530R86108
      W AT  F /?    OTT A  T  Trrv
      VV  ^r± J.  JLj  JL\    He/ L7  ^rJL JL/ JL
I  I
           ADVISORY
                   ATRAZINE
         Criteria  and  Standards  Division





      Dffice of  Water Regulations and  Standards





                   Urn ted States






          EIn vir nnrnen t al  Protection Rgency
                 MRRCH  1  3 8 G

-------
                          WATER QUALITY ADVISORY
                               Number  2 .

                                 ATRAZINE


                     Criteria and Standards Division
                Office of Water Regulations and Standards
              United States Environmental Protection Agency


      The advisory concentration Atrazine in ambinet water for the
  protection of freshwater aquatic life is estimated to be 1.0 ug/L.   No
saltwater data were  reviewed and no  advisory concentration for the
protection of saltwater  organisms is estimated.  Care should be taken
in the application  of this advisory, with  consideration  of its deriva-
tion, as  stated  in  the attached support document.

    A value given to protect aquatic life  can  be derived from no
observed effect  levels (NOEL),  the lowest  concentration  found in  the
data which has been  observed to cause  acute or chronic toxicity or
other experimental  data  which may be applicable. When there is no
valid experimental  evidence, a value may be derived from a model  which
uses structure-activity  relationships  (SAR) as its  basis. The advisory
concentrations should be used with caution, since they are derived
from minimal experimental evidence,  or in  the  case  of SAR derived
values, no  data  on  the specific chemical.

    The advisory concentration Atrazine for in ambient water for  the
protection of human  health is estimated to be  25 ug/L, based on
data and information which are  available to U.S. EPA. Care should be
taken in the application of  this advisory, with consideration of  its
derivation,  as  stated in the attached  support  document.

    An advisory  concentration can be derived from  a number of sources:
The Office of Drinking Water Health Effects Advisories;  Acceptable
Daily Intake(ADI) values  from EPA; Office of Pesticides and Toxic
Substances risk  assessments;  Carcinogen Assessment  Group(CAG) cancer
risk estimates; risk estimates derived  from the open literature;  or
other sources which will  be  given in the support document. The
advisory concentrations derived from these sources will vary in
confidence and usefulness, based on  the amount and  quality of data
used as well as  the  assumptions behind the original estimates. The
user is advised  to read the background information carefully to
determine the strengths or deficiencies of the values given in the
advisory.
                     U.S. Environmental Protection Agency
                     Region 5.Library (PL-12J)
                     77 West Jackson Boulevarjd, 12th Floor
                     Chicago, IL  60604-3590

-------
      HUMAN HEALTH AND AQUATIC LIFE
        LITERATURE SEARCH AND DATA
           BASE EVALUATION FOR
                 ATRAZINE
   U.S. ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF WATER REGULATIONS AND STANDARDS
     CRITERIA AND STANDARDS DIVISION
         WASHINGTON, D.C.  20460

-------
                          TABLE OF CONTENTS
INTRODUCTION 	     1
SCOPE OF SEARCH 	     2
SUMMARY OF FINDINGS 	     3
     Aquatic Toxicity 	     3
     Health Effects 	    15
CRITERIA EVALUATION AND RECOMMENDATIONS 	    24
     Aquatic Toxicity 	    24
     Health Effects 	    27
REFERENCES 	    30


                            LIST OF TABLES

Table 1.   Summary of Aquatic Toxicity Literature
           Review of Atrazine 	     4
Table 2.   Summary of the Health Effects Literature
           Review of Atrazine 	    16
Table 3.   Data Used for Calculation of Final Acute Value 	    25
Table 4.   Data Used for Calculation of Final Chronic Value ....    26
Table 5.   Data Requirements for Calculation of Aquatic
           Life Interim Criteria—Atrazine 	    28
Table 6.   Data Requirements for Calculation of Health
           Interim Criteria—Atrazine  	    29


                           LIST OF FIGURES

Figure 1.  Summary of Toxicity Data for Atrazine 	    13

-------
                    HUMAN HEALTH AND AQUATIC LIFE
                      LITERATURE SEARCH AND DATA
                         BASE EVALUATION FOR
                               ATRAZINE
                 U.S.  ENVIRONMENTAL PROTECTION AGENCY
              OFFICE OF WATER REGULATIONS  AND STANDARDS
                   CRITERIA AND STANDARDS  DIVISION
                       Washington,  D.C.  20460
                             INTRODUCTION


    Atrazine is classified as a s-triazine,  a heterocyclic nitrogen
compound.   The chemical  name  is 2-chloro-4-ethylamino-6-isopropyl-
amino-1, 3,5-triazine (McEwen and Stephenson, 1979).   Commercial  names
of atrazine include AAtrex, Atranex, Atred,  Crisatrina,  Crisazine,
Griffex, Shell Atrazine Herbicide, and Vectal SG.   Major producers are
Ciba-Geigy Corporation,  United States;  CIFA  Laboratori Chimici,  Italy;
Crewe Chemicals  Ltd., Great Britain; Farmoplant S.p.A.,  Italy;  FBC
Limited, Great Britain;  I.Pi. Ci. S.p.A.,  Italy;  Makhteshim-Agan,
Israel; Pecten Chemicals, Inc, United States; Shell Chemical Company,
United States; Vertac Chemical Corporation,  United States/ Crystal
Chemical Inter-America,  United States; Devidayal Private  Ltd.,  India;
Drexel Chemical  Company, United States; and Griffin Corporation,
United  States.

    Atrazine acts as a selective herbicide by inhibiting Photosystem
II in photosynthesis (McEwen and Stephenson,  1979).  The selectivity
of atrazine is based in  part on the plant's ability to metabolize
atrazine to hydroxyatrazine and amino acid conjugates.   The hydroxy-
atrazine can be further  degraded by dealkylation of the side chains
and by hydrolysis of resulting amino groups  on the ring and some C02
production (WSSA, 1979).  Atrazine can be applied to crops at three
different times;  preplanting for the control  of  difficult weeds;  pre-
emergence for the control of most germinating broadleaf weeds;  and
post-emergence with oils or surfactants as adjuvants for improved
control of some  annual  grasses (McEwen and Stephenson, 1979).

-------
Atrazine has been used for selective weed control in corn,  asparagus,
potatoes, tomatoes, sorghum,  rye,  sugar cane,  pineapple,  and orna-
mentals.  It is also used for nonselective weed control for railroads,
storage yards,  highways,  industrial  sites  and  other  noncropland areas
(Patty, 1981).

    Atrazine is considered the single most heavily used herbicide in
the United States  (deNoyelles et al.,  1982) with production estimates
at 110 million Ib  per year (Patty, 1981).   The compound is  considered
moderately persistent in the environment  (Edwards,  1975)  and has a
half-life of up to a year in soils, 3-12 days in water, and 15-20 days
in sediments (Jones et al.,  1982).   Concentrations of  1-5 ug/L are
common downstream from agricultural application in watersheds.   A
higher level of 500 ug/L was found in waters directly adjacent to
treated fields (deNoyelles et al., 1982).   This study  also  states
concern over atrazine as an environmental  pollutant after observing
changes in species composition in  pond ecosystems at these  concen-
trations.  Mammalian toxicity is relatively low; however, acute
toxicity to aquatic organisms is considered moderate to high (Patty,
1981).   Mutagenic effects on plants  and animals following plant acti-
vation presents additional concern over atrazine as  an environmental
pollutant  (Plewa and Gentile, 1976).   Chemical properties of atrazine
are listed below.

             Molecular weight:     215.68
             Physical form:         Colorless crystal
             Melting point:         171-174 °C
             Solubility in water:   70 ppm at 25 °C
             Vapor pressure:        3 x 10~7 mmHg at  20 °C.


                           SCOPE OF SEARCH

    A computerized literature search of TOXLINE, TOXBACK, NTIS, and
the Toxicology Data Base identified many sources, focusing  on
controlled, dose-response laboratory studies  from 1970 to 1985.

    Information on the quality assurance/quality control measures
employed in the laboratory was  recorded for each study.  These
measures include use of controls,  replicate treatments, and chemical
analysis of test concentrations.  Information on the bioaccumulation/
biomagnification of atrazine,  along with other food chain,  ecological,
and health effects that would be useful in determining water-quality
criteria, also was gathered.

    Studies were evaluated with respect to guidelines established by
the U.S.  EPA in "Guidelines and  Methodology Used in Preparation of
Health Effect Assessment Chapters of the Consent Decree Water-
Quality  Criteria  Documents" (FR 45:79374,  Nov. 28,  1980)  and "Guide-
lines for Deriving Numerical National Water Quality Criteria for the
Protection of Aquatic Life and  Their Uses"  (Stephan et al., 1985).

-------
                         SUMMARY OF FINDINGS


                           Aquatic Toxicity


    As previously stated, toxicity of atrazine to aquatic organisms  is
considered moderate to high  (Patty, 1981).

    Annelids and molluscs were the least sensitive,  with subchronic
LC50 (median lethal concentration) values ranging from 6.3  to >16  ppm
(Table 1 and Figure 1).   Arthropods are more  sensitive to atrazine,
with acute LC50 values for waterf leas and  scuds reported to be 6.9 and
5.7  ppm,  respectively (Macek et al.,  1976).   First-instar midges were
more susceptible, with an acute LC50 value of 0.72 ppm (Macek et al.,
1976).   Additional data from chronic studies  were  used to estimate a
maximum acceptable toxicant concentration (MATC).  MATC values for
waterfleas, scuds, and midges  ranged  from  >0.06 to <0.25  ppm  (Macek  et
al.,  1976).  Chronic experiments revealed that the most sensitive
criterion for determining the effects  of atrazine was developmental
retardation for midges,  significant decreases in production of young
for waterfleas, and a significant decrease  in survival of young for
scuds (Macek et al.,  1976).   Another study  with waterfleas  found that
atrazine had adverse effects on growth and reproduction at concen-
trations ranging from 1 to 10 ppm, but had  no significant effect on
survival  (Schrober and Lampert, 1977).

    Sensitivity of chordates to atrazine varied with species and age.
Except for the harlequin  fish  which exhibited on LC50 to 0.55 ppm,
acute LC50 values for adult  fish  ranged  from 6.3  to 15 ppm.   The
higher acute LC50 value  (0.55 ppm)  may have resulted from differences
either in species sensitivity or in methodology; however, no  infor-
mation was available on  experimental  conditions (Pimentel, 1971).
Additional chronic studies determined MATC values for brook trout,
bluegill,  and  fathead minnows,  which  ranged  from  >0.065 to <0.87 ppm
and were similar to values obtained for aquatic  invertebrates (Macek
et al., 1976).

    Toxicity of atrazine to fish and amphibian embryos was  variable.
Hiltibran (1967)  found no effects at  levels of 5  to 10 ppm on
fertilized eggs and fish fry up to 8 days after hatching for  three
fish species.   However,  at 5 ppm atrazine had adverse effects on
survival  of smallmouth bass.   In  embryolarval exposures  Birge et al.
(1983)  found LC50 values  ranging  from  0.22 to 0.87 ppm for  fertilized
eggs and fry up to 28 days after hatching.  Differences in  methodology
between the Hiltibran and the  Birge studies probably accounted for
these differences.  Birge et al.  (1983) also  determined the toxicity
of atrazine to amphibian embryos.   Fertilized eggs and young  of bull-
frogs were fairly sensitive  (LC50 0.41 ppm);  however,  eggs  and young
of American toads were less  sensitive (LC50  >48 ppm).

-------



























UJ
z
<

^g

&
a

s
UJ
cc
UJ
O£


85
	 1

1—
o

X
O
*~
o
5
3
?

U.
O
» O 4V
4V C  <-> «r
C 1
^^ CU (*)
r— U
O 41 C i-
• JT O 0
— i in o 4->
o u
4J C -r- TJ
< O CO Ik-
u o ••
u c c u
coo •- c
•• O •• O U •• I- O
1. (J t- •" t. Ol O
41 O) Ul ^ trt 41 j3
J2 VJ^ Q O) J3 ^S IA
"g E-* -Q" EoflS
(Q.M'QU EU TJ C JZ •• 4)
J=UJ=C T3 C JT O U U *->
UCUO J=O U U CW)
O U U U *»v *J O >»
4^ tj *-* "^ "^ *J V» (/» U f
(/» **s. (/»(/» *J tfl i/l 4) d) ^s.
O)(/t O) (V co Qj  QJ *j ^fQ *x. 4) 01
*"-*4-t-^.COI4->Ci- 4-IC1- *-l 5 4J HI OI X
c « i. c « c *3 oj c fl «r c C o
o o o o o of o i oo >—
cjuo^ CJCM^H o •— i CM Z oi/>cn o«-*«f**-



i. s- I- U t.
OI CU OI OI 41
4-J 4-* 4-1 -4J 4-»
XX X XX
^
c
00 CM

IQ fQ Q W ^3 L» C "^ f*l ^ *•"%
•O "O "D J= J= O 4-1 41 C
<*•> i- c-o c o
r- r- O IO 1 CO JT 3 C 41 —-










s
• CO VO ^^ •
<3\ • *" •* • O
\rt A VO
^^ CO
S to S bn uj
O O O O Q


4-1
(/) C
•*• fl 1/1 (A
ffl & ^~ F^
cy § 4J 5
« o « t "O
m 13 > 4-1 > c — .
~- 3 m 3 .. Ol a
•0 C •— >i — «C « (U
F— o •• 14. O 14- Q Ek—
*-- -C ^ •— » — » P <•-
£^ 4) ^*^ Q. ••s ^ > m 4^ C in 4V ^U lO
— T3 JT -^ JT CO 3 41 t- 3 CU O "^ 1-
^j3u incj 3^™C^ CU ^™ CX Q£ C CU
uiov i/> 01 _i > E 4-1 >, 6 S J= 4J
f^« eu ocu ^ju*^ m u •*•* ^ a 
e
a/
2
o

vt •
(^ W^
41 S

1 is
en o
in u s-
E O 41
W CL
Sin O
41 Ifl
E1 ->,
O 4) -Q
4V 4V in
l/» • '•-
cu c 14- m
4V O O CU
— -C
o >
4V 4V U in
Sc u o
41 CU 4V
u u a. o
t- C -C
cu • o o a.
a. 4-1 u tn
C tn
O 4) 4V 1- 4V
in S c o —
3 • 3 "*- J3
»- 0 r— O i-
o 8 ai^- c jr
<4- T3 > X O C
cu o — —
So  41 t. 0
4V 3 O •— •"-" —
10 O * ^ CU 10
o-o u > i.
t 
-------



























^^
CONTINUED
• — •

•
UJ
CO
2




















11
u
c
z
1 U •"->
4-> C ™
— TJ 0
«j 3n-
3 

I/I
01
a

lyl

,+J
t/»
t—

-° •= i
s s « . ~ i£
jt - » t ui
* "O *O 3 OJ 1/1
•- c c o .* . t. .
OJ «3 'O ( £ 3 c en • o fl



4-»
' O
o e 01 1
•*-* c 3 a. ««•
i c TJ S T3 a. <».
CCQ.30 O 014
O OEOO irtS-O
4J^4J4jl UOI^ "c"*
i-i— (W^^r^ 14* 4-* U^

c i c •.• fl fl 01 c t— t i4» :
OI-4OI* — S .j:^
o u a) ••- 01 4-> c :

r
TJ
4J

^,
u r^
« en
z «— <
I)
/I
L. C
1) O
> -^-
3S
J -0
o. a.
_.ga.
e o
:§-
> o
C 1- C T3 S- «J ul JZ W en 1. 4-1 4J
OOOOI3> t. 4-1 i- 3 r|
o *J o — 4->  ai — i
OUO(-<9 >OO 14.
•i— lfl'—fl3WI4- ^i.'^ OCI4~4>J
CQ u- 03 > ai o  zoai *fl
4^ Ol 4-> Ol \fi X
o»— u O1— u '"Uvtw
U'O—l-g-'- I/I4JW
C — Q. C ••— Q. O U C U
OCOIOCOI (-•- — p-
U'flUt-l'Ol. *J»— £l4-f
C Q. OJK9
z z *-< rH z '~| »— * o w ol 1/1

i- i- t_ W
Ol U Ol Ol
*o Ifl fl fl
XXX X


C '^
1^ Ifl >

u
• « c
• • wo
* 1^
« c 5 « s
j= o u u 4-1
0 u C I/I
^ 4-> 0 >,
4-> IA I/I u I/I
I/* Ol Ol ^^
4^* *a ^^ oi en
• • l/l -^ ••*— «J o
!- — i. i_ c "S.4!*
4-> c 4-1 n o> X
C ">«• C u 0
O 1 O O ""•
cj in m o  4-1
i 1

O 1/1

e u «)
>> Ci. 0 >, •- i
Wl- £- Olfl WIU^- ^-* L. c 5
J= J= -C 4-1-0 Ol Q. Ol <^ J= 0
_ 3 14- Q.*J >, s- f^
CD vo VO O CO •.*  *-^
IT)
— ui Lft m uj
^ CJ O LJ O
Z -i -J -i 2


U- 2

TJ 4J 3
Et Q
.2 ». •»  JT £
Q. * Q. Q
ok- Q 0





ui ea
S d
3 i
3
4-1
a
u
i/i

-------
                            c
                            1)
                            i.
                            Ol
                           <*_
                            1)
                           ce
                                                                                                                                           0) V£>
                                                                                                                                           u r*.
Quality

Assurance
Specification
                                                                                                                     c
                                                                                                                 4J  O
                                                                                                                ±  i
                                                                                                                 C  3
                                                                                                                 cn  u
                                                                                                                     o
                                                                                                                 o •-
                                                                                                                                                                       4-1  O
                                                                                                                                                                       c —
                                                                                                                                                                       13 4J
                                                                                                                                                                       o  TJ
                                                                                                                                   C  3
                                                                                                                                   d  U
                                                                                                                                  —  ,
                                                                                                                                                                          U  U  U1
                                                                                    o
                                                                                                                    0) 01

                                                                                                                   'S3
                                                      §

                     S
                     t_j
                     a
                    0
                                   O
                                   m
                                  o
                                                    I

2
                                  c
                                  OJ
                        a.
                       i/i


-------

































^^
o
UJ
ac
z
o
>— -

•
I—*
UJ
— J
^>





















3
O -Q
QJ ai l"
C ^. •*•*
 C «O
^~ w -^-
« 3 g-
3 i/i .^

CL
LO




OJ
s- E
3 3
t-i -i-
o-o
XX
UJ


4,1

I/I 4J
Ol TJ
>— 1_
3
o

s
CJ
UJ
n
g
o
-J


VI
Ol
=.
4_,
VI
ai
i—










1
o •— '"io
4J *w *** E
"° S t? -2
£ O. T) l_
1/1 Q..O C
— T5 •— 4J 0

a. o .0 OJ i*- 3
CL •!•• ••— -^- E
cn£ u- c 3
in v. x o cn u
* TJ 01 '^ O
O .C VI 01 ITJ
4J T3 V) O
4-1 OJ C O O '^
«£ ^- (0 — Z J3
U
C
o
u
i- in
E E OJ E
a> oj o .« oj
4J 4J E U 4-1
I/I U1 ITJ C VI
X X -COX
00 Ul U U VI

jr £ 4J vi £

3 3 OJ 4J 3
O O '• 4J ITJ O
4- t. VI *^ U i-
£ f "o "vi »— 5
i i i- •<- a. i
X X 4-> w 01 X
o o c i. o
-: r- oo —
U_ U. <_> CNJ C\J 1*-


^_
Ol
TJ
X

VI (TJ
1 .C •— l-
VI 1 S- 4-1 — Ol
u *j ••- o vi u c 4J c
33l*-£>i X "-OCOI
^ i^ o O '•— w *o c c 3 ^n*— x
.c — .e £ c 4-> — t3 o c
4J 4Jt7ICi— l-nTS-OO
1C C CO ••-••- ITS *T3 CO £ACC-*-
C" 3^XVIU4J CSJ (J — • «J CM 4J

^
C?
_j in
^3 - ^^
"A § 0
S u ^
u c Q
_j — Z

3

g
IP
Vl^
•^ cn

Ol CO
CO
£~

» .
C 1/1

• — t^
— vo to
£2 rJ


1 |
•^ x — >>
4J t. 4-> i-
Ol Ol
14— ^ *t— "^
C C
g^ tO C ™
t/> l/»
•*-• CD *•* 171
u ^ (j C7>
r~ Q *^"
z-



L* LT
Ol 01
-Q u .Q O
Is Is
U ***. U ^s.
Wl (/)
*J 4) ^J U
Irrt *J (/> *J
QJ *O QJ  (J *» *J U
VI >^. -^- VI ^. •*-
O wi Q- O V» Q-
4^-^-0) t. ••" 4J
.»-> t*. i. *J »*- t.
c c
O O  •*-
>» L. JC OJ X 1- -C
ifl 4) C) ^ *O 4) tJ
*CJ *J 4>> 3 ^ *J *J
t*- *TJ (J U- fl
00 *0 JZ  */»
5|
p— l/»
^- tft
cn E tu
u O QJ
3 Q. L.
•— a> t3
CO —ik-'
^
Ol
•~l
M
c
TJ
1-
.-£
4->
1
3
1 VI
4J 1- C
U u- O
Ol
U- TD J->
C O
§ITJ Ol
ul
VI U-
4^ cn 01
u cn
ttj OJ OJ

14- -a t.
Ol Ol Ol
>M >
O— T3
<



t-
ai
i ^
« 0
£ U
O -v.
l/l
4-1 OJ
VI 4->
Ol TJ
•«4-> U ••
VI ~^-<- VI
o - _i —
UJK-- £









£
•O Q.
Ol
M in

• r— tO
W >»
OJ I.
u. u-
**- -o


(TJ 1/t
^ Ol
•^~ ^n
> a;



'^
v
£ U

VI
4-> Ol
VI 4J
Ol iO
4-1 (J
"^ •»-
vi a.

Jv^









cn
C

S- £
OJ 
-------



































o
UJ
z
z
o
o
*—*

•
LU
1
t—






























01
U
Ol

Ol

Ol
CC"







Miscellaneous
Observed
Effects




c
o


4J C IO
•*- *o u
— I- —
-
o -a
D. 01
,2s

4,1
(/) ^J
01 10
t— 1_
3
o
lf>
a
||

^z ^~*

s
y




VI
Oi
'o
s
in
Ol


en

co en
•-> en — «

T en ~"
10 r ^

4J .—
OJ 10 3 4->
4J . 01
Ol C U_
cnro 01 • M
i- co E t/i t.
-.-en — . o
CO <-l Q. 3 — 1

i— i/i .««
(0 01 E
en u — 5.
t/> C 3 4J O.
4J

ai
u

1/1
•o
c


r^
OJ
/ r,
C
3
O
•a
1^-
f E

I/I •*- 4-> — 'O C
£T3 10 ^- O in -C Ol O
3 c o> 'o tn 4-» m c
*J U i- O> 1- — 1 IB to- t. JJ —
U C Ol Ol X O Ol >i Ol U 4-1
Oi *-i i- -o e en > >.4-> 13 > 01 10
(4- CX C ~-^ CO 4-1 ••- fO O> **- 1-
Ol T3 3 vi in •••" ^D -^ ^— 01 t^ *4— 4-1
~^4JO)^-O3 iO4JO-cnai
U •»- (O •*- ^ Q. ^ 4JU'*O^-C u
in 4J E > "o c: u 01 E a. c -^ — u
i- tn o i- c 3 E xencoo
OIOIC3OOC iO ol«vr>-^-^E-^
H-I.IOV1UO—  4J
1/1 I/I
..x •• >>
U i/l u VI
c c

o en u en
•^3 ^3
• «JC o --J= O ••
VI VI 1» 4/1 I/I C VI
O <*- 4J O U. 4-> O
£gl l§o 1
o^— O-H-— o; aj o
UA^- CJA^^-ST zo



W S- 1- !. i. fc.
Ol Ol O) OJ Ol Ol
i x x x x x
in
X en in 01
10 C >1 C
L.J= -OUJ=l_Oli-l-
OOIU OIUJ=4JJ=J=
-- 4-> 4J CO -W 4J 3
|t^->OCOU9^
en Q *~ | Q ^^ wf ^c co On



Q.
c\j r^ 14? o. in

C_J LJ CJ O CJ
~t -J -J Z _i
in u
3 *J
4J — 3
a jc v)
O ••- 1- 4-> J= H
C H- 11 3 4-1 V>
3 4J CO 3 — in
CUIO -o L. O «- 3
u s- 4-> t. j:
E« s^i *l|
3 c ,a o cr j=
•— c o c -O 01 L.
10 <0 g .- e r- o
4J C ^ US «- U u
U O iO OS IO iO c
— >•— ^i|>— ce I o
cvj —i in £ vi CO

•a
"o

^j
c
u o

^ ^*
4-> *— 1
in t
i. —
Oi
4J •«
5"^
J= X
^ OJ ***
Ol C in
L. 01 —
to- 1. to_



t.
Ol
4pJ
"3
X




















IO
"e? 01
O 
O oiro
co s- co
en — en
-H CD •—

»— in
*o 01
en i_ —
VI C 3 4-1
I/I — 4J ^~
o -o * — o
i- 3 c oi n m
VI CrtF— L. 4-> O
4J u i- at s- _i
U O Ol Ol I O Ol
Oi J-> i. T3 g en >
to- Q. c^-. c O
CO OJ'C 3VIVI-"- JO
i *o oi m c ~ (O -^ -^ Q. VI
o 4J t  TJ 4-> E > "O C O Oj
U 1- V> 5 1- C 3 E
U- ^U'OVIUU'*- UO
u u
§ s
u u
if> in

• • » *
O V
§ §
_o u

t/l V)
"« Io
.. s .. E

"o i "5 *
|8 |8
O •— * O i— i
O A O A



1- t-
Ol 01
X f

VI 01 VI gl
*o •*- «o ^~
T3 1. J= -O 1- J=
oi u oi u
CO 4J 4-1 CO 4-) 4-1
rx (0 j= p^ 10 j=




f_^
co 9

A 0
o o
in in
—1 -J



10
3 ^ W
§10 —
O 01
•- * U 4J J3
v> t- c oi en
N- eu «o 4J o
« 1 " Sli
4J L. >—
-•- O Oi lOk-
^ ^ J i =
*-. co|5. eel—

-------
      OJ
      u
      c

      t
      Ol
                     w
                     CO
                     c
                     c
        c
        o
                                                                               CO
                                                                               en
 1/1
 3
i—  *•
                                                                                         aj  o.
                                                                                         c                 i
                                                                                        •— in            —
                                                                                   i/»     N   •   *o     i ja
                                                                                   4J     10 CO  I  Ol  •- X"~
                                                                                   •*•  O i-     X 01 E  x .c
                                                                                      in 4-1  OQ.CO.OC

                                                                                i-  o LU       i-i-    -o

                                                                                i  x  «"° *" °"   °  *> g
                                                                                      Sl/l JJ O 10  C
                                                                                      Ol IO    i- ~- '
                                                                                                                                             -
                                                                                                                  c—  xo'6«*''0jco
                                                                                                                  jaai     o «   •oe
                                                                                           -
                                                                                                               4-  x  E  i-  c  in4-i




X
4-1
^~
•o
3
o*






















c
o
U 4-1
e 10
10 O
t. —
•s w
1/1 -1-
rf y
Q.







Ol
(- E
Ji *^
o -o
x y
UJ



o
OJ 10
*— 1.
u
§
o
m

u
§
u

l/l
OJ
.* 1
IO
X





J_
.c
u
c
o
u
in

u
§
u

1/1
O)
IO
u
1^
Q.
01
L.

m






1/1
X

•o
2
i










.*
t/»
o
1-
4^

O
o

1-
o>
4-1
X





1-
JZ
u
§
u
in

u
§
U

t/1
OJ
•>  o    s  o
                      p  in    o  in
                     £ O     1- <_)
48  o

5^
         —       ie
  . (M    c —.    i- o
         X •
jr o    i/i o    .cm
4-1       O       4J
 X  O   4J O   X O
 o  in   o in   o m
 t- o    -co    u o
o uj    a. uj    o uj
                                            en
                                            X •
                                            mo
                                            O
                                            4J  O
                                            o  in
                                            .CO
                                                                                               m
O vr>    o  ^.
i. o    J= o
                                                                                                      £«>
                                                                           OL UJ    O LkJ   ^ UJ
                                                     o in   o
                                                     1. (_)    1.
                                                     OUJ    O
                                                                 *j m

                                                                 Xs!
                                                                 Wo
                                                                 o _
       I/I
       ai
               —     O)
               «s     o
               s   2
            a>

            01

            5
                                                                                                                  SiO

                                                                                                                  O)
                                                                                                               Jjr-

-------
c -




























.— *
o
UJ
3
Z
z
o
—
.
" '
LU
_J
£Q
'-































» U 4-1
4J C 10
— 10 0
.— L> -*—
iO 3 14.
3 VI •—
Q.
on




oi
33
VI •—
o-o
X ₯
UJ

c
o

I/I 4-1
oi -o
t— I.

s
o
J~
fi
5 ^
^*.*™*
g
u
—I







w


Q.
I/)

QJ



O P-


I/I 41
IO f
. 5 g
• O*i -^
* i 2 3

!
*•* c
OJ >» «

i- ^ .tl w
U ^^ 4) ^O s QJ <
.Q CO ^ r>v i. C
0> CS - Ol *j (
•- on
t/> (/i nj
*J 1/1 OJ «-
X ^ — (J VI Of
^3 X 1) L)  C/>QJCD ^-* T3 ••- t- *o
t-'^CU OOv£> *J^— *JQ^ XO O "™* O W 4) 1-
O^£-*^ 4W r^i X*fl X *^» o »~ *^ O t 
* *^™ w ^? C\j w c W ^3 ro CT>^3 ^ fl ^3 po ^ ^ ^^ ^H >
Q. ^s *^ Q- C C * C 4^ i ^3 i/i 1U Of f *J O QJ .O
^^- Cue-'- e^^3 * c ••- Ec*^- cOi/>*o 4^^**3 *J *o
gi--^ o-^o Q.-r-cj Q.-WO +-*OQJ c i- -— *j ocwic-^-lx *o
3^ O U JD*^ L. m L. •«- O O W> J= ^*^OOUJC
t) oo c £ ai i^> c w> c aJ o o t/» *^- *-» fc. o *J x QJ E
*j -ioiaa> a» *« jc *^ o cu ^
<£•**• «t^U <-^^l <^(J  CD »4- J3 it 2E > O.^ 4-> "D (/)







ai
t Ol
O> T"- C

~O Ul "" 01 1-
1- Ol O C 4-1

I/I C 4J C7I
oi in oi oi it- •o
4-1 Ol &3 ^ 4-1 O Ol
•IB 4-1 •£ 4-1 3 4J
U — C -O >l ra

OUQJO O-— OC*fl'C-*->i
UCCLt. UCL ^-^-OOUJC
4-> O W1 •*-* *»QJ (fl >» *J -^ *^- *J
CUC C i- J-" 1. O -4J X OJ
O«^3O O 4)




a> QJ a; QJ o;
to 1o ta la ta
? X XXX




l/l
^






W -x 1- 1-
•o x .c ^
r*» cv csj c\j


o u u
m ••-
.(^
• *J *j
CNJ QJ QJ
1 ^ ^
o 5
in c
^j
c rvj
-CO i/l i/i .—i
*> 0 O •
X O 4-«£> 4J
o ui o o o a
L. U £
O Li-J CL
Ol VI
•o :
o *
U f
— in o
1. IB <4-
IB C 1_
a in — oi
•— t- E 4J a
3 VI 3 U
> a — E vi « c
.0 -0 3 2 _ 0
fl3 IB "^ "^ ^ c ™ fi 4.
r— ^-CiOJiBiBVl^ -r- ~* 41

aiO)"Ol^iOiOF— I.T3U uo C
L.iBaii.cL.caiaioiin vi 4J g
OOI1OO-— O — -^4-ICN KJIB IB
*— ' — CTI^- OC4Jr*L-ft>4^> 4J'^- 4J
£<>— JT"— OOO«U— — -O O
cjp— * ^ o o z < ^i oK/^ z zK-^ *•>
to £ Irt
— ct «




fO
J


o f"
*> k.
^ i
o.
o «

-------




























I

p
I

•
f-t
UJ
s
<£
*""
























Ol

0>
ee








i/i
3
Miscellaneo
Observed
Effects

c
o
Ol •-
X U 4J

•— !B U

3 l/l~
O" i/i y
< S
Q.




Ol
^ ^
I/I •*-
o-a
&*•
UJ

c
0
VI 4-1
Ol IB
t— L.
3
a




in
a

11
^^^ *
s




VI
OJ
1
4-*
1



































in
TJ
Q

T3
C
n
^
01
C i— i
S- CO
O (?v
U.^1








— i

J= CO
CTfJi
.^

C «

O  "3 O O>
e m IB > v. vi















•a
•a
o) * u c oi •• a.  oi 4J ••- ai •— *j oi-oc.
Ol
o
ja
•0
in
i
i/i







•*
i/i
"o
4->
C
o

i_
01
n
X





^
JC

OsJ





u
;3
Ol
J=
4-J
c
VI
o
o-
I

u
a
i/i
yriophyllum
X
Oi
o
J=
IB
i
fO
in






in
o> ••
IB P—
U O

Q. c
QJ O
1- <_>
j_
U
IB
X





L.
_c

OJ





u
2
O>
j;
•o- 'c
t-H I/I
• 2
S |

I
tt
•3
*<5
O
(macrophyte)
annichellia
fNl


S
O •'
1 — 1/1
Ol
Ol 3
S. —
Ol IB
I/I Z >
O>
4-» in T3
IB Ol Ol
U 34->  3 V.
01 U 4J
i. o— c
in «o o
CM P-I U U








"jB "^fc

lO IO
t t

i/i
J= O
o •
1 ^0
S j=5"
o — S
<-><£
— • X X
3
S4-> O
*B t3 in
p— 1 «— i Ol t--
SC 4->
. 5-2S £«
J 4-> — X 10
SO 
X § X "£ X
C U S V JT
Q. Q. CO.
O IB O VI O
i. 0) »- — 1-
8 1 SB £ H
mE> *~ E *° »E-

x • t 3 1*. > ce v.
XQ.|uJ3i-A)ai'BOI U
*»O r— •«- ^ fsl C X Q.
JO Vl4-JVIdJIBOO I/I
O. C 3 C UL.U D-3
•«-iBUO) "3 13 J3 IB
pO4->»-.>-i.cvj oi a. c-^
— i o •— n- oi j= c a. Or—
• 3 O — > U O>-^ •*• O
O'QD-COWSiBO 4J l«_
O1.C»Ui-oi—oii«-jroi • 30)
i..-4 -o a
VI Ol
Ol C 4->
01 4J — C
C IB M Ol
f U IB E

 E
<— IB at
O U l/> 4J
«. f- LU VI
s- a •- x
Ol vil o vi
oi So
•~ 6H-» i— u
CO) 3 O) (/) UJ
** X **" X £ Oi
«( j? >, j= a c
Ol Q. j= Q. h- ••-
O O Q O C^ u.
El. OS. >- IB x
(B u •»• o I/I 3 "O
*J  3
0 E > E LJ VI 4J
Ckh.' £pv UJ UJ I/)
SHI
*~fc
4-> 1_ Q.
e at
ie > X
u o -a
•»- U 3
I*- Ol 4-1
"c
VI C 4->










































11

-------













Miscellaneous



^>
.^

•a

0



























o>
u
c







Observed
Effects

c
o
4) —
SIS
.0 0
1- —
3M-
V! •«-
< %
a.
10
SB
i/i ..—
o-o
x ^
UJ
§
<*-l •«••
(/> 4-»
OJ fQ
(— u
s
o
UJ
n
s
0


VI
41
I
c/i

VI
a>
^~



4-1
OJ

l/l
4> C\J
~ ao
a> —i
X
;£ .
o> •—
•o 10

_ <_> ^
4-J  3 o I o v
5*0 C7> w c rJi c •*•* 1/1
4> TJ a. to O JZ •»-
t-C4)4l»— CUX —
o u o 4-> i. a. o ^3 j-> .
KH" ^D *K" 0) T3 O ^ 4^ ^— AJ ^ 4j
•- 5. "a. £o'a.c— olnc
M Q. O £ 4J o i- 4-1413
t. o >»•»- o o x*j CD E

X
VI
o
u
ai
i
41
L.

to











X

— O 41 »- > O
L. O 0)
° = S 2
•O 4) r— CT
O> L. IO
•^ 4J -O
r- VI X O)
CL J3 4J
CX— —
10 IB -0 £>
*- Ol -^
^ O IM £














































TJ
C
v
u
a
VI
>e
Ol
*o
i
VI














































vi
VI
|
i
V
1
ff
JX
4-1
"0
1_
01





































\£>
<7i
r- 1

.*
01 /
^
n
3
g -
•F- VI C
<-* E
 4J O
00
-^. • o
F— CM —
f4-> O
10 4-1







gt


1-
a>
(O
X














-S1
3
to
T3
C
O
a.











* «
VI VI
v^ X
C -C
10 in
rji—
1. U-
0
c

.0 K- 1-
41 01
~c o a
•o C O




































-------
                        o
                        o
                        un
                     o
                     CO
                     o
                       •>
                     09
                      !
O    O
S    8
                                     T
                                     o
                                     o
                                                              CO

                                                               A
                                                        VO
                                                     crt
                                                     I
                                                      a


                                                      o
                                                     •9—
                                                      to
                                                                                    ,   i—
       4->    x
        C    O
        QJ    »-H
        cn   I—
•O  U
•i-  «/>
•—  3
 
-------
    Aquatic plants are very sensitive to atrazine.   Algal photosynthe-
sis and growth were inhibited by 50% at levels  ranging  from  0.1 to 5.0
ppm during a 3-hour exposure period  (Stratton, 1984).   Veber et al.
(1981)  noted a  marked  inhibitory  effect  on  algal growth during a 7-day
exposure at levels ranging  from  0.5 to 2.5  ppm;  however, there was
recovery at lower concentrations.  At 25 ppm atrazine inhibited growth
greater than 50% in thirty-six species of algae during a 2-week expo-
sure period (O'Kelly and Deason,  1976).   Growth of two species was
inhibited greater than 50%  at 0.001 ppm atrazine in the same study.
Stratton (1981) found  the EC50 value for photosynthesis and growth for
green and bluegreen algae to range from 0.03 to 4 ppm and noted that
atrazine was more toxic than any of its metabolites.  Photosynthetic
150 (50 percent inhibition)  values for four species of aquatic vascu-
lar plants  ranged  from 0.077 to  0.104 ppm after a 2-hour exposure
period (Jones and Winchell, 1984).   Growth  150 values for aquatic
vascular plants ranged from 0.08 to  1.104 ppm during a 3- to 6-week
exposure period  (Forney and Davis,  1981).

    Toxicity experiments with model ecosystems have shown that aquatic
plants and benthic organisms are directly  affected by atrazine.  Atra-
zine applied to artificial  streams at 1 and 10 ppm severely inhibited
growth of algae and decreased biomass at both exposure levels
(Kosinski,  1984).   Atrazine applied to estuarine microcosms at 0.13
ppb significantly decreased photosynthetic oxygen production by
Potamogeton perfoliatus immediately following treatment; however,  the
plants recovered within 2 weeks,  even though atrazine  levels remained
constant.   A higher concentration (1.2  ppb)  of atrazine  significantly
decreased photosynthetic oxygen production by P.  perfoliatus which did
not recover during the  4-week exposure period (Cunningham et al.,
1984).   Atrazine was applied at  concentration levels ranging from 2.0
to 6.0  ppm  to ponds, and found to be toxic  to several  species of
aquatic plants and benthic organisms.  Benthic organisms which were
most sensitive included mayflies, caddisflies, leeches,  and gastropods
(Walker, 1964).  Microcosm experiments also showed that atrazine can
cause indirect effects on aquatic organisms and changes in species
composition (deNoyelles et al.,  1982).   Applied at 20 and 500 ppm to
pond ecosystems, atrazine decreased phytoplankton growth, but more
resistent species eventually became reestablished during the 136-day
experiment.   Decreased phytoplankton growth, however,  caused indirect
effects on growth and reproduction of zooplankton.

    Bioaccumulation of atrazine in aquatic animals does not appear to
be a major concern in comparison to other pesticides.   Aquatic
invertebrates,  limpets, and waterfleas had bioconcentration factors  of
3-4 and 1-10,  respectively  (Gunkel and Streit, 1980; Heisig-Gunkel and
Gunkel, 1982).   Fish tissue samples obtained from brook trout,  blue-
gills,  and  fathead minnows  after chronic exposure contained residues
below detectable limits  (Macek et al., 1976).  A study of the bio-
accumulation mechanism in whitefish, which were found to have a
bioconcentration factor of 2-3,  showed that the herbicide concen-
tration in the water and in the organism reached equilibrium as a
result of the  fish's  atrazine uptake and simultaneous atrazine


                                  14

-------
secretion (Gunkel and Streit, 1980; Gunkel, 1981).   Aquatic plants,
however, may bioaccumulate atrazine.   The  alga,  Chlorella,  was found
to have a bioaccumulation factor of 52 based on wet weight.  Diatoms
bioaccumulated labeled atrazine 50-100 times (activity-unit volume
algae/activity-unit volume water).   This value,  however,  may be
smaller because activity of capillary water in the  algal  sample would
decrease the activity of the actual sample.  Bioconcentration of
atrazine in diatoms on a dry-weight basis is approximately 150-300
times (Streit,  1979).  Additional experiments with  diatoms, limpets,
and leeches indicated that food-chain magnification is not significant
(Streit, 1979).

                            Health  Effects

    Mammalian  toxicity of atrazine is  low (Patty, 1981).   Oral acute
LD50 (median lethal dose) values for rats  and mice ranged from 1400 to
3080 mg/kg  (Table  2).

    Toxicity of atrazine varied with route of exposure.  Atrazine was
more acutely toxic in rats after interperitoneal injection  (LD50  125
mg/kg)  (Gzhetotskii et al.,  1977).  Dermal  exposure, however,  was less
toxic.   A dermal LD50 value  of  7500 mg/kg  was obtained for rabbits
(Patty,  1981).   Inhalation studies  with rats found no effects after 1-
hr exposure to aerosol  concentrations  ranging from 1.8 to  4.9 mg/L  of
atmosphere, which was the highest  concentration  tested (WSSA,  1976).
A threshold limit  value (TLV) of 10 mg/m3  (8-hr time-weighted average)
has been recommended and is based on low mammalian toxicity and rapid
elimination from animals (Patty, 1981).  This  TVL value is  usually
assigned to nuisance particulates.   Generally, the Atrazines are  con-
sidered, at most, mild skin  and eye irritants (Patty,  1981).  Dermal
application of 2800 mg/kg to rats caused a local skin reaction
(Gzhetotskii et  al.,  1977).

    Information on chronic studies  is limited.  A no-observed-effect
level  (NOEL) of  100 ppm was obtained for rats after 2 years of oral
exposure (WSSA, 1979).   In  contrast,  chronic exposure of  0.1 mg/kg  to
rats caused increased permeability  of blood vessels and leukolyte
count,  and decreases in hemoglobin.   Changes also included pericapil-
lary and capillary edemas in the brain, swelling or corrugation of
Purkinje cells in the cerebellum, decreased development of gametes  in
the ovary and one case of slight perivascular infiltration on the
kidney.   Another study also found that atrazine  at  10 or  50 mg/kg/day
administered orally to rats  for 6 months inhibited growth,  caused
luekopenia and affected metabolism of thiamine and riboflavin  (Patty,
1981).    A higher dose in the same  study,  20 mg/kg,  caused severe
morphological  alterations of the central nervous system and the
parenchymal, endocrine, secretory,  and sexual organs.   Death occurred
in 40% of the animals with symptoms such as respiratory distress  and
paralysis of limbs.  Because no information on experimental metho-
dology was available, the two studies cannot be  evaluated further
(Nezefi, 1971).


                                  15

-------

















UJ
z
cc
*—
u.
o
3

>
UJ
Q£
UJ
h-
CC
UJ
H-
_J
t/)
0
UJ
u.
Lu
UJ

— J
S
u.
o
i
CM
UJ
— 1
00



















Ol
u
c

fc.
Ol
Ol
ce








liscellaneous
Observed
Effects



c
0
Ol ""•
>l U 4->
— "3 U

3 l/) —
Q.





C c e
tJ i; E
5? «^»
.g Q -0
3 Q. QJ
cS5*



*/» 4->
Qj *O
t- u





^*
01
_l
£
3
n.
X
UJ



VI
Ol
jjj
D.
I/)
4_)
Ol
h™

•~* "~ ^* *•-* -^ r«* i— i «^ f*» ^»
00 •"•• Ol Oi CO •*• o» CO •*•• O» Ol

t— < VI Ol t— ' V) f-t t/1
*J • ^4 4J« *J . .
• O^j • O • - o • -^
4_} 4) to ^C 4^ O) ^3 4~* 01 *O 01

'O N4-»COfO NJ4-> 'Otsl^OI
Cu UOJ^Cu C3OI CUCJ3O13C
T3
Ol 1
^ U »*- VI O
Ol T3 ^3 f~ O *O v*
VOIOI Ol IC*O OIOI3
•— • 3 4-> C * >)— Ok— Jrf t--OOl>>
>>IOU— O 1- T3 4-1 D E Vl»» O O •— U.
lt»**»l.U'O 4-> 4^ '"^O ^ VI <^
cn*j 4J c *— vi ^o , o 01 o. « — eo viooi * —
•— o e i»- »- •^•ocvi-o»-o>> o) E CM 3 wuie
^^l-'OO> VI— O Q) C3J= kfl) <0>>0 l-
Ol Ol i— c c
0 01 C — 0 -0 — 01 0) O <0 * X-O J< — • 3 —
U*>4->O>~-.0 O)U1.VIE«M VIJZO) ^x.j3vlO
— o. o ••- > x ex  01 « •— u in
i- js o j3 w L.aia>ai*OE3 •— -o i- E9>ai ">
o -~ M  cu E
£34^13 vit/) U4^4^^vi u**~vi *-*Cv>4-»aj
ocvuc ^z>«oi«« ex— o E js • oi 01 >,-o
^H-«-^«-E  .*J *J ID O S- *J u. OVO
333J3E >^3 JT U
U O O 3 (J /"
4 < «C LO VD C\J ^ i— t O "^*
CTt
^ 0) CTt ^
"-*. -« ^ Oi *^
* ~? *% g. i | f
go. ex E o>
o p
f^ co CD m co ID ^^
•-< o <» CM o CM .

— i «• ro
O O O — 1 —I O O
\n \f> in LU ui in ID
o o a Q o O u
_i — i _i se 2 _i ±i







Ol

Z tt













































£ c
E O
3 — .
•§ ?!
. s|f
VI 3 C o
e? 88£
^ c •— 01
10 -^ US
4J "O 4J Ol
Ol Ol Ol >
_i -a i- i.
• L. Ol
go c vi
U » J3
— Ol — O
•o i. -o
o
II Z H 11

g" gcJ
sgi^i
^< CM ro w
16

-------






















^

UJ
=)
z
t—
z
o


CM
UJ

CD
2






























01
U
C
£
Ol
OJ
C£






, U 4->
— IO O
•— k. ••-
O" i/i y
O.
IO



•o ^

S ^
OJ >" "

3 g"^





C
O
4-J ••-
I/I 4-1
£ 2
<§



01

Ol
^
o
o.
X
UJ
I/I
Ol
u
CO

AJ

Ol
(—

o
o
(J

•o
ii

I/I
t-
Ol <*)
OJ Ol
O- -J
i/i "u i-
S- C OJ
.- 1C 4J

W 4iJ E * **"
> L. JC fc. ~~
OJ Ol O O I"
*O fO l» L. O. Ol
Ol IO L) *lfe •*•"
I/I ^ CX Ol I/I OJ
3  *e oj i- 4-> c
OlO CO o —
.*•- ••- Ol C
~-» O l^ 4- •— H. IO
§••§.5 o 3 -s $
I- 'OX
O Q it- C Ol O I.
csj g o oi i« z o
u
c
0
u
Ul t^
"o I
4J "c

5«r








•8
L
O
U 1
C 10
C l/l
Ol Ol
O) Ol
Q.4J
**• O
0 JT
Ol
Z|j
£ 5 li
Ol

^^
Ol
E
1
ri
i








10
cc
"o
o


•^
c

i/i
Ol (*»
o> en
a. — i
i.
OJ

.4—
s
effect on Ipup
weaning weight
Z'c
u
§
(J
• * t/1
II


o
CJ W


tfl
3
O
£§

*J *J
U QJ
-§•?
I/I —
U 1
C IO
C VI
Ol OJ
OJ Ol
Q.4J

Ol
•— i 3
^*i ^ O
4O JS *^
0 4-1 4J

Ol
fc>

i1
§
CXJ
_J
UJ
i










£
o**
I— 1

o^ *
r^ c
r~* i-
. 1
1/1 I/I
I/) IO
3 CD

>,
1 4->
o --
1- U ^ >
f*S *^ ^) .^
H5 O)-^ U J3
UJ3 10
•O 3 •"- OJ
Ol — JC 01 3
l/i "O C l/l irt
3 •*- •*- * i/l
m 4j i. •*-
L) E ^ Ol 4J
•B C 4J
cn 10 w c
J« -O OJ —
-*. o» *• C (
01 u u •*- u m
C OJ •— J3 ro
— 3 «- O 1
• o •»- x: co
o c ai u — e>j






£ i








i. i.
o o




u
c
o
s-
jr 01
U 4>J
JD 3
3 U





§.
in
PJ
_t
LU
*








O
o




CT> CO
» °^
._(
/ *
< 2
t^ IO
X 0-

J=
o. u
o •- c
•oil
(o 01 vn
L. 1 4->
Ol ui <0
«/l I/I C 4-> 4-»
SO) •»- C ••-
t. IO I.
Ol^ Kl ^
JX 0— i. f-
*^. O •— •!- IO
^S E -o ~
-4 E — C






z" £ 8 £ .1 9>







fMV
IO
•— p— •— E C
10 10 10 C ai •*•
t. i. i- a> >i -v
O O O Q UJ CO




_u _o
c c
£ B
oi JT j=
4J O U
S 3 i o: a «
< l/> l/> Z S S
01
JK

Ol

& a. o
in in in
evj tsj rv
UJ UJ S
Q D O




OJ 4->
f- O) -^
4J I/I J3

10 100*0
u tj z ce

-------
                        01
                        u
                        Ol
                        01
                       O£
scellaneous
Observed
Effects
 •c

  Sc
     o
  VI t/l
  c c
  C J=

 m <-3
                                 <«-    O <">  c    Q.  C  3
                                 **-    O     O "O X  *0 *J
                                 Ol    f-N  tn     oi 0)     O)
                                           >»•••—      *U-
                                                ••- "D JC
                                                       01  E
                                                       'Di.
                                                           O
                                                           c:
10



OJ
                                                                        C U3
                                                                        0 CM
                                                                                              o cr»
                                                                                             >- «— t
                                       3  a>«
                                          T3  Olin-^ l."O
                                                 OJ     J2 Ol
                                          XI-  »   • C "-
                                         >-*-*  O  O)  O» O» t.
D

—

Z
                       c
                       o
                    OJ •*••
                  I  U <->
                    C  10
                10  3 W
                3  VI •—
                o-  vi o
                   < £
                      O.
                   VI JJ
                   a>  >o
 JT O  U — *J ro QJ
    —     i- vi jc i.  o
 >.*->  >i 3 Oi    J=  >,
 *O U  "O
 "D 3 "O
 ^.•D -^
 C7> O  C7>
                                     -                      -
                                ^ a.*-** F— o  01*^13 *o
                                 O*OJ  O^*OUDJC  O> O) U
                                 E  I-  E *->    *J  o o
                                          \- -a     ceo
                                incoocu-oo>s
                                 —
 Ol  O
 o.—
   4^
 in  re
•—  i-
 10 +J

Jg
 c u
 re c
   c
vc u
                                .. OJ
                                (U  X
                                   QJ  U.
                                   C  *-
                               c  X
                               O  10
                               —• T3
5 xi oi
•»-«*- C -*J
4J O X >O 3 V>
fo .a c oi
•— 4-> O.— 3
Ol C "O 3 E *~
J- 3 Ol O T 
O E O f>
o re i— c oi
toi -^ *•>
VI JS 3
S3 3 C
•4-> L. "-
u o> JT — E
t- C C O>— T
>t- 01 — -r- -r- 0
••- ft) N JZ J3 m
c S 10
cn*J t. oi Oi T!
-• oi *J jr j= c
I/I JD fO *J J-» 10


• » fo
VI L.
01 t. J-> -O
r— Ol *O Ol
ti- jr — vi
 Ol
X C fc
§in •»• C
in x "O
•a .— -o oi "»-
C 3 C
10 n- *J ••- in
a; o vi i^ *— i
t T; vi
J= Ol O>
O *J ^
c -o 3
VI 3
at c u
vi O
IO «- Ol VI
ai *j *J oi
C co X—
u u o D.
£.55 I
JD Ou vi
•o * E
"- X'O
O Ol— O
**- E o
I O C-—
*r vi ••- ^
VI -O
c o>
o jr
vi ij
l_ ^j
4) T3
Q. E
^O >s
^^
V» OJ tfl
O (^ —
d O 0
X ^" U
Q; u *j
c
C\J VC O
^ •— I U
                                                                                              O
                                                                                       O    f i-
                                                                                       CM    *•> Q
                                                                                                                       O N .C     O  N  O. >
                                                                                                                          n c   ic    t-
                                                   .
                                                  §-u    *->  > 4-1
                                                  <8 M "-     "O
                                              ••-    o o  c
O C
c —
                                                                                                                              i
                                                               O  u in
                                                ) -D O    4->    T5 —
                                              Tv.ro f c  in     wi
                                               c en    u ai  C-D 01
                                              ~-
                                                                                             -a LU oi  o> —  v>
                                                                                      CO O O    > "^ jc  o
                                                                                       I V i. It. 01  C.  C -i-
                                                                                      «3<—i Q-O-O'—f-ja
                                      c
                                      O  VI
                                      •r-  Ol
                                      <-> -a
                                      10 •—
                                      u  u
                                                                      a. i.
                                                                     5-5
                     O    CVJ

                     c     x?
                     O  vi —   •— c
                     o.  oi  oi  E —
                    < j=~—  n IM
                                                  .
                                              O 01

                                             JJ 1-
                                              c u
                                              o «
                                             t_' u
                                                                                      us — »
                                                                                      a> a.
                                                                                                                     s-  o
                                                                                                                     Ol •^>
                                                                                                                     CX*J

                                                                                                                     Oi  Ol
                                                                     s
                     o
                     a.
                     X
                               01
                               c 3  a.
                               t -a  vi
                               3 c  o
                                                                                            X oi    —<
                                                                                             ^
                                                                                                > en c
                                                                                                  =  o
                                                                                                  O  VI
                              1/-I
                              LU



                              §
                              a.
                              Ol
                              a
                              j=
                              to
                              r     E
                                            u vi ai
                                            v» ^ u
                                            
-------

































o
LU
O

• — •


£
•- *^
Ist
^


c
o
QJ •—
>! O 4->
4-> C 10
"- 10 O
•— I. "-
31/1 —
*f GJ
0.
l/l



•0 j,

" = _=
5 o -5
3 g-^

Q£



i/> *J
O) *«
h- U
i?
"QJ
Ol
_j
OJ
3
S
Q.
X
LU



t/t
QJ
O.
UO
in
,2
1/1 r— »-
Z CO

•O -f- CTi QJ QJ
C "U «— '
*o — o o
0 • C C
J* 4J . OJ QJ
—- U *— 'I- ••-
C r^ QJ 10 l. o &. C
V. f^ CD O.CO O.C
3 O"< QJ 4-» o o^ o <
Z—i OOl—Ji— 1 -Jr
fO
1 C £
x c -o •*• c *J
QJ •— O C O QJ
I/I IO fl QJ ^— QJ QJ
JT 4-1 O 4-1 C I C
QJ4^OOJCOOIOIE •*-* OJ
IB •— i»-  QJIO i*- oji/i'^^o i/iE4-J ^o. WEO*^-
O> Ol ^  ^J ^L O ^^ O 41* ^ ***-
4-IQJ O^"4J4^ O E 'B U^- ^W !*-!*- -i- E
Co ••-'oo coj '^"u iC4-»c I'O'oc tree i^*j 11
•O QJ It-EC «E It- QJ 1 O Q) O 1 CO 1 O 1 O 1
Ol. — • O 3 OO •*• J* Ol — E ••- OICIO"- OJC-^ QJ C * ft)i
•^ C I/I **") *^l/l CC >l/l 4^ >O 4J >O4-> >O >l
§tn vt- O O1-- — V C «9 — — C "O f--^lO •^-— c -~
^ CO 4/11  •»— — • (OIO'^'^ *f 1C *^ ^O*O>^ *O
C71C UC (7)^- X CTCl~4>J ^I4J^4-* (/I4J4J Ol4^^ Ol
•— •*— o ^ O *^ r* OQJ QjOWo 013*00 O3O OI3*O Ol
i/^ ^*- !c o c oo o z t/i z o E ^3 Z E E *o *^ E *o «c E E ^E






I/I I/I
0 0
i. <-
4J 4J
c c
o o ee QJ gt K
 0
I- —
•— tj
1 QJ
ra c
O Ol
c »«
>« — (Si
-* -O -H
O OJ C
. Ol
OH- O










QJ
o
1
I/I V. VI
>- 1- QJ *o Ol
p oi o j: o
•— i — 10 O '— i~ )•• *0 O '*
ZJTO1 L. I/I O>3 I/I *— »
ujao 10"- ce o «o-'
ooc jc> O1^ ham .c:
^1/1*0 001 EC '''-fi w
h-o— 01- -=0. J=S o
O 5— QJ lOQJ !O>i O Ol *v
ZTQE LOU l/)4->l'^>Qj «"









3
D
n
H





i
U 4->
u c
S Q.
§•0 e
C 0
- « — •
A 4->
L. e IB

: •— *-•






































>
j
J
19

-------
c
Ol
1-
0)
1*.
OJ








Miscellaneous
Observed
Effects


c
o
01 —
>i O *->
4J C 10
— IO O
— I. —

Cr in o
< *
o.





•C Q,

*o ^ ^
3 3
«! o^
3 g"^

et ^


^ g
l/l 4J
a; 10
^ — L.
3
O

I
in
O
Q.
X
UJ



in
OJ

Q.
to
£
a) «—
•o
o c
c , 10 a
OJ ' •-

1 T^ X 4.
O.CO Ol C
O Cft i— C
— 1 -H a. ti



•0-0 c
4^ QJ OCQJiOOJC-C
c i •— i- i— i- o E — 6OU4-
^ E 3 aj 3QJ'^OC1. Q •*•••»•• •»•
L.Q. L-EO 0)t*-C OJU.IO QL- OL.f A^
i^i*- i*.i^.-^- 3 3inio u u |Q Ei>
1 ID C 1 10 *J IOJ->- F C"5 D4JU D*J« D-^"- 4)^-iO OJ C
>O4-> >o > c 10 > c — > *j *j > *j — >c
— 10 —  z ,
•o

kD
t






I
k. QJ l-
01 C I. O

'S — E — *
E in > u
10 en — oi >i <
c. f-. <- c c i1 (
;, O) D O — 5 ••
aj u c j3 i. i
in • "- • 10 ••
aj m c >~ aj in ^ ;
C ^- ^ */* ^~ u
(J U X UJ Z U I/}
^-t
•c
•> C»
1C OJ

IO ••-
X 4-1
: oi c

iZ 15

•o
a) u-
4J in o
C 3
IB I- IB L.
: •— a) o D
» c. u *J e -a
^- l»- « O L.
I I. C 10 C-^ O
o a; c — in
: en c o N L. c
>ft) 
C 3 I/I IB 4«* 0) >>
. i— o EL.>— * 10 i. J2
) nj— i o)— E i
. ic i > 4J fi. i -o >> aj
: 01 a>cucx O) a; o T:
> c *-> >OIB >mc3
Jv-o -*-O in ^-iBfl)4J
;mt. — • 
j *J 0
: c i— CL
L s:si
aj
|
^
O

T)
H









in
C
V IB
0 (-
in 01
c ^=
> el u
i! «F
u a)|o
J Mia.
)
X
s
c
o>
*o
o.
1
1
0)

O. (O







£
§
<_)




«
in
4J 10
O f
'o.'cn
^j*
^3
13
u. rr>



















i
IO
01
20

-------





























o
LJ
zr
o
^.


f
CV

, , )
I
l»


















OJ
u
c
OJ
i-
OJ

OJ








l/l
IV ? U
i


c
0
OJ •—
>> O 4->
4J e  •—
C^ 1/1 u

OJ
O
O!
c.
in
4J
fl
OJ
t—

OOOOO O O o
co m co co co co co co

^-< »-l «— 1 ^* f^ ^H P-H ^H

* ••..< /* • •
i- 1- 1- I- 1- u 1- u
OJOJOJOlOJ Ol Ol OJ
•C TT T5 T) T3 TJ "O "O
 -O 4-> C
4JC7) 4^4J«O 4^ 4->C 3t 4^ OJ
Cl^J^ C« •— C C«>> E4J CC l^~ Cnr
.^^rjl -a--— •^OJ'— TJ"— "O »— e  T)?O -D "— — 13IOE O
n s- E -c i- o.4J i. E ^
^ ^5 *O O *O 1 Jtf *O *O •*" *O (O (O *O  X&-*^ o^
>nO L.OJ L.c/)C7l UOI L.OJ'O'^ L. *— ' C*O L.O)<^~ UO>I 4->V
OJ O O 4J ^"*- OOE O4-* O4-f>OJ ^~" O *O in ^^- O *•* 4J o ** m *^
i c«— • c i « E i o i *o c i 10 4j i •
>CXOJ4-> > O • > O— > O 4J > O OJ E > Q.4J OJ E >OZ > O 4-> >
M- 4J fO •»- -f- CNJ •»- •*- •*- H- (O •»- ^— ^«s E -^- (O4^ •^••^•^ '^•^-C'O •»-
a ai .S .^ (oiou-i -f-mm H-«O"- -^io^4j§ — oi — -^ § — «> o * ,
•—  L, U O (/>
o oj o o .c *










O)
o
"o i- j^J
o *d »/* 4*
c l/> JE OJ U
«§«0 30 01- i
_.;:— f— o >iO « E
t- t. U ^Ulro EI— •— 5-
01 O — — C if O O •— ±
c 1 i- afeo -wo oj 5-
§.I OJ b. — M OJ Q— 0 J~
e.cf OIS'^JSI Ol^^ ^
£ a. o CITS ^5 i- OJ c^ y.
IO>> t/1 Irt'^OO 4JO P"* "
l/> w| UJ  ^













-> c
: o
— 4J
a. 
L. -^
11 4-1
W O
>- "0
>o
2^
1 O
U <-l
u t
> in
§,
cO
-j • —






































^
^
>
j
j
^
21

-------



























_
=3
Z
0
ii


•E



c
O
Ol —
X O 4-1

•'— TO u
I— I. M-

3
X
LJ

1

O.
I/O
i/>
•2

o
CO
en
«— i

^
01
•O
5



L.
01
O 4-1
.f- <4_ C
4J  >
1 O •*•
1 4-*
01 Ol U
> c n
4-> t/1 *J
— we

o t. •—
CL u 0.









5





















vi
3

F— VI
•*— C
Ol 3
Q.-D
t/l •'-
< C

SO O O O O
CO CO 00 CO CO
CT^ C^ C^ CT* C^ Cf^

/
1." >• t." 1-* t."
D Ol Ol Ol O>
•O "G T3 "O -O -O
5 5 < « 5 S
C 13 i "S
o 01 •— E c -o
•a •— jj-oo-oo 01

oi4J— Ec«> E— »— we £ *J ie
> O1^ 3O1O u *O 4-***- -— *
ff «^ g t/i ^— •*— (/t flj ^^» IQ ^j -^ 1 3* C ^3 O^
IA*C oa.-*^ QEOI oi**--*-> i- •*- (oai.^
i^ a; O E u E i -* f«a 41 4J 4-> CE"^
utic ow-X^ uj= sino Ti "o.^- tD o O
i o "5 i 10 E i o lain i z ijco
i £ i i "O i £ i >f E i in
01 m oio>o aioirsj ai4-* ^^ a> a> o QJ **^
•-,—"""' i !?'? ^ S" — -2 >•₯ -^ ?"? •2i^^'
'!o5-o> "S'ScC •ti'ie-o' £ "" o '-o5cG ^.cJc1

Qj ^ tfl Qj L. ^H O t- t/1 O Z PO ftj X *M O OJ ^









Z 2 Z Si
'o o
01 01
~ ~
"o "o
c c
..

iO "0
i_ i-
0 0










•D
-0 o C

•— •— 1» — i— Q.
A Ol E 01 01
o u u u 01
t/\ Qj Wl
O O C UJ Q 3
i- S o => S o
O O CO LU (J E
22

-------
    Atrazine was found to have no effect on reproduction in rats when
administered in the diet but was embryotoxic  when administered  through
subcutaneous injection.   Atrazine administered in the diet from Day  1
of pregnancy throughout gestation had no effect on reproduction at
1000 mg/kg (Peters and Cook, 1973).   Atrazine administered through
subcutaneous injection on Days 3,  6,  and 9 of gestation had no  effect
on reproduction at 200 mg/kg, however,  higher concentrations  of 800  to
2000 mg/kg were embryotoxic.  Another study indicated that long-term
exposure to rats and mice revealed no teratogenic effects,  however,  no
information on experimental methodology was available (Patty,  1981).
Reproduction in sheep was not affected at  15  mg/kg/day,  however, a
higher concentration (30 mg/kg/day) caused 100%  mortality of  adults
during Days 36 and 60 of gestation.   One of the ewes  failed to  con-
ceive, three had experienced embryo death, and two carried normal
fetuses (Binns and Johnson,  1970).

    Atrazine caused mutagenic responses in certain plant and  animal
systems.  Atrazine alone or atrazine  following mammalian activation
was usually nonmutagenic.  Atrazine following plant activation,
however, had a strong mutagenic effect.  Plewa and Gentile (1976)
suggested that atrazine may be degraded by the plant into environ-
mental mutagenic agents, and a mutagenic metabolite in the environment
could adversely affect human health.   Additional concern exists
because atrazine as a plant activated promutagen is not only a
laboratory phenomenon but can occur in the environment at
concentration levels used  in modern agricultural practice  (Plewa et
al., 1984).  Atrazine following  plant activation caused a positive
effect on forward mutation  in Schizosac~  charomyces pombe  (6 mM),
Aspergillus nidulans, Streptomyces coelicolor (6 mm), and Chinese
hamster cells  V79  (3.0 mM); unscheduled DNA synthesis in human  cells
EUE line  (3.0 mm);  chromosome aberration in vivo in mouse bone-
marrow cell; gene conversion in Saccharomyces cerevisiae; reversion
(plants grown in soil with  35.3 mg/pot)  and pollen waxy locus assay
(in situ field plots, 3.84 kg/ha) in  Zea mays; and mitotic crossing
over in Aspergillus nidulans.

    Atrazine has caused mutagenicity in some  animal systems.  Induction
of dominant lethal mutations in mice spermatids occurred at high
concentrations (1500 ppm).   Atrazine  administered through  larval
feeding (0.01  percent)  to Drosophila  caused  a significant increase in
sex-linked recessive lethal  and a significant difference in chromosome
loss in comparison to the controls.   Mammalian activation caused a
positive effect on  forward  mutation  in E.  co^i.  (100 mg/kg).

    No original data on carcinogenic effects were obtained; however,
information obtained from Ciba-Geigy  Corp. stated that long-term
studies in rats and mice revealed no carcinogenic effects on  parents
or progeny.   Duration and dose were unspecified (Patty, 1981).   Walker
et al.  (1979)  found that 6 to 8 interperitoneal injections of atrazine
at 120 to 140 mg/kg/day inhibited development of Ehrlich ascites tumor
cells in mice.  Walker et al. (1979)  also  found that atrazine
inhibited de novo purine biosynthesis in vivo.


                                  23

-------
\
            Information obtained from epidemiological studies also  is limited.
        Applicability  of  these  studies  in determining effects of atrazine on
        human health is reduced because the people examined in these studies
        were exposed to several pesticides.   Long et al.  (1969),  however,
        found a significant correlation between the amount of atrazine used by
        the high-use group and the bilirubin  1-minute and 30-minute values.
        It was noted that only a small number of subjects were involved in
        this study.  Yoder et al.  (1973) noted a 4-fold increase in chromosome
        aberrations detected in lymphocyte cultures from blood samples of
        workers exposed to 2,4-D,  amitrole,  and atrazine during the peak usage
        season.

                       CRITERIA EVALUATION AND RECOMMENDATIONS

            No information was found on current water-quality criteria or
        standards.

                                   Aquatic Toxicity

            An Aquatic Life Criterion as defined by Stephan et al.  (1985)
        consists  of two concentrations:  the Criterion Maximum Concentration
        (CMC) and  the  Criterion Continuous Concentration  (CCC).  While
        toxicity  data  are not available for  eight genera, as required by the
        Guidelines, there were sufficient aquatic toxicity data to estimate an
        advisory  concentration.

            The CMC is equal  to one-half the  Final Acute Value (FAV).  The
        Final Acute Value using the following equations:

                       Final Acute Value = eA
        where:

                  A =  S(  0.05) + L
                  L =[ (In GMAV) - S(  ( p))]  /4)

                  S2 =  ((In GMAV)2) -  ((  (In GMAVM2/4)
                                   (P) -  (( (  P))2/4)

                  P =  Cumulative probability  as R/(N+1);
                  R =  Rank from "1" for the lowest to "N" for the highest GMAV.

        Genus Mean Acute Values  (GMAVs)  were selected from the reviewed liter-
        ature  (Table 1).  Values used in calculating the Final Acute Value are
        listed  in  Table 3.  Acute toxicity test results from Salvelinus fonti-
        nalis  (salmonid), Lepomis macrochirus  (a recreationally important
        species),  Pimephales promelas  (another family in  the phylum  Chordata),
        Daphnia magna  (planktonic  crustacean), Gammarus fasciatus  (benthic
        crustacean), and Chironomus tentans (insect)  were used to calculate
        the Final  Acute Value.   Laboratory tests and procedures were accept-
        able except for tests  with  C. tentans.  Guidelines for deriving water-
        quality criteria require that  acute toxicity tests with C. tentans be
        started with second or third instar larvae, whereas this test was
        started with first instar larvae.

                                         24

-------
        TABLE 3.   DATA USED FOR CALCULATION OF FINAL ACUTE VALUE

                         Acute LC50         GMAV
Species
                                                        Rank
 Daphnia magna
Gammarus faciatus
Chironomus tentans
Salvelinus fontinalis
Pimephales promelas
Lepomis macrochirus
                          6.9
                         5.7
                         0.72
                         6,
                         5,
  6.9
 5.7
 0.72
 6.3
15.0
>8.0
2
1
3
6
5
 0.57
0.29
0.14
0.43
0.86
0.71
Substituting values from Table 3 into the formulae gives an
estimated Final Acute Value for atrazine based on six aquatic
species of 0.34 ppm.

    The estimated maximum cocentration for atrazine was  calculated by
the equation:
     Estimated maximum concentration = Final Acute Value
                                                 2,
giving a value of 0.17 ppm.
    The Criterion Continuous Concentration (CCC)  is equal to the
lowest of the Final Chronic Value, the Final Plant Value, and the
Final Residue Value  (unless other data show that a lower value should
be used).

    Chronic toxicity test results from P. promelas  (fish),  D.  magna
(invertebrate) and C. tentans  (acutely sensitive freshwater animal
species)  were used to calculate the Final Chronic Value.  The Species
Mean Acute-Chronic Ratio was determined  for  each  species (Table 4).
Because the Species Mean Acute-Chronic Ratio increases as the Species
Mean Acute Value increases, the Final Acute-Chronic Ratio was calcu-
lated as the geometric mean of the acute-chronic ratio for the species
whose Species Mean Acute Values are close to the Final Acute Value.
Therefore,  the Final Acute-Chronic Ratio is equivalent to the geo-
metric mean of the Species Mean Acute-Chronic Ratio for C.  tentans
(1.24) which  is  closest to the Final Acute Value  (0.34).  The
Guidelines, however, suggest the use of an acute-chronic ratio of 2
when the ratio falls below this level because of possible
acclimation of the organism.  The  Final Chronic Value  was calculated
by the equation:

                                    Final Acute Value
           Final Chronic Value = Final Acute-Chronic Ratio
                                  25

-------
        TABLE 4.   DATA USED FOR CALCULATION OF  FINAL CHRONIC  VALUE

                           Acute LC50           SMCV          Acute-Chronic
   Species                  (ppm)             (ppm)               Ratio


Daphnia magna                6.9            0.6245             11.0488
Chironomus tentans           0.72            0.5831               1.2348
Pimephales promelas         15.0            1.0392             14.4342

Substituting appropriate values into this equation gave a Final
Chronic Value  of  0.17 ppm.

    A Final Plant Value was not derived because no  96-hour  test  with
an alga or acceptable chronic test  with an  aquatic vascular plant,  as
required by the EPA guidelines,  was found.  A Final Residue Value also
was not determined as no maximum permissible tissue  concentrations  or
bioconcentration/bioaccumulation factors were found.  Nevertheless,
it was noted that plant effects occur at concentrations lower than
0.17  ppm.   Specifically,  concentrations  as low as 0.001 mg/L  were
found to significantly inhibit algal growth (O'Kelly and Deason,
1976) .

    The Criterion Continuous Concentration (CCC)  is  equal to  the
lowest of the Final Chronic Value,  Final  Plant  Value, and Final
Residue Value.  While the Final Plant Value and Final Residue Value
were not derived, an advisory concentration was determined  to be
equivalent to the lowest effect level found in algae.   The  advisory
concentration for atrazine, therefore,  is 1 ug/L, based on  data  from
O'Kelly and  Deason (1976).

    Additional information on the toxicity of atrazine  to aquatic
organisms is still needed to  fulfill guideline  requirements completely
(Table 5).   Acute toxicity tests are needed for aquatic animals  from
two different families of  insects and from a phylum other than arthro-
pods or chordates.

    Test results used in calculating the Final  Chronic  Value  are
acceptable except  for acute toxicity tests with C.  tentans, where the
results are questionable  due to the use of first instar larvae instead
of second and third as required by the guidelines.   However,  it  is
likely that  acute  and chronic toxicity tests are needed for C. tentans
or another acutely sensitive freshwater animal species.

    A 96-hour test conducted with an alga or a chronic test conducted
with an aquatic vascular  plant  in which the concentration of  the test
material was measured and the endpoint was  biologically important is
needed (Stephan et al.,  1985).   Several  studies which determined the
effect of atrazine on growth and photosynthesis of  algae were found,
however, no studies were based on a 96-hour exposure period.   A
chronic study determining the effect of  atrazine on  growth  of aquatic
vascular plants was unacceptable because concentrations of  atrazine
used in the experiment were not measured.   Toxicity  tests with aquatic

                                  26

-------
plant species from two different phyla are recommended  as two tests
are required by the EPA guidelines if plants are among  the most sensi-
tive aquatic organisms.  Current studies show that aquatic plants are
extremely sensitive to atrazine and indicate that at least two
toxicity tests with aquatic plants are needed.

    A study on bioaccumulation with a freshwater species also is
needed.   Some bioaccumulation  data were available but not acceptable
because actual tissue concentrations were  not mentioned and tests were
not performed using a North American species.

                            Health Effects

    Limited data on health effects were available but were insuffi-
cient to calculate a water-quality criterion (Table 6).  Atrazine
generally had a low mammalian toxicity.  Most information on animal
toxicity was based on LD50 values and NOELs obtained from review
articles.  Little or no information was given on experimental condi-
tions and methodology.   NOELs  reported in the available literature are
considered inadequate to calculate a water quality  criterion.  No-
observed-adversed-effeet levels  (NOAEL), and lowest-observed-adverse-
effect levels  (LOAEL) from studies that meet EPA guidelines are
needed.   Nevertheless, the lowest NOEL for oral  ingestion of atrazine
found in this search of the literature was 25 ppm.  This value was
noted in a number of  studies involving different species,  and will be
used to derive an  advisory concentration  of:  0.025 ppm (25 ppm  x  0.001
where 0.001  represents  an application factor  for adjustment of the value
from test animal data to human use)  to protect against human health
effects until better data becomes available.  Toxicity  studies with
atrazine indicate that the compound is not carcinogenic or teratogenic
and therefore further studies  are not recommended.  Information on the
mutagenicity of atrazine is more abundant,  but additional testing may
be needed.   Atrazine  alone or  atrazine following mammalian activation
was usually nonmutagenic, however,  atrazine following plant activation
had a strong mutagenic effect.
                                  27

-------
     TABLE 5.  DATA REQUIREMENTS FOR CALCULATION OF AQUATIC LIFE
               INTERIM CRITERIA—ATRAZINE
  Data Requirements
  Aquatic Toxicity
Available Data
Acceptability of
  Available Data
Acute Test Results from tests on:
  A salmonid (class Osteichthyes)      YES
  A warm water species commercially    YES
    or recreationally important
    (class Osteichthyes)
  Another family in the phylum         YES
    Chordata (fish, amphibian, etc.)
  A planktonic crustacean              YES
    (cladoceran, copepod, etc.)
  Benthic crustacean  (ostracod,        YES
    isopod, scud, crayfish, etc.)
  Insect  (mayfly, dragonfly,           YES
    damselfly, stonefly, mosquito, etc.)
  Phylum other than Arthropoda/         NO
    Chordata (Rotifera, Annelida,
    Mollusca)
  Another family of insect              NO

Acute-chronic ratios with species from
three different families:
  One fish                             YES
  One invertebrate                     YES
  Acutely sensitive freshwater         YES
    animal species

Acceptable test results from a test with:
  Freshwater algae                     YES
                        YES
                        YES
                        YES

                        YES

                        YES

                   QUESTIONABLE
               (first instar larvae)
  A vascular plant
Bioaccumulation factor with a
freshwater species  (if a maximum
permissible tissue concentration
is available)
     YES
     YES
                        YES
                        YES
                         NO
        NO
(no 96-hour test)
        NO
 (no measurement
   of atrazine
 concentrations)

        NO
(no actual tissue
  concentration
 no North American
      species)
                                  28

-------
        TABLE 6.  DATA REQUIREMENTS FOR CALCULATION OF HEALTH
                  INTERIM CRITERIA—ATRAZINE


   Data Requirements                                 Acceptability of
 Human Health Effects              Available Data     Available Data


Nonthreshold:
  Carcinogen                              NO                	
  Tumor incidence tests (Incidence of     NA                	
    tumor formation significantly more
    than the control for at least one
    dose level), or
  Data set that gives the highest         NA                	
    estimate of carcinogenetic risk, or
  Lifetime average exposure tests, or     NA                	
  Human epidemiology studies              NA                	
    (if available, not required)

Threshold:
  Noncarcinogens                          YES               NO
  No observed adverse effect level        NO                	
    (at least 90-day), or
  Lowest observed effect level            NO                	
  Lowest observed adverse effect level    NO                	

Acceptable Daily Intake:
  Daily water consumption                 YES               YES
                                                       (EPA approved)
  Daily fish consumption                  YES               YES
                                                       (EPA approved)
  Bioconcentration factor                 NO                	
  Nonfish dietary intake                  YES               YES
                                                       (EPA approved)
  Daily intake  by inhalation              NO                	

Threshold Limit Value:
  (Based on 8-hour time-weighted          YES               YES
    average concentrations in air)

Inhalation Studies:
  Available pharmacokinetic data          NO                	
  Measurements  of absorption efficiency   NO                	
  Comparative excretion data              NO                	


NA = Not applicable.
                                  29

-------
                              REFERENCES
Alder, I.D.   1980.   A review of the coordinated research effort on  the
on of test systems for the detection of mutagenic  effects,  sponsored
by the E.E.C.   Mutat. Res 74:   77-93.

Bashmurin, A.  F.  1974.   Toxicity of atrazine for animals.   Sb. Rab.
Leningr.  Vet.  Inst.  36:5-7.  Abstract:   77-0886 Health Aspects  of
Pesticides, Vol.  10, No.  1, Jan. 1977.

Binns, W., and A.  E.  Johnson.   1970.  Chronic  and  teratogenic effects
of 2,4-D(2,4-dichlorophenoxyacetic acid)  and  atrazine  (2-chloro-4-
ethylamino-6-isopropylamino-s-triazine) to sheep.   Proc.  N.  Cent. Weed
Contr. Conf.  25:100.

Birge, W. J.,  J. A.  Black, A.  G. Westerman, and B. A. Ramey.  1983.
Fish and amphibian embryos - a model system for evaluating  teratogeni-
city.  Fund.  Appl.  Toxicol. 3:  237-242.

Cunningham, J.  J., W. M.  Kemp, M.  R.  Lewis, and U.  C. Stevenson.
1984.  Temporal responses of the macrophyte,  Potamogeton perfoliatus
L. ,  and its associated autotrophic community  to atrazine exposure  in
estuarine microcosms.  Estuaries  7 (4B) : 519-530.

Davies, R. P., and A.  J. Dobbs.  1984.  The prediction of biocon-
centration in  fish.   Water  Res. 18(10):  1253-1262.

DeBertoldi, M., R. Barale, and M.  Giovannetti.  1978.  Mutagenicity of
pesticides evaluated  by means of gene conversion in S_. cerevisiae  and
h- IL-k^-Hl^ns.  Mutat.  Res. 53(2):  174-175.
deNoyelles, F.,  W. D. Kettle, and D. E. Sinn.  1982.  The responses of
plankton communities in experimental ponds to atrazine,  the most
heavily used pesticide in the United States.  Ecology 63(5):   1285-
1293.
Edwards, C. A.  1975.   Persistent pesticides  in the environment.
Ed.,  CRC Press,  Cleveland, 177 p.
2nd
Forney, D. R., and D. E. Davis.   1981.  Effects of low concentrations
of herbicides on submerged  aquatic plants.  Weed Sci.   29(6):677-685.

Foster, T. S., and S. V. Khan.  1976.   Metabolism of atrazine  by the
chicken.  J. Agric.  Food Chem. 24(3):  566-570.

Frear, D.E.H., and J. E. Boyd.  1967.   Use of Daphnj.a magna  for the
microbioassay of pesticides.  I.  Development of standardized techni-
ques for rearing Daphnia and preparation of  dosage-mortality curves
for pesticides.   J.  Econ.   Entom. 60(5):  1228-1236.
                                  30

-------
Geyer,  H.,  G.  Politzki,  and D.  Freitag.   1984.   Prediction of ecotoxi-
cological behavior of chemicals:  relationship between n-octanol/water
partition coefficient and bioaccumulation of organic chemicals by alga
Chiorella.  Chemosphere  13(2): 269-284.

Gunkel, G.  1981.  Bioaccumulation of a herbicide (atrazine,  s-tri-
azine)  in the whitefish  (Coregonus fera  J.)..   Uptake and distribution
of the residue  in  fish.   Arch.  Hydrobiol. Suppl.  59(2/3):  252-287.

Gunkel, G.,  and B.  Streit.  1980.  Mechanisms of bioaccumulation of a
herbicide (atrazine,  s-triazine) in a  freshwater mollusc (Ancylus
f luviatilis Mull.)  and a fish  (Coregonus  fera Jurine).  Water Res. 14:
1573-1584.

Gzhetotskii,  M.  I., L. V. Shkliaruk, and  L.  A. Dychok.   1977.  Toxico-
logical characteristics  of the  herbicide  zeazin.  Vrach. Delo 5:  133-
136.   Abstract:   77-2826  Health Aspects of Pesticides Vol. 10, No. 1,
Jan.  1977.

Heisig-Gunkel, G.,  and G. Gunkel.   1982.   Distribution of a herbicide
(atrazine,  s-triazine)  in Daphnia magna;   A new approach to determina-
tion.   Arch.  Hydrobiol.   Suppl.  59(4):   359-376.

Hiltibran, R.  C.  1967.   Effects of  some  herbicides  on fertilized fish
eggs and fry.   Trans. Am. Fish Soc.  96:   414-416.

Jones, T. W.,  W. M.  Kemp, J. C.  Stevenson, and J. C. Means.  1982.
Degradation of atrazine  in estuarine water/sediment systems and soils.
J.  Environ. Qual., 11(4):  632-638.

Jones,  T.  W.,  and L.  Winchell.   1984.   Uptake and photosynthetic
inhibition by atrazine and its degradation products  on four species of
submerged vascular  plants.  J.  Environ.  Qual.   13(2):243-247.

Kettle, W. D.   1983.  Description and  analysis of toxicant-induced
responses of aquatic communities in replicated experimental ponds.
Dissertation Abstracts International,  B.   43(8)2437.   (Abstract).

Kosinksi,  R.  J.   1984.   The effect of  terrestrial herbicides on the
community structure of stream periphyton.  Environ.  Poll.  A.
36(2) :165-189.   (Abstract).

Long,  K. R.,  V.  B.  Beat,  A.  K.  Gombart, R. F.  Sheets, H. E. Hamilton,
F.  Falaballa, D. P. Bonderman,  and U. Y.  Choi.  1969.  The
epidemiology  of  pesticides  in  a rural area.  Amer.  Ind. Hyg.  Ass. J.
30(3):   298-304.

Loprieno, N.,  R. Barale,  L. Mariani, S. Presciuttini, A. M. Rossi, I.
Sbrana, and L. Zaccaro.   1980.   Results of mutagenicity tests on the
herbicide atrazine.  Mutat. Res.  74(3):   250.
                                  31

-------
Lorz, H. W.,  S. W. Glenn,  R. H. Williams,  C.  M. Kunkel, L.  A. Norris,
and R.  R.  Loper.   1979.   Effects  of  selected  herbicides on  smelting of
Coho salmon.   U.S.  Environmental  Protection Agency,  Office  of Research
and Development, Environmental Research Laboratory,  Corvallis, Oregon.
103 p.

Macek,  K. J., K. S.  Buxton, S.  Sauter, S.  Gnilka, and J. W. Dean.
1976.   Chronic toxicity of atrazine  to selected aquatic invertebrates
and fishes.   U.S.  Environmental Protection Agency Office of Research
and Development, Environmental Research Laboratory, Duluth, MN.  49 p.

McEwen, F. L., and G. R. Stephenson.  1979.  The use and significance
of pesticides  in the environment.   John Wiley  &  Sons,  N.Y., 538 p.

Murnik, M. R., and C. L. Nash.   1977.  Mutagenicity of the triazine
herbicides atrazine, cyanide,  and simazine in Drosophila melanogaster.
J.  Toxicol.   Environ.  Health 3:  691-697.

Nezefi, T. A.   1971.  Morphological  alterations in the organs of white
rats during chronic treatment with  atrazine.   Adravookhr. Turkm.
15(3):   9-12.   Abstract:   72-1309 Health Aspects  of  Pesticides  Vol. 5,
No. 1,  Jan.  1972.

O'Kelly, U.  C.,  and T. R. Deason.   1976. Degradation of pesticides by
algae.   U.S.  Environmental Protection Agency.   Office of Research and
Development.   EPA 600/3-76-022.  42 p.

Patty,  1981-1982.    Industrial hygiene and toxicology, 3rd Ed.,  Vol.
2A, 2B, 2C.

Peters, J. W., and R. M. Cook.   1973.  Effects of  atrazine on reprodu-
ction in rats.  Bull.  Environ. Contam. Tox.  9(5):  301-304.

Pimentel,  D.   1971.  Ecological effects of pesticides on non-target
organisms.   U.S.  Government Printing Office,  Washington, D.C.   220  p.

Plewa,   M. J.,  and J. M. Gentile.   1976.  Mutagenicity of atrazine:   a
maizemicrobe  bioassay.   Mutat* Res. 38:  287-292.

Plewa,  M. J., E. D.  Wagner, G.  J. Gentile,  and J. M. Gentile.  1984.
An evaluation of the genotoxic properties  of  herbicides following
plant and animal  activation.   Mutat.  Res.  136:   233-245.

Schrober,  U.,  and W. Lampert.   1977.   Effects of  sublethal  concentra-
tions of the herbicide Atrazin. on growth  and reproduction  of Daphnia
pj^lex.   Bull.   Environ.  Contam.  Toxicol.   17(3) :269-277.

Stephan, C. E., D. I.  Mount, D. J.  Hansen, J. H.  Gentile, G. A.
Chapman, and  W. A.  Brungs.   1985.  Guidelines for deriving  numerical
national water-quality criteria  for the protection of aquatic orga-
nisms and their uses.   U.S.  Environmental  Protection Agency,  Office
of Research  and Development, Environmental Research Laboratories,
Duluth, MN.

                                  32

-------
                                                                   -• I
U.S. Environmental Protection Agency
Region 5, Library (PL-12J)
77 West Jackson Boulevard, 12th Floor
Chicago,  IL  60604-3590

-------
Stratton,  G.  W.   1981.   The effects of selected pesticides and their
degradation products on microorganisms and Daphnia magna.   Disserta-
tion Abstracts International,  B.   42(3) :921-922.

Stratton,  G.  W.   1984.   Effects  of  the herbicide atrazine  and its
degradation products,  alone and in combination, on phototropic micro-
organisms.   Arch. Environ. Contam.  Toxicol. 13:  35-42.

Streit, B.   1979.  Uptake,  accumulation,  and release of organic pesti-
cides by benthic invertebrates.  Arch.  Hydrobiol./Suppl.  55(3/4):
373-400.

Streit, B.,  and H.  M.  Peters.   1978.   Long-term effects of atrazine to
selected freshwater invertebrates.  Arch. Hydrobiol. /Suppl.  55(1):
62-77.

U.S.  Fish and Wildlife Service.   1981.  Fisheries and Wildlife
Research 1980.   201 p.

Veber,  K.,  J. Zahradnik, I. Breyl,  and F. Kredl.  1981.  Toxic effect
and accumulation of atrazine in algae.  Bull.  Environ. Contam.
Toxicol. 27:  872-876.

Walker, C.  R.  1964.  Simazine and other s-triazines as aquatic herbi-
cides  in fish habitats.   Weeds  12:134-139.

Walker, E. M., Jr., G. R. Gale, L.  M.  Atkins, and R. H. Gadsden.
1979.  Some effects of atrazine on Ehrlich ascites tumor cells in
vitro  and  in vivo.   Bull. Environ. Contam.  Tox.   22:95-102.

WSSA.   1979.   Herbicide handbook of the Weed Science Society of
America.  4th Ed.,  Humphrey Press  Inc., Geneva, N.Y.  293 p.

Yoder,  J.,  M. Watson,  and W. W.  Benson.  1973.   Lymphocyte chromosome
analysis of agricultural workers during extensive occupational
exposure to  pesticides.  Mutat. Res.  21:  335-340.
                                  33

-------