U.S. ENVIRONMENTAL PROTECTION AGENCY
Annapolis Field Office
Annapolis Science Center
Annapolis, Maryland 21401
TECHNICAL PAPERS
Volume 21
-------
-------
Table of Contents
Volume 21
11 A Steady State Segmented Estuary Model
12 Simulation of Chloride Concentrations in the
Potomac Estuary - March 1968
13 Optimal Release Sequences for Water Quality
Control in Multiple-Reservoir Systems - 1968
-------
-------
PUBLICATIONS
U.S. ENVIRONMENTAL PROTECTION AGENCY
REGION III
ANNAPOLIS FIELD OFFICE*
VOLUME 1
Technical Reports
5 A Technical Assessment of Current Water Quality
Conditions and Factors Affecting Water Quality in
the Upper Potomac Estuary
6 Sanitary Bacteriology of the Upper Potomac Estuary
7 The Potomac Estuary Mathematical Model
9 Nutrients in the Potomac River Basin
11 Optimal Release Sequences for Water Quality Control
in Multiple Reservoir Systems
VOLUME 2
Technical Reports
13 Mine Drainage in the North Branch Potomac River Basin
15 Nutrients in the Upper Potomac River Basin
17 Upper Potomac River Basin Water Quality Assessment
VOLUME 3
Technical Reports
19 Potomac-Piscataway Dye Release and Wastewater
Assimilation Studies
21 LNEPLT
23 XYPLOT
25 PLOT3D
* Formerly CB-SRBP, U.S. Department of Health, Education,
and Welfare; CFS-FWPCA, and CTSL-FWQA, Middle Atlantic
Region, U.S. Department of the Interior
-------
VOLUME 3 (continued)
Technical Reports
27 Water Quality and Wastewater Loadings - Upper Potomac
Estuary during 1969
VOLUME 4
Technical Reports
29 Step Backward Regression
31 Relative Contributions of Nutrients to the Potomac
River Basin from Various Sources
33 Mathematical Model Studies of Water Quality in the
Potomac Estuary
35 Water Resource - Water Supply Study of the Potomac
Estuary
VOLUME 5
Technical Reports
37 Nutrient Transport and Dissolved Oxygen Budget
Studies in the Potomac Estuary
39 Preliminary Analyses of the Wastewater and Assimilation
Capacities of the Anacostia Tidal River System
41 Current Water Quality Conditions and Investigations
in the Upper Potomac River Tidal System
43 Physical Data of the Potomac River Tidal System
Including Mathematical Model Segmentation
45 Nutrient Management in the Potomac Estuary
VOLUME 6
Technical Reports
47 Chesapeake Bay Nutrient Input Study
49 Heavy Metals Analyses of Bottom Sediment in the
Potomac River Estuary
-------
VOLUME 6 (continued)
Technical Reports
51 A System of Mathematical Models for Water Quality
Management
52 Numerical Method for Groundwater Hydraulics
53 Upper Potomac Estuary Eutrophication Control
Requirements
54 AUT0-QUAL Modelling System
Supplement AUT0-QUAL Modelling System: Modification for
to 54 Non-Point Source Loadings
VOLUME 7
Technical Reports
55 Water Quality Conditions in the Chesapeake Bay System
56 Nutrient Enrichment and Control Requirements in the
Upper Chesapeake Bay
57 The Potomac River Estuary in the Washington
Metropolitan Area - A History of its Water Quality
Problems and their Solution
VOLUME 8
Technical Reports
58 Application of AUT0-QUAL Modelling System to the
Patuxent River Basin
59 Distribution of Metals in Baltimore Harbor Sediments
60 Summary and Conclusions - Nutrient Transport and
Accountability in the Lower Susquehanna River Basin
VOLUME 9
Data Reports
Water Quality Survey, James River and Selected
Tributaries - October 1969
Water Quality Survey in the North Branch Potomac River
between Cumberland and Luke, Maryland - August 1967
-------
VOLUME 9 (continued)
Data Reports
Investigation of Water Quality in Chesapeake Bay and
Tributaries at Aberdeen Proving Ground, Department
of the Army, Aberdeen, Maryland - October-December 1967
Biological Survey of the Upper Potomac River and
Selected Tributaries - 1966-1968
Water Quality Survey of the Eastern Shore Chesapeake
Bay, Wicomico River, Pocomoke River, Nanticoke River,
Marshall Creek, Bunting Branch, and Chincoteague Bay -
Summer 1967
Head of Bay Study - Water Quality Survey of Northeast
River, Elk River, C & D Canal, Bohemia River, Sassafras
River and Upper Chesapeake Bay - Summer 1968 - Head ot
Bay Tributaries
Water Quality Survey of the Potomac Estuary - 1967
Water Quality Survey of the Potomac Estuary - 1968
Wastewater Treatment Plant Nutrient Survey - 1966-1967
Cooperative Bacteriological Study - Upper Chesapeake Bay
Dredging Spoil Disposal - Cruise Report No. 11
VOLUME 10
Data Reports
9 Water Quality Survey of the Potomac Estuary - 1965-1966
10 Water Quality Survey of the Annapolis Metro Area - 1967
11 Nutrient Data on Sediment Samples of the Potomac Estuary
1966-1968
12 1969 Head of the Bay Tributaries
13 Water Quality Survey of the Chesapeake Bay in the
Vicinity of Sandy Point - 1968
14 Water Quality Survey of the Chesapeake Bay in the
Vicinity of Sandy Point - 1969
-------
VOLUME 10(continued)
Data Reports
15 Water Quality Survey of the Patuxent River - 1967
16 Water Quality Survey of the Patuxent River - 1968
17 Water Quality Survey of the Patuxent River - 1969
18 Water Quality of the Potomac Estuary Transects,
Intensive and Southeast Water Laboratory Cooperative
Study - 1969
19 Water Quality Survey of the Potomac Estuary Phosphate
Tracer Study - 1969
VOLUME 11
Data Reports
20 Water Quality of the Potomac Estuary Transport Study
1969-1970
21 Water Quality Survey of the Piscataway Creek Watershed
1968-1970
22 Water Quality Survey of the Chesapeake Bay in the
Vicinity of Sandy Point - 1970
23 Water Quality Survey of the Head of the Chesapeake Bay
Maryland Tributaries - 1970-1971
24 Water Quality Survey of the Upper Chesapeake Bay
1969-1971
25 Water Quality of the Potomac Estuary Consolidated
Survey - 1970
26 Water Quality of the Potomac Estuary Dissolved Oxygen
Budget Studies - 1970
27 Potomac Estuary Wastewater Treatment Plants Survey
1970
28 Water Quality Survey of the Potomac Estuary Embayments
and Transects - 1970
29 Water Quality of the Upper Potomac Estuary Enforcement
Survey - 1970
-------
30
31
32
33
34
Appendix
to 1
Appendix
to 2
3
4
VOLUME 11 (continued)
Data Reports
Hater Quality of the Potomac Estuary - Gilbert Swamp
and Allen's Fresh and Gunston Cove - 1970
Survey Results of the Chesapeake Bay Input Study -
1969-1970
Upper Chesapeake Bay Water Quality Studies - Bush River,
Spesutie Narrows and Swan Creek, C & D Canal, Chester
River, Severn River, Gunpowder, Middle and Bird Rivers -
1968-1971
Special Water Quality Surveys of the Potomac River Basin
Anacostia Estuary, Wicomico .River, St. Clement and
Breton Bays, Occoquan Bay - 1970-1971
Water Quality Survey of the Patuxent River - 1970
VOLUME 12
Working Documents
Biological Survey of the Susquehanna River and its
Tributaries between Danville, Pennsylvania and
Conowingo, Maryland
Tabulation of Bottom Organisms Observed at Sampling
Stations during the Biological Survey between Danville,
Pennsylvania and Conowingo, Maryland - November 1966
Biological Survey of the Susquehanna River and its
Tributaries between Cooperstown, New York and
Northumberland, Pennsylvnaia - January 1967
Tabulation of Bottom Organisms Observed at Sampling
Stations during the Biological Survey between Cooperstown,
New York and Northumberland, Pennsylvania - November 1966
VOLUME 13
Working Documents
Water Quality and Pollution Control Study, Mine Drainage
Chesapeake Bay-Delaware River Basins - July 1967
Biological Survey of Rock Creek (from Rockville, Maryland
to the Potomac River) October 1966
-------
VOLUME 13 (continued)
Working Documents
5 Summary of Water Quality and Waste Outfalls, Rock Creek
in Montgomery County, Maryland and the District of
Columbia - December 1966
6 Water Pollution Survey - Back River 1965 - February 1967
7 Efficiency Study of the District of Columbia Water
Pollution Control Plant - February 1967
VOLUME 14
Working Documents
8 Water Quality and Pollution Control Study - Susquehanna
River Basin from Northumberland to West Pittson
(Including the Lackawanna River Basin) March 1967
9 Water Quality and Pollution Control Study, Juniata
River Basin - March 1967
10 Water Quality and Pollution Control Study, Rappahannock
River Basin - March 1967
11 Water Quality and Pollution Control Study, Susquehanna
River Basin from Lake Otsego, New York, to Lake Lackawanna
River Confluence, Pennsylvania - April 1967
VOLUME 15
Working Documents
12 Water Quality and Pollution Control Study, York River
Basin - April 1967
13 Water Quality and Pollution Control Study, West Branch,
Susquehanna River Basin - April 1967
14 Water Quality and Pollution Control Study, James River
Basin - June 1967 .
15 Water Quality and Pollution Control Study, Patuxent River
Basin - May 1967
-------
VOLUME 16
Working Documents
16 Water Quality and Pollution Control Study, Susquehanna
River Basin from Northumberland, Pennsylvania, to
Havre de Grace, Maryland - July 1967
17 Water Quality and Pollution Control Study, Potomac
River Basin - June 1967
18 Immediate Water Pollution Control Needs, Central Western
Shore of Chesapeake Bay Area (Magothy, Severn, South, and
West River Drainage Areas) July 1967
19 Immediate Water Pollution Control Needs, Northwest
Chesapeake Bay Area (Patapsco to Susquehanna Drainage
Basins in Maryland) August 1967
20 Immediate Water Pollution Control Needs - The Eastern
Shore of Delaware, Maryland and Virginia - September 1967
VOLUME 17
Working Documents
21 Biological Surveys of the Upper James River Basin
Covington, Clifton Forge, Big Island, Lynchburg, and
Piney River Areas - January 1968
22 Biological Survey of Antietam Creek and some of its
Tributaries from Waynesboro, Pennsylvania to Antietam,
Maryland - Potomac River Basin - February 1968
23 Biological Survey of the Monocacy River and Tributaries
from Gettysburg, Pennsylvania, to Maryland Rt. 28 Bridge
Potomac River Basin - January 1968
24 Water Quality Survey of Chesapeake Bay in the Vicinity of
Annapolis, Maryland - Summer 1967
25 Mine Drainage Pollution of the North Branch of Potomac
River - Interim Report - August 1968
26 Water Quality Survey in the Shenandoah River of the
Potomac River Basin - June 1967
27 Water Quality Survey in the James and Maury Rivers
Glasgow, Virginia - September 1967
-------
VOLUME 17 (continued)
Working Documents
28 Selected Biological Surveys in the James River Basin,
Gillie Creek in the Richmond Area, Appomattox River
in the Petersburg Area, Bailey Creek from Fort Lee
to Hopewell - April 1968
VOLUME 18
Working Documents
29 Biological Survey of the Upper and Middle Patuxent
River and some of its Tributaries - from Maryland
Route 97 Bridge near Roxbury Mills to the Maryland
Route 4 Bridge near Wayson's Corner, Maryland -
Chesapeake Drainage Basin - June 1968
30 Rock Creek Watershed - A Water Quality Study Report
March 1969
31 The Patuxent River - Water Quality Management -
Technical Evaluation - September 1969
VOLUME 19
Working Documents
Tabulation, Community and Source Facility 'Water Data
Maryland Portion, Chesapeake Drainage Area - October 1964
Waste Disposal Practices at Federal Installations
Patuxent River Basin - October 1964
Waste Disposal Practices at Federal Installations
Potomac River Basin below Washington, D.C.- November 1964
Waste Disposal Practices at Federal Installations
Chesapeake Bay Area of Maryland Excluding Potomac
and Patuxent River Basins - January 1965
The Potomac Estuary - Statistics and Projections -
February 1968
Patuxent River - Cross Sections and Mass Travel
Velocities - July 1968
-------
VOLUME 19 (continued)
Working Documents
Wastewater Inventory - Potomac River Basin -
December 1968
Wastewater Inventory - Upper Potomac River Basin -
October 1968
VOLUME 20
Technical Papers
1 A Digital Technique for Calculating and Plotting
Dissolved Oxygen Deficits
2 A River-Mile Indexing System for Computer Application
in Storing and Retrieving Data (unavailable)
3 Oxygen Relationships in Streams, Methodology to be
Applied when Determining the Capacity of a Stream to
Assimilate Organic Wastes - October 1964
4 Estimating Diffusion Characteristics of Tidal Waters -
May 1965
5 Use of Rhodamine B Dye as a Tracer in Streams of the
Susquehanna River Basin - April 1965
6 An In-Situ Benthic Respirometer - December 1965
7 A Study of Tidal Dispersion in the Potomac River
February 1966
8 A Mathematical Model for the Potomac River - what it
has done and what it can do - December 1966
9 A Discussion and Tabulation of Diffusion Coefficients
for Tidal Waters Computed as a Function of Velocity
February 1967
10 Evaluation of Coliform Contribution by Pleasure Boats
July 1966
-------
VOLUME 21
Technical Papers
11 A Steady State Segmented Estuary Model
12 Simulation of Chloride Concentrations in the
Potomac Estuary - March 1968
13 Optimal Release Sequences for Water Quality
Control in Multiple-Reservoir Systems - 1968
VOLUME 22
Technical Papers
Summary Report - Pollution of Back River - January 1964
Summary of Water Quality - Potomac River Basin in
Maryland - October 1965
The Role of Mathematical Models in the Potomac River
Basin Water Quality Management Program - December 1967
Use of Mathematical Models as Aids to Decision Making
in Water Quality Control - February 1968
Piscataway Creek Watershed - A Water Quality Study
Report - August 1968
VOLUME 23
Ocean Dumping Surveys
Environmental Survey of an Interim Ocean Dumpsite,
Middle Atlantic Bight - September 1973
Environmental Survey of Two Interim Dumpsites,
Middle Atlantic Bight - January 1974
Environmental Survey of Two Interim Dumpsites
Middle Atlantic Bight - Supplemental Report -
October 1974
Effects of Ocean Disposal Activities on Mid-
continental Shelf Environment off Delaware
and Maryland - January 1975
-------
VOLUME 24
1976 Annual
Current Nutrient Assessment - Upper Potomac Estuary
Current Assessment Paper No. 1
Evaluation of Western Branch Wastewater Treatment
Plant Expansion - Phases I and II
Situation Report - Potomac River
Sediment Studies in Back River Estuary, Baltimore,
Maryland
Technical Distribution of Metals in Elizabeth River Sediments
Report 61
Technical A Water Quality Modelling Study of the Delaware
Report 62 Estuary
-------
TABLL 0^ CONTENTS
Page
ACKNOWLEDGMENTS
I. INTRODUCTION .............. 1-1
II. GENERAL APPROACH TO THE PROBLLM" . II - 1
III. DETAILED DERIVATION Ill - 1
IV. MATHEMATICAL TECHNIQUE EMPLOYED IN THE
MODEL FOR MATRIX III VERSION ............ IV - 1
V. PREPARATION OF THE COMPUTER PROGRAM ....... V - 1
VI. INPUT DATA PREPARATION AND PROGRAM CASE
CONTROL VI - 1
VII. BIBLIOGRAPHY ........... n ....... VII - 1
APPENDIX I - FLO1,-/ DIAGRAMS
APPENDIX II - IBM 3oO FORTRAN PROGRAM
APPENDIX III - SAMPLE INPUTS
APPENDIX IV - TYPICAL PROGRAM CASE SOLUTIONS
A. Sample Input and Output Data for Case 1 with
Control IMAT=1, INDEX (l)=l. Output aA"1.
B. Sample Input and Output Data for Case 2 with
Control IHAT=1, INDEX (2)=1. Output LctA-1.
C. Sample Input and Output Data for Case 3 with
Control IMAT=1, INDEX (l) and INDEX (2). Both =
1. Outraut aA~l and LaA~l.
D. Sample Input and Output Data for Case 1| with
Control II-1AT=2, INDEX (3)=1. Output aB"1.
E. Sample Input and Output Data for Case 5 with
Control IMAT=2, INDEX (10=1. Output FaB"1.
F. Sample Input and Output Data, for Case 6 with
Control IMAT=2, INDEX (3) and INDEX
Output aB~l and
-------
-------
TABLE OF CONTENTS (Continued)
G. Sample Input and Output Data for Case 7 with
Control IMAT=3, INDEX (5)=1. Output air1 A"1.
H. Sample Input and Output Data for Case 8 with
Control IMAT=3, INDEX (6)=1. Output VD times
aB-l A-l.
I. Sample Input and Output Data for Case 9 with
Control IMAT=3, INDEX (?)=!. Output L (ultimate
BOD Vector) times Output Matrix in II. above.
J. Sample Input and Output Data for Case 10 with
Control IMAT=3, INDEX (8)=1. Output = Dissolved
Oxygen at Saturation plus output from E. above
minus Output from I. above.
K. Sample Input and Output Data for Case 11 with
Control IMAT=3, INDEX (l) through INDEX (8)=1.
All cases above, i.e., A to J.
LIST OF FIGURES
Figure
1 Estuary Segments
2 Advection Into and Out of Segment K
3 Program Deck Structure
-------
-------
ACKNOWLEDGMENTS
Special appreciation and acknowledgment are expressed to
Mr, Emanuel Mehr, Research Scientist, New York University, for
allowing us to employ his tridiagonal matrix inversion routine.
This routine is exceedingly fast and allows rapid inversion of
the tridiagonal matrix utilized in the model. His guidance and
encouragement was a great contribution during the course of
certain phases of this work.
Grateful acknowledgment is made to Mr. Richard L. O'Connell
of the Central Pacific River Basins Comprehensive Project, FWPCA,
for the assistance he gave in understanding the model and setting
up the program while he was Director of the Chesapeake Field Sta-
tion; to Mr, John M. Jeglic of the Re-entry Systems Department of
General Electric for the many programming ideas which were taken
directly from his time-dependent version of the model; and to Dr.
Robert Thomann of the Delaware Estuary Comprehensive Study Project,
both for the basic trieory on which the program is based and for
his detailed, patient explanations of ito
-------
-------
I - 1
I. INTRODUCTION
The "oxygen sap" equation developed in 1925 "by Streeter
and Phelps1 has found widespread use in the analysis of a partic-
ular type of stream pollution problems. This mathematical model
may be applied where the pollutant of concern is biologically
degradable organic material which brings about a depression of
the natural dissolved oxygen (DO) content of a stream.
The "oxygen sag" formula, however, is not applicable to
tidal bodies of water, primarily because of the over-riding impor-
tance of turbulent diffusion in estuaries which is not normally
taken into consideration in streams. In fresh water streams "plug
flow," in effect, is assumed, and this is not an unreasonable
assumption in most cases. Although longitudinal diffusion does in
fact occur in streams due to horizontal and vertical velocity
gradients, the longitudinal exchange which this brings about
involves similar material; viz., the material that is "diffused"
upstream is very nearly the same with respect to age, concentra-
tion, etc., as that which is "diffused" downstream. The net result
is usually negligible in the analysis of stream pollution problems.
Furthermore, advection, or transport downstream by the stream,
produces a transfer of waterborne material which greatly exceeds
the transfer brought about by diffusion. In estuaries, however,
because of their relatively large cross-section and small net flow
downstream, the advective transport is often quite small compared
to the transfer of materials by turbulent diffusion. For this
reason, the latter effect must be considered.
-------
-------
1-2
In I960, 35 years after the development of the "oxygen
sag" formula for streams, O'Connor2 devised a similar mathematical
model for estuaries which added to Streeter and Phelp's formula a
term to account for longitudinal diffusion. As witu the original
stream sag formula, the O'Connor model is given as a differential
equation which may be integrated to give a solution for the dis-
solved oxygen as a continuous function of distance along the
longitudinal axis of the tidal estuary.
In 1963 Thomarm3 developed a computational procedure based
upon the principles of systems analysis which incorporated tne
terms of the O'Connor model for estua,ries. This method of compu-
tation employs an incremental or segmented approach where average
conditions in a finite number of connected segments are determined
rather than a continuous function solution. The degree of resolu-
tion possible in the solution is directly related to the number
of segments chosen. This approach simplifies the mathematics in-
volved and allows much greater flexibility in its use. The models
previously cited apply to tne one dimensional steady state case;
whereas, with the segmented approach, a second or third dimension
may be added, and the time dependent situation may also be investi-
gated. Also, any pollutant for which the relationships affecting
its behavior can be expressed mathematically can be incorporated
into the segmented model.
The model has been described previously by Thomann3, and
solutions to the one-dimensional time-dependent model have been
-------
-------
1-3
programmed, for both the digital and analog computer '. Applica-
tions of the model and methods of estimating required parameters
also have been presented6'7'8'9. The purpose of this paper is to
describe in detail the theory of the "Thomann Model" as applicable
to the one-dimensional steady-state case of organic pollution of
an estuary and to document a digital computer program developed
to solve this case.
-------
-------
II - 1
II. GENERAL APPROACH TO THE PROBLEM
A first step in the application of the model is to divide
the estuary into a satisfactory number of segments. A mass balance
for the pollutant is written for each segment. The results from
these balance a series of equations equal in number to the number
of segments. The only unknowns in these equations are the mean
steady-state concentrations of the pollutant in each segment.
Thus, a series of n equations with n unknowns is obtained where
n is the number of segments. By combining terms, this series of
equations may be expressed in matrix notation as:
AC = L
where A is a collection of known terms such as flow, diffusion
constants, deoxygenation constants, and segment volumes in com-
binations having units of cubic foot/day. C is a vector matrix
of unknown concentration of pollutants in pounds/cubic foot. The
product of A and C is L, a vector of pollutant loads added directly
to each segment expressed as pounds/day. The terms of the vector
L have been referred to as forcing functions by Thomanri.
The matrix of unknown concentrations, C, may be solved by
inverting A, since:
C = LA""1
where A , the "unit loading matrix," is the inverse of A. C may
then be obtained by performing the matrix multiplication of L
times A as indicated.
-------
-------
II - 2
This is an extremely convenient arrangement since, once
having solved for A , it can be multiplied by any distribution
of loads along the estuary as described by the vector L. Further-
more, because of the nature of A , it is possible to determine
easily what part of the resulting pollutant concentration in any
one segment is due to a given discharge in any other segment.
The unit loading matrix is essentially a table having n rovs and
n columns, the elements of which have the units Ibs/cfs per lb/
day discharged. Thus, A, , the element in the fourth row and
4 5 I
seventh column of the A matrix, would give the numerical value
for the concentration in segment U resulting from a discharge of
one pound per day in segment 7- By multiplying the element,
A, , by the actual load applied to segment 7» the concentration
^•4 I
in segment k resulting from that discharge will be obtained. If
the estuary being studied has been modeled using correctly verified
parameters, it will be possible to reproduce known pollutant dis-
tributions from known input loads. The verification step must be
carried out with satisfactory results if the model is to be useful
for predicting altered loading conditions expected in the future.
That is to say, the computer model is no substitute for the great
quantity of engineering field and office work required for any
sound, scientific discussion.
Once a verified unit loading matrix is obtained, the pollu-
tant distribution resulting from any loading pattern may be obtained.
-------
-------
II - 3
In the analysis of oxygen conditions, it is necessary as a first
step to multiply the unit loading matrix by the particular ulti-
mate oxygen demand (UOD) loading conditions being studied. Having
the UOD distribution among the segments, a mass balance may then
be written for each segment incorporating the terms which affect
the oxygen distribution, namely, advection, diffusion, deoxygena-
tion, and reaeration. When applicable, terms describing uptake
by benthal loads and the net effect of photosynthesis and respira-
tion can also be included. Just as in the case of the pollutant
distribution, these mass balances around each of n segments results
in a series of n equations in n unknowns which are the DO concen-
trations being sought. Through the use of matrices, it is possible
then to obtain a series of linear expressions for the DO in any
segment as a function of the discharged loads, benthal uptake and
photosynthetic effects in all other segments.
-------
-------
Ill - 1
III. DETAILED DERIVATION
Having divided the estuary into n sections, a mass balance
is written for the oxygen in the k section (Figure l). Assume
the concentration of oxygen in each section is uniform and equal
to C , the mean concentration in the section.
Section k-1
c
k-1
Section k
c
k
Section k+1
c
k+1
Flow 0
Flow Q.
Figure 1
Oxygen can be gained or lost by several ways in Section k.
1. Advection into Section k from Section k-1 and
out of Section k to Section k+1.
2. Diffusion into or out of Sections k-1 and k+1.
3- Reaeration of Section k from the atmosphere.
h. Use of oxygen in Section k by oxygen consuming
waste (UOD).
5. Production of oxygen in Section k by photosynthesis,
6. Other mechanisms (benthol deposits, immediate
oxygen demands, etc.).
-------
-------
Ill - 2
Advection
In the system pictured below,
a
k
k-1
k+1
Figure 2
the C's represent mean concentrations in each segment of length, L.
If it is assumed that the concentration gradient through
any two adjacent sections is approximated satisfactorily by a
straight line, then the concentration at a boundary, a, between
the two segments can be shown geometrically to be:
p _
a ~
which can be written as:
\ Ck-! + Lk_! Ck
Lk + Lk-l
C. L. C. L.
k-1 k-1 k k
O ~~ 'T- ~~" v.-j—.--.j^—i---. -f-
a L. . + L. L, n + L,
k-1 k k-1 k
or by letting
-------
-------
Ill - 3
the concentration at the boundary may be expressed as:
Ca = W Ck-l + (1 ~ 5k-l,k} Ck
The amount of material advected across boundary "a" is
then given by:
Ak-l,k = Qk-l,k [5k-l,k Ck-l + (1 - ^k-l,!* °k]
where £, is defined as above.
K— _L , J_
For the case of boundary"b" the concentration gradient
is rising and has a sign opposite to that passing boundary "a."
In this case it can be shown that £ will be defined as:
K ,K ' X
or
Lk
Lk + Lk+l
For a falling gradient, then, C is defined by the ratio
of the downstream segment length to the sum of the upstream and
downstream lengths; whereas, for a rising gradient, 5 is defined
by 1 minus this quantity or the ratio of the upstream length to
the sum of the upstream and downstream lengths.
The above procedure may be used to find £ subject to the
rp
restrictions that £>1 - —.
-------
-------
Ill - k
Following this derivation, the advection from Section k-1
to k becomes:
\-l,k = \-l,k C?k-l,k Ck-l + (1 - W> Ck] 10
In a similar manner, the advection out of Section k into
Section k+1 is:
Ak,k+l = \,k+l [5k,k+l Ck + (1 ~ ^k+l' Ck+l] n
Diffusion
The rate of diffusion from one section to another can be
assumed to be proportional to the difference in concentration
betveen the sections or:
D. n . = E. ., . (C, , - C, ) 12
k-l,k k-l,k k-1 k
Di T ^i = E! i u.-, (ci ^ - c, ) !3
k,k+l k,k+l k+1 k
where E is an exchange factor related to the classical diffusion
factor (K) by:
- Kk,k+l \,k+l ,
\,k+l 0.5 (Lk + Lk+]_)
This expression for E can be derived by assuming that
diffusion proceeds according to Fick's first law, i.e.,
H . -K§ 15
where H is the time rate of transfer of substance per unit area,
M
—p—, and K is the coefficient of diffusion for the system shown
L T
below:
-------
-------
'k-1
III - 5
L.
and
k-1
i£ = °k-l " Ck
3X 1/2L . + 1/2L.
k-1 k
"k-1
N = K
D, the total time rate of transfer of substance across
the boundary between Se/gnent k-i and K which has a cross-sectional
area A is fjiven by:
D = All
AK
- Ck)
16
17
18
19
or
where
E,
(r
[
KA
1/
If E is taken as positive, the direction of the diffusion
will be fixed by the relative magnitude of C , C , and C
20
-------
-------
Ill - 6
Re aeration
The rate of reaeration (r ) into Section k may be expressed
K-
as being proportional to the difference in the actual oxygen
concentration and the oxygen saturation value C
s c
R. = r. V, (C - C, ) 22
k k k sc k
BOD
The rate of utilization of oxygen by the UOD present is
expressed as:
= \ \(t) Lk(t) 23
vhere d (t) = the decay coefficient (k ) in Section k at time t.
K. 1
L. (t) = the UOD in Section k at time t.
K
Other Sources and Sinks
The effect of algae, benthal deposits, COE, and any other
sources or sinks of oxygen in Section k will be expressed as S (t).
k
Later it may be desirable to separate these effects and treat them
separately; but for the present, in order to keep the analysis
tractable, they will be considered together.
If an equation is now written for all the sources and sinks
of oxygen in Section k, the following differential equation for the
mass rate of change in Section k is obtained.
-------
-------
Ill - 7
l = Qk_1>k [5k_lfk Ck-1 H. (1 - ^ ) Ck]
at
- Vk+1 U k,k+l Ck + (1 - ^+l} Ck+l]
+ Ek-l,k (Ck-l - V + Ek,k+l (Ck+l - Ck}
+ rk \ [Csc(t) - Ck] - \ dk(t) Lk(t)
or rearranging:
-vk5i H- Qk_l5k Sk_l5k cR_1 + Qk_ljk (i - 5k_1>k) c
Q-Ti
k
-Qk,k+l ?k,k+l ck - Qk+l (1 - ^k,k+l} ck+l 25
+Ek-l,k ck-l " Ek-l,k ck + Ek,k+l ck+l ~ Ek,k+l ck
- Vk Ck + -rk\Csc(t) + Vk(t) Lk(t) + \Sk(t)
Factoring out C ' s and multiplying through by -1:
K.
~ CQk-i,k sk-i,k + Ek-i,k] ck-i- f\ It + \-i,k (1 - ?k-i,
" Ek-i,k - Ek,k+i - rk \ ck 26
Ck-l [-\,k+l (1 - ?k,k+l} + Ek,k+l] = rk\Csc(t)
- vkdk(t) Lk(t) - sk(t)
Letting
ak-l,k = -[Qk-l,k Sk-l,k + Ek-l,k] 2T
= [-\-l,k (1 - **-!,*) + \,k+l Sk,k+l + Ek-l,k 28
29
-------
-------
Ill - 8
the mass balance equation reduces to:
ak-l,k Ck-l + \,k Ck + ak,k+l Ck+l =
-rkVkCsc(t) + Vk(t) Lk(t) + Sk(t) \ 3°
If steady state conditions are assumed:
T~= 0 31
dt
C (t) = C 32
sc sc
dk(t) = dk 33
L(t) = L 3k
therefore:
Sk(t) = Sk 35
= [Qk,k+l ?k,k+l = Qk-l,k
rk \] 36
and
a, . . C. , + a, , C. + a, , _^n - r, V. C + V. d. L. + S, V. = P, 37
k-l,k k-1 kk k k,k+l kksc kTck kk k
Assuming appropriate boundary conditions, i.e., C and
C and writing mass balance equations for each section, we
obtain an equation of the following type:
-------
-------
Ill - 9
allCl
a!2Cl
a!2C2 = Pl
a22C2
a23C3
a23C2 + a33C3
38
a .. C . + a C
n-l,n n-1 n,n n
= P
or in a matrix notation
!2
a21 a22 E23
&32 a33
n,n-l
n
0
0
0
a
n-l,n
a
nn
Cl
C2
C3
•
C
n
=
=
Pl
P2
P3
•
P
n
39
A C = F
C = F A
-1
ho
hi
The system can thus be solved for all values of C by finding
the inverse of the matrix A. Matrix inversion, although time-
consuming by hand, can be accomplished easily by high speed digital
computers.
-------
-------
IV - 1
IV. MATHEMATICAL TECHNIQUE EMPLOYED IN THE MODEL FOR MATRIX
INVERSION
The matrix of coefficients we are dealing with in the
program is of a particular type. The system of equations is tri-
diagonal since the matrix of unknowns is tridiagonal, i.e., each
element is zero except the main diagonal and its adjacent diagonals,
The solution to such a system is conveniently handled on
the computer by solving for the inverse employing a tridiagonal
technique.
This may be illustrated by an example:
C q 0 0
0 P, C3 q,
0 0 p C;
Now define an S sequence recursively by:
US
kh
0 0
3 3
U5
-------
-------
IV - 2
s = c - -^—-
k k bk-l
II II
I! II
Pn_
s = n
n n b
n
In terms of this sequence, define the sequence K by:
K = b
pl kl
K2 = b2 ~ ~S~
t* II
II II
It T?
K. = b. - - 50
i i si_1
II IT
p , k
v - -K n-1 n-1
Kn = bn - ~S
n-1
The solution to the set of equations can now be written
down by means of a backward sweep as follows:
NOTE: We illustrate by means of a hxh. The generalization is
obvious.
-------
-------
IV - 3
53
K2-
Kl -
55
1
The above procedure is well known. In order to prove this,
we note that the forward sweep corresponds to taking the i-th row,
-C.
multiplying it by , and adding it to the 14-i-th row as i advances
from 1 to n. This procedure triangularizes the matrix, i.e., it
is reduced to:
sl ql ° °
0 S2 ci2 0
0 0 S3 q3
0 0 0 S]
Xl
X2
X3
X*
=
Kl
K2
K3
Klt
56
The backward sweep is now clear. Obviously now X is
determined since X> is known, etc.
-------
-------
V - 1
V. PREPARATION OF THE COMPUTER PROGRAM
The program was vritten in Fortran IV and originally run
on the IBM 709^ at the National Bureau of Standards in Washington,
D. C. The more recent version presented here vas run on the IBM
360 system at the U. S. Geological Computer Center, Washington,
D. C. Though Fortran programs will run on any installation that
maintains a Fortran compiler, it usually requires a number of
changes to be made when switching from one system to another.
Generally, these changes require an understanding of the installa-
tion's job control language, together with the particular level
of the compiler.
In developing the program and in the choice of mnemonics,
an effort was made to make the program as compatible as possible
with the time dependent model previously programmed by Jeglic.4
The complete program deck structure is shown in Figure 3.
The entire package consists of one main program and eight sub-
routines. The main program calls these various sub-routines as
they are needed and controls the actual operating features and
cycling. The sub-routine POLYB reads in coefficients and the
powers of polynoraian equations when the vectors for reaeration,
decay, and dissolved oxygen are to be generated rather than read
in as input data. The sub-routine PRELIM reads in various vector
quantities and prepares the coefficients of the matrix and other
required vectors. Sub-routine PRECAL loads the calculated matrix
elements in their proper positions and returns control to the
-------
-------
Subroutine FINAL
Subroutine PRTMAT
Subroutine SCAVEC
Subroutine INVERT
Subroutine PRECAL
Subroutine POLYB
Subroutine PRELIM
Program MAIN
// FORT SYSIN DD
//EXEC FORTHCLB
JOB CARD
FIGURE 3.
PROGRAM DECK STRUCTURE
-------
-------
/Subroutine FINAL
Subroutine PRTMAT
Subroutine SCAVEC
Subroutine INVERT
Subroutine PRECAL
Subroutine POLYB
Subroutine PRELIM
Program MAIN
// FORT SYSIN DD
//EXEC FORTHCLB
JOB CARD
FIGURE 3.
PROGRAM DECK STRUCTURE
-------
-------
V - 2
main program, which then calls the matrix inversion program.
This sub-routine then inverts the tridiagonal matrix. The sub-
routine SCAVEC performs the calculations on the inverted matrix
that have been specified in tne control card, PRTMAT is a general
sub-routine used to print the inverted matrix ana could be used
to print any matrix with five elements printed per row per page.
Sub-routine FINAL is used only when both the A and B matrix
inversions have been specified for a single case of input data,,
PRECFH is employed to adjust the vectors witn proper
dimensions when it is more convenient to enter tne vectors in
units other than tnose employed in the actual calculations. Tnis
allows the analyst to enter a conversion constant into the program
when the source data set up is Jn other units.
As shown in "Figure 3, the first card of the program deck
is the job control card. The card format lor this card at tne
UoSoG-So Computer Center where the program was run is as follows:
JOB CONTROL CARD
Card
Columns Re quired Inf ormat i on
1-2 //
3 Center Code: For use in conjunction with the job or
program number to identify the center originating or
assigning the job or program numDer,
^ - 5 Federal Agency code
6 - 8 User Registration Code: Individual users registration
code. To be assigned by Computer Center Division.
-------
-------
V - 3
JOB CONTROL CARD (Continued)
Card
Columns Required Information
9-10 User's ID: This is structly a user's ID to uniquely
identify submissions of data to the Computing Center.
The only caution to be observed by the user is when
two sets of data for the same program are submitted
simultaneously, then different alphanumeric characters
should be punched in columns 9-10.
11 Blank column
12-lit JOB (e.g., the word JOB)
15 Blank column
16 ( (left parenthesis)
17 - 20 Program Number: Four digit numeric job or program
number assigned by the Computer Center Division at
each field center and Washington, D. C. When a new
number is assigned at any field center, the attached
Program Registration Form should be completed in
dxiplicate and transmitted to the Computer Operations
Branch, Washington, D. C.
21 , (comma)
22 - 25 User assigned auxiliary account number. Four alpha-
numeric characters chosen by the user according to any
method he chooses. Accounting data will be sequenced
and subtotaled by this number for user information.
26 , (comma)
27 - 30 Estimated execution time in minutes. Requires four
numeric digits.
31 , (comma)
32 - 35 Estimated lines of print expressed in thousands of
lines. Requires four numeric digits (e.g., 0001 =
1000 lines of print).
36 , (comma)
-------
-------
v - U
JOB CONTROL CARD (Continued)
Card
Columns Required Information
37 - ^0 Estimated number of cards to be punched. Requires
* four numeric digits and is an exact number (e.g.,
0100 = 100 cards).
Hi , (comma)
U2 Reserved for future use - must be 1.
^3 , (comma)
kh Reserved for future use - must be 1.
^5 , (comma)
h6 Type run.
C = Compile only
T = Test of program
P = Production use of program
D = Data conversion required to convert from
prior systems
^7 ) (right parenthesis)
U8 , (comma)
^9 ' (single quote)
50 - 70 Programmer or user's name. May be from 1 to 20
characters, with or without imbedded blanks. Must
be followed by one single quote (')• This field is
required and cannot exceed 20 characters.
If the user requires additional information in the
JOB card, the following rules apply: (e.g., MSGLEVEL
1 or other comments).
A - Place a comma immediately following the trailing
quote after name field.
B - Punch any alphanumeric character into column 72 -
Do Not Use this column for any other purpose.
-------
-------
V - 5
C - Punch // in columns 1 and 2 of a second card.
D - Columns 3-15 MUST BE BLANK.
E - If MSGLEVEL = 1 is desired, it must be punched in
columns 16 - 25 and followed by one or more blanks
prior to any other comments.
F - If comments only are desired, leave column 16
blank and start the comment in column 17.
G - Column 72 of the second card MUST BE BLANK.
The second card in the program source deck is the EXEC
statement card. The EXEC statement indicates the beginning of
a job step and describes that job step. For the program here,
the EXEC statement should appear as:
Columns No. 1 2 3
//bEXECbFORTHCLG
(b = blank)
The third card in the program contains the following:
Columns No. 1 2 3 ^ 5 ....
//FORT . SYSINbDDb*
(b = blank)
The statement specifies the location of the source module(s)
or the object module(s) to the control program.
-------
-------
VI - 1
VI. INPUT DATA PREPARATION AND PROGRAM CASE CONTROL
A. General
The model contains the feature of running any number of
cases during a production run. The original run would consist
of placing the FORTRAN source program before the data deck. Sub-
sequent computer runs would use the binary deck (called the object
program) in front of the data.
Appendix III shows a typical data deck structure. The first
card in the deck contains the number of cases to be run. This
*
variable is identified by the name HCASES. The first three
columns on the card are used to enter the value. It is possible
to run 999 cases on an individual computer run.
The format for this card is:
CARD COLUMNS _1 2 3 4 5 .
8
Note that for the sample shown, the program would operate
on 8 data sets before termination. In entering data for the num-
ber of cases, the value should always be right justified. If, for
example, the 8 were inadvertently entered in column 2, the program
would try to operate on 80 sets of information rather than the 8
desired.
The second card in the data deck is the date card. This
should be given as the date the computer run will be made. Its
*
The word "variable" is not used in the normal mathematical sense.
-------
-------
VI - 2
main use is to quickly identify the computer run since, in most
simulation modeling, input information will "be adjusted upon
analysis of initial output, and at a later time the analyst may
want to refer to prior runs.
The numeric values and special symbols normally used to
write the date may be entered as:
5/1T/67 (Starting in column 1)
or 05/17/67 (Starting in column l)
The date may be entered in columns 1 to 2k on the card,
but for use of identification, it would be convenient to establish
a definite entry technique as shown above.
The third card in the data deck should contain the name
of the user. Again 2h columns are employed, and the entry may
appear in any of the card columns 1 through 2k.
The fourth card in the data deck is the title card. This
card is employed to identify the first set of data the program
will operate on. Note in Appendix III that each subsequent set of
input data contains a title card. Card columns 1 through 22 are
employed. The data may be numeric or alphabetic.
The title card and its subsequent set of data may be
considered as a separate subdivision from the entire data deck.
In practice, the title card and its associated input data is a
subset of the input deck; therefore, the following discussion
will outline the subset structure.
-------
-------
.5 . " .' nine lint In p u 1
J. ^eneral Description of Xa'T.elisl Jrrout Witu Rule
Tuc Panelist input "iio.le was c^o^ei; ii, o/ver to nvoi
.. taiX iK;ce;-:nry to code input uata into r definite format F.tru
.uf-e. lluaer ^A^ELl^? options, trie uat-i to GO entered into tLc
oni^jtor is ion.tje^ i;j Tnencry ^iti'
Lero nane^. is tlje i.arc of the list of variables whose
varies are soecifieu by V. , W. . T.ic i.air,e of the liAI'LLIBT ~;L.y u
frcn r;..K' to r- ix characters in ifn^tri.
Tr: order to u.uacrstnna t-io daLo c.-iitr:/ for a vrr'able
a^oOcL.tec -.vith a '.ANKMGT, t;if following p-cntr:1.! ro-[u: i 2- -.<-;/: t:i
]^ac ^ iAJ'-jLioT Lorlnr-i vili. •..n a;:.rc^r3ai;d {":} ii;
colani:i L\ "ollc-;;cd L ;; the :.:••'>":,;.!..". na."-, ;\;;o
foLlo;:e:l uy a1- least one u'rin-i.
Blankn ir.ay not, be iEbeded "be Tore or afi.er the r"
Hign. (Ex. A - 5.0, is illegal and 1-3 ho aid be
puiichcc. an: A^^.Q,,.1
-------
-------
VI - h
g. Blanks may be embedded between data values after
the first value of vectors or arrays as shown
below:
(1=1.2,1.3,1.5 2.2,2.3,2.5,)
h. Exponential notation may be used for large or
small values, i.e., 2.153E5 and 2.15^E-2 denote
215300 and 0.02151*.
i. If the decimal point is omitted, it is assumed
to be at the extreme right.
j. No decimal point may be used in the entries of
variables typed integer.
k. When an array name appears without subscripts,
all elements in the array must be present.
1. To enter the same value in several elements of
an array, the data card may be set up as follows:
If X is dimensioned as X (10); then
X-1.U,2.H,6.3,5*6,.2,7.1,8.5,
2. Description of Namelist and Variables Used in This
Program
a. WAMELIST CF
This namelist deals with the problem controls and
conversion factors.
NSECTS (integer) - Number of estuarine segments
IMAT (integer) - Program Control for A and/
or B matrix
INDEX (i)(integer) - Printing Option Control
ITP (i)(integer) - Control value variable
employed by polynomial sub-
routine and temperature
conversion control
CFQ (real) - Advection conversion constant
employed in sub-routine PRECFM
-------
-------
VI - 5
CFLEN (real) - Length conversion constant
employed in sub-routine PRECFM
CFK (real) - Diffusion conversion constant
employed in sub-routine PRECFM
CFL (real) - UOD conversion constant employed
in sub-routine PRECFM
CFAREA (real) - Area conversion constant employed
in sub-routine PRECFM
CFVOL (real) - Volume conversion constant
employed in sub-routine PRECFM
CFP (real) - Dissolved oxygen sink and source
conversion constant employed in
sub-routine PRECFM
The above CF namelist is developed for each data set.
INDEX controls the printing of information with regard
to a particular state of IMAT. In the event that IMAT would
equal 1, two sets of information may be optionally printed, i.e.,
ALPHA x A"1 or ALPHA x VECTOR (L) x A"1. If IMAT would equal 2,
then the index would optionally be used to print ALPHA x B or
ALPHA x F x B"1. In the third state, i.e., IMAT = 3, the INDEX
option allows printing of ALPHA x A~ , ALPHA x L x A~ , ALPHA x
B"1, ALPHA x F x B'1, ALPHA x A"1 x B"1, VD A"1}*"1, LVD A'1 B"1,
and D.O. Sat. + ALPHA x F x B"1 - LVD A""1 B"1. IMAT and the index
values will be discussed in greater detail later in this section.
A large number of possible combinations of output may be
obtained. A typical output is shown in Appendix III, and each
case shown here has been verified. Case K in the Appendix shows
the results for IMAT = 3 and all INDEXES 1 through 8 set equal
to 1.
-------
-------
VI - 6
The ITP variable is entered on the card, following the
INDEX control card. Two values should always be given for this
variable. If ITP (2) is set equal to 1, the polynomial sub-
routine is called. This sub-routine, discussed in Section V,
generates the reaeration, dissolved oxygen at saturation, and
the decay vector. If ITP (l) is set equal to 1, the temperature
vector may be given in degrees Fahrenheit and is converted in
the sub-routine to degrees Centigrade.
The conversion constants CFQ, CFLLiI, CFK, CFL, CFAREA,
CFVOL, and CFP are entered in succeeding cards. These constants
are employed to convert tneir corresponding vectors to the proper
units so that the actual vector input data may be entered in any
units providing the corresponding conversion factor is given.
In the event that the original input vectors are already in the
proper units, the corresponding conversion factor would be set
equal to 1.
b. NAMELIST RIVER
This namelist contains the parameters which
describe the geometry of the river and the waste loadings to
the system.
Q (i)(real) - Qi_^ j_, net flow of the estuary
between segments i-1 and i, ex-
pressed in cubic feet per second.
All boundaries, including the flow
into the first and the flow out of
the last segment, must be specified.
-------
-------
VI - T
LENGTH (i)(real) -
VOL (i)(real)
AREA (i)(real)
DIFFCO (i)(real) -
L (i)(real)
P (i
_}_, length of the estuary seg-
ments. Since a length above the
uppermost segment and below the
lowermost segment is required
(see equations 9 and 19)» n + 2
lengths must be specified. The
input must be in feet. If other
units are to be used, the proper
conversion factor CFLEN (Namelist
CF) must be used.
V-j_, volume of section i in cubic
feet. All sections must be spec-
ified. If units other than cubic
feet are used, a suitable conver-
sion factor must be specified
(CFVOL in namelist CF).
•^i-1 i' cross-sectioned area of
the interface between segments
i-1 and i, in square feet. All
interfaces, including the first
and last, must be defined. Con-
version factor CFAREA may be used.
KJ__J j_, longitudinal dispersion
coefficient between segments i-1
and i in square miles per day.
All segment boundaries, including
the first and last, must be spec-
ified. Conversion factor CFK is
available if different units are
used.
LJ_ , ultimate oxygen demand being
discharged to segment i in pounds
per day. All segments must be
defined. Conversion factor CFL
may be used if desired.
Pi, other sources or sinks of
oxygen in segment i, in pounds
per day. All segments must be
defined even if all values are
zero or meaningless. Conversion
factor CFP is available.
-------
-------
VI -
c. NAMELIST RIVTO
This namelist is used if one wishes to specify
definite values for the ultimate oxygen demand decay rate, the
reaeration rate and the saturation value of oxygen in each segment.
DISOXS (i)(real) - C , the saturation value of dis-
solved oxygen in segment i. All
segments must be defined. The
values must be entered in mg/1.
REAERK (i)(real) - r^, the reaeration coefficient
for segment i in units of I/day.
All segments must be defined.
DECAYK (i)(real) - dj_, the ultimate oxygen demand
decay rate in segment i also with
units of I/day. All segments
must be defined.
d. NAMELIST R R
This namelist is used if one wishes to generate the
values of the ultimate oxygen demand decay rate, the reaeration rate
and the saturation value of oxygen from the river temperature using
polynomials.
T P (i)(real) - The temperature of the water in
segment i. The temperature may
be given in degrees Centigrade if
ITP (2) in namelist CF is set
equal to 0 or in degrees Fahren-
heit if ITP (2) in namelist CF is
set equal to 1.
K D (Integer) - The order of the polynomial which
is being used to describe the
decay rate.
C D (j)(real) - Polynomial coefficient of the jth
term in the polynomial which is
being used to describe the decay
rate. C D must be defined for all
values of j < K D + 1.
-------
-------
VI - 9
K R (integer) - The order of the polynomial which
is being used to describe the
reaeration rate.
C R (j)Creal) - Polynomial coefficient of the jth
term in the polynomial which is
being used to describe the reaera-
tion rate. C R must be defined
for all values of j <_ K R + 1.
K C (integer) - The order of the polynomial which
is being used to describe the
dissolved oxygen saturation value.
C C (j)(real) - Polynomial coefficient of the jth
term in the polynomial which is
being used to describe the dis-
solved oxygen saturation value.
C C must be defined for all values
of j <_ K C + 1.
In order to understand the arrangement of the various NAME-
LISTS in the input data structure, the following explanation should
prove helpful:
Consider the following:
1. CF Namelist (Always First and Present)
2. RIVER Namelist
3. RIVTO Namelist
U. R R Namelist
1. CF is always first and present.
Now, if ITP (2) = 0, NAMELIST R R is second, NAMELIST RIVER
is third, and RIVTO is not required.
If ITP (2) = 1, RIVER is second, RIVTO is third, arid RR
is not required.
-------
-------
VII - 1
VII. BIBLIOGRAPHY
1. Gtreeter, K. W. , and. Phelps , E. B. , "A Study of the Pollution
and Natural Purification of the Ohio River - III, Factors
Concerned in the Paenoraena of Oxidation and Reaeration,"
Public Health Bulletin No. lh6, U. S. Public Health Service,
February 1925.
2. O'Connor, Donald J., "Oxygen Balance of An Estuary," Journal
of the Sanitary Engineering Division, American Society of
Civil Engineers, Proceedings Paper 2U'f2, Vol. 86, No. SA3,
May I960.
3. Thomann, Robert V., "Mathematical Model for Dissolved Oxygen,"
Journal of the Sanitary Engineering Division, American Society
of Civil Engineers, Proceedings Paper 368-0, Vol. 89, No. SA5,
October 1963.
h. Jeglic, John M. , "Mathematical Simulation of the Estuarine
Behavior," Digital Computer Technology and Programming Anal-
ysis Memo. No. 1032, Rev. A, General Electric Re-Entry Systems
Department, Philadelphia, Pennsylvania, July 1967-
5. "Program for Analog Computer Simulation of Dye Diffusion in
the Potomac River," Final Report by: Electronic Associates,
Incorporated, Washington Computation Center to the Chesapeake
Field Station, Chesapeake Bay-Susquehanna River Basins Project,
Federal Water Pollution Control Administration, Annapolis,
Maryland, in completion of Contract RO-3-2131-65, October 1965.
6. Hetling, Leo J., and O'Connell, Richard L. , "A Study of Tidal
Dispersion in the Potomac River," Water Resources Research,
Vol. 2, No. k, Fourth Quarter, 1966.
T. Hetling, Leo J., and O'Connell, Richard L., "An Oxygen Balance
for the Potomac Estuary," CB-SRBP Technical Paper No. 13,
Federal Water Pollution Control Administration, Middle Atlantic
Region, Charlottesville, Virginia (in press).
8. Hetling, Leo J., "Simulation of Chloride Concentrations in
the Potomac Estuary," CB-SRBP Technical Paper No. 12, Federal
Water Pollution Control Administration, Middle Atlantic Region,
Charlottesville, Virginia (in press).
9. Hall, Charles W., and Hetling, Leo J., "Use of Mathematical
Models as Aids to Decision Making in Water Quality Control,"
Presented at the Sixty-third National Meeting of the American
Institute of Chemical Engineers, St. Louis, Missouri,
February 19, 1968.
-------
-------
APPENDIX I
PROGRAM
FLOW DIAGRAMS
-------
-------
FALSE
YSTEM CALL
MED (0)
•N .
SYSTEM
CALL TIMEIN
NUMBER OF
CASES
(NCASES)
DATE OF
THIS
RUN
ICTN = ICTN t I
NAME OF THE
PROGRAM
USER
TITLE
TITLE
DATE
PAGE
NSECTS
IMAT
INDEXES
CFO,CFLEN
CFK, CFL,
CFAREA
CFVIJIL, CFP
SUBROUTINE POLYB 1
POLYNOMIAL DATA IS READ
IN TO COMPUTE THE VEC-
TORS REAERATION, DECAY,
DISSOLVED OXYGEN SATUR-
ATION
GENERAL
PROJECT
HEADING
TITLE
DATE
USER
REWIND BINARY TAPES
NSECTS, ITP (2)
IMAT
INDEXES (1-8)
CFQ, CFLEN,
CFK,CFL,
CFAREA
CFVOL, CFP
COLUMNS 1-3
NCASES « 999
COLUMNS 1-24
(ALPHANUMERIC)
COLUMNS 1-24
(ALPHANUMERIC)
COLUMNS 1-72
(ALPHANUMERIC)
INITIAL OUTPUT PAGE
FOR EACH CASE RUN
NSECTS - NUMBER OF
ESTUARINE
SECTIONS
IMAT - MATRIX OPTION
INDEX(I-B)PRINTING CONTROL
OPTIONS
ITP(I) -TEMPERATURE
INPUT OPTIONS
ITP(2) -CONTROL
POLYNOMIAL
SUBROUTINE
FLOW CHART NUMBERJ | I | OF
PROGRAM NAME: MAIN
U S DEPARTMENT OF THE INTERIOR
FEDERAL WATER POLLUTION CONTROL ADMINISTRATION
MIDDLE ATLANTIC REGION
CHARLOTTESVILLE, VIRGINIA
-------
-------
NAMELIST/RR /
(KR.KD, KC, CR, CD, cc, TP j
POLYNOMIAL EQUATIONS,
REAERATION: cr, = ^>; crKT,
K=0
Co, = ^>] CDT«
DISSOLVED __ K
OXYGEN Cc = ^ CcKTK
SATURATION ^TT K
POLYNOMIAL OUTPUT
DATA PAGE
I '
WRITE
J = 2, MO
CD, = Co, +CD, x TPiJ"
0 = 2, MC
Cc, = Cc, + Cc, X
30
WRITE
TITLE
DATRUN
IPAGE
FLOW CHART NUMBER) | 2 | OF |I [I
PROGRAM NAME! SUBROUTINE POLYB
U S. DEPARTMENT OF THE INTERIOR
FEDERAL WATER POLLUTION CONTROL ADMINISTRATION
MIDDLE ATLANTIC REGION
CHARLOTTESVILLE, VIRGINIA
-------
-------
RATIOL(I)= (1.0 -0.5*
TURBEX(I)/ADVECQO)>
10
[ • 1, IMAX
AFTSEC(I)' ADVECQ(I)
ADVECOU)- 86400.*ADVECO(I)
ADJLUM ALENTH(I) + AL,ENTHd+l>
TURBEXd) - ((DIFFCO(n*(AREA(l)/AOJL(I)))»CONST)
20
IMAX - IMAX - 1
AKK = TURBEXd -l)/ADVECQ(l -I)
AJJ = TURBEXdl/ADVECQd)
All = (ALENTH(I-I>/
(ALENTHII-D +ALENTH(I)l)
TRUE
RATIOLU)" \
I 0- AJJ + .01
1 J
FALSE
RATIOL(t) • All
70
I - I, ISPEC
AUPPER(I) = (ADVECQd + I)*
(1.0 -RATIOLU+ 1)1) -
TURBEXd +1)
IOO
I 'I, NSECTS .,
1=2, NSECTS
/ ISPEC =
A NSECTS - I /
BOTTUMd- I) =
(-I.O«((ADVECO(I)»
RATIOL(I) + TURBEX(I))))
(RATIOL(IMAX) =05
ASTORE(J) = (-1 0* ADVECO(I)*
(lO-RATIOL(D) +ADVECO(I+D*
RATIOLII tl) + TURBEXd) + TURBEXd -HI)
CONTINUED
ON FLOW CHART
NUMBER
FLOW CHART NUMBERJ |3TOF I ' I '
PROGRAM NAME: SUBROUTINE PRELIM
U S DEPARTMENT OF THE INTERIOR
FEDERAL WATER POLLUTION CONTROL ADMINISTRATION
MIDDLE ATLANTIC REGION
CHARLOTTESVILLE, VIRGINIA
-------
-------
CONTINUED
FROM FLOW CHART
NUMBER
IDISOXS, 1*1, NSECTSI
IVOLUME.I-I, NSECTSI
J.TPIJ), UL80DIJ)
DOSKSR(J),
ISEC, I,
OIFFCOU),
AFTSEC(I)
ISEC
ISEC + I
•• I +1
750
I = I
J" I
ISEC =0
HEADING
^^^^
TITLE
DATRUN
IPAGE
IPAGE « IPAGE + I
J.REAERKIJ),
DECAYK(J), DISOXS(J)
ISEC,I,RATIOL(I),
TURBEX(I),
ADVECQ(l),
TO 760
CONTINUED
ON FLOW CHART
NUMBER
(5)
®
FLOW CHART NUMBER] |4J OF \ I \ I
PROGRAM NAMErSUBROUTINE PRELIM
U. S DEPARTMENT OF THE INTERIOR
FEDERAL WATER POLLUTION CONTROL ADMINISTRATION
MIOOLe ATLANTIC REGION
CMARLOTTESVILLE, VIRSINI*
-------
-------
CONTINUED
FROM FLOW CHART
NUMBER
TRUE
IPASE = IPAGE + I
TITLE,
DATRUN,
IPAGE
WRITE
WRITE
I, I, ADIAG(I),
I, J.AUPPEWW,
J, I,BOTTUM(U
_ -^
^^ IF ^^^ FALSE / 1=1+1
^»-L .^^ \ J = J + i
810
FLOW CHART NUMBER | |sj OF [ I | I
PROGRAM NAME:SUBROUTINE PRELIM
U S DEPARTMENT OF THE INTERIOR
FEDERAL WATER POLLUTION CONTROL AOMINI STRflTION
MIDDLE ATLANTIC REGION
CHARLOTTESVILLE, VIRGINIA
-------
-------
ENTER
J-l, NSECTS
DOSKSRtJ) • CFP # DOSKSR(J)
VOLUME(J)'CFVOL#VOLUME(J)
ULBOD(J) - CFL # ULBOD(J)
(MAX-NSECTS
K • I, IMAX
ADVECO(K) • CFO # ADVECO(K)
OIFFCO(K) * CFK #• DIFFCO(K)
AREA(K) ' CFAREA * AREA(K)
FLOW CHART NUMBER | I | I | OF | I |
PROGRAM NAME: SUBROUTINE PRECFM
l, ISPEC
AMATRXII + I, I) * BOTTUM(I)
AMATRX(I,I + I) • AUPPER(I)
I • I, NSECTS
FLOW CHART NUMBER) |6|oF|l|l
PROGRAM NAME:SUBROUTINE PRECAL
U S DEPARTMENT OF THE INTERIOR
FEDERAL WATER POLLUTION CONTROL ADMINISTRATION
MIDDLE ATLANTIC REGION
CHARLOTTESVILLE, VIRGINIA
-------
-------
180=1, NSECTS
I "I, NSECTS
VECTOR
AMATF
= ALF
AMATF
3
X(I,J)
HAW
X(I,J)
ALPHA=
1 66+4
J= 1, NSECTS
SUMVEC(J) = 00
2
[ OCA'1
FLOW CHART NUMBER[ | 7 | OF | I { I
PROGRAM NAME:SUBROUTINE SCAVEC
U S DEPARTMENT OF THE INTERIOR
FEDERAL WATER POLLUTION CONTROL A DM I N I STRATI ON
MIDDLE ATLANTIC REGION
CHARLOTTESVI LLE, VIRGINIA
-------
-------
-»( REWIND
(DISOXSd), 1 = 1, NSECTS)
(ULBOD(I), 1 = I, NSECTS)
KAMATRXd.J), 1 = 1, NSECTS),
J = I, NS'ECTS)
UBMATRXU.J), 1=1, NSECTS),
J = l, NSECTS)
, , . V A V A V A
DO 1: 1= , NSECTS
,,(VOLUME(I), 1 = 1, NSECTS) (DECAYK(I), I = 1, DO |- J* , NSECTS
0 NSECTS) CCTN(I,J) = 00
DOI IK= .NSECTS
+ CCTN(I,J)=CCTN(I,J) +
BMATRX(r,IK)#
AMATRX(IK.J)
1
1=1, NSECTS
1 = 1, NSECTS , j.|, NSECTS
\-LUME (=I>* . FALSE^
-------
-------
1 = 1, NSECTS
0(1) =
AMATRXIt, I)
I - I, MA
II <
*< MA = NSECTS - I
B(K) ' 00
7
AMATRXII, K) •
X(I)
X(LL) =(T(LD-
OA(LL)*
XILL+ I))/S(LL)
E t
QA(I) = AMATRX(I,H)
AMATRXdl, I)
2
DO 7. K = 1, NSECTS
B(K)= 1.0
S(l) • 0(1}
T(D- BID
I « 1, NSECTS
K" 1, NSECTS
B(K) • 0 0
3
I ' 1, MA
LL • NSECTS - I
J = I - 1
S(D- Dd)-PA(J)*
OA(J)/S(J)
Till" 8(I)-PA(J)*
T(J)/S(J)
4
X(NSECTS)-
T(NSECTS)/
S( NSECTS)
FLOW CHART NUMBER | |9JOF |l j
PROGRAM NAME: SUBROUTINE INVERT
PAUSED
^^xNSE
CTS^/
TRUE
f
1
(
WRITE:
I, AMATRX(l.J)
J = LL, KCTN
I HEAD(I),
I'LL,
KCTN
_ ^^
FLOW CHART NUMBER | 1 | 0 | OF j I | I
PROGRAM NAME:SUBROUTINE PRTMAT
U 5 DEPARTMENT OF THE INTERIOR
FEDERAL WATER POLLUTION CONTROL ADMINISTRATION
MIDDLE ATLANTIC REGION
CMARLOTTESVILLE, VIRGINIA
-------
-------
APPENDIX II
IBM 360 VERSION I
FORTRAN PROGRAM LISTING
-------
-------
ISM 0002
ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
C
C
C
C
C
C
C
C
C
PROGRAM MAIN
MIDDLE ATLANTIC REGION - IBM 360 VERSION I
STEADY STATE SEGMENTED ESTUARY MODEL
FOR FURTHER INFOf- NATION CONTACT
PROJECT ENGINEER- OR. L.HETLING
SYSTEMS ANALYST-PROGRAMMER- R.E.BUNCF
STORAGE ALLOCATION-MAIN PROGRAM
DOUBLE PRECISION DATRUNJ4),USER(4)tTITLE!12)
COMMON/DATUSE/DATRUN,USER,IPAGE
COMMON/CONTRL/TITLE,NCASESfNSECTS,IMAT,INDEXI8),KK,ISPEC,IMAX,ITP(
12},CFQ,CFLEN,CFKfCFL,CFAREA,CFVOL,CFP
COMMON/AWORKS/KCON(3),CVAL(30),TP(40),TP1(4P)
COMMON/8WORKS/ABLOCK(3600),CCTNI 1600)
NAMELIST/CF/NSECTS.IMAT.INDEX,ITP,CFQ,CFLEN,CFK,CFL.CFAREA,CFV9L,C
1FP
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
I-SN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CONTROL INFORMATION
TITLE-72ALPHANUMERIC CHARACTERS
NCASES - NUMBER OF RUNS FOR PRODUCTION CONTROL CARD
DATRUN - DATE FOR THE COMPUTER RUN CONTROL CARD
USER - NAME OF THE PROGRAM USER CONTROL CARD
TITLE - INFORMATION FOR THE HEADING CONTROL CARD
DATA INPUT-CONTROL INFORMATION AND HEADING OUTPUT DATA
CALL TIMEIN
ICTN=l
READ (5,100) NCASES
READ (5,150) (DATRUNU ),!=!, 4)
READ (5,150) (USER(I),I=1,4)
6 READ (5,200) ( TITLE U ) , I = I , 1 2)
WRITE (6,250)
WRITE (6, 300) (TITLF( I ) , I = 1 , 1 2 ) , ( DATRUNC I ) , I = 1 ,4) , ( USER( I ) ,
READ (5,CF)
INITIALIZE CORE
DO 10 J=l,3
10 KCON
-------
-------
ISN 0030
ISN 0031
ISN 0032
ISN 0034
ISN 0035
ISN 0036
ISN 0037
ISN 0038
ISN 0039
ISN 0041
ISN 0043
ISN 0044
ISN 0045
ISN 0047
ISN 0048
ISN 0049
ISN 0050
ISN 0051
ISN 0052
ISN 0053
ISN 0054
ISN 0055
ISN 0056
ISN 0057
ISN 0058
ISN 0059
ISN 0060
ISN 0061
ISN 0062
ISN 0063
ISN 0064
ISN 0065
ISN 0066
40
50
60
70
80
100
150
200
250
WRITE (6,550) INDEX(5),INDEX(6),INDEX(7),INPEX(8)
WRITE (6,650) CFQ,CFLEN,CFK,CFL,CFAREA,CFVOLtCFP
IFUTP(2).EQ.l) CALL POLYB
CALL PRELIM
CALL PRECAL
CALL INVERT
CALL SCAVEC
IF (IMAT.EQ.3) GO TO 60
IF (ICTN.EQ.NCASES) GO TO 80
ICTN=ICTN-H
GO TO 6
IF (KK.EQ.2) GO TO 70
GO TO 40
CALL FINAL
GO TO 50
REWIND
REWIND
FORMAT
FORMAT
FORMAT
FORMAT
2
4
( 13)
(4A6)
(12A6)
<1HI///////////////44X,49(1H*)/44X,49H
/53X,36HSTEADY STATE SEGMENTED FSTUARV
.12A6/16X18HDATE Op RUN
1 ALTANTIC REGION
2 MODEL/44X,49(1H*)//////////1
300 FORMAT <1HO,15X18HPROBLEM TITLE
1,4A6/16X8HENGINEER,7X,3H* ,4A6)
350 FORMAT U2,1 2, 812,21 2)
400 FORMAT (1H1,12A6,2X,4A6 , 2X5HPAGE ,I2///)
450 FORMAT (1H ,26X20HPROGRAM CASE CONTROLf/i18X30HNUMBFR OF FSTUAPINf
1 SECTIONS= .I2//18X34HMATRIX CASE BEING CONS IDEPFP=I MAT = 112/2lX?3H
2WHERE= IMAT=l A MATRIX/28X16HIMAT=? B MATPIX/28X22HIMAT=3 A ANH
3 B MATRIX//18X38HPRINTING INDEX OPTIONS IF INDEX(N ) = 1/21X23HFOR
4THIS CASE lNOEXm = ,I2,2X,22HALPHA A MATRIX INVERSE)
500 FORMAT (1H ,34X,9HINDEX<2)=,12,2X24HALPHA A MATRIX INVERSE L/35X,9
1HINDEX(3)=,I2,2X,22HALPHA R MATRIX INVERSE/35X,9HINDEX<4)=,I 2,?X,2
24HALPHA B MATRIX INVERSE F)
550 FORMAT <1H ,34X,9HINOEXC5) = ,I 2,2X24HALPHA B A MATRIX INVEPSF/35X,9
1HINDEX(6)=,I2,2X,70HALPHA B A MATRIX INVERSE TIMES ELEMENTS VO(I)
2FORMES ON MATRIX COLLJMNS/3SX ,9H I NDEX ( 7) = » 12, 2X , 3 1HALPHA 9 A MATRIX
3 INVERSE VOL /35X,9HINDEX(8)=,I 2,2X,69HDISOXS + ALPHA B MATRIX
4INVERSE F - ALPHA B A MATRIX INVERSE VOL ///)
600 FORMAT I1H ,18X68HTHE CONTROL VALUE ITP ALLOWS COMPUTATION BY POLY
1NOMIAL APPROXIMATION/19X66HFOR THE VECTORS * REAERAT I ON,DECAY,AND
2DISSOLVED OXYGEN SATURATION//35X55HIF ITP(2) IS SET EQUAL TO I THF
3POLYNOMIALS ARE EMPLOYED/35X51HIF ITP«1) IS SET EQUAL TO 1 TFMPEHA
4TURE DATA MAY 8E/35X61HENTEREO IN DEGREES FAHRENHEIT FOR THF PDLVNJ
50MIAL CQMPUTATIONS//35X22HFOR THIS CASE ITP(Z1)=,I2/49X,7HITP(2.=,I
62)
650 FORMAT (1H ,////I8X42HCONVFRSION FACTORS USED ON INPUT VARIABLFS/2
19X,8HCFQ =,F6.2/29X,8HCFLEN =,F6.2/29X,PHCFK =,F6.2/29X,8HT
2FL =, F6.2/29X.8HCFAREA =,F6.2/29X,8HCFVOL =,F6.2/29X,8HCFP
3 =,F6.2//)
CALL TIMEDIO)
STOP
END
-------
-------
ISN 0002
ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 0015
ISN 0016
ISN 0017
ISN 0018
ISN 0019
ISN 0020
ISN 0021
ISN 0022
ISN 0023
ISN 0024
ISN 0025
ISM 0026
ISN 0027
ISN 0028
ISN 0029
ISN 0030
ISN 0031
ISN 0033
ISN 0034
ISN 0035
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE PQLYB
STORAGE ALLOCATION
DOUBLE PRECISION DATRUNJ 4) , USER< 4) , TITLF < 12 )
COMMON/CONTRL/TITLE,NCASES,NSECTS,IMAT,TNDEX(8),KK,ISPFC,IMAX,
lITPf 2),BC{7)
COVIMON/DATUSE/DATRUN,USFR,IPAGE
COyMON/AWORKS/Kp,KD,KC,CR(n),CO( 10)tCC(10),Tp(40),TPl(41)
COMMON/BWORKS/AMATRX(40,40) ,RPAERK(40),AOVECC(40),DPSKSR(
-------
-------
ISN 0036
ISN 0037
ISN 0038
ISN 0039
ISN 0040
ISN 0041
ISN 0042
ISN 0043
ISN 0044
ISN 0045
ISN 0046
WRITE (6,150) KR,(CR(I),1=1,MR)
WRITE (6,200) KD,(CD(I),I=1,MO)
WRITE (6,250) KC,(CC(I),1=1,MC)
WRITE (6,300) ( I,REAERK(I),DECAYK(I),DISOXSm,TP< I),I = 1,I
100 FORMAT (1H1,12A6,2X,4A6,2X5HPAGE ,I2///)
150 FORMAT (1H ,18X55HPOLYNOMIAL POWER AND COEFFICIENTS FOR REAEPATIQN
I VALUES//27X3HKR=,I?,16X2HCD/(40X,E15.8))
200 FORMAT <1HO,18X50HPOLYNOMIAL POWER AND COEFFICIENTS FPR DECAY VALU
1ES//27X3HKD=,I2,16X2HCD/(40X,E15,8))
250 FORMAT (1HO,18X65HPOLYNOMIAL POWER AND COEFFICIENTS FOR DISSOLVE0
10XYGEN SATURATION//27X3HKC=,I2,16X2HCC/(40X,E15.8))
300 FORMAT (1H ,///l8X45HCOMPUTEO VALUES FROM THE POLYNOMIAL EQUATIONS
1//18X2H I,7X10HREAERATION,12X5HDECAY,3X14HD.O.SAT(JRATION,6XI!HTEMP
2ERATURE/18X19H VALUES,11X6HVALUES,11X6HVALUES,11X6HVAL
3UES//I18XI2,4XE13.6,4XE13.6,4XE13.6,4XE13.6))
RETURN
END
-------
-------
ISN 0002
ISN 0003
ISN 0004
ISN 0005
C
c
C
ISN
ISN
0006
0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 0014
ISN 0016
ISN 0017
ISN 0018
ISN 0019
ISN 0020
ISN 0021
ISN 0022
ISN 0024
ISN 0025
ISN 0026
ISN 0027
ISN 0028
ISN 0029
ISN 0030
I.SN 0031
ISN 0032
ISN 0033
ISN 0034
ISN 0035
ISN 0036
ISN 0037
ISN 0038
ISN 0039
ISN 0040
ISN 0042
C
C
C
c
c
c
SUBROUTINE PRELIM
STORAGE ALLOCATION
DOUBLE PRECISION DATRUNC4),USER(4),TITLE(12)
COMMON/DATUSE/DATRUN,USER, I PAGE
COMMDN/CONTRL/TITLE,NCASES,NSECTS,I MAT,INDEX(P),KK,ISPFC,I«AX,
1ITPI2),BC(7)
COMMON/AWQRKS/KR,Kn,KC,CRUO),CD(lQ) ,CC(10),TP»40),TP1(40)
COMMON/BWORKS/AMATRX<40,40),REAERK(40),ADVECO(40 ) ,DOSKSRl40),
10(40),ALENTH(40) , AFTSEC<40) , AOJL ( 40 ) , TUP «FX{ 40 ) , R AT IOL< 40) ,V'FCTnR{
240),AWASTE(1000),ASTORE(40) ,AD IAG(40),PDIAGI40),AUPPER(401 . «OTTUM(
340),DISOXSl40),ULBOa<40),VOLUME(40),DECAYK(40),VDl40),UVT<40),ARCA
4(40),SUMER(40).CFINAL<40),SUMVEC(40),CCTNf1600)
DIMENSION QJ40),L(40),P(40),LENGTH(40), VHH40)
REAL L,LENGTH
EQUIVALENCE (Q,ADVECO,(ULBOO,L),(OOSK^R,P),(ALFNTH,LENGTH),(VOLUM
IE,VOL)
NAMELIST FOR INPUT DATA
NAMELIST/RIVER/Q,L,P,VOLtAREA,niFFCQ,LENGTH
NAMELIST/RIVTO/DISOXS,REAERK,r)ECAYK
NAMELIST/GOGO/TP1
IF (ITP(2).EQ.l) GO TO 5
READ 15,GOGO)
DO 4 I=1,NSECTS
4 TP(I)=TP1(I)
5 CONTINUE
READ (5,RIVER)
CALL PRECFM
IF(ITP(2J.EQ.1) GO TO 10
READ (5,RIVTO)
10 IMAX = NSECTS + 2
CONST= 2.*15280.0**2)
DO 20 1=1,IMAX
20 ALENTH(I)=ALENTHtI)*5280.
IMAX=IMAX - 1
DO 30 1=1,IMAX
AFTSECtI)=ADVECO(I)
AOVECQ(I) = 36400.*ADVFCQ(I)
ADJL(I) = ALENTH(I) «- ALENTH(I-H)
30 TURBEX(I) = ((OIFFCO(I )* ( AR EA{ I)/AOJL ( I ) ) )*CON'ST)
PREPARATION OF THE RATIOL VALUES
RATIOLf!)=(!.0-0.5*TURPEX(1)/ADVECQ<1)) •
1 = 2
40 AKK=TURBEX(I-1)/ADVECQ(I-1)
AJJ=TURBEX(I)/ADVECQ(I)
AII = IALENTH( I-1 ) /
-------
-------
rsN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
0043
0045
0046
0047
0049
0050
0051
0052
0053
ISN 0054
ISN 0055
ISN 0056
ISN 0057
ISN 0058
ISN 0059
ISN 0060
ISN 0061
ISN 0063
ISN 0064
ISN 0065
ISN 0066
ISN 0068
ISN 0069
ISN 0070
ISN 0071
ISN 0073
ISN 0074
ISN 0075
ISN 0076
ISN 0077
ISN 0078
ISN 0079
ISN 0080
ISN 0081
ISN 0082
ISN 0083
ISN 0084
ISN 0085
ISN 0086
ISN 0087
ISN 0088
ISN 0089
ISN 0091
ISN 0092
C
c
C
c
c
c
50 IF(RATIOL(I).GE.AII) GO TO 60
RATIOL(I)=AII
60 CONTINUE
IFII.6Q.IMAX) GO TO 80
1 = 1*1
GO TO 40
70 RATIOUI) = 1.0-AJJ+.01
GO TO 50
80 RATIOL(IMAX)=0.5
PREPARATION OF THE DIAGONAL MATRIX ELEMENTS
DO 90 1=2,NSECTS
90 BOTTUNII-1)=(-1.0*< (ADVECQ( 1 )*RATIOL (I )+TURBEX( I)) ))
ISPEC = NSECTS - 1
DO 100 I=ltISPEC
100 AUPPER , I SEC, VOLUME ( J ) , ALENTH ( I )
IF( ISEC.EQ. NSECTS) GC TO 560
GO TO 550
560 ISEC=ISEC+1
-------
-------
ISN 0093
WRITE (6,503) ISFC,ALFNTHJISEC)
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0121
0122
0123
0124
0126
0128
0129
0130
0131
0132
0133
0134
0136
0137
0138
0139
C
C HYDRAULIC-LOAD OUTPUT - DESIGNED AS UNIT
C
IPAGF=IPAGE + I
WRITE (6,1) (TITLF( I).I = 1,12) .(OATRUNU ),I=1,4), IPAO
WRITE (6,600)
1 = 1
J = l
ISFC=0
WRITE (6,601) ISFC, I,DIFFCOm,AFTSFC(I )
650 ISEC=ISEC+1
1 = 1 + 1
WRITE (6,602) J , TP< J ) , UL B00( J ) ,OOSKSR(J) , I S FC , I , DIFFCO< I), APTSEC( I
1)
IF( J.EQ.NSECTS) GO TO 660
J=J + 1
GO TO 650
660 CONTINUE
C
C COMPUTED SYSTEM PARAMETERS
C
IPAGE=IPAGE+1
WRITE (6,1) (TITLFU ),! = !, 12) ,(DATRIJN( I ),! = !, 4), IPAGE
WRITE (6,700)
1 = 1
J=l
ISEC=0
WRITE (6,701) ISEC, I , R AT IOL ( I ) , TURBEX( I ),AOVFCQ( I)
750 ISEC=ISEC+1
1=1 + 1
WRITE (6,70?) J,REAERK( J) , DEC AYK « J ) , D I SPXS ( J ) , I ST , I , R AT IOL ( T ) , TIP
1BEX( I) ,AOVEC3(I )
IF( J.EQ.NSECTS) GO TO 760
J = J + 1
G?0 TO 750
760 CONTINUE
C
C MATRIX FLtMENT OUTPUT DATA
C
C
IF( IMAT.EQ.l) GC, TO 800
IF< IMAT.EU.2) GO TQ 830
800 I PAGE= IPAGE+ 1
WRITE 16,1) (TITLE! I I ,1=1 ,12),( DATRUNI I ), 1=1,4) , IPAGF
WRITE (6,901)
1 = 1
J = 2
810 WRITE (6,802) I , I , A DI AG ( I ) , I , J , AUPPER ( I ) , J , I , POT TOM ( I )
(F( J.EQ.NSECTS) GO TO 820
1 = 1 + 1
J = J + l
GO TO 810
820 WRITE (6,805) J,J,ADIAG(J)
-------
-------
ISN 0140
ISN 0142
ISN 0143
ISN 0144
ISN 0145
ISN 0146
ISN 0147
ISN 0148
ISN 0150
ISN 0151
ISN 0152
ISN 0153
ISN 0154
ISN 0155
ISN 0156
ISN 0157
ISN 0158
ISN 0159
ISN 0160
ISN 0161
ISN 0162
ISN 0163
ISN 0164
ISN 0165
ISN 0166
ISN 0167
ISN 0168
ISN 0169
ISN 0170
ISN 0171
ISN 0172
830
840
850
1
500
IFUMAT.NE.3) GO TO 850
IPAGE=IPAGE-H
WRITE (6,1) (TITLE(I),I=1,12),(DATRUNU),!=!,4),IPAGE
WRITE (6,803)
1 = 1
J = 2
WRITE (6,804) IfI,BOIAGlI),I,J,AUPPER(I),J,I,BOTTUM(I)
IF(J.EQ.NSECTS) GO TO 850
1 = 1*1
GO TO 840
WRITE C6,806) J,JTBDIAG(J)
FORMAT ( lHl,12A6,2X4A6,2X5Ht>AGE
FORMAT (1HO,42X39HG E 0 M F. T R
I2///)
I C
1
502
503
600
(1H
(1H
( 1H
AREA
LENGTH/13X86HNUMBER
«CU.FT.)
,10XI2,2X1H-,2XI2,11XF10.
, 10X12,2X1H-,2X12,11XF10
,53X12,34XFll.ll
.29X53HH YDRAULIC
T
K
N P U T
SECTION
DAT
A///11X89H
VOLU
(SO.FT)
(FT.)//)
0, 13X12,34XFH.1)
0,13XI2,I4XF13.6,7XF11.I)
A 0 INPUT D
p
• 0/lX,108HNUMBrP
NUMBER
1INTERFACE
2ME
3 NUMBER
501 FORMAT (1H
FORMAT
FORMAT
FORMAT (1H , 29X53HH YDRAULIC AND LO
1A T A///1X.103HSECTION T J
2 INTERFACE
3 (DEC C) (LBS/DAY) (LBS/DAY)
4 (SQ.MI/DAY) (CU.FT/SEC)//)
601 FORMAT (1H ,63X12,3H - ,I 2,6XE13.6,6XE13.6)
602 FORMAT ( 1H ,2XI 2,6XF8.3,6XF13.6,6XE I 3.6,7X12,3H - ,I 2,6XE13.6,6XF1
13.6)
700 FORMAT (1H .43X49HC OMPUTEO SYSTFM PARAMETER
1S//5X7HSECTION,9X1HR,IOX1HD,10X10HSATURATION,9X9HINTERFACF,13X2HXI
2,12XIHE,15XIHQ/5X6HNUMBER,7X6H
-------
-------
ISN
ISN
ISN
0002
0003
0004
ISN 0005
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
0006
0007
0008
0009
0010
0011
0012
0014
0016
0017
0018
0019
0020
0021
0022
SUBROUTINE PRECAL
DOUBLE PRECISION DATRUN(4),USE»(4),TITLF{1?)
COMMCN/CONTRL/TITLE.NCASFS.NSEfTS,IMAT,INDFX(2),BC(7)
COMMON/8WORKS/AMATRX(40,40).REAcRKf ^0),ADVFCC(40),OPSKSR(40>,DJFFC
10(40) ,ALENTH(40) , AFTSEC ( 40 ) » AD JL ( 40 ) , Tin ^ EX ( 40 ) , R AT I OL ( 40 ) , VECTOR (
240)tAWASTE(1000),ASTORE(<»0) ,Ar)14G(40) .^^li^J^Ol.AIJPPFRt^O) , BOTTj^J
340),DISOXS(40)fULBOD(40).VOLUME(40),DE^AV«(40),VD(40),UVDl40),A»PA
M40),SUMERUO),CFINALUO),SUMveC<40) ,CCTN( 1600)
DO 6 I=1,NSECTS
DO 6 J=1,NSECTS
6 AMATRXdt J)=0.0
DO 1 I=1,ISPEC
AMATRX (1+1,1) = BOTTUM(I)
1 AMATRX (1,1+1) = AUPPER(I)
IF(IMAT.EQ.Z) GO TO 3
IF(KK.EQ.l) GO TO 3
00 2 I=1,NSECTS
2 AMATRX(I,I)=ADIAG(I)
RETURN
3 DO 4 I=1,NSECTS
4 AMATRXtI,I)=80IAG(I)
RETURN
END
-------
-------
ISN
ISN
ISN
ISN
0002
0003
0004
0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0012
ISN 0013
ISN 0014
ISN 0015
ISN 0016
ISN 0017
ISN 0018
ISN 0019
ISN 0043
ISN 0044
ISN 0045
C
C
C
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
0020
0022
0024
0026
0027
0029
0030
0031
0032
0034
0035
0037
0039
0040
0042
C
C
C
C
C
C
IMA*,
C
C
C
SUBROUTINE SCAVEC
DOUBLE PRECISION OATRIJN ( 4 ) , USER ( 4 ) , TI TL E ( 1 2 J
COMMON/DATUSE/DATRUN,USER,IPAGF
COMMON /CONTRL/TITLE|NCASES»NS EC TS, I'lAT , I NTEX ( o ) , K< , I
1IT0(2) ,BC<7)
COMMQN/P,hlQBKS/AMATI'X(40,40),PEAERK(40),ADVFC1(40),DnS><,SR(40),njFFr.
10(40) ,ALFNTH(40) , AFT SEC (40) , AOJL( 40) ,TUCREX(40) , RATIOL (40) ,V?CT1J(
240),AWASTE(1000),ASTPRE(40),ATIAG(40),RDIAG(^0),AUPPE':M40),Rr'TTUM(
340) ,0150X5(40) ,ULRnO( 40) .VOLUME (43) , DEC AVK< 40) ,Vr)( 40), UVOf 40) ,AOC«-
4(40) , SUME«(40) ,CF IN Ail 40) ,SUMVEC<40) ,CCTN«1600)
DIMENSION Q( tO) ,L(40) , °(40) , LENGTH) 40) , VOL (40)
REAL L.LFNGTH
EQUIVALENCE ( 0 , ADVECO ) , I ULBQO , L ) , i OOSK ^R , P ) , ( A I. ENTH , L FNGTH )
IE, VOL)
IF (KK.NF.l) GO TO 1
WRITE (4) UAMATRXU ,JJ ,I=1,NSECT5) ,J=1 ,NS=CTS)
1 READ (2> (VECTOP(I) ,I=1,NSECTS)
00 2 J=1,NSECTS
2 SUMVECU) = 0.0
CONSTANT ALPHA TIMES MATRIX INVERSE
ALPHA = 1.6F+4
DO 3 I=1,NSECTS
DO 3 J=1,NSECTS
3 AMATRX1I,J)= ALPHA * AMATRX(I,J)
PRINTING OPTION ALPHA INVERSE
IF I IMAT.EQ.3) GO TO 6
4 IF UNDEX< D.EQ.l) GO TO R
5 If (INOEXO).EQ.l) GO TO 9
GO TO 11
6 IF (KK.EQ.O) GO TO 7
GO TO 4
7 WRITE (4) «(AMATRX(I,J) ,I = 1,NSFCTS) ,J=1,NSECTS)
GO TO 4
8 IF ( KK.EQ.O) CALL PRTMAT
GO TO 5
9 IF UMAT.EQ.2) CALL PRTMAT
IjF (IMAT.EQ.3) GO TO 10
GO TO 11
10 IF JKK.EQ.l) CALL PRTMAT
11 CONTINUE
ALPHA TIMES MATRIX INVERSE TIMES VECTOR
DO 12 I=1,NSECTS
DO 12 J=1,NSECTS
12 SUMVEC(I) = SUMVEC(I) + VECTOR! J ) *AMATRX ( I , J )
PRINTING OPTION ALPHA * MATRIX INVERSE * VECTOR
-------
-------
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
0046
0048
0050
0051
0053
0054
0056
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0071
0972
0073
ISN 0074
ISN 0075
ISN 0076
ISN 0077
IF ,(OATRUN< I),! = l,4) ,
WRITE (6,51)
WRITE (6,53) II ,SUMVEC(I ),!=!,NSECTS)
GO TO 13
17 IPAGE=IPAGE+l
WRITE (6,50) (TITLEII)tl=l,l?) ,
-------
-------
ISN 0002
ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 0014
ISN 0015
ISN 0016
ISN 0017
ISN 0018
ISN 0019
ISN 0020
ISN 0021
ISN 0022
ISN 0023
ISN 0024
ISN 0025
ISN 0026
ISN 0027
ISN 0028
ISN 0030
ISN 0031
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE FINAL
DOUBLE PRECISION DATRUN(4),USER(4),TITLEC 12)
COMMON/DATUSE/DATRUN,USER,IPAGE
COMMON/CONTRL/TITLE,NCASES,NSECTS,IMAT,INDEX<8),KK,ISPEC.IMAX,
1ITP(2),BCI7)
COMMON/BWORKS/AMATRX(40,40),BMATRX(40,401,01SOXSC40),ULBOD(40),VOL
1UME(40),DECAYK(40>,VDf40),UVD(40),AREA!40),SUMERI40),CFINAL(40),SU
2MVEC(40),CCTN(40t40)
DIMENSION L(40),VOL(40)
REAL L
EQUIVALENCE (ULBOD,L),(VOLUME,VOL)
REWIND 2
REWIND 4
READ IN BINARY MATRIX DATA ALPHA A-INVFPSE AND
B-INVERSE MATRIX, READ IN VECTORS ULBQD,DISOXS
,VOLUME AND DECAYK
READ
READ
READ
READ
READ
READ
READ
(4)
(4)
(2)
(2)
(2)
(21
(2)
( (AMATRX(I,J) ,I=1,NSFCTS),J=1,NSECTS)
((BMATRXU,J),I=l,NSECTS),J=1,NSECTS)
(ULBODU ),I=1,NSECTS)
(DlSOXSCI)tI=1,NSECTS)
(VOLUME*I),I=1,NSECTS)
(DECAYKU),I=1,NSECTS)
ISN 0032
ISN 0033
ISN 0034
COMPUTE THE PRODUCT MATRIX WHICH IS EQUAL TO THE
ALPHA A INVERSE MATRIX TIMES B INVERSE MATHIX.
PRINT OUT PRODUCT RESULTS ON INDPSI5) OPTION
DO 1 I=1,NSECTS
00 1 J=1,NSECTS
CCTNfI,J)=0.0
DO I IK=1,NSECTS
1 CCTNd ,J)=CCTN(I, J)-»-BMATRX{ I,IK)*AM4TRX(IK,J)
DO 3 I=1,NSECTS
DO 3 J=1,NSECTS
BMATRXlI,J)=AMATRX(I,J)
3 AMATRX(I,J)=CCTN(I»J)
IF( INDEX(5).EQ.1) CALL PRTMAT
COMPUTE THE VOLUME-DECAYK VECTOR PRODUCT AS VO
DO 2 I=1,NSECTS
2 VD(I)=VOLUME(I)*DFCAYK(I)
FORM SPECIAL MATRIX-EACH ELEMENT OF VO VFCTP"
IS MULTIPLIED TIMES COLUMN OF AMATRX,PRIOR TO
THIS THE AMATPX IS SAVED IN BMATRX.
DO 4 J=1,NSECTS
DO 4 I=1,NSECTS
4 AMATRX(I,J)=VO(J)*AMATRX(I,J)
-------
-------
ISN 0035
ISN 0037
ISN 0038
ISN 0039
ISN 0040
ISN 0041
ISN 0042
ISN 0044
ISN 0045
ISN 0046
ISN 0047
ISN 0048
ISN 0049
ISN 0050
ISN 0052
ISN 0053
ISN 0054
ISN 0055
ISN 0056
ISN 0057
ISN 0058
ISN 0059
ISN 0060
ISN 0061
ISN 0062
C
C
C
C
C
C
C
C
C
C
IFfINDEX(6).EQ.l) CALL PRTMAT
FORM THE ULBOD VOLUME DECAY VECTOR + AREA VECTOR
DO 5 I=1,NSECTS
5 UVDCI)=ULBOD(I)
FORM THE ALPHA A INVERSE 8 INVERSE ULBOD VOLUMF DFCAYK PRODUCT
DO 6 I=1,NSECTS
DO 6 J=1,NSECTS
6 SUMERU ) = SUMER(I)+UVD( J)*AMATRXU , J )
IF(INDEXm.EQ.l) GO TO 7
GO TO 8
7 WRITE 16,100) JTITLE(I),I = l,12)f (DATRUNU) ,1 = 1,4), IPAGE
WRITE (6,150) ( I,SUMERU),I = 1,NSECTS)
OISOXS + ALPHA B INVERSE F - ALPHA A B INVERSF L V D A
8 CONTINUE
DO 11 I=1,NSECTS
11 CFINAL(I)= DISOXSU) + SUMVECU) - SUMFP(I)
IF
-------
-------
ISN 0002
ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 0014
ISN 0015
ISN 0016
ISN 0017
ISN 0018
ISN 0019
ISN 0020
fSN 0021
ISN 0022
ISN 0023
ISN 0024
ISN 0025
ISN 0026
ISN 0027
ISN 0028
ISN 0029
ISN 0030
ISN 0031
ISN 0032
ISN 0033
SUBROUTINE INVERT
DOUBLE PRECISION DATPUNt4),USPC(4),TITLF(1?)
COMMON /DATUSE/OATR.UM, USER, I PAGF
1ITP12) ,BC(7)
COMMON/BWDRKS/AMATPX<40,40),AWASTE«2000}
DIMENSION PA(50), D(50),QAC50) ,S(50) , T<50»,P(50) , X(SO)
DO 1 I =1,NSECTS
DU) = AMATRXU ,1 )
MA = NSECTS - 1
00 2 1=1,MA
11=1+1
QA(I)=AMATRX(I,II )
! PA(I)=AMATRX(II,I )
DO 3 K =1,NSECTS
t B(K)=0.0
DO 7 K =1,NSECTS
B(K)=1.0
DO 4 I =2,NSECTS
J = I-1
S(I)=D(I)-PA(J)*QA(J)/S(J)
4 T(I)=B(I)-PA(J)*T(J)/S(J)
X(NSECTS) = TINSECTS)/S(NSECTS)
DO 5 I=1»MA
LL = NSECTS - I
5 X(LL) = mLL)-QA(LL)*X(LL+l) )/S(LL)
DO 6 I=1,NSECTS
6 AMATRXd,K) = X(I J
7 B(K)=0.0
RETURN
END
-------
-------
ISN 0002
ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0013
ISN 0014
ISN 0015
ISN 0016
ISN 0017
ISN 0018
ISN 0019
ISN 0020
ISN 0021
ISN 0022
ISN 0023
ISN 0024
ISN 0026
ISN 0027
ISN 0029
ISN 0030
ISN 0031
ISN 0032
ISN 0033
( 12 )
1 5 .
SUBROUTINE
DOUBLE PRECISION DATPUNf 4) , US ER ( 4 ) , T I Tl
COMMON/DATUSE/DATRUN,USE°,IPAGE
CO"4MCN/CONTRL/TITLE,NCASES, N SECTS, FIAT, I NOF x ( t ) ,
-------
-------
ISN 0002
ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 001*
ISN 0015
ISN 0016
ISN 0017
ISN 0018
ISN 0019
ISN 0020
ISN 0021
ISN»0022
SUBROUTINE PRFCFM
DOUBLE PRECISION DATRUN(4),USER(4),TITLF(1?1
COMMON/CONTRL/TITLE,NCASES,NSECTS,IMAT,INDEX(S),KK,TSPeC,I WAX,
1ITP(2),CFQ,CFLEN,CFK,CFL,CFAREA,CFVOL,CFP
COMMON/BWORKS/AA(1640),ADVECQC40),DOSKSP(40),PIFFCO(40),ALENTH
1,BB(480),ULBOD(40),VOLUME(40),ABl120),AREA(^0),AC(1720)
DIMENSION 0(40),L(40),P{40),LENGTH(40),VOL(40)
REAL L,LENGTH
EQUIVALENCE (Q,ADVECQ),(ULBODtL),(OOSKSR,P),(ALENTH,LENGTH),(VOLUM
IE,VOL)
DO 1 J=I,NSECTS
OOSKSR(J)=CFP *OOSKSR(J)
VOLUME(J)=CFVOL*VOLUME(J)
. ULBOO(J) =CFL*ULBOO(J)
IMAX=NSECTS+1
DO 2 K=I,IMAX
ADVECQ(K)=CFQ*ADVECQ(K)
DIFFCO(K)=CFK*DIFFCO(K)
! AREA(K)=CFAREA*AREA(K)
IMAX=IMAX-H
DO 3 I=1,IMAX
> ALENTH{I)=CFLEN*ALENTH(I)
RETURN
END
-------
-------
APPENDIX III
3AMPLL INPUTS
-------
-------
7
11/1/67
NAPE TF THE PRCGRA!" USER RONALD BUNCE
N/.wf CF TFE ff.SFLARY BEING IMESTIGATEC
$CF
f*SrCTS=14,
f w/\T=:^,
IM:F->=J!* i ,
ITP=?»C,
(. F C == 1 » »
CFlfEH=l. ,
CFK=1. ,
C F L= 1 . ,
CFVC1=1. ,
rFt- = l.,
$rKD
ifcsc
JflHLA=13F^,A*1325C,1210C,lAOOC, 13C5C, 12100,12680, 14200,4*14400,
C I FFCG=C.O,C.1?,C. 14, 0.15,0.16, 0.16,0.17,0.1 8, C.I 9, 0.20, 2*0.2 1,3*0.23,
lFN61H=C.3,15*l.r,
|E^r)
$HIVTG
P ISO>S=6a7.92,3*7.77,5*7.63,
CECAYK=6*C.46,3«C.49,5*C.52,
-------
-------
C.*Sr M'l"R rf ? N'APF CF ESTi/AKY" HflKG INVESTIGATED
$Cf
ITF=2*( ,
CFC=1.»
CFLEN=I.,
CFK=l.t
CFI=].,
CFAIUA^J .
r.FVOL=l.,
I;F-P=I. ,
IGCGC
, ] 3*1300,
VI. L=l^r 6,^*701 6,64E6,7^t6,69E6,64E6,67£6,75t:6,3*76t6,
, 12100, 14£OC,13C5C,1210C,1268Cjr 14200,
t;fFFCC=C.C,0.12tr.l4,0.15,0.16,0.16,0.17,0.18,0.19f0.20,2*0.21»3»0.23f
I fcNGH-1=C.3,l5«l.Cf
$RIV70
I-ISOXS=^*7.92
REAF.P!< = 14»O.C
DEC A YK=6*G. 46, 3*C. 49,5*0.52,
-------
-------
APPENDIX IV
TYPICAL PROGRAM CASE SOLUTIONS
-------
-------
SECTION A -SAMPLE
INPUT a OUTPUT
I MAT * I
INDEX(I) »l
-------
-------
*
It
*
* u. #
« o #
* o *
# x #
* *
* > #
* a *
* z < #
# o o #
«• •- I- #
# O V: #
* IL UJ #
* ee *
* Q *
UJ
_j
oo
a
z
QOOOOOOO
O O O O O O O
O • • • . i . .
II II II II II II II
10
or •<
O Z UJ -J
>- LU OC O
oor_jv_i<>a
O
o
# K Z #
* Z UJ *
* *
* #
# LL1 UJ *
*_/»-#
* O < #
* O I- *
# 1- > *
* a: «
* >• #
* Q *
* < #
« UJ *
* K «•
*
#
*
*
*
*
#
*
«
*
*
*
#
*
«
#
*
*
to
UJ
UJ
H
<
I- UJ
vo O
r«- z
>- o 3
Q «v CO
< O •
UJ <\J UJ
* # *
UJ
_J
K Z
•-i 3
K a:
UJ O UJ
_l Z
CD UJ •->
O t- O
QC < Z
a Q LU
-------
-------
c
I-
c 5-
LU
i
z
LU |
r- LU a.
o _i
V. UJ UJ
O IA
fv oo _j a:
•>. UJ LU
0- S: 0 >
I- > 1-1
_J LL U> LU LU
00 -'
f\i SL fr™t Q ^ ^ ^ ^! 'tf ^
-------
-------
C"
o
OC-OOOOOOOOO— '~i.H--^r-c.-i~ 1
UJUJUJIUUJL1JUJUJUJUJUJU.)UJUJUJUJUJUJUJ
ooooooooooocooooooo
coooooooooooooooooo
oooooocoooooooooooo
ooooooooooorgoooinou^o
IT. s± rn o ir\ <\j ^
LUUJ
oo
oc
oo
ino
ooooooooooooooooooooo
u
o a:
~- LU
K CD
o z:
UJ D
1/1 Z
O
LU
o
HILL
cooooo
UJ
<
u
01
UJ
m
u ee.
< UJ
U. CO
et x
LU 3
I I I I I I I I I I I
lilt
I I I
to
>•
a
-------
-------
re.
m f> r (> r" cr, rri f^i (T| fr. m m m cr, fn re. (ii f?\ in fr, fr «i
OOOOOOOOOOOOOCOOOOOCOO
ujLuuJU'u.'U-'Uju.'UJU'UJU.. LLJUJUJU.UJUUUJUJUJUJ
OOCCCCOCOOOOOOOCOOOOOO
oooocooooccooooooeoooo
oooooooccooccocooccJooo
fv!^JOC'-'-J—'-I — r-rt — -<
OOOOOOOOOOOOOOOOOOOOO
I
<
O UJ U^LU UJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJ
• o 0^5 oooooooooooooooooo
OOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOO
ooooooooooooomooooooo
JE
•
o
o < oooooooooooooooooooooo
ro
V Q
Q. U-LU •— i«l-- UJUJUJUJUJLUUJLUUJUJUJlUUJUJUJIMkUUJUUUJ
< oooooooooooooooooooo
Q OOOOOOOOOOOOOOOOOOOO
a v o o o o o o o o o o o o o o o e cw oo PJ
omaor^(\j*OC04-mN<--iO><6O
OO-4-lfir»OCO>~l«DOCO<6e
os--if\)fsjfr(^5r'i'*(V(n«Of<1iiri||»a>ff>»- O OOO OOO
->>. oo OfOh- OP-O
as j- IN ir> in * in
_/ OOsOO'-'-tOO'-'^rwOOOOOOOOOO
~* OOOOOOOOOOOOOOOOOOOOO
in
<
u —
O OOOOOOOOOOOOOOOOOOOOO
H OOOOOOOOOOOOOOOOOOOOO
> HO OOOOOOOOOOOOOOOOOOOOO
UJ UJ ...,..•».•.«««•••••••
k- O OOOOOOOOOOOOOOOOOOOOO
z'
>• OK
O M UJ
< KOP
UJ OK
H UJ 3
(A VIZ
-------
-------
>-
<
• c-
o .
CO CO CC CO CC O. Cl CCCCCCCCCCCCCOCCOOCCCCCOCCCCCC
coooocccccoococcoccooo
U- LL U- LL LL U U U U U-' U. U- U- U-' UJ U. U-< LU U U- LL. UJ
c c C cc cc (\ •£ r\ CN (\cco(vrvj
C o C t\; rr,r^rr,
ccor-f^^n^-—<^»-i*fjrvcocecccccca;ccctcccc
r\, r\ tv r^ r*"' ^csoocor^vccococccocccococccoco
rr rr< C: tr, rr u"-touxctoooca-x'ctacr'
~i-sj-'d-^t>3-«tf^r^r-r^ f-i^r-r-r-t^r^r^f^-r-r^r-
ocoococcoceococoooocoo
UJ
o
f*- h*~ OD oo cc oc on cr co Q" CT* O" O"1 O" O*1 o O o O C O
OOOCOCOOCOCCCCOi-'-'-^r-1-' —
U. UJ LL U1 LL UJ U-i LL. U U U. LL U.' U- U U1 Li-' LL U U LL'
oococoocooooocooooococ
•c
»*
O
fM
a:
•a
a
^OOOOOOOOOOOOOOOOOOOOO
oooooooooooooooooooooo
UJ UJ U>l U_J UJ UJ UJ U1 UJ UJ LL' LU U-1 LL) Lb U-I LL1 UJ UJ U-I LL1 U-
O*^OOCxr*^i»Om'-'Of^JinoO>incomcoinf\j^-O
o •"•* *^ 0s *"* ^ o o c^ ro cv ^~ f\j co o ^ co o f~4 o ^ c*
o >o co «^ ^ ro *^ m f*^ ^*- ^ ^" *o ^ o O^ o f^ ^ *C o O
•"* ^ co ^ in in m *f in ^ in ^ ff> in in r^ m ^ ^ ^ in in
oooooooooooooooooooooo
o a:
< uj
a. CD
I I I I I I I I I I I I I I I I I I I I I I
o—iMro-a-ir.-cr^coo^o—itMm^ir. ^(^coc-o-J
3
a
•X.
o
u
o ^
i- o
t- a:
< —
DC •
3 O
t- •
< Q
01
ooooooooooooooooooooo
ooooooooooooooooooeoo
O Q
ooooooooooooooooooooo
UJ
o
o
X
ooooooooooooooooooooo
o>ooi-ieo^>>e<<0'OiO
r-i^fvjrOM.f^vniri'i-m^i'i'i'tmmr'ii'Oromm
ooooooooooooooooooooo
ui
UJ
I/)
>•
M UJ
I- 00
U f
UJ
K
t/)
-------
-------
o
u.
3:
UL
a,
OOOGCCccCOCCCOCCO'C-aO^O'O'C'OOCOO
OCOOOOCOGCOCCOC'-'.-ii-i^.t-i
U_ U UJU-UILLJUJ
ccof\i<^'*»i'
cc fM(ssj~*CSiJ"O
lLjU-UjljLLUUJUJUJlUUjUjlb
t-icrusp-c,tNir\oo.t>c
^ co ^ f~ M oc pTj K p-~ ,-1 f<-i ,— i
>-< i-l vC IT.
0s CO —
-------
-------
U-
o
O
oo
oo
-------
-------
I i i i i l i i i i l i l i i i i l i i i
UJ U-i UJ O. LL Ul UJ UJ UJ U-: U- LL' LL1 U- U/ Uj Uj U. LU U. ULJ
r^r'>^-lv}'r-<£NJsti— '•— I \0 (V K f\l CT CCl »-l *}• M •-< sj- r-<
ooooooooooooooooooooo
r-J_ii-4,-i,-lOOOOOOOOOOOOOOOO
I I I I I I I I I I I I I I I I I I I I I
UJ LU U.I l^ U,1 U- LL! UJ LU U_: LU LL1 UJ LL U-l UJ UJ U.i LJJ U.1 UJ
x.
O
ooooooooooooooooooooo
i-lp^i-irHi-iOOOOOOOOOOOOOOOO
I I I I / I I I I I I I I I I I I I I I I
Hi ^i i in yj y i 111 111 y t m y i in 111 fli i 111 iji tit ijj (I. y i in ^11
ooooooooooooooooooooo
f-|_i»H.-lOOOOOOOOOOOOOOOOO
I I I I I I I I I I I I I I I I I I I I I
ijj {\ i jii II) iji III UJ ill ill in III ill I LI Qi in iji yj iji MI in iji
OOOOOOOOOOOOOOOOOOOOO
-
-------
-------
UJ
IS
•a
O-
•c
v.
O
,-j cr
1 I
.56532019F
.28n9Q400l:
r- xo
l i
(VI P~
in in
cr vc
—i rf
u r\j
1 1
cr cc
r- u-
r- O
CC OJ
C'
1
rv
in
m
CL
cr
c
0
1
o
o
c
a
OC
or..
1
. 9466?909F
r-
i
p-
in
CT
(N
a
xC
i
.164?3ci30F
xC
l
(V
cr
f
xc
in
l
(V
in
o
o-
er
•i
rvi
IT- -^
1 l
ac o
xC (V
— oc.
cr ,-
-C r-4
in
1
-C
ac
IT,
OD
in, vO
1 1
. 164648P8E
.78406458F
xe
i
cr
c
o
in
a
vC h"-
i i
.17718093F
.64487374F
ocooccoococccooccooco
O
f\l
1
UJ
%O
in
CO
•* •*
-I vC
pn
i-
PM -xt"
•*• "•
cr- pn
m cr
J- (VJ
1 l
UJ LL
PJ> (VI
r- P-
(V i-J
co ^~
O pn
•*• o
->t (VI
(VI xO
O CO
1 1
UJ UJ
* pn
pn o
PM cr
cr PM
cr i-<
xO 00
cr in.
00 Pxj
P- xO
O C)
1 1
in uj
xo r--
pn oo
O CO
m oo
0 0
-t if
r- «*•
IV) p-4
xO in
o o
l l
UJ UJ
— (VI
CO r\J
00 -t
(vj fn
xt P-
in (\j
P- 00
•xt — '
in.
o
l
UJ
xC
«J-
pn
CC
in
B- 4
oc
r-
xj- in.
o o
l i
UJ Uj
xC xO
xO xD
cr in
xC f-
C N
in fn
oo in
—i r-
m. xf
o o
I 1
UJ UJ
xo r~
0 0
xO •->
rv a
co fvt
rvi cr
cr — i
-- 00
xO XI
c c
1
UJ L
f^' C
rv C
i— * U
in u
r-l U
O XI
cr c
pn ••
C r- |x.
3 O O
1 1 1
L' UJ UJ
:• o in
r o in
" pn cr
.i r-- oc
r- K co
D xC O
) in o so
cr >t
cr r--
in m
PA in
o cr
-i cr
—> o
I !
UJ U-,
sj- CO
cr -o
o cr
cr so
r-l tfl
tVJ (VI
o cr
(VI PM
co r^
o o
I i
UJ UJ
pri -O
xD r^
co in
in co
-i- cr
oo oo
•o in
O o
I I
UJ Ui
r- -o
in —i
cr m
CC sD
m cr
-o -t
-o in
in -*- in, in in xC
o o o o o o
I l l l l i
UJ UJ Lb Lb UJ UJ
in co pn tn x^- in
fn m (vi co x^ co
•-i r\j m —i CM xo
i—' in o co pn x$-
in ^ xO ^"* •—* fvi
cr in P"- cr o P^
in PM cr m -H x^
o c
l l
UJ UJ
cr cr
-4- 1-1
cc O
pn c
cc P-
in pn
o o
rvi ^^
r- r^
o o
i I
LLi UJ
(vi cr
o 4~
O «t
^^ O
PM f--
p- m
in in
CO
O
I
UJ
cr
pn
rvi
in
LTN ^ ^ *4" LT\ tO *Q
O O O O O O O
I I I I I t I
UJ UJ UJ UJ UJ UJ UJ
m >J- p-I rH O *—• LO
CT1 r\j xf ^- r*- ^ -—i
fv, ^- f*~ •-* ^ O m
^ 00 & LT\ Csl ^ ~t
f*- r*- ^ oo co m f-
00 O O 0s "—I ^ O^
00 \f\ O IN ^ ^0 00
(M f-( IT» —" ^ •-• *O
>C P-
o o
I I
Uj UJ
cr m
cr in
p- cr
en m
-t -O
o o
i i
UJ UJ
.*• cr
pn ^
(vj o
cr LT\
cr oo
co cc
o o
l I
UJ UJ
cr >o
po p*^
co cr
r- PVJ
ooooooooooooooooooooo
a
<
UJ
H>
1/5
-------
-------
f!
a
pn
1
UJ
a
»£•
O xT
rv cc
iv
o
*
— d
fVi (V
i i
Pv C
in f>
ft f>
pn PVJ
r- xC
PV rvj
c cp
(\j cr
cc p-
I l
rv! rr
in pr
P^ xC
xfr pr
"-* rr-
PVJ CO
pr C
r\' xC
xfr
1
CC
cr
cr
o
-c
-fr
in
.—i
PVI .-'
1 1
LT 00
r- co
o in
*o »fr
LT, fr,
n~i pr>
r\ %j
f\, ȣ>
O O
t t
*r c
^ -j-
tr LT>
r*- L;Pi sO
0^ H"1 0~
•j-
CC IT>
LT *-<
tjp cr
(\J C\l
~> a
*0 0
-4- r-.
^0
I
h-
r-i
i~-l
f\
P- *
h-
LT>
r^
\C LO
o c~
1 1
pn in
C -f
CO O
•c —
P- -JO
p~ cr
O- pn
-C f<
in
I
cr
r-
in
p-
r-.
O
r-
PVJ
ir in
1 1
O J-
O >fr
f> PV!
oj cr
cr cc
f Pv,
O xO
r- rvj
ccocoooocooooccococec
o
(V
cr
tv
(\J
LU
CO
pn
in
cr Lf.
•—i i— i
O
o
~^
ft a
i i
UU UJ
C 0
O rv
in ,-1
rvj cr
co rvj
r- ->
a- vt
sfr rvi
CO
1
LU
f. 4
h-
oc
ir
o
o
p-
in
vO -fr
1 1
u.. u.
0 rv
rvi 1-1
rvi cc.
co in,
pn O
cr cr
•fr r-
l-J PTl
rvj o
1 1
LU LU
O in
xO O
rv, a
p- r-
cr cr
CO r-
J- IT
in -*
cr cr
O O
1 1
LL LU
»O PVJ
-fr r-
o pn
-H rv.
h- P-
p- ir
o o
1 1
U. LU
xfr -1
-1 cr
a m
xC rr-
ff- co
0 -i
cr ft
M ft
r- -O
o o
1 1
UJ LU
O pn
c rv.1
o in
xfr .0
pn rvj
oo pn
p- -^
xfr ft
xO
O
1
LL'
~^
vO
xfr
s
P(~,
CO
xO
rv,
-6 in
O(— ;
-— '
| 1
LU U.'
0^ O
fT- OX"
1— t f\J
•* ^t
&• ff^
sO ~*
fw f^-
CC ^t
IT LT
O O
1 1
LU LU
r- o
in rv
cr xO
xD xfr
pn, xO
0 CT
xfr IV
m xc
in in
o o
l i
LU LU
r- xfr
t-l .fr
pn, xC
ir in
PVJ cr
*o c
cr i-*
(M ft
oooocoooccoooooocoooo
rx,
f\l
1
LU
cr
rvi
xO
CO O
-j rvj
cr
0
PxJ
o
fV
1
LU
O
xO
xO
CO
Cr
IT.
O
ft
cr P-
1 i
LU LU
in co
in co
ro xfr
ft t-
o o
-fr cr
O ^
LC i—*
xC ^
1 1
UJ LU
in m
rvj xO
rvj *O
pn m
c 0
PVJ m
-i xC
CO ft
cr pn
o o
rvj in
pn, pn
co or
O O
1 1
LU LU
cr in
in co
rvj o
rvj co
cr iv
rvj r-
o? o
ft ^
r~ r-
o o
1 1
UJ lu
xfr XD
x£> O
-fr xfr
O xD
xO ft
m cr
m cr
rvj cr
O**x
^J
1 i
LJ- LU
f- m
M in
O in
cr co
in m
xO O
pn vO
(V in
in in,
o o
i i
LU LU
xO pn,
cr xO
xO ITI
P- 0
ft cr
m p-
co in
-t pn,
in in
O O
1 1
LU LU
CC f>
pn rvj
cr rvi
xO CO
cr ft
O or
fi in
IV pn
in XD
1 1
11, i Uj
^ PVJ
i— i rvi
a* ^
(\l tO
•-< r--
*o •*
{f\ oo
^•4 Lp
oooooooocoooooooooooo
O 00
PVI —<
I I
LU LU
c rvj
o m
(T' r<-.
O —I
pn i-i
F-I rvj
m
I I
LU LU
O O
o o
-4- •*
O l»-
•4- O
o cr
-< o
I I
LU LU
-C PVJ
00 Pvj
—I co
PPI xj-
C (NJ
-J- C-
rsj *^4 i
O >O IT1 Lf\ U"1 I/N \f\
o o o o o o o
I f I I 1 I I
UJ UJ Lb UJ UJ UJ LU
00 fO h* 00 ^ 0s •*}•
ro ro (Ni O «^ in pn
tn sj- ^ ^-< tr> o co
in if^- C^ >O f\J »—i CT*
r\j oj ^ ^ —< ft o*
f\j sO ^ f^ -O O* C
(M CM rvj o & h- 0s
^NJ iri «-< -4* ^- pn *-^
ooooooooooooooooooooo
UJ
1/5
o
1/5
LU
I I
LULU
I I
UJLU
I I
UJUJ
I I
UJUJ
I I
LUUJ
>o in
o o
I I
III III
rvj CO
>o M
in >fr
in fi
co in
m PPI
*o pn
in ft
tn >$- LTi in iJjH -c *O
O O O O O O O
t I t t I I I
UU UJ LU UJ UJ UJ LU
ro sj- %o p-t u> in ^
»O r*» po ^ ^-» -4~ O
pft ^i fxj ITt *^ uS ITs
in p*. ~* (r\ r»* o fTi o
*O PO cr (7* ir\ ff*
-------
-------
r-
o>
r> IT
n >o
^ co
i r-
1-1 O
1 i
UJ UJ
~t CO
(M P-
CT 0 oo
,- vO
p- r»-
o o
l i
UJ UJ
-i O
>t r-
-1 Ox
(?• m
txj in
f\J sf
vO 00
—i m
O M
O C
1 1
UJ U
* 0
O u
M f
in (.
•o u
in u
M <
r-* r
0 xD ~0
5 O O
I 1 1
J UJ UJ
o in -j
1 P- 00
- \o r—
3 (T M
1 •J} OO
1 r~ tn
^ co r-
>J xt O
IT in
OA
Vl^
1 1
U-l UJ
tV — c
C> 00
00 00
-C r\J
a >o
>O t in
M in
00
UJ
ooooooooooooooooooooo
a
UJ
i-
1/1
-------
-------
SECTION B -SAMPLE
INPUT S OUTPUT
crLA'1
I MAT = I
INDEX(2) = I
-------
-------
LU
h-
LU
UM
CH
'1 V D
MA
ON
VAR
MATR
o
Pi.
O
a
H
a
o
i/i
<
a:
O
O
a:
a.
Z
o
LL
O
a
LU
CD
s:
- a.
II K
O <
uj s:
a. x x
u) »-> >— cr
O a or
z s: s. < CC <
o
^ —t C^J CC\
"- II II II
LU I— t~ K
CD -' n n n n n u u u
LOXXXXXXXX
ZLULULULULULULULLJ
OQCDDOOOO
—zzzzzzzz
n.
O LU
X O
IL LL LL LL LL LL
O O U O O O
Q
UJ
t-
l/»
-------
-------
x
h •—
f\i CM (SJ O °C'
corf O (V1
o 0" r°
1 00 O C CM -j- of' CT
NO o vO rr Osrf rv'
»— J rfi t— i rsj O •— * C tr^LTi
r->>— It-J.—ir-'f-HOO'-H'— 4(
vO
^
O
: ul LU ID
uu
<
Q
o 3
> o
_ _ u. LLJ uu u-J iju uJ U.1 LU LU UJ Ul lit UJ LL. UJ UJ LU UJ U1
OOOOOOOOCOCOOOOOOOOO'O
OCOOOOOOCOOO Q^O O C- O O O O O
oocoooocooooooooooocc
O O O O O O O O C5 O O O*J O O O Lf^ O u^ O ^ O
oooooooooccooooooooco
z
C
u
UJ
00
,0
inOOOOOOOOOOOOOOOvOOOOOO
r\J
UJ
LU
*-
LU
O Of
< UJ
u- m
a; s:
LU o
I I I I I I I I I I I I I I I I I I I I I I
D
UJ
t-
00
-------
-------
-o
«*v
o
c o
LL< U
C C
C 0
C 0
c c
c c
ir u-
o o
0
1
LLI
o
o
C'
o
o
c LP.
o o
o c-
LU U
c c
0 0
o o
CL (M
ir ir
0 C
o o
o o
tJ-1 1.1 '
o o
0 0
O 0
o o
O W*
-1 — '
o o
c
u
o
o
c
C*J
(^
IT'
o
0
0
Li
o
o
0
0
o
<\J
o
0 C
LU LL
o c
c o
C. 0
CC vl
IP X
0' O
C 0
c o
LU LU
c o
o c
o o
O 0
LP IT"1
fsj ro
0 0
0 C
U LI
o o
0 C
c- c
o o
0 O
c c
c c
LLi LU
O 0
o o
c o
0 O
IP IP
•J- IT
o o
c c
LL' u
c c
0 C
o o
O o
C 0
o c
0 0
LL. LU
0 0
0 0
o o
O 0
LTi IT
-o l«-
0 0
C C'
LL LU
c o
3~ IP
O- C r-H (V
III!
V
<
o
oooooooooooooooooooo
LULULULUUjUJLL-iLULtJLUUJLUUJUjLiJLULuLLIUJLLJ
oooooooooooooooooooo
oococcoooooooooooooo
oooooooacoooooootNioo™
a.
o
l/l
CD
M
LU
OCOOOOOOOOOOCOOOOcOCO
I I I I I I I I I I I I I I I I I I I I
O
o
r\j
O
LU
0
O
o
0
*J-
0 vD 0
O O O
•}
o
LU
o
o
CT*
CO
(M
-1
O
^j-
o
IU
o
o
f\J
r^
LT\
<»•
o
rsj
0
LLJ
O
O
o
o
IP
O O l-~
o o o
(T)
o
UJ
o
o
o
r»*
,f-
"i
o
(X1
o
Lul
O
0
o
o
r°
t\J O
o o
0 O 0 0 0 O O O 0
OOOODC5OOO
I/)
LU
LU
t-
1- O
UJ
o
z
O OC
1-4 UJ
(- CD
O 5!
LU 3
01 ^
ooooooooooooooooocooo
ooooooooooooooooooooo
ooooooooooooooooooooo
ooooooooooooooooooooc?
-------
-------
-J-
u.
oo OG a: cc a ou a oo x- oc
occoocccccoococcoocooo
r-r-crcr. crooorcpccc-a oa
COC OCOCCC C CCC
U- LLi U U U. IX LJ LL U.' LL1 LJ ' U Lt LJ ' U U' U'
•-» 0 CT1 oc •<(• £• *fr *t F- f^
1/1
O.
a
oooocooooocoooooooooco
p-OOOOOOOOOCCOOOOOOOOOC
oooooccooooooooooocooc
LL UJ LL' U1 LL. U. LU LL LL' LU LU LL' Uj U' UJ LL' UJ U^ LL1 LL' Ui U'
o
M
oooooooooooooooooocooo
UJ
UJ O CX.
< UJ
K u. ct
(X £
I/) LU ^
O
UJ
o z
O
a "•
a: •
30
I I I I I I I I I I I I I I I I I I I I I I
oooooooooocoooooooooo
X
<
o a
OOOOOOOOOOOOOOOOOOOOO
ooooooooooooooooooooo
UJ
to
<
o
t-
to
UJ
ec. <
o
V
ooooooooooooooooooooo
rsj-^ftjmri-Ofno>^-*-o
-------
-------
o O C C O
COOC;OOOOOOOOOOOrHrHr-O
LLJ UJ UJ UJ LU UJ UJ UJ UJ UJ UU UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
^-*OOMff(-i'f-J-f-l^r.i-*'i-ltO^O>OOOM*l^
>onoocoo^--^f\jp-iflOirtor}f^-co»-^NO«—ILT>»H«—10
<
Z
O
oooooooooooooooooooooo
II II II II II II II II II II II II II II II II II II II II II II
o
I-
4/5
V
Q
UJ
-------
-------
LL
cr
l/l
a
ai
<
s:
tt
00
at
UJ
in ro
O o
ti
UJ lu
m c-
»*• 00
oo
o o
I I
LU LU
f- O>
f- *
-• •&
CO -i
•4" —
(y> CM
O r-l
• •
O O
OOOi-i!-ii-<,-4Mcvj
OOOOOOOOO
UJUJLUUJLUUJ11JUJUJ
omo^coi-i^j^-i^
>Of-~*-^-CD^rtO^h-fM^rtco
»toom^^-^cooo^
r-f\iOcof\joomm
-------
-------
SECTION C -SAMPLE
INPUT a OUTPUT
ccA~l and
I MAT
INDEX(I) and INDEX(2)
-------
-------
*-l
LU
a
•o
o
_J
o
Q£
t-
o
^
UJ
I/)
IJ
z:
^
<£
O
o:
o.
PO
LU
oo
^
o
«M|
(\j
II
oo
Z
O
K
LU
0^
LU
>-«
OL
^
3
00
LU
LL
o
or
LU
CD
X
3
Z
II
k-
<
a:
HH
II
O
LU
CC X
LU *—
O CC
00 <
Z S.
o
o <
o
z ~*
•— II
LU CO
— ixxxxrxo
xo-Q-CLQ.Q.acLoo
LU_J_J_J_J_J_J_J>—
o^^^^^*c^o
z
ft_4
r— i *•* O O O O O O
u.
l-l II II II II II II II II
^<\im^in.cr-»
oixxxxxxxx
ZLULULULULULULULU
OOQQQOOOO
i— ZZZZZZZZ
0.
C UJ
01
X <
o
Z oo
«"« H- 1
X
0 t-
z
"1 ac
K O
Z LL.
kH(
or
a.
VARIABLES
t—
13
a
z
z
o o
o
LU i— 1
oo
^3
II
aC
0
t-
o c?
LL. O
Z
o
»-*
00
QC
LU
>
Z
o
u
o o o o o o
o o o o c o
_l _« 1-1 _l »H ^
II II II II II II
a
o o o o o o
Q
LU
(-
01
-------
-------
UJ
o
X
H
CT
(MtNerNO^CT'r-iu-iirecaooccc. IT .j- rv ^ m — ' f •* c e
•*t-'t.—ics^OO''-'r^>^rMOf-'Cup>inr^r\jr-i f-< r\j rv r\j r\< rj (v f^ m
O
r\j
OID
UJLJJUJUiUUU-JUJUJUJUJU-UJLL'UJUjUiUJUJU.'U'UJ
OOOOOOOOOOOOOOOOOOOOO
ococooocoooo o^o o o c c o o o
oooooocoooooooococooo
OOOOOOOOOOOfMCCOlT, OU^Ol^O
^-
OOOOOCOOOOOOOOOCOOOOO
2
O K
•- UJ
t—CD
oz:
UJ O
D
UJ
o
mooooooooooooooo>cooooo
< UJ
U. CD
i i i i i i ! i i i i i i i i i i i i i i i
o
UJ
t-
1
-------
-------
c c c c o o
LL
c:
U1 U UJ LL
a o o c
c- o o c
c c o c
O C O C f-
oc ooooooooc
Lb LU LU UJ LU Lb
o o o o o o
o o o o o o
o o o o o o
O O O CO O O
o CM in c* oo o*
O^ «-J r-< •—< (\l pn
Ul UJ
c o
o o
o o
o o
fi O
in >.o
LU LL' UJ
o o o
o o o
o o o
o o o
o o o
-O vO -f.
<
C
C'OCOOOOOOOOOOOOOCOOOCO
o
< a
LL LL.'
a: OD
uj s:
oooooooooooooooooooo
LULULLUJUJUJLljLLilljUJUJUJLUaJUJUJLL.UJUJLL
oooooooooooooooooooo
oooooooooooooooooooo
OOOOOOOOOOOOOOOOfMOOfV
O O O O O O O O O O O O O O O O O
I I I I I I I I I I I I I I I I
I/)
CD
LU
o
o
o
o
-J-
o o
LU LU
o o
o o
O^ J-oor-'-'(MOOOOOOoooo
ooooooooooooooooooooo
LU
l/l
UJ
r-
Lb
LU
o
ooooooooooooooooooooo
ooooooooooooooooooooo
ooooooooooooooooooooo
I . .......... • ..... . . •
ooooooooooooooooooooo
o
UJ
t-
Ift
z
a or
(•* UJ
K- CD
-------
-------
>-
<
<3
00 OC
c o
LL Lb
O O
c c
o o
rv rv
CO 00
C O
LU U
CO CV
rv O~
ooccoo
00 OC
c c
LU U.'
O* O"'
>o o
sj CO
r- r-
c o
CO OC
c c
LL U
O* CJ"
o c
oo a
r-- c-
oc oo
c c
U- UJ
oc o
r*"i sO
a. oc
r- r~
OC CD CC Ct OL 00
c c c c o c
LL UJ U- LL1 U' LL
CO O OL CC OC OC
cc cc oc oo a or
oc oo co Of ec a
r*- r^- h- N p-- r-
a co cc a.
c c o c
LL LL, U-i LLi
rv rv rv rv,
rr, f. fr rr>
oo oc oc oc
or oc co oo
a co co cc
r- r- r^ r--
ccocoococcoooo
cvi f^ in rvi K. \r* »n rvi M m m 10 r\.i M _« *- o
K 5-
a: < —
ooooooooooooooooooooo
h^ fc^- K^. K~ >h. »h_ lib. P^_ lh_ ik. K- «h_ *w. 1^ K- ifc- 1^^ lh_- l>h. fh_ Iw.
O
U
3D
I- .
< O
UJ
00
oo
UJ
ooooooooooooooooooooo
OOOOOOOOOOOOOOOOOOOOO
ooooooooooooooooooooo
ooooooooooooooooooooo
•z.
o &
<-> LU
I- CD
u s:
UJ 3
00 Z
-------
-------
Li:
3:
UJ
(X
c
o
occccraaaaoccoaooOOCCCCO
OCCOCCCOC~C. OCOCO— 1~— ir-—.
UULLLLUUUU.U-U-U Uj U- Uv LL LL' U U. UJ U.'
ccciMf\^<}--c— i o- ir i— ir»c^f^'iPcr-*<:
&r\t\i'-<0*l-c^rn*facl*jr^c\taL(°f~-r^t^-r4(fr-*
cr n"i —• u r*" ir> ir cr N o~< (\ c> a* c\ cv o co (\i CNJ ir
so *3 •— a u +a^cr-.-4r<~>*Lp.-cO'fv
a or ir ir c N o cr^r^r- cvLro^cacorcc
occccccccceccccocccc
I I I i i I I I i i I i I I i I i i I i
---
if ccoeooooooooooor-<'-i-|r-i^
o a' K
rvi 2" ui LL. u.1 a u-' u u-' u. LL. u-' u-1 u; IL. UU_.LU LL a, LLJ LL. u_i
»< _J ILi OOOOOOOoDcc\DO~i/— < * IT o
I— < ^J.-lvt-1-frr-lvG— fr<'<1.-l
ir z
OCOOCOOOOCOOCCOOOOCO
< C- I I I I I I I I I I I I I I I I I I I I
•£ <
II II II II II II II II II II II II II II II II II II II II
OOOOOOOOOOOOO-^.— -~t —i—< .-4 .-i —<
t— UJ 1M "' UJ "' U-1 "' "' "' "' m "' "' "' ''' "' "' UJ 'I1 "' '"
-=r .
2 OOOOOOOOOOOOOOCOOOOOOO
o
< u n u ii ii u n n u n u M n u M M u u u u u n
uj
K-
<
h-
Cs
<
UJ
-------
-------
U-
tr
5
.92629779E-10
. 4-6041 890F-18
.22M6078F-06
.52722480^-05
. 13815780F-03
.41399719E-04
.15911472?-04
.69238331E-05
.27770802E-05
.12929704F-05
.57707234E-06
. 14956919E-06
.50891568F-07
.19505478F-07
. 79444362E-08
.20322961E-08
. R6349439E-09
.411200P5E-09
. 20716046F-09
.90299782F-10
.33820238E-10
ooooooooooooooooooooo
*'»N'-
OOOCOOOOOOOOOOOOOC-H.-I-*
I I I I I .I I I I I I I I I I I I I I I I
ifi ill ij i Hi MJ flii MI ill (jj HI n i yi UJ m y, uj \fi ^i ill ^n ^i
•o
v.
O
V
0>
ooooooooooooooooooooo
^inro^^-ininin*o>ONt~-cocoo>O'OOOr-i
ooooooooooooooooo-^— i-^'-i
I I I I I I I I I I I I I I I I I I I I I <
III tii LU UJ H i Ui ill iji fii yi HI yj ^i I f|i i|j QJ yj tM ii. n. HI
ooooooooooooooooooooo
inm>*'''4'inin>oc7'OOO'-'
OOOOOOOOOOOOOOOOO«-*>-ii-l<-i
I I I I I I I I I I I I I I I I I I I I I
1^^ ii| nj 111 ^^i HI m ifi 111 yj ni
1 flit ui ii^ 111 in ni 111 ill
OOOOOOOOOOOOOOOOOOOOO
m N^-
o o
I I
LU LU
o >o
(M ^
>o o
Is- CO
•*• in
o o
i l
LU UJ
-H cr
co t PJ (VJ O
^^ co f> ^ ft ^H tr\
O> O
O •-!
I I
LU LU
f"- (N
«t O
co in
M M
CM co
co s}-
(M -1-
1-4 in
O O I"H rJ
I I
LU LU
in ro
co h-
co co
^ o
^- r-
O o
in m
I I
UJ UJ
^ r-
M o
o O
in ffv
I/I
UJ
ooooooooooooooooooooo
a
-------
-------
IT IT O sC O I
r- h- or. oc
1 1 1 1 1
UJ U UJ UJ LU,
o rv a f o
rH pe fv xO CT
oo rH m in xfj
C oo p~ rv J- xc
rH fM xt O xO f>
r- xC f^ C" C7-
PTl xO N rH C
P* re r-4 xt rH
C" IT1 O C O C
1 1 1 1 1
LL U-l U1 LU U L
o xp r^ r- p- x
rH cr rv o co r
re PXJ in tT co r
or r\ o- in in r
xt rH Oxl xt xO f"
Ch xt xo re xt r
P~ O r-4 (V xt C
rv xt rH r-i xO r
^ o c
1 1
L LU L
t U" r
<• xt -
-4 xt C
sj re r
- r- r
- in p
C xt U
M r- r
r-ocooc-ooc-
1 1 l 1 1 1 l l l
LI LU UJ UJ LU U. Ul Ui U
-.xTpnceprxOfxtO
^OrvoococoooOxO
^x7vof^^x-r>p-stre,
r— iorvrvrHCor-r\
-inr-^remorMrvxD
r r\ xOrHCmpTjQCC
"f^vTCrTOClOxD
xJG^rerHxtrV"— IxtrH
ooooooocoooocc oocoooo
O
fM
r«-
9
.41128065E-I
in »t
.20442823E-
-99084491E-1
rv r-i
.23409047E-1
.61342728E-
00 >O
.15590385E-(
.22543151E-C
in 4-
.64872902E-C
. 68869O34E-C
•d- *
. 32064505E-f
.14310831E-(
IT* LTi
.37091841E-C
. 12620649E-C
-o
.48371840E-C
-o r-
. !9701497F-(
.50399098E-C
r-
.21413868E-C
r- or
. 10197414F-C
.5137394">F-r
CC IT1
. 22393*5S4'=-(
.86871221F-C
ooooooooooooooooocooo
8
. 52756640E-16
.26222840E-14
.12709967E-12
.30027716E-11
.78686779E-10
.19998417E-07
.28917020E-05
.83215127E-04
. 33376753E-04
.15539757E-04
.69356320E-05
.17976190E-05
.61164781E-06
.23442936F-06
.95481369E-07
.24425447E-07
.10378031E-07
.49420770E-08
.24897895F-08
.10852819E-08
.40647374E-09
ooooooooooooooooooooo
7
. 14857055E-14
. 73847395E-13
.35793165E-11
.84562607E-10
.22159392E-08
.56318589E-06
. 81434730E-04
.35436125E-04
. 14213060E-04
.66174016E-05
. 29534467E-05
. 76549298E-06
. 26046206E-06
.99828696E-07
.40659501E-07
. 10401248E-07
.44193449E-08
.21045179E-08
. 10602439E-08
.46215276E-09
. 17309129E-09
OOOOOOOOOOOOOOOOOOOOO
fMOi>r~-orrixf»-ir, inin~o>Or-r-cooooo(>o
rXrHOOOOOOOOOOOOOOOOOOr-l
I I I I I I I I I I I I I I I I I I I I I
Hi l|l |J I 111 Ul Hi IJ I |li i|i III 111 111 IN Hi III yi Ip III III HI ill
LU
00
UJ
H
LU
ooooooooooooooooooooo
O
Ul
p-
)
-------
-------
r-
•o
o
(M
UJ
co
u
I-
UJ
H-
1— 1
00
- 1
U1
cr
i— *
c
IT rv
—i ro
in
c
1-H
o
o
Co
1
LU
CM
oj
ro
ro o
-i >*•
m
ro
in
o r-
p-4 *-J
1 1
LL' U
O <->
C 00
•* If
CT O"
a *-"
c *
oo ro
(V i-l
o o
fj1 r""-
1 1
LU LU
in cr
O .-
a Is-
•-i IT
•t 00
ro ^
,-H cr
co ro
0 0
CO a-
Is- oo
in I'-
ve Is-
r- <->
i-* ro
rv -d-
ro oo
0 C
«0 -*
1 1
UJ LU
ro cr
.H Is-
•O oo
•j- oo
-fr 0
-i -J-
ro CO
vo j-
cr Is-
in in
ro in
O a
ro Is-
Ovi o
F— 1 fj
1 1
U1 LU
co (v
ro, LO
in ro
a sD
(\J CO
>r cr
r-! C
rv ro
0 0
r\i o
l i
LU UJ
OJ xfr
Is- ro
•-* 00
•t ff-
ro CT-
O vO
ro o~
vO 00
O 0
-H cr
"> O
1 1
U, LU
-t CO
cr >o
-c cr
cr >o
«-< ro
OJ 00
o o>
ro oo
cr
c
1
u
-i
cr
c
c
r~-
f-i
cr
00
o
oc
o
1
LU
m,
<£
a
<\j
—4
00
in
OJ
O
00
c
1
LU
ro
•o
00
in
ro
r— «
-t
00
oo r~
0 O
1 1
LU LU
cr o
O Is-
cr in
OJ
>O ro
n
o o
1 1
LU U-I
•£> t~
ro ao
O oo
ro oo
0 0
<*• ro
Is- O
00 .*•
NC
c-
1
U-'
c
rr
in
ro
rv
•1-
sO
f-H
O
•£>
O
1
LU
i— i
on
00
rvj
-t
in
t~-
vt
o
in
o
l
LU
sD
r-i
rn
•£>
o-
•4
in
— J
•c in
c o
l 1
111 LL'
•* rr-,
r\j ro
cr LO
-t a
ro cr
•-i cr
ro vO
-c o.
0 c
in in
O O
1 1
LU UJ
00 JD
00 •*
^ ro
ro oo
r*- in
00 .-l
00 OC
-i 0-
o o
in vt
o o
1 1
LU LU
in oo
m, ro
-* 00
—i in
O
cr in
vO r-
O Is-
in m
oo in
—< r-
0 C
in in
O o
1 i
LU LU
ro rn
OJ CC
ro —i
O oo
•*• c r
o o
sD —
oj cr
CO Ov
oj cr
cr ,-i
— 00
0 C
in so
o o
i i
LU LU
.4- in.
-t 00
OJ O
rn ^
Is- 00
i-l OJ
o ro
f-i -i-
^ \c
c^ o
1 1
UJ U-'
00 i— *
in O1
^ o
*c o
o o
vC Is-
o o
1 1
U.' u.
O1 L1JLMLjL! II' LU yj LU UJ
0^ CO ^ ^ O u^ "^ ^ fC ^ *^* ^ O r^ U"\ ^* ro *^ Q^ ^* ^
(^ ^- ^^ O O ^" P^ ^^ ^ "*^ ^* ^ ^ O fO ^» (7^ PNJ O ^ ^
*^ ^ ^ «-Q ^ P^ O CO ^H \O CC 0^ U"\ (\l sjf >^^ CO LO ^ IjO LO "^
^J ^». ^ i--4 ^» ff> LA ^j CO O O O"1 »~* Cy* ^ ^ Ct* *O ^ P^ ^
^ ir\ ^M oo \t*i LC ^ ^" oo LO o rvj ^ »vo GO r*™' ^ 10 r^ co ^
^H CO ^ ^ P^J ^? ^ P^J fNJ »~J LO r^ *«J* ^H <«O »~< ^" PO *"H ^ ^
OOOOOOOOOOOOOOOOOOOOO
o
<
-------
-------
0"
iS
<
a
<\!fvrvi-li-i1-"i>-'i-i.-iOOOOOOOOOOOO
I I I I I I I I I I I I I 1 I I I I I I I
U.IU.IIJUUJU.IUJUJUJLLUJUJUJUJUJUJU-IUJUJUJUJUJ
ooooooooooooooooooooo
OsJM.-i.-l.-ii-i.-'-JOOOOOOOOOOOOO
l I I I I l l I I I I I I I I I I I l I I
IJJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJ
oooooooo o-o ooooooooooo
(MM>Hf-'>-ir-lp-i^-lOOOOCOOOOOOOO
I I I I I I I I I I I I I I I I I I I I I
i£i [|^i in Hi ill in li, (n |fr iji LU ni ^11 Q^I HI 111 n. jii in III 111
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I I
IXJ UJ UU UJ LU UJ UJ UJ UJ ii t jf i LU n i 1 1 1 yj u i 1 1 1 1 1 1 1 1 1 1 1 1 ^i i
OC5OOOOOOOOOOOOOOOOOOO
(M(\J«H>- irt^i-lOOOOOOOOOOOOOO
i i i i i i i i i i i i r i i i i i i i i
LULUUJUJUJLULiJkUUJUJUJUJUJUJUJUJUJUJUJUJUJ
ai
v)
<
O
V)
tu
OOOOOOOOOOOOOOOOOOOOO
-------
-------
15
O.
o
eg
•x
to
LU
to
LU
fl t\J '
(M CM i
I I
LLJ LU I
in <-<
O M I
I O O (
I in IT) i
CO fO I
«*• ->
I I
LU LU
o cr
o *
co o
,0 ^- i
in
o
oo
I I
UJ LU I
—I CO
cvj r^ i
i O
i o
OP l>"
o o
I I
UJ LU
>0 »j
00 ^
<«i rsi
LO (M
CO «O
o o o o o o o
I I I I I I I
UJ LU UJ LU LU LU LU
o* «^ co m »-* csj *^
r-( O m ^- co o^ co
to in o f> csj jp <\i
•$• in in N ff) i <\j
co fM -t oo r- >t in
ro »H f\j ^ 9* CNJ m
ooooooooooooooooooooo
Q
LU
t-
t^
-------
-------
sC
•X
o
UJ O O O O O O O O O O O O O« OJ3 OO O O O
" i" till I I I I I I I I I I » I I I
> * &i*-f--t'Oii* + r-tDr*Of4
-------
-------
SECTION D -SAMPLE
INPUT 8 OUTPUT
I MAT = 2
INDEX(3) = I
-------
-------
CO
z
~
LLJ
c
_J
c o
<_>
>
X
I— LL.
a co
t- a-
< LU
S >
LL
s:
o:
D
D
X
Or
I-
i-> Z
K > >-
_l LL LU LU LU
> co co x
LULULULUOCCfctt?*"1
COCOCOCOLULULUa:
aaao:>>>H-
UJLULULUZZ:Z<
>>>>H.I—1-.S.
2 Z Z Z
C\J
II
<
SE
o
at
t-
o
o
LU
CO
<
a:
13
o
a:
a.
UJ
co
U
II
co
Z
o
o
LU
1/1
a:
- a
co < < z
z z; z: <
o
O < CD <
IS
Z -I f\J CO
*-> II II II
LU t- K t-
CO < < <
z: z: z:
LU >- i— M
CO
< II
U LU
or
X LU
1-1 X
IX X
_!~!-l»-l_l_K-I
C£C£IXQC<<>><><
II M II II II II II
CO
DC <
O Z LU _J
K LU 0£ O
uo_j*_ia.
-------
-------
X
H*~
Uj •
zi—
LLLL
(Mf\ocoa:aoir>>i-O
COOOOOOOOOOOOOOOOOOOO
U
UJ
00
UJ
s:
o
UJ
UJ LL
oc; .
< Or
inOOOOOOOOOOOOOOO>OOOOOO
^-
UJ
o
tu
oa:
< ui
u. CD
I I I I I I I I I I I I I I I I I I I I I I
o
UJ
H
>
-------
-------
U.1 U U U U U U Ll Ll LL1 u u L!
ccoccc-cccccc f
ccocccocooc r c
ccrceccrorccrc
r c r f r- c- < C~
U SJ ' Ll u U< U U U'
c c r, c r roc
c r c~ r o r o o
r r c f c c r- c
oooooococ o r c c c- c c~. c o c c
— t-j o o o o c c c r c c —' — i-« —i — ~> — --> —< r-<
> c O o o c o c c r- c" o c c, o C' f r c. o o c
< I
D UJ UJ LLJ UJ LL.' LL LL' u. LL LL LL. UJ LL U_> U. LJj -*J UJ LL< UJ LL
•v oooooocccc'oceocooccoe
i« ocooooooorjceococooGoo
z oooooocrooccoooocooooe
• OOOOOOCCTOCOOOU1COCOOOO
O oOir*Cix\irLr LruLOOr.'LrcrccC7rr-coco
i// OIT»—**"H(NJfVf<^^LO>£f>O^.—'•~'i-^(\jr'U*^r«^tC^
o
IM
<
o
o c o o c o o o o
O C O 0 O C C
Z)
a.
z
UJ
o
< a
U. UJ
tt OQ
LL Z
>- 3
z z
I I I I I I
(/I
CD
OOOOOC. OOOOCCCOOCOCOO
o o o o o o c o c- o c c o c c o o o c o
o o o o o o o o o c- o c~ c- o c< o o o o o
ooooooooooococoonoarj
o O o O O O C o o („ o o "" c :' r ;•: -•-:>'- .7
I i i I I i I I i : i i i i . i • i
ee.
Q
10
m
o
o
o
o
-J- •*
o o
LU LJj
o o
o c-
o o o
O C' O
o o o
o r- o
Lf' -^- 1^1
OOOO-*-tOOf--JfMOOOOOOOOOO
ooooooooooooooooooooo
in
<
u
UJ
<
H
>
>.
o
<
O
LU
Q
O ct
1-1 UJ
(- CD
o a:
UJ D
in z
ooooooooooooooooooooo
ooooooooooooooooooooo
ooooooooooooooooooooo
ooooooooooooooooooooo
f\j oo (\j rvj f\) r\j (\j PM ^ fv tv (N, fsj f\i ro ix; rv f\> f\j (NJ fN
-------
-------
Q
u
o •
o
o
cccco orcocca. ocoocDOJOoaocooor, oca nocaocc
CCCCCC'CCCC CCCOOOOCOCOO
U-.U_LL'U.liUJLi-iU-U-U.ULLU.U-lLUU_U.U.JLLU,U
C c c oc or rvvTtvrvfxocorMfNfvfxrvifv (\i <\ <\ <\
C c C (V rv Q' O" & CT o^ .*- ^ rf~ f> ro r<* r»> rr^ r^i f<"i r^ r^
r^r^-r'if*' r^.ir^cf xcricooccoa,ccocOLa.a oca oc
>t ^- <•*«*•* ^ ^f^-^-^-r^r^f-r-^r^-r^^-r1-^^
c o c c c. coccooooooocooooc
4-
U-l
u u a. a^ LU LD
O
v.
O
V
OOOOOOOOOOOOOOOOOOOOOO
LU
o oc
< UJ
u. a-'
OC I-
UJ ^
> z
D
UJ
^ Z
O
Q. >-.
ooooooooooooooooooooo
ec •
DO
< Q
01
OOOOQCOOOOOOOOOOOOOOO
o o
ooooooooooooooooooooo
00
UJ
ooooooooooooooooooooo
ooooooooooooooooooooo
o oc
I-H UJ
t- CO
U I
-------
-------
o
<
a
c
or
oracrccaccaa.aoaoo'Crc'COOCo
•£•*!- < a if
LT or i-^ir r-
oca tr LT c i
c o c c c c ccc coooococooo
I I I I I I I I I I I I I I I I I I I I
I II II M II II M II II II II II II II II II II
O
fM
U-1
X
U-'
OOOOOOOOOOOOOOOrJ— i 1-4 pi 1-4
UJLUUJLLJU.IUJUJUJLLUJL1JUJUJ U^JJj UJ UJ Uj LU LL
*t
UJ
X
X —I
U 1-1 <
a: z
of i- a
< o
I- SE <
« CD O
X a
LU
a.
O
O
x:
_i
UJ
_l
<
z
o
oooooooooooocooooooo
I I I I I I I I I I I I i I I I I I I I
I H II II II I
CD CD CD CD ff"> CO CD CD CD CD CO CD CD CD CD CO ff*i CD CC CD
1(1 III UJ m HI |
1 111 111 lil UJ lit |^l ^|l ill Lil
ooooooooooooooooooooo
II II II II II II II M II II II II II II I! l| II II II II II
f\J C\l
CDCOCOcEcDCOCOCDCDCQCOCOCOCDcDcOCDCOCOaDCD
O
<
LU
-------
-------
O
<
a.
NO
*»
O
O GO
^ O
i \
UJ U.
(Nl P~
C rH
ro M
CNI -d*
CC' —1
r- p-
•j- in
PO -H
O^-l
U
1 1
LU LU
CNi CC
ro CM
cr o
r-H CV
-t ^
CO LO
f r-l
P- (N,
Cr~-
* — •
1 1
U. U-1
cr r-
cc P-
cr cc
cr (•<•
CO r^
r— c\j
ro in
cr rH
in
^
\
U.:
-t
("~1
,— 1
>t
rH
O
CC
r-l
O O
1 1
UJ U!
un -c
P- rl
~f cc
VC rH
>* in
IT IP
IT rH
ro >C
j— j
1
U
cc
r-
P-
cr
o
-*
•&
r-l
cc cr
o o
t 1
U ' LU
f\ t*-
*C -Ti
O CT1
CC i— t
m CD
C1 f^J
^- 00
>t u^
>C
in in
ro J-
r- c-
O O
p- tr
(^ 0
r-l PO
"-1
1
LL!
CC
rf>
JO
m
r-^
PS.
P^
P^
r-l f\,
1 1
U U'
P~ M
o- -t
C cr
O CV
O (M
rH CV
(NJ -t
•— i rn
(\J r1"
1 1
UJ U.
cr <»•
o- r^
O (NJ
CC PO
IT. -C
-H >t
rH CO
r-l PO
ro v}-
1 1
U U1
rv' p-
ro cc
tr co
CN! CM
CC IT
in r-i
l-H rH
rH ro
OOOOOOOOOOOOOOOOOOOOO
cr
4
. 14266754E-C
r- in
.64455435E-C
.30287947E-C
•* -4-
.88441593E-J
. 24498935E-C
in >c
.39740189E-(
.47054800E-C
r- r-
.92851 110E-C
.16077955E-C
CO 00
.428638466-C
. 11738266E-C
cr o
.15223840F-C
.35804998E-
r-i
.80871854E-]
—• (NJ
.20300116E-]
-31622339F-]
ro
.89393499E-]
ro ro
.29146058E-1
. 10046983E-]
.*• in
.30255775E-1
.81374476E-1
OOOOOOOOOOOOOOOOOOOOO
f^ \r\ ro ^ \f\ u~i ^o t*~ co co O^ o O rH CM CM co cri ^ ^ u^
OOOOOOOOOOOrHrHrHrHrHi-HrH^rH-H
I I I I I I I I I I I I I I I I I I I I I
tu yj u.j M' M' U-1 ti.-i U-J u^ u^ uj m UT^ "i U-J i-u uu ij' u.* m* "-1
rsjr\jr*-^*<)ro>rf'.Arsj^-l*--.vos(CT'h-oocOinO'J'
fr)rgO'^u^h-r^^u^(NJroro^^ir\iriOi-OfNi-nfo
^j^^COr«^^*^)-AfNjC^iK"OU^^OU^O-^^Of**^
foovoc3hfNjn^^o^O'«}'rivj'-^>ofwo^'forta-c.'Nfvjir>^'
rgr^irir^r^rgoO'^ir*Lrijf\fw-CTN'-*(«^'4'ioo^c.^
(7-sJ- r^N-rOsOU^lAf\JCCr-*OOOr*-CONt'r-^>^tACO(,71'
f\) oo f^ "^ *O i^\ oo *£ ^ ^ ^3 o*1 "^ *^ ^ ^ u^ *™^ ^ *"*' *^
\jp fSj »—J f^ ^ r~< *^ f^ *O r^ »$* IO *^ f^ ^* t-4 fO »™^ PO rM fO
OOOOOOOOOOOOOOOOOOOOO
m
2
.45101733E-C
ro
. 20376421E-C
* *
.75761694E-C
. 19719373E-<
in o
. 54624034E-(
. 88606765E-C
r
i ^* cr
I (NJ O
O cr
i (NJ ro
i CNJ m
oo
in >o
o o
I I
LU LU
o ~<
>o o
•£> ro
fNI -C
m cr
P- O
og r-i •$* rH po in
p~ p-
o o
I I
UJ UJ
cr (NJ
-j tr
(Nl •&
cr in
•o o
CO *
(NJ ru
•O r*
co cr
o o
I I
UJ LU
tr in
ro ^-
in p«-
r-^ cr
00 >O
>*• (Nl
-j p-
(NJ in
I I
LU UJ
>H i-l
•& PM
ro m
O co
-*• PO
po co
O P-
(NJ *
I I
LU LU
cr co
m r-
-H ^)
in CM
O (M
00 rH
O P~
rH (NJ
I I I 1 I I
LU LU UJ LU UJ UJ
•O rH (NJ <> O CNI
PO * -C (NJ fl (Nl
i—I N- ^D «O PO PO
O PP( rH PO «f P\)
in •$••*•
-------
-------
O
l l l i l l l i l I I l l l i l l l l l l
Uj UJ UJ U,' UJ Ui UJ U_ U, LJJ IU U' UJ U' Uj U U- UJ U. U- U1
o
UJ
K
to
CO in C' **<}••— <
c r- m cc IT -r — H
«-* m oo cc cc in i— i
j c co iO c* m co
fxrrv<
-r IT .-< fi c -*•
COOOOCOOOOOOOCCOOOOCO
.-l.-l-j'.-ii-t.-iOOOOOOOOOOOr-'.-it-i.-i
I I I I I I I I I I I I I I I I I I I I I
IM u 111 LI i 111 a i 111 111 tu Li i m uj Hi in m lii lit 111 i;i tu in
•o
»v
o
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I I
\\ m yi III HI III Hi U m Ul UJ Ml U i III U: 111 \l III 111 u_l Ll '
ooooooooooooooooooooo
\O »^° fvj »™4 ^ ^ ^ in ^ "^ ^"- oc co o** O* O •••* *—' (\t fvj r^*
•_4r-l»4i-IOOOOOOQOOOOrHi-l>-l>Hi-l<-l
I I I I I I I I I ! I I I I I I I I I I I
LU UJ UJ UJ 111 UJ UJ UJ UJ UJ LU LU UJ UJ LLJ UJ UJ UJ LU UJ LLJ
CD«—'*tfpO(\lOdrHLnrNJGCOOOLnOfM^)Ov»^flfc-O
rvj^irirOfOpn^-tsjoJLn^-JsOcocoLnLricooOsO^
• GO fO ^ \f\ r^ fO CM LO fO f*^ ^O CT1 h*- f\J Q* f\) "*O IC\ CO lf\ O
fOfT)Lnr*-coLOroo' r<^o>j"oO'tf'fioosr\ji/\o
-------
-------
o
(M
"v,
0*
-fr
1
UJ
pr
(V
O
IT cr
•-I CO
IT
C2
pn
C
rf\
CM
1
LU
•*•
00
p-
•* p-
f-l ^O
pn
4-
f-4
CV
(V
1
in
IT
•t
p-
cr
•— *
CO
m
f- 1
O
CM
CM
1
UU
-0
O
cr
rr*
f— 1
cr
•4-
vC
r-i cr
1 1
U-l LU
«0 C
--i >0
p- in
cr cv
pn -O
cr cr
«t cc
•C r-l
0 0
o cr
CM — 1
1 1
Uu UU
•-> pn
in 1-1
«t cr
CM r-
O -O
in o
O cr
m co
CC IT
1 1
LU U1
cr cv
o o
cr cr
CM >C
cc in
•*• co
CM c
CO pn
o o
p- ~t
1— 1 1— 1
1 1
UJ LU
i-i in
in csi
in »•
•*• CM
~* in
CM in
co cr
p- f-
G O
1 1
II u.
CO C
P- CM
*$" •— 1
m c
o o
l 1
LU LU
co pn
0 *
><• in
in m
sD IT.
O O
1 1
LL< U-l
— in
•r. p-
in co
r* c
SO 1- 1
-i cr
£ Pv
O O
in in
0 0
1 1
UJ UJ
cr co
cr pn
co cr
p- -o
CO ~i
r-l CM
O CC
pn cr
IT IT.
o o
1 1
1 1 1 1 1 [
>D CM
pr cr
cc *n
0° C
in «o
m cc
(N CM
OT1 r— 1
C C.
in >o
0 0
1 l
UJ UJ
cr in
0 si-
o in
-t -*•
in o
* >J-
^ 00
CM pn
O C1
1 l
UJ LLi
in in
O 1-1
o >c
C p-
O O
1 1
LU LU
cn in
m CM
UJ UJ UJ Uj LL1 LU *-LI U_' UJ UJ IL1 IJJ '" LtJ UJ ^ UJ LLJ UJ UJ
r*4 f^ ^«» Q ^ O i—^ r«H O^ f*1 f\j f^ tf) >O *^ 00 U"\ ^ ^O 00 ^
I lO O ^" *Q fVJ ^ 00 LT\ ^ P^ >™^ ^ O LT\ O f\J i*^ ^O ^" 00 00
r-f^i-^^rMOorvj'M^-iAfsj-—''—tprto^'—i ^ •—( UJ ^ ii>
*}-f^^)-HON^ir\oo^^.O'..t'^Kfvjf^i/\(\iO.^-'4'O
^^ O ^* rn ^^ ^0 r^ r** ^j ro ij^ o O ^ i^ fsj t^J ^** ^ PO ^
r^ONO»^rs-co-4'Oi..oo^oop^oosco.-Hrooh-»-t^o
i%0—«**'i^(7*>*'C.>(\Jflfc'«.tm(\j'1oooco^oinosu^h-
l ^™ M ^ tNJ CT* ^J O f\J U^ ^J ^3 ^J 00 (f\ (^ ^4 ** *Q ^ 00 ^D
f-4.—ifvj^i^'«^^irf' «^c*>u^^
(/> f\j ^-v fo f^ i/^ -"^ ^™< fv r^ ^^ ^^ fv ^3 r~< fw r~ ^/ co fw ^
ooooooooooooooooooooo
-t
LU
o
H
LO
r-i ff-
CM ^J
I I
LU LU
•f **
p. .-<
CM cr
i o oo
i co in
po in
.#• en
p- en
I I
LU LU
*t CO
—< O m
cr in pn
' r-
i •*
' O
r-l f-l O O O
I I I I I
UJ LU LU LU LU
>o p- co in o
>o in o c> -4-
m p* »o PSJ r-
cr O in ^ i^
PsJ PPJ CO ^ «O
O cr CT sr «»•
O •* cr on CM
(V p, r* fH J-
in ^ in
o o o
! l l
LU LU LU
O 00 -O
co sc in
CO CO CO
in pn >o
CO -O *O
pn cr CM
cr p~ •a
•t CM pn
•o -o
o o
I i
LU UJ
CO P-
00 (M
0> >o
Pvl CM
in cr
00 -H
p- co co
o o o
I I I
UJ UJ LU
in ~* o
j- so cr
r- o •&
cr PM in
in rr> cr
pn pn CM
co in 1-1
J- p- CM
O> cr
o o
I I
LU UJ
p- pn
CO ^
O m
pn -t
pn pn
•4- cr
cr m
*O CM
O O
-i ->
I I
UJ LU
r» co
O
-------
-------
c
t— 4 •-
1 1
U- LJ
IT 0
C si
o- -
O <
rr^ C
o1 0
O c
r-l r
- o o
-1 r-l C
1 1 1
U' U
c c r
: vc r>
-I IT si
*• rr -
r r- c
c rr h
-^ *— 4 C
•4 r- si
t CC
•- o
l
.f u
s C
s/ vC
? <-l
-1 CM
i CO
- N
_. CT1
5 -1
CC
o
1
u
a
c
po
ir
c
r-4
r.
cc>
r~
fT1
sj-
-*
sO sC'
0 C
1 1
U LL.
sj" f-1
C CY
IT IT
cv O-
r-4 st
C rr
rr; 00
r-4 f"
LO
o
1
LL
a
c<-
st
•*
c
r-4
r-l
r-*
IT LO
0 C
I 1
LL' U'
sT N
O* vC
CS' r-l
CM O
C. C-
LO r^
rr- ^
st -1
oooocoocccc cccoooccco
sO
-*v
O
*Ou*ifOf\jOh~iorrir\j^-'OONoC'CCN- -o \p IT* u^ ir\ ^o
fV(\jCVf\;(\J—l^r-4r-l»«(r-lOOOOOOOOOO
I I I I I I I I I I i I I I I I t I t I I
UJ Mr' IL1 IU UJ U1 UJ LU UJ LM t-C' UJ UJ U; U1 U_' LL1 U-.' U1 U' UJ
r^rsj^s^f\j^r^i^^^in^"O^if>i0C)fs~(\i'si"CiNOfi<^
CD *™^ LO ro MD 0s f*" 0s i^* *Q CC r*^ I.O O ^ ^J (\l 00 (Vj oc >O
• if^ o ^ f*1 u^ LT* ^ O po if"' «^ OQ (f ro -F~* ro ^^ o o^ ^ r**1
o^Or^po^or^triooocooir*f-ior»-inNCfr'^'-|ra*
^•* *^ (\l ^O (VJ •""* f^J CV LP ^ f*"l M f\l ^- f\' ^ ^ ^~* pO t^J ff\
ooocooooooooooooooooo
CM
I
LU
rr •
ro
tr>
co o
•$• ro
(\j r\i
I I
LU UJ
i-< m
co ro
in rri r^ o
U- U.
r- un
I I
LL. UJ
O rr
J3 O
O C O O o O o
I I I I I I I
LL' LU LLI UJ LL. UJ LU
sO rft r*- CT* r-i in rr,
CT LO vO O O »O LO
o o
I I
UJ UJ
co .t
in r~
0s co
r- O
r-l CM
in o
co .
in ,
LO in «—4 r-4
ooooooooocooooooooooo
-i" rvl
Psl fM
I I
UJ LU
i™' LO
*o in
o a
O f>-
CT> in
o *O
-o ••<
pri O
I I
LU LU
co co
CM ^0
m 1-4
sO in
CM O
oo -i-
N 00
-c m
oo r-
00
I I
LU UJ
LO N>
C=>
r\i -J
-i o-
•O 0s
r^ m
in «^
p« CM
r— sO in in in so
o o o o o o
I I I I I I
LU LU LU LU LU LU
LO 4- r-l
Q* LO O*
(M
i in
r- **•
CO ro
sD CO
cj* r- LO in
sD CM r-4 sj-
in in
O in
>o r^
o o
I I
LU LU
^ r-l
O r~
O ff<
* f-
(M in
in Is-
r-l in r-l s}-
ooooooooooooooooooooo
,<>
<\JC\l(MCM--ii-li-
-------
-------
o
(SJ
I I I I I I I I I I I I I I I I I I I I
i m ip ^i in Hi Hi III in iji yi if I Qt 111 flu in 111 ^i ^i in |ii
ooooooooooooooooooooo
o
UJ
H
in
-------
-------
SECTION E -SAMPLE
INPUT 8 OUTPUT
IMAT = 2
INDEX(4) =1
-------
-------
CO
RIX
MA
ON
MVERSE V D
ATR
o
(V
CO
<
U
to
UJ
LU
_J
o
as
t-
o
LU
CO
f
<£
or
O
o
of
CL
II
CO
z
O
K
LU
CO
LU
_
a:
<[
3
h-
co
LU
LL.
O
a
LU
CD
3
Z
(NJ
II
t-
< X
II t-
a <
LU s:
c< x x
UJ ^** ^^ £D
o a; a:
**•' ^ ^ o
CO < < Z
z z: z: <
o
LJ < CO <
O
Z ^ M fl
l-i II II II
LU h- H- K-
CO < < <
z: s: s:
LU »-» *-» >-l
CO
< II
O LU
ec.
X LU
M I
Of X
.5
z
NDEX(N)=1
ALPHA A MATRIX INVERSE
ALPHA A MATRIX INVERSE L
ALPHA B MATRIX INVERSE
ALPHA 8 MATRIX INVERSE F
ALPHA 8 A MATRIX INVERSE
ALPHA B A MATRIX INVERSE TIMES ELEMENTS VD
ALPHA B A MATRIX INVERSE V D L
OISOXS + ALPHA B MATRIX INVERSE f - ALPHA
]
*»4
OOO-HOOOO
LL.
i— i II II II II II II II II
rH(sjms)-irv>o^oo
COXXXXXXXX
^ IU IjJ ||1 III ^1 III pi tjl
OOQOOOOOO
ixZZZZZZZZ
a
O LU
CO
X <.
UJ Li)
o
Z co
••M ^4
I
O K
^^
^* A£
K O
Z U,
ce
a
PUT VARIABLES
z
z
Q
LU
CO
3
ct
O
h-
U
Lt
Z
o
Nit
CO
a
LU
>
o
0
o o o o o o o
*M •-! tH i*-t F^ i—l iH
II fl II II II II II
.3
Z LU _|
uu ec O
a _i * __i < > a.
U. U- U. U. U. U. U.
U 0 0 O U O U
a
LU
»-
to
-------
-------
UJ
o
.
X .......... •.
t— — MroiTiO^(^c(?(ofio-*f^'i-^o
15 • cof~>J-<-'N--*'>o«coo^ooir(VN.coosfr, rvo i
*^ H1 *• UJUJLUUJUJUJLlJUJUJUJUJLUUjUJUJLJUUJUJUJUJiLI
o uj« ooooooooooooooooooooo
f\i < X: t- OOOOOOOOOOOO QjO O O O O O O O
V DLL OOOOOOOOOOOO O"O O O O O O O O
o^ D _i« ooooooooooorgoooir. oinoino
OOOOOOOOCOOCOOOOOOOOO
o or
I— LU
(-co
H LU
to
LU
3-
o
uu
o
eooooo
LULL OOOlT\^OO>J-OfMCOaDOI~-ir.airOrslO(Np>jh->ooD'OOh^'ff'vof~or-m(Mmo>(x>o
LU
I/)
<
O UJ •-i(Njfr!^-if\>OKooOO"^(1>o
ooe »^t-<^-ipH<-<^rt<^>-i>^- z
LU 2 O-lCMfn^in^r-a3CT1O-'fMfO^lfl>Or-COO
-------
-------
— p r<" P"> P" m P~ P"< P r0 P"' p^ P1 p^ p. p m (*"> P p* p" P> P~
pi UJ U ! Ul UJ LL' Ui U UJ U' LU UJ U U' LLI U-i LL' U > U U' U LLI U
UJ 'v OC'OCeOCCC/OOCOCOGOCCeoO
O OF- COO COOOtT-OCOCOOOOOOOOOO
< U- C O O O C' O C~ C O C. C C C O C C O C O C' C O
o_ . c cr c' P^' ov tx/ *^ P~I p P~ h~ d p" p^1 p p p^ p P~> p"' P P"'
!T> OOOCOtVlvTOOCO—l-J^-l-'^.r-l-l^r-l^--H
c) u^LPLTLfirLriccoocrCTcrcro^cr'O^ocrocr'C^O"
OOOCOOOOCC CCOC'COOCCC CC
— ^lOCC'OOOOOOC^-'^-'^-i^-'^r-i^-i^^-i
>- cocooooooooco- OCOOOCOOOOCOOOOOOOOOO
y ocooooooooococoocoooo
• OOOOOOCOOOOOOLOOOOOCOO
«r oooooooooooooooooooooo
1.,
0
CL U-UJ r-tr. tci/^ir. i^tnir. LTu^i/^m^oint^sD
ocooooaooooooooooooo
O >- UJUJLLJLLJLLIUJUJLUUjLyUJUJUJUJUJUJll.lUJIJULLI
< oooooooooooocooooooo
z c oocooooooooooooooooo
Q.-V OOOOOOOOOOOOOOOO LLJLUUJ LUUJUJ
< o c o o o o
> o ooo ooo
->•-. o<>rvj ooo
n i/) o r*"i r^ o ^* o
oD vt1 rvj LO LO vj- rr\
_) OO'OO^vj-OO^-'-if^OOOOOOOOOO
ooooooooooooooooooooo
ir\
LU
o ooooooooooooooooooooo
OOOOOOOOOOOOOOOOOOOOO
O OOOOOOOOOOOOOOOOOOOOO
LU ...... ...............
O OOOOOOOOOOOOOOOOOOOOO
> o a:
O •— i LJJ
< I>-CD
U-I O3T
H- LU 3
"1 I/) Z
-------
-------
ocB,cocoa,'ococccocoooc>occoocoooooooooLoooocG
ooooeooc/ooooooooooocco
U.' UJ U. Uj U-' U-1 U UJ LU UJ UJ UJ UJ UJ UJ LU UJ LL) U.1 li- LU UJ
o •
Z>
l_>
UJ
o
<
a
cf-
O
v.
cr
LU u a
< LU
K LL CD
a 3L
> UJ D
I- Z
>- Z
I/)
3 z _i
O x
a. 1-1 o
t- z:
z < —
Of •
O 3 O
»— t
O < O
Q O
I/)
<
o
OOOOOOOOOOOOCOOOOOOOOO
^- P*" CO CO GO CO 00 00 CC &• O^ O* O* O* O* O O O O O O
C'OOOOOOOOOOOOOOi-'r-i f-< i—i,-<.-i
U.' UJ LL LU LL' LL' LLi U.' U-r LL' UJ LU LU LU U.I UJ U-l U1 LU LLI U'
OOOOOOOOOOOOOOOOOOOOOO
-^ooooooooooocooooooooo
OOOOOOOOOOOOOOOOOOOOOO
tii MI it; U' 111 m Hi it Li, ij, 111 111 111 til 111 111 ^11 (|i ip til yj ^i
O>Cf^OLOfNJ^LO>OOJOJOOrOin(NJ'Vr^<^h-rd»OO
Ottf'OOOvfrt^3LO»^OOJLOO^LOOOLOCOinC*J^O
o *o f^ ^ oo in c\j co o^ o oj 0s o^ '^ oo ^ »o ^ *o ^J in o
O^~**J'0>r~("^'OOfflf^(\J^'(\)C^lOCT*COO»~*O^"O
•^o^oof^mLOin^in^in^'p^minr^in^^'^'inLO
OOOOOOOOOOOOOOOOOOOOOO
I I I I I I I I I I I I I I I I I I I I I I
ooooooooooooooooooooo
ooooooooooooooooooooo
ooooooooooooooooooooo
ooooooooooooooooooooo
ooooooooooooooooooooo
Q
LU
I-
00
O a:
M LU
t- CD
o x
UJ 3
on Z
-------
-------
CCC;cCCCOOOGCO,<'0"vO'ff1vO'C
v oooeceoo'oooooooi-i
>-
Z U' U U1 LC UJ Ui U U. UJ U' U- Ul LLj UJ UJ UJ
-
-i UJ U, U.
<
z
D
c
UJ
\ ^ G* «o
'0NOcc
j o ^ "* "
OOOOOOOO O-C OOOOCOOOOO
i i i i i i I i i i i r i i i i i i i i
II II II II II II II II |l II II II II
H II II |l II II II
IP* ^-» •—" ^* ^ ^
ccaoct'cocDcccrcDODotciccoera
UJ
s:
O
-------
-------
UJ
o
<
a
t/5
«
uu
ooooooooooooooooooooo
I M; II, HI y. III III 111 HI 111
i 111 LI I
1 III III III In III
X
at
K
<.
<
Z
t-i
U.
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I I
I
a
UJ
to
UJ
h-
O
UJ
-------
-------
SECTION F -SAMPLE
INPUT a OUTPUT
CCB~l and
IMAT »2
INDEX(3) and INDEX(4) = I
-------
-------
*«l
UJ
(5
a
K
•o
v.
0
(M
V.
o-
•o
LU
00
<
O
u»
00
LU
^ J
O
ec
0
u
LU
00
Z
4{
Of
o
ec
a.
CM
u
00
z
o
t-
LU
00
*
LU
to*
cc
44
•3
oo
LU
U.
O
ec
LU
CO
Z
z:
04
II
^t X
— a
II K
Q <
LU Z
OC X X
D cc ec.
•— (— t- O
00 < < Z
z z z <
a
0 < CO <
o
Z 1-1 OJ ro
— II II II
LU h- h- t-
z z z
UJ _r l-l .-.
00
< II
O UJ
ec
X LU
"- I
CC 3
t-
^
Z
00
Z
z
r> _i
_i
C D
X
1— LU
K U~
K cc
z
z >~
o
X
O c-
LU et
z: H
or. <
o 5-
LL
X
a
00 _J
K <
Z
LU ,
LU LU
_J
LU LU
00
oo _i a.
UJ LU
Z Q >
•-i Z
K > •-
_) U. UJ UJ LU
00 00 00 X
UJUJUJLUCCCCCC*-1
OOOOOOOOLUUJUJCC
ctcc>>t-
UJLULUUJZZZ<
>>>>>-i-ii-Z
zz zz
i-i>->i-ii-iXXXCQ
H- 1 t— 1 t— 1
xxxxoccfet<
_1__i»-|_t_^-X
CCOCCCO£
^
0.
z
t-H
z
o
o
LU
oo
ec
o
K-
0
u.
z
o
00
CC
LU
>
z
D
u
o o o o o o o
o o o o o o o
II II II II II II II
«J
Z LU _l
LU CC O
o _) be _i < > a
o o o o u o o
-------
-------
o
a.
t-
a
UJ
o ec.
i-, UJ
t- ID
o z
UJ O
) Z
o
UJ
< t-
Uj y.
DC •
< a
(/I
l^OOOOOOOOOOOOOOO
-------
-------
fO
UJ
O.
o
UJ
co p> «r f*1 «r w (f, r^rncorofOrrifrirrNrrmffi fi f ft rr
oooooooooooooooooooooo
U LJJ UJ UJ U' 11' U-' U-' U-1 UJ UJ UJ UJ U- UL' UJ UJ UJ UJ UJ U UJ
ooooooooocoooooocoooc o
ooooooocooooocoocooooo
ooo oooooeoooooocoooooo
oooooocoooooooooococoo
r-HOOOOOOOOOO"—I**-1
ooooooooooooo
I
ooococoo
o
I/)
X
to
»
UJUJUJUJUJUJU.IUJUJUJUJUJU.'UJUJUJUJUJUJUJUJ
oooooocoooooooooooooo
coooooooooooooooooooo
OOOOOOOOOOOOOOOOOOOOO
ocooooooooooomooooooo
oooooooooooooooooooooo
UJ
U
< OL
U_ UJ
a: ec
I I I I
I I I I I I
I I I
I I
>
<
o
<
U
rommiri/iirimininirminu^ir>if\if\O
oooooooooooooooooooo
UJUJUJUJLUUJUJUJUJUJUJUJLLJUJUJUJUJUJUJUJ
oooooooooooooooooooo
oooooooooooooooooooo
OOOOOOOOOOOOOOOOMOOPJ
OflO>r'l(\J-*-OCD«tf'>(M'^'VJ"-'f'l<5'-iff1>OO
OO»*'^^"Ooo>^coOoocsjMeoi-i^i-ia>'OO
OOOOOOOOOOOOOOOOOOOOO
I ' I I I I I I • I I I I I I I I I I I I
o
I -v
>
ffi
f\J
o
UJ
o
o
o
.o
-t
O O
UJ UJ
o o
o o
CM m c\j
ooo
UJ UJ tit
ooo
ooo
ooo
O f- O
in *• f>
OOOOOOOOOOOOOOOOOOOOO
-c
UJ
o
UJ
o
oooooooooaooooooooooo
OOOOOOOOOOOOOOOOOOOOO
ooooooooooooooooooooo
OOOOOOOOOOOOOOOOOOOOO
<
h-
l/>
o
UJ
H-
1/1
O a:
f 01
t- CD
o x:
UJ 3
VI Z
-------
-------
>•
<
O
OCJ 00
o o
UJ U)
O O
O O
o o
rv Cf^COCOCOCCODCOOC/CCO30C
(NjforriO^jooCfiOCOCocGCDcocDcocoocco
f^rrmtf'^cocc/oDcccooccocococoooccococco
OCOOOOOOOOOOOOCOOOOOOO
LLl U1 UJ UJ UJ U.' U.1
UJ UJ UJ UJ UJ UJ a1 UJ UJ UJ UJ
ID
o
rf>o>J'M>-ir»C<-*0irMrriomr^^oroir, 1-1 fvi M
O^>£)'-'rvjf\jr<"i»J'irico^^»-t(\Jf^*tf'{<"f— i»-•
1/5
UJ
O OC
< UJ
U, CO
a s:
UJ 3
t- z
t«.J»-*»—J^eMtOO'-'OONOC'*>O*'*
^i^(\/r»i(\j«*'f«"ir\u^*r'i^'fl>tfim(^mmroro
OOOOOOOOOOOOOOOOOOOOO
X
a
U)
K
If!
z
o a:
*"^ UU
t- CO
UJ 3
(/) Z
-------
-------
CD
to
UJ
o
UJ
h"
1/1
CC. CO CO CC CO CO CD CC O' Q* O* O^ C* O* 0' O O O O O
I/' OCOCOOOOOOOOOOO.--.-i.-i.-l.-i
2T Uj U-> U-i UJ UJ UJ U. UU IL> LJJ UJ UJ UJ Uj Uj UJ LL> lii UJ UJ
2
c ccocoocooccooocooooo
C" I I I I I I I I I I I I I I I I I I I I
Or-ii-iir>oovoooo^5o
-------
-------
a.
o
U-ILLJUJUjUJUjUJUJUJUJUJUrf'
oo— <
000006000000000000000
I I I I I I I I I I I I I I I I I I I I I
iti flii ^ii in iii \n "J LU uj UJ tU 'f1 UJ I" M' jL* Vf ' U' "' U-1 U'
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I I
lii ^n ^i i in nj HI \t I jij y^ tj^i i^ ^11 141 I1J in uj ^|| ^i ^11 if i ifi
ooooooooooooooooooooo
i i I i I I I I I I i I t I i I I I I I
ui i| i in yj in ^ii in iif ti^i \ 1 1 iii f" tii ^ii in in tu in in |jj
OOOOOOOOOOOOOOOOOOOOO
i I I I I I i I I I I i I I i I I I I I t
ui QJ ui i[i LII 111 yi in ij i uj gii in uj lit (y in (ji iii iji in uj
o fsi— i^^mifixO^cvjinr-tiNj^rfrvj^^frii-i^-i
I- OOOOOOOOOOOOOOOOOOOOO
LU
-------
-------
U-
«
o.
o
CM
V)
<
U
I I I I I I I I I I I I I I I I I I I I I
U- U- UJ U. U-' U-l U' U. U-1 UJ U. U UJ U. U. UJ U-l UJ UJ LL UJ
ocooccocooeocoeocccoo
—l — n r* •* -JOOOOOOOOOOO-^r-.-.->
I I I I I I I I I I I I I I I I I I I I I
UIUJUJUJIJJUJLUUJUJUJUJUJUJUJUJUJUJUJUJUJU-
ooooooooooooooooooooo
I t I I I I I I t I I I I I I I I I I I I
\\* U> 111 ^i \t i n, til 111 i±< 11, ii. 111 lit Hi ii. tfi \ii 111 ^j i 111 ^i i
• ••»••••*••
ooooooooooooooooooooo
,^j-rvi--o-r-^-ir>1OvO's-ooccO-oo—i—--it~l
I I I I I I I I I I I I I I I I I I I I I
U- IXJ UJ 1'' UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ ULJ
cc ^^on^>ocoeoinincooo^^
»P>OCOO>r-*l*-(O
• cc ro.*inr>-mfvui<'ri('O%oo>^-<\;CT'roO'*'CO'*Jino>tO>(T'
ooi^>oocoominco^-oxoo'^ooinin^'onj*jpoofNJ*ocOf-*-^if-4»^sf»-'*n*^'rf'
doooooooooooooooooooo
*-*-^OOOOOOOOOOOO^^^j^^^H(-^i-<^^
I I I I I I I I I I I I I I I I I I I I I
u* UJ u.J u' uj LLI u.* uj it1 UMI' ui uu u.] 111 u_> u> uj m UMU
ooooooooooooooooooooo
V
Q
-------
-------
u>
ID
V
o
fvfvf\}«-«*Mi"-'»-*'—
-------
-------
<\ (V rv
-------
-------
o
f-*
U-'
Q_
<£>
v.
O
o
-------
-------
e>
<
o_
<0
v.
O
in
a.
m
X
ec
i-
<.
1/1
C£
UJ
Z
»MI
U.
ir\ir\(\j>Orioc\jpgo>o<'mm^Mh-in^->-i-*'in(Mooi-i^f~y5('i
-OCT>^-o-*-oi'>'4'Or»fMir\r-f\jmo(Nj'^ci
OO^'-ifMfOOfvJ'Ofvf^r'iKoooofiMfnNtfM
^O'O>p>Jirv'-<>-'ir\oooo^(Mh-fMmfvj^*-c
oooooooooeooooooooooo
I I I I I I I I I I I I I I I I I I I I I
X
a
vO
UJ
u
I/)
o
<
UJ
-------
-------
SECTION G -SAMPLE
INPUT 8 OUTPUT
IMAT= 3
INDEX(5) • I
-------
-------
COLUMN
VOL
U.'
CB
MA
r>N
NV
ARMED
MATRI
o
ro
INVERSE
INVERSE L
INVERSE
INVERSE F
X INVERSE
X INVERSE TIMES ELEMENTS VD
X INVERSE VOL
B MATRIX INVERSE F - ALPHA
^"
UJ
I/)
u
J_
to
UJ
^_
UJ
t-
1-
o
UJ
L
^
.to
J
o
(X
1-
o
UJ
to
•*
X.
— _ M
v/> '
< II
O UJ
et
X UJ
M X
of X
<
*
xxxxcx;o:a<
« — — i-KI-l-X
crara:a: a
U, U, U. U. U. u.
0 O 0 0 O O
-------
-------
UJ
IS
X
l_
O
N
•f>
^
O
rvj
•*
a-
<
a
aci—
rsu.
>O
OOOGOOOOOOO*-''-''-1'*'-'.- 1 ~j ,-t ~* ~i
UJUJLUUJLiJUJLLJUJUJLUUJUJUJUJUJLiJUJUJUJLUUJ
OOOOOOOOOOOOOOOCOOOOO
oooooooooooo QJO o o o o o o o
oooooooooooocoocooooo
ooooooaooooMoooinouiomo
oooooooooooooooooooco
O
OS!
LU 3
l^ Z
o
UJ
o
<>-
UJ LL
a: •
ifooooooooooooooa-oooooo
UJ
CO
01
UJ
< UJ
U. CD
acz
UJ 3
Y- 2
2
I I
I I I I I I I I I I I I
I i i
O
UJ
-------
-------
fl
u,
<
Q.
u oococoooooooooooooooco
UJ
co uj u1 ui UJ u.' ui u-1 UJ UJ ui uj UJ u1 uj uj ir ir u.1 uj u.> u.1 m
v. OOCC.OCOOOOOOOCOOCOOOOO
Oh- COOOOOOOOOOOOOOCOOOOOO
a cooocooocooocecoocoooo
-
OCOOOCOOOOOOOOCOOOOOOO
f-
•o
o
V.
cr*
>-
<
s:
t
O
<
Q
«—*OOOOOOOOOCf-1'—< •—i •••<•••* f* rH t--i •—< •—*
oooooccoocooooooccooo
I
UJUJIUUJUJUJUJUJUJUJLUIUUJUJU^IJWUJUJUJUJUJ
ooooooooooocooooooooo
ooooooooooooooooooooo
oooooooooooocoooooooo
coocooooooooomooocooo
OOOOOOOOOOC'OOOOOOOOOOO
a
z
UJ
u
< ct;
U. UJ
Of CD
I I I I I I I I I I I I I I I I I I I I I I
OfMCSlrrt»t'U>^h-COCNO'—'(MrO>J'U't*O'h-OOOsO^H
o
oooooooooooooooooooo
UJUJLUUJUJUJUdUJUJUJUJlJULlJUJUJLJUUJUJUJUJ
oooooooooooooooooooo
oooooooooooooooooooo
OOOOOOOOOOOOOOOOMOOCM
u
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I
a.
Q
o
I X.
Ifl
CD
Pvl
O
UJ
O
O
O
O
= oSt
-*• •*
O O
UJ UJ
0 O
0 0
ff> (M
p^ r^
rsj in
CSJ fl (VJ
O O O
UJ UJ UJ
0 0 O
o o o
o o o
O I"- O
\f\ •& (^
ooooooooooooooooooooo
UJ
co
1/1
UJ
UJ
a
ooooooooooooooooooooo
ooooooooooooooooooooo
OOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOO
o
UJ
z
O <
-------
-------
u
O •
oDttaooocca.oC'CCcocootcGccorooooajOooocuccoo
cooooooeooccoooooooooo
LL. LL' LU LL U- Ui UJ LL LL UJ UJ UJ LL UJ LL UJ LL1 LL LL Lil LU UJ
rnr^fc, fripr, tr. Njcco3COCDCOOLa,'cccca, a cccca^QO
cooooooocoocoooocooooo
o
>-
<
o
LL, u.
r-Kaoor. tnonccoroocT-oo-ff'Crir
COCOCCOOOOOOCCC'
LULUUiU LL' LL LI U- LL LU LL, U- U LL U LL U LL UJ U LL
oo»-icO'0O'O>fl>o
^^wfs/fOM^-^iriin^m^-fri^rommrfififOc^
ooooooooooooooooooooo
LU
(/)
a
o of
i_ LU
H £0
a3C
-^
-------
-------
OOCOOOOOOOOOOOO.-' — i »i P-I 1-1
LU
IS
z
UJ
z
UJ
_J
UJ
_J
<
z
O
ct
UJ
D
oooooooocooooooooooo
i i i i i i i i i i i i I i I i i i i i
ii ii ii ii ii ii ii ii ii ii ii » ii ii ii ii ii ii ii ii
•v
a
z
UJ
I/)
I-
z
oo^
OO
OOOOOOOOOOOOOOO'ii-'i-li-ii-i
{f! (j^i III t|^i ^l< ^fi Hi Iti \f i (j( t i|j ^i (j* nt in tfj (j r (ii qt in
<
S
c
Ul
a z
t- o
< o
z <
I •-
< o
UJ
a
o.
z
o
o
oooocoooooooocoooooo
I I I I I I I I I I I I I I I I I I I I
ii ii H ii ii ii ii ii ii ii M ii n ii ii ii ii ii t\ n
Z
UJ
1 111 jii In ill lit UJ Iff ^11 yl in
t ifl yi in fJf tu UJ
f^
UJ
I/)
LU
z
o
Q
Z
<
OOOOOOOOOOOOOOOOOOOOO
II II II II II II II II II II II II II II II II II II II II II
-------
-------
IS
a.
to
h-
2£
O
O
CC
U.
OOC-OCOOCOOOOOOO*-*»- LL IL UJ
U- LL- LL
O C O
CCfVfNIf—'O'-^CCOi^-oO'J
coror-'U^f^Lr^ico^r^-r^ifv
U^CCi^tn^rHi/^^j-cOy^f^
co cr t^ 10 o f*" C^1 CD *JD -^ r*~
H
Z
UJ
OOOOOOOOOOOOoOO'-l—i'-ii-'"-1
UJLL'LUUJUJUJUJUJUJLUUJUJUJUJUJLULUljUUJUJ
UJ
t-
o
UJ
t-
ts>
oc z
« i- a
«t co o
X ce
UJ
o.
-j a.
UJ
X
UJ
oooooooooooooooooooo
i i i i i i i i i l i i i i i i l i i i
ii ii it ii n M ii n M ii ii n ii ii ii ii ii ii ii ii
CD CC CO 00 CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO
i ^| i |ii 111 ui tn i
z
O
O
o
z
ta«
<
ooooooooooooooooooooo
II II M II M II M II II II II II II II II II II II II II II
UJ
COCOCOcOcOcOCOcOcOcOcOcOCQcOCQCDOOCDCDCOCO
-------
-------
<
a.
I I I I I I I I I I I I I I I I t 1 I I I
111 III tit LU 1U UJ III Hi Hi U, l,i I 111 Hi il! LI I Ifl 111 ^1 ^1 ^1 ^1
OOOOCOOOOOOOOOOOOOOOO
I I I I I I I I I I I I I I ! I I I I t I
LUUjUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJ
ocoooooooo ooooooooooo
I I I I I I I I I I I I I I I I I I I I I
ifi ill u I \
-------
-------
o
CM
UJ
to
i ro c\ *~* o^
< r> cs CM •->
I I I I
U-1 LU U LL
c o or, o- cr
i cr or (M CM
Cr rr cv, oc
1 ro p-. <; -J"
> r~ in o ro
1 CM cr cr cv
T-< O >£> C
*-* CO -J- ^^
U U UJ
CC f O
in r-* cc.
>c r- <•
oo c ro
, o cr -i
o ro ^
C oo in
i r-1 ^" ro
->
l i
U. UJ
in in
I •*-! ^-1 i
I I
U. U-'
pr n-,
CM ro
t- ro
-4
P~ -!-
in CM
1 1
ooooooooooccc'ooocc-oeo
•t
9
.19403099E-;
ro i-i
.62838703E-
. 17244988F-;
o &
.26129196E-;
.56788431F-
r- in
.76621583E-
.57814742E-
rO CN,
.20840 792P-
. 13301957E-
CM
. 10724077E-]
ro o -J-
. 95445803E-]
.66586988E-]
CM CO
.19734800E-]
.96890215E-
rfi ro
.60617310E-1
.28353015E-]
•* -t
.51462300E-1
. 18767489E-]
in in,
.56986873E-1
. 19087940E-]
•£> 0
.39749814E-]
.14393326E-]
r- r—
.60499312E-]
.26991846E-
P- CO
.11110111E-]
.38275508E-]
ooooooooooooooooooooo
CMOCrccsO'tf'CMCMrororoxj-inino
CM I
oo oo
I I I I I
UJ LU U.1 LU UJ
*^ f\J 0s OC itf"
OJ (T\ *G O*1 'O
•—i ^ oo ir> st
fO ^ r-l 00 C^
o^ o o ro o
r^-- LO vC1 LO r^-
C1 f\i r~*
O (M
(NJ —I
I I
LU LU
«J3 LO
CM O
CO >t
—i IT\
f\) P-
ro cc
CM O
r\j oo
I I
LU LU
r*- co
rv ^
-H CO
m in
en f\j
O- co
I I I
I I I
UJ LU UJ
0^ r-1 (\J IP CO CO
0> f- o m 0s m
ro Q* -O C7^ ^~ cc
^ O O O -- O
r-^ ro -i" (\J ^ (\i
O in co 10 r<*i ro
^ r-< in f-< f** ^O
ooooooooooooooooooooo
I I I I I I I I I i I I I I I I I I I t I
UJLLIUJUJUJLUUJUJUJU.jUJUJUJUJUJU-'UJUJUJUJUJ
10
UJ
OOOOOOOOOOOOOOOOOOOOO
LU
t-
<
r-
co
o
UJ
-------
-------
u. I I I I I I I I I I I I I I I I I I I I I
O LL' IIJ LU HI LL> U-J UJ UJ LU LU UJ U-1 U-l U.' LL' U- Lb U! LL. LLJ U.'
O'^
o. intinxf'-1'-'
Lna3Nr-QOirLo^rw«Oh-fiOC>'£(vlLrrr^»oov^a'fflh-oDirroomor^-o^'^c>Q*
vO •*• f- O f^ f^ LT i-i m o- vp or, f-sfinroirr-'t^M
^sOf^-ococ^i^r^coh-o^ *£r\iO(<>i^(M^(V
r\jco(\ir<~'P*-r-
-------
-------
cr
«t
a
*c o
. IT.
I I I I I I t I I I I I I I I I I I t | I
LL UJ U U-1 LL U U ' UJ LI LL U U' LJ U L! LL LL. LL UJ ILi UJ
f — \ffx-\r^rvr-*fvr-i»-^ccNC
r r-LrrMc-^pr'fMcr r\ crp< r\^Cifsr-'CtlcOf\Ji—
ttl
H
UJ
( I I I I t I I I I I I I I I I I I I I I
^n ^i ill Ul m III ill yi ^|l 1^1 Hi n^ i^i \±t ^n m ^[i III ^ ^i ^i
iri « r4 >H 10 ^ r-i in o> o o co ir> r^ «
r- o * m •* in O «> f»- w o « in * w in ir\ w »r w o
ir«9in>0(M«e(n9>9io''iomo<^'inin(n
iT\-«^f<--4rw-HK%OrrirtiN^^-"M^-lNJ«-< f- m •<
o o o o o o ooooooooooooooo
-------
-------
LU
CP
O O O O O O O O O O O OO O OO OO C>O
>•
o
-------
-------
SECTION H - SAMPLE
INPUT 8 OUTPUT
VD
IMAT=3
INDEX(6) = I
-------
-------
f,n
TR
NV
MAT
ALPHA
V
>o
c
-i CO
Q 0£ 0£
z E s: <
o
LJ < CD <
O
Z 1-1 (M ro
*- (I II II
LU )_ »- I-
CD X
Oi JE
DEX(N
ALPHA
ALPHA
ALPHA
PHA
PHA
ALPHA
ALPHA
OISO
OOOOO-HOO
_J
CD
<
I—4
ct
<
>
y-
3
d.
Z
ooxxxxxxxx
ZLULLJLUUJLbLUUJLU
OQQODOOOD
— zzzzzzzz
a.
O UJ
oo
X - LU or O
OCT—l^_l<>0-
-------
-------
UJ
o
<
a
LULL >t-3-r-ic>>OCT''-'fr>i->r\ir» Z)lt COOOOOOOOOOO Q^O O O O O O O O
a.
•z.
>-> o a:
»-i UJ
a: h-to
OE
(- UJ 3
oo Z
01
z:
o
LU
CO
LU
OQC rrirHr-H<-4~4?~lf-'^p-(~^(\j(VrsJ
(- < UJ
1/1 LL O3
^ ce z: I I ! I I I I I I I I i I i I I i I I I I I
H LU 3
O
LU
h-
c*l
-------
-------
UJ
IE
o ccc-ccooeccooooocooooco
u
I/) UJUUUJUJLLLL'ULLUU-LLUULLUULLLLJU'ULl
^ ccoccocccccccccoccrocrcc
Cf f- ceecoccococoooeccooccro
u cccccoccccccceoocooocc
• C'Oorvr\cr>3'fr'rfr^>p*-c.r<"rrfr>(frfOprrrpr
r> cec'ccfV'Cooooi-'f-i-'i-'.-'-Hi-i.-ci-ii-ii-i
LJ LrLTLTL/LrLrcLOO'C'crry«Q>or7crcro>G>C7lC'Gfc
ccoec c ccccooocooooeoco
*t
c
o
00
oocceocceoooceoeoc
— o c
o o c
I
UJ M •' Lij U_ LL1 LL U' UJ LLi 111 LLi LL1 UJ LLj UJ UJ U_i
ooooccooocooccooc
ccoocooccoooccooc
ooocoooccoooococo
OOCOOCOIT
o o o c c c
O O IT O
O ir- »-i -H r\j
ooo
a; ai
oo
oc
cc
oo
LD uu
co
co
oc
co
<
O
ooooooocoooooooccococo
o.
z
o
«a ct
U- UJ
Cf. td
UJ X.
I I I I I I I I-
I I I I I
I I I I I I I
o
-J
o
z
X
<
Q
oooooooooooooooooooo
III ^lj t|l Hi HI fll] (J ! Ill I|J III |J I Q^l 1^1 |i! Ill LL1 n, yi III yj
oooooooooooooooooooo
oooooooooooooooooooo
OOOOOOOOOOOOOOOOMOOPO
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I
a
•V
1
CD
<\J
o
UJ
o
o
o
o
•*•
o o
LU UJ
o o
o o
(NJ (*"> fM
o o o
LU UJ UJ
o o o
o o o
000
o r^ o
IT **• (<1
OOOO-^-fOO^-rirMOOOOOOOOOO
ooooooooooooooooooooo
oo
UJ
o
K-
l/l
o
UJ
Q
ooooooooooooooooooooo
ooooooooooooooooooooo
OOOOOOOOOOOOOOOOOOOOO
ooooooooooooooooooooo
o
UJ
k-
l/»
o <*
HH UJ
K
-------
-------
>
ocoopo^coccocooccoDocor
^•ccaocxooccooococcca-ococ
oc or
C c
U- U
fM <\.
rr r>
oo oc
oc oc
co a.
r- r-
cooocooecocccccccc
-
a ~ o
t~ IL
f < «-
a •
c r> o
H- •
t_> < a
00
ooooooooooooooooooooo
ooooooooooooooooooooo
ooooooooooooooooooooo
a: <
a
ooooooooooooooooooooo
rM^rvjfip-or|"iO^*o<^
^p^f\jr^r\j>j'^.ir\i/\^(*>^'fO^rorOffi(i^frtfOf>
OOOOOOOOOOOOOOOOOOOOO
V
Q
UJ
K
W)
o a
1-1 UJ
h~ CD
U f
UJ 3
on Z
-------
-------
IU
IP
Z
c
o
o
a
aCL
CO
r\ rv
r" •--
•* ^
co f--
ccir
CLttcccccco CTtJ-o (7OCTOOCCO
C CCC. OcOCCCOOfi.-.-.!-!— i
U- U- U U U.U-LLU-LLU_U-U-'LL.U U-U-'U-
r\jr\..j--i->c«-iO'in.t-"in>c.d-r»-irco-*^
,— * o sj-crf-^cc v±rwrvccrnr^r^~HPr~-t
in rr ir ir a r-- r<- r\ cr IT rv (v 0* cc (\. rv in
a, u" •Ji-'-'^firrv-c^oicCrHir vc«tNrviro (T o- c oo cr> o
[^-^u vjstrvisfvOrrO"'— 'cx/o^inr-ip")
<*• *O
UJ UJ
>f po I
•o in
•* •£
CO CO
o CM
o PO
cr> m
CO r-J
UJ UJ LU UJ LL UJ UJ
«^" i—i ^ ^j~ in po po
i in o >t «t oo o oo
CT* CT1 *^ O PO ^ vO
\D ^O P^J O P- O PO
c o ~^ r^ o CM PM
^ in o pr in r-i PV
o o
o o
I I
o o
I I
o c
I I
o o o o o c o
I I I I I I I
II II
•* in
II II
r» oc
II II
i\i m
a, a- e —'
I r-< l-l PM (V1
pn
c f- oc a- o
I r-( ~J --^ ^-4 ^-^ PSJ
O
O
LU
z:
LU
ni m 111 ui y^. MI (
00
LU
Z
o
o
ooooooooooooooooooooo
II » II II II II U II II II II II H II II II II II II II II
O
o
LU
*~
to
-------
-------
O
at
a
_j
u-
C,
UJ
ccccoc-ooocorcr. cuc-o o cro^croocooc
CCOOOCCCOOOCOOC—'.-i.-i i~ i-<
U-U-U LL Uj U- U ILU'UjU-.U-'U-U-UjU-UJU-LLUJ
. irvcr C" CT C 0? O* O
o occ-occcccocoooooccco
O I I I I I I I I I I I I I I I I I I I I
ft
I— I! II II II II II II II II II II II II II II II II II II II
oca cc cDcoeraccreccocccccccC'COectrcocLce
(A OOOOOOOOOOOOOOO-l'-li-''-lr-l
K-
a Z ..•«*•......•...«...
a t- o oooooooooooooooooooo
< O I I I I I I I I I I I I I I I I I I I I
i- z; <
^ CD O
h* UJ t-Lt LU UJ U ' IP UJ ID U-1 ^J U' UJ M1 '!' f'f "I '" '" '" "' l
z ^•^•o>(Mr*-oroot^aoNNrfimoirir»>
LU sOccp'ioooir\^or~co!M^-i^oo»^inf-<(M^oO'
z oo-^m^rJO^-J-^-H'-i>croinosff>O(N/irioO'
UJ >0i-l0*(^C7>><*(M'
z ooooooooooooooooooooo
oo o
< ii u u M u ii u ii u ii u u u u u u u u ii u u
1/5 O f-!(vco-i-irN>ONcooKO'-'(Nfi«4-in
-------
-------
cr
O (N
r-4 a^
0 if
Ct- r-l
•£: C
r-
1
U-
ir
LT>
cc
c
CO
1
u
CM
CXi
m
CO CJ^
1 1
LL' LL
O CO
r- ir
cr. cc
cc in
0 rvj
— i (XI
C
. 815741091=-
O 0
.342184^4E-]
. 15242210F-
F-l ^
.626A6945P-]
.21563671^-]
o
r\j
OOOOOOOOOOOOC OO—i-Hr-i-Hr-ir-i
I I I I I I I I I I I I I I I I I I I I I
LU LU U LL LL LU LL U. u LL! LU LI, LL1 LU LL' LU LL1 LU LU LU LU
OO^-Cf-pr. oro-om, r^-CO^f. -^o-^in-cr— >J-
c/)
<
o
in
o
vD
1
LU
r-
ro o
O
r-
CXI
2
39598572E-05 0
o
1
.10080103E-C
o co
o o
in «<•
36749543E-C
703957636-C
924057826-04 0.
61958781E-04 0,
o o
.108024936-C
.55324654E-C
c.
45924589F-(
80514502F-C
22317254E-05 0
36875804E-06 0
0 O
in *O
. 15079568E-C
.23784469F-C
r- rv
o c
•C *D
32899368F-C
1M39457E-C
14078671F-06 0
4M40848F-07 0,
o o
r~ f-
.85525528E-C
.27156 542F-C
~S>
o o
59885394E-C
26598769P-C
24371637E-07 0.
10752295E-07 0.
0 0
h- 00
. 14088233E-C
.61718310E-C
-H
O
cc
47245230F-C
19042441F-08 0
o
CO
.10896508F-C
* ~
0 0
cc cr
16894639E-C
50827031F-C
679092786-09 0
20403604E-09 0
0 0
.38746828E-C
.11625366E-C
-t CO
0 O
Cr O
16909338F-C
35032074F-]
67813768F-10 0
14039001E-10 0
o o
O r-l
.385982506-1
.79843883E-]
m r-l
O 0
a r~<
12642387F-]
52996288E-1
50639354E-11 0.
21219493E-11 0
o o
.287850736-1
.12056831E-1
OJ
o
l
LU
m
r~
-*•
cr
in
rr\
(XI
944409486-12 0.
o
rvj
1
LU
0
in
-------
-------
U-i I I I I I I I I I I I I I I
o a. u u LL a1 u.' u.1 nj a. dj LL< u ai ix U1 ii ui u1 uj UJ Uj
< ur-tl^cocr^Cr«-»J-r~cec»t>toor<"-C(\iN*->C
a Cf<"tO*JrfNC7'C^fr'if-*Or^Oi—'IT^roi^^-iCu^
Cr'<\r<--rvCf--C71f^cO(NJO''sOC
O-CT'H(~-h-ir>cr^inO'ir>^'CnrvvCrorMO)vCrMro
r^ocira-r' c—<-*<)• cC'r-f^^-ifviriyOroc-t^
f^p^rO^^r-I^J>?-ni^^CCi~^sOfMN»-JirfVr-i'^r-l
ooooocoooccococoocooo
I I ! I I I I I I I I I I I I I I I I I I
UJUJUJLi.'UJaJLl.UJLULLiU'UJLl-.UJLLU-'UJU^LLlUJUJ
O
rvj
oooocoocccc cooooooooo
I I I I I I I I I I I I I I I I I I I I I
iii ii< Hi in ^. 111 lu IL ui ui 111 ii] [ii 111 111 Hi iii Hi n i (i i 111
OOOOOOOOOOOOOOOOOOOOO
^—ir-iOOOOOOOOOOOOOOOO^-i— i
I I I I I I I I I I I I I I I I I I I I I
in i|i ^^j |j i \u ill <-H n^ til 1J i ||i |it u> i|i 11 L ij> I ij 111 Lu Ul Ml
OOOQOOOOOOOOOOOOOOOOO
I I I I I I I I I I I I I I I I 'I I I I I
UJUJUJUJLUUJU-IUJUJU-JUJUJUJUJUJILJUJUJUJUJUJ
00,0000000000000000000
-------
-------
o
CM
*>.
LU
l/l
I I I I
UJ U-'
•* NC
NO «C
o o
pr- •—
*-> sC
CO P-
r\ ,—.
u u
cr cr
in r-
cr c
or c
in c>
cc cr
r- a
I l
u. u.
ro ir
•C -d-
r- r*-
VT Sf
I
LL
O-
NC
C
in
NT
•-I *~t pf- in
o o
c
NC
m
M
inininiTNONDNCP-r^
I
U1 I
pr
»-H
o-
PM
, r-
x
t\j
! pr,
O o
I I I I I
U. U. U' U. U.'
•— c or Nt ^~ ^ r~- oo
,-i^^^H^rHCCOOOCOOOOOOOOO
I I I I I t I I t I I I I I I I I I I I I
UJ Uj m U: M.I Ui 11.* LJJ Uj LL LL' UJ UU U1 U1 UJ JL> UJ U1 Ll.-' U'
O ^ ^ rO *t O f^1 f^1 *^ t^t F^ ^f p"" ^ \Q »^ ^- r—< ^* 0s C?
fOO^i'>tocoLr'OCTixCO«—tf^f^io^OsococDiri^
^ ^) ^- o co c*1^ oo o 0^ ^^ C>(j»f\iu^oO'^'»-|tPOxo«jo»HPO»-<'-'f^r'^(\]*OLP
f^ 00 ^™* ^~ ^ 0s ^* f^J '"^ ^ t^ LT^ CO ^ M PO M f\| (\j ^- CO
st'Or*-^coir\O'^'C> •j-Of-^toropo-—iru^i^or^-
^0 ^1 lf\ CO ^^ fO f\J QP f*" ^" f*^ f\J h^* P^ ^H pT\ r—( )jO M r—* pft
OOOOOOOOOOOOOOOOOOOOO
\O
CVJ ~*
r-l 00
m
(VJ
i^_,^^OOOOOOOOOOOOOOO
I I I I I I I I I I I I I I I I I I I
1 UJ UJ U' LU CU LU UJ UJ U.f U-J U' UJ U^> UJ UJ U' UU UJ UJ
' ««^ f^l U^ •—) i
OOOOOOOOOOOOOOOOOOOOO
I I
LU LU
I I
LU LU
CO O '
O CO I
o oo
—• O
I I
LU LU
O fsj
i ^j fw
in
in in
o o
I I
LU LU
co >t
>J- st
fsj ^5
O CJ1
-*• s}-
O -»•
PO CO
in in
o o
il
LU LU
>o in
m in
oo in
tr- O ^D ^» ^ CO 00 CO
o o o o o o o
I I I I I I I
LU UJ UJ UJ UJ UJ UJ
** PO r^ m st r^ ^
r<-t f^- m f-< srf- ro N
O -4 IT in ^4 CO 00
CO O *•"* O l/^ O sO
ff* o^ ^* PO >o tf\ o^
^ ,-< ro I*H u> rvj ^t
OOOOOOOOOOOOOOOOOOOOO
o
-------
-------
uj
o
1— 1
1
Uj
*£)
0^
r-*
c cc
CM vO
I—I
in
rH
O
^J
1
U-1
a
CM
o>
rvj
*
P-I
C-
.*
CD P-
1 1
LL' U,'
a o
* p~
P- IT
a a-
c a
•* -*
ro o
P-I rvj
>c >t
i l
UJ UJ
P- fM
cr LT
P- (V
•o M
IT .£•
P- rr
j- -*
•* -O
(M O
1 1
U. UJ
rvj p-
•£
co or
o o
l l
U_ IL
(X' tt
•O in
^ oc
O~ rv
P- ro
00 <3
O P-
I-H (X
OCi
o
1
LL
f\l
i— i
P~
r-t
(\
M
in
•fi
P- P- P- >
o o o c
1 l 1
U- UJ LL1 (.
rv ty ff f
u*' ^ ro (
>& u~' ro f
P- P- (VI •
ro LO 00 s
»-t in ro f
O P- 1-1 r
r^i -^ O"1* f
0 0
15 o
1 1
L U,
s. ^)
v ro
\j O<
a- >o
c e>
>- P-
o cys
\j ro
>C IT,
o o
1 1
UJ LU
P- rv.
ro \c
1-1 in
>0 P-
ro *
o P-
P- 0
sO -1
in «c
o o
1 1
UJ U.'
0 C
o r«-.
rvj so
cr o
rvi rvi
•*- ro
oo rvi
-i 0>
000000000000000000000
I l I I I I I l I I I I l I I I I I I I I
UJUJUJIIJIJJUJIUUJLL'LULUIUIUUJIUUJLUUJLUUJUJ
O
<\J
V.
o-
ooooooooooooooooooooo
<-.<-i>->->>i\>
AJ ^i _< ^ --^-w -IOOOOOOOOOOOCOO
I I I I I I I I I I I I I I I I I I I I I
U^'LUtLJLLJtULUUJUJUJUJUJUJUULUUJUJliJUJUJUJUJ
vninmNOoooo^i-cfM»fi(MincofOff'
oc &.
ooooooooooooooooooe
oo
I i
I UJ UJ I
' N (M I
> in in
* in rvj -
• in in i
i in 1-1 i
I I
I LU UJ
i in in
l CO O
i p*- ^
i in ro
i O O*
i in • P-- p^ >O
•* o o o o o o
I I I I I I I
UJ UJ UJ LU UJ LU UJ
GO lf\ (*\ ^ [f\ f^l \T\
o h- r^ r*- ^ h* *-<
(\i oj r- ~4 rn co tn
O P*J h* ^3 l/> 00 O
^5 *G cy* ^
P- O
oo in
O in
-* (sj
<6 c
1-1 ro
ro rn
ro o*
-o rsi
OOOOOOOOOOOOOOOOOOOOO
U
Ir-
«/)
O CO f*— ^ ^ ^J O ^ 00 f*1 f^ ^D ^) IA ^ ^ V\ ^ ^) ^ f^
fV)-<^r^r-^-HOOOOOOOOOOOOOO
i l i i i i i l i i l i i i i i i l I i l
UJ UJ UJ LU UJ UJ LU UJ LU UJ LU LU UJ LU UJ UJ UJ UJ UJ UJ UJ
^ ^H 55 ^ *^ ® ro ^0 co o tfN r^ ^ ^ ^o c^ ^ o ^ w ^
*Hh-ro«oiJnoof^oo'^Ot—«o*»i050fsJr*lt^»-<
^^(NjLCsOrri'-'OO^ao^irmcOK^MKrsjm-^'
iinr^^^^or^Of-i—im.vf^r^ojMflo^Ktn^h-
i^MU^r^^coirih-Oi'lii"fwfsJ«<>*-'Ut\(\icp>(>«-*
-------
-------
C!
<
a
o
(VJ
00 sO
I I
UJ UJ
-j- o
CO
LU
in
i-j to
r\J f-
o
%o •
CT* ^
CO *H '
i ,-i «. ^ o O O O
I I I I I f I
LU Uj UJ UJ UJ UJ UJ
f*~ O O"1 °0
O —• oo
LO C3Q Lfi
CT1 (N( 0s LA
st^ fS] CO ^
I ^-» f*- t\J I
l fvj 00 CO '
o o
• ro f-t oo
CNI t
• f\J 00 '
• i«t r\j ,
o o
I I
r-H f\J
LO PO
lT\ »O
co rn
O o
o o
I I
LL' UJ
CO CO
oc •*
in IM
>O oo
-O in
-o tsj
o oo
»o o
o o
I I
UJ UJ
LT -O
r-< m
in
in LTt
o o
I I
UJ LU
O -^"
>c C"
O ro
O in
ooooooooooooooooooooo
LU
<
>
o
<
-------
-------
SECTION I -SAMPLE
INPUT 8 OUTPUT
LVD
IMAT« 3
INDEX(7) * I
-------
-------
U
o
I) FORMED ON MATRIX COLUMNS
B A MATRIX INVERSE V D L
VD
ALPHA
o
or
o
u
UJ
01
<
o
at
o
D
oc
a
—i <
(M X
hN
II II
01 a
Z UJ
o a.
_. UJ
K a
o I-*
LU O1
01 Z
O
UJ U
z
X
cc
<
X X
«• »- an
h- t- D
< < Z
Z X «t
01
K-
Z
UJ I
X
UJ U-
-J
UJ UJ
01
01 _J OC
UJ LU
f. O >
— z
I- > ~
_l LL LU UJ UJ
01 U: 01 X
Luujujuja.a.oci—
01O1O1O1UJUJUJC£
oco:a:a:>>>f-
UJLULUUJZZZ<
»>>«-t->-iX
z z z z
»"i-t«->«-iXXXCO
k^ HN »Ht
xxxxo:ixa<
MMI-ll_l»_^.KX
^A ^4 ^* ^i «i
a: z: s: x < < <
II < < tO CD CC CC CD
•- 01
Z«I<<<<<
a.
z
oooooooo
o o o o o o o
o>>>><>«
LUi-l'H-^-^i-l^rN
01
II II II II II II II
01
oc <
O Z UJ _l
(- UJ oc O
OO_)^-J0-
-
o
-------
-------
u
IT
<
i
i- —
o •
Z k-
U u
>-Hf -too
c
(M
N.
O
<
D
UJ LL' LU U- UJ U-' U-' UJ UJ LL. LU UJ U- Ol LL1 UJ LU Uj LLI IL li
OOOOCOCOOOOOOOOOOOOOO
OOOOOOOOOOOCOOCOOOOOO
coooooooocoocooocooc-c~
ooooooooococjoooi^oinomo
ir\,J-rooi^fV'O>OO%tr>fMu^^if>fr!«t
-------
-------
o o
coocooooococo
,» pr. fr rr, m m fr>
ooooooo
a.
o
U a LL LL' LU til LLi LL' U LL' LL LU LL! LL' a LL' LL LLI LU UJ tU IU
CCOOCCOOCOOOOOGOOCCOCO
OOC-OCOOCCOCOCOOOOOOCOO
cccoooocccoccoccoocooo
OC'COOfVsCOCOO'-''-'r-ir-i,-j,^,-i_j^,~i,-i
ccooccooccoocoooocoooo
>-
<
O
O
to
ooocoooooooooooooooo
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OO
OC"
OO
OO
OO
OO
OOOOOOOO
OOOOOOOO
OOOOOOOO
lT\OOOOOOO
^ooO'CiOOOO
o
fM
oooooooooooooooooooooo
a.
z
o
o
< a.
LL LU
or cc
LU T.
I- 3
z z
I I I I I I I I I I I I I I I I I I I I I I
a
2
( ("*">
O
-------
-------
O
co oo ct, a. oo a co co oo co co cc cu cc co co ec a cc oc a. cc
occoooooooooocooccccce
LL U U Ul LL U U. U- UJ IL Lb U.1 U- LU U. U. UJ UJ U.' U. U. U-'
cccr--r--— if. o *a o o o rr< vo cc cr oc an a oron cc cc cr
rr r^1 rr. n f. in •* a oo or a cc a cc!cc oc a a. cc a. cc< a
OCOOOOOOCOCC CGCCOOOC OO
OJ
o
(^ r-crororcrcro: oca o^O-O^O'CT'OOCOC
ccceccc-ccocc-ccoi-i^i-i^i-
uiruu L: u a u u. u u' u U- u u u_. u u u1 u.
i-
u, u.
U"
a
UJ
£
cr "
c c
—I O
o o
UJ Lb
O »D
O «t
0 >£>
O •-!
O >O
-" 0>
>t'
*o
o
o
o
U
cv
o
m
-t
co
CO
!£
r-l (A
o c
0 0
0 C
UL' UJ
O IT
o cr
O" co
(7- -<
-* (*-
r- in
2
o
c
c
UJ
CM
rr,
in
c r-
r^i in
t~- tr
«T tr
C 0
C 0
o o
U-' U,'
«M CNJ
in oo
00 i-l
0 t>
c a>
in ro
cP
o o
0 0
0 0
LU LL
•-H f ^>
•* .<•
OJ fV
0 C-
0 0
c o
LU UJ
•£> O
r- o
lf\ o
K O
0 0
in in
o
fM
oooooooooooooooooooooo
uj u a
< UJ
H- U- CC
a. s.
(/) Uj D
t- z
O
UJ
I-
I I I I I I I I I I I I I I I I I I I I I I
O >^
a i- o
i- a:
ooooooocoooooooooooo.o
o
o
a; i
r> o
i- •
< o
Q O
oooooooooooooooocoooo
ooooooooooooooooooooo
01
<
U
at <
a
ooooooooooooooooooooo
r\i-j'Mfir^O!Tiosf-i-aioo'-iooNO^>o-e>o^
^j—irMr^cM^r-iniri^rn^ro^-rnmmrOrriPOfi
oooooooooooooooooocoo
UJ
*•
LU
z
O a:
o
UJ
-------
-------
c
c
-.
a
o
O
OC
UJ
Q-
Q
oooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I
MM M ii ii ii ii
ii ii ii ii ii ii ii ii ii
Z
o
O
at
s:
uj
_j
uj
|ll III I^J jll H] ^J yi HI III II f LLJ LLJ III 111 III III III UJ 111 III HI
in
Z
0
o
<
o
Z
OOOOOOOOOOOOOOOOOOOOO
II II II » II II II II II II II II II II II II II II II II II
UJ
<<<<«!<<<<<<<<«t<<<<<<<
-------
-------
UJ
IB
>0
^
o
CO
oc
in (Ti
O O
I I
UJ UJ
OG in
in
cc
UJ
oo .
•«•
oo
r\j rsj
O O
I I
UJ U-
ro o
CO CO
ir\ c*
o fM
oo in
-4- coo
O>oroooo0i—trvji-JOino*
ooor^p^inh^^-o^ir
fMOroomoooocr
ff\ fj> ff\ ?*• f\J f-J ^ (\J sC
ooooooooooo
oooooooo
X
Q_
O ct a:
w UJ UJ
»— 00 CD
u s: z:
UJ 3 O
(^ Z Z
&>
UJ
D
UJ
t-
i«
-------
-------
Uj
o
CO
(-
2
5.
U-
2
D
C5
o
or
ccooccccccccaccacrcroao ff-o
OOOeoOOGOCCOOCCr-
LLU-U-U-U-U-'U-jUJUJU-U U.LbU-1
-
in oo •* >o
r>- •-> f • —<
in, .-< a vC
ox o
z
UJ
UJ
UJ UJ UU UJ. UJ UJ UJ UJ UJ UJ UJ UJ LLJ UJ LU UJ UJ UJ UJ UJ UJ
z
o
o
ooooooooooooooooooooo
II II M II II II II II II II II II II II II II M II II II II
UJ
H
UJ
co co QO co co ffi co CD oo co cO ffl co cO co co ^ co co co co
-------
-------
SECTION J - SAMPLE
INPUT S OUTPUT
D.O.SAT -I- FB-'-LVD aB'lKl
IMAT=3
INDEXC8) = I
-------
-------
u
IT
O
cr:
X LU
>-. x
a f
i—
) = 1
A MATRIX INVFRSF
A MATRIX TNVFRSE L
3 MATRIX INVFRSE
2 ^ ^ - 2 i: 2
Q.
O UJ
00
X «I
LU O
O
Z 00
t— 4 H-l
X
<_•> t-
z
t— i CK
H- 0
Z LL
*-t
B MATRIX INVFOSF F
B A MATRIX INVFRSE
R A MATRIX INVERSE TIMES ELFMFMTS VOU) Fpsurn TM M^T-JIX rn
3 A MATRIX TIVVFRSF VOL
S * AL»HA R MATRIX INVERSE F - Al°HA B A VA,TR[X T\iyrQ^c w n
•a —I r-i r-t r—I r—)r-*r-J
II II II II II II II
00
OL O_I*_J<>Q.
•
O
-------
-------
cv rv c cc »c co \o rvi (\ ocootv -i-crcciNT-rccc'v'M
pr-, LT, o r" m c -c f° c -* (N, r- a c \f f t*
c-rr~t^h-Nj-vC>>ocri^ocir. rvjf^oco-ritviC'ir-i-xj
Mor^iycC'f-iirimajoocoocin^tsj-ri-r-r". •* cr o
r^
-------
-------
o
UJ
U.
•
o
c o o c o o o
tf\ rr r**i ro en m ro
o o o o o c o
U- LU U' U-> UJ UJ UJ Uj UJ LU LL: UJ UJ UJ
occoc ooeoooooo
ooccoocooooooo
occooocoocooco
O O C ^- f*^ ^o COOCOr-lr-—1
IjT U" LO IP LP LT 00 C^ O" O" ^ CT^ Ch C^
r<- m
oo
UJ UJ
oo
oo
oc
oooo
U. U.'
oo
oc
oo
UJ U.1
oo
oo
oc
re fi
oo
U. U.
co
oo
oe
ocoooocooooocooooooooo
>-
§
OOOOOOOOOO—l^c—r-4-<-'r-l_H^oir\in^)
oooooooooooooooooooo
LUUJUJUJUJUJUJLUUJLUUJUJUJUJLUUJUJUJUJUJ
oooooooooooooooooooo
oooooooooooooooooooo
OM'Ov
OOOOOOOOOOOOOOOOM
OfOOOfri(\)-*ooo-tt(1OOJi-<O— <
"
C'Otvj
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I
o
I •**
(/)
an
UJ
o
o
o
o
.*•
o o
UJ
H
LU
>-
>-
0
111
UJ
O
o at
1-1 UJ
»- «D
U Z
UJ 3
ooooooooooooooooooooo
ooooooooooooooooooooo
ooooooooooooooooooooo
• • ...... •••••••iti...
OOOOOOOOOOOOOOOOOOOOO
-------
-------
U-
O t
qoeocccoeocococccocoa>flooocoooeocoa>a>eo«D«o
ooooooooocooocoooooooo
UJ LL U-' UJ U_: U UJ UJ UJ UJ U- UJ U- I-U U_ LL LU UJ UJ Ul UJ UJ
oooooocoooooooococoooo
O «ff
*" O It' flj UJ UJ UJ UJ U^ UJ UJ UJ LU UJ UJ UJ UJ U. IL! UJ U.' LU UJ
oooooooooooooooooooooo
oooooooooooooooooooooo
Hj ;ii [t i ui y i ^ii yi iji {i i i[t m it i U'- M1 "' UJ IL/ 1[' Ml ln '" U-'
V OOOOOOOOOOOOOOOOOOOOOO
o o:
(V
V <
a
x
UJ
UJ O Ct
a. at i i i i i i i I i i i i i i i i t i i i i I
) UJ 3
>-
• mir, miAinminir\»^mirif\mi/ii^i^ir\ininirm
OQ • t».«««
v. OOOOOOOOOOOOOOOOOOOOO
— ooooooooooooooooooooo
uj •>• o>oe
tn os< rHi-itNjfOfvj^-^iriifi^fO^'fO^'fommfOfnrrim
< a ....L.t.«...,,tt.....
O "s OOOOOOOOOOOOOOOOOOOOO
Z
O *
>-> UJ
Of
>• uj 5
Q 00 Z
lit
-------
-------
UJ
a
UJ
Z
U
a OLOcocxoc.ccxaao-acraa-occcc
c occcec.ee/ccc o o o —. ,- ,-< -. —.
LLU.UU-
OOC- rM
CC CV J i~ a.
U LLU-U-U LU
~ C" fv r\j C7~ a CM (v
'
LU
i?
<
O.
o
or
a.
cccococ-coccoocoooc- co
I I I I I I I I I I I I 1 I I I I I I I
O
(M
X
*— I
a:
z:
I
UJ
_J
LU
Z
c
o
r-r-r^r-.cr-r-oQaocoDcriraaooooo
OOOOOOOOOCOOOOO-^— i-H^Jr-i
UL U. LL Lb UJ U-' U UJ LL LL' LU LU U- U- U ' LL LL LL' LL LL
OOOOOOO(M-J--*-*f^co
-------
-------
I-
Z
u-
CCCOCLU aooocaao-ac-ero-o-ooooo
OOOOCOCOOOOOCOOi-''-|i-4—ii~
UjUwU LL/U-LLLL-UjLLU-U-U-UJU^U-U-UJUjUJUJ
O
^
a
•o
X.
O
z
c?
cr
or
UJ
a 2
ct t- o
<« O
t- I <
I —
:r oc
ai
a
z
o
o
occcocoooccocoocoooo
i i i i i i i i i i i i i i i i i i i i
ii u H u n u u M u n u M u u u u it n u u
CDCDCCCCCC ccaDorcr,
N-r^f^i>-*^r-oDoDCDoc^ooooo
OOOOOOOOQOOOOOO»4«*iH>4«4
LuUJUJUJUJUJLUUJUJUJUJUJUJUJUJUJUJUJUJUJ
-'i
coooocoooooooooooooo
I I I I I I I I I I I t I I I I I I I I
II II II II II II II II II II II II N
II H II N N H
z
u>
UJ
_i
UJ
OOOOOOOOOOO
|n ^J LIJ 111 nj flji 111 ijj ifi ui m i
in ^11 in
<
z
o
a
<
ooooooooooooooooooooo
II II H II M II H II II II H II II II II II U M II II II
UI
^-
Ul
>•
O
UI
-------
-------
<£>
>>
O
_J
c
>
LU
or
LU
>
X
O-
CO
a:
a/
3
00
2
«T
oooooooocoooooooooooo
U_: U: LU U: UJ LU LLi Ui LLJ UJ LI LI-1 LL1 Ul U-, IU LL UJ LU UJ UJ
I
u_
LU
i>o
a.
COOOOOOOOOOOPOOOOOOCO
1
X
a.
a a:
—> LU
H- CO
o s:
LU 3
tn 2
cf.
3
t—
LU
00
O
>-
)
LU
-------
-------
fvwoojcreoi-tioiooocoeotoin^-
••< tn * o o
o
(\J
•s.
<
o
ui«
Z»-
3U.
LUUJUJUJUJUUUJUJUJUJUJUJUJUJUJUJUJUJUJVUIL!
ooooooooooooooooooooo
OOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOO
ooooooooooo(MOooir>oir>oino
-l--
OOOOOOOOOOOOOOOOOOOOO
a.
2;
. o ae
HH LU
t- CD
U
Ol
in OOOOOOOOOOOOOOOOOOOOO
oooinfn(NOCM<<4>eo
o r^ oo o« o M N m ^ ir< o >^
-------
-------
SECTION K -SAMPLE
INPUT ft OUTPUT
(COMPOSITE OUTPUT)
IMAT = 3
INDEX(I) through INDEX(8) « I
-------
-------
U-1
t:
> >
UJ UJ
CO _l [i
U- LU
f O >
>-> Z
I- > •-
U1 U.I Ui
CO I// (/ X
a. tr a •—
LU LL. Lu Ct
> > > h-
i ^2 2; <
>-. >- i- s:
>
z z z z
i—.»—«>«fc-XXXCC
x x x x
a: or cr;
t- I- t-
<: < CO <
o
z --I CM m
<-< u u »
UJ t~ K- k-
CO '0
-------
-------
IT*
<
CL
X
t~- *-.
o •
ei-
U.LL
O
M
V
0*
OJ«
T h-
3LL
UJ UJ UJ LU LU UJ Ui 11.' UJ UJ UJ UJ UJ ULJ LLI U.' LL U' Oj Ul UJ
OOOOCOOOOOOCOCOCOOCOO
OOOOOOOOOOOCOOOOOCCOC
OOOOOOOCOOOOOOOOOOOCO
OOOOOOOOOOOMOOOlTiOirvOinO
-
OOOOOOOOOOOOOOOOOOOOO
zr
C OJ
»• UJ
UJ
9C
O
LULL
ac •
l^OOOOOOOOOOOOOOO-COOOOO
t/1
<
U
ai
< 01
OCX
UJ 3
t- z
I I I I I I I I I I I I I I
I I I I I I I
Q
UJ
K-
V>
-------
-------
ir\
LL.
O
u
UJ
00
ecooooooooococooeoocoo
u uj u. LU m u
o c o o o c
ooccoccooocooo
ooeoocccocoocoi
cooccocc
U' U1 Ul UJ LU U.' U ' U ' U-> U-' UJ UJ UJ UJ UJ UJ
coooocc o
ocooooeo
ooooocoo
OOC*'VilMOO<<-<*'(r, fiNCd
OOC'OO<\<«COOOO'-''-''-<
l^lPl/^lTl^l/^OO^CTQ^tTO (FO*
OOOOC3OOOOOOOOO
o-a
oc
o-o-
oo
o-o
oo
crtr
oo
>•
«
o
oooooooooo^*^
ooooocoooooo
UJ UJ UJ LLj UJ UJ UJ UJ UL) U- UJ UJ
oooooooooooo
oooooooooooo
oooooocooooo
oooooooooooo
OOOOOOOO
UJUJUJUJUJUJUJU-1
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
^000*^0000
o
(M
oooooooooooooooooooooo
o
< a.
U. UJ
a m
UJ X
I- =>
z z
I I I I I I I I I I I I I I I I I
I I
o
2
co
00
oooooooooooooooooooo'
oooooooooooooooooooo
oooooooooooooooooooo
OOOOOOOOOOOOOOOOfJOOM
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I
a:
o
a
-5 N.
I/)
CO
o o
(M fO (M
o o o
UJ LU
o o
o o
UJ UJ UJ
o o o
o o o
o o o
o r«- o
o
o
§
•t
o
vt
O ac
M m
t- 09
-------
-------
> coocococccooooccccccoo
<
O UJ LL U- LL U-J LL U LL UJ U LL a. UJ U- U-' UJ UJ LL UJ UJ Uj LU
G' •
O
LJ
>c o c~ c c
a- a, oc
O>O>0'O^5Ln^-(ns}-mstf^f'i('imrom«i
......... ....... ...it
OOOOOOOOOOOOOOOOOOOOO
>•
O
LU
K
l/)
O a:
UJ
-------
-------
cccoOGajc&ocCoooC'P'O'-O'C'a'O'COOOO
OOCOOOOOOOOOOOO>-<<-'1-li-<«-(
- «-i oc. IT. •j-ri
o coocccoooc-oooooooooo
O I I I I I I I I I I I I I I I I I I I I
1-1 ii ii ii ii ii ii n Ii ii II ii ii ii ii II M ii ii ii ii
* o <-i
vO
X.
o
OJ
LU
UJLUUJLULLJUJUJUJUJlL'Ll-LUliJUJ UJ\|jU i
n i
Vi
X
»*
cc.
O
< s
O.
a
oooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I
II II II II II II II II II II II II II II II H H II II H
2
D
O
10
LU
z
LU
z
o
o
a
<
z:
i uj {ii uj uj m M--1 uj uj uJ m m uj yj *AJ yj *i.f uv
j^^ro^i-iO^i^^eoh^O^OD^^i^
)Or^-^t(\)-^ooLncoh-co*-4^^in^-ii-4O
) *~< ^3 *O ^* O »~* 1*4 ^* |^ U"\ ^h ^ ^3 ^| *Q O^ ^"
s ^ ^" »H t*1* O"1 C3 **4 ^ f^ ^ **4 ^^ ^ *^ *"M ^* M
> ^. ^4 Q f*~ *4 oo^^Obn^f^o^^o^
i r** ^ o ^ ^ ^^ ^^ ^ r*i ^^ 43 ^9 o in c^ *"t ^*
i *^ fw4 ^^ ^^ ^ fO fO ^O CO »"4 ^^ ^^ fO f^ fO PO ^^
OOOOOOOOOOOOOOOOOOOQO
II II II II M II II II II II H II II II II II II II II II II
<
I/)
a
UJ
-------
-------
u. or of a, a a.OLO.C'O'C'aO-Cr'O-
eooooococoocoeo
vC
tr
Oi-'
o
UJ
K
«/>
-------
-------
o CM ir C" •— iccoo*yr^'O'-'tr*dpfNjO*ooCNO
M^.-r-'^Oircr G-ttVjsj-tsj'-'^cvj
-iNrjoo-4-(\jO'fi
ooooocoococoooooooooo
OOCOOOOOOOOOOOOOOO"-(<-<-«
I I I I I I I I I I I I I I I I I I I I I
yi I[| ill 111 III III ij i 111 ^ii til III 111 HI III HI tl; l(i 111 111 ill ^1 !
ooooooooooooooooooooo
i I I I I i I i i i I I I I I I I I I I I
UJLULULUUJUJUJLULLUjUJUJLUUJtUUJlijUJUJUJUJ
ooooooooooooooooooooo
i i ) I I I I I I I I I I I I I I I r 1 I
in \t i {if in yj 111 nj pi QJ (j^i y i ^i ui in ifi yi ^|t m m \it yi
m— (O1^— '•*--^oopo^'O'-iincNjoi(NJ---*(N)-jrn
ooooooooooooooooooooo
I I I I I I I I I I I I I t I I I I » I I
fill ij i if I III ill III ni ^i yj |[I in QI ill (fi in in |qi UJ 111 ^1 ^1
O O O O O O O O O O O O O O O O O O O O O
l_ ix^rgrri-4-in^iNi<>tn<0^eo»o«4
c/> _ilp4»4r-ir>i(*vir4*4«*A|
-------
-------
UJ
19
l I l i l l l l l l i i
UJ UJ U U- U.' U UJ Ul U U' Ui UJ
l I l l l i l
j U-J UJ U-' UJ UJ UJ
, .i
i(7rvcoooooooo>c
croc— '.it-rrcro
LT, in r\, r<*. rr •— c r^; fx i— i a rvf\,
~
oooooooooooocrc". occoooo
o
(V)
9
.41128065E-17
.20442823E-15
.99084491E-14
.23409047E-12
.61342728E-11
.15590385E-08
.22543151E-06
.64872902E-05
.68869034E-04
. 32064505E-04
. 14310S81E-04
.37091841E-05
. 12620649E-05
.48371 840E-06
. 19701497E-06
.50399098E-07
.21413868F-07
.10197414E-07
.51373945F-08
. 2?393554E-08
.83871221E-09
cooooooooooocoooooooo
I
UJ
o
•t
•a
co >o
in
I I
UJ UJ
o r-
-t O
oo tj-
(M (y
<\j o
IM r-
* O
O CO
U^ *J" ""t" ^ LT U~l ^)
O O O O O C O
I I I I I I t
Lib LU yj y^ (Jj U-1 LU
O r- CO p- O O r-t
i (NJ C\J in ITi fV!
O rH P-- P*- PC
1 r- LA >o a so
i—< I-H r— f^ IP
0s (\j po in po
00 PO CO IjT* 0*
I (VJ 00
00
f I
U-J UJ
<£> ff>
!<- -C
o- m
f\j rH
•*• CO
h- ^ O
ff\ *~4 ^ rH ^) {NJ
in
CO CO
O O
I I
U-J LU
m cr
a -H
co co
r^ iv
cr in
co co
•* o
(M rH
OOOOOOOOOOOOOCOOOOOOO
7
. 14857055E-14
.73847395E-13
.35793165E-11
.84562607E-10
. 22159392E-08
.56318589E-06
. 81434730E-04
.35436125E-04
. 14213060E-04
.66174016E-05
. 29534467E-05
.76549298E-06
. 26046206E-06
.99828696E-07
.40659501E-07
. 10401248E-07
.44193449E-08
.21045179E-08
. 10602439E-08
.46215276E-09
. 17309129E-09
ooooooooooooooooooooo
l/l
«t
o
rAj O ^ ^ ^3 PC ^ <^ U^ LfN IjTN ^O *O h" ^™ OO 00 CO ^ ^* O
r-i-JOOOC'OOOOOOOOOOOOOO^
i I I I I I I I I I ( I I I I I ! I I I I
U.J UJ UJ UJ UJ m U1 MJ LL1 UJ IX> U-' UJ ID tJJ UJ IjU tL' M' ILI 'I1
U^^^Qfn»NjOrH^i^*r-lrHO*}'O(NJOONO'11^"O>O(\J
OU^l^oorvjOcoij^ijf>^wH^sQorfc-*^CTv(r\pcoo>^rfc
r^ U^ ^rf" *£) f\J O fO *^ ^O CO ^- f\J LO >^ f*~ LO CO ^3 f** ^ 'O
i ro o ^"* r\i *—* oo o r*\ f^ & ^™< ^5 *0 *^ rH ^^ C^ ^~ O ro ^
co>O*-*-^(7*"-*i^(vjco<*>r\ir'^oaQCs'*<\J'i^roooo
^ *O ^J ^ 0s ^" O ^ oo ^ to ^5 oo O CT* *~^ ^" PO ^^ ^* ^^
^- p^ ^5 ijft O* O O ^^ O* fVi *^" ^** f^J CT* O* '"^ •"* O ^ ^J i^
pSji^-t'O^^^^'^'^'Opo^Hfc^r-i^fHijfNpvjr-*i,np\joo
ooooooooooooooooooooo
LU
t-
o
UJ
K-
l^
-------
-------
U- I I I I I I I I I I I I I I I I I I I I I
IT uj ib uj uj u- u. uj uj u-1 u. uj uj u. uj uj uj uj a; a Ui UJ
— o-oc<\jNtcroo-tf-4-rr>cooeci-irr^-
a — i o *'~oooK'*irir»oo(r
o .— ioo4'Cs'\i^oosfNJfsJ^^u^*^i4"'^*o^^^ro^^h-fNj
H OOOOOOOOOOOOOOOOOOOOO
1/1
UJ
-------
-------
(VtVfVr-'.-'.-l.-l.-'r-'C'OOOOOOCC'OOO
111 I I I I I I I I I I I I I I I I I I I I I
O UJ UJ U- UJ LU U- U. UJ UJ Uu UJ UJ Uj UJ UJ UJ U-' UJ LU 111 LU
>O
Sw
o
tu
(/)
O
at
ooooooooococooooooooo
(\l(N.-l>-if-Ci-i-«'-O'M-^WWCOClNoo*O><*'^O*
>-Jr'1irririjO-*'infri>OK
§o>Mp^oo-t-*»^ooif\inmir\^'h-i-cirioNoocO'C
O«HN®or-ro-*'C>^fr>if>f^ff>'OM^c^^'^
ooooooooooooooooooooo
,-iOCOf—
I t I i I t I I t I I i I I i I i I i i i
ij i m i^i in flit nf (u ^i ni ^tt m m uj |y ^fi ni LJJ yi j[i ^ yi
OOOOOOOOOOOOOOOOOOOOO
-------
-------
15
a
r-
«o
o
(M
m«NJOO>r-iniapvr>r»««««iniA
CM •*• fi -- «ffiC'«r«5iA-<•
a
-------
-------
o
<
&
sD
-N
O
OL
LU
X
i—«
a
<
s:
a:
UJ
2
l/l
2
<
LL
lf> f^ t—4 ^ Q O Q p-H r^ f* ^-4 fVj fVJ f^ PH «^ *^" tO lf^ l^ ^
oooooocoooooooooooooo
i j I » I f r f / / t t ( r i i f (
tiM U^ U-1 LLJ H ' Ll' UJ IL' UJ UJ LLMJJ 11' M ' UJ U' UJ U1 U1 U.J U.)
>j" ^ h** & o P^ o ^ oo ^H ^5 >^ ^ ^ i^ c^ ^j ^ ff* ^ oo
r*~ ^ *•"* ^ ^ ro ^D IA ^ ^* ^/ ro ^^ ^^ GO »^ r** ro ^* o ^
po ^ oo ^^ *H >^ ^H if\ if\ ro ^> ^j t^ r^ r^ o iO ^ ^^ *••' ^^
^" CD *^ ^^ ^ ?™^ O ^ ^* PNJ ft *^ 00 O ^ »O r^ i^ ^3 ^J ^*
to fvj o r^ ^* ^ o co r\j QO ro i/^ ^w ^) ^ oc? o co ^ ^^ o
^<%ji-Hr-(f-icrrsjoo>t(NJ'-'n*i'«<^d'^J'(MO^-(Mco
ooooooooooooooooooooo
I
a.
-------
-------
\o
^
O
rj
v,
I I I I I I I I I I I I I I I I I I I I I
U-* LU LL M-' U1 M1 u' M: U1 '-I1 LL UJ LL' UJ tU IL' li1 U1 LL1 UJ U'
ooooocooooooooooooooo
I I i I I I I t ( I t ( I I I I I I 1 I M
IL' LL1 U' U.1 UJ LLI UJ U,i U' M.' U1 *-*-' LU li] U^ UJ U> UJ UJ UU UJ
ooooooooooooooooooooo
I I 1 I I I I I I I I I I I I I I I I I I
U.i Uri LU tj.i u.i LLJ yj uf UJ ^.j tjf Uj UJ u^i ^jj ^ UJ LU UJ LL1 Hi
1 ir\ ii^ o if^ ^^ ^^ f^
) lO O ^^ ^ O ^* f**J
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I I
yj Uj 111 y i jii |ti jii yj fii j|^i 111 nj ni in ^i i in yj ^11 ^ii ^i m
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I I
ni 111 ni nj u i in i|j ^i m ni ni m LII ni in ill 111 in LU m UJ
ooooooooooooooooooooo
LU
t-
UJ
-------
-------
01
CS
to
UJ
I I I I I I I I I I I I I I I I I I I I I
UJ U-. U-' UJ LL LL UJ UJ UJ U. U- Lf 11 Uj UJ U.' U. U.' U. UJ Uj
oooooooocoooooooeoooo
I I I I I I I I I I I I ! I I I I I I I I
iii u' IL' IH L1' "' M M' "' U' "' U u^ IJI U1 U' U1 Nl U1 M1 I1.1
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I I
III y^i I|| 1^1 |fll 111 m m III III ^1 ill LLI ^1 ^41 UJ (^1 IJI 111 yi 111
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I I
W UJ UJ UJ UJ UJ UJ UJ LU UJ UJ UJ IU UJ UJ Ml UJ UJ UJ UJ UJ
ooooooooooooooooooooo
-•-HOOOOOOOOOOOOi^^l-H^-ir-li-l^
I t I I I I I I I I I I I I I I I I I I I
UJ UJ U> U-1 UJ UJ IU U^ U-1 UJ UJ UJ UJ UJ UJ UJ *-'.! IL1 U^ tJl' U1
ooooooooooooooooooooo
>•
O
-------
-------
r-
>0
^
O
I I I I I I I I I I I I I I I I I I I I I
U~ UJ UJ UL' UJ U^ tl UJUJLUUJUJU''UJUJU-U-JUJUJUJUJ
OOCOCOOOOOOOOCOOOOOOO
M(\JM»-i—"--i^r-iOOOOOOOOOOOOO
I I I I I I I I I I I I I I I I I I I I I
ooooooooooooooooooooo
I I I I I I I I I * I I I I I I I I I I I
HI 111 111 in Hi 11 i MI in ti ] llj yi u i if i i\i Ltl yj in ill uj ^i 111
OOOOOOOOOOOOOOOOOOOOO
I I I I I I I I I I I I I I I I I I I I I
LU ti-.1 Uj UJ UJ UJ LU UJ itJ UJ jjj LU UJ UJ UJ ^J UJ UJ 11' iAJ IU
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I I
ooooooooooooooooooooo
V
a
UJ
-------
-------
tu
o
<
a
h-
1
Lb
O
00
in
c cc
M CO
Cf
00
(M
in -j-
1 I
LU LL
ff C-
C -i
T-> -
vj- IT.
cr Ov
m f<")
O> o
f- cc
oo *O
1 1
U.' LL
~< C
•* (V
o m
c. --<
o >o
i-< CO
Ch t-
xt fNJ
1 1
Lb LLl
on h-
C 0
CO r-(
(SI ^J-
-d- .J-
V U-'
--i -0
•-i O
1 1
LU Lb'
in cc
o >c
a r->
o- ^
ffl O
o
in
r~'
f»
pn
(-4
r-
0^ 00
Cf*
I^f
1 1
UJ U
fV O
<\l C r-t
Oj
\
u.
a
o
c<-
in
O
t-l
cc
1-
fa- ^)
Of^
(-3
UJ U
< •*
rr 0
M in
CC f\J
r— IM
fo o
«t rri
^ *— i
^O in
Of*
\j
1 l
IL< U.
•-i a
fVj («•*
in *
o> •*
-t 0
(*> 1-1
OO —1
m 1-1
m in
O O
1 1
Hi UJ
<£• f^
O> ^3
(Si i-l
c\t o
0 0
in i*-
f<^ »-<
«fr ^-i
ooooooooooooooooooooe
(\)p^l(\l(MMrt^i-i»-<^4— -l>- UJ Ul UJ "' HI II' V1 UJ U1 Ul Ul UJ *\t U' U>
OQOOOOOOOOOOOOOOOOOOO
I I I I I I I I I I t I I I I I I I I I I
Hl UL! U1 U' U1 M1 Mt t1' "' IJ' ll' M' M1 UJ UJ UJ "' IU t1' M^ U1
ooooooooooooooooooooo
I/)
<
(J
vo
UJ
^J M f*J ^^ r^ *^ *—4 r^ ^M O O O O C5 O O O O O O O
I I I t I I I I I I I t I I I I I I I I I
LUUJUJUJUJLUUJUJUJLULUUJLULLJLIJLULULUUJL1JUJ
ooooooooooooooooooooo
a
UJ
f-
1/1
-------
-------
UJ
o
I I I I I I I I I i I I I I I I I I I I I
\ll 111 [11 III UJ jfi itf j|i IJj i^t III ^1 ill uj QJ in MI ^j ^J yf ^ji
1/5
<
O
ooooooooooooooooooooo
V
Q
-------
-------
UJ
o
o
(M
a:
UJ
X
l-t
a:
t-
z
CD
00
a:
UJ
«J
Z
H*
U.
(\jOi-'•—<^^*—itM^j^i^^^!—lOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOO
I
111 in mf Hi 111 Ui ui MI ni in Hi Hi
OOOOOOOOOOOOOOOOOOOOO
I I I I I I I I I I I I I I t I I 1 I I I
X
a
UJ
<
U
V)
UJ
UJ
K-
<
H-
X
o
UJ
H
«/)
-------
-------
u.' I i I I I I I I I I I I I | | | |
C5 UJ LU UJ UJ UJ UJ U- UJ UJ U> Lb Uj UJ UJ U- UJ UJ UJ UJ LU LU
^ f*-co»~<»*c£co0vr"C!"-lt~OOf*-CO<\J^.*U"l'-0—'cocD!-ii-^-a>»Hco^(h-<>>jC-irfO'ff'
v <>*oi)orrii'^>-''fl^«M(*ieooO'Oif>
o ooomo-*t^inoooi>ir\p>i^CiO'-iifii*oo-i
(^ «t..... i,
ooooooooooooooooooooo
I I I I I I I i I I i I I I I I I I I I I
UJUJUJUJlLJUJUJUJUJliJLUUJIdUUJUJUJUJUJUJ |U UJ
ooooooooooooooooooooo
I l I I I I l I I I l I I I I I I t t t I
-
ooooooooooooooooooo o o
I I I I I I I l I I I < I I I I I I I I I
LUUJUJlULUUJbUUJUJUJUJIJUliJUJUJ jtl UU U UJ
t- ooooooooooooooooooooo
UJ
>- -)
UJ
o
«
tu
-------
-------
O
<
o.
I I I I I I I I I I I I I I I I I I I I I
UJ LL UJ Uj LI U_, UJ LL UJ U-J U.' LL1 LL UJ U- U U-1 UJ U-' LL' UJ
OOOOOOOCCOCOOOOOOOOOC
I I I I I I I I I I I I I I I I I I I I I
LUUJtUUjUjUJUJLULUUJUJU-'LUUJUJLUUjUJIJJUJUJ.
ooooooooooooooooooooc
t I ) I I I I I I I I I I I I I I I I I I
&OOOOOOOOOOOOOOOOOOOO
I I I I I I I I I I I I I I I I I I I I I
QI I] i |[i In ill ift 111 111 i|i )jj ifi m [I i )ii ifi 111 ^i in in HI ni
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I I
QjLUUJUJUJUJUJlUUJUJUJUJlUUJUJUJUJUJUJUJUJ
ooooooooooooooooooooo
UJ
H
UJ
o
<
UJ
-------
-------
in in in
o
f
.30308???'
i
. 1357^545!
i i
,6579?352C
.32415845'
1 l
.14492319f
.52295417!
cooOooooooooooooooooe
co "
in
t\l
(\J C
r-
>c
I I I I I I I I I I I I I I I I I I I I I
LULULULULUU'LULULULUUJUJLULUUJUJUJLULUUJUJ
\f\ £ rjo »^ o @* fvi PJ
^- m> oo O rvj >—i in o ^) *^ c*^ C^1 nj ^ ro (7* CT* »O ^ ^ P**
^•cvj^c^rvjp^fvj^^c^ini—*f\j*-J'^Ni»™*^-rO'~|rwfvj
ooooooooooooooooooooo
CVJfVJ(VJfVJCVJ'1^rH»~(f^*~4pJl-HF-4t—tf— t|| yf i|i tji MI in UJ in nj ^ii <^i
OOOOOOOOOOOOOOOOOOOOO
I/)
LU
00
•*• m
I I
LU LU
r^ o
O r\j
oo rvj
co rvj
f- in
fl ^
o rvj
(V h-
_< o
rvj CM
I I
LU LU
O f^
00 ^t
0" ^
o to
I I
UJ UJ
-*• IH
o f
-l 00
in o
(VJ in
•»• in
o *
i-l O>
I I f I I I I 1 I I I
uj yj LU iu vi* u* ut u? uj u> ULJ
*t" *^ "^ >^ O "^ PO O ^O ^ M
I Q (T^ ^ ^ ^ CO ^ rH ^* f^ >~l
'COOOi—'fO^'^'f''-^®*^1^
' co f^ o ^o ^-i* u^ tr* ••H co ^ *o
O M »-l r%^H (N* ^ >*• *H h- (\J
OOOOOOOOOOOOOOOOOOOOO
LU
5
o
LU
-------
-------
LU
o
s-
•c
o
(VJ
0-
LU
oo
P^ P\J fV fV fV ^' CO ^~* «~•* ^J ^ i"-1* #** ^ r-H ^ F"^ f"J ^ r*J t^t
i i i i i i i i t i i i i i i i i i i i i
U.. UJ U-1 Lb LU LL U.' U-' LL U.1 UJ LU LL LL U. LU LLi LU UJ U, LU
f\> p— iT1 fv o pn rv oo p\ or* PI^I rv o in •—i cr ccN^j *—t r*< r\i
<^(\jN-*c^Cr^fv.in^rou^(N, cbG^-J C*J fVl fVJ r\l ^-t »^ ^J r>«4 ^^ r~< «^ »^ ^H ^-t r*4 *^ ^J t™*
I I I I 1 ( I I I I I I ! I I I I I I I I
UJ UJ UJ UJ LU U-j t4J IL.1 ll/ UJ U.1 Ur^ U-1 U.- 11.' UJ U^1 UJ LU UJ M1
'O C^J ^0 M ^ i~t ^M) tri F^" ^ O1 l/"' ^0 ^5 \f^ rn C^1 *O ^ 00 ^^
*pf^jif\OJ»OiriOsC^p-irHrnc\jC*i»d"U^*iJOsco^iif>'*^'
^ ^" oo tPi o ^3 ^ ^* ^3 r^ *c ^ ^3 f\j r*f ^4 ^~ r*^ ••£) f^* ^
^(^fC>^j*4«iOrfiir\rNJ»-4'4"oc^-(\j%X) r** ^ ^ u^ u^ u"^ ^ ^ jC\tf\J^i^^F^rii^t^«-^»i^iwitf' IT*.C*J O ^ r*^ ^O CO ^^
<7Nooocorricornf--(sj-(\jinCTxcooooinCT*O'*O0 ^ "^ C\J ^ l^
t^^*OMU^^sOLA*i'CO*Os^'^'*tf'N^'^0OOON»CO-^'»^
f^ O O* p^ *^ ^ O O ro ^** (^ ^^ f^ o CO ro ^ p^ ^" ^ O
cocj^po^f^f^r^fvjCNfvo^oirf^o^iri^^ooo
C7srooOr-*(NJrO(Ti»™(fHP*-»—<^^4roir*f—*F^fvj»^^pr\
ooooooooooooooooooooo
i i t I i I i I i i t I i t t i I I t I I
UJUJUJUJUJUJUJUJUJUJUJLiJUJUJUJUJUJUJUJtiJUJ
(M f»- *H CJ,*C COr^f\J(NJ»H(t>O>«^F'iiO^|C\JC«J
ooooooooooooooooooooo
i i i i . l l t i i t t i i f t t i i i i i
tjU uj u? u,1 UJ m cu u' LU m tu u' m t-Lt UJ u.j i^-1 uj yj LM MJ
ooooooooooooooooooooo
o
UJ
h-
uo
-------
-------
LL
IT
•o
^
o
1/1
<
o
I I I I I I I I I I I I I I I I I I I I I
UJ U.' iiJ U-l UJ tU UJ tX/ LU U' Mi> UJ U.^ U_Mi> U,1 Uj1 U1 UJ UJ UJ
^ ^^ ^5 *"4 ^ ^ *^ ^ tft oo rw o^ ro w4 ^^ o oo f^ ^ ^H s^
^ N W5 ^* ^^ ^^ f^J 00 00 ^ f*4 ^t »^ f\J ^* ^^ i»i4 CO l^ «^ p>4
ooooooooooooooooooooo
UJ
t-
O
UJ
-------
-------
UJ
o
a> oo
0 C
1 1
LU UJ
r- o
.28344-
.90322;
>C
o
LU
>*
.23769,
in -t
e o
1 1
LU li-
ce CM
1-* f-
r- -J-
in c\
rsj in
co in
C
1
LU
0
vC
o
cc
or
r-*
in in
o o
1 I
UJ UL
r- c
C\, r-l
CO sf
a- oo
cr r-l
C
1
U-i
o
c
.67676"
o e
i i
LL( U.1
•C cr
. 37579'
. 16891<
K r~
e o
i i
UJ U
C*~ IT
CO If:
.30158;
. 1083<5<
co oo
0 O
1 1
U.i U.
l~- O
CJ f""
r- oo
>O 00
CM O
CO r-l
& O
C rl
1 1
•* cr-
OC C
.22585"
.91574]
o o
l i
LU UJ
xfr 0
If i-"
CC t\j
(M r\j
sr in
ro *•*
1 1
LU LU
m ft
rsi r-i
OOOCOOOOOOOOOOCOOOOOC
o
IM
V
in
O
<*• •*
O O
I I
UJ LU
«c r~
oo •*• i-<
OOOOOOOOCOr-4r-'«Hi»-t
t I I I I I I I I I I I I I
U-UJUJUaOJUJUJlUUJUJU-iUjUJUJ
I I
UJUJ
o *
IT co
ooooooooooooooooooooo
OOOOOOOOOOOOOOOf-H^H«-<^^r--
* I » t t I t » I ( I I i I t t I I I I I
UJ UJ UJ ILMl1 UJ LU UJ UJ UJ U-- UJ UJ UJ UJ UJ 11^ Ml1 UJ
purf *^~ %o ^- ^« oo o *O ifN ^ ^5 r^ r^ r^i r^i t** oo co r*~ ^^ ^
^ tf^ ^* ^j o to LT* po ^ r^ ^* ^j ^ O r^ o r*^ ^j *~^ ^ ^
O ^f C^ c^ P^ ^J *""^ ^ r^ QO ^ ^ O* f\) c? fl *tf" ^ ^ ^J tf^
f*« ^** fO O C?1 C^ u^ CO F^ OD 10 ^ co co o*1 O ^3 ^ ^ ^ fi
^J ^ O CO 00 1^ O ^J 'H O^ ^O ^" >0 O ^ to M CVJ f^ ^ CO
^•4 fO ^« ^ ^^ «^ GO f*^ ^ U^ M *^ r^ \f\ r*i fO ^^ LP f\J (^ ^
ooooooooooooooooooooo
ooooooooooooooi-''-i'-''-''-i'-i«-i
I I I I I I I t I I t I I I I I I I I I I
tjj ^ ij-i ^ uj uj uj ^u tu yj uj uj UJ uj (u uj Un? i>u| tin* LU uu
^eO'^cD^«*'fr,aomeo
u^^^fouS(\ico*Oco*Or\j^(\i'Of*-'OfOifri^cr^io^i4*
Q^OIPr^O^^r^^^U^^OO^fOfOp^^aD^
tf\ ^ ^ O 'O C^ CO O ^^ P^ f** O ^ ^ CO O ^5 ^J "^ ^* CO
o^ oj *^ ^ o f^i ^ *^ ^5 ^ o o* ?*• o ^* *^ o ^^ ^ co ?o
ro ^ ^ ^ ^ ^ r^ **^ ^ ^**J *"*' p^ ^ ^ *^ *™^ LO rv ^ ro ^*^
ooooooooooooooooooooo
co co
o o
I I
UJ UJ
CO CO
o o>
—I •*
I O CM
00 o
O 00
o o
o o
I I
UJ UJ
•* IM
in eo
•o
-t CM
(M o
oo o
in
in
in m
o o
I I
UJ LU
CM 00
-CO a>
oo r-
-O o
••* in
o o
I i
uj LU
(TV oo
•c cvj
•* in
4- in
oo ro
r- in
co in
CVJ 00
o o o o o o
I I I I I I
LU LU LU UJ UJ LU
CM co o co eo •«
^ ro i—i o r\j >o
in ^ (M
-^ o r*- oo t*- -o
r- •*• ^ o co -4
(M "I -O •-> CO <-<
—> r* i-l «M CM CO
I I
UJ LU
O co
in oo
CM 00
eo ro
a- *
in oo
oo a>
CO h-
I I I
LU UJ UJ
CO *4 CO
^ CO ff1
O CO O
in >O co
oo in 4-
r- o -c
CO CM CO
CM 1-1 in
l I ,
LU UJ
er> >»•
co O
M <»>
•* O
CM O
O f-
CM in
oj r»
V)
UJ
ooooooooooooooooooooo
Q
UJ
-------
-------
ir
t\i r~u>'*rr>MCvNo^r'~ooooooo<0'
.-ii-ii-i«->i-iOoeoOOOOOOOOOCOC
U-' I I I I I I I I I I I I I I I I I I I I I
O U ' U-' UJ U_ LU U_ LL' UJ U- Ul UJ Uj UJ U-l U-1 LL' U U,' U-i UJ UJ
«*.--<''
IU
o
at
-------
-------
(V
LU
C
O O' C O »!•
f-- or, c Is- IT
ir. o •*
i o «; r*- r- »c vo LT
' -• O C C O O O
r~ oc iy
i —< P- oc en
cc
1 O-
• >c
J C'
• in
o
I I
U-' U
cv o
1 p- <*•
• C. cr
. -J- cr
- r" ex.
r- -o
• f pn
If LO
C C
I I
r— r-l
*r^in%j-f-^t—io>c\jir>cMp^vd-
ir, vo
r c-
I i
UJ LL
•c ex
in cr
CM CC'
c cr
p~
i ^
o o
I I
LL LL'
or DpncM>oirstf-ii-ip\iinr^
f-o
in cr
PVJ •*
p* CM
in f-i
O oc
-10
I I
LU LU
sf co
co cr
co h-
ppi ^
-J O
CM CO
•£> r—
o o
I I
UJ UJ
CO CO
vD £T
r^ in
csj r-
p- ao
O -0
cc eo
r>- r-
O O
ti
LU LU
PM (M
PM CO
O m
p-i cr
sO -4"
cr r-
cr pp»
CM •-<
co co
O O
ll
LU UJ
•- 1 Pfi
t-l sf
P- O
co r—
CM CO
o CM
oo o
in CM
ooooooooooooooooooooo
p- >o in pn CM
U
(—
)
I I
UJ UJ
cr
•O CM
CO
CM -
O CO
•* cr
*G O* i^ ^ ^ to
pn cr
I I
I LU UJ
i CM •*•
j -o m
I CM PM
• r— CM
o-co *c in in -4-
r-t O O O O O
I I I I I I
LU LU LU LU UJ UJ
O CM P- 00 sf CO
f^ p— en. «^ s^ rn
CM *^ *JD CM \Q en
O CM ^ CT Cr O
co f*- oo «J" ** cr
CM O en o
in
00
m >o
o o
I I
LU LU
in —i
LO »-H
in o
CM oo
PO cr
CM X3
>O p-
o o
I I
LU LU
pn p-
p- m
1-1 in
O -H
cr p-
-t -o
o in
<-> pn
P- CO
o o
I I
LU LU
in ^
•-i **•
in -.
c in
co oo
o o
I I
UJ UJ
f- r-
pn p-
co oo
O >C
in O
•o so
m o
CM f^
ooooooooooooooooooooo
LU
I-
-------
-------
li.
o
<
o
1
LL
vO
O-
p-(
O 00
Oo >O
t-4
in
O 00
.49147929F-'
. 13499769E-1
r- %c
.20499570F-1
.44756797F-
«*• PM
.6136??52E-
,49?14962E-1
C Cr
..?003072~7F-]
.19023037P-C
QD OC
.10879162F-C
.27M2858F.-C
00
.652217125-'"
.30I37652F-C
.47557549F-C
r- >j
1
LL u
f t-
po r
po r
M <
CO vl
po r
•~< f<
cr r
0 >C
1 1
U U-'
, 0
v. pr
•, cr
c MD
c cr
- r-
n CT
vl PO
>o in
.67636137F-T
.10767562E-C
in >£ \f) *o
o o o c c o o
I I I I I I I
LU UJ LU LU LU LU LU
co *•* PSJ cr & ?*i (NJ
Co po ro o P*J r** r\j
cr CM p\i i-^ po Cr o
-o cr o (M PV' o ••*
pn r*- sj- co m »~' co
Cf* ^3 ^ p^ m ^ ^
Cr in •-* fo •-* P\J ^
in in
o o
I l
UJ UJ
^j in
• co co
i in o
o o
I I
111 UJ
rn cr
< h- cr
LO ^~
N r-
- Cr O
i ni in
• N o
N- ro
ooooooooooooooooooooo
I I I I I I I I I I I I I I I I I I I I I
III UJ ^IJ yi Hi yl QI (II ^11 |ii in yi iji ti| LU III n l ^i llf III 1JI
ooooooooooooooooooooo
st- f\i o
I I
LU UJ
UJ UJ
\o -o
UJ
to
U
f-
;/>
•fi in
i in sc
>o in r» >^ •*• o
co
cr
i O O
in •-<
i r-
I f-4 (NJ
i in
i o <-> '
• (NJ
I l
LU LU
oo m
oo co
m ^
rn o
in (s.
O O
in M
cr oo
o o
I I
LU UJ
<0 oo
in in
(N -*•
r~t ~*
o K
^-i in
cr >o
O O
I I
LU LU
in f*>
oo >c
> —i in
i K m
^ l/*l t/\ ^ ^ *Q &
o o o o o o o
1111)11
UJ U f UJ U.I UJ UJ U'
^ "i" *O (NJ <\J O 0s
O ^ C^ >D OC? ^j fft
r^ QD ^* ^ ^-i ^ (\j
r^ PVJ »-i co »j r*- ir\
•H IA f\J (*> CT» »-J PA
O O I*- *•* K >O O
o r-
o o
I I
LU LU
cr *
vO ^
sO r\j
p^ r*
rsj oo
OOOOOOOOOOOOOOOOOOOOO
O
LU
-------
-------
Ul
I
•£>
••»
O
LU
(/I
CM r-
o
0* co
(M -
I I
LU LU
-a- o
CO ITl
J- ^H
O t«-
O CJ"
CO •*•
IJs (?•
CD —I
I I
I LU LU
I I"- O
o ->
in co
O CM
•4" CM
—1 f>-
I CM 00
O O*
-> o
I I
LU LU
O CO
CO vO
sO LO
h- O
CO xf
CM l~-
CO >f
CO 00
o o
I I
LU LU
>o o
CO r-l
in CM
o <*•
CM CO
—I CM
O O O O O O
I I I I I I
UJ UJ UJ UJ UJ UJ
*O i—< ro co co ir\
oo u^ ro oo s^ •-*
tr\ —( ro m CM in
—* Is- .-H *o CD o
^ ir\ o *0 i/\ oo
FH QO ro sO f\) ^^
re o o o co f>j
LO in
o o
l I
U-1 LU
O &
i >C &
o m
O LO
C3OOOOOOOOOOOOOOOOOOOO
o
UJ
H
co
-------
-------
eo
•r
v
O
LLJ
t/1
ac
UJ
z
fa—J
u
O O
I I
LU IJJ
oo in
O ro
C*1 in
co •&
^•
co PO
*-> o
o o
UJ UJ
ro -i-
CO .S"
O 10
—I CNJ
o o
! i
UJ UJ
P" CO
00 •-! !
O tfi
o o
I I
uj 'jj
o s.
o >o
ifi in
I ^ CO
en *d* ^ in m w> <«3
o o o o o o ©
I I I I I i i
UJ UJ UJ UJ UJ UJ UJ
in f- Pv (M ir\ ao p»
rPi CD co 1-1 fsj »-i e
?\j o K ^ n> p- f*=
(\J -^ W5 P* P" CO ^3
o o
» {
UJ UJ
O l*»
O 9"
OC'-OOOOOOOOOOOOOOOOOO©
X
Q.
.J
z
O a: a:
M UJ UJ
H~ 1C CC
o s: z-
U.
I/)
«t
UJ
UJ
o
UJ
h-
-------
-------
(M.
ID
«J
Q.
o
>»
0>
„!
O
UJ
on
a
I
a
<
I
v.
UJ
t/o
•z
<
oooocoooooooooooooooo
UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ \U UJ UJ UJ UJ UJ UJ UJ UJ UJ Uj
ooooooooooooooooooooo
cf.
UJ
X
CL
O CL
(•* UJ
|_ CD
o z
UJ ^
(/) Z
a:
UJ
I/)
1/1
•
o
•
a
to
UJ
Q
UJ
K
to
-------
-------
SIMULATION OF CHLORIDE CONCENTRATIONS
IN THE POTOMAC ESTUARY
BY
*
Leo J. Hetling
*
Now employed as Director of Research Unit, Environmental
Health Services, New York State Department of Health, Qh
Holland Avenue, Albany, New York.
-------
-------
TABLE OF CONTENTS
I. INTRODUCTION 1-1
II. THE POTOMAC ESTUARY II - 1
III. PRESENT AND FUTURE WATER SUPPLY REQUIREMENTS .... Ill - 1
IV. THE SEGMENTED ESTUARY MODEL IV - 1
The Pumping Problem IV - 2
V. EVALUATION OF MODEL PARAMETERS V-l
Segmentation V-l
Segment Volumes V-l
Net River Flow V-3
Boundary Conditions V-l;
External Sources of Chlorides V - 6
Turbulent Exchange Factor V - 6
Proportionality Factor V - 10
VI. VERIFICATION RESULTS VI - 1
VII. SIMULATION VII - 1
VIII. DISCUSSION OF RESULTS VIII - 1
Validity of the Model arid Parametric Analyses . . .VIII - 1
Simulation Results VIII - 3
IX. CONCLUSION IX - 1
X. BIBLIOGRAPHY X - 1
-------
-------
LIST OF TABLES
Number Page
1 Present and Proposed Major Waste Water
Discharges to the Upper Potomac Estuary II - 2
2 Present Sources of Water Supply—
Washington Metropolitan Area Ill - 2
3 Monthly Distribution of Annual Water Usage .... Ill - 3
Projected Water Demand—Washington
Metropolitan Area Ill - h
5 Potomac Estuary Chloride Model—Physical
Parameters V - 2
6 Potomac Estuary Chloride Model—Interface
Parameter V - 9
7 Hydrologic Conditions Simulated VII - 2
-------
-------
LIST OF FIGURES
Number
1 Study Area Map
2 Washington Metropolitan Area Water Supply Needs
3 The Pumping Problem
h 1930-1965-1966 Potomac River Hydrographs
5 1965 Chlorides at Great Falls
6 Relationship Between Chlorides and River Flow at Great Falls
7 Assumed 1965 Lower Boundary Conditions
8 Assumed 1930 Lower Boundary Conditions
9 Potomac Estuary Chloride Model - 1965 Chlorides at
Possum Point
10 Potomac Estuary Chloride Model - 1965 Chlorides at
Maryland Point
11 Potomac Estuary Chloride Model - 1965 Chlorides
October 8, 1965
12 Potomac Estuary Chloride Model - 1930 Chlorides at
Indian Head
13 Potomac Estuary Chloride Model - 1930 River Flows—
2010 V/ater Use—Waste Discharge Out of Basin
lit Potomac Estuary Chloride Model - 1966 River Flows —
2010 Water Use
15 Potomac Estuary Chloride Model - 1930 River Flows—
2010 Water Use—Parametric Analysis I
16 Potomac Estuary Chloride Model - 1930 River Flows—
2010 Water Use—Parametric Analysis II
-------
-------
I - 1
I. INTRODUCTION
A significant water resource problem in the Potomac River
Basin is the provision of an adequate water supply to meet the
projected needs of the rapidly growing Washington Metropolitan
Area. The conventional approach to this problem would be the
construction of upstream reservoirs to supply the required water.
However, rapid changes in technology and state of our social-
economic outlook are forcing planners to look at an ever-enlarging
matrix of solutions to water resource problems.1 In this case,
conflicting interests are exerting significant pressure against
the construction of these reservoirs.2
Use of the upper Potomac Estuary as a water supply source
has been proposed as an alternative to the upstream reservoirs.
This proposal has been discarded previously because waste water
treatment technology was lacking [it is projected that the rate
of waste water being discharged to the upper Estuary will increase
from its present rate of 2JO million gallons per day (rapd) to
over 800 mgd by the year 2010.], and because of uncertainty con-
cerning the possibility of salinity (chloride) intrusion from
the Chesapeake Bay if large withdrawals of fresh water from the
upper Estuary were made. Advances in the technology of waste
water treatment are rapidly eliminating the first objection, except
for the buildup of chlorides and total dissolved solids. The
purpose of this paper is to present the results of a simulation
-------
1-2
model of chloride concentrations in the upper Estuary. It is
hoped that these simulation results will prove useful to water
resource planners in tnis critical area.
-------
II - 1
II. THE POTOMAC ESTUARY
The Potomac River is the second largest river in the
Middle Atlantic states. Its tidal section begins in the Washing-
ton, D. C., Metropolitan Area at Little Falls and extends Il6
miles southeastward to the Chesapeake Bay (Figure l). The Estuary
is several hundred feet in width at the head and broadens to nearly
six miles at its mouth. A channel with a minimum depth of 2k feet
is maintained in the Estuary up to Washington, D. C. Except for
the channel and depths up to 80 feet just below Chain Bridge, the
Estuary is relatively shallow.
The Estuary is bounded by the large metropolitan areas of
Washington, D. C., and Arlington and Alexandria, Virginia, in its
upper part and by forest and farmland in the lower portion.
Several waste water treatment plants presently discharge
treated waste to the Estuary, and several more are projected in
the future. These are shown in Figure 1. Additional information
on these plants is given in Table 1.
-------
-------
II - 2
o
rH
O
CM
X
K
*•£
JH)
—
0 bC
rH B
G
O
•rl T3 O
-P CD O
cd > 0
H rH rH
2 01
PnCO X
O
PM
EH
CO
^
O
^
o
EH
O
PM LA
CO
K ON
W H
PM
PM
D
JVJ
H-H
EH
^^
5 ""O
O bC
i — \ g
(in
G
O
•H T3 O
-p O> O
cd i> o
H M rH
3 O>
ft CO X
o
PM
O
EH
CO
W
O
p^
5] *
UH -P
o a
H CD 0
H rH H
3 0)
ft CO X
o
PM
t^
EH
CO
-J*
PM
PM -p
G
03
rH
PM
CM [—
CM 0
LA C—
LA
CM LA
CO CO
CM O
ro
O ON
• •
ON co
ro CM
ro
-^~ vo
-=t LA
CM O
*
CM
ro H
• •
C— C—
1 — 1 I 1
CM
rH O
ON O
rH _*
H
ON 0
• •
CO O
rH
-P
0
B
-p
cd
CD
£H £H
EH 0 -P
-P G
0 cd cd
bC £2 1 — 1
Cd PM
5= cd
0 -H rH
CO rQ O
B ^
K^ 3 -P
-P rH G
G O O
3 o o
o
O CH G
0 0
G -H
O -P -P
-p .p CJ 3
bC G -H rH
G 03 ^ rH
•H H -p O
rH CH W PM
rH -rl
> 0
cd o
4J
•j -P
G cd G
cd > cd
CO 0} H
•P PM
G cd
cd o -P
^ w G
JH -H 0
3 PM B
r° -P
3 « 03
CO G 0
0 rH
G -H EH
o w
•P CO 0
tfc.rH.bt
G B cd
rG O 0
to O CO
03
!2
ON
LA
CM
OO
O
•
LA
CO
CM
VO
•
CM
OO
•
ro
vo
•
ON
rH
-p
bi G
G cd
•H rH
-P p
c
3 -p
=! G
0
0 S
H 4J
-P cd
-P 0
-H rH
1-3 EH
>> 0
•p bC:
Scd
^5
O 0
o co
X r^H
cd 0
> H
-P PM
G
3 -P
0 G
O 0
S
X -P
cd cd
<*M 0
rH rH
•H EH
o3
fc
LA
LA
LA
O
O
on
ro
•
ON
CM
on
cO
rH
*
*
*
*
O
•
_^j-
CM
K*>
rH
0 .O
0 £H
M 03
0 S
-P 1
G cd 0
•H rH J4
-P PM G
O 0
o -P B
u G O
-------
-------
Ill - 1
III. PRESENT AND FUTURE WATER SUPPLY REQUIREMENTS
The present status of the major water supply systems in
the Washington Metropolitan Region is given in Table 2. It can
be seen from this table that presently 72 per cent of the area's
water needs are supplied by the Potomac River.
In estimating future water supply demands, the data pre-
sented in Volume 5 of the Corps of Engineers 1962 Potomac River
Basin Report3 was used. The report's conclusion that in the
future only 92 mgd would be available from sources other than
the Potomac River was also accepted. A more recent report*4 indi-
cates that this is a conservative assumption, and that local
sources other than the Potomac will provide a safe yield of 110
mgd in 1985 and 150 mgd in 2010.
Although more recent, possibly more exacting, demand data
could be developed, they should not change the major conclusions
of the simulations.
Because of the time-dependent nature of the system, it
was necessary to estimate the distribution of the annual demands
by month. An analysis of the I960 to 1965 records of the Corps
of Engineers Washington Aqueduct Division gave the distribution
of filtered water pumped to the District of Columbia shown in
Table 3.
Using the above monthly distributions and the base data
from the Corps of Engineers report, the water demands on the
Potomac River shown in Table h were developed. These data,
-------
Ill - 2
shown graphically in Figure 2, clearly indicate the need for the
development of additional supplies.
TABLE 2
PRESENT SOURCES OF WATER SUPPLY
WASHINGTON METROPOLITAN AREA
Water System
Use
_(mgd)
District of Columbia
Arlington County
City of Falls Church - Fairfax
County Water Authority
Fairfax County Water Authority
Fairfax City
Washington Suburban Sanitary
Commission
Washington Suburban Sanitary
Commission
Rockville City
Alexandria Water Company
Other Miscellaneous Small
Systems
Sub-total
Sub-total
Potomac River
Potomac River
Potomac River
Wells
Goose Creek
Patuxent River
Potomac River
Potomac River
Occoquan Creek
Potomac River
Other Sources
20
11
30
9
230
90
Total All Systems
320
-------
-------
Ill - 3
TABLE 3
MONTHLY DISTRIBUTION OF ANNUAL WATER USAGE
Mean
Month
January
February
March
April
May
June
July
August
September
October
November
December
Average
Monthly
Use*
11+8.5
1U8.2
1U8.8
15^.1
168.9
189.7
206.1
20>t.7
183.9
161.9
153.2
150.6
168.2
Mean Monthly Use
Average Annual Use
0.883
0.881
0.885
0.916
l.OOU
1.128
1.225
1.21?
1.093
0.962
0.911
0.895
1.000
Mean value of filtered water pumped from I960 to 1965,
-------
-------
Ill - k
TABLE h
PROJECTED WATER DEMAND—WASHINGTON METROPOLITAN AREA
1985
2010
Month
January
February
March
April
May
June
July
August
September
October
November
December
Average
Annual
Gross
Demand
(mgd)
513
512
51^
532
583
655
712
707
635
559
529
520
581
Available
from Other
Sources
(mgd)
92
92
92
92
92
92
92
92
92
92
92
92
92
Net Demand
from
Potomac
River
(mgd)
k21
kzo
h22
kho
1*91
563
620
615
5^3
^67
J+37
1+28
^89
Gross
Demand
(mgd)
907
905
909
91*!
1,031
1,158
1,258
1,250
1,123
988
936
919
1,027
Available
from Other
Sources
(mgd)
92
92
92
92
92
92
92
92
92
92
92
92
92
Net Demand
from
Potomac
River
(mgd)
815
813
817
8U9
939
1,066
1,166
1,158
1,031
896
Qhk
827
935
-------
-------
IV - 1
IV. THE SEGMENTED ESTUARY MODEL
The mathematical model employed in the simulation study
was a modification of the model developed by Thornann.5 This model
consists of a system of "n" equations, each describing a mass
balance of the material being studied for each of the "n" segments
of an estuary. For an estuary where good vertical and lateral
mixing may be assumed, these segments are selected along the
longitudinal axis of the estuary.
The mass "balance over each of the segments includes terms
describing changes in chloride concentration caused by advection,
dispersion, and, in the case of the segment to which sewage was
added, a chloride source. A mass balance constructed for the
"i"th segment takes the form:
- C-) C.]
dt
+ J.
1
where
V. = volume of "i"th segment, cubic feet (cf)
C. = mean chloride concentration in "i"th segment (ib/cf)
Q. = net waterflow across the upstream boundary of the
"i"th segment (cf/day)
-------
-------
IV - 2
£. = a dimensionless proportionality factor used to
estimate concentration at upper boundary of the
"i"th segment
E. = turbulent exchange factor for upstream boundary of
the "i"th segment (cf/day)
J. = rate of chloride addition from external source
i
(Ib/day)
t = time (days)
Since for this study 28 estuary segments were employed,
a like number of expressions similar to Equation 1 were obtained.
This system of 28 linear first order, non-homogeneous, ordinary
differential equations may be solved simultaneously by numerical
methods using a digital computer or by programming the equations
on a relatively large analog computer.6'7'8 In either case, all
terms of the equations must be known in order to simulate the
chloride concentration of each segment.
The Pumping Problem
In simulating the future use of the upper estuary as a
source of water, it was necessary to modify the above basic model
in order to account for the transfer of relatively large quanti-
ties of water (and its chloride content) from the uppermost sec-
tion of the estuary through the city's water supply system and
back into section six of the estuary as sewage. This transfer
is shown schematically in Figure 3.
-------
-------
IV - 3
To handle this transfer theoretically would mean an
extension of the above model into the second dimension. However,
a simpler approach was sought and found to be adequately accurate.
The simpler approach taken consists of the following sequence of
operations:
1. Integrate over a period of time, A t (normally 1 day),
ignoring the transfers, J and J .
2. Stop the integrations.
3. Modify the concentration in segments one and six
according to the effect of Jn and J,.
1 b
U. Resume the integration over the next time period of
time, A t, again ignoring the flow exchanges and
continue in this manner.
A detailed description of the modified simulation model
and the computer program has been published.6 Although the
computer program has the capability of distributing the pumped
flow to different segments, it was assumed that all wastes were
discharged into segment 6. It is projected that over 70 per cent
of the waste water will be discharged to this segment. It did not
appear that the additional precision in the final results justi-
fied the additional office and computer time that would have been
required to spacially redistribute the effluent.
-------
-------
V - 1
V. EVALUATION OF MODEL PARAMETERS
Segmentation
The size of the segments selected represents a compro-
mise betveen accuracy and computational efficiency. In this
case the segments were made small (approximately two miles in
length) in the upper critical portion of the estuary and rela-
tively large (six miles in length) near the mouth. The final
segmentation chosen is shown in Figure 1.
Segment Volumes (V.)
The segment volumes were determined from the latest
(1965) U. S. Coast and Geodetic Survey navigation charts for
the Potomac Estuary which give soundings at mean low water.
The water volumes determined by planimetering these charts were
increased by an appropriate amount to give estimates of mean
tide level volumes. Ho corrections were made for the small
deviations of the mean tidal elevations from the long term mean
values upon which the volume calculations were based. The seg-
ment volumes used are given in Table 5.
-------
-------
V - 2
TABLE 5
POTOMAC ESTUARY CHLORIDE MODEL - PHYSICAL PARAMETERS
*
Volume
Segment
1
2
3
1+
5
6
7
8
9
10
11
12
13
Ik
15
16
17
18
19
20
21
22
23
2k
25
26
27
28
Length
(Miles)
2.69
2.09
1.75
1.31
1.87
2.11
2.57
2.19
2.M*
2.06
2.25
3-95
2.9k
2.93
It. Ul
14.26
It. 1*2
^.57
5.36
5.20
5.69
6.00
6.00
6.00
5. HO
8.60
6.00
11.00
(Cubic Feet)
x 10?
25
21*
33
im
1+5
52
76
66
79
65
92
252
170
250
330
U5
520
535
620
525
650
I,l6o
1,593
1,957
1,620
2,165
3,055
5,655
Mean Tide Level
-------
-------
V - 3
Net River Flow (Q.)
The term "Q." refers to the net flow into the "i"th seg-
ment from the adjacent upstream segment, i.e., the net flow across
the i-l,i or upstream boundary of the "i"th segment.
In a dye diffusion study of the estuary,9 it was found
upon examination that the inflows to the estuary, except for the
gaged Potomac River flow and the District of Columbia waste dis-
charge, were approximately balanced by losses due to evaporation.
Therefore, in order to reduce the number of flow input functions,
Q was taken as the gaged Potomac River flow reported for the
U. S. Geological Survey gaging station (Leiter Gage) at Washing-
ton, D. C.; Q through Q,- were taken as the gaged River flow
minus the quantity of water pumped for water supply purposes;
and Q through Q „ were set equal to Q,- plus the sum of all the
waste water discharges. In the simulation studies, this was
assumed to be equal to 90 per cent of the water pumped.
The net tidal flow into and out of each segment was
assumed to be zero over a complete tidal cycle. No considera-
tion was given to the small changes in tidal elevation and,
therefore, tidal flow which occur on succeeding days during a
lunar tidal cycle.
Hydrographs showing the 1930, 1965, and 1966 River flows
used are given in Figure k.
-------
-------
V - U
Boundary Conditions (C and C )
In order to solve the system of differential equations,
the time variation in chloride concentrations at the upper and
lower boundary must be known.
At Great Falls approximately ten miles above the upper
boundary, there is a National Water Quality Network Station of
the Federal Water Pollution Control Administration. Chlorides
are measured at this station at weekly intervals. Since there
are no known sources of chlorides between the station and the
upper boundary of the model, these values were used in the veri-
fication studies. The values measured at this station for 1965
are shown in Figure 5- Upper boundary conditions for 1966 were
determined in a similar manner.
No measurements of the chloride concentration of the
incoming River flow were made in 1930. In order to construct
a 1930 upper boundary, a regression of the log River flow on
the log chloride concentration using the 1957 to 19^5 data
collected at Great Falls Water Quality Network Station was run.
This regression gave the following equation.
Log Cl = 3.65^ - 0.712 Log Q
A graph showing this equation is shown in Figure 6.
Daily chloride values for 1930 were calculated using the 1930
gaged flows and Equation 2.
-------
-------
V - 5
Obtaining boundary conditions at the lower boundary
proved more difficult. There were no regular measurements of
chlorides made at the mouth of the Potomac Estuary. A search
of all known sources of data produced the following salinity
measurements.
1. Daily surface water salinity measurements were taken
by the U. S. Coast and Geodetic Survey at Fort McHenry, Baltimore,
from 191^ to the present, and at Solomons, Maryland, since 195^-10
2. In an atlas of salinity and temperature by Stroup and
Lynn,11 graphical summaries of the distributions of salinity in
Chesapeake Bay measured on various cruises from 1952 to 196l are
given. Seasonal averages for the period 19^ to 196l are also
given.
3. In conjunction with some oyster studies, sporadic
salinity measurements were taken approximately seven miles up
from the mouth of the Potomac,12 at Bean's Pier in Smith Creek
and at Jones Shore approximately four miles above Point Lookout.
h. Salinity measurements were taken at the mouth of the
Potomac River by Chesapeake Bay Institute in conjunction with a
Potomac River nutrient study.
All of the above measurements taken in 1965 are plotted
in Figure 9- Using all of the data shown in Figure 9» the solid
line labeled "assumed 1965 boundary conditions" was drawn.
Similarly, the 1963 "to 1966 boundary conditions were determined.
-------
-------
V - 6
For 1930 only (the year of the worst drought on record), the
measurements for Baltimore Harbor were available. Using these
values and judgment obtained from the study of the 1963 to 1966
records, the solid line marked "assumed 1930 boundary conditions"
was drawn as shown in Figure 8. The resultant salinities were
then converted to chloride concentrations using the classical
relationship:
S = 0.03 + 1.805 Cl
where
S = Salinity in parts per thousand
Cl = Chloride concentration in parts per thousand
External Sources of Chlorides (J.)
Since there are no major chloride producing industries
either present or planned in the Washington Metropolitan Area,
the only external source of chlorides considered in the simula-
tion is that which is added to the waste water by people. Fair
and Geyerltf report that wastes from the human body contain from
5 to 9 grams of chloride a day. In all of the simulation studies
made, the higher value of 9 grams per capita per day was used.
Turbulent Exchange Factor (E.)
The turbulent exchange factor "E" is calculated for each
segment boundary from the expression:
K. A.
E. (cf/day) =
Ji-l'
-------
V - 7
where the "i" subscript refers to the boundary between segments
i-1 and i, "K" is the longitudinal dispersion coefficient (analo-
gous to the classical Fickian diffusion coefficient, expressed in
areal units per day), "A" is the cross-sectional area of the
boundary plane, and "L" is the segment length.
The above expression is based on Pick's first law of
diffusion, i.e.,
N. (ib/sf/day) = K f^-
1 Q.X
where "N" is the rate of mass transfer of substance per unit area
across a boundary where the spatial gradient of the substance is
"dC/dx" ("C" is in Ibs/cf) and "K" is defined as above.
If the mean concentration in two adjacent segments is
assumed to occur at their midpoints, and the gradient between
these midpoints is linear, it can be shown by geometry that:
c - r
dC i-l i
dx ~ 0.5 (\_x + L±)
Substituting Equation 5 into Equation k gives:
K(C - C. )
N. (Ibs/sf/day) =
Multiplying Equation 6 by the cross-sectional area across
which the turbulent exchange takes place yields the mass flow
rate "V -."
.
T-, C-IT. /, \ 1 1
D. (Ibs/day) =
A. K. (C. ., - C. )
. o.3 (L. , + L. )
1 ""* X 1
-------
-------
V - 8
Substituting Equation 3 into Equation 7 yields:
D. = E. (C. . - C. )
i i i-l i
which is the expression used in Equation 1 to describe the mass
flow of substance across a boundary due to turbulent exchange.
The "E" term, or more specifically "K," was the unknown
parameter which the verification study was designed to evaluate.
The "K" term as used herein is defined as the coefficient of longi-
tudinal dispersion. This term applied to net longitudinal mass
transport resulting not only from turbulent diffusion but also
from velocity and concentration variations in a cross-section.
The latter effect has been shown to be of greater significance
in estuary type flows.15 It has been assumed that dispersion is
analogous to Fickian diffusion with the diffusion coefficient
replaced by a dispersion coefficient.
The values of "K" for the upper 12 boundaries were obtained
from a large-scale dye diffusion study described elsewhere.9 For
the lower 17 boundaries, initial values of "K" were first assumed
on an empirical basis.16 These values were then adjusted to obtain
good agreement of the model output with the salinity concentrations
observed in the estuary.
A list of the values which gave the best matching between
observed and computed values is given in Table 6. These values
were used in the simulation studies which follow.
-------
-------
v - 9
TABLE 6
POTOMAC ESTUARY CHLORIDE MODEL - INTERFACE PARAMETER
Interface
0-1
1-2
2-3
3-1+
4-5
5-6
6-7
7-8
8-9
9-10
10-11
11-12
12-13
13-1*1
14-15
15-16
16-17
17-18
18-19
19-20
20-21
21-22
22-23
23-24
24-25
25-26
26-27
27-28
28-29
Area (A. )
(Sd. Ft*)
4,610
30,000
214,300
29,000
34,300
32,700
47,600
49,900
43,600
59,000
66,500
84,900
111,000
130,000
171,000
117,000
221,000
220,000
243,000
193,000
217,000
2145,000
490,000
576,000
509,000
604,000
753,000
1,160,000
1,700,000
Longitudinal
Dispersion
Coefficient
(K )
(Sq_. Mi /day)
0.00
0.05
0.10
0.15
0.20
0.25
0.35
O.H5
0.55
0.65
0.75
0.90
1.20
1.50
1.95
2.80
3.90
5.30
6.00
6.00
6.00
6.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
Turbulent
Exchange
Factor (E. )
(Cu. Ft /day)
x 108
0.000
0.033
0.067
0.150
0.228
0.217
0.376
0.498
0.546
0.900
1.222
1.301
2.041
3-508
4.797
3.990
10.486
13.696
15.505
11.580
12.625
13.279
43.120
50.688
47.149
45-559
54.463
72.056
81.600
-------
-------
V - 10
Proportionality Factor (£.)
The proportionality factor "5" is used in the first two
terms of Equation 1 that describe tbe advective movement into and
out of a segment. This mass movement across the i-l,i boundary
due to advection may be expressed simply as the product of the
net advective flow "Q." and the concentration at the boundary.
However, since only the average concentration of the adjacent
segments is considered in the model, the concentration at the
boundary must be calculated. It can be shown by geometry that,
for the case of a linear gradient between the midpoints of two
adjacent segments, the concentration at the boundary is given by
the first two terms in brackets in Equation 1 where:
L.
1-1 i
Equation 9 gives a satisfactory first approximation for the pro-
portioning factor applicable to the i-l,i boundary. To assure a
realistic solution, however, the following relationship must be
observed:
To simplify computations where "Q" was changed frequently, the
inequality given by Equation 10 was treated as an equality. So
long as the proportionality factor "£" remains within the lower
limit defined by Equation 10 and the upper limit of unity, the
solutions obtained by the model are relatively insensitive to
the value chosen for "£."
-------
-------
VI - 1
VI. VERIFICATION RESULTS
Various sources of chloride data were used in the verifi-
cation of the model. The most significant were the data provided
by the D. C. Department of Sanitary Engineering and by the Virginia
Electric and Power Company's Possum Point Power Station. The D. C.
Department of Sanitary Engineering made bi-weekly sampling runs
down the Estuary and also obtained daily values at Woodrow Wilson
Bridge (12 miles downstream from Chain Bridge), while the Virginia
Electric and Power Company runs daily chloride analyses at Possum
Point (approximately UO miles downstream from Chain Bridge).
As stated previously, knowing values of the river inflow
and the boundary conditions, the values of "K" were adjusted to
obtain good agreement of the model output with observed chloride
concentrations. The final results of these adjustments are shown
in Figures 9, 10, and 11 for 1965. Similar results were obtained
for 1963 and 196^ using the same "K" values.
In attempting to reproduce the 1930 conditions, only the
results of one set of 11 grab samples could be found.17 These
data and the computed 1930 conditions are shown in Figure 12.
-------
-------
VII - 1
VII. SIMULATION
With the values of "K" obtained in the verification stud-
ies, it was possible to simulate the effects of future diversions
into and out of the Estuary system on chloride concentration. In
order to investigate the question posed in the introduction and
to examine the sensitivity of the results to the assumption made
in formulating the model, the simulations shovn in Table 7 were
made. The results of these simulations are shown in Figures 13
to 16.
-------
-------
t—
M
CQ
CQ
§
O
O
CJ
o
i-3
O
K
Q
>H
W
CD
(JO
*H
cd
f-i
A*
U
O3
•H
Q
CD
-P
03
cd
IS
OJ
03
P
!>J
H
ft
ft
P
CQ
fn
(U
-p
cd
>
T3
§
H
(*<
»J
H
0)
>
•H
vy*
CM
03
C
0
•H
-P
•H
Tf
c
O
O
•d
CD
to
o
ft
a
M
h
0)
,n
•P
O
-p
c
•H
O
ft
03
§
H
fe
*
M
(U
-p
cd
12
0>
-p
03
cd
&
•d
c
cd
O3
c
O
•H
-P
•H
Tf
fl
O
O
b
H
cd
•d
o
r-*
r->
O
cq
-d LTN
0) rH
03
•H -P
Cd 03
h cd
H
0)
03 JH
^ o
CH
^
(U VO
-p
Oj Vl
!* o
0) JH
> O
•H -P
-P 0
ft cd
g >
!25 fe5 a U rQ
CQ O3 03
0) 5 -P -P -P
$H -H -H -H
Cd 03 O3 03
^
-P -P -P -P
03 G a a
W 0) 11)
03 03 03
In >
c?
•d
P3
•H
03
-p
(3
0)
•H
O
•H
>
f>
M
CH
hfl
C
•H
•d
cd
o
H
0)
Tj
•H •
M -d
O CD
H H
fi -0
0 =3
O
-d -d
o
rQ
03
«H
O
H
H
<
03
<1J
-P
•rH,
O3
-P
a
(D
ra
0)
^.
ft
O
EH
O
H
O
OJ
O
m
ON
H
VII - 2
-------
-------
VIII - 1
VIII. DISCUSSION OF RESULTS
Validity ofthe Model and Parametric Analyses
The mathematical model utilized in this study is actually
a numerical approximation of the partial differential equation
which describes the temporal and spatial relationships of a con-
servative substance in an estuary. Two problems arise in its use
here.
1. The model does not completely explain the integrated
mechanisms which control the hydrograph of an estuary.
2. The lower portion of the estuary is highly stratified,
and the assumption of vertical homogeneity is not actually valid.
The validity of both of the above statements is strongest
near the mouth and weakest in the upper estuary. From an engineer-
ing and planning standpoint, it was assumed for this study that
since the model matched historical data with reasonable accuracy,
it has sufficient integrity to predict future effects as long as
the simulated conditions are reasonably similar to the verified
conditions.
For example, recent studies indicate that the exchange
coefficient is not a fixed physical parameter which depends only
on tidal velocity and geometry, but that it is a time-varying
parameter which depends on density currents set up by chemical
concentration (salinity) gradients. Therefore, it must be real-
ized that if there are drastic changes in salinity within the
-------
-------
VIII - 2
system caused by diversions, the results of the model must "be
interpreted with caution.
The most significant case in the simulation study where
this (drastic salinity changes) occurred was the one where the
waste effluents were pumped out of the system and the chloride
concentration rose rapidly to levels never experienced in the
system during the verification studies. In this case since the
higher chlorides would probably cause an increase in "K" and,
therefore, an increase in the rate at which the chlorides were
diffused into the upper segments of the estuary, this effect
would not change the obvious conclusions of this result.
Another way in which the simulated condition varied sig-
nificantly from the verified condition is in the direction of
river flow in the upper segments. Such a change might also
affect the values of "K."
The effect of an increased turbulent exchange factor
which might be caused by the changes in the tidal and flow regimes
forced on the system in simulations were investigated by varying
the value of "K" in the upper eight segments. The results of
this study are shown in Figure 15- From Figure 15 it was con-
cluded that the effect of such changes, should they occur, would
not change the study conclusions.
The effect of an error in the assumption of a. per capita
chloride contribution of 9 gm/day to the system was also checked.
This rate of chloride addition was doubled, with the results shown
-------
-------
VIII - 3
in Figure 15. This shows that major errors in this estimate
would have only a small effect on the results.
The effects of a large consumptive withdrawal for a short
period (e.g., as might be caused by a major conflagration) was
also investigated, and the water withdrawal rate was increased
by 50 per cent for the last 15 days of October. None of this
increase was returned to the estuary. This had the effect of
increasing consumptive use by a factor of six. The results of
this simulator, also shown in Figure l6, indicate that such an
action would only increase the chloride concentration from 6l
to 6k mg/1.
In order to check the possible cumulative effect of all
the above conditions, a final simulation run was made witn all
of the above conditions imposed. This run, also shown in Figure
16, showed an increase in the maximum chloride concentration by
25 per cent should this occur.
Simulation Results
The simulation results shown in Figure 13 indicate that
if the water of the upper estuary is used as a water supply source,
and the waste water is transferred out of the upper estuary,
salinity intrusion will become a significant problem. In such
a case, provision for desalting equipment must be made. How-
ever, if the present plans to discharge waste to the upper estuary
are carried out, the results shown in Figures 15 and l6 show that
-------
-------
VIII - k
it can be used as a source of water supply without a significant
problem of chloride buildup occurring.
Even in the extreme event of the water use rate doubling
during a critical period, the chloride concentration of the
upper estuary did not approach the Public Health Service Standard
for drinking water of 250 mg/1.
-------
-------
IX - 1
IX. CONCLUSIONS
1. The results of computations of the temporal and spa-
tial variation in chlorides in the Potomac Estuary using the
segmented estuary model developed by Thomann are in reasonable
agreement with observed data.
2. Simulation results using this model indicate that
if the Washington Metropolitan Area used the upper Potomac Estu-
ary as an auxiliary source of water, the chlorides in the system
would not even begin to approach the Public Health Service limits;
and thus, desalting equipment would not be required.
-------
-------
X - 1
X. BIBLIOGRAPHY
1. Davis, Robert K., "The Range of Choice in Water Resource
Management: A Study of the Potomac Estuary," Resources for
the Future, Inc., Washington, D. C. (in press).
2. Fox, Irving K., "The Potomac Puzzle—Is There a Reasonable
Solution?" Atlantic Naturalist, April-June 1962.
3. U.S. Army Corps of Engineers, "Potomac River Basin Study,"
Water Supply and Water Quality Control, Vol 5 > Prepared by
Division of Water Supply and Pollution Control, U. S. Public
Health Service, Charlottesville, Virginia, 1962.
h. Hazen, Richard, et al, "Future Water Supply, Metropolitan
Washington Region, Report No. 1, Requirements and Sources,"
Metropolitan Washington Council of Governments, Washington,
D. C., 1967.
5. Thomann, Robert V., "Mathematical Model for Dissolved Oxygen,"
Journal of the Sanitary Engineering Division, American Society
of Civil Engineers, Vol. 8^, No. SA5, Proceedings Paper 3680,
Oct. 1963, pp. 1-30.
6. Jeglic, John M., "Mathematical Simulation of the Estuarine
Chloride Distribution," Digital Computer Technology and Pro-
gramming Analysis Memo No. 1033, General Electric Re-Entry
Systems Department, Philadelphia, Pa., Feb. 196?.
7. Hetling, Leo J., and Bunce, Ronald E., "A Digital Computer
Program for the Steady-State Segmented Estuary Model," (in
press).
8. Jeglic, John M., "Mathematical Simulation of the Estuarine
Behavior," Digital Computer Technology and Programming Analysis
Memo No. 1032, Rev, A, General Electric Re-Entry Systems
Department, Philadelphia, Pa., July 1967-
9. Hetling, Leo J., and O'Connell, R. L., "A Study of Tidal Dis-
persion in the Potomac River," Water Resources Research, Vol.
2, No. k, Fourth Quarter 1966, pp. 825-8U1.
10. U. S. Department of Commerce, "Surface Water Temperature and
Salinity, Atlantic Coast, North and South America," Coast
and Geodetic Survey Publication 31-1, U. S. Government Print-
ing Office, Washington, D. C., 1965.
-------
-------
X - 2
11. Stroup, E. D., and Lynn, R. J., "Atlas of Salinity and Tem-
perature Distributions in Chesapeake Bay 1952-1961 and
Seasonal Averages 19^9-1961," Chesapeake Bay Institute,
Graphical Summary Report 2, Johns Hopkins University,
Baltimore, Md., Feb. 1963.
12. Dunnington, Elgin, Private Communication, Research Biologist,
Chesapeake Biological Laboratory, Natural Resources Institute,
University of Maryland.
13. Whaley, R. C., Carpenter, J. H., and Baker, R. L., "Data
Summary Potomac River Nutrient Cruises 1965-1966," Chesapeake
Bay Institute, Special Report 11, Johns Hopkins University,
Baltimore, Md., Aug. 1966.
Ik. Fair, Gordon M., and Geyer, John C., "Water Supply and Waste
Water Disposal," John Wiley and Sons, Inc., New York, 195^-
15. Holley, E. R., Jr., and Harleman, D. F., "Dispersion of
Estuary-Type Flows," M.I.T. Hydrodynamics Laboratory Report
No. 7^, Cambridge, Mass., Jan. 1965-
16. Hetling, Leo J., and O'Connell, Richard L., "Estimating
Diffusion Characteristics in Tidal Waters," Water and Sewage
Works, Vol. 112, No. 10, Oct. 1965.
17. Durford, C. N., "Water Quality and Hydrology in the Fort
Belvoir Area, Virginia, 195^-1955," Geological Survey Water
Supply Paper 1586-A, U. S. Government Printing Office,
Washington, D. C., 1961.
-------
-------
LEGEND
MAJOR WASTE TREATMENT PLANT
ESTUARY SEGMENT
A GAGING STATION
POTOMAC RIVER at WASHINGTON. D.C
A DISTRICT OF COLUMBIA
0 ARLINGTON COUNTY
C ALEXANDRIA SANITARY AUTHORITY
D FAIRFAX COUNTY - WESTGATE PLANT
E FAIRPOC COUNTY - LITTLE HUNTING CREEK PLANT
F FAIRFAX COUNTY - OOGUE CREEK PLANT
JC
.OCATtON MAP
POTOMAC
R STUDY AREA
SCALE M MLES
FIGURE I
-------
-------
Q
U
LJ
z
in
oc
LJ
I
U
a:
_
o
a
O
or
h-
bJ
o
I
8
8
-------
-------
THE PUMPING PROBLEM
= -Q PUMP C|
E 7.8
Q PUMP
Q IN - Q PUMP
WATER
AND
SEWER
SYSTEM
J6 = 0.9 Q PUMP C| + P
O.I Q PUMP
CONSUMPTIVE USE
0.9 Q PUMPED
Q IN - O.I Q PUMP
FIGURE 3
-------
-------
\
o
S
o
o
o.
5
8
S
(«P) MO1J M3AIM
FIGURE 4
-------
-------
S 5.
FIGURE 5
-------
-------
«/)
>
LJ
*£
M
sJ
IT
Ul
a
%
CVJ
(M 00
CO (VJ
fi W « 5f O*
siaiacriHO
FIGURE 6
-------
-------
in
"'/• A1INI1VS
FIGURE 7
-------
-------
cc
9
o
u
FIGURE
-------
-------
I*™
o
> "5
CC w
5 :>
FIGURE 9
-------
-------
Z z
UJ Q.
§Q
2
8
fi
K
9
o
fit
« Kl «
u. oa Q
8
S
§ 8 \
Q o e
in •* «•
I §
J S
o
8
o
FIGURE 10
-------
-------
o
LJ
3
°\
(7> 1
o0
©I
o
8
o
00
(I / 6ui) saaiwnto
FIGURE
-------
-------
LJ
O
UJ
0
cr
3
U
in
Ul
Q
<
CO
LJ
Q
or
3
U
g 8
< ffi
1
2
S
u.
3 Oo:
15O
O Z
UJ < >-
£ era
X >_
X , i
X «—
FIGURE 12
-------
O
GO
UJ
tr
U £
Q 5
I
CO
LxJ
R 5
2 o
y
5
8O
o
(|/6ui) S30IMO1HO
o
o
M
FIGURE 13
-------
-------
(I/Bui)
S3QiaO1HO
FIGURE 14
-------
-------
8 3
(l/Sui) S3CHMCT1HO
FIGURE 15
-------
-------
(I/Bui) S30IHCTIHD
FIGURE 16
-------
-------
TAHLB OF CGSKSSffiS
PRSFAC2
LIST OF TABUS yll
LIST OF FIG833S ..... ,..,
•>**o*»»'»»». ••••«.. nil
LIST OF APP®JDIGSS „
*•"*<>*«'•••...» x
y Chatty
5
} I. IOTBOOTCTIQ3 . . l
I II. WIST OF LITSamJSE 5
• • . 5
MKHCES FOB 1HALIS58 .... 16
Descriprti-78 Analysis lg
Statistical Mod«l3 17
Kiirar Flow SlasLLatI«ai 19
asia Ekaa^i«aent . 21
B^alaticn ifedala 21
'* Trsat»a»t B^jmiraasmt* 23
Cas* Stm47? Th« Poto««c Estaasy 25
III. FLOW HSLSAS1 HODSL . 27
THE HlOBiai .... ~7
I
* '• QEMSSII, APISSSA.CH . 29
t-1 Q7J4T T'T*y 'HTYOusr/ «saT««a«
29
30
31
P^aleal Pa^raatftara ^ ^ 33
H@s«rrair Qoali-ty 33
ciscai?rr?s BISAGCS ....... 34
mmL GB^TIO^S o 35
EsooaAacaG SOLDTIOK 36
AM) CX3SPOTSR PROGRAMONQ •• 41
V-
iv
-------
TASLE OF CONTENTS (continued)
IV. PATUXENT AND POTOMAC RIVER BASBI SYSTEMS , ....... . 45
THE PATUXENT SYSTEM ...... ....... . . . . . 45
THE POTOMiC SYSTEM .................. 4b
Source of Data ....„.,.......„.».. 46 «
Description of Basin .......,„....,,. 4? ^
V. DETELOEtSHT AND INTERPRETATION OF TABLEAUX AND THE <
FORMATION C? H3SEKVOIH HELSAS2 PATTETOB. ......... 52
DEVELOHHEMT AND BirERPREEATlON OF TABLEAUX ...... 52
Development of Tableaux .............. 54
rs *
Incremental Flow Tableaux ............. DO
Dynamic Prograaaning Tableaux , ........... 6? ^
FLOW JRSLS4SE PATTERNS ............ ..... 68
WATER QUALITY CCJITP.OL CQN3IDERATIOJE IN
EESEHVDIR DESIGN ............ ..... . . 70
VI. SEJSmVTTY ASALTBES ............ . ...... 73
BIOCHEMICAL AND HOSICAL PABAMETEESS . ...... ... 73
Reaeratiem ..................... ?4 4
Deasraticm and Minimum BOD Concentrations ..... . 75
D3SIGN PARAMETERS ......... ..... ..... 77
Temperature .......... ........ . • 77
K
BCD-DO Concentrations ia the Reservoirs ...... 78
Waste^ater Leadings ........ ........ 79 *
CO Concentration in the Wastewater Effluents .... 81
SOCIO-2CCBJGUIC PARAMETERS . . ...... ....... 82
Water Quality Objectives .............. 82
Imposed Was tester Loadings ............ 82
-------
TABLS 0? COSTBHS (continued)
gharrtar
VII. FOBTHEa DSVSLOHCaTS OF THS FLOW HSLEASE MODEL 86
LEAST-COST SGL3TIG3S a6
CC2IPARISON 0? QPTIMIZATiaf PAB4MSTa3S 88
OTHER POSSIBLE SAXES QUALITX MSASUBaCSCS 90
LDJMOE TO SBrsa FLCST siMiLarics MODELS ....... 92
Use of Yield Curves 92
Hivsr Flos Simulation Modals 94
LIHKAGS TO SSXniHT AMD RITES BASIS QOALItT -
SDflJLiTICW 1HQDBLS 95
IU-STKSAM IMPCOJfEMEaflS 95
VIII. D3SCDSSIOH OF BS5DLTS 99
POSUBLAIIONS 99
S CCSi'CSFZS AND AMfTATIOJ«S 100
US2 0? OPTIMAL ESLiaSE SSQ02HCES 104
OSS OF WJiTEH QUALITY ISlMGaiSNT MODELS WITHIN THS
FSASS'fQRX OF CUHHSST TECaKOLCGIGAL AND BSTITU-
TIOSAL PMCJTICES 105
IX. Smai&EI ADD COtfCLTBIOSiS 110
nd!^
A 115
B , . . 137
C ........ 157
D 188
E . 200
BIBLICGHAPHT
225
-------
LIST OF TABLES
1
2
3
4
5
6
7
8
9
10
11
12
13
U
15
16
17
18
19
20
Inventory of the Potcaaae Hirer Basin
Inventory of Flow Release Model for the Potomac
River Baain „
Reservoir Data - Potomac River Basin
Incremental Flow Tableau - Nodes 570, 562, and 494 . .
Inereaieatal Flow Tableau - Nodes 462 and 458
Incresaental Flc-r Tableau - Node 460
Incremental Flow Tableau - Node 436
9ynaadc Prograaaiug Tableau - Node 560
Pynaaic Programming Tableau - Node 460
r>ynasdc Programing Tableau - Node 456
Dynaaaio Prxsgrawsingr TabTL^a^ (Churchill K^
Forrolation) - Node 456 . f .......
Flow Eanga Data - Upper Potosae River Baain
Example of an Orxtiaal Release Sequence
Optimization Criteria of the Flow Release Model -
Version II
Stream Flow Eata for Flow Release Model - Potcwac
River Baain
Surface Watar Supply and Waatewatar Inventory -
Potomac Hivar Basin ..
Cost of Field Studies
Card Foraats for Verification Link and Flow
Relsass Model
Array Notation for Verification Link and Flow
Release Model
47
48
51
57
58
59
60
61
62
63
64
65
69
87
123
150
153
156
160
168
vii
-------
LIST OF JTGDHBS
. Page
1 Factors Affactiag Streaa Dissolved Oxygen
In a Non-Tidal Syataw .................. 15
2 A Schematic Raprsaantatioa of Proposed Rea»rvoir Syst«a
- Poteaae River Basin .................. 71
3 Simplified Flow Chart for Flow Raleaae Jfcxi«l ...... 44
4 Potoasac filvsr Baaia Map Showli^; Proposad Reservoirs ... 50
5 Soheaatic of Upper Potcaaac Hiv«r Basin Flow Relcaaa
ikxlal .......................... 53
6 Reservoir Release Sequences for Various Flows at
th« Eat'oary ....................... 71
7 Ccaapariaon of Reservoir Release Sequences with
Varying Biochemical and Physical Paraaeters for
1500 cfs at the Estttary ................. 76
8 Ccasparison of Saseryoir Relaaae Sequences with
Varying Engineering Design Parameters for 15CO cfs
at the Estuary ..................... 80
9 Coarparison of Reservoir Release Sequences with
Varying Social-Econoadc Parameters for 1500 cfa
at the EstTiary ..................... 83
10 Ccmpariaon of Reservoir Releaaa Sequences for
Various Optiaiissatian Paraaetars for 1500 cfs at
the Estuary ....................... 89
11 West Branch of Conococheagua Cresi, Site No. 5,
Uniform Use Bate Tarsus Storage ............. 93
12 Linkage for Eiv«r Basin Sater Quality Sisalatian .... 97
13 Nomograph for Heaeratioa Batas, O'Cozmor and Dobbins . . 119
H Kcjaograph for laaeration Rates, T7A ........... 120
15 Ncaograph for E^eratiooa Rates, OSCS .......... 121
16 Ccapatad Tssrp«ratures , DO and BOD Profiles and
Streaaa Survey Data for the North Branch Potomac
Riyar ...... . ................... 122
!7 Depth and Haa^ratica Variations, North Branch
Potcsac River ...................... 128
viii
-------
LIST OF FIGURES (Continued)
Title
Page
18 Cc§Bput*d Phosphate Profiles and Stream Survey Data
for the Pattucent River Basin ..............
19 Velocity Versus Flow and Depth Versus Flow for the
Pattucent River at Hardesty, Md .............. 133 ^
20 Lower Potosaac and Monocacy Rivar ., .......... 139
*
21 Lower-Middle Potoaac and Antietaa Creek ........ 140 „
22 Lower-iiain Stem Shenandoah Hivwr ............ 141 <
23 North Fork Shanandoah Hiver ............... 142
t
24 South Fork Shenandoah Rivar ............... 143
25 North, Middle and South Rivers of South Fork t
Shenandoah River ............. . ...... 144
26 Upper-Middle Potomac River and Lower Conococh*ague *
and Opaquon Creelcs ............ . ...... 145
27 Upper Conocheagu* and Opequon Creeks .......... 14^ <
28 Upper-Main Stesn and South Branch Potoaoac River ..... 147
29 North Branch Potoaac River . .............. 148
30 Over-all Potoaac River Basin System ........... 149
31 Forsats for Data Cards ................. 174 '
32 Typical Data Compilation for Verification Link ..... 175 <
33 Typical Data Compilation for Flow Release Model ..... 176
34 Patuxent River Basin .................. 177
ix
-------
LIST OF APPENDICES
Appendix:
A SOME CdMEHTS ON MODEL VERIFICATION
REAEHATIGN CQEFFICI2HT
B
D
E
Calculated Pro* Observed Reaoration Rates
Predictive Foranlatiana
Gaseous Tracer Techniques
Comparison of Methods
USE OP PREDICTIVE FORMJLATIGKS
CROSS-SECTION DATA ,
BOD J4ECHANISMS AM) FACTORS . . . ,
A PREDICTIVE MODEL FOR PHOSPHATES
TIME OF TRAVEL ,
A PROCEDURE FOR VERIFICATION OF THE QUALITY
FORMOLATIQSS
115
115
115
116
117
117
118
125
127
129
131
134
Defining the Physical Systea
Establishing Stareaan Channel Characteristics . .
Basin Partitioning and Parameter Determinations
Verification of Quality Formulations
MODEL DATA FOR THE POTOMAC RIVER BASIN.
COST OF DATA
COMPUTER PROCSAM DOCDMSSTATIOM AND USAGE WITH
SAMPLE PROBLai
DATA FOaflUS AND TYPICAL DECK CCMPUTATIOHS
PROGBAM USAGE WITH SAMPLE PROBLEM ....
SAMPLE OF IHFOT DATA FOR FLOW RELEASE MODEL
PATUXESrr RIVER BASIN
VERIFICATION LBK COMPUTER PROGRAM ....
OPTBIAL FLOW RELEASE MODEL COMR3TER PROGRAM
134
135
135
137
156
157
157
157
158
178
188
200
-------
CHAPT3S I
HffBOWTCTIO*
To better control, protect, and sausage the water quality of our
rivers, water resources engineers have directed increased attention to
development of analytical techniques for determination of procedures and
policies by which optical operation and sanagenent of entire river basins
nay be realized. Analytical approaches to the design and soanagaaent of
water resources systems have as their fundaaental objective the pro-
vision of water at a pre-eet quality for the least cost. The analyses
also include investigation of alternatives, determination of inadequacy
probabilities, and establishment of optiaal operational procedures.
There are essentially three methods for controlling water quality
within a given river basin:
1. Regulation of the total waste lead. This approach requires
establishment of specifications for the degree of treatment of
wastewat«rs to he effaeted prior to discharge, or, in the case
of soae industrial processes, for certain in-plant modifica-
tions or process changes.
2. Regulation of river flow, either by reservoirs, pumping from
well fields, or by poxped storage, in order to provide appro-
priate dilution of waste loads when required.
3. Installation of in-streaa treatment devices which either pro-
vide an integral jaeana for removal of pollutants or which act
to enhance the rate of natural removal of pollutants; stream
aarators, for example, function in the latter capacity.
-------
The esginaariag approach to analysis and solution of water quality
control problisss is graatly influsBced by the degree of river basin de-
velopment. Two general types of situations which are encountered in
the regulation of flow far Quality control ara:
For a river basin ia ^Jsieh ths rosarvoir systasa ia fully
developed, tha problem ia oz» of determining that flow release
sequence wiiieh will provicla best quality for a giran proba-
bility of iuadaq-oaey. Other watar reqtiireaeuts say or say not
be included ia tiia approach.
and
2.
For a basia ia which flo» regulation posaibilities are either
limited or cooeadatent, but for ^tiieii reservoir development is
proposed, tha problaa beccaaes ona of j^ijsijig decisions regarding
both design aad operation. Not only oast storage requirements
for Quality control be deterjaiaed, but also a flew release
sequence to asset the prescribed quality control criteria for a
givan probability of inade
-------
2. investigate various physical, biochemical, engineering design,
and socio-econcsaie parameters which say influence the optixaal
flow rslaaae sequencej
3. dsaaonstrata the response sensitivity of the method to these
parameters in an actual basin; and
4» investigate the significance of various definitions of optimal
such as Tjest" quality, miniswa flow, and least-cost on the
reservoir release sssquenees.
Chapter II presents a brief review of the literature pertaining to
formulations and relationships for description of water quality trans-
formations and for detgraining flow regulation and wastewater treatment
requirements. Included in the review are models which have been pro-
posed or are currently being used in the area of water pollution control
II for least-cost solutions for wastewater treataent, flow regulation,
c
estuary analysis, and generation of synthetic hydrology.
Chapter III is devoted primarily to development of the flow release
1
model. The basic concepts of the Bodel and the development of the
i
descriptive paragon are presented. A brief description of the Patuxent
and Potomac River Basin Systaas which ware used as test basins for
the model are presented in Chapter IV.
In CMptar V, the developsjent and interpretation of the incremental- ,
flow and the dynaadc-prcgraasming "tableaux are explained. Formulation of
flow release patterns is presented in the latter part of Chapter V.
-------
Chapter VI is davoted to a sensitivity analysis of certain physical,
biocb.ead.eal, engineering dasiga, aad socio-econottie paraaeters.
Variooa adaptations of the flow release aodal, including' that pro-
viding for leaat-cost solution, are presented in Chapter VII. A coa-
parison is usad* of the reservoir release sequence aa developed using
various optimization parameters. Other possible sjodel expansions are
proposed, including river basis water quality simulation with linkage
to estuarina isodela.
In Chapter VIII, the results of the flow release model are dis-
cussed. The summary and conclusions of the study are presented in
Chapter IX.
Seme typical problssas and possible solutions encountered in model
verification are presented in Appendix A. A proposed aodel for predicting
phosphate concentration in flowing streaas is also presented therein.
Detailed schematics of the Potomac Hiver Basin showing wastewater
discharges, daas, water iataJcas, etc. are exhibited in Appendix B,
along with the basic inventory and stream flow data used in the flow
release aodal.
Data foraats, array notation and a brief description of the use of
the verification link and flow release jaodel are contained in Appendix C.
The ecsaputer prograas for the verification lini and flow release model
are given in Appendices D and E, respectively.
-------
CHAPTER II
RFHEW OF LITERATURE
Before one can attempt to evaluate the effects of wastewater dis-
charge o? flow regulation on water quality in a stream, it Is necessary
to understand the relationships between the geophysical character-
istics of the drainage area and the biochemical and physical environ-
ment of the stream. The first part of this chapter presents the
historical development of the relationships between dissolved ozygen (IX)),
biochemical oxygen demand (BOD), stream flow, temperature, velocity,
depth, and certain other parameters which say affect water quality. The
basic quality parameters considered in this study are DO, BOD,^and
temperature. The latter part of the chapter presents various models
which are currently being used for determining treatment requirements
and flow regulation policies.
The first quantitative description of deooygenation and reaeration
relationships in streams was presented in the classical studies of
Streeter and Phelpeflj in 1925. These authors noted that the net rate
of change (**) in the ojtygftn deficit (D) in a streaa at any tiae was
equal to the algebraic SUB of the opposing rates of deozygenation and
reaeration. This is expressed mathematically as:
dj> - K.L - KJD ----- (2-1)
dt -1 d
-------
in which
X, = Bate coefficient for deoxygsaation, reflects tha
availability of organic catter and tha activity of
the organisffis pr-33 ?nt
L = Oxygen d«aasd of the organic matter, in sg/1
jC, a Rats ccttjfficiesxt for raaeration, reflects tha degree
of turbulence a_ad the transfer-efficiency at the air-
watsr interface
D * Dissolved oxygen deficit of tha water in sag/1
The expression given by otreet^r and Pb.alps ia a linear differential
equation of the first order. Tha first tena, JLL, ezpresaea the rate
of oxygen utilization or daaeration resulting from oxidation of organic
weste isatter. The tern 1C D is tha rate of reaeration, which is a
function of the difference bwlryaen the dissolved oxygan concentration
at any time and the concentration corresponding to a condition of ozygen
saturation^
Streeter and Phal3>s f-orther stated that "The rats of biochejnical
oxidation of organic natter is proportional to. the remining concen-
tration sf the •uno:ddi3ad substance^ measured ia terns of oxidiaa-
bility." This can be erpr.?s3ad jrathscsatically as a first order reaction
•*ith tha intc-gratad fou"ia
L, » L £
t a
in which
L « ^a initial concentration of oxidisabla organic i3
Sis cone snt/rat ion of oxidizable organic zmttar at
days
-------
Ih« iatsgratsd form of th« Strsater-Phelpa linear differential
equation for -rr defines tha dissolved coygaa deficit, &., at any tia»
in teras SL, 3L, L , and tha initial dafleit, D , &3
JL. «£ «i a
I.L
(2-3)
In thair studies of the Ohio Hivsr, Stra«ter aad Phelps also in-
vestigated tha effect of taarp^ratxira on t&e dsoa^snation aad tha
r-3aeration coefficients aad formulatad appropriate empirical relation-
ships. Tha basic forssolation for the effect of teaperatures on the
deoxygenatlon rats coefficisat is
S
K
(2-4)
f f
where T and T are t-s?o Icoown tearperatoires, K and K are the corresponding
values of the deoxygeaation coefficient, and 6 is the thermal coefficient,
a constant for the reaction.
Tha reaction rate constant for reaeration was determined ezperl-
-nentally for the Ohio River, and was found to vary with flow and depth
according to the relationship
vhich
V
H
C
H
» Yalocity of flow in feet/sec
« Maan rivar depth in feet
« Eiapirical eorstaat
n Empirical
(2-5)
-------
The original formulation proposed by Streeter and Phelps has been
expanded over the years. However, tha dissolved oxygen and BOD formu-
lations, temperature corrections , and reaaration formulation have held
true with slight saodif ications .
In 1939, Fair[2] simplified tha use of the oxygen sag relation-
ship developed by Streeter and Phelpa. Fair introduced a new constant
called the Self -Purification Factor, "f".
K
----- (2-6)
By setting 4r = 0 in Equation 2-1, one then obtains
Z?
L - ~D ----- (2-7)
By solving for the critical deficit, D , and incorporating the Mf" factor
-JL
-* ----- (2-8)
where D is the maximum dissolved oxygen deficit at the critical
c
deficit point, in Bg/1.
To further facilitate the use of the oxygen sag equation, Fair
developed a noBograa and a table of Mf w values for various types of
streaas. The use of this equation eliminates the need for determining
a separate reaaration coefficient. However, it aust be recognized that
the formulation is basad on the assxunptions that the reach is homogen-
eous. The uss of this self -purification factor ia quits popular today,
priaarily for rough a valuation or approximation.
In 1948, Thomas [3 3 expanded the oxygan sag relationship to in-
clude a third terra, K~. The factor K was used to reflect the
-------
ccsrpcaiticn of the waate and receiving water and th« relative quies-
cence of the straaai at tb» point of interest.
The equation developed by Thorns ha* the form
Vl
»t - k - e + D e ---- (2-9),
in which 1C, is a constant of proportionality reflecting the ccoposition ,
of the waata and recairhjg streaa, and the quiescence of the stream,
Thessaa indieatad that the tiaa-«veraga value of K~ is zero, with
fluctuations occurring witb cbangan in ta»per«turef flow, and channel
conditions. The ranga of valaee of K- given by Thonaa was -0.36 and
+0.36. Thcjaaa also davalcpad a noKcgrass for the solution of the ex-
pandad equation.
Another variation of the oxygen aag equation for establishing
coygan relationsaipa in streaxv waa proposed by Vela U, 5, 6, 7] . This
vmriatiso, called the "Qaygen Budget," is an accownting stepwiae method
for deteraining oxygea balance.
On the asset side of the accounting ledger, 7elz includes dis-
solved oxygen present in the stream, that provided by reparation, and
that contributed by photcaynthetio activity. On the liability side of
the ledgar, Vela includes exertion of the BOD, demand of sludge deposits,
biological extraction, etc. The DO deficit is calculated for a given
r«ach and stream flow by sunming the sources and sinks of oxygen and
applying proper conversion factors.
In 1951, Thonaa[dj simplified the oxygen sag relationship and
=*da it sore ajaecabla to stre** stapling data. An approximate
-------
J.U
iution to the basic linear differential equation proposed by Streeter
»- d Phelps was developed. The equation for the appraxiiaate solution or
•••rtep-jnethod" of Thomas is
n « Y+ • ~2 + 0 -2D ..... (2-10)
t t *
'. which I. is the oxygen uptake in the reach, ng/1 or #/day, and all
*
.-tv.*r terms are as previously defined. The principal advantage of the
*-.ep method is that only 5-day BOD analyses need to be determined.
7.-.e time -consuming deoxygenation coefficient (K..) and ultimate BOD (L )
trotlyses are not required.
Thomas developed ncnograae to reduce the number of calculations
required to determjin* the necaasary coefficients and constants. Once
• pproxiaate values of K., and Kp are obtained from statistical analysis
:y interpolation and extrapolation of observed streaai survey data, the
^;-^»tion can then be used to determine the oxygen balance in the stream
tt different streeja conditions, loadings or teaperatures .
In order to more realistically represent the BOD reaction in the
istreaa, Thomas proposed using a second -order f emulation rather than
the first-order forawlation of Streeter and Phelps. This can easily be
incorporated into the step method and the nomograas are also available
:^r its solution.
The step method as originally proposed by Thonaas does not in-
^luae any benthic or photosynthetic components; however, these can be
^aiiy added to th« equation. Th» approximate solution is accurate
'-' *.r.e change in deficit is kapt to less than 3 mg/1 within a saction.
In considering the stabilisation of organic aattar in a natural
O'Connor [9] distinguishes between factors that affect th»
-------
11
-.-erall removal of oxygen-utiliziiig material and those that affect
.-f» direct oxidation of organic material. The total rate of removal is
by the coefficient "K ", while the rate of oxidation is
by the coefficient "Kd". The coefficients "Kd" and "K "
-..iv be quite different from that determined in the standard laboratory
:*-it "K,". This is primarily due to the difference in physical
- ; :hes&ical characteristics of the laboratory and stream environments.
The relationship for the oxygen balance in the stream as proposed
:v O'Connor is
K.L f -K t -ILt 1 -K_t
n - =&-* Ler-e^J+De^ ---- (2-11)
t X~X a
. » above equation, which is similar to the formulation developed by
":~cz&3, also provides for factors like biological extraction and sludge
:e7c,sit3 as proposed by Velz.
A tine-dependent dissolved osygen sag relationship, developed by
-ilO], incorporates non-uniform stream channel cross sections and
variations of BGD and BO in the mstewmters „ Li obtained the
rirg equation for the oxygen sag
(Kp-IL )t
-K0t | C - F( ? ) + f( § v x A " ~ ^ J-
Dt : -
(2-12)
t(x) = ^-^ is the tias of travel from outfall to point x
V * Velocity of stream fiery
c = Saturation value of IX)
F\0 = CO of stream at waste outfall
= BOD of stream at waste outfall
= Variable time element indicating the net effect of time
of day and travel time downstream.
-------
11
v.erall removal of oxygen-utilizing material and those that affect
•j-.e direct oxidation of organic material. The total rate of removal is
Pi-dressed by the coefficient "K ", \>rhile the rate of oxidation is
Ascribed by the coefficient "Kd". The coefficients "Kd" and "Kr"
•v> Y be quite different fron that determined in the standard laboratory
:? iftit "K,". This is priffiairlly due to the difference in physical
»..- ^heaucal characteristics of ths laboratory and stream environments,
The relationship for the oxygen balance in the stream as proposed
vy O'Connor is
K,LQ f -K t -JUt 1 -K-t
D4 = ^"t Ler-e*J+De* (2-11)
T O~ T ^
?:.e above equation, which is similar to the fonaulation developed by
~:.cc&3t al^c provides for factors like biological ejctraction and sludge
-eposits as proposed by Vela.
A time-dependent dissolved oxygen sag relationship, developed by
1-t'IC], incorporates non-^miforai stream channel cross sections and
••spcrai variation of BOD and DO in the wastevater* „ Li obtained the
p-.Li jirlr^r equation for the oxygen sag
„., C (K -IL)t -
M -Xt C -F(?) + f\§) jiLe dx
m »=e2Ls vu
(2-12)
* t(x) = ^-^ is the time of travel from outfall to point x
V = Velocity of stream flow
c = Saturation value of DO
?(|) = DO of streasn at waste outfall
'(§) = BOD of stream at waate outfall
5 - Variable time element indicating the net effect of time
cf day and travel time downstream.
-------
12
Tha non-untfora channel aspect investigated by Li is important.
Hoirevsr, modern high-speed computers permit the incorporation of many
gaiall streams in the baaic formulation, thus reducing the significance
of tha non-uniform channel solution given by Li. The temporal fluctu-
ations in an effluent can be significant in some areas, especially for
industrial waste discharges,
Fraiikelfll,12] expanded the femulations of Li and developed a
dynamic ojcygen sag analysis which alao incorporates photosynthetic
effecta. A colifonn and detergent xaodel was also advanced by Frankel.
Expanded BOD and DO formulations which include the effects of sedi-
xentation, absorption, additions of BOD along the stretch of a stream,
removal of oxygen by benthal demand or plant respiration, and the addi-
tion of oxygan by photosynthesis have been developed by Dobbins {13,14].
The equation for the dissolved oxygen profile as proposed by Dobbins
is given belosr:
r _j£l r -(K^
LLa * K. + K J Le
e-Kpt
D *
a
TD-
n
J
D^ » Denotes the net rate of oxygen reiooval by benthal
dazaand and the effects of plants
LA * Bate of addition of BOD along the reach
otner tanns in the equation are similar to those in the previous
-------
Dobbins also investigated the effect of longitudinal dispersion on
BOD and DO profiles, and concluded that the effect is negligible in
jaost fresh-water streaa*.
In field surveys of the Truekee River, O'Connell, ejt ej,. 115,16],
measured the effects of benthic algae and other attached plants. A
modified form of the oxygen relationship which includes the net oxygen
change caused by aquatic plants was used successfully for predicting
daily aiininrena DO concentrations In the Truckee River, the DO concen-
trations were calculated using the following expression:
-^k -K-t -IC^t (-0 f)\ ~^0^ V +
e2 --- (2-14)
I where (P-H) is the net contribution (photosynthesis minus respiration)
| and all other terns are as previously defined.
i
| O'Coanell and ThOMs concluded that the oxygen produced by the
j algae and other attached plants generally has little net effect on the
%
•t oxygen balance of a streaa. However, nighttime respiration may add a
r
• large oxygen demand.
In a study of the Jterrioack Hiver, Caapfl?] developed an oxygen
balance formation which iacluded the addition of BOD fron bottom
deposits, removal of BOS by settling, CO production by photosynthesis,
and the effects of longitudinal mixing by tides. Caxp reported that
the amount of DO supplied by photosynthetic activity in the Merriaack
River is considerably higher than that by atmospheric reaeration, and
that BOD reaaoval by sattlizig is greater than that by oxidation.
-------
A general form which describes the temporal and spatial distribu-
tion of either a conservative or a non-conservative substance in a one-
dinensional stream haa been described by 0'Connor[l8J as follows:
* (Q(x»t) c)
in which c is the concentration of a substance of interest, A is the
cross-sectional area of the stream, Q is the flow rate, and S represents
the appropriate sources and sinks. The above formulation accounts for
variations in the fresh-water flow and cross-sectional area, various
sources and sinks of oxygen, natural and artificial reaeration, the
pbotosynthetic contribution, bacterial and algal respiration, carbona-
tious and nitrogenous oxidation, and benthie deposits.
Thus, the formulation for oxygen balance in a stream originally pro-
posed by Streeter and Phelps has evolved gradually into the more elab-
orate relationship given by O'Connor. A schematic summary of factors
vhich affect the dissolved oxygen content of a stream is shown in
Figure 1.
-------
_
C
^1
c
<
Q
Q
<
(/
r
)
r
i
'
i
>
>
fc
o:
V) O
Z ce
< ^!
fE 2
^*^
^ I
o £
i f
_J
<
O
3
m
5
o
X
O
UJ
cc
^
C
c
*
c
i
<
f
c
h
U
-i
i-
^
>
U
f
1
u
0
3
G
Q
O
ir
Q.
i
I
I
<
t
1
t
t
\
>
J
>
t
= 1
c> §1
E t li
i -- *
^ 1-
^ o
2 <
)
^ ui2
_, zz
o X 8 < °
no * ° LJ rS
^ ^ m
CO
/
So
^^
Z ODflC
u auj
O ?<
> Hy
s
o
-J UJ
£ H9
V— f/\ ^
0
^ k
o3
z<
I
•^ r;
cr h;
"-*- CO
Q
4 —
E TRANSPORT
DVECTIV
<
Ld
I-
co
>•
to
<
Q
f-
Z
O
z
z
Ld
o
I
Q
U
O
(O
to
Q
U
CCL
h-
CO
O
Z
f-
u
UJ
u_
U.
CO
cc
o
f-
u
Figure 1
-------
16
One of the major challenges facing the water resource engineer
today is the selection and implementation of a quality algorithm or
zodel which is best suited for a particular application. Judgments
r.ave to be made regarding the significance of various parameters in
a particular situation. For example, an untreated waste discharge
zay currently be resulting in deposition of a sludge bed in a particu-
lar section of streaaa; if the waste is treated, will the sludge bed
b« a significant parameter in the BQD and DO formulations?
Another problem associated with the implementations of a quality
algorithm is the lack of systematically collected data. One of the
Dost important contributions of the systematic approach to water
resource problems has been to point out the ne«d for well -planned
field studies „
This section presents a review of the current literature on
rathenstieal methods and mocl«ls ccsraaonly used in water resources for
analysis and control of pollution. For ease of presentation, the de-
velopments have been grouped into four categories. These are:
1. descriptive analysis;
2. statistical models;
3. river flow simulation; and
~> basin management models,,
•- 'Descriptive analysis provides for mathematical representation
?: a process or processes by algorithms such as the "oxygen sag" rela-
--^r-3.aip. The analysis is non-statistical and non-optimal seeking.
-------
17
Tills type of analysis is used 'prinaxaly to dsaronstrats cause and effect
relationships of various pa:r>ii~at«r8 „ A descriptive algorithm may be
an integral part of another type of analysis, as discussed later in
this chapter,
The computer programming of the "cxrgen budget" by Gannon and
3o7mfl9] and the dynamic "c/zygen e.-ig" eodel 33 developed by Frankelfllj
*:<-. example of descriptive ar»alysi* /c-r nen-tidal v/aidrs,, ThoBJaxtn's[20j
; segmented and 0? Connor 'a (213 estuary models- are t^o ex^jirplea of descrip-
l live analysis for esiuarizse waters,
| Si.*Lti5tIc»tl Kfodals
Interpretation of obaarvsa data c^j.; r.fuen ba asasxtrably iarprovsd
? by u£-e of statistical modejus, Gry,vcli.i(£2] ^j?ga>st-3 a three-step apprcach
•,, to th2 use of statistical models:
1, selection of a aodel to represent the physical situation;
2. mathamatieal treatrra-at of tha jaodal to oo~'riir, information
about ths varicua ccapon'Sntci^ and,,
3. use of the model to ^aka deoLsicas reg-a.rd.ing the physical
Various' .statistical uica^^s have D:.-?:: oS *d fc-r ;~/r vdictlzig water pol-
it:on control needs. In 1950, LeBc-sq^et and T-sivcglu[2,3^24] used a
irpie regression analysis tc relate di-solved o^ygea deficit to stream
.cw This relatioriship provides s. sicrpJlifiad approach to calculation
, ."-rr^33lb]e B03 leadings for & gL7-;=•:,hod for detarainLcg 5*.1D .I,k..i.clnathod '>ra3
-------
18
by the Virginia State Water Central Beard for aatiiaation of th«
assisdlatiGn capacity of the Chickalsosiiay Biv*r[26]. Okmn, gfc.il* t27J,
also reported tha -asa of j^tipLa-rsgression teahaiguwi for analysis of
non-tidal watars. Wolxsaa and &ayarl28J, arid sora raoeatly Durum and
Langbain[293, hava attempted regressive analysis la the Potcanac
Satuary.
Bacsas* regression axxJels ar» aot valid cniiaida of tha ranga of tha
original data, tfeair tL33 for flow nsg^alatlon for a systaa of nailtlple-
resorvoira la rather Halted* Jbrtiier, aftar aaalysiag various regres-
aicai squatiesas used far datenaiuisg pollution cozrtrol naads, Thomas [8]
has sngg«atM that this tacimiqua is B»re suitabla for data reduction
for us a ia tha Streetar aad Phalpa formLation than it is for davelop-
swnt of a prsgdietive zaodal.
ThoJoasDO] davsloped a queueing aodel saploying porobability
theory and fiaite l^r^oy chains for pollation transport in streams.
Tha object of the jsodel ^aa to predict tha quantity and quality of
watar at givan control points for aoy pattara of flow, temparatura, solar
radiaticm, cbaanal eaafiguraticea, daa location, and pattarn or type of
pollution. The sxdal includes a stochastic forssulation of hydrology
with lag-oaa serial correlation bsfij^sen floie; pollataata with both
la^-ona serial correlation and a dacay sachaaiaa. The aodal is lim-
ited to a a 133510 3=7i of stream rsaohss. Although may of the para»-
eters for self -purification in tha 023^^0 budget are not included, tha
2»dal rapres^nta tha first attasrot to Incorporata t-so interdapeadaat
• atochuatic paraisrtars, a'fcra-aai flew -and ^rastswatar.
LosacLs[31,32] d«»7«lopacL a jaathamatical c»dal to predict tha prob-
aoiiity diatribtitian of tha aiBisiua dissolved o^ygan coaeantration
-------
19
which occurs downstream from any waste-water treatment facility.. The
model has utility for determination of stream standards and treatment
requirements that maximize net benefits, for a given economic benefit
loss function.
Wastler[33J studied interactions of tides, solar radiation, river
flow, and waste loads in the Potomac Estuary isith the aid of spectral
analysis, including the computation of cross -spectra. The cross -spectra
were used to gain quantitative information on the response of a change
in DO as a function of a change in BOD. Spectral and cross -spectrum
analysis was used very successfully as a statistical tool in the Potomac
River and csore recently in the Delaware River Estuarine Studies [34],
Rive
The use of stream flow simulation to evaluate a given wastewater
treatment policy or for design and operation of a system of dams in
water resources management, inaies maximum use of information available
from a given hydrologic record.
A model for synthetically extending a given historical, hydrolog-
ical record has been advanced largely through the efforts of Thomas
and Fiering [37, 48] . The siodel, a lag -one Aiarkov process, asay be repre-
sented by the equation
* v. + 0 (Xj. - ix) + ti+1 0(1 - p2)^ ----- (2-16)
"-n which
Xi+i = The flow in the i+1 interval, a linear function of X.
X1 = The flow in the "i"th interval
t . ., = The standardised random deviate
-------
20
u. » Population ciean
cr » Population standard deviation
0 » Regression coefficient for th* values of flows in
the i+1 and "^'th interval
p * Correlation coefficient between flows in successive
tiae periods.
The Markov model as given above was expanded to simulate the stream
flows in an entire river basin by FieriBgC37J. The aodel uses principal
components to maintain first and second moments, serial, and spatial
correlation for all streaa gaging stations in the basin.
MatalasD9] has proposed a xaore sophisticated simulation niodel
which jaaintaias the third acwent, and spatial and serial correlation
more effectively. Other developments in flow generation have been
provided by ChowRO}, Beard[41], Crawfordf42}, and AST AssociatesI43],
and, more recently, on the "regional" basis by the United States Geo-
logical Survey[44l.
Simulation is currently being iised quite extensively in the United
States in water resource planning and evaluation. The Harvard Water
Resources Group[363 has designed a simulation model for the Lehigh
River to aid in identification of the particular combination of flow-
regulating structures, treatment plants, and other hydraulic works
"'hich raost nearly achieves the objectives of the Delaware Comprehensive
-"Ian.
Simulation was also used by the United States Corps of Engineers
p-nd lately by Davis of Resources for the Future [45] in the study of
tae proposed reservoir system in the Potomac River Basin. Stream flow
simulation is also currently being used by the Chesapeake Field Station
-------
21
of the Federal Water Pollution Control Administration for evaluating
water quality needs in the James, Potomac, and Patuxent River Basins.
Management models are algorithms which may incorporate some of the
techniques mentioned above, plus some type of decision-making mech-
anism. -Most of the past river basin developments in water resources
:.av9 been primarily devoted to water quantity, and not directly towards
srater quality manageffient. In water pollution control activities there
have been two general types of decision models: (l) wastewater-
treatment requirement models, and (2) flow-regulation models. Included
in the ensuing review of these two types of models is a case study of
the Potomac Estuary in which three alternatives have been considered.
A . Flow
Thomas and Watermey0r[46], and acre recently Young (47 ], have sxun-
narized the research on that aspect of flow regulation relating to the
probabilistic characteristics of storage systems and dynamic decision
-aking. Thomas describes the flow regulation problem as one of choosing:
1. the optimal operative policies;
2. the optimal level of development; and,
2. the optimal reservoir capacities.
The optimal conditions are defined in economic terms as the expected
r.et benefits of the reservoir system.
Dor fmanUS j has studied the relationships between design and opera -
t.on decisions. A mathematical model for analyzing a hypothetical
-/stem involving two dams for the development of an irrigation and hy-
'- -"^electric project has been proposed. Dorfman obtained an optimal
deduced froa operating considerations,
-------
22
Thomas and Watermeyer[46], utilizing linear programming, proposed
B model for the reservoir operation problfte, The model optimizes the
operating policy and the levels of development and, by sampling, the
reservoir capacity. It has the further advantage over the Dorfman
,-r.odel that the stream flow is treated as a stochastic variable. The
irodel, limited to a single reservoir, has no mechanism for incorpor-
ftting quality considerations.
Hall [49] has applied dynastic prograjaoiDg for allocating water for
various purposes such as hydroelectric power generation, consumptive
us«, and water quality control. The model proposed by Hall is limited
to the economic considerations involved in the design of a single reser-
voir. However, the application of dynamic programming for designing
cultiple-purpose water projects was shown.
In order to evaluate the need for, and the value of, storage for
juality control according to United States Public Law 660, WorleyfSOj
las developed a general riv«r basin model capable of determining and
lusting flows necessary to maintain a minimum allowable dissolved
concentration in a stream. The model was not an optimum-seeking
; that is, there was no mechanism incorporated that would provide
or the best operation of a reservoir system.
The model does have the advantage that reservoir quality is taken
it.0 consideration. Another advantage of the Worley model is that for
j' 6'iven flow rate, the effect of the physical parameters of the basin
-"-orpcrated into the quality determinations. There are no economic
in the model.
hag developed two Monte Carlo techniques for finding
annual operating policies for single reservoirs such that
-------
23
the econocdc loss as s function of draft rate is minimized. Hydrologic
simulation and a forward -looking dynamic progrwnaiing algorithm is used
in the solution. The techniques ere limited to three reservoirs. No
cons ideret ion is given to the water quality in the system.
B . Treatent
Various methods for forxnule.tion of water pollution control policies
regard to treatment requirements have been developed. In recent
•years, considerable effort has been directed toward the problems in-
volved in finding the miniatim cost of iraste treatment to meet a set of
stream quality standards. Thomann and Sobel{51] have presented some
of the first formulations of this problem in their studies of the
^Delaware Estuary.
Deininger[523 has investigated alternative means for determining
vaste treatment policies. Least-cost linear programing, chance-
constrained, and integer-programs aiodels were formulated to determine
optimal solutions.
Sobel[53J has also proposed a linear programming solution, and a
Birred integer formulation for the water quality improvement problem.
The maximization of the benefit-cost ratio in water resources planning
aas been transformed into a linear programming problem by Sobel.
Thoaann[543 has utilized the results of the steady-state segmented
estuary model and a linear programming formulation to determine a least-
cost water pollution control policy for the Delaware Estuary.
In order to overcome non-linear cost functions, Kerri[55] has
a dissolved oxygen cost matrix to transform the least-cost formu-
into & linear programming problem. Liebman[56] has used dynamic
-------
..^ramming for determining iraste treatment requirements for problems
giving non-linear cost functions.
While the least-cost solutions are of great interest in water re-
jorces planning and management, there are some inherent technical
-jficulties in the use of this technique:
1. Except for scene industrial waste treatment facilities, there
is a poor relationship between effectiveness of treatment
and cost of the waste treatment facility.
• 2. It is difficult to estimate with any accuracy the cost of a
i;
proposed wastewater treatment plant.
$
"I 3. The least-cost solutions are sensitive to physical parameters
V
^. of the stream and to DO constraints .
^example, in the Delaware Estuary, Thomann[57J reported that, for
;f
::ien flow conditions, if the reaeration coefficient was overestijnated
" >%$•.
TlOO percent the least-qost solution increased about 350 percent.
t *•
, although contrary to engineering judgment, was easily
by Thomann. The allocation of treatment cost was also
anged quite drastically. A significant change in treatment cost al-
f
xatioa was also reported by Liebnian[56] in Ms studies of the
• t'
•H&mette River when the DO constraint was changed by 0.1 mg/1.
In the opinion of the author, the least-cost solutions have indi-
tted two things :
1. the great sensitivity of the solution to the physical
i parameters in the stream; and
2. the ability to adequately describe and predict the water
quality in a stream by the descriptive formulations is
greatly exceeded by the accuracy maintained in the
optimization processes .
-------
25
C. Case Study. The FfftflMfi
The water quality problem in the Potcaac River Basin are unique
in that the quality in the estuary is not greatly affected by upstream
wastevater dischargee. This independence, a result of the geological
"fall-line" above Washington, B.C., siagpllfies the quality investiga-
tion for the efltttaxy.
A large municipal wart»wat*r lo«d fron th« Waahington, D.C,,
area is causing a eerloua quality problaa in th« eatuary. The deteri-
oration ia not only do* to low diaaolvad oocygaa but also to high
nutrient levels, resulting in large al^al populations.
Three nethods for alleviating water quality problew in the estu-
ary are as follows:
1. a high decree of wastewater treataent including nutrient
removal;
2. flow regulation froa upstream reservoirs to provide dilution
"?'
t of wastewater; and,
;-;
3. diversion of the wastewater farther down the estuary.
In studying the various alternatives, Hetling[58J, using the segmented
estuary model, investigated all possible solutions and combinations
of solutions. By ranking the alternatives, least-cost solutions were
obtained to Beet the various levels of water quality constraints.
Davis [59,60), using a sampling strategy consisting of systemat-
ically sampling the trade-off relationships among the various altern-
atives, also developed a method for cost minimization in the Potomac
Eatuary. In later studies, Davis used river flow simulation to
evaluate the various alternatives.
-------
26
The Potcamc Estuary is an ideal caae atudy in that there are
thr«* alternative adUrtlom, two baaio quality conaiderations, coet
data available, and the quality for a given condition can be predicted
by the segmented iaatb«amtical nodal.
-------
CHAPTER III
FLOW RELEASE MODEL
The problem pursued in this study is as follows: given a basin
with a developed and/or proposed reservoir system, develop a method for
formulating reservoir op*rating policies for quality control in some
optimal manner. An optimal release sequence for the initial phase of
this study is defined as providing the "best" quality of water for a
given flow rate at a point in the system while maintaining a minimum
preset dissolved oxygen level in all reaches of the basin above this
point. The "best" quality of water is further defined as the minimum
DO deficit for a given level of BOD. The method for determining the
optimal release sequence should also incorporate:
1. Physical and biochemical parameters of the stream for
a given section:
a. Flow
b. Temperature
c . Velocity
d. Depth
e. Biological activity
2. Wastewater discharge parameters:
a. Rate of discharge
b. Concentration and characteristics of the pollutants
in the wastewater
c. Treatment policy
27
-------
28
3. Eagtilated aad unregulated streaa flow parameters:
a. Beaervoir
-------
29
GEERAL
Various methods for solving the proposed problem have been investi
gated, such as linear programming, application of influence lines, and
dynamic prograaaning . Due to tha nature of the stream flow network in
the basin, the use of dynamic programming to obtain an optimal solution
was found to be an ideal approach. The general approach to the flow
regulation problem has been divided into four phases:
1. the adaption of existing foraulations to describe the appro-
priate water quality parameters in the river basin;
2. development of a paragon which describes the physical basin
and is readily adaptable to computer programming;
3. utilisation of the dynamic programming optimization
technique; and,
4. overall algorithm formulation and computer programming of
the model.
Quality considerations in the formulation have been limited to
temperature, DO, and BOD, with the main parameter being DO. As illus-
trated in Figure 1, there are isany factors which influence dissolved
oxygen in a river. Control of flow directly affects advective transport
of oxygen and reaeration. Temperature, advective transport of waste
loads, and biological activity are indirectly affected by change in
flow.
In order to make the problem sore manageable initially, only the
direct effects have been included in the study. However, provisions are
made in the forKulationa to add the indirect effects at a later time.
-------
30
The basic water quality algorithm which has been used in the present
-,vork is Thomas's modification [8] of the Streeter-Phelpa equation. The
.integrated form of the equation may be written as
D(l) = Y * P + D(0) * P2 ----- (3-1)
where
Y = LQ (1 - e ~Klt), oxygen sink
P » e "^ 2 '2', reaeration parameter
D(l) = Dissolved oxygen deficit at lower node
D(0) = Dissolved oxygen deficit at upper node
The advantages of this formulation over others are:
1. the formulation can easily incorporate other than first order
reactions ;
2. solutions for the integrated forms exist for all ranges of
reaeration and deaeration coefficients; and
3. if the oxygen deficit is kept to less than three nsg/1
indirect effects can be readily added or subtracted to the
oxygen sink (Y) in the reach.
In solving the algorithm, four states are carried forward. These
-.re DO, BOD, temperature, and the deaeration coefficient. The fifth
state, which is flow, is used to calculate the reaeration coefficient
and the time of travel.
As indicated in Figure 1, there are three main sources of dis-
oxygen. Reaeration is usually the most important factor in the
Dissolved oxygen budget. Various formulations are available for
ing the reaeration coefficient to the depth, slope, velocity, and
-------
31
longitudinal diffusion in the stream channel. In this study, the re-
aeration formulations employed have been the non-isotrophic relation-
ship developed by 0'Connorf6l]:
J/2
and the Churchill formulation 163]:
(3-2)
K2 *
5.026 V
.0.969
Hl.673
(3-3)
where D, is the coefficient of diffusion of oxygen in water and all
other terms are as previously defined.
Other formulations, such as those of Dobbinsf13,14], Streeter and
?helps[l], and Kren]cel[63], can easily be substituted into the system.
The effects of the different formulations for the reaeration coefficient
on the verification of the system are discussed In Appendix A.
Teispera,ture
Since the reaeration and deaeration coefficients are temperature
dependent it has been necessary to incorporate a aechnniaa for adding
and subtracting various temperature sources end sinlca. Various types
~f stream temperature models, as stnanarised by Zellerf64], have been
'investigated. To maintain siatplicity, the exponential dscay tenpera-
ture model of Duttveiler{65] has been incorporated into the overall
algorithm. The formulation is given below:
+ [TsQ - To] e"
(3-4)
-------
32
where
X
X/B.
Cl * C2 U2
* 1.35
G ** A constant ranging in value from 0.182 to 0.24
U2 «= The velocity of the wind
X = The distance downstream from the heat source
Ts.. * The steady-state temperature at the downstream end
of the stream reach
TsQ = The steady-state temperature at the upstream end of
the reach
T, « The temperature at the downstream end of the reach
To = The temperature at the upstream end of the reach.
The modified version of the Duttweiler model provides the neces-
sary formulation to incorporate heated discharges, varying reservoir
temperatures and physical conditions of the stream. The steady-state
temperatures are developed from historical traces.
The corrections for the effects of temperature on the deaeration
and reaeration coefficients[62,66] are given below:
(3-5)
where
* 0
K = The coefficient at temperature T
.,0,
K2Q = The coefficient at T 20C
9 3 A temperature coefficient
In the formulation, temperature coefficients of 1.0471 and
1.0241 have heen used in the deaeration and reaeration corrections,
respectively, at selected standard temperature (20°C).
-------
33
A third order polynaaLel for determining the solubility of dis-
solved oxygen in water at a given temperature (T) has been incorporated
into the model. The polynomial coefficients have been those developed by
ti*TVA[67j, yielding
Sat DO * 14.652 - 0.41022T + 0.0079910T2
- 0.000077779T-
(3-6)
where "Sat DO" represents the saturation concentration of dissolved
oxygen at temperature (T).
In the above dissolved oxygen, reaeration, and temperature formu-
lations, physical parameters of the etreaa such as width, W, velocity, V,
and depth, D, are required for various ranges of flow, Q. Leopold and
Maddox[63J have carried oat extensive study of the changes in velocity,
depth, and width for a ehaag* ia flow rate at a given stream cross
section. The characteristic relationships developed by these investi-
gators for the mean values for these parameters are:
D - aQb ' ----- (3-7)
V - cQd ----- (3-8)
W - eQf ----- (3-9)
rbere a,c,e and b,d,f are characteristic coefficients and exponents for
correlation with Q. Operational problems involving the use of these
formulations are discussed in Appendix A.
To provide for possible BOD, DO, and temperature variations with
from unregulated and regulated stream sources, a linear relation-
has been assumed and incorporated into the flow release zoodel.
-------
34
Extensive review of stream survey data for the unpolluted, un-
regulated reaches of the Potomac River Basin revaalad that the linear
assumption was a fair approximation for DO, BOD, and temperature.
However, a recent study by Churchill and Nicholas[83] indicated that
the linear assumption for a regulated system was an oversisrplification.
Therefore, in the developing of the optimal solutions as presented in
Chapters V and VI, the \rater quality of all regulated and unregulated
sources was assumed to be constant (a preset level) for all ranges
of flow.
PARAGON
In order to formulate a general flow release model, it has been
necessary to develop a descriptive paragon which can be used for data
storage and retrieval, -which adequately describes the branching of a
physical basin and relates it to waste discharge points, impoundments,
hydrologic conditions, etc., and which is easy to program on the eom-
pater. Various types of descriptive rivar basin systems were investi-
gated such as the Stcret Systeja[69J, the method used by Worley{50],
and the numbering systesi of the FsfTPCA stream flow simulation modelf70],
A simplified method similar to that of an arroTr-and-line diagram[71]
of a critical path network was adapted,
For a given segjaeat of streaia the following restrictions are to
be maintained:
1. stream flow in aegaent; remains constant;
2. all tributaries, waste discharges, or water intakes are
indexed at the upper node of ths segment;
3. the relationships asong velocity, width, depth, and with
flow in the segment regain constant;
-------
35
4. only one wastewater discharge, tributary, or intake is allowed
per node (if two or saore above entities are close together, a
greater number of shorter segments are established); and,
5. the nuaerical valua of tha upper noda should be greater than
the loirer noda (not absolutely necessary; however, it sim-
plifies some of the coding and sorting procedures).
To aid in tha computation procedures and yet maintain flexibility
in data analysis, storage and retrieval, the stream nodes, wastewater
discharges, and stream flow additions have been indexed as given in
I Appendix C. Tha ability to add or subtract any waste source, stream
flow, or add more sections to tha system is maintained if the numbering
of nodes is in units of 2 or greater.
All xeathexatical operations are at the upper noda of a given reach,
For nodes at which there is an addition of flow due to a waste load or
confluence with another tributary, a zaass balance is made with respect
to flow, pounds of BOD, and pounds of dissolved oxygen deficit. The
deaeration coefficient is prorated according to tha pounds of BOD of
tha respective caatributions. The temperature of the combined system
is prorated according to the flow values of the two components.
The isass balance of BOD and the prorating of the deaeration co-
efficient treats tha system linearly and does not take into consider-
ation any antagonistic or synergistic actions or reactions. The
treattaent of this entire aystam non-linsarly is beyond the scope of
this study.
-------
H[
The solution to the multiple-reservoir release problem is very
amenable to dynaaic programming technique. The complex problem can
readily be decomposed, called staging, into a series of saaaller
problems. The technique* relies upon decision-waking at each stage
rather than trying to solve the entire N-etage optimization problem
s intuit anaous ly.
There are two general approaches to the reservoir problem:
1. starting at mouth of the basin, proceeding upstream, and
treating the regulated confluence points as diverging
branches; or
2. starting at the uppermost point of the basin, proceeding
dcsmstraaffl, and treating the regulated confluence point
as converging branches.
Since SOU, DO, deaeration, and temperature are flow dependent, the
problem is significantly simplified by the latter approach.
The overall schematic of the proposed reservoir system for the
Potomac River Basin shown in Figure 2 typifies this converging
structure. The reservoirs (triangles) are the controlling mechanisms,
and the regulated confluences (squares) are the decision points or
the stages. In the Potoaae system, the converging branches structure
results in a 13-«rultistage optimization problam.
A general solution to a jsultistage converging dynamic programming
problem has been structured by Nembauser{72j. Bepresented below,
~*For a complete discussion of the dynaicic prograiraning technique,
u«« Neohauser[723.
-------
NODE
588
570
568
492
458
434
428
420
393
398
402
356
156
244
56
PROJECT
MOUNT STORM
BLOOMINGTON
SAVAGE H
ROYAL GLEN
TOWN CR.
TONOLOWAY CR.
LICKING CR. ^^
N. MOUNTAIN ^X
W. BRANCH
BACK CR.
CHAMBERSBURG
WINCHESTER
BROCKS GAP
STAUNTON
S\X BRIDGE
LEGEND
/ \ RESERVOIR
I £
CONFLUENCE POINT
ESTUARY
A SCHEMATIC REPRESENTATION
OF
PROPOSED RESERVOIR SYSTEM - POTOMAC RIVER BASIN
Figure 2
-------
38
stage of a regulated river system is characterized by six factors:
1 (D)
igulated system(M)
Xm
igTilated systea(N)
(t)
Xo
Regulated system(O)
|W
1. An input state (Xm), flow from a regulated system (M), the
dependent states being BOD, DO, daaeration, and temperature.
2. An input state (Xn), flow from a regulated system (N), the
dependent states being BQD-, DO', deaeration, and temperature.
3. An output state (Xo), flow from the combined regulated
systems (M) and (N), the values of the dependent states being
a function of a combination of (Xm) and (Xn).
4. A decision variable (D), dictates combination of (Xm) and
(Xn) for a given state of (Xo).
5. A stage return (r), for a given (Xo), the best water quality
measured in terms of miniaium dissolved ozygen deficit (DOD
for a given BOD state).
6. A stage transformation (t), couples (Xm) and (Xn) linearly,
as for the dependant states described earlier in the section
on nodal operations.
The flow release problem ia different from the problems structured
'•y Nemhauser in three respects:
1. each stage consists of two input states;
-------
39
2. flow release optimization is required for all output states
in order to provide for regulation for quality control down-
stream if needed; and
3. the stage return is a dual-valued function.
The latter requires a minimization decision procedure for two dependent
states. In the decision process, the object is, for a given flow
state, Xo, and within a given BOD grid, to determine that combination
of Xn and Xm which will yield the minimum DOD. Combinations of Xm and
Xn with greater DOD are deleted.
; I
<:• For a given stage or decision point, the range of Xo is dependent
on the regulation capabilities of Xm and Xn. For example, if the
: •
$| regulation capability of Xm is from 100 to 300 cfs and of Xn, from
200 to 500 cfa, the range of Xo would be from 300 (200 + 100) to 800
(300 + 500) cfs. To reduce the infinite number of input and output
states, reservoir releases are made in discrete increments. In the
above example, if a 20 cfs increase is employed, there would be
26 states (800/20 - 300/20 + l) of Xo. The number of feasible solutions
per Xo is mainly a function of the BOD grid size.
The number of combinations of Xm and Xn which will equal a given
Xo state is dependent on the value of Xo and the number of feasible
solutions per states of Xm and Xn. The maximum number of combinations
will be near the mean of the Xo range with a decreasing number towards
the extremes of the range.
For each state of Xo, starting with the minimum and progressing
to the maxiimim regulation capability, the optimization algorithm, which
is an efficient enumeration process, consists of the following steps:
-------
40
1. calculate all dependent variables for all combinations of
ftrf and Xn which equal the given Xo state;
2. sort and rank upward all feasible solutions according to value
of BOD parameter;
3. determine BOD grid size by subtracting minimum BOD value from
the maximum, comparing BOD difference to various input grids,
and selecting proper BOD increment size;
4. for the given Xo and BOD values within the first increment
range, select the combination of Xm and Xn which has the
in'i'n'tpniTn DOD;
5. increment to the next BOD state and repeat step 4 until all
feasible solutions are exhausted.
With the converging branches approach the flow regulation needs of
reaches downstream from the decision point under investigation are un-
known. Therefore, for a given stage, a range of feasible solutions for
all states of Xo must be carried downstream.
In the initial development of the flow release model, the dual-
I value return function is not cumulative. The optimization process for
all output states for a given s~tage is expressed mathematically as
follows:
F (Xo(k,p)) * Min [DOD(k,p) I BOD(k,p) ( Xo(k,p)
= Xm(i) + Xn(J)] (3-10)
where
F (Xo(k,p)) «= Optical operation or return measured by the
minimum DOD for a given BOD and flow state
-------
a
Xo(k,p) - States of output Xo, k = 1,2, (M+N)
P « 1,2, P
Xm(i) = States of input Xm, i = 1,2, M
Xn(j) = States of input Xn, J - 1,2, N
as measured in
P - Maximum number of increments in BOD grid
M = teuciBum number of input states for Xm
N = Maximum number of input states for Xn
BOD(k,p) = State of the first dependent variable for a given Xo
state and DOD value
DOD(k,p) = State of the second dependent variable for a given Xo
and BOD state.
This enumeration process makes maximum use of the natural assimilation
capacity of the stream, and yet maintains the principle of optimality.
If an accumulation stage return is substituted for the DOD parameter,
such as a total cost parameter, the optimization procedure can easily
be modified to include a minimum of cost; this is presented in
Chapter VII.
OVERALL ALGORITHM AND COMPUTES PROGRAMING
The quality and descriptive formulations adopted in the flow re-
lease model are general in nature and applicable to moat river basins.
The following assumptions are made in the overall formulation:
1. there is complete lateral mixing in the stream;
2. all flows are steady-state with no longitudinal diffusion;
3. the wastewater discharges are uniform in quality and quantity
for a given time period;
-------
42
4* all saajor iarpewndaenta are in the headwaters of the basin. If
two or more are in series they are treated as one unit; and
5, the quality formulation as presented earlier adequately
described the process in the stream.
The first three assumptions could possibly be eliminated if temporal
aspects were incorporated into the jaodel. However, other technical
limitations make these refinements impractical at the present tiae.
In the overall ccvputer prograa for the flow release model,
the description paragon mathematically links the water quality formu-
lations, nultistaging process and optimization procedure to the stream
network of the river basin. The paragon also selects stream flow
routing patterns and sequences the Bultiataging process in the
dynamic programing technique.
The basic computational steps of the flow release model are given
below.
1. Read in and display input data.
2. Determine minimum and maximum stream flow ranges for each
node in the basin. Required in the stream flow routing and
multistaging process.
3. Route the unregulated stream flcrws to regulated sections of
the basin.
4. Starting at uppermost decision point, route the stream flows
and davelop optimal solutions for each stage of the con-
verging branch systems. (In Chapter V, a more detailed
description of the routing, staging, and optimization process
is presented along with an example problem for tha upper
Potomac Basin.)
-------
43
5. Print out all flow routing data and optimal solutions for
each stage.
A simplified flow chart* of the release model is given in
Figure 3. The formulations have been programmed in FORTRAN IV,
?-ir.set E. Complete listings of the variables and computer programs
r.rfe given in Appendices Ct D, and S.
The input data formats are flexible to allow for various input
options depending on refinements needed in the calculations (see
Appendix C for data input formats and a compilation of data deciks).
The output of the computer program is a series of incremental
flow and dynamic programming tableaux. The incremental flow tab-
leaux contain all pertinent information required for the optimization
process, while the dynamic programming tableaux consist of the results
of the process for the given decision point. The interpretation of
the tableaux, development of optimal reservoir release sequence,
and analysis of results are presented in Chapters V and VI.
A computer program employing the same formulations as in the
''-•w release model was written to aid in verifying the concepts of
1 he model. The program is also used to tebulate all input data.
: -o in coefficient modification, and display of specific quality
"ofiles. A listing of the program is given in Appendix E.
*Since flow charting capabilities via the computer are now
"andard subroutines at most computing centers, a detailed flow
*"• be readily obtained and therefore was not included in the
Assentation.
-------
44
SIMPLIFIED FLOW CHART FOR FLOW RELEASE MODEL
RCAD IN DATA
1
WASTE NODES
1
M 0 A MUM
J
CO SECTIONS
1
1
J3ELCCT UPPERM 5T REGULATED ftES«*VO(R
1
I
( |"
1 ' '
1
C^NO /" "N
I«S VES
CONTINUE TO CALCULATE STREAM QUAL-
,T, » CHtCK,»0 CON5T««T. '""'"" r*"-U"
1
1»°
MO /^ "Xl
«"J— (NODE • CONFLUENCE or REGULATED TB» )
H
INCREMENT FLOW U — ' ^/ FLOW c MAXIMUM FLOW J
H
[NO
I /^ ^\
J..
1
PROGRAMMING ROUTINE
1
\KT FLOW ACCOWNO TO TABLEAU K ^STORE DYNAMIC PflOGHAMMINO TABLEAU ON
( VALUES 1 { TAPE 2
Figure
-------
CHAPTER IV
PATUXENT AND POTOMAC RIVER BASIN SYSTEMS
Most of the emphases in the river baa in models reviewed in
Chapter II have been focused on the consequence of a feasible solu-
tion. Little attention has been given to physical and biochemical
parameters that dictated a given solution. The lack of good field
data has been the major factor limiting a comprehensive sensitivity
analysis of the formulations.
To fully evaluate the flow release model and to analyze some of
the controlling parameters, the formulations have been applied to two
river basins in the present study, the Patuxent and the Potojnac, in
the Middle Atlantic Region. A brief description of the two river
basin systems is presented in this chapter.
THE
The Patuxent River Basin, which has two existing reservoirs in
series and a drainage area of 930 square miles, has been used for a
pilot study in the testing of the quality formulations and developing
methods for data analyses. There are six major sources of wastewater
and two water intakes in the non-tidal portion of the basin. See
Appendix C for a further description, including a schematic of the
basin.
Although small in scope, the pilot study of the Patuxent River
revealed the following:
1. large amounts of data are required to describe the physical
and biological systems of a river basin;
45
-------
ii
46
2. a systematic method of data analysis and reduction is
needed to implement the flow release model; and
3. a procedure for the adjustment of the various coefficients
is required for model verification.
See Appendix A for a detailed description of a procedure for verifi-
cation of the quality formulations.
THE POTCMA.C SJZ
The final testing and analyses of the flow release model were
done on the non-tidal portion of the Potonac River Basin, which has
15 proposed reservoirs and a drainage area of over 10,000 square miles,
The Potomac River, being located in the political center of our
nation, has been studied almost continuously by various agencies
since the early 1940'a. The availability of data, proposed reser-
voir development, and current water quality problems have been
decided assets in testing the formulation in the flow release
model.
Source of Data
The data required for the field testing have been obtained from
numerous sources, including:
1. Chesape»3ce Field Station, FWPCA, U.S. Department of the
Interior;
2. Department of Water Resources, State of Maryland;
3. Department of Health, State of Jtfaryland;
4. State Water Control Board, Commonwealth of Virginia;
-------
47
5. Division of Sanitary Engineering, Coaaonwealth of
Pennsylvania;
6. Division of Water Basoarcea, State of West Virginia;
7. U. S. Geological Surrey; and
8. U. S. Aray Corps of Engineers.
Data also have been extracted from various technical and non-technical
reports on aany diverse topic* concerning the Fotcwic Basin. Of the
approximately 450 reports written concerning the Potonac, the aajor
sources of data are references [73] through [79].
The non-tidal portion of the Potoaac Elver Basin, which contains
oost of the typical water quality problene, provided diverse con-
ditions for testing the flow release model. Soae of the pertinent
data describing the basin is given in Table 1.
Table 1
INVZNTQKr OF TSE POTOMiC EIVEH BASIN
Entity QffliTVtlliT
Square Miles of Drainage Area 11,500
I960 Population -
(Exclttding Washington, D.C.) 1,000,000
Strean Miles -
(Above River Mile 116.0) 2,750*
Wastewater Dischargee to Streams 173
Surface Water Intakes 74
*Does not include minor tributaries
-------
48
For the model development and evaluation phase of this study, only
the streaa reaches receiving significant waatewater discharges or
those subject to flow regulation hare been incorporated into the
system. (See Table 2.) Included in the waatewater inventory are all
dischargee with a flair equal to or greater than 0.5 jagd, or a popu-
lation equivalent equal to or greater than 1,000.
Table 2
INVENTORY 07 FLOW RELEASE MODEL
FOR TBS POTOMLC HITCH BASIN
Wastewater Dischargee
Organic 64
Tberael 8
Stream Flow Addition Point*
Regulated 14
Unregulated 11
Increment* 56
Surface Water Supplies 26
Strea* Segaesta 307
Streaa Mile* 694
Eriating Intpound»eiita 2
Proposed Isspoundaents 14
The wasterater diachargea included in the raodal represent over
90 percent of the total BOD load to the stream, and all Bajor water
-------
49
supply intake* in tfc* son-tidal portico of the Potoaac Baa IB have
*P,'J i included.
Figure 4 is a g«n»r?a aap of the Potoaae Hiver Bavin, inoludlng
the proposed rM*rvoir syrtaai. In Tabl« 3 *r« prM«ot*d data on 14
proposed ittpoundaanta for tl» Fotcnao ay»t««. Appandlx B oontaina
detailed st^oawft'tioa of th« individual atraa* r«aohM, showing water
Intakes, ^-ststewmter discharg**, low le-ral daaa, g«ging stations,
stream segments, and reaerroira. Basin data used in the flow release
model are also presented in Appendix B, ;
-------
Figure t
-------
.
1
i
c
•H
«
H O «
& <^
H W «3
r-i
o ,0 *-^
ca
a} 3
rH *
< CO
•H W
r-l O
O O
Js JH H
«> -P-5*
cfl D"
3= U
a -p o
43 ra O
O O rH
EH O-«J
O *r4 "
^ H H .
« O (
MS
a a ..
f-l rH O O
o w o *«;j
eo 0
<1> 4*
O C! I
-P M O
O O ^
£-1 -P O
to -*c
•3
o
H
oo o^>
\i)M>
-
; IA t- tf\co
vD-=>--* ro
H <-H
w
oovo o
ir\
'1-1
o ro on co QO
- t- H
t-
OJ
OJ
lf\
rH
IA t*- t-
CO CO r-\
-T-q' t—
r-( lAVD ITvCO 1-4 H
PO\ID lf^ f-l H VO
vO o
MA lf\
if\
Q
r-4 cuco
-si- ro O4
TN «3
O
cy
O
>>
O S3
a a o
-------
AND DiTSRFSSCATICN OF TABLEAUX
AMD THE FOEMATIO! 0? BSS2RTOIH B2LSASS PATTSH8S
The most current data available hsvw been used for testing the
various quality algorithms in the computer runs of the flow release
model for the Potcaac Biver Basin. Although it has not been the main
purpose of this study to obtain a completely verified modal of the
entire Potomac Basin, a great deal of effort, especially in the North
f Branch sub-tasin, has been spent in data analysis so that the develop-
§ ment, interpretation, and sensitivity analysis reported are a true
| indication of natural streaa conditions.
\ The first part of this chapter is devoted to the development and
'I
f interpretation of the Inoraaantal Flow Tableaux (IFT) and the resulting
| Dynaadc Pregraaaaing Tableaux (DPT). In the latter part of this
J| chapter, the foraation of the release sequences for rater quality
| control froM aailtiple-reservoir systeaas from the tableaux ia
K presented.
For ease of presentation, the development and interpretation of
the tableaux are llaitad to the upper portion of Potoaac River Basin.
(See Figure 5.) Tha entire watershed is included in the foraation of
general release patterns for various flow requirements at the estuary.
Appendix B includes detailed schematics of the various sub-basins and
a listing of the input data,
-------
.EGEND
" *""
RESERVOIR
Q NODE
DECISION POINT
s~\
U62V-
SCHEMATIC OF
UPPER POTOMAC RIVER BASIN
FLOW RELEASE MODEL
Figure 5
-------
54
of Tableaux
A simplified flew chart of the satire model including the develop-
ment of the tableaux within tb* general basin paragon is presented in
Figure 3. An itemized description of the basic computational steps of
the model specifically relating the formation of the various tableaux
to the paragon of the upper portion of the Potoaac River Basin is given
below. The pertinent nodes and reaches are shown in Figure 5.
1. For reach 1 containing the Blocanington Project (node 570),
set the reservoir release rate to the minimum discharge
value.
2. Route flow from reservoir and resulting water quality to first
decision point (node 560) incorporating into the system
changes in quality or quantity resulting from any downstream
waste loads, unregulated tributaries, water intakes, etc.
During the routing process, the water quality is monitored at
prescribed increments of distance to determine if the DO con-
straint is being met. If the constraint is violated , the
release rate is increased by a fixed flow increment and the
routing process is repeated.
3. Continue routing process froa the reservoir by increasing the
discharge rate by the fixed flow increment until the maximum
release rate froa the impoundment ia obtained, thereby com-
pleting the development of the IFT for reach 1. The tableaux
for reach 1 are indexed* by node 570. (See Table 4.)
*In the model, the IFT for a given reach is indexed by the first
node upstream fraza the decision point.
-------
55
4. For reach 2 containing Savage II project (node 566), repeat
the operations similar to those for the Bloomington Reservoir
in steps 1, 2, and 3. The IFT for this reach is indexed by
node 562. (See Table 4.)
5. Utilizing the converging branch system of dynamic programming
and the enumeration process, develop for the first decision
point from the IFT's of nodes 570 and 562 the optimal flow
release sequences from the Bloomington and Savage II Reser-
voirs. The end product of the enumeration process is a DFT
which contains a listing of all feasible solutions for all
flow states within the minimum and maximum flow regulation
capabilities of reaches 1 and 2. (See Table 8 for a DFT for
node 560.)
6. Similar to the operations in step 2, in reach 3 route all
feasible solutions of the above decision point to the next
downstream decision point (node 460). The IFT for reach 3 is
indexed by node 494. (See Table 4.)
7. For reach 4 containing the Royal Glen Project (node 492),
repeat the operations similar to those for the Bloomington
Reservoir in steps 1, 2, and 3. The IFT for this reach is
indexed by node 462. (See Table 5.)
-------
56
9. Similar to the operations la step 2, route in reach 5 all
feasible solutions of th* above decision point to the next
downstream decisioa point (node 456). The IFF for reach 5 ia
indexed by node 460. (See Tabl« 6.)
10, For reach 6 containing the Town Creek Project (node 458),
repeat the operations similar to those for the Bloomington
Reservoir ia steps 1, 2, and 3. The IFT for this reach is in-
dexed by node 453. (See Table 5.)
11. As daeeribed in step 5, develop for the third decision point
(node 456) all optiaal release sequences from the Town Creek
Project and the feasible solutions in reach 5 front IFT's of
nodes 453 and 460, respectively. (See Table 10 for DPT for
nod* 456.)
12. For the final reach of the tipper portion of the Potomac River
Basin, the tezsdnal IFT ia developed by routing all feasible
solutions from the above decision point to node 436. (See
Table 7.)
In ouaaary the following aggregation of tableaux has been computed
for the sodas belsur:
Jbaeremeatal Flow Tableaux
Nodes
Dynamic Programming
Tableaux
570-
562.
462-
560 3
___ C
_____7
—7
IFT
-------
57
Table k
INCREMENTAL FLOW TABLEAU
NODE 570
Flow
(cfs)
31.20
51.20
71.20
91.20
111.20
131.20
151.20
171.20
191.20
211.20
231.20
BOD
(mg/1)
2.1k
2. 78
2.81
2.83
2.85
2.86
2.87
2.87
2.88
2.89
2.89
DO Deficit
(ng/1)
0.33
0.61*
0.93
1.18
1.1*0
1.59
1.76
1.91
2.05
2.17
2.27
Sat DO
(rag/1)
8.51
8.53
8.57
8.62
8.66
8.70
8.7^
8.78
8.82
8.85
8.88
Temp
(°c)
22.95
22.78
22.55
22.29
22. Ok
21.79
21.56
21.3l»
21. lU
20.95
20.77
61.80
81.80
101.80
1.81*
1.87
1.89
NODE 562
0.35
0.1*5
8.56
8.61
8.67
22.65
22.33
21.99
^3.33
263.33
283.33
303.33
323.33
3^3.33
363.33
383.33
1*.30
l*.i6
l*.0l*
3.93
3.83
3. 7l*
3.167
3.59
NODE l*9l*
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
-------
58
Table 5
IHCRS4EHTAL FLOW TABLEAU
NODE 462
Flow
(cfs)
31 . 10
101.10
121.10
11*1.10
i6i.lO
181.10
201.10
221.10
2U1.10
261.10
281.10
301.10
321.10
31*1.10
361.10
331.10
1+01.10
1*21.10
Ml. 10
1*61.10
i.81.10
501.10
521.10
51*1.10
561.10
BOD
(mg/1)
0.73
0.79
0.81*
0.89
0.93
0.96
0.99
1.02
1.05
1.07
1.09
1.11
1.13
1.15
1.16
1.18
1.19
1.21
1.22
1.23
1.25
1.26
1.27
1.28
1.29
DOD
(mg/1)
0.10
0.09
0.09
0.09
0.09
0.09
0.10
0.10
0.10
0.10
0.11
0.11
0.11
0.12
0.12
0.12
0.13
0.13
0.13
0.14
0.14
0.14
0.15
0.15
0.15
Sat DO
(fflg/1)
8.53
8.53
8.52
8.52
8.52
8.51
8.51
8.51
8.51
8.51
8.51
8.51
8.51
8.51
8.51
8.51
8.51
8.51
8.50
8.50
8.50
8.50
8.50
8.50
8.50
Temp
(°c)
22.78
22.82
22.85
22.87
22.89
22.90
22.91
22.92
22.93
22.93
22.94
22.94
22.94
22.95
22.95
22.95
22.96
22.96
22.96
22.96
22.96
22.96
22.97
22.97
22.97
5.00
25.00
-o.OO
65.00
55.00
--5.00
,80
.86
,88
.90
.90
1.91
NODE 458
0.01
0.05
0.11
0.18
0.2U
0.29
8.50
8.51
8.53
8.55
8.58
8.60
23.00
22.95
22.82
22.67
22.53
22.40
-------
59
Table 6
IHCKEMBHTAL FLOW TABLEAU
BODE 1*60
Flow
(cfs)
32l*.l*2
341*. 1*2
361*. 1*2
381*. 1*2
404.42
, - 1 | -.
«24.1*2
Hi* 1*. 1*2
u64.1*2
481*. 1*2
504.1*2
521*. 1*2
544.42
564.22
581*. 1*2
604.1*2
624.1*2
644.1*2
664.1*2
684.1*2
-rf\\, ] —
04.42 t
^24.42
"*)ili 1.0
, 44 , i|^
"64.1*2
"84.42
504.1*2
=21*. 1*2
SP"* u , ii2
564.1*2
364.1*2
904.42
524.42
-i.4 ).o
- ^ . ^c
BOD
(aw/1)
3.19
3.07
2.97
2.88
2.79
2.72
2.66
2.60
2.55
2.50
2.1*6
2.1*2
2.38
2.35
2.32
2.29
2.27
2.21*
2.22
2.20
2.18
2.17
2.15
2.13
2.12
2.13
2.13
2.11*
2.11*
2.11*
2.15
2.15
DOD
(n«/i
0.1*1
0.1*0
0.39
0.39
0.38
0.38
0.37
0.37
0.36
0.36
0.35
0.35
0.35
0.3k
0.3k
0.3k
0.33
0.33
0.33
0.33
0.33
0.32
0.32
0.32
0.32
0.33
0.35
0.36
0.37
0.38
0.39
0.1*0
Sat DO
Temp
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
-------
60
Table 7
INCBJ04ENTAL FLOW TABLEAU
NODE 1*36
Flov
(cfs)
386. U2
1*06.1*2
1*26.1*2
1*1*6.1*2
1*66.1*2
1*86.1*2
506.1+2
526.1*2
51+6.1+2
566.1*2
586.1*2
6o6.1*2
626.1*2
6l*6.U2
666.1*2
686.1*2
706 . 1*2
726.1*2
71*6.1*2
766.1*2
786.1*2
806.1*2
826.1*2
81*6.1*2
866.1*2
886.1+2
906.1+2
926.1+2
91*6.1+2
966.1*2
986.1+2
1006.1*2
1026.1*2
101+6.1+2
1066.1+2
1086.1+2
1106.1+2
BOD
(ntt/1)
1.15
1.16
1.18
1.17
1.16
1.16
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.16
1.16
1.16
1.16
1.1?
1.16
1.17
1.17
1.18
1.19
1.19
1.20
1.21
1.21
1.22
1.22
1.23
DOD
(mg/1)
0.11
0.12
0.12
0.12
0.12
0.12
0.13
0.13
0.13
0.13
0.13
0.11+
O.lU
0.11+
0.11+
O.lU
O.ll*
0.15
0.15
0.15
0.15
0.15
0.16
0.16.
0.16
0.16
0.16
0.16
0.17
0.17
0.17
0.17
0.18
0.18
0.18
0.18
0.19
Sat DO
(mg/D
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
Temp
(°c)
23.00
23.00
23.00
23.00
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.99
22.98
22.98
22.98
22.98
22.98
22.98
22.98
22.98
22.98
22.98
22.98
22.98
22.98
22.98
-------
61
Table 8
DYNAMIC PROGRAMMING TABLEAU
NODE 560
"otal Flow
(cfs)
93.00
113.00
133.00
153.00
173.00
193.00
213.00
233.00
253.00
273.00
293.00
313.00
333.00
Flow at 562
(cfs)
61.80
81.80
101.80
101.80
101.80
101.80
101.80
101.80
101.80
101.80
101.80
101.80
101 . 80
Flow at 570
(cfs)
31.20
31.20
31.20
51.20
71.20
91.20
111.20
131.20
151.20
171-20
191.20
211.20
231.20
BOD
(mg/1)
2.1U
2.11
2.09
2.19
2.27
2.33
2.39
2.1»3
2.U7
2.51
2.5^
2.56
2.58
DOD
(mg/1)
0.3^
0.1*2
0.1*9
0.57
0.70
0.8U
0.99
1.13
1.27
1.1*0
1.52
1.61*
1.71*
-------
62
Table 9
DYNAMIC PROGRAMMING TABLEAU
NODE UbO
"... Flow
, 12
...,1*2
..1*2
• ,.1*2
.::. 1(2
-jl*. 1*2
.'.I*.l2
• o!. .1*2
-31*. 1*2
.3". 1*2
1^.1*2
--4.1i2
:cl*.l*2
;-:4.1*2
:3U 1*2
•2u.l*2
"•4,1*2
-.61*. 1*2
•4.42
'U.U2
•24 1*2
"••'1.1*2
•a. 1*2
""4.1*2
:^.1*2
J4 U2
-'••4, 1*2
-'34 . 1*2
• 3 L 1± 2
'^.1*2
•-1..U2
""••-.i*2
Flow at 1+62
(cfs)
81.10
101.10
121.10
lUl.10
161.10
181,10
201.10
221.10
21*1.10
261.10
281.10
301.10
321.10
31*1.10
361.10
381.10
1*01.10
U21.10
1*1*1.10
1*61.10
1*81.10
501.10
521.10
5U1.10
561,10
561.10
561.10
561.10
561.10
561.10
561.10
561.10
Flow at 1*9H
(cfs)
21^3.33
21*3.33
21*3,33
21*3.33
21*3.33
21*3.33
21*3,33
2U3.33
21*3.33
2U3.33
2U3.33
21*3,33
21*3.33
2U3.33
21*3.33
21*3.33
21*3.33
21*3.33
21*3,33
21*3.33
2U3.33
21*3,33
21*3,33
2U3.33
21*3,33
263.33
283.33
303,33
323.33
3U3.33
363-33
383.33
BOD
(mg/1)
3.U1
3.27
3.15
3.05
2 ,,96
2.88
2.80
2,7l*
2.68
2.63 '
2.58
2,5^
2.50
2.1*6
2.1*3
2.1*0
2.37
2.3**
2,32
2.29
2.27
2.25
2.23
2.22
2.20
2 21
2.21
2.22
2.22
2.22
2.22
2.23
DOD
(mg/1)
0.67
0.63
0.50
0.58
0.55
0.53
0.51
0.50
0.1*8
0.1*7
0.1*6
0.1*1*
0.1*3
0.1*3
0.1*2
0,1*1
0.1*0
0,1*0
0.39
0.39
0.38
0.38
0.37
0,37
0,36
0.38
0,1*0
0,1*1
0.1*3
O.UU
0,1*6
0.1*7
-------
?•
Table 10
DYNAMIC PROGRAMMING TABLEAU
NODE 1*56
Total Flow
(cfs)
329. !*2
3^9. 1*2
369.1*2
389. k2
'(09.1*2
1*29.1*2
UQ.1*2
Uo9.1*2
1*89.1*2
509. 1*2
529.1*2
5^9.1*2
569.1*2
589.1*2
609.U2
629.1*2
ol-9.1*2
069.1*2
639. 1*2
709.1*2
729.1*2
7l*9.U2
769.1*2
739.1*2
309.1*2
o29.1*2
31*9.1*2
i69.1*2
659.1*2
909.1*2
929.1*2
^9.1*2
•X<9.1*2
V89.1*2
1C09.U2
-'29.1*2
"-9.42
Flow at 1*58
(cfs)
5.00
25.00
1*5.00
1*5.00
1*5-00
1*5.00
1*5.00
1*5.00
1*5.00
1*5.00
1*5-00
1*5.00
1*5.00
1*5.00
1*5.00
1*5.00
1*5.00
1*5.00
1*5.00
1*5-00
1*5.00
1*5.00
1*5.00
1*5.00
1*5. OC
1*5.00
1*5.00
65.00
85.00
105.00
105.00
105.00
105.00
105.00
105.00
105.00
105.00
Flow at 1*60
(cfs)
32U.1*2
32l*.l*2
321*. 1*2
31*1*. 1*2
361*. 1*2
381*. 1*2
l*0l*.l*2
1*2U. 1*2
1*1* I*. 1*2
U6U.1*2
1*81*. 1*2
501*. 1*2
521*. 1*2
5l*l*. 1*2
561*. 1*2
581*. 1*2
6oU.l*2
621*. 1*2
61*1*. U2
66U. 1*2
681*. h2
701*. 1*2
72U. 1*2
71*1*. 1*2
761*. 1*2
78U. 1*2
801*. 1*2
8Ql*.l*2
80U.1+2
80i*.l*2
821*. 1*2
81*1*. 1*2
86U.U2
88U. 1*2
90U.1*2
92l*.l*2
9l*l*.1*2
BOD
(mg/1)
3.17
3.10
3.0l*
2.9l*
2.85
2.77
2.70
2.61*
2.59
2.51*
2.1*9
2.1*5
2.1*1
2.38
2.35
2.32
2.29
2.27
2.2U
2.22
2.18
2.18
2.17
2.15
2.13
2.12
2.11
2.10
2.10
2.10
2.10
2.11
2.11
2.12
2.12
2.12
2.12
DOD
(fflg/1)
0.1*0
0.38
0.37
0.37
0.36
0.36
0.35
0.35
0.35
0.31*
0.31*
0.31*
0.33
0.33
0.33
0.33
0.32
0.32
0.32
0.32
0.32
0.31
0.31
0.31
0.31
0.31
0.31
0.31
0.31
0.32
0.33
0.31*
0,35
0.36
0.37
0.38
0.39
I
-------
Table 11
DYNAMIC PROGRAMMING TABLEAU
(Churchill's K Formulation)
NODE 1*56
i
Total Flow
(cfs)
31*9.1*2
369.1+2
389.1*2
1*09 . 1*2
1+29 . 1*2
1*1*9.1*2
1*69.1*2
1*89.1*2
509.1*2
529.1*2
5!*9.1*2
569.1*2
589.1*2
609.1*2
629.1*2
61*9. U2
669.1*2
689. 1*2
709 . 1*2
729.1*2
71*9.^2
769.1*2
789 . 1*2
809 . 1*2
829.1*2
81*9.1*2
869.1*2
889.1*2
909.1*2
929.1*2
91*9.1*2
969.1*2
989.1*2
1009.1*2
1029.1*2
101*9.1*2
Flov at 1*58
(cfs)
5.00
25.00
1*5.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
1*5.00
1*5.00
1*5.00
1*5-00
1*5.00
1*5.00
1*5-00
1*5-00
1*5.00
1*5.00
1*5-00
65.00
85.00
105.00
105.00
105.00
105-00
105-00
105.00
105.00
Flow at 1*60
(cfs)
31*1*. 1*2
3l*U. 1*2
31*1*. 1*2
3U1*. 1*2
361*. 1*2
381*. 1*2
1*01*. 1*2
1*21*. 1*2
1*1*1;. 1*2
1*6U. 1*2
1*81*. 1*2
501*. 1*2
52U.U2
51*1*. 1*2
' 561*. 1*2
581*. 1*2
62U. 1*2
61*1*. 1*2
661*. 1*2
681*. 1*2
701*. 1*2
72l+.l*2
7l+ 1*. 1*2
761*. 1*2
781*. 1*2
80U.U2
82l*.l*2
821*. 1*2
821*. 1*2
821*. 1*2
81*1*. 1*2
861*. 1*2
881*. 1*2
90l*.l*2
921*. 1*2
91*1*. 1*2
BOD
(mg/1)
3.13
3.06
3.00
2.95
2.86
2.79
2.72
2.66
2.60
2.55
2.51
2.1*7
2.1*3
2.1*0
2.36
2.3l*
2.29
2.27
2.25
2.23
2.21
2.19
2.17
2.16
2.11*
2.13
2.11
2.11
2.11
2.10
2.11
2.11
2.12
2.12
2.12
2.12
DOD
(mg/1
0.62
0.59
0.57
0.55
0.51*
0.53
0.52
0.51
0.50
0.50
0.1*9
0.1*8
0.1*7
0.1*7
0.1*6
0.1*5
0.1*5
0.1*1*
0.1*1*
0.1*3
0.1*3
0.1*2
0.1*2
0.1*1
0.1*1
0.1*1
0.1*0
0.1*0
0.1*0
o.Uo
0.1*1
0.1*2
0.1*1*
0.1*5
0.1*6
0.1*7
-------
65
Table 12
FLOW BAittS MIA
Upper Potome Hirer Basin
i
f
»
«~
EL
I
1
1
&
,
:
r
•
1
i
Node
#*•*
570
566***
562
560
494
,92***
462
.,60
.53***
456
06
Mtniana Flow*
(cfs)
&.20
61.80
61.80
93.00
143.33
40.00
81.10
224.42
5.00
229.42
286.42
* minima flow for this study coopated as 7-day
recurrence interval of once in ten years.
** aarLnani flow eouals nlniani flow -plus reiralatd
y\t
Maxioun Flow
(cfs)
231.20
101.80
101.80
333.00
393.33
520.00
561.09
944.42
105.00
1049.42
1106.42
low flow with
Lon capacity.
denotes reeerroir sites.
-------
Partial listing of the taole&ux for conditions typical for the
m-.T-th of July are given in Tables k through 10, A reduced form of the
minimum-maximum flow range listing for the above nodes is presented in
>.blp 12.
n< r i' m e; < t a 1 F i ow Tab 1 qaiix.
.As an integral part of the model output, the IFT's are used for
enveloping the release patterns and are also very useful for establishing
crie effects of flcrw regulation on the various water quality parameters.
In IFT-s for nodes 570, 5fo2, U62, and U50, the effects of increasing
reservoir release rates vassuming the quality in the impoundment remains
tinstant with flow) are clearly demonstrated. In these reaches, the
vater quality is primarily controlled by the conditions in the im-
prandment and the stream reaeration capacity.
For the reservoir at nodes 570 and 568, the BOB was assumed t<-> be
:..0 tng/1 and CO concentration 5.0 mg/1, and c',0 mg/1 of BOD and 8.0 mg/1
DC-, respectively,. With the quality remaining constant with flow, the
IFT for this node clearly demonstrates how the increase flew rates
lessen the recovery of initial DO deficits. Similar response is shown
for the reservoir at node 5&S, although in this case the response is not
so drastic because of the longer stream reach*
The effects of the i?astewater loads it. reach 3» the quality con-
straints, and flow augmentation can be readily seen in IFT's for
nodes ^9^ an0. In the downstream end of reach 3, as indexed by
toe IFT for node ^9**, the flow range is from lU3 to 383 cfs. (See
Table 12.) However, due to large wasted-rater loads in reach 3? a mini-
mum of 2U3 cfs is required to meet the DO quality constraint of U.O mg/1.
This results in a feasible range of flow from 2^3 to 383 cfs instead
-------
67
of the maximum regulatable range of 143 to 383 cfa, A similar reduction
•it also imposed on downstream nodes affected by the releass range in
reach 3e
Tableaux
As can be seen in the DPT's for nodes 560, 460, and 456 in
ci* 8, 9, and 10, respectively, the tableaux contains for each flew
o+.ste an optimal combination of tha two contributing tributaries or
reaches, The tableaux also contains the flow contributions of the
I^T's indexed by the first upstream node and the numerical values of
TH? two return variables, BOD and DOD0 Not included in the partial
Us ting are two remaining state variables, temperature and deoxy-
j*"nation rate,. Appendix C includes a complete display of computer
-•.-pa4-, of the flow release model for the Patuxent Basin.
Tb» tnd&xlng as described above and a listing of irj rdsvan-
naximuni flow ranges for each node as given in Table 12 provides a
simple linkage* between the DPT's and IFT's. This linkage is nee«s-
•^firy in developing the reservoir release sequences which is discussed
in the next two sections of this chapter,
Since there are no iua,jor waste sources above th^ first decision
point (node 560), the jaajor factor controlling the optiniz&tion prcceas
!•* the water quality in the proposed reservoir sit€»s0 In the dynamic
programming optimisation routine for nods 560, 33 fe^sifcle sclution=
investigated usi^g a flow grid of 20 cfs. With the selecV.on
^Linkage in this study is defined as providing a mechanism,
manual or via the computer, for data transmission between
T"'? output of a series of calculations and/or decisions ar,d the
red input for a succeeding series of calculations ar^l/or
-"visions.
-------
68
of the minisBBB BOD increment of 0,5 Bg/1, the zncnber of feasible solu-
tions wa? reduced to thirteen,, Since the BOD range was never greater
than Oo5 fflg/1 per flow statft, only on« feasible solution was retained
pw flew artate, Hence, th* optimal solution for th« given flow state
i« that combination which yields the miniania DO deficit,
For tha s^esnd decision point (ned« 4^0), tha release pattern is
from ths predcaainantly better quality of reach 4. Tha 200 feasible
solutions were reduced optimally to 32, corresponding to the maber of
flow states , Similar to nod« 560, thars is only oa» solution per
flew stat»o
The DPT of tha third decision pcint (ncsda 456) is sad» of 1ST 'a
cf nodes 458 and 460, which are quit* different in quality* At thia
~.'Aef the 192 feasible soltrtions wer« r*diaced to 37 optiaal solutions 0
/LS presented in Table 10, there is a slight vacillation in relaas®
pattern as the flow state is increased. The vacillation is even
asre prcsusmeed fear this nod* -when the Churchill rsaeration is used,
a.n can b& e&sn in Table 11, This v&eillatiam is due to the following'
: (l) a coarse Bf?D gr±df (2) the water quality in tha res ear-
at nod« 458^ and (3) ths POD ret-am pazsraeter,. In Chapter VI,
and ether factors will bs dis crossed in greater detail,,
REL2&SE
From ths Ifl'a and DET's, it is possible to deterudne two typea
cf qptimnl reservoir release ssqueaees: (l) "best1 water quality for
* given flow requirejoierrfe , or (2) minimum release rates for a given
watsr quality req'airsiQent „ Assuming that all reservoirs in the upper
F"3Jt of the Pofecaac Basin are operational, ths development of a
release pattern is best illustrated by an exaamle. USTT.CT +>,«*
-------
' I
69
test runs and tableaux for July, the optimal release sequences given
in Table 13 would be required to provide the best water quality (mini-
mam DOD for a given BOD state) for a flow target of 706 cfs at node 436.
Table 13
EXAMPLE OF AN OPTIMAL RELEASE SEQUENCE
Point
Terminal
3rd Decision
2nd Decision
1st Decision
Node
436
456
460
560
Total Flow
(cfs)
706
649
644
193
IFT
Node
—
458*
462*
562*
Flew
(cfs)
—
45
401
102
Node
i —
460
494
570*
IFT
Flow
(cfs)
—
604
243
91
*XFT's downstream from reservoirs
The above release sequences for the decision points have been
developed in reverse order from which the tableaux were formed„ That
is, by starting with the terminal node 436, proceeding upstream, and
diverging at each decision point, the flow requirements for each con-
tributing IFT of each stage have been datsrmined as indicated in Table 13.
From the above Table 13, Table 12, and by subtracting the flow con-
tributions of the unregulated drainage areas, the following reservoir
operating scheme has been derived for the imposed conditions:
1. Reservoir at node 570, a release rate of 91 cfs.
2. Reservoir at node 568, a release rate of 102 cfs.
3. Reservoir at node 492, a release rate of 360 cfs,
4. Reservoir at node 458, a release rate of 45 cfs.
-------
70
Since the reservoir at code 568 is drawn to its "3xlmm capacity, the
draw down of the reservoir at node 270 ia necessary to s&et quality
constraints in reach 3.
It ia also possible to develop a flow release pattern which is
dictated by desired quality at a decision point. For example, at
node 456 a total of 529 cfs or greater would be required to maintain
a BOD level of 2.5 ffig/1 or loss. A release pattern can be obtained
to maintain the BOD objective similar to the sequence developed for
a given flow rate at node 436.
WATER QUALITY CONTROL CQtSIDSBAIIOtB IS HESERVOIH DESIGN
As indicated in the previous section, the flow pattern may vary
for a given decision point, depending on the total flow. While it is
not feasible to construct a reservoir to meet these vacillations, the
existence of a trend in release patterns is as important as are abso-
lute release sequences.
In studies at the Chesapeake Field Station, Hetling[79] determined
effects of flow regulation and waste treatment on the water quality in
the Potowic Estuary. Using a DO objective of 4.0 B^g/1, 91, 92, and
93 percent removal of the 5-day BOD is required for 2000, 1500, and
1000 cfs of flow, respectively. The optiaal flow release sequences
for the proposed reservoir system to meet the three flow targets are
shown in Figure 6.
These release patterns have been developed employing the following
conditions:
1. Wastewater loadings and water supply usage as given in
Appendix B.
-------
71
I
t -|__J_L ! '•
t..L 4-U
I ..I. 1 j-j-l
rt f
Figure 6
-------
72
2. Water quality of all streaa flow addition points (including
reservoirs) regains constant with flow. BOD and DO are
assxuaed to be 2.0 and 8.0 mg/1, respectively.
3. O'Connor's Kg formulation is used to determine reaaration
rate.
4. Steady-state temperature for entire river system is 23 C.
5. Base flow and regulation capacity of the reservoirs are as
indicated in Figure 6,
6. DO constraint is 4.0 sag/1 in all reaches.
The above have been used also as standard test conditions for the sensi-
tivity analysis in conjunction with 1500 cfs requirement in the
estuary.
For the preceding conditions, it can be seen that the Savage II
and Brocks Gap Reservoirs at nodes 104 a&d 56*8 are at their maximum
release rate for all three target flows at the estuary while the
Tonoloway Creek and Six Bridge Reservoirs at nodes 56 and 434 are at
their base flow rates. The two reservoirs which are at their maximum
rates are of primary importance in the optimal flow release pattern.
The Staunton, Winchester, Chaabersburg, Back Creek, and West Branch
Reservoirs at nodes 244, 356, 393, 398, and 402, respectively, are .
utilized to their capacity at 1500 and 2000 cfs target, indicating a
secondary importance in the release pattern.
In the entire Potomac River Basin affected by the proposed reser-
voir system, the North Branch is the only section of the Potonac that
requires additional flow regulation to meet the 4.0 Eg/1 DO objective.
This is reflected in the constant release rates from Savage II and
Bloomington Reservoirs for all targets and levels at the estuary.
-------
CHAPTER VI
SENSITIVITY ANALYSES
In thla chapter the spatial sensitivity of the reservoir release
patterns are related to changes in (l) biochemical and physical,
(2) design, and (3) socio-economic parameters. Comparisons of the
various release sequences in response to a change in a given parameter are
made to the standard test run which was described in the previous chapter
and is presented in Figure 6. The biochemical and physical parameters
investigated were time of travel, reaeration, minimum BOD concentrations
and deaeration; the design parameters were stream temperature, BuD-DO
concentrations in the proposed reservoirs, wastewater loadings, and DO
concentration in the wastewater effluent; and the socio-economic.param-
eters were water quality objectives and imposed waste loadings.
BIOCHEMICAL AffD PHYSICAL PARAMETERS
The three basic biochemical and physical parameters required in
t'o« quality formulations are (l) time of travel, (2) reaeration rate,
and (3) deaeration rate. Problems in determining these parameters
and suggested steps in simplifying the verification of the quality formu-
lations are given in Appendix A.
Based on verification studies in the North Branch of the Potomac
River and in the Patuxent Basin, the most important parameter appears
*o be time of travel. An example of the important!-? -^ travel time is
given in Appendix A, where a 65 percent over-estioatier; in time of travel
in a 3QO percent error in calculating the assimilative capacity
-------
74
of tha North Branch. Not only is tbe travel time an integral part of
the water quality formulations, "but also a constituent parameter in
the predictive reaeration formulations and used in calculating the
deaeration rate of the stream. Therefore, any analysis of the sensi-
tivity of the flow release pattern to this parameter would also reflect
changes in the temperature profile, reaeration rates, etc., and would
not yield any definitive information. Also, with the use of tracers
the time of travel measurement is becoming more exact and less costly.
Reaeration.
Of the remaining two parameters, the reaeration rate appears to
be next in importance. Even with good information on deaeration rates
and times of travel, considerable engineering judgment is required in
the selection and use of the reaeration formulations. In Table 15 and
in Figures 13, 14, and 15, it can readily be seen that even with the
same velocity and depth data, more than a threefold difference in re-
aeration rates can be observed depending on which formulation is used.
A test run has been made using the Churchill K2 formulation and
with all the remaining parameters being the same as in the standard
test conditions. When the release pattern is compared to the standard
test run (O'Connor's Kp formulation), differences in the release rates-.
from four reservoirs are observed. (See Figure 7.) Three of these
changes are minor, 20 cfs, with the remaining being more significant,
60 cfs.
The small number of changes in the entire release pattern is pri-
marily due to the location of the waatewater loads in the Potomac Basin.
In only one section of tha basin, reach 3 in the North Branch watershed,
flow augmentation is required to meet the DO quality objective. The
-------
75
constraining section of this area (River Mile 305-310) is in waters
ranging from 6 to 12 feet in depth. As can be seen in Figure 16, the
two computed DO profiles are essentially the same at this critical reach,
hence there is only a slight difference in the flow requirements. How-
ever, if the constraining reach had been downstream about 10 miles,
the change in release pattern would have been significant.
Deaeration and Minimum BOD Concentrations
The deaeration rates of the wastewaters used in the standard test
runs were either determined as outlined in Appendix A or obtained from
previous water quality studies. For all stream flow addition points, a
deaeration rate of 0.1 (base 10 at 20°C) was assumed.
An additional computer run was made using the standard test con-
ditions, except that the deaeration rate of all wastewaters was set at
0.15 (base 10 at 20°C). The reservoir release sequence to maintain
1500 cfs at the estuary was very similar to the standard test run. See
Figure 7 for comparison to standard test run.
The insensitivity is primarily due to the small changes in the
overall stream deaeration rates. In setting all values at 0,15, some
I1',!
wastewater rates are increased while others are decreased, with an ji;
*''*
overall slight increase of less than 0.02 for the entire basin. ill
Of equal importance is the assumption of a minimum equilibrium : jjj
level for BOD between the waters of the stream and the stream bed. , \v.\
•Jill
Field studies conducted by the Chesapeake Field Station and by others jiji
indicate that there is a background BOD of 1.0 to 3.0 mg/1 with a |; !
1:1"
corresponding DO level of about 80 to 90 percent of saturation in long ! |;
reaches of the Potomac containing no point-source pollution. With the |, {
.! i';
i I' *
first-order BOD decay equation used in the model, the resulting BOD j M
-------
f
Figure 7
-------
77
.Oncentrations approach 0.0, and the DO values are near saturation in
•j;ese reaches. As can be seen in Table 7 for Node 436 (River Mile 238.0),
,ve BOD is about 1.0 mg/1 with the DO near saturation. Since there is
-j3 aiajor point-source of pollution between Node 436 and the estuary,
• i.e BOD approaches 0.0 mg/1 and the DO remains near saturation for the
ncceeding downstream reaches.
Under standard test conditions, a computer run was made in which
•je dynamic equilibrium was limited to a minimum level of 2.0 mg/1. In
-.ne run, whenever the BOD dropped below 2.0 mg/1, it was reset to
: 0 ng/1.
Major changes occurred in the release rates from Six Bridge and
•oyal Glen Reservoirs when compared to standard test runs. The limiting
::" the BOD to 2.0 mg/1 causes all the reservoirs in the lower portion
:f the basin to draw down first. (See Figure 7.) If the existence of
ZTWO.C equilibrium level can be firmly established for various flow
Auditions and temperatures, the effect of this equilibrium could be sig-
nificant for developing release rates for water quality control in the
The effects of four engineering design parameters have been investi
ftted in this study; these are (1) temperature, (2) BOD-DO levels in the
>-3ervoir, (3) wastewater loadings, and (4) DO concentrations in the
n^tewater effluents.
In the flow-release model, the temperature algorithm exponentially
s an increase or decrease in temperature to a steady-state temp-
. For the standard test run a steady -state temperature of 23°C
-------
f
78
bas been used, with the temperatures of the waters from the reservoirs
being taken as 20°C.
The steady-state temperature was determined from a statistical
analysis of the temperature data by months. The value of 23°C is an
average of all the mean temperatures for the month of July for all water
quality stations in the Potomac Basin.
To test the effect of temperature on the release rates, a computer
run was made with the temperaturea set at 28°C, with other parameters
being the same as for standard test conditions, As can be seen in
Figure 8, only a slight change, 20 cfs, occurred in the release sequence
from four reservoirs.
With an increase in temperature, tha deaeration and the reaeration
rates both increase. Therefore, there is only a small net change in the
maximum DO deficit which is attributed to the differences in reaction
constants. The major effect of temperature is on the DO saturation
concentration. This effect is most pronounced in the North Branch area
which receives wastewater high in BOD and large volumes of cooling water,
as can be seen in Figure 16 and where flow regulation is required to
meet the DO quality constraints.
BQD-DQ Concgn^raJ^ons in the Reservoixs
A computer run was made to investigate the effect of water quality
in the reservoirs on the flow release pattern. In this run the BOD and
DO were set at 3.0 and 5.0 mg/1, respectively, as compared to 2.0 and
8.0 rag/1 for the standard test run,
The optimal reservoir release sequence to meet the 1500 cfs flow
requirement is almost similar to that for the standard test run, except
-cr the Royal Glen project„ (See Figure 8.) The small sensitivity of
-------
79
the release sequence to a change, in reservoir quality in the Potomac is
primarily due to the location of the proposed upstream impoundments.
The distance of moat iapoundaents froa the decision points is
ample to allow significant recovery of initial DO deficit isrposed in
the reservoirs. The extant of the recovery can be readily seen when
the IFt's are ezaadned in detail. (See Tables 4, 5, and 6.) Similar
recoveries restated for the runs whan the BOD and DO were 3.0 mg/1 and
5.0 ng/1, respectively.
Wastewat**r
To test the sensitivity of the release sequence to changes in
waste loadings, the current BOP loadings before treatment were doubled
for all discharges. The release pattern developed for the doubled
loading for which the minjwaa treatment was set at 85 percent removal
of BOD is presented in figure S.
then ccnrpared to the standard test run, release rates from five
reservoirs are changed for a doubled waste load, with Royal Glen having
the greatest change of about 120 cfs. The increase in release rates
froa North Mountain, Licking Creek, and Town Creek follows naturally
since there are no waste loads in these sub-basins.
The doubling of waste load resulted in flow requirements above the
base flow in the North Fork and stem of the Shenandoah River. However,
due to quality difference* at the confluence point with the Potonaac
River, the release rates frc» two reservoirs in the Shenandoah sub-basin
are at their nadjsux to meet the 1500 cfs requirements for the estuary
as determined optiaally using the flow release model.
-------
Figure
-------
81
One of the parameters often overlooked or minimized is the DO con-
-r.tration in the wastewater effluents. The effects of low DO waste-
a-,er discharges are most pronounced in reaches where the ratio of
*stejmter to stream flow is greater than 0.5, such as the North Branch.
^ Figure 16, the large drops in the DO at River Mile 338 and 312 are
result of cooling water and wastewater discharges which are low in
fjsolved oxygen and/or have a high immediate dissolved oxygen demand.
In the model, the concentration of BOD in thermal discharges is
K*. equal to that of intake water plus any BOD added by the industrial
f:ility. The DO and heat content can be set at any prescribed level
inprt data. For the standard test runs, the DO of the large waste
cjcharges, including cooling water, was assumed to be 0.0 iag/1.
To meet a 4.0 ag/1 DO requirement in the North Branch for the BOD
«iing used in the standard test, approximately 193 cfs is required ; I
'- :ode 560. If the BOD loading is doubled with the waste volume held
, the flow requirement is about 213 cfs. Howevar, if the DO
§ *Jie cooling water is set at 2.0 Eg/1 instead of 0.0 ffig/1, the flow
^-reaent is about 173 cfs. This is a 20 cfs decrease in flow require-
?jen with the BOD loading being doubled. Although not shown in
the effect of a 2.0 mg/1 change in DO in the effluent can
m
than the effect of doubling the waste loads, as illustrated
^ for-the North Branch sub-basin, indicating the importance of this
i design.
-------
82
§QCIO-ECQNCaCC PARAMETERS
To determine the effect of selected socio-economic parameters on
the release sequences, ccmput-ar runs hare "been made for an increased
wit*r quality objective to 4.5 rog/i of DO and for imposed BOD loadings
•••it two different .reaches „ The remaining parameters hav® been held
•cnstant as stated for the standard test runs,
The effect of selecting a given water quality objective can be
-*idily observed when the sequences for the doubled BOD loadings in
Figures 8 fe.na 9 are compared. In Figure 8, the JX) constraint was at
-------
83
1
-f- -H
rn:tx[
! Li LU
Figure 9
-------
As also can be seen in Figure 9, the release sequence is sensitive
to the imposed loadings at node 448, especially in the upstream portion
of the basin. The release rates from four upstream reservoirs are
changed with the greatest change being at the North Mountain Reservoir,
^bout 60 cfs. However, the release sequence is not sensitive to the
•laposed load at node 2&L; in fact, the release rates are similar to
r,no5e for the standard test run.
In summary, it has been demonstrated for 1500 cfs flow target at
-.he estuary, the spatial reservoir release sequences are sensitive to
Changes in reaeration rates, stream temperature, wastewater loading,
etc,, when cosrpared to standard test run. The greatest changes in
release rates, as shown in Figures 7 to 9, were in the Blooadngton,
royal Glen, Town Creek, Licking Creek, and North Mountain Reservoirs,
all of which have an effect on the pollution problem originating in
the North Branch. The insensitivity of the release sequences from the
>vest Branch, Back Creek, Chaabersburg, Staunton, Brocks Gap, Winchester,
and Six Bridge Reservoirs is mainly due to two causes (l) relatively
-------
I
85
The grouping of the parasaetara as presented in Figures 71 &, and
9 gives the engineer a great insight as to which parameter in a partic-
ular group may have the greatest effect on a given solution. The
insight Is even more meaningful whan coupled to the ability to predict
i given parameter in the future is considered. For example, of the
:hysical and biochemical parameters, velocity and the reaeration rates
for a given flow and temperature condition should remain fairly constant
S.
in the future while the deaeration rates are very dependent on the
future wastewater characteristics. Fortunately,in the Potomac system
•.he deaeration rates appear to have the least effect on the optimal
.low release patterns and thereby minimizing any possible change in the
release sequence due to any future changes in wastewater characteristics,
Tr.e above example demonstrates how with the use of the flow release
sodel effective planning can be realized even when all parameters cannot
:« accurately predicted.
-------
CHAPTER VII
FURTHER DICVKLOPSffiHTS OF THS FLOW RELEASE MODEL
An expanded version of the flow release model (Version II), which
incorporates the cost of reservoir construction and operation, is pre-
sented in this chapter. Least-cost solutions are compared to those in
Chapters V and VI, which were primarily concerned with water quality.
Other possible expansions of the model, such as minimizing the deficit
miles, inclusion of nutrient considerations, etc., are also proposed
in this chapter.
Methods for overcoming the deterministic flow system are pre-
sented in the latter part of this chapter. Linkage to water quality,
stream flow, and estuary model is also presented.
SOLUTIONS
Froa the interpretation of DPT's in Chapter V and the sensitivity
analysis in Chapter VI, it can be generally concluded that the second
return variable, DOD, is not too significant in the optimization pro-
cedure. This is especially true in the Potomac Basin or when the
waste loads are not overlapping, when reservoir quality is similar,
or when the DO quality constraint is high. Based on this finding, the
model has been expanded to incorporate the cost of reservoir construc-
tion and operation.
The cost of reservoir storage for a given release rate was sub-
stituted for the DOD parameter as the second return variable in the
optimization algorithm. To provide for non-linear cost data, the cost
86
-------
87
information is read in discrete units amenable to the flow-increment
grid. This is explained in greater detail later in this chapter.
For the least-cost solution, the problem is expressed mathe-
matically as:
Fo(Xo(k,p)) • Jttn [Cost(k,p) BQD(k,p) | Xo(k,p) -
Xa(i) + Xn(j)] (7-1)
There
Cost(k,p) » State of the second dependent variable for
a given Xo and BOD state
Fo(Xo(k,p)) » Miniwoa cost of flow regulation for a given flow
and BOD state; other variables as defined in
Chapter III.
Since the cost state is additive, an accounting mechanism is also in-
corporated into the aodel.
With Version II of the flow release model, it is possible to obtain
a flow release sequence for the optiaization criteria listed in Table 14.
Table 14
OFTDHZATIQM CRITERIA OF THS FLOW
Optimization
_ Index
I
II
III
IV
V
First Return
Variable
BOD
BOD
BOD
Second Beturn
Variable
DOD
DOD
COST
COST
j_i-___m
Reaarks
Standard test runs
Use large BOD grid
Least-cost solutions
Use large BOD grid
Read in gll cost
data as zeros
-------
88
Version II also has greater flexibility in choice of reaeration pre
diction formulations, temperature coefficients and BOD algorithm
parameters. See Appendices C, D, and E.
Using Version II of the flow release model, a series of computer
runs were made to determine the effect of various optimization param-
eters. As can be seen in Figure 10, release sequences are greatly
affected by the choice of the optimization criterion.
In the DO deficit and BOD optimization procedure (Optimization
Index l) as discussed in Chapter V, only one solution was normally
retained per flow increment even when a BOD grid as small as 0.5 mg/1
was employed. The retaining of one solution per flow increment is
essentially reducing the optimization to a single return variable.
(Optimization Index II.)
With a smaller BOD grid, more solutions could be retained in up-
stream reaches of the Potomac. However, these additional feasible
solutions would be eliminated at the lower decision points due to lo-
cation of wastewater loadings, assumed reservoir quality, and smooth
response surfaces of the BOD and DO profiles.
Similar to the above optimization parameters, the least-coet/BOD
(Index III) and least-cost (Index IV) methods yield identical release
sequences for the prepared reservoir system of the Potomac River Basin.
The release sequences for least-BOD optimization parameter (Index V)
is also given in Figure 10.
While the release sequences are very dependent on the choice of
the optimization criteria, the effect on the water quality entering
-------
89
I,
•M
Figure 10
-------
90
the estuary is ndnliaal. Excluding the runs using a dynamic equilibrium
BOP level and imposed BOD loads , the BOD and DO concentrations for
1500 cfa at the estuary vary only about 0.5 mg/1. Since the greatest
difference in water quality ia in the upstream tributaries of the
Potomac, the release sequences for the various optimisation criteria
are more indicative of upstream conditions and reservoir cost for least-
cost solution than they are of conditions in the main stream.
A detailed study on the cost of alternative systems for DO manage-
ment in the Potomac Estuary has been made by Davis [3£] . The effect of
developing optimal release patterns for the non-tidal portion of basin
on the various alternatives as presented by Davis is beyond the scope
of this study.
: WAiEa QUAITY
In the above flow release model, primary emphasis is given to the
water quality at the decision points. While the constraints guarantee
an acceptable water quality in the reach, the entire optimization pro-
cedure is based on the quality of the two contributing streams at the
decision point.
With judicial use of the quality constraint and well-defined
quality algorithms, one can obtain sufficient information for develop-
ment of a flow release pattern; however, the solution is nonencompassing
in regards to the number of stream miles at a given quality level.
Three possible measurements indicative of water quality in the entire
reach are as follows:
-------
91
1. Number of streaa miles at a prescribed water quality level,
e.g., at or above a DO of 6.0 Eg/1 or at or above a BOD of
3.0 sngA.
2. Number of Eg/l-mil«3 of the waatattttor constituatrtT profilea,
e.g., the area undar tha BOD or DOD quality profiles.
3. Siailar to Muaiber 2, ^rith the area calculation being pro-
rated according to a predetermined scale, based on the
degree of the deterioration of the water quality.
Before any of the above EieasTaresients can be applied realistically
in flow regulation, it is necessary to assess wastewater treatment
requirements in a similar Esann«r. A method for financing waste treat-
ment facilities using tha constituent profile has bsen advanced by
the State of Ohio[80].
Another water quality parameter which is receiving much attention
today and which is quit® indicative of streaa conditions is that of
nutrient level. High concentrations of nutrients, ssainly phosphates
and nitrates, usually result in algal bloods, which nay res-alt in
further deterioration in water quality. An exponential-loss modal for
predicting the concentration of phosphates in flowing streasas was de-
veloped as part of this study and is currently being tested at tha
^esapeaks Field Station. If it is poaaiblo to express the loss in
Phosphates jDathssjatically, the phosphate level could be used as the
return variable, instead of the DOD paraaetar. See Appendix A
a description of tha phosphate siodel.
-------
I
'%
92
TJgKAGE TO HIVSE IffXET SIJUJLATION MQD5IS
The flow release model optimizes in space, i.e., within the
physical dimensions of the basin. The solutions are developed for
independent time units such as months, seasons, etc. Since the solu-
tions are independent, it is hydrologically possible that reservoir
storage required for a given time unit zaay not be sufficient to
operate optimally. The deteralnistie tableaux can be transformed
into statistical solutions with the us a of yield curves and validated
Tith linkage to river flew a inflation jaodels.
Uaq of Yield Ciirvea
Yield curves similar to that for the West Branch project can be
developed for 313. given reservoir sites by routing historical or syn-
thetically generated stream flows through the impoundments. (See
Figure 11.)
Thirty-six years of historical data ware routed through the pro-
posed reservoir site on West Branch of the Conococheague Creek for
rarious reservoir sizes and yield targets using the Hirer Basin Simu-
lation Prograa[8l]. The probability of deficiency in months for each
routing and storage capacity iras determined for a prescribed uniform
use rate.
The probability of failure can be introduced into the flow release
sisrply by developing such curves for each proposed site. The
and raaytgftfln flow regulation ranges (required input for the
raleasa model) can be obtained from these curves for a probability
D- failure. For esaapla, for a maxisiura of 50,000 acre-feet of storage
*• A'eat Branch site, the flow range is from a jninimua of 20 cfs to a
of 120 cfs for 1 percent probability of failure.
-------
93
2jO 30 40
-SIQAAGE. r JQO.O-_ACM._£«ii_
Figure 11
-------
94
Using the typical reservoir cost-storage curves as developed by
Corps of Engineers[731, it is possible to transform the Figure 11
a uniform use rate (BUB) versus storage cost relatiocsnip for
the various probabilities of deficiency. This traaaforsaation is re-
quired in the least-coat solutions.
3jvpr Flow S
In a basin as large as the Poteaaac, there are great differences
in rainfall patterns, ground water, terrain, etc. These differences
introduce a joint probability of deficiency for each decision point.
The probability of failure in the flow release sequence developed
in conjunction with the yield curves can be further evaluated by using
option B of Hirer Basin Simulation Program [81].
The operation patterns as developed from the flow release model are
raad in as input controls in the simulation model. The option B
Trograa attempts to maintain the prescribed releases for each reser-
rair for each time unit.
A more sophisticated model for river flow simulation has been
'•TOloped by the Corps of Engineers and greatly expanded by Resources
'or the Future[82]. The simulation program has the advantage of incor-
porating an operating policy (release rules) that is consistent with
'ct multiple purpose uses served by the proposed reservoirs. The
rules accomplish the objectives of rnai.Trtaitd-ng reservoir pools
reaeration and flood control, as well as meeting downstream flow
for water supply, quality control, etc.
feature of beiag able to prescribe preference release patterns
the various control points (or decision points) makes the simula-
1 program very aaesabl® to the solutions generated by flow release
-------
95
Fron the ITT'a and DFT's as described in Chapter V, it is
possible to determine optimal release patterns. Further, from the
tableaux, it is also possible to determine for each decision point jj i
the next best level of operation. Thus, fron the flow release modal,
one can not only determine the specific release sequence needed to
operate the system optimally, but also determine the next best
operational pattern in case there is insufficient storage to meet
the optimal release sequence.
By using the output data of the flow release model as input
date for the river flow simulation program, a linkage in determining
flow requirements including the probability of failure can be real- ,
ized. This linkage also can be used to statistically evaluate the
significance of various physical,biochemical, design, and socio-
economic parameters in regard to failure frequencies.
T TW5TA^T? tn^\ TJHu^FTTA en** AUT) TJTT!R?D TtAQ"Tiff f\fTAT T^f^f C! ^TUTTT AfTT/TTM VjBTYTYEPTC!
MA!A^M*^UA 1 tJ JEaji u^^Jr^^ .fl-MSr Jj^^ w ifttL X^0tD J^ Si vUJ^^^^UuX. i, *• (•) AgfiJw^^MvX JLv~ri jTm_ft.ir CM^J
In the application of the Tboaaann steady-state, Thoaana time-
dependent, or the O'Connor estuarine models, boundary conditions of
r,BQD, DO, and temperature are required. The final tableaux front
release program contain these states, and also costs for regu-
lation, optimally determined for each incremental flow state. By
the results of the tableaux aa input for the estuary jcodela
can be obtained.
A complete s isolation program would be required to completely
a water quality control prograa for an entire river basin,
its estuary. The following considerations should be in-
:av?orated in such a basin model.
AT..
-------
96
1. A mechanism for streaa flow generation.
2. A mechanism for stream temperature generation.
3. A model for determining the optimal reservoir release
sequences conditional on the status of the reservoirs.
4. A routing of stream flows according to optimal release
sequences while maintaining given prescribed conditions in
the individual reservoirs.
5. A routing of the water quality in non-tidal portion of the
basin to develop the boundary conditions at the estuary.
6. A routing of the water quality in the estuary.
The simulation could be either steady-state or time-dependent.
Algorithms for many of the above steps currently exist. Since the
overall program would be enormous, it probably would have to be accom-
plished in various links. A proposed flow chart showing the linkage
of the various algorithms is presented in Figure 12.
Boundary conditions for the upper stream terminal points and im-
posed wastewater loads would be read in as input data. The upper
boundary conditions of the estuary model would be generated from the
upstream portion by the verification link.
The development of an overall basin water quality simulation model
is the next logical step in evaluating any proposed water quality
prograa.
-------
97
^
CD
" U
JUJ
^ b-
1 <
- Q
r
1
1
i
f T
< 2
u
: h-
00
>-
(f>
" =6
' N
—
_J
_
< 1-
: z
f z i S
t - c z
^ u 3
§ u
0 "> 0
0 _j (_
Z - Z
00 O ^
h- u-
CC •< U-
§ i £
o: ^
LJ to
UJ
o;
> <
^ o
9 z o-
i o ^
d u-
i —
„_
CC. "-1
s ^
j
c
<
u
»• a
5 <:
- u_
^ m
:
LJ _
7 Z
J 0
D H
a.
O
x-^>
^
Q
.
^
0
f-
00
1—
^
00
Z
o
CO
H
O
a:
UJ
z
00
OQ
cr
UJ
a:
oc
o
u.
Ld
O
Figure 12
ir
ii1
!1
4'1
ii!
il!
;r
-------
98
In the flow release model, it has been assumed that there are no
in-stream Impoundments capable of flow regulation. The imposition of
in-stream impoundments adds additional decision points in the flow
regulation system. Further, in these impoundments the quality
formulations as given in Chapter III are invalid.
One possible solution is to develop the release patterns in
reaches bounded by the up-etreaa reservoirs and in-stream impoundments.
The problem would be to (l) maintain a prescribed quality in the reach,
and (2) to optimize the water quality entering the in-stream impound-
ments. For the lower reaches, assumptions would have to be made on
the water quality leaving the in-stream impoundments. Models for pre-
dicting water quality from impoundments are currently being developed
by Churchill and Nicholas [S3] and Symons e£. aJL. [&4K
Another possible solution IB to expand the flow release model to
include the in-etream impoundment decision points. The structuring of
the problem would be very similar to that of the converging branch net-
vork proposed by Nemhauser[72] and more recently by Meier and Beightler[85]
In expanding the model, it would be necessary not only to add an
algorithm for optimization at the in-stream impoundments, but also to
incorporate quality foraulatioBS through the impoundments. The quality
formulation and coefficients will probably be specific for a given im-
poundment, thus it is probable that additional input data will also be
required. Since the quality formulations are not fully developed and it
is possible to develop the release patterns in the bounded sections, a
^odei which incorporates in-stream impoundments would not yield any
additional beneficial use at the present time.
-------
CHAPTER VIII
DISCUSSION OF RESULTS
The adequacy and. the compatability of the water quality formulations
with the optimization criteria,and. optimization concepts and adaptation
are discussed in this chapter. Specific and general uses of tha optimal
release sequence are discussed in the latter part of this chapter.
QUALITY
In Chapter VI, the spatial sensitivity of the reservoir release
patterns to various biochemical and physical, design, and socio-economic
parameters is presented. From the release sequences presented in
Chapter VI and the quality profiles shown in Figure 16, it appears
(1) that the release patterns are sensitive to changes in quality param-
eters such as reaeration, velocity, temperature, etc. in the reaches
receiving large volumes of wastewater, demonstrating the need for well
verified quality formulations; and (2) that in relatively unpolluted
reaches, the quality formulations, especially the BOD algorithm, used
in this study were not adequate.
Two possible solutions to the inadequacy problem are (l) the
inclusion of all sources and siaks of oxygen in the formulation, as
reviewed in Chapter II, or (2) the assumption of a minimum dynamic
equilibrium BOD level by reaches, A major factor as to which approach
is taisn in selecting a given formulation should be the compatability
of the quality algorithms with the optimization criteria, including
the indicators or measurements of overall water quality in the basin.
99
-------
100
For the optimization criteria of BOD and DOD concentrations at tin
decision points, the fcrsnulation should include all sources and sinis.
If a ainisam dyaaaic equilibrium level for BOD ia used, the optimiza-
tion criteria should be coupled to more encompassing indicators of
water quality, such as the area under the constituent profiles as sug-
gested in Chapter VII. The ability to take either approach with only
slight Eodification in the algorithm as presented in the previous
chapter and as discussed in the next section of this chapter taalces the
flow release isodsl developed in this study a very flexible and power-
ful planning tool.
K CONCEPTS AND AIAPTATIOKS
As described in Chapter III, the optimization procedure used in
this study was an eraoaeration process. In conjunction "with the descri;
tive paragon and the converging branches multistage system of dynamic
programming, the enumeration process was very effective in developing
the optimal flow release patterns for the proposed reservoirs in the
Potossac Basin.
With the converging concept, the number of feasible solutions re-
tained for each stage or decision point was a function of the numerical
range of the first return variable (BOD), the distribution of the
values of BOD within this range, and the size of the flow increment.
Since a uniforn flow increment 7/as used for a given test run, the
number of solutions retained par flew state was mainly dependent on
the range and to a lesser extent on the distribution of BOD at each
decision point.
-------
101
In the optimization procedure, the range of first return variable
controls the size of tha BOD increment per flow state. The selection . ;, j
of one of five possible increment siaes depending on tha range provides
for jaaxiaaaaa variation in water quality without a corresponding loas in
sensitivity vhen the ranges of BOD are small.
Daring the enumeration process, only one feasible solution is
retained per BOD increment. If a large BOD grid is used or if the range
of BCD ia very small, only one feasible solution is retained per flow
increment.
For most of the test runs excluding the least-cost solutions in
the Potomac Basin, the range of BOD per flow state was usually less than
;.5 nsg/l. For the stages with a BOD range greater than 0.5 Eg/1 (the
airujnum increment used in the tast runs), sore than one solution was
retained per flow state. Eowavsr, in succeeding downstream decision
points the range of the BOB values converged and the addition of
feasible solutions were eliminated in the enumeration process.
Upon close examination of the optimal solutions for many of the
stages, it was observed for a given flow state that when the release
pattern yielded the Bri.niiaqi BOD it usually yielded the minimum DO
"-eficit. While the two mini mans do not neesssarily hava to occur simul-
taneously, this observation indicates that the second return variable
ia not significant in tha optimization process. This observa-
!j
n led to the development of the leaat-cost solutions as presented
Chapter VII,
The ability to control the number of feasible solutions which are
ried forward in the converging concept zaakes ths enumeration process
Ascribed above a very powerful optimization procedure. Moreover,
-------
102
^;
- eliminates the need for either a complete enumeration of all
feasible solutions or some other complex or time consuming optimization
:rocess such as steepest descent.
The enumeration process can be used with both non-cumulative and
relative return variables. The need for continuous and smooth
rr,urn functions is completely eliminated.
In general, the optimization technique used in this study is
iirple yet very flexible. Maximum use is made of water quality ranges
r. each decision point; and, therefore, the optimization procedure can
4 considered forward looking. Also, with the proper use of the input
;"r grids and increments, a balance between the accuracy of water
jlity predictive formulations and optimization capabilities can be
•oily realized.
One of the disadvantages of the dynamic programming technique such
« torployed by Liebmanf$6] in comparison to linear programming is the
••-•i of sensitivity analysis associated with the dual variables in the
'-srlex solution. The enumeration process and resulting IFT's and
s developed for this study overcome this disadvantage.
?or all decision points in the converging branch system, it is pos-
•- to investigate the sensitivity of various controlling parameters
*o determine the effect of selecting a sub-optimal solution in any
'•"•ieular reach on the overall release sequence pattern. These added
•*es of the model produce a mechanism for possible "trade-off"
"--I the system.
"•"'2 optimal reservoir release sequence as presented in Figures 7
•'-*- 10 has been developed for 1500 cfs of flow at the Potomac
~J> While the "principle of optissality"[723 is ciaintained for
-------
103
all upstream decision points or stages, the optimal solution for the
estuary may not always provide the "best" solution for a particular local
situation. The preference of a sub-optimal solution can occur when the
quality difference at decision points is small and the reaches below it
receive an insignificant amount of biodegradable wastewater.
An example of this condition for the standard test run is at the
decision point for node 460. The optimal solution requires a total of
about 200 cfs from the Blocaaington and Savage Reservoirs, with about
120 cfs froa Boyal Glen impoundment. If the 60 cfs above the base flow
Royal Glen were to be released froa Bloemington, the minimum DO level
in the North Branch would be increased by 0.5 Eg/1 to 4.5 mg/1. The
additional release from Royal Glen contributes very little towards in-
creasing the DO level in the South Branch, since its minimum DO level
is greater than 5.0 wg/1.
The release of the additional 60 cfs from Blooaington will in-
crease the BOD and DO deficit at node 460 to about 0.5 Bg/1. However,
this small increase will be greatly attenuated in reaches below
node 460. This can readily be seen when the BOD and DOD concentration
of the standard test runs for nodes 460 and 436 in Tables 6 and 7 are
compared.
If a return variable acre indicative of overall water quality as
suggested in the previous section were employed, the additional &0 cfs
°f flow would be frooa Blooaington instead of Royal Glen. In lieu of
^ing another measureaent of water quality, local situations can be
simply by maMng a series of computer ruaa of the flow
model at different treatment levels. For decision points at
the quality difference is minimal and there are not any critical
-------
104
reaches below it, a trade-off between reservoirs can readily be made
when the release rates are established from the IFF's and DPT's.
This type of a trade-off can also be made when economic consider-
ations are incorporated into the optimization procedure as in the least-
cost solutions. The development and use of release sequences including
least-cost solutions for flow regulation and wastewater treatment are
discussed in the next section.
USE OF OPTIMAL flffi
SEQUENCES
As listed in Chapter VI, five flow release sequences can be
developed, depending on the type of parameter employed in the optimiza-
tion routine. The reservoir release rates, which are usually developed
for monthly units of time, are also a function of temperature, treat-
ment levels, reservoir conditions, etc. If monthly variations of the
above are significant, the release rates have to be determined for
each individual month.
Jrom the individual IfT's, one can also determine the minimum
flow requirements to maintain a given water quality objective. By
comparing a series of tableaux at various treatment levels, the effect
of wastewater treatment policies or flow regulation requirements can
be readily observed. A similar approach 'can be taken in studying the
effect of various water quality objectives.
Another valuable use of the output of the flow release model is
its ability to investigate alternative methods and use trade-offs.
For example, at node 494, the total cost of reservoir storage for
water quality control in North Branch from Bloomington and Savage II
win be about $10,000,000 for a DO objective of 4.0 mg/1. If the
-------
:;a':it.y constraint is raised to 4.5 ing/1 the cost of storage is increased
•;. ,'.v.-OUt $16,000,000.
1 ne additional 60 cfs of flow needed at node 460 to meet the re-
. ;;re;nent at the estuary can be obtained from Royal Glen at a cost of
i-iut $2,600,000. If additional wastewater treatment in North Branch
-•n result in an increase of the minimum DO level to 4.5 Eg/1 for less
•r.in $3,400,000 ($6,000,000 minus $2,600,000) a more economical solution
,-r\ l>°. obtained by the trade-off.
Least-cost solutions for various combinations of flow regulation
i w&stewater treatment levels can be readily added to the flow
rd»ase model. This additional feature is not needed in the Potomac
-53 in as most of the waste loads are not overlapping and trade-offs
in be readily made outside of the model as illustrated in the above
-ticaple. If the need arises for the inclusion of the additional stages
:r -ach waste discharge, consideration should also be given to the
.."Corporation of other measurements of water quality as return
•riibles.
^c C5 WATER QUALITY MANAGEMENT MODELS WITHIN THE FRAMEWORK OF CURRENT
^rcoGicAL AND INSTITUTIONAL PPACTICSS
The model as developed in this study represents the first
"?npt t-o determine an optimal flow regulation scheme for an entire
:-'?r basin based on water quality considerations. One of the signifi-
•"* findings of the study is that most of the optimal solutions for
: 7:>sed reservoir syste.Tis in the Potomac Basin are predicated on BOD
- LOO ron-entration differentials of less than 0.5 mg/1. That is,
"" selection of the optimal solution for a given flow state is from
^•M nation of release sequences which has a resulting BOD and DOD
differentials of less than 0.5 mg/1.
-------
106
While it is possible mathematically to define an optimal solution
•meaning either best quality of water for a given flow state, or minimal
fj-w or storage requirement for a given quality objective), the reduction
in storage requirement or the increase in water quality level based on
-oece eolutiona for the proposed Potomac reservoir system appears to
;• vsftli. The location of proposed reservoirs, low incidence of over-
,--ping of pollution loads, and the small difference in quality of the
'.we contributing tributaries at the decision point tend to make the
:;al1ty problems in the various sub-basin areas somewhat independent of
<.-ie another. Moreover, least-cost waste treatment solutions as re-
viewed in Chapter II would appear to have limited use In the non-tidal
portion of the Potomac Basin.
While it has been clearly demonstrated that the reservoir release
patterns are sensitive to various biochemical, physical, design, and
"•:-':• "-economic parameters, the magnitudes of the release rates appear
• > be dictated by quality constraints in the critical reaches, and/or
• ^.ner non-quality needs such as water supply in the various sub-
v'.-ri. Once the quality constraints are satisfied in the critical
•''Vhes by either flow regulation or-waste treatsaent, the effects of
r "'^sed treatment or regulation on water quality at the decision
-'l^t are minimal. This effect will ba further reduced when the full
'•':>-•- of the 1965 Water Quality Act is felt.
..^tensive stream surveys have been conducted, primarily for forjiru-
^•"v verification, in 1967 by the Chesapeake Field Station, For .30
'•-*""n£ sampled around-the-clock, considerable diurnal, variations in
• -i-ia DO deficit have been observed. The mean standard deviations of
•: "nd DO deficit were 2.06 and 8.15 asg/1, respectively. While it can
-------
107
•« argued that mean values represent a net balance without utilizing
1 rr? -dependent formulations, the BOD and DO ranges used in the <"ptiT.i-
-ilcn were greatly exceeded by the diurnal fluctuations.
With time-dependent quality formulations including all sour?es
." ; £ inks cf oxygen, a more sensitive model could be realised, ilov-
•' , will the additional cost of data collection, analysis, and
- '^rprel.si't-Joa increase the significance of an optimal solution within
; • '" .-*,!. rreirt- institutional practices cf the water resources planning
Based on expenditures for the Potomac data presented in Appendix
••v:ll. cost approximately $600,000 to obtain sufficient information
; c ,1 'o.Tr.e-~dependeti.t model. Assuming aboxit equal expenditures f?r an
\ • ••.,•=: ineeriag evaluation of the data, the total cost could easily exceed
!-l,.?00,000.
For compstability purposes, the time-dependent quality fo.rrnuia~
' --ri? should be coupled to new "yardsticks" for overall basin quality.
• • . *ne /n^rhodr-logy is developed .and rjeces^ar"/ d^t.a r ^liec-t.ed f-"...7
-.•'••.Ting the monet».'"V value cf a given water quality and anan:trty 1-?<
g!V«*n fail-ire rs-fe, t-ne pr^^ent \rster quality control mcdsl-5
;..r^T to b^ adequate.
r'nr ar4 ovsz-e.ll water resource iiianagement. model, thR problem car. b'-
• j-essed as .ujai'imizing the benefit-cost ratio. Benefits per water
. -e iise per ; tJr-?ain reach would be s. function of quality, quant j ' v,
•"'ii.liir-^ rs.te. Such a concept could be easily incorporated into
. ar;iov.'or'lc cj the /low release model as presented in the preview
-------
108
Even with overall optimal planning models, will the instittrtiorsal
arrangements be adequate to act to implement the optimal sclutions?
A opf-opriations of funds for water resource planning by the U. 3.
•'"ongre;s« have not always been dictated by monetary considerations.
Haveaian[90] in an analysis of Federal expenditures in ten
states concluded the following:
1. "Although projects with the highest benefit-cost
ratios tend to be chosen before projects with low
ratios, no consistent or persistent pattern is
manifested" and
2. "A somewhat stronger and more consistent motive seems
to be present in both force of aid to low income and
depressed areas and the drive to exploit development
potential in areas of substantial opportunities to
productive resources investments."
This appears to be the case in the Potomac River Basin. From the
initial studies in the 1940's up to the present, the major construction
-•"Taviti.es have been in the Appalachia Region. This region is cur-
T-rotly defined as a socially and economically "depressed" area.
While at the Chesapeake Field Station, the writer also had the
to study and field test other water resources management
In the opinion of the author, the most urgent research need? j
' the area of water quality managejneirt are as follows j j
1. Inexpensive methods for easily obtaining large quantities
of field information such as cross-sectioning, tiais-of-
travel5 chemical parameters, etc.;
2. More precise and readily adaptable water quality formulations
especially for low BOD stream reaches and in low level
impoundments ;
-------
109
Continued development of methods for projecting industrial
water supply requirements and resulting wastewater loadings ;
Methodology and necessary information for assessi'ing, by
individual water user, the monetary value of given water
quality and quantity level for a given failure rate; and
3ocio-econo.ii.ic: significance of optimal river basin plajtrnjjg
within the framework of current institutional pr-actJce-s.
operational viewpoint, the research areas delineated above
->f the ne^rt barriers to overcome in effective rlvsr baa^n
I'.'l
-------
CHAPTER IX
SUMMAJOf AND CONCLUSIONS
Tl.is st-udy has been concerned with the development and field
e:-'i:if of a method for determining optimal flow release sequences
.,,:• Tf^ter quality control from multiple reservoir systsms, It has
.:?••> oeen the intent of this study to investigate, using gn actual
-:•:&? basin, the sensitivity of the release sequence to changes in
various physical and biochemical, design, and socio-economic
:era~eters.
The flow release problem was structured as a converging "branch,
-•licistage dynamic programming decision system. An optimal flow
-eiease model has been developed with the decision-making procedure
at each stage (the confluence of two regulated streams) being an
efficient enumeration process. Using both single and dual return
"ittables, the model has five options for determining optimal release
flour sequences for a given flow state at a decision point. These are'
i minimum DO deficit for a given BOD state; (2) a minimum DO
"fiflcit; (3) least-cost of reservoir storage for a given BOD state;
- least-cost of reservoir storage; and (5) a minimum BOD.
Predictive algorithms for temperature, BOD, and DO have been
cooperated in the flow release model. Ability to vary stream
aj.ocity and depth with flow has also been Incorporated into the
••^1,
A general descriptive mathematical paragon capable of repre-
fi- *irig the stream flow system of a river and its network of
110
-------
Ill
tributaries including its hydraulic characteristics and location of all
impoundments, waste discharges, water intakes, etc., has been developed.
In the flow release model, the paragon provides the required mathe-
matical linkage for both the quality formulations and converging branch
multistage decision system to the physical features of the basin.
Optimal reservoir-release sequences from the proposed impound- \
aents in the Potomac River Basin have been developed for the control
of water quality at mile point 116,,0 (the start of the Potomac estuary).
In developing the various optimal release sequences, a minimum preset
dissolved oxygen level had to be met in all regulated systems„
The sensitivity of the release sequences developed by the flew
release model to various physical and biochemical, design, and socio-
economic parameters has been investigated for the proposed reservoir
system in the Potomac River Basin. Comparisons have been made to a
standard test run for a flow target of 1500 cfs at the Potomac
estuary. The conclusions of the sensitivity analysis and comparisons
are;
1. Verification of the predictive quality formulations is
essential. This requires well-established time of travel
coefficients, which appear to be the most sensitive of the
physical and bioch.ead.cal parameters investigated. A method
Including a specially designed mathematical model has been
developed to aid in verifying the predictive quality formu-
lations .
2. Of the remaining physical and biochemical parameters, the
reaeration coefficient was the most difficult to define and
appears also to hava a great effect on the release patterns.
-------
112
3. Changing the quality of the water in the reservoir from 800
to 5.0 Hg/1 and 2.0 nsg/l to 3.0 iag/1 for DO and BOD, respec-
tively, had only a small effect on the release pattern.
4. The release rates and spatial sequence can be affected by changes
in waste loadings, atreaa temperatures, water quality objec-
tives, DO concentrations in waste effluents, etc.
5. The location of wastewater discharges, impoundments, etc., and
the orientation and gecscorphology of the river basin play very
important roles in determining release sequences. Therefore,
no general conclusion can be saade as to which parameter has the
greatest effect unless specific conditions are stipulated.
6. The choice of the optimization criterion has a great effect on
the release sequence for a given flow rate at the estuary;
however, the resulting release pattern has only a minimal effect
on water quality entering the estuary,
7. When dual return variables (DO deficit and BOD) were used in
the optimization routine, the second return variable, DOD, was
significant only for some of the upstream decision points, thus
indicating a need for only one return state indicative of water
quality.
8. The predictive algorithms used in the model for BOD and DO for
relatively unpolluted reaches appear to "be inadequate. The
imposition of a dynamic-equilibrium for BOD overcomes some of
the shortcomings; howevar, the effects of the imposition on
the release sequence are significant,
9. Even with better predictive fonmlations, the use of concen-
trations, BOD and DOD, as return variables at the decision
-------
113
points are next encompassing indicators of water quality
conditions in the contributing reaches.
10. A need exists for a new indicator of water quality, such as
the area under the constituent profile of a pollutant. The
employment of this indicator for the first return variable,
with cost of reservoir storage being the second return vari-
able , would provide for a more meaningful approach in
forming optimal release patterns for water quality control.
11. One of the most difficult aspects of implementing the flow re-
lease model is the obtaining of adequate, systematically col-
lected field data. There is a definite need for better,
faster, and less costly methods for collecting and analyzing
field data.
A method for overconing -the deterministic nature of release rates
>QB reservoirs has been suggested. Included in the method are the use
- yield curves and linkage to river flow simulation models.
In summary, the optimal flow release model with the efficient enun-
^ttion process which was designed to make mftTlnum use of the ranges of
•* return variables and to provide the cosrpatability between the
"•*Hty formulations and the optimization criteria has utility for:
1. developing an optimal flow release sequence from multiple-
reservoir sites to maintain a given water quality objective,
flow requirements, or for the least-cost of reservoir storage;
2. determining flow regulation needs to meet a given water quality
objective for a particular stream reach in the basin;
3. investigating the sensitivity of the release sequence to
various parameters;
-------
1U
'4
^
%
•£*•.
I
<&
•3
4. demonstrating the effects of flow regulation on water quality;
5. providing a mechanisa for "trade-off" between flow regulation
cost and wastewater treatment coats; and
6. locating sites for possible industrial plants which would allow
mflyimnia flexibility with minimum effects on flow requirements.
A river basin model for simulating water quality is proposed in the
latter part of the study. The simulation model, a logical next step,
Kwld include linkage to synthetic hydrology, river flow routing, optimal
flow release, non-tidal quality routing, and estuarine models.
The model developed in this study has been used to determine optimal
reservoir release sequences for water quality control under various con-
iitions in the Potomac River Basin. The small ranges of BOD and DO
:«ficit concentration differentials for a given flow state in the op-
timization procedure has been one of the most significant findings of
~e application phase of the study. This finding indicates that the
ulutions of water quality problems in most of the sub-basin are inde-
;*-dent of one another, thus optimal reservoir release sequences based
T- quality control or even least-cost wastewater treatment solutions
*ve limited significance unless a new measure of overall basin quality
•* utilized.
Future developments in modeling should not only include better
-*iity formulation and measure of water quality, but also include better
**.r.ods for quantizing the monetary value of water per stream reach per
"- =ased on quality, quantity, and failure rate. To avoid unnecessary
'" and redundancies, there also exists a need for a balance
competency, data collection, benefit analysis, and project
-------
APPENDIX A
SOME COMMENTS ON MODEL VERIFICATION
in the dissolved oxygen and BOD formulations, the three moot dit'fi-
..: and costly parameters to evaluate are the deaeration coefficient,
..eration coefficient, and time-of-travel. Some of the pro clems which
'• i'f-en encountered in the study, possible solutions and a delineation
.reas in which more field data and research are needed to fully cope
:.-. tne problems are presented in this appendix. A proposed model for
-dieting phosphates in flowing streams is also presented.
A fully detailed analysis of each of the problems is beyond the
•-« of this study, however, the author is of the opinion that the
".icular problems presented in this appendix are basic in model
•ification.
•CATION COEFFICIENT
Tne tnree methods currently being used for determining reaeration
'•-s in a given stream reach are as follows:
1. calculated from observed data;
prediction formulations, either empirical or theoretical; and
3. gaseous tracer technique.
-ach of the methods has merit, depending on the situation, available
•"ces, and projected use. For the flow release model, a method was
~-'i which could be used to determine the reaeration rate for all
"•"••'»? of the basin for various ranges of stream flow.
~-—ii-e'"" from Observed Reaeration Rates
-'- establishing the reaeration rates from observed field data,
H
~.urveys are required for a minimum of two different stream flows
• • aeaeration rates and time-of-travel well established. One of
-------
116
tr.e major disadvantages of this method is the great dependence of the
reaeration calculation on the accuracy of the measured deaeration rate
ir:d time-of-travel, and the ability to identify and quantize other
r..'
-------
117
In the past decade a considerable aaiouat of research effort has been
s.-xerted in developing various formulations for computing the reaeration
coefficient baaed on the physical properties of the streaa channel. Using
various gas transfer theories, predictive formulations have been proposed
cy O'Connor and Dobbins[86], Krenkel and Orlob[63j, and more recently by
Dobbins[13,1^]. The formulations relate the reaeration rate to the
physical parameters of the stream, such as velocity, depth, slope, longi-
tudinal diffusion, etc.
A statistical approach was taken by Churchill et.al.[63] of the
Tennessee Valley Authority (TVA) in investigating various formulations
for determining the reaeration rates in the Tennessee Valley. In their
studies, they concluded that a simple equation relating the reaeration •,
11
rate to velocity and depth was adequate to describe the process, and
that parameters such as slope and roughness are automatically included
:n the formulation. A similar approach vas taken by Langbein and Durum[87]
:f the U. S. Geological Survey (USGS) in which the reaeration rate was
-sterained to be primarily a function of velocity and depth.
2jj»eous Tracer Techniques
A method for accurately evaluating atmospheric reaeration rate using
11 radio-active gas tracer has been developed by Tsivoglou et.al. [86].
••"•e technique arid the theoretical concepts have been developed in a
-moratory with limited field testings. Until the method is more fully
:"-^eds its value is rather limited, and the need for a complete evalua-
-^n of predictive formulations remains.
-^£HAg°n of Methods
~o gain insight as to which predictive formulation in general most
•--'lately describes the reaeration process for various streams, a
-------
;l
I!
f*;.
11.8
.,-.; lion -'••<.i. s-^en nade for four different stream reaches. A complet.t
• j, uat ion is beyond the scope of this study; however, aue to the sensi-
. sty of the flow release model to the reaeration parameter, the lircir.cn
•iiariwua IB sufficient to illustrate the variations.
The basic data cf tne four reaches and the reaeration rates calcu-
.•>-:\ by the various methods are presented in Table 15= As can be seen
, '. fii:,le 3$, excxuding the tracer technique, no one method adequately
r.;D and temperature profiles for the North Branch of
• l'<*tornac Kiver are presented in Figure 16. The DO profiles were c-nu--
• e>i using- the TVA ana O'Connor reaeration formulations. The effect <••!"
'••'---section transformation and a depth-factor is also shown. This vnll
• c.,ered. in dcitcti] in the next two sections of the appendix.
:---^'-i- ^ ci: vii FORMULATIONS
;-t:f<;re any one: of the prediction formulas can l,e used basin-wide,
'-•• • >j; ^'t'^'M^v be necessary'' to ad.juat the reaeratiun coefficients to
'-i;c:r. &imii»r to trie values computed fron oLservea data, Tne aaju;>t-
•rtr: be upplie.'i to o/er-aii forr.u Lations or to one of the constituent
• vters 6'jch as velocity or depth.
-------
119
Figure 13
-------
121
Figure 15
-------
120
r~
Figure 14
!:*
|! '
i> i
-------
-------
122
COMPUTED TEMPERATURE, D.Q. AND B.QD. PROFILES & STREAM SURVEY DATA
for HM
NORTH BRANCH POTOMAC RIVER. AUGUST I - 8. 1966
LEGENO — OBSERVED DATA
T MAXIMUM
AVERAGE
K
LEGEND FOR D.OL PROFILES
O'CONNOR'S K2 WITH I.O DEPTH FACTOR
O'CONNOR'S K2 WITH 1.2 DEPTH f»CTOR
CHURCHILL'S K- WITH UO DEPTH FACTOR
if 30
I
313 3K)
RIVER WILES
305
295
Figure 16
-------
123
3
§
*^
§
M Oj
f- | ^J*
Cj T^
•^ S Q
«2.
2*
^5
rt
4
^
? to o >j- o
> CM CO ON C»-
,.****
f O O O rH
•*
to o* to cr*
iP^ rH CVJ to
Q Q rH rH
Q O O O
O O O O
• • • •
O O O O
S" •**• rH -*•
Icu CM NT «\
O CD O CD
o o o o
• • • •
rH ir> O Q
rH CM O O
i-H rH
>fr ON tO 0
c*"\ CO CT^ O
• • • •
rH rH rH CVJ
*
rt
r) fc CJ
4) »•"*> 0 of •»
> O >• a p«
•H bfl-H^->. 3 O
ft* ^T rr* *%». «> i »
" +* OS Cl< O G
rt « e « +s h£
v t> fy ft a v >
y*a«2T'^o
p4-< ^ OJ (3 PH -H O
•P -rt -f> W 3 «
n< _ J Mf Cj Ai ^
CD r^f JiO M w pt
(5-rJ(x;fHCQ>GO
rH 03 O O rH
r«TH^«)^^Daia>
»fiB »S5-f»«iJ^cp
P,- — fcx^ ^i^-' o^ — -
P< O 0 «(
0 ^ S3 £
*
4>
* ;
8
•H
+>
S '
V
fC»> O^ CM
•1 * • * » (j •
o o o o as o
E*
H
!
9
3
5
>
Jto c^ r"\ o* oo
W\ C»
O iH ca c^
9 -^ H F H
S 0 -H f« rH
,9 h JQ -2 «* *>l
o g c3 ^> CQ co
- ,5 rn p of ,3
0 0 EJ « c3 0 *
j|c
5
-------
Of the formulations investigated, in the pilot study of the Patuxent
•-'isin, the TVA relationship appeared to describe the reaeration process
.---.,t. However, it was still necessary to adjust the coefficient to make
• • •• computed 00 profiles similar to '-he observed profile.
Various methods for adjusting the TVA formulation were investigated
.'Burning the constants and exponents of the TVA formulation to be valid,
•viid establishing the time-of-travel by dye studies, the only parameter
. ,1' to adjust was the depth, Further, after examining the cross-section
"fi-'-'i from the I'atuxent Basin, the rectangular transformation appeared to
,-j",a a too low mean stream depth. (See next section.)
A series of computer runs was made in which trie mean depth was
.:,creasec linearly by a depth-factor until the computed profiles compared
•..'..rably to the observed data. The depth-factor was then used in veri-
fying observed data from other independent stream surveys, and the calcu-
.a*,ed profiles were very similar to the observed profiles,, A similar
.r :,"-oach was used for the Potomac Basin.
AF, can be seen in Figure 16, the DO profile computed using the
'.Archill formulation with no depth-factor appears to match the observed
*'s. With a depth-factor of 1.2, tne DO profile computed using the
"T.r.or formulation also appears to be satisfactory- The choice as to
K..
-•".•- formulation to use is dictated primarily by which formulation in
••ra'i best describes the reaeration process for the entire basin,
prior to the use of any factor, it is necessary to analyze the field
• • '..-arefuliy ana delineate, manually or, if sufficient data is avail-
-•- ::y spectral analysis, any periodicity in the survey data. For
1 -"'.-le, a. tremendous diurnal DO fluctuation was observed in the lower
ilfc
-------
reaches of the North Branch, as also can be seen in Figure 16, Average
!• \alue? were used for model verification.
More research effort is required to either develop a more general
;orraulation and/or methods for systematically adjusting the known methods.
CK,.:S-SECTION DATA
As indicated in the previous sections, most of the formulations for
predicting the reaeration process in streams are dependent upon a depth-
of-stream parameter. The depth of a stream cross-section i's usually
j* fined as area/top width. Implicit in this definition is a rectangular
transformation of the stream cross-section.
From over ICO cross-sections of the Patuxent and Potomac Rivers, it
~-;ears that the stream is consistently more parabolic than rectanscu]-ar.
'.no problem is, "what is the depth of a non-rectangular section?" Further-
"•ore, the velocity of the stream is usually greater in the deeper part.s
..'" the cross-section,
Tnree methods for cross-section transformation, excluding inspection,
:'•': riven below:
Rectangular transformation
if~u V
f-'oments of depth proportional to discharge
depth = I q. * d * v * d = I. q*d
E D * d * v Q
• '-Vnents of depth proportional to area
assuming v. =
depth = v*Z! q>*d*d - T. ^*ar: = I u
-------
126
I
• •- »/:idth of -in increment of the cross-section
. • avor?;>-rt> Jcptu of an increment of t.re cross-section
•; -- rr.eari velocity of an increment, of the cross-section
, - •iischarfie of an increment of the cross-section
•'••' = total wiath of cross-section
.",' - f'otaJ discharge of cross-section
A = total area of cross-section
A <"onparison of the three transformations was made for a limited
,:•;'; or of cross-sections in the coastal area of the Patuxent Basin and
cr-* ream portions of the Potomac Basin. From cross-sectioning data
•. ;-R "atuxent Pasin, the mean depths as computed by net hoc III were
•„•: i3 to 25 percent greater than method I; while in the Potoaac Basin,
••>tr>o2 III yielded a mean depth about 10 to 15 percent greater than
-".:.oct I, At LFSGS gaging stations, method II and III were both about 10
."•it greater than method I.
'•:tn the limited number of cross-sections with velocity measurements,
'•'; 5',ical comparison cannot >e made; however, results tend to indi-
'' ""r.^t a rectangular transformation does not yield a representative
:erth, especially in coastal streams such as the Patuxent, More-
• ;" the area transformation is similar to the discharge transfoma-
xislderabie saving in field work can ce realized.
'"r.'.r probler, : r. interpreting cross-section data is the variability
•; a-or;p; the longitudinal profile ar;c tne possibility of bias on
'•' •'•'' the field personnel in selecting cress-section points. For
• "^ocT-aphicaiiy homogeneous reach of stream channel in the Patuxent
' '",.'. rfivers, the distribution of depth i-.as been four,, to ce normal.
i
-------
127
See Figure 17 for variations in depth in the North Branch of the Potomac.
'Connor[9] also reported a normal distribution of depth in his studies
-;• lae Wabash Clarion, and Codorus Basins.
Assuming a normal distribution, it is possible to determine statis-
.tcfjily the number of cross-sections needed to assure a given probability
:-.at the measured mean value will represent the true mean. While it is
-. jssible to determine the number of cross-sections required, the reaera-
ric.Ti rate, which is a function of depth to a power, may not be normally
,-stributed and statistically less significant,
In a ten-mile reach of the North Branch of the Potomac River below
•:y;-er, the reaeration rate was calculated from fifty-two cross-section
Tints using the O'Connor and Dobbins formulations. As also can be seen
.n -"igure 17, the reaeration rate for this reach has a skewed distribution,
While the point calculations introduce an additional bias in the
velocity term, the pronounced skewness in the reaeration rate for the
•each is indicative of some of the problems in data interpretation. Some
.: tne variability in the predictive formulations may be due to the inter-
pretation of the cross-section data and the aggregation of sections for
• ~iven stream reach. Incorporated in the suggested research effort in
"-'e reaeration study should be comprehensive field testing, including a
:-'«ailed analysis of cross-section transformations.
^£_MLCHANISMS AKD FACTORS
sing a first order reaction, the calculated BOD concentrations for
-""", relatively unpolluted stretches of the Potomac River tend to ap-
•r '-•*?:> 0.0 mg/1 of BOL, with resulting DO values near 100 percent of
-'^ration. Field BOD measurements in these reaches normally range from
•• to 3.0 mg/1, with DO levels about 80 to 90 percent of saturation.
-------
(rfO
128
'1N3IDUJ300 NOUVH3V3M
00 i ^. - - _ _ . -4- - - v
' J__
I "'P-H t 1 1 1 1 1 1 1 1 1 i 1 1 II 1 1 1 ! 1 1 1 1 1 1 ! 1 1 1 1 1 1 ! 1 1 1 1
-r-j--l
1
0 ~*~ i t
-ft • ...... i ,-,-,-- . 1 ,
C , 1 ! J . ._ _, L d ....„-„,. j .,. „ „ . r -- -.
-t-j-l -; J -g r* ' r
-L- i 4
" C k "*
•^ ' j s si ^
".a. I | :r_k;!i _ J...
a 1L.J:..|^..!..|
-U:__j;^J _S_S_?9 ..jf i_
s55i:i"g£tt::g:±":"i:E":i::
I p^lii|d I [ ferSlkd 1 |'[[| H
! i *•
""P
i fc -• • • 1 J - - "
'" • t T L i-l
j — .IB-^.^^-^IL^,-.^^^!^
1 pi iflntiTi 1 1 lumTTmii' h FrFi ni
r T" 1
'T T
?-__l T T T
, GJ «j 't (M
d d d o a
T s
s
CO
a
•
*
i::H:::::::::-::::. °
IT
1 1_| ! 1 ' r»
_._ - ± _ _L.j.
j jllllll in i j j-t-m|[||| jl -f"[- f
_ . | ... -JR. 1 fl —
«L ' i !
• ~* ~*i i
'
. .... 1.1 Jl _:a=-:-j4-t-t-^ -r-1-
~" . ,z i -it ^ti * .
i [ ' ' , t 0
_1 -.. -_ _ -V^. — ; l i . 1 -
: :±: :~:: " ~: ~~~.~ ~~~ _i_ i ; " : :
1 rt '
- -- .. -L. _|_|. .Q _ _^
4_ J- 4 e : -
T_.JTi__T^^|_
4- j- 1 1 i • j • h"
::".S::::-::^:i^:4-a---i-(--|--Hr--rtrt:: "
\\\ 1 IM^tmlWfm-p ffl •
O
§1
T 1
j L .-_.-- _
1 111 • T 1
L- - — | ' -J — j *f»
"aeo f- «o tf) <*• O w — O°
(-^•1-) 4»»J ' HJLd3Q 39Vd3AV
Fig
-------
i
.Sf
129
Similar observations were made by Hall [89] In his work on tha Jazae* River,
sister basin to the Potomac.
It appears that various not-readily-quantifiable sources and sink*
f oxygen such as bank loads, nitrification, scouring, etc. result in a
iynamic-equilibrium level for BOD of about 2.0 ag/1. Associated with
•iis 2.0 rag/1 of BOD dynamic-equilibrium is a depressed DO level of about
30 to 90 percent of saturation..
Two methods for coping with this problem are (1) inclusion of all
icurces and sinks of oxygen in the quality algorithm, or (2) the setting
:f a minimum value for the BOD dynamic -equilibrium level. Since techno-
logical developments at the present time are either not adequate or too
:ostly to completely quantify all sources and sinks, the latter approach
x* been used in the quality algorithms,
In the verification link and flow release models, whenever the BOD
sncentration decays below a prescribed level (read in as input data),
' is reset to the prescribed level after the oxygen uptake for the given
on has been computed. BOD and DO profiles obtained from computer
of the verification link appear to be similar to observed profiles
from field data.
ynDEL FOR PHOS PRATES
-"
As indicated in Chapter VI, high concentrations of nutrients and
^suiting algal blooas are becoming an increasing problea in water
lty management . One method for reducing the algal problem is to
a phosphate concentration in the streaa> below the ainijnum
lialts for an algal blooa.
Studies in the Eatuxeut River Basin indicate a large portion of
costing froai waste treatment plants are being lost to plants,
-------
130
tf
Z
in
CE
UJ
LU
X
i
I
I-
or
O
o
>
u
o:
in
5
ui
ct
in
UJ
O
o:
a.
O
I
a
5
O
u
TT
CO ^ '
1 H1IM 'JNOO,
dJ.S AID 'OW
CC
UJ
£
000660 tfi 6 tf)
QOQoO - - o
> ^t f) (\J \t
SJD 'M01J
66(o^J'^'^J6ro cvi — <:
^Sm • fr(jd SV SndOHdSOHd ~IViOi
cS
Figure 18
-------
131
ear: oed, etc. In analyzing data from the Patuxent, it appears that
loss of phosphates can be mathematically approximated by a first order
:--_on similar to that of a biologically degradable waste. An algorithm
rcx'ehinc the loss of phosphates based on the first order reaction is
.idea in the verification link, and provisions are made for inclusion
, tne flow release model.
fomputed and observed profiles for three studies are presented in
••.re 16'. The loss rate appears to be a function of temperature and
.-, with values ranging from 0.1 to 0.2.
More field studies are required, to determine how stationary the loss
pnosphates is throughout an annual cycle. If the loss rate is predict-
e. ihe model could be used to determine phosphate treatment requirements
.r incorporate into the flow release model as indicated in Chapter VII.
•- :F TRAVEL
"f all the parameters required in the model, the most basic and sig-
•irit is the travel time. As indicated in Appendix B, the cost of the
-""-travel studies range from about $50 to $100 per mile. Preliminary
-•"i indicate that gaging station data in conjunction with limited dye
-••?s can reduce this cost considerably.
;-3 presented in Chapter III, the velocity at a given cross-section
e expressed mathematically as:
•elocity = CC X (Flow)DD
"•^ gaging stations in the Potomac Basin, the value of exponent
~"^.~ep from .300 to .500 with constant "CC" fluctuating more, depend-
- OW* „
•f- quality relationship being time dependent requires the time-of-
•-tveen two points rather than the velocity at a given point. By
-------
132
•? suiting (l) that time-of-travel and flow can be expressed similarly to the
,-iiocity at a cross-sect ion, and (2) that exponents are equal, a consider-
ate .amount of effort and money can be saved. .
For a 7.8 mile of geographically homogeneous reach of the Patuxeiit
;:v;",000, If the general relationships can be firmly established, con-
1-Arable expenditures of money can be saved in some of the field
required in model verification.
-------
• A1ID013A
-o
iH
i si
•trt
; I h I j
M'
¥l
"tii
!±t±t
_ _
ffi
-M-
ifc
K&
-------
Based on the experience in the Patuxent Basin, a method for
• -olementing the flow release model has been developed according to the
fallowing format.
1. Define the physical system including an inventory of all
wastewater discharges and water intakes. •
2. Establish the stream channel characteristics.
3. Partition the river basin and determine all parameters,
constants, etc.
4. Verify the physical and quality formulations.
The above format provides for a systematic development of the
data, thus reducing the chance for error; it can also be used to indl-
-ate data voids.
Defining the Phsical S
A detailed inventory of vastewater discharges, water intakes,
iams, and other topographic features is necessary to define the
-;ystem. Included in the data requirements are wastewater quality and
i'-antity, water withdrawals, stream flow quality and quantity, river
~il^ indexing, drainage area, etc. Knowledge of the basin area and
engineering judgment are essential for definition of the system.
Chax'scteristics
For ell stream flow gaging stations, data required to establish
velocity-flow and depth-flow relationship can be obtained from the
-:"il.ed States Geological Survey. The data are obtained each time a i
5 * at ion is rated by the Survey.
Depth relationships for additional points can be obtained by
~oss-sectioning the stream at two different stream flows. Similarly,
-------
135
•--*,-
•
a greater number of sections can be rated and more velocity relation-
ships established. A method of relating time -of -travel to velocity
and statistical analysis of cross -sect ion data is given in this
appendix.
BBS in Partitioning a/ifl Parameter DetermjjTations
Partitioning of the baa in and the determination of various
parameters, constants, etc., are two of the most important steps for
implementation of the model. To expedite the study, the following
procedure has been established for a given reach of stream.
1. Plot the longitudinal profile of the stream.
2. Section the reach into segments according to instructions
given in the section on the descriptive paragon.
3. Partition similar segments, according to channel
characteristics .
4. By segments, plot the drainage area profile.
5. By segments, plot the base stream flow (such as 7 -day
low flow with a recurrence interval once in 10 years ) .
6. From time -of -travel data, plot by segments a velocity
profile for the base flow.
7. From cross -section data, plot by segments a depth profile
for the base flow.
8. Number the nodes and evaluate the constants and exponents
for each segment.
n of Quality Formulations
Good stream survey data are vital to validation of the quality
By plotting the isopleths of the quality data, diurnal
-'Actuations can be observed arid quantized. These plots are also
-------
136
useful In reducing the survey data to steady-state conditions and in
checking the tiree-of-travel determinations.
Having reduced the data and plotted the stream quality profiles,
t.he coefficients of the formulations have to be adjusted until the cal-
culated and observed profiles are similar. The procedure given below
has been developed for the verification process.
1. Check and correct if necessary the calculated depth and
velocity profiles.
2. Compare the calculated temperature profiles with the field
data, and if necessary adjust the temperature coefficient.
3. From existing quality data and isopleth plots determine
the deaeration coefficients for the various stream reaches.
lj. Compare the calculated BOD profiles with the survey data, .
and where necessary adjust the deaeration coefficient.
5. Whenever necessary the depth-factor constants for each
segment are adjusted so that calculated and observed DO
profiles are similar.
Due to the dependence of the parameters and coefficients upon
those in the preceding step, the order of development and verification
as given in the above procedure is important. For example, both the
"OD and DO quality formulations are temperature dependent. Therefore,
it is a necessity to have a well defined temperature algorithm before
sne attempts to verify the BOD and DO formulations.
M
t
-------
APPENDIX B
MODEL DATA FOR THE POTOMAC RIVER BASIN
Reduced listings of the Potomac River Basin basic data, used in the
flow release model are exhibited in this appendix. Since numerous computer
runs have been made under various conditions, it is not feasible to include
all of the input data. The various data inputs are linked by the descrip-
tive paragon as described in Chapter III.
Detailed schematics of individual stream reaches of the Basin, showing
all major waste discharges, water intakes, gaging stations, impoundments,
etc., are displayed in Figures 20 through 29. An overall general schematic
of the Potomac River Basin system is presented in Figure 30.
For 81 nodes, including the ih proposed reservoirs, stream flows were
accrued as summarized in Table l6. In stream reaches below a terminal
source where there are no major tributaries, the incremental flow based
on the increase in drainage area has been introduced into the system at
add points. Unregulated tributaries not receiving any significant waste
-cads or used for water supply have been indexed similar to add points.
In the non-tidal portion of the Basin, there are over 200 surface-water
supplies and waste-water discharges. For this study all surface-water
supplies with an intake rate greater than 0.5 mgd and all waste-water
i-scharges with a flow greater than 0.5 mgd or population equivalent of
-.000 or greater were included in the model. The surface-water supplies
-".i waste-vater discharges used in this study are presented in Table 17.
Current waste treatment levels have been used except in the North
-"'inch area. For the North Branch area, in order to stay within the
"'-V"-uiation capacity of the impoundments, the treatment levels for Vest
137
-------
1 ?H
i.oa jh.jp atid taper Compaiiy end Celanese Corpor tion hi./e been ••. f
and 9$ percent, respectively. For discharges currently eaterin^ ••;
s,:>te:i: above the proposed impoundments and for the South River of v• •• _c
. I,, oLfcp.flndoab. Biv^r, the waste loads have been routed MS shown iij t-
. iHIled schematics.
The b&sit: data for the 1^ proposed reservoirs are presented in
. -v/ie "?. Not included are the Seneca Project which has been removed
,..->;2 the recommended plan and the Stony Creek Project which is in setieo
,.;la the Blocaaington impoundment. Since there are no significaxit or^«nio
. ,otri loads between the impoundments, and Stony Creek is small when cci«i^v
• Bloomngton, the omission of Stony Creek due to model limitations is
i 't, tjn significant.
-------
139
ODO<]
HO V33M3S -
©
o
o
o
s
o
5
I
1 I
Figure 20
-------
140
MD NU.301V3
NOSI03 DVHO1O4 ( IO )
uj S
H
Z
o
o
a.
Q
z
o
!'!
i!
Figure 21
-------
141
•OD 13 3 IS SO
o S
Ul ^ ff
O O £
z o
a
2
a: <
Figure 22
-------
142
©
«VO -rilH 11VM3NOXS (
HVQ U1MO4 M3OJ.SOOOM ( eg
X
<
o
-TTA 1001SQOOM
WTO -03 331AB3S
Figure 23
-------
143
•00 NOSI03
MVQ »3MOd 3OTM ( TO )
"VA 'HVOONVN3HS -
WVQ V3JMM NSliflNVSSVM (
TA 'MVOOWTN3MS <• " •
K.
UJ
>
2
<
Ct
O
u.
u c
11
1 1 I I
ono<]
NIVn DunSNOSlUMVH (
'W\ 'OOOMNAT ^
Figure 24
-------
144
ft"
I
5 1
ft
i
ODO<]
O3 1VJ.3M SQ10NA3H -
VA 'S3O1J,OM9 -
AHV1INTS VHOH3A
HOZVV Ai3J*» HVOIH9HV
I X
5 §
s i
a -^
§ e
tr r>
O o
Figure 25
-------
145
U33MS M3H10 33s)
z
o
o
•d
I
o
o
o
o
z
o
u
Nfltf SNHOr HIS
Figure 26
-------
146
G)
I5
3
-.'§'.
u Z cr
ODO
-------
147
NflM SNMOf HI
if
,SQ (T)
sQ (t)
3 I 5 I E
^ ia o u >
•5 I S | -
1 f |
d>—
VA M 'A3NHOH
6no<]
z
o
H
O
a
I
O
§
cc
»J
z
Figure 28
-------
148
CO 9NIHS1NU
TM *N33«> ONI1MOI
' i
Figure 29
-------
149
STOHV CREEK
-< 1586]— (580
SAVAGE RIVER
OVERALL POTOMAC RIVER BASIN SYSTEM
Figure
-------
if>0
a
Q
1 8
&4 (y
W -H
P «
CM
O
3
a>(UOOOOOOOO
>>>>>>>>>»>»>>>>>>>> oooocawojwtataoioi
OOOOOOOOOOOOOOtJTJ'O'O
SCSJfficoaJtccacJaJCJaJCJcjcScJcJC • -
01
-P
CO
t
O
1
•H
O
(U
OJ
t
r-t O M
=J O -P
O aj -P
O H ° 60 bOO
O-P
GC
w O -C1
-fill I OvDOOD^-OfOOJv^JfnvDCTvOlA'^NOOr-l^-r""''"""
o
<5 .v£> C^OO O\O rH OJ :-0 rt r\vO
H H rH •-( r-4 r-H r-l i-l H rH OJ OJ OJ CU OJ C
-------
151
o
£"*
r>>
J_J
oj
•p
rO
•*H
r j
M
£j
W
O
J^
•p
t£>
*
OT
to o s-i
C) rH O
o
d ci "e
G CJ
•H f-, .
J^ 0
>M JH 0) S-t -H
O 0) > d) G G -P
•P -P -P -P -P -P +^ t> -P *r-l r* ^5 £3 .p 4-3 -P G
C G * — 1 G G G G G "H G CC* "H CC CC G G G ^
•H -H rH -H -H -H -H -H K -H C5 -H -rH -rH
OO-HOOOOO OO) t^tOOOOOJ
PM P i ,O 0^ p. , p ! PL, PL, rCj P- 1 i — ( r^ r_Q v^ p , p_^ p. , , — )
^i -p 'd -p en CJ -p
r^j rO J5 r^j T5 T^J ^5 TlJ ^5 ^ ^5 5n Cd rf "T3 TC3 T^J -P
T3-a d-a-d'd'Ot) OT^-rH o f-irH'c)'d'c)-H
<
a»
0
P
erf
"aj
-P
<
t~^
o
C
ci
S-i
rjq
^j
to
3:
(X
rH
O
_^J-
o
O
G-J
ro
^
a>
?-,
CJ)
f!
W
-P
a.'
-P
•§
^>
c
o
XJ
<
CJ
o
LT\
rH
-^t
Cv!
OO
^H
£>
•H
cr;
a
rH
Gj
PM
4J
C
•H
O
C-
rrj
'd
<
in
CO
VD
O
0
ro
ro
^
"
(U
!H
O
ctj
^
O
^
aJ
o
in
EH
W
cu
OJ
rH
o
^J-
ro
^
"a)
JL,
CJ
3
(IJ
r-i
r-H
O
-p
G
•rH
0
PH
T3
'd
<
vo
o
in
O
cv
^J-
ro
y|
O)
CD
O
U
O
0)
o
-^
a>
i>
J-4
0
rH
rH
•H
S
VO
o
in
O
CO
. J-
ro
s-^ ^
o cu
'
-p
G
•H
O
P-,
rrj
•d
•^
o
rH
O
O
rH
O
CO
ro
ro
OJCM Cx!
m m oo
CJ ro _rr t/\ \o c— co c\ o rH CJ ro ^r m
-------
5s J-i
o
&-»
^
tJ
j_,i
c*
ia
ir~4
!M
r-t
£j
c3
(U
i-*
4-*
CO
* .• —
Je W
0 Vi
.H C.J
Ci- v^
-r-I
? «
»1
'"' ^f*
V
^J
lH
M
(1,
f""
A
T-^i
rs
S; r-*'- ^C ,X
"AJ i* v #
'1? C> G' '•";>
" r t" \ { i . N
•-- *- - *— _ •
j.' • ' a/
£}0 tQ bQ ^)0 -M <1' £*
in rt j? r* 0) in -H
>3/ tii &,• a/ <1» O fX
~- Si J3 Xj S-i
'-J O Ci O O (30 C
-\ o <~\ r*- c~* /T
V t^- O -^ *-i G>
0 0 V 0 Jsd ^ g
O C O O 0 ,M O
c c c* cr aj o 4^
•' . o r* /*^ J »u o
-> k_j t_> '.^ ^"* v^ o
O ti '— • O CQ >J O<
*
-H
'-, * C
•H r-: * >
f* ^-t ^j J^
> O '-* -r-i tt*
^ b- -H O W
C.! ?-* O ^* O
o; ^ EC;
>4 CH 5-1 O)
*3 -i-3 1! • O t«
C3 C o; ta -J O
rj •»-« i-* ij ^ bO
(C ' ',' O C ~" C >;
fX, ,O JS -H O<
;1 ^ ! ?- -P X '•
'.•j V* •., ci >. C' 5<
i' -^ CO fi "' «-< rH
J3: «; P3 O Jz --J CO
^•^ .^t GO \O 'y^- C' vO
rH rH
-t CO O <\ ""< * '"
^~> -r~> CO -t r • -H C--
—1 » — ' C ,1 V\J t ' J
0; o f,; '\ .-j OJ O
>, a-c-o lc:i ci ^,
<**v* '*•*, ^"^ -T J^* rf ,-^-
•- O f- • CO •>:; v>r \o
'P QJ Q> CU O
t> J> t> ^> v
•H ~r-1 >H 'r-t ^H
cc; ^ o^ s? £&
o o o o o
^^t-jS^f^tjj^j-jc^fjCdcoc^
•3J (U aj a; a> >v >>>>>>,•> o o c> o o
•H -H -r-( 1--I -H -H -H -H -P -P -P -P -P
PH PS ix K w w rt P-< o o o o o
£X« fl^ {X< D-t Pi
t' CJ C O O O O 1>
ooSooc5oow««p3fd
p .1 ^ ) ? [ ^ ^_J ( ^ 1 'v j 1
•H
•>
JH * *
C> JH J-K M
W ^J CJ »H >H
D > O O
P5 'JJ -H > >
r-* p^ ^ ^ ^^
^4 O C,1 OJ V ^i
!U C3 cl t> co o;
£) C r-J O -V -H 'D OJ
M 3 rH cu ps o p^ (r; >j
o e; c «H j M frj -P cp -» f-- W -H -H -H O Oa
O O O -ri O 1> O O '-M O v-
rH Hj C. -H (X — J3 O, V 0-, r-' a-
• r" a -P rt -t i ?- "v' -i-'
C V. tJ T3 T5 P *S y r3 C T." >! -P
O -H %0 -H T( -r( C' O tJ O 'CJ O S3
£~* CO CJ' CC *^ v-j E-* CO *^ WH <31J O^I 0-<
. jr j^- rH _tt ^j .3- tr> \o rH O n o ir>
:<- r^1 ,--> rH -T-
r— O •nO fH -T) O '"> O O O O ^O
Oi CA-X^- O O\ O CC' ON O O \.Q J- f-
r-t vO H rH rH -M :-O <'\' '.O AJ
'\JOOOOOtMOOrHO''UH
S. g LJ _^ '^ J- "^ $ o oo oo o^G-,
^ ^T ^T Jj" ,-^f" _D" Cf .,Zf -^(" .^f - ^" -^ ^t"
^ ^ u.xvo ^ co CAO ^ ^ -> - ••->
*vO ^O '^O ^O O --O "vD 'v v- r- C- c- r-
j> >• j> ^* j>
>i~* •*("( **H T~ t *rH *'H
««««?£,«
•'J O 'O O O O
C5 O Ci CCJ (3 CU
^5 J~] rf 2 g:j y^
d o o o o 5
^.. *-l -tJ 4^ ^J 4J
o o o o o o
CX, Q-j P-j D-4 P^ p-i
CQ ffi W pq PQ CQ
S! 85 65 K a S
*
f-c
* o
"O M
CJ Q)
3 w
a>
A; ''• M
•*) »M (X* 1* Cl
O
^ JJ Ai O -H -P
•— ^ ^J H-* pt-j QO
O If to £i
CO <-! 0' fl? —^
r-' '« M CO W J=
*• -•! '^ O t> O
> -H 0)
o -H ^ ..* vo ir-
i*^ to ir^ u^ I^N tr\
^ i>-oo CAO rH
t- t~ t~ ;~co c£)
OQ
S-t
-i>
^~3
"«•
r*i
r'
;T"!
<1>
1-J
o
^
-J-
J
i -5
vf
>
1
Pi
c>
c^
>1)
^ J
t
r >
V * ;*-l
'.; TC
j>
?»;• <, j r-»
-^ f*( vH
.-;.' V V
.^1 >"
r,^ ,n*j
«i3 a1 "H
n v^
•T' > C
CO Ctf r-<
'-o r.o
O >>
a, >> 01
'M '
Tii -.' ?•
W .p, i;
•V' £5 IT
-P i — i £j
O '. ^ *»-•
SU \£ K
.!/ U .,J
t- * +
V. ^
-------
"4V
Table 17
SURFACE WATER SUPPLY & WASTE WATER INVENTOR£
Potomac River Basin
Name
ct of Columbia
ct of Columbia
gtr>n Suburban
ary Commission
lie, Maryland
Typ_e
2
5
5
5
Node
2
10
11
12
Flow
(cfa)
2.20
167.00
5.50
2.20
Receiving;
Potomac River
Potomac River
Potomac River
Potomac River
kv
Electric and
Company
oaiae Electric and
Power Company
•'rederick, Maryland
Frederick, Maryland
anp Detrickj, Maryland
.'nap De trick, Maryland
. S. Steel Company
?. Gteel Company
••'-Itown Board Company
otcmac Edison Company
.-romac Edison Conrpany
Winchester , Virginia
"irssbarg, Virginia
"V-dstock, Virginia
Jackson, Virginia
- Knr
Virginia
.. ') valley Packers
.--ir^.h'^ffi Poultry
-^•ervllle, Virginia
- i?idvay, Virginia
: :.adway, Virginia
•~:-r'o Royal, Virginia
--•frican Viscose Conipany
'- Virginia, Inc,
;~erican Viscose Company
•-"gi-nia Oak Tannery
_-"•"'!% Virginia
'•^aandoah, Virginia
r?r'indoah, Virginia
3
'' und Company
''""ies, Virgicia
'i:-"_ is Metal Company
^esboro v Virginia
."np ton • Shenandoah. Company
'-- . Ihipont Company
-. Dupont Company
17 355-00
Potomac River
5
5
2
2
5
5
3
2
3
5
5
2
2
2
2
2
2
5
2
5
2
2
2
5
2
2.
P
^
2
2
2
•P
2
2
C-
3
18
32
36
40
42
72
74
76
100
102
108
116
126
136
1^0
3_4p
iJs'u
1^6
1.50
152
158
160
162
164
178
180
198
202
2QL
205
216
?l6
226
228
229
230
355.00
1.10
3.80
0.65
0.8o
0.72
0.^2
1.00
10.64
10.6^
2.80
0.30
o.i4
0.11
0,35
0.18
0.71
1,00
0.13
0.10
0,85
13.45
0.10
13.50
0.28
0.28
0.71
0.50
0,18
7.86
0.09
-33
2.50
2.21
10,80
16 .,27
Potomac River
Monocacy River
Monocacy River
Monocacy River
Monocacy River
Shenandoah River
Shenandoah River
Shenandoah River
Shenandoah River
Shenandoah River
K. Fk. Shenaadoah River
N. Fk, Shenandoah River
N. Fko Shenandoah River
N* Fk. Shenaadoah River
N. Fk. Shenandoah River
K. Fk,, Shenandoah Riv
-------
Table I,7 «..Continued )
Flow
Node (cfs)
v. j . Dupont Company
jT..ix:nton, Virginia
>rona Sanitary District,
.'irginia
American Safety Razor
,~ -mpany
\::erican Safety Razor
Jompaoy
VMgewater, Virginia
I" /con , Virginia
-.rrisonburg, Virginia
-••perstownj, Maryland
' -':gerstown Electric
i '-. gerstown Electric
j --irchild Aircraft Company
• Vrt.b American Cement
' ^mosny
••v Ar'ierl*. an Cement
•r^ny
) • "ne.-.bor.,- _ Pennsylvania
' .:/3-ginia
i •'•-• 'isburg;, w*£-st
j ..%inia
1 -v-'rf.ta M & M Company
. - •..l'^?f-:r> West Virginia
• LX- orrt Company
R
2
2
2
5
2
2
2
2
3
5
2
3
c
k.
2
2
"*
2
.c'
232
250
254
2C6
2?3
266
o»*l^
278
296
298
302
y£
310
512
3-'"-
326
o ,A
o.'"
3.^
-iou
>r !
1U.UO G :-J.f.. 3-k. S:i™, -.
3»30 M.H.S F-v. ^--r '• :•
0,19 M.R,,';. Fk :V>-.T.- v;
0 50 " ? 3 Hi; r.b -v - "•'--. .1-
0 SO Jj1 R *3 ^"'' "•>'* """ "
0..26 K.P.i". i'k o'3.>^,-j .'..;,
0.16 ff-P,S "k , •^h-"!"a;i'! ')
5.7^1 Acti?4;am C'r^ek
0..33 An'tietam Cr-->el-;
0,33 Antietarr Crc-eit
0 50 Arjti;1':^™ Cr-"-.'X
7 A^ ja-irv'-- n^ .">-.,_•,-,
' *~* .j '!• --Ii. -ft.
3.12 Antielaui Creek
1.20 Ant; ?iam Creek
O.lU Potomac River
2,00 •>pe'•'•?. "°" '"*
"sc Ed if on Company 3 «"'? "- '-- r'"''•- ':"
."i and £ •"? Coxappny ? ~r '> iO '.••".
• -..;^r* ar-d Company 2 jyC 0. -.2 '•<. ?-•"
•--3b\re, Pennsylvania 2 v-v 0 "^ w. Sr
• -.va-stle., Pennsylvania 2 ,H-;^ 0,1} C-:5r.rj
-'"•:r-Vir^.-. Pennsylvania 2 kG'-* 3 00 Co^of
^:';.'" $'. «TK Hilc-ctric '-i 4-i>> ? '~0 C'-1";-":,
'". o"iArs E^^ctii' 5 '+0'.1 ? ;>C ."j"'/•"'
-"^..'.r" Mfifvi&po 3 -+12 *"•,' -*> F^'- ~-'"'.
'^r--". Virgin.!? ?
*-•.•} '"7est Virginia 2
.- -- r-;r-,v jl
-'V'.- a no C'->mC'Vr_y > •'• v~- " -"* '• H' .,,-•-.-,.- • b
"oisr^. West Virginia .?
~? '* an<- "-mpp-ny ~i -'-&'" 0.20
S --.'i." 2 •">"•
-------
Dlat,e Glass
Piste Glass
Maryland
;.iO" Company
so,i C-.'5Kpany
gf i i^ld >r'umpe" >xv
gfield Cosapacy
•sn,, Maryland
rporation
rporation
rporatioa
rporation
Maryland
allistlca
sfcx'ag Camps cy
t Virginia
ac River
S. o - 1 • n
ia Pulp and
ar
"\
c
•s
5
3
5
S
2
3
"^
?
?
'
2
?.
2
~\
500
502
506
5] u.
316
513
550
522
32^
526
5-?8
5^9
530
532
x; )S
«un
sL^.
5*8
c. •:,,-!
i?
,'\
•-;
0
0
\
2
0
?
53
58
r*
C
0
0
o
i
^u
™
?9
00
2'b
C^'}
69
V-, ~*
.bO
- ••',' ''
.18
80
. 00
. CO
,60
-28
07
,?5
00
;. %
^O
O *^ 3
~ ^ 0
,j B, P:,!:J;?,:,C :-..
"• Br , tx:-cc~U':
•j' .Jr. F-. •••-.-.: •'"-;-••-•-
i: ,->-, A- • -i'- -^i"-;-'
TJ; ' T' /
?" "I r . /-•• -« ^..i*: ::'-- • "!
I"1 , *i T ^ . ; *" " "-',?- "" - • -- tj" '-
??. 8r, Pot->-!~. i' f-i A^
N, nr, ":i. -;••?-, ':- - - ?
fi 3r> Fooo'oa-. "r"..
I"-. B:: r^t'^-.B.- oi -'i
T-' Sr . F ^cc-na-"' 7?-- '-\;
"" 1 P-V Pf .-T ^~* -4 "- "' ^ ,,' -j
?•! « Si ,> '-?v"V -'""-'7Li. " ^1.% ;-'
7T IH -* "^fN^~ f ' i1^! "> "j ^j ^ - '
]- 7 -O 1. - V. f^'>f.^)p Iv* .. A
J., ;':r , •"-•*•" ~:.i-'- ::.; ••;
'^ ' t"> .^ - -^ t ^ ,- ." -
y. Br- Pot'-rrac F.ive
-' ?.: ?vi -•:-,.- :" T
? sa p t cvn,
"; ^gheay
••ser Fi.ol
., -j "- { "j^^"";
'?r Virginia
^aper < '
?«t Vi:
" 2per Compa o:/
,3t Virginia Pulp and
...t Virginua JH.\.:p and
-------
156
I
Wf
A',
$•
As ir^.l -at.ed, 3-. Appendix A, a l?..rg-r ame"iit ->f *"ield w-rlr
'.^ing -i~--3.-n atr? w^t** tr^^Hiemt rvrvsys ic-- required r-o ijn
'"low release model. Irs order t : determine the (ir.-~t, of co
nsces-3;ary information reo.ulr^'l t>:» implement the mocJfel, cost
'.re.s have been kepi, on -soiise of ths major field activities at tte
ke Fi^-id S tat Jon.
A S'jcBms.ry of the coat data is givKi in Table 18.
Table 18
Tlant Survey
per Fdle
per s set-ion
per 24-h
survey
per
Cost
$ 50 - $ 100
$ 4 - $ 10
$2000 - $3000
$ 25 - $ 50
The-
The wsate
•*••_• i^Tsr- si time p'.n ..a a 33
plant and stream survey
", P"
«n?t« :T per
-------
APPENDIX C
COMPUTER PROGRAM DOCUMENTATION AliD USAGE WITH SAMPLE PROBLEM
^
:ie computer programs for the verification link and flow release
have been coded jn FORTRAN IV Subset E, The same algorithms, nota-
end data inputs are common to both programs
:ror easy reading and understanding of the programs , symbols for the
les are usually abbreviations of the algorithm parameters,, Allow -
have been made for possible expansion of the model concepts, inclua-
nnut formats „
iu the verification link, all calculations are made in the concentra-
,,.:ae (rng/l), while in the f.ov release model, the .Tiode is pcuna5/<;ay .
:-.? cf concentration in the verification link aids in displaying of
trious profiles. For example, the computed BOD profile is listed
:'!./ HOD values, which simplifies comparison to field data,
"• vS-'tZ JtliD TOPICAL paCK CtWL'T.A 1 ^T^S
'i.led listings of the ten-;: rut formats ana array notation are
••"•. in Tables 19 anc 20, respectively A? ?an be seen in Figure
. i*.put formats are fixed fie. :- Card for.-r.at 6. wr::ch current-,-
'..ai, has been designed for t ^r-.Me expansion of the BOD, DO end
'-'-.re formulations and to a.;-vw for greater flexibility in the
,-ia* n d"cK compi iat icr.s for t.ne verification link ana ,';".x
are r.sriuyed in ri^urf- v' an" 33, reo_r.-.-cci ve ,y ?'or
ctt ~, or, , ;•.-": '.^raer ^. *" .r'.r-. . .>i\ . or. •" a~ foi^^^3
all levels of waste" tr^^tr.^nt tor pciven flov module;
all f-ow r-ets fcr a FI vu:; waste ws :er module; and,
-------
35S
3.. all waste water sets for a typical computation.
If many waste water sets are included for compilation, each waste
:-ii;> ji.uat contain name number of flow eet:i.
Jince there are no data sorting routines designed into program, all
•mats must be placed in proper sequence. Consequently, Format 5, which
• ^r,ed to link the various modes, must be ranked upward by J(N) parameter.
-'^M USAGE WITIi SAMPLE PROBLEM
To illustrate the data inputs and computer outputs formed for the
,-iT'ication link and flow release model, a sample set of data for the
-.:.uxent River Basin is presented in this appendix.
For demonstration purposes, regulation capability not currently
• -rinse has been introduced in the Little Patuxent River. Cost con-
..-.orations are not included in the sample problem* A schematic of the
nuxent River Basin model is given in Figure 34^
In the flow release model, the distance increment, flow increment,
test grid, and BOD increments are read as input data, with the latter
• • .^t required in the verification link^ The latter three parameters
-roiled the number of feasible solutions with first, the frequency
• :.'iinber of water quality monitoring points in the basin.
'•'or the sample problem, a flow increment of 5 cfs has been used , In
"tomac Basin, a 20 cfs increment appeared to be adequate. To prevent
j
-'.itional problems, the regulation range must be a multiple of the
"ncrement or vice versa-. This also applies to the reservoir cost.
!
/
ailcw for maximum flexibility at a decision uoiac (or stage), ||
I
- increment is selected by the computer according to BOD range for f
"'" state under investigation. As can be seen in the Patuxent 'f
-------
'.asm data, if the BOD range is between 1,0 and 0.0 rig/1, an Incre-
' 0 .' m«/i is .--elected; between 2.0 and 0.0 m.Q.'l, 0 '* my,/1 ; between
U,u ing/1, 0.6 m^/1; etc. ir. the Potomac Basin, as Indicated
, the BOD range was usually about 0.5 zng/1 or less.
r the temperature model the decay coefficient appears to vary
-iccording to season and stream. Verification studies of Potomac
uxent have indicated a coefficient rans;e of 0,2 to O.BO, with a
value of about 0 3.
-------
160
Table 19
CARD FORMATS FOR VERIFICATION LINK AMD FLOW RELEASE MODEL
iMaJ n rarair.et.er Oarc] (f>i->. I!
;'-y_mbo L ___ jescription _______ _
; 3TALN Nuraoer of stream sections 1-3
" .":7ALW Kirnber of water intakes and waste water
discharge o-1
:TALR Ii umber of streamflov add points
"•"£" lumber of reservoirs
L"". KIT: First node of basin or terminal node of data :;
sets c*\-i'.rj )'
\,
I
:"'<'• Number of data sets 26- JO
;j
i!
'."1 Jiuir.cer of flew sets per data set 31-35 j
;:-;M.dOI} dumber of treataent levels per data set 36-'tO i!
ITiOD Index for vaste vater BOD loading ^1-^5
1. in pounds /day |<:
2. in rag/1
i
r'TYPE Index for optimization U6-50 ':
.1. BOD-DCD routine i
2. BOD-COST routine ;i
"i
i
VI!"1 Index for reaeration formulation 51-^5 >
i. O'Connor ,|
2. Churchill !l
3. U.S.G.S. i1
• ----- A Flow increment from reservoirs in cfs 5"— oC I,1
!i
Minifnura £SOD removal level of all vaste waters 6l-o5 .|
FIRST) Piver mileage of first node 66-70 ,;
Fi stance increr^-nr. o^ POD-DO quality 1
formulations in rr.iles 71-75
'••iininiuin phospr;:ru5 re.crvaL level of all vaste
waters 7 fa- 80
-------
lol
...•rr.nol
"yrnbol
Table 19 (Continued)
Five Waste Treatment Levels (No 2)
Description
First mininai BOD removal level of all waste
vatera
Second minimal BOD removal level of all waste
vaters
Third ninimal BOD removal level of all waste
waters
Fourth minimal bCD re-oval level of all wastp
waters
Fifth minicial 301- removal level of ail vaste
waters
Dynamic Programming 7'ar-a - Gr..d Increment (lie. .;.
Description
BCT grid increment, for Te-;t 1 grid
BOD grid increment vror Test 2 grij
B^D grid increment fcr Test 3 prid
bOL grid increment for Test k grid
LCD (.trio increment r'rr Test -j K»-I
Field
1-iO
11-20
21-30
1 •> ,- ^
'-J.~ /C
Field
1-10
Dynamic Programming i>sta - Test Grid (No
jjes c r i "c 11 on
Decor.c F.'CD test, .rrid pii
Tnird ti.'-'^ test yr,r<. •--.-;
ied
^>v ;.. -ea \. KJ
-------
Regulated terainal strean flew source
Unregulated terminal stream flow source
162
Table 19 (Continued)
Physical Data of Stream by Section (No- 5)
: Vmbol ___ __ __ _ __ De:;cript. ion __ ____ ___ ___ _____ JUL^iiL
'.ri) Lower node of section 1-5
' ." ,' Upper node of section 6-10
. .\i(N) River mile distance at upper node 11-20
.REA(lO Trainaee of basin at upper node 21-30
.'' .' } Constant of depth-flow relationship for section 31-^*0
:i,"'^' Exponent of deptn-flov relationship for section ^1-50
N ,' Constant of velocity-flow relationship for
section
.•!'./ Exponent of velocity-flow relationship for
section
. ryFE(N) Index of upner node
1. Node where there is a physical
discontinuity
2. Confluence of two tributaries
3, Waste water discnarxe
^ . Water intaKe
.,
I
-------
; -:';. AYT(N)
JiiCAYP(H)
TiiOS(M)
iX730D(N)
Table 19 (Continued)
Continuation of Card 5 - Optional (No. 6)
pcacr ipt. urn __
Lover node of section 1-5
Upper node of section 6-10
Slope cf section (ft/ft) 11-20
Depth factor of section 21-25
DO constraint of section 26-30
Temperature decay coefficient of section 31-35
Steady-state temperature of section 36-Uo
Phosphorus decay coefficient of section 1*1-1*5
Dynamic-equilibrium level of phosphorus 1+6-50
Photosynthesis DO contribution (future use) 51-55
BOD contribution of sludge deposits (future use) 56-60
BOD loss due to extraction (future use) 6l-b5
Dynamic-equilibrium level of BOD 66-70
-------
164
Symbol
NRES(W)
NRN(N)
MRES(N)
IRES(N)
ACREFT(N)
i
WQ ACFT(N)
TCOST(N)
WQ COST(N)
AVRESQ(N)
INRESQ(N)
Table 19 (Continued)
Reservoir Information (No. 7)
Description
Reservoir Number
Node of reservoir
Number of cost cards
Flow increment for cost increment
Total storage of reservoir in acre-feet
Total storage for water quality control in acre-
feet
Total cost of reservoir
Cost of storage for water quality control
Average stream flow at reservoir
Increase in dependable flow by reservoir
Field
'1-5
6-10
11-15
16-20
21-30
31-UO
Ul-50
51-60
61-70
71-80
I
Symbol
Reservoir Cost (No. 8)
Description
Field
NRES(N)
CARD
COST
Reservoir number
Number of cost card
Reservoir cost for given flow increments
(fields of six)
1-1*
5-8
9-80
-------
Symbol
WTYPE(K)
Wr3CD(N)
WT)G(N)
WTEMP(N)
WPHOS(N)
Table 19 (Continued)
Waste Water Discharge Data (No. 9)
(including water intakes)
Description
Discharge or intake flow
(For units see WTYPE(N) index)
Deaeration rate (base 10 at 20°C)
BOD loading - untreated
(Fcr units see ITBOD - Card 1)
DO content of waste discharge in mg/1
Temperature of waste discharge in °C
Phosphorus content of waste discharge in mg/1
Percent BOD removal 'by treatment facility
Field
5-10
Node of discharge or intake
Index of discharge or intake
1. Biological waste water discharge in cfs
2. Biological vaste water discharge in mgd
3. Thermal waste water discharge in mgd
U. Conservative vaste water discharge in ingd
5. Surface water supply intake in mgd
11-20
21-30
31-^0
Ul-50
51-60
bl-70
71-80
-------
•f I
Table 19 (Continued)
Secondary Parameter Card (No, 10)
Symbol Description Field
;.-; Index of steady-state temperature 1-5
1. Uniform basin temperature
2. Temperature by sections from Card 6
7TSXP1 Uniform basin steady-state temperature in °C 6-10
IT3 Index of DO constraint 11-15
1. Uniform basin DO constraint
2. DO constraint by sections from Card 6
Tl Uniform DO constraint in mg/1 16-20
Index of depth factor 21-25
1, Uniform basin depth factor
2. Depth factor by sections from Card 6
Uniform depth factor 26-30
:75 Index of temperature decay coefficient 31-35
1. Uniform basin decay coefficient
2. Decay coefficient by sections from Card 6
I.'ITEMP Uniform temperature decay coefficient 36-Uo
17'j Index of phosphorus decay coefficient ^1-^*5
1. Uniform basin decay coefficient
2. Decay coefficient by sections from Card 6
I'.-IPKOS Uniform phosphorus decay coefficient (base 10) ^6-5C
-~" Index of dynamic-equilibrium of phosphorus 51-55
1. Uniform basin equilibrium level
2. Equilibrium level by sections from Card 6
-••'FHOS Uniform dynamic-equilibrium level of phosphorus
in mg/1 56-bO
-~'-' Index of dynamic-equilibrium level of BOD 61-65
1. Uniform basin equilibrium level
2. Equilibrium level by sections from Card 6
-" -oS Uniform dynamic-equilibrium level of BOD in mg/1 66-70
f
fe
-------
•MAXQ(N)
=BOD(N)
?DO(K)
;?KOS(N)
?T2MP(N)
??T£MP(N)
• ~ 0 (N )
-r3:-D(K)
•??hOS(H)
Table 19 (Continued)
Data at Streamflov Addition Points (No. 11}
Description
Node of addition point
Index of addition point
0. Increment flow addition
(not a terminal source)
1. Unregulated terminal source
2. Regulated tenoinal source
Minimum flov at addition point in cfs
Maximum flov at addition point in cfs
BOD of addition point in mg/1
DO of addition point in mg/1
Phosphorus content of addition point in mg/1
Deaeration rate of BOD of addition point (base
10 at 20°C)
Temperature of addition point
Slope of temperature-flow relationship
Slope of DO-flow relationship
Slope of ZOD-flov relationship
Slope of phosphorus-flow relationship
Field
1-U
5-8
9-15
16-21
22-27
28-32
33-38
39-^5
J46-51
52-57
53-63
5fe-68
69-75
-------
Table ?0
ARRAY NOTATION FOR VERIFICATION LINK AND FLOW RELEASE MODEL
* Constant for the log-log depth versus flow relation-
ship for a given section
= Acre-feet of storage in a given reservoir
= Average flow of stream at given reservoir site
= Exponent for the log-log depth versus flow relation-
ship for a given section
= BOD at node in mg/I
= Constant for the log-log velocity versus flow
relationship for a given section
= Dissolved oxygen constraint for a given section in
mg/1
*.:ZA(N) - Drainage area at upper node of section in square miles
= Exponent for the log-log velocity versus flow
relationship for a given section
= Decay rate for phosphorus (base 10) for a given
section
= Decay rate for temperature (base e) for a given
section
= Difference between steady-state and computed tempera-
tures at a given point
= Average water depth in feet for a given section
?
= Distance in miles of given node from confluence of
basin
= Distance in miles of given point from confluence of
basin
= Dissolved oxygen concentration at given point in mg/1
= Dissolved oxygen deficit at given point in ng/1
= Depth factor for giver, section
= For expansion to include extraction in tne i'OD model
(Future use)
-------
5)
•ZS(N)
-OD(JJ)
.COW(JJ)
.:EMP(JJ)
-------
170
5COST(JJ)
BDOD(JJ)
NK(JJ)
HS(JJ)
NBSS(H)
HRJ(M)
HTEMP(N)
NRH(JJ)
HTYPEOO
OBOD(S)
OCOST(S)
ODOD(S)
OFLOW(S)
OTSXP(S)
Table 20 (Continued)
Huaber of cards vhich contain cost data for a given
r«i«rroir site
Temperature of given grid unit in the incremental
flov tableau
Counter-part to MBOD(JJ) in dynaaic programming
solution
Similar to HCOST(JJ)
Counter-part to MDOD(JJ) in dynamic programming
solution
Counter-part to M7LOW(JJ) in dynamic programming
solution
- •*
Counter-part to MK(JJ) in dynamic programming
solution
Section number for given upper node
Index of upper node of a given section (data input)
Humiber of given reservoir site
Bode of given reservoir site
Steady-state temperature of a given section
Reservoir number for a given node
Index type of upper node (reassemble by program)
BOD in mg/1 of feasible solution from dynamic
programming tableau
Reservoir cost of a feasible solution in the dynamic
programing tableau
DO deficit of a feasible solution in the dynamic
programming tableau
Plow in cfs of a feasible solution in the dynamic
programing tableau
Deoxygenation coefficient of feasible solution in the
dynamic programming tableau (baa* 10)
Temperature in degrees centigrade of feasible solution
in the dynamic programming tableau
-------
171
Table 20 (Continued)
OXFLOW(S)
OYFLOW(S)
rfiOS(T)
PHOTOS (I?)
??HOS(N)
=30D(N)
?:OST(NRA,ICR)
?DO(N)
•iAIR(jj)
:730D(N)
» Flov in cfs from M-arrays of feasible solution in the
dynamic programming tableau
= Flov in cfs from N-arrays of feasible solution in the
dynamic programming tableau
= Phosphorus in mg/1 at a given point
= For expansion to include photosynthesis in BOD model
(Future use)
= Steady-state limiting value of phosphorus for a given
section
- BOD in mg/1 at a given stream flow addition point
= Cost data for a given reservoir for a given release •
rate
= DO in given reservoir at a given flow
= Average reaeration coefficient for a given section
(base 10)
= Slope of BOD versus flow relationship for stream flow
addition point
- Slope of DO versus flow relationship for stream flow
addition point
= Flow in cfs for a given node
= Slope of phosphorus versus flow relationship at a
stream flov addition point
= Slope of temperature versus flow relationship at a
stream flow addition point
= Node of given stream flow addition point
- Deoxygenation coefficient in I/days at a stream flow
addition point (base 10)
= Maximum flow rate in cfs at a given stream flow
addition point
= Minimum flow rate in cfs at a given stream flow
addition point
-------
172
Table 20 (Continued)
RPHOS(N)
RTEMP(H)
RTYPE(N)
SATDO(T)
SBOD(JJ)
SDELL(JJ)
SDOD(JJ)
SEDBOD(N)
SFLOW(JJ)
SK(JJ)
SLDBOD(N)
SLOPE(N)
SQCOST(»)
SSBOD(T)
SSDOD(T)
SSTEMP(T)
STEMP(JJ)
SX?LOW(X)
SYFLOW(Y)
» Phosphorus in rag/1 at a given stream flow addition
point
* Temperature in degrees centigrade at a given stream
flow addition point
= Index of a stream flow addition node
* Dissolved oxygen saturation concentration in mg/1 for
a given point
* BOD in #/days at a given node
• Difference between steady-state and calculated
temperature at a given node
» DO deficit in #/days at a given node
• For expansion to include sedimentation in the model
(Future use)
» Flow in cfs at a given node
• Deaeration coefficient at a given node (base 10)
= For expansion to include sludge deposit in the BOD
nodel (Future use)
» Slope of stream in ft/ft for a given section
» Cost storage in given reservoir for water quality
control
« BOD in jC/daya at a given point
» DO deficit in f/days at a given point
» Temperature in degrees centigrade at given point
* Temperature in degrees centigrade at given node
» Flow in cfs for given solution in the dynamic
programming routine, M-arrays
= Flow in cfs for a given solution in the dynamic
programming routine, N-arrays
otal coat of a given reservoir
-------
173
Tabl« 20 (Continued)
TDIS(H)
TBCP(T)
TRET(N)
TTQfP(N)
VEL(JJ)
WBOD(H)
WDO(H)
WFLOW(H)
WJ(N)
WK(N)
WPHOS(N)
WQACFT(Y)
VTEMP(N)
WYPE(H)
* Distance in miles fro» the confluence for given node
» Steady-state teaperature in degrees centigrade for a
given point
• For expansion of reservoir site data
» Steady-state temperature in degrees centigrade for a
given section
« Average velocity for section in ft/sec indexed by
upper node
* Untreated BOD in I/day or rag/1 of a waste load for a
given node
» DO in mg/1 in the vast* load for given node
« Flov in cfs for a given node
» Average width in feet for section indexed by upper
node
Jt
« Node of waste water discharge
« Deaeration coefficient of waste load in I/days (base
10)
» Phosphorus in mg/1 in waste load for given node
* Reservoir storage in acre-feet for water quality
control
» Percent removal of BOD of given waste load
- Minion* BOD treataent level
« ?easp«rature in degrees centigrade of waste load for
given node
« Index of waste load for a given node
» Flow in ragd of waste load for a given node
-------
174
FORMATS FOR DATA CARDS
VIA IN PARAMETER
TTnrmTtTnTtTrrr
_ OESllG
TEST 4 i TEST 51
• DYWvllC
CARD5_L I
DATA OF "STREAM!BY SECT i ONsT
MOP CARD
5IQPI1IQNAL
CQNJJJUAIiQ
coNSTtN) xcarwt. TTEMPIN; DECWWN) PPHOSIN
:SERVDIR INFORMATION
i_CAR'D 8 ! :
RESERvQlR COST
—-^ \-
WASTE_WA£rER_rj|ISCHARGE DATA
tofPHOslNl IWREMIN)
'RA7TJVA'/K7r~rT i i t~r~r frx~
WKINll iWBOD(N)| IWDOfN)
ATIA Al.BTREAM__FLOW_JADDlLTiON
RTEMPIN)! RFTEMHNf Rf DliD(N) JRFSOD(N)
r^'i^MMj«H"n'T°!7
Figure 31
-------
175
TEHMINATJON CARD
DATA SET
REPEATED N-TIMES"
DATA SUBSET
'REPEATED N-TIMES
-A
CARD(S) 11
GAUD 10
CARD(S) 9
OPTIONAL
CARD(S) 6
CARD(S)
CARD 2
CARD 1
VERIFICATION LINK?
COMPUTER PROGRAM
SOURCE or BINARY)
TYPICAL DATA COMPILATION
FOR
VERIFICATION LINK
Figure 32
-------
176
TERMINATION CARD
DATA SET
REPEATED N- TIMES
DATA SUBSET
'REPEATED N- TIMES'
CAJUXS) 11
CARD 10
CARD(S) 9
OMIT IF OPTYPE = 2
CARD(S) 8
CARD(S) 7
OPTIONAL
CARD(S) 6
CARD(S) 5
CARD
CARD 3
CARD 2
CARD 1
FLOW RELEASE
COMPUTER PROGRAM
(SOURCE or BINARY)
_y
LJ/
TYPICAL DATA COMPILATION
FOR
FLOW RELEASE MODEL
Figure 33
-------
177
a- I zo
^-P
"2 £
ui .r --
^ o
< UJ
I u H
a:
h-
z:
LJ
x.
Z)
<
QL
u
in
t-
U
o
z
I
o:
i
o
z
Z
u>
a.
a:
<
x
O
<
cc
a>
Z
ct
o
cc
o
or
O
O
en
Figure 34
-------
178
1
o
•
o
o
«
CSJ
' «- •- -C (•"••
(<•• c.
cc cr,
c o o o tv P. P« tv PI PU f n" ir IT IT IP e c
: c?> o o o~ P ^ c •
£• r, f^ -i »c < <: rf r>~
OCOOO
OOOC- OOC30CCOO
OCCOCCCCsCCOOOOC,-"v)-CCCOCSjp, O
OOCCO OCOOOOOOCOOO
2:
ttj
X
o o o o o c
fsiO^--4-sr-t'*
t • <- <• tr, IT. tr o" f<" o c- o o t^ n- t^
c:cDC-p-r-r1.p,p.p^<- r^i ro f*'. r". ^ f^
, ...........
occcoococcoo
cs.
1
UJ
O
o
o O L~ in IP IT l-l OOCOOC, OOOOCOOOOOOOO
o^ t"- -o •." in IT r< c o
• • rs! TV (s P. rf (•<-, xn -c \c o s: t~- •£, ^o -c if> <• o c L-, u~ L"^ IT. sr-
o <-< • • ......... ...... ...... •
OOOCOCCCC-— OOOOCOOOCCCO
cef-r-p-cocrocooooococoooccooo
vOOtx.rxr-oc'-otx'Nfv. • « •^cooo--i— >oocco
. .......... P- >• r- ............
o c\; <- vr ~ t f-t -^ ^
ex p. •— i^c^^tc^c-cc-— '
If*
a;
O
u.
e*".
cc o "' c o o o
•«o~oao»
»• >~ -j- o a v:' o f. iri o c- -o
O rv. O CO O
-------
179
c o c o c o
ff f. m IT IT U"
o co cr> o cr cc
• t • • -
o o o o
ooomocoooc
o c »— •-' IP, IP in IP in in
o o o c
IT. IP in O O G O O Q O
cc os-c: -j- «•••••
D C C O O
IT
CO
c c
• •
cv P
O IT
.O
UJ
f-*
K
ooooooc oo
c
U-J
z
C UJ
O <-"!
xt r" vn >c r- ui o c
» • cc r^i o co •— i >— i
o o o o; IP IP. in IP IP.
LU • . .
—• o c o
ooococcccocoo
c. «
ex LA u^ to IT TSJ cv (^ r^- rv ru c\' r^ f\
- • o> i\i (x c\ r»j ex (v t-i TV: rv; c\j rv CN:
-1OOCCOOOOCOOOO
O IT
«^:oocooooooo co
C • L^. U" LP LTi L"^ IT b' L^ UP, ITi IT, U^
C OOOOOOOOCOCCC
(N. >........>...
•-> ff,
>J-CC?OCOOC-OCOJOO
«--)CCOOOOOOOO CO
u_ o o o o
• • • *
^ CC 3? Cv.
<
a:
O
U.
o o c
o»-^Hf-icooo~ciriPvr. o
— ^ in tp L",
c.
i— o ex -r <:•
rv r\. (\; rvi r-. IT. '-T rv c
•
in
CM
if-
-------
*> 1
^J
UJ
D
C
s:
UJ
to
<
Uj
—1 <
UJ (-
Cx! <£
3:
0 h-
-J ZJ
u. c.
z;
u. »-«
0
1-
fy
t-
_3
O
UJ
•J
O.
^~
UO
t
^ *
M
c<
cr
> r-
c£
11 1
oo
U.'
CC
>
t-
^r
0
a.
C r>
O *-•
<;
1^
o
a.
in
UJ
a
•z
o
VI ^
o
LJ
t-
^ f^
j—
rr f-
D C' CC
C -t x}
c c
o - §£
c o
c. o
cr «tf* >tf"
S. *? -i-
0 0
in in
en co
<; cv rv
c c
CO
i* co cc cc
<^ * -J- -*
o o o c
in o o o
r*- ^ cc cv.
rr, 0- C -t 03 CO
' '
o c o o
o c o c
O r~ LTi.— 1
O ro ^ , r\i CM rv
o o c o~ o o
o c o o c o
o c m c *c *c
o o co r- -c <
o —< o o o o
o c o o o c
c o o c c o
rv o O c — O
•— ' r*- r*~ f^ f^ re
cc m in LO tn r<^
o o o o o o
o o o o c o
<• o o -o o t^.
C> --> f" sr vC r~
o P-- r— r^- r*- r*-
CC O »~J rvi ^ vC
r-t rj. oo .-x rv rv
-O tc O — 4 rv -i-
% '
a- o ~< rv -^ -4-
_..,,.. .
rv r*"- (f Lr, m in m c
r LTLfc\r\rrv<;
c C c O c C c. c
CC *C C? f*"1 f*~ v?" c in ^ >o *c in in in
cooooooo
coocccoo
ooooococ
OOG— ir-iOOC
ro pvm —' — ' c o in
fi rf. n >o o >*• <• "
L.~O^C?CC^H(NJ
rv J -vi
-
0
*c
c
rt
C
(^
«^-
^
I"
"•/'
4'
? ,
f'W
||^5yr-,7;
? C!L a
^ ?' 1^ * ' "
^ S ' ;
^',j»^j J •'
''i«B i
VJ ' 3f | ^ ^
illf ':
T *l»
' 'i *
*^ »
* ' P If
I,T
'#
|/
f '/
111
w/
(- I;
f
If
"V
fl
-------
161
c »?
o c. c. c o c c
c c c r c c- c
C. C C C O C C- C O
r
Cr
IT IT. L- IT c c u
C' o cc cc c.
o
t
c
X <_•)
d- >"
o o o c o o c
o c o o o o o
c e c o c c c o o
C
C
o
«*•
— O C O O O O O
O- O OOCOOO C
3" • OOCOOOCCC
. in
t\i
Q
C
D
-O
<
I—
<
O
c
O
CO
OO
oooooo o
OOOOOO O
OOOCOOOC-'C
a
o
<£
o
o
s:
<
or.
O
c
c;
o.
<
Q
UJ
V-
1/1
>
<
% oooooo o
o o o o o c o
Co: oooooocoo
c c • . • ^
_4 ecrnocc-— r-i O
•X. .-i.--
o
c
o
— oooooo o
x >- ui in if\ ui IT, in m
C< ^ir^r-l^^^-lOC-l
UL O
c.^. ooooooooo
o
o
t/5
UJ
--. OOOOOOCOO
3C OO-J-OOOOOC
(\t O
•*• r-l O
a
o
00
II)
UJ
0-
f\i ^j fv. rv. tr tr. c:
o
o
LU
a
D
-------
c
C-i-
cr c
c
0 •
IT CV
r
CO
t- r->
•
C
X\r\
U 1
0. O
£•
1
U.
C
C-
CC
i
ij.
c
o
u_
c o c c c- c c c; c c c . c, c
c o c c c c ci c- o c c e. c
_
c. e c ccc.sOoce.ecc
COCCCOCOCCCC.O
o o c c o o c o o o c c o
coccccccocccc
UJ
H
I
U-
occooccooooco
cccoocoooococ
X
0.
•c
o
LU
O
o
CSJ
OL tJ
s: •
U. ID
t- UJ
OOOOOCOCOCCOG
COOOCCC.COOOOC
> if' ir( cv
(x P. cv
x> cooocccooocoo
UJO
O-s, OOOCOOCOOOOOC
1
H
H
C
-1
O
t-
c
o
Q.
UJ
H-
O_
C
in
K-
K
IP <
cs: a
0 3
C.
U.
s:
UJ
•-* cf.
t/i _j m IT' m. Lr, ijr. in u~ ir\ ir< ir> O u~' in
C-N. OOCCCOOCOOOOC
I (_',
O.5. OOOOOCOOCOf. OO
C) O
oooooooooooco
vfOOOOOQCTOOCMCO
o
u.
X
CL
UJ
o
o
vC
ooooooooooooo
inoooooomoo-tco
f
s*
ff
I;
U- l^
I LL
X O
o
o
c
o
o
o
o
U-
I UL
2 O
UJ
a.
OOOOOOO"-JOOOOtM
e.
E
UJ
o
o
-------
f*
183
G
CC
X
UJ
s:
Q -j
-3
3= ^~
o a
_i c;
u. 2
i—i
I s:
x
a: o 'to
I- O
• I
in 2;
co >~
o
_i
U.
-5
-3
oorHr-r\.r^c*<-r~lco»ocrcocccciPipiipiipir, O">tp'<;r'wccc?cc
o ^" *^~ cc r~, r-i ro f^ f% -o r^ c c c ^c o c^ C" c~~ o \*~> fv o o^ co r- cc cc
in m ^- IP cc ex ^ ^3 o^ r~>i o^ IP, IPI IP IP. ^ o~^ !"-! ^^ (Nl fV •—* '"' i~l r~l *—1 f\J CX C\J CN. Cvl f\; IPi IP, IP) IP, IP in
CC *O *^ f^ O CC ^ f\] O CO ^ f\i O CC \0 *^ (^j *** C ^> *£ ^ f^( C CC -O ^" f^J
/.: I
-------
184
-- O C> O O O O C
_J • I • • t » t
<. oocoocc
3: »
U. O
o O CO h- -0 »fr (M
cc Co oc co co cc cc
ci' >- •& m e^ rf ro tr, r^
< D •,....»
U.' V. COOOCOO
D 1-1
i/f
3:
O
• «- acrooooo
_J O I— O COCOCCCOCOCOCO
< C < S
U.'
s:
o:
o
D •
Q
CM CM <\i !\/ Cxi (Si e\l
Q -^
CO
u-, <- r\. ^ o o ^
3: — r-
C
-------
**•
185
— COCOCO OC.O
h-< c- cccccrccc.
r %r
CL o co r~ f~ -c u- r- ^ *-• c
^« ••••!..«•
C
UJ1^ OOOOOOCOO
C ^
UJ
cc
t- •*•
^H
3:
C
UJ I -v. .........
<. c -a •£. "^
t- Z. (Si^
Z I
UJ -3
•s.
UJ
o:
^4
_j cso-i-r^f-i—(OCTcc
Q -^ .........
C S
Q -X ..'."......
«
(7s C* C^ ?• CT* C' 'J^ C^ ^*
3: —- r\i (\j rsi rv. M r^: r^; r! ^
O co .».,*.•••
-------
186
ccrccooooo-cccoco
o o c o c c c- o o c- o c e c o
ft
I
1» !i
— oooocccoco-cccrrcccr-
C-O OOOOOCOOCO(7OG~CCr-
3C • . t . f 1 ...•,..,..
Li. O IT IT, IT IT i^ tr IT L"- vp ^ >r -*i" - f m f f" f f f> ff f^i f, rJ (s1 (\;
-------
1S7
i- — coocccooc-ccc.oc.-c
C 7-- O C C C C C O C C C. C- C C C C
C. • c cr cc c a.' cc cc cc r- r- <«• r, f f «i~
5: (.5 ..^.^.........^
K O cv rv cv: c\ c-; fvr f1 cv fv' ^ tv f^: c\d CN o,
>
OJ^I COOOOCOOOOGCOOO
O —
O -J
o~s Coooooo—'^Hr\.occct--r-h-
t-t \- 'S: •««....«.«.««..
ir>
lit
—>
cc OJ
< •"•
H
O II *~
2 i ~"
s: c cs: ...«%,,..t..^..
o:
O a:
O C
K U-
D.
O
*~t
s.
Z -J ^
<; u. rA 33 f^ cc o's cc r>" r^> fo ^ r^. cc r^. co r^
u.
^-
»- in IT. ir\ '.r LT1 >r >r> ir\ ui '^ LO ^~i u- L-N ^
<>o oooooocooccococ
-------
' I
i!
i-
APPENDIX D
!s;
?/
VERIFICATION LINK COMPUTER PROGRAM
a
J
2'.
>J
188
1s
-------
188
VERSION
1 m
tu
:>£ O
Z 3
I-H _J
— J O
2
0
1-
•e.
o
LL
^*
fV
UJ
^
ALGORITHMS
PHOROUS
T
to <
o
X O
O. LU
o.
1 O
LU LU
o; >
O LU
1- D
^j
fy*
LU
OL
s:
LU
|
O
O
1
Q
a
03
Z
Z 0
O Z K Q
•— < < Z
X 0>- >- <
O "-,
S: U Q O OS
^4 LU »J 4
LL s: v- LU < s:
C 5 «-• O
• LU LL OL -
H- O LU LL >~*
>-t CO Q 5^ _1
10 C£ _1 < O
CH < UJ U4 C-
LU •—O. <
> Z LL < Z
•-. z > z
Z < LU -D:»
— o — -- oc2 — o — o>~ »-o
O ^^•*OO*-LT\ OOOO •"• — LTV
§ — oooSSo — — ^22^~o° —
OOVT\O^~~*O>O^*^£W7SOO'~*3^
»LnvOro>oooo~octnLuoQbm<3 — o
Q XOOXt— 0:0. — >-LLcDLL»-3UJU-
LTl Oh— -LnrOLnoo — into
— moooooo-o — T~< — m>ooo— '^-i
O *—• O o *o ~^ r~* ^n — • o *~* Q ^ ~^ *~~* ^> ""^ *^
in-*LuQOl-ljSlOX>'
•CJ^XLUCCCH-XDLL^^ LU^Jh-UJOQ-l —
•^tQOO^J-jO-O^Q^O^CiitOO^CO) — SIi3i
•^
0
fc-«
z • to
0 Z
£ LU
•SL "Z.
a •-
u Q
V~ to
- LU
oc
to -> I—
tO 3
to 3: KJ
, RJ, RTYPE,
TOTALW, TT,
IDE, YYBASE,
•* L-r
I- a: >-
on _i
c^ *t ••
_i |— UJ
a. o to
V- <£
» CD
LU » >-
L14 Z
LU _J »
•^ >-
" 1-
LU t— LU
O
•. -a
LU CM Z
LU X
•• 0,
0 < -
»- X
•>
u - »
r-< LU
>• LU Q-
LJ CL >-
O < 1-
CO k- X
f£
LU
O
LU
t—
Z
*^
< CD
O
Cf.
X
->
ST
•.
3:
CD
LL
;r
*.
Q
C
Q
3^
v.
a
o
CO
i:
<
2:
UJ
t-
z
to
O
X
O-
z
•2
z
••
jC
o
_l
LL
Z
••
Q
r^
Q
Z
en
I-
» Q
0 0
1 «*!
, FIRSTI, 11
DELTA, REMI
to •
LU H-
Cf. LU
l~ c/i
a:
i •.
< LU
(•— CL
O >
^ t—
- a
O co
»-4
*.
Z »
_^j C5
< o
1— CD
a s:
^— Q^
>— 1
•—
Z 0
>-4 a
UJ -J
2T *^
*— ' •-*
^— *-*
_4 0
—J <
< LU
0 a;
CO
o
0
to
X
Q.
X
c:
(j
*—
»•
^^
»-*
>—
t/1
ct*
fc-^
u.
. —
(/>
h-1
0
o
2
^ <
\f^ <
d-
K-
l/>
DC
sfr
O-
k— r-
^ s
— UJ
ro csC
*~ <
CL O
K-
t/> •-
3 S
•• *—
— to
— o
Q. V—
J—
to ••
Is • —
•2i
•- *_-
*™« "~^
»— *
•»rf •>
C- —
t- 2:
iyi -^*
IS »— •
^->
~
O
-------
ISO
z
_1 LU -~ —
< 0. Z ~ 3=
t- >- •" Z -J
O 1- — O — - < _J 3: V- 3 Z
oo -< LU .-i 3: o«-
— »- >- o a «-_j^
LU < II --— LL Z
a. •• • »oz — Z3: —
>- 00 Z — • 3 oo
>_ oi -l X - •• — X D
Z-JI-CX-. — 3 UJ -X
z-.szzOc^ — a.
t_ LU — — • _l 3 Z 3:
«. O •• C£ 00 LU U_ —
— k-O >-0.3:~LU>-
Z 1- • Q >. S — n. ->
•~ i-i-iOHk- Z>Z
D3: a z» — I
Q_J »co • z — oo 3: a.
<.*-?:— z a 2:
» (— LU UJ Z •• — • X »UJ
— Oooa: — — Luo-— h-
z H- a: -5Za.3;Z3:
•^ H-t •. •— >- i-'
O- < •• O I— •. ~3 -
OZ ^k-^QSr — s: —
_J >-. _l Z Z Z
• < 1— LU — t- ..— » —
— t— OOO>~<-» — G.ZQ
zoo: z z s: a
— »-,•-' . . — _ LU — S
CO LL U Z 0 -> 1-
CQ — Z — O23
> O — -• — - —
O *O " t^ -^ O
ro o o m o
•• ro o o n
rr, - m o
«^ ff> •• r~t t*\
*~- l—t
UJ LU LU — LU
t— >- t- O 1—
t— * I-H >-1 — oo
O>~OOh-OOr- *-^l— Tit— 1(— OO*-4J—— O 1-1 O LU Z U_
•-" • X X •••••• h- •• » O » •• O-
II II II O Q >-< Q II CO l| II CO || || CO l| II
fV LU c^*^OfMO-CjLr\>— OCOO
OO t— >-i a. t— 002:1— COOOK-OO<
s: S a: < >- — h- 01 z o.
OCOOdLU crC LLOOOOK- OOOOOQ-
>->-"Lua: 3 "-"isoai— u o o o o o
co oo^cvf. -*-mscr-co
f— r--cococococoaDrococo
»
^
i
f
!
?
i
i
1
j
•>-,
a
z z z z «
—I _i -J ec_iooz p
-l-c.i— l~-a- — H-C3O— oo fj
irj ii 00 (M K- Z •-> ' •
r.»Q»»O»-00 O-ll — O »'
N II If) l| CO II — ^
O> II ^» C> M — C71 II O II ^ II II II ,;;|
_
i- a. — z — i o m ~ -> o'
Q^-4>-o>J'>-Cjrs-oO'~
I
'
***
TF
f
't
#*
i-|
*J.
1
^ "
V
Ax,
n
P
P
i
1
f
I
-------
ISi
o
LU
uj —i :s 3:
n O O
5" -J _J
1— O U- U-
Z Q 0£ ^
ro
0
0 — —
D 0 "
o: D z a:
-^ CO 1
~- z a: a. <
Z •- 51 1-
-- O •• UJ O
O CS — 1- t~
O U- Z UL
co a: — o: -
a: O rH
» x ••
— z s: z
z ~ or — z
~ a. o.
c s: ~ -Y. -
x uj o: -» uj —
— _J Z ^ Z
E u. < ~ a: — •
o: oi h- o 1*0
C Z .-0
*~ — «- s: z CL
z z •— * o: *-• U-
— — II X (*
O O- Z ^ c£
Z 3T -^ »
£ i_ -T — ^ z
0^* c^ z uj z *-*
— 0. — 0
*•*•** O I— O cr.
Z Z X C£ X U-
«^i fc- C. CL Oi
o- « a: —
H- » ••— — Z
of — — r> Z -
z z a: — o
» ~ ». o o
^"» t/1 Q »• O U~
• — X CO
o -> a. u- — *• *
OOOII— • > — .
^
II II II O
-*• o
T T T « 2 m
3 3 O O — UJ
O O & c£ Q K—
1 _j z X *5 »— •
U. LU >-> < uj a:
— j — . "^ .J
-J" vQ -^2:^-^2; Z>-
^ LLJ o "z. "*£. ^^ "-^ '*~* ^ *™» *^ ' n
l_ CL — r-1 — ^- — O 3 *- Q- -^ V, Q
O>"Z OO dzOOSTZCV—
(_|_^. ^ZX Z«-_JOUJ — Z<
^ QJOSE S2a:a:c::«ci:o
-t — " a: a: a: —
n II
II H - II II II II II II II M II II
^_, "-J i-^ r^ "^ *-^ — ~) — ^ -^ — ^
O OC3OQ3 3 — 0. -3 10 —
PH.-H >— cs^c^v— o oo:E~}oo
s: o: zx _iu-\_iouj — xo
cz:o>— ~>o>— ». .2 2C ~J "*^ ^^ ^^ — J
J ^ vfl •>-- -».- •"! ^ "3^ ^*
_J ^. VJ •»-* "^* J ^. ^^ «C »^
>- — LU— iOO3=ocL-^iyio
o 5:cL _j_joO5-zrcK-
H- — V *-U-U,_JraUJ— X<
-S2:3^3:3:_i rsrsizo
•-H »^ f— ( *rf
2: II
|l UJ || || - II II II U |l II ||
t!j ll ~** ~0 ~7 ~3 ~~ 5 "^ ~? ^~*
«IMX D 33 — a. -3 1/1 — O
H-^-
o o in
0-1 ^-1
-------
132
ii
i
CD
1-1
00
i "
2-
C£
^^
Ou
I—
t/)
3
1
Z
z:
UJ
3
U-
M-«
vO
^^
0
o
•s.-
z
3:
UJ
a:
3
in r- i
t
r^ in •
• . o
02 -i O
Q
s: z z -3 co
"003 —
Q 1 _1 O - Q
1— u, u l — O
l/l 15 3 U- f*"l CO
3 3 3 _J — t 3
«H
II II It II - II
rv
T ^ ^ - ^
^— ^ ^ *-*
— 3 3 O — C
s: o o i- a i~
UJ 3D -J _J O
ct; IS LL_ u~ O en o
3 3: _l 3 O -J O
r^ 03 m
»-J T— 1 •—!
0
0
OD
JC
*
•z.
s
UJ
a:
l
o
o
^4
z
2T Q-
O UJ
O I-
—-, "t
OJ _£•
3
II
II
- T
-—\
— O-
Q 21
O UJ
£C l-
-J -J
CNJ st
r~* r— t
t WW8 * I 100.-REMPHS1/100.
'EMP[ JJ) )- WDOCN) ) * WW8
TT r^
_J
•~ —
~z. o
— —OX
Z oo 1— Q-
— C < 1—
3 Q- O 3
3 —
II II II >l
T -
-31^ — ^
-JOGS
— X O UJ
:•: Q. a o:
-J ^J _J 3
r-
in
z -5
— ->
0 3
_l O
U- -J
3 U.
3 _l
1
II II
O "~* "^
ou -3 -)
a 3 3
i- c a
_i _i
O u. u_
O -J 3
o-
r-4
O O O
O O O
II M II
•— -^
7 ~-^ ^*
~ a. -3
Q S "3
O UJ —
CO 1 — b^
_) -J _l
O O
O O
II II
-3 — UJ
L/~) — •> — •
D O >—
X 0 Z
0- O D
_) -J 0
O
'*>-
F~I x:
, f^_ fc — —
O -H —
— O
M 1! 1
f~4
1 - iJ Z
5! >- < Z
o: ^-« i ^ -
»— 4 r~i r"l ~^
*^ v~J LJ 3
Ul ->->
o o o
0:0:0;
Z X Z
•f zx
II II II
"-
~- -3 -3 -.
fc-< *"*
o a ai
II c£ a: G£
Z X Z
•— 1 t— « - £ s: s:
0
a
X
<
+
-J _,
-3 ->
O O*
G£ a:
X Z
CO
rA ro
^- ^->
LU 1JJ QJ
1- H >"
(— * t— t *-4
oc & or
3: ^ 3:
O f*-
^~ ro
1
'\ •
• < -~A
\ \
|;
''38
_.
» r-l' — '•' *
f\l ^ l (i
in I — -
_J a; ' i i
*^ ' i
C£. *~ ~~ ; f J
-J -1 II II ~3 , j
K~ LLt ••* Z * li
0 tx si- Z — '" Vf
1— "^ *"" 1 i
So • «
n — i- u u -9
u- O -> « if
_. - _l 0 -J H ». ffk
<*• - (V ff I
i"\ in in M& 1
*'•
'I i "
r. *J
-------
103
— a.
^ —. x
V- h- UJ
O- •-" t—
s o
— UJ Q I
_J t—
O- •— _i on O
SO — OQ — — — -»
ujcort-i-o—i —
v-cooCL< — s — on
orcarc-dc-ionauj^—«
O O i- at Q
>-
II II II II II < II II II
CO #
in i-
— I— K — Ol— h- -3 <
II a. — — ono — ~--3V—
SQ--IOI-CI_J — on
k-H~CQQCX.onQOooO
» on
O
—> Q.
— II
. c —
• _l -3
• U, -3
(^ —
on
X
C£ .-J
Q
O
II II II II
•z. z
CO O
en o
* *
if? &
—> -3
~~> —>
rs s
o a
-j .j
u_ u_
^
£• ^
—•* *—
z z
^~ »_•
<£ •_>
< 0
II II
*•%
—3
-> — -
X -J
V™ ~ -"
a. _j
UJ UJ
o >
r-i
in
I-
tu
on
a:
*
•J-
" ON
*-4
ro
— « o
-3 —1
"^
»— ».
on (NJ
•-, c-
O *-*
II -
_4
ON
—4
—
a
] 1
on
•— a
Q O
'(2.303*(DEPTH( JJ)*DPFAC
^*
in
t
*
•if
"•
—i
-i
_4
UJ
>
"^
CO O
• in
NO •
Sj- f-4
^H
— &
~ *
II
^«
-3
~3
c£
•ft
NO
(VJ
O
«
in
—
II
o —
in ->
"3
O &
«•
m
•
(•O
II
O —
in -3
-3
O oi
«5
C LU
0 oi
?
tJN
0
O ON
in ON
n o
j_ V—
O CD
(J O
a^
O
-o
o
in
o
in
o
z
^ on
on »-> o
Q
II II
I
~- on (—
NO
n
i- on
on •—
•- Q
O
O on
i — o
DEP
~ O
-3 O
-3 O
~~ a
~i —
LU O-
> X
— LU
^- *-*
\- I
V 1-
< —
O -J
UJ UJ
o o
on Z
on a a.
>- 1-1 i- s
Q I LU
li u n t-
-~ n
o
u- u
w_ ca
1-1 on
^- Q
O >— '-o
O 0 O ^
O CG I— O
o
NO
t- c a.
on c? 5:
" O LU
(- O O t-
CNJ
-------
- TTEMP(N)
) * 1.0241** lTEMPm-20.3
71 ** (TEMP(T) - 20.)
~o --i"
~ -j o
~- a: •-*
o, —•
s: < «•
UJ UJ
fc— ty y*
II II II
£
*J
HI
O Qi ^
t
Q
O
0
Q.
*
Ci.
CM « D
-» v. in c
UJ UJ CO
£ 5: «• 1
1 1 —
^ o^ # O ~- O
— — . c — c
— O CD >- C
t- 1 S
. . *-• . O UJ *•"•
O O O r-t C 1— I—
.-* r-t O CC ^- •-•
CC — 3 0 D
# ^s ^ t— \ —
. .
•-< O
II
II II II II II II
1—
h- >— O I—
Q O O ^~~ *~l
O cc O < O
<; C- CD ID Q vi O
CM
CM
CM
CM in
•• CM
CM CM
CM .3-
f* CM
^-> ^^- CM ~>
22-1-
— » •-• %i~ w
O O CM O
Cj O CM Ci
CC CO >~
o o "~* <
UJ UJ t/)
LT I/I ^.
1 1- II
II
>- o
01- K-
co — - — * — •
^-* o o
U. C U. 0
CM m •J"
CM CM CM
CM CM CM
UJ
T
*
Z
Q.
UJ
«•
.
o
»-(
*
^*
r~4
1
»—
—
t/)
c
• X
o a
n n
—
i
.-• 0
C I
Ci a.
in
CM
CM
CM
-i *~~
V- ~*
(/) >^
fti 1
w^ 2;
U_ «v«
~3
1
1
— Z
_-
U. U-
1^-4 k— «
0
c-
f-
m
in m in
* a: a: oc
—5
~3 -^
»- ^^ -^ ^_
3: l~ 1- •*-
O ~ *~ tsi
_i 0 C O
a. c o x
Q: CD o a.
n M n It
•" •— in
0 Q O
o a x
in co D a.
Qi 1 | 1
O
0
=0
.
o
CM
1
Q-
UJ
t-
*
r- — •
•4" "^
O )
. 1 •
•-4 ^- 3
— a. o
s: _J
\ UJ U_
K- cx
^/
n n n
— a- 3:
— SO
— UJ _J
^ 1- U-
i i _ i
a.
s:
UJ
K
_J
^^
1/1
O
I
CL
_J
••
O
c
Q
_J
»-^
^^
Q
0
CO
»-r k— «
S
o - —
r-i ^1 ^, — }
U. «-. -J
I -J »-* •—
•— ~5 *— • Z
« J — - ii V— •— ' "O *-* ^
0^ — J
o
II O - II II II II II
— in-
uj o
>- K-
k-4 »>H
a: O H •- ->
_I2= O t- H- — -12
" \\
;'«*
'1
T
L
\~\ * $
'• • ,i
i'l t!"l
*«' '1 3
*' i
c
1 1|
i
* '
'••$
< •' I 'm
a
Ja
'Jit
jjmf
Iff
ji jj?
* ^
0 0
-------
195
T
T
o
~J-
M
in
in
o
in
CM
•Z. "
•^ o
*-, — in
u —
LU «
o. in
>- in ->
>- — in
•z
o a
II I- K
•-• t- a a
^200
0
CM
a.
s:
UJ
o< ».-
ro —
in •»
*
^- t«-
>-• O
a: •*
II n
o
D
ec
«
c>
m
•
in
*
-3
">
•3.
O
_J
UL
_'
L.
H
K^l
Q
O
CD
«•
in
a:
+
~~*
—j
—3
w-
c
o
•D
ii —I
II II
^
ITT) + LFLDW(JJ) * 5.39*PHOS
in
o
X
CL
#
in
o;
+
f-*
—3
-3
1/3
O
X
Q_
-J
II
-3
\-
•^-
O
o
0
*
in
a:
+
--.
-^
—3
~-
c
o
o
-J
II
^
-3
5
o
_J
u.
0£
^
-3
->
Be
O
_J
u.
_J
«•
~3
-3
a.
51
UJ
t-
«j
+
^^
t-
V—
^^
o.
s
UJ
K-
•M-
^%
>-i
»-t
i— i
M
3
O
_J
U-
r/
—
II
-3
*~
z
«^
Q- —
3L
3
O
1
LL.
.-^
u
*v.
o
.
— '
II
Q
in
cf
•ft
—
-3
-3
*-»
Q
O
CO
— '
II
O
in
t
•- o
3 —
a
—i -v
u.
a: ^
in
r*s
O
— (— -3 -3 -I — — i-H
— >- »»— -3-3-3 -3-3in
V_^— „ _^1_Z^ «. — « ^. -j ->
-3 — 00 — Q_ 3: — I— Q h- I— — 1— < ~3 C — h- O I— I— I <~3 1/13C--3 — — O
-3QOO — OC- — Q — — l/> — t— -31— O- — O — — — l/) I— -3 OOiT'TOQI—
— OXOlu_IS_Jt~DQao--'00— ST-Jh- OO—iQijO— X -J UJ — O a
^OTQ-QI— u_UJUJ-'^O UJUJ^COOX — ^U^D-U-I— ^O3O
—i_i_j_)_j_ll— OI^OK:COQCI.OQOOO t—c.LoaQQa.oi/)aL_J-j_i_'-J_io
in
in
a: :
O
in
CM
-------
IDS
FLO
D
X
Q.
VE
EMP(JJ
O
D
O
REA
*
*
R5 * PHOS
* TEMP(TT
39
- TTEMP
PITI)
LOW(JJ)
* R5D
* R5D
* R5D
+•
4-
4-
)
OOO_iC3:s:2:o OQQ
OOIU lOLL/UJl— OCOI
OCO-ciU I !— H- •< • C C2 O.
_J _J _J — C£ U-- _J 1/1--<_I_I_J
II II II II
II I!
II II II II II II
— — COD. 3 — I— O H K - ,
ooos: o c. — o — — 10 -> ^- ,
OOXLU _is:_ii--cioQO'-'LO —
• 0000:2300.00
. z
-------
137
c
D ^-
O
O
to •-
o.
s:
UJ
o
o
- o
o o
c o
f
a
O
in
0
0
m
o
o o
in i-
CM
t
O
o
u. —
II U II It II II II II II II II
vO CO «
^> •• U- -—
O O O —i •• O
in o o —.in
I— in u. u. x x
Z O f^ •-< CM -^ <- ••
--- LLJ •• • CM cf°i tn
osin ••••••o* »—'
o UJ ••-• \n in •$• ~-« CM -
C<"1 --1 ^
U ~v
) _l -
) < -> -
) O ~> —
- - —3
—>
^ X X —
c^ in o
> -t co o:
: x
j «. • -i
I/) X
. . in
•
1-21-
C I- "
00 X
S <-> CO
< o
UJ - -
cr: o
I- x O
t/> O -
«• X
X UJ CO
o o -^
o o
- I O
-< -> o
t- ft — 1 •
V- t-
O UJ < <
>-• o
— i_J_j— i
;'-1 o 3
o
m
o o
o in
o
o
o
o
r y
cc a:
Q O
U- U_
O O
O O
£ £
cc" oi
a a
C£ ClC
a o
'J- U-
tn o
O o
O o
o o
o o
o a o o o b n
t u. u. u. a. u. u, u.
03
o o CM r>~> ~r IT r~
L" a- o o c o o
o o o o o o o
•-* •—t CM CM C\f CM CM
-------
108
Q_
s:
LU •
X - X _l
in in •>•»
x o
U4 — I — —
D > '
O «• <
Z O Q X
to O *x G**
•• !-<
X — -
•d- X to -,
m o
- rH X •
-% a: OD o
— UJ - UJ
C* C3 O - O
t- S. D -» —
U 03 O -
to Z — CD
ro . EX
. X — 00
IT\ X •— 1 «•
•—i in f- i ••
u» x »*»
O » «. CO _J
O X fO X.
•• • O *"x O
o> uj s:
*-< ^x f* • *— •
(T^ f» | »
• X
>"- »~* C -4"
» < r-t 2C
•^-- O UJ *
m £f. *-*
•^ UJ 3 •• >-
X. h— O *i
t/> _J X Q
*«•. 13 • at
t/) (•
LU "• X O^ C£
— J CT1 O O
•"-* X X
JE O •• Q- _J
» sQ UJ •» "x.
O CL O
(/) ., >- x 2^
*-*•-* I- r-l —
*• » » t-H ••
-
k-
<
3:
c£
a
LL
O < 03 O
ro
O
O
ro
UJ • •
a -~ ^ c, —
> - c v, ,-< x » in— ~* a<
O U- ro ~ ro -j X -
LU - s; •-( i-< co -3 o •
O CO — —t O- to _ ,-1 X ~
OQ -x - LL. O Or O -J
ZXO • «— - cz: . ro x.
CL O r- i-j - X LUO
- tO 1-1 < ~s.<£ O^S
eri-^ro toLU £^-z —
LUXU 1 COOiX » » i- < i— co
£ O to-1^,-1 1— X»coCX
r>- E- t-Xto < ^ . CC f > X-O —
o v. uj-i-< a— xxo
»X| h-XIQ _J-> >-o-!M«
oou_ to OOO^x U~~^ V— »~tO
to- «-»*^ -» to LU
O- COO OCQ — IO -JS-O
••^ to o LU • _jo-
fO~-.CD ^-LU OX X — SIi— OLL-
• tvo oro^ s: »x
in- s: ^- s:-'X--t
»-'->- >^t-H k- »J
** — J LO>-^* t/1»J»<J- .Jjcrxj^j x
»-><£O •**
VOLLX ^x«-^C)OO "• »--OO» LAO^"1 <^
•«•• |*O*-Ofc~'<\I"'Z»'~'V"(\J~i fc~H~»Q,UJ
^— ^ t/iStr\iu_ »>-L>OUJU_ x 3T_J
^ X >— * • CJ ^* *— ^O X h-U-UJO>'XXXULJt~-t
•»-. r— S. X X 0s X *— O U- Q"1 •—< CNJ O 0 k— 2-
«*LO OCL *x».»^-sOO*— •— "^ fOlA -~--
UJl O O-»0- •--
X* CD U_ •^-(••- I i— i •• ~^ •»•*«• X
o^-- - - ^^OLJJXX^^-^ oo^x
- _^._~ "„„-
I— 1— t— V- >-l— •>— t—
< <<&
O —» •-<
s o
« o -
* 2!
V
to. x
*~* •«£) X
_J LT\ sD
\
O - -
2C ^ 0
-
j_
<
21!
Qi
a
u_
o <
sO
f-H
0
rrt
X
ro
*— *
•»
^^
>-
<
o
•v.
%
Wto-
••
X
f'~l
r-4
«.
^-s
l/>
u_
o
^to.
*
X
U"l
(\J
*^
«•
X
o
UJ
Cw
•.
X
o
-~!
"
d.
51
UJ
I-—
*»
X
r-
X
OJ
r-l
»
,-,
O
•
o
Uj
O
•**•
f
X
•$•
*-~l
•,
<«.
>-
<
c
Xfc
^tfc
«_<
*•
X
ro
»>-i
«
^-*
>_
<
O
**v
=&;
—
^
f^C
•— >
«-*
(NJ
•
in
t-i
u_
^>
*v
OJ
•
v
"
-
t—
<
s:
o:
a
u_
r~-t
CM
0
ro
X
in
-H
*
CO
1-
z
UJ
Z
LU
IS
LU
CO
3C
LU
a;
-t-
co
x
0
•N.
V»
X^
to
o: >.
x -
O CO
co a:
•— * h-H
Q C
ii t c£.
t— UJ
CO CO
< UJ
L~
< 03
- X
10 v\
UJ • —
1 1- tVJ
U 1 •
. LU O
X O --I
«t - U-
in
- x
c-i j} »
1- O
UJ to ^H
CO O >— '
1 Z r-
Q •-
> to V.
•v.
XX-
in <)- LU
o
- . D
a: LU z
•-i a.
<£ >- 1^—
LU t— CO
a: 1 oL
, 0'-
- V,
X 1
ro x o
to
LU to X
Q Q (\J
0 O
Z O3 »
1 co
I- >~ X
co - Cu
oC X
>-> x m
u. i"
U-l
to CO -
1 Q
- 1- O
. C3
"^ s:
- X UJ
O «T CIC
-
k-
h-
II 1 KM
1- - -
t—
• OX
^j *l ro
» u,
CO to
- X CO
1- O
x a. x
ro LU CL
O
to to ;>-
CNJ <
*— O
i~ X LU
• ro o
to
X
— ' . x
^ C*^
- i-
0 *-• -
- - vO
•x \-
•v. X >-
» ro *
<^
t- - X
. •- Q <
ro O - o
• Q UJ
in
O O
•* <*•
to
o
to
•v.
>N.
to
•
D
O
03
0
UJ
^_
Q
- V
V
x rj-
r". •
*— i ,
to p-4
00 LL.
K-
- 03
to->
X ^^
ro *o
j
to » /!
• tM f*
CO . \\
C -i 'i
X ^. ?
Q- U_ i
i
CO to j
1-
_
* .
o^ r\j ' ;t
15 ,
0 C
',$
'&
' ^
•^
1 "^
13 'f
f r'1
'!'>
1 '"<
;]«"-:
i-
''n
, ^ b
•*• »
!, ":
;j
,' ,
\ 7
t
. ' il
i-i*
j W
^
'*, f
i '
>r*B
**X'
<\
f
i
-/
/*
ff
-------
OL
s:
UJ
a- -* 31
s: •• LJJ
- 0 1-
x ir» c
-* u, a
(TV h-
^ _!„)- _
< < i~
£3: ja o
a: o; j o o H
a a < t- 2 3
u_ u_ o ^ *JJ u_
p-4 O O
oo a-
o o cr
ir\ to a^
t- >- 1-
* * •»
-t
I
<\J — • UJ
fM & -t
O • t~
^t r~ r^
•t o r-
« o r-
o • •
-^ -~~ *—
1 + 1
CM
in
o
-1-
^
II
O Z
o a:
1- 3
< (- Q
to uj z
o a: uj
-------
APPENDIX E
OPTIMAL FLOW HELEdSE MODEL COMPUTER PROGHAM
200
-------
201
O
in
O
o
O
rn
— o
Ot\)
O-^ *-H*^"^O'--
OO- O l/> X •— >O Z
•"<>- cvjo o — o:
— ">_) o— »
COQ -- '-OO »^-
oo •• »o
a:
UJ
>
in
x
\-
&
D
O
_l
in
O
O
UJ UJ > <
o in o: o:
O uj O uj Ci
s: o >- x > uj
3 < t- UJ a
UJ _i a: >-• c£ D
t/5 O uj 3 _)
< 2 O- U- UJ
UJ .-. £ D >
_J UJ UJ
UJ t" t- O
cc
o o
-J D
u.
I
< o
•x. o
»-« ea
i-
a
o
2
O I
•—' -^
2 U-
2
O
H-I
t-
<
: m
Q
UJ
u.
UJ
UJ
a.
in
UJ
X
O
0
OH
-
2
OO— — (MO — c£ CM—
txjrvjino-- jjoz • — o-
f^ro»-i-1- »-~
ir\OOE
2C- o
O-—'O^-i^- *-»-O
-j O in — i- > ~-4
»- Q c t— v— m — i 1
i I-
: 3
— - O — O 33
O — o O O ••
OO-CO-J — «• •
— MS — 3OOo^
UJOOU_CQ11.Q •
a: (j > oo ui a o
m^.^. — — o -O (M — OJ —
OOJ-2DO — — O — UJ
— o . — o
o o — o o
o — in o o — ~
r\j — o—i — —-_)u-Oav-xooouJ'-'C —
•> I/)
i/; ~~) UJ
in 3 or
UJ t- UJ
a H- in
t- "0
0. 3 >•
-J I- -
o: o uj
I- Q
o
•-. •• 2
t- K >
OO ^J
a < ••
« H- UJ
u. D in
I- <
r- ea
UJ ->-
UJ 2
UJ _l ••
. I-
uj O -
UJ I— UJ
a
. » O
UJ (NJ Z
UJ X (—
- a. a.
o < - o
H X
O fc " UJ
—< UJ a.
•• uj Q- >-
o a. > i—
o < >- a.
to h- 3 o
o
z:
z:
O
O
-------
202
o
o:
X Q
- z: z
•• *•
i
I—
•• a.
Z 0
_J
t- a
o o
t— CD
1-
,-1 »
it o a
0 O
-t 03
•• s:
^1 Cf.
o
•y «^
O UJ
•—* c£
<
WSTP(43 , WSTP(5 )
5
o
"— t
H Q
00 Q
3 <
» »•
•-~ m
r>j a
— Q
0- <
}«
oo ••
3 fM
Q
•• Q
*— -
oo c-: H-
uj < z
t- 0 Z
^ ^ *•
f^ •"* ^-~
1- Z Z
00 •
UJ 00 Q
\— *~ Q
C
•• t- .
(M —
k- - Z
00 — —
UJ 2 u
1- •" O
*o
•- ••
r-4 ». *-^
1 • Z
UJ ^-- CO
1— >-! CD
*~ ~
IA — .
O INJ
O O
•-> o
•» ««t
-J «
^_,
Q 0
-i O
h-
O « »
t— C oo
»- X
• t-t C_
3 3T
_J » UJ
< 1- oi
1- UJ
O 00 •
>- Oi Q
_ O
*• CO
z .. 2:
_l l-i LU
< »- or
t- 00
o cz: -
K- *-« i
o ^ uj
IA Q Q
O xO
m o f
•> r*t o
f . • z
*-• fO *~^
—
UJ UJ
1- >~
^^ H-«
a: oc
3 3
<
REA(N), AA(N), BB(N)
1, TOTALN)
< u
o z
»• *•
^^ — -
z z
•_* -^
OO UJ
»_t fy
Q >-
^ >~
Z
^ 2;
^^
Z «•
*^ ^^
-J Z
<^«
» 0
— Q
2£
<-^ •>
K~* ^~
Z
*• 0-4
Z O
*— tj
tM
O
o
f*"t
«s
m
UJ
l-
cc
3
33
(M
O
D
D
0
IA
00
UJ
K-
^~
^~-
00
UJ
^~
•k
f<\
^~
00
UJ IA
H Q
a
fM
t- "
00 .*•
UJ D
t- Q
V— r^i
00 Q
UJ O
t- <
—
ft
t-4
O
ff\
9.
CO
—
UJ
t-
*-*
(V
3
<
IRES(N) , ACREFT(M),
SQ(N), INRESQtN),
UJ
»a:
-~ ^
z <
•^
00 ••
UJ —
a- Z
s: —
t-
^ 00
^- C
Z O
— o
Z 3
a:
Z »
•-*
•• z
Z h-
(M ~ 00
f"- 00 O
- UJ O
IA c: t—
r- z
•• •_« »
to -—
--^ o —
•-" IA t-
1 0 U-
UJ ^- O
o. ~ <
>- ^4 0
^~~ *— • 3
Q-
O Q
—* - «
a:
^s
CO
z
o
00
UJ
a:
z
z
I/)
UJ
e:
>
^
••
— *
z
^.
^~
00
o
u
G
3
».
^*
Z
•>^
1-
00
o
0 00 ~
1- UJ >-
~ a: X
^ 00 t— •-!
^^ U-i *-
Z a: •• Z >•
— I- -< a; x
u, - u
O *-< II II II
«i;
0 II V
3 Z X —
--. Q-
X
m >—
fw *~*
o~ —> >•
O x a: f-J
0 •- Z —
< m
K
M
»-*
ffH
>-
rxl
»-^
II
INI
r-J
*-«
•,
^*,
r-j
IS)
*-t
#•
>-
X
*-. <~> rj
>- — ^H
X 0. 1-
•— O 00 +
— so
00 O >•
uj » oc r»J
(M a? *-* — •-'
II —
II II "A n
O
X 0
M CO
«- «
C1 —
r- a
t- 0- < >
NJ O O UJ r-J
— •£. Q C£ "-
-------
203
LU
<~ —. O.
Z — 3: X
O ~- <
D 0 t- ^
3: DO O
ea t-
• 3
o.
2:
UJ
Q
Z -M
5 X Z
O -I — »•
to z a:
••.-. LL Z
.-. Z 3: —
Z — 3 t/>
— s: a
3 UJ »X
O a: — a.
_j 3: z :s.
u. —
3: »LU .
3: -. o- ~
z > z
•> *•* K~ T,-
.~ 01 3 a.
Z O £.
~ x, -LU
UJ CL ~~ K-
a s z s
3c ^"* j£ *"*
z z
~ a. z o
z a: Q
r-l ITI
-> i-
3; 3:
u.
a.
a
O-
Q
••01 •• 01
•-> 01 .-I 01
I- Q K- O
01 C 01 C
Z CO Z CD
O •• O -
o to o co
»- t-
*• »—I » »—*
ff\ *. ffv *.
|_ 01 I- 01
"0^0
X X
•• Q- - CL
^J 01 ^1 01
Q. 01 o. 01
a: E
LU » LU -
O
CO
Z
_J
<
_J
<
o
o
o
o
ro
— UJ
O l-
in
r-
(\J •• !M ». (f
K- 01 f— 01 r*-
^0^.0
X X •• •
co ^ o ^ r*
II O Q -l Q II
o o —
i-< •> ^ •• O ^~
^ \o •* ^c o si
»^ >— f^» K CO CS^
LU c£ •*-
o i- - a.
2: < ^. — l_
o LU c: u. 01
CO
co
CO II
<
i H
O
z
-J
•<
1 I-
o
o
~ o
01
D r-
CD ||
o «• •• a.
t_3 *~* ^H Q
II CO II ||
- D
II
II —
CL i-. I
• o .
01 (M
— D
< Z II
II cc
— OH
II -
O II
~7 ^ v^
t—I Q\ "J
OOO
II 11 II
z *-•
— o
o o
o u,
co a:
a:
Z fc—
— O-
o s:
X LU
< t-
z: u-
o: a:
o a
Z •£.
LU
Q-
z o
• — X
O -o a.
• » a: a:
o o n — -
o h- co
o a — ' >•
0 O
o o
O O
o Q
o c?
o c
CO CO CO CO CO CO
o r~
co co
Q.
• > o
o
CJ o
a o
^}- in
C7^ CT
O I
X
33
Q
— -> — C
-3 -5 uj — 1
-J^-Q.
— 01 >-
o
o
333;
COC
300 —
o c? a: o
—I Z X <
LL >~« < UJ
co o
O" o
— * CM
c o
-------
2Q4
=1,TOTALP)
RMINQtN), RMAXQ(N)t RBOD
K(N)t RTEMP(N), RFTEMP(N)
RFPHOS(N), N = It TOTALR !
z - a:
v. «>
. Z -~
Z ID Z —
— 0. — a
>- _ „ a. ^-" — — — 0 3: a
o z > oo o z o c
t- ~- 1- "ZX Z-4-ICQ
— } c£ so *-H <5 t— iS^u-ctC
•• C£ O 5T ?' 21 c£ 3
f-i -< -i o: c£ cr
II u
H II II - II II II II H
z <-*->-> o -> -> —
O O O O O 3 3 —
-l •-< t~ OS Ct: H- O OO
3! a: zx _i in _i C
o£ O "^ H" O •— « "5-5
O- -5 00 —
51 -3 0 0
l-D ^^ 1C CZ)
>— ^ tX Q
_j _j _j _i
»-H
u^
O£
>-«
«—
CL
1-
t/1
3:
—
-< O
O I-"
o |i uj
tn CL
uj m t—
r> —
•- UJ Z
h- t- •-
2^ •— t ^
O Oi LU UJ
O 3: 2! OL
O"1 O
O '-i
a.
l—
3:
»
*-^
0s
^I?>
•
•• in
\o
-i *
•-H
^v
3: — »• Z
_j 2 o —
< — 1-1 3:
>_ — uj — ' D
O Z'o- _)
1- — >- •• LL
-^ -3 t— -O 3
•• Z 3: 3 -> 3
»-4 «-^ *-(
(M S
UJ || UJ II II •- ||
o- or in
<^ ->• __i
^_ ^ ^™*
H —
Qx^
V—
Z f\J X O
»- r-4 Ct 0. H
3: t- V- in
UJ D oo -3 3 C3 ;:
or a 3: -j •-. o 3
in
*-'
in
3:
3:
*
Z — 3 *-*
— -> z
3: *^ ^-
O 3 D
-J O O
U- _j ca
3i u, 3
3 _.
II
II II
-3 -i -~
-}->-:
s -5 •—
O b o
— J _j O
U_ U- CQ
-1 3 -J
in
*
Z
o
D
1
-~
-3
in -3
3 *^
S ex.
s:
* OJ
t-
«-» ^^ . i
z z —
— — D
CX. — — V Q_ ^~]
_j _i _j _i
CO
,— 1
•>
CO
r-t
"""
v
f*"
r—l
^-1
•"• »-~
— z
?• ct!
d "
>-• »^
— O-
Q- 1-
K V'
CO 3
3
J_ II
Z
S S
—< UJ —
0£ Z
O 3 —
i- — s:
^11
O U- oi
0-3:
o r-
t-< 1-1
in
CO
•
ca
«•
*-^
z
v
3
O
_)
u.
3
3
II
CD
3;
S
CO
-1
r^
in
•
rH
^
— *
z
—
3
O
-J
U.
~^
3
II
1^
->
3
O
_J
u_
_J
Q
*"•* C
-J CQ
-3 t-
^^ >-«
3
D -
_J —
U- fl
1 — ^
»-4
II •
(VI
-3 •->
-3 —
3 O
O |-
_)
U, O
3 O
?j
la
t
II
4f- 5
H I'1 *
if* '
I! l
•*• • '8
,\! 1
V, . J
si' i
''>•' s
;. " 4
,;'( , ,
[V i '
•?' 4*
/! 3B,
„{ jf g3
' '^4 K
'i- Tl
i' ^ j i
i J 1 11
,'' 1«"
• 'J|f
1 7'
j
* /J
^' -"i
r'7*
>- * ^
ri - *
-------
205
m
•
o
o
•-I
"s.
z
s:
Ul
a:
i
•
o
0
.-«
•&
—
Z
O
o
CO
3
II
.^
-5
—3
Q
O
CO
_J
e<1
»-<
'o
O
.-1
»»
CO
-z.
#
Z
S
UJ
3
t
•
O
o
p-4
^t z
~"* CL
Z SI
_ UJ
O H
O 3
m
3
II
II
2l — -3
•~> -J -3
O — 0-
H O 21
O UJ
O cQ h-
0 _J _J
f\4 •*•
rH l-H
* WW8 * (100.-REMPHS)/100.
.TEMP(JJ) )- WDO(N) ) * WW8
1
2 0
Z to *-
— 0 <
i*i ZC (/) X
3 CX. O C.
3 — t-
(/l
ll n n 3
^" n
-3 ~
~i ~> —
-, (S) ~- —
-3 O O E
— I O UJ
^ a, o &
_l -J -1 3
r-
\f\
•
•^1
•»*•
2 ""3
3: *-
O-^
-s
_i O
U 1 O O
3 _J 0 0
1
II II II II
O*-^ , ^^
^^ f~ * ^-»
f\J -3 -3 — -3
-1 -) -3 -J ~3
a 3 3 ~ a.
i- c o Q z;
-I _i O UJ
O U- LL CO h-
O -1 3 _J -J
o<
^-1
z
4—1
< --1
>~
D T
1-
O O O ii
o o o •-<•-•
II 1
II II II
^v ^
**^ ~^ — J
-3 ^, UJ »-. <
-3 -3 :D i-
— 3 00 — *-• <; H-
~> a o i 1
— X 0 Z" II
i; a Q o o
_i _i _j o Q z:
o
CM
~) ~> —> ~>
3030
O CC O ct
_l X _J Z
U- < u- —i
3 z: 3 2:
•f + + +
fO Z
-3 >-t -3 >-i -3 •- 1-
o o a o o o i-
oi a CL a. a. — <
<<52^;Ji~^
21 21 SI ^ 51 ^O r^~
-*0 II
II II II II H 0
Z Z -3 >— ~3 " -3 | V^i-i
II noCctclc^O 1 — ^~*
X X Z Z ^J "— w~4
~3>-4<<^'— U_U_!X C
->>-iSEs:2:a:i-<3O
o -<
O ^5
-1
o
o:
X
s:
-3
a
z
s:
*•
-3
-3
O
LL
^ t.
—3
•XL ->
« —
f*-
1 0
O
5 — ^
< Z ri
a ~ ~
h- UJ
n I-
II —•
—3 c£
Z -3 3
fyj
-O
«-4
"*"
K
w-1
1-
t-
II
_J
m
J5
^d-
o
a-
*-*
»
•4-
„
1 O^ 1-1
cc
-J •-> 1
^ *-*
II T> -J
—
iri a.
— ^
_i o:
— ^ >—
U- U,
— \ »-i >-<
-i- o-
co
1
O-
"•r
^~
-* d
->
^* -5 — 11
1 •— 2
"^ 2^ ^^
ci *~* K-
II II II II 0-
•s.
~> >-• UJ
-3 Z >- 1- 1-
O
CF
^^
_l —
C3 — —
Q ] (/3
a: a I
O Q-
II CC CC
II II
"^
t- 1
— • • — UO
o -i o
OCX
en Q o.
,
i
!
•?'
I
i
!
.'"
j .
Is
f
'i
-------
206
^»
z
i- a
— — 5:
-. rt UJ
H C H-
— 01-
o.
s: 1 1
Ul
— 1^ H T
o — — — •>
o o a. -J —
h- Q s: — oo
< v— uj ^; •-'
00 < K- DC O
O 00
II II II
II II
*—
•~~ K*
1-1 ^^
•^ r~~ — * -^ ^
O >->--)<
0 — — -3 1-
^- Q _l — 00
< o uj *: —
00 Q Q 00 D
2 Z
•_- »^
m o
CD O
* #
* *
— x *-+
""> "7
-> "5
«. _-
3: 3:
Q 0
~J -J
u. u.
C£. CC
Iff fy
*~- *-.
•z. -z.
<£ CJ
< u
II II
^*
'->
— "3
X -3
H- ~"
0 1
UJ Uj
a >
_,
in
303*(OEPTH(JJ)*OPFAC(N) )
•
CM
V.
in
i~ .
UJ #
00 *
a: —
*-« -*^
-3
» -3
•— ' — •
>*• —1
CJ1 u ;
^-t >
^ ^i-
CO
^- C- co
-3—1 •
"3 vO
^^ f 'f
00 CM r-l
k-i (^ -~*
0 -« —
M - II
•—4
o^ -^
-1 -3
^^
O Q^
1 — t — »— >
oo
^J
DPFAC IN) *DEPTH( JJ ))**!. 673
•»
x
«-.
<^
<5
CT-
*
*
»
^%
~3
~3
^-
^
UJ
>
-^
>
o
in o
« CM
-1 0
# in
•it- ^^
II
*-*
-3
-^
^^
QC
>— i
-^
UJ
a.
CM
C*
—i
ro
CO
•
*-«
«•
#
z
0
<
u_
cx
Q
,*-
-3
-3
*^
X
H
a
UJ
0
*~-
«—
•».
^^
*^
~3
~3
^*
_J
UJ
>
•$
co
.
CO
— •
II
rj-
O '^ CT*
m -3 o V"
-3 in cr-
«-~
O Qi O D
t- — 1- 1-
O LU O C
O 1± o O
CO tf
C* CT^
r-i rH
O
f-f
CM
O
O
CM
*
O
O
CM
*-»
^^ >-•
O «-<
z ^^
>-^ oo o
—• z
I a — v-i
— — I ^ I
"3 »-< K- OO *—
oo *-• o oo
^ oo *-• o Z >-*
00 -H O Q 1-1 •-< O
0
II II II II II II II
1
O
1- CM
00 CM
»— t
Q t- O t-
— - OO H~ f"~ OO f—
O •-< oo o >— oo
U-LJO — COQ —
^•-CDI-OOCDI-0
0 O O
in o i-<
CM CM
^>
CO
CO
»^
•v.
K-
oo
*- 1
Q
1-
II
UJ
s:
»— «
h-
0
CM
CM
J) * DEPTHUJ) )
)
-^ o
— o
-I 0
UJ O
> ~-
— 0.
X
*x UJ
— •«•
z —
^-* v-4
1- 1
> K
< —
O _1
UJ UJ
Q O
•$ *f
>~< h- .—
00 Z
OO Q Cu
V— *""* H* 21
Q 1 UJ
p—
II II 1! t~
*~ II
^* ^«
Z V-
-» .
"~3 O O o
••* • r-* r-t
ct; ^-4
*-^ ^* \
i '-1 rH
II M II II
a: ^ < CL
r^(
1
t-
o
o
o
#
Q.
«
a.
+
t-
— Q
— O
. CO
in
1
*
— CO
^ —* CM
1 1 CM
— t- «•
# — CO
# O -~ CM
« C -» CM
-~ C 03 1- «•
^-» — -* •— — -CM
I Q. CM
t- I # 3C CM
^^ v iii^^
Q ,_| Q ^_ .
C 0 — Z Z
ca — co C •
O o o o
3r ^ H- C O
$. — 4 r*
^^ «^ ^ f
co ll1 > j
^^ ' tV>!
V- II 'i .
*f
^ 1
-» 1
0 'I
0 - - f k
K- 1
*-* fc.— . m
a f
"^ ''~ f
ro ^- f
CM CM - J
CM CM
-------
207
CL
X. —
UJ >-
ME
* T
-DECAYP
227
**
22
* 10
226
•-« z z
H 5 00
— O O
00 X X
D CL Q.
• X O. D.
O O-
I
*f m oo
ill — D
C£ 2: X
< (X
-H
•~ 00 ••
-3 V- ^ O
-3 o *: •*
00
O
>o
CM
m
in
O O
— O — D
— K- X I- Z
" 00 — 00 t—
-ID O Z
gX U- X O
CL *-• o. O
in *o r-
CM CM J
Q_
z:
UJ
(\l «^*
*— •
»- *— f
0 —
*o o
z
„ 2:
«— t
1 1
2
T «
1 —
in
in in in -a-
•st o: QL ac M-
-~ * * * p-
-> --- o
2C H 1 --i
Q — _- 00 —
_J O O O
U- O O X -x
C£ CQ Q Q-
II II II II II
35 •->
a t
LU
Q.
i U-
C£
II II M
a.
»-
•z.
0
to
in
in.
O
CM
O
a-
CM
-3 I
~) I
) )
5.39 * BODtTT
* 5.39*PHOS(TT
*"••• "ft
. o
O en
(M .
in
— a:
f"v „_,
3:
UJ +
l-
o» ^- •—
c^. ~J
in -ft- ^
a
* -i o
f- ca
o —
J))*BOO
FLQW(JJ
LFLOW(J
/RFLOWUJ
*LFLOW(JJ
LOW
+
T)
EMP
R5 + 5.39*
R5 * BOO(T
R5 * PHDS
R5 * DOOIT
*TEMP(TT)+
39
* 5
T
(J
CL O
s: -i
UJ U-
-3-3 33
— O Q Q _J
~3 ••» •
— I- I
Q- — (
£ O- I
a: ^ — ca -J —i -J —
_j
II II u •— II II II II
II It II II II
cr
CO
in
in- •
0: u, u- u,
< CD
o o o o
r*j CM CM CM
u o o o
in i
cf. .
o
vO
fM
^- VO *-i
Q O —
O X -
II II II
D O
—I M I- l~
Q.
H- — c o m
: sr >-. tj! o ct :
o
CO
-3 ~ 01 ~ a. — L. o r-
-3 a o a s: a ~ a —
^ caCLQ}— LLJuj
-------
208
o o
in m
fV Q£
» *
^^
•-* ~3
-3 -3
"3 •»
Q D
0 X
D 0-
_J _l
II II
. —
1 •
O O
O X
Q 0-
^f
O
c
D
I
^^
h- ^~*
, — } *—
o -> ->
Q — -3
— — ^- *-^ ] — ~—
O V— I — — \ — \ — h-V— *"3— •
UJ — 1— Oh— 1— 1 ~3 »-i
j— Q- •— Q ~- — «• l/> — *-i
_1 UJUJ-i —
E CO
- — — 10
H- -~^ Y~ OH*V— H-— '"^"oO
0.^-Q — ~ — en >- -j (-
ii i 1 1) C O O "^ *~* V O
1— C^cQOOCLOl/jO
in
in
*
o
«M
1
K-
a.
s:
O^ UJ
co v~*
in
*
•ft tt
(^
»^ f^-
^i »t
>-> O
*— 4 «
-^ •-*
IS •—
o
_l V
U-
CC ^
II II
in
C£ i^
O
c-
) + R5*BOD(TT)*K)/(LBOD(JJ)+R5*BOD
* BODtTT)
# DOO(TT)
* PHOS(TT)
TEMP(TT) +• LTEMPIJJ) * LFLOWUJ)
— 5 ITS lT\ lf>
•-> a. K: c£ -ft
»»*
a -t- + + —
o «
CD — •->
.. J — * -~* "3 *-"•
•ft -J -3 -3 —
~ -> -3 — -3.
—> ~- ~~ \s> o
-3 Q O D _l
— C C X U,
*: m o a. a:
_i _j _i _i —
•-•
li
li n li ii
«— ^*
*^ •-« — 3 — j
-J -) -3 T
-> i/i a.
-3000s:
— o a x LU
^: a Q a. »—
_i _j _i _j _j
—>
-3
2
O
_1
u_
0:
•v»
*^
*-.
-3
-3
•^
0.
2;
UJ
t-
_J
U
*^
^~
ex
t£;
UJ
t-
-
1- O
— Q
_l 1- 0
UJ < in
Q 10 e:
O Q
in in
rr* rv
* *
^— ^^
-3 ~3
"^ ~3
»r w
0 0
a c
CC Q
I 1
II II
t— (—
— - w
Q Q
o o
Q Q
Q
in
a:
*
^~
-3
-3
~~
LO
0
X
a.
_j
II
1/1
C
X
0.
1-
o
o
o
1
«^
h~ *-*
•-" ~~)
C -3
O —
l/> Q --^
—3
-3
II II —
y*
-^
t— II >-l
— in
l~ < -3 O
— K- -) l-
C ~i ^ C
Q Q l/i O
0 '
O J
o
^
*.
o
o>
CO
— O j
CM 00 j
' M
•> c*
3
~ o '
_j ro V
« »- • r-l
_J UJ O
< d. ^i en +
D ^ '
O t- oc _j
»- II — II
U II
U- LL
UJ _J >-. _J •- UJ 1
in o o c «
co cr o
i;-
I
|
*
f*>%
) y
\
" i
I
. i
j-
T-3
t"
IT
i*
* ,
' * V
t ;
Jf
/•'
j
4
U U O
-------
209
in
u.
u_
d-
O
OL
UJ
Q
— ^ <\J
*
*
X *
t- #
CL —,
S s
* —
— o
z <
U-
U Q-
< O
u.
Cx. «•
Q
o
ro
~3
•-i o ca
o
U U ll
II -i
it _i
o: z
li u
|1 II
o
UJ
UJ
+
<
_4 -1
UJ -3
O
* CC
Z
UJ »-i
UJ S
II II
-1
-3
3
0
Q -J
UJ U.
ID )
•O ui _j
O h- •—
ca u. o —
u. a: o z
et u. — •
o> # a: — — o. in
* — t- SI 0
• O «• > UJ .f
in Q uj -~- •-! K-
uj UJ a o. o in |_ »
* UJ UJ 3: Q U- «O
+ UJ UI 1/1 | O
— 4- >- 1 # ~
-3 — _l 10 ~ >— •
3 — a__jo— t-D.'-o
coz; — oo — z-j^-
_JOUIOI-OQUJ^-
U.CQt— Q VO
1
II II II II II II II II II
UJ
— a.
r,Y- -~ — > •
t~ — H- 1- 1- O
05T.K-OH.O|--)Dt-
O'JJ — O — C— ~) — VI
incc,— --ii— oa_)-— o
u.oo(/:ODt/)QVl'— *X
in
o
ESINRA)
a:
^_<
•»»
^^
<
>-
^^ •—)
-3 UI
~) Q
*— •!(•
-} UJ
a: ui
z •*-
II II
~}- UJ
-• o
•^
O -1
t- t-
Z < ct
D C a: o
O o £ •-
-o
o
r~
o
>r
^
CO
o
vf
•>
CO
O
«J-
^.
c£
CJ
_«.
u_
»— .
a:
o
•.
<
D:
z
P
00
O
O
a:
o
II U
<•
*~4
v- C t-
VI f~ OO
a c
o a <-!
X O X
r- co
0 0
ca o
CO O
« •»
# *
"3 -3
-> ~5
3 3
D O
_) _J
U- U-
V, l/l
& •&
#>^ ^^
z z
< u
< o
II II
-3
-3 —
X -7
1- —
0_ _1
UJ UJ
Q >
>i"
t-4
1-
UJ
00
o:
>-«
«!•
O
^1-
*.
(^
O
^^ *J"
~3
~3 »•
— r^
10 O
i-. >r
o
«.
u -i
o
xj-
—
c
h- h-
t/1
" O
O O
in
»
*
•X-
-3
-7
_J
UI
>
* —
CO
• in
-o .
>i" •— *
•H
— •«•
— *
II
-3
~3
o:
^~*
<
UJ
o:
<
•-4
O
O
^
CT-
•
*
•»
—>
-1
«
-J
UJ
>
*
O
CM
O
•
in
^-
II
•0 -3
—1
O cf.
} — *~*
<
O uj
O cc
CM
O
X
Q.
UJ
O
••x
*^
~3
-3
hrf
_J
UJ
^
*
m
t
m
^^t
U
<3 -3
~3
C a:
H- >-i
<
O UJ
O OL
m
o
c>
o
0
o o
0 0
H >~
O O
0 0
^~
o
o
CM
st-
O
CM
U
Z
^-<
1
„_.
»M
>-H
^.
l/l
»~l
Q
1
H
1/1
Q
^^*
U.
>O
-------
210
Q
O
O
t/5
— O
~> t-
-3 <
>*•
o
m
-
I 00
I- D
to
O
00
o
LU
>
O
-. I
N
-
V _l
• O
LO O
CQ
CO
j-
•*•
<*
t-
a-
m
•
in
££ )-
Q
C
«• CD
•& l/l
O fr
# C ' ~ oo ^ ^>
^ CG in **. u. K- 3:
.00 ^ oo — o
O OO «• — D. J
-< — o # s: u.
— O uj oo
I * ~) co — ' •
i -) o Z oo
O 3 oo O »-
— en O i O O —
3 _l CO 03 O H-
-v LL LL Q I— —
* OO 00 LU < Q
I — ^ 00 VO C
•-I OL — O D
o
•o
o
in
c
o
o
II
o -- a
CD t- t-
o
00
II II II —
o
a
00 00
II II
^- X
"7 •*>
•> o
— c
a: ca
»-. 00
< 10
LU
e: ••
— D-
^ s:
l/> UJ
»-
"00
— to
s
D
•• -O —) — ^.
rn •* 21 :*:
-1- i- •-< CV ^l
(M O LU O
^ O O O O
•C •*•" ^O
20
«. O
en t-
>-. -i-
5F20.2
o
r-
•j-
•~. CO •— —- — I
LU
O T
O »-t
CO K
O
ro
-t
oo
Q
-v — o:
CL *"*
t- £ t~
O UJ — ||
II O r- —I
Of c/} UJ
I— o 00 O c£
O
.*•
•*•
Q o o a i- v-
ii u o a o —oo •
CC O Q 00 CGH-Q'-'
OOCOOOU-U,00
-------
2J1
'
o
in
in
. in in
in u. u.
• ID v
-5
-3 ~-
— Z
ST *"•*
II II
O O i/>
„ n M
Z •-• 1
o
CT-
sT
O
a-
•*•
(3
C£
X
t->
» -> - >-i
o - o -
rrt y. -f O
in D m c:
_J Z
*— u~ *"• *-•
•V-
_1
L J
MINRQl L
o.
o
r-t
•f
O!
O)
n
OJ
UJ
o
0>
_
O
o
-f
_1
_J
J
o
a:
z
3:
,_*
U-
o
f— i
^4
•V
01
OJ
II
Ol
UJ
o
0
in
.-i
•V O
1-t
^
D
Q
II H-
O
Q O
.-.
"/I
1
rH
-t-
UJ
Ol
•^*
LL
r*4
f~4
r-t
+
UJ
UJ
11
Ol
01
O
*-)
in
»-H
+ 0
CO
<•
Q
O
UL_
r—
o
Q e>
,-1 »- « <
^- t- i .
•x in —
O — < o: -7
t *-* —}
U- + U- —
-JO O O
~) <-< uj r^ r-i oo i a:
11 ^- X
n n ii n v <
3; || O •-> £
-5 O t- — —
—^ ^_J
~> U- 01 O 0.0.
-5
0 t~ O
CM CM
in
-* T
*^ *-i
— ^ ^^
o
1 a:
x
•— •
-------
212
II It
•
o
CVJ
1
*—
h-
^^
0.
•£.
UJ
W~>
t/»
t/1
«w- —
»-•
# _ )- )- J-
r** 3c Q o ex
*fr O O O E
O »J £E Q UJ
"5 • ij_ i/) 1/1 ^™
^~ »"H (/) I/) LO (/)
to vi
< — n u n ii
Z — )
CD ""••» ••-• *~~ *"~ ^~
II ^ II O D Q Q
O ~- 3: CS D °-
K- UJ II O CJ O 5!
^ . 1 tn Q in
Z O "^ U- 21 51 V—
z o z bi s: s:
r
z •-
0-
- f.
f-* IU
UJ t-
•£.
*ff *-^
s: ^
^
•• >-<
*-» *—
UJ ii
H- -3
ui s: «•
o ^>
0 - ^
X UJ -3
H \~* *^ -^
ii l/l C —i D
< UJ O
|| _l II Q. Q
O li — t- ro -3 «
»•* UJ •*-•
" t- • UJ C II II
*— C — • X *— < •-*
v^OZ-
0.'-' S 3 t-E— —
>- O O — — UJ O Q
i-«- _i -J >-<_i(-aa
zm u- u. i-iuji/itno
»-< t/3 l/l v-*Ql/l(/ll/l
~ w |/) (/>
-) II - II H ^ II II
—> O — l/> |l |l
f- ~ -~ -, ~, ^-^-
HZ03 in-jv-^-.-}-)^ 11-3-3--— •
Z Z — - —< ^--3>_^,-5_^. -3-3-3-3
«— 1 fc— BHI Z *— * *— * -.-- - - "^ "^
II I) C D II 3 II 2 Z ~3 -J 0 • —
|| I- (- O C II -3 _) 21 0 Q
Z Q. >-._! -Jll — UJ UJ C O
z >-io t- o »i u. -3 u. >-'i:a»-c3a
Z Z •— ' O ZO»-*OO-3l/)Z'-*OO(/100OOLO
0 0
>o ^-
m in
o
fO
•
in
*
•— .
*•" "^
-» ~3
y~ ^- <-*
•~« H H~
a. O —
S" _J Q
UJ u. O
— K- (JO Q
"^ i/l ~
-, _, ~2. '
-1 -J 0. -1 O '
— — E -J Q K- y~
Q 0 UJ — |
O 0 t- -1 < Q 0
CJ o m -J <" O Q
1/3 1*0 UJ O O 1 —
no vi >
*"•
— — 1- II — II II *
1- 1_ — 1- ^1
OOUJ — Q— ^-1-
ii fficii-_jt-a-j
)~>i/io->c)i/>aero
I
|i
!
I
P
I
il
!
I
i
n.
\ li,
"5,"
•i.
,' f
i ' '"
;
r
J
s
' ' ^
I (' '
^
-,
•\
\ f
'
,f
J
f
?
I
i
i
-------
213
aW
SF
AFLOW
-> —
o S
O _J
m u.
V) I/)
•»
3:
o
UJ
UJ
3
O
UJ
O
o
J
O —
* *
O -J
—i -)
O
• a:
->
-j
o
*-4 •-« »-H CO
•c -X.
- ii
31
II
O -~
. -3
• E
I UJ
V II
t/1
II II II
^~ ~"3
-3 -3
— O-
O £
O LU
O (-
(/) I/)
II II II
39
* 5
^* ~"3
2 -)
a s P ~-
s: o — o
ui _J a o
t- u- s: a
V- VI UJ
— t- I
. I t/1
^ VI —
K- — Q ~
— I- Q O
D. — H- O
SI Q < t-
LU O I/I <
H- Q O l/J
l/l l/l
t/1 l/l || |l
DE
EE
II II II
_i — a:
o a _i s:
O O LU ai II
H
— o.
Q Z.
C UJ
Q I-
i/l
i 1-1 Z •
i >- 2 '
II
H. -J Z •- >-. I
O
o
•o
*- (— O h- O
. Q — V-
_1 D I- -"i >-
UJ o < O O •—
Q C
02 Z
\f\ >-, >-
•os; ?*
o » "
•* ~ o ^
•O —) O ~3
U 3 C S
— O t- O
U- U, O U.
>-i tyi O 10
•00 O
--" ^ in
SSTEMP(T) - 20
J) + SSBOD(T)
^ Q-
* s:
». Ul
h-1-
— in
o m
o
ca +
in
to —
P + -3
C. ~°~ ^*
O -3 CD
O -> J
l/l _ u_
m Q _)
O *
+ CO —
J -3
•-»•»• -3
T —3 Q.
— -3 E
Q — UJ
O X. H
0 _1 _J
O II II II II II
D O
O C I
co a i
in in
II II
-3 -} --1 I
x: — — ~3 Q-
a Q -3 s
II O O — UJ
M Q ^ t—
o
•o
-o
o a
O D
CO Q
l/l l/l
• in i/i
-------
JJ
SFLO
a:
o
c:
oc
UJ
3c
O
O
-J
U.
OW
*S
a
OL
in
*
:z ~
— 01-
h- U- Q
— oo C
0. — O
UJ -v |
to ~. ^, _
OO h- I— -~
w- •-» ^* 2
o o o —
Q O Q t-
H- O t- oo
«S 00 < 2 <
oo oo oo O
O O
II I" I '
II ~-
o
t-
•s
o
_J
u.
D
t
UJ
UJ
3
O
t
U-
o
•f
. H
O —
M O
0
1 CO
.— 00
< — 00
t- t-
1 %_< J.
UJ O-
Q 5" "
UJ 1-
* 1
i/) O
UJ 00 O
UJ — C3
— «"
•H *
-^
t-
v^
O
o
o
00
—
Q.
3!
UJ
t~
00
oo
•*•
^.
-)
—)
*^
3
O
U.
*
II II II
o ->
vD —
l O
i -~ •• a
: — o .-.
' >~* O 3£
u «•. n
f--
o —
O >- h-
Q •
t- C •-•
1 O D
oo a o
o o
U- U.
-30-0
— « -3
o —• —
a o
z -^ o
>-. CC
s: x -j <
n u n
CO —
o -> —
•£> -3 -3
C
_l O
U. O
IPi
*
: ~ o
— LL i
• a vo
s: —
UJ
o
•o
3 — s: t- — —
~) -> -> — •
-3 -> — a.
s:
UJ
I-
§5
t- C
< a
— z
a —
Q \-
O in
r- o
*o \o
o 3:
~ O
_J
i- U- u.
>-<•-< 00
f-
o
-o
t- o
_J
D U.
O
o
03
: oo
-o co
o o
-c o
— Q
II II II
II II II II II II II II
•"• "O "^ "^ *"** I
-> a- _j
-1 E -J
— UJ uj
V- D V- >—
o »
I C7-
C "
Q O
O
(X
X
<£
a:
ex
s:
UJ
t-
II II II II II
»—* » ) »^4 —^ y ^ H—« ^,,1
a:
s:
CO f- f Q Q Q.
— .-< ^t O C G X
O -J 03 O UJ
—3 ». • U. OO OO h-
— •"! OO
O — II ll II ||
DC -
< -< Q Q a a
3: Q Q a.
— n O O C E
_1 co O UJ
u. s: •£. t-
o
-o
o
-------
215
— o
D I!
O
CQ •*-
•Si ->
X
«t
3:
Q •
O
CD .
>- 10
o :s
o o
CD -I
Z U.
+ O
O —
o —
CD >
~" o
XCOST
z »
i Z O
i Z *-<
II II
r-
o
•O
I- O
*0 CO
— rO t-4 O
— \~ -J
D to I-
~- O f>
h- O
l/) ^
O UJ
-~ I—
K-»
u- a:
UJ O —
h- LU
O ->
LU O 2:
r\i
r-
o t-
_J l/>
u. o
E U
.2 10
O O
-J O
U. Z
z
H-
(/)
<
0 _J
II II
*-*
UJ
^- -—
Z UJ
X —
^_-
•"• O
UJ O
0. Q
«* s:
i-
UJ
V-
K.
in
CO
O
UJ 0-
0-
O^
II
f-4
1
UJ
UJ
UJ
UJ
UJ (j_
LU «— •
O
CO
-O
c-
o
o
r-4
UJ
UJ
—)
s:
I
~~
ni
•^^
-5
^f
U-
•-
in
CO
•£>
I
UJ
UJ
UJ
II
LU
UJ
UJ
O
C^
•o
Ln
CO
-o
o
C7>
c^ *~^
UJ
•— O-
•H <
1 t-
UJ
LU Q
UJ Z
3
LL l-J
«-< a.
Q,
^4
•— 1
rvl O-
1
UJ C^
UJ G"
LU ^o
••
U m
c*
•^
^*-
UJ
»-4
b'
uj u-
>-, —
LU
II —
1-4
y: UJ
~] C-
•-- <
H-
(M —
C^
O O
*i
O UJ
Q C£
^-4 fM
ff> CT1
^ ^
S >— *
Z lfc^
O-
£ LLJ
X (_
< z
z »
I/) ^«
< -yC
-1 Z
UJ -~
x x:
*f» „ _ .
t-4 O
LU O
Q- O
< Z
V- •
fc—
Q
-^
LJJ
OC
ro
0s
o
vO
rH
•f
LU
LU
UJ
1
UJ
«...
U,
•-•
LU
UJ
LU
UJ
II
.v^
N,/ ,__(
-) UJ
k— i Q_
<;
vn r-
Q* •— .
O
Q
<;
C UJ
O OH
•3- LTl
(71 O-
o o
U-
— o
o-
m «•
o —
lf» C Q.
--< CD 2:
U. Z UJ
O # t-
31 *-•
O ^- O
_J i/l O
U -- CO
z -sz:
o
4- _4 +
U,
^ O -•»
X — X
O
>- X
O 3:
o ^- o
O X _)
Z — u.
c s:
-1- O *
OJ —
~ E X —
X •«• — X
5 X E 3
O — UJ O
D ^ h- -J
II II II It II II II
^j _. — (/)(/> ~ 31
rs . a o
|l II c in Q O to E _J
—i i-i a o »- uj u,
-------
NCOS
>• X m
5^3
O <" C
_l O ->
u. o u.
z s o
II It II
OYFLOWIS
OCOST(S)
RFLOVK JJ
DELT
OW
ERROR
OV
- R
O iSt
0 —
tD 3
a —
o —
co >
•5- ^^
— >-
D —
ir\ ir\ O o_
•-< r-< CO Si
u. u~ z t"
„ D O * »-
C- — H
m * * >•
o
O
03
O
-j UL i/>
I- X
— o -
S r*
O •
_J — II
U- •*!.
O -5 ^
0
m
00
O
f^
CO
O
*-4
CO
o:
o
c:
«
UJ
D
-
S
0 *
s, XNODE
, OKIIJK
K), OCOS
o
in
oo
o
<-
CO
•»
o
•a-
CO
o
— or
>• of
„ UJ
3:
O I
1) II II II II H « " " M
I -5 — •->
] — O +
: c -i
J D U- I"
o >- z
- o o
J
J •• •• II
•3. -S-
O —
U- i/l U-
C/. I/I '-'
CO
CM
^ I/) l/l •-
-~ ^^^^
U1 l/l «- -S 3 —
^.^ — O-OGV-
„ „
0) 0) UJ
0 0 1-
Hi
s:
x
<
^ s
z
II >'
x,s
^ o
>- M
«- 00
s
o *
_J 0
U- ^
2: co
•~ X
X <
o
u.
5E X
— D
X _l
— IL
S OC
S ,
— 3:
l/l O
I O
) -t
CO
X O
»-
11 o
X O
o
fM
CO
I/) I
o
m
CO
UJ O
to Y-
•<
CO O
> o
o
<-
CO
O
-------
211
o
o
co
o
•o
co
(M
O
a
UJ
4-
U-
cf.
I
X
u.
•s.
3:
O
~
— 00
O 00
o —
co :s
z o
D ~
O -~
tE >-'
^ *
^-J ^
O —
ir> in o o-
--i ,-1 m s;
*- u- u_ z uj
• * #
in
wi Q O ^ "^
on C O — D C
_ CD o X -J <->
a * +•
o
<7>
CO
o
CO
CO
o
CO
CO
m
CJ
O
r-
CO
XX-
XX* — X
.QQXS;!—
O O — I" vi
— i
I
>•
o
>• e
o
-0
• — II H-
II
. u. oo O
. v- >- 00 O
o o
f- CO
CO CO
o:
o
o o:
o a:
CT> UJ
I
- o
o _j
o u-
cr x
I
.
X +
< X
s: s -1 tij
O + 00 CM
| _J i-J 00 < ™
u, + oo a
X E X >- C
-- II I-
II M
IL a. oo o
r-. ^i X 00 > <-C
o o o
c* o -i
co c^ <^
»-( UJ
l/l +
+ <
CO 00
X >- oo
II II II
oo
X >• oo
o:
— o
> ct
— «
S UJ
O I
,, O -f
X _1 f
— u. --'
30:-
O I O I
_i —
o
(M
O" CP
o
•
ii ii
X >
o
in
UJ
oo <-i
<
ca •(•
>
>- x
n u
o
vO
a-
s
-------
2J8
BOD(X) + NBOD
/ SFLOWISS)
25
n
n
•~ LL I
CT< V5 I
m
in
x >--
3:
O
V) Q i
V) O
>~ CO I
3: z ;
O
U.
V) —
— X
^ o
o
II II
II II
V. s
o
— _)
— U-
V Z
— *
o —
o >-
to —
•z a.
* 5:
— 01
> I-
^^ 7*
V +
X >
3 ^
— O vl
X _J O
— u. o
O E 2
o •»
CD " -f
S X
*
-» Q. X
x 3: —
— uj K
X E O
s:
u u
u
0
CM
01 O
V) I—
CO O
>- o
o o
-^ — 0 V)
t>0 VI (/> VI
v> vi -~ — ^-*
V. O- *—
V) £ V)
— UJ O
X. t- U
CO CO L/)
Q
— i O
u. co
V5 VI
O
r-
o
CO
o
CD
I
V
in
N
o
- V5 >-
O
CM
II II II i>
UJ
V> O
< H
CQ
V) >- O
> V) > o
O
r-
c-
u_
o
CO
000
000
ERROR
O
U.
5:
3 o-
O G*
_) cr
U- O^
— Q.
O
V-i I/)
•0
Csl
0
-------
219
o
•*
O
o
•*
O
o
O
o
in
.O
o
i--
O
o
en
O
UJUJU-U-ii.U->-vii^
~~ I
UJUJU.
t— t-xx
U.U-
x>>-
U-CO
>-oou
ca
vjLJ
•JDO
Mn
o
CO
O
GS^
CD ca
l/l O
SToo
cnuj
O
v
O
— Q
r-io
H- ||
I
Q
U-Q
O
>j-
o
O
r-
UJ
K
I
Q
QO
t«iCD
O
o^
o
— Q --
fid -f
LLJ
||
O
o
»- «/> vi v>
O-IOC1 —
UJ
K- II
II |l || || II
I I
- f- t-
/l
O Q Qu
u-od u,oo a xt/i
OO
r-a
oo
OO
c~o
o-i
O
isi
uo
oo
-------
220
— . ^->
~~ in 1/1
co > to
v) ^- «— • x^.
•>»• t2 "3- ^
O. D O 00
s: j _i —
UJ O. O h-
t- >• X 00
t/i oo oo o
^
on
II II II
II
*-> <•»>
— 00 00 —
I/) — — IO
•"* Z2 IS "~^
CL O O t~
s; _i _j 10
01 0 0. O
(- > X O
O CJ O O
o
0
rvi
r-4
f
ON
M
•>
ON
fN4
^^ fH
^-t 0
O 4
-f fvi
(/)
CO | I/)
t/5
|| . . ||
U- ^
l/l *-« yo
O'
o
rH
•-4
^
O
<-
^-*
*-4
»
C
-r
*-4
r-4
— .
tO
to
X
<
3T
|
to
t^
— ^
U_
H- •
O
in
v-l
•H
O
U*\
^H
f~t
v.
o
•0
^4
•-I
2
Q
^
1
cf.
ta'
co a
IO ONI O
CO
O vo
II t— —
C u.
00 0 ->
0 0
^> •"->
o
o
+
a:
<
a.
y
0
o
C II
11 OC
<
o_
o s:
x o
—. 0
o
iA
FH
O
f-
l-l
f~*
»
0
CO
t-4
v-4
^
O
f-
*-t
^4
-^
i-4
0 0
sj- | *— i tNJ
~4 r~*
F-f O '"^
X II
O -i O
1 !-
O
O u- x C
O •" "-i O
0 0
•o r^
rM •— <
ON •
fM
ON »
CM ON
CM
»
C\J O
O 0 ^
•• r-) *-*
•— »-H --^
f^ ^^
CD — •-!
t~t 1
•^ *— ' oo
1 ^*
^ OO H-
sO — OO
ro O o
•H O U
^ O O —
o i r-
>. | ~ t-H
01 in — oo ^-" o
O- CO 00 OO O f1"!
>--<0-)"CO|CM *O
^— rH — • V— CO r*^ f^ f^
CX — QOOcooOr-l —
O O O oo O
O O O D 01 i-
II t— 00 00 Q. || V- >-
h- ~ — 0 «-
0-OU.U-t- O CJCO
OO-i>-'iooO!J SO
c u^ sC r- o o
CO CO CO CO CT> O
r-4 »— 1 i— 4 r-\ •— ' f\J
o
-J
->
o
o
CD
£
_J
-3
o
_J
U-
X
*>
^^
01
Ol
UJ
•z.
•x.
••
0
^
^.
UJ
UJ
UJ
•^
~>
5:
UJ
».
*• UJ
*-4 Ol
— UJ
O l|
r-l ^H ~
O O) i^; ft
CD 0. -> 01
•• 0-
uj f> H- -i oi z m
h- t- — •-< O
Z — 3: <
O en 01 o 01
o 3; & O o-
0 O
NO ff<
CM
o
*~(
II
_l
1-
CD
s:
_J
s;
^-
cs_
3-
UJ
I-
s:
_J
^
h_^
N^
3C
»
~-~ *^
_J 01
NX Ol
~3 Ol
w^ >—
Q 2
o s
o
•Si
II
s:
^J
Nj^
4
-
~ ^
— J o
^ *—
-7 in in Q.
•"Dos:
•3. o: a: uj
O * «• h-
-j s;
o. ^~ ~ —
s _j _j a
o * s£ :£ a
^ ON -3 -J t-
-1 ro <
II • O Q NO
m D O O
-1 — Q Q
^ -N. S Z II
-> • II II —
^ ^ ^, _l
II _J -J N,/
o ^ ~^. ~>
ON ~3 ~3 N— •
fNJ >_ ^ O
<-! C3 0 0
^ O O 1—
O Q CO o <
c o: x E oo
o
ON
CM
BOOUKUt MDODUKUt
, MCOSTt JKL) , JKU » 1. 0)
s: —
~i
«•:*:
•- ~>
_j *w*
5<£ CL
— j ST
~ UJ
IE t-
0 ^
U- *•
SI "
*"* *J
^
•• "-)
E N^
1 2;
^
_ ».
*~j —•»
l
^C
^* "~>
•4" — •
•-1 C
0 Q
r*"> f~
*• <
r<"i v>
—
Ul
K-
c£.
l£
<
o
o
f^
1'
j
•1
r$
'i'*
If
%.
•3 •
_
•< $
1
i:.
s
i
i \
'I '
'•< j i
;l **
i'l
*!'
^''
* "*
,. *
f ,,
* ^
/.
~ '
'
'
o o o o
-------
221
o
(0
*_t
^
10
in
i-i c\)
> ILJ
•O 0.
fO (-
»~)
f~l
UJ Z
Z *-'
U. LU
1-1 a:
•3-
O
E
, S, XNOOEt YNODE, JOFLOW(JKL), OBOO(JKL)
Z "3
)-
«• to
_4
II
y CM
-3 LU
>-• O,
<
O H
m
*-* o
o tu
Q cfc
KL), OK1JKL), OTEMPUKDt OXFLOWUKL)
, OCOSTUKL) , JKL = 1, S)
~~> •""
1
O M
c -}
o — •
0 3=
O
LL
>
O
••
-
UJ _J
— D ^
— C -3
-3 X Q
«-• C
•— ^ CQ
D. ~3 O
•s. >-
Q -1 U
o «. ->
Q ii —
(/) h' — 3 15
<; >" o
». 1/3 _J
-I O •— LL
u u ^ a
o
t— m ^
~3 ^~ ^
^^* V1 — f^l
"~3 "^
LT* ^-*
m a »-
^ o •—
D < 3=
O O
«^ — s:
OC§£^OOC>OC3CC3
b>4
- 1 |l II II II II II II II II
O -3
Q "" 3 ^^ ^- *"• "*^
CQ -3 — • 3 "3 "3
S! CT->-3-3-3 -3-3
^x^s|||23i
*-i^-iG J I_J 1-JCtSl
CD
•o co
•— I r-l
fl f>
O O O
II M II
•*-. *-» ^*
•3-3-5
"3-3-3
a: o o
o
**.
2: II II
0 -3
m ^-i — 3 ^^
O 1 -3
»-> rJ O -5
c "-• n is.
v- •-< o
O LL O U-
e> — i Q — i
o m
CM W
m m
o o o
II u II
."•
~ ~ -3
~3 ~3 ~3
•** ^— • d.
O Q LU
CQ C! 1—
_J _l — 1
O
in
^-i
o
o
r*
V* *• rH
+ 0 I
oooooo mt—
1—* r~\ *-l
II II II II II
II *- II
^» ^^ *— . *^ ,«!
-3-3-5-3 03 |
-3-31-3 t- O
-3 3 O O S D '-'
-3 O DC a: o V- —
— _i z x _i s: o
^U-—i—
_jc:5:5-3i-o^'-i
o o o
m o in
o
o
o
fl
*.
in rn
r- —
D LU
t- V-
a o:
o -y.
o
o
in
to
h-
Z
s:
UJ
i-
<^
H-
l/l
^_
-------
222
*-*
(NJ
» *•- *^.
— ~ 0
u"\ «"\J -*
•« »O fi "^
-» *• u. ^ ».
O O O f-' » O -« in O o
U_ .-H ,-H ». <— • Q_ .-« ,~|
lO U- U- X X U_ IL
*O (**• •"! fM -4" *• >ON-
»• * C*"l U"\
tf\ •»*•»* Q *""" »•*•
*~» in IA ^ — i «- in m
^ r^o f\j ^ "" ~" *~* **
H l~ K~ >~ H- )~ t~ >-t-
^ ^ <£ <£ -^ r^-oo
m . .
I- t- t-
>k.^
o
c£
"Z.
.>-*
y
••
X
^H
^4
•-
^
/
-3
5
O
_l
U-
.
X
CM
f~t
f
")
-5
.
X
in
("*"}
.
o
<
*«»
.
CO
"• O
-3
X.
•^ U-
0
••
— o
-> •z.
-j UJ
o
C£ X
X 0
->
X
- - in ••
«i m ro
x uj •
•t ex •• in
*z ^
o -o
- X ^.
V-
. UJ —
• uj o- m
< o >-
< z f "
0 H-
V5 X ~-
s: «-i co
-*O . —
. l/>
- X UJ
x uj rn _i
O D "-1 •-•
-a a s:
z - •
- too
•-< -3 O 1/1
H-
*t
s:
C£
o
U-
< CO O
CM
O
O
(.
a.
UJ
V- —
X - X _)
in in ~s
x e>
. CM - s:
UJ — < — .-
0 >- .
D -
CA O
-—IX.
OC CD O
UJ - UJ
CO o - Q
3: o — —
r> co Q -
Z - 0
s: x
X — CO
X r-* - ~v
in -i - ^--
x _ m
O X rf\ V. in
- D •*-. O — i
UJ 2£ U_
^ O •* **— f^-
. i .
• «^ ••
X O
t- '-i O >*• >-<
< *-* 3; m
D UJ -
- a. ~ x
UJ 3: - >- "-I
h- O < ^
1/1 —1 X Q
< u- a- •*» v.
3; . TEC "^
.
~ X (A C£ -
O O O —
X I fc?
0 - a. _i ~
*O UJ •» N*^ *
G_ O
- >- X X X
»-4 >— «-l ^- O
h-
<
s:
K.
O
u.
< CO O Q
en
O
O
j
UJ
>-
m
O
Z
cc
•jj
CO
s:
*~i
2
.
.
O
.
*>•
V-
^-
0
o
ft
o
-.
- CM
X - -J O
O LL
O
X Q
a. O r-
• co •—
X U 1
t^~ "*^t ^
o
s: •
a — —
0
- O v.
Q -^
X |
CO U.
v-^. f-~
. I/) o
C U- •
o o o
CD •— UJ
CL O
UJ
t-
3s j
O U- — ~
-I V> >
U, U.
y
^_
.
X
(T
CO
^^
^*
CM
«
in
•H
a.
h-
.
O
CM
^
V,
.
^^
-J
O
.^,
». «-^
CM
X «
a< o
CM
U.
_l
%v ^
O O
— >"
h-
<
s:
C£
O
u.
o
-o
o
o
fO
u u
1
I1'
;)f
•,<»
'ill
;I
;,f
t4
S
'fift
,
r
1
if
{,
!
u
£
>
k
w
i'1^
JM
#^
* "*
\k
%i
*j
JM
4 J
'rf
f '
i*
11
f 1
II
I "•
1 m
i m
f m
f |
f '•
f •
i m
1 m
1
-------
223
X
tfl
•-*
X
c£ o
*-> >»
< -J
o: ~
X
X -
r~« >-
X O _
l-
3;
o
u.
< CQ
r-
o
o
tn
.-*
^^
CM
«
o
(M
0.
in
»,
o
p-«
•-^
V
,_
•Si
o
U-
co
0
o
M
LARGE JOB CANCELLED ')
o
o
h-
t-
Z
•-<
O
*t UJ «t
»- (- -
<£ -
Q X
x in
o -*•
tn - Pi
CD O
t- Q
Z UJ -
r-l 1-
21 - X
51 in
< x
ef. •* -
o cvJ
Q -
a: - x - •
Q >f -H O
•• r-t
- D U-
X •-< Q O
in t- •
Irt X
- UJ X >f
•-4 K- in -^
t-
E
o;
o
U-
< 03 O
ffl
O
m
o
o
t-
X
X Q
0^ Cj
in o
0 X
- f-
- o
r> o
< 03
UJ -
_J
03 X
1- --i
3= -
O S
-J O
U 1
u.
_l -
•^
h- X
Z CM
UJ
y •.
UJ O
QC -
O v.
Z ^~
»-1 >~t
« »•
II
X
m uj
in Q
o
- z
*~i 1
1-
5;
cd
o
U-
<5
^J-
p-4
0
m
_i
O X
X. -I
in o
O
- UJ
»•> D
VJ —
U. -
O
~- X
- (M
pH
X -
CSJ •—
•** <
O
01 — —
O -
0 X CM
- •-! O
X CM
CA - U_
^*4 •— * O
_J
- >K ».
Q. O
S Z tM
UJ — •
1- - CO
- u.
X
X Sf —
in r-4
•-> V.
- N.
•« *~*
OL _J -
>-< V. —
< O _1
LU SI *I
D ^^ ID
- - z
z
X X <
-H r-4 -
CO O Q
X
X
•• CT1
X r^
in O
- O
1
O t- h-
•v 01
m 3: -
•-. O
_J X
- U- O
UJ X -
~i en a
CO O
< - o
»- X •
o
C! _l X
Z U- M
s < -
•a t- o
C£ O O
O *— CO
c o -
0. X
•-. co
o
S.^ (^
«3 r-«
Z -
>- —
Q 11
•* II
UJ
x a H
o a <
m z
x
- a o
-1 O -J
^_
E
a
o
U-
r-l
X 0 Z
r-1 Z
rS - <
*-* ^-«
r ^J -
O. *N
s: o x
UJ S CO
y— *_^
• •• —
— -.
X X O .
o CM *
r-4 -— 4 O
UJ
- - a
a: — •—
•-i i/i -
< LL
UJ 0 X
*• ""
o a LU
C X "^
3: m
CL ^ -
x — <
^o >- o
-I < ^
D r-4
O * -
O —
Q - X
- CM
X -1
X c^
I- ,-. -
" O
Q 01 O
C U- U!
cn o a
x
•O X X
r-4 in .£•
CM r-l
X v, -
D —
_1 *• >-
U, X <
- O Q
UJ -v
X Q %
Nj- • -^
r-4 ~
X
- -J3 X
UJ r-4 fO
D *-4
O -
Z O. -
"• «tl "^
LU >
X H «£
-O - O
- X *:
r-4 f^ ~-f
• -1 -
,_
g;
ce
o
U-
< 25
-o
r-4
O
rf,
MENSIONED JOB CANCELLED )
// 10X 'STREAM SEGEMENTS' 15X
'FLOW ADD POINTS' 17X
r-* ^s. X
D in
dl •" »-H
U-' <
0 t- -
Z ^ l/l
ZD O UJ
o
t/1 V— oc
LU Z3 <£
ID O- X
-J Z O
*• »-4
1 Q
0 X
CO LU
r-» xn v~
X 01
0 - <
m — • s
r- t~
E X
C* OC
C 0
u. u.
<
r- o
r-4 m
O O
M ,-n
- x
01 in
1U -
T 1-
U_ —1
- LU
•• X
1 Z
O >-.
X X
in ~t
r-* CX
< >•
UJ r-
K 1
X
O f~^ rA
O O
•* Z C3
O 1
r\i t~ r-.
t-M Ol —
CX
\ »-4 X
Vs U- ^"
fc
• r-
01 X 01
C£ CO ^~
•-. LU
D - 01
> 1
CX - r~
lij •*
V) ~x
LU - X
o: o sr
t—
5-
cc
o
u,
CQ » x - x u, H
•v. in CM •• 1J
x o F
UJ - C\j - • *'
O • 3: 0 (
C O - O --4 ?
^ ^. . . .. 3.
- U- U- IN
1- II-
i/v x uj uj x :
a. cn ex > -J
r- r-4 O < - ''*
U. < - O :'
Q-^HXC *•!
r "- P
(M v— CM y~ »* ?
< f x p
r> O •• O CM !!"
ul O O " fi
X « Z | r-4 ^ •
s: a 7 :s •-
Ct. CC *" * "l I
— LU X CJ1 VI
01 X 4" .-. *, 1
X UJ in - )* I
•J/ c£ •• -^ S
•• — P— r-4 , , M
- o tn «-. I
Q X Z 0 I
o t- "- o - T
03 in 1 | X 1
s: h- t- «*• v|
UJ - •) - — ' I
0£ ~* 0 I
s""v ||
2 If
a if
0 11
U- If
ca < m o ? 1
0 |I
i- J.I
c || ;
. » i 3
o o u
-------
224
_
•v. K- V
^x ,-. x -
2 D LIJ X fr?
0 0 >_ co ,0
>~ 1
»~ o >- ' "
— 1-1 O
cr
O
r-l I- f~
<}• O t~
.Ol-
o » •
a.
z rj
uj m
t~ so
O •*•
D r-t
II
o
D
i-t D
I- D
O \~
o:
o. x r-
•s. co i-
UJ »-»
« O X
1/5 < rO
• u_
VI ' '
. X « O
t- o -
X O- I -•*
CO UJ Q- "x
O
csl < •
(~ O O
,_ X UJ Q '
- fO O £D
• X UJ
si- ro
I- V
in
U-
O-
z:
UJ
o. ex
2: E
UJ UJ
- t- t-
# *
ex o- a
£ S. Z
LU UJ UJ
-------
BIBLIOGRAPHY
treeter, H. W. , and Phelps, Earle b. , "A Study of the Pollution and
HXural Purification of the Ohio River," Pub lie Health Bullet in , No.
U;, u. S. Public Health Service, U. S. Government Printing Office
1925 ) -
air, G. y., "The Dissolved Oxygen Sag - An Analysis," SWJ, 11,
1939). '
nomas, H. A., Jr., "Pollution Load Capacity of Streams," WSW, 95
elz, C. J., "Deoxygenation and Reoxygenation," Trans. ASCEf Vol.
OU, pp. 560-578 (1939).
elz, C. J., "Factors Influencing Self-Purification of Streams and
ieir Relation to Sewage and Industrial Wastes Disposal—Part II,"
*L, 3, pp. 309-319 (19^9).
elz, C. J., "Factors Influencing Self-Purification and Their Rela-
ion to Pollution Abatement—Part II," SWJ, 19, U, pp. 629-6UU
July 19^7).
elz, C. J., "Stream Recovery," WSW, Vol. 100, No. 12, pp. 1*95-501
Oecember 1953).
IOHL&S, H. A., Jr., "The Dissolved Oxygen Balance in Streams,"
eminar Papers on Waste Water Treatment and Disposal, the Boston
Dciety of Civil Engineers, Boston, Mass. (1961).
'Connor, D. J., "Oxygen Relationships in Streams: Robert A. Taft
anitary Engineering Center, Technical Report W58-2, Cincinnati,
iio" (1958).
:;, W. H., "Unsteady Dissolved-Oxygen Sag in a Stream," ASCE-SA, Vol.
6, No. SA3 (May 1962).
rankel, R. J., "Water Quality Management: An Engineering and
conomic Model for Domestic Waste Disposal," Doctoral Thesis, The
niversity of California, Berkeley, California (1965).
rankel, R. J., "Water Quality Management: Engineering Economic
actors in Municipal Waste Disposal," WRR, Vol. 1, No. 2, p. 173
1965).
obbins, W. E., "BOD and Oxygen Relationships in Streams," ASCE-SA,
ol. 90, No. SA3, pp. 53-73 (June 19&U).
oboins, W. L., closure to "BOD and Oxygen Relationships in Streams,"
'.;CK-SA, Vol. 91, No. SA5, pp. ^9-55 (October 1965).
225
-------
226
O'Connell, R. L., Thomas, N. E., Godsil, P. I., and Hirth, C. R.,
"Report of Survey of the Truckee River, July 196?," U. S. Public
health Service, Cincinnati, Ohio (19o2).
OTormeli, R. L. , und Thomas, U. A., "Effects of Benthic Algae on
;Ureom Dissolved uxygen," ASCE-SA, Vol. 91, No. SAj, pp. 1-16 (June
196$).
Camp, T. R., "Field Estimates of Oxygen Balance Parameters," ASCE-SA,
Vol. 91, No. SA5, pp. i-l6 (October 1965).
O'Connor, D. J., "The Temporal and Spatial Distribution of Dissolved
Oxygen in Streams," WRR. Vol. 3, No. 1, pp. 65-77 (January 1967).
Gannon, John J., and Down, Thomas D., "Programming River DO
Calculations—Part I," WSW, 110, 3, II1* (March 1963).
Thoraann, R. V., "Mathematical Model for Dissolved Oxygen," ASCE-SA,
Vol. 89, No. SA5, pp. 1-30 (October 1963).
O'Connor, D. J., "Oxygen Balance of an Estuary," ASCE-SA, Vol. 86,
No. SA3 (May I960).
Graybill, F. A., An Introduction to_Linear Statistical Model,
McGraw-Hill Book Company, Inc., New York (1961).
LeBosquet, M., Jr., and Tsivoglou, E. C., "Simplified Dissolved
Oxygen Computations," SIW, Vol. 22, pp. 105^-lObl (August 1950).
LeBosquet, M., Jr., "Oxygen Relationships in Streams," Robert A.
Taft Sanitary Engineering Center, Technical Report W58-2, Cincinnati,
Ohio (1958).
Churchill, M. A., "Analysis of a Stream's Capacity for Assimila-
tion Pollution," SIW, Vol. 26, pp. 867-90U (July 1951*) .
Sutherland, E. R., "A Water Quality Study of trie Chickaliominy
River," Virginia State Water Control Board, Richmond, Virginia
(1966).
OKum, D. A., Lamb, J. C., and Wells, C. C., "A Waste Control Program
for a River with Highly Variable Flow," JVPCF, Vol. 35, No. 8, p.
1025 (August 1963}.
Woiman, A., and C-eyer, J. C. , ''Report on Sanitary Sewers and Waste
V.ater Disposal in the Washington Metropolitan Region," Baltimore
(1902).
Lmrum, W. H., and Langbein, W. B., "Water Quality of the Potomac
River Estuary at Washington, D. C.," 'J. S. Geological Survey Circu-
la- No. 529-A, U. S. Government Printing Office, Washington, D. C.
(I9ob).
-------
227
Thomas, H. A., and Fierinp, M. B., Operation Researcn in Water
Quality Control, Report of Harvard Water Resources Corporation to
i!. r-. Public Health. Service (
• 1 . Luuuks, h. [., "A Probabilistic: Analysis of Wasiewater Treatment.
Systems," Doctoral Thesis, Cornell University, Ithaca, New York
(1965).
32. Loucks, D. P., and Lynn, W. R., "Probabilistic Models for Predict-
ing Stream Quality," WRB, Vol. 2, No. 3, pp. 593-605 (1966). }
33- Wastler, T. A., "Application of Spectral Analysis to Stream and
Estuary Field Surveys," U. S. Public Health Service Publication No. i
999-WP-7 (1963). ' I
i*
3s*. Thomann, R. V., "Time Series Analyses of Water Quality Data," I
ASCE-SA, Vol. 93, Ho. SA1, pp. 1-23 (February 1967). |
35. Maass, A., Hufschmidt, M. M., Dorfman, B., Thomas, H. A., Margin, I
1 S. A., and Fair, G. M., Design of Water Resource Systems, Cambridge,
1 Mass., Harvard University Press (1962). \
36. Hufschmidt, M. M., and Fiering, M. B., Simulation Techniques for |
Design of Water-Resource Systems, Cambridge, Mass., Harvard Univer- \
sity Press (1966).
37- Fiering, M. B., "Multivariate Techniques for Synthetic Hydrology,"
ASCE-HY, Vol. 90, No. HY5, p. ^3 (196U).
38. Davis, R. K., The Range of Choice in Water Resources Management: A *
Study of the Potomac Estuary, Resources for the Future (in press)
(1967).
39. Matalas, N., U. S. Geological Survey, private communication. 1
UO. Chow, V. T., and Bamaseshan, S., "Sequential Generation of Rainfall
and Runoff Data," ASCE-HY, Vol. 91, No. HY4, p. 205 (1965).
1*1. Beard, L, R., "Use of Interrelated Records to Simulate Stream Flow,"
ASCE-HY, Vol. 91, No. HY5, p. 13 (1965).
k2. Crawford, N. K., and Linsley, P.. K. , "The Synthesis of Continuous
Streamflov Hydrographs on a-Digital Computer,'1 Technical Report No.
12, Department of Civil Engineering, Stanford University (July 1962).
!(3. APT Associates, Inc., "Fittiner Time Series Models to Hydrologic
Data," A Report to Federal Water Pollution Control Administration,
•'. S. Department of the Interior (June 1967).
•-'+. Benson, M. , U. S. Geological Survey, private communication.
*O • Davis, pas s i m. 'i
-------
228
*6. Maass, Chapter lU.
17. Young, K. G. "Techniques for Finding Reservoir Operatinp; Rates."
fk'Otorn.1 ThfKle, Harvard University, Cambridge, Maun. (Novrmber
1966).
18. Maass, Chapter 13.
i9. Hall, W. A., "Optimum Design of a Kulti -Purpose Reservoir," ASCE-HY ,
Vol. 90, No. HYk, pp. ll*l-li<9 (July 196U).
>0. Worley, J. L., "A Systems Analysis Method for Water Quality Manage-
ment by Flow Augmentation in a Complex River Basin," Doctoral Thesis,
Columbia Pdver Basin Project, Division of Water Supply and Pollu-
tion Control, b. S. Public Health Service, Region IX, Portland,
Oregon (June 1963).
>1. Thomann, P.. V., and Sobel, M. J., "Estuarine Water Quality Manage-
ment and Forecasting," ASCE-SA, Vol. 90, No. SA5, pp. 9-3T (196M.
>2. Deininger, R. A., "Water Quality Management: The Planning of Eco-
nomically Optimal Pollution Control Systems," Doctoral Thesis,
Northwestern University (1965).
>3. Sobel, M. J., "Water Quality Improvement Programming Problems,"
WRR, Vol. 1, No. U, p. k!7 (1965).
jk. Thomann, R. V., "Use of Systems Analysis in Estuarine Water Pollu-
tion Control," Western Resources Conference, 196U, University of
Colorado Press, Boulder, Colo., p. hj (1965).
>^>. Kerri, K. D., "An Investigation of Alternative Means of Achieving
Water Quality Objectives," Doctoral Thesis, Oregon State University,
Corvallis, Ore. (19^6).
36. Liebman, J. C., "The Optimal Allocation of Stream Dissolved. Oxygen
Resources," Doctoral Thesis, Cornell University, Ithaca, New York
(1965).
5^. Thomann, R. V., "Recent Res-alts from a Matnematical Model of Water
Pollution Control in the Delaware Estuary," WRF , Vol. 1, pp. 3^9,
1965, Public health Abstract, Vol. ^5, pp. 190? (1965).
!?f . Hetling, Leo J . > "A Mathematical Model for the Potomac River — What
It has Done and What It Can Do," Proceedings of the Fall Meeting of
the Interstate Corarussioa on the ^Potomac River Basin, Washington,
1) . C. 'November 19b6),
','*„•. "M'eese, A. V., anci Gmita, S. r., editors, Water Research, .Johns
.s Press \"^b6] .
Davis, r 'is si
-------
229
6l. O'Connor, D. J., "The Effect of Stream Flow on Waste Assimilation
Capacities," Proceedings 17th Purdue Indiana Waste Conference (May
1962).
<>«?. Churchill, M. A., Klmore, H. L. , and Buckingham, H. A., "The Predic-
tion of Stream Reaeration Rates," ASCE-SA, Vol. 88, No. SAU, pp.
1-U6 (July 1962).
63. Krenkel, Peter A., and Orlob, Gerald T., "Turbulent Diffusion and
the Peaeration Coefficient," ASCE-SA, Vol. 88, Ho. SA2, Part I
(March 1962),
6i». Zeller, Robert, "Water Temperature, Influences, Effects and Controls," i
Proceedings of the 12th Pacific Northwest Symposium on Water Pollu- \
tion Research, Corvallis, Oregon (November 1963). \
»'
6?. Duttveiler, D. W., "A Mathematical Model of Stream Temperature," I
Doctoral Thesis, The Johns Hopkins University, Baltimore, Md. (1963). f
is
66. Phelps, Earle B. , St r earn S an it at i on, John Wiley and Sons, New York }\
(i9Mo. ;
f
67. Tennessee Valley Authority, "The Prediction of Stream Reaeration
Rates," Division of Health and Safety, Chattanooga, Tennessee (July l;/
1962). '.I
68. Leopold, L. B., and Maddock, T., Jr., "The Hydraulic Geometry of
Stream Channels and Some Physiographic Implications," U. S. Geo- ^
logical Survey Professional Paper 252, Washington, D. C. (1953). I
I
69. U. S. Public Health Service, "The Storage and Retrieval of Data for
Water Quality Control," U. S. Department of Health, Education, and j
Welfare, Washington, D. C. (196U). -|
70. Federal Water Pollution Control Administration, "River Basin Simula- I
tion Program," U. S. Department of the Interior, Washington, D. C. |
(1967). I!
71. Moder, J. T., and Philips, C. R., Project Management with CPM and f
Pert, Reinhold Publishing Corp., London T 196"V) .||
72. Nemhauser, G. L. , Introduction to_Dynamic Programming, John Wiley \
and Sons , Inc . , New York (1966~ "" t
i-,
73. U. S, Corps of Engineers, "Potomac River Basin Study, Volumes I to "^
VII," U. S. Department of the Army, Baltimore District Office, |-;-
Maryland (I9o2) . {/
?•
^4. Criesapeake Field Station, "A Sumrr.ar^' of Water Duality, Potoraac River if.
Basin in Maryland,1' Federal Water Pollution Control Administration, |f
U. S. Department of the Interior, Annapolis, Md. (1965).
I;
It":
f,
-------
230
75. U. 3, Corps of Engineers, "Survey Report on the Potomac River,"
U. S. Department of the Army, Washington, D. C. (April
16. U. S. Public Health Service, "Investigation of the North Branch
Potomac River," U. S. Department of Health, Education, and Welfare,
Cincinnati, Ohi.o (August 1957).
77. U. S. Public Health Service, "Investigation of the Shenandoah River
Basin," U. S. Department of Health, Education, and Welfare, Cinci-
natti, Ohio (April 196l).
78. Fuhrman, R. E. y "Upper Potomac River Industrial Wastes Investiga-
tion," Doctoral Thesis, The Johns Hopkins University, Baltimore,
Md. (May 195**).
79- Hetling, Leo J., Federal Water Pollution Control Administration,
U. S. Department of the Interior, Deputy Director of Chesapeake
Field Station, Annapolis, Maryland, private communications.
80. Burgess and Niple, "Report on the Financing of Low Flov Augmenta-
tion Projects,''' Prepared for the Ohio Department of Health,
Columbus, Ohio (1966).
8l. Federal Water Pollution Control Administration, "River Basin Simula-
tion Program," Division of Technical Control, U. S. Department of
the Interior, Washington, D. C. (March 1967).
82. Davis, Appendix A.
83. Churchill, M. A., and Nicholas, W. R. , "Effects of Impoundments on
Water Quality," Proceedings of National Symposium on Quality Stand-
ards for Natural Water, University of Michigan, Ann Arbor, Michigan
(July 1966).
8U. Symons, J. M. , Irvin, W. H., Clark, R. M. , and Roebuck, G. G. ,
"Management and Measurement of DO in Impoundments," Proceedings of
National Symposium on Quality Standards for Natural Water, Univer-
sity of Michigan, Ann Arbor (July 1966).
85. Meir, W. L. , and Beightler, C. S., "An Optimization Method for
Branching Multistage Water Resources Systems," WRR, Vol. 3, No. 2
(December 1967) .
86. O'Connor, D. J., and Dobbins, W. E. , "The Mechanism of Reaeration
in Natural Streams," ASCE-SA, Vol. 82, No. SA6 (1956).
87. Langbein, W. B., and Durum, W. H., "The Aeration Capacity of
Streams," U. S. Geological Survey Circular 5^2, U. S. Department of
the Interior, Washington, D. C. (1967).
Tsivoglou, E. C., O'Connell, R. L. , Walter, C. M. , Godsil, P. J.,
and Logs don, G. 3., "Tracer Measurements of Atmospheric Reaeration -
I. Laboratory Studies ,"JV?CF, Vol. 37, No. 11 (October 1965).
-------
I
231
89. Hall, Charles, Sanitary Engineer, Federal Water Pollution Control
Administration, U. S. Department of the Interior, Chesapeake Field
Station, Annapolis, Maryland, private communications.
90. Haveman, R. H., Water Resource Investment and the Public Interest,
Vanderbilt University Press, Nashville, Tennessee
KEY TO ABBSEVIAIIOiB
ASCE American Society of Civil Engineers
ASCE-BX American Society of Civil Engineers, Hydrology Division
ASCE-SA American Society of Civil Engineers, Sanitary Division
JWPCF Journal of Water Pollution Control Federation
SIW Sewage and Industrial Waste
SWJ Sewage Works Journal
WRR Water Resources Research
WSW Water and Sewage Works
I
I
------- |