-------
IT'' • :: '. C ?
I
— anthracene., fluoranthene, pyrene, benz[a]anthracene, benz[a3pyrene,
benz[e]pyrene, perylene, dibenz[a,h]anthracene, and. dlbenzfajc'Janthracene.
I The concentration of each PAH in the standard was 50 ppm (wt/v) except for
dibenz[a,h]anthracene which was 25 ppn. Concentrations of PAH in the
• samples were calculated by comparison with the standard mixture. Peak v
^
• heights were used to compare the earlier eluting PAH (through benz[a'Janthra-
cene) ; pealc areas were used for quantisations of BaP and EeP and later elating
| compounds. In calculating concentrations of PAH components, corrections
m vere applied for volumes of samples and standards s,nalyzed and for total
sample vclizzes. For comparison, the standard mixture was analyzed prior
• to sample analysis, '^en more than one sample was to "be analyzed, the
standard was run after every 2-3 samples,
I In analysing the paraffinic fraction A, a Perlcin-Elmer Model 900 gas
• chromatograph equipped with a dual FID system and a Honeywell potentiometric
recorder was employed. The GC was operated in. the dual differential mode.
| Two 6 ft r 2 rm (id) glass columns packed with 3$ OV-1 on 60/80 mesb.
. ' Supelcopcr~ vere employed. Injector and detector temperatures were 220°
320CC, respectively. The column was held at 80°C for five- minutes after
I
I
I
then held for ca 10 minutes.
• injection and then programmed at 10°C/minute to 220°C. The temperature was
I
I
11
-------
f
\
D. GAS CHROMATOGRAPIiY/l-'iASS SPECTROMETRY (GC/MS}
Analysis of standards and samples "by GC/M3 employed a FInnlgan Model
1015 quadrupole GC/MS equipped with a System Industries Model 250 data'
system. Inasmuch as the GG on the Finnigan unit is a modified Varian lUpp
instrument., columns could be interchanged with the GG possessing the FID.
Tha mass spectrometer (MS) was scanned "by applying mass seb voltages
to the cuadrupole reds from a 15-bit digital-to-analog converter. At a
given nass set voltage, only ions of a specific mass-to-charge ratio pass
•7
through the quadrupole field to the electron multiplier detector. The high
_rj
mass rar.ge of the MS vas used; the preamplifier setting was 10 amp/volt an
2600-2SOG volts were applied to the electron multiplier.
Direct aqueous injection of water samples by GC/MS was accomplished
P
•using- t>e r.ethod of ludde et al, A 6 ft X 2 mm. id, glass column was packed
vith Chrc3osorb 101 and conditioned at 270°C for ti-ro days. Five ul of
sample -.ras injected ar.d the column oven held at 80°C-for two minutes and
then programed, at ^ or 8°C/ninute to 220°C. The final temperature was
held so th=t the total analysis time was 35-^0 minutes. The MS ionizer and
data systera were turned on after water had eluted from the GC column and bee
pumped froa the ion source. It was allowed to scan, from 33-200 amu.
Water samples were also extracted and the extracts examined by GC/MS.
One liter of sample was extracted twice with distilled-in-glass methylene ch'
ide. The extracts were combined and dried by passage through two inches of
12
-------
\
*• » >
I , I
I
« prewashed (with methylene chloride) anhydrous sodium siilfate-in a glass col-
umn. After the combined extracts had been dried, 100^ml of dlstllled-in-
I glass acetone was poured through the column. The extract plus acetone was eva]
orated to 5 ral employing a Kuderna-Danlsh apparatus. In this way the
• * methylene chloride (B? 39-8°C) was removed, leaving the sample dissolved id
• acetone (3? 56.1°C),
A 6 ft X 2 irm (id) glass column packed with 1.5$ OV-17 + 1.95$ QF-1
| on Supelcoport, 100/120 nesh, was used to analyze extracted water samples*
• - It was conditioned, at 250°C for two days prior to analysis. Two to four ul
of sample- -.-.-as injected onto the column and the MS was "turned oa" after the
• solvent, acetone, had been pumped from the Ion source, ca 1 to 2 minutes,
' and all^vsc: to scan from 33-^-50 amu.
• For cecLinsnt samples the 3$'Dexsil column described in the section on
• ' gas chrcr.atcgrap'by was used. At the high temperatures needed for these
analyses (-23. 30O°C) G3/MS separator and transfer lines had to be adjusted
I to 280CC and 230°C, respectively. -
I The System 2pO data system has certain special features which were
q
applicable to these analyses.^ These include choosing mass set voltages
• so that one can acquire data for selected ions.of interest. This technique
has the advantage of allowing the detection of compounds at 10-100 times
• lower concentrations than by normal scanning techniques. .Another feature
I is being able to search the reconstructed gas chromatogram (EC-C) for a
limited number of ions. The RGC is a plot of ion current, normalised to 100$
| for the spectrum yielding the highest ion current against spectrum number.
I
13
I
-------
The limited mass search allows the operator to ignore "background and
search for contributions to the ion current "by selected ions of interest
as a i"unction of spectrum number.
-------
I
RESULTS
I .A. WATER SAMPLES
• Three vater samples were received. The first was taken at the 1, 2,
5 blast furnace (east clarifier), the second at the 3, h "blast furnace " (west
£ clarifier) , and the third at the 002 discharge coke plant sewer. The sample
_ -were scanned for organic compounds, using the laboratory's gas chromatograph
™ mass spectrometer ( GO/MS ^ unit. Two approaches were taken. First, a direct
I aqueous injection of sample was made into the GO/MS, This allows the
detemina-tion of low molecular weight, -volatile, organic compounds of
I varying types. The second procedure involved extraction of the sample into
• methyiene- chloride, addition of acetone, evaporation, and concentration (see
Experimental Section).
I Tiie —ater scrples were found to "be essentially free of contamination.
. The direct aatieo"s injection technique showed that the two blast furnace
effiizents were free of lo;-rer molecular weight compounds though one of them
• probably contained a. s~.all amount of acetone. The coke plant sewer sample
did show £~=Lll quantities of organic compounds; the concentration of any
• individual component was likely less than 20 ppm (wt/v) , While individual
• corriponents were not identified, two or three classes of compounds were
found possibly to be present; these are paraffins, cyclop araf fins, and, olefi
| These classes were searched for by allowing the computer to scan the GC/MS
• reconstructed gas chromatograph for the presence of particular ions -
m/e k-3 and 57 for paraffins and m/e 55 and 69 for cycloparaffins and
., ^, 10
olef xns .
I
I
I
-------
Few organic compounds were present, in samples extracted with nethylene
•
chloride, even though the extraction procedures concentrated the samples
some 200 fold. Blast furnace effluents showed no detectable compounds,
while the coke plant sewer again showed small GC/MS peaks. For this
. • \\
sanrple the GC/MS was set to acquire data solely for ions corresponding to
base peaks, which are also the molecular ions, of certain PAH. The ions
were ic/e 128 (naphthalene), 166 (fluorene), 178 (phenanthrene and anthracene
202 (fl-ooranther.e and pyrene), 228 (benz[a] anthracene and chrysene), and
2p2 (benrCajpyrene arid benz[e]pyrene).
GC/MS peaks were obtained, for the coke sewer extracted sample cor-
responding to n/e 165, 178, and 202 with 178 being the largest. These data
indicate the presence of lor concentrations (<1-J? ppzn wt/v) of certain PAH,
Phenanthrene and anthracene have a molecular weight of 178 and their
presence vould not be surprising, particularly since substantial amounts
of these two PAH vere found in sedinent samples.
16
-------
• B. 1IEXAHE EXTRACTABLES (OIL AND GREASE)
Table I presents data for the n-hexane extraction of organic compound
I from the twelve sediment samples collected at the Lorain site. Table II
• . gives a description of the sampling sites. Values ranged from 8lO to 26,71
ing/kg based on the weight of samples dried overnight at 30°C. A blank •
I containing 25 g of silica gel and 25 ml of water yielded no significant
oil and grease. Five duplicate determinations were wade and yielded excel-
• lent reproducabilitjr.
I
- f
I
I
I
I
I
I
I
I
I
•
I
-------
H
w
< o
E-5 rH
< P4
Pi S
- co
w
CO -P
S o
CS 5^
gs
o o
S ca
^5
g^
ft
Pi O
oTS1
bo
o
KJ
O *u ra
-H f-i
-p o ci>
Ti
-p
C H
O -H
O -p
Zj n
CO
o
O ta
3 O
CO
-p •
O -P
O
H O
CO
t>-oooooooooooooooo
CO OJ tn ,-f OJ OVO OJ UAO OCO'O O r-tCO CO
co roo COVD t--o\_d- L--H
OCO
o\-xr
H
_
H CM CM H
OJ
r-fco ir\ O VD
ro ir\ CT\ t- tr\
O
co r-lcO Oco co H o\ioivovovo
OCUir\HCTNL-\V3cnOOCOllAO\OJt>-lPkOO
OOOi-lOOCOCOfOCnCMO\O\ir\C3\CT\CMCM
ooooooooooodoooooo
vo o\ ir\
C\O\lPvO OCO O\COVO ir\cO b- H
CJ co co co co ^f cr\ en r-t co en
"
co
Ox OJ -=f inmroo o\covo^J- c?\covo r-tvo «n
t— vo co co co m co VQ co -d- c-- o o OJ coo) OJ
omcococo-rJ-cooJOOvovoo\cr\vOc-tt>-
COOJ OJOJ COCOCOCOCOOJCOCOOJ COCOCOCO
VO CO OJ CO VO
-d- co o cr\ o^
CM c— o t>- co t-
co vo t— in in oj
o\ -* co m
t>- co co o
o o co CM r-t o
1>- in in in in vo
b- CM OAO\inmcr\^- cvi o co
inin_=f.^t mm-^tvovo mtr—
<^ ^ ^ & z5<>
invot>-t>-co cr\o-%oOr-ioJ ojco-^--d- in
H1 H H H H H" H H H ?? r-| H" r-l H r-l r-l
o
-8
in
OJ
§
H
C)
o
o
rH
-H
CO.
tn
OJ
o
o
o
-------
1
1
1
I
1
1'
.
1
1
I
•
1
1
1
1
1
1
1
1
. -
DE
Sample Sample
Kurriber Station
19^65 1
1&46& 2
19U67 33
19lf68 te
19U69 5C
1911-70 63
19V/0- 73
•19^72 83
19^73 - 93
19^ 10
19^75 11
19^76 12
aAll samples taken
c - -
TABLE II
r\
ISCRIPTIOiJ OF BLACK RIVER SAMPLING STATIONS
Mile Site Description
Point
Lake Water Treatment Intake
Mouth of Harbor: Lake Erie-Black River
0.0 Center of Black River (River Mouth)
1.0 Center of River
2.5 Right Hand Side of River, Looking Upstream
2.75 Middle of Turning Basin Opposite Outfalls
f 003 and 004
l
2*9 Head of River Turning Basin - End of
Commercial navigation
3. if _ca 500 ft. Downstream from Outfall 002
Jf.O Near Plant ttater Intake
5.0 ca 0,2 ni. Downstream frora Outfall 00.1
0.2 0,2 cii Upstream on French Creek
5-3 £S °'2 ^-i- Upstream from Outfall 001
frcrn. the surface of the sediment layer.
19
•
-------
c
C, POLYIPJCLFAR AROMATIC HYDROCARBON ANALYSIS IN SEDIMENT SAMPLES
The organic residues obtained in the Oil and Grease determinations
vere used to analyze for PAH. These residues are complex mixtures of
organic compounds of varying classes and a method of separating the PAH
* - • ' »\
(fraction) was necessary. The largest body of information on the separa-
tion and analysis of PAH, other than in the air pollution field, lies in
the tobacco smoke chemistry area. PAH determinations in organic residues
obtained from sedinents should "be similar to determinations of PAH in
to"bacco tars. Separation of PAH vas affected "by the method of Wynder and
"^ *Z T1 T &
Hoffmann."' "" Several gas chromatographic (GC) " and gas chromatographic/
, . 19
mass spectrcmetric (GC/M3; methods of measuring PAH are available. Tech-
niques for GC and GC/I-3 analysis advanced "by Lao et al. appeared to "be
xaost applicable and vere employed.
1. Liquid Chromatographic Separations of PAH
PAH were separated by the liquid chromatographic (LC) procedures
outlined in the Scheme and detailed in the Experimental Section. Paraffinic
type compounds are eluted from an LC Florisil Column by jn-hexane (fraction A)
The next solvent is an 8:1 hexane/benzene solution which elutes the PAH
(fraction B) . B is concentrated and PAH extracted into nitromethane
(fraction B-,,.) to separate the PAH from other organic compounds that are
eluted in fraction B.
Prior to analysis of the sediment organic residues an. experiment vas
devised to measure PAH recovery from the LC column. Five nl of a 1 ing/ml
(1000 ppm) benz[a]pyrene (BaP) solution vas applied to a column and eluted
20
-------
I
I
I
I
I
M
•
•
I
I
I
I
I
I
I
I
I
as In the Scheme except that the nitromethane (KM) extraction was omitted.
The recovery of BaP was 97-/j.
It was determined that 1 liter of n-hexane was likely a sufficient
amount of solvent to elute fraction A. For sample 19470 1 liter of
•"V
n-hexane was elated from the LC column with ten 100 ml fractions being -
collected. Fractions 2, k, 6 and 10 were concentrated and examined "by
gas chromatography-using OV-1 as the liquid phase; OV-1 is efficient for
non-polar materials. Fractions 2 and 4 contained a broad envelope of
paraffirlc type material which eluted from the OV-1 column as temperature
was programmed. Fraction 6 was free of GC peaks until a high column
temperature was reached, ca 2CO°C. Reasonably, this indicates high jnol-
eeular veight compounds which were late eluters from the LC column.
Fraction. 10 contained no GC peaks, thus signifying a complete separation
of total fraction A.
Table III lists the volumes of n-hexane used to elute fraction A in
each sample. Prior to GC analysis of the ri-hexane cuts of sample 19^70,
it was felt that 200-400 ml of n-hexane would be sufficient to elute a
total fraction A. Clearly this is not the case. Fortunately, however, any
carryover of paraffinic material into Fraction B did not appear to adversely
affect the final analysis; the nitromethane extraction apparently Is almost
exclusive for PAH, leaving behind other organic compounds in the hexane
layer. For example GC/MS analysis of sample 19*472 (see below) revealed
only PAH; few other types of compounds were present. Aa exception vas
21
-------
TABLE III
VOLUMES OF n-HEXAlffi USED TO ELUTE FRACTION A
, Sample 11Xgber . _ Y^^Jii^ane^^
19-65 1000
19^3 to
19^70 - 1|00
15-71 '-- 1000
200
200
1000
(IniDli cate) a 1000
a
LA seccni I?0il and Grease" determination was made on this sample
see T.a~-le 1.
22
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
sample 19-I-7U where an exceedingly high paraffin content (see explanation
below) did interfere somewhat with PAH analysis. Elation of fraction A
with greater than 200 ml of n_-hexane was obviously necessary for this
sample.
•A
No fluorescence was observed in the 1 liter of n-hexane eluted for
sample 19^7^. However, a low level of fluorescence vras detected for
samples 19^66 and 19^76- The possibility does exist that small amounts
of low nolecular weight PAH were lost.
One to three liters of 8:1 hexane/benzene was used to elute Fraction B.
Table T~ gives the volts.es of solvent used. Elution. of samples 19^66 and
194-76 was terminated at 1600 and 1250 ral respectively since fluorescence
was no longer- observed in solvent passing through the column. For sample
19^72 £-5 liters of solvent were eluted; this was followed by elution with
an additional liter which was separated from the initial 2.5 liters. Each
was concentrated and extracted with nitromethane (KM); the KM extracts.
(fraction 3 • ) were evaporated to dryness, redissolved in n-hexane
j-J- —~
and analysed by GC. All PAH through the dibenzanthracenes (MW 278) were
found to be in the initial 2.5 liters fraction. Since fluorescence was
observed in the 2.5 to 3.5 liter fraction, including the last 100 ml of
this fraction, higher molecular weight strongly fluorescing PAH are no
doubt responsible for fluorescence at high elution volumes. Saraple 19^-72
contained the highest amounts of PAIL Thus, it was acceptable to term-
inate elution after 2 liters of solvent on all other samples (see Table IVV
-------
( C
TABLE IV
VOLUME OF 8:1 HEXANE/BEITZSNE USED TO ELUTE FMCTION B
.Sample la^ber _ Volume 8:1 Hexane/Benzeae, ml
19^66 I6ooa
2000
2200
15-70 2100
19-71 '- 2000
19-72 3500 •
19-7^ • 2050
*- -* ' f\
1250
n
Ko £Iw3rescence O"Dserved, vhen these volumes had eluted,
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
2. Gas Chromatographic Analysis
Excellent separations of PAH were achieved employing Dexsil 3$
and B'fj columns. Figure 1 shows a gas chromatographic trace representing
a typical analysis of a ten component PAH standard mixture. Table V
gives the structures and properties of these compounds. Figure 2 shows v\
a gas chromatographic trace representing the analysis of sample 19^72;
the sarrole represents the first 2.5 liters of 8:1 hexane/benzene from
the LC coluna (see page 9)•
in Figure.1 it can be seen that phenanthrene and anthracene (peaks 1
and 2) are partially separated, benz[a]pyrene (EaP) and benzfejpyrene
(BeP) (Peaks 6 and ?") are not separated and dibenz[a,h]- and dibenz-fa,cj-
anthracene (peaks 9 and 10) are not separated. These observations repro-
duce the data of Lao et al. . •
Components in the standard mixture were chosen to represent a PAH
envelc-r-e that might be observed in sediment samples. Phenanthrene and
anthracene are three ring PAH with molecular weights (l-.W) of 178. The
diben™ar.thracenes are five ring PAH with Mtf's of 278. In between there
can be PAH vith varying number of rings, ring structures, and substitu-
tions'en the rings. Over 100 PAH are known between Kvf 178 and 278.
Effective separations are both critical and difficult; with caution they
can be accomplished and compound assignments be made.
Figure 2 shows assignment of PAH to components of the standard mix-
ture. In addition to comparing gas chromatograms of standards and samples,
a comparison with the data of Lao was useful in chromatogram interpretation.
I
-------
VO
CJ
G
O
.TJ c £C o
S-t -H •<. <3
c! A< ••» M
ij c . o .n
C CJ M C -P
rf > G a c
-P -rH -H O CJ
U t3 ^ «3 i—i
O !-< O
^; P H .G _r
, o -P ,e •
(—1 c3 Cj
c f< G u\
coo t3.
o v-3 13 o 3
-H -H o n
,£2 t-l ^ CJ C\
to
o tJ
4^ n
cj d
O
O
... : . . i . i .
.. I.. ! i ^..; _• . I !..
„
o
-H
O O
a p,
o
X. •
co
o p d C
el rt O cj •-.
tat> Pi !-, O
4-> O C
CS -JJ ••< pJ O
O 1-1 >}
o -~ o p,
o C Ps - r-1
C S U CO O
Q3. l~'
O t, o C
o o cs c: c
^i ^: o ,a
8.0 o
d T3 -
O ro £• f-i C c»
^-> o i: cj o
O »-! T3 4J O
o -r< ^i a o c?
^-> « o o c rf
a x cj o f->
'&• O O • 1-< ^
o
o b3
-c3 c
O
c
O
^3 c^ O
P H c
^i . p cj
O O CO C
15 ^< -r( O
O -P
o x o
O -rH ,«
cs e 4->
H
O
H
C cj
O <—*-•
-a
:- •, ' - • - ' ;— • —, i i "u -^' < '
cy-:,: ,-{...;.. • i-: • •.;.;-!-.: ; • -1 •== -:. :. j, .-.r:. - i-.r- ,- ,- -;.- r ----~ - _> . -..; l^T^^T i
pT i.-^TTT:- : ; : ... j .; • ! ly;::';:. :-^ I =:^-~ _."••'•. :'v "- -. ' :^ : = ?j_:^r; ''•;^'^j? •
^7~r: i: • : : •=.;,. i • i . i • ,-. i .-,.-!•-•; -.-» : - n-- i - •>-:•.•. : j /i_j^rr ;
•; : • j_ i- ; i -;-' -•: - jF;,'^ Jj4i
TH-hfH-- H-f- {-fr-r-H- ii^5rT]7 h-H-^f rj -:±L
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t:
o
•H -
-P CJ
O
c: o
o ^
M -t>
d c:
.a -H
X rj
o o
-• -H
co
M
o. o
-{J f<
-H O
- c
co -H
I -»J
o -^
a
— cj
OJ
C- »-•
J- o
O
• o o
rS O
P, U
ci P.-
O.rf
0 ^J
n c:
-& o
o
HI
J-l
O
M -•
- '>"'" r":
' ; : I . •' • ; • = • : i i : ; :
'•J : i'':.. ;'• I •'• =''''
" i UJ J-Sf 1- _ ! - 8
j i : :. . J ; .T.. : ; i
' • T • • i ' i
• —__:_•- --!-!-,
..,.,. ^_ .—
-------
EH
s
M
I
W
O
to
w
8
o
CO
-
EH
§
^i
CO
r:
o o
fcD-r(
q >
t; rf
•«-! .C
a o
J-< (Q
cj
O
CO . -
<=5
o
Pi
o
o
i
§
CJ
O -H
a) o
O
o
C
o
o
-f
-l-
CO
CM
O
CJ
CM
o
CM
CO
CM
CM
CM
ir\
CM
CM
IT\
CM
CM
L^
CM
o
a
C
rj
JH
O
O
r:
o
o
a
o
o
cj
c!
cj
f — I
cj
O
o
a
OJ
rp-
'c?
a
o
a
o
a
c:
a
CD
CO
1>-
CM
o
O
O
§
r — »
O
*\
cj
ci
o
CO
0-
CM
V_J
<
-^t
oH
O
w-1
vo
oH
0
wH
V£»
•H
o
CM
wH
rn
cu
o-
CM
MH
r-.
O
CM
0
CM
^r4-
w
o
CM
O
.CM
^r-i
t-^-*
O
CM
O
I-l
w
CM
OJ
O
rH
K
CM
CM
O
o
d
o
o
Cj
d
^G
•%
rf
I—J
M
,0
•H
-------
I c c
• a Ratings of carcinogenic behavior obtained from reference 20; (-)
" indicates not carcinogenic; (+0 uncertain or veakly carcinogenic,
(+) carcinogenic; (+-*-, +++, ++++} strongly carcinogenic.
• »
I
I
I
I
I
I
I
I
I
I
I
I
I
• 29
I
I
-------
The first major peak (labeled 1 and 2) In Figure 2 represents phenan-
threne and anthracene. The assignment _of these compounds is clear. Howeve
since only one GC peak appeared it is probable that either phenanthrene or
anthracene predominates. One cannot distinguish -unequivocally between the
and quantisation roist be made as the sum of phenanthrene and anthracene^-v th
situation, obtains for all other samples. For sample 19-1-72 CC/riS experiment
suggest that the najor peak (l and 2) is predominantly phenanthrene -with a
minor contribution fron anthracene (see Figure 5, page H2) .
The peaks labeled 3 and h can be assigned to fluoranthene and pyrene.
Further support for these (and other) assignmenbs v/ill be given in the
GO/MS data to be presented below. Peak 5 certainly represents at least
two overlapping peaks. This is consistent with the observation of Lao
et al vhich notes that benz [a] anthracene is not separated froni chrysene
ana triphenylene using the Dexsil GG system. Peak 5, then, should be
g-ed to these three compounds; no other PAK of KV7 228 elutes near these
pounds c-nd GC/M3 data show that the peak is due to PAH having molecular-
?O
veights of 223. Eenz[a] anthracene and chrysene are carcinogens while
tripher.ylens is not.
Peaks labeled 6 and 7 are assigned to BaP and BeP; peak 8 is assigned
to perylene. GO/MS data show these peaks to have molecular weights of
252. The doublet consisting of a large and a small peak eluting before
Bap and BeP also have molecular weights of 252 (see below) . Based on the
data of Lao the compounds represented by these peaks may be the benzofluor-
anthene isoraers.
30
-------
I
Peaks 9 and 10 are assigned, to the dibenzanthracenes. Other PAH
I vhich elute in the dibenzanthracene region and. which may be present in
• certain samples are the benzochrysenes, picene, the benzoperylene s,
o-pher.ylenepyrene, and the benzotetraphenes.
I - Table VI reports the -concentrations of PAH determined in sediment 0-
samples (from fractions E ). Matching of individual components in the
™ samples was not always as simple as in 19^72 described above and in Fig-
• lire 2. ?or samples where certain components could not be compared T/ith the
standard mixture a value is not reported in Table VI.
I Samples 19'{-66 and 19^76 display the lowest levels of PAH. This is
• • consistent -with thsir low oil and grease values and the fact that fluor-
escence terminated after 1-1.5 liters of solvent in collecting fraction. B.
• It is al^D consistent with the locations of these two sampling sites.
_ Sample 1^472 "being just downstream from outfall 002 shows by far the high-
est concentrations of PAH, No explanation can be offered for the absence
I of lower molecular veight- PAH in sample 19^71.
Sample 19^7^- was different than all other sediments collected. Frac-
• tion A shoved an apparently high paraffinic content. This was observed by
• analysis of fraction A employing the Dexsil column. Fractions A of several
samples were scanned for qualitative information as to paraffinic content.
I
I
Sample 19^7^ contained at least a ten fold higher paraffinic level than any
other sample examined. In addition examination of Fraction BTT for PAH
showed a different shaped GC elution pattern. The GC trace in Figure 2
I
31
I
-------
R
*
CO
P3
Qj
s
«3*
to
f-i
fe
P5
Pi
CO
3
pH
Q
f~~)
^"l
M
f\
P
£3
2>*
frt
jj£J
£-t
w
Pi
K^t
<;£*
O.
£4
o
CO
*g^
o
H
<£
PH
c_|
£5
W
0
^^
O
o
*
rf
^— *.
-p
c*
bf
•H
O
j£
CJ
H
P.
P-
«
Cl
r*>
*TTj
~
bp
**-v^
bp.
F^r
»1
d
O
-ri
-P
_>
to
-p
EJ
o
0
E:
o
o
M
CJ
E.'
CJ
O
rf
f-I
-P
E!
rf
E:
CJ
rQ
•rl
Pi
O
J2
CJ *
*~'i
r-*" '
H'
O
P-i
1
°s !
!
O C
d c
0 O
£•* 5^
P>5 p"}
r>t p^
.'' " "j ; ' '^
rf a
1 ' ? M
N! tC
c: c
0 C--
r*
£T
C
o
•^
^
jr~*
*iS
w
t '
w'
{
- .,
t^
C
c;
C-^'
cr
o
^
;>._
f—
O
c
o
•p
c
rf
jLj
o
Jl^
!—)
f^-i
O CJ
E3 EJ
CJ O
}~t O
,C rf
P E;
rf -P
E: c
OJ <<
g ^
CJ J-i
H c>
Pi f>
||
O
VO
*
o
o
»
0
: — I
o%
0
'•"•"!
~rn '
CO
o
_£2
/i
ro
»
o
VO
vp
ON
'r-I
J%~
V
^
t —
ro
*
O
•^J"
0
0
lf\
r-j
c? ••
VO
r-I
ON
CJ
io>
«
CM
CO
CM
t--
VO
o\
r-t
^
O
VO
vo ON ' vo
. .(D • O »
CM CO CM O
iH
IfN
ON O ro
CJ CJ • • CJ •
ro CM o
.
VD ON C1— H ITN
_3- W -3- ON H H
r~I
rf '^ *C> rC^
ON CO rl CM
CJ ca co ~=f H
OJ
—
H
CM -^ VO
» 0 - £>
IT-, ^j- GO
CO
ITN
C7N ro t-
O ^Q
ro ro ON o
w
_
CO
VO CM VO
* * ,o jn »
CM ro co ro o
1— 1 ^
ON O H CM -^ VO
vo c-- t- c— c~- t—
ON "ON "ON O\ ON ON
H H H H H H
*
"^*
M-l
^
E-«
CJ
-p
(^
o
CJ
^
r-*
-p
X
•H
f-
r^J
£^
rf
rd
E:
-p
CO
>s
rf
H
H
c
o
•H
-p
o
JH
C^-j
o
H
ft
J^
c5
ra
o
,[J>
E:
*r^
*T~*
•2
p^
Cf-i
0
0
o
ca
•H
tt
c5
ft
^
o
CJ
r1^
rj
scf
CJ
-p
rf
H
pj
CJ
H
rf
o
rf
-p
ri
rf
K
«a^
w
--H
-p
*H
o
ca
-H
CO
s^
I-I
rf
EJ
rf
"rf
G)
rc^
pj
H
CJ
o
y .
ft
ri
rf
J^
to
o
-p
rf
s
0
^J
o
w
rf
to
o
^
•p
£*
•H
CO
w
CJ
bp
•H
P.
rf
i — I
1 1
O
O
,0
A-
t^J.
v
r*>
,—1
O
CO
•P
J2J
CJ
CO
CJ
^.{
ft
o
rd
CJ
•p
o
pi
GJ
EJ
O
•H
-P
J-l
•P
• o
O
EJ
O
O
*
o
o
CJ
-p
Q-l
o
CJ
in
rf
O
EJ
. 0
O
rf
y I
{-|
-P
EJ
rf
N
O
*r~t
•^
o
-p
£j
•H
'd
O
£^
Jj
O
o
o
w
"rf
CJ
ft
£_l
^o
rf*
gt
^_l
CJ
o
o
«
o
?-»
X
•H
.
*d
y^
rf
J4
rf
ca
0
4^>
EJ
•H
CO
o
EJ
O
0
rf
EJ
-P
CJ
rf
to
ET
CJ
o
•H
rvJ ""
^M
O
o
•H
-P
EJ
O
•H
•4^
EJ
CJ
-P
CJ
J-l
•p
rf
^M
ro
0
pi
o
o
r .
n
o
CJ
JH
EJ
O
>
•-H
bO
CO
CJ
i
rf
CJ
r |
.
vo
CO
o
a
o
CD
<*-!
O
EJ
-rl
*c5
CJ
•P
O "TC*
ft f-1
CJ rf
*"' EJ
CO CJ
rf -p
r^
EJ CJ
. , *~$ tJ
O CJ
R* rt
O f-i
O rEj
-P
0 Si
EJ rf
O ' '
c>
J^t 1 I
rf M
43 O
aQ
CD
J-i <^
• O ,CJ
S -P
W EJ
-P 0
EJ
o ra
CO s CJ
H w
^ 0
rf Js
CJ ft
r-I
«cjT
M PH
Oj
CD r-1
Pi rf
-P
0 0
O -P
C> CJ
EH -P
•cJ
1
.
,
j i
I
J
*
'.
»
CJ
r-1
£>
-P
a
CJ
-P
CJ
r^J
§
jet
,^>
to
t/1
C)
o
CM
CO
-------
I
I
I
^ -,A~ 6,21,22
•with spectra for known PAtt. ' '
for 19'-l72 is typical of samples analyzed except 19^7^. Consistent with
• our observations concerning sample lyh'fh is the fact that U.S. Steel
m apparently discharges waste oils from outfall 001; sample 19^7^ was taken
0.2 rr.iles downstream from this outfall.
• 3. Gas Chromatographic/iMass Spectrometric (GC/MS) Analysis
Sanple 19^72 was examined in detail by GC/MS, In addition the ten
• carnponeivt PAH solution was analyzed. Both analyses employed the 3/» Dexsil
• column. The "real-tine" and reconstructed gas chromatogram (RGC) for
the standard mixture showed separations to be identical to these shown
| in Figure 1. Mass spectra for the standard compounds were consistent
Figure 3 shows the "real-time" gas chromatogram for the analysis
• of ssrrple 19^72. (All further mass spectral data reported are for this
ssr.p'L^''1. The GO is essentially the same as the trace shown in Figure 2.
™ In C-C/-3 analysis the total ion current is plotted, as in Figure 3> after
• each spectrum scan during the run. Over sixty peaks can be counted.
Figure - shows the reconstructed gas chromatogram (RGC) of the same
| run shown in Figure 3- The data system has normalized the largest peak
_ in the ?.~C to an amplitude of 100. Because of the way the data system
acquires and processes information relative peak heights between the
• "real-time" and reconstructed chromatograms are not always the same.
Further explanation cannot be given in this section, owing to space liitii-
' tations.
33
-------
FIGURE 3- "Real-time" gas chromatogram of GC'/MS analysis of sample 19^72.
Times in minutes and seconds v/ritten above each peak represent
retention times of the eluting components.
FIGURE h: Reconstructed gas chromatogram for GC/MS analysis of sample
19^72. _ A
FIGURE 5: Reconstructed gas chromatograia for GC/MS analysis of sample
19^72 e^ploj-ing a limited mass search for ions m/e 178, 202,
223, 252, and 278.
FIGURE 5: Reconstructed, gas chrorcatogran for GC/I4S analysis of sample
19^72 employing a limited mass search for ions m/e 192, 2l6,
2^2, 266, and 292.
-------
I
I
I
I
I
I
I
I
I
I
*"-»•
I
I
I
I
I
I
I
I
I
tr\ o
CO M
o
n
S
v
r
D
H
,\
-------
r
f
f.
t
c
r
f
c
t
VD
CO
o
n
n
&
•n
r
-------
I
I
I
I
I
I
I
I
I
I
*
I
I
I
I
I
I
I
I
I
•J
.-.V-
t-
co
o
ft
H •
•*r»
v>
n
8
13
r
D
-------
C..
t
co>
« co
.O -
3
ul
$ -
o
o
XLl
•6 ^
LS
a
t»l CS K) K. t» D-J D'r DS D2. D\ 0
S
r
c
-i
-------
I
I
I
I
I
I
I
I
I
I
-_v.
I
I
I
I
I
I
I
I
I
8
tx E
co £
18
is
18
n
n
S
13
r
E
-------
in
•X
••§
•1
/ ^
,1
•5
.?
!..
o
J I
; E
I
J
n
c
2
1)
o
-H
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Figure 5 gives an RGC limited mass search for the parent ions cor-
responding to the compounds in the PA!I standard mixture. The ions
causing the RGC-peaks are indicated above each individual peak. A peak
corresponding to m/e 2jQ is not observed since it is small compared to
\\
the 202 peak on which the RGG is normalized. The mass spectra of PAH
almost always display intense parent ions. The parent is visually the
base peak. Thus performing a limited mass search for the parent is an
effective way of defining particular PAH. A cluster is often present
about the parent representing the P-l, P-2, P-3, P+l, and P+2 masses; - tha
is the parent less one, two, and three and plus one and two amu.
Figure 6 gives an RGG limited mass search for the methyl-substituted
derivatives of cc-pounds in the PAH standard mixture. Thus the iinsubsti-
tutei parents -»-l4 erru vere searched. Again, the molecular ions causing the
EGO peaks have teen indicated.
.'. limited -ass search for dimethyl derivatives, the unsubstituted
parents 4-23 err.u.vas made but the data were not conclusive and are not being
presented.
Sear ailing for unsubstituted ions in the standard and their-methyl
derivatives produced thirty-three separate GC/MS peaks indicating at least
that many compounds. In certain cases two or more PAH vere present for
a specific PvGC peak indicating more than one PAH was eluting front the
Dexsil column into the ion source at the same time; this observation
is quite reasonable. Searching for the dimethyl derivatives produced, an
additional eight distinct GC/MS peaks.
-------
c.
c
tr
f:-
fs,
r
«.
t •
i:
t
i:
i-
i .
t.
i.
i;«
t:
i .
t
t
t
i
i
i.
i
u-
i.
i.
i
i
t
i
i
i
t
i
ir\
CM O
^t M
8
1
f»
n
o
3
C31
•
f
•±
o
tf
<
l>
V5
v">
>'l
<
r
c
ul
hr
VA
£
J
f—
fi
".--. T
'
•
'
-
w .—
? -'
•»
O
»j-
fi
tf>
n>
r*
r»
O
r^
0^
r
~l 1 1 r 1 1 , . .
18
12
•s
_»-»
IB
M
• y>
CJ
B
•R
•8
:s i
^ i
In ?
-8 ' I
> =
Is j
.5 |
.p !
^2
np
S3 ^*
0 U
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
c
3
O
O
IPi
w
g
O
E
n
0
r
B
-------
o
o
.=}•
•*
n
.9
s
18
IS
s
tB
b
I8
tr
to
5
n
•o
r
O
-I
-------
1
1
1
1
1
1
1
1
1
1
3
i
i
i
i
i
i
i
i
i
i
4
i
J
.•
.
i
-
c . •
F •
l. '
_
.
- "
r ' vo
w
. > 1
LA "
-* G
___
-
8
. uc
1
• *<-^
"^
•*
f.
'• .. '
*
• — -
-
-../''.
•. •
"
.
.
•"
. . • . .
_
•
fc
• .
.
....
'
"
*s
« tr
•3
< ri
to ^
05
aC-
\i ' *,>
r5. '
r»
A £ -
!i\ »
w
t 7 £>4 IV r> rv- rx • * rJ r>> r, *l
18
r>
-M
18
r
j
s
*
t
-8 -TT
:B ':
P
-tv
18
19
^
_£
b
M
^: :
L8
h
c—*^
N
L-
u
E ^
C
r O
* ii -
r
f- r»
L§
E,
rs
f-o
E «
c. »^
• 3
r"
tr>
E "
c
rs 1
r-*"
U
L
LS
•
•
-------
VQ
n
G
5
TJ
r
D
H
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
X
Mass spectral data show that the sample extract contained almost exclu-
sively PAH. The largest peak In the RGC (Figure U) vas not a PAH but a
phthalate derivative with a strong base peak of m/e 1^9. The presence of
this co.T.pcund cannot be explained.
Presentation of all mass spectra Is precluded by space limitations. ""
In Figure 5, however, it can be seen that peaks for phenanthrene 4-
anthracene (m/e 173), fluoranther.e (first ra/e 202), pyrene (second large
la/e 202}, renzLa]anthracene and probably chrysene and tetraphene (large
broad n/e 223), benz[al- and benz[e]pyrene (large peak of second m/e 252
doublet; sr-d perylene (last m/e 2p2 peak) are present. Comparison should
be made vritb Figure 2.
Presentation, of selected spectra is useful. Figures 7 through 11
show the nass spectra of major EGG peaks (Figure 5) having ra/e 252 as
the base pesk - the bsnsfluoranthene, benzpyrene, perylene area.
Figures 12 through 15 shew the mass spectra of major RGC peaks (Figure 6)
having m/e 2^2 as the base peak. These likely represent nethyl-PAH which
are not identified. Other unsubstituted PAH having molecular weights of
2te are possible but unlikely. It should be noted the computer was
allowed to subtract background from spectra of Interest. Thus in Figure 7
spectrum 525-520 signifies that spectrum 520 has been subtracted from 526.
Another method In identifying and confirming molecular formulas by
mass spectroscopy employs isotope abundances of the common elements. For-
PAII one need consider only carbon and hydrogen. For every carbon atom,
-------
FIGURES 7, 8, 9, 10, 11: Mass spectra of PAH having rn/e 2p2 as the base
peak in sair.ple 19*1-72.
•
FIGURES 12, 13, lU, 15: Mass spectra of PAH having m/e 2^2 as the base
peak in sample 195472. " .
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SI
ci
- p
o> g
,--f o
n
8 S
K -»
t r—~j i r
II K P3 C?. Dt
-.8
In
.1-°
V
:8
Ji
8
-tv
3
S
3
8
i-55
-r—r~
<: DI o
S'
S
v
r
e
-------
£
CO
o
O
Si "I S D
I. _.. .. r. I L
-
•
•
-
'
-
-
—
' * .-**"
»
?
- - w - * * -
*"»••, * . "" *~
.?i
18
'.8
- o
J
J •
18
-o ^\
18
• r>
•*-
-+t
• o ,
-tJ
18 _
"S
r O'
r-
3
"b
,
'"Jl
8 '
i y
. .» j_ . =-
« S
If-
|| *
C) u . -
I 1 I I | i f~ f~ — 1 — "~T
L2 .
-'2
rs "
FO '
«
18
O
Su,
- J- z:
Is
•
i
t
CD ci. DI
'
DC Ct 01 D
-------
I
I
I
I
I
I
I
I
I
I
'
<
asLB
M
D
S-
I
I
I
I
I
I
t .
1:01
•a
.8
18
w
S
TJ
r
e
^
-------
c
st
CJ
o
§ 5
r
b
18
3
.8
13
a
P
!Z-v . J
In
/I
fck
p
5
«
ta
— . — -g — — — , —
I I
00! D5 CO
-
*
I | , (- i T j—
&>. d-> DS CV Or? 02. 01
KM* ;t.va ja ?iaut»tud
T
U
.8
n
t?
2
v
r
c
H
-------
1
.-'.:' I k
1
1 D-p * 3SW..CMW
1
1
1
1
1
1 . ' ^
1 .^ ' . :
1-1
1 " g
1 " •' ' f • _
c. - "— |-J|--1—
i ' i
t~ ' _
i ' -i
^B J . ...... -•=•-,
^H ^ "" — ' — — ' ' ~ ' ' "
* X
N.
1 . i • "
X 4^ * *
1 K
1? »< ' H
£ Jr. V
P J, - f) $1
r- " * K **
— M »-
* r C J
I« fj fS
« "*" f t
1^ i
^ i i « T r i r r • r r
x COl CC t-3 Ci D'j D5 01 C^ D2. 01 t
1 . ' .
K
^\ >
S
* >
.8
J - :
• o
p «
a |
i
-N
-.!
• o
-N
18
R
•3
t
8
;
IS
tv
• «O
8
1 i
.1-
" n
IB
. ?1
»
3
r
',
-------
L8
-IB
o
I;
'8
B 1
C ?
H. o
* >• >
r < a
.7
.3
.8
n
.8
\
.-;>
_*• r
-------
1
. • 1 ; • ^
1
1
•
1
1
1
1
.
1
1 2 '
• "
' -1
|tr\ o
g
1 ?
1 ' i
^ . p
f
• • c; •
1"
I
1
1" c c
I •£
~) c. r-
AC 0
* '•
- 1
1^
• •. "s f
% c i
I • .hi
" t;ip •
p Jt ». 1-
1 • ' "'
V
"vast ja 3syL.%coHJd
SI Dl S 0
t I I
" »
*fc
B *
•
-^
5 - - :
1 ^ ~^
M
H *
§ £
h § .- ,r:; ,. .;, ,.;-- ...... .
• E> • a • - -•
COl t>7 K t.^ It CT> Ot Cr Di Ct D
vyjri yr-jB j3 7,\>itowj
-f5
:s
:8
IB
•«>
-K
18
-tf
- T>
_S^
15
J
• n
-<3
J
2
8
£
-»•*
'5
13
- n
V
B
•B
t>
•—
_»••
8
.S5
.S
o
-I-
.E
IB
U)
'«?^
-*• n
'ft
-------
vo
g
O
Ct o rt —
4- fcrt C C
« ^ CV C»
U) C
C. C.
r ^
n t>
lh
5
S
18
u
.F)
LG
12
=T
IS.
L8-
o
Pi
8
8
__j j j j ( ,
0^ C^ ot «; 02. Dl D
-J<\_il ^-, -,r^ ...-.-..--
l-i>
U
in
-------
1 f .
' V ^ . . ^
Itiici. jc y*nxcy:w
01 S 0
1 I t
1
1
1 ^
•
1. • •" ' 1
|ir\
r-l . - ^JrT
• g
• " § -. ' .
Is
s
>"
*v
1 . ' . ! " ' -
^ • . • c •
3 • • • ' £
0
1= :
I —
1. • • s :
^=
s -
2 r.e ,,
f<5" B
— oi-t, *-
1 =' ' ?
* ;• E! ?6
1" r~ D R
o < J. 0
• ; 2- 5 v
• . • S " r '1 *
1- §£^. 5 S
rs.;:^
r ~i i "i '"" i T i i r i
toi K; F» D!. CT 09 01 PC cz: 01 t
1
;
»
V)
O »
-8
t> " ;
wt3 '
t> *
18
M *
18 . .
_B ^
•» •
-»* t
»
"B
f>
r>
Ci
• r>
I-;
'§ "
IS |
. •
{
"B
•8
0
S
,s
-t-
^8
-«u !
, *
'.n
>. i
-------
TO
ca 1.08/3 of the molecules containing carbon possess a C atom and produce a
P + 1 (parent +l) peak. Each atom in an ion contributes an siaoxmt to the
intensity of the isotope peak that is equal to the relative abundance
2k
of the isotope of that atom. Thus if a. strong molecular ion is present^
as in the case of PAH, the P+l abundance is useful in identifying a par-
2k
ticular nolecular formula. The P+2 is also considered, for there exists
a probability that two "" C atoms exist in a single ion. Values of P+l
and P+2 ha—e been calculated, for the various molecular formulas and are
presentee in tables. '
Table VII list F-fl and P+2 isotope abundances for selected PAH of
interest. The values are theoretical except for tT.ro molecular formulas
which represent experimentally determined literature data. Table VIII gives
P+l and "P-2 values for the PAH in the ten component standard mixture „
Excelled -.greener, t is observed.
Table IX gives the values found for certain major PAH present in
sample 19^-72» The values were obtained from spectra defined by the
reconstructed gas chroisatograms shown in Figure 5 for unsubstituted and
Figure 6 for methyl substituted PAR. Agreement for the unsubstituted PAH
is good. In a sample containing often overlapping GO peaks one would not
expect agreement to be ideal. This is especially true for the P+2 isotope
abundances vhich is a second-order effect. In addition, spectra were defined
by limited mass reconstructed gas chrornatographic searches. Overlapping
compounds present vhich are not seen in the limited mass search can easily
-------
I
.
i
I
•
I
I
I
I
I
I
I
interfere vlth isotope abundance calculations. The total amounts of
methyl substituted PAH present are considerably smaller than un.substi-
tuted polyrv-iclaars . Thus, one would not expect isotope abundance calcu-
lations to be nearly as satisfactory for these cases; this is exactly
the situation.
I
I
I
I
I
-------
c
TABLE VII
ISOTOPE ABIMDANCE3 FOR MOLECULAR FORMULAS
npp po per
CORBESPOIJDIWG TO PAH OP INTEREST » > ?
•Formula
ci4Hio
C15H12
ci6Hio
C17H12
C18H12
C19H14
C20H12
v^
Molecular
Weight
178
192
202
216
228
242
252
278
P+l
15.29
16. ho
' 17.45
18.56
. 19.64
20.76
21.9
23.5
Ph2
1.09
1.26
1.43
1.62
1.82
2.04
2.4
3-2
a Values s.re theoretical (reference 23) except for K-l 2^2 and 2785
these values are experimental findings (reference 2p^.
\
60
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TABLE' VIII
ISOTOPE ABUEDANCE FOR PAH STANDARD MIXTUR
Corr.pc
Phenant
Anthrac
Fluora-r
BenzFaj
Bensfaj
Benz[ej
DibenzL
r
ucd Assigned Formula
hreae ) C^H^
^^•s C i If
~Viinck rj --^[
ci6Hio
anthracene Cl8H12
—-•rene )
'I °20H12
""^rene j
:x,e] anthracene }
, .^ani>rfl^r._ ? °22H1^
Molecular
V/eight P-f-1
l?8 15. 5a
202 17.6
202 17.7
223 19.7
252 21. lb
278 23. 5b
P4-2
i.V
l 6
-i- #• w
2:2.
V
•L
o -.t
±-ner.=r.tbrene and anthracene vere slightly separated, as in Figure Jf.
Values -'or each side of the peak were calculated.
"b ,.
Valuer, riven are averages'for several sections of each peak; each
peak represents two compoundsj see Figure 2,
6l
-------
TABLE IX
ISOTOPE AEUKDAirCSS FOR CERTAIN PAH FOUI'.T) IK SAMPLE
PAH
Spec bnra
A. Uasubstituted
211-206
215-2C6
337-333
3te-333 .
353-3~>
te-430
*36-i£0
526-520
5*fC-520
563-557
566-557
532-5-5
73^-775
821-835
B. Methyl £-a"bsti tuted
268-262
278-252
372-369
375-369
378-369
386-383
393-390
1A6-M2
^57-^53
^60-^53
}(62-lj53
Parent Peak
178
178
202
202
202
223
228
252
252
252
252
252
278
278
192
b
216
216
216
216
216
2^2
2te
Sk2
2h2
P-H
15. If
15.6
18.3
16.8
17.9
20.1
20.0
20.3
21.9
19.6
20. k
21.5
26.7
19-3
18.2
b
16.0
I6o6
16.0
b
b
19.6
20.7
. 22. ^
23.2
P4-2
1.1
1.2
Ut-
0,9
2.0
iJf
1.2
2:1'
1.9
1-9
1.9
2.0
e
e
1.2
b
c
h.5
c
b
b
c
c
c
re
62
-------
I •
_•;'., v ^
™ TABU; ix (CO:;T)
• a. Refer to Figure 5 for unsubstituted PAH and Figure 6 for methyl
substituted PAH.
"b. Overlapping of two or more compounds prevented analysis by this method.
c. P+2 value small or not present.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-------
i * •-<;••;
Discussion
A. SUKVBr FINDINGS
Water sanples were found not to be contaminated to any significant
degree. The coke sewer (002) did show small quantities of organic com-
pounds and likely contained lower rr.olecular weight polynuclear aromatic
hydrocarbons (PAH).
The data of Table I shows the presence of substantial amounts of '
hexaaa- extractable organic residues in sediment samples. All Lorain
sedinents were surface samples. n~Hexane was xtsed as the extracting
solvent for two reasons. First it was felt that use of a halogenated
solvent svieih as'-.Freen would later interfere with gas chrornatcgraphic/
xaass spsctronatric analysis of the residues for PAII. In addition,
n-herc2—e was the e;ctraating solvent used in the U. S. Steel Calumet survey
and it. vas felt tn?.t comparisons between the two surveys would need to be
dravn.
Calur.et data~° show "oil and grease" values as high as 120,000 ppra
for one sar.ple and over 60,000 ppra for many others; some of these were .
core sarrples. Lorain data show, overall, slightly lower oil and grease
values. This could be consistent with the fact that the Black River has
recently been dredged.
Reasonably, the highest "oil and grease" values in the Lorain survey
were found in the vicinity of the plant discharge points. The lowest
values determined were at the harbor nouth and 2-3 miles downstrean from.
the outfalls. The low value for sample 19468 cannot be explained.
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
It is tempting to try to draw analogies "between amounts of organic
residue and particular classes of org?.nic compounds .present in sedir.ent
samples. In certain cases this can no doubt be done; however, caution.
must be exercised. For example while samples 19^72 and 19^7*4 yielded
\
similar amounts of organic residue, their chemical compositions are
quite different.
Table VI and other data presented in the Results section shows
that a broad spectrum of PAH is present in the sediment samples. The
highest concentrations are in the vicinity of the plant outfalls with
the levels in 1QV/2 being 2-10 fold greater, depending on specific PAH,
than fcr any other sample analyzed. Lowest values are found for sartrple
19^65 (harbor- ir.oirth), 19^67 (center of the river mouth), and 19*476
(0.2 r-iles irpstrear: from outfall 001). It is reasonable that PAH were
found in all samples since the sampling sites were in close proxinity
to the plant. A lahe effect is known to occur carrying water upstream
27
at leas~ five niles from the river mouth. Because this survey rep-
resented the first attenrpt in this laboratory to quantitatively analyze
for many PAH, one probably should place wide tolerance lirtits on the
accuracy of the data in Table VI. The data certainly reflect the levels
of PAH in the analyzed samples; however, errors of Hr 15$ would not be
•unexpected.
-------
Many of the PAH found In the seditr.ent camples are without question
carcinogenic. These include not only compounds reported in Table VI
(see also Table V), Since a broad envelope of PAH "was- shoxm qualita-
tively to be present, many unidentified compounds containing four or
more rings,, are no doubt carcinogenic. In particular are the methyl sub-
\
stituted PAH •uhich have been shown to possess a high degree of carcino-
genicit".5'20
B, OTHSR COMM2S-I3
The general philosophy taken at the outset of the survey i-ras to
analyze for a broad envelope of PAH rather than for one or two compounds..
This approach, prcved to be successful and we believe that future surveys
should be handled in a similar fashion.
The analysis for cciaplex inixtures of PAH constitutes one of the most
difficult detemi rations in organic chemistry; the data presented in this
report are clear evidence of this fact. Optimum conditions for separating
PAH fron other classes of organic compounds had to be determined. GC and
GC/I-2 analyses techniques had to be perfected. The PAH fraction (B,--,.) is
complex and requires careful and detailed analysis and interpretation.
These criteria were net and meaningful data vere obtained.
In subsequent surveys, in other geographical locations, our capa-
bilities vill be extended. For example, \re Intend on obtaining a stock of
PAH prircary standards available from the Canadian Air Pollution Control
2$
Directorate, Department of the Environment, Ottawa, These vill allow
•us to quantitate upwards of 50 PAH.
66
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
REFERENCES
1. P. R. Clifford, "Organic Analysis of the Grand Calumet Oil and
Grease Samples," NFIC-Cincinnati Report, January, 1973.
2. "Standard Methods for the Examination of Water and Wastewater,"
. Thirteenth Edition, M.J. Taras, A. E. Greenberg, R. D. Hook, and
M, C. Rand, Eds., American Public Health Association, Washington,
75. C., 1971, P?- t09-l
3. D. Koffteaca.aad E. L. Wynder, Cancer, 27, 8^8 (1971).
k. r. Eoffnann and E. L. Wynder, Anal. Chem., 32, 295 (1960).
5. E. "ynder end D. Hoffmann, "Tobacco and Tobacco Smoke," Academic
Press, ITew Ycr>, 1967 pp. 330-3UU.
6. ?.» C, Laoj" Pi. S. Thomas, H. Oja, and L. Dubois, Anal, Che:n., ji5>
903 (1973)-
7. J. W. Sichelberger, L. E. Karris, and W. L. &adde, ibid, U6, 227
.'•T-.y^N ' "
\-yl-rJ~
8. W. L, Eudde et si ibid. , in press
9. r System. 150 GC/I-'S Data Processor: System Specifications," System
Industries, Inc., Sunnyvale, California,
10. J. 3, Knight, "Computerized GC/MS For Quick Qualitative Identifi-
cation of Hydrocarbon Types Included in Chromatographic Peaks,"
Fir.nigan Corporation Application Tip lib. h3, Finnigan Corporation,
S-onnyvale, California, 1972.
11. K. Shatia, Anal. Chem., k3, 609 (1971).
12, W. Lijinsky, I. I. Domsky, and J. Ward, J. Gas Chronu, 3_, 152 (I9o5)
13. V. Cantuti, G. P. Cartoni, A. A. Leherti, and A. G. Tori, J.
Chromatography, 17, 60 (1965^.
1^. K. Carugno and S. Rossi, J. Gas Chrom., j>> 103 (1967).
15. II. J. Dawson, Anal. Chem., 9, 1852 (196^). . •
16. H. J. Davis, Talanta, 1§, 621 (1969).
67
-------
17. H. J. Davis, Anal. Chen., Uo, 1583 (1
18. J). A. Lane, H. K. Mc-e, and M. Kfifcz, Ibid., hj, 1776 (1973)
19. P.. F. Skinner, J. B. Knight, D. M. Taylor, and E. J. Bonelli, "The
Determination. of Polycylic Aromatic Hydrocarbons in Air Follutioa
Samples," Finnigan Corporation Application Tip No. 52, Finnigan.
Corporation, Sunnyvale, California, 1973.
20. "Particulare Polycyclic Organic Matter," National Academy of Sci-
ences, Washington, D. C., (1972), Chapter 2. '
21. L» Dubois, R. C» Lao, and R. S. Thomas, "Mass, Ultraviolet, and
Fluorescence Speetroraetric Data of Polycyclic Hydrocarbons Found
in Urban Air and. Cigarette Smoke," l6th Spectx-oscopy Symposiuji,
Montreal, Canada, 1969.
22. "Adas of Mass Spectral Data," E. Stenhagen, S. Abrahams son, and
?> Tr-J. McLafferty Eds., Wiley-lnterscience, New York, 1969.
23. ?-. r-I. Silvers tein and G. C. Bassler, "Spectror^etric Identification
of Crgaaic Ccnpour.ds," Second Edition., John Uiley, New York, 19^7 >
'-%-,—,— ^-r- T
\^__C- ^ w v _ _Z- *
2^4. S, H. Snre-cer, ''Ir.trocluctory Mass Spectroiuetry," Allyn and Bacon,
Ir.c., Boston., 1971, Cliapter 1.
.
ni A. E. V7illians, "Mass and Abundance Tables for Use
in Mass Specrtrcrr.etry," Elsevier, Amsterdam, 1963.
2o. "Grand Calmet River Sediizent Measurements - Collection and Analysis,1
17FIC-Cir.cinr-a.tI Report, 1972.
27. T. Braidech, private conraunication.
28. J. L. Monlonan, "Annual Report, International Bank of Polycyclic
.Aro.-c.atic Hydrocarbons," World Health Organization, Lyon, France,
December 3 1973-
68
-------
ft,.
Attachment L
U.S. EPA Survey, September 16, 1975
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
>, -a c:
o ci
c
g t^ —• IN .a-iAO-^OOC-JO-*—«
Pi
OOO O O r CO vo f»
—< f\, . . oor-^CAO—•c<^^ tsi r\. •
.— ^ ^3- —<
CA fv] • • *-^ VO Cv (*"* c*^ •
Csl OOO ••• «lA#OCv
O —lO —< c*\ O VO —<
Cv SO
CO <*\
CSI r*4 O OO O ^
^ fcj Zjvo ^- «^\ ocvi—«—<.3-oc\p>
v 2 ** ^-v «-
c o i5 ^ M
pci.t;. csiooooovocv)
.;;'- ?=»-,(sio or^oN c^co'Ad-M'
> a) ~~ *Z C7\ r^>CM •••»f^.^^eO
C+, «^S-* ^ OCSI--J-OCOCS,
rt -^ 05
S « -*
H £
^ o r~ioorsiiA(sicv —» o O —* ^3- IA CvJ
_, V O'--iAr<->(SlovoC\ t^i m —< «A d- »
V *^vS •-A^i'^3'fr\ •••Cs1(s| ••• •lsfc»^l- o
~} "J- cs rvi •" vO (Slcslfvt IACA-
r*N IA t^voc^ r^r^co
oo I ... o VO f\
So -a- csi —< ...
f^ (sicsicvl d-r^vtn
a* ^
O iA O VO O
.c l vAr^—^-i .~1.
O§ g CO (SICSICSI ij-ij-r^
"Ig-
IO
.2 2 ^— „, 2
?.o c g :§BO° - 2_ 4 *z „ „ l
1ST 2 % ="2 ig«c .?«= I-S - S€.2 IS-^^S'
gl 3 3 IE 115s o^^s §5 o u a c ^ 5 | || 5 § --- -
) to
o
CE fc5
-------
tQ
IT) OO
CM — •
OOO
V
-
—• O -J
ON
•
vo
o
— i
CM
o c"i
..
oo
o — c
. .
oo
V
vo vo oo
O"^O
...
OOO
o f~*
— «CO— <
;X r-i
o .o o
oo
-^
.
o
O-=hO
...
ooo
tN
.
o
eo
— .00
. (SI
o
gfc
o
ul
O
"->
CM
OOO
«€>!•«*»
OO
1.
*J
o
wi
e«3
"O
CM
— t O CM
...
OOO
o
CM
•
O
—i
ts S
CM
O
O
CM
O — « O — t
O -H
28-
SS.S-
-------
I
II
•; IH-I
I
1
Attachment M
U.S. EPA Survey, 3uiy 16-19. 1979
I
I
I
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Table M-l
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: Duly 16-17, 1979
(mg/1 unless otherwise stated)
Station Number
River Mile
Flow, cfs (avg.)
pH (range)
Cond. (pmhcs'crn)
Temp.°C max.
avg.
min.
DO max.
avg.
min.
Dissolved Solids
Suspended Solids
BOD5
BOD3Q
COD
TOC
TKN
Ammonia-N
Nitrate+Nitrite-N
Chloride
Sulfate
Cyanide (yg/1)
Phenolics (pg/1)
LE
6.9
180-290
25.1
23.5
20 = 5
10.5
9.0
ft.O
146
17
3.25
5.6
10
ft
0.16
0.05
0.64
19
27
<5
5
rf
-.6
6.9
1SO-320
27.5
23.8
21.0
12.4 .
8. ft
ft.2
202
16
3.1
6.0
13
ft
0.65
0.18
0.89
21
29
<5
ft
1
0.0
6.3-7.2
210-380
28.5
2ft. 1
21.0
12. ft
7.0
1.9
200
11
3.25
6.6
12
ft
0.7ft
0.34
1.03
2ft
35
<5
<2
2
1.04
6.2-7.1
210-ft35
28.5
2ft. 8
22.0
11.2
ft. 8
2.8
199
22
ft.O
8.8
15
ft
1.47
0.64
1.01
28
ft3
<5
5
3
1.85
7.1-7.9
220-580
30.0
25. ft
21.2
10.2
ft. 5
2.8
315
25
4.5
9.8
17
ft
1.36
0.93
1.08
30
47
7
3
ft
2.ftO
7.4-7.9
230-550
31.0
25.7
21.5
11.5
ft.O
1.8
245
15
ft. 6
10. ft
11
2
1.0ft
0.71
0.66
31
ftS
14
<2
5
2.85
7.4-7.8
300-650
30.5
28.9
26.5
6.3
4.1
3.0
312
14
5.7
13.8
18
5
2.19
1.62
1.53
41
70
18
3
-------
Table M-l
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: July 16-17, 3979
(mg/1 unless otherwise stated)
French Creek
Station Number
River Mile
Flow, cfs (avg)
pH (range)
Cond. (pmhos/crr.)
Temp.°C max.
avg.
min.
DO max.
avg.
m!n.
Dissolved Solids
Suspended Solids
BOD5
BOD3Q
COD
TOC
TKN
Ammonia-N
Nitrate-f-Nitrite-N
Chloride
Sulfate
Cyanide (pg/1)
Phenolics (),'g/l)
6
3.35
7.3-7.8
34C-7QO
32.0
29.7
27.0
4,5
3.0
1.*
294
3
6.25
14.5
24
6
2.36
1.75
1.95
45
78
18
5
7
3.88
7.0-7.6
600-700
31.0
29.7
28.0
6.5
3.8
1.2
468
14
8.1
17.4
30
12
2.03
1.09
1.66
65
123
28
6
8
4.85
7.3-7.8
650-820
32.0
29.2
24.0
5.4
4.2
2.9
473
6
9.25
21.1
45
16
2.66
1.51
2.92
62
117
27
7
9
5.10
7.5-8.0
670-920
27.5
24.1
21.0
9.6
7.7
5.8
662
5
3.4
6.3
18
5
0.58
0.08
8.46
92
174
<5
2
K)
6.50
7.3-7.7
660-740
29.0
26.2
24.0
7.9
4.9
2.1
523
18
8.7
22.1
34
12
3.95
2.86
3.20
58
108
31
5
JU
8.60
7.1-7.9
640-750
28.0
25.3
23.0
6.2
4.4
2.7
521
<5
13.25
30.8
44
15
4.98
3.59
3.12
60
106
25
3
12
10.10
7.0-7.8
680-770
28.5
25.7
22.2
9.2
7.0
4.7
522
8
14.0
35.6
50
20
5.50
3.90
3.11
60
110
16
3
-------
1
1
1
1
1
1
1
1
1
1
1
1
1
•
*
1
1
1
1
1
.
Stream: Black R.
Survey Date: 3u!
Station Number
River Mile
Flow, cfs (avg)
pH (range)
Cond. (ymhcs/cm
Temp.°C max.
avg .
O
mi FI-
DO max.
avg,
min.
Dissolved Sc'.l-ls
Suspended Solids
BOD3Q
COD
TOC
TKN
Amrnonia-N
Nitrate+Nitrhe-N
Chloride
Sulfate
Cyanide (ug/1)
Phenolics (pg/1)
Unit
iver
y 16-17, 1979
13
10. SO
6.8-8.4
) 510-600
29.5
26.2
24.0
11.6
7.9
5.S
396
6.1
12.3
33
14
1.05
0.10
3.94
46
112
<5
3
Table M-l
United States Environmental Protection Agency
Region V
Eastern District Office
(mg/1 unless otherwise stated)
-------
Table M-2
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: July 17-IS, 1979
(mg/1 unless otherwise stated)
Station Number
River Mile
Flow, cfs (avg)
pH (range)
Cond . ( ymhcs/ cm)
Temp. C max.
avg .
mi P..
DO max.
avg.
min.
Dissolved Solids
Suspended SoJcs
BOD5
BOD3Q
COD
TOC
TKN
Ammonia-N
Nitrate+Nitrite- N
Chloride
Sulfate
Cyanide (ng/1)
Phenolics (yg/l)
LE
7.3-3.7
220-325
25.0
24.0
22.0
9.7
8.6
5.3
179
9
2.1
4.3
9
4
0.63
0.09
0.57
19
25
<5
<2
H
-.6
7.4-8.6.
2*0-330
25.0
23.8
22.0
9.2
7.7
4.3
192
<5
1.8
4.2
11
3
0.44
0.10
0.71
21
26
<5
2
I
0.0
7.2-8.4
250-410
26.5
24.2
21.5
9.7
6.8
3.9
226
12
2.6
6.8
13
5
0.69
0.32
1.08
20
29
<5
2
2
1.04
7.3-8.3
260-450
27.0
25.2
22.5
12.0
5.5
3.0
247
12
3.2
9.6
14
5
1.38
0.80
1.20
27
41
6
<2
3
1.85
7.2-7.8
295-720
29.0
26.2
23.0
6.3
2.9
1.9
275
24
3.4
10.2
15
8
1.65
1.23
1.04
33
54
12
4
4
2.40
7.4-7.8
300-570
29.0
26.6
23.6
4.4
2.3
1.8
274
15
3.2
10.2
13
7
1.84
1.37
1.12
32
52
13
4
5
2.85
7.4-7.8
380-660
29.7
28. 2
24.5
4.1
2.3
1.7
296
19
3.9
12.0
14
9
2.38
1.78
1.41
39
67
13
4
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Table M-2
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: July 17-18, 1979
(mg/1 unless otherwise stated)
French Creek
Station Number
River Mile
Flwo, cfs (avg)
pH (range)
Cond. *)jmhos/crn3
Temp.°C max.
avg.
mi P..
DO max.
avg,
min.
Dissolved Sollcs
Suspended Solids
BOD5
BOD3Q
COD
TOC
TKN
Ammonia-N
Nitrate+Nitrite-N
Chloride
Sulfate
Cyanide (pg/1)
Phenolics (pg/1)
6
3.35
7.4-7.S
375-70Q
31.0
23.6
25.0
2,4
i.S
.6
325
1C
3.6
12.7
18
8
2.64
1.S5
1.51
42
73
25
6
7
3.88
7.0-7.8
600-700
32.0
29.8
28.0
6.2
3.5
1.4
465
11
7.9
3.3
36
31
2.73
1.50
2; 48
62
117
31
2
8
4.85
7.2-7.8
500-850
31.0
28.6
25.0
3.2
2.6
1.0
443
18
6.3
18.9
39
7
2.96
1.69
2.32
61
115
33
4
9
5.10
7.9
850-940
24.5
21.6
18.7
10.6
S.2
6.3
624
11
1.7
4.6
18
8
0.67
0.03
9.39
93
180
<5
4
10
6.50
7.5-7.8
670-790
26.8
24.3
22.5
5.4
3.9
2.2
462
30
9.2
24.0
38
16
4.38
3.12
2.93
64
118
29
4
_n
8.60
7.5-7.7
625-830
25.5
23.4
21.0
4.6
3.5
2.5
503
13
11.1
31.6
40
16
5.08
3.71
2.55
71
130
24
8
12
10.10
7.8-8.0
650-830
26.0
23.4
•?0.5
9.7
6.9
4.8
506
24
11.0
38.5
24
51
5.73
3.93
2.50
71
133
18
8
-------
Table M-2
United States Environmental Protection Agency
Region V
Eastern District Office
Strearnr Black River
Survey Date.: 3uly 17-18, 1979
Station Number
13
River Mile
Flow, cfs (avg)
pH (range)
Cond. (jjmros/cm)
Temp. C max.
avg.
irdn.
DO max.
avg.
min.
Dissolved Solids
Suspended Solids
BOD5
BOD3Q
COD
TOC
TKN
Ammonia- N
Nitrate+Nitrite-N
Chloride
Sulfate
Cyanide (pg/1)
Phenolics (yg/i)
10.80
S.4-S.S
620-700
26.5
24.4
22.0
13.7
9.6
6.0
4-42
26
6.2
13,2
30
14
1.49
0.07
3.36
47
133
5
—
(mg/1 unless otherwise stated)
-------
1
1
1
1
1
1
•
1
1
•J
1
1
1
1
1
1
1
1
1
Table M-3
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: July 18-19, 1979
(mg/1 unless otherwise stated)
Station Number
River Mile
Flow,cfs (average)
pH (range)
Cond. (umhcs/cm)
Temp.°C max.
avg.
min.
DO max.
svg.
min.
Dissolved Solids
Suspended Scilds
BOD5
BOD3Q
COD
TOC
TKN
Ammonia-N
Nitrate+Nitrite-N"
Chloride
Sulfate
Cyanide (ug/1)
Phenolics (pg/1)
LE
8.3
220-2S5
24.5
23.5
22,0
9.0
8.7
8.1
195
11
1.3
3.0
7
<3
0.71
0.06
0.5S
18
27
<5
H-
-.6
8.0-8.2
270-345
26.0
24.2
22.0
8.S
8.0
7.2
208
14
1.9
4.3
11
3
0.40
0.05
0.68
20
29
<5
4
1
0.0
8.0-8.1
220-435
26.5
24.6
22.0
8.9
7.4
6.0
230
23
2.4
5.6
12
1.3
0.72
0.18
0.91
24
36
<5
12
2
1.04
7.7-7.9
320-500
27.0
24.8
22.0
9.8
5.8
3.2
269
17
3.3
8.8
18
4
1.45
0.81
1.22
31
50
<5
4
3
1.85
6.8-7.9
300-525
28.5
26.5
23.0
4.7
3.5
2.1
268
25
3.9
11.0
13
5
2.08
1.15
1.21
33
56
2
4
2.40
7.0-7.7
300-525
29.7
26.9
23.2
6.2
2.9
2.0
283
15
4.1
12.0
16
5
1.82
1.31
1.23
33
55
<5
<2
5
2.85
7.0-7.7
380-700
30.0
28.0
25.0
4.6
2.7
2.2
341
17
3.9
12.0
17
5
2.33
1.69
1,48
40
70
7
<2
-------
Table M-3
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: July 18-19, 1979
(mg/1 unless otherwise stated)
French Creek
Station Number
River Mile
Flow, cfs (average)
pH (range)
Cond. (pmhos/cm)
Temp.°C max.
avg.
min.
DO max.
avg.
min.
Dissolved Scuds
Suspended Solids
BOD5
BOD3Q
COD
TOC
TKN
Ammonia- N
Nitrate+Nitrite-N
Chloride
Sulfate
Cyanide (pg/1)
Phenolics (yg/1)
6
3.35
7.0-7.6
360-710
31.0
28.9
26.0
2.8
2.0
.7
354
7
3.9
13.4
21
9
2.56
1.77
1.60
44
78
7
6
7
3.88
6.8-7.5
5SO-650
30.0
28.9
28.0
4.9
3.7
2.4
433
34
11.0
2.4
38
14
2.96
1.67
2.25
59
115
<5
4
8
4.85
7.0-7.6
600-850
29.5
28.1
26.5
3.7
3.0
2.0
476
22
7.8
20.9
40
14
3.15
1.76
2.28
63
120
9
<2
9
5.10
6.9-8.1
890-960
23.5
20.9
18.0
10'.4
8.6
6.8
645
6
2.0
5.2
16
7
0.68
0.06
8.68
97
182
<5
4
10
6.50
6.3-7.7
710-810
25.5
23.9
22.0
5.5
3.8
2.3
537
17
6.6
27.4
34
18
4.65
3.25
2.27
74
137
17
4
11
8.60
6.4-7.7
700-850
25.0
23.0
21.0
4.0
3.3
2.1
555
16
10.8
33.0
43
15
5.36
3.84
2.00
79
140
10
6
12
10.10
6.6-8.0
700-860
25.5
22.9
20.0
10.6
7.3
4.6
539
14
12.7
>41.2
55
19
6.51
4.49
1.96
84
140
19
8
-------
1
1
1
1
1
w
1
1
^^B
1
1
1
1
|
^B
1
1
1
1
1
1
1
4
Unit
Stream: Black River
Survey Date: 3uly
Station Number
River Mile
Flow, cfs (average)
pH (range)
Cond. (ymhcs/cm)
Temp.°C max.
avg.
min.
DO max.
avg .
min.
Dissolved Solids
Suspended Sclids
BOD^
BOD30
COD
TOC
TKN
Ammonia- N
Nitrate+Nitrite-N
Chloride
Sulfate
Cyanide (pg/1)
Phenolics (ug/1)
18-19, 1979
11
10.80
6.6-S.*
615-700
26.5
23.8
20.5
15.0
10.8
5.7
10
6.5
15.0
3'-*
15
1.96
0.12
2.69
50
13S
<5
it
Table M-3
United States Environmental Protection Agency
Region V
Eastern District Office
(mg/1 unless otherwise stated)
-------
Table M-*
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: Duly 16-17, 1979
(mg/1 unless otherwise stated)
Station Number LE
River Mile
Calcium
Magnesium
Sodium
Silver (pg/1)
Aluminum (yg/1)
Boron (ug/0
Barium (pg/l)
Beryllium (pg/i)
Cadmium fug/1)
Cobalt (vg/1)
Chromium fyg/i)
Copper (vg/13
Iron (pg'l)
Manganese (vg/J)
Molybdenum (pg/1)
Nickel (pg/l)
Lead (pg/l)
Tin (pg/l)
Titanium (yg/1)
Vanadium (pg/0
Yttrium (pg/l)
Zinc (pg/l)
H _! 2
-.6 0.0 1.0*
4*. 5
9.5
12.9
296
<80
20
<2
<2
<5
<9
1010
88
<6
0
116
12
<2
<2
<50
3
1.85
*5.5
10.1
15.7
3^1
100
25
<2
<2
9
10
15*0
180
<6
12
<8
1*
3
3
<50
*
2.*
57.5
11
19.7
161
106
2*
<2
<2
<5
<9
1200
211
<6
<5
<8
11
<2
<2
88
5
2.85
58.7
11.2
2*
<90
163
19
<2
<2
8
<9
7*1
201
<6
6
<8
9
3
<2
115
-------
1
1
1
1
1
1
M
1
I
^v
1
1
1
1
•
•
1
1
1
1
Table M-4
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: July 16-17, 1979
(mg/1 unless otherwise stated)
Station Number
River Mile
Calcium
Magnesium
Sodium
Silver
Aluminum
Boron
Barium
Beryllium
Cadmium
Cobalt
Chromium
Copper
Iron
Manganese
Molybdenum
Nickel
Lead
Tin
Titanium
Vanadium
Yttrium
Zinc
(vg/i)
teg/i)
teg/i)
teg/i)
teg/i)
teg/:)
teg/i >
teg/i >
teg/0
teg'D
teg'i)
teg/D
(yg.'i)
teg/i)
(ug/1)
teg/i)
(ug/l)
*yg/l)
6 7
3.35 3.88
59.5
12.7
30.2
<90
193
22
<2
<2
6
<9
745
202
<6
<5
<8
9
<2
<2
52
8
4.85
72.7
15.8
46.7
<90
355
26
<2
<2
10
10
1750
147
<6
<5
116
12
<2
<2
98
9
5.1
85.2
17.7
72
<90
411
24
<2
<2
<5
<9
251
36
<6
<5
<8
7
4
4
<50
10
6.5
72.1
17.2
41.0
<90
239
182
<2
<2
11
12
721
86
<6
38
<8
15
8
<2
<50
«
11
8.6
70.3
17.4
44.8
<90
296
190
<2
<2
16
18
479
72
7
22
<8
14
3
<2
<50
•<
12
10.1
69.6
17.5
43.5
<90
370
165
<2
<2
21
20
507
73
16
34
<8
9
4
<2
<50
-------
Table M-'f
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: 3uiy 16-17. 1979
Station Number
River Mile
Calcium
Magnesium
Sodium
Silver
Aluminum
Boron
Barium
Beryllium
Cadmium
Cobalt
Chromium
Copper
Iron
Manganese
Molybdenum
Nickel
Lead
Tin
Titanium
Vanadium
Yttrium
Zinc
(yg/D
(yg/D
(Pg/i)
(yg/O
(yg/i)
(ug/i)
(yg/i)
(ug/1)
(yg/l)
(^g;')
(yg/i'
(yg/l)
(yg/0
(yg/i)
(yg/D
(yg/l)
(yg/D
(yg/D
(yg/l)
13
iO.S
65.9
15.9
30. 6
<1
-------
1
1
1
1
1
1
1
1
1
•
1
1
M
1
1
1
1
1
1
Table M-5
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: July 17-18, 1979
Station Number
River Mile
Calcium
Magnesium
Sodium
Silver (yg/i)
Aluminum (ng/J,*
Boron (pg/l-
Barium (^g/0
Beryllium (wj/1)
Cadmium (ug/i)
Cobalt (Kg/1)
Chromium (l-g/i":
Copper (ng/1)
Iron (pg/1'
Manganese (^g'i)
Molybdenum (ug<")
Nickel (yg/15
Lead (pg/0
Tin (yg/1)
Titanium (pg/1)
Vanadium (vg/i)
Yttrium (pg/1)
Zinc (pg/D
(mg/1 unless
LE H '
-.6
42.5 41.5
9.1 8.5
11 10.7
326 127
107 < 80
19 18
< 1 <1
<2 <2
<2 <2
<5 23
10 10
684 429
27 34
< 6 <6
<5 <5
<15 26
<8 <8
11 9
<8 <2
<2 <2
119 161
otherwise
0.0
41.1
9.4
14.8
483
157
22
<1
<2
<2
906
19
4660
139
63
<15
<8
13
4
<2
63
stated)
2
1.04
53
11
19.6
387
130
24
< 1
<2
<2
<5
<9
1140
176
<6
<5
<8
9
<2
<2
106
3
1.85
50.2
11.2
21.3
476
158
25
<1
<2
<2
<5
<9
1250
208
<6
<5
<8
11
<2
<2
73
4
2.4
48.6
11.2
22.1
498
170
28
<1
<2
<2
7
<9
1310
230
<6
<5
<8
11
<2
<2
67
5
2.85
54.5
11.9
27
342
178
25
<1
<2
<2
10
<9
1190
236
<6
<5
<8
65
<2
<2
72
-------
Table M-5
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: july 17-18, 1979
French Creek
Station Number
River Mile
Calcium
Magnesium
Sodium
Silver
Aluminum
Boron
Barium
Beryllium
Cadmium
Cobalt
Chromium
Copper
Iron
Manganese
Molybdenum
Nickel
Lead
Tin
Titanium
Vanadium
Yttrium
Zinc
(Mg/n
(yg/i)
(yg/l>
(yg/D
(yg/i)
(yg/0
(ug/i;
(yg/i)
(yg/i>
(yg/D
(yg/l)
(yg/D
(yg/D
(yg/i)
(yg/D
6 7
3.35 3.88
55
12.6
33
< 1
235
217
25
<1
<2
<2
<5
<9
1010
227
<6
<5
<15
<8
7
<2
<2
73
8
4.85
70.7
16.9
55.1
<1
229
331
29
<1
<2
<2
<5
<9
2480
168
<6
<5
<15
<8
8
<2
<2
102
9
5.1
82.8
18
87.8
<1
<90
449
18
<1
<2
<2
<5
<9
321
32
<6
<5
<15
<8
<6
<2
<2
<50
12
6.5
70.4
17.7
49.2
<1
258
467
70
<1
<2
<2
15
13
1080
96
11
<5
<15
<8
11
<2
<2
76
U_
8.6
70.5
17.5
57
<1
<90
558
71
<1
<2
<2
13
18
682
80
<6
<5
<15
<8
<6
<2
<2
68
.12
10.1
66.8
17.4
56.1
<1
<90
599
47
-------
1
1
1
1
1
Unit
Stream: Black River
1
1
1
1
1
1
1
1
1
1
1
1
1
Survey Date
: July
Station Number
River Mile
Calcium
Magnesium
Sodium
Silver
Aluminum
Boron
Barium
Beryllium
Cadmium
Coba't
Chromium
Copper
Iron
Manganese
Molybdenum
Nickel
Lead
Tin
Titanium
Vanadium
Yttrium
Zinc
(yg/l>
(Ug/l)
{{jg/0
I":/;!
fug/i)
(pg/1)
\ .- o; * ;
(•_T/i)
l-g/i)
(1:3/0
U-g/l>
(iig/D
(Pg/i)
(jig/1)
(Pg/i)
(Pg/l)
(ug/i)
17-18, 1979
13
10.8
69.2
17.3
W = %
< j
<*}
131
35
<2
<2
291
19
1330
6S
21
97
< 15
<8
<6
<2
<2
54
Table M-5
United States Environmental Protection Agency
Region V
Eastern District Office
(mg/1 unless otherwise stated)
-------
Table M-6
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: July 18-19, 1979
(mg/1 unless otherwise stated)
Station Number
River Mile
Calcium .
Magnesium
Sodium
Silver
Aluminum
Boron
Barium
Beryllium
Cadmium
Cobalt
Chromium
Copper
Iron
Manganese
Molybdenum
Nickel
Lead
Tin
Titanium
Vanadium
Yttrium
Zinc
(Pg/l)
(yg/i)
(yg/i)
(u'g/1)
(Vg/!)
fug/1)
d'g/1)
(,,?:'!}
••r-5< *'
^g/i)
(us/1)
(ug/l)
(ug/1)
C^g/i)
(Pg/l)
(Vg/l)
(Pg/l)
(yg/l)
(ug/1)
(ug/1)
LE
38.7
8.7
9-1
< 1
217
-------
1
1
1
1
1
1
1
1
•
•
1
1
1
1
1
1
1
1
1
Table M-6
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: duly 18-19, 1979
(mg/1 unless otherwise stated)
Station Number
River Mile
Calcium
Magnesium
Sodium
Silver (yg/i)
Aluminum (vg/i)
Boron (pg/i)
Barium (ug/!)
Beryllium (vg/l)
Cadmium (vg/U
Cobalt (vg/i)
Chromium ivgfi>
Copper (ug.'I;
Iron (pg/J)
Manganese (pg/i1
Molybdenum (pg/1'
Nickel (pg/i)
Leaa (yg/1 /
Tin (pg/i)
Titanium (pg/i)
Vanadium (ug/1)
Yttrium (pg/i)
Zinc (pg/D
6 7
3.35 3.88
56.9
11.9
23.8
5
<90
1S8
22
< 1
<2
<2
32
11
860
236
S
46
21
-------
Table M-6
United States Environmental Protection Agency
Region V
Eastern District Office
Stream: Black River
Survey Date: 3uiy 18-19, 1979
Station Number
River Mile
Calcium
Magnesium
Sodium
Silver (pg/i)
Aluminum rug/! 3
Boron (pg/U
Barium (pg/1)
Beryllium (ug/1)
Cadmium (pg/l;
Cobalt (u£.':">
Chromium (ug/i)
Copper Og, D
Iron (pg/I }
Manganese (pg/l?
Molybdenum (pg-'l)
Nickel (pg/l)
Lead (pg/I)
Tin (ug/I)
Titanium (pg/l)
Vanadium (pg/l)
Yttrium (pg/i)
Zinc (pg/J)
10. S
77.4
17.3
33. S
3
<-50
275
35
<1
<2
<2
22
21
409
62
<6
26
<15
<8
25
6
5
67
(mg/1 unless otherwise stated)
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
II
u tj
eg."
O O UT
° £ o
_0 _0 j3
>
>- 3 _
00 CM '-^ <3
I 1 ', ?Z
00 fM U O
Jj
C.
o
G.
, C
^
i 5
i £
! s
i z
i o 0
P L!
u g
iff o
^o'H
z^E
_~ +-»
o ^
i^
.—
& ^
to i
vc
C — i
'2 ^
° 3
V
•• -*-1
O f"1
~ "3.
u c
•^ §
C3 ui
00
"3
00
)
ON
1
3
0
CM ^
O
— 1
o
CM
O
o
o 0
CM
- '
CJ
Q.
_O
J .
CM O O <*~
• » • VD
i^ ^ CO -3- fNJ-
"^ "^
3
CM ^
M rr
»< ^
^D r~v oo JT
CO O O <-
j '
3
o "
jd 1
°^ 5 1
Hg ^c
||
s
E
0^
C-
1/5 >,
£
PARAMETER
0
o
o
s
LT'
J
V,
•S
"•
f
—
C
r—
"
i
V
i
V
^
o
o
CM
O
CM
^
S
X
O
CM
i2
O
-
O
CO
=
.—
£
£
„
! —
CO
VD
O
O
r~.
o
CM
CM'
^
CM
O
=0
o
CO
^
„
0
00
^
fV
J
o
o
o
o
CO
CM
o
ON
„
c
CJ
0
z
r™
o
2
CM
o
CM
o
CM
CNJ
O
„
p
0
z
\
^
s
o
o
s
oX
"^
o
o
hv
0
Z
1
(
O
'<
O
o
o
CO
3
o
0
o
-
ON
0
N
O
o
00
5
o
0
CO
2
0
o
'£
a-
ro
s
1
o
o
V
~^
0
""
o
o
_o
--t-
o
o
o
o
o
Phonolics
-------
V &
«-•
8
.
.2-2 3
== * e
°
>- 3 _
00 CM IlJ O
o
"3.
E
a
10
U
u
u
2
(-
U
«,
o
o
111
5
Z
O
o;
HI
10
D
(9
01
fr 2
~
rt
JC
u
VO
jj,
3
n
ri
a
a.
rt
CT\
r-~
c^
•s
CPi
—H
1
oo
~5
n
ON
i^
CTv
o%
3
n
cr\
t-^
c^
l«
h^
— ^
!
VD
_>,
"3
n
i
I
$5
i^
a"*
DO
E
W >,
f. ^
Oi5
a;^
o~~-
^
E
'0- >-
o-S
ci-~
c^-
!
!"• '
so
E
&
UJ
\RAME1
CL
r>
f\
?.
^.
*
,
p
>o
«
»
P
^
u^
"^
F
'C
C
!-
o
o
~-4
*
0
^T
T>
r
«
e
I
r*^
2
I
!
E
*?
C
c
c
z^
l-
o
o
"O
•^
0
s
0'
o
^
o
rO
p-^
0
1
_
•f\
-SJ
c
X
r
•y
(-
1
1
I
'
B
•'
i
i
^~.
D
^
V
i_
^
a
E —
3
5
*
0
>-
.
N
r\
f\
r\
1\
•f\
!'!
\<
I1"
o
J-
oo
s
-
r^
j-
"
*c
c*;
r^-
0
i1
h
i
VX
C:
C
V
a
o
V
I
I
V
^
H
!
c
c
V
c
q
v
c
cr
v
L-
"
1
1
fv,
C
V
r
i
O
O
/
I
1
(v
C
c.
V
"C
i"
0
"
!
(Nl
O
o
V
1
1
o
o
V
!
CN
O
O
V
.0
o
(-
o^
fv.
o
c
1
o
o
'/
1
!
lr^
O
c
V
t
c
1^.
'"
,"
r^
c^
^c
(N
i
.
c
o
'/
C*>
?
O
o
2"
o
t-
00
^3-
(X!
U™\
u"N
O
C^
CM
^±
o
CXJ
t/*
s
-
^
vr
t-v
c
^r;
0
\c
oc
sC
o
O-\
\D
rr*
^t
o
tr,
O
C
H
i
VO
o
o
V
)
o
c
V
1
1
\£-
C
O
V
c
c
"b
^t
H
t
U">
O
O
V
t
I
c
o
V
I
u^
O
o
V
.'-£
~Z.
H
i
i
i/^.
O
V
'•
o
V
1
1
ir\
O
V
_J
H
!
CO
O
o
V
1
o
0
V
1
1
oc
o
o
V
L_
h-
1
1
S£
o
o
V
1
o
o
V
1
v£
c
c
V
£
H
>-
i
(V
c
o
V
1
c
c
V
!
(V
c
c
V
•c
>
H
!
INI
o
o
V
1
1
o
c
V
1
rv
o
(-*•
V
-
~
>.
>
r"-
u-\
u-\
J-
o
^±
l/\
rA
c^
o
1
c
^
c
V
E
!•-)
:-
-------
I
I
I
I
I
I
I
ES
S8
"O "^ „,
gg.?
?H
III
3 O '
O £.
oo f^ M O
CJ
(X
E
id
t)
(J
O
o
UJ
1
1
1
1
1
1
1
1
i
CU ON
H 7
1/1 vo
rt -1
-i" 3
UJ r-j
4)
& °
« Ji
.c "3.
y E
D >
£
•— '
**
^
00
t-1
ON
fv
ON
00
1
I--
_>,
"3
n
CN
iv.
ON
t-v
— H
\O
>,
"3
n
tv)
CN
— '
O
o
"""*
o
o
C-4
O
+-•
0
r-i
£}
^ o^"
C5 _,.
co ^ -3
0 < <--J _ •
^ ^ S ^
3 N
?--
^ c^'
c/i .
uo g>
a *=
S
OH
a.
uo ^
jC «
C ID
'v/
" ^fe
0
M 0 Mi
> ** >]
r^ <• — <
M^- f-J ^1
•=; .~j 2 J
y£! =0 r~.
fNJ S <"'
^ M6
^. ^
oo
0
i
CNI
^5
rs
O
oo
o
rj
V
0.
>,
V
|o
3P
^ ^
o ^
1? S ?
"-•< - «•
5C 3"
s
d.
uu
% $
O -o
<*^
o
o
o
M
r-v
C3
o
ON
tv,
r^
__
t
t i^j-
u^,
V
J2
r-
S
r-*.
o
o
SO1^
i
! 1
o!oo
••^ ,M,C^
r>i !r~\'^
rv '^ '—
| i
O
o
i
>
-)
2f
fc
!
L
fe
r
i
L
( i ; •
o f^i-T o-;?"
o'-~ V^ -^-;"".
o
•^
a-
•^
z>
pe
r^ — i i
i : ' i
I
0 "^ 0
0 --O-CO
CO cr^ i-^
u"M t1^.
-^
o - • ; ;
• » O -' '
V& , CM
(S CT '
|v. t-« ^~
1 tv. '
K "^
(^ <^
O
P
_ o
Flow (MGD)
Temperature ( F)
pH (su)
Conductivity ,umh
Dissolv^ri Oxveen
S
Ou
a
PARAMETER
u>
o
rv
(/
X
"c
tr
-c
c.
>
"c
'/
•/
c
c
i_
;2
•c
~c
t/"
T:
1
c
i/
a
C.
O
IN
i
n~-
^
b
P
O
T
C.
e
c
C
c
C
c
^
i
T"
r-.
c
^
L
' r
L
r
i
j-
/-
r
r^
j
!
o ,^
^
^
'IS*
l_— — —
r-v
(v
t/v
O
o
^Ts
~^,
• i
0
S
r^
V3
O
rx.
^
1°
P
} *
C!r^>^-
o!^:
-r
|
^
— '
"j\
C
CJ
u
2
^
1-
r^
X)
^iS
1
f^4
1s
^4
i*'
-t
I2
8 ^
Sj ^
a
o
i«
a
-o
>
a
t/:
i_
O
a
r t
D.
u:
S
T
t
i
1
,
t
-------
8.8.
gg
•C ^ cr
UO .
CJ
ex
£"
o
I"
rt
O
tl
o
2 o
H y
u c;
e o
I |
2 ?
O
IU
cr>
Q. C^
"> VO
2 ""
" >,
o o
tc —
C tn
ON
rv,
ON
CO
—\
1
tV,
i
V)
vn
O -o
rS ~i.
e.
o (v.
crJ OC
>,
^? CJ O' f^Ji O: '
O -o !^iccl0(
I i
— ;.-* o a-
Clfs.'!^- (S.
"ajO{V r^!0
O
O O
S
CL
i 0.
i-
CP
CJ CJ
— ,
OO
OO
OO
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
i
i
i
i
.
e E
SS
C '•-' ~-
o. "- o
2u
.2 — S
—. *- "5
3 o 7;
°J= a_
-=• ~. -^
so r-j 'r •"'
«o o* ;iJ O I
Z
O 0
P o
U S
i-J X
o'-' -
ti -r u
c-o'H
PJ^S
o
2 o;
v- &
K O
O to
-------
I-1
o o
o o c
Cv fX o
S £o
U
•
u
I
i-
o
-------
I
I
I
i
i
i
i
!
I
I
I
I
I
I
I
I
I
I
I
I
RR.
t> £*
•o ~u „,
§21
— ~ ir i
UJ O
<
7.
P u
U ~
£ O
^ -t: ^
5^2
r_
5 A
"6 r-
i^ E
5
__l_
r <
6~
ci "^
t ^-^
3^ ! S i
5< i - r - .__.
- U' i ~ . ;> o ,. , f
v-' ! S i /. -!
1
fo Lt
-------
•o ~J .
f Si i
>. --- =
c.? =
y
o ,,
P
e:
Z
lit
H. O
Q «
2 I
i S
j t ; '.i
c- o r> -^
oo —
t_l x;
T. <
"
P-. !"_»
tC . o t
$3£^
K*S^
"^ »^
£-r
02 >,
J cj r- - ^J
^ -x( ^- — ~ '
r ^ ^- -
-
t£
til
1
-------
I
I
I
I
i
i
i
i
i
i
3
I
I
I
I
I
I
I
I
I
I
I
"^ Si
RR
H K
ss
Hi
" £
a. r'~ o
^_ o
o > „
s
6
O
Ontfjll CQ'i
CA15SJ4
Ci;tfal! 003 •
UAJ5S50
"^ <
u tu
1
O
O
(N
£-
Sis,
5s ~
1/1 "^ TS! G> <1 *"* ^* 5\
~S^sh ^§j£
o
CO
I |
i
o
0
o
» »-
5|^si
' ^
^l >. §
'O "~" — (
>, _^
LJ -o SL
g
! 1
0
; S
§ -
=0 ^
> C-
' j-" O~ ' '
O
i
1
o
0
0
r~4
0.
•^ u-^ O —
* tx
Dow (MOO)
Tc-nporatiirc ( F)
pH (su)
Conduct! vity.umho/rm
M,,v,V>,M fUvi.™ mr>/l
.,,
G -^ ^
^ i
g
g =
f
~^
f- <
! -
3l.£ 0'
r~
^. fN
1
= f'
' ° 5?
-,._
I
O O;o
IT
i
t
si -S. C^
(N. ^
-r-
~i r ^
-" '^' _-
^ £.'
u^,
:?
o o
<-
_
"i?
yi
'"*
•^ C"
^1 XO
r< c-
" F
„ 0
P-J
-3- ^
1
\
L
'O 'O
i=r
:
>•* ~-
— .
zs
O 'C
PX vi
3JS
1
& l^~
zz
<- r^
?-;
^ Z
""
fS.. —
l\l
J"' -
i-^
;
S
-
— • .
^
7»
~"
^
^
0 C
c- c
- -
o »
^ f
o c
0 -
0 C
"I-"
0'-
7* 1"
r
Pf
l
\^ V.
Ff
; -"
>
°S
S
3 »
5 i
-
5 <
o
X 'y
^
;-
b
O
ad
-
0
c
"
s
;
o
_
*
.
;
C
"o
_
f
'
j {
Z
3
s
y,
5
r|
1
f
=£
-
f
1 x
§
T
!
-
—
—
_
i
1
t —
_
1
—
1
1
-------
c -
£ p
v i>
° — ~
~~
> r* tu O
u
7.
Ssl
t* I^ -
I?
X .^
§
>
2:
tJ
t".
o
U
-------
I
I
I
II
y 5'-?
r* Lj U
o
y,
^j
o
2 o
\- £'
o c
fJ O
o> ~
&> °
fe <:
K E
0 ^,
O _
o^
— tA !
5 "
Tl *C
05
,pbb
_L
* t
•"j-j-
i T
;ojo'c-'o ojoj— o
o o|-U> jSjr
ooOD oe
-------
11*
.!.!«
s£6
ge"5
-=ȣ-,
o
&
t-
u
c:
S.
u
o
« ^
i-5 .
3 ° —
0 ^-
6
r-i
V
O
!
! ~5
^ <
o
1
fH
&?;
P
i
i
i
y>-
§i
t~l ~O
~ ^
-
c.
£ >•
0-g
"5
t- £
U x>
'f'.
y, ?
o ~
^ %
z^
~
6-
s
0.
a
g
°-
O
O
^
r™"\
r-*
lo
r-\
• — .
o
~
0
^
,
^
^
—
o
L
'J
r-
0
^*
~
^
-
0
p
I
-I
~
^
-
v^
i
"-
0
"^
rf-y
O
^
^
2
i5
,
^
r
—
"
r
h
:
.
~
o
'
!
0
,
°
c;
O
/•
-
„•
o
'
•^
r
:-
-
^
^
^
":
0
O
:
O
p
r
•"•4
1
»
°
^
~
O
"=.
0
^
r
-
^3
CO
^
°
^
:
c
O
c^
r3"
t;
s
o
s
o
=:
...
!
§
^
,
:
3
5
d
a
c.
?
-
:
'•
-
"
i
:
£
'
C"
v
r-
1
.J
-
•
r-
5
C
V
(
;
!
t
;.
^l
£
c
~
~-^
-
!
;
V
g
c
V
^
r-,
c
C
0
c
n
0
V
0
-
"i
•i
CS
-
_>
_
C1
'
I-N
r-
=
^
-
C
c
c
r
f
'i
^
e
-
£
*"
o
(-•
Cl
C~i
?
~
-
^
c
"^
z.
'. r
c
-
-
0
1
~v
£
0
0
^
^
?
r
*
-^
•^
-
;
.
'
s
=3
c
.
f
(
J
^
^1
c-
":
>-
-
^
_
^
5
£>
,
J
0
^
f
c:
'L
t
r-1
!
;
1
°
(
;
S
(
?
c~
v
c-
i
-
CN
O
O
C'
r.
o
-
.~:
c
,,
^
c
r
c
-
-
i-
;
;
1
O
j
,
'•
r-
Cl
?
-'
'
^
v~
"
s\
0
'
1
;
i
^
*
•
C-
;:
i
•^
?
c
^
1
2
oo
r*j
2
•»
-
^
c
^
r-
_
z~
c
C
c
•L
\
'
-------
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
I
1
I
I
Ill
y
CJ
O
u —
fc. rt
^ o
D v>
Out
E
ta
E
LLLLL
hhH
> -
h
__!
|
o ic* p i— o p p p i-> C> -? t
!£EHite
I h ih
4?"
o 0^:0^jo ojojo o j o
h
kb
-------
li-s
S,X§
O
G ^
i- rj
a, Q
s »
" 6
v> c
5 ^
-------
1
»
1
>• \Z'Z
;• a a
l?j;
|l| I
f-§-°
zie
In O j
:**
2 O -3
IMM U U
. ' ^"ut3
i-
It
3
» *
|£
i
u
u
12 ^
H V
'_) ^
p! 3
o> -
"i cf?r
1
1"
I
»_
1 t
I -,:
.^^ • 4» *^
|H"S~r
?£ =
"£ o "3
1 a"
V L' 0
'. n -S
..^ - -K CL
1 I I
•
1
1
?5
= j
0
g?
tf <
i
-i "*•
P
i
:
t
1
i
i
1
r J 1
1
•
J ^
^- ^ .r rst ?v
HJ?,". , ,5 , , .
5 ^^cp^P cjcicjcc
L =• -^ r» p Jc> to o< oc cj c c
-;i- ooo'. ,' 3, , . -
5-u^
0 C
tsk a's'sl^
^ > c>c>|oo'^jcci«o£'C
^ ^j-^^fc-oocrciccc
[
-P _LL
I — ^[O ^!—»ro <
D-" •%.•/> C-OC3.OC3CCCC
\
C
U c ^ ;; ^ :
t - ^J-^^JH^
•
i
i i
r \
I
| ^_
\
\
i
, I ^ , , . , 2 . . 3
i
o — 0 oj c:* cN cH o cH Cl cS
v •/( / / vj v /I [
LJT IT
^j::j, ,.irr
itLUll
, ., .15. ,777s
^ci^CjcoJcjoc^oci
1 1
i.Zuj
• J ^ ^ 4 •< •* 15
c
' - - c
1
i
i
-------
II
Hi
uiO
O
z
„
Q.
V-
u
I
•o c —
.£•«>•
S. 3
Q
-------
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
U.S. Environmental Protection Agency
Region V
Eastern District Office
Discharger: United States Steel Corporation
Lorain Works
Sample Date: 3uly 16, 1979
Sample Number Location
79EA13S36 Intake WI-3
79EA13540 Outfall 001
79EA13532 Outfall 005
79EAI35^7 Intake WI-2
79EAI3525 Outfall 002
79EAI3551 Outfall 003
79EA13S55 Outfall 00*
79EA13S52 Waste Oil at
Outfall 001
Sample Types - Grab
Total PCS (ng/1)
< 5.6
< 4.9
< 0.3
< 0.3
< 0.6
< 0.3
<60
-------
U.S. Environmental Protection Agency
Region V
Eastern District Office
Discharger: United States Steel Corporation
Lorain Works
Sample
Date:
3uly 16-17, 1979
Sample No^
Oil and Grease Samples
Time Oil (mg/i) Sample No. Time Oil (mg/0
Intake Wl-2
EA13S47
EA 135 48
EA13549
Average
1628
1816
0425
< i
EA13S32
EA13S33
EA13S34
Average
Outfall 005
1255
0445
2
3
1.7
Intake WI-3
EA 13535
EA13S3?
EA1353S
Average
1247
2050
0431
3
1
*>
JL.
2
Outfall 002
EA13S25
EA13S26
EA13S27
EA13S28
EA13S29
EA13S30
Average
1216
1629
2028
0013
0425
0906
5
2
2
2
3
< 1
I
Outfall 001
EA 13540
EA13S41
EA13S42
EA13S44
EA13S45
Average
1319
1705
2135
0507
1142
3
5
7
9
6
6.0
-------
1
1
|
W
1
1
1
1
I
1
Discharger:
Sample Date:
Sample No .
U.S
United
Lorain.
3uly
Time
Intake WI-2
EA14S47
EA14S48
EA14S49
EA14589
Average
O
1300
2020
0420
1000
Intake Wl-3
1
1
1
1
1
1
1
EA14S36
EA14S37
EA14533
Average
Cutfa
EA14S40
EA14S41
EA 145^2
EA14S43
EA14S44
EA14S45
Average
1343
2050
0424
11 001
1413
1845
2115
0046
0447
0848
. Environmental Protection Agency
Region V
Eastern District Office
States Steel Corporation
Works
17-18, 1979
Oil and Grease Samples
Oil (mg/1) Sample No. Time Oil (mt?/l)
Outfall 005
2 EA14S32 1355 <1
1 EA14S33 1830 <1
<1 EA14S34 0440 <1
< 1 Average < 1
<1
Outfall 002
<1 EA14S25 1323 5
<1 EA14S26 1812 2
< 1 EA14S27 2035 2
<1 EA14S28 0100 <1
EA14S29 0410 8
EA14S30 0807 < 1
Average 2.8
3
3
5
6
13
6
6.0
-------
U.S. Environmental Protection Agency
Region V
Eastern District Office
Discharger: United States Stee! Corporation
Lorain Works
Sample Date: 3uly 18-19, 1979
Sample No.
Intake V/I-2
EA15S47 1448
EA155-S 2104
EA15549 0413 .
Average
Oil and Grease Samples
Time Oil (rng/1) Sample No. Time Oil (mg/1).
Outfall 005
EA15S32
EA15S33
EA15S34
Average
1225
2133
0435
3
2
1
1.7
Intake \V!-3
Outfall 002
EA15S36
EA15S37
EA15S3S
Average
EA155-J
EA15S-I
EA15S42
EA15S43
EA15S44
EA15S45
Average
1212
2122
0425
1 001
1240
1643
2150
0053
0450
0838
7
4
4
10
5
10
6.7
EA15S25
EA15S26
EA15S27
EA15S28
EA15S29
EA15S30
• 1158
1619
2109
0020
0410
0804
2
3
2
1
3
< 1
Average
-------
Attachment N
I
I
I
I
I
I
I
I
• Discharger Monitoring Data
I
I
I
I
I
I
I
I
I
I
-------
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Flow Temp. BOD,.
Month MGD °C mg/P
January
Avg.
Max.
Min.
Februarv
Avg.
Max.
Min.
March
Avg.
Max. i
Mm.
April
Avg.
Max.
Min.
May
Avg.
Max.
Mir..
3une
Avg".
Max.
Min.
Avg.
Max.
Min.
Av^
Max.
Mm.
Seoternber
Avg.
Max.
Min.
October
Avg.
Max..
Min.
November
Avg.
Max.
Min.
December
Avg.
Max.
Min.
,38
.38
.27
.31
.36
.26
.62
.5
.3
.54
.33
s
.74
.38
.43
.56
.38
.4
,5
•2
.1
.5
.38
.39
.56
.3t
.34
.42
.27
10
17
5
5
9
3
11
14
7
13
13
8
9
12
6
7
14
3
6.5
12
i
5
10
i
7.1
16
2
10
14
5
9
17
5
Lodi Wastewater Treatment Plant
Effluent Quality
1978
TSS NH,-N TKN
pH mg/i mR/1 mg/i
- 7
16
0
- 3
16
0
8
0
8
12
0
12
64
0
3
8
0
2.6
8
0
4
16
0
- 0
0
0
- 6.7
16
0
- 13.4
32
0
Total Fecal T.Res.
Phosphorus Coliform Cl?
mg/1 #/100 ml mgfl
.3
.8
.3
.6
.05
.2
.5
.2
.25
.1
.2
.3
.2
.3
.2
.4
.2
.3
.3
1.3
0
.29
.40
.2
.4
-------
Lodi Wastewater Treatment Plant
Effluent Quality
1979
Flow Temp. BOD-
Month MCD °C mg/f
January
Avg.
Max.
Min.
February
Avg.
Max.
Min.
March
Avg.
Max. !
Min.
Agrii
Avg.
Max.
MIR.
May
Avg.
Max.
Min.
Ju-.e
Avg.
Max.
Mm.
OuJv
Avg.
Wax.
Min.
August
Avg.
Max. !
Min.
Seoternber
Avg.
Max. 1
Min.
October
Avg.
Max.
Min.
November
Avg.
Max.
Min,
December
Avg.
Max. 1
Min.
.3
.45
.22
.33
.97
.20
.46
.C4
.31
.38
.89
.39
.43
.43
.37
.42
c <;
.32
.45
.0!
.39
.
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Lorain Wastewater Treatment Plant
Effluent Quality
1978
Flow
Month MGD
Danuarv
Avg. " lt.9
Max. 25.5
Min. i2.4
February
Avg. 12,8
Max. 14.5
Min. 12.2
March
Avg. IS."
Max. 29.3
Min. 12.5
April
Avg. IS. 6
Max. 26.5
Min. 13.5
May
Avg. 16.'-
Max. 21.5
Min. 12.5
June
Avg. 15.4
Max. 3C.3
Min. 12,6
July
Avg. !".9
Max. 2t.?
Min. 12. S
August
Avg. 16.7
Max. 2^.5
Min. 12.6
September
Avg. 17.6
Max. 22
Min. 1". 6
October
Avg. 19.2
Max. 29.0
Min. 14.8
November
Avg. 15.4
Max. 16.7
Min. 12.4
December
Avg. 16.2
Max. 20.5
Min. 13.3
Temp.
°C
11
12
9
10
11
10
9
11
8
11
1^
9
15
17
13
20
21
18
22
24
19
24
24
23
24
25
24
21
24
19
18
20
14
14
15
11
BOD,
mg/F
30.2
90
6.6
16.7
33.3
6.6
17.4
43.5
6.0
19.!*
45
9.8
15.2
65.6
2.6
9.2
42.2
1.7
12.3
113
2.5
8.1
23.5
2.1
6.8
18.4
3.6
9.8
19.7
5.4
14.7
24.9
8.6
9.8
17.5
5.7
EH
—
7.2
7.0
—
7.2
7.0
—
7.2
7.0
—
7.2
7.0
—
7.3
7.0
—
7.3
7.0
—
7.5
6.8
—
7.4
7.0
—
7.3
6.9
—
7.2
6.9
—
7.1
7.0
—
7.2
6.9
T5S
33.4
118
8.8
30.4
56
12
41
142
10.0
36.8
76.7
13
35.8
150
11
23.3
98
1.2
26.7
202
2.0
13.7
41
1.8
14.9
31.3
5.6
22.8
43
8.5
44.7
84
17
24.4
59
12
NH,-N
mill
9.5
14.7
4.8
8-4
14.9
3.6
7.9
15.3
1.1
6.2
11.2
1.4
6.4
9.4
3.2
7.5
14.3
3.2
12.4
16.9
5.3
7.5
13.3
1.8
10.2
13.9
3.4
9.9
14.1
3.0
8.5
15.1
1.7
6.02
8.8
1.7
TKN
mg/1
11.8
19.4
2.3
12.5
20.4
7.3
10.8
21.9
4.9
9.7
16.5
3.97
9.8
19.5
5.6
9.4
14.9
5.6
15.5
20.5
6.8
8.9
17.1
3.8
12.7
16.3
9.1
13.9
17.5
6.2
14.5
20.9
7.9
9.3
12.6
7.1
6.0
9.5
2.6
6.3
8.1
3.8
4.8
8.5
1.3
5.2
7.5
2.9
6.3
8.8
4.2
6.1
9.0
2.7
7.7
12.2
4.8
8.43
10.2
4.9
7.1
10.1
2.2
7.6
10.5
5.11
9.4
12.9
5.9
7.2
10.4
4.8
31
260
4
18
38
3
21
170
4
98
1100
4
28
72
4
44
400
<1
38
80
6
39
180
1
40
330
2
85
640
15
80
550
4
19
110
3
.7
.8
.6
1.0
.7
-------
Lorain Wastewater Treatment Plant
Effluent Quality
1979
Flow
Month MGD
January
Avg. 16.5
Max. 24.0
Win. 13.5
February
Avg. 15.8
Max. 23,. 5
Mm. 12.3
March
Avg.
Max.
Min.
April
Avg. 19.0
Max. 2S.O
Min. 15. 1
May
Avg.
Max.
Min.
3une
Avg. 16. 3
Max. 27.2
Min. IC.7
3u!v
Avg. 17.2
Max. 2£,r
Min. i'~.2
August
Avg. 15. Q
Max. 19. i
Min. 13. S
September
Avg. 14.1
Max. 30.3
Min. 11.5
October
Avg. 13.2
Max. 22.4
Min. 10.6
November
Avg. 16.2
Max. 24.4
Min. 12.7
December
Avg. 15.7
Max. 25.9
Min. 12.2
Temp.
°C
11
12
10
10
1!
8
11
14
10
19
21
16
2!
23
19
23
24
22
23
27
21
20
22
17
16
18
14
13
14
10
BOD,
mg/r
16.7
36
6.4
9.9
25.2
6.5
6,t
5.2
4.S
2.5
".5
i.3
1.9
4.0
,5
2.7
6.3
.8
3.4
S.9
1.7
3.9
6.7
2.7
4.9
15.6
2.7
3.4
4.4
2.7
£H
—
7.2
6.9
-,
7.3
7.0
_
7.2
6.9
—
7.3
6.7
—
7.1
6.4
—
7.1
6.6
—
7.1
6.7
—
7.2
6.7
—
7.1
6.7
—
7.6
6.6
TSS
mg/1
27.3
75
9
17.4
43
8.5
12.8
24
6.0
4.7
9.8
2.2
6.1
11.4
3.2
4.8
IS. 8
1.8
9.6
28
4.2
7.2
9.7
4.4
11.2
40
6.6
7.9
15.2
4.4
NH,-N
mgVl
4.5
10
.32
10.97
17.1
5.2
2.6
6.1
.32
3.4
6.4
1.3
3.5
.5.9
1.8
5.4
15.0
3.2
4.8
9.0
.9
4.5
8.6
1.45
5.4
9.3
.58
TKN
mg/1
8.1
13
4.5
14.4
21.8
12.0
5.7
11.5
2.1
4.1
7.8
1.8
4.6
7.0
1.8
5.0
7.5
2.1
7.8
34.4
4.2
6.5
11.5
2.4
6.0
11.3
2.9
6.5
8.6
1.9
Total
Phosphorus
mg/1
6.2
9.4
2.6
6.5
8.3
3.7
1.6
3.2
.7
.9
1.3
7
.8
1.1
.5
.9
1.7
.3
.82
1.85
.32
.97
2.01
.63
.66
.97
.31
Fecal
Coliform
cr/100 ml
34
150
2
17
52
1
16
68
1
24
120
2
21
68
1
20
1
55
360
1
26
130
1
11
46
<1
7
40
1
T. Res
C!2
rngfl
.6
.8
.3
.6
.8
.5
.6
.7
.5
.7
.8
.5
.7
.9
.6
.7
.9
.5
.7
.9
.4
.7
.9
.5
.7
.8
0
.7
18
.5
-------
Tto
I ^'r ^L__ t^;\5.TC^f
I v*^ /VT /'•'. 36
/ / QCi Z^
VV\. WO ' i ' O . ' /^^
I -
|K\)£ // 3.. 8 .'j 35~
i -^ Q < - si
>*A?SS. /, r. 1 3 /
1 . ---c. J — __
c/ *-t ") *~- f*
\A\\A -J '" /.J— ^-_l
I
It^jc '_L I „_ S.^> -.'_ ~ 52
7t~ '^z T~ ~IG ' ~7~
vV\AX _L'_, ' _* ' " -•?_ /^ 0 " Cx
I
I
I
Ii if ' O ™7—i
AJE •••• •• >• - - 33
VA^ ; ^" / 3 '• ~ 7 ^ /• O
(y««i ._'-..? 5: _ £<£ _^5
g.3_ .j- . 7.5 36
f.t, ^4 7.4 P4 {,5.
• ws ' ';• . /4 51 - /2
,• b /& //O '?// ^?o
VAl ^ ' ' '
I
I
I
• /V-.'f- /. 3. ^>/ 3o -
I
7,3 4o
^4 2.0
r,-.,\/ /^r o^^ 37 '-« -**-^ ''6
/-/ -20 ^4
-------
Tto
T. PHos.
"T-R i
/z.3 M
37 ~?. C
_/*!_ 2_1. 7,3 JJL
7.* 4
2 -2
'-. _.3? ..7?
r 51
'..2,.
J
-Z-
AJ?.
27.3
,8
7
, 3
44
iO
/, r
/- 3
/6 y,
Z2 7,'
.7
-------
£>
Co
44
<-
fi
77
__./>_
, 5"
37
1C
VO ._
7,4
.4-
._.!_
5/1
lo g 3,
A r
// 7
3;
31
•C
-a
-------
VAK*.
./•I
17
•*' r
7.? .6,^
6.7 O
./-?..
KOS
- _ . .7
T-« Ct,
Z.2
O
.-7.
AS
,5
/. o
. /
,64
_o
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Ft-Ooi
T^
TK»0 T.PHos.
/t 7 —
f
<=?
o
. C 2_
7
75
,_f_. ."7'£
• $ 7.1
'-2 ; 2.
.. 7.
J17 .-....3 > 7. / i?
-' b
7-6
7.6
,/3
°
/J
7.0
3, 2
f/8
/3
T-R C!,
P..
0.
0
'-5
o
0
...O
f' t
Y'2
-------
T-3 ct«
;o
cl
&<
.//
.7,3.....A
__ _/£L_
J.7
. 5"
0 -2
77.
0<
/o
.oG-2.
c OG 4
. 9
,7 ".2. 7,
.«.£
O __ /, o _
o -'•/
o
£_ .. x
r S" '
IT
,2
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
T.
T-ac-i,
e
.6 13
5-7
-?c>
7,9
0
OC"T
32
56
4-7, C- .
31.4
<, 7
2-r 3/ ~
27 68 l'\
2 "2- /£ £, "/
"2 "7
1
/o
^ / ._yf J5" — ?£ 27,j ^_. .. "2-
VAl-l 4,X ''^ '£ „ • (>,f 4 _f __/4 f) ......
7,4
-------
; PKC&l
;/ ~" ~7 ~ " ', " ~
5-! >?.. _5X> _.-— -'.•&.. . ?.?. j2/--_2
_ ^T,7 ._ 9 / 7 7, Z__ &___.- ^1__ _14 2
A.OE 7.. -f /.8. __A3__ __T1 2-1J--.-4^~L l.TbfL
._-o.,_(5___)o. 34____^1 l± Z7.5- H 6 _,<^Lj
6CTF,.. <1.?c_. _ - .. - , . , .
_ZO A- ';;
i, y ^"7 fr^ _ 7.^ /8 -^/.-.^ -5-13... 1JJ- j!^.??30-.. -t
^ _ .. . .. ...
."7^_ ..?-3.G__J^ r._ /7,fc 33.7 ^.S-.t- 7.8. __^L
/6-/r . o% _. _6-l_ ._7i7. _1& ,_&$ A_\^ /?:_° -Z..
A.OS 7 "5" .22. 37 *"...
'8 //. - .£'€• - ^ 11-5. ...^.6 .. ./.A. . .3.
/A\J £-,7
-------
I
I
I /") £- r ••'•''ft _ O^PsS»TC^>^K.T>Z.C^>Wr-yr'V5t-Nyv
I
I
I
MV ::. .
Lje "5 . 2C ^ - 3- *c-,r 27
r-r ^ 'X. . i'*.. to... '-,?_. _ /f .^ . . _7
™ Tt •,. , l'J7i1
M(. L-CI e-^ 3° ~ / /7
• ' % / / -, -J -7 V
• ^IS*. ?,^ _2'0 __^ ill ?]> $&£_
^ o..... Jj . _.^ ^, 7 __ .6 ^r___ / 7_ 7__.
_ . A^c J"0 2.1 3j4_ __ _— 2-2 ~M 2-9 "7 <
H "~- - —-' -^ 1' ^f-O J.'__ ^r. ^....tr;.-
.._ ^^A ... --',7 1 °i - /. t . 7.'3_ JQ ^t& ^ 3 — __
• _ __„ ._. •; ...."...."_ _""._._~.._~~~..~i _...
I- ^ ..74 __,?_.. .^?_ _- ^ ...3.7 _.?_9_ ..5 .. ..^.W_
r^ . r,2 -c /s/ .7-7 J-4 . . ^r . ? i ^7. /7^6e!
\
vAi-J <". "2 j4 I 3 ~7 4- (o
--it; , i17?
IW G 7. ?" / 5" ^7 — D ~7
/ ,v .'V , ^ <^ / -~j <> ^- *
v^ioi. ;.-'.{ ! ! _ o ( /rt5 S o
tvu-o _^^ /c 7 7.5 IP /Q 73
I ..,:..:.
^^ *^! c / .- i' i .z* ~i -s.
KOG
^ Y //^ 6
/177
IAOS 4, ^ y<9 c>7 — S"8 5"/. _^2~.
W*f- I i 10 /2- /Z^ ^,2.
wii4 5,3 7 .c?3 7,^ ^ ^ o?/,r
™ ^-flM (977
m AWE ^,4 "t( $r - '. .5/. ".. .15"" ."_i3."in
| r/Atf 1/,'b I ^ /»? £<^ l^° • 11 56
woJ tTil 1 7-3 7'^. (j> \7 ]J-
I
-------
7"?
T ^ ^ " N Hj'-fO " T K (0
VAN*
7-g
['778
7.1 10
,6
— g-
AZ.
1_
fr^
'?
f.'.t
7- "7
/L
C
7.1"
O
L '__
1.1
o : c
'-' -r
' "7 / 1
- 7
9
o
PJ
A
3 .
-7
. J
-------
fn- • e
|\o; _J^ . n7£ -res rf*y \\ 7?
-
I
I
v--/ 1^76
I
K-Jt
..g.
,-f- '173
Vi vViXx, /
I
• Av)- . •
™ r^-K-A
^•o .;f'7i
^B l\A &*iL
I
I
I
I
I
I
I
— 10.'"'
'"'
7, *
-5"
/•J"
• • - :2 /ST 2 - a . 4£>
• 'i "- >} .^ 7-6 •< .. . _ . . . - '7.
! -' 3. / 3 ^ _ 7. O O _".... - - & . X
/4s 7 13. (a
. 36,8. i/}
/S rg rf M
/5" -)3 5, fe> 4,% . . .. /y-fc - • r
'34 13 >o -?,? l.f _ _ /(-c, .j
'&jr 13 ' 7,5" 6.8 ^ 9.a >3
/>?*•" Ir 7* . . --. ........_.._..._..--.
^^ ,/^ /5 ^ - .^-g __ £•*>
,4 £.1 3 O
/-2.
-------
'3.
"NHt-O
i?73 ..
. I* z-f.f .3.?. — 4,f
VV\N,< .4? ?? . ..*,7 ?:.' 7
*:>... It
iq ft j- ; *• 1 7
, -> -, , «.- if 7
„ /^ >?o, i _5^ o _ _ c. /__
xj4 ^"Z, . -41:1 7-3 {4...
.dZ '6 5 . / 7-0 x.
.-.^..... .'/ _..r^. — _ .5-_7
• 8%' '/ ''-i 7,f 7.2.
. frcco J) .'.O ^,S ''-C
-L - . P
s:.^ . 7. <• s..4
^ 7.1 .o.
.t>5 )0 .1 ~?.l 13 ' -J
2.1 - _/?,% . .. . ... .1,3 ..'
3.<7 I,? 3C, .1.2. "'
•'3 ?./ *• ->
rA^y. •"*•? ^/ ^, / 7't /^.^
VA'W . £>/ ;C> 2,4- 7^ ^
-------
23.
TKN) T.Pl-toS.
/a. 3.5 7.7 /-2 O
. 7/' A 6
/'S . 8c. _,_7.._7J.
o
/, £ 3^000 .
'
j, 4- £,; ._,./_ . ._— /./. ..o
A 6 6.3" _/^8 7^ ._. /-2 __ff.
/'X 7,o '^ .7,,7 __ /,c 6
? ^ . 1 L ..T. A / o
/^c > (-, 7,f 2. c o
7,e .4 7,y c o
..-A
/o
c 11
'
•7
7/5" . te o.
.ft ^ 133°
,$1 1
/771/
J - / 6. . cl
a? /g.s y^ 7//
/.G ;3 -5" 7/6
o
7. 6
o
-------
^2$ TO _/>^r „ \<\1&
T.
./,<§
3.0
o 7 fc .._ JL?
<3
Q i
o
/?7c
A 2
^.o...
/.3
//. 5"
,•2- 7.3
o
-JL.±L._
_1^L_
5j>
_ZZ2__
' ^-i j- '*'
/i . / ; . ^
7.5-
.t
-z n_.._^;_
:fe_2.
A
ft'-**
."?. ;
7 /
* i
/ 7. J
.- . o
KOS .
.A^L. .../&C,
3,7. _ . ^ /
,i '7
A 8
_7.8 .
7,4
. je
-Suoe
, 5
. ^'2-5"
o
7-7
-7. /
0
5.
Air
-------
I
I
lav. l .'??_•?
AJE .--; •'"? /,5 - /.f £"' .- .6?
PA**^ ^ w" ,' ^, " / / c. I sf-, (~ O /' L~ I
r V •- ^
A.OG » ."
WxlA / 1 •'. c '"^ /,4 / £ 0
7 c -^ -ry o
^•,p ^ ^ g,; ^T o .77
'/' r ^ ^ / > 1 — J 3_ c
gf. < t t 11 j, ^- ..
,1 j'c "> o
I
2 -T0 T. Prtc^ reo^ d*.i Pi^. T-xci,
I
I
I
I
I
I
I
|T"J- •"•"•; . ~ -" -- --'/"" - " -—-- - -—
WAAo*. 51 ^~ _ / /, .> f /' & & If \2 ^ } /1 *} JL £ (? &
-- - --^ ------ ^_. ^ .. - - .-
I 1-,/J' •'- 7' '" ' ' °'
1^ \ *.<, ^ ^ I • * 7 7 G, if & ft ) / i -3 '
fA*i>- J .' ~- s , * /// /ft^ Cx ,tli/ f t ' ^
VA-. r) / . "^ // 5~ 7>b , ^ 0 ' ^ &
•I t'lfr r- /? ?-•>
I
I
I
I
1 "7 0 (\ / ^ —• / /^ X^ -~71 ~~ '
II •->.«" /, / /( !.) /,^, / ^ C> _ , (' . S ' •'
i vviAsjt 5' ^ T, 0 ,p j !? .f ^ ' <> /'"''c -" • -
/. 3 ^f' ^ 7/f- ,4 c? /^ ^.2-f-
-------
, l°t 3.3
NHi-'O "TKfO T.
f.^C!,
/?7S
~ yf, & .
r. &
f 5-
'
•fo
/. O
6?-
/ f 7 ^ >-
^/•,7,r -7
KOE
M
./7
/->
So
/ A.OS
r.v\v
,7
,7
6>
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
•3-
A.OC
Acs
I,V\\«J
KOS
,'77,*
(AMri
AOG
'
rAA,y.
•AVJ
-->P^_ ivf
Th.fi
°e
O
'5
{.?•
i >-,
o.' L'
7,9 7_
7 •? I £.
7 -,
/.cX
7.7
7,/
y-s
. 7
-, ?-
. 0
-------
T
i^ 21
T K rt ~T.~ Pries."
7. a C [,
— 34
i c
''C •}(*
7,6 ^
ev
6 0
/'g
^ *T
A/7
7-7
7. T
o
A.VJS
10
WUiJ
' 3
s
_-. 3?
?...r. 3
- 37
7- 7 ^
7,6 Jo
— 31
7,?
l.o
- 04
• o
O
-------
.v/ac.r^^.^ Ci(\j.TCUi^re^- TrtC*yrV^T-iT"Pl-MT
TK/0 T.PhtoS.
ff7f
- «./
K 30,2
/$ ?r-)
I
I
I
I
^_ --»--^ __-__ - • s.
fljfi & Q *- / / 7.Q
IA.O * I"' '' 1 ° *~*
--;>---'.;*- ?
+*•*•>- 11 j}, & _ ''7
I
I
I
I
I
I
I
I
pub \en°,.
IP / - .. . .__....
AvJS *"'
•j K\\r^
I^-/P .ofi -i .^7, r ~ /^.^. .. ! . 2^£
i-1 ^5 / 1 (- t1 • ^} ? ^ ,
f A A,^ I / «^*~ J ' 'J C j - i ^<. c> /"V ' xx
•W . _------
,/ ->
IZ. ,5
_Q ^'^ _. _* ... . .'_.. ._.. ^,L
,s
6
-------
TCs
T-RC(t
Zc.
oer
/ft
.3
/&
•2-4
/.JT
3
D74
/i. 7 «.:
<7.3 ~^
A.OS
13
g.JL 62-
Y,4 /G
Ao-^ ,68
r/Ay. , /P
w.»J ,0(3
5 / ,:
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
k'AO sJT V-V
Ft-Ooi
•-'-M--
A.'JS
V'Al-i
5"
A.05 . / /
feO
7
l°t
"•1(2.
7 /
?.?
6 7
-' "7 70
-3-'
2
TK(0 T.PKos.
T-«
-------
r7O
' '
VA T^^ NH-<0 TKfi T. PHOS. FfftAjLGji.vtv— T-RC.1,
'• ' 7'y AS" - _6>.& . 'k *.C
/9?s _. .. ... . .. .
2.\ __e.!>. ...7,T. . . .-. . 3.o ysifc
?X ./=»: ./P-J'.. . _^.5r. 7>/_ _^,<
. Ij £,k _ _2^.. 6-.7. 0 .. ..£,./
/,_< . . /?.... .^J 1--^
,.{ 7'2> ~A &•$
- ./,o._ . i.f,1?..
c, /i.i. :?.!.. 7. r .3,5 to . .. . .. . . - !-?
D 7.z -.7 /^t .a e.^"
T'-- /< /:«_ 7,4 5>-t P^-
t«A\^: • - _ / O .' f L-t { __i_J _ .(' '.._
L? .-:-..
It
-
7.3 ' ^o ^ /•?
r
O
Af .0
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
D-ESTfe L I >O
76
'fWAj.CU.vfVu-. '
/ 3
5..Q.
7.7
7O. . _ .
A 7£ _.
4 ?
••I 17,?-
':S>_.._/&9.
o.
_~ „__..£,!
3J- -€,
,'2.8
._^L_^ JLS:
__2?Z_24-
3
<- ^23.c
*1 20
7,
o.
,7.
.Z3.S . 2
. 7, .4 ..-. . _^
_7.C> 5:5
3.04. ;.'
2,7
>
.^-^
•7
.2
/,/ . .77.8 3,j.
y.7 . a*-°_7-6
fl
. - .l.(-3..../U.
7-7 . .3L.t ../^.4
^.f c^ 4,7
.- 8.^1 -
2-/7 '7.9
9.1
,4
-------
T.PHcs.
T-a ci,
1,4
C777
.,4
_>_.7 >4_ Jo
6 f-
_.oJ
A 7
.Uf
_, . ^_ i-_.n
7-3
,6
'7
,6
,5.
/ • _
_7.o
7
./"?
/*•//•.< -i /f 7?
.- -t.
6.0 /g
./,6_
'/'7
k
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
*>- T-R Cl,
/we
A
'
AOs
VAKf.
2.1
50
72
.§4_. . 7, f a e
-• _ _/_ t
J£*_
-7, /
_.7,3
3T
3o
77
^1 ~
30 7.S
-------
>1 'r-K Ci'-i
C&^,yTC>^.f 22
'7 ___ ^^ 75
20 ~
0 '•? 51
L^J" n 2.
Po 7.-c . ^
A"-'" ,'?/?
7/5-
A.OS
(7
, 7 3. J
.4
7
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
<:<<• !
A.OE.
V*\\«i
VA\*J
V'Al A
//,> A '
2-(
,7
2^
. 1L ____ ~
7,0
,
2
DC, y.fe
C 5j 7-o
r//,/ yo;"7 /
VAO -°'/C, O
7,5 2$
_3_
- G
r
-------
11 Kj- iVC-VT *?L NiT
•.a ci,
Hr
/178
.7
i /
o
7,7
•3 . /,<> in
3
t-S 7.Y
•c
, 51.
AOK
.7
, . o
AC-,--
/fc
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
pH T^'S
"T.
DCC
7,7
/2
3
oc T
J.\
.7
22
A.OS
/i
AOS
o
C-
,1
-------
n JS
T. Pl-toS.
AoJE
23
7,c
7,
¥• 3
4
8
f'f-f..
£ o
rii . /fjr?
t -f
/
,
/ <-/ / e
fe.?
.-7.
.'X
(\\Vci
,^
/. ^
/3,7
7c
7.o
c
Ac
IV V i
.'.r
/B
/0,
-7.4 7.O
I
-------