USEFUL INFORMATION
FOR
STREAM POLLUTION SURVEYS AND EVALUATIONS
Compiled
*>y
A. W. West
Public Health Engineer
U. S. Department of Health, Education, and Welfare
Federal Water Pollution Control Administration
Robert A. Taft Sanitary Engineering Center
CINCINNATI, OHIO
JANUARY 1966
-------
ENVIRONMENTAL PROTECTION AGENCK
-------
USEFUL INFORMATION
FOR
STREAM SURVEYS & EVALUATIONS
CONVERSION FACTORS
1 cfs = W4-9 gpm = 0.6*4-6 mgd
1 ragd = 695 gpm = 1.5*4-7 cfs
1 cfs for 2k hours = 1.98 acre feet
1 ft/sec approximates 2/3 mph (0.682)
1 mph approximates 1-1/2 ft/ sec (1.^7)
CONVERSION TO MASS OR TOTAL NUMBERS
Q in cfs x concentration in ppm x 5-^ = Its/day
Q in mgd x concentration in ppm -0.12 = Ibs/day
Q in cfs x MPN/100 ml x 2k. 6 x 10 = No. of coli./day
Q in mgd x MPN/100 ml x 37.8 x 10 = No. of coli./day
POPULATION EQUIVALENTS
1.0 BODt- Population Equivalent = 1/6 Ibs BOD /day
1.0 Susp. Solids " " = 1/5 Ibs S.S./day
1.0 Bacterial " " = 1*00 billion coliforms/day
Total Phosphorus = 3 Ibs/ cap/year
Total Nitrogen (Organic & Inorgan.)
= 9 Ibs/cap/year
ESTIMATED PERCENT BODr REMOVALS BY SEWAGE TREATMENT
s
Primary Sedimentation
High Rate Trickling Filters
Standard Rate Trickling Filters
High Rate Activated Sludge
Standard Rate Activated Sludge
Probable
Range
30 -UO
60-90
80-90
65-85
85-95+
Use for
Estimating
33$
80$
85$
75$
90$
-------
TOTAL COLIFORM BACTERIA
Human feces may contain 2 billion coliform B. /capita
SUMMER - (Water temperatures 15° C. or above)
Raw sevage - 57 to Ilk billion coli./cap.
Raw sewage - 15-30 million MPN/100 ml
Raw sewage - Use 21,000,000 MPN/100 ml for calcs.
Coliform bacteria multiply about 5 times in about
12 - hours, from sewer to peak.
BPE at peak = kOQ billion coliform bacteria/day.
> BPE = Q in cf s x MPN/100 ml x 6l x 10 (at peak)
MPN/100 ml - BP* l (at peak)
WINTER - (Water temperature = 15° C. or below)
Raw sewage - 19 to 38 billion coli./cap
Raw sewage - 5 to 10 million MPN/100 ml
BPE at peak =125 billion coliforra bacteria/day
BPE = 0, in cf s x MPN/100 ml x igk x 10 (at peak)
MPN/100 ml = (at peak)
PROBABLE COLIFORM DIE -OFF (After reaching peak)
Approximate % of coliform remaining after flow time
(from die -off curve with 2,000,000 MPN/100 ml at peak)
1/2 day = )+0$ 5 days = 0.5$
1 day = 17$ 6 days = 0.27$
2 days =5$ 7 days = 0.15$
3 days =2$ 8 days = 0.(
1* days = 1$
-------
ESTIMATED BACTERIAL REMOVAL EFFICIENCIES
(imhoff & Fair pg. 6 used as a guide)
% Reduction % Remaining
Provable range Use this value
according to for calculating
Imhoff & Fair estimated bacterial
loads
A. NOMINAL FACILITIES & CONTROL.
Plain Sedimentation 25-75 50$
Secondary Treatment (unspeci-
fied type) - 10$
Hi Rate Trickling Filter 80-95 12-1/2$
Hi Rate Activated Sludge 80-95 12-1/2$
Lo Rate Trickling Filter 90-95 7-1/2$
Standard Rate Activated
Sludge 90-98 6$
Oxidation Ponds - 3$
Chlorinated rav sewage 90-95 10$
Chlorinated settled sewage 90-95 5$
Chlorinated biologically
treated sewage 98-99 1$
B. WHERE EXCEPTIONALLY EFFECTIVE CHLORINATION CONTROL HAS BEEN
DEMONSTRATED.
Prechlorination of settled sewage - 0.5$
Two-stage (pre- and post-) chlorina-
tion of settled sewage - 0.01$
Post-chlorination of biologically
treated sewage - 0.01$
-------
I111 ' I ' ' ' fmrq-T-i r
00
I I
I.M. I
00
, >
CO
«c
00
oo
00
C_S tJ
00 «/>
5 «^
IT}
CD
3I11VA
JO 1N33 H3d VIH313V8 NUOJI103
-------
2%
PERCENTAGE
40 (SO) 60
98"
0)
in
CO
Hi
J
< °
0 u
II II I II
3.0 3.5
I I I I I
4.0
I I I I I I I
4.5 5.0
PROBITS
I I
5.5
I T
7.0
-------
GOLIFORM PROBABILITY PLOT EXAMPLE
Observed
Coliform
Density
MPN/100 ml
50,000
78,000
110,000
130,000
220,000
230,000
330,000
350,000
700,000
820,000
820,000
1,600,000
> 1,600,000
"Exact"
Plotting
Position
N = 13
U.8
12.2
19.8
27-3
3^-9
U2.5
50.0
57-5
65.1
72.7
80.2
87.8
95-2
NOTE: 5la,000 = Arithmetic Mean
330,000 = Probability Mean (See Example Plot)
-------
-------
o
^
^
ro
CN
CN
CM
CM
in
CM
CM
CM
CM
ftj
§
a, CM
R -
t-3 CN
M
3
O r-l
OS
O.
is-
rH r-H
S "
M
M i-H
W
o
GH
g -
E o
3 "
CL,
, 1
rH
r-H
st
CO
1N
-rt
U 0
o »
O CN st m rs.
CN m no rH st
i-H ro Ps. ON CM
CM m co ^H in
r-H i-H
I-H in ON CO ON
CN m co CM in
CM Ps. (N PS. st
CN m ON CM so
r-H rH
co ON in ro ON
CM m ON m vO
T 1 I-H
«t CM ON CO so
CM sO ON CO Ps.
rH rH
st -t -d- CM rH
CM sD O -t CO
rH r-l -H
\O PS. ps. ON ON
CM sO O sd- 00
rH r-H rH
P-s CO ("0 sO 00
CM sO rH in ON
rH r-H i-t
CO CN Ps. sd" SO
CN Ps. rH vO O
rH rH CM
ON P-S fO i-H 00
CM PS. CM fs. 1
rH rH CM
rH O ON ON 00
m co CM PS. CN
rH rH CM
ro si- 0 CO O
ro co ro co st
rH rH CM
st ON rO CO co
ro CO st ON in
rH i-H CM
sO st CM O CO
rO ON m rH sD
rH CN CN
ON ON rH CO st
CO ON sO CN 00
rH CM t *t
CM PS- CM
in m so
CM st sO
m o m
m so so
CN rs. CM
co to ON
m so so
sO st CM
rH PS. CO
so so rs.
st r-
in m
st CO
vO O
m so
PS. ON
CO CM
m so
st 0>
rH in
\o \o
rH CO
st CO
sO sO
CO CN
rs. CM
^O Ps.
CO O
O sO
PS. PS.
rs. CM
st 0
PS. CO
O 00
ON st
rs. oo
ON rH
CO O
CO ON
st ON
ON m
CO ON
sO
m
ON
st in
O CM st
C CO vD
j 1 - i i/,
s£ 00 ro
rH st CO
m m m
vO PS. CO
ro so o
m m VD
CN P*. vD
m co CM
in m \D
in o co
P- rH sf
in so so
m co o
ON ro PS.
m so vo
co ON co
rH in ON
sO sO \O
st -st SO
st CO CM
vO sO ps.
CN. in 00 t 1 L-, CO rH ..s,~ *- Dj CO CA UN G\
i**OONCNrO COrHrors-ON
COrHstCOrH stCOrHxtrs.
vOps.r-.rs.cO COCOON<7NON
mONCOCOrH fs.rHinCJN
OrOPs.O
ps.ps.rs.coco COONONON
C7>rs.cMsOrO cOroco
cNsOOrnps, OstPs.
rs.rs.cococo ONONON
CO st iH PS. in rH PS.
m CT\ ro so O >t P^-
rs p^ CO C0 ON ON ON
in st CM rH CO sO
CO CM sO O rO PS.
ps. CO CO ON ON ON
ON CO so SO vO
I-H m ON co r-.
00 00 CO ON ON
rH CO CO st
m ON ro PS.
CO CO ON ON
rs, CM co
co ro PS.
oo ON ON
CO CM
CN P*-
ON ON
rH
PS.
ON
rHCMCOstm sOps-OOONO *-H
fNCNCNCNCN)
U) -r(
> U U
>H 3
->M rH
j: a a
0 >
a c tn
a -ri c
O C *H
1J -r<
r-l H, U
cd co
O " -H
A C U
0 « "
« e «
i*
a > o
S-5* -
r-l U
O -H W
CO -rl -
JO ^
O J3 -H
h U
0) (Xi M
0 X
r-» r^
3 g'g
H G 0
-s
O *H
^H O »
*J C
« W O
rV V 0)
.. 4J rH U
« rtf ^Q C«
o W H fe
C
«
14 /-* ^V y^
-------
rH-
«
e
«H
o o
b 55
o
ON
xt
CO
Px,
NO
u-i
<*
CO
CM
1 rH
xt
k
i 5
OS
CO
CO
r*.
sO
CO
in
CO
t co
co in PS o>
co st m in
co m PS. ON
st in NO PS
m in r^ ON
O
rHst
rH CM -
CM st
rH rH
ro PS,
cMst
r-* ON
CM -J-
rH rH
ONst
CM LO
CO NO
CO in
rH T-H
NO rH
CO vO
i-H rH
0-3
st vO
CM r^
st vO
^ rH
r- st
st p."
I-H r-4
CM O>
in PS.
st rH
m co
ON rs.
in co
-4- CM
NO ON
rH rH
ON CO
^ v.
st vO
rs. O
rH CM
NO Ps,
(U
N
lH
W
V
rH
CO
a
s
CO ON O
rH
M rH CM
n ps CTN
H rH f<
st t
-H st ps
^ ,_| r~t
si in co
N CM CM
O CO CO
, - .
O CO 00
-O vO ON
N CM CM
30 ON O
i
3 -H
C
r- 1
a
o
t»
o
x^
m
o
rH
QJ *-*
N 0
H O
OT rH
01 rH l|
rH U-I
a co
1
w o
rH CM m stf IT
CM O rH rH i i
I-H co in PN. &
CM CM CM CM CS
in NO m oo co
I-H co in r-. cy
CM CM CM CM CM
rH CM f-H rH CM
CM
CM >,,t NO CO O
O rH ^ m vo
ro m r*. ON I-H
CM CM CM CM CO
vO CO CO CM CO
ro m p- O CM
ON rH O
ro O CO O rr
CM CM CM CO CO
m co I-H NO r--
^ \O ON i i co
-H -4- co m m
in r*. ON CM <1
CM CM CM CO CO
co rH m o vo
in co o ro m
CM CM ro ro n
^ co CM P-. r^
\D CO rH CO O
CM CM CO ro r*1
rH in CO CO rH
p*. ON CM J- PS. O
CM en cn -H
ON »H PS.. p-» O1
O -cf N-0 ON CM
co cn co cn -j
ON CO CO C* 0
. ^ c ,
O ON O rH CM
CO in O\ CM u"i
C.
d-
ON \O
O CO
O
in rs. o CM >*
s^ CO CM vO ^
vO CO rH CO UO
s-f ^j- m in m
vO O -* CO fs.
Ps. O CM s^- \o
CO CM NO O CO
co rH ro vO co
-d- in m m m
o ON rH
f-s. r- * fs. rs. CO
NO m m co »-H
CM in 00 rH st
ON NO 00 vO PS
st PS o cn \o
t^ ps CO CO CO
O CM rH CM rH
PS ^ r^ vO (7N
st vO CO ON ON
ON CM m CO rH
Ps CO CO CO ON
\O ps CO ON O
rH CM m st m
cn ro m ro co
O ON CO O CO
rH CM vt Ps CO
CM rH rO st CM
CM st \O CO O
vO vO vO vO PS-
cn m PS oo ON
co in ps, ON rH
vO vO \O sO PS
CO O rH CM CM
st PS. ON rH CO
m st m so ON
NO CO O CM st
rs. co CM CM st
r-H ON CM st vo
rH vO ON rH CM
ON rH ro vO CO
NO i ps, ps rs.
C?N CM m \o o
o ro m PS o
vO ON ro Ps ON
CM st Ps. ON ,-H
ps. rs PS. r^. co
CM r** rH \o ON
st vO ON rH ro
PS I ps CO CO
rH in «-H vO O
VO 00 rH CO VO
ps ps cO CO CO
ON m rH CO CO
PS o co in co
Ps CO CO CO CO
CM vO in ON \O
o CM in P-. o
CO CO CO co ON
rH CO PS m rH
CM st ps. o co
NO ro o co m
st rs O CM m
vO
ON CO vO -t CM
vO ON CM in CO
P-
st st st rH
ON CM m co
CO ON CJN CTN
CM
CM CM rH
->i "-V m
^g
m co
ON ON
rH CM m st m
vD PS. co ON O
ro co co ro st
ON ON ON O CO
O CM st psCO
Ps, Ps. ps psps.
CM in -f mu-i
CM Nt vO COO .
ps rs. ps. PS.CO
ON CO ON OrH
co m PS. IDCM
PS ps rs. coco
m vo PS. ONON
m PS ON r-ttn
o rH cn voco
P-* ON rH COin
CO rH rH COPs
co rH en mrs.
in ON rH co\o
o CM in psON
CO CO CO COCO
st vO rH
\O Ps CO ON
-------
BIOCHEMICAL OXYGEN DEMAND(BOD)
FUNDAMENTAL REACTION
The fraction of the total, or ultimate, carbon-
aceous
BOD satisfied in the 5-day BOD test (BOD )
depends upon the rate (k) at which the oxy-
gen is depleted. The following formula is
the basis of most BOD (carbonaceous) calcu-
lations:
BOD at "t" in days » ultimate BOD x | 1 - 10
NOTE; BOD. = amount satisfied
NOTE; 10 1 = percent remaining
k = 0.10 - rate associated with river water
k. = 0.15 - rate presently associated with sewages
k. = 0.20 - rate for some industrial wastes
k. > 0.20 - rate for rapidly oxidized wastes like
sugars, etc.
REIATIONSHIP BETWEEN 5-DAY BOD TEST TO ULTIMATE BOD
BOD5 » O.Mi- x ultimate BOD at k = 0.05
BOD5 - 0.684 x ultimate BOD at ^ = 0.10
BOD = 0.82 x ultimate BOD at ^ = 0.15
BOD5 = 0.90 x ultimate BOD at k = 0.20
3
-------
-------
BIOCHEMICAL OXYGEN DEMAND(BOp)
(contd)
EXAMPLE - of BOD satisfaction after varying periods of time at
k = 0.15 from the equation
BODt = BODult |l - lO"1*!1 [(carbonaceous)
BOD satisfied in 1/2 day = 0.19 x BOD = O.l6 x BOD
^ U.X o
BOD " in 1 day = 0.37 x " = 0.30 x "
BOD " in 2 days = 0.68 x " = 0.50 x "
BOD " in 3 days = 0.?8 x " = 0.65 x "
BOD " in k days = 0.91 x " 0.75 x "
BOD " in 5 days = 1.00 x " 0.82 x "
NITROGENOUS BOD;
Nitrogenous materials, such as ammonia, are also oxidized
to the stable nitrate form. Some part of this reaction
may occur simultaneously with the carbonaceous BOD reaction;
but the major effect is exerted after the ultimate carbona-
ceous BOD reaction is completed. This additional nitrogen-
ous BOD may equal the amount of the ultimate carbonaceous BOD.
This concept is useful when considering BOD's some 10-30 days
downstream, or in reservoirs. The nitrogenous reaction rate
(k) may approximate 1/3 of the carbonaceous reaction rate (k..).
EFFECT OF TEMPERATURE ON REACTION RATES
Laboratory measurement of k^ rates are determined at 20° C. In
streams, the actual rate increases approximately k.jfy for every
1.0°C. temperature increase (and decreases an equivalent per-
centage for lower temperatures) according to the following
equation:
(20°C.) x
-------
0.40
OBSERVED RATIO OF 5 TO 2 DAY BODs (y_ / y, )
-------
RIVER DISCHARGE AND TIME OF TRAVEL
RIVER VELOCITY CHARACTERISTICS
Velocity at 0.6 depth from surface approximates
the MEAN velocity throughout the entire depth.
The average of velocities measured at the 0.2
and the 0.8 depth provides a slightly more pre-
cise measurement of MEAN velocity.
The MEAN vertical velocity varies from 80 to 95
percent (use 85$) of the surface velocity.
The maximum velocity occurs at 5 to 25 percent
of depth; is nearer the surface in shallow streams,
and farther from the surface in deep streams.
-------
8
TIME-OF-TRIWEL STUDIES
Time-of-travel in rivers (also threading, mixing and
diffusion characteristics) can be measured by intro-
ducing Rhodamine B dye into the river and tracing it
downstream with a fluorometer.
The fluorometer can measure Rhodamine concentrations
as low as 1.0 part per billion (ppb). Concentrations
in excess of 3.0 parts per million (ppm) may foul the
meter cell.
Therefore, adjust Rhodamine B dosage to obtain from
1.0 ppm to 10.0 ppb along the river reach to be measured.
The amount of dye to be discharged can be estimated by
calculating the amount necessary to provide a theoretical
1.0 ppb average concentration throughout the entire mass
of river water contained in the overall reach to be studied.
NOTE: Commercial solutions contain about kyfr dye in acetic
acid solutions.
Time-of-travel is determined by measuring the time required
for the peak dye concentrations to reach the successive
downstream sampling stations.
-------
SATURATION VALUES OF DISSOLVED OXYGEN IN ppm
(Under NORMAL .atmosphere at 760 mm.pressure)
Tegp
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2k
25
26
27
28
29
30
31
32
33
34
35
.-« /*"
36
37
38
39
40
4l
42
^3
44
^5
46
47
48
49
50
0.0
14.62
14.23
13.84
13 A8
13-13
12.80
12.48
12.17
11.87
11.59
11-33
11.08
10.83
10.60
10.37
10.15
9-95
9.7^
9-5^
9.35
9-17
8.99
8.83
8.68
8.53
8.38
8.22
8.07
7.92
7.77
7.63
7.5
7A
7-3
7.2
7-1
7.0
6.9
6.8
6.7
6.6
6.5
6.4
6.3
6.2
6.1
6.0
5-9
5.8
5-7
5.6
0.1
14.58
14.19
13.80
13. ^
13.10
12.77
12.45
12.14
11.84
11.56
11.31
11.06
10.81
10.58
10.35
10.13
9.93
9-72
9.52
9.33
9.15
8.98
8.81
8.66
8.51
8.36
8.20
8.05
7.90
7-75
7.61
0.2
14.54
14.15
13-77
13-^1
13.06
12.74
12.42
12.11
11.81
11.54
11.28
11.03
10.78
10.55
10.33
10.11
9-91
9-70
9-50
9.31
9-13
8.96
8.80
8.65
8.50
8.35
8.19
8.04
7.89
7.74
7.60
0.3
14.50
l4.il
13.73
13.38
13.03
12.70
12.39
12.08
11.79
11.51
11.25
11.00
10.76
10.53
10.30
10.09
9-89
9.68
9.48
9-30
9.12
8.94
8.78
8.63
8.48
8.33
8.17
8.02
7.87
7.73
7.59
(Taken
by H.
0.4 0.5
14.46 14.42
14.07 14.03
13.70 13.66
13.3^ 13-30
13.00 12.97
12.67 12.64
12.36 12.32
12.05 12.02
11.76 11.73
11.49 11.46
11.23 11.21
10.98 10.96
0.6
14.39
i4.oo
13.62
13.27
12.93
12.61
12.29
11.99
11.70
11.43
11.18
10.93
10.7^ 10.71- 10.69
10.51 10.48
10.28 10.26
10.07 10.05
9-87 9.85
9.66 9.64
9.46 9.44
9.28 9.26
9.10 9.08
8.93 8.91
8.77 8.75
8.62 8.60
8.47 8.45
8.32 8.30
8.16 8.14
8.01 7.99
7.86 7-84
7-71 7.70
7-57 7.56
from Article,
W. Streeter,
Vol. 1, p. 535; and
Ninth
Edition)
10.46
10.24
10.03
9.82
9.62
9-^3
9.24
9.06
8.89
8.74
8.59
8.44
8.28
8.13
7-98
7.83
7.69
7.55
" Stream
0.7
14.35
13.96
13.59
13-24
12.90
12.58
12.26
11.96
11.67
11.41
11.15
10.90
10.67
10.44
10.22
10.01
9.80
9.60
9.4i
9.22
9.04
8.88
8.72
8.57
8.42
8.27
8.11
7.96
7.81
7.67
7.54
Pollution
0.8
14.31
13.92
13-55
13-20
12.87
12.54
12.23
11-93
11.65
11.38
11.13
10.88
10.65
10.42
10.19
9-99
9-78
9-58
9-39
9.21
9-03
8.86
8.71
8.56
8.41
8.25
8.10
7.95
7.80
7.66
it
J
0.9
14.27
13.88
13.52
13.16
12.83
12.51
12.20
11.90
11.62
11.36
11.11
10.86
10.62
10.39
10.17
9-97
9-76
9-56
9-37
9.19
9.01
8.85
8.69
8.54
8.39
8.24
8.08
7.93
7.78
7.64
Sewage Works Journal,
Standard
Methods.
7
-------
------- |