WATER PHYSICS NO. 1
Report Number 39
Report of a Study Conducted by
ANALYTICAL REFERENCE SERVICE
R. J. Lishka and E. F. McFarren
Division of Water Hygiene
ENVIRONMENTAL PROTECTION AGENCY
Water Quality Office
Cincinnati, Ohio 45213
1971
-------
-------
WATER PHYSICS NO. 1
Report Number 39
Report of a Study Conducted by
ANALYTICAL REFERENCE SERVICE
R. J. Lishka and E. F. McFarren
Division of Water Hygiene
ENVIRONMENTAL PROTECTION AGENCY
Water Quality Office
Cincinnati, Ohio 45213
1971
-------
-------
FOREWORD
The Analytical Reference Service (ARS) is conducted by the
Division of Water Hygiene of the Environmental Protection Agency to
evaluate laboratory methods in the environmental field. Cooperative
studies by member organizations, who analyze identical samples and
critically review methodology, provide the mechanism for:
Evaluation of analytical procedures, including
precision and accuracy, by comparison of the
procedures and results reported by participating
laboratories.
Exchange of information regarding method char-
acteristics.
Improvement or replacement of existing methods
by development of more accurate procedures, and
development of new methodology for determination
of new pollution compounds.
Samples are designed to contain measured amounts of selected
constituents. Decisions as to qualitative makeup are made by the
membership, consultants, and the ARS staff. Notice of each study is
sent to the entire membership. To those who desire to participate, a
portion of the study sample is sent, along with data forms for reporting
numerical values, a critique of the procedures used, comments on
modifications, sources of error, difficulties encountered, or other
pertinent factors. The results and comments received are compiled,
and a report of each study is prepared.
Now primarily directed toward examination of water, in the
past studies have included methods for analysis of air, milk, and food.
Some studies are periodically repeated for the advantage of new mem-
bers, the evaluation of new methods, or the reevaluation of existing
methods.
The selection of studies is guided by requests from standard
methods committees and the responses to questionnaires periodically
circulated among the membership, which now includes 299 Federal,
state, and municipal agencies; industries; universities; consulting
firms; and foreign agencies.
HI
-------
COMPLETED STUDIES
Water Minerals
Water Metals
Water Fluoride
Water Radioactivity
Water Surfactant
Water Oxygen Demand
Water Trace Elements
Calcium, magnesium, hardness, sulfate,
chloride, alkalinity, nitrite, nitrate, sodium,
and potassium; study No. 1 completed in 1956,
No. 2 in 1958 and No. 3 in 1961.
Lead, copper, cadmium, aluminum, chro-
mium, iron, manganese, and zinc; study No.
1 completed in 1957 and No. 2 in 1962. These
same metals plus silver; study No. 3 com-
pleted in 1965. Except for the substitution of
magnesium for aluminum, these same metals
were analyzed by atomic absorption in 1967;
study No. 4. Copper, manganese, and alum-
inum in the presence and absence of interfer-
ences; study No. 5 completed in 1969. Alum-
inum, beryllium and barium by atomic absorp-
tion; study No. 6 completed in 1970.
Fluoride in the presence and absence of inter-
ferences, with and without distillation by a
specified procedure; study No. 1 completed
in 1958 and No. 2 in 1961. Fluoride by ion-
exchange and fluoride electrode; study No. 3
completed in 1969.
Gross beta activity; study No. 1 completed
in 1959 and No. 2 in 1961. Gross beta and
strontium-90 activity; study No. 3 completed
in 1963.
Surfactant in various waters; study No. 1
completed in 1959, No. 2 in 1963 and No. 3
in 1968.
Biochemical oxygen demand and chemical
oxygen demand; study No. 1 completed in
1960. Chemical oxygen demand; study No.
2 completed in 1965.
Arsenic, boron, selenium, and beryllium;
study No. 1 completed in 1962. These same
metals plus vanadium; study No. 2 completed
in 1966.
-------
Freshwater Plankton
Water Nutrients
Evaluation of the precision and accuracy
obtainable by the use of various methods of
plankton counting and identification; study
No. 1 completed in 1964.
Silicate, phosphate, ammonia nitrogen,
organic nitrogen, and nitrate nitrogen;
study No. 1 completed in 1966. Ammonia
nitrogen, nitrate nitrogen and ortho, poly,
and organic phosphate; study No. 2 completed
in 1969.
Water Phenols
Water Cyanides
Water Chlorine
Air Inorganics
Phenol and 2, 4-dichlorophenol in water by
two specified methods; study No. 1 completed
in 1966.
Potassium cyanide and potassium ferricyanide
in water by two specified methods; study No.
1 completed in 1967.
Free and combined chlorine by nine different
methods; study No. 1 completed in 1969.
Chloride, sulfate, fluoride, and nitrate in
aqueous solution and on glass-fiber, high-
volume filter mats; study No. 1 completed
in 1958.
Air Lead
Air Particulates
Air Sulfur Dioxide
Water Pesticides
Filter paper tape impregnated with lead;
study No. 1 completed in 1961.
Microscopic identification of some common
atmospheric particulates; study No. 1 com-
pleted in 1964.
Sulfur dioxide in air by a specified method;
study No. 1 completed in 1963.
Lindane, heptachlor epoxide, DDE, and
dieldrin in water; study No. 1 completed in
1965. Lindane, heptachlor, aldrin, hepta-
chlor epoxide, p, p'-DDE, dieldrin, endrin,
o, p'-DDT, p, p'-DDT, and methoxychlor in
water; study No. 2 completed in 1968. Lin-
dane, heptachlor epoxide, dieldrin, hepta-
chlor, p, p'-DDT and endrin; study No. 3
completed in 1970.
-------
Food Pesticides DDT in milk; study No. 1 completed in 1962.
Lindane, heptachlor epoxide, DDE, and diel-
drin in milk; study No. 2 completed in 1965.
Water Physics Total Alkalinity, pH, specific conductance
and total residue in water; study No. 1 com-
pleted in 1970.
Copies of these reports are available from ARS on request as
long as the present supply lasts. In most cases reports published prior
to 1965 are no longer available. Order by title; namely, Water Metals
No. 4, or Water Surfactant No. 3, etc.
-------
CONTENTS
Page
PREFACE ix
PARTICIPANTS IN THIS STUDY x
ABSTRACT xv
DESIGN OF THE STUDY 1
TREATMENT OF THE DATA i
RESULTS 2
Alkalinity 2
pH 21
Specific Conductance 21
Total Residue 45
COMMENTS OF THE PARTICIPANTS 77
SUMMARY AND CONCLUSIONS 80
BIBLIOGRAPHY 81
APPENDICES 83
A. Tabulation of Results 84
B. Glossary of Statistical Terms 138
C. Tests for Normality and Rejection of Outliers . . 141
D. Comparison of Methods for Statistically
Significant Differences in Precision
and Accuracy 144
E. Analytical Reference Service Membership . . . . 147
Vll
-------
-------
PREFACE
The present 12th edition of Standard Methods for the Exami-
nation of Water and Wastewater offers three methods of detecting the
endpoint in the total alkalinity titration which have not been evaluated
by collaborative study. This study was proposed to perform such an
evaluation and at the same time develop precision and accuracy data
for the measurement of total residue at the two different drying tem-
peratures suggested in Standard Methods. The nature of the samples
made it expedient also to evaluate the precision and accuracy of the
specific conductance measurement, and to reevaluate the measure-
ment of pH because the precision and accuracy data presently in
Standard Methods were obtained from a study conducted 12 years ago
and since then, many improved pH meters have been developed.
-------
PARTICIPANTS IN THIS STUDY
Alabama Water Improvement Commission, Montgomery
Allentown City Laboratory, Pennsylvania
Arkansas Pollution Control Commission, Little Rock
Armco Steel Corporation, Middletown, Ohio
Atlanta Department of Public Health, Georgia
Bay Area APCD, San Francisco, California
Bio-Technics Laboratories, Inc., Los Angeles, California
Black & Veatch, Kansas City, Missouri
Borg-Warner Corporation, Des Plaines, Illinois
Brown & Caldwell Laboratories, San Francisco, California
Bureau of Industrial Hygiene, Richmond, Virginia
BWH Fluoridation Laboratory, Bethesda, Maryland
California State Health Department, Los Angeles
California Water Service Company, San Jose
Calgon Corporation, Pittsburgh, Pennsylvania
Carnegie-Mellon University, Pittsburgh, Pennsylvania
Central New York Laboratory, Syracuse
Chrysler Corporation, Detroit, Michigan
City of Amarillo, Texas
City of Charlotte Water Department, North Carolina
City of Cincinnati, Department of Sewers, Ohio
City of Durham, North Carolina
City of Flint Water Plant, Michigan
City's Institute for Health Protection, Beograd, Yugoslavia
County of Fresno, California
Denver Board of Water Commissioners, Colorado
Department of Energy, Mines & Resources, Ottawa, Ontario, Canada
Department of Health & Rehabilitative Services, Jacksonville, Florida
Department of Municipal Laboratories, Hamilton, Ontario, Canada
Department of National Health & Welfare, Vancouver, B.C., Canada
Department of Public Health, Lidcombe, N. S, W., Australia
Department of Water & Air Resources, Raleigh, North Carolina
Department of Water & Power of the City of Los Angeles, California
East Bay Municipal Utility District, Oakland, California
Environmental Health Centre, Ottawa, Ontario, Canada
Environmental Health Services Laboratory, Edmonton, Alberta, Canada
Erie County Health Laboratory, Buffalo, New York
FMC Corporation, Pocatello, Idaho
FWPCA, College, Alaska
FWPCA, Evansville, Indiana
FWPCA, Pomona, California
FWPCA, Wheeling, West Virginia
First U. S. Army Medical Laboratory, Ft. George G. Meade, Maryland
Fish-Pesticide Research Laboratory, Columbia, Missouri
Fourth U. S. Army Medical Laboratory, Ft. Sam Houston, Texas
-------
Goodyear Atomic Corporation, Piketon, Ohio
Hach Chemical Company, Ames, Iowa
Hackensack Water Company, New Milford, New Jersey
Hammond-Montel Inc., Elmhurst, New York
Havens and Emerson, East Paterson, New Jersey
Hawaii Department of Health, Honolulu
Holzmacher, McLendon & Murrell, Melville, New York
Houston City Health Department Laboratory, Texas
Illinois Department of Public Health, Chicago
Illinois State Water Survey, Peoria
Indiana State Board of Health, Indianapolis
Industrial Chemicals, Inc. , South Bend, Indiana
INFILCO, Tucson, Arizona
Institute of Health Laboratories, Hato Key, Puerto Rico
Isotopes - A Teledyne Company, Sandusky, Ohio
Johns-Manville Research & Engineering Center, Manville, New Jersey
Kentucky State Department of Health, Frankfort
Lawrence Experiment Station, Massachusetts
Lincoln-Lancaster City Health Department, Nebraska
Long Beach Water Department, California
Los Angeles County Flood Control, California
Los Angeles Department of Public Works, Playa Del Rey, California
Louisiana State Board of Health, New Orleans
Louisville Water Company, Kentucky
Maryland Department of Water Resources, Annapolis
Maryland State Department of Health, Baltimore
Mekoroth Water Company, Bnei-Brak, Israel
Metropolitan Corporation of Greater Winnipeg, Manitoba
Metropolitan St. Louis Sewer District, Missouri
Metropolitan Utility District, Omaha, Nebraska
Michigan Department of Public Health, Lansing
Minneapolis Water Department, Minnesota
Minnesota Department of Health, Minneapolis
Monroe County Health Department Laboratory, Rochester, New York
Montana Bureau of Mines & Geology, Butte
Montana Health Department, Helena
Moutrey & Associates, Inc., Tulsa, Oklahoma
Nalco Chemical Company, Chicago, Illinois
Nassau County Department of Health, Hempstead, New York
Nevada Health Division, Reno
New Hampshire Water Supply & Pollution Control, Concord
New Jersey State Department of Health, Trenton
New Mexico Bureau of Mines, Socorro
New York State Conservation Department, Avon
New York State Department of Health, Albany
North Jersey District Water Supply Commission, Wanaque, New Jersey
Ohio Department of Health, Columbus
-------
Ontario Water Resources Commission, Rexdale
Orange County Air Pollution Control District, Anaheim, California
Oregon State Board of Health, Portland
Pacific Engineering Laboratory, San Francisco, California
Pan American World Airways, Patrick AFB, Florida
Pennsylvania Department of Health, Harrisburg
Pennsylvania State University, University Park, Pennsylvania
Philadelphia Suburban Water Company, Bryn Mawr, Pennsylvania
Philadelphia Water Department, Pennsylvania
Puerto Rico Aqueduct and Sewer Authority, San Juan
Rensselaer Polytechnic Institute, Troy, New York
Reynolds Electric and Engineering Company, Las Vegas, Nevada
Sandia Laboratories, Albuquerque, New Mexico
Sanitary Bacteriology Laboratory, Springfield, Illinois
Seattle Water Department, Washington
Scientific Research Council, Kingston, Jamaica, W. I.
South Carolina Pollution Control, Columbia
South Carolina State Board of Health, Columbia
Springwells Filtration Plant, Dearborn, Michigan
St. Louis County Water Company, University City, Missouri
State Department of Health, Bismarck, North Dakota
State Department of Public Health, Montgomery, Alabama
State Department of Water Resources, Sacramento, California
State Water Survey Division, Urbana, Illinois
Sydney Water Board, Australia
TVA Water Quality Laboratory, Chattanooga, Tennessee
Tennessee Stream Pollution Control, Nashville
Tenth U. S. Army Medical Laboratory, APO, New York, New York
Texas Gulf Sulphur Company, Aurora, North Carolina
The Anaconda Company, Grants, New Mexico
The Procter & Gamble Company, Cincinnati, Ohio
The Water Commission, Kingston, Jamaica, W. I.
USAF Environmental Health Laboratory, McClellan AFB, California
USAF Environmental Health Laboratory, Kelly AFB, Texas
USPHS, Winchester, Massachusetts
U. S. Army Environmental Hygiene Agency, Edgewood Arsenal, Mary-
land
U. S. Geological Survey, Columbus, Ohio
U.S. Geological Survey, Denver, Colorado
U.S. Geological Survey, Harrisburg, Pennsylvania
U. S. Geological Survey, Little Rock, Arkansas
U. S. Industrial Chemicals Company, Tuscola, Illinois
U.S. Pipe and Foundry Company, Birmingham, Alabama
University of Arizona, Tucson
University of California, Berkeley
University of California, Richmond
University of Dayton, Ohio
XII
-------
University of Massachusetts, Amherst
University of Wisconsin, Madison
Utah State Division of Health, Salt Lake City
Virginia State Water Control Board, Richmond
Washington State Department of Health, Seattle
Washington State University, Pullman
Water Purification Laboratory, Chicago, Illinois
Water Resources Division, Charleston, West Virginia
Water Service Laboratories, Inc., New York, New York
Williams and Works, Grand Rapids, Michigan
Yonkers Water Bureau Laboratory, New York
xiii
-------
-------
ABSTRACT
In this study each participant received three polyethylene cubi-
tainers containing samples to be analyzed for total alkalinity, pH,
specific conductance, and total residue after drying at both 104° and
180°C. A total of 150 participants submitted results indicating that
the potentiometric method is the best and methyl orange the poorest
endpoint indicator for alkalinity titration; pH and specific conductance
are accurately and precisely measured by all currently popular instru-
ments; and total residue can be accurately and precisely measured if
something is known about the composition of the sample and, accordingly,
the correct temperature and drying time are used.
-------
-------
WATER PHYSICS NO. 1
DESIGN OF THE STUDY
In this study each participant received three polyethylene cubi-
tainers containing samples to be analyzed for total alkalinity, pH,
specific conductance, and total residue after drying at both 104° and
180°C.
The samples were designed in such a way that a firm theoreti-
cal value for each determination would be provided by at least one of
the samples. The remaining values were determined empirically.
Sample 1 was a 0. 001M solution of KC1, the standard reference
for specific conductance. Sample 2 was a pH 6. 8 Clark and Lubs
phosphate buffer diluted 1:25. Sample 3 was a pH 8. 7 Clark and Lubs
borate buffer diluted 1:5. A slight increase in pH was observed, how-
ever, when the buffers were diluted, and hence, the samples were of
slightly higher value as indicated in Table 1. The sample design pro-
vided values in the range likely to be encountered in potable water
analysis. These values are shown in Table 1.
Table 1. COMPOSITION OF SAMPLES
Parameter Measured Sample 1 Sample 2 Sample 3
Total Alkalinity^**
pH
Specific Conductance(jumhos/cm)
mg/1 Total Residue at 104° C
mg/1 Total Residue at 180° C
0
4. 72
147
75
75
47.3
6. 87
303
293
293
141.6
8.80
228
500
468
Participants were requested to use only methods described in
the 12th edition of Standard Methods for the Examination of Water and
Wastewater.
TREATMENT OF THE DATA
After the results of analysis were received, the data were coded
and analyzed by computer for normality of distribution and subsequent
rejection of outliers (see Appendix C) that were nonrepresentative be-
cause of errors in calculation, dilution, or other indeterminate factors.
-------
It was observed that many participants submitted results for
total alkalinity that were high by a nearly constant value for all three
samples. Since the value for sample 1 should have been zero, it was
felt that the nearly constant error might be due to a failure to determine
a titration blank. Accordingly, a correction was calculated for all
laboratories reporting more than 1 mg/1 alkalinity in sample 1, by
subtracting the value submitted for sample 1 from all three sample
values. These results are reported as corrected alkalinity.
The results for each method were also plotted on normal prob-
ability paper as a visual check on normality of distribution and the
possible presence of outliers.
Bar graphs are included in the text for methods involving 10 or
more values, to provide a pictorial display of the data. Rejected values
are indicated by broken bars or labelled as outliers, and values are
given for bars off the scale of the chart.
DISCUSSION OF RESULTS
TOTAL ALKALINITY (Tables 2-4, Figures 1-15)
The majority of participants used a potentiometric end-point to
measure total alkalinity. Approximately equal numbers used methyl
orange and mixed indicator, and a few used methyl purple indicator.
All methods produced significantly high mean values for sample
1, which contained zero alkalinity. The methyl orange results were
significantly less precise than the others, and the potentiometric re-
sults were the best.
For sample 2, containing 47.30 mg/1 alkalinity, the methyl
orange results were unacceptably high and imprecise as shown by the
relative error of 17. 82 and the relative standard deviation of 15. 12.
The total error of 53. 5 indicates that methyl orange is unacceptable,
while the total errors of 16. 2 for mixed indicator, 16. 6 for potentio-
metric titration, and 12. 7 for methyl purple are all excellent. How-
ever, all mean values are significantly high.
In sample 3, containing 141. 60 mg/1 alkalinity, there was no
significant difference in precision among the four methods but, sur-
prisingly, methyl orange had a slightly lower standard deviation than
the others. Again, all means are significantly high.
Participants reporting more than 1 mg/1 alkalinity in sample 1
seemed to have a similar error in the results for samples 2 and 3.
Assuming that this error might be due to failure to determine the
-------
rH
CU
1 — I
a
S
rt
tn
c
o
CO
-t->
1— 1
3
CO
^
K
>5
*j
a
•i-l
i — i
Cti
r^
CO
r4 0
&Z
H
*
•o'S;
£ Q
UJ 1 — 1
Sg
CO SH
tH >H
g w
cd
CO
§
CO
^ ^(
0 „,
. S
o -a
*8
•8S
. S
• w
sa
T3
O
J2
CO
g
co co to en
TP in co rH
CM rH CXI (M
A A A A
i> in CM co in
00° oo o' •* n
cxj en co LO r-
^ CT> CO C3 I-H o rH
i-l i-H rH i-H
1 1 1 1 1
1 1 1 1 1
Ol CO O O rH
Tf ^ O iH CO
i-H CO rH i-H rH
O CO T}< O CO
CXI 00 CO O •*
• • • • •
rH Tf O rH rH
+ + + + +
O CD ^f O CO
CXI CO CO O •*
rH •Sf O rH rH
in t* in o co
(N
CO 00 rH CD CO
CO CO C- TH
0 co «
l!|!
T3 Li g 3
•S ° -§ ^ rt
rH ^ r~* f— 1
•0 >i "S >> ci
5
.•a
g
1 — 1
oi
^
o
cu
JH
tn
0
o
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
till
till
1 1 1 1
1 1 1 1
O 0 O O
1 1 1 1
1 1 1 1
C- CD t- rH
rH CO CM
n 0
1 a -c 5
.§ S | &
•0 SH S 3
c o S D.
-rt n 'rt rH
T3 >, -g >,
CO X In J^
.3 t5 | U
s § (S §
-------
CM
»
•*-»
•5
"rt
3
1 — 1
OJ
-M
O
E-1
o
S-l
a)
a
§
en
^
CO
0
3
rt
H
CO
o
u
fli
o
in
rt
0)
.1-1
, — i
60
a
00
SH
>_^
£_,
3 8
"o t.
H H
o .2
o a
m ,_]
>
" o 10 m m
(M
CM i-H O -^ (M
to in in (M 10
1-1
CD CO C7D LO O
C— D- lO O t-
(M ^ LO CS1 CD
CO CO C^ T-( CO
O C^O T-H lO r^
CD rF CO LO CO
CO CO C<1 CO CO
4- + + + +
O CO T-t LO ^
ffl t- »-c 00 CO
O uO O O O
LO ifi lO LO lf^
LO ^ ^ O CO
(>]
O iH CM CD LO
CO T}* C*- ^
TH
1 « .H «,
•^ tUO S-l r-H
« S « £•
•s 2 a »
•s ^ -2 ^ =i
t-H r^ I-H i— H
T3 >> JH >j ni
1 1 i 1 i
t?
'g
"rt
^
•a
CD
-------
CO
Hi
'a
S
rt
a
o
to
i — i
3
to
CD
K
•"£
.3
1 — 1
rt
1 — 1
^
tn
rt
S
§
M
»
rt
H
^^
CO
o
U
rt
U
to
s-T
£ 0)
W Q
5 o
CQ ,
0) M
g ^
W
C
rt
0)
§
CO
13 .2
°" 9
e*H tO
O i— i
3
o m
T3
O
t)
CTJ CO CN! O CO
03 cn co o 03
CM CO CD O CO
O O3 CD CO CO
rt rt
co co ro co r-
OJ CM CS1 IM (M
o m co CM o
^ ^ CO <* Tf
rt C- rt I> D-
TH t— CO O CO
^ ^ ^ ^ ^
CO -^ CO CO CO
r- co o cn co
10 co 10 LO m
+ + + + +
CO ^ CO CO CO
CO CD CO m CM
£> C^ CD I> t>
•* •* M* •* Tjl
LO CO in TH O
C- t- rt CO O
co co i> in
TH
1 a -S 5
.§ s § &
1 ° 1 a rt
1— t ,I_J 1— 1 1— 1
'O ^i rt ^i rt
D- in ,
0* rt CM* '
rt O O (
^ *.£ ^u *
CO 0 O
rt Tf CD
rt IM CO 1
+ + +
co o o o
t- O CM O
CM Tt* in CD
^ ^t1 •* •*
TH TH rt TH
IM t~ CM O
in CD in TH
rt CM CM
I So •§ ^3
1 g » &
•a h a 3
c o g a
r-H n i — 1
T3 >, "g >,
0) J3 S J3
S is ^ is
1 § £ 1
-------
I
i
!
t
;
•
1
»XXX»X,XX,XXXX|,,X,X,,,XXXX«XXX
x,,.xxx»,,,|x,,xxxxxx,x,x,xx
1
I
]
.
i »«»«»*««""
xxxxxxx
xxxxxxx
xxxxxxx
IXXXXXX
zj
Ul
i
i
• tit
\ I
I
i
1
i
1
ij
, o
9189 tc
• "
1 •-
" 0 =
at IS
zzz£ -* 5
^ £
k
»t»9 ^
1
o
O)
zuz g
9ZIC CQ
'»< ^
»z«t 5
.?
Z1U
2
u
6
6
j»|i|/6a.
-------
;
I
i
:
„,„]„„ „„ „,„.,„„
j
;
i
i **
; z
|j .,,-
I ,»,»,,,v,,,x,,
!
j ».<«.<
i
i
o
"•» o
nt *
.„£ g
D
lilt « C
• "~
"" J E
2 o
o
"*"
0.
u
mi O
I?" ?
!!«
.|.|/6u/ AIINHVXIV 1Y1O1
-------
"<;iXxx>'x"""X'<"x'xxX
XXXXXx XX
XXXX XX
XX XX
XX XX
XX
z
1
UJ
*/»
ec
a.
z
o
X,
tZli
1U4
9Z41
4
IU8
7J4H
lib*
9ISI
U»9
lit!
4
4
4
IUS
9E59
CTbi
(198
(21!
azz
9U1
4119
4
4
Z?iT
nzi
IUI
»ui
6
TORY NUMBE(
ot
O
m
ation.
L.
V
^
E
o
c
0
a
o
E
0
M
C
X
c
"5
-*
"o
"o
o
^
^0
_c
a
D
O)
O
CO
m
«
^
a>
iju
j»|i|/6m '
1V1O1
-------
•£ XXXXXXKXX
vxxxxxxx*
XAXXXXX
XAXXXXX
XXXXX
XXXX»
XAXXX
XX
XX
z
s
£
z
3
o
<
<
XX
XX
a
>-
>iu *
, 0
<
»H»
»U6
211B
»?41
9ZIC
6
i?ZI
JTIZ
mi
91 W9
ijet
u
O
u
TJ
e
•o
o
X
E
X
CN
0)
a
o
e
-X
o
o
o
k
o
-C
a
D
k
O)
k.
O
CO
•*
0)
k
s
m
iZ
i>|i|/Bui 'A1INI1VX1V 1V1OI
-------
1
1
1
,,>.,,,««J>,, „,»,.«,,,,,<,
1 * " " "
I
t
r
yXxxxxxxxx)
XXXXXXtX)
Z XXXXKXXm
2 XXXXXXX)
JtXXXXX)
YXVXXX1
XXXXX)
XXXXK)
xkxxi
XKXftl
XXXx)
XxXl)
VX1
*X)
X)
I/I
1
at
)
o
"O1. "'-I
YOU*',
AC
„,, 2
0
Ui4
6
czzz
ni9
nti
9t86
CT96
o
o>
c
o
E
X
a
E
a
x
^
'E
"o
o
o
a.
o
o
ca
3
Ol
10
-------
i/t"t xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxaxxxxxxxvxxxxx
H°H9 XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXxXXXXllxXxXXXX^XXXXX
O'UH XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXJXKxXAXXXXXXXX
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxiloixxxxxxiuxxx
XXXXXXXXXXXXXXXXXXXXXXXXIXXXXXXXXXXXXX
JXXXXXXXXXXXXX
XXXXXX XXxXXXXXXXXXX
xxxxxx xxxxxxxxxxxxx
XXXXXXXXXXXXX
XXXXXXXXXXXXX
XXXXXXXXXXXXX
XXXXxXXXXXXXX
XXXXXXXXXXXXX
xxxxxxxxxxxxx
XXXXXXXXXXXXX
xxxxxxxxxxxxx
xxxxxxxxxx
XX XX XX
XX XX
XX X
XX X
Z XX X
< XX X
f XX X
XX X
XX X
X XX X
XX X
XX X
XX XX
X
X
X
X
X
X
XX
XX
XX
1
Z
41
VI
Ul
E
0
X
VXYX
*x*xxxyx
cm
UK
U14
9744
ZZ6i
t{U
IU4
Hȣ
ZtSi
E96S
6 O
tUS 2
9Z66 «
4
4
ZZ68
1I2S
IU'
6
I1ZU
ZTI»
12ZZ
1UI
£164
O
O
o
E
o
o
a
x
cs
-2
a
E
a
o
3
a>
J»III/BUI '
ivioi
11
-------
1
J
1
XXXXXXXXXXXXXXXXXXXXXX|XXXXXXXXX«X««X»X»«0«
1
{
XXXXXXXXXXXXXXXXXXJXXX,XX,XXX«,XX«XXX»,».
1
j
XXXXXXXJXXXXX«XXXKX«XXXXXX«XH
1
j
j
1
j
1
xxjxxxxxxxxxxxxxx»xxxy««x
j
jxxxxxxxxxxxxxxxxxxx.x,
1 xxxxxxx»xx,xxYxx««,x,
1 XXXXXXXXXXXXXYXX«»AXX
1
1 I""""""""1" *"""'« "»>
Si
f' XXKXXX
| XXXXX
1
1
1
1
1
1
1
1
1
1
^,
*J
IA
£
E
o
<
XVxXXXXx
_, , *
z
* >
at
* 2
6 o
Zlt\
b
V
o
o
v
Tl
C
•o
0
X
'i
X
n
—
a.
E
O
o
-^
D
"5
o
a
o
O)
w
D
O
^
3
O)
12
-------
1
*x xxxxxxxxxxxxxx xxxx xxxxxjxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXXX
»xXX
XXX XXXXXXXXJXXXXXXXXXXXX XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXJXXXXXXXXXXXXXXXX
xxxxxxx^xxxxxxxxxxxxxxxx
XXXXXXX) XXXXXXXXXXXXXXXx
xxxxxxxilxxxxxxxxxxxxxxxx
«xxxxi?xx$xxxxxx$xxx5xx
XXXX) XXXXXXXXXXXXXXXX
XXXX! XXXXXXXXXXXXXXXX
xxxxilxxxxxxxxxxxxxxxx
XXXX]|XXXXXXXXXXXXX«XX
xxxxixxxxxxxxxxxxxxxx
xxxxilxxxxxxxxxxxxxxxx
XXXXIXXXXXXXXXXXXXXXX
xxxxilxxxxxxxxxxxxxxxx
XXXXXXXXIXXXXX XXXXC'OI
ins
tu*
UK
me
CZC6 §,
itzt c
9Z»» o
Cftl
C9H
o
">.
E
>.
Ittt J!
«it* &
IU9 E
< o
In. 1 *
mt 3 X
iuc z .t:
9Zki >• c
»t»C g ~
itu 8 o
11*9 < ^
*zii o "o
II9Z 3
«Z9l -
llti °
till *
IZCI -=
*"» g-
IUI 2
»«.6 0)
ttZt ..
6 o
23*6
(Zl!
ttfl
t
Iti9
9C<9
IUC
tt»9
(Zt6
ZZZi.
9Z«6
III*
CUi
j>|i|/Bui 'AIINIIVMIV 1V1O1
13
-------
<
S """""*"
KXXXXXX'X
XyxXXVX
KXXXX
i
Ul
£
z
3
t
xxxxxx
XXXXXXXX
x Xjir'itri
X XXO'it!
D
>-
tut g
«»ce O
»Z« ^
<
• ?Sf
916*
i?I6
Ztl»
llil
1221
lUt
CI»»
.
c
0
4-
Q
k
—
*z
O
E
O
c
0
O
a
X
_o
"a
E
D
w>
C
X
JC
0
O
O
b
O
«^
_c
O
a>
^
D
ca
o«
O
b
3
o>
iH
,.,,|/6«. 'J
14
-------
1
X X X X X A Jf
V X X X X X *
XXXJf
1
X'A*
XX*
*
r
z
UJ
o co
» *
D T-H
T LO
Z
UJ
LO
Ul
at
o.
t—
Z
O
XX
XX
xxxxxx
VXVXXXXX y A y X
&> * *
15
-------
XXXX XXXXXJX
xxxx xxxxjx
1
xxxx xxxxjx
xxxxjx
xxxjx
xxijx
xxijx
xxijx
xxijx
xxijx
xijx
t
x*
Jx
i
T
ix
t
ix
i
|x
i
jx
j
i
I
i
zi
2!
*!
•
i
•
UJ
irt
at
a.
Z
O
X
X
X
X
X
XX
xxxxxxx
XXXXXXXXXXX*XxXXXXX*X»XXXxXXX XXxX
XXXXXXXXXXXAXXXXXXXXXXXXXXXXX XXXX
XXXXXXXXXxXXXXVxXXXxXXXXXXXxXXXXXXXXX XXxXO'U
29U
L
ZZEE
9ICE
U8Z
9ZCS
9ZU
1T»!
Ut6
-
B£
9jjj O
^
9IIt «
o
(Q
9ZZ» <
_J
9Tt»
zzzz
1Z99
»,,
Z119
IZi*
llil
9EII
ezit
tlii
lue
,!•,£
il\L
£T»6
c
"5
5 2
a
a
a
a
«
3
jeti|/6ui 'AilNHVXIV 0313311)103
16
-------
a
XXXXXXXXXXXJJXXXX
xxxxxxxxijxxxx
xxxxjxxxx
I
xxxx&xxx
I
xxxxtfxxxx
XXXXJJXXXX
XXX)JXXXX
X)(XXXX
XtfXXXX
JXXXX
jxxxx
jxxxx
jxxxx
jxxxx
j XXX
I *
| x
zj X
I) *
I X
: x
i
I
j
2
j
j
j
__ • T • • •*•
5
UJ
ee
a.
z
3
0
X
xxxxx
xxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx xxxx
I18S
Ulfi
c
9111 .2
0
tu» i
tm
• 1
o
9Z«fi =
o
S o
a
m» _>•
s »
"" s 1
IIS* S "
3 .E
ITU 2 x
s I 1
< o
1169 | -
Z^Si < ^
ZISB «
k.
k
c °
» u
k
s ^
^^
tt>6 g-
o
ETT6 "*
0
CZ9* t>
II9» -
«
ms 1
LZ
USE
tzti
«»i|/6iu '
031338803
17
-------
XXX
XX
co
I
z
<
X
xx
xxx
XX XXXX
XXXXxXxXXXX YXXX
TB"
01
UVt
LU
CO
a
E
o
z >•
te.
O
ZU I <
o
Z?9b eo
ute
o
•o
a
o
o
CD
co
CO
CO
CO
-------
XXXX XXXXXXXXXXXXXXXXXXXXX
xxxx xxxxxxxxxxxxxxxxxxk
xxxx xxxxxxxxxxxxxk
xxxxxxx
xxxxxx
xxxx
XX
XX
XX
X !
*
X
X
X
X
z
IU
f
114
IAJ
X
2
0
X
X
X
X
xxx
XXXXXXxXXXXXAtfA XXXX
xxxxxxxyxxxxxxxxxxxxxxxxxxx^xxx" xxxx
l»«
zzit
i
9ICC
IUS
(U9
ZH9
ZZ99
UllZ
9ZZ»
9Z£S
9ZII
CZI6
U^
9II£ „,
UJ
3
' Z
>-
Z?ZZ ac
O
tlti O
CD
<
II»I
iT6Z
UH
9CI1
£ZU
IZ8T
9ZSZ
ZI19
EZI6
nil
I lit
SI *£
£196
o
O)
c
o
^
o
"x
-C
o
E
X
JJ
m
—
a.
E
o
•o
e
a
o
a
o
3
a
'AllNnV5llV 0313381103
19
-------
XXXX XXXXXXXXxXJi
xxxxl
xxxxl
XXXXK
xxxxl
XXX|(
xxxl
xxk
1
xxf
xxl
xxk
•4
xk
4
xk
1
I
k
r
2'
z
IS)
o.
z
o
$
XX
xxxxxx
XVXXXXXXXXxfXXXX x^xv
ttis
9TUI
IUS
£
3
o
a
JO
a
E
o
ztse >_ x
D § 'I
s 5
a a
U69 2 "I
U18 «
o
a.
o
O)
^
o
in
a
Ubt
20
-------
titration blank, a corrected alkalinity calculation was performed for
all results showing more than 1 mg/1 alkalinity in sample 1 by sub-
tracting the value submitted for sample 1 from all three sample values.
For sample 1, of course, all corrected alkalinity values were zero.
For sample 2, a great improvement in accuracy was obtained for all
methods but only methyl orange showed a great improvement in pre-
cision. The total errors now categorize all methods as excellent.
The corrected values for sample 3 likewise showed a great improve-
ment in accuracy but little change in precision. Again, all methods
are excellent according to the small total errors.
The most frequent comment offered by participants was that
the methyl orange endpoint was very difficult to detect. The validity
of this complaint is substantiated by the data.
pH (Tables 5-7, Figures 16-25)
The results for pH measurement were excellent. Samples 2
and 3, being buffered solutions, were measured with slightly greater
accuracy and precision than sample 1, which was simply a solution of
potassium chloride. Even for sample 1, however, the overall relative
error was only 1. 59% and the relative standard deviation was 3. 89%.
There are no significant differences between the various instruments
used but if they are ranked according to the sum of total errors for all
3 samples, the most expensive, Orion 801, is first and the very old
Beckman H-2 is last. However, this represents a range of average
total error of only 3.4 to 6.4 percent.
There were no comments offered by the participants for the
measurement of pH.
SPECIFIC CONDUCTANCE (Tables 8-10, Figures 26-35)
Specific conductance is a measure of a water's capacity to con-
vey an electric current, and is related to the total concentration of the
ionized substances in a water and the temperature at which the measure-
ment is made. Many participants were upset by the unusual ratio of
total residue to specific conductance. However, specific conductance
is more directly related to ionizable substances than to total dissolved
substances and the conductance due to hydrogen ion and hydroxyl ion
are much greater than those due to other ions; hence, no direct rela-
tionship exists.
The specific conductance measurement was performed by 126
participants employing a variety of instruments. No significant differ-
ence in performance of the instruments was observed. However, the
21
-------
TH
0)
T-H
a
s
a
02
d
o
co
s
CO
s
S3
CL
O
oi
s
g
02
CU
3
nj
H
^^
CM
C-
•
•&
rf o
"8 tn
H H
t—T CO
O 7£
f J
>
•-< Q
(S 73
02
. tl
l-H O
0) SH
w
• ^
•a ^
02 Q
d £?
cu ^
tH Si
^ w
d
d
>§
•H
O *J
O
tM CO
^
O tD
Instrument
CO
CD
TH
rp
o
CO
CO
CO
o
CNl
0
CO
1-1
o
CD
O3
O
o
CO
TH
CO
CM
CM
CO
Beckman
Zeromatic
«
03*
CD
in
0
TH
•*
o
TH
TH
CD
03
TH
o
CM
in
O
O
(M
r-
c-
TH
tr-
TH
o
Beckman
Expandomati
m
c-
•*
in
o
TH
CD
CO
CO
CNl
O
TH
t-
TH
o
TH
TH
0
o
TH
CO
c-
o
CM
TH
TH
o
0
cD
in
CD
TH
CO
O
TH
CO
TH
CO
r-
CM
CO
CO
o
o
O3
CM
TH
0
O3
^JH
CO
CM
O3
Corning 12
co
CO
,,_
in
o
CO
t— t
CO
CO
CM
0 O
o o
TH in
I> O3
c- t>
-------
CM
"a
g
nf
C/2
a
o
en
i — i
3
CD
K
u
a
o
>>
a
g
g
w
CO
£D
3
cd
H
^
CO
co"
^H
E
•S1
-1 fc
cd ^
"8 SH
H H
t-J m
H •'H
^ ^
m !j
O3
>
CJ
7) ^
K -a
M
rH n
tu P
Kr
^-i
W
.
^* m
w Q
c! ^
fcH ^
§ H
q
rt
cu
en
°.a
°i
15 0
t« en
o +3
^
o* g
PH
Ins t rum en
m
CO
CM
CM
o
t-
CM
TH
CM
03
CD
CO
CO
0
o
CO
CO
0
o*
+
CO
CO
03
CO*
CM
CM
CO
Beckman
Zeromatic
CO
*
CO
CO
o"
o
CO
TH
t-
CD
o
•*
CM
TH
0*
CO
0
0*
+
CD
TH
O3
CO*
TH
t-
TH
o
•rH
Beckman
Expandomal
CO
CO
<*
CO
o
CD
in
TH
•*
^
O
co
o
TH
o
0
CO
O
o
+
o
o
O3
CO
o
CM
TH
TH
O
I
6
r-
co
CO
CO
o
CO
CO
TH
^
TF
o
CM
TH
TH
o
o
CO
O
O
+
o
o
CO
TH
O
TH
Corning 12
CO
m
o
CO
CM
CM
03
CM
O
CO
in
TH
o
0
CM
0
o
+
0
O3
CO
CD
O
CO
CM
i
Beckman H-
*
CO
CD
CM
O
O5
a>
o
in
CO
TH
O3
CO
O
O
CO
O3
O
o
+
CM
CO
03
CO
TH
CO
TH
o
CO
c
•g
o
in
CO
•*
•*
o
TH
t-
TH
CO
TH
o
r-
TH
TH
o
O3
O
o
o
+
O3
f~
CO
CO
o
CO
Corning 7
CO
CM
CO
CO
o
O3
O
TH
CM
TH
O
in
t>
o
o
CO
o
o
o
+
CO
c-
00
CO
o
CO
a
3
E
o
en t"
T3
0)
4)
co co
co co
•* CO
CM CM
0 0
TH CD
in in
TH TH
t- c-
t- CO
0 O
m co
0 O
TH TH
0 0
CO CD
in ^
o o
0 O
+ +
CO CD
CM TH
CD CO
CO C-
O3 TH
in co
TH
Other
Overall
23
-------
CO
rH Q
^
cn
• £-(
(S ^
W
• ,*
T3 ^
W Q
S g
QJ "
t- I fn
g w
a
CO
CO
^
CO
<" tl
.<§
o
«H CO
O *j
0 §
P?
-4_i
istrumen1
l-H
CXI
CO
in
CXI
O
•*
TH
TH
CO
cn
C3
0
O
TH
o
in
CO
o
o
i
in
,_f
">
CO
(M
CXI
CO
ckman
romatic
n
CO
o
cn
rH
O
CO
1
U,
O
CO
in
CXI
CO
o
CXI
cn
rH
in
CO
TH
CO
CO
TH
o
CO
CO
TH
o
1
CO
CO
CO
CO
o
CO
C-
so
• lH
k
o
o
CO
•*
•<*"
m
o
o
TH
o
in
TH
CXI
CXI
o
CXI
CO
TH
o
1
CO
CO
CO
CO
o
CO
a
g
si
•c
0
CO
-a
11
(D
J
cn o
CO *J<
(M CO
CO CXI
0 0
C- 0
m in
l-H rH
I> CM
t> O
O rH
r- TH
CO CO
TH TH
O 0
CO O
co cn
o o
o o
1 1
CXI O
CO TH
C- C-
CO CO
CO CO
cn cn
in m
TH
TH
^) ^
ta ^
5 >
O O
24
-------
T
4S '9 XX XX X XXX XXXXX XXXXX XXXXXlJxXXXXX'X
1
XXXXXXXXXXXXXXXXXXXXXXXXX»XXXXXXXX
xxxxxx xxxxxxx xxxxxxxxxxx^xx xxxxxx
1
xxxxxxxxxxxxxxxxxxijxxxxxxxx
1
XXXXXXXXXXXXXXXXSXXXXXXXX
xxxxxxxxxxxxxxixxxxxxxx
1
xxxxxxxxxxxjxxxxxxxx
xxxxxxxxxxxjxxxxxxxx
I
xxxxxxxtxxxxxxxx
xxxxxxx xxxxxxxx
xxxxxxx xxxxxxxx
xxxxxxx xxxxxxxx
xxxxxxx xxxxxxxx
XX XXXXXXXX
xxxxxxxx
XXXXXXX
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
< xxxxx
*
XX
z
ft
UJ
£
1
o
s
^
X
X
xxxxxx
xxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXX XX XXXXX
XXXXX XXXx XXXXXXXX XXXXXXXXXXKX
XXXXXXXXXXXXXXXXXXXX XXXXOI't
92(2
ZtSi
I22S
i
lit*
92*1 5>
o
I1ȣ E
ZtIB .S
1119 |
o
E 1 16 ^
o
ZUZ N
c
{(11 0
E
Ml* "J
o
I t 1 ^ «M
at
II9» S i1
f
eisi 3 •"
z t>
* *• "a
, 0 E
5 °
< 10
i^' O c
a —
I2Z2 < z
~* Q.
U4I "
o
in: a-
o
ti(9 5,
k
CD
**" 0
92IC 3
0)
12»B ^
*169
2Tt»
91U
ftlt
92U
25
-------
1
Ot-'l'VAAX YA^;
1
AAXj.X'XAXYAXAp;
YxYxf';
1
Y, A > Ar«- ;
1
Y A Y XI* )
y A x A|V j
y A Y J,. ;
1
i
Y X > XI'-' ;
XAXAV,
X A Y A|Y ;
v,r
z
<
LU
£
o <5 ~o
c o 10
•-i O CO
t—
Z
LU
IS)
LU
Of
0_
h-
Z
O
^
s
<
V
Y X * A
YxV A^A
v A >' A '• A <•
V ji V -, S- ._ ••'
V n X f ^ V \ A V H '
6 o " c
o m c
C~ ID T;
ITbf
iut
ki
o
S 0
E
s 1
E
o
e?iP i
D
z^iZ ,2
c
TT^C: 25 j
CO u
£?9«7 | •
z •*
Ubfc >. •;
« ~L
9Z6Z 2 5
rf ™
« .E
ii^e o i
CO a
1ZH4? ^ .2
.c
a
9T<;»7 2
0)
h.
, . D
VI fc* (0
is!
9?66 0
k
3
O)
6196 £
mz
e9o5
2
D
r
Hd
26
-------
XXXAXyx* A *
xxxxyxxxV
XXXXXAXXX
A X X y A v y \\
1
Xy AXX ^
AX XX*
Z
<
UJ
£
:> o
3 0
ft CO
• •
f ^
i—
Z
UJ
to
uu
Of.
a.
^
Z
3
0
5
^^
<
V
y
yxxxxx
vxXX^XvAXX>
v x x A v A'V A y x >
XX/XXAV/AXXX
- I
at «
9T^E 2 |
2 S
fcZU 0 I
CO a
^ 2
tT9b -• »
o
CO
6
-------
[XXXXXXXXXXXXXXXXXXXXXXVXXXXXx*XX
xxxxxxxxxxxxxxxfcxxxxxxxxx
1
xxxxxxxxxxxJxxxx«xx»x»
1
XXXXXXXXXX>(XXXX»XXXXX
xxxxxxxxxxxjxxxxxxxxxx
xxxxxxxxxxjxxxxxxxxxx
1
XXXXXXXXXXlfXXXXXXXXXX
xxxxxxxxxxxlxxxxxxxxxx
xxxxxxxxxx>Jxxxx*xxxxx
1
XXXXXXXXXX)((XXXXXXXXX
xxxxxxxxxxxjxxxxxxxxxx
xxxxxxxxxxjxxxxxxxxxx
XXXXXXXXXX^XXXXxXXXXX
1
XXXXXXXXXXfXXXXxXxXXX
\
xxxxx)4xxxxxx«xxx
XX^XXXXxXXXXX
xxxxxxxx
xxxxxxxx
xxxxx
xxxxx
xxxxv
xxxxx
XxVXX
Z xxxxx
!S xxxxx
*
1
1
,_
J
t
r
o
E
x»x
««
V?6i
1 1 *>E
1U9
Ut9
ZIW
l?,e
me
SM»
Z2(T
1184
Il.»
IU'
1US
9Z9^
ZtIB
«t!9
ni»
4
9ZU
ei«t
,169
i
4
tjza
Z11Z
1141
el i b
t I t O
7 1 t *>
C I I ~
9 I I £
V ? S i
o
E
O
E
O
o
N
C
o
E
0)
CO
—
a
E
o
;; i
a
a
o
o
m
3
a
28
-------
1
XxXXXXXxXXXXXlXXX
xxxxxxxxAxx
1
xxxxxf "10
co c: i-t
o o c>
i—
Z
UJ
UJ
at
a.
Z
O
XXXX
XXXX
XXXX
XXXX
XXXXXXXXXXX
xxxxxxxxxxx
XX XXXXOK'9:
<±>" LO O
*^ CO O^
CO !>- CO
ITB6
ITtrZ uj
uee
IT9Z
9Z66
o
E
o
TJ
C
O
a.
x
LU
C
a
E
o
a
1 Q£ «
O a
ET96 ^ |
O E
CO z
ctf a-
a
o
o
CO
o
es
en
CO
CD
CD
29
-------
7. 09
6. 99'
. 89
6.79
fi. fifl
MEAN
X X X X
X X X X
XXX
X
X
X
X
X
X
X
X
X
X X X X
X X X X
X X X X X
X X X X X
AMOUNT PRESENT
-------
XXXXXXXXXXXXXXXX
xxxxxxxx
XXX
XXX
z
UJ
VI
Ul
at
a.
z
D
o
<
1
z
IU
xxxxx
xxxxxxxx
xxxxxxxx
XXXXXXXXXXX
xxxxxxxxxxxxxi
xxxxxxxxxxxxxtxx
XXXXXXXXXXXXXJ«X
xxxxxxxxxxxxx :xx
xxxxxxxxxxxxxlux
XXXXXXXXXXXXXXXX
xxxxxxxxxxxxxlxx
xxxxxxxxxxxxxlux
XXXXXXXXXXXXXXXX XXXXXXXX
xxxxxxxxxxxxxlixxxxxxxxxxxxxx
1
XXXXXXXXXXXXXffXXX XXXXXXXXXXXXX
XXXXXXXXXXXXXXXX XXX XXXXXX XX XXXXXX
XXXXXXXXXXXXXkx XX XXXXXXXXXXXXXXXX
1
xxxxxxxxxx xxxxxxxxxxxxx xx xxxxxxxx
xxxxxxxxxx xx Axxx xxxxxxxxxxxxxxxx
XXXXXXXXXXXXXKX XXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX XXXXXXXJXX XXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXX
xxxxxxxxxxxxJxxxxxxxxx* xx xxxxxx xxxxxxxxx xxxxos. '»
xxxxxxxxxxxxifxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxeo'tt
tT9»
Itt»
III*
9J»S
n»e
IU9
IIZ8
zttz
ZZCI
IIS9
ZTtt
9Z»i
IliS
« s
tzzc I
z
ee
ZTSi 2
9t,9 g
CO
CTI6
9ZSZ
(US
»I69
»!»i
CHi
zm
5
i
nst
Z1II
CU6
91IE
9Zti
o
E
o
k
«
N
c
D
E
CO
X
a.
E
o
X
a.
a
a
a
k
o
p
(N
3
a
31
-------
xxxx
XX
X
t_
^B
LU
LU
a.
Z
O
5
o
•
c
1
Z
^(
LU
*
X
X
XX
xxxy*t
1
xxxyxixxxx
*xxyXKxxxxxxxxx
1
xxxxxfxxxxxxxxx
xxxyxvxxxxxxxxxxx
xxxxxAxxxxxxxxxxxxxx
1
xxxyxfxxxxxxxxxxxxxx
xxxyxjxxxx XXXXOG'L
CO 00 a
C- IO ^
cc so «
lUi
ITB6
£T 96 «
E
w
9 Z b Z %
E
0
T T t}7 TJ
I I /<• c
O
a
Sx
IU
c
0
^ IU J
CQ u
^ 0
fe.Zd.6 * *°
3 X
z -°
1 2>i^ >- w
oe. —
O c
291Z Jl §
^t V)
OC c
l\ll § !
o.
1 1 b£ 2
a
U9Z 1
<0
3
CZ9«>
£965
-
32
-------
xxxxxxxxxx
*x
X
t-
z
LU
(/>
LU
oc
CL.
H-
z
13
O
<
^&
<
SI rf
J5 CO
« •
O CO
Z
<
LU
£
xf xxx
1
xxxxxx
xtxxxxxxx
1
xf xxxxxxxx
XX XX08'8
xi xxo^'8
1
to cc
E^ CC
CO* °C
£Zi6
6
6
1299
6
2*fc8
9211
£ZU
6
I
£198
9T*£
*
at
UJ
GO
Of.
O
O
GO
O
J)
J!
a
E
o
a
h.
O
a
o
a
(0
C4
•
33
-------
1— 1
'
K 2
w
rJ 0
iS ^
w
.
T3 n
w Q
a »H
ni O
CD IH
§ ^
W
d
ni
§
tH ^
O ^
o* 3
z s
0
«M CQ
rj
13 «
T)
Metho
o
a*
CM
CO
CO*
CO
CO
•*
o
rH
CO
CD
CO
rH
m
CO
m
rH
+
in
CO
,
CM
CD
CM
CO
CO
Beckman
RC16B2
K)
O
CM
CM
in
CM
•*
o
rH
rH
m
rH
^T
CO
rH
CD*
rH
+
CO
rH
«
CO
CO
rH
O1
Beckman
RC16B1
o
CO*
rH
C-
0
^f<
m*
o
t-
(M
0
CO
CO
CO
o
rH
+
CD
CO
,
tr-
in
rH
in
CO
1
1 — 1
CO
c-
rH
CO
CO*
CS1
CD
CM
cn
rH
rH
0
CM
•*"
O
in
C-*
rH
+
O
m
,
^^
CO
o
^
S-,
CD
Radiomet
COM- 2
•*
^-
rH
•*
"*
rH
CM
CM
CM
rH
c-
co
CO
cn
CO
C-*
rH
+
03
CO
^i*
CD
-------
CM
cu
rH
PL
B
0)
CO
G
O
03
"3
CQ
CD
CD
O
rt
"o
3
rH
O
U
CJ
• rH
O
CD
O.
CO
Q
Si
rt
a
3
CO
CO*
CU
2
rt
H
-g
O
OT
O
.£
a
a
0
CO
o
TO
r— 1 El
_d 0
"o t!
H H
"o" ^
H '3
° £d
in j
CO
.
o
rt T3
-4J
CO
,
rH O
CD d
tf w
•0 >
2 <0
rH J_,
0) O
CD Si
s H
a
OS
i^
^
•« £
o ^
CD
o +3
z o
O -2
1 — 1
. 3
O CO
rt
Method
o
co
rH
CM
CO
m
CO
t-*
CO
o*
CO
co"
CM
^
CO
o"
+
"st*
CO
CO
o
CO
CO
in
CO
Beckman
RC16B2
in
o"
1-1
•*
CO
CO
CD
CO
O
co"
CO
CO
I—I
rH
^
O
co"
+
^
o
CM
rH
CO
O
o
rH
Beckman
RC16B1
CM CM
O CM
1-1 r-t
CO O
CD CO
CD C~
rtH CO
Tj< CO
in co
rH~ ^"
in CD
CO rH
rH rM
0 O
CD O
1 rH
0 0
^ O
CO C-
CO r-l
CM CO
r-l 0
m •*
SH
YSI-31
Radiomete
CDM-2
CD
O
CM
CO
rH
CO
LO
in
in
co"
CO
CM
CO
rH
in
00
m
CM
in
CO
CO
CM
CO
o
o
rH
a
3
O
CQ
•a
CD
CD
I>
t>
rH
t"
CO
in
rH
CO
CO
rH
CO
CM
CO
CO
co"
+
CO
CO
CD
O
CO
CO
in
m
Si
CD
6
o
CO
rH
in
CO*
in
CO
r-
co
rH
CD
CM
CM
t~
CO
in
+
t~
CO
CO
o
CO
CD
O
CM
rH
Overall
35
-------
CO
"a
g
CtJ
c/3
c
o
tn
•^
03
CO
«
o
c
rt
CJ
3
T3
a
o
O
0
o
a
W
Q
**}
IH
0)
6
g
3
CO
t
O
T-H
5
rt
H
?
^^
cn
Q
-C
S
3_
O
co
CM
r-H JH
j2 o
"o t
H H
ro *j
6
^ >J
cn
. «
rjj M
PH "O
CO
£_,
• o
r-H w
,.>•; y
o
CM 0]
o -*-*
•1
^ «
•a
o
J3
•*-»
O
S
O
,4
CM
CM
^J
in
CO
.
CO
CO
CM
o
o
CM
5-
c
CO
t-
Tf
CO
(M
TH
t-
co
c
Cj IM
g M
b to
o "-1
tu U
PQ «
r-
rH*
O5
CO
CM
to
,
CO
IM
^
CO
CO
to
I
+
CO
to
t^
CO
CM
O
O
d
Beckma
RC16B1
CJ
c-T
(.
CM
•*
c-
.
CO
in
o
CO
o
T-H
t
1
O
(35
to
CM
CM
TH
in
TH
CO
i
h-4
w
01
03'
p.
CO
CM
O5
,
TH
05
in
T-H
m
O
in
c
CO
+
o
vn
TH
r^H
CM
0
^
JH
CD
(11
Radiomi
CDM-2
TH
CM"
CM
,_,
o
in
o
to
T— 1
ro
00
TH
C-
C-
v
o
CM
+
c-
tr-
co
^^
CM
0
0
TH
a
3
X!
t
0 CO
2S to
CO
m
•a
CD
O
TH
«
in
TH
in
•*
t
en
03
TH
CM
CO
CM
to
CO
»
+
CO
CO
CM
CO
CM
•*
m
Other
CO
o
CM
CO
CO
•*
rf
«
CO
o
CO
to
TH
O
05
v
CO
O
01
^H
CO
CM
CO
o
CM
TH
Overall
36
-------
j
1
]
XXA, XX«XXX,X.»» Aj.XA A ,X,,X,X»,
1
]
"""""""V**"""""""'""1
1
AVXYX/JAXA'XXxXAAXXXXA
1
AXX.U.XXXXX.XXX.XX
Y " "
xA*x*xxx*xXx*Ayx
f ^ * "
[
i
Ixx.xyxxxxxy.x,
[.xx.xyxxxxxx.x,
XXXXXXX
z
I XXX
xyx
X
IM
K
a.
E
3
E
yx > *y/ el i
a
HIS
Utt
lib-
£11-
St
1U1
,u.
(N
CO
<0
u
ae
e
o
E
CO
>.
a
E
a
2 !
< u
! i
2 o
«
a
a
a
o
GO
37
-------
OGt.XXXX
88EXXXX
OKcXXXX
09SXXXX
XXXXXXXXXXXXXXXXXXXZXXXXXXXX
xxxxxxxxxxxxxxxxxxxixxxxxxxx
XXXXXXXXXXXXXXXxXXXJXXXAXxXX
xxxxxxxxxxxxxxxxxxx|xxxxxxxx
ot-rxxx> xxxxxxxxxxxxxxxxxxxjxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXX/1XXXXXXXX
xxxxxxxxxxxxxxxxxxxixxxxxxxx
xxxxxxxxxxxxxxxxxxx*xxx»xxxx
xxxxxxxxxxxxxxxxxlxxxxxxxx
XXXXXXXXXXXXXX|XXXXXXXX
xxxxxxxxxxxxtxxxxxxxx
xxxxxxxxxxlcxxxxxxxx
XXXXXXXXXXfXXXxXXXX
XXXXXXXXilXXXxXXXX
XXXXXXXKXXXXXXXX
XXXXXXXKXXXXXXXX
xxxxxxxkxxxxxxxx
XXXXX|(XXX«XXXX
XXXXKXXXXXXXX
XXXXjlXXXJiXXXX
XXXXJXXXXXXXX
xxxlxxxxxxxx
XxxfcXXXxXXXX
XXXIXXXxXXXX
XXiXXXxXXXX
XX3XXXXXXXX
XX^XXXXXXXX
xx|:xxxxxxxx
xxtxxxxxxxx
xxixxxxxxxx
X*fXXX»XXXx
XXMXXxXXXX
txxxxxxxx
pxxxxxxx
XXXXXXXX
XXXXXXXX
XXXXXXXX
xxxxxxx
xxxxxxx
xxxxxxx
xxxx
xxxx
— XXX
< xxx
£™ ™ '
1
H-
UJ
V)
UJ
oc
^m
3
o
£
^
xxx
xxxxx
xxxxx
xxxxxxxxx
XXXXXxXXXXXXX
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxx xxxxK<.t>
1184
E I 9B
Jl
9t£l
If. Li
1118
Zlti
zzu
ilȣ
ZISi
EZ{6
£Z£6
ZZ99
tut
*Z*4.
9 1 Zi
Z?£8 K
£184. >"
zzts 2
zzct 5
£ZZZ z
^189
£ Z69 tt
ZtiB O
9Z(6 S
9U* a
9Z66 O
ttzs 5
ZZ98 5
zzzz
Zt£t
£211
1 1 fr^
i
£196
9l«6
»l€9
t zv^
9Z»C
9
E96S
Uȣ
II**
9Iȣ
1 1 1*
9Z«t
Ztlt
»16i
929Z
t
ZZZ8
EZ98
a
E
o
o
a
38
-------
X X X X XXXXXXXXXXXXXX^XXAXXXXXXXXXxXXXAXA
X
XXXAXXX XXX
xxxxxyxxx
XXXAXxXA
X AXXXXXA
x/cxxxxxx
X«XX*XXA
XXXXIXX
xXAVxyx
xxxxxx
xxvxyx
x«x»xx
XtvtXl
VXX)
XXJ
X)
zl
Ji
SI
1
1
|
1
E
UJ
VI
Ul
K
&
E
3
£
<
AX
AXA
AXA AA*
AXAAA*
A yXAXXAXX 'X
VA* **XXxXXX*XXXX *X^
VZCa
» 1 . T
I I 7 »
fcli*)
lZ6o ^
^
1 22 t O
0 «
CO
9T8I ^
I If u
at
\z.
2 -0
M
V7H "
41
zn» a
E
^ S o
00 4A
[?6t J -
"^
3 !••
iib"> z «
> U
"" S S
^ ^.
C164 < "
tl6j
o -o
tZlt m c
5 o
ZTU «
ITb1" JC
w
va i •
a.
/n- "
o
VJtt —
in , a
a
•"'» n
I T C k
Hi- 0
wll. *
b 1 I *
00
•iZ- {S
4)
' k
3
*> O)
\L
1 1 1
39
-------
w
3
D
Z
O
X
X
X
X
X
X
i mmA mm
X
X
>
J £ AMOUNT PRESENT
CM r-4
in r-
Ow %O
IM IT.
-»• —I
a> ~*
LABORATORY NUMBER
Figure 29. Bar graph for specific conductance in sample 2
by Beckman RC 16B1 meter.
9. i
u
LU
a.
363
343
323
303
MEAN
X
X X
X X. X
X
X
X
X
X
X
X
X X
X X
X X
X
X
•^^M
X
X
X
X
X
AMOUNT PRESENT
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
.0 ^
ra r-f *-i f-*4 i-t
LABORATORY NUMBER
Figure 30. Bar graph for specific conductance in sample 2
by Leeds & Northrup 4866 meter.
40
-------
Ot'-' XXXX XXXxXxXXXXXAXAXXXxl
09*- XXXX XXXAXXXXXA<»XXJVi (0
ZZE1 3
ZZii Z
ZZ6B 5
^T tt9 o
«" 5
i 0
ZZ99 a
£18i 2
zzzz
ZUI
iZII
ZZ98
01
9116
Ztib
9Z«6
91 £ 1
116V
ll»E
^1 £9
91»€
9
lliv
9Z«i
ZZZB
Zlll
£196
Vl bL
t
WZVZ
£Z9b
3
O
X
.0
a
E
o
c
a
a.
Ml
k
O
•^
j:
a
a
^
o»
b
o
41
-------
XXXXXXXXXXXXXXxXXXXXiX
xxxxxxxxxxxxxxxxxxxlx
XXXXXXXXXXXXAXXXXXfXXX
xxxxxxxxxxxxxxjtxxx
xxxxxxxxxxkx
I
XXXXXXXXXXf"
xxxx>xxxxxjcxxx
xxxxxxxxkx
XXXXXXXXKXXX
xxxxxxxxlx
XAXxxxxUx*
xxxxxxx^xx,
"!ȣ!i
XXXXX,(,AX f
xx»xy«x
XXXXKXXX
xxxVxxx
XXX|(XAX
XXXfXXX
xxkxxx
X|(XXX
I.XXX
I
zl
i!
XX
X»
xxxxx
xxXxxxxxxxxx
XXXXXXXXXAXXXXXX
xxxxxxxxxxxxxxxxxx
XXXXXXXXXXXxxXXXXXXXXXXX
XXXXXXXXXXXXXXX XXXXO'II
It»9
ilib
6
9ZH
IZ66
X
z
o
5
o
tf
<
9(11
Uli
Ilkt
1H9
cs
CO
so
u
c
o
E
X
-0
a
"a
E
o
•o
o
a
in
o
a
o
o
CO
3
at
IU9
42
-------
(J
z
<
u
3
o
z
o
(J
u
248
240
E
t 232J
224
MEAN
X
X
X
X X
X
X X
X X
X X
X
X
X
X
X
X
X
AMOUNT
X
X
X
X
X
f
X
X
X
X
X
X
X
X
X
X
X
•*s
X
X
X
X
X
X
X
X
X
X
X
X
X
Jt
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
PRESENT
•c
fM
m
iv
«OOO-4>Jf->O
LABORATORY NUMBER
Figure 33. Bar graph for specific conductance in sample 3
by Beckman RC 16B1 meter.
u
Z
<
U E
3 •£
Q ^r
Z o
o -=
a.
(A
260
240
MEAN
X
X X X X
xxxxxx
X X X X X X X
AMOUNT
fv -c »-4 m ra o <-«
%o CM »-* •-< rsi rsj ^
"-< O1
-------
OEfr XXXX
OH? XXXX
Ot-t. YXXX
xYAYkxxx
xxxxxxxxxxxxxlx
1
x x x x x x x x x y x « x f x
x x x x x x x x x x x x » x r x
XxXXX XX XXXXxXxXxXXXxXxlx
xxxxxyxxxYxlx
XXXXXXXXXXxtx
XXXXXYxXnYxi*
xxxxxxxxxxxn
XXXXXXXXXjtKX
xxxxxxxxxlrx
xxxxxxxxxfx
XXXXXYXXxlx
xxyxXxXxlx
XxXxXXXxfX
XYXXXXXIX
xxxxxxtx
xxxxxxkx
xxxxxlx
xxxxxlx
XXXXXKX
xxxxlrx
XXXxllA
xxxxrx
"xxxlx
xxfx
XXIX
xx x
xx«x
xlx
fx
r*
A
z
s
»_
z
n
u
X.
z
3
3
<
X
X
X
X
XXXX
XYXX
xxxx
xxxx
x»xx
xxxxx
xxxxx
xxxxxx
xXxXXXXXX
XXxXXXXXX
xxxxxxxyxxxxxyxxxxxxxxx
XXXXXXXXXYXXXXXXXYXXXYXX
xXxxxYxyxxx/xyxxxvxYxYX»
xxxxxxxxxxxxxxx Xxxxi: l
Uos
u 7 *\ i
9 c w L
\ z*t V
nta
I
9U*>
t964
ZZii
97Vt
ZlH
£746
»Tb9
zzm
tZtb
ST"?l
»1ifa
9T,-i
I T Z *a
fc ZZ ?
S.19B
Ub9 g
llil CO
9Zt6 S
"T« S
*rZ*rL Q
ZZbS <
£1bi to
^
iltl
zUl
ZZ9&
^
9186
9H I
T1-7E
Ul*
9T';l
JT
ZTib
ZZ99
9
9?4i
tl96
9?9Z
t,
Ztll
""'
O
0
c
_o
"»
w
M
'i
X
a
E
a
3
•o
C
O
a
IA
O
a
o
o>
O
CO
O
44
-------
YSI-31 instrument produced lower mean values for all three samples
than any other instrument, and had the least mean error in 2 of the
samples. The total error indicates that all instruments produce excel-
lent accuracy and precision. The precision is similar for all three
samples as shown by the overall relative standard deviations of 8. 6,
7.8, and 8.4 for samples 1, 2, and 3 respectively. The accuracy was
very similar for samples 2 and 3 as shown by the overall relative errors
of 1. 9 and 3.0 respectively. Less accuracy, as indicated by the overall
relative error of 9.4, was obtained for sample 1. Unfortunately, sample
1 was a 0.001 molar solution of potassium chloride commonly used as
a reference solution for conductivity measurement and theoretically has
a conductance of 147. 0 ;umhos/cm. The overall mean value of 160. 8
agrees closely with the value of 160.0 found by the ARS staff on checking
the sample after several months. Apparently the sample absorbed CO-
or other gas which increased the conductance.
TOTAL RESIDUE (Tables 11-16, Figures 36-60)
The determination of the total residue on evaporation of a water
sample appears to be a simple procedure. It is, however, one of the
more difficult analyses to replicate. The type of materials in the water
and the drying time and temperature used determine the residue from a
given amount of material in solution. Some water of crystallization may
not be driven off at low drying temperatures; most pronounced in highly
mineralized waters. On the other hand, some solid salts deposited may
be volatilized at the higher drying temperature; most important in waters
high in magnesium, chloride, and nitrate. The use of 180° C as the drying
temperature assures complete conversion of bicarbonate to carbonate
with loss of CO and HO. Therefore, the analyst must know the purpose
of the analytical result and should state the time and temperature of
drying.
For this study, the three samples typified three different mecha-
nisms that may be encountered. Sample 1, a solution of potassium chlo-
ride may lose chloride on prolonged or excessive heating. This appar-
ently occurred at both 104° and 180° C when drying was extended beyond
24 hours.
Excessive heating of sample 2, a solution of potassium dihydro-
gen phosphate and sodium hydroxide, may convert the KH PO. to KPO-
with a loss of HO. The data indicates that at 104° this loss did occur
after approximately 16 hours of drying, and at 180° the loss occurred
within an hour.
Sample 3, a solution of boric acid and sodium hydroxide, may
go through the most complex reaction of all. After the stoichiometric
45
-------
2
CO
PH
1
H
Ct-)
o
CH
cd
s
s
3
CO
TH
TH
cu
1— 1
£1
o!
H
~
-t->
•H
tuO
s
o
LO
r>
!_,
3 2
0 !M
H H
-J CD
H -"3
o P
fe~- "l
TO
.
CU
l-J Q
*2j "
PH ^
eft
• SH
r-i O
K s^
H
•a >
w Q
c o
Oj f.
a) t!
§ H
d
cd
y
CO
'o o
• rH
° ~3
55 O
«M CO
o ^
|S
•D
(1)
T3 •.-!
O ^
"S ™
S 3
O
J3
co o r- TO
TH IN CO CO
co co eg IN
CO -^ CO Tj<
TH t- TH H>
H^ r-l IN IN
CO CO O CO
CO CO t- O
TH TH
TH CO TH CO
CO IN TH CO
TH TH TH
O C- LO C-
IN CO CO IN
co rr- LO co
TH
TO (N TH TH
LO IN CO TH
CO TO CO LO
+ + + +
TO IN TH TH
IO IN CO TH
CO Tjl CO O
CO CO CO CO
O CD •* CO
CO IN CO LO
IN LO TH
CO
^ CO TH
o o o
LO LO LO
TH -^ CO
I—
CO
•*
TO
•^f
CO
CO
CO
TH
CO
TO
CO
CO
CO
TH
IN
CO
t-
+
-------
IM
0)
"o.
g
d
CO
a
u
o
^J
co
co
K
CD
3
•a
•H
CO
«
j !
cd
"o
SM
O
IH
rt
s
B
3
CO
CM
i — i
£1
"ZT
0)
i-H
•
CJ)
g
o
CO
s
1-1 (U
rt O
o t
H H
'o M
H -^
^ .§
in j
cn
^
(D
r-T Q
K '
•2
VI
*H
i— i O
H
* t>
2 «
w Q
C J{
ai O
§ H
rt
S
«- s
_cu
o 3
2 O
O |W
,
O "1
•a
•O 'r1
o 4<
•*^
CD cn
S 3
Q
iS
co -^ in to
o cn ^ co
T-H T-H
rH tO TF CM
cn o o to
CO CO N tO
T-H -^ CO t-
in ^ T-H c^
in in co co
o o o CM
•* c- t- in
TH O3 Tf T-H
in CM in co
iH iH CM
o o cn (M
^f in co CM
T-H TH CM CO
o o cn CM
^ in co CM
Tt^ -^ in T-H
cn cn cn o
CM CM CM CO
o in MH TH
CO CO CO C-
CM in TH
to
^t< CO TH
o o o
in in in
TH ^F CO
in
in
TH
t-
to
in
t-
c-
IM
O
to
-f
-------
CO
1 — 1
CL
g
t-*
o!
a
u
o
O
IH
Id
M
^
3
CO
PH
0
3
(0
0)
1 — 1
-+J
0
H
"3
!H
C3
s
s
3
m
co'
rH
0)
Cfl
H
-£•
ID
*j
i — i
hn
a
0
o
0
m
'**'
i— 1 SH
ri o
o £
H H
•3 «
^ .§
\n J
03
-S
£ T3
55
rH o
K £
W
T? >
55 Q
rt g
I w
d
d
0)
S
CO
O QJ
• r— I
O •£
Z0
CO
o S
• m
o 5
0)
T3 'r1
O ^1
i ~
0 ">
S g
?
S
i-H (M -^ LO O
CO CO CO lO O
T-H
C~ i-H O rH CO
t- O CO CO tD
*5}* ^ ^t4 ^— 1 "^
D~ ^ CO i— t CO
CO CO O5 CO CO CO
O -^ CO LO
CO
1
IM
O
T-t
5
CO
£>
^f
t-H
i — I
cti
rH
QJ
6
48
-------
tH
0)
tH
a
g
rt
W
.s
u
o
0
CO
1-t
H->
ni
w
i — i
3
CO
$
3
• tH
Q)
PH
tH
rt
-g
H
«*H
O
rt
|
w
tH
g
rf
H
'T'
co Q
JH ^
aJ ;_,
^J !M
§ W
d
rt
d)
CO
• t-H
O -+J
v^ 3
s O
=H M
"3
i§i
•o
0)
T3 -f"
O H
4_3
(U ™
S 3
o
.5
03 tH CO
C- O3 CO
CO CM CO
t> CM CM
•tf O O3
TO CM CM
cn co in
c- o o
tH tH tH
CO CM CM
tH CO O
tH co m
co m co
CO CO CO
tH
O3 CO CO
tH CO CO
tH -H< t-
O3 CO CO
tH CO CO
CO O3 CM
f- O CO
O O3 tH
0 CO 0
co in tH
•* CO
tH
o o
-t-> -t^
in m
rH* ^
0
03
in
m
CM
CO
03
in
CM
CO
rt<
CO
CM
o
CM
CO
m
CO
CO
m
co
t-
tH
CO
tH
CO
tH
O
-*->
in
CO
m
0
CO
tH
O3
tH
CM
CO
CM
CM
CO
CO
CO
tH
tH
O3
tH
tH
•*H4
CO
CM
CJ
tH
*3*
CM
O
m
CO
tH
co
o
in
CO
t>
t-
co
CM
CM
tH
O
(M
CM
in
tH
o
CO
c-
1
o
r-
co
o
in
CM
JH
O
o
CO
CO
O5
in
CM
tH
m
tH
in
Tt<"
CM
CO
tH
t-H
t-
co
CO
t-
co
co
c-
CM
tH
HH
CO
tH
t—t
"ri
SH
o
49
-------
CM
0)
"a
I
CO
c
U
o
CO
TH
is
(fl
-t-1
1 — 1
3
01
tf
0)
3
T3
to
QJ
«
"ri
0
H
^4H
0
CtJ
8
g
3
CO
0)
3
nj
H
t
^
.•a
i — i
"So
o
co"
CM
^^
^ 0
"5 S-i
H H
r-J ffi
O 4->
H -g
o H
in i-3
03
Kj
* n
K -a
CO
-J o
CCj SH
H
. •
2 £
to Q
C %
0) ^
S w
c
cti
^
<« £
o g
• i-H
^6
*° TH
^s
•a
T3 -r1
o
5 ^
o
TH O3 CO
CM ^ CO
CM tO O
tO IN O
in co co
0 0 O
co in co
TH -rf CO
c- in co
CM O LO
O3 O3 tO
TH CO IN
(N iH CM
to co co
CO O3 f
o in 03
CM TH
1 1 1
••* C- IN
TH O CM
CM [- CO
£- C- CO
CN1 CM CM
TH C- CM
O3 t> O3
CM in
^f CO
TH
o o
•M -M
in in
^
•*
CO
CO
•*
•^
in
O3
CO
to
CM
m
TH
m
TH
TH
1
to
•*
TH
CO
CM
CM
CM
TH
to
TH
o
in
CO
-f
CO
O3
to
CO
t-
«•
CO
^u
lO
CM
CO
TH
CO
to
CM
TH
1
CM
CO
o
CO
CM
TH
O3
TH
-4<
CM
O
m
to'
TH
to
cn
TH
^
L—
in
«'
t>
l
TH
^
to
TH
TH
m
CM
tt<
CO
1
m
i>
CO
m
CM
o
"*
CM
!H
i
CO
t-
co
[^
CO
CM
to"
to
in
C3
O3
to
TH
0
in
to
TH
1
o
in
to
t—
CM
CM
TH
TH
CO
TH
1 — 1
1 — 1
a!
M
-------
CO
1 — 1
a
ni
CO
.s
o
o
O
CO
T-l
ai
to
-*->
1 — 1
3
CO
PH
QJ
T3
CO
(p
PH
1 — 1
cti
0
EH
^*H
O
SH
ni
S
§
CO
co*
TH
CU
2
ni
H
^^
JH
Tj Jr
-M CU
CO Q
§ o
m ?H
lS ^
g H
a
ni
0)
t^
CO
e*H f,
o S
• ^
^ ^
^ o
ft -2
O T-H
• [fl
O (y
T3
flj
O *-"
^-i 'D
"£ »
S 3
O
o •* m
co co co
CM O CO
•^ co in
•^ co in
c- o m
CO CO CO
CD CO I>
O O CM
IT5 03 O
CM 0 CO
c- -tf in
TH TH TH
D- CM CO
CO CO CO
CM CM CM
TH
-f + I
CO CM TH
CO CO CO
o o m
t- i> in
•* •* ^
TH CO CSl
CO t^ CO
CNI in
•* CO
TH
o o
in in
CO
CO
T-H
CO
CO
TH
TH
CO
CO
CM
CO
00
CO
c-
co
0
o
m
TH
1
0
o
CO
l_O
•*
o
^
T-H
CO
TH
o
CO
CO
CO
CO
(-_
•^
f-
CO
•*
TH
0
CM
C-
TH
CM
in
CO
i
CO
TH
CD
•*
TH
o
CM
CM
O
m
CO
TH
CO
co
TH
CM
in
CS!
TH
CO
in
•*
CO
in
CO
^
d
o
CM
CO
CO
1
o
CO
CO
CM
o
m
^f
CM
S-,
0)
a
CO
o
TH
CM
TH
in
o
in
CO
o
*H<
•*
CO
t-
co
CO
t
CO
o
T^
CO
-*
CO
CO
CO
TH
,-H
"H
CD
51
-------
1
AXXXXXXXXXxXXXxX V*XA'X»A
XXXXxXxXXXXX »A»XAAVX
XXXXXXXXXXX XxXXx X
xxxxxx »A»X»XXX
XXXX X»VXXXXx
X X*XAXXXX
VAXXXXXA
AXAXXXX
XAXXXX
*A'A*A
/A-AVA
Z xxxxx
LU
'XXX
XXX
X
z
Ui
in
UJ
ix
d.
z
o
«AA,Xv,v,,
mi
0»
fcT |
O)
^ c
•» "O
3
? i <*t o
^
- v . V >
I 1 c I *
i
„ E
/ T 1 •? UJ O
m M
nut | J
Z o
L, I 1
< o
1 1 *y fc of 3
2 3
£?VL ** fl*
** k.
lUi 2
4-
(_ k.
' o
**.
t 1 % *7 -^
&
o
Ub* TO
t\\* J
^J
v?ii 55
1
a
1 1*"* E
t 1 V **
ivioi
52
-------
r
} F66XXXX XXAXX^XXA^A X|A XAXxXAXAX
} 0£lxxxx x x A x x x1 A x A x A ^ x A x x x A x x x
>'OSIXXXX XXXXXKXXA«Ay»XxXAXX*AX
I'HIxxxx XXXXXXAXAXAXJAAAXXXAXAX
AXxxxxxxxxxxAXAXAxxxAyUxAXAXXxxx
yxxxxxXAXx>xvxxxxxAx
XXXXXXXAXXXXXAXAX|A*XXXXA*AX
xxx*xxAXxyAXx
1 T j 1
1 I L 1
9Tȣ
Ilk/*-.
1109
I I i £
1 i i. a
T 7t *.
I COW
lU*
c 7 i i
t c i i.
I1Z5
•»U9
5Ti»
VZIE
»Ztt £
9ZbZ m
EZtfc £
Uȣ =
itdi z
99«i J
6 0
£I9B >-
»Z41 2
»lt» O
91?i. ca
zz<;i <
•i
•>ZbI
4li9
tl ? t* '
7 c vi
Z?ii
^
n«
iz<;s.
lib*
UbS
veil
IU4
VT1E
ZZ99
IZc'b
tZvf
9?l I
ZZbt
ElVt
9?fc 6
i ?t 6
a » ^ t
T I b t
4Tt^
•
E
*•
01
c
'>.
k
-o
M
k
3
O
j:
•*
o
g-y
>s.
^
<•».
'5
*•
«
a
E
o
M
e
U
0
•*
O
""
O
•
3
TJ
*M
«
b
"3
^
o
^
o
^ta
^
a
o
n
•u
o
CD
K
(O
0
k
3
.?
lH
j»i!i/6ui
ivioi
53
-------
•
A v A x t. x A v A 1; A > /.
1
'• A > X X X X A t A X A
X AXX I A » A
^xxxixYA
1
XXXX»A>A
A X j[ X V X
|xyx
V X
> X
y x
XA
Z
LU > X
s
^^
A
|
H-
Z
LU
to
LU
Q£
0.
H-
Z
3
O
<
<
<
.' v x
A <" X » A '
A V A , . V . V V
ITU
0)
c
o
-C
•o
I :
I 3
>- .2
oe. o.
V,
O Ow
eo *
< o
TJ
M
a
nee
CO
a
a
o
a
ca
m
3
D>
54
-------
j
XXXXXXXX>XX x < x«y x x x x
1
V AVA *X|XXXXX
1
< AX A A AJXXXXX
A»»XX)XXXXX
x*xx|xxxx
A A.^ XX X
XAXXJXXXXX
Axxlxxxxx
1
XX^XXXX
xjxxxxx
xjxxxxx
IXAXXX
xxx
XX
z
5
s
t—
UJ
LU
a.
1
o
X
XX
XA
y A
1:964
T 7*1 1(
1 C 9o
7 7 h V
C C O t
4
U2I
ilK
7*£8
•,169
n*»
I
1
IU4
»lifr
E?I6
!!*e
zzti
IZ99
k7tb
EH6
»?zt
tlii
1169
J-y » f
?fc t
t T bi
§
01
C
'x
CM
O
—
a
E
D
D
O
3
^o
*w
O
^
"5
o
a
a
D
ca
a*
CO
3
O)
ivioi
55
-------
xxxxxxxx*xxx<
vx*xx
AXXXA*
AXAXXX
xxxxxxxxxj
AX
X
X
AXXXXX
A y x x x *
A^XXA*
xxxx
XXAX
xxx
XXX
XXX
XX
1
I
4
1
^
z
z
2
^
iU
VI
UJ
Of
0.
^
Z
3
0
£
<
xx
XX
XX
XXX
xxxx
xxxxx
xxxxxx
XXXXXxXx
XxXxXXXXXAV
XXXxXXXXXXV'XXxJ'AXxXX
Vlb*
i\
\\i\
4T*E
i
usi
9«?bi
^
Z1T>
IZ1?1^
iZlL
Z
uvt
->Ui
ZI19
U4V
i
ZUB
-
«
o
o
co
at
c
cs
—
a
E
o
u
o
*
O
O
«
3
TJ
M
a
!•
^
O
k
o
^
a
a
a
^
o
CO
6
*
a
k
3
a
CO
CO
c-
CM
56
j
-------
O'SUt'XXXX XXxXXXXXXXAXxxl
O't'SfXXXX XX«XXVXXx*XX*X«
o'cmxxxx xxxXxvxxxxAXxxl
O'ZKxxxx xxxxxxxxxxAXX'f
XXXXXXXXXXXXXAXAXXXXX»XX<1
XXXXXXXXXXXxXAXXXS
xxxxxvxxxxxxxxl
X X X X X X X X X A X A X I
xxxxxxxxxxxj
xx*xxxxxxxx|
XXVXXAXXXI
xxxxxAXXxf
Xxxxxxxl
xxxxxxj
xx
JJ
a
E
o
u
o
O
O
3
TJ
a
o
JC
a
o
b
o>
b
O
3
a
j*4j|/6ui
57
-------
1
XAXXVXX*XXXXX|XX
1
AXAXAVXXXVV*
IxAXAXxyJcxI
1
A V X X A Y* X
y
y
X
X
I
£
TH «-! <-< I"1
CD •* CM O
e^ co co co
5
s
LU 1
ee. \
Q.
t—
Z
O
s
<
y
F
y
XX
X x'< X
X A X A Y X
|y xo'9Ll
00
IM
1 I * I |
0)
Ut- |
-o
- .5
oe u
»e" i i
^* ^
2^b o •
CO 3
rf TJ
-------
xxxx xxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXxX
XXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxx
xxxxxxxx
xxxxxxxx
XXXXXXXX
xxxxxxx
XXXXXxX
XXXXXXX
§
Olxxxxxx
*
-------
X X X X « X X > A X X X A X » X
AXXXXXxXoXXX
XXX»XA<
AXXXAX
XXXXxX
VA»XX
XX
XX
XX
X
1—
UJ
I/I
UJ
at
0.
z
o
f.
Z
UJ
S
k
1
r*
|(XX
1
FXXXXX
txxxxx
1
)(XXXXXX
kx.XXX
1
l
s
nzt
l?""
s
l,«
m,
ez*i
UUl
ins
\\>rV
?Tsb
_E
o>
c
'x
•o
3
O
3
Z
oe
O
fr-
ee
O
a
E
a
W)
C
u
o
3
O
O
a
o
a
ca
a
3
O
j»(.i/6ui '
ivioi
60
-------
O'f-fraxxxx xxxXx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxx
XXXXXXXXAX
XXXXxXxX
XXXXXx>
XXXXXAX
xxxx*
XXX
XXX
XxX
XX
XX
X
X
z
i/i
UJ
OL
2
o
$
z
UJ
£
X
X
X
X
X
XX
XX
xxxl
XXX)
xxxix
xxx|x
k
o
in
0
ivioi
61
-------
>•'""
H-
Z
Ul
LU
a.
t—
Z
O
^
ID "
O
L.O
AvxXx
2
^
AXXXXXXXXXX ^
*
A/xxxxxyxxxx
XXXXXXAXAXXVXX
1
x/xxxxxxxxxxxxxxxj
XXXXAXXXAXxXAXXXXlX
1
xxxxxxxxxxxxxxxxxf x
xXxXAXXXXXXXXXxXXIX
xxxxxxxxxxxxxxxxxtx
1
XXXXXXXXXXxXXXXXX^A
xxxxxxxxxxxxxxxxxKx
1
XXxXXXXXXXAXXVXXXfxXxXX
x^xvxx
xvxxxxxxxxxxxx) Ix^o'gsf'
xvxxxxxxAXxvxxx ixxg'gg^
'
XV X X X XXy AXX XXX xxxY0*£L£
1
cow *& ""oj " T!
Ci c^ co t"
T}< tj" ^ ^
nu «
E
QZ(jL ">
c
'>•
dZ£8 "S
M
k.
3
^? c ^ °
TTZfa o
CN
t?n s :
00 -c
ezv*7 s -i
3
z „
^ ft.
. ,T , o °
2 j
mi § ^
< 2
o
11 16 I
M
£
D
o
o
fc^
9Z9Z I
o
a
9 1 1 1 5
CD
/ •*
*- •*
a
!•
H a
ivioi
62
-------
O'HuiXXXX XXX
O'fc.Q'-XXXX XXX
xxxxxxxxxxxx
xxxxxxx
XX
XX
t-
UJ
V)
Ul
ct
a.
h-
z
0
X
X
XX
XX §
xxxx
xxxx
XXXXX
xxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxxx
xxxxxxx
xxxxxxxx
xxxxxxxx
XXXXXXXX X
xxxxxxxxlxxxxx
xxxxxxx xfxxxx xxxxx
xxxxxxxx jxxxxxxxxxxx
xx xxxxx xJxxxxxxxxxxxxxxx
xxxx»xx*:jxxxxxxxxxx xx xx xxxxxxx
xxxxxxxx Jxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxx Jxxxxxxxx xx xxxxxxxxxxxxx
1
XXXXXXXX JX XXXX XXXXXXXXXXX XX XXXXXXXXXXXXX
1
9Zȣ
zni
9ZCZ
I
£Z16
£964
nte
IZ»9
Z?tl
£116
»T*» £
IU» §
tt*9 *
at
97ZC O
LVHOflVl
IB OD
w *
f. M
M \Ji M
IZZ1
zm
ZZ»i
Ilil
EZiB
9Z(6
mi
ZIIB
ETJi
ZZZ£
o>
c
O
CS
a
E
o
-------
1
xxxxxxxxxxxxxxxxxxxxxxxxxxi
xxxxxxxxxxxxxxxxxxvj
1
XXXXXXXXXXXXXXXX)
XXXXXXXXXXXXXx'j
xxxxxxxxxxxxxxxi
1
xxxxxxxxx^
xxxxxxxxxl
1
xxxxxxxxf
1
xxxxxxxl
xxxxxxxi
1
xxxxxxi
XXXXXX*
t
xxxx}
1
xxxxj
xxxjt
xxxj
XXX ,
a
z
i
l-
J"
*/>
UJ
a.
z
3
o
X
AXXXX
xxxxx
XVxXX
xxxxxxxxx
x'xXXXXxXXxXXXX
XVXXXXXXXXxxXXXXxXXXX
.xxxxvxrxxxxxxxxxxxxxxxxx
XXXXXXXXxXxXAXXXXXXXXXxXxXXX*'
izzt
tl
i
zm
Tlbt
illt
11VS
1ZV
ZlSi
9169
v-Jlii
s
UZ1
1141
998.
VCH
9?ze
4
ZU9
IZb*
Zllb
Zlib
9
11*9
s
U'*1'
Z?bb
1US
9ZS.
ae
O
CD
<
_
a
a
o
CO
«
-u
-c
a
D
D
ca
oo
1V101
64
-------
D'Ofroxxxx xxxxxxxxxxxxxxxxxxjxxx
D'BSIXXXX XXXXXXXXXXXXXXXXXX^XXX
D'S&IXXXX XXXXXXXXXXXXXXXXXXIXAX
xxxxxxxxxxxxxxxxxxxxxxxxxxixxx
XXXXXxXXXXXxXJXxX
xxxxxxxxxxxxixxx
XXXXXXXXXXxXjXX*
xxxxxxxxxxjfxx
XXXXXXXXxXkXXX
xxxxxxxxxixxx
XXX"XY*-
nzs g
iZZL 2
Zl£l <
9UE g
Uȣ a
SI19 <
1Z66 -1
ZZ86
1186
5
im
ItiS
Ui£
iZtL
t T ii
ins
9Z6*
II«f
1169
91Z4
(16Z
1 1 Z£
£Zli
*Z*i
116*
£196
IU9
IU6
ZZE1
111*
9ZZ*
0)
X
k
TJ
2
o
o
^
CM
_
a
o
o
00
0
3
TJ
a
o
a
CO
O)
ivioi
65
-------
O)
E
O
tn
tu
ae
99
90'
81-
2 72
63
MEAN
X X
X
X X
0 X
o
X
X X
X X
XXX
X
X
X
X X
XXX
XXX
XXX
XXX
X X
X X
X X
X X
X ><
X X
X X
X X
X X
^
X
X
X
X
AMOUNT PRESENT
* O « csj
•-• CM "* CM
00. f-4 IV CM
O- ~4 00 v*
a\
-f
LABORATORY NUMBER
Figure 50. Bar graph for total residue at 180°C in sample 1
with 4 1/2 to 8 hours drying time.
a
^.
O>
E
UJ
Q 93
*/>
ae
_i
<
O
*~ 33
X
X
X
X
X
•-4
o-
in
MEAN
X X
X X
X
-4" ro «-* if1
CM CM ^ rM
-< >O >» CC
—1 -J- -H C7>
X
X
X X
AfAOUNT PRESENT
•H ^ *O •-! (M O |T\
«-* (Ni IM fM CM CM
»-t 1TV ITS- m O «-4
1 xxxxvxxx!
tr
o
•*
to
5
X
X
X
X
-
LABORATORY NUMBER
Figure 51. Bar graph for total residue at 180°C in sample 1
with 8 1/2 to 16 hours drying time.
66
-------
xxxxxxxxxxxxxxxJuxxxxxxxx
xxxxxxxxxbxxxxxxxx
1
xxxxxxpxxxxxxxx
xxxxxyxxxxxxxx
xxxxfrxxxxxxxx
xxxx*xxxxxxxx
xxxtxxxxxxxx
1
xxf
O 0) C; 00 C-
rH
jai!i/6uj 'anaisia ivioi
1—
z
LU
UJ
ae
a.
t-
o
^
XY
*xxxx
X XO'f.'S
x xs'02
£ £
„«
iii^ i
•f
Z29i c
'E-
VT 69 "°
M
k
3
IUE i
^r
•7189 «
cs
t?I6 v.
•o
12*8 ^
oc 'i
"fcs Jg -
Z"B | ]
^M g
1 1 S ^ tt *•"
o «
o
1 ? 2 1 ^ oo
tt r—
o -5
["[ *tc CD ffi
ttbL S
_^
1299 f
i.
1 1 ^. 9 ^
a
VT Lb °
5)
E2/.8 6
OQ
I ?2£ Si
a
^
*7 1 fe 1 _»
tH
II8Z
>
67
-------
xxxxxx
XX
^H
UJ
*/»
UJ
oc
0.
h-
Z
D
O
£
^
x
XX
XX
xxxxx
XXXXx "
xxxxx
XXXXX
xxxxx
xxxxxxxx
XXXXxXxX
XXXXxXAX
xxxxxxxx
XXXXxXXXXlj
1
1
xxxxxxxxxnx
x x x x x x x x x x>x
1
XXXXxXxXXXjx
xxxxxxxyxXjX'Ayxy*
xxxxxxxxxxt*x«yxxxx
1
xxxxxxxxx vfc '' A x A ^ A y
xxxxAXxxx^Lxxxxyxxx
xxxxAXA/xy^AxxxX xxxxxx
1
XXXXxX»XXX.AxxyxxAAXXAyxxxYXXX)xx*xx«
XXXXXXX>AXJX^X>»''X^xXXXXXAXXXX¥ A VAX 0 "OB
ZU9
9U1
91 b^
ti
0)
i 1
o>
nzi ^
iz** ^
TJ
•rlbL 3
O
*zzt ^
^
U9S .t
ZW N
O
9*ii "a
ec E
998i. S 2
£ c
ZIS*. 3 —
z <•»
0
S >• 0
£ oo
O •-
"" 5 o
«T»e g |
m 15
i < g
-• £
n»9 "o
•5
ZTiii ^
O
nvt ^
a.
4 S
a>
w 5
OQ
I T , f
IU& w
vets "^
tut §,
u_
<:Zb6
mv
Zllb
b
je|i|/6ui '
1V1O1
68
-------
0'9it-XXXX XXXX
0'99fXXXX XXXX
xxxxxxxxxxx
H-
z
I/)
at
fc
3
o
•£
^
X
X
XX
XXX
XXX
xxxx
xxxx
xxxxx
xxxxx Iz
xxxxx j<
XXX XX - |*j
xxxxxx 1*
xxxxxxx
xxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxxd
xxxxxxxxxxxxxj
xxxxxxxxxxxxxjtx
XXXXXXXXXXXXXf XX
XXXXXXXXXXXXXZXX
xxxxxxxxxxxxxsxxx
xxxxxxxxxxxxxlxxx
xxxxxxxxxxxxxfcxxx
xxxxxxxxxxxxxj(x*x»x
XXX XXXXXXXX XXXXXXXX
xxxxxxxxxxxxxlxxxxx
xxxxxxxxxxxxxlfxxxxxx
xxxxxxxxxxxxxlxxxxxx
xxxxxx xxxxxxxjixxxxxxx
xxxxxxxxxxxxxixxxxxxxx
xxxxxxxxxxxxxixxxxxxxxxx
XXXXXXXXXXXXXIXXXXXXxXxXX*
xxxxxxxxxxxxxixxxxxxxxxxxxxxxxxxx
XXXXXXXXXX XXxfXXXXxXxXXXXXXXXXXXXX
xxxxxxxxxxx xxixxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxixxxxx^xxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXJXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxx xx txxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXXXf XXXXXVXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxx xixxxxxxxxxxxxxxxxxxxxxxx xxxxo'aoe
XXXXXXXXXXXXXSXXXXXXxXXXXXXXXXXXXXxXX XXXxO'Sbl
XXXXXXXXXXX XXXXXXXXX XXXXXXXXXX XXXX XXX XxXX 0*061
XXXXXXXXXXXXxKXXXXXXxXxXXXxXXXXXXXXXX XXXX S'^o
XXXXXXXXXXXXx|(XXXXXXxXXXXXXXxXXX»XXXX XXXX6'?
i
»z»t
TU5
1U9
Zlli
ZIZL
ZZZ8
^Z&£
UK1-
EZ69
S T 49
ZTil
t?96
5
9^J|
EI«8
IUT
I Ci£
9Tl£
1199
¥261
£116
zzzz
1 1 fi^
1192 -^
UZS ca
zzi^ •£
ItiE 3
1Z66 ~
9ZS& *•
StI9 o
9Z66 f.
9 0
nzs <
ZZ99
6
9£(9
EZ£6
*?k1
9ZIZ
U69
ZZ4i
ETii
IIIS
91Z£
Uȣ
U«6
UZE
EZU
frZ*£
ET96
US9
ZZEE
Z?E I
9ZZ»
s:tz
III*
•6
o
o
.t
cs
0
~a.
B
O
o
00
o
0)
D
TJ
'M
£
1
o
0>
D
CD
•*
O
k
o>
1V1O1
69
-------
O'frfrEx x
XXXXXX
xxxx
X
h-
z
LU
t/>
LU
c*
Ou
*-
Z
3
O
£
<
10
o
CO
1
Z
<
Ul
XXX 5
XXX
AXX
XXX
XXXXX|(XXXX
1
xxxxxkxxxxxxx
xxxxxkxxxxxxx
XXXXXjfxXXXxXXXX
xxxxx[(xxxxxxxxxx
1
XXxXX^ XXXXQ'LSS
1
O> CO C
00 I> L
(M CM C
^.
fczn
IT6Z.
Q?86
1
IT«7I
9^tl/.
P?fc8
VZ9£
9ZSS
VZH
nib
£Z9V
£165
•«v
n
M
2
2
2
o
_c
-o
o
CM
-v.
CO
i
*
E
I
s
a
o
o
CO
m
in
ivioi
70
-------
xxxxxyx
xxxyx
X
*—
z
LU
«A
UJ
at
a.
t—
Z
3
O
£
<
o m
3 ^*
0 0
O CO
I
X
XX Z
UJ
xv S
xxxy
xxxx
xxxx
XXXXJJ
xxxxJxx
xxxxjxxx
1
XXXXJlXXX
xxxyyyxxx
I
i
vy y y Jv •, y .
A^A7^^A'A
|
XXXXJJXXXX
xxxyjyxyx
1
xxxy^xxxxx
i
xxxxijxxxxvxy
1
XXXX)J VA0't-KE
1
in m
• •
o m
co in
•
TO
t?ifc i
o
.c
VT«9 J
£
iz^e CM
^
^Lf> 2
^
U^-f c* *
UJ CS
CD «
ZZ9i $ •£
3 E
7 a
"66 > .i
t96& 0 ^
5 o
< 00
IZV9 g -
eo •
^^t6 < .=
*w
\\L*7 2
o
T T J C, *•
1 1 t 3 ^
O
**-
TT^Z -=
0
fclii ?
0
a
im ^
m
fc?^.B £
O)
*TiT E
ivioi
71
-------
XXXXXXXXXXXXXXXXXXXX XXXXXXXXXX !X
xxxxxxxxxxxxxxxxxxxxix
1
XXXXXXXXXXXXXXXxXXXXXX
XXXXXXXXXXXXXXX X
xxxxxxxxxxtx
xxxxxxxxxlx
xxxxxxxxltx
1
xxxxxfx
1
»xxxxix
xxxxtx
1
XXX
XjX
f x
i
}x
Ix
zl
21
SI
»~
z
I/I
ee
a.
z
1
<
X
xxxx
xxxxxx
xxxxxxx
xxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
XXXXXXXXX XXXxO'ISE
ZUi
ZU9
9E11
zn»
z
9»8i 1
I ZV^ O>
c
¥164. *~
•5
£1 5
9189 ^
4Tȣ m
nzi S -|
* E
«« 1 s
s >- •-
Of \J
f_ O O
4 •- o
< 00
t 04 —
O o
a
IT9S < »
Il»9 ^
ZIS8 ±
p
zzzz £
i O
" **-
-C
IZ8^ Q.
o
U9C 0)
1141 03
ZltB 1^
9ZiS |
a
ITiS •£
ZZ66
It»»
72
-------
o'ztixxxx xxxxxxyxxxix
0'<.M. xxxx xxxxxxxxxxjrx
xxxxxxxxxxxxxxxxxxxxjtx
xxxxxxxxxxxxxxxxxxxltx
xxxxxxxxxxxxxxxxxxxkx
XXXXXXXXXXXXXXXXXX|(X
xxxxxxxxxx»xxYxxxixxxxxxxxxxvx x»v*o'eit-
XXXXXXXXXXX«X»*.
USE «
»ZSI O
IIZE <
ZZti^ ^
»Z6I O
6 <
uzs -•
lEit
ins
tlti
9Efc9
ftbi
E?U
El»6
9tZ<.
llfcb
7779
C C C C
c
I!6»
zzz^
1 1 *ri
9Zb&
zzt i
*Z*t
Z1U
EU6
II"
j»4!i/Biu '
73
-------
xxxAXxx
xxv
Y
H-
Z
UJ
to
UJ
CL
Z
O
J
0 CX)
•5 0)
"D ^1^
Z
^
UJ
^
Y
y
y
y
xk
1
>'|( X
P
xkx>Yx
xkxxxxvxx
1
1
XKXXX'xXxvXX
3 C
LO ^ f
•^1 Tf O
^
i
O)
I 1
>•
•o
ZZtfe i
o
j:
•O
9?&t a I
UJ CM
60 «
^ *
*^P ro
>• "5.
tt E
9Z^5 0 j
t- *
3
.?
iZ
-------
xxxxxxxxxx
xxxxxxxx
xxr
XXX
XXX
XX
t-
z
LU
I/I
LU
Of
t-
z
o
<
^5
<
•N M
z
LM
?
X
X
XX XX
XX XX
XX XXXy
XX XXXXXX
XX XXXXXXX
xx xxxyxxxxxx
XX XXXXXXXXXXXXXXXXXX
xx xxxxxxxxxxxxxxxxxx
xx xxxyxxxxx xxxxo'oie
rq c-q s>J
•;T69
VT89
0)
ZZ9L 1
0)
uzi 'I
TJ
ni* i
0
E2I6 s
IU£ ^
^x
izve *
o< -e
^Ti6 IS 1
5 «
ZZ6i 2 -2
Z a
IZ99 g 1
cm < .»
o S
u*z 3 r
< 0
-• „
£965 |
'M
IZZl *
o
lus !
o
Z*68 ^
a
£ZiB w
0
•7T£T •
o
ZZbB £
3
1182 i=
ivioi
75
-------
formation of sodium metaborate (NaBO2), any excess boric acid loses
a mole of HO to form metaboric acid (HBO ) on drying at 100° C.
Upon further heating, additional water is lost with the conversion to
tetraboric acid (H0B O_). The data indicates that the calculated loss
^ 4 i
was exceeded within one hour at 104°, with a progressively greater
loss as the drying time was extended. At 180°, the calculated loss
was exceeded only after more than 4 hours drying, with greater losses
occurring after prolonged drying. Clearly, no single set of conditions
will serve for all water samples.
Regardless of drying time and temperature, the results for
samples 2 and 3 would be considered excellent according to the low
total errors. In general, a drying time of 1 1/2 to 4 hours at 180°
appears to be preferable. At 104°, slightly more time such as 4 1/2
to 8 hours seems to be indicated.
Sample 1, having failed to perform exactly as predicted in the
other determinations in the study, must be suspect also in this deter-
mination. Although the corresponding total errors are substantially
greater, the drying times and temperatures recommended above still
appear to be valid. The results, while not excellent, are acceptable.
Proper technique, such as cleaning and conditioning the dishes,
and properly handling and cooling the dishes after drying the sample is
very important. Of the many comments offered for this determination,
the most prevalent was to the effect that after drying at 180°, cooling
and weighing the dish was a critical part of the procedure. This was
especially true for sample 3 which became extremely hygroscopic and
could absorb moisture from a desiccant that was not absolutely dry, or
from the air in the balance case if the weighing was not done very
quickly.
In addition to the variables discussed herein, weight losses
might be due to volatilization of organic matter and gases from heat-
induced chemical decomposition, while a weight gain might be due to
oxidation.
76
-------
COMMENTS OF THE PARTICIPANTS
Total Alkalinity
1. The "low alkalinity" method yielded a negative result on Sample 1.
A titration curve was made and the sample was found to be past the
equivalence point.
2. Technicians found it easy to reproduce the appropriate end point
pH with mixed indicator.
3. Methyl orange produces a very poor endpoint. Two drops of indi-
cator were insufficient, so 5 drops were used.
4. Fleisher methyl purple indicator was used for this determination
because color change from green to purple is easily noticed.
5. End points, using either the mixed indicator or methyl orange, were
very poor due to the use of a dilute titrant (0. 02N H SO ). The
i 4
potentiometric plots were also far less than ideal for ascertaining
the endpoint. Perhaps, the best approach would be to titrate a
known volume of the sample to a specific pH value, thereby reducing
the errors associated with poor endpoints. The sluggishness in
obtaining a well-defined endpoint could be readily monitored by
potentiometric methods. Also, the potentiometric method would
permit the analyst to observe the presence of any buffering capacity
in the sample. Such phenomena are not readily discerned by the
use of visual indicators.
6. Methyl purple gives a more definite endpoint with boiler samples
which may contain color.
7. Methyl orange method has a very poor endpoint from orange to pink.
8. Xylene cyanol acts as an intensifier for the methyl orange color
changes.
None
Specific Conductance
1. A Sproule conductance cell of constant 1.0 and an Industrial Instru-
ments platinized cell of constant 0. 1 both yielded similar results.
77
-------
2. There is an abnormality of the ratio residue/specific conductance
in Sample 3.
3. A drop of roughly 5 /umhos/cm occurred in all samples after 10
days from the date of reported analysis.
Total Residue
1. There were only minor changes between 60, 90, and 120 minute
readings.
2. Sample No. 1 was run and checked twice at 105°C. The weight
each time was 82 mg/1 and 81 mg/1. When dried at 180°C it in-
creased in weight to 88 mg/1. It was again dried at 105° C and re-
tained its weight of 88 mg/1. For some reason it seems to have
become more hygroscopic.
3. After drying for 16 hours, a further 24 hours drying resulted in no
detectable change in weight. Our standard practice is to employ
porcelain dishes and to dry overnight in an oven at 103-105°C.
4. Samples were very hygroscopic after drying at 180°C.
5. Changes in total residue from 105° to 180°C of synthetic samples
may not be analogous to changes of natural samples.
6. Samples were evaporated at 105° C instead of steam evaporation.
Drying at 180° C was performed on separate portions after the
pre-evaporation at 105°C. Samples were dried 2 additional hours
at 180°C. No significant weight change was observed.
7. Porcelain dishes gained weight during storage over CaCl2 after
being heated to 179-181°C, and this gain was not related to the
sample.
8. Constant weight achieved in 1 hour. Test was carried out to 2 hours
without any apparent change in weight.
9. Weight change after drying for second hour not greater than ± 0. 5 mg.,
therefore, constant weight considered attained after one hour drying
time.
10. When using the 179-181°C temperature the weight at the end of 1
hour drying time was always less than after 2 hours (after which
it remained constant).
78
-------
11. All samples except No. 3 at 180°C reached constant weight after
1 hour. Sample No. 3 attained constant weight after 2 hours.
12. Immediate weighing as soon as cool is essential. Platinum evap-
orating dishes are essential for repeatability of tare weights of
sample containers of samples being dried.
13. Difficult to determine the correct weight of sample dried at 180°C
because of rapid uptake of moisture from air.
14. Conductivity vs residue does not seem to be following a normal
pattern.
15. Increments of 1 hour drying time were used. Sample 1 took 1 hour
to achieve constant weight at both 103° C and 180°C. Sample 2 took
1 hour at 103° C and 2 hours at 180° C. Sample 3 took 2 hours at
both 103° C and 180° C. Pyrex dishes were used.
16. Sample 3 took 2 hours drying time for constant weight at each
temperature; whereas the other samples took only 1 hour.
17. These samples were difficult to dry to constant weight, due to
hygroscopic characteristic.
18. Suggest a drying time of 120-125°C. Moisture could be picked up
in transfer from oven to dessicator quite readily at 179-181°C.
19. Although sample 3 was dried for 18 hours at 180°C, it never
appeared completely dry.
20. Sample 3 was apparently quite hygroscopic and had to be weighed
"on the fly. "
21. Constant weights were readily obtained after one hour of drying
for all three samples, probably because the residues were very
small (less than 30 mg.).
22. Two hours drying was insufficient so we dried the samples over-
night (16 hours).
23. Sample 1 is inexplicably lower at 103°C than at 180°C.
24. We have found that a cooled dish placed in the balance case, but
not on the pan, will send the optical scale up, sometimes com-
pletely out of sight. The static charge will slowly leak away. If
one is not aware of this phenomenon, and places the dish directly
on the pan, the dish appears to gain weight as the charge leaks
79
-------
away. We intend to use staticmaster ionizing units both in the
balance case and in the desiccator, but in the meantime are
zeroing the balance, placing the dish in the balance case but not
on the pan, and periodically checking the zero setting. The
weighing is made only when the balance returns to its original
zero point. Room temperature has been 25°C and relative
humidity about 60%. We realize the problems of desiccation,
especially when a balance case does not provide the tightness of
a desiccator. We are using silica gel because the facilities for
the regeneration of magnesium perchlorate are not at hand and
without intolerable delays (and complicated modifications) desic-
cator conditions are not achieved in the balance case anyway.
25. In all cases 1 hour drying resulted in constant weight. Sample 2
when tested at 180° C showed greater lack of precision than 1 or
3 in repeated trials.
26. 'Cooling' in desiccator much over 1 hour has a tendency to increase
weight.
SUMMARY AND CONCLUSIONS
The measurement of total alkalinity tended to produce high results,
regardless of the means of endpoint detection; possibly caused by failure
to correct for the titration blank. The use of methyl orange for endpoint
detection produced greater errors than mixed indicator, methyl purple,
or potentiometric titration.
The determination of pH presented no difficulty and there were no
significant differences between the various instruments used. All pro-
duced excellent accuracy and precision.
The specific conductance measurement likewise presented no diffi-
culty and all instruments used in the study produced excellent accuracy
and prec Ision.
In determining total residue, the temperature at which the residue
is dried and the length of time the residue is maintained at this temper-
ature, in addition to the chemical and physical nature of the sample all
have an important bearing on the results. In general, constant weight
will be achieved in 1 1/2 to 4 hours at 180°, while at 104°, 4 1/2 to 8
hours will be required. The analyst must select the temperature to
use after considering the purpose of the analysis and the type of residue
desired. With careful technique, excellent accuracy and precision can
be obtained.
80
-------
BIBLIOGRAPHY
A. Alkalinity
1. Mixed Indicator. Standard Methods for the Examination of
Water and Wastewater, pp 48-52, 12th edition. APHA, AWWA,
WPCF. New York, 1965.
2. Methyl Orange Indicator, ibid.
3. Potentiometric Titration, ibid.
4. Methyl Purple Indicator.
5. Other
B. pH
1. Beckman Zeromatic Instrument, Glass Electrode Method.
Standard Methods for the Examination of Water and Waste-
water, pp 226-228. 12th edition. APHA, AWWA, WPCF.
New York, 1965.
2. Beckman Expandomatic, ibid.
3. Orion 401, ibid.
4. Corning Model 12, ibid.
5. Beckman H-2, ibid.
6. Orion 801, ibid.
7. Corning Model 7, ibid.
8. Leeds and Northrup 7401, ibid.
9. Other
C. Specific Conductance
1. Beckman RC 16 B2 Instrument, Standard Methods for the
Examination of Water and Wastewater, pp 280-284. 12th
edition. APHA, AWWA, WPCF. New York, 1965.
2. Beckman RC 16 Bl, ibid.
3. Yellow Springs Instrument Model 31, ibid.
4. Radiometer CDM-2, ibid.
5. Leeds and Northrup 4866, ibid.
6. Other
81
-------
D. Total Residue at 104° C
1. Dried for 1 hr. Standard Methods for the Examination of
Water and Wastewater, pp 244-245. 12th edition. APHA,
AWWA, WPCF. New York, 1965.
2. Dried 1 1/2 to 4 hrs., ibid.
3. Dried 4 1/2 to 8 hrs., ibid.
4. Dried 8 1/2 to 16 hrs., ibid.
5. Dried 16 1/2 to 24 hrs., ibid.
6. Dried over 24 hrs., ibid.
E, Total Residue at 180° C
1. Dried for 1 hr. Standard Methods for the Examination of
Water and Wastewater, pp 244-245. 12th edition. APHA,
AWWA, WPCF. New York, 1965.
2. Dried 1 1/2 to 4 hrs., ibid.
3. Dried 4 1/2 to 8 hrs., ibid.
4. Dried 8 1/2 to 16 hrs., ibid.
5. Dried 16 1/2 to 24 hrs., ibid.
6. Dried over 24 hrs., ibid.
82
-------
APPENDICES
83
-------
APPENDIX A.
TABULATION OF RESULTS
Table A-l. Sample 1; Tota Alkalinity (0. 00 mg/liter)
LAB. NO.
1
2
4
5
5
5
5
S
9
5
5
S
6
7
9
9
9
9
9
9
10
13
1112
1125
RESULTS
0,0
0.0
2.2
3.0
0.0
0.0
1.0
1.0
1.0
1.0
2.5
«.o
6.0
42.0
1.0
0.0
0.0
0.0
0.0
0.5
49*.0
0.0
3.0
0.2
METHOD
4
1
1
2
3
3
3
3
3
3
3
1
3
2
1
3
3
1
1
1
1
1
1
3
LAB. NO.
1124
1126
1136
1136
1211
1221
1222
1312
1314
1316
1322
1411
1511
1524
1711
1725
1816
1924
2112
2162
2222
2222
2223
2411
RESULTS
0.0
1.5
10.0
1.0
0.0
30.3
1.3
4.0
0.0
1.0
0.0
10.0
3.0
0.0
0.0
4.8
1.1
1.0
0.0
18.3
1.0
2.0
0.0
1.0
METHOD
1
2
2
4
3
2
1
1
3
1
3
2
2
1
3
3
3
4
1
2
3
2
3
2
84
-------
(Table A-l continued)
LAB. NO*
2526
2611
2626
2726
2811
2915
2926
3111
3116
3126
3211
3221
3222
3226
3311
3316
332Z
3326
3411
3415
3416
3426
3524
3611
RESULTS
5.0
0.0
0.6
18.0
6.8
8.0
0.0
3.7
3.0
0.0
0.0
0.0
0.5
1.0
13.0
9.4
20.0
0.0
2.0
40.0
0.4
0.0
12.2
1.3
METHOD
2
3
3
1
2
2
3
2
2
1
2
1
1
1
1
2
2
1
3
2
3
1
2
1
LAB. NO.
3711
3731
3811
4111
4112
4226
4314
4421
4511
4516
4611
4623
4711
4716
4611
4821
4911
5111
5211
5221
5326
5426
5526
5611
RESULTS
5.0
2.0
3.2
3.0
0.0
6.0
0.0
1.7
2.0
2.0
3.0
2.0
7,0
3.0
0.0
10.0
1.5
2.5
0.0
1.0
2.0
3.0
3.0
2.0
2
1
3
3
3
2
1
2
3
2
3
3
3
3
4
2
3
3
3
3
2
4
3
1
85
-------
(Table A-l continued)
LAB. NO,
5711
5711
5711
5811
5913
5963
6112
6115
6311
6314
6411
6536
6621
6622
6711
6715
6811
6812
6814
6816
6911
6914
6923
7112
RESULTS
3.3
1.0
2.0
6.0
0.5
0,0
4.0
0*0
1.0
0.0
1.0
0.5
3.0
1.5
1.0
3.0
1.0
4.5
0.5
2.1
1.4
0,5
2.0
0.0
METHOD
3
3
2
3
3
3
2
3
3
1
3
3
2
2
3
2
2
2
1
1
3
1
1
1
LAB. NO.
7123
7216
7222
7424
7512
7513
7522
7526
7622
7722
7813
7824
7846
7866
7866
7911
7914
7922
7926
8111
8112
8211
8222
8322
RESULTS
4,0
0.0
0,0
0,0
2.0
8.8
0.0
0.0
0,0
6.0
0.8
0.0
0.0
1.0
28.7
84.9
1.1
1.0
0,0
2.3
1.0
0.0
2.0
0.0
METHOD
2
3
3
3
3
2
3
3
2
2
3
3
2
4
2
2
3
3
3
3
1
3
1
3
86
-------
8342
8421
8512
8613
8622
8629
8725
8922
9113
9123
9215
9323
9525
RESULTS
2.0
1.0
2.0
0.3
12.0
0.3
0.0
0.5
2.0
4.4
0.0
4.9
0.0
METHOD
1
3
3
3
I
3
3
3
3
2
3
3
3
9922
9926
9526
9613
9715
9714
9714
9811
981*
9822
9829
9921
9921
RESULTS
1.0
0.0
0.0
3.5
1.0
0.0
0.0
12.0
0.0
9.0
2.8
5.2
5.5
3
3
3
2
1
1
3
2
2
1
2
1
1
87
-------
Table A-2. Sample 2; Total Alkalinity (47. 3 mg/liter)
LAB. NO*
1
2
4
5
5
5
5
5
5
5
5
S
6
7
9
9
9
9
9
9
10
IS
1112
1129
RESULTS
51.6
50.0
34.9
50.5
49.0
49.0
49.0
49.0
50.0
51.0
52.0
53.0
57.0
102.0
50.0
48.0
53.0
50.0
49.0
51.0
543.0
50.0
48.0
50.7
METHOD
4
1
1
2
3
3
3
3
3
3
3
1
3
2
3
3
1
1
1
1
1
1
1
3
LAB. NO.
1124
1126
1136
1136
1211
1221
1222
1312
1314
1316
1322
1411
1511
1524
1711
1725
1816
1924
2112
2162
2222
2222
2223
2411
RESULTS
50.0
54.0
49.0
56.0
51.0
79.8
48.8
51.0
48.9
50.8
49.0
62.0
49.0
49.5
46.8
40.2
52.2
52.0
48.0
79.3
50.0
47.0
55.2
50.0
METHOD
1
2
4
2
3
2
1
1
3
1
3
2
2
1
3
3
3
4
1
2
2
3
3
2
88
-------
2526
2611
2626
2726
2811
2919
2926
3111
3116
3126
3211
3221
3222
3226
3311
3316
3322
3326
3411
3415
3416
3426
3524
3611
54.0 2
48,0 3
48.6 3
73.0 1
59.8 2
59.0 2
49.4 3
52.8 2
52.0 2
49.0 1
61.0 2
50.0 1
46.5 1
50.7 1
68.0 1
63.4 2
80.0 2
54.0 i
50.0 3
52.0 z
48.4 3
37.5 1
50.5 2
52.0 i
3711
3731
3811
4111
4112
4226
4314
4421
4511
4516
4611
4623
4711
4716
4811
4821
4911
5111
5211
5221
5326
5426
5526
5611
45.0 2
50.0 1
47.7 3
48.0 3
48.0 3
54.0 2
50.0 1
51.4 2
51.0 3
50.0 2
50.0 3
49.0 3
58.0 3
54.0 3
50.0 4
56.0 2
51.3 3
55.0 3
49.0 3
52.0 3
54.0 2
52.0 4
53.8 3
54.0 1
89
-------
(Table A-2 continued)
5711
5711
5711
58U
5913
5963
6112
6115
63U
6314
6411
6536
6621
6622
6711
6715
6811
6812
681«
6816
6911
6914
6923
50.0
50.1
52.0
60.0
45*5
50.0
51.0
51.3
48.0
50.4
56.0
46.3
51.0
48.5
48.0
54.5
50.0
54.0
52.0
46.7
50.0
50.6
50.0
3
3
2
3
3
3
2
3
3
1
3
3
2
2
3
2
2
2
1
1
3
1
1
LAB. NO.
7123
7216
7222
7424
7512
7513
7522
7526
7622
7722
7813
7824
7846
7866
7866
7911
7914
7922
7926
8111
8112
8211
8222
8322
RESULTS
15.5
51.0
47,0
50.2
50.0
53.7
49.5
60.8
48.0
56.0
64.9
50.0
54.6
50.5
70.3
131.2
51.2
53.0
49.3
51.3
49.5
48.0
58.0
48.4
METHOD
2
3
3
3
3
2
3
3
2
2
3
3
2
4
2
2
3
3
3
3
1
3
1
3
90
-------
(Table A-2 continued)
LAB. NO.
8342
8421
8512
8619
8622
8623
8723
8922
9113
9129
9215
9323
9923
RESULTS
43.0
50.0
50.0
52.0
60.0
52.2
48.0
49.0
50.0
50.0
51.7
54.0
47.0
METHOD
1
3
3
3
1
3
3
3
3
2
LAB. NO.
9526
9613
9715
9714
9714
9811
9816
9822
9829
9921
3 9922
3
3
9926
RESULTS
44.1
3.0
52.4
50.0
49.5
64.0
49.0
56.0
52.8
56.4
50.0
50.0
3
2
1
1
3
2
2
1
2
1
3
3
91
-------
Table A-3. Sample 3: Total Alkalinity (141.6mg/liter)
LAB. NO*
1
2
2
4
5
9
5
5
5
5
5
5
5
6
7
9
9
9
9
9
9
10
13
1112
RESULTS
150.0
8.3
U8.0
139.5
U2.0
143.0
U7.0
H8.0
UB.O
148.0
149.0
148.0
147.0
152.0
214.0
K9.0
149.0
U5.0
U5.0
143.0
148.0
645.0
147.0
METHOD
4
4
1
1
3
3
3
3
3
3
3
1
2
3
2
1
1
3
3
1
1
1
1
1
1123
1124
1126
1136
1136
1211
1221
1222
1312
1314
1316
1322
1411
1511
1524
1711
1725
1816
1924
2112
2162
2222
2222
2223
RESULTS
148.6
150.0
148.0
148.0
151.0
150.0
139.4
143.3
146.0
143.6
147.7
141.5
152.0
140.0
149.5
145.7
112.5
151.5
148.0
147.0
201.5
142.0
146.0
151.1
3
1
2
4
2
3
2
1
1
3
1
3
2
2
1
3
3
3
4
1
2
3
2
3
92
-------
(Table A-3 continued)
LAB. NO.
2411
2526
2611
2626
2726
2811
2919
2926
3111
3116
3126
3211
3221
3222
3226
3311
3316
3322
3326
3411
3415
3416
3426
3524
— «^— i— ^»«
RESULTS
147.0
U5.0
146.0
146.0
125.0
153.3
150.0
146.1
145.0
148.0
147.0
183.0
148.0
138.0
147.3
152.0
164.1
200.0
153.0
146.0
149.5
147.6
104.0
145.9
METHOD 1
,
2
3
3
1
2
2
3
2
2
1
2
1
1
1
1
2
2
1
3
2
3
1
2
LAB. NO.
3611
3711
3731
3811
4111
4112
4226
4314
4421
4511
4516
4611
4623
4711
4716
4811
4821
4911
5111
5211
5221
5326
5426
5526
RESULTS
150.0
128.2
146.0
140.6
135.0
146*0
152.0
147.5
146.8
149.0
144.0
147.0
145.0
154.0
150.0
140.0
150.0
149.5
153.0
145.1
151.0
148.0
152.0
152.2
1
2
1
3
3
3
2
1
2
3
2
3
3
3
3
4
2
3
3
3
3
2
4
3
— — ^—
93
-------
(Table A-3 continued)
LAB. NO. "
5611
5711
5711
5711
5811
5913
5963
6112
6115
6311
6314
6*U
6536
6621
6622
6711
6715
6811
6812
681*
6816
6911
6914
6923
RESULTS
1*9.0
152.6
155.0
1*8.0
17*. 0
133.0
1*9.0
1*3.0
1*8.0
1*2.6
1*9.2
1*0.0
141.2
1*6.0
1*8.5
1*8.0
152.5
1*6,0
152.0
1*8.5
137.1
1*7.0
1*8.8
1*8.0
METHOD I
1 1
3 1
2 1
3 1
3 1
3 1
3 1
2 1
3 1
3 1
1
3
3 1
2
2
3
2
2
2
1
1
3
1
1 !
_ LAB. NO.
7112
7123
7216
7222
7*2*
7512
7513
7522
7526
1 7622
7722
7813
782*
78*6
7866
7866
7911
791*
7922
7926
8111
8112
1 8211
1 8222
RESULTS
1*8.0
1*5.0
1*9.5
139.9
1*9.0
1*6.0
151.1
1*1.*
178.9
1*5.0
150.0
10.3
1*7.0
1*7.0
153.6
1*7.5
229.7
1*8.7
15*. 5
1*7.8
1*7.3
1*7.0
1*6.0
170.0
METHOD.
I
2
3
3
3
3
2
3
3
2
2
3
3
2
2
*
2
3
3
3
3
1
3
1
.^••^•^v^— «
94
-------
LAB. NO.
^ —
8322
8342
8421
8512
861S
8622
8629
8723
8922
9113
9123
9215
9323
RESULTS
— — ^— —
U6.0
127.5
150.0
U8.0
150.0
152.0
154.3
U4.0
173.0
148.0
143.4
149.0
151.0
METHOD
•^—— •— —
3
1
3
3
3
1
3
3
3
3
2
3
3
LAB. NO.
9529
9526
9619
9715
9714
971*
9811
981C
9822
9829
9921
9922
9926
RESULTS
140.0
136.5
87.0
149.5
147.6
145.5
154.0
145. 0
154.0
148.8
152.6
145.0
150.1
METHOD
3
3
2
1
1
3
2
2
1
2
1
3
3
95
-------
Table A-4. Sample 1: oH (4. 72)
LAB. RC.
1
2
4
?
5
S
9
S
S
S
S
9
6
t
9
9
9
9
9
9
9
10
IS
1112
RESULTS
A. 50
4. 43
4.60
4.90
4.90
4. BO
4. SO
4.85
4.88
4.90
4.98
5.02
4.95
5.00
4.50
4.89
4.93
4.50
4.88
4.91
4.92
4.60
4.67
4.90
METHOD
3
4
9
2
2
1
1
7
7
7
7
1
7
9
3
3
3
3
4
4
4
8
4
1
LAB. NO.
1123
1124
1126
1136
1211
1221
1222
1312
1314
1316
1322
1411
1511
1524
1711
1725
1816
1924
2112
2162
2222
2222
2223
2411
RESULTS
4.40
4.77
4.85
4.93
4.90
4.«9
4.45
4.80
4.92
4.83
4.75
4.65
4.80
4.84
6.11
4.93
4.80
4.80
4.90
4.90
4.84
4.78
4.80
4.84
METHOD
9
9
3
9
9
9
9
8
9
4
1
9
1
9
4
9
7
9
1
2
4
4
1
9
96
-------
(Table A-4
LAB. NOt
2411
2526
2611
2626
2726
2811
2919
2921
3111
3116
3126
3211
3221
3222
3226
3311
3316
3322
3326
3411
3415
3416
3426
3524
RESULTS
4.90
6.55
4.50
4.70
4.80
4.25
6.74
4.88
4.84
4.40
4.70
5.00
4.90
5.10
4.80
4.80
4.78
4.60
5.07
4.95
4.83
4.70
3.82
5.05
METHOD
2
1
2
5
9
9
9
2
4
1
1
9
5
9
9
9
9
9
9
1
2
3
9
9
LAB. NO.
3611
3711
3731
3811
4111
4112
4226
4314
4421
4511
4516
4611
4623
4711
4716
4811
4821
4911
5111
5211
5221
5326
5426
5526
RESULTS
4.90
5.12
4.80
5.40
4.85
4.60
4.70
4.59
4.83
4.72
4,70
4.81
4.90
5.00
4.80
5.30
4.73
4.85
*.77
4.80
5.09
4.70
4.80
4.81
METHOD
6
2
5
2
1
1
8
2
9
9
2
1
2
1
8
9
2
6
9
5
1
5
1
97
-------
(Table A-4 continued)
LAB. NO.
5611
5711
5711
5711
5811
5919
5969
6112
6115
6311
6314
6411
6536
6621
6622
6711
6715
6811
6812
6814
6816
6911
69l«
6929
RESULTS
A. 60
4.45
5.05
4.80
4.90
4.67
4.40
4.82
4.22
4.78
4.70
4.90
4.65
4.90
4.87
4.90
4.91
5.00
4.55
4.80
4.75
4.97
4.65
4.82
METHOD
9
9
7
1
1
9
2
6
9
1
9
7
5
3
9
1
9
9
9
9
1
4
1
6
LAB. NO.
7112
7123
7216
7222
7424
7512
7513
7522
7526
7622
7722
7813
7824
7846
7911
7914
7922
7926
7926
8111
8112
8211
8222
8322
RESULTS
4.77
4.70
4.80
4.88
4.50
5.10
4.80
4.65
4.10
4. BO
5.10
4.74
4.84
4.81
4.70
4.73
4.91
4.98
4.95
4.90
4.95
4.80
5.00
5.10
METHOD
9
3
9
9
9
1
1
9
1
6
5
6
9
9
9
1
8
1
9
8
1
1
9
9
98
-------
(Table A-4 continued)
L«B. NO. RESULTS METHoD
8342 4.80 3
8421 4.70 1
8312 4.95 9
8613 4.60 3
8622 4.85 9
8623 4.69 9
8723 4.90 2
8922 4.81 6
9113 4.90 1
9123 4.75 6
9215 4.60 9
9323 4.75 6
9323 4.90 3
9526 4.60 9
9613 4.52 2
9713 4.40 i
971* 4.99 9
9811 4.90 2
981« 4,50 9
9822 4.90 9
9825 4.80 9
9921 4.22 9
9922 4.97 5
992« 4.55 2
99
-------
Table A-5. Sample 2: pH (6. 87)
LAB. NO.
1
2
4
9
§
9
f
f
5
5
9
5
6
7
9
9
9
9
9
9
9
10
IS
1112
RESULTS METHOD
6.80 3
6.71 4
6.65 9
7.00 2
7.00 2
6.90 1
6.90 1
6.76 7
6.80 7
6.80 7
6,94 7
6.92 1
7.00 7
6.95 9
6.88 3
6.89 3
7.07 3
6.83 3
6.87 4
6.88 4
6.88 4
6.80 8
6.73 4
6.81 1
LAB. NO.
1123
1124
1126
1136
1211
1221
1222
1312
1314
1316
1322
1411
1511
1524
1711
1725
1816
1924
2112
2162
2222
2222
2223
2411
RESULTS
6.50
6.98
6.95
6.95
6.90
6.95
6.94
7.00
7.00
7.05
7.00
6.80
6.80
7,00
8.31
6.95
6.73
7.00
6.90
7,00
6.98
6,97
6.90
6.99
METHOD
9
9
3
9
9
9
9
8
9
4
1
9
I
9
4
9
7
9
1
2
4
4
1
9
100
-------
(Table A-5 continued).
LAB. NO.
2411
2926
2611
2626
272«
2811
2913
2926
3111
3116
3126
3211
3221
3222
3226
3311
3316
3322
3326
3411
3415
3416
342*
3524
RESULTS
7.00
6.65
6.70
6.90
7.15
6.45
6.96
7.00
6.96
6.60
6.90
7.10
6.90
7.00
7.01
6.90
6.94
6.80
7.04
7.00
6.94
6.70
6.11
7.05
METHOD
2
1
2
5
9
9
9
2
4
1
1
9
5
9
9
9
9
9
9
1
2
3
9
9
3611
3711
3731
3611
4111
4112
4226
4314
4421
4511
4516
4611
4623
4711
4716
4811
4821
4911
5111
5211
5221
5326
5426
5526
RESULTS
6.97
7.12
6.98
6.80
6.92
6.70
6.85
6.81
6.97
6.90
6.80
7.00
6.80
7.00
6.90
6.80
6.98
6.87
7,00
6.71
7.07
6.80
6.99
6.86
METHOD
6
2
5
2
1
1
8
2
9
9
2
1
2
1
8
9
2
6
9
5
1
5
1
9
101
-------
(Table A-S^ontlnued)
LAB. NO.
5611
5711
5711
5711
5811
5913
5963
6112
6119
6311
6314
6411
6536
6621
6622
6711
6715
6811
6812
6814
6814
6911
6914
6923
RESULTS
7.00
7.00
6.75
7.00
7.00
6.97
6.30
7.03
7.01
7.00
6.90
7.00
6.75
7.00
7.02
7.00
6.99
6.99
7.05
6.92
6.95
7.00
6.90
6.52
METHOD
9
1
9
7
1
9
2
6
9
1
9
7
5
3
9
1
9
9
9
9
1
4
1
6
LAB. NO.
7112
7123
7216
7222
7424
7512
7513
7522
7526
7622
7722
7813
7824
7846
7911
7914
7922
7926
7926
8111
8112
8211
8222
8322
RESULTS
6.83
6.S8
6.96
6.90
6.72
7.00
6.90
6.80
6.38
7.00
7.20
6.88
6.97
6.99
6.90
6.86
6.91
6.95
7.02
6.81
6.97
7.00
6.90
6.65
9
3
9
9
9
1
1
9
1
6
5
6
9
9
9
1
8
9
1
8
1
1
9
9
102
-------
(Table A-5 continued)
LAB. NO.
8342
8421
8512
8613
8622
862S
8723
8922
9119
9129
9215
9323
RESULTS
7.00
7.00
7.00
6.80
6.90
6.75
6.92
7.03
7.00
7.02
6.83
6.90
METHOD
3
1
9
3
9
9
2
6
1
6
9
6
LAB. NO.
952S
9526
9618
971S
971*
9811
9810
9822
9825
9921
9922
9924
RESULTS
7.00
6.80
6.94
6.71
6.98
7.06
6.70
6.90
6.96
6.91
6.88
6.70
METHOD
3
9
2
1
9
2
9
9
9
9
5
2
103
-------
Table A-6. Sample 3; pH (8.80)
LAB. NO.
1
4
$
9
5
5
5
5
5
5
9
<
7
9
9
9
9
9
9
9
1C
19
1112
1123
RESULTS
8.70
8.41
8.73
8.80
8.90
8.60
8.48
8.60
8.60
8.72
8.60
8.85
8.90
8.71
8.80
8.81
8.82
8.81
8.82
8.85
8.60
8*41
8.50
8.60
METHOD
3
9
1
2
2
1
7
7
7
7
1
7
9
3
3
3
3
4
4
4
8
4
1
9
LAB. NO.
1124
1126
1136
1211
1221
1222
1312
1314
1316
1322
1411
1511
1524
1711
1725
1816
1924
2112
2162
2222
2222
2223
2411
2411
RESULTS
8.70
8.75
8.84
8.70
8.68
8.80
8.80
8.80
8.89
8.80
8.60
8.60
8.85
10.08
8.75
8.35
8.90
8.80
8.75
8.70
8.74
8.80
8.81
8.80
METHOD
9
3
9
9
9
9
8
9
4
I
9
1
9
4
9
7
9
1
2
4
4
1
2
9
104
-------
(Table A-6 continued)
2526
2611
2626
272*
2811
2919
2926
3111
3116
3124
3211
3221
3222
3226
3311
3316
3322
3326
3411
3415
3416
3426
3524
3611
RESULTS
8.70
8.50
8.80
8.75
8.10
8.71
8.81
8.78
8.30
8.70
8.70
8.80
8.80
8.82
8.80
8.89
8.60
8.88
8.80
8.68
8.40
7.73
8.65
8.78
METHOD
1
2
5
9
9
9
2
4
1
1
9
5
9
9
9
9
9
9
1
2
3
9
9
6
LAB. NO.
3711
3731
3811
4111
4112
4226
4314
4421
4511
4516
4611
4623
4711
4716
4811
4821
4911
5111
5211
5221
5326
5426
5526
5611
RESULTS
8.88
8.81
8.5Q
8.82
8.60
8.60
8.59
8.87
8.78
8.40
8.90
8.^0
8.85
8.80
8.60
8.77
8.66
8.80
8.34
8.72
8.60
8.82
8.68
8.60
METHOD
2
5
2
1
1
8
2
9
9
2
1
2
1
8
9
2
6
9
5
1
5
1
9
105
-------
(Table A-6 continued)
LAB. NO.
5711
5711
5711
5811
5913
5963
6112
6115
6311
6314
6411
6536
6621
6622
6711
6715
6811
6812
6814
681*
6911
6914
6923
7112
RESULTS
8.55
8.70
8.75
8.70
8.77
7.90
8.72
8.85
8.80
8.85
8.80
8.60
8.80
9.14
8.80
8.80
8.83
8.85
8.80
8.70
8.83
8.65
8.55
8.61
METHOD
9
7
1
1
9
2
6
9
1
9
7
5
3
9
1
9
9
9
9
1
4
1
6
9
LAB. NO*
7123
7216
7222
7424
7512
7513
7522
7526
7622
7722
7813
7824
7846
7911
7914
7922
7926
7926
8111
8112
8211
8222
8322
8342
RESULTS
8.74
8.72
9.35
8.48
8.70
8.62
8.61
8.09
8.70
8.80
8.72
8.80
8.79
8.60
8.63
8.71
8.75
8.75
8.50
8.77
8.80
8.80
8.50
8.80
METHOD
3
9
9
9
1
1
9
1
6
5
6
9
9
9
1
8
1
9
8
1
1
9
9
3
106
-------
jTable A-6 continued)
LAB. NO. RESULTS METHoD
8421 8.70 1
8512 B.SO 9
8613 8.50 3
8622 8.65 9
8628 8.37 9
872S 8.78 2
8922 8.76 6
911S 8.70 1
912S 8.75 6
9215 8.75 9
9323 8.80 6
9528 8.90 3
LAB. NO. RESULTS METHOD
9524 8.55 9
9613 8.82 2
9715 8.48 l
9714 e.8o 9
9811 8.85 2
9816 8.50 9
9822 8.80 9
9821 R. 85 9
9921 8.78 9
9922 8.53 5
992« 8.45 2
107
-------
Table A-7. Sample 1; Specific Conductance (147 gmhos/cm)
LAB. NO.
I
2
4
!
9
5
»
6
7
9
10
15
1112
1125
1124
1136
1211
1221
1222
1312
1316
1322
1511
1524
RESULTS
173.0
168.9
146.0
163.0
147.0
120.0
ue.o
150.0
155.0
169.0
280.0
201.0
130.0
156.0
163.0
154.1
164.0
170.0
160.0
156.2
260.0
161.0
146.0
170.0
METHOD
6
1
1
1
1
6
1
6
6
1
6
5
6
6
4
1
5
1
3
6
6
6
1
4
LAB. NO.
1711
1816
1924
2112
2162
2222
2223
2411
2526
2611
2626
2726
2915
2926
3126
3222
3226
3311
3326
3411
3415
3416
3426
3611
RESULTS
165.6
168.1
165.0
168.0
158.0
158.0
160.3
166.0
186.0
171.1
129.0
163.0
151.8
168.4
164.0
150.0
169.0
150.0
170.0
146.0
172.0
140.0
150.0
150.4
METHOD
6
i
4
2
5
6
6
5
2
2
6
1
3
5
1
3
5
1
1
6
6
6
6
2
108
-------
(Table A-7 continued)
LAB. NO.
3711
3731
4111
4112
4314
4421
4911
4516
4611
462S
4711
4711
4811
4911
5111
5211
5221
5326
5526
5611
5811
5919
5968
6112
RESULTS
161.3
240.0
140.0
195.0
166.2
151.4
76,0
161.0
142.0
174.0
162. 8
160.0
150.0
156.0
154.0
159.5
140.0
150.0
199.0
155.0
320.0
163.2
150,0
150.0
METHOD
5
6
6
1
1
6
3
2
6
6
1
6
1
6
1
6
1
1
1
3
6
1
6
1
LAB. NO,
6115
6311
6314
6411
6621
6622
6711
6715
6811
6812
6814
6911
6914
6923
7112
7216
7222
7424
7512
7522
7526
7622
7722
7813
RESULTS
302.0
112.0
152.0
181.0
160.0
166.1
153,0
168.9
162.0
185*0
160.0
170.0
165.8
160.0
180.0
162.0
174.0
162.0
172.0
168.4
139,0
166,0
178.0
161.0
METHOD
1
1
6
1
1
6
2
2
1
5
6
6
6
6
6
6
1
6
6
5
6
2
6
6
109
-------
(Table A-7 continued^
LAB. NO*
782*
784«
7866
791*
7922
7926
8111
8211
8222
8322
8342
8421
8512
8619
8622
RESULTS
160,0
166.3
135.9
129.0
170.0
180.0
188.1
163.9
120.0
162.0
165.3
175.0
160.0
288.0
198.0
METHOD
4
2
1
6
3
6
6
2
6
6
1
1
6
6
6
LAB. NO.
8621
872S
8922
9113
9123
9323
9523
9526
9619
9713
9714
9816
9921
9922
9926
RESULTS
45.4
165.0
161.0
164.0
157.5
167.0
170.0
160.0
155.0
174.0
164.0
155.0
170.0
167.7
160.0
6
1
6
5
1
6
6
6
6
1
6
6
1
1
6
110
-------
Table A-8. Sample 2: Specific Conductance (303 /umhos/cm)
I
2
4
5
9
*
9
<
7
t
10
13
1112
1129
1124
1136
1211
1221
1222
1312
1316
1322
1511
1524
RESULTS
340.0
317,1
265.0
315.0
262.0
250.0
260.0
280.0
309.0
324.0
300.0
356.0
260.0
302.0
322.0
298.6
318.0
330.0
298.0
303.0
300.0
312.8
178.0
325.0
METHOD
6
1
1
1
1
6
1
6
6
1
6
5
6
6
4
1
5
1
3
6
6
6
1
4
LAB. NO.
1711
1816
1924
2112
2162
2222
2223
2411
2526
2611
2626
2726
2915
2926
3126
3222
3226
3311
3326
3411
3415
3416
3426
3611
RESULTS
320.8
322.6
321.0
318.0
309.0
305.0
316.7
322.0
298.0
331.8
250.0
317.0
286.0
322.4
316.0
298.0
314.0
275.0
290.0
295.0
321.0
280.0
331.0
296.4
METHOD
6
i
4
2
5
6
6
5
2
2
6
1
3
5
1
3
5
1
1
6
6
6
6
2
111
-------
(Table A-8 continued)
LAB. NO*
37U
3731
4111
4112
4314
4421
4511
4516
4611
4623
4711
471*
4811
4911
5111
5211
5221
5326
5526
5611
5811
5913
5963
6112
RESULTS
339.0
460.0
279.0
315.0
310.6
361.3
117.0
310.0
320.0
332.0
320.7
320.0
300.0
300.0
290.0
311.0
273.0
280.0
386*0
290.0
530.0
307.4
315.0
300.0
METHOD
5
6
6
1
1
6
3
2
6
6
1
6
1
6
1
6
1
1
1
3
6
1
6
1
LAB. NO.
6115
6311
6314
6411
6621
6622
6711
6715
6811
6B12
6814
6911
6914
6923
7112
7216
7222
7424
7512
7522
7526
7622
7722
7813
RESULTS
273.0
162.0
287.0
344.0
320.0
308.2
303.0
319.1
312.0
364.0
311.0
320.0
326.3
310.0
330.0
321.0
318.0
314.0
317.0
321.1
275.0
324.0
312.0
305*4
METHOD
1
1
6
1
1
6
2
2
1
5
6
6
6
6
6
6
1
6
6
5
6
2
6
6
112
-------
(Table A-8 continued)
LAR. NO*
782*
7846
786*
7914
7922
7926
8111
6211
8222
8322
8342
8421
8512
8619
8622
RESULTS
300.0
312,4
250.8
251.0
320.0
340.0
372,0
307.7
270,0
313*0
295.8
320.0
300.0
321.0
302.0
METHOD
4
2
1
6
3
6
6
2
6
6
1
1
6
6
6
LAB. NO.
862i
872»
8922
9119
9129
9323
9529
9926
9619
9713
9714
9816
9921
9922
9926
RESULTS
120.0
320.0
312.0
323.0
304,9
324.0
320.0
300*0
260.0
341.0
319.0
300.0
315.0
330.9
320.0
METHOD
6
1
6
5
1
6
6
6
6
1
6
6
1
1
6
113
-------
Table A-9. Sample 3: Specific Conductance (228 ^mhos/cm)
LAB. NO.
1
2
4
5
5
5
%
6
1
9
16
13
1112
112S
1124
1136
1211
1221
1222
1312
1316
1322
1511
1524
RESULTS
255.0
238.1
200.0
210,0
240.0
leo.o
212.0
215.0
225.0
244.0
220.0
278.0
180.0
232.0
244.0
224.8
239.0
255.0
223.0
227.2
225.0
239.2
230.0
245.0
METHOD
6
1
1
1
1
6
1
6
6
1
6
5
6
6
4
1
5
1
3
6
6
6
1
4
LAB. NO.
1711
1816
1924
2112
2162
2222
2223
2411
2526
2611
2626
2726
2915
2926
3126
3222
3226
3311
3326
3411
3415
3416
3426
3611
RESULTS
240.0
247.4
242.0
245.0
234.0
230.0
242.0
245.0
226.0
248.9
182.0
245.0
217.5
238.3
242.0
225.0
242.0
210.0
250.0
220.0
245.0
220.0
251.0
234.0
METHOD
6
1
4
2
5
6
6
5
2
2
6
1
3
5
1
3
5
1
1
6
6
6
6
2
114
-------
(Table A-9 continued)
LAB. NO*
3711
3731
4111
4112
4314
4421
4511
4516
4611
4629
4711
47U
4811
4911
5111
5211
5221
5326
5526
5611
5811
5913
596S
6112
RESULTS
256.4
340.0
220.0
246.0
239. S
278.3
112.0
233.0
237.0
257.0
239.0
255.0
234.0
229.0
224.0
242.5
203.0
200.0
295.0
229.0
430.0
238.5
255.0
220.0
METHOD
5
6
6
1
1
6
3
2
6
6
1
6
1
6
1
6
1
1
1
3
6
1
6
1
LAB. NO.
6115
6311
6314
6411
6621
6622
6711
6715
6811
6812
6814
6911
6914
6923
7112
7216
72Z2
7424
7512
7522
7526
7622
7722
7813
RESULTS
208.7
160.0
218.0
263.0
235.0
218.0
226.0
247.1
236.0
271.0
237.0
240.0
248.2
235.0
250.0
243.0
247.0
237.0
254.0
242.0
210.0
245.0
252.0
232.5
METHOD
1
1
6
1
1
6
2
2
1
5
6
6
6
6
6
6
1
6
6
5
6
2
6
6
115
-------
(Table A-9 continued)
LAB. NO*
7824
7846
7866
791*
7922
7926
8111
8211
8222
8322
8342
8421
8512
8619
8622
RESULTS
235.0
238,7
19U6
189.0
240.0
380.0
277,8
232.6
180.0
248.0
226.2
250.0
220.0
241.0
226,0
METHOD
4
2
1
6
3
6
6
2
6
6
1
1
6
6
6
LAB. NO.
8629
8729
8922
9119
9129
9323
9529
9926
9619
9713
9714
9816
9921
9922
9926
RESULTS
137.0
245.0
236.0
242.0
232.5
246.0
250.0
237.0
210.0
262,0
245.0
225.0
241.6
249.3
240.0
METHOD
6
1
6
5
1
6
6
6
6
1
6
6
1
1
6
116
-------
Table A-10. Sample 1; Total residue at 104° C (75 mg/liter)
LAB. NO.
1
2
4
5
9
9
%
5
%
9
9
«
7
9
10
13
1112
1125
1124
1126
1136
1211
1221
1222
RESULTS
88,0
90,0
92.5
105,0
106.0
81,0
88.0
96.0
83,0
92.0
107.0
82.0
92.0
84.0
80.0
107.0
72.0
91.0
76.0
76.0
79.0
92.0
92.0
80.0
METHOD
5
1
2
1
1
2
1
2
1
5
5
2
4
2
3
1
5
4
4
2
2
1
5
3
LAB. NO.
1312
1314
1316
1322
1411
1311
1524
1711
1816
1924
2112
2223
2411
2526
2611
2626
2726
2811
2915
2926
3111
3116
3126
3211
RESULTS
97.0
101.0
114.2
82.0
78.0
113.0
84.0
90.8
38.0
82.0
83.0
97.0
84*0
70.0
81.0
92.0
224.0
39.6
8.4
85.9
87.0
78.0
86.0
100.0
METHOD
2
2
2
9
4
1
2
2
6
2
3
2
9
5
2
4
2
3
2
2
4
2
2
3
117
-------
(Table A-10 continued)
LAB. NO*
3221
3222
3226
3311
3316
3322
3326
3411
3415
3416
3426
3524
3611
3711
3731
3811
4111
4112
4226
4314
4421
4511
4516
4611
RESULTS
80.0
55.0
74.0
84.0
68.4
120.0
77.5
84.0
113.0
90,0
348.0
86.0
85.4
83.0
72.0
88.0
2.1
88.7
48.0
83.5
95.0
82.0
88.0
46.0
METHOD
2
5
5
6
4
2
1
2
1
2
5
2
1
5
3
1
3
1
3
2
1
1
3
1
LAB. NO.
4623
4711
4716
4811
4821
4911
5111
5211
5221
5326
5526
5611
5711
5711
5711
5811
5913
5963
6112
6115
6311
6314
6411
6536
RESULTS
63.0
89.0
86.0
80.0
82.0
89.5
76.0
87.2
78.0
60.0
103.0
84.0
86.0
90.0
79.0
80.0
106.0
110.0
80.0
82.0
88.0
87.0
76.0
88.0
4
5
3
2
1
3
1
2
2
1
4
1
5
2
2
2
4
5
1
2
2
2
1
3
118
-------
(Table A-10 continued)
LAB. NO.
6621
6622
6711
6715
6811
6812
681*
6816
6911
6914
6923
7112
7128
7216
7222
7424
7512
751S
7522
7526
7622
7813
7824
7846
RESULTS
79.0
78.0
93.0
86.5
130.0
86.0
88.0
116.0
72.0
89.0
95.0
90.0
87.3
83.5
83.0
81.6
98.0
72.4
81.0
80.2
84.0
84.0
79.0
86.0
METHOD
5
2
2
2
2
6
5
1
5
5
2
5
2
2
2
2
1
5
2
4
1
2
4
1
LAB. NO.
7866
7911
7914
7922
7926
8111
8112
8211
8222
8322
8342
8421
8512
8613
8623
8723
8922
9113
9123
9323
9523
9526
9613
9713
RESULTS
84.0
54.0
109.0
95.0
79.0
79.0
75.0
74.0
92.0
79.0
89.5
110.0
70.0
84.0
77.0
78.0
87.0
75.0
85.3
85.0
55.0
70.0
69.0
96.0
METHOD
2
5
1
5
4
4
5
4
4
4
5
5
1
2
2
5
5
5
5
2
5
5
2
2
119
-------
(Table A-10 continued)
UAB. NO* RESULTS METHQD
LAB. NO. RESULTS METHOD
9714
9811
9816
9822
86.0
90.0
46.0
74.0
9821
9921
9922
992*
84.0
88.0
64.0
68.0
4
2
2
2
120
-------
Table A-11. Sample 2; Total residue at 104°C (293 mg/liter)
LAB. NOt
1
2
4
5
9
5
9
5
9
5
5
A
7
9
16
IS
1112
112S
1124
1126
1136
1211
1221
1222
RESULTS
297.0
297.0
302.5
301.0
307.0
273.0
293.0
304.0
289.0
309.0
310.0
293.0
176.0
285.0
320.0
316.0
331.0
298.0
286.0
290.0
352.0
312,0
309.6
292,0
METHOD
5
1
2
1
1
2
1
2
1
5
5
2
4
2
3
1
5
4
4
2
2
1
5
3
LAS. NO.
1312
1314
1316
1322
1411
1511
1524
1711
1924
2112
2222
2223
2411
2526
2611
2626
2726
2611
2915
3111
3116
3126
3211
3221
RESULTS
291.0
309.0
315.9
300*0
353.0
307.0
295.0
303.6
296.0
304.0
289.1
296.0
294.0
308.5
289.0
294.0
288.0
392.0
35.2
275.0
267.0
312.0
301.0
288.0
METHOD
2
2
2
5
4
1
2
2
2
3
2
2
5
5
2
4
2
3
2
4
2
2
3
2
121
-------
(Table A-11 continued)
LAB. NO.
3222
3226
3311
3316
3322
3326
3411
3415
3414
3426
3524
3611
3711
3731
3811
4111
4112
4226
4314
4421
45H
4516
4611
4629
RESULTS
243.0
296.0
304.0
299.4
320.0
282.5
296.0
309.5
290.0
596.0
302.3
296.6
286.0
294,0
288.0
3.8
300.7
260.0
342.0
299.0
293.0
289.6
252,0
325.0
METHOD
5
5
6
4
2
1
2
1
2
5
2
1
5
3
1
3
1
3
2
1
1
3
1
4
LAB. NO.
4711
4716
4811
4821
4911
5111
5211
5221
5326
5526
5611
5711
5711
5711
5811
5913
5963
6112
6115
6311
6314
6411
6536
6621
RESULTS
292.0
300.0
300.0
280.0
290.5
289.0
299.9
290.0
285.0
289.0
270.0
312.0
284.0
384.0
280.0
343.0
317.0
294.0
297.0
418.0
315.0
287.0
292.0
294.0
METHOD
5
3
2
1
3
1
2
2
1
4
1
2
5
2
2
4
5
1
2
2
2
1
3
5
122
-------
(Table A-11 continued)
LAB. NO*
6622
6711
6719
6811
6612
681*
6816
6911
6914
6923
7112
7128
7216
7222
7424
7512
7513
7522
7526
7622
7813
782*
7846
7866
RESULTS
288.0
309.0
298,0
283.0
276,0
304.0
331.0
286.0
337,0
295.0
298.0
261.5
290.5
298.0
290.0
276.0
271.2
302.0
290.3
299.0
295.0
285.0
302.0
289.0
METHOD
2
2
2
2
6
5
1
5
5
2
5
2
2
2
2
1
5
2
4
1
2
4
1
2
LAB. NO.
7911
7914
7922
7926
8111
8112
8211
8222
0322
8342
8421
8512
8613
8623
8723
8922
9113
9123
9323
9523
9526
9613
9713
9714
RESULTS
254.0
295.0
298.0
295.0
300.0
229.0
268.0
292.0
298.0
277.3
308.0
292.0
292.0
306.0
284.0
260.0
301.0
297.5
294.0
270.0
286.0
273.0
270.0
308.0
METHOD
5
1
5
4
4
5
4
4
4
5
5
1
2
2
5
5
5
5
2
5
5
2
2
5
123
-------
(Table A-11 continued)
LflR.NO. RESULTS METHOD
LAB. NO. RESULTS METHOD
9811
9816
9822
9829
296.0
360.0
278.0
330.0
9921 300.0 2
9922 279.0 2
992* 280.0 2
124
-------
Table A-12. Sample 3; Total residue at 104°^C (500 mg/liter)
I
2
4
5
5
9
5
$
5
5
5
6
7
9
18
19
1112
1129
1124
1126
113*
1211
1221
1222
RESULTS
511.0
501.0
501.5
488.0
504.0
453.0
484.0
494.0
490.0
501.0
498.0
497.0
372.0
490,0
924.0
513.0
563.0
482.0
481.0
484,0
529,0
504.0
488.8
479.0
METHOD
5
1
2
1
1
2
2
1
5
5
1
2
4
2
3
1
5
4
4
2
2
1
5
3
LAB. NO.
1312
1314
1316
1322
1411
1511
1524
1711
1816
1924
2112
2222
2223
2411
2526
2611
2626
2726
2811
2915
2926
3111
3116
3126
RESOtTT-
479.0
485.0
517.3
496.0
481.0
524.0
494.0
500.0
435.0
485.2
501.0
464.4
506.0
488.0
519.0
485.0
456,0
564.0
470.0
86.4
502.5
508.0
491.0
500.0
METHOD
2
2
2
5
4
1
2
2
6
2
3
2
2
5
5
2
4
2
3
2
2
4
2
2
125
-------
(Table A-12 continued)
LAB. NO.
3211
3221
3222
3226
3311
3316
3322
3326
3411
3415
3416
342«
352*
3611
3711
3731
3811
4111
4112
4226
4314
4421
4511
4516
RESULTS
470.0
479.0
440.0
490.0
508.0
425.6
520.0
477,5
476.0
510.0
498.0
796.0
507.6
495.8
498.0
480.0
486.0
5.6
504,0
434.0
504.0
503.0
514.0
508.4
METHOD
3
2
5
5
6
4
2
1
2
1
2
5
2
1
5
3
1
3
1
3
2
1
1
3
4611
4623
4711
4716
4811
4821
4911
5111
5211
5221
5326
5526
5611
5711
5711
5711
5811
5913
5963
6112
6115
6311
6314
6411
RESULTS
454.0
481.0
492.0
496.0
500.0
480.0
479.0
486.0
496.2
480.0
470.0
481.0
493.0
478.0
456.0
495.0
490.0
519.0
503.0
500.0
499.0
482.0
500.0
474.0
1
4
5
3
2
1
3
1
2
2
1
4
1
5
2
2
2
4
5
1
2
2
2
1
126
-------
(Table A-12jx>ntinued)
LAB. NO*
6536
6621
6622
6711
6713
6811
6812
681«
6816
6911
6914
6923
7112
7129
7216
7222
7424
7312
75U
7322
7526
7622
7818
7824
RESULTS
483.0
498.0
485.0
506.0
501.5
533.0
457.0
499.0
532.0
492.0
493.0
514.0
488.0
484.5
477,5
510.0
496.0
523.0
451.2
497.0
487.8
487.0
500.0
476.0
METHOD
3
5
2
2
2
2
6
5
1
5
5
2
5
2
2
2
2
1
5
2
4
1
2
4
LAB. NO.
7S46
7866
7911
7914
7922
7926
8111
8112
8211
8222
8322
8342
8421
S512
8613
8623
8723
8922
9113
9123
9323
9523
9526
9613
RESULTS
512.0
493.0
454.0
509.0
485.0
495.0
480.0
452.0
486.0
489.0
481.0
490.0
500.0
464.0
504.0
477.0
473.0
489.0
494.0
503.7
503.0
470.0
464.0
515.5
METHOD
1
2
5
1
5
4
4
3
4
4
4
5
5
1
2
2
5
5
5
5
2
3
5
2
127
-------
(Table A-12 continued)
LAB. NO. RESULTS METHOD
9713 498.0 2
9714 496.0 5
9811 500.0 2
9816 644.0 2
9822 480.0 2
LAB. NO. RESULTS METHOD
9829 477.0 4
9921 599.0 2
9922 464.0 2
9926 450.0 2
128
-------
Table
LAB. NO.
1
2
4
5
5
5
S
5
S
6
7
9
10
13
1112
112S
1124
1126
1136
1211
1221
1222
1312
1314
A-13.
RESULT
83.0
92.0
91.5
82.0
6ltO
77.0
89.0
66*0
77.0
88.0
164.0
83.0
96.0
95.0
92.0
103.0
56.0
68.0
79.0
80.0
81.2
77.0
79.0
53.0
Sample 1: Total residue at 180° C
S METHOD
4
1
2
1
1
2
2
1
1
2
4
2
3
1
3
4
4
3
1
1
5
3
2
5
LAB. NO.
1316
1322
1411
1511
1524
1711
1816
1924
2112
2222
2222
2223
2411
2526
2611
2626
2726
2811
2915
2926
3111
3116
3126
3211
RESULTS
105.8
4.0
70.0
80.0
81.0
87.6
65.0
82.0
80.0
102.4
81.6
82.0
81.0
44.0
77.0
88.0
188.0
20.8
69.6
83.0
80.0
79.0
81.0
69.0
METHOD
2
2
4
1
2
2
6
2
3
1
2
2
5
6
2
4
2
5
2
2
6
2
2
129
-------
(Table A-13 continued)^
LAB. F)0«
3221
3226
3311
3316
3322
3411
3415
3416
3426
3524
3611
3711
3731
3811
4111
4112
4226
4421
4511
4516
4611
4623
4711
4716
RESULTS
70.0
79.0
66.0
91.4
84.0
78.0
85.0
88.5
240.0
85.0
75.6
88.0
73.0
70.0
1.5
91.3
0.0
84*0
89.0
82.4
54.0
60.0
93.0
84.0
METHOD
5
1
6
3
2
2
1
2
2
2
1
5
2
2
2
1
2
1
2
3
1
4
5
3
LAB. NO.
4811
4821
4911
5111
5211
5221
5326
5526
5611
5711
5711
5711
5913
5963
6112
6115
6311
6314
6411
6536
6621
6622
6711
6715
RESULTS
75.0
70.0
54.0
72.0
80.3
81.0
45.0
81.0
85.0
80.0
50.0
77.0
43.0
85.0
74.0
78.0
20.0
82.0
66.0
86.0
80.0
80.3
87.0
86.0
METHOD
2
1
2
2
2
2
1
4
1
5
1
2
4
5
1
2
2
3
1
2
5
2
2
2
130
-------
(Table A-13 continued)
LAB. NO.
6811
6612
661^
6816
6911
6914
6923
7112
712S
7216
7222
742*
7512
7513
7522
7526
7622
7813
7846
7866
7911
791*
7922
7926
8111
RESULTS
132.0
82.0
88.0
83.0
70,0
89.0
85.0
84.0
62.2
70.0
80.0
61.2
83.0
82.4
72.0
81.3
90.0
72.0
82.0
79.5
123.0
91.0
80.0
71.5
76.0
METHOD
2
6
5
1
2
5
2
2
2
2
2
2
1
5
2
4
5
2
1
1
4
1
5
2
4
LAB. NO.
8112
8211
8222
8322
8342
8421
8512
8613
8623
8723
8922
9113
9123
9323
9526
9613
9713
9714
9811
9816
9822
9825
9921
9922
992«
RESULTS
70.0
74.0
92.0
83.0
100.0
86.0
70.0
86.0
91.0
73.0
84.0
81.0
87.5
83.0
85.0
32.5
19.0
80.0
78.0
40.0
78.0
74.0
78.0
54.0
72.0
1
3
2
4
5
5
1
2
2
5
5
2
5
2
2
2
2
5
2
3
2
4
2
1
2
131
-------
Table A-14. Sample 2; Total residue at 180°C (293 mg/llter)
LAB. NO*
1
2
4
5
9
9
5
5
5
e
7
0
10
IS
1112
112S
1124
1126
1136
1211
1222
1312
1314
1316
RESULTS
287.0
292.0
291.5
277.0
80.0
247.0
287.0
259.0
272.0
277.0
34^.0
274.0
312.0
292.0
172.0
305.0
266.0
290.0
297.0
290.0
270.0
288.0
234.0
294.0
METHOD
4
1
2
1
1
2
2
1
1
2
4
2
3
1
3
4
4
3
1
1
3
2
5
2
LAB. NO.
1322
1411
1511
1524
1711
1924
2112
2222
2222
2223
2411
2526
2611
2626
2726
2811
2915
3111
3116
3126
3211
3221
3226
3311
RESULTS
208*0
287.0
247.0
272.0
286.0
283.6
296.0
282.8
276*0
287.0
269.0
262.0
282.0
272.0
272.0
306.0
24.8
257.0
285.0
287.0
255.0
267.0
283.0
272.0
METHOD
2
4
1
2
2
2
3
2
1
2
5
6
2
4
2
5
2
6
2
2
2
5
1
6
132
-------
jTable A-14 continued)
3316
3322
3411
3415
3416
342«
3524
3611
3711
3731
3811
4111
4112
4224
4421
4511
4516
4611
4629
4711
47l«
4811
4821
4911
RESULTS
311.2
240.0
264.0
275.5
275.5
476,0
291.3
269.7
281.0
285.0
280.0
2.9
282.0
198.0
289.0
282.0
256.8
225.0
261.0
270.0
287.0
290.0
257.0
266.0
METHOD
3
2
2
1
2
2
2
1
5
2
2
2
1
2
1
2
3
1
4
5
3
2
1
2
LAB. NO.
5111
5211
5221
5326
5526
5611
5711
5711
5711
5913
5963
6112
6115
6311
6314
6411
6536
6621
6622
6711
6715
6811
6812
6814
RESULTS
269.0
275.4
282.0
255.0
267.0
283.0
256.0
365.0
270.0
227.0
275.0
306.0
279.0
244.0
296.0
270.0
274.0
273.0
275.0
306.0
289.0
284.0
244.0
288.0
2
2
2
1
4
1
1
2
5
4
5
1
2
2
3
1
2
5
2
2
2
2
6
5
133
-------
(Table^A-14 continued)
LAB. NO.
6816
69H
69l«
6923
7112
7123
7216
7222
7424
7512
7513
7522
7526
7622
7813
78*«
7866
7911
7914
7922
7926
8111
8112
8211
RESULTS
294.0
272.0
311.0
289.0
294.0
252.1
268.5
294.0
251.0
277.0
268.4
271.0
286.5
281.0
271.0
282.0
282.0
302.0
289.0
2
-------
Table A-15. Sample 3: Total residue at 180°C (468 mg/llter)
LAB. NOt
1
2
4
9
5
*
5
5
5
B
t
9
10
19
1112
1129
1124
112«
113<
1211
1221
1222
1312
1314
RESULTS
477.0
486,0
483.5
470.0
457.0
448.0
474.0
467.0
467.0
475.0
324.0
469.0
946.0
479,0
455.0
495.0
455.0
454.0
499,0
472,0
474.4
453,0
475.0
426.0
METHOD
4
1
2
1
1
2
2
1
1
2
4
2
3
1
3
4
4
3
1
1
5
3
2
5
LAB. NO.
1316
1322
1411
1511
1524
1711
1816
1924
2112
2222
2222
2223
2411
2526
2611
2626
2726
2811
2915
2926
3111
3116
3126
3211
RESULTS
488.9
428.0
458.0
453.0
472.0
473.6
394.0
470.0
433.0
459*6
448*4
479*0
457,0
454.0
475.0
448.0
532.0
310.0
34.4
479.5
439*0
490.0
468.0
472.0
METHOD
2
2
4
1
2
2
6
2
3
1
2
2
5
6
2
4
2
5
2
2
6
2
2
2
135
-------
(Table A-15 continued)
LAB. NO.
3221
3226
3311
3316
3322
3411
3415
3416
3426
3524
3611
3711
3731
3811
4111
4112
4228
4421
4511
4516
4611
4629
4711
47l«
RESULTS
454,0
472.0
444.0
430.6
480.0
444.0
472.5
489.0
732.0
^83.3
453.5
469.0
468.0
472.0
5.2
492.7
390.0
483.0
483.0
475,2
391.0
419,0
474,0
476,0
METHOD
5
1
6
3
2
2
1
2
2
2
1
5
2
2
2
1
2
1
2
3
1
4
5
3
LAB. NO.
4811
4821
4911
5111
5211
5221
5326
5526
5611
5711
5711
5711
5913
5963
6112
6115
6311
6314
6411
6536
6621
6622
6711
6715
RESULTS
480.0
455.0
447.7
467.0
468.1
484,0
450.0
456*0
467,0
486.0
448.0
450.0
391.0
457.0
500.0
477.0
482,0
462.0
466.0
465.0
465.0
468.0
489*0
482.5
METHOD
2
1
2
2
2
2
I
4
1
2
1
5
4
5
1
2
2
3
1
2
5
2
2
2
136
-------
(Table A-15 continued)
6811
6812
681*
6816
6911
6914
6923
7112
7125
7216
7222
7424
7512
7513
7522
7526
7622
78i»
7846
7866
7911
7914
7922
7920
8111
RESULTS
475.0
413.0
485.0
477.0
478.0
489.0
487.0
400.0
461.4
456.0
446.0
415.0
514,0
464.4
470.0
469.0
475.0
464.0
404.0
473.0
380.0
479,0
467,0
474.0
443.0
METHOD
2
6
5
1
2
5
2
2
2
2
2
2
1
5
2
4
5
2
1
1
4
1
5
2
4
LAB. NO.
8112
8211
8222
8322
8342
8421
8512
8613
8623
8723
8922
9113
9123
9323
9526
9613
9713
9714
9811
9816
9822
9825
9921
9922
992*
RESULTS
450.0
459.0
484.0
469.0
446.6
469,0
462.0
478,0
486.0
441.0
425.0
466.0
473.3
474.0
459.0
456.5
358.0
468.0
450,0
625.0
448.0
458.0
484.0
441*0
444.0
METHOO
1
3
2
4
5
5
1
2
2
5
5
2
5
2
2
2
2
5
2
3
2
4
2
1
2
137
-------
APPENDIX B.
GLOSSARY OF STATISTICAL TERMS
A glossary of statistical terms defined as they are used in this
report is presented to ensure uniformity of understanding.
Arithmetic mean
The sum of the sample results divided by the
number of results in the sample. Let X^
(i = 1, 2, . . . . n) denote the i^h results in a
sample of n results. The arithmetic mean
_ n
_ _
denoted X is given by X = 2
Median
Accuracy
Measures of accuracy
Halfway point in the results when they have
been arranged in order of magnitude (the
middle result of an odd number of results,
or the average of the middle two for an even
number).
The correctness of a measurement, or the
degree of correspondence between the results
and the true value (actual amount added).
Measures that relate to the difference
between the mean of the results and the true
value when the latter is known or assumed.
The following measures apply:
Mean error— The average difference with
regard to sign between the results and the
true value. Equivalently, the difference
between the mean of the results and the true
value (T. V.).
Mean error = X - T. V.
Relative error — The absolute value of the
mean error expressed as a percentage of
the true value.
IX - T.V.I
Relative error = J =r—y—l
X 100
Precision
The reproducibility of sample results or the
degree of agreement among the results.
138
-------
Measures of precision Measures of the variation among the sample
results themselves, i. e., the spread or
dispersion of the results without regard to
the true value. The following measures
apply:
Sample variance — Sum of squared deviations
of the sample results from their mean divided
by one less than the number of results in the
sample. The sample variance denoted s^
is given by
n - 2
2
-------
where X and s are the sample mean and
standard deviation, t a/2 is the upper a/2
point of "Student's" t-distribution, and n
is the numbe_r of results in the sample used
to compute X.
Tolerance limits — Limits within which one
can state with probability •/ that at least a
proportion P of the entire population will
lie. The upper and lower tolerance limits
are given by
Tolerance limits = X ± Ks,
where K is the factor for two-aided tolerance
limits for normal populations. The value of
K depends upon the chosen values of -y and P.
Total error A criterion for judging acceptability of ana- 3
lytical methods. The total error is given by
Absolute value of mean error + 2(Std. Dev.) .. , „_
- A 1 UU
True Value
On the basis of this total error, methods can
be divided into three categories: excellent (total
error 25% or less), acceptable (total error 50%
or less), and unacceptable (total error greater
than 50%).
REFERENCES
1. Anon., Guide for the Measures of Precision and Accuracy. Anal.
Chem. 34;364R, 1962
2. Natrella, M. G. Experimental Statistics. National Bureau of
Standards. 1963. p. T-10.
3. McFarren, E. F., R. J. Lishka, and J. H. Parker. Criterion for
Judging Acceptability of Analytical Methods. Anal. Chem. 42:358,
1970.
140
-------
APPENDIX C.
TESTS FOR NORMALITY AND REJECTION OF OUTLIERS
Test for normality
The Kolmogorov-Smirnov goodness-of-fit test was used to deter-
mine whether the observations reported could reasonably be thought to
have come from a normal distribution.
Briefly, the test involves computing the observed cumulative fre-
quency distribution (the percent of values less than or equal to each
value in the distribution) and comparing it with the theoretical normal
cumulative frequency distribution. The point at which the two distri-
butions, theoretical and observed, show greatest divergence is deter-
mined. Reference of the value of the divergence to a table of critical
values for the Kolmogorov-Smirnov goodness-of-fit test indicates whether
such a large divergence is likely on the basis of chance. If such a large
divergence is not likely, the distribution is designated as nonnormal;
otherwise the distribution is designated as normal.
Tests for rejection of outliers
1. If the distribution is designated as nonnormal, the suspected
outlier (the farthest value from the mean) is rejected only if the distance
between it and the mean is greater than three standard deviations; other-
wise the suspected outlier is accepted.
2. If the distribution is designated as normal and the sample size
is less than or equal to 30, the suspected outlier, the farthest value
from the mean, is tested for rejection by a method developed byDixon.
Briefly, this test involves computing a ratio that compares the distance
of the suspected value being tested from its neighbors with the range of
all, or most all, of the observations (depending on the total number of
suspected values in the sample). Reference of the ratio to a table of
critical values for test ratios for gross errors indicates whether such
a large ratio is likely on the basis of chance. If the ratio is greater
than or equal to the critical value, the probability that the suspected out-
lier is from the sample distribution is small; hence, the outlier is re-
jected. If the ratio is less than the critical value, the suspected outlier
probably came from the sample distribution; hence, the suspected out-
lier is accepted.
3. If the distribution is designated as normal, and the sample size
is greater than 30, the suspected outlier is tested for rejection by a
method developed by Santner. 3 This method employs the statistic,
X - X0 , where X is the sample mean, Xo is the suspected outlier (the
141
-------
farthest value from the mean) and s is the sample standard deviation.
This statistic is compared with a table of critical values to determine
whether its value is larger than would be expected on the basis of chance.
If the statistic is greater than or equal to the critical value, the sus-
pected outlier is rejected; otherwise, the suspected outlier is accepted.
Application of tests for normality and for rejection of outliers to ARS
studies
The test for normality and the subsequent test for rejection of out-
liers are applied to the observed data in two way: first, to each method
for a given substance at a given concentration; then to a given substance
at a given concentration regardless of method. In either case, it is first
necessary to determine whether the original distribution is normal or
nonnormal. If the original distribution is designated as nonnormal,
method 1 is used to test for rejection of the suspected outlier farthest
from the mean. If the suspected outlier is not rejected, no further tests
for normality or rejection of outliers are made, and the distribution is
designated as nonnormal. On the other hand, if the suspected outlier is
rejected, the new distribution, which excludes the rejected observation,
is then tested for normality. If the new distribution is nonnormal, the
next suspected outlier is tested for rejection by method 1. This cycle
of testing for normality and testing for rejection of outliers continues
until a suspected value is not rejected or the test for normality desig-
nates the distribution as normal. If the distribution is designated as
normal, subsequent tests for rejection of outliers made by method 2 or
3 are the same as if the original distribution had been normal. This
case is discussed next.
If the original distribution is designated as normal or a new distri-
bution that was originally nonnormal is designated as normal after the
rejection of one or more outliers, and if the number of observations is
not greater than 30, then method 2 is used to test for rejection the sus-
pected outlier farthest from the mean. If the suspected outlier is not
rejected, no further tests are made, and the distribution is designated
as normal. If the suspected outlier is rejected, then the suspected out-
lier farthest from the mean of the new distribution is tested for rejection,
and so on until the suspected value of a new distribution is not rejected;
when this occurs, no further tests are made, and the final distribution
is designated as normal. On the other hand, if the number of observa-
tions in the original distribution is greater than 30, method 3 is used to
test the suspected outlier for rejection. If the suspected outlier is not
rejected, no further tests are made, and the distribution is designated
as normal. If the suspected outlier is rejected, then the suspected
outlier farthest from the mean of the new distribution, which excludes
the rejected value, is tested for rejection. Testing for outliers continues
by this method until a suspected outlier is not rejected or the number of
142
-------
observations is no longer greater than 30, in which case, method 2 is
used for testing for rejection of any remaining suspected outliers.
REFERENCES
1. Siegel, S. Nonparametric Statistics for the Behavioral Sciences.
McGraw-Hill Book Co., Inc. New York, N. Y., 1956. pp. 47-51.
2. Dixon, W. J. , Ratios Involving Extreme Values. Ann. Math. Stat.
2£: 68-78, 1951.
3. Personal communication. J. Santner, Mathematical Sciences,
Office of the Director, Robert A. Taft Sanitary Engineering Center,
1966.
143
-------
APPENDIX D.
COMPARISON OF METHODS FOR STATISTICALLY
SIGNIFICANT DIFFERENCES IN PRECISION AND ACCURACY
The methods are compared in two ways with respect to precision
and accuracy. In the first case, two methods are compared at a given
concentration^with respect to precision and to accuracy. The unknown
variances, cr j and cr i (estimated by the sample variances, s, and s2),
of the two methods are first compared by the F-test to determine
whether there is a significant difference in the precision of the two
methods^ The unknown means, juj and /u2 (estimated by the sample
means, X^ and X2), of the two methods are then compared by thet-test
to determine whether there is a significant difference in the accuracy of
the two methods. The t-test employed is based on the result of the
F-test. These two tests of hypotheses will produce one of the following
results.
2 2
Outcome 1: cr = cr , n = MO
22 i
Outcome 2: cr = cr , ^ f \j.
2 / 2
Outcome 3: cr f cr , ju = fj.
1 ij 1 ^
2/2 i
Outcome 4: cr f cr H 4 /u_
In outcome 1, we conclude that the sample results do not indicate
that a significant difference in either precision or accuracy exists
between the two methods.
In outcome 2, we conclude that there is no indication of a significant
difference in precision between the two methods, but there is a signifi-
cant difference in the accuracy of the two methods; specifically, the
method whose sample mean is closer to the true value is deemed the
more accurate. In outcome 3, we conclude that there is no indication
of a significant difference in the accuracy of the two methods, but the
method with the smaller sample variance is the more precise.
In outcome 4, we conclude that there is a significant difference in
the precision and in the accuracy of the two methods. The method with
the smaller sample variance is the more precise, and the method whose
sample mean is closer to the true value is the more accurate.
In the second case, more than two methods are compared at a given
level of concentration with respect to precision and accuracy. Bartlett's
144
-------
Test^ is used first to test the hypothesis of equality of the unknown
variances, is used to determine which method means differ signifi-
cantly. If the precision is not the same, then the Kruskal-Wallis One-
way Analysis of Variance by Ranks is used to determine whether a
significant difference exists among the means in order to compare the
accuracy of the methods.
Once again, there are basically four possible outcomes for the
above tests of hypotheses.
2
Outcome 1: all er _ are equal, all /u. are equal
2
Outcome 2: alia . are equal, not all n. are equal
2
Outcome 3: not all o- . are equal, all M. are equal
2
Outcome 4: not alia . are equal, not all /u. are equal
In outcome 1, we conclude that the sample results do not indicate
a significant difference in either the precision or the accuracy of the
methods.
In outcome 2, we conclude that there is no indication of a significant
difference in the precision of the methods; however, at least one method
does differ significantly from the rest with respect to accuracy, and
Duncan's Multiple Range Test indicates which methods differ. For ex-
ample, in comparing four methods, we might conclude n-^ = ^2 and/jg = IJL.,
but ju^ and ^ differ significantly from /Ug and /u^; or we might conclude
that jUj = iu_ = jUg , but, ju differs significantly from ju. , ju_ , and ,Ug .
In outcome 3, we conclude that there is no indication of a significant
difference in the accuracy of the methods, but at least one method differs
significantly from the rest with respect to precision.
In outcome 4, we conclude that the methods differ significantly with
respect to both precision and accuracy.
145
-------
REFERENCES
1. Ostle, B. Statistics in Research. Iowa State University Press.
Ames, Iowa, 1963, p. 123.
2. Ibid. , pp. 119-20.
3. IbiH. , pp. 136-38.
4. Hicks, C. Fundamental Concepts in the Design of Experiments.
Holt, Rinehart, Winston. New York, N.Y., 1964, pp. 21-28.
5. Ibid., pp. 31-33.
6. Kramer, C. Extension of Multiple Range Tests to Group Means
with Unequal Numbers of Replications. Biometrics 12: 307-310, 1956.
7. Siegel, S. Nonparametric Statistics. McGraw-Hill. New York,
N.Y., 1956, pp. 184-94.
146
-------
APPENDIX E.
ANALYTICAL REFERENCE SERVICE MEMBERSHIP
STATE AGENCIES
Alabama State Department of Public Health, Montgomery
Alabama Water Improvement Commission, Montgomery
Arizona State Department of Health, Phoenix
Arkansas Pollution Control Commission, Little Rock
Arkansas State Department of Health, Little Rock
California Department of Water Resources, Sacramento
California State Department of Public Health, Los Angeles
California State Department of Public Health, Air and Industrial
Hygiene Laboratory, Berkeley
California State Department of Public Health, Sanitation and Radiation
Laboratory, Berkeley
Colorado Department of Public Health, Denver
Connecticut State Department of Health, Hartford
Delaware Water and Air Resources Commission, Dover
District of Columbia Department of Public Health, Washington, D. C.
Florida Department of Agriculture, Tallahassee
Florida State Board of Health, Jacksonville
Florida State Board of Health, Pensacola
Florida State Board of Health, Winter Haven
Hawaii State Department of Health, Laboratories Branch, Honolulu
Hawaii State Department of Health, Occupational and Radiological
Health Section, Honolulu
Idaho Department of Health, Boise
Illinois Department of Public Health, Springfield
Illinois State Water Survey, Champaign
Illinois State Water Survey, Peoria
Indiana State Board of Health, Indianapolis
Iowa State Hygienic Laboratory, Des Moines
Iowa State Hygienic Laboratory, Iowa City
Kentucky State Department of Health, Division of Laboratory Services,
Frankfort
Kentucky State Department of Health, Radiological Health Program,
Frankfort
Lawrence Experiment Station, Massachusetts
Louisiana State Department of Health, New Orleans
Los Angeles County Flood Control District, California
Maryland State Department of Health, Bureau of Environmental
Chemistry, Baltimore
Maryland State Department of Health, Bureau of Laboratories,
Baltimore
Maryland State Department of Water Resources, Annapolis
Massachusetts Department of Public Health, Amherst
147
-------
Massachusetts Department of Public Health, Boston
Michigan Department of Conservation, Lansing
Michigan Department of Public Health, Lansing
Minnesota Department of Agriculture, St. Paul
Minnesota Department of Health, Minneapolis
Missouri Department of Health, Jefferson City
Montana Bureau of Mines and Geology, Butte
Montana Health Department, Helena
Nebraska State Department of Health, Lincoln
Nevada State Department of Health, Reno
Nevada State Department of Health and Welfare, Las Vegas
New Hampshire State Department of Health, Concord
New Hampshire Water Supply and Pollution Control Commission,
Concord
New Jersey State Department of Health, Trenton
New Mexico Department of Public Health, Santa Fe
New York State Conservation Department, Avon
New York State Conservation Department, Ronkonkoma
New York State Department of Health, Division of Air Resources,
Albany
New York State Department of Health, Division of Laboratories and
Research, Albany
New York State Department of Health, Syracuse
New York State Department of Labor, New York City
North Carolina Department of Water and Air Resources, Raleigh
North Dakota State Department of Health, Bismarck
North Jersey District Water Supply Commission, Wanaque
Ohio Department of Agriculture, Reynoldsburg
Ohio State Department of Health, Columbus
Oklahoma State Health Department, Oklahoma City
Oregon State Board of Health, Portland
Pennsylvania Department of Agriculture, Harrisburg
Pennsylvania Department of Health, Division of Air Pollution Control,
Harrisburg
Pennsylvania Department of Health, Water Quality Section, Harrisburg
Puerto Rico Institute of Health Laboratories, Hato Rey
Puerto Rico Aqueduct and Sewer Authority, San Juan
Rhode Island State Department of Health, Providence
South Carolina Pollution Control Authority, Columbia
South Dakota Department of Health, Pierre
Tennessee Department of Public Health, Nashville
Tennessee Stream Pollution Control Authority, Nashville
Texas State Department of Health, Austin
Utah State Department of Health, Salt Lake City
Vermont State Department of Health, Barre
Vermont State Department of Health, Burlington
Virginia State Department of Health, Bureau of Industrial Hygiene,
Richmond
148
-------
Virginia State Department of Health, Bureau of Laboratories, Richmond
Virginia State Water Control Board, Richmond
Washington State Department of Health, Seattle
Washington State Food and Drug Laboratory, Seattle
West Virginia Department of Natural Resources, Charleston
Wisconsin Department of Agriculture, Madison
MUNICIPAL AGENCIES
Albuquerque Department of Environmental Health, Air Management
Division, New Mexico
Albuquerque Department of Environmental Health, Food and Institutional
Division, New Mexico
Baltimore City Health Department, Maryland
Bay Area Air Pollution Control District, San Francisco, California
Beaumont Health Department, Texas
Central Water Filtration Plant, Chicago, Illinois
City of Amarillo, Water Reclamation Department, Texas
City of Charlotte, Water Department, North Carolina
City of Cincinnati, Division of Water Pollution Control, Ohio
City of Durham, Department of Water Resources, North Carolina
City of Erie, Bureau of Water, Pennsylvania
City of Long Beach, Water Department, California
City of Miami, Alexander Orr, Jr. Water Treatment Plant, Florida
City of Newburgh, Water Department, New York
City of New York, Food and Drug Laboratory, New York
City of Niagara Falls, Division of Water Laboratories, New York
City of Philadelphia, Office of the Medical Examiner, Pennsylvania
City of San Jose, Health Department, California
City of Seattle, Water Department, Washington
City of Toledo, Division of Pollution Control, Ohio
City of Yonkers, Bureau of Water, New York
County of Fresno, Department of Public Health, California
County of Los Angeles, Air Pollution Control District, California
Denver Board of Water Commissioners, Colorado
Department of Air Pollution Control, Chicago, Illinois
Department of Public Health, Environmental Health Laboratory,
Philadelphia, Pennsylvania
Department of Public Health, Public Health Laboratory, Philadelphia,
Pennsylvania
Department of Public Works and Utilities, Flint, Michigan
Department of Service and Buildings, Dayton, Ohio
Department of Water and Power, Los Angeles, California
East Bay Municipal Utility District, Oakland, California
Easterly Pollution Control Center, Cleveland, Ohio
Erie County Health Laboratory, Buffalo, New York
Houston City Health Department, Texas
149
-------
Los Angeles Department of Public Works, Playa Del Rey, California
Louisville Water Company, Kentucky
Metropolitan St. Louis Sewer District, Missouri
Metropolitan Sanitary District of Greater Chicago, Illinois
Metropolitan Utilities District, Omaha, Nebraska
Metropolitan Water District of Southern California, LaVerne
Minneapolis Water Department, Minnesota
Monroe County Health Department, Rochester, New York
Nassau County Department of Health, Hempstead, New York
Nassau County Department of Health, Mineola, New York
New York City Department of Air Pollution Control, New York
New York City Health Department, New York
Orange County Air Pollution Control District, Anaheim, California
Philadelphia Water Department, Pennsylvania
Philadelphia Water Department, Belmont Laboratory, Pennsylvania
Philadelphia Water Department, Torresdale Laboratory, Pennsylvania
Riverside County Air Pollution Control District, California
St. Louis Public Health Laboratories, Missouri
Salem and Beverly Water Supply Board, Beverly, Massachusetts
San Diego County Department of Public Health, California
FEDERAL AGENCIES
Brookhaven National Laboratory, Upton, Long Island, New York
DHEW, PHS, Bureau of Community Environmental Management,
Cincinnati, Ohio
DHEW, PHS, Bureau of Water Hygiene, Bethesda, Maryland
DHEW, PHS, National Air Pollution Control Administration, Washing-
ton, D.C.
DHEW, PHS, Northeast Marine Health Sciences Laboratory, Narra-
gansett, Rhode Island
DHEW, PHS, Northeastern Radiological Health Laboratory, Winchester,
Massachusetts
DHEW, PHS, Southwestern Radiological Health Laboratory, Las Vegas,
Nevada
First United States Army Medical Laboratory No. 1, Fort George G.
Meade, Maryland
Fourth U.S. Army Medical Laboratory, Fort Sam Houston, Texas
Regional Environmental Health Laboratory (LSGHM), McClellan AFB,
California
Regional Environmental Health Laboratory (SGHK), Kelly AFB, Texas
Reynolds Electrical and Engineering Company, Inc., Las Vegas,
Nevada
San Francisco Bay Naval Shipyard, Vallejo, California
Sixth U.S. Army Medical Laboratory, Sausalito, California
Tennessee Valley Authority, Chattanooga
150
-------
Tennessee Valley Authority, Muscle Shoals, Alabama
U.S. Army Environmental Hygiene Agency, Edge wood Arsenal, Maryland
USDA, Soils Laboratory, Beltsville, Maryland
USDI, FWQA, AWTR Research Activities, Pomona, California
USDI, FWQA, Alaska Water Laboratory, College
USDI, FWQA, Analytical Quality Control, Cincinnati, Ohio
USDI, FWQA, Chemistry and Physics, Cincinnati, Ohio
USDI, FWQA, Chicago Program Office, Illinois
USDI, FWQA, North Atlantic Water Quality Management Office,
Edison, New Jersey
USDI, FWQA, Ohio River Basin Project, Evansville, Indiana
USDI, FWQA, Ohio River Basin Project, Wheeling, West Virginia
USDI, FWQA, Robert S. Kerr Water Research Center, Ada, Oklahoma
USDI, FWQA, Technical Advisory and Investigations Branch, Cincinnati,
Ohio
USDI, Fish-Pesticide Research Laboratory, Columbia, Missouri
USDI, Geological Survey, Columbus, Ohio
USDI, Geological Survey, Denver, Colorado
USDI, Geological Survey, Harrisburg, Pennsylvania
USDI, Geological Survey, Little Rock, Arkansas
USDI, Geological Survey, Menlo Park, California
Walter Reed Army Medical Center, Washington, D. C.
FOREIGN AGENCIES
Alberta Department of Public Health, Edmonton, Alberta, Canada
Algoma Steel Corporation, Limited, Sault Ste. Marie, Canada
British Coke Research Association, Chesterfield, Derbyshire, England
Central Public Health Engineering Research Institute, Nagpur, India
City's Institute for Health Protection, Belgrade, Yugoslavia
Ciudad Universitaria, Mexico
Department of Energy, Mines and Resources, Ottawa, Ontario, Canada
Department of Health Services and Hospital Insurance, Vancouver,
B.C., Canada
Department of Municipal Laboratories, Hamilton, Ontario, Canada
Department of National Health and Welfare, Occupational Health Division,
Ottawa, Ontario, Canada
Department of National Health and Welfare, Public Health Engineering
Division, Ottawa, Ontario, Canada
Department of National Health and Welfare, Public Health Engineering
Division, Vancouver, B. C., Canada
Department of Public Health, Sydney, Australia
Institute of Environmental Sanitation, First Section, Taipei, Taiwan,
China
Institute of Environmental Sanitation, Division of Quality and Pollution
Control, Taipei, Taiwan, China
Institute Nacional de Obras Sanitarias, Caracas, Venezuela
151
-------
Mekoroth Water Company, Tel-Aviv, Israel
Metropolitan Corporation of Greater Winnipeg, Manitoba, Canada
Metropolitan Water, Sewerage and Drainage Board, Sydney, Australia
National Agricultural Materials, Seoul, Korea
National Institute for Water Research, Pretoria, South Africa
Ontario Water Resources Commission, Toronto, Canada
Osaka City Institute of Hygiene, Japan
Scientific Research Council, Kingston, Jamaica, West Indies
United Kingdom Atomic Energy Authority, Didcot, Berks, England
University of Belgrade, Yugoslavia
University of Leeds, England
Water Commission, Jamaica, West Indies
Water Research Association, Marlow, Buckinghamshire, England
UNIVERSITIES
Iowa State University, Ames
Louisiana State University, Baton Rouge
Medical College of South Carolina, Charleston
New Mexico Institute of Mining and Technology, Socorro
New York University Medical Center, New York
Pennsylvania State University, University Park
Purdue University, Lafayette, Indiana
Oak Ridge Institute of Nuclear Studies, Tennessee
Rensselaer Polytechnic Institute, Troy, New York
Rutgers University, New Brunswick, New Jersey
St. Mary's College, Winona, Minnesota
University of California, Department of Civil Engineering, Berkeley
University of California, Industrial Hygiene Engineering, Berkeley
University of California, Richmond
University of Dayton, Ohio
University of Florida, Gainesville
University of Kansas, Lawrence
University of Minnesota, Minneapolis
University of North Carolina, Chapel Hill
University of Puerto Rico, Mayaguez
University of Vermont, Burlington
University of Wisconsin, Madison
Washington State University, Air Pollution Research Section, Pullman
Washington State University, College of Engineering Research Division,
Pullman
Wayne State University, Detroit, Michigan
INDUSTRIES
Aluminum Company of America, Wenatchee, Washington
152
-------
American Biochemical Laboratory, Baltimore, Maryland
American Public Health Association, Riverside, California
American Water Works Association, New York, New York
Anaconda Company, Grants, New Mexico
ARMCO Steel Corporation, Middletown, Ohio
Battelle Memorial Institute, Columbus, Ohio
Bethlehem Steel Corporation, Bethlehem, Pennsylvania
Black and Veatch, Kansas City, Missouri
Bio-Technics Laboratories, Incorporated, Los Angeles, California
Borg-Warner Corporation, Des Plaines, Illinois
Bowser-Morner Testing Laboratories, Incorporated, Dayton, Ohio
Brown and Caldwell Laboratories, San Francisco, California
Calgon Corporation, Pittsburgh, Pennsylvania
California Water Service Company, San Jose, California
Carnation Research Laboratories, Van Nuys, California
Chrysler Corporation, Detroit, Michigan
Culligan, Incorporated, Northbrook, Illinois
Cyrus Wm. Rice and Company, Pittsburgh, Pennsylvania
Dow Chemical Company, Midland, Michigan
Emery Industries, Incorporated, Cincinnati, Ohio
Fairbanks, Morse and Company Research Center, Beloit, Wisconsin
Goodyear Atomic Corporation, Piketon, Ohio
H. C. Nutting Company, Cincinnati, Ohio
Hach Chemical Company, Ames, Iowa
Hammond-Montel, Incorporated, Elmhurst, New York
Havens-Emerson, East Paterson, New Jersey
Hill Top Research, Incorporated, Miamiville, Ohio
Holzmacher, McLendon and Murrell, Melville, New York
Hydro Research Laboratories, Pontiac, Michigan
Industrial Chemicals, Incorporated, South Bend, Indiana
INFILCO, General American Transportation Corporation, Tucson,
Arizona
lonac Chemical Company, Birmingham, New Jersey
Ionics, Incorporated, Watertown, Massachusetts
Isotopes - A Teledyne Company, Sandusky, Ohio
Isotopes, Incorporated, Palo Alto, California
Johns-Manville Research and Engineering Center, Manville, New Jersey
Kern-Tech Laboratories, Incorporated, Baton Rouge, Louisiana
Kennecott Copper Corporation, Salt Lake City, Utah
Monsanto Company, St. Louis, Missouri
Moutrey and Associates, Incorporated, Oklahoma City, Oklahoma
Nalco Chemical Company, Chicago, Illinois
Pacific Engineering Laboratory, San Francisco, California
Pacific Gas and Electric Company, Emeryville, California
Pan American World Airways, Patrick AFB, Florida
Philadelphia Suburban Water Company, Bryn Mawr, Pennsylvania
Procter and Gamble Company, Cincinnati, Ohio
153
-------
Radiation Detection Company, Mountain View, California
Ray W. Hawksley Company, Incorporated, Richmond, California
Reynolds Electrical and Engineering Company, Incorporated, Las Vegas,
Nevada
Roy F. Weston, West Chester, Pennsylvania
St. Louis County Water Company, University City, Missouri
Sandia Corporation, Albuquerque, New Mexico
Shell Chemical Company, Princeton, New Jersey
Tenco Hydroscience, Incorporated, Chicago, Illinois
Texas Gulf Sulphur Company, Aurora, North Carolina
Trapelo/West, Richmond, California
U. S. Industrial Chemicals Company, Tuscola, Illinois
United States Pipe and Foundry Company, Birmingham, Alabama
W. R. Grace and Company, Lake Zurich, Illinois
Wastewater Analysis Corporation, Lincoln Park, Michigan
Water Pollution Control Federation, Washington, B.C.
Water Service Laboratories, Incorporated, New York, New York
Xerox Corporation, Webster, New York
York Research Corporation, Stamford, Connecticut
154
-------
-------
------- |