809
498-704
499-724
501-713
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum

14
6
9
7
9
11
10
7
8
12
12
15
8
17
21
16
14
45
12
17
10
17
13
9
12
17
16
11
83
44
30
32
15
15
12
22
16
10
7
6
Maximum

19
9
11
12
12
12
18
9
53
18
14
20
20
30
23
20
22
65
12
21
12
18
13
15
21
42
18
18
105
54
33
35
33
23
18
26
16
11
10
105
Na
0
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
120
Arithmetic
Mean

16.00
7.33
10.00
9.66
10.00
11.66
13.66
8.00
23.66
15.66
12.66
16.66
12.66
24.66
22.33
18.00
17.66
56.33
12.00
19.00
11.33
17.66
13.00
11.33
16.33
29.33
16.66
14.00
95.00
50.00
31.33
33.33
22.33
17.66
15.00
24.00
16.00
10.33
8.33
20.08
Standard
Deviation

2.64
1.52
0.99
2.51
1.73
0.57
4.04
0.99
25.42
3.21
1.15
2.88
6.42
6.80
1.15
1.99
4.04
10.26
0.00
1.99
1.15
0.57
0.00
3.21
4.50
12.50
1.15
3.60
11.13
5.29
1.52
1.52
9.45
4.61
2.99
1.99
0.00
0.57
1.52
16.48
Geometr-ic
Mean

15.86
7.23
9.96
9.43
9.90
11.65
13.27
7.95
16.18
15.42
12.63
16.50
11.69
23.96
22.31
17.92
17.36
55.67
11.99
18.92
11.29
17.66
12.99
11.05
15.91
27.45
16.64
13.70
94.55
49.80
31.30
33.31
21.10
17.29
14.79
23.94
15.99
10.32
8.24
16.52
Standard
Deviation

1.17
1.22
1.10
1.31
1.18
1.05
1.34
1.13
2.81
1.24
1.09
1.18
1.61
1.35
1.05
1.11
1.25
1.20
1.00
1.11
1.11
1.03
1.00
1.30
1.32
1.57
1.07
1.28
1.12
1.11
1.04
1.04
1.49
1.27
1.22
1.08
1.00
1.05
1.19
1.76
     N = number of samples.
frequency distribution of all  sites  (Figure  13) indicates that values equal to
or greater than 42 tons per  square mile per  month occurred 10 percent of the
time during the year.
24

-------
Table 7.  DUSTFALL, FALL - SEPTEMBER, OCTOBER, NOVEMBER  1963



                                   (tons/mi /mo)
Site
coordinates
407-770
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-809
498-704
499-724
501-713
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
11
14
7
9
10
12
11
11
10
11
14
13
16
10
21
12
15
15
59
12
19
11
16
12
11
20
45
12
17
79
51
33
37
18
15
9
17
18
10
9
7
Maximum
19
16
10
15
15
16
24
16
18
17
24
18
38
16
28
21
21
24
79
14
23
19
23
20
14
28
49
19
22
97
72
58
68
21
36
19
29
25
13
13
97
Na
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
3
3
3
3
2
3
3
3
3
3
3
3
3
2
3
3
3
2
3
2
3
3
3
3
3
119
Arithmetic
Mean
14.00
15.33
8.33
11.00
12.33
14.00
16.33
13.00
12.66
13.00
18.66
15.00
26.00
13.00
24.50
16.66
17.66
18.33
66.66
13.00
21.33
14.66
19.00
17. OC
12.33
24.33
47.00
14.66
19.50
85.00
58.00
43.00
52.50
19.33
25.50
13.66
23.33
21.66
n.33
10.33
23.01
Standard
Deviation
4.35
1.15
1.52
3.46
2.51
1.99
6.80
2.64
4.61
3.46
5.03
2.64
11.13
2.99
3.51
4.50
3.05
4.93
10.78
1.41
2.08
4.04
3.60
4.35
1.52
4.04
1.99
3.78
3.53
10.39
12.12
13.22
21.92
1.52
14.84
5.03
6.02
3.51
1.52
2.30
17.47
Geometric
Mean
13.58
15.30
8.24
10.67
12.16
13.90
15.46
12.83
12.16
12.71
18.21
14.85
24.43
12.76
24.31
16.24
17.49
17.92
66.11
12.96
21.26
14.30
18.78
16.58
12.27
24.10
46.97
14.36
19.33
84.59
57.21
41.74
50.15
19.29
23.23
13.05
22.78
21.47
11.26
10.17
19.00
Standard
Deviation
1.34
1.08
1.19
1.34
1.22
1.15
1.49
1.21
1.40
1.28
1.30
1.18
1.54
1.26
1.15
1.32
1.18
1.29
1.16
1.11
1.10
1.31
1.20
1.32
1.12
1.18
1.04
1.27
1.19
1.12
1.22
1.34
1.53
1.08
1.85
1.45
1.31
1.18
1.14
1.29
1.77
 = number of samples.
                                                                          25

-------
    Table 8.  DUSTFALL,  WINTER - DECEMBER 1963 AND,  JANUARY,
                        FEBRUARY 1964 (tons/mi2/mo)
Site
coordinates
407-770
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465 731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-709
495-809
498-704
499-724
501-713
505-740
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
8
11
5
5
5
6
7
7
5
7
10
10
10
7
16
10
10
15
19
13
7
9
15
13
3
20
27
11
29
9
48
45
29
78
27
14
31
6
18
19
8
6
3
Maximum
19
21
10
8
9
11
19
13
12
12
17
26
15
24
20
19
20
19
35
21
16
18
21
17
13
26
51
17
65
18
88
86
52
78
53
22
31
12
29
28
25
12
88
Na
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
2
3
2
3
3
3
3
1
2
3
1
3
3
3
3
2
117
Arithmetic
Mean
14.00
16.00
7.00
6.33
7.33
9.00
12.66
9.66
8.00
9.66
13.66
16.66
12.00
13.00
18.00
14.00
15.00
16.33
28.33
15.66
10.33
13.66
18.33
15.33
8.33
22.66
39.00
13.00
47.00
13.66
74.00
61.33
39.00

40.00
17.33

8.33
22.00
24.66
17.66
9.00
19.54
Standard
Deviation
5.56
5.00
2.64
1.52
2.08
2.64
6.02
3.05
3.60
2.51
3.51
8.32
2.64
9.53
2.82
4.58
5.00
2.30
8.32
4.61
4.93
4.50
3.05
2.08
5.03
3.05
16.97
3.46
25.45
4.50
22.53
21.73
11.78

18.38
4.16

3.21
6.08
4.93
8.73
4.24
16.78
Geometric
Mean
13.16
15.46
6.69
6.21
7.11
8.70
11.68
9.35
7.48
9.43
13.35
15.38
11.81
11.03
17.88
13.51
14.42
16.22
27.41
15.25
9.64
13.13
18.15
15.23
7.05
22.53
37.10
12.71
43.41
13.13
71.35
58.97
37.86

37.82
17.01

7.95
21.48
24.30
15.87
8.48
15.25
Standard
Deviation
1.56
1.38
1.43
1.26
1.36
1.38
1.64
1.36
1.55
1.31
1.30
1.62
1.23
1.96
1.17
1.38
1.41
1.14
1.38
1.31
1.55
1.42
1.18
1.15
2.14
1.14
1.56
1.28
1.76
1.42
1.40
1.40
1.34

1.61
1.26

1.43
1.29
1.23
1.82
1.63
1.95
JN = number of samples.
26

-------
    Table 9.  DUSTFALL - YEAR, MARCH 1963-FEBRUARY  1964



                               (tons/mi /mo)
Site
coordinates
407-770
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-709
495-809
498-704
499-724
501-713
505-740
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
8
14
5
5
5
6
7
7
5
7
10
10
10
7
16
10
10
14
19
12
7
9
15
12
3
12
17
11
29
9
48
44
29
57
27
14
13
6
17
16
8
6
3
Maximum
26
58
23
21
2.2
20
24
26
19
53
26
29
40
27
35
28
26
37
123
29
30
21
30
33
25
28
55
28
65
33
176
90
58
78
83
33
36
20
31
28
25
17
176
Na
10
10
12
12
12
12
10
12
11
12
12
12
12
12
12
11
12
12
11
11
12
12
12
12
12
10
11
12
3
11
12
12
10
2
10
12
9
12
12
12
12
11
471
Arithmetic
Mean
15.50
21.10
10.00
10.66
11.66
12.08
13.80
14.66
11.18
16.58
17.16
17.16
21.33
15.16
25.08
19.09
17.75
21.00
61.00
15.81
19.41
14.08
19.50
17.16
12.00
20.30
40.00
16.91
41.00
17.36
96.50
60.75
37.60
67.50
49.40
20.33
22.33
13.33
23.66
21.33
13.00
10.09
22.99
Standard
Deviation
6.04
13.36
5.16
4.41
4.67
3.65
4.80
6.09
4.95
12.55
4.60
6.39
10.15
6.87
6.03
5.53
3.91
8.11
29.79
5.38
7.07
3.72
4.07
5.93
5.11
5.35
11.73
4.98
20.78
6.45
31.04
15.28
9.69
14.84
20.23
5.26
8.52
4.51
4.51
4.33
5.06
3.08
19.62
Geometric
Mean
14.53
18.95
9.05
9.92
10.84
11.57
13.10
13.62
10.24
13.97
16.60
16.19
19.36
13.73
24.39
18.26
17.33
19.83
54.21
15.15
17.93
13.64
19.16
16.42
10.92
19.60
38.06
16.28
37.95
16.39
92.40
59.14
36.64
66.67
45.91
19.77
20.98
12.53
23.26
20.92
12.28
9.69
18.42
Standard
Deviation
1.45
1.53
1.56
1.48
1.49
1.36
1.40
1.48
1.55
1.74
1.31
1.41
1.57
1.60
1.28
1.38
1.26
1.40
1.70
1.34
1.57
1.29
1.20
1.34
1.63
1.33
1.42
1.33
1.59
1.42
1.35
1.26
1.25
1.24
1.49
1.27
1.44
1.46
1.21
1.22
1.39
1.33
1.85
*N =  number of samples.
                                                                          27

-------
            Table 10.  DUSTFALL FOR ALL STATIONS BY MONTHS
                                  (tons/mi  /mo)
Month
Feb 1963
Mar
Apr
May
June
July
Aug
Sept
Oct
Nov
Dec
Jan 1964
Feb
Minimum
5
12
9
10
7
6
7
7
10
8
3
5
8
Maximum
135
176
126
94
83
105
97
97
79
79
48
88
86
Na
32
38
38
39
40
40
40
40
39
40
39
37
41
Arithmetic
Mean
29.68
34.57
29.89
24.20
21.65
19.05
19.55
20.45
25.94
22.72
14.84
17.40
25.95
Standard
Deviation
27.57
28.75
24.94
21.17
15.83
17.63
16.23
17.03
16.23
19.01
10.50
16.33
20.09
Geometric
Mean
22.77
29.12
24.85
19.70
18.17
15.49
16.01
16.93
22.79
17.86
12.05
13.57
21.18
Standard
Deviation
2.00
1.68
1.73
1.75
1.74
1.76
1.79
1.73
1.60
1.90
1.90
1.91
1.81
    X = number of samples.
        The monthly and seasonal trends shown in Figure 14  generally follow the same
                                    o
pattern as those found in Nashville'' and other cities.  The maximum monthly
geometric mean for all sites was 29.12 tons per square mile per month, which
occurred in March 1963.  The minimum monthly geometric mean was 12.05 tons per
square  mile per month in December 1963.  As would be expected from these two
monthly means, the spring season showed the highest geometric mean, 24.20 tons per
square mile per month, and the winter season the lowest, 15.25 tons per square mile
per month.
        Site 433-565,  which is in a low-density-residential - to -  rural area,  had
the lowest  yearly geometric mean of 9.05 tons per square mile per  month.   Site
498-704, which is in  a very heavily industrialized area, had the highest  yearly
geometric mean of 92.40 tons per square mile per month.
       Since dustfall measurements include relatively large particles that settle
out close to their sources, stations close to large sources detect greater amounts
of dustfall than stations farther away.  The winter season, because of space heating,
might be expected to  have the most dustfall, but the spring season had the highest.
This can be attributed primarily to the high wind speeds in the spring, which pick
up more dust from the ground.  The lack of vegetative cover and increase  in
construction and farm work in the spring also help explain the seasonal increase.
28

-------
        J0
      o
         l5
      UJ
      u
      Z
      O
      o
              MAR  APR MAY  JUNE JULY AUG SEPT OCT  NOV DEC  JAN FE B
              I	1963	1  (—1964—1
SPRING    FALL     YEAR
    SUMMER  WINTER
       Figure 14.  Dustfall - geometric means for months, seasons, and years.
       Since no previous dustfall studies have been made  in  the  St.  Louis  area,  it
is not possible to determine a trend.  St.  Louis would  be  expected to  follow  the
trend of other similar  cities in which dustfall has been  reduced considerably in
the past 30 years.  New York City values, for instance, decreased from 162 tons  per
square mile per month in 1944 to 61  tons per square mile  per month in  1963 ,  with
nearly all the reduction occurring between  1944 and 1952.  Cincinnati  values
decreased from 54.2 tons per square  mile per month in 1930-31  to 15.5  tons per
                                4
square mile per month in 1963-64.  There was a steady decrease between 1944 and  19S7
and not much change since.  Chicago  values  decreased from  394.8  tons per square
mile per month in 1928  to 43.1 tons  per square mile per month  in 1962.  The major
portion of this decrease occurred between 1928 and 1935.   Pollutant  emission  control
program activities and  conversion from coal to oil and  natural gas for fuel,  which
have also taken place in St. Louis,  account for the decreases.
       Table 11 compares St. Louis results  with results from seven other cities.
Chicago, Cincinnati, New York, and Detroit  results are  from  within the  city limits;
the Windsor, Nashville, and St. Louis results are from  the entire metropolitan area
and are, therefore, expected to be lower.
       The states of New York and Oregon are the only two  states  known  to  have
established dustfall objectives or standards.  Oregon has  the  following dustfall
standard:  "The particle fallout rate in a  residential  or  commercial land-use area
shall not exceed the normal background values by more than 15  tons per square mile
per month; excepting that in heavy-industry-land-use areas the particle fallout
rate may be 30 tons per square mile  per month above the normal "background  level
..."   Normal background levels average about 5 tons  per square mile  per month.
       New York has established dustfall objectives that range in geometric means
from 0.30 milligram per square centimeter per month (8.5 tons/mi  /mo)  in cleaner
areas,  to 1.5 milligrams per square  centimeter per month  (42.8 tons/mi  /mo) in
dirtier industrial areas.    There are also  three other values  between  these two.
                                                                                 29

-------
    Table  11.  DUSTFALL RESULTS FROM ST.  LOUIS AND OTHER CITIES
City
Chicago
Cincinnati
New York City
Detroit
Windsor, industrial
Commerci al -res ident ia 1
Residential, semirural
Nashville
St. Louis
Louisville
Refer-
ence
5
4
3
58
58

2

59
Year
1962
1963-64
1963
1956
1955

1958-59
1963-64
1956
Dustfall ,a
tons/mi /mo
43.1
15. 5h
61
b
67° }




83.1 1
47.4 >
35.6 )
6.5b
20.97 I
29 )
Remarks

Central
city
only

Metropolitan
area
Metropolitan area
geometric mean
Metropolitan area

      Arithmetic means  except  as noted.
      Water insoluble portion  only.

       High dustfall values are associated with excessive soiling of automobiles,
porches, window sills,  and other horizontal surfaces.   On the basis of the above
standard and objective, some industrial and some residential areas are considered
excessively dirty in the St. Louis area.   Dustfall values in excess of 15 to 20
tons per square mile per month are considered detrimental by many authorities.
SUSPENDED PARTICULATES MEASURED BY HIGH-VOLUME AIR SAMPLER
       High-volume air samplers were operated at 17 sites  to collect  suspended
particulates.  The results are given in Table 12.   The geometric means  for the year
July 1963 tnrough June 1964 ranged from 60.98 micrograms per cubic meter at Site
432-715, which is in a light commercial area, to 221.81 micrograms per  cubic meter
at site 505-740, which is surrounded by industry and burning dumps.
        Figures  15 and  16  are  isopleth maps of the annual geometric means and the 99th
percentile values, respectively.  From the 1960 census population density  (Figure
1) and  the isopleth map of the annual geometric means, it was determined that approx-
imately 84,000  people  lived in areas having  concentrations greater than 150
micrograms per  cubic meter.
        The State of Colorado  has adopted an  ambient air quality standard for
suspended particulates of 120 micrograms per cubic meter.   The standard is based on
the average  of  samples collected at least once  every third day over a 3-month
period  in the central  business district of the  city or community where a single
 30

-------
 Table 12.   SUSPENDED PARTICULATES BY HIGH-VOLUME AIR SAMPLER
                                        3
Site
coordinates
July 1963 (R
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
499-700
501-713
520-798
534-702
Minimum
mdom sch«
37
48
55
23
44
76
183
59
39
57
58
90
43
40
Aug (Random schedule)
432-715
438-689
449-719
468-665
469-750
472-680
481-698
489-728
490-713
4D9-700
501-713
520-798
534-702
42
43
68
37
36
105
53
110
81
57
76
38
22
Maximum
dule)
122
60
158
104
97
175
1029
145
247
191
177
427
154
156

102
140
133
111
118
334
151
255
224
996
251
116
189
Sept (Weekday schedule)
432-715
438-689
449-719
468-665
469-750
470-718
472-6SO
481-698
489-728
490-713
499-700
501-713
520-798
534-702
45
49
44
43
70
58
35
69
12
91
71
47
47
25
112
206
172
152
123
230
539
211
392
282
741
443
265
164
Na

8
2
10
12
6
8
9
10
8
10
12
15
7
12

7
7
6
7
6
6
8
6
7
7
8
5
6

23
20
18
23
4
18
17
19
16
17
19
17
20
9
Arithmetic
Mean

70.25
54.00
84.00
63.33
60.83
109.00
416.44
83.40
139.25
112.10
106.75
158.86
101.28
83.66

75.85
93.00
99.16
83.00
81.16
238.66
108.87
170.83
165.14
251.00
163.50
82.80
92.83

71.43
97.65
95.55
91.65
99.25
114.55
275.70
124.52
169.06
188.47
202.36
203.76
115.55
78.66
Standard
deviation

30 . 34
8.48
30.19
24.91
18.66
33.59
275.38
27.01
62.93
36.67
37.98
78.87
41.35
41.36

18.75
34.52
26.67
25.82
30.22
87.00
32.93
50.44
53.53
335.56
58.12
36.29
73.84

18.94
35.22
31.24
26.81
23.34
40.28
131.97
40.93
98.13
45.20
145.34
101.74
63.87
45.54
Geometric
Mean

64.63
53.66
80.14
58.29
58.86
105.10
355.27
80.05
124.34
106.90
100.79
147.75
93.01
75.42

73.53
87.19
96.13
78.61
75.71
222.61
103.88
164.90
154.12
150.98
154.04
75.28
66.21

69.05
92.40
90.67
87.71
97.05
108.41
238.36
118.34
135.68
182.69
173.61
179.73
100.89
66.61
Standard
deviation

1.55
1.17
1.36
1.56
1.30
1.32
1.77
1.33
1.74
1.38
1.42
1.42
1.59
1.59

1.32
1.40
1.31
1.46
1.53
1.54
1.40
1.33
1.46
2.67
1.46
1.66
2.60

1.30
1.40
1.40
1.36
1.28
1.40
1.88
1.39
2.24
1 . 30
1.69
1.71
1.69
1.89
N = number of  samples.
                                                                           31

-------
     Table 12.  (Cont'd) SUSPENDED PARTICULATES BY HIGH-VOLUME
                            AIR SAMPLER (fJ-g/m3)
Site
coordinates
Oct (Weekday
468-665
432-715
438-689
449-719
469-750
470-718
472-680
481-698
489-728
490-713
499-700
501-713
520-798
534-702
Nov (Weekday
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
495-709
499-700
501-713
505-740
520-798
534-702
Dec (Weekday
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
495-709
501-713
505-740
520-798
534-702
Minimum
schedule)
61
45
50
52
67
41
10
61
88
81
105
130
67
82
schedule)
14
17
22
19
28
19
11
12
26
74
42
90
70
104
83
19
schedule]
30
28
23
34
33
12
52
46
60
63
73
100
71
27
35
Maximum

229
143
179
242
189
248
767
217
642
288
433
366
334
207

152
147
223
220
229
205
488
161
294
435
207
379
333
778
276
251

186
150
175
199
173
306
499
253
187
220
258
225
1066
372
177
\'a

25
25
24
23
10
19
22
25
12
23
21
20
15
6

18
19
15
21
19
13
19
24
9
17
9
9
15
10
16
14

20
19
21
21
19
13
14
17
8
19
17
17
18
21 ~
14
Arithmetic
Mean

138.68
91.20
110.20
142.30
130.00
135.26
312.77
141.92
233.75
205.73
193.66
245.05
171.53
140.00

65.88
61.73
87.60
69.23
91.21
103.92
194.15
83.08
170.00
161.94
117.33
203.00
195.40
298.40
155.43
98.92

74.20
57.21
70.52
80.04
88.94
98.92
181.92
98.41
98.87
121.73
146.76
164.17
215.77
139.71
101.42
Standard
deviation

42.61
25.96
34.20
42.80
41.52
55.36
198.24
37.90
144.77
56.29
87.10
66.15
68.30
43.17

34.05
30.54
51.56
44.48
51.37
62.58
146.15
36.75
92.95
106.27
51.26
111.57
84.15
200.00
63.88
59.70

41.97
28.06
39 . 95
43.67
37.34
80.14
125.31
52.08
42.23
44.36
54.64
40.32
230.34
73.94
48.36
Geometric
Mean

131.69
87.53
104.45
135.49
123.29
122.08
238.45
136.25
204.02
196.06
179.57
235.39
158.18
134.39

57.65
54.94
74.43
59.67
78.97
83.45
133.71
73.57
137.34
138.48
105.87
177.97
177.03
252.39
143.99
82.74

65.98
52.36
60.66
70.55
81.77
73.41
147.61
88.41
92.19
114.69
137.56
159.22
163.05
122.36
88.89
Standard
deviation

1.40
1.34
1.41
1.39
1.42
1.65
2.51
1.35
1.69
1.41
1.45
1.35
1.54
1.37

1.74
1.66
1.83
1.71
1.74
2.12
2.74
1.75
2.21
1.72
1.66
1.71
1.61
1.80
1.49
1.92

1.60
1.51
1.76
1.65
1.53
2.32
1.96
1.58
1.47
1.42
1.45
1.29
1.96
1.74
1.76
32

-------
Table 12.
(Cont'd) SUSPENDED PARTICULATES BY HIGH-VOLUME
           AIR SAMPLER
Site
coordinates
Jan 1964 (We.
432-715
438-689
449-719
468-665
469-750
472-680
481-698
490-713
494-703
495-709
501-713
505-740
52"-798
534-702
Minimum
jkday sche
37
28
32
33
55
86
54
77
93
72
88
98
81
25
Maximum
dule)
106
111
178
151
193
1337
246
302
327
308
373
622
430
248
Feh (Weekday schedule)
432-715
438-698
44')-71"
468-665
4 6:>- 750
47H-71S
472-6SO
431 -60S
4P9-72S
490-713
494-703
495-709
501-713
505-74i)
520-798
534-702
30
23
32
26
43
35
43
45
66
80
96
80
108
78
58
41
130
142
248
87
182
202
733
271
232
268
406
414
417
624
235
258
Mar (Weekday schedule)
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
494-703
495-709
501-713
505-740
520-798
534-702
23
18
15
16
31
57
55
23
30
62
63
74
67
89
49
50
122
124
151
98
151
162
975
196
147
241
318
417
267
604
314
181
Na

25
10
19
25
9
19
23
18
16
22
21
20
24
19

22
20
21
17
22
13
17
22
15
17
15
18
18
18
18
10

23
21
18
22
23
2
14
23
18
18
12
21
16
10
21
11
Arithmetic
.Mean

63.68
54.90
79.10
71.80
106.22
436.42
111.56
150.16
165.62
146.36
199.28
338.20
185.12
114.57

63.54
58.55
88.66
48.76
95.81
75.61
198.64
94.86
102.26
151.88
182.46
189.50
203.50
205.05
137.00
124.70

56.52
68.42
82.77
45.31
85.08
109.50
287.50
97.43
87.27
134.27
159.75
162.19
162.75
260.20
169.19
87.27
Standard
deviation

21.72
29.28
44.72
29.66
48.45
336.36
53.92
60.15
56.89
64.28
77.96
165.51
80.42
57.76

28.23
26.49
57.81
14.79
38.58
47.41
176.04
54.34
43.22
63.25
75.04
80.93
78.13
118.78
51.19
60.82

23.14
26.39
37.98
18.98
33.87
74.24
279.05
45.45
36.69
51.04
74.22
75.57
55.85
172.98
73.20
39.15
Geometric
Mean

60.19
49.05
69.16
66.50
96.93
337.55
101.05
140.07
157.70
134.64
185.84
291.72
170.91
100.50

58.36
53.60
73.86
46.73
89.15
65.57
147.41
84.48
96.18
139.95
170.95
175.15
191.45
183.77
127.82
111.01

51.90
62.37
72.17
41.82
77.99
96.09
197.62
86.66
79.44
124.76
145.54
149.56
152.46
215.82
152.57
80.81
Standard
deviation

1.40
1.62
1.68
1.48
1.57
2.09
1.55
1.45
1.37
1.50
1.46
1.82
1.49
1.74

1.51
1.53
1.84
1.35
1.46
1.69
2.18
1.58
1.40
1.51
1.43
1.49
1.42
1.57
1.48
1.70

1.54
1.61
1.82
1.51
1.56
2.09
2.37
1.68
1.58
1.49
1.56
1.48
1.47
1.90
1.63
1.48
                                                            33

-------
    Table 12.  (Cont'd) SUSPENDED PARTICULATES BY HIGH-VOLUME
                          AIR SAMPLER (|ag/m3)
Site
coordinates
Minimum
Apr (Random schedule)
432-715
438-689
449-719
468-665
469-750
472-680
481-698
489-728
490-713
494-703
495-709
501-713
505-740
520-798
534-702
May (Random .
432-715
438-689
449-719
468-665
469-750
470-718
489-728
490-713
495-709
501-713
505-740
,Tune(Random
432-715
438-689
449-719
468-665
469-750
470-718
490-713
495-709
501-713
505-740
34
34
78
15
33
23
55
39
58
78
79
92
71
80
79
schedule)
44
51
55
52
56
82
186
126
146
154
253
Maximum

105
132
131
98
150
926
255
188
193
451
264
248
502
302
101

489
131
145
99
186
119
186
126
247
287
459
Na

8
9
6
8
7
4
8
13
7
15
8
8
7
6
S

6
6
4
6
6
3
1
1
4
6
5
Arithmetic
Mean

69.12
76.33
107.16
48.62
87.85
295.50
133.00
99.92
125.00
187.80
155.62
146.75
263.00
161.83
89.00

145.16
90.83
88.75
64.50
102.50
98.66


179.00
210.66
338.00
schedule)]
25
44
22
31
42
33
132
79
131
141
109
183
139
149
109
98
146
134
2S5
254
7
8
7
5
8
5
3
6
7
7
57.42
83.75
104.28
69.40
70.62
62.00
138.00
102.66
195. UO
191.28
Standard
deviation

24.59
32.82
21.45
27.27
39.32
422.72
68.06
52.98
46.95
113.06
62.08
58.37
146.22
83.77
9.13

170.85
27.49
39.33
17.53
47.24
18.77


46.22
44.01
80.76
1
1
27.37
43.86
43.18
46.15
24.54
23.42
7.21
18.41
49.59
40.72
Geometric
Mean

65.02
70.32
105.26
42.00
79.59
130.12
118.69
87.97
116.94
161.05
145.58
137.59
223.75
145.03
88.63

98.69
87.12
83.04
62.87
94.60
97.50


175.05
207.00
330.66

52.21
76.26
91.08
60.00
67.07
58.46
137.87
101.34
189.81
187.57
Standard
deviation

1.46
1.54
1.23
1.81
1.65
4.55
1.66
1.69
1.50
1.75
1.47
1.45
1.93
1.66
1.10

2.36
1.38
1.50
1.26
1.53
1.20


1.26
1.22
1.26

1.60
1.55
1.94
1.78
1.40
1.47
1.05
1.19
1.28
1.23
34

-------
Table 12.  (Cont'd) SUSPENDED PARTICULATES BY HIGH-VOLUME
                       AIR  SAMPLER (|JLg/m3)
Site
coordinates
Minimum
Maximum
Summer '63 (Random schedule)
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
499-700
501-713
520-798
534-702
37
43
52
23
36
31
96
53
39
57
30
76
30
22
122
140
158
118
133
175
1029
151
255
224
996
427
246
189
Fall '63 (Weekday schedule)
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
495-709
499-700
501-713
505-740
520-798
534-702
14
17
22
19
28
19
10
12
12
74
42
71
47
104
47
19
152
206
242
229
229
248
767
217
642
435
207
741
443
778
334
251
Na

32
9
34
28
32
19
36
22
25
40
41
31
37
26

66
63
56
69
33
50
58
68
37
57
9
49
52
10
51
29
Winter ' 63-64 (Weekday schedule)
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
494-703
495-709
501-713
505-740
520-798
534-702
30
23
23
26
33
12
43
45
60
63
93
72
88
71
27
25
186
150
248
199
193
306
1337
271
232
502
406
414
417
1066
430
258
67
49
61
63
50
26
50
62
23
54
31
57
56
56
63
43
Arithmetic
Mean

69.71
84.33
81.41
75.35
76.03
91.84
309.25
92.63
137.84
118.82
128.51
164.61
133.18
96.46

77.40
91.60
112.62
101.86
103.93
119.66
263.05
116.29
190.27
187.52
117.33
198.75
217.23
298.40
144.52
101.13

66.77
57.28
79.44
68.33
95.08
87.26
284.32
102.03
101.08
140.70
173.77
160.10
189.98
256.05
156.23
112.65
Standard
deviation

18.97
34.62
23.83
23.91
22.64
32.89
197.37
28.95
48.39
38.53
145.48
63.25
58.86
49.47

28.21
38.78
48.43
48.14
48.28
53.08
169.40
45.69
115.19
73.42
51.26
114.79
85.59
200.00
68.36
55.40

30.92
27.12
48.00
34.18
39.64
65.60
265.25
53.23
41.94
56.89
65.72
69.26
69.77
184.55
73.51
54.99
Geometric
Mean

67.20
78.27
78.53
70.79
72.91
86.15
266.92
88.60
129.49
113.50
104.73
155.79
118.31
82.85

71.92
82.77
101.43
90.38
92.67
105.95
197.26
105.38
155.33
173.06
105.87
176.95
198.51
252.39
128.75
85.52

61.24
52.16
67.62
61.66
87.58
69.38
202.03
91.42
94.77
130.52
163.98
147.24
179.02
208.57
140.71
98.82
Standard
deviation

1.32
1.50
1.30
1.47
1.34
1.46
1.69
1.35
1.45
1.34
1.70
1.38
1.70
1.82

1.50
1.61
1.63
1.67
1.65
1.72
2.47
1.64
2.08
1.51
1.66
1.58
1.57
1.80
1.64
1.87

1.50
1.53
1.76
1.55
1.50
2.00
2.29
1.57
1.41
1.47
1.40
1.50
1.40
1.87
1.60
1.72
  = nuriber of samples.
                                                                          35

-------
     Table 12.   (Cont'd) SUSPENDED PARTICULATES BY HIGH-VOLUME
                            AIR SAMPLER ((J-g/m3)
Site
coordinates
Minimum
Spring '64 (Random sd
520-798
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
494-703
495-709
501-713
505-740
534-702
69
28
26
33
15
31
95
23
41
39
58
63
74
85
71
52
Maximum
ledule)
314
489
132
151
99
186
162
926
255
188
190
340
264
287
502
126
Na

14
23
23
16
23
36
3
10
17
11
13
10
19
18
14
9
July '63-June '64 (Random schedule)
432-715
438-689
449-719
468-665
469-750
470-718
472-680
481-698
489-728
490-713
494-703
495-709
499-700
501-713
505-740
520-798
534-702
14
17
22
15
28
33
11
27
12
57
63
42
67
76
71
27
22
July 1963 All 23
AUS All 22
Sept All 12
Oct All 10
Nov All 11
Dec All 12
Jan 1964 All 25
Heb All 23
Mar All 15
Apr All 15
May All 44
June All 22
Summer All 22
Fall All 10
Winter All 12
Spring All 15
Year Random 11
489
183
171
220
186
205
1337
255
311
435
340
264
332
355
502
334
258
1029
996
741
767
778
1066
1337
733
973
926
489
285
1029
778
1337
926
1337
89
74
81
85
71
34
63
77
44
65
19
45
21
69
39
63
42
129
86
240
270
247
258
270
283
273
119
48
63
412
757
811
245
981
Arithmetic
Mean

180.71
82.65
74.52
94.25
51.08
88.52
125.33
284.60
115.29
100.54
123.23
157.50
157.89
170.00
286.50
90.11

69.39
72.81
83.61
67.22
81.16
98.20
303.55
96.75
123.75
139.47
158.42
143.75
166.52
176.42 .
246.25
135.23
102.33
121.71
131.98
138.22
169.93
124.88
114.56
160.72
124.19
119.76
132.77
146.89
107.26
124.33
145.18
133.28
126.93
124.16
Standard
deviation

86.32
92.08
30.82
35.87
22.81
36.69
33.94
307.27
62.69
52.67
43.97
94.74
56.37
58.47
16.42
21.83

51.67
33.94
37.95
35.55
33.89
49.96
274.16
42.66
64.22
62.25
69.44
51.72
75.26
62.04
110.83
70.28
49.16
117.55
114.62
92.15
99.54
99.64
91.20
151.37
89.36
103.67
111.96
104.67
60.49
103.53
99.04
115.85
105.71
107.75
Geometric
Mean

160.63
65.03
68.03
86.66
46.08
80.86
122.34
64 . 78
100.29
88.35
115.42
137.13
148.03
160.03
259.77
87.59

60.98
65.15
74.29
59.39
74.76
86.20
207.73
88.39
106.48
128.27
146.35
134.64
151.27
165.97
221.81
118.04
91.70
98.03
108.33
116.44
148.32
95.97
93.90
121.84
100.93
94.. 36
106.04
119.61
91.10
103.81
119.17
105.02
100.14
98.77
Standard
deviation

1.68
1.81
1.57
1.56
1.61
1.56
1.30
3.13
1.73
1.71
1.47
1.71
1.45
1.44
1.65
1.29

1.60
1.62
1.67
1.65
1.50
1.69
2.55
1.53
1.82
1.50
1.49
1.45
1.57
1.42
1.61
1.72
1.62
1.81
1.82
1.78
1.69
2.08
1.85
2.04
1.89
1.96
1.92
1.87
1.81
1.74
1.90
1.94
1.95
1.92
     Year
All
                     10
                            1337  2298  134.49
                                   107.56   107.86
1.92
36

-------
       L EGEND
BOUNDARIES
  STATE
  COUNTY
HIGHWAY MARKERS
  FEDERAL
  STATE
                                                     — O—
                                                                ISOPLETHS OF ANNUAL  GEOMETRIC MEAN
                                                                VALUES
                                                                _^_ LINES OF ACTUAL EQUAL VALUE
                                                                _» LINES OF PROBABLE EQUAL VALUE

                                                                HIGH VOLUME SAMPLING  FROM JULY 1,1963
                                                                TO JULY 1,1964, IT STATIONS
820

810

BOO"

790


780

770


760

750

740

730


720

710

mm

690

680

670

660

650

640

630

620

610

600"°

590
                                                                                                   580
 390   400™'  410   420   430  440   450   460   470   480   490   500000' 510   520   530   540   550   560   570
Figure  15.   Annual geometric means of particulate matter  measured with high-
                volume  samplers
                                                                                                     37

-------
                                         / EG END
                                   BOUNDARIES
                                     STATE           	
                                     COUNTY          	
                                   HIGHWAY MARKERS
                                     FEDERAL         —D
                                     STATE           —O
ISOPLETHS OF 99 PERCENTILE VALUES
	LINES OF ACTUAL EQUAL VALUES
	LINES OF PROBABLE EQUAL VALUES
BASED ON ANNUAL GEOMETRIC MEANS
AND STANDARD  DEVIATIONS FOR 17
STATIONS DURING JULY 1.1963 TO
JULY 1.1964.
  390  400"°'  410  420   430   440   450   460   470   480   490   500""' 510   520   530   540   550  560   570
Figure  16.   Suspended  particulate matter 99  percentile values measured with high-

                volume samplers (fig/m  ).
38

-------
                                          Q
emission source is not the prime polluter.   The State of Oregon has established a
maximum concentration of 150 micrograms per cubic meter for residential and
commercial areas and 250 micrograms per cubic meter for industrial areas, both
above normal background levels.   Background levels in rural Missouri average
                                            g
approximately 30 micrograms per cubic meter.   This, based on the Oregon standard
would make the limits 180 and 280 micrograms per cubic meter for St. Louis.  The
State of New York has adopted ambient air quality objectives that range in geometric
means from 40 micrograms per cubic meter in cleaner areas to 135 micrograms per
cubic meter in dirtier industrial areas.   There are five additional objectives
between these two.  Since the New York and Colorado standards are more recent than
the Oregon requirement, there appears to be a trend toward lower values.  There is
also a trend away from the use of single-number standards.  Standards should relate
to effects; therefore, frequency and duration of occurrence as well as level of pol-
lution should be established in the standards.

       Site 490-713 in downtown St. Louis exceeded the Colorado standard three out
of four seasons; whereas site 501-713 in downtown East St. Louis exceeded it in all
four seasons.  The Oregon standards were exceeded by all the sites except sites
449-719 (residential-commercial) and 495-709 (industrial).  The sites used in this
Study cannot be classified exactly according to the New York classification system.
Sites 472-680, 494-703, and 499-700, however, which are in industrial areas, had
geometric means that exceeded the New York poorest-air-quality objective of 135
micrograms per cubic meter.
       The monthly, seasonal, and yearly geometric means for all sites given in
Figure 17 show October as the maximum month with 148.32 micrograms per cubic meter,
and June,  the lowest with 91.10 micrograms per cubic meter.  Fall was the highest
season with 119.17 micrograms per cubic meter, and spring, the lowest with 100.14
micrograms per cubic meter.  The yearly geometric mean based on random days was
98.77 micrograms per cubic meter and 107.86 micrograms per cubic meter based on all
results.  If weekday sampling schedule results are used for the fall and winter
seasons, the yearly mean is lower than any of the seasonal means.  This is because
the weekday sampling schedule was used to determine the fall and winter means and
the 100-day random sampling schedule to determine the spring, summer, and yearly
means.  This approach was taken to prevent biasing the yearly mean with more winter
and fall results than spring and summer results.
       Since the weekday sampling schedule provides more data than the random
schedule,  it has greater validity.  As the data are used the conservative nature of
the yearly mean should be considered.  This would justify increasing the yearly
mean as much as 7 micrograms per cubic meter, or from 98.77 to about 105.
                                                                                 39

-------

175

in
b 150
125
Z
0
p 100
cc
1- 75
UJ
Z 50
0
0
25
0




-
.


-
-
-
-









n
























r— i
























n























[-1















































































...







































































































—


























































	


















F — 1





















































,_.



















-

-



	 _
]
'
-

                            NOV  DEC JAN
FEB MAR  APR MAY  JUNE
    -1964	1
                                                           SUMMER  WINTER    YEAR
                                                                FALL    SPRING
     Figure 17.  Suspended particulate geometric means for months,  seasons,
                  and year-measured with high-volume samplers.
       A statistical comparison of the results from the weekday and random schedules
was made to determine the validity of the random schedule.  This comparison showed
that the 100-day random-sampling schedule could be used to estimate annual and
season means within ± 20 percent of the true geometric mean at 95 percent confidence
limits.  A random schedule of 250 to 300 days would be required to estimate monthly
means with the same degree of confidence.  The details of this statistical comparison
are given in the Interstate Air Pollution Study, Memorandum of Information and
Instruction No. 14, "Comparison of Hi-Vol Particulate Measurement Using Random and
Weekday Schedules July 1963 Through June 1964."  Table 13 compares the results of
the random and weekday schedules by station and seasons, and Table 14 indicates the
percent difference between the random and weekday sampling results.  Use of these
tables will guide the user regarding the degree of confidence that can be placed in
the data for use in specific places or specific time intervals.

       Figures 18 through 33 give the suspended particulate frequency distributions
for the year and seasons at each of the sampling sites.   A test of the data from
ten of the sites was made to determine whether the geometric mean and its standard
deviation or the arithmetic mean and its standard deviation described the data
better.  For all ten sites, the geometric means were nearer to the 50th percentile
value than were the arithmetic means.   For nine of the sites, each set of the ten
fractiles (10th percentile, 20th percentile, etc.) described an approximate straight
line very close to the line determined by the particular site's geometric mean and
its standard deviation.   Zimmer, Tabor, and Stern   also found this to be true of
the National <\ir Sampling Network data.  The conclusion reached was that the geomet-
ric mean and its standard deviation should be used to describe each station's data
distribution.
40

-------
TO
z
<
w
S
u
r-H
PH
H
W

I
W
O
J
ffi
H
Z
O
 o
 TO
 <
 w
 w
 ri
 H
i"
•8-3
CO
V
•-»
I
t-t
s
^p
-o
OV
M
CO
X
o
u.
2
*"3

z
r )
2
(
•=




(







i
-i-*
O (-
*-> O


-t O 00 O 00
fN O O Q O
(N ^r -* o °o
in r- at >£ in
ot r-j ^ r- f^ o
O —• O QO rO O
• I .| .1 .1 ii • i ii it • t
oo r- ro (N O «O
Ot OO 30 >0 O CO
IN 00 O O IN Oi >O
o oo (N o -too
LT) -H LO r-» O ^O O
O r-. o - Ot OO QO 0 to O r-» Tf
O* — * ^ O Oi
^r m m o t^> r- •O r- Ot GO in -H r-- O ^ in O
^ m T in m r* •*•«*• t- oc o o O O4" O ^ 00V rO\o Ol^1 *t —•
O»m Wrj -^O rOO C*-H ^tO O»r^- OVOO O(M
i/)>o ^ i/> 1/1* ^r^ r-oo ^i*- to^ r^-x ooo»
•-< i/i t^^" -Hto t~*r^ Of*- f*«m O-^ ^^r^- Of
^r-o *o» i/> T ro\o i^o» rv*v cnr-* i- ^r-
mirt mm mr^ >£>irt \oc-» ooo OM r^-r*- o^
«ot«t -«\n Ok«t w o> oot * oo » m com o  o<-« in"» OfN ^oo w«p *)^
O*oo -^O tOK» f*- OO O»^- TfrO CTlfO r-O
«Ot r-J(N OO Of- (Nl-» (N OO O«0 OOO 00 LO
o -o oo ov t^~ *» woo <-«Ok cno 010 o —« o -^
HI a» »o (M i/i »H r- o
irt -^ -H r--«ro
ino^—^^irttNoo^
(Naoctirt»OOinrs*r-i
o*^«o»rt«-«u>oot-i
^-4 rO ^H
S-T (NO »-«r< o-O -^oo ooo o«o iorj Otr*
 O t^- d AOt
^H fj
-HP^ (Nr- (MrO i/joo mf- O1-^ too —«oo ^o
S-H -HIM -H-* o»o -^rvi oom atr- ooi/> ^-tn
r^- r-ao «oo r*o% r^c» oo ooc\ ooo -HUI

r^o»otoo^>«e
— •OOHIl/lQO^Of^-**^
rNr^r-oi^in^fN^r
OOOOsO\DOO(7iCTttO
L/iooooooao
— too— *OLn-HOOO%rsj
fMeOCT*goa»OM^-^Ov


O
o
o
•w
o
o
•o
CN
0»
CTl
O
(N O

•-t (N
OO l/>
0 Ut
^ a»
CM rO
rvi r^
(N O
1^- O
10 a»
h, 0
ffl ^
Oi ^
0 05
O -^
rO OO
>o to
at >o
^- o
V O
cv a»
0 <7»
(N *
O r4
o oo
«N
pH
^p
1/1
at
o
1
-H C-|
2S

3S
^r ro
in r-

»o
rj
o*


tt
rO
^H
O
l/l
o
1/1
r^
in
a^
=o
Tt
o> o
to m
in ot
rO -^r
a> in
00 -<
rO i/l
o ^*-
— • ^
O ^T
O O
O *T
~* ro
o> o
r» m
o r-
ul ro
Kl 1-^
^ OO
r* in
00 O

1 1

O -T
•«?• r-
•^ ^r

55
£2



ro
O
00
•V
•V
^~
(O
c*
o
in
O*
^F


i i





O» r--
»o m
oo r-'
o r*»
t-i --<
co r*.
CM m
oo a>
r-» r*
o> •«•

o

r^
to
o o
to ^t
T fN
o in
oo in
^ ^~
(N «-•
r- ot
-• n
^ 00
o» in
in oo
O (N
r^ (N
r- o»
m in
r^ ro
ro O
o> r^
in h*
O <7t
r- HJ
oo in
<~t K)
«N r4
t^. »o
CM r-
^ Ok
r- r--
-H ^H
10
w
• i
to
o
I-H
0>
2
(N (N
(N O
•*» CTi
o r-
•-H
rO »^
^-< in
OO 00
r* o>

(M
(N
t>*
O
Kl
0
o
•&
r*-
in
vJD
to
o
l/l

r»-
in
r*.
CO
o
o
o
to
(0
m
r*
to
fN
IN
O\ (N
m co
01 in
to •-•
fN r^
0 r-
o r*
O» ro
o ao
Ci (N
to t-^
O -«
O CT>
^ 
O ro
<-+ (N
o m



r*
r»
a>
tn
(N
-H
(N
0
^>
in
o
i/j


rO
O
m
•^
(N r-
v in
tO fN
r-» in
Oi (N
o °°
oo r*
Cl (N
r* -H
Ot Ok
o o
in r-
0 •£>
0 ro
^ fN
O (M
•*• o>
co at
•«* rO
rj ^p
^
(N «0
^- OO
CN l/l
r- o»
r*- oo
s§
•0
(N
• 1
in
r-
o
ro
at
00 -H
Oi r-
CM O
-« n

-H 10
o r^
(N OO
CM rj

r^
in
00
to
o
o
0
V
00
CO
Oi
o
(N
in


tO
•o
00
CO
fN >-t
ro QO
0 0
oO 00
S3
O -*
TJ- -H
-H 0
Oi m
m o
CO O
01 at
00 00
ro co
r>. oo
-H ^>
r- f^-
r-« (M
0 00
§Ol
rt
~4 *t
(N rO
(N »-«
O sO
2S
00
at
. i
r*-
o
O)
r-
00
SCM
00
oO oO
Oi Oi

^ IN
Oi Lrt
in in
Oi 00

ro
(N
r-i
QO
Oi
in
r-~
00
o
f-4
Oi
»N
O
TT
ro
m

o
t--
r-
oO
%O
r^-
h-
^*
tN
O
~o •&
(N fO
(N *»•
at ot


V
— t f>
•—< >H
< in

















S
6




§
c
rt
u
«*
                                                                                                            41

-------
o
Q
w
W
W
o
o
Q
O
I — I
H
<

2
W
O
tf
w
0,
 0)
I—I
,0


H


























V)
o
CO
C
t-l
o
o
u

o
V)
































3
0)
u
(/}
(
to o
t/i r~-
O 00
CN en
in o
O ^T
m r~-
(
o --•

i
en o
c\ o

m en
Ch O



TT ro
Ch O


o to
Cn ~^
^T t-



C1 00
oo .
7 " ^
0

oc r-- en
I — « TT

'






«

O oc (-*
"7 " ^

\D


rs| tO


00
in fN oo
*V ^ *°
-H
rr cn 00
i «-« m

r-

(VI -H O


1
fN ^ tO
tO
rl rsi en
*-* fN >O
_
o oo o
1
to
to o to
^H rj \o
i








rt
U.

<; 23


r-
1 " ^
-
en
o •& o


to
i ^ m




en
^ r- r~


^


1 to
p-

rj co -q-
*-. ^-« m

^

fNl •-• tO
1 -H fN


*
LO (N fN
— t fN \O
rj
to en o
1 -H U1

r-

CM O O

1
o
^ ^H in
fN
W rsi to
-i rN vO
O
2 ^3 o
1
o
rs] so en
— « —• T
1







(L)
C

< 01


-
^
o
t IN



O
1 —H
l/l


^H ^^

'






O

en t^ r^-
i ^

00





t^
W \o en
*"* *~*
to
en in r~»


rO



1
»
*"•
^
r~ r- to
1 (N
fN
U", O OC
1
en
o r- o
-H r-4
1








d-
C/l

< =Q


O
^
-
*



-
1 fN
r-

O i/i ^^
1 ^





i


CO

O tO tO
i •
fN -H
'
*
m cn cn
1 --H



CO

.



O

< 33


cn
*"• •"•
0
in
^ ^ oo
+ -H

0
i —«

i


LO
cn m r*-






0

to ^o cn
,

r-


o r- ~+
*T '^
fN
cn oo <-H
1 fN

CC
in r- cn
i ^









1

< =0


».
1
-
to
r^. ^j- o
tO fN
*
fN
1




0
to m fN
••H fN
1
m

t~~ to ^O
, -
to

O T OO
,







fN
to m to
.-• fN
o
m ^o cn

*





OO
fN
^.
r-^ r- m
--« rN
to
cn r- cn


1




fsj

, ^



^

< a


<»
rn ,-*
00
fN 00 OQ
O
OO sD OO


cn
1 i-H




^.
\O r^ oo
i •— «

^


, -
to

-^ oo r-
i

fN

<-< cn i/j
i — «


-g-
\O O fN
^H ^H fN
vD
r- oo r-

i
o

m i*- to
+ ^

*
<-* •-« fN
,_,
sO oo r-
' ^
00
r* O «-•
tO r-t fN
'
O
cn cn o
^H fN



tO

^fN



0
u.

< 33


OO
+ ^
tO 00 —1
o
r-t fN O

*
00
+ <^




m
cn oo •-•
1 fN

cn

cn %o fN
, ^
o

o r*- oo
i -t

fN

cn to oo



TT
o cn to
I fN
^
fN \O ^



1



«
i rsi
^
CN cn CM
1 fN
^
7 * 2

cn
-^ cn -•
r-t fN4




iri cn to
i rsj



f-i
rt

























































• O
r~t 3
3 T3
-3 0
0) X
-C O
U tfl
X
o -o
-a ^
TO a>
n ti
ra
42

-------
       Analysis of the frequency distributions shows that  for most  of  the  sites  the
summer season data had the least slope or standard deviation and  those of  the fall
season had the greatest.  These findings can be attributed to meteorological
conditions.  The meteorological conditions during the  summer season were more uniform,
with only a very few short-term inversions, and more variable in  the fall,  with  more
long-term inversions.

       On the basis of 1 percent occurrence level (99  percent of  samples on figures),
results ranged from 182 micrograms per cubic meter at  site 432-715  to  1,800 micrograms
per cubic meter at site 472-680.  This tenfold difference  indicates the great
variation among residential, commercial, and industrial  complexes in the St.  Louis
area.
        1000
        soo

        600
       £ 200
       z
       o
       .5  ,00
       ct
       t-  8(
       2
       UJ
       <_>
       Z
       o
       o
III  III
                                                            —•SUMMER
                                                            -•-•• FALL
                                                            ___ WINTER
                                                            	 SPRING
                                                            '---YEAR
                                                         1963
                                                         1964
                   J	L
                                             J	I	L
           001  0050 I 0 2 05
                           2   5   10   20  30 40 5O 60 70  80   90  95
                             % OF SAMPLES < STATED CONCENTRATION
                                                                      99 8  9  9999
     Figure 18.  Frequency distribution of suspended particulates measured with
                   high-volume sampler at site  No. 432-715.
                                                                                   43

-------
          IOOC

          BOO

          600 )-


          400 I—





         E 200 i-
         CT
         a_
        g
        t-
        <
            ,CL_
            CO
                                                          ——SUMMER
                                                          •-•-> FALL
                                                          .._ WINTER
                                                          	 SPRING
                                                          -_- YEAR
                                                          I    I  I	

1964
                              f   0   20  30 40 50 60  70 80   90  95  98 99   99 6 9 9999

                             % OF SAMPLES < STATED CONCENTRATION
      Figure 19.  Frequency distribution of suspended particulates measured
                   •with high-volume sampler at site No.  438-689.
          1000

          800


          600



          400
        E 200 -
                                                          •-— WINTER
                                                          	 SPRING
                                                          .__. YEAR
1964
            001 0050102 0512   5  10   20  30 40 50 60  70 80  90  95   98 99

                             % OF SAMPLES < STATED CONCENTRATION
                                                                    99 8 9  99 99
      Figure 20.  Frequency distribution of suspended particulates measured
                   with high-volume sampler at site No.  449-719.
44

-------
    1000

    800
  E 200
  \
  CT
  i
  z
  O
  h- 100

  I  80
  H
  LJ
  z  60
  O
     40 -
I	1	1	T
                        *          X     <^^
                        S      x'  ^>^x
                        g    x    ^**^ X
                           .**     ~^^P    .O
                                     —— SUMMER
                                     -•-•• FALL
                                     ___ WINTER
                                     	 SPRING
                                     ---' YEAR
                                          _1_
                                                              1963

                                                              1964
     001 005 0102 05
                       5  10   20 30 40 50 60 70  80  90 95  98 99   99 8 9  9999
                      % OF SAMPLES < STATED CONCENTRATION
Figure 21.  Frequency distribution of suspended particulates measured
            with high-volume sampler at site No. 468-665.
     T
  £ 202 t
  2
  O
     00 r

     60 -
                                     •—SUMMER
                                     ....... FALL
                                     --— WINTER
                                     .......... SPRING
                                     -__. YEAR
                                     _J	I   I	
                                                              1963

                                                              1964
     Cc  00^ C'C£ C5   t   t   C   30  3C 40 60 60  70 80   90  95  98  99  99 8  9  9999
                      % OF SAMPLES S STATED CONCENTRATION
Figure 22.   Frequency distribution of suspended particulates measured
             with high-volume  sampler at site No. 469-750.

-------
          1000

          BOO
        E 200
        o*
        ^

        2
        O
        CL
                                                        ^— SUMMER
                                                        -•-• FALL
                                                        —-— WINTER
                                                        	 SPRING
                                                        •--• YEAR
1963

1964


 I
           001 005 0 • c 2 05    t   5  lO   20 30 40 50 60 70 80  90  95   98 99   99 8 9  9999
                            % OF SAMPLES < STATED CONCENTRATION
      Figure 23.  Frequency distribution of suspended particulates measured
                   with high-volume sampler at site No.  470-718.
              0.05 0102 05
                                    20 30 40 50 60 70  BO   90  95  98 99  99 8  9  9999
                            % OF SAMPLES S STATED CONCENTRATION
      Figure 24.  Frequency distribution of suspended particulates measured
                   with high-volume  sampler at site No.  472-680.
46

-------
  6  200
 I-  100
 <
 cc
 2
 o
 o
i        s&?
§    .x*g*^
                                                  — SUMMER
                                                  • — •-FALL
                                                  ___ WINTER
                         1963
                                                             1964
II II!
	 	 SPRING
.... YEAR
II 1 1 1 I I 1 I 11 ii
1 1
        005 0 I 0 2 05
                       5  10  20 30 40 50 60 70 80  90  95  98 99  99 8  9  99-

                      % OF SAMPLES < STATED CONCENTRATION
Figure 25.  Frequency distribution of suspended particulates measured
            •with high-volume sampler at site No. 481-698.
   1000

    800
  £ 200
                                                   —. SUMMER
                                                   ..... FALL
                                                   -._ WINTER
                                                   	 SPRING
                                                   .... YEAR
                          1963

                          1964
         005 0102 05
                        5   10  20  30 40 50 60  70 80   90  95  98  99  99 8  9  9999
                       % OF SAMPLES < STATED CONCENTRATION
Figure 26.  Frequency distribution of suspended particulate measured
            with high-volume sampler at site No. 489-728.
                                                                             47

-------
         1000

         800
       e zoo
       CP
       =L
       <
       ttL
                                                         ——SUMMER
                                                         •• —- FALL
                                                         ___ WINTER
                                                         	 SPRING
                                                         • --- YEAR
1963

1964
          001     103051  2   5   10   20 30  40 50 60 70 80   90  95  98 99   99 8 9  9999
                            % OF SAMPLES < STATED CONCENTRATION

     Figure  27.  Frequency distribution of suspended particulates measured
                  with high-volume sampler at site No.  490-713.
         1000 i	

         800 -
            -  NOTE SITE ACTIVATED NOV 1963
       E 200
       2
       O
               I  I  I	L
                                     ...._, FALL (NOV 1963 ONLY)
                                     — WINTER  1964
                                     	 SPRING
                                     .... YEAR (NOV 1963-JUNE 1964)
                                   J	I	1	1	I	I	I	I	I	I	
                                    20 30 40 50 60 70 80   90  95  96 99   99 6 9  9999
                            % OF SAMPLES < STATED CONCENTRATION
     Figure  28.  Frequency distribution of suspended particulates measured
                  with high-volume sampler at site No.  495-709.
48

-------
    1000

    800
  E 200
  C7>
  i
I  I   I  I  I
         NOTE SITE 499-700 MOVED TO
                 494-703 FEB 1,1964
                                JULY 1,1963-FEB 1,1964(499-703)
                                SUMMER (499-700)
                                               1964
              "-•- FALL (499-700)
              —-- WINTER (494-702)
              	 SPRING (494-703)
               --- FEB 1,1964-JUNE 30,1964(494-703)
               J	I	I	i.
                        5  10   20  30 40 50 60 70  8O   90  95  96 99   99 8 9  9999
                       % OF SAMPLES < STATED CONCENTRATION
Figure 29.  Frequency distribution  of suspended particulates measured
              with high-volume sampler at site No.  499-700 and 494-703.
    1000

    800
                                                     — SUMMER
                                                     	FALL    '963
                                                     —-— WINTER
                                                     	 SPRING
                                                     •--• YEAR
                                                     1964
                     2   5  10   20  30 40 50 60 70  80   90  95  98 99   99 8 9  9999
                       % OF SAMPLES < STATED CONCENTRATION
Figure 30.  Frequency distribution of suspended particulates measured
             with high-volume sampler at site  No.  501-713.
                                                                                   49

-------
1000

800 -
         E  200
        z
        o
        o
                    i — i
                                                T	1	1	T
           •#/'
                                                —• SUMMER
                                                -'-•• FALL
                                                —- — WINTER
                                                	 SPRING
                                                --- YEAR
                                                                     l963

            001 0 05 0102 05
                                 10   20  30 40 50 60 70 80   90  95  98  99  99 6 9  9999
                             % OF SAMPLES < STATED CONCENTRATION
      Figure 31.  Frequency distribution of suspended particulates measured
                   with high-volume sampler at site No.  505-740.
            JF
                                                  ~l	1	T
          600 \-
        E 200 h
                                                          —• SUMMER
                                                          -•-• FALL
                                                          ___ WINTER
                                                          	 SPRING
                                                          • --• YEAR
                                                           1963

                                                           1964
                                                _1_J	L
                                                                    _L
            001 0050 102 05
                              5  10   20 30 40 50 60 70  80   90  95  96  99  99 8  9  9999
                             % OF SAMPLES < STATED CONCENTRATION
      Figure 32. Frequency distribution of suspended particulates measured
                  with high-volume  sampler at site No. 520-798.
50

-------
        1000
        800
      £ 200
      <
      tr.
      o
      
-------
                     CALM-92
                                                                   CALM-92
                            79
     59 =>
                                78
Figure 34.  Suspended particulate pollu-
            tion,rose - site No. 432-715
            Sept.  1963  - Feb.  1964,  133
            samples.
                                                                           87
                                                                                  106
                                                                              93
Figure 35.  Suspended particulate pollu-
            tion rose - site No. 438-689
            Sept.  1963  -  Feb.  1964,  112
            samples.
                                 1200
                                                 FROM
                Q        5    i    10    .   15

                      PERCENT OF SAMPLES
                 24-hour samples - High-Volume sampler
                 Note  Numbers on radials are average arithmetic
                 concentrations tor wind directions indicated
        Average concentrations
        for calm conditions are
        given above roses
       72
                                                                 CALM-84
                                                                        104
                                121
 Figure 36.  Suspended particulate pollu-   Figure 37.  Suspended particulate pollu-
              tion rose  - site No.  449-719                tion rose - site No.  468-665
              Sept.  1963  - Feb.  1964,  117                Sept.  1963  - Feb.  1964,  132
              samples.                                    samples.
  52

-------
                        CALM-138
                         77
                                                                 CALM-124
                                                                         115
                                                                            105
                                    128
Figure 38.  Suspended particulate pollu-
             tion rose - site  No. 469-750
             Sept.  1963  - Feb.  1964, 83
             samples.
                                                                                112
                                                                              117
            Figure 39. Suspended particulate pollu-
                        tion rose - site No. 470-718
                        Sept.  1963  - Feb.  1964,  76
                        samples.
                                   I50-200_
                              100-150     >200
                WIND
             ^ FROM
             * THIS
              DIRECTION
5
10
                                           15
                       PERCENT OF SAMPLES
                  24-hour samples -High-Volume sampler
                  Note Numbers on radials are average arithmetic
                  concentrations for wind directions indicated
Average concentrations
for calm conditions are
given above roses
                     CALM-255
                            213
                                217
                                 264
      226
                                   282
                        78
                                                   94
                                   418
                                                                               116
  Figure  40.  Suspended particulate pollu-  Figure 41.  Suspended particulate pollu-
              tion rose  - site No. 472-680               tion rose - site No.  481-698
              Sept.  1963 - Feb.  1964,  108               Sept. 1963  -  Feb.  1964,  130
              samples.                                    samples.
                                                                                     53

-------
                     CALM-I6I
                             1ST
                                203
  142
                                                 129
                                                                            199
Figure 42.  Suspended particulate pollu-  Figure 43.  Suspended particulate pollu-
            tion rose - site No. 489-728               tion rose  - site No.  490-713
            Sept.  1963  -  Feb.  1964,  60                Sept.  1963 - Feb.  1964,  111
            samples.                                   samples.
                                                 WIND
                                               ^THIS
                                                DIRECTION
                 0        5    i    10       15

                      PERCENT OF SAMPLES
                  24-hour samples - High-Volume sampler
                  Note Numbers on radials are average arithmetic
                	concentrations for wind directions indicated
Average concentrations
for calm conditions are
given above roses
                      CALM-230
              153     140
                                             141
                                                                 CALM-212
                                                                  172
                                                                          189
                                                 125
 Figure 44.  Suspended particulate pollu-  Figure  45.  Suspended particulate pollu-
             tion rose - site No. 494-703              tion rose - site No. 495-709
             Jan. 1964 - Feb.  1964,  31                Nov. 1963 - Feb. 1964,  66
             samples.                                  samples.
 54

-------
                  CALM-162
     253 [
                               228
                                                                 CALM-274
                                                                        185
                                                   199
                                     173
                                                                            225
  Figure 46.  Suspended particulate pollu-   Figure 47. Suspended particulate pollu-
              tion rose - site No. 499-700               tion rose  - site No.  501-713
              Sept.  1963 - Feb.  1964, 49                Sept.  1963 - Feb.  1964, 108
              samples.                                   samples.
                                                 WIND
                                                 THIS
                                               DIRECTION
                                                      Average concentrations
                                                      for calm conditions are
                                                      given above roses.
                      PERCENT OF SAMPLES
                 24-hour samples - High-Volume sampler
                 Note Numbers on radials are average arithmetic
                 concentrations for wind directions indicated
182
   225
                         CALM-329
                         165
                                  431
 Figure 48.  Suspended particulate pollu-
             tion rose  - site No.  505-740
             Nov. 1963 - Feb. 1964,  66
             samples.
                                                   162
                                                                                179
Figure 49. Suspended particulate pollu-
            tion rose  - site No.  520-798
            Sept.  1963 - Feb.  1964, 114
            samples.
                                                                                    55

-------
                                                WIND
                                                FROM
                                                THIS
                                               DIRECTION
        5        10       15
       ^^^^^^^i^ss^^s
     PERCENT OF SAMPLES
24-hour  samples —HIGH-VOLUME SAMPLER
Note- Numbers on radials are average arithmetic
concentrations for wind directions indicated
                                                     Average concentrations
                                                     for calm conditions are
                                                     given above roses.
                                     103
                             112
                                                         118
                        Figure 50.  Suspended particulate pollu-
                                    tion rose - site No.  534-702
                                    Sept. 1963  - Feb.  1964, 72
                                    samples.

       The results  from  September 1963 through February 1964 were used for  the
roses because the weekday  sampling schedule in effect then provided a greater
number of samples and  thus  greater reliability of pollution rose data.  The meteor-
ological data were  obtained from Lambert Field (coordinates 440-760).  Although
the meteorological  data  were collected several miles from some of the sampling sites,
comparison of these data with those collected at different levels on the  KMOX-TV
tower (coordinates  491-716)  indicated that the Lambert Field data were the  best  to
use for pollution rose preparation.   The tower data,  however, reported in part in
Volume V, Meteorology and Topography,  and a report by Dr. George Arnold   indicate
the presence of a heat island influence on air circulation.  The KMOX-TV tower data,
therefore, should be used to help make detailed interpretations of results  in the
St. Louis central business  district  and East St.  Louis city areas.
       The pollution roses  show  the west to northwest and south to southeast sectors
had the most frequently  occurring winds.  Sites 432-715, 438-689, and 449-719 had
few occurrences of  suspended particulates in high ranges, but most of the pollutant
 56

-------
came from the eastern sectors as indicated by the higher:direction averages.
Beginning with site 468-665 and moving toward the City of St. Louis, the percent
of occurrence of suspended particulates in high ranges increased very sharply and
remained high for the sites in Illinois.  Measurements at site 534-702, the most
easterly site, decreased to relatively few occurrences of upper-range suspended
particulates.  The roses for sites 472-680, 499-700, and 505-740, which were close
to large sources, clearly indicate the direction of the major sources from the
sampling sites.  The other roses indicate directions of the winds that bring the
most pollution to each site, but the variations for these are not as obvious as for
the first three sites.
       To indicate the importance of directional influence on suspended particulate
pollutants and to provide a guide for design of the pollution reduction nlan, a
directional analysis was made using data pertaining to the maximum directions as
shown on the pollution roses.  These data appear on the pollution rose printouts
by 10 percentiles.  An example of a resulting frequency distribution and percent
reductions needed to reach an air qualitv goal of 75 micrograms per cubic meter is
shown in Figure 51 for sampling site 495-709, which had a maximum pollution level of
201 micrograms per cubic meter from the east.  Figures 52 and 53 show the direction of
maximum pollution influence and percent reductions needed to reach a 75 microgram-
per-cubic-meter goal at all high-volume sampler stations for both geometric mean
and 99th percentile conditions.

       The method of making the percent source strength reduction calculation is
that developed by Larsen during work in Los Angeles.    Here, Larsen's method is
applied to single directions rather than to the sampling site station as a unit.
The directions reported are considered quite significant and the percent reductions,
somewhat less significant because of a number of factors.  First, the method of
computing pollution rose data tends to distribute some high values to the wind
directions on either side of the highest value direction.  Second, the distance to
the major sources in that direction are not considered, and, therefore, the
diffusion that results along the trajectory of the pollutants is not adequately
considered.  Third, the winds carrying pollutants have a tendency to meander so that
pollutants from a single source are brought to the station from a sector rather than
from a specific direction.  This dilution tends to reduce the effects of the source
on the station when directions are considered.  The method is thought to be conserva-
tive and tends to underestimate the percent reduction needed.  It was also applied
conservatively by selecting the highest known station value as being the 99th
percentile value in those instances where the plotted 99th percentile was much
higher.  The air quality goals of 75 and 200 micrograms per cubic meter for the
geometric mean and 99th percentile are used here as examples only.  Background
                                                                                 57

-------
      I.OOO
       800

       60O

       400
      E200
      ^
      o>
IIIIT~
                       I111IT



      g
      t-
       100
        80
     8  60
        40
        20
                                      I   I  I  I   I
                                    STATION 495-709
                                    EAST DIRECTION
                                    NOV 1963-FEB. 1964
                                    SEE FIGURE 45.


         0.01 0050.1 0.2 0.5  I  2   5  10   20  30 40  50 60 70 80   90  95
                           % OF SAMPLES <- STATED CONCENTRATION
                                                                    99.8 .9  99.99
    Figure 51. Frequency distribution of suspended particulates measured with
                high-volume  sampler  - maximum direction analysis.
levels of 30 and 91 micrograms per cubic meter,  geometric mean,  and  99th percentiles,
respectively, were used.
       The maps in Figures 52 and 53 show  that  the  central  part  of the Study area,
in general, has a considerable effect on the pollution  levels  in the outlying areas.
The source areas of major importance are indicated  as being south of East St. Louis
and in a southerly direction from Granite  City.  The area south  of Jefferson Barracks
shows the influence of downriver sources or the  influence of river topography on
transport of pollutants.  Both the geometric means  and  99th percentiles show
essentially the same results with emission reductions of 10 to 30 percent called
for in the outlying areas and 60 to 96 percent  in the central  areas.
       Another approach to interpreting the high-volume air sampler  data was to
correlate it with Pasquill's stability classification as described by Turner.
The stability classes were described previously  in  the  Measurement Methods section
of this Report.  The results are given in  Table  15.  Wind speed  appears to be the
meteorological factor of primary importance, since  11 stations indicated a high
particulate  loading with low wind speeds and low particulate loading with high wind
58

-------
420    430     440    450    460     470    480     490    500°°°   510    520    530    540
                                                              ADISON    CO.
                                                O HIGH VOLUME SAMPLING STATION
                                                •-IIHD DIRECTION
                                                   REDUCTION FOR RESIDENTIAL AIR QUALITY
                                                % GOAL OF 75^g/m3 BASED ON GEOMETRIC
Figure 52.  Directions of maximum influence on high-volume sampler stations
             and direction-percent reductions  (geometric means).
                                                                                     59

-------
 420    430    440     450   • 460    410    480    490   500°°°    510    520    530    540
                                                                ADISON     CO
                                                   O HIGH-VOLUME SAMPLING STATION
                                                   *~WIND DIRECTION
                                                      REDUCTION FOR RESIDENTIAL AIR
                                                   % QUALITY GOAL OF 200 /ig/m3 (99
                                                      PERCENTILE)
  Figure 53.  Directions of maximum influence; on high-volume sampler stations
               and direction-percent reductions  (99 percentile).
60

-------
    Table 15.  AVERAGE SUSPENDED PAR TICULATES BY
     HIGH-VOLUME SAMPLER FOR FIVE ATMOSPHERIC
    STABILITY CLASSES, JULY 1963 -  JUNE 1964 ((ig/m3)
Site
coordinates
432-715
438-689
449-719
468-665
469-750
470-718
472-6SO
481-698
489-728
490-713
494-703b
495-709°
499-700d
501-713
505-740°
520-798
534-702
Atmospheric stability class
1
80.000
109.889
102.158
87.684
95.846
119.000
229.667
120.556
191.857
196.625
-
152.818
-
199.389
261.357
123.167
148.000
2
93.775
97.747
101.964
84.000
95.325
110.929
281.867
119.516
174.823
180.413
154.000
157.276
173.571
219.179
257.932
129.396
130.939
3
75.590
84.873
94.270
74.845
82.729
110.075
302.584
109.044
133.980
149.623
147.967
148.673
147.803
195.585
249.082
125.356
105.991
4
61.984
63.119
75.547
59.912
76.891
93.264
314.027
89.284
106.094
130.909
162.712
139.655
176.863
157.835
240.280
140.929
94.830
5,6,7
76.502
80.183
90.270
73.872
86.423
97.459
289.152
103.218
139.007
144.576
147.891
150.823
159.299
194.442
255.036
128.025
114.821
 1 = extremely unstable.
 2 = unstable.
 3 = slightly unstable.
 4 = neutral.
 5,6,7  =  slightly  stable, stable,
^January  1964  - July  1964.
November 1963 - July 1964.
H
 July 1963 - December 1963.

November 1963 - July 1964.
and extremely stable.
                                                                      61

-------
speeds, whereas only six indicated the reverse relationship.  In view of the over-
riding importance of wind speed, attempts should be made to determine the mathemati-
cal formulas expressing this relationship for each pollutant.
       Analyses were made of some of the high-volume filter samples for metals and
organic matter content.  The results are given in Tablesl6 and 17 and Figures 54 and
55.  Also included are the results from the St. Louis and East St. Louis NASN sites
and the Midwest averages.  The samples were selected on the basis of the meteorologi-
cal conditions conducive to high air pollution and the wind being mostly from one
direction.  Samples were also selected so that the eight major wind directions were
represented.  The maps in Figures 54 and 55 show the wind directions associated
with levels of organic and metal particulates considered worth reporting for
comparison purposes.  The bases for comparison are given at the end of Table 16.
They are the NASN averages for 1957 through 1961 for the nation, Midwest, and
St. Louis.  The following numerical values were selected:

  Particulate     Concentration, ug/m       Particulate     Concentration, pg/m
  Organic                 15.0               Vanadium               0.015
  Beryllium             Any                  Zinc                   0.75
  Manganese                0.01              Chromium               0.05
  Lead                     1.0               Nickel                  0.030
  Tin                      0.06              Molybdenum             0.02
  Iron                     3.0               Cobalt                  0.003
  Copper                   0.08              Bismuth             Any
  Titanium                 0.08              Cadmium                0.030
  Ant imony              Any

       The maps show the areas along the river and near industrial areas to be the
most polluted with metal and organic particulates.  Nearly all of the stations
showed lead occurring in above-average concentrations.

       The NASN has had high-volume samplers operating in both St. Louis and East
St. Louis.  The St. Louis station, located at coordinates 489-714, collected data
every year from 1957 through 1963.  The East St. Louis station,  located at coordinates
501-713, provided data for the years 1958, 1961, and 1963.  These data are summariz-
ed in Figure 56 and compared with the national averages for each year in Figure 57.
The East St. Louis results were higher than the St.  Louis results, and both were
higher than the national average.  With the exception of an increase in 1959,
suspended particulates have decreased gradually in St. Louis since 1957, as did the
national average.  The 1963 East St. Louis value was lower than that for 1958, but a
sharp increase from 1961 to 1963 indicates an increase in pollution.
62

-------
 W
 H
 W
 O
 >
  I
 ffi
 O
 I— I
 ffi

 p
 W
 H
 U
 W
 J
 W
O

H
Z
W
O
U

U
O
rt
o
Q
W

S


sD
i—i

 
O
Part ic
V
t->
a
13
C t-i
i -X3
4) -^ u
4J fci *J
• ir\
rH 0
0 0
o o
n r>
0 0
0 0
-3 r-.
0 0
0 O
CN- GO
O 0
O rH
O 0
O 0
* C--
0 0
CM C^
0 0
o o
0 0
o o
o o
0 O
o o

.04 •<*
OJ OJ
r- r-
r^ £
NO --^
NO OJ
NO" ^5"
3 g
u^
El
CM
?
0 0
O o
0 0
0 0
§ 1
O 0
O O
o o
C 0
0 0
o o
o o
0 0
0 0
§o
0
0 0
o -3"
OJ OJ
O 0
0 0
§ 1
0 0
O CO
O MO
0 0
3 2
O 0
O 0
r-i r-»
C 0
0 0
rH ITS,
0 0
0 O
W-\ rH
O rH
0 OJ
0 O
0 0
O u~\
0 0
oj r-
0 0
o o
o o
o o
O 0

•O LTi
* 5
e-\
vD f\
-^. NO
CO ~*-.
CM NO
•5- -21
i-l 03
* U
§
i
§
O
o
g
o
§
o
§
o
8
O
CO
8
O
§
0
0
o
0
0
0
o
0
8
O
OJ
c
o
fl
0
8
O
rH
O
CM
0
O
O
0

fN
O
w>
r>
NO
CO
CM
o
 C1^
r-< O
0 0
80
o
§o
0
0 0

en oo
 fs,
O 0
o o

0 0
8 3
O 0
H r~\
0 0
rH OJ
0 0
o o
8 8
8 8
o- o'

<-" •»
(N
R 3
^ $
Z. >
^2. 5.
^ CO
^ X
^\
»
§o
0
o o
O 0
8 8
0 0
O 0
§o
8
o o
§o
0
0 0
0 0
8 8
0 O
\r\ O
rH Q
0 O
O 0
§O
8
O 0
O O
0 C
O 0
c- o
rH O
c o
0 O
o o
0 0
H 3
0 X
o
C"*i *O
O 0
o o
O 0
o o
oj NO
O 0
OJ 4
0 0
0 0
o o
o o
O 0

- *
Jj 00
fN
I §
^- NO
a 5-
g g
o
£
o o
8 8
0 0
o o
o o
o o
0 0
80
o
0 0
0 0
o o
8 8
0 0
o c
o o
o o
0- 0
i-i O
C 0
o o
8 &
o o
o o
ir\ rH
oj so
o o
r- J*
8 1
0 0
o o
0 0
3 a

-d NO
O 0
0~\ OJ
o o
o o
c^» »o
0 0
oj r~\
O 0
o o
g 8
8 8
o o

f> CM
*O ~*
r~\
\o r~\
> JS.
r-1 to
NO" 7^
H g

8 §
0 0
8 8
o o
O 0
0 O
0 0
0 0
O 0
§o
8
O 0
8rH
0
O 0
o vo
8 &
O 0
C^ r-\
§rH
c
0 O
g e
O 0
8 3
O 0
0 O
0 O
o o
OJ CO
0 O

NO O
O OJ
f\ CM
0 0
O 0
O- CO
O P^
C*^ i-i
O H
o o
0 O
O O
8 8
O 0

rsi
Oi Ch
O~\
NO C"-.
-— NO
tO ^.
•5. -^.
Ji a"
1 CO

§
o
o
o
o
0
o
8
0
o
8
O
o
c
o
CN
8
O
w\
o
o
o
3
o
8
O
0
o
o
CM
0

CO
0
3"
O
o-
1—1
NO
o
o
o
o
g
o

Kl
l/l
OO
f\
NO
ir\
N
NO
%
CO
fi
O
&
8 8
O 0
O 0
8 S
o o
O 0
o o
o o
o o
0 0
O 0
8 8
O O
O 0
0 O
0 O
V^, iA
rH rH
O O
O 0
& &
O O
0 O
ft R
O rH
CM o
8 8
O O
O O
0 C
oj vn,
0 0


O rH
g s
O 0
U-\ C\
0 rH
3CN-
0
o o
i 1
O 0

ui en
CM m
CTI r^
C~v
r^ NO
NO 	 .
5 *
7^ ^
M
B m
%
                                                                                            63

-------
  co

  W
  W
  O
  I—(
  K

  Q
  W
  H
  U
  W
  J
  W
  O

  H

  W
  H

  O
  U

  U
  o
  rt
  o
  p
  H
  W
  TJ
  -M

  O
  U
 ^
  a)
 H
£l

•a

C£

U

_0



IH

C


"«
. •"
0
*-J
t-i 3
4-> U
C
c
"-



CL.

y

£
U
c
tx
IH
O
U
n
a.
2
!£
Site
coordi-
nates
8
0
O
O
o
8
O
o
8
O
8
O
§
O
o
o
o
s
s
o
J-
o
o
CM
o

H
pi
0

O
o
o
§
o
in
0

s
o
z
3"
8
O
0
o
8
O
o
<9
o
g
o
s
0
o
CAi
o
0
*
£•
o
o
o
o
rH
3
O

rH^
0
°

0
o
o
8
8
o
0.


2
1
CO

§
O
CO
H
O
o
8
O
o
8
O
O
0
o
i
0
8
O
O
8
O
O
o
0
*
o

N
o
0

o
o
o
8
o
o
o
-N


2
1
R

§
o
§
O
8
O
O
O
0
iH
0
O
0
o
§
o
0
c
o
iH
O
0
$
o
0
o

so
8
0

o
o*
o
1
o
I/,


s
1
H

§
O
§
0
8
O
o
c
o
C_)
o
o
0
(H
c
o
o
8
O
o
o
0
o
3
O
3
O

CM
H
°
00
0
8
O
8
8
O
o


2
1
H

* O
O
O
0
0
8
0
o
8

o
8
0
8
O
1
O
§
o
o
CM
8
O
0
o
iH
O

o
§
o
CM
O
O
O
§
O
n.


0,
f
H
H
§OO OOOO OOOOOOOO
OOOOOO OOOOOOOO
COOOOOC OOOOOOOO
OOO OOOO OOOOOOOO
§HO O r-l rHO
ooooooo oooooooo
OOOOOOO OOOCOOOO
OOOOOOO OOOOOOOO
§000000 oooooooo
OOOOOO CCOOOOOO
ooooooo oooooooo
(*- CO
LnTj-aOOO^rHM^ ^JONCCCO "IN «O


Sr^-H00^-10 2222££S^
llllllltllllllll
H H H X H H B K R B 8 - * 8 H
cO r^*
£ £
.
so
»

80
o
0 O
o o
0 O
§ a
o o
§ 8
o o
0 O
0 0
o o
o o
0 O
0 0
o o
0 0
gm
rH
o c
0 0
0 0
o o
0 0
O 0
o o
8 §
0 0
,-J CM
0 0
o o
CO O
O CM
o o
UN, r-l
O rH
O -S
o o
0 0

1 OJ
CM tN
o o

o o
0 0
J H



II
IS ,

64

-------
 W
 H
 W
 o
 >
  I
 £
 o
 r-H
 £
 Q
 W
 H
 U
 W
 J
 W
 OT

 tM
 o
 H
 j7
 W
 H
 Z
 O
 U

 o
O
CC
o
Q
H
 o
O
xO


 u
i—i
rO
 n)
H
/•
a
£
q
o
H
f
r-
U
C
>
e
'ntrqtjor
ru
U
c
o
o- uj
°"
c
u-

(^
c

cc
Organic

c.
-o
C I-"
S "3
(U -O It
*4 O «
cr O C
0 0
0 0
o o
d d
O (H
5 *
0 0
O o
o o
d d
0 O
80
0
o o
— ' O
0 0
o d
-^ CO
CM CM
O O
cO u~,
rH (H
0 0
O O
8O
0
00 v~\
rH rH
0 0
80
0
o o
rH CM
0 0
o o
O '•O
vi) CM
^o d
u~\ u~\

00 ^
lA 0
O 0

u~\ H
ro 0
0 CM
o d
8 8
8 8
O 0
00 00
r- o
O T
^ o

f*l fO
^ o
in ui
$ W
O
O
•J-
ON
s-
8(i
0
0 0
o o
o ^o
8\r\
0
o o
o o
o o
0 O
d d
0 O
8 8
d ->
8 8
d c*
xO H
rH rH
0 0
vO ^O
O O
0 0
o o
o vQ
•s 3
o o
r~i c*^
0 0
d d
o- o
0 H
d d
j- o

H rH
0 0
of d

o d
° 3.
o o
o 8
8 8
0 0
*o m
ao ao

f>
-v, -a
U-> --^
-H *D
«r •&
(0 tO
s
^
^
0
u-\
5 o
d d
o o
80
0
0 O
0 O
0 O
0 O
d d
§o
o 8
d d
0 O
0 a
d d
CM O
iH O
0 O
d o
MD O
o o
X£) O
8 8
0 O
rH O
0 O
d d
U-\ C*^
0 O
d o
o u-\

rH O
0 0
o o

o o
c*- H
0 O
d o
8 8
8 8
0 O
O i/>
i/l r-
*
KI
jj --
r- r~
g i


8
O
d
*
0
8
O
O
0
o
o
o
o
o
d
O
H
O
0
c~>
H
O
d
o
-^
r-i
8
0
8
o
~
o
J

3
d

rH
VT\
rH
d
o
o
CTi
hO
i/l

Kl
•v^
QO
Z


8
O
O
S
O
o
o
o
0
d
o
8
d
0
o
o
s
0
o
r-
8
O
S
(M
O
o
o
f\
0
o
t
o
CO
1-1
H
O
O

o
c^
o
d'
8
8
0
°°.
[-•.

ro
^v.
xD
•V
g
I
O
fM
VA
8 8
0 O
O O
o o
8 8
0 0
80
0
d d
o o
80
0
d d
8 8
O O
J iA
CM CM
O 0
3 co
0
0 0
o o
s 3
r-, o
3 H
0 0
0 0
o^ r~
0 0
* •
0 O
C~\ 00
0 0
o o
r-< O
rH rH
rH rH
O O
d d

o d
c^ c^-
o o
d d
8 8
8 8
O 0
SO —1
Oi O
•£> fl

M to
PJ ^
Tt LO
i ^


8
0
O
0
o
o
o
o
o
o
0
o
c-
o
o
o
d
"7
o
CO
o
0
d
o
ao
5
o
m
o
o
o
r-*
d
o

g
o

o
c^
o
d
8
8
0
QO
O


-o
xD
^O
3


0
o
o
o
o
o
o
8
d
o
8
O
8
O
O
fv;
0
o
8
O
8
§
H
O
O
3
d
*7

8
d

d
g
d
8
8

^
••»

hO
S
i^
W


o
o
0
o
0
o
o
o
o
o
d
0
o
o
o
o
o
d
rH
O
8
O
d
o
o
0
8
r~\
0
o
OJ
o
o
rH

8
O

O
r*\
o
d
o

S
1/1

K,
S
vO
CO
CM
?
lA
8
O
d
rH
fM
0
O
o
o
o
o
8
d
8
O
^0
rH
O
O
o
0
d
&
o
8
r'l
O
d
fTN
O
d
u-\

rH
O
d

0
3
O
1

r--
ai
sO

fo
 c\t
rH VD UA O> "^
§°p CO -jf
ai 92
no i O O
o d o o
§OO co t\l ir\
OOOO
o oooo
rH CO 00 H O
O O O H rH
o oooo
tV O. O H O
in f> •
O \Q \Q C\ H —" «
o oooo §-(sj^i
d dodo cy.-3 (O-CL
in in W

. . . . • e *— ' E <^
O OOO<-H H H • — '
o 10
r-j ^H fN CTI
CM cO -* IA Q\ r~"
0 OHOO oog rtt-
o o'doo o — • aii«-
E C
O O t* O r-i
X t4_ «4ri (J, . 14- U
oil'1 o «
o c c o c 4-1
, O O I O tf:
*J *JCTi m *J Ul
, -°C>^*CO*CD ^'"aJ^^^
ro rr,dt^-C\j 2M*^(£!2
 n
co tr u H y uj
,0 ^o u~\ H jf ZZ-H^Z z
,O (---* r-lCO C/}LO-*4J[/; to
 4) j= jj* o « a>
E E *-» u E V E
e . , . , uu^JuEu
35 HrHO^^UM
Je 3 « E *-• E
j= e j= o jr
^•O W W *J4-»HZ4Jg*J
co m en to M (-. « < »M U ^
S 2 2 X rt^o-ao^w
                                                                                                             65

-------
      W
      H
      ,-J
      W
      S
      ID
      J
      O
      >
       i
      ffi
      O
      P
      W
      H
      U
      W
      J
      W
      O

      OT

      00
      Q
      H
      H
      H
      Q
      t^
      I—I

      fa


      a)
      H
JD

-0

H
CO

o

0

rH

l-

t^ C
! c-'
! ^
! c
, o >
! ro
V-
c
; 1> -^
: i L^
, " ' 	
j p

i £
i ! ~
X
! • -^
' a.
I —
c

I —
CQ
Organic
(J
|H
ra
c.
CJ
«
Q

TJ
c *-

Site
coordinates
oooooooo
OOOOOOOO
oooooooo
oooooooo
^J-i-HOOOOOO
fO-HOOOOOO
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
••- CTi I — i— « r-- oo IN ^o
OOOrJOO-"^
cooooooo
oooocooo
•*r(M— «r-TtrMoo^O
_< _, _| (N| _. • .-H r>J  -r-j o r-j
^Tj—.U-l — ^-1 —• .->
r-joc.C'.O'-H^OoOSC
cnr^-TfOfj-^Ou'i'O
•T O O -T T O^D-O
O -^ "-- -O -O --. -~^ ---.
-v,--^--^--.-^"--.-^"--

JJ
_J LC

7
o o o o o o o
O O O O O O 0
o o o o o o o
o o o o o o o
O ci ° ° O — i O
O ^ O O O <-t O
o o o o o o o
o o o c o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
O O 0 O O O O
!-- •& r-t t*~ O •-* O
o o <-* o o <-< o
O O O O O 0 0
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o c o
O O O O O 0 O
O -H O O O O rvj
o to QO o o ^t m
0 0 0 O O — O

o o o o o o o
o c o o o o o
O O O O O — "
0 O O O 0 O C
o o o o o o o
r-j O f^ ~^ ^-i fi i— •
O 0 O 0 O 0 0
0 O 0 O 0 0 C
0 0 0 0 0 0 C
O — i — • O O C O
0 O 0 O 0 0 0
C O C: O O O O
•— • •—« Ln fvj L/l 1^1 f"i
0 r-i O O 0 O 0
IN r-i ro o to rj f">
O O 0 0 O O 0
o o o o o o o
O O 0 O O O O
O O O O 0 O 0
o o o o o o o
o o o o o o o
o o' o o o o o
O ^D sD — i —i C — '
T iri i~j m r- r- o
T ci -t K> r-- r~ o
** -T ^T T
-O ~t -t -t J2 O -O
•^ o o -c ^ ^, -^
-^ \ \ ^ -^ -v^ ^,

_J (T

c%
c»
J5
X
fO
-T
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
000
o o o
o o o
0 O O
o o o
o o o
o o o
o o o
— 0 0
o o o
o o o
O O Oi
CM O O
o o o
o o o
r- ci o
to -« o
o o o
o o o
coo
rj O O
— i O O

— o o
o o o
0 O O
o o o
o o o
rr — f^
o o c
coo
-H O O
sC O O
0 O O
0 0 O
CO Kl T
rj o 0
rxj O ^J-
— o o
o o o
c: o o
000
0 O O
0 0 O
000
•4" 30 sD
— t Ki rr
-T ~ Ji
CO rO CTi
rj
— -7 JD
sD -O ~~~-




^
r^-
Oi
ry
T
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o co o o
-* it O O »-« O O
— « (N O O C O O
o o o o c o o
o o o o o o o
o o o o o o o
o o o o o o o
O 0 O O O O O
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o c o o
o o o o o o o
o o o o o o o
O r-4  <3O f O O
to i/i r>i rj ~- o O
^ o o o o o o

O O O O O O C
O O 0 0 0 O O
o o o o o o o
o o o o o o o
o o o o o o o
 f^ •"• •"* '"•
OO ^ ^i -O ^ P>J rf)
OD r^- co sO (N «7 »T
Tt TI- — -r
n O ^O *T T -£> -O
J^ "^ \ O ^) -^» '^^
^ ^, ^ "-V- "^. -^ -"v

J- L/5

irs
£1
,c
x.
x>
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o r- i/^
O O O O <^l O^
o o o o o o
o o o o o o
o o o o o o
0 0 O 0 0 0
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
00 LO f*- LO T}1 Q1
O tM O — i — i -H
o o o c o o
o o o o o o
o ^ r» O o^ ^
fN 1^1 -^ r*> fN — <
O O O C) O O
o o o o o o
O <-v) O O O O
O sO O *O LO fl
o o o o -^ —

o o o o o o
O 0 O O O O


o o o o o o
-^ to O "^ *3" ^
o o o o o o
o o o o o o
O [N| O ^H ,-1 -H
O ^i O fO ^ — «
O O O O 0 O
o o o o o o
r^i oo CT\ *t t~*. •&•
0 C -H -« O r^
n oc o r- rt oo
o o o o o o

o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
— i t-O O -^ O CO
ro \D ^ r^ ^O •O
co c» o fo o TT
LT, rg \D O •"-• CTi
•^f T "* *T
•O •*? *t ~D O O
•^. .0 o -*^ -^ ^^
^ ^ * C r; c
J rO »0
UJ
UJ LO

o
m
r~
o\
o
-*
O O O O rO O
u^ O O (Nl Ci O
O o o r-i o O
O O O O O O
m o o o o o
sO O 0 O O O
o o o o o o
O O O O O 0
o o o o o o
o o o o o o
o o o o o c
o o o o o o
O O O fN to O
O O O .-H -H O
O O C; C O O
o o o o o o
•"" O O *T to O
o o o o o o
o o o o o o
O rO -H O 0 -£)
oo rsi TT o to O
— i O O i/l fN O
o o o o o o
o o oo o c o
i* — . — . fsl T O
-H 0 0 X ro 0
o o o o o o
O Oi O — » O O
i-H LO L/) L/l C~. (N

O C^ rr rr C"i O
.-I f~. o D r\i c
o c o o o c
o o o c; o o


rr to ^T rr O — <
O 0 0 O 0 0
O O 0 O 0 0
r-~ — TJ c; o ^c
--. Kl
0 0 0 O O C
o o o o o o
«T ^O -T i^1 fN| OC
 i~^
o o _^ -. ^ o
0=0000
o o o *^ o ^
o o o ^ ^ ^
0 0 0 0 0 0
O O O O ° —"
0000°°
•£) co O  co \O tO to ^j-
to fN r i rO r* ^H
rsi ^H 
-------
C/)
Oi
W
H
W
O
HH
ffi

Q
W
H
U
W
J
W
W
 P
 W
H
w
Q
 o
U
r—
i—i

 0)

3
 oj
H


















e
*»*.
a
o
rt
(-,
C
it
e
u















-a
c

QJ
LT
J2

•o

'H

O


o

•H

14

c


>

•rH

3


u_

C/)

XI
a.

c

UJ
CD

O
c
M
IH
0
U
1-4
»4
Q.
V
*J
(S
IK

coordinates
o o o o o o o
§«o o o o o o
O O Q O O O
o o o o o o o
o o o o o o o
(M iO O 0 0 0 0
•-* o o o o o o
o o o o o o o
o o o oi o o o
o o o o o o o
o o o o o o o
o o o o o o o
§o o o o o o
0 O 0 0 0 0
o o o o o o o
o o o o o o o

o o o o o o o
o o o o o o o
ro ^- *  o o o>
(N (M fS — i —• O O
o o o o o o o
o o o o o o o
o -o o ^r o o o
•~» o ^- o o ~H —i

^^^4^000
o o o o o o o
o o o o o o o
4/> O %0 *~- V CM ~H
O --i O O O O O
o o o o o o o
^  o O O O
CM O ^ O — « O (N
O O O O O O 0
o o o o o o o
o> o r- m ^ ^ r.
rj CN o O O O O

o — « o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
§000000
o o o o o o
O O O O O 0 O
•& O NO <^ O TJ- t^

oj o CTi LO r^ r^ o

•^- -w •»» ^r
^r *o -^ *r o \o \o
<& "^- -O -O -••%. --^ -N.
^-, r^ ^-, ^^ — ' 
^>
OO
*»
o o c
o o o
o o o
o o o
xD ci r-~
—i ro CJ
o o o
o o o
o o o
o o o
o o o
o o o
o o o
000
o o o
o o o

o o o
o o o
r^ in oo
•—1 ^H (N
o o o
o o o
CTi ^r i^
O «-i ^
o o o
000
1/1 o r^
o .-. o

O O -H
o o o
o o o
ro •v r--
o o o
o o o
oo to r-j
o o o
o o o
(N CTi OO
~H o r^
o o o
o o o

(N O O

o o o
o o o
O O CO
0 0 O
o o o
o o o
o o o
CO ^5 rO

-* hO »O

** -*
•^ J3 O
J3 ^. "-.
•^» r\i 00
— tf

X
^i
r-
CTi
oc
T
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
-£> Kl O O (N O
-H ^ O O CM O
o o o o o o
O O O O f~> O
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o

o o o o o o
o o o o o o
K) r- oo oo o ~*
Kl I/) rM i-H K) •-"
o o o o o o
o o o o o o
o t-. O Tf r^ in
rO (N ^H •-( ro (N
o o o o o o
o o o o o o
O O  — < O -H ro O

-^ Kl (N O -H O
o o o o c o
o o o o o o
^ tn m M (M i^-
O ^ O O ~*i O
o o o o o o
\O O (^J trt \O (N
ro ^ O O — • O
o o o o o o
fN 1/1 (N r~ ^ i/i

•v rM (N O •«• O
O O O O O 0
o o o o c c

(N -< O

O O O O -H O
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
O 0 0 0 0 0
Is- .O O sD i/l ro
^ ^ ° 2 °° °
H^ Ji ^ H^ OO rO

•^- -v -^r ^r
TJ- -O 'O ^f •O -O
& ^~^, £> -^-^
^, r r- --*. -* ac
UJ
C/l

Kl
r^-
o
3%
t
o o o o o
o o o o o
o o o o o
o o o o o
oo 0 0 — -H
00 "1 O tO OJ
o «-* o o o
o o o o o
fO O O ro Kl
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o

o o o o o
o o o o o
Kl  r-« - -^ oo
•J~

rO
o
T
?.
-T
o o o o o
o o o o o
o o o o o
O 0 O O O
O o ""• O O
1- O ^ *> O
rO o O <""* O
0 O O O O
rg O O -^ O
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o
o o o o o

o o o o o
o o o o o
\O ^ CM tO ^h
\O fs| i/^ f>l -H
o o o o o
o o o o o
tO CTi C% CD CM
(N O OJ t-^ — <
o o o o o
o o o o o
O 00 O O O
O% O fM O  O
-H i~>i rj -H
(~Nj O Lrt I/) L/l

T T ^T
T C t ~C -D
*O *^, £> ^~~. ~-~~~.
•^~~. f~- -^. i") M
_!
_j y"
-J
^
z>
-r
o o o o o o
o o o o o o
o o o o o o
o c o o o o
i/} O ro O O O
to O 1-1 O ro O
O O O 0 0 O
o c o o o o
O O O O 0 O
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o

o o o o o o
o o o o o o
OO L/l (N OO fM O
r-j (N r\j - O> LO — i
— i O O O O O
0 O O O O O
\O (N ro to rsj — •

ff) CM ^H CM O O
O O O O O C;
o o o o o o
r^ »n r»* o> m to
rN O O O O 0

O O O O 0 O
O 0 O O O 0
o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o
OO W CM O T t~-
• -^ -^
-•^ r- --^ -~^ — i oo
•^ ^^ -^ -^- *^ ^,
0_
U"

r-
                                                                                                                67

-------
                                                                      «
                                                 sD
                                                 w
                                                 H

                                                 KH
                                                 tq
                                                 w
                                                 o
                                                 ffi
                                                 o
                                                 M
                                                 ffi
                                                 Q
                                                 H
                                                 H
                                                 u
                                                 w
                                                 J
                                                 w
                                                 w
                                                  Q
                                                  w
                                                  H
                                                  w
                                                  Q
                                                                      cc
^1
                                                                       u
OOOOOOO     OOO      OOOO
OOOOOOO     OOO      OOOO
OOOOOOO     OOO      OOOO

OOOOOOO     OOO      OOOO




(NTj-OOOOiO     OOO      OOOO
to to O  O O O  CM     OOO      O  —« O  O
OOOOOOO     OOO      OOOO

OOOOOOO     OOO      OOOO


OOOOOOO     OOO      OOOO
OOOOOOO     OOO      OOOO
OOOOOOO     OOO      OOOO

OOOOOOO     OOO      OOOO



OOOOOOOO     OOO      OOOO
OOOOOOO     OOO      OOOO
OOOOOOO     OOO      OOOO

OOOOOOO     OOO      OOOO



*T ^H O  O ^H O  ("••!     ^-«  O O      O  »-H O  O
OOOOOOO     OOO      OOOO

OOOOOOO     OOO      OOOO



G to Ci  oo o <—»  (~^     fsi  CNI LO      ^H^O*D

^H O O  O O O  O     OOO      OOOO

ocooooo     ooo      oooo



rsi to u">  (N <-< *r  c^     TOO      T  o o  o
\O 00 -^  to -- ^  **     ^-H  O O      -H  O O  O
ooooooo     ooo      oooo

o'oooooo     ooo      oooo


oooooooc     -^  !•••• Is-      01/100
OtOtOI^OOf^-     oO*t(N      ^C-li  •—• c: C;  •—•     —ir-iio     OOOO
 OOOOCOd     OOO      OOOO

 OOOOOO—     OOO      OOOO



 (-^.^-.^O^tOLA     --41/1O     l/l  CO  P—H tO
 hOrjO^^OOfN     OO^^     OOOO

 oooooco     ooo     oooo



 —
-------
                                                u.Zn.Bird.Ora.Mn.PUSn.Fe
                                                      Mn.Pb.Cu.Zn.Bi.Cdl
                                                                 BELLEVILLE
                                 LEGEND:
                                    O SAMPLING STATION
                                           DIRECTION
                                     ONLY NW, N. NE, AND E WIND DIRECTIONS ARE SHOWN
                                     HERE
                                     ORG-ORGAN 1C
                                     BE -BERYLLIUM
                                     Mn -MANGANESL
                                     Pb -LEAD
                                     Sn -TIN
                                     Fe -IRON
                                     Cu - COWE.R
                                     Ti -TIT/1! MUM
 V -VANADIUM
Zi\ -ZINC
Cr -CHROMIUM
Ni -NICKEL
Mo-MOLYBDENUM
Cc-COBALT
bi -USMUTH
Cc! -C^
 >-, - ANTIMONY
     430    440    ^59   < GO    'iTO    480   480    500**
        530   540   550
          54,  Geogra'phii o i 5t ribution of airborne metals uml organic particulates
               from nor']i\vi-sl, north,  northeast, and  ca;,{.
       Figure 57 shows  the seasonal and yearly results  from  the  NASN rural Missouri

and St. Louis  sites, and  the Interstate Air Pollution  Study site 490-713.  Table 18

skives the  1963  NASN  data  for St.  Louis, Fast St. Louis,  and selected other cities.

Of the 15  cities  listed,  East St.  Louis ranked next to highest  for suspended

particulates  (geometric means)  and St. Louis ranked llth.

-------
                                                          Be,Mn,Pb,Sn,Fe,
                                                          Cu,Ti,V,Zn,Cr,Ni.
                                                          Mo.Co.Cd.Org.
                                            Be,Fe,Zn,Cd
                                            Sn.Cu.Ni
                                                          Mn.Pb
                                                          Sn.Fe
                                                          Cu.Zn
                                                          Ni.Bi
                                                          Cd.Ord
                                                            /TVCu.Pb.Sn,
                                                                 Zn.Bi.Cd
                              Mn,Cu,Zn,Co
                            Sb Pb.Cd.Cr.Fe
                              Ti.Mo.Ni.Be.   \
    LEGEN
      O SAMPLING STATION -*WIND DIRECTION
    ONLY SE,S, SW, AND W WIND DIRECTIONS ARE
    SHOWN HERE. SEE FIGURE 54 FOR OTHERS THESE
    METAL AND ORGANIC PARTICIPATES ARE THOSE
    FROM TABLES 16 AND 17 THAT WERE CONSIDERED
    SIGNFICANT
                       V - VANADIUM
                       Zn-ZINC
                       Cr - CHROMIUM
                       Ni -NICKEL
Org- ORGANIC
Be - BERYLLIUM
Mn -MANGANESE
   - LEAD
   -TIN
   - IRON
   - COPPER
                       Mo-MOLYBDENUM
                       Co - COBALT
                       Bi -BISMUTH
                 Cd-CADMIUM    Sb-ANTIMONY
 420   430   440   450    460   470    480    490   500000'  510    520    530    54Q   550
                 Figure  55.  Geographic distribution of airborne metals
                              and organic particulates from  southeast,
                              south, southwest, and west.
CARCINOGENS
        One of  the nolynuclear hydrocarbons  found  in the urban atmosphere is  benzo(a)

pyrene,  also known as  3,4-benzpyrene, hereafter referred to  in this  report as  BaP.

        BaP is  carcinogenic to experimental  animals  and is  suspected  of beinc

carcinogenic to man.   BaP is only one of  several  polynuclear hydrocarbons that
 70

-------
  300



  275 -



  250 -



  225 -



  200 -
o
I- 150 h

o:

2 125 -
UJ
o

o I0°

-------
         Table  18.  COMPARISON OF THE SUSPENDED PARTICULATE AND
                 SULFUR DIOXIDE LEVELS OF SOME CITIES FROM
                 1963 NATIONAL AIR SAMPLING NETWORK DATAa

City
E. St. Louis
St. Louis
Atlanta
Birmingham
Chicago
Cincinnati
Denver
Detroit
Los Angeles
Nashville
New Orleans
New York
Philadelphia
San Francisco
Washington, D
National
Suspended particulates, V-g/m
Geometric mean
184
111
96
129
137
116
169
116
114
124
91
189
148
64
C. 108
92
Maximum
550
180
186
505
257
204
673
404
251
285
187
431
308
158
231
710
Sulfur dioxide, ppm
Arithmetic mean
--
0.02
0.01
0.01
0.11
0.02
0.01
0.02
< 0.01
0.01
< 0.01
0.15
0.10
< 0.01
0.03
0.03
Maximum
--
0.10
0.03
0.05
0.30
0.06
0.02
0.07
0.01
0.05
0.01
0.38
0.27
0.01
0.08
0.38
         See reference 62.
exist in the air over cities.   It exists  in  the  atmosphere  as  a  solid,  arising  from
incomplete combustion of fuels  such  as  coal,  oil,  and  gasoline and  certain  types  of
refuse.
       The BaP content of the  air of 94 urban and  28 nonurban  areas was reported  in
a paper by Sawicki.     The BaP  content  was  determined  by single  pooled  samples  from
the regular high-volume air samples  collected by the NASN from January  to March 1959.
They are reported  in Table 19.  Of  all the  areas  sampled,  St. Louis had next  to  the
highest values  at that  time.   In  1963  three high-volume air samples, collected on
October 8,  9, and 14,  at  site  490-713  (Municipal Courts Building in St. Louis) were
composited,  and 2.1  micrograms of RaP  per 1000  cubic meters of air was  found.  This
quantity  is  approximately  l/25th  the amount  found in January  to March  1959.  The
difference  may  be accounted for  in  part by the  fact that suspended particulate
levels may  have been abnormally  high in 1959.   Comparison  revealed that they were

-------





PH
0

&-M
w
W
H


O

(X

§-
CQ ^
D ffi
£ U

W <

O ^
1— 1 KrH
T K
£ O

z 5
w S
0 H
n rrf
u <;
Sz

w 2;
PH
£l
o
N

W
cq
i — i

0)
H


1 £ 1
n ~i
i CQ Kl
1 ^ e
; DC O
;i C.
~-» c
o o
CQ t-. H U

3. X> *+-




Of 4->
D. ^

e-
3

x

°

4-1

00



0

0 .H
CQ O
oc v E

og
CL oc w H
3 ^S
u c rt
M & 1> l-



G. DC *J
CO M «
0 D.



«-*
*J



U
4J
t/1

KJ ^-< (M


So2?0-«>OOOrOO

n ' t









$ 1.
re u c M *-> •* c

in X^t>*-*Xi «—•«'>«»
at
< -H (Q
— t *J
X O O O
s ^s -s
« 1 fc Su Q

z z z z z z o






r-i •


oooooaooo-^oo



- o.
fO



1
&« 1 x«^a»
Sf 2 SwJtc >*•<
IsISIslllII

cd 3
. -Si *3
• cd e w o co u
3 j< o e i-i H v
Xi «n M 3 --H o C
— " —• i* t-t cd o c
< < < < u u u




fOsoooo«to^oo-oo^-^^rtwcoooo^in.-H^Hiniooooo<7»ooMK)j*

"^ M



-* •* ao ^
OW^OOtOxO-OOOOOvOrO-.^-oOO^OOMso'^.MiXin'oOmOO^OOOOjO
^"SS «V| rt r* r+ ^^H^-«


x
M cd O U *
§ c c-S Sg«-o** cc«g g u
V) C O 'D Srt S t. C C *-» etf O~H«-« O O J^ *-• t) *J bf t> V

r£Ot-t~^oca'~ e «d v 4J ^ •*4OEO*j~*~*t-<*-'O«B'— < edo«j^H^^3c«— ">*iHO«o
co
(= cd
-H C '^ 1=
C (d O C — <
CO ^4^V O M C
ocT^, *~'U In c"c ^^cc

— < «J C o 3 ex •» C ^4 nnvtO





.nro MOT ^*?-: *^*?^ * ^ "*. °. ^^^^
A


OOO Ol O O OOOOOOOOOOOOOOOOOOOOOOOOOOO^O



^
A



cd
O M M
.5 B c »2 •» »« ? 2 ^3 ^«
cdCOO UOCM ^hv O M Q-^-4»l
•«H > t>e M o *oloM£ai"Offic; oet -^ p. c o -o *> C acxtctc 9
M • C C "^-iCSi5tSSt" •HCd«-)>tUcdHC'-*O*AO .C <• O M O tV
• SpS p5 S^tt-'-^fi^T"* t" -* S '** ** S "tl ^ 5*N^i~*iei« «?
115 lsSll6l-3lllslsl5lSIJ|ll55l|SSJ||
M
O 01 « CL
»«JX4 « XC-03 C «j-^.^, cfl
^ u • 0 cd-^id jcncx: (d om^coj^
cd-^a-a --toe « u M rt u QC inrnnew
X^^^H M C cd ctt 3v>u~*cd -H 4)-<-*o oicd
rt 4j O »- h<-i.i-i (din*JHCX-• — • i* ^J5:zz y y yy yz

-------
 approximately twice  as  high  in  St.  Louis  during  the  1959  sampling period  as  they
 were  for the  same  period  in  the preceding year.   Furthermore,  October  is  not part  of
 the heating season when larger  amounts  of BaP  could  be  expected.  Samples were
 analyzed by the  Public  Health Service,  Laboratory of Engineering and Physical
 Science.
     To  determine the winter-time levels of BaP in the Study area,  pooled samples
of suspended particulates, collected at lU sampling stations were analyzed.
The samples were composited from three to seven 2l*-hour samples collected with
high-volume samplers during the period from January 6 and March 18,  1961*.   They
generally represent the days of higher-than-average heating requirements.   The
results, summarized in Table 20, varied from 1.1* micrograms of BaP  per  1,000 cubic
meters of air on the outskirts of the Study area to 28.0 micrograms  per 1,000 cubic
meters just north of downtown St. Louis.  The arithmetic mean concentration of the
lit samples analyzed was 10.2 micrograms per 1,000 cubic meters.  As  expected, the
higher concentrations were observed in areas where coal is burned domestically.
Table 19 shows that the BaP concentrations in the Study area are comparable to the
concentrations found in cities similar to St. Louis in size and the  general makeup
of air pollution sources.
    Table 20.  BENZO(a)PYRENE CONCENTRATIONS IN INTERSTATE STUDY
                   STUDY AREA,  JANUARY-MARCH,  1964a
Sampling
site
(grid
coordinates )
1*38-689
1* 1*9-719
1*68-665
U69-750
1+72-680
1*81-698
1*89-728
1*90-713
l*9l*-703
1*95-709
501-713
505-7^0
520-798
531+-702
Suspended
particulates
Hg/m

75
89
57
89
287
107
126
181*
191
191*
218
283
175
136
Benzo(a)Pyrene

ug/1,000 m
air
1.5
5.3
1.1*
3.8
21+.0
1*.9
28.0
5.6
18.8
15.7
1.7
11.1*
15.8
l*.l*
M-g/S Of
benzene soluble
570
830
570
620
3,510
1*70
1*,220
530
1,350
970
67
1,130
1,670
71*0
Benzene
soluble
ug/m air

2.6
6.3
2.1*
6.1
6.8
10.5
6.6
5-6
iu.o
16.2
23.7
10.1
9.1*
6.0
       One  composite  sample  for  each  site, pooled  from  3 to 7 individual
       samples  collected  between January  6 and March 18, 196!*.
      DGeometric  mean of  3 to  7  filter  samples comprising the composite
       sample  for analysis.
 74

-------
     Analysis of the sample collected at site 501-713 revealed a phenanthrene
concentration of lUO micrograms per 1,000 cubic meters of air.  This high value of
phenanthrene is not typical of what is known concerning this pollutant at this time.
Samples from other sites did not show sufficient concentrations for analysis.  As
emission source information is obtained, review and further investigation of
polynuclear hydrocarbons is warranted.
PARTICULATE SULFATE
       During December 1963 through February 1964 millipore filters used in the
inlets to sulfur dioxide samplers were saved for microscopic examination.  Although
particles on the filter were too numerous to count, the examination revealed that
sulfate crystals were the most numerous.
       The high-volume air sampler filters collected at the St. Louis NASN station
in 1958, 1962, and 1963 were analyzed for particulate sulfate levels.  The yearly
                                                                                  Q
averages of these results are as follows:  18.2 micrograms per cubic meter in 1958,
14.6 micrograms per cubic meter in 1962,   and 13.1 micrograms per cubic meter in
    62                                                                       9
1963.    The national average for 1957-60 was 11.8 micrograms per cubic meter  and
10.1 micrograms per cubic meter in 1963.
SUSPENDED PARTICIPATES MEASURED BY AISI SAMPLER  (Soiling  Index)
       AISI samplers were located at  12 sites.  The results,  given in Table  21,
ranged from 0.00 to 19.11 Cohs per 1,000 lineal feet.  The geometric means for the
period July 1963 through June 1964 ranged from 0.145 Coh  per  1,000 lineal feet at
site 468-665, which was a low-density residential area, to 1.623 Coh per 1,000
lineal feet for 499-700, which was a heavily industrialized area.
       Figures 58 and 59 are  isopleth maps of AISI sampler annual geometric  means and
the 99th percentile values based on the annual geometric  means, respectively.   Both,
maps show that the area with highest  pollution levels  is  in  Illinois  and that  it
extends both north and south of East  St. Louis.
       The State of New Jersey has prepared the following adjectival rating  scale
                                           14
for suspended particulates by AISI sampler.
                 0-0.9 Coh   per  1,000 lineal feet  -  light
               1.0-1.9 Cohs  per  1,000 lineal feet  - moderate
               2.0-2.9 Cohs  per  1,000 lineal feet  - heavy
               3.0-3.9 Cohs  per  1,000 lineal feet  - very  heavy
               4.0-4.9 Cohs  per  1,000 lineal feet  - extremely heavy
The State of Colorado has adopted an air quality standard of 0.5 Coh per 1,000
lineal feet of air,  when measured in the central business district of a city or
                                                                           o
community on at least every third day and averaged over any 3-month period.    The
Colorado standard was exceeded at site 490-713 in downtown St. Louis for three of
the four seasons, and at site 501-713 in downtown East St. Louis for all four
seasons.
                                                                                 75

-------
          Table 21.  SUSPENDED PARTICULATES BY AISI SAMPLER,
                           (Cohs/1, 000 lineal feet)

Site
coordinates
July 1963
432-715
449-719
468-665
469-750
472-680
501-713
Aug
438-689
449-719
490-713
501-713
Sept
438-689
449-719
490-713
501-713
505-740
Oct
438-689
469-750
495-709
501-713
520-798
N'ov
432-715
438-689
449-719
468-665
469-750
495-709
501-713
520-798
Dec
432-715
438-689
449-719
468-665
469-750
495-709
501-713
520-798
Jan 1964
432-715
438-689
449-719
468-665
469-750
490-713
495-709
499-700
501-713
505-740


Minimum

0.00
0.04
0.00
0.00
0.00
0.09

0.00
0.00
0.00
0.18

0.00
0.00
0.00
0.09
0.00

0.00
0.00
0.18
0.18
0.09

0.00
0.00
0.00
0.00
0.00
0.09
0.18
0.00

0.00
0.00
0.00
0.00
0.00
0.09
0.36
0.00

0.00
0.00
0.00
0.00
0.00
0.18
0.09
0.18
0.55
0.18


Maximum

0.60
1.76
2.10
1.90
3.20
3.56

1.29
1.99
2.69
4.96

0.60
1.09
4.80
5.47
5.65

2.13
3.25
5.73
11.12
5.13

4.45
2.40
2.50
1.02
4.02
9.71
16.60
5.83

1.92
5.04
3.07
1.19
3.00
7.69
12.71
6.40

3.39
2.30
3.85
1.18
4.65
6.81
13.16
7.69
19.11
9.80


Na

132
343
310
136
103
258

359
368
290
341

162
118
307
331
338

184
120
125
333
274

204
358
200
155
347
299
302
280

260
358
307
282
369
370
372
264

358
314
366
226
364
225
226
159
359
198
Arithmetic

Mean

0.269
0.303
0.311
0.260
0.855
0.850

0.260
0.386
0.440
1.197

0.193
0.352
0.749
1.419
0.879

0.313
0.560
0.936
1.912
0.772

0.542
0.351
0.516
0.325
0.750
1.501
3.066
1.129

.331
.429
.621
.123
.637
1.782
3.565
1.193

0.396
0.349
0.591
0.230
0.778
1.652
1.485
1.853
4.354
2.339
Standard
deviation

0.109
0.222
0.206
0.227
0.641
0.555

0.192
0.279
0.350
0.857

0.122
0.228
0.624
0.994
0.781

0.292
0.541
0.737
1.432
0.644

0.615
0.366
0.461
0.249
0.750
1.348
2.926
1.031

0.370
0.420
0.562
0.155
0.523
1.431
2.392
0.930

0.436
0.315
0.566
0.219
0.697
1.177
1.550
1.495
2.924
1.621
Geometric

Mean

0.246
0.237
0.252
0.196
0.638
0.699

0.193
0.291
0.315
0.956

0.139
0.269
0.559
1.126
0.608

0.239
0.340
0.757
1.574
0.602

0.311
0.233
0.317
0.204
0.477
1.086
2.002
0.785

0.164
0.294
0.417
0.'062
0.462
1.296
2.787
0.898

0.227
0.241
0.381
0.135
0.527
1.299
1.034
1.409
3.422
1.789
Standard
deviation

1.586
2.082
2.198
2.327
2.341
1.911

2.394
2.330
2.678
1.973

2.686
2.374
2.314
2.034
2.621

2.122
3.178
1.871
1.831
2.032

3.251
2.587
3.215
3.246
2.882
2.275
2.594
2.484

3.895
2.643
2.631
3.457
2.397
2.329
2.109
2.234

3.324
2.642
2.874
3.196
2.565
2.056
2.357
2.094
2.089
2.225
76

-------
Table 21.  (Cont'd?) SUSPENDED P ARTICULATES BY AISI SAMPLER,
                     (Cohs/1, 000 lineal feet)
Site
coordinate
Feb 1964
499-700
432-715
438-689
449-719
468-665
469-750
472-680
490-713
495-709
501-713
505-740
Mar
432-715
438-689
449-719
468-665
469-750
472-680
490-713
495-709
501-713
505-740
April
432-715
438-689
449-719
468-665
469-750
472-680
490-713
495-709
501-713
505-740
520-798
May
432-715
438-689
449-719
469-750
472-680
490-713
495-709
501-713
505-740
June
432-715
438-689
449-719
490-713
495-709
501-713
Minimutp
i " - - —
0.93
0.00
0.00
0.00
0.00
0.00
0.00
0.18
0.09
0.36
0.18

0.00
0.00
0.00
0.00
0.00
0.00

0.18
0.27
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.09

0.00
0.00
0.00
0.40
0.90
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
Maximum

7.23
3.46
3.01
3.62
2.34
3.97
5.65
8.67
9.22
18.18
8.94

1.54
1.59
2.51
0.65
4.57
5.47

1.44
11.12
7.23

1.43
0.68
1.70
0.36
1.71
2.94
3.89
5.30
8.94
7.69
4.64

0.83
0.94
2.22
2.32
2.94
4.64
4.96
5.47
6.60

0.63
1.39
1.77
2.21
4.03
3.89
Na
- 	
27
345
347
347
192
348
348
196
249
342
348

372
371
337
150
370
262
0
9
361
372

360
348
324
69
360
240
237
259
355
267
91

372
360
322
89
63
261
319
372
259

184
353
341
301
174
361
Arithmetic
Mean

3.480
0.452
0.402
0.623
0.347
0.698
1.138
1.732
1.765
3.458
1.837

0.314
0.267
0.471
0.181
0.502
1.173

0.464
2.290
1.276

.213
.181
.307
.125
.304
.793
.702
.739
1.346
1.210
.662

0.208
0.179
0.297
0.286
0.962
0.618
0.746
0.925
1.059

0.215
0.194
0.302
0.534
0.610
0.766
Standard
deviation

1.786
0.501
0.389
0.634
0.335
0.659
0.930
1.346
1.637
3.014
1.498

0.263
0.215
0.376
0.128
0.534
0.894

0.452
1.873
1.248

0.169
0.132
0.250
0.104
0.246
0.545
0.540
0.638
1.199
1.123
Geometric
Mean

2.984
0.264
0.263
0.380
0.244
0.486
0.802
1.352
1.244
2.430
1.383

0.224
0.192
0.322
0.125
0.321
0.889

0.340
1.731
0.833

0.148
0.131
0.210
0.076
0.221
0.579
0.564
0.481
0.999
0.834
.567 .522

0.149
0.130
0.209
0.267
0.540
0.464
0.745
0.713
0.899

0.134
0.165
0.238
0.337
0-517
0-579

0.154
0.134
0.231
0.229
0.828
0.479
0.479
0.734
0.742

0.163
0.138
0.221
0.415
0.412
0.599
standard
deviation

1.820
3.116
2.772
2.972
2.475
2.378
2.564
2.013
2.375
2.384
2.117

2.435
2.487
2.755
2.847
2.738
2.281

2.150
2.123
2.690

2.709
2.537
2.699
3.160
2.467
2.694
1.981
3.122
2.210
2.541
1.987

2.403
2.353
2.281
1.883
1.778
2.286
2.995
2.007
2.539

2.430
2.488
2.335
2.413
2.978
2.133
                                                                      77

-------
      Table 21.  (Cont'dJ SUSPENDED PARTICULATES BY AISI SAMPLER,
                            (Cohs/1, 000 lineal feet)
Site
coordinates
Summer 1963
432-715
438-689
449-719
468-665
469-750
472-680
490-713
501-713
Fall 1963
432-715
438-689
449-719
469-750
490-713
495-709
501-713
505-740
520-798
Minimum

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.09
0.09
0.00
0.00
Winter 1963-64
432-715
438-689
449-719
468-665
469-750
472-680
490-713
495-709
499-700
501-713
505-740
520-798
Spring 1964
432-715
438-689
449-719
468-665
472-680
505-740
520-798
469-750
490-713
495-709
501-713
o.oo
0.00
0.00
0.00
0.00
0.00
0.18
0.09
0.00
0.36
0.18
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.09
0.00
0.00
0.00
0.00
Maximum

1.00
1.29
2.12
2.10
1.90
3.20
2.69
4.96

4.45
2.40
2.50
4.02
4.80
9.71
16.60
5.65
5.83

3.46
5.04
3.85
2.34
4.65
5.65
8.67
13.16
8.67
19. 11
9.80
6.40

1.54
1.59
2.51
0.65
5.47
7.69
4.64
4.57
4.64
5.30
11.12
Na

301
359
968
509
364
158
290
814

204
704
318
467
307
424
966
338
554

963
1019
1020
700
1081
353
421
845
215
1073
546
264

1104
1079
983
219
565
898
91
819
498
587
1088
Arithmetic
Mean

0.268
0.260
0.360
0.288
0.287
0.721
0.440
0.974

.542
.305
.456
.701
.749
1.335
2.104
.879
.952

0. 399
0.395
0.611
0.219
0.704
1.139
1.689
1.698
2.259
3.795
2.019
1.193

0.246
0.210
0.360
0.164
0.998
1.194
0.662
0.391
0.658
0.739
1.515
Standard
deviation

0.150
0.192
0.273
0.182
0.199
0.586
0.350
0-708

0.615
0.312
0. 399
0.706
0.624
1.228
2.044
0.781
0.879

0.447
0.380
0.588
0.253
0.632
0.924
1.257
1.530
1.870
2.808
1.561
0.930

0.206
0.169
0.300
0.124
0.748
1.122
0.567
0.416
0.503
0.696
1.460
Geometric
Mean

0.216
0.193
0.273
0.227
0.231
0.49.6
0.315
0.781

0.311
0.208
0.298
0.437
0.559
0.976
1.513
(i. 608
0.688

0.219
0.266
0.391
0.116
0.491
0.806
1.323
1.206
1.623
2.858
1.518
0.898

0.173
0.151
0.251
0.107
0.735
0.806
0.522
0.262
0.518
0.477
1.079
Standard
deviation

2.270
2.394
2.221
2.379
2.106
2.813
2.678
1.967

3.251
2.553
2.906
2.984
2.314
2.195
2.221
2.621
2.286

3.445
2.693
2.834
3.530
2.450
2.551
2.035
2.360
2.385
2.217
2.176
2.234

2.559
2.498
2.625
3.009
2.460
2.603
1.987
2.571
2.150
3.036
2.288
78

-------
    Table 21.   (Cont'd) SUSPENDED PARTICULATES BY AISI SAMPLER,
                          (Cohs/1, 000 lineal feet)
Site
coordinates
Minimum
July 1963-June 1964
432-715
438-689
449-719
468-665
469-750
472-680
490-713
495-709
499-700
501-713
505-740
520-798
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
July 1963 All 0.00
August All 0.00
September All 0.00
October All 0.00
November All 0.00
December All 0.00
.January 1964 All 0.00
February All 0.00
March All 0.00
April All 0.00
May All 0.00
June All 0.00
Spring '64 All 0.00
Summer '63 All 0.00
Fall '63 All 0.00
Winter '63- '64 All 0.00
Year '63-'64 All 0.00
Maximum

4.45
5.04
3.85
2.34
4.65
5.65
8.67
13.16
8.67
19.11
9.80
6.40
3.56
4.96
5.65
11.12
16.60
12.71
19.11
18.18
11.12
8.94
6.60
4.03
11.12
4.96
16.60
19.11
19.11
Na

2587
3514
3373
1384
2503
1021
1817
2030
215
4087
1811
909
1282
1387
1256
1036
2145
2611
2800
3089
2604
2910
2417
1714
7931
3894
4437
8500
5274
Arithmetic
Mean

0.325
0.286
0.436
0.243
0.577
1.027
0.857
1.251
2.259
2.118
1.370
0.993
0.451
0.564
0.852
1.052
1.091
1.186
1.370
1.267
0.845
0.607
0.555
0.440
0.669
0.476
1.014
1.276
0.901
Stnnrin-rrl
deviation

0.365
0.288
0.424
0.233
0.593
0.808
0.870
1.283
1.870
2.214
1.295
0.882
0.433
0.610
0.832
1.125
1.597
1.627
1.884
1.672
1.157
0.760
0.625
0.430
0.887
0.484
1.317
1.733
1.304
Geometric
Mean

0.200
0.193
0.291
0. 145
0.372
0.748
0.581
0.805
1.623
1.380
0.906
0.723
0.319
0.354
0.537
0.669
0.539
0.507
0.620
0.657
0.431
0.335
0.334
0.285
0.363
0.321
0.566
0.595
0.453
Standard
deviation

2.929
2.636
2.658
3.278
2.716
2.484
2.606
2.836
2.385
2.546
2.699
2.275
2.395
2.843
2.958
2.761
3.528
4.406
3.986
3.407
3.413
3.323
2.981
2.831
3.266
2.613
3.196
3.915
3.471
N = number of samples.
                                                                           79

-------
   ST. LOUH CO.
   JEFFEMOI CO. "

    1. ._ -1-
                                        LECEHO
                                    BOUNDARIES
                                     STATE    	
                                     COUNTY
ISOPLETHS Of ANNUAL GEOMETRIC MEAN VALUES
—  LINES OF ACTUAL EQUAL VALUE
—  LINCS OF PROBABLE EQUAL VALUE
AISI SANPLIN FROM JULY 1,1963 TO JULY 1,1964
12 STATIONS.
   390  400°"  410   '420    430   440   450   460   470   480   490   30000*  510   520   530   540   550   560   5
                                                                                                  .80
  Figure  58.  Suspended particulate annual geometric means measured with AISI
                 sampler (Cohs/1, 000 lineal ft) for  2-hour sampling.
80

-------
                                                             MADISON   CO   j

                                                                    CLAIR  CO
                                      LEGEHD
                                BOUNDARIES
                                  STATE
                                  COUNTY
                                HIGHWAY MARKERS
                                  FEDERAL
                                  STATE
ISOPLETHS OF 99 PERCENTILE VALUES
— LINES OFACTUAL EQUAL VALUE
	LINES OF PROBABLE EQUAL VALUE
BASED ON ANNUAL GEOMETRIC MEANS
AND STANDARD DEVIATIONS FOR 12
STATIONS DURING JULY 1,1963 TO
JULY 1,1964.
390   400°"' 410   420   430   440   450   460   470   480   490   500"°' 510   520   530   540   550   560   570
  Figure 59.  Suspended particulate  99 percentile values  measured with AISI

                 sampler  (Cohs/1, 000 lineal ft) for 2-hour sampling.
                                                                                              81

-------
       Figures 60 through 71 give the frequency distributions at each site by season
and year.  The geometric means and their standard deviations were used since they
best described the distribution of the high-volume air sampler results and both
samplers measure suspended particulates.  As was found with the high-volume sampler
results, the slope or standard deviation for the summer season was usually the least
and the winter and fall seasons the greatest.  Considering each station singly on the
basis of 1 percent of the time for the year, a range of values from 1.8 to 10.3
Cohs per 1,000 lineal feet occurred.  For the winter season, this range increased to
2.3 to 10.8 Cohs per 1,000 lineal feet with only 3 of 12 sites having concentrations
of less than 4.0 Cohs per 1,000 lineal feet.  This means that during 1 percent of
the winter season, nine of the sites had "extremely heavy" concentrations according
to the New Jersey rating scale.
       Figure 72 is a map showing the percent of times that soiling index values
equalled or exceeded 2 Cohs per 1,000 lineal feet - "heavy" according to the New
Jersey rating scale.  Sampling sites in St. Louis County on the edge of the air
pollution basin exceeded 2 Cohs only 1 to 2 percent of the times, but the site in
East St. Louis exceeded this value 68 percent of the times during the winter season.
       100

       80

       6.0
— SUMMER
• •-•• FALL
.__ WINTER
••»	 SPRING
•--• YEAR
    o
    o
    o
    X  0 80
    LJ
    O
    Z  0 60
    O
    in
       0 20 -
       0 10
        001 005 0102 05  I
                               10  20 30  40 50 60  70 80  90  95
                               % OF SAMPLES S STATED VALUE
                                                                   99 8 9  99 99
            Figure 60. Frequency distribution of suspended particulates
                        measured with AISI sampler at site No. 432-715.
82

-------
  100

  80
        1 - 1 - 1 - 1 - 1 - 1
                             1 - 1 - 1 - 1
     — SUMMER
     •• —• FALL
     ___ WINTER
     	 SPRING
     •--• YEAR
                   1963
                   l964
    001  005 0102  05
                      5   10  20  30 40 50 60 70 80  90  95  90 99
                         % OF SAMPLES S STATED VALUE
                                                           99 8 9  99 9
  Figure 61.  Frequency distribution of suspended particulates
               measured with AISI sampler at site No. 438-689.
   100

   80
        I—I	1	1	T

          SUMMER
                     T"
8
o
       ••-•- FALL
       _-_ WINTER
       	 SPRING
       — - YEAR
                 1963

                 1964
yc
§
o
z
   h
0 60 f-


0 40 -

   I-


0 20 U
    001 0 05 0102 05 I  2
                      5   lO  20  30 40 50 60 70 80  90  95  98 99
                         % OF SAMPLES < STATED VALUE
                                                           99 8 9 99 99
   Figure 62.  Frequency distribution of suspended particulates
               measured with AISI sampler at site No. 449-719.
                                                                           83

-------
            100

            80
         O
         o
         O
         o
         2
         -i—i—i—i—i—r
                    •SUMMER
                   •- FALL (NO SAMPLING)
                   _ WINTER
                     SPRING
                   - YEAR
       1963
1964
            oo f-
              *—
           0 80 I-

           0 60 -
             001 005 O.I 0 2  05
                                  10  20 30 40 SO 60 70  80  90  95
                                  % OF SAMPLES 4 STATED VALUE
                                                              98 99
                                                                    99 8 9  99 99
             Figure 63.  Frequency distribution of suspended particulates
                          measured with AISI sampler at site No. 468-665.
             001 005 0102  05
                                   10   20 30 40 50 60 70  80  90  95
                                   % OF SAMPLES S STATED VALUE
                                                                     99 8  9  »9 99
             Figure  64.  Frequency distribution of suspended particulates
                         measured with AISI sampler at site No.  469-750.
84

-------
   100

   eo
8
O
•x.
£
O
0  i oo
X
y  o so
           I — I
               r
                       r
         — SUMMER
        ._._ FALL (NO SAMPLING)
         -— WINTER
             SPRING
         __ YEAR
        1963
1964
   060)-

     i-
O
in
    001 0 05 0102 03
                          10  20 50 40 50 60 70  80  90  95
                          % OF SAMPLES <. STATED VALUE
                                                      98 99
                                                            99 8 9  99 99
    Figure 65.  Frequency distribution of suspended particulates
                 measured -with AISI sampler at site No.  472-680.
        — SUMMER
        -.- FALL    l963
        ._ WINTER  ,„„„
        	 SPRING  I9M
         __ YEAR
    001 005 0102 05
                       5  10   20  30 40 50 60 70 80  90  95   98 99
                         % OF SAMPLES <. STATED VALUE
                                                            99 8 9  99 99
   Figure 66.  Frequency distribution of suspended particulates
                measured "with AISI sampler at site No. 490-713.
                                                                             85

-------
           100

           80 -
~I—I—I	1	1	1	1	1	1	1	1	T

^—• SUMMER (NO SAMPLING)
        8
        o
        o
        z
        o
        z
        -J
        o
                    FALL
               --- WINTER
               .......... SPRING
               .-.EAR
                                     l963

//
        -  20
        £
        o
        U  I 00

        5"  080
        O
        z
        —  060
        O


        6  040
                     /A
                                                 ///
                 1 1  1   1  1  1   II
            001 0 05 01 02 05
                                    _1	I	I	l_
                                                                   J	l_
                           2   5  10  20 30 40 SO GO TO 80  90  95  98 99  99 8  9  99.99
                                 % OF SAMPLES i STATED VALUE
           Figure 67.  Frequency distribution of suspended particulates
                        measured with AISI sampler at site No.  495-709.
           80


           60
           I 00

           080

                  WINTER 1963-64
                                                       f
                                           ~       f

                                           I    /

                      _L
                                         _J	L
            0 01 0.05 0102051  Z
                              5  10  20 30 40 50 60 '0 80   90  95  98 99
                                 % OF SAMPLES S STATED VALUE
                                                                  99 8 9  99 99
            Figure 68.  Frequency distribution of suspended particulates
                        measured with AISI sampler at site No. 499-700.
86

-------
   100

   ao
o
o
w  I 00
.c
o
O  080
1—r—I	1—r
        ^— SUMMER
        — . FALL   l963
        -__ WINTER .„,_
        	 SPRING  l964
        .-— YEAR
                                                          -I
    001 005 0102 05
                             I  I   I
                         10  20  30 40 50 60 70 BO   90  95
                         % OF SAMPLES S STATED VALUE
                                                          99 8 9  99 99
   Figure 69.  Frequency distribution of suspended particulates
               measured with AISI sampler at site No.  501-713.
100
8 0

60
40
V
4i
W
C 20
o
1
(A
•§ i oo
0
- 0 80
X
u
g 060
z
o
2
j 040
5


020



O IO
	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1

— 1 — 1 — 1 	 1 	 1 	 1^> 1 '
/i
* t*
-

y y / v
- -.-. FALL 1963 /// '
_ ...WINTER „ * *//
	 SPRING l964 | /// /
— •YEAR * ////
0 * A ..» .*
j / ///
w X^ * *» ^
5 *' /V /
» / ///
i/A-'
/I
t / /
* „* ,*
t/ /
// /
w


-
: / //Y i
S t/ f
/ f/ -f
/'**" t'
* t/ t
/ ///
* /.-• .-
x /' /
// /
// /
"' /
1 1 1 1 1 It 111










III 11 II II


-

-

-




    001  005 0102 05
                         10   20  30 40 50 60 70  80  90  95
                         % OF SAMPLES S STATED VALUE
                                                           99 8 9 99 99
   Figure 70. Frequency distribution of suspended particulates
               measured with AISI sampler at  site No.  505-740.
                                                                           87

-------
100
80

6.0
     O.
     O  ,00
     X  080
     UJ
     o
     Z  060
     O
     Z
     8
        040
               ^ SUMMER (NO SAMPLING)
              ._.. FALL              l963
              --WINTER
                 SPRING
              -- YEAR

                                                         /
                                                  /#   /
                                                 />  /
                                ,4
                                .'>•/
         001  0.050.1 0205 I
                                10  20 30  40 90 60  70 SO  9O   95
                                % OF SAMPLES S STATED VALUE
                                                                    99 8 9  99 99
           Figure 71.  Frequency distribution of suspended particulates
                       measured with AISI sampler at site No.  520-798.
       The diurnal variations  given  in  Table 22  and  Figure 73 show the Coh values  for
the winter to be the highest,  and those in  the  summer  to be the lowest.  The diurnal
variations are similar to those found in other  studies, i.e.,  the higher concentra-
tions occur in the morning (6  to 10  a.m.) and evening  (6 to 10 p.m.),  and  the  lower
occur in the early morning (2  to 6 a.m.)  and afternoon (noon to 4 p.m.).   The  higher
values are due to the increase of people's  activities  and  to the fact  that meteorolo-
gical conditions are generally less  favorable to dispersing pollutants  at  these  times.
       The trends of the suspended particulates by  AISI sampler  (Coh values, soiling
index) since 1954 are shown in Table 23 and Figure  74.  They show a sizeable decrease
from 1954 to 1957, but only for the  period  April to December.  This decrease does
not appear in the succeeding December-to-March  period.  The 1957 and  1958  results
appear consistent within themselves, though somewhat low  in respect to the values
flanking them.  The missing data between 1959 and 1962 make further comparisons
difficult, but it appears there has  been an overall decrease since  1954 with  some
fluctuations in between.  The decrease would seem logical  since  the high-volume
sampler trend shows a decrease and the fuel use trend has  been to  convert  from
coal to gas and oil for heating, thus reducing  the amount  of particulates  of this
type emitted to the atmosphere.

-------
                                                                                          - ,820
                                                                            eft fit
                                                                       F  - F»U 1963
                                                                       f  - IINTER 1964
                                                                       T  - 1963-64
                                                                       PREPARED  FROM FREQUENCY
                                                                       DISTRIBUTIONS
                                      LEG END
                                BOUNDARIES
                                  STATE
                                  COUNTY
                                HIGHWAY MARKERS
                                  FEDERAL
                                  STATE
390   400"' 4lu   420   430   440   450   460   470   480   490   5'00W' 510   520   530   540   550   560
           figure  72.  Percent of times soiling index  equalled or exceeded
                         2. 0 Cohs/1, 000 lineal feet.

-------
          Table 22.  DIURNAL VARIATION OF AISI SAMPLER RESULTS,
                  GEOMETRIC MEAN (Cohs/1, 000 lineal feet)
Site
coordinat
U32-715




U38-689




1*1*9-719




it 68-61^



1*69-750




1*72-680



1*90-713




1*95-709



1*99-700
501-713




505 -7uo


520-798



All-




Date
Suraner '63
Fall '63
Winter '63-6!*
Spring ''61*
Year '63-6U
Stunner '63
Fall '63
Winter '63-61*
Spring '61*
Year '63-6U
Sunnier '63
Fall '63
winter '63-61*
Spring '6U
Year '63-6U
Summer '63
Winter '63-6!*
Spring "61*
Year '63-61*
Sunmer '63
Fall '63
•inter '63-61*
Spring '6U
Year '63-61*
umaer '63
inter '63-6!*
Spring '61*
ear '63-61+
Summer '63
all '63
inter '63-6U
Spring "6U
ear '63-61*
all '63
inter "63-61*
pring '6U
ear '63-61*
inter '63-6!*
ummer '63
all '63
inter '63-61*
"pring '6U
ear '63-6!*
11 '63
nter '63-6!*
"pring '6U
ar '63-61*
11 '63
nter '63-6!*
ring '61*
ar '63-61*
•umnar '63
11 '63
nter '63-61*
ring '61+
ar '63-6U
TUe of day
6-2 2-4 4-6 6-8 8-16 16-12 12-14 14-16 16-18 18-20 20-22 22-24
0.28 0.32 0.31 0.26 0.25 0.23 0.22 0.27 0.2l* 0.2-3. 0.26 0.31
0.50 0.1*7 0.58 0.1*3 0.27 0.26 0.21 0.28 0.37 0.1*0 0.1*5 '0-53
0.27 0.2U 0.28 0.26 0.2l* 0.32 0.28 0.28 0.30 0.39 0-38 0.29
0.25 0.25 0.20 0.19 0.17 0.16 0.17 0.18 0.18 0.19 0-27 0.29
0.27 0.25 0.25 0.23 0.21 0.22 0.21 0.21 0.23 0.26 0.31 0.30
0.32 0.21 0.17 0.86 0.20 0.25 0.17 0.19 0.22 0.19 0.25 0.2U
0.23 0.23 0.23 0.2U 0.27 0.20 0.20 0.20 0.20 0.29 0.29 0.26
0.33 0.30 0.30 O.U2 0.36 0.31 0.2k 0.19 0.26 0.33 0.33 0.33
0.22 0.17 0.16 0.20 0.18 0.18 0.17 0.18 0.17 O.l8 0.19 0.21
0.26 0.22 0.21 0.26 0.2U 0.22 O.l8 0.18 0.20 0.22 0.2l* 0.25
0.3U 0.30 0.27 0.23 0.25 0.26 0.26 0.24 0.2U 0.28 0.30 0.36
0.39 0.1*1 0.1*3 0.28 0.27 0.26 0.28 0.31 0.3* 0.1*5 0.1*1* 0.1*5
0.1*0 0.1*3 O.U8 0.1*3 Q.U7 0.38 0.39 0.35 0.1*0 0.39 O.U2 0.1+1
0.29 0.28 0.31 0.31 0.25 0.25 0.29 0.26 0.26 0.29 0.31 0-32
0.33 0.32 0.3!* 0.31 0.30 0.28 0.30 0.28 0.29 0.31 °-3^ 0-35
0.28 0.31 0.28 0.28 0.28 0.29 0.30 0.30 0.29 0.25 0.27 0.28
0.21 0.21 0.18 0.21 0.23 0.20 O.l8 0.23 0.17 0.23 0.18 0.23
0.21 0.13 0.19 0.26 0.16 0.16 0.15 0.17 0.22 0.16 0.2U 0.22
0.21* 0.22 0.21 0.25 0.2l* 0.22 0.19 °-23 0.20 0.23 0.21 0.25
0.26 0.27 0.26 0.27 0.21* 0.26 0.22 O.23 0.23 0.25 0.31 0.29
0.1*7 0.1*3 0.1*2 0.1*5 0.52 0.1*3 0.31* 0.29 0.38 0.63 0.63 0.61
0.50 0.1*3 O.UU 0.56 0.61 0.51 0.39 0.37 0.1*9 0.6U o.57 0.52
0.29 0-28 0.26 0.32 0.31* 0.31 0.26 0.21 0.23 0.27 0.33 0-33
0.1*0 0.38 0.36 0.43 0.1*7 0.1*0 0.33 0.29 0.35 0.1*6 0.1*7 0.1*1*
0.66 0.56 0.1*7 0.68 0.51 0.72 0.1*6 0.58 0.51* 0.52 0.65 0.55
0.91 0.81 0.71* 0.85 0.99 i.oU l.Ol 0.70 0.81 0.93 0.90 0.85
0.83 0.66 0.68 0.80 0.82 0.87 0.72 0.81 0.78 o.8l 0.8U 0.71
0.88 0.70 0.69 0.82 0.85 0.92 0.78 0.75 0.71* 0.83 0.85 0.71*
0.1*0 0.33 0.1*1* 0.58 O.U8 0.33 0.28 0.29 0.33 0.31* 0.1*0 0.51
0.56 0.1*6 0.58 0.78 l.Ol 0.53 0.36 o.Ul o.l*8 0.59 0.68 0.68
1.30 0.37 1.26 1.1*1* i.ljO 1.28 1.15 1-21* 1.1*7 1.1*1 1.39 1.22
0.60 0.58 0.58 0.62 0.52 0.50 0.51 0.1*7 0.51* 0.56 0.57 0.57
0.66 0.6U 0.68 0.76 0.73 0.56 0.1*9 0.1*9 0.59 0.59 0.69 0.68
0.86 0.82 0.93 1.12 1.15 0.88 0.73 0.78 1.08 1.21 1.17 1.06
1.02 1.01 0.98 1.22 1.59 1-51* 1.06 l.Ol* 1.21 1.5!* 1.26 1.13
0.63 0.55 0.69 0.69 0.58 0.63 0.1*9 0.1*6 0.52 0.55 0.51* 0.63
0.81 0.76 0.83 0.92 1.00 0.95 0.71 0.71 0.82 0.96 0.89 0-9O
1.1*7 2.30 2.06 1.82 1.75 1.70 1.36 1.6o 1.70 1.37 1.39 1.60
0.83 0.80 0.92 1.12 0.86 0.72 0.53 0.53 0.63 0.71 l.oo 0.91*
1.57 1-39 1-51* 1.96 1.97 1.29 0.95 l.oo 1.1*3 1.81+ 1.82 1.73
2.32 2.32 2.66 i*.21 U.12 2.73 2.05 2.10 2.92 3.31 3.13 2.72
1.21* l.Ol* 1.15 1.65 1.38 1.03 0.7!+ 0.72 0.83 1.12 1.31 1.29
1.39 1.28 1.U6 2.03 1-79 1.27 0.93 0.95 1-21 1.U8 1.67 1.56
0.66 0.71 0.61+ 0.71 0.79 0.79 0.63 0.1+7 0.1*7 0.53 0.65 0.83
1.59 1.U8 1.59 2.01* 1.96 1.60 1.28 1.18 1.30 1.1+9 1.64 i 7i*
0.87 0.82 0.93 0.96 0.90 0.79 0.68 0.78 0.71* 0.95 o 85 o 88
0.96 O.Q2 1.00 1.12 1.09 0.91* 0.80 0.78 0.78 0.9!+ 0.95 I.oU
0.6l 0.72 0.61+ 0.71 0.85 0.75 0.61+ 0.1*7 1.1+1* o.6l 0.75 0.73
0.91* 0.90 0.72 0.90 1.1*0 1.26 0.91 0.73 0.67 0.82 0.8l 0.92
0.69 0.61 0.55 0.1*0 0.85 0.79 0.61* 0.28 0.1+1+ 0.37 0.52 0.1+8
0.-60 0.75 0.65 0.73 0.97 0.85 0.70 0.50 0.1+8 o.6l 0.73 0.71+
0.1*0 0.37 0.36 0.39 0.35 0.31* 0.30 0.30 0.31 0.33 0.39 0.1+2
0.63 0.6l 0.63 0.67 0.71 0.56 0.1+5 0.1+5 0.52 0.69 0.72 0.72
0.6k 0.61 0.63 0.71+ 0.79 0.69 0.56 0.55 0.63 0.75 0.70 0.67
0.1+5 O.IMD 0.1*1 0.1+6 0.1+2 0.39 0.35 0.31* 0.36 0.1*0 0.1+5 c.i+6
0.33 0.1+9 0.50 0.57 0.55 0.1+9 0.1*1 o.Ul 0.1*5 0.52 0.^5 0.55
90

-------
   Table 23.   TREND OP SUSPENDED PARTICULATES BY AISI SAMPLER
                                    (Cohs/1, 000 lineal feet)
Year
                   April
                        May
                                                  June
                                                      July
                                                                               August
                                                                                            Septenber
         Ref.   00  06  12  18  00  06  12  18  00  06   12  18  00  06  12   18  00  06  12   18  00  06  12  18
1954-5S   63  1.7 2.3 1.2 1.4  1.6'2.0 0.7 0.7 1.0  1.2 0.6 0.8 1.1  1.3 0.8 0.7 0.7 1.1 0.5 O.S 0.8 1.1 0.6  0.7
1957-58   63  0.5 0.6 0.4 0.5  0.4 0.4 0.3 0.3  -              0.4  0.4 0.3 0.3 0.4 0.5 0.3 0.3 0.4 0.5 0.4  O.S
1958-59   64  0.6 1.0 0.4 O.S  0.5 O.S 0.4 0.4 0.5  0.4 0.2 0.2 0.6  0.8 O.S 0.4 0.8 1.0 0.6 0.6 1.0 1.0 0.6  0.6
1962-63   65  0.9 1.1 0.6 0.7  0.7 0.7 0.8 0.9 0.7  0.7 0.4 0.4 0.5  0.6 0.4 0.3 0.6 0.8 0.3 O.S O.S 0.6 0.4  0.4
Aug.'63 to
July '64
   0.6 0.6 0.6  0.6 O.S 0.6 0.4 O.S 0.6 0.6 0.4 0.3  -
                                                                          0.4 0.6 0.3 0.3 0.6 0.8 0.4 0.6
                 October
                                November
                                               December
                                                              January
                                                                              February
                                                                                              March
              00  06  12  Iff  00  06  12  18  00  06  12  18  00  06  12  18  00  06  12  18  00  06  12  18

1954-55   63   1.2 1.8 0.9 1.4 1.8 2.0 1.6 2.1 1.6  1.0 1.7 1.9 1.5 2.1 1.8 2.0 1.7 2.0  1.6 2.1 1.5 1.9 1.2 1.6
1957-58   63   0.7 0.8 0.6 0.7 1.0 1.2 0.8 1.0 1.3  1.0 1.0 1.2 1.5 1.9 1.0 1.6 1.0 1.5  1.3 l.S 1.0 0.0 O.S 1.0
1958-59   64   1.4 1.5 1.0 1.3 1.7 1.9 1.5 2.0 1.8  2.0 1.8 2.0 1.7 2.3 1.7 1.8 1.4 1.9  1.7 1.6 1.0 1.0 0.7 0.9
1962-63   65   -	-   -   -   -   -  1.0 1.1  0.9 1.1 0.8 0.9 0.8 0.7
Aug.'63 to
July '64
                                                 1.3  1.5 1.2 1.3 1.4  1.3 1.1 1.6  -
  The data from 1954 - 1963 are  3-hour samples from  site 491-713.   Data from August  1963 - July
  1964 are 2-hour samples reported as geometric means from site 490-713.
               1.0


               0.9
           _   0.8
           O
           o>
           c
           =   0.7
           O
           O
           O   0.6
              0.5
           O
-  0.3
Z
d  0.2
o

    O.I


     0
            n	1	1	1	1	r
                                                 WINTER 1963-64
                                      SUMMER  1963
                     0-?   2-4   4-6  6-8   8-10  10-12  12-14 14-16  16-18  18-20 20-22 22-24
                                            TIME  OF  DAY
         Figure  73.   Diurnal variation  of soiling index geometric  means
                         all AISI sampler  sites.
                                                                                                    91

-------
              54'57'58'62'63|54'57'58'62'63 54'57'58'62'63 54'57'58'62'63
               APRIL   I   MAY    I   JUNE   I   JULY
           Figure 74.   Suspended particulates  - 6 a.m. monthly means -
                        AISI sampler.
       Pollution roses  for each site for  February  1964  are  given  in  Figures  75
through 84.  February was selected as the period for  analysis  because  more samplers
were operating at that  time than during any other  period  of the study.   Mechanical
problems led to redesign and rebuilding of every sampler.   Data from rebuilt units
are far more reliable than those from original equipment.   The redesign  features
are reported in Memorandum of Information and Instruction Number  8,  AISI  Tape
Sampler Modifications.

       Figure 85 shows  the wind directions for the three  highest  AISI  suspended
particulate directional averages at each  station during February  1964.   It indicates
that for the stations in Missouri, away from the central  metropolitan  area,  the
highest suspended particulates occurred when the wind was from the direction of  the
central metropolitan area.  The wind direction - particulate level relationships
shown in Figure 85 and  the pollution roses at sites 505-740 and 472-680  are  due  to
point sources.

       For the stations in East St. Louis and the St. Louis central  business district,
the actual wind directions are at times markedly different  from those  at  the Weather
Bureau station at Lambert Field; therefore, the actual wind directions for the
maximum particulate levels in these areas may not be  quite  as  indicated.   The
altered wind directions were reported by  Arnold   to  be caused by counterflow of air
close to the ground surface and to air drift along the  valley  because  of the channel-
92

-------
      0469
0330
      0197°
                      CALM-0.654
                                                   0225
                                                                                     0689
                                                                           0377
                         0259
   Figure 75.  Soiling  index pollution
                rose -  site No.  432-715
                345 samples.
                                                                     0238
               Figure 76.  Soiling index pollution
                            rose  -  site No.  438- '
                            347 samples.
                          0
 .0-60 60-15 I 5-3 0^3 0_

'Cohs/ 1,000 lineal feet
 5        10       15
                                                            WIND
                                                         j. FROM
                                                         * THIS
                                                          DIRECTION
                                PERCENT OF SAMPLES
                           2-hour samples-AIS! sampler —Feb 1964
                           Note  Numbers on radia Is are arithmetic average
                           concentrations for wind directions indicated
                     CALM-I 342
      0329
     0385
                                                                                      0421
                                           0480
                                                                    0210
                         0633
  Figure 77.  Soiling index pollution
               rose - site No.  449-347
               347 samples.
              Figure  78.  Soiling index pollution
                          rose - site No. 468-665
                          192 samples.
                                                                                      93

-------
                                                   0.755
        0258
  0.421
      0523
                                                                                      1.822
                                                                           1780
                          0734
                                                                     1736
    Figure 79.  Soiling index pollution
                 rose -  site No.  469-750
                 348 samples.
              Figure  80.  Soiling index pollution
                          rose - site No.  472-680
                          348 samples.
 1.443
              I 213
                           0
\Q-.60  60-151^0
' Cohs/1,000 lineal feet

5        10        15
                                                            WIND
                                                          ..FROM
                                                          *• THIS
                                                           DIRECTION
                                PERCENT OF SAMPLES
                           2-hour samples-AISI sampler-Feb  1964
                           Note  Numbers  on radials are arithmetic average
                           concentrations for wind directions indicated
                        CALM-3,097
                                                 1203
                                                                                      2102
                                                                                2746
                                                                         2088
                                    1728
                                                                  1382
                            1540
   Figure 81.  Soiling index pollution
                rose - site No. 490-713
                196 samples.
             Figure  82.  Soiling index pollution
                          rose - site No.  495-709
                          249 samples.
94

-------
      •  I 156
1401
      3.163
                                           3.122
                                      4.951
                                 4.253
                          3844
   Figure  83.  Soiling index pollution
                rose -  site No. 501-713
                342 samples.
                                       WIND
                                     ^ FROM
                                     ^THIS
                                      DIRECTION
    Q-.6Q .6

  xCohs/l,000 Imeal feet

   5        10        15

PERCENT OF SAMPLES
     2-hour samples -AISI sampler- Feb  1964
     Note- Numbers on rodials are arithmetic average
     concentrations for wind directions indicated
        0.788
0.960
            CALM-3.916

          0897

                1534
                                           I 160
                                 3.238
                           2.711
   Figure 84.  Soiling index pollution
                rose - site No.  505-740
                348 samples.
                                                                   95

-------
                                     LEEEHD
                                 tlMMH MiTM
•M OIUCTINS FOR S^EE HIGHEST DIRECTIONAL AYERACE
      FN EACH AISI i4NPLINt STATHi, FROM SOIL UK WOfl
POLLKTWI ROMS (Flit ;5 -  T5-14)
390   400000   410    420   450   440   450    460   470   480   490   500M
-------
ing effect.  The counterflow and drift are verified and quantitated to some decree
by wind measurements at the different levels on the KMOX-TV tower.  They are report-
ed in Volume V, Meteorology and Topography.
       The results of the correlation between meteorological stability classes and
the AISI sampler data for each site are given in Table 24.   At 6 of the 12 sites
the results have the same pattern as the high-volume sampler results,  a decrease in
suspended particulatcs from class 2 to class 4 and an increase for class 5.   Four of
the six sites not having this pattern had an increase from  class 2 to  3, but a
decrease from class 3 to 4,  and an increase from class 4 to 5.  The other two sites
showed increases from class  3 to 4.  These results indicate that although wind speed
is the more influential factor, thermal  mixing has a greater influence on particulates
collected by the AISI sampler than on that collected by the high-volume air  sampler.
The difference reflects the  influence of the smaller particles collected by  the AISI
sampler.   The class 1 condition did not  occur during February 1964.
                 Table 24.  AVERAGE SUSPENDED PARTICULATES
                    BY AISI SAMPLER FOR FIVE ATMOSPHERIC
                       STABILITY CLASSES,  WINTER 1963-64
                                (Cohs/1, 000 lineal feet)
Site
coordinates
432-715
438-689
449-719
468-665
469-750
472-680^
490-713C
495-709
499-700
501-713
505-740°
520-798
Atmospheric stability class
1


-
2 ,
0.359
0.325
0.917
0.318
0.963
-
-
-
-
1.409
1.986
2.028
3.880
4.763
-
-
2.328
0.740
3
0.358
0.419
0.735
0.193
0.897
1.346
2.030
2.294
2.599
4.632
2.121
1.971
4
0.405
0.343
0.472
0.220
0.550
1.065
1.436
1.532
1.959
2.785
1.618
1.022
5,6,7
0.400
0.471
0.773
0.217
0.877
1.196
1.971
1.S08
2.346
5.075
2.621
1.296
                1  = extremely unstable.
                2  = unstable.
                3  = slightly  unstable.
                4  = neutral.
                5,6,7  =  slightly  stable,  stable,  and
                b  Feb  1964  only.
                  Jan  and Feb  1964  only.
extremely stable.
                                                                                97

-------
SULFATION
       Lead peroxide candles were located at 42 sites to measure sulfation rates.
The results are reported in milligrams of sulfur trioxide per 100 square centimeters
per day and are given in Tables  25 to  30. The results ranged from 0.10 to 8.86 mg
SO./100 cm /day for the period March 1963 through February 1964.   The arithmetic
                                                             2
mean for all sites during this period  was 1.228 mg SO /100 cm /day,  and the geomet-
                                2
ric mean was 0.886 mg SO /100 cm /day.  Site 433-565, which is a low-population-
density residential-to-rural site,  had the lowest yearly geometric mean of 0.220 mg
SO,/100 cm /day, and site 472-680,  which is heavily industrialized,  had the highest
                      2
of 5.264 mg SO./100 cm /day.
       The monthly and seasonal  trends are shown in Figure 86.   With the exception
                                                                                i
of the increase in July and August,  these trends follow those found  in Nashville/
The July and August anomaly was  examined by plotting individual  June-to-July
increases for each station on a  map.   This was  done in two ways,  with both showing
essentially the same .results. The  first was based on the hypothesis that the pollu-
tant would be uniformly distributed  over the area and that it would  cause an increase
of at least 0.15 mg SO./lOO cm /day.   The second assumed a pollutant distribution
that would cause a 20 percent or more  increase  from the June  value.   The map,  Figure
        Table 25.  1963-64 SULFATION FOR ALL STATIONS BY MONTHS
                              (mg SO^/100 cm2/day)
Month
Feb 1963
Mar
Apr
May
June
July
Aug
Sept
Oct
Nov
Dec
Jan 1964
Feb
Minimum
0.17
0.19
0.20
0.16
0.13
0.16
0.20
0.14
0.15
0.10
0.42
0.13
0.28
Maximum
3.58
4.63
7.27
5.52
4.32
8.86
4.77
4.33
6.54
7.04
4.17
4.85
3.94
Na
29
38
39
40
39
38
40
40
40
41
41
40
41
Arithmetic
Mean
1.301
1.365
1.153
0.909
0.734
1.378
0.887
0.814
1.159
1.400
1.694
1.729
1.499
Standard
deviation
0.746
0.955
1.275
0.999
0.819
1.758
0.882
0.767
1.116
1.208
1.040
1.142
0.957
Geometric
Mean
1.103
1.086
0.857
0.649
0.517
0.827
0.671
0.617
0.852
1.046
1.405
1.366
1.233
Standard
deviation
1.859
2.044
2.021
2.168
2.214
2.634
2.018
2.055
2.193
2.231
1.880
2.136
1.913
     N = number of samples.
98

-------
              Table 26.  StFLFATION FOR MARCH,  APRIL, MAY 1963
                                 (mg SO3/100 cm2/day)
Site
coordinates
407-770
421-739
433-565
435-589
435-717
436-743
449-719
451-738
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
473-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-809
498-704
499-724
501-713
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
0.22
0. 16
0. 19
0. 19
0.24
0. 38
0. 43
0. 41
0. 33
0. 33
0. 59
0. 63
0. 67
0.47
0. 71
0.82
0. 45
0.81
5. 52
0.84
0. 50
1. 00
0.66
0. 42
0.29
1.38
1. 04
0.66
0. 84
3.88
1. 37
1. 31
0.48
1. 22
1.30
0. 53
0.96
1. 33
0.22
0. 31
0. 16
Maximum
0.47
0.46
0.22
0.42
0.40
0.80
0.43
0.93
0.93
0. 79
1.05
1. 19
3.42
1.02
1.27
1. 45
1. 08
1.64
7.27
1.79
1. 08
1.52
0.96
0. 74
0. 47
1. 38
1. 75
0.78
1. 35
4.89
2.93
1. 31
2. 77
2.03
2. 98
1.98
1.67
1.92
0.82
0.63
7.27
Na


3
3
3
3
1
3
3
:
3
3
3
\
:
3
3
3
2
3
-
3
3
3
3
1
3
3
3
3
3
1
3
3
3
3
3
3
3
3
117
Arithmetic
Mean
0.370
0. 333
0.203
0. 333
0. 326
0.580

0.666
0.606
0.580
0. 793
0.883
1.846
0. 713
1. 046
1. 080
0.750
1.203
6. 395
1.296
0.830
1.233
0.833
0.550
0.386

1. 393
0.710
1.013
4.466
2.063

1.760
1. 656
1.876
1.086
1. 320
1.546
0.510
0. 450
1. 138
Standard
deviation
0. 132
0. 155
0. 015
0. 125
0. 080
0.210

0.260
0.302
0.232
0.234
0.283
1. 417
0.280
0. 295
0. 329
0. 316
0. 416
1.237
0.476
0.298
0.264
0. 155
0. 168
0.090

0. 355
0.062
0. 291
0. 524
0. 794

1. 168
0. 408
0. 955
0. 781
0. 355
0. 324
0. 300
0. 163
1.093
Geometric
Mean
0.351
0.308
0.202
0. 314
0. 319
0.554

0.631
0. 555
0. 544
0.771
0.853
1.492
0.677
1. 015
1.048
0.704
1. 155
6. 334
1.237
0. 789
1.214
0.823
0.534
0.379

1. 362
0.708
0.987
4.445
1.964

1. 392
1. 621
1.735
0. 923
1.287
1.525
0.445
0.431
0.841
Standard
deviation
1.506
1. 755
1.077
1.549
1.298
1.451

1.508
1.678
1.569
1. 336
1. 375
2.260
1.475
1. 367
1. 340
1.549
1.422
1. 214
1.460
1.498
1.234
1.216
1.340
1.278

1.297
1.090
1.310
1.128
1.464

2.547
1.296
1. 597
1. 980
1. 320
1.221
1. 940
1. 429
2. 129
           N  = number of samples.

87, shows that the central portion of the Study area,  including East  St.  Louis  and
the central portion of St.  Louis, was not affected by  this summertime phenomenon.
The urban area surroundine the central area was affected except for an area  to  the
east of East St.  Louis.   Since most outlying stations  in Belleville,  St.  Louis
County, Jefferson County, St.  Clair County, and St.  Charles County did not show an
appreciable July increase,  this phenomenon is apparently associated with  some
activity in the major urban areas.  The 1,400 percent  increase at  station 488-672 in
the southeast part of the study area near large swampy areas  suggested that  anaerobic
                                                                                99

-------
             Table 27.  SU'LFATION FOR JUNE,  JULY, AUGUST  1963
                                (mg SO3/100 cm2/day)
Site
coordinates
467-740
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-7Z4
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-809
498-704
499-724
501-713
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum

0. 18
0. 13
0.32
0. 13
0. 31
0. 33
0. 30
0. 19
0. 30
0. 47
0. 44
0.49
0. 32
0. 62
0. 30
0. 29
0.71
4. 32
0. 67
0. 42
0. 93
0. 55
0. 35
0. 29
1.02
1.06
0.51
0. 53
3.43
0. 76
1. 09
1. 32
1. 01
0.99
0. 49
0. 55
0. 87
0. 21
0. 21
0. 13
Maximum

0.34
0.28
0. 34
0.25
0. 41
0.51
0. 48
0. 38
0. 41
0.79
4. 10
0.75
0. 55
0. 90
0. 95
0. 47
0. 85
8.86
0. 93
0. 83
0. 99
0. 82
5. 11
1. 03
1. 44
1. 63
1.28
1. 10
4.98
2. 15
1. 18
2. 75
1. 18
2. 92
0. 49
1. 02
1. 35
1. 26
0. 40
8. 86
Na
0
3
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
3
3
3
3
117
Arithmetic
Mean

0.256
0. 190
0. 330
0. 200
0. 360
0. 420
0. 383
0. 303
0. 355
0.656
1. 716
0.626
0.436
0. 780
0. 683
0. 403
0. 780
5. 983
0.786
0. 610
0. 956
0. 680
2. 050
0. 586
1. 233
1.420
0.820
0.723
4. 096
1. 326
1. 136
1. 856
1.113
1. 653
0. 490
0. 810
1. 103
0. 570
0. 300
0. 995
Standard
deviation

0.080
0. 079
0.009
0. 062
0. 050
0. 090
0. 090
0. 100
0. 077
0. 166
2.065
0. 130
0. 115
0. 144
0. 340
0. 098
0. 098
2. 501
0. 132
0.206
0. 030
0. 135
2. 655
0. 391
0.210
0. 313
0. 406
0. 326
0. 797
0. 729
0.045
0. 778
0. 090
1. 097
0. 000
0. 238
0. 240
0. 597
0. 095
1. 241
Geometric
Mean

0.248
0. 179
0. 329
0. 192
0. 357
0.413
0. 376
0. 290
0. 350
0.641
1. 032
0. 617
0. 426
0. 770
0. 610
0. 394
0.776
5. 672
0.779
0. 586
0. 956
0. 671
1. 072
0. 508
1.221
1. 394
0. 759
0.680
4.046
1. 204
1. 136
1. 759
1. 110
1. 447
0. 490
0. 784
1. 085
0. 398
0. 289
Standard
deviation

1. 374
1. 487
1.030
1.414
1. 150
1. 243
1. 265
1. 451
1. 247
1. 315
3. 338
1. 240
1. 312
1.214
1.862
1. 306
1. 135
1. 475
1. 179
1. 405
1. 032
1.221
4. 030
1.907
1. 188
1.269
1. 604
1. 516
1. 209
1. 698
1. 040
]. 480
1 . 086
1. 837
1. 000
i. 375
1. 245
2. 713
1. 380
0.659 1 2.320
          aN  =  number of samples.

decomposition may be the cause.   Temperature increases  and rainfall  decreases  during
this season of the year also lend support to hypothesized effects  of increases in
anaerobic decomposition.  Meteorological data for downtown St.  Louis show averages
of 77.9, 79.2, 76.8, and 71.4°F  and 2.66, 2.13,  2.39,  and 1.47  inches of rainfall,
respectively, for the months of  .June,  July,  August,  and September  1963.   Lambert
Field data show averages of 75.4,  77.3,  74.9, and 68.5°F, and 3.87,  1.37, 2.55, and
1.13 inches of rainfall, respectively, for the same  months.

-------
               Table 28.   SITUATION FOR SEPTEMBER, OCTOBER,
                     NOVEMBER 1963  (mgSO3/100 cm2/day)
Site
coordinates
407-770
421-729
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-809
498-704
499-724
501-713
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
0. 20
0. 26
0. 10
0. 26
0. 19
0. 42
0. 40
0. 37
0. 37
0. 43
0. 69
0. 62
0.66
0. 45
0. 56
0. 85
0. 47
0. 84
4. 33
0. 99
0. 68
0. 97
0. 58
0. 30
0. 14
1. 43
1. 46
0. 79
0. 47
2. 82
0. 71
0. 97
1. 47
0. 90
Maximum
0. 44
0. 30
0. 39
0. 38
0. 30
0. 61
0. 44
0. 66
0. 65
0. 83
0. 78
1. 10
1.58
0. 92
0. 95
1. 14
0. 91
1. 15
7. 04
1. 70
1. 40
1. 36
0. 86
2. 14
1. 14
1. 89
1.64
1.92
2. 66
3. 33
3. 22
2.64
2. 07
2. 53
0.94 2.88
0.41 1.74
0.70 1.60
0.21 1.74
0.27 1.56
0. 28 0. 98
0. 10 7. 04
i
N3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
121

Arithmetic
Mean
0. 300
0. 280
0. 213
0. 306
0. 250
0. 526
0. 426
0. 493
0. 473
0. 643
0. 726
0. 846
1. 023
0.663
0. 743
0.956
0. 670
0. 973
5. 970
1. 273
0. 996
1. 140
0. 733
1. 073
0. 760
1. 633
1.566
1. 220
1. 660
3. 043
1. 923
1. 580
1. 770
1. 553
1. 730
0. 926
1. 076
0. 900
1. 086
0. 723
1. 127

Standarc
deviation
0. 124
0. 019
0. 155
0. 064
0. 055
0. 097
0. 023
0. 149
0. 153
0. 201
0. 047
0. 241
0. 489
0.237
0. 196
0. 159
0. 222
0. 159
1. 442
0. 376
0. 367
0. 199
0. 141
0. 954
0. 541
0. 234
0. 094
0. 611
1. 107
0. 260
1. 257
0. 921
0. 424
0. 861
1. 018
0. 712
0. 467
0. 775
0. 710
0. 3-85
1. 068

Geometric
Mean
0. 283
0. 279
0. 180
0. 302
0. 245
0. 520
0. 426
0. 478
0. 458
0. 620
0. 725
0.823
0. 953
0.635
0. 726
0. 948
0. 645
0. 964
5. 841
1. 238
0. 953
1. 128
0. 723
0. 794
0. 542
1. 622
1. 564
. 129
. 322
. 036
. 614
. 425
. 744
1. 409
1. 547
0. 765
1. 013
0. 649
0. 844
0.629
0. 821

Standard
deviation
1. 494
1. 074
2. Oil
1. 222
1.263
1. 212
1. 056
1. 342
1. 357
1. 398
1. 066
1. 332
1. 572
1.430
1. 302
]. 173
1. 392'
1. 173
1.299
1. 325
1. 438
1. 187
1. 223
2. 671
3. 237
1. 151
1. 063
1. 597
2. 494
1. 088
2. 147
1. 715
1. 273
1.699
1. 767
2. 100
1. 521
2. 899
2. 687
2. 019
2. 214

               number of samples.
       The minimum monthly geometric mean for all  stations  was  0.517 mg SO /100 cm2/
day in June and the maximum was 1.405 mg S03/100  cm2/day  in December.
The winter season geometric mean was the highest  at  1.332 mg S03/100 cm2/day, and
the summer geometric mean was  the lowest at  0.659  mg SCyiOO cm2/day.  Figures 88
and 89 are isopleth maps  of the annual  sulfation geometric  means and 99th percentile
values.
                                                                                101

-------
                 Table 29.  SULFATION FOR DECEMBER 1963,
                       JANUARY AND FEBRUARY 1964
                             (mg SO3/100 cm2/day)
Site
coordinates
407-770
421-739
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-709
495-809
498-704
499-724
501-713
505-740
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
0. 65
0. 46
0.28
0. 29
0. 43
0. 42
0.80
0.73
0.70
0. 13
0. 84
0.89
1.47
0.80
1.01
1. 19
0.91
1.42
3.20
1.86
0.98
1. 70
0.95
0. 95
0. 79
1.64
1.66
1.01
2. 26
1. 57
2. 48
3. 18
3. 43
3. 03
3. 73
2. 61
2. 89
1. 24
1. 24
1. 39
1. 10
0. 57
0. 13
Maximum
0. 73
0. 52
0. 59
0. 51
0.63
0. 92
0.93
1.01
1.01
0.86
1. 14
1.70
2. 47
1.46
1.27
1.83
1. 50
1.93
4.85
2.64
2. 11
1.91
1. 77
2.04
1.86
2.59
2.06
1. 51
2.61
2.29
4. 59
3. 93
4. 17
3. 03
3. 77
3.56
3. 15
1.54
1. 78
2. 19
2. 35
1. 06
4.85
N"
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
2
3
2
3
3
3
3
3
122
Arithmetic
Mean
0. 680
0.483
0. 383
0. 376
0.540
0.710
0.863
0.866
0.820
0. 576
1.006
1. 190
1.876
1. 050
1. 150
1.553
1. 136
1.663
3. 950
2.200
1. 413
1.800
1.280
1. 403
1. 270
2. 186
1. 796
1. 290
2.423
1.880
3. 670
3. 620
3. 910

3. 750
2.966
3. 020
1. 356
1. 570
1.826
1. 593
0.846
1.640
Standard
deviation
Y
0. 043
0.032
0. 178
0. 117
0. 101
0.259
0. 065
0. 140
0. 166
0. 391
0. 152
0. 443
0. 525
0. 357
0. 131
0. 328
0. 317
0. 255
0. 835
0. 399
0. 609
0. 105
0. 432
0. 567
0.543
0. 490
0. 228
0. 255
0. 176
0. 370
1. 080
0. 391
0. 416

0. 028
0. 517
0. 183
0. 160
0.289
0.405
0. 665
0.251
1. 044
Geometric
Mean
0.679
0. 482
0. 358
0. 365
0. 533
0.673
0.861
0. 859
0. 809
0. 435
0.998
1. 140
1.830
1. 013
1. 144
1.528
1. 109
1. 650
3. 892
2. 176
1. 334
1. 797
1. 234
1. 332
1. 194
2. 147
1.787
1.272
2.419
1.856
3. 552
3. 605
3.894

3. 749
2. 938
3. 017
1.350
1. 550
1. 795
1. 509
0.819
1. 332
Standard
deviation
1.065
1.067
1. 537
1. 344
1. 216
1. 515
1. 078
1. 176
1. 215
2. 858
1. 169
1. 417
1.308
1. 378
1. 123
1. 250
1. 304
1. 165
1.232
1. 194
1.498
1.060
1. 380
1. 476
1.535
1.270
1. 130
1. 230
1. 074
1.211
1. 377
1. 117
1. 116

1. 007
1. 182
1.062
1. 122
1.215
1.261
1.484
1. 381
1. 970
            N  =  number of samples.
       From the 1960 census population density and the  isopleth  map  of the  annual
geometric means, it was estimated that 150,000 people lived in areas with a level  of
1.5-2.0 mg SO./100 cm /day and approximately 80,000 people lived in  areas with
                           2                                                16
levels of 2.0 mg SO /100 cm /day or greater.  A study by Thomas  and  Davidson
showed that clean air (60 to 70 miles  from any source of sulfur  dioxide)had a
102

-------
              Table 30.  .SULFATION FROM MARCH 1963 THROUGH
                      FEBRUARY 1964 (mg SO /100 cm2/day)
Site
coordinates
407-770
421-739
433-565
435-589
435-717
436-743
449-719
451-728
453-701
457-766
463-691
464-740
465-731
467-758
469-683
469-705
469-749
471-714
472-680
476-724
477-758
479-704
482-699
488-672
490-646
490-713
490-730
495-693
495-709
495-809
498-704
499-724
501-713
505-740
505-741
509-710
517-692
517-762
520-790
521-725
554-668
585-683
All
Minimum
0. 15
0. 16
0. 10
0. 19
0. 13
0. 31
0. 33
0. 30
0. 19
0. 13
0. 47
0. 44
0. 49
0. 32
0. 56
0. 30
0. 29
0. 71
3. 20
0. 67
0. 42
0. 93
0. 55
0. 30
0. 14
1. 02
1. 04
0. 51
0. 80
0. 47
2. 48
0. 71
0. 97
2. 77
0. 48
0. 90
0. 94
0. 41
0. 55
0. 21
0. 21
0. 21
0. 10
Maximum
0. 73
0. 52
0. 59
0. 51
0.63
0. 92
0. 93
1. 01
1. 01
0. 86
1. 14
4. 10
3.42
1.46
1. 27
1. 83
1. 50
1.93
8. 86
2. 64
2. 11
1.91
1. 77
5. 11
1. 86
2.59
2. 06
1.92
2.61
2.66
4. 98
3.93
4. 17
3. 03
3. 77
3.56
3. 15
1. 98
1. 78
2. 19
2. 35
1. 06
8. 86
Na
12
12
12
12
12
12
10
12
12
11
12
12
12
12
12
12
12
11
11
12
12
12
12
12
12
10
12
12
4
12
12
12
10
2
10
12
11
11
12
12
12
12
477
Arithmetic
Mean
0. 383
0. 338
0.247
0. 336
0. 329
0. 544
0. 556
0. 602
0.550
0. 555
0. 795
1. 1.59
1. 343
0. 715
0.930
1.068
0. 740
1. 189
5. 500
1. 389
0. 962
1.282
0.881
1.269
0. 750
1.654
1. 544
1. 010
2. 017
1. 319
3. 819
2. 233
2. 119
2. 900
2. 189
1. 822
1. 983
1. 008
1. 194
1. 344
0. 940
0. 580
1. 228
Standard
deviation
0.208
0. 119
0. 134
0.082
0. 150
0. 199
0.218
0.240
0. 258
0.246
0. 195
0.984
0.881
0. 320
0. 249
0. 415
0. 350
0.410
1. 725
0.619
0. 458
0. 360
0. 326
1. 354
0. 503
0.487
0.282
0. 422
0. 824
0. 722
0. 834
1. 144
1.337
0. 183
1. 066
0. 858
0. 951
0. 568
0.418
0. 559
0.680
0. 309
1. 137
Geometric
Mean
0. 333
0. 317
0. 220
0. 327
0.299
0. 513
0. 522
0. 559
0. 494
0. 490
0.773
0. 953
1. 125
0. 656
0.898
0. 981
0. 667
1. 127
5. 264
1.269
0. 876
1. 239
0. 838
0.882
0. 594
1. 594
1. 518
0. 937
1.834
1. 133
3. 732
1. 926
1. 784
2.897
1. 904
1.652
1. 770
0. 867
1. 122
1. 178
0. 689
0. 503
0.886
Standard
deviation
1.747
1.467
1. 634
1.287
1.575-
1.422
1.438
1. 501
1.642
1. 784
1. 284
1. 790
1.840
1.538
1. 323
1. 591
1.611
1. 403
1. 362
1. 556
1.566
1. 309
1. 373
2. 309
2. 124
1. 325
1. 217
1. 488
1. 744
1.810
1. 255
1. 824
1. 831
1. 065
1. 842
1. 581
1.661
1. 785
1. 459
1. 877
2. 417
1. 758
2. 245
           N  =  number of samples.

sulfation rate of 0.03 mg SO /100 cm /day.   This means that these 230,000 people
lived in areas that had sulfation rates  of  at  least  50 times as high as areas with
clean air.
       The  frequency distribution of the sulfation rates for all sites, shown in
Figure 90,  reveals that sulfation rates  of  3.2 mg S0,/100 cm /day or higher occurred
                                                             2
1U percent  of the time during the winter and 2.6 mg  SO /100 cm /day 10 nercent of
                                                                               103

-------
C V
1 8
>, 1 6
o
"" 1 4

-


,
CO j
E
0 1 2^
g
"« 1 01-
o
in
CT 0 81—
E
z~ 0 6k
g
2 04k
^
1/1 0 2t-
Pi



























-





















































r-









™












1





—







































F—























-































'









MAR APR MAY JUNE JULY AUG SEPT OCT NOV DEC JAN FEB SPRING
i 	 QC-I 	 , i 	 |QR4-t Qll












-










-





























_



. 	 ,




_
_

-
1
FALL YEAR
MMPR JUIMTTD
               Figure 86. Sulfation - geometric means for months,
                           seasons, and years.
the time during the year.  Table 31  presents data from St.  Louis  and four other
cities.   St.  Louis and Nashville results are total  urban area averages  for a year.
London data are for seven central city stations; the yearly means  are averaged
arithmetically.  The Pennsylvania data are for less than a year,  and the Seward
station was influenced by a nearby  coal-burning power plant and  down-valley winds.
St. Louis metropolitan area sulfation levels are almost five times those of
\'ashville, the only truly comparable city on an area-wide basis.   The yearly station
geometric means of 1.59 at site 490-713 and 1.78 at site 501-713 may be compared to
the London value.  St. Louis,  therefore, has about  one-half the  sulfation level of
London and almost five times that of Nashville.
       For the investigation of the statistical relationship between sulfation rates
and sulfur dioxide levels the data  used were primarily from the  1964-1965 winter
network of ten paired sampling stations.  The 1963-1964 retwork  station data were
found unsuitable for this purpose because the sampling station pairs were not
located at the same places and the  data, although showing an apparent relationship
at paired stations, were insufficient to show a relationship between different nairs
of stations.   Figure 91 and Table 32  show the data  and results for the ten paired
stations.  The correlation coefficients (0.67-0.72) between the  sulfation rates and
sulfur dioxide levels are all reasonably good and consistent.  Plotted data for
individual paired stations also show a consistency  in their fluctuations about the
means.  It is linear and consistent in slope, site  by site, between the 1963-64 and
1964-65 winter seasons.  The equivalent sulfur dioxide concentration for 1.0 mg SO /
      2
100 cm /day of sulfation using the  sulfation versus 24-hour sulf'-r dioxide geometric
104

-------
           —I*
     ST CHARLES
                                                                    r~] AREA .IN WHICH INCREASE

                                                                        STATIONS AT WHICH INCREASE
      L EGEHD
BOUNDARIES
  STATE           	
  COUNTY          	
HIGHWAY MARKERS
  FEDERAL         —U
  STATE           —O
                                                                     A STATIONS AT WHICH INCREASE
                                                                        OCCURRED
    390   400000 410   420   430  440  450  460   470   480   490  500000'  510   520   530   540   550   560   570
Figure 87.   Geographic distribution  of sulfation increases from June to  July  1963.
                                                                                                  105

-------
                                        Ltefm
                                   tOWOARIES
                                     STATE     	
                                     man    	
ISOPLETMS OF 8EWETRIC MEAN VALUES.

    -^— LIKES OF ACTUAL EOUAL VALUES

          IKES OF PRfllASLE EQUAL VALUES

BASED ON VALUES FROM  41 LOCATIONS DURINC FEB. 20,1963

TO FEB. 10,1964.
                                   ttltWIAY MAKERS
                                     FEDERAL
                                     STATE
  390  WO000  410   420   430   440   450   460    470   480   490   500"°  510    520   530   540   550   560
   Figure  88.  Sulfation - geometric means  measured by lead peroxide  candles

                  (mg SO3/100 cm2/day).
106

-------
                                       L EGEHD
                                 BOUNDARIES
                                   STATE           	
                                   COUNTY          	
                                 HIGHWAY MARKERS
                                   FEDERAL         —O
                                   STATE
ISOPLETHS OF 99 PERCENTILE VALUES
— LINES OF ACTUAL EQUAL VALUE
    LINES OF PROBABLE EQUAL VALUE
BASED ON ANNUAL GEOMETRIC MEANS
AND STANDARD DEVIATIONS FOR 41
STATIONS DURING FEBRUARY 20,1963
TO FEBRUARY 10,1964.
 390   400" 410   420   430   440   450   460   470   480   490  500"'  510  520  530  540   550  560
                                                                                             580
Figure 89.  Sulfation  -  99 percentile values measured by  lead peroxide  candles
              (mg SO3/100 cm2/day).
                                                                                              107

-------
                      SUMMER
                   '-•• FALL
                   __ WINTER 1964
                   i-- YEAR
         O.I
          001
             005 0102 05  I  2   5   10   20  30 40 50 60 70  30   90  95   98 99
                             % OF SAMPLES < STATED CONCENTRATION
                                                                       998999 9999
                Figure 90. Sulfation frequency distribution, all sites.
  Table 31.   SULFATION RESULTS FROM ST.  LOUIS AND OTHER CITIES
City
Seward, Pa.
New Florence, Pa.
London, England
Nashville
St. Louis
St. Louis
(Site 501-713)
Ref
60
60
61
2


Date
9/26/59
3/15/60
9/26/59
3/15/60
1949-54
1958-59
1963-64
1963-64
Sulfation rates,
mg S03/100 cm2/day
3.7
0.6
3.3
0.190
0.886
1.78
Remarks
Near a coal-burning
power plant; down
valley winds.

7 central city stations.
Geometric mean.
Geometric mean.
Geometric mean.
108

-------
       E
       Q.
       Q.
      LJ
      Q
      X
      o
cc
in
   0.12

   0 I I

   0.10

   0.09

   0.08

   0.07
          0.05

          0.04

          0.03

          0.02

          0.01

             0
                minium
SULFATION v«. 2-hr S02ARITH MEANS
CORRELATION COEF. -0.72
SULFATION v«. 2-hr SOj GEO MEANS
CORRELATION COEF-0.71
SULFATION vs 24-hr SOg ARITH MEANS
CORRELATION COEF.-0.69
SULFATION vs. 24-hr. SOg GEO MEANS/
CORRELATION COEF.-0.67        /
                        1.0        2.0       3.0        4.0
                              SULFATION,  mg S03/I00 cm2/day
                                                          5.0
                                                  6.0
         Figure 91.  Sulfation versus sulfur dioxide (Dec  1964 - Feb 1965)
                     at 10 paired stations.
means was 0.013 ppm, as compared  to  0.042  ppm  sulfur dioxide per 1.0 mg SO./100 cm /
                       17                                     '
day found in Nashville.    These  data  indicate that  compounds other than sulfur diox-
ide have a. greater influence on the  sulfation  rates  in  St.  Louis than in Nashville.
SULFUR DIOXIDE  (West-Gaeke)
       Three separate networks of sulfur dioxide samplers were operated during this
Study.  One network consisting of three  sites  was equipped with 2-hour sequential
samplers.  It was operated from May  1963 to  July 1964.   Results from it are not
reported.  A second network of twenty  24-hour  samplers  was operated from December
1963 to February 1964, and another network consisting of forty 24-hour samplers
plus ten 2-hour sequential samplers  was  operated from December 1964 to February
1965.  Results of the 20-site network  operated in the winter of 1963-64 are given
in Table 33 and the results of the 40-site network are  listed in Tables 34 and 35.
       The ranges of results were  0.00-0.24  ppm for  the network of twenty 24-hour
samplers (December 1963 - February 1964),  0.00-0.26  ppm for the network of forty
                                                                                 109

-------
        Table 32.  DATA'FROM 1964-65 SULFUR DIOXIDE STUDY
Site
coordinates
449-719
468-724
479-738
481 o36
490-713
498-729
499-706
509-710
509-751
527-702

Month
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
Dec
Jan
Feb
SCL mean, ppm
2-hr
Arithmetic
0.032
0.023
0.026
0.083
0.079
0.078
0.058
0.050
0.046
0.033
0.034
0.035
0.071
0.048
0.058
0.066
0.065
0.068
0.134
0.131
0.118
0.065
0.065
0.075
0.035
0.034
0.029
0.025
0.031
0.034
Geometric
0.020
0.011
0.013
0.072
0.064
0.068
0.040
0.029
0.029
0.021
0.020
0.021
0.049
0.035
0.043
0.049
0.044
0.047
0.108
0.106
0.094
0.053
0.049
0.056
0.020
0.018
0.013
0.017
0.018
0.020
24-hr
Arithmetic
0.022
0.020
0.021
0.075
0.065
0.068
0.054
0.048
0.041
0.028
0.027 •
0.028
0.049
0.049
0.049
0.054
0.059
0.057
0.102
0.110
0.103
0.045
0.052
0.059
0.028
0.029
0.021
0.028
0.029
0.030
Geometric
0.017
0.014
0.014
0.072
0.059
0.063
0.042
0.037
0.034
0.020
0.021
0.023
0.045
0.043
0.045
0.048
0.050
0.047
0.090
0.102
0.097
0.037
0.045
0.047
0.019
0.022
0.014
0.021
0.022
0.021
Sulfation,
mg S03/100 cm2/day
1.70
1.57
1.55
2.02
2.55
2.23
1.21
2.62
1.68
2.47
1.98
1.58
2.27
3.00
2.26
2.83
2.69
2.37
5.54
4.24
3.61
3.50
2.99
2.40
2.59
2.92
1.88
2.66
2.48
1.43
24-hour samplers (December 1964 - February 1965),  and 0.00-0.86 ppm  for the  network
of ten 2-hour sequential samplers (December 1964 - February 1965).
       The locations of 19 of the 24-hour sampler stations  were the  same for the
winters of 1963-64 and 1964-65.  Comparison of the results  from these stations
(Table 36) shows that the sulfur dioxide concentrations  were significantly higher
for the winter of 1964-65 than for the winter of 1963-64.   The possible reasons for
this are:   (1) sulfur dioxide concentrations for St.  Louis  are beginning an  upward
trend; (2) the meteorological conditions were more conducive to high air pollution
during the 1964-65 season than during 1963-64; (3) the 1963-64 samples faded as a
110

-------
  Table 33.   19&3-64 SULFUR DIOXIDE 24-HOUR SAMPLES
                             (ppm)
Site
coordinates
Dec 1963
466-742
471-689
472-707
480-682
481-696
481-726
487-706
490-759
491-692
494-721
498-718
498-729
499-743
502-736
503-723
509-751
513-742
515-690
518-716
533-717
All
Jan 1964
466-742
471-689
472-707
480-682
481-696
481-726
487-706
490-759
491-692
494-721
498-718
498-729
499-743
502-736
503-723
509-751
513 742
515-690
518-716
533-717
All
a
Minimum

0.002
0.004
0.000
0.000
0.000
0.008
0.015
0.000
0.000
0.004
0.021
0.001
0.002
0.002
0.003
0.000
0.000
0.001
0.010
0.002
0.000

0.003
0.005
0.002
0.003
0.003
0.011
0.008
0.001
0.000
0.007
0.002
0.003
0.002
0.002
0.016
0.000
0.000
0.007
0.008
0.005
0.000
Maximum

0.04
0.07
0.11
0.09
0.13
0.17
0.15
0.04
0.07
0.10
0.07
0.14
0.06
0.08
0.07
0.06
0.03
0.09
0.09
0.03
0.17

0.20
0.13
0.06
0.04
0.05
0.17
0.14
0.08
0.04
0.12
0.24
0.14
0.08
0.09
0.14
0.08
0.05
0.08
0.08
0.06
0.24
Na

20
22
22
13
20
20
19
20
21
18
12
19
21
18
17
20
19
17
21
20
379

27
27
27
26
27
27
27
27
28
24
27
26
26
27
26
26
25
23
27
27
527
Arithmetic
Mean

0.017
0.026
0.027
0.024
0.034
0.054
0.065
0.015
0.022
0.039-
0.040
0.043
0.021
0.029
0.033
0.019
0.013
0.028
0.034
0.013
0.029

0.037
0.034
0.023
0.015
0.021
0.069
0.056
0.029
0.006
0.057
0.045
0.055
0.024
0.032
0.044
0.027
0.010
0.031
0.032
0.019
0.033
Standard
deviation

0.015
0.022
0.032
0.027
0.039
0.042
0.038
0.015
0.025
0.027
0.018
0.041
0.018
0.025
0.021
0.019
0.010
0.026
0.022
0.008
0.029

0.043
0.035
0.019
0.011
0.015
0.050
0.037
0.026
0.009
0.037
0.047
0.043
0.020
0.027
0.026
0.027
0.011
0.021
0.021
0.015
0.033
Geometric
Mean

0.010
0.018
0.011
0.012
0.012
0.040
0.054
0.006
0.008
0.028
0.036
0.019
0.014
0.019
0.025
0.008
0.007
0.016
0.028
0.010
0.016

0.020
0.022
0.016
0.012
0.016
0.050
0.044
0.016
0.003
0.043
0.030
0.038
0.015
0.021
0.038
0.014
0.006
0.024
0.026
0.014
0.020
Standard
deviation

3.011
2.523
4.799
4.076
5.318
2.337
1.897
4.559
5.082
2.522
1.562
5.207
2.699
2.847
2.275
4.532
3.408
3.632
1.853
2.157
3.678

3.321
2.470
2.643
2.145
2.145
2.350
2.153
3.613
3.022
2.321
2.519
2.588
3.069
2.791
1.618
3.726
2.955
2.145
1.993
2.033
3.119
N = number of samples.
                                                                  Ill

-------
       Table 33.  (Cont'd-) 1963-64 SULFUR DIOXIDE 24-HOUR SAMPLES
                                    (ppm)
Site
coordinates
Feb 1964
466-742
471-689
472-707
480-682
481-696
481-726
487-706
490-759
491-692
494-721
498-718
498-729
499-743
502-736
503-723
509-751
513-742
515-690
518-716
533-717
All
Winter
466-742
471-689
472-707
480-682
481-696
481-726
Minimum

0.001
0.002
0.001
0.001
0.003
0.009
0.003
0.001
0.001
0.008
0.004
0.007
0.002
0.008
0.002
0.001
0.000
0.009
0.003
0.001
0.000

0.001
0.002
0.000
0.000
0.000
0.008
487-706 0.003
490-759
491-692
0.000
0.000
494-721 i 0.004
498-718
498-729
499-743
502-736
503-723
509-751
513-742
515-690
518-716
533-717
All
0.002
0.001
0.002
0.002
0.002
0.000
0.000
0.001
| 0.003
0.001
0.000
Maximum

0.07
0.05
0.04
0.04
0.09
0.10
0.08
0.03
0.03
0.16
0.12
0.10
0.04
0.06
0.05
0.04
0.03
0.05
0.06
0.02
0.16

0.20
0.13
0.11
0.09
0.13
0.17
0.15
0.08
0.07
0.16
0.24
0.14
0.08
0.09
0.14
0.08
0.05
0.09
0.09
0.06
0.24
NS

25
26
24
27
27
25
27
27
27
25
27
25
27
27
27
25
27
26
25
27
523

72
75
73
66
74
72
73
74
76
67
66
70
74
72
70
71
71
66
73
74
1429
Arithmetic
Mean

0.022
0.019
0.011
0.015
0.025
0.045
0.037
0,010
0.008
0.034
0.024
0.037
0.010
0.032
0.029
0.012
0.010
0.028
0.027
0.012
0.022

0.026
0.027
0.021
0.017
0.026
0.056
0.051
0.019
0.011
0.043
0.035
0.045
0.018
0.031
0.035
0.020
0.011
0.029
0.031
0.015
0.028
Standard
deviation

0.021
0.016
0.013
0.010
0.020
0.027
0.017
0.009
0.006
0.031
0.023
0.027
0.008
0.017
0.015
0.014
0.007
0.012
0.017
0.006
0.020

0.031
0.026
0.023
0.015
0.026
0.042
0.033
0.020
0.016
0.033
0.035
0.038
0.017
0.023
0.022
0.022
0.010
0.020
0.020
0.011
0.028
Geometric
Mean

0.013
0.014
0.007
0.012
0.019
0.036
0.032
0.007
0.006
0.026
0.017
0.027
0.008
0.027
0.023
0.006
0.007
0.026
0.021
0.009
0.014

0.014
0.018
0.011
0.012
0.016
0.042
0.041
0.009
0.005
0.032
0.025
0.028
0.012
0.022
0.028
0.009
0.006
0.022
0.025
0.011
0.016
Standard
deviation

3.322
2.490
2.819
2.380
2.161
2.053
1.917
2.790
2.137
2.039
2.180
2.257
1.918
1.833
2.286
3.303
2.574
1.620
2.239
2.283
2.751

3.298
2.518
3.441
2.568
2.957
2.249
2.042
3.737
3.385
2.313
2.324
3.191
2.632
2.451
2.102
.3.855
2.897
2.358
2.038
2.182
3.150
         N = number  of samples.
112

-------
    Table 34.  196"4-65 SULFUR DIOXIDE 24-HOUR SAMPLES
                                 (ppm)
Site
coordinates
Dec 1964
449-719
450-703
453-735
466-742
467-697
468-718
468-724
471-689
472-707
474-756
478-723
479-738
480-682
480-712
481-696
486-718
487-706
488-730
490-713
490-759
491-692
494-721
498-696
498-718
498-729
499-706
499-743
501-713
502-736
503-723
509-700
Minimum

0.004
0.008
0.003
0.006
0.008
0.002
0.034
0.010
0.011
0.008
0.012
0.004
0.006
0.027
0.004
0.026
0.023
0.013
0.018
0.007
0.004
0.014
0.002
0.014
0.020
0.030
0.000
0.005
0.016
0.011
0.003
509-710 0.013
509-720 0.017
509-751 0.003
513-742 0.002
Maximum

0.07
0.05
0.06
0.08
0.12
0.08
0.12
0.19
0.08
0.12
0.08
0.16
0.05
0.10
0.09
0.19
0.12
0.21
0.08
0.09
0.09
0.19
0.13
0.10
0.12
0.25
0.08
0.18
0.17
0.09
0.13
0.11
0.12
0.08
0.07
515-690 0.025 0.11
518-716 : 0,010 0.11
521-733 , 0.005 0.08
527-702 0.005 O.Ob
533-717 ! 0.004 0.07
Na

30
26
24
22
28
16
31
26
26
29
31
27
25
29
29
28
30
29
29
23
30
31
19
31
25
21
31
31
29
29
28
29
24
29
29
29
30
29
24
29
Arithmetic
Mean

0.022
0.025
0.027
0.038
0.038
0.042
0.075
0.053
0.036
0.057
0.036
0.054
0.022
0.065
0.028
0.080
0.064
0.069
0.049
0.031
0.024
0.063
0.042
0.052
0.054
0.102
0.035
0.083
0.055
0.042
0.055
0.045
0.050
0.028
0.024
0.056
0.044
0.030
0.028
0.018
Standard
deviation

0.016
0.011
0.017
0.023
0.028
0.026
0.021
0.044
0.017
0.031
0.015
0.036
0.012
0.023
0.025
0.034
0.029
0.048
0.020
0.028
0.023
0.041
0.038
0.024
0.027
0.052
0.026
0.042
0.033
0.021
0.035
0.028
0.031
0.023
0.017
0.022
0.027
0.022
0.017
0.015
-
Geometric
Mean

0.017
0.023
0.021
0.030
0.029
0.031
0.072
0.040
0.032
0.028
0.033
0.042
0.019
0.060
0.020
0.073
0.058
0.055
0.045
0.022
0.015
0.053
0.026
0.046
0.048
0.090
0.021
0.069
0.048
0.036
0.043
0.037
0.042
0.019
0.018
0.052
0.036
0.023
0.021
0.014
Standard
deviation

2.078
1.626
2.223
2.151
2.095
2.680
1.346
2.119
1.617
2.180
1.560
2.156
1.683
1.465
2.287
1.523
1.585
2.021
1.554
2.334
2.682
1.841
3.249
1.649
1.620
1.654
3.475
2.085
1.705
1.773
2.199
1.858
1.829
2.496
2.247
1.485
1.897
2.120
2.183
2.098
N = number  of samples.
                                                                       113

-------
        Table 34.  (Cont'd) 1964-65 SULFUR DIOXIDE 24-HOUR SAMPLES
                                       (ppm)
Site
coordinates
Jan 1965
449-719
450-703
453-735
466-742
467-697
468-718
468-724
471-689
472-707
474-756
478-723
479-738
480-682
480-712
481-696
486-718
487-706
488-730
490-713
490-759
491-692
494-721
498-696
498-718
498-729
499-706
499-743
501-713
502-736
503-723
509-700
509-710
509-720
509-751
513-742
515-690
518-716
521-733
527-702
533-717
Minimum

0.002
0.002
0.002
0.003
0.006
0.008
0.023
0.011
0.005
0.003
0.009
0.005
0.006
0.020
0.005
0.023
0.013
0.014
0.012
0.002
0.001
0.016
0'. 003
0.011
0.013
0.041
0.005
0.036
0.006
0.014
0.006
0.008
0.011
0.004
0.012
0.008
0.009
0.004
0.005
0.002
Maximum

0.06
0.05
0.08
0.09
0.08
0.11
0.14
o.n
0.08
0.09
0.10
0.14
0.07
0.13
0.07
0.15
0.18
0.14
0.10
0.06
0.07
0.14
0.11
0.08
0.14
0.22
0.12
0.20
0.15
0.19
0.17
0.11
0.16
0.11
0.14
0.09
0. 10
0.07
0.06
0.05
Na

29
30
29
28
30
29
31
30
30
31
31
31
30
29
31
27
29
30
28
30
30
29
29
31
29
31
30
27
31
28
25
31
28
27
31
30
29
30
31
29
Arithmetic
Mean

0.020
0.019
0.024
0.029
0.037
0.038
0.065
0.041
0.034
0.033
0.041
0.048
0.027
0.062
0.027
0.074
0.066
0.060
0.049
0.029
0.025
0.062
0.039
0.046
0.059
0.110
0.044
0.091
0.057
0.054
0.064
0.052
0.044
0.029
0.039
0.054
0.045
0.037
0.029
0.019
Standard
deviation

0.017
0.013
0.020
0.024
0.022
0.027
0.030
0.023
0.022
0.025
0.021
0.034
0.014
0.028
0.018
0.032
0.036
0.036
0.025
0.018
0.021
0.034
0.030
0.020
0.033
0.042
0.030
0.038
0.029
0.042
0.039
0.026
0.030
0.024
0.029
0.022
0.024
0.020
0.018
0.010
Geometric
Mean

0.014
0.014
0.016
0.021
0.029
0.029
0.059
0.035
0.027
0.023
0.036
0.037
0.023
0.056
0.021
0.066
0.056
0.049
0.043
0.021
0.015
0.053
0.027
0.041
0.050
0.102
0.033
0.084
0.049
0.043
0.052
0.045
0.038
0.022
0.032
0.048
0.037
0.030
0.022
0.016
Standard
deviation

2.573
2.198
2.619
2.436
2.139
2.111
1.565
1.840
2.072
2.507
1.754
2.199
1.744
1.610
2.182
1.655
1.852
1.969
1.739
2.407
2.964
1.799
2.612
1.641
1.832
1.498
2.322
1.532
1.850
1.867
2.095
1.849
1.714
2.160
1.815
1.707
1.972
1.966
2.289
2.110
            N  =  number of samples.
114

-------
Table 34.  (Cont'd) 1964-65 SULFUR DIOXIDE 24-HOUR SAMPLES
                               (ppm)
Site
coordinates
Feb 1965
449-719
450-703
453-735
466-742
467-697
468-718
468-724
471-689
472-707
474-756
478-723
479-738
480-682
480-712
481-696
486-718
487-706
488-730
490-713
490-759
491-692
494-721
498-696
498-718
498-729
499-706
499-743
501-713
502-736
503-723
509-700
509-710
509-720
509-751
513-742
515-690
518-716
521-733
527-702
533-717
Minimum

0.002
0.004
0.004
0.004
0.006
0.007
0.039
0.010
0.009
0.004
0.007
0.010
0.010
0.019
0.006
0.030
0.018
0.019
0.024
0.003
0.003
0.015
0.005
0.012
0.019
0.054
0.006
0.034
0.013
0.004
0.006
0.015
0.010
0.002
0.006
0.011
0.012
0.007
0.006
0.005
Maximum

0.06
0.04
0.04
0.06
0.07
0.08
0.17
0.10
0.07
0.09
0.19
0.09
0.06
0.10
0.10
0.12
0.13
0.16
0.11
0.09
0.06
0.10
0.09
0.26
0.14
0.19
0.16
0.22
0.12
0.23
0.12
0.16
0.09
0.06
0.06
0.09
0.12
0.06
0.09
0.07
Na

24
27
26
25
27
27
27
27
27
27
22
27
27
27
26
27
27
27
27
27
27
27
27
26
27
26
26
27
27
27
27
27
27
26
27
27
27
27
27
27
Arithmetic
Mean

0.021
0.019
0.022
0.027
0.033
0.034
0.068
0.041
0.031
0.029
0.070
0.041
0.029
0.053
0.028
0.075
0.063
0.057
0.049
0.031
0.022
0.052
0.034
0.071
0.057
0.103
0.047
0.083
0.049
0.055
0.051
0.059
0.047
0.021
0.031
0.043
0.049
0.032
0.030
0.023
Standard
deviation

0.017
0.012
0.011
0.020
0.022
0.021
0.028
0.025
0.018
0.024
0.053
0.025
0.012
0.020
0.021
0.026
0.026
0.033
0.022
0.028
0.016
0.027
0.024
0.058
0.037
0.037
0.043
0.046
0.029
0.050
0.033
0.038
0.022
0.017
0.016
0.018
0.031
0.015
0.025
0.019
Geometric
Mean

0.014
0.015
0.018
0 . 020
0.026
0.027
0.063
0.033
0.026
0.021
0.046
0.034
0.026
0.049
0.023
0.071
0.057
0.048
0.045
0.021
0.017
0.045
0.026
0.055
0.047
0.097
0.031
0.074
0.042
0.040
0.040
0.047
0.041
0.014
0.027
0.039
0.040
0.028
0.021
0.017
Standard
deviation

2.602
2.031
1.947
2.293
2.139
1.977
1.416
1.964
1.849
2.269
2.941
1.894
1.584
1.494
1.897
1.437
1.607
1.774
1.552
2.644
2.144
1.715
2.211
2.076
1.835
1.431
2.609
1.642
1.756
2.280
2.153
1.987
1.774
2.613
1.872
1.636
2.018
1.799
2.358
2.188
    N = number of samples.
                                                                      115

-------
      Table 34.   (Cont'd)- 1964-65 SULFUR DIOXIDE 24-HOUR SAMPLES
                                    (ppm)
Site
coordinates
Minimum
Dec '64 - Feb '65
449-719
450-703
453-735
466-742
467-697
468-718
468-724
471-689
472-707
474-756
478-723
479-738
480-682
480-712
481-696
0.002
0.002
0.002
0.003
0.006
0.002
0.023
0.010
0.005
0.003
0.007
0.004
0.006
0.019
0.004
486-718 i 0.023
487-706
488-730
490-713
490-759
491-692
494-721
498-696
498-718
498-729
499-706
499-743
501-713
502-736
503-723
509-700
509-710
509-720
509-751
513-742
515-690
518-716
521-733
527-702
533-717
Dec. 1964 ALL
Jan. 1965 ALL
Feb. 1965 ALL
Dec. 1964 -
Feb. 1965
0.013
0.013
0.012
0.002
0.001
.0.014
0.002
0.011
0.013
0 . 030,
0.000
0.005
0.006
0.004
0.003
0.008
0.010
0.002
0.002
0.008
0.009
0.004
0.005
0.002
0.000
0.001
0.002
0.000

Maximum

0.07
0.05
0.08
0.09
0.12
0.11
0.17
0.19
0.08
0.12
0.19
0.16
0.07
0.13
0.10
0.19
0.18
0.21
0.11
0.09
0.09
0.19
0.13
0.26
0.14
0.25
0.16
0.22
0.17
0.23
0.17
0.16
0.16
0.11
0.14
0.11
0.12
0.08
0.09
0.07
0.25
0.22
0.26
0.26

Na

83
83
79
75
85
72
89
83
83
87
84
85
82
85
86
Arithmetic
Mean

0.021
0.021
0.024
0.031
0.036
0.037
0.069
0.045
0.034
0.033
0.047
0.048
0.026
0.060
0.028
82 0.076
86 0.064
86 0.062
84 0.049
80 0.030
87 0.023
87 0.059
75
88
81
0.038
0.056
Standard
deviation

0.016
0.013
0.017
0.023
0.024
0.024
0.026
0.032
0.019
0.027
0.034
0.032
Geometric
Mean

0.015
0.017
0.018
0.023
0.028
0.029
0.065
0.036
0.028
0.024
0.037
0.037
0.013 0.023
0.024
0.021
0.031
0.030
0.040
0.022
0.024
0.020
0.035
0.030
0.037
0.057 0.032
78 [0.106 0.043
87
85
87
84
80
87
79
82
87
0.042 0.033
0.086
0.054
0.050
0.057
0.052
0.047
0.026
0.032
86 0.051
86
86
82
85
1095
1179
1064
3338

0.046
0.033
0.029
0.020
.046
.045
.044
.045

0.042
0.030
0.039
0.035
0.031
0.028
0.021
0.022
0.021
0.027
0.019
0.020
0.015
0.033
0.033
0.034
0.033

0.055
0.021
0.070
0.057
0.051
0.044
0.021
0.016
0.050
0.026
0.047
0.048
0.097
0.028
0.075.
0.046
0.040
0.045
0.043
0.040
0.018
0.025
0.046
0.037
0.027
0.022
0.016
0.034
0.034
0.033
0.034

Standard
deviation

2.393
2.011
2.271
2.323
2.110
2.166
1.455
1.961
1.863
2.318
2.024
2.082
1.686
1.531
2.118
1.536
1.675
1.917
1.609
2.439
2.589
1.785
2.594
1.786
1.759
1.517
2.833
1.779
1.767
1.965
2.145
1.896
1.760
2.436
2.043
1.628
1.947
1.969
2.258
2.123
2.299
2.322
2.274
2.299

          N = number  of samples.
116

-------
Table 35.  1964-65 SULFUR DIOXIDE 2-HOUR SEQUENTIAL SAMPLES
Site
coordinates
Dec 1964
449-719
468-724
479-738
481-696
490-713
498-729
499-706
509-710
509-751
527-702
Jan 1965
449-719
468-724
479-738
481-696
490-713
498-729
499-706
509-710
509-751
527-702
Feb 1965
Minimum

0.000
0.012
0.000
0.000
0.008
0.004
0.007
0.011
0.004
0.003

0.000
0.002
0.003
0.001
0.001
0.000
0.009
a 003
0.001
0.000

I
449-719
468-724
479-738
481-696
490-713
498-729
499-706
509-710
509-751
527-702
a ooo
aoii
a ooo
a 001
a 004
a 006
a ooo
a 009
aooi
a ooo
Dec 64 - Feb '65
449-719
468-724
479-738
481-696
490-713
498-729
499-706
509-710
509-751
527-702
Dec. 1964 All
Jan. 1965 All
Feb. 1965 All
Dec 1964-
1JGV,. ±^"t , , .
Feb. 1965 Xi
a ooo
a 002
a ooo
a ooo
a 001
a ooo
0.000
0.003
0.001
0.000
0. 000
o.ooo
0.000

0.000
Maximum

0.30
0.29
0.28
0.25
0-39
0.28
0.57
0.29
0.31
0.18

0.29
0.34
0-38
0.29
0.26
0.55
0.86
0.34
0.38
0.17


0.15
0.25
0.28
0.24
0.30
0.37
0.61
0 .28
0 .26
0 .22

0 .30
0 .34
0 .38
0 .29
0 .39
0 .55
0 .86
0 .34
0 .38
0 .22
0 .57
0 .86
0 .61

0 .86
Na

356
368
332
336
370
289
312
351
224
297

334
361
342
342
357
303
361
340
257
365


249
308
232
290
316
285
308
295
301
296

939
1037
906
968
1043
877
981
986
782
958
3235
3362
2880

9477
Arithmetic
Mean

0.032
0.083
0.058
0.033
0.071
0.066
0.134
0.065
0.035
0.025

0.023
0.079
0.050
0.034
0.048
0.065
0.131
0.065
0.034
0.031


0.026
0.078
0.046
0.035
0.058
0.068
0.118
0.075
0.029
0.034

0.027
0.080
0.052
0 .034
0.059
0 .066
0 .128
0 .068
0 .032
3 .030
3 .061
D .057
3 .058

3 .059
Standard
deviation

0.034
0 .043
0 -049
0.040
0.069
0 .050
0.091
0.046
0.045
0.025

0.034
0.053
0.054
0.040
0.041
0.064
0.094
0 .049
0 .046
0 .029


0 .030
0 .043
0 .044
0 .041
0 .048
0 .063
0 .084
0 .059
0 .040
0 .033

0 .033
0 .047
0 .050
0 .040
0 .055
0 .060
0 .090
0 .051
0 .044
0 .029
0 .060
0 .062
0 .058

0 .060
Geometric
Mean

0.020
0.072
0.040
0.021
0.049
0.049
0.108
0.053
0.020
0.017

0.011
0.064
0.029
0.020
0.035
0.044
0.106
0.049
0.018
0.018


0.013
0.068
0.029
0.021
0.043
0.047
0.094
0.056
0.013
0.020

0.015
0.068
0.033
0.021
0.042
0 .046
0.103
0 .052
0 .016
0.018
0.039
0 .033
0 .034

0 .035
Standard
deviation

2.615
1.718
2.463
2.503
2.307
2.250
1.947
1.884
2.791
2.386

3.195
1.938
2.923
2.858
2.293
2.475
1.932
2.257
3.107
3.153


3.471
1.712
2.815
2.752
2.200
2.370
2.143
2.162
3.807
2.953

3.127
1.797
2.755
2.701
2.297
2.368
2.008
2.101
3.320
2.856
2.727
3.159
3.186

3.026
N = number of samples.
                                                                      117

-------
              Table 36.  COMPARISON OF 1963-64 AND 1964-65
                         SULFUR DIOXIDE RESULTS

Site
coordinates
1*66-71*2
1*71-689
^72-707
1*80-682
1*81-696
1*87-706
1*90-759
1*91-692
l*9l*-721
1*98,718
1*98-729
^99-7^3
502-736
503-723
509-751
513-7^2
515-690
518-716
533-717
24-hour SO arithmetic means, ppm
Dec 1963 -
Feb 1964
0.026
0.027
0.021
0.017
0.026
0.051
0.019
0.011
0.01*3
0.035
0.01*5
0.018
0.031
0.035
0.020
0.011
0.029
0.031
0.015
Dec 1964 -
Feb 1965
0.031
0.01*5
0.031*
0.026
0.028
0.061*
0.030
0.023
0.059
0.056
0.057
0.01*2
0.05!*
0.050
0.026
0.032
0.051
0.01*6
0.020
Difference (1964-
65 - 1963-64)
+0.005
+0.018
+0.013
+0.009
+0.002
+0.013
+0.011
+0.012
+0.016
+0.021
+0.012
+0.021*
+0.023
+0.015
+0.006
+0.021
+0.022
+0.015
+0.005
result of beini? mailed to Cincinnati  for  analysis, but  the  1964-65  samples, analyzed
in St. Louis,  had little, if any,  time  to fade;  and  (4)  the  1963-64  samples were
prefiltered whereas the 1964-65 samples were  not.  hxamination  of 99th percentile
values for stations operating at the  same location during both  winter seasons  showed
only small differences.  This fact increases  confidence in  the  measurement method.
The effect of the prefilters was found  to be  a  reduction of 2 to 4  percent in
measured sulfur dioxide levels.  This determination  was made by "f  test  for matched
pairs.  The "matched pairs" of samplers providing the  data  were bubblers  operating
in parallel in the same sampler; one  with a filter on  the inlet and the other
without.
       Comparison of the matched nairs  of arithmetic monthly means  from the ten
stations that had both 2-hour sequential  and  24-hour samplers during the  1964-65 net-
work operation indicates that the monthly 2-hour sequential sampler arithmetic means
 118

-------
were 15 to 24 percent greater than the monthly 24-hour sampler arithmetic means.
The "t" test for matched pairs was used to calculate the difference at the 95 percent
                                1 R
confidence level.  The Nashville   study showed that the 24-hour sampler results were
25 to 35 percent higher than the 2-hour sequential sampler results.  In other words,
the relationship between the two sampling periods is reversed in the two studies.
       CAMP station sulfur dioxide readings by means of a conductivity method were
correlated with the results of the 2-hour and 24-hour samplers located at the CAMP
station (490-713) during the 1964-65 study.  Correlation coefficients of 0.93 and
0.80 were obtained for the 2-hour sampler results versus CAMP results and 24-hour
sampler results versus CAMP results,  respectively.  By means of least squares,  the
following straight line equations were determined for the two correlations:
       Y = 0.985 X - 0.0114, where Y = CAMP results  and X = 2-hour results,

       Y = 0.988 X - 0.00068. where Y = CAMP results and X = 24-hour results.
       These equations indicate that the 2-hour and  24-hour sampler results,  which
were determined by the West and Gaeke method, were higher than the CAMP results.
Normally the opposite relationship will occur and there is no logical explanation
for this at present.
       Figures 92 and 93 are isopleth maps of the 24-hour sampler geometric means
amd 99th percentile values, based on geometric means and standard deviations, for
the 1963-64 sulfur dioxide network.  From the isopleth map of the geometric means
and the 1960 census population density, it was determined that approximately 140,000
people lived in areas with concentrations of 0.04 ppm and greater and that approxi-
mately 225,000 people lived in areas with concentrations between 0.03 and 0.04 npm.
Figures 94 and 95 are isopleth maps of the 24-hour sampler geometric means and 99th
percentile values from the 1964-65 sulfur dioxide network operation.
       The State of California has adopted an ambient air quality standard of 1.0
                                       19
ppm for 1 hour, or 0.3 ppm for 8 hours.    The State of Colorado air quality
                                                       o
standard is 0.1 ppm for 24 hours or 0,5 ppm for 1 hour.   The State of New York
standards, applicable to regional objectives and subregions, range from 0.1 to 0.15
ppm for 24 hours and 0.25 to 0.40 ppm for 1 hour;  The U.S.S.R. and Czechoslovakian
standard is 0.05 ppm for 24 hours.
       Figure 96 gives the frequency distributions for sites 481-726, which had the
highest results;  491-692, which had the lowest results; 494-721, an industrial area;
and all 20 sites combined for the 1963-64 network of 24-hour samplers.  These
distributions reveal that the Colorado standard of 0.1 ppm for 24 hours was exceeded
15 percent of the time at site 481-726, and 6 percent of the time for all sites
combined.   Ten of the 20 sites had one or more results above the Colorado standard,
and all sites had results equal to or greater than the Russian standard of 0.05 ppm
for 24  hours.
                                                                                119

-------
                                             ISOPLETHS or tfOHcn  m* mm.
                                                 — LMft tt «ni»l EWM. WlKt
                                                    •- LIIH W tttUILE EMM. M.KS
                                             BASED 01 SCASOMl KOKETIIC MEAN W.IICI FM 20 STATIONS
                                             DURHKKC.I.IM3 fl F(t tl, IM4.
   390  400°0
-------
                                       L EGEHD
                                 BOUNDARIES
ISOPLETHS OF 99 PERCENTILE VALUES
	LINES OF ACTUAL EQUAL VALUE
    LINES OF PROBABLE EQUAL VALUE
BASED ON SEASONAL GEOMETRIC MEANS
AND STANDARD DEVIATIONS FOR 20
STATIONS DURING DECEMBER 1,1963
TO FEBRUARY 29,1964.
                                   STATE          	
                                   COUNTY         	
                                 HIGHWAY MARKERS
                                   FEDERAL        —Q
                                   STATE          —O
  390  400"' 410   420  430  440   450   460   470   480   490   500"' 510   520   530   540  550  560  570



        Figure  93. Twenty-f our -hour sulfur dioxide 99 percentile values (ppm).



and  all 40  sites  combined  for the 1964-65 sulfur dioxide network  of 24-hour

samplers.   These  results  indicate that  the Colorado standard of 0.1 ppm  for 24  hours
                                                                                            121

-------
                                   LEGEHD
                              BOUNDARIES
                                STATE
                                COUNTY
                              HIGHWAY MARKERS
  590  400"' 410  420  430   440  450  460   470   480  490   500«"' 510  520   530  540  550   560  570
        Figure 94.  Twenty-f our -hour sulfur dioxide geometric means (ppm)
                    for 40-station network during •winter of 1964-65.

was exceeded  48 percent of the time  at  site 499-706, almost  1  percent of the time  at

site 533-717,  and 10 percent of the  time for all sites combined.   Figure 98 gives
  122

-------
                                                                             —   -^	170
/ST LOUIS   CO1
ISOPLETHS OF 99 PERCENTILE VALUES
	LINES OF ACTUAL EQUAL VALUE
    LINES OF PROBABLE EQUAL VALUE
                                 BOUNDARIES
                                   STATE
                                   COUNTY
                                 HIGHWAY MARKERS
                                   FEDERAL
                                   STATE
40 STATION NETWORK-DECEMBER I,
1964 TO FEBRUARY 28,1965 .
 390  40(F 410   420   430  440  450  460   470   480   490   500"" 510   520   530   540   550   560   570
      Figure  95.  Twenty-four-hour sulfur dioxide  99 percentile values  (ppm)
                    for 40-station network  during winter  of 1964-65.
                                                                                              123

-------
         o.ooa —
         oooi
             001 0501
2  51  2   5  10   20 30 40 50 60 70 80  90 95  98 99
      %  OF SAMPLES s STATED CONCENTRATION
                                                                     99.8 9 99.99
           Figure  96.  Twenty-f our -hour  sulfur dioxide frequency distribution
                       (Dec 1963 - Feb 1964),  geometric means.
 the  frequency  distribution for sites 499-706, 490-713, 449-719, and all ten of the
 sites  combined for the  1964-65 network of 2-hour sequential samplers.  No present
 standards  or objectives have been based on 2-hour results; therefore, no direct
 comparison can be made.
       The diurnal variations given in Table 37 and Figure 99 indicate only minor
 variations in  the sulfur dioxide concentrations during the day for sites 490-713,
 449-719, and all ten sites combined.  Site 499-706 showed much greater variations
1Z4

-------
     e
        1.0
        08
        0.6

        04
        0.2
 O.I
008
006

004
                                              1—I	T
    t/>
    x
    o
    0 002
    01
       ooi
      0008
      0.006

      0004
      0.002 h
      0.001
       I  I  I   I  I _ 1	L	I	L_
   0.01 005 0205  12   5   10
        I  I   I	I	J	L.  .L . 1
20 30 40 50 60 70 80   90 95  96 99
 ]  1
998999  9999
                         % OF SAMPLES < STATED  CONCENTRATION
         Figure  97.  Twenty-four -hour samples - sulfur dioxide frequency
                     distribution (Dec 1964  - Feb 1965).
with the peaks being between 2 to 4 a.m. and 6 to 8 p.m.  Normal morning peaks
around 6 to 8 a.m. reflect the increase of human activities  in  the  morning.   The
2 to 4 a.m. peak may indicate an industrial influence or  a meteorolopic-topotjraphic
influence.
       Tne pollution roses for the twenty 24-hour sampler stations  used  in  the
1963-64 network are shown in Figures  100 through 119.  The roses indicate the
central metropolitan area as the primary source of the sulfur dioxide.   Certain
industrial areas also contribute a significant portion.
                                                                                 125

-------
E
Q.
Q.
g
Q
     1.0
     08
     06

     04


     0.2
 O.I
008
0.06

0.04
    0.02
    0.01
  0.008
  O.O06

  0004
  OOO2
  0.001
T~n   r
                                1   I   T
              i  i   i  i   i
                           _L
                                    I   I  I   I  I
                                                _L
                                             J	L
      001 0.05  02 05 I
                    2   5  10  20  30 4O 50 6O 70 80  90  95 98  99  998 99.9  99.99
                    % OF SAMPLES £ STATED CONCENTRATION
       Figure 98.  Two-hour sequential sulfur dioxide frequency distribution
                   (Dec  1964 - Feb 1965).
       To indicate the importance of directional  influence  on  sulfur dioxide  levels
and to provide a guide for design of the air use  plan,  a directional analysis was
made from sulfur dioxide data collected during the 1963-64  winter  season.  The
basic data appear on pollution rose computer printouts  (not included in  this  report)
and on pollution roses, which are part of this report.   The method used  is the  same
 126

-------
                1,    I	I	1	1	1	1	1    I    I    I    I
             0-2 AM 2-4  4-6  6-8 8-10 10-12 12-14 14-16 16-18 18-2020-22 22-2424-2626-2828-3032-34
                                       TIME OF DAY
             Figure 99.  Diurnal variations of sulfur dioxide  (Dec 1964 -
                          Feb 1965).
          Table 37.  DIURNAL VALUES FOR 2-HOUR SULFUR DIOXIDE,
                       DECEMBER  1964 - FEBRUARY 1965
Daily time
interval,
hr

0-2
2-4
4-6
6-8
8-10
10-12
12-14
14-16
16-18
18-20
2O-22
22-24

449-719

468-724

479-738

431-696
Site
coordinates
490-713 498-729
SO concentration
0.009
0.012
0.013
0.015
0.012
0.011
0.012
0.011
0.016
0.013
0.011
0.008
O.OUl
0.064
0.086
0.098
0.081
0.055
0.060
0.083
0.101
0.080
0.058
0.045
0.032
0.017
0.024
0.032
0.027
0.021
0.024
0.029
0.017
0.019
0.030
0.025
0.031
0.029
0.026
0.017
0.017
0.016
0.018
0.019
0.020
0.018
0.016
0.019
0.038
0.037
0.043
0.043
0.044
0.033
0.037
0.045
0.043
0.058
0.048
0.050
0.049
0.039
0.048
0.057
0.050
0.039
0.033
0.032
0.052
0.038
0.051
0.044

499-706
, ppm
0.097
0.134
0.130
0.116
0.055
0.064
0.047
0.062
0.119
0.142
0.107
0.104

509-710

0.033
0.044
0.054
0.055
0.066
0.065
0.056
0.057
0.058
0.060
0.051
0.040

509-751

0.018
0.017
0.017
0.016
0.016
0.015
0.010
0.014
0.015
0.017
0.015
0.013

527-702 Ml

0.017
0.017
0.019
0.020
0.023
0.025
0.025
0.033
0.018
0.024
0.021
0.020
0.017
0.017
0.019
0.020
0.023
0.025
0.025
0.033
0.018
0.024
0.021
0.020
as that used for suspended particulates  (collected by high-volume sampler).  The
tentative goal used for method-demonstration  purposes is 0.04-ppm 24-hour average
not to be exceeded over 1 percent  of  the  time,  99th percentile value.  The back-
ground is considered to be zero.   A mar),  Figure 120, shows the results of the
analysis.
       This directional analysis supports the observations drawn from the pollution
roses and directly confirming  that the central  part of the study area has considera-
ble effect on sulfur dioxide  levels in outlying areas and points to the areas having
                                                                                 127

-------
                       CAL'M-0050
                                             CALM-0.036
             0014
 0013
                      0.014
                            0017
  0013 D
                                                0.014
                                                             0.018
                                                                      0022
                                                                            0029
                        0018
                                      0055
                                 0048
                            0042

  Figure 100.   Sulfur dioxide pollution
                 rose  -  site No. 466-742
                 72 samples.
                                                                                      0020
                                                                                  0031
                                                  0043
                      Figure 101.  Sulfur dioxide pollution
                                    rose - site No.  471-689
                                    75  samples.
                                                          WIND
                                                        ._ FROM
                                                        * THIS
                                                         DIRECTION
        n-ni 01-03^05 > 05
              ppm

       5        10        15

    PERCENT OF  SAMPLES
24-hour samples —Dec  1963 Feb 1964
Note Numbers on radials are average arith-
metic concentrations for wind directions
indicated
 0010
              0016
  OOI2L*
                                     '0018
                                  0020
                            0027
  Figure 102.  Sulfur dioxide pollution
                rose - site No.  472-707
                73  samples.
                                                  0015
                                                 0024
                                             CALM-002 I
                                           0.021
                                                 0021
                                                                                     0013
                                                                                 0013
                                                                           0.015
                      Figure 103.   Sulfur dioxide pollution
                                     rose  -  site No. 480-682
                                     66 samples.
128

-------
                        CALM-0.043
                                                       CALM-0.096
             0022
 0.017
                      0.040
                           0.046
  0.019
                                                0034
                                                              0032
                                                                       0.033
                                                                           0041
                                                0044
                                   0.019
                           0.018

  Figure  104.  Sulfur dioxide pollution
                 rose  -  site  No. 481-696
                 74 samples.
                                                                                     0.079
                                                                                  0.077
                                                           0071
                                Figure 105.  Sulfur dioxide pollution
                                              rose - site  No.  481-726
                                              72 samples.
                          0
                   ,00-01 01-03 03-05 _LQ5_
                          ppm

                   5       10        15
                                                            WIND
                                                          „. FROM
                                                          *" THIS
                                                          DIRECTION
                                PERCENT OF  SAMPLES
                          24-hour samples  —Dec. 1963  Feb  1964
                          Note-  Numbers onradials are average arith-
                          metic  concentrations for wind directions
                          indicated.
                       CALM-0 065
0038
              0040
                      0052
                           0.060
 0.049
                                                 0.010
                                 OOI3D
 Figure  106.
                                  0046
           0.060

Sulfur dioxide pollution
rose  -  site No. 487-706
73 samples.
                                                                                     0024
Figure 107.
                                                                                  0034
             0.035

Sulfur dioxide pollution
rose -  site  No. 490-759
74 samples.
                                                                                       129

-------
                        CALM-0.014
                                                 CALM-O.O53
 0009
              0.015
0.030
                                               0.028
                           0.029
 0.006ff
                                                              0.023
                                                                      0.035
                                                                           0.034
                        0.035
                                     0.005
                                  0004
                                                                                    0055
                                                                                 0.077
                           0004
 Figure  108.  Sulfur dioxide pollution
                rose - site No.  491-692
                76 samples.
                                                                          0.060
                         Figure  109.  Sulfur dioxide pollution
                                        rose - site No.  494-721
                                        67 samples.
                           0
                0-01 OI-.03 03J)5 ^ 051
                     pprri

              5        10        15
                                                             WIND
                                                           ^ FROM
                                                           * THIS
                                                           DIRECTION
                                PERCENT OF SAMPLES
                           24-hour somples — Dec 1963 Feb 1964
                           Note' Numbers on radials are average arith-
                           metic concentrations for wind directions
                           indicated.
              0023
  0045
 0.063
  CALM-0.027
0021
     0027
                                               0.033
                                                             0.027
                                                                       CALM-O057
                                                                      0.033
                                                                           0.042
                                     0.028
                                                0.044
                                                                                    0.038
                                   0032
                           0.037
 Figure 110.   Sulfur dioxide  pollution
                rose  - site No. 498-718
                66 samples.
                          Figure 111.
                                                                                 0.054
Sulfur dioxide pollution
rose -  site No.  498-729
70 samples.
130

-------
                       CALW-0.021
                                                  CALM-0.042
0012
             0011
                     0011
                           0013
  0.01303
 Figure 112.
                                 0.023
           0030

Sulfur dioxide pollution
rose  -  site No.  499-743
74 samples.
                                              0021
                                                            0.022
                                                    0023
                                                         0.026
                                               0.027
                                                                                   0.031
                                                                               0041
                                                                         0041
Figure 113.  Sulfur dioxide pollution
              rose - site No.  502-736
              72  samples.
                                                         WIND
                                                         FROM
                                                         THIS
                                                        DIRECTION
                              PERCENT OF  SAMPLES
                         24-hour samples—Dec. 1963  Fe b 1964
                         Note  Numbers on radials are overage arith-
                         metic concentrations for wind directions
                         indicated.
 0043
0043
                                                                 CALM-0.023
                                            0.012
                                              OOI&D
                                    0.033
                                 0.037
                          0.036

 Figure  114.   Sulfur dioxide pollution
               rose  -  site No.  503-723
               70 samples.
                                                            0010
                                                                    0011
                                                                          0016
                                                          0032

                              Figure 115.   Sulfur dioxide pollution
                                             rose  - site No.  509-751
                                             71 samples.
                                                                                    131

-------
 0.008
                                                                     CALM-0.038
 0013
                                 0011
                           0012

  Figure 116.  Sulfur dioxide pollution
                rose  -  site No.  513-742
                71 samples.
                                            0.027
                                                           0.034
                                                                    0042
                                                                         0041
             = 0004   0.025
                                                                         0.030
                       Figure 117.  Sulfur dioxide pollution
                                     rose -  site  No.  515-690
                                     66 samples.
                         0
           0-01 01-03 03^05 >05|
                 ppm

          5        10        15
                                                          WIND
                                                        „. FROM
                                                        * THIS
                                                         DIRECTION
                               PERCENT OF SAMPLES
                          24-hour samples —Dec  1963  Fe b 1964
                          Note  Numbers oniradials are average arith-
                          metic concentrations for wind directions
                          indicated
 0030
               0023
 CALM-0040

0026
     0028
0.041
                                              0017
                                                            0013
  CALM-0.014

0015
     0015
                0.021     002ICP
               0025
                             0.026
 Figure 118.  Sulfur dioxide pollution
               rose - site No. 518-716
               73  samples.
                      Figure  119.  Sulfur dioxide pollution
                                    rose - site No.  533-717
                                    74 samples.
132

-------
° ST.  CLAIR   CO.
             ST.   78
                                                EGEHD
                                  O SAMPLING    STATION
                                      WIND  DIRECTION  TO   STATION
                                   % REDUCTION  TO  MEET GOAL
 450     460     4TO     480    490     500000'  510     520    530     540
    Figure 120.  Directions of maximum sulfur dioxide influence on stations
                 and direction-percent reduction needed.

the greatest sulfur dioxide source strength  as being  in the East St.  Louis area and
the area  to the southwest of Granite City.  In St.  Louis, grid square 480-720 appears
to be  subjected to equally strong sources on more than one side, possibly from home
heating with coal or sources with tall stacks at some distance.
       The  results of the correlation of sulfur dioxide concentrations from the
1963-64 network and stability classes are given in  Table 38.  The minimum concentra-
tions  occurred for stability class 4 at 19 of the 20  stations, with the maximum
concentrations equally divided among classes 2, 3,  and 5.  These results are  similar
                                                                            133

-------
                 Table :>«:  AVERAGE 24-HOUR SULFUR DIOXIDE
                   CONCENTRATION FOR FIVE ATMOSPHERIC
                               STABILITY CLASSES
                       DECEMBER 1963 - FEBRUARY 1964
Site
coordinates
466-742
471-689
472-707
1*80-682
481-696
481-726
487-706
490-759
491-692
494-721
498-718
1*98-729
499-7^3
502-736
503-723
509-751
513-7^2
515-690
518-716
533-717
Atmospheric stability class
1
2 1 3 | 4 | 5,6,7
Average SO- concentration, ppm
._
—
—
—
— -
—
--
~
—
—
~
~
—
~
—
—
—
—
—
--
0.029
0.029
0.030
0.026
0.050
0.070
0.059
0.017
0.020
0.047
0.029
0.050
0.017
0.036
0.036
0.021
0.010
0.032
0.036
0.016
0.029
0.035
0.028
0.021
0.035
0.069
0.059
0.021
0.015
0.0^9
0.033
0.056
0.022
0,036
0.0^0
0.024
0.012
0.033
0.036
0.015
0.02U
0.022
0.016
0.014
0.022
0.047
0.046
0.017
0.011
0.039
0.037
0.038
0.016
0.028
0.034
0.017
0.010
0.028
0.026
0.015
0.030
0.033
0.025
0.021
0.030
0.069
0.058
0.021
0.012
0.050
0.035
0.054
0.021
0.037
0.038
0.024
0.013
0.032
0.038
0.016
                 1 =  extremely  unstable.
                 2 =  unstable.
                 3 =  slightly unstable.
                 4 =  neutral.
                 5,6,7 = slightly stable,  stable,  and extremely stable.
to those obtained for the AISI  sampler;  they  indicate that high wind speeds rather
than high thermal mixing result in  the  lower  concentrations.
       An attempt was made to demonstrate  the influence of a "heat island'' effect by
plotting stability classes for  station  maximum levels on a map.  The expected order
if there were no "heat island '  effect would place maximum levels at the upper end of
 134

-------
the scale  (7) and minimum  levels at the lower end  (1).  A consistent change from the
expected pattern across the air pollution basin would be indicative of "heat island"
effects.   The results did  not show a consistent pattern, possibly because of the
overriding influences of wind speed and source strength-direction.  Although not
included in this report, these results are mentioned to prevent duplication of
effort by  others who may use these data.

       In addition to the high-volume air samplers, the National Air Sampling
Network has operated sulfur dioxide samplers in some of the larger metropolitan
areas.  The results from St. Louis and some other cities for 1963 are given in
Table 18.  Of the 14 cities listed, four had arithmetic means above that for St.
Louis, which was equal to that of two other cities.  The St. Louis mean was somewhat
below the average for the  14.
       The trend of sulfur dioxide concentrations in the St. Louis area since 1936
is given in Table 39.  It is easy to see from these figures that the concentrations
in 1963-64 and 1964-65 were considerably lower than in 1936-37.  The major portion
of this reduction occurred as a result of:
            1.  Required use of low volatile coal (lower in sulfur also)
                in St. Louis hand-fired units.  Ordinance 41804, 1940.
            2.  Required use of washed stoker fuels.  Ordinance 41804,
                1940 (washing required if ash content exceeded 12 percent
                or sulfur content 2 percent.  Washing removes large
                percent of pyrites).
            3.  Change from coal to a fuel of lesser sulfur content
                (influenced by 1 and 2 and availability of gas at compe-
                titive prices).

HYDROGEN SULFIDE
       Hydrogen sulfide data were obtained at sites 505-740 and 510-742 (not a
network site) during September,  October, and November 1964.   These results are
given in Tables 40 and 41.   Odor threshold levels reported for hydrogen sulfide vary
from 10 to 100 parts per billion (ppb).   Hydrogen sulfide is very obnoxious to
humans.  Under certain meteorological conditions, it causes significant damage to
lead-base paints at a concentration of approximately 100 ppb.
       The State of New York ambient  air quality objective for hydrogen sulfide is
                   7                                              19
100 ppb for 1 hour,  which  is the same as the California standard.    The U.S.S.R.
has established a much lower standard of 5 ppb for 24 hours.    The Terre Haute,
Indiana report of June 1964 suggests  a goal of 50 ppb   for 1 hour.
       The highest hydrogen sulfide measurement made during this Study was 62.5 ppb,
a 2-hour average,  which could but probably does not exceed the New York or California
                                                                                135

-------
     Table 39.  SULFUR DIOXIDE TREND IN ST.  LOUIS AREA SINCE 1936

October 12, 1936 -
April 25, 193766
February - March 195067
April 7 - April 14,
195468
NASN, 196269
NASN, 196362
December 1963 -
February 1964
December 1964 -
February 1965
No. of
stations
52
9
1
1
1

20

40
No. of
samples
2319
243
49
23
26

1429

3338
Max- concen-
tration, ppm
2.266
0.51
0.17
0.12
0.10

0.24

0.26
Avg concen-
tration, ppm
0.180
0.041
0.06
0.05
0.02

0.028

0.045
     Table 40.  HYDROGEN SULFIDE DATA FROM SITE NO. 505-740 (ppb)
Date
Sept













Oct
Max
Mln
No.
' V",
1964
17
18
19
20
21
22
2?
2U
25
26
27
28
29
30
1

Time
0-2
-
2.0
5.0
2.U
2.0
1.8
1.8
l.U
13.2
2.6
l.U
l.U
3-1
0.7
1.2
13.2
0.7
1U
2.9
2-4
-
2.U
U.5
1.8
3.5
3.5
1.8
1.6
1.0
3.1
0.7
1.0
3.1
0.7
2.2
U.5
0.7
1U
2.2
4-6
-
0.9
3.8
1.6
l.U
0.9
2.2
l.U
3-1
2.2
0.7
0.7
1.0
o.u
-
3-8
O.U
13
1.6
6-8
-
l.U
6.1
1.2
2.2
1.0
2.0
2.6
0.7
2.2
O.U
0.7
2.8
0.7
-
6.1
O.U
13
1.8
8-10
1.8
2.2
3-3
1.8
0.9
l.U
l.U
3-1
U.o
2.8
0.0
1.0
2.8
l.U
-
U.o
0.0
lU
2.0
10-12
U.O
2.2
1.6
1.0
1.8
1.0
1.8
2.6
2.6
2.6
0.5
1.0
2.2
0.9
-
U.O
0.5
lU
1.8
12-14
l.U
1.6
1.0
0.9
2.U
1.2
1.2
3-U
2.8
2.6
1.0
1.2
0.7
1.2
-
3-1
0.7
lU
1.6
14-16
1.2
1.8
0.7
0.7
1.8
1.2
l.U
3-3
3.3
l.U
l.U
1.2
1.0
l.U
-
3.3
0.7
1U
1.6
16-18
2.2
1.6
1.2
2.0
2.0
2.2
1.8
2.6
2.2
1.2
1.0
0.7
0.7
1.0
-
2.6
0.7
lU
1.6
18-20
1.8
2.6
2.U
1.2
2.6
U.O
2.2
1.8
2.U
1.2
1.2
1.0
0.7
1.8
-
U.o
0.7
lU
1.6
20-22
0.9
3.8
0.7
0.9
2.6
1.8
1.2
2.0
2.6
l.U
0.7
1.8
1.0
l.U
-
3-8
0.7
lU
1.6
22-24
0.9
U.8
2.8
2.6
3.1
1.2
1.8
2.2
2.U
1.2
1.0
3-3
0.7
2.8
-
U.8
0.7
lU
2.2
136

-------
Table 41.  HYDROGEN SULFIDE DATA FROM SITE NO. 510-742  (ppb)
D»t», 1964
Sept. 1
2
3
it
5
6
7
8
9
10
11
12
13
lU
15
16
18
19
20
21
Oct. J
2
•*
k
<;
g
7
8
9
10
11
12
13
11*
15
ID
17
18

6-2

1.2
3.1
2.U
1.0
1.8
36.3
3.1
3-3
2.2
1.8
l.U
1.0
1.0
U.5
3.1
1.8
3-1
23.0
l.U
-
1.2
2.0
0.7
o.u
1 .2
0.7
0.0
O.U
1.2
2.U
2.2
1.0
1.0
-
l.U
fi.6
U.2

' 2-4

1.0
7-7
3-1
l.U
l.U
58.5
13-2
2.U
9.7
1.2
l.U
1.0
l.U
U.o
3.5
2.8
3.5
62.5
O.U
-
l.U
3.3
o.u
0.5
1.6
1.2
] .2
1.2
0.9
3-1
2.6
0.5
0.9
-
].8
5.6
2.2

4-A

0.9
33-5
2.6
1.0
l.U
37.6
U3.0
U.o
3-5
l.U
0.9
1.2
2.2
2.2
-
3-5
U.O
2.8
3-1
-
1.2
5.3
1.0
o.u
0.7
1.2
1.2
0.5
1.0
1.8
2.2
1.0
0.5
-
1.0
5.0
o.U

" 6-4

1.8
10. U
1.0
1.0
2.2
U7.0
3.8
3-5
3-5
2.8
0.9
1.0
1.8
2.6
-
1.8
2.2
3.1
U.O
-
1.6
7.'2
0.5
l.U
0.7
1.6
1.3
0.7
3-1
1.2
2.6
1.0
2.2
-
2.8
U.O
o.u

4-10

l.U
5.0
1.6
o.U
5.0
U7.0
39-3
3-3
2.8
1.8
l.U
l.U
1.8
1.8
-
1.6
l.U
2.2
2.2
-
l.U
5.0
0.7
l.U
0.5
2.6
l.U
0.5
1.0
1.6
3-5
1.8
1.8
-
2.2
6.1
0.2

16-12

2.6
2.6
0.7
I'.O
6.6
5.0
3-5
2.8
3.1
l.U
1.8
0.7
1.6
3.1
-
l.U
0.9
1.8
1.8
1.8
0.7
0.9
1.0
0.0
1.0
2.6
l.U
1.0
0.5
0.7
2.0
1.0
3.8
0.7
2.2
U.5
0.5
Tine
12-14

1.6
1.8
0.5
1.0
7.7
U.5
3-1
1.8
2.8
1.8
l.U
1.6
1.8
2.0
.
1.8
1.8
2.6
U.O
1.8
0.7
O.U
0.0
0.9
1.2
1.6
2.0
1.0
0.0
0.0
1.2
0.0
-
1.2
0.9
l.U
O.U

14-14 '

l.U
2.9
0.9
1.0
10. U
U.O
2.8
1.8
3.8
1.0
1.8
l.U
U.O
2.0
.
U.O
2.2
3-5
17-5
2.U
O.U
l.U
0.0
o.o
1.2
1.2
1.0
0.5
0.0
0.9
0.9
o.u
-
0.2
0.7
2.0
0.7

16-18
0.5
13.6
3.1
1.0
0.9
17.5
9.0
2.8
l.U
1.8
1.0
1.6
1.6
2.8
U.o
_
U.O
5.6
U.o
39.3
U.8
0.7
0.7
0.2
1.0
1.6
0.7
2.2
0.5
1.0
l.U
0.5
0.9
-
0.5
l.U
l.U
0.7

14-36
0.9
20. U
U.5
2.U
1.2
Ul.2
2U.6
3.1
l.U
1.8
1.2
0.9
1.8
5.3
3.1
-
2.2
1.8
U.O
3.1
7.2
1.0
l.U
0.7
1.8
1.0
0.5
1.8
0.5
1.8
l.U
1.0
1.0
-
1.0
l.U
2.0
0-7

26-JJ
1.2
U.8
3-1
3-1
1.2
Ul.2
3.1
3-3
2.0
1.0
1.0
1.2
l.U
6.9
3-1
-
2.6
5.0
2.8
3-1
1.2
O.U
1.0
o.U
0.9
2.6
1.0
1.6
0.7
0.7
1.8
0.9
1.0
-
1.0
6.1
2.6
1.0

22-24
l.U
10.7
2.U
l.U
1.0
30.0
U.O
3.5
2.C
1.8
1.0
1.8
l.U
U.5
2.6
-
U.5
7.2
2.8
-
0.7
l.U
2.U
o.u
1.0
3-1
l.U
O.U
1.8
0.7
1.8
1.0
2.2
-
1.8
8.U
3.1
1.0
                                                                     137

-------
 Table 41.   (Cont'd) HYDROGEN SULFIDE DATA FROM SITE NO.  510-742 (ppb)
Date
Oct.












Nov.




Max.
Min.
No.
AvG
, 1964
19
20
21
22
23
Sk
25
26
27
28
2°
30
31
]
2
3
U
s





0-2 2-4 4-6 6-8
0.7 1.0 0.2 l.U
0.2 0.4 0.7 1.0
1.0 1.0 0.7 0.7
0.5 0.2 0.0 1.0
l.U 0.9 1.0 l.U
3-3 3-3 2.8 U.5
1.2 1.2 1.8 1.8
3.1 1.0 l.U 2.2
l.U 0.9 0/9 1.2
2.2 1.0 1.2 2.U
2.6 1.8 l.U 1.2
0.7 1.0 1.0 1.8
1.6 1.2 1.0 1.2
2.2 3.1 3.1 2.U
1.2 1.2 0.7 0.7
2.0 l.U 3.5 8.U
1.2 l.U 1.8 1.8
2.2 0.7
6.3 62.5 U3.0 U7.0
0.0 0.2 0.0 O.U
3 53 51 51
2.9 U.U 3.9 3.2
time
8-10 10-12 12-14
0.7 0.7 0.7
1.0 1.0 0.7
0.7 0.5 0.5
l.U 0.9 0.5
1.2 0.7 1.0
U.8 1.0 0.5
2.2 1.2 0.7
2.2 2.2 2.2
1.2 2.6 1.8
2.2 1.8 0.9
1.2 1.2 1.2
l.U l.U 1.0
1.2 O.U 0.7
1.0 l.U 1.8
1.2 l.U 2.6
3.1 1.0 1.0
2.8 U.O 1.2
-
U?.0 6.6 7.7
0.2 0.0 0.0
51 53 52
3.6 1.7 1-5

14-16 16-18
0.7 0.7
0.9 0.7
1.2 0.5
0.2 0.5
1.0 1.0
0.7 l.U
1.0 0.7
1.8 2.8
l.U 1.0
0.7 0.7
0.7 0.7
1.0 1.0
O.U l.U
l.U l.U
l.U 2.2
0.7 0.7
O.U 0.9
-
17-5 39-3
0.0 0.2
52 53
l.P 2.0

18-20 20-22
0.9 0.5
1.0 1.0
0.5 0.2
1.2 0.5
l.U 2.2
2.U 1.8
1.6 1.2
2.2 2.6
1.2 2.2
0.7 2.6
0.7 O.U
1.8 1.6
2.2 2.2
1.0 0.9
3.1 U.O
i.o 3.1
1.8 3.1
-
Ul.2 Ul.2
0.5 0.2
53 53
3-3 2.6

22-24
O.U
l.U
0.2
0.7
2.8
0.9
2.8
3.1
2.2
2.6
0.7
l.U
2.2
0.7
1.8
2.6
5-0
-
30.0
0.2
52
2.9
standards.  It does exceed the Terre Haute suggested goal.   On 7 days,  concentrations
of 10 ppb or greater were measured at site 510-742.   The peak concentrations  usually
began in the late afternoon and continued through the night into the next morning.
The wind was from the south-southeast or south during each  episode.   The highest
average concentrations occurred between 2 and 4 a.m. at site 510-742, and between
midnight and 2 a.m. at site 505-740.  The occurrence of typical hydrogen-sulfide-
type paint damage during the measurement period indicates that exposure was probably
greater than measured; either in concentration or duration.

VISIBILITY
       A summary of the visibility observations made from the project office  (493-
713) is given in Table 42.  These results for relative humidity of less than  70
percent show that visibility east across the river into the East St. Louis afea was
equal to or less than 3 miles during 58.7 percent of the observations during  the fall,
 138

-------
        Table 42.  VISIBILITY OBSERVATIONS FROM SITE NO. 493-713a



Time
June
Aug. 1963
Sept.
Nov. 1963
Dec. 1963
Feb. 1964
March
May 1964
Year


No.
observa-
tions

64

58

59

48
229
No.
observa-
tions ,
70% R.H.
or less

15

29

44

36
124
East
<1 mile.
No. %b

0 0.0

1 3.5

4 9.1

1 2.8
6 4.8
<2
No

3

6

9

4
22
miles
%c

20.0

20.7

20.5

11.1
17.8
<3
No

6

17

23

8
54
miles
%c

40.0

58.7

52.3

22.2
43.5
Southwest
<1 mile
No. %C

0 0.0

0 0.0

3 6.8

1 2.8
4 3.2
<2 miles
No. %c

0 0.0

0 0.0

5 11.4

2 5.6
7 5.6
<3
No

3

4

13

3
23
miles
%c

20.0

13.8

29.6

8.3
18.6
  3 Times of observations same as for turbidity measurements;  see Table 43.
   R.H. is relative humidity.
  C Percent of times when relative humidity was less than  70%.

and 52.3  percent of the time  during  the  winter.   The  percent of reduced visibility
toward the southwest was very much  lower,  13.8  in the fall and 29.6 in the winter.
These measurements provide  additional evidence  that the Illinois side of the river
had more  visibility-reducing  pollution than  the Missouri side.
       Attempts were made to  correlate the visibility observations with AISI sampler
measurements, sulfur dioxide, and total  oxidant measurements from the CAMP station,
and high-volume air sampler and  atmospheric  turbidity measurements made with the
Volz Sun  Photometer.   In each case the correlation  was poor to nonexistent.   An
attempt was made to correlate the low visibility observations with the sulfur
dioxide and total oxidant measurements from  the CAMP  station taken 1 and 2 hours
prior to  the visibility observations, but  such  a small number of reduced visibility
observations were available after the CAMP station  began operating that no correla-
tion could be found.   This  correlation might be found if more data were available.
       One fact that may have resulted in  such  low  correlations is that no landmarks
for visibility observations were available between  3  and 10 miles to the east,  and
none was  available beyond 4 miles to the southwest.   Also, the observations  were
made to the nearest mile instead of the nearest  half-mile.  Using half-mile  increments
up to 10 miles would give a much better basis for a correlation.

ATMOSPHERIC TURBIDITY
       In addition to  the visibility observations,  measurements of atmospheric
turbidity were made with the  Volz Sun Photometer at the project office, 493-713.
The results are given  in Table 43.  Attempts were made to correlate these measure-
                                                                                139

-------
         Table 43.  ATMOSPHERIC TURBIDITY OF MEASUREMENTS BY
                  SUN PHOTOMETER FROM SITE NO. 493-713
Pate
1963
June 5
6
7
11
13
It
17
16
21
2t
25
26
27
2b

July 1
2
3
5
p
9
10
11
12
16
19
2?
2t
25
30
Jan- 13
nary it
1964 15
'0
21
22
?£
?9





Feb- t
ruary n
13
It
71,
25
2(.
27
Zfc







Time,
local
8:20
8:15
8:20
8:15
8:1-:
8:/5
8:?0
8:!C
8:10
8:20
8:10
8:15
8:05
3:05

8:15
8:tC
8:05
8:10
8:15
8:15
8:10
8:15
8:20
8:05
8:10
8:20
8:10
8:15
8:10
11:05
9:50
10:00
9:t5
3=55
O . r-r-
9:55
9:55





9: ',0
9:'*5
o 'tL
/ •,/-
9:32
9=17
9:1'
9:22
9:07
9:06







Turbidity
0.225
0.125
0.180
O.lt6
0.156
0.077
0.116
0.260
0.093
0.088
0.112
0.158
0.160
0.112

0.216
0.270
0.112
0.275
0.130
0.107
0.093
0.125
0.107
0.103
0.216
0.155
0.170
0.21)6
0.118
0.090
0.095
O.o?b
0.065
0.068
0.030
0.230
0.075





0.210
0.235
0.093
0.160
0.090
O.if.5
0.125
0.128
0.065







Date
1963
AUgUSt 2
5
6
8
9
13
111
16
23
26
27
28



Septenfcer 10
12
19
20
9"
2!*
25
27
30






March 6
13
16
17
18
23
2t
26
3C
30
31
31
31
April 1
2
6
6
7
9
10
n
13
it
15
16
17
22
27
30
Time,
local
8:15
8:10
8:05
8:15
8:10
8:05
8:10
8:05
8:10
8:10
8:')0
8:10



9:20
9:05
9:15
9:20
9:25
9:30
9:20
9:28
9:30






9:10
8:50
8:1*7
8:50
8:1*0
8:30
8:30
8:26
6:33
11:25
6:10
ll*O6
16:10
10:20
15:55
12:20
15:70
8:1*5
7:t9
9:00
8:1*0
16:25
8:1*5
9:25
9:0=
9OO
8:05
8:55
8:50
Turbidity
0.105
C.100
0.185
0.210
0.258
0.062
0.100
0.088
0.137
0.110
0.21*6
0.285



0.150
0.092
0.226
0.11*6
0.107
0.11*2
0.105
0.127
0.085






o.its
0.080
0.072
0.112
0.095
0.160
0.270
0.270
c.155
o.2">o
0.080
0.085
0.075
0.360
0.095
0.11*0
0.075
0.165
0.138
0.11*6
0.092
0.065
0.093
0.115
0.170
0.215
0.082
0.093
0.110
Date
1963
October 1
?
3
ii
7
9
10
11
It
15
17
21
?2
21j
26

November 1
12
15

December 2
6
18
23
26
27
30



May 1
t
5
5
it
15
19
?o
21
22
25


















Time,
local
9:30
?O5
9:30
9:30
10:00
9:35
9:35
9:tO
9:t5
9: to
9:t^
°:t5
10:10
9:50
9:00

9:10
9:12
9:15

9:tO
9O5
10:20
9:50
9:55
9:55
9:59



15--5J
8:30
8:30
It: 10
9:30
16:00
8:tO
9:t5
16:25
8:50
10:35


















Turbidity
0.073
0.108
0.072
0.096
0.113
0.138
O.lt6
0.117
0.170
0.290
0.375
0.160
0.107
0.275
0.070

0.062
0.070
0.125

0.112
0.068
0.120
0.1J8
0.065
0.093
0.170



0.180
0.135
0.230
0.150
0.11*6
0.160
o.it5
0.250
0.230
0.2tO
0.190


















ments with visibility, AISI sampler,  high-volume  air sampler,  and  sulfur  dioxide
measurements from the CAMP station.   These correlations  were very  low.

       Since these low correlations may have  resulted from  an  insufficient amount of
data, a more extensive study would be necessary before any  final conclusions could be
 140

-------
made.  If these correlations do exist, it is important,  from a program-development
point of view, that they he found because the Sun Photometer is an inexpensive and
easy-to-use instrument.    Another possibility would be to devise an air pollution
index similar perhaps to that used by New York City,   which includes sulfur dioxide,
AISI, and carbon monoxide values, and correlate it with the Sun Photometer.  Atmos-
pheric turbidity is a measure of many pollutants, and trying to correlate with one
to the exclusion of others may not be possible.
TOTAL OXIDANTS - NETWORK

       Total oxidants were measured, using the phenolphthalin method, at nine sites
from May through October 1964.  The highest value obtained was 0.30 ppm at site
449-719 during October  (Table 44).  Figure 121, which gives the monthly geometric
means and peaks, shows that the geometric means increased from May to July and then
decreased from July to October.  This is as expected since total oxidants are a
result of photochemical reactions that occur to the greatest extent in the warmer
months.
            0 30
            025 -
                     GEOMETRIC MEANS (ALL STATIONS)
                     MAXIMUM VALUE FOR MONTH
                     MAY
                            JUNE
                                   JULY
                                           AUG.
                                                 SEPT
                                                         OCT.
                                                                  MAY-OCT
          Figure 121.   Total oxidants -  geometric means and maximums for
                        1964 months and average for months measured.
                                                                                141

-------
                       Table 44.  TOTAL OXIDANTS,  ppm
Site
coordinates
May 1964
449-719
458-755
482-697
485-714
490-713
501-713
507-741
509-710
All
June
449-719
458-755
482-697
485-714
490-713
501-713
507-741
509-710
All
July
449-719
458-755
482-697
485-714
490-713
501-713
507-741
509-710
All
August
449-719
458-755
482-697
485-714
490-713
501-713
507-741
509-710
All
September
449-719
458-755
480-725
482-697
485-714
490-713
501-713
507-741
509-710
All
Minimum

0. 01
0. 00
0. 00
0. 01
0. 01
0.00
0.03
0.00
0.00

0.03
0. 00
0. 01
0.01
0.00
0.01
0.01
0.01
0. 00

0. 02
0.01

0.08
0.03
0. 01
0. 05
0. 01
0. 01

0. 01
0. 01
0. 01
0. 05
0. 02
0. 01
0. 05
0.01
0. 01

0.01
0.01
0.02
0.01
0. 04
0.02
0. 00
0. 05
0. 00
0.00
Maximum

0. 10
0. 11
0. 13
0. 08
0. 07
0. 14
0. 10
0. 12
0. 14

0.26
0. 09
0. 06
0. 15
0. 15
0.07
0.05
0. 07
0.26

0. 17
0. 10

0. 16
0. 15
0. 06
0. 10
0. 07
0. 17

0. 15
0. 08
0. 09
0. 15
0. 19
0. 06
0. 10
0. 11
0. 19

0. 13
0. 10
0.23
0.09
0. 16
0.22
0. 07
0. 05
0.08
0.23
Na

15
35
24
15
44
41
27
41
242

59
66
24
66
65
36
61
32
409

67
67
0
66
66
47
16
48
377

59
63
57
63
58
37
39
37
413

57
63
14
52
63
50
44
10
44
397
Arithmetic
Mean

0. 046
0. 045
0. 037
0. 040
0. 036
0. 073
0. 051
0.056
0. 050

0.088
0. 044
0. 038
0.083
0. 067
0.038
0. 049
0. 035
0. 059

0.087
0. 053

0. 118
0. 091
0. 039
0. 056
0. 036
0. 073

0. 073
0. 037
0. 046
0. 100
0.074
0. 034
0. 056
0. 040
0.060

0. 051
0. 038
0. 072
0. 036
0. 105
0. 063
0. 032
0.050
0.031
0. 053
Standard
leviation

0. 028
0.026
0. 024
0. 018
0. 019
0. 040
0.010
0.033
0.030

0. 048
0. 015
0. 014
0. 030
0. 028
0. 015
0. 005
0. 012
0. 033

0. 031
0. 019

0. 021
0.026
0. 012
0. 017
0.017
0. 036

0. 030
0. 017
0. 020
0. 018
0. 033
0. 014
0. 016
0. 023
0. 032

0. 024
0.018
0. 060
0. 017
0.027
0.038
0. 016
0. 000
0. 018
0. 036
Geometric
Mean

0. 037
0.038
0. 032
0.036
0.030
0. 056
0. 050
0. 044
0. 040

0. 078
0.041
0. 035
0. 076
0. 060
0. 034
0. 048
0. 033
0. 052

0. 081
0. 050

0. 116
0. 087
0.036
0. 054
0. 031
0. 063

0.066
0.032
0. 041
0. 099
0. 067
0. 030
0. 054
0. 034
0. 051

0. 045
0.033
0.056
0.032
0. 100
0. 054
0. 027
0. 050
0. 026
0. 043
Standard
aviation

1.983
1. 877
1.757
1.727
1.885
2. 374
1. 183
2.260
2. 007

1.635
1.487
1.571
1.594
1. 745
1. 596
1. 228
1. 470
1. 715

1.469
1.489

1. 210
1. 383
1.485
1.267
1.710
1. 791

1.638
1. 680
1.619
1.215
1. 596
1. 734
1. 264
1.867
1. 838

1.699
1.687
2.050
1. 652
1.358
1.736
1.772
1. 000
1.805
1.958
aN = number of samples.
142

-------
                    Table 44.  (Cont'd) TOTAL, OXIDANTS, ppm
Site
coordinates
October
449-719
458-755
480-725
482-697
485-714
490-713
501-713
507-741
509-710
All
May-Oct 1964
449-719
458-755
480-725
482-697
485-714
490-713
501-713
507-741
509-710
All
Minimum

0. 00
0. 00
0. 02
0. 01
0. 02
0.00
0.01

0.00
0.00

0. 00
0.00
0.02
0.00
0.01
0.00
0.00
0.01
0.00
0. 00
Maximum

0. 30
0. 09
0.08
0. 08
0. 19
0. 12
0. 10

0. 10
0.30

0. 30
0. 11
0.23
0. 13
0. 19
0.22
0. 14
0. 10
0. 12
0.30
Na

62
66
29
49
60
61
14
0
14
355

319
360
43
206
333
344
219
153
216
2193
Arithmetic
Mean

0.068
0.029
0. 044
0.033
0. 092
0. 040
0.039

0.040
0. 051

0.072
0. 041
0. 053
0.038
0.097
0.063
0.043
0.052
0.039
0.058
Standard
deviation

0.051
0.016
0. 020
0. 015
0. 030
0.026
0. 027

0. 030
0.037

0.040
0.020
0. 039
0.019
0. 030
0.034
0.026
0.011
0.024
0. 035
Geometric
Mean

0. 054
0.025
0.040
0.030
0.087
0.032
0. 030

0. 029
0.040

0.062
0.036
0.045
0. 034
0. 091
0.053
0.035
0.051
0.032
0. 048
Standard
deviation

2. Oil
1.678
1.594
1.550
1.459
2. 024
2. 146

2.258
2.039

1.793
1.704
1. 775
1.640
1. 514
1.935
1.901
1. 232
1.898
1.918
         N  =  number of samples.
       Figure 122, which gives the frequency distribution for all the sites, indi-
cates that the smog odor level occurred during 4 percent of the measurement times
and the eye-irritation level occurred during less than 1 percent of the measurement
times.  These figures are not alarmingly high, but they do show that St. Louis has
experienced photochemical smog, and that with normal growth the potential is present
for much greater oxidant concentrations in the future.

       When the phenolphthalin method is used, the first sign of smog odor occurs at
0.15 ppm; eye irritation, vegetation damage, and visibility reduction are evident at
0.25 ppm.    The State of California adopted 0.15 ppm (a value approximately equal
to 0.25 ppm by the phenolphthalin method) for 1 hour by the potassium iodide method
              19
as a standard.    The State of New York has four ambient air quality objectives for
oxidants:  0.05 ppm for 24 hours for rural and residential areas, 0.10 ppm for 24
hours for commercial and industrial areas, 0.15 ppm for 1 hour for all land-use
areas, and 0.10 ppm for 4 hours for rural and residential areas.   The State of
                                o
Colorado adopted as its standard  0.10 ppm for 1 hour, and uses the potassium iodide
method.
                                                                                143

-------
          I 0
         0 8
       E 02
       < 010
       CL
       tlJ
       O
       O
       O
i  i  i—i—r
                          ~i  r
               iii   iii
           DOI 0.05 01 0.2 0.5  I
                                    J	L
                                            J	I	L
                              5   10   20 30 40 50 60 70  80  90  95
                             % OF SAMPLES < STATED CONCENTRATION
                                                                      J	L
                                                                     99.8 999 99.99
            Figure 122.  Total oxidants - frequency distribution, all sites
                         (May - Oct 1964).
       To show the geographical distribution and variation with time of  day  and
month, data from six stations were used to prepare Table 45 and Figure 123.   Since
these six stations are in a reasonably straight line from west to  east through the
center of the metropolitan area, results from them show an oxidant profile.   The
Mississippi River and grid coordinates are shown for geographic orientation.
       May, which is thought to precede the main photochemical smog  season,  shows
levels of about 0.04 ppm across Clayton and St. Louis City, with an  increase to
about 0.06 ppm in East St. Louis.  During the rest of the months the  levels  were
higher in St. Louis and St. Louis County than in East St. Louis.   This pattern  is
quite different from that found for sulfur dioxide and particulate pollutants.
Variation during the day showed the morning low, with noon and afternoon values
about equal.
       Additional discussion of oxidants appears in the CAMP  Station Data section
                                                       70
of this report and in a report on tobacco plant damage.

AEROALLERGENS
       The results of aeroallergen measurements made by the American Academy of
Allergy gravity shelter method are given in Tables 46 and 47 .  These  data show that
 144

-------
                                           STATIONS
           0.0
             440     450      460     470      480      490
                                     EAST-WEST GRID LOCATION
                                                                500
                                                                        510  515
       Figure 123.   St. Louis Metropolitan Area east-west oxidant profiles.
the pollen season begins in the early spring with tree pollination  and  continues
through the summer with grass pollination  (May and June primarily)  and  into  the fall
(August and September primarily) with ragweed pollination.  The conditions under
which pollen is emitted usually include light winds, clear to partly cloudy  skies,
                                24
and at least moderate convection   - all of which contribute to vertical movement
of the air.
                                                                                145

-------
Pi
D
O
E
Q
H
2
O
O
1— I
h
<
H
to
co
H
Q
K— (
X
o
 H
 O
 H
 •sf

 4)

 fi
 rt
 H

1
1
i
1
|
n
s


in o o
— oo to w
tM O O •-" fM
OOO
ooo
fM W to O
CM O O to fN
OOO
moo
tM to o >o
tM O O O CM
ooo
-H O O
W iO «-* *O
<-+ o o •-« — •
-H OOO
o ooo
O oo m CN oo
• <-t O O O -«
tM • • • fN
— ooo
o woo
O tN t CN O
O 0 -* —
o ooo
O to O O
.. tN O O — •-«
•-» ooo
O (MOO
o oo oo -i in
• • ^ O O ^H ft
fN > « « CN
>-» ooo
o ooo
o r-t in CN ^H
• • fN 0 O — -«
o ooo
O to O O
O to o in r*
•- tN i-l O — -«
IS) . . . CM
«H OOO
o ooo
o -« w t t
•• fN O O — tO
fN • • . CN
— ' OOO
o ooo
o to r* tN in
•• tN O O — tO
o ooo
o woo
O 00 W to \D CN
-• ^ O O CN fN
—i 000
o in o o
o o oo m «-t  >
^ e e E H
Q> CX CX CX 1>
EM cx cx ex «
+j 0 * - - O
~ . ?.s s .
0  .rt a .
< S Z O
vi in
in x — -H
— C n> 3
r- rt *-» O
i y .H j
oo ' CL,
in - w •
Tt *J O 4-»
w ffi tn
oo o o
to CN f-
ooo o
ooo
(N O 0
t CN OO
OOO O
ooo
too
o o o
t  0 O
CN o t m
ooo
ooo
8.8.8. «
cx ex ex w
00 C X
> -H *
< s z o
482-697
Alexian
Brothers
Hospital
00 O O
w t w
°°^ s
ooo
00 OO
W in t
o o •-« o
ooo
So o
fN IO
o o f« —
ooo
woo
ooo
to O O
^-» in o
~H O — O
ooo
So o
t o
o o •-• r*
ooo
r-*. O O
r-* O — •-»
ooo
r-- o o
o oo in o
-H O -H CN
OOO
OOO
w in — w
o o -« •-«
ooo
to o o
fN OO \O
.-tO-* CN
OOO
tO O O
CN oo in
»-» O f« fN
ooo
ooo
•-< oo m
f.0 - JN
ooo
000
W O m CN
O O — (N
ooo
moo
W t t CN
O O i-" CN
ooo
r-*. o O
\O •* m ft
O O — CN
ooo
too
in t oo
ooo
OO O O
tO fN NO
ooo in
ooo
ooo
to r~* m t
ooo --»
ooo
8.8.8. S
o. ex ex w
00 C X
> «-( o»
< s: z o
485-714
St. Louis
Testing
Laboratory
too
So o
O — CM
ooo
woo
t — CM
o o •-• o
ooo
woo
CM o m
OOO \O
ooo
too
r- fM oo
ooo
in o o
r-. t fN
o o CM in
ooo
CM O O
t CM W
OOO t
ooo
O
ooo
in o o
oo r- TT
o o -» r-
ooo
r- o o
-O O -t i-t
O O I-H ^-«
ooo
ooo
oo o-m «-t
ooo
r^. o o
in — o t
0 0 -H ~l
ooo
woo
tO i-» 1-^
ooo
CM O O
^J- ^ t^
ooo in
ooo
t- 0 O
tM •-• m m
OOO i-"
ooo
8.8.8. S
ex ex, cx m
M C X
> -H CO
 tn
<=>. g ^
O
m
t in
°. i *
O
£•",/>
°. S "
o
»
3
woo
10 1-1 r-
o o o
in o o
to •-» r^
ooo L
ooo
— oo
fN O t
OOO
ooo
ooo
ooo
ooo
woo
*o — -o
ooo
ooo
•ooo
(N — m
ooo
d o o
ooo
t  o o
t t *o
ooo
ooo
-H 0 0
to <-* *o
ooo
ooo
OO O O
t tO \O
ooo
odd
00 O O
to CM r-
ooo
odd
too
»o *-* r-
ooo
odd
m o o
r* o tN
ooo
woo
%o o rt
0 0 —
ooo
m O o
t- 1-1 t
0 0 —
ooo
III
III
in
•f-4
3
IO O !-•
r^ «
i • X
1-4 4-*
0 VI X
in 4-1
4J "-*
in O
at
UJ
n
*

9)
t
t
t
\o
00

w
CN

t
in
No. Observ.

W (A
SB ~
S Si 0
o
to
— w
o z w
d s
woo
tO O OO
ooo
moo
IO  -H a
< z z
0 •§ 4J
— -H as o
r- 05 4-> -H
W 4-1 CO 4-1
O V) O W
i/> « X -it
tu a
fN O O
ui rN oo
ooo
ooo
m o o
t CM 00
ooo
ooo
r^ o o
to fM F""1
ooo
d o o
too
w in oo
ooo
ooo
& oo to in
§0 0 fN
ooo
ooo
to CN m
ooo
ooo
o
z


CM ac
CM

t
f-4
**» w
c
-1
o
z
ooo
in in in
ooo
ooo
ooo
in in m
ooo
ooo
ooo
m in in
ooo
ooo
r-. o o
m in o
00-
odd
00 O O
in in o
O O ft
ooo
too
in in o
o o •-•
odd
ooo
m in in m
ooo
ooo
W 0 o
w in in o
O o z o o ,-H
z s=;=;d
ooo
in in in
in ooo
ooo
a
z
o
z
ooo
i-t m in in
CN OOO
d o d
ooo
o c/) m m in
CN z; o o o
o . , .
ooo
ooo
o m in m
fM OOO
ooo
CTi
00
o
£ E e E £
v cx ex ex «j
M cx ex cx tfi
^ S
> -H d
o < s: z o
z z
480-725
Homer Phillips
Hospital

ooo
m m o
o o ~^
odd
ooo
en m m m
g °. °. °.
ooo
CO O O
t >o m
o o c
odd
8.8,8.
ex cx cx
3£l
507-740
Granite City
Fire Station
   146

-------
Table  46.   POLLEN AND MOLD COUNTS FOR 1963 AT SITE COORDINATES 481-718
     BY AMERICAN ACADEMY OF ALLERGY GRAVITY POLLEN SAMPLER3-
Monthb
March
Min
Max
Avg
April
Min
Max
Avg
May
Min
Max
Avg
June
Min
Max
Avg
July
Min
Max
Avg
August
Min
Max
Avg
September
Min
Max
Avg
El«
Hackberry
Poplar
Cottonwood


28
1*0
13M

0
16
1.7

0
2
0.2

0
0
0

0
0
0

0
0
0

0
0
0

0
216
30.5

0
W
7-5

p
2
0.0

0
0
0

0
0
0

0
0
0

0
0
0
Maple
Oak


0
aS
*.9

0
7
o.k

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
8e
17.5

6
1300
25U.3

0
36
6.2

0
0
0

0
0
0

0
0
0

0
0
0
Sycamore
Hickory
Walnut
Grass
Plantain
Goosefoot
Ragweed
Molds
Count, grains/yd

0
36
U.2

a
uoo
92.1

0
8
0.3

0
0
0

0
0
0

0
0
0

0
0
0

0
16
2.5

0
112
13.*

0
62
12.3

0
6
0.3

0
0
0

0
0
0

0
0
0

0
0
0

0
6
0.2

0
lit
5.0

0
16
7.6

0
8
2.8

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
6
1.2

0
6
1.9

0
2U
1.6

0
0
0

0
0
0

0
0
0

0
1
0.0

0
0
0

0
h
0.7

0
152
21.9

0
88
31.U

0
0
0

0
0
0

0
2
0.2

0
U
0.2

0
8
1.0

0
U02
86.U

12
36U
112.7

0
Vo
9-5

0
72
15.1

0
87
23.2

0
153
50.1

0
230
52.9

0
276
57.6

U
320
75-5
    Data supplied by Dr. French 1C. Hansel, Allergist.
    Readings were taken every day except Sundays and holidays
    These figures divided by 3.6 would be comparable to grains per square centimeter values reported by the American
      Acadeav of Allergy gravity pollen sampler.
         The large differences between  the minimum  and maximum values for  each month
  are due to the sampling method as well as changes in wind  speed, direction,  and
  atmospheric turbulence and differences in release of pollen.  Although pollen counts
  have not been precisely correlated with human reaction,  it is known that human
  response to allergens varies considerably, both in  respect to allergen types ar
-------
  Table 47.  POLLEN AND MOLD COUNTS FOR 1964 AT SITE NO.  481-718  BY
       AMERICAN ACADEMY OF ALLERGY GRAVITY POLLEN SAMPLERa
Month11
March
Mm
Max
Avg
April
Mm
Max
Avg
May
Mm
Max
Avg
June
Mm
Max
Avg
July
Min
Max
Avg
August
Min
Max
Avg
September
Mm
Max
Avg
blm
Hackberry
Popl ar
Cottonwood
Maple
Oak
Sycamore
Hickory
Walnut
Grass
Plantain
Goosefoot
Ragweed
Molds
Count? Brain/yd

6
112
40.4

0
70
12.8

0
10
0.9

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
48
10.0

0
20
1.4

0
0
0

0
0
0

0
0
0

0
0
0

2
4
1.1

0
12
2.1

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
830
117.2

0
390
78.2

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
850
78.6

0
54
9.4

0
36
4.4

0
0
0

0
0
0

0
0
0

0
0
0

0
18
3.3

0
150
39.3

0
4
0.2

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
18
4.6

0
32
4.3

0
6
0.8

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
12
2.8

0
8
1.3

0
0
0

0
0
0

0
0
0

0
iO
''0
1
0
0
0
I
0
6
0.5

0
5
0.9

0
34
11.2

2
56
30.7

0
0
0

0
0
0

0
0
0

0
2
0.2

0
6
0.8

0
230
47.8

0
374
144.3

0
10
3.0

0
0
0

0
0
0

0
164
30.6

6
109
28.8

0
98
33.3

6
202
71.8
  Data supplied by Dr. French K. Hansel, Allergist.
  Readings were taken every day except Sundays and holidays.
 c These figures divided by 3.6 would be comparable to pollen  grains per square centimeter of slide area values
    using the same sampler.

December  1964  and 1964 yearly means for all  cities  except St.  Louis.  Sampling  was
done during 10 months  only in St. Louis.  CAMP station data not available at the
time this report was  prepared may be obtained from  the Public Health Service to
assist with further interpretation of these  data.
       T!;e  frequency  distributions of the St. Louis 5-minute-sample data from March
1964 to February 1965  are presented in Figures 124  and 125.   The median sulfur
dioxide concentration  was 0.04 ppm with 17 percent  of the measurements above 0.10
ppm.  Oxidant  levels  (potassium iodide method) exceeded 0.10 ppm slightly over  1
percent of  the time.   The seasonal and yearly diurnal variations are presented  in
Table 49.   Figure 126  shows the yearly diurnal variations of the CAMP station
measurements.  The  curves for carbon monoxide, nitrogen oxide, and hydrocarbons show
peaks between  6  and 8  a.m. and 4 and 6 p.m., times  when traffic is heaviest.  The
sulfur dioxide curve  shows peaks at 8 to 9 a.m.  and 8 to 10 p.m.  The oxidant curve
peaks around  1 to 2 p.m.  when the sunlight is the most intense.
       Figure  127 dramatically illustrates the influence of meteorological  conditions
on pollution  levels.   The Public Health Service  Air Pollution Potential Forecast
program  issued an air pollution  alert  for October 15 and 16,  1964,  for  a  large
 148

-------
w
I—I
H
<
u
w
o  w
rt  u
h  W
<  O
P  D
   u
   oj
   "
(tf

H






a
o
•H
•P
a!
>ncentr
0








to
•p
9
«H
O
o
>carbon
|
9)
«
^
•H
•H
TJ
a
-
*
•H
X
o
-d
c
1
1
fi
•H
O
o
•H
r.
•r1
trbon monoxide
0


Is
to
"*
e
UN
•H X
UN
•*
C
"d !*
? jij
UN
M)
"*
Sx
? a
i a
UN
U)

If
UN
HO

.c
i
>J
r— ON t~- if\-& ON trNO u^ O U~N -d[ trCfi *™i QO ^O VD PO PO PO oj ^t O irv-^" co O ITS ro ON ,3- LTN
ooooooooooo ooooooooooo ooooooooooo
l£\VJ3 vjj U"\^f CVJ OJ rH CO i-H CM CO COV^ ^ Jj ^ fO OJ PO OJ OJ ^( iO-^t -at ^""^ CVI »H C\J C\J
O O O O C) O 1 I O O O O O f^ f^ O c) ^) ^5 O O O O O O O O O O O O O O
OOOOOO OOO OOOOOOOOOOO OOOOOOOOOOO
CO O f-\ CVJ \o O OJ »-H ON O CVJ -d" OACO CO CO O> ON CO -3" O O CO -d1 CO VO ON t— ir\ rH CO t^-
rorO_4-j- i_j- i OJrnroro oornpooonoooro-d'^cnro c\JC\jC\JOJOJC\JC\jrnCVJC\JOJ
i—\ OJ rH h— ^" ITS ^- PO tf> ^t OJ rH ^~ ^ OJ rH rH \D rH CO ^— CO OJ PO OJ ON b~ LTN CO -^ LP* O
PO OJ CO CO OJ O O OJ PO O \D -^ VO CO VO VJ3 CO t~— VO CO CO CO t*1" VO t~- VO VO ITN LTN-^1 VO 1 O
rHr^OOrHHrHHrHrHH OOOOOOOOOOO OOOOOOOOO H
groo\vrtrH\o voot— co POPOOJOJ POJ- ,=t-ir\vevoj-ONOON t— rorn co
tHOOrHOliHOjOJi-H OOOOOOOOOOO OrHOl lOlOOlO
OOOOOO OOOO OOOOOOOOOOO OOO O OO O
OJ ON t~~ ON ON ON rH ON rH CO ON VQ V£) ^ O \JD LTN LTN O O h— O PO OJ ON ir\ ON\O t1^ LAVO OJ t—
rHOrHi-HrHt— rHPOi-HOt— OOrHOJrHOJOjOJPOOPO HHOJi-HHrHPOOjOrHPO
OOOOOOOOOOO OOOOOOOOOOO OOOOOOOOOOO
j-^^t—t^LA vD-d-mir\ OJOJPOro^j'J-i/N^POPO -i-=ty"N-^-4f-^t-^ f^-^t
O OOOOO lOOOO OOOOOOOOOOO OOOOOOO i i O O
OOOOOO OOOO OOOOOOOOOOO OOOOOOO OO
OJ,— irHVDCOOPOt1— OCOt— OPOHOJOJOJCOb-COJ-CO POONCOrHVOHVOONt^POirN
OOfOpOPnOJjrtLfNONCO-d'ON CMPOOJOJOJOOPO-d-VOlTNVO lAOJVOPOrHPO^-LrNCOVOrn
OOOOOOOOOOO OOOOOOOOOOO OOOOOOOOOOrH
O CO \D t*- ^JD CO NO -d" PO O OJ OJ CM OJ PO PO PO t— O LTN-^ J" PO PO CM OJ CM PO C^- QNSP -=t
HOOOOOlrHHrHrH OOOOOOOOHOO OOOOOOOOOOO
OOOOOO OOOO OOOOOOOOOOO OOOOOOOOOOO
\J3O-d-COOCOON-3-rOON-3' POOO^J-rHU>CvJ\pir\ONON rHONON-^lTNCO-^-i-H PO\O VO
PO^J-J-OOvOirN-J-VOirv-^NO 1 rHCMCMOJrHOJCMOjJ-^f C\JPOOJrHrHrHOJ,cJ--4--=f_=J-
O H PO OJ t*- u^ OJ^-HOJ VOONrH rO_=ft/\_d-VD iTNON[^ tTN-^-i/NVOCOPOOr—

eC rt rt

-------
w
hH

H
hH

U
<,

U
o
    u
 -
 fl
 o
U
00



 0)
 rt

H






















a
P.
.
c
o




c
0)
o
o




















to
+>
1
*o
1H
X
o
rH
0)
£
§
p
c3
"
o
t
s
rH
0)
"8
E-i
tJ
•H
X
o
1-1

h
<2
rH
t/>


0)
•a
iH
X
o
T-t
•d
C
o
(H
•H
z=
I
X
o
o
TH
•H
3
X
o
c
i
1
o








c
?g
i £


M>
^


c
1 2
1s

U)

"*•


iH >*
s s
l/N


CO
^





c
in ^

U)
5
f i
i S
to
5
B ^
Ji


CO

X!
+>
i


£
•H
O



ooooooooooo ooooooooooo ooooooooooo


roroinirsrocornmcn en CMOJ (MHOjtMoornCM Ojmin m^ ^ OJ ro ro c\J ro
OOOOOOOOO IO OO I lOOOOOOO OOOOOOOOOOO
OOOOOOOOO O OO OOOOOOO OOOOOOOOOOO



VO t- CVJ OO CO CVJ r-l l/NVO CM t- m CM OO 'ONOO ON'O CM t— CM \£> H ONOO ON CM CM O OO CM p



ro CM ro ro ro ro ro ro_d- roco^-rorocvjcxicucocoi ico I-^COCOCM co jf ^ co ro m



O*\ tfN^^ O^ ^~ P O t^~ COOO CO CO^J *JJ ^t b~* rH Vp ON t" m^p ^J3 ^J l/NCO rH ^^ i-" t CT\VO t"**^
tMcNJCMCMrHCAlCVJoOt— CO[^- rHOOOOi-HC\lrHrHHC\i O CTSVO mOCJ\Oc5\rHO\H
OOOOOOOOOOO OOOOOOOOOOO HOOOHOOOHOH

-*_=J--3«:cOOKQ>~' S-1 S-i
SCO
g 45
"6 ra g
I 3 rH
•H S
1 le 55
                                                                                                                                          


                                                                                                                                          Q
                                                                                                                                          c
                                                                                                                                          o
                                                                                                                                          E
                                                                                                                                          I

                                                                                                                                          <*-!
                                                                                                                                          CO
                                                                                                                                          •a
                                                                                                                                          •a
                                                                                                                                          v
                                                                                                                                          in
                                                                                                                                          a)

                                                                                                                                          a>

                                                                                                                                          n

                                                                                                                                          x
                                                                                                                                          3
                                                                                                                                          O
                                                                                                                                          t/5

                                                                                                                                         a
   150

-------
    I 0


    08


    0.6




    04








 E  02
 2
 O
 £ Oi
 t-

 5 008
   006
  004 —
  002 —
  001
T~l  I   I   I  I    T
            ~iiiiiiiiiir
                         TT
                                                     SULFUR DIOXIDE
                                                        NITRIC OXIDE
                                                              I	I
                                                                      I	I
     001  005  02  05 l   2    3   10   20  30 40 50 60 70 80   90 95  98 99   998  999   9999

                          % OF SAMPLES^ STATED CONCENTRATION

Figure  124.  CAMP station frequency  distribution (March 1964 - Feb 1965).
  1000


  800


  600
TT~I—T
n—i—r
            "i — i
i — i — r
                                                    n—r
 . 200 |—
o: 100


LiJ  80
O


O  60
O
   40
   10
                                                               CARBON MONOXIDE
                                                               HYDROCARBONS  —
         I  I  I   I  I
                                 I   I   I   I  I   I
                                                             J	I
                                                             J	I
    001 005  02 05  I
                         5  10   20  30 40 5O 60 70 80   90  95

                        % OF  SAMPLES <  STATED CONCENTRATION
                                                             98 99  998 999   9999
    Figure 125.   CAMP  station frequency distribution (March - Feb 1965).
                                                                                    151

-------
           0.10
         E
           0.08
        1
        g  0.06
        Q
        Z
        o
        Z 0.04
         CM
        O
        O 0.02
        to
           0.00
                  i    i    r
           i    r
/v    X"
                                              \-
                   I
   I
           I
               I
                   I
                        I
                                I
                                                             I
                                             I
                                                                      10.0
                                                                      8.0
                                                      E
                                                      a.
                                                      Q.
                                                     co
                                                                       60
                                                                          O
                                                                          o
                                                  4.0
                                                                          a
                                                                          z
                                                                      ^o
                                                                          o
                  00  02
                  AM
      04   06   08   10
                                16   18   20  22
                                            12   14
                                              PM
                                    TIME OF DAY
               Figure 126.   CAMP station diurnal variations (March -
                             Feb  1965).
midwest area that included St. Louis.   Hourlv pollutant concentrations at the
St. Louis CAMP station for the period October 13 through 18, 1964, are presented in
Figure 127.  The peak concentrations for carbon monoxide, hydrocarbons,  nitrogen
oxide, and nitrogen dioxide obtained on October 16 were the yearly maximum concen-
trations for these pollutants.  Significantly, the concentrations reached their
peaks during the early morning hours (7 to 9 a.m.) and then decreased as the sun
warmed the earth and created turbulence in the atmosphere.   Another important point
is the manner in which the nitrogen dioxide peak lagged the nitric oxide, carbon
monoxide, and hydrocarbon peaks by about 2 hours.
       One of the most unusual peaks recorded at the St. Louis CAMP station was 0.85
ppm for total oxidants on July 1,  1964, at 8:40 p.m.  This was the highest total
oxidant reading ever recorded by any CAMP station to that time.  The sulfur dioxide
instrument also showed a sharp increase during this period, but the other instrument
readings remained constant.  The pollutant causing the increase could not, based on
present knowledge, have been photochemical smog since the rise was detected long
after the major flow of traffic had subsided and the sun had set.  The wind readings
from 7 to 9 p.m. that evening at the KMOX tower fluctuated from the south to south-
east.  The wind speeds were very low.
       Another similar incident occurred on September 14, 1964, at 7 p.m. when a
total oxidant value of 0.50 ppm was recorded.  The sulfur dioxide instrument also
showed a slight increase at that time but the other instrument readings remained
constant.  Again, the wind at the KMOX-TV tower was from the south to southeast at
152

-------
E  °'3
a.
"  °"2

-------
             Q

             W
             W
             CO

             H
             K  fi
             O  ft
             CO

             ^
             o
             <; y
             u H
             o <
               <;
               o
             O D
             < CO

             > H

             j <:
             p
             n)

             H












I
1

















s
=
£
""" 	 1
Season,

to O r- to to

o to to r>- to
1*- O O to O
^} » ifi 'tr -o
•O « 10 Oi -0
*O to O to 00
oo oo i-» oo oo
to r-. o r«- -w
cn o eo o» 
^ * W  U. * >•
O Is- ro to >O
to rsj v TI- to
xn r- o to ,0
to r-i ^ ^ to
O O O 0 O
0 O 0 0 O
in to to to in
o o o o o
SO o r-- in
o o •* i-.
o o — o o
o o o o o
in 10 r-- K> ^
vp O -O rv iv%
3 o o o o
o o r- M m
M M  K> r» to t/>
00000
o o o o o
o o o o o
o o o o o
O "> «*» K* O
o o o o o
CM ^ CM r-l (N
o o o o o
o o o o o
o o o o o
o o o o o
Nitrogen
oxide
>i-K
^ 1 *•* c •*
a. 9 « ** »
to « u. x >-
in r-- to o to
^ IO tO (N| Kl
o o o o o
in r-. t~- o ^>
v to to  Q
o o o o o
o o o o o
1/1 r-. r«. to m
^ to to fNi ro
O O 0 O O
o o d d d
in to i*- r- in
^ ?O to (\i to
0 0 O O 0
O O O O O
O 1O Kl O •*
«» »o »o »o to
O 0 O O 0
O O O O O
^ to to to to
O O 0 O 0
O O O O O
O O O O O
0 0 O O 0
o in r- o
i o o a o
0030
o o o o o
0 O O O 0
m o o f) -,
tO tO tO f\| <\|
0 0 0 O 0
O O 0 O O
(^ tO Kl to _*
o o o o o
O O O O 0
O 0 0 O 0
O 0 0 O 0
in r-> o f*. ^
•W tO V -H PO
0 0 O O O
o o o o o
in >o r- r* m
•» ^ ro .-* to
o o o o o
0 O O O O
m o o r-. r^
•v •« 10 •» 10
O O 0 O O
O O 0 O O
O t>- I1-- to oo
o o o o o
o o o o o
M tO CM t-t S
O 0 O O O
o o o o o
in r^ r^ o •«
o o o o o
o o o o o
o o o o o
o o o o o
m O r^ o r-
o o o o o
o o o o o
o o o o o
•V (0 to tN tO
o o o o o
o o o o o
Nitrogen
dioxide
M t-i h
5|-Sh
M I -« B *
#5 £ S 5

0 O O O 0
O >*» i*i O ^p
r- 1/1 r^ 10 10
00000
0 O O 0 O
o •*> K> r-. M
o o o o o
o o o o o
K> r«- r^. o CM
>o -^ *o r*- ^
o o o o o
o d o d d
o o o o o
00000
r^ O i">- o oo
to M »O *O -«t
O 0 O O O
0 0 O 0 O
KI r-- o o m
o o o o o
0 O O O 0
0 0 O 0 0
0 O O 0 O
0 0 f> 0 «
o o o o o
0 O O O O
r^ r-. o o r-o
•« f* vo •« m
o o o o o
O O O O O
r- O r- n •«
o o o o o
0 O O O O
r- o o h- >O
•v ^ r-- -o m
0 O O O O
0 O O O 0
M O Kl ^ O
^ •«• QO r- >o
0 O O O O
o o o o o
o o « o o
o o o o o
i*1 O O fO CTl
QO m r-. t^ r-
0 0 -i O O
0 0 0 O O
K) o (o KJ m
O> *} •-« t^ 00
0 0 -H 0 0
o o o o o
§r- KI r-. ^
»o o r~- 00
0 0 -H 0 0
o o o o o
^ H» o r- o
oe in 91 in t^
00000
o o o o o
r~ r-. 10 KI !••>
t^ M r* so >o
O 0 0 O O
O O O O O
t*- O O O Ol
r- *» r^ \o •£
00000
0 O O O O
S3SS8
0 O O O O
O O K) O 00
O C> O 0 0
§•4- OO t/) ^O
o o o o
O 0 O O O
o o o o o
o o o o o
Sulfur
dioxide
M M
|-S h
. 1 -i c «
i 9 * -M «
W5 U. X >-


fl ^1 K> tO Kl
O *) K» O O»
0 ^ M O 01
f) r-j to KI r^'
O O M O OO
fi rsi M 10 rs
O O ro O OO
o o r-- o o
to r^ K) ^ K)
o r-- c- o i*>
f» rs» KI ^ PO
O r- ro O O
ro rvt PO rt K>
o r- o o en
to (s* to KI r-i
in rn o o tf»
tO IN 10 tO f-J
""""""
O r-- r- o rt

n r4 ^ •«• to
m r- o o ui
Kl (N •* •«• 10
o o to o to
-» M -W -V lO
o r^ 10 o o*
•* M ^ M fO
m i-» r^. o M
m o o o co
Kl fv| Kl fO f*
o to o o oo
K) r^ (O ro f*J
(N (N tO M (N
m to to o «
o M
M rO M M to
o o o o o
O O O 0 O
Rr- o i-» 01
(M to r*i fM
o o o o o
o o o o o
o o >o r-- to
10 (N (M -H IM
o o o o o
O O O O O
8 2 S ^ °
O O 0 O O
t-- h- P^ o o
r>i ^H ^4 N rs|
o o o o o
O 0 O O O
o o o o o
0 O O 0 O
o o o o o
1 1 1 1 1

(N 
154

-------
station data were used,  since  the CAMP station was the only place where hydrocarbons
were measured and where  sufficient oxidant and other data were gathered to allow
comparison.   The attempt failed, but  the following- valuable observations were made.
       During July and August  1964, on days with little cloud cover, no rain, and
oxidant levels of 0.05 ppm or  higher, hydrocarbons measured at 8 a.m. were compared
with the maximum oxidant level measured between 10 a.m. and 4 p.m. (Figure 128)-
The maximum nitrogen dioxide values between 7 and 11 a.m. were also compared to these
maximum oxidant levels (Figure 129).  Data .were 1-hour average concentrations.  Both
Figures 128 and 129 show the same  5 high-oxidant-level days separated in what appears
to be a separate function from the rest of the data.  Hourly wind observations
between 10 a.m. and 4 p.m. were matched with hourly oxidant levels for these 5 high-
oxidant days as well as  for the rest  of the July and August days under investigation
                 15

                 14

                 13
               Q.
               Q.
              CO
              a'°
              x
              O  9
                 JULY AND AUGUST, 1964
                    DAYS WITH RAIN AND
                    EXTREME CLOUD COVER
                    ARE NOT INCLUDED
                  * LOCAL STANDARD Tl ME
                       CAMP DATA
                    e         o
                                                           00

                             -L
                    _L
                    o
I          2         3
    HYDROCARBONS, ppm
                  Figure  128.  Relationship between hydrocarbons at
                               8 a.m. * and maximum total oxidants
                               occurring between 10 a.m. and 4 p.m.
                                                                               155

-------
                16

                15

                14
             t/  I I
             z
             Q 10
             X
             o
             _J  9
             o
             H
                 7

                 6

                 5

                 4
                   o   —
JULY AND AUGUST,  1964
  DAYS WITH RAIN AND
  EXTREME CLOUD COVER
  ARE NOT INCLUDED
 *LOCAL STANDARD TIME
      CAMP  DATA
                                                I
          I
                            3456789
                                NITROGEN DIOXIDE, pphm
                    10
              Figure 129.   Relationship between maximum nitrogen
                            dioxide from 7 to  1 1 a.m. * and maximum
                            total oxidants  from 10 a.m.  to 4 p.m.
(Figure 130).   The 2-month  period  had  a  large variety of wind speeds and directions,
but the 5 high-oxidant days showed a preponderance of low wind speeds from the east-
northeast and north-northeast.   This leads  to the possibility that oxidants,(photo-
chemical or chemically related  giving  the same measurement response), produced in the
Illinois part of the Study  area were borne  to the CAMP station and that conditions
for oxidant production were more favorable  there than indicated by measurements of
hydrocarbons and nitrogen dioxide  made at the CAMP station.
       Additional analysis  of the  data indicated that increased wind speeds resulted
in decreased oxidant levels.  Although a relationship anpeared to exist between
concentrations of nitrogen  dioxide and hydrocarbons, the practical value of the
 156

-------
           AVERAGE WIND SPEED 9 3 mph
                                                 AVERAGE WINDSPEEO 74 mph
           WIND ROSE FOR REMAINING JULY AND
           AUGUST, 1964 DAYS
         0_  5   10   IS  20  25   30  35
                 No OBSERVATIONS
  WIND ROSE FOR 5 HIGH-OXIDANT DAYS
0      5      10   	 15
                  ^m
       No OBSERVATIONS
                                     miles per hour
     Figure 130.  Wind roses based on hourly observations from 10 a.m.  to
                   4 p.m. during oxidant study.
relationship  for air-use-program development was not discernible because of unknown
quantitative  relationships between levels of nitrogen dioxide  and hydrocarbons and
the formation of oxidants and effects levels.
        In  conclusion,  the formation and transport of oxidants  in the Study area is
complex.   Some high  oxidant levels do not relate to hours  of the day when such
levels  would  be expected.  They are associated with southeast  winds.   Some relative-
ly high levels are associated with the same measured levels  of precursors that
usually form  much lower levels of oxidants.  These are associated with winds from a
northeasterly direction.   The majority of oxidant levels, however,  do  show a fairly
consistent relationship with precursors measured at the  CAMP station.

MATERIALS  DETERIORATION

Steel Panels
        Results from  the 35-station network in which steel  panels were  exposed for
four periods  from April 1963 through August 1964 are shown in  Table 50.   Arithmetic
mean corrosion rates for all sites except 498-704 for the  2-,  4-,  8-,  and 16-month
exposure periods  were  2.16,  3.86,  5.59,  and 7.72 grams per panel,  respectively.  The
                                                                                  157

-------
 Table 50.  CORROSION RATES AT SELECTED EXPOSURE SITES IN ST. LOUIS
                          EAST ST. LOUIS AREA
Site
coordinates
UOT-770

U21-729

>t33-565

1*35-717

1,36-7113

M.9-719

1(51-728

'•53-701

1.57-766

1.63-691

U6U-7UO

1*65-731

1*67-758

1*69-683

1*69-705

U71-71U

1*76-72"*

1*77-758

1*79-701*

1*82-699

1*88-672

1*90-61*6

1*90-713

1*90-730

1*95-693

1*95-809

1*98-701*

1*99-721*

501-713

505-71*1

509-710

517-762

520-790

521-725

585-683

Weight lost per U- by 6-in. panel, grams
2-month exposure
Top and
bottom panel
1.1*7
1.07
1.08
1.07
0.66
0.56
1.12
0.70
1.70
1.32
1.33
I."t5
1.89
1.73
1.93
1.1*9
1.70
1.63
2.00
1.78
1.61.
1.1*1
2.38
2.08
1.92
1.89
3.30
2.76
2.18
1.95
2.65
2.30
2.35
2.10
2.U7
2.11
2.77
2.56
2.36
2.12
1.76
1.51*
1.1*9
1.1.2
2.87
2.66
2.90
2.86
2.53
2.25
2.01.
1.91
8.39
8.66
It. 19
3.97
2.95
2.97
3.38
3.36
3.10
2.96
2.09
1.89
3.1*2
3.29
3.73
3.65
1.59
1.1*3
Mean
1.27

1.08

0.61

0.91

1.51

1.39

1.81

1.71

1.67

1.89

1.53

2.23

1.91

3.03

2.07

2.U8

2.23

2.29

2.67

2.21*

1.65

1.1.6

2.77

2.88

2.39

1.98

3.53

U.08

2.96

3.3".

3.03

1.99

3.36

3.69

1.51

l*-month exposure
Top and
bottom panel
2.90
2.58
2.68
2.U2
2.93
2.97
3.08
2.83
3.20
2.6U
3.2U
3.17
3.IW
3.73
3.50
3.1*5
3.36
3.39
li.io
3.87
3.00
2.80
3.69
3.51*
3.21
3.06
5.38
5.38
3.55
3.35
3.93
3.65
3.62
3.60
3.76
3.69
"t.33
U.02
U.05
3.73
3.3"*
3.26
3."*1»
3.28
Lost
3.8U
>t.!5
3.90
I*. 36
1*.29
3.18
3.0U
12.77
13. 31*
5.69
5.80
"*.79
U.63
l*.79
1*.96
5.03
5.35
!*.39
"*.55
5.07
5.19
6.23
6.27
3.1*1*
3.60
Mean
2.71*

2.55

2.95

2.96

2.92

3.21

3.57

3.W

3.38

3.99

2.90

3.62

3.11*

5.38

3>5

3.79

3.61

3.73

l*.l8

3.89

3.30

3.36

3.81.

1..03

"t.33

3.11

13.06

5.75

U.71

1..88

5.19

l*.l»7

5.13

6.25

3.52

8-month exposure
Top and
bottom panel
"».l*ll
I*. 38
U.ltU
U.28
5.26
5.15
5.52
5A7
1*.28
It. 17
5.12
5.33
5.68
6.29
5.02
1*.9U
5.3>*
5.36
6.23
6.12
3.51
3.38
1».75
U.72
lt.71
l*.8o
8.26
8.25
It. 70
1*.90
"*.99
5.39
"..50
1*,65
5.22
5.26
5. to
5.30
5.67
5.7"*
I..91
1..90
1..72
k.71
5.0lt
1*.89
l*.96
5.5"*
6.15
6.1*0
k.32
l*.15
16.51
16.83
7.86
7.61.
6.26
6.16
6.02
6.1.2
7.21
7.8U
7.29
7.29
7.26
6.96
8.1*0
8.73
5.51*
5.56
Mean
U.ltl

It. 36

5.21

5.50

!*.23

5.23

5.99

U.98

5.35

6.18

3.1*5

l».7l*

U.76

8.26

It. 80

5.19

lt.58

5.2U

5.35

5.71

!t.91

U.72

It. 97

5.25

6.28

l*.2l*

16.67

7.75

6.21

6.22

7.53

7.29

7.11

8.57

5.52

16-month exposure
Top and
bottom panel
6.60
6.10
6.1*1*
6.13
7.83
7.U6
8.02
7.56
6.25
5.79
7.15
6.65
8.02
7.59
7.21*
6.69
7.83
7.39
7.95
7.60
5.36
5.21
8.80
7.57
7.11*
6.81
10.67
9.91
6.98
5.79
8.20
6.33
6.1*8
5.75
8.02
7.65
7.68
7.07
7."t7
6.85
7.28
6.82
7.39
6.79
7.30
6.56
7.51
6.83
8.05
8.06
7.32
6.80
23.36
22.35
11. Its
10.32
9.32
8.18
8.67
8.22
9.88
9.1*3
9.61
9.25
9.09
8.88
11.13
10.63
8.26
8.1U
Mean
6.35

6.29

7.65

7.79

6.02

6.90

7.81

6.97

7.61

7.78

5.29

8.18

6.98

10.29

6.39

7.27

6.12

7.8U

7.38

7.16

7.05

7.09

6.93

7.17

8.06

7.06

22.86

10.89

8.75

8.1*5

9.66

9."*3

8.99

10.88

8.20

158

-------
weight loss rate was 1.08, 0.97, 0.70, and 0.48 gram  per month for the respective
exposure periods.  The tests demonstrated that the corrosion rate decreases with time
and that corrosion products build up to provide a protective coating.
       Figure 131, a map of the Study area, shows the geographical distribution of
the 16-month mean corrosion rates.  The actual locations of exposure sites are shown
on Figure 2.  Two nonurban sites, 433-565 and 585-683, are beyond the boundaries of
the map.
       Corrosion occurs  at above-average rates in the high pollution areas.  This
is shown by comparison of corrosion maps, Figures 131 and 133 ; with  isopleth maps
for sulfation,  sulfur dioxide,  and particulates, measured by  both the high-volume
sampler and AISI sampler.  The  amount of increase in corrosion was as much as six-
fold  in the high pollution areas compared to the low pollution areas.

       To test  statistical correlations, dustfall and sulfation average values for
each  exposure period were plotted against the corresponding corrosion values.
Annual mean pollution values were used for plotting 16-month data.  Dustfall data,
regardless of the exposure period, displayed no recognizable correlation or trend
with  corrosion.  The correlation between sulfatior and corrosion, however, was
significant, 0.89 for the first 2-month exposure period.  Figure 132 shows this
graphically for the 2- and 16-month exposure periods.  Data from site 498-704 were
not included.   Linear equations were derived for the sulfation-corrosion relation-
ship  and a statistical analysis was made.  The analysis showed a correlation for
the 2-month exposure period statistically significant at better than the 1 percent
level, and for the 16-month exposure period statistically significant at the 1
percent level.

       A second corrosion study was made using ten corrosion panel stations during
the period December 1, 1964,  through February 28, 1965.   The sulfur oxides networks
in operation during that period at these sites are described in other parts of this
report.

       Table 51 presents the  corrosion-weight-loss results and corresponding sulfur
dioxide and sulfation measurements for each of the ten exposure sites.   Figure 133
shows the geographical distribution of the exposure sites and the corresponding
3-month corrosion rates.   As  in the earlier corrosion study, increased corrosion
occurred in the areas of greater pollution.   In this case, the cleanest site,
449-719,  was located in the western suburbs of the metropolitan area.  Compared to
this  ''clean site," corrosion  increased by 237 percent at the highest corrosion site,
499-706.   Figures 134 and 135 show the relationships between the corrosion-weight-loss
values and corresponding mean sulfur dioxide and sulfation measurements.  Equations
were  derived for these relationships,  and correlation coefficients were found to be
                                                                                159

-------
 400000' 410   420  430   440   450   460   470   480   490   500°°°' 510  520   530   540   550
Figure 131.  Corrosion isopleths from 16-month study in St.  Louis  - East St.  Louis
              Metropolitan Area (Numbers on isopleths indicate weight loss per panel
              in grams).
 160

-------
              12
              10
            in
            £
            o
            LU
            Z
            <
            CL
            o:
            U  c
            CL  6

            CO
            CO
            O
            _l

            *4
            (£

            LU
               0
         o           o    	'"
                     0	
    o    o   o   o ..•••"
  o       o   	


	C'"o°  °   ° °°o
                                               2-MONTH EXPOSURE VERSUS
                                             • 2- MONTH MEAN SULFATION
                                               RATE.
                                               16-MONTH EXPOSURE VERSUS
                                             o 12-MONTH MEAN SULFATION
                                               RATE.
                                               I	|	
                0         0.5        1.0        1.5        2.0        2.5


                  MEAN  SULFATION RATE, mg S03/I00 cm2/day
             Figure  132.  Relationship between corrosion and corre-
                          sponding mean sulfation rate measured at
                          selected  sites in the St. Louis  - East St.
                          Louis Metropolitan Area.
approximately 0.90 for all relationships, significant at the 1 percent level. These

findings are very similar to those of the earlier study, in which the correlation

coefficient for corrosion and mean sulfation rates during the first 2-month exposure

period at 34 of the 35 sites was 0.89.


Fabrics

       Tests on cotton fabrics following exposure, although made primarily to

develop a study and test methodology, led to the following observations:


       1.  There is a significant relationship between air pollution and the

degradation of cotton fabrics.  Fabrics exposed at the three sites with the highest

levels of air pollution had the greatest strength losses.
                                                                                161

-------
       2.   The economic aspects  of  air-pollution-induced cloth degradation could be
considerable.   If a fabric  article  is  serviceable until it still has one-third of
its original strength,  air  pollution can  reduce i'ts effective service life to one-
sixth or less  of that  of a  similar  article  exposed in a clean area.
       3.   The time of initiating exposure  studies is important.  The samples
exposed first  in June  degraded more rapidly than those started in December.
Reduced chemical reaction rates  resulting from lower temperatures and decreased
solar intensity may be the  cause.
       4.   Biological  deterioration does  not  seem to be a major factor in fabric
degradation in the St.  Louis  area.
    Table 51.  CORROSION AND CORRESPONDING SULFUR DIOXIDE AND
     SULFATION MEASUREMENTS OF THE 1964-65 ST. LOUIS 3-MONTH
                   SULFUR DIOXIDE SAMPLING NETWORK
Site
Coordinate
449-719
468-724
479-738
481-696
490-713
498-729
499-706
509-710
509-751
527-702
Weight loss per
panel, grams
Top
panel
3.63
7.84
6.86
4.95
6.99
8.72
12.53
8.74
7.60
4.08
Bottom
panel
3.77
7.58
6.57
5.14
6.91
8.36
12.45
7.88
7.47
4.40
Mean
3.70
7.71
6.72
5.05
6.95
8.54
12.49
8.31
7.54
4.24
S02, ppm
2 -hourly
samples
0.027
0.080
0.052
0.034
0.059
0.066
0.128
0.068
0.032
0.030
24-hourly
samples
0.021
0.069
0.048
0.028
0.049
0.057
0.106
0.052
0.026
0.029
Sulfation,
mg S03/100 cm2/
day
1.61
2.27
1.84
2.01
2.51
2.63
4.46
2.96
2.46
2.19
 162

-------
400°°°' 410   420   430  440   450   460   470
490   500"*  510  520   530   540   550
 Figure 133.   Exposure sites for 3-month (Dec  1964 -  Feb 1965) corrosion study
               in St.  Louis  - East St. Louis Metropolitan Area (Numbers at each
               site indicate weight loss  per panel in grams).
                                                                                 163

-------
                                          o  2-hr MEASUREMENTS
                                          • 24-hr MEASUREMENTS
                    0.02     0.04     0.06     0.08     0.10     0.12
                      MEAN  SULFUR DIOXIDE CONCENTRATION, ppm
0.14
           Figure 134.  Relationship between corrosion of mild steel
                        and corresponding mean sulfur dioxide con-
                        centration for 3-month (Dec 1964 - Feb 1965)
                        exposure at 1 0 St. Louis sites.
164

-------
     12345
          MEAN SULFATION RATE, mg S03/I00 cm2/day
Figure 135.  Relationship between corrosion of mild
             steel and corresponding monthly mean
             sulfation rate for 3-month (Dec 1964 -
             Feb 1965) exposure at 10 St.  Louis  sites.
                                                               165

-------
                                     REFERENCES


 1.   Kaiser, E.  R.  Odor and its measurement.   In:  Air Pollution.   A.  C.  Stern,  ed.
     Vol.  I.  Ch.  15.   Academic Press.   New York.   1962.

 2.   Keagy,  D. M.,  et  al.  Sampling stations and time requirements for urban air
     pollution surveys.  Part I:  Lead  peroxide and dustfall  collectors.   JAPCA.
     11:270-280.   June 1961.

 3.   City  of New York, Department of Air Pollution Control  News.   New York.
     May 1959.

 4.   The Air Pollution Control League's 34th annual soot  and  dustfall report for
     the City of Cincinnati,  Ohio, twelve months,  ending  June 30, 1964.

 5.   City  of Chicago,  Department of Air Pollution  Control,  Dustfall  monitoring
     networks dustfall averages from 1928 thru 1962.

 6.   Oregon  administrative rules.  Oregon state sanitary  authority.   Administrative
     order SA 16.   Statutory authority: ORS 449.800. Feb.  13, 1962.

 7.   Ambient air quality objectives. New York State Department  of Health,  Air
     Pollution Control Board.  Albany,  New York.   (Adopted  Oct.  30,  1964).

 8.   Colorado session  of laws of 1964.   House Bill No.  1050.   (Approved  March 18,
     1964).

 9.   Air Pollution  Measurements of the  National Air Sampling  Network  - Analysis of
     Suspended Particulates 1957-61.  Department of Health, Education, and  Welfare.
     Public  Health  Service Publication  No.  978. 1962.


10.   Zimmer, C.  E., E. C.  Tabor, and A. C.  Stern.   Particulate pollutants in the air
     of the United States.  JAPCA.9:136-143.   Nov. 1959.


11.   Larsen, R.  I.  A method for determining source reduction  required to meet air
     quality standards.  JAPCA.  Feb. 1961.


12.   Turner, D.  B.   A  diffusion model for an urban area.   J.  Applied Meteorology.
     3:83-91.  Feb. 1964.

13.   Sawicki, E.,  et al.  Benzo(a)pyrene content of the air of American  communities.
     American Industrial Hygiene Assoc.  21:443-451. Dec.  1960.

14.   Monroe, W.  A.   State-wide air pollution survey, smoke  index.  New Jersey State
     Health Department.  Aug. 1958.

15.   Arnold, G.  R.   Local inversions, air currents, and smoke pollution  in Cahokia
     Bottom.  (Doctor  of Science thesis) Washington University.   Sever Institute of
     Technology.   St.  Louis,  Missouri.   June 1964.

16.   Thomas, F.  W., and C. M. Davidson.  Monitoring sulfur dioxide with  lead peroxide
     cylinders.   JAPCA.  11:24-27.  Jan. 1961.
 166

-------
17.   Stalker,  W.  W.,  R.  C.  Dickerson,  and G.  D.  Kramer.   Atmospheric sulfur dioxide
     and particulate  matter.   Presented at the 23rd annual meeting of the American
     Industrial Hygiene Association.   Washington,  D. C.   May 1962.

18.   Stalker,  W.  W.,  R.  C.  Dickerson,  and G.  D.  Kramer.   Sampling station and time
     requirements for urban air pollution surveys, Part  IV: 2- and 24-hour sulfur
     dioxide and summary of other pollutants, JAPCA.  12:361-375.  Aug. 1962.

19.   California Department of Public Health,  technical report of California
     standards for ambient air and motor vehicle exhaust.  Supplement No. 2.
     Berkeley, Calif.  1962.

20.   Stern, A. C.  Summary of existing air pollution standards.  JAPCA.  14:5-15.
     Jan. 1964.

21.   The air pollution situation in Terre Haute, Indiana, with special reference to
     the hydrogen sulfide incident of May-June 1964.  Department of Health,
     Education, and Welfare.   Public Health Service and Indiana Air Pollution Control
     Board.  June 19, 1964.

22.   Braverman, M. M., and C. Theophil.  Technical report No. 2, New York City air
     pollution index.  Department of Air Pollution Control.  City of New York.
     1964.

23.   Bell, F.  A.  and G.  B.  Welsh.  Annual report of the  Metropolitan Washington
     Council of Governments oxidant sampling network, October 1961 - September 1962
     Public Health Service.  Division of Air Pollution.   Oct. 25, 1962.

24.   Raynor, G. S. and E. C.  Ogden.  Twenty-four hour dispersion of ragweed pollen
     from known sources.  Brookhaven National Laboratory.  BNL-957 (T-398)
     (Supported,  in part, by U. S. Public Health Service Research Grant No. AP-81.)

25.   Recommended standard method for continuing dustfall survey  (APM 1-a) Committee
     on Air Pollution Measurements of APCA.  JAPCA.  5:176-181.  Nov. 1955.

26.   Nader, J. S.  Dustfall retention efficiencies of dustfall collectors. JAPCA.
     8:35-38.   May 1958.

27.   Collection and analysis of dustfall, ASTM standards on methods of atmospheric
     sampling and analysis, pp. 97-100.  1962.

28.   The investigation of atmospheric pollution.  Fuel research station.  Blackwell
     Lane, Greenwick, London, S. E. 10, 1948.

29.   Department of Scientific and Industrial Research.  Atmospheric research tech.
     paper 1,  pp. 20-23.  H.  M. Stationery Office.  London.  1945.

30.   Thomas, F. W. and C, M.  Davidson.  Monitoring sulfur dioxide with lead peroxide
     cylinders.  JAPCA.   11:24-27.  Jan. 1961.

31.   Evaluation of total sulfation in the atmosphere by lead peroxide candle method.
     ASTM standards on methods of atmospheric sampling and analysis, 1962,
     pp. 125-128.

32.   Sheen, R. T., H. L. Kahler, and E. M. Ross.  Turbidimetric determination of
     sulfate in water.  Industrial Engineering Chemistry Analytical Edition.
     7:262-265.  July 15, 1935.

33.   Standard methods for the examination of water and wastewater, American Public
     Health Association, 1790 Broadway, New York.  1960.   p. 237.
                                                                                167

-------
34.  Reisch, R.  F.  Modification of the Sheen,  Kahler and Ross procedure for turbidi-
     metric determination of sulfate.  1960.   (Unpublished)

35.  Analysis of filtered air particulate matter.  'New York State Department of
     Health.  Division of Laboratories and Research.  April 17,  1961.

36.  Procedures  for the analysis of suspended particulate matter collected on glass
     fiber filters.  Department of Health, Education, and Welfare.   Public
     Health Service.   Division of Air Pollution.   Robert A. Taft Sanitary Engineer-
     ing Center.  Cincinnati, Ohio.  1963.

37.  Pack, J. C.,  D.  M. Keagy, and W.  M.  Stalker.   Developments  in the use of the
     AISI automatic smoke sampler.   JAPCA.  10:303-306.   Aug.  1960.
38.
Hemeon, W. C. L.,  G. F.  Haines,  Jr.,  and H.  M.  Ide.   Determination of haze and
smoke concentrations by  filter paper  samplers.   Air  Repair.   Aug.  1953.
39.  West, P. W., and G. C. Gaeke.  Fixation of sulfur dioxide as disulfitomercurate
     (II), subsequent colorimetric estimation.  Anal. Chem. 28:1961.  1956.

40.  Nauman, R. V., et al.  A spectrophotometric study of the Schiff reaction as
     applied to the quantitative determination of sulfur dioxide.  Anal.  Chem.
     32:1307.  1960.

41.  Pate, J. B., J. P. Lodge, and A. F. Wartburg.  Effect of pararosaniline in the
     trace determination of sulfur dioxide.  Anal. Chem. 34:1660.  1962.

42.  Welch, A. F. and J. P. Terry.  Development in the measurement of atmospheric
     sulfur dioxide.  J. Amer. Ind. Hyg. Assoc. 21:316.  1960.


43.  McCaldin, R. 0. and E. R. Hendrickson.  Use of a gas chamber for testing air
     samplers.  J. Amer. Ind. Hyg. Assoc.  20:509.   1959.


44.  Terraglio, F. P. and R. M. Manganelli.  Laboratory evaluation of sulfur dioxide
     methods.  Anal. Chem. 34:675.  1962.

45.  West, P. W. and F. Ordoveza.  Elimination of nitrogen dioxide interference in
     the determination of sulfur dioxide.   Anal. Chem. 34:1324.  1962.

46.  Haagen-Smit, A. J. and M. F. Brunelle.  The application of phenolphthalin
     reagent to atmospheric oxidant analysis.  Int. J. Air Pollution. 1:51.
     Oct. 1958.

47.  Bender, D. F. and A. W. Breidenbach   Modification of the phenolphthalin method
     for the determination of total oxidants.  Anal. Chem. 35:417.  1963.

48.  A Handbook, Colorimetric Analytical Chemical Methods.  The determination of
     atmospheric oxidants.  Part 5.  The Tintometer, Limited.  Salisbury, England.
     6th ed. 1962.

49.  Louw, C. W. and E. C. Halliday.  The accuracy of the total oxidants measurement
     as obtained by the phenolphthalin method.  Int. J. Air Pollution. 7:1033.  1963.

50.  Lada, 0. and K. Nakaaki.  On the determination of ozone in air.  Tests on the
     phenolphthalin method.  J. Sci. of Labour.  39:595.  1963.

51.  McBride, R. S. and J. D. Edwards.  Lead acetate test for hydrogen sulfide in
     gas.  N. B. S. Technical Paper No. 41.  1914.
168

-------
52.  Sensenbaugh, J. D. and W. C. L. Hemeon.  A low cost sampler for measurement of
     low concentrations of hydrogen sulfide.  Air Repair.  4:5.  May 1954.

53.  Ogden, E. C., G. S. Raynor, and J. M. Vormevik.  Construction and use of the
     intermittent rotoslide pollen sampler.  Pollen and Mold Committee.  American
     Academy of Allergy.  Milwaukee, Wise.  1964.

54.  Durham, 0. C.   Report of the National Pollen Survey Committee of the American
     Academy of Allergy on a conversion factor for gravity slide counts.
     J. Allergy.  18:284.  1947.

55.  Ogden, E. C. and G. S. Raynor.  Field evaluation of ragweed pollen samplers.
     J. of Allergy.  31:307-316.  July-Aug. 1960.

56.  McCormick, R.  A. and D. IV. Baulch.  The variation with height of the dust
     loading over a city as determined from the atmospheric turbidity.   JAPCA.
     12:492-496.  Oct. 1962.

57.  Upham, J. B.  Materials deterioration and air pollution.  Presented at the 57th
     Annual Meeting of the Air Pollution Control Association.  Houston, Texas.
     June 23, 1964.

58.  Pollution of the atmosphere in the Detroit River area.  Report of the
     International Joint Commission, United States and Canada.  1960.

59.  The Louisville air pollution study.  Robert A. Taft Sanitary Engineering
     Center technical report A61-4.  Department of Health, Education, § Welfare.
     Public Health Service.  Cincinnati, Ohio.  1961.

60.  McCaldin, R. 0. and W. E. Bye.  Air pollution appraisal - Seward and
     New Florence,  Pennsylvania.  Department of Health, Education, § Welfare.
     Public Health Service.  Robert A. Taft Sanitary Engineering Center.
     Cincinnati, Ohio.  1961.

61.  Investigation of atmospheric pollution.  27th report.  Department  of Scientific
     and Industrial Research.  H. M. Printing Office.   London.  1955.

62.  Air Pollution Measurements of the National Air Sampling Network -  Analysis of
     Suspended Particulates 1963.  Department of Health, Education, and Welfare.
     Public Health Service.  1965.

63.  Division of Smoke Regulation.   City of St. Louis, Missouri.  Annual report for
     fiscal year 1957-58.  June 1958.

64.  Division of Smoke Regulation.   City of St. Louis, Missouri.  Annual report for
     fiscal year 1958-59.  July 1959.

65.  Division of Air Pollution Control.  City of St. Louis, Missouri.  Annual report
     for fiscal year 1962-63.  June 1963.

66.  Air Hygiene Foundation of America, Inc. - Special Research Series  Bulletin No. 1.
     Parts I and II - Concentrations of volatile sulfur compounds in atmospheric
     air. 1937 and 1938.

67.  Schueneman, J.  J.  Atmospheric  concentrations of sulfur dioxide in  St.  Louis,
     1950.   Industrial Hygiene Quarterly.   12:30-36.  March 1951.

68.  The concentrations of oxidizing substances in the atmosphere of a  number of
     American cities, July 10, 1953 -  July 10, 1954.  Project S and F 6.8 to
     American Petroleum Institute,  Smoke and Fumes Committee, from Kettering
                                                                                169

-------
     Laboratories.  Department of Preventive Medicine and Industrial Health.
     College of Medicine.  University of Cincinnati.  Sept. 1, 1954.

69.  Air quality data.  National Air Sampling Network,  Department of Health,
     Education, and Welfare.  Public Health Service.  1962.


70.  Edmisten,  Norman C.   Tobacco Plant - Ozone Study Report.   In preparation.

71.  Jutze, G.  A.  and E.  C.  Tabor.   The continuous air monitoring program.   JAPCA
     13:278-280.   June 1963.
 170

-------
                                       APPENDIX
         AIR QUALITY MEASUREMENT STATIONS EXCEPT SULFUR DIOXIDE WINTER NETWORKS
                       Ascending order of site coordinate numbers
   Site
Coordinate
Address
Station Name
City § State
  407-770    Metropolitan Life Ins. Co.
             814 Clay St.
  421-729    11720 Olive St. Road
  432-715    St. Louis Co. Pub. Library
             1640 S. Lindbergh Blvd.
  433-565    Festus Jr. High School
             711 W. Main St.
  435-589    Mueller Lumber Co.
  435-717    N § K Associates
             9827 Clayton Road
  436-743    West Overland Fire Dist.
             2831 Ashby Road
  438-689    42 Crestwood Plaza
  449-719    801 S. Brentwood
  451-728    University City
             Fire Station No. 3
             1045 North $ South Road
  453-701    St. Michael School
             76730 Sutherland Ave.
  457-766    Florissant School Dist.
               Bus Garage
             1894 New Florissant Road
  458-715    6420 Clayton Road
  463-691    Schnuck Super Market
             7450 Hampton Road
  464-740    Walgreen Drug Store
             1 Normandy Shopping Center
  465-731    Central Hardware Co.
             6250 Easton Ave.
  467-758    10132 W. Florissant
  468-665    Veterans Admin. Hospital
             Lindbergh at Mississippi R.
  469-683    Lemay Bank and Trust
             152 Lemay-Ferry Road
  469-705    C.  Rallo Construction Co.
             5000 Kemper Ave.
                     St. Charles

                     Creve Coeur
                     Kirkwood

                     Festus

                     Pevely
                     Ladue

                     Overland

                     Crestwood
                     Brentwood
                     University City

                     Shrewsbury

                     Florissant

                     St. Mary Hospital
                     Schnuck

                     Northwoods

                     Wellston

                     Dellwood
                     Jefferson Barracks

                     Lemay

                     Rallo
                    St. Charles, Mo.

                    St. Louis, Mo. 63141
                    St. Louis, Mo. 63124

                    Festus, Mo.

                    Pevely, Mo.
                    St. Louis, Mo. 63124

                    St. Louis, Mo. 63114

                    St. Louis, Mo. 63126
                    St. Louis, Mo. 63105
                    St. Louis, Mo. 63130

                    St. Louis, Mo. 63119

                    St. Louis, MO. 63135

                    St. Louis, Mo. 6131^
                    St. Louis, Mo. 63109

                    St. Louis, Mo. 63124

                    St. Louis, Mo. 63133

                    St. Louis, Mo. 63136
                    St. Louis, Mo. 63125

                    St. Louis, Mo. 63125

                    St. Louis, Mo. 63139
                                                                                    171

-------
   Site
Coordinate
Address
Station Name
City § State
469-749 Peoples 905 Liquor Store
        7445 W. Florissant
469-750 Northland Shopping Center
        Lucas § Hunt at W. Floris-
          sant
470-718 Steinberg Skating Rink
        Forest Park
471-714 St. Louis University High
          School, 4970 Oakland Ave
472-680 8900 S. Broadway
476-724 1421 N. Taylor
477-758 Bell Telephone Co.
        10024 Duke Drive, Jennings
479-704 St. Elizabeth Academy
        3401 Arsenal St.
480-725 2601 Whittier St.
481-698 3919 Iowa
482-697 3933 S. Broadway
482-699 3641 S. Jefferson
485-714 2810 Clark St.
488-672 600 Louisiana
489-728 1901 Penrose

490-646 119 Cherry St.
490-713 1300 Market St.
490-730 4560 N. 2nd St.
494-703 Monsanto Terminal
        Mississippi River
495-693 Rts.  157  § 3

495-709 MacArthur Bridge
495-809  101 E.  3rd St.
498-704 Highway 3
499-700  2897  Monsanto  Ave.
499-724  4th  § Washington
501-713  7 Collinsville Ave.
505-740  2000  Edison  St.
505-740  20th  5 State
507-741  23rd  § Madison
509-710  638 N. 20th  St.
517-692  5900 Bond Ave.
             Jennings

             Northland

             Steinberg

             St.  Louis U.H.S.

             Aero Charts
             Visitation School
             Moline Acres

             St.  Elizabeth

            Homer G. Phillips Hosp.
            Iowa
            Alexian Brothers Hosp.
            A. § P.
            St. L. Testing Lab.
            Dupo Comm'l High Schl.
            Penrose Police Sta. 5th
              District
            Columbia Fire Dept.
            Municipal Cts. Bldg.
            Western Trucking Co.
            Monsanto Terminal

            Parks College of St.Louis
            University - Mercury Hall
            MacArthur
            Alton City Hall
            Young-Wheeler Lbr. Co.
            Monsanto Village Hall
            Brooklyn Fire Dept.
            E. St.  Louis City Hall
            Granite City City Hall
            Granite City Steel Office
            Granite City Fire Station
             East  Side Health District
            Centreville Twp. Gen'l Hosp
                 St. Louis, Mo. 63136

                 St. Louis, Mo. 63136

                 St. Louis, Mo.

                 St. Louis, Mo. 63110

                 St. Louis, Mo. 63129
                 St. Louis, Mo. 63113
                 St. Louis, Mo. 63136

                 St. Louis, Mo. 63118

                 St. Louis, Mo. 63115
                 St. Louis, Mo. 63118
                 St. Louis, Mo. 63111
                 St. Louis, Mo. 63118
                 St. Louis, Mo. 63103
                 Dupo, 111.
                 St. Louis, Mo. 63107

                 Columbia, 111.
                 St. Louis, Mo. 63103
                 St. Louis, Mo. 63147
                 Monsanto, 111.

                 Centreville, 111.

                 State line - Mo.-111.
                 Alton, 111.
                 Monsanto, 111.
                 Monsanto, 111.
                 Lovejoy, 111.
                 E.  St. Louis, 111.
                 Granite City, 111.
                 Granite City, 111.
                 Granite City, 111.
                 E.  St. Louis, 111.
                 Centreville, 111.
 172

-------
Site
Coordinate
517-762
520-790
520-798
Address
5429 Maryville Rd.
507 N. Delmar
Wood River City
Station Name
Cedar Park Confectionery
Hartford Fire Department
Wood River
City § State
Granite City, 111.
Hartford, 111.
Wood River, 111.
           Hall § Fire Dept.

521-725    Canteen School
           Kingshighway §
             Hwy. 40

534-702    French Village Dist.
             HW.  Garage
           9300 St.  Clair

554-668    U.S. Army Reserve
             Center
           500 South Belt East

585-683    Scott  Air Force Base
           Provost Marshall's
             office
Canteen
French Village
Belleville
Scott AFB
Canteen, 111.
E. St. Louis, 111.
Belleville, 111.
Scott Air Force Base,
  Illinois
                                                                                  173

-------
       AIR QUALITY MEASUREMENT STATIONS EXCEPT SULFUR DIOXIDE WINTER NETWORKS
                             Alphabetical order by name
         Station Name
         Address
   Site
Coordinate
     City § State
A. § P.
Aero Charts
Alexian Brothers Hospital
Alton

Belleville

Brentwood
Brooklyn

Canteen

Cedar Park

Centrevilie

Columbia

Creve Coeur
Crestwood
Dellwood
Dupo

E. St. Louis City Hall
East Side Health Dist.
Festus

Florissant

French Village

Granite City City Hall
3641 S. Jefferson
8900 S. Broadway
3933 S. Broadway
Alton City Hall
101 E. 3rd St.
U.S. Army Reserve Ctr.
500 South Belt. East.
801 S. Brentwood
Brooklyn Fire Dept.
4th § Washington
Canteen School
Kingshighway § Hwy. 40
Cedar Pk. Confect'y
5429 Maryville Rd.
Centreville Twp.
  General Hospital
5900 Bond Ave.
Columbia Fire Dept.
119 Cherry St.
11720 Olive St. Road
42 Crestwood Plaza
10132 W. Florissant
Dupo Comm'l High Schl.
600 Louisiana
7 Collinsville Ave.
638 N. 20th St.
Festus Jr. High Schl.
711 W. Main St.

Florissant School Dist.
  Bus Garage
1894 New Florissant Rd.
French Village Dist.
  Hwy. Garage
9300 St. Clair
2000 Edison St.
  482-699    St. Louis, Mo. 63118
  472-680    St. Louis, Mo. 63129
  482-697    St. Louis, Mo. 63111
  495-809    Alton, 111.

  554-668    Belleville, 111.

  449-719    St. Louis, Mo. 63105
  499-724    Lovejoy, 111.

  521-725    Canteen, 111.

  517-762    Granite City, 111.

  517-692    Centreville, 111.

  490-646    Columbia, 111.

  421-729    St. Louis, Mo. 63141
  438-689    St. Louis, Mo. 63126
  467-758    St. Louis, Mo. 63136
  488-672    Dupo, 111.

  501-713    East St. Louis, 111.
  509-710    East St. Louis, 111.
  433-565    Festus, Mo.

  457-766    St. Louis, Mo. 63135
  534-702
E.  St.  Louis, 111.
  505-740    Granite City, 111.
174

-------
Station Name
Granite City Fire Sta.
Granite City Steel Office
Hartford
Homer G. Phillips Hospital
Iowa
Jefferson Barracks
Jennings
Kirkwood
Ladue
Lemay
MacArthur
Moline Acres
Monsanto
Monsanto Terminal
Monsanto Village
Site
Address Coordinate
23rd § Madison
20th § State
Hartford Fire Dept.
S07 N. Delmar
2601 Whittier St.
3919 Iowa
V. A. Hospital
Lindbergh at Mississip-
pi River
Peoples 905 Liquor Store
7445 W. Florissant
St. Louis County Public
Library
1640 S. Lindbergh Blvd.
N§K Associates
9827 Clayton Road
Lemay Bank § Trust
152 Lemay Ferry Rd.
MacArthur Bridge
Bell Telephone Co.
10024 Duke Drive
Young-Wheeler Lbr. Co.
Highway 3
Mississippi River
Monsanto Village Hall
2897 Monsanto Ave.
507-741
505-740
520-790
480-725
481-698
468-665
469-749
432-715
435-717
469-683
495-709
477-758
498-704
494-703
499-700
City § State
Granite City, 111.
Granite City, 111.
Hartford, 111.
St. Louis, Mo. 63115
St. Louis, Mo. 63118
St. Louis, Mo. 63125
St. Louis, Mo. 63136
St. Louis, Mo. 63124
St. Louis, Mo. 63124
St. Louis, Mo. 63125
Missouri - Illinois
State line
St. Louis, Mo. 63136
Monsanto, 111.
Monsanto, 111.
Monsanto, 111.
Municipal Courts


Northland


Northwoods


Overland


Parks College



Penrose


Pevely

Rallo
Municipal Court Bldg.      490-713
1300 Market St.

Northland Shopping Center  469-750
Lucas-Hunt at W. Floris-
  sant

Walgreen Drug Store        464-740
1 Normandy Shopping Ctr.
West Overland Fire Dist.   436-743
2831 Ashby Road

Parks College of           495-693
St. Louis University
Mercury Hall, Rts. 157 S 3

Police Station (Sth Dist.)
1901 Penrose

Mueller Lumber Co.         435-589

C. Rallo Construction Co.  469-705
5000 Kemper Ave.
           St. Louis, Mo. 63103


           St. Louis, Mo. 63136



           St. Louis, Mo. 63124

           St. Louis, Mo. 63114


           Centreville, 111.



489-728    St. Louis, Mo. 63107


           Pevely, Mo.

           St. Louis, Mo. 63139
                                                                                   175

-------
   Station Name
    Address
                                                   Site
                                                Coordinate
City § State
St. Charles

St. Elizabeth

St. Louis Testing Lab.
St. Louis U.H.S.

St. Mary Hospital
Schnuck

Scott Air Force Base
Shrewsbury

Steinberg

University City

Visitation

Welisten

Western

Wood River
Metropolitan Life Ins.     407-770
  Co., 814 Clay Street
St. Elizabeth Academy      479-704
3401 Arsenal St.
2810 Clark St.              485-714
St. Louis University       471-714
High School
4970 Oakland Ave.
6420 Clayton Road          458-715
Schnuck Super Market       463-691
7450 Hampton Road
Provost Marshall's Office  585-683
St. Michael School         453-701
76730 Sutherland Ave.
Steinberg Skating Rink     470-718
Forest Park
University City Fire       451-728
  Station No. 3
1045 North § South Rd.
Visitation School          476-724
1421 N. Taylor
Central Hardware Co.       465-731
6250 Easton Ave.
Western Trucking Co.       490-730
4560 N. 2nd St.
Wood River City Hall       520-798
  f, Fire Dept.
St. Charles, Missouri

St. Louis, Mo. 63118

St. Louis, Mo. 63103
St. Louis, Mo. 63110

St. Louis, Mo. 63117
St. Louis, Mo. 63109

Scott A.F. Base, Illinois
St. Louis, Mo. 63119

St. Louis, Mo.

St. Louis, Mo. 63130

St. Louis, Mo. 63113

St. Louis, Mo. 63133

St. Louis, Mo. 63147

Wood River, 111.
176

-------
                       SULFUR DIOXIDE WINTER NETWORK STATIONS

                        By Ascending Site-Coordinate Numbers
Site
Coordinate
449-719
Address and Location
Northwest corner of St. Louis County Health
Station
No.
33
State
Missouri
                Building, Brentwood Boulevard (Brentwood).

450-703       Power pole on southwest corner of Newport and      35
                Summit Avenues (Webster Groves).

453-735       Power pole with street light,  north end of         31
                Vinita Drive, near intersection of Vinita
                and Monroe Drives (Vinita Terrace).

466-742       Power pole with street light,  southeast of the     29
                intersection of Crestland and Florian
                Streets (Northwoods).

467-697       Power pole with transformer No. 52/10  in alley     37
                (approximately 50 ft.)  east  of Brannon Avenue
                between Itaska and Delor Streets.

468-718       Power pole near creek on  north side of lower       19
                parking lot east of Municipal Theater in
                Forest Park.

468-724       Power pole on northwest corner of Belt and
                Gates Avenue.                                     17

471-689       Power pole with transformer, south side of         39
                street in front of 3728 Blow Street, between
                Eugenia and Field Streets.

472-707       Power pole with transformer No. 4518,  on north     21
                side of alley (just off Alfred Street)
                between Magnolia Avenue and Tower Grove Place.

474-756       Power pole No. 2108, south side of Kappel Drive,    27
                off Halls Ferry Road.  Second pole east of
                Nolte Avenue (Moline Acres).

478-723       Power pole in alley at northwest corner of lot     49
                behind 4215 West Page Boulevard, between
                Whittier and Pendleton  Avenues.
479-738       Power pole in alley at southwest corner of lot     15
                behind 5449 Geraldine Street, north  of
                Harney Street.

480-682       Power pole with street light No. 86, northwest     40
                side of South 7th Street, southwest  of school
                playground (E.  Carondelet).

480-712       Power pole west side of Rankin Street, at alley    11
                between Caroline and Rutger Streets.

481-696       Power pole on southwest corner of Ohio and
                Gasconade Streets.                               23
Missouri


Missouri



Missouri



Missouri



Missouri




Missouri

Missouri



Missouri



Missouri



Missouri


Missouri



Illinois


Missouri



Missouri
                                                                                   177

-------
   Site
Coordinate
               Address and Location
Station
Number
State
   486-718



   487-706



   488-730



   490-713

   490-759



   491-692



  494-721



  498-696


  498-717



  498-729



  499-706




  499-743



  501-713




  502-736




  503-723



  509-700
Power pole with transformer,  northeast of           5
  intersection Leffingwell and Cole Streets.
  Vacant lot on corner.

Power pole with transformer No. 2205;   first        13
  pole south of Ann Street in alley between
  llth and 12th Streets.
Power pole with transformer south side of street
  in front of 1914 Obear Street, between 20th and
  Blair Streets.                                    7
North side of CAMP Station, 12th and Clark Streets.  3
Power pole with street light, north side of        25
  Cameron Street, west of Crawford Street
  (Riverview).
Power pole with transformer and light, southeast   26
  corner of 4th and Green Streets intersection
  (Cahokia).

Power pole with  transformer, between  1st  and        1
  2nd Street, south side  of  Ryerson Parking lot.


Power pole No. 1702, in front  of 217 Julian       24
  Street at  north end of  side  street  (Cahokia).
Power pole with  street  light No. 609 on east  side   2
  of Front Street, 2000 feet north of Broadway
  (E. St. Louis).
Power pole with  street  light,  50 yards east of      4
  3rd Street, north side  of  Hampden.  (Venice,
  111.).
Power pole in school yard east of Easterly        10
  Elementary School, 1060 Liberty Street,
  approximately  150 feet  from  street.
  (E. St. Louis).
Power pole with  street  light, southwest of        16
  Cayuga Street  and McCasland  Ave.
  (Granite City,  111.).
Power pole with  transformer  in E. St. Louis         8
  Municipal  parking lot,  behind City Hall.
  Pole  furnishes power  to 17 Main Street
  (E. St.  Louis).
Power pole with  street  light,  between 10th          18
  and 12th Streets on east side of State
  Street.  About 200 yards north of 10th
  Street.
Power pole  40  feet north  of  Big Bend  rtoad, next    (,
  to  railroad;  furnisnes  power to  RR  Signal  211
  (National  City).
Power pole  at  end of South 36th Street,  off        14
  (Highway  13)  Bond Avenue (E. St.  Louis).
               Missouri
              Missouri
               Missouri
               Missouri
               Missouri



               Illinois



               Missouri


               Illinois

               Illinois


               Illinois



               Illinois



               Illinois


               Illinois



               Illinois



               Illinois


               Illinois
   178

-------
   Site
Coordinate
Address and Location
Station
  No.
State
  509-710        Power pole south of East Side Health District     12
                   628 N. 20th Street, E. St. Louis; supplies
                   power to building.  Approximately 100 feet
                   east of street. (E. St. Louis).

  509-720        Power pole with transformer, supplying power      20
                   to Radio Station KATZ off Alternate 67
                   north of Highway 70 (St. Glair County).

  509-751        Power pole with transformer, furnished to          28
                   Box 1012 Pontoon Rd., Granite City, 111.
                   %-mile east of Highway Alternate 67
                   (Madison County).

  513-742        Power pole No. 2832, south side of street         30
                   in front of 2832 E. 25th Street, block
                   east of Nameoki Avenue  (Granite City).

  515-690        Power pole with transformer No. 15236, west       38
                   side and in front of 6210 Church Street
                   (Centreville).

  518-716        Power pole with street light, northeast           22
                   of Lincoln Avenue and 45th Street
                   intersection (E. St. Louis).

  521-733        Power pole No. 18397 supplying electricity        32
                   to the pink trailer house with the
                   painted wood rail fence at the end of the
                   right fork of Bend Road (Horse Shoe Lake area).

  527-702        Power pole on north side of Eureka Street, at     36
                   alley between 77th and 78th Streets
                   (E. St. Louis).

  533-717        Power pole with transformer, south side and       34
                   in front of 8500 Forest Blvd.
                   (St. Clair County).
                                                Illinois
                                                Illinois
                                                Illinois
                                                Illinois
                                                Illinois
                                                Illinois
                                                Illinois
                                                Illinois
                                                Illinois

-------
                        SULFUR DIOXIDE WINTER NETWORK STATIONS

                             By Numerical Station Numbers
Station
  No.
Address and Location
  Site
Coordinate
                                                    State
   1      Power pole with transformer, between 1st and 2nd Streets*
            south side of Ryerson Parking Lot.

   2      Power pole with street light No. 609 on east side of
            Front Street, 2000 feet north of Broadway.
            (E. St. Louis).

   3      North side of CAMP Station, 12th and Clark Streets.

   4      Power pole with street light, 50 yards east of 3rd
            Street, north side of Hampden.  (Venice, 111.}.

   5      Power pole with transformer, northeast of intersection
            Leffingwell and Cole Streets.  Vacant lot on
            corner.
   6      Power pole 40 feet north of Bend Road next to railroad;
            furnishes power to RR Signal 211 (National City).

   7      Power pole with transformer, south side of street in
            front of 1914 Obear Street.between 20th and Blair
            Streets.

   8      Power pole with transformer in E. St. Louis Municipal
            parking lot, behind City Hall.  Pole furnishes
            power to 17 Main Street (E. St. Louis).

   9      Installed but not operable.  Moved to Site 49.

  10      Power pole in school yard east of Easterly Elementary
            School, 1060 Liberty Street, approximately 150 feet
            from street. (E. St. Louis).

  11      Power pole west side of Rankin Street,at alley between
            Caroline and Rutger Streets.
  12      Power pole south of East Side Health District,
            628 N. 20th Street, E. St. Louis; supplies power
            to building.  Approximately 100 feet east of
            street.  (E. St. Louis).

  13      Power pole with transformer No. 2205; first pole south
            of Ann Street in alley between llth and 12th Streets.

  14      Power pole at end of South 36th Street, off  (Highway 13)
            Bond Avenue.   (E. St. Louis).

  15      Power pole in alley at southwest corner of  lot behind
            5449 Geraldine Street, north of Harney Street.

  16      Power pole with street light, southwest of  Cayuga
            Street and McCasland Avenue.   (Granite City).
                                      494-721


                                      498-717



                                      490-713

                                      498-729


                                      486-718



                                      503-723


                                      488-730



                                      501-713
              Missouri


              Illinois


              Missouri

              Illinois


              Missouri



              Illinois


              Missouri



              Illinois

499-706
480-712
509-710
487-706
509-700
479-738
499-743
Missouri
Illinois
Missouri
Illinois
Missouri
Illinois
Missouri
Illinois-
  180

-------
Station
No.
17
18

19
20
Address and Location
Power pole on northwest corner of Belt and Gates
Avenue.
Power pole with street light, between 10th and 12th
Streets on east side of State Street. About 200
yards north of 10th Street.
Pole near creek on north side of lower parking lot
east of Municipal Theater in Forest Park.
Power pole with transformer, supplying power to
Site
Coordinate
468-724
502-736

468-718
509-720
State
Missouri
Illinois

Missouri
Illinois
          Radio Station KATZ off Alternate 67 north of
          Highway 70 (St. Clair County).

21      Power pole with transformer No. 4518, on north side        472-707     Missouri
          of alley (just off Alfred Street) between Magnolia
          Avenue and Tower Grove Place.

22      Power pole with street light:northeast of Lincoln          518-716     Illinois
          Avenue and 45th Street intersection (E. St. Louis),

23       Power pole on southwest corner of Ohio and Gasconade      481-696      Missouri
           Streets.
24       Power pole No. 1702, in front of 217 Julian Street at     498-696      Illinois
           north end of side street (Cahokia).
25       Power pole with street light, north side of Cameron       490-759      Missouri
           Street, west of Crawford Street '(Riverview).
26       Power pole with transformer and light,  southeast          491-692      Illinois
           corner of 4th and Green Streets intersection
           (Cahokia).
27       Power pole No. 2108, south side of Kappel Drive,off       474-756      Missouri
           Halls Ferry Road.   Second pole east of Nolte
           Avenue (Moline Acres).

28       Power pole with transformer,  furnished to Box 1012        509-751      Illinois
           Pontoon Road, Granite City, 111. %-mile east  of
           Highway Alternate 67 (Madison County).
29       Power pole with street light, southeast of the             466-742      Missouri
           intersection of Crestland and Florian Streets
           (Northwoods).
30       Power pole No. 2832, south side of street in front        513-742      Illinois
           of 2832 E.  25th Street, block east ?f Nameoki
           Avenue (Granite City).
31       Power pole with street light, north end of Vinita         453-735      Missouri
           Drive, near intersection of Vinita and Monroe
           Drives(Vinita Terrace).
32       Power pole No. 18397 supplying- electricity to the         521-733      Illinois
           pink trailer house with the painted wood rail
           fence at the end of the right fork of Bend
           Road (Horse Shoe Lake area).
33       Northwest corner of St. Louis County Health Building,     449-719      Missouri
           Brentwood Boulevard (Brentwood).

34       Power pole with transformer,  south side and in  front      533-717      Illinois
           of 8500 Forest Boulevard (St. Clair County).
                                                                                     181

-------
Station
No.
35
36
37
Address and Location
Power pole on southwest corner of Newport and
Summit Avenues (Webster Groves).
Power pole on north side of Eureka Street at alley
between 77th and 78th Streets (E. St. Louis).
Power pole with transformer No. 52/10 in alley
(approximately 50 feet) east of Brannon Avenue,
between Itaska and Delor Streets.
Site
Coordinate
450-703
527-702
467-697
State
Missouri
Illinois
Missouri
 38       Power pole with transformer No.  15236, west side          515-690      Illinois
            and in front of 6210 Church Street (Centreville).
 39       Power pole with transformer, south side of street         471-689      Missouri
            in front of 3728 Blow Street,  between Eugenia
            and Field Streets.
 40       Power pole with street light No. 86, northwest            480-682      Illinois
            side of South 7th Street, southwest of school
            playground (E. Carondelet).
 49       Power pole in alley at northwest corner of lot            478-723      Missouri
            behind 4215 West Page Boulevard, between
            Whittier and Pendleton Avenues.
182

-------