USEFUL INFORMATION
                        FOR
     STREAM POLLUTION SURVEYS AND EVALUATIONS
                     Compiled
                        *>y
                    A. W. West
              Public Health Engineer
U. S. Department of Health, Education,  and Welfare
  Federal Water Pollution Control Administration
    Robert A. Taft Sanitary Engineering Center
                 CINCINNATI, OHIO

                   JANUARY 1966

-------
ENVIRONMENTAL PROTECTION AGENCK

-------
                            USEFUL INFORMATION
                                   FOR
                       STREAM SURVEYS & EVALUATIONS

CONVERSION FACTORS
        1 cfs = W4-9 gpm = 0.6*4-6 mgd
        1 ragd = 695 gpm = 1.5*4-7 cfs
        1 cfs for 2k hours = 1.98 acre feet
        1 ft/sec approximates 2/3 mph (0.682)
        1 mph approximates 1-1/2 ft/ sec (1.^7)
CONVERSION TO MASS OR TOTAL NUMBERS
        Q in cfs x concentration in ppm x 5-^ = Its/day
        Q in mgd x concentration in ppm -0.12 = Ibs/day
        Q in cfs x MPN/100 ml x 2k. 6 x 10  = No. of coli./day
        Q in mgd x MPN/100 ml x 37.8 x 10  = No. of coli./day
POPULATION EQUIVALENTS
        1.0 BODt- Population Equivalent = 1/6 Ibs BOD /day
        1.0 Susp. Solids "      "      = 1/5 Ibs S.S./day
        1.0 Bacterial    "      "      = 1*00 billion coliforms/day
        Total Phosphorus               = 3 Ibs/ cap/year
        Total Nitrogen (Organic & Inorgan.)
                                       = 9 Ibs/cap/year
ESTIMATED PERCENT BODr REMOVALS BY SEWAGE TREATMENT
s

Primary Sedimentation
High Rate Trickling Filters
Standard Rate Trickling Filters
High Rate Activated Sludge
Standard Rate Activated Sludge
Probable
Range
30 -UO
60-90
80-90
65-85
85-95+
Use for
Estimating
33$
80$
85$
75$
90$

-------
                          TOTAL COLIFORM BACTERIA

Human feces may contain 2 billion coliform B. /capita

SUMMER - (Water temperatures 15° C. or above)
        Raw sevage - 57 to Ilk billion coli./cap.
        Raw sewage - 15-30 million MPN/100 ml
        Raw sewage - Use 21,000,000 MPN/100 ml for calcs.

        Coliform bacteria multiply about 5 times in about
        12 - hours, from sewer to peak.
        BPE at peak = kOQ billion coliform bacteria/day.
      > BPE = Q in cf s x MPN/100 ml x 6l x 10   (at peak)
        MPN/100 ml - BP* l        (at peak)
WINTER - (Water temperature = 15° C. or below)
        Raw sewage - 19 to 38 billion coli./cap
        Raw sewage - 5 to 10 million MPN/100 ml
        BPE at peak =125 billion coliforra bacteria/day
        BPE = 0, in cf s x MPN/100 ml x igk x 10   (at peak)
        MPN/100 ml =             (at peak)
PROBABLE COLIFORM DIE -OFF (After reaching peak)
        Approximate % of coliform remaining after flow time
        (from die -off curve with 2,000,000 MPN/100 ml at peak)
        1/2 day = )+0$                           5 days = 0.5$
        1   day = 17$                           6 days = 0.27$
        2  days =5$                           7 days = 0.15$
        3  days =2$                           8 days = 0.(
        1*  days =  1$

-------
                 ESTIMATED BACTERIAL REMOVAL EFFICIENCIES
                   (imhoff & Fair pg. 6 used as a guide)
                                            % Reduction      % Remaining
                                          Provable range    Use this value
                                           according to     for calculating
                                           Imhoff & Fair  estimated bacterial
                                                               loads
A.      NOMINAL FACILITIES & CONTROL.

           Plain Sedimentation                 25-75            50$

           Secondary Treatment (unspeci-
                                fied type)       -              10$

                 Hi Rate Trickling Filter      80-95            12-1/2$

                 Hi Rate Activated Sludge      80-95            12-1/2$

                 Lo Rate Trickling Filter      90-95             7-1/2$
                 Standard Rate Activated
                    Sludge                     90-98             6$

                 Oxidation Ponds                 -               3$
           Chlorinated rav sewage              90-95            10$
           Chlorinated settled sewage          90-95             5$
           Chlorinated biologically
             treated sewage                    98-99             1$
B.      WHERE EXCEPTIONALLY EFFECTIVE CHLORINATION CONTROL HAS BEEN
        DEMONSTRATED.

           Prechlorination of settled sewage     -               0.5$

           Two-stage (pre- and post-) chlorina-
             tion of settled sewage              -               0.01$

           Post-chlorination of biologically
             treated sewage                      -               0.01$

-------
                                                I111 '  I  '  '    '      fmrq-T-i   r
00
                                 I	I
                                            I.M. I
                                                                                               00
                                                                                  ,—  
                                                                           CO
                                                                           «c
                                                                           00
                                                                                                     oo
                                                                                                     00
                                                                                  C_S tJ
                                                                                  00 «/>
                                                                                  
-------
         2%
                   PERCENTAGE

                 40   (SO)   60
                                                                                                 98"
0)
in
CO
Hi
J
<  °
0  u
            II  II  I  II
           3.0         3.5
I  I  I  I  I
 4.0
 I  I  I  I  I  I  I
4.5         5.0
         PROBITS
I  I
 5.5
I T
 7.0

-------
                     GOLIFORM PROBABILITY PLOT EXAMPLE
Observed
Coliform
Density
MPN/100 ml
50,000
78,000
110,000
130,000
220,000
230,000
330,000
350,000
700,000
820,000
820,000
1,600,000
> 1,600,000
"Exact"
Plotting
Position
N = 13
U.8
12.2
19.8
27-3
3^-9
U2.5
50.0
57-5
65.1
72.7
80.2
87.8
95-2
NOTE:            5la,000 = Arithmetic Mean




                 330,000 = Probability Mean (See  Example  Plot)

-------

-------
o

^
^
ro

CN
CN

CM
CM
in
CM
CM

CM
CM
ftj
§
a, CM
R -
t-3 CN
M
3
O r-l
OS
O.
is-

rH r-H
S "
M
M i-H
W
o
GH
g -
E o
3 "
CL,
,— 1

rH
r-H







st
CO
1N
-rt
U 0
o »

O CN st m rs.
CN m no rH st
i-H ro Ps. ON CM
CM m co ^H in
r-H i-H
I-H in ON CO ON
CN m co CM in
CM Ps. (N PS. st
CN m ON CM so
r-H rH
co ON in ro ON
CM m ON m vO
T— 1 I-H
«t CM ON CO so
CM sO ON CO Ps.
rH rH
st -t -d- CM rH
CM sD O -t CO
rH r-l -H
\O PS. ps. ON ON
CM sO O sd- 00
rH r-H rH
P-s CO ("0 sO 00
CM sO rH in ON
rH r-H i-t
CO CN Ps. sd" SO
CN Ps. rH vO O
rH rH CM
ON P-S fO i-H 00
CM PS. CM fs. •— 1
rH rH CM
rH O ON ON 00
m co CM PS. CN
rH rH CM
ro si- 0 CO O
ro co ro co st
rH rH CM
st ON rO CO co
ro CO st ON in
rH i-H CM
sO st CM O CO
rO ON m rH sD
rH CN CN
ON ON rH CO st
CO ON sO CN 00
rH CM t *t
CM PS- CM
in m so
CM st sO
m o m
m so so
CN rs. CM
co to ON
m so so
sO st CM
rH PS. CO
so so rs.

st r-
in m
st CO
vO O
m so
PS. ON
CO CM
m so
st 0>
rH in
\o \o
rH CO
st CO
sO sO
CO CN
rs. CM
^O Ps.
CO O
O sO
PS. PS.
rs. CM
st 0
PS. CO
O 00
ON st
rs. oo
ON rH
CO O
CO ON
st ON
ON m
CO ON
sO
m
ON















st in

O CM st
C CO vD
j 1 - i i/,
s£ 00 ro
rH st CO
m m m
vO PS. CO
ro so o
m m VD
CN P*. vD
m co CM
in m \D
in o co
P- rH sf
in so so
m co o
ON ro PS.
m so vo
co ON co
rH in ON
sO sO \O
st -st SO
st CO CM
vO sO ps.
 CN. in 00 t 1 L-, CO rH ..s,~ *- Dj CO CA UN G\
i—**OONCNrO COrHrors-ON
COrHstCOrH stCOrHxtrs.
vOps.r-.rs.cO COCOON<7NON
mONCOCOrH fs.rHinCJN
OrOPs.O
ps.ps.rs.coco COONONON
C7>rs.cMsOrO cOroco
cNsOOrnps, OstPs.
rs.rs.cococo ONONON
CO st iH PS. in rH PS.
m CT\ ro so O >t P^-
rs p^ CO C0 ON ON ON
in st CM rH CO sO
CO CM sO O rO PS.
ps. CO CO ON ON ON
ON CO so SO vO
I-H m ON co r-.
00 00 CO ON ON
rH CO CO st
m ON ro PS.
CO CO ON ON
rs, CM co
co ro PS.
oo ON ON
CO CM
CN P*-
ON ON
rH
PS.
ON

























rHCMCOstm sOps-OOONO *-H
fNCNCNCNCN) 
U) -r(
> U U
>H 3
->M rH
j: a a
0 >
a c tn
a -ri c
O C *H
1J -r<
r-l H, U
cd co
O " -H
•A C U
•0 « "
« e «
i*
a > o
S-5* -
r-l U •
O -H W
CO -rl -
JO ^
O J3 -H
h U
0) (Xi M
0 X
r-» r^
•3 g'g
H G 0
-s •
O *H
^H O »
*J C
« W O
•rV V 0)
.. 4J rH U
« rtf ^Q C«
o W H fe
C
«
14 /-* ^V y^

-------
rH-
«
e
• «H •
•o o
b 55
o

ON
xt
CO

Px,

NO

u-i

<*

CO

CM

1 rH
xt
k
i 5

OS
CO
CO
r*.

sO
CO


in
CO

t co
co in PS o>
co st m in
co m PS. ON
st in NO PS
m in r^ ON
 O
rHst
rH CM -
CM st
rH rH
ro PS,
cMst
r-* ON
CM -J-
rH rH
ONst
CM LO
CO NO
CO in
rH T-H
NO rH
CO vO
i-H rH
0-3
•st vO
CM r^
st vO
^ rH
r- st
st p."
I-H r-4
CM O>
in PS.
st rH
m co

ON rs.
in co
-4- CM
NO ON
rH rH
ON CO
^ v.
st vO
rs. O
rH CM
NO Ps,
(U
N
lH
W
V
rH
CO
a
s
CO ON O
rH
•M rH CM
n ps CTN
•H rH f<
st t
-H st ps
^ ,_| r~t
•si in co
N CM CM
O CO CO
, - . —
O CO 00
-O vO ON
N CM CM
30 ON O
i
3 -H
C
r- 1
a
•o
t»
o
x^
m
o
rH
QJ *•-*•
N 0
•H O
OT rH
01 rH l|
rH U-I
a co
1
w o
rH CM m stf IT
CM O rH rH i— i
I-H co in PN. &
CM CM CM CM CS
in NO m oo co
I-H co in r-. cy
CM CM CM CM CM
rH CM f-H rH CM
CM 
CM >,,t NO CO O
O rH ^ m vo
ro m r*. ON I-H
CM CM CM CM CO
vO CO CO CM CO
ro m p- O CM
ON rH  O
ro O CO O rr
CM CM CM CO CO
m co I-H NO r--
•^ \O ON i— i co
-H -4- co m m
in r*. ON CM <1
CM CM CM CO CO
co rH m o vo
in co o ro m
CM CM ro ro n
^ co CM P-. r^
\D CO rH CO O
CM CM CO ro r*1
rH in CO CO rH
p*. ON CM J- PS. O
CM en cn -H
ON »H PS.. p-» O1
O -cf N-0 ON CM
co cn co cn -j
ON CO CO C* 0
. ^ c ,
O ON O rH CM
CO in O\ CM u"i
C.
d-
ON \O
O CO
 O

in rs. o CM >*
s^ CO CM vO ^
vO CO rH CO UO
s-f ^j- m in m
vO O -* CO fs.
Ps. O CM s^- \o
CO CM NO O CO
co rH ro vO co
-d- in m m m
o  ON rH
f-s. r- * fs. rs. CO
NO m m co »-H
CM in 00 rH st
ON NO 00 vO PS
st PS o cn \o
t^ ps CO CO CO
O CM rH CM rH
PS ^ r^ vO (7N
st vO CO ON ON
ON CM m CO rH
Ps CO CO CO ON
\O ps CO ON O
rH CM m st m
cn ro m ro co
O ON CO O CO
rH CM vt Ps CO
CM rH rO st CM
CM st \O CO O
vO vO vO vO PS-
cn m PS oo ON
co in ps, ON rH
vO vO \O sO PS
CO O rH CM CM
st PS. ON rH CO
m st m so ON
NO CO O CM st
rs. co CM CM st
r-H ON CM st vo
rH vO ON rH CM
ON rH ro vO CO
NO i — ps, ps rs.
C?N CM m \o o
o ro m PS o
vO ON ro Ps ON
CM st Ps. ON ,-H •
ps. rs PS. r^. co
CM r** rH \o ON
st vO ON rH ro
PS I — ps CO CO
rH in «-H vO O
VO 00 rH CO VO
ps ps cO CO CO
ON m rH CO CO
PS o co in co
Ps CO CO CO CO
CM vO in ON \O
o CM in P-. o
CO CO CO co ON
rH CO PS m rH
CM st ps. o co
NO ro o co m
st rs O CM m

vO
ON CO vO -t CM
vO ON CM in CO
P-
st st st rH
ON CM m co
CO ON CJN CTN
CM
CM CM rH
->i "-V m
^g
m co
ON ON
rH CM m st m
vD PS. co ON O
ro co co ro st
ON ON ON O CO
O CM st psCO
Ps, Ps. ps psps.
CM in -f mu-i
CM Nt vO COO .
ps rs. ps. PS.CO
ON CO ON OrH
co m PS. IDCM
PS ps rs. coco
m vo PS. ONON
m PS ON r-ttn
o rH cn voco
P-* ON rH COin
CO rH rH COPs
co rH en mrs.
in ON rH co\o
o CM in psON
CO CO CO COCO
st vO rH 



























\O Ps CO ON

-------
                      BIOCHEMICAL OXYGEN DEMAND(BOD)
FUNDAMENTAL REACTION
               The fraction of the total, or ultimate, carbon-
               aceous

               BOD satisfied in the 5-day BOD test (BOD )
               depends upon the rate (k) at which the oxy-
               gen is depleted.  The following formula is
               the basis of most BOD (carbonaceous) calcu-
               lations:
   BOD at "t" in days » ultimate BOD x |  1 - 10

NOTE; BOD.  = amount satisfied

NOTE; 10  1  = percent remaining
               k  = 0.10 - rate associated with river water

               k. = 0.15 - rate presently associated with sewages

               k. = 0.20 - rate for some industrial wastes

               k. > 0.20 - rate for rapidly oxidized wastes like
                           sugars, etc.
REIATIONSHIP BETWEEN 5-DAY BOD TEST TO ULTIMATE BOD
                   BOD5 » O.Mi- x ultimate BOD at k  = 0.05

                   BOD5 - 0.684 x ultimate BOD at ^ = 0.10

                   BOD  = 0.82 x ultimate BOD at ^ = 0.15

                   BOD5 = 0.90 x ultimate BOD at k  = 0.20
                                                                   3

-------

-------
                      BIOCHEMICAL OXYGEN DEMAND(BOp)
                                 (contd)
EXAMPLE - of BOD satisfaction after varying periods of time at
          k  = 0.15 from the equation
          BODt = BODult   |l - lO"1*!1  [(carbonaceous)

          BOD satisfied in 1/2 day  = 0.19 x BOD  = O.l6 x BOD
                                                ^             U.X o •
          BOD     "     in  1  day  = 0.37 x  "   = 0.30 x  "
          BOD     "     in  2  days = 0.68 x  "   = 0.50 x  "
          BOD     "     in  3  days = 0.?8 x  "   = 0.65 x  "
          BOD     "     in  k  days = 0.91 x  "     0.75 x  "
          BOD     "     in  5  days = 1.00 x  "     0.82 x  "

          NITROGENOUS BOD;
          Nitrogenous materials, such as ammonia,  are also oxidized
          to the stable nitrate form.  Some part of this reaction
          may occur simultaneously with the carbonaceous BOD reaction;
          but the major effect is exerted after the ultimate carbona-
          ceous BOD reaction is completed.  This additional nitrogen-
          ous BOD may equal the amount of the ultimate carbonaceous BOD.
          This concept is useful when considering BOD's some 10-30  days
          downstream, or in reservoirs.   The nitrogenous reaction rate
          (k) may approximate 1/3 of the carbonaceous reaction rate (k..).

          EFFECT OF TEMPERATURE ON REACTION RATES
          Laboratory measurement of k^  rates are determined at 20°  C.   In
          streams,  the actual rate increases approximately k.jfy for every
          1.0°C. temperature increase (and decreases an equivalent  per-
          centage for lower temperatures) according to the following
          equation:
                                      (20°C.) x

-------
0.40
          OBSERVED   RATIO   OF  5   TO  2   DAY   BODs    (y_ / y, )

-------
            RIVER DISCHARGE AND TIME OF TRAVEL
RIVER VELOCITY CHARACTERISTICS

         Velocity at 0.6 depth from surface approximates
         the MEAN velocity throughout the entire depth.
         The average of velocities measured at the 0.2
         and the 0.8 depth provides a slightly more pre-
         cise measurement of MEAN velocity.
         The MEAN vertical velocity varies from 80 to 95
         percent (use 85$) of the surface velocity.
         The maximum velocity occurs at 5 to 25 percent
         of depth; is nearer the surface in shallow streams,
         and farther from the surface in deep streams.

-------
                           8
                TIME-OF-TRIWEL STUDIES
Time-of-travel in rivers (also threading, mixing and
diffusion characteristics) can be measured by intro-
ducing Rhodamine B dye into the river and tracing it
downstream with a fluorometer.

The fluorometer can measure Rhodamine concentrations
as low as 1.0 part per billion (ppb).  Concentrations
in excess of 3.0 parts per million (ppm) may foul the
meter cell.

Therefore, adjust Rhodamine B dosage to obtain from
1.0 ppm to 10.0 ppb along the river reach to be measured.

The amount of dye to be discharged can be estimated by
calculating the amount necessary to provide a theoretical
1.0 ppb average concentration throughout the entire mass
of river water contained in the overall reach to be studied.
NOTE:  Commercial solutions contain about kyfr dye in acetic
       acid solutions.
Time-of-travel is determined by measuring the time required
for the peak dye concentrations to reach the successive
downstream sampling stations.

-------
SATURATION VALUES OF DISSOLVED OXYGEN IN ppm
(Under NORMAL .atmosphere at 760 mm.pressure)
Tegp
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2k
25
26
27
28
29
30
31
32
33
34
35
.-« /*"
36
37
38
39
40
4l
42
^3
44
^5
46
47
48
49
50
0.0
14.62
14.23
13.84
13 A8
13-13
12.80
12.48
12.17
11.87
11.59
11-33
11.08
10.83
10.60
10.37
10.15
9-95
9.7^
9-5^
9.35
9-17
8.99
8.83
8.68
8.53
8.38
8.22
8.07
7.92
7.77
7.63
7.5
7A
7-3
7.2
7-1

7.0
6.9
6.8
6.7
6.6
6.5
6.4
6.3
6.2
6.1
6.0
5-9
5.8
5-7
5.6
0.1
14.58
14.19
13.80
13. ^
13.10
12.77
12.45
12.14
11.84
11.56
11.31
11.06
10.81
10.58
10.35
10.13
9.93
9-72
9.52
9.33
9.15
8.98
8.81
8.66
8.51
8.36
8.20
8.05
7.90
7-75
7.61





0.2
14.54
14.15
13-77
13-^1
13.06
12.74
12.42
12.11
11.81
11.54
11.28
11.03
10.78
10.55
10.33
10.11
9-91
9-70
9-50
9.31
9-13
8.96
8.80
8.65
8.50
8.35
8.19
8.04
7.89
7.74
7.60





0.3
14.50
l4.il
13.73
13.38
13.03
12.70
12.39
12.08
11.79
11.51
11.25
11.00
10.76
10.53
10.30
10.09
9-89
9.68
9.48
9-30
9.12
8.94
8.78
8.63
8.48
8.33
8.17
8.02
7.87
7.73
7.59



(Taken
by H.
0.4 0.5
14.46 14.42
14.07 14.03
13.70 13.66
13.3^ 13-30
13.00 12.97
12.67 12.64
12.36 12.32
12.05 12.02
11.76 11.73
11.49 11.46
11.23 11.21
10.98 10.96
0.6
14.39
i4.oo
13.62
13.27
12.93
12.61
12.29
11.99
11.70
11.43
11.18
10.93
10.7^ 10.71- 10.69
10.51 10.48
10.28 10.26
10.07 10.05
9-87 9.85
9.66 9.64
9.46 9.44
9.28 9.26
9.10 9.08
8.93 8.91
8.77 8.75
8.62 8.60
8.47 8.45
8.32 8.30
8.16 8.14
8.01 7.99
7.86 7-84
7-71 7.70
7-57 7.56



from Article,
W. Streeter,
Vol. 1, p. 535; and




























Ninth













Edition)













10.46
10.24
10.03
9.82
9.62
9-^3
9.24
9.06
8.89
8.74
8.59
8.44
8.28
8.13
7-98
7.83
7.69
7.55



" Stream
0.7
14.35
13.96
13.59
13-24
12.90
12.58
12.26
11.96
11.67
11.41
11.15
10.90
10.67
10.44
10.22
10.01
9.80
9.60
9.4i
9.22
9.04
8.88
8.72
8.57
8.42
8.27
8.11
7.96
7.81
7.67
7.54



Pollution
0.8
14.31
13.92
13-55
13-20
12.87
12.54
12.23
11-93
11.65
11.38
11.13
10.88
10.65
10.42
10.19
9-99
9-78
9-58
9-39
9.21
9-03
8.86
8.71
8.56
8.41
8.25
8.10
7.95
7.80
7.66




it
J
0.9
14.27
13.88
13.52
13.16
12.83
12.51
12.20
11.90
11.62
11.36
11.11
10.86
10.62
10.39
10.17
9-97
9-76
9-56
9-37
9.19
9.01
8.85
8.69
8.54
8.39
8.24
8.08
7.93
7.78
7.64





Sewage Works Journal,
Standard














Methods.
7












































-------

-------